
Inaugural-Dissertation

zur

Erlangung der Doktorwürde

der

Naturwissenschaftlich–Mathematischen Gesamtfakultät

der

Ruprecht–Karls–Universität

Heidelberg

vorgelegt von
M.Sc. Jing Yuan

aus Wuhan, China

Tag der mündlichen Prüfung:





Convex Variational Approaches to Image Motion
Estimation, Denoising and Segmentation

Gutachter: Prof. Dr. Christoph Schnörr





To my homeland, China.

To my wife, Dandan Shan and my son, Danry Yuan.





Abstract

Energy minimization and variational methods are widely used in image processing and computer

vision, where most energy functions and related constraints can be expressed as, or at least

relaxed to, a convex formulation. In this regard, the central role is played by convexity, which

not only provides an elegant analytical tool in mathematics but also facilitates the derivation of

fast and tractable numerical solvers. In this thesis, four challenging topics of computer vision

and image processing are studied by means of modern convex optimization techniques: non-

rigid motion decomposition and estimation, TV-L1 image approximation, image segmentation,

and multi-class image partition. Some of them are originally modelled in a convex formulation

and can be directly solved by convex optimization methods, such as non-rigid flow estimation

and non-smooth flow decomposition. The others are first stated as a non-convex model, then

studied and solved in a convex relaxation manner, for which their dual models are employed to

derive both novel analytical results and fast numerical solvers.

Non-rigid Flow Decomposition and Estimation: The analysis and estimation of non-

rigid flow fields are of utmost importance and of academic interest in many areas, such as

experimental fluid mechanics, remote sensing, medical imaging, and oceanography. The optical-

flow approach constitutes an efficient non-intervening way to estimate such flow fields between

image sequences. Standard optical-flow methods, which were developed for mostly rigid or

piecewise rigid motion estimation and rely on minimizing the motion-regularized functionals,

cannot be well adapted into the context of such non-rigid flows, which often contain highly

complex motion patterns and cannot be described or represented by a simple parametric model.

In this respect, higher-order div-curl based regularization was introduced in the optical-flow

estimation energy to accurately recover complicated flow patterns with different scales. In this

thesis, we propose a novel flow decomposition method in order to improve the analysis and

numerical treatment of the reduced convex optimization model that incorporates the challenging

high-order flow derivatives. For the estimation of physically consistent, e.g. divergence-free
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flows, the proposed flow decomposition significantly reduces the computational complexity, and

a fast multiplier-based algorithm can be derived using standard convex optimization theory.

In addition, we study the new non-smooth high-order div-curl regularizer and show that it

leads to a new structure-texture decomposition of the given non-rigid flow field. In particular,

we investigate an approach combining flow estimation with such non-smooth decomposition,

and demonstrate its advantages for restoring small-scale flow patterns. In order to minimize

the resulting highly nonlinear convex energy function, a direct second-order cone programming

(SOCP) based method is applied, whose results validate our propositions experimentally.

TV-L1 Image Approximation: We study the convex TV-L1 image approximation model

under a new primal-dual perspective. In comparison to the classical TV-L2 image approxima-

tion [141], the TV-L1 image approximation method shows superior performance for impulsive

denoising and for the scale determination of image patterns. We show that the TV-L1 image

approximation results in a novel image decomposition model based on convex cones. Moreover,

the TV-L1 image approximation can actually be viewed as a convex relaxation of the asso-

ciated discrete-constrained image approximation problem. In this regard, it allows to solve the

corresponding integer optimization problem globally and exactly. This significantly extends the

results recently proposed by Chan et al [42] from simple binary-constrained TV-L1 image appro-

ximation to images with discrete grayscales, such as 8-bit gray-scale digital images. Concerning

the computational aspects, we build up a new multiplier-based TV-L1 image approximation

algorithm based on the proposed dual model, which avoids the non-smoothness of the primal

TV-L1 energy function. Experiments indicate that it converges in a very fast, mostly super-linear

way.

Image Segmentation: Image segmentation is a fundamental problem of computer vision and

image processing, which has been intensively studied. One recent development on this topic is

to investigate the binary constrained optimization problem in the spatially continuous setting by

means of convex relaxation. This approach, known as continuous min-cut, outperforms level-set

formulations in terms of efficiency and reliability, and has no metrication error in contrast to

graph-based approaches such as graph-cuts. Despite many similarities between the continuous

min-cut problem and the classical min-cut over graphs, its dual model, especially in a flow-

maximization form, was rather not well-studied. In addition, a max-flow based algorithm was

still missing, in contrast to the associated optimization over graphs: most fast min-cut solvers

are designed by the theory of max-flow. In this thesis, we propose a novel continuous max-

flow model and prove its duality to the continuous min-cut problem. We also provide a new

variational perspective on the connection between ’cuts’ and ’flow saturation’. Furthermore,
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the proposed continuous max-flow model naturally leads to a new max-flow based algorithm

which significantly outperforms the state-of-the-art algorithm proposed by Bresson et al [31] in

terms of efficiency. We also consider image segmentation with user-supplied constraints, and

show that such supervised information can be easily incorporated into our continuous max-flow

approach without introducing any additional computational load.

