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1 Summary 

The insulin-like growth factor (IGF) system was intensively studied over the 

past decades because it has an impact on numerous key aspects of life. In 

Xenopus the IGF pathway is required for head and neural development. Biological 

actions of IGFs are mediated through their receptors and IGF signals are 

modulated by insulin-like growth factor binding proteins (IGFBPs) in a complex 

manner that is poorly understood. Insulin-like growth factor binding protein-related 

proteins (IGFBP-rPs) are a heterogeneous class of proteins that share a 

conserved N-terminal insulin-like growth factor binding (IB) domain with 

conventional IGFBPs. Although it was shown that some IGFBP-rPs can bind IGFs 

in vitro, it is not known if their IGF interaction is physiological relevant. 

This work demonstrated for the first time that the Xenopus IGFBP-rPs mixer 

inducible gene30 (Mig30) and insulin-like growth factor binding protein-related 

protein10 (IGFBP-rP10) are components of the IGF system and that they act as 

IGF signalling-dependent modulators of the Wnt and BMP signalling pathways. 

Gain of function experiments in Xenopus embryos and rat chondrocytes showed 

that Mig30 can act as an activator or inhibitor of IGF signalling. For the inhibition of 

IGF1 the N-terminal IB domain of Mig30 is essential whereas for antagonising 

IGFBP5 function the C-terminal IgC2 domain is required. Under experimental 

conditions in which Mig30 and IGFBP-rP10 augment IGF signalling the BMP 

pathway is inhibited. Only Mig30 however was able to inhibit the Wnt/β-catenin 

pathway in an IGF-dependent manner.  

The endogenous functions of Mig30 and IGFBP-rP10 in Xenopus embryos were 

determined by an antisense morpholino oligonucleotide mediated knockdown 

strategy. These experiments revealed that both proteins act as inhibitors of IGF 

signalling. Inhibition of Mig30 and IGFBP-rP10 function promoted Wnt/β-catenin 

and BMP signalling. Cells in Mig30 and IGFBP-rP10 deficient Xenopus embryos 

failed to differentiate into epidermis and neural tissue and maintained a precursor 

state which is not yet committed to epidermal or neuronal lineage. The function of 

Mig30 and IGFBP-rP10 therefore is to regulate in an IGF-dependent manner the 

spatial and temporal activity of Wnt and BMP signalling. These pathways are 

essential for the specification of neural plate tissue and neural crest cells as well, 

as for neuronal differentiation. 
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Zusammenfassung 

Das System der insulinähnlichen Wachstumsfaktoren (IGFs) wurde über die 

letzten Jahre intensiv erforscht, weil es viele Schlüsselaspekte des Lebens 

beeinflusst. Die biologischen Funktionen der IGFs werden über ihre Rezeptoren 

vermittelt und IGF Signale werden von insulinähnlichen 

Wachstumsfaktorbindeproteinen (IGFBPs) in komplexer Weise moduliert, die noch 

wenig verstanden ist. Insulinähnliche Wachstumsfaktorbindeprotein-verwandte 

Proteine (IGFBP-rPs) sind eine heterogene Proteinklasse, die mit den IGFBPs 

eine konservierte N-terminale Wachstumsfaktor-Bindedomäne (IB) gemeinsam 

haben. Obwohl es bekannt ist, dass einige IGFBP-rPs IGFs in vivo binden können, 

ist es nicht bekannt ob diese Interaktionen physiologisch relevant sind. 

Diese Arbeit demonstriert zum ersten Mal, dass die Xenopus IGFBP-rPs, 

Mig30 und IGFBP-rP10, Komponenten des IGF Systems sind und dass sie als 

IGF Signal-abhängige Modulatoren der Wnt und BMP Signalwege agieren. 

Überexpressions Experimente in Xenopus Embryonen und Ratten Chondrocyten 

zeigen, das Mig30 als Aktivator und Inhibitor des IGF Signalweges fungieren kann. 

Für die Inhibition von IGF1 ist die N-terminale IB Domäne essentiell. Die Funktion 

von IGFBP5 wird dagegen durch die C-terminale IgC2-Domäne von Mig30 

inhibiert. Unter experimentellen Bedingungen in welchen Mig30 und IGFBP-rP10 

IGF Signale unterstützen ist der BMP Signalweg blockiert. Der Wnt/ß-catenin 

Signalweg kann in IGF-abhängiger Weise nur von Mig30 blockiert werden.  

Die endogenen Funktionen von Mig30 und IGFBP-rP10 wurden in Xenopus 

Embryonen mittels einer Gen-Knockdown Strategie analysiert. Diese Experimente 

zeigen, dass beide Proteine als Inhibitoren des IGF Signalweges fungieren. 

Inhibition von Mig30 und IGFBP-rP10 Funktion begünstigt Wnt/ß-catenin und BMP 

Signale. Zellen mit reduzierter Mig30 oder IGFBP-rP10 Funktion in Xenopus 

Embryonen können nicht in Epidermis und Neuralgewebe differenzieren und 

verharren in einem Vorläufer Stadium in dem epidermal und neuronal noch nicht 

spezifiziert sind. Die Funktion von Mig30 und IGFBP-rP10 besteht darin die 

räumliche und zeitliche Aktivität von Wnt und BMP Signalen in einer IGF-

abhängigen Weise zu kontrollieren. Diese Signalwege sind essentiell für die 

Spezifikation von Neuralplatte, Neuralleiste und auch für die neuronale 

Differenzierung.  
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2 Introduction 

The insulin-like growth factor (IGF) system is ubiquitous and plays an important 

role in normal physiology. Numerous diseases, like cancer, diabetes and 

malnutrition are linked to abberations in the IGF system. Extensive research over 

the last decades has increased the knowledge of the diverse biological actions of 

the insulin-like growth factors (Pollak et al., 2004; Monzavi and Cohen, 2002; 

Jones and Clemmons, 1995). Biological actions of IGFs are mediated through 

their receptors and modulated by the members of the insulin-like growth factor 

binding protein (IGFBP) family (rev in Jones und Clemmons, Firth und Baxter). 

Insulin-like growth factor binding protein-related proteins (IGFBP-rPs), like IGFBPs 

contain an insulin-like growth factor binding (IB) domain and can bind IGFs in vitro 

although their physiological relevance in IGF signalling is not known (Kim et al., 

1997; Baxter, 1994).  

Most work on the IGF system was done in mouse and cell culture models and 

provided an important insight into the mechanisms of IGF signalling. However the 

mammalian system is also limited due to functional redundancy (Murphy, 1998). 

Research on the IGF system in Xenopus laevis gave evidence that IGF signalling 

is required for head and neural induction and plays a role in morphogenetic 

movements. Mechanistically IGF performs these functions by interaction with Wnt 

and BMP signalling pathways, which are important in early patterning of the 

Xenopus embryo. An additional advantage of Xenopus is that the IGF system is 

much smaller than the mammalian IGF system, reducing the possibility of 

redundancy (Pera et al., 2001; Richard-Parpaillon et al., 2002; Pera et al., 2003).  

Functional studies of IGFBP-rPs in Xenopus showed that IGFBP-rPs also 

interact with Wnt and BMP signalling (Abreu et al., 2002; Mercurio et al., 2004; 

Latinkic et al., 2003; Hayata et al., 2002). Recent data indicate IGF-dependent and 

-independent actions of the IGFBP-rP, mixer inducible gene30 (Mig30; Kuerner, 

2008). Like IGFs, Mig30 plays a role in morphogentic movements, neural 

development and can inhibit Wnt signalling.  

This work therefore exploits the advantages of the model system Xenopus 

laevis, to functionally analyse the two IGFBP-rPs Mig30 and IGFBP-rP10. 

Understanding the signalling mechanism in Xenopus, should then help to analyse 

the biological actions in the more complex mammalian system. 
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2.1 Short overview of the mammalian IGF system 

The mammalian insulin-like growth factor (IGF) system is one of the most 

studied growth factor and cytokine systems known, because the system is 

involved in growth, development, cell differentiation, survival and metabolism and 

found in most, if not all tissues (LeRoith and Yakar, 2007). The system is complex 

and comprises the two ligands insulin-like growth factor1 (IGF1) and insulin-like 

growth factor2 (IGF2), three receptors namely IGF1R, IGF2R and InR, six 

IGFBPs, namely IGFBP1-6 and more than ten IGFBP-rPs. The physiological 

significance of IGFBP-rPs to the IGF system is controversial. It has been shown 

that some IGFBP-rPs actually can bind IGFs but for most IGFBP-rPs only IGF- 

independent actions are described.  

2.1.1 IGFs and their receptors 

The IGFs, IGF1 and IGF2 are small hormone peptides of approximately 7 kDa, 

which are closely related to insulin (Claeys et al., 2002). They were first found 

1957 in serum, as mediators of growth-stimulating activity of growth hormone (GH; 

Daughaday et al., 1972). IGFs are widely expressed and found in relatively high 

doses in circulation, as well as in extravascular fluids. IGFs have characteristics of 

both circulating hormone and tissue growth factor. Circulating IGFs are mainly 

produced by the hepatic system (Jones and Clemmons, 1995; Firth and Baxter, 

2002). IGFs produced in the periphery only have minor effects on the levels of 

circulating IGFs, performing their functions by autocrine and/or paracrine 

mechanisms (Yakar et al., 1999; LeRoith et al., 2001). Regulation of IGFs is 

complex.  Hepatic IGF1 is mainly regulated by growth hormone, insulin and 

nutritional status. Several factors in addition to growth hormone regulate 

extrahepatic IGF1 expression. IGF2 is not as tightly regulated by growth hormone, 

although it is expressed in the liver and extrahepatic tissues. In the regulation of 

IGF2 expression imprinting plays an important role (LeRoith and Roberts, 2003; 

Pollak et al., 2004).  

IGF signalling is transduced into the cells by binding of IGFs to their specific 

receptors. In mammals there are three receptors known to interact with IGFs, 

namely the Insulin-like growth factor 1 receptor (IGF1R), the Insulin receptor (InR) 

and the Insulin-like growth factor2 receptor (IGF2R).  
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IGF2R is an approximately 600 kDa, monomeric transmembrane receptor with 

a large extracellular, but no signalling domain. It specifically binds IGF2 and 

internalises the growth factor for degradation in the lysosomes, thereby controlling 

the level of circulating IGF2 (Morgan et al., 1987; Nakae et al., 2001; Ghosh et al., 

2003).  

IGF1R and InR belong to the family of receptor tyrosine kinases and are 

recognized as the mediators of IGF signalling. IGF1R and InR are composed of a 

α2β2 heterotetrameric structure. An αβ-heterodimer is formed by proteolysis of a 

precursor peptide and subsequent linkage by disulfide bonds. The mature receptor 

results after linkage of two αβ-heterodimers by secondary disulfide bonds. The 

α subunits are entirely found extracellular and form the ligand binding domain, 

while the β-subunits are largely intracellular, containing a transmembrane domain 

and the tyrosine kinase domains and associated motifs required for signal 

transduction (Adams et al., 2000; Siddle et al., 2001; Butler et al., 1998). 

Ligand binding to the α-subunits of the receptor induces a conformational 

change that allows ATP binding and leads to autophosphorylation, which is 

followed by phosphorylation of additional tyrosine residues in the β-subunits, 

further increasing the kinase activity of the receptor. The phosphorylation of 

residues in the β-subunits creates high affinity binding sites for signalling/docking 

proteins. Recruitment of insulin receptor substrates (IRS) and other proteins leads 

to the activation of the phosphoinositol 3-kinase (PI3K) and/or the mitogen 

activated protein kinase (MAPK) signalling pathways. The ability of the receptors 

to recruit and activate a number of different docking proteins is the reason why 

IGF signalling can regulate so many different processes in diverse tissues. The 

expression of these docking proteins differs between tissues and throughout 

development. Additionally these docking proteins are shared, not only by IGF1R 

and IR receptor but also by other RTKs and members of the cytokine receptor 

family, adding an additional mode of regulation (Butler et al., 1998; Adams et al., 

2000).  

IGF1R is ubiquitously expressed, binds IGF1 with high affinity, IGF2 with 

medium affinity and insulin with low affinity and is therefore the main mediator of 

IGF signalling (Frasca et al., 1999; Baker et al., 1993; Liu et al., 1993). An 

alternately spliced form of the IR (IR-A lacking exon 11) can bind IGF2 with high 

affinity and plays an important role in embryonic development (Frasca et al., 1999; 
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Pandini et al., 2005). Additionally, hybrid receptors comprised of an insulin 

αβ hemireceptor and an IGF1 αβ hemireceptor add to the divergent actions of 

insulin and IGFs (Adams et al., 2000; Siddle et al., 2001) 

2.1.2 IGFBPs  

In biological fluids IGFs are normally bound to IGFBPs, because free IGFs 

have a very short half-life of approximately 10 minutes. To date there are six 

mammalian IGFBPs known, which are important modulators of IGF activity and 

availability. IGFBPs are small secreted proteins that share a highly conserved 

structure, with three domains of approximately equal size. The cysteine rich, 

amino-terminal (N-terminal) domain contains the consensus sequence which is 

important for IGF binding and is highly conserved. The carboxy-terminal 

(C-terminal) thyroglobulin type 1(TY) domain is also cysteine rich and takes part in 

IGF binding. Other functionally important subdomains are located in the C-terminal 

domain of various IGFBPs. For example an RGD- integrin binding motif, basic 

motifs with heparin binding activity and a nuclear localization sequence. These 

motifs are involved in cell and matrix binding, interaction with the serum protein 

ALS (acid labled sub-unit) and nuclear transport. The central domain is the least 

conserved domain of IGFBPs, it contains sites for posttranslational modifications 

and proteolytic cleavage sites and is thought to act as structural hinge between the 

C- and N-terminal domains (Firth and Baxter, 2002; Hwa et al., 1999).  

The most abundant IGFBP in circulation is IGFBP3. IGFBP3 forms a ternary 

complex with IGFs and the glycoprotein ALS (Acid labile sub-unit) and so 

transports about 75% of the serum IGFs and prolongs the half-life of IGFs up to 12 

hours. About 10% of the serum IGFs are transported in a ternary complex with 

IGFBP5 (Monzavi and Cohen, 2002; Clemmons, 2007). All six IGFBPs are found 

in circulation. Free IGFBPs and IGFBPs complexed with IGFs are believed to exit 

the circulation rapidly, while ternary complexes are thought to be confined to the 

vascular compartment. So in circulation IGFBPs act as transport proteins and 

control efflux of IGFs from the vascular space. IGFBPs have comparable affinities 

for IGFs like the IGF1R, consequently they compete for IGFs with the receptor and 

thereby inhibit IGF signalling. In some cases IGFBPs can potentiate IGF signalling 

in a context dependent manner. It is thought that IGFBs increase the local 

concentration of IGFs in the vicinity of the receptor by association with the cell 
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surface or extracellular matrix (ECM). The affinities of IGFBPs for IGFs are then 

lowered by for example proteolytic cleavage or posttranslational modifications. 

Additionally to their IGF dependent functions IGFBPs exerts functions 

independently of IGFs and IGF1R (Jones and Clemmons, 1995; Hwa et al., 1999; 

Firth and Baxter, 2002). 

2.1.3 IGFBP-rPs 

The mammalian IGFBP-rPs are a group of cysteine-rich proteins, that are primarily 

characterized by the presence of an N-terminal IB domain. They were grouped 

together with the six IGFBPs and an IGFBP-superfamily was proposed (Kim et al., 

1997; Baxter et al., 1998; Hwa et al., 1999; Rosenfeld et al., 1999). In vitro binding 

studies show that some of these IGFBP-rPs, can indeed bind to IGFs, albeit and 

unlike IGFBPs, with low affinity (Kim et al., 1997; Oh et al., 1996; Burren et al., 

1999). IGFBP-rP1 is the founding member of the IGFBP-rP family, it is also known 

as Mac25, IGFBP7, TAF (tumour derived adhesion factor), PSF (prostacyclin-

stimulating factor) and AGM (angiomodulin; Akaogi et al., 1994; Akaogi et al., 

1996; Yamauchi et al., 1994). Like IGFBPs it contains an amino-terminal IB 

domain, but lacks the C-terminal TY- domain. Its IB domain is followed by a kazal 

type serine protease inhibitor (KAZAL) domain and at the C-terminus an IgC2-

domain is located (Hwa et al., 1999). IGFBP-rP1 was found to be expressed in 

various tissues and cell types. Depending on the cellular context IGFBP-rP1 can 

enhance IGF- or insulin-mediated cell growth as well as inhibit insulin signals, 

because IGFBP-rP1 is able to bind insulin with high and IGFs with low affinity 

(Akaogi et al., 1996; Oh et al., 1996; Yamanaka et al., 1997). In another cell 

system, IGFBP-rP1 can selectively reduce differentiation responses to IGFs and 

insulin without affecting cell proliferation (Haugk et al., 2000). By binding to the 

heparin sulfate proteoglycan (HSPG) Syndecan-1, IGFBP-rP1 promotes 

attachment and spreading of rat liver cells (Ahmed et al., 2003; Sato et al., 1999). 

Additionally IGFBP-rP1 is able to bind to other ECM components, growth factors 

and to a range of chemokines (Akaogi et al., 1996; Kato et al., 1996; Sato et al., 

1999; Usui et al., 2002). The biological role of IGFBP-rP1 remains largely 

unknown, despite these diverse functional studies.  

Two further mammalian proteins share the domain architecture of IGFBP-rP1, 

IGFBP-rP4 (IGFBP-like) and IGFBP-rP10 (KAZALD1, Bono1). The structural 
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similarity of these proteins, led to the suggestion of an IGFBP-like subgroup, within 

the IGFBP-rPs. Mouse studies suggest that IGFBP-rP10 has a function in bone 

development and bone regeneration (James et al., 2004). IGFBP-rP4 is supposed 

to be a tumor suppressor (Cai et al., 2005; Smith et al., 2007). 

The serine protease HTRA1, like IGFBP-rP1, shows an N-terminal IB and KAZAL 

domain. It was demonstrated that HTRA1 specifically cleaves IGFBP5 (Hou et al., 

2005). Additionally, HTRA1 cleaves the proteoglycans Biglycan, Syndecan-4 and 

Glypican-4. By cleavage of these proteoglycans, HTRA1 releases cell surface 

bound fibroblast Growth factors (FGFs) and so stimulates FGF-dependent long-

range signalling (Hou et al., 2007).  

The members of the CCN family are another group of IGFBP-rPs. The six family 

members are Cyr61, (Cysteine-rich61, CCN1), CTGF (connective tissue growth 

factor, CCN2), NOV (nephroblastoma-overexpressed, CCN3), the namesakes of 

the family and WISP1-3 (Wnt-induced secreted proteins, CCN4-6). With the 

exception of WISP-2, the CCN family members contain three functional domains, 

in addition to the IB domain. The IB domain is followed by a von Willebrand factor 

type C (VWC) domain, a thrombospondin-homology domain and at the C-terminus 

a cysteine knot (CT) heparin binding domain (Leask and Abraham, 2006; 

Brigstock, 2003). CCN proteins are matricellular proteins that connect the cell 

surface and the ECM. Binding to cell surface components, like integrins and 

proteoglycans, modifies intracellular signalling events. In addition to their adhesive 

abilities CCN proteins can modulate the activity of a variety of growth factors. So 

CCN proteins are able to stimulate mitosis, adhesion, apoptosis, ECM production, 

growth arrest and migration. As a result they play important roles in development, 

wound healing and disease (Perbal, 2001; Leask and Abraham, 2006).  

Another protein that belongs to the IGFBP-rPs, is ESM-1 (endothelial specific 

molecule-1, IGFBP-rP6). The 20 kDa ESM1 protein requires an attached 

dermatan sulfate proteoglycan to be functional. ESM1 is involved in the regulation 

of cell adhesion, in inflammatory disorders and in tumour progression (Lassalle et 

al., 1996; Sarrazin et al., 2006). 
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2.2 The IGF system in development and growth 

The components of the IGF system are expressed very early in mouse 

embryogenesis and are already found in blastocysts and early in embryonic as 

well as in extraembryonic lineages (Morali et al., 2000; Puscheck et al., 1998). 

IGF2, IGF1R and decidua-derived IGFBP1 are involved in trophoblast invasion 

during implantation. Placental trophoblast invasiveness is inhibited by decidua-

derived IGFBP1. This inhibitory effect is overcome by inhibition of IGFBP1 

production by trophoblast-derived IGF2, demonstrating that members of the IGF 

system play a role very early in development (Firth and Baxter, 2002; Bowman et 

al.).  

