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ZZUUSSAAMMMMEENNFFAASSSSUUNNGG  

 

 
ZUSAMMENFASSUNG  
 
Eine chronische arterielle Hypertonie führt aufgrund mechanischer Überlastung zu 

dysfunktionalen Blutgefäßen, d. h. auf Zellebene zu einer endothelialen Dysfunktion 

und zu einem synthetischen Phänotyp glatter Gefäßmuskelzellen. Nicht überraschend 

ist deshalb, dass sie ein klassischer Risikofaktor für Arteriosklerose und 

hypertophen/hyperplastischen Gefäßwandumbau ist. Trotz ihrer klinischen Bedeutung 

sind die Mechanismen früher Phasen druckinduzierter Phänotypänderungen vaskulärer 

Zellen bisher wenig untersucht. 

In dieser Arbeit wurden zum ersten Mal die molekularen Mechanismen der druck- 

bzw. dehnungsinduzierten Aktivierung des spezifischen Mechanotransducer-Proteins 

Zyxin in vitro und in situ untersucht. Darüber hinaus konnte gezeigt werden, dass 

Zyxin eigene Transkriptionsfaktoraktivität besitzt. 

Die Aktivierung von Zyxin wird durch eine hierarchisch organisierte 

Signaltransduktionskaskade induziert, an deren Anfang die Aktivierung des 

Kationenkanals TRPC3 steht. Dies führt zu einer Ausschüttung von Endothelin-1 (ET-

1) und danach, vermittelt durch den B-Typ Rezeptor von ET-1, von atrialem 

natriuretischem Peptid (ANP).  ANP schließlich aktiviert seinen Guanylatzyklase-

rezeptor GC-A was zu einer cGMP-vermittelten Phosphorylierung von Zyxin an Serin 

142 durch die cGMP-abhängige Proteinkinase G führt. Diese Phosphorylierung ist 

notwendig für die Translokation von Zyxin in den Zellkern. Die wahrscheinlich 

zentrale Bedeutung von Zyxin für den (frühen) druckinduzierten Gefäßwandumbau 

wird dadurch unterstrichen, dass das Protein annähernd 70% aller dehnungssensitiven 

Gene reguliert indem es an ein neues Bindungsmotiv dehnungssensitiver 

Genpromotoren, die PyPu-box, bindet.   

Die detaillierte Charakterisierung dieses komplexen dehnungsspezifischen 

Signalweges eröffnet in Zukunft die Möglichkeit schon während früher Phasen des 

druckinduzierten Gefäßumbaus in den Prozess einzugreifen. Neben eher pleiotropen 

Möglichkeiten die Zyxinaktivierung zu unterbinden, etwa eine pharmakologische 

Hemmung des B-Typ ET-1 Rezeptors, soll vor allem eine direkte Hemmung der 

Transkriptionsfaktoraktivität von Zyxin durch Decoy-Oligonukleotide versucht 

werden.
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SUMMARY 
 
Hypertension is a major predisposing factor for developing chronic endothelial 

dysfunction and a predominantly synthetic vascular smooth muscle cell phenotype. 

Therefore, the disease is one of the classical risk factors for atherosclerosis, arterial 

hypertrophy/hyperplasia and, consequently, cardiac hypertrophy. 

Despite these severe clinical consequences, surprisingly little is known about the 

primary signalling events leading to pressure or wall tension-induced phenotype 

changes of vascular cells. 

For the first time, the mechanisms of wall tension or stretch-induced activation of the 

specific mechanotransducer protein zyxin and its action as a transcription factor could 

be delineated in endothelial cells in vitro and in situ at the molecular level. Activation 

of zyxin is mediated by a hierarchical chain of events starting with the cation channel 

TRPC3, TRPC3-mediated or reinforced release of the autacoids ET-1 and, 

consecutively, ANP and, finally, the ANP receptor GC-A/cyclic GMP/ protein kinase 

G mediated phosphorylation of zyxin at serine-142. This phosphorylation enables 

zyxin to translocate to the nucleus where it affects the expression of approximately 

70% of all stretch-sensitive genes in endothelial and smooth muscle cells by binding to 

a novel stretch-sensitive promoter motif, the PyPu-box. This motif is found in all 

zyxin-dependent genes so far analysed. 

The detailed characterization of this complex pathway, specifically activated in 

response to mechanical overload in vascular cells, opens the possibility to interfere 

with early phases of pressure-/stretch-induced vascular remodelling process in vivo at 

several levels. Besides targeting the, quite pleiotropic, main mediators of zyxin 

activation, ET-1 and ANP, zyxin may be targeted directly, e.g., by use of decoy-

oligonucleotides that specifically prevent it from acting as a transcription factor. 
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1. INTRODUCTION 

1.1 Hemodynamic forces and vascular homeostasis   
The balance between circumferential wall tension (WT) and laminar fluid shear 

stress (FSS), the two principle hemodynamic forces to which vascular cells are 

exposed to, governs their phenotype (Davies 1995; Lehoux 2006, Fig. 1). FSS, by 

its stimulatory effect on endothelial nitric oxide (NO) production with its multiple 

effects on endothelial cell and smooth muscle cell signalling (Hermann 1997), has 

generally been defined as an anti-inflammatory and homeostatic force (Uematsu 

1995; Kawashima 2004; Malek 1999). In contrast, WT has been marked as a 

potentially detrimental pro-inflammatory force causing, among others, a prolonged 

increase in intracellular free calcium concentrations, formation of reactive oxygen 

species and activation of other stress-pathways (Hishikawa 1997; Cheng 2001).  

Shifting the balance between these two forces towards WT, e.g., due to 

inadequately low FSS, or increased WT, consequently leads to both adaptive and 

maladaptive vascular remodelling processes. Whereas adaptive processes like a 

limited growth of medial smooth muscle cells re-adjust the aforementioned 

balance and then stop (see the Laplace equation, Figure 1), maladaptive processes 

are characterised by an excessive and lasting phenotype change in vascular cells, 

include atherosclerosis and hypertension-induced hypertrophic arterial 

remodelling. 

 

 
Figure 1: Hemodynamic forces in the arterial system. Wall tension (σ) is a tensile 
force or stretch sensed by smooth muscle cells (SMC) and endothelial cells (EC) and 
depends on transmural pressure (ptm), vessel radius (r) and wall thickness (d) in blood 
vessels (represented as: σ = ptm × r/d).  Fluid shear stress (τ), viscous drag parallel to the 
longitudinal axis of the blood vessel,  is sensed by EC only and is expressed as τ = 4 × η 
× Q/r³ × π where η is the viscosity, Q the blood flow and r the vessel radius. Suggestively, 
as the radius is part of the numerator in WT and denominator in FSS, both forces may be 
regarded to be functionally antagonistic. 

Wall tension (Laplace) 
σσσσ = ptm ×××× r /d 

(EC and SMC) 
 

BLOOD VESSEL 
Fluid shear stress 
τ= 4 ×××× ηηηη ×××× Q/r³ ×××× ππππ 

(EC) 
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1.2 Pathways of mechanically induced cardiovascular disease   
Although several vascular pathologies caused by an imbalance of FSS and WT 

possess similar or even identical patho-mechanisms at the cellular level, the 

primary cause of the imbalance, low FSS or high WT, mostly defines the actual 

nature of vascular dysfunction. This may be due to the fact that FSS has a direct 

effect only on endothelial cells (EC), whereas increased WT acts on both SMC 

and EC. 

For example, an intrinsic anatomical feature of the vascular tree, the necessity for 

arterial bifurcations, leads to endothelial dysfunction defined locations. Here, 

merely due to the geometry of the vascular bed, laminar FSS decreases and, 

additionally, systolic pulse waves cause a somewhat increased WT in the vessel 

wall (Glagov 1988; Sharma 2010, Figure 2). 

 

 
 
Figure 2: Arterial bifurcations are prone to hemodynamic stress: Scheme of typical 
flow profiles at arterial bifurcations, the sites where fluid shear stress (FSS) and wall 
tension (WT), without any pathological transformation, are in imbalance. (modified from 
Cattaruzza 2011). Atherosclerosis-prone locations are highlighted in yellow. 

 
Therefore, because of chronic deficiency in NO formation (low FSS) and stress-

signalling (Klotz 2002, increased WT) not only the EC will be dysfunctional, but 

also the underlying medial SMC will develop a synthetic, hence pro-inflammatory 

and proliferative and/or hypertrophic, phenotype already in young and healthy 

individuals (Wung 1997; Guest 2006). Not surprisingly, it is here where first signs 

of atherosclerosis, can be found suggesting that a lasting force shift dominated by 

a decrease in FSS leads to a chronic inflammatory response. 

Sites of imbalance between 
FSS and WT
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In contrast, chronically increased WT in hypertension is dominated by a 

phenotype shift of SMC from the contractile to the synthetic state (Lehoux 2006). 

Also here, however, EC play an important role as, besides a moderately decreased 

FSS and, consequently NO production, WT also alters the phenotype of EC in a 

particular way (Sumpio 1990). However, this process, although fed by pro-

inflammatory pathways, finally does not result in a predominantly inflammatory 

response but causes a hypertrophic (conduit arteries) or hyperplastic (resistance 

arteries) remodelling (Heagerty 1993; Lehoux 1998). This process, as outlined for 

the limited response above, is aimed to diminish WT via an increase in wall 

thickness (see Figure 1) but, unfortunately, if exaggerated and generalized, causes 

in parallel a critical increase in total peripheral resistance and, therefore fixation of 

the elevated blood pressure level with its consequences such as cardiac 

remodelling (Figure 3; MacMohan 1990; Pasterkamp 2000; Pohl 2009). 

 

 

 

Figure 3: Vicious circle of pressure-induced cardiovascular remodelling. Pressure-
induced vascular remodelling causes a similar process in the heart. Again, WT is a major 
determinant as the myocardium responds with a hypertrophic growth to increased 
afterload. However, normalization of cardiac WT inevitably comes along with increased 
ejection pressure and/or volume, thus, triggering a new response and so forth. The process 
is terminated (red arrow), when the critical heart weight is reached (dilative 
cardiomyopathies) or, alternatively, cardiac perfusion becomes insufficient because of 
(WT-induced) atherosclerosis (coronary artery disease/myocardial infarction).   

 

vascular wall tension ↑↑↑↑

vascular hypertrophy ↑↑↑↑

total peripheral 
resistance ↑↑↑↑

high wall tension
(cardiac hypertrophy)

cardiomyopathies, coronary 
artery disease  and infarction
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As in this thesis WT and the specific signalling mechanism activated in EC and 

SMC by this force are the major focus, the vascular response to acute and lasting 

increases in WT will be shortly discussed. A critical point in this discussion will 

be that actually little is known about specific WT-induced mechanotransduction in 

EC and SMC and, hence, the early phase of WT-induced vascular remodelling.  

1.3 Short term vs. chronic increases in wall tension 
A first line response of arteries to pressure-induced supra-physiological WT levels 

is the release of vasoactive mediators such as the vasoconstrictor endothelin-1 

(ET-1) from endothelial cells aimed at offloading the overt mechanical strain by 

active vasoconstriction (Schiffrin 1999). However, when this initial response is 

insufficient, i.e., local regulation of the vascular tone cannot be reinstated against 

the high transmural pressure, a next phase is initiated. Then, the lasting WT-

induced release of ET-1 and many other trophic factors released from EC as well 

as SMC such as chemokines like IL-8 or MCP-1 (Yue 1994; Porecca 1997), or 

platelet-derived growth factor (Kida 2010) cause the above mentioned pressure-

induced remodelling process. However, what is the switch from constriction to 

remodelling? What is the initial signal?  

1.4 Known molecular mediators of wall tension-induced signalling 
Wall tension is basically a tensile force which is experienced as stretch exerted at 

the cellular level. Therefore, stretch will further on be used synonymous to wall 

tension. 

1.4.1 Stretch-induced transcription factors and pro-inflammatory gene 
         expression in endothelial and smooth muscle cells 

As mentioned above, chronic increases in cyclic stretch possess a marked pro-

inflammatory component and, thus, promote the expression of several pro-

inflammatory gene products such as vascular endothelial growth factors (VEGF; 

Black 2004), cell adhesion molecules (ICAM-1, VCAM-1; Sung 2007) and 

chemokines (interleukin-8, MCP-1, Schepers 2006).  

This change in pro-inflammatory gene expression has been thought to be mainly 

caused by the activation of several kinases such as c-Jun N-terminal kinases and 

p38 MAPK (mitogen activated protein kinase p38; Tsuda 2002; Li 2003). These 
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and other kinases are known to activate transcription factors such as activator 

protein-1 (AP-1), CAAT/enhancer binding protein (C/EBP) or nuclear factor-κB 

(NF-κB) (Hishikawa 1997: Wagner 2000; De Martin 2000; Li 2003; Demicheva 

2008). Indeed, the stretch-dependent activation of AP-1 is critical for the up-

regulation of preproET-1 gene expression, the precursor of ET-1 (Lauth 2000) 

pointing towards a role of these common proliferation and inflammation-related 

pathways in stretch-induced activation of vascular cells.  

Another well defined factor in stretch-induced endothelial and smooth muscle cell-

signalling is NADPH oxidase, an enzyme that catalyses the formation of 

superoxide anions (Molavi and Mehta, 2004). Superoxide anions and degradation 

products of this reactive oxygen derivative, NO-derived peroxynitrite (Kawashima 

and Yokoyama 2004) and hydrogen peroxide have all been implicated in stretch-

induced remodelling (Kinlay 2001; Libby 2007). Indeed, several of the above 

mentioned transcription factors can be indirectly activated by these mediators 

suggesting oxidative stress as a factor in stretch-induced gene expression and 

phenotype changes in vascular cells. Nevertheless, NADPH-oxidase, most of the 

transcription factors and gene products discussed above have been shown to be 

activated and play a role in several cellular stress responses (Schiffrin 2003; Black 

2004), especially in inflammation (Griendling 2000). 

Thus, although principally the stretch-induced activation of these factors is not 

controversial, all these factors are not specific for stretch or WT and cannot 

explain the unique response of vascular cells to chronic stretch.  

So, what specific stretch-induced factors are known? 

1.4.2 Endothelin-1 (ET-1) 

The local vasoconstrictor peptide ET-1 is secreted by endothelial cells in response 

to increased WT (Yamasaki 1995, Sadoshima & Izumo 1997). It is expressed by 

endothelial cells as a precursor peptide (preproET-1) that is first cleaved to bigET-

1 and then to the mature 21-amino acid peptide. Although the cellular mechanism 

of action via two G protein-coupled receptors, ETA-R and ETB-R, appears to be 

similar to systemic vasoconstrictors such as angiotensin II and norepinephrine, its 

expression is controlled exclusively at the local level defining ET-1 as the major 

local vasoconstrictor (Yanagisawa 1994; Salvator 2010). Besides its short-time 
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vasoconstrictor effects, chronically increased ET-1 secretion has trophic effects on 

SMC (Touyz 2004; Piechota 2010). Interestingly, ET-1 is able to induce cardiac 

ANP release (Mäntymaa 1990, Shirakami 1993) linking these two stretch-

inducible autacoids together (see below).  

1.4.3 Atrial natriuretic peptide (ANP) 

ANP is known as the heart-derived hormone that is released by the atrial 

cardiomyocytes in response to supra-physiological distension of the atria thus 

stretch caused by hypervolemia. The stretch-sensing cells seem to be the atrial 

endothelial cells (Mäntymaa 1990, Shirakami 1993) which, in response to that 

stimulus release ET-1. ET-1, in turn, seems to bind to myocyte ETA-R (Thibault 

1994) which, then, causes ANP secretion (Taskinen 2000). The increased 

secretion of ANP results in reduced sodium (Na+) and water retention by 

increasing the rate of glomerular filtration, inhibiting sodium re-absorption by the 

kidney (natriuresis) and decreasing hypothalamic release of the anti-diuretic 

hormone/vasopressin. Consequently, the reduced salt/water re-absorption causes a 

volume loss in this way helping to return blood volume, hence, atrial wall tension, 

back to normal (Guyton & Hall 1996).  

ANP, B-type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) are 

the types of natriuretic peptides found in mammals. Natriuretic peptides bind to 

three functionally distinct receptors, two membrane-bound guanylyl cyclases, GC-

A, GC-B, and NPR-C, a receptor coupled to trimeric G-proteins (Stults 1994; 

Schulz 2005; Potter 2006). The physiological effects of natriuretic peptides are 

mostly elicited through the cGMP formed by activation of the two guanylate 

cyclase receptors and cGMP binding proteins namely the cGMP-dependent 

effector-kinase PKG (Airhart 2003; Suga 1992). Whereas, ANP and BNP 

preferentially bind to GC-A resulting in natriuresis and vasorelaxation effects in 

vascular cells and epithelia (Potter 2006), CNP binds to GC-B resulting in growth 

regulation in bone cells and fibroblasts (Chrisman 1999). All three peptides bind 

to NPR-C which seems to mostly act as a clearance receptor by mediating 

lysosomal degradation of all three natriuretic peptides (Garbers 1991; Cohen 1996; 

Nussenzveig 1990).   

Thus, ANP as ET-1 may be interesting for stretch-induced signalling because of 

two reasons: the peptide is known to have effects on EC and SMC and ANP is one 
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of the factors known to be genuinely and specifically released in response to 

increases in wall tension/stretch. 

 

1.4.4 Transient receptor potential channels (TRP channels) 

TRP channels are a complex superfamily of non-selective cation channels which 

are implicated in a wide range of functions from nociception to the vascular 

myogenic response (Figure 4; Davis and Hill 1999; Minke 2002; Vennekens 

2010). TRP channels have been found in many cell types, including both neuronal 

cells, such as sensory and primary afferent neurons and non-neuronal tissues such 

as vascular endothelial cells, epithelial cells, and smooth muscle cells. 

 

 

 

Figure 4: Phylogenetic tree of the mammalian transient receptor potential (TRP) 
channel superfamily. The 28 mammalian TRP channels can be subdivided into six main 
subfamilies: TRPC (canonical), TRPM (melastatin), TRPV (vanilloid), TRPA (ankyrin), 
TRPP (polycystin), and TRPML (mucolipin; adapted from Nilius 2007). TRP channels 
previously characterised to be expressed in EC and/or SMC are encircled in red. 
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TRP channel structure 

The structure of TRP channels relates them to the superfamily of voltage-gated 

channel proteins characterised by six transmembrane segments (S1-S6), a pore 

region (between S5 and S6), and a voltage sensor. The N-terminus of several 

members of the TRP channel family exhibits ankyrin domains and a coiled-coil 

domain. The cytosolic C-terminus domain, depending on the TRP subfamily, may 

display phosphoinositide (PIP2) and/or calmodulin-binding (CAM) domains. In 

addition, the C-terminal domain may also exhibit a TRP domain that contributes to 

the association of several single receptor molecules which may build up a “super-

channel” (Minke 2002; Figure 5). The molecular domains that are conserved in all 

members of the TRP family constitute parts of the transmembrane domains and in 

most members also the ankyrin-like repeats. All of the above features suggest that 

members of the TRP family are multifunctional “special assignment” channels, 

which are recruited to diverse signalling pathways (Cases and Montiel 2007).  

 

 
 

 
Figure 5: Molecular structure of TRP channels. The Figure displays a membrane 
domain composed of six transmembrane segments (S1–S6) with an amphipathic region 
between the fifth and sixth segment that forms the channel conductive pore. The 
additional domains shown are discussed in the text. 

 

TRP channels in mechanotransduction 

TRPM3 was found to be activated by hyper osmotic (“swelling”) stimuli when it 

was first characterised and it has been suggested to have a role in calcium 

homeostasis because of its high calcium conductance (Grimm 2003). TRPV1 has 

been implicated in controlling the response of the bladder urothelium to stretch 

and TRPV1 knockout mice have defects in bladder voiding (Birder 2002), a 
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process largely controlled by WT of the bladder. TRPC3 and TRPC6, along with 

TRPV2 and TRPM4, are implicated in mediating the arterial myogenic response, a 

major WT-controlled mechanism by which arteries rapidly compensate sudden 

increases in perfusion pressure (Davis 1999). Knockdown of these TRP channel 

genes in vascular SMC decreases the mechanically responsive current that is 

observed in response to experimentally stretching of these cells (Welsh 2002; 

Dietrich 2005).  