Multi-Class Image Partition: Multi-class image partition with a regularizer based on the

minimum total perimeter can be expressed in terms of a Potts model. Typically, the associated

energy is formulated on finite graphs and solved using α-expansion, which is often biased by the

discrete grid and generates metrication artifacts. Existing convex relaxed formulations of the

Potts model in the spatially continuous setting use a total-variation based functional to encode

perimeter costs, in order to favor partitionings with smooth boundaries. Such formulations are

analogous to the multi-way ’min-cut’ problems over graphs. We study the convex relaxed Potts

model and propose two convex models, both of which are dual and equivalent to the convex

relaxed Potts problem. The first dual model can be smoothed using an entropy-maximization

term and boils down to the maximization of a simple smooth and convex energy function, which

can be numerically performed in an inexpensive and fast way. The second model amounts to

flow maximization in the spatially continuous context, i.e. a continuous max-flow model, which

leads to a novel flow perspective of the ’multi-way cut’ problem. In addition, the continuous

max-flow formulation directly leads to a new and efficient max-flow based algorithm which has

significant numerical advantages: the new algorithm properly avoids extra computational load

to enforce the pointwise simplex constraints and naturally allows a parallel implementation over

different labels. Numerical experiments show substantial superiority of both approaches in terms

of quality and efficiency, compared to previous state-of-the-art methods for Potts model based

image partition.
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Zusammenfassung

Methoden der Energieminimierung und der Variationsrechnung werden auf dem Gebiet der

digitalen Bildverarbeitung und des Computersehens vielfach eingesetzt. Dort können die meisten

Energiefunktionen und die zugehörigen Nebenbedingungen in konvexer Form ausgedrückt oder

zumindest durch Relaxation in eine solche überführt werden. In dieser Hinsicht ist Konvexität von

zentraler Bedeutung und stellt nicht nur ein elegantes mathematisches Werkzeug für die Analyse

zur Verfügung, sondern unterstützt auch die Entwicklung schneller und leicht handhabbarer

numerischer Löser. In dieser Arbeit werden vier herausfordernde Themen des Computersehens

und der Bildverarbeitung mittels moderner konvexer Optimierungstechniken untersucht: nicht-

starre Zerlegung und Schätzung von Bewegung, TV-L1 Bild-Approximation, Bildsegmentierung

sowie Multiklassen-Bildsegmentierung. Manche sind von Haus aus konvex formuliert und können

direkt durch konvexe Optimierungstechniken gelöst werden. Darunter fallen z.B. die nicht-

starre Schätzung und die nicht-glatte Zerlegung von Bewegungen. Die verbleibenden Probleme

werden zunächst nicht-konvex formuliert und dann mit Hilfe konvexer Relaxation untersucht

und optimiert. Hierzu werden ihre dualen Modelle verwendet, um sowohl neue theoretische

Erkenntnisse als auch schnelle numerische Löser zu erhalten.

Nicht-starre Zerlegung und Schätzung von Bewegung: Die Analyse und Schätzung

von nicht-starren Bewegungsfeldern sind in vielen Disziplinen von äußerster Wichtigkeit und

von akademischer Bedeutung, z.B. in der experimentelle Strömungsmechanik, Fernerkundung,

bildgebenden Verfahren für der Medizin und in der Ozeanographie. Ansätze basierend auf dem

optischen Fluss stellen eine effiziente, berührungslose Methode für die Schätzung von Flussfel-

dern in Bildsequenzen dar. Gewöhnliche auf dem optischen Fluss basierende Ansätze, die für die

Schätzung von fast-starrer oder stückweise starrer Bewegung entwickelt wurden und auf der Mi-

nimierung von Energiefunktionen, die die Bewegung regulariseren, basieren, können nicht direkt

auf nicht-starre Flüsse angepasst werden, da diese oft hoch-komplexe Bewegungsbilder bein-

halten und nicht durch einfache parametrische Modelle beschrieben oder repräsentiert werden
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können. In diesem Zusammenhang wurde auf div-curl basierende Regularisierer höherer Ordnung

für die Energiefunktion der Optischen-Fluss-Schätzung vorgeschlagen, um Bewegungsbilder mit

unterschiedlichen Skalen exakt zu rekonstruieren. In dieser Arbeit schlagen wir eine neuartige

Methode zur Zerlegung des Flusses vor. Das Ziel ist, die Analyse und die numerische Be-

handlung des reduzierten konvexen Optimierungsproblem zu verbessern, welches anspruchsvolle

Ableitungen höherer Ordnung des Flusses beinhaltet. Für die Schätzung physikalisch konsi-

stenter, beispielsweise divergenzfreier Flüsse reduzieren die vorgeschlagenen Flusszerlegungen

die Berechnungskomplexität signifikant und es lässt sich ein schneller Algorithmus basierend

auf Lagrange-Multiplikatoren mit Hilfe von existierenden Theorien aus der konvexen Optimie-

rung herleiten. Zusätzlich untersuchen wir den neuen nicht-glatten div-curl Regularisierer hö-

herer Ordnung und zeigen, dass er zu einer neuartigen Zerlegung des gegebenen nicht-starren

Flussfeldes in Struktur- und Texturanteil führt. Insbesondere untersuchen wir einen Ansatz, der

Flussschätzung mit einer solchen nicht-glatten Zerlegung kombiniert und zeigen seinen Nutzen

für die Rekonstruktion von kleinskaligen Strömungsbildern. Um die resultierende hochgradig

nicht-lineare konvexe Energiefunktion zu minimieren, wenden wir direkt Second-Order Cone

Programming an. Die Resultate bestätigen unseren Vorschlag experimentell.

TV-L1 Bild-Approximation: Wir untersuchen das konvexe, auf TV-L1 basierende Modell

zur Bild-Approximation aus einer neuen primal-dualen Sichtweise. Im Vergleich zu der klassi-

schen TV-L2 Bild-Approximation [141] liefert die TV-L1 Bild-Approximation für die Rauschun-

terdrückung von Impulsrauschen und die Skalen-Bestimmung von Bildmustern hervorragende

Ergebnisse. Wir zeigen, dass die TV-L1 Bild-Approximation zu einem neuartigen Zerlegungsmo-

dell für Bilder basierend auf konvexen Kegeln führt. Zudem kann die TV-L1 Bild-Approximation

sogar als eine konvexe Relaxation des zugehörigen diskret-wertigen Bild-Approximationsproblems

betrachtet werden. In dieser Hinsicht lässt sich das zugehörige ganzzahlige Optimierungsproblem

global und exakt lösen. Dies erweitert mas̈geblich die kürzlich von Chan et al. [42] veröffentlich-

ten Ergebnisse von der einfachen binärwertigen TV-L1 Bild-Approximation auf Bilder mit dis-

kreter Grauskala, z.B. digitale Bilder mit 8 Bit Kodierung der Intensität. Bezüglich der Berech-

nung haben wir einen neuen Multiplikator-basierten Algorithmus für TV-L1 Bild-Approximation

entwickelt, welcher auf dem vorgeschlagenen dualen Modell basiert und so verhindert, dass

die TV-L1 Energiefunktion nicht-glatt ist. Die Experimente zeigen, dass er sehr schnell, meist

super-linear, konvergiert.

