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Abstract

This thesis investigates beam ensemble selection strategies in intensity-modulated radiation therapy treatment
planning. Beam ensemble selection strategies are applied to find the very beam ensembles that meet the treat-
ments’ objectives at the best possible rate.

(1) A formal description of the beam ensemble selection problem is presented and the characteristics of the
search space is discussed with a focus on its non-convexity and exponential complexity. (2) We review existing
approaches to beam ensemble selection and provide a comprehensive overview of the field. (3) Conceptual ad-
vancements of beam ensemble selection strategies relying on score functions and geometric considerations are
introduced. For photons, we demonstrate a clear benefit regarding organ at risk sparing for asymmetric patient
geometries as regularly observed within the abdomen or skull. For protons, phantom studies yield plausible
beam configurations. The measures taken to guarantee robustness regarding potential uncertainties are promis-
ing but require refinements. (4) The simultaneous optimization of beamlet weights and beam orientations is
investigated at a very high precision. We apply different metaheuristics for the combinatorial optimization of
beam ensembles and confirm the beneficial performance of genetic algorithms in this context.

Both heuristic selection and combinatorial optimization of beam ensembles may yield extensive benefits for
complicated planning cases. In the future it will be critical to transfer automated beam ensemble selection to
the clinic for the benefit of the patient.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit Verfahren zur Auswahl von geeigneten Einstrahlrichtungen in
der intensitätsmodulierten Strahlentherapie. Diese Verfahren werden eingesetzt, um ein Ensemble von Ein-
strahlrichtungen zu finden, welches die bestmögliche Realisierung der klinischen Bestrahlungsziele ermöglicht.

(1) Wir geben eine formale, mathematische Beschreibung des Auswahlproblems von optimalen Einstrahlrich-
tungen und diskutieren die Eigenschaften des Lösungsraums, insbesondere im Hinblick auf Nicht-Konvexität
und exponentielle Komplexität. (2) Wir diskutieren bestehende Ansätze im Rahmen einer umfassenden Liter-
aturauswertung. (3) Konzeptionelle Weiterentwicklungen von Strategien zur Auswahl von Einstrahlrichtungen,
die auf skalaren Gütefunktionen oder geometrischen Überlegungen basieren, werden vorgestellt. Für Photo-
nen demonstrieren wir deutliche Verbesserungen für asymmetrische Patientengeometrien, wie sie häufig im
Abdomen oder Schädel auftreten. Erste Experimente für Protonen liefern plausible Einstrahlrichtungen. Die
Ansätze zur Gewährleistung von Robustheit sind vielversprechend, bedürfen aber weiterer Verbesserungen. (4)
Wir untersuchen die gleichzeitige Optimierung von Einstrahlrichtungen und zugehörigen Fluenzprofilen mit
sehr hoher Genauigkeit. In einem Vergleich verschiedener Metaheuristiken zur kombinatorischen Optimierung
zeichnet sich ein genetischer Algorithmus durch die besten Konvergenzeigenschaften und die besten resul-
tierenden Bestrahlungspläne aus.

Sowohl der Einsatz von Heuristiken als auch der Einsatz von kombinatorischen Optimierungsverfahren zur
Auswahl von Einstrahlrichtungen kann eine erhebliche Verbesserung komplizierter Bestrahlungspläne ermöglichen.
Wir erachten die klinische Implementierung und Evaluierung der entwickelten Konzepte als Hauptaufgabe für
die Zukunft.
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About this manuscript

This thesis does not include a general introduction to radiation therapy. A good and free reference may be the
Radiation Oncology Physics Handbook published by the International Atomic Energy Agency1. We assume that
the reader is familiar with external beam radiotherapy, particularly with the concept of intensity-modulation.

Parts of this work have already been published in accordance with the regulations of the Faculty of Physics
and Astronomy of Heidelberg University2. Section 4.2 is based on a research paper published in Physics
in Medicine and Biology (Bangert and Oelfke 2010c), sections 4.3 and 4.5 are based on conference papers
for the Ninth International Conference on Machine Learning and Applications (Bangert et al. 2010) and the
XVIth International Conference of the Use of Computers in Radiation Therapy (Bangert and Oelfke 2010a),
respectively. The results of section 4.4 have been presented during the World Congress on Medical Physics
and Biomedical Engineering 2009 (Bangert and Oelfke 2009b) and during the Annual Meetings of the Particle
Therapy Co-Operative Group in 2009 and 2010 (Bangert and Oelfke 2009a; 2010b). Parts of chapter 5 will be
presented at the Meeting of the American Association of Physicists in Medicine 2011; section 5.1.1 describes
joint work with Peter Ziegenhein.

1Free download available at http://www-naweb.iaea.org/nahu/dmrp/syllabus.shtm.
2Promotionsordnung der Universität Heidelberg für die Naturwissenschaftlich-Mathematische Gesamtfakultät §7
http://www.physik.uni-heidelberg.de/md/physik/studium/Promotion/promotionsordnung_nawi_ma.pdf

http://www-naweb.iaea.org/nahu/dmrp/syllabus.shtm
http://www.physik.uni-heidelberg.de/md/physik/studium/Promotion/promotionsordnung_nawi_ma.pdf




Preface

“If we didn’t understand something [on Melmac], we broke it.”

- ALF, December 7, 1987 on NBC (episode 11, season 2).

Cancer is a class of disease in which a group of cells displays uncontrolled growth through division beyond
normal limits, invasion of adjacent tissues, and sometimes metastasis in other locations of the body. It may
emerge if the delicate equilibrium of information processing within a cell, which involves constant signaling of
almost all cellular components, gets out of control while intrinsic repair mechanisms fail. Both environmental
factors such as smoking, obesity, radiation exposure or infections and genetic predispositions may favor the
development of cancer.

The adequate treatment of cancer would be a direct re-establishment of normal cell signaling on a molecular
level by highly targeted agents. In the foreseeable future, however, the development of such agents for all
cancers is beyond our capabilities. Treatment modalities broadly deploying toxic agents to cancerous tissues,
such as radiation therapy, will continue to play an important role in cancer therapy and it is worthwhile to
further improve these techniques.





1. Introduction

Radiation therapy is used to treat localized cancers. It may be applied on its own or in combination with surgery
and/or chemotherapy. For every patient, the actual treatment is preceded by a complex decision-making process
called radiation therapy treatment planning.

1.1. Overview of radiation therapy treatment planning

Radiation therapy treatment planning for external beam radiotherapy is not a sequential and linear process.
Some decisions may have implications on subsequent treatment options. The most important steps are:

• Definition of clinical objectives

• Translation of clinical objectives to radiation prescription and fractionation scheme

• Selection of radiation modality and dose delivery mode

• Selection of irradiation directions and optimization of radiation fluences

The clinical objectives are defined by the medical condition of the patient. For a prostate cancer patient, for
example, curative radiation therapy is applied to control tumor growth while minimizing adverse side effects in
normal tissues such as bowel or urinary dysfunction (Andreyev 2007).

Therapeutic decisions regarding the dose prescription and fractionation scheme are based on results from clin-
ical studies (Bentzen et al. 2010). However, every patient may exhibit a different trade-off between conflicting
clinical objectives and consequently the radiation oncologist may have to reconsider on an individual basis.

The same holds - to some extent - for the selection of a suited radiation modality and delivery mode. While
very complex tumor geometries in proximity to organs at risk (OAR) might benefit from a full-fledged intensity-
modulated particle therapy treatment, convex tumors may be treated effectively with 3D conformal photon ra-
diation therapy (Cozzi et al. 2001). Of course, this decision about radiation modality and delivery mode also
underlies ordinary restrictions of the infrastructure: not all radiation oncology centers have access to all tech-
nologies.

The selection of a beneficial beam ensemble for irradiation is the very subject of this work. It will be introduced
in due detail in the following section 1.2.

For treatment strategies applying intensity modulation techniques, the lateral radiation fluence (and, for particle
therapy, the fluence in depth) of every irradiation direction is routinely optimized (Bortfeld 2006). This cal-
culation of ideal non-uniform radiation intensities according to a predefined dose prescription is called inverse
planning. Finally, the fluence profiles are translated to deliverable segments for the actual treatment.

Eventually, all treatment parameters defining the radiation therapy treatment plan have been determined and the
treatment of the patient can begin. Of course, all treatment parameters have to be monitored and re-evaluated
during the course of the treatment. Any unexpected response of the patient to the treatment requires an adequate
adjustment of the treatment plan.



Chapter 1. Introduction

1.2. Beam ensemble selection

Ionizing radiation effects all tissues along its penetration path within the patient. Radiation damage is not
restricted to cancerous tissues. For 6 − 20 MeV photons, the maximum energy deposition is observed after a
build up effect in a depth of 1.0 − 4.0 cm. Behind this maximum, the dose deposition decreases exponentially
with increasing depth as depicted in figure 1.1(a). Charged particles, in contrast, continuously lose energy
in electromagnetic interactions yielding a maximum dose deposition at their end of range called Bragg peak.
Figure 1.1(c) shows that it is possible to facilitate this physical property in the clinic to achieve a homogeneous
dose deposition in the entire target volume with intensity-modulated proton therapy (IMPT) using one beam
direction only.

(a) (b)

(c) (d)

Figure 1.1.: Dose distributions of treatment plans for a phantom applying (a) one conformal photon
beam, (b) seven conformal photon beams, (c) one 3D intensity-modulated proton beam, and (d) three
3D intensity-modulated proton beams. Red contour: target, yellow contour: OAR.

If we are to achieve a homogeneous dose deposition in the entire target volume with photons, we have to super-
impose multiple beams from different directions within the target volume, as shown in figure 1.1(b). This has a
positive side effect, which is also observed for particles, as visualized in figure 1.1(d): With multiple irradiation
angles, we can spread the dose deposition over the normal tissues. A higher dose deposition in a smaller volume
is traded in for a lower dose deposition in a larger volume.

Furthermore, the dose gradient around the entire target volume can be improved using multiple superimposed
beams. For photons, this emerges from the linear superposition of the steep lateral dose gradients of the in-
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1.2. Beam ensemble selection

dividual photon beams (see figure 1.1(a)); for protons, this emerges from the linear superposition of both the
steep lateral dose gradients and the distal dose fall-off behind the Bragg peak (see figure 1.1(c)).

It is evident that there are better and worse beam orientations regarding the clinical objectives of radiation ther-
apy treatment planning. Of course, we want to avoid irradiating directly through an OAR. The beam directions
should be well separated to spread high doses over the normal tissues. For photons, it makes sense to include
beam orientations tangentially to OAR-target interfaces in order to model a steep dose gradient between the
OARs and the target. For particles, in contrast, we rather facilitate the distal fall-off to establish a conformal
treatment plan.

The mentioned basic principles, however, do not suffice to find the ideal beam configuration for every individual
patient. The interdependence of multiple intensity-modulated fields is too complex to be overseen a priori by a
human planner. Finding the true optimum beam ensemble for every patient is a very difficult problem.

Numerous authors address the beam angle selection (BAS) problem and demonstrate the benefit of an auto-
mated BAS strategy for the quality of 3D conformal and/or intensity-modulated radiation therapy (IMRT). In
the current clinical practice, however, the majority of patients are irradiated with evenly spaced coplanar beams
or the orientations of treatment beams are adjusted based on the experience of a human expert in a tedious trial
and error process. Unlike the optimization of fluence profiles, BAS does not rely on the minimization of a
mathematical objective (Orton et al. 2008); it is typically excluded from the inverse planning process.

We see four reasons for the reluctance to apply published BAS strategies in the clinic. First, equi-spaced copla-
nar beams or a set of manually adjusted beams usually yield clinically acceptable treatment plans (Bortfeld and
Schlegel 1993). Second, the incorporation of BAS, a highly non-convex optimization problem with exponential
complexity (Bortfeld and Schlegel 1993, Craft 2007, Ehrgott et al. 2008), into conventional inverse treatment
planning results either in non-intuitive heuristics or very complex and time-consuming optimization processes.
Third, the main vendors of treatment planning software have not yet implemented BAS in a commercially
available product. Fourth, an irradiation with customized non-coplanar beams may prolong the treatment and
reduce the patient throughput in the clinic. Though additional couch rotations can be performed automatically
by all major vendors of linear accelerators by now, patient positioning might require additional attention. Un-
fortunately, this issue has not yet been studied by the radiation oncology community.

It is the objective of this work to investigate the role of BAS in radiation therapy treatment planning. We
present a mathematical description of the BAS problem in radiotherapy in chapter 2 and we review approaches
to BAS which have already been published in chapter 3. Furthermore, we introduce novel strategies for BAS
applying machine learning concepts in order to overcome shortcomings of the existing approaches in chapters
4 and 5. Advantages and disadvantages of the underlying methodology are discussed and the clinical impact
of the developed strategies are evaluated in treatment planning studies. The summary and outlook in chapter 6
conclude this thesis. Our investigations focus on applications for photon radiotherapy, but wherever applicable
we include information regarding particle therapy.
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2. Formal definition of the beam ensemble
selection problem

This chapter gives a detailed overview of conventional inverse planning, which was introduced as the final step
of the overall radiation therapy treatment planning process in section 1.1, and it discusses a formal extension of
conventional inverse planning that incorporates automated BAS.

2.1. Conventional inverse planning

Figure 2.1(a) visualizes that it is impossible to spare an OAR which is surrounded by a C-shaped target using
conformal radiation therapy. During an IMRT treatment, however, non-uniform radiation fluences may be
delivered from different beam angles. This yields a higher conformity of the dose distribution, as visualized in
figure 2.1(b). The process of finding the ideal fluence modulation according to the clinical objectives for every
patient is called inverse planning. It corresponds to the mathematical optimization of 500 − 60, 000 beamlet
weights, which constitute a discrete representation of the modulated fluence profiles.

(a) (b)

Figure 2.1.: Dose distributions of (a) a conformal photon therapy treatment plan and (b) an IMRT
treatment plan. Both treatment plans apply seven fields. Red contour: target, yellow contour: OAR,
and blue contour: normal tissue.

2.1.1. Mathematical formulation

The clinical objectives of radiation therapy are usually translated to a convex - and therewith unimodal (Nocedal
and Wright 1999) - objective function which depends on the treatment parameters. Hence, inverse planning
is reduced to a mathematically tractable optimization problem. At the German Cancer Research Center, we
usually apply a quadratic objective function F which is formulated on a discrete representation of the patient
anatomy (Oelfke and Bortfeld 2001).



Chapter 2. Formal definition of the beam ensemble selection problem

F =
∑

i ∈ Target

{
pmax

i ·
[
Di − Dmax

i

]2

+
+ pmin

i ·
[
Dmin

i − Di
]2

+

}
+

∑
i ∈ OAR

{
pmax

i ·
[
Di − Dmax

i

]2

+

}

where [x]+ =

x for x > 0
0 else.

(2.1)

Di denotes the actual dose in voxel i. Dmax
i and Dmin

i correspond to the desired maximum and minimum doses
in voxel i. For target volumes, Dmax

i and Dmin
i are often the same. For normal tissues and potential OARs, the

desired minimum dose Dmin
i = 0 Gy. This constraint is never violated and consequently not included in equa-

tion 2.1. The positivity operator [·]+ ensures that only violated constraints contribute to the objective function
F. pmin

i and pmax
i are custom penalties to assign different weights to the individual contributions. In clinical

practice, the penalties and tolerance doses are set individually for every region of interest - not for every voxel.

By defining effective penalties pi and tolerance doses Dpres
i as

pmin
i = 0 ∀ i ∈ OAR Dmin

i = Dmax
i ∀ i ∈ OAR

pi =

pmax
i , Di > Dmax

i

pmin
i , Di ≤ Dmin

i

Dpres
i =

Dmax
i , Di > Dmax

i

Dmin
i , Di ≤ Dmin

i

(2.2)

we may rewrite equation 2.1 in a more compact way:

F =
∑

i

pi
{
Di − Dpres

i

}2
. (2.3)

This representation suggests to interpret the minimization of the objective function F as a weighted least squares
fit of the actual dose distribution to a desired dose distribution. However, this analogy has to be taken with care
because F is a continuous but not continuously differentiable function due to the piecewise definition of the
effective penalties pi and tolerance doses Dpres

i .

Equation 2.3 hides that the dose Di is given by a weighted linear superposition of multiple beamlets j. Using
a dose influence matrix Di j which specifies the dose contribution from beamlet j to voxel i, this dependence
becomes explicit:

F(w) =
∑

i

pi
{
Σ j(w jDi j) − Dpres

i

}2
(2.4)

With the number of beamlets nb and number of voxels nv we can define the vectors and matrices

w =


w1
w2
...

wnb

 , dp =


Dpres

1
Dpres

2
...

Dpres
nv

 , I =


D1,1 D1,2 · · · D1,nb

D2,1 D2,2 · · · D2,nb
...

...
. . .

...

Dnv,1 DnV ,2 · · · Dnv,nb

 , P =


p1 · · · 0

p2
...

...
. . .

0 · · · pnv

 (2.5)

to rewrite equation 2.4 in matrix form:

F(w) = (Iw − dp)ᵀ P (Iw − dp). (2.6)

Equation 2.6 is a clear and concise representation of the objective Function F. The first and second derivatives
of F with respect to the beamlet weight vector w are

∇w F(w) = 2 · Iᵀ P (Iw − dp) (2.7)

∇2
w F(w) = 2 · Iᵀ P I. (2.8)
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2.1. Conventional inverse planning

This yields a formal definition of the optimization problem of inverse planning:

w∗ = arg min
w ∈ Rnb

+

{
(Iw − dp)ᵀ P (Iw − dp)

}
(2.9)

R
nb
+ is the nb-dimensional positive orthant. Note that it is physically impossible to deliver negative radiation

fluences. The beamlet weights are optimized subject to a positivity constraint.

2.1.2. Convexity of the beamlet weight optimization problem

Convex optimization problems may be handled efficiently with algorithmic optimization techniques because
they exhibit only one minimum (Nocedal and Wright 1999).

An optimization problem is convex, if the Hessian matrix is positive semidefinite on its domain of definition and
its domain of definition is a convex set (Nocedal and Wright 1999). It is evident that the domain of definition
of the inverse planning problem, i.e. the nb-dimensional positive orthant Rnb

+ , is a convex set. To show that the
Hessian of the inverse planning problem is positive semidefinite we use that a matrix M is positive semidefinite
on the domain of definition D if

rᵀ M r ≥ 0 ∀ r ∈ D. (2.10)

Based on this definition, it is straightforward to show that the inverse planning problem is convex:

rᵀ ∇2
wF(w) r ∀ r ∈ Rnb

+

= 2 · rᵀ Iᵀ P I r
= 2 · (I r)ᵀ P I r
= 2 · sᵀ P s with s = I r

= 2 ·
∑

i

s2
i pi ≥ 0 ∀ s ∈ Rnb �

(2.11)

Note that P is a diagonal matrix and the effective penalties pi are always greater than or equal to 0. For any
realistic inverse planning process, a few effective penalties pi will always be greater than 0. Hence, a realistic
Hessian matrix will even be strictly positive definite.

2.1.3. Degeneracy of the beamlet weight optimization problem

Even though the beamlet weight optimization problem is convex, there are many solutions to the inverse plan-
ning problem which result in clinically equivalent treatment plans. In this context, Alber et al. (2002) coined
the term of the degeneracy of the IMRT optimization problem.

In their 2002 and 2006 publications, Alber et al. investigated the curvature of the solution space, i.e. the space
of beamlet weights, around the minimum of the objective function. In analyses of the eigenvalues of the Hes-
sian matrix Alber et al. found that only a small subset of the solution space has significant curvature. As the
first derivative also vanishes around the minimum, the objective function is almost flat in a neighborhood of
the minimizer in most directions. A descriptive analogy in two dimensions is a deep, long, and narrow valley
which is almost flat along its bottom. For the inverse planning problem, the bottom of this valley corresponds
to a set of treatment plans with different beamlet weights w but almost the same objective function value F(w).

Surprisingly, Alber et al. (2002) did not elaborate on the condition number of the Hessian matrix κ, i.e. the
ratio between its largest and smallest eigenvalue. The condition number κ is an important characteristic of
an optimization problem because the convergence rate is proportional to 1/κ. The data of Alber et al. (2002)
clearly shows that the condition number κ is larger than 105. Hence the inverse planning problem is rather
ill-conditioned and comes with slow convergence rates.
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Chapter 2. Formal definition of the beam ensemble selection problem

2.1.4. Solving the beamlet weight optimization problem

Newton methods

Figure 2.2.: Schematic workflow of a Newton algorithm: A second order approximation (red) of the
objective function (blue) is considered during iteration k at the current iterate wk. Here, the next
iterate wk+1 is given by the minimum of the second order approximation of the objective function,
which corresponds to a full Newton step.

Convex continuous optimization problems may be efficiently solved with iterative Newton methods. Therefore,
the optimization is initialized with a beamlet weight vector w0 ∈ R

nb
+ . To find the search direction δk for

iteration k a second order approximation of the objective function is considered.

F(wk + ∆w) = F(wk) + ∇wF(wk) ∆w +
1
2

∆wᵀ ∇2
wF(wk) ∆w (2.12)

As visualized in figure 2.2, it is a valid assumption that the minimizer of the second order approximation of the
objective function is a better approximation of the minimum of the objective function.

∂

∂∆w
F(wk + ∆w) = ∇wF(wk) + ∇2

wF(wk) ∆wk
!
= 0

∆wk = −
{
∇2

wF(wk)
}−1
∇wF(wk) =: δk

⇒ wk+1 = wk −
{
∇2

wF(wk)
}−1
∇wF(wk)

(2.13)

Line search methods

The second order approximation of the objective function, however, is only valid in a local neighborhood
around the current iterate wk. Taking the minimum of the second order approximation of the objective function
as the next iterate, i.e. performing a full Newton step, may sometimes fail and even yield a higher objective
function value. The update instruction derived in equations 2.13 has to be combined with a line search method
that evaluates the objective function F along the search direction to guarantee convergence. We advocate the
use of a backtracking line search that applies an Armijo rule (Nocedal and Wright 1999). A backtracking line
search systematically decreases the step length αk by a constant factor f along the search direction δk to find a
new iterate. The Armijo rule yields sufficient descent by enforcing that the objective function value of the new
iterate F(wk+1) is smaller than an estimated objective function value defined as F(wk) − cαk · δ

ᵀ∇wF(wk) (with
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2.1. Conventional inverse planning

typically 0.1 > c > 0.0001). A small enough α will always fulfill this condition because the Hessian of the
beamlet weight optimization problem is positive semidefinite.

We also investigated a more sophisticated line search algorithm. During every iteration, it establishes a one-
dimensional quadratic approximation of the objective function along the search direction δk = −[∇2

wF(wk)]−1

·∇wF(wk). It is based on the current objective function value F(wk), the current gradient projected onto the
current search direction δᵀk∇wF(wk), and a third objective function value F(wk − α3δk). Due to the positivity
constraint of the beamlet weight optimization problem, we have to take care that the actually “allowed” gradient
is not over estimated. As we may not enter the negative domain, a component of ∇wF(wk) is set to zero for the
calculation of δᵀk∇wF(wk) if the corresponding beamlet weight is already zero. The step length αk, given as the
minimum of the one-dimensional quadratic approximation, may be calculated analytically:

αk =
α2

3δ
ᵀ
k∇wF(wk)

2 ·
(
F(wk − α3δk) − F(wk) − α3δ

ᵀ
k∇wF(wk)

) . (2.14)

Figure 2.3 shows the one-dimensional quadratic approximation for a representative iteration. The objective
function F is almost a pure quadratic function. Hence, the computed step length corresponds almost to the
exact location of the minimum along search direction δk. Even though the quadratic line search yields superior
algorithmic convergence properties (i.e. we need less iterations) we observed a 10% increase in computation
time because an additional function evaluation is needed to establish the quadratic approximation. The simple
back tracking Armijo line search is faster.
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Figure 2.3.: One-dimensional quadratic approximation (red) of the objective function F (blue) along
the search direction δk. The computed step length αk (black cross) corresponds almost exactly to the
minimum of the objective function along the search direction δk.

The algorithm panel 2.1 gives an overview of a Newton method with a backtracking Armijo line search as
applied for beamlet weight optimization. Note that it is necessary to project the beamlet weights wk back onto
the feasible set Rnb

+ in every iteration to meet the positivity constraint. For clinical application, the algorithm
stops if three subsequent iterations improved the objective function value by less than 0.1% each.
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Chapter 2. Formal definition of the beam ensemble selection problem

Algorithm 2.1 Algorithm of a Newton method applied for beamlet weight optimization
init w0; k = 0; c = 0.01; f = 0.5;
while (Stopping criterion == false) do
δk =

{
∇2

wF(wk)
}−1
∇wF(wk);

αk = 1;
while F(wk) − cαk · δ

ᵀ
k∇wF(wk) < F(wk − αk · δk) do

αk = f · αk;
end while
wk+1 = wk − αk · δk

project wk+1 to Rnb
+

k + +;
end while

Quasi Newton methods

Table 2.1.4 shows that an evaluation of the Hessian matrix requires nb times more floating point operations
than a gradient evaluation. The number of beamlets nb typically ranges between 1, 000 and 60, 000. For a large
number of beamlets the computation of the Hessian matrix is also associated with memory issues. Storing a
full nb × nb Hessian matrix for 20, 000 beamlets requires 3 GB in double precision. Furthermore the Hessian
matrix has to be inverted according to equations 2.13 in order to determine the search direction δk. Hence, it is
computationally more efficient to apply a quasi Newton method that approximates the Hessian matrix.

# additions # multiplications
Objective function (Iw − dp)ᵀ P (Iw − dp) nv(nb + 1) nv(nb + 2)

Gradient 2 · Iᵀ P (Iw − dp) nv(nv + nb + 1) nv(nv + nb + 2)
Hessian 2 · Iᵀ P I nvnb(nv + nb) nvnb(nv + nb)

Table 2.1.: Number of floating point operations required for the evaluation of the objective function,
the gradient, and the Hessian matrix. The numbers given are an upper bound because the dose
influence matrix I is usually very sparse. Note that nv � nb.

At the German Cancer Research Center, we use an L-BFGS two loop recursion algorithm, as shown in algo-
rithm panel 2.2, that directly approximates the search direction δk (Nocedal and Wright 1999). The inverse
Hessian is never explicitly constructed. The influence of the curvature of the solution space is modeled based
on the changes of the gradient yk relative to the change of the beamlet weights sk. Algorithm 2.2 replaces the
computation of −[∇2

wF(wk)]−1 ∇wF(wk) in algorithm 2.1 to obtain the search direction δk in algorithm 2.1.

