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Abstract

One of the goals of high-throughput gene expression studies in cancer research
is to identify prognostic gene signatures which have the potential to predict
the clinical outcome of cancer patients. This is commonly investigated using
classification methods. However, standard methods show only limited success
since they merely rely on gene expression data and assume genes to be inde-
pendent. Nevertheless, recent studies have shown that the classification can be
improved in terms of accuracy as well as interpretability and reproducibility
of prognostic gene signatures by including prior biological knowledge, such
as information about known cellular signalling pathways.

This work gives an overview on databases storing data that is appropriate
for use as prior knowledge as well as existing algorithms capable of using this
data. The utility of these methods in practice is demonstrated on a number
of examples for predicting the clinical outcome of patients.

A new classification method capable of using prior knowledge about
feature connectivity was developed. The Support Vector Machine (SVM) in
combination with the Recursive Feature Elimination (RFE) algorithm were
selected as basis of the new method. This combination allows to select the
features that are most important for the classification. However, RFE selects
these features merely based on their influence on the hyperplane found by the
SVM. The novel algorithm, called Reweighted Recursive Feature Elimination
(RRFE), alters this ranking criterion by combining the RFE weight with a
second weight coming from GeneRank. GeneRank is a modified version of
Google’s PageRank algorithm and calculates a score for each gene based on a
graph structure build from a protein-protein interaction (PPI) database.

The assumption of RRFE is that a gene with a low fold change should
have an increased influence on the classifier if it is connected to differentially
expressed genes. The combination of GeneRank and RFE gives highly connec-
ted genes the chance to influence the classifier and in turn help deciphering the
underlying biological process. Thus, RRFE accounts for the fact that many
functionally relevant genes might not be detectable with current techniques
and hence decrease the amount of unexploited information in the data.
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RRFE was evaluated on four breast cancer data sets, as well as on an
integrated one with almost 800 samples. Different clinical endpoints relevant
to breast cancer were predicted, including the ERBB2 status as well as the risk
of relapse. RRFE demonstrated its ability to select genes that are correlated
with the intrinsic biology of the disease, i.e. the selected genes are significantly
associated with cancer-related pathways. This improved interpretability is
important since it facilitates the biological understanding. Furthermore, RRFE
could improve the stability of gene-signatures and increase the classification
performance both compared to standard and pathway-based classification
methods.

Besides the theoretical foundations of RRFE, a new R-package containing
RRFE as well as two other, recently published, pathway-based classification
methods is presented. The package contains all methods needed to perform
a benchmark of newly developed algorithms, for assessing differences in
classification performance and extracting the genes used by the methods to
build the decision rules.



Zusammenfassung

Ein Ziel der klinischen Krebsforschung ist es, neue, prognostische Gensi-
gnaturen zu finden, die den klinischen Verlauf der Krankheit vorhersagen
können. Um neue Gensignaturen oder Biomarker zu identifizieren, nutzt man
in der Bioinformatik oft Klassifikationsmethoden. Allerdings verwenden die
üblicherweise eingesetzten Verfahren ausschließlich Genexpressionsdaten und
sehen Gene als unabhängig an. Mehrere, vor kurzem veröffentlichte, Studien
konnten jedoch zeigen, dass sich die Qualität der Klassifikation steigern lässt,
wenn man Netzwerkwissen in den Klassifikationsprozess einfließen läßt. Ne-
ben einem verbesserten Klassifikationsergebnis wurde auch gezeigt, dass die
ausgewählten Gene besser zu interpretieren sind und dass die Selektion der
Gene stabiler wird.

Aus diesen Gründen beschäftigt sich die vorliegende Arbeit mit Methoden,
die die Vorhersagegenauigkeit verbessern indem sie neben Genexpressionsda-
ten auch Netzwerkwissen für die Klassifikation berücksichtigen. Die Arbeit
gibt einen Überblick über bestehende Methoden, die in der Lage sind, Netz-
werkwissen in die Klassifikation einfließen zu lassen sowie über Datenbanken
die solches Wissen speichern.

Außerdem beschreibt die Arbeit die Entwicklung einer neuen, netzwerkba-
sierten Klassifikationsmethode, die in der Lage ist, die Konnektivität der Gene
zu berücksichtigen. Die ’Support Vector Machine’ (SVM) wurde als Grundlage
des neuen Algorithmus ausgewählt. Normalerweise ist die SVM nicht in der
Lage eine Genselektion durchzuführen, d.h. sie nutzt immer alle Gene um
einen bestimmten Endpunkt vorherzusagen. Man kann die SVM allerdings
mit dem ’Recursive Feature Elimination’ (RFE) Algorithmus kombinieren,
um eine Genselektion zu ermöglichen. RFE selektiert Gene anhand ihres
Einflusses auf die, von der SVM gefundenen Hyperebene.

Das Sortierkriterium von RFE wurde mit einer modifizierten Version
von Google’s PageRank-Algorithmus verändert. Die abgewandelte Version
von PageRank nennt sich GeneRank und errechnet, basierend auf einem
Graphen der aus einer Protein-Protein Interaktionsdatenbank erstellt wurde,
ein Gewicht für jedes Gen. Dieses Gewicht wurde mit dem Sortierkriterium
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von RFE kombiniert, um das Netzwerkwissen in die Sortierung der Gene und
damit in die Klassifikation zu integrieren. Wegen dieser Neugewichtung wurde
der neuentwickelte Algorithmus ’Reweighted Recursive Feature Elimination’
(RRFE) genannt.

RRFE verfolgt die Annahme, dass Gene, die nur eine geringe Änderung
in ihrer Expression aufweisen, die Chance haben sollten einen gesteigerten
Einfluss auf die Klassifikation zu nehmen, wenn sie stark vernetzt sind. Diese
Annahme wurde durch die Kombination von GeneRank und RFE umgesetzt.
Dadurch hilft RRFE den zugrundeliegenden, biologischen Vorgang besser
zu verstehen. Außerdem trägt RRFE dazu bei, den Anteil an ungenutzen
Informationen in den Daten zu verringern und funktionell wichtige Gene zu
identifizieren.

RRFE wurde auf einem integrierten und vier unabhängigen Brustkrebsda-
tensätzen getestet. Die Datensätze bestehen zusammen aus fast 800 Patieten.
RRFE wurde verwendet, um den ERBB2-Status sowie das Risiko eines Brust-
krebsrückfalls vorherzusagen. In den Analysen zeigte sich eine verbesserte
Interpretierbarkeit und Stabilität der selektierten Gene. Desweiteren konnte
auch die Genauigkeit der Klassifikation gegenüber standard- sowie netzwerk-
basierten Klassifikatoren gesteigert werden.

Neben den theoretischen Grundlagen von RRFE stellt die Arbeit auch ein
neues R-Paket vor, welches die Implementierungen von RRFE und weiterer
netzwerkbasierter Klassifikationsmethoden enthält. Ziel war es, die Nutzung
von RRFE und anderen Methoden zu vereinfachen, um Entwicklern die
Möglichkeit zu geben, die Güte ihrer neuentwickelten Algorithmen mit be-
reits bestehenden Verfahren zu vergleichen. Das Software-Paket beinhaltet
Funktionen, welche zum Vergleichen von Klassifikationsmethoden, dem Er-
stellen von Grafiken und zur Indentifizierung von Genen, die maßgeblich zur
Klassifikation beigetragen haben, nötig sind.
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Chapter 1

Introduction

1.1 Clinical Cancer Research

The genomes of mammalian cells carry all information needed to create a

molecular machinery that regulates proliferation, differentiation and apoptosis

(Ponting, 2008). However, genomes of cells are altered by various mechanisms

which can lead to mutations of encoded genes. These mutations range

from point-mutations to translocation of whole chromosomes. Due to these

changes, cells can acquire new phenotypes which progressively drive the

transformation of normal cells into malignant neoplasms (Preston-Martin

et al., 1990). Furthermore, it is anticipated that tumorigenesis is a multi-step

process that needs several alterations to take place (figure 1.1, Hanahan and

Weinberg 2000, 2011). Once cells have overcome the defense mechanisms that

usually work against these characteristics, malignant growth arise.

Two main classes of tumors are known: benign– and malignant tumors.

Benign tumors grow only locally confined and do not invade adjacent tissues,

whereas malignant tumors grow more aggressive and do invade the nearby

tissue. Furthermore, malignant tumors might release cancer cells into the

blood stream which can reach the lymph nodes as well as distant sites of

the body to finally form secondary tumors known as metastases. These
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Figure 1.1: Capabilities acquired during tumorigenesis. (Reprinted
from Hanahan and Weinberg (2011), Copyright (2011), with permission
from Elsevier)

metastases spawned by the primary tumor are responsible for approximately

90% of cancer-related deaths (Pisani et al., 1999).

Tumors are further classified dependent on the tissue they arise from

(figure 1.2, Weinberg 2006). The majority of human cancers are carcinomas

that emerge from epithelial tissue (Pisani et al., 1999; Jemal et al., 2010).

Carcinomas are further classified into two subgroups: squamous cell carcinoma

and adenocarcinoma. Squamous cell carcinoma arise from epithelial cells that

form protective cell layers, i.e. they seal the cavity or channel that they line

in order to protect underlying cells. The second class are adenocarcinoma

which originate in epithelial cells that are specialized in secreting substances

into the ducts or cavities they line.
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tumors
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Figure 1.2: Classification of most common tumor types (according
to Weinberg 2006). Most malignant tumors arise from epithelial tis-
sues (approx. 80%). These so-called carcinomas are split into two
groups: squamous cell carcinoma and adenocarcinoma. All other, non
epithelial tumors, are assigned into three major groups: sarcomas,
leukemia/lymphomas and neuroectordermal tumors like gliomas, etc.

1.1.1 Breast cancer

Breast cancer belongs to the class of adenocarcinoma and is by far the

most common form of cancer in women (Jemal et al., 2010). Breast cancer

often forms metastases and this has made it the second leading cause of

cancer-related death in women (Weigelt et al., 2005).

Breast cancer is mostly diagnosed by mammography or breast examination.

Once diagnosed, patients usually undergo surgery to remove the primary

tumor. After surgery, clinico-pathological parameters are used to estimate
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the progression status and the risk of recurrence. These estimates are used to

decide whether a patient needs to undergo adjuvant treatment, which usually

consists of systemic chemotherapy, radiotherapy or targeted treatment. The

adjuvant treatment aims at eliminating all microscopic cancer cells and

decreasing the risk of recurrence. However, due to the heterogeneity of breast

cancer current clinico-pathological markers like lymph node status, tumor size

or differentiation status are not appropriate for predicting the aggressiveness

of the disease (Tavassoli and Devilee, 2003; Carter et al., 1989; Elston and

Ellis, 1991). Indeed, women with the same clinico-pathological characteristics

can have a notably different courses of disease. Hence, lots of patients are

overtreated and suffer from the substantial side-effects of chemotherapy (Eifel

et al., 2001). Therefore, new prognostic markers, that are able to estimate

the probability of recurrence at the time of diagnosis are urgently needed.

It is widely accepted that molecular alterations lead to cancer-development

(Garnis et al., 2004). Microarray technologies allow to measure the expression

of thousands of genes in parallel. By associating these expression profiles

with the clinical outcome of patients, new biomarkers can be discovered. Due

to the heterogeneity of breast cancer this approach is more promising than

just correlating a few clinico-pathological markers or combinations thereof to

the course of disease (Weigelt et al., 2005). The aim is to use gene expression

profiles for tailored adjuvant therapy.

Retrospective studies are commonly applied to identify novel prognostic

markers for improving risk stratification of breast cancer patients (figure

1.3). To this end, biomolecules are extracted from surgical tumor specimens

of cancer patients. In particular, extracted RNA is mainly used to study

large scale gene expression profiles using DNA-microarrays. In the retro-

spective study design, RNA profiles can be correlated to long-term (5-10

years) clinical follow-up data of breast cancer patients. Relapse events (local

recurrence, distant metastases) are commonly used as the primary clinical

endpoint to identify novel molecular biomarkers using bioinformatic analyses.

These analyses commonly consist of unsupervised (clustering) or supervised

learning (classification) approaches. In the ideal case, markers identified by
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Development of 
gene expression 
prognostic classi�er

Frozen surgical
tumour specimen

Follow-up 5–10 yearsBreast surgery

DNA microarrays

RemissionRecurrence

Figure 1.3: Course of a retrospective study for the development of a
prognostic marker. (Adapted by permission from Macmillan Publishers
Ltd: Nature Reviews Cancer (Sotiriou and Piccart, 2007), copyright
(2007))

retrospective studies should also be tested in an independent prospective

study (Ransohoff, 2005).

In the early twenty-first century, microarray studies led to the discovery

of breast cancer subgroups. By applying unsupervised bioinformatic analyses

to gene expression data, Perou et al. (2000) found portraits of four molecular

different breast cancer subtypes: ERBB2-positive, normal breast-like, luminal

and basal-like. ERBB2 positive breast cancer patients carry a characteristic

amplification of a region on chromosome 17 that includes the ERBB2 gene.