TRPM7 has also been implicated in mechanosensing in native vascular SMC at 

higher pressures (Oancea 2006). However, although involved in the specific 

response to stretch in several cell types, up to now it is not clear whether TRP 

channels are real mechanosensors or are only indirectly activated by stretch. 

 

Endothelial TRP channels 

Several members of the TRP superfamily have been identified and characterised in 

the endothelium (for review see Nilius 2007). TRPC1, C4, C6, and M7 have been 

linked to endothelial barrier dysfunction and perturbed angiogenic processes, 

TRPC3, C4, M2, and M7 have been suggested to be responsible for oxidative 

damage and cell death. TRPM2 mediates H2O2-induced increases in endothelial 

permeability through activation of calcium entry (Dietrich 2008; Hecquet 2008). 

TRPA1 has been implicated as a player in endothelium-dependent vasorelaxation 

via activation of the endothelial NO synthase (Earley 2009).  

1.4.5 Specific versus non-specific vascular stretch-signalling 

Thus, the response of EC and SMC to supra-physiological stretch includes several 

non-specific stress-responses (1.4.1). These signalling pathways may play a role in 

later phases of vascular remodelling or may be activated by (a) specific response-

pathway(s). However, it is difficult to imagine how these (mostly pro-

inflammatory) stress-pathways can be responsible for the onset of pressure-

induced vascular remodelling. On the other hand, not many really specific stretch-

response factors are known or, at least, suspected (1.3.2 to 1.3.4). Moreover, these 

molecules do not necessarily act together.  

In this context, the focal adhesion protein zyxin was identified as a highly specific 

transducer of a stretch-stimulus to the nucleus of SMC (Cattaruzza 2004) and EC 
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(Wojtowicz 2010 and doctoral thesis of Agnieszka Wojtowicz, Heidelberg, 2008). 

Moreover, focal adhesion complexes have been shown to integrate a multitude of 

signal transduction cascades leading to functional changes within the cell 

(Christopher 2004; Samarel 2005; Lehoux 2006). Using zyxin as the first specific 

mechanotransducer characterised in EC and SMC, it may be possible to 

characterise the stretch-induced signalling cascade in these cells. 

1.5 Focal adhesions in mechanotransduction 

Focal adhesions mediate force transmission from the extracellular matrix to the 

cytoskeleton, cytoskeletal organization and integrate signal transduction of 

multiple stimuli. They consist of a complex network of proteins linking the 

extracellular matrix (ECM) to the actin cytoskeleton as shown in the Figure 6 

(Kanchanawong 2010; Guo 2007). 

 

 
 

Figure 6: Molecular organisation of focal adhesion proteins in a cell: Intergrins 
mediate the attachment of the cell to the extracellular matrix. The intracellular domain 
contains 3 functional layers: (i) the force transduction layer consisting of proteins like 
zyxin, paxillin, talin, vinculin and VASP, (ii) the signalling layer consisting of focal 
adhesion kinase and intracellular integrin domains involved in signalling cascades 
controlling adhesion dynamics and (iii) the actin regulatory layer essentially organized by 
actin filaments and α-actinin (adapted from Kanchanawong 2010).   

 
The above outlined model of focal adhesions places zyxin at an ideal place, 

namely at the interface between possible force sensing and several signalling 

pathways. Zyxin, as other members of the family of LIM-domain proteins, Ajuba 

and the proto-oncogene lipoma-preferred protein (LPP), have indeed been 
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discussed to be involved in signalling processes due to their domain structure 

(Beckerle 1997; Kanungo 2000; Petit 2000). 

1.6 Structure of zyxin 
Zyxin is a zinc-binding phospho-protein originally identified in chicken fibroblasts 

as a protein associated with the actin cytoskeleton, cell-cell adherens junctions and 

integrins at sites of cell–substratum attachment (Macalma 1996; Reinhard 1999; 

Rottner 2001). A proline-rich region of zyxin mediates its association with α-

actinin, three consecutive actA-domains interact with proteins of the Ena/VASP 

family that are important for the assembly and integrity of the actin cytoskeleton. 

At the C-terminus of zyxin three specific zinc finger structures, LIM domains, 

have been characterised. These domains have been shown to participate in specific 

protein–protein interactions, signal transduction and may also have the capacity to 

bind nucleic DNA (Figure 7; Wang and Gilmore 2003, Nix 1997). The functional 

nuclear export signal in the conserved leucine-rich region of zyxin (corresponding 

to the amino acids 322-331) is required to exclude zyxin from the nucleus (Nix 

1997). Zyxin and its partners have been implicated in the spatial control of actin 

filament assembly as well as in pathways important for cell differentiation 

(Reinhard 1999). Thus, zyxin displays a tandem array of domains that mediate 

protein-protein interactions (Schmeichel and Beckerle, 1994).   

 

 

 

 

 

 

 

 

 

Figure 7: Molecular structure of zyxin indicating different domains required to interact 
with other focal adhesion proteins such as VASP. Zyxin is composed of three C-terminal 
zinc finger containing LIM domains, a proline-rich N-terminal region and at least one 
nuclear export signal (Nix 1997; taken from the doctoral thesis of Agnieszka Wojtowicz, 
Heidelberg, 2008).  
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1.7 Zyxin in vascular mechanotransduction 

Several expression constructs of zyxin missing the nuclear export signal were 

found to shuttle between focal adhesions and the nucleus when overexpressed in 

chicken fibroblasts (Nix 1997). In cardiomyocytes, zyxin as whole protein is 

capable of translocating into the nucleus (Kato et al, 2005).  

For a signalling protein to be a specific transducer of WT (i) the molecule must be 

associated with the actual sensor for WT, e.g. integrin-containing structures like 

focal adhesions, (ii) this ‘mechanotransducer’ has to be sensitive to activation and 

capable of transducing the signal, i.e. an increase in WT must lead to a signal to 

the cell nucleus and (iii) a specific mechanotransducer should orchestrate the first 

steps in adapting the cellular phenotype to the altered haemodynamic situation. 

Zyxin in response to stretch is phosphorylated (doctoral thesis of Agnieszka 

Wojtowicz, Heidelberg, 2008) and enters the nucleus in its phosphorylated state in 

order to regulate the expression of several stretch-induced gene products. 

Therefore, the protein fulfils the above criteria to be a true mechanotransducer 

(Cattaruzza 2004; doctoral thesis of Agnieszka Wojtowicz, Heidelberg, 2008, 

Wojtowicz 2010).  

1.8 Aims of the project 

Zyxin is a specific mechanotransducer protein in EC and SMC. Using zyxin 

activation and zyxin-induced gene expression in stretched EC and SMC as 

functional read-outs, the following questions have been addressed to elucidate the 

specific mechanotransduction pathway in EC and SMC in which zyxin is 

implicated:  

 

1. Additionally, what is the mechanism through which zyxin alters gene 

expression in these cells. 

2. What is the causal chain of events leading to wall tension-induced zyxin 

activation in EC? 

3. Which is the amino acid residue in zyxin that is phosphorylated during 

wall tension/stretch?  

 



MMAATTEERRIIAALLSS  

 
13 

 

2. MATERIALS 

2.1 Synthetic oligonucleotide primers for PCR 
Synthetic oligonucleotides used for cloning, chromatin immunoprecipitation 

(ChIP) and for real time (r.t.) RT-PCR and genotype analysis are listed in table 1 

along with Fragment size/position and gene identification numbers (Gene ID). 

Oligonucleotides were dissolved in water to a final concentration of 1 nmol/µl. 

 

Table 1. Synthetic oligonucleotide primers 

Gene product Sequence 
(5’- 3’) 

Official Symbol/ 
Gene ID position 
(size) 

Calponin 
(RT-PCR) 

GAGGAGGGAAGAGTGTGCAG 
GTTGGCCTCAAAAATGTCGT 

CNN1/ID: 1264 
72/491 (420 bp) 

Clusterin (CLU) 
(ChIP) 

ACCAAACGTGGATCTGCAAG  
GTTGTGGGCACTGGGAGG 

NC_000008.10 
81/-632 (713 bp) 

Endothelin-1 (ET-1) AGCCGGCAGAGAGCTGTCCA 
GAGAAGGCAGCGAGCGGAGC 

NM_001955.3 
42/170 (129 bp) 

e-Selectin CGCCATCCCTCAGCCTCAGA 
GGCCCCTGCAACGTGAAACT 

NM_011345.2 
1054/1170 (117 bp) 

ET-1 (ChIP) CCGCGTGCGCCTGCAGAC 
TCATGAGCAAATAATCCATTC 

NC_000006.11 
19/-202 (221 bp) 

ET-1 receptor B type  
(ETB-R) 

TCCCACTGGCGCGCAAACTT 
GGTCAGCTGCCCGAGCCAAG 

NM_001122659.1 
70/171 (102 bp) 

GAPDH 
(RT-PCR, all species) 

TCACCATCTTCCAGGAGCG 
CTGCTTCACCACCTTCTTGA 

GAPDH/ID: 2597  
273/844 (582 bp) 

Glyceraldehyde 
dehydrogenase (GAPDH)  
(r.t. RT-PCR) 

GACCACAGTCCATGCCATCACTGC 
ATGACCTTGCCCACAGCCTTGG 

GAPDH/ID: 2597 
627/764 (138 bp) 

guanylate cyclase-1β 
(Gucy1B3) (ChIP) 

AGGCACTGGAGCGCAGCAGC  
CATGGTGTCTGCACCGGGGAG 

NC_000004.11 
2/-275 (277 bp) 

hairy/enhancer-of-split 
related (HEY-1) 

TGAGAAGCAGGTAATGGAGC 
AAGTAACCTTTCCCTCCTGC 

NM_012258.3 
440/550 (111 bp) 

Hemicentin GATGTGCTAGTTCCACCCAC 
ATATCAGGAAAGGGAGTGCC 

NM_031935.2 
4568/4683 (115 bp) 

Hemicentin 
(ChIP) 

GTAGGATTCAAACTGCTCAG 
CTCTCAGCCCACAACTCGGC 

NC_000001.10 
-776/-1146 (371 bp) 

Hey-1 
(ChIP) 

CTGGTGGCCACTGTGGACG  
CTCTGTCCAGCCTGCACTC 

NC_000008.10 
-395/-991 (597 bp) 

HMG-CoA reductase 
HMGCR (ChIP) 

CATTTCAGAGAGAATCCAG  
CAGTAGGAGGCAGTGATAG 

NC_000005.9 
-657/-957 (301 bp) 

ICAM-1 (ChIP) GTGCATGAGCCTGGGTTC  
GGCGTCCTCTCTCTACAC 

NC_000019.9 
-699/-1043 (345 bp) 

Inter-Cellular Adhesion 
Molecule 1 (ICAM-1) 

TGATGGGCAGTCAACAGCTA 
GGGTAAGGTTCTTGCCCACT 

NM_000201.2 
610/716 (107 bp) 

Interleukin-6 (CXCL-6; 
Chemokine CXC ligand6) 
(RT-PCR; mouse) 

CTGATGCTGGTGACAACCACGG 
TTAAGCCTCCGACTTGTGAAGTGGT 

IL6/ID: 16193 
20/134 (115 bp) 

Interleukin-8  
(r.t. RT-PCR; human) 
 
 

TAGCCAGGATCCACAAGTCC 
GCTTCCACATGTCCTACAA 

IL8/ID: 3576 
879/995 (117 bp) 
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Gene product Sequence 
(5’- 3’) 

Official Symbol/ 
Gene ID position 
(size) 

JAM-2 
(ChIP) 

CTCAGCTTCGCCCGTTGGGC  
CTCTGAGGAGGTCGAGGGTC 

NC_000021.8 
-24/-623 (600 bp) 

Junctional adhesion 
molecule -2 (JAM2) 

ATCCGGATCAAAAATGTGAC 
GCTGGAGCCACTAATACTTCC 

NM_021219.2 
825/949 (125 bp) 

Laminin-γ  ATCTGATGGACCAGCCTCTC 
CCTCTCTTCCAGCTCTGACA 

NM_005562.2  
3634/3758 (125 bp) 

Matrix Metalloproteinase-3 
(MMP-3;RT-PCR, mouse) 

TGGGAGGAGGTGACCCCACT 
AGCCAAGACTGTTCCAGGCCC 

Mmp3/ID: 17392 
423/548 (126 bp) 

Mice NEO zyxin (genotyping) 
GACCGCTTCCTCGTGCTTTAC 
TGGACGAAGTTTCCGTGTGTTG 

ZYX/ID: 7791 
N.A (473 bp) 

Mice TRPC3 Knockout 
(genotyping) 

GAATCCACCTGCTTACAACCATGTG 
GGTGGAGGTAACACACAGCTAAGCC 

TRPC3/ID: 7222 
N.A (300 bp) 

Mice TRPC6 Knockout 
(genotyping) 

ACGAGACTAGTGAGACGTGCTACTTCC 
GGGTTTAATGTCTGTATCACTAAAGCCTCC 

TRPC6/ID: 7225 
N.A (339 bp) 

Mice WT TRPC3 
(genotyping) 

GCTATGATTAATAGCTCATACCAAGAGATC 
GGTGGAGGTAACACACAGCTAAGCC 

TRPC3/ID: 7222 
N.A (300 bp) 

Mice WT TRPC3 
(genotyping) 

GAATCCACCTGCTTACAACCATGTG 
GGTGGAGGTAACACACAGCTAAGCC 

TRPC3/ID: 7222 
N.A (800 bp) 

Mice WT TRPC6 
(genotyping) 

CAGATCATCTCTGAAGGTCTTTATGC  
TGTGAATGCTTCATTCTGTTTTGCGCC  

TRPC6/ID: 7225 
N.A (234 bp) 

Mice WT zyxin (genotyping) 
TACAAGGGCGAAGTCAGGGCGAGTG 
TGGACGAAGTTTCCGTGTGTTG 

ZYX/ID: 7791 
N.A (327 bp) 

Thrombomodulin (RT-PCR, 
mouse) 

ATGAACCCAGATGCCTCTGCCC 
ATGCTCGCAGAGTTCGTTGCAC 

Thbd/ID: 21824  
771/871 (101 bp) 

Transient Receptor Potential 
Channel (Canonical) 3- TRPC3 
(RT-PCR)  

GATCTGGAATCAGCAGAGCC 
GTTGGGATGAGCCACAAACT 

TRPC3/ID: 7222 
871/988 (108 bp) 

TRPC4 
(RT-PCR)  

CAGGCTGGAGGAGAAGACAC 
GACCTGTCGATGTGCTGAGA 

TRPC4/ID: 7223 
1191/1404 (214 bp) 

TRPC5 
(RT-PCR) 

GACAGCCTGCGCCACTCTCG 
GAGCTCCCAGCCCAGACGGA 

TRPC5/ID: 7224 
1481/1600 (120 bp) 

TRPC6 
(RT-PCR) 

TTTGCTGAAGCAAGAGGTT 
TGGAGTCACATCATGGGAGA 

TRPC6/ID: 7225 
981/1091 (111 bp) 

TRPC7 
(RT-PCR) 

CGAGCTGAAGGAAATCAAGC 
CTTGTTCACCCTCAGGTGGT 

TRPC7/ID:57113  
2295/2448 (154 bp) 

TRPV4 
(RT-PCR) 

CGGATTCCAGCGAAGGCCCC 
CGGTGAGGGCGAAAGGGAGC 

TRPV4/ID:59341  
36/184(149 bp) 

Vascular cell Adhesion 
Molecule (VCAM-1) 

CATGGAATTCGAACCCAAACA 
GACCAAGACGGTTGTATCTCTGG 

NM_001078.2 
1593/1674 (82 bp) 

VCAM-1 
(ChIP) 

GATTCCAGACCTCAGCTATG 
GTATTCAGCTCCTGAAGCC 

NC_000001.10  
-77/-1430 (1506 bp) 

Zyxin 
(Full length cDNA) 

CAGCCCGGCCCGGCCATGGC 
CTGAAGAGGGCCTGTCCTCACTCAGGT 

ZYX/ID: 7791 
143-1895 (1753) 

Zyxin 
(S142G) 

CAGGGAGAAGGTGGGCAGTATTGATTTG 
CAAATCAATACTGCCCACCTTCTCCCTG 

ZYX/ID: 7791 
566 N.A. 

Zyxin 
(S142D) 

CAGGGAGAAGGTGGACAGTATTGATTTG 
CAAATCAATACTGTCCACCTTCTCCCTG 

ZYX/ID: 7791 
566 N.A. 

Zyxin 
(S142E) 

CAGGGAGAAGGTGGAGAGTATTGATTTG 
CAAATCAATACTCTCCACCTTCTCCCTG 

ZYX/ID: 7791 
566 N.A. 

Zyxin 
(S344A) 

AACCAGGTGCGCGCCCCTGGGGCCC  
GGGCCCCAGGGGCGCGCACCTGGTT 

ZYX/ID: 7791 
1173 N.A. 

Zyxin 
(S344D) 

AACCAGGTGCGCGACCCTGGGGCCC 
GGGCCCCAGGGTCGCGCACCTGGTT 

ZYX/ID: 7791 
1173 N.A. 

Zyxin 
(S344E) 

AACCAGGTGCGCGAGCCTGGGGCCC 
GGGCCCCAGGCTCGCGCACCTGGTT 

ZYX/ID: 7791 
1173 N.A. 

Zyxin 
(T352A) 

CCAGGGCCCCTGGCTCTGAAGGAGGTG 
CACCTCCTTCAGAGCCAGGGGCCCTGG 

ZYX/ID: 7791 
1197 N.A. 

Zyxin 
(T352D) 

CCAGGGCCCCTGGATCTGAAGGAGGTG 
CACCTCCTTCAGATCCAGGGGCCCTGG 

ZYX/ID: 7791 
1197 N.A. 

Zyxin 
(r.t. RT-PCR, human) 

CTGTCCTCACTGCTGGATG 
GAGTTGGACCTGAGGCTTG 

ZYX/ID: 7791 
609/867 (259 bp) 
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2.2 Kits 

Table 2: Kits 

Name Company 

(A) ELISA Kits  

Human CXCL8/IL-8 ELISA Kit 
R&D Systems 

(Wiesbaden, Germany) 

Human Endothelin-1 ELISA Kit R&D Systems 

Human pro-ANP ELISA kit 
Biomedica 

(Graz, Austria) 

(B) Nucleic acid extraction analysis and purification   

QIAquick Gel Extraction Kit 
Qiagen 

(Hilden, Germany) 

Qiagen DNeasy kit Qiagen 

QIAGEN Maxi-Prep Plasmid Kit Qiagen 

Qiagen Maxi-prep plasmid Kit Qiagen 

QIAprep Mini Plasmid Kit Qiagen 

Rneasy Mini Kit Qiagen 

(C) RT-PCR Kits   

QuantiTect SYBR Green® Kit  Qiagen 

Sensiscript RT Kit Qiagen 

(D) Protein purification kit  

ReadyPrep Protein Extraction Kit (Cytoplasmic/Nuclear) 
BioRad  

(München, Germany) 

(E) TOPO cloning kits  

TOPO mammalian expression vector kit 
Invitrogen  

(Karlsruhe, Germany) 

TOPO TA cloning Kit Invitrogen 

(F) Mutagenesis Kit   

Quickchange II site directed mutagenesis kit Stratagene (U.K) 
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Name Company 

(G) DNA and Protein Standards/Markers  

DNA standards-  O’GeneRulerTM DNA Ladder 
Fermentas  
(Germany) 

Protein standard – Precision Plus ProteinTM standards (Dual 
colour) 

Biorad 

 

2.3 Bacterial strains and plasmids 
Bacterial strains and plasmid vectors used for cloning and maintenance of 

plasmids constructs are listed in Table 3 and 4. 

