
Standards and Tools

for Model Exchange and Analysis

in Systems Biology

Ralph Gauges

Dissertation

submitted to the

Combined Faculties for the Natural Sciences and for Mathematics

of the Ruperto-Carola University of Heidelberg, Germany

for the degree of

Doctor of Natural Sciences

presented by

Diplom-Biochemiker Ralph Gauges

born in: Sigmaringen, Germany

Oral-examination: 07/11/2011

Standards and Tools

for Model Exchange and Analysis

in Systems Biology

Referees: Prof. Dr. Ursula Kummer

Dr. Rebecca Wade

Contents

Zusammenfassung vii

Summary x

Abbreviations xvii

1 Introduction 1

2 Materials & Methods 19
2.1 Operating Systems . 19
2.2 Programming Languages . 20
2.3 Unit Testing . 24
2.4 Debugging & Profiling Tools 26
2.5 Libraries & Standards . 29

3 SBML Layout & Render Extension 46
3.1 SBML & Diagrams . 46
3.2 Alternative Diagram Formats 47
3.3 Design & History . 49
3.4 The SBML Layout Extension Specification 51
3.5 Implementation Of The Layout Extension 57
3.6 The SBML Render Extension 61
3.7 Third Party Implementations 86
3.8 The SBML Layout And Render Extension In NF-κB Modeling 87

4 Standards In COPASI 93
4.1 SBML Support In COPASI 93
4.2 Layout And Render Information In COPASI 112
4.3 Graphical Display Of Time Course Simulation Data 115
4.4 Graphical Display Of Elementary Modes 116
4.5 COPASI Language Bindings 117
4.6 NF-κB Modeling with COPASI 120

i

ii CONTENTS

4.7 Work Contributions . 128

5 Expression Normalization 130
5.1 Normal Form Classes . 131
5.2 Expression Tree Classes . 137
5.3 Normalization Algorithm . 142
5.4 Testing . 150
5.5 Normalizing BioModels Expressions 150
5.6 Finding Kinetic Laws For The NF-κB Model 153

6 Discussion 157
6.1 Layout And Render Information In SBML 157
6.2 Standards In COPASI . 160
6.3 Expression Normalization . 164

Acknowledgments 171

List of Figures

1.1 example of a simple reaction network 6
1.2 alternative model specifications 8
1.3 reaction display and differential equation display in COPASI . 10
1.4 electrical circuit diagram vs. SBGN diagram 14

2.1 XML structure example . 33
2.2 Resource Description Framework example 35
2.3 SBML Document structure . 39
2.4 Scalable Vector Graphics example 40
2.5 SVG rendering example . 41

3.1 diagram examples . 49
3.2 SBML XML structure example 52
3.3 model structure vs. layout structure 53
3.4 example of role attribute usage 54
3.5 bounding box example . 55
3.6 line segment example . 55
3.7 cubic bézier example . 55
3.8 curve definition example . 56
3.9 layout rendered with different styles 57
3.10 SBML layout classes . 59
3.11 embedding render information in SBML documents 63
3.12 RGB and RGBA value specification 64
3.13 color definition example . 65
3.14 linear gradient example . 65
3.15 radial gradient example . 66
3.16 example for association by type 67
3.17 example for association by role 68
3.18 example for association by id 69
3.19 render primitives . 71
3.20 render curve example . 71

iii

iv LIST OF FIGURES

3.21 stroke example . 72
3.22 line ending example . 73
3.23 application of line ending example 74
3.24 example for enableRotationalMapping attribute 75
3.25 polygon example . 76
3.26 fill style example . 76
3.27 rectangle example . 77
3.28 rectangle with rounded corners 77
3.29 ellipse example . 77
3.30 circle example . 78
3.31 text element example . 78
3.32 bitmap example . 79
3.33 complex style example . 80
3.34 coordinate schema . 81
3.35 relative vs. absolute coordinates 81
3.36 transformation matrix example 82
3.37 render extension classes . 83
3.38 render extension implementations 85
3.39 CellDesigner diagram for NF-κB activation model 89
3.40 display of imported CellDesigner layout information 91

4.1 SBML data structure vs. COPASI data structure 98
4.2 SBML test suite results . 106
4.3 SBML online test suite results 107
4.4 simulator comparison website 109
4.5 stochastic test suite results . 110
4.6 COPASI screen shot for MIRIAM annotation 111
4.7 layout structure in COPASI files 113
4.8 render classes in COPASI . 113
4.9 COPASI layout rendering . 114
4.10 time course animation . 116
4.11 graphical elementary mode display 117
4.12 Results of elementary mode analysis of initial NF-κB model . 123
4.13 diagram of extended NF-κB model 124
4.14 Results of elementary mode analysis of extended NF-κB model 125
4.15 time course data plot from COPASI 126
4.16 several animation frames for a time series of the NF-κB model 127

5.1 structure of normalized expression 132
5.2 normal form data structure classes 133
5.3 CNormalFraction structure . 133

LIST OF FIGURES v

5.4 CNormalSum structure . 134
5.5 CNormalProduct structure . 134
5.6 CNormalItemPower structure 135
5.7 CNormalGeneralPower structure 135
5.8 CNormalChoice structure . 136
5.9 CNormalLogical structure . 137
5.10 CNormalChoiceLogical structure 137
5.11 expression tree node classes 138
5.12 expression tree example . 139
5.13 choice node example . 141
5.14 function expansion example 143
5.15 normalization process . 144
5.16 operations on numbers . 146
5.17 example for the canceling operation 146
5.18 conversion of CNormalGeneralPower 148
5.19 result of BioModels analysis 152

6.1 ambiguous rate law example 166
6.2 comparison result output . 167
6.3 SBO term SBO:0000054 (screen shot) 169

List of Tables

1.1 Definition of "Omics"-terms 4

2.1 SWIG language support . 44

3.1 role attribute values . 54
3.2 predefined glyph types . 67

4.1 supported SBML versions . 95
4.2 language binding versions . 119

5.1 types for constant nodes . 139
5.2 functions represented by function nodes 140
5.3 logical node types . 141

vi

Zusammenfassung

Die Systembiologie hat sich in den letzten Jahren zu einem wichtigen Werk-
zeug der biochemischen Forschung entwickelt. Systembiologie beschäftigt
sich mit der Simulation und Analyse biologischer und biochemischer Vorgänge
mit Hilfe von Computern. Diese Vorgänge werden in rechnerischen Modellen
beschrieben, wobei verschiedene mathematische Formalismen zum Einsatz
kommen. Durch die Simulation solcher Modelle ist es meist möglich, Vorher-
sagen über das Verhalten der repräsentierten Systeme zu machen und so
gezielt Experimente zu planen, um diese Vorhersagen zu bestätigen. Dadurch
besteht die Möglichkeit, ein besseres Verständnis über das zu untersuchende
System zu erlangen bzw. existierende Hypothesen bezüglich des Systems zu
überprüfen. Oft kann auch aufgrund der gezielteren Planung von Experi-
menten durch den Einsatz systembiologischer Methoden kostbare Zeit im
Labor eingespart werden.

Für die Analyse und Simulation solcher Modelle wird geeignete Software
benötigt und viele Forschungsgruppen auf der ganzen Welt sowie eine Reihe
von Firmen arbeiten an der Entwicklung solcher Programme.

Die meisten dieser Programme widmen sich gezielt einem bestimmten
Aspekt der systembiologischen Forschung. So ermöglichen manche Programme
die Simulation von Modellen, während andere Programme Forscher bei der
Erstellung der mathematischen Repräsentation unterstützen und wieder andere
Programme sich auf die Visualisierung der verschiedenen Analyseergebnisse
spezialisieren.

Da es vermutlich kein Programm gibt, welches sämtliche Arbeitsschritte
unterstützt, die zur Erstellung, Simulation und umfassenden Analyse dieser
Modelle nötig sind, sind Systembiologen bei ihrer Arbeit oft auf eine ganze
Reihe von Programmen angewiesen. Um sinnvoll mit dieser Vielzahl an Pro-
grammen arbeiten zu können ist es notwendig, dass die einzelnen Programme
den Austausch von Daten und insbesondere Modellen unterstützen. Dies war
zu Beginn dieser Arbeit keinesfalls selbstverständlich, sondern eher die Aus-

vii

viii ZUSAMMENFASSUNG

nahme als die Regel.

Erst die Entwicklung bestimmter Standards auf dem Gebiet der System-
biologie änderte die Situation grundlegend. Mit Hilfe dieser Standards ist es
nun möglich, Daten und Modelle einmal zu erstellen, um sie anschließend in
verschiedenen Programmen zu simulieren, zu analysieren oder zur Visuali-
sierung zu verwenden.

Ein grosser Teil dieser Arbeit beschäftigt sich dementsprechend auch mit
der Entwicklung, der Erweiterung und der Implementierung solcher Stan-
dards in Form verschiedener Computerprogramme. Ein solches Programm,
welches Forscher bei der Erstellung und Analyse von Modellen biochemi-
scher Reaktionsnetzwerke unterstützt, ist das von unserer Gruppe mitent-
wickelte Programm COPASI. Teile dieser Arbeit beschreiben somit auch
die Implementierung einiger wichtiger Standards im Rahmen der Entwick-
lung von COPASI. Besonders die von mir entwickelte Erweiterung der Sys-
tem Biology Markup Language (SBML) um die Möglichkeit grafische Dar-
stellungen von Modellen zusammen mit der mathematischen Beschreibung
abzuspeichern bzw. auszutauschen nimmt hierbei eine zentrale Rolle ein.
Die vorliegende Arbeit beschreibt sowohl die Entwicklung dieser grafischen
Erweiterung als auch die Implementierung des zugrundeliegenden SBML
Formats sowie der Erweiterung in Form verschiedener Werkzeuge für die
systembiologische Forschung. Eine weitere wichtige Rolle spielt die Ver-
wendung der grafischen Erweiterung zur Visualisierung von Simulations- und
Analyseergebnissen und die Erstellung entsprechender Visualisierungswerk-
zeuge in COPASI.

Der dritte Teil dieser Arbeit beschäftigt sich ferner mit der Analyse
mathematischer Ausdrücke wie sie oft im Zusammenhang mit Modellen bio-
chemischer Reaktionsnetzwerke verwendet werden. Die beschriebene Ana-
lysemethode dient dazu, mathematische Ausdrücke umzuformen (normali-
sieren), um sie anschliessend vergleichen und unter Umständen identifizieren
zu können. Dies dient unter Anderem dem automatisierten Vergleich von
Modellen, um Übereinstimmungen in bzw. Unterschiede zwischen diesen zu
finden.

Die Verwendung und der Nutzen der entwickelten Formate, Methoden
undWerkzeuge wird dabei anhand eines aktuellen Forschungsprojektes dargelegt.
Dieses Projekt ist Teil der "Virtual Liver Network" Initiative und wird in
Zusammenarbeit mit einer experimentell arbeitenden Forschungsgruppe hier
an der Universität Heidelberg durchgeführt.

ZUSAMMENFASSUNG ix

Das Ziel der "Virtual Liver Network" Initiative ist es, das Wissen um die
verschiedenen Prozesse, welche in der Leber ablaufen, voranzubringen. Dies
erfolgt insbesondere im Hinblick auf medizinische Belange und Anwendungen.
Ein wichtiger Aspekt dieser Forschung ist die Erstellung von mathematischen
Modellen verschiedener Signaltransduktionswege, die eine essentielle Rolle
z.B. bei der Regeneration der Leber spielen.

Zwei Signalkaskaden, von denen bereits bekannt ist, dass sie großen Ein-
fluss auf die Prozesse haben, die bei der Leberregeneration ablaufen, sind
einerseits der relativ gut untersuchte NF-κB Signaltransduktionsweg und
andererseits der erst vor relativ kurzer Zeit entdeckte Hippo Signaltrans-
duktionsweg. Es gibt ebenfalls starke Hinweise auf Interaktionen zwischen
diesen beiden Signalkaskaden, die Details bezüglich dieser Interaktionen sind
jedoch bisher nicht aufgeklärt. Ziel dieses Forschungsprojektes ist es, die
Mechanismen für diese Interaktionen zu finden und die resultierenden Ef-
fekte aufzuklären.

Diese Zusammenarbeit steht erst am Anfang und wir sind momentan
dabei, initiale Modelle der beiden Signaltransduktionswege zu erstellen. Dabei
haben sich die in dieser Arbeit beschriebenen Methoden und Werkzeuge be-
reits als sehr hilfreich erwiesen.

Summary

Over the last few years, systems biology has become an important tool in bio-
chemical research. In systems biology biological and biochemical processes
are simulated and analyzed with the help of computers and computer soft-
ware. These processes are described by computational models employing a
number of different mathematical formalisms.

By simulating these models, predictions about the represented processes
can be made which allow for a more target-oriented planing of experiments.
These experiments can in turn be used to confirm those predictions. Due to
this, a deeper understanding of the examined processes can be gained and
unconfirmed hypothesis concerning the systems may be affirmed.

Often, the possibility for more target-oriented planing of experiments
also helps in cutting down on costly experiments in favor of more theoretical
approaches.

For the analysis and simulation of those computational models, appropri-
ate computer software is needed and many research groups around the world
as well as a number of commercial companies are working on the development
of such software.

Most of these programs target only certain aspects of systems biological
research. Some programs allow for the simulation of models while others are
more focused towards building models and still others are specialized in the
analysis and the visualization of data created by conduction simulations.

Although some may come close, there is probably no single program that
covers all steps and all methods necessary for creating and simulating models
as well as analyzing the ensuing results in an all-encompassing way. There-
fore, system biologists usually depend on a number of different programs for
their work. To really be able to make proper use of these programs, they
have to support the exchange of data and especially of models descriptions.
When this work started this was not commonplace, but rather the exception

x

SUMMARY xi

than the rule.

Only with the development of certain standards in systems biology did
this situation change fundamentally.

Using these standards it is now possible to create models and data once
and use them for simulation, analysis and visualization in many different
computer programs.

A major part of this work describes the development, extension and im-
plementation of such standards in the form of various computer software
projects. Our group is co-developing a software tool called COPASI which
enables scientists to intuitively create simulate and analyze computational
reaction network models. Consequently, part of this work details the im-
plementation of standards related to systems biology in the context of the
development of this tool.

Especially the graphical extension to the Systems Biology Markup Lan-
guage (SBML), one of the major standards in systems biology today, plays
a central role. This extension was mainly developed by me and it allows
the storage and exchange of diagram information together with the mathe-
matical description of a model within SBML documents. This thesis details
the development of this extension as well as its implementation and the
implementation of the underlying SBML standard in a number of different
computer programs for systems biology.

Since the graphical extension is also important for the visualization of
simulation results as well as results of other analysis methods, the develop-
ment of several such visualization methods in COPASI is described.

The last part of this thesis covers a framework for the analysis of math-
ematical expressions as they are commonly found in biochemical reaction
network models. The purpose of this framework is the normalization of arbi-
trary mathematical terms in order to be able to compare and identify them.
This can for example be used to automatically find similarities as well as
differences between models which is an important aspect in model merging
or data mining.

The use and the usefulness of the described formats, methods and tools is
demonstrated in the context of a research project we are currently involved in.
This project is part of the Virtual Liver Network initiative and is carried out
in collaboration with an experimental research group here at the University
of Heidelberg.

The goal of the Virtual Liver Network initiative is to enlarge knowledge

xii SUMMARY

on the different processes taking place in the liver, especially with respect
to medical needs and applications. One important aspect of the research
conducted in this initiative is the creation of computational models describing
certain signaling pathways which are known to play an essential role in e.g.
liver regeneration.

Two signaling pathways that are known to have a strong influence on
the complex processes taking place during liver regeneration are the rela-
tively well studied NF-κB signaling pathway as well as the recently discov-
ered Hippo signaling pathway. There is also strong evidence that these two
pathways interact thereby influencing each other. The details of these in-
teractions and the points of interaction between the two pathways are still
unknown. It is the goal of this collaboration to find these interaction points
as well as determine the effects of the interaction.

Work on this project has just recently begun and we are currently in the
process of setting up initial models for the two signal transduction pathways.
However, the methods and tools described in this thesis have already been
very helpful for this work.

List of Papers

published papers

Major parts of this work have been covered by the following papers:

COPASI–a COmplex PAthway SImulator.

Bioinformatics. 2006 Dec 15;22(24):3067-74.
Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L,
Mendes P, Kummer U.
Virginia Bioinformatics Institute, Virginia Tech, Washington St. 0477, Blacks-
burg, VA 24061, USA.

abstract

Here, we present COPASI, a platform-independent and user-friendly bio-
chemical simulator that offers several unique features. We discuss numeri-
cal issues with these features; in particular, the criteria to switch between
stochastic and deterministic simulation methods, hybrid deterministic-stochastic
methods, and the importance of random number generator numerical reso-
lution in stochastic simulation.

Computational modeling of biochemical networks using
COPASI.

Methods Mol Biol. 2009;500:17-59.
Mendes P, Hoops S, Sahle S, Gauges R, Dada J, Kummer U.
Manchester Centre for Integrative Systems Biology, University of Manch-
ester, UK.

xiii

xiv LIST OF PAPERS

abstract

Computational modeling and simulation of biochemical networks is at the
core of systems biology and this includes many types of analyses that can
aid understanding of how these systems work. COPASI is a generic software
package for modeling and simulation of biochemical networks which provides
many of these analyses in convenient ways that do not require the user to
program or to have deep knowledge of the numerical algorithms. Here we
provide a description of how these modeling techniques can be applied to
biochemical models using COPASI. The focus is both on practical aspects
of software usage as well as on the utility of these analyses in aiding bio-
logical understanding. Practical examples are described for steady-state and
time-course simulations, stoichiometric analyses, parameter scanning, sen-
sitivity analysis (including metabolic control analysis), global optimization,
parameter estimation, and stochastic simulation. The examples used are
all published models that are available in the BioModels database in SBML
format

A model diagram layout extension for SBML.

Bioinformatics. 2006 Aug 1;22(15):1879-85.
Gauges R, Rost U, Sahle S, Wegner K.
Bioinformatics and Computational Biochemistry, EML Research Schloss-
Wolfsbrunnen Weg 33, D-69118 Heidelberg, Germany.
Ralph.Gauges@eml-r.villa-bosch.de

abstract

Since the knowledge about processes in living cells is increasing, modelling
and simulation techniques are used to get new insights into these complex
processes. During the last few years, the SBML file format has gained in
popularity and support as a means of exchanging model data between the
different modelling and simulation tools. In addition to specifying the model
as a set of equations, many modern modelling tools allow the user to create
and to interact with the model in the form of a reaction graph. Unfortunately,
the SBML file format does not provide for the storage of this graph data along
with the mathematical description of the model. Therefore, we developed an
extension to the SBML file format that makes it possible to store such layout
information which describes position and size of objects in the graphical
representation.

LIST OF PAPERS xv

SYCAMORE–a systems biology computational analysis
and modeling research environment.

Bioinformatics. 2008 Jun 15;24(12):1463-4.
Weidemann A, Richter S, Stein M, Sahle S, Gauges R, Gabdoulline R,
Surovtsova I, Semmelrock N, Besson B, Rojas I, Wade R, Kummer U.
Scientific Databases and Visualization Group, EML Research, Schloss-Wolfsbrunnenweg
33, 69118 Heidelberg, Germany.
ursula.kummer@bioquant.uni-heidelberg.de

abstract

SYCAMORE is a browser-based application that facilitates construction,
simulation and analysis of kinetic models in systems biology. Thus, it allows
e.g. database supported modelling, basic model checking and the estimation
of unknown kinetic parameters based on protein structures. In addition,
it offers some guidance in order to allow non-expert users to perform basic
computational modelling tasks. SYCAMORE is freely available for academic
use at http://sycamore.eml.org. Commercial users may acquire a license.

The Systems Biology Graphical Notation

Nat Biotechnol. 2009 Aug;27(8):735-41.
Le Novère N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E,
Wegner K, Aladjem MI, Wimalaratne SM, Bergman FT, Gauges R, Ghazal
P, Kawaji H, Li L, Matsuoka Y, Villéger A, Boyd SE, Calzone L, Courtot
M, Dogrusoz U, Freeman TC, Funahashi A, Ghosh S, Jouraku A, Kim S,
Kolpakov F, Luna A, Sahle S, Schmidt E, Watterson S, Wu G, Goryanin I,
Kell DB, Sander C, Sauro H, Snoep JL, Kohn K, Kitano H.
EMBL European Bioinformatics Institute, Hinxton, UK.
lenov@ebi.ac.uk

abstract

Circuit diagrams and Unified Modeling Language diagrams are just two ex-
amples of standard visual languages that help accelerate work by promoting
regularity, removing ambiguity and enabling software tool support for com-
munication of complex information. Ironically, despite having one of the
highest ratios of graphical to textual information, biology still lacks stan-
dard graphical notations. The recent deluge of biological knowledge makes
addressing this deficit a pressing concern. Toward this goal, we present the

xvi LIST OF PAPERS

Systems Biology Graphical Notation (SBGN), a visual language developed
by a community of biochemists, modelers and computer scientists. SBGN
consists of three complementary languages: process diagram, entity relation-
ship diagram and activity flow diagram. Together they enable scientists to
represent networks of biochemical interactions in a standard, unambiguous
way. We believe that SBGN will foster efficient and accurate representation,
visualization, storage, exchange and reuse of information on all kinds of bio-
logical knowledge, from gene regulation, to metabolism, to cellular signaling.

Abbreviations

AMD Advanced Micro Devices

AMD64 abbreviation for especially Linux operating systems for 64Bit Intel
based CPUs, sometimes also refereed to as x86_64

API Application Programming Interface

ATI ATI Technologies Inc.

ATP adenosine triphosphate

awk text processing computer program, the name is made up of the initials
of the authors last names: Alfred V. Aho, Peter J. Weinberger und
Brian W. Kernighan

BSD Berkeley Software Distribution

CellML Cell Markup Language

ChEBI Chemical Entities of Biological Interest

CLAPACK C version of Linear Algebra PACKage

COPASI Complex Pathway Simulator

CPU Central Processing Unit

CSS Cascading Style Sheet

DBX source level debugger proveded by the Sun Developer Tools

DirectX shorthand for a number of game development libraries from Micro-
soft (Direct3D, DirectDraw, DirectMusic, DirectPlay, DirectSound, etc.)

DKFZ Deutsches Krebsforschungs Zentrum (German Cancer Research Center)

DNA Desoxyribonucleic Acid

xvii

xviii ABBREVIATIONS

DNF disjunct normal form

DOM Document Object Model

FEBS (Journal) Federation of European Biochemical Societies (Journal)

GDB GNU Debugger

Gepasi General Pathway Simulator

Gimp GNU Image Manipulation Program

GNU GNU is a Unix

GOLD Genomes Online Database

GUI Graphical User Interface

HTML Hypertext Markup Language

IDB Intel Debugger

JDB Java Debugger

JNI Java Native Interface

KEGG Kyoto Encyclopedia of Genes and Genomes

JIT Just in time, as in JIT Compiler.

JPEG Joint Photographic Experts Group

JVM Java Virtual Machine

LAPACK Linear Algebra PACKage

LGPL Lesser GNU Public License

Linux Linus´ Unix. Operating system kernel developed by Linus Torvalds.

MIASE Minimum Information About a Simulation Experiment

MIB Manchester Interdisciplinary Biocentre. Part of the University of Manchaster,
U.K.

MIRIAM Minimum Information Required in the Annotation of Models

mRNA messenger ribonucleic acid

ABBREVIATIONS xix

ODE ordinary differential equation

OpenGL Open Graphics Library

OSG Open Scene Graph

PDB Python Debugger

PDE partial differential equation

PDF Portable Document Format

PNG Portable Network Graphics

PPC PowerPC, a CPU type developed by IBM

Qt read ’cute’. Cross platform library for the creation of graphical user
interfaces.

Qwt Qt Widgets for Technical Applications. Library for 2D data visual-
isation in Qt.

Qwtplot3D Library modeled after Qwt for 3D data visualisation in Qt.

RDF Resource Description Framework

RELAX NG REgular LAnguage for XML Next Generation

RGB abbreviation for Red-Green-Blue-value

RGBA abbreviation for Red-Green-Blue-Alpha-value

RNA Ribonucleic Acid

rRNA ribosomal ribonucleic acid

SAX Simple API for XML

SBGN Systems Biology Graphical Notation

SBML Systems Biology Markup Language

SBRML Systems Biology Results Markup Language

SBW Systems Biology Workbench

SCons Software construction toolkit

xx ABBREVIATIONS

sed stream editor

SED-ML Simulation Experiment Description Markup Language

SVG Scalable Vector Graphics

SWIG Simplified Wrapper and Interface Generator

SYCAMORE systems biology computational analysis and modeling re-
search environment

tRNA transfer ribonucleic acid

VBI Virginia Biotech Institute

VTK Visualization Toolkit

W3 World Wide Web

W3C World Wide Web Consortium

WinDbg Windows Debugger, source level debugger from Microsoft with
graphical user interface

x86 abbreviation for a 32Bit CPU family from Intel

XML Extensible Markup Language

XSL Extensible Stylesheet Language Family

XSLT XSL Transformation

Chapter 1

Introduction

Biochemistry – From Wöhler to Venter

Biochemistry and especially molecular biology are relatively new fields of
science compared to for example mathematics, physics or even chemistry.
The term biochemistry might first have been used as early as 1882 but there
is no clear evidence. Today the invention of the term biochemistry is attri-
buted to Carl Neuberg who was the first editor of the journal "Biochemische
Zeitschrift" which is know today as FEBS journal[1]. He started using that
term in the year 1903.

But this was not the beginning of biochemistry. Before that time bio-
chemistry was known under the term physiological chemistry. Depending on
the way one defines biochemistry, the beginnings of this field date back to
the breakthrough discoveries of Friedrich Wöhler and Anselme Payen.

In the year 1828 Wöhler discovered by accident that the organic com-
pound urea can be synthesized from inorganic compounds[2, 3, 4]. Something
that was believed to be impossible at that time. Back then the general sci-
entific hypothesis was that only living organisms had the potential to create
organic compounds. This hypothesis is known under the term vitalism[5, 6]
and it was called into question by Wöhlers discovery.

The fact that the reaction discovered by Wöhler is not the reaction that
creates urea in living organisms, as discovered by Hans Krebs and coworkers
in the early 1930s[7], does not diminish the importance of this breakthrough.

Only a short time later in 1832 Anselme Payen discovered the first enzyme
– diastase – in extract from malt. The enzyme is also known under the name
amylase and there exist different isoforms; all of these break down long sugar
chains into smaller, soluble sugar compounds. This enzyme is also important
for humans where it occurs for example in saliva. By breaking down the long

1

2 INTRODUCTION

sugar chains from e.g. starch it makes the sugar molecules available for
uptake by the cells in the digestive tract.

The birth of the field of molecular biology was brought about quite some
time later by the discovery of the structure of desoxyribonucleic acid (DNA)
and the role it plays in living organisms. The existence of DNA has been
known since 1869, when it was discovered by Friedrich Miescher who called it
nuclein[8]. In 1919 Phoebus Levene discovered that DNA consists of chains of
linked adenine, guanine, cytosine and thymine molecules[9]. Levene believed
that DNA consists of equal amounts of the four nucleotides (tetranucleotide
hypothesis). This hypothesis was later refined by Erwin Chargaff who found
first hints of the base paired structure of DNA and that DNA from different
species had a slightly different composition (Chargaff rules)[10]. It wasn’t
until the discovery of the DNA structure by James Watson and Francis Crick
in 1953 and a subsequent presentation by Francis Crick in 1957, where he
postulated the connection between DNA, RNA and proteins[11, 12], that the
actual role DNA plays in living organisms was brought to light. Crick created
the term "central dogma" for his idea that the flow of genetic information
was from DNA to RNA to protein and that this process was irreversible, i.e.
DNA can not be produced from proteins.

These findings allowed Har Gobind Khorana, Marshall W. Nirenberg and
Robert W. Holley to decipher the genetic code in 1961[13]. The genetic code
determines how the sequence of base pairs in the DNA/RNA is translated
into the amino acid sequence of the proteins encoded by that DNA. For these
ground breaking discoveries Watson and Crick were awarded with the Nobel
Price in Medicine in the year 1962. Har Gobind, Nirenberg and Holley also
received the Nobel Price in Medicine only a short time later in 1968.

Until that time biochemical research was mostly done in the laboratory
where researchers measured properties of individual cell components. Since
at that time it was general believe that the proteins were the carriers of the
genetic information, much emphasis was put on those. With the discovery
of the role of DNA research interest shifted and much work was put into
acquiring and deciphering the genetic information of the individual organ-
isms. In the beginning, sequencing of genes was very laborious, manual work
but sequencing speed picked up due to the development of new sequencing
methods. The first complete genome of an organism, the bacteriophage Φ
X 174, was sequenced in 1977[14]. Progress in the area of gene sequencing
and gene sequencing methods continued at an astonishing rate and in the
years following the publication of the first complete bacteriophage genome,
the genomes of several other viruses and bacteria have been sequenced.

In the year 1988 the human genome project was started. This project
to sequence the complete human genome ran for more than 13 years and

INTRODUCTION 3

involved research groups from all over the world. With an estimated cost of
3 billion dollars, the project was able to present a first draft of the human
genome in the year 2000 and was considered complete three years later in
2003[15, 16, 17].

In 1998, nine years after the human genome project had started, a private
company called Celera Genomics lead by Craig Venter also began to sequence
the human genome. Although the human genome project had a head start
of many years Celera Genomics managed to finish their sequencing project
roughly at the same time as the human genome project. This increased
sequencing speed was due to advances in sequencing technologies which also
allowed Celera Genomics to not only complete the sequencing in a fraction
of the time, but also at roughly 10% of the costs of the human genome
project[18].

During the ten years following the publication of the first draft of the
human genome by the human genome project gene sequencing technology
progressed fast. Today commercial companies provide full genome sequenc-
ing as a service at a fraction of the costs of even Celeras efforts. Price goals
as low as 1000 or even 100 dollars per complete human genome sequence have
recently been announced by various companies and hundreds or even thou-
sands of human genomes have been sequenced since 2001. The exact number
is hard to tell since most of the genomes have never been published and can
only be estimated based on announcements made by these companies[19, 20].

The race between the human genome project and Celera for the sequence
of the human genome and the commercialization of gene sequencing had lead
to the development of a number of so called high throughput techniques that
enable researchers to create massif amounts of genomic and other data in a
very short time and at moderate costs. This in turn has lead to several new
research fields dealing with these large scale data sets and to new associated
technical terms (see table 1.1).

Today biochemical research does not exclusively take place in laboratories
any more, but more and more research in this field depends on the use of
computers. One reason for this trend certainly lies in the fact that the
amount of data that has to be handled has grown enormously due to the
new methods mentioned above and the data generated by the corresponding
fields of research.

Another cause for the increased use of computers might be the fact that
research in this area today focuses on understanding complete systems or at
least larger parts of these systems instead of single elements like individual
reactions or proteins. The reason behind this new trend is the comprehension
that the behavior of a complex system like an organism can not be explained
by the sum of the properties of its constituents[21]. Complex systems tend

4 INTRODUCTION

Genome/Genomics The complete genetic information of an organism.
The genetic information of an organism normally does not change over
time.

Transcriptome/Transcriptomics The complete set of molecules that are
transcribed from the genome (mRNA, tRNA, rRNA and other non-
coding RNA molecules) of an organisms. The transcriptome of an
organism is usually more complex than its genome due to processes like
alternative splicing. Since not all genes of an organism are expressed
at all times, the content of a transcriptome of an organism depends
on many factors like stress, availability and type of nutrition etc. This
means that the transcriptome of an organism can change over time.

Proteome/Proteomics The complete set of proteins of an organism and
their interactions. Due to post-translational modifications, the prote-
ome of an organisms is usually more complex than the corresponding
transcriptome. Since the proteome is translated from the transcript-
ome, it also changes over time.

Metabolome/Metabolomics The complete of "small" molecules
(metabolites) participating in the reactions in an organism. The
contents of the metabolome depends on the one hand on molecules
acquired from outside the organism (e.g. food) and on the other hand
on the reactions that take place and therefore on the proteome. This
means that the metabolome of an organism usually also changes over
time.

Table 1.1: Short definitions of new technical terms associated with different
sets of biological data. The definition item specifies the name of the data set
followed by the associated field of research that deals with this data.

INTRODUCTION 5

to show so called emergent behavior that arises from the interactions of the
individual elements. A good example for this principle are colony forming
insects like for example ants. The behavior of a single ant is very simple,
but the complete colony shows a complexity beyond what would be expected
considering the behavior of each single individual in that colony. It is the
interaction of thousands to millions of individuals that determines the prop-
erties of this system.

Likewise, in order to understand the complex behavior of a living organ-
ism, one has to consider a sufficiently large subset of processes and com-
ponents to account for the complexity caused by the interactions between
them[22, 23, 24].

Systems Biology

Systems Biology is the biology
of systems.

undisclosed author

Systems Biology is the name of yet another relatively new field of biochem-
ical research that emerged due to the desire to understand the complexity
of living organisms and how this complexity is created from the individual
components[25, 26, 27, 28].

The German website for system biology, http://www.systembiologie.de
defines systems biology as follows:

"Systems biology is devoted to the study of biological processes
on a systems level. It focuses on network behaviour, particularly
dynamics, through the use of mathematical modeling coupled to
experiment. To accomplish this ambitious task, systems biology
combines quantitative methods used in molecular biology with
approaches from the fields of mathematics, computer sciences,
and systems science."

Or short, systems biology tries to simulate the processes that occur in
living organisms with the help of a computer. Similar concepts exist in many
different fields in research, industry and even entertainment. An example
from the automobile industry would be virtual crash tests. There the engi-
neers create a mathematical representation of the mechanical properties of
a car and use that mathematical description to compute the potential con-
sequences of a crash using appropriate computer software. Another example

6 INTRODUCTION

that everyone knows is the weather forecast. There, the different influences
on parameters like temperature, wind or air pressure are cast into a set of
formulas that is then used to compute the weather forecast that we see each
evening in the news.

The set of mathematical expressions that are used for the simulation of
some concept, in our case the reactions and interactions taking place in an
organism, are often referred to as the model and the process of creating this
model is called modeling. In systems biology, there are different types of
models as well as different mathematical formalism to describe them. Mod-
els are usually divided into two classes. One class are the so called topological
models. Topological models describe only the interactions between the ele-
ments that are relevant to a model and the mathematical concept graphs is
often used to describe such a topological model. In such a graph, the inter-
acting elements, e.g. metabolites or proteins are represented by the nodes
and the interactions between them, e.g. reactions or binding processes, are
represented by the edges. An example of a simple topological model is given
in figure 1.1. Topological models don’t have to be associated with numeri-
cal values which limits the types of analysis that can be conducted on those
models.

A
+
B

C

D

E

v = kD ∗ [C]

kD = 0.01 1
s

v = kE ∗ [C]

kE = 0.03 1
s

v = kf ∗ [A] ∗ [B]− kr ∗ [C]

kf = 0.14 1
s∗mM

kr = 0.02 1
s

A0 = 14.7mM

B0 = 10.1mM

C0 = 0.9mM

D0 = 2.5mM

E0 = 1.2mM

Figure 1.1: Example of a simple reaction network. The dark parts repre-
sent a topological model, the lighter parts add the necessary mathematical
expression to transform it into a kinetic model.

The other type of models are the so called kinetic models. Kinetic models
consists of the same information as topological models, i.e. the interactions
and the interacting elements often in the form of a graph, but they supple-
ment this information with numerical values associated with the nodes and

INTRODUCTION 7

mathematical expressions that describe the interactions. In a deterministic
model of a metabolic reaction network this means that the metabolites re-
presented by the nodes are assigned concentration values and the edges which
represent the reactions are assigned mathematical formulas that describe the
speed of change for the concentrations of the associated metabolites. With
the help of these additional elements, the change in concentration over time
of all the metabolites of the model can be calculated with the help of a com-
puter and appropriate computer software. The result of such a simulation
experiment is called a time course and it is probably the most common type
of analysis done on kinetic models.

The approach described above will lead to a set of coupled differential
equations, but there are also other approaches to formulate kinetic models
for simulation on a computer. In so called probabilistic/stochastic models all
the nodes in the graph are also associated with e.g. concentration values, but
in this case the edges are associated with probabilities. These probabilities
determine the likelihood that the given reaction will occur within a certain
time period. The higher the probability associated with a certain reaction,
the more often it will probably occur within a given time period. Since this
process is governed by random events, the exact time at which a reaction
event occurs or how many reaction events occur within a certain time period
is not predetermined.

A notorious example for such a probabilistic process is the decay of radio-
active elements. For example caesium-137 has a half life of roughly 30 years.
This means that if one looks at a large lump of caesium-137 half of the
caesium-137 molecules will have decayed to barium within the course of 30
years. If one only has a single atom of caesium-137 however, it is not possible
to predict at what point in time this atom will decay, it could be seconds,
but it could also be years. There is only a certain probability for the event
to occur within a certain time period.

Calculating time courses for probabilistic experiments requires the use of
random numbers and usually involves many millions of calculations, so the
use of computers for this type of analysis is inevitable. Although certain
types of differential equations can be solved analytically, especially linear
ordinary differential equations, the types of differential equations encountered
in the analysis of biochemical reaction networks normally can’t. For most
types of differential equations of higher order, no method for solving them
analytically is known and the use of special approximation algorithms is
required to calculate an approximate solution. Depending on the number
of steps calculated during the simulation and on the size of the differential
equation system, this also involves millions of calculations and computer
hard- and software is necessary for this task as well.

8 INTRODUCTION

A+B
 C v = kf ∗ [A] ∗ [B]− kr ∗ [C]

C → D v = kD ∗ [C]

C → E v = kE ∗ [C]

kf = 0.14 1
s∗mM

kr = 0.02 1
s

kD = 0.01 1
s

kE = 0.03 1
s

A0 = 14.7mM B0 = 10.1mM

C0 = 0.9mM D0 = 2.5mM

E0 = 1.2mM

d[A]

dt
= kr ∗ [C]− kf ∗ [A] ∗ [B]

d[B]

dt
= kr ∗ [C]− kf ∗ [A] ∗ [B]

d[C]

dt
= kf ∗ [A] ∗ [B]− kr ∗ [C]− k1 ∗ [C]− k2 ∗ [C]

d[D]

dt
= kD ∗ [C]

d[E]

dt
= kE ∗ [C]

kf = 0.14 1
s∗mM

kr = 0.02 1
s

kD = 0.01 1
s

kE = 0.03 1
s

A0 = 14.7mM B0 = 10.1mM C0 = 0.9mM

D0 = 2.5mM E0 = 1.2mM

Figure 1.2: Two alternative ways of specifying the reaction network from
figure 1.1. On the left the kinetic model is specified as a list of reactions with
rate laws and kinetic parameters and on the right it is described as a set of
coupled ordinary differential equations (ODEs).