Bildsegmentierung: Bildsegmentierung ist eine wichtige und ausgiebig erforschte Problem-

stellung auf dem Gebiet des Computersehens und der Bildverarbeitung. Eine jüngste Entwick-

lungen auf diesem Gebiet ist, das binärwertige, räumlich kontinuierlich definierte Optimierungs-
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problem mithilfe konvexer Relaxation zu untersuchen. Dieser Ansatz ist unter dem Namen Min-

Cut bekannt, übertrifft Level-Set-Formulierungen in Bezug auf Effizienz und Zuverlässigkeit und

hat im Gegensatz zu Graph-basierten Ansätzen, wie z.B. Graph-Cut-Methoden, keine durch die

Diskretisierung verursachte Artefakte. Trotz vieler Gemeinsamkeiten zwischen dem kontinuier-

lichen Min-Cut-Problem und dem klassischen Min-Cut-Problem auf Graphen, war hingegen das

zugehörige duale Modell, insbesondere in der Max-Flow-Formulierung, kaum erforscht. Wei-

terhin existierte bisher kein auf Max-Flow basierender Algorithmus, ganz im Gegensatz zu der

zugehörigen Optimierung über Graphen: Die meisten schnellen Min-Cut-Löser werden basie-

rend auf der Theorie des Max-Flows entwickelt. In dieser Arbeit schlagen wir ein neuartiges

kontinuierliches Max-Flow Modell vor und zeigen seine Dualität zum kontinuierlichen Min-Cut

Problem. Weiterhin betrachten wir die Verbindung zwischen ’Cuts’ und ’Flows’ aus einer neu-

en, auf Variationsmethoden basierenden Perspektive. Darüber hinaus führt das vorgeschlagene

kontinuierliche Max-Flow Modell ganz natürlich zu einem neuen, auf Max-Flow basierenden

Algorithmus, welche den modernen, von Bresson et al. [31] vorgeschlagenen Algorithmus in

Bezug auf Effizienz übertrifft. Weiterhin betrachten wir Bildsegmentierung mit Benutzervor-

gaben und zeigen, dass solche überwachten Informationen sehr einfach und ohne zusätzlichen

Rechenaufwand in unseren kontinuierlichen Max-Flow Ansatz miteinbezogen werden können.

Multiklassen-Segmentierung von Bildern: Multiklassen-Bildsegmentierung mit einem

Regularisierer basierend auf dem kleinsten Gesamtumfang können mithilfe des Potts-Modells

ausgedrückt werden. Gewöhnlich wird die zugehörige Energiefunktion auf endlichen Graphen

definiert und mithilfe von α-Expansion gelöst, welche oft zu systematischen Fehlern und Ar-

tefakten verursacht durch die Diskretisierung führt. Existierende konvex-relaxierte, räumlich-

kontinuierliche Formulierungen des Potts-Modells benutzen ein auf Totaler Variation basieren-

des Funktional für die Kodierung der Kosten für den Umfang, um Segmentierungen mit glatten

Grenzen zu begünstigen. Solche Formulierungen sind analog zu Multi-Way-Min-Cut Problem

auf Graphen. Wir untersuchen das konvex-relaxierte Potts-Modell und schlagen zwei konve-

xe Modelle vor, welche beide dual und äquivalent zu dem konvex-relaxierten Potts-Problem

sind. Das erste duale Modell kann mithilfe eines Entropie-Maximierungs-Terms geglättet wer-

den, was darauf hinaus läuft, eine einfache, glatte und konvexe Energiefunktion zu maximieren,

was numerisch günstig und schnell ist. Das zweite Modell läuft auf eine räumlich-kontinuierliche

Fluss-Maximierung hinaus, also einem kontinuierlichen Max-Flow-Modell, welches zu einer ganz

neuen Sichtweise auf das Multi-Way-Cut Problem führt. Zusätzlich führt die kontinuierliche

Max-Flow-Formulierung direkt zu einem neuen und effizienten Max-Flow-basierten Algorith-

mus, welcher bedeutende Vorteile bezüglich der Numerik hat: Der neue Algorithmus benötigt

keinen zusätzlichen Rechenaufwand, um die positionsweisen Simplex-Nebenbedingungen zu er-
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zwingen und ermöglicht ganz natürlich eine parallele Implementierung bezüglich verschiedener

Labels. Numerische Experimente zeigen, dass die beiden Ansätze bis dato aktuellen Algorith-

men für Bildsegmentierung basierend auf Potts-Modellen in Bezug auf Qualität und Effizienz

substanziell überlegen sind.
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Notations

Throughout this work the following notation will be used, if not explicitly stated otherwise:

Z Intergers .

R Real numbers.

Z
n, Rn The integer or real vectors with n components.

Ω ⊂ R
2 An open, bounded and simply-connected domain with Lipschitz-

continuous boundary ∂Ω.

|Ω|, |∂Ω| The area or perimeter of the given domain Ω.

div v := ∂v1
∂x1

+ ∂v2
∂x2

The divergence of the 2D vector field v := (v1, v2)
T.

curlv := ∂v2
∂x1
− ∂v1

∂x2
The curl of the 2D vector field v := (v1, v2)

T.

∇ψ :=
(
∂ψ
∂x1

, ∂ψ
∂x2

)
T

The gradient of the scalar field ψ.

∇⊥φ :=
(
∂φ
∂x2

, − ∂φ
∂x1

)
T

The perpenticular gradient of the scalar field φ.

△ψ := ∂2ψ
∂x21

+ ∂2ψ
∂x22

The Laplacian of the scalar field ψ.

△u := ( ∂
2

∂x21
+ ∂2

∂x22
)u The Laplacian of the 2D vector field u := (u1, u2)

T.

A,B,C Arbitrary sets.