The only free parameter of an L-BFGS update is the length of the history m which is used for the update. We
found that the algorithm is more stable, especially for particle therapy treatment plans featuring many beamlets,
with a rather short history m = 4. In experiments with an exact line search we found that the L-BFGS algorithm
yields a very good approximation of the curvature of the objective function F because the ideal step length α∗

is always around 1. Due to the good curvature approximation, the first evaluated Armijo step length α = 1 is
often a near optimal step length and consequently, the Armijo line search may outperform a more sophisticated
line search applying a quadratic approximation as discussed earlier.

2.1.5. Critical remarks regarding state-of-the-art inverse planning

With the methods described in the last section it is possible to determine suited fluence profiles according to
the clinical objectives defined by the penalties P and tolerance doses dp for every patient in an efficient manner.
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2.2. Beam angle selection

However, this approach also has inherent disadvantages.

Shortcomings of a global objective function

The success of the optimization process stands or falls with the formulation of the penalties P and tolerance
doses dp. It is very difficult to establish constraints so that they capture the clinical objectives to 100%. The
optimization process often yields unexpected and unacceptable solutions that exploit some weakness or incom-
pleteness in the prescription (Bortfeld 2006). Sometimes it may be very difficult to handle local deviations from
the desired dose distribution, like hot and cold spots, with the global formulation of the objective function F.
Consequently, the prescription has to be constantly readjusted during a tedious trial and error process.

Sequencing issues

For the actual treatment, the modulated fluence profiles have to be translated into deliverable multileaf colli-
mator segments. The number of segments should be reduced to a minimum with regard to treatment times and
applied monitor units. Hence, this segmentation may compromise the quality of the resulting dose distribution,
especially when the fluence profiles are highly modulated. It is possible to address this issue by incorporating
smoothness constraints on the modulation of the fluence profiles (Webb et al. 1998, Alber and Nüsslin 2001,
Matuszak et al. 2007; 2008) or by directly optimizing the multileaf collimator segments (De Gersem et al. 2001,
Shepard et al. 2002).

Algorithm 2.2 L-BFGS two loop recursion algorithm (Nocedal and Wright 1999).

sk = wk+1 − wk, yk = ∇wF(wk+1) − ∇wF(wk), ρk = 1
yᵀk sk

, H0
k =

sᵀk−1 yk−1

yᵀk−1 yk−1
1

q = ∇wF(wk);
for i = k − 1, k − 1, ..., k − m do

ai = ρisi
ᵀq;

q = q − aiyi;
end for
δk = H0

k q;
for i = k − m, k − m + 1, ..., k − 1 do
β = ρiyi

ᵀδk;
δk = δk + si(ai − β);

end for

2.2. Beam angle selection

Before the optimization of beamlet weights, which is the last step of the overall treatment planning process, a
suited beam configuration is established. Just like all other treatment parameters that are fixed before beamlet
weight optimization, the beam configuration is usually selected based on clinical experience rather than based
on a mathematical objective. As we still lack adequate quantitative models for decisions regarding the frac-
tionation scheme, radiation modality, or delivery mode, it is unavoidable to consult clinical experience. For
the decision about a suited beam configuration, however, any objective function that may be used for beamlet
weight optimization may also be used to quantify the benefit of a certain beam configuration. Nevertheless,
BAS has not been incorporated into standard inverse planning yet.

In the remainder of this chapter we elaborate on the reasons why the beam angle optimization problem is so
”difficult to crack“ - as Craft (2007) put it. Without loss of generality, the characteristics of the BAS problem
are therefore discussed by means of an extended formulation of the inverse problem that uses the quadratic
objective function F, which was already introduced for beamlet weight optimization in section 2.1.
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Chapter 2. Formal definition of the beam ensemble selection problem

2.2.1. Formal definition of the beam angle selection problem

BAS denotes the process of identifying the very beam ensemble B∗ within a set of candidate beam directions B
that meets the underlying objectives of the radiation treatment at the best possible rate.

The set of candidate beam directionsB is limited to beam orientations where the treatment head does not collide
with the patient or the treatment couch. Figure 2.4(a) shows that B is a continuous infinite set but it is usually
approximated as a discrete set for practical reasons, as shown in figure 2.4(b).

(a) (b)

Figure 2.4.: (a) Feasible beam orientations for the Siemens ARTISTE linear accelerator as commis-
sioned at the German Cancer Research Center. α denotes the angle around the patient axis, β denotes
the angle towards the transversal plane. Please see appendix A for a sketch of the underlying coordi-
nate system. The shaded area outlined in blue yields couch gantry collisions for all treatment sites.
The shaded area outlined in red is only accessible for head and neck cases where superior beams do
not interfere with the patient. (b) A head and neck patient relative to a discrete set of 1376 candidate
beam directions.

The set of possible solutions to the BAS problem B̃ is given by the powerset of of B, i.e. the set of all subsets
of B (Ehrgott et al. 2008).

B̃ = P(B) := {U | U ⊆ B} (2.15)

Normally we are interested in a solution B∗ applying a fixed number of beams, i.e. B∗ has a fixed and finite
cardinality. Note that this restriction is not valid in general. If we are to find the best trajectory around the
patient for arc therapy, we are in fact looking for an infinite subset B∗ ⊆ B.

In order to make a clear decision which beam ensemble should be chosen for the irradiation of a patient,
every treatment planning agent - that includes both automated BAS frameworks and human experts - requires a
transformation T that projects a dose distributionD, which is associated with a beam ensemble B, onto the real
axis R. Otherwise it is impossible to compare different beam configurations and make a clear choice. For an
automated BAS framework, T may be given in precise mathematical terms but for a human expert, T may be a
vague formalism based on clinical experience that cannot be condensed to one formula. In both cases, however,
we can find a joint and general definition of the BAS problem:

B∗ = arg min
B ∈ B̃

T (D(B)) . (2.16)
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2.2. Beam angle selection

Without loss of generality, we apply the quadratic objective function F, which was introduced earlier for beam-
let weight optimization, as transformation T . F depends not only on the beamlet weights w but also on the
beam orientations B because the dose influence matrix I implicitly depends on the beam orientations B.

I = I(B) (2.17)

⇒ F = F(B,w) = (I(B) w − dp)ᵀ P (I(B) w − dp) (2.18)

This allows for a mathematically more concrete formulation of the BAS problem.{
B∗,w∗

}
= arg min

B ∈ B̃, w ∈ Rnb
+

(I(B) w − dp)ᵀ P (I(B) w − dp) (2.19)

Equation 2.19 is an extended version of the conventional inverse planning problem defined in equation 2.9 that
includes BAS.

2.2.2. Derivatives of the objective function with respect to beam angles

In order to solve the optimization problem defined in equation 2.19, it would be desirable to obtain information
about the gradient of the objective function F with respect to the beam orientations B.

Unfortunately, it is impossible to differentiate the objective function F directly with respect to the beam orien-
tations B because the dependence of the dose influence matrix I from the beam ensemble B is not described by
a mathematical function. Consequently, it is also impossible to implement an automatic differentiation strategy
(Griewank and Walther 2008) for the BAS problem.

The limitations of the BAS problem regarding differentiation are not a special case for the objective function
F. This restriction holds for all transformations T that operate on a discrete and discontinuous representation
of the patient anatomy.

A numerical differentiation (Richard 1988) of F using central differences would be computationally very ex-
pensive. For a beam ensemble B featuring η beams, we would need 2η additional dose calculations and beamlet
weight optimizations to compute ∇BF.

Craft (2007) showed that it is possible to compute ∇BF efficiently by means of linear programming duality
theory. His optimization process, however, became quickly stuck in local minima. A direct optimization of the
beam configuration in the continuous space of beam orientations does not yield the global optimum solution.
It is necessary to apply techniques for global optimization. These techniques, however, have to operate on
a discrete set of candidate beam directions because the ray tracing and dose calculation for any given beam
orientation is time consuming and should be reduced to a minimum.

2.2.3. Non-convexity of the beam angle selection problem

Unlike the beamlet weight optimization problem, the BAS problem is non-convex and exhibits multiple local
minima. Note that non-convexity of a mathematical function does not imply multiple local minima, but multi-
ple local minima of a continuous function (defined on a convex domain) imply non-convexity.

Unfortunately it is impossible to show the non-convexity of the BAS problem with a mathematical analysis
of the Hessian matrix because we cannot formulate the derivatives of F with respect to the beam orientations.
However, the non-convex nature of BAS can be understood by simple inspection of the problem. In a 1993
paper Bortfeld and Schlegel (1993) suggest the following Gedankenexperiment:
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Chapter 2. Formal definition of the beam ensemble selection problem

”[. . . ] let us consider a single-beam irradiation of a target situated in the center of a circular phan-
tom. Let the target be a rectangle, of which one dimension is only slightly longer than the other.
Without using any mathematics it can be seen that a beam orientation parallel to the rectangle’s
sides results in a dose distribution that fits the target better than an obliquely incidenting beam.
Thus, each orientation that is parallel to the target’s sides corresponds to a local minimum of F.
However, only those orientations that are parallel to the longer sides of the rectangle correspond to
the global minimum of F, which means that these orientations fit the target best.“

Bortfeld and Schlegel (1993) conclude:

”The objective function [. . . ], if regarded as a function of the beam orientations, is in general not
convex and has local minima.“

This conclusion is supported by multiple publications that introduce score functions to rank different beam
orientations, which were reviewed in section 3.3.3 (Soderstrom and Brahme 1992, Pugachev and Xing 2001b,
Vaitheeswaran et al. 2010).

Figure 2.5.: Sketch of the anatomy of the intracranial patient investigated relative to the gantry angle
α. The target volume is shown in red.

We calculated explicit visualizations of the solution space of the BAS problem to investigate its non-convexity.
First, we studied an intracranial lesion, shown in figure 2.5. 2, 628 treatment plans were calculated for beam
configurations with three (2.6(a)), five (2.6(b)), seven (2.6(c)), and nine (2.6(d)) coplanar photon beams. Each
beam configuration had all but two beams fixed: In figure 2.6(a) one beam was fixed at gantry angle 0◦; in
figure 2.6(b) three beams were fixed at gantry angles 0◦, 120◦, and 240◦; in figure 2.6(c) five beams were fixed
at gantry angles 0◦, 72◦, 144◦, 216◦, and 288◦; in figure 2.6(d) seven beams were fixed at gantry angles 51◦,
103◦, 154◦, 206◦, 257◦, and 309◦. The gantry angles α1 and α2 of the remaining two beams were varied in 5◦

increments. The corresponding objective function values are shown in figure 2.6.
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(a) (b)

(c) (d)

Figure 2.6.: Objective function landscapes of 2, 628 treatment plans each for (a) n = 3, (b) n = 5,
(c) n = 7, and (d) n = 9 coplanar beams for an intra-cranial patient. n − 2 beams were always fixed
evenly distributed around the patient: for (a) one beam was fixed at gantry angle 0◦; for (b) three
beams were fixed at gantry angles 0◦, 120◦, and 240◦; for (c) five beams were fixed at gantry angles
0◦, 72◦, 144◦, 216◦, and 288◦; for (d) seven beams were fixed at gantry angles 51◦, 103◦, 154◦,
206◦, 257◦, and 309◦. The gantry angles α1 and α2 of the remaining two beams were varied in 5◦

increments. Note that the objective function landscapes are symmetric because a permutation of α1
and α2 results in the same beam configuration. A logarithmic color scale is applied.

For all four scenarios, the objective function values increase where the variable beams α1 and α2 approach the
fixed beams. Here, an n-beam plan becomes effectively an (n − 1)-beam plan. The same holds for the diagonal
elements because there the two variable beams α1 and α2 approach one another. As expected, the objective
function value decreases with increasing number of beams and the relative influence of the beam ensemble on
the objective function value decreases with increasing number of beams. For nine beams (figure 2.6(d)), the
influence of the beam ensemble almost vanishes for α1/2 < 200◦ within the numerical noise of the beamlet
weight optimization. Nevertheless there is a distinguished global optimum solution around α1/2 ≈ 315◦. This
is a beneficial beam orientation for smaller number of beams, too. The target volume ”points“ directly in this
direction (compare figure 2.5). All objective function landscapes exhibit multiple local minima. With a poor
starting value, every greedy neighborhood search algorithm applied to find the best beam ensemble will get
stuck in an inferior local minimum. Figure 2.6 indicates that local minima might become more frequent with
an increasing number of beams.

Figure 2.7 compares objective function landscapes for 2-beam proton plans and 5-beam photon plans for dif-
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7.: Objective function landscapes of 2, 628 treatment plans for (a), (b), (c) photon treatment
plans applying five coplanar beams and (b), (d), (f) proton treatment plans applying two coplanar
beams. (a) and (b) show objective function landscapes for the intracranial patient shown in figure
2.5, (c) and (d) shown objective function landscapes for a pancreas lesion, and (e) and (f) show
objective function landscapes for a prostate lesion. For the photon plans, three beams were fixed at
gantry angles 0◦, 120◦, and 240◦. The gantry angles α1 and α2 of the remaining two photon beams,
and the two proton beams respectively, were varied in 5◦ increments. Note that a logarithmic color
scale is applied.
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ferent sites. Apparently it is possible to achieve comparable objective function values with protons while
significantly reducing the number of beams. For all sites and radiation modalities we observe local minima. In
comparison to photon treatment plans applying three beams (see figure 2.6(a)), the experiments with protons
indicate that the problem with local minima might be less severe for particles, even for a similar number of
beams. For protons, bad beam configurations clearly stand out. Often they can be explained with a simple
anatomical interpretation. For the prostate case (figure 2.7(f)) the peak at (180◦|180◦) corresponds to an irra-
diation from the posterior through the rectum. For the pancreas case case (figure 2.7(f)) the four peaks around
(180◦|180◦) correspond to an irradiation from the posterior through one or both kidneys. The fraction of good
beam configurations is larger for protons compared to photons. This effect does not result from a smaller num-
ber of beams, as can be seen in comparison to the photon plan for the intracranial lesion that applies only three
beams (see figure 2.6(a)). The objective function landscapes of the proton treatment plans are not as smooth as
the objective function landscapes of the photon treatment plans. They exhibit ”edges“, e.g. for the intracranial
lesion around 120◦ and for the prostate lesion around 40◦ and 330◦. It is unclear if these edges stem from
different lateral scattering properties of a proton beam, the distal fall-off behind the Bragg peak, or another
effect.

2.2.4. Complexity of the beam angle selection problem

The selection of of a beam ensemble for radiation therapy within a set of candidate beam directions is a combi-
natorial optimal decision problem. It can be considered equivalent to a standard problem of operations research:
the facility location problem. In a basic formulation, the facility location problem consists of a set of potential
facility sites where a facility can be opened, and a set of demand points that must be serviced. The goal is
to pick a subset of facilities to open in order to minimize the sum of distances from each demand point to its
nearest facility (Wikipedia 2010). For BAS, a facility corresponds to a beam orientation. We want to open up or
pick those beam orientations within a set of candidate beams that minimize the objective function F. As there
is no direct geometric link between beam configurations and the objective function values, BAS corresponds to
a non-metric facility location problem.

The facility location problem, and consequently the BAS problem, is NP-hard. A formal proof of NP-hardness
requires a thorough introduction to complexity theory, which is beyond the scope of this manuscript. Interested
readers are referred to the PhD thesis of Sultan who shows that the BAS problem is NP-hard by reduction of
a Knapsack problem (Sultan 2006, chapter 3.2). At this point we just want to elaborate on the implications of
NP-hardness.

To this day there is no algorithm known that solves an NP-hard problem in polynomial time O(nk)1. This means
there is no constant k so that a polynomial nk describes the asymptotic runtime of the algorithm in dependence
of the size of the input n (Cormen 2001). For BAS, NP-hardness implies drastically increasing runtimes with
an increasing number of beams. More precisely, the runtime of an exact BAS algorithm increases at least su-
perpolynomially with the number of beams.

An exact BAS algorithm corresponds to a brute force evaluation of all possible solutions. We already know
that, given a finite set of candidate beams B, the set of possible solutions B̃ is given by the powerset of B. The
number of possible solutions, i.e. the cardinality of B̃, is given by

|B̃| = 2|B|. (2.20)

For 36 candidate beam directions, which corresponds to a 10◦ spacing in the coplanar plane, this results in
7 · 1010 possible beam ensembles. It is beyond prohibitive to evaluate that many solutions. When we are

1It is still unclear whether such an algorithm cannot or does exist. The so called P versus NP problem is one of the hottest topics in
theoretical computer science. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute.
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looking for the best beam ensemble featuring exactly η beams, we only have to evaluate the subsets of B with
η elements.

B̃η = Pn(B) := {U | U ⊆ B ∧ |U | = η} (2.21)

The cardinality of B̃η, i.e. the number of possible beam configurations with η beams, is given by (Hou et al.
2003)

|B̃η| =

(
|B|
η

)
=

|B|!
η! (|B|! − η!)

. (2.22)

Figure 2.8 shows the number of possible beam configurations |B̃η| versus the number of candidate beams |B| for
beam ensembles applying a varying number beams η. The diagram also includes the number possible solutions
|B̃| without a fixed number of beams. It is obvious that, if we are to evaluate all possible beam combinations,
we have to reduce the number of candidate beams or the size of the beam ensemble. Even selecting only the
best five beams in a set of 36 candidate beam directions corresponds to the evaluation of 376, 922 treatment
plans. If we could evaluate a treatment plan in 1 sec, we would still require 105 h of computation time for this
task. In simple terms, the solution space of the BAS problem is not only highly non-convex with multiple local
minima but also extremely large.

Figure 2.8.: Number of beam combinations |B̃η| vs. number of candidate beams |B| for different
number of beams η. The dashed black curve depicts the number of possible solutions |B̃| = 2|B|

without a fixed number of beams.

2.2.5. Degeneracy of the beam angle selection problem

Meedt et al. (2003) found strong indications that the BAS problem exhibits a degeneracy just like the beamlet
weight optimization problem, which was discussed in section 2.1.3. Meedt et al. claim that within the vast
space of possible solutions, there is a large number of beam configurations yielding near optimal treatment
plans. This was later confirmed by Llacer et al. (2009), who investigated the degeneracy of the BAS problem
by analyzing the eigenvalues of a target volume coverage matrix.

The findings of Meedt et al. and Llacer et al. are in agreement with the results of our studies of the solution
space of the BAS problem regarding non-convexity, which were already presented in section 2.2.3. Figures 2.6
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and 2.7 show that there are many treatment plans that result in almost the same objective function value like the
true optimum. These beam configurations may represent dose distributions that are equivalent for the clinical
application.

2.2.6. Optimizing the number of beams

In clinical routine, it is desirable to keep the number of beams at a minimum in order to reduce the overall treat-
ment time. A reduction of the number of beams, however, compromises the quality of the resulting treatment
plans. In order to show that the quality of a dose distribution, as measured by any transformation used to choose
between different beam configurations T , monotonically increases (i.e. the absolute value of T monotonically
decreases) with an increasing number of beams

T ∗1 ≥ . . . ≥ T
∗
η−1 ≥ T

∗
η ≥ T

∗
η+1 ≥ . . . ≥ T

∗
∞ (2.23)

we assume that B∗η is the ideal beam ensemble with η beams (Ehrgott et al. 2008). B∗η is associated with the
dose distribution D∗η and an absolute value T ∗η of a transformation used to choose between different beam
configurations. The dose distribution D∗η is determined by the corresponding fluence profile F ∗η which may be
decomposed in a set of individual fluence profiles per beam

F ∗η =
{
F ∗1η , . . . ,F

∗η
η

}
. (2.24)

We see by inspection that a beam ensemble Bη+1 defined as

Bη+1 = B∗η ∪ β ∈ B \ B∗η (2.25)

with the fluence profile

Fη+1 =
{
F 1
η+1 = F ∗1η , . . . ,F

η
η+1 = F

∗η
η ,F

η+1
η+1 = 0

}
(2.26)

results in the same dose distribution and consequently in the same absolute value of T :

D(Fη+1) = D(F ∗η ) (2.27)

⇒ T
(
D(Fη+1)

)
= T

(
D(F ∗η )

)
= T ∗η . (2.28)

Thus T ∗η is an upper bound for T ∗η+1.

T ∗η ≥ T
∗
η+1 = T

(
D

(
B∗η+1

))
with B∗η+1 = arg min

B ∈ B̃η+1

T (D(B)) (2.29)

The ideal beam configuration applying η + 1 beams has to better or at least as good as the best beam configura-
tion applying η beams.

At the same time, it is obvious that there must be a point of diminishing return, where adding another beam
only yields clinically negligible benefits. Valuable insight regarding this issue comes from a paper by Bortfeld
(2010). For his derivations, Bortfeld assumed a flat photon depth dose and parametrized the lateral photon
fluence by Chebyshev polynomials of the first kind. Thereby he was able to show that, contrary to intuition,
there is no benefit whatsoever in increasing the number of beams beyond a certain limit. This limit depends on
the achievable amount of intensity modulation per beam. He found that the required number of beams is of the
order 10 − 20 for realistic cases. Of course, Bortfeld’s derivations are based on wide approximations. Yet still
his results are in agreement with current clinical practice, where sophisticated IMRT treatments apply nine or
more beams.
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Chapter 2. Formal definition of the beam ensemble selection problem

If we do not make any approximations, however, an answer to the question regarding the ideal number of beams
will necessarily depend on a subjective definition of what benefit of adding another beam is or is not clinically
negligible. For routine treatments an answer will also be biased by the elongated treatment times by irradiation
with more beams.

Unfortunately, there is only a single publication that investigates the ideal number of beams in a treatment plan-
ning study: based on target homogeneity and normal tissue control probability, Liu et al. (2006) show that nine
beams are ideal for the irradiation of standard lung and liver lesions. Lesions with a diameter smaller than 2
cm, however, could benefit from an irradiation using up to 13 beams.

At this point we want to mention rotational therapy modalities, where the beam is turned on during rotation
around the patient. In principle, these techniques correspond to an irradiation from infinitely many beam orien-
tations. However, you have to consider that the beam orientations are restricted to a single trajectory around the
patient. Beams do not impinge from all over 4π. Conventional rotational therapy is performed by a rotation of
the treatment head in the coplanar plane. Only recently, alternative rotation parts have been investigated (Yang
et al. 2011). Furthermore, rotational therapy techniques come with very restricted capabilities to modulate the
radiation fluence from different beam orientations. It is impossible to deliver multiple segments per beam orien-
tation using a single arc and the field shapes of neighboring beam orientations underly smoothness constraints
due to the limited leaf speeds of multileaf collimators (Ulrich et al. 2007).

2.2.7. Beam angle selection for particle therapy

So far we have assumed that we have (1) perfect information about the patient anatomy, (2) 100% accurate
models to quantify the radiation transport within the patient, (3) complete knowledge about the effects of ion-
izing radiation on biological tissues, and (4) capabilities to deliver every radiation treatment exactly as it was
planned. Unfortunately, this is not true in clinical routine.

Both radiation therapy treatment planning and delivery are subject to uncertainties. Especially for particle ther-
apy, deficiencies of the mathematical models applied for treatment planning and errors during patient setup may
compromise the treatment (Lomax 2008a;b).

For beamlet weight optimization, there are powerful concepts to account for these uncertainties during in-
verse planning. Based on probabilistic (Unkelbach and Oelfke 2004) and worst case optimization techniques
(Pflugfelder et al. 2008b) it is possible to establish treatment plans that are robust regarding potential errors.
For BAS for particle therapy, it is essential to incorporate these ideas. Beam orientations have to be selected
according to both dosimetric aspects and the criterion of treatment plan robustness.

2.2.8. Clarification of nomenclature

In the literature, the terms beam angle optimization, beam angle selection, and beam angle customization are
often used as synonyms for strategies to establish beneficial beam ensembles for radiation therapy. We advocate
a more precise language.

Mathematically, the term optimization refers to the minimization or maximization of a real-valued objective
function by systematically choosing the values of input variables subject to potential constraints. Hence, the
term beam angle optimization should be reserved for approaches that translate the BAS problem solely to the
optimization of a real-valued objective function.

Approaches that identify a beneficial beam ensemble based on heuristic strategies should not be advertised as
beam angle optimization because the resulting beam configurations do not necessarily fulfill a criterion of op-
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timality. Consequently, the terms beam angle selection or beam angle customization are more appropriate as
heuristic BAS strategies may yield beneficial - but not optimal - beam ensembles.

We are not suggesting this subtle distinction in order to imply that a “proper” beam angle optimization strategy
should be preferred to a “simple” beam angle selection strategy. Both approaches are based on equally complex
models and may be equally useful to improve the quality of radiation therapy treatment plans. We are suggesting
this subtle distinction in order to establish a precise nomenclature.
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3. Lessons learned from earlier approaches to
beam ensemble selection

BAS attracts continuous scientific attention. By 2011, more than 50 publications with a clear focus on BAS
have been published in peer-reviewed journals. The earliest manuscripts discussing BAS in the context of au-
tomated treatment planning date back more than 30 years (Hope et al. 1967, Hope and Cain 1972, der Laarse
and Strackee 1976, Redpath et al. 1976).

Even though many competing ideas to select beneficial beam ensembles for radiation therapy have been pub-
lished, none won broad clinical recognition (Orton et al. 2008). In this chapter, we want to review earlier BAS
approaches with a focus on the benefits and the shortcomings of the underlying models. We want to high-
light the reasons for their limited clinical impact and touch on the starting points for the novel BAS strategies
presented in chapters 4 and 5.

3.1. Two classes of beam angle selection strategies

It is possible to identify two different classes of BAS strategies in the literature:

• Joint beam angle and beamlet weight optimization strategies intertwine BAS and the optimization
of beamlet weights. Initial beam configurations are iteratively readjusted according to the results of a
more or less full optimization of beamlet weights. These strategies often correspond to an optimization
of beam angles as defined in section 2.2.8.

• Heuristic beam ensemble selection strategies exploit prior knowledge about the BAS problem in order
to derive beneficial beam ensembles before the optimization of beamlet weights. These strategies do not
correspond to an optimization of beam angles as defined in section 2.2.8.

The first class of BAS strategies intends to find an exact solution to an extended inverse planning problem (as
defined in equation 2.19) albeit long computation times. The second class BAS strategies intends to quickly
identify improved beam ensembles albeit some approximation error.

3.2. Joint beam angle and beamlet weight optimization strategies

3.2.1. Search strategies

Search strategies evaluate different beam configurations in a predefined order. They suffer from long com-
putation times if the entire solution space is covered. Hence, computation times are sometimes reduced by
considering only a small fraction of the entire solution space or the search strategies are merely applied to solve
a reduced BAS problem, i.e. finding the best treatment plan with a limited number of beams at a sparse angular
or dose resolution.

Das et al. (2003) iteratively added and replaced beams from a set of 72 candidate beam directions according to
an equivalent uniform dose maximization strategy. For the prostate cases under investigation they reduced the



Chapter 3. Lessons learned from earlier approaches to beam ensemble selection

number of beams by smart beam placement without compromising clinical objectives.