Due to this amplification ERBB2 itself but also adjacent genes as well as the

ERBB2 pathway are overexpressed. The normal breast-like subtype expresses

genes of non-epithelial cell origin. Luminal breast cancer samples are charac-

terized by a high expression of the estrogen receptor (ER) and coregulated

genes as well as other specific markers of luminal epithelial cells. The luminal

subtype was later divided into luminal A and B, where subtype B has a lower

expression of the ER-coregulated genes and a higher rate of proliferation

associated with an adverse prognosis (Sorlie et al., 2001). The basal-like

subtype commonly shows high EGFR expression and a loss of expression

of the ERBB2–, progesterone– and estrogen receptors, respectively. It is

important to note, that independent gene expression studies have confirmed

that these breast cancer types are clinically distinct subgroups (Sorlie et al.,

2003), since they show substantially different clinical outcome and response

to treatment (Rouzier et al., 2005).
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1.1.2 Existing markers for breast cancer prognosis

Several gene-signatures for breast cancer prognosis have been suggested in

recent years. Van ’t Veer et al. (2002) from the Netherlands Cancer Institute

(NKI) in Amsterdam reported a multigene signature consisting of 70 genes

(Mammaprint) that reliably predicts the likelihood of distant metastases in

lymph node-negative tumors. Subsequent use of a cohort of 295 patients

could validate the signature as being the best predictor for metastasis-free

survival. Additionally, it has been shown that the signature is independent of

factors like histological grade, age, tumor size and adjuvant treatment (van de

Vijver et al., 2002).

Two years later, Wang et al. (2005) published a 76-gene signature ob-

tained by a related approach as the one used by the group from Amsterdam.

Although, both gene-signatures only had three genes in common, they showed

similar performance and could be validated in an independent study with 302

patients conducted in the framework of the translational research network of

the Breast International Group (Buyse et al., 2006; Desmedt et al., 2007).

It needs to be stressed, that one of the main reasons for the small degree of

concordance in gene-signatures are correlation structures, inherently present

in microarray measurements. Briefly, if a gene is highly correlated to the

clinical outcome and thus is a good marker, all other genes correlated to that

gene are in turn also good predictors of clinical outcome. However, depending

on the patients present in individual training sets, this correlation might

vary and hence the rank of correlated genes is highly unstable. This leads

to unstable gene signatures that have only a few genes in common (Ein-Dor

et al., 2005). In addition, the utilization of different microarray platforms for

measuring the gene expression might also lead to a decreased reproducibility.

Further sources of variation might be differences in bioinformatic algorithms

used for normalization and marker discovery. Another reason for the small

overlap is the limited statistical power, i.e. too small sample sizes for training

and testing of algorithms in order to identify disease-associated genes (Ein-Dor

et al., 2006).
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Although, individual signatures for breast cancer prognosis contain differ-

ent genes, their ability to predict the outcome on independent patient cohorts

is similar (Tan et al., 2003; Fan et al., 2006). Nevertheless, individual genes,

present in these signatures, are not necessarily connected to the underlying

disease. This hampers our understanding of underlying mechanisms. Hence,

there is a pressing need to develop new algorithms capable of identifying

gene-signatures correlated to the intrinsic biology that are still able to predict

the course of cancer with high accuracy.

1.2 Biomarker discovery using

bioinformatics

Microarray analyses have become a standard means for assessing genome-

wide gene expression measurements of biological systems. Bioinformatics

uses statistical, mathematical and computational methods for analyzing and

processing the resulting data. Bioinformatic analyses are a crucial step for

achieving biological understanding. Gene expression measurements of differ-

ent classes of samples raise the vital question of how to discriminate these

classes and how to determine meaningful biomakers, i.e. signatures of genes.

Therefore, the development of novel bioinformatic algorithms is essential for

increasing the accuracy of biomarkers and guide the biological understand-

ing. In clinical cancer research, for example, it is known that most cancer

treatments are only suited for a specific subgroup of patients. Therefore, bioin-

formatic algorithms can facilitate the development new predictive biomarkers

that help to identify patients that would benefit from a certain treatment.

Other classes of biomakers are diagnostic biomarkers, that help identifying

the absence or presence of a disease, and prognostic makers determine the

likelihood of a relapse (Biomarkers Definitions Working Group, 2001).

Given these diverse types of biomarkers and applications, an impressive

collection of bioinformatic tools has been developed for identification and

validation of new markers. These methods are either supervised, i.e. the
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classes are known, or unsupervised when the class of individual samples is

unknown. A well known class of unsupervised methods are cluster algorithms

that can, for instance, be used for the identification of tumor subtypes. The

class of supervised learning algorithms include classification methods that

use patterns of carefully phenotyped samples to learn the characteristics of

individual groups. Examples of these tools include algorithms like the support

vector machine (SVM, Boser et al., 1992), k-nearest neighbors (kNN, Duda

and Hart, 1973), the nearest shrunken centroid classifier (PAM, Tibshirani

et al., 2002), decision trees (Quinlan, 1986) and many others (Dudoit et al.,

2002).

However, an intrinsic problem that usually occurs when conducting mi-

croarray analyses is that the number of genes, present on the chip, is much

larger compared to the number of patients included in the study. This problem

is well known in the field of machine learning and sometimes referred to as the

curse of dimensionality (Bellman, 1961). The large number of genes present

on the microarray makes these analysis prone to the curse of dimensionality,

since the classifier will most probably find a decision rule which works well

on the training data. However, since most of the genes used by the decision

rule are probably not, or only by chance, associated with the disease state,

the performance of the decision rule is overestimate and it will perform worse

on new samples.

One possibility to tackle this problem is merging the many available

covariates into some few by using so-called dimensionality reduction algorithms.

The most famous of these methods is probably the principal component

analysis (Pearson, 1901). However, when molecular markers are sought this

is not the preferable approach.

Another possibility to overcome the curse of dimensionality is to build

the classifier exclusively on those genes that are of importance to the disease.

However, these genes are not known a priori and, thus have to be selected by

the learning algorithm. The task of selecting only a subset of genes is known

as feature selection (see Guyon and Elisseeff, 2003, for an overview). However,

genes composing the final signature are usually selected independently of
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each other, although proteins are known to interact within protein complexes,

signaling pathways, and higher-order cellular processes. The reason for this

independent selection is that standard classification methods merely rely

on gene expression data and score each gene individually for how well it

discriminates different classes of a disease. Therefore, the final classifier

may contain unnecessarily many genes with redundant information which

may lead to decreased classification performance on new samples (Lee et al.,

2008). This is also one possible explanation, why gene signatures have only a

few genes in common, even if they are designed to predict the same clinical

outcome (Ein-Dor et al., 2005). Despite the instability, these signatures are

usually not easy to interpret since the membership in the gene-signature is

not necessarily a indicator of the importance of that gene in, for example,

cancer pathology (Weigelt et al., 2005).

1.2.1 Pathway-based classification methods

Recent studies have demonstrated that standard classification methods can

be improved in terms of accuracy as well as stability of selected genes by

including a priori knowledge of interactions into the classification process.

Here, the term ’interactions’ is rather loosely defined, i.e. it refers to any

kind of interacting biological entities that might form a network, pathway or

signalling-cascade. These pathways are used to build a graph structure with

biological entities (i.e. genes or proteins) as vertices and edges representing

any kind of interaction. The field of pathway-based classification is rapidly

growing and several methods have already been described.

Chuang et al. (2007) integrate pathway knowledge from protein-protein

interaction networks. Their algorithm randomly chooses sub-networks and

assigns an activity score based on the expression level of the genes from the

sub-net. Afterwards, sub-networks which are able to discriminate between

the clinical endpoints are identified and subsequently used to build a classifier

based on these networks.
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Rapaport et al. (2007) define a new metric for gene expression measure-

ments by using the matrix exponential function, which is similar to the

diffusion kernel (Kondor and Lafferty, 2002). Their assumption is that most

biologically relevant information is captured in the low-frequency component

of expression profiles. Hence, the projection of the low-frequency component

of an expression vector on the gene metabolic network should reveal areas of

positive and negative expression on the graph that are likely to correspond

to the activation or inhibition of specific branches of the graph.

The approach introduced by Zhu et al. (2009) is called network-based SVM

and uses a network-based penalty which leads to a grouped variable selection.

This variable selection is achieved by penalizing the SVM objective function

with an F∞-norm (Zou and Yuan, 2008), instead of the commonly used L1 or

L2 penalization. This norm forces the simultaneous selection or elimination of

a group of features from the same pathway. Zhu et al. (2009) treat neighboring

genes in a graph as a group and construct their network-based penalty as the

sum of F∞-norms of groups of neighboring genes-pairs.

Yousef et al. (2009) introduced an algorithm which uses the Gene Ex-

pression Analysis Tool (GXNA, Nacu et al. 2007) to build clusters of genes

which are connected. They use these clusters as input to a linear SVM, assign

a weight to the clusters based on the importance to the classification and

then remove the least informative clusters. The process of training the SVM

and removing unimportant clusters is repeated until the maximum classifi-

cation performance is reached. This algorithm is called Recursive Network

Elimination (RNE), as it removes clusters of genes instead of removing single

genes.

A method called PathBoost which is based on likelihood-based boosting

was recently proposed by Binder and Schumacher (2009). Still others have

been published by Bellazzi and Zupan (2007); Lee et al. (2008); Su et al.

(2009).
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1.2.2 Pathway databases for building graphs

The knowledge on interacting biological entities is usually stored in databases.

Depending on the system described, different levels of background knowledge

exist. The Gene Ontology (GO, Ashburner et al., 2000) consortium represents

an initiative which provides a vocabulary on gene functions to facilitate the

systematic usage of this knowledge. The graph associated with GO is a

directed acyclic graph where the nodes are the vocabulary and the edges

represent relations like ’is a’ and ’part of’. The GO is structured hierarchically,

it has three top level annotations, being:

molecular function describing the function of a gene, e.g. kinase, phos-

phatase or transcription factor;

biological process describing the process or pathway a molecule is involved

in, e.g. cell death, cell cycle or MAP kinase pathway;

cellular component describing the part of a cell or cell structure in which

a molecule is active, e.g. nucleus, ribosome or cell membrane.

Several databases have been created for storing and collecting gene-specific

information in GO format. This data can be used to create a matrix of pairwise

similarities or dissimilarities of genes. Subsequently, the matrix can be used to

score the gene-gene interactions and incorporated into the biomarker discovery

process. Several methods have been developed for this purpose (Fröhlich et al.,

2007). An overview of methods for accessing and mining these annotations is

given in Beißbarth (2004).

Although the GO initiative has been founded ten years ago, most informa-

tion on gene function is still hard to mine, since it is not stored systematically.

However, first attempts have been made to add GO-based meta-tags to publi-

cations (Vanteru et al., 2008; Doms and Schroeder, 2005). Another way is to

manually curate the published information, as done by TransPath (Choi et al.,

2004), Ingenuity (Ganter and Giroux, 2008) or Metacore (Ekins et al., 2007);
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still others rely on text-mining tools for automated information extraction

(Jensen et al., 2006; Agarwal and Searls, 2008).

Databases like KEGG (Kanehisa and Goto, 2000) or consensusPathDB

(Kamburov et al., 2009), focus on the biological interactions defining the

processes of living cells and summarize these in manually curated pathway

models. There also exist more focused databases representing molecular

interactions obtained by genomic techniques like transcription factor binding

based on chip-chip data, e.g. TRANSFAC (Wingender, 2008) or JASPAR

(Portales-Casamar et al., 2010), or protein-protein interactions based on co-

immunoprecipitation or yeast two-hybrid screening, e.g. HPRD (Prasad et al.,

2009), MINT (Ceol et al., 2010) or IntAct (Aranda et al., 2010).

1.3 Aim and organization of the thesis

The focus of this thesis was the development of methodology that enables

classification algorithms to use graphs in combination with patient specific

data for building decision rules and detecting biomarkers for risk prediction.

We used the SVM, which is a supervised learning method that has shown its

predominance over other methods and can easily handle high dimensional data

(Furey et al., 2000; Brown et al., 2000). In combination with the recursive

feature elimination algorithm (RFE, Guyon et al., 2002), the SVM is able to

narrow down the number of genes needed to build the decision rule. However,

this feature selection is merely based on mathematical criteria. Here, we tried

to incorporate prior biological knowledge in the form of a graph structure

to improve the classification performance and the interpretability of selected

genes. The graphs needed for this algorithm can be build from any of the

databases mentioned in the previous subsection (see Porzelius and Johannes

et al., (2011)). The assumption was, that the novel algorithm benefits from

the pathway knowledge since genes are no longer treated as independent.

To make the work more self-contained, the prerequisites and theoretical

foundations needed to understand the results are outlined in chapter 2. In
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section 2.1 the basics of SVMs are briefly introduced, before section 2.2 shows

how feature selection is performed when using SVMs. Sections 2.3 and 2.4 deal

with model assessment and introduce the Receiver Operator Characteristic

for evaluating classifiers. Afterwards (in section 2.5), we show how genes

can be ranked by using a modified version of Google’s PageRank algorithm

deployed on gene networks. The remainder of the chapter shows how the

gene networks were created and introduces the breast cancer gene expression

data sets, that were used for evaluating the algorithm.

Chapter 3 shows the results, starting with our newly developed algorithm

called Reweighted Recursive Feature Elimination (RRFE, Johannes et al.,

2010). Section 3.1.1 outlines the results obtained by using RRFE, i.e. that

RRFE selects interpretable genes (section 3.1.1.1), increases the classification

performance as well as the overlap between marker-genes in gene-signatures

obtained from different experiments (section 3.1.1.2) and that it is predominant

over other classifiers (3.1.1.5). The second part of the Results chapter deals

with a software package that was developed to facilitate the usage of pathway-

based classification methods (Johannes et al., 2011). We implemented the

novel RRFE methods as well as two other methods that are able to use prior

knowledge.
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Chapter 2

Material and Methods

2.1 Support Vector Machines

2.1.1 Introduction

The goal of this section is to introduce support vector machines, the classifica-

tion algorithm that has been used in this work. The support vector machine

(SVM, Boser et al. 1992) is a statistical learning method for building classi-

fication models. It belongs to the separating hyperplane classifiers. These

algorithms try to find a linear decision boundary which separates the data as

well as possible.