 

Table 3: Plasmids 

Vector Characteristic Source 

pCR 2.1-TOPO 

3.9 kb  

pUC origin, lacZα reporter fragment; T7 
promoter/priming site, f1 origin; ampiciline 
resistance ORF; kanamycin resistance ORF 

Invitrogen 

(Karlsruhe, Germany) 

pcDNA 6.2/N-

EmGFP/YFP 

TOPO 5.9 kb 

N-terminal GFP expression vector. pUC origin, 
CMV promoter/priming site, f1 origin; 
ampiciline resistance ORF 

Invitrogen 

pcDNA 6.2/C-

EmGFP/YFP 

TOPO 5.8 kb 

C-terminal GFP expression vector. pUC origin, 
CMV promoter/priming site, f1 origin; 
ampiciline resistance ORF 

Invitrogen 

 
 

Table 4: Chemically competent E. coli cells  

Bacterial cells Genotype Source 

One Shot TOP10F´  
 mcrA ∆(mrr-hsdRMS-mcrBC) Φ80lacZ∆M15 
∆lacX74 recA1 araD139 ∆(ara-leu)7697 galU galK 
rpsL endA1 nupG 

 
Invitrogen 
(Karlsruhe, 
Germany) 
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2.4 Cell culture 
Table 5: Cell culture media, buffers, antibiotics and supplements 

Name of product Company 

Collagenase 
Sigma Aldrich 

(Steinheim, Germany) 

Dispase 
Böhringer  

(Mannheim, Germany) 

D-MEM + GlutaMAX-I 
Invitrogen  

(Karlsruhe, Germany) 

Endothelial cell growth medium 
Promocell 

(Karlsruhe, Germany) 

Endothelial cell growth supplement (ECGS) Promocell 

FBS Invitrogen  

Gelatine Sigma Aldrich 

Hank’s BSS 
PAA 

(Cölbe, Germany) 

M199 + GlutaMAX-I Invitrogen 

OPTIMEM I Promocell 

Penicillin Invitrogen 

SMC growth media Promocell 

Streptomycin Invitrogen 

Supplemental Mix Promocell 

 

2.5 Reagents  

Table 6: Regularly used reagents and substances 

Substance Company 

®-(-)Phenylephrine hydrochloride Sigma Aldrich 

Acetylcholine chloride, minimum 99% TLC Sigma Aldrich 

Atrial Natiuretic Factor 1-28, human Calbiochem 



MMAATTEERRIIAALLSS  

 
18 

 

Substance Company 

Bio-Lyte 3-10 Ampholyte BioRad 

BQ-788 Sigma Aldrich 

ECL Plus Western Blotting Detection reagent 
Amersham 

(Buckinghamshire, UK) 

Endothelin 1, human and porcine, Calbiochem 

Endothelin 1, rat and porcine Sigma Aldrich 

Gadolinium chloride Sigma Aldrich 

Lanthanum chloride Sigma Aldrich 

MATra-A Reagent 
IBA 

(Göttingen, Germany) 

Phosphatase Inhibitors 
Active Motif 

(Rixensart, Belgium) 

Proteinase K Sigma Aldrich 

RNAlater RNA stabilization reagent Qiagen 

Rock inhibitor (Y27632) Calbiochem 

Rp8pGPT-cGMPS Calbiochem 

Taq Polymerase 
Bioron 

(Ludwigshafen, Germany) 

 
All standard chemicals were purchased from Roth (Karlsruhe, Germany) or 

Sigma-Aldrich (Steinheim, Germany).  

2.6 Buffers and solutions  

Phosphate Buffered Saline (10×) pH 7.4: 
130.0 mM      NaCl 
    2.7 mM      KCl 
    7.0 mM      Na2HPO4 x 2H2O 
    4.0 mM      KH2PO4 

 
Tris Buffered Saline, pH 7.4: 

  25.0 mM      Tris-HCl 
137.0 mM      NaCl 
    2.7 mM      KCl 
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2.7 Microbiological media 

Luria-Bertani (LB) Medium, pH 7.0: 

1.0 % (w/v)    Bacto-tryptone 
0.5 % (w/v)    Yeast extracts 
1.0 % (w/v)    NaCl 

 
LB-Agar Plates: 

1.0 % (w/v)     Bacto-tryptone 
0.5 % (w/v)     Yeast extracts 
1.0 % (w/v)     NaCl 
1.5 % (w/v)     Agar 
 

The Luria-Bertani medium was prepared with distilled water, autoclaved and 

stored at room temperature. LB agar was melted at 50°C using a microwave and 

the temperature was brought down to 37°C. The warm media were supplemented 

with 50 µg/ml ampicillin and poured into Petri dishes. The dishes were stored at 

4°C. 

 

2.8 Small interfering RNAs 
Table 7: siRNA target sequences constructed by Qiagen 

siRNA Target sequence Source 

Hs_ZYX_1_HP 
Validated  

AAG GTG AGC AGT ATT GAT TTG 
Qiagen 

(Hilden, Germany) 

All Stars Negative 
Control (scrambled 
siRNA) 

N/A Qiagen 
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2.9 Antibodies 
Table 8: Primary antibodies: WB: antibodies used for Western blot, ICC: 
antibodies used for Immunocytochemistry, IHC: antibodies used for 
Immunohistochemistry,  

 

Primary antibody and 
specification 

Use Dilution Source  

Mouse anti-human eNOS /NOS-
3 

WB  1:1000  
BD Transduction 

Laboratories 
(California, USA)  

Rat anti-mouse CD31 clone 
MEC 13.3, polyclonal 

IHC 1:25 
Santa Cruz 

Biotechnology 
(Heidelberg, Germany) 

Mouse anti - β-actin WB 1:5000 Sigma Aldrich 

Rabbit anti-human B72 LH-
ZyxinPLAG (against peptide 
CDFPLPPPPLAGDGDDAEGAL, 
zyxin amino acids 70 to 89) 

WB/ICC/IHC  1:2500/1:250 

Mary Beckerle, 
(Huntsman Cancer 
Research Centre, 

University of Utah)  
Rabbit anti-human B71 LH-
ZyxinNES (against peptide 
CSPGAPGPLTKEVEELEQLT, 
zyxin amino acids 344 to 363) 

ICC/IHC 1:250 

Mary Beckerle, 
Huntsman Cancer 
Research Centre, 

University of Utah 

Mouse anti-human Atrial 
Natiuretic Peptide, monoclonal 

ICC 1:50 
Chemicon Europe 
(Hampshire, UK) 

Mouse anti- Paxillin (165 
Paxillin,monoclonal) 

WB/ICC 1:1000/1:100 
BD Transduction 

Laboratories 

Mouse anti- Vinculin (SPM227, 
monoclonal) 

ICC  1:100 Abcam 

Mouse anti-smooth muscle actin 
(1A4, asm-1,monoclonal) 

ICC 1:50 Dianova 

Mouse anti-Zyxin 164 ID4 ICC 1:100 

Mary Beckerle, 
Huntsman Cancer 
Research Centre, 

University of Utah 
Rabbit- Transient Receptor 
Potential Channel 3 (TRPC3, 
polyclonal) 

WB 1:250 Alomone labs 

Mouse anti-GAPDH (Clone 
GAPDH - 71.1, monoclonal) 

WB 1:1000 Sigma 

Mouse anti-human CD31  ICC 1:50 
Dako 

(Glostrup, Denmark) 

Mouse anti-Ku80 (Ku15, 
monoclonal)  

WB/ICC 1:1000/1:100 
Novus biological 
(Cambridge, UK) 

Sheep anti-TRPM6 (polyclonal) WB 1:300 Novus Biologicals  
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Table 9: Regularly used secondary antibodies WB: antibodies used for 
Western blot, ICC: antibodies used for Immunocytochemistry, IHC: antibodies 
used for Immunohistochemistry,  

 

Secondary antibody and 
specification 

Use Dilution Source  

Cy2 donkey anti-mouse 
and anti-rat IgG 

ICC 1:50  
Jackson laboratories via 

Dianova (Hamburg, 
Germany) 

Cy3 donkey anti-rabbit 
IgG 

ICC 1:50 
Jackson laboratories via 

Dianova (Hamburg, 
Germany) 

Goat anti-rabbit IgG 
peroxidase  

WB 1:5000 Sigma 

Goat anti-mouse IgG 
peroxidase 

WB  1:5000 Sigma 

 

2.10 Mouse strains 
C57BL/6J mice were initially ordered from Charles River Laboratories, Sulzfeld, 

Germany.  

Table 10: Mouse strains  

Strain  Source 

C57BL/6J Charles River Laboratories, Sulzfeld, Germany 

C57BL/6J zyxin (-/-)  null (line 185) 
Dr. Laura Hoffman and Prof. Mary Beckerle Huntsman 
Cancer Research Centre, University of Utah, Salt Lake 
City /JBF 

TRPC3(-/-), TRPC6(-/-), TRPC3/C6 
double knockout, TRPC1/C4/C5 
triple knockout mice  

Dr. Marc Freichel 
Experimental and Clinical Pharmacology and 
toxicology, University of Saarland, Homburg, Germany 

GC-A (-/-) mice 
Prof. Michaela Kuhn  
Institute of Physiology, University of Würzburg, 
Germany 
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2.11 Software  

Table 11: Frequently used software and programs 

Software/Program Use Company 

(A) Software   

analySIS^D version 5.0 Imaging 
analysis 

Image analysis 
Olympus Soft 
Imaging Systems 
GmbH 

Cell^R Imaging analysis Image analysis 
Olympus (Hamburg, 
Germany) 

Corel Draw 14.0 Drawing tool Corel 

KCjunior™ Software ELISA measurements 

BIO-TEK 
Instruments 
(Winooski, 
Vermont, USA) 

LightCycler™ software version 3.5.3 Real time RT-PCR 
Roche 
(Mannheim, 
Germany) 

MetaMorph® imaging system version 
3.5 

Image analysis 

Universal Imaging 
Corporation  
(Marlow 
Buckinghamshire, 
UK) 

MyoView™ Pressure Myograph 
software 

In situ perfusion 
Danish Myo 
Technology 
(Atlanta, USA) 

NanoDrop® software Nucleic acid  measurement 
NanoDrop 
(Wilmington, USA) 

Quantity One® 1-D analysis software Western blot analysis BioRad (USA) 

Quantity One® image acquisition 
software 

Image analysis BioRad 

(B) Online tools   

BLAST (Basic Local Alignment 
Search Tool) 
www.ncbi.nlm.nih.gov 

Sequence analysis 
National Center for 
Biotechnology 
Information (NCBI) 

ExPASy tool 
www.expasy.ch 

Protein structure analysis SwissProt 

http://www.phosphosite.org  Phosphorylation site prediction 
Protein modification 
resource 
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3. METHODS 

3.1 Molecular techniques 

3.1.1 Expression plasmids  

Zyxin expression plasmids were constructed by sub-cloning the PCR amplified 

fragment into EmGFP-Topo-vector. To enable directional cloning, primers were 

designed for human Zyxin (the complete coding region from pos. 143 to pos. 1895 

with a stop codon can be found in appendix) PCR was carried out at 94 ºC (90 s), 

63 ºC (30 s), and 72 ºC (4 min) for 35 cycles. After amplification with Taq 

polymerase, the fragment was cloned into the N-terminal GFP- fluorescing vector 

(pcDNA 6.2/N-EmGFP/YFP TOPO 5.9 kb) using TOPO cloning reaction 

according to the manufacturer's recommendations (TOPO mammalian expression 

vector kit, Invitrogen).  

3.1.2 Site-directed mutagenesis  

Site-directed mutagenesis was performed to generate phoshorylation-resistant 

mutants by converting serine to glycine/alanine (S142G/S344A/T352A). These 

constructs were further converted to phosphorylation-mimetic mutants by 

replacing a glycine or alanine residue by negatively charged residue such as 

glutamate/aspartate (S142E/S344E/T352D). The primers used for mutagenesis is 

listed in Table 1. The QuickChange II site directed mutagenesis kit was used 

according to the manufacturer’s protocol (Strategene, UK). Briefly, for the mutant 

strand synthesis, the expression plasmids were subjected to PCR with appropriate 

primer pair containing the mutation of interest. The high fidelity DNA 

polymerase, Pfu Turbo DNA polymerase was used to extend and incorporate the 

mutagenic primers (Table 1). The reaction mixture as follows; 

5 µl 10 × reaction buffer 

50 ng dsDNA template 

125 ng oligonucleotide primers carrying the mutation 

1 µl of dNTP mix 

50 µl ddH2O to a final volume 

1 µl of Pfu Turbo DNA polymerase (2.5 U/µl) 

The reaction mixture was then subjected to the PCR reaction (Table 12). 
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Table 12: PCR program for site-directed mutagenesis 

PCR step Temperature ( in °C) Time 

Pre-denaturation 95°C 5 minutes 

Denaturation 95°C 30 seconds  

Annealing 55°C 1 minute 
18 

cycles 

Synthesis 68°C 

7 minutes        

(1 minute/Kb of plasmid 

length) 

 

 

Following temperature cycling, the reaction was placed on ice for 2 minutes to 

cool the reaction to ≤37°C. To digest all non-mutated parental supercoiled 

dsDNA, 1 µl DpnI (10 U/µl) restriction enzyme was added to the amplification 

reaction and incubated at 37 °C for 1 hour. The reaction was then used for the 

transformation into the competent bacteria.  

3.1.3 Plasmid cloning for RT-PCR standards 

For the construction of specific real-time RT-PCR standards (ref 3.1.8), PCR 

fragments were ligated into the pCR® TOPO 2.1 vector (3.9 Kb) using the TOPO 

TA Cloning® Kit according to the manufacturer’s instructions. Plasmids 

containing the inserts were amplified further (3.1.5.4).   

3.1.4 TOPO cloning  

TOPO cloning was used to clone the amplified DNA fragments in to the vectors. 

Briefly, 2 µl of PCR product was mixed with 1 µl of the appropriate topo vector 

and 1 µl salt solution (200 mM NaCl, 10 mM MgCl2) to prevent topisomerase I 

from rebinding to DNA and to obtain higher transformation efficiency. The 

mixture was diluted to a final volume of 6 µl and incubated on ice for 30 minutes 

for ligation of the DNA to the topo vector. The reaction mixture was further taken 

for transformation into competent bacteria.  

3.1.4.1 Transformation of competent bacteria 

2 µl of the reaction mixtures containing the topo vector with the fragment were 

mixed with 20 µl of Top10FTM competent cells and incubated on ice for 30 min. 

Thereafter, cells were subjected to the heat shock at 42°C for 40 s, and 
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immediately placed on ice. 250 µl of SOC medium was added to the cells and the 

suspension was incubated at 37°C for 1 h with shaking at 300 rpm. Sterile LB-agar 

medium with 20 µg/ml of ampicillin in petri-dishes was pre-warmed to 37°C. 

30 µl and 230 µl of transformed competent cells were plated onto the separate 

petri-dishes. Plates were then incubated at 37°C overnight to allow bacterial 

colonies to grow. 

3.1.4.2 Plasmid mini/maxi-cultures and plasmid purification 

Transformed colonies of Top10FTM competent cells were picked by using a sterile 

pipette tip and added to 7 ml of LB Broth (with appropriate antibiotic) in 15 ml 

falcon tubes. Caps of the falcon tubes were perforated to allow air to circulate 

through the tube. These cultures were then incubated at 37°C with shaking 

overnight. Plasmids grown in mini-cultures were purified using the QIAPrep® 

Spin Miniprep Kit according to the manufacturer’s instructions. 

200 µl of the mini-culture broth was then transferred in to 250 ml LB Broth (with 

appropriate antibiotic) in 500 ml conical flasks for maxi culture. Plasmids grown 

in maxi-cultures were purified using the QIAPrep® Maxiprep Kit according to the 

manufacturer’s instructions. All clones were sequenced.  

3.1.5 Polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) is a sensitive and powerful technique  used 

to exponentially amplify a specific DNA sequence in vitro by using sequence-

specific synthetic oligonucleotides and a thermo-stable DNA-polymerase (Mullis 

1983). This method was used for the amplification of cDNA for determination of 

mRNA expression levels of stretch-inducible gene products. 

3.1.6 Reverse transcription PCR (RT-PCR) 

RT-PCR was performed to synthesize cDNA from RNA templates from cultured 

cells. 0.5-2 µg of total RNA was mixed with RNase free water to a total volume of 

13 µl. The mixture was heated to 70°C for 10 minutes following the addition of 1 

µl of oligo (dT) 18 primer (10 pmol/µl) to facilitate hybrid formation of the oligo 

dT-primers with polyA-tails of mRNA.  
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For the first strand cDNA synthesis, the following was added to the mixture:  

4 µl of 5x First strand buffer 

1 µl of 0.1 M reverse transcriptase enzyme (RT) 

1 µl of 10 mM dNTPs 

The content of the tube was mixed and incubated at 42°C for 50 minutes. Then, 

the reaction was inactivated by incubating the mixture at 70°C for 10 minutes, and 

180 µl of RNase-free water was added to dilute the resulting cDNA. Sensiscript kit 

(Qiagen) was used to generate cDNA from the isolated mouse arteries according 

to the manufacturer’s instructions. These samples were further used for the PCR 

reactions.  

3.1.7 PCR amplification of DNA fragments 

To detect the amount of final amplified product at the endpoint semi-quantitative 

PCR was performed by normalizing to the relative amount of cDNA of an 

invariant endogenous control. The house keeping gene, glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) was chosen as an internal standard. The PCR 

reaction was performed in an automatic thermocycler (Biometra) programmed (as 

shown in Table 15). 

Table 13: PCR programme for semi-quantitative PCR 

PCR step Temperature ( in °C) Time 

Pre-denaturation 95°C 5 minutes 

Denaturation 95°C 30 seconds  

Annealing 

56°- 60°C 

(depending on the primers used) 

 

60 seconds 
30-40 

cycles 

Synthesis 72°C 2 minutes  

Extension 72°C 5 minutes 

3.1.8 Quantitative real-time PCR 

Real-time PCR was carried out in a LightCycler instrument (Roche Diagnostics, 

Penzberg, Germany) by using the QuantiTect SYBR Green® kit according to the 

manufacturer’s instructions. Principally, it quantitates the initial amount of 

template cDNA specifically and sensitively (Freeman 1999; Raeymaekers 2000). 

So, for the quantitative analysis of changes in gene expression real-time RT-PCR 

analysis was used. The standard cDNA probes for the gene products to be 
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measured were cloned into TOPO vectors (ref 3.1.3) and the number of molecules 

per reaction was calculated according to size (bp) and uv-absorption. The number 

of plasmid templates used as standards per reaction varied between 101 to 108 

depending on the expected abundance of the gene product to be determined as 

number of copies per ng of total RNA. As control gene products for the 

normalization of the cDNA amount added to the reaction, GAPDH was used.  

3.1.9 Agarose gel electrophoresis 

Agarose gel electrophoresis was used for the separation of nucleic acids. 

Depending on the size of the DNA fragment to be analysed 1-2% agarose gels 

were used along with 4% of the ethidium bromide for the visualization of the 

DNA fragment. Agarose was melted in 100 ml TBE buffer followed by the 

addition of 4 µl ethidium bromide and poured onto an electrophoresis chamber. 

Samples were mixed with 0.2 volumes of 5X of loading buffer before loading. 

Electrophoresis was carried out at a steady voltage of 110-140 V. The size of the 

DNA fragments in the agarose gels was determined using appropriate size 

standards (O’GeneRulerTM DNA Ladder, Fermentas). The band intensities were 

analysed using a GelDoc XR unit and the Quantity One software package version 

4.06 (Biorad, Munich, Germany) and normalized to the respective intensities of 

GAPDH expression. 

 

5X TBE buffer 

   450 mM     Tris base 
   450 mM     Boric acid 
     20 mM     EDTA, pH 8.0 

 

6X Glycerol loading buffer 

    10 mM      Tris/HCl, pH 7.5 
    10 mM      EDTA, pH 8.0 
   30.00 %     Glycerol 
     0.01 %     Bromophenol blue 
     0.01 %     Xylene green  
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3.1.10 Isolation of total DNA from cultured cells and mouse tails 

To isolate total DNA from cultured cells Qiagen DNeasy kit was used according 

to the manufacturer’s protocol. Genotyping of the TRP deficient smooth muscle 

cells were performed with the primers (Table 1; WT TRPC and TRPC KO) using 

the following PCR programme.  

 

Table 14: PCR program for genotyping (TRP knockout mice) 

PCR step Temperature ( in °C) Time 

Pre-denaturation 95°C 90 seconds 

Denaturation 95°C 30 seconds  

Annealing 60°C  30 seconds  36 cycles 

Synthesis 72°C 60 seconds  

Final Elongation 72°C 5 minutes 

 

DNA isolation from the mouse tails was performed according to a standard 

protocol (Hogan 1993). The mouse tail of 0.7-1 cm length was incubated in 150 µl 

digestion buffer containing proteinase K (1 mg/ml) at 55°C overnight to facilitate. 