Wang et al. (2004; 2005) developed an elegant divide and conquer strategy for BAS. They performed exhaustive
searches on subspaces of the entire solution space of the BAS problem using parallel computing architectures.
Within these subspaces, beneficial beam angles were identified which spanned the sub spaces for exhaustive
search in the next iteration. For lung and prostate carcinomas (Wang et al. 2004) as well as paranasal sinus
(Wang et al. 2005) carcinomas, they were able to reduce the number of beams without compromising clinical
objectives, even though they only considered 46 candidate beam directions.

The mathematicians Engel and Tabbert (2005) developed a scheme to iteratively remove beams from a treat-
ment plan initially applying all 360 candidate beam orientations. Operating with a rather sparse resolution of
the underlying CT data of 7 × 7 × 10 mm3, Engel and Tabbert could supply the full Hessian matrix to the
projected Newton algorithm which was used for the optimization of beamlet weights. Interestingly, they did
not observe significantly improved convergence properties of the beamlet weight optimization process.

Potrebko et al. (2007) investigated the influence of a very basic search algorithm. By varying the starting gantry
angle of equi-spaced coplanar beam configurations, they were able to show that prostate treatment plans could
be improved by an appropriate placement of five equi-spaced coplanar beams.

3.2.2. Simulated annealing

Simulated annealing (Kirkpatrick et al. 1983) is a probabilistic heuristic for global optimization. With a fi-
nite probability, a simulated annealing algorithm will also accept steps increasing the objective function value.
Hence, the algorithm may escape local minima. To ensure convergence of the algorithm, this probability de-
creases according to a predefined cooling schedule during the optimization process.

Bortfeld and Schlegel (1993) published the one of the first papers applying simulated annealing in the context of
BAS. In order to arrive at reasonable computation times, the optimization problem was expressed in the spatial
frequency domain and restricted to coplanar beam configurations. Bortfeld and Schlegel had to neglect lateral
scatter and assume a purely exponential depth dose profile. For the phantom cases studied, they found that the
best beam configuration tends to be an even distribution of beams around the patient. Four years later, Stein
et al. (1997) published the most cited paper in the context of BAS1. They replaced the frequency domain for-
mulation with a full beamlet weight optimization and enhanced the cooling schedule of the simulated annealing
algorithm. The concluding treatment plan comparison showed that, for prostate cases, BAS had a significant
impact only when applying five beams or less. Both the work of Bortfeld and Schlegel and Stein et al. consid-
ered 36 candidate beam directions in the coplanar plane; BAS took 5 minutes and 45 minutes, respectively.

Rowbottom et al. (2001a) used only 10% of all voxels for fluence optimization accelerating the simulated
annealing strategy by one order of magnitude. The algorithm converged after evaluating only 500 beam config-
urations. In relation to a search space featuring 1018 combinations, this suggests that Rowbottom et al. might
be trapped in local minima. Bortfeld and Schlegel evaluated 10, 000 beam combinations.

Pugachev et al. (2001) were the first to perform simulated annealing including a full beamlet weight optimiza-
tion on a large-scale: They sampled 5, 000 − 10, 000 beam configurations per patient. For this study Pugachev
et al. accepted computation times of 210 − 250 h to find a big impact of their BAS algorithm for nasopharynx
and kidney cases. Non-coplanar beam ensembles provided additional advantages over coplanar beam ensem-
bles for these complicated cases. For prostate cases, however, they did not observe a clear benefit of their BAS
strategy. Pugachev et al. (2000) applied simulated annealing for beam angle selection in combination with a

1194 citations according to http://www.scholar.google.com by February 26, 2011.
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3.2. Joint beam angle and beamlet weight optimization strategies

fast filtered back projection for beamlet weight optimization on several two dimensional phantom cases. They
demonstrated a clear benefit of automated BAS, even when using up to nine beams. Rowbottom et al. (2001b)
and Steadham et al. (1999) confirmed these findings for parotid gland tumors and pancreatic cancer, respec-
tively. Djajaputra et al. (2003) applied fast simulated annealing on a set of 180− 216 candidate beam directions
in combination with an accelerated dose calculation.

3.2.3. Genetic algorithms

Genetic algorithms (Mitchell 1998) mimic an evolution process for optimization by applying operations such as
selection, inheritance, reproduction, and mutation. Evolutionary algorithms are very powerful global optimiza-
tion strategies requiring little information about the optimization problem. They proved useful for applications
in fields like bioinformatics, economics, engineering, and manufacturing.

Hou et al. (2003) suggested a genetic algorithm which focused on searching in depth with a rather small pop-
ulation of 20 individuals over 500 generations. The algorithm was validated in a treatment planning study
for head and neck cases, where they demonstrated that the genetic algorithm allowed for the reduction of the
number of beams without compromising the quality of the treatment plans. Li et al. (2004) also investigated
genetic algorithms for BAS. They adopted the in depth search strategy of Hou et al. but modified the selection
process borrowing from simulated annealing concepts. Furthermore they introduced an immunity operation
that excluded beam configurations featuring opposing and adjacent beams from the population. For prostate
and paraspinal cases, they documented a benefit of BAS by genetic algorithms for resulting dose distributions.
Schreibmann et al. (2004) suggested a genetic search with a larger population of 100− 200 individuals for their
multi objective optimization framework.

Li et al. (2005) tackle the BAS problem with a particle swarm algorithm. Swarm algorithms benefit from the
social behavior within a swarm which evaluates the search space together and shares information to find a global
optimum. In the experiments of Li et al., the particle swarm algorithm outperformed a conventional genetic
algorithm yielding improved treatment plans for prostate and head and neck patients. Later, Lei and Li (2009)
presented a modified genetic algorithm that incorporated aspects from swarm intelligence. For a phantom and
nasopharynx case, they reported improved convergence properties as compared to standard genetic algorithms.
However, they were operating on a very sparse beam angle grid with 10◦ spacing in the coplanar plane. The
same authors also reported about improved convergence of DNA genetic algorithms for BAS as compared to
conventional genetic algorithms (Li and Lei 2010). The approaching genetic algorithm and the DNA genetic
algorithm, however, were not compared. Nazareth et al. (2009) presented a parallel implementation of a genetic
algorithm that optimizes only 240 treatment plans in six generations. Nevertheless they were able to clearly
improve treatment plans for prostate treatments.

3.2.4. Mixed integer programming

Mixed integer programming was introduced for BAS in conformal radiotherapy by Wang et al. (2003) and later
extended to IMRT by Yang et al. (2006). The commercially available solver which was applied by Wang et al.
and Yang et al. facilitated a branch and bound strategy to solve the mixed integer linear programming problem.
This may be a mathematically inadequate approach, as we do not see a suited branch and bound strategy for the
NP-hard combinatorial BAS problem (compare section 2.2.4). Unfortunately, the authors did not address this
issue. Yet still, they were able to improve treatment plans for prostate and head and neck cases. Additionally,
Wang et al. investigated the influence of the angular resolution on the quality of the resulting treatment plans.
They stated that an angular resolution of 10◦ is probably already enough to obtain an almost ideal treatment
plan. The data presented indicated only minor improvements if the angular resolution was increased to 5◦.
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3.2.5. Continuous optimization in the space of beam angles

It is remarkable that there is only one publication which investigated a full-fledged optimization of beam an-
gles in the continuous beam angle space (Craft 2007) - all other authors focused on solving a combinatorial
optimization problem, i.e. finding the best solution in a pool of feasible solutions. Craft implemented a local
gradient search where the gradient was obtained by linear programming duality theory. The dose influence
matrices for continuous angles were linearly interpolated. Hence, Craft was able to compute a descent direction
in the beam angle space and perform small refinements. This optimization processes, however, became quickly
stuck in local minima. For clinical purposes, Craft recommended to combine his strategy with a global search.

3.3. Heuristic beam ensemble selection strategies

3.3.1. Iterative strategies

Woudstra and Storchi (2000) introduced the iterative BAS strategy CYCLE for conformal radiation therapy
based on precomputed dose distributions of single beams. It was later extended to include IMRT (Woudstra
et al. 2005). By iterative construction of the best treatment plan with n beams from the best treatment plan
with n − 1 beams, the search space for the BAS problem increases only linearly - not exponentially - with
the number of candidate beams. While utilizing this drastic simplification of the combinatorials of the BAS
problem, CYCLE demonstrated a clear benefit for the treatment of pancreas tumors (Woudstra and Heijmen
2003), oesophagus tumors (Woudstra et al. 2005), and liver tumors (de Pooter et al. 2006; 2008). In agreement
with earlier publications (Pugachev et al. 2001), de Pooter et al. (2006) observed that optimized non-coplanar
beam configurations yield superior treatment plans in comparison to optimized coplanar beam configurations.
Compared to a custom simulated annealing strategy, CYCLE yielded clinically equivalent dose distributions.
Meedt et al. (2003) reported about an alternative iterative beam adding and replacement strategy without fluence
optimization.

3.3.2. Geometric strategies

Geometric approaches for BAS are typically very fast because they do not require time consuming dose calcu-
lations to generate dosimetric information about potential beam orientations. A beam ensemble is established
based on geometric information of the patient anatomy only.

Haas et al. (1998) developed a geometric approach to the BAS problem in two dimensions. A beam orientation
is parametrized by four points forming a trapezoid. The final beam ensemble is identified by a multi objective
genetic algorithm maximizing the overlap of beams within the target and minimizing the overlap of beams
in normal tissues. This model only proved successful for the optimization of treatment plans with a limited
number of beams. For IMRT treatment plans featuring five or more beams, Haas et al. could not report an
improvement resulting from their geometric approach.

An exciting approach using neural networks for BAS was presented by Rowbottom et al. (1999). In order
to train a neural network classifier with 45 training cases, the patient anatomy was translated to a twelve di-
mensional feature vector representing the corner points of the volumes of interest in three dimensional space.
Despite these radical approximations, Rowbottom et al. obtained beam configurations which were comparable
to alternative BAS strategies for prostate patients.

Llacer et al. (2009) presented a very interesting BAS algorithm that exploited geometric information with neu-
ral networks. They introduced a binary PTV coverage matrix which may be the first attempt to incorporate
the concept of intensity-modulated fields that complement one another from different directions into a heuristic
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BAS algorithm.

One of the fastest BAS selection strategies was introduced by Potrebko et al. (2008). For their anatomic beam
orientation optimization, triangulated surface mesh data was analyzed to identify beam orientations that im-
pinge tangentially to surface elements of the target volume. The influence of a target surface element on beam
selection was weighted according to its area and its distance to the closest OAR. Anatomic beam orientation
optimization provided a ranking of candidate directions which served as guidance for the radiation oncologist
composing the final beam ensemble for an IMRT treatment plan. It helped to significantly improve the plan
quality for gastric, prostate, and oropharynx cases.

3.3.3. Ranking strategies

A ranking strategy condenses information about the benefit of a beam direction to a single number. Based on
this number it is possible to rank the candidate beams according to their expected merit. Ranking strategies
are not contained automatic frameworks for BAS; they require significant user interaction as the final treatment
plan is usually composed by a human expert based on the ranking. Furthermore, ranking strategies cannot
represent potential synergetic effects of certain beam combinations.

Soderstrom and Brahme (1992) suggested two of the first ranking schemes. They were based on an entropy
and Fourier measure of the intensity modulation of individual candidate beams. Chen et al. (1992) and Myr-
ianthopoulos et al. (1992) introduced beam’s-eye-view volumetrics, which quantify the overlap of treatment
beams and critical structures, in the context of BAS. Rowbottom et al. (1998) picked up this idea and devel-
oped a ranking of candidate beam directions according to beam’s-eye-view volumetrics for the optimization of
prostate treatments. The reciprocal approach of target-eye-view maps was introduced by Cho et al. (1999).

Based on theoretical considerations borrowed from tomographic image reconstruction, Braunstein and Levine
(2000) derived a ranking scheme of candidate beam orientations regarding their potential contribution to the
prescribed dose. A clinical evaluation was not provided; plausibility was demonstrated by means of different
phantom cases.

Pugachev and Xing (2001b) suggested to calculate a score according to the maximum target dose deliverable
by a single candidate beam without exceeding the tolerance doses of the critical structures. Based on this infor-
mation, beam ensembles were selected with a clear benefit regarding target homogeneity and OAR sparing for
nasopharynx and paraspinal carcinomas (Pugachev and Xing 2001a). The approach of Pugachev and Xing is
presumably the most popular BAS strategy relying on a score function. An alternative score containing infor-
mation about the mean depth of the target volume and about the penetrated volume of the OARs was introduced
and validated by Meyer et al. (2005).

Vaitheeswaran et al. (2010) introduced a ranking scheme for 36 coplanar candidate beam directions according
to a beam intensity profile perturbation score which is proportional to the absolute changes of the beamlet
intensities induced by variations of dose volume constraints. The resulting ranking served as guidance for a
human planner which composed the final treatment plan while also considering minimum separation conditions,
avoiding opposing beams, and bypassing critical structures. Apparently significant additional information was
introduced by the human planner during the final composition of the beam ensemble. It is debatable whether
the observed improvements of the dose distributions for the phantom, prostate, pancreas, and head and neck
cases originate from the BAS strategy of Vaitheeswaran et al. or if they were introduced ex post by the human
expert.
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3.3.4. Clustering

Lim et al. (2009) facilitated a clustering algorithm in the context of BAS. They introduced characteristic vectors
for 36 coplanar candidate directions and performed a K-means clustering according to an Euclidean metric in
the space of characteristic vectors. Unfortunately, they only provided clinical data for one prostate case without
comparison to a standard treatment plan.

3.3.5. Guided search

Pugachev and Xing (2002) presented a simulated annealing strategy which is guided by prior knowledge from
beam’s-eye-view dosimetrics. This hybrid approach, which combined a joint optimization of beamlet weights
and beam orientations with a heuristic bias, accelerated conventional simulated annealing by one order of mag-
nitude.

Using a nested partitions framework for BAS was suggested by (D’Souza et al. 2008). The nested partitions
framework iteratively divided the entire search space into a promising region and a complementary region based
on a heuristic promise index - not based on the result of a full beamlet weight optimization. Samples from these
sub spaces were used to identify a more confined promising region and corresponding complementary region
for the subsequent iteration. This approach is comparable to earlier work by Wang et al. (2004; 2005). D’Souza
et al. evaluated only 25 treatment plans per iteration. It is debatable whether this was enough to make a reliable
statement regarding new promising and complementary regions.

3.4. Beam ensemble selection for particle therapy

There are only two papers discussing BAS for particle therapy. Even though the focus of this manuscript is
BAS for photon treatments we want to mention the publications of of Jäkel and Debus and Moravek et al. at
this point for the sake of completeness.

Jäkel and Debus (2000) are the first to discuss the role of beam orientations in particle therapy. Using cylindri-
cal projections of the patient anatomy, they showed that the additional degree of freedom introduced by a - by
then hypothetical but now real - heavy ion gantry2 resulted in improved dose distributions.

Moravek et al. (2009) were the first to present a dedicated BAS strategy for particle therapy. They calculated
a score which penalizes beam paths traversing OARs and/or tissue heterogeneities for every candidate beam
direction. Thereby they tried to combine dosimetric aspects and the criterion of treatment plan robustness for
BAS. The score for a beam configuration was given by the sum of the individual scores. An exhaustive search
of all beam combinations is performed to identify the best beam configuration. Of course, this exhaustive
search was computationally only feasible for a small number of beams. Moravek et al. (2009) did not provide a
thorough assessment of the clinical impact of their approach, it is only validated by means of a phantom study
and one clinical case.

3.5. Conclusions

3.5.1. Summary

We reviewed more than 40 publications addressing BAS in radiotherapy. All authors advocated the use of an
automated BAS strategy. Improvements regarding the quality of treatment plans were observed for all sites, but
with different extent. For complex asymmetric treatment geometries, as regularly observed in the abdomen or

2The first heavy ion gantry was installed at the Heidelberg Ion-Beam Therapy Center (HIT) in Germany in 2008.
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skull, the impact of automated BAS is more pronounced than for very symmetric geometries, such as prostate
cases (Stein et al. 1997, Pugachev et al. 2001).

All publications report similar characteristics of the optimized beam configurations. Only for symmetric patient
geometries, the ideal beam configuration may be an even distribution of beams around the patient. For asym-
metric patient geometries, as regularly observed within the abdomen or skull, the ideal beam ensemble may be
highly asymmetric and apply multiple non-coplanar beams (Stein et al. 1997, Pugachev et al. 2001, Woudstra
et al. 2005, Potrebko et al. 2008). Interestingly, no publication suggests an improved standard beam configu-
ration for a specific treatment site. The ideal beam ensemble seems to be rather patient specific than site specific.

Given the findings of the reviewed publications, it is remarkable that radiation oncologists still predominantly
select beam ensembles for radiotherapy by hand (Orton et al. 2008). We have already speculated about the
reasons for this situation in section 1.2. At this point we want to elaborate on the model inherent deficiencies
of the published approaches in order to highlight potential starting points for improvement.

Joint beam angle and beamlet weight optimization strategies

Craft (2007) showed that greedy gradient descent strategies are not suited for the optimization of beam en-
sembles. The BAS problem exhibits multiple local minima and requires a global search to identify the true
optimum solution. The first publications focused on simulated annealing techniques for BAS (Bortfeld and
Schlegel 1993, Stein et al. 1997, Pugachev et al. 2001); later modern metaheuristics, like genetic algorithms,
became a hot topic (Li et al. 2004; 2005).

All reviewed joint beam angle and beamlet weight optimization strategies were valid approaches to the BAS
problem but they required prohibitive computation times (Pugachev et al. 2001) or they were not operating at an
acceptable level of complexity (Lei and Li 2009). Either the graining in the beam angle space was very sparse
or the model for beamlet weight optimization applied extensive approximations.

Heuristic beam ensemble selection strategies

The reviewed heuristics apply prior knowledge about geometric and/or dosimetric aspects of the BAS problem
in various ways. Both contained frameworks for BAS and ranking schemes which serve as guidance for a hu-
man planner yield beneficial beam configurations.

Some of the heuristic approaches for BAS, however, exhibit the same problem like the joint beam angle and
beamlet weight optimization strategies. They may be neglected for clinical application because they operate on
an insufficient resolution either in the beam angle or dose distribution space (Rowbottom et al. 1999, Lim et al.
2009, D’Souza et al. 2008).

Furthermore, most heuristics are not contained automated frameworks for BAS. All ranking strategies, for in-
stance, require significant user interaction to establish the final treatment plan (Rowbottom et al. 1998, Braun-
stein and Levine 2000, Pugachev and Xing 2001b). These BAS algorithms only ease the BAS process but do
not automatize it.

The main drawback of the reviewed heuristics is an inadequate representation of the combinatorial problem of
BAS. Synergetic effects of different beam orientations, i.e. where one beam exactly compensates for the short-
comings of another beam of the ensemble, are neglected (Pugachev and Xing 2001b, Potrebko et al. 2008).
This is especially severe for intensity-modulated fields where different parts of the tumor may receive dose
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from different beam orientations. Llacer et al. (2009) presented the first heuristic that tries to address this issue.

The approach of Llacer et al. (2009), however, suffers from another problem that a lot of heuristic BAS strate-
gies share: Most of them are based on very complex and unclear assumptions. Different aspects that have to
be incorporated for BAS are compiled into one bulky objective yielding a black box for BAS (Lim et al. 2009,
Moravek et al. 2009).

3.5.2. Implications

Based on the mathematical properties of the BAS problem (compare chapter 2) and the reviewed BAS literature,
we deduce the following implications for our research on BAS:

• Any new BAS algorithm should incorporate non-coplanar candidate beams (de Pooter et al. 2006).

• The angular resolution in the space of beam angles should be at least 10◦ (Wang et al. 2003).

• Applications of BAS strategies should focus on complicated cases (i.e. asymmetric patient geometries,
convex target volumes, and/or target volumes in proximity to OARs), because these sites promise the
biggest clinical impact (Pugachev et al. 2001).

• Any novel BAS heuristic should address the combinatorial problem of BAS within a contained frame-
work, especially with regard to intensity-modulated fields that complement one another.

• Combinatorial optimization strategies that combine beam angle selection and beamlet weight optimiza-
tion should operate at an adequate resolution in the dose deposition and candidate beam space. They
should sample a sufficient number of beam configurations within the vast solution space.

• Dedicated BAS strategies for particle therapy should incorporate the additional criterion of treatment
plan robustness (Moravek et al. 2009), as the effect of potential uncertainties during patient setup and
treatment planning may be way more severe for particle than for photon treatments.
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This chapter introduces novel concepts for beam ensemble selection based on dosimetric score functions and
geometric considerations. The presented methods belong to the second class of BAS algorithms as defined in
section 3.1. They exploit prior knowledge about the BAS problem in order to derive beneficial beam ensembles
before the optimization of beamlet weights. The approaches are inspired by ranking strategies applying score
functions, which were reviewed in section 3.3.3. However, unlike existing heuristics relying on score functions,
our approaches represent contained frameworks that attempt to incorporate the combinatorial problem of BAS.

For BAS ranking strategies, the IMRT treatment planning process is split into two independent operations. The
beamlet weights are computed after the selection of a beneficial beam ensemble. Hence, this chapter focuses
solely on the selection of the beam ensemble. The beamlet weights are optimized afterwards according to the
methods introduced in section 2.1.

4.1. Novel concepts for score functions for beam angle selection

4.1.1. Score vectors

Existing heuristic ranking strategies for BAS assign only a single measure for the expected merit of a candidate
beam direction. The shortcomings of this approach can be understood by considering the method introduced
by Pugachev and Xing (2001b). They suggested a score function that quantifies the benefit of any given beam
direction based on beam’s-eye view dosimetrics. First, each candidate beam direction is divided into a discrete
grid of beamlets. Second, maximum intensities are determined for all beamlets so that custom tolerance doses
for the OARs and normal tissue located in the path of the beamlets are not exceeded. The overall score qβ for
a candidate beam direction β is given by the accumulated dose within the target volume when irradiating with
the previously determined maximum beamlet weighs.

qβ =
1

NTarget

∑
i ∈ Target

{
dβi

Dpres

}2

(4.1)

NTarget denotes the number of target voxels, Dpres denotes the prescribed target dose, and dβi denotes the dose
delivered to target voxel i from beam direction β. According to Pugachev and Xing (2001b), qβ captures the
main features of a planner’s judgment about the quality of a beam. Without a dose limiting OAR except the
normal tissue, the quality of a beam direction depends on the depth of the target volume within the patient. A
beam that has to travel a longer distance within the patient before reaching the tumor will have a lower score. In
case we have an OAR in the beam’s path, qβ is dominated by the tolerance dose of the OAR and the position of
the OAR within the patient: the lower the tolerance of the OAR and/or the closer the OAR to the skin, the lower
the dose deliverable to the target volume and the lower the score function value. The approach of Pugachev and
Xing (2001b) yields a vector q that lists the score of every candidate beam orientation β.

The behavior of Pugachev’s score is demonstrated by means of a phantom case with a C-shaped target volume
surrounding an OAR. The phantom, shown in figure 4.1(a), is inspired by the Quasimodo patient model1 used
for IMRT treatment planning studies. Pugachev’s corresponding score is displayed in figure 4.1(b). For clarity,

1The Quasimodo patient model is available at http://www.daten.strahlentherapie.uni-wuerzburg.de/quasimodo.html
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Figure 4.1.: (a) Patient phantom. The target volume is outlined in green, the OAR is outlined in
yellow. The red diamond and the green circle highlight specific sub volumes of the target. (b)
Pugachev’s score for coplanar candidate beam directions. For its calculation, the relative tolerance
doses are Dpres = 1, Dtol

NT = 1, and Dtol
OAR = 0.1. Note that a good beam direction corresponds to a

maximum of Pugachev’s score.

only coplanar candidate beam orientations are considered.

The characteristics of qβ more or less agrees with our intuition. Pugachev’s score suggests that 0◦ is the best
irradiation angle for the patient geometry investigated. Beam directions around 0◦ are associated with higher
than average score values. Irradiation from 180◦ also implies a larger benefit while irradiation from 90◦ or 270◦

is considered worst according to Pugachev’s score.

Like all other BAS heuristics applying score functions, the approach of Pugachev and Xing has two inherent
deficiencies. First, there is no algorithm to compose the final beam ensemble based on the information of the
score function. Hence, synergetic effects of different beam angles are neglected. Second, qβ does not show that
a beam direction β may be beneficial for the irradiation of one part of the target volume while it is unfavorable
for the irradiation of another part of the target volume. Consider β = 0◦ for the phantom case. This very beam
orientation is probably ideal to irradiate the sub volume of the target highlighted by the red diamond in figure
4.1(a). With an intensity-modulated field you could still spare the OAR from this direction. However, this does
not hold for the sub volume highlighted by the blue circle in figure 4.1(a) because the OAR is directly in the
path of the beamlet delivering dose to this part of the target volume. For the sub volume highlighted by the blue
circle, an intensity-modulated field allows for the best sparing of the OAR from 90◦ or 270◦ - actually the two
worst beam orientations according to qβ. If we are to overcome these shortcomings we have to take a novel
approach to score functions for BAS.

4.1.2. Score matrices

We suggest to use score matrices to enhance BAS algorithms relying on score functions. Therefore, a radiolog-
ical score S βv is computed for every potential beam angle β ∈ B and each target voxel v ∈ V. B andV denote
the set of candidate beam directions and the set of target voxels, respectively.

S βv =
dNT + 100 · dOAR

dTarget
(4.2)
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Figure 4.2.: (a) Score matrix S . A row of S lists the radiological quality of all candidate beam di-
rections for one target voxel v. Vice versa, a column of S lists the radiological quality of all target
voxels for one candidate beam orientation β. The red and blue arrow indicate the target voxels high-
lighted in figure 4.1(a). The periodic structure of S emerges from the three-dimensional proximity
relationship of the target voxels which is projected to one dimension. (b) Comparison of our custom
score S βv (red and blue lines) with Pugachev’s score (black line) for coplanar irradiation angles.
For the calculation of Pugachev’s score the relative tolerance doses are Dpres = 1, Dtol

NT = 1, and
Dtol

OAR = 0.1. Note that a good beam direction corresponds to a minimum of S βv and to a maximum
of Pugachev’s score (Pugachev and Xing 2001b). It is the central difference between the two ap-
proaches that Pugachev assigns a unified score for the entire target, while S βv is defined separately
for every target voxel. S βv is exemplary shown for two target voxels: the blue line corresponds to the
score of the target voxel highlighted by the blue circle in figure 4.1(a) and the red line corresponds to
the score of the target voxel highlighted by a red diamond in figure 4.1(a). S βv indicates that the best
irradiation angle depends on the target voxel: while the best irradiation angles for the target voxel
highlighted by the blue circle impinge from 90◦ or 270◦, the best irradiation angles for the target
voxel highlighted by the red diamond impinge from 0◦ or 180◦.

dTarget, dNT, and dOAR denote the doses delivered to the target volume, to the normal tissue, and to potential
OARs. S βv decreases with increasing dose to the target and decreasing dose to normal tissue and OARs. The
smaller S βv the better beam orientation β for voxel v. S βv implies a twofold nature of the beam selection
problem: In absence of OARs, the score is given by the ratio dNT/dTarget; in presence of OARs, the score is
predominantly given by dOAR/dTarget, as dose contributions to potential OARs are weighted hundredfold. The
weighting factor was found empirically. In a range from ∼ 20 − 500 it does not have a significant impact on a
beam ensemble established within our framework for conventional high energy photon beams. Here, we assign
a uniform weight to all OARs, but it may also be feasible to assign individual weights to define custom trade-
offs between different OARs.