L := {ℓ1, ..., ℓn} the label set where ℓi, i = 1, ..., n, denote the n labels.
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ui(x), i = 1, ..., n The n labeling functions correspond to labels ℓi, i = 1, ..., n

respectively.

G := {V, E} A graph including the node set V and the edge set E , where V

and E denote the number of nodes and edges respectively.

i ∈ V Index for nodes

(i, j) ∈ E An edge linking the two adjacent nodes i and j.

N (i) N (i) gives the set of all neighbours of the node i ∈ V.

△+ ∈ R
n The simplex set: for ∀u ∈ △+, ui ≥ 0 and

∑n
i=1 = 1.

h∗(y) For the given convex function h(x), h∗(y) gives its conjugate

such that

h∗(y) := max
x
〈y, x〉 − h(x) .

IΩ(x) The indicator function of the area Ω is defined by

IΩ(x) :=

{
0 when x /∈ Ω

1 when x ∈ Ω
. (0.1)

NC(x) NC(x) gives the normal cone of the convex set C at some point

x ∈ C.
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1 Introduction

During these decades, energy minimization and variational methods were developed to be an

utmost important tool to mathematically model practical problems of computer vision and

image processing and numerically solve them in an efficient way. Successful cases include image

denoising and approximation [141, 42, 123, 8, 180], image decomposition [9, 115, 43, 10], optical

flow estimation [80, 168, 32, 33, 185], image segmentation/partition [124, 31, 108, 131, 13, 174]

etc. In this regard, most problems can be modeled by the minimization of a convex energy

function over certain convex constraint, i.e.

min
u∈C

E(u) (1.1)

where C is some convex set. Therefore, modern convex optimization techniques can be applied

directly to tackle the reduced convex minimization problem (1.1), where convex optimization

not only provides an mathematical soundel way to analyze the given problem, but also leads to

fast and tractable solvers in numerics.

In this thesis, we study four challenging topics of computer vision and image processing: non-

rigid flow decomposition and estimation, TV-L1 image approximation, image segmentation

and multi-class image partition. We focus on the associated convex optimization methods and

convex relaxation approaches to the problems which are not originally formulated in the manner

of convex optimization. Especially, we concentrate on analyzing through their respective dual

form and constructing efficient algorithms in a primal-dual way. In contrast to the widely-used

PDE-descent method which often amounts to inefficient sequential gradient-descent steps and

shows a lack of deep insights to the original mathematical formulation, the efficient primal-dual

solvers possess an prominent category, e.g. [188, 176, 12, 147, 175] (see also the recent works

[38, 60] for a good reference).

In the following part of this chapter, we give a short introduction and review of these topics

and summarize our contributions in the last section.
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1.1 Non-rigid Flow Decomposition and Estimation

Non-rigid flows can be widely found in many real environments: water streams along a river,

clouds drift in the sky, or smoke ascends out of a chimney etc. Movements of these objects are

sometimes quite ’simple’ and smooth, such as water falling from the faucet (see the left picture

of Fig. 1.1), its falling speed field can be modeled by a simple one-dimensional function. But

mostly such flows appear in a very ’complex’ and irregular way, such as turbulents and blowing

clouds (see the last two pictures of Fig. 1.1). It is very hard to decribe or formulate these

movement fields by a single parametric model. This is in contrast to motion of rigid bodies

which can be easily expressed by piecewise constant or piecewise polynomial functions [161].

In addition, taking a close look to such fluid flows one can find that a non-rigid flow field

often contains flow patterns with different scales. For instance, the turbulent flow shown in the

second picture of Fig. 1.1 clearly exposes plenty of "circulations" of different sizes behind the

cylinder.

Smooth Water Stream Turbulent Flows Coulds

Figure 1.1: Typical Non-rigid Flows

On the other hand, the analysis and accurate estimation of non-rigid fluid flows are very impor-

tant and useful in many scientific and industrial areas, e.g. estimation of fluid flow fields greatly

helps to recover distributions of fluid mechanical features and improves related researches in

experimental fluid mechanics [134, 136, 104], environmental sciences like meteorology [187],

climatology and oceanography [48, 50].

During recent years, estimating dense non-rigid flow fields based on variational anlysis of image

sequences has been developped and received a great attention in the community of computer

vision [136, 48, 104, 177, 187]. It provides a both mathematically well-posed and numerically

efficient way for the analysis and estimation of non-rigid flows. In parallel, the cross-correlation

method also gives one of the state-of-the-art computational methods for fluid motion esti-

mation, e.g. particle image velocimetry, and benefits from its robustness against noise and
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1.1 Non-rigid Flow Decomposition and Estimation

illumination disturbances. Most recent progresses of cross-correlation method is to find ap-

propriate alternatives of the fixed square correlation windows [125, 53, 160], so as to improve

the spatial resolution of estimation. For example, Becker et al [18, 17] suggested a bi-level

optimization-based method which simultaneously adapts the gaussian weighted window param-

eters and estimates the motion field. We refer [136] for an excellent overview of the vast

number of literature on all aspects of the application of cross-correlation for PIV. Comparing

to the cross-correlation method, the variational-based method is superior in its high-accuracy

and the ability to incorporate physics-consistent models and conditions [76, 166, 142].

