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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Optimierung von 3D-Laufzeitkamerasystemen.

Diese neuartigen Kameras erfassen Entfernungsbilder, indem sie die beobachtete Szene aktiv

beleuchten und die Laufzeit (Time-of-Flight, ToF) des rückgestreuten Lichtes bestimmen.

Dabei werden Tiefenbilder aus mehreren Rohbildern konstruiert, wobei typischerweise zwei

dieser Bilder simultan mit Hilfe spezieller korrelierender Sensoren aufgenommen werden.

Der wissenschaftliche Beitrag dieser Arbeit setzt sich aus vier Entwicklungen zusammen:

Präsentiert wird ein physikalisches Sensor-Modell, welches eine Analyse und Optimierung

des Prozesses der Rohbildaufnahme ermöglicht. Hierauf gestützt wird ein auf einer logarith-

mischen Kennlinie beruhendes ToF Sensor-Design vorgeschlagen.

Aufgrund von Asymmetrien der beiden parallelen Auslesestufen des Sensors ist gegenwärtig

eine mehrfache Akquisition der Rohbilder notwendig. Dies ermöglicht eine Korrektur systema-

tischer Fehler. Die vorliegende Arbeit präsentiert eine Methode zur dynamischen Kalibrierung

und Kompensation dieser Asymmetrien. Sie erlaubt die Erzeugung von zwei Tiefenkarten aus

den ursprünglichen Rohdaten (eines Tiefenbildes), und bewirkt so eine Verdopplung der Bild-

wiederholrate.

Da mehrere zu unterschiedlichen Zeiten aufgenommene Rohbilder zu einem einzigen Tiefen-

bild kombiniert werden, treten bei der Abbildung dynamischer Szenerien Bewegungsartefakte

auf. Diese Arbeit stellt eine neue, einfache und robuste Methode zur Detektion und Korrektur

solcher Artefakte vor.

Die in dieser Arbeit präsentierten Algorithmen besitzen eine Berechnungskomplexität, die

auch auf Systemen mit limitierten Ressourcen (z.B. eingebetteten Systemen) eine Ausführung

in Echtzeit erlaubt. Die Algorithmen werden unter Nutzung eines kommerziellen ToF Systems

demonstriert.

Abstract

The present thesis is concerned with the optimization of 3D Time-of-Flight (ToF) imaging

systems. These novel cameras determine range images by actively illuminating a scene and

measuring the time until the backscattered light is detected. Depth maps are constructed

from multiple raw images. Usually two of such raw images are acquired simultaneously using

special correlating sensors.

This thesis covers four main contributions: A physical sensor model is presented which enables

the analysis and optimization of the process of raw image acquisition. This model supports

the proposal of a new ToF sensor design which employs a logarithmic photo response.

Due to asymmetries of the two read-out paths current systems need to acquire the raw images

in multiple instances. This allows the correction of systematic errors. The present thesis pro-

poses a method for dynamic calibration and compensation of these asymmetries. It facilitates

the computation of two depth maps from a single set of raw images and thus increases the

frame rate by a factor of two.

Since not all required raw images are captured simultaneously motion artifacts can occur.

The present thesis proposes a robust method for detection and correction of such artifacts.

All proposed algorithms have a computational complexity which allows real-time execution

even on systems with limited resources (e.g. embedded systems). The algorithms are demon-

strated by use of a commercial ToF camera.
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Chapter 1.

Introduction

1.1. Motivation

A vast number of applications rely on depth maps. Many tasks in the areas of

gaming, robotics, automotive, home security etc. are based on range images. 3D

Time-of-Flight (ToF) cameras have the potential of efficiently generating such depth

images. These cameras employ a modulated light source to actively illuminate an

observed scene. The distance is determined by measuring the time it takes for the

emitted radiation to travel to an object and back to the camera. Time-of-Flight

systems utilize special sensors or shutters in order to perform this measurement

simultaneously in each pixel; enabling the generation of dense depth maps.

Within the last years ToF range imaging has become a considerable alternative to

traditional techniques: Unlike laser scanners Time-of-Flight systems generate dense

depth maps without requiring any moving parts. In contrast to stereoscopic tech-

niques, ToF cameras determine distances by use of very simple computations, requir-

ing only little computational power. Therefore Time-of-Flight depth imaging is the

potential to become a cheap yet robust and reliable technique.

Further advantages as its good scaling properties and low price at mass production

have drawn the interest of big companies. For instance the car manufacturer Audi

decided to use ToF cameras in series production of its Q7 model. The provided

depth information is the essential input of a collision avoidance system.

Another example for the successful usage of range imaging system in a widely dis-

tributed product is provided by Microsoft: The Kinect device enables to steer a

game console by gestures. It facilitates a more direct man-machine interaction and

thus an immersive playing experience. Although this system does not utilize the

Time-of-Flight principle (yet), ToF could help to decrease the costs of such devices.

Since Microsoft recently purchased two Time-of-Flight manufacturers, 3DVSys-

tems and Canesta, this seems to be an attractive option.

1
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While the Time-of-Flight hardware is getting cheaper and finds its way into first mass

market applications, the ToF data processing pipeline is still very simple. Enhancing

the processing, however, enables to significantly rise the quality of generated depth

data with only little effect on the devices’ costs.

The goal of the present thesis is an improvement of this data processing pipeline.

A thorough analysis of the complete chain will be performed. It will include all the

steps from the acquisition of the individual raw values by a special sensor to the

computation of depth information from these data. At various points in this pipeline

improvements will be suggested.

The work presented in this thesis was funded by Sony Deutschland GmbH,

Stuttgart.

1.2. Overview: Depth Imaging Techniques

This work is concerned with Time-of-Flight depth imaging systems. These novel

devices provide a possibility to acquire dense depth maps of dynamic scenes.

Such depth images are an essential input for many applications, for instance in the

areas of gaming, robotics, automotive, home security, machine vision, biometrics,

etc. A depth map is a matrix which comprises a depth information in each entry. In

Fig. 1.1 the acquisition of a depth map is visualized schematically. Here, each gray

value corresponds to a specific distance.

The acquisition system is capable of determining a depth information (d) for objects

located on the projection beams within its field of view (FOV). The scene is imaged

by an optical system into an image plane and sampled at discrete points given by

the pixel positions. If a depth estimation is performed for each pixel the generated

depth map is called to be dense (otherwise sparse). By use of two spatial coordinates

(x1 and x2) these sampled data may be addressed.

The depth estimation is characterized by a specific lateral resolution (∆x1 and ∆x2)

and depth resolution (∆d). Furthermore, depending on the system implementation,

the imaged objects might not be located in arbitrary distances to the acquisition

system. Instead, a minimum (dmin) and maximum (dmax) distance exist which define

the depth dynamics given as dmax/dmin.

To allow a classification of the ToF method this section will briefly introduce some

typical optical depth imaging techniques. It will handle stereoscopic and interfero-

metric methods, followed by a very short introduction into Time-of-Flight imaging.

A summary and comparative overview on all techniques will be given in Sect. 1.2.4.

2



1.2. Overview: Depth Imaging Techniques

FOV

Object

Dx2

Dx1

Dd

d

dmin

dmax

x1

x2

Figure 1.1.: Schematic visualization of a depth image and the parameters describing

it.

1.2.1. Triangulation

Triangulation methods determine the depth of single points of the scene by indi-

vidually analyzing the relation between two projection rays of two optical systems

imaging these specific points. The depth information is extracted from the angles

of the triangle formed by the two rays and the baseline connecting both and going

through a common image plane. Triangulation methods (also called stereoscopic

methods) may be distinguished into passive and active techniques which both will

be explained in the following.

1.2.1.1. Stereoscopy (Passive)

Passive stereoscopic methods make use of two cameras. A simplified two-dimensional

case is visualized in Fig. 1.2. Both cameras are observing the scene and generate

images. In the chosen example, these two images are projected into a common

plane. A specific point in the scene is identified in the images and its position xl in

the left image and xr in the right image is used to compute the disparity

xp = xl + xr . (1.1)

3
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h

b

x
l

Object
d

x
r

Figure 1.2.: Depth estimation using two cameras (passive stereoscopy).

The depth is then determined as

d =
b · h
xp

, (1.2)

where b is the length of the baseline and h is the distance between the image plane

and the plane through the centers of the central projection of the two cameras.

By using Gaussian error propagation the statistical uncertainty of the generated

depth information may be estimated as

∆d =
d2

b · h
∆xp . (1.3)

Passive stereoscopic methods rely on the identification of corresponding regions in

the acquired images. Solving this so called correspondence problem, however, is

computationally demanding. Therefore today’s real-time implementations of passive

stereo systems require powerful computers or dedicated hardware [SS02].

Furthermore the identification of corresponding regions requires features to be found

in both images which are not distributed densely in natural scenes. Thus, the gen-

eration of dense depth maps requires a propagation of the depth information into

areas of low confidence. Therefore, depending on the distribution of features the

validity of the depth estimation of single pixels may vary significantly, or even get

lost completely in some situations [HS09].

A multitude of variants based on the passive stereoscopic approach have been arising,

for example the following:

4
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Minimal Base Stereoscopy A passive stereoscopic method circumventing the cor-

respondence problem called Minimal Base Stereoscopy was proposed by the author

in [Sch08b] and filed for patent applications in [Sch08c; Sch09]. This method uses an

extremely small stereoscopic base such that corresponding regions of the two images

are always imaged by the same pixels.

By pursuing this strategy the problem of finding corresponding regions is transformed

into a problem of finding corresponding intensities of single points. This can be com-

puted by evaluating a single expression which significantly reduces the computational

complexity compared to the standard approach. However, employing minimal base

stereoscopy the depth resolution is determined by the intensity resolution of the used

image device. Thus, in order to acquire high quality depth maps cameras with a high

resolution of intensity are required.

Furthermore, the method performs best for features with a high contrast which are

not guaranteed to be available numerously in natural scenes. Hence, the approach

can be said to achieve a simplified and therefore faster processing pipeline by trading

precision of the depth estimation.

Depth-from-X Many further variants based on or related to passive stereoscopy

exist. So called depth-from-motion techniques use video sequences and process the

individual images acquired at different times similar to the described classical ap-

proach processing images acquired simultaneously at different positions. Examples

can be found in publications by Kirchgeßner et al. [KSS00] or Knorr et al. [KKS08].

Especially popular in the field of microscopy is the generation of depth maps by

analyzing stacks of images taken while applying different focus settings of the op-

tical system (so called focal series). For instance methods called depth-from-focus

or depth-from-defocus are using this principle [DW88; XS93]. Their similarity with

stereoscopic methods was described by Schechner et al. [SK98].

The latter methods can be regarded as variants of stereoscopy using a very small

baseline (determined by the diameter of the optics). Since the depth precision drops

fast for distances which are big compared to the baseline (i.e. d� b, see (1.3)) these

methods deliver high resolution depth maps only for microscopic or macroscopic ob-

jects. This also applies to the following methods using Computational Photography.

Methods from the Field of Computational Photography Within the last decade

a new field of imaging, the so called Computational Photography was established.

Computational photography combines an adaption of the physical image acquisition
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process with a sophisticated processing of the digital image, aiming at overcoming

the limitations of traditional film cameras and enabling novel imaging applications

(c.f. [Ras+06]).

These modifications include an adaption of the optics which brought up depth imag-

ing techniques as for example the plenoptic camera suggested by Ng et al. [Ng+05]

and going back to the idea of integral imaging by Lippmann in 1908 [Lip08]. Other

methods are using wavefront coding proposed by Dowski and Cathey [DC95] or a

special optic’s aperture implemented using coded masks [Vee+07].

A unified description of these approaches based on an analysis of the performed light

field projections was proposed by Levin et al. [LFD08].

1.2.1.2. Active Stereoscopy

Classical passive stereoscopic approaches are challenged by finding corresponding

projection beams by analyzing features in the acquired images. In contrast, active

methods (also called structured light techniques) determine these correspondences

by employing a steerable projection unit. The projector generates a pattern on

the imaged surface. Usually a single pattern is not sufficient for an unambiguous

determination of the correspondence. By use of time- or color-multiplexing this

ambiguity may be eliminated.

By employing many different patterns it is possible to acquire high resolution depth

information. So for instance Wiegmann and Kowarschik [WWK06] presented a sys-

tem for scanning human faces with micrometer resolution.

Another possibility to avoid ambiguities is to incorporate additional spatial informa-

tion, for example by using pseudo-random patterns and analyzing the local distortion

in the detected image. This approach was pursued by the company Primesense

who developed a fast 3D input device which is today very famous as Microsoft

Kinect. Not many details about the technology were disclosed, but it is known that

the Kinect device uses an infrared light source to project a dot pattern onto the

scene. A camera positioned in some distance to the projector images the pattern

and computes a displacement map using a single dedicated digital signal processor

(DSP). The device is able to produce depth maps with 640× 480 pixels at relatively

high frame rates of about 30Hz. However, it has to be mentioned that because of

the spatial operations not each pixel comprises an independent depth measurement.

Therefore the device’s “true spatial resolution” can be assumed to be far below the

stated 640× 480 pixels.
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1.2. Overview: Depth Imaging Techniques

As it can be seen from these examples a multitude of depth imaging techniques

based on stereoscopy have been realized. Further implementations make use of mul-

tiple cameras and/or multiple projection units, color channels etc. A more detailed

description of the methods mentioned here may be found in the books by Jähne et

al. [JGH99] or Hartley and Zisserman [HZ00].

1.2.2. Interferometry

Interferometric methods are based on indirectly measuring the phase difference of

light reflected by an object and light of a reference beam. The depth information

can be computed very fast and very precisely. Usually the depth resolution is in the

range of the wavelength of the used light, which is about several hundred nanome-

ters. However, the high precision results in the fact that also disturbing influences

of the same magnitude have effects on the measurements. This means that for in-

terferometric measurements very much effort has to be put into stabilizing the setup

including mechanical and thermal isolation.

Furthermore interferometric methods require the surface of the measured objects to

be smooth. In particular the roughness of the objects must be smaller than the

wavelength of the utilized light.

For these reasons typical applications of interferometric methods are high precision

measurements of small objects in a scientific or industrial environment. For depth

map acquisition in a consumer or automotive environment other techniques are better

suited because of their greater robustness.

More information about interferometric methods may be found for instance in [Har03].

1.2.3. Time-of-Flight Imaging

Time-of-Flight depth imaging techniques use an active light source illuminating the

scene discontinuously and measure the time until the backscattered light is detected.

Such methods have been used since decades for one-dimensional range measurements

(Light Detection And Ranging, LIDAR, see [Sha09]). By varying the direction of

the scanning beam the construction of point clouds is possible which enables the

generation of depth maps. However, such laser scanners employ moving parts which

makes them bulky and mechanically vulnerable.

In the recent years various systems using solid-state matrix detectors have been

realized. These cameras enable the instantaneous determination of the time-of-flight
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for many pixels, and thus facilitate the acquisition of dense depth maps at high frame

rates. Therefore they are suitable for imaging dynamic scenes.

Compared to the stereoscopic approach these ToF cameras have the advantage that

a simple processing of the raw data delivers a ready to use depth map. ToF imaging

generates dense depth maps without requiring object features. Furthermore it does

not require a minimum distance between the light source and the camera (like a

stereoscopic base) which means ToF systems can be drastically miniaturized. There-

fore ToF imaging is a robust and (in mass production) cheap technique which makes

it very promising for many applications.

The present thesis will focus on these 3D ToF cameras, so detailed explanations of

the technique will be given in the following chapters.

1.2.4. Summary

Three principles are mainly used for the optical acquisition of depth images: tri-

angulation, interferometry and Time-of-Flight. Interferometry is unsuitable for ac-

quisitions in an uncontrolled environment because of its sensitivity. Triangulation

approaches require high computational power and/or a sophisticated illumination of

the scene. In contrast, ToF employs simple computations and easy to implement

light sources. Compared to the stereoscopic approach or laser scanners, ToF imaging

can be extremely miniaturized and thus has the potential to cheaply generate depth

maps for a growing number of applications.

For these reasons the present thesis will focus on Time-of-Flight imaging.

1.3. Outline

The goal of this work is to provide a thorough analysis of the state-of-the-art Time-

of-Flight depth imaging technology. It will describe various shortcomings and dif-

ficulties of current implementations, and suggest possibilities to overcome some of

these challenges by optimization of the sensor design or the data processing pipeline.

The content of this work is the following

Chapter 2: This chapter will explain the principle of ToF depth imaging in detail.

It will introduce an abstract formalism for the general description of Time-of-

Flight systems. Based on this formalism the pulse-based and continuous-wave

ToF approach will be discussed. Furthermore an overview on the difficulties

and shortcomings of today’s ToF implementations will be given.
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Chapter 3: A physical model of a ToF system is presented which aims at providing a

better understanding of the Time-of-Flight technology. By use of measurements

of a real camera this model is parameterized with values providing a physical

meaning. Utilizing this parameterization a simulation tool will be derived which

reproduces the sensor behavior and generates realistic data.

Chapter 4: In this chapter the effect of a nonlinear photo response of ToF sensors

will be investigated. An intentionally nonlinear sensor employing a logarithmic

characteristic curve will be proposed. A thorough analysis based on the devel-

oped physical model will reveal the great potential of this novel type of ToF

sensor.

Chapter 5: A dynamic calibration method for compensation of the inequalities in

the photo response of multi-tap sensors will be suggested. By optimizing the

processing pipeline this method allows a drastic increase of the frame rate of

today’s systems. Using a commercial two-tap system a doubling of the camera’s

frame rate will be demonstrated, leading to a performance of 60Hz− 80Hz.

Chapter 6: This chapter will propose a method for the robust detection and correc-

tion of motion artifacts. These artifacts occur if the required raw data are not

acquired simultaneously, which is the case in all of today’s implementations.

The developed method is based on an analysis of the temporal signals of the

raw channels of single pixels. It is very simple and hence may be implemented

in an extremely efficient manner. By use of a commercial ToF system the ap-

plicability of the method even in highly dynamic scenes will be demonstrated.

Chapter 7: A detailed summary and conclusion will be given in this chapter. Fur-

thermore an outlook will be provided.

1.4. Contribution

The following is a list of novel contributions of this thesis:

• introducing an abstract formalism for description of Time-of-Flight depth imag-

ing systems, enabling an unified explanation of all ToF systems as well as its

errors and difficulties, showing that these effects exist in all system implemen-

tations

• development of a model of a ToF camera, focusing on the description of a two-

tap sensor including a system for suppression of ambient light, whereas the

assigned parameters provide a physical meaning, published in [SJ09]
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• a careful parameterized simulation tool derived from this model being able to

reproduce the sensor behavior and generate realistic data, thus facilitating the

evaluation of algorithms working with ToF data, and the development of virtual

prototypes, published in [Sch+10] and used in cooperation projects presented

in [MH+10b; MH+11]

• thorough investigation of the influence of a nonlinear photo response on the

accuracy and precision of the generated depth data

• proposal of a logarithmic ToF sensor which facilitates a high depth dynamic

while having systematic and statistical errors comparable to linear sensor im-

plementations

• proposal of a dynamic calibration method, correcting the inequalities of the

different taps in multi-tap sensors, enabling a drastically increased frame rate,

leading (to the authors knowledge) to the best performance of a today’s com-

mercially available ToF system without any need for hardware adaptions, ap-

plied for a patent in [SZ10a] and published in [SZJ11]

• proposal of a method for detection and correction of motion artifacts based on

an analysis of temporal raw data signals, leading to a simple to implement,

computationally cheap, efficient and robust solution, applied for a patent in

[SZ10b]

1.5. Notation

This thesis explains a lot of effects and algorithms occurring in or working with

data of matrix sensors. Therefore many quantities and parameters are described as

maps. These maps are represented by matrices, symbolized by italic, bolt letters, for

example M . Single elements of such a matrix are represented by a lowercase letter,

for instance m.

The descriptions in this work make use of several indices symbolized by lowercase

letters (e.g. i). The maximum value of such an index is denominated by the corre-

sponding capitalized letter (for instance I).

A detailed list of the used nomenclature is given in the Appendix on page 134.
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Chapter 2.

Time-of-Flight Depth Imaging

This chapter describes the principle of Time-of-Flight imaging in detail. Two ap-

proaches for ToF depth imaging have been implemented: Pulse-based and conti-

nuous-wave (phase-based) systems. These two approaches are usually distinguished

in the literature and discussed separately. However, the underlying ideas, princi-

ples as well as their challenges and shortcomings are very similar, if not identical.

Therefore this work seeks to describe and discuss both approaches on an abstract

level. Also new proposals for overcoming these limitations will be explained using

an abstract description.

For this it is important to introduce some terms and definitions, which will form the

basis of the following chapters. Starting with a general description of the principle

underlying all ToF systems, new denominations will be explained in Sect. 2.1. This

theoretical consideration will be followed by an explanation of technical implementa-

tions in Sect. 2.2. It will include a description of the pulse-based and continuous-wave

ToF approach, and propose an unification of both. Subsequently a detailed expla-

nation of the shortcomings of current ToF systems, focusing on the statistical errors

and artifacts of the generated depth maps will be given in Sect. 2.3. A summary will

be provided in Sect. 2.4.

2.1. General Principle

3D Time-of-Flight (ToF) cameras acquire depth images by determining the time it

takes for emitted light to travel the distance from a source to an object and back to

the camera (see Fig. 2.1). The time delay measured τ is proportional to this distance.

Assuming the light source to be located near the camera the object’s distance d may

be computed as

d =
τ · c0

2
, (2.1)
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ToF system
(light source + camera)

distance d

object

Figure 2.1.: Time-of-Flight depth imaging: The ToF system measures the time delay

it takes for the light from the source to the object and back. From this

time delay the depth d is computed.

with c0 being the speed of light. Time-of-Flight cameras are capable to measure this

time delay τ simultaneously in each pixel which enables the fast generation of dense

depth maps D.

All ToF systems determine the time delay τ by measuring the incident irradiance

during a single or multiple given time windows. This process is similar to the image

capturing process of conventional cameras, which also detect electromagnetic radia-

tion during a specific time window. However, ToF systems have to use windows which

are several magnitudes shorter to ensure a sufficient temporal resolution, resulting

in an acceptable depth resolution.

The acquired quantities y are called raw values (or samples). ToF systems are able

to measure these raw values in parallel in all pixels, giving a raw image Y .

These raw data do not directly correspond to depth values, but have to be pro-

cessed. Therefore, also ToF imaging can be regarded as a form of Computational

Photography (c.f. definition given on page 5).

In a typical depth imaging scenario besides the distance D of the object also other

quantities are unknown. Especially its reflectivity and the intensity of present non-

modulated light may vary. In this work these general unknown quantities will be

called scene unknowns. All the scene unknowns influence the determined raw val-

ues. Therefore the reconstruction of the depth D from a single measurement Y is

an underdetermined problem. Thus, multiple raw images acquired under different

conditions are required to determine all scene unknowns, including the depth. For an

unambiguous determination, the number of acquired raw images R must be greater

or equal the number of scene unknowns. So, in typical applications R = 3 raw images

would suffice, but most of today’s ToF systems use at least R = 4 images (see section

Sect. 2.2.2.1).
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Regarding single pixels this means generally R raw channels are used to compute

the values of the processed channels which contain information about the scene un-

knowns.

2.1.1. Temporal Order & Parallel Acquisition

Figure 2.2.: Visualization of the given definitions, here depicted for Q = 2 detection

units performing L = 4 acquisitions to gather R = 8 raw images. Please

note that all raw images of a subframe are acquired simultaneously.

ToF systems need R raw images for computing a set of processed channels. Ide-

ally, these raw images would be taken simultaneously but unfortunately todays ToF

systems have not implemented such a fully parallel acquisition due to technical diffi-

culties. Systems do exist, however, which are able to acquire a subset of the required

raw images in parallel.

This is done by employing multiple detection units per pixel. Each detection unit

q is able to measure the incident light in a special measurement mode1 n, giving a

1 The term “measurement mode” abstractly describes the fact that the incident light is sampled

using different states of the ToF system (including the sensor). Depending on the specific imple-

mentation, this measurement mode corresponds for instance to determining a certain sample of

the correlation function (continuous-wave systems, c.f. Sect. 2.2.2). In another implementation
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sample yn,q of the raw image Y n,q(= Y r). The number of detection units per pixel

will be denoted as Q, and the total number of measurement modes as N . For a

visualization of these and the following definitions, please see Fig. 2.2.

As mentioned, all systems currently available use fewer detection units than raw

values needed (Q < R). So in order to acquire all required raw images, L acquisitions

are necessary (L = R/Q). Each acquisition l corresponds to an integration of the

light incident at the sensor over a certain timespan.

Each pixel collects data building a set of L acquisitions. These data are processed

in order to estimate the scene unknowns.

Each acquisition l will produce Q raw images which will be denoted to belong to the

same subframe. The entirety of all subframes (and consequently of all raw images)

will be called raw data frame (or frame).

The samples acquired by a single pixel in one frame constitute a raw data package.

This raw data package comprises the data of all detection units Q and all acquisitions

L.

A subpackage is each possible subset of the raw data package, comprising data of all

detection units Q and consecutive acquisitions l.

2.2. Technical Implementation

ToF depth sensing is based on measuring the time of flight of light emitted onto a

scene and detected back at the camera. Continuous-wave as well as pulse-based ToF

systems have been put into practice. Pulse-based ToF systems employ discrete pulses

of light and measure its time of flight. Continuous-wave ToF systems use periodically

modulated light sources, and determine the phase shift between the incident optical

signal (backscattered from the scene) and a reference signal. Both approaches will

be discussed and compared in the following sections.

