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Zusammenfassung

Variationsmethoden bilden in vielen Gebieten der Bildverarbeitung die Grundlage für
die Formulierung von Modellen sowie für deren tieferes Verständnis. In dieser Arbeit
betrachten wir einen Variationsansatz für konvexe Relaxierungen des Mehrklassen-Seg-
mentierungsproblems, formuliert auf kontinuierlichen Bildgebieten. Wir stellen mehrere
zugehörige Relaxierungen für längenbasierte Regularisierer vor, die sich in der Mächtig-
keit, aber auch in der numerischen Komplexität, unterscheiden. Durch die Formulierung
im Rahmen der geometrischen Maßtheorie werden Diskretisierungsartefakte, die bei
graphenbasierten kombinatorischen Verfahren aufgrund der frühzeitigen Diskretisierung
auftreten, so weit wie möglich vermieden. Zur numerischen Lösung des zugehörigen
nichtglatten Optimierungsproblems untersuchen wir Optimierungsmethoden erster
Ordnung, basierend auf kontrollierter Glättung und Operator Splitting. Wir formu-
lieren eine randomisierte Rundungsmethode für Mehrklassen-Segmentierungsprobleme
auf kontinuierlichen Gebieten und zeigen, dass auf diese Weise ganzzahlige Lösungen
mit einer a priori-Schranke für die Optimalität gefunden werden können. Weiterhin
stellen wir eine “Sparse Representation”-basierte Methode vor, die es erlaubt, zusätz-
liches Vorwissen über die Objektform in Variationsansätze zu integrieren.





Abstract

Variational models constitute a foundation for the formulation and understanding of
models in many areas of image processing and analysis. In this work, we consider a
generic variational framework for convex relaxations of multiclass labeling problems,
formulated on continuous domains. We propose several relaxations for length-based
regularizers, with varying expressiveness and computational cost. In contrast to graph-
based, combinatorial approaches, we rely on a geometric measure theory-based formu-
lation, which avoids artifacts caused by an early discretization in theory as well as in
practice. We investigate and compare numerical first-order approaches for solving the
associated nonsmooth discretized problem, based on controlled smoothing and oper-
ator splitting. In order to obtain integral solutions, we propose a randomized rounding
technique formulated in the spatially continuous setting, and prove that it allows to
obtain solutions with an a priori optimality bound. Furthermore, we present a method
for introducing more advanced prior shape knowledge into labeling problems, based on
the sparse representation framework.
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Chapter 1

Introduction and Overview

1.1 Nonsmooth Variational Models

Variational Methods. In this work, we will be concerned with a class of variational
problems used in image processing and analysis. The output of a variational method is
defined as the minimizer of an objective function f ,

u∗6 argmin
u∈C

f(u) , (1.1)

where C is some subset of a space of functions that are defined on the continuous domain
Ω⊆R

d, and f is a functional depending on the input data.

The interpretation of u is governed by the problem to be solved: For the prototypical
example of color denoising, u: Ω→R3 could directly describe the colors of the output
image on the image domain Ω, while for segmentation problems, u: Ω→ {0, 1} could
assign each point to the foreground (u(x)=1) or background (u(x)=0) class. We will in
particular consider the case where the range of u is continuous and multi-dimensional,
i.e. u is vector-valued.

Usually the objective f is composed of a data term H(u) and a regularizer J(u),

f(u) = H(u|I)+J(u). (1.2)

The data term depends on the input data I – such as color values of a recorded image,
depth measurements, or other features – and promotes a good fit of the minimizer to the
input data. However, in order to cope with noise and extract higher-order information
from low-level image features, it is generally necessary to incorporate additional prior
knowledge about the “typical” appearance of the desired output, which is the purpose
of the regularizer. We refer to [SGG+09] for a general overview of variational methods
in image processing.

The distinction between data term and regularizer in (1.2) also has a statistical back-
ground: Consider the problem of finding the best estimate of the unknown quantity u,
given some observation (input) I which is assumed to be susceptible to noise, i.e. I is
sampled from a random variable. Then, the configuration u with the highest probability
can be inferred from the observation by maximizing the probability

u∗ = argmax
u

P(u|I). (1.3)
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The modeling process consists in specifying the conditional probability. The conditional
probability distribution can be either estimated directly, as in discriminative models,
or it can be deduced from the Bayes theorem: Problem (1.3) is equivalent to

u∗ = argmax
u

P(I |u)P(u) (1.4)

= argmin
u
{−log (P(I |u) )− log (P(u))}. (1.5)

This approach requires to define a generative model, i.e. the joint distribution of the
observation I and the unknown u. The right summand in (1.5) encodes prior knowledge
about the (a priori) likelihood of a particular configuration u, while the conditional
probability on the left relates possible u with the observation I – which could be color,
texture, or any other observable quantity –, and can therefore be seen as the data term.

In fact, if one makes the common (simplifying) assumption that the conditional
probability in (1.4) decouples on a per-point basis, one obtains (for finite Ω, i.e. after
discretization):

−logP(I |u) = −log
∏

x∈Ω

P(I(x)|u(x)) (1.6)

=
∑

x∈Ω

−logP(I(x)|u(x)). (1.7)

For normally distributed noise, this corresponds directly to the classical ℓ2 distance
between u and I .

In contrast to this finite-dimensional example, we will generally formulate models

on continuous domains Ω, i.e. contiguous subsets of Rd, following the “analyze/optimize
first” paradigm. Compared to “discretize first” approaches, this allows to get a deeper
insight into the underlying problem, and to abstract from inaccuracies caused by the
discretization.

Applying variational approaches generally requires two steps:

• choosing a suitable model ,

• and providing a numerical solver for the associated discretized problem.

More intricate models usually complicate the optimization process, therefore choosing a
model always involves a trade-off between modeling accuracy and numerical tractability.
A particular difficulty concerns the evaluation and comparability of models: for moder-
ately complex models, the associated problem can usually only be solved locally optimal,
making it difficult to pinpoint whether an unexpected result should be attributed to
the model or to the solver.

In this work, we will mainly consider convex models. Since these can generally be
solved to a global optimum, modeling and optimization aspects are clearly separated.
Certainly, this comes at the price of reduced modeling accuracy; the prominent ques-
tion is therefore how to construct sufficiently simple convex approximations to difficult
problems.

In many typical imaging problems, the data term is little problematic, and can be
modeled fairly well using a convex local (pointwise) term as in (1.7). However, the prior
knowledge encoded in the regularizer is usually of a much more “nonlocal” type, and
finding suitable – ideally convex – regularizers is a difficult problem.

2 Introduction and Overview



In this work, we will focus on nonsmooth regularizers, i.e. we do not assume differen-
tiability. Such regularizers have become very popular in the field of image processing and
computer vision in the last two decades. In many cases, introducing simple nonsmooth
terms in the regularizer has intriguing effects.

Variational Denoising. As an example, consider the problem of removing noise from
an image, in order to improve its visual quality or as a preprocessing step for further
feature extraction. The most basic, classical example is Gaussian L2−L2 denoising: For
an input image I : Ω→R

l and regularization weight λ> 0, minimize

f(u) =
1
2

∫

Ω
‖u− I ‖22 d x+

λ

2

∫

Ω
‖∇u‖22 d x (1.8)

over u: Ω → R
l. Note that both the data term and the regularizer exhibit quadratic

growth.

Problem (1.8) is convex, and after discretization can be solved globally optimal as a
linear equation system. While the approach removes Gaussian noise very well, it tends to
smear hard edges in the image. This is caused by the quadratic growth of the regularizer,
which makes it susceptible to “outliers” – i.e. large gradients – in the form of hard edges.

Many approaches have been proposed to circumvent this problem. Most promi-
nently, the anisotropic diffusion approach consists in solving (1.8) using gradient
descent, at each step locally modifying the norm in the regularizer to reduce smoothing
across directions where the current iterate has a large gradient, i.e. across potential
edges. While this is widely used and gives good results in many cases, the output cannot
be characterized in the variational way as the minimizer of a certain functional. A
more one-step approach is the seminal work of Rudin-Osher-Fatemi [ROF92], who intro-

duce the total variation into image processing and formulate the L2−TV (ROF ) model

f(u) =
1

2

∫

Ω
‖u− I‖22 d x+ λ

∫

Ω
d|Du|. (1.9)

The integral on the right-hand side involving the distributional derivative Du is known
as the total variation (TV) of u, and is a generalization over the integral over ‖∇u‖2
for discontinuous u. The key difference to (1.8) is that, while the data term still has
quadratic growth, the regularizer only grows linearly.

In practice this seemingly simple change partly solves the problem of dealing with
hard edges: Gaussian noise is generally removed from regions with smooth gradient,
while hard edges are retained. However, while still convex, the model is nonsmooth due
to the missing exponent in the regularizer. Moreover, the theoretical analysis is much
more involved since it requires to consider discontinuous u with appropriate general-
izations of the derivatives. However, these issues can be rigorously addressed in the
framework of functions of bounded variation, we refer to Appendix A.1 for an overview.

For non-Gaussian noise such as salt-and-pepper, (1.9) is suboptimal, as it is quite
sensitive to outliers in the input image I. Also, ROF denoising invariably leads to a
reduction in contrast. By going one step further, these drawbacks can also be addressed:
Consider the L1−TV model (see [Nik01] for an overview)

f(u) =

∫

Ω
‖u− I ‖1d x+ λ

∫

Ω
d|Du|. (1.10)
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Here both the data term as well as the regularizer exhibit linear growth. Existence and
well-posedness of (1.9) and (1.10) can be shown in a precise sense within the class of
functions of bounded variation [AFP00, AMT91].

Functionals such as (1.10) are extremely tolerant to noise. The downside is that they
also tend to generate a “staircasing” effect on smooth gradients, i.e. the solution tends
to be piecewise constant. We refer to [DAG09] and the references therein for a detailed
analysis. For image denoising this is certainly not desirable, therefore some effort has
been put into reducing staircasing while preserving robustness, mostly by including
higher-order derivatives (see e.g. [CL97, Sch98, CMM00, LT06, BKP10]). However,
in some applications staircasing is explicitly desired . One such application is image
segmentation or more generally multiclass labeling, which will be our main interest.

1.2 Variational Multiclass Labeling

In this work, we focus on a particular class of variational problems that originate from
the multiclass labeling problem, also known as multiclass image segmentation. We will
first outline our generic model, and then relate it to the existing approaches.

The task is to assign to each point x in the image domain Ω⊆R
d an integral label

ℓ(x) ∈ I 6 {1, 	 , l}, so that the label assignment (or labeling) function ℓ adheres to
some local data fidelity as well as nonlocal spatial coherency constraints (Fig. 1.1). This
problem class occurs in many applications such as segmentation, multiview reconstruc-
tion, stitching, and inpainting [PCF06]. We consider the generic variational formulation

inf
ℓ:Ω→I

f(ℓ), f(ℓ)6 ∫

Ω
s(x, ℓ(x)) dx�
data term

+ J(ℓ),�
regularizer

(1.11)

where we deliberately do not fix any function spaces yet, as we will settle on a
slightly different form. Formulation (1.11) directly relates to the general variational
approach (1.2), however we deliberately distinguish ℓ and u in order to emphasize
the finite number of possible values at each point.

The data term assigns to each label ℓ(x) a local cost s(x, ℓ(x)) = sI(x, ℓ(x)) ∈ R

depending on the observation I . These costs are specific to the application and often
derived from a statistical model: in view of (1.7), s(x, k) can be interpreted as the
negative log-probability−logP(I(x)|ℓ(x)=k), for any label k∈I. Some possible choices
for s include:

• For color segmentation – which can be seen as a form of denoising with a finite
number of color values –, each label k is associated with a prototypical color
value ck. Then s(x, k) could be set to a distance measure between the color I(x)

in the input image at point x, such as ‖I(x)− ck‖2, the more robust ‖I(x)− ck‖1,
or many other variants such as robust p-norms with p< 1.

• For general foreground-background segmentation, one usually estimates
parametrized statistical models of the foreground and background, based on
a range of features such as color, edges, texture, and scale computed at each
point. The parameters and weights of the individual features are then deter-
mined in a learning step.
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• For depth estimation from stereo image pairs, the labels correspond to possible
point correspondences between the two involved images. For a calibrated stereo
camera system, these are physically restricted to a one-dimensional subspace
along the epipolar lines [HZ00, FL01]. The data term then describes how well
the hypothesis of a certain depth at a certain point is supported by the observed
images, i.e. how similar the corresponding image patches are.

Generally, the local cost term has a very strong dependence on the input data, and its
structure typically cannot be reliably predicted beforehand.

As the input data is usually subject to noise or missing some parts, or generally not
sufficient to extract the desired higher-order information, additional prior knowledge
must be introduced through the regularizer J . Usually, at least some spatial coherency
is desired. In this work we will in particular be interested in regularizers that penalize
the weighted length of interfaces between regions of constant labeling. Note that the
regularizer may generally involve terms depending on the observation I. While this
somehow blurs the clear distinction between prior and posterior knowledge as in (1.5),
it is common practice and often leads to better results.

Contour-Based Segmentation and Level Sets. The model (1.11) puts an
emphasis on the region-based interpretation of the segmentation problem: Effectively,
the labeling function ℓ partitions the image domain Ω into l regions Ω1,	 ,Ωl, where

Ωk 6 ℓ−1({k}). (1.12)

The data term can be reformulated as region integrals,

∫

Ω
s(x, ℓ(x)) dx =

∑

k=1

l ∫

Ωk

s(x, k) dx. (1.13)

However, for two-dimensional domains one could alternatively think of the labeling
problem as the problem of finding a set of contours , i.e. closed curves Ck: [0, 1]→R

2,
describing the boundaries ∂Ωk. One of the earliest contour-based approaches is the

snake model [KWT87], where one considers a single contour C=Ck and minimizes for
some weights β, λ> 0 the energy

f(C) = −λ
∫

0

1

‖∇I(C(p))‖2 dp+
∫

0

1

{‖∇C(p)‖22+ β ‖∇2C(p)‖22} dp. (1.14)

The left integral incorporates the observed grayscale image I by drawing the contour
towards hard edges in the image. The right integral takes the role of a regularizer,
penalizing curve length and curvature. This model has two important disadvantages:
first, it is not parametrization-independent with respect to C, and second, it relies on an
explicit parametrization of C, which requires much effort in order to cope with changing
topology and multiple objects.

These issues are addressed by the well-known Geodesic Active Contours model
[CKS97]. The parametrization invariance is obtained by defining, for some decreasing
edge detector function g:R>0→R>0 and h(x)6 g(‖∇I(x)‖2), the energy

f(C) =

∫

0

1

h(C(p))‖∇C(p)‖2 dp. (1.15)
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Figure 1.1. Multiclass labeling problem. The task is to find a label assignment function ℓ that
partitions the image into l regions Ω1,	 ,Ωl such that the assignment fits to the observed input
data as well as the prior knowledge about the structure of the regions.

The integral can be interpreted as the curve length of C measured in the locally weighted
Riemannian metric defined by h. Therefore, the (local) minimizers of f represent
geodesics with respect to this metric. In higher-dimensional spaces a similar approach
can be formulated in terms of minimal surfaces [CKSS96].

Due to the parametrization invariance of (1.15), by the usual technique of consid-
ering the first variation of (1.15) with respect to C, one obtains the “steepest-descent”
partial differential equation (PDE)

∂C

∂t
= (κh−〈∇h, ν 〉) ν , (1.16)

expressed solely in intrinsic properties of C, i.e. its normal ν and curvature κ. Starting
from some arbitrary C(·,0) at t=0, (1.16) is then integrated with respect to the artificial
time parameter t in order to obtain a local minimum of (1.15).

Instead of the explicit parametrization of C, a very popular approach also proposed
in [CKS97] is to use level sets [OS88]: the curve C is represented as the zero set of

some function φ: Ω→R, i.e. C([0, 1]) = φ−1({0}). A common convention is to require
φ(x)< 0 in the interior of C, and φ(x)> 0 in the exterior. Then ν and κ can be readily
expressed as

ν = − ∇φ
‖∇φ‖2

, κ = div

(

∇φ
‖∇φ‖2

)

, (1.17)

and (1.16) amounts to

∂φ

∂t
= h ‖∇φ‖2div

(

∇φ
‖∇φ‖2

)

+ 〈∇h,∇φ〉. (1.18)

Originally, (1.16) defines (1.18) only on C, i.e. on the zero set φ−1({0}). The funda-
mental trick when employing level set methods is to integrate (1.18) also in all remaining
x∈Ω. This allows to propagate curves of arbitrary topology (and number) using a single,
fixed discretization, e.g. on a grid. As soon as a steady state is achieved, the boundary
curve C can be extracted with subpixel accuracy from the zero crossings of φ. Moreover,
the higher-dimensional case d> 3 can be transparently handled.
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In this sense, the level set approach is a hybrid method, encoding the originally
contour-based functional in a region-based integral form. Consequently, Chan and Vese
proposed to apply the level-set technique to a region-based formulation, also known as
Active Contours Without Edges [CV01]. Here the edge-(gradient-)based model (1.15) is
replaced by a region-based approach, formulated in terms of the interior and exterior
of the region PC described by C,

f(C, c1, c2) =

∫

int(PC)
‖I − c1‖22dx+

∫

ext(PC)
‖I − c2‖22dx+ µ

∫

0

1

‖∇C‖2dp (1.19)

The functional can be rewritten in terms of a level set function φ by formally introducing
the Heaviside function H(φ) in order to discriminate between the interior and exterior
of PC, and the common PDE-based flow can be computed.

However, all these methods share several important drawbacks:

• In general, the level set function φ is not unique. This can be avoided by postu-
lating that φ should be a signed distance function, at the cost of complicating
the optimization process.

• In contrast to region-based formulations, edge-based approaches do not have a
plausible statistical explanation.

• For the Chan-Vese formulation, in order to obtain differentiability, a smoothed
variant of the Heaviside function must be used, which requires a trade-off between
accuracy and convergence speed.

• Most importantly, the methods are inherently local, since they rely on the
steepest-descent PDE (1.16). Therefore a good initialization is mandatory, and
model and optimization effects cannot be clearly separated.

Note that formulation (1.19) is directly covered by the general model (1.11): in the
two-class case, Ω1=Ω \Ω2 and ∂Ω1= ∂Ω2. Therefore we may set s(·, j)= ‖I − cj‖22 for
the labels j ∈ {1, 2}, and J(ℓ) = µHd−1(∂Ω1), where Hd−1(∂Ω1) denotes the (d − 1)-
dimensional Hausdorff measure, i.e. the length or area, of the boundary of Ω1.

Region-Based Segmentation and Mumford-Shah. Probably the most influential
region-based model is the Mumford-Shah model [MS89]. Motivated by the Gibbs field
[GG84] and weak membrane energy [BZ87] methods, it can be seen as a first approach
of explicitly introducing the possibility of discontinuous solutions into a spatially con-
tinuous framework.

It consists of minimizing, for some λ, µ, ν > 0, the functional

f(u,K)= λ

∫

Ω
(u− I)2dx+ µ

∫

Ω\K
‖∇u‖22dx+ νHd−1(K), (1.20)

whereK⊆Ω is closed and u is differentiable outside of K, i.e. u∈C1(Ω\K). Essentially,
this corresponds to the L2−L2 denoising approach (1.8), with the exception that u is
allowed to be discontinuous on a “boundary” set K that should be “small” as measured
by the Hausdorff term.

The initial idea of K being a set of piecewise smooth curves is difficult to treat
analytically, therefore it has since been formalized using a weak formulation in the
framework of functions of bounded variation: Replacing K by the discontinuity set Su

of some function u (see Appendix A.1 for the precise definitions), define
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f(u) = λ

∫

Ω
(u− I)2 dx+ µ

∫

Ω
‖∇u‖22 dx+ νHd−1(Su). (1.21)

With a proper redefinition of the gradient as an approximate gradient defined almost
everywhere on Ω, and under a restriction of u to the set of special functions of bounded
variation SBV(Ω), a minimizer of (1.21) exists and allows to recover a minimizing pair
(K,u) of the original functional (1.20).

Many important results concerning the structure of solutions to the Mumford-Shah
problem have been derived in this framework, and are still under active research [AFP00,
Dav05]. A large part of its popularity certainly stems from the fact that many region-
based functionals can be considered as limiting or special cases of (1.20) as already
derived in the original publication [MS89]. See also [AK00] for an overview.

While originally proposed for image segmentation, the Mumford-Shah functional is
not a labeling approach in the sense that each point is assigned one of a fixed number
of labels, each corresponding to a specific model. Instead, it divides the image domain
into an – a priori unknown – number of connected components, on each of which the
observation I is explained by a smoothed version.

Therefore, in a sense the Mumford-Shah model is a case of simultaneous labeling
and model parameter optimization, which is generally a much more difficult problem
than pure labeling. Consequently it is not surprising that the functional is nonconvex:
in the Hausdorff term, “jumps” of u along some boundary are always counted by the
length of the boundary irregardless of the height of the jump, violating convexity.

An important connection to labeling problems occurs in the limit µ→+∞. Here, the
optimal umust be piecewise constant , i.e. it is constant on each connected component Qi

of Ω \K, necessarily assuming the mean of I in this region. For this special case, the
weak formulation (1.21) reduces to

f(u) = λ
∑

i

∫

Qi

(

u− 1

|Qi|

∫

Qi

Idy

)

2

dx+ νHd−1(Su). (1.22)

This formulation is also known as the piecewise constant Mumford-Shah model. In
the labeling/model parameter estimation interpretation, this reduces the models that
explain the individual regions to simple Gaussian models with a single fixed mean value.
If one additionally restricts the number of clusters to a fixed integer l, and denotes the
mean values by c1,	 , cl, the problem can be rewritten in the form

f(ℓ) = λ

∫

Ω
(cℓ(x)− I(x))2 dx+ νHd−1(Sℓ), (1.23)

which amounts to the labeling problem (1.11) upon setting s(x, ℓ(x))6 λ (cℓ(x)− I(x))2.
As seen above, for the two-class case this corresponds to the Chan-Vese model (1.19).

Therefore, in a sense our general functional (1.11) constitutes the labeling/inference
part of the simultaneous labeling and model parameter estimation performed by the
Mumford-Shah and Chan-Vese models, i.e. the task of finding an optimal partition of
the image domain if the optimal model parameters are known.
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While (1.23) is a region-based formulation, it does not suffer from the non-uniqueness
of the region-based active contours formulation: the labeling function ℓ describes the
membership of a point to some region directly in terms of an index , rather than the sign
of some level set function φ. This introduces the problem of coping with discontinuous
φ, which is avoided in the level set formulation.

However, directly transferring optimization techniques for the Mumford-Shah func-
tional to the labeling formulation is difficult:

• While the model (1.11) can be viewed as a generalization of the inference part
in the Mumford-Shah model, the latter is restricted to quadratic distances.

• The complete (even piecewise constant) Mumford-Shah problem is inherently
nonconvex. While many optimization methods have been suggested, such as
Simulated Annealing, Graduated Nonconvexity [BZ87], Phase Field [AT90] and
Level Set approaches, they are all tailored to the nonconvex regularizer, and do
not generally allow to find global solutions of the labeling problem.

Convex Labeling. Recently, a third class of approaches for the two-class segmen-
tation problem on continuous domains has emerged [CEN06]. It is based on the observa-
tion that if one replaces ℓ(x) in (1.23) with some function u: Ω → {0, 1} such that
u(x)= 0 iff ℓ(x)= 1, the problem can be rewritten as

f(u) = λ

∫

Ω
((1− u) (c1− I)2+u (c2− I)2)dx+ν

∫

Ω
‖Du‖2. (1.24)

This is possible since the total variation term in the rightmost integral evaluates exactly
to the length of ∂(u−1({0})) = ∂Ω1. In view of the L2 − L2, L2 − TV and L1 − TV
denoising approaches, this two-class model can be viewed as a “Linear-TV” approach. In
fact, it was motivated in [CEN06] as a way to formulate L1−TV geometry denoising,
i.e. denoising of indicator functions.

Formulation (1.24) has several major advantages:

• The functional is region-based, does not require an explicit parametrization of
the boundary, and therefore allows to deal with partitions of arbitrary topology.

• Non-quadratic terms can be trivially included in the data term. In fact, the data
term is always linear in u, independent of its original – possibly complicated,
statistically derived – form.

• The functional itself is convex in u, and therefore does not suffer from local
minima.

The last point is particularly important: if one allows u to also assume fractional values
from the interval [0,1] instead of only the integral values {0,1}, one obtains a completely
convex problem.

The general form of (1.24) is

min
u∈Ω→[0,1]

f(u) =

∫

Ω
u(x) s(x) dx+

∫

Ω
‖Du‖2, (1.25)
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which is equivalent to (1.24) if one sets s(x) = (c2 − I)2 − (c1 − I)2. Such problems
have become known as continuous cut problems, in analogy to combinatorial graph-cut
techniques. For the two-class case, the dual problem has been considered in a maximal-
flow setting in [Str83], see also [AT06]. It can be shown that solutions of the relaxed
problem, with u(x)∈ [0,1], can be thresholded at almost any threshold, and the resulting
integral u provides a solution of the original problem [CEN06].

This stands in close analogy to discrete min-cut/max-flow problems, where the
optimal solution can be obtained in polynomial time. Such finite-dimensional methods
have been tremendously popular in image processing [BVZ01], however they are inher-
ently formulated on graphs, i.e. they are formulated on the discretized problem, which
invariably introduces an anisotropy, and prohibits true rotational invariance.

Similar to what can be observed when applying graph-cut techniques, the transition
from the two-class problem (1.24) to the general multiclass problem (1.11) is a major
step. In particular, it is not clear how to represent the labels using u, how to relax the
combinatorial constraint set, and how to formulate useful regularizers. Nevertheless, one
can hope that by solving these issues at least partially, powerful models for multiclass
labeling problems can be derived.

1.3 Contribution

In this work, we investigate an approach for formulating convex relaxations of the
multiclass labeling problem (1.11) that combine the strengths of the various models
discussed above:

• Our approach is region-based , and therefore allows for a statistical interpretation
and solutions with arbitrary topology.

• It is formulated in a spatially continuous framework, avoiding discretization arti-
facts caused by an early discretization.

• It is also convex , such that the associated optimization problem can be solved
globally optimal, and modeling and optimization issues can be clearly separated.

The remainder of this work is structured as follows: In Chapter 2 we establish a
convex extension of (1.11) to the multi-class case. We generally focus on length-based
regularizers that allow a certain weighting in form of an interaction potential that
depends on the labels on either sides of a boundary. We study the possible interaction
potentials and show existence of minimizers for the spatially continuous problem.

The main difficulty when constructing convex extensions for prescribed interac-
tion potentials lies in formulating suitable regularizers that are also computationally
tractable. We propose three approaches with different tightness and computational cost,
and discuss relations to other regularizers that have been proposed in various contexts.
Although we motivate the modified regularizers in the labeling framework, they could as
well be interesting for ROF- and L1−TV type problems applied to vector-valued data.

We also take a closer look at the aforementioned thresholding property for the two-
class problem, which hinges on the coarea formula from geometric measure theory, and
point out why straightforward extensions to the multi-class case fail.
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Chapter 3 is devoted to discretizations of the spatially continuous formulation. We
relate our approach to “discretize-first” approaches such as Markov Random Fields and
graph-cut techniques. We use a result from [CCP08] to show that the problem can be
discretized using finite differences such that the discretized functionals Γ-converge to
the true (possibly) isotropic functional for vanishing grid spacing.

We show a range of experiments to demonstrate that our approach generally intro-
duces less artifacts than graph-based discretizations. In fact, we conclude that this is
not only an effect of the particular discretization, but hinges on the decision of whether
one looks for fractional or integral solutions of the discretized problem.

In order to practically solve the discretized problem, in Chapter 4 we consider
several numerical methods. We focus on first-order methods, as these have recently been
very successful in image processing when dealing with non-smooth large-scale models.
In particular, we consider a controlled smoothing approach suggested by Nesterov and
an operator splitting technique based on Douglas-Rachford splitting.

We empirically compare the methods to several other approaches for solving the
nonsmooth problem. While the good bounds available for the Nesterov methods turn
out to be mainly theoretical, the Douglas-Rachford approach is robust, relatively fast
for moderate-accuracy solutions as typically required in image processing, and allows
to handle tight regularizers by a suitable introduction of auxiliary variables.

In Chapter 5 we revisit the question of how integral solutions can be retrieved
from solutions of the convex relaxed problem. We show that the two-class case allows
an interpretation in a probabilistic rounding framework via the coarea formula.

In order to transfer these results to the multiclass case, we show how an approximate
variant of the coarea formula can be obtained from a probabilistic rounding method
originally proposed in a finite-dimensional LP relaxation framework [KT99]. We con-
clude with some empirical comparisons to deterministic rounding techniques.

Finally, in Chapter 6 we discuss an extension that allows to incorporate higher-
level knowledge about the shape of the objects contained in the image. The approach
is based on a nonlinear extension of the Sparse Representation problem, and allows to
explicitly model shape knowledge using a dictionary. Experiments show that it deals
well with heavily occluded objects and also has many other interesting potential appli-
cations such as shape decomposition.

The required fundamentals regarding functions of bounded variation, Γ-convergence,
and operator splitting methods are collected in the appendix. Together, we hope to
provide a motivation for using such specially-designed variational problems in order to
solve image labeling problems. While they are numerically more sophisticated to deal
with than conventional combinatorial approaches, we found that they provide visually
superior results, and are backed by an intriguing theoretical foundation.

1.4 Notation

In the following, superscripts vi denote a collection of vectors or matrix columns, while
subscripts vk denote (scalar) vector components, i.e. we denote, for A∈Rd×l,

A = (a1|	 |al)= (Aij), Aij=(aj)i= ai
j
, 16 i6 d, 16 j6 l.
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Superscript parentheses v(i) indicate an element of a sequence (v(i)). We denote the
natural numbers by N = {1, 2, 	 } and N0 = N ∪ {0}, and the extended real line by
R̄6 R∪{±∞}. We will frequently make use of the Kronecker product [Gra81]

⊗:Rn1×m1×R
n2×m2→R

(n1n2)×(m1m2) (1.26)

in order to formulate all results for arbitrary-dimensional domains. The standard sim-
plex in Rl is denoted by

∆l 6 {x∈Rl|x> 0, e⊤x=1}, (1.27)

where e6 (1,	 , 1)⊤∈Rl. In is the identity matrix in R
n and ‖·‖2 the usual Euclidean

norm for vectors or the Frobenius norm for matrices. Similarly, the standard inner
product 〈·, ·〉 extends to pairs of matrices as the sum over their elementwise product.
Br(x) denotes the ball of radius r at x, and Sd−1 the set of x∈Rd with ‖x‖2=1. The
characteristic function χS and the indicator function δS of a set S are defined as

χS(x)6 {

1, x∈S ,
0, x � S , and δS(x)6 {

0, x∈S ,
+∞, x � S. (1.28)

For a convex set C,

σC(u) 6 sup
v∈C
〈u, v〉 (1.29)

is the support function from convex analysis. ∇u denotes the classical Jacobian for
differentiable u. Cc

k(Ω) is the space of k-times continuously differentiable functions

on Ω with compact support, and C0(Ω) the completion of Cc
0(Ω) under the supremum

norm. As usual, Ld denotes the d-dimensional Lebesgue measure, while Hk denotes the
k-dimensional Hausdorff measure. A list of symbols introduced throughout the text can
be found in the front matter.
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Chapter 2

A Variational Convex Formulation
for Multi-Class Labeling

2.1 Introduction and Overview

In this chapter, we consider a method for formulating convex relaxations of the spatially
continuous multiclass labeling problem (Sect. 1.1). As mentioned, the difficulty lies
mainly in the combinatorial nature of the constraint set.

In the following, we will relax this set. This allows to solve the problem in a globally
optimal way using convex optimization methods. On the downside, we cannot expect
the relaxation to be exact for any problem instance, i.e. fractional (non-integral), or
integral but suboptimal, artificial solutions may occur. In contrast to existing methods
such as LP relaxation, we treat the problem in the fully spatially continuous setting,
without resorting to an early discretization.

There are several choices for the relaxation method, of which in our opinion the
following is the most transparent (Fig. 2.1): We first identify label i from the label set

I6 {1,	 , l} with the i-th unit vector ei∈Rl, set E6 {e1,	 , el}, and solve

inf
u∈CE

f(u), f(u)6 〈u, s〉+ J(u)=

∫

Ω
〈u(x), s(x)〉d x+ J(u) , (2.1)

CE6 BV(Ω, E)= {u∈BV(Ω)l|u(x)∈E for a.e. x∈Ω}. (2.2)

The labels are thus embedded into a higher-dimensional space. The space of functions

of bounded variation BV(Ω, E)⊂ (L1)l guarantees a minimal regularity of the disconti-
nuities of u, see Appendix A.1.1 for the basic definitions. The data term becomes linear
in u and is fully described by the vector

s(x)6 (s1(x),	 , sl(x))⊤6 (s(x, 1),	 , s(x, l))⊤∈Rl. (2.3)

Due to the linearization, the local costs s may be arbitrarily complicated, possibly
derived from a probabilistic model, without affecting the overall problem class. We
generally assume s> 0, however any problem with (possibly negative) s bounded from
below can be equivalently transformed into this form by adding a sufficiently large
constant to s.

In this form, we relax the label set by allowing u to assume intermediate (fractional)
values in the convex hull convE of the original label set. This is just the unit simplex∆l,

∆l 6 conv{e1,	 , el}= {a∈Rl|a> 0,
∑

i=1

l

ai=1}. (2.4)
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Figure 2.1. Convex relaxation of the multiclass labeling problem. The assignment of one label to
each point in the image domain Ω is represented by a vector-valued function u: Ω→R

l. Ideally,
u partitions the image into l sets by assuming one of the unit vectors {e1,	 , el} everywhere. By
relaxing this set to the unit simplex ∆l, the originally combinatorial problem can be treated in a
convex framework.

The problem is then considered on the relaxed constraint set C,

C6 BV(Ω,∆l)= {u∈BV(Ω)l|u(x)∈∆l for a.e. x∈Ω} . (2.5)

Assuming we can extend the regularizer J from CE to the whole relaxed set C, we obtain
the relaxed problem

inf
u∈C

f(u) , f(u)6 ∫

Ω
〈u(x), s(x)〉d x+J(u). (2.6)

If additionally J can be made convex, the overall problem is convex as well, and it may
likely be solvable globally optimal. In addition, J should ideally have a closed-form
expression, or at least lead to a computationally tractable problem.

Whether these points are satisfied depends on the way a given regularizer is extended
to the relaxed set. The prototypical example for such a regularizer is the total variation,

TV(u)=

∫

Ω
d |Du| , (2.7)

which generalizes the integral over the Frobenius norm of the gradient, ‖∇u‖2. Note
that ideally u is piecewise constant and thus discontinuous, so the gradient Du has to
be understood in a distributional sense (Appendix A.1.1). Using this definition, the
relaxation corresponds to the two-class case (1.25) as follows: Setting l=2 and J =TV
in the relaxed problem (2.6), we see that the second component of u is given by the
first via u2=1−u1. We may therefore substitute u16 u′ and u2=1−u′ for a suitable
u′∈BV(Ω, [0, 1]), and pose the relaxed problem (2.6) in the form

min
u′∈BV(Ω,[0,1])

∫

Ω
u′(x)(s1(x)− s2(x))d x+ 2

√
TV(u′), (2.8)
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where u′(x) is a scalar. This is exactly the two-class continuous cut introduced in
Sect. 1.2, for which globally optimal solutions can be recovered from any solution of
the relaxed problem by thresholding. In this case the combinatorial problem therefore
reduces to a convex problem. While there are reasons to believe that this procedure
cannot be extended to the multi-class case (see Sect. 2.6 below), it is still a strong
motivation to consider formulation (2.6) for multiple labels.

Considering again the two-class case (2.8), we see that for integral u′ the regularizer
penalizes exactly the length of the interface between the two regions where u′ = 0
and u′ = 1, respectively. In this chapter, we consider ways to construct multiclass
regularizers which penalize interfaces between two adjacent regions with labels i � j

according to the perimeter (i.e. length or area) of the interface weighted by d(i, j), for
some interaction potential d: {1,	 , l}2→R depending on the labels (in a slight abuse
of notation the interaction potential is also denoted by d, since there is rarely any
ambiguity with respect to the ambient space dimension). This will be formalized in
the following section, see Fig. 2.2 for an illustration. As a basic prototypical example,
consider the uniform metric

du(i, j) 6 χ{i� j}(i, j). (2.9)

For d=du, the regularizer should thus penalize the total interface length, as seen above
for the total variation. By choosing a different d, one obtains non-uniform regularization
as visualized in Fig. 2.3.

For most of this chapter, the regularizer will be of the form

J(u)6 ∫

Ω
dΨ(Du), (2.10)

where Ψ: Rd×l→ R>0. Note that Ψ(Du) is again a measure, see Appendix A.1.3 for
the precise definitions. We generally assume that Ψ is proper, continuous, positively
homogeneous and convex. This implies that Ψ is the support function of some nonempty
closed dual set Dloc⊆R

d×l [RW04, Thm. 8.24],

Ψ(z)=σDloc(z)= sup
v∈Dloc

〈z, v〉. (2.11)

The expression Ψ(Du) in (2.10) should be seen as a transformation of the measure Du
according to Ψ (cf. (A.42), noting that Ψ is positively homogeneous and therefore
coincides with its recession function Ψ∞): Ψ(Du)=Ψ(Du/|Du|) |Du|, and

J(u) =

∫

Ω
Ψ

(

Du

|Du|

)

d |Du|. (2.12)

Also, we have an equivalent dual formulation in analogy to the definition of the total
variation (A.2),

J(u)= sup {−
∫

Ω
〈u,Div v〉d x|v ∈Cc

∞(Ω)d×l , v(x)∈Dloc∀x∈Ω} . (2.13)
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Figure 2.2. Interaction potential d used to define the regularizer. An interface between regions
with labels i and j is penalized by its length, weighted by d(i, j).

Figure 2.3. Effect of choosing different interaction potentials. Top row: The original image (left)
is segmented into 12 regions corresponding to prototypical colors vectors. The uniform metric
interaction potential penalizes the interface length independently of the labels (right), which leads
to a uniformly smooth segmentation. Bottom row: By modifying the interaction potential, the
regularization strength is selectively adjusted to suppress background (left) or foreground (right)
structures while allowing for fine details in the other regions.

We also generally assume that Ψ is rotationally invariant, i.e. Ψ(R z) = Ψ(z) for any
rotation matrix R∈SO(d). Equivalently, RDloc=Dloc for any such R, i.e.

v=(v1,	 , vl)∈Dloc ⇔ (Rv1,	 , R vl)∈Dloc. (2.14)

Under these assumptions, the regularizer J is isotropic and homogeneous, in the sense
that it is invariant under rotation and translation of the coordinates. We will consider
in Sect. 2.7 some regularizers which depart from this assumption.
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Organization. The remainder of this chapter is organized as follows:

• We formulate natural requirements on the regularizer J and show their impli-
cations on the choice of the interaction potential d (Sect. 2.3). In particular, d
must necessarily be a metric under these requirements (Prop. 2.1).

• We show under which circumstances a minimizer exists in BV(Ω)l (Sect. 2.4),
and how the regularizer is connected to the interaction potential (Sect. 2.5).

• We propose three different regularizers specifically constructed for relaxations of
labeling problems with prescribed interaction potentials:

◦ The “envelope” approach, which is a generalization of the method recently
suggested by Chambolle et al. (Sect. 2.5.1). While there is no simple
closed form expression, we show that it can be used to construct an exact
regularizer for any metric d (Prop. 2.5).

◦ The “Euclidean distance” approach (Sect. 2.5.2), which yields exact exten-
sions for Euclidean metrics d only, but has a closed-form expression. We
review some methods for the approximation of non-Euclidean metrics.

◦ The “emphasized uncertainty” method (Sect. 2.5.3), which is in some sense
opposite to the envelope approach, as it strongly tends to non-integral
solutions in regions of uncertainty.

• We discuss the connection to the two-class problem with particular emphasis on
different ways to generalize the coarea formula to the multi-class case (Sect. 2.6).
These considerations motivate the derivation of the optimality bounds in
Chap. 5.

• Finally, we give an unified overview, within our framework, over related regular-
izers that have been proposed in various contexts, and point out connections to
other recently proposed techniques (Sect. 2.7).

The fundamental results regarding functions of bounded variation and the coarea for-
mula are summarized in Appendix A.1.1.

2.2 Related Work

For an overview of existing variational approaches we refer to Chap. 1. In contrast to
graph-based, finite-dimensional methods we generally work in the spatially continuous
setting, which prevents early introduction of anisotropy by the discretization. In com-
parison to existing continuous approaches, we provide a unified framework for arbitrary,
non-uniform metric interaction potentials.

When the first approach [LKY+08] was published, two other authors independently
published similar ideas: In [ZGFN08], Zach et al. essentially consider the relaxed multi-
class problem (2.6) in an informal way, with specific focus on the “decoupling” regularizer

Ψ(z) =
∑

i=1
l ‖zi‖2. This allows to solve the overall problem using several parallel

instances of ROF-type problems (cf. Sect. 1.1.). In a sense, [LLT06] can be seen as a
predecessor of this approach: In this work, the authors consider the piecewise-constant
Mumford-Shah model. They represent the label assignment using a piecewise-constant
real-valued function, but parametrize this function using a set of l polynomial basis
functions, which can be seen as the individual components of u.
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A more systematic treatment was published by Chambolle et al. in [CCP08], based
on [PSG+08]. They too motivate their work by the piecewise-constant Mumford-Shah
model; however they do not rely on a linear ordering of the labels as e.g. required in
[Ish03, BT09b]. Their approach differs from (2.6) in the sense that instead of embedding

into Rl via E={e1,	 , el}, they embed the labels into the space E ′6 {e′1,	 , e′l}⊆Rl−1,
where (e′i)j= χ{j<i}, i.e.

e′1 = (0, 0, 0,	 , 0)⊤,
e′2 = (1, 0, 0,	 , 0)⊤,
e′3 = (1, 1, 0,	 , 0)⊤, (2.15)�
e′l = (1, 1, 1,	 , 1)⊤.

The relaxation then again consists of taking the convex hull ∆l
′ 6 conv {e′1, 	 , e′l}.

Specifically,

∆l
′ = {a′∈Rl−1|1> a1

′ > a2
′ >	 > al

′> 0}. (2.16)

This can be seen as a reparametrization of the unit simplex using l − 1 coordinates.
The non-increasingness property of a ′∈∆l

′ corresponds to the nonnegativity of a∈∆l.
A constraint similar to the sum condition in ∆l is then enforced by special boundary
conditions. While this parametrization has an intuitive interpretation when the labels
represent a quantized range of values (Sect. 2.7.3), we feel that formulation (2.6) pro-
vides a clearer view on the problem and simplifies the theoretical treatment, cf. Chap. 5.
Moreover, the analysis in [CCP08] is restricted to potentials of the form γ(|i− j |) for
nondecreasing, positive, concave functions γ, while we consider arbitrary metrics.

2.3 Properties of the Interaction Potential

We begin by formalizing the requirements on the regularizer of the relaxed problem
as mentioned in the introduction. Let us assume we are given a general interaction
potential d: I2→ R. Intuitively, d(i, j) assigns a weight to switching between label i
and label j. We require

d(i, j) > 0, i� j , (2.17)

but no other metric properties (i.e. symmetry or triangle inequality) for now. Within
this work, we postulate that the regularizer should satisfy:

(P1). J is convex and positively homogeneous on BV(Ω)l.

(P2). J(u)= 0 for any constant u, i.e. there is no penalty for constant labelings.

(P3). For any partition (S,Ω \S) of Ω into two sets with finite perimeter Per(S)<∞,
and any i, j ∈{1,	 , l},

J(eiχS+ ejχΩ\S) = d(i, j)Per(S), (2.18)

i.e. a jump from label i to label j gets penalized proportional to d(i, j) as well
as the perimeter of the interface. Note that this implies that J is isotropic.
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The requirement (P1) is sensible in order to render global optimization tractable.
Indeed, if J is convex, the overall objective function (2.6) will be convex as well due
to the linearization of the data term. Positive homogeneity is included as it allows
J to be represented in terms of a support function (i.e. J = σD for some closed convex
set D), which will be exploited by our optimization methods.

Requirements (P3) and (P2) formalize the principle that the multilabeling problem
should reduce to the classical continuous cut (2.8) when restricted to two classes.
Together, these requirements pose a natural restriction on the interaction potential d:

Proposition 2.1. Let (J , d) satisfy (P1) – (P3) as well as the general assump-
tion ( 2.17). Then d must necessarily be a metric, i.e. for all i, j , k ∈{1,	 , l},

1. d(i, i)= 0,

2. d(i, j)= d(j , i)> 0, ∀i� j,

3. d is subadditive: d(i, k)6 d(i, j)+ d(j , k).

Proof. 1. follows from (P2) and (P3) by choosing i = j and S with Per(S) > 0.
Symmetry in 2. is obtained from (P3) by replacing S with Ω \ S, since Per(S) =
Per(Ω \S); the definiteness d(i, j)> 0 follows from the assumption (2.17). To show 3.,

first note that J(u)= 2J(u/2+ c/2) for any constant c∈Rl and all u∈BV(Ω)l, since
J(u) = 2 J((u+ c)/2− c/2) (2.19)

6 J(u+ c)+ J(−c)= 2 J(u/2+ c/2) (2.20)

6 J(u)+ J(c)= J(u) (2.21)

Fix any set S with perimeter

c6 Per(S)> 0 . (2.22)

Then, using the above mentioned fact and the positive homogeneity of J ,

cd(i, k) = J(eiχS+ ekχΩ\S) (2.23)

= 2J

(

1
2
(eiχS+ ekχΩ\S)+

1
2
ej
)

(2.24)

= 2J

(

1
2
(eiχS+ ejχΩ\S)+

1
2
(ejχS+ ekχΩ\S)

)

(2.25)

6 J(eiχS+ ejχΩ\S)+J(ejχS+ ekχΩ\S) (2.26)

= c(d(i, j)+ d(j , k)). (2.27)

�

Note that the general assumption (2.17) is only required for the definiteness. If the
positivity requirement (2.17) is dropped, d must still be a semi-metric and it is easy to
show that if d(i, j) = 0 for some i� j, then d(i, k) = d(j , k) for any k. In this case the
classes i and j can be collapsed into a single class as far as the regularizer is concerned.
The decision between label i and j is then completely local, i.e. it depends only on the
data term and can be postponed to a post-processing step (assuming that a minimizer
exists) by modifying the data term to

si
′(x)6 sj

′ (x) 6 min {si(x), sj(x)} . (2.28)
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Thus the positivity condition (2.17) is not a real limitation and can be always assured.
As a side note, it can be shown that, under some assumptions and in the space of
piecewise constant functions, the subadditivity of d also follows if J is required to be
lower semicontinuous [Bra02, p.88].

It is worth remarking that for graph-based, finite-dimensional models, non-metric
potentials are widely in use. In the continuous setting this does not make sense: Con-
sider, for example, a potential d with d(i, j) < 0 for some i � j, and assume that the
data term vanishes in some region. Then the objective favors longer interfaces within
this region. Due to the continuity of the image domain Ω, the interface can be made
arbitrarily long. Therefore the objective is not bounded from below, and the problem
is not well-posed. The difference to the finite-dimensional case can be attributed to the
fact that in some sense, the finite-dimensional case imposes the additional constraint
that regions should have a minimal size.

Proposition 2.1 implies that for non-metric d we generally cannot expect to find a
regularizer satisfying (P1)–(P3). Note also that J is not required to be of any particular
(e.g. integral) form. In Sect. 2.5.1 we will show that on the other hand, if d is metric as
in Proposition 2.1, a suitable regularizer can always be constructed. This implies that
the interaction potentials allowing for a regularizer that satisfies (P1)–(P3) are exactly
the metric potentials.

2.4 Existence of Minimizers

The complete problem considered here is of the form (cf. (2.6) and (2.12))

inf
u∈C

f(u), f(u)6 ∫

Ω
〈u, s〉d x+ J(u) (2.29)

where J(u)=
∫

Ω
dΨ(Du) as in (2.10), and C=BV(Ω,∆l). Note that f is convex, as it

is the pointwise supremum of affine functions (2.13). For simplicity we generally assume

Ω= (0, 1)d. Then we have the following

Proposition 2.2. Let Ψ be positively homogeneous, continuous and convex such that
06Ψ6 ρu ‖·‖2 for some ρu> 0. Moreover, let s∈L∞(Ω)l, and

f(u)=

∫

Ω
〈u, s〉dx+

∫

Ω
dΨ(Du). (2.30)

Then f is lower semicontinuous in BV(Ω)l with respect to L1 convergence.

Proof. As the data term is continuous, it suffices to show that the regularizer is lower
semicontinuous. This is an application of [AFP00, Thm. 5.47]. In fact, the theorem

shows that f is the relaxation of f̃ :C1(Ω)l→R,

f̃ (u)6 ∫

Ω
〈u, s〉d x+

∫

Ω
Ψ(∇u(x))d x, (2.31)
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on BV(Ω)l with respect to Lloc
1 (and therefore L1) convergence and thus lower semicon-

tinuous in BV(Ω)l. To apply the theorem, we have to show that Ψ is quasiconvex in
the sense of [AFP00, Def. 5.25], which holds as it is convex. The other precondition is
(at most) linear growth of Ψ, which holds due to the assumption 06Ψ(x)6 ρu‖x‖2. �

Proposition 2.3. Let f ,Ψ, s as in Prop. 2.2 and additionally assume that

Ψ(z) > ρl‖z‖2 ∀z= (z1|	 |zl)∈Rd×l s.t.
∑

i=1

l

zi=0. (2.32)

Then the problem

min
u∈C

f(u), C6 BV(Ω,∆l) (2.33)

has at least one minimizer.