In this thesis, we focus on the variational approach to dense flow estimation, which computes

the non-rigid flow field synthesized in the two sequential images I1,2(x) by solving the following

energy minimization problem

min
u

D(I1(x+ u)− I2(x)) + R(u) (1.2)

where the data fidelity term D(·) evaluates the brightness-constant condition and the flow

regularization term R(u) smoothes out the computation result. In (1.2), the regularizar R(u)

encodes the priori information about the spatial coherence of the flow u and plays the central

role in the variational flow estimation method. It was shown that the widely-used regularizars

of optical-flow estimation [32, 33, 168], which implicitly assume simple parametric models of u

like piecewise constant, failed to extract the correct non-rigid flow fields [177, 179]. Even for

the most smooth harmonic flow field u, whose divergence and curl fields are both vanishing,

such regularizars produce pool results because the incorrect regularization functions usually

oversmooth and distort the flow patterns. In contrast, the high-order div-curl regularizar

R(u) :=

∫

Ω
|∇ divu|2 dx+

∫

Ω
|∇ curlu|2 dx (1.3)

achieved great successes and received much attention [48, 94, 181], which penalizes the variance

of divergence and curl fields instead of the flow coordinates directly. In this thesis, we study

such high-order div-curl regularized non-rigid flow estimation through flow decomposition, which

allows the recovery of physics-consistent imagery flow fields, e.g. solenoidal flows (div-free), in

a much simpler way. The proposed flow decomposition schemes also leads to in-depth analyzes

and descriptions of non-rigid flow patterns. In addition, it results in estimating the flow field

by computing two potential fields, related to divergence and curl respectively. It properly splits

the original flow estimation (1.2) into to smaller sub-problems in numerics with respect to the

two potentials.

For the highly non-rigid flow fields which are mostly piecewise smooth, e.g. turbulent flows, we
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investigate the nonsmooth version of (1.3):

R(u) :=

∫

Ω

√
|∇ divu|2 + |∇ curlu|2 dx , (1.4)

which was first proposed by Yuan et al [181, 179]. We introduce a new structure-texture

decomposition of non-rigid flow fields based on the non-smooth div-curl regularizar (1.4), which

seperates the given flow into two flow patterns with different scales. This is analougue to

the structure-texture image decomposition of the given image f based on total-variation, e.g.

[9, 10, 115]:

f = v + div p , (1.5)

where v scatches the large-scale ’structure’ pattern and div p denotes the small-scale ’textures’

described by its G-norm. The proposed structure-texture flow decomposition provides a new

variational perspective to analyzing the challenging flow patterns with high non-smoothness and

different scales. On the other hand, such nonsmooth structure-texture flow decomposition in-

troduces a complicated convex optimization problem along with nonsmooth convex constraints,

therefore a direct convex programming algorithm based on the second-order cone programming

(SOCP) is employed to achieve computational results in a high-accuracy.

1.2 TV-L1 Image Approximation

Total-variation based image denoising was first proposed by Rudin et al [141] as the following

convex optimization problem

min
u

1

2

∫

Ω
|f − u|2 dx + α

∫

Ω
|∇u(x)| dx . (1.6)

Unlike most convex regularizars for image smoothness, the total-variation function is well-known

in keeping image edges while smoothing other parts. Since then, the total-variation regularizar

was widely used in many tasks of image processing, e.g. image denoising [41, 42, 8, 180],

image decomposition [9, 115, 43], image segmentation and partition [42, 31, 174, 132, 13, 108]

for which we will go into more details in the relevant parts of this thesis. Along with vast

developments of convex optimization techniques in image processing, the minimization of such

a total-variation based energy function is continuously of great interests and importance [141,

149, 115, 31, 126, 34, 81, 78].

In this thesis, we investigate the TV-L1 image approximation problem:

min
u

∫

Ω
|f − u| dx + α

∫

Ω
|∇u(x)| dx , (1.7)
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1.2 TV-L1 Image Approximation

which achieves much attention since the pioneering works [42, 41] by Chan et al. In fact, the

TV-L1 energy function of (1.7) was first introduced and studied by Alliney [2, 1] for discrete

one-dimensional signals’ denoising, then studied by Nikolova et al [123, 41] for image processing.

In comparison to the classical TV-L2 problem (1.6), TV-L1 image approximation outperforms

in denoising impulsive noises (see Fig. 1.2), keeping image contrast and determing scales of

image patterns [172, 173, 144].

Another interesting property of the TV-L1 model (1.7) was shown by Chan et al [42, 41]:

given the binary image f(x) ∈ {0, 1}, there exists at least one optimum u∗(x) ∈ {0, 1} which

minimizes (1.7) globally. It follows that for the given the black-white image f(x), the convex

TV-L1 formulation (1.7) solves the nonconvex optimization problem:

min
u(x)∈{0,1}

∫

Ω
|f − u| dx + α

∫

Ω
|∇u(x)| dx , (1.8)

globally and exactly! Therefore, (1.7) gives an exact convex relaxation of the binary constrained

optimization problem (1.8). Moreover, the rounding scheme introduced by Chan et al actu-

ally implies a series of global optimums of the binary-constrained TV-L1 model (1.8) may be

discovered.

(a) (b) (c)

Figure 1.2: Difference btw. TV-L2 (1.6) and TV-L1 (1.7): (a) Input noisy image f(x). (b)

Computation result u∗(x) by TV-L2 image approximation (1.6). (c) Computation result

u∗(x) by TV-L1 image approximation (1.7).

With the help of coarea formula, Chan et al [41, 42] proved that the energy functional P (u)

of (1.7) can be equivalently represented in terms of the upper level-sets of the image functions

u(x) and f(x), i.e.

P (u) =

∫ +∞

−∞

{
|Uγ△F γ | + α |∂Uγ |

}
dγ , (1.9)
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where for each γ, Uγ gives the γ-upper level set of the variable u(x) by

Uγ(x) =

{
1 , when u(x) > γ

0 , when u(x) ≤ γ
, x ∈ Ω , i = 1, . . . , n ; (1.10)

and so for F γ to the input image f(x). |∂Uγ | denotes the perimeter of Uγ and |Uγ△F γ | gives
the area of the symmetric difference of the two level sets Uγ and F γ .

Yin et al [173] further showed that minimizing the layer-wise energy function (1.9) actually

amounts to properly stacking all the optimal Uγs, each of which solves (1.8) for the correspond-

ing binary indicator function F γ . In other words, solving (1.7) can be reduced to optimizing a

sequence of binary constrained problems as (1.8). Since Uγ1 ⊂ Uγ2 when γ1 ≥ γ2, the pro-

cess recovers the optimum u∗(x) of (1.7) by properly arranging all the associated level sets Uγ ,

γ ∈ (−∞,+∞). The same result was also discovered by Darbon et al. [51, 52] in the image

graph setting, where the anisotropic total-variation function was considered in consistent to the

given grid graph and resulted in a graph cut problem which can be solved by the introduced

fast graph optimization algorithm. Goldfarb and Yin [71] also developped an efficient pre-flow

based min-cut approach to such anisotropic total-variation regularized L1 image approximation.