It is essential that S βv may be evaluated individually not only for every candidate beam orientation β but also
for every target voxel v. For the computation of S βv it is assumed that only target voxel v, not the entire target
volume, is irradiated from direction β, i.e. we only simulate the beamlet passing through voxel v from direction
β and not a broad beam irradiating the entire target. Hence, the radiological score S βv for direction β is the
same for target voxels along the axis of the same beamlet, but it varies for off axis voxels within the target. Un-
like Pugachev’s score qβ, S βv thereby considers that direction β may be a good beam angle for one part of the
target, but at the same time, a bad direction for another part of the target that may be in the beam path of an OAR.

Figure 4.2(a) shows the resulting matrix S βv which lists the quality for every candidate beam direction β and
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target voxel v individually. Pugachev’s approach in contrast yields only a vector q that assigns one global mea-
sure for the expected merit of every candidate beam orientation for the collective of all target voxels. Figure
4.2(b) contrasts S βv and q.

Differentiating regarding the expected merit of a candidate beam orientation for different parts of the target
volume is a central analogy to the concept of intensity-modulated fields, which deliver non uniform lateral dose
profiles from different directions to complement one another. By not integrating over all target voxels and not
assigning a uniform score per candidate direction, we attempt to incorporate the concept of intensity-modulated
fields, not only during the calculation of the score function, but also during the selection of the beam ensemble.

S βv is calculated with a simplified dose algorithm on delineated computed tomography (CT) data. For every
beam angle β, water equivalent densities are obtained from the patient CT cube on a precomputed divergent
three-dimensional mesh encompassing the entire target volume. For every ray, dose contributions to target,
normal tissue, and OAR are computed with a tabulated photon depth dose curve of a 10 mm × 10 mm photon
beam. The required assignment of CT cube voxels to target, OAR, and normal tissue is performed based on
a precomputed classification cube with the same resolution and dimensions like the CT cube. Finally, photon
scatter is modeled by convoluting dose contributions from central and off axis terms using a spherical Lorentz
kernel (Djouguela et al. 2009). This reduces the calculation of S βv to two ray tracings and basic matrix opera-
tions.

Apparently, the score matrix S provides more information for BAS than the score vector q, but the interesting
question is how to use this surplus for BAS in an optimal way. It is not possible to directly relate S to the
simultaneous optimization problem of beamlet weights and beam orientations as formulated in equation (2.19).
Hence, we suggest two alternative formulations of the BAS problem that can be solved optimally with the in-
formation contained in S . Section 4.2 introduces a clustering problem of locally ideal beam orientations and
section 4.4 introduces a combinatorial optimization problem of an average score. Of course, the two presented
formulations are not the only possibilities to exploit the information of S for BAS - additional approaches are
thinkable.

Section 4.5 applies the concepts introduced in section 4.2 for geometric BAS.

4.2. Spherical cluster analysis for beam angle selection

BAS by spherical cluster analysis is a two-step process: a spherical data set representing the BAS problem is
generated in the first step and analyzed in the second step by a spherical K-means clustering algorithm.

4.2.1. Method

Formulation of beam angle selection as a spherical clustering problem and
the set of locally ideal beam orientations

Without loss of generality the isocenter of the patient geometry is defined as the origin of our coordinate system.
Thereby, a candidate beam direction β can be represented by the appendant source position given as a point β
on the three dimensional unit sphere. Based on S βv the locally ideal beam angle β∗v for irradiation of voxel v is
given by

β∗v = arg min
β ∈ B

S βv (4.3)
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since β∗v maximizes the dose delivered to the target relative to the dose delivered to normal tissue and OARs
weighted hundredfold. β∗v is called “locally” ideal because it is only ideal according to a restricted definition
of the BAS problem: β∗v is the ideal beam orientation if we aim to irradiate only voxel v considering the effects
of the irradiating beamlet on other voxels located within the target, normal tissue, and potential OARs for the
score calculation.

For the entire target volume, we may define a set of locally ideal irradiation angles B which is given by the set
of the locally ideal beam angles of all target voxels.

B =
{
β∗v | v ∈ V

}
(4.4)

The set of locally ideal beam anglesB is highlighted on the score matrix S in figure 4.3(a) for the phantom case
shown in figure 4.1(a). Among others, B includes a locally ideal beam orientation impinging from ∼ 355◦ for
the target voxel indicated by the red diamond and one locally ideal beam orientation impinging from ∼ 280◦

for the target voxel indicated by the blue circle. Figure 4.3(b) depicts a histogram of the locally ideal beam
orientations for the phantom case. The histogram shows four accumulation points around 10◦, 60◦, 300◦, and
350◦. Candidate beams between 90◦ and 270◦ were never accepted into the set of locally ideal beam angles B.
According to our model it does not make sense to irradiate the phantom from these angles.
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Figure 4.3.: (a) Score matrix S for the phantom case depicted in figure 4.1(a). The white points
indicate the locally ideal beam orientations for every voxel, i.e. there is one white point per target
voxel/row. (b) Histogram showing the frequency of all candidate beam angles within the set of
locally ideal beam angles B.

Figure 4.4 visualizes the set of loacally ideal beam orientations B for three clinical cases considering also non-
coplanar candidate beam orienataions. For these visualizations, B, given as a set of points on the 3-sphere, is
projected to two dimensions. The relative frequencies of beam orientations within B is color coded. Just like
for the phantom case, not every beam direction β ∈ B is an element of B, some beam orientations appear more
frequent than others, and some may never be the ideal irradiation angle for any target voxel. Like the histogram
shown in figure 4.3(b), figure 4.4 clearly exhibits spatial angles where ideal irradiation angles accumulate and
regions of beam angles which are not represented inB. The central idea of spherical cluster analysis for BAS is
to identify the cluster centroids of the distributions of locally ideal beam angles on the unit sphere and interpret
these as beam directions for IMRT treatment planning. This approach implies that an irradiation with the beam
ensemble defined by B, i.e. a treatment plan featuring all locally ideal beam orientations, yields a beneficial
dose distribution. The clustering algorithm subsequently finds a representation of B with lower complexity, i.e.
a beam ensemble reduced to a number of beams that is applicable in a clinical setting.
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(a)

(b)

(c)

Figure 4.4.: Projection of the set of locally ideal beam angles B (given as points on the 3-sphere)
to two dimensions. Red indicates regions of high density of locally ideal beam angles and yellow
indicates regions of low density of locally ideal beam angles. (a) Prostate lesion II, (b) pancreas
lesion I, and (c) intracranial lesion II. The beam directions of the optimized nine-beam-plan for all
three cases are visualized by black dots. The area shaded in gray represents the set of candidate
directions B.
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By considering only information about a single ideal direction per target voxel for beam selection, information
already computed for the matrix S βv is neglected during the subsequent beam selection process. Alternative
techniques that facilitate the entire information contained in S βv for BAS are discussed in section 4.4.

Spherical K-means clustering

To establish an ensemble with η beams, the set of locally ideal beam angles B, depicted in figure 4.4, is
divided into η disjunct subsets applying a spherical K-means clustering algorithm. The resulting η centers of
the clusters, indicated by black dots in figure 4.4, are interpreted as beam directions for an IMRT treatment plan.

K-means clustering is an established algorithm to classify multi-dimensional data. This section includes a com-
prehensive recipe of the algorithm; a detailed discussion may be found in the introductory machine learning text
books by MacKay (2003) or Alpaydin (2004). Zhong (2005) gives a practical overview of spherical K-means
clustering which is very close to our implementation.

In order to create an IMRT treatment plan featuring η beams, η centroids µ0
k ∈ B are randomly selected during

initialization. The algorithm proceeds by alternating between an assignment step, where every beam direction
β∗i ∈ B is assigned to its closest centroid, and an update step, where the estimate for a centroid is refined to
the mean direction of all beam directions assigned to this centroid. Spherical K-means clustering models the
data as a superposition of von Mises-Fisher distributions, which can be considered an analogon to an uncorre-
lated multivariate Gaussian distribution on a (D − 1)-dimensional sphere in D-dimensional space. Hence, the
assignment c j during iteration j is performed according to the cosine similarity, i.e. the angle between β∗i and
µ j

k.

c j(β∗i ) = arg max
k

{
β∗ᵀi µ

j
k

}
(4.5)

The updated estimate for each centroid, i.e. the mean direction of associated directions, is defined as

µ j+1
k =

β̄
∗

k∥∥∥β̄∗k∥∥∥ with β̄∗k =
∑

c j(β∗i ) = k

β∗i (4.6)

By alternating between the assignment and estimation step, spherical K-means clustering converges to a local
maximum of the the average cosine similarity L within the η clusters.

L =
∑

i

β∗ᵀi µc j(β∗i ) (4.7)

The algorithm terminates if the assignment of beam directions to centroids does not change in two subsequent
iterations.

c j(β∗i ) = c j+1(β∗i ) ∀ β∗i ∈ B (4.8)

The clustering algorithm is repeated 100 times with different starting conditions in order to exclude inferior
solutions trapped in local minima. L facilitates the comparison between different clustering solutions.

4.2.2. Results

The suggested method for BAS is evaluated in a treatment plan comparison for three prostate, pancreas, and in-
tracranial cases. The IMRT treatment plans, as optimized and delivered at the German Cancer Research Center
or the University Clinic in Heidelberg, are obtained from our patient data base for each site. All original treat-
ment plans employ equi-spaced coplanar beams. They are optimized by an experienced radiation oncologist
with our in-house treatment planning software KonRad (Preiser et al. 1997) using a standard quadratic objective
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function (Oelfke and Bortfeld 2001) with individually adjusted maximum and minimum dose constraints and
penalties. Thereby, nine sophisticated treatment plans are created, which serve as reference for comparison
with plans featuring an optimized beam configuration with the same number of beams or less. Table 4.1 gives
a detailed overview of the nine patient cases under investigation.

The calculation of the score matrix S according to equation (4.2) and the spherical K-means clustering algo-
rithm are implemented in MATLAB2. The CT data is processed at a 2.62 × 2.62 × 2.62 mm3 voxel resolution
yielding geometries with up to 25, 000 target voxels. The set of candidate directions includes up to 1, 200 non-
coplanar beams with a five degree separation between adjacent beams. Directions lacking CT data for the whole
beam path are excluded from the set of candidate beam directions. Limitations to accessible gantry and couch
angles, which depend on the geometry of every linear accelerator, are not considered during this study. For
clinical purposes, however, beam orientations yielding couch-gantry collisions could also be excluded from the
set of candidate beam directions. The average computation time for S is t∅ = 358 s (tmax = 417 s, tmin = 267
s) on a 2.3 GHz work station. One hundred runs of spherical K-means clustering only take about one second
of computation time; the main computational burden arises from the calculation of the score matrix S . After
the beam configuration is determined, the beamlet weights are computed with our in-house treatment planning
software KonRad (Preiser et al. 1997). Since different beam orientations implicate different trade-offs during
inverse planning, maximum dose constraints and penalties of the reference plans are readjusted for the opti-
mized beam configurations in order to establish the best treatment plan possible for every test case. Hence,
resulting treatment plans cannot be evaluated by means of objective function values; they are compared based
on resulting dose statistics, dose distributions, and dose volume histograms.

The beam configurations established by spherical cluster analysis differ significantly from equi-spaced coplanar
beams. Figure 4.4 visualizes the clustering landscapes and the resulting beam configurations for one selected
case per site. There are large “forbidden” areas where candidate directions were investigated but never accepted
into the set of locally ideal beam anglesB. This is particularly pronounced for the pancreas cases (figure 4.4(b))
and for the intracranial cases (figure 4.4(c)), where all treatment beams impinge from the anterior. This highly
asymmetric beam configuration mirrors the asymmetric patient geometry (figures 4.6(c), and 4.6(e)). Pugachev
et al. (2001) have reported similar findings. The one-sided beam configurations typically spare OARs which
are located far away from the target, for example the spine for the pancreas patients, automatically. On the
other hand, penalties on normal tissue have to be increased in order to guarantee a sharp dose fall off around
the whole target and to avoid hot spots in the normal tissue.

The clinical benefit of the suggested BAS strategy differs for the three sites under investigation and is therefore
discussed individually in the following three paragraphs. Detailed statistics is displayed in table 4.1.

Prostate cases

The reference plans for the three prostate cases studied feature nine coplanar equi-spaced beams and are com-
pared to treatment plans with an optimized configuration of nine or seven beams. Homogeneous doses of 76
Gy and 70 Gy are prescribed to the GTV and CTV, respectively. For patient II, inclusive DVHs are given in
figure 4.5(a) and 4.5(b). Figures 4.6(a) and 4.6(b) contrast the dose distributions of the equi-spaced coplanar
nine beam plan and the optimized nine beam plan. All prostate treatment plans feature clinically equivalent
target coverage and the maximum doses for the rectum and bladder differ by less than 1.2 Gy for the optimized
and original treatment plans. However, the mean rectum dose of patient I is increased by 7.2 Gy (6.7 Gy) for
the optimized plans with nine (seven) beams. As these plans apply maximum dose constraints of 40 Gy to the
rectum, there is no incentive for the optimizer to confine medium and low doses. For the same reason, the mean
dose to the bladder is increased by 7.6 Gy (10.4 Gy) and 10.6 Gy (9.8 Gy) for the optimized plans with seven

2MATLAB R2009b, The MathWorks, Nantick, MA
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Prostate

# Config GTV CTV Rectum Bladder Femur (l) Femur (r) NT

I
9 equi 76.0 69.6 7.7 (71.1) 30.0 (71.4) 13.5 (32.5) 14.9 (30.4) 3.1
9 opti 76.0 69.2 14.9 (71.3) 32.8 (69.2) 8.0 (24.0) 10.5 (28.1) 3.8
7 opti 76.0 69.9 14.4 (71.1) 31.9 (69.5) 6.3 (29.7) 12.4 (36.1) 3.9

II
9 equi 76.0 70.5 34.4 (71.1) 23.1 (73.7) 20.1 (35.4) 19.4 (34.6) 4.3
9 opti 76.0 70.5 33.4 (70.7) 31.5 (72.7) 16.8 (40.0) 15.0 (34.9) 5.5
7 opti 76.0 70.2 33.1 (70.8) 33.5 (75.2) 13.9 (39.6) 15.1 (35.4) 5.4

III
9 equi 76.0 70.8 37.1 (70.3) 15.7 (74.7) 5.3 (26.4) 6.9 (27.9) 3.0
9 opti 76.0 71.2 34.2 (69.4) 26.3 (75.1) 9.0 (27.2) 12.2 (31.9) 3.8
7 opti 76.0 71.1 34.3 (70.3) 25.5 (75.5) 6.1 (22.4) 11.0 (33.3) 3.8

Pancreas

# Config GTV CTV Kidney (r) Kidney (l) Liver Spine Intestine NT

I
9 equi 54.0 44.9 6.0 (23.0) 6.8 (33.1) 5.4 (44.8) 7.2 (26.7) 13.3 (48.0) 3.0
9 opti 54.0 44.8 3.8 (16.1) 5.0 (33.3) 4.6 (45.7) 7.4 (22.3) 13.8 (50.1) 3.2
7 opti 54.0 44.8 4.3 (13.4) 5.2 (35.4) 5.0 (41.6) 7.7 (23.0) 12.8 (48.1) 3.2

II
9 equi 54.0 46.0 9.5 (23.3) 8.7 (18.9) 5.0 (47.9) 9.1 (30.8) 13.7 (49.5) 3.3
9 opti 54.0 46.3 7.0 (20.2) 5.5 (14.5) 7.1 (47.5) 5.9 (17.1) 13.7 (50.2) 3.5
7 opti 54.0 46.2 7.6 (21.1) 5.7 (15.3) 6.1 (46.9) 6.2 (16.6) 13.2 (50.2) 3.3

III
9 equi 54.0 46.6 5.7 (22.3) 7.1 (16.1) 6.2 (50.3) 7.7 (31.7) 8.5 (53.3) 3.3
9 opti 54.0 46.5 5.8 (18.2) 4.0 (13.6) 5.9 (50.1) 6.9 (14.4) 8.5 (53.9) 3.4
7 opti 54.0 46.7 5.8 (16.1) 4.2 (13.8) 5.9 (50.9) 6.1 (14.4) 8.9 (53.7) 3.5

Intracranial

# Config CTV Brainstem Eye (r) Eye (l) Opticus (r) Opticus (l) Chiasm NT

I
7 equi 50.4 17.2 (29.4) 11.8 (28.3) 12.0 (26.6) 33.9 (48.7) 37.2 (50.4) 29.5 (39.7) 5.5
7 opti 50.4 13.2 (26.2) 12.4 (23.8) 9.8 (23.4) 32.9 (45.7) 35.4 (45.3) 24.0 (35.7) 4.8
5 opti 50.4 10.2 (25.5) 10.3 (29.5) 10.2 (25.6) 34.8 (44.0) 36.5 (43.8) 25.7 (39.3) 4.9

II
9 equi 60.0 15.5 (31.6) 15.8 (26.2) 12.2 (20.8) 44.5 (53.5) 33.5 (40.5) 24.0 (50.2) 4.0
9 opti 60.0 8.0 (29.3) 9.7 (22.2) 9.5 (14.0) 42.8 (51.2) 23.4 (40.0) 21.2 (48.4) 4.2
7 opti 60.0 4.9 (21.5) 14.8 (25.0) 14.0 (24.0) 43.7 (54.1) 27.7 (37.5) 15.3 (46.0) 3.9

III
9 equi 60.0 22.2 (53.6) 20.3 (35.5) 19.2 (30.0) 48.4 (58.7) 33.8 (47.1) 41.0 (54.1) 4.0
9 opti 60.0 17.7 (55.5) 16.1 (24.2) 5.4 (22.1) 40.3 (52.0) 12.4 (31.0) 36.3 (55.8) 4.0
7 opti 60.0 18.0 (55.2) 21.0 (32.1) 5.1 (13.2) 37.6 (50.0) 10.8 (31.5) 35.2 (53.8) 4.1

Table 4.1.: Mean (Max) dose [Gy] of exclusive DVHs for all nine cases under investigation sorted by
treatment site. The dose statistics includes all volumes of interest (NT = normal tissue) that define
the main conflict during treatment planning of the corresponding site. All plans are normalized to
the mean target dose.
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Figure 4.5.: Inclusive DVHs for (a) & (b) Prostate lesion II, (c) & (d) abdominal lesion I, and (e)
& (f) intracranial lesion II. Solid lines represent the standard equi-spaced coplanar nine-beam plan,
dashed lines represent the optimized non-coplanar nine-beam plan, and dotted lines represent the
optimized non-coplanar seven-beam plan. DVHs are shown for selected volumes of interest that
define the main conflict during treatment planning of the corresponding case.
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Figure 4.6.: Dose distributions on a selected transversal CT slice for (a) & (b) Prostate lesion II, (c)
& (d) abdominal lesion I, and (e) & (f) intracranial lesion II. The dose distributions (a), (c), and
(e) are computed with nine equi-spaced coplanar beams, the dose distributions (b), (d), and (f) are
computed with nine optimized non-coplanar beams. 100% corresponds to the prescribed target dose.
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(nine) beams for patient II and patient III, respectively. For patients I and II, the mean and maximum doses to
the right and left femoral head can be reduced with an optimized beam configuration. All three cases exhibit a
slightly increased mean dose (0.7 Gy - 1.2 Gy) in the normal tissue, as applying non-coplanar beams enlarges
the volume of normal tissue receiving low doses.

Pancreas cases

The reference plans for the three pancreas cases studied feature nine coplanar equi-spaced beams and are com-
pared to treatment plans with an optimized configuration of nine or seven beams. Homogeneous doses of 54 Gy
and 45 Gy are prescribed to the GTV and CTV, respectively. For all three patients investigated, the optimized
beam configurations result in a reduction of the mean and maximum dose in the kidneys, e.g. a reduction of the
mean dose by 3.1 Gy for patient III and a reduction of the maximum dose by 9.6 Gy for patient I. Merely the
mean dose to the right kidney of patient III is increased by 0.1 Gy and the maximum dose to the left kidney
of patient I is increased by 2.3 Gy. There is no clear trend observed regarding dose contributions to the liver.
For the spine, however, the optimized beam configurations, even with a reduced number of beams, result in
significantly reduced maximum doses (up to 16.3 Gy for patient III). Doses to the intestine and normal tissue
of the optimized and standard treatment plans are clinically equivalent. Figures 4.5(c) and 4.5(d) display DVHs
for patient I. Figures 4.6(c) and 4.6(d) illustrate the general observation, that the dose distribution resulting from
the optimized beam configuration is more confined to the pancreas.

Intracranial cases

The reference plan for patient I featuring seven equi-spaced coplanar beams is compared to treatment plans
with seven and five optimized beams. The reference plans for patient II and patient III featuring nine equi-
spaced coplanar beams are compared to treatment plans with nine and seven optimized beams. For patient I, a
homogeneous dose of 50.4 Gy and for patients II and III, a homogeneous dose of 60 Gy is prescribed to the CTV.
The target volumes of all cases are located in close proximity to the eyes, the optic nerves, or the brainstem.
Figures 4.5(e) and 4.5(f) display DVHs of patient II, corresponding dose distributions are visualized by figures
4.6(e) and 4.6(f). For all three cases under investigation, the optimized nine beam configuration yields superior
sparing of OARs while guaranteeing equivalent target coverage. Only the maximum dose to the brainstem of
patient II is increased by 1.9 Gy. The most remarkable benefits of the optimized nine beam configurations are
a reduction of the mean dose by 5.5 Gy for the chiasm of patient I, a reduction of the mean (maximum) dose
by 21.4 Gy (16.1 Gy) for the left optic nerve of patient II, a reduction of the mean (maximum) dose by 13.8 Gy
(7.9 Gy) for the left eye of patient III, and a reduction of the mean dose by 10.1 Gy (7.5 Gy) for the left optic
nerve (brainstem) of patient II. Even the optimized treatment plans with a reduced number of beams result in
beneficial OAR sparing when compared to the standard treatment plans. Here, the most remarkable benefits are
a reduction of the mean (maximum) dose by 7.0 Gy (3.9 Gy) for the brainstem of patient I, a reduction of the
mean (maximum) dose by 10.6 Gy (10.1 Gy) for the brainstem of patient II, a reduction of the mean (maximum)
dose by 10.8 Gy (8.7 Gy) for the right optic nerve of patient III, and a reduction of the mean (maximum) dose
by 23.0 Gy (15.6 Gy) for the left optic nerve of patient III. For patient I, however, it is not possible to reach the
same target confirmation around the whole target volume using only five beams.

4.2.3. Discussion

This is the first attempt to apply spherical clustering analysis for BAS. It is an intuitive heuristic to select a
beam ensemble for IMRT. The results of the treatment plan comparisons are encouraging, especially for the
pancreas and intracranial cases under investigation. The BAS strategy yields the biggest impact for target vol-
umes located asymmetrically within the patient anatomy. For the prostate cases, clinically comparable IMRT
treatment plans are generated by BAS. The coplanar equi-distant nine beam configuration cannot be improved
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for a symmetric target located in a central position within the patient.

The computation times of the proposed BAS strategy are competitive in a clinical setting even though our
approach includes an explicit dose dependency within the calculation of the score matrix S . It is possible to
further decrease the computation time, which predominantly emerges from the calculation of the score matrix
S , by using parallel programming techniques and a more efficient programming language. The calculation of
S scales linearly with the number of candidate directions |B| and the number of target voxels |V|. The K-means
clustering scales linearly with the number of beams η of the treatment plan and the number of target voxels
|V|. Consequently, a higher angular or spatial resolution will not drastically increase computation times. Due
to a modular design, the implementation of the presented BAS framework is possible in combination with any
existing treatment planning software. However, a more comprehensive delineation of OARs in CT data may be
necessary in order to consider dose depositions far away from the transversal isocenter plane by non-coplanar
beams.

Cluster analysis on the sphere of candidate directions is an elegant way to deal with the combinatorial issue of
beam selection. A solution featuring the best combination of η beams and not the best η beams is determined.
Furthermore it is obsolete to penalize solutions with adjacent beams (Moravek et al. 2009) or to remove them
from the set of feasible solutions during the beam selection process (Potrebko et al. 2008). These are excluded
per se by the minimization of intra-cluster variance and maximization of inter-cluster separation during the
K-means algorithm. Unfortunately it is impossible to infer the number of clusters, which corresponds to the
number of beams η, from the underlying data with a standard criterion for model selection such as the Bayesian
information criterion. Since the set of locally ideal beam orientations B is given on a discrete grid this learning
process requires more sophisticated clustering techniques, as discussed in section 4.3. For BAS by spherical
cluster analysis, it is debatable, if the number of clusters really corresponds to the ideal number of beams. It
may be beneficial for the plan quality to place two beams within one cluster that stretches over a wide angle,
even though a statistical analysis suggests to model this cluster by one centroid only.

Depending on the starting conditions, the K-means algorithm converges to a local, not the global optimum
and repeating the K-means procedure for different starting conditions is only an incomplete means to arrive
at the global optimum. However, this suboptimal convergence characteristic is not anticipated to compromise
the clinical performance of the suggested beam ensemble selection strategy. The spherical K-means algorithm
always converges to a valid representation of the set of locally ideal beam orientations and yields improved
treatment plans. It is generally open to question whether global convergence is a necessity for BAS. Llacer
et al. (2009) and Meedt et al. (2003) show that the beam selection problem exhibits a degeneracy similar to
the beamlet weight optimization problem (Alber et al. 2002). Multiple beneficial solutions exist close to the
global optimum. For clinical purposes, any BAS yielding a treatment plan with a clear benefit for the patient is
valuable.

Even though, BAS is not intertwined with beamlet weight optimization, BAS by spherical cluster analysis in-
cludes to some extent the concept of intensity-modulated fields that complement one another to constitute a
beneficial IMRT treatment plan. Different parts of the tumor, i.e. different target voxels, are represented by
different irradiation angles in the set of ideal beam angles B. Hence, sparing one part of the tumor from one
direction but irradiating it from others is considered not only when calculating the score, but also when selecting
the beam ensemble. With the score matrix that depends on the individual target voxel, we introduce information
about the spatial dependence of dose depositions from different beams inside the target volume to the class of
beam ensemble selection strategies that rely on scoring functions. During beam selection, however, it is still
neglected that it may be favorable to deliver dose to one target voxel by several beam angles in order to spread
the dose over the normal tissue. One target voxel is only represented by one beam angle in the set of ideal
beam angles B. Furthermore a dose accumulated by different beams outside of the target volume, potentially
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within OARs, is not represented in the beam selection process. The score matrix S does not comprise spatial
information about dose deposition in OARs or normal tissue. However, the treatment plan comparison indicates
that these two issues do not affect the quality of the final treatment plans as they are both considered ex post
during beamlet weight optimization.