Proof. The constraint u∈C implies that the distributive derivativeDu=(Du1|	 |Dul)
satisfies Du1+	 +Dul=0, since the mapping u� Du is linear and D (e⊤u)= 0 due
to the constraint. Therefore the density function (Du/|Du|) satisfies (Du/|Du|)e=0 in
a |Du|-a.e. sense (cf. [AFP00, Cor. 1.29]), which allows to apply the assumption (2.32)
to obtain ρl 6 Ψ(Du/|Du|) 6 ρu on C (again in a |Du|-a.e. sense). Consequently, we
conclude from (A.42) that

06 ρlTV(u)6J(u)6 ρuTV(u) . (2.34)

From
∫

Ω
〈u, s〉d x>−

∫

Ω
‖u(x)‖1‖s(x)‖∞d x, (2.35)

the fact that s∈L∞(Ω)l and u∈L1(Ω)l, it follows that the data term is bounded from
below.

We now show coercivity of f with respect to the BV norm: Let (u(k)) ⊂ C with

‖u(k)‖1+TV(u(k))→∞. Then, since u and therefore ‖u(k)‖1 is bounded, it follows that
TV(u(k))→∞. Then f(u(k))→+∞ as well, since the data term 〈u, s〉 is bounded from

below and J(u(k))> ρlTV(u
(k)). Thus f is coercive.

Equations (2.34) and (2.35) also show that f is bounded from below, thus there must

be a minimizing sequence (u(k)). Due to the coercivity, the sequence ‖u(k)‖1+TV(u(k))

must then be bounded from above, i.e. the sequence (u(k)) is bounded in the BV norm.
From this and [AFP00, Thm. 3.23] we conclude that there is a subsequence of (u(k))
weakly*- (and thus L1-) converging to some u∈BV(Ω)l. With the lower semicontinuity

from Prop. 2.2 and closedness of C with respect to L1 convergence, existence of a
minimizer follows. �

2.5 Regularizers for Specific Interaction Potentials

The following proposition provides the connection between the integrand Ψ and the
interaction potential d in view of (P3).
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Proposition 2.4. Let Ψ be as in Prop. 2.2, and additionally isotropic:

Ψ(Rz) = Ψ(z) ∀R∈SO(d). (2.36)

For some u′∈BV(Ω) and vectors a, b ∈∆l, define u(x) = (1− u′(x))a+ u′(x)b. Then,

for any normal y ∈Sd−1,

J(u) = Ψ(y(b− a)⊤)TV(u′)=
(

sup
v∈Dloc

‖v(b− a)‖2
)

TV(u′). (2.37)

In particular, if for all i, j ∈I there exists y ∈Sd−1 such that Ψ(y(ei− ej)⊤)= d(i, j),
then J fulfills (P3).

Proof. To show the first equality, we conclude from (A.42) that

J(u) =

∫

Ω
Ψ

(

Du

|Du|

)

d |Du| (2.38)

=

∫

Ω
Ψ

(

D(a+ u′(b− a))
|D(a+ u′(b− a))|

)

d |D(a+u′(b− a))| (2.39)

=

∫

Ω
Ψ

(

(Du′)(b− a)⊤
|(Du′)(b− a)⊤|

)

d |(Du′)(b− a)⊤|. (2.40)

We now use the property |(Du′)(b−a)⊤|= |Du′|‖b−a‖2, which is a direct consequence

of the definition of the total variation measure and the fact that ‖w(b − a)⊤‖2 =

‖w‖2‖b− a‖2 for any vector w ∈Rd (note that a, b∈Rl are also vectors). Therefore

J(u) =

∫

Ω
Ψ

(

(Du′)(b− a)⊤
|Du′|‖b− a‖2

)

d |Du′|‖b− a‖2, (2.41)

which by positive homogeneity of Ψ implies

J(u) =

∫

Ω
Ψ

(

Du′

|Du′|(b− a)
⊤
)

d |Du′|. (2.42)

Since the density function Du′/|Du′| assumes only values in Sd−1, there exists, for any

y∈Sd−1 and |Du′|-a.e. x∈Ω, a rotation matrix mapping (Du′/|Du′|)(x) to y. Together
with the rotational invariance of Ψ from (2.14) this implies

J(u) =

∫

Ω
Ψ(y(b− a)⊤)d |Du′|=Ψ(y(b− a)⊤)TV(u′), (2.43)

which proves the first equality in (2.37). The second equality can be seen as follows:

r 6 sup
v∈Dloc

‖v(b− a)‖2 (2.44)

= sup
v∈Dloc

sup
z∈Rd,‖z‖261

〈z, v(b− a)〉 (2.45)

= sup
z∈Rd,‖z‖261

sup
v∈Dloc

〈z, v(b− a)〉 (2.46)

= sup
z∈Rd,‖z‖261

sup
v∈Dloc

〈z (b− a)⊤, v〉 (2.47)

= sup
z∈Rd,‖z‖261

Ψ(z (b− a)⊤). (2.48)
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Denote by Rz a rotation matrix mapping z to y, i.e. Rzz= y, then due to the rotational
invariance

r = sup
z∈Rd,‖z‖261

Ψ(Rz
⊤Rz z (b− a)⊤) (2.49)

= sup
z∈Rd,‖z‖261

Ψ(Rz z (b− a)⊤) (2.50)

= sup
z∈Rd,‖z‖261

Ψ(y (b− a)⊤) (2.51)

= Ψ(y (b− a)⊤). (2.52)

The second part of the assertion follows directly by setting u′= χS, a= e
i and b= ej. �

As a consequence, if the relaxed multiclass formulation is restricted to two classes
by parametrizing u=(1−u′)a+u′b for u′(x)∈ [0, 1], it essentially reduces to the scalar
continuous cut problem (2.8): solving

min
u′∈BV(Ω,[0,1])

∫

Ω
〈(1− u′)a+u ′b, s〉d x+J(u) (2.53)

is equivalent to solving

min
u′∈BV(Ω,[0,1])

∫

Ω
u′(b− a)d x+Ψ(y(b− a)⊤)TV(u′), (2.54)

which is just the classical two-class continuous cut approach with data (b − a) and
regularizer weight Ψ(y(b − a)⊤), where y ∈ R

d is some arbitrary unit vector. For the
multiclass case, assume that

u= uP = e1χΩ1+	 + elχΩl
(2.55)

for some partition Ω1 ∪	 ∪Ωl =Ω with Per(Ωi)<∞, i= 1,	 , l. Then the absolutely
continuous and Cantor parts of DuP vanish [AFP00, Thm. 3.59, Thm. 3.84, Rem. 4.22],
and only the jump part remains:

J(uP) =

∫

SuP

Ψ(νuP(uP
+−uP−)⊤)dHd−1 , (2.56)

where SuP =
⋃

i=1,	 ,l
∂Ωi is the union of the interfaces between regions. Define i(x)

and j(x) such that uP
+(x)= ei(x) and uP

−(x)= ej(x). Then

J(uP) =

∫

SuP

Ψ
(

νuP

(

ei(x)− ej(x)
)⊤)dHd−1 =

∫

SuP

d(i(x), j(x)) dHd−1. (2.57)

Thus the regularizer locally penalizes jumps between labels i and j along an interface
with the interface length, multiplied by the factor d(i, j) depending on the labels of the
adjacent regions.
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The question is now how to choose Ψ such that Ψ(y(ei − ej)⊤) = d(i, j) for a pre-
scribed interaction potential d. We consider three approaches which differ with respect
to expressiveness and simplicity of use: In the local envelope approach (Sect. 2.5.1), Dloc

is chosen as large as possible. In turn, J is as large as possible in the integral formulation
(2.10). This prevents introducing artificial minima generated by the relaxation, and
potentially keeps minimizers of the relaxed problem close to minimizers of the original
problem. However, Ψ is only implicitly defined, which complicates optimization. In
contrast, in the embedding approach (Sect. 2.5.2), Dloc is simpler at the cost of being
able to represent only a subset of all metric potentials. In the third approach, the
regularizer is deliberately constructed in order to emphasize uncertainty (Sect. 2.5.3).
For an illustration of the three approaches, see Fig. 2.4 and Fig. 2.5.

In order to be able to classify the regularizers derived in the following sections, we
will briefly state some terminology regarding properties of the regularizer:

Isotropy. As indicated in the introduction, regularizers are considered isotropic if they
are invariant under coordinate transformations by rotation matrices:

Ψ(Rz) = Ψ(z) ∀R∈ SO(d) (2.58)

This is obviously the case if and only if Ψ(νx⊤) = Ψ(e1x⊤) for any ν ∈ Sd−1. If Ψ is
isotropic with Ψ > ρl ‖·‖2, according to Prop. 2.4 we may define the corresponding
interaction potential

d(i, j) 6 Ψ(e1(ei− ej)⊤). (2.59)

This is indeed a metric, since Ψ(e1(ei− ej)⊤)=Ψ(−e1(ei− ej)⊤)=Ψ(e1(ej− ei)) due to
the isotropy, and therefore d(i, j) = d(j , i). From convexity and positive homogeneity
of Ψ it follows that d must be subadditive, and from the lower bound ρl we get the
positivity d(i, j)= 0⇔ i= j.

Permutation Invariance. We call some regularizer permutation invariant , if it is
invariant with respect to permutations of the elements of u, i.e. of the label set. In terms
of Ψ, invariance is given if Ψ(z)=Ψ(zP ) for any permutation matrix P ∈Rl×l.

Separability. If Ψ can be written as a sum of terms that depend only on individual
components or directional derivatives of u, it is called separable in the components of u
or in space, respectively. Separability usually simplifies optimization, as it reduces the
coupling between variables.

Homogeneity. Instead of (2.10), which is invariant under translation of the coordi-
nates, i.e. homogeneous, it is also possible to consider regularizers with an additional
dependency on x,

J(u) =

∫

Ω
dΨx(Du). (2.60)

This often occurs in denoising applications where Ψx includes an anisotropy which is
controlled by local properties of the input or of the current iterate. An even more general
approach is to set

J(u) =

∫

Ω
dg(x, u,Du), (2.61)
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Figure 2.4. Illustration of the set Dloc used to build the regularizer for the (scaled) uniform

metric, for l=3 labels in d=1 – dimensional space. Shown is a cut through the z1+ z2+ z3=0
plane; the labels correspond to the points ei− ej with i� j. The local envelope method leads to
a larger set Dloc (dashed, outer) than the embedding method (solid). This improves the tightness
of the relaxation, but requires more expensive optimization. The “uncertainty” method (dashed,
inner) results in the smallest dual set, and thus the least tight relaxation (Fig. 2.5).

Figure 2.5. Tightness of different regularizers for the task of simultaneous inpainting and
denoising of a three-color image. The data term was set to zero in the square around the center.
Left to right: Input image; solutions of the relaxed problem for the “envelope” regularizer
(Sect. 2.5.1), “embedding” regularizer (Sect. 2.5.2), and “uncertain” regularizer (Sect. 2.5.3). As
the tightness of the relaxation decreases from left to right, the number of fractional labels in
the solution increases.

however this considerably complicates the conditions for the existence of solutions
[AFP00, Chap. 5].

2.5.1 Relaxation Based on the Local Envelope

In this section, we propose a formulation based on [CCP08], where the authors consider
an approach for potentials d of the form d(i, j) = γ(|i − j |) for a positive concave
function γ. The approach is derived by specifying the value of J on the set of integral
u only, and constructing an approximation of the convex envelope by a local approach,
i.e. by computing the convex envelope of the integrand Ψ. This approach potentially
generates tight relaxations and thus one may hope that the convexification process does
not generate too many artificial non-integral solutions.
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We propose to extend this approach to arbitrary metric d by setting

Ψd6 σDloc
d , Dloc

d 6 ⋂

i� j

{v=(v1,	 , vl)∈Rd×l|‖vi−vj‖26d(i, j),
∑

k

vk=0} (2.62)

for some given interface potential d(i, j) (cf. Fig. 2.4). This formulation can be derived as
follows. We consider only the integrand Ψ, and postulate that for any normal y∈Sd−1,
and any two label indices i, j ∈I,

Ψ(y (ei− ej)⊤) =
!
d(i, j). (2.63)

In the light of Prop. 2.4, this means that J fulfills (P3). We additionally enforce positive

homogeneity by requiring Ψ(y (ei− ej)⊤)= ‖y‖2 d(i, j) for any y ∈Rd, and define

Ψd
′ (w)6 {

‖y‖2 d(i, j), ∃i, j ∈I , y ∈Rd: y=wi=−wj , wk=0 ∀k � {i, j} ,
+∞, otherwise.

The convex envelope of Ψd
′ can be found by computing the Legendre-Fenchel biconju-

gate. For the first conjugate, we obtain

Ψd
′ ∗(v) = sup

w∈Rd×l

(〈v, w〉−Ψd
′ (w)) (2.64)

= sup
w∈Rd×l











〈vi− vj , y〉− ‖y‖2 d(i, j), ∃i, j ∈I , y ∈Rd: y=wi=−wj ,

wk=0 ∀k � {i, j}
−∞, otherwise,

= sup
y∈Rd,i,j∈I

{〈vi− vj , y〉− ‖y‖2 d(i, j)}. (2.65)

If ‖vi− vj‖2>d(i, j) for any i, j ∈I, the supremum is +∞ (choose y= c (vi− vj) and
let c→∞). On the other hand, if ‖vi−vj‖26d(i, j) holds for all i, j∈I, then necessarily

〈vi−vj , y〉6 |〈vi−vj , y〉|6‖y‖2‖vi−vj‖26‖y‖2d(i, j), therefore the inner expression
in (2.65) is nonpositive, and the supremum is zero (choose y = 0). We conclude that

Ψd
′ ∗ is the indicator function

Ψd
′ ∗(v)= δ‖vi−vj‖26d(i,j) ∀i,j∈I(v). (2.66)

The desired convex envelope Ψd of Ψd
′ is therefore

Ψd(w) = (Ψd
′ ∗)∗(w)= sup

‖vi−vj‖26d(i,j) ∀i,j∈I
〈w, v〉. (2.67)

Since Ψd is only applied to the density Du/|Du|, which satisfies (Du/|Du|) e=0 due
to the simplex constraint u∈C =BV(Ω,∆l), we may include the additional constraint

v1+	 + vl=0, and obtain

Ψd(w) = σDloc
d (w). (2.68)

Such Ψd satisfies the lower and upper boundedness required for the existence of a
minimizer in Prop. 2.3, however evaluating Ψd is nontrivial. Nevertheless, since its con-
jugate Ψd

∗ is known, optimization is still possible using primal-dual techniques (Chap. 4).

It remains to show that Ψd has the desired property (2.63), i.e. it coincides with Ψd
′

where the latter is finite. The inequality Ψd 6Ψd
′ always holds since Ψd is the convex

envelope of Ψd
′ , however the converse has to be shown. We first show that any metric

d can be reconstructed from Dloc
d :
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Proposition 2.5. Let d: {1,	 , l}2→R>0 be a metric. Then for any i, j,

sup
v∈Dloc

d

((vi)1− (vj)1) = d(i, j). (2.69)

Proof. “6” follows from the definition (2.62). “>” can be shown using a network flow
argument:

sup
v∈Dloc

d

((vi)1− (vj)1) (2.70)

> sup {pi− pj | p∈Rl: e⊤p=0,∀i′, j ′: pi′− pj ′6 d(i′, j ′)} (2.71)

=
(∗)

sup {pi− pj | p∈Rl: ∀i′, j ′: pi′− pj ′6 d(i′, j ′)} (2.72)

=
(∗∗)

d(i, j). (2.73)

Equality (∗) holds since each p in the set in (2.72) can be associated with the vector

p̃6 p− 1

l

∑

k
pk, which is contained in the set in (2.71) and satisfies pi− pj= p̃i− p̃j.

The last equality (∗∗) follows from [Mur03, 5.1] with the notation γ = d (and γ̄ = d,
since d is a metric and therefore the triangle inequality implies that the length of the
shortest path from i to j is always d(i, j)). �

The main result of this section is the following:

Proposition 2.6. Let d:Rl×l→R>0 be a metric. Define Ψd as in ( 2.62), and

Jd(u) 6 ∫

Ω
dΨd(Du). (2.74)

Then Jd satisfies (P1)–(P3).

Proof. (P1) and (P2) are clear from the definition of Jd. (P3) follows directly from
Prop. 2.5 and Prop. 2.4 with y= e1. �

Defining Dloc
d as in (2.62) provides us with a way to extend the desired regularizer for

any metric d to non-integral u∈C via (2.12). The price to pay is that there is no simple
closed expression for Ψd and thus for Jd, which potentially complicates optimization.

By construction, Ψd is isotropic. Permutation invariance only occurs if d is a scaled
uniform metric, d(i, j)= cχ{i� j} for some c>0. Note that in order to define Ψd, d does

not have to be a metric. However Prop. 2.5 then cannot be applied and (2.63) does not
hold, so J is not a true extension of the desired regularizer, although it still provides a
lower bound.

2.5.2 Relaxation Based on Embeddings

In this section, we consider a regularizer which is less powerful but more efficient to
evaluate. Recall the classical total variation for vector-valued u as defined in (A.2).
Using Ψ=‖·‖2, it can be written as

TV(u)=

∫

Ω
d‖Du‖2. (2.75)
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This definition has also been used in color denoising and is sometimes referred to as
MTV [SR96, DAV08]. We propose to extend this definition by choosing an embedding

matrix A∈Rk×l for some k6 l, and defining

JA(u) 6 TV(Au). (2.76)

This corresponds to substituting the Frobenius matrix norm on the distributive gradient
with a linearly weighted variant. In the framework of (2.12), it amounts to setting

Dloc=Dloc
A (cf. Fig. 2.4) with

Dloc
A 6 {v ′A|v ′∈Rd×k, ‖v ′‖26 1}=B1(0)A. (2.77)

Clearly 0∈Dloc
A and

ΨA(z) = σDloc
A (z)= sup

v ′∈B1(0)A

〈z, v ′〉= sup
v∈B1(0)

〈z, vA〉 (2.78)

= sup
v∈B1(0)

〈zA⊤, v〉= ‖zA⊤‖2 . (2.79)

In particular, we have

ΨA(Du) = ‖(Du)A⊤‖2= ‖D(Au)‖2 , (2.80)

since u� Du is linear in u. To further clarify the definition, we may rewrite this to

TVA(u) =

∫

Ω
d ‖D1u‖A2 +	 + ‖Ddu‖A2
√

, (2.81)

with ‖w‖A6 (w⊤A⊤A w)1/2. Therefore the approach can be understood as replacing
the Euclidean norm by a linearly weighted, Mahalanobis-type variant.

It remains to show for which interaction potentials d assumption (P3) can be satis-
fied. The next proposition shows that this is possible for the class of Euclidean metrics.

Proposition 2.7. Let d be an Euclidean metric, i.e. there exist k ∈N, a1,	 , al ∈Rk

such that d(i, j)=‖ai−aj‖2, and define A6 (a1|	 |al). Then the regularizer JA6 TVA

satisfies (P1)–(P3).

Proof. (P1) and (P2) are clearly satisfied. In order to show (P3) we apply Prop. 2.4
and assume ‖y‖2=1 to obtain

ΨA(y(e
i− ej)⊤) =

(2.79) ‖y(ei− ej)⊤A⊤‖2= ‖y(ai− aj)⊤‖2 =
‖y‖2=1‖ai− aj‖2. (2.82)

�

The class of Euclidean metrics comprises some important special cases:

• The uniform, discrete or Potts metric as also considered in [ZGFN08, LKY+09]
and as a special case in [KT99, KT07]. Here d(i, j) = 0 iff i= j and d(i, j) = 1

in any other case, which corresponds to A= (1/ 2
√

)I .
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• The linear (label) metric, d(i, j)=c|i− j |, withA=(c,2c,	 , l c). This regularizer
is suitable to problems where the labels can be naturally ordered, e.g. depth from
stereo or grayscale image denoising.

• More generally, if label i corresponds to a prototypical vector zi in k-dimensional
feature space and the Euclidean norm is an appropriate metric on the features,
it is natural to set d(i, j)= ‖zi− zj‖2, which is Euclidean by construction. This
corresponds to a regularization in feature space, rather than in “label space”.

Note that the lower boundedness condition (2.32) involving Ψ > ρl ‖·‖2 required for
the existence proof (Prop. 2.3) is only fulfilled if the kernel of A is sufficiently small,
i.e. ker A ⊆ {t e|t ∈ R}, with e = (1, 	 , 1)⊤ ∈ Rl: otherwise, the constraint set

Dloc
A =(B1(0)A)∩{(v1,	 , vl)|∑i

vi=0} is contained in a subspace of at most dimension
(l − 2)d, and (2.32) cannot be satisfied for any ρl > 0. Thus if d is a degenerate
Euclidean metric which can be represented by an embedding into a lower-dimensional
space, as is the case with the linear metric, it has to be regularized for the existence
result in Prop. 2.3 to hold. This can for example be achieved by choosing an orthogonal
basis (b1, 	 , bj) of ker A, where j = dim ker A, and substituting A with the matrix

A′6 (A⊤, εb1,	 , εbj)⊤, enlarging k as required. However these observations are mostly
of theoretical interest, since for the discretized problem, the existence of minimizers
follows already from compactness of the (finite-dimensional) discretized constraint set.

Non-Euclidean d, such as the truncated linear metric, d(i, j)=min{2, |i− j |}, cannot
be represented exactly by TVA. In the following we will demonstrate how to construct
approximations for these cases.

Assume that d is an arbitrary metric with squared matrix representation D ∈Rl×l,
i.e. Dij = d(i, j)2. Then it is known [BG05] that d is Euclidean if and only if for

C 6 I − 1

l
e e⊤ the matrix T 6 −1

2
C D C is positive semidefinite. In this case D is

called an Euclidean distance matrix , and A can be found by factorizing T = A⊤A. If
the matrix T is not positive semidefinite, setting the negative eigenvalues in T to zero
yields an Euclidean approximation. This method is known as classical scaling [BG05]
and does not necessarily give good absolute error bounds.

More generally, for some non-metric, nonnegative d, we can formulate the problem
of finding the “closest” Euclidean distance matrix E as the problem of minimizing a
matrix norm ‖E −D‖M over all E ∈ Ql, where Ql denotes the set of l × l Euclidean
distance matrices. Fortunately, there is a linear bijection B:P l−1→Ql between Ql and
the space of positive semidefinite (l − 1)× (l − 1) matrices P l−1 [Gow85, JT95]. This
allows to rewrite the problem as a semidefinite program [WSV00, p.534–541]

min
S∈Pl−1

‖B(S)−D‖M . (2.83)

Problem (2.83) can be solved using available numerical solvers. Then E =B(S) ∈ Ql,
and A can be extracted by factorizing −1

2
C E C. Since both E and D are explicitly

known, the quantity

εE 6 max
i,j
|(Eij)

1/2− (Dij)
1/2| (2.84)

2.5 Regularizers for Specific Interaction Potentials 29



Figure 2.6. Euclidean embeddings into R3 for several interaction potentials with four classes.
Left to right: Uniform metric; linear metric; non-Euclidean truncated linear metric. The vertices
correspond to the columns a1,	 , al of the embedding matrix A. For the truncated linear metric
an optimal approximate embedding was computed as outlined in Sect. 2.5.2 with the matrix norm
‖X‖M6 maxi,j |Xij |.
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Figure 2.7. Euclidean approximation of the Non-Euclidean truncated linear metric with interac-

tion potential d(i, j)= ( 2
√

/8)min {|i− j |, 16}. Left to right: Original potential for 64 classes;
potential after Euclidean approximation; cross section of the original (dashed) and approximated
(solid) metric at i = 1. The approximation was computed using semidefinite programming as
outlined in Sect. 2.5.2. It represents the closest Euclidean metric with respect to the matrix norm
‖X − Y ‖M 6 ∑

i,j
|Xij − Yij |. The maximal elementwise error with respect to the original

potential is εE= 0.2720.

can be computed and provides an a posteriori bound on the distortion due to the
embedding. Fig. 2.6 shows a visualization of some embeddings for a four-class problem.
In many cases, in particular when the number of labels is large, the Euclidean embedding
provides a good approximation for non-Euclidean metrics (Fig. 2.7). Therefore, the
Euclidean embedding approach can be used to solve approximations of the labeling
problem with arbitrary metric interaction potentials. Compared to the envelope
approach in Sect. 2.5.1 the relaxation is less tight, but the regularizer has a much
simpler structure and can be evaluated in closed form.

The approach can also be generalized to embeddings into non-Euclidean spaces,
such as ℓ1. In fact, any regularizer Ψ can be modified by introducing an embedding

matrix A=(a1|	 |al)∈Rk×l for some k6 l, and defining

ΨA(Du) 6 Ψ(D(Au))=Ψ((Du)A⊤). (2.85)

The approach preserves isotropy of the underlying norm, but neither permutation invari-
ance nor separability. Applied to a jump from label i to label j, this results in the
modified potential

ΨA(ν(e
i− ej)⊤) =: dA(i, j), (2.86)
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and amounts to transforming the dual set Dloc of Ψ to Dloc A
⊤, similarly to (2.77).

Alternatively, it is often easier to formally merge A into the linear gradient operatorDu,
which preserves the structure of the dual set and requires only few modifications to the
optimization method (Chap. 4).

2.5.3 Relaxation with Emphasized Uncertainty

For illustration, we will consider also an extreme case where the regularizer is delib-
erately constructed such that it emphasizes uncertainty, i.e. it provokes non-integral
solutions in areas where the data term does not dominate.

Consider the restriction of the dual set for the envelope method (2.62) to the one-
dimensional case, i.e. d=1, for the uniform metric:

Dloc
d 6 {v=(v1,	 , vl)∈Rl| |vi− vj |6 1∀i� j ,

∑

k

vk=0} (2.87)

= {v ∈Rl| (ei− ej)⊤ v⊤6 1∀i� j ,
∑

k

vk=0}. (2.88)

In this restricted setting, it is obvious that Dloc
d is constructed by an intersection of affine

half-spaces defined by hyperplanes with normals (ei−ej) through the points (ei−ej)/2.
We ask the question what happens if Dloc is instead constructed as the convex hull of
these points, see also Fig. 2.4. In a sense, this will create the smallest regularizer that
still satisfies (P3).

For simplicity, we only consider the case where d is the uniform metric and l=3. In
one dimension, we arrive at

Dloc
e 6 convV , (2.89)

V 6 1

2







y1=





−1
1
0



, y2=





−1
0
1



, y3=





0
−1
1



,−y1,−y2,−y3






. (2.90)

The points v= (v1, v2, v3)∈Dloc
e are characterized by the inequalities

|2 v1− v2− v3|6 3
2
, |−v1+2 v2− v3|63

2
, |−v1− v2+2 v3|63

2
. (2.91)

For d> 2 and l=3 we extend this definition in an isotropic way, similar to Ψd:

Ψe6 σDloc
e , Dloc

e 6 {v=(v1,	 , vl)∈Rd×l|
∑

k

vk=0,

‖2 v1−v2−v3‖26 3
2
,‖−v1+2 v2−v3‖263

2
,‖−v1−v2+2 v3‖263

2
}. (2.92)

This definition generates the rightmost result shown in Fig. 2.5 above. Interestingly, the
regularizer still favors integral labels in regions where the data term – although noisy –
contains a sufficient amount of information. However, in regions where the regularizer
is largely the only source of information, it does not advocate a specific solution. This
property could e.g. be useful in medical or biological applications where wrong classifi-
cations in some region due to corrupt or missing measurements potentially have a worse
effect than no labeling at all. In such situations, an uncertainty-emphasizing regularizer
provides an integrated way to detect these regions.
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2.6 Optimality

As noted in the introduction above, [CEN06] showed that for the two-class continuous
cut (2.8), thresholding u′ at almost any threshold results in an integral optimal solution.
A natural question is whether a similar relation exists for the multiclass case. In this
section we will provide a unified view on the problem in the form of a generalized coarea
formula, and show why some natural extensions of the scalar case fail.

2.6.1 The Two-Class Case

In order to motivate the following sections, we will give a short summary of the main
theorem of [CEN06] adopted to our notation, together with some implications. Note
that, as in the original work, the theorem is formulated for scalar-valued u, i.e. in the
sense of two-class continuous cuts (2.8).

Theorem 2.8. (Thresholding Theorem for the Two-Class Case) [ CEN06, Thm. 2] Let
s∈L∞(Ω), and f :BV(Ω)→R defined by

f(u) 6 ∫

Ω
u(x) s(x) dx+

∫

Ω
d |Du|. (2.93)

Assume that u∗ is a minimizer of f over the relaxed set C 6 BV(Ω, [0, 1]). Then, for
almost every α∈ [0, 1], the thresholded function ūα

∗ 6 χ{u>α} is a minimizer of f over
the set C{0,1}6 BV(Ω, {0, 1}).

Remark 2.9. In [Ber09] it was shown, using lower-semicontinuity of f , that the opti-
mality of ūα

∗ actually holds for every α∈ [0, 1].

Proof. The proof [CEN06] of Thm. 2.8 centers around the “coarea-like” property,

∫

0

1

f(ūα
∗) dα = f(u∗). (2.94)

The property can be shown separately for each of the terms in u. For the linear part
it follows directly from Fubini’s theorem or [AFP00, Prop. 1.78]. The corresponding
relation for the regularizer,

∫

Ω
d|Du| =

∫

0

1 ∫

Ω
d |Dχ{u>α}| dα=

∫

0

1 ∫

Ω
d |D ūα

∗ | dα, (2.95)

is exactly the coarea formula for BV functions (Thm. A.32).

We define the set of α violating the assertion, S6 {α∈ [0, 1]|f(ūα∗)� f(u∗)}. Since
ūα
∗ ∈C{0,1} and C{0,1}⊆C, we have for any minimizer u{0,1}

∗ of f over C{0,1},

f(u∗)6 f(u{0,1}
∗ )6 f(ūα

∗), (2.96)

thus S = {α∈ [0, 1]|f(u∗)< f(ūα
∗)}. Moreover, if α � S , then f(u∗)= f(u{0,1}

∗ ) = f(ūα
∗)

by (2.96). Therefore, in order to show the theorem it suffices to show that S is an L1-
zero set.
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Assume the contrary holds, i.e. L1(S)> 0. Then there must be ε> 0 such that

Sε 6 {α∈ [0, 1]|f(u∗)6 f(uα
∗ )− ε} (2.97)

has also nonzero measure, since otherwise S would be the countable union of zero
measure sets, S= ⋃

i∈N
S1/n, and would consequently have zero measure as well. Then

f(u∗) =

∫

[0,1]\Sε

f(u∗)dα+

∫

Sε

f(u∗)dα (2.98)

6
u∗ optimal

∫

[0,1]\Sε

f(ūα
∗)dα+

∫

Sε

f(u∗)dα (2.99)

6
definitionof Sε

∫

[0,1]\Sε

f(ūα
∗)dα+

∫

Sε

(f(ūα
∗)− ε)dα (2.100)

=
linearity

∫

0

1

f(ūα
∗)dα− εL1(Sε). (2.101)

But we assumed L1(Sε)> 0, therefore

f(u∗) <

∫

0

1

f(ūα
∗)dα. (2.102)

This is a contradiction to (2.94), therefore L1(S)= 0 and the assertion follows. �

At the heart of the proof is the coarea-like property (2.94). It has the following
intuitive interpretation:

1. The function u may be written in the form of a “generalized convex combination”
of (an infinite number of) extreme points Eu6 {ūα|α∈ [0, 1]} of the constraint
set, i.e. the unit ball in BV(Ω). As shown in [Fle57] based on a result by Choquet
[Cho56], and noted in [Str83, p.127], extreme points of this constraint set are
(multiples of, but in this case equal to) indicator functions.

2. The extreme points (ūα) and coefficients in this convex combination can be
explicitly found. In fact, the coefficients are all equal to 1/|[0,1]|=1, i.e. u is the
barycenter of the points in Eu.

3. For any convex f , the inequality

∫

0

1

f(ūα) dα > f(u) (2.103)

always holds. The coarea formula (2.94) is therefore equivalent to the reverse
inequality.

In fact, the original proof of the coarea formula [FR60] relies on showing (2.103) and
using the fact that (2.94) holds for piecewise linear u [FR60, (1.5c)]. Approximating
an arbitrary u ∈BV(Ω) by a sequence of piecewise linear functions, this result is then
transported to the general case.
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2.6.2 Generalized Coarea Formulas

Generalizing Thm. 2.8 to more than two labels hinges on a property similar to (2.94)
that holds for vector-valued u. In a general setting, the question is whether there exist

• a probability space (Γ, µ), and

• a parametrized rounding method , i.e. for µ-a.e. γ ∈Γ:

Rγ: C→CE , (2.104)

u∈C� ūγ6 Rγ(u)∈CE (2.105)

satisfying Rγ(u
′)=u′ for all u′∈CE,

such that a multiclass coarea-like property (or generalized coarea formula)

f(u) =

∫

Γ
f(ūγ) dµ(γ) (2.106)

holds. If this could be achieved, all arguments in the proof of Thm. 2.8 would apply
equally to the multiclass formulation. Therefore the integral problem

arg min
u∈CE

f(u) (2.107)

could be solved by computing a solution u∗ ∈ C of the relaxed problem and then
thresholding using Rγ for µ-a.e. γ ∈ Γ to obtain an integral solution ūE

∗ =Rγ(u
∗)∈ CE.

For our particular problem (2.1), condition (2.106) is fulfilled if

〈u, s〉=
∫

Γ
〈ūγ , s〉 dµ(γ) and J(u)=

∫

Γ
J(ūγ) dµ(γ). (2.108)

Additionally, minimization of f(u)6 〈u, s〉+ J(u) should be feasible over the relaxed
set C. In the following sections, we consider two straightforward approaches to construct
such Rγ, and see why they fail.

2.6.3 Higher Codimensions

One possible approach is to try to apply higher-dimensional variants of the coarea
formula, as provided by Thm A.29. For some m> k (with adopted notation),

∫

E

Ckd
Eux

′ dHd(x) =

∫

Rk

Hd−k
(

E ∩u′−1
(γ)
)

dγ. (2.109)

for a (Lipschitz) function u′:Rm→Rk and a countably Hd-rectifiable set E ⊆Rm. The
scalar case corresponds to m= d, E=Ω and k=1, therefore Ckd

Eux
′ = ‖∇u′‖2.

In order to apply (2.109) to vector-valued u′:Ω→R
l, one would again choose E=Ω.

Unfortunately, since k = l, (2.109) can then only be applied to problems where d > l,
i.e. the number of spatial dimensions is coupled with the number of labels. Moreover,
the left-hand side becomes an integral over the absolute value of the product of the
singular values of ∇u′ (cf. (A.47)),

∫

Ω
(det ((∇u′)⊤∇u′))1/2 dx. (2.110)
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Compared to the integral over the norm of the gradient in the scalar case, this does not
seem to have a useful interpretation when applied to images or labeling functions, nor
is it convex in general.

Finally, for multiple classes the codimension for the Hausdorff measures on the right-
hand side of (2.109) becomes larger than one. In the scalar case, the Hausdorff measures
can be represented in terms of the distributional gradient of the rounded functions via
TV(χ{u′>α}). In the vector-valued case, there is no obvious extension of this principle;

in fact it is not even clear how to define a rounding operation analogous to χ{u′>α} for
vector-valued functions u′.

2.6.4 Separable Regularizer

Another straightforward approach is to choose J separable in the components of u, e.g.

J(u) =

∫

Ω
d |Du1|+	 +

∫

Ω
d|Dul|. (2.111)

The same argument as in the proof of Thm. 2.8 then shows that

f(u) =
∑

i=1

l (
∫

Ω
ui(x) s(x) dx+

∫

Ω
d|Dui|

)

(2.112)

=
∑

i=1

l ∫

0

1
(
∫

Ω
(ūi)γi s(x) dxdα+

∫

Ω
d|D (ūi)γi|

)

dγi (2.113)

=

∫

γ∈[0,1]l
f(ũγ) dγ, (2.114)

where the vector of “rounding parameters” γ ∈Rl replaces the scalar α, and

ũγ 6 





χ{u1>γ1}�
χ{ul>γl}





. (2.115)

This provides a coarea-like property as in (2.94) by the method of applying the coarea
formula to each component separately. However, it has the severe drawback that ũγ is
generally not in CE, or even C, for l> 3: If u ∈ C is not integral from the beginning, it
has at least two nonzero components, without loss of generality u1 and u2. Then, for
sufficiently small ε and γ=(ε, ε,	 ), (ũγ)1= (ũγ)2=1 and therefore ũγ � CE.

Thus the approach provides a coarea-like property, but unfortunately does not
induce a method for obtaining integral solutions, i.e. a representation in terms of inte-
gral functions. This invalidates the remainder of the proof of Thm. 2.8, since (2.96)
does not hold anymore.

In summary, the existence of such an exact relation for the discretized problem
seems unlikely. This is also supported by the fact that for the uniform metric, the
problem is equivalent to a multiterminal cut (see e.g. [BVZ01]), which is a known NP-
hard problem for more than 2 labels [DJPS94, Thm. 2a]. A multiclass coarea formula
would allow to solve such problems using convex optimization, which can generally be
achieved in polynomial time (at least to some finite precision). However, in Chap. 5 we
derive an approximate variant, which – while it does not allow to recover exact solutions
of the original problem – permits to obtain approximate solutions with an a priori
optimality bound.
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2.7 Relation to other Approaches and Extensions

In this section, we give an overview over several related regularizers that have been
proposed in various contexts, and how they can be interpreted in the context of labeling
problems. We also point out several recent extensions to the general relaxed multiclass
labeling formulation (2.6).

2.7.1 Isotropic Regularizers

Frobenius Norm. The classical choice

ΨF(Du)6 ‖Du‖2=(∑
i,j

(Diuj)2
)

1

2. (2.116)

is the basis for large parts of geometric measure theory and the theory of functions of
bounded variation [AFP00], and is sometimes referred to as MTV in the context of
denoising of vector-valued data [SR96, CS05, DAV08, YYZW08]; see also [CEPY05]
for an overview of TV-based research and applications. It is isotropic and permutation
invariant, however it is neither separable in the components of u nor in space. The
associated potential is

(

1/ 2
√ )

Ψ(ν(ei− ej)⊤) = χ{i� j} = du(i, j), (2.117)

with the uniform metric du.

Channel-By-Channel. The regularizer considered in Sect. 2.6.4 can be formalized as

Ψ1(Du) 6 ‖Du1‖2+	 + ‖Dul‖2. (2.118)

In this formulation, the objective is separable in the components of u, which potentially
simplifies numerical optimization [Blo98, ZGFN08]. Similar to the Frobenius norm, Ψ1

implements the uniform metric,

(1/2)Ψ1(ν(e
i− ej)⊤) = du(i, j), (2.119)

and is isotropic, with Dloc
1 = {(v1|	 |vl)|‖vi‖2 6 1 ∀i ∈ {1, 	 , l}}. As in the case of the

Frobenius norm, linearly transformed variants of the form

Ψ1,A(Du) 6 Ψ1(D(Au)) (2.120)

could be used (Sect. 2.5.2). A straightforward transformation shows that the modified

integrand satisfies Ψ1,A=‖ai−aj‖1. Therefore this approach covers metrics that can be
represented using a linear embedding into a space that is now endowed with the norm
given by Ψ1 instead of the Euclidean norm.

In the context of color denoising, [Blo98] observed that the Frobenius norm prefers
transitions with similar magnitude in all channels, which leads to a color smearing
effect at edges and a color shift towards the grayscale image: the one-step transition
(0, 0)→ (1, 1) is assigned a much lower penalty than the two consecutive transitions
(0, 0)→ (1, 0)→ (0, 1). This phenomenon does not occur with the Channel-by-Channel
regularizer Ψ1. A similar effect was observed in [CCP08] for multiclass segmentation,
where the preference towards similar gradients leads to minimizers that assume non-
integral values more frequently than is the case for e.g. Ψd.
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Eigenvalue-Based Norms. In the anisotropic diffusion community it is common
practice ([SR96], see also [WS01] and the references therein) to employ weighted norms
based on the eigenvalues λ1>	 >λd> 0 of the structure tensor

G(Du) 6 (Du)(Du)⊤. (2.121)

We denote λ2(D u)6 (λ1
2, 	 , λd2), i.e. the λi represent the magnitudes of the singular

values of Du. While originally rooted in a diffusion framework, the approach can also
be used to construct TV-like regularizers. It includes the Frobenius norm, since

ΨF(Du) = e⊤λ2(Du)
√

. (2.122)

In addition, for some rotation matrix R∈Rd×d and permutation matrix P ∈Rl×l,

G(R(Du)P )=R(Du)PP⊤(Du)⊤R⊤=RG(Du)R⊤, (2.123)

therefore λ2(Du) = λ2(R(Du)P ), i.e. all norms derived from these singular values are
isotropic and permutation invariant. In [GC10a] it was proposed to employ

Ψ2(Du) 6 λ1
2(Du)

√

, (2.124)

which amounts to the standard ℓ2 operator norm on D u. The corresponding dual set
can be represented as

Dloc
2 = {νx⊤|ν ∈Rd, x∈Rl, ‖ν‖26 1, ‖x‖26 1}. (2.125)

While Ψ2 is not trivial to handle numerically, it can be dealt with reasonably well using
primal-dual methods, and experimentally reduces color smearing and channel coupling
in denoising, deblurring and superresolution applications [GC10a]. Applied to labeling
approaches, one obtains

(

1/ 2
√ )

Ψ2(ν(e
i− ej)⊤) = du(i, j), (2.126)

i.e. Ψ2 again represents the uniform metric. However, since Ψ2 6 ΨF , for multiclass
labeling the energy when using Ψ2 potentially generates more artificial minima than the
standard choice ΨF .

2.7.2 Anisotropic and Inhomogeneous Regularizers

In this section, we will consider approaches that are not rotation invariant. Note that
most of these have been developed for scalar-valued total variation, however they extend
to the vector-valued case in a straightforward manner and could be coupled with any
of the above approaches for implementing different metrics.

Wulff Shapes. For scalar-valued u, the use of anisotropic variants of the total varia-
tion has been studied in [EO04] for the Rudin-Osher-Fatemi model, where the authors
characterize minimizers of such functionals. They base their analysis on the “Wulff
shape” associated with Ψ, which is the equivalent of Dloc for the scalar-valued case,
i.e. it defines the norm Ψ via the unit ball of its dual norm. As an example, consider
the choice Dloc

b 6 [0, 1]d. Then, for scalar u∈BV(Ω),

Ψb(z)=σDloc
b (z)= ‖z‖1, z ∈Rd×1. (2.127)
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It can be shown that the structure of Dloc is reflected in the geometry of the minimizer
of the ROF functional (1.9) in the sense that geometric structures in the shape of Dloc

itself are retained: for ν small enough, the minimizer u∗ of

f(u) =
1
2

∫

Ω
(u− χDloc)

2dx+ ν

∫

Ω
dΨ(Du) (2.128)

is just a multiple of the input, i.e. u∗= cχDloc [EO04, Thm. 4.1]. Applied to the above
definition for Ψb, this implies that the unit box may occur as the minimizer of the
anisotropic ROF model, which cannot happen for the standard ROF model [Mey01].

Based on these ideas, it was shown in [ZNF09] that the thresholding property for
two-class isotropic continuous cuts can be transferred to their anisotropic counterparts,
i.e. it is still possible to recover integral solutions of the anisotropic continuous cut
problems by thresholding. When combined with an adaptive, edge-driven version of
the Wulff shape, the authors observed improved visual quality when applied to the
reconstruction of depth maps and 3D structure. Similar results have independently been
derived in [OBOK09].

The “Wulff shape” anisotropies could also be extended to the vector-valued case, for
example by setting

Ψ(Du) =
(

∑

i

Ψb(Dui)
)

2
, (2.129)

or by replacing ‖·‖2 by Ψb in the definition of Ψd (2.62). However, as in the isotropic
case, this invalidates the thresholding property.

Anisotropy from Discretization. A large class of anisotropies that occurs in prac-
tice are actually induced by the discretization for approximating the total variation on
grids. A very common scheme is to add the total variation of the individual components,

Ψa,‖·‖(Du) 6 ‖D1u‖2+	 + ‖D1u‖2, (2.130)

where ‖·‖ refers to some norm on R
l. Notable cases include ‖·‖2 and the completely

separable case

Ψa,1(Du) 6 Ψa,‖·‖1(Du) 6 ‖D1 u‖1+	 + ‖Ddu‖1=
∑

i=1

d
∑

j=1

l

|Diuj |, (2.131)

which is the natural limit of the usual 4-neighborhood discretization (Chap. 3). This
discretization often occurs in LP relaxations and is tremendously popular as it is convex,
contains only pairwise terms (i.e. terms depending on only two different variables) and
is therefore easy to implement and analyze. Moreover, for two-class problems (or scalar-
valued u), the energy satisfies a discrete variant of the coarea formula, which allows
to carry over thresholding properties to the discretized problem [BVZ01]. The main
drawback is that edges parallel to the coordinate axes are preferred to diagonal edges,
which often leads to “zig-zag” artifacts on diagonal structures.
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To some extent, the discretization-induced anisotropy can be reduced by increasing
the neighborhood, i.e. by increasing the number of pairwise terms and adding proper
weighting factors. In [Boy03, KB05] it was shown that anisotropies formulated as a cer-
tain class of metrics can asymptotically be approximated arbitrarily well using pairwise
terms. However this requires the grid spacing and the neighborhood size to approach
zero and infinity, respectively: for discretizations with a fixed number of neighbors, true
isotropy cannot be guaranteed even for an arbitrarily fine grid. In practice, increasing
the neighborhood size generally reduces artifacts but considerably increases the runtime
of graph-based solvers. This effect is even more pronounced in higher-dimensional data
[KSK+08]. We refer to Chap. 3 for a detailed discussion.

Inhomogeneous Regularizers. The usefulness of homogeneous anisotropic regu-
larizers as mentioned above is quite limited. Therefore, anisotropic regularizers have
traditionally been formulated in an inhomogeneous way, i.e.

J(u) =

∫

Ω
dΨ(x,Du). (2.132)

Often the regularizer is of the multiplicative formΨ(x,Du)= g(x)Ψ′(Du) for some local
weighting function g. In the context of two-class segmentation, such approaches have
for instance been used for multiview reconstruction [KKBC09] and tracking [UMPB09].

2.7.3 Linearly Ordered Label Set

Lifting Approach. An interesting special case is when the labels in the label set I
correspond to quantized values, i.e. they can be naturally ordered. This occurs in par-
ticular in so-called lifting approaches for finding scalar-valued minimizers of variational
problems, e.g.

min
u′∈C ′

f ′(u′), f ′(u′)6 ∫

Ω
h(x, u′(x),∇u′(x))d x (2.133)

for some function h which is convex in ∇u′, and a constraint set C ′⊆{u′:Ω→R}. Often
the functional f ′ is non-convex in u′, as e.g. in the case of depth reconstruction from
calibrated pairs of stereo images: here the scalar u′(x) represents the local disparity,
which corresponds to depth, and the – generally highly nonconvex – data term describes
how well the corresponding parts of the images agree, given a specific disparity u′(x).

In this case we can exploit the fact that the disparity is bounded, and thus u has a
bounded range. This is also true in many other applications, such as when u′ represents
a grayscale image with intensities in [0, 1]. Then a possible solution to remove the
nonconvexity is to quantize the range of u′ into l values {c1,	 , cl}, and identify these
with the l labels {1,	 , l}. The original nonconvex variational problem is then turned
into the combinatorial problem of assigning, to each point x in the image domain Ω,
the label ℓ(x)∈{1,	 , l} indicating u′(x)= cℓ(x).
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Assuming that the data term is fully local, this often results in combinatorial prob-
lems which admit a convex relaxation. In a finite-dimensional setting, such approaches
have been considered in [Ish03, BT09b]. At the same time, the “calibration” idea was
developed in the continuous setting [ABDM03], which was used by [CCP08, PCBC10] to
show that for C ⊆W 1,1(Ω,R), f ′ can be expressed in terms of the {0, 1}-characteristic
function χu′ of the hypograph of u′,

hypu′ = {(x, t)∈Rd×R|u′(x)>t}, (2.134)

χu′(x, t) 6 χhypu′(x, t)=

{

0, t> u′(x),
1, t < u′(x).

(2.135)

Specifically,

f ′(u′) =

∫

Ω×R

dΨ(x, t,Dχu′), (2.136)

where Ψ(x,t,z)6 σDloc
x,t(z) is defined implicitly via the Legendre-Fenchel conjugate of h:

Dloc
x,t 6 {(v, w)∈Rd×R|w>h∗(x, t, v)}. (2.137)

Here h∗ denotes the conjugate of h with respect to the last argument. Essentially, this
transforms the problem of finding the optimal function u′ into the problem of finding
the set of points below its graph, which can be seen as a two-class segmentation problem

in R
d+1 with an anisotropic, inhomogeneous regularizer. This effectively linearizes the

nonconvexity of h with respect to u ′(x). On the other hand, depending on the inte-
grand h the dual constraint set D may be very complicated.

The problem is then relaxed in the usual manner via

min
u∈BV(Ω,[0,1])

f(u), f(u)6 ∫

Ω×R

dΨ(x, t,Du), (2.138)

with the additional constraints that u(x, ·) is nondecreasing, and that u(x, t) → 0/1
for t → +∞/−∞. After discretization, one obtains the alternative parametrization
of the unit simplex (2.16). In this functional lifting setting, the connection between
this method and our approach (2.6) is that the former represents u′ in terms of its
superlevelsets χ{u′>t} with the above relaxation, while the latter represents it in terms

of a family of Dirac measures {δu′(x)|x∈Ω} corresponding to the values of u′, with the

relaxation to a family of probability measures .