Another similar and interesting work of the spatially continuous image labeling along with n

linearly ordered labels, i.e. layered level sets, was recently addressed by Bae et al [12], which

simulated Ishikawa’s graph-cut method [87] and proposed a fast continuous max-flow approach.

However, as stated in [173], such approach means both bad and good news for processing

gray-scale images in practice: on the one hand, the total number of gray values is finite, i.e.

u(x) ∈ {0, . . . , 255}, hence only a finite number of optimization problems as (1.8) should be

considered; on the other hand, solving (1.8) for each layer F γ is not trivial; and in order to

globally tackle (1.7), one has to examine a large number of obtained level-sets to restrict its

search legally. This makes such computation method by direct addressing multiple layered level-

sets impratical to a real image processing task especially with a large number of different gray

values, e.g. CT or MRI medical imaging which often contains over thousands of gray values.

In addition, the PDE-descent method is often used to numerically approximate the global opti-

mum of (1.7) [42, 41, 173, 55], which smoothes the total-variation term by
√
∂xu2 + ∂yu2 + ǫ2.

Actually as mentioned in [56], even if ǫ takes a small enough value, the coarea formula is no

longer satisfied, new gray levels appear and the indicator functions are blurred.

Motivated by the above observations, we introduce and study the primal and dual perspective

of the TV-L1 model (1.7). We show the it results in a new image decomposition model, in

contrast to the image decomposition [9, 115] by the TV-L2 model (1.6). In addition, we prove
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the exactness of (1.7) as the convex relaxation model of the discrete-constrained optimization

problem:

min
u(x)∈{f1,...,fn}

∫

Ω
|f − u| dx + α

∫

Ω
|∇u(x)| dx , (1.11)

given f(x) ∈ {f1, . . . , fn} with the order f1 < . . . < fn, i.e. (1.7) gives the global and exact

optimum of (1.11). Clearly, the assumption that u(x) and f(x) takes the discrete gray-scale

values fi, i = 1, . . . , n, with an ascent order such that f1 < . . . < fn, properly models

the 8-bit gray-scale images in digital image processing and CT or MRI medical imaging which

contains over thousands of discrete gray-scales. It follows that once the input f(x) is discretely

valued in a finite set with linear orders, which is often the case for digital gray-scale images, one

can find the global optimum u∗(x) to (1.11), which has the same discrete values’ set, by simply

solving the convex optimization problem (1.7). That is one can simply solve the challenging

nonconvex discrete-constrained optimization problem (1.11), exactly and globally, by a much

simpler convex optimization problem (1.7), which significantly reduce the related computation

complexity and load.

Moreover, we also derive a new fast algorithm based on the proposed dual model of (1.7)

through the standard multiplier-based convex optimization theories [20, 21, 138].

1.3 Image Segmentation

Image segmentation is a central topics of image processing, which has been intensively studied

through different theories during these decades. In this thesis, we regard image segmentation

as a low-level vision problem and model it in the form of energy minimization through Markov

Random Fields (MRF) (see [130, 110] for a good reference), such that the task of image

segmentation tries to assign the value 0 or 1 to each image pixel subject to certain optimal

criterion, where 0 means ’background’ and 1 ’forground’. That is image segmentation seperates

the given image domain Ω into two regions, namely background and foreground (see images

(a) and (b) of Fig. 1.3). The topics of image segmentation with multiple partitions is discussed

indepently in another part of this thesis.

A convenient way to mathematically formulate such binary image segmentation problem is to

compute the min-cuts over graphs, where, for each image grid, it segments grid nodes through

the minimization of the total data cost subject to a smooth segmentation boundary. Its reduced

discrete energy function is encoded over an appropriately designed graph such that searching

for a min-cut over this graph just amounts to the minimization of the energy function. The
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(a) (b) (c)

Figure 1.3: Examples of binary image segmentation: (a) shows the two segmentation regions

(outside or inside the yellow contour) [31]. (b) shows the two regions of lobe (marked by

red and blue) [28]. (c) shows the two segments of a liver (marked by blue and red) [176].

main advantage for expressing image segmentation in the form of min-cuts is that the min-

cut problem can be efficiently computed by means of the maximization of corresponding flows

along the graph through the classical duality of min-cut and max-flow [64, 46]. In practice,

most fast min-cut algorithms are designed in the manner of recovering the maximum flow over

the graph network, e.g. Edmonds-Karp algorithm [57] in O(V E2), push-relabel algorithm [69]

in O(V 2E)!

Figure 1.4: Graphs and graph-cuts: 1st and 2nd images show the graphs constructed from image

grids: 4-connected and 8-connected respectively. 3rd image shows the minimum cut of the

graph, where the nodes of the graph are partitioned into two subsets belonging to the source

s and the sink t respectively.

There have been a vast amount of researches on the graph-cut based image segmentation during

the past ten years, e.g. [28, 30, 140]. One main drawback of such graph-based approaches

is visible grid bias generated in segmentation results, where the interaction potential penalizes

some spatial directions more than others and this leads to visible artifacts in computational

results (see images (a) and (c) of Fig. 1.5). Reducing such metrication errors can be done by
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considering more neighboring nodes with a proper distance measure [29, 96] (see images (b)

and (d) of Fig. 1.5 with comparisons to images (a) and (c)) or high-order interaction potentials

[95, 88]. However, this either results in a heavy memory load and high computation cost or

amounts to a more complex algorithmic scheme, e.g. QPBO [23, 98].

(a) (b) (c) (d)

Figure 1.5: Metric effects by min-cuts [29]: (a) and (b) show the restoration results computed

by the graph with 4-connected neighbours and the graph with 8-connected neighbours

respectively. (c)and (d) show segmentation results computed by the graph with 4-connected

neighbours and the graph with 26-connected neighbours respectively. Clearly, applying a

large neighbour node system allows to reduce inaccuracy from metrification errors.