Thereafter, the digestion mixture was incubated at 95°C for 10 – 20 minutes, 

gently mixed and centrifuged at 13000 rpm for 10 minutes at ambient temperature 

to collect undigested tail debris. Finally, the DNA containing supernatant was 

stored at -20°C for further PCR analysis (see 3.1.4). The genotype analysis zyxin 

mice were performed with the primers (Table 1; mice WT zyxin and mice NEO 

zyxin) using the following programme;  

 

Table 15: PCR programme for genotyping (zyxin knockout mice) 

PCR step Temperature ( in °C) Time 

Denaturation 95°C 60 seconds  

Annealing 58°C  30 seconds 30 cycles 

Synthesis 72°C 50 seconds  

 95°C 1 minute 

Final elongation 72°C 3 minutes 
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Digestion buffer for tail DNA: 

670.0 mM       Tris/HCl, pH 8.8 
166.0 mM       Ammonium sulphate 
  65.0 mM       MgCl2 
       1.0 %       β-mercaptoethanol 
       0.5 %       Triton X-100 

3.1.11 Isolation of total RNA from cultured cells and femoral arteries 

Total RNA was isolated from cultured cells and individually excised mouse 

femoral arteries using the RNeasy kit according to the manufacturer’s instructions. 

In order to avoid any RNase activity, RNase-free water and RNase-free reaction 

tubes were used. Total RNA was extracted by adding 350 µl and 250 µl of lysis 

buffer containing 1% β-mercaptoethanol to the cultured cells and femoral artery 

respectively. The femoral artery was then homogenized by a short (~25 seconds) 

sonification (cycle 1, 100%, Dr. Hielscher GmbH). An equal volume of 70% 

ethanol was added to the homogenized lysates and the samples were carefully 

mixed. The mixture was then transferred to the mini spin column, centrifuged for 

25 seconds at 13000 rpm followed by two washing steps. Finally, the RNA was 

eluted with 30 µl RNase-free water. An aliquot of 13 µl of RNA was used to 

generate single-stranded (ss) cDNA for RT-PCR reactions. 

3.1.12 Measurement of RNA/cDNA concentration 

Measurement of RNA and cDNA concentrations was performed by using the 

NanoDrop ND-1000 spectrophotometer. For quantitative real-time PCR analysis 

1-20 ng of cDNA was used.  

3.2 Cell culture 

3.2.1 Isolation and culture of human umbilical vein endothelial cells     
         (HUVEC)  

Human umbilical vein endothelial cells were routinely isolated from freshly 

collected umbilical cords (closed with a clip) with the consent of parents. 

Umbilical veins were flushed with Hank’s buffer solution until the veins were 

blood-free. The veins were then filled with dispase solution (3.1 g/l) until the 

cords were swollen (~10 ml) and incubated for 30 minutes at 37°C. Veins were 

again flushed with Hank’s buffer and the isolated cells were collected in a 50-ml 

tube and centrifuged at 1000 rpm for 5 min. The pellet containing the HUVEC 
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was re-suspended in endothelial cell growth medium (Promega, Germany) 

medium containing 5% fetal bovine serum, 50 U/ml penicillin, 50 µg/ml 

streptomycin and 0.25 µg/ml Fungizone® antimycotic. The cells were routinely 

cultured on standard plastic dishes or collagen type I BioFlex elastomer plates 

(Flexcell® International Corporation) additionally coated with 2% (w/v) gelatine 

in 0.1 N HCl. Culture medium was changed every other day.  

3.2.2. Culture of mouse smooth muscle cells  

Mouse smooth muscle cells were isolated from mouse aortic artery. The artery 

was dissected, cut into to fragments, washed several times with Hank’s BSS 

solution and transferred to a 40 mm petri-dish containing 1.4 ml D-MEM/SMC 

growth medium 2 (1:1, Promocell, Heidelberg, Germany) supplemented with 5% 

FBS and containing 250 µl collagenase solution (1%, Sigma). The tissue was 

digested overnight at 37°C, 5% CO2. The resulting cell suspension was 

centrifuged for 5 minutes at 1000 rpm. The pellet was resuspended in 2 ml of 

SMC growth medium (50% D-MEM + GlutaMAX-I Medium, 50% Smooth 

Muscle Cell Growth Medium, supplemented with 5% FBS, 50 U/ml penicillin, 50 

µg/ml streptomycin and 0.25 µg/ml fungizone antimycotic) and seeded into a 6 cm 

petri-dish. After passage one, the SMC growth medium was replaced by SMC 

culture medium (D-MEM, supplemented with 15% FBS, 50 U/ml penicillin, 50 

µg/ml streptomycin and 0.25 µg/ml fungizone antimycotic). Cells were incubated 

at 37ºC, 5% CO2, in a humidified atmosphere. Every batch of isolated and cultured 

mouse aortic smooth muscle cells was tested for the expression of the specific 

SMC marker, α-actin by immunofluorescence analysis. Routinely, 95% were 

found to be α-actin positive.  

3.2.3 siRNA transfection into HUVEC  

To transfect one well of a 6-well plate, 3 µg of plasmid was diluted in OPTIMEM 

I medium to give a final volume of 200 µl for each well to be transfected. For the 

formation of the transfection complex, 3 µl of MATra-si reagent (IBA, Göttingen) 

was added to the diluted siRNA, carefully mixed and allowed to incubate at 

ambient temperature for 20-30 minutes. HUVEC were once washed in OPTIMEM 

I, the medium was discarded and then fresh OPTIMEM I (2 ml per well) was 

added to the cells. The siRNA/magnetic beads were then layered drop wise onto 
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the cells (200 µl per well). Cells were incubated with the transfection complex on 

a custom-made magnetic plate (Universal Magnet Plate, IBA) for 30 minutes in 

the cell incubator to allow beads to penetrate the target cells. A sufficient 

knockdown of zyxin (80 ± 5% of control) was achieved after 72 hours of 

transfection (Figure 8).  

 

 
 
Figure 8: Representative confocal immunofluorescence analysis (IFA) showing 
reduction in zyxin protein level after magnetofection. Endothelial cells (HUVEC) were 
transfected using the MaTra transfection reagent with siRNA directed against zyxin. 
Seventy two hours post transfection the protein was analysed by IFA. Zyxin levels in the 
siRNA zyxin  transfected cells were reduced by 75-85% as compared to the untransfected 
control cells, scrambled siRNA transfected cells and the cells treated with just 
transfection reagents. The cells were stained with using the B72 antiserum, Paxillin and 
DAPI. Scale bar: 50 µm. 

3.2.4 Transfection of zyxin expression plasmids into HUVEC  

Transient transfection of HUVEC with the wild type or mutant eGFP-Zyxin 

constructs (ref 3.1) was performed using polyethylenimine (PEI). PEI has 

polycationic property. DNA, as a poly-anion, forms complexes with PEI driven by 

electrostatic interaction. For each well to be transfected plasmid (2 µg) was 

incubated with PEI (0.32 g/l) in OptiMEM I (Invitrogen, Darmstadt, Germany) to 

scrambled siRNA Transfection reagent

Control Zyxin siRNA 

DAPI Paxillin Zyxin

50µm 50µm

50µm 50µm
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a final volume of 200µl at ambient temperature for 30 minutes. HUVEC were 

washed in Hank’s BSS solution for 2 times and incubated with fresh Endothelial 

cell media without antibiotics and FCS (1 ml/well). The transfection mixture was 

then layered drop wise onto the HUVEC followed by the 6 hours incubation at 37 

°C and 5% CO2. After termination of the procedure by adding normal EC growth 

media (2 ml/well), transfection efficiency was found to be 35 ± 5%. 24 hours post 

transfection, HUVEC were transferred to a BioFlex membrane for stretch 

experiments; the amount of transfected cells on the Bioflex plates typically 

dropped to 15 ± 5%.  

3.2.5 Incubation of cells with various drugs 

Upon reaching confluence, the HUVEC were incubated with or without 1 nM 

Atrial Natriuretic Peptide (Calbiochem, San Diego USA), 10 nM Endothelin-1 

(Calbiochem), 100 µM Rp8GPT-cGMP (Calbiochem), 1 µM BQ-788 (Sigma 

Aldrich, Deisenhofen, Germany) and 200 µM Gadolinium (Sigma). After 

treatment, cells were kept at static conditions or exposed to mechanical strain 

(cyclic stretch).   

3.2.6 Application of mechanical strain 

EC and SMC were plated on BioFlexTM collagen I elastomers (Flexercell Inc., 

Hillsborough, NC, USA) and exposed to cyclic stretch of elongation with 10% and 

15% respectively at 0.5 Hz with a sinusoidal profile in a Flexercell FX-3000 strain 

unit (Figure 9). This protocol is well established method to mimic an increase in 

circumferential wall tension as previously described (Cattaruzza 2004).  The cells 

were incubated to the stretch medium (M199 medium supplemented with 120 mM 

TES-HEPES pH 7.3, 20% fetal bovine serum, 50 U/ml penicillin, 50 µg/ml 

streptomycin, 0.25 µg/ml Fungizone antimycotic) and the required drugs (3.2.5) 

before the application of mechanical strain.  

After the stretch protocol, cell culture media were collected and frozen at -80°C 

for further analysis. Cells were either lysed with RLT buffer (Qiagen) for mRNA 

isolation fixed (with acetone:methanol or 4% paraformaldehyde, ref 3.3.1) for 

fluorescence analysis or collected by centrifugation (3000 rpm, 4°C) for cell 

fractionation and Western blot analysis.  
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Figure 9: Schematic diagram of the FlexCell model. (A) The computer-controlled flex 
device applies mechanical strain to the cells by using regulated vacuum pressure to 
deform the flexible-bottomed culture plates producing substrate elongation and (B) a 
typical strain profile applied to EC or SMC in culture.  

 

3.3 Immunofluorescence analysis 

3.3.1 Cell fixation 

For analysis of the localisation of zyxin and other proteins, cells grown on BioFlex 

membranes or coverslips were fixed in methanol/acetone (1:1) for 20 minutes at -

20°C. Thereafter, the cells were dried for 2hrs. Enhanced-GFP-Zyxin transfected 

cells were fixed with 4% paraformaldehyde for 20 minutes at room temperature 

and futher processed for immunostaining.  

3.3.2 Immunostaining of fixed cells  

The fixed cells were permeabilized with 0.1% Triton X-100/PBS and nonspecific 

binding was blocked using Casein blocking serum for 45 minutes. The 

membranes/coverslips were then incubated cell side down with 15 µL of primary 

antibodies (Table 8) diluted in casein blocking serum for 2 hours at room 

temperature. After 5 wash steps (5 minutes each, PBS), cells were incubated cell 

side down with Cy2- and/or Cy3-conjugated secondary antibodies (Table 9) 

depending on the primary antibodies used for 1 hour at room temperature. The 

cells were then washed 2 times with PBS followed by a nuclear stain with DAPI 

(1 µg/mL) for 10 minutes at room temperature). After the final wash step (PBS, 2 

times for 5 minutes), the cells were mounted on to a large coverslip with ProLong 

(Invitrogen, Oregon, USA).  
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Permiabilisation buffer  

Phosphate-buffered saline per L: pH 7.6 
  8.0 g     NaCl 
  0.2 g     KCl 
1.44 g     Na2HPO4 
0.24 g     KH2PO4 
 

Casein blocking serum 

 0.25 %     Casein 
  0.1 %      BSA 
15 mM     NaN3 
50 mM     Tris pH 7.6 

3.4 Immunohistochemistry 

3.4.1 Tissue preparation for paraffin embedding 

The freshly isolated femoral arteries were fixed in zinc to retain their 

morphological structure and dehydrated by passing the tissue through an 

increasing alcohol gradient i.e. 70%, 80% and 96% ethanol for 90 minutes in each 

ethanol gradient. The ethanol was removed from the tissue by incubating the 

femoral artery in isopropanol for 1 hour. Finally, the tissue was embedded in 

melted paraffin (Sigma Aldrich) and incubated at 60°C overnight. The tissue in the 

paraffin was poured on to a metal preheated at 60°C to form a block. The tissue 

embedded in the paraffin block was allowed to cool down and was further 

processed for sectioning. The paraffin block was cut into sections (5 µm thick) 

using a microtome. The tissue sections were transferred on to a glass slides and 

were dried at 40°C overnight. The tissue sections were then processed further for 

immunohistological analyses.  

Zinc fixation  

     0.1 M    Tris HCl, pH 7.4 
  3.2 mM    Ca(CH3COO)2 X H2O 
22.8 mM    Zn(O2CCH3)2(H2O)2 
35.9 mM    ZnCl2 

3.4.2 Staining of paraffin sections 

For staining, paraffin sections (5 µm) were de-paraffinised by a standard protocol 

and incubated for 10 minutes in 4% hydrogen peroxide to eliminate endogenous 

peroxidase activity. The procedure was continued by permeabilisation of tissue for 

45 minutes and blocked for 1 hour with the casein blocking serum followed by 
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incubation with the primary antibody for 12 hours at 4°C (Table 8). The cells were 

then incubated with a Cy3-coupled secondary antibody (Table 9) for 2 hours 

diluted 1:100 in blocking buffer. The procedure was terminated by DAPI 

counterstaining (1 µg/mL) for 10 minutes and mounting in ProLong (Invitrogen).  

3.5 Confocal microscopy  
For confocal microscopy analysis of immunostained tissue sections and cultured 

cells, a IX81 microscope equipped with a IX-DSU disk unit and the MT20 multi-

wavelength illumination system was used in combination with the cell^R software 

package (Olympus, Hamburg, Germany). 

3.6 Chromatin immunoprecipitation (ChIP).  
ChIP assays were performed by using the ChIP-IT Express Kit (Active Motif; 

Rixensart, Belgium) according to the manufacturers’ instructions (all buffers and 

enzymes not defined were provided by the manufacturer). In brief, EC were 

exposed to cyclic stretch (10% 0.5 Hz for 6 h) as described above. Thereafter, 

cells were fixed and cross-linked with formaldehyde (1% in PBS), the DNA was 

isolated and digested with the provided restriction enzyme cocktail and subjected 

to immunoprecipitation. The antibodies used for this procedure were from Santa 

Cruz Biotechnology, Heidelberg, Germany (zyxin: rabbit antiserum B71; the 

antiserum (B72) used for Western blot and other procedures did not yield any 

reproducible results), Sigma-Aldrich (mouse α-actin as a negative control) and 

Active Motif (RNA polymerase II/ChIP-certified). The resulting precipitated DNA 

was subjected to gene-specific PCR and the amount of amplified DNA was 

densitometrically analysed after agarose gel electrophoresis (Molecular Imager 

Gel Doc XR System and the Density One densitometry software version 4.6, 

Biorad Munich, Germany). The optimal number of PCR cycles (95°C/30 s 

denaturation, 60°C/30 s annealing and 72°C/1 minute synthesis) varied between 

28 (Clusterin after RNA polymerase II precipitation) and 37 (most genes after 

precipitation with B72). The primers were chosen in a way that putatively 

functional PyPu-boxes were included in the amplified region.  



MMEETTHHOODDSS  

 
36 

 

3.7 Protein biochemistry 

3.7.1 Isolation of total cellular protein 

The cells were collected with a cell scraper (Sarstedt Inc.) in 250µl PBS and 

transferred into a microcentrifuge tube and centrifuged at 3000 rpm for 3 minutes. 

The pellet was resuspended in 50µl protein lysis buffer and was incubated on ice 

for 30 minutes. The mixture was vortex every 10 minutes. The non-ionic 

detergent, 0.1% triton-x was added for 10 minutes for permiabilisation of cell 

membrane.  

 

Components of hypotonic protein lysis buffer 

10 mM     Hepes, pH 7.9 
10 mM     KCl 
0.1 mM    EDTA 
0.1 mM    EGTA 
   0.1 M    DTT 
  50 µM    Pefablock 
  25 µM    Protease inhibitors 

 

3.7.1 Separation of cytoplasmic and nuclear proteins 

For enrichment of the cytoplasmic and nuclear protein fraction from cultured cells, 

the ReadyPrep protein extraction kit (Cytoplasmic/nuclear; BioRad) was used 

according to the manufacturer’s protocol. Briefly, the cells were collected in 250µl 

PBS and centrifuged at 3000 rpm for 3 minutes. The cell pellet was suspended in 

CPEB buffer and the cell membrane was disrupted mechanically with the syringe 

needle (20 gauge). The CPEB buffer containing the cells with disrupted cell 

membrane was subjected to centrifugation at 1000 × g for 10mins at 4°C to collect 

the cytoplasmic protein. The remaining cell pellet containing the nuclear fraction 

was re-suspended in protein solubilization buffer (PSB) followed by centrifugation 

at 16000 × g for 20 minutes at room temperature to obtain the nuclear protein. 

Thus separated cytoplasmic and nuclear proteins were further used in the SDS-

PAGE analysis.  

3.7.2 Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE separates proteins exclusively on the basis of their size (Laemmali 

1970). Therefore, analysis of complex protein samples was performed using SDS-
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PAGE. Gels from 10 – 12 % were poured between the glass plates depending on 

the size of the proteins to be separated and overlaid after polymerization with a 4% 

stacking gel. For the preparation of the gels the solutions (described in Table 16) 

were freshly prepared. Proteins were denatured by the addition of 4× sample 

loading buffer (Roth) and heated for 5 minutes at 95°C. Proteins were then 

separated by electrophoresis in 1× Tris-glycine-SDS running buffer at fixed 

voltages of 100 V for the stacking gel, and 150 V through the separating gel. The 

Kaleidoscope Precision Plus protein standard (BioRad Laboratories) was used to 

monitor the progress of the run and to estimate the molecular mass of protein 

bands of interest.  

 

Tris-glycine-SDS buffer (1××××) 

 25.0 mM     Tris HCl, pH 8.3 
192.0 mM    Glycine 
       0.1 %     SDS 

 

Loading Buffer (4××××) 

150.0 mM     Tris HCl, pH 6.8  
300.0 mM     DTT  
       6.0 %     SDS 

             0.3 %     Bromophenol blue  
             30 %      Glycerol  
 

Table 16: Formulations for SDS-PAGE separating and stacking gels 

 
Separating gel 

10% 
Separating gel 

12% 
Stacking gel 4% 

Acrylamide stock (30%) 3.3 ml 4.0 ml 0.65 ml 

1.5 M Tris HCl, pH 8.8 2.5 ml 2.5 ml - 

0.5 M Tris HCl, pH 6.8 - - 1.25 ml 

dd H
2
O 4.1 ml 3.35 ml 3.05 ml 

20% SDS 50 µl 50 µl 50 µl 

10% APS 50 µl 50 µl 25 µl 

TEMED 10 µl 10 µl 10 µl 
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3.7.3 Western blot analysis 

The proteins separated by SDS-PAGE were transferred onto a PVDF 

(Polyvinylidene fluoride) membrane in the transfer buffer using trans-blot transfer 

cell system (Bio-Rad) at a constant current of 350 mA for 45 minutes. To allow 

the efficient transfer of all the proteins from gel on to the membrane, both the gel 

and the membrane was sandwiched between the filter papers and sponges. The 

PVDF membrane was incubated with 100% methanol for 5 minutes and pre-

hydrated in ddH2O before the protein transfer for 30 minutes to facilitate binding 

of proteins on to the membrane.  

After the transfer, the PVDF membrane was immersed in blocking buffer and 

rocked for 1 hour at room temperature to block the nonspecific binding. The 

membrane was then incubated with the appropriate primary antibody (Table 8) 

diluted in the ratio 1:500 to 1:2500 with blocking buffer for 2hrs at ambient 

temperature. Thereafter the membrane was washed 3 times for 10 minutes with 

washing buffer. The blot was then incubated with secondary antibody conjugated 

to horseradish peroxidase (Table 9) diluted in the ratio 1:5000 for 60 minutes at 

ambient temperature.  

The blot was then washed 3 times with wash buffer for 10 minutes whilst shaking. 

The membrane was then developed with ECL (equal quantities of ECL reagent A 

and B- Enhanced Chemiluminescence, substrate; Amersham Pharmacia Biotech, 

Freiburg, Germany), according to the manufacturer’s instructions. The light 

generated by the enzymatic reaction was detected in a ChemiDoc chamber 

(BioRad) and the molecular mass of protein bands of interest were analysed.  