Mumford-Shah. We consider again the Mumford-Shah problem (Sect. 1.2) in the
weak formulation (1.21), with the normalization α=λ/µ, β= ν/µ:

inf
u′∈SBV(Ω)

fMS(u
′) 6 α

∫

Ω
(u′− I)2 dx+

∫

Ω
d|Dau′|(Ω)+ βHd−1(Su′). (2.139)

Due to the nonconvex Hausdorff measure, fMS does not directly admit a representation
in the form (2.133). However, as shown in [ABDM03, (3.5)], for τ16 I6 τ2 the problem
can be rewritten in the following way:
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Proposition 2.10. Define

f(u) 6 sup
v∈D

∫

Ω×R

〈v,Du〉, u∈SBV(Ω×R), (2.140)

D 6 Cc
1(Ω×R,Rd+1)∩R∩S , (2.141)

R 6 {

(vx, vt)|vt(x′, t′) + α(t′ − f(x′))2 >
‖vx(x′, t′)‖22

4
∀x′ ∈ Ω, ∀t′ ∈ [τ1, τ2]

}

,

(2.142)

S 6 ⋂

τ16p<q6τ2

S p,q, Sp,q6 {

(vx, vt)|
∥

∥

∥

∥

∥

∫

p

q

vx(x′, t′)dt′
∥

∥

∥

∥

∥

2

6β∀x′∈Ω
}

. (2.143)

Then

fMS(u
′) = f(χu′). (2.144)

for any u ′∈SBV(Ω).

This provides an augmented (or lifted) form of the original objective on a higher-
dimensional domain. The definition of R in (2.142) corresponds to the linearization of
the smooth, convex part of (2.139), i.e. the data term and the squared norm regularizer,
similar to the convex case (2.137), while S encodes the additional nonconvex length
term βHd−1(Su′). However, in contrast to the approach in the last paragraph for the
functional f ′ (2.133), the lifting technique is applied to the nonconvex functional fMS.

Note that in (2.140), the supremum is generally not attained. In order to obtain a
maximum, one has to drop the compact support and continuity of v. Specifically, if there
exists, for some fixed u, a sufficiently regular (in the sense that its divergence exists in

a distributional sense, cf. [ABDM03, Def. 2.1]) mapping v=(vx, vt):Ω×R→Rd+1 that

is divergence free, satisfies v∈R∩S, 〈vx, ν∂Ω〉=0 Hd−1-a.e. on ∂Ω×R, and maximizes
the supremum in the objective (2.140), i.e.

f(u) =

∫

Ω×R

〈v,Du〉, (2.145)

then v is called an (absolute) calibration for u. Such a calibration acts as a certificate
for optimality: If some function χu′ admits an absolute calibration, u′ is necessarily a
global minimizer of fMS, and v is a calibration for any other global minimizer [ABDM03,
Thm. 3.4]. This is a strong result, as it provides sufficient conditions for the global
optimality of minimizers for the nonconvex energy fMS.

On the other hand, the definition in (2.140) can be used to solve the Mumford-
Shah problem approximately using the same relaxation technique as in the convex case,
i.e. replacing χu′ in (2.144) by some u∈SBV(Ω, [0, 1]), as suggested in [PCBC09].

Solving this relaxed problem does not necessarily provide an integral u, i.e. a mini-
mizer of fMS. However, it is still useful for computing approximate minimizers. Fig. 2.8
shows an exemplary result obtained using the above technique.

Levelable Functions. A particularly well-behaved special case of (2.133) is

f ′(u′) =

∫

Ω
g(x, f(x)) dx+J(u′), (2.146)
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Figure 2.8. Approximation of the solution of the nonconvex Mumford-Shah problem using
the “lifting” technique. Left: Input image. Center: Result of classical L2−L2 denoising. Details
are removed uniformly, which leads to loss of detail and smoothing at hard edges. Right: Result
of variational denoising using the Mumford-Shah functional with 8 levels. Noise or fine details
can be removed without blurring sharp edges. The lifting approach allows to approximately
minimize the full Mumford-Shah functional by solving an associated labeling problem in a higher-
dimensional space.

where g is convex in the second argument and J has a coarea-like property ,

J(u′) =

∫

0

1

J(χ{u′>α}) dα. (2.147)

Such special J are also called levelable functions [DS06a, DS06b] or discrete total varia-
tions [CD09] and have been studied in [SKO09]. The difference to two-class continuous
cuts lies in g, which is generally not linear and not levelable. As a consequence, mini-
mizers are not necessarily integral. The characteristic property for such functionals it
that the problem of finding u= χ{u′>t} as in (2.135) decouples in t, i.e. it can be solved

for all t independently , and the obtained characteristic function is in fact a hypograph,
i.e. it is decreasing in t.

Under a suitable discretization, these problems can then be solved using a sequence
of two-class cuts for finding the individual sublevelsets, and subsequent reconstruction
of u from the obtained level sets. In particular this is the case for the ROF [CD09] and
L1−TV [CEN06] models (Sect. 1.1). The latter has an extensive theory concerning the
geometric structure of its sublevelsets [DAG09].

A related question is whether it is possible to specify J only on indicator functions,

J(χS) 6 g(S), (2.148)

for some monotone function g: 2Ω→R, and define J such that is satisfies a generalized
coarea formula:

J(u′) 6 ∫

0

1

g(χ{u′>α}) dα. (2.149)

This definition is also known as the Choquet integral [Cho54] (also Lovász extension
[Mur03]). The corresponding g are known as capacities (set functions), and it can be
shown that J is monotone and positively homogeneous. Moreover, if g is 2-alternating
(submodular), J is convex. Therefore, any such g implicitly defines a convex regularizer
via the integral (2.149).
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2.7.4 Other Extensions

Partially Separable Norms. For linearizations of labeling problems that involve
a large number of labels at each point, optimization can be made more efficient by
exploiting separability in the regularizer. This occurs for example in optical flow esti-
mation, where the two-dimensional flow vectors u=(u1, u2) at each point are quantized
using M2 labels, which requires a prohibitively large amount of memory and computa-
tion time for fine quantizations.

If the regularizer decomposes with respect to u1 and u2, i.e. J(u)=J1(u1)+J2(u2),
it is possible to apply the relaxation technique in [GC10b], which reduces the memory

requirements to the order of O(2M) as opposed to O(M2). A related approach has also
been suggested in [GBO09b].

Segmentation on Manifolds. The presented multiclass labeling techniques have
recently been extended to segmentation on manifolds [DFPH09, WZDT11]. The main
difficulty lies in a proper discretization of the gradient operator for a mesh-based rep-
resentation of the manifold.

2.8 Summary and Further Work

In this chapter we have introduced the general framework for multiclass labeling on
continuous domains and shown the existence of minimizers. We characterized the pos-
sible potentials and showed different ways to construct regularizers with prescribed
interaction potentials.

Concerning the construction of regularizers, there are several paths for future
work: The “envelope” relaxation in Sect. 2.5.1 seems to be related to the Wasserstein
distance which occurs in transportation problems, for the finite-dimensional setting
see [CKNZ01, KKMR06]. Investigating this connection and deriving results for the
anisotropic, inhomogeneous case seem to be promising directions for further work.

Also, it is an open question whether the envelope relaxation could be tightened even
more by constructing nonlocal regularizers. A related question concerns the thresh-
olding theorem for nonlocal functionals, i.e. what conditions are required for nonlocal
functionals to fulfill a generalized coarea formula.

Regarding the “embedding” approach in Sect. 2.5.2, an open question is if there are
any a priori bounds on the quality of the embedding. For the class of tree metrics, such
bounds exist, and the general case is the subject of ongoing research [CDG+09].
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Chapter 3

Discretization of Functionals with
Length-Based Regularizers

3.1 Introduction and Overview

In this chapter, we consider discretization strategies for the labeling problem. In order
to point out the differences between the approaches we consider the general setting:
Assume the goal is to find an optimal labeling ℓ∗: Ω→ I = {1, 	 , l} based on input
data I modeled as s: Ω→Rl, and again assume that there is some function space U and
an objective function f depending on s, whose minimizer

u∗ = argmin
u∈U

f(u) (3.1)

provides some information about ℓ∗. In our setting, U = BV(Ω, E) corresponds to the
combinatorial problem (2.1), and U =BV(Ω,∆l) to the relaxed problem (2.6).

In order to represent the problem in finite memory, one has to consider a discretized
problem, i.e. the goal is to find a finite-dimensional approximation uh,∗ (where h denotes
the scale, e.g. grid spacing) that approximates ℓ∗ in some sense, and can be computed
by solving a finite-dimensional problem,

uh,∗ = arg min
uh∈Uh

fh(uh). (3.2)

Several important questions arise:

• How should Uh be chosen? In particular, should uh,∗ be restricted to the same
values as u∗, i.e. E or ∆l?

• What are the semantics of uh,∗, i.e. in what sense does it provide information
about the original u∗?

• Do the discretized functionals fh converge in some sense to the original, spatially

continuous functional f? Moreover, is it possible to reconstruct u∗ from uh,∗ for
infinite resolution, i.e. do the minimizers of the discretized problems converge to
a minimizer of the original problem?

45



Figure 3.1. Segmentation of an image into 12 classes using a graph-based pairwise discretization.
Top left: Input image, Top right: Result obtained by solving a graph-based combinatorial
discretized problem with 4-neighborhood. The bottom row shows detailed views of the marked
parts of the image. The minimizer of the combinatorial problem exhibits blocky artifacts caused
by the choice of discretization.

Figure 3.2. Segmentation obtained by solving a finite-differences discretization of the relaxed
problem. Left: Non-integral solution obtained as a minimizer of the discretized relaxed problem.
Right: Integral labeling obtained by rounding the fractional labels in the solution of the relaxed
problem to the nearest integral label. The rounded result contains almost no visible artifacts.

In this chapter, we consider several approaches and how they compare with respect to
these questions. In particular, we argue that it may be better to not pose the finite-
dimensional problem as a combinatorial problem, even if integral solutions are required.

As a motivation, consider the color segmentation problem in Fig. 3.1. The task is
to segment the image into 12 classes, each class corresponding to a prototypical color,
with the uniform metric regularizer. As can be seen, the classical approach of (approx-

imately) solving a graph-based combinatorial discretized problem with Uh=(E)n using
a standard 4-neighborhood generates artifacts. On the other hand, discretizing and

46 Discretization of Functionals with Length-Based Regularizers



solving the relaxed problem using finite differences and the constraint set Uh = (∆l)
n

– and subsequent thresholding to integral values if required – leads to visually far more
convincing results (Fig. 3.2).

Organization. In the following sections we investigate the theoretical and practical
advantages and disadvantages of the various discretization approaches for the multiclass
labeling problem:

• We review several classical approaches including graph-based, pairwise, and LP
formulations (Sect. 3.2).

• We consider in more detail a finite-differences approximation of the relaxed
problem (Sect. 3.3) as proposed in [CCP08]. For infinitesimal scale, these func-
tionals Γ-converge to the original relaxed functional (2.6). In particular, this
implies that minimizers of the discretized functionals approximate minimizers
of the original functional.

• We thoroughly compare the different choices in an experimental evaluation
(Sect. 3.4). In particular, we try to answer the question whether the good results
observed for the finite-differences method are an effect of the particular dis-
cretization, or whether they are related to the more fundamental question of
whether one should minimize a combinatorial objective or obtain a solution
by thresholding a solution of the relaxed problem (Sect. 3.5).

For an overview of the terminology regarding Γ-convergence, see Appendix A.2.

3.2 Related Work

The classical approach for discretizing labeling problems is to fix, for some given grid

spacing h, a set of points {xī ∈Rd|ī ∈J } on the image domain, where J ⊆Zd is a set

of multiindices, and to approximate the values ℓ(xī). For simplicity we assume that the

original continuous domain Ω is the unit box (0, 1)d and set J = {0,	 , k − 1}d, where
k is the grid size and h=1/k is the scale/grid spacing. We consider the regular grid

Ωh = {xī =(ī + e/2)h|ī ∈J }. (3.3)

With any ℓ: Ω→ I, we associate its discretization ℓh: Ωh→ I, ℓīh 6 ℓ(xī). We could

alternatively consider uh: Ω→E in order to be more consistent with (3.2), however we
prefer to stick to the notation ℓh within this section, since it makes clear that there is no
relaxation step involved, and it is more compatible with the traditional label assignment
vector notation used in the related literature. Classically, a discretized combinatorial
energy fh: In→R is then constructed in a way such that ideally fh(ℓh) approximates
the energy f(ℓ). Minimizing fh, one obtains

ℓh,∗ = arg min
ℓh:Ωh→I

fh(ℓh). (3.4)
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The resulting problem is combinatorial in nature and thus in general very hard to solve
without further knowledge about the structure of fh.

Markov Random Fields. A common approach to model such structure is to rep-
resent fh in terms of a Markov Random Field (MRF), also known as an undirected
graphical model . The MRF consists of an undirected graph G = (V , E), where each
vertex v ∈ V is associated with the variable ℓh(v). For the uniform grid as above, we
have V =Ωh and v=xī for some ī ∈J . Note that the common convention in graphical
model literature is to denote by xv or xi the random variables, and by vi (or just i) the
vertices in V . However, this clashes with the continuous formulation, where x is the

spatial variable. For the sake of consistency, we therefore denote by x or xī the vertices,

and by ℓī
h= ℓh

(

xī
)

the labels. In the MRF approach, fh is (non-uniquely) written as

fh(ℓh) =
∑

C∈cl(G)

ψC(ℓC
h ), (3.5)

where the sum is taken over all sets cl(G) of cliques of G, ℓC
h ∈ I |C | denotes the

restriction of ℓ to the vertices in the clique, and ψC:I |C |→R are the individual factors
of f . The “factor” terminology originates in the MRF setting, where one considers
(among others) the problem of maximizing the a posteriori probability (MAP) of the
labeling variables conditioned on the measurements/input data I , i.e.

ℓh,∗ = arg max
ℓh:Ωh→I

P(ℓh|I). (3.6)

Under the assumption that the edges in G represent the conditional dependence of the

random variables ℓh
(

xī
)

in a particular sense [Lau96, KF09], the conditional proba-

bility P(·|I) can be factorized over the cliques,

P(ℓh|I) =
∏

C∈cl(G)

φC
(

ℓC
h
)

, (3.7)

where the functions φC represent the factors of the joint probability P(·|I). Maximizing
P(ℓh|I) is equivalent to minimizing its negative logarithm, thus

arg max
ℓh:Ωh→I

P(ℓh|I) = arg min
ℓh:Ωh→I

−log
∏

C∈cl(G)

φC
(

ℓC
h
)

(3.8)

= arg min
ℓh:Ωh→I

∑

C∈cl(G)

−φC
(

ℓC
h
)

. (3.9)

The substitution ψC

(

ℓC
h
)

=−φC
(

ℓC
h
)

provides the connection to (3.5).

An important special case is when only unary (|C |=1) and pairwise (|C |=2) terms

exist, i.e. the graph G contains no higher-order cliques. In this case fh can be written
in pairwise form,

fh(ℓh) =
∑

x∈V

ψx(ℓ
h(x))+

∑

(x,y)∈E

ψx,y(ℓ
h(x), ℓh(y)). (3.10)
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Figure 3.3. Graph-based discretization on a grid. Left to right: Pairwise terms with 4-, 6-,
8- and 16-neighborhood; higher-order discretization with ternary terms. The dots correspond to
the vertices of the graph, the lines indicate factors in the representation (3.5) and weights in the
pairwise representation (3.14).

This is the most popular approach for discretizing labeling problems with spatial regu-
larizers. In order to represent a local data term together with a regularizer implementing
the uniform metric, a classical choice is to set

ψx(ℓ
h(x))= s(x, ℓh(x))=P(I(x)|ℓh(x)), ψx,y(p, q)=

{

wx,y, p� q,

0, otherwise
(3.11)

for some wx,y > 0, and choose E such that each vertex in the grid is connected to its
four neighboring vertices. This principle can be generalized by adding terms for a larger
neighborhood, such as 8 or 16 neighbors, or by adding higher-order terms, i.e. terms
that depend on three or more labels (Fig. 3.3).

Graph Cuts and Metrics. For the two-class case, symmetric pairwise potentials
can be considered as edges in the grid graph. By adding some constant to the overall
energy, they can be normalized to

ψx,y(1, 1)= ψx,y(2, 2)=0, (3.12)

ψx,y(1, 2)= ψx,y(2, 1)=wx,y, (3.13)

where wx,y ∈ R is some weight, i.e. ψx,y(p, q) = wx,y χ{p� q}. Then, discarding the
constant which is irrelevant for the optimization,

fh(ℓh) =
∑

x∈V

ψx(ℓ
h(x))+

∑

(x,y)∈E

wx,yχ{ℓh(x)� ℓh(y)}. (3.14)

This indicates that each edge yields a certain cost when the edge between x and y is cut
by the interface separating the two class regions. Minimizing the energy (3.10) therefore
amounts to computing a partition of the nodes into two subsets that minimizes the total
sum of the weights of the edges that are cut by the interface between the partitions.
The unary potentials can be included by adding special “source” and “sink” nodes.

For nonnegative wx,y such problems with pairwise terms can be solved in polynomial
time by min cut/max flow algorithms [Ber98]. Therefore an important question concerns
whether it is possible to discretize some given spatially continuous functional f in this

way, such that the discretized energy fh(ℓh) approximates the continuous energy f(ℓ)
if one sets ℓī

h= ℓ(xī).
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In [Boy03], this question was answered for two-class problems. They consider reg-
ularizers that are formulated in terms of the length of the interface between the two
classes, measured by a Riemannian metric (see [KB05] for a generalization to a larger

class of metrics). Specifically, let C: [0, |C |]→R
2 denote some curve parametrized by

arc length with tangent τC, and define its anisotropic length |C |R by

|C |R 6 ∫

0

|C |
‖A(C(s)) τC(s)‖2 ds, (3.15)

where A: R2→ GL2(R) defines the Riemannian metric. Such metrics can be used as
regularizers for two-class labeling problems by setting C = ∂Ω1 = ∂{x ∈R

d|ℓ(x) = 1}.
In our framework (1.11) this corresponds, for some suitable A′: R2→ GL2(R), to the
length-based regularizer

J(ℓ) =

∫

Rd

∥

∥

∥

∥

A′ DχP 1

|DχP 1|

∥

∥

∥

∥

2

d |DχP 1|. (3.16)

For A=A′= I we obtain the classical isotropic length J(ℓ)=TV(χΩ1)=Per(Ω1).

We denote by N =N (x)=
{

y1,	 , y |N |} the neighborhood system of x, i.e. vertices
connected to x via an edge, and assume that such a system is given. Examples are 4-,
6-, 8- or 16-neighborhoods as shown in Fig. 3.3. Then, for some fixed x, the vectors

gm 6 ym−x, m=1,	 , |N | (3.17)

denote the offsets between some point x and its neighbors. Assuming that the gm are
in increasing order with respect to their angle αm relative to g1, Boykov et al. [Boy03]

construct a regularizer Jh with pairwise potentials as in (3.14) by choosing the weights
according to

ψx,ym(p, q) = wx,ymχ{p� q}, wx,ym=
h2 ‖gm‖22 (αm+1−αm)det (A(x))

2 ‖A(x) gm‖23
. (3.18)

Under some regularity assumptions on ℓ, they show that Jh(ℓh) then converges to J(ℓ) if

h→ 0, sup
m

|gm|→ 0 and sup
m

|αm|→ 0. (3.19)

This establishes a consistency result for the representation of metrics using pairwise
terms, however it has several drawbacks:

• The result only holds for two-class problems and on two-dimensional grids.

• Convergence of the energy is only shown pointwise. There is no indication how

minimizers of functionals involving Jh relate to minimizers of the associated
spatially continuous problem.

• While the choice of weights is good enough to give the desired result in the limit,
it does not necessarily provide an (in some sense) optimal representation for a
given connectivity.

• The last condition in (3.19) implies that the neighborhood size must approach
infinity in order to obtain a consistent scheme.
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In particular the last point is troublesome, as it means that the number of pairwise
potentials must grow faster than the number of vertices in the discretization for h→ 0.
Since solvers for such problems usually rely on solving the dual “max flow” problem
on the edges of the graph, the increasing connectivity multiplies the problem size and
greatly slows down optimization. This problem becomes potentially worse in higher
dimensions due to the larger neighborhood.

LP Relaxation and Pairwise Functionals. One distinct advantage of the pair-
wise energy (3.14) is that it has a very well-behaved natural linear programming (LP)
relaxation in the two-class case: Associate ℓh with uh: Ωh→ {0, 1} in the sense that
uh(x)= 0⇔ ℓh(x)= 1, and consider the relaxed problem

min
uh∈[0,1]n

fLP
h (uh), (3.20)

fLP
h (uh)6 ∑

x∈V

(ψx(1)− ψx(2))uh(x)+
∑

(x,y)∈E

wx,y |uh(x)− uh(y)|. (3.21)

The problem can clearly be solved as a linear program. Moreover, since for wx,y> 0 it
satisfies the generalized coarea formula (cf. Sect. 2.6)

fLP
h (uh) =

∫

0

1

fLP
h
(

χ{uh>α}
)

dα, (3.22)

integral solutions of the pairwise energy fh from (3.14) can be found by minimizing the
LP relaxation fLP

h and thresholding (cf. [CD09] and Thm. 2.8).

By setting uh(x)6 u(x), the LP energy (3.20) can be extended to the set of relaxed
functions u: Ω→ [0, 1] as follows:

fLP(u)6 ∑

x∈V

(ψx(1)− ψx(2))u(x)+
∑

(x,y)∈E

wx,y |u(x)− u(y)|. (3.23)

Although formulated on functions defined on continuous domains, energies such as
(3.23) are formulated in a nonlocal way, i.e. using a sum of pairwise differences instead
of local properties such as ∇u. A comprehensive analysis can be found in [GM01], where
the authors consider energies of the form

JG,h(u) =

∫

Rd

∫

Rd

η(g) ϕh‖g‖2

(

|u(x+ h g)−u(x)|
h ‖g‖2

)

dgdx, (3.24)

where u ∈ Lloc
1 (Rd), η ∈ L1(Rd) with 0 � η > 0, and for each h, ϕh: R>0 → R>0 is

continuous, nondecreasing and either convex, concave, or pieced together from a convex
and a concave part. Moreover, let ψ and ϕ be the Γ-limits for h → 0 of h ϕh(z/h)
and ϕh(z), respectively, and define

JG(u)6 ∫

Rd

∫

Rd

ϕ(|〈∇u, g/‖g‖2〉|)η(g)dgdx+ ‖η‖L1

∫

Su

ψ(|u+−u−)|)dHd−1.

Then, under some technical assumptions, the functionals JG,h Γ-converge to JG in Lloc
1

as h→ 0 [GM01, Thm. 4.3]. As a consequence, one obtains pointwise convergence of
the functionals, as well as convergence of their minimizers. We refer to Appendix A.2
for the precise definitions and properties of Γ-converging sequences.
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This convergence result can be seen as an extended variant of the result from [Boy03]
mentioned previously, formulated for nonlocal functionals in terms of (possibly non-inte-
gral) functions u. However, in formulation (3.24) the finite sum of pairwise terms (3.10)
has been replaced by the convolution with weights specified by ϕh. Therefore, it cannot
be formulated on finite-dimensional representations of u, since it depends on the values
of u on all of Rd.

A formulation closer to (3.10) has been considered in [Cha99], in order to approxi-
mate the nonconvex part of the Mumford-Shah energy,

JMS(u) = λ

∫

Rd

‖∇u‖22 dx+ µHd−1(Su). (3.25)

The considered nonlocal energies are of the form

JN
h (uh) =

∑

ī∈J
hd

∑

j̄ ∈Zd

1
h
ϕh

(

(

uh
(

xī+ j̄
)

− uh
(

xī
))

2

h

)

η(j̄ ), (3.26)

i.e. if one again sets uh
(

xī
)

=u
(

xī
)

, then

JN
h (uh) =

∑

ī∈J
hd

∑

j̄∈Zd

1
h
ϕh

(

(

u
(

xī +h j̄
)

−u
(

xī
))

2

h

)

η(j̄ ). (3.27)

Under some technical assumptions, these functionals can be shown to Γ-converge to

JN(u)=

∫

Ω

∑

j̄ ∈Zd

η(j̄ )αj̄ |〈∇u, j̄ 〉|2 dx+
∫

Su

∑

j̄ ∈Zd

η(j̄ ) βj̄ |〈νu, j̄ 〉|dHd−1 (3.28)

for a collection of scalar weights αj̄ and βj̄ .

As a special case assume that u is integral, i.e. u: Ω→{0, 1}. Then the absolutely
continuous part of Du vanishes, i.e. ∇u = 0, and JN(u) is precisely the length of the
discontinuity set Su as defined by the right-hand integral in (3.28). Clearly, in order to
obtain an isotropic regularizer in the limit, there must be infinitely many η(j̄ )� 0: the
image domain and the connectivity needs to be infinitely large. This parallels the result
of Boykov et al. in the graph cut setting.

The above results show that it is possible to approximate energies involving length-
based terms using a sum of (separate) pairwise terms, even for non-integral u. How-
ever, as for the graph cut approach, a finite neighborhood size invariably introduces an
anisotropy.

Note that all these results are formulated on scalar u, and therefore apply directly
only to the two-class case. However, they still provide an indication on what issues
can be expected when applying similar techniques to multiclass labeling problems with
vector-valued u. A prototypical finite-dimensional extension to the multi-class case is
the LP relaxation [KT99, KT07]

fMLP
h (uh)6 ∑

x∈V

∑

j=1

l

ψx(j) (u
h(x))j+

1
2

∑

(x,y)∈E

wx,y ‖uh(x)− uh(y)‖1, (3.29)
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where fMLP
h is minimized over all uh: Ωh → ∆l. While the energy itself still satisfies

the coarea-like property (3.22), integral solutions cannot trivially be obtained using
thresholding due to the constraints, see also Sect. 2.6.4.

Finite Elements. Another possibility is to use finite-element approximations. How-
ever, for fixed triangulations this again invariably introduces an anisotropy, as explicitly
computed in [Neg99] for the Mumford-Shah functional. In [CDM99, BC00] is was shown
that the Mumford-Shah functional can be exactly approximated in terms of Γ-conver-
gence using finite elements, however this requires an involved adaptive triangulation.

3.3 Convergent Finite-Differences Approximation
of the Relaxed Problem

The above-mentioned methods all have in common that in order to achieve isotropy,
even in the limit, they require either an infinite number of terms or an adaptive dis-
cretization. In this section we apply a finite-differences scheme from [CCP08] which has
a fixed neighborhood but still provides isotropy in the limit.

Since this discretization will be used in the optimization part, we will consider it in

more detail. Again we represent multidimensional functions u:V →Rl on Ω by a matrix

uh= (uh,1|	 |uh,l)∈Rn×l. The l-dimensional vector associated with ī or xī is denoted

by uī
h=uh

(

xī
)

∈Rl. The standard forward-differences approximation for ∇u
(

xī
)

is

∇īu
h =

1

h







(

uī+e1
h − uīh

)⊤�
(

uī+ed
h −uīh

)⊤





, (3.30)

with the convention uī+ej
h 6 uī

h if ī corresponds to a point on the right boundary,

i.e. ī + ej>nj= k. For some s∈L∞(Ω) we compute the discrete approximation sh by

sī
h6 sh

(

xī
)6 1

hd

∫

Cī
h
s(x) dx, (3.31)

where Cī
h denotes the box corresponding to the ī -th pixel in the image,

Cī
h 6 xī +

1
2
(−h, h)d= (i1h, (i1+1)h)×
 × (idh, (id+1)h). (3.32)

Then, for the relaxed multiclass labeling functional (cf. (2.6) and (2.10))

f(u) =

∫

Ω
〈u, s〉 dx+

∫

Ω
dΨ(Du), (3.33)

3.3 Convergent Finite-Differences Approximation of the Relaxed Problem 53



we define the discretization

fh(uh) 6 ∑

ī∈J
hd
〈

uī
h, sī

h
〉

+
∑

ī∈J
hdΨ(∇īu

h). (3.34)

The forward-differences scheme introduces a slight asymmetry. Although this has no
effect on the Γ-convergence as shown below, it can be somewhat reduced by taking the
mean over variants that use backward- and mixed forward-backward differences.

In order to properly define consistency and convergence of minimizers in a common

function space, we identify each discretized function uh ∈ Uh6 {uh: Ωh→∆l}= (∆l)
n

with the piecewise constant function

ũh∈BV(Ω)l, ũh(x)= uh
(

xī
)

∈Rl, for Ld-a.e. x∈Cī
h. (3.35)

For each h, we denote by Ũ h the space of such piecewise constant functions ũh,

Ũ h = {u∈BV(Ω)l|∃uh∈Uh: u= ũh}. (3.36)

Likewise, we extend some functional fh:Uh→R to BV(Ω)l by setting

f̃ h:BV(Ω)l→ R̄ (3.37)

f̃ h(u′)6 {

fh(uh), if there exists uh∈Uh s.t. u′= ũh,

+∞, otherwise.
(3.38)

In the following, we will see that the discretized functionals f̃ h Γ-converge, for h→ 0,
to the true constrained functional fC,

fC:BV(Ω)→R, (3.39)

fC(u)6 ∫

Ω
〈u, s〉 dx+

∫

Ω
dΨ(Du)+ δC(u). (3.40)

Then, from Prop. A.40 we conclude that minimizers of the discretized functionals con-
verge to those of the original functional. The involved part is showing Γ-convergence of
the regularizer, which we treat first.

In order to not obscure the notation by having to deal with a fractional number of

pixels, we formally denote, for some sequence (z(k)), zh6 z1/k6 z(k), and

lim
h→0

zh 6 lim
k→∞

z1/k, (3.41)

with similar notations for lim inf , limsup , and Γ-convergence. Using these conventions,

the number of points in Ωh is always n= kd. Note that the proofs in the following do
not require Ψ to be isotropic.

Proposition 3.1. Let Ψ:Rd×l→R be continuous, convex and positively homogeneous
with ρl ‖z‖26Ψ(z)6 ρu‖z‖2 ∀z ∈Rd×l (but not necessarily isotropic), and

JC(u) 6 ∫

Ω
dΨ(Du)+ δC(u). (3.42)
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Denote

J̃ h(u′) 6 {

∑

ī∈J h
dΨ(∇īu

h), if there exists uh∈Uh s.t. u′= ũh,

+∞, otherwise.
(3.43)

Then J̃ h Γ-converges (with respect to L1-convergence) to JC for h→ 0.

Proof. The proof largely follows [CCP08, Prop. 3.1]. The second part additionally uses
an argument derived from [Cha99].

“lim inf” inequality: The proof of the “lim inf” inequality (cf. Def. A.34)

lim inf
h→0

J̃ h(ũh) > JC(u), ∀u∈BV(Ω)l (3.44)

is basically identical to the one in [CCP08, Prop. 3.1]: Let ũh→u in L1 (or in the strong

topology of BV). If there exists h0 such that J̃ h(ũh)=+∞ for all h<h0, it follows that

liminfh→0 J̃
h(ũh)=+∞, and the first in equality in Def. A.34 holds trivially. Otherwise,

we may restrict the following considerations to the subsequence satisfying J̃ h(ũh)<+∞,

i.e. without loss of generality we may assume that ũh ∈ Ũ h for all h, with associated

vector representation uh∈Uh. It therefore remains to show that

lim inf
h→0

J̃ h(ũh)>J(u), (3.45)

J(u)= sup {−
∫

Ω
〈u,Div v〉 dx|v ∈Cc

∞(Ω)d×l, v(x)∈Dloc∀x∈Ω}. (3.46)

This is the case if we can show that for any fixed v ∈Cc
∞(Ω)d×l, v(x)∈Dloc ∀x∈Ω,

lim inf
h→0

J̃ h(ũh) > −
∫

Ω
〈u,Div v〉 dx. (3.47)

To show this, we use the fact that ‖Div v‖∞<∞ due to the smoothness and compact

support of v. Therefore, the fact that ũh→ u with respect to L1-convergence implies

L(u)6 − ∫
Ω
〈u,Div v〉 dx = lim

h→0
−
∫

Ω
〈ũh,Div v〉 dx. (3.48)

Since ũh is constant on the boxes Cī
h defining the grid, we may represent L(u) as

L(u) = lim
h→0
−
∑

ī∈J

∫

Cī
h
〈uīh,Div v〉 dx= lim

h→0
−
∑

ī∈J

〈

uī
h,

∫

Cī
h
Div vdx

〉

. (3.49)

By partial integration [AFP00, Thm. 3.36], we get

L(u) = lim
h→0

∑

ī∈J

〈

uī
h,

∫

Ω∩∂Cī
h
v⊤ νCī

h ds

〉

= lim
h→0

∑

ī∈J

∫

Ω∩∂Cī
h
〈uīh, v⊤ νCī

h〉 dHd−1,

(3.50)
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where νCī
h denotes the inner unit normal on the boundary of the box Cī

h. Rearranging

the expression in terms of the line segments Cī+ej
h ∩Cī

h bounding the Cī
h yields

L(u) = lim
h→0

∑

ī∈J

∑

j=1

d ∫

Ω∩C
ī+ej
h ∩Cī

h
〈uī+ej

h −uīh, vj〉 dHd−1, (3.51)

here vj(x)∈Rl is the j-th row of v(x) (recall that v(x)∈Rd×l). Then

L(u) = lim
h→0

∑

ī∈J

∑

j=1

d ∫

Ω∩C
ī+ej
h ∩Cī

h
〈uī+ej

h −uīh, vj(xī)+(vj−vj(xī))〉dHd−1 (3.52)

= lim
h→0

∑

ī∈J

(

hd−1
〈

h∇īu
h, v(xī)

〉

+
∑

j=1

d ∫

Ω∩C
ī+ej
h ∩Cī

h

〈

h∇īu
h, vj − vj(xī)

〉

dHd−1



 (3.53)

6 lim
h→0

inf
∑

ī∈J

(

hd−1 〈h∇īu
h, v(xī)〉

+
∑

j=1

d ∫

Ω∩C
ī+ej
h ∩Cī

h
‖h∇īu

h‖2 ‖vj − vj(xī)‖2 dHd−1



. (3.54)

Denote Cv6 maxj ‖∇vj‖∞. Then Cv<∞ due to the smoothness and compact support

of v, and ‖vj(x)− vj(xī)‖26h d
√

Cv for all x∈Cī
h. Therefore

L(u) 6 lim
h→0

inf
∑

ī∈I
{hd−1 〈h∇īu

h, v(xī)〉

+
∑

j=1

d ∫

Ω∩C
ī+ej
h ∩Cī

h
‖h∇īu

h‖2h d
√

Cv dHd−1} (3.55)

= lim
h→0

inf
∑

ī∈I

(

hd−1 〈h∇īu
h, v(xī)〉+ hd−1 ‖h∇īu

h‖2h d3/2Cv

)

(3.56)

= lim
h→0

inf
∑

ī∈I

(

hd 〈∇īu
h, v(xī)〉+hd+1 ‖∇īu

h‖2 d3/2Cv

)

. (3.57)

Since Ψ(z)= supv∈Dloc 〈z,v〉> 〈z,v〉 for all v∈Dloc by definition, this can be bounded via

L(u) 6 lim
h→0

inf
∑

ī∈I

(

hdΨ(∇īu
h)+hd+1 ‖∇īu

h‖2 d3/2Cv

)

. (3.58)

Using ρl ‖z‖26Ψ(z), we arrive at

L(u) 6 lim
h→0

inf
∑

ī∈I

(

hdΨ(∇īu
h)+hd+1 1

ρl
Ψ(∇īu

h) d3/2Cv

)

(3.59)

= lim
h→0

inf
∑

ī∈I

(

hdΨ(∇īu
h)

(

1+
h

ρl
d3/2Cv

))

(3.60)

= lim
h→0

inf
∑

ī∈I
hdΨ(∇īu

h) (3.61)

= lim
h→0

inf Jh(ũh). (3.62)

56 Discretization of Functionals with Length-Based Regularizers



Starting from (3.48), we conclude

−
∫

Ω
〈u,Div v〉 dx 6 lim

h→0
inf J̃ h(ũh). (3.63)

Since v ∈ D was arbitrary, this proves (3.47) and finally (3.45), which shows the “lim
inf” inequality required for Γ-convergence.

“lim sup” inequality: Showing the “lim sup” inequality (Def. A.34) amounts to
finding, for arbitrary but fixed u∈BV(Ω)l, a sequence (ũh) converging to u in L1 s.t.

lim sup
h→0

J̃ h(ũh) 6 JC(u). (3.64)

First, choose a sequence of u(j)⊆{u:Ω→∆l|u∈C∞(Ω)l} such that u(j) →j→∞
u in terms of

L1-convergence and TV(u(j))→TV(u). The unconstrained case was shown in [AFP00,

Thm. 3.9] for u∈BV(Ω)l; the constraint u(j)(x)∈∆l follows from the same proof since
the sequence u(j) is constructed by mollification of spatial restrictions of u and ∆l is
convex. Then, by [AFP00, Thm. 3.15] and the continuity of Ψ,

JC(u) =

∫

Ω
Ψ

(

Du

|Du|

)

d |Du| (3.65)

=
[AFP00, Thm. 3.15]

lim
j→∞

∫

Ω
Ψ

(

Du(j)

|Du(j)|

)

d|Du(j)| (3.66)

= lim
j→∞

JC(u(j)). (3.67)

For fixed j, consider the discretized functions uy
(j),h

for y ∈ (−h, h)d, where

u
y,ī

(j),h6 uy
(j),h(

xī
)6 u(j)

(

xī + y
)

= u(j)(ī h+ (h/2) e+ y). (3.68)

The associated piecewise constant functions ũy
(j),h

assume the value u(j)
(

xī + y
)

on Cī
h.

In order to handle the boundary condition, we follow the convention that any finite
differences terms involving at least one point outside of Ω should be treated as zero.

Instead of the limit of J̃ h we consider the limit of its mean over all shifts z= y/h:

lim
h→0

∫

z∈1

2
(−1,1)d

J̃ h(ũhz
(j),h

) dz (3.69)

= lim
h→0

hd
∫

y∈ 1

2
(−h,h)d

J̃ h(ũy
(j),h

) dy (3.70)

= lim
h→0

∫

y∈ 1

2
(−h,h)d

∑

ī∈J
Ψ







1
h







(u(j)
(

xī + y+h e1
)

− u(j)
(

xī + y
)

)⊤�
(u(j)

(

xī + y+h ed
)

−u(j)
(

xī + y
)

)⊤











dy (3.71)

= lim
h→0

∫

Ω
Ψ







1
h







(

u(j)(x+h e1)−u(j)(x)
)⊤�

(

u(j)(x+ h ed)−u(j)(x)
)⊤











dx. (3.72)
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In order to swap the limit and the integral we show the conditions for the dominated
convergence theorem. The integrand in (3.72) can be absolutely bounded via

Ψ







1
h







(u(j)(x+ h e1)−u(j)(x)⊤�
(

u(j)(x+ h ed)− u(j)(x)
)⊤











 (3.73)

6
ρu
h

∥

∥

∥

∥

∥

∥

∥







(

u(j)(x+h e1)− u(j)(x)
)⊤�

(u(j)(x+h ed)−u(j)(x))⊤







∥

∥

∥

∥

∥

∥

∥

2

(3.74)

6
∑

k=1

d
ρu
h

∥

∥u(j)(x+h ek)−u(j)(x)
∥

∥

1 (3.75)

6
∑

k=1

d
ρu
h

∫

0

h
∥

∥(ek)⊤∇u(j)(x+ t ek)
∥

∥

1dt (3.76)

6
∑

k=1

d
C

h

∫

0

h
∥

∥(ek)⊤∇u(j)(x+ t ek)
∥

∥

2dt =: p(x) (3.77)

for some C > 0 independent of h, again with the convention that ∇u(j)(x+ t ed)=0 for
x+ t ed � Ω. Integrating this upper bound over Ω shows

∫

Ω
p(x) dx =

∑

k=1

d
C

h

∫

Ω

∫

0

h
∥

∥(ek)⊤∇u(j)(x+ t ek)
∥

∥

2dt dx (3.78)

=
(∗) ∑

k=1

d
C

h

∫

0

h ∫

Ω

∥

∥(ek)⊤∇u(j)(x+ t ek)
∥

∥

2 dx dt (3.79)

6
∑

k=1

d
C

h

∫

0

h ∫

Ω

∥

∥(ek)⊤∇u(j)(x)
∥

∥

2 dx dt (3.80)

=
∑

k=1

d

C

∫

Ω

∥

∥(ek)⊤∇u(j)(x)
∥

∥

2 dx (3.81)

6
∑

k=1

d

C

∫

Ω

∥

∥∇u(j)(x)
∥

∥

2 dx (3.82)

6 (Cd)TV
(

u(j)
)

< ∞. (3.83)

The bound in the last equation justifies the application of Fubini’s theorem at (∗). We
conclude that one may apply the dominated convergence theorem to (3.72) to obtain

lim
h→0

∫

z∈ 1

2
(−1,1)d

J̃ h(ũhz
(j),h

) dz (3.84)

=
dom. conv.

∫

x∈Ω
lim
h→0

Ψ







1
h







(u(j)(x+h e1)− u(j)(x))⊤�
(u(j)(x+ h ed)−u(j)(x))⊤











dx (3.85)

=
Ψ contin.

∫

x∈Ω
Ψ(∇u(j)(x)) dz (3.86)
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=
u(j) smooth

∫

Ω
Ψ(Du(j)/|Du(j)|) d |Du(j)| (3.87)

= J
(

u(j)
)

, (3.88)

and we conclude that

lim
h→0

∫

z∈1

2
(−1,1)d

J̃ h(ũhz
(j),h

) dz = J
(

u(j)
)

. (3.89)

For each h, choose zh∈ 1

2
(−1, 1)d such that

J̃ h(ũ
hzh
(j),h

) 6

∫

z∈ 1

2
(−1,1)d

J̃ h(ũhz
(j),h

) dz, (3.90)

which is possible since the integral in (3.90) is a mean. Denote ũ(j),h6 ũ
hzh
(j),h

, then

lim
h→0

sup J̃ (ũ(j),h)6 lim
h→0

∫

z∈ 1

2
(−1,1)d

J̃ h(ũhz
(j),h

) dz =
(3.89)

J
(

u(j)
)

. (3.91)

Since u(j)(x) ∈ ∆l and therefore ũ(j),h(x) ∈ ∆l for all x ∈ Ω, ‖u(j)(x) − ũ(j),h(x)‖2 is
bounded from above, and from boundedness of Ω and Fatou’s Lemma we obtain

lim
h→0

sup

∫

Ω
‖u(j)(x)− ũ(j),h(x)‖2 dx (3.92)

6

∫

Ω
lim
h→0

sup ‖u(j)(x)− ũ(j),h(x)‖2 dx (3.93)

=

∫

Ω
lim
h→0

sup ‖u(j)(x)− u(j)(h (⌊x/h⌋+ e/2+ zh))‖2 dx. (3.94)

The integrand in (3.94) is zero for all x, since
∥

∥x − h (⌊x/h⌋+ e/2 + z(h))
∥

∥

∞ 6 h and

u(j) is continuous. Therefore

ũ(j),h → u(j) in L1(Ω). (3.95)

From (3.91) and (3.95) we see that for each j we may choose h′(j)> 0 such that

max
{

‖ũ(j),h−u(j)‖L1, J̃ h(ũ(j),h)− J(u(j))
}

6
1
j
∀h6 h′(j). (3.96)

We set h(1)=min{1, h′(1)}, h′(j+1)=min
{

1

j +1
, h(j), h′(j+1)

}

. Then the sequence

(h(j))j∈N is nonincreasing with 0<h(j)6 1/j, and

max
{

‖ũ(j),h−u(j)‖L1, J̃ h(ũ(j),h)− J(u(j))
}

6
1
j
∀h6 h(j). (3.97)

For sufficiently small h, j(h)6 max {j |h6h(j)} exists and is finite. Moreover we have
j(h)> 1/h→+∞ and h6h(j(h)). Then, due to h6h(j(h)) and (3.97),

lim sup
h→0

(J̃ h(ũ(j(h)),h)−JC(u)) (3.98)

6 lim sup
h→0

(J̃ h
(

ũ(j(h)),h
)

−JC(u(j(h))))+ lim sup
h→0

(JC
(

u(j(h))
)

−JC(u)) (3.99)

6
(3.97)

lim sup
h→0

1
j(h)

+ lim sup
h→0

(JC
(

u(j(h))
)

− JC(u)) (3.100)

= 0+0. (3.101)
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The limit in the last equation follows from j(h)→∞ and (3.67). In the same manner
it can be shown that

ũ(j(h)),h →h→0
u (3.102)

in L1. This finally proves (3.64) for the sequence (ũh) with ũh6 ũ(j(h)),h. �

Theorem 3.2. Let fh, fC as defined in ( 3.34), ( 3.39) for s∈L∞(Ω), s> 0. Then f̃ h

as defined in ( 3.37) Γ-converges with respect to L1-convergence to the constrained func-
tional fC for h→ 0 and is equicoercive with respect to the L1-topology.

Proof. Denote the data term by

gh(uh) 6 ∑

ī∈J
hd 〈uīh, sīh〉, (3.103)

then fh= gh+Jh. For any ũh∈ Ũ h, we have

g̃h(ũh) =
∑

ī∈J
hd 〈uīh,

1

hd

∫

Cī
h
sdx〉 (3.104)

=
∑

ī∈J

∫

Cī
h
〈uīh, s〉 dx (3.105)

=

∫

Ω
〈uīh, s〉 dx (3.106)

=

∫

Ω
〈ũh, s〉 dx. (3.107)

Therefore, since J̃ h(u)=+∞ for all u � Ũ h, f̃ h can be represented as

f̃ h(u)=

∫

Ω
〈u, s〉 dx+ J̃ h(u) (3.108)

for any u∈BV(Ω)l, with the data term independent of h. Since s ∈L∞(Ω), the linear
term is continuous with respect to L1-convergence. Therefore, since Γ-convergence is

stable under continuous perturbations [Bra02, Rem. 1.7], and J̃ h Γ-converges to JC due
to Prop. 3.1, f̃ h Γ-converges to fC.

In order to show equicoercivity, by Prop. A.39 it suffices to provide a lower semicon-

tinuous, coercive function f ′ with f̃ h
> f ′ uniformly for all h. We define the spatially

separable Ψ′:Rd×l→R by

Ψ′













(z1)⊤�
(zd)⊤











 6 ρl

d
√

∑

j=1

d

‖zj‖2 (3.109)

and denote by fC
′ and f̃

′h
the corresponding functional and discretization. Then

Ψ(z)> ρl ‖z‖2= ρl





∑

j=1

d

‖zj‖2




1/2

>
ρl

d
√

∑

j=1

d

‖zj‖2=Ψ′(z), (3.110)
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therefore

f̃ h
> f̃

′h
. (3.111)

For some u∈BV(Ω)l and h> 0, if u � Ũ h then f̃
′h
(u)=+∞> fC

′(u). If u∈ Ũ h then u
is piecewise constant on the grid. In this case, since Ψ′ is separable in the directional

derivatives, it can be seen that f̃
′h
(u)= fC

′(u). Therefore we conclude f ′˜ h
> fC

′ for any
u∈BV(Ω)l. Substituting this result into (3.111), we obtain the required uniform bound

f̃ h
> fC

′ . (3.112)

By Prop. 2.2, fC
′ is sequentially lower semicontinuous and therefore lower semicon-

tinuous. Moreover, the proof in Prop. 2.3 shows that fC
′ is sequentially coercive, and

therefore coercive (Prop. A.38). Using these properties, Prop. A.39 provides equicoer-

civity of the sequence (f̃ h). �

Remark 3.3. In view of Prop. A.40, Thm. 3.2 shows that from a sequence (uh) of

minimizers of the discretized problems fh, a (piecewise constant) sequence (ũh) of
functions on the continuous domain Ω can be constructed that converge to a minimizer
of the original, isotropic energy f .

Thm. 3.2 can also be in part applied to pairwise energies for multiclass problems. In
particular, consider the multiclass LP relaxation (3.29) with a simple 4-neighborhood,

setting ψx(j)=h
d
(

sh
(

xī
))

j
and wx,y=h

d−1. This energy coincides with fh as in (3.34)

for the integrand

Ψ(z) =
∑

i=1

d
∑

j=1

l

|(zj)i|. (3.113)

Therefore Thm. 3.2 shows that the (properly weighted) LP relaxation objective actually
Γ-converges to the anisotropic objective

f1(u) =

∫

Ω
〈u, s〉 dx+

∑

i=1

d ∫

Ω
d‖Diu‖1+ δC(u), (3.114)

i.e. it with the exception of the constraints it is separable.

Remark 3.4. Finite-differences discretizations generally do not fulfill a generalized
coarea formula even if the continuous problem they were derived from has this property,
as in the case of the two-class continuous cut. Therefore it is not trivial to obtain inte-
gral minimizers, in contrast to pairwise energies. However, the finite-differences energy
approximates isotropic regularizers without requiring an infinitely large neighborhood in
the limit. Moreover, in the following sections we will argue that computing an integral
minimizer is often not the optimal approach.
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3.4 Experimental Comparison

In order to evaluate the practical consequences of the above theoretical results, we com-
pared the different approaches on several two-class labeling problems, i.e. continuous cut
problems. Due to the coarea-like property (Sect. 2.6), the original continuous problem
then admits an integral minimizer. Consequently, if the solution is unique then it is
integral. Therefore, by restricting ourselves to the two-class case, we make sure that any
fractional solutions of the discretized problems are purely caused by the discretization.