2.2.1. Pulse-Based Time-of-Flight Systems

Pulse-based ToF systems use a light source which emits discrete pulses of light. These

pulses are backscattered by objects of the scene and detected by the system.

this mode could correspond to measuring the incident light while the active light source is deac-

tivated (typical for pulse-based systems, c.f. Sect. 2.2.1). For the general description given here

it is sufficient to understand the different raw images to be sampled in a different manner.
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Due to the time of flight the backscattered pulse is delayed. The image sensor

is integrating the intensity of the incident light over a certain exposure time. By

using an extremely fast shutter it is possible to determine the mismatch between

the progress of the incident pulse and the integration window. This facilitates the

estimation of the pulse delay from the amount of light detected by the sensor.

Such system can be implemented using a physical shutter in combination with a

conventional 2D image sensor. For example 3DVSystems is using this technique

[YIM06]: Their ZCam system employs a thin GaAs plate attached to a conventional

image sensor. The plate can be modulated in transmissivity with frequencies up to

1GHz [3DV09], enabling a very fast shuttering.

Another possibility is to implement fast electronic shutters directly on the imaging

device. This approach is taken for example by the company TriDiCam [Elk+06].

Pulse-based ToF systems usually use a sequence of some tens up to several thousand

pulses to acquire the raw images of a frame. This is simply done for increasing the

precision of the computed depth map.

For more technical details about pulse-based ToF imaging please refer to the disser-

tation of Erz [Erz11].

2.2.2. Continuous-Wave Time-of-Flight Systems

Utilizing a continuous-wave, amplitude-modulated light source the depth can be

determined by measuring the phase shift between the emitted and the received optical

signal. This phase-based approach exploits the fact that the backscattered light is

delayed by a time τ relative to the emitted signal, which results in a phase shift ϕ:

ϕ = 2π · ν0 · τ , (2.2)

with ν0 being the modulation frequency of the light source.

Continuous-wave ToF cameras measure this phase shift in each pixel, i.e. these sys-

tems are able to acquire phase maps Φ. From this phase map a depth map D can

be computed comprising depth estimations

d =
ϕ · c0

4 · π · ν0
. (2.3)

Continuous-wave ToF systems determine this phase shift by use of correlating sensors.
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2.2.2.1. Correlating Sensors

The working principle of digital image sensors could shortly be described as follows:

Incident photons generate charge carriers due to the inner photoelectric effect. The

generated electrons are accumulated during the exposure time. In a read-out cycle,

these electrons are converted into a voltage, amplified, digitized and output as digital

values.

To measure the phase shift between the incident optical signal and the electronic

reference signal special sensors have been developed. These sensors employ pixels

which contain (one or multiple) lock-in detection units. The lock-in mechanism

provides to vary the sensitivity of the process of detecting photons over time. This

variation of the sensitivity is steered using a reference signal.

Normally, the emitted light signal and the reference signal are periodical, but also sys-

tems using non-periodical signals have been demonstrated (see for instance [Büt+07]).

The base frequencies of reference signal and light signal are usually set to identical

values (homodyne ToF systems), but it should be mentioned that also systems using

different frequencies (heterodyne ToF systems, see [Con+06]) have been realized.

By synchronizing the reference signal and the light source signal, the value deter-

mined by a single detection unit corresponds to a sample of the cross-correlation

function of reference and light source signal. By introducing an additional, control-

lable phase shift θ between both signals, it is possible to sample the cross-correlation

function at various angles θ.

As an example, the correlation function c(θ) of a sinusoidal electro-optical signal S(t)

with an electronic reference signal R(t), delayed by a phase angle θ, is given by:

S(t) = bls + als sin(2π · ν0t− ϕ) , (2.4)

R(t) = H(sin(2π · ν0t+ θ)) , (2.5)

c(θ) =

mT0∫
0

S(t)R(t) dt =

mT0∫
0

S(t)H (sin(2π · ν0t+ θ))

= mT0

(
als
π

cos(ϕ+ θ) +
bls
2

)
. (2.6)

Here, ν0 is the modulation frequency, T0 is the oscillating period and m is the num-

ber of integrated oscillating periods (correlation range). ϕ is the phase shift to be

estimated, introduced by the delay of the incident light (see (2.2)). H is the Heavi-

side step function, meaning that R(t) is assumed to be rectangular. The constant bls
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describes the offset of the light source, and als is its amplitude2. The full derivation

is available in [Sch08a].

The ToF sensor is able to sample the correlation function by applying various delay

angles θ to the electronic reference signal. Usually, Ñ equidistant sampling points

located at the phase angles θñ = ñ · 2π/Ñ are used to reconstruct the offset a0,

amplitude a1 and phase shift ϕ of the electro-optical input3. As shown by Xu [Xu99],

Plaue [Pla06] and Frank et al. [Fra+09] the optimal solution in a least square sense

is given by

a0 =
2

Ñ

Ñ−1∑
ñ=0

cñ , (2.7)

a1 =
2π

Ñ

∣∣∣∣∣∣
Ñ−1∑
ñ=0

cñe
−iθñ

∣∣∣∣∣∣ , (2.8)

ϕ = arg

Ñ−1∑
ñ=0

cñe
−iθñ

 , (2.9)

with cñ =
c(θñ)

mT0
,

with arg(z̃) being the argument of the complex expression z̃.

As outlined in Section 2.1, at least Ñ = 3 sampling points are required for an

unambiguous estimation of these scene unknowns. Most available ToF systems use

Ñ = 4 samples, because of a better noise performance (see Philip and Carlsson

[PC03]) and simpler reconstruction formulas, which are then given as

2 Please note that als and bls significantly influence the determined values of a1 and a0. However, als
and bls are parameters describing the modulation of the light source while a1 and a0 are describing

the sampled correlation function. Therefore these parameters are not equal, i.e. bls 6= a0 and

als 6= a1.
3 To clarify the difference between Ñ and N (c.f. Sect. 2.1): N is the number of available mea-

surement modes per detection unit, while Ñ is the number of acquired samples of the correlation

function. Each map of samples of the correlation function cñ is acquired utilizing a dedicated

measurement mode n, meaning a mapping between n and ñ exists which is defined by the chosen

indexing. In this work the indexing is chosen to result in a mapping corresponding to the identity

transformation, i.e. n = ñ.
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a0 =
c0 + c1 + c2 + c3

2
, (2.10)

a1 =
π

2

√
(c2 − c0)2 + (c3 − c1)2 , (2.11)

ϕ = atan

(
c3 − c1

c2 − c0

)
. (2.12)

2.2.2.2. Multi-Tap ToF Sensors

Firstly proposed in 1995 by Schwarte et al. [Sch+95] and Spirig, Seitz, and Heitger

[SSH95] multi-tap ToF sensors have been developed. These sensors use multiple

detection units (also called taps) per pixel, and thus are able to perform multiple

measurements of the correlation function in parallel. Today a two-tap approach is

used by many manufacturers.

One sensor developed and used by the company PMD Technologies is the so called

Photonic Mixing Device (PMD) (see Fig. 2.3). This sensor uses two quantum wells

(i.e. two taps) to store the electrons generated by incident photons. The key element

is an electronic switch, implemented as a variable electrical field. Incident photons

generate electrons which are sorted by this switch into the one or the other quantum

well. By synchronizing the switch with the modulated light source, the number of

accumulated electrons in each tap corresponds to a sample of the correlation function.

Therefore, the sensor is capable of acquiring two samples c(θ) and c(θ + 180◦) in

parallel.

Figure 2.3.: Schematic representation of the PMD two-tap ToF sensor. Incident pho-

tons generate electrons which are sorted by an electric field into two quan-

tum wells. The switch is synchronized with the modulated light source,

thus the number of electrons in each tap corresponds to a sample of the

correlation function.
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The discrete switching signal is well approximated by a rectangular shaped reference

signal. Thus, in combination with a sinusoidal modulation of the light source, the

mathematical model given by (2.4) and (2.5) is justified. Hence, the derived correla-

tion function (2.6) and the used reconstruction formulas (2.7)–(2.9) can be assumed

to be correct.

Many investigations in this work will focus on this sensor and the ToF camera system

CamCube made by PMDTechnologies, because of its relatively open design and

processing pipeline. However, it should be noted that currently also other ToF

camera manufacturers are using very similar approaches, for example Mesa Imaging

[Ogg+04] and Canesta [GYB04]. Therefore, the results derived here for the PMD

sensor should be regarded to be valid in a more general sense.

Manufacturer L Q R Approach (Official) Implementation Source

PMDTechnologies 4 2 8 phase-based correlating sensor [RH07]

Mesa Imaging (SR3000) 4 1 4 phase-based correlating sensor [MES06]

Mesa Imaging (SR4000) 4? 2 8? phase-based correlating sensor [MES11]

Optrima / SoftKinetic ? ? ? phase-based correlating sensor [KN05]

Canesta / Microsoft ? 2 ? pulse-based correlating sensor [GYB04]

TriDiCam 2 2 4 pulse-based electronic shutter [Elk+06]

3DVSystems / Microsoft 3 1 3 pulse-based physical shutter [YIM06]

Table 2.1.: Overview of today’s commercial ToF systems: The table shows how the

measurement process of today’s commercial ToF systems can be described

using the introduced abstract formalism. The number of acquisitions per

frame L, detection units per pixel Q and raw images per frame R are

given. Furthermore it is shown what approach is used by each manufacturer

(official term used by manufacturer) and which physical implementation

was chosen. Question marks indicate that no solid information has been

disclosed.

2.2.3. Comparison and Unification

Independent of the usage of discrete pulses or continuously modulated light all ToF

systems are based on a convolution of the incident optical signal with a temporal

window. Both approaches aim to determine phase maps of scenes, of which besides

the depth also other parameters are unknown. Therefore multiple samples have to be

taken which is not done simultaneously by today’s systems. However, ToF cameras

have been realized which perform multiple measurements in parallel. Table 2.1 gives

an overview of how the measurement process of today’s commercial ToF systems

can be described using the abstract formalism introduced in Sect. 2.1, and what

19



Chapter 2. Time-of-Flight Depth Imaging

implementation they are using. Since not all manufacturers are disclosing the full

information some of the table cells do not contain values. Instead, they are labeled

with a question mark.

2.3. Difficulties and Shortcomings of Current ToF Systems

Depth maps generated by current ToF systems suffer from a variety of difficulties and

shortcomings compared to other depth acquisition methods. Simplified overviews on

these errors can be found for example in [KBK08; FAT11].

The known limitations may be divided into basic difficulties (relating to the ToF

technology) (Sect. 2.3.1), errors caused by an insufficient sampling (Sect. 2.3.2),

deviations caused by a suboptimal propagation of light (Sect. 2.3.3), and further

deviations (Sect. 2.3.4). Each of the following sections will shortly discuss one of

these groups of difficulties. This will serve as an overview in order to provide a

better understanding and allow a grading of the work presented in the subsequent

chapters.

2.3.1. Basic Difficulties

Compared to conventional 2D imaging and other depth imaging techniques ToF

imaging shows a lot of fundamental difficulties which will be discussed in the follow-

ing.

2.3.1.1. Statistical Uncertainty

ToF depth imaging is based on the integration of light intensities. The detection

of light involves quantum mechanical processes. Especially the generation of charge

carriers by incident photons in the image sensor is a Poisson process which always

introduces Poisson noise (c.f. Sect. 3.1.4, and [Sei08]). Therefore statistical errors of

the depth measurement are inevitable.

Other noise sources like timing inaccuracies of the exposure window, dark currents

etc. result in an additional uncertainty of the depth estimation. Therefore the typ-

ical depth resolution of today’s ToF systems is, compared to other depth imaging

techniques (see Section 1.2), relatively low.
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2.3. Difficulties and Shortcomings of Current ToF Systems

2.3.1.2. Lateral Resolution

Most of today’s ToF systems use special sensors. Currently the pixels of these sen-

sors are relatively large for two reasons: Firstly, the depth precision increases with

an increasing amount of detected light. Therefore each pixel is equipped with a big

sensitive area and charge storage unit to ensure that much light is collected during

the exposure time. Another reason is the complex pixel electronics: ToF sensors em-

ploy pixels which provide additional functionality compared to pixels of conventional

image sensor. Therefore ToF cameras use large pixels which results in a low lateral

resolution compared to conventional sensors.

However, many depth imaging applications do not necessitate the same lateral reso-

lution as known from 2D imaging. This is because natural scenes do often show only

little “depth texture”, meaning on object surfaces depth values are normally similar

instead of showing large variations. So typical depth images are fairly smooth and

thus can be captured well even with low resolution depth cameras.

2.3.1.3. Interfering Ambient Light

Interfering ambient light leads to an earlier saturation of the quantum wells, so less

of the backscattered light emitted by the active light source can be detected. This

results in a decreased signal-to-noise ratio (SNR) of the raw images and thereby

in a worse depth estimation. Manufacturers try to decrease the influence of non-

modulated light by various techniques:

A simple method is to use a burst mode for driving the active illumination: Instead

of operating the (modulated) light source at a constant power level it is run discon-

tinuously. Accordingly, the detector is switched to an operation mode sensing the

returning light only when a signal is expected. The idea behind this strategy is that

the average power of the light source is kept constant while its peak output may be

highly increased. So, restrictions limiting the mean light output (e.g. for keeping the

temperature of the light source under a given threshold, or limits originating from

eye safety restrictions) can be fulfilled while the ratio of active light to ambient light

is extended.

Please note that the “burst mode” is a driving scheme which may be applied inde-

pendently of the modulation of the light emitter and demodulation of the detection

units. It is an operating scheme for activation of the light source and sensor; using

time scales which are several magnitudes slower than the modulation of the active

light.
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Chapter 2. Time-of-Flight Depth Imaging

Another possibility to reduce the influence of non-modulated light are active circuits

which are implemented on the image sensor. These systems seek to separate the

modulated light from non-modulated light while or shortly after integrating photons.

Many manufacturers use such systems. For example PMDTechnologies imple-

ments a system called Suppression of Background Illumination (SBI) [Möl+05],

and Canesta uses a system called Sunshield [BS05; Can08]. Also Mesa Imaging

[MES08], SoftKinetic/Optrima [Nie+08] and TriDiCam [Elk+06] are employ-

ing compensation techniques. This work will denote such on-sensor implementations

as systems for active Suppression of Ambient Light.

2.3.1.4. Dynamic Range

ToF imaging is based on analyzing active light backscattered by a scene, where the

active light source is normally located near the camera. By doubling the distance

to the scene only a quarter of the emitted light is reaching the target because of the

distance square law. Additionally, the detector should not saturate in presence of

interfering light sources (see Sect. 2.3.1.3). For these reasons ToF cameras need an

enormous dynamic range to measure the incident light with sufficient precision while

avoiding under- and over-exposures.

2.3.1.5. Systematic Errors

Today’s ToF systems suffer from a multitude of systematic errors. Such errors arise

whenever the physical implementation does not correspond to the theoretical model

assumed to describe the system. Critical components are for instance the modulation

of the emitted light and the temporal variation of the sensitivity of the detection

units. If these mechanism are not implemented perfectly the derived reconstruction

formulas are not correct. This results in an erroneous estimation of depth data from

acquired raw images.

For example in case of a continuous-wave ToF system designed to use a sinusoidal

modulation S(t) of the light source and rectangle switching function R(t) the recon-

struction of the scene unknowns is done using (2.7)–(2.9). If the assumptions are

violated, i.e. if the modulation of the light source is not (perfectly) sinusoidal or the

switching function is not rectangular, the reconstruction formulas (2.7)–(2.9) are not

valid anymore. If these equations are used without additional correction systematic

errors occur. A prominent example of an error originating from this mismatch is the

so called wiggling error (see for instance Rapp [Rap07]). This periodical depth error
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is caused by higher harmonics in the light source modulation (meaning S(t) is not

purely sinusoidal). It will be investigated in Section 3.2.2.

Similarly, pulse-based ToF systems will deliver suboptimal depth estimates, if the

temporal shape of the light pulse (and/or shutter window) is not implemented opti-

mally.

Also a non-linear photo response of the image sensor might cause deviations of the

estimated range information. More details about this effect will be given in Chapter 4.

Furthermore several components of ToF systems are sensitive to temperature varia-

tions, such that a drift of the estimated depth with temperature is observed. Usually,

also the light source is affected. This is problematic as the light source heats up itself

due to the high power. The result is a temporal drift of the estimated depth.

Moreover the optics introduces systematic errors: Besides the geometric distortion

which is known from 2D cameras and can be calibrated using the same methods,

as presented by Lindner and Kolb [LK07], the optics alter the optical path length

of light rays. This is because its average refractive index differs from that of air,

resulting in an offset in the estimated depth information.

2.3.1.6. Non-Ambiguity Range

ToF systems using periodically modulated light sources have only a limited non-

ambiguity range. This is due to the fact that the depth estimation is based on an

estimation of the phase shift between the incident optical signal and a given reference

signal. Because of the periodicity of the signals the system is able to determine only

the real phase modulo 2π. Thus, for an object causing a phase shift of

ϕobject = 2π · k + ϕ , with k ∈ N ,

k remains unknown. This means objects being located at distances greater than the

non-ambiguity range damb = c0/(2 · ν0) appear to be in the foreground.

For a typical modulation frequency of ν0 = 20MHz this non-ambiguity range is

damb = 7.5m. However, there are techniques to extend that range, e.g. by combining

measurements made with multiple modulation frequencies (e.g. discussed by Gokturk

et al. [GYB04; Can08]), or by applying phase unwrapping techniques (investigated

by Choi et al. [Cho+10], Droeschel et al. [DHB10], or McClure et al. [McC+10]).

Pulse-based ToF systems show similar effects, if driven at very high repetition rates.

(If low repetition rates are used, ambiguity effects can be avoided. However, the

system then requires longer exposure times to collect the same amount of light.)
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2.3.2. Errors Caused by Insufficient Sampling

In contrast to conventional 2D imaging, a spatially or temporally insufficient sam-

pling can cause significant artifacts in ToF imaging systems. Furthermore the re-

quired combination of a multitude of samples results in a low frame rate of current

implementations. In the following sections these artifacts and effects will be dis-

cussed.

2.3.2.1. Flying Pixel

If a depth boundary, for example an edge between a foreground and a background

object, is imaged by a single ToF pixel, artifacts occur. The computed depth value

then does not belong to one of the imaged surface elements in the fore- or background.

It is also not restricted to a value between these distances due to the non-linearity

of the reconstruction formulas (see (2.8)–(2.9)). This means the effect does not

correspond to the blurring of edges in 2D imaging. Instead, any depth value in the

available depth range is possible, depending on all the scene unknowns describing

the region imaged by the regarded pixel (e.g. the reflectivity of the involved objects,

among others). This effect is known as “flying pixels”.

2.3.2.2. Motion Artifacts

Today’s ToF systems are not able to acquire all raw images simultaneously. If one or

multiple of the scene unknowns change during the acquisition of raw images used for

computation of one depth map the reconstructed values are incorrect. Incorrect in

this sense means that a computed value does not correspond to the state of the scene

before nor after the event. Furthermore it is normally not between these values, but

lays somewhere in the available range. Therefore this error can significantly decrease

the quality of the depth map.

These distortions are called motion artifacts. They are mostly observed on the edges

of objects and in fine structures. Chapter 6 will give a very detailed discussion of

this effect and propose methods to robustly detect and correct them.

2.3.2.3. Frame Rate

All Time-of-Flight systems have to perform multiple measurements in order to gen-

erate a single depth value. A ratio of raw data to processed data of eight to one is

not unusual (see Sect. 5.2.2). Compared to a system in which the raw data can be
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used directly (e.g. in 2D imaging) this results in a reduction of the effective frame

rate.

For this reason all ToF systems currently available have frame rates of 30 − 40Hz

at maximum. Many applications, however, require higher frame rates. For example

gesture recognition necessitates at least 60Hz.

This work will propose a method which drastically improves the frame rate of current

systems by use of a dynamic calibration approach (see Chap. 5).

2.3.3. Deviations Related to an Imperfect Propagation of Light

The optimal propagation of light plays an important role for the quality of the

constructed depth map, as described in the following.

2.3.3.1. Scene-induced Interferences

ToF depth imaging is based on the assumption that the emitted light follows a

straight line to the target and back to the camera. If the light is not going directly

but being multiply reflected (or deflected) by any other object, the depth estimation

is not correct. These multi reflections lead to various deviations. For example right

angular corners imaged from inside appear to be “round”.

2.3.3.2. Deviations Caused by the Optics

Reflections and scatter inside the optics cause a mixing of light backscattered by

targets in different distances, which leads to deviations in the depth estimation.

Since in ToF imaging light intensities of very high dynamic range are used (see

Sect. 2.3.1.4) even little scatter occurring in optics designed for 2D cameras can

cause significant errors. Better results are obtained by utilizing special high dynamic

range (HDR) optics, or of course optics optimized for ToF imaging.

2.3.4. Further Deviations

2.3.4.1. Interference of Multiple ToF Systems

ToF imaging is an active technique. If multiple identical ToF systems are used to

image a single scene these systems may disturb each other. Such errors can be reduced

by utilizing different system parameters, for instance different optical wavelengths,

slightly different modulation frequencies or pulse repetition rates, respectively. A
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very robust method is to use different modulation schemes for each participating

camera system, as investigated by Büttgen [Büt+07].

2.4. Summary

This chapter gave an introduction into the matter of Time-of-Flight depth imag-

ing. After explaining its principle on an abstract level, typical implementations

were discussed including the pulse-based and phase-based approach. Furthermore

an overview on the difficulties and shortcomings of today’s ToF systems was given

which are listed here again:

• basic difficulties

◦ statistical uncertainty

◦ lateral resolution

◦ interfering ambient light

◦ dynamic range

◦ systematic errors

◦ non-ambiguity range

• errors caused by insufficient sampling

◦ flying pixel

◦ motion artifacts

◦ frame rate

• deviations related to an imperfect propagation of light

◦ scene-induced interferences

◦ deviations caused by the optics

• further deviations

◦ interference of multiple ToF systems

The next chapter will investigate some of these effects and properties by presenting

a physical model of a ToF imaging system.
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Chapter 3.

A Physical Model of a ToF Sensor

It is a goal of this thesis to provide a better understanding of current ToF systems in

order to improve the quality of its data. As outlined in Chapter 2 (in particular in

Sections 2.2.2.2 and 2.2.3) special correlating image sensors are widely used in today’s

implementations. A detailed physical model of such a ToF sensor was developed for

the purpose of comprehension of the process of generating depth data with these

devices. This model will be presented in Sect. 3.1. Its parameterization enables

it to derive a powerful simulation tool which was carefully verified using different

experimental scenarios. These aspects will be outlined in Sect. 3.2. Some examples

for a successful utilization of the model will be given in Section 3.3.

Parts of the work presented in this chapter were published in [SJ09; Sch+10] and

used in cooperation projects presented in [MH+10b; MH+11].

3.1. Physical Model

The model aims to build a general framework for description of ToF sensors. Al-

though the goal was to develop a generic model, it was found to be useful to orient

its design on a specific ToF system. This helps to provide a clear and comprehensible

structure, and a tangible physical meaning of the model parameters.

The specific system chosen here is a PMD CamCube ToF camera by PMDTech-

nologies. It uses a sensor based on the Photonic Mixing Device which was

described in Section 2.2.2.2. This sensor employs two detection units in each pixel

and is combined with a continuous-wave light source modulated at ν0 = 20MHz.

The sampling of the PMD sensor is well described by the correlation function (2.6)

given in Section 2.2.2.2. Using the samples acquired by such a camera system the
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optimal estimation of the scene unknowns is performed by applying Equations (2.7)–

(2.9), which are shown here again to provide a better overview:

a0 =
2

Ñ

Ñ−1∑
ñ=0

cñ , (3.1)

a1 =
2π

Ñ

∣∣∣∣∣∣
Ñ−1∑
ñ=0

cñe
−iθñ

∣∣∣∣∣∣ , (3.2)

ϕ = arg

Ñ−1∑
ñ=0

cñe
−iθñ

 , (3.3)

with cñ =
c(θñ)

mT0
and θñ = ñ · 2π/Ñ .

As shown by Lange et al. [Lan00] the variance of these values may be estimated for

the special case of Ñ = 4 as:

σ2
a0

=
σ2

4
, (3.4)

σ2
a1

=
σ2

2
, (3.5)

σ2
ϕ =

σ2

2a2
1

. (3.6)

This is derived by assuming an equal variance σ2 of all acquired raw values cñ, and

applying Gaussian error propagation.

However, in practice this simplified assumption does not hold since the variance of an

acquired sample cñ depends on its value. Additionally systematic deviations occur

which are caused by a variety of factors, e.g.

• a non sinusoidal light modulation S(t),

• a non rectangle switching function R(t),

• a non-linear photo-response, and

• the influence of on-sensor systems for suppression of ambient light.

Furthermore spatial variations from pixel to pixel like photo response non-uniformity

(PRNU), dark signal non-uniformity (DSNU), and dark current non-uniformity

(DCNU) (see [EMV10]) must be considered.
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3.1.1. Motivation and Related Work

To describe these effects a detailed physical model of a ToF sensor is required. Similar

models were proposed for 2D sensors, for example by the “Standard 1288 for Mea-

surement and Presentation of Specifications for Machine Vision Sensors and Cam-

eras” [EMV10] (abbreviated as EMVA 1288 Standard) presented by the European

Machine Vision Association (EMVA).

The goal of the developed model is to simulate the data produced by a ToF camera

as realistically as possible. Hence, its thorough parameterization will allow the op-

timization of present ToF systems as well as the prediction of the characteristics of

cameras not existing yet.

Prior models do not include all the effects discussed in the previous section. They

rather focused on the simulation of whole 3D scenes. Hasouneh et al. [Has+06]

took a MATLAB-based approach where the resulting point cloud of a 3D scene is

represented as superposition of single point responses. The influence of an area

light source and inhomogeneous illumination of the scene was simulated by Peters

et al. [Pet+07]. Keller et al. [Kel+07; KK09] presented a real-time simulation tool

for synthetic ToF data. It uses the GPU to generate data of whole 3D scenes, which

can be static or moving.