Tools & Standards In Systems Biology
As described above, work in the field of systems biology requires the use of
computers and of specific computer software that helps in the analysis of
topological as well as kinetic biochemical reaction networks.

So far computer software was only mentioned in the context of calculating
time course data from probabilistic and deterministic models, but the use
of computer software can be beneficial to researchers during the complete
workflow including model creation, simulation and other types of analysis as
well as the visualization of the generated data.

Researchers in systems biology come from many different scientific back-
grounds and besides biochemists there are biologists, mathematician, physi-
cist, computer scientists and many more. While mathematician and physi-
cists generally are familiar with the concept of differential equations, scien-
tists from other fields usually aren’t or are to a lesser extend. This means
that while researchers used to working with differential equations will have
no problems using any of the generally available mathematical frameworks,
researchers with a more biological background can profit from software more
geared towards their area of expertise.

Especially researchers with a strong background in life sciences are the
users targeted by the COPASI program. COPASI is the successor of the
well known and widely used Gepasi program[29, 30]. Gepasi was one of
the first and at that time probably the only tool that allowed users with a

INTRODUCTION 9

background in life sciences to create reaction network models in an intuitive
way by specifying reaction equations. Most other tools at that time required
users to specify the differential equations which requires a certain expertise
and can be prone to errors.

The COPASI software is developed in our group in collaboration with
groups from the University of Manchester in the U.K. as well as from the
Virginia Biotech Institute in Blacksburg, Virginia, in the U.S.A. COPASI
provides an intuitive user interface that supports the user in the creation of
biochemical reaction networks by allowing them to specify reaction equations
and kinetic laws instead of differential equation systems. The differential
equations needed to calculate time courses of these models are afterwards
generated from the information specified by the user but without requiring
in depth mathematical knowledge about the process. In addition to de-
livering the user from having to write large sets of differential equations,
COPASI provides users with various methods for the simulation and analysis
of biochemical reaction networks as well as versatile and intuitive ways of
visualizing the results of these analysis. COPASI is free software and so far
it has been downloaded several thousand times from our web servers. It is
used by scientists all over the world for research as well as in teaching.

Major parts of this work cover the implementation of analysis and visu-
alization methods for reaction networks in COPASI.

The large number of sophisticated and well tested methods for the simu-
lation and analysis of reaction network models in COPASI have also picked
the interest of developers of other systems biology tools. Some of them have
voiced their interest in being able to use parts of the functionality of COPASI
from within their programs. Since COPASI has been written as a standalone
program this is not directly possible. This is complicated by the fact that
COPASI was written using the C++ programming language while many other
software tools use other programming languages like Java, Perl or C# just
to name a few. In software development it is not unusual to interface pro-
gram code written in C or C++ to higher level languages like Java, Perl or
Python. Most higher level languages provide some kind of communication
interface that allows programmers to write extra code that lets the program
code written in the higher level language communicate with the code from
the low level language and vice versa. Since the communication interface is
different for every high level language this communication code has to be
provided for each high level language separately.

With the help of a tool called "Simplified Wrapper and Interface Gener-
ator" (SWIG) that partially automates the process of creating the commu-
nication code for a large number of high level languages, it is now possible to
access COPASI functionality from a number of different programming lan-

10 INTRODUCTION

Figure 1.3: COPASI supports users with biological background by allowing
users to specify reaction equations (top) instead of differential equations,
nevertheless, the set of differential equations (bottom) is also displayed to
the user if requested. Alternatively if a file contains graphical information,
the reaction network can be displayed as a diagram (see figure 3.40).

INTRODUCTION 11

guages. Currently access from C++, Python as well as Java is possible and
work on providing access from Perl, Octave and R are under way. Together
with the substantial documentation and examples provided for each of the
target languages, this work of mine provides a useful tool to developers and
scientists from all over the world as well as several Ph.D. students from our
group. The most visible use of COPASI, at least in terms of users, is the inte-
gration of COPASIs simulation capabilities in the CellDesigner[31] software.
CellDesigner is a tool for the graphical creation of reaction networks and it
does not contain much functionality beyond that. A few years ago they ap-
proached us and asked if they could use methods from COPASI within their
tool. They were the first to use the language bindings for COPASI and this
collaboration actually started the whole project of creating language bindings
for COPASI.

At the time this work started, most research software tools were created
to solve a very specific problem, e.g. there were tools for the stochastic and
the deterministic simulation of reaction networks, tools for the calculation
of elementary flux modes, tools for parameter fitting etc. and each of these
tools required its input to be in a specific format which was incompatible
with the file formats for most of the other tools. If a scientist in the course of
his/her work had to use several different tools for different types of analysis
or to verify the results of one tool with another, this often required the model
to be recreated in the format specific to each of these tools. Needless to say
that this created a lot of extra work and made the whole process somewhat
cumbersome.

To address this situation, a number of scientist got together in order to
come up with a standard for the exchange of reaction networks. Unfortu-
nately not all of these scientist got together at the same time and at the same
place and therefore this idea of a common exchange format was conceived
several times around the world at roughly the same time, but in different sys-
tems biology communities. This is the reason that today we don’t have one
common standard for storing reaction network models but (at least) three
standards1 which are supported by several groups. Today these standards
are competing with each other to some extend, but at the same time mem-
bers of the three communities are trying to collaborate on new developments
in that area.

The work in this thesis is mostly concerned with the Systems Biology
Markup Language (SBML) standard, its development and extension as well

1Since none of the three formats have actually undergone a standardization process
yet, the word standard is used rather liberally in this context.

12 INTRODUCTION

as its implementation in the form of computer software. Nevertheless the
similarities as well as the differences between the different standards shall be
highlighted briefly:

CellML CellML is a standard for exchanging mathematical models of com-
plex systems. It has been developed by the Auckland Bioengineering
Institute at the University of Auckland in New Zealand[32, 33, 34].
CellML is a very general file format allowing the user to encode all
kinds of models not just reaction network models. The emphasis for
CellML has been put on generating a generic file format and on mod-
ularity, allowing the user to combine different models to form larger
models from these smaller components. The disadvantage of having
such a general file format is increased complexity. Because the file
format cover such broad range of applications, there are not a lot of
tools that can support all CellML features. CellML has been devel-
oped in New Zealand and according to the website of the developers,
most groups that use CellML for their research seem to come from the
Asian/Pacific region as well as from Oxford in the U.K.[35]. The first
publications related to CellML appeared in the year 2000 and 2001 in
the Proceedings of the Physiological Society of New Zealand[36, 37]. It
is pure speculation, but maybe the journal does not have a high vis-
ibility outside New Zealand and therefore not a lot of people noticed
these publications.

BioPAX Another standard that is used to exchange data between a number
of research groups and software packages is BioPAX[38, 39]. The cen-
ter of activity related to BioPAX lies in the U.S.A., but several groups
from Europa are also participating in the development of this format.
BioPAX is not as general as CellML. It is more geared towards describ-
ing models of biochemical reaction networks and emphasis has been
put on providing detailed meta information about the biological mean-
ing of the constituents of the models. Although the first publication
for the BioPax specification appeared only very recently in 2010[38],
the effort behind it is several years old and the paper only covers the
latest release called Level 3. The first version of the specification that
is available on the internet is termed Level 1 Version 1.4 and has been
released in 2005.

SBML Is the Systems Biology Markup Language which also is a format
for the exchange of mathematical descriptions of reaction networks.
Here the emphasis lies on the exchange of the mathematical descrip-
tion mainly for use in time course simulations[40, 41]. Although the

INTRODUCTION 13

first publication of the SBML standard appeared in the year 2003, the
corresponding final version of the specification was released in 2001.
The SBML web page is listing more than 100 software tools that are
supposedly support this standard which probably makes it the most
widely used of the three formats. This however does not imply that all
the tools support all versions of SBML or even all features of a single
version of SBML.

There is also another standardization initiative called Systems Biology
Graphical Notation (SBGN)[42]. This initiative overlaps somewhat with the
three formats mentioned above as well as with the work described in this
thesis. The SBGN standard is not a standard for the storage of the math-
ematical description of biochemical reaction networks but it defines a set
of rules of how such reaction networks can be represented graphically in an
unambiguous way. The intention behind this is to have a set of symbols
that can be combined in certain, well defined ways to represent diagrams of
biochemical processes. This is the same concept that is used when draw-
ing circuit diagrams in electrical engineering (see figure 1.4). In this respect
it complements the other three standards and members from the different
communities are collaborating on the SBGN effort.

I am participating in the development of SBGN and parts of this work
aim at providing support for creating and displaying SBGN diagrams within
the COPASI software.

With the amount of data usually involved in the creation of biochemical
reaction networks as well as the large amounts of data that are created by
some of the analysis methods, it is very important to visualize this data in
an intuitive way or to be able to visualize the same data in different ways in
order to highlight different aspects of a problem.

In our group, software for the visualization of such data has been created
very early on and several people in our group were working on different visual-
ization tools in parallel. This lead to the situation that we eventually had
several tools that displayed analysis results on a reaction network diagram,
but each of the programs was using a different way (or no way at all) to
store the diagrams that had been created in the process. Since this was sub-
optimal, we started to look for a common format that would let us store this
diagram information. This was around the same time the first SBML paper
has been published in 2003. Eventually we found that none of the existing
solutions we considered could provide us with a reasonable solution that on
the one hand was versatile enough to be used in each of our applications and

14 INTRODUCTION

Figure 1.4: Example of an electrical circuit diagram (top) and an SBGN
diagram (bottom). The electrical circuit diagram is an example provided
with a Latex package for writing such diagram and the example as well as
the package have been written by Umesh Rai[43]. The SBGN diagram is
the reproduction of a diagram from the SBML specification using the SBML
layout and render extension.

INTRODUCTION 15

at the same time simple enough so that an implementation was feasible. All
we found was the SBML format which allowed the exchange of mathematical
descriptions of reaction networks, but not graphical information. However,
it provided a way with which it could easily be extended with arbitrary
additional information.

In the following years, an official specification for extending the SBML
format with graphical information has been worked out by me with consid-
erable help from several members of our group. Other developers of systems
biology software also became interested in the extension and useful feedback
by the community was provided leading to a very stable and useful extension
to the SBML format. This has been shown by several proof of concept im-
plementation for the extension as well as implementations that are now used
in different software tools. Besides the implementations written by myself,
there are also some implementations of the specification by other developers
from the SBML community.

Although the specification was meant to be used in conjunction with
SBML files, we wrote it in a way that would keep it mostly agnostic of the
underlying file format. This independence from the underlying file format
allowed me to later use the same format for storing graphical information on
top of COPASIs native file format. Due to this reuse of the existing format,
I could also reuse most of the code written for the SBML specific implemen-
tation. Additionally writing the program code for the conversion between
graphical information stored in SBML files and graphical information stored
in COPASI files and vice versa was straight forward.

As this graphical extension to SBML and its derivatives are the basis for
many of the visualization methods described in this thesis, a large fragment
of this text details the extension itself, its implementations and its use for
the visualization of reaction networks and analysis results.

The last topic of this thesis describes my work on creating a framework
for the normalization of mathematical expressions.

When dealing with kinetic models, a lot of mathematical expressions have
to be handled by computer programs and in certain situation it would be
beneficial if these expression could be compared and identified. One simple
example is the comparison of complete models. If we have two separate
models and we want to find out how much these two models overlap, we
need to be able to compare the elements in the two models as well as the
mathematical expressions in these models. Another situation where it would
be useful to be able to identify a mathematical expression is for validating
the annotations of a model. Some models contain additional information

16 INTRODUCTION

that associates elements of the model with biological meaning. For example
a metabolite in a model could provide extra information which specifies that
this metabolite represents ATP. This association is created via references to
unique identifiers from certain biological databases. For the example above,
the identifier CHEBI:15422 could be associated with the metabolite in the
model. This is the unique identifier for ATP from the ChEBI database[44, 45]
and this association establishes that the metabolite represents the molecule
ATP. There are similar ways of assigning biological meaning to the kinetic
laws in a model and this additional information could for example specify that
a certain expression in the model represents a mass action kinetic formula.
Unfortunately it is possible for the annotation to specify that a mathematical
expression represents e.g. a mass action rate law, while the expression itself
is for a totally different rate law. In order to identify such discrepancies
I have implemented a mathematical framework that normalizes arbitrary
mathematical expressions so that they can be compared more easily. A very
simple example of why this normalization is necessary in order to be able
to compare mathematical expressions is represented by the two equations
below:

v = Vmax ∗ (S/(Km + S))

v = (S ∗ Vmax)/(S +Km)

A scientist looking at these two equations would probably recognize im-
mediately that both formulas might represent a Michaelis-Menten type rate
law and that the elements of the expression have only been rearranged. A
computer program on the other hand can’t determine if these two equations
are equivalent without rearranging the elements of both equations in a de-
fined way prior to making the comparison. So what the framework I have
implemented does is to rearrange the two expressions according to a set of
rules and in a way that does not change the semantics of the expression. For
this example the result of the normalization might look like this:

v = (S ∗ Vmax)/(Km + S)

v = (S ∗ Vmax)/(Km + S)

Now the computer program can compare the two equations and will hope-
fully determine that they are identical.

INTRODUCTION 17

Application Of The Tools And Methods

Besides developing computer programs for systems biology, we are also par-
ticipating in different research projects where we collaborate with different
theoretical as well as experimental groups. Our experiences in these projects
as well as the feedback from our collaboration partners is used to improve
our programs and methods to further facilitate the complex process of model
building and analysis.

Currently we are part of the "Virtual Liver" network[46]. Parts of this
initiative deal with the create models of different processes in liver cells and
their integration into larger models to simulate certain aspects of human
liver functionality. The models, methods and tools created by this effort are
supposed to bring new insights on the mechanisms occurring in the liver as
well as promote medical research in this area.

One special area of interest in this project is liver regeneration or more
specifically the mechanisms and processes that lead to the total recovery of
the organ even if large parts have been damaged or removed[47].

Several different signaling pathways in liver cells are known or suspected
to play a major role in these regeneration processes[48, 49, 50], but some
of the details and especially the ways in which the different signaling path-
ways interact are not fully understood. In order to shed some light on these
processes some of the sub-projects in the Virtual Liver Network are going
to create models for the individual signaling pathways and combine those
models in order to be able to understand how they are connected.

One of these sub-projects we are involved in is the creation of a model
for the so called Hippo (or Hpo) signaling pathway. The Hippo pathway has
first been discovered in drosophila where it regulates cell proliferation and
apoptosis[51, 52]. This pathway is highly conserved in mammals where it is
involved in the regulation of cell density dependent cell growth, which is an
important aspect in liver regeneration.

Even so the fact that the Hippo pathway plays an important role in the
regulation of liver size and regeneration has been established, it remains un-
clear how this pathway works in detail[53, 54]. Especially specifics concerning
the crosstalk with the relatively well studied NF-κB signaling pathway are
unresolved.

In this project we are working together with the group of Dr. Kai
Breuhahn from the German Cancer Research Center in Heidelberg (DKFZ).
This work started only very recently and we are currently in the stage of
creating initial models for the two signaling pathways. With the help of the
experimental data provided by Dr. Breuhahns group as well as their knowl-
edge about those signaling pathways involved, we hope to eventually be able

18 INTRODUCTION

to create a reaction network model that can describe the combined effects of
the NF-κB and Hippo signaling pathways on liver regeneration.

During this collaboration many of the methods and principles described
in this thesis have been applied to systems biology research. This will be dis-
cussed in more detail together with the corresponding topics in the following
chapters.

Chapter 2

Materials & Methods

2.1 Operating Systems
During this work several operating systems were used to write, test and run
the different software tools. The following sections will give a short overview
over these operating systems.

Unix & GNU/Linux

The Unix operating system describes a whole family of operating systems.
The Unix standard and the first implementation was developed in the early
1970s in the Bell Laboratories. Today there a many implementations adher-
ing to the "Single Unix Specification"[55] standard.

Examples of Unix compliant operating systems are Oracle Solaris[56],
formerly known as Sun Solaris, HP-UX[57] by Hewlett Packard, AIX[58] by
IBM.

Operating systems adhering to the standard but that have not been of-
ficially certified are often called Unix-like operating systems. These include
the different BSD[59] versions or the different GNU/Linux[60] versions.

Unix operating systems are multitasking, multi-user operating systems
that have been used in the scientific field for a long time. Especially the
free Unix-like operating systems like BSD and GNU/Linux that can run on
commodity hardware have lead to the spread of Unix.

The graphical user interface for the Unix and Unix-like operating systems
is predominantly provided by the X Windows system[61].

During this work the following Unix and Unix-like operating systems
have been used: Oracle Solaris & and GNU/Linux (Debian[62] for AMD64,
Ubuntu[63] for x86 and AMD64, Debian for PPC)

19

20 MATERIALS & METHODS

Mac OS X

Mac OS X is the operating system shipped with all current computer from
Apple Inc.[64].

The Mac OS X kernel is based on parts of FreeBSD[65] and NetBSD[66]
which makes it one of the Unix-like operating systems.

The difference to the BSD clones and other Unix operating systems is that
Mac OS X uses a custom, proprietary graphical user interface not available
for the other operating systems.

During this work the following versions of Mac OS X have been used:
Mac OS X 10.2 for PPC, Mac OS X 10.3 for PPC, Mac OS X 10.4 for PPC
and x86, Mac OS X 10.5 for PPC and x86 as well as Mac OS X 10.6 for x86.

Microsoft Windows

Microsoft Windows[67] is the operating system developed by Microsoft and
which is shipped with almost all new x86 based computers.

The operating system is based on a proprietary kernel as well as a propri-
etary graphical user interface and it is usually restricted to x86 CPU based
computer hardware.

Due to the fact that most computers come pre-installed with some version
of Microsoft Windows it is the most widely used operating system today.

During this work the following versions of Microsoft Windows were used:
Windows XP (32 Bit), Windows Vista (32Bit & 64Bit) and Windows 7 (32Bit
& 64Bit)

2.2 Programming Languages
This work deals extensively with the development of methods and standards
and their implementation on computer hardware. For this purpose different
programming languages have been used.

C++

The C++ programming language was developed as an enhancement to the C
programming language called "C with classes" in 1979 by Bjarne Stroustrup
at the Bell Laboratories[68]. In 1983 is was renamed to C++.

C++ is a general purpose compiled language which means that it can
be used to write arbitrary computer programs and that the program code

PROGRAMMING LANGUAGES 21

written as text (source code) by the developer is compiled into a form (ex-
ecutable binary) that can be processed by the computers central processing
unit (CPU).

For the compilation of C++ programs, another computer program, a so
called compiler, is needed.

The C++ programming language has been standardized in 1998 and since
the standard is open, everyone that is interested can implement a standard
compliant C++ compiler.

As the language as well as the standard have existed for many years now
they are very mature and many high quality compilers, commercial as well
as non-commercial, are available for the different operating systems.

Its maturity and the availability of a number of high quality C++ compilers
on almost all operating systems, was the reason that C++ was chosen as the
main programming language for the implementation of COPASI[69].

The first implementations of libsbml[70], a library for reading SBML doc-
uments, were based on the C programming language, but recent versions are
also implemented using the C++ programming language.

Not all compilers exist for all operating systems and even if some compiler
is available for a number of operating systems, it is not guaranteed that the
code generated on all operating systems has the same quality. Due to these
reasons several different compiler from different compiler manufacturers have
been used for this work.

For theWindows operating system, C++ developers have a choice of several
free and commercial compilers. Free compiler used to compile code under
Windows were the GNU Compiler Collection (GCC)[71] as well as different
versions (2008, 2010) of Microsoft Visual C++ Studio Express[72]. As a
commercial compiler, the Intel C++ compiler[73] was used because it can
sometimes provide executable binaries that run faster than the binaries build
with GCC or Visual C++.

On Mac OS X, GCC is pre-installed and was used to compile most of the
C++ code on that platform. Occasionally the commercial Intel C++ compiler
was used to get executable binaries with improved speed as well as to cross
check for potential errors in the code.

Under Linux and Solaris, the GCC compilers were used as a default. Oc-
casionally the free C++ compiler from Sun[74] or the commercial C++ compiler
from Intel was used. Especially when cross checking for errors in the code.

22 MATERIALS & METHODS

Java

The Java programming language is an interpreted general programming lan-
guage developed in 1995 by James Gosling at Sun Microsystems[75]. The
syntax of the language is based on C++, but several language elements have
been dropped or modified to make the language less complex.

In contrast to C++ source code, Java source code is usually not compiled
to a binary executable that can be directly interpreted by the CPU, but
to an intermediate byte code that needs to be interpreted by a so called
Java virtual machine (JavaVM or JVM). This is done by a Java compiler.
The JVM finally translates the intermediate byte code into code that can
be executed by the CPU. This translation is usually done by a Just-in-time
(JIT) compiler which for some source code can provide almost the same speed
as a program written in e.g. C++.

Java is not a standardized language and Sun Microsystems (now owned
by Oracle) determines the direction of the development of the language.

There are several implementations of Java compilers and Java virtual
machines.

For the most common operating systems like Windows and Linux these
are provided by Sun/Oracle. Since support for other operating systems is not
directly provided by Sun/Oracle, support on these operating systems usually
is several versions behind the latest stable version released by Sun/Oracle
and sometimes doesn’t provide the same level of quality and compliance to
the Java specification.

Apple provides a version of the Java compiler and the virtual machine
with Mac OS X, but it usually lags behind the current implementation by
Sun/Oracle.

Today Java is widely used for writing programs in the scientific community[31,
76, 77], especially with respect to client/server programming.

The Java programming language has been used in this work to write the
Java language bindings for the implementation of the SBML Layout and
Render Extension in the different versions of libsbml as well as to implement
the Java bindings for the COPASI API.

Python

Python is a general purpose, high level scripting language developed by Guido
van Rossum in the late 1980s, early 1990s[78].

Scripting languages are similar to Java in so far as the source code is
not compiled to a binary that is interpretable by the CPU, but a so called

PROGRAMMING LANGUAGES 23

interpreter takes the source code and translates it to code that the CPU can
process. This translation is done each time the program is run. Sometimes
an intermediate binary file that is easier to interpret is created in the process.

The main advantage of scripting languages like Python is their ease of
use compared to compiled languages like C++. The program does not have
to be compiled, but the source code is directly executed in the interpreter.
Since scripting languages are usually high level languages, they provide the
user with sophisticated constructs that allow the development of programs
with less code in less time.

Due to the fact that the program code has to be interpreted each time the
program is run, the increase in flexibility and ease of use comes at the price of
slower running times of the programs. So scripting languages like Python are
mostly used for programs where execution time is not an important factor.

Due to its relatively simple syntax, Python has gained a lot of support
over time and is widely used in the scientific community[79, 80, 81, 82].

The Python programming language has been used in this work to write
the Python language bindings for the implementation of the SBML Lay-
out and Render Extension in the different versions of libsbml as well as to
implement the Python bindings for the COPASI API.

Perl

Perl[83] is another general purpose, high level scripting language developed
by Larry Wall in 1987. It is very similar in scope to Python and shares the
same advantages and disadvantages. It is also widely used in the scientific
community, e.g. BioPerl[84].

The Perl programming language has been used in this work to write the
Perl language bindings for the COPASI API.

GNU Octave

GNU Octave[85] is a free clone of the Matlab[86] numerical computing envi-
ronment. It includes a general purpose, high level scripting language with a
strong emphasis on mathematical methods and concepts and it comes with
a user interface for the display of graphical output and numerical results.

Octave in its current form was started in 1992 by John W. Eaton and is
now developed by a number of volunteers under the GNU aegis.

24 MATERIALS & METHODS

Although it is not 100% compatible with Matlab, it can replace the com-
mercial program for many tasks.

The Octave programming language has been used in this work to write
the Octave language bindings for the COPASI API.

the R programming language

The R programming language[87] is also a general purpose, high level script-
ing language but with a strong emphasis an statistical computing and graph-
ics.

R is an implementation of the S programming language originally devel-
oped by John Chambers at the Bell Laboratories[88].

Ross Ihaka and Robert Gentleman implemented R in 1993. Today it is
developed by a team of developers under the GNU aegis.

The R programming language has been used in this work to write the R
language bindings for the COPASI API.

2.3 Unit Testing

With computer programs becoming ever more complex, manually testing
all the functionality after making changes is usually no longer possible and
automatic testing methods need to be used.

In unit testing the programmer writes a number of tests that systemati-
cally check different aspects and parts of a computer program. These tests
can be run automatically and can assure the quality of existing source code.

Some programming paradigms[89] propose to write tests for new func-
tionality before implementing the actual functionality. This way the tests
replace the formal design and the final implementation can then be checked
as to how well it implements the design provided by the test cases.

During this work, a lot of source code in different programming languages
has been written and a number of unit testing frameworks have been used
to ensure the quality of the software.

libcheck

libcheck[90] is a simple unit testing framework for the C (and C++) program-
ming language(s). It is modeled after other similar frameworks like, e.g.
JUnit (see below).

UNIT TESTING 25

The library is released under the GNU Lesser General Public License
(LGPL)[91] and binary packages for libcheck are available for many of the
operating systems used during the work described in this thesis.

libcheck was chosen by the developers of libsbml as unit testing framework
to test the C and C++ based implementation of libsbml.

For this reason, libcheck was used in this work for writing unit tests for
the C++ based implementation of the SBML Layout and Render Extension
for the different versions of libsbml.

CppUnit

CppUnit[92] is also a unit testing framework for C++ programs and it is similar
in scope to libcheck. It is modeled after the JUnit framework (see below).
In contrast to libcheck, CppUnit is a pure C++ based framework providing a
number of features not provided by libcheck.

CppUnit is released under the LGPL license and pre-compiled binary
packages are available for most of the operating systems used in this work.

CppUnit was used in this work to test the software implementations in
COPASI, especially with respect to implementing support for the SBML
standard including the SBML Layout and Render Extension.

JUnit

JUnit[93] is the most popular unit testing framework for the Java program-
ming language. The framework is released under the Common Public License
aka Eclipse Public License[94] and pre-compiled packages are available for
most of the platforms used in this work.

JUnit is the unit testing framework used in libsbml to test the implemen-
tation of the libsbml Java bindings.

In this work, the JUnit framework was used to test the Java bindings of
the SBML Layout and Render Extension in the different versions of libsbml
as well as the Java bindings for the COPASI API.

PyUnit

PyUnit is the name under which the unittest package of the Python lan-
guage is referred to. The unit testing package comes with all versions of the

26 MATERIALS & METHODS

Python language and is therefore pre-installed on many operating systems,
e.g. Mac OS X or most Linux distributions.

The framework is modeled after the JUnit framework (see above) and
is released under the Python License[78] which is the license of the Python
programming language.

PyUnit is the unit testing framework used in libsbml to test the imple-
mentation of the libsbml Python bindings.

In this work, the PyUnit framework was used to test the Python bindings
of the SBML Layout and Render Extension in the different versions of libsbml
as well as the Python bindings for the COPASI API.

2.4 Debugging & Profiling Tools

A large part of every software implementation consists of finding and elimi-
nating errors or performance bottlenecks in the programs source code. This
is a very complex task and support by good software tools is paramount to
this work.

Each operating system as well as each programming language comes with
its own set of profiling and debugging tools. Therefore in the course of this
work a large set of different debugging and profiling tools has been used.

the GNU debugger (GDB)

The GNU Debugger[95] is the debugging tool that comes with almost every
flavor of Linux and/or Unix and is usually installed together with the com-
pilers from the GNU Compiler Collection (see above). On Mac OS X, GDB
is installed together with the rest of the software development tools.

A debugger like GDB allows the developer to single step through the
instructions of a running program in order to find the place in the source
code where an error occurs.

In addition to this, it allows the user to examine the state and the data
of a program as well as monitor data for modifications during runtime. The
program can for example be used to notify the developer about unexpected
changes in the programs data which might point to errors.

DBX

DBX[96] is the debugger that comes with the compiler from Sun and is
available on Linux as well as Solaris. In theory it provides the same kind

DEBUGGING & PROFILING TOOLS 27

of functionality as GDB, but especially when used on the Solaris operating
system, it provides some additional features not found in other debuggers.
In certain situations this provides additional help in finding errors.

IDB

IDB[97] is the debugger from Intel and it too provides the same functionality
as GDB or DBX. If an executable binary has been compiled with the compiler
from Intel, idb sometimes provides advantages over GDB when debugging the
program.

WinDbg

WinDbg[98] is the debugger from Microsoft and has been used during this
work when debugging programs compiled with Visual C++ from Microsoft
under the Windows operating system.

Valgrind

Valgrind[99] is an invaluable debugging tool when it comes to analyzing mem-
ory access problems or so called memory leaks in a program.

Valgrind simulates the main memory of a program and monitors all mem-
ory access, notifying the developer about access to memory that either does
not belong to the program or about memory that has not been properly
released once it is no longer needed.

Valgrind has been available for the Linux operating system for several
years and recently it has been ported to Mac OS X.

the Java debugger (JDB)

The Java debugger provides the same functionality for Java that for example
GDB provides for C++ programs.

The user can single step through the running Java program and can
display the state of the program while it is executed by the Java virtual
machine.

JDB was used for finding errors in the Java bindings for the SBML Layout
and Render Extension in libsbml as well as for finding errors in the Java
language bindings for the COPASI API.

28 MATERIALS & METHODS

the Python debugger (PDB)

The Python debugger (PDB) provides the same functionality as GDB, but
for programs written in Python.

PDB was used for finding errors in the Java bindings for the SBML Layout
and Render Extension in libsbml as well as for finding errors in the Java
bindings for the COPASI API.

gprof

gprof is a profiler that allows developers to find performance bottlenecks
in compiled programs and it works in conjunction with the GNU Compiler
Collection.

The program to be profiled has to be compiled with profiling information
and linked against the gprof library. This allows the program to write a
detailed log file while running. This log file contains information on how
much time is spent in the individual parts of the program or how often a
certain part is executed. This allows the developer to identify the regions of
the programs that consume most of the time allowing him to maybe improve
the code for those regions. This often leads to programs with significantly
faster running times.

Mac OS X OpenGL profiler

The development tools for Mac OS X provide a so called OpenGL profiler
program. The OpenGL profiler provides a graphical user interface for profil-
ing and debugging OpenGL (see below) based functionality in programs.

The functionality is similar to the combined functionality of a debugger
and a profiler, but in this case the developer can display the resources and
timing data used for OpenGL based drawing code, e.g. the contents of render
buffers or the memory allocated for textures.

This tool was used extensively for finding and removing errors while im-
plementing the rendering library for SBML Layout and Render information
as well as for finding and removing errors in the implementation of all the
graphical display routines in COPASI.

LIBRARIES & STANDARDS 29

2.5 Libraries & Standards

A few years ago, programs written in the scientific community usually inter-
acted with the user via a textual interface where the user had to answer a
few simple questions and the program then calculated some result which was
presented in the form of textual output.

Today most programs provide the user with a more or less sophisticated
graphical user interface and the user interacts with the application by clicking
on so called graphical user interface widgets with the mouse.

Writing such a library for a graphical user interface is a major task taking
many years of development time. Due to the complexity of this task, not
every software project can invest the time needed to create their own user
interface elements.

Today software developers use existing libraries of graphical user interface
elements with which they build up the user interface for their program. This
allows them to write sophisticated user interfaces in only a fraction of the
time.

This concept of reusing existing libraries for certain tasks also extends to
other concepts like reading and writing files in a certain format or plotting
results in two or three dimensional graphs.

Today there are many libraries for developers to choose from to handle
certain tasks like displaying a user interface or reading XML files. This
makes the task of writing complex user friendly programs easier and allows
developers to concentrate on the core functionality of a program.

While many of these libraries have been developed by the open source
community, which means that everybody can use them free of charge, other
libraries and tools are being developed by companies and developers have to
pay in order to be able to use them.

Qt

Qt is a library mainly for writing graphical user interfaces (GUIs)[100]. Newer
versions of Qt also contain elements for different tasks like reading XML files
or accessing databases, but only very little of this additional functionality
has been used during this work.

The main advantage of Qt over other similar GUI toolkits is its cross
platform portability. Code written for one platform can be compiled on any
other platform supported by Qt, even if the underlying graphical system is
different. The application will look and behave the same on all platforms
while at the same time providing the user with the specific look and feel
of programs that is platform or operating system specific. For example if a

30 MATERIALS & METHODS

program is compiled for Microsoft windows, the menu bar will be at the top
of the main window of the application while on Mac OS X, the menu bar for
the same program will be at the top of the screen. The core functionality of
the program however will be the same on Windows and on Mac OS X.

This is a big advantage from the developers perspective as well as from
the perspective of the users.

Qt provides support for all major and even minor platforms since it sup-
ports the graphical framework that is used on Microsoft Windows, the X
Windows System that is used on all major Unix and Linux versions as well
as the graphical front end of the Mac OS X operating system.

During the course of this work, several different major and minor versions
of Qt have been used. Starting with Qt version 2 over Qt version 3 to Qt
version 4 which is the version that is currently used in our projects.

Until Qt version 4, Qt was licensed under a dual license where developers
could choose between the GNU General Public License and a Qt specific
commercial license.

Since not all of our projects fulfilled the requirements of the GPL, we
used commercial licenses for Qt until Qt 4.

Starting with Qt 4, the license under which Qt is released has changed to
the GNU Lesser General Public License which all our projects fulfill. This
allows us to use a non-commercial license for Qt.

In addition to the base functionality of Qt, other libraries based on Qt
have been used in programming the user interface for COPASI, especially for
the graphical display of results.

One additional library used to graphically display analysis results is Qwt[101].
Qwt is a free library for plotting of two dimensional data, e.g. time course
data.

Qwt is released under the GNU Lesser General Public License.

Another library based on Qt that is used in our projects is Qwtplot3D[102].
As the name suggests, this library is similar in scope to Qwt, but while Qwt
provides methods for drawing in two dimensions, Qwtplot3D provides meth-
ods and widgets for the display of data in three dimensions.

An important feature provided by Qt that is not directly related to cre-
ating the graphical user interfaces but that was used extensively in this work
is the qmake tool.

How an executable binary is build from the source code usually differs

LIBRARIES & STANDARDS 31

from operating system to operating system and developers writing programs
that are intended to run on several platforms have to use a different build
system on each platform.

qmake eliminates this problem by providing an operating system indepen-
dent build tool where developers only have to specify which source files belong
to a certain project plus some additional information about the project. From
this information qmake creates all the files necessary to build the project on
the given operating system.

The qmake based build process is used to build COPASI as well as some
of the other programs, e.g. the stand alone demo rendering application.

OpenGL

OpenGL[103] is a cross platform programming interface specification for the
development of 2D and 3D computer graphics. The first version of OpenGL,
OpenGL 1.0, was released in 1992 and it has since been continuously de-
veloped by a consortium of members from the soft- and hardware industry
including big companies like Microsoft, Apple Inc., Silicon Graphics Inc.,
NVIDIA Corporation, AMD, ATI, etc.

The API is supported by most graphics card manufacturers which means
that hardware support for OpenGL is usually found in the drivers for all
graphics cards. This makes drawing with OpenGL very efficient and fast.

Other advantages of OpenGL are that is very stable and mature and that
is is independent of the programming language used for writing the program.
Thus OpenGL code can be written in C++ as well as in Python, Perl, Java
or most other programming languages.

With the advances in hardware, new features were added to OpenGL with
each new version. The latest version of OpenGL is OpenGL 4.1 released in
July of 2010.

While in general the OpenGL specification has cross platform support
and is independent of the programming language, new versions of OpenGL
are not supported on all platforms yet.

Proprietary drivers from NVIDIA and AMD provide full support for
OpenGL under Windows and Linux, but only for relatively new hardware.
The open source drivers that are used in many Linux distributions, currently
only support OpenGL up to version 2.1. OpenGL on Mac OS X is also only
just now making the transition from OpenGL 2 to OpenGL 3.

In order to support as many operating systems and hardware types as
possible, the programs described in this work only use OpenGL features up
to and including OpenGL 1.5. This version is supported on most graphics

32 MATERIALS & METHODS

hardware and most operating systems, providing a very high level of com-
patibility.

Using an older version of OpenGL doesn’t have any major disadvantages,
safe for the fact that we can not use some of the newer features on new
hardware and that the performance on new hardware might be sub-optimal,
but still fast enough for our purpose.

Extensible Markup Language (XML)

The Extensible Markup Language (XML)[104] is a standard for storing tex-
tual data in a hierarchical structured way.

The XML standard has been developed by the W3 consortium and the
first version of the XML 1.0 specification has been released in 1998.

In XML files, data is arranged in a hierarchical, tree like structure with
elements and attributes.

Elements can either be tags which are enclosed in a pair of angled brackets
(<>) or text elements.

Tag elements can be supplemented by attributes and child elements and
each tag element has to be ended by a corresponding closing tag element
which has the same name, but starts with a / (see figure 2.1).

There are many different file formats that are based on the principles of
the XML specification, e.g. the XHTML format that is used to serve web
pages from web servers to web browsers.

There exist several libraries for reading and writing XML files and there
are two different methods how these libraries present the structures read from
an XML file to the program.

Some libraries implement the "Simple API for XML" (SAX) where the
XML file is split into individual tokens and these tokens are passed on to the
program using the library. The program only sees the token that is currently
parsed by the library.

Other libraries implement the so called "Document Object Model" (DOM)
where the complete XML file is read into a tree like structure called the Doc-
ument Object Model, and the program that uses the library works with this
tree data structure.

There are also libraries that implement both of these programming inter-
faces.

The advantage of the "Simple API for XML" approach is that it only
needs to read small parts of an XML file to hand them on to the program.
This makes it very resource friendly because it does not need a lot of memory.

The DOM approach always needs to keep the complete XML tree in
memory which might be problematic if the file is very large. On the other

LIBRARIES & STANDARDS 33

opening and
corresponding

closing table tag

text element

colspan attribute

...
<table border="1" >
<tr>
<th>column 1</th>
<th>column 2</th>

</tr>
<tr>
<td colspan="2">entry 1</td>

</tr>
<tr>
<td>entry 3</td>
<td>entry 4</td>

</tr>
</table>
...

Figure 2.1: Definition of a table in XHTML notation as an example of an
XML structure. The table definition in XHTML starts with the table tag.
This tag has an attribute called border which is assigned a value of 1. The
table tag has child tag elements (tr) which define the rows of the table and
those child tags again have children to define the cells in each row. All
elements are ordered hierarchically and each opening tag has to be ended by
a corresponding closing tag with the same name and an additional / at the
beginning.

34 MATERIALS & METHODS

hand, the program gets to work with the complete tree which makes certain
things easier to implement.