 

Transfer buffer 

 25.0 mM      Tris 
 19.2 mM      Glycine  
        20 %      Methanol  

 

Washing Buffer 

 2.5 g   Triton X-100  
 1.0 L   PBS 1××××       

 

Washing Buffer 

5% milk powder in washing buffer  
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3.7.4 Enzyme-linked immunosorbent assay (ELISA) 

Pre-coated enzyme-linked immunosorbent assay (ELISA) was used for 

quantitative determination of interleukin-8 (R&D Systems, Wiesbaden, Germany), 

endothelin-1 (R&D Systems) and atrial natiuretic peptide (Biomedica, Graz, 

Austria) concentrations in cell culture supernatants. All samples were thawed only 

once at the time of testing and analysed according to the manufacturer’s protocol. 

3.8 Ex-vivo blood vessel perfusion 
Ex-vivo blood vessel perfusion was performed according to rules of the Regional 

Council Karlsruhe and conformed to the Guide for the Care and Use of Laboratory 

Animals (NIH Publication No. 85-23, revised 1996) Wild type mice (C57BL/6) 

and mice with the indicated gene defect (zyxin, GC-A, TRP-C1/3/4/5/6 

deficiencies) were euthanized in CO2 chambers.  

3.8.1 Isolation and preparation of murine femoral arteries for perfusion 

For the isolation of femoral arteries, the hind limb of euthanized mice was excised 

and immersed under perfusion buffer (ref Table 17). The femoral artery was then 

separated from the accompanying vein and dissected from connective tissue. 

Segments of the femoral artery (0.5 - 1 cm) were cut and mounted onto glass 

capillaries (diameter 120 µm) fitted for the use in the Pressure Myograph System 

110P.  

The glass capillaries used for perfusion experiments were prepared using a P-87 

Flaming/Brown micropipette puller (Sutter Instrument Company, Novato, USA). 

The capillaries were pulled from 0.15 mm glass cannulas (GB150-8P, Science 

products GmbH, Hofheim, Germany) with the program optimized according to an 

operation manual provided by the manufacturer to achieve a final tip-diameter of 

120 µm. Thereafter, the capillaries were cut to the appropriate length 

(approximately 1.5 cm).  

3.8.2 Perfusion of isolated murine femoral arteries 

The femoral arteries were subjected to in situ perfusion using Pressure Myograph 

System Model 110P (Danish Myo Technology, Copenhagen, Denmark, Figure 

10). The pressure transducer together with the MyoView™ system and software 

allowed continuous control of temperature, pressure and vessel diameter.  
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Figure 10: The in situ perfusion model. This model mimics the hemodynamic situation 
of the femoral artery during high wall tension. Perfusion of isolated femoral artery was 
performed under control conditions (∆p=20 mm Hg) and under hypertensive conditions 
(∆p=50 mm Hg) 

 

The artery was equilibrated at a pressure of 10-30 mmHg for 1 hour. After 

equilibration, the pressure gradient (∆p) along the femoral artery was gradually 

raised to 50 mm Hg to mimic hypertensive conditions with an inflow pressure set 

at 150 mm Hg and a outflow pressure of 100 mm Hg (37 °C, flow 20 to 230 

µl/minute, depending on perfusion pressure). The artery was then perfused at this 

pressure gradient for the next 4 hours. Changes in vessel diameter were 

documented after every change in perfusion pressure and in periods of 15 minutes. 

The vessel chamber was continuously refilled with pre-warmed and equilibrated 

perfusion buffer. Following the pressure perfusion, the femoral arteries were 

further processed for immunofluorescence analysis or mRNA/protein analyses.  

The perfusion buffer was prepared fresh prior to the experiment. 10 ml of 25x 

solution II was diluted in 800ml distilled water and mixed with 10 ml of solution I 

and saturated with carbon dioxide and oxygen (95% O2, 5% CO2) for 5 minutes. 

pH was equilibrated to 7.4 and the solution was completed by adding EDTA 

(260 µl/l), D-glucose (2 g/l) and 15 % FCS (Fetal Calf Serum). 

 

 

 

 

 

 

INFLOW

Femoral artery

OUTFLOW
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Table 17: Perfusion buffer pH 7.4 (1××××) 

Solution I Solution II 

Chemical Concentration (mmol/l) Chemical Concentration (mmol/l) 

NaCl               119.00 NaHCO3   2.10 

CaCl2  1.25 KH2PO4   1.18 

KCl 4.70   

MgSO4 x 7 H2O   1.17   

 

Table 18: Perfusion buffer pH 7.4 (25××××) 

Solution I Solution II 

Chemical Concentration (g/l) Chemical Concentration (g/l) 

NaCl            173.850 NaHCO3             52.10  

CaCl2  5.875 KH2PO4 4.08 

KCl  8.760   

MgSO4 x 7 H2O  7.390   

 

3.9 Statistical analysis 

All quantitative data are presented as means ± SEM of n observations with 

cells/samples obtained from individual umbilical cords or aorta, respectively. 

Repeated-measure ANOVA followed by a Tukey-Kramer post-hoc test were 

performed by using the InStat software package version 3.06 (GraphPad Software, 

San Diego, USA) with a p-value < 0.05 considered to be significant. 
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4. RESULTS 

Zyxin localisation and function in stretch induced gene expression 

The first part of the results deals with the transcriptional changes in human 

cultured EC in response to stretch, which is induced by zyxin after its translocation 

to the nucleus and the mechanism of zyxin-induced gene expression.  

4.1 Effect of cyclic stretch on cellular localisation of zyxin (in vitro) 

Human umbilical vein endothelial cells (HUVEC) grown on collagen-coated 

BioFlex plates were subjected to cyclic stretch (10% elongation, 0.5 Hz, 6 hours) 

using the Flexercell strain unit to mimic wall tension.  

(A) 

 
(B)    

 
Figure 11: Representative confocal immunofluorescence analysis (IFA) images of 
zyxin in static and stretched cells. (A) Zyxin is localised in the focal adhesions (FA) in 
quiescent cells while the nucleus (Nu, inset) is mostly free of zyxin. Cyclic stretch of 
6 hours causes nuclear translocation of zyxin. (Cy3/red: Zyxin, Cy2/green: Paxillin). 
Nuclei were counterstained with DAPI (6-fluoro-diamidin-2-phenylindol: blue). Paxillin 
colocalises with zyxin exclusively in focal adhesions (FA: yellow) but not in stress fibres 
(SF) or in the nucleus (after stretch). (B) Partial stretch dependent colocalisation of the 
nuclear protein Ku80 (Cy2/green) with zyxin (Cy3/red). Whereas nuclei in static cells are 
virtually devoid of zyxin, significant colocalisation occurs in response to stretch. (insets 
with magnified exemplary nuclei). For exemplary zyxin negative and zyxin-positive 
nuclei also see Figure 45 (page 97). Scale bar: 50 µm. 

Static control Stretch

Nu

SF

FA
Nu

SF

FA

DAPI Paxillin Zyxin

50µm

50 µm 50 µm 5 0 µm

50µm

5 0µm 5 0µm 50 µm

Static control Stretch

Nu

SF FA

Nu

SF

DAPI Ku80 Zyxin50 µm 5 0 µm 5 0 µm 5 0µm 5 0µm 50 µm

50µm 50µm



RREESSUULLTTSS  

 
43 

 

 
To localise zyxin, the EC were stained with the zyxin specific rabbit antiserum 

B72 (Figure 11). In quiescent EC, zyxin localises to focal adhesions and stress 

fibres. After exposure to cyclic stretch, although partly remaining in the focal 

adhesions, zyxin migrates to the nucleus. In the nucleus, it partially colocalises 

with the nuclear protein Ku80.  

(A) 

 
(B)  

 
 
Figure 12: Representative confocal IFA images of zyxin in static and stretched aortic 
EC (A) and coronary EC (B). In both the cell types, zyxin is localised in the focal 
adhesions (FA) of quiescent cells. Cyclic stretch causes nuclear (Nu) translocation of 
zyxin. Paxillin colocalises with zyxin exclusively in focal adhesions (FA) (yellow) but 
not in the nucleus (after stretch). The cells were stained for zyxin (Cy3/red), paxillin 
(Cy2/green) and  nuclei (DAPI/blue). Scale bar: 50 µm.  

  
 
In order to exclude HUVEC-specific effects, because of their venous and 

embryonic origin, immunofluorescence analysis of coronary and aortic cultured 

endothelial cells was performed that showed zyxin translocation to the nucleus 

upon stretch in these cell types too (Figure 12).  
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In line with the immunofluorescence analysis, Western blot analysis of cytosolic 

and nuclear endothelial cell fractions of HUVEC also showed the translocation of 

zyxin into nucleus upon stretch (Figure 13). 

 

 
 

Figure 13: Western blot analysis of nuclear translocation of zyxin. Nuclei and the 
cytosol of static and stretched (6 and 12 hours) EC were subjected to Western blot 
analysis. Left panel: exemplary Western blot. Right panel: Statistical summary (*p < 0.05 
vs. static control, n = 5). As control proteins, Ku80 and paxillin were used. 

 

4.2 Pressure-induced zyxin translocation in mouse arteries (in situ)  
Freshly isolated mouse femoral arteries were subjected to perfusion with oxygen-

saturated physiological Krebs-Henseleit buffer at 20 mm Hg (low wall tension) or 

150 mm Hg (high wall tension) for 6 h followed by analysis of zyxin translocation 

by way of immunohistochemistry. Zyxin accumulated in the nucleus of the 

endothelial cells of arteries perfused under conditions of high pressure, hence 

stretch (Figure 14A). This also occurs in native SMC, albeit only at even higher 

perfusion levels (200 mm Hg, Figure 14B). 
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(A) 

 
(B) 

 
 

Figure 14: Representative confocal IFA showing localisation of zyxin in situ. (A) EC 
surrounding the lumen of the unperfused femoral artery showing nuclei free of zyxin. 
Pressure perfused femoral arteries (150 mm Hg) showed zyxin localisation in the nucleus. 
(B) Enlarged pictures of exemplary SMC in segments perfused at 20 mm Hg (left) and 
segments perfused at 200 mm Hg (only single cells are shown as, under these conditions, 
the segments are strongly dilated and partially destroyed). Whereas under low pressure 
conditions zyxin is located at the cell borders similar to the appearance in cultured cells 
under static conditions, nuclear accumulation of zyxin is much more prominent in SMC 
exposed to high wall tension. The arrowheads depict zyxin-positive sites at the cell border 
(left) and in the nucleus (right). Scale bar: (A) 50 µm (B) 10 µm. 

4.3 Role of zyxin in stretch-induced gene expression 
The downregulation of zyxin affects stretch-induced-gene expression in rat 

vascular smooth muscle cells (Cattaruzza 2004). Testing of genes known to be 

stretch-sensitive revealed that chemokines like interleukin-8 (IL-8) and CXCL1 

but not endothelin-1-receptor ETB-R were regulated by zyxin in cultured EC 

(doctoral thesis of Agnieszka Wojtowicz, Heidelberg, 2008). To get the full 

picture of stretch-induced changes in gene expression and the role of zyxin 

therein, a genome-wide microarray analysis was performed (Wojtowicz 2010) 

comparing quiescent and stretched HUVEC with and without siRNA-mediated 

knockdown of zyxin. A total of 592 genes (with P<0.02) turned out to be stretch-

sensitive of which 402 (67.9%) were regulated by zyxin. The outcome of this 

microarray analysis revealed that zyxin is involved in the regulation of rather 

distinct pathways such as suppression of apoptosis or chemokine release. A similar 
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analysis of mouse aortic primary cultured SMC from wildtype and zyxin-deficient 

mice revealed an even more complex albeit partially similar pattern of zyxin 

controlled genes in stretched SMC. As an overview a comparison of zyxin 

regulated pathways in SMC and EC is given in Table 19.  

 

Table 19. Comparison of zyxin-controlled stretch-sensitive genes (pathways defined by 
KEGG or Gene Ontology) in EC and SMC with and without zyxin expression. Only 
pathways regulated in a highly significant manner in at least one cell type have been 
included. + to +++: moderately to strongly induced pathways; - to ---: moderately to 
strongly repressed pathways; ∅: pathway not altered. Pathways regulated only in one cell 
type are highlighted in blue, pathways regulated differentially between cell types are 
highlighted in green.   
 

 Pathway Functional Description EC SMC 
Stretch-induced pathways activated by zyxin 
1 CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION  +++ +++ 
2 LEUKOCYTE_MIGRATION + +++ 
3 CHEMOKINE_RECEPTOR_BINDING  +++ +++ 
4 CHEMOKINE_ACTIVITY  +++ +++ 
5 CYTOKINE_ACTIVITY  +++ +++ 
6 PROTEIN_KINASE_ACTIVITY  +++ ++ 
7 NEGATIVE_REGULATION_OF_PROGRAMMED_CELL_DEATH ++ +++ 
8 FOCAL_ADHESION   +++ ++ 
9 AMINO_ACID_TRANSMEMBRANE_TRANSPORTER_AC. +++ ++ 
10 G_PROTEIN_COUPLED_RECEPTOR_BINDING  ++ +++ 

11 TRANSCRIPTION_COREPRESSOR_ACTIVITY  +++ ++ 
12 COMPLEMENT_AND_COAGULATION_CASCADES  ++ ∅ 
13 TOLL_LIKE_RECEPTOR_SIGNALLING_PATHWAY ++ ∅ 
14 TGF_BETA_SIGNALLING_PATHWAY  ++ ∅ 
15 PROTEIN_SECRETION ∅ +++ 

16 SMOOTH_MUSCLE_CONTRACTION ∅ +++ 

17 CALCIUM_MEDIATED_SIGNALLING ∅ +++ 

18 POSITIVE_REGULATION_OF_CELL_ADHESION ∅ +++ 

19 POLYMERASE_II_TRANSCRIPTION_FACTOR_ACTIVITY  +++ --- 

Stretch-induced pathways repressed by zyxin 
20 LIPID_TRANSPORTER_ACTIVITY   --- --- 
21 OXIDOREDUCTASE_ACTIVITY --- --- 
22 CELL_CYCLE* --- --- 
23 DNA_POLYMERASE --- --- 
24 PYRIMIDINE_METABOLISM  -- --- 

25 STRUCTURAL_CONSTITUENT_OF_CYTOSKELETON --- --- 
26 GAP_JUNCTION -- ∅ 
27 LYASE_ACTIVITY --- ∅ 
28 P53_SIGNALLING_PATHWAY --- ∅ 
29 ORGANELLE_LOCALISATION  ∅ --- 

30 NEGATIVE_REGULATION_OF_PHOSPHORYLATION  ∅ --- 

31 VALINE_LEUCINE _ISOLEUCINE_DEGRADATION --- +++ 
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As an example for zyxin-regulated stretch-sensitive genes in SMC, 

thrombomodulin (TM) and calponin (Cal) have been analysed here. The 

expression of thrombomodulin significantly increased upon stretch in the wildtype 

SMC whereas in the zyxin knockout SMC, stretch-induced expression was 

suppressed. In contrast, calponin expression was generally decreased upon stretch. 

However, in the zyxin-deficient SMC, the gene is no more stretch-sensitive 

indicating that zyxin is necessary for stretch-dependent repression of calponin 

expression (Figure 15). 

 

(A)                                                   (B) 

            
 

Figure 15: Real time RT-PCR analysis of SMC for thrombomodulin (TM) and 
calponin (Cal). Cal (*p < 0.01 vs. static control, n = 5) and TM (*p < 0.01 vs. static 
control, n = 5) mRNA expression in response to stretch (12%, 0.5 Hz for 6 h) in cells with 
(A) a wild type genome (WT) (B) zyxin deficiency.  

4.4 Mechanism of zyxin-induced gene expression 

To evaluate the mechanism of zyxin-dependent stretch-mediated gene expression, 

promoter regions of genes identified to be stretch-sensitive were analysed. As 

described before, zyxin appears to associate with the proximal promoter of the 

human thrombomodulin gene at a stretch of pyrimidines (PyPu box; position -453 

to -481, unpublished observation). On analyzing the promoter regions of stretch-

sensitive genes in EC, a comparable motif close to the transcription start site was 

found solely in the 13 stretch-sensitive genes controlled by zyxin but not in the 11 

zyxin-independent genes (Table 20).  
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Table 20: Alignment of stretch-response element-like sequences. This sequence was 
found in the subset of zyxin-dependent genes: hairy/enhancer-of-split related with YRPW 
motif 1 (Hey1), interleukin-8 (IL-8), hemicentin-1 (HMCN1), E74-like factor 4 (ELF4), 
prepro-endothelin-1 (ET-1), laminin C3 (LAMC3), the transcription factor forkhead box 
O1 (FOXO1), notch homolog-2 (Notch2), HMG-CoA reductase (HMGCR), E-selectin 
(SEL-E), ICAM-1, VCAM-1, integrin-6 (ITGB6). Stretch-inducible zyxin-independent 
genes which have been unsuccessfully analysed for this motif, code for matrix 
metalloproteases-1 and 12 (MMP-1/12), von Willebrand factor (vWF), clusterin (CLU), 
guanylate cyclase-1β (GUCY1B3), frizzled-like-8 (FZD8), heme oxygenase-1 (HMOX1), 
CD34, the transcription factor forkhead box C1 (FOXC1), leptin receptor (LEPR), 
matrilin-2 (MATN2), prominin-1 (PROM1) and sulfatase-1 (SULF1).  

 

Zyxin-activated genes 

ELF4 (-266): 5’-CTCCCTCCGG CTCTTCCCTC CCTCCCGA-3’ 

ET-1 (-136): 5’-GGCAGGCGCT TCCTTTTCTC CCCGTAAG-3’ 

HMCN1 (-670): 5’-GCGTTGTCCT CCCTTCCTTC CCTGCAGA-3’ 

IL-8 (-685): 5’-GTCCTTACAT TCTTTCTTCT TCTGATAG-3’ 

LAMC2 (-76): 5’-CCCGGAGCCC TCCTTCTCTC CCGGGGTG-3’ 

FOXO1 (-597): 5’-AGATTCTGTT TCTCCTTCTC AGAGGTTC-3’ 

Notch2 (-446): 5’-ATGTGAAATC CTTCCCTTTC TGAGCTGA-3’ 

HMGCR (-475): 5’-CCGTCGCCGC CTCCTTCCCT TTTTTTAT-3’ 

Zyxin-repressed genes 

SEL-E (-230): 5’-CTAAAACCTG TCTTTTCTCT TTGACCTG-3’ 

ICAM-1 (-473):  5’-TCACGCAGCT TCCTTCCTTT TTCTGGGA-3’ 

VCAM-1 (-315): 5’-TGTCTCCATT TTTTCTCTCC CCACCCCC-3’ 

ITGB6 (-606): 5’-CTTTCCCTAG CCTTCCTTCT CATTTACT-3’ 

Hey-1 (-228): 5’-CCGCGCCTCC TCCTTCCCCT GAGTGCAG-3’ 

 
 

Although not comprehensive yet, the PyPu box is found in zyxin-regulated genes 

in SMC such as, e.g. the motif at the position -113 to -99 (5’CCT TCC CCT CCC 

CTT 3’) of the calponin gene.  

4.4.1 Zyxin association with the PyPu box: 

To test whether zyxin really interacts with this PyPu motif, chromatin 

immunoprecipitation (ChIP) was performed for 9 stretch-sensitive genes, i.e. IL-8, 

Hey1, HMCN1, ET-1, ELF4, LAMC3, FOXO1, Notch2 and HMGCR. ChIP 

analysis revealed that zyxin in fact interacts with the promoter region around the 

PyPu box of these genes. Genes that are expressed independently of zyxin did not 

emerge with the B72 anti-sera employed for this assay (Figure 16). 
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 (A) 

 
(B) 

 
 

Figure 16: Zyxin-DNA interactions. Chromatin immunoprecipitation (antibodies used 
were against RNA polymerase II (positive control) and zyxin) analysis of 9 gene 
products. (A) Summary of 3 independent analyses (relative densitometric ratio of DNA 
bands from stretched vs static cells). Besides the zyxin-dependent genes IL-8, VCAM-1, 
HMNC1, Hey-1, HMGCR and ICAM-1, zyxin-independent gene products guanylate 
cylcase-1B3 (GUCY-1B3), clusterin/apolipoprotein J (CLU) and JAM2) and ET-1 are 
shown in exemplary agarose gels (B). 
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4.4.2 PyPu box mimicking decoy oligonucleotide (decoy ODN) 

To further corroborate the above finding, cultured EC were pre-incubated with a 

decoy ODN that mimic the PyPu box sequence in the human prepro-endothelin-1 

(ET-1) gene; edn1, 5’-GCA CTT CCT TCC TTT TCC CGA A- 3’; position -163 

to -136. As expected, the decoy ODN virtually abolished the stretch-induced 

expression of IL-8, as well as that of prepro-ET-1, another well-known stretch-

sensitive gene whereas the scrambled control ODN did not show any effect on 

expression of these two stretch-sensitive genes (Figure 17).  