In contrast, formulating and minimizing the energy functional over the labeling function under

a spatially continuous setting can properly avoid such metric biases and carries the solution

with a subpixel accuracy at the same time. In this regard, classical approaches, e.g. level sets

[127, 40, 112, 109] and phase fields [90, 19], give most direct and cheap implementations.

Unfortunately, both methods suffer from their highly non-convex energy function: computation

often gets trapped on the local optimum and the quality of results highly depends on the initial

condition. Recent studies [42, 124] showed that expressing the spatially continuous min-cut

problem in the form of convex relaxation leads to both the global and exact solution and

the fast and reliable solvers in numerics [31, 72, 174]. G. Strang [150, 151] was the first to

study max-flow and min-cut problems over a continuous image domain. Related studies include

[158, 4], where Appleton et al proposed an edge-based continuous minimal surface approach to

segmenting 2-D and 3-D objects.

In [42, 124], Chan et al considered binary image segmentation with the spatially continuous

notations:

min
S

∫

Ω\S
Cs(x) dx+

∫

S
Ct(x) dx + α |∂S| , (1.12)

then relaxed the indicator function u(x) ∈ {0, 1} of S to u(x) ∈ [0, 1], Chan et al proved

that the binary-constrained nonconvex formulation (1.12) can be globally solved by the convex
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minimization problem

min
u(x)∈[0,1]

∫

Ω
(1− u(x))Cs(x) dx +

∫

Ω
u(x)Ct(x) dx + α

∫

Ω
|∇u(x)| dx . (1.13)

More specifically, threshholding the optimum u∗(x) ∈ [0, 1] of (1.13) by any value t ∈ (0, 1]

leads to a sequence of global binary optima to (1.12). Consequently, the optimum of the convex

optimization problem (1.13) gives rise to a set of global binary solvers to the original nonconvex

segmentation problem (1.12), not just one which is the case for graph-cuts! In this sense,

(1.13) is also named as the continuous min-cut model.

However, in contrast to the duality between discrete max-flow and min-cut models [64] where

fast min-cut algorithms are designed in the max-flow fashion [46], the corresponding max-flow

model over a continuous image domain, as the dual of (1.13), is rather lost in recent studies,

except Yuan et al [174, 176]. On the other hand, to tackle the constraints u(x) ∈ [0, 1] at

each image pixel in research so far, previous algorithms were designed to explicitly force the

primal variable u(x) to the feasible set at every iteration, either by projections or by adding

forcing terms [124, 31, 72]. This is also in contrast to the classical min-cut and max-flow

scheme, where the min-cut problem can be completely solved by just pushing flows as much

as possible without modifying any label during computation. It helps to design most efficient

min-cut algorithms, e.g. the Ford-Fulkerson algorithm [46], push-relabel algorithm [69], Dinitz

blocking flow algorithm [54] etc. These facts motivate our studies of the max-flow approach

to binary image segmentation in the spatiall continuous setting (1.13).

Moreover, we will also investigate the binary image segmentation problem (1.13) subject to

priori user inputs, where some areas are marked as ’background’ or ’foreground’ interatively by

the user (see image (b) of Fig. 1.3). Such priori information introduces hard constraints to

the labeling function u(x), basically the overlap constraints. It also gives the clue to the image

models of ’background’ and ’foreground’, which help to build up more accurate data terms

[140, 153]. We will see that the proposed continuous max-flow model can easily adapt these

supervised information without increasing any computational and memory load.

1.4 Multi-Class Image Partition

The multi-class image partition problem, or multi-labeling problem, is one of important math-

ematical models in image processing and computer vision, which tries to assign a label li,

i = 1, ..., n, from the finite label set L := {l1, ..., ln} to each pixel of the given image domain

Ω subject to some optimal criterion. Such kind of problems appear extensively in the areas
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of image processing and computer vision. They are often formulated as the minimization of

an energy function E(u), u(x) ∈ L for ∀x ∈ Ω, which mathematically encodes the imposed

optimality considerations for the imaging and vision task. The posteriori estimation is regarded

as better as the energy is lower. Considering the mapping of u : Ω → L is single-valued, the

image domain Ω is therefore partitioned into n regions by the labeling function u(x):

Ω = ∪ni=1Ωi ; Ωk ∩ Ωl = ∅ , ∀k 6= l

where

u(Ωi) = li , i = 1, ..., n .

Looking for such an optimal labeling function with respect to some energy functional is an im-

portant mathematical strategy to model a wide range of applications, e.g. image segmentation

[30, 140, 158] where each non-overlapped segment directly corresponds to one label li ∈ L,

i = 1...n, image denoising [100, 163, 153] where each label is associated with one discrete

gray-scale or color value, stereo reconstruction [99, 100, 143] where each label gives a discrete

disparity value or a piece of geometrical model [116].

In this thesis, we focus on the multi-class image partitioning problem which minimizes the total

perimeter of the one-label (constant) regions and does not favor any particular order of the

labels, namely Potts model [135]. More specially, for the given n labels {l1, . . . , ln}, one tries

to partition the given image domain Ω into n disjoint subdomains {Ωi}ni=1 and assign each

subdomain Ωi a label li by solving

min
{Ωi}ni=1

n∑

i=1

∫

Ωi

ρ(li, x) dx+ α
n∑

i=1

|∂Ωi| , (1.14)

subject to

∪ni=1Ωi = Ω , Ωj ∩ Ωk = ∅ , ∀j 6= k , (1.15)

where |∂Ωi| measures the perimeter of each disjoint subdomain Ωi, i = 1, . . . , n, and the

function ρ(li, x), i = 1, . . . , n, evaluates the performance of each label assignment li at the

specified position x.