In this work, the expat[105] library which implements the Simple API for
XML was used for reading and writing XML files in COPASI.

libsbml can be configured to use expat, xerces[106] or libxml2[107] for
reading and writing XML files. Therefore all of these libraries were used
for testing the correctness of the implementation of the SBML Layout and
Render extension implemented in libsbml.

An important tool for working with XML files is xmllint. xmllint is an
XML checking tool that is part of the libxml2 distribution. It can test if an
XML document is well formed according to the XML standard and it can
reformat well formed documents to make them more human readable.

In conjunction with an XML schema[108] document or a RELAX NG[109]
document (see below), xmllint can check if a given XML document conforms
to a specific XML dialect, e.g. if a given XML document is a valid SBML
Level 1 Version 1 file.

Resource Description Framework (RDF)

The Resource Description Framework[110] is a standard defined by the W3
consortium for the storage of metadata.

The format describes entity-relationship elements consisting of a subject,
a predicate and an object.

All data is stored in these triplets and the set of triplets can form directed
graphs (see figure 2.2) with the subjects and objects representing the nodes
of the graph and the predicates representing the edges.

The RDF specification provides several ways to store these triplets, but
the format that is of interest in the context of this work is the XML data
format.

Metadata as suggested by the MIRIAM standard is stored in SBML and
COPASI files using the RDF format.

The predicates in SBML and COPASI files are taken from a list of allowed
predicates, as e.g. specified in the section called "A standard format for the
annotation element" in the SBML specification for SBML Level 2 Version
4[113]. The nodes (subjects and objects) are URIs pointing to elements in
biological databases (see figure 2.2).

COPASI uses the Raptor RDF Syntax Library[114] to read and write
RDF data from SBML files and from COPASI files.

LIBRARIES & STANDARDS 35

...
<rdf:Description rdf:about="#_180340">
<bqbiol:isVersionOf>
<rdf:Bag>
<rdf:li rdf:resource="urn:miriam:kegg.pathway:hsa04110"/>
<rdf:li rdf:resource="urn:miriam:reactome:REACT_152"/>

</rdf:Bag>
</bqbiol:isVersionOf>

</rdf:Description>
...

object with meta id
_180340
(subject)

KEGG pathway
has04110
(object)

REACTOME pathway
REACT_152
(object)

is version of
(predicate)

is version of
(predicate)

Figure 2.2: Example of RDF information in XML format and the resulting
graph. The RDF text describes two triplets. The subject is an SBML model
which has the meta id _180340. The predicate is the tag bqbiol:isVersionOf
which is followed by two objects which point to two entries in two differ-
ent biological databases. The RDF information specifies that the model
described by the SBML document is a version of the pathway hsa04110 in
KEGG[111] as well as a version of pathway REACT_152 from the REACTOME
database[112]. This example is part of an example from the SBML Level 2
Version 4 specification.

36 MATERIALS & METHODS

XML schema documents

XML was described above as a way to encode textual information in a hierar-
chical manner with XHTML being one possible implementation of an XML
file format.

It is relatively simple to test if a given file is a valid XML file because
there is only a small set of rules that an XML file has to follow in order to
be valid, e.g. each opening tag must have a corresponding closing tag and
tags must be closed in the reverse order in which they were opened.

However, it is much harder to check if a given XML file is a valid instance
of an XHTML file because the XHTML format poses a lot of additional
restrictions on the format e.g. XHTML specifies a fixed set of tags that are
allowed in an XHTML file and those tags are usually restricted in the order
in which they may appear in the document.

In order to test if a given XML file is a valid instance of some given file
format, e.g. XHTML, definitions for the additional restrictions of that file
format are needed.

One way to specify such a set of restrictions is via an XML Schema
document (XSD)[108]. An XML schema document is a standard released by
the W3 consortium for defining XML document structures. An XML schema
document is itself an XML file.

An XML schema for the XHTML format would for example define which
tags are allowed in an XHTML file, in which order these tags may appear
within an XHTML file, what attributes certain tags may contain and what
values are allowed for these attributes etc.

Once such an XML schema document for a certain format has been cre-
ated, it can be used to validate documents to find out if they adhere to the
structure specified in the schema document.

Many XML reading libraries as well as the xmllint tool mentioned above
can use XML schema documents to validate instances of XML based file
formats.

Several XML schema documents are provided by the SBML community
to validate SBML documents in different versions.

During this work XML Schema documents have been created to validate
SBML documents with Layout and Render Extension information as well as
to validate layout and render information in COPASI files.

LIBRARIES & STANDARDS 37

Document Type Definition (DTD)

Document type definitions are the predecessor of the XML schema documents
described above. DTDs have similar scope and capabilities as XML schema
documents, but they differ in the details.

Sine schema documents are easier to work with and provide some addi-
tional features over DTD documents, DTDs are not used very often today.
Mostly structure definitions for older XML based file formats is still available
as DTDs.

In this work, DTDs were initially used to validate SVG images created by
the XSLT stylesheet. Later checking was done with RELAX NG (see below).

RELAX NG

RELAX NG[109] is similar in scope to the XML Schema documents men-
tioned above. With RELAX NG the structure of an XML document can be
defined and used to validate instances of this document format.

RELAX NG has several advantages over XML Schema documents. For
example, in RELAX NG certain things are easier to define than with XML
schema documents and some things are possible with RELAX NG are not
possible in XML schema documents at all.

Many XML document specifications provide RELAX NG documents for
the validation of document instances.

The SBML community is currently working on a RELAX NG schema for
SBML Level 3 Version 1 and COPASI also uses a RELAX NG document to
validate COPASIs CPS file format.

Tools used to do the validation of XML documents against RELAX NG
schemas were again xmllint as well as jing[115].

In this work, the XSLT style sheets written for the Layout and Render
document specification have been validated against RELAX NG documents.
Also SVG documents created with these style sheets have been validated
against RELAX NG documents.

Rules for the validation of layout and render information in COPASI files
have been added to the RELAX NG document for the COPASI file format.

Systems Biology Markup Language (SBML)

The Systems Biology Markup Language[40, 116] is an XML based file format
for the storage and exchange of mathematical representations of biochemical

38 MATERIALS & METHODS

reaction pathways for time course simulations and other analysis methods in
the field of systems biology.

The first version of SBML, termed SBML Level 1 Version 1 was created
between 1999 and 2000 by a small group of researchers and the first official
version was released in 2001[41]. Until then, each software tool in the field of
systems biology used its own file format to store models and it was very hard
for the users of these tools to exchange models between the different tools.

The format was received very well by developers in the systems biology
community and support for reading and writing SBML files was soon in-
corporated into a number of tools. With the success of the file format, its
shortcomings soon became evident and new improved versions of the stan-
dard have been created in a community effort. The latest version of the
SBML specification is SBML Level 3 Version 1 from 2010. Today many tools
in the field of systems biology contain support for reading and writing SBML
files[117].

The core SBML structure consists of a single model definition which con-
tains compartments, chemical species, parameters, rules and reactions. Rules
and reactions can define mathematical expressions of how values of model el-
ements, e.g. the concentration of a chemical species, change over time. This
information can be used to build systems of differential equations to cre-
ate time course simulations of those models. This core structure has more
or less stayed the same for all versions of SBML with new versions adding
new feature, elements or just clarifications concerning existing features to the
specification. Newer versions of SBML for example allow the declaration of
arbitrary units, function definitions as well as events to name just a few of
the features added over time (see figure 2.3).

Most of the work described here is concerned directly or indirectly with
SBML, its development, its extension and as well as its implementation in
different software tools.

SBML is a big success in the systems biology community and part of this
success is due to the excellent software support the SBML community has
build around the SBML standard. An important first step in this direction
was the implementation of a library called libsbml[70] for reading and writ-
ing of SBML documents and providing it for free to developers of systems
biology software. libsbml relieves developers from writing their own routines
for reading, checking and writing SBML documents and allows developers
to concentrate on writing code that simulates or analyzes or displays these
models. Having support for many of the popular programming languages
like C, C++, Python, Perl, Java, etc, certainly helped as well.

LIBRARIES & STANDARDS 39

Model
Function Definitions
Unit Definitions
Compartments
Species
Parameters
Initial Assignments
Rules
Constraints
Reactions
Events

Figure 2.3: Structure of an SBML document. The core features that existed
since SBML Level 1 are marked in black, features added in later versions of
SBML are marked in gray.

Scalable Vector Graphics (SVG)

The Scalable Vector Graphics format is an XML based standard for two
dimensional vector graphics. It has been developed by the W3 consortium
since 1999.

The file format allows the definition of complex drawings by combining el-
ements from a large set of shape primitives like circles, rectangles, ellipses. In
addition to defining primitives, the user can define colors and color gradients
and apply those to the primitives (see figure 2.4).

The feature set of SVG is very large, making the format rather complex
to implement. Out of this reason it took a very long time until there were
software libraries and tools that could render SVG documents in a consistent
way.

Today there are several implementations of libraries and programs able
to render SVG images.

While most implementations widely differed in quality when this work
started, most implementations today provide similar or identical results when
rendering SVG images (see figure 2.5).

Programs used for the rendering of SVG images during this work in-
clude several web browsers like Mozilla Firefox[118], Apples Safari[119] or
Opera[120] as well as special SVG rendering libraries and programs like
batik[121], rsvg[122] or inkscape[123].

There are a number of reasons why several programs were used rather
than a single one. For one, we needed to find out what the level of support
for the SVG format was available in the different software tools. This allowed

40 MATERIALS & METHODS

<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg"

width="410.0"
height="410.0"
version="1.1">

<g>
<defs>
<radialGradient id="bw_gradient"

cx="50%" cy="50%"
r="50%">

<stop offset="0%" stop-color="white" />
<stop offset="100%" stop-color="black" />

</radialGradient>
</defs>
<circle cx="205" cy="205" r="200"

fill="url(#bw_gradient)" />
</g>

</svg>

Figure 2.4: Example of a simple SVG file which defines a radial black and
white gradient and applies this gradient as the fill style of a circle.

us to adjust the SVG generating XSLT style sheet to only produce output
that could reproducibly be rendered by several different tools.

Also different tools handled errors in SVG files in different ways, so in
order to find errors, the SVG images had to be rendered several times with
different tools to check for differences which might point to errors in our
XSLT style sheet.

GNU image manipulation program (Gimp)

Gimp[124] is a program for viewing and manipulating bitmap images. Newer
versions also have limited support for reading SVG images.

Gimp was used in this work to view bitmap images created by the differ-
ent software tools. This includes images created by rendering SVG images
created with the XSLT stylesheet as well as images created with the differ-
ent rendering implementations. This allowed us to test the correctness and
quality of these implementations.

LIBRARIES & STANDARDS 41

Figure 2.5: Example from figure 2.4 rendered in different programs (Top
left: Mozilla Firefox 4.0, Top Right: Apple Safari Browser, Bottom Left:
Opera Browser, Bottom right: Apache Batik toolkit). This is a very simple
example, but nevertheless it demonstrates that the tools used to render it
render it identically. Which means that SVG images can be used today to
encode high quality vector images and get consistent rendering results from
different tools.

42 MATERIALS & METHODS

Systems Biology Workbench (SBW)

The Systems Biology Workbench (SBW)[125] is a framework for the commu-
nication between systems biology tools.

In systems biology a large number of software tools has been implemented
over the years and each of these tools has its field of expertise as well as
its strength and weaknesses. Scientists therefore sometimes have to use a
number of tools for the simulation and the analysis of biochemical reaction
network models.

Normally this means that they have to create a model in one tool, save
it to file and open it in another tool; something that has actually been made
possible by the emerging standards in systems biology as for example the
SBML file format (see above).

The Systems Biology Workbench tries to facilitate this exchange of mod-
els between tools by eliminating the file saving and loading steps, allowing
programs to communicate directly, e.g. allowing one program to send a re-
action network model to another program and receiving the results of an
analysis or calculation back together with the potentially modified model.

To achieve this, SBW consists of a so called broker which handles the
communication between the programs. This broker has to be installed by
the user and software tools wanting to profit from SBWs exchange mecha-
nism need to register with this broker. The broker keeps a list of registered
programs and their capabilities and provides this list to other registered pro-
grams. This way each program registered with the broker knows what other
programs are registered and can therefore send models to those programs
if the user requests this. The models and messages are exchanged over a
network based interface which means that it is theoretically possible to ex-
change models and data between different computers, e.g. a desktop and
a powerful compute server. The internal format that is used to exchange
models between the different tools is SBML.

Simplified Wrapper and Interface Generator (SWIG)

The Simplified Wrapper and Interface Generator (SWIG)[126] is a tool for
(semi-)automatically providing access to program code written in low level
languages like C or C++ to higher level languages like Java, Python or Perl.

As already mentioned in the sections on the different programming lan-
guages, high level scripting languages provide the users with powerful con-
cepts and constructs which makes writing code often easier and allows pro-
grammers to get the same functionality with less lines of code. The disad-
vantage of this is that these scripting languages usually depend on some kind

LIBRARIES & STANDARDS 43

of virtual machine or interpreter that has to convert the code into something
the CPU understands. This conversion is costly and code written in high
level languages is usually not as fast as the equivalent code written in a low
level language.

Developers sometimes try to circumvent this problem by implementing
the performance critical parts of their programs in some low level language
that provides fast execution speed and implement the rest that is not critical
for performance in the higher level language. This approach however makes it
necessary that program parts written in the higher level language have access
to the parts written in the lower level language. Since this is a very common
task most higher level languages provide ways of creating this connection by
writing some extra code. This extra code is usually written in the low level
language using some API provided by the higher level language and the code
to be written therefore usually depends on the type of higher level language
used. This means that the extra code the developer has to write to connect
a Java program to some low level C++ code is different from the code that is
needed to connect a Python program to the same C++ code. Since it is often
necessary to provide access to a library from not just on higher level language
but from several a number of different wrapper implementations would have
to be written. One for each of the higher level languages.

This is where the use of SWIG can be beneficial. SWIG provides a unified
mechanism of generating the wrapper code for different high level program-
ming languages. In the optimal case, the developer just points SWIG to the
files that define the data structures and methods of the low level library and
tells SWIG for which target language it should create wrapper code. SWIG
will then try to automatically create all the code that is necessary to make
the functionality of the low level library available to that target language.
All the developer has to to is compile this auto-generated code and install it
in the appropriate place.

Usually if the low level library is not very trivial, SWIG will not be
able to generate the wrapper code fully automatically and correctly from the
declarations provided by the low level library. A bit of extra information is
usually needed to tell SWIG how to handle certain data structures for the
individual target languages. This extra information is provided to SWIG in
so called interface files.

Still, the work involved in generating wrapper code for any target lan-
guage using SWIG is usually less then generating the wrapper code manually
and it has the added benefit that wrapper code for many target languages
can be generated from the information provided by a single set of interface
files.

For a list of the target programming languages currently supported by

44 MATERIALS & METHODS

SWIG see table 2.1.

languages supported by SWIG
AllegroCL C# CFFI CHICKEN CLISP D

Go Guile Java Lua MzScheme Ocaml
Octave Perl PHP Python R Ruby
Tcl/Tk

Table 2.1: List of target languages supported by SWIG. The target languages
not used in this work are marked in gray, the ones that were used are marked
black.

SWIG is used by libsbml to provide bindings to a large set of high level
languages. The implementation of the Layout and Render Extension on top
of libsbml therefore also implements some SWIG interface files to provide the
functionality of the SBML Layout and Render Extensions to the Java and
Python programming languages.

Also the COPASI language bindings for Java, Python, Perl, Octave and R
use SWIG to generate the wrapper code from a single set of SWIG interface
files.

SCons

SCons[127] is a Python based cross platform build system similar in scope
to qmake (see above). The information about the elements of a project and
additional information for compiling the elements is provided in the form of
Python source code. The SCons program reads this information and runs
the programs needed to create the project binaries from the provided source
files.

With SCons building of projects on several platforms with one set of build
information is possible.

The build system is very flexible, but compared to qmake, more informa-
tion has to be provided in order to work for the different operating systems
and development tools. The advantage of SCons lies in the fact that it doesn’t
depend on a full Qt installation.

SCons has been used as an alternative way for building some of the
projects described in this work.

LIBRARIES & STANDARDS 45

CMake

CMake[128] is another cross platform build system similar to qmake.
The build system is more flexible than qmake while providing a similar

level of convenience. As an additional benefit, there are different graphical
tools to use in conjunction with CMake to provide some if the information
to the build system.

CMake has been used as an alternative way for building some of the
projects described in this work.

Chapter 3

Systems Biology Markup
Language Layout & Render
Extension

3.1 SBML & Diagrams

With the Systems Biology Markup Language (SBML) there is a file format
that allows users to store models and exchange those models with other users
or transfer them from one application to another, provided that both appli-
cations support the SBML format. With over 100 application supposedly
supporting SBML[129], this is quite likely.

The different modeling and simulation applications provide different means
of creating and editing models. Some require the user to write models in the
form of differential equations, others allow the user to directly specify chemi-
cal reactions together with kinetic equations and some tools even allow users
to create models by graphically creating reaction graphs. In those reaction
graphs, the chemical species are represented by the nodes and the reactions
are specified as the edges of the graph.

Depending on the size of the model scientists have to invest a lot of
effort to create a visually pleasing graphical representation of a model. The
advantage of investing in this work is that the resulting graph can be used to
get a comprehensive overview of the model as well as being able to use the
graphical representation for displaying results of different analysis methods
in an intuitive way.

Unfortunately the SBML file format is only suited to store a mathematical
representation of a model. If a graphical modeling tool is used to build a
model and the model is subsequently stored in the SBML format, all the

46

ALTERNATIVE DIAGRAM FORMATS 47

work invested in creating the graphical representation is lost or at least can’t
be transferred to other applications easily.

Not all applications dealing with reaction network models deal with them
in the same way. Some applications merely allow the user the create or edit
models, while other applications might only allow the user to do certain kinds
of analysis on a model. Since the SBML format was supposed to serve as
an exchange format between all these programs, the developers of SBML
decided to limit the functionality of SBML to only allow the storage of the
mathematical description of reaction network models.

Knowing that the core SBML specification would not be able to satisfy
the needs of every piece of software, the developers of SBML added features
to the format that would allow other developers to easily extend the format
with new features.

The SBML format stores all information in the Extensible Markup Lan-
guage (XML) format and the SBML specification defines an annotation tag
that allows users to associate generic XML data with any element defined in
the core SBML specification. This way the SBML format can be extended
with arbitrary additional information.

The goal of the work described in this section was to use this extension
mechanism of SBML to create a way to store graphical information together
with the mathematical description of a model within an SBML file and link
the graphical elements to their corresponding model elements. The result of
this work is called the SBML layout and render extension.

3.2 Alternative Diagram Formats

At the time when this work started SBML was a very new format and it was
only supported by a few programs. Back then most programs used their own
proprietary format for storing models[29, 125, 31]. If those programs were
storing graphical information with the model the format of that graphical
information was specific to the needs of one program and therefore not useful
for storing graphical information in a general way.

The other problem was that those file formats were hardly documented.
Most of the time it was not even obvious what features and capabilities
those formats provided. Popular examples for such programs using their
own proprietary formats are JDesigner[125] by the group of Herbert Sauro
or CellDesigner[31] by the group of Hiroaki Kitano. Both programs use their
own format to store layout and render information and the formats are very
specific to the rendering style of the two programs. Consequently there is no
way to exchange the graphical information between the two programs. Since

48 SBML LAYOUT & RENDER EXTENSION

the feature sets of the formats used by these two programs are different, it
would be very hard if not impossible to write software that could convert the
two formats.

In this context it is also important to mention the new Systems Biology
Graphical Notation (SBGN)[42] standard. In contrast to SBML, SBGN is
not a storage format for models, but rather a specification of how reaction
network diagrams should be represented graphically (see figure 3.1). SBGN
defines a set of graphical elements associated with a certain meaning and it
specifies how these elements can be combined to create diagrams of reaction
networks that are unambiguous. This approach can best be compared to
electrical circuit diagrams in electrical engineering.

Although this is a related topic it does not pursue the same goal as the
SBML layout and render extension. The SBML layout and render extension
is about storing arbitrary kinds of diagrams within an SBML model file (see
figure 3.1), potentially even diagrams not representing reaction networks, and
it specifies a storage format with which this can be achieved.

SBGN on the other hand specifies how reaction network diagrams should
be drawn, but it does not specify a storage format that would let the user
store these diagrams to file. So SBGN is no replacement for the SBML layout
and render extension, but the layout and render extension can be used to
store diagrams as specified by SBGN (see figure 3.1).

There is some very recent work[130] that also specifies a file format for
storing SBGN diagrams in files and even provides a library to help developers
in supporting this format. But as mentioned above this is also no replacement
for the SBML layout and render extension since it is limited in scope to just
storing SBGN type diagrams.

Apart from diagram formats used by systems biology applications, there
also exist some general graph and diagram storage formats that were consid-
ered for their suitability as a format to store diagrams in SBML files.

Two of the most popular formats that were considered as alternatives
for storing diagrams were GraphML[132] and the Scalable Vector Graphics
(SVG) format[133].

While GraphML is a very general graph storage format that also allows
users to associate arbitrary data with nodes and edges, the format is tailored
to storing graphs and not general diagrams and using it to store arbitrary
diagrams would have lead to very abstract and hard to understand notations.
Another issue with using GraphML would have been its somewhat restrictive
license which would have hindered implementations in the non-academic field.

The SVG format on the other hand more or less contained all the features
that were needed to store arbitrary diagrams combined with a more liberal
license. With SVG the problem was rather that it was so complex and

DESIGN & HISTORY 49

Insulin

IRS-1/IRS-2 Ser/Thr phosphorylation

IRS-1/IRS-2 Tyr phosphorylation

PI3K

Fatty acyl-CoA,
diacyglycerols,
ceramides

fatty acids

Ser/Thr kinase
cascade

Glucose

Insulin receptor

Plasma
Glucose

GLUT4

PKC

Figure 3.1: Example of two potential diagrams targeted by the SBML layout
and render extension. (Left: reproduction of Figure A2 from the SBGN
1.0 specification, Right: reproduction of Figure 27-6 from Voet/Voet 3rd
edition[131].)

powerful that implementations of it are very difficult.
SVG was developed as a standard to represent vector graphic diagrams

on the web. Version 1.0 was released in 2001, but two years later, when work
on the SBML layout and render extension was under way, there was still no
implementation of SVG that would support most of its features. Depending
on which implementation one chose, the results one got when rendering a
SVG document were very different. This slow uptake of SVG was to a large
part due to its complexity. Since there was no improvement of this situation
foreseeable, using SVG as a way of representing diagrams in SBML was
discarded.

3.3 Design & History

Since none of the existing formats were suitable for what the SBML lay-
out and render extension was supposed to achieve, a new format had to be
created.

Considering all the lessons learned from looking at existing software and
formats, several design decisions were taken in the development of the SBML
layout and render extension.

On the one hand, the extension was supposed to allow the user to store
arbitrary diagrams which meant that it had to be very versatile. On the
other hand the format was to be simple so that everybody could implement

50 SBML LAYOUT & RENDER EXTENSION

it with as little effort as possible. As could be seen be the SVG format, these
two goals are mutually exclusive. A lot of versatility usually leads to large
complexity and having a format that is very simple takes away much of the
versatility. It was clear that the SBML layout and render extension would
have to make some compromises in order to achieve both of these goals.

Another design decision was to create a format that would allow diagram
entities to be associated with the corresponding entities from the SBML
model but at the same time be as independent of the underlying SBML
format as possible. Having a diagram format that is independent of the
model format and only connect to the model in a generic way would allow
the use of the format within other model description frameworks/formats
without major changes (see chapter 4.2).

Apart from its complexity, the SVG format would have provided every-
thing that is needed for storing arbitrary graphical representation within
SBML files. Therefore, as a first approach, the SBML layout and render
extension was created by picking essential bits from the SVG specification
that would allow users to store more or less arbitrary diagrams while leaving
out all the parts that would make the format too difficult to implement. The
parts that were picked for inclusion in the layout and render extension were
further modified and extended to better meet the needs of the systems biol-
ogy context in general and those of the enclosing SBML format in particular.

The first draft of the SBML layout and render extension was presented
by Dr. Sven Sahle at the 8th SBML Forum meeting[134] in November of
2003. It was well received, but some developers still had the impression that
the complete specification was too difficult to implement and it was therefore
decided to split the layout and render extension in two parts. One part to
describe the layout of the elements, meaning the size and positions of the
diagram entities and one part to describe the style of elements, meaning the
colors, shapes, fonts etc.

Due to the discussion at the SBML Forum meeting the proposal was split
into the part that is now called the SBML layout extension and the part
that is now called the SBML render extension. While the layout extension
is independent of the render extension, the render extension depends on the
information of the layout extension.

In the following sections the two parts will be described separately begin-
ning with the SBML layout extension.

THE SBML LAYOUT EXTENSION SPECIFICATION 51

3.4 The SBML Layout Extension Specification

The SBML layout extension allows users to store layout information for di-
agram entities in an SBML file.

One of the design decisions for the SBML layout and render extension
was to be able to associate layout information with the corresponding entities
from the SBML model. The extension mechanism for SBML provides two
options as to how this goal can be achieved.

The first option would be to store the layout information for a specific
model entity together with that model entity in the XML file, this has the
advantage that it is immediately clear which layout information belongs to
which model entity, thus creating a connection of a diagram entity to the
model entity via their co-location in the file. On the other hand, this also
means that the layout information for an SBML model would be distributed
over the complete model specification, making it more difficult to find specific
information.

The second option would be to store the complete layout information in
one single place, making it easy to find. The associations with the model en-
tities would be achieved via references to their unique identifiers from within
the layout information.

The second option provided a cleaner approach and it was decided to
store the complete layout information as an annotation to the model element
of the SBML document.

Each model should be able to store an arbitrary number of graphical
representations. This way, each program can store its own graphical repre-
sentation or the user can create different graphical representations for one
model and store them all in the same file.

When creating the layout extension, it was decided to keep the repre-
sentation of the layout information as close in design to the SBML format
specification as possible. In SBML if a number of elements of the same type
are stored, they are stored in an enclosing list element. So for the layout
extension, the top level element is an element named listOfLayouts which
can contain zero or more layout elements (see figure 3.2).

Each layout element is completely independent of the other layout ele-
ments and can be identified through an id attribute that has to be unique
within the enclosing SBML model as well as within the list of layout elements.

Each layout element contains information about the size of the layout, as
well as a tree like structure of elements representing the nodes and the edges.
The structure of the layout information mirrors the structure of the model
representation in the SBML document (figure 3.3).

In the SBML model, there is a list of compartments that defines the

52 SBML LAYOUT & RENDER EXTENSION

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1">

<model id="Model_1" name="New Model">

<annotation>

<listOfLayouts xmlns="http://projects.eml.org/bcb/sbml/level2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<layout id="layout_1">

...

</layout>

<layout id="another_layout">

...

</layout>

</listOfLayouts>

</annotation>

...

</model>

</sbml>

Figure 3.2: Example of an SBML XML document structure with layout
information. The layout specific information is highlighted in gray.

compartments of the model, a list of species that defines the chemical entities
participating in the models reactions and a list of reactions that specifies the
reactions of the model.

In the layout we have a list of compartment glyphs that contains the
graphical representations of compartments, a list of species glyphs that con-
tains the graphical representations of the species and a list of reaction glyphs
that contains the graphical representations of the reactions.

In addition to those elements, the layout contains a list of graphical ob-
jects and a list of text glyphs.

The graphical objects can be used to represent any object in the diagram
that is not a representation for a compartment, species or reaction.

The text glyphs can be used to display textual information within a dia-
gram. A common use case for a text glyph would be to store the name of a
species as a label to its graphical representation.

Each of these lists contains zero or more elements of the corresponding
type, e.g. the list of compartment glyphs can contain zero or more com-
partment glyphs. Likewise the list of reaction glyphs contains zero or more
reaction glyphs.

Most glyph elements contain a number of attributes that define the prop-

THE SBML LAYOUT EXTENSION SPECIFICATION 53

model
unit definitions
function definitions
compartment types
species types
compartments
species
parameters
initialassignments
rules
reactions

reactants
products
modifiers
kinetic law

events
event assignments

layout

compartment glyphs
species glyphs

reaction glyphs
species reference glyphs

text glyphs
graphical objects

Figure 3.3: comparison of model and layout structure with model elements
and corresponding layout elements highlighted in gray.

erties of the element like the size and the position. The reaction glyph ele-
ment contains additional elements to define graphical representations which
correspond to the species reference elements of the reaction.

The reaction element in SBML contains lists for the different metabolites.
There is one list for those metabolites that are consumed (reactants), one for
those that are produced (products) and one for those that influence the reac-
tion in some other way (modifiers). Since a division into reactants, products
and modifiers is not necessary with respect to layout, the reaction glyph in
the layout extension only has a single list that contains all the graphical rep-
resentations for reactant, product and modifier species references (see figure
3.3).

The way species reference glyphs are drawn in a reaction graph depends
on the type of species reference that is represented by the glyph. For example
most applications would draw the edge for a substrate different and the edge
for an inhibitor in different ways. Some of this information can be deduced
by looking at the species reference in the model and whether it was listed
with the reactants, products or modifiers. But in the case of the modifiers it
is not trivial to deduce if a modifier acts as e.g. an activator or an inhibitor.
To make this type of information accessible to applications that render layout
information, species reference glyphs can define a role attribute. The value

54 SBML LAYOUT & RENDER EXTENSION

for the role of a species reference can be chosen from a list of predefined values
(see table 3.1) and the application rendering the species reference glyph can
determine the style of the glyph based on this role attribute.

undefined substrate product sidesubstrate

sideproduct modifier activator inhibitor

Table 3.1: possible values for the role attribute in species reference glyphs

Figure 3.4: Example rendering of layout and render information using the
role attribute on species reference glyphs.

Most model entities in an SBML model contain a unique identifier in
the form of an id attribute. An notable exception to this is the species
reference element which prior to SBML Level 2 Version 2 did not have an
identifier. In order to be able to reference species reference elements from
within layout information the layout extension augmented the SBML species
reference element by an id attribute. This identifier has to be unique within
the complete model. Because our work showed that this identifier on species
reference elements was needed, it was added to the specification of SBML
Level 2 Version 2.

The layout extension provides diagram information in the form of a graph
consisting of nodes and edges. The information for the nodes is specified in
the form of a bounding box (see figure 3.5) which provides information on its
position and its size. Information for edges is usually provided in the form
of curve objects.

Curve objects are made up of individual segments which can either be
straight line segments (see figure 3.6) or cubic bézier segments (see figure
3.7). Straight line segments are defined by a start point and an end point,
cubic bézier elements are defined by a start and an end point as well as two

THE SBML LAYOUT EXTENSION SPECIFICATION 55

base points that define the shape of the cubic bézier element. Each curve
consists of one or more of those two element types and they can be mixed in
arbitrary ways allowing for arbitrarily complex curve definitions (see figure
3.8).

<boundingBox>
<position x="10.0" y="5.0" />
<dimensions width="20.0"

height="10.0" />
</boundingBox>

x
y

width

height

Figure 3.5: definition of a bounding box

<curveSegment xsi:type="LineSegment">
<start x="0.0" y="0.0" />
<end x="4.0" y="1.0" />

</curveSegment>

start (0.0, 0.0)

end
(4.0, 1.0)

Figure 3.6: definition of a straight line segment

<curveSegment xsi:type="CubicBezier">
<start x="0.0" y="0.0" />
<end x="4.0" y="1.0" />
<basePoint1 x="1.5" y="1.0" />
<basePoint2 x="2.5" y="0.0" />

</curveSegment>

start

end
basePoint1

basePoint2

Figure 3.7: definition of a cubic bézier line segment

Currently most programs do diagram layout in two dimensions only, nev-
ertheless all coordinate values for the layout elements can be specified as
three-dimensional coordinates. E.g. a bounding box can take an optional
z attribute and an optional depth attribute. Both attributes have default
values of 0.0. If they are not specified, the bounding box describes a two
dimensional element. This extra flexibility has two advantages:

a) The specification is already prepared for three dimensional extensions
should the need for such extensions arise

56 SBML LAYOUT & RENDER EXTENSION

<curve>
<listOfCurveSegments>

<curveSegment xsi:type="LineSegment">
<start x="0.0" y="0.0" />
<end x="1.0" y="0.0" />

</curveSegment>
<curveSegment xsi:type="CubicBezier">

<start x="1.0" y="0.0" />
<end x="1.0" y="2.0" />
<basePoint1 x="2.0" y="1.0" />
<basePoint2 x="0.0" y="1.0" />

</curveSegment>
<curveSegment xsi:type="LineSegment">

<start x="1.0" y="2.0" />
<end x="2.0" y="2.0" />

</curveSegment>
</listOfCurveSegments>

</curve>

Figure 3.8: Definition of a curve with three segments.

b) The depth information can be used to arrange the two dimensional
layout into different layers to give programs a hint as to the order in
which the layout elements should be rendered.

Since the SBML layout extension only stores information on the size and
position of nodes as well as information on the curves making up the edges of
a diagram, it is up to the program implementing the SBML layout extension
what style it uses to draw the individual elements of the diagram. Back when
this proposal was first presented this worked fairly well because the way in
which the diagrams where drawn was more or less the same across most
programs. Mostly the diagrams drawn by different programs would differ in
colors or have slight variations in the shape of the nodes (see figure 3.9).

With the appearance of more complex types of diagrams, e.g. SBGN
diagrams or diagrams commonly found in text books (see figure 3.1), the
SBML layout extension alone was no longer able to provide all features nec-
essary to store these diagrams. For this, the SBML render extension, which
is described later in this work, was developed.

IMPLEMENTATION OF THE LAYOUT EXTENSION 57

SBML layout
information

Figure 3.9: The same layout information rendered in four different ways.

3.5 Implementation Of The Layout Extension

The SBML community has created a software library called libsbml[70] which
provides developers of software tools with an easy way to read and write
SBML model files and check those models for consistency and conformance
to the SBML specification.

Since the SBML specification is fairly complex and checking for syntactic
as well as semantic error within an SBML model is no trivial task, having
this library greatly reduces the work necessary for implementing support for
the SBML standard in software tools. And while in the beginning many tools
were creating invalid SBML due to missing possibilities to check the models
that were created, there now is a mature infrastructure based on libsbml
which can be used for testing and therefore finding and eliminating incorrect
SBML files.

A lot of developers have recognized the advantages of using such a stable
and feature rich library to facilitate their work and many software projects
therefore use libsbml for the implementation of SBML support.

58 SBML LAYOUT & RENDER EXTENSION

Libsbml Implementation

The success of SBML has demonstrated that it is important to have a stan-
dard, but even better to have a library that helps developers in implementing
that standard. To provide the same level of support for the SBML layout
extension, an implementation of the layout extension as part of libsbml has
been written. This way developers already using libsbml are provided with
an easy way to read layout information stored as SBML layout extension
data in SBML files.

The first implementation was finished in April of 2004 and released as a
patch against the sources of libsbml version 2.0.3.

To use it, developers need to download the patch as well as the source code
for libsbml, apply the patch and compile the patched source code. Just as the
specification of the SBML layout extension followed the SBML specification
in style, the implementation of the layout extension closely followed the rules
and standards set by libsbml. This way developers already familiar with
using libsbml could apply their knowledge directly to the implementation of
the layout extension. Figure 3.10 shows the inheritance tree of the SBML
layout classes and how the individual classes of the layout implementation
extension are used by other classes.

The implementation provides language bindings for the C, C++, Python
and Java programming languages allowing programmers who are using any
of those languages to read and write layout information according to the
SBML layout extension.

Documentation was provided in the form of application programming in-
terface (API) documentation as well as examples for the different program-
ming languages.

The layout extension continued to be developed as a patch against the
different version of libsbml and new versions of the patch were released on a
regular basis, following changes and developments in libsbml.

Starting with libsbml 2.3.0 the code for the support of the layout extension
was integrated into the main libsbml code and is now included in each release
of libsbml. In the beginning the extension was marked as experimental and
the developer had to enable the feature explicitly if they wanted to use it.
Later releases of libsbml marked it as stable and enabled it per default. By
now all precompiled versions of libsbml are distributed with layout extension
support enabled.

The libsbml code is very stable and mature and to ensure the quality of
the code most features are tested with a comprehensive set of unit tests. The
unit testing framework that is used in libsbml is called check[135].

To achieve a high level of quality for the implementation of the layout

IMPLEMENTATION OF THE LAYOUT EXTENSION 59

Figure 3.10: Inheritance and usage diagram for SBML layout classes.

60 SBML LAYOUT & RENDER EXTENSION

extension a set of 254 unit tests covering all aspects of the layout extension
have been written. These tests can now be run prior to a release to make
sure that neither changes to the code of the core of libsbml nor changes to
the code for the extension did break existing functionality.

Implementation Of Layout Rendering

Since one of the goal of the layout and render extension is to provide the user
with the possibility to store high quality diagrams in SBML models, e.g. for
publications, reading and writing the layout information is not enough. In
addition to an implementation for reading and writing SBML layout exten-
sion data in libsbml there are several implementations for creating images
from this layout information.

The first implementation that I created is based on XSL Transforma-
tions (XSLT)[136]. In XSLT a set of transformation rules, a so called XSLT
stylesheet, is defined that specifies how a program, called XSLT processor,
transforms input in XML format to textual output. The output data itself
can also be in XML format, but it doesn’t have to be. In this case the XSLT
stylesheet defines a set of transformations that specify how an SBML file with
layout information according to the SBML layout extension is converted to
a Scalable Vector Graphics (SVG) diagram[133].

The identifier of the layout and some additional parameters that define
the style of the final rendering can be given as arguments to the XSLT pro-
cessor. In a second step the resulting SVG diagram can be converted to a
bitmap image of arbitrary size. This procedure is ideally suited for making
high quality images for publications.

When this implementation was first completed in 2005 there was no full
implementation of the SVG standard and consequently it was difficult to
convert the SVG file to the corresponding bitmap image. The results would
usually depend on the program that was used to do the conversion. To-
day support for SVG has improved and there are a number of reliable im-
plementations for rendering bitmap images from SVG diagrams including
librsvg[122], cairo[137] or batik[121]. In addition to those software libraries,
most browsers[119, 118, 120] can render SVG files as well as some image ma-
nipulation programs like gimp[124]. The quality and consistency of bitmaps
rendered by any of these programs is usually very high.

In order to test this implementation, a set of SBML files with layout
information has been created which tries to cover as many aspects of the
conversion and rendering process as possible. These test files were especially
important when I later extended the XSLT stylesheet with new features (see
3.6) because they could be used to assure that the new functionality did not

THE SBML RENDER EXTENSION 61

interfere with the existing functionality.

SBML Level 3 & Standardization

SBML was intentionally limited to a feature set that provide the means to
exchange models of reaction networks between programs with an emphasis of
using differential equations to describe the models. This can be seen as a least
common denominator that can be understood by most programs in that field.
However, more and more programs start to be limited by the narrow scope of
SBML. For example the information needed to describe spatial models can
not be stored using the core SBML functionality which makes it unsuitable
for these types of models.