Growth, considered as an increase in size, is one important aspect of 

development. The requirement of the components of the IGF system in embryonic 

and postnatal growth was first demonstrated by knockout experiments (Baker et 

al., 1993; Liu et al., 1993). Mice with a deleted IGF1 gene are very small at birth 

(60% of the size of their wt littermates) and most die after birth. Those that survive 

show developmental defects in brain, muscle, bone and lung and are infertile 

(Yakar et al., 1999). The peripubertal growth spurt is lacking in the surviving mice. 

This shows the role of IGF1 in embryonic and postnatal growth. Knockout of IGF2 

also leads to strong growth retardation, but the survivors grow normally after birth 

indicating that IGF2 has no effect on postnatal growth in mice (Yakar et al., 1999; 

Monzavi and Cohen, 2002; Maki, 2010). IGF1R is the main mediator of IGF 

signalling in the embryo, because deletion of the IGF1R gene is lethal, mice die at 

birth and are 55% smaller than their littermates (Baker et al., 1993; Liu et al., 1993; 

Maki, 2010).  The actions of IGF1 are primarily mediated by the IGF1R, as IGF1R 

and IGF1 double knock-out mice show the same phenotype as IGF1R deletion 

alone. Some effects of IGF2 are mediated through IR, as simultaneous deletion of 

IGF1R and IGF2 genes leads to a more severe phenotype (Yakar et al., 2002). 

Tissue-specific gene deletion of IGF1 in the liver, resulted in apparently normal 

mice, with about 80% reduced levels of circulating IGFs (Yakar et al., 1999). 

Detailed analysis of these mice showed that locally produced IGF1 is the main 

contributor of somatic growth. (LeRoith and Roberts, 2003; Yakar et al., 2002; 

Clemmons, 2007).   
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Analysis of IGF knockout animals showed that besides their effects on 

embryonic growth, IGFs are involved in developmental bone and brain formation. 

IGF signalling via the IGF1R is required for normal brain development. IGF1 and 

IGF1R null mutant mice exhibit brain growth retardation and overexpression of 

IGF1 in the brain leads to brain overgrowth. Humans with IGF1 deficiencies are 

microcephalic and mentally retarded. In mice, the IGF1R is ubiquitously expressed 

in all neural cells, IGF1 is found in the central nervous system and IGF2 is found in 

the brain and surrounding structures. Signalling via the IGF1R has pleiotropic 

effects in brain development including proliferation of neural progenitors and 

pluripotent neural stem cells and survival and differentiation of neurons and 

oligodendrocytes (D'Ercole, 2008).  

Knockout of components of the IGF signalling pathway, strongly affects bone 

density and bone growth. Bone lengthening is primarily driven by production of 

hypertrophic chondrocytes, which secrete characteristic matrix, from proliferating 

chondrocytes. When IGF signalling is blocked, chondrocyte proliferation, 

maturation and inhibition of apoptosis are inhibited and bone growth is decreased 

(Canalis, 2009; Wang et al., 2006; Yakar et al., 2002). Bone density is maintained 

by the matrix secretion of mature osteoblasts. In IGF1R knockout mice the number 

of osteoblasts is decreased and hence the matrix production required for bone 

density (Zhang et al., 2002; Zhao et al., 2000).  

Surprisingly no major differentiation defects have been detected in mice null for 

different components of the IGF system. Although it has been shown that IGFs are 

able to promote differentiation of various cell lines in vitro. It was speculated that 

the mammalian IGF signalling system contains considerable functional 

redundancy (Murphy, 1998). So null mice for IGFBP3, IGFBP4 or IGFBP5 show 

only modest growth impairment. Overlapping functions of the proteins are only 

revealed by triple knockouts (Ning et al., 2006). Analysis of IGFBP2 null mice 

indicates that the deletion of one IGFBP could cause compensatory changes in 

others (Wood et al., 2000). This limits the efficiency of loss of function experiments 

considerably and makes it difficult to assess the physiological role of IGFBPs in 

vivo. If IGFBP-rPs are also affected by redundancy remains to be analysed.  
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2.3 The IGF system in Xenopus 

The Xenopus IGF system is much smaller compared to the mammalian IGF 

system. Although there are three IGFs (IGF1, IGF2 and IGF3) found in Xenopus, 

there are only 2 IGFBPs and 6 IGFBP-rPs. (Kuerner and Steinbeisser, 2006). So 

the possibility of functional redundancy is much smaller in the Xenopus system.  

All three IGFs and the IGF1-R are expressed during early embryogenesis. 

Expression is very prominent along the dorsal midline during neurulation and at 

tailbud stage they are detectable in different anterior head structures (Groigno et 

al., 1999; Pera et al., 2001; Richard-Parpaillon et al., 2002; Zhu et al., 1998). 

Overexpression of IGFs gives rise to strongly enlarged cement glands and 

increasing IGF signals in future neural tissue gives rise to ectopic eye structures, 

cement glands and expands mid- and hindbrain structures (Richard-Parpaillon et 

al., 2002; Pera et al., 2001). Injection of IGFs into the ventral mesoderm even 

causes the formation of ectopic heads including eye structures and cement glands 

(Pera et al., 2001). Disruption of the IGF pathway (by either IGFR morpholino or a 

dnIGFR) has the opposite effect and leads to a loss of anterior structures and 

eyes. This demonstrates that IGF signalling is required for head formation (Pera et 

al., 2001; Richard-Parpaillon et al., 2002). IGF signalling is also required for neural 

induction. IGFs induce expression of anterior neural markers in ectodermal 

explants and embryos, this ability is lost when the pathway is blocked on the level 

of IGFR (Richard-Parpaillon et al., 2002; Pera et al., 2001).  

IGF signalling was found to be sufficient and required for head and neural 

induction in Xenopus (Pera et al., 2001; Richard-Parpaillon et al., 2002). Head 

development is triggered by inhibition of growth factor signals required for trunk 

development, namely BMP, Wnt and Nodal (Glinka et al., 1997; Glinka et al., 

1998; Piccolo et al., 1999). Inhibition of only one pathway is not sufficient to induce 

secondary heads, only Cerberus, a triple inhibitor of Wnt, BMP and Nodal 

signalling, is able to induce secondary head structures (Bouwmeester et al., 1996). 

A popular mechanism to explain neural induction was the so-called “default 

model”, which proposes that ectodermal cells acquire neural fate when they don’t 

receive BMP signals (Harland, 2000; Stern, 2005). More recent intensive research 

on neural induction showed that Wnt inhibition (Heeg-Truesdell and LaBonne, 

2006; Glinka et al., 1997) and functional FGF signalling (Launay et al., 1996; Sasai 

et al., 1996; Xu et al., 1997) are also required for neural induction. IGF signalling is 
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now another pathway involved in head and neural induction, and it remains to be 

elucidated how the integration of the different neural inducing signals may occur 

(Kuroda et al., 2004). 

Two molecular mechanisms were demonstrated that can explain the head and 

neural inductive activities of IGF signalling. On the one hand IGFs are potent 

inhibitors of Wnt signalling, acting intracellularly on the level of GSK3 or ß-catenin 

(Pera et al., 2001; Richard-Parpaillon et al., 2002). How this activity is mediated is 

not understood, possibly by phosphorylation changes induced on the ß-catenin 

degradation complex. On the other hand IGFs are inhibitors of BMP signalling. 

Here again acting intracellularly, on the level of the BMP signal transducer Smad1 

(Pera et al., 2003). Normally Smad1 is phosphorylated at its C-Terminus, in a 

BMP-dependent manner, builds a transcription factor complex with Smad4 that 

enters the nucleus, and turns on the expression of BMP target genes 

(Kretzschmar et al., 1997b; von Bubnoff and Cho, 2001). But Smad linker 

phosphorylation by MAPK or GSK3 blocks nuclear accumulation of Smads and so 

inhibits BMP signalling (Kretzschmar et al., 1997a; Aubin et al., 2004; Fuentealba 

et al., 2007; Sapkota et al., 2007). Therefore IGFs block Wnt und BMP signalling 

not by physical interaction with the paracrine factors but by preventing signals to 

reach the nucleus. 

Additionally the IGF pathway has been recently shown to be involved in 

convergent extension (CE) movements (Richard-Parpaillon et al., 2002; Carron et 

al., 2005). CE movements, controlled by the non-canonical Wnt pathway, are 

essential for trunk and posterior development and for elongation of the 

anteroposterior axis (Keller et al., 2000; Keller et al., 1985). The head region does 

not undergo CE movements, there the non-canonical Wnt signalling pathway is 

repressed by the expression of Otx2 (Xenopus orthodenticle homeobox 2). Otx2 is 

a transcription factor, expressed in anterior head structures, that is required for 

anterior brain and cement gland formation. Additionally it represses the 

transcription, of Xbra (Xenopus brachyury), a transcription factor required for the 

expression of the non-canonical Wnt-ligand, Wnt11 and so blocks CE in head 

regions (Andreazzoli et al., 1997; Pannese et al., 1995; Latinkic et al., 1997; Tada 

and Smith, 2000). IGF1 blocks CE movements by specific induction of Otx2 

expression at early gastrula stage in future anterior head region (Carron et al., 

2005).  
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The only IGFBP known to be expressed early in Xenopus is IGFBP5. At four-

cell stage transcripts are found at the animal pole, during gastrulation they are 

detectable on the dorsal side of the embryo and during neurulation it is confined to 

the floor plate, notochord, and dorsal endoderm. Overexpression of IGFBP5 led to 

embryos with enlarged head structures and cement glands. This anteriorising 

effects of IGFBP5 are blocked by inhibition of the IGF1R, indicating that IGFBP5 

signalling occurs via the IGF1R (Pera et al., 2001).  

IGFBP4 is found at later stages in Xenopus embryos in the anterior part of the 

liver adjacent to the heart and is required for heart development. The mechanism 

that underlies the function of IGFBP4 in heart development is IGF-independent.  

IGFBP4 directly interacts with LRP6 (low-density-lipoprotein receptor6) and Frz8 

(Frizzled8), thereby inhibiting Wnt signalling (Zhu et al., 2008).  

The functions of two CCN family members are described in Xenopus. Cyr 61 

(CCN1) is involved in gastrulation movements. Some of the effects of Cyr61 on 

gastrulation movements derive from its ability to support assembly of a fibronectin-

rich extracellular matrix and to regulate cell-cell and cell-matrix adhesion. Other 

effects may be caused by its ability to modulate Wnt signalling. It is suggested that 

Cyr 61 acts via its IB-domain to elevate low level Wnt signalling, while it inhibits 

high levels of Wnt signalling via its CT-domain (Latinkic et al., 2003). CTGF is also 

able to inhibit canonical Wnt signalling. This is probably due to binding to the Wnt 

co-receptor LRP6, via its CT domain (Mercurio et al., 2004). Additionally it was 

shown that CTGF binds BMP4 and TGF-ß1 through its VWC domain. Thereby it 

inhibits BMP4 but activates TGF-ß1 signalling and this function might be required 

for the deposition of ECM (extracellular matrix) components such as fibronectin 

and collagen (Abreu et al., 2002).  

The serine protease HTRA1 is also found in Xenopus, where it stimulates FGF-

dependent long-range signalling by cleavage of proteoglycans (Hou et al., 2007). If 

its ability to specifically cleave IGFBP5 has a physiological relevant function is still 

unknown (Hou et al., 2005) . 

Three additional IGFBP-rPs have been reported in Xenopus: Mig30, 

IGFBP-rP10 and IGFBP-like. All three are structurally related to mammalian 

IGFBP-rP1 and belong to the IGFBP-like subgroup (Kuerner and Steinbeisser, 

2006) .  
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2.3.1 Mig30  

Mig30 belongs to the IGFBP-superfamily and was originally identified in 

Xenopus laevis as target gene of the homeobox gene Mixer, which is required for 

endoderm development (Hayata et al., 2002). It is a secreted, 36 kDa protein and 

there is no mammalian homologue. Its protein structure shows a signal peptide 

followed by the insulin-like growth factor binding (IB) domain, but so far no direct 

binding of Mig30 to IGFs was shown. The IB domain partially overlaps with a kazal 

type serine protease inhibitor (KAZAL) domain and at the C-terminus an 

immunoglobulin C-2 type (IgC2) domain is located (Fig.3). IgC2 type domains are 

known to be involved in variety of functions, including cell adhesion and 

recognition . 

Expression analysis of Mig30 showed that it is expressed maternally, 

transcripts decline until zygotic expression starts with midblastula transition. 

Transcript levels are highest during gastrulation, but are still detectable during 

neurulation. At early stages Mig30 is found at dorsal animal cells, during 

gastrulation it is strongly expressed in the anterior mesendoderm and in the 

prospective prechordal plate, regions known to contribute to forebrain and midline 

structures at later stages (Smith et al., 1991; Sasai et al., 1994; Smith et al., 1995; 

Kuroda et al., 2004; Wessely et al., 2001). At neurula stages it is found at the 

edges of the neural folds and prospective lens and otic placodeal areas.  At later 

stages Mig30 is detectable in the developing eye, otic vesicle, branchial tissues, 

neural tube, notochord and somites (Hayata et al., 2002; Kuerner and 

Steinbeisser, 2006).   

The biological effects of Mig30 were first investigated by an overexpression 

approach. Hayata and colleagues showed that overexpressing Mig30 leads to 

impaired head development and suggested that it plays a role in morphogenetic 

movements during gastrulation. The involvement of Mig30 in morphogenetic cell 

behavior was confirmed recently. Additionally, it was shown that gain of Mig30 can 

stimulate IGF signalling and Mig30, like IGF1 is able to inhibit Wnt intracellularly at 

the level of ß-catenin. Additionally Mig30 inhibits Chordin and Cerberus activity. 

Analysis of Mig30 mutant constructs showed discrete activities of the IB and IgC2 

domain. Overexpression of Mig30 mutant constructs comprising the signal peptide 

plus either the N-terminal or the C-terminal domains of Mig30, showed a more 

severe phenotypes then Mig30 alone. Mig30ΔC which contains the IB and KAZAL 
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domain led to embryos with enlarged cement glands and ectopic eye structures, 

reminiscent to activation of IGF pathway phenotypes. For Mig30ΔN the IB and 

Kazal domain were removed, so the IGc2-domain follows the signal peptide. 

Microinjection of MigΔN resulted in embryos that show stronger microcephaly than 

Mig30 injected embryos. Surprisingly both mutants are able to inhibit Wnt 

signalling and cooperate withIGF signals (Kuerner, 2008). 

Knockdown of Mig30 by antisense morpholino oligonucleotides led to a delay 

in gastrulation and strong defects in anterior neural folding. At later stages 

blocking Mig30 resulted in microcephaly and shortend trunks and tails, similar to 

the gain of function phenotype, while cement gland formation is unaffected. 

Precise spatio-temporal expression is required for normal development, and Mig30 

is required for neural plate and neural crest development (Kuerner, 2008).  

It remains to be analysed which of these functions are connected to the IGF 

signalling pathway and which are IGF-independent.  

2.3.2 IGFBP-rP10 

IGFBP-rP10 is a 44,6 kDa protein, that like Mig30 belongs to the IGFBP-

superfamily. IGFBP-rP10 was first identified in mouse and according to its 

discovery in bone and odentoblasts in teeth, it was originally named Bono1 (bone 

and odentoblasts1, James et al., 2004). In the mouse it is expressed in most 

ossification regions of the head including calvarial bones, skull and jaws from day 

13 onward. IGFBP-rP10 is also found in osteoblastic cells, where it is known to 

play a role in proliferation and differentiation (Shibata et al., 2004). The protein 

structure of IGFBP-rP10 is similar to Mig30 and IGFBP-rP1, it shows a signal 

peptide followed by an N-terminal IB domain that partially overlaps with a KAZAL 

(kazal type serine protease inhibitor) domain and an IgC2 (immunoglobulin-like 

domain of the C2 type) domain at the C-terminus. However the IB domain differs 

slightly from the conserved core sequence GCGCCXXC of other IGFBPs in that 

the second glycine is replaced by an aspartate (Kuerner and Steinbeisser, 2006). 

Since the direct binding of IGFBP-rP10 to IGFs was not tested so far, it remains 

unclear if this amino acid exchange in the region thought critical for IGF binding 

has functional consequences.  

First studies of IGFBP-rP10 in Xenopus show that IGFBP-rP10 is secreted and 

post-translationally modified by N-glycosylation. By expression analysis it was 
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found that transcripts are detectable throughout development. At four-cell stage 

transcripts are found at the animal pole, during gastrulation on the dorsal side of 

the embryo and later on it is expressed in the notochord, floor plate, somites and 

fin (Kuerner and Steinbeisser, 2006; de Beer, 2005). 

2.4 Aim of this work 

The functions of IGFBP-rPs in embryonic development are very poorly 

understood. Therefore the goal of this thesis work is the functional characterisation 

of the IGFBP-rPs Mig30 and IGFBP-rP10. 

Using the Xenopus embryo as a model I will test whether Mig30 and 

IGFBP-rP10 are components of the IGF pathway and whether they have IGF-

independent functions as well. In gain of function and knockdown experiments it 

will be analysed whether Mig30 and IGFBP-rP10 act as activators or repressors of 

IGF signalling. In Xenopus IGF signalling negatively interferes with the 

Wnt/β-catenin-and BMP4 signalling pathways which are essential for early 

embryonic patterning. In case Mig30 and IGFBPrP-10 would modulate the IGF 

pathway, the embryonic body plan should be perturbed due to interference with 

the BMP and Wnt pathways. 

The comparative analysis of Mig30 and IGFBPrP-10 should reveal redundant 

and non-redundant function of these proteins. 
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3 Results 

This chapter is divided thematically into two parts. In the first part the results of 

the analysis concerning Mig30 are described and in the second part the results 

concerning IGFBP-rP10. 

Mig30 

Mig30 was first described by Hayata et al. as a target gene of the homeobox 

gene Mixer. The authors showed that, overexpressing Mig30 leads to impaired 

head development and that it plays a role in morphogentic movements during 

gastrulation. Recent studies showed that Mig30 can stimulate IGF signalling and 

inhibit Wnt signalling. Mig30 also inhibits Chordin and Cerberus activity via 

unknown mechanism. Additionally it was shown by knockdown studies that Mig30 

is necessary for neural plate and neural crest development. Analysis of Mig30 

mutant constructs showed that the IB and IgC2 domain have discrete activities. It 

remains to be demonstrated which of these function are physiological relevant and 

are connected to the IGF signalling pathway or are IGF-independent (Kuerner, 

2008).  

3.1 Mig30 gain of function inhibits canonical Wnt signalling  

In Xenopus the IGF signalling pathway is required for neural and head 

development. IGF exerts this function by antagonising the Wnt/ß-catenin as well 

as the BMP signalling pathway. Wnt/ß-catenin signalling is inhibited intracellularly 

on the level of GSK-3 or ß-catenin. And BMP signalling is antagonised by 

mediating linker phosphorylation of the signal transducer Smad1 (Pera et al., 

2001; Richard-Parpaillon et al., 2002; Pera et al., 2003; Eivers et al., 2004). 

Mig30, like IGF signalling affects head and neural development, therefore the 

effect of Mig30 on the canonical Wnt pathway was tested (Kuerner, 2008). An 

animal cap (AC) assay was used, because in animal caps no endogenous Wnt is 

detectable and the responsiveness to Wnt can be analysed. The activation of the 

Wnt primary response gene Xnr3 was examined in AC explants at early gastrula 

stage after stimulation with Wnt8 (Brannon et al., 1997; McKendry et al., 1997). 

Four-cell stage embryos were injected into the animal pole of each blastomere. 

Injection of 3 pg Wnt8 mRNA induced expression of the Wnt responsive gene 
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Xnr3, compared to uninjected controls. Co-injection of 500 pg Mig30 mRNA 

showed a weak effect on the expression of Xnr3. Only high doses of Mig30 mRNA 

(1 ng) were able to significantly reduce Xnr3 expression (Fig.1A).  

To analyse on what level Mig30 inhibits Wnt signalling a luciferase reporter 

assay was performed. The Topflash reporter construct contains multimeric TCF 

binding sites, so the transcriptional activity of the ß-catenin/TCF complex can be 

measured (Korinek et al., 1997). Topflash reporter (20 pg) was animally injected in 

four-cell stage embryos alone or in combination with different mRNAs. At gastrula 

stage embryos were collected and luciferase activity was measured. Without 

ectopic activation Wnt/ß-catenin signal is low in Xenopus embryos. Injection of 

Wnt8 mRNA (10 pg) activates the reporter. This activation is blocked by co-

injection of 2 ng Mig30 mRNA (Fig.1B). To exclude extracellular interaction of 

Mig30 with the Wnt/ß-catenin pathway, signalling was induced by 50 pg ß-catenin 

mRNA. Co-expression of 3 ng Mig30 efficiently blocks reporter activity (Fig.1C). 