Spherical clustering analysis of locally ideal beam angles is not an exact mathematical formulation of the global
BAS problem - it is a valid and clinically valuable approximation and provides a flexible framework for BAS.
Every scalar function mapping the BAS problem to a spherical clustering problem can be analyzed with the
presented method. Existing scoring functions only have to be modified to include individual scores for every
target voxel to function within this framework.

4.3. Learning the number of beams and
the infinite von Mises-Fisher Mixture Model

In the previous section, we introduced a spherical K-means algorithm to cluster a set of locally ideal beam
orientations for BAS. Given the number of clusters η, the K-means algorithm infers the locations of the cluster
centers which may be interpreted as beam orientations for IMRT. Here, we are investigating means to also infer
the number of clusters η from the set of locally ideal beam orientations. In the picture of spherical cluster anal-
ysis, the appropriate number of beams may correspond to the number of clusters of the underlying spherical
distribution of locally ideal beam orientations.

This section introduces a more sophisticated clustering algorithm to analyze the spherical data sets of locally
ideal beam orientations. It sidesteps the delicate question of finding the right number of clusters by replacing
the point estimate of one particular number with a probabilistic belief over the total number of clusters. By
adapting previous work on infinite Gaussian mixture models (iGMM) (Rasmussen 2000) in Cartesian spaces to
the D-Sphere, we develop the infinite von Mises-Fisher mixture model (iMFMM). While the derivation of the
iMFMM in section 4.3.1 may require previous knowledge about probabilistic machine learning, the discussion
of the role of the iMFMM for radiation therapy treatment planning in sections 4.3.2 and 4.3.3 does not.

4.3.1. Method

The von Mises-Fisher distribution is a spherical analogon to an uncorrelated multivariate Gaussian distribution
in Cartesian space. On the D-sphere, it is defined as

F (β;µ, τ) = τD/2−1

(2π)D/2ID/2−1(τ) exp(τ µTβ) (4.9)

with the scalar precision parameter τ and the mean direction µ. Iν is the modified Bessel function of the first
kind and order ν. For D = 3, we obtain the special form

F (β;µ, τ) = τ
4π sinh(τ) exp(τ µTβ) (4.10)

Figure 4.7 shows 1, 000 samples from a von Mises-Fisher distribution with mean direction µ = (1, 1, 1)/
√

3 and
precision τ = 30. In the following, we concentrate on the 3-dimensional case, but all derivations can be easily
extended to D dimensions.

To construct our model, we assume that the N samples βi, i.e. all locally ideal beam orientations, are each gen-
erated from a mixture of an unknown and unbounded number K of independent von Mises-Fisher distributions
with unknown parameters µk, τk.

p(
{
βi

}
;µ1, ...,µK , τ1, ..., τK , π1, ..., πK) =

K∑
k=1

πk

N∏
i=1

F (βi;µk, τk) (4.11)
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Figure 4.7.: Samples from a von Mises-Fisher distribution with mean direction µ = (1, 1, 1)/
√

3 and
precision τ = 30.

πk = p(ci = k) is the probability of sample i stemming from cluster k and ci indicates the assignment of sample
i to a cluster k.

First we assume that the number of clusters K is fixed and finite; the limit K → ∞ is introduced later. The
derivations are closely modeled on work by Rasmussen (Rasmussen 2000) and Neal (Neal 2000) with regard
to Gaussian mixture models. Our contribution is the transformation of their work from Cartesian space to the
sphere (i.e. from mixtures of Gaussians to mixtures of von Mises-Fisher distributions).

Given a prior p(µ1...K , τ1...K , c1...N) on the unknown parameter values, the goal of an inference algorithm on
such a model is to track a posterior belief p(µ1...K , τ1...K , c1...N |β1...N) over the parameters of the mixture model
given the observed data. In our implementation, inference is performed using Gibbs sampling (Geman and
Geman 1984), a widely used Markov chain Monte Carlo scheme. It consists of iteratively sampling values of
all parameters of the model individually, conditioned on the current samples from all other parameters. Gibbs
sampling is guaranteed to produce samples from the exact posterior in the limit of large numbers of sampling
steps.

To keep the computational cost of the sampling scheme manageable, we use conjugate priors for the parameters
of the mixture components. A parametric distribution

p(z|a) = f (z; a) (4.12)

on the variable z with parameters a is called a conjugate prior to a likelihood p(d|z) of z under the data d if the
posterior can be formulated in the exact parametric form of the prior using Bayes’ rule.

p(z|d, a) =
p(d|z)p(z|a)∫
p(d|z)p(z|a)dz

= f (z; a′) (4.13)

The von Mises-Fisher distribution forms an exponential family (Bishop 2007). All distributions forming expo-
nential families have conjugate priors for their parameters, and a general construction for these priors exists.
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Conjugate prior for µk given τk

For the mean parameter µk, the conjugate prior is itself a von Mises-Fisher distribution

g(µk; τk,β0) = F (µk; m0, t0) (4.14)

with two parameters m0 and t0. In our experiments, we set t0 = 0.1 which leads to a distribution so broadly
covering the sphere that the precise value of m0 becomes irrelevant. For the lack of a better option, it was set
to the mean of the entire dataset. According to Bayes’ theorem, the posterior update is given by the product of
prior and likelihood ratio.

p(µk|
{
βi∈k

}
, τk) = F (µk; m0, t0) ·

∏
i∈k

F (βi;µk, τk)

= F (µk; ξ/|ξ|, |ξ|).
(4.15)

with ξ = t0m0 + τk
∑

i∈k βi. The notation i ∈ k confines an operation to samples that are assigned to cluster j.

Conjugate prior for τk given µk

Up to normalization, the conjugate prior on the precision parameter τk is

f (τk; a, b) ∝
{

τk

4π sinh(τk)

}a

exp (τkb) (4.16)

with scalar parameters a > b > 0. We set a = 5.0 and b = 4.7 to obtain a suited initial distribution of the
precision parameters τk for our data. Using Bayes’ theorem, the update rule for the posterior given data and µk
is

p(τk;
{
βi∈k

}
,µk) ∝ f (τk; a, b)

∏
i∈k

F (βi;µk, τk)

∝ f (τk; a + NK , b +
∑
i∈k

µT
k βi)

(4.17)

where Nk is the number of members of cluster k. We are not aware of an efficient method to analytically obtain
samples from this distribution, but any one-dimensional Markov chain Monte Carlo method can be used to
produce samples from this marginal. In our implementation, we use the slice sampling algorithm (Neal 2003),
which is a particularly efficient Markov chain Monte Carlo method for one-dimensional distributions.

Prior on the mixing proportions πk

The joint probability p(c1, c2, ...cN) of the class memberships of the samples βi is a multinomial distribution
parameterized by the unknown mixture parameters πk:

p(c|πk) =

K∏
k=1

πNk
k (4.18)

The multinomial distribution is also a member of the exponential family, and the conjugate prior for its pa-
rameter vector π is the Dirichlet distribution with a K-dimensional parameter vector α. If we set all elements
αk = α/K with a scalar constant α, the Dirichlet distribution puts uniform probability mass on all possible
values of πk and has the form

D(π;α) =
Γ(α)

Γ(α/K)K

K∏
k=1

πα/K−1
k . (4.19)
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α

ci µk τk

βi

m0 t0 a b

N

K → ∞

Figure 4.8.: Directed graphical model (Bayesian network) of the iMFMM representing both the gen-
erative process used to model the data, and the factorization properties of the joint distribution of all
variables in the model. Any node in the graph is conditionally independent of the rest of the graph
given values of its parents, its children and parents of its children. The deterministic quantities, such
as the data βi and the hyperparameters a, b, m0 and t0 are depicted by filled circles, while proba-
bilistic (latent) parameters are shown as hollow circles. The inverse Gamma prior on α is shown
as a small black circle. Rectangles with label N and K are so-called “plates” representing N and K
copies of their contents.

It is a crucial characteristic of the Dirichlet distribution that it is possible to integrate out the values of πk under
the posterior (Rasmussen 2000), leading to a joint distribution for the ci which is only a function of α, K, and
the cluster sizes Nk. It does not depend on the individual values of ci:

p(c1, ..., cN ;α) =
Γ(α)

Γ(N + α)

K∏
k=1

Γ(Nk + α/K)
Γ(α/K)

(4.20)

During Gibbs sampling, we condition on all but one particular sample. In this case the Gamma functions cancel
and we arrive at the simple discrete conditional probability:

p(ci = k|c\i, α) =
n\i,k + α/K
N − 1 + α

(4.21)

where c\i indicates all indices except i and n\i, j is the number of observations, excluding βi, that are associated
with cluster k.

Also conditioning on the value of sample βi yields the Gibbs sampling probability for ci of:

p(ci = k; c\i, α) p(βi|µk, τk, c\i) =
n\i,k + α/K
N − 1 + α

F (βi;µk, τk) (4.22)

The likelihood for α itself can be derived from equation 4.20. Together with a prior of inverse Gamma shape
(Rasmussen 2000), the posterior update for α is

p(α; n,N) =
αn−3/2 exp(− 1

2α )Γ(α)
Γ(N + α)

(4.23)

As there is no efficient analytical sampling scheme for this distribution, we apply the slice sampling algorithm
to obtain updates for α (Neal 2003).
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Figure 4.9.: Number of represented classes K, which corresponds to the number of beams, for the
initial 5000 iterations for an intracranial (red), pancreas (green), and prostate case (blue).

The infinite limit

So far, we have assumed a constant number of clusters. But, sidestepping a few technicalities (Neal 2000,
Rasmussen 2000, Griffiths and Ghahramani 2005), it is intuitively easy to take the limit of equation 4.22 for
K → ∞. All clusters containing more than one sample, i.e. n\i,k > 0, retain a finite probability

n\i, j
N − 1 + α

· p(βi;µk, τk) (4.24)

of being chosen. And because the overall probability of choosing any cluster has to be 1 and all clusters have
parameters with the same prior distribution p(µ, τ), all infinitely many remaining clusters together have the
finite probability

α

N − 1 + α

∫
p(βi|µ, τ) · p(µ, τ) dµ dτ (4.25)

of being chosen. The integral in this equation can be approximated by Monte Carlo integration, i.e. generating
l samples from the prior for µ and τ, summing their likelihood terms p(βi;µ, τ), and dividing by l. We found
that often even l = 1 is sufficient for convergence of the Gibbs sampler.

The resulting probability measure over probability measures, widely known as the “Dirichlet process”, controls
the number of mixture components. The limit-construction used here is known as the “Chinese Restaurant
Process” (Griffiths and Ghahramani 2005).

4.3.2. Results

For inference on our spherical beam angle data set, we initialize the iMFMM with K0 mixture components. K0
is sampled uniformly from the interval [10, 20]. The corresponding starting parameters for µk and τk are drawn
from the prior and subsequently posterior updates on all model parameters are performed during a large number
of Gibbs sampling iterations. The initialization of K0 reflects our expectation regarding the number of classes
underlying the beam angle data set. It reduces the number of iterations needed for burn-in and leaves the long
term behavior of the iMFMM unaltered. Here, “burn-in” denotes the drift from the initial Markov chain state
to regions of high probability mass.

Figure 4.9 shows the number of represented classes K during the first 5, 000 iterations for three patient data
sets. This corresponds to the belief of the iMFMM regarding the most probable number of clusters constituting
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(a) Prostate lesion

(b) Pancreas lesion

(c) Intracranial lesion

Figure 4.10.: One iMFMM sample for the spherical data sets of locally ideal beam angles of a
prostate (a), pancreas (b), and intracranial lesion (c). The longitude corresponds to the angle around
the patient axis, the latitude to the angle towards the transversal plane. The centroids of the mixtures
µk are indicated by black circles, the color coding corresponds to the current assignment of the data
to the mixtures ci. We did not attempt to visualize the precisions τk. Note the relatively large number
of clusters required in 4.10(b), as the von Mises-Fisher distribution cannot model directional corre-
lation. Considering 4.10(a) and 4.10(b) it might be straight forward to identify a smooth path on the
sphere passing by the cluster centroids and respecting potential physical limitations of the irradiation
device for improved arc therapy.
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Figure 4.11.: Mollweide projection of a set of locally ideal beam anglesB for an intra cranial lesion.
The longitude corresponds to the angle around the patient axis, the latitude to the angle towards the
transversal plane. The data, indicated by black dots, is overlaid by a density estimate of the iMFMM
averaged over 1, 000 Monte Carlo iterations.

the distribution of locally ideal beam orientations B. The number of classes, i.e. the number of beams of the
final IMRT treatment plan, is rapidly adjusted by the iMFMM within the first 100 iterations and subsequently
undergoes slight fluctuations for the intracranial and prostate data set. We discard the first 2, 000 iterations for
burn-in. The state of the iMFMM in a single iteration after burn-in, i.e. its current estimate of the number of
cluster components, their means and precisions, and the assignment of data points to cluster components, is
shown in figure 4.10 for three clinical data sets.

If we want to evaluate the full posterior distribution of all samples from the Gibbs scheme, we have to average
over a large number of iterations. Figure 4.11 shows the resulting density estimate overlying the set of locally
ideal beam orientations obtained by averaging over 1, 000 samples. Simply put, figure 4.11 may be considered
an average over multiple instances of figure 4.10(c).

Within a complex Gibbs sampling scheme, it may be possible, that subsequent iterations of the iMFMM are
statistically dependent. The autocorrelation of the number of represented classes after 2, 000 iterations is shown
in figure 4.12(a). We do not observe a significant correlation for any of the three data sets under investigation.
The effective autocorrelation length, computed as the sum of the autocorrelation between an iteration lag of
−1, 000 and 1, 000 (Rasmussen 2000), does not exceed 10 iterations for the three data sets investigated.

For a concrete statement regarding the number of represented classes (which in our case will correspond to the
number of treatment beams) we now draw 100 independent iMFMM samples. More precisely, we evaluate 100
samples after burn-in which are each separated by one autocorrelation length. Figure 4.12(b) shows the spectra
for K for the three data sets under investigation. As the data does not stem from a mixture of von Mises-Fisher
distributions but from our formulation of the BAS problem, there is not a distinct number of components that
explain our data. The iMFMM yields a distribution over the probability of the number of represented compo-
nents. It found the highest probability for the intracranial data set to be generated by a mixture of K∗intra = 18
von Mises-Fisher distributions. The analysis for the pancreas and prostate data sets yields highest probabilities
for mixtures of K∗pancreas = 32 and K∗prostate = 29 von Mises-Fisher distributions, respectively.

Given the number of represented components K∗, it is straightforward to infer exact orientations for the treat-
ment beams: Using a finite von Mises Fisher mixture model with K∗ components, we maximize the posterior
probability of the parameters µk, τk, and ci. For the purpose of localizing the treatment beams, only the centroid
positions µk will be of interest.
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Figure 4.12.: (a) Autocorrelation of the number of represented classes after 2, 000 iterations for an
intracranial (red), pancreas (green), and prostate case (blue). (b) Histograms of the number of rep-
resented classes for an intracranial (red), pancreas (green), and prostate case (blue) displaying the
frequency of the number of represented classes.

4.3.3. Discussion

In extension of previous work on density estimation with Dirichlet process mixture models in Cartesian spaces
(Rasmussen 2000, Neal 2000), we introduced the infinite von Mises-Fisher mixture model as a general frame-
work for density estimation on the D-sphere. We constructed conjugate priors for its parameters µ and τ, and
derived a Markov chain Monte Carlo inference algorithm relying on Gibbs sampling scheme for posterior in-
ference from data. Using a nonparametric Dirichlet process prior, the iMFMM infers probability distributions
over both the number of clusters and their parameter values. In contrast to clustering methods based on point
estimates, such as K-means clustering or factor analysis, the iMFMM, being a fully probabilistic method, does
not suffer from the problem of overfitting, and can automatically determine the range of clusters to use.

The iMFMM was applied to infer a treatment beam ensemble for external radiation therapy based on a set of
locally ideal beam angles distributed on the unit sphere. For the data sets studied, the iMFMM returns mixtures
of 18 − 32 beam orientations. This represents a considerable dimensionality reduction from the original data
sets containing ∼ 104 locally ideal beam directions. However, in conventional linear accelerator treatments,
which typically include 5− 11 beam orientations, 18− 32 beams are not feasible. In order to arrive at a number
of beams that is efficient in a clinical setting, heuristic merging of clusters could be used, but as we already have
a functional alternative to cluster beam orientations with a predefined number of clusters this would actually not
be a real improvement. Extending the infinite mixture model to integrate directional correlation on the sphere,
which implies the non trivial transition from von Mises-Fisher distributions to Kent distributions, might only
result in a slight decrease of the number of beams (consider figure 4.10(b)). Unfortunately it is impossible to
directly bias the probabilistic process of the iMFMM that decides about the number of clusters because this
compromises the convergence properties of the iMFMM.

As the iMFMM cannot be easily adjusted to yield less beams, we see two potential applications within radia-
tion therapy treatment planning that may benefit from the analysis of the set of locally ideal beam orientations
with the iMFMM. First, the iMFMM might be used with slight modifications for beam ensemble selection for
robotic radiosurgery treatments, where typically 50−100 beam orientations are accessed. Second, the iMFMM
beliefs could be used to find beneficial trajectories for arc therapy, where the treatment beam is rotated around
the patient during irradiation. Yang et al. (2011) showed that arc therapy may be improved using non-coplanar
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Figure 4.13.: The iMFMM could be used to find optimized trajectories for arc therapy. First, the
iMFMM finds a low complexity representation (large green dots) of the set of locally ideal beam
orientations (small black dots). Second, based on this low dimensional representation we can find a
trajectory that passes by all locally ideal beam orientations (green curve). Third, this trajectory could
be smoothened for the delivery with an actual irradiation device (blue curve). The locally ideal beam
orientations and the trajectories are shown relative to the target volume (green) and the OARs (red)
located within the patient (gray).

rotation trajectories. It is possible to define a path through the centroids of the von Mises-Fisher distributions
found by the iMFMM. Such a path “passes by” all elements in the set of locally ideal beam orientations and may
potentially yield improved treatment plans. For the visualization shown in figure 4.13, we solved a traveling
salesman problem on the sphere with a genetic algorithm (green line) and smoothened the trajectory (blue line)
with a von Mises-Fisher kernel. The smooth trajectory may be more convenient for the actual delivery with a
linear accelerator. By considering the spatial relation of the target voxels that are associated with the locally
ideal beam orientations it may even be possible to resolve potential sequencing issues before beamlet weight
optimization.

The focus of this section was on the derivation of the iMFMM. Unfortunately, an application of the iMFMM
for conventional IMRT treatment planning is not feasible, but it may be beneficial for robotic radiosurgery
or arc therapy. A thorough assessment of the impact of the iMFMM on the quality of treatment plans for
arc therapy and robotic radiosurgery is left for future research. The work presented in the previous section
4.2 has already provided strong evidence for the clinical value of the approximation to formulate the search
for beneficial beam directions as a clustering problem of locally ideal beam angles on the three-dimensional
sphere. The incorporation of the iMFMM into this framework implies only the replacement of the spherical
K-means algorithm with a more sophisticated method.
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4.4. Beam ensemble selection for particle therapy

Beam configurations for intensity-modulated particle therapy (IMPT) are usually selected based on the experi-
ence of human experts - just like beam configurations for conventional IMRT. Consequently, treatment regimes
evolved over time for standard patient geometries, while beam configurations for unique and complex patient
geometries have to be adopted during a tedious trial-and-error process. At the Francis H. Burr Proton Therapy
Center of Massachusetts General Hospital, for example, prostate patients are irradiated with a standard beam
configuration featuring a left and right laterally opposed field. An experienced radiation oncologist, however,
may need more than 30 minutes for the manual selection of an adequate beam configuration for a complex
intracranial lesion.

BAS for particle therapy received only limited attention in scientific journals (Moravek et al. 2009) but first stud-
ies presented at international conferences indicate that it is very difficult for a radiation oncologist to consider
the non-intuitive interplay of intensity-modulated particle fields (Li et al. 2006, Speer et al. 2009). Currently,
the possibilities of IMPT are not fully exploited for the benefit of the patient. The treatment plan quality could
be improved by a dedicated BAS strategy - just like in IMRT.

Figure 4.14.: Projection of the set of locally ideal beam anglesB to two dimensions for the phantom
case shown in figure 4.1(a) for protons. Dark red indicates regions of high density of locally ideal
beam angles and dark blue indicates regions of low density of locally ideal beam angles. The area
shaded in gray represents the set of candidate directions B.

In principle, we could use spherical cluster analysis as is in combination with the score matrix S for BAS in
particle therapy. Only the depth dose profile has to be adjusted for the calculation of the score S . Figure 4.14
depicts the resulting clustering landscape for the phantom case that is shown in figure 4.1(a).

Treatment plans for IMPT typically comprise two to four beams. With a decreasing number of beams, however,
the clusters found by the spherical K-means algorithm span over a larger spatial angle. At some point, this
compromises the validity of the low dimensional representation of the set of locally ideal beam orientations
found by the clustering algorithm. The exact location of the cluster centroids and likewise the beam orientations
become irrelevant. Consequently, an alternative strategy is developed to evaluate the score matrix S . This
strategy exploits the full information content of S for BAS, not just the information about one locally ideal
beam orientation per target voxel.
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4.4.1. Method

A combinatorial beam angle selection framework based on score matrices

Recall that the best beam orientation β∗v for the irradiation of a single target voxel v is given by

β∗v = arg min
β ∈ B

S βv (4.26)

since β∗v maximizes the dose delivered to the target relative to the dose delivered to normal tissue and OARs
weighted hundredfold. The best score s∗v for target voxel v is

s∗v = min
β ∈ B

S βv. (4.27)

By summation over the best score values s∗v for all target voxels v we can define a score for the entire target
volume s̄∗.

s̄∗ =
∑

v

min
β ∈ B

S βv (4.28)

According to this definition, the ideal beam ensemble B∗ exactly corresponds to the set of locally ideal beam
orientations B

B∗ = B (4.29)

because all beams within the set of locally ideal beam orientations contribute to s̄∗. All treatment beams within
the set of candidate beam orientations B may be a member of the ideal beam ensemble B∗ resulting in a large
number of treatment beams η.

η = |B∗| = |B| ≤ |B| (4.30)

In a clinical setting, however, we have to restrict the number of beams η and consequently we have to restrict
the composition of the score for the entire target volume. If we are to find the best beam ensemble featuring
one beam orientation only, we have to calculate the score s̄1 given by the summation over all target voxels v for
a fixed beam orientation β.

s̄1(β) =
∑

v

S βv (4.31)

The ideal one-beam ensemble B∗1 is given by

B∗1 = arg min
β ∈ B

∑
v

S βv

 . (4.32)

For an arbitrary beam ensemble B featuring η beams the score for the entire target volume s̄η is given by

s̄η(B) =
∑

v

(
min
β ∈ B

S βv

)
with B ∈ Pη(B) (4.33)

Pη(B) denotes the set of subsets of B with η elements. Equation 4.31 is a special case of equation 4.33 for
η = 1. The best η-beam ensemble B∗η is given by the subset of the set of candidate beam orientations B with η
elements that minimizes s̄η(B).

B∗η = arg min
B ∈ Pη(B)

∑
v

(
min
β ∈ B

S βv

)
(4.34)

Equation 4.34 represents an NP-hard combinatorial optimization problem. For a small number of beams η < 4 it
may be solved efficiently by exhaustive search, i.e. a brute force evaluation of all combinations for B ∈ Pη(B).
For a larger number of beams, we apply a genetic algorithm to find near optimal beam configurations. Note that
the evaluation of a beam configuration according to equation 4.33 is very fast. It requires only a summation
over selected elements of the precomputed score matrix S which typically comprises 1, 000 × 5, 000 elements,
i.e. 40 MB in double precision.
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(a) (b)

Figure 4.15.: (a) A phantom case. The circular target volume, outlined in red, is located in the
center of a circular phantom, outlined in blue. A circular OAR, outlined in yellow, is located close
to the target volume. b) Score s̄1 for a treatment plan applying η = 1 beam for the phantom case
depicted in figure 4.15(a). The nominal score is given by the black curve, the worst case score
considering setup uncertainties only is given by the blue curve, the worst case score considering
range uncertainties only is given by the green curve, and the worst case score considering setup and
range uncertainties is given by the red curve. A range and setup uncertainty of 3 mm is assumed for
the score calculation. Note that the score function is rather noisy due to sampling artifacts because
the target volume comprises only few voxels.

Robustness

IMPT treatment plans are very sensitive to uncertainties in the calculated range of the individual Bragg peaks
and errors during patient setup (Lomax 2008a;b). It is essential to incorporate these uncertainties in order to
establish robust IMPT treatment plans. Currently, margins and computationally very intensive probabilistic or
worst case methods are applied to account for both range and setup uncertainties during beamlet weight opti-
mization (Unkelbach and Oelfke 2004, Pflugfelder et al. 2008b). This section investigates means to account
for the criterion of treatment plan robustness already during the selection of the beam ensemble by a straight
forward extension of the score matrix S .

Therefore, the dosimetric aspects which are integrated into the score matrix S are reconsidered regarding poten-
tial range and setup uncertainties. We do so by computing a worst case score comparable to the worst case dose
distribution introduced for robust fluence optimization (Pflugfelder et al. 2008b): S βv is not only calculated
for the nominal range and patient alignment, but also for a set of worst case configurations featuring Bragg
peaks that are displaced laterally and in depth for every target voxel v and candidate beam angle β. During
the subsequent beam ensemble selection process, only the worst, i.e. maximum score, will be considered. This
methodology is discussed by means of a phantom case which is depicted in figure 4.15(a). For clarity, the
considerations are restricted to the coplanar plane.

If we are to find the best treatment plan with η = 1 beam, the overall score for every irradiation angle is com-
puted according to equation 4.31. The nominal score, visualized by the black curve in figure 4.15(b), suggests
beam orientations impinging between 270◦ and 90◦ yield clinically almost equivalent treatment plans. The best
beam orientation is given by αnom = 0◦. Protons impinging from 0◦, however, stop directly in front of the
OAR. If the range calculation is not 100% correct, an irradiation from this direction may result in an increased
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dose in the OAR. The score incorporating range uncertainties, visualized by the green curve, accounts for these
uncertainties. It exhibits two minima at αrange = 90◦ and αrange = 270◦. For these beam orientations, “over-
shooting” does not result in an increased dose in the OAR. If we only account for setup uncertainties, the best
beam orientation is given by αsetup = 0◦, as visualized by the blue curve. Lateral shifts of the patient do not
result in an increased dose within the OAR from this direction. The red curve visualizes the score that accounts
for both range and setup uncertainties. The best beam orientation according to the worst case score is αwc = 0◦.
Apparently, a setup error of 3 mm has a bigger impact on the worst case score of the beam orientations around
270◦ and 90◦ than a range uncertainy of 3 mm on the beam orientations around 0◦.