Due to this a number of extension to SBML have been proposed[138], sim-
ilarly to what the described layout extension does but for different purposes,
e.g. extensions for spatial simulation[139] or for model composition[140].
Since the number of proposals is growing continuously, the SBML commu-
nity has come up with a set of procedures that has to be followed before
an extension proposal can become a recommended SBML extension or an
SBML package which is the term for SBML extensions to SBML Level 3.

In order to become a recommended SBML extension there has to be an
official proposal that can be reviewed. This proposal has to be implemented
at least twice independently and finally there has to be a vote by the members
of the SBML community on whether a proposal will become an officially
recommended extension or not[141].

This is a very lengthy process and until today the layout extension pro-
posal is the only proposal that has made it through the first of the two
stages.[142]

3.6 The SBML Render Extension

Overview & Design

In recent years diagrams for reaction networks have become more complex
and the individual nodes in the diagram contain more information which is
conveyed by the way the nodes are drawn. A very prominent example for
this trend is the SBGN standard[42].

With the diagrams encoding parts of the information about the process
in the style of the individual nodes and edges, it is no longer enough to be
able to specify the positions and the sizes of the elements and leave choosing
the style to the program. In order to store the complete information present

62 SBML LAYOUT & RENDER EXTENSION

in a diagram, programs need to be able to specify exactly how to draw a
certain layout element. For this purpose the SBML render extension has
been developed.

While the layout information was more or less independent of the under-
lying model information, the information provided by the render extension is
only meaningful together with layout information as specified by the SBML
layout extension.

The layout extension provides information on the position and size of the
individual diagram elements while the render extension provides information
about how these elements are represented on screen. Since the layout in-
formation is able to provide information in the form of curves for e.g. the
species reference glyphs, there is a small overlap in information between the
layout and the render extension. This means that sometimes there is more
than one way to specify information for the edges of a diagram.

Since implementing the layout extension is simpler than implementing
both the layout and render extension, it might be preferable to provide as
much information in the layout part as possible and to only supplement this
information with render information where there is no way to specify the
same information in the context of the layout.

Since the layout extension tries to stay as close to the SBML specification
in style as possible, the SBML layout extension contains the same extension
mechanism as SBML. This means that the layout extension itself can be
extended the same way the SBML specification has been extended by e.g.
the layout information. This mechanism was used to supplement the SBML
layout extension with style information for the layout elements.

The same design decision that were used for the layout extension were
also applied to the SBML render extension. The render extension is supposed
to be easy to implement while providing a certain level of flexibility.

As with the layout extension, it was decided to keep all the render infor-
mation in one place rather than distribute it over all the individual layout
elements.

Render Extension Specification

Global And Local Render Information

Two different types of render information have been specified which are at-
tached in two different places within the layout extension (see figure 3.11).
The so called global render information is attached to the list of all layouts
and can be applied to any of the layouts in that list. As a consequence, global
render information is normally defined in a very unspecific way, e.g. all nodes

THE SBML RENDER EXTENSION 63

and edges are assigned similar styles. This is similar to what programs have
been doing prior to the release of the render extension.

...

<listOfLayouts xmlns="http://projects.eml.org/bcb/sbml/level2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<annotation>

<listOfGlobalRenderInformation>

<renderInformation id="global_render_info_1">

...

</renderInformation>

</listOfGlobalRenderInformation>

</annotation>

<layout id="layout_1">

<annotation>

<listOfRenderInformation xmlns="http://projects.eml.org/bcb/sbml/render/level2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<renderInformation id="local_render_info_1">

...

</renderInformation>

</listOfRenderInformation>

</annotation>

</layout>

</listOfLayouts>

...

Figure 3.11: Example of how render information is embedded within the
layout information. The layout information is printed in gray while the
render information is printed in black. The global render information appears
towards the top and the local render information towards the bottom.

Since the global render information should be applicable to any layout,
it is not possible to associate a render style to specific layout elements. For
this the render extension defines the so called local render information. Local
render information is attached to a specific layout and can associate a style
to elements within that layout via the identifiers of those elements.

The render extension allows the user to derive new render information
based on existing render information, similar to an inheritance schema found
in most object oriented programming languages. This way it is very easy to
create new render information that only deviates in a few small details from
an existing render information.

Save for the fact that local render information can reference specific layout

64 SBML LAYOUT & RENDER EXTENSION

elements via their identifiers and global render information can’t, the overall
structure of the two render information types are more or less identical. The
structures and principles in the following sections therefore apply to global
as well as local render information. If there are differences between the two
render information structures they are specifically highlighted.

Colors

Render information is divided into four sections. The first section consists of
an optional list of color definitions. Colors can be specified in different ways
in the render extension. A color can either be specified as an RGB value
where R stands for the amount of the red color component, G stands for
the amount of green color component and B stands for the amount of blue
color component. Each color component can be in the range of 0..255 and
is specified as a hexadecimal value. Alternatively a color can be specified as
an RGBA value. This is identical to the RGB value only that there is an
additional alpha component A. This alpha component specifies the opacity
of the color. A value of 0 means that the color is completely transparent
whereas a value of 255 means that the color is completely opaque. This
method of specifying colors is identical to the way colors are specified in e.g.
HTML documents or SVG diagrams (see figure 3.12).

RGB Value RGBA Value

#RRGGBB #RRGGBBAA

e.g. #FF0000 e.g. #00FF00A0

full red 100% opaque full green ∼ 60% opaque

The value for each of the three or four channels (RR=red, GG=green,
BB=blue and AA=alpha) has to be given as a hexadecimal number in the
range of 0x0 to 0xFF this is the decimal equivalent of the range from 0 to
255.

Figure 3.12: specifying RGB and RGBA values

An additional way to specify a color for an element in the SBML render
extension is through a unique identifier of a color definition. Using names
instead of numerical values for colors often has the advantage of making the
render information more consistent and easier to understand.

An example of two color definitions is given in figure 3.13.

THE SBML RENDER EXTENSION 65

<listOfColorDefinitions>
<colorDefinition id="darkred" value="#200000" />
<colorDefinition id="transp_blue" value="#00008080" />

</listOfColorDefinitions>

Figure 3.13: List with two color definitions. One defines a dark red color
as an RGB value that is completely opaque the other specifies a partially
transparent blue color value through an RGBA value.

Gradients

The second section in a render information element represents a list of gra-
dient definitions that can be used in the style section (see below) to define
the fill style of two dimensional objects.

The gradient definitions are restricted to linear and radial gradients be-
cause these are the most popular gradient types being used in reaction net-
work diagrams. Adding more gradient types would be possible if needed, but
each new gradient type increases the complexity of a potential implementa-
tion, so it was decided to limit the first version of the render extension to the
two mentioned gradient types.

Each gradient object has to have an identifier that is unique within a
render information object and the gradient can later be referenced via this
identifier.

The definition of a gradient object can consist of an arbitrary number of
so called gradient stops, making the gradient definitions very versatile.

Examples of a linear gradient and a radial gradient are depicted in figures
3.14 and 3.15.

Instead of specifying colors as RGB values as done in these examples,
colors could also be specified as identifiers for color definitions as described
in the preceding section.

<linearGradient id="diagonal_bw"
x1="0%" y1="0%"
x2="100%" y2="100%">

<stop offset="0%" stop-color="#FF0000" />
<stop offset="50%" stop-color="#00FF00" />
<stop offset="100%" stop-color="#0000FF" />

</linearGradient>

Figure 3.14: Example of a linear gradient definition (left) that runs diagonally
from red over green to blue and a rendering of the gradient applied to a
rectangle (right).

66 SBML LAYOUT & RENDER EXTENSION

<radialGradient id="diagonal_bw"
cx="50%" cy="50%"
r="50%">

<stop offset="0%" stop-color="#FFFFFF" />
<stop offset="100%" stop-color="#000000" />

</radialGradient>

Figure 3.15: Example of a radial gradient definition (left) that runs from
white to black and a rendering of the gradient applied to a circle (right).

Line Endings

The third section in a render information object defines a list of line endings.
This is a list of definitions for arrow heads that can be used to describe how
the start and/or end of a curve object should be decorated. Again each line
ending definition has to have a unique identifier that can be used to reference
the line ending within a style.

This feature will be discussed in more detail in the section on curves
below.

Styles

The first three sections consist of definitions that can be used in the fourth
section which defines the list of styles that can be applied to layout elements.
Each object that is defined in sections one to three has to have an identifier
that is unique within the render information so that it can be used to reference
the corresponding definition from within a style definition in section four.

Each style that is defined in section four has to specify two things:

a) which layout elements it applies to

b) how these layout elements are to be rendered

There are three different ways how a style can specify the layout elements
it can be applied to.

The least specific way to specify that a style can be applied to a cer-
tain layout element is through the type. E.g. a style can specify that it
can be applied to compartment glyphs which have an associated type called
COMPARTMENTGLYPH. Each of the different glyph types in the layout
extension has a corresponding type name in the render extension (see Table
3.2).

A style can apply to zero or more of the types defined above. The ANY
type has the same meaning as listing all the other type names together and
it means that the style can be applied to any layout object.

THE SBML RENDER EXTENSION 67

layout object layout object type

compartment glyph COMPARTMENTGLYPH
species glyph SPECIESGLYPH
reaction glyph REACTIONGLYPH
species reference glyph SPECIESREFERENCEGLYPH
text glyph TEXTGLYPH
graphical object GRAPHICALOBJECT
any layout object ANY

Table 3.2: Type names for the different layout elements.

An example of how a style can be associated to a layout element via the
type is shown in figure 3.16.

<compartmentGlyph id="cg1"
render::objectRole="cytosol">

...
</compartmentGlyph>
...
<speciesGlyph id="sg1"

render::objectRole="important">
...

</speciesGlyph>
...
<style id="style_1" typeList="COMPARTMENTGLYPH SPECIESGLYPH">

<g stroke="#0000FF" stroke-width="2.0" >
<rectangle x="0.0" y="0.0" width="30.0" height="15.0" />

</g>
</style>
...

Figure 3.16: Example of a style that defines its targets via types. The style
defines that it can be applied to compartment glyphs and/or species glyphs.

A more specific way of associating a style with an object is via the role of
the layout element. Each layout element has an optional objectRole attribute
and this role can be used to describe that a certain style can be applied to
all layout objects with the given role. Again a style object can specify that
it applies to more than one role.

The principle of associating a style with layout elements via the role of

68 SBML LAYOUT & RENDER EXTENSION

the layout elements is demonstrated in figure 3.17.

<compartmentGlyph id="cg1"
render::objectRole="cytosol">

...
</compartmentGlyph>
...
<speciesGlyph id="sg1"

render::objectRole="important">
...

</speciesGlyph>
...
<style id="style_1" roleList="important">

<g stroke="#0000FF" stroke-width="2.0" >
<rectangle x="0.0" y="0.0" width="30.0" height="15.0" />

</g>
</style>
<style id="style_1" roleList="cytosol">

<g stroke="#00FF00" stroke-width="2.0" >
<rectangle x="0.0" y="0.0" width="130.0" height="200.0" />

</g>
</style>
...

Figure 3.17: Example of styles that define their targets via roles. One style
defines that it is applicable to all layout objects with role cytosol and the
other is applicable to all layout objects with role important.

The most specific way of associating a style with a certain layout object
is via the identifier of the layout object. As mentioned above, this method of
associating a style with a layout object is only available within local render
information elements.

Just as with the "association by type" and the "association by role", the
style can specify that it applies to more than one identifier.

An example of association via identifier is depicted in figure 3.18.
Also combinations of associations of styles to layout objects via type, role

or id are possible.
This association schema can sometimes lead to conflicts, e.g. if one style

would apply to an object via the objects type and another style would apply
based on the identifier of the object. To resolve such conflicts, the render
extension defines a set of resolution rules.

THE SBML RENDER EXTENSION 69

<compartmentGlyph id="cg1"
render::objectRole="cytosol">

...
</compartmentGlyph>
...
<speciesGlyph id="sg1"

render::objectRole="important">
...

</speciesGlyph>
...
<style id="style_1" idList="sg1">

<g stroke="#0000FF" stroke-width="2.0" >
<rectangle x="0.0" y="0.0" width="30.0" height="15.0" />

</g>
</style>
<style id="style_1" idList="cg1">

<g stroke="#00FF00" stroke-width="2.0" >
<rectangle x="0.0" y="0.0" width="130.0" height="200.0" />

</g>
</style>
...

Figure 3.18: Example of local styles that define their targets via identifiers.
One style is defined to apply to the layout object with identifier sg1 and the
other to the layout object with identifier cg1.

70 SBML LAYOUT & RENDER EXTENSION

Generally a more specific association type takes precedence over a less
specific association. If there are several possible associations within a certain
render information element that have the same precedence, e.g. two styles
that are associated with text glyphs via the TEXTGLYPH type, the first
one that is encountered in the style list takes precedence.

Association Precedence

TYPE < ROLE < ID

The detailed set of rules for style resolution are given in the specification
of the render extension.

Primitives

To define how layout elements are to be rendered when a certain style is
applied to them, the render extension defines a number of graphical primi-
tives which can be combined in arbitrary ways to create complex graphical
elements.

The primitives defined in the current version of the SBML render ex-
tension are curves, polygons, rectangles, ellipses, text elements and bitmap
images (see figure 3.19). To allow hierarchical arrangement of several primi-
tives the group element has been introduced.

A style contains one or more attributes that specify which layout elements
the style can be applied to as well as a single group element that contains
the specification of how the layout elements are to be drawn (see figures 3.16,
3.17 or 3.18).

In the following sections each of the individual primitives available in the
current version of the render extension is described in more detail.

Curves

The curve element is a one dimensional object and it therefore only has
attributes to define the stroke color and the stroke width. Optionally a line
stippling pattern can be specified to create stippled curves.

For examples on the use of the different ways a curve can be rendered
based on these attributes see figure 3.21.

The curve definition in figure 3.20 essentially defines the same curve object
as was defined in figure 3.6, but instead of using the layout notation, it uses
the render notation. The notation for curve objects in the render extension
differs slightly from the definition of curves in the layout extension for a good
reason.

THE SBML RENDER EXTENSION 71

Figure 3.19: Primitives available in the SBML render extension (curve, poly-
gon, rectangle, ellipse, image & text)

<curve stroke-width="2.0" stroke="#0000A0">
<listOfElements>

<element xsi:type="RenderPoint" x="0.0" y="0.0" />
<element xsi:type="RenderPoint" x="1.0" y="0.0" />
<element xsi:type="RenderCubicBezier" x="1.0" y="2.0"

basepoint1_x="2.0" basepoint1_y="1.0"
basepoint2_x="0.0" basepoint2_y="2.0" />

<element xsi:type="RenderPoint" x="2.0" y="2.0" />
</listOfElements>

</curve>

Figure 3.20: Curve example with a straight line element followed by a cubic
bézier element followed by a straight line element.

72 SBML LAYOUT & RENDER EXTENSION

In the layout extension stippled lines are created by defining a number of
line segments with gaps. The gaps are created by defining the start point of
line segments n to be different from the end of the preceding line segments
n − 1. In the render extension, stippled lines can be created by setting a
line stipple pattern attribute on a curve. In addition to being able to specify
line stipple patterns on curves, the render extension also allows the user
to specify the same line stipple pattern for the outlines of certain primitive
types (polygon, rectangle and ellipse). This way we can use one line stippling
specification mechanism for all the primitives in the render extension instead
of having one mechanism for curves and another one for the other primitives.
If the curves had the possibility to create stipple patterns in the same way
this is done in the layout extension in addition to the line stipple attribute,
implementers of the render extension would have to deal with all possible
combinations of these two features, which makes the specification as well
as implementations unnecessarily complicated. As a consequence the way
curves are defined in the render extension has been changed in a way that
prohibits the creation of stippled lines via the curve segments. As a side
effect, the curve specification has become more concise.

Figure 3.21: The stroke for curves (and the stroke for the outline of two
dimensional objects) can vary in width, color and stippling pattern or a
combination of these attributes.

Line Endings

Curves in reaction network diagrams are often used to represent edges and
consequently certain relations between entities in the diagram. In order to
specify what type of relation is represented by an edge, one or both ends of
the edge are decorated with certain symbols, e.g. arrow heads. Since this
feature is used very often in reaction network diagrams, the render extension
supports this feature in a very flexible manner.

The SBML render extension allows users to define a number of line end-
ings (see figure 3.22) that can by applied to either end of a curve element.

THE SBML RENDER EXTENSION 73

The definition of lines endings is similar to that of styles described above.
Each line ending defines a group element that combines an arbitrary number
of graphical primitives to form a graphical representation of a line decora-
tion. Each line ending element also has a unique identifier and a curve can
reference this identifier to determine what decoration will be applied to the
start or the end of that curve (see figure 3.23).

In addition to the unique identifier and the graphical representation, a
line ending element needs to specify certain attributes that determine how
the line ending is applied to the curve. In order to be able to place line
decorations correctly the line ending has to specify a bounding box for its
size and an offset from the curve end. The user also has the possibility to
specify if the line ending should be rotated according to the slope of the curve
or not. The effects of this feature are demonstrated in figure 3.24.

<listOfLineEndings>
<lineEnding id="simpleHead_red"

enableRotationalMapping="true">
<boundingBox>
<position x="-8" y="-3"/>
<dimensions width="10" height="6"/>

</boundingBox>
<g stroke="red" stroke-width="1.0" fill="#000000">
<polygon>
<listOfElements>
<element xsi:type="RenderPoint" x="0.0" y="0.0" />
<element xsi:type="RenderPoint" x="10.0" y="3.0" />
<element xsi:type="RenderPoint" x="0.0" y="6.0" />

</listOfElements>
</polygon>

</g>
</lineEnding>

</listOfLineEndings>

Figure 3.22: Definition of a simple red arrow head with rotational mapping
enabled.

Polygons

The polygon object is very similar to curves in the render extension (see figure
3.25). The major differences are that the curve segments in the polygon
definition define the outline of the polygon and that the last point in the
definition of the outline of the polygon is implicitly connected to the first
point. This ensures that the polygon always defines a closed two dimensional
area. The polygon has the same attributes as the curve to define properties
of the polygons outline.

74 SBML LAYOUT & RENDER EXTENSION

... <curve stroke="#000000"

startHead="simpleHead_red">

<listOfElements>

<element xsi:type="RenderPoint" x="0.0" y="0.0" />

<element xsi:type="RenderPoint" x="20.0" y="20.0" />

</listOfElements>

</curve>

<curve stroke="#000000"

endHead="simpleHead_red">

<listOfElements>

<element xsi:type="RenderPoint" x="20.0" y="20.0" />

<element xsi:type="RenderPoint" x="40.0" y="40.0" />

</listOfElements>

</curve>

<curve stroke="#000000"

startHead="simpleHead_red" endHead="simpleHead_red">

<listOfElements>

<element xsi:type="RenderPoint" x="40.0" y="40.0" />

<element xsi:type="RenderPoint" x="60.0" y="60.0" />

</listOfElements>

</curve>

...

Figure 3.23: The line ending defined in figure 3.22 applied to three curve
objects. Once applied only to the start, once to the end and once to start as
well as end of the curve.

THE SBML RENDER EXTENSION 75

<listOfLineEndings>

...

<lineEnding id="simpleHead_red2"

enableRotationalMapping="false">

<boundingBox>

<position x="-8" y="-3"/>

<dimensions width="10" height="6"/>

</boundingBox>

<g stroke="red" stroke-width="1.0" fill="#000000">

<polygon>

<listOfElements>

<element xsi:type="RenderPoint" x="0.0" y="0.0" />

<element xsi:type="RenderPoint" x="10.0" y="3.0" />

<element xsi:type="RenderPoint" x="0.0" y="6.0" />

</listOfElements>

</polygon>

</g>

</lineEnding>

</listOfLineEndings>

Figure 3.24: Difference between having a line ending adjusted to the slope of
the curve and not having it adjusted. The line ending definition is identical
to the one in figure 3.22, just the attribute for the rotational adjustment has
been set to false. The result can be seen on the right. At the top, application
of the previous line ending is depicted, at the bottom application of this new
line ending definition is shown.

76 SBML LAYOUT & RENDER EXTENSION

In addition to the attributes for the outline the polygon has some at-
tributes to define how the area is to be rendered. This allows for unfilled
polygons as well as polygons filled with a single color or a gradient.

An example of some of the possibilities how the rendering of two dimen-
sional objects can be influenced by these attributes is given in figure 3.26.

<polygon stroke-width="2.0" stroke="#000000"
fill="#707070">

<listOfElements>
<element xsi:type="RenderPoint" x="1.0" y="0.0" />
<element xsi:type="RenderPoint" x="2.0" y="2.0" />
<element xsi:type="RenderPoint" x="0.0" y="2.0" />

</listOfElements>
</polygon>

Figure 3.25: polygon example defining a gray triangle with black outline of
width 2

stippled black
outline &
blue fill

solid black
outline &
no fill

no outline
&

gradient fill

Figure 3.26: Polygons with different fill and outline attributes. These at-
tributes can also be applied to other two dimensional objects (ellipses &
rectangles).

Rectangles

Although the polygon class can in principle be used to create any two di-
mensional object, the render extension specifies separate primitive types for
the definition of rectangles and ellipses since those two element types are
commonly used in reaction network diagrams. This adds only a little bit of

THE SBML RENDER EXTENSION 77

additional complexity to the render extension but makes defining those com-
monly used primitives considerably easier, especially with respect to ellipses.

The rectangle primitive is defined via a position in the form of x and y
attributes as well as width and height attributes that define its size(see figure
3.27). There are also attributes to define rounded corners for the rectangle
(see figure 3.28). Since a rectangle is a two dimensional object it has the
same attributes to define the outline and area fill properties as described for
the polygon primitive above.

<rectangle x="0.0" y="0.0" width="20.0" height="20.0"
stroke="#000000" stroke-width="1.0"
fill="none"/>

Figure 3.27: Definition of a square with solid black outline and no fill.

<rectangle x="0.0" y="0.0"
width="20.0" height="20.0"
rx="5.0" ry="5.0"
stroke="none" fill="#A0A0A0"/>

Figure 3.28: Definition of a gray square without outline and rounded corners.

Ellipses (& Circles)

The ellipse element can be used to define ellipses as well as circles (see figure
3.29 & 3.30). The most general form, the ellipse, is defined via a center point
and radii along the x and the y axis. If the radii for the x and the y axis
have the same value, the resulting shape is a circle. Since an ellipse is a two
dimensional shape, it also has all the attributes for defining the properties
for the outline and the area fill.

<ellipse cx="50.0" cy="75.0" rx="75.0" ry="50.0"
stroke="#000000"
fill="none"/>

Figure 3.29: Definition of an ellipse with a solid outline and no fill.

Text Elements

Text elements are used to add text to the rendering of a layout element. The
text element has attributes to define a font and a number of font properties
like the font size and the font style, the vertical and horizontal text alignment.

78 SBML LAYOUT & RENDER EXTENSION

<ellipse cx="25.0" cy="25.0" rx="25.0"
stroke="#000000" stroke-width="2.0"
fill="#707070"/>

Figure 3.30: Definition of a gray circle with black outline of width 2.0.

The color of text can be specified the same way as the color for the outline
of other elements, but the attributes that define the stroke width or the line
stippling have no effect on text elements.

A few other features commonly found in the context of text elements, like
specifying a fill color or placing text along a curve, that are found in more
general rendering frameworks like SVG have not been added to the render
extension because they add a lot of complexity with only little benefit for
the user.

An example for the definition of a text element can be seen in figure 3.31.

<text x="10.0" y="10.0"
stroke="#0000FF"
text-anchor="start"
vtext-anchor="top"
font-family="monospace"
font-weight="bold"
font-size="18.0">"Monospace"</text>

"Monospace"

Figure 3.31: Example of defining a text element with a certain font, font style
and alignment. The left and the top of the text are aligned with the upper
left corner of the associated bounding box (dashed line) and then the text
is moved 10 units along the positive x axis and 10 units along the positive y
axis.

Bitmaps

The last graphical primitive the current render extension offers is the image
element.

The image element can be used to include bitmap objects to a render
extension style. The image element defines the position and the size of the
bitmap and specifies the location and name of a JPEG or PNG file (see figure
3.32).

So rather than embedding the bitmap information within the render ex-
tension data, it has to be loaded when the layout and render information is
used to draw the diagram.

In order to make an implementation easier the supported file formats were
limited to JPEG and PNG, if the need should arise, the specification of the
render extension can easily be extended to support other file formats.

THE SBML RENDER EXTENSION 79

If the actual size of the bitmap image is not the same as the size given
in the declaration of the corresponding image element, the image has to be
scaled according to the width and height specified for the image element.

If the file referenced in the image element can not be found, the applica-
tion can decide if it draws nothing at all or if it draws a certain placeholder,
e.g. an error message text that notifies the user that the image could not be
rendered.

<image x="30.0" y="45.0"
width="100.0" height="100.0"
href="glucose.png" />

Figure 3.32: Example how to include bitmaps in a render style. (Bitmap was
taken from Wikipedia[143] article on glucose.)

Grouping

Using a single primitive in a style only allows the specification of relatively
simple diagrams. In order to create more complex diagrams the simple prim-
itives discussed above need to be combined. To combine graphical primitives
the render extension uses group elements.

A group element can contain one or more children which can either be
graphical primitives or further groups elements (see figure 3.33). This enables
the creation of arbitrarily complex nested style definitions.

The group element itself can define properties for lines, area fill and text
attributes. These properties are applied to all children unless they are rede-
fined in those children. This makes the definition of styles easier because e.g.
the color and width for the outline of objects can be defined once at the top
level group element and be left undefined in the individual children as long
as they don’t need to change. This reduces the resulting file size and makes
the render information more readable.

Relative Versus Absolute Coordinates

To make the render extension even more versatile coordinates for primitives,
gradient definitions, line endings and style definitions can either be given in
absolute coordinates, relative coordinates or a combination of relative and

80 SBML LAYOUT & RENDER EXTENSION

<g stroke="#000000" stroke-width="1.0"
font-family="serif"
font-size="18.0">

<rectangle x="0.0" y="0.0"
width="100.0" height="120.0"
fill="#E6E6E6" />

<image x="0.0" y="0.0"
width="100.0" height="100.0"
href="glucose.png" />

<text x="10.0" y="-5.0"
vtext-anchor="bottom"
font-weight="bold"

>"Glucose"</text>
</g>

"Glucose"

Figure 3.33: Example of how primitives can be grouped to define more com-
plex styles. In this example a style for a glucose node is defined that draws a
bitmap of glucose on a light gray rectangle and adds some descriptive text.
The top level group element defines some attributes that are inherited by all
children, unless they are redefined in the children.

absolute coordinate values. Relative coordinates are always in relation to the
bounding box of the layout object the style is applied to.

For example this way a style can be defined that draws a rectangle starting
at 10% of a layout objects width and 10% of the objects height and that covers
80% of the width and 80% of the height, effectively creating a 10% border on
each side independent of the size of the layout object. Specifying coodinates
in styles as relative values also allows the creation of styles that scale well
with the size of the bounding boxes of layout objects (see figure 3.35).

Absolute coordinates are given as floating point numbers, e.g. 23.5 while
relative coordinates have a % sign attached to the number, e.g. 10%. When
specifying a combination of relative and absolute values, the absolute value
is given first followed by a + symbol and the relative value (see figure 3.34).
Fixing the order of components for absolute/relative coordinate combinations
facilitates parsing coordinate values and therefore makes the implementation
of the render extension easier without sacrificing versatility.

Transformations

Another feature that adds a lot of flexibility to the render extension is the
possibility to add transformations to primitives and groups.

Normally rectangles, ellipses, images and text elements are drawn so that
the width or in the case of the ellipse the x radius is parallel to the x axis
of the coordinate system. If objects are needed that do not align with the

THE SBML RENDER EXTENSION 81

23.5 + 20.0%

absolute value relative value

Figure 3.34: Schema for writing coordinates in the SBML render extension.

<circle cx="50.0" cy="20.0"
rx="50.0" ry="20.0"
fill="#A0A0A0" />

<circle cx="50.0%" cy="50.0%"
rx="50.0%" ry="50.0%"
fill="#A0A0A0" />

Figure 3.35: Comparison of relative coordinates versus absolute coordinates
when defining an ellipse and applying it to different bounding boxes. The
comparison shows that the ellipse with the relative coordinates scales better
with differing bounding box dimensions. (top: ellipse with absolute coordi-
nates applied to a box of size 100x20 and to a box sized 150x30, bottom:
ellipse defined with relative coordinates applied to the same boxes as above)

82 SBML LAYOUT & RENDER EXTENSION

x and y axis of the coordinate system, the possibility to specify an angle of
rotation around any of the axes is required.

To enable this general transformations in the form of affine transformation
matrices can be specified with each render object. With such a general
transformation matrix not only rotation, but also translation, scaling and
skewing as well as combinations of those transformations on render objects
are possible (see figure 3.36).

<rectangle x="0.0" y="0.0"
width="10.0" height="10.0"

/>

<rectangle x="5.0" y="12.0"
width="10.0" height="10.0"
transform="0.707, 0.707, -0.707, 0.707.0, 0.0, 0.0"

/>

<rectangle x="0.0" y="24.0"
width="10.0" height="10.0"
transform="0.5, 0.0, 0.0, 1.5, 0.0, 0.0"

/>

<rectangle x="5.0" y="36.0"
width="10.0" height="10.0"
transform="0.3535, 1.0605, -0.3535, 1.0605, 0.0, 0.0"

/>

Figure 3.36: Transformation example with an untransformed, a rotated, a
scaled as well as a scaled and rotated square.

Libsbml Implementation

Just like the first versions of the implementation for the layout extension,
the implementation for the render extension was done as a patch against the
sources of libsbml. With each new release of libsbml a new patch adding the
functionality to read and write render information in SBML files is released.
The first released implementation was in October 2009 against the sources
of libsbml 3.4.1. The patches are updated for newer releases of libsbml and
there are patches for libsbml 4.1 as well as libsbml 4.2. Shortly a new major
version of libsbml, libsbml 5, will be released making a partial rewrite of the
render extension patch necessary.

As with the implementation for the layout extension, the render extension
has been implemented for several programming languages (C++, Python and

THE SBML RENDER EXTENSION 83

Java). Support for the C programming language has not been implemented
yet since it does not seem to be used by many software projects any more.

A diagram of all the classes of the render extension implementation for
libsbml is depicted in figure 3.37.

To ensure the quality of the implementation 126 unit tests for the C++
implementation have been written as well as 83 and 62 for the Python and the
Java implementations respectively. These tests can be used prior to making
a release for checking if any changes in libsbml affect the implementation of
the render extension.

Figure 3.37: Inheritance and usage diagram for render extension classes.

Rendering Implementations

XSLT Style Sheet

The implementation of the reading and writing capabilities on top of libsbml
is only one aspect of software support for the SBML render extension. In
order to be really useful, the information also has to be rendered. For this
the XSLT stylesheet, that has already been discussed in the section on the
layout extension, has been extended to enable the interpretation of render
information and its conversion to SVG constructs.

In addition to taking the identifier of the layout to be rendered, the
extended XSLT stylesheet can now take the identifier of a render information
element that is to be applied to the layout. If no identifier for a render
information element is given, the XSLT stylesheet falls back to the original
behavior of drawing just the layout by applying a default style.

84 SBML LAYOUT & RENDER EXTENSION

If a render information identifier is specified, it has to belong either to a
global render information element or to a local render information element
that is attached to the layout specified by the layout identifier.

If both a valid layout and a valid render information object are found, the
render information is applied to the layout according to the rules explained
above and the result is a SVG drawing. There exists a number of high quality
software implementations like batik[121] or cairo[137] that can convert the
SVG graphics into a bitmap drawing of arbitrary size.

Since the render extension is a lot more complex than the layout exten-
sion, the extension to the XSLT stylesheet are quite extensive which makes
testing even more important. For this a suite of test files that covers as much
of the specification as possible has been created.

Currently this test suite consists of more than 100 test files. The tests are
implemented as a set of C++ source code files that use the layout and ren-
der implementation in libsbml to create SBML files with layout and render
information. The layout and render information systematically covers the
individual elements of the render extension, from the rendering of individual
graphical primitives with different combinations of outline and fill proper-
ties to complex combinations of primitives. Since the storage of layout and
render information in SBML Level 2 files differs slightly from the way this
information will likely be stored in SBML Level 3 files, the test files cover
both versions of the SBML specification.

Implementing the tests using the libsbml implementation has the added
advantage that it serves as an additional test for the libsbml based imple-
mentation.

Since this test suite might also be interesting and helpful to other devel-
opers implementing the layout and render extension, all test cases have been
released on our web page together with the implementations[144]. All the
files are distributed under the liberal Lesser GNU Public License (LGPL).

OpenGL Based Rendering Library

The XSLT style sheet allows users to convert layout and render information to
bitmap images using an XSLT processor and some SVG rendering software.
However it would be beneficial for software developers if there wasn’t just a
library for reading and writing the layout and render extension, as provided
by the extensions to libsbml described above, but also a library for rendering
layout and render information from within software tools.

To this end, a library was implemented that takes layout and render
information and renders it using the OpenGL standard graphics API.

There are several graphical standards that would have been suitable to

THE SBML RENDER EXTENSION 85

implement the SBML render extension. OpenGL 1.3 was chosen because it is
a standard that is available on all platforms as opposed to e.g. DirectX which
is only available on Microsoft Windows. In addition to being cross platform,
OpenGL 1.3 is one of the first version of OpenGL which was released in 2001,
so the chances of having a driver that fully supports this standard are very
high on all platforms independent of the graphics hardware that is being
used. Due to these reasons, the implementation is likely to work on the vast
majority of computers in use today.

The implementation was written in C++ and due to time constraints,
no implementation for Python, Java or any other programing language have
been created so far. But since the OpenGL API is available for most pro-
gramming languages, there is no technical reason why such an implementa-
tion can’t be written.

Again this implementation is not trivial due to the flexibility of the SBML
render extension and being able to test it is very important. Since there
already is a test suite that was created for testing the XSLT implementation,
we also use that test suite to test the OpenGL implementation. Testing
was mainly done by comparing the bitmap renderings created from an SVG
drawing that was created by the XSLT stylesheet to the corresponding image
created by the OpenGL implementation.

Figure 3.38: One of the render extension tests rendered in two different
applications. Left: firefox rendering the SVG file created with the XSLT
style sheet. Right: Demo application rendering the layout information from
the SBML file for the test using the OpenGL based rendering library.

To demonstrate the usefulness of the library a small example program was
written (see figure 3.38 (right)) using the Qt framework[100]. The application
can read SBML files with layout and render information, display the layout
with applied render information and create bitmaps of those renderings. The

86 SBML LAYOUT & RENDER EXTENSION

program runs on Microsoft Windows, Mac OS X as well as Linux. Binaries
for the different platforms as well as the source code for the library and the
example program have been released for use by interested developers[144].

3.7 Third Party Implementations

So far only the implementations that were written in our group have been
discussed, but by now there are several implementations of the SBML layout
and/or render extension by other groups. This is very important if the lay-
out and render extensions are to become official SBML extensions since the
SBML standardization process requires at least two independent implemen-
tations.

Libsbml 5

SBML Level 3 is will support extensions of the standard with so called
packages[145]. The only difference between an extension in an annotation
and an official SBML Level 3 extension package is that the later is not en-
closed by the <annotation> tags and that is has gone through all the stages
of the standardization process as described on the SBML web page[141]. In
order for this extension mechanism to work, support for reading and writing
them has to be implemented in libsbml. While currently libsbml version 4.2
is the latest stable version, work on its successor libsbml 5 has been ongoing
for several years.

To test the package extension mechanism, the SBML layout extension has
been implemented in as a package in libsbml 5 by Akiya Jouraku, a former
core developer of libsbml.

So when libsbml 5 will finally come out in a stable version, it will already
have support for reading and writing the SBML layout extension as a package
in SBML Level 3 files.

CellDesigner Plugin

In 2005 Yasunori Osana presented an implementation[146] that enables the
CellDesigner software to convert their internal diagram format to SBML files
with layout information. Because this implementation is limited to the layout
extension, not all of the information present in CellDesigner diagrams can be
converted. Since the styles of the nodes in CellDesigner are often essential
to the understanding of the diagram, this is a major drawback. Although
implementing support for the SBML layout and render extension has been on

THE SBML LAYOUT AND RENDER EXTENSION IN NF-κB MODELING 87

the agenda of the CellDesigner developers for quite a while[147], no such im-
plementation is currently in sight. A solution to this problem might actually
be provided very soon by the program that I have written for the conversion
of CellDesigner diagrams to SBML layout and render information (see 3.8).

SBW Modules

Developers from the group of Herbert Sauro have written several implemen-
tations[148, 149] of the layout and render extensions in the context of the
Systems Biology Workbench (SBW) framework. They have written mod-
ules that are able to create view and modify layout and render information
according to the SBML layout and render extension. These modules can
be used as standalone programs or be accessed by other programs through
SBWs communication framework.

The developers of the group also wrote a .NET library for working with
SBML layout and render information[150]. This implementation is also using
the XSLT stylesheet presented above to create high quality SVG and subse-
quently bitmap images from SBML files with layout and render information.

Latex Converter

Only recently the group has published another paper[151] about a library
that is able to convert SBML layout and render information into LATEX-
Tikz[152, 153] code for the inclusion in publications written in LATEX.

Arcadia Software

Another program that implements the SBML layout extension is Arcadia[154].
Arcadia is a visualization tool for metabolic pathways. It takes an SBML file
without layout information and creates layout information based on the re-
actions defined in the SBML model. The resulting layout can then be stored
in the SBML model and written to file.

3.8 The SBML Layout And Render Extension
In NF-κB Modeling

As described in the introduction, we are participating in the Virtual Liver
Network[] and in this context we are collaborating with an experimental
research group in Heidelberg in order to find the interaction points between
the NF-κB signaling pathway and the Hippo signaling pathway. For this,

88 SBML LAYOUT & RENDER EXTENSION

models for the individual pathways have to be build and eventually combined.
As a first step, one of our collaborators build an initial model for the NF-κB
signaling pathway.

In order to build such a model, the knowledge about the biological processes
involved in this signaling pathway has to be encoded in a way that can be
processes by a computer program. Since we also want to simulate the model
eventually, one of the standards mentioned in the introduction would provide
the means to do this. Because we do have extensive experience with SBML
and since this standard seems to provide the broadest range of software sup-
port, SBML was chosen for the storage of the model.