Anisotropy of the Discretization. In order to get a quantitative impression on
the anisotropy induced by the various methods, we evaluated several graph-based and
finite-differences energies on a labeling uh rotated by different angles. We compared the
following energies:

• Classical pairwise energies with 4-, 8-, and 16- neighborhood (3.14) as depicted
in Fig. 3.3. The weights were chosen according to (3.18), see Table 3.1. For non-
integral labelings, the pairwise LP relaxation (3.23) was employed.

• The “isometric” finite-differences scheme as outlined in Sect. 3.3, and a variant
that also involves backward differences in order to make it more symmetric.

The rotated source labelings were generated in a resolution of 512 × 512 pixels and
downscaled to 128× 128 pixels in order to reduce artifacts (Fig. 3.4).

We first evaluated the functionals on integral labelings (Fig. 3.5). Since the images
were artificially generated, the true expected length can be computed as π+2=5.14 for
the half disc with radius normalized to 1. The anisotropies of the 4-, 8-, and 16-neigh-
borhood are clearly visible with the number of bumps increasing and the magnitude
of the anisotropy decreasing for larger neighborhoods. The “isotropic” finite-differences
energies do not seem to work very well: The energy is overestimated, and they show
larger oscillations than in the case of the 8-neighborhood.

When the edges of the shape are slightly blurred, the picture changes completely
(Fig. 3.6): For a light 4-pixel Gaussian blur, the range of the finite-differences energies
over all rotations is already close to one pixel width (an energy difference of 0.024 in

discretization w1 w2 w3 w4

4-neighborhood
π

4

8-neighborhood
π

8

π

8 2
√

16-neighborhood
arctan (1/2)

2

arctan (2)− arctan (1/2)

2 2
√ π/4− arctan (1/2)

2 5
√ π/2− arctan (2)

2 5
√

6-nb finite-differences
2

√

2

2− 2
√

2

8-nb finite-differences
2

√

2

2− 2
√

4

Table 3.1. Weights used for the graph-based pairwise discretizations (cf. Fig. 3.3).
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Figure 3.4. Artificial labelings uh used for the tests in Fig. 3.5 and Fig. 3.6. First row: The
integral labelings were downscaled from a larger source image of 512 × 512 pixels, rotated by
a number of different angles. Second and third row: Non-integral labelings were similarly
obtained by smoothing the source image using a Gaussian filter with increasing variance and
subsequent downscaling.
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Figure 3.5. Energy of the rotated integral labelings in Fig. 3.4, first row, vs. rotation angle.
The pairwise discretizations with 4-, 8-, and 16-neighborhoods exhibit a distinct anisotropy,
which decreases as the neighborhood size increases. On such integral labelings the isotropic
finite-differences energies overestimate the true length, and are close to the length defined by
the “Manhattan” (ℓ1-) distance.

this scale). For a 10-pixel blur, the anisotropy is barely noticeable. Thus, by allowing
a moderate amount of fractional labels, the isotropy of the finite-differences energy can
be greatly increased.

In contrast, the LP relaxations of the graph cut energies show no reduction in the
discretization-induced anisotropy, with a length variation equivalent to 3 (16-neigh-
borhood), 6 (8-neighborhood) and 25 (4-neighborhood) pixels, clearly preferring some
directions over others.

Consistency of the Discretization. As noted in Sect. 3.2, pairwise energies can
be shown to approximate the true length for infinitesimal grid spacing, but only if the
neighborhood size simultaneously grows to infinity. To investigate whether this is in fact
a problem in practice, we first computed a large half-disc shaped template labeling with
a size of 2048 × 2048 pixels. From this template we generated a range of downscaled
copies with resolutions down to 32 ×32 (Fig. 3.7). For each resolution, we computed
the energies using the above-mentioned regularizers.
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Figure 3.6. Energies for the fractional labelings in Fig. 3.4, second and third row. By allowing
a certain amount of factional labels, the isotropy of the finite-differences energies is greatly
increased. Note that the true total variation is not available since it is slightly reduced by the
smoothing process. This also explains the overall lower energies compared to Fig. 3.5.

Figure 3.7. Labelings used for comparing the isotropy of the regularizer at different resolutions
(Fig. 3.8). Top row: Discretization of labeling functions for grid sizes between 32 × 32 and
2048× 2048. Bottom row: Detail (lower left corner).

It becomes apparent that the graph cut-, respective LP relaxation-based, energies
exhibit the same anisotropy over all scales if the neighborhood size is kept the same,
and systematically underestimate the true length (Fig. 3.8). This is in accordance with
the observation at the end of Sect. 3.2: For a fixed neighborhood size, the discretized
functionals Γ-converge to an anisotropic spatially continuous functional. In contrast,
the length estimated by the finite-differences schemes converges to the true length as
the resolution increases as predicted by Prop. 3.1.
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Figure 3.8. Energy comparison for different resolutions. Shown are the energies for the templates
in Fig. 3.7 vs. the horizontal grid size k ∈ {32, 	 , 2048}. For a fixed neighborhood, the graph-
based energies exhibit a systematic anisotropy, while the finite-differences energies (iso-fw and
iso-mean, coinciding in this case) approximate the true energy better as the resolution increases.
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Figure 3.9. Variant of the experiment in Fig. 3.8 for a rotated template. Again, the graph-
based discretizations exhibit a systematic error. Due to the rotation, the true length is now
overestimated when using a 4-neighborhood. The finite-differences energy converges to the true
isotropic length.

Another example can be seen in Fig. 3.9. Here the original template was rotated
by 45 degrees. Consequently, the 4-neighborhood energy increases beyond the ground
truth, while the finite-differences energies again converge to the true length.

Integral and Fractional Minimizers. In order to see what effect the choice of the
discretization has on the minimizer, consider the problem in Fig. 3.10. The input data
consists of an image with two circular segments, with several instances generated by
rotating the original input. The gray regions are uncertain, and have thus to be filled in
by the regularizer. We also added subtle Gaussian noise in order to render the minimizer
unique, and therefore integral.
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input 4-nb 6-nb (iso-fw) 8-nb 8-nb (iso-mean) 16-nb iso-fw iso-mean

Figure 3.10. Segmentation results for different discretizations. The graph-based discretiza-
tions generate artifacts in the solution, even for the large 16-neighborhood. The finite-differences
energies (iso-fw, iso-mean) show considerable less artifacts and generate fractional labelings at
the boundaries.

The minimization problems were solved to a relative gap of 10−8 (cf. Chap. 4) in
order to minimize effects caused by suboptimal solutions. The results of the graph-
based energies are integral and thus global minimizers of their energies over the set of
integral labelings.

We compared the results for the graph-based 4-, 8- and 16-neighborhood discretiza-
tions and the two finite-differences schemes outlined above. In addition, we included
two regularizers proposed in [KSK+08]. They correspond to a restriction of the finite-
differences energies to combinatorial objectives, i.e. they coincide with the finite-differ-
ences energy on integral labelings. The observation made in [KSK+08] was that these
regularizers can be represented using submodular ternary potentials and therefore be
globally optimized. In fact, it turns out that both regularizers can be implemented
using pairwise terms only by adding diagonal edges, corresponding to a 6- and 8-
neighborhood, respectively (Fig. 3.3, Table 3.1). By construction, minimizers of these
energies minimize the finite-differences objective on the set of integral labelings.

From the results it becomes clear that all graph-based pairwise energies exhibit
distinct artifacts due to the anisotropy, for at least one of the rotated inputs (Fig. 3.11).
Switching to larger neighborhoods reduces the artifacts, however they cannot be com-
pletely avoided. In contrast, the finite-differences formulation results in solutions that
are much closer to an approximation of the true, continuous solution, with a small
amount of fractional labels at the slanted edges.

As mentioned in the discussion, there may be cases where an integral output is
required. We therefore thresholded the output of the finite-differences methods at 1/2
(Fig. 3.11). Again, the solutions obtained by solving the finite-differences approximation
of the relaxed problem and subsequent thresholding are visually superior to the solutions
obtained by minimizing the pairwise energies.
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input 4-nb 6-nb (iso-fw) 8-nb 8-nb (iso-mean) 16-nb iso-fw iso-mean

Figure 3.11. Thresholded results from Fig. 3.10. The thresholded fractional solutions for the
finite-differences energies (iso-fw, iso-mean) result in a better approximation of the desired shape
than the integral solutions of the graph-based pairwise energies.

Naturally the question arises how fractional minimizers of the finite-differences
energy compare to integral minimizers, i.e. whether it makes sense to minimize the finite-
differences energy in a combinatorial setting. From Fig. 3.12 it can be seen that this
is not a recommendable approach: integral minimizers of the finite-differences energy
are visually clearly inferior to those obtained by thresholding a fractional solution. In
fact, the latter are not integral minimizers, as can be seen from the energies (Table. 3.2).
This indicates that minimizing the finite-differences energy over the set of integral
labelings may not be an optimal approach. For the same reason, comparing energies
of solutions obtained by rounding and solutions obtained by combinatorial optimization
has only very limited value, since the energy does not necessarily provide an indi-
cation which solution better approximates the spatially continuous solution.

In order to focus on the quality of the discretization, all these results were computed
on the two-class problem. In the multi-class setting, additional uncertainties are poten-
tially introduced by the relaxation of the continuous problem. Therefore, fractional
solutions cannot be unambiguously classified as caused by either the discretization
or relaxation the. However, in principle these considerations also apply – with less
theoretical justification – to the multi-class case, see also Fig. 3.2.

3.5 Discussion: Integral and Fractional Models

The experiments in the previous chapter lead to the conclusion that in order to obtain
the visually best results, it is better to minimize over the set of relaxed labelings using
finite differences, and threshold if necessary, than to solve a combinatorial problem
directly. In this section we will discuss several aspects of this conclusion.
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input iso-mean iso-mean iso-mean
fractional optimal +thresholding combinatorial

Figure 3.12. Minimizing energies over fractional vs. integral labelings. Finding a minimizer
(second from left) of the finite-differences discretization and subsequent thresholding (second from
right) results in less artifacts than solving the combinatorial problem of minimizing exactly the
same energy over the set of integral labelings (right).

Point- and Region-Based Interpretation. A fundamental decision implied when
using combinatorial methods such as graph cuts is that the result of a labeling method
should consist of a vector of integral labels. This is a logical choice at first glance, but
it immediately brings forward the question of the semantics of such a solution, i.e. how
the discretization reflects properties of the optimal spatially continuous labeling u∗.
When deriving graph-based pairwise energies, a strong focus lies on the correspondence

between label variables and points in the image domain: the label ℓh(xī) denotes in

which of the class regions Ω1,	 ,Ωl the point xī is contained . This is clearly a combina-
torial decision, and does not allow any intermediate values. The derivations for the edge
weights etc. all depend on this assumption: cutting an edge is semantically equivalent
to separating two points .

Such a hard pointwise decision is fully justified when dealing with e.g. network
problems, where the nodes of the graph correspond to finite entities in the the real
world, such as factory locations in production planning problems. However, in a sense it
neglects the origin of imaging data, which usually comes from cameras or sensors that
average the continuous input over a number of pixel areas, i.e. regions with nonzero area
in the image plane. In contrast to points, and even in perfect camera models, pixel values
always accumulate some statistics from their respective rectangular region. The same
holds for higher-dimensional data such as voxels describing a section of the real world.

problem fractional thresholded combinatorial
1st row in Fig. 3.12 -2207.13 -2164.41 -2166.86
2nd row in Fig. 3.12 -2213.08 -2177.46 -2181.04

Table 3.2. Energies for the solutions in Fig. 3.12. The thresholded fractional solution is not
a combinatorial minimizer of the energy, but it is visually clearly superior. Therefore it is not
reasonable to minimize the energy under an integrality constraint.
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If one therefore associates each label ℓh(xī) with a pixel , the interpretation changes
in the sense that each label now represents all labels in the rectangular region associated

with the pixel containing xī . In Thm. 3.2 this is quantified by assuming that the

piecewise constant function ũh associated with some uh should approximate the optimal

continuous function u in the L1 sense, similarly for s̃h and sh.
Using this interpretation, the decision to only allow integral labels becomes ques-

tionable. In fact, enforcing integral values then corresponds to approximating the true
function u using integer-valued functions that are piecewise constant on the region
associated to each pixel. However, such integral approximations can only have axis-
parallel edges. If the energy respects this structure, as is the case for the 4-neighborhood
LP relaxation scheme, the corresponding artifacts occur.

Therefore, for the region-(pixel-)based interpretation, a much more better choice

is to allow fractional values for uh in order to better approximate the true continuous
u using the piecewise constant ũh. This interpretation is very natural when dealing
with images: Assume for a moment that an optimal two-class labeling u∗: Ω→ {0, 1}
of some real-world image is known, and that we are given the task of finding a good

approximation uh of the labeling on a grid (we represent e1 and e2 with the scalar
values {0, 1} as in the two-class continuous cut). Possibly the most natural approach,
and what is intuitively expected by humans, is to simulate the effect of a camera, i.e. to
formally paint the scene in black and white according to the true labeling u∗ and to
average the values within the region for each pixel. This inevitably leads to fractional
values if the pixel region is intersected by an interface.

The central message is that such fractional values are not introduced by
a relaxation process, but by honoring the fact that each of the values
uh
(

xī
)

correspond to a whole region of labels. In other words, the frac-
tional values occur only as an effect of approximating the true continuous
solution on a finite grid.

Therefore we argue that the region-based interpretation should be preferred. In fact,
an integral labeling is rarely ever actually required by subsequent image processing steps
in the sense that they cannot be reformulated to account for the region interpretation.
Often, a certain smoothness at the boundaries is actually desirable, as in the case of
segmentation for image manipulation.

Obtaining Integral Solutions. Nevertheless, let us assume that the user has a
valid reason for restricting the solution to hard labels, and consider what would be an
optimal segmentation ūh:Rn→ {0, 1} if one had perfect knowledge about the optimal
true segmentation u∗. Since with perfect knowledge there is no reason to infer any
structure that is not contained in the known segmentation, again the most reasonable
choice is to find an (integral) ūh that best approximates the continuous segmentation,

ūh = arg min
u′h:Ωh→{0,1}

‖u∗− ũ ′h‖L1, (3.115)

or a similar formulation with a different norm. For the usual L1 distance, this corre-
sponds to setting ūh

(

xī
)

= 1 if more than half of the labels corresponding to the ī -th
pixel have label 1. Note that this is a purely local decision, since it only depends on

labels for points inside the region associated with the pixel containing xī .
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In reality, u∗ cannot be represented in finite memory and is therefore only available

as a finite-dimensional fractional approximation uh,∗ obtained by minimizing a func-

tional fh. The best guess to find ūh is then to approximate uh,∗, i.e.

ūh,∗ = arg min
u′h:Ωh→{0,1}

‖uh,∗− ũ ′h‖L1, uh,∗= arg min
uh:Ωh→[0,1]

fh(uh). (3.116)

This amounts exactly to thresholding the fractional values of uh,∗ to integral values,
and again is a purely local operation. The thresholding is a direct consequence of the
region-based interpretation when combined with the requirement for integral solutions.

A key point is that this is not the same as minimizing fh over the set of integral uh,
i.e. solving the combinatorial problem

ūh = arg min
uh:Ωh→{0,1}

fh(uh). (3.117)

For an illustration, see Fig. 3.13. This provides an explanation for the results observed
in the experimental section:

1. It does not make sense to compute global integral minimizers of energies that
are formulated with a region-based interpretation in mind. The proper way to
generate integral approximations to the best continuous segmentation is to first
compute the best fractional minimizer and then (locally) threshold.

2. Analogously, it is not reasonable to compare the energy of a thresholded frac-
tional solution to the energy of some other solution obtained via a combinatorial
optimization method of the same energy. In particular, the thresholding step
must not be seen a way to approximate integral minimizers.

If one persists on using a combinatorial optimization method, the proper way would be

to formulate a combinatorial energy fc
h whose integral minimizers approximate u∗ as

well as possible, and solve

ūc
h,∗ = arg min

uh:Ωh→{0,1}
fc
h(uh). (3.118)

The graph cut approach can be seen as an implementation of this idea (3.118), while
the relaxed approach considered in this work conforms to (3.116). We argue that, if
one actually requires integral labelings, it is much easier to construct relaxed energies

fh such that the thresholded minimizer ūh from (3.116) is a good approximation of

u∗, than it is to formulate a combinatorial energy fc
h such that the same holds for its

integral minimizer ūc
h,∗.

We attribute this to the fact that fc
h has much less degrees of freedom; in fact there is

only a finite number of choices for fc
h. In contrast, fh contains much more information,

since it describes a function defined on a continuum of values. In a sense, adding a
single term that involves the Euclidean norm ‖·‖2 to fh conveys as much information

as adding an infinite number of pairwise terms to fc
h, cf. (3.28).

With this in mind, (3.116) can be seen as a convenient way of formulating combi-
natorial optimization problems involving an otherwise too complicated combinatorial

objective fc
h, that facilitates a very compact representation by introducing an interme-

diate relaxed problem.
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Figure 3.13. Approximation of the optimal segmentation (left) by solving the discretized relaxed
problem and thresholding (center) vs. minimizing the same energy as a combinatorial problem.
The relaxed approach respects the origin of the data from a continuous world, and returns an
approximation to the best fractional approximation of the continuous segmentation in terms of a
fractional solution, from which an integral approximation can be recovered. By allowing fractional
values the continuous functional can be approximated fairly well. In contrast, for reasonably
large neighborhoods, combinatorial approaches correspond to a crude approximation of the true
functional, which introduces undesired minima (right).

Multi-Class Case. Note that the thresholding process is not connected in any way
to uncertainties related to the formulation of the minimization problem, but rather is
the exact step to find the best integral approximation to a fractional image. Allowing
intermediate might seem to be related to the process of switching fromMAP to marginal
estimation in graphical models, however this connection is deceiving: In the latter,
marginal probabilities correspond to the uncertainty of choosing one specific label. In
contrast, in our framework the intermediate values are required to accommodate for
the infinitely many points within the pixel that should receive a label. Pixel labels are
not the same as point labels, but in a sense statistics about the labels of all points
associated with the pixel.
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However, this view slightly changes for the multi-class problem where u may already
assume fractional values due to the relaxation step. Here fractional values can addition-
ally be caused by the relaxation, and it is important to develop relaxations that are as
tight as possible (Sect. 2.5.1). However, from the considerations above we see that even
if the relaxations is perfectly tight, as in the two-class case, fractional labelings are still
useful in order to better approximate the spatially continuous solution, and provide the
necessary freedom to precisely discretize the original objective.

3.6 Summary and Further Work

We outlined several approaches to discretize labeling problems formulated on continuous
domains. In particular, these include Markov Random Field formulations, functionals
with pairwise terms both in the combinatorial and in the relaxed setting, LP relaxation
techniques and finite-differences schemes.

The finite-differences functionals converge in the sense of Γ-convergence to the orig-
inal, spatially continuous functional, and their solutions therefore approximate the true
continuous solution as the resolution increases. In contrast to graph-based methods, this
can be achieved using local terms, without resorting to an infinitely large neighborhood.

Experiments showed that, if a certain amount of fractional labels is allowed, the
finite-differences energies exhibit much less anisotropy than the LP- or graph-based
formulations. We also observed that thresholded minimizers of the finite-differences
energy closer resemble the optimal segmentation than integral minimizers of graph-
based pairwise energies with similar or even larger neighborhoods. In the discussion we
investigated this behavior and concluded that:

• Labels in discretizations of a spatially continuous labeling can be associated to
points or to pixels/regions. This decision is important to keep in mind when
designing energies.

• In the region-based interpretation, fractional values occur naturally even without
an explicit relaxation, and are a desired effect in order to better approximate the
true spatially continuous solution.

• In order to obtain the optimal integral approximation for the true spatially
continuous solution, it may be much easier to minimize a relaxed energy and
threshold, than to formulate and minimize a combinatorial energy, since the
former can convey much more information about the continuous problem.

In particular the last point is important for the following chapter: the approach (3.116)
considered here should not be seen as a technique for minimizing a simple combinatorial
energy according to (3.117), but rather to approximate the minimizer of the optimal
combinatorial energy (3.118), which would otherwise be too difficult to represent.

Concerning further work, an idea to achieve solutions with similar quality using the
graph cut approach could be to iteratively increase the neighborhood size around the
edges of the segmentation in order to render the energy more isotropic. Moreover, the
concept of solving complicated combinatorial problems on originally continuous domains
by exploiting the degrees of freedom in formulating a relaxed energy and subsequent
thresholding seems appealing, and justifies further investigation.
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Chapter 4

Nonsmooth Optimization

4.1 Introduction and Overview

When solving the discretized relaxed problem (2.6),

inf
u∈C

f(u), f(u)6 ∫

Ω
〈u(x), s(x)〉d x+

∫

Ω
dΨ(Du), (4.1)

two main issues occur:

• The problem is large-scale, since there is at least one variable per label per pixel.

• The problem is also nonsmooth due to the regularizer.

However, in view of the dual representation of the regularizer (2.13), the original
problem can be reformulated as

inf
u∈C

sup
v∈D

g(u, v), g(u, v) 6 ∫

Ω
〈u(x), s(x)〉 dx−

∫

Ω
〈u(x),Div v(x)〉 dx, (4.2)

D 6 {v ∈Cc
∞(Ω)d×l , v(x)∈Dloc∀x∈Ω}, (4.3)

for suitable Dloc, i.e. Ψ=σDloc. This effectively removes the nonsmoothness at the cost
of introducing the dual variables v(x).

We now apply the finite-differences scheme from Chap. 3, i.e. Ωh=
{

xī ∈Rd|ī ∈J },
uh = (uh,1|	 |uh,l) ∈ R

n×l. We denote by grad: =(grad1
⊤|	 |gradd⊤)⊤ ∈ R

(nd)×n the
standard d-dimensional forward differences gradient operator for Neumann boundary

conditions associated with the grid Ωh, cf. (3.30). Accordingly, div: =−grad⊤ is the
backward differences divergence operator for Dirichlet boundary conditions.

Identifying uh∈Rn×l with the vector inR
nl obtained by concatenating the columns,

these operators extend to R
n×l via Grad: =(Il ⊗ grad), Div: =(Il ⊗ div). Using these

definitions, the discretization of (4.2) can be posed as the finite-dimensional problem

min
uh∈Ch

max
vh∈Dh

gh(uh, vh), gh(uh, vh) 6 〈uh, sh〉− 〈uh,Div vh〉 (4.4)

= 〈uh, sh〉+ 〈Graduh, vh〉, (4.5)

Ch 6 {uh∈Rn×l|uīh∈∆l, ī ∈J }, (4.6)

Dh 6 ∏

ī∈J
Dloc⊆Rn×d×l. (4.7)
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In the remainder of this chapter we will consider exclusively the finite-dimensional case.
Therefore, in a slight abuse of notation, we drop the superscript h, i.e. we denote u=uh,
C= Ch, etc. Motivated by (4.4), we consider the general problem class

min
u∈C

max
v∈D

g(u, v), g(u, v)6 〈u, s〉+ 〈Lu, v〉− 〈b, v〉, (4.8)

where C ⊆ R
n×l and D ⊆ R

n×d×k for some k > 1 are bounded closed convex sets,
L ∈Rndk×nl, s ∈Rn×l and b∈Rn×d×k. The formulation covers (4.4) by setting k= l,
L = Grad and b = 0, but also more general – even non-uniform, non-isotropic or non-
local – regularizers, as considered in Sect. 2.7.

The primal and dual objectives associated with the saddle-point problem (4.8) are

f(u)6 max
v∈D

g(u, v) and fD(v)6 min
u∈C

g(u, v), (4.9)

respectively. The associated primal and dual problems are

min
u∈C

f(u)=min
u∈C

max
v∈D

g(u, v) and max
v∈D

fD(v)=max
v∈D

min
u∈C

g(u, v). (4.10)

As C and D are assumed to be bounded, it follows from [Roc70, Cor. 37.6.2] that a saddle
point (u∗, v∗) of g exists. With [Roc70, Lemma 36.2] this implies strong duality, i.e.

min
u∈C

f(u)= f(u∗)= g(u∗, v∗)= fD(v
∗)=max

v∈D
fD(v) . (4.11)

For multiclass labeling, the sets C and D exhibit a product structure, which allows
to efficiently apply first-order methods that rely on projections on C and D, as we
demonstrate in the following sections.

Moreover, for C=(∆l)
n, the minimum in the dual objective fD decouples spatially.

Therefore, since miny∈∆l
〈y, z〉= vecmin(z)6 minizi for all z ∈Rl, the dual objective

can always be evaluated by summing, over all points x∈Ω, the per-pixel minima over

the components of the corresponding entries (L⊤v+ s) ī of L
⊤v+ s,

fD(v) = −〈b, v〉+ min
u∈(∆l)n

〈u, L⊤v+ s〉 (4.12)

= −〈b, v〉+
∑

ī∈J
vecmin((L⊤v+ s) ī). (4.13)

In contrast, the evaluation of the primal objective f can be more difficult, depending
on the definition of Dloc resp. D:
• For simple regularizers, a closed-form expression may be available, such as

f(u)= 〈u, s〉+
∑

ī∈J
‖∇ī u‖2 (4.14)

in the case of the classical vector-valued total variation Ψ=‖·‖2.
• For the Euclidean embedding approach (Sect. 2.5.2) with some embedding

matrix A ∈R
k×l, the straightforward approach L = Grad, b = 0, Dloc = Dloc

A =

B1(0)A⊆R
d×l still permits a closed-form computation,

f(u)= 〈u, s〉+
∑

ī∈J
‖(∇ī u)A

⊤‖2, (4.15)
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however the dual sets Dloc are more complicated. Alternatively, we may equiv-
alently merge all linear transformations into the linearity L, i.e. set

L 6 (Grad)(A⊗ In)∈Rndk×nl, (4.16)

Dloc 6 Dloc
I =B1(0)⊆R

d×k . (4.17)

This sufficiently simplifies the structure of Dloc so that the projection-based
methods as discussed below can be applied in a straightforward way. This rela-
tion was the original motivation for considering the embedding techniques, since
it allows to cover a large class of non-standard regularizers at almost no addi-
tional cost compared to the standard total variation.

• For the local envelope approach (Sect. 2.5.1) with given metric d: I2→ R, the
regularizer is only available in implicit form, defined by L=Grad, b=0 and

Dloc
d = {v= (v1,	 , vl)∈Rd×l|e⊤ v=0}∩

⋂

i� j

{v |‖vi− vj‖26 d(i, j)}. (4.18)

Due to the generality of the regularizer (Prop. 2.6), the primal objective can
only be computed approximately (for a special case with three labels there is
a derivation in [CCP08]). The same holds for projections on Dloc

d , which have
to be approximated iteratively if required. Similar difficulties occur when other
advanced regularizers are applied (Sect. 2.5.3, Sect. 2.7).

In the following sections we investigate numerical methods for solving the bilinear
saddle-point problem (4.8). Due to the considerations in Chap. 3, we will not con-
sider combinatorial optimization approaches, but focus on the nonsmooth, constrained,
convex problem (4.8).

Organization. In this chapter, we are concerned with the numerical optimization of
the relaxed problem (4.8). To this end:

• We provide a brief overview over related combinatorial and convex optimization
methods (Sect. 4.2).

• We provide and analyze two different methods that are capable of minimizing
the specific class of saddle point problems (Sect. 4.3):

◦ A specialization of a method for nonsmooth optimization as suggested
by Nesterov (Sect. 4.3.1). The method relies on a controlled smoothing
technique, is virtually parameter-free and provides explicit a priori and
a posteriori optimality bounds for the relaxed problem.

◦ A Douglas-Rachford splitting approach (Sect. 4.3.2). We show that the
approach allows to compute a sequence of dual iterates that provide an
optimality bound and stopping criterion in form of the primal-dual gap,
and provide two extensions that allow to deal with complicated constraint
sets, as in the case of the local envelope regularizer.
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Both methods are highly parallelizable and are shown to converge. For refer-
ence, we also summarize the primal-dual technique from [PCBC09], and show
how the substeps of the proposed methods can be computed for the multi-class
labeling problem (Sect. 4.4). Note that due to the generality of the saddle-point
problem (4.8) all methods in this chapter apply equally to pairwise graph-based
formulations and general MRF energies with higher-order terms, as long as they
are jointly convex in the unit vectors representing the labels.

• We evaluate and compare the performance of the performance of the proposed
methods under varying conditions and demonstrate their applicability on real-
world problems (Sect. 4.5).

For convenience, a brief summary of the terminology for operator splitting approaches
can be found in Appendix A.3.

4.2 Related Work

Combinatorial Optimization. As already indicated in Chap. 3, a large focus in
current literature lies on solving combinatorial problem formulations, cf. Sect. 3.2. For
the reasons discussed in Sect. 3.5, we will not investigate such methods in detail, however
we will point out the basic strategies. For a general overview we refer to [BW05].

The two-class graph-based pairwise energy (3.14) is a minimal cut problem, and
usually considered in its dual form, which is a maximum flow problem through the
associated graph, i.e. the problem of pushing as much flow as possible through the graph
under capacity constraints on the edges [FF62]. Any maximal flow induces a minimal
cut of the graph along its saturated edges. These problems occur in many application
areas, and have been thoroughly researched [Ber98].

In the field of computer vision, such methods have first been considered in [GPS89]
for the restoration of binary images, a special case of the two-class labeling problem.
Earlier methods relied on simulated annealing [GG84] or greedy strategies such as
Iterated Conditional Modes [Bes86].

Algorithms for solving the maximum flow problem can be categorized into two
classes: Augmenting-path approaches maintain a feasible flow, i.e. a set of feasible dual
variables, and iteratively find paths through the graph along which additional flow
can be pushed, which can be achieved by solving a sequence of shortest-path problems
[FF56, EK72]. Preflow-push (also called push-relabel) methods start with an infeasible
flow, and gradually decrease infeasibility [GT88]. For general graphs, the latter generally
exhibit better overall performance, however for special graphs such as grid- or planar
graphs, variants of the augmenting-path method have also proven to be very successful
[BK04, STC09]. We also refer to [ABKM10] for a recent improvement of the preflow-
push method for imaging applications. All these algorithms are inherently sequential,
and therefore difficult to parallelize [GSS82, DKP05], although lately some progress has
been made [HVD07, VN08]. However, they allow to solve the two-class pairwise energy
problem in polynomial time.

In contrast, the multi-class problem is generally NP-hard [DJPS94, BVZ01, CN04].
For the special case of a submodular objective function (cf. Sect. 2.7.3), several polyno-
mial-time methods exist [Mur03]. The classical approach to approximate a solution of

76 Nonsmooth Optimization



the general multi-class problem is to iteratively solve a sequence of two-class graph cut
problems [BVZ01]; such methods are also known as move-making methods. Classical
approaches include α-expansion, where in each step one label competes against all
others, and α-β-swap, where in each step a pair of labels is selected to compete against
each other. These approaches can be improved for linearly ordered label sets by allowing
special moves, as in the case of the truncated-linear metric [KVT11], or by greedy
heuristics [ZHW10]. In [KT07, KTP08, Kom10], several move-making methods were
analyzed and improved from an LP-relaxation perspective, cf. (3.20). Such methods
can also be extended in part to a spatially continuous formulation; we refer to Chap. 5
below for a more detailed discussion. In contrast, we directly solve the relaxed problem.

Another classical approach is to relax the combinatorial problem as a semidefinite
program [WSV00, KSSC03], however this greatly increases the problem size and there-
fore is only applicable to very small problems. Similar restrictions apply to generic
mixed-integer approaches, see e.g. [MPR98]. Besides these specialized methods, the
combinatorial labeling problem can also be approached from the more general graph-
ical model viewpoint, where an abundance of methods is available; see [Sud06] for an
overview. Successful general-purpose methods include tree-reweighted belief propaga-
tion [WJW05, Kol06], and more general dual decomposition approaches [KPT07], as
well as pseudo-boolean optimization [BH02].

However, all these methods share the drawback of being inherently formulated on
a discrete, finite feasible set. Due to the reasons outlined in Sect. 3.5, we will instead
focus on methods for solving the relaxed, convex problem formulation.

Convex Optimization. A large amount of numerical solvers has been proposed for
functionals involving total variation terms. Much focus has been laid on the L2− TV
(ROF) model with quadratic data term, therefore we will consider several approaches
and relate them to formulation (4.8). Generally, the approaches can be classified into
primal , dual , and primal-dual methods.

Primal methods tackle the primal objective directly. For the unconstrained ROF
functional (1.9), this amounts to solving the associated Euler-Lagrange equation

−λdiv
(

∇u
‖∇u‖2

)

+ u− I = 0. (4.19)

Eq. (4.19) is then solved by gradient descent [ROF92] or general fixpoint iterations. This
approach could in principle also be applied to the primal formulation of (4.8). However,
it requires to introduce a smoothing parameter to avoid the case where∇u=0, e.g. solve

−λdiv
(

∇u
‖∇u‖22+ β2

√

)

+ u− I = 0 (4.20)

for some β > 0. Large β lead to smeared edges, and for small β the individual
steps become ill-conditioned, and convergence speed, especially for Newton methods,
decreases rapidly [VO96]. A similar approach was used in [YYZW08, WABF09], where
the Euclidean norm was replaced by a Huber term, with the same drawbacks. As
an additional difficulty, and unlike in the case of the ROF problem, solutions of the
labeling problem (4.8) are ideally piecewise constant, i.e. satisfy ∇u= 0 almost every-
where. Therefore smoothing techniques should only be applied in a very controlled way.
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Due to these issues, dual methods have been very successful for solving the ROF
problem. It can be seen that for the ROF model, the dual problem is to solve

v∗ = arg min
‖v(x)‖26λ∀x∈Ω

1
2
‖div v−I‖22, (4.21)

which removes the nonsmoothness from the objective, at the cost of introducing point-
wise constraints. Formulation (4.21) can then be approached by interior-point [Car01]
or particular simple gradient-projection methods [Cha04, Cha05], see also [ZWC10] for
further references. A primal solution is then obtained from the dual via u∗= I −div v.
Unfortunately, in the case of the labeling problem (4.8), the dual objective (4.13) is
nonsmooth as well, i.e. there is no inherent advantage in considering the dual problem.
Moreover, reconstructing a primal solution from a dual solution is not trivial, and not
necessarily unique. However, very recently it has been shown that by smoothing the
dual problem using a log-sum-exp approximation, the dual problem can be solved using
projected gradient descent, and under certain conditions a primal solution can still be
recovered [BT09a].

We will be primarily concerned with primal-dual methods, i.e. methods that track
both the primal and dual variables. A first related idea can be found in [CGM99] for
the ROF problem, where the authors explicitly introduce a dual variable; however in
order to apply a Newton method they again apply a smoothing similar to (4.20). A more
recent primal-dual approach for the ROF problem can be found in [HS06], however
again the dual problem is regularized, which amounts to replacing the total variation
by a Huber term.

If the dual set Dloc can be formulated in terms of Euclidean norms, problem (4.8)
can be posed as a second-order cone program (SOCP). Such problems can be solved
using primal-dual interior-point approaches, which combine Newton updates with a
barrier term that enforces the constraints, and is controlled in a way to keep the Newton
method inside its region of superlinear convergence [NN93]. We also refer to [Boy04,
Chap. 11] and [BTN01, Ren01] for an overview of the subject.

While interior-point methods have excellent asymptotical convergence properties,
their implementation is involved, and exploiting sparsity of the operator L in order to
speed up the Newton steps and reduce memory requirements is nontrivial. Moreover,
they are not particularly suited well for massively parallel computation, such as on the
upcoming GPU platforms.

Therefore we focus on first-order primal-dual methods that use only simple opera-
tions involving L, and projections on the primal and dual constraint sets C and D. Such
methods have recently been tremendously popular in connection with the minimization
of TV-related imaging problems (see [EZC10] for an overview), since they

• allow to exploit sparse problem structure – as is the case if L discretizes a
gradient operator – in a particularly straightforward way,

• are relatively simple to implement and analyze,

• can also be formulated in general Hilbert spaces [CP10b],

• involve only basic operations that can be easily parallelized due to their local

nature, such as evaluations of L and L⊤ and projections on C and D, and are
therefore amenable to the massive parallelization available on the upcoming GPU
platforms [ZGFN08].
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First-order methods are generally surpassed by higher-order approaches – such as inte-
rior-point methods – in terms of the theoretical convergence rate. However, as will be
seen in Sect. 4.5, for the low- to medium-accuracy results usually required for imaging
applications they may outperform even commercial interior-point solvers.

4.3 First-Order Schemes for Multiclass Labeling

One of the most straightforward first-order approaches for optimizing (4.8) is to fix
small primal and dual step sizes τP and τD, and alternatingly apply projected gradient
descent/ascent on the primal/dual variables. This Arrow-Hurwicz approach [AHU64]
was proposed in a PDE framework for solving the two-class labeling problem in [AT06]
and recently used in [CCP08]. An application to denoising problems can be found
in [ZC08]. However it seems nontrivial to derive sufficient conditions for convergence.
Therefore in [PCBC09, CP10a] the authors propose the Fast Primal-Dual (FPD)
method, a variant of Popov’s saddle point method [Pop80] with provable convergence.
The algorithm is summarized in Alg. 4.1.

Due to the explicit steps involved, there is an upper bound condition on the step size
to assure convergence, which can be shown to be τP τD< 1/‖L‖2 [PCBC09]. In [CP10a]
it was noted that a generalization of the method can be sped up by adapting the step
sizes; however this requires at least a part of the objective to be uniformly (and therefore
strictly) convex, which is not fulfilled by (4.8). In the experimental section we compare
Alg. 4.1 to the two methods proposed below.

Other successful applications of first-order methods include the FISTA algorithm
[BT09c, BT10] used for sparse reconstruction, however this requires to compute prox-
imal steps for J(u), i.e. to solve problems of the form

min
u∈C

1
2
‖u− u′‖22+ J(u). (4.22)

For sparse reconstruction applications, one usually has J(u) = ‖u‖1 and C = Rn,
therefore (4.22) can be solved in closed form using a “shrinkage” operation. In the general
case (4.8) however, due to the additional linearity L, (4.22) is only marginally easier
than the original problem – it is strictly convex and therefore has a unique solution, in
contrast to (4.8).

In the following sections we propose two alternative first-order approaches for solving
the saddle-point problem (4.8). The first method is due to Nesterov [Nes04b] and relies
on a controlled smoothing combined with a smooth optimization method. The second
method relies on the Douglas-Rachford splitting scheme [DR56] and is directly applied
to the nonsmooth formulation. Although both approaches are originally formulated on
the primal objective, from Thm. 4.1 and Thm. 4.4 it can be seen that they are essentially
primal-dual approaches, since they track the dual variables as well.

A common advantage shared by primal-dual methods is that they provide a conve-
nient stopping criterion in form of the numerical primal-dual gap f(u)− fD(v). If both
objectives can be evaluated, it provides, for any feasible primal-dual pair u∈C, v ∈D,
an optimality bound on the primal objective:

06 f(u)− f(u∗)6 f(u)− fD(v). (4.23)

4.3 First-Order Schemes for Multiclass Labeling 79



Algorithm 4.1. Fast Primal-Dual Method (FPD)

1: Choose ū(0)∈Rn×l, v(0)∈Rn×d×l.
2: Choose τP > 0, τD> 0.
3: k← 0.
4: while (not converged)

5: v(k+1)←ΠD
(

v(k)+ τD
(

Lū(k)− b
))

.

6: u(k+1)←ΠC
(

u(k)− τP
(

L⊤v(k+1)+ s
))

.

7: ū(k+1)← 2u(k+1)−u(k).
8: k← k+1.
9: end while

In order to improve scale invariance, the gap is often normalized to the relative numerical
gap (f(u)− fD(v))/fD(v), with the bound

f(u)− f(u∗)
f(u∗)

6
f(u)− fD(v)

fD(v)
. (4.24)

4.3.1 Nesterov Approach

We first demonstrate how to apply Nesterov’s method [Nes04b] to the saddle point
problem (4.8). The algorithm has a theoretical worst-case complexity of O(1/ε) for

finding an ε-optimal solution, i.e. for finding u(k) ∈ C satisfying f(u(k))− f(u∗)6 ε. It
has been shown to give accurate results for denoising [Auj08] and general ℓ1-norm based
problems [WABF09, BBC09]. Besides the desired accuracy, no further parameters have
to be provided.

The bound of O(1/ε) improves on the bound of O(1/ε2) for general subgradient
methods, which has been shown to be optimal for oracle-based problem formula-
tions [Nes04a]. This is possible since some additional structure is required; specifically,
the problem must be of the form

min
u∈C

f(u), f(u)= f̂ (u)+max
v∈D

(

〈Lu, v〉− φ̂(v)
)

, (4.25)

where C and D are closed, bounded, convex sets, f̂ is differentiable and convex with
Lipschitz-continuous gradient with constant M > 0, and φ̂ is continuous and convex.
It can be seen that this formulation applies to the saddle-point problem (4.8) with
f̂ (u)= 〈u, s〉 and φ̂(v)= 〈b, v〉.

The inherent nonsmoothness is taken care of by first formally applying a smoothing
step and then using a smooth constrained optimization method, however the amount of
smoothing is balanced in such a way that the overall number of iterations to produce a
solution with a specific accuracy is minimized.

Note that all the considerations below can be extended to general finite-dimensional
real vector spaces, i.e. to spaces equipped with other than the Euclidean norm, however
for simplicity we only consider the Euclidean case.
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Controlled Smooth Approximation. In order to obtain a smooth approximation
of f , choose two strongly convex prox-functions pi:D→R>0 with parameter σi> 0, i.e.

pi(v) >
1
2
σi ‖v− ci‖22, ∀v ∈D , i∈{1, 2} (4.26)

for some c1 ∈ C, c2 ∈ D. Furthermore, set D16 maxu∈Cd1(u) and D26 maxv∈Dd2(v).
Then, for µ> 0,

fµ(u) 6 f̂ (u)+max
v∈D

(

〈Lu, v〉− φ̂(v)− µp2(v)
)

(4.27)

is a differentiable function, and its gradient is Lipschitz continuous with constant

Lµ 6 M +
1
µσ2
‖L‖2, (4.28)

where ‖L‖ denotes the operator norm, i.e. the spectral norm in our case [Nes04b,
Thm. 1]. Moreover, fµ approximates f via

fµ(u)6 f(u)6 fµ(u)+ µD2, (4.29)

therefore an ε-optimal solution uµ of fµ is an (ε + µ D2)-optimal solution of f . A
concise representation of the smoothing process can be obtained by noting that f can

be expressed as f(u)= f̂ (u)+ φ̂
∗
(Lu) and

fµ(u) = f̂ (u)+ (φ̂ + µp2)
∗(Lu). (4.30)

For p2 =‖·‖2, the right summand is also known as the Moreau-envelope of φ̂ [RW04,
Def. 1.22]. Accordingly, evaluating the gradient ∇fµ(u) amounts to solving an opti-
mization problem:

∇fµ(u) = ∇f̂ (u)+L⊤argmax
v∈D

(

〈Lu, v〉− φ̂(v)− µ p2(v)
)

. (4.31)

Smooth Minimization of Nonsmooth Functions. After obtaining a smooth
approximation to f a smooth optimization method can be applied. For a sequence

of step sizes (α(k)), the method generates a sequence of “helper” points (x(k)) and cur-

rent iterates (u(k)) as in defined by Alg. 4.2, such that the invariant

fµ(u
(k)) 6

1

A(k)

Lµ

σ1
p1(uµ

∗ )+
∑

i=0

k
α(i)

A(k)
(fµ(x

(i))+ 〈∇fµ(x(i)), uµ∗ − x(i)〉) (4.32)

is maintained, where A(k)6 ∑

i=0
k

α(k), and uµ
∗ is the minimizer of fµ over C. Then,

from convexity of fµ, one obtains

fµ(uµ
∗ )6 fµ(u

(k))6
1

A(k)

Lµ

σ1
p1(uµ

∗ )+
∑

i=0

k
α(i)

A(k)
fµ(uµ

∗ )6
1

A(k)
Lµ

D1

σ1
+ fµ(uµ

∗ ). (4.33)

Therefore, if (4.32) can be maintained, it follows from (4.29) and (4.33) that

f(u(k))− f(u∗)6 fµ(u
(k))− fµ(uµ∗ )+ µD26

1

A(k)
Lµ

D1

σ1
+ µD2. (4.34)
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Algorithm 4.2. Basic Nesterov Method

1: Choose x(0)∈C.
2: u(0)← argminu∈C {fµ(x(0))+ 〈∇fµ(x(0)), u−x(0)〉+ 1

2
Lµ ‖u−x(0)‖22}.

3: for k=0, 1, 2,	 do

4: τ (k)← α(k+1)

A(k+1)
.

5: x(k+1)← τ (k) z(k)+(1− τ (k))u(k).
6: u(k+1)← argmin

u∈C
{〈∇fµ(x(k+1)), u〉+ 1

2
Lµ ‖u− x(k+1)‖22}.

7: z(k+1)← argmin
z∈C
{(Lµ/σ1) p1(z)+

∑

i=0
k+1

α(i) 〈∇fµ(x(i)), z〉}.
8: end for

Setting α(k)=
k+1

2
as in the original publication, we obtain A(k)=

(k+1) (k+2)

4
. For this

sequence, and for fixed µ, the algorithm therefore generates ε-optimal solutions of fµ
in O(1/ ε

√
). Substituting (4.28) into (4.34), we obtain

f(u(k))− f(u∗) 6
1

A(k)

(

M +
1
µσ2
‖L‖2

)

D1

σ1
+ µD2 (4.35)

6
4

(k+1)2

(

M +
1
µσ2
‖L‖2

)

D1

σ1
+ µD2. (4.36)

Minimizing (4.36) with respect to µ, for some fixed k=N , yields the optimal smoothing

µN 6 2
‖L‖
N +1

D1

σ1 σ2D2

√

. (4.37)

Using this choice, by substitution of µ=µN and k=N into (4.36) one obtains the bound

f(u(N))− f(u∗) 6
4

(N +1)2
M

D1

σ1
+

4

(N +1)
‖L‖ D1D2

σ1 σ2

√

. (4.38)

In particular, in our case f̂ (u)= 〈u, s〉, therefore ∇f̂ has Lipschitz constantM =0, and
from the resulting

f(u(N))− f(u∗) 6
4

(N +1)
‖L‖ D1D2

σ1σ2

√

(4.39)

we conclude that the method can be used to obtain an ε-optimal minimizer of f on C
in O(1/ε), which improves on the optimal complexity class for general subgradient-

based methods, O(1/ε2). However, note that (4.39) only holds for the final iterate u(N).
Intermediate estimates for k <N can be obtained by substituting µ= µN into (4.36).

Nesterov Method for Multiclass Labeling. The prox-functions p1 and p2 can be
modified to suit the application and improve the bound. In [Nes04b] the author proposes
to use an entropy prox-function for problems involving simplex constraints. However,
we found that this only provides good bounds if the constraints consist of few high-
dimensional simplices, rather than a large number of low-dimensional simplices as in
multiclass labeling problem.
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Therefore we chose the Euclidean distance for the prox-functions, p1 = p2 =
1

2
‖·‖22.

Under this choice, σ1= σ2=1, and the inner optimization steps in Alg. 4.2 and (4.31)
reduce to the projections ΠC , ΠD on the sets C and D (Appendix A.3). For reference,
the complete method applied to the saddle-point problem (4.8) is outlined in Alg. 4.3.
While the method is originally derived solely from the primal objective, it is actually a
primal-dual method:

Proposition 4.1. In Alg. 4.3, the iterates u(k) and v(k) are primal and dual feasible,

i.e. u(k) ∈ C, v(k) ∈ D. Moreover, for any solution u∗ of the relaxed problem ( 4.8), the
a priori bound

f(u(N))− f(u∗)6 f(u(N))− fD(v(N))6
2 r1 r2C
(N +1)

(4.40)

holds for the final iterates u(N), v(N).

Proof. The left inequality in (4.39) is always satisfied. The right inequality follows

from [Nes04b, Thm. 3] using the notation f̂ (u) = 〈u, s〉, A = L, φ̂(v) = 〈b, v〉,
d1(u)6 1

2
‖u− c1‖2, d2(v)6 1

2
‖v− c2‖2, D1=

1

2
r1
2, D2=

1

2
r2
2, σ1= σ2=1, M =0. �

Corollary 4.2. For given ε> 0, applying Alg. 4.3 with

N = ⌈2r1r2Cε−1− 1⌉ (4.41)

yields an ε-optimal solution of ( 4.8), i.e. f(u(N))− f(u∗)6 ε.