Unfortunately, it does not suffice to select beam orientations with this methodology to establish robust treat-
ment plans (Bangert and Oelfke 2009a). It is necessary to combine the BAS with techniques for robust fluence
optimization, which are computationally very expensive.

Pflugfelder et al. (2008b) report about the characteristics of robust fluence profiles for IMPT treatments. For
range uncertainties they observed that the dose gradients between the target and OARs are shaped using the lat-
eral instead of the distal gradient of the Bragg peaks. For setup uncertainties they observed that the beam dose
is reduced for parts of the beam which hit the patient at a narrow angle, as there a small shift leads to a large
change in radiological depth. We suggest to use the information about the relative quality of a beam orientation
β for the irradiation of target voxel v, which was already computed for the score matrix S and used for BAS, to
enforce such robust fluence profiles a priori. The score matrix S may not only be used to find a beneficial beam
ensemble B, but also to identify the beam orientation β ∈ B that is suited best for the irradiation of of a certain
spot position within the target.

In contrast to conventional fluence optimization, where all beam spots within the target may be irradiated from
every beam β of the treatment beam ensemble B, only the best beam orientation for every spot according to
matrix S is selected. Therefore all spot positions are mapped to the closest target voxel. The beam orientation
β∗v used for irradiation of voxel v is given by

β∗v = arg min
β ∈ B

S βv. (4.35)

This imposes automatic restrictions on the fluence modulation of the individual subfields in order to auto-
matically compute robust treatment plans even though a conventional fluence optimization is applied. The
assignment of individual spot positions within the target volume to certain beam orientations of the treatment
beam ensemble may be considered an intertwined patch field approach.

The strategy is evaluated for a phantom case featuring a C-shaped target surrounding an OAR. Three different
scenarios are compared: Conventional fluence optimization, robust fluence optimization according to the worst
case optimization approach introduced by Pflugfelder et al. (2008b), and conventional fluence optimization in
combination with the modulation restrictions according to the score matrix S . All treatment plans use the same
optimized three-beam ensemble. Corresponding worst case dose distributions are employed to evaluate the
robustness of the three scenarios. The study focuses on the influence of range uncertainties.

4.4.2. Results

We calculated a score matrix S that included the nominal scenario and two worst case scenarios modeling an
uncertainty of ±3 mm in the calculated range of the individual Bragg peaks. The best three beam configuration
according to equation 4.33 was 10◦, 255◦, and 320◦. Figure 4.16 shows the dose deposition of the individual
proton fields for the conventional fluence optimization, the robust worst case fluence optimization, and the flu-
ence optimization using only one beam direction per spot position within the target. The conventional fluence
optimization exploits the steep distal dose fall-off behind the Bragg peak to shape a conformal dose distribution.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.16.: Dose distribution of the individual proton fields on a selected transversal CT slice.
The target volume is outlined in green, the OAR is outlined in red, and the normal tissue is out-
lined in purple. (a), (b), and (c) depict individual proton fields obtained by conventional fluence
optimization. (d), (e), and (f) depict individual proton fields obtained by robust worst case fluence
optimization (Pflugfelder et al. 2008b). (g), (h), and (i) depict individual proton fields obtained by
fluence optimization using only one beam direction per spot position within the target.

Protons stop directly in front of the OAR, as shown in figures 4.16(b) and 4.16(c). The worst case fluence opti-
mization, in contrast, exploits the lateral dose fall-off to shape a conformal dose distribution, as shown in figures
4.16(d), 4.16(e), and 4.16(f). The same holds for the fluence optimization using only one beam direction per
spot position within the target. However, figures 4.16(g), 4.16(h), and 4.16(i) show that the fluence modulation
within the target volume is more pronounced in comparison to the individual fields of the worst case fluence
optimization.

Figure 4.17 shows the corresponding DVHs of the three investigated scenarios. As expected, the treatment
plan established by worst case beamlet weight optimization is associated with the smallest uncertainties and the
treatment plan established by conventional beamlet weight optimization is associated with the largest uncertain-
ties. The treatment plan established by fluence optimization using only one beam direction per spot position
within the target has a significantly reduced uncertainty within the OAR compared to the conventional fluence
optimization. For the target volume, however, only marginal improvements are observed.
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(a)

(b)

(c)

Figure 4.17.: DVHs for the target volume and OAR for (a) conventional fluence optimization, (b)
robust worst case fluence optimization (Pflugfelder et al. 2008b), and (c) fluence optimization using
only one beam direction per spot position within the target. The areas shaded in blue and red indicate
the uncertainty associated with the nominal DVH data based on a worst case dose distribution as
defined by Pflugfelder et al. (2008b) considering a range uncertainty of ±3 mm.
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4.4.3. Discussion

In combination with an alternative BAS algorithm, the score matrix introduced in section 4.1 is applicable for
BAS in particle therapy. The selected beam orientations are plausible and yield beneficial treatment plans. The
choice for our custom score as defined in equation 4.2, however, showed two disadvantages for protons. First,
the calculation of the worst case score scenario may become numerically instable if the target dose dTarget ap-
proaches 0 Gy. This may happen in the case of “under shoot” where proton spot positions on the proximal edge
of the target volume get fully retracted from the target volume. Second, a constant weighting factor of 100 may
yield an over estimated impact on the score if an OAR receives only dose by the distal fall-off behind the Bragg
peak. This effect may be even more severe for carbon ions due to the fragmentation tail after the Bragg peak.
Both issues may be resolved with a score that facilitates custom maximum doses as suggested by Pugachev and
Xing (2001b) but still assigns an individual score for every target voxel. A thorough investigation of such an
approach in the context of particle therapy is left for future research.

The alternative strategy to evaluate the score matrix S exploits its full information content. While spherical
cluster analysis incorporates only information about one locally ideal beam orientation β∗v per voxel, the com-
binatorial approach considers the individual trade-off for every voxel. On the one hand, if a voxel v may be
irradiated equally good from every direction according to the score matrix S , changing the beam direction for
this very voxel does not have a big impact on the combined score s̄η of the final beam ensemble. Hence, the
relative influence of voxel v on the final beam configuration is very limited. On the other hand, if a voxel v
may only be irradiated very well from a certain direction β according to the score matrix S , there is a large
incentive to include this very beam direction into the final beam ensemble in order to minimize the combined
score s̄η of the final beam ensemble. For spherical cluster analysis, however, all target voxels are represented
by one locally ideal beam orientation and consequently all target voxels have equal influence on the final beam
ensemble. In principle, these aspects are also valid for BAS for photon therapy (Bangert and Oelfke 2009b).
However, potential conceptual advantages over the spherical cluster analysis of the set of locally ideal beam
orientations did not translate into superior treatment plans for photons due to the increased number of beams
(η ≥ 5). Furthermore, the performance of the combinatorial approach is compromised by the increased com-
putation times of the genetic algorithm and spherical clustering analysis may be considered a more intuitive
approach.

The measures taken to incorporate the influence of uncertainties on BAS yield plausible beam configurations.
As expected, BAS based on robustness criteria alone does not suffice to establish robust treatment plans. It is
indispensable to incorporate methods for robust beamlet weight optimization. The approach to impose restric-
tions on the fluence modulation patterns for individual subfields according to the BAS matrix S before beamlet
weight optimization yields encouraging yet not satisfying results. The characteristics of robust treatment plans
are well-known (Pflugfelder et al. 2008b); consequently it may be worthwhile to investigate the potential of
more sophisticated restrictions on the fluence modulation for IMPT treatment planning. Just as it is possible
to resolve sequencing issues for IMRT with smoothness constraints on the modulation of individual fields, it
might be possible to enforce robustness of IMPT treatment plans with comparable concepts.

4.5. Geometric beam ensemble selection

In a 2008 paper, Potrebko et al. (2008) introduce anatomic beam orientation optimization (A-BOO), a strategy
for BAS which is solely based on geometric analysis of the patient anatomy. For A-BOO, triangulated surface
mesh data is analyzed to identify beam orientations that impinge tangentially to the surface elements of the tar-
get volume. As shown in figure 1.1(a), photon beams exhibit the steepest gradient in lateral direction. Hence,
beam orientations that impinge parallel to surface elements of the target result in steep gradients at this surface
element.
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A-BOO provides a ranking of candidate directions which serves as guidance for a radiation oncologist deciding
about the beam ensemble for an IMRT treatment plan. Potrebko et al. were able to show that A-BOO helps
to significantly improve the quality of treatment plans for gastric, prostate and oropharynx cases within min-
utes of computation time. Even though A-BOO is a highly useful and fast algorithm for BAS, it remains in
some respect incomplete: A-BOO requires significant user interaction when the radiation oncologist composes
a treatment beam ensemble based on the ranking of beams provided by A-BOO.

It is possible to use the technique of spherical cluster analysis, which was introduced in section 4.2 for the
analysis of score matrices, to enhance A-BOO. By analyzing the weighted spatial distribution of beneficial
beam orientations with a spherical K-means clustering algorithm, treatment beam ensembles may be selected
in a fully automated process.

4.5.1. Method

Again, the origin of the coordinate system underlying our considerations is defined as the isocenter of the pa-
tient anatomy and a beam direction is represented by a point β on the three dimensional unit sphere.

A-BOO is based on a triangulation T of the target surface, i.e. an approximation by triangular surface elements.
A triangular surface element ti ∈ T may described by the three vertices of the triangle given as vectors ai, bi,
and ci. To identify the beam orientations that impinge parallel to the target surface element ti, the normal vector
ni is computed

ni =
(ci − ai) × (bi − ai)
|(ci − ai) × (bi − ai)|

. (4.36)

The set of beam orientations Pi that impinge parallel to target surface element ti are given by

Pi =

 β∗ | arc cos
β∗ᵀni∣∣∣β∗ᵀni

∣∣∣ = π

 . (4.37)

Pi may be considered as the set of locally ideal beam orientations for target surface element ti. It can be repre-
sented by a circle on the unit sphere. Remember, that we worked with a single locally ideal beam orientation
per target voxel in section 4.2. Here, we are exercising the equivalent approach with a “circle” of locally ideal
beam orientations per target surface element.

In a discrete representation of the patient anatomy, Pi is given by the candidate beam orientations within B, that
are almost perpendicular to the normal vector of the target surface element ni.

Pi =

 β∗ ∈ B | |arc cos
β∗ᵀni∣∣∣β∗ᵀni

∣∣∣ − π| < ε
 . (4.38)

ε is set to the angular spacing of candidate beam directions. The set of locally ideal beam orientations for the
entire target volume B is given by the set of all Pi of the individual target surface elements. Note that B may
have duplicate elements.

B = {Pi | i ∈ T } where |B| =
∑

i

|Pi|. (4.39)

Figure 4.18 visualizes the set of locally ideal beam orientations for three selected clinical cases. Compared to
the earlier clustering approach, B is simply an alternative spherical representation of the BAS problem. It does
not rely on the evaluation of a score matrix S but on geometric considerations. We are going to show that it is
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(a)

(b)

(c)

Figure 4.18.: Projection of the set of locally ideal beam angles B (given as points on the 3-sphere)
to two dimensions. Red indicates regions of high density of locally ideal beam angles and blue
indicates regions of low density of locally ideal beam angles. (a) Prostate lesion I, (b) pancreas
lesion III, and (c) intracranial lesion III. The beam directions of the optimized nine-beam-plan for
all three cases are visualized by black dots. Note that the density of locally ideal beam orientations
relates to a true physical quantity: as the influence of a target surface element is weighted according
to its area, the color coding corresponds to the percentage of the area of the target surface that can
be irradiated tangentially from this beam orientation.
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possible to use the same spherical clustering algorithm with slight modifications to find a beam ensemble for
IMRT treatment planning.

In order to create an IMRT treatment plan featuring η beams, η centroids µ0
k ∈ B are randomly selected during

initialization. As previously discussed, K-means clustering alternates between an assignment step, where every
beam direction β∗i ∈ B is assigned to its closest centroid, and an update step, where the estimate for a centroid
is refined to the mean direction of all beam directions assigned to this centroid.

For spherical cluster analysis for BAS based on geometric data, however, two modifications of the algorithm
are necessary. First, the update of the centroid estimate has to be modified because the triangular target surface
elements have different areas. In order to guarantee that the influence of a target surface element is proportional
to its area, the area Ai of every target surface element ti is computed

Ai =
1
2
· |(ci − ai) × (bi − ai)| (4.40)

and the updated estimate of each centroid is given by a weighted average of all associated beam orientations

µ j+1
k =

β̄
∗

k∥∥∥β̄∗k∥∥∥ with β̄∗k =
∑

c j(β∗i ) = k

Aiβ
∗
i . (4.41)

Second, we have to consider that opposing beam orientations are in fact parallel to the same target surface
elements (this is why the clustering landscapes are point symmetric to the origin of the coordinate system).
Consequently the assignment c j of beam orientations β∗ ∈ B to its closest centroid has to be invariant regarding
parallel and antiparallel beam orientations.

c j(β∗i ) = arg max
k

{∣∣∣∣β∗ᵀi µ j
k

∣∣∣∣} (4.42)

Note that this symmetry regarding parallel or antiparallel beam orientations is also important for the calculation
of the updated mean directions µ j+1

k . In order to avoid cancellation effects of antiparallel beam orientations,
some beam orientations may have to be “flipped” so that all beam orientations that are associated with cen-
troid k “point” in the same direction. Furthermore, the point symmetry may be exploited to fine-tune the final
beam ensemble. As mirroring a beam orientation with respect to the origin of the coordinate system results
in exactly the same solution according to the metric of our clustering algorithm, we may flip individual beams
to accommodate additional objectives of treatment planning. If a beam would have to travel a long distance
through normal tissue or an OAR before hitting the target volume, for example, we could simply use the exactly
opposing beam orientation instead. For this study, however, such adjustments are not performed.

Potrebko et al. suggested to additionally weight the influence of a target surface element by its distance to
the closest OAR. According to Potrebko et al. (2008), the impact of a target surface element should increase
with decreasing distance to an OAR. Our studies showed for the considered cases that the suggested distance
weighting does not affect the final beam configurations. Consequently we did not include this weighting into the
automated BAS process. We argue that close proximity of an OAR to the target already implies a larger target
surface parallel to this OAR. The prostate, for instance, is located between rectum and bladder. Hence, the
prostate takes a flattened shape with large interfaces towards the rectum and bladder. The weighting of target
surface elements according to their area alone guarantees a dominating impact of this OAR-target interfaces
during the BAS process. Equivalent arguments hold for target volumes surrounding the brainstem or the optic
nerve.
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4.5.2. Results

The suggested method for BAS is evaluated in a treatment plan comparison for the same three prostate, pan-
creas, and intracranial cases already used in section 4.2. The optimized beam ensembles applying nine, seven,
or five beams were compared to beam ensembles applying nine equi-spaced beams. The fluence profiles of all
treatment plans were optimized with our in-house treatment planning software KonRad (Preiser et al. 1997)
using a standard quadratic objective function (Oelfke and Bortfeld 2001). We used the same maximum and
minimum dose constraints and penalties for all treatment plans. Table 4.2 gives a detailed overview of the nine
patient cases under investigation.

The triangulations are computed with our in-house treatment planning software VIRTUOS (Bendl et al. 1994).
The approximations of the target volumes comprise up to 3, 000 target surface elements. The analysis of the
triangulated surface data is implemented in MATLAB3. The overall BAS computation time considering about
10′000 non-coplanar candidate beam orientations is about 2 s on a 2.3 GHz workstation. Beam orientations
that would result in a collision of the treatment head with the patient or the couch are excluded from the set of
candidate beam directions. Figure 4.19 shows the graphical user interface for BAS. As the final evaluation of a
treatment plan is based on the dose distribution calculated with KonRad, this tool is in principle ready for first
clinical testing.

Figure 4.18 visualizes the clustering landscapes and the resulting beam configurations for one selected case per
treatment site. The clinical benefit of the suggested BAS strategy is discussed individually for every site in the
following three paragraphs. Detailed statistics is displayed in table 4.2.

Prostate cases

The reference plans for the three prostate cases studied feature nine coplanar equi-spaced beams and are com-
pared to treatment plans with an optimized configuration of nine or seven beams. Homogeneous doses of 76 Gy
and 70 Gy are prescribed to the GTV and CTV, respectively. For patient II, inclusive DVHs are given in figures
4.20(a) and 4.20(b). Figures 4.21(a) and 4.21(b) contrast the dose distributions of the equi-spaced coplanar nine
beam plan and the optimized nine beam plan. All prostate treatment plans feature clinically equivalent target
coverage and the maximum doses for the rectum and bladder differ by less than 0.6 Gy for the optimized and
original treatment plans. However, the mean rectum dose of patients I and III is increased by up to 3.8 Gy. As
these plans apply maximum dose constraints of 50 Gy to the rectum, there is no incentive for the optimizer to
confine medium and low doses. For the same reason, the mean dose to the bladder is increased by up to 5.3 Gy.
We observe slight mean and maximum dose reductions for the right and left femoral heads with an optimized
beam configuration. The three cases exhibit almost the same mean doses to the normal tissue.

Pancreas cases

The reference plans for the three pancreas cases studied feature nine coplanar equi-spaced beams and are com-
pared to treatment plans with an optimized configuration of nine or seven beams. Homogeneous doses of 54 Gy
and 45 Gy are prescribed to the GTV and CTV, respectively. For patient I, inclusive DVHs are given in figure
4.20(c) and 4.20(d). Figures 4.21(c) and 4.21(d) contrast the dose distributions of the equi-spaced coplanar
nine beam plan and the optimized nine beam plan. The transversal slices of the dose distributions demonstrate
that the dose distribution is more conformal for the optimized beam configurations.The three cases investigated
exhibit equivalent target coverage. The optimized beam configurations applying nine beams allow for a slight
reduction of the mean (maximum) dose in the left or right kidney of up to 1.6 Gy (2.7 Gy). Merely the maxi-
mum dose to the left kidney of patient I is increased by 0.7 Gy. There is no clear trend observed regarding dose

3MATLAB R2009b, The MathWorks, Nantick, MA
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Figure 4.19.: Graphical user interface used for spherical cluster analysis of geometric data for BAS.
It is possible to load a patient anatomy, visualize the triangulation of the patient anatomy, turn vol-
umes of interest on and off, display the clustering landscape, exclude superior beams for treatments
in the torus, include the OAR weighting proposed by Potrebko et al. (2008), cluster η beam orienta-
tions, flip individual beams of the solution, and write plan files for KonRad.
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Prostate

# Config GTV CTV Rectum Bladder Femur (l) Femur (r) NT

I
9 equi 76.0 72.4 6.8 (75.5) 29.7 (77.2) 9.3 (25.7) 10.9 (27.1) 3.2
9 opti 76.0 72.4 10.1 (75.8) 33.8 (77.3) 6.2 (23.0) 5.9 (23.4) 3.3
7 opti 76.0 72.4 9.4 (75.2) 32.8 (77.2) 8.5 (24.2) 7.9 (23.2) 3.1

II
9 equi 76.0 72.3 32.2 (75.9) 25.2 (77.2) 18.5 (34.1) 17.1 (31.5) 4.0
9 opti 76.0 72.4 33.9 (76.0) 27.1 (77.6) 13.9 (30.3) 13.0 (31.6) 4.2
7 opti 76.0 72.3 35.2 (76.0) 29.6 (77.4) 18.1 (28.5) 14.7 (32.0) 4.1

III
9 equi 76.0 72.7 36.4 (75.3) 15.3 (77.1) 2.4 (13.8) 4.6 (34.8) 2.7
9 opti 76.0 72.7 40.2 (74.2) 17.3 (77.4) 2.0 (11.1) 4.6 (20.0) 2.7
7 opti 76.0 72.7 39.9 (74.7) 20.6 (77.5) 1.5 (9.1) 2.1 (25.7) 2.6

Pancreas

# Config GTV CTV Kidney (r) Kidney (l) Liver Spine Intestine NT

I
9 equi 54.0 47.4 11.3 (26.1) 10.2 (34.9) 5.4 (48.0) 4.7 (23.4) 12.4 (52.7) 4.4
9 opti 54.0 47.4 9.7 (23.5) 9.9 (35.6) 4.8 (48.0) 5.0 (22.1) 12.4 (54.3) 4.5
7 opti 54.0 47.4 11.1 (25.7) 10.2 (36.2) 5.4 (47.1) 5.7 (25.0) 12.6 (54.1) 4.6

II
9 equi 54.0 47.8 7.3 (24.1) 7.2 (19.1) 3.5 (47.3) 4.1 (17.9) 11.6 (48.9) 3.3
9 opti 54.0 47.7 7.3 (23.9) 7.1 (18.6) 4.2 (37.0) 6.0 (19.7) 11.4 (49.1) 3.5
7 opti 54.0 47.9 8.0 (27.0) 6.3 (23.6) 3.7 (47.3) 5.9 (20.3) 12.1 (48.9) 3.5

III
9 equi 54.0 48.0 4.4 (20.3) 6.5 (18.6) 4.7 (46.6) 3.9 (17.8) 7.0 (50.4) 3.3
9 opti 54.0 48.0 3.8 (17.6) 5.8 (18.6) 5.0 (47.5) 5.7 (17.3) 7.9 (50.0) 3.7
7 opti 54.0 48.0 4.5 (22.4) 6.4 (19.7) 4.8 (46.6) 5.2 (18.5) 6.8 (50.9) 3.4

Intracranial

# Config CTV Brainstem Eye (r) Eye (l) Opticus (r) Opticus (l) Chiasm NT

I
7 equi 50.4 14.1 (25.6) 8.8 (30.2) 15.4 (38.1) 30.5 (48.0) 37.8 (48.4) 33.1 (42.1) 5.5
7 opti 50.4 9.5 (24.8) 9.5 (30.2) 18.6 (42.2) 28.3 (47.5) 39.8 (48.5) 30.3 (45.0) 5.7
5 opti 50.4 12.4 (23.5) 10.2 (27.0) 21.5 (39.1) 35.1 (49.1) 40.6 (48.7) 27.0 (42.1) 6.6

II
9 equi 60.0 12.8 (31.0) 13.6 (27.1) 10.8 (16.7) 34.9 (49.9) 23.0 (37.5) 16.1 (27.8) 3.9
9 opti 60.0 9.6 (33.8) 13.0 (30.1) 8.8 (16.3) 29.9 (47.0) 13.9 (28.2) 14.4 (26.3) 4.2
7 opti 60.0 8.2 (32.6) 13.7 (28.0) 10.9 (17.6) 34.3 (48.6) 16.0 (28.0) 15.7 (27.8) 4.1

III
9 equi 60.0 18.5 (55.6) 14.6 (33.4) 7.6 (12.8) 38.0 (51.4) 13.1 (25.8) 38.5 (56.5) 3.7
9 opti 60.0 18.0 (55.5) 12.8 (29.3) 5.2 (13.8) 26.1 (54.6) 12.1 (21.1) 36.8 (59.0) 3.9
7 opti 60.0 16.2 (56.2) 14.6 (36.8) 5.5 (15.1) 32.0 (53.2) 15.5 (25.3) 38.6 (59.4) 4.2

Table 4.2.: Mean (Max) dose [Gy] of exclusive DVHs for all nine cases under investigation sorted by
treatment site. The dose statistics includes all volumes of interest (NT = normal tissue) that define
the main conflict during treatment planning of the corresponding site. All plans are normalized to
the mean target dose.
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contributions to the liver or the spine. Doses to the intestine and normal tissue of the optimized and standard
treatment plans are clinically equivalent.

Intracranial cases

The reference plan for patient I featuring seven equi-spaced coplanar beams is compared to treatment plans
with seven and five optimized beams. The reference plans for patient II and patient III featuring nine equi-
spaced coplanar beams are compared to treatment plans with nine and seven optimized beams. For patient
I, a homogeneous dose of 50.4 Gy and for patients II and III, a homogeneous dose of 60 Gy is prescribed
to the CTV. The target volumes of all cases are located in close proximity to the eyes, the optic nerves, or
the brainstem. Figures 4.20(e) and 4.20(f) display DVHs of patient III, corresponding dose distributions are
visualized by figures 4.6(e) and 4.6(f). The mean doses to the brainstem of patient I and II could be reduced by
up to 3.6 and 3.3 Gy, respectively. There is no clear trend observed regarding the doses to the eyes. The mean
doses to the chiasm are slightly decreased (up to 3.1 Gy) while the maximum doses are slightly increased (up
to 2.9 Gy). For patient II (III) it was possible to reduce the dose to the left (right) optic nerve by 9.1 Gy (11.9
Gy).

4.5.3. Discussion

Spherical cluster analysis of geometric data for BAS assumes that beam orientations are advantageous for IMRT
if and only if they impinge tangentially to surface elements of the target. All other aspects of the BAS prob-
lem are neglected. The results of the treatment planning study showed only marginal improvements for the
optimized beam configurations for prostate and pancreas lesions. For the three intracranial cases investigated,
however, spherical cluster analysis based on geometric data provided superior treatment plans as compared to
coplanar equi-spaced beam orientations. The dose distributions were more confined to the complex outlines of
the target volumes, as shown in figure 4.21(f), and provided superior sparing of OARs. However, compared to
spherical cluster analysis of dosimetric data, which was presented in section 4.2, spherical cluster analysis of
geometric data yields inferior treatment plans. Dosimetric information provides additional valuable input for
BAS. Nevertheless spherical cluster analysis of geometric data is attractive for clinical application for complex
intracranial treatments. It is a contained framework for BAS which requires only about 2 s of computation
time. The algorithm comprises only basic matrix algebra such as the computation of vector and dot products.
It scales linear with the number of triangular target surface elements |T | and the number of beams η.

The spherical clustering algorithm based on geometric data incorporates the combinatorial problem of intensity-
modulated fields that complement one another into the automated BAS process - but only to some extend. Our
earlier approach, which is based on dosimetric data, has a clear correspondence between one target voxel v and
one locally ideal beam orientation β∗v: every target voxel is represented by one element in the set of locally ideal
beam orientations B, i.e. one point on the unit sphere, and eventually in the BAS process. For spherical cluster
analysis of geometric data, however, this does not hold. Here, a target surface element ti is represented by a set
Pi, i.e. a circle on the unit sphere. Consequently, some target surface elements may have a stronger influence on
the result of the K-means algorithm than others; certain features of the target surface may disappear or dominate
during the BAS process. This will become more clear during the next paragraph.