This confirms previous results, that high doses of Mig30 are able to inhibit 

canonical Wnt signalling (Kuerner, 2008). 
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Fig. 1: Mig30 inhibits Wnt signalling  
(A) Animal cap assay. 4-cell stage embryos were microinjected as indicated into the animal pole. 
Injection of 3 pg Wnt8 mRNA alone or in combination with 500 or 1000 pg Mig30 mRNA. Animal caps 
(AC) were explanted at blastula stage and cultured to early gastrula stage (N.F. stage 10.5). 
Subsequently, RT-PCR was performed. Expression of the Wnt-responsive gene Xnr3 was analysed. 
Ornithine decarboxylase (ODC) served as loading control. (WE: sibling whole embryo, -RT: control 
reaction without reverse transcriptase). (B,C) Luciferase Assay. 4-cell stage embryos were 
microinjected as indicated into each animal blastomere. N.F. stage 10+ embryos were collected in 
pools of 4-5 embryos and assayed for luciferase activity in triplicates. (B) Injection with 20 pg 
Topflash, 10 pg Wnt8 mRNA and 1.5 ng Mig30 mRNA, respectively (C) with 20 pg Topflash, 50 pg 
β-Catenin mRNA and 3 ng Mig30 mRNA, . Level of significance in F test: *, P < 0.05; **, P < 0.01;       
***, P < 0.001.   
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3.2 Mig30 gain of function inhibits BMP signalling 

Inhibition of BMP signalling is a crucial step in head and neural development, in 

Xenopus. This inhibition can be due to active IGF signalling, which mediates linker 

phosphorylation and subsequent degradation or cytoplasmic retention of the signal 

transducer Smad1 (Pera et al., 2003; Eivers et al., 2004).  

To study if Mig30 can antagonise BMP signals, we used the luciferase reporter 

construct BRE-luc, which contains multimeric BMP response elements (Hata et al., 

2000). Animal injection of the BRE-luc reporter (100 pg) showed no significant 

promoter activation by endogenous BMPs. The reporter is strongly activated when 

BMP4 mRNA (100 pg) is co-injected. This BMP4 mediated activation of the 

reporter is blocked by co-injection of Mig30 mRNA (1 ng). Thus, similar to IGFs, 

Mig30 can antagonise the BMP signalling pathway. 

 

 

Fig. 2: Mig30 inhibits BMP signalling  
Luciferase Assay. 4-cell stage embryos were microinjected as indicated into each animal blastomere. 
N.F. stage 10+ embryos were collected in pools of 4-5 embryos and assayed for luciferase activity in 
triplicates. (B) Injection with 100 pg BRE-luc, 100 pg BMP4 mRNA and 1 ng Mig30 mRNA. Level of 
significance in F test: *, P < 0.05; **, P < 0.01; ***, P < 0.001.   
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3.3 Mig30 mutant constructs inhibit Wnt and BMP signalling 

Mig30 mutant constructs were designed to reveal discrete activities of 

individual domains of Mig30 (Fig.3). Mig30ΔC comprises the signal peptide, the IB 

and the KAZAL domain, while the C-terminal IgC2 domain was removed. 

Overexpressing Mig30ΔC leads to embryos with enlarged cement glands and 

ectopic eye structures, reminiscent to activation of IGF pathway phenotypes 

(Kuerner, 2008; Pera et al., 2001; Richard-Parpaillon et al., 2002). For Mig30ΔN 

the IB and KAZAL domain were removed, so the IgC2-domain follows the signal 

peptide. Microinjection of Mig30ΔN results in embryos that show stronger 

microcephaly than Mig30 injected embryos (Kuerner, 2008). To determine the 

effect of the Mig30 mutant constructs on Wnt signalling, again the Topflash 

reporter construct was used in a luciferase reporter assay. Four-cell stage 

embryos were injected animally. Injection of 20 pg Topflash alone showed no 

effect. Co-injection of 10 pg Wnt8 profoundly activated the ß-catenin /TCF 

promoter. This activation was blocked by co-injection of 1.5 ng Mig30ΔC. 

Surprisingly injection of Mig30ΔN (1.5 ng) also blocks the activation of the 

promoter by Wnt8 (Fig.4A). Like for Mig30, extracellular interactions of the mutant 

constructs with the Wnt/ß-catenin pathway, can be excluded because both, 

Mig30ΔC and Mig30ΔN also block promoter activity after stimulation with ß-catenin 

(Fig.4B). This confirms the results recently shown by Kuerner, K.M.  

 

 

 

Fig. 3: Schematic diagram of Mig30 and Mig30 mutant constructs 
SP: signal peptide (green), IB: Insulin-like growth factor binding domain (red), IgC2: immunoglobulin 
C-2 type domain (yellow), KAZAL: kazal type serine protease inhibitor domain (blue), overlap of IB and 
KAZAL (purple; adapted from Kuerner, 2008) 
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To analyse the effect of the mutant constructs on BMP signalling, the BRE-luc 

reporter was again utilised. Injection of 100 pg BMP4 together with the reporter 

(100 pg) lead to a strong activation. However, this activation was very efficiently 

blocked by the co-injection of 1 ng Mig30ΔC or 1 ng Mig30ΔN (Fig.4C). Thus both, 

the IB domain and the IgC2 domain seem to be sufficient to inhibit Wnt and BMP 

signalling.  

 

 

Fig. 4: Mig30 mutant constructs inhibit Wnt and BMP signalling  
(A,B) Luciferase Assay. 4-cell stage embryos were microinjected as indicated into each animal 
blastomere. N.F. stage 10+ embryos were collected in pools of 4-5 embryos and assayed for luciferase 
activity in triplicates. (A) Injection with 20 pg Topflash, 10 pg Wnt8 mRNA, 1.5 ng Mig30ΔC mRNA and 
1.5 ng Mig30ΔN mRNA, (B) with 20 pg Topflash, 50 pg β-Catenin mRNA, 3 ng Mig30ΔC mRNA and 3 ng 
Mig30ΔN mRNA, respectively. (C) Injection with 100 pg BRE-luc, 100 pg BMP4, 1 ng Mig30ΔC or 1 ng 
Mig30ΔN, respectively. Level of significance in F test: *, P < 0.05; **, P < 0.01; ***, P < 0.001.   
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3.4 Mig30 GOF is not able to induce neural marker expression 

It was shown, that IGF signalling, by blocking Wnt and BMP signalling, is 

required for head and neural development in Xenopus. Gain of IGF signalling 

induces the expression of neural markers in animal cap explants (Pera et al., 

2001; Richard-Parpaillon et al., 2002). If Mig30 promotes IGF signalling as 

previous data suggests, overexpression of Mig30 should also induce neural 

marker expression. To examine this, an animal cap assay was performed. Four-

cell stage embryos were injected with 1 ng Mig30 mRNA or 1 ng Mig30ΔC mRNA. 

At blastula stage caps were dissected and grown until control siblings reached 

neurula stages. Then expression of different marker genes was analysed by 

RT-PCR (Fig.5). Sox2 marks the neural plate including pre-neural tissue, as well 

as tissue not yet committed to neural fate (Mizuseki et al., 1998; Wills et al., 2010). 

Pax6 is marker for developing eyes and neural structures, NCAM is a pan-neural 

marker, Xag1 is a specific cement gland marker and Bf1 is a marker for the 

telencephalic primordium, an anterior brain structure (Hirsch and Harris, 1997; 

Krieg et al., 1989; Sive et al., 1989; Bourguignon et al., 1998). Injection of 1 ng 

Mig30 had no effect on the neural markers Sox2, Pax6 and NCAM. The brain 

marker Bf1 was also not affected. The cement gland marker Xag1, which is 

strongly induced by IGFs is not affected by Mig30 overexpression. This suggests 

that Mig30 is not able to induce neural marker expression by promoting IGF 

signalling. Injection of Mig30ΔC (1 ng), like Mig30, is not sufficient to induce the 

neural markers Sox2, Pax6 and NCAM. Also the expression of the brain marker 

Bf1 was not induced. However Mig30ΔC is able to induce the expression of the 

cement gland marker Xag1, according to its overexpression phenotype which 

shows increased cement glands (Kuerner, 2008).  
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Fig. 5: Overexpression of Mig30 cannot induce neural tissue.  
4-cell stage embryos were microinjected into the animal pole of each blastomere with 1 ng Mig30 or 
MigΔC mRNA. Animal caps were explanted at blastula stage and cultured to N.F. stage 22. 
Subsequently, RT-PCR was performed. Sox2, a neural plate marker, Pax6 and NCAM, two neural 
marker, XAg1 a cement gland marker and Bf1 a forebrain marker were analysed. Ornithine 
decarboxylase (ODC) served as loading control (WE: sibling whole embryo, -RT: control reaction 
without reverse transcriptase). 

 

 

3.5 Mig30 affects IGFBP5 signalling 

 In Xenopus there are so far only two IGFBPs identified, and only one of them, 

namely IGFBP5 is expressed early in development. IGFBP5 is a 38kDa protein 

that can be cleaved by IGFBP proteases, binds to the ECM and binds IGFs with 

high affinity (Clemmons, 1997; Parker et al., 1998). In Xenopus it is expressed 

throughout development, at four-cell stage it is found in the animal hemisphere, 

during gastrulation on the dorsal side and during neurulation it becomes confined 

to the floor plate, notochord and dorsal endoderm. Gain of IGFBP5 leads to 

embryos with enlarged head structures and cement glands. IGFBP5 promotes 

anterior development by stimulating signalling by endogenous IGFs via IGFR 

(Pera et al., 2001). In other systems IGFBP5 can act either as an IGF antagonist 

(Stewart and Rotwein, 1996; Kalus et al., 1998) or as an IGF promoting agent 

(Jones et al., 1993). 

To explore the possibility that Mig30 affects IGF signalling by interacting with 

IGFBP5, the effects of Mig30 on IGFBP5 overexpression were analysed. Four-cell 

stage embryos were injected animally, at blastula stage animal caps were cut and 

cultured until N.F. stage 20. Expression of marker genes was analysed by 
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qRT-PCR. Injection of IGFBP5 (500 pg) lead to an induction of the cement gland 

marker XAG1 and at this stage to an even stronger induction of Otx2, a forebrain 

marker, whose expression is required for cement gland formation, this confirms 

results of Pera et al. (Fig.6, Sive et al., 1989; Blitz and Cho, 1995; Pannese et al., 

1995). 500 pg Mig30 had no effect on the expression levels of Xag1 and Otx2, 

corresponding to the findings that 1 ng Mig30 is not able to induce Xag1 and other 

neural markers in animal caps (Fig.5). Co-injection of 500 pg Mig30 and IGFBP5 

did not affect IGFBP5 induced expression of Xag1, but expression of Otx2 was 

mildly reduced compared to IGFBP5 alone. However high doses of Mig30 (1 ng) 

strongly blocked IGFBP5 induced expression of the two markers. Epidermal 

keratin, a marker for non-neural ectodermal tissue (LaFlamme and Dawid, 1990) 

was expressed at the same levels during the experiment, indicating that the 

induction of anterior markers is not due to cell fate changes. Thus high doses of 

Mig30 are able to block signalling induced by IGFBP5.  

 

 

Fig. 6: Mig30 overexpression inhibits IGFBP5  
qRT-PCR analysis of animal caps. 4-cell stage embryos were injected animally with 500 pg IGFBP5 
mRNA, 500 pg or 1 ng Mig30 mRNA alone or in combination. Animal caps were explanted at blastula 
stage and cultured to N.F. stage 20. Expression of the cement gland marker Xag1, the anterior neural 
marker Otx2 and the epidermal marker epidermal keratin were analysed 
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To elucidate which domain is required for the effect on IGFBP5, the experiment 

was repeated with Mig30ΔC and Mig30ΔN. The animal caps were allowed to grow 

longer, so they reached NF stage 24 and so the expression of level Xag1 exceeds 

the expression level of Otx2. Like gain of IGFBP5, overexpression of Mig30ΔC 

affects cement gland size. In the animal cap assay injection of 500 pg IGFBP5 

strongly induced Xag1 and Otx2 expression (Fig.7A). Low doses of Mig30ΔC 

(500 pg) had no effect on the expression of Xag1 and Otx2 (Fig.7A), while high 

doses of Mig30ΔC (1 ng) were able to induce Xag1 expression on its own (Fig.7A 

and Fig.5). However co-expression of 500 pg Mig30ΔC and IGFBP5 increased the 

transcript levels of Xag1 and Otx2, indicating a synergy of the two proteins (Fig.7). 

Unexpectedly, the IGFBP5 induced Xag1 and Otx2 expression was blocked by co-

injection of high doses Mig30ΔC (1 ng; Fig.7A). This shows that moderate levels of 

Mig30ΔC cooperate with IGFBP5, while high doses oppose IGFBP5 signals.  

Mig30ΔN lacks the IB domain, and induces a microcephalic phenotype when 

overexpressed, similiar to phenotypes seen when IGF signalling is inhibited. On its 

own, moderate doses of Mig30ΔN (500 pg) do not affect the transcript levels of 

Xag1 and Otx2 in animal caps. But in contrast to Mig30ΔC moderate doses of 

Mig30ΔN are sufficient to block IGFBP5 induced expression of Xag1 and Otx2 

(Fig.7B). This suggests that Mig30 is a biphasic protein, due to the opposing 

effects of its C- and N-terminal domains.  
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Fig. 7: Mig30 mutant constructs interfere with IGFBP5 signalling 
qRT-PCR analysis of animal caps. 4-cell stage embryos were injected animally. Animal caps were 
explanted at blastula stage and cultured to N.F. stage 24. Expression of the cement gland marker 
Xag1, the anterior neural marker Otx2 and the epidermal marker Epidermal keratin were analysed (A) 
Injection of 500 pg IGFBP5 mRNA, 500 pg or 1 ng MigΔC mRNA alone or in combination. (B) Injection 
of 500 pg IGFBP5 mRNA, 500 pg MigΔN mRNA alone or in combination. 
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3.6 Mig30 blocks IGF induced differentiation in RCJ3.1C5.18 

cells 

IGF1 is an important growth factor in growth plate development. It is known 

from in vitro and in vivo studies that IGF1 stimulates proliferation and 

differentiation of growth plate chondrocytes (Wang et al., 1999; Wang et al., 2006; 

Ohlsson et al., 1994). The mesenchymal RCJ3.1C5.18 (RCJ) cell line, derived 

from fetal rat calvaria, is widely used as a model for growth plate chondrocyte 

development (Grigoriadis et al., 1996; McDougall et al., 1996; Lunstrum et al., 

1999). RCJ cells spontaneously progress to differentiated growth plate 

chondrocytes and the differentiation can be enhanced by exogenous IGF1. The 

action of exogenous IGF1 can be directly studied because RCJ cells do not 

express IGF1 (Spagnoli et al., 2001).  

That the RCJ cells do not express IGF1 on their own, gave us the idea to 

investigate if Mig30 and the Mig30 mutant constructs directly interfere with 

IGF1signalling in these cells. Therefore the cells were transiently transfected with 

pCS2+ Mig30, pCS2+ Mig30ΔC, pCS2+ Mig30ΔN or the empty pCS2+ vector as a 

control. The cells were cultured in differentiation medium from day 4 onward. At 

day 7 of culture, cells were serum-starved for 12 h and stimulated with 100 ng/ml 

IGF1 for another 12 h. The cells were harvested and transfection efficiency 

controlled. All samples showed that the transfection was successful and the 

plasmids were transcribed (data not shown). Then the expression of IGFBP5, 

which was upregulated during chondrocyte differentiation and ALP (alkaline 

phosphatase), a chondrocyte differentiation marker were analysed by qRT-PCR 

(Kiepe et al., 2005; Lunstrum et al., 1999; Spagnoli et al., 2001). IGFBP5 and ALP 

were expressed at low levels in vector transfected cells. The expression increased 

dramatically when the differentiation process was stimulated by additional 

treatment with IGF1 (Fig.8). This increase of IGFBP5 and ALP expression after 

stimulation with IGF1 was strongly reduced when cells were previously transfected 

with Mig30 (Fig.8). This result clearly shows that Mig30 inhibits IGF1 

extracellularly by direct protein-protein interaction. To investigate which domain of 

Mig30 is required for this interaction the experiment was performed with Mig30ΔC 

and Mig30ΔN. Mig30ΔC, which contains the N-terminal IB domain showed the 

same inhibitory effect on IGF1 stimulated IGFBP5 and ALP, as Mig30 (Fig.8). 
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Mig30ΔN, which comprises the C-terminal IgC2 domain, did not have an effect on 

the IGF1 stimulated differentiation (Fig.8). This demonstrates that it is the IB 

domain, of Mig30 that is required for direct interaction with IGF1. 

 

 

Fig. 8: Mig30 inhibits IGF1 induced differentiation of RCJ3.1C5.18 cells 
RCJ cells were transfected as indicated, cultured in differentiation medium from day 4 onward. At 
day 7 cells were 12 h serum starved and then stimulated with 100 ng/ml IGF1. After 12 h cells were 
harvest and expression of IGFBP5 and ALP were measured by qRT-PCR.  
 

 

 

3.7 Endogenous Mig30 promotes Wnt signalling in an IGF-

dependent manner  

Gain of function experiments revealed several distinct, partially oppposing 

activities of Mig30 and the Mig30 mutant constructs. It still remains to be 

demonstrated which of these functions play a physiological role in the embryo and 

participate in IGF signalling. To address the endogenous function of Mig30 a 

knockdown approach with an antisense morpholino oligonucleotide was utilised 

(Heasman et al., 1994). Mig30 antisense morpholino (Mig30Mo, Mig30 

morpholino) is targeted against the transcriptional start codon of Mig30 and 

efficiently blocks translation of endogenous Mig30. Injection of Mig30 morpholino 

delays gastrulation, disturbs anterior neural folding and gives rise to microcephalic 

embryos with reduced eye size (Kuerner, 2008).  

Inhibition of the IGF signalling pathway also gives rise to microcephalic 

embryos with small or no apparent eyes (Pera et al., 2001; Richard-Parpaillon et 
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al., 2002). Proper head formation in Xenopus requires simultaneous inhibition of 

Wnt and BMP signalling (Glinka et al., 1997), which both can be inhibited by active 

IGF signalling (Pera et al., 2003). To elucidate the role of endogenous Mig30 in 

Wnt signalling a Topflash reporter assay was used (Korinek et al., 1997). Dorsal 

injection of 300 pg Topflash reporter, led to an activation of the promoter by 

endogenous Wnt signals, which cannot be inhibited by co-injection of 35 ng control 

morpholino (Fig.9A). However injection of 35 ng Mig30Mo (Fig.9A) strongly 

inhibited Wnt signalling.  

To test if the inhibition of Wnt signalling by Mig30 is dependent on the IGF 

signalling pathway we exploited the function of dominant negative IGFR (dnIGFR). 

dnIGFR encodes a secreted form of the xIGF1R devoid of its transmembrane and 

intracellular tyrosine kinase domain, which efficiently blocks IGF1 and IGF2 signal 

transduction (Pera et al., 2001). Wnt signalling can be partially rescued by 

blocking the IGF signalling pathway with dnIGFR (1.5 ng), while blocking the IGF 

signalling pathway alone has no effect on promoter activation (Fig.9A). This 

suggests that endogenous Mig30 inhibits IGF signalling and thereby promotes Wnt 

signalling.  