For the finite-differences discretization in Chap. 3, we may choose c1 =
1

l
e and

r1= n(l− 1)/l
√

, which leads to the following complexity bounds for u(N) with respect
to the optimality ε:

Local Envelope Method. (Sect. 2.5.1) For L=Grad, we have C6 2 d
√

> ‖L‖ and
c2=0. Then, we claim that for v=(v1,	 , vl)∈Dloc

d ,

‖v‖26min
i∈I

(

∑

j∈I
d(i, j)2

)

1

2 (4.42)

holds. In fact, from the constraint
∑

j∈I v
j =0 in (2.62) we deduce, for arbitrary but

fixed label i∈I,
∑

j∈I
‖vj‖22 6

(

∑

j∈I
‖vj‖22

)

+ l‖vi‖22=
(

∑

j∈I
‖vj‖22

)

− 2〈vi,
∑

j∈I
vj〉+ l‖vi‖22 (4.43)

=
∑

j∈I
(‖vj‖22− 2〈vi, vj〉+ ‖vi‖22)=

∑

j∈I
‖vj− vi‖226

∑

j∈I
d(i, j)2. (4.44)

Since i was arbitrary this proves (4.42). Therefore Dloc
d ⊆Bρd(0) with

ρd 6 min
i∈I

(

∑

j∈I
d(i, j)2

)

1/2

, (4.45)
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Algorithm 4.3. Nesterov Multi-Class Labeling

1: Let c1∈C, c2∈D and r1, r2∈R s.t. C ⊆Br1(c1) and D⊆Br2(c2); C > ‖L‖.
2: Choose x(0)∈C and N ∈N.
3: µ← 2C

N +1

r1

r2
.

4: G(−1)← 0, w(−1)← 0.
5: for k=0, 1,	 , N do

6: V ←ΠD
(

c2+
1

µ

(

Lx(k)− b
)

)

.

7: w(k)←w(k−1)+ (k+1)V .

8: v(k)← 2

(k+1)(k+2)
w(k).

9: G← s+L⊤V .
10: G(k)←G(k−1)+

k+1

2
G.

11: u(k)←ΠC
(

x(k)− µ

C2G
)

.

12: z(k)←ΠC
(

c1− µ

C2G
(k)
)

.

13: x(k+1)← 2

k+3
z(k)+

(

1− 2

k+3

)

u(k).

14: end for

and we may set r2 = ρd n
√

. Substituting C, r1 and r2 into (4.41) yields the total
complexity in terms of the number of iterations

O(ε−1n d
√

ρd) . (4.46)

Embedding method. (Sect. 2.5.2) Here we may set C=2 d
√
‖A‖, c2=0 and r2= n

√

for a total complexity of

O(ε−1n d
√
‖A‖). (4.47)

In summary, we arrive at a parameter-free algorithm, with the exception of the desired

suboptimality bound. The sequence (u(k), v(k)) allows to compute the current primal-
dual gap at each iteration. In addition, as a non-standard feature, the number of
required iterations can be determined a priori and independently of the variables in
the data term, which could be an advantage in real-time applications, where a fixed
response time is required. However, it should be noted that, for fixed µ, the method
does not necessarily converge to a minimizer of f , but rather to a minimizer of the
smoothed function fµ. An approach to iteratively adapt the smoothing is currently
in the process of publication [SKSS11].

4.3.2 Douglas-Rachford Splitting

We now demonstrate how to apply the Douglas-Rachford splitting approach [DR56] to
our problem. The Douglas-Rachford approach was thoroughly investigated in [Eck89].
While it was found to be inferior to the specialized polynomial-time methods on classical
maximal-flow problems (see also the references in the related work section), it has the
distinct advantage that – in contrast to the latter – it can also be applied to the relaxed
problem (4.8) or its dual, without assuming a pairwise, graph-based discretization.
Therefore it is a good candidate to optimize (4.8) using the finite-differences scheme.
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Douglas-Rachford methods have been used successfully for denoising with non-
Gaussian noise [CP07], image inpainting, matrix denoising and Poisson noise removal
[Set09b, DFN09]. A strong point of the method is that it does not require any part
of the objective to be smooth or finite, which allows to introduce constraints as required.
Additionally, it has a comparably simple implementation, and is globally convergent.

Under a special splitting, the basic Douglas-Rachford iteration applied to the dual
problem can be shown to be equivalent to the Alternating Direction Method of Multi-
pliers [Gab83] and the recently proposed Alternating Split Bregman method [GBO09a,
GO09, Set09a, Set09b], hence our results equally apply in these formulations. Very
recently, a generalization of the FPDmethod [PCBC09] has also been proposed [CP10a],
that is equivalent to a “preconditioned” Alternating Direction of Multipliers Method and
Douglas-Rachford splitting under certain circumstances.

The Douglas-Rachford approach is formulated in the operator splitting framework
(Appendix A.3) as follows: Assume that the subdifferential T 6 ∂f can be decomposed
into two “simple” operators, T = A + B, of which forward and backward steps can
practically be computed. In view of Prop. A.45, this is given if f = f1+ f2 for proper,
convex, lsc fi such that

ri(dom f1)∩ ri(dom f2)� ∅. (4.48)

If this is the case, then T =A+B with A=∂f1, B=∂f2. Denoting by JτS6 (I+ τS)−1

the resolvent of an operator S (Appendix A.3), the two most basic splitting techniques
are the forward-forward and backward-backward fixpoint iterations [Eck89],

(FW−FW) ū(k+1)←
(

I − τ (k)B
)(

I − τ (k)A
)

ū(k), (4.49)

(BW−BW) ū(k+1)←J
τ (k)B

J
τ (k)A

ū(k), (4.50)

The former corresponds to alternating subgradient descent with the sequence of step
sizes (τ (k)), which is generally problematic due to non-uniqueness of the subgradient if
the problem is not strictly convex. The latter, while convergent under certain restric-

tions on the sequence (τ (k)), converges only in the mean, which provokes numerical
difficulties [Eck89, Thm. 3.11].

A very common scheme is the forward-backward iteration,

(FW−BW) ū(k+1)←J
τ (k)B

(

I − τ (k)A
)

ū(k). (4.51)

For the special case f(u) = δC(u) + h(u) with Lipschitz-continuous gradient ∇h, the
forward-backward method corresponds to projected gradient descent and can be shown

to converge with an upper bound on τ (k) [LP66][Eck89, Thm. 3.12], however convergence
is not clear in general. Here we consider the (tight) Douglas-Rachford-Splitting iteration
[DR56, LM79] with the fixpoint iteration

ū(k+1) = (JτA(2JτB− I)+ (I −JτB))(ū(k)) . (4.52)

Under the very general constraint that A and B are maximal monotone and A+B has
at least one zero, the sequence (ū(k)) is uniquely defined and converges to a point ū for
any step size τ , with the additional property that u6 JτB(ū) is a zero of T and thus
a minimizer of f [Eck89, Thm. 3.15, Prop. 3.20, Prop. 3.19]. Maximal monotonicity
follows directly if f1 and f2 are proper, convex, lower semicontinuous functions.

In addition to the exact convergence result for the Douglas-Rachford approach, there
also exists a finite precision convergence result (again, we restrict ourselves to X6 R

n):
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Algorithm 4.4. Basic Douglas-Rachford Method

1: Choose ū(0)∈X, τ > 0.
2: Choose (θ(k))⊂ (0, 2) s.t.

∑

n∈N
θ(k) (2− θ(k))=+∞.

3: k← 0.
4: while (not converged)

5: u(k)←Pτf2(ū
(k))= argmin

u∈X

{

1

2
‖u− ū(k)‖2+ τ f2(u)

}

.

6: u′(k)←Pτf1(2u
(k)− ū(k))= argmin

u∈X

{

1

2
‖u− (2u(k)− ū(k))‖2+ τ f1(x)

}

.

7: ū(k+1)← ū(k)+u′(k)− u(k).
8: k← k+1.
9: end while

Proposition 4.3. [ Com04, Cor. 5.2] Let A, B: X ⇉ X be maximal monotone with

0∈A+B. Let τ > 0, (θ(k))⊆ (0, 2), (a(k)), (b(k))⊆X such that
∑

k∈N

θ(k) (2− θ(k))=+∞ and
∑

k∈N

θ(k)
(

‖a(k)‖2+ ‖b(k)‖2
)

<+∞. (4.53)

Then the sequence (ū(k)) generated by the iteration

u(k)← JτBū
(k)+ b(k), (4.54)

u′(k)← JτA(2u
(k)− ū(k))+ a(k),

ū(k+1)← ū(k)+ θ(k)
(

u′(k)− u(k)
)

. (4.55)

converges to some u∈X with

0 ∈ (A+B)(JτBu). (4.56)

Alg. 4.4 shows the complete algorithm including the proximal steps for computing a
minimizer of the problem

min
u∈X
{f1(u)+ f2(u)}. (4.57)

In the following, we will generally set the overrelaxation parameter θ(k) to 1.
There is generally no unique way of how to choose the splitting f = f1 + f2.

If the splitting is not chosen carefully, evaluating the resolvents (steps 5 and 6 in
Alg. 4.4) becomes a nontrivial problem, which then has to be solved iteratively. This is
undesirable, as it would require to solve the inner problems with increasing accuracy to
ensure convergence, see (4.53). In the following, we consider several splitting techniques
with an increasing number of auxiliary variables, leading to a decreasing difficulty of
the inner problems.

4.3.2.1 Primal Constraint Splitting

The most straightforward approach is to split (4.8) according to

min
u
{δC(u)�

f1(u)

+max
v∈D

g(u, v)�
f2(u)

}, (4.58)
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which results in Alg. 4.5 as published in [LKY+09]. Convergence follows from
Prop. A.45 and Prop. 4.3 if ri(C)� 0, since D is bounded and thus f2 has full domain.

Step 5 can be easily solved by computing

u′(k) ← ΠC(2u(k)− ū(k)). (4.59)

Solving the inner problem in step 4 is more difficult. While it is an unconstrained
problem, it involves the full primal objective f2 together with a quadratic data term.
This problem is similar to the Rudin-Osher-Fatemi problem (cf. Sect. 1.1), and can
be solved using related methods, such as forward-backward [Cha05, DAV08] or half-
quadratic methods [YYZW08]; see [LKY+09] for a comparison.

However, we observed that the inner problem in step 4 requires considerable param-
eter tuning and is a major obstacle to quickly obtaining accurate solutions. In fact, it
is not much simpler than the original problem itself. Therefore we do not evaluate this
approach in detail and refer to [LKY+09] instead.

A notable special case occurs when Ψ – and therefore the dual constraint set D – is
separable in the labels, for instance

Ψ(z=(z1|	 |zl)) = ‖z1‖2+	 + ‖zl‖2. (4.60)

In this case, step 4 additionally decouples into l separate ROF-type problems, and the
method can be seen as a parallel analogon to the α-expansion method [BVZ01]: in the
i-th of the l separate ROF-problems, label i (ui(x)=1) competes against all other labels
(ui(x) = 0). However, compared to α-expansion, the individual problems are solved in
parallel, rather than sequentially, and the obtained (fractional) solutions are merged
afterwards in step 5. A similar approach has very recently been proposed for the dual
problem [YBTB10], with the same issue of requiring to iteratively solve the difficult
inner problems.

4.3.2.2 Auxiliary Variables

Due to the above-mentioned shortcomings, we propose an alternative approach, fol-
lowing the procedure in [EB92, Set09b] of adding auxiliary variables before splitting the
objective in order to simplify the individual steps of the algorithm; see [LS10] for the
corresponding technical report. We introduce w=Lu and split according to

min
u∈C

max
v∈D
{〈u, s〉+ 〈Lu, v〉− 〈b, v〉} (4.61)

= min
u
{〈u, s〉+ σD(Lu− b)+ δC(u)} (4.62)

= min
u,w

h(u, w), h(u, w)6 δLu=w(u, w)�
h1(u,w)

+ 〈u, s〉+ δC(u)+σD(w− b)�
h2(u,w)

. (4.63)

We apply the tight Douglas-Rachford iteration (Alg. 4.4) to this formulation using
A= ∂h1 and B= ∂h2: Denote

(u(k), w(k)) 6 JτB(ū
(k), w̄(k)) , (4.64)

(u′(k), w ′(k)) 6 JτA(2JτB− I)(ū(k), w̄(k)) (4.65)

= JτA(2u
(k)− ū(k), 2w(k)− w̄(k)). (4.66)
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Algorithm 4.5. Basic Douglas-Rachford Multi-Class Labeling

1: Choose u(0)∈Rn×l, τ > 0.
2: k← 0.
3: while (not converged)

4: u(k)← arg minu
{

1

2
‖u− ū(k)‖22+ τ (〈u, s〉+σD(Lu− b))

}

.

5: u′(k)← arg minu{12‖u− (2u(k)− ū(k))‖22+ δC(u)}.
6: ū(k+1)← ū(k)+ θ(k) (u′(k)− u(k)).
7: k← k+1.
8: end while

Then, according to (4.52), (ū(k+1), w̄(k+1)) = (ū(k) + u′(k) − u(k), w̄(k) + w ′(k) − w(k)).
Evaluating the resolvent JτB is equivalent to a proximal step on h2; moreover due to
the introduction of the auxiliary variables the computation decouples:

u(k) = argmin
u
{1
2
‖u− ū(k)+ τs‖22+ δC(u)} (4.67)

= ΠC
(

ū(k)− τs
)

, (4.68)

w(k) = argmin
w
{ 1
2τ
‖w− w̄(k)‖22+σD(w− b)} (4.69)

= w̄(k)− τΠD

(

1
τ
(w̄(k)− b)

)

. (4.70)

In a similar manner, JτA resp. the proximal step on h1 amounts to the least-squares
minimization problem

(u′(k), w ′(k)) = arg min
u′,w ′
{δLu′=w ′+

1
2τ

(

‖u′− (2u(k)− ū(k))‖22+ ‖w ′−
(

2w(k)− w̄(k)
)

‖22
)

. (4.71)

Substituting the constraint w ′(k)=Lu′(k) yields

u′(k) = argmin
u′
{‖u′− (2u(k)− ū(k))‖22+ ‖Lu′−

(

2w(k)− w̄(k)
)

‖22} (4.72)

= (I +L⊤L)−1
(

(2u(k)− ū(k))+L⊤(2w(k)− w̄(k)
))

. (4.73)

By the substitution w ′′(k)6 ΠD
(

τ−1(w̄(k)− b)
)

=
1

τ
(w̄(k)−w(k)), one obtains Alg. 4.6.

Compared to Alg. 4.5, the individual steps in Alg. 4.6 are much simpler, involving
mainly projections on C and D, and evaluations of L and L⊤. For the finite-differences
discretization with Neumann boundary conditions, solving the linear equation system

(4.73) can be greatly accelerated by exploiting the fact that grad⊤grad diagonalizes
under the discrete cosine transform (DCT-2) [Str99, LKY+09]:

grad⊤grad=B−1diag(c)B (4.74)

where B is the orthogonal transformation matrix of the DCT and c is the vector of
eigenvalues of the discrete Laplacian. More generally, assume that L is of the form

L=A⊗ grad for some (possibly identity) matrix A ∈Rk×l, k6 l. This also covers the
embedding approach (Sect. 2.5.2).
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Algorithm 4.6. Douglas-Rachford with Auxiliary Variables (DR)

1: Choose τ > 0, ū(0)∈Rn×l, w̄(0)∈Rn×d×l.
2: k← 0.
3: while (not converged)

4: u(k)←ΠC
(

ū(k)− τs
)

.

5: w ′′(k)←ΠD
(

1

τ
(w̄(k)− b)

)

.

6: u′(k)← (I +L⊤L)−1
(

(2u(k)− ū(k))+L⊤(w̄(k)− 2τw ′′(k))
)

.

7: w ′(k)←Lu′(k).
8: ū(k+1)← ū(k)+ u′(k)−u(k).
9: w̄(k+1)←w ′(k)+ τw ′′(k).

10: k← k+1.
11: end while

We first compute the decomposition A⊤A = V −1diag(a)V with a ∈ R
l and an

orthogonal matrix V ∈Rl×l, V −1=V ⊤. We claim that

(I +L⊤L)−1 = (V ⊤⊗In)(Il⊗B−1)(I+diag(a)⊗diag(c))−1(Il⊗B)(V ⊗In). (4.75)

To see (4.75), note that (P ⊗Q)(R⊗ S) = (PR)⊗ (QS) for matrices P , Q, R, S with
compatible dimensions, and therefore

(I +L⊤L)−1 = (I + (A⊗ grad)⊤(A⊗ grad))−1 (4.76)

= (I + (A⊤A)⊗ (grad⊤grad))−1 (4.77)

= (I + (V −1diag(a)V )⊗ (B−1diag(c)B))−1 (4.78)

= (I + (V −1⊗B−1)(diag(a)⊗diag(c))(V ⊗B))−1 (4.79)

= ((V −1⊗B−1)(I + diag(a)⊗diag(c))(V ⊗B))−1 (4.80)

= (V −1⊗B−1)(I +diag(a)⊗ diag(c))−1(V ⊗B). (4.81)

Using V −1 = V ⊤, (4.75) follows. Thus step 6 in Alg. 4.6 can be achieved fast and
accurately through matrix multiplications with V , discrete cosine transforms, and one
O(n l) product for inverting the inner diagonal matrix.

Similar to the Nesterov approach, it can be shown that Alg. 4.6 is a primal-dual

method, with the sequence (u(k), w ′′(k)) of primal-dual feasible pairs (see also [Eck89,
Prop. 3.42] for a similar result):

Proposition 4.4. Let C, D closed convex bounded sets with ri(C) � ∅ and ri(D) � ∅.
Then Alg. 4.6 generates a sequence of primal/dual feasible pairs (u(k), w ′′(k)) ∈ C × D
converging to a saddle point (u∗, v∗) of the relaxed problem ( 4.8).

Proof. The primal-dual feasibility is clear from the definition of the algorithm, since

u(k) and w ′′(k) are obtained by projections on C and D, respectively. Convergence follows
as a special case from the more general Prop. 4.5 and Prop. 4.6 below applied to the dual

problem (4.10), i.e. substitute v↔u, C↔D , b↔s, L↔−L⊤, and set r=1, D1=D. �
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Thus the Douglas-Rachford approach allows to use the primal-dual gap

f(u(k))− fD(w ′′(k)) (4.82)

as a stopping criterion.

4.3.2.3 Multiple-Constraint Dual Variables

The above approach is still restricted in that it requires projections on the constraint
sets. This generally does not pose a problem with respect to the primal constraint set C,
however the tight relaxation proposed in Sect. 2.5.1 and the lifting methods in 2.7 both
result in an intricate dual constraint set D.

This prohibits a projection on D in closed form (Alg. 4.6 step 5) and requires an
inexact iterative projection instead, causing a number of issues: From a theoretical
viewpoint, convergence of the outer algorithm usually requires the inner problem to be
solved with an increasing accuracy at each step (Prop. 4.3), which is impractical. Thus
in practice convergence is no longer guaranteed. In addition, the projections become
very slow and raise many questions on how to choose suitable and matching stopping
criteria, possibly introducing accuracy and convergence issues.

However, note that in both the envelope-regularized labeling problems and the lifting
problems one faces discretized problems of the form

min
u∈C

max
v∈D1∩	 ∩Dr

{〈u, s〉+ 〈Lu, v〉− 〈b, v〉}, (4.83)

where D = D1 ∩ 	 ∩ Dr for some r ∈ N, and projections on Di can be computed in
closed form, cf. (2.62) and (2.141)–(2.143). We now show how to add auxiliary variables
before splitting the objective in order to exploit this structure, avoiding the iterative
projections and the associated accuracy and convergence issues [LBS10]. Instead of
solving (4.83) directly, we solve the dual problem and additionally introduce auxiliary
variables z and v1,	 , vr, leading to the equivalent problem

min
vi
{δ−L⊤

(

1

r

∑

i
vi

)

=z,v1=	=vr�
f1

+
∑

i
δDi(vi)+ 〈

1

r

∑

i
vi, b〉+max

u∈C
〈u, z− s〉�

f2

}. (4.84)

The extra constraints are represented as characteristic functions δ assuming the values
{0, +∞}. Applying the Douglas-Rachford method to the above splitting formulation
leads to the complete Dual Multiple-Constraint Douglas-Rachford (DMDR) algorithm
as outlined in Alg. 4.7.

Due to the auxiliary variables, the backward step for f2 requires only separate
projections on the Di instead of the complete set D. The backward step for f1 can be
accelerated as in the previous section. Convergence of Alg. 4.7 follows directly from a
mild condition on the relative interiors ri of the domains:

Proposition 4.5. Assume that D=D1∩	 ∩Dr and C be closed convex bounded sets
such that all Di are closed, convex and bounded, ri(D1)∩	 ∩ ri(Dr)� ∅ and ri(C)� ∅.
Then the sequence (v1

(k)
, 	 , vr(k), z ′′(k)) in Alg. 4.7 converges to a primal-dual feasible

point (v1,	 , vr, z ′′)∈D1×	 ×Dr×C.
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Algorithm 4.7. Dual Multiple-Constraint Douglas-Rachford (DMDR)

1: Choose τ > 0, v̄i
(0)∈Rn×d×l, z̄ (0)∈Rn×d.

2: k← 0.
3: while (not converged)

4: vi
(k)←ΠDi

(

v̄i
(k)− τ

r
b
)

.

5: z ′′
(k)←ΠC

(

1

τ

(

z̄ (k)− s
)

)

.

6: v ′
(k)← (r I +LL⊤)−1

(

∑

i

(

2vi
(k)− v̄i

(k)
)

−L
(

z̄ (k)− 2τz ′′
(k)
))

.

7: v1
′ (k)=	 = vr

′(k)← v ′(k).

8: z ′(k)← (−L⊤)v ′(k).

9: v̄i
(k+1)← v̄i

(k)
+ vi

′(k)− vi(k).
10: z̄ (k+1)← z ′(k)+ τz ′′(k).
11: k← k+1.
12: end while

Proof. Since C is closed we have

ri(dom f2)∩ ri(dom f1) = ri(dom f2)∩{v1=	 = vr,−A⊤vi= z} (4.85)

= {(v,	 , v,−A⊤v)⊤|v ∈ ri(D1)∩	 ∩ ri(Dr)} (4.86)

This set is nonempty by the assertion, which with Prop. A.45, Prop. 4.3 and continuity
of the projections implies convergence. �

In particular, the convergence of the sequence (vi
(k)

) guarantees that from some point

on the constraints hold exactly . Then v1
(k)

= 	 = vr
(k)

=: v(k), and v(k) converges to a
solution v of the dual problem (4.10). Unfortunately, it is nontrivial to generate a primal
solution u from a single dual solution, as both the dual and the primal problem are
usually not strictly convex. However, it turns out that the above algorithm additionally
returns a primal solution:

Proposition 4.6. Let (v6 v1 = 	 = vr, z
′′) be a limit of Alg. 4.7. Then (z ′′, v) is a

saddle point of the problem ( 4.8), i.e. u6 z ′′ is a primal solution.

Proof. We show the saddle point property

g(z ′′, ṽ)6 g(z ′′, v)6 g(ũ , v) ∀ũ ∈C , ṽ ∈D . (4.87)

In the following, all variables without index denote the limits of their corresponding

sequences, i.e. v(k)→v, z ′′
(k)→z ′′ etc. As all operations in the algorithm are continuous,

the relations between the iterates transfer to their limits. We further define z6 z̄ − τz ′′.
From the definition of the algorithm we obtain

vi = vi
′, (4.88)

−L⊤ v=−L⊤ vi=−L⊤ vi
′ = z̄ − τ z ′′= z. (4.89)
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From the Douglas-Rachford convergence theorem [Eck89, Prop. 3.19], it follows that

τ−1(v̄1− v1,	 , v̄r− vr, z̄ − z)⊤∈ ∂f2(v1,	 , vr, z) . (4.90)

As f2 is separable in vi and z, the subdifferential decomposes into a direct product and
thus r+1 separate equations:

τ−1 (v̄i− vi) ∈ NDi(vi)+ r−1 b, u∈{1,	 , r}. (4.91)

τ−1 (z̄i− zi) ∈ argmax
u∈C
〈u, z − s〉. (4.92)

We now use the fact that

ND1(v1)+	 +NDr(vr)=ND1(v)+	 +NDr(v)=ND1∩	 ∩Dr(v)=ND(v), (4.93)

which follows from the assumption v = vi and [RW04, Cor. 10.9]; here the convexity,
closedness and nonseparability of the Di is required. Summing up (4.91) and using
(4.93), we arrive at

τ−1
∑

i

(v̄i− vi)∈
∑

i

NDi(vi)+ b=ND(v)+ b. (4.94)

From the definition of the algorithm we also obtain τ−1
∑

i
(v̄i−ui)=L z ′′, therefore

L z ′′ ∈ ND(v)+ b, (4.95)

which shows that v∈argmaxv∈D 〈Lz ′′− b, v〉, i.e. the left inequality in (4.87). To show
the right inequality, we use (4.89) and (4.92) to obtain

z ′′ ∈ argmax
u∈C
〈u, z− s〉= argmax

u∈C
〈u,−L⊤ v− s〉= argmin

u∈C
(〈Lu, v〉+ 〈u, s〉). (4.96)

Together, (4.95) and (4.96) show the saddle-point property of (z ′′, v). Therefore z ′′ must
be a primal solution. �

By duality, the same scheme can be applied to solve problems where the primal
constraint set is more complicated, i.e. C = C1 ∩ 	 ∩ Cr. Also note that for r = 1, the
algorithm reduces to the Douglas-Rachford method from Sect. 4.3.2.2, applied to the
dual problem (Prop. 4.4).

4.4 Implementation Details

Projection on the Primal Constraints. Projections on the set C are highly sep-
arable and can be computed exactly in a finite number of steps [Mic86]. Alg. 4.8
summarizes the pointwise operation.

Projection on the Dual Constraints. As mentioned in the introduction, for the
Euclidean embedding approach, projecting onto the unit ball Dloc

I is trivial:

ΠDloc
I (v) =







v, ‖v‖26 1 ,
v

‖v‖2
, otherwise. (4.97)
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Algorithm 4.8. Projection of y ∈Rl onto the standard simplex ∆l

1: y(0)← y.

2: Z(0)←∅.
3: repeat

4: ỹi
(k+1)←







0, i∈Z(k),

yi
(k)− e⊤y(k)− 1

l− |Z(k)|
, otherwise,

(i∈I).

5: Z(k+1)←Z(k)∪{i∈I |ỹi
(k+1)

< 0}.

6: yi
(k+1)←max {ỹi

(k+1)
, 0} (i∈I).

7: k← k+1.
8: until ỹ (k+1)> 0.

For the envelope method, Dloc = Dloc
d is more complicated. We represent Dloc

d as the
intersection of convex sets,

Dloc
d =R∩S , R6 {v ∈Rd×l|

∑

i

vi=0}, (4.98)

S6 ⋂

i<j

Si,j , S i,j6 {v ∈Rd×l|‖vi− vj‖26 d(i, j)}. (4.99)

Enumerating the Si,j as S i1,j1,	 ,Sir,jr, this provides the decomposition of D,

D=D1∩	 ∩Dr, Dt6 R∩Sit,jt, (4.100)

as required for the DMDR method (Alg. 4.7). Since ΠR is amounts to a translation

along the vector e=(1,	 ,1), and the Si,j are translation-invariant in the direction of e,
the projection can be decomposed:

ΠDt(v)=ΠR(ΠSit,jt(v)). (4.101)

The individual projections ΠSi,j can be computed in closed form, as shown by the
following proposition:

Proposition 4.7. Let D > 0 and c ∈ R
l, c � 0. For v = (v1|	 |vl) ∈ R

d×l, denote
C(v)6 ∑

i
civ

i and

K6 {v ∈Rd×l | ‖C(v)‖26D}. (4.102)

Then

ΠK(v) =







v, ‖C(v)‖26D,

(w1|	 |wl), wi= vi− ci ‖C(v)‖2−D

‖c‖22
C(v)

‖C(v)‖2 , ‖C(v)‖2>D. (4.103)

Proof. Computing w=ΠK(v) amounts to solving

arg min
w∈Rd×l,‖c1w1+	+clwl‖26D

∑

i

1
2
‖wi− vi‖22. (4.104)
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The Lagrangian is

L(w, µ) =
∑

i

1
2
‖wi− vi‖22+ µ (‖C(w)‖22−D2), (4.105)

with KKT conditions

0 =
! ∂

∂wi
L(w, µ)=wi− vi+2 µ ciC(w), i=1,	 , l, (4.106)

0 6 µ⊥(‖C(w)‖22−D2)6 0. (4.107)

If ‖C(v)‖26D, we may set w= v and µ=0. If ‖C(v)‖2>D, set

µ =
‖C(v)‖2−D
2D ‖c‖22

> 0 (4.108)

and w as in (4.103). Summing up the equalities in (4.106) weighted by the ci leads to

C(w) = C(v)− ‖C(v)‖2−D
‖C(v)‖2

C(v) (4.109)

= D
C(v)

‖C(v)‖2
, (4.110)

from which the second set of KKT conditions (4.107) follows. Moreover,

wi =
(4.103)

vi− ci ‖C(v)‖2−D
‖c‖22

C(v)
‖C(v)‖2

(4.111)

=
(4.110)

vi− ci ‖C(v)‖2−D
D ‖c‖22

C(w) (4.112)

=
(4.108)

vi− 2 µ ciC(w), (4.113)

which shows that also the first set of KKT conditions (4.106) holds. �

Corollary 4.8. (Specialization to S i,j)

ΠSi,j(v) =

{

v, ‖vi− vj‖26 d(i, j),

(w1,	 , wl), otherwise ,
(4.114)

where

wt =



























vt, t � {i, j},
vi− ‖v

i− vj‖2− d(i, j)
2

· vi− vj
‖vi− vj‖2

, t= i,

vj+
‖vi− vj‖2− d(i, j)

2
· vi− vj
‖vi− vj‖2

, t= j .

(4.115)

Proof. Set ci=1, cj=−1 and ck=0 for k � {i, j}, and apply Prop. 4.7. �

Remark 4.9. The special case of Cor. 4.8 corresponds to the method outlined in
[CCP08], where a different linearization and restricted set of metrics d(i, j) was used.
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Algorithm 4.9. Dykstra’s Method for Projecting onto the Intersection of Convex Sets

1: x← v ∈Rd×l.
2: y1,	 , yk← 0∈Rd×l

3: while (x not converged)
4: for t=1,	 , k do
5: x′←ΠS(it,jt)(x+ yt).

6: yt← x+ yt− x′.
7: x← x′.
8: end for
9: end while

For applications where an approximation of the complete projection ΠD is required,
we follow the idea of [CCP08] to use Dykstra’s method [BD86]. However, any recent
multiple-splitting method could be used [CP08, GM09]. One has to take caution when
applying large-scale methods such as sequential/parallel “projection on convex sets”
(POCS ) and row-action methods [You78, Com96, SY98] who are shown to converge to
a point in C, which is not necessarily the Euclidean projection on C. While suitable for
finding a feasible point in C, they cannot by applied to our setting, since we require the
actual (Euclidean) projection on C.

The complete method for projecting a vector v onto S = S(i1,j1) ∩ 	 ∩ S(ik,jk) is
outlined in Alg. 4.9. While the sequence of y may be unbounded, x converges to ΠS(v)
(cf. [GM89, p.40][Xu00]).

4.5 Experimental Comparison

In this section we present some observations regarding the practical performance of the
proposed optimization methods. Due to the reasons outlined in Chap. 3, we restrict
ourselves to methods for solving the convex relaxed problem, rather than combinatorial
approaches. We first quantitatively compare the algorithms in terms of runtime and
the number of inner iterations for problems where the inner problems can be solved
exactly, as in the case of the embedding method, and then provide some results on the
envelope regularization. We do not claim to provide a comprehensive benchmark, but
rather illustrate and highlight the characteristic properties of the individual methods
on selected examples.

The algorithms were implemented in MATLAB with some core functions, such as the
computation of the gradient and the projections on the dual sets, implemented in C++.
We used MATLAB’s built-in FFTW interface for computing the DCT for the Douglas-
Rachford approach. The experiments were conducted on Intel Core2 Duo systems with
4 GB of RAM and 64-bit MATLAB 2009a.

4.5.1 General Observations

To compare the convergence speed of the different approaches, we computed the primal-
dual gap at each iteration. As it bounds the optimality of the current iterate (see
Sect. 4.3), it constitutes a reliable and convenient criterion for performance comparison.
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Figure 4.1. Synthetical “four colors” image for the performance tests. Left to right: Input
image with Gaussian noise, σ= 1; local labeling without regularizer; result with uniform metric
regularizer and Douglas-Rachford optimization; ground truth.
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Figure 4.2. Convergence speed for the “four colors” image in Fig. 4.1. Left: Primal (upper)
and dual (lower) objectives vs. computation time for the (from top to bottom) Nesterov, Fast
Primal-Dual (FPD) and Douglas-Rachford (DR) methods. Right: Detailed view of the FPD and
DR methods. The primal and dual objectives provide upper and lower bounds for the objective
of the true optimum. Douglas-Rachford and FPD perform similarly, while the Nesterov method
falls behind by a large margin.

Unfortunately the gap is not available for the envelope method, as it requires the
primal objective to be evaluatable. Using a numerical approximation is not a reliable
option, as this would only provide a lower bound for the objective, i.e. an underestima-
tion of the gap, which is critical as one is interested in the behavior when the gap is very
close to zero. Therefore we restricted the gap-based performance tests to the embed-
ding relaxation (Sect. 2.5.2). In this setting the projections can be computed exactly,
and thus the Douglas-Rachford (DR) and Dual Multiple-Splitting Douglas-Rachford
(DMDR) methods coincide, therefore all results for DR apply as well to DMDR. In
order to make a fair comparison we generally analyzed the progression of the gap with
respect to computation time, rather than the number of iterations.

For the first tests we used the synthetical 256 × 256 “four colors” input image
(Fig. 4.1). It represents a typical segmentation problem with several objects featuring
sharp corners and round structures above a uniform background. The label set consists
of three classes for the foreground and one class for the background. The image was
overlaid with i.i.d. Gaussian noise with standard deviation σ=1 and truncated to the
interval [0, 1] on all RGB channels. We used a simple ℓ1 data term, si(x)= ‖I(x)− ci‖1,
where I(x) ∈ [0, 1]3 are the RGB color values of the input image in x, and ci is a
prototypical color vector for the i-th class.

The runtime analysis shows that FPD and DR perform similar, while the Nesterov
method falls behind with respect to both the primal and the dual objective (Fig. 4.2).
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Figure 4.3. Relative primal-dual gap for Fig. 4.2 with respect to time and number of iterations.
Left: Relative gap vs. time and number of iterations. The Nesterov method (top) again falls
behind, while FPD (center) and Douglas-Rachford (bottom) are equally fast. Right: Primal-Dual
gap vs. number of iterations. The Douglas-Rachford method requires only one third of the FPD
iterations, which makes it suitable for problems with expensive inner steps.

The picture changes when considering the gap with respect to the number of iter-
ations rather than time, eliminating influences of the implementation and system
architecture. To achieve the same accuracy, DR requires only one third of the iter-
ations compared to FPD (Fig. 4.3). This advantage does not fully translate to the
time-based analysis as the DCT steps increase the per-step computational cost sig-
nificantly. However in this example the projections on the sets C and D were relatively
cheap compared to the DCT. In situations where the projections dominate the time
per step, the reduced iteration count can be expected to lead to an approximately
proportional reduction in computation time.

One could ask if these relations are typical to the synthetical data used. However,
we found them confirmed on a large majority of the problems tested. As a real-world
example, consider the “leaf” image from Chap. 2 (Fig. 2.3). We computed a segmentation

into 12 classes with uniform metric regularizer, based on ℓ1 distances for the data term,
with very similar relative performance as for the “four colors” image (Fig. 4.4).

4.5.2 Varying Problem Size and Parameters

Problem Size and Interior-Point Methods. To examine how the methods scale
with an increasing problem size, we evaluated the “four colors” problem at various scales
ranging from 16× 16 to 512× 512. Note that if the grid spacing is held constant, the
regularizer weights must be scaled proportionally to the image width and height in
order to obtain structurally comparable results, and in order to not mix up effects of
the problem size and of the regularization strength.

In addition to the FPD, DR and Nesterov algorithms, we also implemented the
problem in an SOCP formulation, and compared the first-order methods to two inte-
rior-point solvers: the non-commercial MATLAB-based SDPT3 and the commercial
MOSEK package. The latter consistently achieves the fastest runtimes in the indepen-
dent SOCP benchmark [Mit03, Mit11].

In order to compensate for the increasing number of variables, the stopping criterion
was based on the relative gap (4.24), i.e. the algorithms were terminated as soon as the
relative gap fell below a threshold. All tests were repeated 10 times with different noise.
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Figure 4.4. Relative primal-dual gap for the real-world leaf image in Fig. 2.3 with 12 classes
and uniform metric regularizer. Left: Relative gap vs. number of iterations. As in the syn-
thetic examples, the Nesterov method (top) falls behind the FPD (center) and Douglas-Rachford
(bottom) methods. Right: Relative gap vs. number of iterations. As with the synthetical four-
colors image (Fig. 4.3), the Douglas-Rachford approach reduces the number of required iterations
by approximately a factor of three.
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Figure 4.5. Performance of first-order and interior-point methods for increasing problem size
(number of pixels) n. Shown is the mean time in seconds over 10 problems with different noise,
with error bars at 2σ. The Nesterov method never converged to the required relative gap of 10−4

within the limit of 2000 iterations, despite an optimal selection of the smoothing parameter, and
is therefore not shown. For this relatively low accuracy, FPD and DR outperform both interior-
point solvers, which additionally exceeded the available memory at image sizes of 192× 192 and
384 × 384, respectively. The computational effort scales slightly superlinearly with the number
of pixels in the image.

As can be seen in Fig. 4.5, for the moderate accuracy of 10−4, the FPD and DR
outperform the interior-point solvers by a large margin. The Nesterov method consis-
tently produced relative gaps in the 10−3 range and never achieved the threshold within
the limit of 2000 iterations, despite the built-in optimal selection of the smoothing
parameter. Compared to FPD, the Douglas-Rachford approach seems to have a slight
advantage on larger images. Both approaches seem to scale only slightly superlinearly
with the problem size, which is quite encouraging given the comparatively simple first-
order methods (Fig. 4.5).

The interior-point solvers exceeded the available memory at resolutions of 192×192,
corresponding to 500.000 variables and 180.000 constraints (SDPT3), and 384 ×384,
corresponding to 2 million variables and 730.000 constraints (MOSEK).
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Figure 4.6. Performance of first-order and interior-point methods for a relative gap of 10−6,
cf. Fig. 4.5 (note the different scales). For higher requested accuracy, the better asymptotical
convergence rate of the interior-point methods becomes advantageous. However, the first-order
methods still outperform the SDPT3 solver.

For applications where a high accuracy is required, interior-point approaches are
better suited due to their better asymptotical convergence rate. This can be seen in
Fig. 4.6, where the stopping criterion was set to 10−6. However, such accuracy is often
not required in imaging applications, and the first-order methods are very amenable to
parallelization, which can lead to an additional speedup of 30− 100 [ZGFN08]. We also
observed that the interior-point methods generated infeasible solutions that fully utilize
the permitted infeasibility, while the solutions returned by FPD and DR were feasible
up to numerical precision.

Regularization Strength. While we deliberately excluded influences of the regular-
izer in the previous experiment, it is also interesting to examine how algorithms cope
with varying regularization strength. We fixed a resolution of 256× 256 and evaluated
the performance of the FPD and DR algorithms, scaling the regularization term by an
increasing sequence of λ in the [0.1, 5] range (Fig. 4.7).

For low regularization, where much of the noise remains in the solution, FPD clearly
takes the lead, while for scenarios with large structural changes, DR performs better.
Again, the Nesterov method never achieved the required accuracy. We observed two
peaks in the runtime plot which we cannot completely explain. However we found that
at the first peak, structures in the image did not disappear in parallel during the course
of the optimization process, but rather one after the other, i.e. neither the regularizer
nor the data term dominate the other.

4.5.3 Breaking Points

We have no clear explanation why the Nesterov method clearly performs worst in most
settings. However it is possible to compare its behavior with the theoretical bound
from Prop. 4.1. It can be seen that exactly one half of the final bound comes from the
smoothing step, while the other half is caused by the finite number of iterations:

εtotal= εsmooth+ εiter, where εsmooth= εiter. (4.116)

Moreover, εiter decreases with 1/(k+1)2 according to (4.36), which gives a per-iteration
optimality bound of

εtotal
(k)

= εsmooth+

(

N +1
k+1

)

2

εiter. (4.117)
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Figure 4.7. Computation time for varying regularization strength λ for the Douglas-Rachford
(dark) and FPD (light) methods. The images at the bottom show the final result for the corre-
sponding λ above. FPD is strong on low regularization problems, while Douglas-Rachford is better
suited for problems with large structural changes. The Nesterov method never achieved the relative
gap of 10−5 within 2000 iterations.
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Figure 4.8. Theoretical vs. practical performance of the Nesterov method for the “four-colors”
problem in Fig. 4.1. As expected, the primal objective (solid) stays below the theoretical bound

εtotal
(k) (dashed). At the final iteration, the worst-case total bound εtotal (dotted, top) is outper-
formed by a factor of 7, which implicates that the error introduced by the smoothing is also well
below its worst-case bound εsmooth (dotted, bottom). During the first iterations the method
stays close to the theoretical bound, indicating that the theoretical bound cannot be considerably
improved by a better choice of the constants.

On the “four colors” image, the actual gap stays just below εtotal
(k)

in the beginning
(Fig. 4.8). This implies that the theoretical bound can hardly be improved, e.g. by
choosing constants more precisely. Unfortunately, the bound is generally rather large, in
this case at εtotal=256.8476 for 2000 iterations. While the Nesterov method outperforms
the theoretical bound εtotal by a factor of 2 to 10 and even drops well below the worst-
case smoothing error δsmooth, it still cannot compete with the other methods, which
achieve a gap of 0.3052 (FPD) and 0.0754 (Douglas-Rachford). This indicates that the
bounds provided by Prop. 4.1 – although they constitute true a priori bounds, and not
only in an asymptotical sense – are not very relevant in practice.
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Figure 4.9. Primal and dual objectives for the “triple point” inpainting problem with uniform
metric regularizer. Top row, left to right: Input image with zeroed-out region around the center;
relaxed solution; rounded solution. Bottom row: Primal (upper) and dual (lower) energies
vs. time. The triple junction in the center is reconstructed solely by the regularizer.

There is an interesting extreme case where the Nesterov method seems to come to
full strength. Consider the noise-free “triple point” inpainting problem (Fig. 4.9). The

triple junction in the center can only be reconstructed by the regularizer, as the ℓ1 data
term has been zeroed out around the center. By reversing the sign of the data term, one
obtains the “inverse triple point” problem, an extreme case that has also been studied
in [CCP08] and shown to be an example where the relaxation leads to a strictly non-
integral solution (Fig. 4.10).

On the inverse problem, the Nesterov method catches up and even surpasses FPD,
in contrast to the regular triple point problem, which is more closely related to real-
world data. We conjecture that this sudden strength comes from the inherent averaging
over all previous gradients (step 10 in Alg. 4.3): In fact, on the inverse problem, DR
and FPD display a pronounced oscillation in the primal and dual objectives, which is
accompanied by slow convergence. The Nesterov method consistently shows a monotone
and smooth convergence. However, it is still outperformed by the DR approach.

It remains a mystery why the Nesterov method performs so slow, despite its good
reported performance for general TV-regularized problems [WABF09]. We suspect that
its performance hinges on the strict convexity of the objective, which is fulfilled by the
usual ROF models – due to the quadratic data term –, but not by the bilinear saddle-
point problem (4.8).

4.5 Experimental Comparison 101



5 10 15 20
t-21 850

-21 800

-21 750

-21 700

f

Figure 4.10. Inverse triple point problem (cf. Fig. 4.9). Top row, left to right: Input image
with zeroed-out region around the center; relaxed solution; rounded solution. The inverse triple
point problem exhibits a strictly non-integral relaxed solution. The small irregularities are due to
the finite accuracy of the solution, which is amplified by the rounding step. Bottom row: For the
inverse triple point, Douglas-Rachford (bottom) and FPD (center) show an oscillatory behavior
with slow convergence. The Nesterov approach (top) does not suffer from oscillation due to the
inherent averaging, and surpasses FPD on the inverse problem.

4.5.4 Choice of the Relaxation

High Label Count Using Euclidean Embeddings. As an example for a
problem with a large number of labels, we analyzed the “penguin” inpainting problem
from [SZS+06]. We chose 64 labels corresponding to 64 equally spaced gray values.
The input image contains a region where the image must be inpainted in addition
to removing the considerable noise. Again the data term was generated by the ℓ1 dis-
tance, which in this case reduces to the absolute difference of the gray values. In order
to remove noise but not overly penalize hard edges such as between the black wing and
the white front, we chose a regularizer based on the truncated linear metric (Sect. 2.5.2).

Due to the large number of labels, this problem constitutes an example where the
embedding approach is very useful. As the computational effort and memory require-
ments for the DMDR method grow quadratically in the number of labels, they quickly
become prohibitively large for a moderate amount of classes. In contrast, the embed-
ding method requires considerably less computational effort and still approximates the
potential function to a reasonable accuracy (cf. Fig. 2.7). In the practical evaluation, the
DR method converged in 1000 iterations to a relative gap of 8.3 · 10−4, and recovered
both smooth details near the beak, and hard edges in the inpainting region (Fig. 4.11).

Tightness of the Relaxations. Besides the properties of the optimization methods,
it is interesting to study the effect of the relaxation technique on the relaxed and
rounded solutions. To get an insight into the tightness of the relaxations, we used the
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Figure 4.11. Denoising/inpainting problem with 64 classes and the nontrivial truncated linear
metric. Left: Noisy input image with inpainting region marked black [SZS+06]; Right: Result
of the DR method. The truncated linear metric d was approximated by an Euclidean embedding,
which allows to handle problems with a large number of labels.

Douglas-Rachford method to repeat the “triple point” inpainting experiment with both
the embedding and the envelope regularizer (Fig. 4.12). We did not further compare
the “uncertainty emphasizing” regularizer since it seems to be mainly of theoretical
interest and is numerically even more involved than the envelope method.

Despite the inaccuracies in the projections, the envelope regularizer generates a
nearly integral solution: 97.6% of all pixels were assigned “almost integral” labels with

an ℓ∞ distance of less than 0.05 to one of the unit vectors {e1,	 , el}. For the embedding
approach, this constraint was only satisfied at 88.6% of the pixels. Note that in contrast
to the two-class problems considered in Chap. 3, in multiclass problems fractional labels
may also be caused by the relaxation, therefore a larger number of integral pixels gives
at least an indication that the relaxation may be more tight.

The result for the envelope relaxation is very close to the sharp triple junction one
would expect from the continuous formulation, which conforms to the theoretically
improved tightness of the envelope relaxation compared to the embedding method.
However, after rounding both approaches generate almost identical integral results, and
the embedding regularizer is more than four times faster, with 41.1 seconds per 1000
iterations vs. 172.2 seconds for the envelope regularizer.

While the triple point is a problem specifically designed to challenge the regularizer,
real-world images usually contain more structure as well as noise, while the data term
is available for most or all of the image. However, we observed that the above results
are quite representative. As a real-world example, consider the four-class “sailing” color
segmentation problem in Fig. 4.13. The improved tightness of the envelope relaxation
was also noticeable, with 96.2% vs. 90.6% of “almost integral” labels. However, due to
the larger number of labels and the larger image size of 360×240, runtimes increased to
4253 (envelope) vs. 420 (embedding) seconds. Therefore the embedding method seems
to provide a fast alternative, which is however slightly less accurate.

4.5 Experimental Comparison 103



Figure 4.12. Tightness of the relaxation. Top row: In the input image (left), the data term
was blanked out in a quadratic region. All structure within the region is generated purely by
the regularizer with a standard uniform metric interaction potential. The envelope relaxation
is tighter and generates a more integral solution (center) than the embedding method (right).
Bottom row: After rounding of the fractional solutions, the envelope (left) and embedding
(center) methods generate essentially the same solution, as can be seen in the difference image
(right). The embedding method performed more than four times faster due to the simpler struc-
ture of the regularizer.

Figure 4.13. Effect of the choice of relaxation method on the real-world “sailing” image (image
courtesy of F. Becker). Top row: Four-class segmentation using envelope (left) and Euclidean
metric (right) methods. Shown are the solutions of the relaxed problem. Bottom row: Original
image (left); difference image of the rounded solutions (right). While the envelope relaxation leads
to substantially more “almost integral” labels in the relaxed solution, it also runs more than 10
times slower and does not provide a suboptimality bound. The generated solutions are visually
almost identical.

The relaxed as well as the rounded solutions show some differences but are hard
to distinguish visually. It is difficult to pinpoint if these differences are caused by the
tighter relaxation or by numerical issues: while the Douglas-Rachford method applied to
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Figure 4.14. Performance on the “four colors” image with uniform metric interaction potential
and the envelope regularizer. Left: Dual objectives of for DR (top) and FPD (bottom) vs. time.
The reduced iteration count of the Douglas-Rachford method becomes more apparent in the time
plot as the time per iteration is now dominated by the projection rather than the DCT. Right:
Time per iteration for Nesterov (top), DR (center) and FPD (bottom). The Nesterov method
fails to converge as it accumulates errors from the approximate projections, which in turn leads
to slower and more inexact projections.

the embedding relaxation converged to a final relative gap of 1.5 · 10−6, no such bound
is available to estimate the accuracy of the solution for the envelope relaxation, due to
the primal objective not being available.

4.5.5 Dual Multiple-Constraint Douglas-Rachford

Inaccuracies Caused by Inexact Projections. As a motivation for the DMDR
method in connection with the envelope regularizer, consider the experiment in
Fig. 4.14, where we compare DMDR to FPD and DR with iterative, inexact projec-
tions. The iterative Dykstra projection (Alg. 4.9) was stopped when the iterates differed
by at most δ = 10−2, with an additional limit of 50 iterations. While the gap cannot
be computed in this case, the dual objective can still be evaluated and provides an
indicator for the convergence speed.