All these approaches focus on the simulation of ToF data for a given 3D scene. This

includes issues of rendering, an adequate camera model, reflectance characteristics

of the imaged objects and the position and size of the light sources. From the given

ideal depth image the simulated samples are generated using a measured correla-

tion function of a real ToF camera. Then, a very simple noise model is employed

to simulate the temporal fluctuations of the acquired raw data. From these noisy

samples a depth image is computed. Unfortunately the employed noise model is not

able to represent the statistical uncertainty of the image formation process in an

adequate manner. This makes it hard to use these simulations for verification of ToF

algorithms under realistic conditions.

In contrast the work presented here focuses on the effects influencing the quality of

the generated depth image and its origins. So, it concentrates on modeling the sensor

and its noise sources very carefully. As the focus of this work was put on the internal

effects, ideal depth and reflectivity maps were assumed as input, and any issues with

real world imaging were neglected.
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3.1.2. Assumptions

Investigating the errors occurring in a ToF system is not possible by regarding the

isolated sensor. Instead, a complete ToF system including a light source, the target

response, the image acquisition and analysis (i.e. raw data processing) has to be

modeled. The focus of this development lies on the sensor and its noise sources, so

questions about the appropriate camera model, the shape and position of the light

source and scene-induced interferences like multi-reflections of the active illumination

were neglected.

The model does not simulate an area light source but employs a point light source

instead (which was shown by Keller [KK09] to be a good approximation). The light

source was assumed to be located at exactly the same position as the sensor. The

model uses maps containing information about the ideal scene depth, the target’s

reflectivity and the distribution of interfering ambient light to cover the scene un-

knowns in a simple way.

3.1.3. Structure of the Model

A phase-based ToF measuring setup is a system consisting of a modulated light

source, a target which has some effect on the light and a ToF camera which generates

data from the detected optical signal.

The model is separated into modules to ensure a high flexibility. Fig. 3.1 depicts

the structure and the information flow between the different modules. Each box

represents a processing unit. These units have different complexity and may consist

of sub units as it is shown for the target response and sampling module in the

figure.

Excitation. The excitation module computes the function which represents the op-

tical excitation. Furthermore a synchronization signal is generated which will

be used in the sampling module.

Light source. The excitation function is converted into a light signal within the

light source module. The appropriate physical unit of this signal is “mean

number of detectable photons during one time step”, so it corresponds to a

temporal density of photons.

Target response. The target response module simulates the response of the probe.

Parameters like the target’s reflectivity are used here and the influence of ad-

ditional (non-modulated) ambient light is taken into account. Because of the
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Figure 3.1.: Schematic representation of the model: the main modules excitation,

light source, target response, sampling and analysis can be seen.

target’s distance from the light source and ToF camera the light signal is being

shifted here against the synchronization signal.

Sampling. The sampling of the correlation function at different phase angles is

performed in the sampling module. Incident photons generate electrons with

a given probability η. This generation is a binomial selection process which

follows a Poisson distribution (see Seitz [Sei08]). So, Poisson noise is added

here by this quantum mechanical process.

A switch sorts the generated electrons into the two quantum wells A and B.

Then, dark current electrons are added which are also affected by Poisson

noise1. The sum Σ of all collected electrons of the two taps is converted into

a voltage by two distinct amplification factors KA and KB. In each path this

voltage is transformed by a nonlinear function which simulates the effect of

a nonlinear photo response and pixel saturation. Both resulting voltages are

digitized and output as digital numbers which represent the sensor raw data.

Analysis. From the determined samples of the correlation function the estimated

scene unknowns are computed here, i.e. a phase map Φ, a derived depth map

1 Please note that for the desired description of the ToF system as a black box model the exact

knowledge about the origin of the noise is not required. Using the black box approach makes

it also impossible to determine the contribution of each source unambiguously. Therefore these

sources are combined here as dark current noise. For a detailed investigation of all sources

contributing to the noise of a ToF sensor please refer to Lange and Seitz [LS01].
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D, and two maps describing the offset A0 and amplitude A1 of the electro-

optical signal.

All modules work on a single vector which contains the signal over time. This signal

can be described as a temporal density of detectable photons, but its specific physical

meaning slightly changes between the modules.

Since the aim is to model phenomena which are faster than one oscillating period of

the light source the temporal sampling density has to be set to a value which is at

least one hundred times higher. So, for typical integration times of 106 oscillating

periods or more for a single depth image, a vector containing at least 108 entries is

generated.

This might be no problem for simulating a single pixel, but the goal here is to model

a whole ToF sensor comprising up to millions of pixels with acceptable consumption

of computing time and memory. For this reason further optimizations are required.

3.1.4. Optimizations

In order to simulate a large number of ToF pixels simultaneously, it is an interesting

question which of the discussed operations are pixel-dependent and which are iden-

tical for all pixels. Because of its size, the processing of the time-dependent signal

vector consumes a lot of computation time and memory. Thus, it is desirable to

separate it into a part which is equal for all pixels and a difference term. Since the

time-dependent signal is affected by noise and therefore differs randomly from pixel

to pixel, this is not trivial. Fortunately, it can be shown that it is possible to separate

the noise in an easy way:

The process of adding Poisson noise is a function which generates random numbers

which are distributed according to the Poisson distribution with a parameter λ. The

Poisson distribution is given by

Pλ =
λk

k!
e−λ . (3.7)

The parameter λ describes the mean of the values which corresponds to the number

of generated electrons here. Pλ is the probability of detecting k electrons for a given

λ.

Since the Poisson distribution is reproductive, which means that

X1 ∼ Pλ1 ,

X2 ∼ Pλ2 ,

⇒ X1 +X2 ∼ Pλ1+λ2 , (3.8)
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multiple time steps of collecting electrons for the same tap can be grouped, and the

accounting for Poisson noise may be performed only once per group. This “grouping”

is exactly what the sorting module does – so it is possible to perform the switching

first, and to add the Poisson noise afterwards.

In each tap two Poisson processes take place: the generation of electrons from incident

photons as well as the creation of a specific number of dark current electrons. Both

quantities are affected by Poisson noise and may be combined in order to speed up

the simulation further.

Separating the time-dependent signal from its noise is the key step for optimizing

the speed of the simulation: All other pixel-dependent operations can simply be re-

arranged. This includes for instance the application of multiplicative factors which

describe the reflectivity of the target and the quantum efficiency of each pixel. Fur-

ther examples are additive factors like the amount of incident background light and

interfering dark current electrons.

Since it is confirmed that separating the time-dependent signal from its noise is al-

lowed, it is possible to compute the switching function only once and to use these

values to simulate all pixels. If the excitation function is periodical and the inte-

gration time of a subframe is an integer multiple of an oscillating period, a further

increase of speed is achieved by computing the switching function for a single oscil-

lating period only, and multiplying the result by the number of oscillating periods

per subframe.

After rearranging the model according to this explanation it looks as shown in

Fig. 3.2.

��� ������	��

�
�
�
��
�
��
�
�

	�

�
��


�
�
��
�

�
�
�
	�


�



��������
�
��	

���������������������

������	�
���
���������
��

������	����
������������


��������
���	��
����
�����	��������������

�������
��
�	�



���	��



�����

���

��
���
�

��
�


���������������
�
��	

�

�

�
����


������	


��
�

�
�

��


�
�
�


� �

����
�����
	�
��

�
���
��

���	��������

�

�

���

��
���
�

� �
�

����

������	


� �
�

��
�� ��
��

�

��
��!	���

∀��
���

��
�

��
�� ��
��

�

��
��!	���

∀��
���

�

�#
 ��
��

�
�
�

�
�
�

Figure 3.2.: Schematic representation of the model after combining Poisson processes.
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By performing the sampling operation at four phase angles θ = {0, 90, 180, 270}◦ of

the input signal the acquisitions of four subframes are simulated, with each subframe

consisting of two raw images. So, eight raw images are generated which corresponds

to the output of a real PMD ToF camera: All phase angles were sampled using both

raw channels A and B. Each pair of raw images corresponding to the same phase

angle is summed and divided by two in order to decrease the influence of spatial

inhomogeneities of the sensor. This averaging technique will be discussed in detail

in Sect. 5.2.2. Equation (2.9) is used to reconstruct a phase image from which the

depth image is being computed by using Equation (2.3).

3.1.5. Suppression of Ambient Light

Due to its modular structure the model can easily be extended to describe even

more complex systems. It is a very interesting question for developers and users of

ToF systems how robust the system reacts to interfering non-modulated light. This

interfering illumination causes an earlier saturation of the quantum wells, so less of

the backscattered active light containing depth information is being detected. This

results a decreased precision of the depth estimation (see also Section 2.3.1.3).

Therefore, an interesting task for ToF manufacturers is to design systems which

actively decrease the influence of non-modulated light. One system developed by

PMDTechnologies is called Suppression of Background Illumination (SBI),

which is implemented, inter alia, in the CamCube ToF camera.

The manufacturer did not publish detailed descriptions about the SBI, but it is

possible to gather some information by analyzing the data produced by the camera.

3.1.5.1. Observations

When irradiating the camera sensor with increasing intensities and analyzing the

acquired intensity values of both channels A and B of a subframe of a specific angle θ,

the following behavior can be observed: For low intensities there is a linear relation

between the intensity of the light source and the sensor output. At a particular point

one of the channels shows a behavior similar to saturation, i.e. there is almost no

variation of the raw data while further increasing the intensity of the light. At the

same point the output of the other raw channel starts decreasing while still increasing

the irradiation level.

This behavior can be explained as follows: The charge stored in the two quantum

wells Σ is continuously compared with a reference value nSBI,start. As soon as the
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amount of stored charges of one quantum well exceeds this value, i.e. the difference

n∆ of both gets positive, a compensation process is triggered. During this process two

compensation currents are injected into the quantum wells which contain roughly the

same charge as the difference n∆. By doing that the quantum well which contained

more electrons at the beginning of the process is reset to nSBI,start. The other

quantum well is set to a value which is below its original value.

The loss of information due to this process is not critical: The most interesting

quantity which is reconstructible from the raw data is the phase shift ϕ which gives

the depth information d. To estimate ϕ only the difference of the two channels A and

B is of importance, not their absolute value (see Equation (2.9)).

3.1.5.2. Modeling the SBI System

These observations were modeled in a separate module and included into the system

(see Fig. 3.3): The amount of charge carriers of the two quantum wells Σ is continu-

ously read into the SBI circuit. It computes the maximum of both and subtracts a

reference value nSBI,start. This difference is, if positive, multiplied by a factor SDK
and an offset SD0 is added. These parameters were introduced to model possible

deviations from an ideal system.

The computed and transformed difference value is affected by Poisson noise. It is

fed into two paths which generate the compensation currents for the two quantum

wells by multiplying with a factor SAK (or SBK) and adding an offset SA0 (SB0,

respectively). The generated compensation currents are also affected by Poisson

noise, which is considered by the model.

By employing the property of the Poisson distribution of being reproductive (c.f.

(3.8)) the model can be optimized regarding the speed and memory consumption

of a numerical implementation. This leads to the scheme shown in Fig. 3.4. This

model can be simulated much faster because the SBI compensation currents are

computed only once per quantum well, just before the read out cycle starts. In a

continuous system the quantum well containing more electrons is kept on a constant

level, so the additional noise caused by the SBI is canceled out by the controlling

loop. This was implemented by setting the quantum well which contained the higher

number of electrons at the time of activation of the SBI to nSBI,start at the end of

the compensation process.

The model was implemented in heurisko, an image processing script language. The

simulation of a ToF camera system acquiring one 1000×1000pixel2 depth image using

four subframes takes about 10s on a Windows XP Pentium 4 2.80GHz machine. The
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Figure 3.3.: Schematic representation of the model, including the SBI circuit.
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Figure 3.4.: Schematic representation of the model, including a SBI circuit, after com-

bining Poisson processes.

36



3.2. Parameterization and Experimental Verification of the Model

source code was not optimized for high speed computation but rather to serve as a

flexible framework, enabling a simple implementation of new modules.

3.2. Parameterization and Experimental Verification of the
Model

The model represents the theoretical framework to describe and understand a given

ToF system. To derive a simulation tool which is able to generate realistic data, i.e.

to reproduce real camera data, an appropriate parameterization has to be found.

To verify the different aspects of such a parameterization two scenarios were analyzed:

In a first investigation the internal sensor parameters were determined and the mean

as well as the statistical uncertainty of simulated sensor raw data were compared to

that of real sensor data. A second scenario concentrated on the systematic error of

the estimated depth, caused by a suboptimal modulation of the light source. Both

scenarios will be discussed in detail in the following sections.

3.2.1. Noise Behavior

3.2.1.1. Method

To determine a parameterization of the sensor model a setup similar to a radiometric

calibration setup for conventional 2D cameras was utilized: A PMD CamCube

ToF camera was mounted on an integrating sphere attached to a calibrated light

source, allowing to illuminate the sensor homogeneously with variable intensities.

The irradiation H was varied while the mean value µy and the variance σ2
y of the

raw values of one raw image2 were observed.

For low intensities the camera behaves like a conventional linear camera, because the

SBI is not active. By applying the photon transfer method [Jan07] it was possible

to determine the quantities KA, KB, and η. The idea of this technique is to exploit

the fact that the number of detected electrons is affected by Poisson noise, which

has the property of µ = σ2, meaning the statistical mean of the signal is equal to

its variance. So, by analyzing the relation of the known number of incident photons,

the generated raw values, and its variance, it was possible to estimate the searched

parameters. See [EMV10; EJ09] for further details.

2 For this experiment the raw channel A of the subframe acquired with θ = 0◦ was analyzed.
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Chapter 3. A Physical Model of a ToF Sensor

The highest observed mean raw value divided by K gave the parameter nSBI,Start.

The dark currents dcA and dcB and their distribution were estimated from the vari-

ance of the dark signal σ2
y,0

3. All other non-uniformities were neglected in this

simulation; especially the SBI module was set to ideal parameters.
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Figure 3.5.: Difference of mean raw value and mean dark raw value µy − µy,0, and

variance σ2
y plotted over irradiation H. At H = 1.7 × 107photons/pixel

the SBI is activated.

3.2.1.2. Results of Noise Investigation

In Fig. 3.5 the measured difference of the mean raw value and the mean dark raw

value µy − µy,0 was plotted over the irradiation H. The measured variance of the

raw value σ2
y was plotted as well. Also the computed corresponding quantities as

a result of the simulation were plotted in the same figure. It can be seen that the

model provides a good reproduction of the observed data.

The results of the simulation and the measured quantities are very similar in the

linear range up to an irradiation of H = 1.7 × 107photons/pixel. At this point

the SBI is activated which causes the sharp bend in the observed and simulated

data. With increasing irradiations the model still gives a good approximation of the

3 The dark currents dcA and dcB were set directly in the model; varying the exposure time texp
would have allowed to determine the parameters dcA,offset and dcA,Slope (and similarly for raw

channel B, see Fig. 3.4) and thus to model the DCNU correctly. However, this was not of interest

for this experiment.
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3.2. Parameterization and Experimental Verification of the Model

real ToF camera, but starts to show slight deviations. The observed variance σ2
y is

above the simulated quantity, which was expected because the SBI module was using

an ideal parameterization. Please note that even this ideal SBI module introduces

additional noise compared to a ToF system without SBI.

3.2.2. Systematic Depth Deviation

3.2.2.1. Setup

In a second scenario the systematic error of depth data generated by the simulation

was investigated and compared to data measured with the real camera. The expected

observation was a periodical deviation between the depth estimated by the system

and the real depth. This “wiggling” called error is caused by higher harmonics of

the optical signal. A theoretical discussion of this phenomenon was given by Rapp

[Rap07].

To determine the phase deviation of the real ToF system the camera and a plane

target were mounted on movable positioning tables. The light source was detached

from the camera and mounted at a fixed position to the target. So, the target’s

surface was irradiated from a constant distance while the backscattered light was

detected by the ToF camera (see Fig. 3.6). This directly illuminated target acts like

a plane emitter which has a constant irradiance independent of its distance. Thus,

the acquired depth data does not contain deviations caused by near-field effects of

the optical systems (especially of the light source) nor effects caused by a varying

amplitude of the optical signal.

Figure 3.6.: Setup for measuring the (isolated) depth dependent error of the depth

estimation. The light source is mounted at the target which thus acts

as a plane emitter. So, the irradiance is kept on a constant level, which

prevents intensity-related errors as well as near-field effects.

The lengthened cable from the camera to the light source introduces an additional

but constant offset of the measured phase which can easily be corrected.
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Chapter 3. A Physical Model of a ToF Sensor

A telephoto lens was used to image only a small, homogeneously irradiated area in

the middle of the target. The tables were moved to specific positions in order to vary

the distance between the active target and the camera, and to analyze the depth

estimated using data of some center pixels.

To model the depth error the temporal modulation of the optical signal was measured

using a fast photo diode (Femto Photoreceiver HCA-S-400M-SI-FS). The acquired

signal was averaged over 16 oscillating periods in order to decrease the noise. In

Fig. 3.7 the measured modulation of the light source is plotted. This real shape

was integrated into the model and the simulation was run using a varying distance

between target and camera, i.e. varying phase shifts.
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Figure 3.7.: Modulation of the PMD light source: The intensity I is plotted over the

time t for one oscillating period.

3.2.2.2. Results of Investigation of Systematic Deviations

Figure 3.8 shows the measured and simulated depth deviations over the real depth

dreal. The relation between the real depth and the chosen distance ddistance between

camera and target is given as

dreal = 2 · ddistance + dreal,0 . (3.9)

Because of the detached light source, the light has to travel the distance between

target and camera only once, which explains the factor 2 in (3.9). The distance

offset dreal,0, which results from the lengthened cable and some camera internal
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3.2. Parameterization and Experimental Verification of the Model

delays of the signal, is unknown and unimportant for this investigation. The depth

data delivered by the camera in an area of 10 × 10pixel2 near the optical axis was

averaged and used as “measured depth data”.

The measured depth deviation has a periodical structure with a wavelength of a

quarter of the non-ambiguity range, i.e. c0/(8 · ν0) ≈ 1.87m. Since dreal,0 is unknown

it was set to a value which fits best to the simulated data. From Fig. 3.8 it can be

seen that the model generated a very well reproduction of the measured deviation:

The wavelength and amplitude of measured and simulated depth deviation are in

very good agreement.
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Figure 3.8.: Mean depth deviation of the simulated and measured distance from the

real distance, plotted over the real distance dreal.

3.2.3. Summary

The developed system is a physical model of ToF cameras with a clear focus on the

sensor. It offers a very high flexibility due to its modular structure.

An arbitrary optical excitation may be used to simulate the sampling of a target

response by a ToF sensor. The system is able to simulate two detection units per

pixel, which can use any function as switching function. All spatial parameters like

the reflectivity of the target seen by a single pixel, the local amount of background

light, or the quantum efficiency η are treated as maps and may be specified for each
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Chapter 3. A Physical Model of a ToF Sensor

pixel individually. Additionally, a special module was integrated which simulates an

on-sensor circuit for suppressing ambient light. The simulation of sensor data runs

at low computational effort.

The derived simulation was parameterized using measurements of a PMD CamCube

ToF camera. This camera implements a continuous-wave approach by using a two-

tap correlating sensor. As a verification two scenarios were analyzed: The camera’s

response to an increasing, homogeneous irradiation as well as the systematic phase

deviation caused by higher harmonics of the optical excitation. In both scenarios the

model gave a precise reproduction of the observed data.

To summarize, the model is currently able to reproduce all properties and shortcom-

ings directly related to the technology or implementation of today’s ToF systems.

These were discussed as “basic difficulties” in Sect. 2.3.1 and consist of:

• statistical uncertainty,

• limited lateral resolution,

• influence of interfering ambient light (and on-sensor systems to compensate

for it),

• a need for a high dynamic range,

• systematic errors, and

• a limited non-ambiguity range.

The well parameterized simulation hence enables the generation of realistic ToF data,

as acquired with a real PMD sensor. Therefore, it is a powerful tool to evaluate the

performance of algorithms working with ToF data and to estimate the limits of

current ToF systems. Examples for the utilization of the model will be given in

Section 3.3 and Chapter 4.

The design of the model was focusing on two-tap continuous-wave cameras, but in

principle every ToF system using no more than two detection units per pixel may be

simulated. So for instance, also the behavior of pulse-based systems using only one

tap (e.g. the ZCam by 3DVSystems) may be reproduced by adapting the switching

function and modifying the analysis module. However, in this case some of the model

parameters might change or even loose their physical meaning.
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3.3. Utilization of the Model

3.3. Utilization of the Model

The developed system is a generic model of ToF cameras which is useful for different

kinds of investigations. The following sections will show some possible applications

of the system by shortly introducing projects which are utilizing the ToF model

and/or the simulation developed here. Each of the following projects was joint work

in collaboration with other research groups. Therefore, they will not be described

in detail; the description will rather focus on the ToF model and explain how it

contributed to the project.

3.3.1. Virtual Prototype: Sony Total System Simulator

The modern development process of a camera for use in a consumer systems is an

extremely complex procedure. Especially the design of the optics and image sensor

are crucial. Since technology evolves rapidly and production cycles are shortening, a

parallel design of all system components is desired. This requires to test how different

components interact, even if they do not exist yet. Therefore it is a current trend to

use more and more simulations to predict the properties of each component, and so

of the whole future system. The goal of this trend is to develop a complete system

as a virtual prototype which is solely based on simulations.

Scheme of Total System Simulator

Optical 

Simulation
Digital

Proc./Simulation

Sensor

Simulation

Optical/Lens Design
Quality 

Evaluation

ToF Sensor 

Simulation

Figure 3.9.: Structure of the Sony Total System Simulator. The developed ToF

sensor simulation was adapted to replace the current sensor simulation

module, hence the development of a virtual prototype of a new ToF system

gets feasible.

A framework for the development of such virtual prototypes of camera systems is

the Total System Simulator (TSS) developed at Sony Deutschland. The
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framework is implemented in MATLAB. It is designed as a chain of modules which

enable a realistic simulation of a complete camera (cf. Fig. 3.9). Based on an

interface to optical design tools (e.g. Zemax) it provides an efficient simulation of

the camera optics. A further module emulates the sampling process by the image

sensor, followed by a module which simulates the digital processing of the data. A

final module is used to evaluate the quality of the simulation result, and to optimize

the parameters of each of the preceding modules.

This system thus enables the optimization of hundreds of design parameters. Among

other things it allows a co-design of the camera optics and processing, so it facilitates

feasibility studies of completely new camera concepts.

The ToF sensor model presented here was fused into the TSS. For this its source code

was ported from heurisko to MATLAB and integrated into the TSS architecture

as a replacement of the current sensor module. Currently, a module for realistic

simulation of the active illumination is being devised. When finished, this extended

TSS will provide the development of new ToF camera systems by enabling virtual

ToF prototypes.

3.3.2. Evaluation of Algorithms: Generation of Realistic Data for given
Ground Truth Information

The presented ToF simulation tool is able to reproduce the behavior of a real ToF

sensor. Hence, it enables the generation of realistic data for given ground truth

information. The possibility of using realistic data and corresponding ground truth

data is a key feature for the objective evaluation of algorithms.

In collaboration with the German Cancer Research Center (Deutsches Krebsfor-

schungszentrum (DKFZ), Heidelberg, Germany) a framework for evaluation of algo-

rithms working with ToF data was developed. It was used to verify a new algorithm

for fine registration of ToF range data with high-resolution surface data in a medical

context.

The motivation of this work is the idea that pre-interventionally acquired volume

data of the patient could be used to support a physician during a surgery. This

pre-acquired data could be registered intra-operatively with “live” range data of

the patients organs and used by a computer to provide for example aids for exact

positioning of medical instruments. Such a registration requires to match the noisy

surfaces generated from ToF range data onto pre-interventionally acquired high-

resolution surfaces.
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A widely used method for geometric alignment of 3D models is the Iterative Clos-

est Point (ICP) algorithm [BM92]. This algorithm assumes that the input points

are measured with zero-mean, identical and isotropic Gaussian noise. However, the

process of generating 3D points from ToF range data leads to highly anisotropic

noise.

An adapted version of the ICP algorithm better suited for coping with anisotropic

noise than the original ICP algorithm was proposed by Maier-Hein et al. [MH+10a].

The goal of the collaboration project presented here was to evaluate this algorithm

in a medical context.
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Figure 3.10.: Developed framework for evaluation of algorithms. (Modified according

to [MH+10b].)

For this study, an evaluation framework was developed (c.f. Fig. 3.10). The frame-

work uses real volumetric medical data as input which were acquired with a computed

tomography (CT) scan. From the volumetric data simulated ToF data and corre-

sponding CT surface data are generated by two modules: “ToF surface generator”
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and “CT surface generator”. The output of both modules is used as input for the

algorithm under evaluation, which is analyzed by a following “Evaluation compo-

nent”. Please note that the description given here focuses on the ToF simulation. A

detailed discussion of the complete framework was published in [MH+10b].

The author’s contribution to the algorithm evaluation framework is a “ToF camera

simulator” module. This module is an extended version of the developed ToF sensor

simulation, which was parameterized to simulate a PMD CamCube ToF camera.

Compared to the physical model presented in Section 3.1 two major extensions were

made:

To account for a realistic depth-dependent attenuation of the active light the simu-

lated illumination was modified by a function. This function implements the distance

square law, meaning that for a doubled distance only a quarter of the active light

reaches the target. It corresponds to a point light source located at the camera,

which is a good approximation of the light source used by the real camera, if the

target’s distance is dtarget > 30cm (avoidance of near-field effects).