The section is organized as follows: 2.1.2 introduces separating hyperplanes

and section 2.1.3 will outline the maximum margin principle which is key for

support vector machines. Afterwards, section 2.1.4 will show how to solve

the support vector classification problem.
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Figure 2.1: Example of a linear separating hyperplane in R2. The
dotted lines indicate, that even when the data is perfectly separated by
the black line, there are infinitely many other solutions.

2.1.2 Linear hyperplanes

Assume H being a Hilbert space and xi, . . . ,xn ∈ H is a set of pattern vectors

with labels yi, . . . , yn ∈ {±1}. In H any hyperplane can be defined as

{x ∈ H : f(x) = wTx + b = 0}, w ∈ H, b ∈ R. (2.1)

Here, w is the vector normal to the hyperplane and b is the offset from

the origin. An example of such a hyperplane in R2 is given in figure 2.1.

Since (2.1) separates H in two half-spaces of points classified as positive

H+ = {x : f(x) ≥ 0} and negative H− = {x : f(x) < 0} it corresponds to

a decision function. Thus, a new sample with input vector x is assigned to

class sgn(f(x)) = sgn(wTx + b). For a candidate function f one can check

for each example (xi, yi) if it was correctly classified, i.e. 0 ≤ yif(xi) or not.

One possibility to choose f is called empirical risk minimization, that is,

one tries to minimize the amount of wrongly made decisions on the whole

set of examples (xi, yi), i = 1, . . . , n. However, there are infinitely many
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of such linear hyperplanes that perfectly separate the toy data as shown

in figure 2.1. Therefore, one could additionally demand that the examples

should be classified with strong confidence, which leads to the principle of

maximum-margin hyperplanes.

2.1.3 Maximum margin principle

If one considers (2.1) it is obvious that there is still the freedom to multiply

w and b with the same non-zero constant in order to recover an equivalent

hyperplane. In order to remove this scaling freedom, the SVM searches for

the canonical hyperplane. It maximizes the margin between both classes, i.e.

the distance to the points closest to it. The canonical hyperplane is defined

by the pair (ŵ, b̂) ∈ H × R which is scaled such that the point closest to the

hyperplane has a distance of 1/‖w‖:

min
i=1,...,n

∣∣wTxi + b
∣∣ = 1 (2.2)

for all xi, . . . ,xn ∈ H. Thus, the width of the margin is exactly equal to
2/‖w‖. An example of a maximum-margin hyperplane is shown in figure 2.2.

The idea behind maximum-margin hyperplanes is that making the margin as

big as possible minimizes the bound on the risk (cf. Boser et al. 1992; Vapnik

and Cortes 1995).

2.1.4 Support vector classification

The last two sections have introduced some of the foundations of SVMs.

In this section it will be shown how the support vector classifier can be

computed. In the ideal case one wants to classify all examples correctly with

high confidence using a linear function like (2.1) with the constrains of (2.2).

In a mathematical formulation this corresponds to maximizing 2/‖w‖ under

the constraints 1 ≤ yif(xi) = yi(w
Txi + b) for i = 1, . . . , n. However, it is

intuitive that this perfect separation of the data by a linear function might
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Figure 2.2: Maximum margin hyperplane. The dashed lines show
the borders of the margin. Its width is exactly 2/‖w‖. The red line
indicates the weight-vector of the hyperplane which is orthogonal to it.
The examples that lie on the margin are called support-vectors.

not always be possible. This is particularly true for biological data, which is

known to be quite noisy (Tilstone, 2003; Febbo and Kantoff, 2006). Thus,

this section focuses on the soft-margin SVM implementation. In contrast to

the hard-margin version it allows for some fraction of misclassification.

Even though a perfect classification might not be possible one wants to

find the best possible solution. Therefore, a criterion to assess the quality of

the estimate is needed. This is assessment is usually done by optimizing some

functional. However, this type of function should fulfill certain criteria like

having its minimum at zero, since a correct prediction should result in a zero

penalty. Additionally, it should not only count misclassifications but also take

into account the confidence of the estimate. A well known class of functions

which is well suited for this type of problem is known as loss functions. They

measure the loss generated by a function f for a given training example x

with known class-label y.
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Definition 2.1.1 (Loss Function). Assume the triplet (x, y, sgn(f(x))) ∈
H × {±1} × {±1} being a training example, a class label and a prediction,

respectively. Then a map ` : H× {±1} × {±1} → [0,∞) with the property

that `(x, y, y) = 0 for all x ∈ H and y ∈ {±1} is called a loss-function.

The most intuitive way to measure the loss is to simply count the fraction of

misclassified examples. This is achieved by the binary or 0–1 loss:

`(x, y, f(x)) =

0 if y = sgn(f(x))

1 otherwise.
(2.3)

However, one might also want to involve the confidence with which the

classification was carried out. That leads to the hinge loss (Bennett and

Mangasarian, 1992):

`(x, y, f(x)) = max(0, 1− yf(x)) =

0 if yf(x) ≥ 1

1− yf(x) otherwise.
(2.4)

The hinge loss already takes into account the belief in the prediction. However,

Cristianini and Shawe-Taylor (2000) have shown that the squared version of

(2.4) can be minimized more easily:

`(x, y, f(x)) = max(0, 1− yf(x))2. (2.5)

Examples of these loss functions are given in figure 2.3. The 0–1 loss function

only punishes erroneous predictions. In contrast, the hinge and the squared

hinge loss incur no penalty as long as the example is classified correctly with

high belief but increase the penalty slowly when the belief decreases.

Having introduced the squared loss function, the final optimization problem

can be defined:

minimize
w,b

1

2
‖w‖2 + C

n∑
i=1

`(xi, y, f(xi)) (2.6)
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yf(x)
1

`(x, y, f(x))

1

Figure 2.3: Example of three different loss functions (cf. Schölkopf
et al. 2004). Blue: Hinge Loss; Red: 0–1 Loss; Green: squared Hinge
Loss.

Equation (2.6) maximizes the margin (by minimizing ‖w‖) and minimizes

the hinge loss. Hence, C > 0 is a tuning parameter that controls the tradeoff

between loss induced by ` and size of the margin. Thus, a large value of C

leads to a smaller margin but increases the number of correctly classified

examples with high belief. For C →∞ the hard-margin SVM, that allows no

errors, is achieved.

However, there are several advantages to not directly minimize (2.6)

since neither (2.4) nor (2.5) is differentiable (Chapelle, 2007). Therefore,

one usually reformulates (2.4) and introduces n so-called slack variables

ξ = (ξ1, . . . , ξn) that measure the degree of misclassification. This leads to

the primal optimization problem:

minimize
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi (2.7)
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subject to

ξi ≥ `(xi, y, f(xi)), ∀i = 1, . . . , n.

To see that (2.6) and (2.7) are equivalent one needs to understand that the

minimum of (2.7) with respect to ξi is reached when ξi takes its minimal

value, which is `(xi, y, f(xi)). The next step is to split the squared hinge loss

function (2.5) into two constraints, namely ξi ≥ 0 and ξi ≥ 1− yi(wTxi + b).

Thus (2.7) becomes:

minimize
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi (2.8)

subject to

ξi − 1 + yi(w
Txi + b) ≥ 0 and ξi ≥ 0 ∀i = 1, . . . , n. (2.9)

Equation (2.8) is called an objective function and (2.9) are called inequality

constraints. The combination of both (2.8) and (2.9) is known as a constrained

optimization problem and is subject to convex optimization theory. One

convenient way to solve such constrained optimization problems is to introduce

Lagrange multipliers. For each of the constraints (2.9) a positive Lagrange

multiplier, sometimes also referred to as dual variable, has to be introduced.

Hence, for each training example, α = (α1, . . . , αn) ≥ 0 represents the

constraint ξi− 1 + yi(w
Txi + b) ≥ 0, and β = (β1, . . . , βn) ≥ 0 denotes ξi ≥ 0.

Note, that the rule is that for constraints of the form ci ≥ 0, the constraint

equations are multiplied with positive Lagrange multipliers and subtracted

from the objective function. Therefore, the Lagrangian has to be formulated



 Material and Methods

as:

LP (w, b, ξ,α,β) =
1

2
‖w‖2 + C

n∑
i=1

ξi

−
n∑
i=1

αi[ξi − 1 + yi(w
Txi + b)]

−
n∑
i=1

βiξi

(2.10)

LP has to be minimized w.r.t the primal variables (w, b, ξ) and maximized

with respect to the dual variables (α,β) ≥ 0. Therefore, for fixed (α,β),

LP is minimized as a function of (w, b, ξ) by setting the respective partial

derivatives to zero:

∂LP
∂w

= w −
n∑
i=1

αiyixi = 0 (2.11)

∂LP
∂b

=
n∑
i=1

αiyi = 0 (2.12)

∂LP
∂ξ

= C − αi − βi = 0 ∀i (2.13)

together with positivity constraints ξi ≥ 0, αi ≥ 0 and βi ≥ 0. Substituting

(2.11) – (2.13) into (2.10) recovers Wolfe’s dual (Wolfe, 1961):

LD =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj (2.14)

which has to be maximized subject to (α,β) ≥ 0 under the constraints (2.12)

and (2.13). Compared to (2.10) equation (2.14) is a simpler convex quadric

optimization problem an can be solved with standard algorithms like Gill et al.

(1981). However, β does not occur in LD. Thus, it can be maximized as a

function of α. However, it must be ensured that for some β ≥ 0 the constraint

(2.13) is met. This is the case if and only if αi ≤ C for all i = 1, . . . , n, since

only then a βi ≥ 0 can be found such that C = αi + βi. This leads to the
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following constraints on the dual optimization problem (2.14):

0 ≤ αi ≤ C and
n∑
i=1

αiyi = 0, ∀i = 1, . . . , n. (2.15)

Since this is a convex optimization problem the Karush-Kuhn-Tucker (KKT,

Kuhn and Tucker 1951) conditions apply. In addition to (2.11) – (2.13) the

KKT are:

yi(w
Txi + b)− 1 + ξi ≥ 0 (2.16)

αi[ξi − 1 + yi(w
Txi + b)] = 0 (2.17)

βiξi = 0 (2.18)

∀i = 1, . . . , n.

In combination equations (2.11) – (2.18) uniquely define the solution to the

SVM optimization problem.

After having found the α̂ that maximizes (2.14) , β̂ can be calculated as:

β̂i = C − α̂i ∀i = 1, . . . , n. (2.19)

After rearranging equation (2.11) the solution for the weight vector ŵ of the

hyperplane is given by:

ŵ =
n∑
i=1

α̂iyixi (2.20)

It is, however, worth mentioning that ŵ is a linear combination of solely the

support vectors, that is, only those points with Lagrange multiplier α̂i 6= 0.

Hence, the hyperplane found by the SVM does not change when non-support

vectors are removed from the training set. Moreover, it is important that

all support vectors with a slack variable ξi = 0 lie on the margin (in-bound

support vectors) and due to (2.13) and (2.18) are defined by 0 < α̂i < C. All

others (ξi > 0, bound support vectors) have α̂i = C. Equation (2.17) shows

that any of the in-bound support vectors can be used to calculate b̂.



 Material and Methods

To predict the class membership of a new sample x ∈ H the linear function

f̂(x) = ŵTx + b̂ =
n∑
i=1

yiα̂ix
T
i x + b̂ (2.21)

has to be formed. Subsequently, sgn
(
f̂(x)

)
can be used to predict the class

of x as +1 or −1.

2.1.5 Kernels

Another advantage of Wolfe’s dual (2.14) that has not been mentioned in

the previous section, is that the pattern vectors occur as dot products. This

makes possible the use of so-called kernels that represent a similarity measure

of the input patterns in a much higher (possibly infinite) dimensional feature

space. The map from the input– into the feature space is usually defined as:

φ : X → H

x 7→ x := φ(x).
(2.22)

Given this map, the kernel itself is defined as:

k(x, x′) := 〈x,x′〉 = 〈φ(x),φ(x′)〉 (2.23)

The important point is, that the kernel (2.23) allows calculation of the dot

product in the feature space H without having to explicitly compute the map

φ. This is also known as the kernel trick.

Even if the data already exists in a dot product space, as assumed in

previous sections, it is still possible to apply a nonlinear map φ. This might

change the representation of the data into one that better fits the problem.

Additionally, a change of the map φ leads to a new similarity measure, which

allows one to create a large variety of learning algorithms. However, biological

data, coming from microarray experiments, is already very high dimensional.

Hence, this data is most often linear separable and there is usually no need
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to map the features into a space with even more dimensions.

The interested reader is referred to Vapnik (1995); Burges (1998); Schölkopf

and Smola (2001); Schölkopf et al. (2004) for more detailed introductions.

2.2 Feature selection using support vector

machines

2.2.1 Introduction

In machine learning applications, data usually consists of measurements of

some quantity. Frequently, the measurements are referred to as features

or variables. Each data point is represented as a vector of dimensionality

n, where n is the number of features. For each feature vector there exists

a class label, defining to which class the vector belongs to. For simplicity,

only two-class problems will be considered here. The challenge now is to

select a classifier which assigns correct class labels to the training patterns.

Furthermore, it should also be able to predict the class membership of future

examples with low error rate.