This is supported by the finding that dorsal injection of Mig30Mo (35 ng) inhibits 

the expression of Myf5 (Fig.9C; Hopwood et al., 1991). Myf5 is a marker for lateral 

mesoderm, whose transcription depends on zygotic Wnt/ß-catenin signals (Marom 

et al., 1999; Yang et al., 2002). Hence endogenous Mig30 promotes Wnt 

signalling, by inhibition of the IGF pathway. 
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Fig. 9: In Mig30 morphants Wnt signalling is inhibited in an IGF-dependent manner 
(A) Luciferase Assay. 4-cell stage embryos were microinjected as indicated into both dorsal 
blastomeres. N.F. stage 10+ embryos were collected in pools of 4-5 embryos and assayed for 
luciferase activity in triplicates. Injection of 300 pg Topflash, 35 ng Mig30 morpholino, 35 ng control 
morpholino and 1.5 ng dnIGFR mRNA, respectively. Level of significance in F test: *, P < 0.05; **, 
P <0.01; ***, P < 0.001. (B,C) In-situ hybridisation for Myf5 at N.F. stage 10.5. (B) uninjected control. (C) 
after microinjection of 35 ng Mig30 morpholino into both dorsal blastomeres at 4-cell stage  

 

 

 

3.8 Mig30 loss of function inhibits BMP-signalling 

Next we analysed the effect of endogenous Mig30 on BMP signalling. A 

luciferase reporter assay was performed with the BRE-luc reporter construct which 

contains several BMP-response elements (Hata et al., 2000). Embryos were 

injected at four-cell stage into the two dorsal or ventral blastomeres and assayed 

at gastrula stage. Ventral injection of 300 pg reporter showed a strong 

transcriptional activation, by endogenous BMP signals. On the dorsal side of the 

embryo, BMP signals are inhibited by different BMP inhibitor molecules, like 

Chordin and Noggin, so the transcriptional activation of the reporter was not as 

strong as on the ventral side (Sasai et al., 1994; Moon and Christian, 1992). This 

activation was blocked by co-injection of Mig30 morpholino (35 ng). Additionally 

the expression of the BMP-responsive gene Vent2 was reduced, when Mig30 

morpholino (35 ng) was injected dorsally (Fig.10C; Karaulanov et al., 2004). Thus 

BMP signalling is blocked in Mig30 morphants, presumably due to an increase in 

IGF signalling. 
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Fig. 10: In Mig30 morphants BMP signalling is inhibited 
(A) Luciferase Assay. 4-cell stage embryos were microinjected into both dorsal or ventral blastomeres 
as indicated. N.F. stage 10+ embryos were collected in pools of 4-5 embryos and assayed for 
luciferase activity in triplicates. Injection of 300 pg BRE, 35 ng Mig30 morpholino. Level of significance 
in F test: *, P < 0.05; **, P < 0.01; ***, P < 0.001. (B,C) In-situ hybridisation for Vent2 at N.F. stage 10.5. 
(B) uninjected control. (C) after microinjection of 35 ng Mig30 morpholino into both dorsal 
blastomeres at 4-cell stage  

 

 

 

3.9 Loss of Mig30 enhances exogenous IGF signals 

The cement gland, a mucous secreting anterior structure is particularly 

sensitive to IGF signalling. Hyperactivation of the IGF pathway results in 

enlargement of the cement gland (Pera et al., 2001; Richard-Parpaillon et al., 

2002). Therefore the size of the cement gland can be used as a marker for the 

level of IGF activity. In case the endogenous Mig30 would act as an inhibitor of the 

IGF pathway, knockdown with Mig30Mo would sensitise the tissue for ectopic IGF 

signals. To test this theory low doses of IGF1 mRNA (100 pg) or Mig30Mo (35 ng) 

or both together were injected into the dorsal blastomeres of a four-cell stage 

embryos. At tailbud stage (N.F. 25) the size of the cement glands was measured 

and embryos were grouped according to their cement gland size in small, middle 

and large (Fig.11). In uninjected control embryos 8% (n=62) showed a large 

cement gland. When injected with low doses IGF1 only 4% (n=49) showed a large 

cement gland. Injection of Mig30Mo increased the number of large cement glands 

to 20% (n=53) but co-injection of IGF1 and Mig30Mo resulted in an increase of 

large cement glands up to 45% (n=50). This supports the role of endogenous 

Mig30 as a repressor of IGF signalling.  
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Fig. 11: Loss of Mig30 enhances exogenous IGF signals 
Embryos were injected into both dorsal blastomeres with 17.5 ng Mig30Mo, 100 pg IGF1 or in 
combination. At stage 25 cement gland size was measured. Embryos were grouped according to their 
cement gland size, small (up to 900 px, shown in yellow), mid-size (901-1400 px, shown in blue) and 
large (over 1401 px, shown in red). 
 

 

 

Cement gland size is also increased when IGFBP5 is overexpressed, because 

IGFBP5 can stimulate endogenous IGF signalling via IGFR (Pera et al., 2001). To 

test if Mig30 interferes with IGFBP5 induced signalling, four-cell stage embryos 

were injected dorsally and allowed to grow until N.F. stage 19, then expression of 

the anterior marker Otx2, that is required for cement gland induction, was 

analysed (Blitz and Cho, 1995; Pannese et al., 1995). Dorsal/animal injection of 

200 pg IGFBP5 expanded the expression domain of Otx2, confirming previous 

results (Pera et al., 2001). Co-expression of low doses Mig30 (500 pg) had no 

effect on IGFBP5 induced Otx2 expression (Fig.12C), which is consistent with the 

data of the animal cap assay (Fig.7). Surprisingly, in embryos injected with 

IGFBP5 and Mig30Mo (35 ng) the Otx2 expression domain was further expanded 

(Fig.12D), than with IGFBP5 alone (Fig.12B), although Mig30Mo alone has no 

effect on the size of the cement gland. This indicates that IGFBP5 and 

endogenous Mig30 have opposing effects on IGF signalling. 
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Fig. 12: Loss of Mig30 enhances IGFBP5 signalling 
(A-D) In-situ hybridisation. 4-cell stage embryos were injected dorsally and at NF stage 19 scored for 
Otx2 expression. (A) uninjected control (B) 500 pg IGFBP5 (C) 500 pg IGFBP5 plus 500 pg Mig30 and 
(D) 500 pg IGFBP5 plus 35 ng Mig30 morpholino. 

 

 

 

3.10 Mig30 plays a role in head and neural development  

The IGF signalling pathway is required for head and neural development, in 

Xenopus. Blocking the IGF signalling pathways reveals embryos with impaired 

head development (Pera et al., 2001; Richard-Parpaillon et al., 2002). A similar 

phenotype is caused by the loss of Mig30 function. Both knockdown of the IGFR 

and Mig30 lead to reduced expression of the neural marker NCAM and Bf1, a 

marker for telencephalic primordium (Richard-Parpaillon et al., 2002; Kuerner, 

2008; Krieg et al., 1989; Bourguignon et al., 1998). Additionally, the expression of 

the hindbrain marker Krox20 and the eye marker Rx1 is reduced in Mig30 

morphants (Kuerner, 2008; Papalopulu et al., 1991; Casarosa et al., 1997). To 

examine if the loss of head structures in Mig30 morphants is due to inhibition of 

Wnt signalling, the expression of En2, a marker for the mid-hindbrain boundary, 

whose expression is dependent on active Wnt signalling was analysed (McMahon 

et al., 1992; McGrew et al., 1997). Four-cell stage embryos were injected into the 

right dorsal blastomere with 35 ng Mig30 morpholino, grown until late neurula 

stage and analysed for En2 expression by in-situ hybridisation. In 93% of injected 

embryos the expression of En2 was strongly reduced (Fig.13B, n=28). This shows 

that Wnt signalling is inhibited when Mig30 is depleted. Indicating that endogenous 
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Mig30 inhibits IGF signalling and thereby promotes Wnt signalling. Moreover the 

results support earlier results that Mig30 plays a role in head development 

(Kuerner, 2008).   

During neural induction, the embryonic neural plate, which gives rise to future 

neural and non-neural tissue, is specified and set aside from other parts of the 

ectoderm. It was shown that blocking Wnt signalling is sufficient to induce neural 

precursors, marked by an expansion of the neural plate (Heeg-Truesdell and 

LaBonne, 2006). Since Mig30 seems to interfere with Wnt signalling, by inhibition 

of IGF signalling, the role of endogenous Mig30 on neural plate formation was 

analysed. Four-cell stage embryos were injected into the right dorsal blastomere 

with Mig30 morpholino (35 ng), to block translation of endogenous Mig30. The 

embryos were allowed to grow until neurula stages and examined by in-situ 

hybridisation for expression of neural plate markers. The expression domain of 

Sox2 a neural plate marker, that marks future neural and non-neural tissue is 

expanded laterally on the morpholino injected side (73%, n=30; Fig.13D, Mizuseki 

et al., 1998). Another neural plate marker, Sox3 is also expanded laterally after 

morpholino injection (77%, n=26; Fig.13F), indicating an inhibition of Wnt signalling 

(Penzel et al., 1997). The expression domain of Epidermal keratin, a marker for 

non-neural ectoderm is reduced after morpholino injection (86%, n=29; Fig.13H, 

LaFlamme and Dawid, 1990; Heeg-Truesdell and LaBonne, 2006). This indicates 

that neural plate tissue expands on the expense of presumptive non-neural 

ectoderm.  

Since injection of Mig30 morpholino leads to an expansion of the neural plate 

and hence to an increase of the neural progenitor pool, it was analysed if neural 

differentiation actually takes place, because neural differentiation, like neural plate 

induction, requires inhibition of Wnt signalling (Heeg-Truesdell and LaBonne, 

2006). N-tubulin a marker for differentiated neural tissue was reduced in 77% of 

injected embryos, at the site of injection (n=103; Fig.13L, Chitnis et al., 1995). And 

as previously shown, expression of the pan-neural marker NCAM was also 

reduced (75%, n=33; Fig.13J, Kuerner, 2008).  

This data show that Mig30 plays a role in head and neural development, 

presumably by inhibiting IGF signalling and thereby promoting Wnt signalling, 

which is needed to restrict the size of the neural plate. 
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Fig. 13: Knockdown of Mig30 perturbs head and neural development.  
In-situ hybridisation. 4-cell stage embryos were injected into the right dorsal blastomere (marked 
with *) with 35 ng Mig30 morpholino and analysed for marker expression at N.F. stages 16-18. Control, 
uninjected sibling embryo. (A,B) En2 (C,D) Sox2 (E,F) Sox3 (G,H) Epidermal keratin (I,J) NCAM and 
(K,L) N-tubulin.  
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3.11 Mig30 plays a role in neural crest development  

Neural crest (NC) induction is induced by a combination of secreted signals in 

which Wnt signalling and the dorsolateral mesoderm of gastrula embryos play a 

particular role (Wu et al., 2005). For the induction at gastrulation stage Wnt signals 

are activated and BMP signals are inhibited, while later for maintenance both 

pathways have to be active (Steventon et al., 2009). 

Anterior neural folding is disturbed in Mig30 depleted embryos. The folds mark 

the edge of the neural plate and contain the pre-migratory neural crest cells 

(Mayor et al., 1995; Aybar et al., 2003). After injection of 35 ng Mig30 morpholino 

into the right dorsal blastomere at four-cell stage embryos the transcription of Slug, 

an early neural crest marker was strongly reduced (78%, n=42; Fig.14B), as 

shown before (Kuerner, 2008). This supports the findings that Wnt signalling is 

attenuated in Mig30 morphants, because the induction of neural crest cells 

requires Wnt signalling (Wu et al., 2005; Steventon et al., 2009). However the 

transcription of Slug can be rescued by co-expression of ChdSPMig30. 

ChdSPMig30 is a Mig30 mutant construct, where the signalpeptide of Mig30 was 

changed against the signalpeptide of Chordin, so Mig30 morpholino cannot bind 

anymore (Kuerner, 2008). Injection of 75 pg ChdSPMig30 DNA into one dorsal 

blastomere of four-cell stage embryos had no effect on Slug expression (90%, 

n=93; Fig.14A), while injection of Mig30 morpholino reduced Slug expression in 

45% (n=91; Fig.14A) of the injected embryos. Co-injection of Mig30 morpholino 

and ChdSPMig30 restored Slug expression nearly back to the level of control cells 

(Fig.14A). This confirms the specificity of Mig30 morpholino and that endogenous 

Mig30 is required for neural crest induction. 
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Fig. 14: Mig30 is required for neural crest development.  
(A) Mig30Mo rescue experiment. Evaluation of Slug repression after injection of 35 ng Mig30 
morpholino , 75 pg ChdSPMig30 DNA or a combination of both. (B-G) In-situ hybridisation. 4-cell stage 
embryos were injected into the right dorsal blastomere (marked with *) with 35 ng of Mig30Mo. 
Control, uninjected sibling embryo. (B-D) Slug (B) stage 15, anterior view (C) stage 20, anterior view 
(D) stage 30 dorsal view. (E-G) Twist (E) stage 17, anterior view (F) stage 20, anterior view (G) stage 23, 
lateral view 

 

 

Neural crest cells are a highly motile cell population, which emigrate from their 

place of induction, the neural plate border. Neural crest cells are separated into 

two distinct populations depending on their position along the anterior-posterior 

axis. The most anterior ones are called cranial neural crest cells (CNC), which are 

contributing to facial structures. The CNC cells segregate into the mandibular, 

hyoid and branchial segments, to migrate (through the pharyngeal pouches) to 

their final destinations. During their migratory route the neural crest cells become 

committed to their final cell fate (Kontges and Lumsden, 1996). Dorsal injection of 

Mig30 morpholino (35 ng) strongly reduces the expression of the neural crest 
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marker Slug (Fig.14B) at N.F. stage 15. Surprisingly, at the end of neurulation, 

N.F. stage 20 the expression of Slug reappeared, but the segregation into the 

three distinct pharyngeal streams was delayed in 62% of the embryos (n=32; 

Fig.14C). At tailbud stage the expression domain of Slug, at the morpholino 

injected side did not spread as far dorsolateral as on the uninjected control side 

(Fig.14D). The same effect was seen with a second neural crest marker, namely 

Twist (Greaves et al., 1985). The expression of Twist was reduced after injection 

with 35 ng Mig30 morpholino in N.F stage 17 embryos (Fig.14E). At stage 20 Twist 

was expressed at the neural plate border but the segregation into the three 

pharyngeal branches did not take place yet (Fig.14F). At stage 23 the lateral 

emigration of the neural crest cells just started on the side of morpholino injection 

while on the control side the neural crest almost reached their final destination 

(Fig.14G). This indicates that Mig30 plays a role in temporally fine tuning the 

signals required for proper neural crest induction.  

 

 

3.12 Mig30 has no effect on FGF signalling 

Another pathway known to be involved in neural induction is the FGF signalling 

pathway (Stern, 2005). Additionally FGF plays an important role in mesoderm 

formation and is required for expression of the mesodermal marker Xbra 

(Kimelman and Kirschner, 1987; Amaya et al., 1993). Both, Mig30 and IGF 

hyperactivity inhibit Xbra expression (Hayata et al., 2002; Kuerner, 2008; Carron et 

al., 2005). Therefore an animal cap assay was performed to analyse if Mig30 

interacts with the FGF signalling pathway. Embryos were injected animally, animal 

caps were dissected at blastula stage and cultured until control siblings reached 

N.F. stage 15. Injection of FGF (10 pg) strongly induced XER81 (Munchberg and 

Steinbeisser, 1999), a marker for active FGF signalling and the mesoderm marker 

Xbra (Schulte-Merker and Smith, 1995; Isaacs et al., 1994; Smith et al., 1991). 

Mig30 (1 ng) alone was not able to induce the expression of XER81 and Xbra, 

indicating that Mig30 cannot induce mesoderm specification on its own. Co-

injection of FGF and Mig30 induces expression of XER81 and Xbra, like injection 

of FGF alone (Fig.15). So Mig30 is not able to inhibit mesoderm formation induced 

by FGF signalling.  
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Fig. 15: Overexpression of Mig30 has no effect on FGF signalling  
RT-PCR analysis of animal caps. 4-cell stage embryos were injected with 10 pg FGF mRNA, 1 ng Mig30 
mRNA or both, at blastula stage animal caps were dissected and grown until control siblings reached 
N.F. stage 15. Expression of the mesodermal markers XER81 and Xbra was analysed. ODC served as 
loading control. 

 

 

 

3.13 Mig30 does not affect ADMP signalling 

At the beginning of gastrulation Mig30 is expressed in the Spemann organiser 

the source of BMP and Wnt inhibitors. Another protein that is found in the 

organiser is ADMP (Anti-Dorsalising Morphogenetic Protein) which antagonises 

dorsal and anterior structures (Moos et al., 1995). To check if Mig30 and ADMP do 

interact, proteins that are known to be affected by ADMP signalling were analysed 

by in-situ hybridisation after injection with Mig30 mRNA or Mig30 morpholino. 

Chordin is a BMP inhibitor that is expressed in the Spemann organiser like Mig30, 

which also blocks ADMP. ADMP blocks Chd and vice versa Chd inhibits ADMP 

(Fuentealba et al., 2007). In case Mig30 would interfere with ADMP an increase or 

decrease in Chd expression should be detectable. The experiment showed that 

Chd expression did not change when Mig30 is overexpressed or knocked down 

(Fig.16). Also ADMP expression was not altered in a gain or loss of Mig30 function 

experiment. The third marker analysed was Sizzled. Sizzled is a negative 

feedback inhibitor of BMP signalling (Yabe et al., 2003; Salic et al., 1997) 

expressed at the ventral signalling center. Gain of ADMP greatly enhances Sizzled 

expression, while ADMP knockdown inhibits Sizzled. Inhibition of Mig30 function 

by injection of 35 ng morpholino into the dorsal or ventral blastomeres of four-cell 
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stage embryos has no effect on Sizzled expression. When Mig30 is overexpressed 

Sizzled expression is also not affected. These results show that Mig30 does not 

interact with ADMP. 

 

 
 
Fig. 16: Mig30 has no effect on ADMP signalling. 
(A-C) In-situ hybridisation. 4-cell stage embryos were injected as indicated. (A) Chordin, stage 10.5 
dorsal view (B) Sizzled, stage 10.5 ventral view and (C) ADMP, stage 10.5, dorsal view.  
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IGFBP-rP10 

IGFBP-rP10 is an IGFBP-rP that belongs to the IGFBP-like subgroup. Protein 

sequence prediction shows a signal peptide, a N-terminal IB domain that partially 

overlaps with a KAZAL (kazal type serine protease inhibitor) domain and an IgC2 

(immunoglobulin-like domain of the C2 type) domain at the C-terminus.  

IGFBP-rP10 was first identified in mouse, where it was detectable from 

embryonic day 13 onward. It was named Bono1 because it is localised in 

developing bones and odentoblasts, where its expression correlates with matrix 

mineralisation (James et al., 2004). Another group identified it in a bone 

regeneration screen and termed it IGFBP-rP10 (for further use the mouse 

IGFBP-rP10, is called Bono1). Bono1 transcription is upregulated at the early 

phase of bone regeneration and induced by BMP2. It is suggested to be involved 

in the proliferation of osteoblasts (Shibata et al., 2004). 

The Xenopus homologue of IGFBP-rP10 was identified in a bioinformatic 

approach (Kuerner and Steinbeisser, 2006). IGFBP-rP10 transcripts are 

detectable throughout development. At four-cell stage transcripts are found at the 

animal pole, during gastrulation on the dorsal side of the embryo and later on it is 

expressed in the notochord, floorplate, somites and fin (Kuerner, 2008). 

3.14 Transcriptional regulation of IGFBP-rP10  

At the beginning of gastrulation IGFBP-rP10 is expressed on the dorsal side of 

the embryo, where the Spemann-Mangold organiser is located (Kuerner and 

Steinbeisser, 2006). The organiser has a global patterning function in development 

and is able to induce a complete body axis when transplanted (De Robertis, 2006; 

De Robertis et al., 2000; Niehrs, 2004). Therefore it was analysed if the signals of 

the organiser or the signals that are required for organiser formation are able to 

induce IGFBP-rP10 expression. Members of the TGF-ß superfamily play an 

important role in mesoderm formation. Activin can induce the entire range of 

mesodermal derivates in animal caps (Green et al., 1990; Green et al., 1992). 

Transcription of IGFBP-rP10 is induced in animal caps after treatment with Activin 

(de Beer, 2005). Other important players in mesoderm formation are the 

Nodal-related proteins, also members of the TGF-ß-superfamily. Injection of 50 pg 

Xnr1 into the ventral blastomeres of four-cell stage embryos induced ectopic 

expression IGFBP-rP10 on the ventral site of the embryos (Fig.17B, white arrow). 
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In animal caps Xnr1 was also able to induce expression of IGFBP-rP10 (Fig.17A). 

FGF (20 pg), another mesoderm inducing factor, induces the expression of the 

pan-mesodermal Xbra in animal caps, but has no effect on IGFBP-rP10 (Fig.17A, 

Isaacs et al., 1994; Isaacs et al., 1992). This demonstrates that IGFBP-rP10 is 

regulated by members of the TGF-ß family, which are required for mesoderm 

formation.  

IGF activity is present on the dorsal side, like IGFBP-rP10, so it was checked if 

signalling molecules affected by IGF signalling also have an effect on its 

transcriptional regulation. Overexpression of IGF1 (200 pg) in animal caps had no 

effect on IGFBP-rP10 expression (Fig.17A). RT-PCR analysis of animal caps 

overexpressing Wnt8 (20 pg) showed that Wnt8 induces the expression of Xnr3 

but not IGFBP-rP10 (Fig.17A). Overexpression of BMP4 (150 pg) also had no 

effect on IGFBP-rP10 expression (Fig.17A). This shows that the analysed 

signalling molecules involved in IGF signalling, namely IGF1, Wnt8 and BMP4 do 

not have an effect on the transcriptional regulation of IGFBP-rP10.  