As a second extension a simple simulation of the camera optics was implemented to

account for a finite lateral resolution. This module focuses on the optics blur which

was simulated by convoluting the input of the sampling module (cf. Section 3.1.4,

Fig. 3.2) with a specific kernel. This blur kernel represents the point spread function

(PSF) of the simulated optics. It was approximated by a (space-invariant) Gaussian

with a full width at half maximum (FWHM) of 20µm. This was found to be a

reasonable approximation of the PSF of the original optics near the center of its field

of view4.

The evaluation framework was used for comparison of two algorithms which were

given the task of matching of the noisy surfaces generated from simulated ToF range

data onto high-resolution surfaces. As a virtual test object a human liver was used.

The performance of the standard ICP as well of the new anisotropic ICP algorithm

were investigated. Using various simulation setups and starting conditions it was

shown that the anisotropic ICP outperforms the standard ICP. The total registration

error, a quantity for measuring the misalignment of the two input meshes after

convergence, was reduced by up to 70%.

4 This approximation is based on measurements of the optical transfer function (OTF) of the PMD

CamCube optics. The measurements were performed in collaboration with René Reichele (In-

stitut für Technische Optik, Stuttgart University), Michael Erz, and Roland Rocholz (both: Hei-

delberg Collaboratory for Image Processing, Heidelberg University) within the Lynkeus project.

The results were, however, not published yet.
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A visualization of the result of the anisotropic ICP algorithm is given in Figure 3.11:

It shows the noisy submesh generated from the simulated ToF data, registered to a

reference mesh of a human liver.

Figure 3.11.: Noise submesh generated from simulated ToF depth data, registered to

a reference mesh of a human liver.

The study showed the advantage of the new algorithm in a medical context by using

a human organ as demonstration object. Real ToF data of such an organ would

have been hard to acquire because of strict directives (for example prohibiting the

use of a (yet medically uncertified) ToF camera in an operating room). Therefore,

an unique opportunity for testing the new ICP algorithm was opened up by the

presented evaluation framework, of which the developed ToF model was an integral

component.

The same framework was applied in a further cooperation project published in

[MH+11], in which a ToF based augmented reality device for medical applications

was proposed.

3.3.3. Standardization of ToF Systems: Extension of EMVA 1288
Standard

The developed ToF model is able to physically describe any given ToF camera.

Although designed with focus on a specific system it is a generic model which may

be used to emulate many different ToF camera implementations. The determined

parameters describing a given system represent specific properties. Therefore, the

author sees the model as an important element for the development of standards to

characterize and compare ToF systems.
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A detailed measurement and comparison of ToF systems from different manufactur-

ers was performed by Erz et al. [EJ09]. A further generalization of this approach,

involving aspects introduced by the presented ToF model may be found in [Erz11].

These efforts are contributing to work which seeks to develop a standard for char-

acterization of ToF systems, which will be realized as an extension of EMVA 1288

Standard [EMV10].

This standard will certainly include measures to describe the accuracy of a depth

measurement (i.e. covering systematic errors), the statistical depth error, and the

distance non-uniformity (DNU, describing the error from pixel to pixel). It will

enable a comparison and objective characterization of ToF cameras from different

manufacturers.
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Chapter 4.

Investigation of a ToF Sensor with a
Nonlinear Photo Response

In the previous chapter a ToF camera was modeled and parameterized assuming a

linear system. However, in reality such a perfectly linear imaging device does not

exist. Every implementation of a ToF system shows nonlinear effects which influence

the quality of the measured quantities.

4.1. Motivation

Especially the question of how a nonlinear photo response alters the determined depth

information is of very much interest. Focusing on continuous-wave ToF systems this

chapter will answer that question by considering three types of non-linearity and

performing theoretical investigations. The methodology of these investigations will

be introduced first in Sect. 4.2 and then applied to all investigated types.

In Sect. 4.3 the photo response will be modeled as a power function, which will help

to understand the nature of the depth deviation. Section 4.4 will investigate the

acceptable limits of the sensor’s linearity in order to achieve a specific accuracy of

the depth estimation. For this, a more natural shape of the photo response will be

assumed and characterized using a measure defined by the EMVA 1288 Standard.

The characteristics of a possible logarithmic ToF sensor are analyzed in Section 4.5.

Besides theoretical considerations realistic simulations utilizing the ToF model from

Chapter 3 will be employed to describe this system.

4.1.1. Related Work

In 2D imaging the effect of a nonlinear photo response is quite obvious and was, to

the authors knowledge, not investigated thoroughly. Methods aiming at a charac-
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terization of the non-linearity of 2D imaging sensors are provided e.g. by the EMVA

1288 Standard [EMV10]. An analysis of the nonlinear characteristics of ToF sensors

was given by Erz and Jähne [EJ09].

To the authors knowledge an investigation of the influence of a nonlinear photo

response on the accuracy or statistical uncertainty of the generated depth data was

not published yet. Such analysis will be provided in this chapter. Furthermore a

logarithmic ToF sensor will be proposed in Sect. 4.5. Similar intentionally nonlinear

sensors are known from 2D imaging; for example logarithmic or semi-logarithmic

imagers were presented in [Kav+00; Sch+00; THI98; Sto+04; Har+05].

4.2. Methodology for Theoretical Investigation of the
Phase Estimation Error

Continuous-wave ToF systems are able to sample the correlation function of an in-

cident electro-optical signal with an electronic reference signal. A nonlinear photo

response causes the acquired samples to be altered which results in a distorted depth

information. Here, this theoretical explanation will be outlined to serve as a basis

for numerical investigations in the following sections.

For this, a sinusoidally modulated light source signal (4.1) and a rectangular refer-

ence signal (4.2) are assumed, which correspond exactly to the assumptions made in

Section 2.2.2.1 (c.f. (2.4) and (2.5), page 16).

Because of the nonlinear photo response, the electro-optical signal sampled by the

sensor is distorted. This distortion is modeled by a mapping function γ. The sensor

samples the correlation function of this distorted signal γ(S(t)) and the reference

signal R(t), and generates distorted samples c(γ)(θ) as (4.3).

S(t) = bls + als sin(2π · ν0t− ϕ) (4.1)

R(t) = H(sin(2π · ν0t+ θ)) (4.2)

c(γ)(θ) =

mT0∫
0

γ(S(t))R(t) dt =

mT0∫
0

γ(S(t))H (sin(2π · ν0t+ θ)) dt (4.3)

Applying the reconstruction formulas (2.7)–(2.9) on samples acquired by such a sys-

tem will cause systematic errors. Especially the phase shift (2.9) computed from the
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distorted samples will deviate from a phase shift computed from undistorted samples

as

∆ϕ = ϕ(γ) − ϕ

= arg

Ñ−1∑
ñ=0

c
(γ)
ñ e−i2π(ñ/Ñ)

− arg

Ñ−1∑
ñ=0

cñe
−i2π(ñ/Ñ)

 , (4.4)

with:

θñ = n · 2π/Ñ , c
(γ)
ñ =

c(γ)(θñ)

mT0
, and cñ =

c(θñ)

mT0
.

The analyses given in the following sections will focus on a system using Ñ = 4

equidistant samples and assume a bounded signal 0 < S(t) < 1. Modeling the

photo response by employing individual mapping functions γ will enable to simulate

different sensor characteristics. These simulations will be carried out by numerically

evaluating Equation (4.4).

4.3. Impact of a Nonlinear Photo Response

This section aims at giving an impression about the nature of the expected depth

error caused by a nonlinear photo response. Therefore the non-linearity γ of the

photo response is modeled as a power function with exponent α,

γ : S(t)→ S(t)α , (4.5)

and the phase difference ∆ϕ (4.4) is evaluated (numerically). For this, a fully mod-

ulated light source (bls = als = 0.5, c.f. (4.1)) is assumed.

In Fig. 4.1 ∆ϕ is plotted in dependence of α and ϕ. The figure shows that ∆ϕ

varies periodically with ϕ. A better visualization of this property is given in Fig. 4.2,

where the error of the estimated phase ∆ϕ was evaluated for a fixed exponent α = 3

and plotted over the phase ϕ. The wavelength of the variation is a quarter of the

non-ambiguity range, so it is identical to the wavelength of the wiggling error caused

by higher harmonics of the light source modulation (c.f. Sections 2.3.1.5 and 3.2.2).

The amplitude of the phase error is approximately 0.023rad, which corresponds for

a typical modulation frequency of the active light source of ν0 = 20MHz to a depth

error of ∆d = 2.7cm.
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Figure 4.1.: Theoretical error of estimated phase, ∆ϕ, in dependence of the exponent

α and phase shift ϕ.
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Figure 4.2.: Theoretical error of estimated phase, ∆ϕ, in dependence of ϕ, for a fixed

exponent α = 3.
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Figure 4.3.: Theoretical error of the estimated phase, ∆ϕ, in dependence of the expo-

nent α, for a fixed phase shift ϕ = 3/8 · π.

Returning to Fig. 4.1, a variation of ∆ϕ with α is visible which becomes more clearly

in the following plot: Figure 4.3 shows a profile which is ∆ϕ over α for a fixed phase

shift ϕ = 3/8 · π (corresponding to an extremum). It can be seen that for exponents

α = 1 and α = 2 no phase deviation occurs. This is the case independently of ϕ and

– as evaluated using further simulations – independent of the modulation amplitude

and offset of the light signal.

This absence of an error is obvious for α = 1, since this case represents a perfectly

linear photo response of the sensor, so no systematic deviation was expected. Inter-

estingly, also exponent α = 2 leads to a system behavior which does not introduce

systematic deviations. This means that no additional systematic errors of the depth

estimation are introduced by a quadratic photo response, if the system is using a

(perfectly) sinusoidal modulation of the light source, rectangular shaped reference

signal and Ñ = 4 equidistant sampling points. An analytical proof for this property

will be given in Appendix A.

The approximation of the nonlinear distortion by use of a power function with a single

exponent is sufficient for non-linearities of a small extent. Real systems, however,

have characteristic curves which are better described by a mixture of nonlinear terms
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of different orders. To investigate this point, the following section will perform further

studies by assuming a more realistic shape of the non-linearity (containing many

higher order terms).

4.4. Acceptable Limits of Linearity

The previous section outlined what kind of non-linearity of a ToF system’s photo

response causes errors of the depth estimation. This section will illuminate the topic

from a different point of view and assume a more realistic shape of the non-linearity.

It will answer the question of the requirements on the linearity of a ToF system, in

order to reach a specific accuracy of the depth estimation. The analysis is done by

incorporating a measure defined by the EMVA 1288 Standard for characterization of

the non-linearity of a system’s photo response.

The goal of this section is to give an estimation of the systematic error of the depth

measurement ∆ϕ in dependence of a realistic non-linearity of the sensor’s photo

response. For this, the sensor’s characteristic curve is modeled as a circular arc

which has a homogeneous curvature over the whole range. This is a reasonable

approximation of the shape of the characteristic curve of a real imaging sensor driven

below its saturation (see for instance example section in [EMV10]).

Figure 4.4 visualizes the mapping function γ with a parameter λ. This non-linearity

parameter λ describes the deviation of the investigated characteristic curve from a

perfectly linear curve. Mathematically, γ is defined as

γ(S) = Py −
√
r2 − (S − Px)2 , (4.6)

where (Px, Py) are the coordinates of the center and r is the radius of the arc:

r =
1

2

(
1/4 · ρ2 + λ2

λ

)
, (4.7)

Px = 1− 1/
√

2 · (ρ/2− λ+ r) , (4.8)

Py = 1/
√

2 · (ρ/2− λ+ r) , (4.9)

with ρ =
√

2 being the length of the chord.

4.4.1. EMVA 1288 Linearity Measure

The EMVA 1288 Standard defines a measure for the non-linearity of the photo re-

sponse of an imaging systems [EMV10, section 6.7]. Although developed for the
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Figure 4.4.: Modeling the distortion γ of the sensor’s photo response as circular arc

with a parameter λ defining its curvature.

description of 2D imaging sensors this measure provides also a good tool for the

characterization of the non-linearity of ToF sensors.

The EMVA Standard evaluates imaging sensors or cameras as a black box system, i.e.

the complete characterization is based on analyzing the system’s response to a well

defined input. The linearity of the system is determined by illuminating the sensor

homogeneously at varying irradiation levels while collecting the raw data y output

by the system. Varying the illumination level results in a different irradiation H.

The raw values of each illumination level are averaged (giving µy) and the average

of the dark value (raw value acquired without any light) is subtracted. A straight

line is fit to these values µy − µy,dark over H.

Then, for each value the relative deviation δy from the regression is estimated.

The mean of the maximal and minimal deviation gives the so called linearity er-

ror LEEMVA:

LEEMVA =
max(δy)−min(δy)

2
. (4.10)

This linearity error is the central quantity used by the EMVA 1288 Standard to

describe the non-linearity of an imaging system. For further details, please refer to

[EMV10].

In the following it will be explained by use of Fig. 4.5 how the concept of the linearity

measure LEEMVA is related to the parameter λ. The points of {γ(S), S ∈ [0, 1]}
located on the arc are interpreted as data samples. The EMVA Standard uses a

linear fit of these data samples in order to estimate LEEMVA. Here, such a fit will

not be (exactly) computed because it would require additional assumptions, e.g. a

model of how the data are sampled. Instead, this linear fit is approximated as a
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constructed line which is parallel to the chord connecting the terminal points of

the arc. The constructed line is located so that the maximal orthogonal distance

of samples on both sides of the line is equal. This constructed line is visualized in

Fig. 4.5 as solid line.

H

y

r

LE
EMVAl

Figure 4.5.: Relation between curvature parameter λ and the linearity measure

LEEMVA defined by the EMVA 1288 Standard.

Using basic geometry the relation between λ and LEEMVA reveals as

λ = 2 ρ · LEEMVA = 2
√

2 · LEEMVA . (4.11)

This estimation is only an approximation, neglecting for example the fact that a

linear fit would not be located exactly in the center of the arc. However, the focus of

the following analysis is put on small non-linearities. Furthermore also the complete

EMVA standard is only valid for systems showing small deviations from a linear

system, so the measure LEEMVA is only valid for rather linear sensors. Thus, the

relation (4.11) is assumed to be sufficiently accurate for the following investigation.

4.4.2. Evaluation

The phase error (4.4) was evaluated numerically by use of (4.6). The error ∆ϕ

depends on multiple factors: It varies with the the extent of the non-linearity, which

is here expressed using the non-linearity error LEEMVA. Furthermore it varies with

the phase ϕ, which was expected from the results of Sect. 4.3. But the phase error

∆ϕ also depends on the offset bls and amplitude als of the optical signal S(t). To

understand these dependencies some figures will be shown in the following, where

∆ϕ is plotted over each one of these variables, while the others remain fixed.
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Figure 4.6 shows the phase error ∆ϕ for varying phase ϕ and non-linearity parameter

λ. For each λ the corresponding linearity error LEEMVA was determined using (4.11).
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Figure 4.6.: Theoretical error of estimated phase, ∆ϕ, in dependence of the phase ϕ,

for various non-linearity errors LEEMVA.

The phase error shows similar characteristics as discovered in Sect. 4.3: It varies pe-

riodically with ϕ, having the same wavelength and its extrema at the same positions.

Now the phase was set to ϕ = 3/8 · π, which represents an extremum. For this fixed

ϕ the phase error ∆ϕ was evaluated using varying linearity errors LEEMVA of the

distorted photo response. Figure 4.7 shows ∆ϕ over LEEMVA for varying modulation

amplitudes als of the light source signal S, while its offset was set to a constant value

bls = 0.5.

Figure 4.8 shows the corresponding plot of ∆ϕ over LEEMVA for a varying offsets bls
and a fixed amplitude als = 0.1.

4.4.3. Discussion & Conclusion

This section aimed to analyze the effect of a nonlinear photo response by assuming a

characteristic curve corresponding to a circular arc. Such circular arc was assumed
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      Linearity Error LEEMVA   [1]         

Figure 4.7.: Theoretical error of estimated phase, ∆ϕ, in dependence of non-linearity

error LEEMVA for varying amplitudes als and a fixed offset bls = 0.5 of

the light source signal. The phase was set to ϕ = 3/8 · π.

to be a reasonable model of a real sensor driven below its saturation. The extent

of the non-linearity of this arc was measured using the linearity error defined by

the EMVA 1288 Standard. This measure seeks to express the non-linearity of an

imaging system in a single number. Thus is is a good tool to give an estimation of

the non-linearity, but it is not suitable to provide details about the characteristics of

the photo response.

For this reason, also the analysis given here, linking the linearity error LEEMVA with

the error of the phase estimation ∆ϕ, should be understood as a rough estimation

rather than an exact relation. A real imaging system could have for example a

characteristic curve with a shape differing from a that of the assumed circular arc.

The non-linearity of such a system could be described by a specific linearity error

LEEMVA, but cause a phase error ∆ϕ which differs very much from the estimates

given here.

The obtained results show that the error of the phase estimation ∆ϕ depends on

a variety of factors. It is influenced by the extent of the non-linearity, which was
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    Linearity Error LEEMVA [1]    

Figure 4.8.: Theoretical error of estimated phase, ∆ϕ, in dependence of non-linearity

error LEEMVA for varying offsets bls and a fixed amplitude als = 0.1 of

the light source signal. The phase was set to ϕ = 3/8 · π.

characterized by LEEMVA here. Furthermore ∆ϕ depends on all parameters of the

electro-optical signal S(t), namely its offset bls, amplitude als and phase ϕ.

Figure 4.6 suggests that the average error of the phase estimation increases with

LEEMVA, corresponding to an increased extent of the non-linearity. Furthermore it

varies periodically with ϕ. Figure 4.7 indicates that the error increases with increas-

ing the modulation amplitude als. It has to be noted, however, that the simulated

maximum value als = 0.5 is unrealistically high and has only been simulated for

completeness. In practice modulation amplitudes exceeding als = 0.3 are very un-

likely. The maximal phase error for als = 0.3 and a linearity error LEEMVA = 0.05

is ∆ϕ = 2.5 × 10−3rad. Assuming modulation frequency of ν0 = 20MHz this corre-

sponds to a depth error of ∆d = 3mm which is negligible in many applications.

Figure 4.8 was simulated assuming a fixed modulation amplitude of als = 0.1 and a

varying offset of the electro-optical signal. Such modification could result for instance

from a variation of the non-modulated ambient light. The figure suggests that the

error ∆ϕ increases with increasing offset bls. Here, the maximal phase error for

bls = 0.8 and a linearity error LEEMVA = 0.05 is ∆ϕ = 1.12 × 10−3rad. Assuming

59



Chapter 4. Investigation of a ToF Sensor with a Nonlinear Photo Response

a modulation frequency of ν0 = 20MHz this corresponds to a depth error of ∆d =

1.3mm. Hence, it is also negligible in most applications.

These results reveal an interesting property of ToF systems: Even sensors having a

rather nonlinear photo response generate data which leads to very small errors of the

depth estimation. The following section will analyze this feature in more detail and

suggest a ToF sensor which uses a consciously distorted characteristic curve in order

to facilitate a higher dynamic range.

4.5. Exploiting a Nonlinear Photo Response: A
Logarithmic ToF Sensor

As mentioned in Section 2.3.1.4 ToF imaging requires sensors with an enormous

dynamic range. Such a large dynamic range enables the system to cope with strong

sources of interfering ambient light. But also applications in a controlled environment

and without any interfering light benefit from an increased dynamic range:

The active light source has a spatial extent which is normally much smaller than the

distances of the imaged objects1. Hence, it can be approximated as a point light

source. Therefore the intensity of the active illumination reaching the target drops

with approximately 1/d2 (distance square law). For this reason the intensity of the

light backscattered by objects near the camera is much higher than this of the light

backscattered by far objects. Thus, the intensity of the detected backscattered light

easily varies over several magnitudes, even for scenes with moderate depth dynamic2.

A typical method to reach a high dynamic range in ToF imaging is to use pixels with

immense fullwell capacities, which requires big pixel areas and therefore limits the

lateral resolution of the system (c.f. shortcoming in Sect. 2.3.1.2).

Here, another possibility will be investigated which is based on the idea of using an

intentionally nonlinear characteristic curve. In recent years so called High Dynamic

Range Cameras (HDRC) utilizing pixels with a logarithmic or semi-logarithmic photo

response were presented (see e.g. [Kav+00; Sch+00; THI98; Sto+04; Har+05]). How-

ever, no ToF system using a logarithmic photo response has been realized yet. There-

fore it is an interesting question of how a logarithmic photo response would influence

the characteristics of a ToF camera system.

1 Typical dimensions: light source: 10cm, object’s distance: > 1m
2 The depth dynamic of a scene is the ratio of the distances of the most remote to the most closest

object (see Sect. 1.2).
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This logarithmic photo response is modeled as a mapping function:

γ(S) =
1

log(g + 1)
· log(S + 1) . (4.12)

The parameter g defines the gain of the input dynamic range, in other words this

factor describes the multiple of the light being detectable before the sensor gets

saturated. The following investigations will focus on system behavior for a parameter

g = 10. This specific setting was chosen because the parameter is high enough to lead

to system characteristics which are very different from that of the linear system. On

the other hand the parameter is small enough to allow comparability of the derived

logarithmic system with the original linear camera.

First, a theoretical consideration will be given, followed by more realistic simulations

based on the physical model presented in Chapter 3.

4.5.1. Theoretical Investigation

The results of Sects. 4.3 and 4.4 suggest that also a logarithmic distortion of the photo

response introduces systematic errors of the depth deviation. Employing the same

methodology (c.f. Sect. 4.2) as in these sections the error of the phase estimation ∆ϕ

was evaluated by use of simulations. As a result, the error varies periodically with

ϕ, and depends on the amplitude als and offset bls of the light source signal. The

maximum error (computed for ϕ = 3/8 · π) is visualized as a surface plot in Fig. 4.9.

The triangle structure of the diagram results from the fact that only parameter

combinations giving S ∈ [0, 1] were simulated.

It can be seen that the error depends only very slightly on the offset bls. It increases

with higher amplitudes als. The typical error is very small and has a maximum value

of 5 · 10−5rad.

4.5.2. Realistic Simulations

The theoretical estimation given in Sect. 4.5.1 does not regard sensor noise nor is

able to take the real modulation of the light source signal into account. Therefore the

physical model presented in Chapter 3 was adapted to perform a more realistic study

of the influence of the logarithmic photo response on the accuracy and statistical error

of the depth measurement.

As a basis for simulation of such a logarithmic sensor the model and parameterization

of the PMDTechnologies CamCube 2.0 camera (see Sect. 3.2) was used. The
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Figure 4.9.: Theoretical error of estimated phase, ∆ϕ, in dependence of the amplitude

als and offset bls of the light source signal, simulated for a fixed phase

ϕ = 3/8 · π and gain g = 10.

logarithmic photo response (4.12) is modeled as a separate non-linearity module.

Since the simulated camera is a two-tap sensor system, two copies of this module are

integrated into the model. Each logarithmic module is located between the simulation

of the overall system gain K and the AD converter (see Fig. 3.4, page 36).

For this virtual nonlinear camera the special photo response characteristic prevents

a saturation of the quantum wells, therefore the SBI circuit was no longer required

and thus was deactivated.

4.5.2.1. Response and Noise of the Logarithmic Sensor

The logarithmic sensor was characterized using a setup according to the EMVA 1288

Standard: The virtual sensor was irradiated homogeneously with light of varying

intensities. While the irradiation H was increased the mean and variance of the raw

data were analyzed. The result is given in Fig. 4.10, showing the mean raw value

minus the mean raw value of the dark image µy − µy,0 and the variance of the raw

values σ2
y over the irradiation H.

As expected, the curve representing the mean raw value µy − µy,0 has a logarithmic

shape. The curve’s slope is high at low irradiations H and decreases for higher values
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of H. This means that the sensor’s light sensitivity decreases for increasing H which

results in an increased dynamic range.

The variance σ2
y increases with H, reaches a maximum at H ≈ 2 · 107 photons/pixel

and slightly decreases again. Over the full range of H, it seems to be relatively

constant, which is a typical property of cameras having a logarithmic photo response.

Please note that the relatively low variance of the raw data σ2
y follows from a highly

decreased sensitivity (relative to the standard linear sensor).

          Irradiation H [photons/pixel]              

Figure 4.10.: Simulated response of the proposed logarithmic ToF sensor to a homo-

geneous illumination at varying intensities.

4.5.2.2. Implications on the Dynamic Range and Comparison with Standard
Sensors

The main advantage of a logarithmic ToF sensor compared to a linear sensor is a

high dynamic range which facilitates the imaging of scenes with an increased depth

dynamic. Thus, a good scenario for evaluating the behavior and understanding the

practical benefit of a logarithmic ToF system is imaging a simple target at various

distances and regarding systematic and statistical errors of the determined depth

data. The following analysis utilizes the physical sensor model (from the prior Sec-

tion 4.5.2.1) for simulation of a plane target at different distances while incorporating

a realistic active illumination. Especially the real temporal modulation of the light
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Figure 4.11.: Comparison of the systematic error ∆d of the depth estimation for dif-

ferent sensor types.

source as measured for the CamCube camera and its spatial attenuation as 1/d2

were implemented.

To assign the peak intensity of the light source the virtual target was placed in a

distance of d = 1m. The peak intensity was now set to a value corresponding to

a photon flux of the backscattered light of 2 · 1010 photons hitting one sensor pixel

per second. Since the light source is being modulated, the mean photon flux is

about the half of this quantity. The simulation was run without any additional non-

modulated light, i.e. assuming a fully modulated light source and no ambient light.

The integration time was set to texp = 0.025s per subframe.

Besides the system using a logarithmic sensor three other settings were simulated

using the same setup and system properties: A ToF system using the standard

linear sensor (1) and parameterization (as derived in Sect. 3.2), which is equipped

with a SBI circuit for compensation of non-modulated light. This SBI circuit was

deactivated (2) for a second evaluation. (Please note that a deactivation of the SBI

system is not possible using the real camera.) A third simulation was employing the

same linear sensor with deactivated SBI, but assuming an (3) attenuated intensity
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of the detected light by factor 8 (corresponding to an optics aperture narrowed by 3

f-stops).