It is, however, unclear if the learning algorithm needs all features to

unravel the dependency between data points and class labels. A large amount

of uninformative measurements might indeed mask the relationship between

informative features and class labels. Additionally, the performance of a

learning algorithm is strongly dependent on the quality of the data and thus,

noisy, redundant or unreliable measurements impair the learning process.

There are, at least, two types of preprocessing methods that can be used

to improve machine learning techniques: feature construction and feature

selection methods. Feature construction methods use existing measurements

and combine those to reduce the dimensionality of the problem. A well

known linear example of such a method is the principal component analysis

(PCA, Pearson 1901). There also exist non-linear methods which are based
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on kernels (Schölkopf et al., 1998).

Feature selection methods, on the other hand, try to select the best subset

of features to solve the classification task. Feature selection is performed in

order to eliminate uninformative variables which should, in turn, lead to a

better generalization performance, that is a better classification performance

on previously unseen patterns. In addition to this, a reduced set of features

may also give a better insight into the underlying model to be learned and a

computational speedup. Other benefits might be cost reduction, in biological

applications for example where only a smaller subset of genes has to be

measured to detect a particular disease with the same accuracy as before

(Rakotomamonjy, 2003). The goal of cost reduction cannot be reached with

feature construction methods. The remainder of the section will focus on the

task of feature selection.

2.2.2 Heuristics for feature selection

The task of identifying the optimal feature subset can be viewed as a search

problem. Each state of this search consists of one possible feature subset. Due

to the large number of features, this search space is usually high dimensional.

Thus, it is obvious that this task can only be accomplished by using heuristics,

since there are 2n possible subsets for n features. Nevertheless, the nature of

this heuristic needs to be defined by the following four characteristics:

First, the direction of the search has to be determined. One can either

start with an empty model and iteratively take new features into the model,

this process is known as forward selection. The reverse of this process,

called backward elimination, starts with the complete model and discards one

variable after the other (Neter et al., 1990).

Since it is known that an exhaustive search through the whole space is

impractical the second issue is to organize the search. One possibility to

do this is by using greedy methods that traverse the space. One possible

approach is known as stepwise selection or elimination, and consider both
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adding and discarding variables at each step of the search. By doing so, it is

possible to undo previous decisions without explicitly keeping track of the

search path. In the end, all states generated can be considered and the one

with best performance can be selected. Alternative methods, that are not

greedy but still tractable, are best-first search or beam search, for example.

The third point is related to the approach used to evaluate the performance

of the subsets. Again, two distinct strategies can be distinguished (figure 2.4,

John et al. 1994). Filter methods treat the features independent of the selected

learning algorithm. Thus, these methods merely rely on characteristics of the

training set to include certain features and discard others. One example of

such methods are statistical techniques, that compute a dependency between

features and class labels, like Pearson’s correlation coefficient, wilcoxon– or

t–statistics (Golub, 1999; Furey et al., 2000; Tusher et al., 2001; Hastie

et al., 2009). Wrapper methods, on the contrary, select a certain amount of

features and use this subset to run the learning algorithm on the training

data. Afterwards the performance of each feature-subset is evaluated, which

makes necessary the choice of a proper goodness-of-fit measure.

The last aspect to consider is a proper criterion to end the search through

the space of feature subsets. When using filter methods this criterion might

be to order features according to some relevance score and try different

breakpoints. For wrapper methods the search could be continued until the

accuracy starts to decrease or the search reaches the other end of the search

space and select the best subset. For more details confer Langley (1994).

To this end, no assumption has been made about the underlying learning

method. However, lots of progress has been made in the field of SVMs

which are not equipped with an embedded feature selection (cf. section 2.1).

However, several groups have developed feature selection algorithms for SVMs.

For biological data, Moler et al. (2000) for instance, introduced a naive Bayes

relevance (NBR) score to select informative features. Given the value of a

gene and using Gaussian assumptions, the NBR score calculates a features’

probability of belonging to class one or two. The larger the probability, the

more distinct is the expression of that feature and the more likely it is to be
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Figure 2.4: Comparison of filter- and wrapper methods for subset
selection (cf. John et al. 1994). The upper panel shows a filter method;
it selects the subset of features independent of the learning algorithm.
The lower panel shows a wrapper method. Here, the selected subset
is evaluated using the learning algorithm. It is worth noting, that this
inner evaluation has to be performed on an independent test set using
cross-validation, for example.
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a good marker. In another work, Segal et al. (2003) used p-values obtained

from students t-test to rank genes and subsequently choose a certain number

of most important genes to train the model. Both methods follow the goal of

selecting certain features, but none of them considers important interactions

but rather treats features as independent.

2.2.3 Recursive Feature Elimination

To overcome the above-mentioned problems, Guyon et al. (2002) introduced

a wrapper method called Recursive Feature Elimination (RFE). For SVMs

with a linear kernel, RFE uses ‖w‖2, the squared norm of the weight vector

of the SVM hyperplane, as a ranking criterion for the importance of a feature.

The authors proposed the following 4 steps (figure 2.5):

1. Train SVM on training data.

2. Rank features according to ‖w‖2.

3. Discard the feature with smallest impact from the training data.

4. If more than one feature is left go to 1, otherwise stop.

To formally calculate the influence of the kth feature on the squared weight

vector norm, equation (2.14) can be used:

∣∣‖w‖2 − ‖w(k)‖2
∣∣ =

∣∣∣∣∣
n∑
i=1

α̂i −
1

2

n∑
i=1

n∑
j=1

α̂iα̂jyiyj〈xi,xj〉

−
n∑
i=1

α̂
(k)
i +

1

2

n∑
i=1

n∑
j=1

α̂
(k)
i α̂

(k)
j yiyj〈x(k)

i ,x
(k)
j 〉

∣∣∣∣∣ (2.24)
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∣∣∣∣∣
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n∑
j=1

α̂iα̂jyiyj〈xi,xj〉

−
n∑
i=1

n∑
j=1

α̂
(k)
i α̂

(k)
j yiyj〈x(k)

i ,x
(k)
j 〉

∣∣∣∣∣ (2.25)
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Figure 2.5: Recursive Feature Elimination workflow. This chart explains
the workflow of the RFE algorithm. First, the SVM is trained on the
training data set, as long as features are left these are ordered and
iteratively removed. In the end the performance of all models is evaluated
on an independent test set in order to find the best one.

The notation c(k) denotes that kth feature has been removed from vector c.

Note, that the vector multiplication xTi xj in (2.14) has been exchanged by

the dot product 〈xi,xj〉. To simplify the calculation and reduce calculation

time, Guyon et al. assume α̂
(k)
i to be equal to α̂i.

After calculating (2.25), the features can be ordered according to their

importance (high value means more important). Guyon et al. recommended

removing chunks of genes to speed up the procedure. Hence, as a next step a

specific amount of features from the bottom of the ordered list needs to be

discarded. The process of training the SVM, calculating (2.25) and removing

a specific amount of potentially uninformative features is repeated until the

set of surviving features is empty. In practice, all trained classifiers obtained

at step 1 are saved in order to afterwards examine their performance on an

independent test set and thus identify the optimal number of features. This

can, for example, be done by cross-validation or by using a theoretical concept

like the span estimate (cf. section 2.3).
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2.3 Assessment and selection of models

2.3.1 Introduction

The performance of a classifier or any other learning algorithm on an inde-

pendent test data set is known as its generalization performance. A detailed

examination of this quantity is a prerequisite in practical applications, since

it guides the choice of the learning algorithm or model. Additionally, it allows

the estimation of its classification capability on yet unknown data. In the

following section some details will be given in order to introduce a process

called cross-validation that estimates the expected test error in section 2.3.3.

The reader interested in more details is referred to Hastie et al. (2009).

2.3.2 Training- and test error

Let T denote a training set. The training error is defined as the average loss

over T :

err =
1

n

n∑
i=1

`(xi, yi, f̂(xi)) ∀ xi ∈ T (2.26)

where ` is a loss function, for example the hinge loss (2.4). Usually one is

more interested in the expected test error than in err. However, the training

error unfortunately is a bad estimate of the test error (figure 2.6), since the

same data is used for fitting the model and assessing the loss it incurs. Thus,

the estimate of err is biased downward. It is a too optimistic estimate of the

expected generalization error. If the model complexity is increased enough

the training error can become very small, or even zero. This will, however,

lead to a highly overfitted model which will generalize only very poorly.

The test- or generalization error on an independent test sample is defined

as:

ErrT = E[`(x0, y0, f̂(x0)) | T ] x0 /∈ T , (2.27)
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Figure 2.6: Dependency of the expected training- and test error on
the model complexity, shown as solid blue and red curves, respectively.
The light blue and red curves show the training- and test error for 100
training sets of size 50 each. All models have been obtained by the lasso
(figure courtesy of Hastie et al. 2009).

where x0 and y0 is a previously unknown test-point. Since f̂ has been obtained

by training on the fixed set T , the estimate ErrT is only valid given this

particular training set. Figure 2.6 shows the generalization error for 100

training sets as light red curves. The expected - or average test error is given

by:

Err = E[`(xi, yi, f̂(xi))] = E[ErrT ] . (2.28)

Equation (2.28) shows that this quantity is no longer dependent on a specific

training set but rather averages over all possible training sets. It is shown

as solid red line in figure 2.6. In the remainder of the section the goal is to

efficiently approximate the expected test error (2.28).
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2.3.3 Cross-Validation

Cross-validation (CV, Mosteller and Turkey 1968; Geisser 1975; Kohavi 1995)

is one possible method that efficiently re-uses the given data in order to

approximate the expected test error of a previously chosen model. However,

it is worth noting that there are several goals CV can be used for:

Model selection: Here, several models of the same learning algorithm are

compared in terms of their estimated performance in order to choose

the best one.

Model assessment: Once, the best model has been chosen, the task of

model assessment is to give an estimate on its generalization error.

In this work CV was used for accomplishing the second task. Model selection

was performed using a theoretical concept, which uses an analytical expression

to calculate an upper-bound on the test error (cf. section 2.3.4 for more

details).

In K-fold cross-validation the data is randomly split into K almost equally

sized subsamples. For the kth subsample the model is fitted on the other K−1

parts of the data. Afterwards, the model is used to predict the class labels

of the examples in the kth subsample. Thus, the estimate of the prediction

error through cross-validation is given by:

CV(f̂) =
1

n

n∑
i=1

`(xi, yi, f̂
−κ(i)(xi)). (2.29)

Where κ : {1, . . . , n} → {1, . . . , K} is an indexing function that defines to

which subsample of the data sample i was assigned to. Thus, f̂−κ(i) denotes

the fit computed on the training data after having removed the subsample

i belongs to. Common choices are K = 5 or K = 10 (McLachlan et al.,

2005). The condition K = n leads to the leave-one-out (loo) cross-validation

estimate, CVloo, and κ(i) = i. CVloo is known to be the best approximation

and an almost unbiased estimate of the expected test error (2.28) (Luntz and
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Brailovsky, 1969).

However, (2.29) is still only a point estimate of the expected generalization

error (2.28). To reduce the variance of the estimate it is common to repeat

the K-fold cross-validation several times with different split positions. Again,

common choices are 5 or 10 repeats.

2.3.4 The Span Estimate

As introduced in the last section, cross-validation is used to estimate the

generalization performance of a classifier trained on some training data.

However, most learning algorithms have one or more tuning parameter which

need to be optimized as well. An example of such a tuning parameter is the

constant C in (2.6) or the optimal number of features. The problem of finding

a function with parameters that minimize the expected error on the test

data is called model selection. However, the number of parameters determine

the size of the space of possible functions. Intuitively, the model selection

demands several, nested, cross-validations. The degree of nestedness of cross-

validations, again, depends on the number of parameters to choose and can,

thus, be a quite time-consuming method. In practice the naive strategy

to exhaustively search the parameter space for the best solution becomes

intractable. Thus, several authors have proposed methods to approximate

an upper bound for the loo–error, CVloo(f̂), of a classifier (Jaakkola and

Haussler, 1999; Chapelle and Vapnik, 2000a; Opper and Winther, 2000).

In this work, a quantity, called the span of the support vectors (Chapelle

and Vapnik, 2000b) was used in order to calculate an upper bound on the

number of errors made by the classifier. Let α̂ = (α̂1, . . . , α̂n) be the solution

to the optimization problem (2.14). Chapelle and Vapnik have shown that

for any support vector xp the following equality is true:

yp(f̂(xp)− fp(xp)) = α̂pS
2
p . (2.30)

Here, f̂ and fp are the decision function (2.21) trained on the whole training
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Figure 2.7: Example of the span of support vector x1 in R2. The
dashed lines indicate the margin. Λ1, shown by the green line, is the set
(2.31). The red line shows the span (2.32) of support vector x1.

set and the set without the point xp, respectively. However, (2.30) is only

true if in-bound and bound support vectors remain the same during the leave-

one-out procedure. This limitation is obviously not always met. Nevertheless,

the number of cases that violate this constraint is usually small compared to

the number of support vectors. The proof of (2.30) can be found in Theorem

1 of Chapelle and Vapnik (2000a). In equation (2.30), S2
p is the distance of

support vector xp to the set of constrained linear combinations:

Λp =

 ∑
{i 6=p, 0<α̂i}

λixi,
∑
i 6=p,

λi = 1

 . (2.31)

Formally, the span of the support vector xp is defined as:

S2
p = d2(xp,Λp) = min

x∈Λp

(xp − x)2, (2.32)

which is the minimum distance from xp to Λp. A toy example is given in

figure 2.7. By using the span estimate the numbers of errors made by the loo
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cross-validation can be calculated as:

T =
1

n

n∑
p=1

Ψ(α̂pS
2
p − 1) (2.33)

where Ψ is the Heaviside step function:

Ψ(x) =

1 if x > 0

0 otherwise .
(2.34)

2.4 Receiver Operator Characteristic

Receiver Operator Characteristic (ROC) graphs have a long tradition in

machine learning applications (Spackman, 1989). They are mostly used

for comparison of algorithms. Initially, however, they were used in signal

detection theory (Egan, 1975). Before introducing more details on the ROC

space, some commonly used metrics for evaluation of classifier performance

will be reviewed.