 

 
 

Figure 17: Effects of a PyPu-dODN on zyxin-dependent gene expression. Real time-
PCR analysis of static and stretch-induced (6 hours) IL-8 and prepro-ET-1 mRNA 
expression in the absence (open columns) or presence of a decoy ODN (10 µmol/L; 
1 hour pre-incubation) mimicking the PyPu box of the edn1 gene (PyPu; filled columns) 
or a scrambled control ODN (scr; hatched columns) (*p < 0.05 vs. static control, 
#p < 0.05 vs. stretched control; n = 6). 

 
 

Moreover, an electrophoretic mobility shift assay (EMSA) using a probe with a 

sequence identical to that of the decoy ODN finally confirmed that in human 

cultured EC exposed to cyclic stretch a nuclear protein–DNA complex forms that 

according to supershift analysis with two different zyxin-specific antibodies 

contain zyxin (Figure 18). 
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Figure 18: Electrophoretic mobility shift (EMSA). EMSA with the PyPu box-type 
promoter ODN of the edn1 gene and nuclear extracts from static control or stretched 
(6 hours) EC, (Right panel), supershift analysis with two zyxin-specific polyclonal rabbit 
antisera (B71 and B72; the preantiserum used as a negative control was from rabbit B71) 
revealing that the retarded complex with nuclear protein from stretched EC contains zyxin 
(arrowhead). The strong unspecific band (*) was frequently detected but not stretch-
related. 

 

4.4.3 Optimisation of the stretch protocol 

To analyse what the threshold for stretch-induced gene expression is, HUVEC 

were subjected to stretch of different frequencies (0.2-2 Hz) and elongation 

(2-20% Figure 19). IL-8 expression significantly increased with all the set 

frequencies and was found to be optimal at 0.5Hz. Also, it was observed that IL-8 

expression significantly increased in EC stretched more vigorously with 10% and 

20% elongation. Elongation beyond 25% stretch resulted in a disruption of the 

cells. IL-8 expression was thus dependent on both the frequency and magnitude of 

stretch in these cells. 
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(A) 

 
(B) 

 
 

Figure 19: Analysis of the impact of the stretch protocol on IL-8 gene expression in 
cultured cells. (A) Real time-PCR analysis of static and stretch-induced (10%, 6 hours) 
IL-8 expression at 0.2 to 2 Hz. (*p < 0.05 vs. static control, n = 3-10). (B) Real time-PCR 
analysis of static and stretch-induced (0.5 Hz, 6 h) IL-8 expression at 3 to 20% stretch. 
Higher stretch levels (≥25%) resulted in disruption of the cells (not shown) (*p < 0.05 vs. 
static; n = 3-10). 
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Mechanism of stretch-induced zyxin activation 

After confirming that zyxin is crucial for stretch-induced gene expression in EC 

and SMC, the signalling events leading to stretch-induced zyxin activation moved 

into the focus of the project.  

4.5 Components of the signalling cascade activated by wall tension  

4.5.1 Effect of mechanosensitive pathway inhibitors on zyxin translocation 

Initially, several inhibitors/agonists that are known to interact with 

mechanosensitive pathways in EC, SMC or cardiomyocytes were used for a 

preliminary analysis of components potentially involved in stretch-induced 

signalling in EC. The zyxin tanslocation dependent expression of the chemokine, 

interleukin-8 (IL-8) was used as read-out.  

 
Table 21: Potential stretch induced pathways mediators and their blockers or 
stimulators. The above indicated concentration of each stimulator and/or inhibitor was 
used in cell culture. 

 
Potential mediators  Blockers/Stimulators Concentration  

TRP channel blocker Gadolinium chloride (Gd3+) 100 µmol/l 
B-type endothelin-1 (ET-1) 
receptor-specific antagonist 

BQ788 10 nmol/l 

protein kinase G (PKG) 
blocker 

8-(4-Chlorophenylthio)-guanosine 3′,5′-
cyclic monophosphoro-thioate (Rp8) 

100 µmol/l 

Rho associated protein kinase 
(ROCK) inhibitor 

Y27632 3 µmol/l 

Endothelin-1 (ET-1) - 10 nmol/l 
Atrial natriuretic peptide 
(ANP) 

- 1 nmol/l 

 
 
 

Whereas most generic inhibitors or activators of these pathways (e.g., nitric oxide 

synthesis, p38-MAP kinase or ERK1/2, not shown) had no effect, the broad 

spectrum inhibitor of TRP channels blocker, gadolinium, the B-type ET-1 receptor 

antagonist BQ788 and the protein kinase G inhibitor, Rp8 all prevented zyxin 

translocation to the nucleus in EC (Figure 20). 
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Figure 20: Representative confocal IFA showing zyxin localisation in endothelial cells treated 
with various inhibitors.  HUVEC were treated with the TRP-inhibitor Gd3+ (100 µmol/l), the ET-
1-receptor antagonist BQ788 (1 µmol/l) or the protein kinase G-inhibitor Rp8 (100 µmol/l). All 
three agents were applied 1 hour prior to the start of the stretch protocol (10%, 0.5 Hz for 6 h). The 
cells were further stained for zyxin (Cy3/red), paxillin (Cy2/green) and nuclei (DAPI/blue). Scale 
bar: 50 µm.   
 

These findings implicated the involvement of TRP channels, ET-1 and as NO 

synthase inhibition had no effect, ANP in the zyxin signalling cascade. For 

quantitative analysis, the relative amount of nuclei positive for zyxin was counted 

in each group (Figure 21).  

Furthermore, these three inhibitors also prevented zyxin-dependent IL-8 

expression and secretion (Figure 22). 
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Figure 21: Statistical summary of zyxin localisation in stretched EC treated with 
Gd3+, the ET-1 receptor antagonist BQ788 or the protein kinase G-inhibitor Rp8. 
Nuclei were counted in 3 independent experiments (200 nuclei per experiment). As 
indicated in the diagram, blank columns represent zyxin-negative nuclei and hatched 
columns represent  zyxin-positive nuclei. (*p < 0.01 vs. static control). 
 
 

 
(A)                                                                  (B) 

 

 
 

Figure 22: Effects of Gd3+, BQ788 and Rp8 on IL-8 expression and release in 
stretched EC. Analysis of stretch-induced IL-8 mRNA (A, real time RT-PCR) and 
protein (B, ELISA) expression. All agents were applied as described in Table 22. All 
three inhibitors repressed the stretch-induced release of IL-8 (*p < 0.01 vs. static control, 
#p < 0.01 vs. stretched cells, n = 3). 
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4.5.2 Effect of ANP and ET-1 on zyxin translocation 

 

As inhibition of nitric oxide synthesis, another source of PKG-activation had no 

inhibitory effect, we hypothesized, that an endogenous (thus endothelium-derived) 

natriuretic peptide acting via one of its particulate guanylyl cyclase receptors (GC-

A/B) might be responsible for stretch-induced PKG activation in an autocrine 

manner. As atrial natriuretic peptide (ANP) and the receptors GC-A and GC-B but 

not the brain (B-type) or C-type peptides or the C-type receptor are expressed in 

significant amounts in the cultured EC, the effects of ANP and ET-1 on zyxin 

activation were tested. In fact, both ET-1 (10 nmol/l) and ANP (1 nmol/l) 

mimicked the effects of stretch on the EC by leading to translocation of zyxin to 

the nucleus in a BQ788- and Rp8-inhibitable manner (doctoral thesis of Agnieszka 

Wojtowicz, Heidelberg, 2008).  

 

To confirm these findings, EC were additionaly treated with ET-1 and/or ANP, 

and immunofluorescence analysis was carried out to test if they mediate zyxin 

translocation to the nucleus. Indeed, ET-1 (10 nmol/l) as well as ANP (1 nmol/l) 

mimicked this effect of stretch on the endothelial cell phenotype, leading to 

nuclear accumulation of zyxin. This was inhibitable by BQ788 and Rp8 

(Figure 23). 

 

4.5.3 Effect of the TRP blocker gadolinium on stretch induced ANP  
         and ET-1 expression in endothelial cells 

To observe if gadolinium has an effect on stretch induced ET-1 and ANP mRNA 

expression, EC were treated with gadolinium as described before. Interestingly, 

gadolinium did not influence the stretch-induced expression of both mediators 

(Figure 24) suggesting that ET-1 and ANP mRNA expression in these cells is 

stretch but not gadolinium dependent and, hence, zyxin-dependent.  
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Figure 23: Representative confocal IFA of zyxin localisation in HUVEC. (A) The 
cells were treated with ET-1 (10 nmol/l), ANP (1 nmol/l), BQ788 (10 nmol/l), Rp8 
(100 µmol/l) alone or in combination for 6 hours. ET-1 (10 nmol/l) and ANP (1 nmol/l) 
caused the nuclear translocation of zyxin which was inhibited by BQ788 and Rp8, 
respectively. Scale bar: 50 µm.  

 

 

 

 
 
 
 
 
 
 
 
 

Figure 24: Real time PCR analysis of the effects of stretch and TRP channel 
inhibition on ET-1 and ANP mRNA expression in EC. Both, ET-1 and ANP 
expression is stretch-sensitive but insensitive to Gd3+(100 µmol/l). The cells were treated 
with Gd3+ and subjected to stretch protocol (10%, 0.5 Hz, 6 h). The mRNA expression of  
pro-ANP and ET-1 was analysed by real time PCR (*p < 0.01 vs. static control, n = 5).  
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In contrast, at the protein level, the release of both peptides was strongly inhibited 

by gadolinium (Figure 25). In conjugation with the mRNA expression data this 

suggests that the stretch-induced synthesis of both mediators but not their release 

from the EC is independent from zyxin. As both peptides are implicated in the 

stretch induced activation of zyxin, this outcome is not unexpected.  

 

(A)                                                       (B)       

 
 

Figure 25: ELISA revealing the effects of gadolinium on stretch-induced proANP 
and ET-1 release from the EC. The cells were treated with Gd3+ and subjected to stretch 
protocol (10%, 0.5 Hz, 6 h). The supernatant was collected immediately after the stretch 
protocol and ELISA was performed for (A) pro-ANP and (B) ET-1 (*p< 0.05 vs. static 
control, n = 3). 

 

4.6 Hierarchy of TRPs, ANP and ET-1 in zyxin translocation 
      pathway in endothelial cells 
 

To further understand how TRP channels, ET-1 and ANP are involved in zyxin 
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Stretch-induced nuclear accumulation of zyxin was inhibited by gadolinium. 

However, gadolinium did not have an effect on stretch-induced migration of zyxin 

when the cells were treated with exogenous ET-1 and ANP, suggesting that TRP 

channels are upstream of ET-1 and ANP in the zyxin signalling cascade. Similarly, 

the ETB-R antagonist BQ788 blocked zyxin translocation in stretched cells but 
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suggesting that ET1 is upstream of ANP but downstream of TRP channels (Figure 

27).  

Furthermore, a similar complementation experiment analysing zyxin induced IL-8 

expression confirmed these results. Analysis of IL-8 mRNA also showed that 

stretch-induced IL-8 expression was inhibited by gadolinium but was bypassed by 

exogenous ET-1 or ANP. Similarly, ETB-R antagonist BQ788 inhibited ET-1 

induced IL-8 expression but did not influence the effect on ANP (Figure 26).  

 

 

 

(A)                                                                        (B) 

 

 
 

 
Figure 26: Real time RT-PCR and ELISA for stretch-induced IL-8 expression and 
release. Analysis of (A) IL-8 mRNA (*p < 0.01 vs. static control, #p < 0.01 vs. stretched 
cells, n = 5) and (B) protein (*p < 0.05 vs. static control, #p < 0.05 vs. stretched cells, 
n = 3) in the conditioned medium of the stretched cells in the absence or presence of 
combinations of Gd3+ , BQ788 , Rp8 , ET-1 and/or ANP as indicated. Treatment with 
these substances started 1 hour prior the stretch protocol. 
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(A) 

 
(B) 

 
 
 

Figure 27: Representative confocal IFA (A) and statistical summary (B) of zyxin 
localisation in EC. IFA of zyxin  The cells were pre-treated with Gd3+ (10 µmol/l), 
BQ788 (1 µmol/l) and/or ANP (1 nmol/l) as indicated in the pictures and subjected to 
stretch protocol (6 hours, 0.5 Hz, 10%). The cells were further stained for (Cy3/red), 
paxillin (Cy2/green) and nuclei (DAPI/blue) Scale bar: 50 µm. The statistical analysis 
was done as described before (ref Figure 21, *p < 0.01 vs. static control, n = 3).  
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These data reveal that the effect of TRP inhibition can be overcome by the 

addition of exogenous ET-1 as well as ANP. Furthermore, the BQ788-mediated 

blockade of ANP-release and hence zyxin activation in stretched EC could be 

bypassed with exogenous ANP. Finally, neither ET-1 nor ANP was able to 

overcome the Rp8-mediated blockade of PKG, the effector kinase directly 

activated by GC-A/B-catalysed formation of cyclic GMP (Figure 26) suggesting 

that this step may be last before zyxin activation by PKG.  

 

4.7 Zyxin translocation in smooth muscle cells 
In order to elucidate whether zyxin translocation in SMC was induced in a similar 

manner as in EC, mouse cultured aortic SMC were exposed to same agents as the 

cultured EC. Thus SMC were treated with ET-1 (200 nmol/l), ANP (100 nmol/l) 

and BQ788 (10 µM) alone or in combination as indicated in Figure 28 for 6 hours. 

 

 
 

Figure 28: Representative confocal IFA of zyxin in SMC. The SMC were treated with 
ET-1, ANP and BQ788 alone or in combination as indicated at the concentrations 
mentioned in the text. The cells were further stained with zyxin (Cy3/red), smooth muscle 
actin (SMA/Cy2/green) and nuclei (DAPI/blue). Zyxin translocation to the nucleus was 
seen in the cells treated with ET-1 or ANP. The ETB-R antagonist inhibited zyxin 
translocation to the nucleus and this effect was overcome by the addition of ANP. Scale 
bar: 50 µm.  

 
 

Static

Static/ANPStatic/ BQ788 

Static/ ET-1 Static/ ET-1 + BQ788 

FA
Nu

SF

Nu

FA

Static/ANP + BQ788 

Nu

FA Nu

Nu

DAPI SMA Zyxin

50µm 50µm 50µm

50µm50µm50µm



RREESSUULLTTSS  

 
62 

 

Although the concentration of ET-1 and ANP needed for zyxin translocation was 

higher in SMC, principally the same reaction was observed in both cell types.   

 

4.8 TRP channels in endothelial cells  
Several TRP channels are known to be expressed in EC and SMC (Nilius 2007). 

Expression of TRP channels in HUVEC was analysed using RT-PCR. Although in 

some cases there was a slight tendency towards increased expression following 

zyxin knockdown, no significant zyxin or stretch-induced changes in TRP 

expression were detected (Figure 29).  

 

 

(A)  

 
(B) 

 
 

Figure 29:  Expression of TRP channels in EC. (A) Exemplary RT-PCR analyses of 
EC revealing the expression of various TRP channels in EC with or withour zyxin and 
(B) quantification of the expression of various TRP channels in human cultured EC with 
or without zyxin expression.  
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4.9 In situ perfusion analysis of femoral arteries derived from  
      TRP- deficient mice 
Although the effect of Gd3+ suggests the involvement of TRP channels, it was not 

clear whether a single or several channels are responsible for zyxin activation nor 

which potential candidate may be the stretch-inducible channel. Therefore, the 

effects of stretch on zyxin translocation in native EC of femoral arteries derived 

from mice deficient in TRPC1,4,5 as well in those deficient in TRPC3,6 were 

analysed (Figure 30).  

 
Immunofluorescence analysis of cross sections of the perfused vessels from 

wildtype mice showed a clear nuclear translocation of zyxin in EC which was also 

observed in the femoral arteries of TRPC1,4,5 triple knockout animals. In contrast, 

there was no prominent nuclear translocation of zyxin with the corresponding 

vessel of TRPC3,6 double knockout mice after pressure perfusion (Figure 30) 

indicating that either TRPC3 or TRPC6 is necessary for translocation of zyxin to 

the nucleus during stretch. 

 
 

 
 
Figure 30: Representative confocal IFA images of zyxin localisation in mouse 
femoral arterial EC. Pressure perfusion (150 mm Hg) caused nuclear translocation of 
zyxin in arterial EC of the (A) wildtype and (B) TRPC1,4,5 deficient but not in the (C) 
TRPC3,6 deficient mice. Parffin sections of these arteries were stained for zyxin 
(Cy3/red) and nuclei (DAPI/blue). The green channel depicts the auto-fluorescence of 
elastic vessel fibres. Scale bar: 50 µm.  
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4.10 TRPC3 mediates zyxin activation 

4.10.1 In situ analysis of TRP KO femoral arteries 

To find out the specific TRP involved in zyxin translocation, femoral arteries from 

TRPC3 and TRPC6 single knockout mice were analysed after pressure perfusion 

at 150 mm Hg as described before. In situ analysis revealed that native EC from 

TRPC3 but not TRPC6 deficient femoral arteries were defective in wall tension-

induced zyxin translocation (Figure 31).  

 

(A) 

     
(B) 

    
 

Figure 31: Representative confocal IFA images of zyxin distribution in EC of 
femoral arteries. Femoral artery sections were derived from (A) TRPC3 and (B) TRPC6 
deficient mice and were stained for zyxin (Cy3/red) and nuclei (DAPI/blue). The green 
channel depicts the auto-fluorescence of elastic vessel fibres. Scale bar: 20 µm. 

 

4.10.2 Analysis of TRP deficient SMC for zyxin translocation 

In addition, aortic SMC were isolated from TRPC3 and TRPC6 deficient mice and 

subjected to cyclic stretch (12%, 0.5 Hz, 6 h). They were stretched at 12% (unlike 
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the EC which were normally stretched between 0 and 10%) because they are more 

resistant to stretch than EC (Figure 32). 

 
(A) 

 
(B) 

   
 (C) 

 
 

Figure 32: Representative confocal IFA images of zyxin in SMC derived from TRP 
deficient mice. SMC derived from aorta of (A) wild type mice and (B) TRPC3 deficient 
mice were subjected to the stretch protocol as described in the text and IFA was 
performed for zyxin (Cy3/red), α-actin (Cy2/green), nuclei (DAPI/blue). Scale bar: 50 
µm. (C) For the statistical summary, 100 randomly selected nuclei were counted. 
(*p < 0.01 vs. static control, n = 3). 
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In line with the vessel data, aortic SMC derived from TRPC3-deficient animals 

neither displayed stretch-induced zyxin translocation (Figure 32) nor expression of 

stretch-sensitive gene products in SMC such as calponin or thrombomodulin 

(Figure 33).  

The expression of thrombomodulin increased upon stretch in the wildtype SMC 

whereas in the TRPC3 deficient mice, stretch-induced expression was suppressed. 

Furthermore, the stretch induced regulation of calponin expression was absent in 

TRPC3 deficient SMC.  

(A) 

 
 (B) 

 
 
Figure 33: Real time RT-PCR analysis of (A) calponin and (B) thrombomodulin in 
SMC. The stretch-induced regulation of calponin and thrombomodulin was absent in the 
SMC derived from TRPC3,6 and TRPC3 deficient mice. Calponin (*p < 0.01 vs. static 
control, n = 5) and thrombomodulin (*p < 0.01 vs. static control, n = 5) mRNA 
expression was analysed in response to stretch (12%, 0.5 Hz for 6 h) in cells with a wild 
type genome (WT), deficiency in TRPC3,6 (C3C6), or deficiency in one of the channels 
(C3 and C6, respectively). 
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The stretch-induced regulation of these genes in TRPC3 deficient SMC is similar 

to their stretch-induced regulation in the zyxin deficient SMC additionally proving 

the role of the TRPC3 channel in zyxin tranlocation pathway. 