For all these four virtual ToF systems the imaging of a plane target in various dis-

tances was simulated. At each distance a phase map Φ and depth map D were

computed from sensor raw data. By averaging the values over all pixels the devia-

tion ∆d of the estimated depth from the real depth and variance of the depth data

σ2
d were computed.

Fig. 4.11 shows the depth deviation ∆d plotted over the real depth. For big dis-

tances (d ≈ 5m . . . 7m) the four systems generate very similar depth data. The

typical periodical depth variation caused by the imperfect modulation of the light

source (wiggling error, see Sects. 2.3.1.5 and 3.2.2) can be seen. Fig. 4.12 shows a

magnification of the same depth range, from which the expected slightly increased

systematic error of the logarithmic system compared to the other systems is visible

(c.f. Sect. 4.5.1). The maximum difference of the depth deviations between these

systems is about 3mm.
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Figure 4.12.: Magnified area of Fig. 4.11: Comparison of the systematic error ∆d of

the depth estimation for different sensor types.

In the performed simulation a smaller distance of the target corresponds to an in-

creased intensity of the detected light. Returning to Fig. 4.11 it can be seen that the
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systems start to show severe systematic errors of the estimated depth at different

distances, which are caused by successive saturation of the raw channels. Following

the curves in the figure from right to left it is visible that the standard sensor with

deactivated SBI is the first system showing significant deviations (d = 4.6m, dark

blue curve). Next, the standard sensor with activated SBI circuit (d = 3.8m, green

curve) and the attenuated system (d = 1.6m, light blue curve) show deviations. The

system using the logarithmic sensor is able to cope with the light reflected by the

nearest target (d = 1.3m, red curve) corresponding to the highest light intensity.

Furthermore, for each system the statistical error of the depth estimation was inves-

tigated in dependence of the target’s distance. For this, the statistical variance of

the depth values determined by all pixels was computed at each distance. Fig. 4.13

shows a plot of the variance σ2
y over the depth d. It is visible that the uncertainty

of the depth data generated by each system is approximately proportional to the

distance of the target. Please note that the computed values are only valid in the

range of unsaturated raw data which correspond to the distances in which the depth

estimation is correct (c.f. Fig. 4.11).

For big distances (d ≈ 5 . . . 7m) the systems using the standard sensor (with and

without SBI) produce data with a similar uncertainty (dark blue and green curve).

Compared to these two systems the error of the logarithmic system is slightly in-

creased (red curve). The statistical error of the system using an attenuated sensor

(light blue curve) is much higher.

4.5.3. Conclusion: Investigation of a Logarithmic ToF Sensor

In the previous sections an investigation of a logarithmic ToF imaging system was

performed. Since such system has not been realized yet, these investigations were

based on a theoretical analysis (Sect. 4.5.1) and realistic simulations (Sect. 4.5.2).

The theoretical consideration has shown that a logarithmic characteristic curve in-

troduces systematic errors in the depth estimation which are, however, extremely

small and hence negligible in most applications. The physical model from Chapter 3

was adapted in order to simulate the logarithmic sensor and to investigate its re-

sponse. This virtual sensor was used for a comparison study with modified versions

of the original linear sensor. The study showed that the logarithmic sensor has an

increased dynamic range which facilitates the recording of sceneries with high depth

dynamic. Among the compared systems, the logarithmic system was able to cope

with the highest light intensity. However, it should be mentioned again that the

simulation was run assuming no additional non-modulated light (i.e. also no back-
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Figure 4.13.: Comparison of the statistical error of the depth estimation σ2
d for different

sensor types.

ground light). So for example the SBI system – which is optimized for neutralization

of non-modulated light – was not simulated to work under optimal conditions.

The statistical error of the depth data generated by the logarithmic system was

only slightly above the error of the original system and much smaller than the error

of the attenuated system, which was the only system being able to image a near

target. Concluding these facts, the approach of a logarithmic ToF sensor seems

to be a very promising concept, enabling a highly increased dynamic range while

showing systematic and statistical errors which are only slightly increased relative to

a comparable linear sensor.

4.6. Summary

The subject of this chapter was the investigation of the impact of a nonlinear photo

response on the accuracy of the depth estimation. By evaluating different kinds of

distortion the phase error was characterized. The acceptable limits of the sensor’s

linearity in order to reach a specific accuracy of the depth information were explored.

This was done by utilizing the EMVA 1288 linearity measure and determining the
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Chapter 4. Investigation of a ToF Sensor with a Nonlinear Photo Response

error of the phase estimation theoretically. The results of these investigations suggest

that even large deviations from a linear photo response cause systematic errors which

are still manageable.

This inspired the investigation of a ToF sensor using a logarithmic photo response.

Since such sensor has not been implemented yet its analysis was based on theoretical

investigations and realistic simulations using an extended version of the physical ToF

model from Chapter 3. According to the results of these considerations a logarithmic

ToF sensor seems to be a very promising concept.

The analyses performed here were focusing on a two-tap ToF system following the

continuous-wave approach. However, because of the similarity of all Time-of-Flight

implementations (c.f. Sect. 2.2.3) these results should be regarded to be valid in a

more general sense. So for example systems using more than two taps or driven in a

pulsed mode will lead to comparable results.

All investigations performed in this chapter assumed a perfect non-linearity module

which is identical for both taps. However, in practical implementations the differences

of the nonlinear behavior of the taps might be a critical issue. The next chapter will

focus exactly on this question. It will turn out that the different characteristic curves

of the taps are actually contributing to shortcomings even of today’s ToF systems,

resulting in a limited frame rate and reduced quality of the generated depth maps.

A method resolving these issues based on a dynamic calibration will be presented.
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Chapter 5.

Dynamic Sensor Calibration

The subject of the previous chapter was the investigation of the effect of a (global)

nonlinear photo response on the data produced by a ToF sensor. However, the model

of an equal and homogeneous non-linearity is not an optimal description of real Time-

of-Flight imagers: Multi-tap sensors employ several detection units and each of them

has its own amplification path with a specific characteristic curve. Differences of

the photo response of these amplification paths can lead to large distortions in the

reconstructed depth image. Therefore, using today’s sensors it is not possible to

acquire the required raw images for reconstruction of a depth map using different

taps. Instead, each tap acquires a raw image on its own and the systematic errors

are canceled out by averaging these raw images.

This chapter presents a method to implicitly calibrate the photo response charac-

teristic of multi-tap 3D Time-of-Flight sensors. The calibration data are gathered

from arbitrary live acquisitions. The proposed correction of raw data supersedes the

commonly used averaging technique. Thus it is possible to compute multiple depth

maps from a single set of raw images. This enables an increase in frame rate of

factor two or more depending on the sensor design. Furthermore motion artifacts

are significantly reduced.

The method presented in this chapter was applied for a patent in [SZ10a]. Further-

more, parts of the work presented here were published in [SZJ11].

5.1. Motivation

In this chapter a method is proposed which performs an implicit scene-based calibra-

tion of multi-tap correlating ToF sensors. The resulting calibration routine allows

the computation of additional independent depth images, so the effective frame rate

can be increased (from currently 30Hz on average to 60Hz or, using an extension,

even 120Hz).
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The goal of this investigation is to provide a novel technique to increase the frame

rate of ToF systems based on today’s hardware. Please note that this method is

not intended to replace the initial depth calibration routines, inherent to every ToF

system to achieve absolute accuracy.

Using a specific camera system and a simple implementation of the proposed tech-

nique, it will be shown that doubling the frame rate of an available ToF system is

possible. Thus the feasibility of this approach is shown for the entire class of ToF

cameras employing correlating multi-tap sensors (c.f. Sect. 2.2.3). Since this work is

intended to stimulate the design of new ToF systems, limitations given by the pro-

vided proof of concept implementation (for example necessity of a deactivated SBI)

do not restrict the applicability of the concept itself.

Starting with a definition of the problem caused by an unequal photo response of the

taps in Sect. 5.2, the approach of an implicit dynamic calibration and raw data recti-

fication will be outlined in Sect. 5.3. Experimental results and a detailed evaluation

will be given in Sect. 5.4. Conclusion and outlook are provided in Sect. 5.5.

5.1.1. Related Work

Much work performed in the field of calibration of Time-of-Flight cameras relates

to the compensation of the deviations of distance or intensity measurements. For

instance Kahlmann, Remondino, and Ingensand [KRI06], Lindner and Kolb [LK06;

LK07], Rapp [Rap07], and Stürmer, Penne and Hornegger [SPH08] presented meth-

ods to decrease systematic deviations of the estimated scene unknowns.

An investigation dealing with the raw data of ToF systems, aiming to understand

errors of the estimated scene unknowns is given in Chapter 3 and was published by

the author and Jähne [SJ09]. A work focusing on the radiometric characteristics of

ToF sensors was published by Erz and Jähne [EJ09].

The approach of computing depth maps by use of fewer acquisitions was mentioned

by Lottner et al. [Lot+07] in a work aiming at a reduction of the motion artifacts.

However, it could not be put into practice because of observed considerable deviations

of the generated depth data from the expected depth.

A similar idea was presented by Hussmann and Edeler [HE09]. Their method suffers

from large distortions which they noticed as an increase of the (spatial) standard

deviation of the determined depth values.

As it will be shown here, these deviations result from the substantial inequality of

the different taps. Correcting these inequalities is crucial in order to generate high

quality depth maps, facilitating the application of the method.
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5.2. Problem Definition

As outlined in Sect. 2.2.2 the majority of the available ToF sensors is capable of ac-

quiring multiple samples of the correlation function simultaneously. Today’s sensors

usually make use of two taps.

In a general formulation, each pixel of the sensor has Q detection units (taps) which

parallelly acquire measurement values. Each of these detection units may be driven

in N different measurement modes and each one of these modes aims to measure

one specific sample out of a set of Ñ required samples of the correlation function. In

this work the indexing is chosen in such a way that the sampling mode n measures

the sample with index ñ, so ñ ≡ n (c.f. footnote on page 17). The method being

presented here is not restricted to multi-tap sensors sampling the correlation function

as discussed in Sect. 2.2.2. Therefore the following reasoning will use the index of the

sampling mode n rather than ñ. Please note that the line of argument and results

may be applied directly on sensors working as discussed in Sect. 2.2.2 by setting

ñ = n.

The theoretical value to be measured by a particular detection unit (q,with q ∈
{1, . . . , Q}) in a specific measurement mode (n,with n ∈ {1, . . . , N}) will be denoted

as un,q. The result of this measurement is a digital value which will be denoted as

yn,q. Usually N > Q is valid, thus to acquire the required N samples, multiple (L)

acquisitions are necessary. A typical raw data package is depicted in Fig. 5.1.

Figure 5.1.: A typical raw data package for Q = 2 taps and N = 4 measurements of

the correlation function.
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In the case of using a sensor as discussed in Sect. 2.2.2 the values un,q to be measured

correspond to samples of the correlation function (2.6) c(θn) = cn
1:

u1,1 = u1,2 = c0 (5.1)

u2,1 = u2,2 = c1 (5.2)

u3,1 = u3,2 = c2 (5.3)

u4,1 = u4,2 = c3 (5.4)

Ideally, the acquired values yn,q would be identical to un, and hence in the case of

(5.1)–(5.4) they would be equal to the samples cn used in (2.7)–(2.9) for reconstruct-

ing the scene unknowns.

yn,q ∼ un,q ,with n ∈ {1, . . . , N} , q ∈ {1, . . . , Q} (5.5)

Unfortunately it is not possible to use these values yn,q directly, because the mea-

surement process introduces errors which have to be compensated by an adequate

processing.

5.2.1. Erroneous Measurement Process

As investigated by Erz et al. [EJ09; Erz11] each tap of today’s ToF sensors has an

individual characteristic curve. Following the notation from Chap. 4 this character-

istic curve will be modeled as transformation γ (5.6). Ideally, γ is a linear function

and identical for all taps q and sampling modes n. However, due to imperfect fab-

rication processes, γn,q differs for each sampling mode n (n ∈ {1, . . . , N}) and tap q

(q ∈ {1, . . . , Q}).

yn,q = γn,q(un,q), n ∈ {1, . . . , N}, q ∈ {1, . . . , Q} (5.6)

Please note that the characteristic curves γn,q are also different for each pixel. Thus,

(5.6) extents to

Y n,q = Γn,q(Un,q) . (5.7)

For simplicity, the following reasoning will focus on a single pixel. In an implemen-

tation, the method derived here is applied to all pixels of the sensor in the same

way.

1 If, however, a multi-tap sensor utilizing signals different from those assumed in Sect. 2.2.2 (e.g. a

non-rectangular reference signal) is used, the values un,q might correspond to different quantities.

But still, the dynamic calibration and rectification method proposed here could be employed.

This means the presented algorithm is not restricted to sensors working exactly as modeled in

Sect. 2.2.2.
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5.2.2. State-of-the-Art: Averaging Technique

A possible strategy to compensate errors introduced by the different characteristic

curves is to perform an averaging over all taps, i.e. each sample of the correlation

function is measured by each of the Q detection units individually, and all these

values are averaged arithmetically 2. Thus, capturing N samples for correction using

the averaging technique requires L = N acquisitions.

For example, the CamCube 2.0 ToF System by PMDTechnologies uses a sensor

with Q = 2 taps and acquires N = 4 samples of the correlation function. Therefore

a raw data package consists of R = 8 values, of which half is acquired with tap 1,

and the other half with tap 2 (c.f. Fig. 5.1).

The acquired values yn,q are used to compute the samples cn by (5.8)–(5.11), which

are utilized in (2.7)–(2.9) for reconstructing the scene unknowns.

c0 = (y1,1 + y1,2)/2 (5.8)

c1 = (y2,1 + y2,2)/2 (5.9)

c2 = (y3,1 + y3,2)/2 (5.10)

c3 = (y4,1 + y4,2)/2 (5.11)

This strategy has the effect that differences of the various characteristic curves γ

cancel out. However, this is only valid for differences of linear order, i.e. higher order

deviations of the different characteristic curves γ are not compensated. Furthermore,

any implementation of this strategy will be slow since each sample of the correlation

function cn is measured multiple times (namely by each tap q) to generate a single

set of scene unknowns.

5.3. Calibration and Rectification

A possibility to supersede this averaging technique is to determine γn,q of the ToF

system by performing a photometric calibration (see e.g. Erz and Jähne [EJ09]).

Such approach explicitly determines each γn,q by illuminating the sensor with a well

defined input and by analyzing the (raw data) output of the ToF system. However,

such an explicit calibration requires a tunable and preferably homogeneous light

source, e.g. an integrating sphere. Furthermore, this explicit calibration is slow and

2 This particular averaging strategy is used by PMDTechnologies to the author’s knowledge. The

raw data processing methods of other ToF manufacturers are not disclosed and thus not known

to the author.
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thus expensive in a production line. The most critical issue is, however, that γn,q
are usually not stable over time, because they depend on a variety of factors espe-

cially on the temperature. (This temperature dependence of the estimated correction

parameters will be investigated in Sect. 5.4.2.)

Therefore instead of such an explicit calibration, the method proposed here aims at

performing an implicit calibration where the differences between two read-out paths

γ are estimated and compensated. The following section (Sect. 5.3.1) will introduce

a rectification operator. The goal of this operator is to correct the raw data such as

they were measured using a single tap. By defining the requirements on this operator

it will be described in an abstract manner.

The section subsequent to the following one (Sect. 5.3.2) will then specify this oper-

ator and explain how exactly it is constructed.

5.3.1. Implicit Calibration

The approach chosen here performs an implicit calibration of the sensor inhomo-

geneities from arbitrary raw data acquired from a scene. It uses a rectification

operator rn,q which is applied to correct the sensor raw data {yn,q} (5.12).

ŷn,q = rn,q(yn,q) = rn,q(γn,q(un,q)) , (5.12)

with ŷn,q being the rectified data of sample yn,q. Note that γn,q and un,q are un-

knowns, which are not determined by the calibration process.

The goal of the rectification process is to generate a set of corrected raw data {ŷn,q}
such that each corrected output value ŷn,q only depends on the theoretical input

value un,q, and is no longer depending on the detection unit q or sampling mode n

used for the measurement. Thus the requirement for rn,q is:

un1,q1 = un2,q2 ⇒ ŷn1,q1 = ŷn2,q2 , for all n1, n2 ∈ {1, . . . , N} , (5.13)

and q1, q2 ∈ {1, . . . , Q} .

Since a relative calibration is desired the data of only Q−1 taps have to be rectified.

W.l.o.g. we choose q = 1 as the tap of which the data are trivially corrected, i.e.

remain uncorrected. The raw data of all other taps are corrected for each possible

sampling mode n, see (5.14).
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rn,q(yn,q) =



yn,q , if q = 1

rn,q(γn,q(un,q)) = rn,1(γn,1(un,1)) = ŷn,1 , if q 6= 1 ,

for each possible un,1
and un,q = un,1 ,

n ∈ {1, . . . , N}

(5.14)

This means that there are (Q−1)·N independent nontrivial and N trivial rectification

operators rn,q for each pixel. The rectification operators are used to compensate

deviations caused by the different detection units q individually for each sampling

mode n. Please note that this is only an implicit definition of rn,q. It will be shown

in the next section how rn,q is constructed.

5.3.2. Dynamic Sensor Calibration

Figure 5.2.: Overview calibration: The rectification operator rn,q is a polynomial fit

of {yn,1} over {yn,q} depicted here for q = 2, n = 1. For every pixel,

N(Q− 1) nontrivial rectification operators have to be computed.

The rectification operators rn,q can be constructed by analyzing raw data delivered

by a ToF system. Under the assumption that the observed scene is (temporarily)

not changing, each tap (of a pixel) measures the same theoretical input, hence:

un,q = un,1, n ∈ {1, . . . , N} (5.15)

75



Chapter 5. Dynamic Sensor Calibration

Due to aforementioned different characteristic curves, the sensor output measured

by different taps is usually not identical: yn,q 6= yn,1. The rectification operator rn,q
is generated in such a way that (5.16) is valid for each pair (yn,q, yn,1).

rn,q(yn,q) = yn,1 (5.16)

The rectification operator rn,q expresses the correlation of actually measured data

(yn,q) and the data which would have been measured with tap q = 1 (yn,1). For an

ideal sensor, rn,q would be the identity function.

The generation of rn,q can be done by collecting multiple pairs {(yn,q, yn,1)i} and

fitting a polynomial function to this data set. The rectification operator rn,q is then

the polynomial function. It has to be computed individually for all taps q 6= 1, all

sampling modes n, and all pixels. Please see Fig. 5.2 for a visualization of proposed

calibration technique.

The assumption that the scene is static does not need to be fulfilled for all pixels

simultaneously. Instead, static subsequences of the raw data signal can be found

for every pixel individually and might be used for generation of rn,q. Such static

subsequences are usually present in all kinds of natural sequences. They can be

identified by comparing the absolute temporal gradient of the raw data signal with a

predefined threshold: If the absolute gradient of the raw data signal of a particular

pixel is below this threshold, the pixel images a static object, so pairs of {(yn,q, yn,1)i}
can be extracted from the acquired raw data package.

5.3.3. Raw Data Rectification

The rectification operators rn,q may be used to compensate the effect of the different

characteristic curves of the different taps. So, the averaging technique described in

Sect. 5.2.2 is not needed anymore. Thus, each raw data package can be split into

separate packages, which may be used to compute individual sets of scene unknowns.

A package consisting of L acquisitions of Q taps can be split into (L · Q/N) sub-

packages of length N/Q. For instance each raw data package of a two-tap camera

using N = 4 samples may be split into two subpackages carrying the full information

necessary for reconstruction of the scene unknowns (see Fig. 5.3).

By pursuing this strategy multiple sets of scene unknowns can be computed from

a single raw data package, and hence the frame rate is increased. Please note that

since each subpackage carries the full information to compute the scene unknowns,

these computed quantities are independent. For the given example the frame rate of

the depth maps and all other computed scene unknowns is doubled.
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Figure 5.3.: Splitting a raw data package into two independent subpackages.

5.3.3.1. Extension: Using Interleaved Datasets

A further increase of the frame rate is possible by using interleaved subpackages. This

requires data of the raw data package acquired prior to the considered one. These

data will be denoted with an additional index p here. A raw data package consisting

of L acquisitions can be split into L interleaved subpackages. This enables the com-

putation of L sets of scene unknowns for each raw data package, corresponding to

an increase of the frame rate by a factor of L. For instance the raw data package of

the example discussed may be split into four interleaved subpackages (see Fig. 5.4).

Please note that using interleaved subpackages does not produce the same values as

interpolating the scene unknowns generated from independent (i.e. not interleaved)

subpackages would do. In other words, using interleaved subpackages does not cor-

respond to applying a simple interpolation. The reason is that the reconstruction

of scene unknowns from raw data is performed by nonlinear operations (see (2.8),

(2.9)).

Here, the computed quantities are not independent since each subpackage has an

overlap with its consecutive subpackage (see next section).

5.3.3.2. Frame Rate Increase

Using the proposed raw data rectification enables splitting the raw data packages

into subpackages, which enables a significant frame rate increase. The averaging

technique described in Sect. 5.2.2 is capable to compute one set of scene unknowns

for each set of N measurements (length of a raw data package). By applying proposed

raw data rectification, each raw data package can be split into subpackages of length

N/Q, of which each can be used to compute an independent set of scene unknowns.
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Figure 5.4.: Splitting a raw data package into four interleaved subpackages.

Thus, compared to the averaging technique using L = N acquisitions the frame rate

increase is N/(N/Q) = Q, which corresponds to the number of taps used.

By using interleaved subpackages, a set of scene unknowns can be computed every

time a new measurement is done (length of new data: 1). Consequently, from N

subpackages of the sequence, N sets of scene unknowns may be computed, giving a

frame rate increase of N/1 = N , which is the number of samples. It has to be noted

that the same speedup would be feasible using an adapted averaging technique with a

“sliding window”. However, using data rectified by the proposed method significantly

decreases the overlap of the used subpackages and therefore decreases the dependency

of the generated sets of scene unknowns. Subpackages constructed from rectified data

have an overlap of (N/Q)/N = 1/Q, compared to an overlap of (N − 1)/N when

using the averaging technique. For example, rectified interleaved subpackages of a

two-tap sensor employing N = 4 samples would have 50% overlap, compared to 75%

overlap when using interleaved data in combination with an averaging technique.

5.4. Experimental Verification

For the experimental verification using real data a PMD CamCube 2.0 camera

(PMDTechnologies, Siegen, Germany) was employed. This ToF camera utilizes

a correlating sensor with two taps and thus represents a considerable class of com-

mercially available 3D ToF systems3.

3 Among others, this class includes also cameras from Canesta and Mesa Imaging (c.f.

Sect. 2.2.3).
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A sequence of 250 raw data packages (per pixel) was acquired, which included four

static subsequences. For the gathering of calibration data covering a big fraction of

the available raw data range, nearly homogeneous “targets” of various reflectivities

were presented at various distances to the camera. The objects serving as targets were

casually chosen and positioned, since the quality of the targets was not important,

but rather the fact that the input was (temporarily) static and of various intensities.

In particular a cardboard (distance d = 1m), the lab’s carpet (d = 2m), the wall

(d = 4m) and a piece of paper (d = 0.5m) were used. At the end of the sequence a

rotating target was imaged which will serve to evaluate the success of the frame rate

increase. This target consists of two opposing quadrants rotating around a common

axis. A schematic representation is given in Fig. 5.5.

Figure 5.5.: Schematic representation of the rotating target used in the performed

experiments.

As discussed in Sect. 3.1.5 the PMD camera has a system for active compensation of

background light (called SBI) built in, which introduces a highly non-linear feature

to the characteristic curve γ. For the proof of concept, correctly dealing with this

highly specific system property does not provide any benefits. Therefore, the author

decided to keep the algorithms simple and to acquire data without activation of

the SBI. Since the SBI is activated automatically at high intensities, the absence of

strong light sources ensured that the SBI was deactivated.

The sequence was processed offline using MATLAB scripts. Static subsequences

were searched individually for each pixel. This was done by accepting all samples

whose squared temporal gradient was below a threshold ξ:

accept yn,q[t1], if (yn,q[t1]− yn,q[t0])2 < ξ (5.17)

With yn,q[t0] and yn,q[t1] being two consecutive values acquired at time steps t0 and

t1 (t0 < t1) of a specific raw channel and pixel. For the performed experiments
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ξ = 4000DN2 4 was chosen. From these static subsequences, on average 191.3 pairs

of (yn,q, yn,1)i per pixel and raw channel were collected.

From previous investigations (see Sect. 3.2 and [EJ09]) it was known that a typical

characteristic curve of the camera system at hand is well approximated by a linear

function. Therefore a linear function (polynomial of degree 1) is well suited to model

also the difference of two different characteristic curves.

Thus, for each pixel, each sampling mode n, and q = 2, a linear function (5.18) was

fit to data points {(yn,q, yn,1)i} using a least square fit, giving rn,q (5.19).

yn,1 = βn,q + αn,q · yn,q , q = 2, n ∈ {1, . . . , N} (5.18)

rn,2(yn,q) = βn,q + αn,q · yn,q (5.19)

Here, βn,q is the offset and αn,q the slope of the rectification operator rn,q.

The process of generating rn,q is visualized in Fig. 5.6 for q = 2, n = 1 and a single

representative pixel with coordinates x1 = 100, x2 = 80. The blue crosses represent

all pairs {(y1,2, y1,1)i} present in the input sequence. All the pairs belonging to

static subsequences (identified by applying (5.17)), were used to compute r1,2 and

are labeled with red circles in the figure. The computed correction operator r1,2 is

visualized as green solid line.
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Figure 5.6.: Generation of the rectification operator r1,2 for a single pixel with spatial

coordinates x1 = 100, x2 = 80.