As said before, a classifier is a function which tries to map a vector x to

a set of class labels, {±1} for example. There are models that do this in a

discrete fashion, that is, produce output like −1 or +1. But there also exist

classifiers that generate a continuous output, that is one needs to apply a

cutoff in order to assign an instance to one or the other group. Assuming two

classes, a classifier can create the following assignments:

true positive (TP): classify a positive instance as positive.

false negative (FN): classify a positive instance as negative.

true negative (TN): classify a negative instance as negative.

false positive (FP): classify a negative instance as positive.
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Figure 2.8: A 2 by 2 confusion table (cf. Fawcett 2004).

These class assignments can be written into a contingency table (figure

2.8). Using this information a variety of quality measures can be computed,

some of which are shown in table 2.1.

The ROC space is spanned by 1− specificity (FPR) on the x-axis versus

the sensitivity (TPR) on the y-axis. An example of a ROC graph is given

in figure 2.9. The discrete classifier, mentioned above, leads to a single

contingency table and thus to exactly one point in the ROC space. Whereas

the continuous method allows one to vary the cutoff for inducing the (binary)

classification rule from +∞ to −∞ and thereby to traverse the ROC space

from the lower left to the upper right corner.

The procedure of a typical ROC analysis with such a varying cutoff will

be outlined by using the data from table 2.2 (see also Fawcett 2004). Figure

2.10 shows the resulting ROC graph. Table 2.2 carries information on 18

instances split into two classes (third column). The second column shows the

continuous score used by a classifier to predict the class membership of each

instance. This score could, for example, be the result of a SVM with hinge

loss function (2.4). In the ROC graph a cutoff of +∞ corresponds to the
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Name of measure Equation

sensitivity or true positive
rate (TPR)

TPR = TP
(TP+FN)

specificity or true negative
rate (TNR)

TNR = TN
(FP+TN)

= 1− FPR

false positive rate (FPR) FPR = FP
(FP+TN)

false negative rate (FNR) FNR = FN
(FN+TP)

accuracy (ACC) ACC = TP+TN
(FP+TN)+(TP+FN)

Table 2.1: Quality measures for evaluation of classifier performance (cf.
Fawcett 2004)
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Figure 2.9: Example of a ROC graph. The x-axis denotes the false
positive rate, whereas the y-axis shows the true positive rate. The dashed
diagonal x = y indicates the strategy of random guessing.
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# score assigned
by classifier

real class
label

1 0.51 +
2 0.45 +
3 0.44 +
4 0.43 +
5 0.40 -
6 0.35 +
7 0.34 +
8 0.34 +
9 0.31 -

10 0.29 -
11 0.28 +
12 0.25 -
13 0.25 -
14 0.22 -
15 0.21 -
16 0.21 -
17 0.20 -
18 0.17 +

Table 2.2: Example data for a ROC analysis. The table shows 18
instances, 9 in class + and 9 in class −. The score comes from a learning
methods that uses a continuous score to predict the class membership of
each instance.

point (0, 0) in the lower left corner. At this point no instance is assigned to

the positive class, therefore both, the number of true and the number of false

positives is equal to zero. In the next step of the ROC analysis the threshold

is lowered to 0.51 and thus produces 1 true positive and no false positive

(table 2.3). The first false positive occurs at a threshold of 0.40 (row 6 in

table 2.3). But since there are already 4 true positives the true positive rate

is 0.44 and the false positive rate is 0.11. In subsequent steps the algorithm

further reduces the cutoff until reaching the top right corner of the space. All

intermediate results are summarized in table 2.3. The threshold belonging to

the point in the top right corner of the ROC space corresponds to a classifier

that assigns all instances to the positive class.
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# cutoff TP FP fpr tpr

1 Inf 0.00 0.00 0.00 0.00
2 0.51 1.00 0.00 0.00 0.11
3 0.45 2.00 0.00 0.00 0.22
4 0.44 3.00 0.00 0.00 0.33
5 0.43 4.00 0.00 0.00 0.44
6 0.40 4.00 1.00 0.11 0.44
7 0.35 5.00 1.00 0.11 0.56
8 0.34 7.00 1.00 0.11 0.78
9 0.31 7.00 2.00 0.22 0.78

10 0.29 7.00 3.00 0.33 0.78
11 0.28 8.00 3.00 0.33 0.89
12 0.25 8.00 5.00 0.56 0.89
13 0.22 8.00 6.00 0.67 0.89
14 0.21 8.00 8.00 0.89 0.89
15 0.20 8.00 9.00 1.00 0.89
16 0.17 9.00 9.00 1.00 1.00

Table 2.3: Result of the ROC analysis. The cutoffs found by the ROC
algorithm are shown in column 2. The third and fourth column show
the number of correspond true and false positives. The last two column
indicate the respective rates that belong the counts of columns three and
four.

So far, nothing has been said about random performing classifiers, i.e.

classifiers that randomly assign labels to instances. In ROC space the diagonal

is ’reserved’ for predictors with such a performance. If, for example, a classifier

would assign positive class labels to 50% of the cases it will probably reach a

TPR of 0.5, likewise it will classify 50% of the negative instances as positive

and thereby reach a FPR of 0.5 as well. This result corresponds to the

point (0.5, 0.5) in ROC space. The same applies to a predictor that guesses

the positive class in 99% of the time. It will, most likely, correctly predict

99% of the positive cases, but its FPR will also increase to 0.99. Thus, any

classifier that randomly predicts class memberships will produce a point on

the diagonal of the ROC space. Also, it is possible that a estimator produces

a ROC curve that is below the diagonal. Intuitively, this corresponds to a

classifier that reliably predicts the instance to be a member of the wrong
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Figure 2.10: Example of a ROC graph with corresponding thresholds.
The numbers indicate the threshold applied at the corresponding position
of the ROC curve.

class. That is, it predicts positive instances as negative and the other way

round. However, if this happens one can simply reverse all decisions made by

the classifier and thus generate a mirrored ROC curve which is above of the

diagonal (Flach and Wu, 2005).

2.4.1 Area under the ROC curve

For a visual comparison of different classifiers the ROC curve is a very valuable

tool. Sometimes, however, it is more convenient to have a single quantity

describing the classification performance. For this purpose one can calculate

the area under the ROC curve (AUC, Hanley and McNeil 1982; Bradley 1997).

Since the AUC is derived from the ROC space, which is a unit square, it is
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always between 0 and 1. However, as said above, any classifier that lies below

the diagonal in ROC space is worse than random and would have an AUC

< 0.5. But still this model can be turned into a valuable classifier by simply

reversing its predictions. Hence, the AUC is usually given between 1 and 0.5.

A detailed explanation of the statistical properties of the AUC is beyond

the scope of this work. The interested reader is referred to the review by

Fawcett (2004). The author also gives more details on averaging ROC curves

in order to obtain estimations on variances to compare several classifiers.

Furthermore, the review includes pseudocode to calculate ROC curves as well

as AUCs. Throughout this work the software package ROCR (Sing et al.,

2005) has been used for this purpose.

2.5 Gene ranking

The identification of genes that are related to a certain disease is one of

the challenges in recent clinical research. The community has aggregated

a huge amount of sources of knowledge which can help to accomplish this

task. Examples of this gene-related knowledge are sequence information,

splice variants, expression measurements, functional annotation, interacting

proteins and, of course, lots of literature. A promising way is the development

of bioinformatic algorithms using this data in order to rank genes which

most probably play a role in a certain disease. The top ranking genes can

then be followed up in subsequent biological analyses. In recent years lots

of methods have been developed to rank genes based on their differential

expression, see Smyth (2005) for one example. Alternatives are classification

based approaches like Guyon et al. (2002).

The problem of ranking also occurs in other areas like computer sciences,

where the community develops methods to rank websites. Here, a famous

example is the PageRank algorithm (Page et al., 1999) used by Google (Brin

and Page, 1998). When looking at the idea behind PageRank it is intuitive to

transfer this algorithm to biological data and rank genes instead of web pages.
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The following subsection will briefly introduce the PageRank algorithm. After

that, subsection 2.5.2 will show how to modify PageRank in order to use it

for biological data.

2.5.1 PageRank

Given a query, submitted by a user, PageRank has to rate the importance of

each webpage on the web. This quantitative measure allows the algorithm to

return the most important websites first. There exist lots of articles dealing

with the theory behind PageRank (Bianchini et al., 2005; Langville and Meyer,

2004). Thus, only a brief introduction will be considered here.

In general, PageRank can be seen as a Markov model that represents

the web as a matrix P = pij of transition probabilities. Every entry pij

corresponds to the probability that the user jumps from page i to page j.

The matrix P is defined as:

P = GD−1, (2.35)

where G ∈ {0, 1}p×p is the adjacency matrix of the underlying network.

Hence, gij = 1 if nodes i and j are connected and gij = 0 otherwise. D is a

diagonal matrix with entries

dij =

0 if i 6= j,

degi otherwise

where degi :=
∑p

j=1 gij is the (out) degree of node i in the network.

However, building the matrix P from the structure of the Internet leads

to some problems. First, P will not be stochastic, i.e. it will contain rows

of all zeros (0T ). These rows correspond to nodes in the network that have

no outgoing edges, also known as dangling nodes. Second, the matrix is not

irreducible, i.e. it is not possible to get from any node to any other node.

Therefore, Brin and Page forced the matrix P to fulfill these criteria by first
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requiring stochasticity1:

P∗ = P + avT . (2.36)

Where all elements ai = 1 for dangling nodes in P and ai = 0, otherwise. vT

is a probability vector, i.e. vTe = 1. They further adjusted the matrix in

such a way as

P̂ = dP∗ + (1− d)evT , (2.37)

which ensures primitivity. Here, e is a vector of all ones. d ∈ [0, 1] is a

fixed parameter which is called the “damping factor”. Google seems to use a

damping factor d = 0.85 (Langville and Meyer, 2004). The matrix P̂ fulfills

the criteria of being both stochastic and irreducible. Furthermore, given by

the Perron–Frobenius theorem (Perron, 1907), P̂ is primitive. This property

is important, since it implies that the power method (Golub and van der

Vorst, 2000) converges to the solution of the problem.

Using the matrix P̂, the PageRank vector rT can be found by solving the

following eigenvector problem:

rT P̂ = rT . (2.38)

However, (2.38) is subject to an additional normalization equation, rTe = 1,

which ensures rT being a probability vector.

As already mentioned above, the solution to (2.38) is usually found by

numerical methods like the power method. The power method is slow but

has the advantage that it can make use of vector-matrix multiplications on

the sparse matrix P and does not need the completely dense matrix P̂ to be

formed:

r(k)T = r(k−1)T P̂ (2.39)

= dr(k−1)TP + (dr(k−1)Ta + (1− d))vT . (2.40)

1square matrix with each row consisting of nonnegative real numbers that sum up to 1
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A C

B D

Figure 2.11: Toy network of four webpages. The arrows should illustrate
links between webpages. The direction of the arrow indicates the direction
of the link, i.e. which website contains a link to what other website.

Thanks to the forced irreducibility of P̂ existence of rT is guaranteed.

Furthermore, the stochasticity of P̂ leads to a spectral radius of ρ(P̂) = 1,

which ensures uniqueness of the solution (Meyer, 2001). If P̂ would not be

primitive, there might be more than one eigenvalues on the unit circle which

would cause problems for the power method.

It has recently been shown (Bianchini et al., 2005), that the PageRank

problem (2.38) can also be written as a linear system:

(I− dP∗)r = (1− d)vT . (2.41)

This formulation of the problem gives researchers the chance to use approaches

different from Markov chain methods or the power method. Morrison et al.

(2005), for example, propose to use the Jacobi method (Golub and Van Loan,

1996).

Given the toy network in figure 2.11, the adjacency matrix G would be
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defined as:

G =


0 1 1 1

0 0 1 1

1 0 0 0

1 0 1 0

 .

Similarly, D−1 would look like:

D−1 =


1/3 0 0 0

0 1/2 0 0

0 0 1 0

0 0 0 1/2

 .

Solving (2.41) using the matrices above and a damping factor d = 0.85, leads

to highest PageRank for node A, followed by C, D and B on the last place.

This ranking can be understood when thinking of a confidence voting principle

(Morrison et al., 2005), that is, PageRank regards a link from page i to page j

as a ”vote of confidence” for page j. Node C is collecting confidence from all

other nodes in the network and then casts everything over to node A. Thus,

with the weight of nodes B and C, A becomes the most important one.

The intention behind the damping factor can be understood when thinking

on a user surfing the web. In that case, a damping factor of d = 0.85

corresponds to a surfer who uses in 85% of the cases a link on the webpage

he or she is currently visiting (left hand side of (2.41)). And in 15% of the

time the surfer selects the address line of the browser and enters the address

of a page to “teleport” to (right hand side of (2.41)). Therefore, PageRank

can be personalized by adapting the probability vector vT in (2.41) with a

personalized one. Thus, increasing the probability of “teleporting” to a page

which has a larger value in this vector.