 

 

Fig. 17: Transcriptional regulation of IGFBP-rP10  
(A) RT-PCR analysis of animal caps. 4-cell stage embryos were injected with 20 pg Xnr1 mRNA, 10 pg 
FGF mRNA, 150 pg BMP4 mRNA, 20 pg Wnt8 mRNA andor 200 pg IGF1. At blastula stage animal caps 
were dissected and grown until control siblings reached N.F. stage 10.5. Expression IGFBP-rP10, 
Xnr3, Xbra were analysed. ODC served as loading control. (B) In-situ hybridisation of IGFBP-rP10. 
White arrow marks ectopic IGFBP-rP10 expression after ventral injection with 50 pg Xnr1. 
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3.15 Characterisation of IGFBP-rP10 gain of function 

To investigate the biological effects of IGFBP-rP10 an overexpression 

experiment was performed. Four-cell stage embryos were microinjected animally 

with 4 ng IGFBP-rP10 mRNA and allowed to develop until tailbud stage. In most 

cases the injected embryos showed no phenotype and looked like the control 

embryos. Few showed reduced eye or/and head structures (15%, n=41, Fig.18B) 

reminiscent of gain of BMP4 embryos (Koster et al., 1991). Injection of lower 

doses IGFBP-rP10 mRNA (2 ng) into animal blastomeres had no visible effect 

(Fig.18G). Injection of 1 ng IGFBP-rP10 mRNA into one dorsal blastomere at four-

cell stage also showed no phenotypic effect (Fig.18I).  

Injection into the two ventral blastomeres, restricted IGFBP-rP10 expression to 

areas where it is not endogenously found. To see if ectopic expression of 

IGFBP-rP10 is able to induce cement gland structures, like Mig30, an in-situ 

hybridisation was performed with the cement gland marker Xag1 (Sive et al., 

1989). Ventral injection of IGFBP-rP10 did not show a phenotypic effect or an 

effect on cement gland structures and no ectopic cement gland patches were 

detectable (n=21, Fig.18K). 
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Fig. 18: Phenotypic analysis after IGFBP-rP10 overexpression 
(A-I) stage 34-35 embryos, lateral view, control: uninjected control embryos. Animal injection of (B) 
4 ng IGFBP-rP10 mRNA (D) 4 ng IGFBP-rP10ΔC mRNA, (E) 4 ng IGFBP-rP10ΔN mRNA and (G) 2 ng 
IGFBP-rP10 mRNA. (I) Injection of 1 ng IGFBP-rP10 mRNA into the right dorsal blastomere. (J,K) In-situ 
hybridisation. 4-cell stage embryos injected ventrally with 2 ng IGFBP-rP10 were analysed for Xag1 
expression. Lateral view. 

 

Since gain of the Mig30 mutant constructs Mig30ΔC and Mig30ΔN showed a 

more dramatic phenotype than Mig30 alone, the overexpression of the 

corresponding IGFBP-rP10 mutant constructs was analysed. IGFBP-rP10ΔC 

(rP10ΔC) comprises the signal peptide, the IB and the Kazal domain, while the 

C terminal IgC2 domain was removed. IGFBP-rP10ΔN (rP10ΔN) only contains the 

signal peptide followed by the IgC2 domain (de Beer, 2005). Four-cell stage 
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embryos were injected animally with 4ng rP10ΔC or rP10ΔN and scored at tailbud 

stage. Both mutant construct showed no phenotypic effect, the embryos looked 

like untreated control animals (Fig.:18D,E).  

In summary, phenotypic analysis after gain of IGFBP-rP10 showed impaired 

eye and/or head structures only when high doses of IGFBP-rP10 mRNA were 

injected. 

 

 

Fig. 19: Schematic diagram of IGFBP-rP10 and IGFBP-rP10 mutant constructs 
SP: signal peptide (brown), IB: Insulin-like growth factor binding domain (yellow), IgC2: 
immunoglobulin C-2 type domain (orange), KAZAL: kazal type serine protease inhibitor domain (blue), 
overlap of IB and KAZAL (green; adapted from de Beer, 2005) 

 

 

 

3.16 Characterisation of IGFBP-rP10 loss of function 

To address the endogenous function of IGFBP-rP10 an antisense morpholino 

oligonucleotide knockdown approach was used. The knockdown of target genes in 

the tetraploid Xenopus laevis by antisense morpholino oligonucleotides is 

achieved by binding to their target mRNA and specifically blocking its translation. 

Therefore an antisense morpholino oligonucleotide against the transcriptional start 

codon of IGFBP-rP10 was designed. To test the specificity of IGFBP-rP10 

antisense morpholino (IGFBP-rP10 morpholino, rP10Mo) plasmid DNA of myc-

tagged IGFBP-rP10 that contains the specific target sequence was injected alone 

or in combination with IGFBP-rP10 morpholino. As a control myc-tagged Mig30 

plasmid DNA was used. Embryos were collected at gastrula stages and protein 

amounts were analysed by Western blot using an anti myc-antibody. Injection of 

200 pg IGFBP-rP10 DNA strongly induced expression of myc-tagged IGFBP-rP10. 

This was efficiently blocked by co-injection of 35 ng IGFBP-rP10 morpholino. myc-
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tagged Mig30 was also expressed after injection with Mig30 DNA, but this was not 

blocked by co-injection of IGFBP-rP10 morpholino. This shows that IGFBP-rP10 

morpholino efficiently blocks translation of IGFBP-rP10 and is specific for its 

target.  

 

 

Fig. 20: IGFBP-rP10 specifically blocks IGFBP-rP10 translation 
Western Blot. Embryos were injected animally with IGFBP-rP10myc cDNA and Mig30myc cDNA alone 
or in combination with IGFBP-rP10 morpholino. Protein expression was detected with an anti-myc 
antibody. 

 

At neurulation stage knockdown of IGFBP-rP10 leads to disturbed anterior 

neural folding on the side of morpholino injection (35 ng, 85%, n=37; Fig.21B). At 

tailbud stage (N.F. st. 42) embryos show smaller eyes and reduced head 

structures after dorsal injection of 35 ng IGFBP-rP10 morpholino into one dorsal 

blastomere. This phenotype is very similar to the phenotype when IGFBP-rP10 is 

overexpressed in high doses. Although both loss and gain of IGFBP-rP10 show 

microcphaly and reduced eye structures, a dorsally curved phenotype was not 

detected when IGFBP-rP10 was overexpressed.  
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Fig. 21: Knockdown of IGFBP-rP10 
4-cell stage embryos were injected into the right dorsal blastomere with 35 ng IGFBP-rP10 morpholino 
(A,B) Stage 17. Anterior view. (C,D) Stage 40, lateral right. (C’, D’) Stage40, dorsal view (C’’, D’’)Stage 
40, lateral left uninjected.  

 

To further analyse the phenotypic effects of IGFBP-rP10 knockdown, four-cell 

stage embryos were in injected dorsally with 35 ng IGFBP-rP10 morpholino into 

both dorsal blastomeres or only the right blastomere. Injection of IGFBP-rP10 

morpholino in both dorsal blastomeres resulted in curved embryos with reduced 

head and eye structures at tailbud stage (42%, n=43; Fig.:22D). Spina bifida was 

seen for 12% and about 25% had reduced head and eye structures but were not 

curved. However the formation of the cement gland was not affected. The effect of 

the morpholino was strongly reduced when only one dorsal blastomere was 

injected. Then about 12% showed the strong phenotype (n=40; Fig.22D), 20% still 

had reduced head and eye structures (Fig.22C), while in about 32% only the eye 

was affected (Fig.22B). The phenotype of IGFBP-rP10 morphants is very similar to 



Results 

55 
 

the phenotype of Mig30 morphants, suggesting that IGFBP-rP10 and Mig30 might 

be redundant. 

 

 

Fig. 22: Knockdown of IGFBP-rP10 
(A) Uninjected control (B-E) Embryos were injected with 35 ng IGFBP-rP10 morpholino into one or 
both dorsal blastomeres and phenotypically scored in different classes (B) reduced eye (C) reduced 
eye and head structures (D) dorsal curvature, reduced eye and head structure (E) spina bifida. Lateral 
view. 

 

 

3.17 Functional analysis of IGFBP-rP10 

Since IGFBP-rP10 belongs to the IGFBP-rP superfamily and IGFBP-rP10 

morphants phenotypically slightly resemble the loss of IGF signalling the possibility 

that IGFBP-rP10 interferes with IGF signalling was explored. For an animal cap 

assay, embryos were injected animally at four-cell stage. Animal caps were 

dissected at blastula stage and cultured until control siblings reached early 

gastrula stage. RT-PCR analysis showed that IGFBP-rP10 (800 pg) is able to 

activate transcription of Otx2, an anterior marker, which is required for cement 

gland formation and represses convergent extension to the same extend as are 

low doses of IGF1 (Carron et al., 2005). Co-injection of IGFBP-rP10 and IGF1 did 

not further increase the level of Otx2 transcription. However IGFBP-rP10 

cooperates with IGF1 to reduce the expression of Msx1, a marker whose 

expression is BMP-dependent. Neither IGFBP-rP10 nor IGF1 have an effect on 

Msx1 expression on their own (Fig.23). This shows that IGFBP-rP10 can 

cooperate with IGF1 in the repression of BMP signalling.  
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Fig. 23: Overexpression of IGFBP-rP10 induces Otx2 expression  
Embryos were injected animally with 200 pg IGF1 mRNA, 800 pg IGFBP-rP10 mRNA or a combination 
of both. Animal caps were explanted at blastula stage and cultured to N.F. stage 10.5. Subsequently, 
RT-PCR was performed and expression of the anterior marker Otx2 and the BMP-dependent marker 
Msx1 were analysed. Ornithine decarboxylase (ODC) served as loading control. -RT, control reaction 
without reverse transcriptase. 
 

 

Inhibition of BMP signalling plays an important role in head and neural 

development (Stern, 2005). IGF signalling contributes to BMP inhibition by linker 

phosphorylation of the signal transducer Smad1, which then is degraded or 

retained in the cytoplasm (Pera et al., 2003; Eivers et al., 2004). The IGFBP-rP10 

gain of function phenotype resembles the gain of BMP phenotype, therefore the 

effect of IGFBP-rP10 overexpression on BMP signalling was analysed in a 

luciferase assay with the BRE-luc luciferase reporter construct, which contains 

multiple BMP response elements (Hata et al., 2000). Four-cell stage embryos 

were injected animally, cultured until gastrula stage and then luciferase activity 

measured. When BRE-luc reporter (100 pg) alone was injected, endogenous 

signals were not able to activate luciferase activity. Reporter activity was strongly 

induced when BMP4 was co-expressed (100 pg). This BMP4 induced activation 

was blocked when IGFBP-rP10 (1 ng) was added. IGFBP-rP10ΔC and 

IGFBP-rP10ΔN (1 ng each) were also able to block BMP induced reporter 

activation. This demonstrates that IGFBP-rP10 is able to antagonise BMP 

signalling.  
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Fig. 24: IGFBP-rP10 overexpresion inhibits BMP signalling  
Luciferase Assay. 4-cell stage embryos were microinjected as indicated into each animal blastomere. 
N.F. stage 10+ embryos were collected in pools of 4-5 embryos and assayed for luciferase activity in 
triplicates. Injection of 100 pg BRE-luc, 100 pg BMP4 mRNA, 1 IGFBP-rP10, 1 ng IGFBP-rP10ΔC mRNA 
and 1 ng IGFBP-rP10ΔN mRNA, as indicated. Level of significance in F test: *, P < 0.05; **, P < 0.01; ***, 
P < 0.001.   
 

 

In Xenopus another important pathway involved in head and neural induction is 

the canonical Wnt signalling pathway. Activation of the IGF signalling pathway 

intracellularly antagonises the Wnt/ß-catenin pathway (Pera et al., 2001; Richard-

Parpaillon et al., 2002) Gain of Mig30 also inhibits Wnt signalling (Fig.1 and 

Kuerner, 2008). To check if IGFBP-rP10 also interferes with the Wnt signalling 

pathway a Topflash reporter construct was used (Korinek et al., 1997). Co-

injection of Topflash reporter (20 pg) and Wnt8 (10 pg) lead to a strong 

transcriptional activation. This activation was blocked by addition of IGF1 (1.5 ng), 

confirming previous results (Richard-Parpaillon et al., 2002). Injection of 

IGFBP-rP10 (1.5 ng) had no effect on the Wnt8 induced transcriptional activation. 

Also IGFBP-rP10ΔC and IGFBP-rP10ΔN do not block reporter activation. To 

investigate if IGFBP-rP10 is able to interact intracellularly with Wnt signalling the 

reporter was stimulated with 50 pg ß-catenin. However co-injection of IGFBP-rP10 

or the two mutant constructs did not inhibit ß-catenin induced transcriptional 

activation (Fig.25). This shows that the gain of IGFBP-rP10 does not affect Wnt 

signalling in this assay. 
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Fig. 25: Gain of IGFBP-rP10 does not inhibit Wnt signalling  
(A,B) Luciferase Assay. 4-cell stage embryos were microinjected as indicated into each animal 
blastomere. N.F. stage 10+ embryos were collected in pools of 4-5 embryos and assayed for luciferase 
activity in triplicates. (A) Injection with 20 pg Topflash, 10 pg Wnt8 mRNA, 1.5 ng IGF1, 1.5 ng 
IGFBP-rP10, 1.5 ng IGFBP-rP10ΔC mRNA and 1.5 ng IGFBP-rP10ΔN mRNA (B) with 20 pg Topflash, 
50 pg β-Catenin mRNA, 1.5 ng IGFBP-rP10, 1.5 ng IGFBP-rP10ΔC mRNA and 1.5 ng IGFBP-rP10ΔN 
mRNA.  

 

Next the effect of gene expression after IGFBP-rP10 knockdown in gastrula 

embryos was analysed by in-situ hybridisation. To check if the endogenous 

IGFBP-rP10 also plays a role in BMP signalling we analysed the expression of 
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Vent2, which is expressed in cells of the marginal zone and animal cap region, 

excluding the organiser and whose expression is BMP-dependent (Onichtchouk et 

al., 1996). Dorsal injection of IGFBP-rP10 morpholino strongly reduced the 

expression domain of Vent2 (70%, n=27; Fig.26B). This suggests that endogenous 

IGFBP-rP10 is also able to interfere with BMP-signalling, similar to IGF signalling. 

To check if endogenous IGFBP-rP10 also plays a role in Wnt signalling we 

analysed the expression of Myf5. Myf5 is a marker for lateral mesoderm, whose 

transcription depends on zygotic Wnt/ß-catenin signals (Marom et al., 1999; Yang 

et al., 2002). Embryos were injected dorsally with IGFBP-rP10 morpholino (35 ng) 

and fixed at gastrula stage. Injection of IGFBP-rP10 morpholino completely 

abolished the expression of Myf5 (90%, n=33; Fig.26D). This suggests that 

endogenous IGFBP-rP10 promotes Wnt signalling, possibly by interfering with IGF 

signalling. 

The expression of the pan-mesodermal marker Xbra shows a ring-like marginal 

expression pattern, at N.F stage 10.5. Like Myf5, the expression of Xbra is 

dependent on functional zygotic Wnt/ß-catenin signalling. Injection of IGFBP-rP10 

morpholino (35 ng) into both dorsal blastomeres, inhibits Xbra expression at the 

side of injection (80%, n=25; Fig.26F). Further supporting the idea that 

endogenous IGFBP-rP10 promotes Wnt signalling.  

Next the expression pattern of Otx2 was analysed. Otx2 is a marker for anterior 

structures, which inhibits convergent extension movements and is required for 

cement gland formation (Blitz and Cho, 1995; Pannese et al., 1995). It was shown 

that at gastrula stages it is specifically upregulated by IGF signalling and 

overexpressing IGFBP-rP10 also slightly upregulates Otx2 expression in AC 

(Fig.23, Carron et al., 2005). Knockdown of IGFBP-rP10, by dorsal injection of 

35 ng IGFBP-rP10 morpholino did not change the levels of Otx2 transcripts. But 

the expression domain of Otx2 appeared to be shorter and broader along the 

prospective A-P axis compared to uninjected control embryos (60%, n=10, 

Fig.23H). 

In summary these knockdown results indicate, that endogenous 

IGFBP-rP10 plays a role in Wnt and BMP signalling, possibly by interfering 

with IGF signalling. But it remains to be elucidated by which molecular 

mechanisms IGFBP-rP10 performs these effects or if it is physiological 

relevant.  
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Fig. 26: Knockdown of IGFBP-rP10 reduces transcription of Vent2 and Myf5.  
(A-J) In-situ hybridisation. 4-cell stage embryos were injected into both blastomeres with 35 ng IGFBP-
rP10 morpholino or 1 ng IGFBP-rP10 mRNA, as indicated and analysed for marker expression at N.F. 
stage 10+. Control, uninjected sibling embryo. (A-C) Otx2 (D-F) Xbra (G,H) Myf5 (G,H) and (I,J) Vent2.  
 

 

3.18 IGFBP-rP10 is involved in head development 

Loss of IGFBP-rP10 leads to phenotypes with impaired head development. 

Also blocking the IGF pathway or Mig30 function leads to embryos with impaired 

head structures (Richard-Parpaillon et al., 2002; Pera et al., 2001; Kuerner, 2008), 

therefore the role of IGFBP-rP10 in head development was analysed. Embryos 

were injected into the right dorsal blastomere with 35 ng IGFBP-rP10 morpholino, 

fixed at neurula stages and in-situ hybridisation was performed. Injection of 

IGFBP-rP10 morpholino resulted in strong reduction of the expression of the 

hindbrain marker Krox20 and the expression of the forebrain marker Bf1 was also 

reduced (91%, n=12; Fig.27B, Bourguignon et al., 1998; Papalopulu et al., 1991). 
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In 45% of the injected embryos the size of the eye field was reduced, marked by 

the expression of the eye field marker Rx1 (n=17; Fig27D, Casarosa et al., 1997). 

Expression of the Wnt-dependent marker for the mid-hindbrain boundary, En2 was 

reduced in 88% of injected embryos (n=27; Fig.27F, McGrew et al., 1997; 

McMahon et al., 1992). This supports previous assumptions that endogenous 

IGFBP-rP10 interferes with Wnt signalling by inhibition of IGF signalling and shows 

that IGFBP-rP10 plays a role in brain patterning.  

 

 

Fig. 27: Knockdown of IGFBP-rP perturbs brain patterning  
In-situ hybridisation. 4-cell stage embryos were injected into the right dorsal blastomere (marked 
with *) with 35 ng IGFBP-rP10 morpholino and analysed for marker expression at N.F. stages 16-18. 
Control, uninjected sibling embryo. (A,B) Bf1/Krox20 (C,D) Rx1 and (E,F) En2.  
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3.19 IGFBP-rP10 is required for early neural development  

Functional IGF signalling and Mig30 functions are not only required for proper 

development of head structures, but also for neural crest and neural plate 

induction (Fig.13, Pera et al., 2001; Richard-Parpaillon et al., 2002; Kuerner, 

2008). IGFBP-rP10 is expressed on the dorsal side of the embryo during 

gastrulation, including the regions that later give rise to neural tissue. Additionally 

anterior neural folding, the place of neural crest induction, is disturbed in IGFBP-

rP10 morphants (Fig.21B). Embryos were injected into one dorsal blastomere, with 

35 ng IGFBP-rP10 morpholino, grown until neural stages and then analysed for 

neural crest, neural plate and neural differentiation markers.  

Neural crest induction begins at gastrulation stages and requires active Wnt 

signalling and simultaneous inhibition of BMP signals (Steventon et al., 2009). 

Injection of IGFBP-rP10 morpholino (35 ng) reduced expression of Slug, an early 

marker for neural crest fate (75%, n=52; Fig.28, Mayor et al., 1995). To confirm 

that endogenous IGFBP-rP10 is required for neural crest development, a rescue 

experiment was performed. Embryos were injected with IGFBP-rP10 morpholino 

(17.5 ng), which inhibited the expression of Slug in about 50% of the cases (n=16, 

Fig.28). When 1 ng IGFBP-rP10 mRNA was co-injected, only 25% of the embryos 

showed reduced Slug expression. The rescue was even more significant when 

mRNA of the mouse homologue Bono1 (1 ng) was co-injected with the morpholino 

(12%, n=18; Fig 28).  The overexpresion of IGFBP-rP10 or Bono1 had no effect on 

Slug expression compared to uninjected control embryos. This confirms the 

specificity of IGFBP-rP10 morpholino and the requirement for IGFBP-rP10 in 

neural crest development. 
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Fig. 28: IGFBP-rP10 is required for neural crest development.  
IGFBP-rP10 morpholino rescue experiment. Evaluation of Slug repression after injection of 17.5 ng 
IGFBP-rP10 morpholino , 1 ng Bono1 mRNA, 1 ng IGFBP-rP10 or a combination of mRNAs and 
morpholino.  