Fig. 5.6 suggests that these samples are clustered and not evenly distributed over

the input range, which might result in a bad numerical fit. However, these clusters

4 [DN] = Digital Number (physical unit of the sensor raw data)
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correspond to the static subsequences, each representing a single target of the test

sequence. Therefore, the clustered characteristic of the data is a result of the lim-

ited extent of the acquired sequence and does not allow any conclusions about the

presented method.

The derived correction parameters for n = 1 and q = 2 are visualized in Fig. 5.7 for all

pixels of the sensor. The structure in Fig. 5.7.a (horizontal stripes) probably contains

clues about the internal hardware layout of the sensor (different amplification paths

etc.). The artifacts visible in Fig. 5.7.b result from an imperfect distribution of the

used data points and correspond to the shapes of the targets imaged in the input

sequence.

Also parameters for n ∈ {2, 3, 4} were computed, which are not visualized here5.

a. b.

Figure 5.7.: Computed parameters of the rectification operators {r1,2}, plotted for each

pixel: a offset β1,1, b slope α1,1.

The correction was applied to a single frame showing the mentioned rotating depth

target: For each pixel, the raw data package was split into two subpackages (c.f.

5 A computation of further parameters varying q was not necessary, because the sensor uses only

Q = 2 taps, and a correction of the first tap q = 1 is not required (see Sect. 5.3.1).
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Fig. 5.3). All raw data measured with tap q = 2 were being corrected, while all data

acquired with the first tap were trivially corrected:

ŷ1,1 = r1,1(y1,1) = y1,1 (5.20)

...

ŷ4,1 = r4,1(y4,1) = y4,1 (5.21)

ŷ1,2 = r1,2(y1,2) = β1,2 + α1,2 · y1,2 (5.22)

...

ŷ4,2 = r4,2(y4,2) = β4,2 + α4,2 · y4,2 (5.23)

This operation was performed for each pixel individually, giving 8 corrected raw

images: Ŷ 1,1, Ŷ 2,1, Ŷ 3,1, Ŷ 4,1, Ŷ 1,2, Ŷ 2,2, Ŷ 3,2, Ŷ 4,2.

From these corrected data, two single phase maps Φ̂1 and Φ̂2 were computed by

using the assignments (5.5) and (5.1)–(5.4), and applying (2.9) on the data of each

subpackage:

Φ̂1 = arctan[(Ŷ 4,2 − Ŷ 2,1)/(Ŷ 3,2 − Ŷ 1,1)] (5.24)

Φ̂2 = arctan[(Ŷ 4,1 − Ŷ 2,2)/(Ŷ 3,1 − Ŷ 1,2)] (5.25)

For comparison, also two uncorrected single phase maps Φ1, Φ2 using uncorrected

data of the subframes were computed as (5.26) and (5.27). Furthermore, an averaged

phase map using the averaging technique described in Sect. 5.2.2 was generated by

applying (5.8)–(5.11) and (5.28).

Φ1 = arctan[(Y 4,2 − Y 2,1)/(Y 3,2 − Y 1,1)] (5.26)

Φ2 = arctan[(Y 4,1 − Y 2,2)/(Y 3,1 − Y 1,2)] (5.27)

Φavg = arctan[(C3 −C1)/(C2 −C0)] (5.28)

From these phase maps depth maps were computed using (2.3), which are shown in

Fig. 5.8.

5.4.1. Evaluation

The objective of this chapter is to show that a dynamic sensor calibration can be

used to compensate for the inhomogeneities of the different taps in multi-tap ToF

sensors, enabling an increased frame rate.
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From Fig. 5.8 it can be seen that depth maps generated from uncorrected subpackages

are heavily distorted (b, c). In contrast, the two depth maps generated from rectified

subpackages (d, e) look very similar. By comparing the two separate depth maps, the

motion of the rotating target can be recognized (counter clockwise). The comparison

of (b, c) and (d, e) indicates that computing two independent depth maps from split

raw data packages as proposed gives much better results, if the presented raw data

rectification is used.

A quantitative analysis of these results is challenging. Please note that the presented

method is working with camera raw data, delivered by an uncalibrated ToF camera.

It is not meaningful to evaluate the absolute accuracy of the computed single depth

maps, because also the absolute accuracy of the averaged depth map is unknown.

Figure 5.8 shows slight deviations in the averaged depth map (a) compared to the

single depth maps (d, e). However, without the ground truth of the dynamic scene

and without an absolute raw data calibration of the ToF system (including temporal

sensor effects), an evaluation of the absolute accuracy is not possible.

5.4.1.1. Consistency

The goal of the method proposed in this chapter is increasing the frame rate, i.e.

producing multiple consistent depth maps per frame. To measure this consistency, a

consistency measure σd of corresponding regions of two computed single depth maps

was analyzed, which is defined here as follows:

∆d(x1, x2) = d1(x1, x2)− d2(x1, x2) , (5.29)

σd =

√√√√ 1

K

∑
(x1,x2)∈A

(∆d(x1, x2)− µ∆d)2 , (5.30)

where d1(x1, x2) and d2(x1, x2) are the depth values of the two analyzed depth maps

at position (x1, x2), µ∆d is the arithmetic mean of ∆d over the regarded area A,

and K is the number of pixels inside this area. Since the consistency measure σd
incorporates also statistical temporal fluctuations of the depth values, its theoretical

limit is given by the temporal noise σ̂t of the quantities d1 and d2. Assuming a

perfectly consistent correction (i.e. d1 = d2), this optimal value reveals as

σd,ideal =
√

2 σ̂t . (5.31)
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a.

b. c.

d. e.

Figure 5.8.: Depth maps of rotating target. a Depth map using averaged raw data,

computed from Φavg (state-of-the-art). b, c Two depth maps generated

from subpackages without correction (from Φ1, Φ2). d, e Two depth maps

generated from subpackages corrected using proposed method (from Φ̂1,

Φ̂2).
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Here, as region A for the analysis a small static area of the scene (x1 = 40 . . . 60,

x2 = 40 . . . 60) was chosen. By computing the measure σd on 25 consecutive depth

maps the evaluation of its statistical properties was possible6.

So, the consistency measure of the single depth maps generated from the corrected

raw data was computed as σ̂d = (0.1031 ± 0.0065)m. The corresponding quantity

computed for the uncorrected single depth maps was determined as σd = (2.8057±
0.0031)m. The value of the ideal measure was computed7 as σd,ideal = (0.0988 ±
0.0173)m.

Thus, the single depth maps generated from split raw data packages show a signifi-

cantly higher consistency, if proposed raw data rectification is applied. Furthermore

it can be seen that the presented method performs very close to the theoretical

optimum.

Please note that motion artifacts (visible at the borders of the rotating target) are

significantly removed in the single depth maps compared to the averaged depth map,

since the data for computing each depth map were gathered in less time. For a

detailed analysis of this property please refer to Chapter 6.

5.4.1.2. Temporal Noise

In a second evaluation the temporal noise was analyzed. For this, the (temporal)

standard deviation of the depth values of all pixels of the same area A was computed

over 25 consecutive frames. By averaging these values over the whole patch A the

mean temporal noise was determined. The (spatial) standard deviation of these

values was taken to describe the statistical uncertainty of the mean temporal noise

over the whole patch.

The resulting mean statistical depth error of the depth map computed using the

averaging technique is σt,avg = (0.0487± 0.0080)m. Since the single depth maps are

generated using roughly half of the available light an increase of the noise by factor√
2 leading to σt,exp = (0.0689± 0.0113)m was expected.

The averaged statistical depth error for a depth value from one8 of the two single

depth maps computed from corrected data is determined as σ̂t = (0.0699±0.0122)m.

This coincides nicely with the expected increase by a factor of
√

2.

6 The consistency measure (5.30) was computed individually for each pair of depth maps. This

was done for all of the 25 consecutive frames. The statistical mean and standard deviation of

the computed measures were then determined and are given as value σd and its error here.
7 This computation was using the temporal noise and its error. The determination of these quan-

tities is described in the following Section 5.4.1.2.
8 For this evaluation the depth map computed from Φ̂1 was used.
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5.4.2. Cross Temperature Test

An important reason for using a dynamic calibration method is the fact that the

calibration parameters are not stable over time. In particular they depend on the

temperature of the camera system. This section will investigate the influence of

different temperatures on the quality of the generated single depth maps. It is

based on experiments involving an active manipulation of the temperature of the

camera housing. The quality of the generated depth maps will be evaluated using

the consistency measure defined above.

5.4.2.1. Experimental Setup

The basis of the following experiment is the same PMD CamCube 2.0 ToF camera

used for the investigations in Sect. 5.4.1. Some hardware modifications were necessary

in order to enable control of the temperature of the camera housing:

Separation of light sources and camera body. The original PMD CamCube 2.0

ToF camera system consists of three cubes: The camera body is placed in the

center and enclosed by two light source elements which are attached directly

at the camera.

For the experiments the distance between the light sources and the camera

body was increased to about 1cm. This improves the thermal separation and

enhances the control over the camera housing temperature.

Active temperature control. In order to actively manipulate the camera’s temper-

ature two Peltier elements (Quick-Cool QC-127-1.4-8.5M)were mounted on

its top and bottom side. They were equipped with heatsinks and fans to im-

prove the heat transportation and thus to increase the accessible temperature

range. The Peltier elements were steered by a controller (Cooltronic TC

3224-RS232) enabling an active cooling or heating of the ToF camera.

Temperature sensor. A precise temperature probe was attached at one side of the

camera body, approximately in the middle between the Peltier elements.

A photography of the modified ToF system is given in Fig. 5.9.
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Figure 5.9.: Front view of the adapted ToF camera (middle) with attached cool-

ing/heating elements (top, bottom) used for the performed experiments.

The cubes on the left and right side of the camera constitute the ToF light

source.

5.4.2.2. Execution

For the experiment a number of 40 raw data sequences was acquired with each

sequence comprising 250 raw frames. By using a sight on the camera and small

targets in the lab it was possible to capture similar content in all sequences: In each

sequence the camera was imaging the lab’s carpet, a homogeneous surface covered

with wrapping paper, and the lab’s wall with the rotating target in front of it.

Every ten sequences the temperature was varied. Each time after selecting a new

temperature an idle time of at least 15min was taken to allow the system to reach

thermal equilibrium. During these idle times the camera was not switched off in

order to minimize errors possibly caused later by the heating of the camera during

acquisition.

The measured housing temperatures detected by the attached sensor present during

acquisition of each sequence are given in Table 5.1. In this table also the mean

temperature µT of each of the four groups is given.

On each sequence the dynamic estimation of calibration parameters was applied

(using the same settings as described above). These calibration parameters then

were used to rectify a specific frame of all acquired sequences. So, the calibration

parameters were not only applied to the sequence used for their determination, but

also to each other sequence.
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j T ± 0.02 [◦C] j T ± 0.02 [◦C] j T ± 0.02 [◦C] j T ± 0.02 [◦C]

1 18.25 11 27.85 21 36.32 31 43.56

2 18.24 12 27.85 22 36.29 32 43.50

3 18.23 13 27.86 23 36.39 33 43.44

4 18.23 14 27.88 24 36.12 34 43.48

5 18.22 15 27.89 25 36.01 35 43.48

6 18.21 16 27.89 26 35.99 36 43.51

7 18.19 17 27.93 27 36.00 37 43.47

8 18.18 18 27.92 28 35.99 38 43.51

9 18.12 19 27.94 29 36.00 39 43.58

10 18.10 20 27.92 30 35.97 40 43.57

µT 18.20± 0.05 µT 27.89± 0.03 µT 36.11± 0.16 µT 43.51± 0.05

Table 5.1.: Temperature of the camera housing during acquisition of each sequence

(with index j) and mean temperature µT of each group.

The frame chosen for rectification was taken from the end of each sequence (frame

number 218). By using exactly the same method as described above from each set of

rectified raw images two single depth maps were generated. This was done for each

combination of calibration and rectification sequences.

The consistency of each pair of single depth maps was evaluated by analyzing a

homogeneous region in the background (x1 = 62 . . . 84, x2 = 35 . . . 58) and using the

consistency measure σd from Sect. 5.4.1.1.

5.4.2.3. Results

The determined consistency error σd for each pair of single depth maps, generated

using each combination of calibration and rectification sequences is visualized in

Fig. 5.10. Patches of size 10 × 10 can be seen, corresponding to regions of homoge-

neous temperatures.

Within the patches on the main diagonal the consistency error is minimal (σd ∈
[0.05m, 0.08m]), whereas in other patches the error increases up to σd ≈ 0.60m.

This means that combinations of calibration and rectification sequences matching

the same temperature range lead to a minimal consistency error, indicating that the

presented rectification works best if (as proposed) the required calibration parameters

are gathered from the same sequence.
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Figure 5.10.: Consistency error σd for each possible combination of sequences used

for calibration and being rectified. Patches of size 10 × 10 can be seen,

corresponding to a similar temperature. The consistency error is mini-

mized for patches on the main diagonal, corresponding to combinations

matching the same temperature range.

The stripes in the upper right corner of Fig. 5.10 (e.g. with the coordinates: Cal-

ibration sequence jc = 36, rectification sequence jr = 1 . . . 20) are outliers caused

by an improper estimation of the calibration parameters. This probably originates

from erroneous data acquisition, since it coincides with the observation of a very

unstable system behavior during acquisition at these high temperatures (including

lost camera connections, software driver crashes, etc.).

For a more detailed analysis the averaged consistency error and its uncertainty was

determined for each patch by computing the statistical mean and standard deviation

of the consistency measure over all pairs belonging to one temperature range (i.e.

over the whole patch). These quantities are given in Table 5.2. The temperature

differences between the four investigated temperature ranges are (9.69 ± 0.04)◦K,

(8.22± 0.04)◦K, and (7.40± 0.04)◦K.

These data were used to compute the consistency error in dependence of the difference

of the temperature present during acquisition of the calibration and rectification

sequences. This relation is plotted in Fig. 5.11. For instance a sequence acquired

at 27.89◦C (green curve) rectified with calibration data gathered from a sequence
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calibration T [◦C]

σd[m] 18.20± 0.05 27.89± 0.03 36.11± 0.16 43.51± 0.05

re
ct

ifi
ca

ti
on

T
[◦

C
]

18.20± 0.05 0.058± 0.003 0.148± 0.012 0.293± 0.021 0.597± 0.273

27.89± 0.03 0.148± 0.015 0.064± 0.004 0.181± 0.016 0.411± 0.166

36.11± 0.16 0.279± 0.028 0.143± 0.014 0.068± 0.007 0.195± 0.027

43.51± 0.05 0.414± 0.034 0.273± 0.015 0.155± 0.017 0.073± 0.007

Table 5.2.: Averaged consistency error σd[m] computed for each patch from Fig. 5.10,

corresponding to homogeneous temperature ranges.

acquired at a temperature of 9.69◦K below (18.20◦C) results in a consistency error

of σd = 0.148m.

For comparison, also the theoretical optimum σd,ideal is given for each temperature

range. It was computed by use of the temporal noise σ̂t. This noise was measured

as described in Sect. 5.4.1.2 for each of the 40 sequences rectified with calibration

parameters determined for the very same sequence. Within each temperature range

these noise values were averaged, giving a mean noise value. From these quantities

σd,ideal was computed for each range as follows:

T [◦C] σd,ideal [m]

18.20± 0.05 0.0530± 0.0083

27.89± 0.03 0.0561± 0.0088

36.11± 0.16 0.0559± 0.0088

43.51± 0.05 0.0544± 0.0083

The figure (Fig. 5.11) indicates that the consistency error is rather independent from

the absolute temperature, but determined by the difference of temperatures present

during acquisition of the calibration and rectification sequence. For all investigated

temperature ranges the consistency error is minimal, if this difference is zero. Devi-

ations of this difference from zero led to an error which was increased. This result is

statisticly significant for all analyzed temperature ranges.

For this reason it can be concluded that the proposed raw data rectification aiming

at increasing the frame rate performs best if the calibration parameters are gathered

from data acquired in the same temperature range as the data being rectified. Thus,

the dynamic calibration outperforms static calibration approaches (using a fixed tem-

perature), even for temperature differences as little as (7.40± 0.04)◦K. Furthermore

the comparison with the theoretical limit of the consistency error σd,ideal shows that

the presented approach performs very close at the theoretical optimum.
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Figure 5.11.: Consistency error σd in dependence of the temperature difference present

during acquisition of the sequences used for calibration and rectification,

plotted for different acquisition temperatures of the rectified sequences.

For comparison, also the theoretical optimum σd,ideal is given for each

temperature range (see dashed lines in corresponding colors).

5.4.3. Computational Performance

All presented experiments were performed using a MATLAB implementation. The

program runtime for loading the complete raw data sequence, generating the recti-

fication operators rn,q and rectifying the data of a frame was about 50 seconds on

a standard notebook PC 9. This performance was obtained without computational

optimizations. Since the generation of the rectification operators can be implemented

recursively and applying them is very simple, the complete algorithm may be imple-

mented computationally very efficiently. A realtime implementation of the proposed

method is hence feasible, even on systems with limited hardware resources.

9 Intel Core 2 Duo CPU P8600, 2.40GHz, 3GB RAM
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5.5. Conclusion and Outlook

This chapter provided a proof of concept for performing an implicit dynamic cali-

bration of the characteristic curves of the different taps of a ToF sensor. It has been

demonstrated that the derived raw data rectification can be used for boosting the

frame rate of ToF systems. The experimental results show that doubling the frame

rate of a commercial two-tap ToF system is definitely feasible. The generated single

depth maps are consistent and their statistical uncertainty increases as expected. By

utilizing interleaved subpackages, a frame rate increase by a factor of four for the

same system is possible.

The state-of-the-art averaging technique described in Sect. 5.2.2 makes the differ-

ences of the various characteristic curves γ cancel out. However this is only valid,

if these differences are described by a linear function. The approach presented here

is able to handle higher order deviations by employing a higher order polynomial as

rectification operator. Thus it is suitable to deliver data of higher accuracy compared

to state-of-the-art solutions.

In opposite to the averaging technique the developed approach uses the acquisition

of raw data performed in less time. As a result motion artifacts are significantly

reduced.

The demonstrated method makes use of the static subsequences of a given raw data

sequence. For applications in which such static subsequences do not occur (e.g. auto-

motive), the generation of the rectification operators could be handled by temporarily

interpolating the sensor raw data.

Using an extended hardware setup the influence of temperature variations on the

consistency of the generated single depth maps was investigated. According to the

results, differences of the camera temperature present during the acquisition of data

used for calibration and data being rectified cause a decreased consistency of gener-

ated single depth maps. Thus, it was shown that the dynamic calibration method

proposed here outperforms static calibration approaches. Furthermore, a comparison

with the theoretical limit of the consistency error σd,ideal revealed that the presented

approach performs very close at the theoretical optimum.

In an application temperature changes could occur gradually or suddenly. It is

therefore beneficial to implement routines allowing a temporal adaptation of the

generated rectification operators.

Current ToF systems acquire raw data packages in a burst mode fashion. For opti-

mally exploiting the proposed technique of enhancing the frame rate, it is advisable
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to adjust the temporal sampling of these acquisitions, such that the generated single

depth maps correspond to an equitemporal sampling of the scene.
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Chapter 6.

Reduction of Motion Artifacts

Time-of-Flight systems are capable of determining depth information by performing

multiple measurements using different measurement modes. Each of these modes is

used for capturing a particular raw image. The combination of raw images facilitates

the estimation of all scene unknowns including the depth. Multi-tap sensors as

discussed in the previous chapter enable to acquire some of the required raw images

in parallel.

However, today’s ToF systems are not able to perform all necessary measurements

simultaneously but have to acquire them consecutively. Thus multiple (generally L)

acquisitions are needed.

If the observed scene changes between these acquisitions, motion artifacts occur

which significantly decrease the quality of the reconstructed scene unknowns. As an

example please see the reconstructed depth map of a person performing a fast hand

gesture in Fig. 6.1.

The goal of this chapter is to detail the origin of motion artifacts and to show

possibilities to detect and significantly reduce them.

Beginning with a description of related work and motivating the following investi-

gations in Sect. 6.1 the developed method for correction of motion artifacts will be

explained in Sect. 6.2. Experimental results and a detailed evaluation will be given

in Sect. 6.3. A conclusion and outlook are provided in Sect. 6.4.

The method presented in this chapter was applied for a patent in [SZ10b].

6.1. Related Work and Motivation

A method for reduction of such motion artifacts was proposed by Lindner and Kolb

[LK09]. Their approach is based on an optical flow analysis of the individual raw im-

ages. The detected flow field is used to warp the raw images, such that corresponding

95



Chapter 6. Reduction of Motion Artifacts

Figure 6.1.: Depth map of a person performing a fast gesture with his hand. Motion

artifacts are visible on the edges perpendicular to the motion.

regions align. The method is able to reduce motion artifacts but it is computation-

ally very demanding. Furthermore it has to deal with challenges like an ambiguous

or incomplete estimation of the optical flow field and an appropriate normalization

of the individual raw images.

A morphological method aiming to reduce motion artifacts was proposed by Gokturk,

Yalcin and Bamji [GYB04]. Starting from a depth segmentation into foreground and

background objects, pixels located near depth edges are found. These pixels are

replaced by synthetic values using a spatial filtering process. This method reduces

motion artifacts caused by depth edges between two different layers (foreground –

background).

Lottner et al. [Lot+07] proposed to employ data of an additional high resolution

2D sensor being monocularly combined with the 3D sensor. Edges detected in the

2D image were used to identify critical areas in the raw images of the ToF system.

By use of neighboring raw values and incorporating information from the 2D image

these critical samples were replaced. Unfortunately, this approach requires additional

hardware (2D sensor) which has to be spatially aligned and temporally synchronized

with the ToF system.

For the special case of continuous-wave ToF sensors using Ñ = 4 samples of the

correlation function, Schmidt [Sch08a, page 88-92] derived how the estimated values

of phase shift ϕ and amplitude a1 are altered due to motion artifacts. He also

presented a method for detecting motion artifacts based on the symmetry of the

correlation function (also valid only for Ñ = 4).
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A very similar idea was used by Hussmann et al. [HHE11] who evaluated the sum of

two raw images acquired simultaneously. The difference of two of these sums (corre-

sponding to two different subframes) indicates regions disturbed by motion artifacts.

Unfortunately, the method is vulnerable against variations of the intensity measured

by different pixels. Therefore it requires a photometric calibration of the camera and

is restricted to a very limited depth range (they report 90cm−100cm). Furthermore,

only lateral movements along one dimension may be corrected. Hence, the method

is limited to very specific applications; they propose its usage for observing objects

on a conveyor belt.

In contrast, the approach presented here tackles the problem of motion artifacts on

a more abstract level. The occurrence of these artifacts is interpreted as a conse-

quence of disturbances of the raw data acquired by an arbitrary ToF camera. The

presented approach does not employ any spatial information or relations between

different pixels but solely temporal information of single pixel signals. By detecting

temporal discontinuities of the raw signals the events causing motion artifacts can

be identified. By replacing raw values inducing artifacts with undisturbed values of

prior acquisitions it is possible to prevent distortions.

The method is not limited to artifacts caused by depth edges, nor to artifacts occur-

ring in a specific depth layer. It is also not restricted to object movements along a

specific direction and requires no calibration. Instead, the approach presented here

detects any disturbing influences and is able to correct most of them. Furthermore,

the method is not limited to a specific ToF implementation but is generally valid

for all ToF systems. Because of the method’s simplicity its implementations are

computationally very efficient.

6.2. Robust Correction of Motion Artifacts

6.2.1. Origins of Motion Artifacts

In typical depth imaging applications, three quantities are unknown and have to

be determined for each pixel individually: the object’s distance, its reflectivity and

the intensity of non-modulated light (comprising ambient light and non-modulated

light emitted by the light source of the ToF system and backscattered by the scene).

To determine these three scene unknowns at least three measurements have to be

performed. In a general formulation N raw images have to be acquired by the ToF

system. This is done using L acquisitions, where L 6= N is allowed if multi-tap
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systems are used. The unknowns are computed for each pixel individually using a

set of such acquisitions.

There are several reasons, why current ToF systems do not deliver optimal depth

maps for moving sceneries. One reason is the motion blur affecting each raw image.

Since the ToF camera is integrating the incident signal over a certain time window,

edges and fine details of moving objects are blurred.

A further and usually more serious reason is the temporal delay between the raw data

acquisitions. If one or multiple of the scene unknowns change during the process of

acquisition of a raw data set, the computed depth of affected pixels is incorrect. More

precisely, if at least one of the three unknowns (depth, background light, reflectivity)

changes, the reconstruction of all scene unknowns generates incorrect results.

So an obvious but technically hard to implement option is to reduce the number of

required acquisitions. This approach was investigated and put into practice by the

dynamic calibration method presented in Chap. 5. Its results in terms of a reduction

of motion artifacts will be discussed in Sect. 6.3.1 and compared to results of the

method investigated here.

Motion artifacts are caused by changes in the scene during acquisition of the required

raw images. Thus, in a narrow sense, dynamic scenes imaged with today’s ToF

systems permanently determine scene data which is slightly altered due to motion

effects. However, significant artifacts of the estimated depth map occur only for rapid

changes in the scene. It should be noted that also other data channels generated

by the ToF system, e.g. describing the measured intensity of background light or

the modulation amplitude of the detected signal (typical for continuous-wave ToF

systems), will contain corrupt data in this case. The following work will focus on the

computed depth, but the reasoning and derived algorithm is also valid for all other

scene unknowns.