More detailed introductions to the PageRank algorithm can be found in

the publications by Bianchini et al. (2005) and Langville and Meyer (2004),

for example. The authors also cover topics like sensitivity and stability of the
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algorithm. Furthermore, they outline speed and storage limitations and give

areas of future research.

2.5.2 GeneRank

Morrison et al. (2005) have recently published a modified version of the

PageRank algorithm, called GeneRank. Instead of ranking webpages on the

Internet their algorithm can be used to rank biological entities in biological

networks. These biological networks can, for example, be composed of gene-

gene or protein-protein interactions. Thus, a node in the network corresponds

to a gene or a protein and the edges encode for an interaction between those.

However, compared to the Internet these biological networks are not

necessarily directed. Hence, one could argue that in the undirected case

the ranking is highly correlated to the degree of a node because the weight

that is transferred at time point t from node i to node j is transferred back

at time point t + 1. This is, however, only true for a damping factor of

d = 1. Therefore, Morrison et al. (2005) suggest to use a damping factor

of d = 0.5 and personalize GeneRank in such a way as to use the absolute

value of expression as the weight of each node. However, GeneRank still

offers the freedom to use the damping factor for adapting the influence of the

network structure and the expression information on the ranking. A value of

d→ 0 results in a ranking mostly affected by the expression, whereas d→ 1

corresponds to a ranking that is more dependent on the network structure.

2.6 Generation of the interaction graph

Obviously, all pathway-based classification methods need a graph structure

which provides information on the interaction of entities. In a recent paper

we give an overview on several databases carrying such information (Porzelius

and Johannes et al., (2011)). In this work information on protein-protein

interactions (PPI) were used. However, the algorithms are capable of including
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any other knowledge that can be represented as a graph structure.

The Human Protein Reference Database (HPRD, Prasad et al. 2009) was

used as a source on interacting proteins. The flatfile of binary protein-protein

interactions (Release 8, 09/06/07) was downloaded from their servers. After

mapping the proteins to the genes present on the microarray used in the

experiments (cf. 2.7), an interaction matrix G of dimension 7,896 × 7,896

was created with

gij = gji =

1 if proteins i and j interact,

0 otherwise.

The mapping resulted in a matrix with 59,924 non-zero elements, which

represent 29,962 interactions since the matrix is symmetric.

2.7 Data sets

Gene expression profiles of 788 breast cancer patients who did not receive any

systemic therapy were downloaded from the NCBI Gene Expression Omnibus2

(GEO) data repository.

The first data set (GEO series accession number GSE11121; Schmidt et al.

2008), coming from the Department of Obstetrics and Gynecology of the

Johannes Gutenberg University Mainz, was collected during 1988 and 1998.

It contains 153 lymph node-negative, relapse free patients and 47 lymph

node-negative patients that had a relapse (median relapse time 6.04 years).

The second data set (GSE2034; Wang et al. 2005) was produced at the

Erasmus Medical Center in Rotterdam, Netherlands. The samples were

collected between 1980 to 1995 and, again, did not receive any systemic

therapy. The study started with a total of 436 tumors. However, due to

thorough quality control 53 sample were discarded because of insufficient

2www.ncbi.nlm.nih.gov/geo/
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tumor content, 77 samples did not have adequate RNA quality and 20

patients were lost due to poor chip quality. Therefore, this data set comprises

286 lymph node-negative breast cancer samples, and 106 of the patients

experienced a relapse (median relapse time 7.17 years).

Data coming from the third and fourth data set, is sometimes referred-to

as the TRANSBIG cohort (Buyse et al., 2006). TRANSBIG is a network for

translational research established by the Breast International Group (BIG).

They recently conducted a validation study of a 70-gene signature (van ’t

Veer et al., 2002) and showed reproducible prognostic value in a collection of

302 patients from five different centers. The clinical, pathological, and gene

signature data were merged at the TRANSBIG Secretariat at the Institute

Jules Bordet in Brussels, Belgium. The study started with a cohort of 403

samples. However, due to insufficient quality or missing annotation 101

patients had to be discarded from the study. Samples of the TRANSBIG

cohort used in this work consist of data coming from Loi et al. (2007) and

Desmedt et al. (2007). The data set of Loi et al. (GSE6532) consists of 125

samples including 49 relapse events (median relapse time 7.7 years). The

data set published by Desmedt et al. (GSE7390) contains 177 patients, with

85 relapse events (median relapse time 7.42 years). It is, however, worth

mentioning that the samples in the Loi and Desmedt data sets were selected

by Geo accession numbers (GSM) according to Schmidt et al. (2008), who

also analyzed the data recently.

2.7.1 Data preprocessing

The raw data were preprocessed using robust multichip average (RMA, Irizarry

et al. 2003). After combining the single data sets, quantile normalization

(Bolstad et al., 2003) was performed in order to remove inter-data set effects.

Mapping of the protein-protein interactions to the probe sets present on the

HG-U133A microarray resulted in 13,671 features with prior knowledge from

a total of 22,283 features present on the chip. All annotation-data concerning

the HG-U133A microarray was obtained from the R-package hgu133a.db
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(Carlson et al., 2009) in the R-Bioconductor environment (Gentleman et al.,

2004).

2.7.2 Determination of the ERBB2 status

ERBB2 is a frequently amplified oncogene in breast cancer. Determination

of ERBB2 status is important, since ERBB2-positive patients have a poor

prognosis and targeted treatment strategies (i.e. monoclonal antibody against

ERBB2 – Trastuzumab) are available for ERBB2-positive breast cancer

patients. The ERBB2 status is routinely detected by immunohistochemistry in

the clinics. Since the receptor status was not available for all samples, ERBB2

status was determined using Affymetrix probe set 216836 s at as previously

described by Rody et al. (2009); Brase et al. (2010). The classification of the

ERBB2 status by microarrays has recently been shown to have a concordance

of 96% when compared to immunohistochemistry data (Roepman et al., 2009).

The expression values of the ERBB2 probe set showed a bimodal distribution

over the 788 samples (figure 2.12). By visual inspection 11.45 was chosen as

cutoff to assign the patients into ERBB2 positive and negative. Afterwards

all probe sets targeting ERBB2 were removed from the raw data which left

in 22,281 features for classification.
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Figure 2.12: Cutoff for determining the ERBB2 status of 788 patients.
By visual inspection an RNA level of 11.45 was chosen as cutoff for
assigning samples as either ERBB2 positive or negative.
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Chapter 3

Results and Discussion

3.1 Reweighted Recursive Feature

Elimination

New prognostic makers of breast cancer metastasis are urgently needed in order

to avoid patients from being over- or undertreated. Classification methods

have shown to be a promising approach for detecting novel biomarkers.

To solve the task of biomarker discovery one usually applies classification

methods that are able to perform a feature selection. In risk prediction for

example, these algorithms try to predict the risk group of a patient and

provide information on which features were necessary for this prediction.

For that, standard classification methods merely rely on one source of data

like gene expression measurements, for example. A major drawback is, that

these methods mostly detect genes that exhibit high fold-changes (Chuang

et al., 2007), which might only be downstream effectors of the key players. It

has, however, recently been shown that incorporating information on feature

connectivity into the classification process can increase the classification

performance (Chuang et al., 2007; Rapaport et al., 2007; Bellazzi and Zupan,

2007; Lee et al., 2008; Zhu et al., 2009; Su et al., 2009; Binder and Schumacher,

2009; Yousef et al., 2009).
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Here, Reweighted Recursive Feature Elimination (RRFE, Johannes et al.

2010) was introduced. RRFE is a new algorithm, developed to accomplish

the task of including prior knowledge into the classification process and

thus identify key players in cancer development and prognosis. The prior

knowledge needed by RRFE is a graph structure given as an adjacency matrix.

This graph structure has to provide connectivity information on the features

that are given in an additional expression matrix. It is, however, worth

mentioning that RRFE is not limited to biological data. The only prerequisite

is that the user provides a data matrix containing the same features that are

present in the adjacency, which reflects the graph structure. Nevertheless,

here the focus is on expression data and pathway knowledge. The expression

data is represented by P × n matrix, containing measurements of P genes for

n patients.

The workflow of RRFE is depicted in figure 3.1. Usually, the algorithm

is run in a cross-validation (Geisser 1975; Kohavi 1995; c.f. section 2.3.3),

therefore the expression data is split into a training set (90% of the samples)

and a test set (10% of the samples). First, the training data is used to

calculate a fold-change for each gene, i.e. the change in expression according

to a specific endpoint. Subsequently, RRFE uses the graph structure and the

fold-change information as input to GeneRank (Morrison et al. (2005); see

section 2.5.2). GeneRank uses this information to calculate a weight for each

gene that is based on the number of connected neighbours and their change

in expression. This weight can subsequently be used to rank the features.

GeneRank is a modified version of Google’s PageRank algorithm (Brin and

Page, 1998). PageRank is based on the hypothesis that a web page should be

highly ranked in a search result, if other highly ranked pages contain links

to it. Our motivation to use GeneRank was, that this hypothesis can also

be transferred to biological networks. It is known that key players in cancer

development do not necessarily exhibit high fold-changes, but are most often

highly connected to other genes that change their expression level significantly

(Chuang et al., 2007).
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Figure 3.1: Workflow of Reweighted Recursive Feature Elimination.
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However, the weight calculated by GeneRank had to be transformed in

order to avoid single genes of having a weight that is much higher compared

to the others. This transformation was done in a rank-based fashion. Let ri

denote the GeneRank of the ith gene, the transformed weight was calculated

as:

r∗i = |{rl|rl ≥ ri}|. (3.1)

Using equation (3.1), the gene with highest GeneRank gets a weight of 1, the

gene with second highest GeneRank gets weight 2, the next 3, . . . , P .

Afterwards, the expression data was used to train a SVM (Boser et al. 1992;

c.f. section 2.1). The generalization performance of the trained model was

determined using the span estimate (see section 2.3). The span estimate allows

to calculate an upper bound on the leave-one-out error of a SVM classifier.

Subsequently, the features were ordered according to the SVM-RFE criterion

(Guyon et al. 2002; section 2.2.3) coming from equation (2.25) in combination

with the transformed GeneRank. This combination was performed by using

an function φ, which was defined as

φ(wi, r
∗
i ) = wi

1

r∗i
, (3.2)

where r∗i is the transformed GeneRank and wi comes from RFE.

After having ranked all genes, RRFE discards 10% of the genes from the

bottom of the ordered list. This speeds up the running time of the algorithm

but increases the risk of missing the perfect subset of genes. However, since

the high number of features leads to a combinatorial explosion, an exhaustive

enumeration of all subsets was infeasible.

Subsequently, the next SVM model was trained using only those features

that were not excluded during the elimination process. Again, a bound on the

leave-one-out error was calculated. This process of training the SVM, ranking

the remaining features and discarding 10% of them was repeated until only

one feature was left in the model (dashed square in figure 3.1). Since each

SVM model was associated with a certain error, given by the span-estimate,
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the model with the best performance could easily be selected. It inherently

consisted of the best performing features. In the end, this model was tested

on the previously defined test set.

Repeating this process ten times led to a ten-fold cross-validation. After

these ten folds every sample had once been a member of the test set. Thus, the

prediction of the class-label of each sample could be compared to its original

one. This information was used to calculate a sensitivity and a specificity

for the classifier (cf. section 2.4). Subsequently, as a measure of quality, a

ROC curve was plotted and the AUC was calculated. To obtain a confidence

interval for the AUC estimate the cross-validation was repeated several times

with different split positions.

The combination of GeneRank and RFE increased the influence of low

expressed genes on the classifier if they were highly linked to differentially

expressed genes. Furthermore, this combination accounted for the fact that

many functionally relevant genes were not detected by standard methods

that merely rely on expression data. This, in turn, decreased the unexploited

information in the data.

3.1.1 Evaluations of the method

The newly developed RRFE method was evaluated with different goals. First,

the aim was to show that the genes selected by the algorithm were reproducible

(see section 3.1.1.1). That is, the genes that ’survived’ the feature elimination

and made it into the final model should be independent of the samples

that comprise the training set. Furthermore, the selected genes should be

associated with the underlying disease (cf. 3.1.1.1). Second, the algorithm

should improve the classification performance. That is, the AUC achieved by

RRFE should be higher compared to both, standard methods (section 3.1.1.2)

and methods that are capable of including prior knowledge (section 3.1.1.5).

All experiments were run in a five times repeated ten-fold cross-validation.

This means, in each fold the model was trained using 90% of the data and



 Results and Discussion

then it had to predict the class labels of the remaining 10%. Hence, after ten

folds every sample had been part of the test set once and the results could be

used to calculate an AUC. However, this point estimate of the AUC might

not be the best. Therefore, the CV was repeated five times with different

split positions to get a confidence interval for the AUC.

The graph structure needed by RRFE was produced using the HPRD (see

section 2.6) and all experiments were performed using this adjacency matrix.

However, to be sure that the AUC reached by RRFE is independent of the

underlying graph structure, the algorithm had also been evaluated using

prior knowledge coming from KEGG (Kanehisa and Goto, 2000) and the

ConsensusPathDB (CPDB, Kamburov et al. 2009). Since HPRD and CPDB

both contained information on PPI the nodes of the graph corresponded to

proteins. In the case of KEGG the nodes of the network were genes.

It is important to mention that the density of connections among genes

involved in cancer is higher compared to genes that are not so well known.