We found that compared to the embedding regularizer from the previous examples,
the margin between FPD and DR increases significantly. This is consistent with the
remarks in Sect. 4.5.1: the lower iteration count of the DR method becomes more
important, as the projections dominate the per-iteration runtime (Fig. 4.14).

Surprisingly the Nesterov method did not converge at all. On inspecting the per-
iteration runtime, we found that after the first few outer iterations, the iterative pro-
jections became very slow and eventually exceeded the limit of 50 iterations with δ

remaining between 2 and 5. In contrast, 20 Dykstra iterations were usually sufficient to
obtain δ= 10−9 (DR) and δ= 10−11 (FPD).

We again attribute this to the averaging property of the Nesterov method: as it
accumulates the results of the previous projections, errors from the inexact projections
build up. This is accelerated by the dual variables quickly becoming infeasible with
increasing distance to the dual feasible set, which in turn puts higher demands on
the iterative projections. DR and FPD did not display this behavior and consistently
required 5 to 6 Dykstra iterations from the first to the last iteration.
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Figure 4.15. Runtime comparison on the “four colors” test set for the envelope regularizer. Shown
is the relative gap to the objective of the computed reference solution vs. number of iterations
(left) and time (right), averaged over 10 problem with different noise, and error indicators at 2σ.
With respect to the number of iterations, the DMDR method performs comparable to FPD, and
slightly worse than DR. However, it requires significantly less time per iteration, since it does
not require to iteratively solve the inner projection steps, resulting in a total speedup of 2 − 3
compared to both methods.

Runtime Comparison for the Envelope Regularizer. In order to demonstrate
that the DMDR approach avoids these problems associated with the envelope regu-
larizer, we compared FPD and DR with iterative projections to the DMDR method.
Note that in this case the primal objective f cannot be accurately evaluated due to the
complexity of D, therefore we must resort to a more elementary stopping criterion such

as the difference between two consecutive iterates, ‖z ′′(k)− z ′′(k−1)‖2. In order to still
get an objective measure on convergence speed, we computed a reference solution u+

using 5000 iterations of the DR method and recorded the gap f(u+)− fD(u(k)). Again,
the experiment was repeated 10 times with varying noise (Fig. 4.15).

In terms of the number of iterations, the DMDR method converges as fast as FPD,
and slightly slower than DR. However, as it requires significantly less effort per iteration,
it outperforms FPD and DR by a factor of 2− 3 with respect to the overall runtime.

Improved Numerical Robustness. For a larger number of labels, the runtime
advantage of DMDR is expected to become more apparent, since the cost per iter-
ative projection increases. As an example, consider the 12-class segmentation of the
real-world images in Fig. 4.16, again with ℓ1 data term and uniform metric regularizer.

For this moderate number of labels, the iterative projections for DR and FPD are
already quite slow, so we fixed a maximum of 5 inner iterations per outer step in order
to get a reasonable computation time. For the shown problems, the DMDR method is
about 6− 10 times faster than DR, and 7− 17 times faster than FPD. Moreover, due
to the inexact projections, DR and FPD converge to infeasible dual points, i.e. they
generate dual solutions v that do not lie inside the dual constraint set D (Fig. 4.16).
In contrast, using DMDR the infeasibility gradually decreases, and is guaranteed to
eventually drop to zero given exact arithmetic.
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Figure 4.16. Runtime performance on segmentation problems with a higher label count. Top
row: Input images (top) and segmentation into 12 classes (bottom) computed using the proposed
DMDR method. Bottom left: Dual objective vs. time for 500 iterations on the “crop” image.
DMDR outperforms DR and FPD by a factor of 10 resp. 17. Bottom right: Dual infeasibility
vs. time. Due to the inexact projections, FPD and DR get stuck and converge to infeasible
solutions. In contrast, DMDR gradually decreases the infeasibility to zero in theory and practice.

Histogram-Based Segmentation and Accuracy. Fig. 4.17 shows the application
of our method to a real-world histogram-based three-class segmentation where the data
term is based on probabilities computed from histograms over regions preselected by
the user. In order to preserve more details, we chose a low regularization with λ=0.025.

As in the previous section, it can be seen that FPD and DR get stuck at infeasible
solutions for the envelope regularizer, while DMDR converges smoothly. Increasing the
accuracy of the approximate projections reduces the infeasibility, but leads to a much
slower convergence.

It remains to ask how the dual gap relates to actual visual differences. Therefore
at each step we evaluated the ℓ2 distance of the current iterate to a reference solution
computed using 5000 DMDR iterations (Fig. 4.17). Again it becomes clear that the
inexact projections cause convergence issues for FPD and DR, while DMDR does not
suffer from these problems. After 500 iterations, DMDR recovered a solution uk with
‖uk − u∗‖2 6 10, which amounts to an average of 1.3 · 10−4 per pixel, suggesting that
only few iterations are required for visually high quality results.
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Figure 4.17. Application to histogram-based segmentation. Top row, left to right: Input image
with seed regions marked by the user; minimizer of the three-class variational segmentation using the
proposed approach. Bottom row: Dual objectives (left) and ℓ2 distance to the reference solution
(right) vs. time. With low-accuracy approximate projections, FPD and DR get stuck in an infeasible
solution (solid). Increasing the projection accuracy reduces the effect but slows down convergence
(dashed). The proposed DMDR method avoids these problems and returns high-quality solutions
after only a few iterations.

4.6 Summary and Further Work

We presented two approaches for solving the relaxed saddle-point problem (4.8). Both
methods only rely on inexpensive first-order operations. While the Nesterov method,
despite its theoretically relatively fast convergence in the class of first-order methods,
seems to only come to full strength on very special applications, the Douglas-Rachford
method successfully competes with more advanced interior-point solvers for low- to
medium accuracy, as typically required in imaging applications.

The performance evaluations showed that the Douglas-Rachford method consis-
tently requires about one third of the iterations compared to the Fast Primal-Dual
method. For low regularization and fast projections, FPD outperforms the Douglas-
Rachford method. In all other cases, Douglas-Rachford performs equally or better,
with a speedup of 2-3 if the projections are expensive. Overall, the proposed Douglas-
Rachford method approach appears to be a solid all-round method that also handles
extreme cases well.

In order to avoid the problems caused by inexact iterative projections, we proposed
the DMDR extension of the Douglas-Rachford approach involving auxiliary variables,
and showed that it copes well with the more difficult “local envelope” relaxation. Exper-
iments indicated that it outperforms the FPD and DR methods by a factor of 4− 20,
and avoids the inaccuracies and convergence issues of the FPD and DR methods that
rely on inexact projections.
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A straightforward extension that comes into mind is the implementation of a coarse-
to-fine or multigrid strategy. However, first experiments indicated that this generally
does not substantially speed up convergence: in fact, basic structures and edges are
obtained very fast by the Douglas-Rachford algorithm, and much time is spent in deter-
mining the exact values around the edges and converging to integral values within the
regions. Therefore better starting values only yield a marginal improvement. These
observations are in line with [ZWC10], where the authors also found that the considered
first-order methods generally did not provide good warmstarts for higher-order methods.
Another direction which deserves thorough consideration is to evaluate to which amount
higher-order and interior-point methods can be suitably sped up by exploiting the
specific problem formulation.

However, in order to achieve large speed-ups, the most promising direction seems
to be investigating strategies how to translate the concepts for polynomial max-flow
methods, formulated on pairwise energies, to the finite-differences discretization (or
generally to the optimize-first approach). This is by no means trivial, since concepts
such as augmenting paths do not have a direct analogon for non-pairwise energies.

In the meantime, as seen above, for many applications the DMDR method provides
relatively accurate results in a reasonable time. The splitting formulation of the DR and
DMDR approaches also seems to be a good compromise between speed and flexibility,
and can easily be adapted to related convex models, such as TV-constrained optimiza-
tion and “ratio” cut [KB05].
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Chapter 5

Optimality and Rounding

5.1 Introduction and Overview

In this chapter, we consider optimality properties of the variational multiclass labeling
problem as introduced previously,

inf
u∈CE

f(u), f(u)6 ∫

Ω
〈u(x), s(x)〉d x+

∫

Ω
dΨ(Du), (5.1)

CE =BV(Ω, E), Ω= (0, 1)d, E = {e1,	 , el},
Throughout this chapter we assume that s ∈ L∞(Ω)l, s > 0 are the local costs rep-
resenting the data term, and Ψ: Rd×l→ R>0 is positively homogeneous, convex and
continuous, and defines the regularizer. Again we consider the convenient relaxation of
the combinatorial problem as introduced in Sect. 2.1,

inf
u∈C

f(u), C6 BV(Ω,∆l), (5.2)

where ∆l = {x ∈R
l|x > 0,

∑

i
xi = 1} is the convex hull of E = {e1, 	 , el}, i.e. the l-

dimensional unit simplex.
As noted above, problem (5.2) is convex and can thus be solved globally optimal.

However, the minimizer u∗ of the relaxed problem may not lie in CE, i.e. it is not
necessarily integral. Therefore, in applications that require a true partition of Ω, some
rounding process is needed in order to generate an integral labeling ū∗. This may may
increase the objective, and lead to a suboptimal solution of the original problem (5.1).

Note that this behavior is independent of the effects discussed in the discretization
chapter: In Chap. 3, we considered the occurrence of fractional labels due to the process
of switching from the continuous problem formulation to a discrete, finite-dimensional
one, and explicitly ruled out relaxation effects by exclusively considering the two-class
case. In this chapter, we consider the second source of fractional solutions, which is the
relaxation of the original combinatorial multiclass problem to a convex problem, and
rule out discretization effects by working completely in the spatially continuous setting.

In the following, we are concerned with the question whether it is possible to obtain,
using the convex relaxation (5.2), integral solutions with an upper bound on the objec-
tive. Specifically, we concentrate on inequalities of the form

f(ū∗) 6 (1+ ε)f(uE
∗) (5.3)

for some constant ε> 0, which provide an upper bound on the objective of the rounded
integral solution ū∗ with respect to the objective of the (unknown) optimal integral
solution uE

∗ of (5.1). Note that the reverse inequality

f(uE
∗) 6 f(ū∗) (5.4)

always holds since ū∗∈CE and uE
∗ is an optimal integral solution. The specific form (5.3)
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can be attributed to the alternative interpretation

f(ū∗)− f(uE∗)
f(uE

∗)
6 ε, (5.5)

which provides a bound for the relative gap to the optimal objective of the com-
binatorial problem. Such ε can be obtained a posteriori by actually computing (or
approximating) ū∗ and a dual feasible point: Assume that a feasible primal-dual pair
(u,v)∈C×D is known, where u approximates u∗, and assume that some integral feasible
ū ∈CE has been obtained from u by a rounding process. Then the pair (ū , v) is feasible
as well since CE ⊆C, and from the considerations in Sect. 4.3 we obtain an a posteriori
optimality bound of the form (5.5) with respect to the optimal integral solution uE

∗ :

f(ū)− fD(uE∗)
fD(uE

∗)
6
f(ū)− fD(uE∗)

fD(v)
6
f(ū)− fD(v)

fD(v)
=: ε′. (5.6)

However, this requires that f and fD can be accurately evaluated, and requires to
compute a minimizer of the problem for the specific input data, which is generally
difficult, especially in the spatially continuous formulation.

In contrast, true a priori bounds do not require knowledge of a solution and apply
uniformly to all problems of a class, irrespective of the particular input. In this chapter,
we will analyze several rounding methods in order to derive such bounds. When con-
sidering rounding methods, one generally has to discriminate between

• deterministic vs. probabilistic methods, and

• spatially discrete (finite-dimensional) vs. spatially continuous methods.

Most known a priori approximation results only hold in the finite-dimensional setting,
and are usually proven using graph-based pairwise formulations. In contrast, we will
again assume an “optimize first” perspective due to the reasons outlined in Chap. 3.
Unfortunately, the proofs for the finite-dimensional results often rely on pointwise argu-
ments that cannot directly be transferred to the continuous setting. Deriving similar
results for continuous problems therefore requires considerable additional work.

Organization. This chapter is organized as follows:

• We propose an improved deterministic local rounding technique that takes into
account the specific structure of the regularizer (Sect. 5.3).

• In order to motivate the proposed rounding approach, we point out a connec-
tion between probabilistic rounding methods and an approximate variant of the
coarea formula (Sect. 5.4).

• We provide a probabilistic rounding method and prove that it allows to obtain
integral solutions with an a priori upper bound on the objective of the form

Ef(ū∗) 6 (1+ ε)f(uE
∗), (5.7)

similar to (5.3) (Sect. 5.5). The approach is based on the work of Kleinberg and
Tardos [KT99], which is set in an LP relaxation framework. However their results
are restricted in that they assume a graph-based representation and extensively
rely on the finite dimensionality. In contrast, our results hold in the continuous
setting without assuming a particular problem discretization.

• We conclude the chapter with an experimental comparison and verification of
the obtained a priori and a posteriori bounds (Sect. 5.6).
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5.2 Related Work

As shown in Sect. 2.6.1, in the spatially continuous setting the two-class problem admits
the trivial thresholding approach with

ūα
∗ 6 e1 χ{u1

∗>α}+ e2 χ{u1
∗6α} (5.8)

for almost every α>0 due to the coarea formula. In view of the ε-optimality bound (5.3),
this amounts to f(ū∗)= f(uE

∗), i.e. ε=0. After discretization, the same property holds
if the regularizer satisfies a generalized coarea formula, cf. Sect. 2.6 and Sect. 3.2. In
the multiclass case, the most prominent approaches for finding integral combinatorial
minimizers are the α-expansion approach, more general move-making methods such as
continuous binary fusion, and LP relaxations. In the following sections, we provide a
brief overview in order to motivate our approach.

5.2.1 Isolation Heuristic and α-Expansion

Probably the best-known bound for obtaining solutions of the multiclass labeling
problem on graphs with pairwise terms is provided in the original “graph cut” paper
by Boykov et al. [BVZ01], and is based on the α-expansion method.

The α-expansion method provides a way to reduce the multiclass segmentation
problem to a sequence of two-class problems, which can then be solved globally optimal,
for instance using graph cuts, for metric d. Denote by G=(V ,E) the (undirected) graph
representation of the problem, where the energy for a labeling ℓ:V →I6 {1,	 , l} is

f(ℓ) =
∑

x∈V

sx(ℓ(x))+
∑

e=(x1,x2)∈E

d(ℓ(x1), ℓ(x2)) (5.9)

for some nonnegative sx: I→R>0 and metric d: I2→R>0.

An early idea for generating integral solutions from the solution of the relaxed
problem was provided by [DJPS94] in a multiterminal cut framework, which corresponds
to the case where d is the uniform metric. It uses an isolation heuristic, which consists
in computing l individual cuts (i.e. two-class segmentations), where each label in turn is
segmented against all others. The multiterminal cut is then constructed as the union of
the l−1 best cuts. Using this approach, a bound of ε=1−2/l was proven in [DJPS94]
for the finite-dimensional problem (5.9).

The α-expansion method can be seen as a repeated, sequential application of the
steps in the isolation heuristic, extending it to general metrics. It proceeds in a number
of outer iterations, as shown in Alg. 5.1: In each step, one label j is selected, and ℓj ,V ′

is constructed from ℓ (k) so that each vertex either keeps its current label or switches to
label j. Thus, during one step the set of points which carry label j may only expand.
Therefore the steps are referred to as α-expansion moves , with α referring to the selected
label j in the original work [BVZ01]. The inner problem (5.10) is a two-class labeling
problem, and, under the assumptions on the discretization and on d, contains semi-
metric pairwise terms, and can thus be solved exactly using graph cut techniques.
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Algorithm 5.1. Graph-Based α-Expansion

1: Choose ℓ(0):V →I.
2: k← 0.
3: repeat
4: for all j ∈I do

5: For V ′⊆V , let ℓj ,V ′(x)6 {

j, x∈V ′,

ℓ(k)(x), x � V ′.

6: Find V ′ s.t.

ℓ′6 ℓj ,V ′ = argmin
V ′⊇{x∈V |ℓ(k)(x)=j}

f(ℓj,V ′). (5.10)

7: ℓ(k+1)←
{

ℓ′, f(ℓ′)< f(ℓ(k)),

ℓ(k), otherwise.

8: k← k+1.
9: end for
10: until f

(

ℓ(k)
)

did not decrease in at least one of the inner iterations.

11: Output: ℓ+6 ℓ(k).

The output ℓ+ can be considered as a local minimum with respect to expansion
moves, as there cannot be an expansion move starting from ℓ+ that decreases the energy.
The authors then show the following proposition:

Proposition 5.1. [ BVZ01, Thm. 6.1] Let ℓ+ be a local minimum with respect to
expansion moves, and ℓ∗ be a global minimizer of ( 5.9). Then

f(ℓ+) 6 2 c f(ℓ∗), (5.11)

where

c 6 maxi� i′ d(i, i
′)

mini� i′ d(i, i′)
> 1. (5.12)

Proof. We will sketch the proof in order to highlight the differences to the spatially
continuous framework, and motivate the reasoning behind the arguments in Sect. 5.5.
The outline is as follows:

1. If ℓ∗ is a true minimizer and j ∈I, then

ℓ+,j(x) 6 {

j , ℓ∗(x)= j ,

ℓ+(x), otherwise
(5.13)

is a valid α-expansion from ℓ+. Therefore, since ℓ+ is a local minimum,

f(ℓ+) 6 f(ℓ+,j). (5.14)

2. Define V j 6 (ℓ∗)−1({j}). We denote the restriction of the energy (5.9) to the
– unary and pairwise – potentials involving only vertices in V j by f |intV j, and
the restriction to the – only pairwise – potentials involving exactly one vertex
in V j (and one in V \V j) by f |bdV j.
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Since ℓ+,j and ℓ+ coincide in V \V j by definition, from (5.14) we conclude

f |intV j(ℓ+)+ f |bdV j(ℓ+) 6 f |intV j(ℓ+,j)�
=f |

int V j(ℓ∗)

+ f |bdV j(ℓ+,j)�
6cf |

bd V j(ℓ∗)

(5.15)

6 c (f |intV j(ℓ∗)+ f |bdV j(ℓ∗)). (5.16)

The inequality involving c holds because d is a metric: for each of the terms
d(ℓ∗(x1), ℓ∗(x2)) that occurs in f |bdV j(ℓ∗), exactly one of the (x1, x2) is con-

tained in V j, therefore ℓ∗(x1) � ℓ∗(x2) and d(ℓ∗(x1), ℓ∗(x2)) > mini� i′ d(i, i
′) >

c−1 d(ℓ+,j(x1), ℓ+,j(x2)).

3. We now use the fact that each unary term is contained in exactly one of the
f |intV j, j∈I. Likewise, each nonzero pairwise term is contained in exactly one of
the f |intV j, or in exactly two of the f |bdV j. Using this relation on the summation
of (5.16) over all j ∈I, we obtain the assertion,

f(ℓ+) 6 f(ℓ+)+
1
2

∑

j=1

l

f |bdV j(ℓ+) (5.17)

6
(5.16)

c









f(ℓ∗)+
1
2

∑

j=1

l

f |bdV j(ℓ∗)�
6f(ℓ∗)









6 2 c f(ℓ∗). (5.18)

�

From (5.11) we therefore obtain ε=2c−1 for the α-expansion method. The principle of
reducing multi-class problems to a sequence of two-class problems such as (5.10) is also
the basis for the α-β-swap technique from the same authors, which can handle the case
of semi-metric d, but provides no bound similar to (5.11). A generalization can be found
in [LRB07, LRRB10]: The authors view the problem of finding the optimal expansion
step (5.10) as the decision between two solutions: identifying V ′ with its characteristic
function u′6 χV ′:V →{0, 1}, the expansion step becomes

u′ = arg min
u′:V →{0,1}

f
(

(1− u′) ℓ(k)+u′ j
)

, (5.19)

This can be seen as a “binary fusion” between two candidate solutions: the current
iterate ℓ(k) and the constant solution ℓ≡ j. As these problems correspond to two-class
labeling, they can be solved globally optimal, e.g. using graph cuts.

5.2.2 Continuous Binary Fusion

The finite-dimensional approach (5.19) can be generalized to the spatially continuous
case by essentially replacing V with Ω. This was proposed in [TPCB08] in an informal
way, without specifying the actual function spaces and assumptions on the functionals.
In [Ols09, OBOK09], the authors argue that Prop. 5.1 similarly holds for functionals of
the form (5.1), with the separable (but anisotropic) regularizer

Ψ(z) =
∑

j=1

l

‖Azj‖2, z ∈Rd×l, (5.20)
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for some A∈Rd×d. However, their proof seems to be insufficient in several aspects:

• The authors do not specify the function spaces.

• They use a pointwise argument much as the vertex- and edge-wise argument
used in Prop. 5.1. This requires additional justification when dealing with BV
functions, which are defined only almost everywhere.

• The authors seem to employ the classical interior and exterior as replacements
for the interior and boundary in (5.16). For functionals on BV involving the total
variation, this causes the issue that the restriction of f to these sets is not well-
defined, since sets with nonzero Hd−1 measure can be added or removed from
such a set by choosing a different representative of ℓ in the same L1 equivalence
class (Rem. A.14).

Apart from these problems, it is nontrivial to show that the continuous analogon to
Alg. 5.1 actually terminates. This is not an issue in the finite-dimensional setting: since
there is only a finite number of configurations, there can only be a finite number of
iterations until the energy does not decrease anymore, and the algorithm stops.

Properly addressing these issues would require considerable additional work, and still
provide a result which is tied to a specific optimization method that requires to solve a
sequence of convex problems. Instead, we decided to base our optimality results on an
approach which more closely resembles (5.2), as motivated in the following section.

5.2.3 LP Relaxation with Derandomization

In [CKR98], the authors consider an LP relaxation of the multiway cut and provide
a randomized approximation algorithm with ε=

1

2
− 1

l
. In the multiclass labeling set-

ting, their formulation corresponds to the graph-based discretization (5.9) with (locally
weighted) uniform metric regularizer d(i, j)= χ{i� j}. As seen in the previous chapter,
for grid graphs this corresponds to Ψ= ‖·‖1.

In order to cope with general metrics, [KT99] adapted a variant of the LP formula-
tion (Sect. 3.2), which raises the bound to ε=1 for the uniform metric. For the uniform
metric, the LP relaxation has the form

min
y,z

∑

x∈V

∑

j∈I
sx(j) yx,j+

∑

e∈E

we ze (5.21)

s.t. yx,·∈∆l, x∈ V , (5.22)

ze=
1
2

∑

j∈I
ze,j , (5.23)

ze,j> yx1,j− yx2,j , (x1, x2)∈E, (5.24)

ze,j> yx2,j− yx1,j , (x1, x2)∈E. (5.25)

The variables yx,j correspond to uj(x), i.e. semantically yx,j = 1 iff ℓ(x) = j, and the
scalars we constitute edge weights to allow for non-homogeneous regularizers. Without
the slack variables, the LP amounts to

min
y∈(∆l)n

{

∑

x∈V

∑

j∈I
sx(j) yx,j+

1

2

∑

e=(x1,x2)∈E

we

∑

j∈I
|yx1,j− yx2,j |

}

. (5.26)
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Assuming we≡ 1, this is equivalent to a graph-based discretization of (5.9) and closely
resembles (5.2), which motivates to adapt the proof for our spatially continuous setting.

The bound of ε=1 is proven in [KT99] by first considering a randomized rounding
method and then showing that it can be derandomized in polynomial time (see [Sri99,
BW05] for an overview of randomized algorithms and derandomization strategies, and
[KMN93] for an application to network flow problems). We restrict ourselves to a prob-
abilistic result, since the derandomization techniques crucially depend on fixing single
labels, which is not available in a well-defined sense in the continuous setting.

However, much as the proof of Prop. 5.1, the proof in [KT99] strongly relies on the
vertex/edge representation, which poses a problem when transferring the results to
the infinite-dimensional setting. In particular, several steps directly involve the slack
variables ze and ze,j, which do not have a direct analogon in the continuous setting.
These difficulties are aggravated by the particular randomized rounding algorithm,
which requires a possibly infinite number of stages. We show how to overcome these
difficulties in Sect. 5.5.

5.3 Improved Deterministic Schemes

As indicated previously, the two-class approach gives rise to a simple deterministic
thresholding approach. We first discuss two similar methods for the multi-class case in
order to compare them to the probabilistic approach in the later sections.

5.3.1 First-Max

The simplest deterministic rounding scheme is the first-max approach: The label ℓ(x)
is set to the index of the first maximal component of the relaxed solution u∗(x),

ℓ(x) = min

{

arg max
j∈{1,	 ,l}

uj

}

. (5.27)

While this works well for the uniform metric, it may lead to undesired effects for non-
standard metrics: Consider the segmentation of a grayscale image with the three labels
1, 2, 3 corresponding to the gray level intensity and the linear metric d(i, j) = |i − j |.
Assume there is a region where

u∗(x) =











1

3
+ δ(x)

1

3
1

3
− δ(x)











(5.28)

for some small δ(x) ∈R, which may occur due to small noise in the image, or due to
inexact optimization. The most “natural” choice given the interpretation as grayscale
values is the constant labeling ℓ(x) = 2. However, the first-max approach results in
ℓ(x)∈{1, 3}, depending on the sign of δ(x), which leads to a noisy final segmentation.
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5.3.2 Modified First-Max

On closer inspection, the first-max approach amounts to choosing

ℓ(x) = min

{

arg min
ℓ∈{1,	 ,l}

‖u(x)− eℓ‖2
}

. (5.29)

We propose to extend this to non-uniform distances by setting (for isotropic Ψ)

ℓ(x) = arg min
ℓ∈{1,	 ,l}

Ψ̄(u(x)− eℓ), (5.30)

Ψ̄:∆l→R, Ψ̄(y)6 Ψ(e1y⊤) .

That is, we select the label corresponding to the nearest unit vector with respect to Ψ̄
(note that instead of e1 we could choose any normalized vector as Ψ is assumed to be
rotationally invariant). We thereby introduce knowledge about the structure of Ψ into
the rounding process, which potentially improves the result. Note that this requires a
numerical approximation in the case where there is no closed form expression for Ψ.

For the linear distance example above we obtain, for the corresponding (exact)
Euclidean embedding ΨA with A= ( −1 0 1 ),

Ψ̄(z) = |−z1+ z3|. (5.31)

Thus

Ψ̄(u(x)− e1) = |1− 2δ(x)| , (5.32)

Ψ̄(u(x)− e2) = |2δ(x)| ,
Ψ̄(u(x)− e3) = |1+ 2δ(x)| .

In contrast to the “first-max” rounding in the previous section, for small δ we get the
stable and semantically correct choice ℓ(x) = 2. While it is a heuristic, this method
proved to work well in practice, and considerably improved both the a posteriori bounds
as well as the quality of the solution (Sect. 5.6).

5.4 Coarea Formula and Probabilistic Rounding

As a motivation for the following sections, we first provide a probabilistic interpretation
of the generalized coarea formula outlined in Sect. 2.6. From Thm. A.32, we know that
for u′ ∈ BV(Ω, [0, 1]), the coarea formula states that the total variation of u′ can be
represented by summing the boundary lengths of its superlevelsets:

TV(u′) =

∫

0

1

TV(χ{u′>α})dα. (5.33)

The coarea formula provides a connection between problem (5.1) and the relax-
ation (5.2) in the two-class case, where E = {e1, e2}, u ∈ CE and u1 = 1 − u2:
From Prop. 2.7,

TV(u)= ‖e1− e2‖2TV(u1)= 2
√

TV(u1), (5.34)
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therefore the coarea formula (5.33) can be rewritten as

TV(u) = 2
√ ∫

0

1

TV(χ{u1>α})dα (5.35)

=

∫

0

1

TV(e1χ{u1>α}+ e2χ{u16α})dα (5.36)

=

∫

0

1

TV(ūα)dα, ūα6 e1χ{u1>α}+ e2χ{u16α}. (5.37)

Consequently, the total variation of u can be expressed as the mean over the total
variations of a set of integral labelings {ūα ∈ CE|α ∈ [0, 1]}, obtained by rounding
u at different thresholds α. We now adopt a probabilistic view of (5.37): We regard
the mapping

R: (u, α)∈C × [0, 1] � ūα∈CE (for a.e. α∈ [0, 1]) (5.38)

as a parametrized, deterministic rounding algorithm that depends on u and on an
additional parameter α. From this we obtain a probabilistic (randomized) rounding
algorithm by assuming α to be a uniformly distributed random variable. Under these
assumptions the coarea formula (5.37) can be written as

TV(u) = EαTV(ūα). (5.39)

This has the probabilistic interpretation that applying the probabilistic rounding to
(arbitrary, but fixed) u does – in a probabilistic sense, i.e. in the mean – not change the
objective. It can be shown that this property extends to the full functional f in (5.2).
A well-known implication is that if u = u∗, i.e. u minimizes (5.2), then almost every
ūα= ūα

∗ is a minimizer of (5.1) [CEN06].

Unfortunately, property (5.39) is intrinsically restricted to the two-class case with
TV regularizer. In the general case, one would hope to obtain a relation

f(u) =

∫

Γ
f(ūγ)dµ(γ)=Eγf(ūγ) (5.40)

for some probability space (Γ, µ). For l = 2 and Ψ(x) = ‖·‖2, (5.39) shows that (5.40)
holds with γ=α, Γ= [0, 1], µ=L1, and R: C ×Γ→CE as defined in (5.38).

In the multiclass case, the difficulty lies in providing a suitable combination of
a probability space (Γ, µ) and a parametrized rounding step (u, γ) � ūγ. Unfortu-
nately, obtaining a relation such as (5.39) for the full functional (5.1) is unlikely, as it
would mean that solutions to the (after discretization) NP-hard problem (5.1) could be
obtained by solving the convex relaxation (5.2) and subsequent rounding.

The main result of this chapter will be a bound of the form

(1+ ε)f(u) >

∫

Γ
f(ūγ)dµ(γ)=Eγf(ūγ). (5.41)

This can be seen as an approximate variant of the coarea formula. While (5.41) is not
sufficient to provide a bound on f(ūγ) for particular γ, it permits a probabilistic bound
in the sense of (5.7): for any minimizer u∗ of the relaxed problem (5.2),

Eγf(ūγ
∗)6 (1+ ε)f(u∗)6 (1+ ε)f(uE

∗), (5.42)
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holds, i.e. the ratio between the objective of the rounded relaxed solution and the optimal
integral solution is bounded – in a probabilistic sense – by (1+ ε).

In the following sections we construct a suitable parametrized rounding method and
probability space in order to obtain an approximate coarea formula of the form (5.41).

5.5 A Priori Bounds

5.5.1 Probabilistic Rounding for Multiclass Image Partitions

We consider the probabilistic rounding approach based on [KT99] as defined in Alg. 5.2.
Where possible without ambiguities, we omit the parentheses for elements of a sequence,

i.e. we denote uk=u(k), in order to avoid notational clutter. The algorithm proceeds in
a number of phases. At each iteration, a label and a threshold

γk6 (ik, αk) ∈ Γ′6 I × [0, 1] (5.43)

are randomly chosen (step 3), and label ik is assigned to all yet unassigned points x

where uik
k−1(x)>αk holds (step 5). In contrast to the two-class case considered above,

the randomness is provided by a sequence (γk) of uniformly distributed random vari-

ables, i.e. Γ= (Γ′)N.

After iteration k, all points in the set Uk ⊆ Ω are still unassigned , while all points
in Ω\Uk have been assigned an (integral) label in iteration k or in a previous iteration.

Iteration k + 1 potentially modifies points only in the set Uk. The variable cj
k stores

the lowest threshold α chosen for label j up to and including iteration k, and is only
required for the proofs.

While the algorithm is defined using pointwise operations, it is well-defined in the

sense that for fixed γ, the sequence (uk), viewed as elements in L1, does not depend on

the specific representative of u from the equivalence class in L1. The sequences (Mk)

and (Uk) depend on the representative, but are unique up to Ld-negligible sets.

In an actual implementation, the algorithm could be terminated as soon as all

points in Ω have been assigned a label, i.e. Uk = ∅. However, in our framework used
for analysis the algorithm never terminates explicitly. Instead, for fixed input u we
regard the algorithm as a mapping between sequences of parameters (or instances of

random variables) γ = (γk) ∈ Γ and sequences of states (uγ
k), (Uγ

k) and (cγ
k). We drop

the subscript γ if it does not create ambiguities. The elements of the sequence (γ(k))
are independently uniformly distributed, and by the Kolmogorov extension theorem
[Øks03, Thm. 2.1.5] there exists a probability space and a stochastic process on the set
of sequences γ with compatible marginal distributions.
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Algorithm 5.2. Continuous Probabilistic Rounding

1: u0← u, U0←Ω, c0← (1,	 , 1)∈Rl.
2: for k=1, 2,	 do

3: Randomly choose γk6 (ik, αk) uniformly from I × [0, 1].

4: Mk←Uk−1∩{x∈Ω|uikk−1(x)>αk}.
5: uk← ei

k
χMk+ uk−1χΩ\Mk.

6: Uk←Uk−1 \Mk.

7: cj
k←

{

min {cjk−1, αk}, j= ik,

cj
k−1, otherwise.

8: end for

In order to define the parametrized rounding step (u, γ)� ūγ, we observe that once

Uγ
k ′
=∅ occurs for some k ′∈N, the sequence (uγ

k) becomes stationary at uγ
k ′
. In this case

the algorithm may be terminated, with output ūγ6 uγ
k ′
:

Definition 5.2. Let u ∈ BV(Ω)l and f : BV(Ω)l→ R. For some γ ∈ Γ, if Uγ
k ′
= ∅ in

Alg. 5.2 for some k ′∈N, we denote ūγ6 uγ
k ′
. We define

f(ū(·)): Γ→R∪{+∞}

γ ∈Γ � f(ūγ)6 {

f(uγ
k ′
), if there ex. k ′∈N: Uγ

k ′
= ∅∧ uγk

′∈BV(Ω)l,
+∞, otherwise.

(5.44)

We denote by f(ū) the corresponding random variable induced by assuming γ to be
uniformly distributed on Γ.

As indicated above, f(ūγ) is well-defined: if Uγ
k ′
= ∅ for some (γ, k ′) then uγ

k ′
= uγ

k ′′

for all k ′′> k ′. Instead of focusing on local properties of the random sequence (uγ
k) as

in the proofs for the finite-dimensional case (Sect. 5.2.1 and 5.2.3), we will derive our
results directly for the sequence (f(uγ

k)).

In particular, we will show that the expectation of f(ū) over all sequences γ can be
bounded according to

Ef(ū)=Eγf(ūγ) 6 (1+ ε)f(ū) (5.45)

for some ε > 0, cf. (5.41). Consequently, the rounding process may only increase the
average objective in a controlled way.

5.5.2 Termination Properties

Theoretically, the algorithm may produce a sequence (uγ
k) that does not become sta-

tionary, or does become stationary with a solution that is not an element of BV(Ω)l.
In Thm. 5.5 we show that this happens only with zero probability, i.e. almost surely
Alg. 5.2 generates (in a finite number of iterations) an integral labeling function ūγ∈CE.
The following two propositions are required for the proof.
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Proposition 5.3. For the sequence (ck) produced by Alg. 5.2,

P(e⊤ ck< 1) >
∑

p∈{0,1}l
(−1)e⊤p





∑

j=1

l
1
l

((

1− 1
l

)pj
)





k

(5.46)

holds. In particular,

P(e⊤ ck< 1) →k→∞
1. (5.47)

Proof. Denote by nj
k∈N0 the number of k ′∈{1,	 , k} such that ik

′
= j, i.e. the number

of times label j was selected up to and including the k-th step. Then

(n1
k,	 , nlk) ∼ Multinomial

(

k;
1
l
,	 , 1

l

)

, (5.48)

i.e. the probability of a specific instance is

P((n1
k,	 , nlk)) =







k!

n1
k! ·	 ·nl

k!

(

1

l

)

k
,
∑

j
nj
k= k,

0, otherwise.
(5.49)

Therefore,

P(e⊤ ck< 1) =
∑

n1
k,	 ,nl

k

P(e⊤ ck< 1|(n1k,	 , nlk))P((n1
k,	 , nlk)) (5.50)

=
∑

n1
k+	+nl

k=k

k!

n1
k! ·	 ·nlk!( 1

l

)

k

P(e⊤ck< 1|(n1k,	 , nlk)). (5.51)

Since c1
k,	 , clk< 1

l
is a sufficient condition for e⊤ c < 1, we may bound the probability

according to

P(e⊤ c< 1) >
∑

n1
k+	+nl

k=k

k!

n1
k! ·	 ·nlk!( 1

l

)

k

P

(

cj
k<

1
l
∀j ∈I |(n1k,	 , nlk)). (5.52)

We now consider the distributions of the components cj
k of ck conditioned on the vector

(n1
k,	 , nlk). Given nj

k, the probability of {cjk> t} is the probability that in each of the

nj
k steps where label j was selected the threshold α was randomly chosen to be at least

as large as t. For 0<t< 1, we conclude

P(cj
k<t|(n1k,	 , nlk)) = P(cj

k< t|nj
k) (5.53)

= 1−P(cj
k> t|nj

k) (5.54)

=
0<t<1

1− (1− t)nj
k

. (5.55)

The above formulation also covers the case nj
k = 0 (note that we assumed 0 < t < 1).

For fixed k the distributions of the cj
k are independent when conditioned on (n1

k,	 , nlk).
Therefore we obtain from (5.52) and (5.55)

P(e⊤ c< 1) >
(5.52) ∑

n1
k+	+nl

k=k

k!

n1
k! ·	 ·nlk!( 1

l

)

k ∏

j=1

l

P

(

cj
k<

1
l
|(n1k,	 , nlk)) (5.56)

=
(5.55) ∑

n1
k+	+nl

k=k

k!

n1
k! ·	 ·nlk!( 1

l

)

k ∏

j=1

l (

1−
(

1− 1

l

)

nj
k
)

. (5.57)
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Expanding the product and swapping the summation order, we derive

P(e⊤ ck< 1) >
∑

n1
k+	+nl

k=k

k!

n1
k! ·	 ·nlk!( 1

l

)

k ∑

p∈{0,1}l

∏

j=1

l (

−
(

1− 1
l

)

nj
k
)pj

(5.58)

=
∑

p∈{0,1}l

∑

n1
k+	+nl

k=k

k!

n1
k! ·	 ·nlk!( 1

l

)

k ∏

j=1

l (

−
(

1− 1
l

)

nj
k
)pj

(5.59)

=
∑

p∈{0,1}l

∑

n1
k+	+nl

k=k

k!

n1
k! ·	 ·nlk! ·

(−1)e⊤p

(

1
l

)

k ∏

j=1

l ((

1− 1
l

)pj
)

nj
k

(5.60)

=
∑

p∈{0,1}l
(−1)e⊤p

∑

n1
k+	+nl

k=k

k!

n1
k! ·	 ·nlk! ∏j=1

l (
1
l

(

1− 1
l

)pj
)

nj
k

(5.61)

=
(∗) ∑

p∈{0,1}l
(−1)e⊤p









∑

j=1

l
1
l

(

1− 1
l

)pj�
=:qp









k

, (5.62)

which proves (5.46). At (∗) the multinomial summation formula was invoked. Note that

in (5.62) the nj
k do not occur explicitly anymore. To show the second assertion (5.47),

we use the fact that 0< qp< 1 for any p� (0,	 , 0). Therefore
P(e⊤ ck< 1) > q0+

∑

p∈{0,1}l,p� 0

(−1)e⊤p (qp)k (5.63)

= 1+
∑

p∈{0,1}l,p� 0

(−1)e⊤p (qp)
k�

→k→∞
0

(5.64)

→k→∞
1, (5.65)

which proves (5.47). �

We now show that Alg. 5.2 generates a sequence in BV(Ω)l almost surely.

Proposition 5.4. For the sequences (uk), (Uk) generated by Alg. 5.2, define

A 6 ⋂

k=1

∞
{γ ∈Γ|Per(Uγ

k)<∞}. (5.66)

Then

P(A) = 1. (5.67)

If Per(Uγ
k)<∞ for all k, then uγ

k ∈BV(Ω)l for all k as well. Moreover,

P(uk ∈BV(Ω)l∧Per(Uk)<∞∀k ∈N) = 1, (5.68)

i.e. the algorithm almost surely generates a sequence of BV functions (uk) and a

sequence of sets of finite perimeter (Uk).
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Proof. We first show that if Per(Uk ′
)<∞ for all k ′6k, then uk∈BV(Ω)l for all k ′6k

as well. For k=0, the assertion holds, since u0=u∈BV(Ω)l by assumption. For k> 1,

uk = ei
k
χMk+uk−1 χΩ\Mk. (5.69)

Since Mk = Uk−1 ∩ (Ω \ Uk), and Uk, Uk−1 are assumed to have finite perimeter, Mk

also has finite perimeter. Applying [AFP00, Thm. 3.84] together with the boundedness

of uk−1 and uk−1∈BV(Ω)l by induction then provides uk ∈BV(Ω)l.
We now denote

Ik 6 {γ ∈Γ|Per(Uγ
k)=∞}, (5.70)

and the event that the first set with non-finite perimeter is encountered at step k∈N0,

Bk 6 Ik∩ (Γ \ Ik−1)∩	 ∩ (Γ \ I0). (5.71)

Then

P(A) = 1−P

(

⋃

k=0

∞
Bk

)

. (5.72)

As the sets Bk are pairwise disjoint, and due to the countable additivity of the proba-
bility measure, we have

P(A) = 1−
∑

k=0

∞
P(Bk). (5.73)

Now U0=Ω, therefore Per(U0)=TV(χU0)= 0<∞ and P(B0)= 0. For k> 1, we have

P(Bk) 6 P
(

Per(Uk)=∞∧Per(Uk ′
)<∞∀k ′<k

)

(5.74)

6 P
(

Per(Uk)=∞|Per(Uk ′
)<∞∀k ′<k

)

(5.75)

= P
(

Per(Uk−1∩ {x∈Ω|uikk−1(x)6αk})=∞|Per(Uk ′
)<∞∀k ′<k

)

. (5.76)

By the argument from the beginning of the proof, we know that uk−1∈BV(Ω)l under
the condition on Per(Uk ′

), therefore from [AFP00, Thm. 3.40] we conclude that the

perimeter Per({x∈Ω|uikk−1(x)6αk}) is finite for L1-a.e. αk and all ik. As the sets of finite
perimeter are closed under finite intersection, and the αk are drawn from an uniform
distribution, this implies that

P(Per(Uk)<∞|Per(Uk−1)<∞) = 1. (5.77)

Together with (5.76) we arrive at

P(Bk) = 0. (5.78)

Substituting this result into (5.73) leads to the assertion,

P(A) = 1. (5.79)

Equation (5.68) follows immediately. �

Using these propositions, we now formulate the main result of this section: Alg. 5.2
almost surely generates an integral labeling that is of bounded variation.
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Theorem 5.5. Let u∈BV(Ω)l and f(ū) as in Def. 5.2. Then

P(f(ū)<∞) = 1. (5.80)

Proof. The first part is to show that (uk) becomes stationary almost surely, i.e.

P(∃k ∈N:Uk= ∅) = 1. (5.81)

Assume there exists k such that e⊤ ck < 1, and assume further that Uk � ∅, i.e. there
exists some x∈Uk. Then uj(x)6 cj

k for all labels j. But then e⊤u(x)6 e⊤ ck< 1, which
is a contradiction to u(x) ∈ ∆l. Therefore Uk must be empty. From this observation
and Prop. 5.3 we conclude, for all k ′∈N,

1>P(∃k ∈N:Uk= ∅)> P(e⊤ ck
′
< 1) →k

′→∞
1, (5.82)

which proves (5.81).

In order to show that f(ūγ)<∞ with probability 1, it remains to show that the result

is almost surely in BV(Ω)l. A sufficient condition is that almost surely all iterates uk

are elements of BV(Ω)l, i.e.

P(uk∈BV(Ω)l ∀k ∈N) = 1. (5.83)

This is shown by Prop. 5.4. Then

P(f(ū)<∞) > P({∃k ∈N:Uk= ∅}∧ {uk ∈BV(Ω)l ∀k ∈N}) (5.84)

= P({uk ∈BV(Ω)l ∀k ∈N})
−P({∀k ∈N:Uk� ∅}∧ {uk ∈BV(Ω)l ∀k ∈N}) (5.85)

=
(5.83)

P({uk ∈BV(Ω)l ∀k ∈N})− 0 (5.86)

= 1. (5.87)

Thus P(f(ū)<∞)= 1, which proves the assertion. �

5.5.3 Intermediate Results

In order to show the bound (5.45), we first need several technical propositions regarding
the composition of two BV functions along a set of finite perimeter. We denote by (E)1

and (E)0 the measure-theoretic interior and exterior, and refer to Appendix A.1 for the
precise definitions.

It turns out that for deriving the bounds, it is more suitable to replace the upper
and lower boundedness of Ψ, ρl ‖·‖26Ψ6 ρu‖·‖2, by the assumption that there exist a
lower bound λl> 0 such that

Ψ(z=(z1,	 , zl)) > λl
1
2

∑

i=1

l

‖zi‖2 ∀z ∈Rd×l,
∑

i=1

l

zi=0, (5.88)

and an upper bound λu<∞ such that

Ψ(y (ei− ej)⊤) 6 λu ∀i, j ∈{1,	 , l}, y ∈Rd, ‖y‖2=1. (5.89)
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Note that λu>λl in case both are defined, since (5.88) implies, for any y with ‖y‖2=1,

λu>Ψ(y (ei− ej)⊤)> λl
2
(‖y‖2+ ‖y‖2)=λl. (5.90)

Also, the upper boundedness by λu implies a similar bound in the 2-norm:

Proposition 5.6. Let Ψ:Rd×l→R>0 be positively homogeneous and convex, and satisfy
the upper-boundedness condition ( 5.89). Then

Ψ(y (z1− z2)⊤) 6 λu ∀z1, z2∈∆l, y ∈Rd, ‖y‖2=1. (5.91)

Moreover, there exists a constant C <∞ such that

Ψ(w) 6 C ‖w‖2 ∀w ∈W 6 {w=(w1|	 |wl)∈Rd×l|
∑

i=1

l

wi=0}. (5.92)

Proof. In order to prove the first assertion (5.91), note that the mapping w� Ψ(yw⊤)
is convex, therefore it must assume its maximum on the polytope

∆l−∆l6 {z1− z2|z1, z2∈∆l}. (5.93)

Since the polytope∆l−∆l is the difference of two polytopes, its vertex set is at most the
difference of their vertex sets, V 6 {ei− ej |i, j ∈ {1,	 , l}}. On this set, Ψ(yw⊤)6 λu
holds for w ∈V due to the upper-boundedness condition (5.89), which proves (5.91).

The second equality (5.92) follows from the fact that the set

G 6 {bik6 ek (ei− ei+1)⊤|k ∈{1,	 , d}, i∈{1,	 , l− 1}} (5.94)

is a basis of the linear subspace W satisfying Ψ(b ik)6λu, and Ψ is positively homoge-
neous and convex, and thus subadditive. Specifically, there exists a linear transform T :
W→R

d×(l−1) such that w=
∑

i,k
bikαik for α=T (w). Then

Ψ(w)=Ψ(
∑

i,k

bikαik)=Ψ(
∑

i,k

|αik |sgn(αik)b
ik)6

∑

i,k

|αik|Ψ(sgn(αik)b
ik) (5.95)

Since (5.89) provides Ψ(±bik)6 λu, we obtain

Ψ(w)6 λu
∑

ik

|αik |6 λu ‖T ‖ ‖w‖2 (5.96)

for some suitable operator norm ‖·‖ and any w ∈W . �

Proposition 5.7. Let E,F ⊆Ωd be Ld-measurable sets. Then

(E ∩F )1 = (E)1∩ (F )1. (5.97)

Proof. We prove mutual inclusion:

• ′′⊆′′: From the definition of the measure-theoretic interior,

x∈ (E ∩F )1 ⇒ lim
δց0

|Bδ(x)∩E ∩F |
|Bδ(x)|

=1. (5.98)
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Since |Bδ(x)| > |Bδ(x) ∩ E | > |Bδ(x) ∩ E ∩ F | (and vice versa for |Bδ(x) ∩ F |),
it follows by the “sandwich” criterion that both limδց0 |Bδ(x) ∩E |/|Bδ(x)| and
limδց0 |Bδ(x)∩F |/|Bδ(x)| exist and are equal to 1, which shows x∈E1∩F 1.