As our collaboration partners know more about the biological processes
then we currently do, they set out to create an initial topological model
describing the known interactions between some of the elements involved
in the NF-κB pathway. The most intuitive way for biochemists to encode
such interactions is by drawing the corresponding reaction network. The
CellDesigner[31] software is ideally suited for that task. The software uses
specific symbols for certain concepts often found in biochemical networks
and the diagrams created with CellDesigner are similar to process diagrams
as described by the SBGN specification. This is no coincidence as the Cell-
Designer notation was used as the basis for the creation of the SBGN process
diagram notation. The possibility to create models of a reaction networks
graphically is especially targeted at biologists and biochemists because it al-
lows them to encode their knowledge in a form that they are familiar with
because the diagrams look similar to diagrams commonly found in biological
publications and text books. The information about the reaction network as
described by the diagram is then converted to the SBML format without any
prior knowledge from the user.

The initial representation of the NF-κB model created in CellDesigner by
Frederico Pinna is depicted in figure 3.39.

As a modeling tool CellDesigner specializes in the creation of reaction
networks and there is not much functionality beyond that. There are some
extensions to CellDesigner by third party developers that allow users of Cell-
Designer to add reaction kinetics to a topological model[155] or to do some
time course simulations, for example through the COPASI language bindings
as described in chapter 4.5. But as soon as it more sophisticated types of
analysis on a model are required, other tools have to be used.

One tool that provides users with a number of different methods for the
analysis of such models is COPASI. COPASI is developed in our group in
collaboration with research groups from the University of Manchester in the
U.K. as well as from the Virginia Biotech Institute in Blacksburg, Virginia,
in the U.S.A.

THE SBML LAYOUT AND RENDER EXTENSION IN NF-κB MODELING 89

Figure 3.39: CellDesigner diagram of a NF-κB activation model created by
Frederico Pinna. This is used in one of the sub-projects of the Virtual Liver
Network as a starting point to find the interactions between the NF-κB
signaling pathway and the Hippo signaling pathway.

90 SBML LAYOUT & RENDER EXTENSION

COPASI provides excellent support for the SBML document format due
to the work described in chapter 4.1. Since CellDesigner also uses SBML
documents to store reaction network models, seamless data exchange between
the two programs with respect to the mathematical model is possible. This
is something that was not possible prior to the work described in this thesis.
Back then, the user would have had to recreate the model when switching
from one tool to another.

Unfortunately the diagram description created with CellDesigner can not
be stored using the core functionality of SBML, so the only data that can be
exchanged using core functionality of SBML is the mathematical description
of the reaction network. This was one of the reasons why we developed
the extension to SBML that is described in chapter 3.4 and 3.6. With the
help of these extensions it is theoretically possible to exchange the graphical
information together with the mathematical description.

However, so far the developers of CellDesigner have not been able to
implement support for these extensions, but rather use their own proprietary
format to store the graphical information. This means that when we started
this project, the graphical information created by Frederica Pinna could not
be transfered from CellDesigner to COPASI.

Since it would be nice to have the graphical version of the network avail-
able in COPASI, e.g. to display analysis results graphically as described in
chapters 4.3 and 4.4, we implemented a tool that converts the graphical in-
formation provided by CellDesigner to the graphical extensions for SBML
and COPASI that are described in chapters 3.4,3.6 and 4.2.

Because the CellDesigner format is not well documented, this work is not
trivial and much of the informations gathered about the format have been
gained by trial and error as well as by analyzing how certain changes to a
diagram in CellDesigner influence the resulting diagram notation when it is
stored in the file.

As we have only used the latest version of CellDesigner for this work, sup-
port for converting CellDesigner diagrams is limited to that version and only
those parts of the diagram notation that are relevant to this collaboration
are supported so far. Files written with older versions of CellDesigner have
to be loaded into the latest version and saved again in order be converted.
Most features commonly used in reaction network diagrams are supported
already, but a lot of small details still have to be dealt with as can be seen
in figure 3.40.

The implementation of this new feature has taken about one week so far
and the current results are already very promising. With the help of the
converted diagrams, it is already possible to display analysis for e.g. the
elementary flux mode analysis graphically as demonstrated in chapter 4.6.

THE SBML LAYOUT AND RENDER EXTENSION IN NF-κB MODELING 91

Figure 3.40: Same diagram as presented in figure 3.39, only this time it is
displayed in COPASI after the CellDesigner specific layout information has
been converted to the SBML layout & render extension format (see chapters
3.4 and 3.6).

92 SBML LAYOUT & RENDER EXTENSION

This conversion will also be extended and improved as this collaboration
continues and hopefully this will eventually lead to a tool that is also useful
to other researchers in the field of systems biology.

Chapter 4

Standards In COPASI

4.1 SBML Support In COPASI

COmplex PAthway SImulator (COPASI)[69, 156] is a software package for
the creation, editing, simulation and analysis of reaction network models.
The program is the successor of the well known Gepasi[30, 29] software by
Pedro Mendes.

COPASI is a joint development by the groups of Pedro Mendes at Virginia
Tech University (VBI) in Blacksburg, Virginia and the Manchester Interdis-
ciplinary Biocentre (MIB) in the United Kingdom as well as the group of
Ursula Kummer at the University of Heidelberg.

While its predecessor Gepasi was only available for the Microsoft Win-
dows platform[67], COPASI has been developed to work on all popular plat-
forms including GNU/Linux[60], Microsoft Windows as well as Mac OS X[64].
In addition to being available in binary form for the afore mentioned plat-
forms, the source code for COPASI is freely available and can be used to
create binaries for other platforms, e.g. Solaris[56] or any of the BSD[59]
distributions.

To achieve this level of platform independence, a number of cross-platform
standards are used in the development of COPASI. First of all, COPASI is
written using the standardized programming language C++[157] for which
a large numbers of compilers for the different platforms are available. In
addition to using a standardized programming language, COPASI uses the
platform independent Qt GUI toolkit for the development of the user in-
terface. This allows for a consistent user experience across all supported
platforms.

The first official release of COPASI was done in June of 2006 with unof-
ficial releases dating back to the end of 2004[156].

93

94 STANDARDS IN COPASI

Standards were not only important in choosing appropriate software li-
braries for the development of COPASI, but from the beginning COPASI
provided users with the possibility to load and store models using the SBML
file format, the de facto standard for the storage of reaction network models
in systems biology. In addition to SBML, COPASI can read and write re-
action network models in several different formats. Normally COPASI uses
its own proprietary file format to read and write models, but for backward
compatibility to its predecessor it can also read models in Gepasis file for-
mat. Writing Gepasi files however is not supported by COPASI. For writing
models to file, COPASI supports several additional formats, e.g. COPASI
can write models in a format suitable for the Berkeley Madonna Simulation
Software[158] or the popular free simulation tool XPP-Auth[159]. Addition-
ally models can be written as source code for the C programming language.

Arguably the most important format that is supported by COPASI is the
SBML standard and this section will deal predominantly with the implemen-
tation of the SBML format in the context of COPASI.

COPASI has been developed since the year 2000 and the first version of
SBML (SBML Level 1 Version 1) has been released in March of 2001[40].

SBML Level 1 Version 1 was very limited in how users could specify
reaction network models which lead to the development of a successor that
was supposed to eliminate most of these shortcomings. SBML Level 1 Version
2 was released August of 2003 and it fixed some of the problems perceived
with SBML Level 1 Version 1, but some of the old problems were also still
present. In parallel to SBML Level 1 Version 2, a new major version of
SBML, SBML Level 2 Version 1 was developed and released in June of 2003.
This new major version introduced new concepts, e.g. events and arbitrary
function definitions for use in kinetic laws. The first official release of COPASI
could read models in SBML Level 1 Version 1, SBML Level 1 Version 2 or
SBML Level 2 Version 1, which were all the SBML versions released at that
time.

Export of models was constrained to SBML Level 2 Version 1 for the first
releases of COPASI because at that time SBML Level 1 has been obsoleted
by SBML Level 2. The further use of SBML Level 1 was strongly discouraged
by the SBML editors.

Later releases of COPASI followed the development process of SBML very
closely which means that COPASI was usually among the first programs to
support new versions of the SBML standard.

Current versions of COPASI provide support for reading and writing a
large number of different SBML levels and versions (see table 4.1).

COPASI basically supports all available version of SBML for import and
export available today, the only exception being export to SBML Level 1

SBML SUPPORT IN COPASI 95

import export

SBML Level 1 Version 1 X X

SBML Level 1 Version 2 X X

SBML Level 2 Version 1 X X

SBML Level 2 Version 2 X X

SBML Level 2 Version 3 X X

SBML Level 2 Version 4 X X

SBML Level 3 Version 1 X X

Table 4.1: Supported version of SBML for importing and exporting reaction
network models in COPASI 4.6.34

Version 1. This has several reasons:

a) SBML Level 1 Version 1 is very limited and only a very small subset
of models published today can be represented as Level 1 Version 1

b) only very few programs are still in use today that only support SBML
Level 1 Version 1 as their import format

c) due to the limitations of SBML Level 1 Version 1, it is not trivial
to convert an arbitrary model to the requirements of SBML Level 1
Version 1

Implementing support for exporting models to SBML Level 1 Version 1
would mean investing of lot of time for little to no benefit to the users of
COPASI. For this reason support for exporting SBML Level 1 Version 1 has
not been implemented in COPASI.

It is also noteworthy, that while COPASI supports most features of SBML,
it currently does not support all features. SBML features currently not sup-
ported by COPASI are so called "fast reactions", algebraic rules as well as
the delay function. A more detailed description of these features and why
they are currently not supported by COPASI will be give below.

96 STANDARDS IN COPASI

Implementation

COPASI uses libsbml[70] for reading and writing as well as verifying SBML
documents.

libsbml is developed by the SBML community and the developers of
COPASI have actively supported the development of libsbml by providing
code, bug fixes as well as feedback.

The first version of libsbml was released in 2003 and development of the
library progressed so fast that the first officially released version of COPASI
in 2006 already used libsbml 2.3.2 for handling SBML documents. That
version was already very stable with respect to the base functionality, which
was reading and writing of SBML models, but support for the verification of
SBML documents was still in its infancy.

libsbml was developed in conjunction with SBML and usually a release of
a new version of SBML would be accompanied by a new release of libsbml.

In order to keep up with new version of SBML as well as new versions of
libsbml, COPASI had to be modified and extended over time to incorporate
new SBML features or to accommodate API changes in libsbml. Some-
times these changes were so significant that major parts of the SBML im-
port/export code in COPASI had to be rewritten.

COPASI development started at around the same time the first version
of libsbml was released. Since these early version provided only little support
for checking models for correctness, a lot of code to do these kinds of checks
have been implemented in COPASI. Back then this feature was used by
many other developers to tests the validity of the SBML files they were
creating with their tools. Although recent version of COPASI use newer
version of libsbml that have very good support for checking SBML models,
the validation tests implemented in COPASI remain in place are are still
used to check SBML models when they are imported. This creates very little
overhead in term of computation resources and provides COPASI with a
fallback solution for model validation that can potentially catch errors in the
corresponding check done by libsbml. Because of the high quality standards
with respect to SBML import/export, COPASI is being used for many years
in the curation of the BioModels database[160].

SBML is not the native file format of COPASI but the COPASIs file
format and data structures are very similar to those of SBML. As can be seen
in figure 4.1 the core elements of the model definition, namely the definitions
for functions, compartments, species, parameters, reactions and events are
more or less the same in COPASI and SBML. Although initial assignments
and rules are not listed in the COPASI data structures, these features exist.

SBML SUPPORT IN COPASI 97

They are defined together with the data structure to which they apply, e.g.
the assignment rule for a species is not stored separately from the species,
but directly with the definition of the species.

A feature of SBML that is not supported in COPASI, or at least not
to the same extend, are unit definitions. SBML allows the user to define
arbitrary units. In COPASI, the user can only choose from a predefined set
of units. COPASI also has no notion of species types or compartment types.

On the other hand, COPASI has data structures specific to features found
in COPASI that are not available in SBML, e.g. the definition and setting
for the different simulation and analysis methods as well as the definitions
for the different output types (plots & reports).

These are only the major differences between COPASI and SBML but
there are many more small differences in the details of the individual data
structures or in the interpretation of the data structures that are significant
when it comes to importing models from SBML and exporting models to
SBML in COPASI.

So although the overall structures of SBML documents and COPASI files
are similar, the abundance of these small differences makes it a non-trivial
task to correctly import an SBML document into COPASI or to export a
COPASI model to a correct SBML model. Because small changes in the
semantics of a model can lead to different results when working with a model,
implementing this correctly was and still is our top priority.

SBML Unit Definitions

COPASI does not support unit definitions to the same extend as SBML. In
COPASI there is a predefined set of units that the user can choose from and
that are applied to a certain concept. E.g. if the user chooses seconds as the
time units all elements that have a temporal component will use seconds as
the unit for that temporal component. E.g. the kinetic parameter for mass
action kinetics will have a unit in terms of 1/s. These schema works well for
the large majority of use cases.

In SBML arbitrary units can be defined and set on individual elements,
e.g. a model can define that a certain parameter has the units V olt/second
while another parameters has the units mole/hour.

When importing an SBML model, COPASI will try to identify the units
defined in the SBML model and convert them to the corresponding units in
COPASI if possible. If COPASI encounters unit definitions that it can not
convert to one of its supported units, a warning will be issued.

Since SBML units do not have any influence on the results of expression
evaluations and numerical calculations, the only consequence this has for the

98 STANDARDS IN COPASI

model
unit definitions
function definitions
compartment types
species types
compartments
species
parameters
initial assignments
rules
reactions

reactants
products
modifiers
kinetic law

events
event assignments

function definitions
model

compartments
species
parameters
reactions

reactants
products
modifiers
kinetic law

events
event assignments

task descriptions
report definitions
plot definitions
misc

Figure 4.1: Comparison of the SBML data structure and the data structures
used in COPASI documents (left: SBML, right: COPASI). Structures that
are common to both have been printed dark.

user is that some units in the graphical user interface might be displayed in-
correctly. The numerical results of time course simulations and other analysis
methods will not be affected by this limitation.

SBML Compartment Types & Species Types

In SBML documents "compartment types" and "species types" are used to
establish a relationship between different compartments or species in a model.
E.g. a model that contains three compartments named mito1, mito2 and
mito3 could create a compartment type mitochondrium and declare that the
compartments mito1, mito2 and mito3 are all of type mitochondrium.

COPASI does not have a corresponding grouping mechanism, so this in-
formation will be ignored when a model that contains such information is
imported. Since this feature does not have any influence on numerical calcula-
tions with the model, analysis results from that model created with COPASI
will not be affected by ignoring this information.

Because ignoring this information has no immediate consequence for the
user, there is no warning or error message about it being ignored. However
one has to keen in mind that this information can not be stored in a COPASI

SBML SUPPORT IN COPASI 99

file, so if a user imports an SBML model and stores it as a COPASI model,
the information is lost.

SBML Constraints

In SBML the modeler can put constraints on certain values in a model and
if the value violates such a constraint, e.g. during a simulation, the results
are to be considered invalid.

COPASI does not currently support this feature and constraints are ig-
nored when an SBML model is imported. In this case, the user will see a
warning about the fact that COPASI has ignored these constraints. As a
consequence the user can work with the model, but violations of constraints
will not be reported during any kind of analysis.

Currently work is underway to add the data structures necessary for the
support of constraints in COPASI. Once those supporting data structures
have been implemented, support for importing constraints from SBML mod-
els will be added as well.

Algebraic Rules

SBML supports three different types of rules. Two of those, assignment rules
and rate rules, are directly supported in COPASI. The third type of rules,
algebraic rules, are currently not supported. If a model contains an algebraic
rule, COPASI will import the model, but the algebraic rule will be ignored
and the user will be notified via a warning message.

For many models, ignoring algebraic rules will have no or little effect,
while for other models the results from simulations and other analysis meth-
ods may differ from what the modeler intended. Since the user is informed
about COPASI ignoring these algebraic rules, he/she has to decide if this
will influence the results that are created with this model in COPASI.

"fast" Reactions

In SBML reactions can be marked as "fast" by setting the corresponding
flag on the reaction. These fast reactions are to be considered to occur at
infinite speed. The fast flag effectively partitions the reactions that make up
the model into two sets. Each of the sets working in a different time scale. In
order to handle the model correctly, the "fast" reactions have to be handled
in a special way. Failing to do so will likely lead to results different from
what the creator of the model intended.

Because currently the simulation engine in COPASI can not handle fast
reactions appropriately, the fast flag on reactions is ignored on import. The

100 STANDARDS IN COPASI

user is informed about this and about the fact that the results of simulating
the model might deviate from the behavior the modeler had intended when
writing the model.

Since not all types of analysis are affected by "fast" reactions, the model
is still imported and the user has to make sure that he only does those types
of analysis that do not depend on the correct interpretation of the kinetic
data. Network based analysis methods as for example the calculation of
elementary flux modes will work with this type of model and will produce
correct results.

Time Delays

SBML has support for a so called delay function. The delay function delay(x, y)
has two arguments, both of which are arbitrary mathematical expressions.
The result of evaluating the delay function is the value of expression x at y
time units before the current time. This can for example be used to encode
delay differential equations in SBML documents.

The simulation methods in COPASI currently can not handle delays and
although SBML models with delays can be imported in COPASI, all calls
to the delay function will evaluate to the special value "Not a Number"
(NaN) to signify that the result is invalid. So any method that relies on the
calculation of states of the model will return invalid results.

If the user imports a model that contains expressions with delays, COPASI
will issue a warning, notifying the user that the model can not be simulated
in COPASI.

As for the "fast" reactions described above, network based analysis meth-
ods, e.g. the calculation of elementary flux modes will not be affected by this
and the user can still carry out these kinds of analysis.

Species With hasOnlySubstanceUnits Flag Set

Normally if the identifier of a species appears in any mathematical expression
in an SBML file, it represents the concentration of that species. However,
species have a flag called hasOnlySubstanceUnits. If that flag is set, the
identifier of the species has to be interpreted as the amount of the species
rather than the concentration.

COPASI does not make such a distinction on the species, but rather each
time the concentration or the amount of a species is used in an expression,
the user has to specify if it is the amount or the concentration. Kinetic
laws in COPASI are an exception to that rule. In kinetic laws, a species is
represented by its concentration if the reaction spans a single compartment,

SBML SUPPORT IN COPASI 101

in multi compartment reactions COPASI uses the amount rather than the
concentration.

This means that on import COPASI has to monitor the use of the has-
OnlySubstanceUnits flag for each species and replace references to species in
expressions according to the way they are interpreted in COPASI. This also
has implications for the import of other model elements, e.g. assignments to
species in rules and/or events.

This can lead to a number of minor changes to the way the model is
represented. Because the changes do not affect the semantics of the model,
calculation results will still be correct. However, when the model is exported
again to an SBML file, it will contain all the changes introduced during
import.

Reactions Spanning Multiple Compartments

Traditionally rate laws specify the change of a reactants concentration over
time. This works very well for reactions taking place in a single compartment,
but fails once the reactants of a reaction span multiple compartments.

A detailed explanation of this problem is given in the specification of
SBML Level 2 Version 4[113].

As a consequence of the problems described in that specification, the
SBML community decided that rate laws in SBML documents specify the
change in amount per time rather than the traditional concentration per
time.

Because COPASI strives to be as user friendly as possible and biologist
are used to specifying rate laws in terms of concentration per time, COPASI
has kept this concept and all rate laws for single compartment reactions
specify the change in concentration per time for the reactants.

Since this does not work well for multi compartment reactions as detailed
in the SBML specification, COPASI makes a compromise here and rate laws
for multi compartment reactions are interpreted as the change of amount per
time just as in SBML models.

This difference in interpretation of rate laws between COPASI and SBML
makes it necessary to sometimes modify rate law expressions on import as
well as export to preserve the semantics of a model.

This process can be further complicated by other differences between
COPASI and SBML, e.g. the hasOnlySubstanceUnits flag described above.

102 STANDARDS IN COPASI

Stoichiometry Math & Species Reference Rules

SBML versions up to SBML Level 3 declare an attribute called stoichiometry-
Math on species references which can be used to specify a mathematical ex-
pression instead of a constant numerical value for the stoichiometry of a
certain species in a reaction. In SBML Level 3 and above the same feature
is represented via rules for species references.

This feature is only partially supported by COPASI. COPASI itself can
only handle fixed numerical values for the stoichiometries of species refer-
ences. When COPASI encounters an expression for a stoichiometry it eval-
uates the expression once and uses the resulting value as the fixed value for
that stoichiometry. This works well if the stoichiometric expression itself
only contains fixed elements, for all other cases COPASI will not be able to
do calculations with the model correctly. Since this can lead to incorrect
results, the user is informed about the conversion from a potentially variable
expression to a fixed numerical value.

COPASI Features Not Supported In SBML

In the preceding sections SBML features that are not or only partially sup-
ported in COPASI have been described, but there are also features available
in COPASI that are not supported by SBML or that are supported in a
different way.

Since the SBML file format only covers the specification of reaction net-
works, almost all features of COPASI that are not part of the reaction net-
work specification can not be exported to SBML.

COPASI for a large set of analysis methods and the user can modify
the settings for these methods as well as define output in the form of plot
or reports. Currently all these settings can not be exported to SBML files.
So if a user exports his model from COPASI to SBML to work in another
program and returns to COPASI with that model later, all settings and
output definitions are gone.

We are currently evaluating ways of solving this problems, e.g. by saving
the settings into annotations in the SBML model or using a separate SED-
ML[161] file to preserve the information.

There are also some features with respect to the models themselves that
are supported by COPASI, but that are not supported in SBML, or only
in certain versions of SBML. If COPASI encounters such an unsupported
feature during export to SBML, the user will be notified and the export will
be stopped.

An example of a feature that is supported COPASI, but not in SBML are

SBML SUPPORT IN COPASI 103

the random distribution functions runiform and rnormal. These functions
can be used to include (pseudo-)random numbers from uniform or normal
distributions in mathematical expressions.

Another example is the arctanh function which is supported in SBML
Level 2 and above, but not in SBML Level 1. This problem can be solved by
converting the arctanh function into an equivalent mathematical expression
which is provided by the term 1/2∗(log(1+X)− log(1−X)). In this case the
results generated with the model do not change, but the expressions formerly
using the arctanh will look different after export and the user has to be
aware of this. However there are also cases where no equivalent mathematical
expression can be found as is the case for the arccoth function. This function
is also only supported in SBML Level 2 and above and there is no simple
mathematical expression it can be substituted with when exporting to SBML
Level 1. If that function is encountered in a model, COPASI will stop the
export with an error message.

So depending on the Level and Version of SBML to be exported, COPASI
has to check a number of things to make sure that exporting the model is
actually possible and sometimes has to replace incompatible parts to make
the export possible.

Since the number of tests implemented for the different levels and versions
of SBML are quite numerous, a complete discussion of all of them is beyond
this work.

Conversion Between SBML Levels And Versions

Another problem with respect to exporting to SBML is support for converting
between SBML levels and versions.

By now, there are seven different official versions of SBML and COPASI
can read all of them and all but SBML Level 1 Version 1 can also be exported.

Sometimes it happens that a user loads a model in a certain version
of SBML, but wants to export it as another version of SBML. For certain
features of SBML this can lead to problems. E.g. if the model uses features
that are either not supported in the SBML version he/she want to export to
or if the feature is interpreted in a different way.

Most of the trivial conversions when changing SBML Levels are by now
supported by libsbml, but there are still some necessary conversions that
aren’t.

For many of these cases not covered by libsbml, COPASI contains extra
code handling these conversions prior to passing the model to libsbml for
processing. This allows the user to convert most models encountered today
into any version of SBML that is supported by COPASI. Due to this, the

104 STANDARDS IN COPASI

user can always choose the tool that best fits the problem he/she is working
on without having to worry about whether this tool supports a particular
version of SBML or not.

SBML Level 1 Export

A rather special case for the conversion problems mentioned above is the
export to SBML Level 1 Version 2. While most programs support at least
SBML Level 2, there are some older programs still in use today that only
support SBML Level 1. In order to allow users to export SBML models to
this older version of SBML, COPASI contains a lot of code that checks if the
model is compatible with SBML Level 1 as well as a lot of code to modify
the model to make it suitable for export to SBML Level 1 in case minor
incompatibilities were found.

For example SBML Level 1 does not know the symbols for π or the
euler number e, so all occurrences of those symbols within mathematical
expressions have to be converted to equivalent expressions, e.g. the euler
number e is converted to the numerically equivalent function call exp(1.0).

Likewise most of the trigonometric functions other than sin, cos and tan
are not supported in SBML Level 1 Version 2 and therefore they also have to
be converted to equivalent mathematical expressions based on other function
calls, e.g. coth(x) is replaced by ex+e(−x)

(ex−e(−x) .
Only after these conversions have been made, we can use libsbml to do

the rest of the conversion.
The main emphasis on all those conversions is to modify the model as little

as possible. If modifications are made they may not change the semantics of
the model. If an appropriate conversion can’t be found as it is for example
the case for the arccoth function, COPASI will refuse to export the model
to SBML Level 1 and issue a corresponding error message.

Testing

Even so the data structures in SBML and COPASI have a lot of similarities,
importing and exporting of SBML in COPASI is not always trivial due to
the many small differences, some of which have been described above.

To test and further improve the quality of SBML import/export in COPASI
a large number of automatic tests have been written. Some of the tests are
based on bugs found in COPASI, others have been implemented to assure
that newly implemented SBML features are working as expected.

The code for testing SBML compliance in COPASI consists of about 270
individual tests which check most aspects of SBML import and export for

SBML SUPPORT IN COPASI 105

different versions of SBML. The tests have been implemented using the C++
programming language and the CppUnit[92] unit testing framework.

Very early in the development of SBML, Andrew Finney recognized the
need to be able to test SBML compliance of different software tools. For
this purpose he developed a set of roughly 150 SBML Level 2 test files that
covered much of the functionality of SBML. The emphasis of these tests
was on testing SBML compliance with respect to deterministic time course
simulations, so in addition to the test files, the test suite contained data files
representing time course simulation results for the individual test models.
Since the result files had been created with an early implementation of a
tool called MathSBML[162], these result files initially contained some errors
and when I started to use the test suite with COPASI, several of the tests
failed because COPASI did not produce the results expected by the test suite.
Some of these failures could be traced back to errors in the SBML support of
COPASI, but others could not be explained even after detailed analysis. We
reported this back to the developers of the test suite and together we found
that the corresponding result files created by MathSBML were incorrect. So
while testing support for SBML in our own tool using this test suite, we
did find errors in our implementation as well as errors in the tests suite. So
on the one hand, we benefited from these tests by finding the errors in our
implementation and by providing feedback to the author of the test suite,
we can take credit for many of the fixes in the test suite as well as in other
implementations of the SBML standard as e.g. MathSBML. This process
finally lead to a correct and very useful set of tests that has been used in
COPASI for a long time to ascertain the correctness of SBML import and
export.

This test suite was not only beneficial to developers, it also allowed the
users of different simulation tools to test these tools and choose the one that
provided the best value, i.e. the highest SBML compliance.

The 150 tests of Andrew Finney test suite very well reflected the capa-
bilities and features of early version of SBML and of the tools implementing
support for SBML. As SBML kept developing more and more features were
added and new versions were released, unfortunately the test suite could
not keep up with this development. This was especially troublesome since
the increase in complexity of the SBML standards made testing for SBML
compliance during tool development even more important.

This lack of proper ways for testing SBML compliance lead to the devel-
opment of a new test suite and in April of 2008 a successor for the SBML
semantic test suite was presented[163]. The new test suite had the same goal

106 STANDARDS IN COPASI

as the old test suite, but it provided a more systematic set of test cases, a
graphical user interface written in Java as well as filtering mechanisms that
allow the user to specify what features of SBML should be included in a test
run.

Just as for the semantic test suite before, developers who wanted to use
the test suite had to provide a wrapper program that was called by the test
suite program to simulate the test models and create the required output.
The results provided by this wrapper program were then compared to stan-
dard results provided by the test suite.

In the beginning this test suite also contained some errors which were
soon eliminated, again partially due to feedback from us. Today, the number
of tests available in the test suite has reached almost 1000[164] and most
of these tests are available for a number of different versions of SBML. The
SBML versions supported by the test suite currently include SBML Level 1
Version 2 and all versions of SBML Level 2.

The SBML test suite was released at around the same time as COPASI
version 4.5.30. Figure 4.2 shows results from this early version of COPASI
(left) and results for the same tests from version 4.6.32 of COPASI.

Figure 4.2: Results for the SBML test suite for COPASI 4.5.30 (left) and
COPASI 4.6.32 (right). While version 4.5.30 had issues with several of the
tests (red blocks), version 4.6.32 passed all the tests possible with the feature
set implemented. (Test for algebraic rules and "fast" reactions were excluded
from the test runs.)

Even so, the graphical user interface never made it out of the beta stage,
the test cases themselves are actively developed, updated and extended and
the occasional errors are soon caught by the SBML community.

The graphical user interface has been abandoned in favor of a web based
solution[165] where the user specifies a set of features and the version of
SBML he/she would like to test. A web server then provides the user with

SBML SUPPORT IN COPASI 107

an archive file that contains the test files, instructions on how the individual
test models have to be simulated and what output is expected from the
individual tests. Once the user has simulated all test models according to
the information specified, the result files are uploaded to the web server for
evaluation. The result of this analysis is then displayed in the browser as
depicted in figure 4.3.

Figure 4.3: Analysis result of running the SBML online test suite with
COPASI Build 34 against SBML Level 2 Version 4 files. The result shows
that out of the available 927 tests, 840 tests were run and of those 840 tests
all passed (green boxes). The remaining 87 tests (gray boxes) that were ex-
cluded contain algebraic rules and/or fast reaction which are currently not
supported by COPASI.

Due to its much larger scope, testing SBML compliance in COPASI is
now done with the new test suite. The test suite enables us to check SBML
support for many different SBML versions on a regular basis, ensuring the
continued quality of SBML import and export on the one hand and correct
behavior of the simulation engines on the other. Being part of the SBML
community, we also provide the developers of the SBML test suite with feed-
back by reporting errors in the test files.

Another set of tests that is used to compare the status of SBML support in

108 STANDARDS IN COPASI

different simulation tools has been developed by Frank Bergmann[166, 167].
His test compares how different simulation programs simulate a set of SBML
models from the BioModels database[168]. Developers of tools who want to
participate in the testing process have to simulate all curated models from a
certain release of BioModels according to instructions stated on the web page
for this test. The results of these simulations are then graphically compared
to simulation results from other programs.

This test has several benefits. First of all, authors of programs can com-
pare the performance of their tools with respect to SBML compliance with
the performance of other tools. If the test shows that there are differences in
simulation results between different programs, this finding can be analyzed
and discussed with the authors of the other tools. This way all tool devel-
opers benefit from the resulting discussions allowing them to improve their
software.

The test can also provide some insights as to how well SBML or certain
features of SBML are supported by different tools. Figure 4.4 shows how
many of the simulation runs from the different simulators provided a valid
result. This figure can be taken as a hint of how well SBML models and the
different features used in the 150 models used in the test are supported by
the different simulation tools. The diagram however does not provide any
insights as to whether the results provided by the different simulation tools
are in agreement or correct.

Based on this idea, this test is used as a sort of a realistic stress test to see
how well COPASI can handle SBML models. The test cases we use for this
test are regularly updated whenever a new version of BioModels is released.
Importing, exporting and simulating almost 600 models provides a very good
real world test of how well SBML models are handled within COPASI.

The semantic test suite by Andrew Finney and its successor the SBML
Test Suite as well as the test by Frank Bergmann are all used to test SBML
compliance of simulation tools with respect to deterministic simulation.

While most models stored as SBML documents are meant to be simulated
deterministically, models in SBML documents can in principle also be used
for stochastic simulation provided that some constraints apply.

In order to test compliance of stochastic simulation programs, Daren
Wilkinson has created a test suite[169] that consists of a number of SBML
documents describing stochastic models together with instructions on how to
simulate them as well as the expected simulation results. In order to run the
tests, the user has to provide a wrapper program that simulates the mod-
els and creates simulation results as provided by the instructions in the test
suite.

SBML SUPPORT IN COPASI 109

Figure 4.4: One of the result diagrams of Frank Bergmanns simulation tool
comparison. Results for COPASI version 4.4.26 is displayed in the second
to last row. As can be seen, COPASI is able to provide results for almost
all of the 150 model files used in the comparison (source: http://www.sys-
bio.org/sbwWiki/compare).

Since the stochastic test suite does not provide any means of analyzing
the results of running the tests, I had to write these tools myself.

COPASI contains several stochastic simulation engines and we use the
stochastic test suite on a regular basis to make sure that the stochastic sim-
ulation engines work as expected. For this we wrote a wrapper program
that can simulate the test models of the stochastic test suite according to
the instructions provided and we have some scripts written in Python script-
ing language that do the analysis of the results. COPASI provides several
stochastic simulation methods and therefore the wrapper has been written
in a way that lets the user specify the desired method when the program is
executed. This way the stochastic test suite can be run automatically for all
stochastic simulation methods with a single program and a small script.

Standard compliance and quality, especially with respect to SBML is very
important in COPASI. For that reason a lot of effort has been spent to assure
this compliance and quality. A large number of tests, either written by us or
provided by others in the SBML community assure that we can keep these
high standards and sometimes even improve on them.

110 STANDARDS IN COPASI

dsmts-001-01 passed
dsmts-001-02 passed
ERROR at ./dsmts-24/dsmts-001-03-sd.RESULT (40, 1): Var: 45.685402, RefVar: 41.647533, Tol: 2.944925.
ERROR at ./dsmts-24/dsmts-001-03-sd.RESULT (41, 1): Var: 41.970626, RefVar: 37.758321, Tol: 2.669917.
ERROR at ./dsmts-24/dsmts-001-03-sd.RESULT (42, 1): Var: 36.966971, RefVar: 34.225893, Tol: 2.420136.
ERROR at ./dsmts-24/dsmts-001-03-sd.RESULT (43, 1): Var: 33.288396, RefVar: 31.018439, Tol: 2.193335.
ERROR at ./dsmts-24/dsmts-001-03-sd.RESULT (44, 1): Var: 30.190950, RefVar: 28.107387, Tol: 1.987492.
dsmts-001-03 failed
dsmts-001-04 passed
dsmts-001-05 passed
...

Figure 4.5: Excerpt of the output from a sample run of the stochastic test
suite with COPASI 4.6.32. Each model of the test suite has been simulated
10000 times using the "direct method" as the stochastic simulation method.
Of the first five test runs, 4 tests passed and one test failed with data points
being outside the allowed tolerance. Since this is a stochastic process, there
is always a certain probability that one or the other test fails. Usually we
run the test suite several times and to check if COPASI fails one or more of
these tests consistently.

MIRIAM Support

While SBML surely is the largest and most important standard COPASI
supports, it is not the only one. Another standard that is implemented in
COPASI is the Minimum Information Required in the Annotation of Models
(MIRIAM) standard[170, 171]. MIRIAM is less of a format, but rather a
set of rules that describe what additional information should be present in a
model document.

The information favored by the MIRIAM standard include for example
the author of the model, references to publications concerning the model, or
references to biological databases for model entities etc. This information
can sometimes be essential for the proper understanding of a model.

In order to be accepted to the BioModels database, a model file has to
adhere to the MIRIAM standard.

COPASIs graphical user interface provides the user with the means to
annotate models according to the MIRIAM guidelines. MIRIAM annotation
information present in model files loaded by COPASI are displayed in the
GUI and can be edited and complemented by the user (see figure 4.6).

COPASI as well as SBML stores MIRIAM annotations in the XML based
Resource Description Framework (RDF)[110] format. However just as with
the actual model data, there are differences in the details of how the MIRIAM
information is stored.

Currently the MIRIAM information that can be stored as described by

SBML SUPPORT IN COPASI 111

Figure 4.6: Screen shot of MIRIAM annotation for a model from the Bio-
Models database displayed in the graphical user interface of COPASI.

the SBML specification is more constrained than what can be stored in a
COPASI file. So if MIRIAM annotation that has been created in COPASI
is exported to SBML, we have to make sure that the restrictions as specified
in the SBML specification are followed. This on the other hand means that
annotation provided by the user would be lost when the model is exported
to SBML.

In order to preserve this information, the MIRIAM information is stored
twice in the SBML file. Once in the way specified by the SBML specification
and once as an annotation with the complete information as it would be
stored in a COPASI file. The mechanism of these so called annotations to
SBML has already been described in the section on the SBML layout and
render extension where it is used to store layout and style information in
SBML documents (see chapter 3.4).

Saving the MIRIAM information in this way allows other programs that
only understand MIRIAM annotation as described in the SBML specification
to read that part of the information, while COPASI can read back the full
information when the model is reimported into COPASI.

A bit of a drawback is the fact that other programs sometimes change
the SBML specific annotation while the COPASI specific annotation remains
unchanged, creating annotations that are out of sync. This conflict is par-
tially resolved by always reading the annotations in the COPASI format first.

112 STANDARDS IN COPASI

This way the SBML annotation that might have been changed by another
program overwrites any obsolete entries.

4.2 Layout And Render Information In COPASI

In the section on the SBML layout and render extension (see chapters 3.4
& 3.6), the concept and elements that are involved in storing layout and
render information in SBML files have already been described. It was also
mentioned that one of the design principles of the layout and render extension
was to keep the format as independent of the underlying model format as
possible.

Having the layout and render information independent of the model for-
mat made it possible to store layout and render information in COPASI files
in almost exactly the same way as in SBML files.

There are some very small differences, e.g. in SBML models, elements
are referenced by the value of their id attribute while in COPASI elements
are referenced by a so called key. So if elements from a COPASI model are
referenced from a layout in the COPASI file, the reference is to the elements
key. Likewise elements in the layout and render information that need to be
uniquely identifiable have a key attribute in COPASI files instead of an id
attribute.

Also the element names in COPASI files follow a different schema with
respect to uppercase and lowercase letters and the names of the layout and
render information element tags have been adjusted to respect this schema.

Last but not least, layout and render information in COPASI does not
reside in an annotation, but it is part of the model file structure, similar to
how it is intended for SBML Level 3.

Using the same principles to store layout and render information in both
SBML and COPASI files has several advantages. First of all, it was possible
to take the classes that had already been implemented for libsbml and reuse
most of the code in COPASI. Because of this, the data structures for storing
layout and render information in SBML and COPASI are virtually identical
which simplifies importing and exporting layout and render information from
and to SBML documents. The initial data structures for layout elements have
been implemented in COPASI by Sven Sahle while I implemented the classes
for the render information (see figure 4.8).

Rendering the layout and style elements also profited from having similar
data structures in COPASI and SBML. Since I had already implemented
a library for rendering layout and render information from SBML files (see
3.6), I was able to use that library to display layout and render information

LAYOUT AND RENDER INFORMATION IN COPASI 113

<COPASI>
<ListOfFunctions>

...
</ListOfFunctions>
<Model>
...

</Model>
<ListOfTasks>
...