 

 

Neural induction is a complex process, which requires the interplay of different 

signalling pathways. Formation of the neural plate which comprises prospective 

neural tissue, is an important step in neural induction, which requires simultaneous 

inhibition of Wnt and BMP signals (Stern, 2005). Injection of IGFBP-rP10 

morpholino led to an expansion of the neural plate markers Sox2 (100%, n=18; 

Fig29B, Mizuseki et al., 1998) and Sox3 (95%, n=20; Fig.29, Penzel et al., 1997). 

The expression domain of Epidermal keratin (78%, n=19, Fig.29F, LaFlamme and 

Dawid, 1990), which marks non-neural epidermal cells, was reduced on the 

morpholino injected side. Thus the knockdown of IGFBP-rP10 expands the neural 

plate on the expense of of adjacent neural crest and non-neural ectoderm. 

To check if the expansion of prospective neural tissue, marked by Sox2 and 

Sox3 expression, also leads to an increase in neural differentiation, neural 

differentiation markers were analysed. The expression of the pan-neural marker 

NCAM was reduced in embryos injected with IGFBP-rP10 morpholino (86%, n=37, 

Fig.29J, Krieg et al., 1989). N-tubulin, a marker for differentiated neural tissue was 

also reduced, after IGFBP-rP10 morpholino injection (90%, n=44, Fig.29H, Chitnis 

et al., 1995). Neural differentiation is a Wnt-dependent process and reduction of 

neural differentation after loss of IGFBP-rP10 shows that Wnt signalling is inhibited 

when IGFBP-rP10 is knocked down. Both, neural induction and neural 

differentiation, require Wnt and BMP signalling tightly controlled for their proper 
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development. The fact that both are disturbed when endogenous IGFBP-rP10 is 

inhibited, indicates that IGFBP-rP10 might play a role in Wnt and/or BMP 

signalling.  

 

 

Fig. 29: Loss of IGFBP-rP10 affects neural development.  
In-situ hybridisation. 4-cell stage embryos were injected into the right dorsal blastomere (marked 
with *) with 35 ng Mig30 morpholino and analysed for marker expression at N.F. stages 16-18. Control, 
uninjected sibling embryo. (A,B) Sox2 (C,D) Sox3 (E,F) Epidermal keratin (G,H) NCAM and (I,J) 
N-tubulin.  
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3.20 IGFBP-rP10 has no effect on IGF induced differentiation in 

RCJ3.1C5.18 cells 

The IGFBP-rP10 loss of function data indicates that endogenous IGFBP-rP10, 

like Mig30, inhibits IGF signalling. To analyse if IGFBP-rP10 directly interacts with 

IGF1, the mesenchymal chondrogenic RCJ3.1C5.18 cells were used (Grigoriadis 

et al., 1996; McDougall et al., 1996; Lunstrum et al., 1999). The RCJ cell line is a 

model widely used for growth plate chondrocyte development (McEwen et al., 

1999; Weksler et al., 1999; Cohen et al., 2006). RCJ cells spontaneously progress 

into differentiated growth plate chondrocytes and the differentiation can be 

enhanced by exogenous IGF1. The action of exogenous IGF1 can be directly 

studied because RCJ cells do not express IGF1 (Spagnoli et al., 2001).  

RCJ cells were transiently transfected with either the empty pCS2+ vector or 

IGFBP-rP10. Mig30 was used as a positive control. The cells were cultured in 

differentiation medium from day 4 onward. At day 7 of culture, cells were serum-

starved for 12 h and stimulated with 100 ng/ml IGF1 for another 12 h. The cells 

were harvested and transfection efficiency controlled. All samples showed that the 

transfection was successful and the plasmids were transcribed (data not shown). 

Then the expression of IGFBP5, which is upregulated during chondrocyte 

differentiation and ALP (alkaline phosphatase), a chondrocyte differentiation 

marker were analysed by qRT-PCR (Lunstrum et al., 1999; Spagnoli et al., 2001; 

Kiepe et al., 2005). IGFBP5 and ALP are expressed at low levels in cells 

transfected with empty pCS2+ vector, Mig30 or IGFBP-rP10 (Fig.30). The 

expression increases dramatically when the differentiation process is stimulated by 

additional treatment with IGF1 (Fig.30). This increase of IGFBP5 and ALP 

expression after stimulation with IGF1 is strongly reduced when cells were 

previously transfected with Mig30 (Fig.30). Transfection with IGFBP-rP10 has no 

effect on the IGF1 induced expression of IGFBP5 and ALP. This shows that 

IGFBP-rP10 is not able to interact with IGF1 in this assay. This is possibly due to 

the amino acid exchange in the IB domain of IGFBP-rP10.  
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Fig. 30: IGFBP-rP10 has no effect on IGF1 induced differentiation of RCJ3.1C5.18 cells 
RCJ cells were transfected as indicated, cultured in differentiation medium from day 4 onward. At 
day 7 cells were 12 h serum starved and then stimulated with 100 ng/ml IGF1. After 12 h cells were 
harvested and expression of IGFBP5 and ALP were measured by qRT-PCR.  
 

 

3.21 IGFBP-rP10 has no effect on ADMP signalling 

ADMP is a TGF-ß family member expressed in the Spemann organiser and 

during neurulation found in neural floor plate and prechordal plate. Overexpression 

of ADMP leads to embryos with severe anterior and dorsal defects (Moos et al., 

1995). Gain of ADMP activates known BMP target genes, like Chordin and loss of 

ADMP, results in expansion of head structures and a decrease in BMP-dependent 

markers (Fuentealba et al., 2007). Since gain of function of IGFBP-rP10 also 

affects BMP signalling and ADMP is also expressed in the Spemann organiser, it 

was analysed if the two proteins might interact. At gastrula stage Chordin, Sizzled 

and ADMP expression were analysed by in-situ hybridisation after injection with 

IGFBP-rP10 mRNA or IGFBP-rP10 morpholino. ADMP expression is not altered 

after gain or loss of IGFBP-rP10 (Fig.30). Chordin expression is blocked by gain of 

ADMP, but since IGFBP-rP10 has no effect on ADMP, Chd expression was not 

altered (Fig.30). Sizzled is expressed on the ventral side of the embryo and is a 

negative feedback inhibitor of BMP signalling. Its expression is not disturbed after 

overexpression or knockdown of IGFBP-rP10.  
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Fig. 31: IGFBP-rP10 has no effect on ADMP signalling.  
(A-C) In-situ hybridisation. 4-cell stage embryos were injected as indicated. (A) Chordin, stage 10.5 
dorsal view (B) Sizzled, stage 10.5 ventral view and (C) ADMP, stage 10.5, dorsal view.  
 

 

 

At later stages inhibition of ADMP by antisense morpholino oligonucleotides 

leads to strongly dorsalised embryos, while overexpressing ADMP has the 

opposite effect and ventralises embryos (Fuentealba et al., 2007). To check if 

IGFBP-rP10 might have an effect at later stages the expression of Otx2, Krox20 

and Sizzled were analysed at N.F. stages 24-25. Otx2 is a marker for anterior 

head structures, and is expanded in dorsalised embryos and reduced in 

ventralised embryos. Krox20 marks two rhombomeres of the hindbrain and their 

expression is not affected by gain or loss of ADMP. The expression of Sizzled, the 

negative feedback inhibitor of BMP, signalling is strongly expanded in ventralised 

embryos and reduced in dorsalised embryos. Overexpression of IGFBP-rP10 

(1 ng) by injection into both dorsal or ventral blastomeres had no effect on the 

expression of the three markers analysed. Also knockdown of IGFBP-rP10 did not 

affect the expression of Otx2, Krox20 and Sizzled. These results show that 

IGFBP-rP10 does not interfere with ADMP signalling. 
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Fig. 32: IGFBP-rP10 has no effect on ADMP signalling. 
In-situ hybridisation. 4-cell stage embryos were injected as indicated and analysed for Otx2, Sizzled 
and Krox20 expression at N.F. stages 24-25, lateral view 

 

 

3.22 Expression analysis of Bono1 in early mouse development 

Bono1 was first identified in mouse, but not found before embryonic day 13 

(James et al., 2004). IGF ligands and receptors on the other hand are present 

from pre-implantation stages on in embryonic- and extraembryonic cell lineages 

(Puscheck et al., 1998; Morali et al., 2000). Additionally IGF signalling is involved 

in the crosstalk between maternal and blastocyst derived tissue during 

implantation (Paria et al., 2001). In early mouse development at the time of 

implantation the blastocyst gives rise to three established cell lineages. The 

trophoectoderm, which forms extraembryonic ectoderm, the epiblast which forms 

the embryo proper and the primitive endoderm. The epiblast and the primitive 

endoderm are derived from pluripotent cells of the inner cell mass (ICM) of the 

blastocyst. The ICM derived primitive endoderm is highly motile, can differentiate 

into visceral endoderm (VE) or spread over the trophoectoderm and differentiate 

into parietal endoderm (PE) of the yolk sac. Wnt signalling plays an important role 

in the proper differentiation of these cell lineages. In pluripotent ICM cells 

Wnt/ß-catenin signalling is known to be active, while the differentiation to VE cells 

requires the inhibition of the Wnt/ß-catenin signalling pathway (Ralston and 

Rossant, 2005; Shibamoto et al., 2004). In Xenopus we found that Wnt and BMP 

signalling are inhibited when IGFBP-rP10 is knocked down. So we analysed if 

Bono1 is expressed in these extraembryonic endodermal cells. Therefore F9 

embryonic carcinoma cells were used, because these cells are an established 
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model for extra-embryonic endoderm differentiation (Strickland and Mahdavi, 

1978; Strickland et al., 1980). F9-cells were treated with retinoic acid or retinoic 

acid and cAMP to differentiate them into VE- or PE-like cells. After 7 days cells 

were collected and gene expression analysed by RT-PCR. The marker for 

endodermal tissue, Sox17 (Sry-related HMG-box transcription factor 17, Kim et al.) 

is upregulated when the cells were treated with RA or RA/cAMP, which shows that 

the differentiation in endoderm-like structures was successful (Fig.33). The 

expression level of Bono1 also increased, especially in PE-like cells treated with 

RA and cAMP (Fig.33). This indicates that Bono1 might be expressed in 

extraembryonic endodermal tissue during mouse development. 

 

Fig. 33: Bono1 is expressed in differentiated F9-cells  
RT-PCR analysis for Bono1 and Sox17 in F9-cells differentiated into visceral and parietal endoderm 
like cells. GAPDH served as loading control. -RT, control reaction without reverse transcription.   

 

 

qRT-PCR analysis of 6.5 and 7.5 mouse embryos support the idea that Bono1 

might be expressed in extraembryonic endodermal tissues. The expression of 

Bono1 in 6.5 and 7.5 mouse embryos and/or the surrounding deciduas was 

analysed. At embryonic day 6.5 Bono1 expression is high in the decidua, but also 

detectable in embryonic tissue. At embryonic day 7.5 the expression of Bono1 in 

the decidua is even stronger than at day 6.5, but very weak in embryonic tissues 

(Fig.34). 
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Fig. 34: Bono1 is expressed in the decidua.  
qRT-PCR for Bono1 in d 6.5 and d 7.5 mouse embryos and extra-embryonic tissues  
 

 

To look if Bono1 is really expressed in endodermal tissue in early mouse 

development, an in-situ hybridisation on cryosections was performed. Day 7.5 

embryos were dissected including extraembryonic tissue and the surrounding 

decidua. The maternal tissue was included into the experiment, because a 

crosstalk between maternal and blastocyt derived signals is required for 

successful implantation and to prevent abortion. qRT-PCR analysis indicated that 

Bono1 is present there. The embryos were fixed and sagitally sectioned. Msg1 

(melanocyte-specific gene1) specifically marks visceral endoderm (Dunwoodie et 

al., 1998). No expression was detected in the decidua, placenta or other 

embryonic structures (Fig.35). Bono1 was not detectable in endodermal tissues or 

the embryo, but it was found at the border of the decidua. This suggests that 

Bono1 might play a role in the crosstalk between maternal and embryo derived 

signals.  
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Fig. 35: Bono1 expression in the decidua  
In-situ hybridisation. D 7.5 embryos and the sourrounding deciduas were sagitally sectioned and 
analysed for Msg1 and Bono1 expression. 20x and 63x magnification.  
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4 Discussion 

4.1 Mig30 and IGFBP-rP10 function are connected to the IGF 

system 

4.1.1 Gain of Mig30 and IGFBP-rP10 function 

Mig30 and IGFBP-rP10 are two structurally related proteins which are 

classified as IGFBP-rPs. Some IGFBP-rPs are known to be able to bind IGFs in 

vitro (Oh et al., 1996; Kim et al., 1997; Burren et al., 1999). But so far no 

physiologically relevant role for IGFBP-rPs in IGF signalling has been 

demonstrated. In the early embryo the expression patterns of both Mig30 and 

IGFBP-rP10 overlap with the expression pattern of components of the IGF system. 

This makes them likely candidates for interaction with the IGF system. Additionally 

previous results in Xenopus strongly suggest that Mig30 plays a role in IGF 

signalling (Kuerner, 2008). Functional characterisation of Mig30 and IGFBP-rP10 

should reveal whether Mig30 and IGFBP-rP10 play a role in IGF signalling or 

whether they have IGF-independent functions. Additionally comparative analysis 

will show redundant und non-redundant functions of the two proteins. 

In the rat chondrogenic cell line RCJ3.1C5.18 ectopic addition of IGF1 induces 

differentiation (Spagnoli et al., 2001). This effect was used to analyse, whether 

Mig30 and IGFBP-rP10 are able to inhibit IGF1 function. In cells transfected with 

Mig30, IGF1 induced differentiation was blocked (Fig.8). This shows that Mig30 

inhibits IGF1 function. 

Importantly Mig30ΔC, which contains the putative IGF binding (IB) domain also 

inhibits chondrocyte differentiation. However Mig30ΔN, which lacks the IB domain, 

had no effect on chondrocyte differentiation (Fig.8). This demonstrates that the IB 

domain of Mig30 is responsible for the inhibition of IGF activity.  

Surprisingly, IGFBP-rP10 had no effect on IGF1 induced chondrocyte 

differentiation (Fig.30). This difference from Mig30 is possibly due to an amino acid 

change in the core sequence of the IB domain thought critical for IGF binding 

(Kuerner and Steinbeisser, 2006). 

Alternatively Mig30 and IGFBP-rP10 could modulate IGF activity by interaction 

with a protein that functions as a regulator of IGF signalling. In Xenopus the only 

protein known to play a role in IGF signalling is IGFBP5. It has been shown that 
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IGFBP5 potentiates IGF activities and therefore requires a functional IGF1R (Pera 

et al., 2001). Like the other components of the IGF signalling pathway it is co-

expressed with Mig30 and IGFBP-rP10. Indeed, I showed that Mig30 affects 

IGFBP5 induced signalling. Overexpression of IGFBP5 in animal caps induces the 

transcription of Otx2 and Xag1 at neurula stages (Blitz and Cho, 1995; Sive et al., 

1989; Pannese et al., 1995). This induction is blocked when high doses of Mig30 

are co-expressed with IGFBP5 (Fig.6). This shows that Mig30 inhibits IGFBP5 

induced signalling. 

Overexpression of Mig30ΔC in combination with IGFBP5 shows opposing 

effects depending on the injected doses of Mig30ΔC. At low doses Mig30ΔC 

promotes IGFBP5 induced signalling, while at high doses IGFBP5 induced marker 

expression is repressed. Since Mig30ΔC contains the IB domain, which is required 

for IGF binding, the result suggests that at low doses Mig30ΔC binds to the free 

endogenous IGFs thereby prolonging their half-life and so promoting IGF activity. 

However at high doses of Mig30ΔC all free IGFs are sequestered and signalling 

cannot take place.  

Mig30ΔN, which lacks a functional IB domain, is a strong inhibitor of IGFBP5 

induced signalling at low and high doses (Fig.6). Mig30ΔN is comprised of the 

IgC2 domain, a domain known to be involved in cell-cell adhesion and recognition. 

IGFBP5 is also known to bind to the cell surface and extracellular matrix 

components, thereby sequestering IGFs in the vicinity of its receptor and 

promoting IGF signalling (Jones et al., 1993; Kiepe et al., 2001). When the 

interaction with the cell matrix is lost, IGFBP5 antagonises IGF signalling (Kalus et 

al., 1998). This suggests that Mig30ΔN blocks IGFBP5 function by displacing 

IGFBP5 from the cell matrix and thereby preventing presentation of IGFs to their 

receptors. Another possibility is that Mig30ΔN binds directly to IGFBP5, thereby 

preventing binding to IGF and subsequently receptor activation could also be 

blocked if Mig30ΔN binds to the IGF/IGFBP5 complex. 

Opposing effects of different domains within a protein are also shown for the 

IGFBP-rP Cyr61. Cyr61 acts via its IB domain to elevate low level Wnt signalling, 

while it inhibits high levels of Wnt signalling via its cysteine-knot domain (Latinkic 

et al., 2003).  
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These findings show that the IB and IgC2 domain of Mig30 can have opposing 

effects on IGFBP5 induced signalling. Furthermore it indicates that the level of 

Mig30 needs to be precisely controlled for its normal activity. 

 

By affecting two pathways involved in early patterning, namely Wnt and BMP 

signalling, IGF signalling plays an important role in early Xenopus development. 

IGFs are potent inhibitors of Wnt signalling, acting intracellularly on the level of 

GSK3 or ß-catenin (Pera et al., 2003; Pera et al., 2001; Richard-Parpaillon et al., 

2002). Besides IGFs are inhibitors of BMP signalling. Here again they act 

intracellularly at the level of the BMP signal transducer Smad1 (Pera et al., 2003). 

Mig30 also inhibits Wnt signalling intracellularly at the level of ß-catenin. This 

was demonstrated by using a reporter assay (Kuerner, 2008). I confirm these 

results (Fig.1B and Fig.1C) and additionally show that at high doses Mig30 is able 

to inhibit Wnt8 induced marker expression in animal cap explants (Fig.1A). The 

intracellular inhibition of the Wnt pathway mediated by Mig30 argues that there is 

no direct, extracellular interference with Wnt ligands or transmembrane receptors. 

Such an IGF-independent mode of inhibition was demonstrated for IGFBP4 and 

CTGF which directly bind to the Fz8 receptor and the co-receptor LRP6 and 

thereby prevent the binding of Wnt ligands (Zhu et al., 2008; Mercurio et al., 2004). 

The intracellular action of Mig30 is similar to Wnt inhibition by IGF signals and 

therefore it is likely that Mig30 inhibits Wnt signalling by promoting IGF signals.  

IGFBP-rP10 has no effect on Wnt signalling in the reporter assay, indicating 

that a functional IB domain and therewith inhibition of IGF function is required for 

Wnt inhibition (Fig.25). Indeed Mig30ΔC antagonises Wnt8 and ß-catenin induced 

Wnt signalling in a reporter assay (Fig.4A and Fig.4B). This further supports that 

the IB domain is required for Wnt inhibition and that Mig30 inhibits Wnt signalling 

by promoting IGF signals. 

Unexpectedly MigΔN inhibits Wnt signalling as efficiently as Mig30 and 

Mig30ΔC (Fig.4). Here the question arises how can this construct mediate Wnt 

inhibition and is this inhibition really IGF-dependent? One possible explanation 

would be that the IgC2 domain also has IGF binding capacities. Such binding 

capacities of the IgC2 domain are described for a drosophila insulin-related 

peptide-binding protein, which can bind to insulin-related proteins and human IGFs 

(Sloth Andersen et al., 2000). Another possible explanation is that Mig30ΔN is 
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able to interact with an additional cell surface receptor, whose activation channels 

into the IGF pathway. Several cell surface receptors have been described for 

IGFBP-rPs but none of these are reported to induce functions specific for IGF 

signalling (Syndecan1, integrins, HSPGs, LRPs, Notch1, tyrosine kinase receptor 

TrkA, Ahmed et al., 2003; Leask and Abraham, 2006). It is also possible that 

adding an excess of our molecule led to an activation of pathways normally not 

involved in the endogenous signalling events.  

Activation of IGF signalling has also been shown to inhibit the BMP pathway 

(Pera et al., 2003). In animal caps Mig30 is able to inhibit the expression of the 

BMP-responsive gene Msx1 (Kuerner, 2008). Moreover I show that Mig30 inhibits 

BMP induced reporter activation (Fig.2). This shows that gain of Mig30 

antagonises BMP signalling, further indicating that gain of Mig30 promotes IGF 

signalling. 