Motion artifacts are caused by moving or rapidly changing features, for instance

moving depth- or reflectivity edges. If the movement is parallel to the projection

beam of a specific pixel, the signal deviations affecting this pixel are small due to the

usually low speed of the objects (Fig. 6.2, movement 1). In contrast, laterally moving

features effect fast changes of raw values because the edge is entering or leaving the

area imaged by a specific pixel (Fig. 6.2, movement 2). These rapid changes result in

large errors in the reconstructed scene unknowns. For this reason, motion artifacts

are usually visible at the edges between objects of foreground and background.
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Background object

Object
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Figure 6.2.: A single pixel imaging a moving object. Movement 1 will produce only

little motion artifacts. In contrast, movement 2 causes large discontinuities

in the raw data signals, and thus will generate significant motion artifacts.

Regarding the temporal signal of one raw channel of one pixel, a discontinuity oc-

curs at the instant of time the edge hits the pixel. This occurrence of a temporal

discontinuity will be denoted as event in the following.

As an example, Fig. 6.3 depicts a ToF system using sets comprising samples of

L = 4 acquisitions. For simplicity only the first raw channel of each acquisition is

visualized1. For each of these raw channels a possible temporal progress of the raw

signals is shown. These (unknown) signals are sampled at discrete points in time

(red dots). Please note that the four raw values acquired for each set are sampled

at different times. The occurrence of events causes discontinuities of the raw signals.

These discontinuities of each raw value (relative to the corresponding value of the

prior set) are also shown in the figure (in square brackets, 0: continuous samples, d:

discontinuity).

If all raw values constructing the depth value are acquired before an event occurs,

the computed depth value is correct (Fig. 6.3, set 2). In case of all raw values

constructing the depth value being acquired after the event, the depth value is also

correct (but represents another state of the scene) (Fig. 6.3, set 4). However, if the

depth value is constructed by combining raw values acquired before with raw values

acquired after the event, the computed depth information is incorrect (Fig. 6.3, set

3). Incorrect in this sense means that the value does not represent the state of the

scene neither before nor after the event. Generally, it is also not between these values,

meaning it is not comparable to an averaged measurement, but lays somewhere in the

1 A multi-tap system using two taps would generate two raw values per acquisition. This means

each acquisition would measure samples of two raw channels.
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time

raw 4

raw 1

raw 2

raw 3

Event 1 Event 2

set 3set 1 set 2 set 5set 4

[00dd][0000] [0000] [dddd][dd00]Discontinuities:

Figure 6.3.: Temporal progress of four raw channels of which samples (red dots) are

acquired at different time steps. Discontinuities are caused by events.

These discontinuities are detected for each set by comparing its samples

with the corresponding values of the previous set.

available depth range2. Therefore, such motion artifacts highly degrade the quality

of generated depth maps.

The solution proposed here focuses on the detection and correction of this kind of

motion artifacts caused by temporal discontinuities of the raw signals. They originate

for example from lateral movement of scene features. This lateral movement is the

most critical contribution to motion artifacts in practical systems. Its correction will

lead to depth maps, of which the effect of residual motion artifacts is negligible for

most applications.

6.2.2. Detection

The basic assumption here is that raw values acquired by each pixel of a ToF system

vary smoothly over time. Significant artifacts are caused by laterally moving depth-

and/or reflectivity-edges. By analyzing the temporal signal of a single raw channel of

a single pixel, such event can be identified as a discontinuity. Thus, a powerful tool for

identifying motion artifacts is to evaluate the temporal gradient of each raw channel.

If the absolute temporal gradient exceeds a predefined threshold, the regarded raw

channel is labeled as discontinuous for the current time step (see Fig. 6.3, bottom).

2 For an analytical derivation describing a special case (continuous-wave ToF system, Ñ = 4), see

[Sch08a].

100



6.2. Robust Correction of Motion Artifacts

Optionally, if a ToF system capable of performing multiple measurements simultane-

ously is used, all simultaneously acquired raw values can be labeled as discontinuous

if one of them was detected to be discontinuous. This analysis is performed for each

raw channel of each pixel individually.

An event may occur between the acquisition of two subsequent samples or during

the acquisition of one sample. Current systems normally have very short integration

times (for single samples) compared to the delay between the samples. Therefore the

possibility of an event occurring during the acquisition of two samples is much more

likely. However, if it occurs during the acquisition of one sample, it will (depending

on its exact temporal occurrence and the setting of the threshold) lead to a detected

discontinuity of the current sample or of the subsequent sample. Both cases will be

handled correctly by the proposed method.

Significant motion artifacts correlate with such discontinuities but not each detected

discontinuity of a raw data signal indicates a motion artifact. Motion artifacts occur

only if the event causing the discontinuity happens within a set of raw data processed

to compute a depth value, i.e. between the individual acquisitions forming a set.

Therefore, to determine if for a given set a motion artifact is generated, it has to

be evaluated (using the discontinuity information) if the event occurred inside or

outside the set.

Under the assumption that only one event occurs within two consecutive sets there

exist only the cases shown in Fig. 6.4. From these possible cases only case 5, case 6

and cases potentially laying between both cause motion artifacts. From these critical

cases a rule can be derived which indicates that the event occurred inside the set:

Rule:

IF (the first sample is not discontinuous)

AND (at least one of all following samples is discontinuous),

THEN (a motion artifact will occur).

With this knowledge of what exactly on the level of raw data causes motion artifacts

it is not only possible to detect but also to correct them.

6.2.3. Correction

Figure 6.5 gives a visualization of the correction algorithm proposed here. The rule

derived in Sect. 6.2.2 is evaluated for each pixel. If a raw data set is found to generate
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set previous set current set (to be analyzed)

acquisition l 1 2 . . . L 1 2 . . . L comment

case 1 E d d . . . d 0 0 . . . 0 no event in set

case 2 0 E d . . . d d 0 . . . 0 no event in set

. . .
...

...
. . .

...
...

case 3 0 0 . . . E d d d . . . 0 no event in set

case 4 0 0 . . . 0 E d d . . . d no event in set

case 5 0 0 . . . 0 0 E d . . . d event in set

. . .
...

. . .
...

...

case 6 0 0 . . . 0 0 0 . . . E d event in set

case 7 0 0 . . . 0 0 0 . . . 0 no event in set

Figure 6.4.: Possible occurrence of an event (indicated by the letter E) and detected

discontinuities. The right set is to be analyzed. Only case 5, case 6, and

cases potentially laying between both cause motion artifacts.

a motion artifact (c.f. Fig. 6.5, set 3), the proposed correction method simply is to

overwrite raw values of channels experiencing a discontinuity with the corresponding

values of the prior acquisition. If also the corresponding values of the prior acquisition

were corrected, the procedure should use the original (uncorrected) values3. In case

of a correction, the altered pixels are labeled as corrected which might provide useful

information for further processing steps.

In such case of a correction, the computed information value (of this single pixel)

does not represent the current state of the scene but corresponds to a prior state.

However, this temporal misestimation of the scene state is less than the temporal

distance of two depth maps and thus is negligible in most applications.

6.2.4. A Variant: Burst Internal Detection

Today’s ToF systems usually acquire the required raw images in a burst mode fashion

in order to capture a similar state of the scene and thus to minimize motion artifacts.

This means the temporal distance between consecutive acquisitions of a single frame

is normally much smaller than the delay between the last acquisition of one frame

and first of the following one. Since the proposed method for correction of motion

artifacts requires that at most one event occurs during two consecutive sets, this delay

between two bursts is the principal factor limiting the effectiveness of the algorithm.

A very promising possibility to overcome this limitation is opened up by the dynamic

calibration method presented in Chap. 5. By using a ToF system with a multi-tap

3 However, this case should never arise since it is only possible if multiple events occur in two

consecutive frames, which violates the assumption made in Sect. 6.2.2.
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time

raw 4

raw 1

raw 2

raw 3

Event 1 Event 2

set 3set 1 set 2 set 5set 4

[00dd][0000] [0000] [dddd][dd00]Discontinuities:

Rule: M.A.O.K. O.K. O.K.O.K.

Figure 6.5.: Proposed correction algorithm. Discontinuous values of sets found to gen-

erate motion artifacts are overwritten using corresponding values of the

prior set (green squares).

sensor this method enables to split each set of acquisitions into subsets carrying the

full information to reconstruct the scene unknowns. So for example, the data of a

PMD CamCube 2.0 camera from PMD Technologies was demonstrated to be

split successfully into two independent subsets per frame, enabling a doubling of the

frame rate.

Exactly this feature facilitates here to perform the comparison between two different

raw values for detection of discontinuities within one burst, or – using the terminology

from Chap. 5 – within one raw data package. This enables a more robust correction

of all subsets of a given set except from the first one. So for instance, in the case of

using a PMD CamCube 2.0 camera the second set (giving Φ2)4 can be corrected

for motion artifacts using this burst internal detection. Please see Fig. 6.6 for a

visualization. Using split sets enables the correction of Event 3 which follows shortly

after Event 2. Without splitting of the sets the correction would have led to an

artifact5.
4 Please note that in this chapter Φ2 always represents the phase map generated from rectified raw

data. This was called Φ̂2 in Chap. 5 and means that the notation was adapted in the present

chapter in order to improve the document’s readability.
5 Using the full set of four acquisitions the two Events 2 and 3 generate a discontinuity pattern

of [dddd] in set 5. Since all values are detected as discontinuous, a correction is not performed

according to the rule from Sect. 6.2.2, which leads to an artifact in this case.

The reason of the failure of the standard method here is the violation of the assumption of

only one event within two compared sets.
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In the following this burst internal detection will be referred to as BID method,

whereas the discussed comparison using two (normal) sets will be called standard

mode.

Please note that also an uncorrected depth map computed from a subset shows less

distortion caused by motion artifacts. This is the case because the data required

for computing the map is acquired in less time, causing that a moving object is

able to affect fewer pixels (compared to a depth map generated using the averaging

technique, c.f. Sect. 5.4.1.1 and Fig. 5.8).

time

sample 1

sample 2

Event 1

Event 2

set 3set 1 set 2 set 5set 4

[00]
Discontinuities:

Rule:
M.A.

O.K. O.K.

O.K.

O.K.

Event 3

Normal mode:

1.1   1.2 2.1   2.2 3.1   3.2 4.1   4.2 5.1   5.2 6.1   6.2

[00] [00] [00] [dd] [00]

subset:

O.K.

O.K. O.K. O.K.

O.K.

O.K.

O.K.

[00] [00] [dd] [00] [0d] [00]

tap1

tap2

Figure 6.6.: The dynamic calibration method proposed in Chap. 5 facilitates to split

each set of acquisitions into two subsets. Using this technique each sample

of the correlation function is determined using single measurements of

different taps. This enables to correct artifacts caused by events with a

short temporal distance (Event 3). Furthermore fewer of the occurring

events require a correction because of the higher sampling density (Event

1, c.f. Fig. 6.5).

6.2.5. Performance

6.2.5.1. Geometric Properties

The proposed procedure preserves the geometry of a moving object for two reasons:

First, the correction affects only a small fraction of the object (its edges). Second,

opposite edges of the object are affected in an opposite manner, so the average spatial

effect of the applied correction is zero. For example, an in the image horizontally
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moving object generates motion artifacts on its left and right edge (see Fig. 6.7).

The correction algorithm overwrites the raw values of affected pixels with the corre-

sponding values of the prior acquisitions. This results in a shift of these edges in the

opposite direction of the current movement (in Fig. 6.7 to the left). Since both edges

are moved by the same distance, the area of the object does not change. Solely its

position is adjusted and corresponds to the object’s location during the acquisition

of the first raw channel.

time

depth maps

(motion artifacts)

corrected

raw images

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

corrected

depth maps

raw images

raw image set 1 raw image set 2 raw image set 3

overwriting

affected

raw values

image

moving object

Figure 6.7.: The proposed raw data correction preserves the geometry: A horizontally

moving object causes motion artifacts on its left and right edge due to

the temporal delay between the raw image acquisitions. The algorithm

overwrites raw values of pixels which would cause motion artifacts with

corresponding values of the prior acquisitions. Thus, the corrected depth

maps are free of motion artifacts and represent the state of the scene

during acquisition of the first raw image.

6.2.5.2. Computational Performance

The computational complexity of the proposed algorithms for detecting and cor-

recting motion artifacts is O(k), with k being the number of pixels. Both methods

are based on only a few operations per pixel and raw channel. Therefore, these

algorithms may be implemented in a computationally extremely efficient manner.

Implementations for real-time applications are thus definitely feasible, even on sys-

tems with limited hardware resources (e.g. embedded systems running inside a ToF

camera).
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6.2.5.3. Limitations

The algorithm is able to handle a single discontinuity event occurring in two consec-

utive raw data sets correctly. I.e. more than one depth- or reflectivity edge imaged

by one pixel while acquiring two sets of raw data used for the detection will lead

to an erroneous reconstruction. The use of a multi-tap system in combination with

the dynamic calibration method from Chap. 5 allows to employ multiple sets out of

a burst (BID method). This significantly relaxes the requirement on the temporal

distance of two events.

The assumption of one event within two sets could be violated for example by a small

fast moving object. The proposed correction algorithm would handle the situation by

replacing the raw values of the object by raw values describing the background. So,

the fast object would disappear in the generated depth map. However, by analyzing

the regions marked as corrected the system would still be able to detect the presence

of such an object.

6.3. Experimental Results

The presented method is simple to implement, but an appropriate evaluation is

challenging. A meaningful quantitative evaluation requires some knowledge about

the imaged scene (ground truth information), which is only providable for simple

settings. On the other hand the practicability of the method is demonstrated best

using natural scenes with a high complexity. Therefore, the experimental verification

of the algorithm will be twofold:

Section 6.3.1 investigates a scenario employing the algorithm on data acquired using

a controlled setup. It proposes a measure to describe the distortion introduced by

motion artifacts and will compare different variants of reducing these errors.

In Sect. 6.3.2 the algorithm’s performance will be investigated using two natural

scenes. Since an acquisition of ground truth data for such complex scenes is extremely

difficult the analysis of the results will focus on a discussion of the produced visual

output.

6.3.1. Controlled Scenario: Rotating Target

The proposed method for detection and correction of motion artifacts was investi-

gated in a scenario using the rotating target also employed in Chap. 5. This depth

target was imaged by a CamCube 2.0 ToF camera (PMD Technologies, Siegen,
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Germany). The camera acquires R = 8 raw images using L = 4 acquisitions. From

these raw images N = 4 samples of the correlation function are computed by use

of the averaging technique (c.f. Sect. 5.2.2), which are employed to reconstruct the

scene unknowns.

A sequence of 250 frames was acquired and processed using MATLAB scripts. From

this sequence a single frame was chosen, and the required discontinuity information

was determined as follows: A raw value was labeled as discontinuous if its squared

temporal gradient was above a threshold ζ:

label yn,q[t1], if (yn,q[t1]− yn,q[t0])2 > ζ (6.1)

With yn,q[t0] and yn,q[t1] being two consecutive values acquired at time steps t0 and

t1 (t0 < t1) by a specific raw channel of a certain pixel. Here, ζ = 5 · 105DN2 was

chosen.

Using these discontinuity information the algorithms for detection and correction of

motion artifacts were run. From the raw data corrected for motion artifacts a depth

map was generated utilizing the (standard) averaging technique. For comparison

also a depth map without using any correction was computed.

The results are shown in Fig. 6.8. In Fig. 6.8.a the uncorrected depth map of the

rotating target is visualized. Please note the considerable motion artifacts at the

target’s laterally moving edges. The employed camera uses L = 4 acquisitions.

Between these acquisitions L−1 = 3 pauses occur which lead to three distinguishable

distorted regions at each laterally moving edge of the target. These artifacts are

clearly visible at the upper left and bottom right edge. The upper right and bottom

left edges, however, seem to show only two distorted regions each. This is a visual

illusion: In fact, also here three differently distorted regions are generated, but one

of them coincidentally produces depth values which match the depth values of the

background.

As aforementioned the erroneous combination of raw samples causing motion artifacts

results in depth values which can lay anywhere in the available depth range. This

means that the distortion depends on the properties of the imaged moving objects

(e.g. their depth and reflectivity). The visibility of only two distorted regions for two

of the four edges is a good example for the difficulty of identifying regions distorted

by this kind of artifacts. In Sect. 6.3.1.1 this point will be detailed.

Applying the correction strategy proposed in Sect. 6.2.3 gave a corrected depth map

(see Fig. 6.8.b). It can be seen that the corrected depth map reproduces the plane

surface of the depth target better than the original depth map. The artifacts at the

edges were successfully removed, and the target’s geometry was preserved.
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a. b.

c.

Figure 6.8.: Correction of motion artifacts for depth map of a rotating depth target.

a Motion artifacts are visible on the edges perpendicular to the motion.

b Corrected depth map without motion artifacts. c Difference map of a

and b.

This result was obtained by evaluating the rule for detection of motion artifacts

from Sect. 6.2.2. The derived information of erroneous acquisitions requiring to be

corrected is visualized in Fig. 6.9. It is shown for each of the acquisitions l ∈ {2, 3, 4}
(Fig. 6.9.a - c). Please note that according to the correction algorithm an adjustment

of the samples of the first acquisition l = 1 is never required. Fig. 6.9.d shows the

sum of the three computed masks, representing the number of corrected acquisitions.

6.3.1.1. Quantitative Evaluation

The quantitative evaluation of the degradation of depth maps caused by motion

artifacts, and thus also the evaluation of the performance of algorithms reducing
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a. b.

c. d.

Figure 6.9.: Masks labeling erroneous acquisitions requiring correction: Black pixels

indicate that the corresponding samples of the acquisitions (a) l = 2, (b)

l = 3 and (c) l = 4 were found to be invalid. d The sum of the three

masks, representing the number of acquisitions to be corrected.
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these artifacts is demanding. Essentially a measure is required which scores the

image distortion caused by motion artifacts. This is difficult especially for the fact

that the erroneously reconstructed scene unknowns may be located anywhere in

the available range. To the authors knowledge such measure does not exist so far.

Therefore, in the following a list of requirements on an appropriate measure as well

as a tangible proposal will be given.

Since the characteristics of motion artifacts of an arbitrary ToF camera are not gen-

erally predictable the author suggests that not the extent of the artifact (i.e. the value

of the erroneous estimation), but solely the number of affected pixels is evaluated.

An ideal measure for characterization of motion artifacts should furthermore fulfill

the following requirements:

Black box The measure should be applicable on black box systems. Hence, no

knowledge about camera parameters should be required.

Generality Optimally, motion artifacts produced by all possible ToF systems should

be able to be characterized by the measure. Thus, it should be independent

on product- and implementation-specific properties, especially it should not

require explicit information about the camera optics, image size, frame rate,

etc.

Content independence An ideal measure does not require a specific scene to be

imaged.

Although the last item implies that not a specific scene has to be imaged, the desired

evaluation of “wrong” scene estimations requires some ground truth information

about the scene content. This information is hard to acquire for arbitrary scenes.

A further requirement is the following: For a given velocity of an imaged object the

area affected by motion artifacts will decrease if the frame rate of the ToF system

increases. For this reason, a measure should evaluate the speed of moving test

objects relative to the system’s frame rate. This is not in conflict with the second

item (generality), since the velocity of objects relative to the frame rate can be

measured without explicitly knowing the frame rate, for instance by applying optical

flow techniques.

In the following a measure will be proposed which fulfills these requirements.
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A Measure for Quantification of Motion Artifacts The measure proposed here

characterizes the relative distorted area in the maps of the reconstructed scene un-

knowns for a particular frame. It is defined as

ρ =
Aart
Amax

, (6.2)

with Aart being the area distorted by motion artifacts and Amax being the (theoret-

ically) maximal area distorted:

The area Amax of a given frame is defined as the sum of the length of all line segments

perpendicular to the direction of motion, multiplied with its velocity (measured in

pixel/frame). Thus Amax corresponds to the area of the image changing between

two consecutive frames. This area represents the maximum number of pixel values

affected by motion artifacts. It, therefore, embodies the worst case scenario.

The area Aart is the area of pixel values actually distorted by motion artifacts. The

quotient of both, ρ, expresses the distorted area in the maps of reconstructed scene

unknowns relative to the area distorted in the worst case. A value of ρ = 1 stands

for the worst case. Techniques preventing or correcting motion artifacts result in

a decreased measure ρ. Hence, ρ can be understood as the sensitivity of the ToF

system to motion artifacts.

The determination of Aart is not trivial since affected pixel values may lay anywhere

in the available range. One possibility is to use a simple scene with a well-defined

foreground and background, and to label all pixel values deviating from the typical

values of these objects by more than a predefined threshold as artifacts. As shown

in the example using the rotating target (Sect. 6.3.1) artifacts may coincidentally

match the values of the foreground or background object. Therefore a robust deter-

mination of Aart is a segmentation problem which should be solved by incorporating

all available channels, i.e. all raw channels and all estimations of scene unknowns. At

this point a general rule for the determination of affected pixels valid for a general

ToF system cannot be given. In the following a procedure will be explained which

provides a good labeling for the sequence of the rotating target at hand.

6.3.1.2. Implementation of the Measure

The quantitative evaluation will focus on the four laterally moving edges of the

rotating target. A circular region at the center (radius: υ1 = 14pixel) was excluded

from the analysis. Furthermore, only pixels within a υ2 = 60pixel radius circular

region around the rotation axis of the target were analyzed; so basically everything

apart from the target was excluded from the analysis as well.
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By regarding 25 frames preceding to the analyzed one the target’s speed of rotation

was determined as ω = (0.20 ± 0.01)rounds/frame. The maximum area affected by

motion artifacts Amax generated by the four edges is thus given as

Amax = 4 · (υ2
2 − υ2

1) · ω · π = (8555± 430)pixel2 (6.3)

The area actually distorted by artifacts Aart was determined for each of the analyzed

cases (which will be discussed in the next section) individually. It was done by

applying a thresholding scheme on the the maps of the estimated scene unknowns.

For example the map Aart describing the artifacts of the depth map generated using

the standard averaging technique was prepared using the maps of the depth and

amplitude channel. Both were generated from raw data using the averaging technique

(see Sect. 5.2.2) and by applying (5.8)–(5.11), (2.9) and (2.3), and (2.8), respectively.

A visualization of these maps is given in Fig. 6.10.a and b.

In order to isolate the artifacts a threshold scheme was applied to these maps: All

pixels from the depth maps with a distance of 2.578m < d < 2.771m or d > 3.856m

were excluded from the map labeling the artifacts. All other pixels were marked as

candidates for pixels affected by motion artifacts, resulting in the map visualized in

Fig. 6.10.c.

Additionally, a map of candidates was generated using the amplitude map. Here, all

pixels with an amplitude value of 475DN < a1 < 2000DN were labeled as candidates

for artifacts resulting in a map given in Fig. 6.10.d.

Both maps of candidates were combined by an OR-operation. The resulting map is

given in Fig. 6.10.e.

This combined map was further processed in order to “clean up” the result: Image

regions apart from the target were removed, and the circular area in the center was

cut out6. Furthermore the holes in artifact regions were filled and some erroneous

detections from the background were removed. In Fig. 6.10.f the final result of these

operations is visualized.

The sum of labeled pixels in this final map was used as area Aart. In this example it

was computed as Aart = 2092pixel2.

6.3.1.3. Results and Discussion

For the further analysis four different depth maps were computed which are visualized

in Fig. 6.11. First, a depth map was generated by employing the state-of-the-art

6 corresponding to the radii υ1, υ2 used in the estimation of Amax, see (6.3)
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a. c. e.

b. d. f.

Figure 6.10.: Generation of the mask Aart labeling the artifacts of the depth map

which was generated using the standard averaging technique: a Depth

map and the derived intermediate mask c. b Amplitude map and the

intermediate mask derived from it d. e Combined mask and final result

f.

averaging technique (i.e. using the phase map Φavg, see Fig. 6.11.a). This depth

map was corrected for motion artifacts using the proposed algorithm (via a phase

map Φavg,mc, see Fig. 6.11.b). Furthermore, using the dynamic calibration method

from Chap. 5 a depth map using only the second subset of acquisitions was generated

(i.e. using Φ2, Fig. 6.11.c). This map was corrected using the variant of the burst

internal detection (Φ2,BID, Fig. 6.11.d).

The defined measure for characterization of motion artifacts was applied to these

depth maps giving the results visualized in Fig. 6.12.

This required the determination of a mask labeling the artifacts in the processed

maps. Analog to the procedure described in Sect. 6.3.1.2 these masks were generated

using a combination of thresholds applied to the depth and amplitude maps and

refined by a following “clean up” step. The raw combined masks and the resulting

final maps are visualized in Fig. 6.13. The relative error of each area affected by

artifacts Aart was assumed to be σAart/Aart = 10%.

The measure ρ serves for characterization of the distortion of maps of estimated scene

unknowns due to motion artifacts. It expresses the system’s sensitivity relative to a

worst case scenario (represented by the case of ρ = 1). The depth map computed

using the averaging technique is evaluated with ρΦavg = 0.2445 ± 0.0367 which is
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a. b.

c. d.

Figure 6.11.: Computed depth maps and results of the proposed algorithm for correc-

tion of motion artifacts: a Depth map computed using the (state-of-the-

art) averaging technique (via Φavg) and the derived map corrected for

motion artifacts b (using Φavg,mc). c Depth map using the second sub-

set of the given set of acquisitions (using Φ2). d Result of the correction

for motion artifacts using the variant of burst internal detection (i.e. via

Φ2,BID).

about four times better than the worst case performance. This is due to the fact

that the camera uses a burst mode for acquisition of its raw images. The length of

a burst is about one quarter of the temporal distance between two frames, resulting

in a value of the sensitivity measure ρ of about one quarter.

After applying the proposed method for compensation of motion artifacts the sensi-

tivity measure drops to ρΦavg,mc = 0.0178±0.0027, which corresponds to an increase

of the performance by factor 13.7. Thus, the depth map generated by the correction

algorithm is significantly less sensitive to motion artifacts.
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Figure 6.12.: Determined values of the sensitivity measures ρ for description of motion

artifacts. Lower values indicate a better performance. ρavg represents

the state-of-the-art.