</ListOfTasks>
<ListOfPlot>

...
</ListOfPlots>
<ListOfReports>

...
</ListOfReports>
<ListOfLayouts>

<Layout>
...

</Layout>
...

</ListOfLayouts>
</COPASI>

Figure 4.7: Example of layout information stored in a COPASI ML file. The
layout information (dark section) follows the list of plots and reports towards
the end of the file.

Figure 4.8: Inheritance diagram for the render classes as implemented in
COPASI.

114 STANDARDS IN COPASI

within COPASI with only minor modifications.

Figure 4.9: Example rendering of layout information in COPASI 4.5.31.

A complete test suite for the SBML layout and render extension already
existed as described in the corresponding part on the SBML layout and
render extension (see chapter 3.6), so I was able use these tests to check the
implementation of SBML layout and render information import and export
to and from COPASI. To use this test suite, all tests written for the SBML
implementation were imported in COPASI, thereby testing the import code
for the layout and render information. Afterwards the layout and render
information was written to a COPASI file. In the last step the layout and
render information was read back from the COPASI file and displayed. To
see whether the conversion as well as the rendering worked as expected, the
displayed images were compared to the corresponding images as displayed
by the implementation for SBML files.

In a further step the generated COPASI files were converted back to
SBML files and the layout and render information was again rendered with
one of the SBML based implementations, thereby testing the layout and
render information export from COPASI files.

This way we could test all aspects of reading writing, rendering as well
as the conversion to and from SBML with this set of tests.

Having an implementation of layout and render information in COPASI
allows users to convert their SBML models including layout and render infor-
mation to COPASI and back without loosing any information in the process.

Besides providing a graphical overview over the reaction network, being
able to store and exchange this type of graphical information has additional
benefits for users as well as developers of systems biology programs because

GRAPHICAL DISPLAY OF TIME COURSE SIMULATION DATA 115

the diagrams can often be used to display results of simulations or other types
of analysis. An example of how this is done in COPASI will be provided in
the following section.

4.3 Graphical Display Of Time Course Simula-
tion Data

An example where COPASI uses layout information to display analysis data
is the graphical display of simulation results as an animation. The concept
is based on a tool called SimWiz which has been developed by Dr. Ursula
Rost[172]. The original SimWiz was a standalone Java based program that
allowed users to load SBML models and simulation results and display the
simulation results as an animation. During this animation the size or the
color of a node in the reaction network diagram changes over time according
to the concentration data of the corresponding model species from a time
course simulation.

Eventually, development of SimWiz as a separate program has been aban-
doned in favor of an implementation in COPASI. The first implementation in
COPASI was done by Dr. Ursula Rost and was released with version 4.4.28
of COPASI in December of 2008. Since then, the original code has been
almost completely replaced by a new implementation which is more stable,
reliable, faster and uses less compute resources. The main advantage of this
is that the implementation can now also be used on older hardware that is
not as powerful.

While the main functionality of this visualization tool has been mostly
unchanged over the years, the implementation in COPASI provides several
advantages. For one, the tool can use layout from SBML files as well as layout
from COPASI files and will directly profit from any new feature with respect
to layout support in COPASI as for example the CellDesigner conversion tool
described in chapter 4.6. Another advantage is that the tool has direct access
to the time course simulation data calculated in COPASI and can visualize
it without having to load the data from some external file first.

There is a number of settings that the user can make, for example whether
the concentration is represented by the size of the nodes or by the color (see
figure 4.10). The user can also choose how the concentration data is scaled
for display. The data can either be scaled for each node individually, or
globally for all nodes. This means that the size or color range of a certain
node is either scaled between the minimal and maximal concentrations of
the species that corresponds to a certain node or between the minimal and

116 STANDARDS IN COPASI

maximal concentrations of all metabolites in the model.

Figure 4.10: Rendering of a single frame of the time course animation (Left:
size mode, Right: color mode).

The animation for the simulation data is controlled similar to a CD player.
Clicking on the run button starts the animation. For each time point in the
simulation data, the GUI displays a new frame. The user can stop and
pause the animation as well as single step forward and backward through
the animation. The slider at the bottom represents the time range of the
simulation and it can be used to jump to an arbitrary time point of the
simulation.

With the current functionality the tool is already very useful for displaying
time course simulation data in an intuitive way. Ways to extend this feature
to make it even more useful are currently being worked on.

4.4 Graphical Display Of Elementary Modes
Another very useful way of using the layout information to display analysis
results in COPASI is for the display of elementary flux modes[173].

COPASI has the possibility to calculate the elementary flux modes of a
reaction network, but until now the calculated elementary flux modes were
displayed as a list of reaction names, which is not very intuitive and which
does not provide the user with an overview of the elementary modes in the
context of the complete reaction network.

Using existing layout information for the reaction network, the reactions
belonging to a certain elementary mode can be displayed by highlighting the
graphical representation of the reactions within the diagram (see figure 4.11).
This allows displaying the elementary mode in the context of the complete
reaction network.

COPASI LANGUAGE BINDINGS 117

This is a very recent feature, but it has been tested extensively and it will
be released with one of the next versions of COPASI.

Figure 4.11: Display of reaction network in COPASI with one elementary
mode highlighted (blue).

4.5 COPASI Language Bindings

This project started as a collaboration between the developers of CellDesigner[31]
and COPASI.

CellDesigner is a software tool that focuses on the creation of reaction net-
work models by graphically composing the reactions. For doing time course
simulations or other types of analysis on the resulting models CellDesigner
relies on third party tools.

In the beginning CellDesigner allowed simulation via a tool called SBML
ODE Solver[174] which was embedded within the CellDesigner software. In
2008 a collaboration with the developers of CellDesigner was initiated to
extend CellDesigner with the option of simulating models using the methods
provided by COPASI.

In order to achieve this goal, several problems had to be solved. For
one, COPASI was never intended to be used by other programs, but it was
designed as a standalone program. In order to be usable from other programs,
it had to be converted to a software library. Since many sub-components of
COPASI had already been set up to be build as separate libraries, it was only

118 STANDARDS IN COPASI

a matter of changing the build system to combine these individual libraries
into one large library.

The bigger problem that we had to solve was that the COPASI software
was written in the C++ programming language and CellDesigner was written
using the Java programming language and functionality from one of those
languages can not easily be used from the other. To solve this problem,
we had to write an interface between the COPASIs C++ code and the Java
programming language. Such interfaces between Java and C/C++ code are
usually written using the Java Native Interface (JNI) API which is provided
by every Java implementation. The JNI API makes parts of the Java virtual
machine and the Java API accessible from low level languages like C and C++.
This makes it possible for code written with the two programing languages to
communicate. In order for this interaction to work, developers have to write
code that translate C++ methods and data structures to the corresponding
Java methods and data structures and vice versa. Such interface code can
either be written manually, or created in an automatic or semi-automatic way
with the help of specific software tools. These software tools are able to create
the JNI interface code from C/C++ method and data structure declarations
without much work from the side of the developer.

One program that can create interface code from C/C++ declarations is
called Simplified Wrapper and Interface Generator (SWIG). SWIG takes a
number of so called C/C++ header files which contain the declaration for the
methods and data types to be called from Java and creates the JNI interface
code for these methods.

While SWIG can create most of the interface code automatically if pro-
vided with the corresponding C/C++ declarations, some extra information
usually needs to be provided to SWIG for the resulting interface code to
work correctly. This extra information is provided in the form of SWIG in-
terface files and contains information about which elements in the declaration
files are to be made accessible to the target language (e.g. Java) and how
certain data structures are to be interpreted and converted to ensure that
they are understood by the JavaVM.

An additional advantage of using SWIG instead of manually writing the
interface code is that SWIG is not limited to creating interface code for Java,
but it can create interface code for a large number of high level languages
(see table 2.1).

Since each of the target languages supported by SWIG is different, some
extra code has to be written to support additional languages, but most of
the extra information in the SWIG interface files can be applied to all target
languages. This means that with some extra effort, interfaces to COPASIs
functionality for a large number of languages can be generated allowing soft-

COPASI LANGUAGE BINDINGS 119

ware projects written in any of these languages to profit from the many
sophisticated simulation and analysis methods implemented in COPASI.

In theory any of the languages from table 2.1 could be supported, but in
practice, we are limited to those languages we know how to program in. Due
to this, currently only Java and Python language bindings in addition to the
C++ interface to COPASI are available.

The first version of the language bindings for Java and Python have been
officially released in June of 2008 and since then new versions have been
released with every stable version of COPASI.

The language bindings are released as source code as well as in binary
form for Java and Python. The releases cover all platforms that are supported
by COPASI. A list of languages and platforms supported by the language
bindings has been collected in table 4.2.

operating system Java Python

Windows XP, Vista, 7 32 Bit Python 2.6, 32 Bit

Linux 32Bit Python 2.6, 32 Bit

Mac OS X 10.4 32 Bit Python 2.3, 32 Bit,
PowerPC & Intel

Mac OS X 10.5 32 Bit Python 2.5, 32 Bit,
PowerPC & Intel

Mac OS X 10.6 32 Bit & 64 Bit Python 2.6, 32 Bit & 64 Bit,
PowerPC & Intel

Table 4.2: Operating systems and programming languages supported by the
COPASI language bindings.

Future version of COPASI will also support 64 bit versions of Linux, Mac
OS X as well as Windows, significantly enlarging the number of language
bindings version that have to be build.

Exposing COPASIs simulation and analysis methods to Java via SWIG
was only part of the work necessary to being able to simulate models in
CellDesigner. Another essential part was to write a user interface in Java
that let the user set certain parameters for the simulation, e.g. the end time
of the simulation, or the number of steps to be calculated by the simulation.

These graphical user interface classes as well as the interface classes cre-
ated with SWIG are used in current versions of CellDesigner to allow users
to simulate models with COPASI from within CellDesigner. The graphical
user interface files are also part of the Java language bindings distribution
files and can be used by other Java programs as well.

120 STANDARDS IN COPASI

This project started out as a collaboration between us and the developers
of CellDesigner, to bring COPASIs functionality to CellDesigner, but has
quickly grown beyond this initial goal. As can be seen by the user support
forum on the COPASI web server, other software and research projects are
using the COPASI language bindings[175, 176].

Since COPASI was not intended to be used in this way in the begin-
ning, documentation for COPASI has been limited to the user interface and
the methods used in COPASIs backend. In order for other developers to
be able to use COPASIs functionality, documentation on COPASIs internal
structures and data types is needed.

As COPASI has grown to be a large project, creating a complete docu-
mentation of all data structures and methods would take a lot of work. In
addition to that, the API is still growing and changing with every release.
Although full documentation is out of scope for now, documentation on the
core classes, concepts and methods as well as examples of how certain tasks
can be implemented using the different programming languages are provided.
The documentation consists of roughly 70 pages for each of the programming
languages and is supposed to give the interested developer an overview over
the core functionality of COPASI and how it can be used from other lan-
guages. The documentation can be downloaded in PDF format from the
COPASI website[156]. The ten examples that are currently shipped with the
language bindings demonstrate how to import and export SBML models,
run time course simulations, create models or how to run parameter scans,
optimizations and parameter estimations. Each of the examples is available
in a version for C++, Java and Python.

4.6 NF-κB Modeling with COPASI

Because of it’s ability to create topological reaction network models graphi-
cally, CellDesigner has been used to create the initial version of the NF-κB
model, as described in chapter3.8.

CellDesigner focuses on model creation and has very limited analysis and
simulation capabilities. Most of these additional capabilities are provided
by other software tools, e.g. parts of the simulation capabilities found in
CellDesigner have been implemented using the COPASI language bindings
described above.

Due to this lack of analysis and simulation methods, other tools have to
be used for these tasks and one of the tools that provides a large number of
such methods is COPASI.

Due to the implementation of the SBML standard in COPASI it is no

NF-κB MODELING WITH COPASI 121

problem to transfer the model from the CellDesigner software, that uses
SBML as its native file format, to COPASI. With the help of the additional
converter described in 3.8 it is now also possible to transfer the diagram
information from CellDesigner to SBML and to subsequently import that
SBML model into COPASI.

So far only an early topological model has been created. In order to
eventually come up with a model that can reproduce the experimental data
measured by the group of Dr. Breuhahn, this model needs to be extended
with rate laws for the individual reactions as well as with initial values for
the individual components participating in these reactions.

For this, the model elements (compartments, species and reactions) are
first annotated according to the MIRIAM standard[170]. MIRIAM annota-
tions associate biological meaning to the individual elements of the model.
They can for example be used to identify identical or homologue entities in
other models or in biological databases for automated data mining.

These annotations have to be added manually, but COPASI provides an
intuitive user interface for this task. Since MIRIAM annotations are fully
supported by SBML as well as by the COPASI file format (see chapter 4.1),
the information is preserved no matter which file format is chosen as the
storage format and it enables the use of this information in other programs
that support SBML.

These annotations we added on the one hand provide biological meaning
to the model elements and on the other hand they can be used to do some
(semi-)automatic data mining using some of the available biological databases
(see 5.6).

Another type of analysis that can be useful at this stage of the model
creation process is the elementary flux mode analysis[173, 177]. The elemen-
tary flux mode analysis tries to find connected reaction sub-networks that
can form steady states if examined separately. A steady state is a state of
the model where the concentrations of the individual reaction components
no longer change. This means that for each reactant of the network, the
consumption and the production have to cancel each other out. A trivial
example would be if the reaction rates of all the reactions in a reaction net-
work are zero. Since this is true for any network it is not considered by the
elementary flux mode analysis. The elementary flux mode analysis only con-
siders those steady states where the fluxes through the reactions are different
from zero.

If for a certain element or reaction of the network no elementary mode can
be found by the elementary flux mode analysis, this can have two reasons:

122 STANDARDS IN COPASI

a) The concentration of that element always changes (more substance is
continuously produced than consumed or vice versa). This is unphys-
iological because there are no unlimited amounts to substances within
organisms.

b) The trivial case occurs, which means that the reaction rate to and from
that element is zero. Reaction rates of zero are equivalent to a dead
organism, so this is also not what one usually wants.

So what one usually expects from a model is to find elementary flux modes
that cover all the reactions and reaction elements.

Running an elementary mode analysis on the current model provides us
with only a single elementary mode which consists of just two reactions. The
results of the elementary flux mode analysis are depicted in figure 4.12. From
the graphical display of the results where the elementary mode is highlighted
in red, it is very obvious that the elementary mode consists of the pair of
reactions that phosphorylates and dephosphorylates NF-κB.

This result can also be visualized using the layout information from Cell-
Designer. In figure 4.12 the elementary mode is highlighted in red. It consists
of the reactions from unphosphorylated NF-κB to phosphorylated NF-κB and
the corresponding reverse reaction.

Most of the elements in the current model are not part of any elementary
mode. This means that for these elements no stable steady state can be
reached and that maybe essential parts are still missing from the model.

Provided that the desired end result would be to have a model that can
not only describe a single signaling event, but also repeated events and/or
the systems behavior without any events at all, model needs to be able to
reach a steady state. That means that the model has to be modified until
this is the case.

Looking at the diagram a first guess as to why most elements can not
form a stable steady state can be made. Most elements in the model are part
of a linear chain of irreversible reactions which means that all of the initial
reactant of such a chain will eventually be converted to the final element in
the chain. Once all substrates have been converted to the final products no
more reaction events will occur. This can be fixed by making sure that there
is always substrate that can react and that products can’t accumulate.

This can for example be achieved by providing influx reactions that deliver
substrates into the system as well as eflux or degradation reactions that
consume the products that would otherwise accumulate.

For this the model is transfered to CellDesigner again and the missing re-
actions are added. We could also do this in COPASI, but since COPASI does

NF-κB MODELING WITH COPASI 123

Figure 4.12: Textual (top) and graphical (bottom) result of the elementary
flux mode analysis of the initial NF-κB signaling model. Only a single ele-
mentary mode was found which has been highlighted in red in the diagram.
The flux mode consists of just two reactions.

124 STANDARDS IN COPASI

not provide any means yet to also create the corresponding visual elements,
CellDesigner is the preferred tool for this task.

Figure 4.13 shows the extended model after degradation reactions have
been added for the phosphorylated IKKb, phosphorylated IKKa as well as
A20. In addition to these degradation reactions, the substrates representing
unphosphorylated IKKb, unphosphorylated IKKa as well as unphosphory-
lated NF-κB have been set to constant. This means that their concentration
will not change during a time course calculation. This is equivalent to adding
influx reactions that transport these substances into the system.

Figure 4.13: Extended NF-κB model displayed after re-import into COPASI.
Three new degradation reactions have been added graphically using Cell-
Designer.

Rerunning the elementary flux mode analysis now, shows (see figure 4.14)
that more elementary modes have been found and by highlighting all elemen-
tary modes in the graphical display, it becomes clear that these elementary
flux modes cover all reactions of the model. This is something that is not
immediately obvious from looking at the textual result which is also provided
in figure 4.14. Here being able to display the results graphically provides a
clear advantage for the users.

NF-κB MODELING WITH COPASI 125

Figure 4.14: Textual (top) and graphical (bottom) result of the elementary
flux mode analysis of the extended NF-κB signaling model. This time four
elementary modes have been found covering all of the reactions and elements
in the model. In the diagram all flux modes have been highlighted in red.

126 STANDARDS IN COPASI

Now we at least have a model that can potentially describe the systems
behavior over a certain time. The tedious work that follows now is to go
through the biological databases in order to find suitable initial values for
the individual species and suitable rate laws for the different reactions. How
this work can be simplified to a certain extend by using a combination of
the language bindings described in chapter 4.5, the MIRIAM annotations
that were added to the model as well as a framework for the comparison of
mathematical expressions (see chapter 5) will be explained in chapter 5.6.

After finding out (see chapter 5.6) that most models from the BioModels
database use mass action type kinetics for protein phosphorylation reactions
this kinetic rate law is also used in the NF-κB model. To test if the model
really can run into a steady state if it is simulated, estimated inital values
have been added and a time course was calculated in COPASI. The time
course data for some of the species in the model as it is displayed using
COPASIs plotting facility is depicted in figure 4.15. And from the plot is
really does seem as if the model eventually runs into a stable steady state
just as predicted by the elementary flux mode analysis.

Figure 4.15: Screen shot of a time course data plot for the NF-κB model in
COPASI.

Using the visualization work described in chapter 4.3, the time course
data can also be displayed as an animation in the context of the diagram.

NF-κB MODELING WITH COPASI 127

Since it is not possible to show an animation here, several frames from the
complete animation at certain time points have been saved and are displayed
in figure 4.16.

Figure 4.16: Exported animation frames for a time series of the NF-κBmodel.
The frames display the state of the model at 0, 1, 4, 8, 15 and 25 time units.
Variable species are drawn as red spheres and the size of the spheres reflects
the concentration of the associated species.

This is ongoing work and we hope that we can use the feedback from our
collaboration partners as well as the experiences we make in this project to
further improve on the existing methods as well as find new ways of using
the graphical display of the reaction network for the visualization of analysis
results.

128 STANDARDS IN COPASI

4.7 Work Contributions
COPASI is a large project with several groups participating in its develop-
ment. While most of the work described in this section has been done by my-
self, there have been significant contributions by colleagues from within the
COPASI project as well as from collaboration partners outside the COPASI
project. To highlight contributions to this work by others, the individual
sub-projects together with my contribution and work contributed by others
have been summarized below:

SBML import/export in COPASI: All the implementation work has been
done by myself. This includes import and export of the core SBML
specifications as well as import and export of the MIRIAM annota-
tions.

Dr. Sven Sahle provided feedback and fruitful discussions. Dr. Stefan
Hoops wrote most of the code necessary to read and write MIRIAM
information to COPASI files.

SBML layout extension import/export: I did much of the testing and
some bug fixes.

Most of the code was written by Dr. Sven Sahle.

SBML render extension import/export: The complete implementation
was written by myself.

Dr. Sven Sahle helped in testing the implementation.

display of layout and render information: The complete implementa-
tion was written by myself.

Dr. Sven Sahle helped in testing the implementation.

display of simulation results: I rewrote most of the code and added func-
tionality that was not present in the initial implementation.

Dr. Ursula Rost wrote the initial implementation.

display of elementary modes: The implementation was done by myself.

Dr. Sven Sahle helped in testing.

automatic layout creation: I wrote the code providing input for the lay-
out algorithm and part of the graphical user interface for this feature.
I also helped in testing the layout algorithm.

Dr. Sven Sahle wrote the force directed layout algorithm.

WORK CONTRIBUTIONS 129

COPASI language bindings: The complete implementation was done by
myself including documentation and examples.

Dr. Akira Funahashi and Dr. Akiya Jouraku help in testing the code
in CellDesigner.

Chapter 5

Comparing And Identifying
Mathematical Expressions

Since systems biology deals with mathematical descriptions of biochemical
reactions networks, computer programs in this field often have to deal with
mathematical expressions which for example describe the kinetic laws of the
individual reactions. In order to be as flexible as possible, model description
frameworks like SBML allow user to specify arbitrary mathematical expres-
sion.

There are several use cases where it would be advantageous if a program
could identify the individual mathematical expressions in a model, e.g. to
determine if a certain expression represents a certain type of reaction kinetics,
like e.g. Michaelis-Menten kinetics.

COPASI for example can do deterministic as well as stochastic time course
simulations, but stochastic simulations are only possible if the reaction ki-
netics of the reaction network consists of only irreversible reaction kinetics,
or if the reversible reaction kinetics can be transcribed to irreversible kinetic
terms. In COPASI the conversion from a reversible to irreversible kinetic re-
action can be done automatically, but only if the kinetic law of the reversible
reaction can be identified to be one of the reversible rate laws for which such
a conversion has been implemented.

Another feature that could profit from being able to identify or compare
expressions is model merging. Sometimes modelers would like to combine
several individual models to create a larger model including all aspects of
the original models. To achieve this, it is important to be able to identify
elements in the individual models that overlap and especially if the models are
large, it would be beneficial if this identification could be done automatically.
For this, the program would need to be able to determine if e.g. a rule in one
model is identical to another rule in a second model. If they are identical

130

NORMAL FORM CLASSES 131

the rule can just be copied to the merged model while in the other case, the
user has to be prompted for a decision as to which rule should be used in the
merged model.

In order to be able to compare and identify arbitrary mathematical ex-
pressions, a software framework has been created that converts mathematical
expressions to a general normal form. In many cases, identical expressions
when normalized will result in the same normal form and the software can
identify this by comparing the normal forms of these expressions.

A very simple example for this would be these two different notations
for the change in concentration of substance A by a reversible mass actions
kinetics of the reaction A+B → C +D.

d[A]

dt
= −kf ∗ [A] ∗ [B] + kr ∗ [C] ∗ [D]

d[A]

dt
= kr ∗ [C] ∗ [D]− kf ∗ [A] ∗ [B]

Although the two equations are written in a slightly different way, it is
immediately evident that the first equation can be converted to the second
equation by changing the order of the two summands.

At least for a human this is a rather trivial task, but for a computer
these two expressions are different expressions until they are converted to a
common normal form that can be compared and be identified as being equal.

This is a rather simple example, but mathematical expressions in model
files can be arbitrarily complex and the more complex these expressions are,
the more difficult it is to normalize and compare them.

5.1 Classes For The Representation Of The
Normal Form

The first step towards being able to compare and identify arbitrary mathe-
matical expressions was to define what the normalized form for any mathe-
matical expression should look like.

In discussions between Dr. Sven Sahle, Sarah Lilienthal and myself, it was
decided that all expression can be converted to a fraction of sums of prod-
ucts. Which means that the final structure after normalizing a mathematical
expression is a fraction with a numerator and a denominator which are sums.
The summands of these sums are products of different mathematical entities
(see figure 5.1).

132 EXPRESSION NORMALIZATION

f1 ∗ f2 ∗ f3 ∗ · · ·+ f4 ∗ f5 ∗ f6 ∗ · · ·+ · · ·
f7 ∗ f8 ∗ f9 ∗ · · ·+ f10 ∗ f11 ∗ f12 ∗ · · ·+ · · ·

Figure 5.1: Final structured of a normalized mathematical expression: A
fraction where the numerator and the denominator consist of a sum of prod-
ucts.

A further restriction was that the fraction may not contain other nested
fractions unless those fractions can not be converted to a common denomi-
nator.

To support the normalization of mathematical expressions data structures
for the individual parts of the normal form as well as data structures needed
for intermediate results in the normalization process have been created using
the C++ programming language.

A first implementation of these data structures and methods was done
by Sarah Lilienthal. Meanwhile this first implementation has been rewritten
in large parts and extended by myself. The overall principles and data types
however are unchanged.

In the following the individual classes used for the representation and
creation of normalized mathematical expressions will be explained in more
detail.

An overview over the classes used for the representation of the normal
form can be gained from figure 5.2.

All classes of the normal form data structures are derived from one com-
mon base class called CNormalBase. This class is an abstract class that can
not be instantiated and it provides an interface common to all derived classes.

The top level class for the final normal form is the class that represents a
fraction called CNormalFraction. A CNormalFraction consists of two sets of
ordered summands. One set represents the numerator and one set represents
the denominator (see figure 5.3). The CNormalFraction class also contains
methods for some mathematical operations as well as methods to query the
components and the status of instances of this class.

The CNormalSum class represents the individual summands in the nu-
merator and the denominator of the CNormalFraction class. In the final
normalized form, each instance of the CNormalSum class contains an or-
dered set of one or more products. Intermediate results of the normalization
process may also contain instances of CNormalSum that contain sets of one

NORMAL FORM CLASSES 133

Figure 5.2: Inheritance diagram for the classes used in calculating and rep-
resenting normal forms of mathematical expressions.

S1+S2+S3+···
S4+S5+S6+···

Figure 5.3: Mathematical expression represented by an instance of class
CNormalFraction. Sn are the individual summands of the numerator and
the denominator of the fraction.

134 EXPRESSION NORMALIZATION

or more Fractions in the form of instances of the CNormalFraction class (see
figure 5.4).

P1 ∗ P2 ∗ P3 ∗ · · · ∗
(
N1
D1
∗ N2
D2
∗ · · ·

)
Figure 5.4: Mathematical expression represented by an instance of class
CNormalSum. Pn are the individual factors of the product represented by an
instance of CNormalSum. Intermediate results in the normalization process
may contain additional fraction elements. Nn and Dn represent numerators
and denominators of these fractions.

The CNormalSum class also provides methods for some mathematical op-
erations as well as methods to change and query the current state of instances
of the class.

The CNormalProduct class is the representation of a product consisting
of a numerical factor and a set of ordered mathematical entities of type
CNormalItemPower (see figure 5.5).

N ∗ IP1 ∗ IP2 ∗ IP3 ∗ · · ·

Figure 5.5: Mathematical expression represented by an instance of class
CNormalProduct. N represents a numerical value and IPn stands for an
instance of class CNormalItemPower.

The class provides methods for some mathematical operations as well as
methods to set and query the current state of an instance.

The CNormalItemPower class is used to represent a mathematical entity
to some numerical power. This means that the class has an attribute to store
a number that represents the powers exponent as well as an attribute for the
base of the power (see figure 5.6).

Valid objects for the base of a CNormalItemPower instance can be in-
stances of CNormalItem, CNormalFunction, CNormalGeneralPower, CNormal-
Choice, CNormalCall or CNormalLogical.

This class provides mostly methods to change and query the state of
instances of the class.

The CNormalItem class represents either a variable name or the name of

NORMAL FORM CLASSES 135

XN

Figure 5.6: Mathematical expression represented by an instance of class
CNormalItemPower. N represents a numerical value and X stands for an
instance of one of the classes CNormalItem, CNormalFunction, CNormal-
GeneralPower, CNormalChoice, CNormalCall, CNormalLogical.

a mathematical constant, like the number π. The class provides methods to
query and change the current state of instances of the class.

CNormalFunction is used to represent calls to predefined functions, e.g.
the trigonometric functions sin, cos or tan. The class provides a type at-
tribute which defines which predefined function call is represented as well as
an instance of CNormalFraction which represents the single argument to the
function. Since all predefined functions represented by CNormalFunction
only expect a single argument, one fraction to represent the argument is
enough.

The set of predefined functions corresponds to the functions allowed in
SBML models and is described in the SBML specification documents[178,
179, 180, 113, 181]. The class provides methods to query and change the
current state of instances of the class.

The CNormalGeneralPower is similar to the class CNormalItemPower
and represents a mathematical power expression with a base and an exponent.
In contrast to the CNormalItemPower class, the CNormalGeneralPower uses
an instance of CNormalFraction as the base as well as for the exponent (see
figure 5.7). (

NBase
DBase

)(NExponent
DExponent

)

Figure 5.7: Mathematical expression represented by an instance of class
CNormalGeneralPower. The base and the exponent are both instances of
CNormalFraction. NBase and DBase represent the numerator and the de-
nominator of the base while NExponent and DExponent stand for the numerator
and the denominator of the exponent.

The CNormalCall class is used to represent calls to user defined functions

136 EXPRESSION NORMALIZATION

as opposed to predefined functions which are represented by the CNormal-
Function class mentioned above. Since user defined functions can have an
arbitrary number of arguments, the CNormalCall class contains a vector of
instances of CNormalFraction to represent these arguments.

So far all the classes described are used in mathematical representations of
expressions leading to numerical results. In SBML models some expressions
can be logical expressions leading to boolean result values (true or false).

The CNormalChoice class represents a choice statement that consists of
three parts. The first part is a condition expression that leads to a boolean
result, meaning either the value true or the value false. Depending on the
result of the condition, one of the other two expressions is evaluated (see
figure 5.8). {

3.0 ifX < 3.0

X ifX ≥ 3.0

Figure 5.8: Example of a mathematical expression represented by an instance
of class CNormalChoice. The value 3.0 is returned if the value of X is less
than 3.0, otherwise the value of X is returned.

This is equivalent to an

if CONDITION then
DO_SOMETHING

else
DO_SOMETHING_ELSE

statement as it is found in most programming languages.
The attribute representing the condition statement is an instance of class

CNormalLogical while the two attributes for the true and the false branch
are instances of the CNormalFraction class.

The CNormalLogical class represents a logical expression as a combination
of boolean items combined by the logical operation ∧ (and) which are again
combined by the logical operation ∨ (or).

Intermediate results during the normalization process can also contain
one or more instances of CNormalChoiceLogical.

The CNormalChoiceLogical is similar to the class CNormalChoice de-
scribed above. The main difference is that the attributes representing the

EXPRESSION TREE CLASSES 137

(B1 ∨B2 ∨B3 ∨ · · ·) ∧ (B4 ∨B5 ∨B6 ∨ · · ·) ∧ (B7 ∨B8 ∨B9 ∨ · · ·) ∧ · · ·

Figure 5.9: Mathematical expression represented by an instance of class
CNormalLogical. Bn are the individual boolean elements or elements evalu-
ating to boolean values that are combined in the expression.

true and false branch of the choice are instances of CNormalLogical. So
the result of evaluating this expression is a boolean value while the result of
evaluating an expression represented by an instance of CNormalChoice leads
to a numerical result.{

true if X = false

false if X 6= false

Figure 5.10: Example of a mathematical expression represented by an in-
stance of class CNormalChoiceLogical. The value true is returned if the
value of X is false, otherwise the value false is returned.

The CNormalLogicalItem is used to represent boolean values of type true
or false as well as comparison expression like > or =. If the class is used
to represent a comparison expression, the two operands for the comparison
are represented by instances of type CNormalFraction. If the class is used to
represent the boolean values true or false, these two attributes are unset.

The class CNormalLcm is not directly used to represent parts of mathe-
matical expressions. It is used in the multiplication of fractions to determine
and store the "least common multiple" of the denominators of two fractions.

5.2 Classes For The Representation Of
Expressions In COPASI

The classes and methods described above are used to represent the nor-
mal form or intermediate forms that are created during the normalization of
mathematical expressions. The actual data structures used in COPASI to
represent mathematical expressions are made up of a different set of classes
and during the normalization process the mathematical expression is con-
verted several times between these two data structures. Also mathematical

138 EXPRESSION NORMALIZATION

expression from SBML models are first converted to the tree based mathe-
matical data structures described below before they are normalized.

Elements in mathematical expressions in COPASI are stored in so called
nodes which are arranged in a tree like structure where each node can have
children and those children again can have other children. Since nodes can
have several children, but only one parent, this automatically leads to a tree
with a single so called root node at one end and one ore more leave nodes
(nodes without children) on the other ends (see figure 5.12). Whether a node
can hold children or not is determined by the type of the node. The different
node types present in COPASI are described below:

The base class for all nodes in such an expression tree is the class CEvaluation-
Node. CEvaluationNode is derived from the class CCopasiNode. This class
defines a data structure which can store zero or more children and can have
a link to a single parent. In addition to that, each node can store some data
value.

Figure 5.11: Inheritance tree for the expression tree node classes in COPASI.
Since theoretically each class can use all other classes, usage information
has not been included in the diagram. Classes not used in the expression
normalization are marked in gray.

Methods implemented in CCopasiNode are mostly limited to changing the
state and the content of individual instances as well as for the management
any querying of children or ancestors of node instances.

The class is implemented as a template with the type of information
that is stored as the template parameter. This way it is possible to create

EXPRESSION TREE CLASSES 139

node types that store textual information as well as node types that store
numerical information, by specifying the desired data type.

CEvaluationNode is a direct subclass of CCopasiNode and it instantiates
the data type to be a string, so all nodes in a mathematical expression tree
store their information in the form of a string.

Just like the class framework for the representation of the normal form,
the tree data structure uses different node types to represent different math-
ematical entities (see figure 5.11).

3.0 + A * (sin(B) - 1.0)

+
3.0
*

A
-

SIN(B)
1.0

Figure 5.12: Example of a mathematical expression (left) and the correspond-
ing expression tree (right) as it would be represented in COPASI. The differ-
ent nodes in the tree are represented by different subclasses of CEvaluation-
Node.

The class CEvaluationNodeNumber is used to represent numerical values
in the expression tree. The class distinguishes between integer numbers,
double value numbers, numbers in exponent notation where the number is
split into a mantissa and an exponent as well as rational numbers with a
numerator and a denominator.

The class CEvaluationNodeConstant is used to represent different con-
stants. The constants that can be represented by instances of this class are
listed in table 5.1.

π Euler’s number e
true false

infinity (∞) Not a number (NaN)

Table 5.1: Constant types that can be represented by instances of the class
CEvaluationNodeConstant. NaN is a term in computer numerics to represent
an invalid numerical value, as it is e.g. created by the evaluation of 0

0
.

140 EXPRESSION NORMALIZATION

The class CEvaluationNodeVariable is used to represent named variables
in an expression. Variables occur in function definitions as the parameters
of the functions. E.g. in the function definition f(x) = 3 ∗ x, x would be
represented by an instance of CEvaluationNodeVariable.

The class CEvaluationNodeObject represents references to numerical val-
ues associated with entities from the model. E.g. an instance of CEvaluation-
NodeObject would be used to represent the volume of a compartment or the
concentrations of a metabolite from the reaction network within a mathe-
matical expression.

The class CEvaluationNodeOperator is used to represent the mathemati-
cal operations for addition, subtraction, multiplication, division, exponenti-
ation and the modulo operation (remainder of an integer division).

The class CEvaluationNodeFunction corresponds to the CNormalFunction
class described above. It is used to represent predefined function calls, e.g.
calls to trigonometric functions, in an expression tree. The functions that
can be represented by instances of this class are listed in table 5.2. The types
of functions that can be represented by this node class mostly corresponds to
the functions allowed in mathematical expression for SBML models. There
are a few minor differences however, e.g. COPASI knows two functions for
the generation of random values from different distributions RUNIFORM and
RNORMAL which are not available in SBML.

LOG LOG10 EXP SIN COS
TAN SEC CSC COT SINH
COSH TANH SECH CSCH COTH

ARCSIN ARCCOS ARCTAN ARCSEC ARCCSC
ARCCOT ARCSINH ARCCOSH ARCTANH ARCSECH
ARCCSCH ARCCOTH SQRT ABS FLOOR

CEIL FACTORIAL MINUS PLUS NOT
RUNIFORM RNORMAL

Table 5.2: List of functions that can be represented by instances of the class
CEvaluationNodeFunction.

The class CEvaluationNodeCall corresponds to the class CNormalCall
described above. Instances of this class are used to represent calls to user

EXPRESSION TREE CLASSES 141

defined functions.

The class CEvaluationNodeChoice corresponds to the classes CNormal-
Choice and CNormalChoiceLogical described above. It represents a condi-
tional expression the can either evaluate to the value true or to the value
false. Depending on the evaluation result of the condition, one of two child
node expressions is evaluated (see figure 5.13).

IF (X < 5, X, 5)

IF
X < 5
X
5

Figure 5.13: Example for the representation of a choice node. The choice
node is represented by the string IF and it contains three child nodes. The
condition is X < 5 which means that it evaluates to true if the value of
X is less than 5 and to false otherwise. In the case it evaluates to true,
the choice node returns the value of the second child, which is X. If the
condition evaluates to false the value of the third child is returned, which
in this example is represented by the numerical value 5.

The CEvaluationNodeLogical is used to represent logical operations or
comparisons. The result of such a logical operation is either the boolean value
true or the boolean value false. Nodes of type CEvaluationNodeLogical are
for example used as the condition element in an instance of CEvaluation-
NodeChoice. The operations that can be described by instances of this class
are listed in table 5.3.

logical or (∨) logical exclusive or (⊕) logical and (∧)
equal (=) not equal (6=) greater >

greater or equal (≥) less (<) less or equal (≤)

Table 5.3: Logical and comparison operations that can be represented by
instances of class CEvaluationNodeLogical.

Instances of the class CEvaluationNodeDelay are used to model the delay
function as specified in the SBML specification. The delay function takes
two arguments, one is an expression that evaluates to a number that stands

142 EXPRESSION NORMALIZATION

for a time delay t, the other is an expression that is evaluated for a time t
time units prior to the current time.

There are some more subclasses of the class CEvaluationNode, which have
been marked in gray in the class inheritance diagram (see figure 5.11). Since
those are not used in the normalization of mathematical expressions, so they
won’t be described here.

5.3 Normalization Algorithm

The normalization process for any mathematical expression starts with a
CEvaluationNode based expression tree as described above. libSBML which
is used to load SBML files also has a node tree based format for mathematical
expressions and all expressions from SBML model files are first converted to
the COPASI tree representation. For this a number of methods have been
written which are also used for the import of SBML model files into COPASI.

Since many steps of the normalization process are easier to do on the tree
like expression representation, a large part of the normalization process is
done on the nodes of the tree while other steps of the normalization process
are executed on the normal form representation (see chapter 5.1). The nor-
malization process is an iterative process and in the course of a single normal-
ization the expression is converted several times between these two formats.
For the conversion from the CEvaluationNode based expression representa-
tion to the CNormalBase representation and vice versa special methods have
been written.