Interestingly, overexpression of IGFBP-rP10 also inhibits BMP4 induced 

signalling in a reporter assay (Fig.24). This argues that the IB domain and 

therefore inhibition of IGF activity might not be required for BMP inhibition. 

Unexpectedly Mig30ΔC and IGFBP-rP10ΔC also block BMP signalling. The IB 

domains of Mig30 and IGFBP-rP10 contain several cysteines. Such cysteine-rich 

(CR) domains are found in known regulators of BMP signalling, like Chordin, 

Sizzled and Short gastrulation. (Sasai et al., 1994; Francois and Bier, 1995; Salic 

et al., 1997). This suggests that the two IGFBP-rPs directly interact with the BMP 

signalling pathway. This is supported by the finding that Mig30ΔC inhibits Chordin 

activity (Kuerner, 2008). 

However this does not explain how Mig30ΔN and IGFBP-rP10ΔN, which lack 

the IB domain, inhibit BMP signalling.  

In summary the gain of function data show that Mig30 can act as activator or 

inhibitor of IGF signalling, depending on the system analysed. For the inhibition of 

IGF1 function in rat chondrocytes the IB domain is essential, whereas 

antagonising IGFBP5 in Xenopus requires the IgC2 domain. In experimental 

conditions where Mig30 promotes IGF signalling the Wnt and BMP pathways are 

inhibited. IGFBP-rP10 is not able to block IGF function. In Xenopus gain of 

IGFBP-rP10 inhibits BMP signalling, but has no effect on Wnt signalling. 
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4.1.2 Loss of Mig30 and IGFBP-rP10 function 

To address the endogenous function of Mig30 and IGFBP-rP10 and to avoid 

unspecific effects possibly induced by protein overexpression, a knockdown 

approach with antisense morpholino oligonucleotides was utilised.  

Knockdown experiments support the finding that Mig30 inhibits IGFBP5 

induced signalling. The expression pattern of Otx2 is increased when IGFBP5 is 

co-expressed with Mig30 antisense morpholino, compared to IGFBP5 

overexpression alone (Fig.12).  

Knockdown of Mig30 sensitises tissue for ectopic IGF signals. When Mig30 is 

knocked down in early embryos low doses of IGF1 are sufficient to induce an 

enlarged cement gland, which is not the case when low doses of IGF1 are 

expressed on their own (Fig.11). This result supports the finding that Mig30 

interferes with IGF1 function. But it indicates that endogenous Mig30 is an inhibitor 

of IGF signalling, which opposes the gain of function data which suggest that 

Mig30 promotes IGF signalling. 

In Mig30 morphants the transcription of Myf5, which depends on zygotic 

Wnt/ß-catenin, is blocked, as is the transcription of Vent2, a BMP-responsive gene 

(Fig.9 and 10, Marom et al., 1999; Hopwood et al., 1991; Karaulanov et al., 2004). 

This too, indicates that endogenous Mig30 impedes Wnt and BMP signalling 

rather than antagonise it. Consistent with this, BMP activity is inhibited in Mig30 

morphants (Fig.10). Also, Wnt activity is blocked in a reporter assay when Mig30 is 

knocked down. Importantly, I show that Wnt inhibition in Mig30 morphants is an 

IGF-dependent process: blocking the IGF signalling pathway by co-expression of a 

dnIGFR construct could partially rescue Wnt signalling (Fig.10). Taken together 

these data show that endogenous Mig30 inhibits the IGF pathway and thereby 

promotes Wnt and BMP signalling.  

Endogenous IGFBP-rP10 also seems to be an inhibitor of IGF signalling. In 

IGFBP-rP10 morphants the expression of the Wnt-dependent marker Myf5 and the 

BMP-responsive gene Vent2 are strongly reduced (Fig.26). That endogenous 

IGFBP-rP10 is an inhibitor of IGF signalling is further supported by its role in head 

and neural development (see chapter 8.2).  

In summary, these results show that endogenous Mig30 and IGFBP-rP10 are 

inhibitors of IGF signalling and thereby promote Wnt and BMP signalling.  
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4.2 Mig30 and IGFBP-rP10 are required for head and neural 

development 

Anterior development in vertebrates is a complex process, which requires a 

tightly balanced interplay of different signalling pathways to induce head and 

neural structures (Niehrs, 2004; Stern, 2005).  

The process of head development was considered a default state, inhibiting the 

signals required for trunk development. The growth factor signals required to be 

inhibited for proper head formation are Wnt and BMP signals (Glinka et al., 1997; 

Glinka et al., 1998; Piccolo et al., 1999). Inhibition of only one pathway is not 

sufficient to induce secondary heads. Only Cerberus, a triple inhibitor of Wnt, BMP 

and Nodal signalling, and IGFs are able to induce secondary heads (Bouwmeester 

et al., 1996; Pera et al., 2001). Furthermore it was suggested that the IGF pathway 

participates in patterning because it regulates the amount of tissue allocated to 

head and trunk regions (Pera et al., 2001; Richard-Parpaillon et al., 2002).  

Knockdown of Mig30 and IGFBP-rP10 led to embryos with reduced head 

structures, showing that both are required for head development. Analysis of 

spatially restricted brain markers showed that Mig30 and IGFBP-rP10 also play a 

role in brain patterning. I could demonstrate that in IGFBP-rP10 morphants the 

expression of Bf1, a forebrain marker, En2, a marker of the mid/hindbrain 

boundary and Krox20 a hindbrain marker, are disturbed (Fig.27, McMahon et al., 

1992; McGrew et al., 1997; Bourguignon et al., 1998; Papalopulu et al., 1991). The 

same effect was shown previously in Mig30 morphants for Bf1 and Krox20, and I 

could show it for En2 (Fig.13, Kuerner, 2008). All three markers are known to 

require proper Wnt signalling for their expression (Kiecker and Niehrs, 2001). This 

indicates that by regulation of Wnt signalling, IGFBP-rP10 and Mig30 are involved 

in brain patterning.  

The only BMP expressed in the organiser and known to play a role in 

patterning is ADMP (Anti Dorsalising Morphogentic Protein, Moos et al., 1995). 

The function of ADMP is to repress ectopic expression of head organiser genes 

(Dosch and Niehrs, 2000). Gain and loss of Mig30 and IGFBP-rP10 function do 

not affect ADMP signalling. (Fig.16, 31 and 32). This indicates that Mig30 and 

IGFBP-rP10 perform their function in head formation by inhibition of Wnt 

signalling. 
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During neural induction distinct regions of the ectoderm become specified to 

form neural plate and neural crest. The so called “default model” proposes that 

ectodermal cells acquire neural fate when they do not receive BMP signals. 

However neural induction is a complex process, which requires the interplay of 

different signalling pathways. It was shown that Wnt inhibition and functional FGF 

signalling are also required (Stern, 2005; Xu et al., 1997; Launay et al., 1996; 

Glinka et al., 1997; Sasai et al., 1996). Another active pathway required and 

sufficient for neural induction is the IGF signalling pathway. The IGF activities in 

neural induction and patterning are not easily separated into Wnt- or BMP-

dependent defects as the Wnt and the BMP pathway are linked with each other at 

the level of Smad1 linker phosphorylation (Pera et al., 2003). At present, it is not 

fully understood how these signals are integrated.  

It was shown that blocking Wnt signalling is sufficient to induce neural 

precursor fate marked by an expansion of the neural plate (Heeg-Truesdell and 

LaBonne, 2006). In Mig30 and IGFBP-rP10 morphants the expression patterns of 

Sox2 and Sox3, two markers for not yet committed neural precursors, are 

expanded (Mizuseki et al., 1998; Penzel et al., 1997). Furthermore, the expression 

of the epidermis marker Epidermal keratin is reduced (Fig.13 and 29, LaFlamme 

and Dawid, 1990). Thus knockdown of Mig30 and IGFBP-rP10 expand the neural 

plate at the expense of non-neural epidermal tissue, which implies that Mig30 and 

IGFBP-rP10 interfere with Wnt signalling.  

Blocking Wnt signalling also inhibits neural differentiation (Heeg-Truesdell and 

LaBonne, 2006). Consistent with the hypothesis that knockdown of Mig30 and 

IGFBP-rP10 inhibits Wnt signalling, neural differentiation is blocked when 

IGFBP-rP10 and Mig30 are knocked down (Fig.13 and 29).  

Mig30, unlike IGF signals, is not able to induce neural marker expression in 

ectodermal explants on its own (Fig.5). Additionally Mig30 does not affect FGF 

signalling which also plays a role in neural induction and patterning (Launay et al., 

1996; Delaune et al., 2005; Sasai et al., 1996; Xu et al., 1997). Mig30 is therefore 

not able to inhibit XER81 expression induced by FGF signals in ectodermal 

explants (Fig.15, Munchberg and Steinbeisser, 1999). This finding suggests that 

Mig30 performs its function in neural induction and patterning by modulating 

endogenous IGF signals. The influence of IGFBP-rP10 on the FGF pathway has 

not yet been analysed. However since IGFBP-rP10 and Mig30 functions are 
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overlapping in neural development it is likely that IGFBP-rP10 also performs its 

functions by modulating IGF signals.  

Wnt signalling is essential at the neural plate border where neural crest 

precursors are specified (Steventon et al., 2009). This is in line with my 

observation that in Mig30 morphants the expression of two neural crest markers, 

namely Slug and Twist, is strongly reduced (Fig.14, Aybar et al., 2003; Greaves et 

al., 1985). The expression of Slug is also reduced, when IGFBP-rP10 is knocked 

down. This further shows that Mig30 and IGFBP-rP10 interfere with Wnt signalling.  

Surprisingly, at the end of neurulation, expression of Slug and Twist 

reappeared in Mig30 morphants (Fig.14). A recent study has proposed that neural 

crest induction is a multi-step process. They showed that the first inductive step 

requires Wnt activation and BMP inhibition, whereas the maintenance step 

requires simultaneous activation of both Wnt and BMP signalling, demonstrating a 

spatial and temporal requirement for neural crest inductive signals (Steventon et 

al., 2009). The results indicate that Mig30 is involved in this spatial and temporal 

regulation of neural crest specification. 

Based on our knowledge of Mig30 and IGFBP-rP10 function in neural 

development I propose that during neurulation Mig30 and IGFBP-rP10 time and 

fine tune Wnt signalling in an IGF-dependent manner. This ensures active Wnt 

signalling required for neural crest specification and promotes the differentiation of 

Sox positive neural progenitors.  

4.3 Bono1 is expressed in the decidua 

The components of the IGF system are expressed very early in mouse 

embryogenesis and are already found in blastocysts and early in embryonic as 

well as in extraembryonic lineages (Puscheck et al., 1998; Morali et al., 2000). An 

important process in early mouse development is the differentiation of the inner 

cell mass (ICM) in embryonic and extraembryonic cell lineages. The ICM derived 

extraembryonic primitive endoderm cells are multipotent progenitors that can 

differentiate into parietal endoderm and visceral endoderm. Precise regulation of 

Wnt/ß-catenin and TGF-ß pathways is required for these differentiation processes. 

In Xenopus we found that Wnt and BMP signalling are inhibited when 

IGFBP-rP10 is knocked down. Therefore I analysed whether Bono1, the mouse 

homologue of IGFBP-rP10, is expressed early in mouse development and if it is 
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found in extraembryonic endodermal cells. Bono1 is expressed in F9-cells, after 

differentiation into VE- or PE-like cells, indicating that Bono1 might be found in 

endodermal cells. qRT-PCR of d 6.5 and 7.5 mouse embryos and the surrounding 

decidual tissue suggested that Bono1 might also be found in the decidua. IGF 

signals are also known to be involved in the crosstalk between maternal and 

blastocyst derived tissue during implantation. The local response elicited by the 

implantation of a blastocyst or an IGF1 coated bead into a receptive uterus is 

expression of BMP2, which induces Bono1 expression in osteoblasts (Paria et al., 

2001; Shibata et al., 2004). This could explain the finding that Bono1 is strongly 

expressed in the decidua and only weakly in endodermal tissues of day 7.5 mouse 

embryos (Fig.35).  

The detection of Bono1 in early mouse embryos, raises the question of 

whether Bono1 also plays a role in the IGF system during early mouse 

development.  
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5 Materials and Methods 

5.1 Materials 

5.1.1 Chemicals  

All chemicals, if not stated otherwise, were obtained from J.T.Baker, Merck, Roth, 

and Sigma-Aldrich. 

Ampicillin      biomol 

Aqua-Mount       Lerner      

Bactotryptone     BD 

Bromphenol Blue     Serva 

ethidium bromide     Merck 

Freon       Fluka 

Gelatine      Sigma 

L-cysteine      biomol 

LE-Agarose      Biozym 

Milk powder      Roth 

Mowiol      Calbiochem 

Penicillin      PAA Laboratories 

Phenol-chloroform-isoamylalcohol  Fluka 

RNase free water     Ambion 

sheep serum         Sigma 

Temed      biomol 

tissue-TEK       O.C.T  

 

5.1.2 Proteins, enzymes, inhibitors, and markers 

All enzymes were obtained from Fermentas, Roche, and New England Biolabs if 
not stated otherwise. 
 

10x protease inhibitor complete   Mini Roche 

EuroTaq      Biocat 

GeneRuler 1kb DNA ladder Plus   Fermentas 

Human chorionic gonadotropin   Sigma 

PageRuler Prestained protein ladder  Fermentas 

Poly-L-Lysine     Sigma 

Trypsin      PAA Laboratories 

TurboFect     Fermentas 

BMpurple AP-Substrate   Roche 

Boehringer Blocking Reagent (BBR) Roche 
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5.1.3 Buffers and Solutions 

 
20x SSC 3M NaCl, 0.3M Sodium citrate 

3x SDS-sample buffer  150 mM Tris-HCl (pH 6,8), 6% SDS, 0.3% 

Bromophenol Blue, 30% glycerol, 300 mM DTT, 

6x loading buffer, 40% glycerol, 0.25% 

Bromophenol Blue 

6x DNA loading buffer 40% glycerol, 0.25% Bromophenol Blue 

Blocking solution (Western blot)  5% milk powder in PBS/0.1% Tween-20 

DMEM high-glucose medium  PAA Laboratories 

Hybridisation buffer (mouse) 50% Formamide, 5x SSC, 0.3 mg/ml Yeast 

tRNA, 0.1 mg/ml Heparin, 1x Denhardt’s 

solution, 0.1 % Tween, 0.5 mM EDTA  

Hybridisation buffer (Xenopus, 

50 ml)  

0.5 g BBR, 25 ml formamide, 12.5 ml 20x SSC, 

6 ml H2O, 5 ml Torula RNA (10 mg/ml), 100 µl 

Heparin (50 mg/ml), 250 µl 20 % Tween, 500 µl 

10 % CHAPS, 500 µl 0.5 M EDTA 

LB (2l)  20g bacto tryptone, 10g yeast extract, 20g NaCl 

LB-Amp  50μg/ml ampicillin in LB 

LB-Amp plate  1.5% agar in LB-Amp 

MAB (10x, 200 ml) 23.2 g maleic acid (pH 7.5), 17.4 g NaCl  

MBSH buffer   88 mM NaCl, 1 mM KCl, 2.4 mM NaHCO3, 0.82 

mM MgSO4, 0.33 mM Na(NO)3, 0.41 mM 

CaCl2, 10 mM HEPES (pH 7.4), 10 μg/ml 

streptomycin-sulfate, 10 μg/ml penicillin 

MEMFA 0.1M MOPS (pH 7.4), 2 mM EGTA, 1 mM 

MgSO4, 3.7 % formaldehyde 

Mowiol  20 mg Mowiol, 80 ml PBS, 50 ml glycerol 

PBS  126 mM NaCl, 2,7 mM KCl, 1.5 mM KH2PO4, 

6.5 mM Na2HPO4 

PBS for cell culture  PAA Laboratories 

pH-9-buffer 100 mM Tris-HCl (pH 9.5), 100 mM NaCl, 

50 mM MgCl2, 0.1 % Tween20 

RIPA buffer  0.1 % SDS, 0.5 % Na-deoxycholate, 1% NP-40, 

150 mM NaCl, 50 mM Tris-HCl (pH 7.4), 

proteinase inhibitor 

SDS-PAGE running buffer  24.8 mM Tris, 192 mM glycine, 0.1 % SDS 

TBE (10x) 890 mM Tris-borate, 0,2 mM EDTA, pH 8,0 

Transfer buffer  24.8 mM Tris, 192 mM glycine, 20 % methanol 

Tris/NaCl  100 mM Tris-HCl (pH 7.4), 100 mM NaCl 

Western blot transfer buffer 24.8 mM Tris, 192 mM glycine, 20% methanol 
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5.1.4 Oligonucleotides 

The following oligonucleotides were ordered from Operon or Sigma-Aldrich. 
 

ODC for GTCAATGATGGAGTGTATGGATC  RT-PCR 

ODC rev TCCATTCCGCTCTCCTGAGCAC RT-PCR 

Bf1 for GCGGCAAAGACGGCGGCGACA  RT-PCR 

Bf1 rev CCGGCGCAGTTTGCCGGTGGT  RT-PCR 

NCAM for CCCACAGCCACTACAGCCACCGCA RT-PCR 

NCAM rev TGCCTTTGGCACCAGGTCCGGC RT-PCR 

Pax6 for CAG AAC ATC TTT TAC CCA GGA   RT-PCR 

Pax6 rev ACT ACT GCT AAT GGG AAT GTG   RT-PCR 

Xag1 for CTG ACT GTC CGA TCA GAC  RT-PCR 

Xag1 rev GAG TTG CTT CTC TGG CAT  RT-PCR 

Otx2 for GGA TGG ATT TGT TGC ACC AGT C   RT-PCR 

Otx2 rev CAC TCT CCG AGC TCA CTT CTC  RT-PCR 

IGFBP-rP10 for CAC ATG ACG GGC CCT GTG AA   RT-PCR 

IGFBP-rP10 rev CTG CAG CCA GCC AGT CAC TT  RT-PCR 

Msx1 for GTG TGA AGC CGT CCC TGG GC RT-PCR 

Msx1 rev AGG CGG GTG GGC TCA TCC TT  RT-PCR 

Xnr3 (EXON) for CTA AAG AAC AGT CTC ATC C RT-PCR 

Xnr3 (EXON) rev GAG CAA ACT CTT AAT GTA GG RT-PCR 

XER81 for CTC ATGAATCAGAAGAACTCTTCC RT-PCR 

XER81 rev TGGAATAGCTGTTATCAGAGATGG RT-PCR 

Xbra for CACAGTTCATAGCAGTGACCG  RT-PCR 

Xbra rev TTCTGTGAGTGTACGGACTGG  RT-PCR 

Sox2 for CGA GTG AAG AGA CCC ATG AAC RT-PCR 

Sox2 rev TTG CTG ATC TCC GAG TTG TG RT-PCR 

En2 for TAC GGC CGG AGT TCG GGA GG RT-PCR 

En2 rev AGA CCC AGG CTG GCC ACA GT RT-PCR 

ODC for  TGC ACA TGT CAA GCC AGT TC qRT-PCR 

ODC rev GCC CAT CAC ACG TTG GTC qRT-PCR 

Otx2 for GCA CCA GTC GGT GGG ATA  qRT-PCR 

Otx2 rev  GCC CTG GTA AAA GTG GTC CT  qRT-PCR 

Xag1 for CCC CAC TAT ATA TTC TGC CAC TG qRT-PCR 

Xag1 rev TGT TAT TCT TCA CAT AGG GCA ACA qRT-PCR 

Ep.ker. for CAT TGG TGC TGG GTC TAA AGA T qRT-PCR 

Ep.ker. rev TGC AGA GTC ACT GTA GCA TTA TCA qRT-PCR 

Bono1 for GTC ACA TCC ATA TGA CAC TTG  RT-PCR 

Bono1 rev TGT GAG CAC TGT CAA GCT AG RT-PCR 

Sox17 for GCC AAA AGA GCT TTT CAG ATA TAA RT-PCR 

Sox17 rev AGG AAT TAA AGG CAA ATT TTG TG RT-PCR 

GAPDH for TGC ACC ACC AAC TGC TTA RT-PCR 

GAPDH rev GGA TGC AGG GAT GAT GTT RT-PCR 

Mig30 for TGT TTG GCT CTA GGG CTC TG qRT-PCR 



Materials and Methods 

84 
 

Mig30 rev CTG GCC TGG CCT ATT GAG T qRT-PCR 

IGFBP-rP10 for GTG AAT CAG CAC CTC AGA TCC qRT-PCR 

IGFBP-rP10 rev TCC TTT CCG GTA ATG TTC CA qRT-PCR 

rALP for AAC AAC CTG ACT GAC CCT TCC C qRT-PCR 

rALP rev TCA ATC CTG CCT CCT TCC ACT qRT-PCR 

rIGFBP5 for AGT CGT GTG GCG TCT ACA CTG A qRT-PCR 

rIGFBP5 rev TTT GCT CGC CGT AGC TCT TTT qRT-PCR 

r18S for AGT TGG TGG AGC GAT TTG TC qRT-PCR 

r18S rev GCT GAG CCA GTT CAG TGT AGC qRT-PCR 
 

 