 

4.11 GC-A mediates zyxin phosphorylation by PKG 

4.11.1 In situ analysis of GC-A deficient femoral arteries 

In a similar approach, it was tested which of the guanylate cyclase ANP receptor 

candidate, the A- or the B-type, respectively, was involved in 

mechanotransduction. Comparing nuclear zyxin translocation in femoral arteries 

derived from GC-A knockout mice with that of wildtype mice (Figure 34), 

revealed that GC-A is required for zyxin translocation because the EC of GC-A-

deficient pressure perfused femoral arteries did not show a prominent nuclear 

translocation of zyxin (Figure 34).   

 
  (A) 

 
 

 
 
 
 
 
 
 
 

 
(B)  

  
 
 
 
 
 
 
 
 
 
 
 
Figure 34: Representative confocal IFA images of femoral arteries. Femoral artery 
segments derived from (A) wild type mice showing the nuclear translocation of zyxin in 
arterial EC as opposed to arterial EC from (B) GC-A deficient mice. The arteries were 
perfused at indicated pressures and stained for zyxin (Cy3/red) and nuclei (DAPI/blue). 
The green channel depicts the auto-fluorescence of elastic vessel fibres. Scale bar: 20 µm.  
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Additionally, the reactivity of pressure perfused GC-A knockout femoral arteries 

to vasoactive agents such as epinephrine, acetylcholine and ET-1 was similarly 

blunted as in the zyxin knockout arteries suggesting that a similar defect in stretch-

induced signalling occurs in these vessels (Figure 35). 

 

 
Figure 35: Response of GC-A or zyxin deficient femoral arteries to changes in 
hydrostatic pressure or to vasoactive agents: Intraluminal pressure was set to 
50 mm Hg in order to allow both dilator and constrictor responses. Phenylephrine (at 
10 nmol/l, 100 nmol/l and 1 µmol/l, respectively), ET-1 (at 10 nmol/l, 100 nmol/l and 
1 µmol/l, respectively) and acetylcholine (10 nmol/l, 100 nmol/l and 1 µmol/l) were 
consecutively added extra-luminally. The femoral arteries were isolated from 5-12 week 
old mice (*p < 0.05 vs. control, n = 5). 
 

4.11.2 Analysis of GC-A deficient smooth muscle cell 

Further, aortic SMC derived from GC-A knock-out mice were analysed in the 

same way as SMC derived from TRPC knockout mice (ref 4.10.2). The analysis 

revealed that the translocation of zyxin to the nucleus of stretched GC-A knockout 

SMC was significantly low as compared to the wild type SMC further confirming 

the role for GC-A in zyxin translocation to the nucleus in response to stretch 

(Figure 36). 
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 (A) 

 
(B) 

 
(C) 

 
 
Figure 36: Representative confocal IFA images of zyxin in SMC derived from (A) 
wildtype and (B) GC-A deficient mice. The SMC were stretched (12%, 0.5 Hz for 
6 hours) and stained for zyxin (Cy3/red) α-actin (Cy2/green), nuclei (DAPI/blue). The 
nuclear localisation of zyxin was seen in the wildtype stretched SMC as opposed to the 
stretched GC-A deficient SMC. Scale bar: 50 µm. (C) For the statistical summary, 100 
randomly selected nuclei from each of 3 independent experiments were counted (*p < 
0.01 vs. static control). 
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Moreover, stretch-induced calponin (Cal) and thrombomodulin (TM) expression 

was blunted in these cells similar to SMC derived from zyxin-knockout mice 

(Figure 37).  

 

 
 

Figure 37: Real time RT-PCR analysis of thrombomodulin (TM) and calponin (Cal) 
in SMC. Stretch-dependent repression of calponin mRNA expression and up-regulation 
of thrombomodulin mRNA expression in SMC derived from age-matched wild type 
(WT) or GC-A-deficient animals (*p < 0.001 vs. static control, n = 5). 

 
In summary, a hierarchical chain of signalling events starting with TRP activation 

leading to ET-1 release leading to ANP-release and concomitant activation of 

PKG could be defined not only by physiological inhibitors but also by genetic 

knockout of the key players of this cascade, TRPC3, GC-A and zyxin itself.  

4.12 Analysis of phosphorylated amino acid residues in zyxin  
        targeted by PKG 
Presumably, ANP via its receptor GC-A leads to PKG mediated phosphorylation 

of zyxin. 2D gel-electrophoresis analysis of EC lysates and nuclear extracts were 

performed to characterise the stretch and ANP-induced phosphorylation pattern of 

zyxin through PKG. Stretching of EC in fact caused shift in pI of zyxin that was 

prevented by the broad range phosphatase (not shown). Moreover, zyxin was 

phosphorylated and co-purified with nuclear proteins only in extracts of stretched 

EC, whereas pre-treatment with the PKG-inhibitor Rp8 resulted in inhibition of 

both phosphorylation and translocation. Accordingly, ANP alone caused a PKG-

dependent accumulation of zyxin in the nucleus (doctoral thesis of Agnieszka 

Wojtowicz, Heidelberg, 2008).  
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4.12.1 Generation eGFP-zyxin constructs 

To probe for putative PKG target sites in the zyxin amino acid sequence, an in-

silico phosphorylation site analysis was performed (http://www.phosphosite.org). 

Among others serine-142 (S142), serine-344 (S344) and threonine-352 (T352) 

were selected for mutation (ref Figure 38 and Table 22). To analyse which of these 

residues were in fact PKG targets, the eGFP-zyxin expression constructs were 

generated using eGFP-pcDNA 6.2 vectors and mutated or not at the above 

mentioned sites (ref 3.1.5). 

 

 
Figure 38: GFP-zyxin constructs. The N-terminal GFP-zyxin constructs were cloned 
into TOPO vectors and mutated at S142, S344 and T352. Sequences can be found in the 
Table 22.  
 

4.12.2 Transfection of zyxin expression plasmids into HUVEC  

Initially magnetofection was used to transfect HUVEC with the zyxin expression 

plasmids but the observed transfection efficiency was very low (1 - 3%) and 

alternative transfection methods with Lipofectamine (Invitrogen), Hi-perfect 

(Qiagen) and jetPRIME (poly-plus) were performed unsuccesfully. Finally, using 

polyethylenimine (PEI) transfection (ref 3.2.3) yielded a sufficient number of cells 

expressing eGFP-zyxin which was adequate for the analysis.  

4.12.3 Effects of ANP on cells transfected with zyxin-wildtype and mutant  
           constructs 

The HUVEC were transfected with zyxin-wildtype and mutant constructs using 

PEI. As a first step to charactarise the amino acid residue phosphorylated in 

response to stretch, eGFP-zyxin transfected HUVEC were exposed to ANP 

(Figure 39) as a surrogate stimulus for stretch. Fourty eight hours post 

transfection, cells were exposed to ANP for 6 hours and fixed thereafter. Total 

zyxin was stained together with a nuclear counterstain (DAPI) to distinguish 

transfected from non-transfected cells. It was observed that transfected eGFP-

wildtype zyxin was expressed in the focal adhesions, which coincides with the 
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endogenous zyxin and upon addition of ANP, zyxin translocated to the nucleus, 

which also matches the behaviour of endogenous zyxin. 

 
Table 22: Wildtype and mutated zyxin constructs. The sequence of the mRNA with a 
single nucleotide mutation and the resulting amino acid is shown in the table. The official 
one letter nucleotide and amino acid code is given. 

 ID Mutation 

S142  
Serine 142 

mRNA:   570 agg gag aag gtg agc agt att gat ttg gag a 599  
amino acid:  R   E   K   V   S   S   I   D   L   E 
                            142   

S142G  
Serine142 (AGC) to 
Glycine 142 (GGC) 

        570 agg gag aag gtg ggc agt att gat ttg gag a 599 
             R   E   K   V   G   S   I   D   L   E 
                            142 

S142D 
Glycine-142 (GGC) to 
Aspartate-142 (GAC) 
Phospho-mimetic 

        570 agg gag aag gtg gac agt att gat ttg gag a 599 
             R   E   K   V   D   S   I   D   L   E 
                            142 

S142E 
Aspartate-142 (GAC) to 
Glutamate-142 (GAG) 
Phospho-mimetic 

        570 agg gag aag gtg gag agt att gat ttg gag a 600 
             R   E   K   V   E   S   I   D   L   E 
                            142 

S344 
Serine 344 
 
 

       1170 aac caa aac cag gtg cgc tcc cct ggg gcc c 1200   
             N   Q   N   Q   V   R   S   P   G  A                           
                                    344 

S344A 
Serine-344 (TCC) to 
Alanine-344 (GCC) 
Phospho-resistant 

       1170 aac caa aac cag gtg cgc gcc  cct ggg gcc c 1200   
             N   Q   N   Q   V   R   A   P   G   A                           
                                    344 

S344D 
Alanine-344 (GCC) to 
Aspartate-344 (GAC) 
Phospho-mimetic 

       1170 aac caa aac cag gtg cgc gac cct ggg gcc c 1200   
             N   Q   N   Q   V   R   D   P   G   A                           
                                    344 

S344E 
Aspartate-344 (GAC) to 
Glutamate-344 (GAG) 
Phospho-mimetic 

       1170 aac caa aac cag gtg cgc gag cct ggg gcc c 1200   
             N   Q   N   Q   V   R   E   P   G  A                           
                                    344 

T352 
Threonine 352 

       1200 cca ggg ccc ctg act  ctg aag gag gtg gag g 1230   
             P   G   P   L   T   L   K   E   V   E 
                            352 

T352A 
Threonine 352 (ACT) to 
Alanine 352 (GCT) 
Phosho-resistant 

       1200 cca ggg ccc ctg gct  ctg aag gag gtg gag g 1230   
             P   G   P   L   A   L   K   E   V   E 
                            352 

T352D 
Alanine 352 (GCT) to 
Aspartate 352 (GAT) 
Phosho-resistant 

       1200 cca ggg ccc ctg gat  ctg aag gag gtg gag g 1230   
             P   G   P   L   D   L   K   E   V   E 
                            352 

 

In contrast to glycine or alanine mutants of S344 and T352 (not shown), the 

correspondingly modified S142 construct did not reveal any nuclear translocation 

upon addition of ANP, indicating that this amino acid residue is in fact the target 

of PKG in response to stretch. Moreover, conversion of S142 to glutamate residue 

partially mimicked the effect of endogenous S142 phosphorylation (Figure 39, 

right panel). 
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Figure 39: Exemplary confocal IFA of zyxin in EC transfected with eGFP-zyxin constructs. 
EC were transfected with eGFP-tagged plasmid constructs with a wild type (WT), or mutated 
(serine-142 to glycine-142/S142G, serine-142 to glutamate-142/S142E) sequence. Total zyxin 
(Cy3/red) was stained together with a nuclear counterstain (DAPI/blue) Scale bar: 50 µm. 

 

4.12.4 Effect of cyclic stretch on cells transfected with zyxin-wildtype and  
           mutant constructs 

Similar experiments were performed with cyclic stretch as the stimulus for zyxin 

translocation to confirm that S142 was the actual amino acid residue 

phosphorylated in respone to stretch (Figure 40). 

 

Mutating serine-142 to glycine resulted in a translocation-incompetent zyxin 

isoform. Moreover, conversion of serine-142 into a glutamate residue partially 

mimicked zyxin phosphorylation resulting in a significant stretch-independent 

translocation of this mutant indicating that in fact this amino acid residue is 

phosphorylated by PKG during cyclic stretch.  
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(A) 

 
 

(B) 

 
 

Figure 40: Exemplary IFA (A) and statistical summary (B) of the eGFP-zyxin 
transfected HUVEC. (A) EC were transfected with eGFP-tagged plasmid constructs 
with a wild type (WT) and mutant constructs as indicated. Total Zyxin (Cy3/red) is 
stained together with a nuclear counterstain with DAPI (blue). Whereas the wild type 
constructs translocate to the nucleus in response to stretch (6 hours, 0.5 Hz, 10 % 
elongation) essentially like the endogenous protein, S142G has lost the ability to 
translocate in response to stretch, whereas S142E to some extent mimics phosphorylation 
already in static cells. Scale bar: 50 µm. (B) A minimum of 50 transfected cells were 
counted for each condition (*p < 0.01 vs. static control n=3). 
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Furthermore, to understand how the zyxin constructs mutated at S344 and T352 

act in response to stretch, these constructs were transfected into the HUVEC as 

described before. Independently of the respective mutation, these constructs were 

localised in focal adhesions under static condition and translocated to the nucleus 

upon exposure to stretch indicating that these amino acid residues do not play a 

role in stretch-induced nuclear translocation of zyxin (Figure 41).  

 

 
 

Figure 41: Statistical summary of cells transfected with S344 (A) and T352 (B). Both wild type 
and mutated S344 and T352 constructs translocated to the nucleus of the endothelial cells in 
response to stretch (6 hours, 0.5 Hz, 10%). A minimum of 50 transfected cells were counted for 
each condition (*p < 0.01 vs. static control n=3). 
 

4.13 Effect of Rho associated protein kinase (ROCK) on zyxin  
         translocation 
Rho kinases, being the effectors of Rho play an important role in the formation of 

stress fibres and focal adhesions due to their effects on myosin light chain 

phosphorylation. To find out if ROCK plays a role in zyxin translocation, HUVEC 

were incubated with the ROCK inhibitor Y27632 and then subjected to the 

standard stretch protocol. The mRNA analysis of IL-8 revealed that Y27632 

slightly inhibited stretch- induced IL-8 expression (Figure 42).  
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Figure 42: Real time RT-PCR analysis of stretch-dependent IL-8 expression. The 
cells were treated with the ROCK inhibitor Y27632 (3 µmol/l) and subjected to standard 
stretch protocol. The rock inhibitor showed a moderate but insufficient repression of 
stretch induced IL-8 expression (*p < 0.05 vs. static control n=4). 
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5. DISCUSSION  

 

Wall tension and vascular disease 

Hypertension is a major risk factor for potentially fatal diseases such as stroke, 

congestive heart failure, myocardial infarction and kidney disease (Bahiru 2008). 

The reason for this causal relationship is that the chronically elevated transmural 

pressure leads to an increase in wall tension that causes stretching of both arterial 

EC and SMC and disables the contractile capacity of the affected blood vessels. In 

addition this increase in wall tension elicits certain phenotype changes in both cell 

types aimed at antagonizing the mechanical overload and, consequently, regain 

control on vascular tone. 

Although the clinical manifestations of this pressure-induced vascular 

remodelling, a fixed increase in total peripheral resistance and a pro-inflammatory 

and synthetic SMC phenotype facilitating the development of atherosclerosis, are 

well described even in molecular details, little is known about the onset of this 

process. Consequently one aim of the present work was to characterise primary, 

thus specific, mechanisms of mechanotransduction in EC and SMC.   

5.1 Models used to apply wall tension   
As outlined in the introduction, wall tension is derived from the transmural 

pressure gradient, the diameter/radius and thickness of the vessel wall (see Fig. 1). 

Thus, an increase in either pressure or radius results in increased wall tension. 

  

Wall tension translates to stretch in cultured cells 

It is highly difficult to expose cultured cells to increased transmural pressure 

gradients. Therefore, EC as well as SMC used in this project were stressed via 

increasing the “radius-component” of WT, thus stretching them in a Flexercell 

unit. This model is well established and widely used to mimic wall tension in vitro 

(e.g., Shrinsky 1989; Cattaruzza 2004; Kakisis 2004; Lacolley 2004, Wojtowicz 

2010). Data presented in these reports show that there is a good correlation with 

data derived from in situ- or in vivo-models. 

The rhythmic or cyclic component of the stretch protocols used, however 

suggestive, should not be mistaken as an attempt to mimic the pulsatility of regular 
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blood flow. This manoeuver is solely used to prevent a compensatory reaction of 

the cultured cells observed under conditions of static stretch, i.e., evasion of 

stretch by adhesion to new attachment points. Indeed, using the Flexercell unit, 

frequencies near to human (>1 Hz) or even mouse (5+ Hz) heart rate were found 

to be lethal, most probably due to the mechanical properties of the membranes 

used and development of heat. 

 

Wall tension in perfused vessels 

To mimic wall tension in situ, perfusion of freshly isolated mouse femoral arteries 

was used using a pressure myograph system, which allowed continuous control of 

temperature, pressure and vessel diameter. In this model, transmural pressure is 

used to also increase the vessel diameter and decrease wall thickness considerably, 

thus very efficiently increase wall tension. Perfusion in this model does not show 

any pulsatile component underlining the fact that maybe in vivo pulsatility of 

blood flow plays a role, e.g., at arterial bifurcations, but that wall tension per se 

must not be pulsatile to be effective as a stimulus for mechanotransduction. 

 

In vivo analyses of zyxin-induced gene expression. 

In this thesis no in vivo experiments have been performed; this was due to an 

insufficient supply of zyxin-deficient mice. However, as after extensive back-

crossing with wild type mice, meanwhile mating of zyxin-deficient mice is 

successful, a major focus will be set in the future to confirm the importance of 

zyxin-induced gene expression after induction of hypertension in the living animal 

(see also below). 

  

5.2 Gene expression regulated by zyxin  
The zyxin-regulated transcriptome in EC and SMC 

Microarray analyses comparing quiescent with stretched EC with or without 

siRNA-mediated zyxin knockdown (Wojtowicz 2010) and of aortic cultured 

smooth muscle cells derived from wild type and zyxin-deficient mice (in this 

thesis only a comparison of zyxin-controlled pathways in EC and SMC is given, 

see Table 19 and below) confirmed that in both cell types around 70% of all 
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stretch-sensitive genes in fact are controlled by zyxin. Most of these gene products 

can be arranged in pathways which are of special importance for pressure-induced 

vascular remodelling, e.g. cell migration, proliferation, differentiation or 

apoptosis. Many of the pathways regulated are very similar in EC and SMC (Table 

19). In both cell types after 6 hours of stretch zyxin suppresses apoptosis as well as 

proliferation, and thus seems to stabilize a differentiated phenotype at least for 

relatively short periods of supra-physiological stretch. It will be of great interest to 

analyse the impact of zyxin on these pathways in vivo (see above) and after longer 

periods of time in cultured cells.  

However, some pathways, e.g., muscle contraction (SMC) or TOLL-like receptor 

signalling (EC), are regulated in a cell type-specific manner. From a teleological 

point of view this seems comprehensible. From a mechanistic point of view, this 

finding suggests a more complex regulatory function of zyxin. At least, zyxin-

dependent gene expression is not independent of the cell type-specific 

transcription machinery, but must interact with other, at this stage of the project 

unknown, transcription factors.  

Interestingly, only two pathways are regulated antidromic in EC and SMC. Both 

are suggestive and might hint to a different assignment of EC and SMC during 

early phases of supra-physiological stretch. Whereas in SMC transcriptional 

activity is generally down-regulated, EC respond with an overall increase in 

transcription. Vice versa, besides increasing sugar and fatty acid metabolism, 

SMC seem to degrade several amino acids (the pathway depicted is just an 

example), whereas EC will even decrease protein turn over/amino acid 

metabolism. This may hint towards a more regulatory function of EC aimed to 

control SMC activity and metabolically highly active SMC trying to regulate 

vascular tone. However, at this point, this is quite speculative.  

In conclusion, these microarray analyses are highly suggestive as for zyxin-

dependent transcriptome that is similar to that in dysfunctional EC and/or 

synthetic SMC. 

 

Zyxin as a transcription factor? 

Zyxin binds to a promoter motif, a stretch of pyrimidine bases termed pyrimidine-

purine box (PyPu box). This motif, which is not defined by an exact sequence but 
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by the base content, could be found in all gene promoters shown to be regulated by 

zyxin. Moreover, using specific decoy-ODN and EMSA, this motif could be 

shown to be functional. Thus, zyxin may act as a true transcription factor, most 

probably via its zinc finger LIM-domains, but it cannot be ruled out that the 

protein is coordinated to the PyPu-box by an up to now not unknown factor. 

Potential candidates may be the poly-pyrimidin tract binding protein (Sawicka 

2008) and matrin 3 (Matsushima 1996; Valencia 2007; both proteins are known to 

bind to a stretch of pyrimidine bases.  

 

5.3 The endothelial cell response to stretch – a defined signalling 
cascade  

 

Analysis of the localisation of zyxin revealed that the protein was in fact localised 

exclusively to focal adhesions and stress fibres in both EC and SMC under basal 

conditions. However, upon exposure to cyclic stretch, zyxin associates more 

prominently with stress fibres (Cattaruzza 2004; Yoshigi et al, 2006) and, most 

intriguingly, rapidly translocates to the nucleus (Cattaruzza 2004, Wojtowicz 

2010). Subsequently, this stretch-induced nuclear translocation of zyxin results in 

distinct changes of gene expression corroborating our assumption that zyxin in 

fact specifically transduces changes in wall tension to the nucleus.  