Indeed, there is an annotation bias in the pathway knowledge because the

parts of the network comprising disease related genes are better understood.

However, we believe that with increasing amount and quality of biological

data the influence of this bias will decrease. Moreover, the damping factor

can be used to adjust the influence of the pathway knowledge according to

its reliability (see below).

According to the analyses conducted by Schmidt et al. (2008), four gene

expression data sets were downloaded from GEO (c.f. section 2.7). Evalu-

ations on the gene list stability (subsection 3.1.1.1) were performed on the

combination of all four data sets. This combination led to one large data set

comprising almost 800 samples. The AUC was investigated on all single data

sets as well as on the combined one. Since all experiments have been per-

formed on the same microarray platform and non of the patients received any

systemic treatment the combination of the data sets was possible. However,

to avoid within-study differences from influencing the classification result, all

data sets have been normalized together.
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In order to calculate a fold-change for the nodes in the graph, as needed

by GeneRank, the microarray data had to be mapped to the pathway data.

Whenever a gene was represented by more than one probe set on the mi-

croarray, the measurements were averaged to obtain one value for the gene.

When using KEGG, the averaged expression data could directly be mapped

to the graph. However, in the case of HPRD and CPDB, a gene could be

represented by more than one protein in the network structure. In this case,

the averaged expression values were assigned to all proteins that originate

from this particular gene.

Like most classification methods, RRFE has parameters that have to be

adjusted carefully. As suggested by Morrison et al. (2005), the damping

factor of GeneRank was set to d = 0.5, which led to an equal influence of

the pathway knowledge and the fold-change information on the ranking of

the genes. Nevertheless, an experiment was performed in order to judge the

influence of the damping factor on the classification result (see below). RRFE

uses a SVM with linear kernel. The soft-margin parameter in equation (2.6)

was optimized using the span-estimate. However, the range was limited to

C ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}. The following sections will describe

the outcome of the evaluations.

3.1.1.1 Evaluation of RRFE in terms of stability and

interpretability of selected features

The human epidermal growth factor receptor 2 (ERBB2 ) is a oncogene, that

is frequently amplified in breast cancer patients (Slamon et al., 1987, 1989).

The amplification of ERBB2 is associated with poor prognosis and its status is

routinely analyzed in the clinics, because patients with a ERBB2 amplification

benefit from a specific treatment with a monoclonal antibody (trastuzumab,

Emens 2005). It is known that the elevated signalling by this protein drives

cells into proliferation and protects them from apoptosis (Weinberg, 2006).

Since the ERBB2 amplicon is a long stretch of chromosomal DNA it also

encompasses additional genes besides ERRB2. Therefore, these genes are
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co-amplified, which leads to an overexpression on the RNA level.

The amplification of the region around ERBB2 on chromosome 17 and

the resulting overexpression of the neighboring genes is a good example

to investigate the feature selection of a classification algorithm. Therefore,

this analysis aims at evaluating RRFE in terms of stability as well as the

interpretability of genes selected for the classification. When discriminating

ERBB2-positive from ERBB2-negative patients our assumption was that due

to the high correlation with the class labels and the elevated fold-change a

standard algorithm will mostly choose genes that are located in close proximity

to ERBB2. Apparently, most of these genes need not necessarily be associated

with the intrinsic biology and the adverse clinical outcome of the ERBB2

breast cancer subtype (Slamon et al., 1987; Sorlie et al., 2001). However,

due to the way RRFE incorporates the pathway knowledge one would expect

changes in the selected features.

Based on the expression level of the ERBB2-specific probe sets 788 patients

were assigned into two groups (cf. section 2.7.2). 686 patients were defined as

ERRB2-negative and 102 as ERBB2-positive. Afterwards, the ERBB2-specific

probe sets were omitted from the data set. After having assigned the patients

into two groups, all probe sets that could not be mapped onto the PPI network

were removed, which left 13,671 features for the classification. On the basis

of these features RRFE was used to predict the ERBB2 status of the patients

and subsequently compared to SVM-RFE. As expected, both algorithms

performed well and reached an AUC close to 1 (figure 3.2). However, as

already mentioned, it is straightforward for the algorithms to achieve good

results by simply choosing genes lying within the amplicon. Therefore,

the classification performance was not the aim of this analysis. It is more

interesting to compare the genes selected by the algorithms (table 3.1).

Table 3.1 shows for each algorithm the 10 genes that have been selected

most often. Due to the cross-validation setting, a gene can be chosen 50 times

at maximum. 6 out of 10 genes selected by SVM-RFE are lying within the

ERBB2 amplicon (indicated by bold chromosome numbers). Most probably,

RFE selects those genes because of their high fold-change as well as their
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Figure 3.2: AUC for predicting the ERBB2 status. Both algorithms
reached an AUC close to 1. RFE shown on the left side obtained an AUC
of 0.982. RRFE reached a slightly smaller AUC of 0.966

correlation with the receptor status. RRFE on the other hand, chooses only

3 of the genes that lie adjacent to ERBB2. This indicates that the pathway

knowledge influences the choice of the genes in such a way as RRFE does not

simply choose genes that are correlated with the class labels. Nevertheless,

this does not prove that the genes selected by RRFE are really associated

with the ERBB2-positive breast cancer subtype.

Therefore, a pathway overrepresentation analysis (Fröhlich et al., 2008)

was performed using the top 100 genes selected by both algorithms. The

algorithm developed by Fröhlich et al. obtains the pathway membership for

each of the 13,671 features. Afterwards, it uses fisher’s exact test (Fisher,

1922) to test for significantly overrepresented pathways among the genes

chosen by the classifiers. This analysis revealed that, among others, the

ERBB2 signaling pathway was significantly associated with the genes selected

by RRFE. No (statistically significant) overrepresented pathway could be

found among the genes chosen by SVM-RFE.

Furthermore, the selection of these disease-associated genes seems to be

better reproducible (table 3.1). The third column shows how often a particular

gene was not excluded during the feature elimination. The feature selection
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A) SVM-RFE

Gene
symbol

Chromosome times
chosen

log fold-
change

connections

GRB7 17 50 -2.105 14
NDUFA7 19 31 0.308 2
MED24 17 29 -1.479 4
LRRC59 17 24 -0.729 1
CRKRS 17 23 -1.825 5
PHB 17 22 -0.512 14
CD86 3 22 -0.099 4
MED1 17 21 -1.627 26
ACTG1 17 21 0.024 35
NR2F1 5 20 -0.538 13

B) RRFE

Gene
symbol

Chromosome times
chosen

log fold-
change

connections

GRB7 17 50 -2.105 14
EGFR 7 49 0.032 151
WFDC2 20 48 1.044 1
EWSR1 22 48 -0.008 97
TP53 17 48 0.240 242
PRKACA 19 48 0.022 131
LRRC59 17 48 -0.730 1
SMAD3 15 47 0.072 166
CRKRS 17 47 -1.825 5
PRKCA 17 47 0.038 162

Table 3.1: Results of the ERBB2 status prediction. Top 10 genes
chosen by both methods after cross-validation, i. e. a gene would have
been chosen 50 times if it was considered as important by all classifiers.
(A) genes chosen by the SVM-RFE algorithm. (B) genes considered
as important by RRFE. Bold means that the gene lies adjacent to the
ERBB2 gene.

of SVM-RFE can not be considered as stable: While the first gene in the list,

GRB7, was chosen by all models, the last one was only selected by less than

50%. RRFE chooses GRB7 50 times as well, however the last gene, PRKCA,

is still selected in 47 of 50 cases, that is, it was considered as important in



. Reweighted Recursive Feature Elimination 

94% of the models.

To conclude, this analysis showed that the pathway knowledge, as used

by RRFE, enables the algorithm to choose genes that are correlated to the

intrinsic biology of the disease. Besides this, the features are selected with a

higher reproducibility, which might decrease the doubts raised regarding the

reliability of these tools in clinical applications.

3.1.1.2 Evaluation of RRFE in terms of classification accuracy

Besides a consistent and interpretable feature selection a new classification

algorithm should also improve the classification performance in terms of

sensitivity and specificity. Therefore, a thorough analysis of RRFE was

conducted.

In a first analysis, RRFE was used to predict whether or not a breast cancer

patient will suffer from a relapse, which is one of the major challenges in clinical

cancer research (Ein-Dor et al., 2006). Therefore, all four gene-expression

data sets were used independently as well as in a combined manner, which

led to a total of 5 experiments. However, most pathway-based classification

methods can only use features that are annotated in the corresponding

pathway database. This is usually connected with a substantial loss in the

number of features, since a huge amount of genes has not yet been assigned

to a pathway (Huttenhower et al., 2009). In order to avoid this limitation,

RRFE was adapted to assign the smallest weight returned by GeneRank to all

features that are not annotated with pathway knowledge. Thus, we used the 5

data sets twice, first by using only those genes present in the graph structure

and second by using all genes. This setup led to a total of 10 comparisons

(five data sets, two analyses on each).

A detailed overview of the evaluations is given in table 3.2. In nine of

these ten comparison RRFE reached a significantly (one-sided wilcoxon test,

p ≤ 0.05 was considered significant) higher AUC compared to SVM-RFE

(figure 3.3, columns 3 and 6 of table 3.2). No improvements could be obtained
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SVM-RFE RRFE p-Value SVM-RFE RRFE p-Value

Combined 0.649 0.671 0.028 0.657 0.688 0.008
GSE11121 0.614 0.667 0.016 0.588 0.657 0.016
GSE2034 0.659 0.708 0.008 0.673 0.727 0.028
GSE7390 0.528 0.516 0.345 0.519 0.536 0.016
GSE6532 0.503 0.609 0.004 0.518 0.585 0.004

Table 3.2: Median AUC obtained by cross-validation for predicting
relapse events on five data sets. Columns 1 and 2 show the AUC when
prior knowledge is used (RRFE) or not (SVM-RFE). Column 3 shows the
p-values obtained from testing whether there is a significant difference
between the AUCs. Columns 4 and 5 show the AUC for both methods
when all genes were used for classification. The last column shows the
p-values obtained by carrying out the same test as above.

on the data set by Loi et al. (GSE7390) when using only those genes for

which pathway knowledge was available.

To further evaluate the results, the 100 genes chosen most often by both

algorithms were subject of a pathway overrepresentation analysis (Fröhlich

et al., 2008). Again, RRFE has most often selected genes associated with

cancer. Thus, the cancer associated pathways Cell Growth and Death (p =

2.656×10−12), Cancers (p = 1.880×10−11) and Cell cycle (p = 6.607×10−08)

were significantly overrepresented. No enriched pathways were found among

the 100 most selected genes of SVM-RFE.

Several authors have pointed out, that the overlap of gene signatures

obtained on different data sets is usually poor (Ein-Dor et al., 2005, 2006). To

investigate this issue for gene lists produced by RRFE, the 100 most selected

genes obtained on each of the 4 individual data sets, i.e. GSE2034, GSE11121,

GSE7390, GSE6532, were examined in more detail. Venn diagrams were

created for the gene lists obtained by RFE and RRFE (Figure 3.4) by using

the VENNY software (Oliveros, 2007). It is evident that the gene lists in the

upper diagram which reflects the result of RFE do not have a single gene

in common. The lower panel shows the Venn diagram obtained from the

RRFE gene lists. It demonstrates that the overlap increased to nine genes

that are common to all four lists. Although this is still far away from being
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Figure 3.3: AUC for predicting if a patient will suffer from a relapse or
not. The x-axis shows the 5 data sets (combined = combination of 4 data
sets; GSE = GEO accession numbers.). Each boxplot consist of 5 AUCs
obtained by repeating the cross-validation five times. The upper panel
shows the AUC reached by SVM-RFE (red) against the AUC obtained by
RRFE (green) when the algorithms were able to use only those features
for which pathway knowledge was available. The lower panel has the
same color code. This time, however, all features have been available for
classification.
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perfect it reinforces the fact the RRFE improves the gene selection in terms

of stability. Furthermore, the overlap between gene signatures obtained from

different data sets increases the likelihood that these gene signatures will also

work well on new data sets and show the same prognostic value. Moreover,

biomarkers might no longer be dependent on the microarray platform, the

different probe sets and data normalization methods used. Additionally, the

impact of differences in the study populations might also decrease (Sotiriou

and Piccart, 2007).

In combination these results indicate that the pathway knowledge en-

ables both increasing the classification performance and selecting biological

meaningful features in a reproducible manner. Moreover, incorporating the

pathway knowledge seems to decrease the susceptibility to noise in the data

since the AUC could also be increased on the combined data set which is

quite heterogeneous since the data was produced in different labs by different

people.

Ein-Dor et al. (2005) pointed out that the presence of a gene in a gene-

signature does not necessarily indicate its importance in cancer pathology.

Furthermore, they said that one can produce fairly reliable multi-gene signa-

tures by just adding enough genes, since adding lots of genes compensates for

the limited predictive power of individual genes for individual patients. This

is in line with the results described above, i.e. that the genes identified by

RFE could not be associated to any pathway whereas RRFE used genes that

are associated with cancer pathways.

It is worth mentioning, that although we could show a significant increase

in classification performance when predicting relapse events the performance

is still far from being perfect. Therefore, it might be better to conduct

the classification in two steps: First, stratify the patients into (possibly

yet unknown) molecular subgroups and subsequently perform the relapse

prediction within the subgroups. Bair and Tibshirani (2004) made an attempt

in this field and it might be worth to incorporate such a ’stratification’-step

into pathway-based classifiers to further increase classification performance.