 

5.1.5 Plasmids 

Plasmids used in this work 

 

Plasmid    Source 

pCS2+Mig30    (Kuerner, 2008) 

pCS2+Mig30ΔC   (Kuerner, 2008) 

pCS2+Mig30ΔN   (Kuerner, 2008) 

pCS2+ Mig30-myc  (Kuerner, 2008) 

pCS2+IGFBP-rP10  (Kuerner, 2008) 

pCS2+ IGFBP-rP10 myc (Kuerner, 2008) 

pCS2+IGFBP-rP10ΔC  (de Beer, 2005) 

pCS2+IGFBP-rP10ΔN  (de Beer, 2005) 

pCRII Topo Bono1  (James et al., 2004) 

pCS2+IGF1   (Pera et al., 2001) 

pCS2+IGFBP5   (Pera et al., 2001) 

pCS2+dnIGFR   (Pera et al., 2001) 

pCS2+BMP4   (Hess et al., 2008) 

pCS2+    R. Rupp and D. Turner 

pCS2+Xwnt8   (Christian and Moon, 1993) 

XBF1    (Bourguignon et al., 1998) 

Krox20    (Papalopulu et al., 1991) 

pSP64T sense ß-cat  S. Schneider 

pBSKS Otx2   (Blitz and Cho, 1995) 

TA cloning Xag1   A. Schweickert 
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pSP72+ Xbra   (Smith et al., 1991) 

pSP73 Myf5   R. Rupp 

pMX 363 (Slug)   R. Rupp 

pBISK II Msg1   (Dunwoodie et al., 1998) 

pBSKs Vent2   (Onichtchouk et al., 1996) 

pBSK Szl    A. Fainsod 

Rx1    (Casarosa et al., 1997) 

pSK Xnr1    (Jones et al., 1995) 

pSP 64T XeFGF  (Isaacs et al., 1994) 

pSP 64T ADMP   (Moos et al., 1995) 

pSP35 chordin   (Sasai et al., 1994) 

Topflash    (Korinek et al., 1997) 

p01234-luc   (Brannon et al., 1997) 

pBRE x4-E1b-d-luc  (Hata et al., 2000) 

pGL 4.70 (hRluc)  Promega 

Sox3    C. Niehrs 

p33 En2    C.Niehrs 

pNCAM    R. Rupp 

Epidermal keratin  N. Papalopulu 

N-tubulin    N. Papalopulu 

pCS2+ Sox2   (Mizuseki et al., 1998) 

 

5.1.6 Antibodies 

α-myc 9E10     mouse 

α-mouse peroxidase   goat   Dianova 

 

5.1.7 Bacteria and cells 

E.coli Q 358 XL1, chemocompetent 

F9 , mouse embryonal carcinoma (Bernstine et al., 1973) 

RCJ3.1C5.18 , fetal rat calvaria (Spagnoli et al., 2001) 
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5.1.8 Kits 

Absolute QPCR SYBR Green Rox Mix   Thermo Scientific 

Lumi-lightplus Western Substrate    Roche 

mMessage mMachine      Ambion 

QIAquick Gel extraction kit       Qiagen 

QIAquick PCR purification kit    Qiagen 

Super Signal West Femto      Pierce 

MasterPure Complete DNA and RNA Purification  EPICENTRE  

5.1.9 Equipment and other materials 

5415 D tabletop centrifuge    Eppendorf 

ABI 7500 Fast Real-Time PCR cycler   Applied Biosystems 

CC-12 digital camera    Olympus 

Cronex 5 film      Agfa 

Cryostat CM 30505     Leica 

EasyCast electrophoresis system  Owl scientific 

EpiChemie II Darkroom    UVP laboratory product 

IM300 Microinjector     Narishige 

JC-5 centrifuge     Beckman Coulter 

KL 1500 electronic cold light source  Zeiss 

Micromanipulator      Micro Instruments 

NanoDrop ND-1000 Spectrophotometer  Thermo Scientific 

NC2010 Gel cassettes 1.0 mm   Invitrogen 

Novex XCell SureLock mini    Invitrogen 

Optimax Typ TR x-ray film processor  Protec Medizintechnik 

PD-5 Puller for producing microneedles  Narishige 

Peltier Thermocycler PTC-200   MJ Research 

Pipettes      Gilson 

Protran BA 85 membrane    Whatman 

Protran Nitrocellulose Transfer Membrane Whatman 

SZX12 stereo microscope     Olympus 

Superfrost Plus      Thermo Scientific 

 

5.1.10 Computer programs  

Adobe Photoshop CS3   Adobe 

Combine ZM    http://www.hadleyweb.pwp.blueyonder.co.uk 

ImageJ 1.41n   NIH, USA 

EndNote    Thomson Reuters 

IBM SPSS Statistics 19  SPSS, Schweiz  

 

http://www.hadleyweb.pwp.blueyonder.co.uk/
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5.2 Molecular Biology 

5.2.1 Isolation of nucleic acids 

5.2.1.1 Isolation of DNA 

For isolation of plasmid DNA from bacteria, 2 ml (Miniprep) or 50 ml (Midiprep) 

of LB-Amp were inoculated with a single colony and cultered overnight, at 37°C 

shaking. If not mentioned otherwise, the nucleic acids were isolated with the 

appropriate kits (see 5.1.8 Kits) according to the manufacturers’ instructions.  

5.2.1.2 Isolation of  total RNA  

For isolation of total RNA from embryos, animal caps and cells, the tissues 

were collected and all additional buffers where removed before freezing at -80°C. 

Then total RNA was isolated using the MasterPure Complete DNA and RNA 

Purification from EPICENTRE. Including 1 h DNAse-digestion removing DNA-

contamination. 

5.2.1.3 Phenol-Chloroform purification 

Phenol-chloroform extraction was used to separate nucleic acids from proteins 

and lipids. The aqueous solution was mixed with 1 volume phenol-chloroform-

isoamylalcohol und centrifuged for 2 min at 13.200 rpm. The upper phase was 

transferred to a new tube, mixed with 1 volume chloroform, and centrifuged again. 

The upper phase was transferred to a new tube and nucleic acid was precipitated 

with ethanol or isopropanol. 

5.2.1.4 Precipitation of nucleic acids 

Alcohol precipitation was used to purify and/or concentrate RNA or DNA from 

aqueous solution. The nucleic acid solution was mixed with 1/10 volume 3M 

Sodium Acetate (pH 5.2), 2.5 volume ethanol (99%) or 1 volume isopropanol were 

added, and the mixture was incubated several hours at -20°C. 

5.2.2 Restriction of DNA 

Plasmids were digested using FastDigest restriction enzymes (Fermentas). 

The enzymes were chosen according to the further use of the linearised plasmids. 

The following reaction was set up:  
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10  µg  DNA 

10  µl  FastDigest restriction buffer 

5  µl  FastDigest restriction enzyme 

  x   µl H2O 

100  µl 
  

Reactions were incubated for 10 to 30 minutes at 37°C and subsequently 

stopped by heat inactivation. DNA was precipitated with ethanol and restriction 

was analysed by agarose gel electrophoresis. 

5.2.3 cDNA synthesis  

Total RNA was reverse transcribed with RevertAIDH-Minus M-MuLV reverse 

transcriptase (Fermentas) using random hexamer primer (Fermentas). 1 µg RNA 

was mixed with 0.2 µg of random hexamer primer and incubated at 70°C for 

10 min. 4 µl of 5x reaction buffer, 2 µl 10 mM dNTP mix and 0.5 µl RiboLock 

RNAse inhibitor were added, the reaction filled to 19 µl total volume by nuclease 

free water and incubated for 5 min at 25°C. After that 1 µl reverse transcriptase 

was added and the reaction was incubated at 42°C for 2 h. The reverse 

transcription was stopped by incubation at 70°C for 15 min. For further use the 

reaction was filled to a total volume of 50 µl with nuclease free water and stored at 

-20°C. 

5.2.4 Polymerase chain reaction (PCR) 

5.2.4.1 RT-PCR  

To detect the expression of a target gene in different setups reverse 

transcription (RT)-PCR was used. Total RNA was isolated, using the EPICENTRE, 

RNA isolation Kit (see 5.2.1.2), and reverse transcribed (see 5.2.3).  

RT-PCR was performed in a 10 µl reaction: 

1  µl cDNA 

0.2  µl EuroTaq 

1  µl 10x reaction buffer 

0.4  µl MgCl2 

1  µl 2mM dNTPs 

2  µl Primermix (10µM each) 

4.4  µl H2O 
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For amplification of the template cDNA the following PCR program was used: 

 

cycles time  temperature  
   

   1 1 min 95 °C 
   30 sec 95°C 
 25-30 45 sec 57-65°C  dependent on primers 

  30 sec 72°C 
 1 2 min 72°C 
 1 ∞ 4°C 
  

After amplification the reactions were mixed with loading buffer and analysed 

by agarose gel electrophoresis. 

 

5.2.4.2 qRT-PCR 

To quantify gene expression quantitative Realtime-RT-PCR was performed on 

an ABI 7500 Fast Realtime PCR cycler. The qPCR reaction was setup in 10 µl. 

4  µl  Primer Mix (1 µM each) 

1  µl  cDNA 

5  µl Absolute QPCR SYBR Green Rox Mix 

10  µl 
  

For amplifaction the following program was used 

cycles time  temperature  

  
  1 20 min 25 °C 

1 1 min 95 °C 

40 
15 sec 95 °C 

1 min 63 °C 

1 10 sec 25 °C 

dissociation stage 
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5.2.5 in vitro transcription of RNA 

5.2.5.1 Cap-mRNA 

Cap-mRNA was synthesised with the mMassage mMachine kit according to 

the manufacturer’s instructions. A 10 µl reaction was set up using 0.5 µg linearised 

plasmid and 1 µl enzyme mix. The Cap-mRNA was purified with phenol-chloroform 

extraction followed by isopropanol precipitation. 

5.2.5.2 Digoxigenin (DIG)-RNA 

DIG-RNA was synthesised with the DIG RNA Labeling Kit according to the 

manufacturer’s instructions. A 20 µl reaction was set up using 1 µg linearised 

plasmid, 2 µl DIG labeling mix and 1 µl appropriate enzyme. The DIG-RNA was 

ethanol precipitated, resuspended and stored in 2x SSC/50% formamide. 

5.2.6 Transformation of competent bacteria 

50 µl competent bacteria were transformed with 100-200 µg purified plasmid 

DNA in 100 µl final volume. Chemocompetent cells were heatshocked for 45 sec 

at 42°C and subsequently placed on ice for 5 min. 900 ml LB medium were added 

and bacteria were cultured for 1 h shaking at 37°C. 100-200 µl of transformed 

bacteria were plated on LB-amp agar plates and cultured overnight at 37°C. 

5.2.7 Agarose gel electrophoresis 

1% to 2% agarose gels containing 5 µg/ml were prepared. DNA or RNA 

samples were mixed with 6x DNA loading buffer and loaded onto the gel. DNA or 

RNA fragments were then separated electrophoretically in TBE buffer at 100 V. To 

visualise nucleic acids, the gel was illuminated by UV light and imaged on a gel 

documentation system. 



Materials and Methods 

91 
 

5.3 Embryological methods 

5.3.1 Xenopus laevis embryo culture and manipulations 

Xenopus females were injected with 500 IU human chorionic gonadotropin 

(Sigma). Approx. 15 h later eggs were collected and in vitro fertilised. Embryos 

were dejellied in 2% cysteine solution and microinjected in 1x MBSH solution. 

Embryos were staged according to (Nieuwkoop and Faber, 1967). The dorsal 

blastomeres of four-cell stage embryos were identified according to (Klein, 1987). 

5.3.2 Animal cap assay 

Four-cell stage embryos were injected animally. At st. 9 the vitelline membrane 

was removed and the animal cap excised with forceps. Animal caps were cultured 

for further use in 0.5x MBSH until control siblings reached the desired stage. 

5.3.3 Whole mount in-situ hybridisation 

To detect the spatial expression pattern of endogenous mRNA whole mount in-

situ hybridisation was performed. Therefore embryos were fixed in MEMFA for 

several hours at RT and then stored in methanol. For rehydration embryos were 

sequentially washed 10 min in 75%, 50% and 25% MeOH in PBS. Short washing 

in PBS-T, was followed by a 20 min proteinase K digestion (10 µg/ml in PBS-T). 

After 2x 5 min washing in PBS-T the embryos were refixed in 4% 

paraformaldehyde in PBS. Paraformaldehyde was removed by 4x 5 min washing 

in PBS-T. Next embryos were equilibrated in hybridisation buffer and then 

prehybridised for 2-3 h at 65°C. DIG-RNA was added and allowed to hybridise o/n 

at 65°C.  

On the second day embryos were washed with 50% formamide/5x SSC/0.1% 

CHAPS and then with 25% formamide/3.5x SSC/0.1% CHAPS for 5 min at RT. 

Two times washing for 5 min RT in 2x SSC/0.1% CHAPS., were followed by two 

times washing 25 min at 37°C. Next a serial washing in 0.2x SSC/0.1% CHAPS 

took place (5 min RT, 2x 30 min 60°C, 2x 5 min RT, 2x 10 min RT). The last 

washing steps were 4x 10 min in MABT before 1 h incubation in MABT containing 

2% BBR. After 1 h incubation in MABT containing 2% BBR and 20% heat 

inactivated sheep serum, the buffer was replaced by fresh buffer additionally 

containing anti-DIG Fab2 fragments (Fermentas 1:10 000). Embryos were 
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incubated o/n at 4°C after which excess and unspecific bound antibody was 

removed by 6x washing in MABT for 1 h. 

For staining, embryos were equilibrated in pH-9-buffer for 15 min, after which 

the reaction was started by incubation in the dark in BM-purple (Roche)/pH-9-

buffer. The reaction was stopped by washing in PBS. The embryos were refixed in 

3.7% formaldehyde in PBS. When required pigments where removed by bleaching 

in 50% formamide/0.5x SSC/1% H2O2.Fixation of mouse embryos for cryosections 

5.3.4 Fixation of mouse embryos for cryosections 

Pregnant mice seven days after plug-check, were sectioned and all embryos 

(d 7.5) including extraembryonic tissue and decidua were collected. The embryos 

were rinsed in PBS and then placed in formaldehyde for fixation at 4°C o/n. After 

second rinse in PBS, embryos were placed in 20% sucrose solution until they sink 

to the bottom of the tube. The embryos were then embedded in mounting media 

(1:1 tissue-TEK (O.C.T) and Aqua-Mount (Lerner)) in the required position for 

sectioning. The mounting media was hardened fast by placing it in an ethanol/dry 

ice mixture. The sample was then placed for 1 h in the cryostat. 

5.3.5 Cryosections  

20 µM sections were cut at -20°C, collected on Superfrost Plus precoated glass 

slides and dried o/n. Dried cryosections were stored at -20°C. 

5.3.6 In-situ hybridisation on cryosections 

All vessels and slides were treated against RNA-contamination. All buffers and 

solutions used were prepared with DEPC water. Sections were taken from storage 

at -20°C and warmed to RT, and dried at 50°C for 15 minutes. After fixation for 20 

minutes in 4% paraformaldehyde in PBS, the slides were washed 2x 5 min in PBS. 

Sections were penetrated by 5 µg/mL Proteinase K (Roche) in PBS for 8.5 min at 

RT. Following 1x 5 min wash with PBS, the sections were postfixed for 15 min in 

4% paraformaldehyde in PBS. Paraformaldehyde was removed by 2-3x dipping 

the slides into DEPC treated water. To acetylate and neutralise positive charged 

proteins, slides were incubated with 0.25% acetic anhydride for 10 min under 

constant stirring. Following a 5 min wash in PBS, slides were prehybridised in 

hybridisation buffer for 1-4 h at 65°C in a humid chamber. DIG-labelled in-situ 
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probes were mixed with fresh hybridisation buffer and slides were incubated at 

65°C o/n in a humid chamber. The second day 2x washing in 2x SSC at 60-65°C 

for 15 min, was followed by 2x washing at RT. Next RNAse treatment for 30 min, 

with 200 µl RNAse A (10 mg/ml) and 2 µl RNAse T1 (100 U/ml) in 200 µl 2x SSC 

at RT. To wash away unhybridised RNA, 2x 5 min 2x SSC, were followed by 2x 30 

min washing in 0.2x SSC at 65°C and 2x 5 min 0.2x SSC at RT. To block 

unspecific antibody binding slides were incubated 1 h in PBT/10% sheep serum 

after 2x 30 min equilibration in PBT. Anti-DIG-AP-Fab was diluted in PBT/10% 

sheep serum 1:2000, and binding took place at 4°C o/n. On the third day 2x 

30 min washing in PBT, was followed by equilibration in pH-9-buffer.The detection 

was performed in the dark with BM-purple substrate. When staining was detected 

the reaction was stopped by adding PBS. Slides were dried and mounted using 

Mowiol. 

 

5.4 Cell culture methods 

5.4.1 Maintaining and differentiation of F9-cells 

F9-cell were maintained on gelatin-coated cell culture plates in high glucose 

DMEM supplemented with 10% fetal calf serum and 100 µg/ml penicillin and 

streptomycin at 37°C in a humified 5 % CO2 incubator. At 80-90% confluency cells 

were subcultured. Cells were cultured for 7 days to differentiate into visceral 

endoderm (VE)-like by addition of 1 µM retinoic acid (RA) and into parietal 

endoderm (PE) by addition of 1 µM RA plus 100 µM cAMP (cyclic adenosine 

monophosphate) 

5.5 Biochemical and immunological methods 

5.5.1 SDS-PAGE and Western blot 

Proteins were separated by SDS-polyacrylamide gel electrophoresis (SDS-

PAGE) using Novex Xcell SureLock mini chamber. A 12% separating gel topped 

with 6% stacking gel was prepared by polymerisation as described (Laemmli, 

1970). Stained protein molecular weight standards and proteins were then 

separated at constant voltage of 160 V in SDS-PAGE running buffer.  
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After SDS-PAGE proteins were transferred to a nitrocellulose membrane by 

wet transfer at constant amperage (400 mA, 80 min) in Western blot transfer 

buffer. Transfer was checked by PoinceauS staining and the membrane was 

blocked in 5% milkpowder in PBST. Incubation of first antibody was o/n at 4°C. 

After 6 washing steps in PBST at RT, the membrane was incubated for 1 h at RT 

in the secondary antibody. After removing unspecific and excess antibody, by 

washing 6 x in PBST the specific signal was visualised by chemoluminiscence 

using SuperSignal West Femto Maximum Substrate (Thermo Scientific). The 

luminescence was registered on X-Ray film, which was developed using a X-Ray 

film processor (Protec Medizintechnik). 

5.6 Luciferase reporter assay 

Embryos were microinjected with either luciferase reporter TOPflash (Korinek 

et al., 1997) or pBREx4-E1b-dLuc (Hata et al., 2000) and synthetic mRNAs. Early 

gastrula embryos were collected in pools of 4-5 and assayed for luciferase activity 

in triplicates. Light units were normalized by co-injection of 2 pg Renilla luciferase 

plasmid (Promega). Error bars show standard deviation from mean of three 

independent samples. Significant differences were analysed by one-way ANOVA 

and post hoc Scheffé’s F test. One representative result from reproducible and 

independent experiments is presented. 
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N-   amino 
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N.F.  Nieuwkoop and Faber 

NC   neural crest 

ng   nanogram 

nl   nanolitre 

o/n   overnight 
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PAGE  polyacrylamide gel electrophoresis 

PCR  polymerase chain ceaction 

pg   Picogram 

qRT-PCR  quantitative reverse transcription-PCR 

RA   retinoic acid 

rpm  revolutions per minute 

RT   room temperature 

RT-PCR  reverse transcription PCR 

SDS  sodium-dodecyl-sulfate 

SP   signal peptide 

SSC  standard saline citrate 

st.   Stage 

TBE  Tris-boracic acid-EDTA 

TEMED  N,N,N’,N’-Tetramethylethylendiamin 

U   units 

V   Volt 

we   whole embryo 
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