In the course of this study the signalling events leading to the release of zyxin 

from focal adhesion contacts and its redistribution to the nucleus could be 

elucidated. A hierarchical chain of events leads to the nuclear translocation of 

zyxin in response to stretch namely, stretch-induced activation of TRPC3 induces 

ET-1 release from EC which through the ETB–R elicits the subsequent release of 

ANP. ANP in turn elicits a GC-A-mediated rise in intracellular cGMP leading to 

protein kinase G (PKG) activation. Subsequent PKG phosphorylation of zyxin at 

serine-142 enables its dissociation from the focal adhesions and trans-location to 

the nucleus. This cascade it outlined below (Figure 43). 
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Figure 43: Stretch-induced signalling pathway leading to the nuclear translocation 
of zyxin. Stretch induces the TRP-C3-channel-induced release of endothelin-1 (ET-1) 
and, in an ETB-R-mediated manner, Atrial Natriuretic peptide (ANP). ANP through 
NPR-A receptor mediated the activation of the protein kinase PKG leading to 
phosphorylation of Zyxin at serine-142 and finally, nuclear translocation of Zyxin, it 
induces endothelial gene expression in response to stretch.  

 
 
Although well defined, some aspects of endothelial mechanotransduction remain 

controversial. Among those is the actual sensing of stretch, the capacity of EC to 

release ANP and, finally, phosphorylation of zyxin by other kinases. These aspects 

will be shortly discussed below.   
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TRPC3 as a mechanosensor 

Although the role of TRP channels in the pressure-induced myogenic response 

(Bayliss 1902; Davis & Hill 1999; Vennekens 2010) is well characterised, nothing 

is known about their role in early phases of pressure-induced vascular 

remodelling. Here we have analysed the role of TRPC3 in stretch-induced 

endothelial mechanotransduction. However, it could not be shown, whether 

TRPC3 is a genuine mechanosensor or whether the cannel is activated by the true 

(upstream) sensor of stretch. 

Principally, TRP channels can be mechanically gated and, thus, act as force 

sensors themselves (shown for TRPM3) or are mechanically sensitive, thus 

activated by second messengers downstream of the true force sensor(s) (TRPC6, 

Voets 2005; Shimizu 2007; Christensen 2007; Nilius 2007).  

Some evidence suggests that mechanically sensitive channels are activated by 

signalling pathways downstream of a G-protein, namely Gq-protein-coupled 

receptors such as the angiotensin II type-2 receptor (AT2) that may in fact be a real 

mechanosensor (Laher 1993; Schnitzler 2008). Intriguingly, the AT2 receptor in 

this case is activated without its generic ligand-angiotensin II, leading to activation 

of phospholipase C and release of diacylglycerol, the TRPC-activating agent in 

this signalling process (Clapham, 2003, Hofmann et al, 1999; Schnitzler 2008). 

In case of EC, TRPC3 and stretch it is an attractive speculation that a similar 

mechanism as described for TRPC6 and AT2 may exist, placing the ETB-R up- 

and/or downstream of TRPC3 (Figure 44). 

 

 
 

Figure 44: Model of a dual function of the ETB-R in endothelial 
mechanotransduction. ETB-R might play a role upstream of the TRPC3 channel via Gαq 
and also downstream to TRPC3 channel in eliciting the release of ANP.  
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Another attractive hypothesis how TRPC3 may be activated by stretch without 

being the actual mechanosensor is the recruitment of the receptor to the cell 

membrane. Again, this mechanism up to now cannot be analysed because no 

antibodies for, e.g. immunofluorescence analysis are available. 

However, TRPC6 has been shown to respond to pressure stimuli in patches even 

in the presence of phospholipase-C blockers, arguing against the DAG-mediated 

activation (Spassova 2006). Therefore, the mechanism through which a TRP 

channel is activated and regulated is still controversial.  

 
Endothelial release of ANP and the endothelial ANP system 

Three natriuretic peptides (ANP, BNP, CNP) with three functionally distinct 

membrane receptors the guanylate cyclases GC-A and GC-B and the G-protein-

coupled receptor NPR-C are known in mammalians. Besides the systemic function 

of ANP, a decrease in blood volume via renal sodium/water secretion (described 

in the introduction), local ANP-systems have been characterised, predominantly in 

bone (Schulz 2005) and brain (Shirakami 1993). 

Interestingly, the atrial release of ANP and BNP into the blood stream involves a 

wall tension-induced release of ET-1 from atrial endothelial cells that, in turn, 

causes ANP release from the cardiac myocytes by activation of the ETA-R 

(Thibault 1994). ANP binds then to GC-A and GC-B in the kidney, the brain and 

several other tissues including the vasculature (Suga 1992; Abraham 1994). Thus, 

multiple cell types are involved in ANP-mediated volume control. 

Intriguingly, systemic volume control by ET-1/ANP seems to be perfectly 

mimicked at the single cell level in EC with the exception of the effector 

mechanisms, sodium secretion vs. zyxin activation. However, endothelial release 

of proANP and its conversion to ANP is controversial as normally (pro)CNP 

(Chen 1998) is regarded to be the endothelial variant of natriuretic peptides, 

whereas ANP is thought to be strictly derived from the heart (Cody 1986; Dietz 

2005). In contrast, our group was able to demonstrate proANP mRNA expression 

by and proANP-release from human cultured endothelial cells. This, however, was 

exclusively restricted to conditions of stretch. As in the literature, our EC did 

neither express nor release noteworthy amounts of ANP under static conditions. 

Therefore, it is comprehensible that our findings only seemingly contradict the 

commonly accepted view of EC as cells without ANP expression. However, as 
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HUVEC, used throughout the project are venous endothelial cells, it cannot be 

ruled out that in endothelial cells from other sources CNP may as well be 

responsible for mechanotransduction. Taken together, although the type of EC-

derived natriuretic peptide may be controversial, this is of little consequence for 

the actual signalling pathway defined in this thesis. 

The control of salt and water homeostasis and local vascular mechanotransduction 

thus seem to share basic signalling mechanisms in order to respond to the same 

stimulus: stretch.  

 

Phosphorylation of zyxin by PKG at serine 142 

Phosphorylation is a dynamic regulatory mechanism that affects the function of a 

protein (Cohen 2001; Pondugula 2009). During stretch, zyxin phosphorylation 

leads to its dissociation from the focal adhesions and translocation to the nucleus. 

Zyxin was found to be phosphorylated at serine-142 by PKG using transfection-

based expression of phosphorylation-incompetent and phosho-mimetic zyxin 

isoforms. To render the zyxin translocation-incompetent, a phosphorylation 

resistant amino acid residue such as glycine was introduced instead of the wild 

type amino acid residue. The constructs mutated at S142 to G142 did not 

translocate to the nucleus upon addition of ANP or stretch (Figure 39 and 40). To 

confirm that this is not an unspecific reaction, the constructs were further mutated 

to phosphorylation-mimetic mutants by introducing an acidic residue such as 

glutamate (E142). Moreover, other mutations at serine-344 and threonine-352 did 

not have any effect on zyxin activation further confirming the specificity of serine-

142 as the amino acid addressed by PKG.  

As zyxin has been characterised as a phospho-protein previously, other kinases 

may be functionally interesting for zyxin activation. Among those, the kinase Akt 

(Chan 2007) stands out as it has been shown to phosphorylate zyxin at serine-142. 

Akt itself has been shown to be activated in response to fluid shear stress 

(Dimmeler 1998). Moreover, NO is well characterised to cause an increase in 

intracellular cGMP levels and, thus, activate PKG (Martin 1999). Surprisingly, 

recent experiments showed that HUVEC subjected to fluid shear stress do not 

respond with zyxin translocation while NO-donors, on the contrary, as a shear 

stress surrogate, inhibit zyxin translocation.This apparant paradox – expected from 
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a teleological point of view but surprising from the molecular perspective needs 

further experimental evaluation. At this point in time differential 

compartmentalization and up to now unknown protein-protein interactions seem to 

be the best hypotheses to explain these puzzling findings. 

 

Rho-associated Protein Kinase (ROCK) 

ROCK, a downstream effector kinase of the small GTPase Rho, plays an 

important role in EC signalling in response to inflammation (Mong 2009) and also 

in stretch (Tsuda 2002). Moreover, ET-1 activates the Rho-ROCK pathway via the 

G-protein Gα12/13 in SMC leading to contraction via phosphorylation of myosin 

light chain (Riento 2003). 

The role of ROCK in endothelial mechanotransduction was tested using its 

inhibitor Y27632. Although to some extent effective in inhibiting stretch-induced 

IL-8 expression in EC, the results were not fully conclusive so that at this stage it 

cannot be decided whether the ETB-R-mediated release of ANP is induced via 

activation of Gαq11 or Gα12/13 or maybe both G-proteins together (see also Figure 

44 above). 

 

The stretch response in other cell types 

The experiments conducted on SMC using ANP, ET-1 and the same set of 

inhibitors revealed that SMC have the same signalling cascade for zyxin 

activation. Although this makes sense from a teleological point of view and, 

moreover, in vivo endothelium-derived ET-1 and ANP will be available, a 

question remains open:  

How can SMC alone possess stretch-induced zyxin activation as these cells do not 

express ANP? This question is further substantiated as also epithelial cells and 

primary cultured SMC derived from the urinary bladder show stretch-induced 

zyxin activation as we could show in the group. 

Besides technical reasons, as, e.g., EC co-cultured with primary SMC in our 

model (isolated perfused artery), it might be that (i) these cell types indeed can 

respond with ET-1/ANP expression in response to stretch (as at least known for 

epithelial cells (Novaira 2006) or that (ii) alternative kinases and, thus, 

endogenous stimuli may account for zyxin activation in these cells. The overall 
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mechanism, give or take molecular details, however, seems to be similar in many 

cell types experiencing high levels of wall tension in vivo such as lung epithelia, 

bladder SMC and, naturally vascular EC and SMC. 

5.4 Stretch-induced zyxin activation and pressure-induced  
      vascular remodelling  
What is the impact of zyxin translocation on pressure-induced vascular 

remodelling? Although the results presented here and in other reports (Cattaruzza 

2004; Wojtowicz 2010; Kato 2005; Nix 1997) plus preliminary findings from our 

group comparing vessels, the lung and the urinary bladder from wild type and 

zyxin-deficient mice hint towards a general role of zyxin in wall tension-induced 

signalling and organ-homeostasis in the face of mechanical (over)load, systematic 

analysis of the role of zyxin in hypertension and pressure-induced remodelling are 

necessary to proof the transferability of the in vitro data presented here into the in 

vivo situation. However, analyzing the changes in gene expression brought about 

by zyxin, a dual role of zyxin in early wall tension-induced signalling is highly 

suggestive. On the one hand, proliferation as well as apoptosis are attenuated and 

SMC are rendered more susceptible to exogenous constrictors such as ET-1 or 

norepinephrine and, on the other hand, pro-inflammatory and, in the long run, 

growth-promoting and de-differentiating pathways are activated. 

5.5 Perspective  
The present study provides a conclusive description of a specific wall tension-

induced mechanotransduction mechanism in endothelial cells. Moreover, a stretch-

sensitive promoter element (the PyPu-box) that coordinates zyxin-induced gene 

expression could be identified and characterised. 

 

Based on these findings, several questions arise that will be addressed in the 

future: 

 

1. What is the functional impact of zyxin activation in vivo? Having 

overcome the insufficient supply of zyxin-deficient mice in the last few 

months, this question will be approached by employing a simple 

hypertension model with wild type and zyxin-deficient mice. 
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2. What is the real mechanosensor? Although technically demanding, it will 

be attempted to analyse stretch-induced TRPC3 activation in EC. 

3. Functional antagonism between fuid shear stress and wall tension. As 

shortly discussed above, the inhibitory effect of NO, hence fluid shear 

stress, on zyxin activation will be further explored: How do both 

hemodynamic forces interact at the level of mechanotransduction in EC? 
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APPENDIX 

 

Sequence analysis of zyxin mRNA and the corresponding amino acid. The 

amino acids targeted for mutation are highligted in yellow.  

   1 cccgccccct ctcttctccc tccctcctcc ttccgtgtgt ccctccccgc ccggctggag 
 
  61 gctgctccgg accgggacgc agagtctgcg gacccggcgc cgaggcggcc acccgagacg 
 
 121 cggcgcgcac gctccggcct gcgcagcccg gcccggccat ggcggccccc cgcccgtctc 
                                               M   A  A  P   R  P  S  
 181 ccgcgatctc cgtttcggtc tcggctccgg ctttttacgc cccgcagaag aagttcggcc 
     P  A  I  S   V  S  V   S  A  P   A  F  Y  A   P  Q  K   K  F  G 
 241 ctgtggtggc cccaaagccc aaagtgaatc ccttccggcc cggggacagc gagcctcccc 
     P  V  V  A   P  K  P   K  V  N   P  F  R  P   G  D  S   E  P  P  
 301 cggcacccgg ggcccagcgc gcacagatgg gccgggtggg cgagattccc ccgccgcccc 
     P  A  P  G   A  Q  R   A  Q  M   G  R  V  G   E  I  P   P  P  P   
 361 cggaagactt tcccctgcct ccacctcccc ttgctgggga tggcgacgat gcagagggtg 
     P  E  D  F   P  L  P   P  P  P   L  A  G  D   G  D  D   A  E  G 
 421 ctctgggagg tgccttcccg ccgccccctc ccccgatcga ggaatcattt ccccctgcgc 
     A  L  G  G   A  F  P   P  P  P   P  P  I  E   E  S  F   P  P  A  
 481 ctctggagga ggagatcttc ccttccccgc cgcctcctcc ggaggaggag ggagggcctg 
     P  L  E  E   E  I  F   P  S  P   P  P  P  P   E  E  E   G  G  P  
 541 aggcccccat accgccccca ccacagccca gggagaaggt gagcagtatt gatttggaga 
     E  A  P  I   P  P  P   P  Q  P   R  E  K  V   S  S  I   D  L  E  
                                                  142 
 601 tcgactctct gtcctcactg ctggatgaca tgaccaagaa tgatcctttc aaagcccggg 
     I  D  S  L   S  S  L   L  D  D   M  T  K  N   D  P  F   K  A  R   
 661 tgtcatctgg atatgtgccc ccaccagtgg ccactccatt cagttccaag tccagtacca 
     V  S  S  G   Y  V  P   P  P  V   A  T  P  F   S  S  K   S  S  T 
 721 agcctgcagc cgggggcaca gcacccctgc ctccttggaa gtccccttcc agctcccagc 
     K  P  A  A   G  G  T   A  P  L   P  P  W  K   S  P  S   S  S  Q 
 781 ctctgcccca ggttccggct ccggctcaga gccagacaca gttccatgtt cagccccagc 
     P  L  P  Q   V  P  A   P  A  Q   S  Q  T  Q   F  H  V   Q  P  Q 
 841 cccagcccaa gcctcaggtc caactccatg tccagtccca gacccagcct gtgtctttgg 
     P  Q  P  K   P  Q  V   Q  L  H   V  Q  S  Q   T  Q  P   V  S  L 
 901 ctaacaccca gccccgaggg cccccagcct catctccggc tccagcccct aagttttctc 
     A  N  T  Q   P  R  G   P  P  A   S  S  P  A   P  A  P   K  F  S  
 961 cagtgactcc taagtttact cctgtggctt ccaagttcag tcctggagcc ccaggtggat 
     P  V  T  P   K  F  T   P  V  A   S  K  F  S   P  G  A   P  G  G  
1021 ctgggtcaca accaaatcaa aaattggggc accccgaagc tctttctgct ggcacaggct 
     S  G  S  Q   P  N  Q   K  L  G   H  P  E  A   L  S  A   G  T  G 
1081 cccctcaacc tcccagcttc acctatgccc agcagaggga gaagccccga gtgcaggaga 
     S  P  Q  P   P  S  F   T  Y  A   Q  Q  R  E   K  P  R   V  Q  E  
1141 agcagcaccc cgtgccccca ccggctcaga accaaaacca ggtgcgctcc cctggggccc 
     K  Q  H  P   V  P  P   P  A  Q   N  Q  N  Q   V  R  S   P  G  A   
                                                        344 
1201 cagggcccct gactctgaag gaggtggagg agctggagca gctgacccag cagctaatgc 
     P  G  P  L   T  L  K   E  V  E   E  L  E  Q   L  T  Q   Q  L  M  
                 352     
1261 aggacatgga gcatcctcag aggcagaatg tggctgtcaa cgaactctgc ggccgatgcc 
     Q  D  M  E   H  P  Q   R  Q  N   V  A  V  N   E  L  C   G  R  C   
1321 atcaacccct ggcccgggcg cagccagccg tccgcgctct agggcagctg ttccacatcg 
     H  Q  P  L   A  R  A   Q  P  A   V  R  A  L   G  Q  L   F  H  I 
1381 cctgcttcac ctgccaccag tgtgcgcagc agctccaggg ccagcagttc tacagtctgg 
     A  C  F  T   C  H  Q   C  A  Q   Q  L  Q  G   Q  Q  F   Y  S  L 
1441 agggggcgcc gtactgcgag ggctgttaca ctgacaccct ggagaagtgt aacacctgcg 
     E  G  A  P   Y  C  E   G  C  Y   T  D  T  L   E  K  C   N  T  C   
1501 gggagcccat cactgaccgc atgctgaggg ccacgggcaa ggcctatcac ccgcactgct 
     G  E  P  I   T  D  R   M  L  R   A  T  G  K   A  Y  H   P  H  C 
1561 tcacctgtgt ggtctgcgcc cgccccctgg agggcacctc cttcatcgtg gaccaggcca 
     F  T  C  V   V  C  A   R  P  L   E  G  T  S   F  I  V   D  Q  A  
1621 accggcccca ctgtgtcccc gactaccaca agcagtacgc cccgaggtgc tccgtctgct 
     N  R  P  H   C  V  P   D  Y  H   K  Q  Y  A   P  R  C   S  V  C 
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1681 ctgagcccat catgcctgag cctggccgag atgagactgt gcgagtggtc gccctggaca 
     S  E  P  I   M  P  E   P  G  R   D  E  T  V   R  V  V   A  L  D 
1741 agaacttcca catgaagtgt tacaagtgtg aggactgcgg gaagcccctg tcgattgagg 
     K  N  F  H   M  K  C   Y  K  C   E  D  C  G   K  P  L   S  I  E  
 
1801 cagatgacaa tggctgcttc cccctggacg gtcacgtgct ctgtcggaag tgccacactg 
     A  D  D  N   G  C  F   P  L  D   G  H  V  L   C  R  K   C  H  T   
1861 ctagagccca gacctgagtg aggacaggcc ctcttcagac cgcagtccat gccccattgt 
     A  R  A  Q   T   
1921 ggaccaccca cactgagacc acctgccccc acctcagtta ttgttttgat gtctagcccc 
 
1981 tcccatttcc aacccctccc tagcatccca ggtgccctga cccaggaccc aacatggtct 
 
2041 agggatgcag gatccccgcc ctggggtctg gtcctcgccc atcctgcagg gattgcccac 
 
2101 cgtcttccag acaccccacc tgaggggggc accaggttta gtgctgctgc tttcactgct 
 
2161 gcacccgcgc cctcggccgg ccccccgagc agcctttgta ctctgcttgc ggagggctgg 
 
2221 gagaccctcc aggacattcc caccctcccc catgctgcca agttgtagct atagctacaa 
 
2281 ataaaaaaaa accttgtttt ccagaaaaaa aaaaaaaaaa aaaaa 
 
 

 

Examplary figures showing the nuclei of the cells considered for 

quantification. 

  (A)                                                           (B) 

 

 

Figure 45: Representative confocal immunofluorescence analysis of zyxin localisation in (A) 
quiescent and (B) stretched HUVEC. The arrows depicting non-nuclear stress fibres over the nuclei 
of quiescent cells (thus, such nuclei are counted as negative) and the freckle-like pattern in the 
stretched nucleus (counted as zyxin-positive). The left panel always is an overview (Bar: 50 µm), 
the right pictures are enlargements of nuclei. Scale bar: 10 µm.  
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