However, we leave this point open for future research.
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Figure 3.4: Venn diagram showing the overlap of genes between different
data sets. The upper diagram shows the result of RFE and the lower
panel that of RRFE.
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3.1.1.3 Assessing the influence of the damping factor

As mentioned above, all experiments were performed using a damping factor

(cf. equation (2.37) and Morrison et al. 2005) of d = 0.5. To investigate

the influence of the damping factor on the classification result, it was varied

from 0.1 to 0.9 on all data sets using the genes with pathway knowledge (see

figure 3.5). Interestingly, d = 0.5 seems not to be the best choice for all data

sets. The fluctuations on the individual data sets is quite high and a different

choice of the damping factor might lead to better results. However, it is also

evident, that the confidence intervals are mainly overlapping. Nevertheless,

on the combined data set the damping factor seems not to have such a high

influence since the AUC is constantly around 0.67 and the confidence intervals

are narrow. Anyway, for data sets GSE6532 and GSE7390 the AUC seems to

decrease as the damping factor is increased. This increase of d corresponds to

a ranking mostly influenced by the pathway information (see section 2.5.2).

On data set GSE2034, however, RRFE reaches its best result with a damping

factor of d = 0.6, i.e. with higher influence of the pathway data. Also, this

result has a quite narrow confidence interval.

Based on these results one can draw the conclusion, that due to its

dependence on the data set the damping factor should be tuned in the cross-

validation as well. However, it is always a trade-off between the number of

tuning parameters and the time that is needed for training an algorithm.

Therefore, if the user can accept a rather small decrease in AUC a fixed

damping factor of d = 0.5 should be a good choice. Furthermore, it is not

recommendable to use the extreme values, i.e. 0.1 and 0.9.

3.1.1.4 Assessing the influence of different pathway databases

To asses the performance of RRFE with respect to the dependence on a

specific pathway database, information coming from different databases were

used. As mentioned before, the pathway or interaction database is used to

create an adjacency matrix, which is used internally by RRFE to rank the
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Figure 3.5: Influence of the damping factor on the AUC. The x-axis
shows the value of the damping factor and the y-axis indicates the AUC
obtained by five times repeated cross-validation.

genes according to their ’importance’ in the network. This analysis aims at

showing that the results are independent of a particular database, since the

database might be changed to meet the needs of the user. All results reported

so far were obtained by using PPI data coming from the HPRD. The data

therein is known to be of high quality since it is manually curated (Prasad

et al., 2009).

Data from CPDB and KEGG were obtained from their servers and ad-
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jacency matrices were created (cf. section 2.6). Subsequently, the graph-

structures and the expression data using the combined data set were used as

input to RRFE. The results indicate that a change of the underlying pathway

knowledge did not influence RRFE too much, since the AUC was similar for

all three databases (figure 3.6). A statistical test (one-sided wilcoxon test, p

≤ 0.05 was considered significant) did not show significant differences among

the AUCs. Thus, all three databases seem to contain data that is of high

quality. However, it is important to note that only the PPI part of CPDB

was available for download. Therefore, the data of HPRD and CPDB can be

considered similar.

Nevertheless, it is important to mention that the pathway knowledge is

biased towards genes associated with common diseases. Additionally, the

databases are under permanent change. Therefore, the results of pathway-

based classifiers might change as the databases change. The fact that some

parts of the networks are better understood than others leads to a higher

number of connections in these areas compared to others. This in turn gives

genes from these highly connected parts of the network a higher chance

to ’survive’ the feature elimination process of RRFE. However, we believe

that with increasing amount and increasing quality of pathway data, the

classification results of recent pathway-based classifiers should increase as

well.

3.1.1.5 Comparison to other classifiers

All comparisons shown this far, have compared RRFE to its ’progenitor’, i.e.

SVM-RFE. However, it is also a necessity to evaluate the performance of newly

developed algorithms to well established state-of-the-art methods. Therefore,

RRFE was compared to other methods that are capable of incorporating

prior knowledge into the classification as well as to algorithms that do not

use any prior knowledge.

In this analysis we restricted our attention to multivariable methods that

associate a large amount of features with a clinical endpoint. This kind of
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Figure 3.6: Influence of different databases on the AUC. RRFE was run
on all genes which were annotated in one of the three different databases:
HPRD, CPDB, KEGG.

model is not the only way for linking molecular measurements with clinical

characteristics or events. There also exist a lot of test-based methods, that

investigate each measurement in a univariat fashion. Wu and Lin (2009)

give an overview of methods for incorporating external knowledge in such a

test-based setting. However, for the purpose of identifying prognostic gene

signatures multivariable modeling approaches are advantageous (Porzelius

et al., 2011).
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Among the numerous methods available, the nearest shrunken centroid

method (PAM, Tibshirani et al. 2002) and GAMBoost (Tutz and Binder, 2005,

2006) were chosen as methods that do not use any prior knowledge. To evaluate

RRFE in comparison to other methods capable of incorporating additional

knowledge, the network-based SVM (Zhu et al., 2009) and PathBoost (Binder

and Schumacher, 2009) were selected. In the following, the methods used will

be briefly explained.

The PAM method uses conventional nearest-centroid classification (cf.

Hastie et al., 2009) as a starting point. First, the squared distance of a

test sample to all class centroids is calculated. Afterwards the test sample

is assigned to the class whose centroid is closest. This method has the

disadvantage that it needs all genes for the classification. Therefore, Tibshirani

et al. (2002) modified the conventional method in such a way as it shrinks the

class centroids of each gene towards the gene’s overall centroid. Since most

gene-measurements are noisy, their class-centroid is considered of being close

to their overall centroid. Thus, after the distance between both centroids was

shrunk to zero the gene does no longer contribute to the classification. This

is the way how PAM performs a feature selection. The amount of shrinkage

has to be determined by cross-validation.

The boosting approach GAMBoost (Tutz and Binder, 2006) is based

on a penalized log-likelihood. Starting with all regression coefficients equal

to zero, the coefficients of selected covariates are updated in each boosting

step. For that, candidate models are fitted. The coefficient of the covariate

whose candidate model resulted in the largest log-likelihood is updated. The

coefficients of all other covariates remain unchanged. The main parameter,

responsible for the model complexity, is the number of boosting steps. This

parameter can be determined by cross-validating the predictive log-likelihood.

The PathBoost approach is an extension of GAMBoost. However, due to

the pathway knowledge the connectivity of covariates is known. Therefore,

if a feature is connected to another feature that already received a non-zero

coefficient (i.e. entered the model), it is more likely to also receive a non-zero

parameter estimate.
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Method AUC 95% CI

RRFE 0.671 0.662 - 0.681
Network-based SVM 0.607 0.574 - 0.645
PathBoost 0.564 0.547 - 0.601
PAM 0.590 0.569 - 0.623
GAMBoost 0.559 0.534 - 0.588

Table 3.3: Method comparison on the combined data set. Shown are the
average AUC and the 95% confidence interval (CI) after cross-validation.

Zhu et al. (2009) developed a method, which they called network-based

SVM. It uses a network-based penalty which leads to a grouped variable

selection. This variable selection is achieved by penalizing the SVM objective

function with an F∞-norm (Zou and Yuan, 2008) instead of the commonly

used L1 or L2 penalization. This norm forces the simultaneous selection

or elimination of a group of features from the same pathway. Zhu et al.

(2009) treat neighboring genes in a graph as a group and construct their

network-based penalty as the sum of F∞-norms of groups of neighboring

genes-pairs.

All evaluations were performed in the above-mentioned cross-validation

setting, i.e. five-times repeated ten-fold CV. All methods were used to predict

if the patients will suffer from a relapse or not. To do so, the combined data

set with 788 observations was use. Methods capable of using prior knowledge

used the adjacency matrix created from HPRD.

The ROC curves obtained by the analysis are given in figure 3.7. RRFE

reached the highest AUC in all comparisons (table 3.3). Indeed, it seems that

predicting relapse events is a hard task for both standard and pathway-based

classifiers.
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Figure 3.7: ROC Curve of RRFE compared to other classifiers.

3.2 pathClass: a software for classification

with prior knowledge

We believe that publishing usable software additionally to novel methodology

is an important task and valuable field. Therefore, we developed an R

package, called pathClass (Johannes et al., 2011), that contains reference

implementations of several pathway-based classifiers. The package is available

at Comprehensive R Archive Network (CRAN)1. pathClass aims at providing

the user with comprehensive implementations of these methods in a unified

1http://cran.r-project.org/

http://cran.r-project.org/
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framework in order to allow easy and transparent benchmarking. To our

knowledge it is the first package implementing several SVM-based algorithms

that are capable of incorporating network knowledge into the classification

process. It is, however, worth mentioning, that all methods available in

pathClass have previously been published and shown their predominance

over standard algorithms. For benchmarking of the more ’classical’ methods

not using prior knowledge the user is referred to the packages CMA (Slawski

et al., 2008) and MCRestimate (Ruschhaupt et al., 2004). A boosting approach

that is capable of using prior knowledge (Binder and Schumacher, 2009) can

be found in the package GAMBoost, which is also available on CRAN.

3.2.1 Package Features

As already mentioned, all methods implemented in pathClass are capable of

using prior knowledge. This knowledge is represented as a network structure

or graph, i.e. it carries information on the connectivity of features. R

(R Development Core Team, 2009) was chosen for the implementation of

pathClass, since it is open source and widely applied for statistical analysis.

Furthermore, the package is accompanied with a vignette which gives a

detailed explanation of a typical workflow when using pathClass. Also,

the vignette contains a benchmark of all three algorithms. In the following,

the different algorithms and the way they use the network data are briefly

explained.

The first algorithm implemented in pathClass is SVM-RFE (Guyon et al.,

2002). As mentioned before, this algorithm does not use any prior knowledge,

it rather uses SVM-based criteria to rank and remove features. RFE is

included in the package to provide the user with the possibility to compare

its performance to the performance of classification methods which integrate

pathway knowledge.

We, of course, added RRFE, our recently proposed extension of SVM-RFE.

A detailed description of the algorithm is found in section 3.1.
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The next algorithm that is implemented is called network-based SVM and

was recently proposed by Zhu et al. (2009). This method was already explained

in the previous section, when RRFE was compared to other classifiers (cf.

section 3.1.1.5). However, it is important to note that this method uses a

linear program solver (lpSolve) for optimizing the SVM objective function.

Therefore, a constraints matrix has to be created. Depending on the number

of genes, this matrix can become very big. Thus, it might be necessary to

discard features with smallest variability as suggested by the authors.

Additionally, we implemented the algorithm by Rapaport et al. (2007).

This method defines a new metric for gene expression measurements by using

the matrix exponential function. Their assumption is that most biologically

relevant information is captured in the low-frequency component of expression

profiles. Hence, the projection of the low-frequency component of an expres-

sion vector on the gene metabolic network should reveal areas of positive

and negative expression on the graph that are likely to correspond to the

activation or inhibition of specific branches of the graph.

All methods are implemented in a unified framework. That is, they can

be used directly or in a cross-validation setting. pathClass is able to use the

multi-processor architecture of modern PCs or computing clusters and run

the CV in parallel, which decreases the running time tremendously. Moreover,

the package provides methods to plot the results and automatically extract

the features used by the classifiers.

In conclusion we hope that this software can help scientists to easily

compare their newly developed methods to already existing ones. Since a

thorough benchmark is required by almost all journals. Further, we hope to

extend the package with additional methods as soon as possible. Given the

recent growing interest in computations on powerful graphic cards (GPU),

it might be possible to move some of the matrix computations from the

processor to the GPU, which works in a highly parallel fashion. However, we

left this open for future research.
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Conclusions

Clinico-pathological parameters are commonly used to predict the clinical

course of breast cancer patients. However, due to the heterogeneity of

breast cancer these markers have shown only limited success and patients are

frequently overtreated. Therefore, new markers for breast cancer prognosis

are urgently needed to avoid unnecessary treatment of patients.

Classification methods have shown to be a promising approach for de-

tecting novel biomarkers based on microarray measurements. Given the

urgent need for new biomarkers and the illustrated drawbacks of standard

classifiers, we developed a new classification algorithm capable of using prior

biological knowledge. The new method, called Reweighted Recursive Fea-

ture Elimination (RRFE), is based on the Support Vector Machine and the

Recursive Feature Elimination (RFE) algorithm. When developing RRFE,

our assumption was that highly connected genes should have an increased

influence on the decision rule even if their fold-change is rather small. This

assumption was implemented by modifying the ranking criterion of RFE by

using GeneRank, a derivative of Google’s PageRank algorithm.

Evaluations of RRFE showed that its advantages are three-fold: First, it

showed a reproducible feature selection, meaning that the selected features

were chosen independently of the training set. Second, the selected features
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were associated with the disease in question, which was proven by a pathway

overrepresentation analysis among the selected genes. The third advantage is

that RRFE was able to predict the risk of recurrence in several breast cancer

data sets with significantly higher sensitivity and specificity.

Moreover, our evaluations showed that the accuracy of RRFE was inde-

pendent of the database providing the prior knowledge. However, it is worth

noting, that the databases used in the illustrated evaluations are known to

contain data that is of high quality, i.e. manually curated or experimentally

validated. Additionally, it was also shown, that the overlap of gene signa-

tures identified on different data sets was increased compared to a standard

classification algorithm.

Finally, it can be concluded that RRFE might help to improve the issues

that have hampered successful biomarker discovery and patient stratification.

Nevertheless, the classification accuracy is still not optimal. Therefore, I

hope to encourage others to follow the promising way of including prior

knowledge into the classification to further improve classification results in

several aspects.
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