• ′′⊇′′: Assume that x∈E1∩F 1. Then

1 > lim
δց0

sup
|Bδ(x)∩E ∩F |
|Bδ(x)|

(5.99)

> lim
δց0

inf
|Bδ(x)∩E ∩F |
|Bδ(x)|

(5.100)

= lim
δց0

inf
|Bδ(x)∩E |+ |Bδ∩F | − |Bδ∩ (E ∪F )|

|Bδ(x)|
(5.101)

> lim
δց0

inf
|Bδ(x)∩E |
|Bδ(x)|

+ lim
δց0

inf
|Bδ(x)∩F |
|Bδ(x)|

+ lim
δց0

inf

(

−|Bδ∩ (E ∪F )||Bδ(x)|

)

= 2− lim
δց0

sup
|Bδ∩ (E ∪F )|
|Bδ(x)|�

61

> 1. (5.102)

Therefore

lim
δց0

sup
|Bδ(x)∩E ∩F |
|Bδ(x)|

= lim
δց0

inf
|Bδ(x)∩E ∩F |
|Bδ(x)|

=1, (5.103)

i.e. x∈ (E ∩F )1. �

Proposition 5.8. Let u, v ∈BV(Ω,∆l) and E ⊆Ω such that Per(E)<∞. Define

w 6 uχE+ vχΩ\E. (5.104)

Then w ∈BV(Ω)l, and

Dw = Dux(E)1+Dvx(E)0+ νE (uFE
+ − vFE

− )⊤Hd−1x(FE ∩Ω), (5.105)

where uFE
+ and vFE

− denote the one-sided approximate limits of u and v on FE, and νE
is the generalized inner normal of E (Def. A.12). Moreover, for continuous, convex and
positively homogeneous Ψ satisfying the upper-boundedness condition ( 5.89) and some
Borel set A⊆Ω,

∫

A

dΨ(Dw) 6

∫

A∩(E)1
dΨ(Du)+

∫

A∩(E)0
dΨ(Dv)+λuPer(E). (5.106)

Proof. First note that
∫

FE∩Ω
‖wFE

+ −wFE
− ‖2 dHd−1 (5.107)

6 sup { ‖wFE
+ (x)−wFE

− (x)‖2 |x∈FE ∩Ω} ·Hd−1(FE ∩Ω) (5.108)

6
(∗)

sup { ‖w(x)−w(y)‖2 |x, y∈Ω} ·TV(χE) (5.109)

6
w(x),w(y)∈∆l

2
√

TV(χE) (5.110)

= 2
√

Per(E)<∞. (5.111)
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The inequality (∗) is a consequence of the definition of wFE
± and [AFP00, Thm. 3.59]. We

may therefore apply [AFP00, Thm. 3.84] on w, which provides w∈BV(Ω)l and (5.105).
Due to [AFP00, Prop. 3.61] (Thm. A.15), the sets (E)0, (E)1 and FE form a (pairwise

disjoint) partition of Ω, up to an Hd−1-zero set. Moreover, since Ψ(Du)≪|Du|≪Hd−1

by construction, we have, for some Borel set A,
∫

A

Ψ(Dw) =

∫

A∩(E)1
dΨ(Dw)+

∫

A∩(E)0
dΨ(Dw)+

∫

A∩FE∩Ω
Ψ(νE (wFE

+ (x)−wFE
− (x))⊤ ) dHd−1 (5.112)

6
(∗∗) ∫

A∩(E)1
dΨ(Dw)+

∫

A∩(E)0
dΨ(Dw)+

∫

A∩FE∩Ω
λu dHd−1 (5.113)

6
(5.111)

∫

A∩(E)1
dΨ(Dw)+

∫

A∩(E)0
dΨ(Dw)+λuPer(E). (5.114)

The inequality (∗∗) holds due to the upper boundedness and Prop. 5.6. From [AFP00,
Prop. 2.37] we obtain that Ψ is additive on mutually singular Radon measures µ, ν, i.e.

|µ|⊥|ν | ⇒
∫

B

dΨ(µ+ ν)=

∫

B

dΨ(µ)+

∫

B

dΨ(ν) ∀B ⊆Ω, B Borel set. (5.115)

Substituting Dw in (5.114) according to (5.105) and using the fact that the three
measures that formDw in (5.105) are mutually singular, the additivity property (5.115)
leads to the remaining assertion,

∫

A

dΨ(Dw) 6

∫

A∩(E)1
dΨ(Du)+

∫

A∩(E)0
dΨ(Dv)+ λuPer(E). (5.116)

�

Proposition 5.9. Let u, v ∈BV(Ω,∆l), E ⊆Ω such that Per(E)<∞, and

u|(E)1=v |(E)1 Ld-a.e. (5.117)

Then (Du)x(E)1=(Dv)x(E)1, and Ψ(Du)x(E)1=Ψ(Dv)x(E)1. In particular,
∫

(E)1
dΨ(Du) =

∫

(E)1
dΨ(Dv). (5.118)

The result also holds when (E)1 is replaced by (E)0. Moreover, the condition ( 5.117)
is equivalent to

u|E=v |E Ld-a.e. (5.119)

Remark 5.10. Note that taking the measure-theoretic interior (E)1 is of central impor-
tance. The corollary does not hold when replacing the integral over (E)1 with the
integral over E, as can be seen from the example of the closed unit ball, i.e. E=B1(0),
u= χE and v≡ 1.

Proof. We first show (5.119). It suffices to show that

{x∈ (E)1 ⇔ x∈E} for Ld-a.e.x∈Ω. (5.120)
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This can be seen by considering the precise representative χE of χE [AFP00, Def. 3.63]

x∈ (E)1 ⇔ lim
δց0

|E ∩Bδ(x)|
|Bδ(x)|

=1 (5.121)

⇔
limδց0

|Ω∩Bδ(x)|

|Bδ(x)|
=1

lim
δց0

|(Ω \E)∩Bδ(x)|
|Bδ(x)|

=0 (5.122)

⇔ lim
δց0

1

|Bδ(x)|

∫

Bδ(x)
|χE − 1| dy=0 (5.123)

⇔ χE(x)= 1. (5.124)

Substituting E by Ω \E, the same equivalence shows that x ∈ (E)0⇔ χΩ\E(x) = 1⇔
χE(x) = 0. As Ld(Ω \ ((E)0 ∪ (E)1)) = 0, this shows that χE1 = χE Ld-a.e. Using the

fact that χE = χE [AFP00, Prop. 3.64 a)], we conclude that χ(E)1= χE Ld-a.e., which
proves (5.120) and therefore the assertion (5.119).

Since the measure-theoretic interior (E)1 is defined over Ld-integrals, it is invariant
under Ld-negligible modifications of E. Together with (5.120) this implies

((E)1)1= (E)1, F (E)1=FE and ((E)1)0= (E)0. (5.125)

To show the relation (Du)x(E)1=(Dv)x(E)1, consider

Dux(E)1 = D(χΩ\(E)1u+ χ(E)1u)x(E)1 (5.126)

=
(∗)

D(χΩ\(E)1u+ χ(E)1 v)x(E)1. (5.127)

The equality (∗) holds due to the assumption (5.117), and due to the fact that Df =Dg

if f = g Ld-a.e. (see e.g. [AFP00, Prop. 3.2]). We continue from (5.127) via

Dux(E)1 =
Prop. 5.8 {Dux((E)1)0+Dv x((E)1)1+ (5.128)

ν(E)1 (uFE1
+ − vFE1

− )⊤Hd−1
x(F (E)1∩Ω)}x(E)1

=
(5.125)

(Dux(E)0+Dv x(E)1)x(E)1+ (5.129)
(

ν(E)1(uFE1
+ − vFE1

− )⊤Hd−1
x(FE ∩Ω)

)

x(E)1

= Dux((E)0∩ (E)1)+Dv x((E)1∩ (E)1)+ (5.130)

ν(E)1(uFE1
+ − vFE1

− )⊤Hd−1
x(FE ∩Ω∩ (E)1)

= Dv x(E)1. (5.131)

Therefore Dux(E)1=Dvx(E)1. Then,

Ψ(Du)x(E)1 = Ψ(Dux(E)1+Dux(Ω \ (E)1) )x(E)1 (5.132)

=
(∗)

Ψ(Dux(E)1)x(E)1+Ψ(Dux(Ω \ (E)1))x(E)1. (5.133)

In the equality (∗) we used the additivity of Ψ on mutually singular Radon measures
[AFP00, Prop. 2.37]. By definition of the total variation, |µxA|= |µ|xA holds for any
measure µ, therefore |Dux(Ω \ (E)1)|= |Du|x(Ω\ (E)1) and |Dux(Ω \ (E)1)|((E)1)=0,
which together with (again by definition) Ψ(µ) ≪ |µ| implies that the second term
in (5.133) vanishes. Since all observations equally hold for v instead of u, we conclude

Ψ(Du)x(E)1=Ψ(Dux(E)1)x(E)1 =
(5.131)

Ψ(Dvx(E)1)x(E)1=Ψ(Dv)x(E)1. (5.134)

Equation (5.118) follows immediately. �
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5.5.4 A Probabilistic A Priori Optimality Bound

In Sect. 5.5.2 we have shown that the rounding process induced by Alg. 5.2 is well-

defined in the sense that it returns an integral solution ūγ ∈BV(Ω)l almost surely. We
now return to proving an upper bound for the expectation of f(ū) as in the approximate
coarea formula (5.7). We first show that the expectation of the linear part (data term)
of f is invariant under the rounding process.

Proposition 5.11. The sequence (uk) generated by Alg. 5.2 satisfies

E(〈uk, s〉) = 〈u, s〉 ∀k ∈N. (5.135)

Proof. In Alg. 5.2, instead of step 5 we consider the simpler update

uk ← ei
k
χ{u

ik
k−1>αk}+uk−1χ{u

ik
k−1

6αk}. (5.136)

This yields exactly the same sequence (uk), since uik
k−1(x)>αk for any αk > 0 implies

that either x ∈ Uk−1, or uik
k−1(x) = 1. In both algorithms, points that are assigned a

label ei
k
at some point in the process will never be assigned a different label at a later

point. This is made explicit in Alg. 5.2 by keeping track of the set Uk of yet unassigned
points. In contrast, using the step (5.136), a point may formally be assigned the same
label multiple times.

Denote γ ′6 (γ1,	 , γk−1) and uγ
′6 uγ

k−1. We apply induction on k: For k> 1,

Eγ〈uγk , s〉 = Eγ ′
1
l

∑

i=1

l ∫

0

1
∑

j=1

l

sj ·
(

eiχ{ui
γ ′
>α}+ uγ

′
χ{ui

γ ′
6α}

)

j
dα (5.137)

= Eγ ′
1
l

∑

i=1

l ∫

0

1 (

si · χ{ui
γ ′
>α}+uγ

′
χ{ui

γ ′
6α} 〈u

γ ′
, s〉
)

dα (5.138)

= Eγ ′
1
l

∑

i=1

l ∫

0

1 (

si · χ{ui
γ ′
>α}+

(

1− χ{ui
γ ′
>α}

)

〈uγ ′
, s〉
)

dα. (5.139)

Now we take into account the property [AFP00, Prop. 1.78], which is a direct conse-
quence of Fubini’s theorem, and also used in the proof of the thresholding theorem for
the two-class case (Thm. 2.8):

∫

0

1 ∫

Ω
si(x) · χ{ui>α}(x)dx dα=

∫

Ω
si(x)ui(x)d x= 〈ui, si〉. (5.140)

This leads to

Eγ〈uγk , s〉 = Eγ ′
1
l

∑

i=1

l
(

siui
γ ′

+ 〈uγ ′
, s〉− uiγ

′〈uγ ′
, s〉
)

dα (5.141)

=
uγ ′

(x)∈∆l
Eγ ′〈uγ ′

, s〉 = Eγ〈uγk−1, s〉. (5.142)

Since 〈u0, s〉= 〈u, s〉, the assertion follows by induction. �

Remark 5.12. Prop. 5.11 shows that the data term is – in the mean – not affected by
the probabilistic rounding process, i.e. it satisfies an exact coarea-like formula.
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Bounding the regularizer is more involved: For γk=(ik, αk), define

Uγk 6 {x∈Ω|uik(x)6αk}, (5.143)

Vγk 6 (Uγk)1, (5.144)

V k 6 (Uk)1. (5.145)

As the measure-theoretic interior is invariant under Ld-negligible modifications, given

some fixed sequence γ the sequence (V k) is invariant under Ld-negligible modifications
of u = u0, i.e. it is uniquely defined when viewing u as an element of L1(Ω)l. Some
calculations yield

Uk = Uγ1∩	 ∩Uγk, k> 1, (5.146)

Uk−1 \Uk = Uγ1∩ ((Uγ2∩	 ∩Uγk−1) \ (Uγ2∩	 ∩Uγk)), k> 2. (5.147)

From these observations and Prop. 5.7,

V k = Vγ1∩	 ∩ Vγk, k> 1, (5.148)

V k−1 \V k = Vγ1∩ ((Vγ2∩	 ∩Vγk−1) \ (Vγ2∩	 ∩ Vγk)), k> 2, (5.149)

Ω \V k =
⋃

k ′=1

k
(

V k ′−1 \V k ′)

, k> 1. (5.150)

Moreover, since V k is the measure-theoretic interior of Uk, both sets are equal up to an
Ld-negligible set (cf. (5.120)).

We now prepare for an induction argument on the expectation of the regularizing

term when restricted to the sets V k−1 \ V k. The following proposition provides the
initial step (k=1).

Proposition 5.13. Assume that Ψ:Rd×l→R>0 satisfies the lower and upper bound-
edness conditions ( 5.88) and ( 5.89). Then

E

∫

V 0\V 1
dΨ(Dū) 6

2
l

λu
λl

∫

Ω
dΨ(Du). (5.151)

Proof. Denote (i, α)= γ1. Since χU(i,α)
= χV(i,α)

Ld-a.e., we have

ūγ= χV(i,α)
ei+ χΩ\V(i,α)

ūγ Ld-a.e. (5.152)

Therefore, since V 0=(U 0)1= (Ω)1=Ω,
∫

V 0\V 1
dΨ(Dūγ) =

∫

Ω\V(i,α)

dΨ(Dūγ)=

∫

Ω\V(i,α)

dΨ
(

D
(

χV(i,α)
ei+ χΩ\V(i,α)

ūγ
))

.

Since u∈BV(Ω)l, we know that Per(V(i,α))<∞ holds for L1-a.e. α and any i [AFP00,

Thm. 3.40]. Therefore we conclude from Prop. 5.8 that for L1-a.e. α,
∫

Ω\V(i,α)

dΨ(Dūγ)6λuPer(V(i,α))+

∫

(

Ω\V(i,α)

)

∩
(

Ω\V(i,α)

)

1
dΨ(Dei)+

∫

(

Ω\V(i,α)

)

∩
(

Ω\V(i,α)

)

0
dΨ(Dūγ). (5.153)
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Both of the integrals are zero, sinceDei=0 and (Ω\V(i,α))0=(V(i,α))
1=V(i,α), therefore

∫

Ω\V(i,α)
dΨ(Dūγ)6λuPer(V(i,α)). Carrying the bound over to the expectation yields

Eγ

∫

Ω\V(i,α)

dΨ(Dūγ) 6
1
l

∑

i=1

l ∫

0

1

λuPer(V(i,α))dα. (5.154)

Also, Per(V(i,α))=Per(U(i,α)) since the perimeter is invariant under Ld-negligible mod-

ifications. The assertion then follows using V 0=Ω, V 1=V(i,α) and the coarea formula:

Eγ

∫

V 0\V 1
dΨ(Dūγ) 6

1
l

∑

i=1

l ∫

0

1

λuPer(U(i,α))dα (5.155)

=
coarea λu

l

∑

i=1

l

TV(ui)=
λu
l

∫

Ω

∑

i=1

l

d‖Dui‖2 (5.156)

6
(5.88) 2

l

λu
λl

∫

Ω
dΨ(Du). (5.157)

�

We now take care of the induction step for the regularizer bound.

Proposition 5.14. Let Ψ satisfy the upper boundedness ( 5.89). Then, for any k> 2,

F 6 E

∫

V k−1\V k

dΨ(Dū) 6
(l− 1)

l
E

∫

V k−2\V k−1
dΨ(Dū). (5.158)

Proof. Define the shifted sequence γ ′=(γ ′k)k=1
∞ by γ ′k6 γk+1, and let

Wγ ′ 6 Vγ ′
k−2 \Vγ ′

k−1=(Vγ2∩	 ∩Vγk−1) \ (Vγ2∩	 ∩Vγk). (5.159)

By Prop. 5.5 we may assume that, under the expectation, ūγ exists and is an element

of BV(Ω)l. We denote γ1=(i,α), then V k−1\V k=V(i,α)∩Wγ ′ due to (5.149). For each

pair (i, α) we denote by ((i, α), γ ′) the sequence obtained by prepending (i, α) to the
sequence γ ′. Then

F =
1
l

∑

i=1

l ∫

0

1
(

Eγ ′

∫

V(i,α)∩Wγ ′

dΨ(Dū((i,α),γ ′))

)

dα. (5.160)

Since in the first iteration of the algorithm no points in U(i,α) are assigned a label,

ū((i,α),γ ′)= ūγ ′ holds on U(i,α), and therefore Ld-a.e. on V(i,α). Therefore we may apply

Prop. 5.9 and substitute Dū((i,α),γ ′) by Dūγ ′ in (5.160):

F =
1
l

∑

i=1

l ∫

0

1
(

Eγ ′

∫

V(i,α)∩Wγ ′

dΨ(Dūγ ′)

)

dα (5.161)

=
1
l

∑

i=1

l ∫

0

1
(

Eγ ′

∫

Wγ ′

χV(i,α)
dΨ(Dūγ ′)

)

dα. (5.162)
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By definition of the measure-theoretic interior (Def. A.13), χV(i,α)
is bounded from above

by the density function ΘU(i,α)
of U(i,α),

χV(i,α)
(x) 6 Θ(i,α)(x)6 lim

δց0

|Bδ(x)∩U(i,α)|
|Bδ(x)|

, (5.163)

which exists Hd−1-a.e. on Ω by [AFP00, Prop. 3.61] (Thm. A.15). Therefore, denoting
by Bδ(·) the mapping x∈Ω� Bδ(x),

F 6
1
l

∑

i=1

l ∫

0

1
(

Eγ ′

∫

Wγ ′

(

lim
δց0

|Bδ( ·)∩U(i,α)|
|Bδ( · )|

)

dΨ(Dūγ ′)

)

dα. (5.164)

Rearranging the integrals and the limit, which can be justified by dominated conver-
gence using (5.89) and TV(ūγ ′)<∞ almost surely, we get

F 6
1
l
Eγ ′ lim

δց0

∫

Wγ ′

(

∑

i=1

l ∫

0

1
( |Bδ( ·)∩U(i,α)|

|Bδ( · )|

)

dα

)

dΨ(Dūγ ′) (5.165)

=
1
l
Eγ ′ lim

δց0

∫

Wγ ′

1
|Bδ( · )|

(

∑

i=1

l ∫

0

1 ∫

Bδ(·)
χ{ui(y)6α}d y dα

)

dΨ(Dūγ ′). (5.166)

We again apply [AFP00, Prop. 1.78] to the two innermost integrals (alternatively, use
Fubini’s theorem), which leads to

F 6
1
l
Eγ ′ lim

δց0

∫

Wγ ′

1
|Bδ( · )|

(

∑

i=1

l ∫

Bδ(·)
(1−ui(y))d y

)

dΨ(Dūγ ′). (5.167)

Using the fact that u(y)∈∆l, it turns out that

F 6
1
l
Eγ ′ lim

δց0

∫

Wγ ′

1
|Bδ( · )|

(

∫

Bδ(·)
(l− 1) d y

)

dΨ(Dūγ ′) (5.168)

=
1

l
Eγ ′ lim

δց0

∫

Wγ ′

(l− 1) dΨ(Dūγ ′) (5.169)

=
l− 1

l
Eγ ′

∫

Wγ ′

dΨ(Dūγ ′) (5.170)

=
l− 1

l
Eγ ′

∫

V
γ ′
k−2\V

γ ′
k−1

dΨ(Dūγ ′). (5.171)

Reverting the index shift and using the fact that ūγ ′= ūγ concludes the proof:

F 6
l− 1
l

Eγ

∫

Vγ
k−1\Vγ

k
dΨ(Dūγ). (5.172)

�

The following theorem is the main result of this work, and provides an approximate
coarea formula in the sense of (5.41).
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Theorem 5.15. Let s∈L∞(Ω)l, s>0, Ψ:Rd×l→R>0 positively homogeneous, convex
and continuous, and u∈C. Assume that there exist λl,λu such that the lower- and upper-
boundedness conditions ( 5.88) and ( 5.89) are satisfied. Then Alg. 5.2. generates an
integral labeling ū ∈CE almost surely, and

Ef(ū) 6 2
λu
λl
f(u). (5.173)

Proof. The fact that the algorithm provides ū∈CE almost surely follows from Thm. 5.5.

Therefore there almost surely exists k ′6 k ′(γ)> 1 such that Uk ′
= ∅ and ūγ= uγ

k ′
. On

one hand, this implies

〈ūγ , s〉= 〈uγk
′
, s〉= lim

k→∞
〈uγk , s〉 (5.174)

almost surely. On the other hand, we have V k ′
=(Uk ′

)1= ∅ and therefore

⋃

k=1

k ′

V k−1 \V k =
(∗)

Ω \V k ′
=Ω (5.175)

almost surely. The equality (∗) can be shown by induction: For the base case k ′=1, we
have V 0=(U0)1=(Ω)1=Ω, since Ω is the open unit box. For k ′> 2,

⋃

k=1

k ′

V k−1 \V k =
(

V k ′−1 \V k ′)∪
⋃

k=1

k ′−1

(V k−1 \V k) (5.176)

=
(

V k ′−1 \V k ′)∪
(

Ω \V k ′−1
)

(5.177)

=
V k ′−1⊆Ω

Ω \V k ′−1. (5.178)

almost surely (cf. (5.150)). From (5.174) and (5.175) we obtain

Eγf(ūγ) = Eγ

(

lim
k→∞

〈uγk , s〉
)

+Eγ

(

∑

k=1

∞ ∫

V k−1\V k

dΨ(Dūγ)

)

(5.179)

= lim
k→∞

(

Eγ〈uγk , s〉
)

+
∑

k=1

∞
Eγ

∫

V k−1\V k

dΨ(Dūγ) (5.180)

The first term in (5.180) is equal to 〈u, s〉 due to Prop. 5.11. An induction argument
using Prop. 5.13 and Prop. 5.14 shows that the second term can be bounded according to

∑

k=1

∞
Eγ

∫

V k−1\V k

Ψ(D ūγ) 6
∑

k=1

∞ (

l− 1
l

)

k−12
l

λu
λl

∫

Ω
dΨ(Du) (5.181)

= 2
λu
λl

∫

Ω
dΨ(Du), (5.182)

therefore

Eγf(ūγ) 6 〈u, s〉+2
λu
λl

∫

Ω
dΨ(Du). (5.183)

Since s> 0 andλu> λl, and therefore 〈u, s〉6 2(λu/λl)〈u, s〉, this proves the assertion.
Swapping the integral and limits in (5.180) can be justified retrospectively by the dom-
inated convergence theorem, using 06 〈u, s〉6∞ and Prop. 5.6. �
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Corollary 5.16. Under the conditions of Thm. 5.15, if u∗ minimizes f over C, uE∗
minimizes f over CE , and ū∗ is the output of Alg. 5.2 when applied to u∗, then

Ef(ū∗) 6 2
λu
λl
f(uE

∗). (5.184)

Proof. This follows immediately from Thm. 5.15, since CE ⊆C implies f(u∗)6 f(uE
∗),

cf. (5.42). �

We have demonstrated that the proposed approach allows to recover, from the solu-
tion u∗ of the convex relaxed problem (5.2), an approximate integral solution ū∗ of the
nonconvex original problem (5.1) with an upper bound on the objective.

For the metric embedding regularizer we obtain the following, less tight bounds. For

simplicity, we assume that A∈Rl×l is regular.

Proposition 5.17. Assume that A=(a1|	 |al)∈Rl×l is regular and let Ψ=ΨA. Then
the definition

λl=
2

l
√
‖A−1‖

and λu= max
i,j∈{1,	 ,l}

‖ai− aj‖2, (5.185)

where ‖A−1‖ denotes the operator norm of A−1 with respect to ‖·‖2, fulfills the lower-
and upper-boundedness conditions ( 5.88) and ( 5.89).

Proof. For the lower-boundedness condition (5.88), we compute:

λl
2

∑

i=1

l

‖zi‖2 =
1

l
√
‖A−1‖

∑

i=1

l

‖zi‖2 (5.186)

6
1

l
√
‖A−1‖

l
√
‖z‖2 (5.187)

= ‖A−1‖−1 ‖zA⊤ (A⊤)−1‖2 (5.188)

6
(∗)
‖A−1‖−1 ‖zA⊤‖2‖A−1‖ (5.189)

= ‖zA⊤‖2=ΨA(z). (5.190)

The inequality (∗) relies on the fact that ‖MN ‖26 ‖M ‖ ‖N ‖2 for compatible matrices
M,N , as can be seen from the definitions of the norms. The upper-boundedness follows
directly from (5.89) and the definition of ΨA. �

The above proposition results in an optimality bound factor for ΨA depending on
the condition of A:

2
λu
λl

= l
√
‖A−1‖ max

i,j∈{1,	 ,l}
‖ai− aj‖26 2 l

√
‖A−1‖ ‖A‖. (5.191)

Note however that this estimate is rather loose, in particular it does not take the con-
straint on z in (5.88) into account. The corresponding result for the envelope regularizer
Ψ=Ψd is much tighter and more elegant:
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Proposition 5.18. Let d: E2→R>0 be a metric and Ψ=Ψd. Then the definition

λl=min
i� j

d(i, j) and λu= max
i,j∈{1,	 ,l}

d(i, j) (5.192)

fulfills the lower- and upper-boundedness conditions ( 5.88) and ( 5.89).

Proof. From Prop. 2.6 we obtain, for any y ∈Rd with ‖y‖2=1,

Ψd(y (e
i− ej)) = d(i, j), (5.193)

which shows the upper bound (5.89). For the lower bound (5.88), set

c6 min
i� j

d(i, j), v ′i6 c

2
wi

‖wi‖2
, and v6 v ′ (I − 1

l
e e⊤) . (5.194)

Then ‖vi−vj‖2=‖v ′i−v ′j‖26 c and ve=v ′ (I − 1

l
ee⊤)e=0. Therefore v∈Dloc

d , which

implies, for w ∈Rd×l satisfying we=0,

Ψd(w) > 〈w, v〉= 〈w, v ′〉=
∑

i=1

l

〈wi,
c

2
wi

‖wi‖2
〉)= c

2

∑

i=1

l

‖wi‖2, (5.195)

proving the lower bound. �

Finally, for Ψd we obtain the optimality bound factor

2
λu
λl

= 2
maxi,j d(i, j)

mini� j d(i, j)
, (5.196)

which is exactly the same as has been proven for the finite-dimensional metric labeling
[KT99] and α-expansion [BVZ01] methods. The above considerations extend these
results to problems on continuous domains for a broad class of regularizers.

5.6 Experimental Comparison

Although the main purpose of Alg. 5.2 is to provide a basis for deriving the bound in
Thm. 5.15, we will briefly point out some of its empirical characteristics. It is important
to keep in mind that for the discretized problem, analog bounds to those provided by
Thm. 5.15 are only valid if the discretization respects the coarea formula. However,
for these energies the original finite-dimensional proof [KT99] already applies. For the
finite-differences discretization, a comparison of the a posteriori bounds computed via
the primal-dual gap must be taken with a grain of salt, since the gap is caused by
the relaxation as well as the discretization. However, unlike in the two-class case, a
comparison makes at least limited sense in the multiclass case, since a large a posteriori
bound suggests that is it not only caused by the discretization, and that the underlying
integral solution may be suboptimal due to the relaxation. With this in mind, the
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Figure 5.1. Left: Label count l vs. mean number of iterations k of the probabilistic rounding
algorithm. The improved sampling of αk greatly accelerates the method. Right: Empirically,
k ≈ 2l ln (l) for the accelerated method. As a result, the total runtime is comparable to the
deterministic rounding methods for a moderate number of labels.

Figure 5.2. Histogram (probability density scale) of the number of required iterations k; sampled
over 5000 runs for 2− 128 labels.

observations in the following subsections should be seen only as indicators of what
results can be expected qualitatively.

Expected Number of Iterations. In practice, choosing αk ∈ [0, 1] leads to an
unnecessary large number of iterations, as no point is assigned a label in iteration k

unless αk<cik
k−1. The method can be accelerated without affecting the derived bounds

by choosing αk ∈ [0, cikk−1] instead, thereby skipping the redundant iterations.

Fig. 5.1 shows the mean number of iterations k until the condition e⊤ck < 1 was
satisfied, sampled over 5000 runs per label count; see Fig. 5.2 for the corresponding
histograms. From the proof of Thm. 5.5 it can be seen that this provides a worst-case
upper bound for the expected number of iterations until the algorithm can be stopped
and ūγ is obtained. For the accelerated method, k is almost perfectly proportional to

l ln (l); we conjecture that asymptotically k=2l ln (l).
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Figure 5.3. Top to bottom: Problems 2,3,8,11 of the test set. Left to right: Original input;
relaxed solution; integral solutions obtained by deterministic “first-max” and “modified” rounding
(Sect 5.3); result of the probabilistic rounding. In specially crafted situations, the probabilistic
method may perform slightly worse (first row) or better (second row) than the deterministic
approaches. On real-world data, results are very similar (rows 3-4). In contrast to the determin-
istic approaches, the probabilistic method provides true a priori optimality bounds.

A Priori and A Posteriori Bounds. In order to evaluate the tightness of the
bound (5.184) in Thm. 5.15 in practice, we selected 12 prototypical multiclass labeling
problems with 3−64 labels each. For each we computed the relaxed solution u∗ and the
mean as well as the best objective of the rounded solution ū∗ during 10000 iterations
of Alg. 5.2, see Fig. 5.3 for some exemplary results.

The primal-dual optimization approach provides an (approximate) a posteriori
bound ε′ as outlined in Sect. 4.3, in contrast to the theoretical a priori upper bound
ε = 2λu/λl − 1 derived from Cor. 5.16. In practice, the a posteriori bound stayed
well below the theoretical bound (Table 5.1), which is consistent with the good prac-
tical performance of the α-expansion method that has a similar a priori bound.

However, the experiments are based on the metric embedding approach, since other-
wise the a posteriori gap could not be accurately computed. Therefore the regularizer
bound is quite loose compared to what can be expected for the envelope approach.
Also note that the theoretical bounds do not directly apply to the discretized problem,
and cannot be directly used as an indicator for the quality of the result, see Chap. 3.
However, a large energy increase indicates that it might at least partially be caused
by the relaxation, rather than the discretization, and therefore the finite-dimensional
solution likely does not represent the spatially continuous solution well.
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problem 1 2 3 4 5 6 7 8 9 10 11 12
N 76800 14400 14400 129240 76800 86400 86400 76800 86400 76800 110592 21838
l 3 3 3 4 8 12 12 12 12 12 16 64

k 7.1 6.9 5.0 11.0 27.2 47.5 47.0 43.6 46.5 46.0 70.7 335.0
a priori ε 1.45 1.45 1.45 1.83 3 3.90 3.90 3.90 3.90 3.90 4.90e5 4.79e6
a posteriori
- first-max 0.0008 0.0098 0.0083 0.0038 0.0266 0.0277 0.0277 0.1051 0.0666 0.0515 0.7330 0.0943
- modified 0.0008 0.0098 0.0083 0.0038 0.0266 0.0277 0.0277 0.1051 0.0666 0.0515 0.1424 0.0275
- prob. best 0.0008 0.0102 0.0048 0.0038 0.0282 0.0312 0.0312 0.1228 0.0812 0.0600 0.5888 0.1684
- prob. mean 0.0014 0.0186 0.0102 0.0106 0.0510 0.0591 0.0722 0.2140 0.1382 0.1173 1.4072 0.2772

Table 5.1. Number of pixels N , number of labels l, mean number of iterations k, predicted a priori
bound ε=2λu/λl−1, a posteriori bounds for the different rounding methods. The a posteriori bound
for the probabilistic method is well below the bound predicted by Thm. 5.15. Problems 1−10 are color
segmentation/inpainting problems with Ψ= ‖·‖2. The depth-from-stereo and inpainting problems 11
and 12 use an approximated truncated-linear metric (Fig. 2.7). For these nonstandard distances, the
modified deterministic rounding method provides much better results than the other methods.

1 2 3 4 5 6

0.01

0.02

0.03

0.04

0.05

0.06

rel. gap

7 8 9 10 11 12

0.2

0.4

0.6

0.8

1.0

1.2

1.4

rel. gap

first-max

modified

probabilistic-best

probabilistic-mean

Figure 5.4. Relative gap (a posteriori bound) ε′ of the rounded solution for the test problems 1–
12 using deterministic “first-max” and “modified” rounding, and best and mean gap obtained using
the proposed probabilistic method. While the energy increase through probabilistic rounding is
usually slightly larger than for the deterministic methods, it is well below the a priori bound of
ε=2λu/λl− 1 derived in Cor. 5.16 (Table 5.1).

Deterministic and Probabilistic Methods. Compared to the two deterministic
rounding methods, Alg. 5.2 usually leads to a slightly larger energy increase (Fig. 5.4).
For problems 11 and 12, where λu/λl is large, the solution is clearly inferior to the one
obtained using the “modified” rounding. This can be attributed to the fact that the
latter takes into account the detailed structure of Ψ, which is neither required nor used
in order to obtain the bounds in Thm. 5.15.

However, for problems that are inherently difficult for convex relaxation approaches,
we found that the probabilistic approach often generated better solutions. An example
is the “inverse triple junction” inpainting problem (second row in Fig. 5.3), which has
at least 3 distinct integral solutions. A variant of this problem, formulated on graphs,
was used as a worst case to show the tightness of the LP relaxation bound in [KT99].

We would like to emphasize that the purpose of these experiments is not to demon-
strate a practical superiority of the probabilistic method compared to other techniques,
but rather to provide an illustration on what bounds can be expected in practice com-
pared to the a priori bounds in Thm. 5.15.

In fact, the results in Table 5.1 show that for problems with nonstandard regu-
larizers, the improved deterministic rounding technique from Sect. 5.3.2 consistently
provided better bounds than the other methods. We observed that often this also
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Figure 5.5. Improved deterministic rounding on the “penguin” denoising/inpainting problem
(problem 12 in Table 5.1) with 64 classes. Left to right: Noisy input image with inpainting region
marked black [SZS+06]; result with randomized rounding; result first-max rounding; result with
the improved rounding scheme (5.30). The randomized and first-max method introduce noticeable
noise in the rounding step. The improved deterministic method takes the non-uniformity of the
used “truncated-linear” potential (Fig. 2.7) explicitly into account, resulting in a clean labeling
and an a posteriori gap of only 2.75% vs. 9.4% for the first-max method and 16.8% for the
probabilistic method.

translates to an improved visual quality, in particular for regularizers where λu/λl is
large. An example where the difference is clearly visible is the “penguin” inpainting
problem from Sect. 4.5.4. As opposed to the first-max scheme, the improved scheme
generates considerably less noise, and an a posteriori optimality of ε′ = 0.0275 com-
pared to ε′ = 0.0943 for the first-max approach and ε′ = 0.1684 for the probabilistic
method (Fig. 5.5).

5.7 Summary and Further Work

In this chapter we presented deterministic and probabilistic rounding methods for recov-
ering approximate solutions of multiclass labeling or image partitioning problems from
solutions of convex relaxations in the spatially continuous framework.

We provided an improved deterministic rounding technique, which – while it is a
heuristic and provides only a posteriori bounds – considerably improves the results
for non-standard potentials. In order to derive true a priori bounds, we presented a
probabilistic approach. To our knowledge, this is the first fully convex approach that is
both formulated in the spatially continuous setting and provides an a priori bound on
the optimality of the generated integral solution. We showed that the approach can also
be interpreted as an approximate variant of the coarea formula. Numerical experiments
confirm the theoretical bounds.

140 Optimality and Rounding



Future work may include extending the results to non-homogeneous regularizers
and improving the tightness of the bound. In particular, the a priori bounds could
be improved by adapting further arguments from [KT99]: For general metrics, one
may consider a variant of the linear program that incorporates an approximation of
the metric by r-hierarchically well-separated tree metrics. Such metrics are shortest-
path metrics generated by weighted graphs with tree structure [Bar98, Def. 6], with
the additional property that the edge weights decrease by at least a factor of r on any
path from the root to a leaf. For such metrics with r>2, the authors of [KT99] provide
a derandomized algorithm with ε = 1 + 4/(r − 2). By construction, tree metrics can
be isometrically embedded into ℓ1, which also yields a connection to the embedding
technique from Sect. 2.5.2.

A probabilistic result [Bar98, Thm. 9], later derandomized in [CCG+98], shows that
for any metric d, an r-hierarchically well-separated tree metric dr approximation can
be constructed such that

d(i, j)6 dr(i, j)6αd(i, j), (5.197)

with a bound of O(r log l log log l) for the approximation quality α. If the requirement
of well-separability is dropped, a tight bound of O(log l) holds [FRT04, Thm. 1].

Using these techniques, a bound close to the above-mentioned ε = 1 + 4/(r − 2)
should be feasible for the spatially continuous case. Another open question is how to
construct worst-case examples in order to prove tightness of the bounds. On a larger
scale, the connection to the recent lifting/relaxation techniques for solving nonconvex
variational problems (Sect. 2.7.3) should be further explored.
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Chapter 6

Sparse Representation of Shape

6.1 Introduction and Overview

In the previous chapters we mainly considered regularizers with length-based terms.
While they can be thoroughly analyzed theoretically, their flexibility is limited: knowl-
edge about the specific shape of objects – i.e. about the appearance of the interface
separating the class regions – cannot be easily introduced. In this chapter, we present
a variational approach to image segmentation that implicitly takes into account prior
knowledge about the specific shape in terms of a dictionary of shape templates.

The results in this chapter should be seen less an in-depth analysis, but rather as
an extended outlook on possible further enhancements for introducing higher-order
knowledge, departing from the length-based regularizers in the previous chapters.

Within this chapter we exclusively consider the two-class case, where the task is to
segment a given image into foreground and background. We propose to represent the
foreground region as the union of a small set of templates. This is motivated by the
observation that complex real-world objects are often composed of a relatively small
number of simpler geometrical shapes, such as boxes and roughly ellipsoidal shapes.
The observed shape is then dictated by the union of the regions for the individual parts.

To further motivate our approach, we briefly outline the idea of the basis pur-
suit/sparse representation framework [CDS01], which recently has been very successful.
Basis pursuit problems are generally formulated on finite-dimensional spaces, i.e. I ∈Rn

(equivalently, I: Ωh→R) represents a grayscale image with n pixels.

Basis pursuit methods are characterized by the assumption that such images – or
more generally signals – I are additively composed of a small number of basis functions
drawn from an overcomplete basis of K≫n vectors, A=(a1|	 |aK)∈Rn×K. Precisely,

I =Aw, w ∈RK , (6.1)

for some sparse vector w, i.e. w contains only relatively few nonzero entries. Assuming
that there is at least one representation (6.1) for a given I , finding the sparsest basis
representation can then be posed as an optimization problem,

min
w∈RK

‖w‖0 subject to Aw= I , (6.2)

where ‖w‖0 refers to the ℓ0 pseudo-norm, i.e. the number of non-zero entries of w.
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Figure 6.1. Illustration of the “union of basis shapes” principle. Left: In the classical sparse
representation framework, images are assumed to be additively composed of a small number of
basis functions. Right: In order to properly represent shapes as the union of a set of basis shapes,
the additivity assumption is inappropriate: the indicator function for the union of the basis shapes
is given by the maximum of the individual indicator functions, rather than their sum. However,
this behavior can be approximated using a convex relaxation approach.

While solving (6.2) directly is a difficult combinatorial problem unless the matrix A
comprises an orthogonal basis, it can be shown that under some circumstances one may
replace ‖·‖0 by ‖·‖1 [CRTV05]. Moreover, in order to account for noise in the image I,
the constraint is in practice usually enforced approximately by a penalty term with
weight µ> 0, resulting in the well-known convex problem

min
w∈RK

{µ‖w‖1+ ‖Aw− I‖22}. (6.3)

In the following, we will examine how this approach can be extended to sparse shape
representation. The basic idea is to transfer the sparse representation method from
the image domain to the shape/segmentation domain via the characteristic function
representation, as done in the previous chapters: A segmentation of the image is encoded
as a vector u ∈ {0, 1}n, with 1 representing the foreground – on which the shape prior
should be applied – and 0 representing the background.

Consequently, we assume that the basis functions ai are characteristic functions
of some prototypical shapes, i.e. ai ∈ {0, 1}n, and we replace the image I with the
characteristic function of some local, and therefore noisy, segmentation u∈{0, 1}n.

From these definitions it becomes clear that directly using (6.3) to recover the basis
shapes is bound to fail: Current sparse representation methods are based on the assump-
tion that the basis functions overlay in an additive fashion. In contrast, in the shape
context the basis functions are in a sense opaque, since the characteristic function of a
union of sets is not the sum of the individual characteristic functions, but rather their
pointwise maximum (Fig. 6.1).

We therefore propose to replace the additivity assumption (6.1) by the concept

ui=max {(a1)iw1,	 , (aK)iwK}, w ∈{0, 1}K. (6.4)
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Figure 6.2. Separating fishes from the background and from each other by convex optimization,
using a sparse covering of the image by shape templates. The dictionary of shape templates was
generated from a single fish template by translation, rotation and scaling. The approach copes
with a significant amount of overlapping templates and occlusion.

In order to concisely represent the problem, we denote the elementwise (Hadamard)

product between two equally-sized vectors or matrices A,B ∈Rp×q by A⊙B ∈Rp×q.
Additionally, we define A ⊙ x: =A ⊙ (e x⊤) and x ⊙ A: =(x e⊤) ⊙ A. For the matrix
A∈Rp×q (possibly a vector if p=1), we denote by vecmax(A) the row-wise maximum,
i.e. the vector v ∈Rp such that vk=max {Ak,1,	 , Ak,q}.

Using these definitions, problem (6.4) admits the concise representation

u= vecmax(A⊙w). (6.5)

The overall objective derived from (6.3) then reads

min
w∈{0,1}K

{µ‖w‖1+ ‖vecmax(A⊙w)− u‖22} . (6.6)

In contrast to the sparse representation objective (6.3), this problem is no longer convex,

even if the constraint set is relaxed to w∈ [0,1]K. However, as shown below, it turns out
that by switching to an appropriate convex relaxation, good solutions can be obtained
by finding the global optimum of a convex problem. For an illustration, see Fig. 6.2.

6.2 Related Work

Variational approaches to image segmentation that utilize shape prior knowledge
include statistical models of parametrized contours [CWS02, CKS03], level-set based
segmentation [CSS06, CRD07, CS05], and discrete combinatorial approaches in terms
of Markov Random Field (MRF) models [KRBT08, BKSS10]. A common property
of these approaches is the inherent nonconvexity introduced by the respective shape
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prior model. Instead, and in view of the models discussed in the previous chapters,
we focus on a convex variational approach to foreground/background separation based
on shape prior knowledge.

Our work is also motivated by the basis pursuit framework [CDS01] and the striking
performance of “ℓ1-decoding” by convex programming in underdetermined compressed
sensing scenarios [CRTV05, CDD09]. We depart from these linear models by introducing
non-additivity. We use shape dictionaries generated from a few basis templates by
translation, rotation and scaling, that generally do not satisfy the strong mathemat-
ical properties that rigorously justify replacing the nonconvex problem (6.2) by the
relaxation (6.3). However, numerical experiments reveal promising performance and a
significant potential for real-world applications.

Related work in the field of computer vision includes the work of Borenstein and
Ullman on segmentation using image fragments [BU02, BU08]. Unlike shape templates,
image fragments model not only shape but also the image intensity function and image
features for a particular object class. Accordingly, a strong focus lies on corresponding
image features. The variational inference process is based on a Markov Random Field
(MRF) model, and simplifications are made to keep it computationally tractable.

In contrast, we focus on the variational model from the optimization point of view
and largely ignore the issue of feature extraction. This is in line with the models dis-
cussed in the previous chapters, which do not impose any restrictions on the choice of
the (local) feature vector.

Finally, we also refer to [AEB06, YSM10] for recent work on dictionary-based image
processing. Though the scope of their work is confined to shape denoising without a
semantical interpretation such as image segmentation and object recognition, recent
extensions towards learning of task-specific dictionaries [RZE10] constitute a highly
relevant research direction. We present some numerical experiments indicating that
adopting the dictionary learning idea for shape templates is promising indeed.

Organization. In this chapter we investigate the model (6.6) for the sparse represen-
tation of shapes:

• We derive a sufficiently tight convex relaxation, leading to a variational approach
that is amenable to large-scale convex optimization (Sect. 6.3). The relaxation
is based on a similar principle as the “local envelope” approach in Sect. 2.5.1.

• We demonstrate how the optimization methods from Chap. 4 can be applied to
the relaxed problem (Sect. 6.4).

• We empirically evaluate and validate our approach on a range of numerical exam-
ples, and briefly address the issue of knowledge acquisition by learning from
examples (Sect. 6.5).

This chapter is intended less as a comprehensive evaluation of the specific model, but
more as a collection of possible directions for further work, departing from the rigorous
– but restricted – formulation in the previous chapters.
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6.3 A Convex Model for Sparse Shape

In order to relax (6.6) to a convex problem, we first note that the restriction of u to
characteristic functions allows to rewrite the objective in a linear fashion: Denoting
by Ak,· the k-th row of the basis shape matrix A,

‖vecmax(A⊙w)− u‖22=
∑

k

(vecmax(Ak,·⊙w)− uk)2 (6.7)

=
∑

k,uk=1

(1− vecmax(Ak,·⊙w))+
∑

k,uk=0

vecmax(Ak,·⊙w) (6.8)

=
∑

k

{uk(1− vecmax(Ak,·⊙w))�
=:g(Ak,·⊙w)

+ (1− uk)vecmax(Ak,·⊙w)�
=:h(Ak,·⊙w)

}. (6.9)

The functions g and h in (6.9) are defined solely on integral vectors in {0, 1}n. The
optimal convex relaxation of (6.9) to [0,1]n, ensuring a minimal amount of artificial non-
integral solutions, is given by its convex envelope, i.e. the largest closed convex function
majorized by (6.9).

However, finding the global convex envelope is generally a very difficult problem.
Instead, we approximate the true convex envelope by locally computing the envelope
of the individual terms involving g and h. This approach is very similar to the one in
Sect. 2.5.1, where the local convex envelope was used to construct the tight multiclass
regularizer Ψd for a given metric. Again, we compute the convex envelopes of g and h
using their biconjugates (g∗)∗ and (h∗)∗:

Proposition 6.1. Let

g(p)=











1, p=0,

0, p∈{0, 1}K , p� 0,

+∞, p � {0, 1}K , h(p)=











0, p=0,

1, p∈{0, 1}K , p� 0,

+∞, p � {0, 1}K. (6.10)

Then the convex envelopes are given by

g∗∗(p)=

{

max {0, 1− e⊤p}, p∈ [0, 1]K ,
+∞, otherwise ,

h∗∗(p)=

{

vecmax(p), p∈ [0, 1]K ,
+∞, otherwise.

(6.11)

We omit the proof since it is standard and quite technical. The full local relaxation of
problem (6.6) according to Prop. 6.1 is thus

min
w∈{0,1}K

{

µ‖w‖1+
∑

k=1

n

(uk g
∗∗(Ak,·⊙w)+ (1− uk)h∗∗(Ak,·⊙w))

}

. (6.12)

The nonsmooth relaxed function h∗∗ is considerably more difficult to handle numerically
than g∗∗, as it requires to introduce a large amount of KKT multipliers and therefore
dual variables. However, experiments showed that very good results can be obtained by
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replacing h∗∗(p) with the upper bound e⊤p, yielding our final relaxation

min
w∈{0,1}K

{

µ‖w‖1+
∑

k=1

n

(ukmax {0, 1−〈Ak,·, w〉}+(1−uk)〈Ak,·, w〉)
}

. (6.13)

All evaluations in the following sections are based on the reduced model (6.13).

6.4 Optimization

While problem (6.13) permits to compute approximate solutions of the combinatorial
problem (6.6), it remains to cope with the large problem size and nonsmoothness of
the objective. As in Chap. 4, we deal with the nonsmoothness by introducing dual
variables v, and transforming the problem to a bilinear saddle-point problem:

min
w∈C

max
v∈D
{〈t, w〉+ 〈v, Lw〉− 〈b, v〉}. (6.14)

Using this notation, the “max” term in (6.13) can be rewritten as

max
vk∈[0,1]

(vk(1−Ak,·x)). (6.15)

Thus, the optimization problem (6.13) can be represented according to (6.14) by setting

C = [0, 1]K , (6.16)

D = [0, 1]n, (6.17)

t = A⊤(1−u)+ µ e, (6.18)

b = −f , (6.19)

L = −f ⊙A. (6.20)

As C and D are bounded, it follows from [Roc70, Cor. 37.6.2] that (6.14) has a saddle
point (w∗, v∗), and from [Roc70, Lemma 36.2] ensures strong duality.

Although L∈Rn×K with K≫n is sparse in general, the columns are usually non-
orthogonal, i.e. the sets of indices corresponding to nonzero entries overlap significantly,
and L does not necessarily have much structure, depending on the chosen set of shape
templates. This prohibits a direct application of the Douglas-Rachford optimization

technique, which relies on a fast computation of resolvents involving L⊤L.
However, the sets C and D encode simple box constraints, which allows to compute

the primal objective as well as the orthogonal projections ΠC and ΠD efficiently. We
therefore applied the FPD and Nesterov optimization approaches as outlined Chap. 4,
which is straightforward given the saddle point formulation (6.14).

The Nesterov approach was again much slower, therefore we computed the examples
using FPD, with the primal and dual step size parameters set to equal values such that
they fulfill the convergence condition τP τD≤‖L‖−2. The algorithm was implemented in
MATLAB R2009a. Matrix-vector multiplications involving the template matrix L were
performed by C++ subroutines that store L implicitly and compute the shape shape
templates on the fly by transforming a number of basis templates.
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Figure 6.3. Synthetical example demonstrating the shape reconstruction capabilities of the
proposed approach. Top left: Original image consisting of a circle and four squares. Top center:
Local segmentation based on the gray value with heavy overlaid noise. This local pre-segmentation
constitutes the input to the proposed method. Top right: Result obtained by our approach.
The individual shapes are correctly identified with the aid of a dictionary of square and circular
templates. In this case the output vector of the relaxed problem is integral, indicating that
it is a minimizer of the original combinatorial problem, with each of the five nonzero entries
corresponding to one of the five visible shape parts.