The presented method is prone to deficiencies in the delineation of the target volume. E.g. if the target vol-
ume is delineated in one transversal plane of the computed tomography data set and abruptly ends in the next
one, this results in a completely flat “lit” of the target volume within the transversal plane. Figures 4.18(a)
and 4.18(b) show that this lit of the target surface element is projected to one high density band of locally
ideal beam orientations at the equator of the clustering landscapes. As discussed in the previous paragraph,
this single feature has a disproportionately high influence on the entire beam configuration. It “pulls” all beam
orientations of the ensemble towards the equator. We observed these irregularities in 50% of the patient cases.
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Figure 4.20.: Inclusive DVHs for (a) & (b) Prostate lesion II, (c) & (d) abdominal lesion I, and (e)
& (f) intracranial lesion III. Solid lines represent the standard equi-spaced coplanar nine-beam plan,
dashed lines represent the optimized non-coplanar nine-beam plan, and dotted lines represent the
optimized non-coplanar seven-beam plan. DVHs are shown for selected volumes of interest that
define the main conflict during treatment planning of the corresponding case.
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(a) (b)

(c) (d)

(e) (f)
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Figure 4.21.: Dose distribution on a selected transversal CT slice for (a) & (b) Prostate lesion II, (c)
& (d) abdominal lesion I, and (e) & (f) intracranial lesion III. The dose distributions (a), (c), and
(e) are computed with nine equi-spaced coplanar beams, the dose distributions (b), (d), and (f) are
computed with seven optimized non-coplanar beams. 100% corresponds to the prescribed target
dose.
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Apparently, the deliniation process is strongly biased because the MD draws the volumes of interest in the
transversal plane of the computed tomography data set. For a human planner, it is very difficult to model a
smooth three-dimensional object with two-dimensional contours. It is debatable whether these deficiencies of
the deliniation implicitly favour coplanar beam ensembles because coplanar beam orientations impinge per se
tangentially to the coplanar plane of the computed tomography data set.

The sets of locally ideal beam angles B shown in figure 4.18 all exhibit the same structure. We observe closed
bands of higher density of locally ideal beam orientations because the set of locally ideal beam orientations
Pi for a single target surface element ti is given by a closed circle. Figures 4.18(a), 4.18(b), and 4.18(c) ex-
hibit such bands that wrap around the equator. These geometric features may represent alternative beneficial
trajectories for arc therapy. Compared to spherical cluster analysis of dosimetric data for BAS (section 4.2)
we observed a different characteristic of the resulting beam ensembles. The configurations going back to the
geometric data sets are not as asymmetric as the configurations going back to the dosimetric data. Figure 4.18
shows that the beam orientations are distributed all around the patient but they are locally refined to coincide
with beam orientations that have a higher density of locally ideal beam orientations. As the target volume has
a closed surface, beam orientations impinging from all over 4π are tangential to at least a small fraction of the
target surface. Unlike the set of locally ideal beam orientations going back to the dosimetric data sets (shown
in figure 4.4), the set of locally ideal beam orientations going back to the geometric data sets does not exhibit
“forbidden” areas (shown in figure 4.18). All candidate beam orientations are a member of the set of locally
ideal beam orientations. This may be considered another indication that the higher the number of beams the
higher the conformity of an IMRT treatment plan.

A-BOO seems inappropriate for application in particle therapy. Due to the influence of range and setup uncer-
tainties, a dose calculation is necessary to decide whether beams that are tangential or perpendicular to target
surface elements are beneficial for irradiation.
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5. Combinatorial beam ensemble optimization

This chapter introduces concepts for beam ensemble selection based on combinatorial optimization techniques.
All presented methods belong to the first class of BAS algorithms as defined in section 3.1. In contrast to the
previous chapter, BAS is now intertwined with the optimization of beamlet weights. The methods are explicitly
designed to minimize the objective function F of inverse planning with respect to both the beamlet weights
and beam orientations. Consequently, a beam angle optimization (BAO) is performed according to the subtle
distinction made in section 2.2.8.

A formal definition of the objective function F of the inverse planning problem including BAS was already
derived in section 2.2.1. Using the standard quadratic form of the beamlet weight optimization problem (Oelfke
and Bortfeld 2001), it is given by{

B∗,w∗
}

= arg min
B ∈ B̃, w ∈ Rnb

+

F(B,w) (5.1)

= arg min
B ∈ B̃, w ∈ Rnb

+

(I(B) w − dp)ᵀ P (I(B) w − dp). (5.2)

Here, a greedy iterative search algorithm and three different metaheuristics are applied to solve equation 5.2: a
simulated annealing algorithm, a genetic algorithm, and a cross-entropy algorithm. The strategies are evaluated
with regard to their algorithmic efficiency and the quality of the resulting treatment plans. Furthermore they are
compared to the heuristic BAS strategies introduced in the previous chapter.

5.1. Method

Solving the BAS problem by minimizing equation 5.2 is an NP-hard combinatorial problem in a non-convex,
exponentially growing search space, as discussed in section 2.2. Even though there is no algorithm that guar-
antees global convergence in polynomial runtime for NP-hard problems, it is possible to efficiently derive near
optimal solutions with modern metaheuristics.

All these metaheuristics rely on the same approach: during a large number of iterations, candidate solutions
are sampled to identify beneficial sub regions within the search space. Over time, the sampling process focuses
more and more on those beneficial sub regions. For BAS, the sampling process corresponds to the computation
of the objective function value F(B) for different beam ensembles B. Based on the objective function values
obtained by a full beamlet weight optimization, it is possible to identify sub regions within the space of possible
beam configurations which promise better objective function values for subsequent iterations. Over time, more
and more beam ensembles stemming from those beneficial sub regions are evaluated.

Apparently, such approaches depend on a large number of beamlet weight optimization processes for different
beam configurations, i.e. solving equation 2.9 for a large number of fixed beam ensembles. Using conventional
treatment planning software, the beamlet weight optimization process for one beam configuration may require
more than 5 min on a state-of-the-art workstation for ”large“ cases. Within 24 hours we could only compare 288
beam configurations. Hence, it is crucial to accelerate the beamlet weight optimization process significantly for
BAS algorithms. Earlier approaches pursuing a joint optimization of beamlet weights and beam orientations,
which were reviewed in section 3.2, (1) apply a sparse resolution in the dose deposition space, (2) use a large



Chapter 5. Combinatorial beam ensemble optimization

spacing of candidate beam orientations, and/or (3) sample only a limited number of beam configurations to
arrive at acceptable computation times.

We are convinced, however, that the BAS problem in IMRT treatment planning has to be addressed with (1) a
sufficient precision of the underlying dose calculation, as small changes of the dose distribution may already
be critical for the treatment outcome (e.g. consider the sparing of the optic nerves), (2) a sufficient set of non-
coplanar candidate beams, as non-coplanar beams may provide superior dose distributions, and (3) a sufficient
number of evaluated beam configurations, as the solution space of the BAS problem increases exponentially
with the number of beams.

Consequently, we employ a full precision large-scale BAS framework that does not introduce simplifications of
the clinical inverse planning program KonRad. It exploits high performance parallel computing architectures in
combination with efficient algorithmic concepts to accelerate the beamlet weight optimization. The framework
comprises two modules:

• The parallel beamlet weight optimization module computes the objective function values for prede-
fined beam configurations.

• The beam ensemble sampling module controls the sampling process of the beam configurations.

The communication between the two modules is limited to the exchange of objective function values and beam
configurations. The parallel beamlet weight optimization module is introduced in section 5.1.1 and the beam
ensemble sampling module is introduced in section 5.1.2.

5.1.1. The parallel beamlet weight optimization module

The parallel beamlet weight optimization engine is the heart of the combinatorial BAS framework. It applies
the mathematical concepts introduced in section 2.1.4 to compute ideal beamlet weights for predefined beam
configurations. In comparison to the clinical version of our in-house inverse planning software KonRad (Preiser
et al. 1997, Nill 2001), the most important refinements of the mathematical concepts are the use of a L-BFGS
two loop recursion algorithm to approximate the inverse Hessian for the Quasi Newton algorithm and the use of
a proper line search to adjust the step length (Nocedal and Wright 1999). Our experiments with photons indi-
cate that KonRad requires about three times more iterations to converge to the same objective function values.
For particles, the modifications may even yield a speed-up factor of six (Pflugfelder et al. 2008a).

If we want to evaluate several thousand beam configurations per patient within a couple of hours, however,
we would need a speed-up factor that is about two orders of magnitude larger. This cannot be achieved by an
improved mathematical approach alone. Hence we apply parallel high performance computing architectures
combined with improved algorithmic concepts. Figure 5.1 gives a schematic overview of the underlying idea.

Using an inverse planning approach which is based on precomputed dose influence data, the computation of
the objective function F and its gradient ∇F requires only basic arithmetic operations, as shown in table 2.1.4.
Ziegenhein et al. (2008) showed that the arithmetic load does not limit the runtime of the optimization of beam-
let weights. Due to the design of modern computers it is the transportation process of the dose influence data
from the storage hardware to the processor that limits the runtime. This phenomenon is well-known among
computer scientists as the von Neumann bottleneck (Backus 2007).

For BAS an efficient data transportation process is especially important because we have to deal with an in-
creased amount of dose influence data compared to standard inverse planning. All |B| candidate beams have
to be stored in the main memory - not only the dose influence data of η beams. The CPU may have to ”run
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Figure 5.1.: Schematic workflow of the fourfold parallel optimization framework. t treatment plans
with different beam configurations are optimized in parallel (1). The dose influence data is resorted
and distributed per voxel on a parallel computer cluster (2). In one iteration, each node of the cluster
evaluates the contribution of the assigned voxels to the t objective functions and t gradients at once
using thread parallel (3) and instruction parallel (4) operations.
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over“ the dose influence data of |B| >> η beams to access the relevant base data to calculate the objective
function and the gradient for certain beam configurations. Consequently the CPU may be idle for a long time
while waiting for the relevant base data. We address this issue with a custom sorting and distribution scheme
of the dose influence data in combination with the parallel computation of several treatment plans at once. We
intend to accelerate inverse planning by both distributing the computation on multiple CPUs and increasing the
individual CPU load.

The dose influence data of all candidate beams is therefore rearranged by voxel, as shown in figure 5.1. Hence,
every voxel element ”knows“ its dose contributions of all beamlets of all candidate beams and the dose influ-
ence data may be distributed per voxel on a high performance computer cluster. This sorting and distribution
scheme allows for the independent calculation of the contribution of a group of voxels to the objective function
and gradient on a single node of the cluster. The shared memory multiprocessing communication between dif-
ferent nodes is implemented using the MPI standard1.

One node performs all calculations voxel after voxel. For the calculation of the dose contribution of beam βa to
voxel i, the processor fills the cache memory with the corresponding base data. Besides the dose influence data
of beam βa of voxel i, the cache memory is filled up with the dose influence data of subsequent beams βa+1,
βa+2, . . . , βa+m of voxel i. Hence, it is possible to calculate the dose in voxel i for t different beam configurations
at zero additional memory transportation cost. This is an elegant implementation of the principle of locality of
reference (Denning 2005).

The algorithmic treatment plan multiprocessing of t different beam configuration is the first and the dis-
tributed memory multiprocessing on the high performance computer cluster is the second level of parallelism
of the beamlet weight optimization module, as depicted in figure 5.1. Shared memory multiprocessing using
OpenMP2 is the third level of parallelism. Here, multiple CPUs or cores of one node share the main memory
and calculate the dose contributions of different beam configurations and beamlets to one voxel in parallel.
Instruction-level parallelism using Streaming SMID Extensions3 is the fourth level of parallelism. Here, two
arithmetic operations in double precision are executed at the same time by one CPU.

Basically, we are solving t optimization problems on a joint data set at the same time. The parallel computation
of the objective function values and gradients for t beam configurations has to be intertwined with a parallel
line search and a parallel L-BFGS update of the inverse Hessian. Furthermore, a parallel convergence test has
to be implemented because the beamlet weight optimization process does not converge after a constant number
of iterations for t different beam configurations. The repeated optimization of the beamlet weights of the same
beam may be accelerated by initializing the beamlet weights of a candidate beam β uniformly with winit

β = 1 if
it is used for the first time during the combinatorial optimization process. After an optimization, the beamlet
weights are stored in a global beamlet weight initialization database wBWIDB

β = wopt
β . If candidate beam β is

used again during the combinatorial optimization, it is initialized according to the beamlet weight initialization
database with winit

β = wBWIDB
β . Treatment plan parallelism implies modifications of the entire optimization pro-

cess and bears many potential pitfalls.

Note that it would be naive to distribute the optimization processes for different beam configurations on different
nodes of the cluster. In such an implementation every node would require the dose influence data of all candidate
beams. This would restrict the number of candidate beams to the memory of one node. As we are distributing
the dose influence data per voxel we can exploit the full memory of the entire cluster without redundant copies
of the base data. Furthermore we cannot account for the principle of locality of reference in an equally efficient

1The message passing interface standard http://www.mcs.anl.gov/research/projects/mpi
2Open multiprocessing http://openmp.org
3Streaming single instruction multiple data extensions developed by Intel, Santa Clara, CA.
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way if every node operates on a copy of the entire base data.

5.1.2. The beam ensemble sampling module

Simply put, the beam ensemble sampling module asks the parallel beamlet weight optimization module to
optimize the beamlet weights for one beam configuration Bi or a set of different beam configurations {Bi} in
every iteration k. Based on the resulting objective function values F(Bi), the beam ensemble sampling module
refines its sampling process, i.e. the process deciding which beam configurations should be evaluated next, and
asks the parallel beamlet weight optimization module to optimize the beamlet weights for a set of new beam
configurations during iteration k + 1. We implemented four different algorithms within the beam ensemble
sampling module. The following subsections provide a brief yet comprehensive description of all algorithms.
Readers requiring a broader discussion find references to suited publications.

Iterative beam angle selection algorithm

The iterative BAS algorithm, which is inspired by the work of Woudstra and Storchi (2000), is the most basic
algorithm implemented for the BAS navigation module. It assumes that the beam configuration of a benefi-
cial treatment plan featuring η − 1 beams is a subset of the beam configuration of a treatment plan featuring η
beams. Consequently, the optimization process of equation 5.2 corresponds to an iterative construction of the
best η-beam plan based on the best (η − 1)-beam plan.

To find a beneficial beam ensemble B∗η featuring η beams, the iterative BAS algorithm computes the objective
function values of all possible treatment plans featuring one beam β ∈ B during the first iteration. The beam
orientation β∗1 for the best 1-beam plan is given by the minimizer of the objective function.

β∗1 = arg min
β ∈ B

F(β) (5.3)

B∗1 =
{
β∗1

}
(5.4)

Given the best beam configuration B∗η−1 featuring η − 1 beams, the additional beam β∗η for the η-beam plan is
found by evaluating all combinations of B∗η−1 with the remaining |B| − (η − 1) candidate beams.

β∗η = arg min
β ∈ B\B∗

η−1

F(
{
β, B∗η−1

}
) (5.5)

B∗η =
{
β∗η, B

∗
η−1

}
=

{
β∗η, β

∗
η−1, ..., β

∗
1

}
(5.6)

The number of beam configurations nI that has to be evaluated to derive B∗η is not a free parameter of the
iterative BAS algorithm. It is defined by the number of candidate beams |B| and the number of beams η of the
final treatment plan.

nI =

η−1∑
i=0

|B| − i (5.7)

Algorithm panel 5.1 gives an overview of the corresponding pseudocode.

Algorithm 5.1 Iterative beam angle selection algorithm
B∗ = { };
for (k = 0; k < η; i + +) do

B∗ =

B∗, arg min
β ∈ B\B∗

F({β, B∗})

 ;

end for
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Simulated annealing beam angle selection algorithm

Simulated annealing is a metaheuristic for global optimization (Kirkpatrick et al. 1983). It is inspired by the
annealing process in metallurgy where a material is heated and afterwards gradually cooled so that misaligned
atoms may escape local energy minima and arrange in larger crystals.

Simulated annealing was included in the BAS navigation module because it is the predominant approach to
solve the joint optimization problem of beamlet weights and beam orientations in radiation therapy treatment
planning, as discussed in section 3.2.2. It is used as a benchmarking algorithm for other strategies.

The simulated annealing BAS algorithm is initialized with a random beam configuration B∗. The starting tem-
perature T0 is set to be 10% higher than the largest value of the objective functions calculated for 10 sets of
random beam ensembles (Pugachev et al. 2001). During test runs we observed that the cooling rate λ has no
significant influence on the convergence properties of the annealing process in range from 0.95 to 0.999. We
chose λ = 0.99 as we did not find any reference in the literature.

During iteration k of the simulated annealing process, one beam β ∈ B∗ is randomly replaced with another
beam β′ ∈ B \ B∗ to yield a new candidate solution Bk. The new beam configuration Bk replaces B∗ if
F(Bk) ≤ F(B∗). In case F(Bk) > F(B∗), the new beam configuration is accepted with probability

p = e−
F(Bk )−F(B∗)

Tk . (5.8)

In every iteration, the temperature is adjusted according to an exponential cooling schedule (Pugachev et al.
2001).

Tk = λ · Tk−1 (5.9)

This yields an optimization process, that accepts almost all changes of the beam configurations in the beginning,
but becomes more and more greedy as the temperature decreases. Algorithm panel 5.2 gives an overview of the
corresponding pseudocode.

Algorithm 5.2 Simulated annealing beam angle selection algorithm
initialize one beam configuration B∗ ∈ Pη(B) at random;
for (k = 0; k < nI; k + +) do

Tk = λ · Tk−1;
Bk = B∗;
replace one beam β ∈ Bk randomly with β′ ∈ B \ Bk;
r = randDouble[0, 1];
p = exp

{
(F(B∗) − F(Bk))/Tk

}
;

if (r ≤ p) then
B∗ = Bk;

end if
end for

Genetic beam angle selection algorithm

Genetic algorithms (Mitchell 1998) mimic an evolution process for optimization. The average fitness of a pop-
ulation of candidate solutions is improved by simulating natural processes like inheritance, selection, crossover,
and mutation. Among others, genetic algorithms proved useful for applications in engineering, operations re-
search, and bioinformatics. Recently, genetic algorithms were successfully applied for BAS (Hou et al. 2003,
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Li et al. 2004, Nazareth et al. 2009).
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Figure 5.2.: Schematic work flow of the genetic BAS algorithm. The γ quantile of the current gener-
ation is selected for procreation by cross over. Eventually some beams will be exchanged according
to a mutation probability.

For the genetic BAS algorithm, a beam ensemble Bi is represented by a chromosome whose genes {β1
i , β

2
i , ..., β

η
i }

represent the individual beams of the ensemble, as shown in figure 5.2. Before the evolutionary process starts,
the initial generation G0 = {Bi} is initialized with a random set of nE beam ensembles. In every iteration k, the
objective function values are computed for all beam configurations to identify the fitness of the current gener-
ation. In order to simulate evolutionary pressure, only the γ quantile of the current generation Gk, according
to the objective function values F(Bi), forms the set of procreating beam configurations Πk and may generate
offspring in the next generation. This is called hard selection.

Algorithm 5.3 Genetic beam angle selection algorithm
initialize a set of random beam configurations G0 = {Bi | Bi ∈ Pη(B)};
for (k = 0; k < nI; k + +) do

calc obj func ∀ Bi ∈ G
k;

// Selection
Select the γ quantile of Gk for Πk;
for ( j = 0; j < nE; j + +) do

draw two random beam configurations Ba and Bb from Πk;
for (l = 0; l < η; l + +) do

// Crossover
r1 = randDouble[0, 1];
if (r1 ≤ χ) then
βl

j = βl
a;

else
βl

j = βl
b;

end if
// Mutation
r2 = randDouble[0, 1];
if (r2 ≤ µ) then

replace βl
j with a random beam β ∈ B \ B j;

end if
end for

end for
end for
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In contrast to random walk techniques, a genetic algorithm applies a crossover operation to create a new gen-
eration. Therefore two parenting chromosomes Ba, Bb ∈ Πk are selected to exchange genes according to a
crossover probability χ to generate a new beam configuration, as shown in figure 5.2. Finally, some genes of
the new chromosome will experience a mutation according to a mutation probability µ. Algorithm panel 5.3
gives an overview of the corresponding pseudocode.

The parameters of the genetic algorithm were established in a series of convergence test runs. We set the
number of beam ensembles per generation nE = 50, the cross over probability χ = 0.4, the mutation probability
µ = 0.05, and the selection quantile γ = 0.1. We found that none of these parameters has a critical influence on
the genetic algorithm. Over a broad range we observed comparable convergence characteristics.

Cross-entropy beam angle selection algorithm

The cross-entropy method is a generic approach for combinatorial optimization and rare event simulation (Ru-
binstein and Kroese 2004). It has been successfully applied for many standard combinatorial optimization
problems in operations research like the traveling salesman problem, the max cut problem, and the Knapsack
problem (De Boer et al. 2005), but its performance on the BAS problem has not yet been studied.

The cross-entropy method was originally developed to efficiently estimate the probability of rare events in
Monte Carlo simulations. With slight modifications, however, it may also be used for combinatorial opti-
mization. Therefore, a probabilistic process is established that controls the generation of random samples.
Generating the optimal sample corresponds to a rare event according to the initial probability distribution of the
random sample generator. The cross-entropy method ”learns“ how to adopt the probabilistic sampling process
to increase the probability for the generation of the optimal sample. Readers who are interested in the formal
derivation of the cross-entropy method and the general algorithm for the refinement of the probabilistic sam-
pling process are referred to Rubinstein and Kroese (2004). Here, we focus on the implementation of the cross
entropy method for BAS.

It is possible to use the cross-entropy method almost exactly as applied for the traveling salesman problem
(De Boer et al. 2005) also for BAS. Therefore the probabilistic sampling of different beam configurations
is modeled by a multinomial distribution combined with a modified urn model where the generation of an
ensemble featuring η beams corresponds to drawing η marbles from a hypothetical ”BAS urn“. This urn con-
tains marbles with |B| different colors, i.e. the number of colors corresponds to the number of candidate beam
orientations. Apparently, the probability of selecting candidate beam orientation β for beam ensemble Bi is
proportional to the relative number of marbles with color β in the urn. After a marble with color β, i.e. beam
orientation β, was drawn from the urn, not only the drawn marble but all marbles with color β have to be re-
moved from the urn. Hence, we avoid drawing duplicate beams for beam ensemble Bi. Of course, we have to
start over for the generation of the next beam ensemble Bi+1 and refill the BAS urn.

In order to produce improved beam ensembles over time, the numbers of marbles with different colors is
refined in every iteration. During the first iteration a uniform probability pβ is assigned to all candidate beam
orientations β. All candidate beam orientations or colors are represented in the BAS urn by the same number
of marbles.

pβ =
1
|B|
. (5.10)

We use these probabilities for a multinomial distribution combined with the modified replacement strategy and
draw nE beam ensembles Bi from the BAS urn. The corresponding beamlet weights are then optimized by
the parallel beamlet weight optimization module. The γ-quantile according to the resulting objective function
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values F(Bi) of all beam ensembles Bi passes the so called γ-criterion. The update formula for the probabili-
ties of the multinomial distribution, i.e. the adjustment of the numbers of marbles with different colors in the
hypothetical BAS urn, is given by

pβ = (1 − ρ) · pβ + ρ ·

∑
i Iγ(Bi) Iβ(Bi)∑

i Iγ(Bi)
(5.11)

with the learning rate ρ and the indicator functions Iγ and Iβ.

Iγ(Bi) =

1 if Bi passes γ-criterion
0 else

Iβ(Bi) =

1 if β ∈ Bi

0 else
(5.12)

Apparently the probability pβ gradually drifts towards the relative frequency of β within the beam ensembles
passing the γ-criterion. Algorithm panel 5.4 gives an overview of the corresponding pseudocode.

Algorithm 5.4 Cross-entropy beam angle selection algorithm
// Initialize multinomial sampling process with uniform probabilities
for ( j = 0; j < |B|; j + +) do

p j = 1 / |B|
end for
for (k = 0; k < nI; k + +) do

// Draw beam ensemble from the BAS urn
for (i = 0; i < nE; i + +) do

Draw random beam ensemble Bi from a multinomial distribution with probabilities p;
Calculate objective function value F(Bi)

end for
// Update probabilities of the multinomial sampling process
for ( j = 0; j < |B|; j + +) do

p j = (1 − ρ) · p j + ρ ·
∑

i Iγ(Bi) Iβ(Bi)∑
i Iγ(Bi)

end for
end for

The parameters of the cross-entropy algorithm were established in a series of convergence test runs. We set the
number of beam ensembles per generation nE = 50, the learning rate ρ = 0.15, and the quantile γ = 0.075 . We
found that none of these parameters has a critical influence on the cross-entropy algorithm. Over a broad range
we observed comparable convergence characteristics.

5.2. Results

We study the performance of the full precision large-scale BAS framework in a treatment planning study for
three intracranial cases. Therefore, the parallel beamlet weight optimization module and the beam ensemble
sampling module are implemented in a joint C++ program running on a research cluster which comprises ten
nodes that communicate via InfiniBand links. Every node features two Intel Xeon CPUs with six cores. Every
node has 10 GB of main memory.

During initialization, the patient CT, the segmentation, the maximum and minimum doses, the penalties and
the dose influence data are read from binary files. We apply a resolution of 2.62 mm × 2.62 mm × 2.62 mm
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for the patient CT and the associated segmentation. The dose influence data is pre-computed with our in-house
treatment planning software KonRad (Preiser et al. 1997). The dose calculation applies 5 mm × 5 mm beamlets
and takes about 2 s per candidate beam orientation. The dose influence data comprises 7.2 - 14.0 GB for 392 -
404 candidate beam directions. Note that the KonRad dose calculation applies importance sampling by default
to reduce the memory requirements of the dose influence data (Thieke et al. 2002). All treatment plans of a
patient apply the constraints that were fine tuned for the reference plans with coplanar equi-spaced beams.

5.2.1. Beamlet weight optimization runtimes

We observed that the computation times for a full beamlet weight optimization depend strongly on the amount
of dose influence data that has to be handled in the main memory. Optimizing a 7-beam plan requires only about
0.1 s on two nodes if we only load seven beams. Compared to the GPU implementation for IMRT treatment
plan optimization by (Men et al. 2009) this corresponds to a speed-up factor of more than 20. If we load about
400 beams, however, a beamlet weight optimization for the same beam ensemble requires about 2.5 s on two
nodes.

Unfortunately, the communication between multiple nodes is not stable on our research cluster. Due to mes-
sage synchronization issues, we do not observe an additional speed-up of the beamlet weight optimization if
we distribute the calculation of the objective function and its gradient on more than two nodes. This could be
easily resolved on a high performance cluster that uses professional message passing software.