The depth map computed from the second half of the set of acquisitions (correspond-

ing to a computation from the single phase map Φ2 from Chap. 5) gives a measure

of ρΦ2 = 0.0961± 0.0144. This is about a third of the value determined for the map

computed using the averaging technique (i.e. via Φavg). The reason for this is that

Φavg is constructed using four acquisitions with three pauses between of them. In

contrast, Φ2 employs only two acquisitions captured with one pause. During three

pauses the target’s edges take a distance which is about three times more than the

distance taken in one pause. Thus, employing the camera at hand and using a depth

map computed from a single phase map as proposed in the previous chapter results

in a reduction of motion artifacts by a factor of three.

By applying the burst internal detection variant described in Sect. 6.2.4 on this

single depth map, its motion artifacts were corrected (Φ2,BID). For this depth map

a sensitivity measure of ρΦ2,BID
= 0.0229 ± 0.0034 was determined. This is slightly

above the value computed for the corrected depth map generated using the averaging

technique (Φavg,mc). The strength of the BID approach is, however, that its higher

temporal sampling density facilitates to cope with scenes showing a much higher

dynamic. This will be demonstrated in the following section by use of natural test

scenes.

6.3.2. Natural Scenes

In this section the discussed methods will be applied to sequences of more natural

scenes. It will be shown that these highly dynamic scenes are challenging for state-

of-the-art ToF camera systems.
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a. b.

c. d.

e. f.

g. h.

Figure 6.13.: Masks labeling the artifacts used for determination of Aart: a Raw com-

bined mask and b result of the cleaning step for the depth map generated

using the averaging technique (using Φavg). c, d Corresponding masks

for the depth map corrected for motion artifacts (Φavg,mc). e Depth map

generated using the second half of the split frame (Φ2) and result of the

clean up step f. g, h Corresponding masks for the depth map generated

from Φ2 using the burst internal detection (Φ2,BID).
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Also these sequences were acquired using a PMD CamCube 2.0 camera. The

complete processing is performed using exactly the same procedures as described

above.

6.3.2.1. Scenario 1: Rapid Gestures

The first scenario reproduces the acquisition of 3D input for gesture recognition

systems, which is an interesting application of ToF cameras. A sequence was acquired

showing a person performing a rapid gesture with his hand: In the analyzed frame

the right arm is moving fast from an upper to a lower position.

In Fig. 6.14 the generated depth maps are shown. Fig. 6.14.a was reconstructed using

the averaging technique. It shows a significant artifact at the hand and parallel to

the lower arm. Applying the (standard) correction algorithm on this image using

four acquisitions leads to the result shown in Fig. 6.14.b. Here, the artifacts next to

the lower arm were successfully corrected, but areas around the finger tips remained

distorted. Additionally the algorithm introduced new artifacts visible above of the

arm. This artifact is caused by the rapid succession of edges (background–arm and

arm–background) which violates the assumption of at most one event within two

compared sets of acquisitions.

Fig. 6.14.c shows the depth computed from two acquisitions (via Φ2). It contains

less artifacts than the map generated using the averaging technique. The remaining

artifacts can hardly be recognized by the eye because they match the distance of

the foreground and background objects. By employing the burst internal detection

a depth map corrected for motion artifacts was generated. This map is visualized

in Fig. 6.14.d. It appears sharper especially around of the ball of the hand and the

upper part of the lower arm.

For a better comparison a cross section at x1 = 48 going through the imaged arm is

given in Fig. 6.15. This plot shows the depth values determined using the averaging

technique, the values generated using two acquisitions, and the values corrected by

the BID method. All values are shown over the pixel coordinate x2. Although no

ground truth information is available it can be seen that the depth values computed

using the averaging technique (blue curve) are unsteady and obviously distorted by

artifacts. Also the reconstruction using Φ2 (green curve) introduces artifacts by

assigning values describing a step of 30cm height to the flat surface of the imaged

arm. The BID method (red curve) corrects these artifacts. Only one pixel with a

distorted depth value remains at the edge.
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a. b.

c. d.

e.

Figure 6.14.: Depth maps of a dynamic scene showing a person rapidly moving his

arm from an upper to a lower position. The state-of-the-art is given in

a, while b-d represent results of this work: a Map generated using the

averaging technique with considerable artifacts parallel to the lower arm.

b Result of the developed algorithm (standard version). Some artifacts

were corrected, but additional errors were introduced. c Depth map

generated by use of two acquisitions (via Φ2). d Result of the correction

using the burst internal detection (BID) variant. e Difference image of

the depth maps computed using Φ2 and the BID method (Φ2,BID).
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Figure 6.15.: Cross section at x1 = 48 through the depth maps generated using the

averaging technique (blue), using 2 acquisitions (green) and the derived

map corrected for motion artifacts by employing the BID method (red).

A difference image of the both depth maps generated via Φ2 and using the BID

method is given in Fig. 6.14.e. It reveals that depth artifact of up to 40cm distortion

were corrected. Please note that noticeable differences of the depth map using the

averaging technique and the one using only two acquisitions, for instance expressed

by the different hue of the background, can be explained as a consequence of working

with an uncalibrated camera. This property does not allow any conclusions about a

difference in quality of both approaches (c.f. discussion in Sect. 5.4.1).

Since no ground truth information is given for the observed scene a detailed quanti-

tative analysis is not possible at this point.

6.3.2.2. Scenario 2: Juggling Performance

In a second scenario a sequence showing a juggling artist7 was acquired. For one

specific frame the different depth maps were computed as explained in the prior

section. They are visualized in Fig. 6.16.

7 At this point the author would like to thank Dr. Christoph Sommer for his performance.
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a. b.

c. d.

e.

Figure 6.16.: Depth maps of a dynamic scene showing a juggling artist. The state-

of-the-art is given in a, while b-d represent results of this work: a Map

generated by use of the averaging technique. b Result of the presented

algorithm (standard version). c Depth map generated by use of two

acquisitions (via Φ2). d Result of the burst internal detection (BID)

variant. e Difference image of the depth maps computed using Φ2 and

the BID method (Φ2,BID).
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The depth map using the averaging technique and the map corrected for motion

artifacts are given in Fig. 6.16.a and Fig. 6.16.b. Both maps show considerable

artifacts around the rapidly spinning clubs.

The depth map computed using data of two acquisitions and the derived map cor-

rected for motion artifacts using the method of burst internal detection are shown in

Fig. 6.16.c and Fig. 6.16.d. A difference between both is hardly visible. However, the

computed difference image given in Fig. 6.16.e shows that some pixel show deviations

in the depth estimation of up to 80cm.

6.3.2.3. Summary

In these scenarios of imaging rapid movements the correction of motion artifacts

based on the method of burst internal detection surpasses all other evaluated meth-

ods. Compared to depth maps generated using the averaging technique this advan-

tage of being able to cope with highly dynamic scenes is achieved by accepting an

increased statistical uncertainty of the depth estimation. This increase was deter-

mined as a factor of
√

2 (see Sect. 5.4.1.2). Compared to a depth map generated

using two acquisitions but no correction of motion artifacts the BID approach allows

to generate only one depth map per frame8. It thus trades the doubling of the frame

rate achieved by the dynamic calibration approach from Chap. 5 against the ability

to image highly dynamic scenes with a significant reduction of motion artifacts.

6.4. Conclusion and Outlook

This chapter investigated the origin of motion artifacts which are a well known is-

sue of today’s ToF systems. Analyzing the temporal raw data signal was found

to be a powerful tool for identification and correction of these artifacts. The de-

rived algorithms for detection and correction of motion artifacts may be applied

to data acquired by all kinds of Time-of-Flight cameras, including pulse-based and

continuous-wave systems.

The proposed detection of artifacts is based on a comparison of raw values with

corresponding values of the prior acquisition. Rapid changes of scene unknowns cause

events which result in discontinuous raw channel signals. The algorithm is able to

8 To be more accurate: The BID method can be applied to all independent subsets of acquisitions

except from the first one. If a camera performing more acquisitions per burst or employing more

detection units per pixel is used, the application of the BID method on several sets per burst

becomes feasible.
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handle one of such events within two consecutive sets of acquisitions correctly. Since

many of today’s ToF systems acquire its raw images in a burst mode fashion the delay

between two consecutive bursts is the limiting factor of the algorithm’s performance.

As a variant, the burst internal detection (BID) was proposed which may be applied

in multi-tap ToF systems. In combination with the dynamic calibration presented

in Chap. 5 this method is able to perform the comparison of raw channels and thus

the detection of discontinuities within each burst. Therefore the algorithm is able to

cope with one event within each set of acquisitions, which allows the correction of

very dynamic scenes.

The method was verified experimentally by use of a commercial ToF system acquir-

ing sequences showing different scenes. The usage of a well defined environment with

a special target enabled to demonstrate the functionality of the algorithm. By intro-

ducing a measure for evaluation of motion artifacts a quantitative analysis was given.

Both variants (standard and BID) of the proposed method for correction of motion

artifacts decrease the system’s sensitivity for these artifacts by almost a factor of 14.

The applicability of the developed algorithms was demonstrated using natural scenes.

One of these scenes showed a person performing a fast gesture and a second scene

showed a juggling artist. For these highly dynamic scenes the standard version

of the proposed algorithm introduced additional artifacts due to the fact that the

assumption of only one event occurring within two sets was violated. The BID

version, however, was able to eliminate all artifacts and deliver an undistorted depth

map. This was achieved by accepting an increase of depth noise by a factor
√

2

compared to the state-of-the-art averaging technique.

The proposed method performs a local analysis using only raw values and temporal

relations of the pixels being corrected. This feature results in a low complexity of the

algorithm and thus enables real-time implementations, even on systems with limited

hardware resources.
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Conclusion and Outlook

This work provided a thorough analysis of the state-of-the-art Time-of-Flight depth

imaging technology and suggested possibilities to overcome some particular difficul-

ties of today’s implementations.

7.1. Summary and Conclusion

Chapter 2 introduced an abstract formalism for the general description of Time-of-

Flight camera systems. Based on this formalism the two implementations of ToF

imaging – the pulse-based as well as the continuous-wave approach – were discussed.

Following, both variants were compared and an unification was proposed. Further-

more, an overview on the difficulties and shortcomings of today’s ToF systems was

given which were classified into (1) basic difficulties, (2) errors caused by an insuffi-

cient sampling, (3) deviations related to an imperfect propagation of the light and (4)

further deviations. These errors were described using the general formalism, showing

that they occur in all of today’s systems independently of the chosen implementation.

In Chapter 3 a physical model of a ToF system was presented. This model aims at

providing a better understanding of the Time-of-Flight technology and the discussed

difficulties. The developed system models the sensor as a black box, including a

system for suppression of ambient light (SBI). Although its design was focusing on

a specific camera the model can be employed to describe any of today’s available

systems. By use of measurements of a real camera (PMD CamCube 2.0) this

model was parameterized with values providing a physical meaning. Utilizing this

parameterization it was possible to derive a simulation tool which reproduces the

sensor behavior and generates realistic data. This tool reproduces all effects and

deviations from the class of basic difficulties. It was employed in various projects, of

which three were presented:
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The simulation was used to evaluate an algorithm for a medical ToF application

in which the use of a real ToF systems is currently not allowed. Furthermore the

ToF sensor model was fused into the Sony Total System Simulator (TSS), a

framework for exact simulation of a complete camera. This extended TSS hence

will allow the development of virtual prototypes of novel ToF cameras. A third

application is the usage of the model for the characterization of ToF systems. This

supports the development of a standard for description of ToF cameras which will

become an extension to the EMVA 1288 Standard.

In Chapter 4 an investigation of a nonlinear photo response on the accuracy and

precision of the generated depth data was performed. It was found that the non-

linearity introduces a periodical error which is similar to the wiggling error known

from previous investigations. Using realistic simulations based on the tool from

Chap. 3 this new error was estimated to be about a magnitude smaller than the known

wiggling phenomenon. These positive results inspired the proposal of a logarithmic

ToF sensor. This new kind of sensor facilitates a highly increased depth dynamic

while generating data with systematic and statistical errors comparable to linear

implementations. Thus, the logarithmic Time-of-Flight sensor is a promising concept

for future depth imaging systems.

In Chapter 5 a dynamic calibration method for compensation of the inequalities

in the photo response of multi-tap sensors was proposed. This method supersedes

the commonly used technique of computing intermediate samples by use of multiple

acquisitions (averaging technique). The presented dynamic calibration and data

rectification method enables to compute multiple depth maps per raw frame. This

results in an increase of the frame rate. Since the proposed method works on the

level of camera raw data it is not restricted to the depth maps, but can be applied

on all processed channels.

Using a commercial two-tap system a doubling of the camera’s frame rate was demon-

strated. In a detailed quantitative evaluation the consistency of the generated single

depth maps was shown. Furthermore, using many sequences acquired at different

temperatures it was proven that the dynamic calibration surpasses static approaches.

The enhanced frame rate let to a performance of 60Hz− 80Hz at a lateral resolution

of 200 × 200 pixel. To the authors knowledge this is the highest frame rate of a

ToF imaging system currently available. It was reached without any adaption of

the hardware, but only by an optimized processing of the raw data. This enhanced

processing pipeline may be implemented in a computationally very efficient manner.

Hence, real-time implementations of the proposed methods are definitely feasible.

Since the speed-up is equal to the number of detection units (Q) used by the sensor,

124



7.2. Inference

future sensors employing more taps will profit even more from this algorithm. A

patent application on the method was filed in [SZ10a].

In Chapter 6 a method for the robust detection and correction of motion artifacts

was proposed. This method is based on an analysis of the temporal signals of the

raw channels. It was explained that and how motion artifacts can be predicted

from special constellations of temporal discontinuities in the individual raw channels.

These constellations can be formulated in a single rule. The evaluation of this rule

enables the robust detection of raw values leading to artifacts. A simple strategy of

overwriting these values by values of the prior acquisition prevents the artifacts. The

method can be combined with the dynamic calibration from Chap. 5 leading to a very

efficient variant called Burst Internal Detection (BID). Both variants – the standard

as well as the BID algorithm – were verified experimentally with great success. Using

sequences acquired in a controlled scenario and in two highly dynamic natural scenes

the method was demonstrated to significantly correct motion artifacts. These results

were evaluated also quantitatively by proposing a novel measure for characterization

of motion artifacts.

The presented method is very simple and hence may be implemented in an extremely

efficient manner. It is applicable to all ToF systems combining multiple consecutive

acquisitions of raw data into one depth map (i.e. all systems for which motion artifacts

are an issue). The method neutralizes a big fraction of the distortions caused by

motion artifacts present in all of today’s ToF systems. Thus the author expects it

to become an integral part of future implementations. A patent application on this

method was filed in [SZ10b].

7.2. Inference

This work sought to describe the working principle of Time-of-Flight systems as

well as their difficulties using a general formalism. A list of shortcomings of current

implementations was given, and some of them were studied using a developed physical

model. This model is able to reproduce realistic sensor data and thus is a powerful

instrument for the development of algorithms working with ToF data.

From the list of difficulties of current ToF systems (see page 26), three issues were

tackled in the subsequent chapters:

The influence of a nonlinear photo response was analyzed and inspired the investiga-

tion of a logarithmic ToF sensor. This sensor turned out to be a promising concept.

It is a possible solution for the challenges related to the limited dynamic range.
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A dynamic calibration method was proposed which facilitates to compute multiple

depth maps from the data of a single frame. The algorithm is applicable on data

acquired by multi-tap ToF devices which constitute the biggest class of today’s avail-

able systems. It thus drastically relaxes the problems for some applications resulting

from the limited frame rate of current implementations.

Furthermore the problem of erroneous combinations of raw data caused by move-

ments of the imaged objects was addressed. A very simple solution was proposed

which efficiently detects and corrects these errors. Thus it can be seen to mostly

solve the problem of motion artifacts.

7.3. Outlook

Possible extensions of the work presented here include investigations from the fol-

lowing areas:

The developed physical model is currently very much focused on the ToF sensor and

uses ideal maps as input. In order of being able to simulate the complete acquisition of

a 3D scene this sensor model should be extended by a renderer module. Such module

would generates the required maps from a given 3D representation and hence enable

to simulate complex artificial scenes.

The model currently insufficiently supports temporally changing content. A corre-

sponding expansion would allow the simulation of much more complicated scenarios,

and include the reproduction of errors like motion artifacts. Hence, algorithms could

be tested under much more realistic conditions. The same applies to the following ex-

tension: The current module uses input maps which have the same lateral resolution

as the simulated sensor. An adaption overcoming this restriction and facilitating

a spatial supersampling would be beneficial. This would allow the simulation of

artifacts at object boundaries, for example flying pixels (c.f. Sect. 2.3.2.1).

In Chapter 4 a logarithmic Time-of-Flight sensor was proposed. Before putting

this sensor into practice additional simulations are advisable. An incorporation of

measurement results and observations of non-linearity modules of real sensor imple-

mentations would improve the validity of these simulations.

The dynamic calibration for increasing the camera’s frame rate was demonstrated

to work with a commercial ToF system. Since this system acquires raw frames in

a burst mode fashion the algorithm’s output of single depth maps does not corre-

spond to an equitemporal sampling of the scene. In order to exploit the proposed
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technique optimally, these temporal acquisitions of the individual raw frames should

be adjusted.

The idea of a dynamic self-correction of errors could be carried over to other chal-

lenges of current Time-of-Flight systems. So for example the geometric distortions

introduced by the optics could be detected and compensated using techniques known

from 2D imaging (e.g. a combination of feature tracking and bundle adjustment, see

[HZ00]). In conjunction with the available distance data this could enable to correct

the systematic depth errors known from today’s systems (wiggling).

Also the proposed method for detection and correction of motion artifacts suffers

from the burst mode acquisition of raw images. A temporal adjustment of these

samples will lead to a more robust correction of artifacts. It will, hence, enable the

algorithm to cope with scenes showing more dynamics.

Finally it should be emphasized again that all presented solutions, especially the

the dynamic calibration algorithm for an increased frame rate and the method to

compensate motion artifacts are not restricted to depth maps. In fact, they may be

applied to improve the quality of all processed channels of the ToF system. Further-

more, they are not limited to Time-of-Flight depth imaging but might be used in any

application employing multi-tap ToF sensors. So for instance Fluorescence Lifetime

Imaging (FLIm, see [Erz11; Fra11; Lin11]) could profit from the developed methods.
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Appendix A.

Quadratic Photo Response – Details

The goal of this section is to show that under specific conditions the depth estimation

performed with a ToF sensor using a quadratic photo response does not suffer from

systematic errors caused by the non-linearity of its characteristic curve. This is the

analytical proof to the observation made in Sect. 4.3, where a non-linearity parameter

α = 2 led to a vanishing systematic error of the phase estimation ∆ϕ, and thus to a

vanishing error of the depth estimation.

As in Sect. 4.3 a continuous-wave, correlating ToF system using a sinusoidal modu-

lation of the light source signal and a rectangular reference signal is assumed:

S(t) = bls + als sin(ν0t− ϕ) (A.1)

R(t) = H(sin(ν0t+ θ)) , (A.2)

Furthermore it is assumed, that Ñ = 4 equidistant sampling points located at the

phase angles θ = ñ · 2π/Ñ are used to reconstruct the phase shift ϕ of the electro-

optical input. This simplifies (2.9) (given here again as (A.3)) to (A.4):

ϕ = arg

Ñ−1∑
ñ=0

cñe
−iθñ

 (A.3)

ϕ = atan

(
c3 − c1

c2 − c0

)
(A.4)

The ideal (perfectly linear) correlating sensor generates these samples c as

c =

∫
S(t) ·R(t) dt =

ξ+1/2·π∫
ξ

S(t) dt , (A.5)

with ξ corresponding to a certain sampling mode, giving a specific sample cñ.
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Accordingly, a correlating sensor with a quadratic characteristic curve acquires sam-

ples c(2) as

c(2) =

∫
S(t)2 ·R(t) dt =

ξ+1/2·π∫
ξ

S(t)2 dt . (A.6)

The phase shift is reconstructed from such samples using (A.4). In this function, the

numerator and denominator of the argument of the arcus tangent (atan) function are

each a difference δ of integrals of type (A.5) and (A.6), respectively. The difference

of two samples i (acquired using an ideal characteristic curve) is δi:

i1 =

ξ+3/2·π∫
ξ+π

S(t) dt

=
bν0 π + 2 a cos (ϕ+ ν0 ξ + ν0 π)− 2 a cos (ϕ+ ν0 ξ + 3/2 ν0 π)

2 ν0
(A.7)

i2 =

ξ+1/2·π∫
ξ

S(t) dt

=
2 a cos (ν0 ξ + ϕ)− 2 a cos (ϕ+ ν0 ξ + 1/2 ν0 π) + bν0 π

2 ν0
(A.8)

δi = i1 − i2
=
−1

ν0
[a cos (ν0 ξ + ϕ)− a cos (ϕ+ ν0 ξ + 1/2 ν0 π) . . .

−a cos (ϕ+ ν0 ξ + ν0 π) + a cos (ϕ+ ν0 ξ + 3/2 ν0 π)] (A.9)

δi corresponds to the numerator in (A.4) for ξ = π/2, and to the denominator for

ξ = 0. Thus, the difference of two samples acquired using a square photo response

is δs:

δs =

ξ+3/2·π∫
ξ+π

S(t)2 dt−
ξ+1/2·π∫
ξ

S(t)2 dt

=
−1

4ν0
[8 ab cos (ν0 ξ + ϕ) + a2 sin (2 ν0 ξ + 2ϕ) . . .

−a2 sin (2ϕ+ 2 ν0 ξ + ν0 π)− 8 ab cos (ϕ+ ν0 ξ + 1/2 ν0 π) . . .

−a2 sin (2 ν0 π + 2ϕ+ 2 ν0 ξ)− 8 ab cos (ϕ+ ν0 ξ + ν0 π) . . .

+a2 sin (2ϕ+ 2 ν0 ξ + 3 ν0 π) + 8 ab cos (ϕ+ ν0 ξ + 3/2 ν0 π)] (A.10)
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Since the difference δis of both

δis = δi − δs
=

1

4ν0
[4 a cos (ν0 ξ + ϕ)− 4 a cos (ϕ+ ν0 ξ + 1/2 ν0 π) . . .

−4 a cos (ϕ+ ν0 ξ + ν0 π) + 4 a cos (ϕ+ ν0 ξ + 3/2 ν0 π) . . .

−8 ab cos (ν0 ξ + ϕ)− a2 sin (2 ν0 ξ + 2ϕ) . . .

+a2 sin (2ϕ+ 2 ν0 ξ + ν0 π) + 8 ab cos (ϕ+ ν0 ξ + 1/2 ν0 π) . . .

+a2 sin (2 ν0 π + 2ϕ+ 2 ν0 ξ) + 8 ab cos (ϕ+ ν0 ξ + ν0 π) . . .

−a2 sin (2ϕ+ 2 ν0 ξ + 3 ν0 π)− 8 ab cos (ϕ+ ν0 ξ + 3/2 ν0 π)]

= 0 (A.11)

is zero, also difference of two phase estimations performed with a ToF system using

an ideal characteristic curve and one using a square characteristic curve is zero:

∆ϕ = ϕ(2) − ϕ

= atan

(
c

(2)
3 − c

(2)
1

c
(2)
2 − c

(2)
0

)
− atan

(
c3 − c1

c2 − c0

)
= 0 (A.12)

Thus a system using a quadratic photo response does not show systematic deviations

of the depth estimation compared to a system using an ideal photo response. �
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Acronyms and Abbreviations
CCD Charge Coupled Device

CMOS Complementary Metal–Oxide–Semiconductor

DCNU Dark Current Non-Uniformity

DSNU Dark Signal Non-Uniformity

DSP Digital Signal Processor

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

HDR High Dynamic Range

PMD Photonic Mixing Device

PRNU Photo Response Non-Uniformity

SNR Signal-to-Noise Ratio

ToF Time-of-Flight

General notation
M Matrix, for instance an image or a map of values

m Element of Matrix M

m[t0] Element of Matrix M at time step t0
mx1,x2 Element of Matrix M with spatial coordinates (x1, x2)

i Imaginary unit
√
−1

Greek Symbols
ϕ, θ Phase of a periodic signal

σ Standard deviation of a normal distribution

µ Statistical mean

ToF related Symbols
N Number of measurement modes

Ñ Number of samples of the correlation function
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Q Number of taps per pixel

L Number of acquisitions per frame

R Number of raw channels

Cñ Map of sample ñ of the correlation function

U ñ,q Map of theoretical (unknown) values of sample ñ, to be measured with

detection unit q

Y r Measured raw image of raw channel r, (r ∈ [1, . . . , R])

Y r[t0] Raw image of raw channel r, (r ∈ [1, . . . , R]) at time step t0
Y n,q[t0] Raw image acquired in sampling mode n (n ∈ [1, . . . , N ]) using detec-

tion unit q (q ∈ [1, . . . , Q]) at time step t0
yx1,x2
n,q [t0] Raw value of sampling process n with detection unit q of the pixel with

coordinates (x1, x2) at time step t0
ŷx1,x2
n,q [t0] Corrected raw value of sampling process n with tap q of the pixel with

coordinates (x1, x2) at time step t0
Γn,q Nonlinear transformation, modeling process of measuring theoretical

(unknown) value of sample n using detection unit q: Y n,q = Γn,q(Un,q)

Rn,q Rectification operator (map), correcting the raw values: Ŷ n,q = Rn,q(Y n,q)

Φ Phase map

D Depth map

A0 Non-modulated light (map)

A1 Modulation amplitude (map)

ν0 Modulation frequency

T0 Oscillating period of a periodical signal

c0 Speed of light

τ Time of flight
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