Function Call Expansion

COPASI as well as SBML model files can contain user defined function defi-
nitions. So the first step when normalizing an expression is to eliminate calls
to these user defined functions. For this, all calls to user defined functions
are replaced by the expression of the function. All function variables in that
expressions have to be replaced by the arguments to the function from the
function call.

Since function definitions can call other function definitions, this process
has to be repeated until there are no more calls to user defined functions in
the expression (see figure 5.14).

This expansion of the expression is done on the CEvaluationNode based
representation and the result of the expansion is again represented by a
CEvaluationNode based expression tree.

NORMALIZATION ALGORITHM 143

Function definitions:
f(x) = 3.0 ∗ x
g(y) = f(y)2.0

4.0 ∗ g(a) + f(b)

→ 4.0 ∗ f(a)2.0 + 3.0 ∗ b
→ 4.0 ∗ (3.0 ∗ a)2.0 + 3.0 ∗ b

Figure 5.14: Example of a function call elimination. The expression calls
contains two function calls, f and g. In the first elimination step both calls
are replaced by the expressions of the corresponding function definitions and
the function variables are replaced by the arguments to these function calls.
Since the function g calls the function f , the expanded code still contains a
function call, so the expression needs to be expanded a second time to finally
get the fully expanded expression.

Only normal forms of expressions expanded in this way can be compared
reliably.

Normalization Iteration

The expanded expression tree is then simplified and normalized repeatedly
either until the infix (meaning the string representing the expression) has
not changed between two iterations of the simplification and normalization
process or until a certain iteration limit has been reached.

Since on the one hand mathematical expressions can be arbitrarily com-
plex and on the other hand the algorithm is not guaranteed to converge for
all possible mathematical expressions, the algorithm will not necessarily stop
by itself for any given expressions. For this reason a limit for the number of
iterations that are done has been added to the algorithm which guarantees
that the algorithm will not spent infinite time on the normalization of any
expression. The current iteration limit for this top level iteration is 20. This
value seems to provide a good compromise between allowing the algorithm to
converge for most expressions while making certain that it does stop within
a reasonable time frame.

Each iteration consists of four distinct processing steps (see figure 5.15).

144 EXPRESSION NORMALIZATION

The algorithm starts out with the tree representation and simplifies this tree
as much as possible. For the result of this simplification, the exponents
of all power nodes are expanded again and the result is converted to the
CNormalBase representation which is then again simplified.

Since the power node expansion is also done during the simplification of
the tree based expression, the details of this function are explained in that
context.

Those parts of the simplification process that are easier done on the tree
are done on the tree and those the are easier to do on the normal form
representation are done there.

The result of this process is an instance of the class CNormalFraction.

repeat
- store infix
- simplify tree based expression
- expand power nodes on simplified tree
- convert tree based expression to CNormalFraction
- simplify fraction

until (stored infix = infix from fraction ∨ number of iterations > iteration limit)

Figure 5.15: Steps of the normalization of mathematical expressions.

In the following paragraphs, the four steps from figure 5.15 will be ex-
plained in more detail. First we will have a look at the simplification of the
tree based expression representation.

Simplification Of The Tree Based Expression

The overall algorithm for this step is similar to the iterative process described
above. A number of simplification steps are executed on the nodes of the tree
based expression representation and afterwards, the infix of the expression is
compared to the infix as it was before these simplification steps. If the two
string representations are identical, the algorithm assumes that the process
of simplifying the expression is finished and stops, otherwise it continues with
another round of the same simplification steps.

This either continues until no more changes to the tree have occurred
within one iteration or if a certain iteration limit has been reached. Currently
this iteration limit is the same as for the overall process which is 20 iterations.

The simplification steps per iteration are the following:

NORMALIZATION ALGORITHM 145

repeat
- elimination of certain structures
- evaluation of operations on numerical nodes
- collecting identical elements in addition/subtraction and
multiplication/division chains
- expansion of power bases
- expansion of power nodes
- expansion of products

until (stored infix = infix from fraction ∨ number of iterations > iteration limit)

Eliminations

The elimination process gets rid of several undesired structures again in an
iterative way, meaning the process is repeated until there are no more changes
to the expression between two iterations.

The first thing the method does is to eliminate some unnecessary elements
like multiplications or divisions by the number 1 as well as additions and/or
subtractions of the number 0.

The next thing it does it to eliminate nested powers. E.g. the term Axy

is converted to the term A(x∗y).
Another structure that is converted are powers of fractions. A fraction to

a power is converted to a fraction where the numerator and the denominator
are each taken to that power. E.g.

(
A
B

)5 is converted to A5

B5 .
Another elimination is done on nested fractions. Nested fractions are

converted to a single fractions. E.g. the term
A
B
C is converted to the term

A
B∗C .

And last but not least, the method collects identical elements in the result-
ing expressions as explained below in the paragraph on "collecting identical
elements".

Evaluation Of Operations On Number Nodes

In expressions one often finds operations that act only on numbers, e.g. some-
thing like the term 2.0+3.0/6.0. The algorithm searches for such operations,
evaluates them and replaces the complete subexpression by the resulting
number (see figure 5.16).

Collecting Identical Elements

This methods tries to identify chains of additions/subtractions and/or chains
of multiplications/divisions. It then tries to identify elements in these chains

146 EXPRESSION NORMALIZATION

A * 4.0 * (3.0 - 1.0)

+
A
*

4.0
-

3.0
1.0

A + 8.0

+
A
8.0

Figure 5.16: Example of the evaluation of operation on numbers. A complete
subexpression of the tree is replaced by a single number after the expression
has been evaluated.

that cancel each other out, either partially or completely. E.g. a multiplica-
tion would be canceled by a division with the identical term, or an additions
would be canceled out by a subtraction of the same term (see figure 5.17).

3.0 ∗ A ∗ C2/(B ∗ C)

→ 3.0 ∗ A ∗ C/B
2.4− x+ T + x

→ 2.4 + T

Figure 5.17: Example of a multiplication (left) and an addition (right) where
terms cancel each other out. In the second addition example two terms cancel
each other out completely and can therefore be eliminated.

For multiplication chains this method also considers the exponents of
potential power nodes. E.g. if in a multiplication/division chain a factor A4

is found and in the same chain there is a divisor A3, these two nodes would
be replaced by the term A.

Expansion Of Power Bases

This method expands products to some power to the corresponding products
of the individual factors to the same power.

E.g. the expression (A ∗ B)x would be converted to the new expression
Ax ∗Bx

Expansion Of Power Nodes

This method converts nodes representing a power operation where the expo-
nent is a sum into a product of two or more power nodes where the exponents

NORMALIZATION ALGORITHM 147

are no longer sums.
An example for this would be the term A(x+y) which would be converted

to Ax ∗ Ay.

Expansion Of Products

This method expands products of sums into sums of products.
E.g. the term (A + B) ∗ (C + D) would be expanded to the new term

(A ∗ C) + (A ∗D) + (B ∗ C) + (B ∗D).

Once the expression tree has been simplified this way power nodes are ex-
panded again before the expression is converted to the CNormalBase based
representation. This additional final expansion of the power nodes, simpli-
fies the following conversion to the normal form. The resulting instance of
CNormalFraction is now again subjected to a number of simplification steps
that are supposed to lead to the final normalized form.

The steps undertaken for the simplification and normalization of this sec-
ond representation greatly depends on the element that is being processed.
Each class has a method called simplify which is used to further rear-
range the mathematical representation to create the final final normal form.
Usually each class will call the simplify method for all instances of other
elements it contains. E.g. the fraction representation will call simplify on
its numerator and its denominator.

In the following paragraphs the processing steps for the individual classes
are described.

CNormalFraction

In the simplify method for CNormalFraction the corresponding methods
for the numerator and the denominator are called which are both instances
of CNormalSum.

If the instances of CNormalSum of the numerator and the denominator
still contain fractions in addition to the products, the method expands these
fractions and converts them to new instances of CNormalSum which are
added to the numerator and the denominator accordingly.

Afterwards the method tries to identify common factors in the numerator
and the denominator and cancels those.

148 EXPRESSION NORMALIZATION

CNormalSum

If the instance of CNormalSum still contains fractions, these fractions are
simplified first. Next the algorithm traverses all instances of CNormalProduct
and simplifies them as well.

The method also tries to eliminate nested fractions as might be present
in items of type CNormalGeneralPower in the instances of CNormalProd-
uct. By converting the CNormalGeneralPower to an instance of CNormal-
Fraction, the fraction can be eliminated by the simplify method of the parent
fraction instance in the following iteration (see figure 5.18).

· · ·+

(
Nb

Db

(Ne
Be

)
)n

+ · · ·

→ · · ·+ N
(n∗Ne

De
)

b

D
(n∗Ne

De
)

b

+ · · ·

Figure 5.18: Conversion of an instance of CNormalGeneralPower in a
CNormalSum to a CNormalFraction, which can be eliminated by the simplify
method of the fraction object containing the instance of CNormalSum.

CNormalProduct

The CNormalProduct class first calls simplify on all instances of CNormal-
ItemPower. Next the method traverses all items and checks for items which
are instances of type CNormalGeneralPower. If such an instance is found and
that instance has a base of 1, is is eliminated otherwise it is combined with the
other instances of CNormalGeneralPower in the product. This combination
of CNormalGeneralPower instances again leads to a CNormalGeneralPower
which might be simplified further in the next iteration.

CNormalItemPower

Instances of CNormalItemPower only simplify the item they contain. Since
the item, can be an instance of one of several classes, the corresponding
simplify method for that class is called.

NORMALIZATION ALGORITHM 149

CNormalItem

Instances of CNormalItem are not simplified.

CNormalFunction

Instances of CNormalFunction simplify their argument which is an instance
of CNormalFraction.

CNormalCall

Instances of CNormalFunction simplify all their arguments which are in-
stances of the CNormalFraction class.

CNormalGeneralPower

Instances of CNormalGeneralPower simplify the two CNormalFraction in-
stances representing the base and the exponent.

CNormalChoice

Instances of the class CNormalChoice simplify the condition which is an
instance of CNormalLogical and the two result branches which are both in-
stances of CNormalFraction.

CNormalLogical

The simplification for instances of CNormalLogical is rather complex. Since
intermediate results can contain instances of CNormalChoiceLogical those
have to be eliminated first. This is done by replacing each choice element
IF(COND, TRUE-term, FALSE-term) by the term (COND ∧ TRUE − term)∨
(¬COND ∧ FALSE − term).

For the creation of the disjunctive normal form in the last step, it is also
necessary to eliminate all negated elements, meaning all elements to which
the logical not (¬) operation is applied.

Last but not least the sets of logical items in the instance of CNormal-
Logical are converted to the canonical disjunctive normal form[182, 183] to
make it comparable to other logical expressions.

This conversion to the canonical disjunctive normal form scales exponen-
tially with the number of logical elements. For this reason, we limit the

150 EXPRESSION NORMALIZATION

number of elements that are allowed to 16. Due to this, expressions contain-
ing more than 16 elements can not be normalized by the current version of
this framework.

CNormalChoiceLogical

Instances of the class CNormalChoiceLogical simplify the condition which is
an instance of CNormalLogical and the two result branches which are also
both instances of CNormalLogical.

CNormalLogicalItem

For the normal form, instances of class CNormalLogicalItem which represent
the greater (>) relation are converted to the less (<) relations and instances
representing the "greater or equal" (≥) relation are converted to the "less or
equal" (≤) relation. During this conversion the two arguments have to be
switched.

If the instance of CNormalLogicalItem contains arguments, e.g. a relation,
these arguments, which are instances of CNormalFraction, are simplified.

5.4 Testing

Since the task of normalizing expressions is very complex an extensive set of
test cases has been implemented to ensure that the implementation works
as expected. The test cases cover all aspects of the normalization process
and where possible, systematic tests have been implemented. Because the
numbers of possible expressions is infinite, it is obvious that these tests will
never be able to cover all possibilities.

At the time of writing there were 112 tests cases of varying complexity.
All of these tests have been implemented using the CppUnit unit testing

framework[92].

5.5 Normalization And Identification Of
Expressions From The BioModels Database

In order to see how well the expression normalization and comparison meth-
ods work in a realistic scenario, a program was written that takes all curated
models from the BioModels database and normalizes all mathematical ex-
pressions found in these models. The program also tries to identify these

NORMALIZING BIOMODELS EXPRESSIONS 151

expressions by comparing their resulting normal form to the normal forms of
all entries in the function database of COPASI.

First the program normalizes all function definitions from the COPASI
function database. This function database contains about 40 functions that
can be used as kinetic laws for reactions in COPASI.

For each of the model files, first the user defined functions are normalized
and compared to those normalized expressions from the COPASI function
database in order to identify them.

Besides function definitions, expressions can occur in several places in an
SBML model. The program normalizes expressions from rules, initial assign-
ments, kinetic laws, stoichiometric expressions as well as triggers, delays and
assignments from events.

For each expression normalization the computation time needed is recored
to check the performance of the algorithm.

All normalized kinetic expressions from reactions in the model files are
compared to normalized expression for function definitions in order to identify
kinetic laws.

For the identification of mass action kinetic terms, a special method is
used. The reason for this is that mass action kinetics does not describe
a single mathematical expression, but a complete family of mathematical
expressions that depends on whether a reaction is reversible or not and on
the number of substrates and products of the reaction.

While running this test on all curated models from the BioModels release
from September of 2010, we found that the test did not finish but it stopped
with an error while processing Biomodels file 217. The reason for this is
discussed in chapter 6.3. Removing this model file from the test allows the
test to finish. Running the test on the remaining 268 SBML model files using
a non-optimized version of the algorithm takes approximately 2 hours on a
single core of a modern CPU.

Figure 5.19 shows part of the output from the analysis.
The information that can be extracted from this output is that the 268

models from the BioModels database contain a total of 9578 mathematical
expression that have been normalized. This shows that the algorithm itself
is already very stable.

From these 9578 expression 75 could not be converted to a normal form
because the iteration limit built into the algorithm has been exceeded. Since
this is less than 1% of the total number of expressions, the performance of
the algorithm is good.

Of the 9578 expressions processed, the vast majority are expressions for
kinetic laws (8055). Of those 8055 kinetic expressions, the algorithm was
able to identify 3232, which leaves 4823 kinetic expressions unidentified. This

152 EXPRESSION NORMALIZATION

...

number of COPASI function definitions: 35
number of exceeded COPASI function definitions: 0
number of failed COPASI function definitions: 0
268 files have been processed.
number of function definitions: 179
number of exceeded function definitions: 6
number of failed function definitions: 0
number of expressions: 9578
number of exceeded expressions: 75
number of failed expressions: 0
The functions "Catalytic activation (rev)" and "Noncompetitive inhibition (rev)"
in the COPASI database are equal.
The functions "Competitive inhibition (rev)" and "Specific activation (rev)"
in the COPASI database are equal.
The functions "Constant flux (irreversible)" and "Constant flux (reversible)"
in the COPASI database are equal.
Number of function definitions that could be classified: 28
Number of function definitions that were classified incorrectly: 3
Number of function definitions that could not be classified: 142
Number of kinetic expressions: 8055
Number of kinetic expressions that could be mapped to a function definition: 3232
Number of kinetic expressions that could not be mapped to a function definition: 4823
List of the number of expressions mapped to a certain function definition:
Catalytic activation (irrev) : 3
Competitive inhibition (irr) : 1
Constant Flux : 83
Constant flux (irreversible) : 36
Henri-Michaelis-Menten (irreversible) : 12
Hill Cooperativity : 4
Mass Action : 3092
Specific activation (irrev) : 1
There are 10 different SBO Terms.
There are 2 expressions for SBO term 28.
There are 2 expressions for SBO term 47.
There are 22 expressions for SBO term 49.
There are 3 expressions for SBO term 54.
There are 2 expressions for SBO term 101.
There are 2 expressions for SBO term 103.
There are 2 expressions for SBO term 260.
There are 2 expressions for SBO term 270.
There are 1 expressions for SBO term 277.
There are 1 expressions for SBO term 432.
Number of kinetic expressions with sbo terms: 39
Number of kinetic expressions with sbo terms that could not be normalized to the same normalform: 10
The expressions that could not be mapped are divided into 733 different expressions.
...

Figure 5.19: Excerpt from the output generated by running the normalization
test program on 268 model files from the BioModels database.

FINDING KINETIC LAWS FOR THE NF-κB MODEL 153

value is actually lower than expected and the reasons for this are also dis-
cussed in chapter 6.3.

From the kinetic expression that could be identified, the vast majority
were mass action kinetics with 3092 instances.

Even in a real world test, the framework showed very promising results,
although some rough edges still have to be smoothed out.

Out of almost 10000 mathematical expressions, only a single one lead to
an error and less than 1% could not be normalized because the normalization
process exceeded the iteration limit.

Besides being able to normalize and compare most expressions, many of
the expressions could also be identified by this framework.

Further steps that are needed to make the framework work better with
very large expressions and ways of improving the identification rate of ex-
pressions are discussed in chapter 6.3.

5.6 Identifying Kinetic Laws For Certain
Reaction Types In The NF-κB Model

Although fully automated classification of e.g. the kinetic laws of a model
is not possible yet, the normalization and comparison functionality can be
used for the identification of mathematical expression in a semi automatic
way. This will be demonstrated here using the NF-κB model introduced in
chapters 3.8 and 4.6.

In order to be able to calculate time course simulation data for the NF-κB
signaling model, initial values have to be assigned to all components of the
model and kinetic laws have to be associated with all of the reactions.

The model contains several phosphorylation reactions, e.g. the phospho-
rylation of NF-κB which are all catalyzed by so called protein serine/threonine
kinases. In chapter 4.6 the reactions have been annotated with the corre-
sponding term from the Gene Ontology[184, 185] which is GO:0004674. This
term is derived from the more general term for the concept of a protein kinase
activity (GO:0004672). The Gene Ontology entries are arranged in a multi
rooted tree structure and all concepts derived from or described by another
concept are stored as child elements to that parent concept. The entry for
the protein serine/threonine kinase has for example 22 children that further
refine the concept, e.g. one of the children describes the concept of a "histone
serine kinase activity" (GO:0035174).

Now in order to assign kinetic laws to the phosphorylation reactions in
the model, the annotations introduced in chapter 4.6 are used in combination

154 EXPRESSION NORMALIZATION

with the expression normalization framework.
First all Gene Ontology identifiers for the protein serine/threonine kinase

and those from all its child elements are extracted from Gene Ontology and
used to search for equivalent reactions in the models from the BioModels
database.

The extractions of the Gene Ontology identifiers provided 72 identifiers
that describe the process of phosphorylating a protein at a serine or threonine
side chain. Next the model files were search for reactions that are associated
with one of these identifiers. This search revealed 29 models from the curated
branch of the BioModels release from April 2011 which contained a total of
140 reactions describing a phosphorylation by a serine/threonine kinase.

Now the expression normalization and comparison was used to analyze
the kinetic laws of these reactions to see what types of kinetic laws have
been used for these reactions in other models. Parts of the output from this
analysis is shown below:

number of expressions: 140
number of exceeded expressions: 2
number of failed expressions: 0
Number of kinetic expressions: 138
Number of kinetic expressions that could be mapped to a function definition: 84
Number of kinetic expressions that could not be mapped to a function definition: 54
List of the number of expressions mapped to a certain function definition:
Mass Action : 84
Expression with more than 5 instances (9): (C_1 * K_1 * S_1 * S_2)/(K_2 + S_2)
Expression with more than 5 instances (7): C_1 * K_1 * S_1 * S_2
Expression with more than 5 instances (6): C_1 * K_1 * S_1
Expression with more than 5 instances (6): K_1 * S_1
Expression with more than 1 instances (5): (C_1 * K_1 * S_1)/(K_3 * S_1 +
601.999843480040681 * K_2 * K_3)
Expression with more than 1 instances (5): (K_1 * S_1 * S_2)/(K_2 + S_2)
Expression with more than 1 instances (4): (-1) * C_1 * K_1 * S_1 * S_2 +
C_1 * K_1 * K_2 * S_1
Expression with more than 1 instances (3): ((-1) * C_1 * K_1 * K_2 * K_3 * S_3 +
C_1 * K_1 * K_2 * S_1 * S_2 + C_1 * K_2 * S_1 * S_2)/(K_3)
Expression with more than 1 instances (2): (K_1 * S_1)/(K_2 + S_1)
Unique Expression: (-1) * C_1 * K_2 * S_3 + (-1) * C_1 * K_3 * S_3 + C_1 * K_1 * S_1 * S_2
Unique Expression: (C_1 * K_1 * K_4 * S_1 * S_2 + C_1 * K_1 * S_1 * S_2^2 +
C_1 * K_2 * K_3 * S_2 * S_3 +
C_1 * K_3 * S_2^2 * S_3)/(K_2 * K_4 + K_2 * S_2 + K_4 * S_2 + S_2^2)
Unique Expression: (-1) * C_1 * K_2 * S_2 + C_1 * K_1 * S_1
Unique Expression: (C_1 * K_1 * S_1 * S_2^2)/(S_2^2 + 10000)
Unique Expression: (C_1 * K_1 * S_1 * (K_2)^(K_3))/(K_4 * (K_2)^(K_3) + K_4 * (S_2)^(K_3) +
S_1 * (K_2)^(K_3) + S_1 * (S_2)^(K_3))
Unique Expression: (C_1 * K_1 * S_1^2)/(S_1^2 + 16)
Unique Expression: (-1) * C_1 * K_3 * S_3 + C_1 * K_1 * S_2 + C_1 * K_2 * S_1 * S_2

The complete analysis of all 140 kinetic laws took about 16 seconds on
a single processor of a modern computer. This included the time needed to
read, check and convert the models from the SBML format to the COPASI
format.

FINDING KINETIC LAWS FOR THE NF-κB MODEL 155

What can be seen from the output above, out of the 140 kinetic laws,
138 could be normalized. For two expressions the iteration limit has been
exceeded. Out of the 138 expression that could be normalized, 84 were iden-
tified as mass action kinetics. The remaining 54 expressions are partitioned
into nine clusters which contain more than one expression and an additional
7 expressions that are unique, i.e. appear only once in the set of expressions
that was examined.

For better readability, the identifiers of the expression elements have been
normalized. All elements that represent compartment volumes have been
renamed to C_n, all elements representing species amount or concentration to
S_n and all parameter elements to K_n. This makes the manual inspections of
the expressions easier. In this case it can be seen that many of the unidentified
expressions seem to represent mass action kinetics in addition to some some
Michaelis-Menten type kinetics. The predominant kinetic law used for this
type of phosphorylation reaction therefore seems to be mass action.

In order to see if other phosphorylation reaction types would lead to a
different result, all Gene Ontology identifiers related to the "protein kinase
activity concept" were extracted from the Gene Ontology and subjected to
the same analysis as described above. This time 135 identifiers were found.
This set includes all the identifiers from the first analysis. Using these 135
Gene Ontology terms, 47 models were identified with 245 expressions de-
scribing some kind of protein phosphorylation. Parts of the analysis output
is shown below:

47 files have been processed.
number of expressions: 245
number of exceeded expressions: 2
number of failed expressions: 0
Number of kinetic expressions: 243
Number of kinetic expressions that could be mapped to a function definition: 140
Number of kinetic expressions that could not be mapped to a function definition: 103
List of the number of expressions mapped to a certain function definition:
Mass Action : 140
Expression with more than 10 instances (20): C_1 * K_1 * S_1 * S_2
Expression with more than 10 instances (18): (C_1 * K_1 * S_1 * S_2)/(K_2 + S_2)
Expression with more than 10 instances (8): C_1 * K_1 * S_1
Expression with more than 10 instances (8): K_1 * S_1
Expression with more than 10 instances (6): (-1) * C_1 * K_1 * S_1 * S_2 +
C_1 * K_1 * K_2 * S_1
Expression with more than 10 instances (6): (K_1 * S_1 * S_2)/(K_2 + S_2)
Expression with more than 10 instances (6): (C_1 * K_1 * K_3 * S_1 * S_2)/
(K_2 * K_3 + K_2 * S_3 + K_3 * S_2)
Expression with more than 10 instances (5): (C_1 * K_1 * S_1)/(K_3 * S_1 +
601.999843480040681 * K_2 * K_3)
Expression with more than 10 instances (3): ((-1) * C_1 * K_1 * K_2 * K_3 * S_3 +
C_1 * K_1 * K_2 * S_1 * S_2 + C_1 * K_2 * S_1 * S_2)/(K_3)
Expression with more than 10 instances (2): (K_1 * S_1)/(K_2 + S_1)
Expression with more than 10 instances (2): (-1) * C_1 * K_3 * S_2 * S_3 +
C_1 * K_1 * K_2 * S_1
Expression with more than 10 instances (2): (C_1 * K_1 * K_3 * K_4 * K_5 * S_1 * S_2)/

156 EXPRESSION NORMALIZATION

(K_2 * K_3 * K_4 * K_5 + K_2 * K_3 * K_4 * S_4 + K_2 * K_3 * K_5 * S_3 +
K_2 * K_4 * K_5 * S_3 + K_3 * K_4 * K_5 * S_2)
Expression with more than 10 instances (2): (C_1 * K_1 * K_3 * K_4 * K_5 * S_1 * S_2)/
(K_2 * K_3 * K_4 * K_5 + K_2 * K_3 * K_4 * S_4 + K_2 * K_3 * K_5 * S_3 +
K_2 * K_4 * K_5 * S_2 + K_3 * K_4 * K_5 * S_2)

Looking at this result it is evident that there is no significant difference
between the result for the serine/threonine kinase reactions and the result
for all protein kinase reactions. Of the 245 kinetic laws, 140 could be directly
identified as mass action and a significant percentage of the rest also seems
to represent mass action kinetic types.

With this simple analysis, it was possible to very quickly get an overview
over which kinetic laws are predominantly used for protein phosphorylation
reactions and more specifically serine/threonine kinase reactions in a large
set of models. As it is obvious that most models use mass action type kinetics
for this type of reaction, this knowledge can be used to assign kinetic laws
to the phosphorylation reactions of the NF-κB model.

Chapter 6

Discussion

In this thesis, work on important standards in systems biology has been
described and how it can be applied to systems biological research.

In the following sections, unsolved problems and future directions related
to the topics in this work are discussed.

6.1 Layout And Render Information In SBML

Implementation(s) & Standardization

The SBML layout and render extension, described in chapters 3.4 and 3.6,
was groundbreaking work because it was the first project that extended the
SBML standard with new functionality and serves as an example to authors
and implementers of other extensions to SBML today.

The extension fills a gap in the SBML format by providing the possibility
to store arbitrary diagrams together with the mathematical descriptions of
the reaction network within SBML documents.

The fact that implementers of other software tools implemented the SBML
layout and/or render extension shows that the perception of the extension
is favorable in the SBML community and that other scientists and software
developers are convinced of its usefulness.

A lot of software has already been implemented with respect to the layout
and render extension, but as with most other software projects, work is never
truly finished.

Even so the implementation of the layout and render extension on top of
libsbml are very stable and mature, the work in this field is not completed yet
because it is somewhat of a moving target. With work on the SBML standard

157

158 DISCUSSION

as well as libsbml continuing, the specifications and implementations of the
SBML layout and render extension have to follow this development.

There already are implementations for libsbml 3.4.1, libsbml 4.1.0, libs-
bml 4.2.0 and libsbml 4.3.0. Just recently, libsbml 4.3.1 has been released
and the implementation of the layout and render extension has to be ad-
justed to the changes in this new release. In parallel to the development of
libsbml 4, a new version of libsbml termed libsbml 5 is being developed and
alpha versions of this new libsbml have already been released to be tested by
the SBML community. This means that eventually the implementation of
the SBML layout and render extension will also have to be adapted to that
version of libsbml. Since this probably involves many major changes to the
current implementation, this will not be a minor task.

Making larger changes to the implementation for libsbml also automat-
ically means that the library that does the rendering has to be changed
accordingly in order to work with the new version of libsbml and the imple-
mentation of the layout and render extension therein.

Another issue that has not been resolved yet is the fact that the stan-
dardization process for the SBML layout and render extension has not been
fully completed. We have fulfilled several of the prerequisites, e.g. the re-
quirement that there are at least two independent implementations, but some
work still has to be done until the extension will reach the status of an official
recommendation. Since there is currently no funding for this kind of work,
this more or less has to be done in my spare time and therefore progress is
slow.

This is also a large drawback of the current standardization process in
SBML. The process is very lengthy and normally there is no funding for
projects that take this long. This means that people usually have to move
on to new projects before the old project is completely finished, i.e. has reach
the state of an official recommendation.

Maybe, based on these experiences and on the fact that no extension pro-
posal has yet managed to go through the complete standardization process,
the SBML community should think about revising the standardization process
to ensure that projects developing SBML extensions have a better chance of
reaching the final stage.

Competing Efforts

Despite the generally favorable reception of the SBML layout and render
extension by the SBML community, not all developers have added support
for the extension in their tools yet.

LAYOUT AND RENDER INFORMATION IN SBML 159

Actually at least on research group has come up with a competing pro-
posal that has roughly the same goals as the SBML layout and render exten-
sion. This other layout proposal has been brought forward by the developers
of BioUML[76] because they have the impression that the layout and render
extension does not provide them with the flexibility they need.

While we fully agree that our proposal does make certain compromises
in terms of flexibility, these limitations were introduced on purpose in or-
der to make implementations as simple as possible. Their proposal on the
other hand requires the embedding of a complete programming language by
supporting tools and therefore, while being very flexible, is also very hard
to implement. This has already been discussed at several meetings of the
SBML community and so far this competing proposal has not received any
support due to its complexity which does confirm our approach.

Future Plans

We currently have a working, stable base implementation that allows layout
and render information in the context of SBML files to be exchanged between
different software tools. In addition to that we have an OpenGL based library
that can display this layout and render information as well as the XSLT style
sheet that allows the creation of high quality vector and bitmap drawings.
But there certainly is room for improvement.

Besides the errors that have not been found yet, but that are certainly
there, other improvements, e.g. enhancing the drawing quality of the renderer
library with respect to fonts or making the drawing process more efficient on
newer hardware, are obvious candidates for further work in this area.

One big problem related to the SBML layout and render extension is the
actual creation of diagrams. Currently there are not many tools that allow
users to create diagrams of the reaction networks, CellDesigner being one
of the exceptions. Unfortunately the diagram information that is stored by
CellDesigner can not be read by any other tool, rendering this feature useless
when it comes to exchanging diagrams between different software tools. The
conversion tool from the CellDesigner specific diagrams to the SBML layout
and render extension as described in chapter 3.8, will eventually provide a
solution to this problem. Work on this conversion tool is progressing nicely
and I hope to be able to include this feature in one of the next versions
of COPASI. In addition to that, I plan to release the source code of this
conversion tool for use by other developers in their software.

Some developers are already working on the implementation of software

160 DISCUSSION

to automatically create layout information based on SBML models[186] or
software that allows the user to create new style definitions in a graphical
way, but there is still a lot of work in that area that needs to be done. We
hope that the automatic layout algorithm that we are currently implementing
in COPASI will contribute to this work.

6.2 Standards In COPASI

Extension And Improvement Of SBML Support

Implementation of the SBML standard in COPASI has provided our users
with the ability to exchange reaction network models between many different
tools. COPASI was one of the first tools to implement extensive support for
this format and by providing feedback and help to the developers of SBML
in these early years, we certainly played a major role in the development and
improvement of this standard as well as its propagation.

From the start, COPASI has been a tool which provided very good sup-
port for SBML and this has been recognized by the systems biology commu-
nity. The fact that COPASI has been downloaded more than 20000 times
from our servers along with the fact that it is one of the major tools used to
curate the models in the BioModels database can probably be seen as prove
of this.

I am convinced that COPASI is one of the best and most reliable tools
for working with SBML files. It is my goal to uphold the good reputation
COPASI has gained and maybe even improve it.

Since the development of SBML has not stopped, neither has the devel-
opment of support for new SBML features in COPASI. We are continuously
adding new SBML features to the program and spend a great amount of time
in making sure that this is done correctly.

COPASI currently does not support some of the features found in SBML
and as time permits we hope to fill those gaps. Work on implementing some
of these unsupported features has already been started.

We are currently also looking for ways to store information that is specific
to COPASI, e.g. settings for tasks or output definitions, in SBML files in
order to preserve this information when models are stored as SBML docu-
ments. Currently this information is lost upon export to SBML and has to
be recreated after the model has been reimported into COPASI.

In addition to implementing support for SBML in COPASI, we collab-
orate with authors of different test suites to improve SBML support in

STANDARDS IN COPASI 161

COPASI as well as improving the quality of the tests in these test suites.
This is a very fruitful collaboration, for us as well as the authors of the in-
dividual test suites. Due to this good working relationship we are usually
provided with pre-release versions of new tests in order to provide feedback
to the developers before the tests are officially released.

Improvements For Layout And Render Information

The implementation of layout and render information in COPASI is also
finished and in a very stable state. We ensure this with an extensive set of
test cases.

Although COPASI has been able to display layout and render information
for a few releases now, it was not possible to create new layout information.
If the user wants to have layout information, it has to be created by external
tools, e.g. the web based layout viewer written by Frank Bergmann[148].

The most important piece that is currently missing in COPASI with re-
spect the layout and render information is a good diagram editor that enables
the user to create reaction network diagrams in an intuitive way. Unfortu-
nately creating such an editor is a major effort and currently there is no
funding for this type of work.

Recent work on automatic layout creation in COPASI by Sven Sahle and
myself might alleviate this problem to a certain extend. It will enable the user
to at least create simple reaction network diagrams from within COPASIs
user interface and use these diagrams to display results from COPASIs differ-
ent analysis methods as described in chapter 4.6. This is very new work and
due to the fact that the implementation is not completely finished and that
the code needs more testing, this feature is not included in official releases
of COPASI yet. Since only a few minor things are still missing, this feature
will very likely be included in one of the next versions of COPASI.

So far there is only one force directed automatic layout method, but we
hope to be able to add more different layout methods eventually. Especially
layout methods that can handle the special restrictions of layouts of chemical
reaction networks would be a welcome addition.

Another piece of work that might help in bridging the gap until a dia-
gram editor can be implemented is the work I have been doing on converting
the diagram information stored by CellDesigner to the SBML layout and
render extension format. This will allow the users of COPASI to create the
diagrams using the intuitive editing capabilities of the CellDesigner software
and afterwards these diagrams are converted to a format usable by COPASI.

162 DISCUSSION

Initial results are very promising (see chapter 3.8) and many of the features
usually found in reaction network diagrams from CellDesigner are already
supported by this conversion tool.

Visualization Of Analysis Results

COPASI already uses the layout and render information to display results of
some of the analysis and simulation methods, but there are still many more
methods that could benefit from using the layout and render information for
displaying results in a more intuitive way. Recent work on displaying results
for the elementary mode analysis using the layout and render information
has further illustrated the usefulness of being able to display analysis results
graphically in the context of the complete reaction network (see chapter 4.6).

A new feature that has recently been implemented and that is not yet
included in released versions of COPASI is the possibility to export all frames
from the animation of a time course simulation (see chapter 4.3). Until now
users are only able to view the animation in COPASI and to capture single
frames of such an animation. Since these animations sometimes consist of
hundreds or thousands of frames, exporting all of them is very tedious. This
new feature allows users to create complete series of images that correspond
to whole sections of the animation. These images can then be used to cre-
ate movies using free third party tools like mencoder[187] or ffmpeg[188] or
commercial tools like Apple Quicktime[189] or Adobe Premiere[190]. Since
libraries for encoding movies like ffmpeg are freely available, it would even-
tually also be possible to use this library in COPASI to let the user create
movies directly from COPASI without the need for external tools.

So far the implementation of the layout and render information has only
been tested on small or medium sized reaction networks consisting of a few
dozen reactions. Recent additions to the BioModels database also contain
models that are significantly larger, e.g. whole genome models of Saccha-
romyces cerevisiae[191, 192]. Since the rendering code has not been opti-
mized for speed yet, it is to be expected that the rendering speed for models
of that size will be suboptimal, especially on hardware that is not state of
the art. This is something that has to be tested and acted upon if necessary
in order to enable COPASI to also display graphs of large reactions networks
efficiently.

STANDARDS IN COPASI 163

Language Bindings

Another area of work related to COPASI that is becoming increasingly pop-
ular and successful are the COPASI language bindings.

This project was initially only intended as a collaboration between the
developers of the CellDesigner software and us to allow CellDesigner to use
COPASI for the simulation of SBML models. This initial goal has been
achieved and users of CellDesigner can now use some of the simulation and
analysis methods provided by COPASI in the CellDesigner program.

We thought that maybe this might also be interesting to other developers
and released the Java language bindings as well as the Python bindings with
some documentation and examples on our web servers. As it seems this
assessment was correct because the language bindings have by now been
downloaded more than 1200 times.

According to feedback we have received via private communication or
in our user forum, they are being used for many different projects, form
small student projects to full scale research projects and the number of these
projects seems to be increasing.

Although the graphical user interface of COPASI is very powerful and
allows users to use a large range of different analysis methods, there are
always limits to what can be integrated into a user interface without making
it overly complicated. Due to these necessary restrictions in the COPASI
software, the language bindings are also used frequently by students in our
group to e.g. combine different analysis methods in ways not possible with
the graphical user interface.

The language bindings as stated above have originally been created for
a special purpose and we never thought that so many people would even-
tually end up using them. Currently the language bindings provide access
to most of the functionality in COPASI in exactly the way they are imple-
mented in COPASI. This means that working with the language bindings
from languages like Java and Python is not always intuitive. Tuning the
language bindings towards providing an interface that feels more natural to
users of the different target languages would certainly make it easier for those
programmers to use and get used to the language bindings.

Since the work needed for this fine tuning would be different for each
target language, this would be a major task.

Another thing that is currently lacking is complete documentation for
the COPASI API and how it can be used from the language bindings. We
already provide more than 70 pages of documentation for each of the target

164 DISCUSSION

languages and we also include a set of examples for each of the different
languages. These examples are intended to demonstrate how the language
bindings can be used for the implementation of certain tasks, e.g. building
models or running time course simulations.

Since the programming interface is very complex, more documentation
would be very desirable and together with providing an API that is more
tuned towards the target language, would be of great help to developers
using the language bindings.

So far the functionality of COPASI can be accessed from C++, Java as
well as Python. Currently we are working on extending the set of target
languages by providing additional language bindings for Perl[83], R[87] as
well as Octave[85].

The SWIG interface files have already been created and Dr. Jürgen Pahle
has agreed to test the language bindings for these three new target languages.

As soon as the language bindings for these new target languages have
received sufficient testing, they will be released alongside the other language
bindings.