Furthermore, we do not observe the expected acceleration of the beamlet weight optimization by calculating
multiple treatment plans at once. This issue could probably be resolved with a more low level implementation
that explicitly controls the filling of the cache memory.

5.2.2. Convergence properties of the combinatorial optimization strategies

Figure 5.3 visualizes the navigation of the four BAS strategies through the search space. The iterative strategy
evaluates the search space in a predefined order (diagonal stripes) and iteratively adds beams to the ideal beam
ensemble (horizontal stripes), as shown in figure 5.3(a).

Simulated annealing exhibits randomness during its navigation through the search space, as shown in figure
5.3(b). While the beam configuration undergoes strong fluctuations within the first 500 iterations, afterwards
only single beams of the ensemble are replaced and we observe long horizontal stripes.

For the genetic and cross-entropy algorithm, which are visualized in figures 5.3(c) and 5.3(d), a candidate
beam may be represented multiple times within one iteration because multiple beam ensembles are evaluated
in parallel during one iteration. Again, we observe long horizontal stripes representing beams that prevail over
several iterations. In addition, we observe short horizontal stripes representing candidate beam orientations that
were evaluated during a few iterations but eventually discarded. This effect is more prominent for the genetic
algorithm than for the cross-entropy algorithm.

As expected, the four combinatorial strategies do not yield exactly the same beam configurations. However,
figure 5.3 shows that they share certain features. For instance, all modalities exhibit beams around candidate
beam # 2 and candidate beam # 349.

Figure 5.4 shows the evolution of the objective function values versus the number of evaluated beam config-
urations for the four different beam ensemble sampling techniques for the three patient cases. The objective
function values of the equi-spaced coplanar beam ensemble and the beam ensemble selected by spherical clus-
ter analysis, which was introduced in section 4.2, are included for comparison. Note that one iteration of the
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(a) (b)

(c) (d)

Figure 5.3.: Frequency of the candidate beams during the iterations of (a) the iterative algorithm,
(b) the simulated annealing algorithm, (c) the genetic algorithm, and (d) the cross-entropy algorithm
for patient case III. Note that the iterative algorithm and the simulated annealing algorithm evaluate
only one beam ensemble at a time yielding a binary image. The genetic and cross-entropy algo-
rithm, however, evaluate 50 beam ensembles per iteration. Consequently, a candidate beam may be
represented multiple times within one iteration.
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Figure 5.4.: Objective function versus number of beam configurations for (a) patient case I, (b) pa-
tient case II, and (c) patient case III. Green line: genetic algorithm, red line: cross-entropy algo-
rithm, blue line: simulated annealing algorithm, yellow line: iterative algorithm, solid black line:
equi-spaced coplanar beam configuration, dashed black line: beam ensemble selected by spherical
cluster analysis. Note that the number of beam configurations corresponds to the number of itera-
tions for the simulated annealing algorithm and the iterative algorithm. For the genetic algorithm
and the cross-entropy algorithm 50 beam configurations constitute one iteration.
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genetic algorithm and the cross-entropy algorithm corresponds to 50 evaluated beam configurations.

For all three patient cases, the genetic algorithm outperforms the cross-entropy algorithm and the simulated
annealing algorithm. Especially during the first 500 iterations, simulated annealing yields higher objective
function values. The iterative strategy eventually reaches objective function values comparable to the simulated
annealing algorithm. By design, however, the iterative strategy first evaluates treatment plans with less beams
and consequently higher objective function values. All strategies eventually yield lower objective function
values than the equi-spaced coplanar treatment plan and the treatment plan applying the beam ensemble selected
by spherical cluster analysis.

5.2.3. Treatment plan comparison

Table 5.1 summarizes all BAS modalities and patient cases that were investigated for this study. It lists detailed
dose statistics for all volumes of interest defining the main conflicts during treatment planning. Figure 5.5 shows
dose volume histograms for selected combinatorial beam ensemble optimization modalities in comparison to
coplanar equi-spaced beam ensembles and the beam ensembles selected with spherical cluster analysis for
all patient cases. Figure 5.6 shows dose distributions of all BAS strategies for patient case III on a selected
transversal CT slice.

Table 5.1 shows that all automated BAS selection strategies tend to yield a benefit for the patient. Slightly
increased mean and maximum doses compared to the equi-spaced coplanar beam ensembles were observed for
some volumes of interest but they may be explained by inadequate tolerance doses in the majority of cases. For
the left eye of patient III, for example, there is no incentive for the optimizer to restrict doses below 30 Gy.
Consequently, we observe an increased maximum dose of up to 6.1 Gy for the genetic algorithm. However,
this explanation is not valid for the right optic nerve of patient case III, where we observe slightly increased
maximum doses to the right optic nerve even though the maximum dose is set to 50.0 Gy. Likewise, the max-
imum dose to the left eye of patient case II is increased by 2.5 Gy for the simulated annealing algorithm and
the maximum dose to the right eye (right optic nerve) of patient case I is increased by 1.0 Gy (0.4 Gy) for the
genetic algorithm even though the maximum dose constraints are ”active“.

Among the combinatorial optimization strategies, the genetic algorithm yields the best results. The most sig-
nificant improvements include a reduction of the mean (maximum) dose to the left optic nerve of patient case
III by 5.3 Gy (9.4 Gy), a reduction of the mean (maximum) dose to the brainstem of patient case II by 4.2 Gy
(6.6 Gy), and a reduction of the mean (maximum) dose to the chiasm of patient case I by 5.9 Gy (2.6 Gy).
However, the simulated annealing algorithm and the cross-entropy algorithm also provide superior treatment
plans. The mean (maximum) dose to the left optic nerve of patient case II could be reduced by 7.0 Gy (6.0 Gy)
with the beam ensemble found by the cross-entropy algorithm and the mean (maximum) dose to the chiasm of
patient case I could be reduced by 9.6 Gy (6.2 Gy) with the beam ensemble found by the simulated annealing
algorithm. On average, the beam ensembles found with the iterative algorithm resulted in the worst treatment
plans out of the four combinatorial optimization strategies. Nevertheless we observed sporadic yet striking im-
provements compared to the coplanar equi-spaced beam ensembles. For patient case III, for instance, the mean
(maximum) dose to the left optic nerve could be reduced by 6.1 Gy (7.9 Gy).

Interestingly, the beam ensembles found by spherical cluster analysis yield very good treatment plans compared
to the combinatorial optimization strategies. They are especially beneficial regarding the reduction of low doses
to OARs, as visualized in figure 5.5(c) for patient case II and in figure 5.6 for patient case III.

Figure 5.6 also shows that the beam ensembles which were selected with spherical cluster analysis or optimized
with one of the four combinatorial strategies yield more conformal dose distributions. Furthermore, the mod-
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I

Config PTV Opticus (r) Opticus (l) Eye (r) Eye (l) Chiasm NT

7 equi 50.3 28.4 (42.1) 30.5 (42.8) 7.1 (17.7) 7.8 (27.1) 37.9 (40.4) 4.8 (55.7)
7 IT 50.3 26.1 (42.1) 30.5 (42.8) 5.6 (18.8) 6.9 (26.8) 32.1 (36.6) 5.2 (57.1)

7 SA opti 50.3 26.4 (41.6) 33.4 (42.2) 5.0 (19.3) 6.9 (25.0) 28.3 (34.2) 5.2 (54.0)
7 GA opti 50.3 24.1 (42.5) 30.7 (42.5) 5.1 (18.7) 6.5 (27.1) 32.0 (37.8) 5.3 (56.1)
7 CE opti 50.3 21.6 (41.4) 31.9 (42.8) 4.9 (17.4) 6.7 (26.5) 28.3 (35.6) 5.2 (57.5)
7 CL opti 50.3 30.5 (43.9) 35.5 (43.4) 6.6 (21.9) 7.9 (24.2) 34.3 (40.0) 4.8 (60.2)

Max dose - 40.0 40.0 15.0 15.0 40.0 15.0

II

Config PTV Opticus (r) Opticus (l) Eye (l) Brainstem Chiasm NT

9 equi 59.9 33.6 (52.0) 17.1 (22.0) 8.3 (13.4) 22.5 (41.9) 28.0 (39.8) 3.8 (62.3)
7 IT 59.9 34.7 (50.5) 10.7 (15.9) 8.1 (15.6) 15.7 (36.3) 30.7 (39.9) 4.1 (63.1)

7 SA opti 59.9 29.2 (51.7) 13.4 (16.6) 8.9 (15.9) 20.4 (44.1) 25.9 (38.1) 3.8 (61.8)
7 GA opti 59.9 32.9 (51.5) 15.1 (18.0) 5.5 (10.8) 18.3 (35.3) 28.1 (38.2) 3.8 (62.3)
7 CE opti 59.9 31.9 (51.5) 10.1 (16.0) 6.5 (12.7) 21.0 (39.5) 30.0 (44.5) 3.8 (62.9)
7 CL opti 59.9 40.8 (50.0) 23.8 (31.0) 8.9 (14.4) 6.2 (30.1) 12.1 (31.6) 3.7 (65.5)

Max dose - 52.0 45.0 10.0 54.0 52.0 15.0

III

Config PTV Opticus (r) Opticus (l) Eye (l) Brainstem Chiasm NT

9 equi 59.9 40.9 (54.0) 20.9 (36.7) 10.3 (16.8) 26.0 (52.6) 42.5 (50.2) 3.6 (60.9)
7 IT 59.9 28.4 (55.1) 14.8 (28.8) 5.7 (11.2) 21.7 (53.6) 43.7 (50.1) 3.3 (60.9)

7 SA opti 59.9 32.7 (55.8) 18.6 (33.9) 6.2 (19.9) 19.4 (53.4) 40.5 (50.2) 3.4 (61.5)
7 GA opti 59.9 36.5 (50.3) 15.6 (27.3) 5.9 (22.9) 23.3 (53.1) 40.5 (50.1) 3.5 (61.7)
7 CE opti 59.9 36.7 (55.7) 20.6 (33.3) 7.4 (22.5) 20.3 (53.6) 41.6 (50.2) 3.6 (61.4)
7 CL opti 59.9 31.7 (54.6) 11.6 (37.4) 3.8 (14.2) 19.1 (52.8) 40.7 (50.1) 3.7 (62.8)

Max dose - 50.0 45.0 30.0 52.0 50.0 15.0

Table 5.1.: Mean (Max) dose [Gy] of exclusive DVHs for all three patient cases under investigation.
The dose statistics includes all volumes of interest (NT = normal tissue) that define the main conflict
during treatment planning of the corresponding case. The last rows list the maximum doses used for
th optimization of beamlet weights.
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Figure 5.5.: Inclusive DVHs for for (a) & (b) patient case I, (c) & (d) patient case II, and (e) &
(f) patient case III. For (a) & (b), the solid lines represent the beam ensemble optimized by the
cross-entropy algorithm. For (c) & (d), the solid lines represent the beam ensemble optimized by
the genetic algorithm. For (e) & (f), the solid lines represent the beam ensemble optimized by
the simulated annealing algorithm. For patient case I, the dashed lines represent the equi-spaced
coplanar 7-beam ensemble. For patient case II & III, the dashed lines represent the equi-spaced
coplanar 9-beam ensemble. The dotted lines represent the 7-beam ensembles that were selected by
spherical cluster analysis, as introduced in section 4.2.
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(a) (b)

(c) (d)

(e) (f)
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Figure 5.6.: Dose distributions on a selected transversal CT slice for (a) nine equi-spaced coplanar
beams, (b) seven beams selected by spherical cluster analysis, (c) seven beams selected with the it-
erative algorithm, (d) seven beams selected with the simulated annealing algorithm, (e) seven beams
selected with the genetic algorithm, and (f) seven beams selected with the cross-entropy algorithm
for patient case III. 100% corresponds to the prescribed target dose (60 Gy).
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ulation of the individual fields is less pronounced for the optimized beam ensembles. The high dose stripes,
which are visible in figure 5.6(a) almost disappear for the optimized beam ensembles for the three patient cases
investigated.

5.3. Discussion

5.3.1. Parallel beamlet optimization module

The parallel beamlet weight optimization module yields a significant speed-up of the inverse planning process.
For conventional treatment planning problems featuring η < 11 beams the beamlet weight optimization process
is accelerated by more than two orders of magnitude compared to our clinical inverse planning software. The
acceleration, however, is significantly compromised if the amount of dose influence data in the main memory is
very large. When handling about 7 GB of dose influence data on one node we observed optimization times of
2.5 s for a treatment plan featuring seven beams. Nevertheless, this allows for the calculation of 10, 000 beam
configurations in 7 h.

The development of the parallel beamlet weight optimization algorithm is work in progress. As pointed out
earlier, we still have issues regarding the controlled filling of the cache memory and the message synchroniza-
tion between multiple nodes. An additional significant increase in speed is anticipated by resolving these two
problems. Solving the message synchronization issues is also critical if we want to increase the number of
non-coplanar candidate beams beyond the current limitations.

The application of a high performance beamlet weight optimization engine is not limited to the BAS problem.
It may be a general tool to boost new approaches to radiation therapy treatment planning. The simultaneous
optimization of multiple treatment plans may allow for novel and fast concepts for robust treatment planning
for particle therapy. Multicriteria optimization and direct aperture optimization may be accelerated and tackled
with techniques that require a lot of beamlet weight optimization processes - just like BAS. Furthermore the
high performance beamlet weight optimization engine may contribute to a more efficient optimization process
for modulated arc therapy and robotic radiosurgery.

5.3.2. Combinatorial beam ensemble optimization

All four combinatorial BAS strategies yield a significant objective function decrease compared to the standard
coplanar equi-spaced beam configuration. The genetic algorithm showed the best convergence properties. All
strategies yield only marginal improvements of the objective function values after evaluating about 2, 500 beam
ensembles indicating that the algorithms reached convergence even though only a vanishing fraction of the so-
lution space has been searched. This may be considered as additional evidence for the degeneracy of the BAS
problem.

It may be possible to improve the efficiency of both the genetic algorithm and the cross-entropy algorithm with
a more sophisticated fine tuning of the optimization parameters, but it is debatable whether this translates into
a measurable clinical benefit. We doubt that the simulated annealing algorithm may be improved by incorpo-
rating spatial information during the beam ensemble sampling process as suggested by Mageras and Mohan
(1993) due to the severe non-convexity of the search space.

All four combinatorial BAS strategies yield a significant improvement of the resulting dose distributions com-
pared to the standard coplanar equi-spaced beam configuration for the three patient cases under investigation.
The genetic algorithm yields slightly superior treatment plans compared to the cross-entropy algorithm and
simulated annealing algorithm. The iterative strategy provides surprisingly good treatment plans compared to
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the three other strategies even though it is the least flexible BAS algorithm. Once a candidate beam is accepted
into the beam ensemble it cannot be replaced by a better beam.

Compared to the combinatorial optimization strategies, the beam ensembles selected by spherical cluster anal-
ysis yield very good treatment plans at a significantly lower computational cost. Apparently, our heuristic
approach captures a lot of the attributes of a beneficial beam ensemble a priori.

It will be interesting to investigate the performance of the combinatorial BAS strategies for alternative treatment
sites within the abdomen and pelvis. We do not expect a different relative performance of the combinatorial
optimization strategies, but it may be possible that they yield improvements for symmetric patient geometries
that were not observed for the heuristics discussed in chapter 4. Furthermore, the combinatorial beam ensemble
optimization framework could be used directly for BAS for particle therapy. It is only necessary to provide the
dose influence data of the desired radiation modality. Of course, the current implementation does not account
for potential uncertainties in the calculated range of particles or for errors during patient immobilization. This
is left for future research.

The choice of suited constraint and penalty settings is crucial for the BAS process with our full precision large-
scale framework. The optimizer exploits any shortcomings of the prescription to arrive at a lower objective
function value. It is very difficult to select the constraints and penalties before the optimization process, be-
cause not all trade-offs of the optimization are clear a priori and they may have to be identified on a patient
specific basis. A data base which provides dose statistics of comparable patient geometries, as suggested by
Moore et al. (2011), might be useful for the planner to realize what prescription is feasible. Unfortunately we
did not have the time to investigate the role of different penalty and constraint settings for the patient cases
under investigation. As shown in table 5.1, the dose constraints on the OARs were ”inactive“ in some cases and
the decreased mean and maximum doses were only induced indirectly by a tight maximum dose constraint on
the surrounding normal tissue. It may be possible to further improve the dose distributions with targeted OAR
constraints.

Ultimately we should experiment with different simplifications of the combinatorial beam ensemble optimiza-
tion process. Using the results of the full precision large-scale BAS framework as a gold standard, we can
identify which approximations compromise the quality of the resulting treatment plans and which approxima-
tions do not have a negative effect on the resulting treatment plans. Hence, the complexity may eventually be
reduced in order to alleviate a transition of the full precision large-scale BAS framework to clinical application.
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6. Conclusions

6.1. Summary

We introduced BAS as an essential part of the overall treatment planning process in radiation therapy in chapter
1. The relevant characteristics of photon and particle beams for BAS were illustrated and potential reasons for
the limited clinical acceptance of existing automated BAS algorithms were discussed.

Section 2.1 gave a detailed overview of the conventional inverse planning problem in radiation therapy. We
provided an in-depth analysis of the mathematical characteristics of the beamlet weight optimization problem
and explained efficient algorithms for the solution of the beamlet weight optimization problem that apply an
L-BFGS update of the inverse Hessian in combination with an Armijo line search. Section 2.2 introduced BAS
as a formal extension of the conventional inverse planning problem and discussed the challenges of the BAS
problem in detail. We elaborated on the difficulties to obtain derivatives of the objective function with respect
to beam orientations, the characteristics of the solution space, namely its pronounced non-convexity, its expo-
nential NP-hard complexity, and its degeneracy, as well as the delicate question regarding the ideal number of
beams. We commented on the prerequisite to incorporate the influence of uncertainties into a dedicated BAS
framework for particle therapy and made a clear distinction between beam angle selection and beam angle op-
timization strategies.

Within chapter 3, we identified two different classes of BAS algorithms in the literature: while the first class
intertwines BAS and the optimization of beamlet weights, the second class derives beneficial beam ensembles
before the optimization of beamlet weights. Based on a thorough review of published BAS approaches we
deduced two main implications for improved BAS strategies: the realization of higher complexity in existing
BAS models of the first class and the conceptual advancement of BAS models of the second class.

Section 4.1 introduced new concepts for BAS algorithms relying on score functions. Based on a custom ra-
diological score, we developed a score matrix S that introduces spatial information about the dose deposition
of a candidate beam within the target volume. Section 4.2 showed how to use this additional information to
overcome certain limitations of existing BAS algorithms and to establish a contained framework that considers
the combinatorial problem of BAS. Therefore the BAS problem was translated to an intuitive clustering prob-
lem of locally ideal beam orientations on the unit sphere. We were able to demonstrate a clear benefit of our
approach based on a treatment planning study for nine patient cases. Our model had the biggest impact for
complex patient geometries where the target volume was located asymmetrically within the patient. In section
4.3 we investigated the potential to infer the ideal number of beams from the spherical distribution of locally
ideal beam orientations. Therefore we developed the iMFMM as a general framework for density estimation
on the D-sphere. The numbers of beams derived with the iMFMM were clinically prohibitive for conventional
IMRT treatments, but an application of the iMFMM to improve treatment planning for robotic radiosurgery
or modulated arc therapy may be feasible in the future. Section 4.4 applied the score matrix S for BAS in
proton therapy and introduced an alternative concept to translate the information of S into a beneficial beam
ensemble. In order to incorporate the influence of range and setup uncertainties on the BAS, worst case score
scenarios were considered within our framework and we introduced restrictions on the modulation of the indi-
vidual proton fields. First experiments yielded plausible beam configurations but the measures taken to induce
treatment plan robustness are only satisfying regarding OAR sparing. Within section 4.5 we picked up an idea
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by Potrebko et al. (2008) and enhanced their geometric BAS algorithm with the concept of spatial target in-
formation. The resulting fully automated BAS algorithm required only 2 s to establish a beam ensemble. A
planning study including nine patient cases showed that treatment plans for very complex lesions within the
skull may be improved significantly with this technique. Interestingly, the resulting beam configurations exhib-
ited a fundamentally different structure compared to the beam ensembles selected by spherical cluster analysis
in combination with the radiological score: while the beam configurations resulting from the geometric ap-
proach were equally distributed around the patient and only locally refined, the beam configurations resulting
from the radiological approach were strongly asymmetric yet both yielded beneficial treatment plans.

Chapter 5 dealt with the brute force solution of the extended inverse problem, i.e. the simultaneous optimization
of beamlet weights and beam orientations. Therefore, a fast beamlet weight optimization engine was imple-
mented on a high performance cluster that decreased the optimization time for standard patient cases to less
than one second. This allowed for the application of modern metaheuristics that sample a large number of
beam ensembles within the solution space at an unprecedented precision to identify a beneficial solution. First
experiments with three intracranial patient cases showed that a genetic algorithm outperforms a greedy iterative
algorithm, a simulated annealing algorithm, and a cross-entropy algorithm. We found that the prescription, i.e.
the patient specific, nontrivial setting of tolerance doses and penalties, is critical for the outcome of the beam en-
semble optimization. The beam ensembles selected by spherical cluster analysis yielded clinically comparable
treatment plans at a significantly lower computational cost.

6.2. Innovation

The main contribution of this work is the advancement of BAS strategies relying score functions. With the
extension of score vectors that list a radiological quality for every candidate beam orientation to score matrices
that list the radiological quality for every candidate beam and every target voxel, we introduce spatial informa-
tion about the dose deposition of individual beamlets within the target to the class of heuristic BAS strategies.
The translation of the BAS problem either to a clustering problem on the sphere or to a combinatorial opti-
mization problem of an average score are intuitive and efficient concepts to establish a fully automated BAS
process. Furthermore, the idea of considering a worst case score scenario is one of the first approaches to induce
treatment plan robustness for particle therapy treatments through smart BAS.

Our full precision large-scale BAS framework is one of the fastest beamlet weight optimization engines and it
can handle the dose influence data of over 400 candidate beam orientations. With this framework, we compare
different metaheuristics for combinatorial optimization and evaluate a cross-entropy algorithm for BAS for
the first time. In comparison to a simulated annealing algorithm and a genetic algorithm, however, we found
that the quality of the treatment plans does not depend critically on the metaheuristics used for combinatorial
optimization.

6.3. Recommendations and outlook

6.3.1. Photons

We have introduced conceptual advancements of BAS heuristics and investigated joint beamlet weight and
beam orientation optimization strategies at an unprecedented precision. In agreement with the findings of ear-
lier work, we have confirmed a clear clinical benefit of dedicated BAS frameworks.

Based on our experience with different BAS strategies, we think that future work on BAS for photons should
focus on an efficient transition of existing BAS algorithms into the clinic. For the benefit of the patient it is
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critical to answer the question why treatment planners still do not use automated BAS strategies.

We found that a smart heuristic, like spherical cluster analysis of locally ideal beam orientations based on
radiological information, may yield significant improvements of the treatment plans of very complex patient
geometries at an acceptable computational cost. To advance this tool into clinical testing, only minor modifi-
cations would be necessary. In contrast, an ad hoc application of the full precision large-scale BAS framework
used in chapter 5 in the clinic may be more difficult yet not impossible. Even though an interactive BAS is
infeasible, beneficial beam ensembles for more than ten patients could be calculated in one night using the cur-
rent implementation. The BAS tool performing spherical cluster analysis based on geometric information may
be very attractive in a clinical setting because it requires less than 5 s to derive a beneficial beam configuration.
A stand-alone MatLab implementation is ready-for-use.

During the transition process, it will be essential to have the acceptance of the treatment planners and incorpo-
rate their needs into the software. Therefore, the BAS algorithms may have to be more flexible to accommodate
individual preferences regarding the beam orientations. The planner should be able to quickly adjust a beam
ensemble according to her/his ideas. Unfortunately this is currently impossible with our in-house treatment
planning software KonRad, where a beam ensemble is absolutely fixed for a given treatment plan. With regard
to elongated treatment times it may be desirable to combine a set of equi-spaced coplanar beams with one,
two, or three optimized non-coplanar beams. Such combined approaches could be a first step towards a clinical
application of automated BAS at our center. A clinical application of the heuristics presented in this thesis may
be encouraged by first making the clustering landscapes available to treatment planners as guideline during the
manual selection of a beam ensemble. Maybe it is necessary to start with such intermediate steps in order to
gain the planners’ confidence in a fully automated BAS algorithm in the long run.

Note that there are no legal or quality assurance issues associated with an immediate clinical test of different
BAS strategies because the final treatment plan is still calculated with a certified inverse planning program. In
principle, any beam ensemble derived with an automated BAS algorithm might have been chosen by the human
planner. As long as the final treatment plan is approved it does not matter how the underlying beam ensemble
was established.

Besides the transition of existing BAS strategies into the clinic we suggest research regarding the application
of BAS beyond conventional IMRT treatment planning. Finding ideal rotation paths for modulated arc therapy
and finding ideal beam orientations for robotic radiosurgery are two potential directions.

6.3.2. Particles

Even though the selection of suited beam orientations appears to be more intuitive for particle therapy than for
conventional photon therapy, we think that a dedicated BAS strategy for particles may provide a clinical benefit
for complicated cases.

For the future we see two potential pathways for research projects related to BAS for particle therapy. First, it
may be possible to enhance the concepts for BAS based on a score matrix S and accommodate the peculiarities
of particle therapy. As the choice of our custom score proved somewhat unfortunate for particles in retrospect,
we suggest to experiment with modified formulations of our score. However, we vehemently advocate to keep
the matrix structure of the score for particles because here the quality of a candidate beam orientation may vary
even more for different target voxels than for photons. Second, the fast beamlet weight optimization module
may even allow for a straight forward robust fluence optimization in combination with a combinatorial opti-
mization of beam orientations. The a priori definition of robust fluence profiles of individual fields as brought
up in section 4.4 may be a cheap alternative to a costly robust beamlet weight optimization.
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Custom-tailored BAS strategies for more basic particle therapy techniques could be developed in a first step.
As of 2011, using spread-out Bragg peaks on passive beam lines is still the predominant irradiation technique
in therapy centers around the world1. Here, the quantification of the influence of uncertainties on the resulting
treatment plans is not as complex as for full-fledged intensity modulated particle therapy treatment plans.

1See http://ptcog.web.psi.ch/ptcentres.html for a list of particle therapy facilities in operation.
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Appendix

A. Coordinate system

Figure A.1 shows a sketch of the custom coordinate system, which is used throughout this manuscript to de-
scribe beam orientations. This coordinate system represents a beam orientation by specifying the angle α
around the patient axis and the angle β towards the transversal plane. For us, this coordinate system is more
intuitive than the standard IEC system that uses couch and gantry angles to describe beam orientations.

Figure A.1.: Sketch of the coordinate system used throughout this manuscript to describe beam ori-
entations. α denotes the angle around the patient axis, β denotes the angle towards the transversal
plane.
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