6.5 Experimental Evaluation

Basic Approach. As an illustration of the complete approach, consider the synthet-
ical example in Fig. 6.3. The image consists of a centered circle that has considerable
overlap with four equally-sized squares. We supplemented the image with noise to
simulate a real-world scenario with imperfect features and noisy local segmentation.
The shape dictionary consisted of square and circle templates translated to all possible
image locations. Although the initial local segmentation contains a large amount of
noise, the five basis shapes are accurately found by solving the relaxed problem. The
method automatically selects the correct number of shapes and their locations.

Real-World Images. In order to see how the proposed approach can be applied to
real images, consider the color images in Fig. 6.2, Fig. 6.4, and Fig. 6.5. For each of
the images, we extracted an initial pre-segmentation by computing local features from
histograms over regions preselected by the user (Fig. 6.2), or by inspecting the distance
to the background/foreground color (Fig. 6.4, Fig. 6.5) and a simple local thresholding
operation. The latter initial segmentations are depicted in Fig. 6.4 and Fig. 6.5.

The regularization parameter µ is set by hand and varies between the different
experiments. It roughly reflects the minimal amount of pixels that have to be exclusively
covered by a certain basis function in order to justify its presence. Again, we created
the shape dictionary by shifting a set of basis templates to all possible image locations.

Shape Decomposition. We conducted two further experiments in order to illustrate
the potential of our template-based representation of image segmentations for further
processing. Figure 6.6 shows the decomposition of a horse shape, obtained using circular
templates of different sizes. By restricting the resulting sparse covering to templates
with a certain size, the original shape can be decomposed into parts with a certain scale,
such as the torso and the limbs.
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Figure 6.4. Application of the proposed approach to an image containing overlapping coins.
Although not all objects are detected our approach reveals promising results and recognizes even
highly occluded objects. Left: Input image. Center: Initial, local pre-segmentation obtained by
inspecting the distance to the dark background color and local thresholding; used as input to the
proposed method. Right: Final segmentation result of the proposed approach, computed solely
from the pre-segmentation in the center. Although there are some mistakes, the method correctly
detects most of the heavily-occluded objects on the lower levels.

Figure 6.5. Application of the proposed approach to a real-world image involving nontrivial
shapes. Left to right: Input image; local pre-segmentation using a thresholded distance to the
color red as foreground indicator; hand-generated coarse shape templates used as basis templates;
final result. Even highly overlapping parts are labeled correctly, and the shape is explained using
a very small number of basis templates from the overcomplete shape template dictionary.

In a related experiment, we first built a coarse shape dictionary of prototypical
horse parts, such as head, torso, and legs, and applied the proposed technique on a
series of horse images (Fig. 6.7). Under moderate variation of the underlying shape or
the observer’s viewpoint, the proposed approach can robustly identify the templates
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Figure 6.6. Shape decomposition by sparse covering with circular templates of different sizes.
Left: Input shape. Center: Sparse reconstruction of the input shape using translated disc-
shaped templates of different sizes. Right: Decomposition of the original shape into parts by
restricting the reconstruction to discs with certain sizes. Using this method, the sparse represen-
tation approach can be used to decompose shapes into parts with a characteristic scale, such as
torso and limbs in the horse example.

Figure 6.7. Image segmentation and shape decomposition with fixed templates from a pregen-
erated database of horse parts. While the method relies on only a few basis templates, it is fairly
robust against moderate variation of the overall shape or the observer’s viewpoint.

Figure 6.8. Learning shape templates from examples. Top left: Input image data. Bottom left:
Initial dictionary. Bottom right: Learned dictionary. Top right: Segmentation (decomposition)
of the input data using the learned dictionary. The learning process effectively reduces the initial
number of templates by selecting those that are essential for explaining the image data. Removed
templates are automatically replaced by superpositions of the remaining templates.

in different images and thus provides useful input for further template adjustment or
contextual processing steps.

Shape Template Learning. Finally, we would like to point out the possibility of
learning shape templates from a set of sample data, i.e. pairs of pre-segmentation and
desired segmentation, in order to relieve the user from defining the templates (Fig. 6.8).
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To this end, we another regularizer to the objective function that enforces sparsity
of the template matrix A. Unfortunately, determining the optimal templates simulta-
neously with the optimal segmentation is a highly nonconvex problem. Therefore global
optimality generally cannot be guaranteed and sufficiently accurate starting configura-
tions are required.

Moreover, the problem becomes very large, since the complete matrix A ∈ R
n×K

has to be learned. Fig. 6.8 shows a scenario where the objective is to learn a small
dictionary for recovering the text shown in the upper left panel. For the initial config-
uration, we used the dictionary visualized in the lower left of Fig. 6.8 together with the
corresponding optimal representation w resulting from the text segmentation, i.e. the
global optimum of problem (6.13) for fixed templates.

Applying an alternating technique for optimizing A and w yields an improvement
of the dictionary, while almost preserving reconstruction performance. Non-existent
letters are quickly removed from the dictionary due to the sparsity term, whereas letters
occurring rarely are approximated by the superposition of more frequent letters. For
instance, the letters p and b are reconstructed using a combination of the letters i, o
and l, with almost no decrease in reconstruction performance.

6.6 Summary and Further Work

In this chapter we presented an approach to include advanced shape knowledge into the
segmentation by representing complex shapes as a union of basis shapes. The approach
is highly flexible since there are no restrictions on the set of basis templates. Neverthe-
less, the proposed combinatorial objective permits a convex approximation using a local
relaxation that appears to be sufficiently tight for practical use.

First numerical tests indicate that the approach equally deals with heavy noise and
occlusion, and has several possible applications, such as extracting structures with a
specific scale and improving/learning of shape dictionaries.

Regarding future work, an important question concerns a theoretically sound con-
tinuous formulation – with respect to the spatial domain, but also with respect to the
parametrization of the shape templates . In view of Chap. 3, this could be in particular
valuable in connection with shape dictionaries that are generated from basis templates
by operations with a continuous parameter set, such as translation, rotation and scaling:
As can be seen in Fig. 6.2, quantizing the continuous parameter sets in order to generate
a finite directory of shape templates may lead to a relatively coarse representation. If one
could derive a continuous formulation together with a suitable discretization, this might
allow to estimate the parameters with “sub-template” accuracy, similar to the sub-pixel
accuracy provided by the continuous labeling approach with finite-differences scheme.

In particular, a formulation similar to the following seems possible: We fix the param-
eter set P 6 R × {1, 	 , K}, where an element (p, i) represents the shape that is
obtained by applying some transformation (e.g. rotation, translation) with continuous
parameter p to the i-th of K basis templates. We replace the matrix A with a mapping
A: Ω×P→{0, 1}, where A(x, (p, i))= 1 indicates that the point x is contained in the
shape template defined by the tuple (p, i).
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We then constrain w to a space of positive measures on P with the property
limρ→0w(Bρ(x))6 1 for all x∈Ω. Ideally, w should be a finite sum of Dirac measures,
w=δ(p1,i1)+	 +δ(pk,ik), indicating a segmentation into the union of the corresponding k

shape templates. Similar techniques have recently been discussed in [SW09, BP10] for an
L2 data term. Using these notations, the relaxation (6.13) can be formally rewritten as

min
w

{

µw(P)+
∫

Ω
umax

{

0, 1−
∫

P
A(x, p) dw(p)

}

+(1−u)
∫

P
A(x, p) dw(p) dx

}

,

where the proper function and measure spaces have yet to be determined. The most
prominent question is whether there are conditions on A that are sufficient for w to be
a sum of Dirac measures, indicating a finite selection of basis templates. Even in the
finite-dimensional case, such a condition, paralleling the Restricted Isometry Property
in compressed sensing, would be quite valuable and allow a deeper insight under which
conditions shapes can be reconstructed exactly by solving the relaxed problem.
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Chapter 7

Conclusion

Summary. With the present work, we hope to have provided a usable framework for
continuous multilabeling approaches. Motivated by the two-class case, we extended
the approach to multiple labels in the framework of functions of bounded variation
and showed how to construct regularizers with specific properties. The local envelope
approach provides tight regularizers and can be applied for any metric interaction poten-
tials, while the embedding approach is less powerful, but also computationally much
easier to handle (Chap. 2).

Under a finite-differences discretization, the discretized functionals can be shown to
approximate the spatially continuous functional in the sense of Γ-convergence, which
also implies convergence of the minimizers. This motivated to investigate the conceptual
difference between combinatorial and relaxed problem formulations. We concluded that
a relaxation technique in combination with local rounding can have a theoretically
better justification than the – more obvious – combinatorial approach: for the same
neighborhood size, the additional freedom in specifying continuous energies allows for
much greater precision (Chap. 3).

In order to solve the nonsmooth discretized problem, we considered two first-order
approaches, based on Nesterov’s method and on the Douglas-Rachford operator split-
ting framework. Numerical experiments indicate that the latter is quite robust, handles
difficult regularizers well, and returns moderate-accuracy solutions in comparable time
to commercial interior-point solvers (Chap. 4).

From a theoretical viewpoint, we then proposed a probabilistic rounding method
– which can also be viewed as an approximate coarea formula –, and showed that it
allows to obtain integral solutions with an a priori optimality bound in the spatially
continuous framework (Chap. 5).

In the last chapter we presented some further ideas for including more detailed shape
knowledge into the labeling process, by modeling shape as a union of a sparse set of basis
templates. Based on the sparse representation setting, the approach has several inter-
esting applications which are derived by choosing different shape directories (Chap. 6).
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Further Work. Finally, we would like to point out the – in our opinion – most
promising main areas for further research:

• Improving and extending the model : In particular, including nonlocal regularizers
into the framework and investigating the connection to transportation problems
seem to be promising directions.

• Integrating the approach as an inference component into a learning framework,
in particular automatic adaptation of the regularizer based on sample pairs.

• Numerical improvements: Apart from customizing higher-order methods, an
intriguing thought is the possibility of adapting techniques from graph-cut and
max-flow approaches in order to speed up the optimization for the non-com-
binatorial problem with the improved finite-differences discretization.

• Derivation of tighter bounds for the relaxation: The most promising direction
seems to be the adaptation of finite-dimensional approaches based on tree met-
rics. For the sparse shape representation, a rigorous formulation together with
a result similar to the restricted isometry property would represent a major
step in understanding the continuous formulation, and could lead to similar
improvements for discretizing sparse representation problems with continuous
parameters as are now available for labeling problems.

In any case we think that the present framework unites continuous and discrete worlds
in an appealing way, and provides several compelling reasons to accept the additional
challenges that appear when leaving the finite-dimensional realm.
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Appendix A

Mathematical Preliminaries

A.1 Functions of Bounded Variation

In the following sections we provide a brief introduction to the concept of functions of
bounded variation and corresponding functionals. For more detailed expositions we refer
to [AFP00, Zie89, Mey01].

A.1.1 Total Variation and BV

For a differentiable scalar-valued function u, the total variation is simply the integral
over the norm of its gradient:

TV(u) =

∫

Ω
‖∇u‖2 dx. (A.1)

As u is the designated labeling function, which ideally should be piecewise constant,
the differentiability and continuity assumptions have to be dropped. In the following
we will shortly review some basic definitions and properties.

For simplicity, we will assume in the following that the image domain is the open

unit box, Ω = (0, 1)d. However, most results could be formulated on general bounded
domains with sufficiently smooth boundary, such as bounded open domains with com-
pact Lipschitz boundary. By passing on to local convergence, i.e. replacing L1(Ω) by the
locally absolutely integrable functions Lloc

1 (Ω), many results can also be formulated for
unbounded Ω. However, this considerably complicates the notation, and since images
are usually defined on bounded sets we restrict ourselves to bounded domains.

We consider general vector-valued functions u: Ω→ Rl which are absolutely inte-

grable, i.e. u∈L1(Ω)l. For any such function u, the total variation TV(u) can be defined
in a dual way:

Definition A.1. [ AFP00, Def. 3.4, Prop. 3.6] Let u∈L1(Ω)l. Then the total variation
(sometimes just called variation) of u is defined as

TV(u) 6 sup
v∈DTV

−
∑

j=1

l ∫

Ω
uj div v

jd x= sup
v∈DTV

−
∫

Ω
〈u,Div v〉d x, (A.2)

DTV 6 {v ∈Cc
∞(Ω)d×l|‖v(x)‖26 1 ∀x∈Ω} , (A.3)

Div v 6 (div v1,	 ,div vl)⊤ .
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This definition can be derived for continuously differentiable u by extending (A.1) to
vector-valued u (where ∇u now denotes the Jacobian matrix),

TV(u) =

∫

Ω
‖∇u‖2d x, (A.4)

replacing the norm by its dual formulation, and subsequent partial integration. If u has
finite total variation TV(u)<∞, it is said to be of bounded variation. The vector space
of all such functions is denoted by BV(Ω)l,

BV(Ω)l 6 {u∈L1(Ω)l|TV(u)<∞}. (A.5)

For some set S ⊆R
l, we define the restriction

BV(Ω,S) 6 {u∈BV(Ω)l|u(x)∈S for Ld-a.e. x∈Ω}. (A.6)

Any u∈BV(Ω,S) therefore has a representative (in the L1 equivalence class) satisfying
u(x)∈S for all x∈Ω. The space BV can alternatively be defined in terms of distribu-
tional derivatives [AFP00, Def. 3.1]:

Proposition A.2. [ AFP00, Prop. 3.6] The following two conditions are equivalent:

• u∈BV(Ω)l,
• u∈L1(Ω)l and its distributional derivative corresponds to a finite Radon measure;

i.e. uj ∈ L1(Ω) and there exist R
d-valued measures D uj = (D1uj , 	 , Dduj) on

the Borel subsets B(Ω) of Ω such that

−
∑

j=1

l ∫

Ω
uj div vjd x=

∑

j=1

l
∑

i=1

d ∫

Ω
vi
j
dDiuj , ∀v ∈Cc

∞(Ω)d×l . (A.7)

In the following, measures are generally signed and possibly vector-valued in the sense of
[AFP00, Def. 1.4]. In this sense, the measures in (A.7) form the distributional derivative
Du= (Du1|	 |Dul), which is again a measure that vanishes on any H(d−1)-negligible
set. Moreover, it can be shown that the total variation of u is exactly the measure-
theoretic total variation of its distributional gradient [AFP00, Prop. 3.6].

Definition A.3. Let µ be a (possibly vector-valued) measure on some measure
space (X,A). Then the total variation of µ on a set A⊂A is defined as

|µ|(A) 6 sup

{

∑

k=0

∞
‖µ(Ak)‖2 | (Ak)⊆Apairwise disjoint, A=

⋃

k=0

∞
Ak

}

. (A.8)

Proposition A.4. Let u∈L1(Ω)l. Then
∫

Ω
d |Du|(Ω)= |Du|(Ω)=TV(u). (A.9)

This shows that the definition of the total variation is compatible with its smooth
counterpart (A.1), with the gradient of u replaced by its distributional generalization.
Part of the popularity of the total variation can be attributed to the fact that it has an
intuitive geometrical interpretation:
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Definition A.5. Let S ⊆R
d be a Lebesgue-measurable set. Then the perimeter Per(S)

is defined as the total variation of its characteristic function,

Per(S) 6 TV(χS). (A.10)

Assuming the boundary ∂S is sufficiently regular, Per(S) is exactly the classical length
(d = 2) or area (d = 3) of the boundary. More precisely, for any set S ⊂ Ω with

C1-boundary ∂S , we have [AFP00, (3.30)]

Per(S) = Hd−1(∂S). (A.11)

A.1.2 Properties of TV and Compactness

In this section we briefly review the most important facts for proving existence of
minimizers for variational problems involving TV and BV.

Proposition A.6. The total variation has the following properties:

1. TV is convex:

TV(αu+ (1−α)u′)6αTV(u)+ (1−α)TV(u′) ∀u, u′∈L1(Ω),∀α∈ [0, 1].

2. TV is positively homogeneous: TV(αu)=αTV(u) ∀u∈L1(Ω), ∀α> 0.

3. TV is lower semicontinuous in BV(Ω)l with respect to the L1(Ω)l topology, i.e. for

all sequences (u(k))⊆BV(Ω)l converging (in the L1 sense) to some u∈BV(Ω)l,
lim inf

k→∞
TV(u (k)) > TV(u (k)).

The first two properties directly follow from the fact that the total variation is the
pointwise supremum of a family of linear functions as in Def. A.1. The last statement
can be shown using the same definition and a continuity argument [AFP00, Rem. 3.5,
Prop. 3.6]. From Prop. A.6 it follows that

‖u‖BV 6 ∫

Ω
‖u‖2 d x+TV(u) (A.12)

defines a norm on BV(Ω)l. However, the induced topology is often too strong, i.e. it does
not provide suitable compactness properties that are required for showing existence of
minimizers. Therefore one frequently uses the weak* convergence:

Definition A.7. Define u(k)→ u weakly* in BV iff

• u∈BV(Ω)l, u(k)∈BV(Ω)l ∀k ∈N,

• u(k)→ u in L1(Ω)l, and

• (Du(k))→Du weakly* in measure, i.e.

∀v ∈C0(Ω): lim
k→∞

∫

Ω
vdDu(k)=

∫

Ω
vdDu. (A.13)

Weak* convergence is equivalent to L1 convergence with an additional condition on the
uniform boundedness:
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Proposition A.8. [ AFP00, 3.13] Let u, u(k)∈BV(Ω)l. Then u(k)→u weakly* in BV
if and only if both of the following conditions hold:

1. u(k)→ u in L1(Ω)l and

2. the sequence (u(k)) is uniformly bounded in BV(Ω)l, i.e. there exists C<∞ such

that ‖u(k)‖BV6C ∀k ∈N.

For the weak* topology in BV, a compactness result holds:

Theorem A.9. Let (u(k)) ⊂ BV(Ω)l be uniformly bounded in BV(Ω)l. Then (u(k))
contains a subsequence weakly*-converging to some u∈BV(Ω)l.

This result is a special case of the [AFP00, 3.23], using the fact that Ω is a bounded
extension domain. The general formulation has local assumptions and holds for any
open (even unbounded) set Ω; consequently the subsequence can only be shown to

converge with respect to local convergence, i.e. in Lloc
1 (Ω)l.

A.1.3 Decomposition and general functionals on BV

In important property of the measure that forms the distributional derivative Du is
that it can be uniquely decomposed into three mutually singular measures

Du = Dau+Dju+Dcu, (A.14)

that is: the absolutely continuous part Da, the jump part Dj, and the Cantor part Dc.
Mutual singularity refers to the fact that Ω can be partitioned into three subsets, such
that each of the measures is concentrated on exactly one of the sets, i.e. each set is a
zero set under two of the measures. This will be explained in detail in the following.

Definition A.10. Let ν be a (possibly vector-valued) measure, and µ a positive measure
on some measure space. Then ν is absolutely continuous with respect to µ,

ν≪ µ, (A.15)

if ν vanishes on any µ-zero set, i.e. {µ(A) = 0⇒ |ν |(A) = 0} for all A ⊆ R
d. The

measures µ, ν are mutually singular,

ν⊥µ, (A.16)

if they vanish on complementary subsets of Ω, i.e. if there exists a Borel subset B ⊆Rd

such that |ν |(B)=0 and |µ|(Ω\B)=0. The definition recursively extends to more than
two measures.

Definition A.11. Let µ be a measure on a measure space (X,A), and A ∈A. Then
the restriction of µ to A is defined as the measure

(µxA)(B) 6 µ(A∩B). (A.17)

If µ is a Radon measure and A is a Borel set, then µxA is also a Radon measure. To
give a meaning to the individual parts in (A.14), we need several more definitions.
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Definition A.12. (Reduced boundary FE) [ AFP00, Def. 3.54] Let E be an Ld-mea-

surable subset of Rd and Ω the largest open set such that E is locally of finite perimeter
in Ω. Then the reduced boundary FE is defined as the set of all points x ∈ Ω in the
support of |DχE | such that

νE(x) 6 lim
hց0

DχE(Bh(x))
|DχE(Bh(x))|

(A.18)

exists in R
d and satisfies ‖νE(x)‖2=1. The function νE:FE→Sd−1 is the generalized

inner normal to E.

De Giorgi (cf. [AFP00, Thm. 3.59]) proved the central fact that the total variation
of characteristic functions reduces to the (d− 1)-dimensional Hausdorff measure,

|DχE | = |DχE |xFE=Hd−1xFE, (A.19)

and that FE is countably Hd−1-rectifiable for any Ld-measurable subset of Rd.

Definition A.13. (Points of density t and essential boundary) [ AFP00, Def. 3.60] For

t∈ [0, 1] and Ld-measurable E ⊆R
d, the set of points of density t is defined as

(E)t 6 {

x∈Rd| lim
hց0

|E ∩Bh(x)|
|Bh(x)|

= t

}

. (A.20)

We denote by

∂∗E 6 R
d \ ((E)0∪ (E)1) (A.21)

the essential boundary of E. The sets (E)1 and (E)0 are called the measure-theoretic
interior and exterior of E.

Remark A.14. By definition, the measure-theoretic interior and exterior are invariant

under modifications of E on Ld-negligible sets, in contrast to the classical interior and
exterior (consider for instance the sets B1(0)⊆R

2 and B1(0) \ {(x, 0)|x∈ (− 1, 1)}).

The next theorem of Federer shows that ∂∗E (equivalently (E)1/2) can be seen as
the proper definition of the boundary compatible with the measure-theoretic definition
of the interior and exterior, and are basically the same as the reduced boundary FE.

Theorem A.15. (Reduced boundary and essential boundary) [ AFP00, Thm. 3.61]
Let E be a set of finite perimeter in Ω. Then

FE ∩Ω⊆ (E)1/2⊆ ∂∗E (A.22)

and

Hd−1(Ω \ (E0∪FE ∪E1)) = 0. (A.23)

In particular, this shows that FE, E1/2 and ∂∗E are equal up to Hd−1-negligible sets,
which implies

DuxFE=DuxE1/2=Dux∂∗E. (A.24)
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Definition A.16. (Approximate limit and approximate discontinuity set Su) [ AFP00,

Def. 3.63] Let u ∈ L1(Ω)l. For x ∈ Ω, we say that u has an approximate limit at x if

there is a vector z ∈Rl such that

lim
hց0

1

|Bh(x)|

∫

Bh(x)
‖u(y)− z‖2 dy = 0. (A.25)

We define the approximate discontinuity set Su⊆Ω to be the set of all points which do
not have an approximate limit. For any x∈Ω \Su, we denote the approximate limit

ũ(x) 6 z. (A.26)

In particular, if u is continuous in x, it has an approximate limit in x. Therefore Su is
comprised of the points where x is discontinuous in a specific sense. To further classify
the discontinuities, we consider the set of points where u essentially “jumps” between
two values along a hypersurface [AFP00, Def. 3.67]:

Definition A.17. (The set Ju of approximate jump points) Let u∈L1(Ω)l. Define

Bh+(x, ν) 6 {y ∈Bh(x) | 〈y−x, ν 〉> 0},
Bh−(x, ν) 6 {y ∈Bh(x) | 〈y−x, ν 〉< 0}. (A.27)

For x∈Ω, we say that x is an approximate jump point if there exist vectors a, b∈Rl,

a� b, and a unit vector ν ∈Sd−1 such that

lim
hց0

1
|Bh(x)|

∫

Bh
+(x,ν)

‖u(y)− a‖2 dy = 0, (A.28)

lim
hց0

1

|Bh(x)|

∫

Bh
−(x,ν)

‖u(y)− b‖2 dy = 0. (A.29)

We define Ju ⊆ Ω to be the set of all approximate jump points. At each approximate
jump point x, we denote u+(x)6 a, u−(x)6 b, νu(x)6 ν. The values are unique up to
the transformation (a, b, ν)↔ (b, a,−ν).

The idea behind this definition is that locally u “looks like” a function that takes
only two values u+(x) and u−(x), with the discontinuity concentrated on a hyperplane
with normal νu(x). Ju is a Borel subset of Su, and it can be shown that u+, u− and νu
can be chosen as Borel functions on Ju [AFP00, Prop. 3.69].

An important intermediate result involving these definitions is the following:

Lemma A.18. [ AFP00, Lemma 3.76] Let u∈BV(Ω)l and B ⊆Ω a Borel set. Then

1. |Du| vanishes on Hd−1-negligible sets, i.e. |Du|≪Hd−1. Specifically,

Hd−1(B)= 0 ⇒ |Du|(B)= 0. (A.30)

2. |Du| vanishes on Hd−1-dimensional sets that have empty intersection with Su:

Hd−1(B)<∞, B ∩Su= ∅ ⇒ |Du|(B)= 0. (A.31)

We now state the full decomposition of Du [AFP00, Def. 3.91].
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Definition A.19. Let u∈BV(Ω)l.
• We define the absolutely continuous part and singular part of Du as the Radon

measures Dau and Dsu such that

Du = Dau+Dsu (A.32)

is the Lebesgue decomposition of Du.

• The jump part Dju is defined as

Dju 6 DsuxJu. (A.33)

• The Cantor part Dcu is defined as

Dcu 6 Dsux(Ω \Su). (A.34)

The decomposition (A.32) is possible as Du is a Radon measure by the assumption
[EG92, Thm. 2] [AFP00, Thm. 1.28]. By definition Da≪Ld, i.e. |Da| vanishes on any

Ld-negligible set.

Proposition A.20. [ AFP00, (3.89)] Let u∈BV(Ω)l. Then

Du=Dau+Dju+Dcu�
Dsu

. (A.35)

Furthermore, Da,Dj and Dc are mutually singular.

Definition A.21. We denote by SBV(Ω) the set of all functions u∈BV(Ω) for which
Du=Dau+Dju, i.e. for which the Cantor part of Du vanishes.

Intuitively, the absolutely continuous part Da captures the “smooth” variations of u:
in any neighborhood where u has a classical Jacobian∇u, the jump part and the Cantor
part vanish and

Du=Dau=∇uLd (A.36)

(this can be generalized to approximate differentials [AFP00, Def. 3.70, Thm. 3.83]).
The quantity |Dau|(Ω) corresponds to integrating ‖∇u‖2 over the image domain.

The jump part Dj is concentrated on the set Ju of points where locally u jumps

between two values u− and u+ along a hypersurface with normal νu∈Sd−1 (Def. A.17).
It can be expressed as [AFP00, (3.90)]

Dju=DuxJu= νu(u
+−u−)⊤Hd−1xJu. (A.37)

Therefore, its total variation |Dju|(Ω) corresponds to integrating the magnitude of the
jump along the jump set Ju. The Cantor part Dc captures anything that is left.

For the special case where u is the characteristic function of a set of finite perimeter,
equation (A.19) shows that

DχE= (DχE)xFE=DjχE. (A.38)

As an important consequence of the decomposition (A.35) and the mutual singularity
of the parts, the total variation decomposes into the individual total variation measures,

|Du| = |Dau|+ |Dju|+ |Dcu|. (A.39)
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Accordingly,

|Du|(Ω) =

∫

Ω
‖∇u(x)‖2 dx+

∫

Ju

‖νu(u+−u−)⊤‖2 dHd−1+

∫

Ω
1 d |Dcu|. (A.40)

Using this idea, one can define functionals depending on the distributional gradient Du
[AFP00, Prop. 2.34]. Let u∈BV(Ω)l and define, for some convex, lower semicontinuous

Ψ:Rd×l→R,

J(u)6 ∫

Ω
dΨ(Du)6 ∫

Ω
Ψ(∇u(x))d x+

∫

Ju

Ψ∞(νu(x)(u
+(x)−u−(x))⊤)dHd−1+

∫

Ω
Ψ∞

(

Dcu

|Dcu|

)

d|Dcu| . (A.41)

Here Ψ∞ denotes the recession function Ψ∞(x) = limt→∞
Ψ(t x)

t
of Ψ, and Dcu/|Dcu|

denotes the polar decomposition of Dcu, which is the density of Dcu with respect to its
total variation measure |Dcu|. In case Ψ is positively homogeneous, Ψ∞=Ψ holds and

J(u) =

∫

Ω
Ψ

(

Du

|Du|

)

d|Du|. (A.42)

Essentially, Ψ generates a new measure from Ψ(Du) = (Ψ ◦ (Du/|Du|))|Du| by
transforming its density with respect to |D u| [AFP00, Thm. 2.38]. This extends the
meaning of Ψ as acting on the Jacobian of u to the jump set as acting on the difference
of the left and right side limits of u at the discontinuity, and allows to uniformly handle
discontinuities as well as regions where u is differentiable.

A.1.4 The Coarea Formula

One of the central and most useful properties of the total variation is the coarea formula.
In order to specify the full theorem (Thm. A.29 and Thm. A.32), several additional def-
initions are required:

Definition A.22. [ AFP00, Def. 2.11] Let E ⊆R
d and f :E→R

m. Then f is called a
Lipschitz function, f ∈Lip(E)m, if

Lip(f ,E) 6 sup

{

|f(x)− f(y)|
|x− y | |x, y ∈E, x� y

}

<∞. (A.43)

Similar to the classical definition of Lipschitz continuity, it holds that |f(x)− f(y)|6
Lip(f ,E) |x− y | for all x, y ∈E,x� y, and Lip(f , E) is the smallest such constant.

Definition A.23. [ AFP00, Def. 2.57] Let k ∈ N0, k 6 d, and E ⊆ R
d be an Hk-

measurable set. Then E is said to be

• countably k-rectifiable, if there exist countably many R
d-valued Lipschitz func-

tions f (i):Rk→R
d such that

E ⊆
⋃

i=0

∞
f (i)(Rk), (A.44)

i.e. E can be covered by the images of countably many Lipschitz functions,
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• countable Hk-rectifiable, if there exist countably many R
d-valued Lipschitz func-

tions f (i):Rk→R
d such that

Hk

(

E \
⋃

i=0

∞
f (i)(Rk)

)

= 0, (A.45)

i.e. E can be covered by the images of countably many Lipschitz functions up to
a Hk-negligible set,

• Hk-rectifiable, if E is countable Hk-rectifiable and Hk(E)<∞.

Definition A.24. [ AFP00, Def. 2.68] Let V ,W be Hilbert spaces such that dim (V )=
k6 d= dim (W ) and L:V →Ω a linear map. We denote

JkL 6 det (L∗L)
√

, (A.46)

where L∗:W ∗→V ∗ is the transpose of L. Analogously,

CkL 6 det (LL∗)
√

. (A.47)

The determinant can be computed using any matrix representation of L∗ L. For an
orthonormal basis matrix representation M of L, L∗ L has the matrix representation

M∗M , therefore for real Hilbert spaces JkL= det (M⊤M)
√

.

Theorem A.25. (Area formula) [ AFP00, Thm. 2.71] Let k ∈N0, k 6 d, f :Rk→Rd

be a Lipschitz function, and E ⊆Rk be an Lk-measurable set. Then
∫

Rd

H0(E ∩ f−1(y)) dHk(y) =

∫

E

Jk dfx dx, (A.48)

where dfx denotes the (Fréchet-) differential of f in x.

This is well-defined since by Rademacher’s theorem, the differential dfx exists Lk-
a.e. for Lipschitz functions and coincides Lk-a.e. with the weak derivative [EG92, 3.1.2
Thm. 2] [Zie89, Sect. 2.2 , Prop. 2.2.1].

Definition A.26. (Approximate tangent space to a set) [ AFP00, Def. 2.79, Def. 2.86]

Let k ∈ N0, k 6 d, and S ⊆ Ω ⊆ R
d be a countably Hk-rectifiable set. Let (S(i)) be a

partition of Hk-almost all of S into Hk-rectifiable sets.
If for some x ∈ S(i) there exists a k-dimensional linear subspace Ux of R

d, and a
scalar θ∈R such that

lim
ρց0

1

ρk

∫

S(i)
ϕ

(

y− x
ρ

)

dHk(y) = θ

∫

U

ϕ(y) dHk(y) ∀ϕ∈Cc
∞(Rd), (A.49)

we define the approximate tangent space Tank(S, x)6 Ux.

The approximate tangent space Tank(S,x) is not well-defined pointwise in the sense

of an Hk-equivalence class of mappings from the set S to the space of k-dimensional

linear subspaces of Rd, that coincide Hk-a.e. [AFP00, Prop. 2.85, Rem. 2.87]. If the

set S is the image of an Ld-measurable set D⊆R
k under an injective Lipschitz function

f :Rk→R
d, i.e. S= f(D), then the approximate tangent space Tank(S,x) is the image

of the differential of f at f−1(x) for Hk-a.e. x∈S [AFP00, Prop. 2.88].
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Theorem A.27. (Tangential differential) [ AFP00, Thm. 2.90] Let E ⊆ R
m be a

countably Hk-rectifiable set and f :Rm→R
d be a Lipschitz function.

Then for Hk-a.e. x ∈ E, the restriction of f to the affine space x + Tank(E, x)

is differentiable. The corresponding (Fréchet-) differential, mapping from Tank(E, x)

to R
d, is said to be the tangential differential, and denoted by dEfx.

Theorem A.28. (Generalized area formula) [ AFP00, Thm. 2.91] Let k ∈N0, k 6N,
f :Rm→R

d be a Lipschitz function and E ⊆R
m a countably Hk-rectifiable set. Then

∫

Rd

H0(E ∩ f−1(x)) dHk(y) =

∫

E

Jk d
Efx dHk(x). (A.50)

Theorem A.29. (Coarea formula for Lipschitz functions) [ Fed69,

Prop. 3.2.11][Mor95, Prop. 3.8][ AFP00, Thm. 2.93] Let f : Rm→ R
k be a Lipschitz

function and E ⊆ R
m be a countably Hd-rectifiable set for some d > k. Then E ∩

f−1(t) is countably Hd−k-rectifiable for Lk-a.e. t∈Rk, and
∫

E

Ckd
Efx dHd(x) =

∫

Rk

Hd−k(E ∩ f−1(t)) dt. (A.51)

Remark A.30. There also exists an inhomogeneous generalization with an additional
weighting function g(x) [Fed69, Prop. 3.2.12].

Remark A.31. A particular case ism=d, E=Rd and k=1, where Tank(S,x)=Rd×1,

and the differential dEfx (which exists Ld-a.e.) maps from R
d to R and is described by

the gradient ∇f(x)∈Rd. Therefore Ckd
Efx= ‖∇f ‖2, and the coarea formula becomes

∫

Rd

‖∇f ‖2 dx =

∫

R

Hd−1(f−1(t)) dt. (A.52)

Theorem A.32. (Coarea formula in BV) [ FR60][ AFP00, Thm. 3.40] Let Ω ⊆ Rd

open and u∈BV(Ω). Then the set {u>t}6 {x∈Ω|u(x)> t} has finite perimeter in Ω
for L1-a.e. t∈R and, for any Borel set B ⊆Ω,

Du(B) =

∫

R

Dχ{u>t}(B) dt, (A.53)

|Du|(B) =

∫

R

|Dχ{u>t}|(B) dt. (A.54)

Remark A.33. The latter formulation provides the analogon to the coarea formula for
Lipschitz functions. By the theorem of De Giorgi (A.19), |DχE |=Hd−1xFE, therefore
equation (A.54) can be expressed as

|Du|(Ω) =

∫

R

Hd−1(F {u> t}). (A.55)

The essential difference to the formulation for Lipschitz functions (A.52) consists in
replacing the inverse image – which may not have a “nice” structure, since u is not
required to be continuous and may contain jumps – by the reduced boundary of the
superlevelset. Alternatively, the essential boundary or the set of points with density 1/2
may be used, cf. Thm. A.15.

166 Mathematical Preliminaries



A.2 Γ-Convergence

In this section we state the necessary properties of Γ-converging sequences [DGF75,
DM93, AK00, Bra02]. Γ-convergence is particularly useful for characterizing the con-
vergence of functionals and their minimizers, and can be interpreted as set-convergence
of the epigraphs [DM93, Chap. 4].

Definition A.34. (Γ-convergence) [ DM93, Prop. 8.1][ Bra02, Def. 1.5] Let X be a

topological space that satisfies the first axiom of countability. Let (F (k))k∈N,F
(k):X→ R̄

be a sequence of functions. Then F =Γ− limk→∞F (k) (i.e. F (k) is said to Γ-converge
to F in the topology of X) iff

1. ∀x∈X,∀(x(k))⊆X s.t. x(k)→x it holds that F (x)6 lim infk→∞F (k)(x(k)),

2. ∀x∈X ∃(x(k))⊆X s.t. x(k)→ x and F (x)> lim supk→∞F (k)(x(k)).

Remark A.35. The first axiom of countability refers to the condition that for each
x∈X there is a countable set {U1, U2,	 } such that for any neighborhood U of x there
exists an index i such that Ui⊆U . This is always satisfied in metric spaces such as L1

(set Ui= i−1B1(x), i.e. scaled balls around x).

Remark A.36. The second condition is equivalent to

∀x∈X∃(x(k))⊆X,x(k)→x s.t. F (x)= lim
k→∞

F (k)(x(k)). (A.56)

Proposition A.37. (Lower semicontinuity) [ DM93, Def. 1.1, Def. 1.4, Rem. 1.5] Let
X be a topological space, and F :X→ R̄. Then F is said to be

• lower semicontinuous, if for every x∈X and every t∈R with t<F (x) there exists
a neighborhood U of x such that t <F (y) for all y ∈U,

• sequentially lower semicontinuous, if for every x ∈ X and every sequence (xk)
converging to x,

F (x) 6 lim
k→∞

inf F (x(k)) (A.57)

holds.

If F is lower semicontinuous, then F is sequentially lower semicontinuous. If X satisfies
the first axiom of countability (as is the case for metrizable X), and F is sequentially
lower semicontinuous, then F is lower semicontinuous.

Proposition A.38. (Coercivity) [ DM93, Def. 1.12, Rem. 1.13] Let X be a topological

space, and F :X→ R̄. Then F is said to be

• coercive onX, if the closure of {F 6 t} is countably compact inX for every t∈R,

• sequentially coercive on X, if the closure of {F 6 t} is sequentially compact in X
for every t∈R.

If F is sequentially coercive, then F is coercive. If X is metrizable, then F is coercive if
and only if F is sequentially coercive.
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Proposition A.39. (Equicoercivity) [ DM93, Def. 7.6, Prop. 7.7] Let (F (k)) be a

sequence in X. Then (F (k)) is said to be equicoercive if for every t ∈ R there exists

a closed countably compact subset Kt of X such that {F (k)6 t}⊆Kt for every k.

The sequence (F k) is equicoercive if and only if there exists a lower semicontinuous,

coercive function G:X→R∪ {±∞} such that F (k)>G uniformly, i.e. for every k.

Proposition A.40. [ DM93, Def. 7.10, Thm. 7.23] Let (F (k)) be an equicoercive
sequence Γ-converging to a function F. Define the set of minimizers

M(F ) 6 {x∈X |F (x)= inf
x′∈X

F (x′)}, (A.58)

and for ε> 0 the set of approximate minimizers

Mε(F ) 6 {x∈X |F (x)6max {− 1/ε, inf
x′∈X

F (x′)+ ε}}. (A.59)

Then for every neighborhood U of M(F ) there exists ε> 0 and k0 such that

M(F (k))⊆Mε(F
(k))⊆U ∀k> k0. (A.60)

Prop. A.40 states that both the sets of exact minimizers and the sets of approximate
minimizers of the functionals F (k) converge to the set M(F ) of minimizers of F , in the
sense that they can be forced inside any neighborhood of M(F ) for k sufficiently large.
If F has a unique minimizer x0, Prop. A.40 implies that any sequence of minimizers (or
ε(k)-minimizers, with ε(k)ց 0) converges to x0 (cf. [DM93, Cor. 7.24]).

A.3 Set-Valued Operators and Proximal Steps

In this section we briefly review the most important concepts from the theory of set-
valued mappings, monotone operators, proximal point and operator splitting methods,
as required in particular for the Douglas-Rachford splitting (Sect. 4.3.2). For a more
detailed analysis, we refer the reader to [Eck89, RW04]. While we restrict ourselves to
the case of finite-dimensional vector spaces, most results transfer also to the case of
general Hilbert spaces [Zl02, Mor06, Set09b, BC10, CP10b].

The need for set-valued mappings can be motivated by the fact that for any proper,
convex and lower-semicontinuous (lsc) function f :X→R∪{−∞,+∞}, where X6 Rn

for some n∈N, x∈X minimizes f if and only if 0 is a subgradient of f in x. Defining
the subdifferential of f as the set of subgradients for each x∈X,

∂f(x) 6 {z ∈X | 〈y− x, z〉6 f(y)− f(x) ∀y ∈X}, (A.61)

this connection can be concisely expressed as the generalized Fermat condition,

f(x)= min
x′∈X

f(x′) ⇔ 0∈ ∂f(x). (A.62)

The minimization of f reduces to finding a zero of ∂f , i.e. an x∈X such that 0∈∂f(x).
This motivates the following definitions.
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Definition A.41. (set-valued mappings and operators) Let X 6 R
n and Y 6 R

m

for some n, m ∈N. A set-valued mapping T :X ⇉ Y is defined by a subset of X × Y,
T ⊆X × Y. We denote

• (mapping) Tx6 {y ′∈ Y |(x, y ′)∈T }, x∈X,

• (inverse) T−16 {(y, x)|(x, y)∈T }⊆Y ×X, i.e.

x∈T−1 y ⇔ y ∈Tx,
• (domain) domT 6 {x∈X |Tx� ∅},
• (range) rangeT 6 domT−1= {y ∈Y |T−1y� ∅},
• T is single-valued if Tx= {y(x)} for all x∈X.

An operator on X is a set-valued mapping T :X→X.

The set-valued mappings associated to ordinary functions g:X→Y are single-valued
and coincide with their graph, {(x, g(x))|x∈X}. The subdifferential ∂f can be viewed
as a set-valued mapping and is single-valued if and only if f is differentiable. A central
property of operators is maximal monotonicity:

Definition A.42. An operator T :X⇉X is

• monotone if

〈x− x′, Tx−Tx′〉> 0 ∀x, x′∈X, (A.63)

in the sense that

〈x−x′, y− y ′〉> 0 ∀x, x′∈X, y ∈Tx, y ′∈Tx′, (A.64)

• maximal monotone if T is monotone and there is no other monotone operator S
with T ⊆S. Equivalently,

T maximal monotone ⇔ ∀(x, y) � T ∃(x′, y ′) ∈ T s.t. 〈x − x′, y − y ′〉 < 0,

(A.65)

• nonexpansive if

‖Tx−Tx′‖2 6 ‖x− x′‖2 ∀x, x′∈X, (A.66)

in the sense that

‖y− y ′‖26 ‖x− x′‖2 ∀x, x′∈X, y ∈Tx, y ′∈Tx′, (A.67)

• firmly nonexpansive if

‖y− y ′‖22 6 ‖x−x′ ‖22−‖(x−x′)− (y− y ′)‖22 ∀x, x′∈X, y ∈Tx, y ′∈Tx′.

If T corresponds to a differentiable single-valued function g via Tx= {g(x)}, as in the
case of g(x)=∇f(x) for some f ∈C2(X,R), monotonicity corresponds to the positive
semidefiniteness of ∇g = ∇2f , i.e. the second-order convexity criterion for f . Any
continuous monotone operator is maximally monotone [RW04, 12.7], therefore ∇f is
maximal monotone for f ∈ C2(X, R). For nondifferentiable functions, the following
result holds:
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Proposition A.43. (adapted from [ RW04, Thm. 12.17]) If f :Rn→ R̄ is proper and
convex, then its subdifferential ∂f is monotone. If additionally f is lower semicontin-
uous, then ∂f is maximal monotone.

A monotone operator T is maximal monotone if and only if it is surjective in the
sense that range T = X [Eck89, Thm. 3.5]. Nonexpansivity guarantees that T is a
contraction in a generalized sense; T is firmly nonexpansive if and only if 2 T − I is
nonexpansive [Eck89, Prop. 3.8].

Theorem A.44. [ Eck89, Thm. 3.6] Let T :X⇉X and λ> 0. Define the resolvent of
the operator T as

JλT 6 (I + λT )−1. (A.68)

Then the following relations hold:

1. T is monotone ⇒ JλT is single-valued.

2. T is monotone ⇔ JλT is firmly nonexpansive.

3. T is maximal monotone ⇔ JλT is firmly nonexpansive and domJλT =X.

The importance of resolvents becomes apparent when considering that for any maximal
monotone operator T it holds that

0∈Tx ⇔ JλT(x)= {x}, (A.69)

i.e. finding a zero of a maximal monotone operators corresponds to finding a fixed point
of the associated resolvent. Consider the fixed point approach for finding a zero of T ,

0∈ Tx ⇔ x∈x−λT (x). (A.70)

Two possibilities for turning (A.70) into an iterative scheme are

(forward step) xk+1∈xk− λTxk,⇔xk+1∈ (I − λT )xk, (A.71)

(backward step) xk+1∈xk− λTxk+1⇔ xk+1∈ (I +λT )−1xk. (A.72)

Suitable combinations of these two steps form the basis of many first-order methods
in nonsmooth optimization. The notation is in analogy to explicit/implicit integration
methods such as forward/backward Euler steps. In optimization, we have T =∂f , there-
fore the forward step amounts to subgradient descent, which has intrinsic difficulties
such as nonuniqueness, bounds on the step size and numerical issues when computing
the set of active constraints. These problems are avoided by using backward steps. From
the definition of JλT ,

x∈JλT y ⇔ (I + λT )x∋ y ⇔ 0∈ (x− y)+λT (A.73)

⇔ x= argmin
x′
{1
2
‖x− y‖2+λ f(x)} =: (Pλf)(y) (A.74)

Thus the resolvent, i.e. the backward step, can be computed by solving a regularized
optimization problem. This is also known as prox -step, as it involves minimizing f

together with a proximity term that keeps x close to the previous iterate. However,
solving (A.73) is generally as hard as the original problem.
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This can be circumvented by applying splitting techniques. In the operator splitting
framework, ∂f is assumed to be decomposable into the sum of two “simple” operators,
T =A+B, of which forward and backward steps can practically be computed. Finding a
zero of T is then reduced to a suitable combination of steps on the individual operators
A and B. Operator splittings can be obtained by decomposing the function f into a sum
of “simpler” functions fi under a constraint on the relative interiors of their domains;
see [Roc70, Thm. 23.8] or [RW04, Cor. 10.9] for the most general statement:

Proposition A.45. Let f = f1 + 	 + fm for proper convex functions f1, 	 , fm
on X =R

n. Then

⋂

i=1

m

ri (dom fi)� ∅ � ∂f = ∂f1+	 + ∂fm. (A.75)

Usually one requires that the fi be proper, convex and lsc, such that by Prop. A.43 the
subdifferentials ∂fi are maximal monotone, which with Thm. A.44 provides uniqueness
of the backward steps on the individual fi. We now review some duality properties.

Proposition A.46. (Properties of the subdifferential) [ RW04, Prop. 11.3,11.4]

Assume that f : Rn → R̄ be proper, lsc and convex, and denote by f∗ its Legendre-
Fenchel transform, f∗(y)= supx∈Rn {〈x, y〉− f(x)}. Then

1. ∂f∗=(∂f)−1.

2. f(x)+ f∗(y)> 〈x, y〉 and

f(x)+ f∗(y)= 〈x, y〉⇔y ∈ ∂f(x)⇔x∈ ∂f∗(y). (A.76)

3. ∂f(x)= argmaxy {〈x, y〉− f∗(y)}, ∂f∗(y)= argmaxx {〈x, y〉− f(x)}.
4. For a closed convex set C � ∅, we have (δC)∗=σC and

∂δC(x) = NC(x)6 {y ∈Rn|〈x′− x, y〉6 0 ∀x′∈C} (A.77)

5. For a closed convex set D,

y ∈ ∂σD(x) ⇔ x∈ND(y)⇔{y ∈D and 〈x, y〉= σD(x)}. (A.78)

Proposition A.47. Let f :Rn→ R̄ be proper, lsc and convex, and z ∈Rn. Then there
is a unique decomposition

z = x+ y, f(x)+ f∗(y)= 〈x, y〉. (A.79)

This decomposition is given by

x=Pf(z)=J∂f(z), y=Pf∗(z)= J∂f∗(z). (A.80)

In particular, by the identity (λ f)∗(y)=λ f∗(y/λ) for λ> 0, we get

z=x+ y, f(x)+ λ f∗(y/λ)= 〈x, y〉/λ (A.81)

⇔ x=Pλf(z), y= λPλ−1f∗(z/λ). (A.82)
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An instant result of this theorem is the proximal step for support functions with closed,
convex D ⊆R

n,

z=PλσD(z)+λPλ−1δD
(z/λ) (A.83)

⇒ PλσD(z)= z −λΠD(z/λ). (A.84)

For reference, we list the most common backward steps:

General Constraints. For h(z)= δC(z), we have

Pλh(z) = ΠC(z), (A.85)

where ΠC is the Euclidean projector on C.
Affine Constraints. Often one has constraints of the form h(z)= δAz=0. The back-
ward step is then given by the projection onto the null space of A, which can be
formulated in terms of the pseudoinverse A+,

Pλh(z) = (I −A+A) z. (A.86)

Usually A∈Rp×q with p6 q and A has full rank. Then A+=A⊤ (AA⊤)−1 and

Pλh(z) = (I −A⊤ (AA⊤)−1A) z. (A.87)

Support Functions. For h(z)=σD(z), we get from (A.84)

Pλh(z) = z − λΠD(z/λ), (A.88)

i.e. for support functions the backward steps can be evaluated exactly if projections on
the underlying dual sets can be performed.
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