Right now we are providing binary files for about a dozen different lan-
guage/operating system combinations and this number will grow once 64bit
binaries for Microsoft Windows and Linux will be made available with the
next release of the language bindings. All these packages are build and assem-
bled manually, which is no longer possible once three more target languages
have been added. This means that we will have to find a way to build, test
and package the language bindings for the different operating systems and
target languages automatically. Considering the number of different oper-
ating systems and target languages we are supporting, this will involve a
significant amount of work.

6.3 Normalizing And Comparing Mathe-
matical Expressions

The implementation on the normalization and comparison of arbitrary math-
ematical expressions also has been brought to a stage where it starts to be
useful. It has for example been used to analyze all mathematical expres-
sion in the close to 300 curated models of the BioModels database (release
from September of 2010) which only takes around two hours on a modern

EXPRESSION NORMALIZATION 165

processor.

As noted in the corresponding section, in order to complete this analysis,
we had to remove one of the BioModels files, otherwise the analysis would
stop with an error after running for a very long time. The model file causing
this problem is model file number 217.

As a detailed analysis has shown, the problem can be attributed to a
single very complex mathematical expression in this model file. During the
normalization process products of sums are expanded to sums of products
and for some expressions this can lead to an explosion of the resulting terms.
This is the case for the afore mentioned expression in BioModels file 217.
There the expansion of this single expression leads to such a large amount
of terms that the computer eventually runs out of stack memory and the
program stops with an error.

This problem is actually not a limit of the normalization algorithm, but
it is a combined limit of the C++ programming language used for the imple-
mentation and the way we chose to implement the algorithm.

Since the expressions are internally represented as a tree, many of the
methods working on the expression tree are implemented as recursions. That
means that a method is called on a node and that node calls the same method
on all its child nodes. This process continues for all branches of the expression
tree until it encounters a node that has no children, a so called leaf node.
Each call to the function however reserves a certain small amount of memory
on the stack and the total amount of stack memory available to a C++ program
is usually limited to a few million bytes. If the tree for an expression gets
especially large, the program eventually runs out of space on the stack. This
is exactly what happens for this one expression in BioModels file 217.

This means that the C++ programming language is not well suited for
algorithms that lead to very deep recursions and this is one of the cases
where this leads to an error in the running program.

This problem could potentially be solved in one of several ways. One
solution would be to increase the stack size of the program. As a matter of
fact, doing this will allow the normalization of the expressions BioModels file
217 to finish without error. Unfortunately, increasing the stack size of a C++
program is highly dependent on the operating system which means that this
would have to be done differently for each platform. Another more feasible
solution to this problem is to rewrite all the methods that use recursions on
the expression tree data structure, which effectively means that large parts of
the code have to be reimplemented for this algorithm to work for all possible

166 DISCUSSION

expressions.

Another problem with the current implementation is the rather low recog-
nition rate when identifying e.g. kinetic laws. As shown in chapter 5.5,
currently about 40% of the expressions analyzed can be identified when com-
pared to existing functions from COPASIs function database.

One potential problem that could cause the low recognition rate lies in
the kinetic parameters themselves. Since each kinetic parameter in SBML
does not have to be a constant, but can be determined by a so called rule, it
would be necessary to expand these rules similar to how we currently expand
function calls.

A simple example that demonstrates this is depicted in figure 6.1. Looking
at equation 1, one could get the impression that this describes a mass action
term for an irreversible reaction with one substrate S. But since SBML
allows parameters to be determined by arbitrary mathematical expressions,
so called rules, one has to also consider if such a rule exists and what it looks
like. This is complicated by the fact that all components in the assignment
rule for k can themselves again be determined by assignments.

d[P]

dt
= k ∗ [S] (6.1)

k =
Vmax

Km + [S]
(6.2)

Figure 6.1: Equation one is the definition of a rate law for a reaction with
one substrate S and one product P . Equation 2 determines the value of the
kinetic "constant" k and is equivalent to an SBML rule.

A solution for this problem is easy to implement, but as further analysis
has shown, this does not seem to be the main reason why the algorithm
currently only identifies less then half of the kinetic laws.

To identify the real problem, the test program has been slightly modi-
fied to produce more information about the size of the expression clusters,
especially those with many instances.

From the extended output in figure 6.2 it becomes clear that the ki-
netic functions that could not be recognized are divided into some very large
clusters which contain predominantly mass action type kinetics or Michaelis-
Menten type kinetics. This means that the normalization and the comparison

EXPRESSION NORMALIZATION 167

...
The expressions that could not be mapped are divided into 733 different expressions.
Expression with more than 20 instances (768): (-1) * G2R * k7r + G2K * R * k7
Expression with more than 20 instances (723): C * Y * a1
Expression with more than 20 instances (643): C * kd
Expression with more than 20 instances (171): (M * V2 * cell)/(K2 + M)
Expression with more than 20 instances (163): Bar1aex * Extracellular * alpha * k1
Expression with more than 20 instances (155): (-1) * PG2 * k25 + G2K * kwee
Expression with more than 20 instances (123): (CELL * Vsp * dClkF_tau1)/(K1 + dClkF_tau1)
Expression with more than 20 instances (68): (C * X * cell * vd)/(C + Kd)
Expression with more than 20 instances (58): (-1) * CC * Cell * k4 + Cell * P2 * T2 * k3
Expression with more than 20 instances (54): (V4 * X * cell)/(K4 + X)
Expression with more than 20 instances (53): (Vs * default * (KI)^(n))/((KI)^(n) + (Pn)^(n))
Expression with more than 20 instances (50): (M * V2)/(K2 + M)
Expression with more than 20 instances (41): (-1) * J12_k2 * Shc_dpEGFR * c1 + J12_k1 * L_dpEGFR * Shc * c1
Expression with more than 20 instances (37): (Mass * R * SPF * kp)/(Kmp + R)
Expression with more than 20 instances (37): (-1) * Cn * compartment_0000002 * k2 + CC * Cell * k1
Expression with more than 20 instances (30): ((-1) * Km * Vmax * c1 * ratio * s174 + Vmax * c1 * ratio
* s130 * s2 + Vmax * c1 * s130 * s2)/(Km)
Expression with more than 20 instances (29): ((-1) * Kms * Vr * compartment_2 * species_15 + Kmp * Vf
* compartment_2 * species_14)/(Kmp * Kms + Kmp * species_14 + Kms * species_15)
Expression with more than 20 instances (26): (CH2FH4 * NADP * Vm * cell)/(CH2FH4 * Km2 + CH2FH4 * NADP
+ Km1 * Km2 + Km1 * NADP)
Expression with more than 20 instances (26): (-1) * kr19 * x25 * x28 + k19 * x27
Expression with more than 20 instances (25): 0.0
Expression with more than 20 instances (23): Glucose * Lysine * compartment * k1a * p1
Expression with more than 20 instances (21): SS_Me * d_k_degr + SS_Me * mu
...

Figure 6.2: Excerpt from the extended output from the analysis of the same
set of models as has been depicted in figure 5.19. In this output the actual
number of expressions in clusters with more than 20 instances can be seen.
There are several very large clusters (first 10) with several hundred expression
which seem correspond to mass action kinetics and Michaelis-Menten type
rate laws. Probably more than 3000 of the unrecognized 4800 expressions
consists of mass action and Michaelis-Menten rate laws.

168 DISCUSSION

work as expected, but that the normalized expression is not recognized as
e.g. a mass action expression.

The fact that they are not recognized lies is the way the expression recog-
nition has been implemented. The kinetic functions in COPASIs kinetic func-
tion database expect individual kinetic functions to follow a certain schema.
E.g. a mass action kinetic has to consists of the concentrations of all sub-
strates (and all products) multiplied by a kinetic constant. In SBML, the
user has more flexibility in specifying kinetic laws and their components
which sometimes leads to kinetic expressions that e.g. represent mass action,
but in a way that is not compatible with the mass action kinetic term as
COPASI expects it.

One very common way these kinetics laws seem to be written in the
models from the BioModels database is to use the amounts of the substrates
(and products) instead of the concentrations. The conversion factor needed to
convert these amounts to concentrations in these cases is implicitly included
in the kinetic constants.

This applies equally to most other kinetic function types, so if the kinetic
functions in a SBML model are not written in a way that is compatible
with the way they are represented in COPASI, these functions will not be
recognized by the current implementation.

One way to improve the recognition of kinetic functions would be to use
a different standard to compare the normalized expressions against. One
obvious candidate for this would be the entries for kinetic functions in the
Systems Biology Ontology (SBO). The identifiers for these entries are for
example used in SBML to annotate kinetic functions.

Looking at the corresponding entries in the SBO as for example depicted
in figure 6.3 it becomes clear that this is not trivial. Each kinetic function
in SBO is described by a text and by a number of alternative expressions.
However, the expressions don’t represent all possible ways of writing that
kinetic law in SBML.

The SBO term described by entry SBO:0000054 shows that the kinetic
law for an irreversible mass action reaction with two substrates should follow
the scheme k ∗ R1 ∗ R2 where k is the kinetic constant and R1 and R2
are substrate quantities. In SBML the expression for this reaction could be
written in many different ways, e.g. k ∗ R1/C1 ∗ R2 or k ∗ R1/C1 ∗ R2/C2
where k is the kinetic constant, R1 and R2 are the amounts or concentrations
of substrates and C1 and C2 represent the volumes of compartments. How
the expression has to be written in SBML depends on several things, e.g.
whether the hasOnlySubstanceUnits flag has been set on one or more species
participating in the reaction. The two examples given above represent only

EXPRESSION NORMALIZATION 169

a subset of the many different ways in which this kinetic law can be written
in SBML. So even using all expressions for a kinetic law specified in the
Systems Biology Ontology as a standard for the comparison would not solve
the problem.

The only way to really determine if a given expression corresponds to a
certain SBO term is to analyze the meaning of the textual description and
to compare it to a given expression. This is nothing a computer can do
automatically. For this, the textual descriptions of these SBO terms have
to be converted to a set of rules in the form of program source code which
can then be used to identify the expressions. This entails a lot of work and
unfortunately we currently do not have the resources to pursue this.

Figure 6.3: Systems Biology Ontology term SBO:0000054, which describes
the irreversible mass action term for a two substrate reaction for a reaction
in a continuous simulation framework.

What the results of analyzing the model from the BioModels database also
showed is that, although the complete analysis only takes a few hours, the
analysis of certain expressions take several minutes to finish. Since users can

170 DISCUSSION

not be expected to wait 15 minutes for a file to be analyzed when they import
it into COPASI, we need to improve the overall speed of the implementation
before we can consider using this code in an official release of COPASI.

One obvious way to achieve this would be to distribute the normalization
task over all processors available in the computer. Since modern desktop
computers contain between 2 and several dozen processors, this should al-
ready provide a significant speed improvement.

In summary it can be said that the actual normalization and comparison
works well, only the way we implemented the identification of the kinetic
functions is to naïve and has to be improved. Due to the flexibility of the
SBML format and the way the Systems Biology Ontology encodes the de-
scriptions of kinetic functions, this is no trivial task and we don’t expect
to be able to come up with a solution in the immediate future. Since this
problem could potentially be of interest to other developers handling SBML
model files, this problem might be solved in a concerted effort distributing
the work over several groups.

Acknowledgments

Inertia is the resistance of any
physical object to a change in
its state of motion or rest, or the
tendency of an object to resist
any change in its motion. It is
proportional to an object’s mass.

Wikipedia

OK. Now that most has been said or rather written, we come to the really
important part, meaning all the people without whom this work would never
have happened.

There are actually two contenders for first place in my list and in the end
I decided to put them in chronological order.

So first of all, I would like to thank my parents and grandparents. Since
the (two) people reading this probably posses knowledge about biology and
biological processes, it should be clear that I would not be here without them.

I know it must have been awful to have a kid that thinks he knows
everything better than his parents, but luckily you didn’t think about giving
me up for adoption. (At least I assume you didn’t.)

Next in line for taking blame for this work is Prof. Dr. Ursula Kummer.
Without her constant pushing and nagging about me finally writing this
thesis, it would surely never have happened. And as a sign of how persistent
she can be, it has to be noted that it took her close to ten years to finally
push me this far. ¨̂

This shows certain parallels to characters from Greek mythology and can
serve as proof that the physical principle of inertia is correct.

Without her constant support and input and the many valuable discus-
sions, none of this work would probably have come to be. "Thank you so

171

172 ACKNOWLEDGMENTS

much Ursula."

This also proves that no good deed goes unpunished, and she actually
had to read this thesis.

(And to whoever else has to read this thesis: It is Ursulas’ fault, so com-
plaints should be directed at: ursula.kummer at returntosendermail.de.)

Now that the major blame has been distributed where due, there is a
whole cloud of other people that were essential to this work in one way or
other.

My gratitude also goes to Dr. Rebecca Wade for agreeing to referee this
thesis. Since Rebecca is a very kind person and never did anything bad to
me, there really isn’t any good reason why she got punished with this task.
I guess she was just in the wrong place at the wrong time. Sorry.

Another round of thanks goes to Prof. Dr. Ursula Klingmüller and Prof.
Dr. Victor Sourjik who have kindly agreed to act as examiners at my defense.
I really hope I am not going to waste your time. (That was actually a broad
hint! ¨̂)

Further, I would like to thank my colleagues Dr. Stefan Hoops, Dr.
Jürgen Pahle, Dr. Ursula Rost, Dr. Sven Sahle as well as Prof. Dr. Katja
Wegner. They have played a major role in many of the projects described in
this thesis. They also always provided me with lots of good advice when I
ran out of ideas, which probably was quite often. Especially Dr. Sven Sahle
contributed code and lots of useful feedback to many of the implementations
described. (As a general rule one can say that the things that work have
been contributed by him and I did all the rest.)

Also thanks to Jocelyn Faberman for proofreading parts of my thesis and
making valuable suggestions. I know if I had let you have your way with this
thesis, I might have been close to retirement by the time it would have been
finished, but I would surely have gotten the Pulitzer price. Unfortunately I
am a bit short on time, so we will never know. Likewise can be said for Dr.
Ursula Rost. Whenever she finished reading some part of this thesis, a scary
grin appeared out of thin air, reminiscent of the cheshire cat from Jim Carols
"Alice in Wonderland", and I knew I had to brace myself.

Actually I would like to thank all my colleagues here in Heidelberg because
without them, this place just wouldn’t be the same. And the reason I am

ACKNOWLEDGMENTS 173

enjoy working here is to a large part due to them.

This is really difficult because there are so many people that I owe thanks
and I know that I will probably forget more than one.

A big thanks also goes to the SBML community as a whole and to Frank
Bergmann who has provided me with lots of feedback regarding the SBML
Layout and Render Extension. I think he is the only one who ever completely
read the specification (including me).

Here, I would like to single out Prof. Dr. Akira Funahashi and Dr.
Akiya Jouraku who provided me with valuable feedback regarding the Java
language bindings.

I am also much obliged to Dr. Frederico Pinna for letting me borrow his
model for the use case in this thesis. By patiently asnwering all of my stupid
questions, he is also helping me in refreshing my biological knowledge again.

Some special thanks is due to Dr. Donald Knuth who by inventing the
superb text typesetting system TEX has saved me from writing this thesis
with Microsoft Word. Thanks Dr. Knuth, you have probably saved the rest
of what is left of my sanity.

Last but by no means least1, big big thanks to my wife Anika who had
to fill in for me2 on an awful lot of occasions during the last few months
and I could never have managed this without her. She was also a great help
in writing this thesis and when she finally managed to read the complete
introduction without falling asleep on the floor, I knew I was finally getting
somewhere.

I also want to thank my three kids Felicia, Melina and Timon for making
sure our local ice cream parlor did not go out of business while I was tied up,
You did good, but now I am taking over again.

Since I have neither a cat nor a dog, the acknowledgments end here. And
if I should ever get an Academy Award, I can hopefully reuse this text.

1I had to say this because she is standing beside me with the rolling pin.
2Yes, those who know us both probably will have a hard time picturing this.

Bibliography

[1] GOTTSCHALK, A., Prof. Carl Neuberg, Nature 178 (1956) 722.

[2] Székessy-Hermann, V., Friedrich Wöhler synthetized urea 150 years
ago, Orv Hetil 119 (1978) 3073.

[3] Schmitz, R., [the beginnings of organic chemistry and today’s neo-
vitalism. on the 100th anniversary of Friedrich wöhler’s death on 23
september 1982], Sudhoffs Arch Z Wissenschaftsgesch Beih (1984) 105.

[4] Ramberg, P. J., The death of vitalism and the birth of organic chem-
istry: Wohler’s urea synthesis and the disciplinary identity of organic
chemistry, Ambix 47 (2000) 170.

[5] Websters dictionary entry for "vitalism", http://www.merriam-
webster.com/dictionary/vitalism.

[6] Wikipedia entry for "vitalism", http://en.wikipedia.org/wiki/Vitalism.

[7] Kinne-Saffran, E. and Kinne, R. K., Vitalism and synthesis of urea.
From Friedrich Wöhler to Hans A. Krebs, Am. J. Nephrol. 19 (1999)
290.

[8] Dahm, R., Discovering DNA: Friedrich Miescher and the early years
of nucleic acid research, Hum. Genet. 122 (2008) 565.

[9] Tipson, R., Phoebus Aaron Theodor Levene, 1869-1940, Adv. Carbo-
hydr. Chem. 12 (1957) 1.

[10] Gabryelska, M. M., Szymański, M., and Barciszewski, J., [dna: from
miescher to venter and beyond], Postepy Biochem. 55 (2009) 342.

[11] WATSON, J. D. and CRICK, F. H., Molecular structure of nucleic
acids; a structure for deoxyribose nucleic acid, Nature 171 (1953) 737.

[12] Crick, F., Central dogma of molecular biology, Nature 227 (1970) 561.

174

BIBLIOGRAPHY 175

[13] Khorana, H. G., Polynucleotide synthesis and the genetic code, Fed.
Proc. 24 (1965) 1473.

[14] Sanger, F. et al., Nucleotide sequence of bacteriophage phi x174 dna,
Nature 265 (1977) 687.

[15] Various, The human genome, Nature 409 (2001) 745.

[16] Various, The human genome, Science 291 (2001) 1145.

[17] Various, Double helix at 50, Nature 422 (2003) 787.

[18] Venter, J. C. et al., The sequence of the human genome, Science 291
(2001) 1304.

[19] Goodman, N., Biological data becomes computer literate: new ad-
vances in bioinformatics, Curr. Opin. Biotechnol. 13 (2002) 68.

[20] Ng, P. C. and Kirkness, E. F., Whole genome sequencing, Methods
Mol. Biol. 628 (2010) 215.

[21] Fang, F. C. and Casadevall, A., Reductionistic and holistic science,
Infect Immun 79 (2011) 1401.

[22] Bhalla, U. S. and Iyengar, R., Emergent properties of networks of
biological signaling pathways, Science 283 (1999) 381.

[23] Aon, M. A., Cortassa, S., and Lloyd, D., Chaotic dynamics and fractal
space in biochemistry: simplicity underlies complexity, Cell. Biol. Int.
24 (2000) 581.

[24] Ross, J. and Arkin, A. P., Complex systems: from chemistry to systems
biology, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 6433.

[25] Kitano, H., Computational systems biology, Nature 420 (2002) 206.

[26] Ideker, T., Galitski, T., and Hood, L., A new approach to decoding
life: systems biology, Annu. Rev. Genomics Hum. Genet. 2 (2001) 343.

[27] Cassman, M., Barriers to progress in systems biology, Nature 438
(2005) 1079.

[28] Bruggeman, F. and Westerhoff, H., The nature of systems biology,
Trends Microbiol. 15 (2007) 45.

176 BIBLIOGRAPHY

[29] Mendes, P., Gepasi: a software package for modelling the dynamics,
steady states and control of biochemical and other systems, Comput.
Appl. Biosci. 9 (1993) 563.

[30] Gepasi web page,
http://www.gepasi.org.

[31] Kitano, H., Funahashi, A., Matsuoka, Y., and Oda, K., Using process
diagrams for the graphical representation of biological networks, Nat.
Biotechnol. 23 (2005) 961.

[32] Lloyd C, Halstead M, N. P., CellML: its future, present and past,
Prog. Biophys. Mol. Biol. 85 (2004) 433.

[33] Garny, A. et al., CellML and associated tools and techniques, Philos.
Transact. A. Math. Phys. Eng. Sci. 366 (2008) 3017.

[34] CellML web page, http://www.cellml.org/.

[35] CellML case studies, http://www.cellml.org/community/case-studies.

[36] Hedley, W., Nelson, M., Nielsen, P., Bullivant, D., and Hunter, P.,
XML Languages for Describing Biological Models, Proceedings of the
Physiological Society of New Zealand 19 (2000).

[37] Bullivant, D., Hedley, W., Hunter, P., Nelson, M., and Nielsen, P.,
Languages for the definition and exchange of biological models, Pro-
ceedings of the Physiological Society of New Zealand 20 (2001).

[38] Demir, E. et al., The BioPAX community standard for pathway data
sharing, Nat. Biotechnol. 28 (2010) 935.

[39] BioPAX web page, http://www.biopax.org/.

[40] Hucka, M. et al., The systems biology markup language (SBML): a
medium for representation and exchange of biochemical network mod-
els, Bioinformatics 1 (2003) 524.

[41] SBML homepage, http://www.sbml.org/, 2006.

[42] Le Novère, N. et al., The Systems Biology Graphical Notation, Nature
Biotechnology 27 (2009) 735.

[43] Electrical circuit diagram package for tikz,
http://www.texample.net/tikz/examples/circuit-decorations/.

BIBLIOGRAPHY 177

[44] Degtyarenko, K. et al., ChEBI: a database and ontology for chemical
entities of biological interest, Nucleic Acids Res. 36 (2008) 344.

[45] Degtyarenko, K., Hastings, J., de Matos, P., and Ennis, M., ChEBI:
an open bioinformatics and cheminformatics resource, Curr Protoc
Bioinformatics 14.9 (2009) 344.

[46] Virtual Liver Network web page, http://www.virtual-liver.de/.

[47] Kountouras, J., Boura, P., and Lygidakis, N., Liver regeneration after
hepatectomy, Hepatogastroenterology 48 (2001) 556.

[48] Fausto, N., Campbell, J., and Riehle, K., Liver regeneration, Hepatol-
ogy 43 (2006) 45.

[49] Michalopoulos, G., Liver regeneration, J. Cell Physiol. 213 (2007) 286.

[50] Michalopoulos, G., Liver regeneration after partial hepatectomy: crit-
ical analysis of mechanistic dilemmas, Am. J. Pathol. 176 (2010) 2.

[51] Pan, D., Hippo signaling in organ size control, Genes Dev. 21 (2007)
886.

[52] Saucedo, L. and Edgar, B., Filling out the hippo pathway, Nature
Reviews Molecular Cell Biology 8 (2007) 613.

[53] Zhang, L., Yue, T., and Jiang, J., Hippo signaling pathway and organ
size control, Fly 3 (2009) 68.

[54] Halder, G. and Johnson, R., Hippo signaling: growth control and
beyond, Development 138 (2011) 9.

[55] Single unix specification,
http://www.unix.org/what_is_unix/single_unix_specification.html.

[56] Oracle solaris,
http://www.oracle.com/solaris/index.html.

[57] HP-UX,
http://en.wikipedia.org/wiki/HP-UX.

[58] IBM AIX,
http://www-03.ibm.com/systems/power/software/aix/index.html.

[59] BSD,
http://www.bsd.org.

178 BIBLIOGRAPHY

[60] GNU/Linux web page,
http://www.gnu.org/.

[61] Wikipedia entry for the the x window system,
http://en.wikipedia.org/wiki/X_Window_System.

[62] Debian linux home page,
http://www.debian.org.

[63] Ubuntu linux home page,
http://www.ubuntu.com/.

[64] Mac OS X,
http://www.apple.com/macosx/what-is-macosx/.

[65] FreeBSD home page,
http://www.freebsd.org/.

[66] NetBSD home page,
http://www.netbsd.org/.

[67] Microsoft Windows,
http://www.microsoft.com/windows/.

[68] Stroustrup, B., The C++ Programming Language, Addison Wesley,
2004.

[69] Hoops, S. et al., COPASI–a COmplex PAthway SImulator, Bioinfor-
matics 22 (2006) 3067.

[70] Bornstein, B., Keating, S., Jouraku, A., and Hucka, M., LibSBML: An
API library for SBML, Bioinformatics 26 (2008) 880.

[71] GNU Compiler Collection,
http://gcc.gnu.org/.

[72] Microsoft visual studio express edition web page,
http://www.microsoft.com/express/.

[73] Intel compiler web page,
http://software.intel.com/en-us/articles/intel-compilers/.

[74] Oracle solaris studio web page,
http://www.oracle.com/technetwork/server-
storage/solarisstudio/overview/index.html.

BIBLIOGRAPHY 179

[75] Java programming language wikipedia entry,
http://en.wikipedia.org/wiki/Java_(programming_language).

[76] BioUML web page,
http://www.biouml.org/, 2011.

[77] JSBML project web page,
http://sourceforge.net/projects/jsbml/files/jsbml/0.8-b1/.

[78] Python history & license,
http://docs.python.org/license.html.

[79] Cock, P. et al., Biopython: freely available python tools for computa-
tional molecular biology and bioinformatics, Bioinformatics 25 (2009)
1422.

[80] Olivier, B., Rohwer, J., and Hofmeyr, J., Modelling cellular processes
with python and scipy, Mol. Biol. Rep. 29 (2002) 249.

[81] Krause, F. et al., Annotation and merging of SBML models with
semanticSBML, Bioinformatics 26 (2010) 421.

[82] Schulz, M., Bakker, B., and Klipp, E., Tide: a software for the sys-
tematic scanning of drug targets in kinetic network models, BMC
Bioinformatics 10 (2009) 344.

[83] Perl web page,
http://www.perl.org/.

[84] Stajich, J. et al., The bioperl toolkit: Perl modules for the life sciences,
Genome Res. 12 (2002) 1611.

[85] GNU Octave web page,
http://www.gnu.org/software/octave/.

[86] Matlab web page,
http://www.mathworks.com/products/matlab/.

[87] R language web page,
http://www.r-project.org/.

[88] Wikipedia entry for s programming language,
http://en.wikipedia.org/wiki/S_(programming_language).

[89] Beck, K., Test Driven Development: By Example, Addison-Wesley
Professional, 2002.

180 BIBLIOGRAPHY

[90] Check unit testing framework web page,
http://check.sourceforge.net/.

[91] GNU Lesser General Public License web page,
http://www.gnu.org/licenses/lgpl.html.

[92] CPPUNIT web page,
http://sourceforge.net/apps/mediawiki/cppunit/index.php?title=Main_Page.

[93] JUnit web page,
http://junit.sourceforge.net/.

[94] Eclipse public license web page,
http://www.eclipse.org/legal/epl-v10.html.

[95] GNU debugger web page,
http://www.gnu.org/software/gdb/.

[96] Documentation to the DBX debugger,
http://developers.sun.com/sunstudio/overview/topics/debugging.jsp.

[97] Wikipedia entry for the Intel debugger,
http://en.wikipedia.org/wiki/Intel_Debugger.

[98] Microsoft debugger for windows web page,
http://msdn.microsoft.com/en-us/windows/hardware/gg463009.aspx.

[99] Valgrind web page,
http://valgrind.org/.

[100] Qt framework web page,
http://qt.nokia.com/, 2011.

[101] Qt widget for technical applications,
http://qwt.sourceforge.net/.

[102] Qwtplot3d web page,
http://qwtplot3d.sourceforge.net/.

[103] OpenGL web page,
http://www.opengl.org/.

[104] XML specification web page,
http://www.w3.org/XML/.

BIBLIOGRAPHY 181

[105] Expat XML parser web page,
http://expat.sourceforge.net/.

[106] Xerces XML parser web page,
http://xerces.apache.org/xerces-c/.

[107] Gnome XML parser web page,
http://xmlsoft.org/.

[108] XML schema specification web page,
http://www.w3.org/XML/Schema.html.

[109] RELAX NG web page,
http://www.relaxng.org/.

[110] Resource description framework web page,
http://www.w3.org/RDF/.

[111] Kanehisa, M. and Goto, S., KEGG: kyoto encyclopedia of genes and
genomes, Nucleic Acids Res. 28 (2000) 27.

[112] Croft, D. et al., Reactome: a database of reactions, pathways and
biological processes, Nucleic Acids Res. 39 (2011) D691.

[113] SBML Level 2 Version 4 specification,
http://precedings.nature.com/documents/2715/version/1.

[114] Raptor RDF Syntax Library web page,
http://librdf.org/raptor/.

[115] Jing RELAX NG validator web page,
http://www.thaiopensource.com/relaxng/jing.html.

[116] Hucka, M. and Finney, A., Systems Biology Markup Language: Level
2 and beyond, Biochemical Society Transactions 31 (2003) 1472.

[117] SBML WIKI,
http://sbml.org/SBML_Software_Guide, 2010.

[118] Firefox browser web page,
http://www.mozilla.com/en-US/firefox/, 2011.

[119] Safari browser web page,
http://www.apple.com/safari/, 2011.

182 BIBLIOGRAPHY

[120] Opera browser web page,
http://www.opera.com/, 2011.

[121] Batik SVG library web page,
http://xmlgraphics.apache.org/batik/, 2011.

[122] rsvg library web page,
http://librsvg.sourceforge.net/, 2011.

[123] Inkscape SVG drawing program web page,
http://inkscape.org/.

[124] Gimp web page,
http://www.gimp.org/, 2011.

[125] Sauro, H. et al., Next generation simulation tools: the systems biology
workbench and biospice integration, OMICS 7 (2003) 355.

[126] Simplified Wrapper and Interface Generator web page,
http://www.swig.org/.

[127] SCons software build system web page,
http://www.scons.org/.

[128] CMake web page,
http://www.cmake.org/.

[129] SBML supporting software web page,
http://sbml.org/SBML_Software_Guide, 2011.

[130] libsbgn web page,
http://libsbgn.sourceforge.net, 2011.

[131] Voet, D. and Voet, J., Biochemistry, Wiley, 3rd edition, 2004.

[132] GraphML web page,
http://graphml.graphdrawing.org/, 2011.

[133] SVG specification web page,
http://www.w3.org/Graphics/SVG/, 2011.

[134] 8th SBML Forum Meeting,
http://sbml.org/Events/Workshops/The_8th_SBML_Forum_Meeting.

[135] check unit testing framework web page,
http://check.sourceforge.net, 2011.

BIBLIOGRAPHY 183

[136] XSLT specification web page,
http://www.w3.org/TR/xslt, 2011.

[137] Cairo rendering library web page,
http://www.cairographics.org, 2011.

[138] SBML Level 3 extension proposals on sbml.org,
http://sbml.org/Community/Wiki/SBML_Level_3_Proposals, 2011.

[139] SBML spatial extension proposal on sbml.org,
http://sbml.org/Community/Wiki/SBML_Level_3_Proposals/· · ·
↪→ Spatial_Diffusion, 2011.

[140] model composition proposal on sbml.org,
http://sbml.org/Community/Wiki/SBML_Level_3_Proposals/· · ·
↪→Hierarchical_Model_Composition, 2011.

[141] SBML Level 3 development process,
http://sbml.org/Documents/SBML_Development_Process/· · ·
↪→ SBML_Development_Process_for_SBML_Level_3, 2011.

[142] SBML Layout proposal on sbml.org,
http://sbml.org/Community/Wiki/SBML_Level_3_Proposals/Layout,
2011.

[143] Glucose SVG image on Wikipedia,
http://commons.wikimedia.org/wiki/File:Glucose_structure.svg,
2011.

[144] SBML Render Extension documentation,
http://otto.bioquant.uni-heidelberg.de/bcb/sbml/, 2007.

[145] SBML Level 3 packages,
http://sbml.org/Community/Wiki/SBML_Level_3_Core/Package_mechanism,
2011.

[146] Presentation of layout support in CellDesigner,
http://sbml.org/images/2/26/Osana-celldesigner-layout.pdf, 2005.

[147] CellDesigner 4, towards CellDesigner 5,
http://www.ebi.ac.uk/biomodels/meetings/2ndTrainingCamp/CellDesigner.pdf.

[148] SBW layout viewer,
http://www.sys-bio.org/Layout/, 2006.

184 BIBLIOGRAPHY

[149] Deckard, A., Bergmann, F., and Sauro, H., Supporting the SBML
layout extension, Bioinformatics 22 (2006) 2966.

[150] SBMLLayout Library web page,
http://sbmllayout.sourceforge.net/, 2011.

[151] Shen, S., Bergmann, F., and Sauro, H., SBML2TikZ: supporting the
SBML render extension in LaTeX, Bioinformatics 26 (2010) 2794.

[152] Latex web page,
http://www.latex-project.org/, 2011.

[153] PGF/TIKZ web page,
http://sourceforge.net/projects/pgf/, 2011.

[154] Villéger, A., Pettifer, S., and Kell, D., Arcadia: a visualization tool for
metabolic pathways, Bioinformatics 26 (2010) 1470.

[155] Dräger, A., Hassis, N., Supper, J., Schröder, A., and A, Z.,
SBMLsqueezer: a CellDesigner plug-in to generate kinetic rate equa-
tions for biochemical networks, BMC Syst. Biol. 2 (2008) 39.

[156] COPASI web page,
http://www.copasi.org.

[157] C++ ISO standard,
http://www.open-std.org/jtc1/sc22/wg21/docs/standards#14882.

[158] Berkeley Madonna,
http://www.berkeleymadonna.com/.

[159] XPP-Auth,
http://www.math.pitt.edu/∼bard/xpp/xpp.html.

[160] Li, C. et al., BioModels Database: An enhanced, curated and anno-
tated resource for published quantitative kinetic models, BMC Syst.
Biol. 4 (2010) 92.

[161] SED web page,
http://www.gnu.org/software/sed/.

[162] Shapiro, B., Hucka, M., Finney, A., and Doyle, J., MathSBML: a pack-
age for manipulating SBML-based biological models, Bioinformatics 20
(2004) 2829.

BIBLIOGRAPHY 185

[163] SBML test suite,
http://sbml.org/Software/SBML_Test_Suite.

[164] SBML test suite distribution,
http://sourceforge.net/projects/sbml/files/test-suite/.

[165] SBML online test suite,
http://sbml.org/Facilities/Online_SBML_Test_Suite.

[166] Bergmann, F. and Sauro, H., Comparing simulation results of SBML
capable simulators, Bioinformatics 24 (2008) 1963.

[167] SBML simulator comparison web page,
http://www.sys-bio.org/sbwWiki/compare.

[168] Le Novère, N. et al., BioModels Database: a free, centralized database
of curated, published, quantitative kinetic models of biochemical and
cellular systems, Nucleic Acids Research 34 (2006) D689.

[169] Evans, T., Gillespie, C., and Wilkinson, D., The SBML discrete
stochastic models test suite, Bioinformatics 24 (2008) 285.

[170] Le Novère, N. et al., Minimum information requested in the annotation
of biochemical models (MIRIAM), Nat. Biotechnol. 23 (2005) 1509.

[171] MIRIAM web page,
http://biomodels.net/miriam/.

[172] Rost, U. and Kummer, U., Visualisation of biochemical network sim-
ulations with SimWiz, Syst. Biol. (Stevenage) 1 (2004) 184.

[173] Heinrich, R. and Schuster, S., The modelling of metabolic systems.
structure, control and optimality, Biosystems 47 (1998) 61.

[174] Machné, R. et al., The SBML ODE Solver Library: a native API for
symbolic and fast numerical analysis of reaction networks, Bioinfor-
matics 22 (2006) 1406.

[175] Systems Biology Software Infrastructure,
http://www.sbsi.ed.ac.uk/index.html.

[176] JlibSEDML web page,
http://ntcnp.org/twiki/bin/view/VCell/JlibSEDML.

186 BIBLIOGRAPHY

[177] Schilling, C., Schuster, S., Palsson, B., and Heinrich, R., Metabolic
pathway analysis: basic concepts and scientific applications in the post-
genomic era, Biotechnology Progress 15 (1999) 296.

[178] SBML Level 2 Version 1 specification,
http://sbml.org/Documents/Specifications/· · ·
↪→All_Releases_and_Versions_of_SBML_Level_2.

[179] SBML Level 2 Version 2 specification,
http://sbml.org/Documents/Specifications/· · ·
↪→All_Releases_and_Versions_of_SBML_Level_2.

[180] SBML Level 2 Version 3 specification,
http://precedings.nature.com/documents/58/version/2.

[181] SBML Level 3 Version 1 specification,
http://precedings.nature.com/documents/4959/version/1.

[182] definition of the canonical disjunctive normal form for logical expres-
sions from Wolfram Reasearch,
http://mathworld.wolfram.com/DisjunctiveNormalForm.html, 2011.

[183] definition of the canonical disjunctive normal form for logical expres-
sions from wikipedia,
http://en.wikipedia.org/wiki/Disjunctive_normal_form, 2011.

[184] Ashburner, M. et al., Gene ontology: tool for the unification of biology.
The Gene Ontology Consortium, Nat. Genet. 25 (2000) 25.

[185] gene ontology web page, http://amigo.geneontology.org.

[186] Automatic layout proposal for google summer of code 2011,
http://rumo.biologie.hu-berlin.de/gsoc/.

[187] mplayer/mencoder video player/encode web page,
http://www.mplayerhq.hu.

[188] ffmpeg video/audio encoding library web page,
http://www.ffmpeg.org.

[189] Apple Quicktime software web page,
http://www.apple.com/quicktime/.

[190] Adobe Premiere software web page,
http://www.adobe.com/products/premiere/.

BIBLIOGRAPHY 187

[191] Herrgård, M. J. et al., A consensus yeast metabolic network reconstruc-
tion obtained from a community approach to systems biology, Nat.
Biotechnol. 26 (2008) 1155.

[192] Yeast whole genome model from biomodels database,
http://www.ebi.ac.uk/biomodels-main/MODEL0072364382.

	Zusammenfassung
	Summary
	Abbreviations
	Introduction
	Materials & Methods
	Operating Systems
	Programming Languages
	Unit Testing
	Debugging & Profiling Tools
	Libraries & Standards

	SBML Layout & Render Extension
	SBML & Diagrams
	Alternative Diagram Formats
	Design & History
	The SBML Layout Extension Specification
	Implementation Of The Layout Extension
	The SBML Render Extension
	Third Party Implementations
	The SBML Layout And Render Extension In NF-B Modeling

	Standards In COPASI
	SBML Support In COPASI
	Layout And Render Information In COPASI
	Graphical Display Of Time Course Simulation Data
	Graphical Display Of Elementary Modes
	COPASI Language Bindings
	NF-B Modeling with COPASI
	Work Contributions

	Expression Normalization
	Normal Form Classes
	Expression Tree Classes
	Normalization Algorithm
	Testing
	Normalizing BioModels Expressions
	Finding Kinetic Laws For The NF-B Model

	Discussion
	Layout And Render Information In SBML
	Standards In COPASI
	Expression Normalization

	Acknowledgments