In a discrete graph setting, Potts model (1.14) corresponds to a practically important special

case of a Markov Random Field (MRF) defined over a graph [110], where a typical MRF energy

sums unary potentials defined over graph nodes and pairwise potentials defined over graph

edges. When pixels can take only one of 2 labels, the resulting binary energy function can be

efficiently and globally minimized by graph cuts [73], provided that the pairwise potentials are

11



1 Introduction

submodular [100]. However, for more than two labels typical MRF optimization problems are

NP hard, so is Potts model. In particular, Potts model corresponds to a multi-terminal graph

cut problem where only provably good approximate solutions are guaranteed, for example, via α-

expansion or α−β swap [30], max-product loopy belief propagation [66, 65, 63], LP relaxations

[101, 102, 167]; see [153] for a good review. Another drawback of such discrete setting is that

the results are often biased by the discrete grid causing metrication errors, see sec. 1.3 and

Fig. 1.5. Such visual artifacts can be largely reduced by either adding more neighbour nodes

[29, 96] or applying high-order cliques [95, 88]. However, extra computation and memory load

are introduced.

Parallel to these developments, variational methods have been developed for solving the same

Potts model (1.14) in a spatially continuous setting where the bounded continuous image

domain is considered. In this regard, level set introduces the most direct and natural way

to formulate the piecewise constant labeling function and its related computation provides a

feasible way to resolve the optimal partitions with a subgrid accuracy, see e.g. [127, 40, 164]

and its variant of the piecewise constant level set method (PCLSM) [111, 112]. To this end, the

phase-field method [90, 19] provides another direct and cheap implementations. Unfortunately,

both approaches typically employ nonconvex functions, for which the numerical solvers often

get stuck in a local minima and their results depend on the initial value.

During recent years, convex relaxation approaches were introduced, e.g. [133, 37, 13, 131, 108,

175, 106, 107] etc, to explore such multi-class Potts model (1.14) in the spatially continuous

setting over the minimization of a convex energy function, so-called convex relaxed Potts model :

min
u∈S

n∑

i=1

∫

Ω
ui(x) ρ(li, x) dx + α

n∑

i=1

∫

Ω
|∇ui| dx (1.16)

where S is the convex constrained set of the labeling functions u(x) := (u1(x), . . . , un(x)):

S = {u(x) | (u1(x), . . . , un(x)) ∈ △+ , ∀x ∈ Ω } ,

△+ is the simplex set, i.e.

for ∀x ∈ Ω ,

n∑

i=1

ui(x) = 1 ; ui(x) ∈ [0, 1] , i = 1 . . . n .

In (1.16), assigning each pixel by an unique label is encoded by the convex pixelwise simplex

constraint and the minimization of the total perimeter is formulated by the sum of total-

variation functions over labelings. Comparing to level set methods, great numerical advantages

can be achieved, e.g. fast and reliable algorithms can be easily build up by standard convex

12



1.4 Multi-Class Image Partition

optimization theories [20, 21, 45]. Since a strict mathematical proof of the exactness of such a

convex relaxation approach to the nonconvex Potts model is still open [37], its approximation

result can only be accepted as suboptimal. One may claim the convex relaxation method gives

the solution which is closer to the exact global minimum than the local minima by the level set

formulation. Practical experiments confirmed this.

For a short review of recent studies on the convex relaxed Potts model (1.16), Zach et al [184]

introduced an alternating optimization approach to solve (1.16) in a numerically splitting way:

min
u,v∈S

n∑

i=1

∫

Ω
vi(x) ρ(li, x) dx +

1

2θ
‖u− v‖2 + α

n∑

i=1

∫

Ω
|∇ui| dx .

Obviously, when θ takes a value small enough, the above convex optimization problem properly

approximates the convex relaxed Potts model (1.16). Within each iteration, two substeps

are taken to tackle the total-variation term and explore the pointwise simplex constraint S

respectively. A Douglas-Rachford splitting algorithm was proposed, by Lellmann et al [108], to

solve a quite similar problem as (1.16), where a variant of the total-variation term is considered:

∫

Ω

√
|∇u1(x)|2 + . . . + |∇un(x)|2 dx .

As in [184], the proposed splitting procedure involves an outer loop with two substeps, where

the first substep solves a total-variation minimization problem iteratively until convergence,

while the second substep projects the current solution to the pixelwise simplex constraint set

S. In [106], the authors introduced a weighted variant of the classical total variation for vector

fields in order to encode non-trivial interclass distances for multi-class labeling and the Nestorov

based algorithm was applied to approximate the labeling problem within a suboptimality bound.

In [37, 131, 107], the authors introduced another convex relaxation based on a multi-layered

configuration, which was shown to be tighter. A more complex constraint on the dual variable

p is given to avoid multiple countings. In addition, either a PDE-based primal-dual scheme

[37, 131] was applied to achieve the minimum or a multiple-constrained Douglas-Rachford

splitting approach [107] was presented to achieve global convergence and avoid inner iterative

loops along with enforcements of the exact constraints.

In comparison to previous studies [184, 108, 37, 131, 107], we are interested in discussing

the convex relaxed Potts model (1.16) over its dual formulations through convex optimization

theories. We show this does provide a completely new way to elegantly analyze (1.16) and

design efficient algorithms.
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1 Introduction

1.5 Contributions

A Short Overview of Convex Optimization Approaches

We study some specified topics of computer vision and image processing, based on modern

theories of convex analysis and optimization. Some topics of this thesis can be formulated as a

smooth unconstrained convex minimization problem, e.g. the nonrigid flow estimation problem,

which can be essentially computed by the gradient descent method. The other problems of this

thesis are reduced to be a nonsmooth convex optimization problem mostly along with complex

constraints, e.g. nonsmooth flow decomposition and convex relaxed Potts model. The simple

gradient descent method does not work for these cases. Therefore, either the direct convex

programming method, like SOCP, or the duality-based method is considered. To this end,

direct convex programming provides an easy way to handle many general convex optimization

problems, e.g. the nonsmooth flow estimation and decomposition problems in this thesis. But

it suffers from its high computation load and unefficiency. In this regard, duality based methods

are employed to design cheap and fast approaches in the topics of TV-L1 image approximation,

continuous min-cuts and convex relaxed Potts model, where dual models play as the central

role.

We summarize our contributions to each topics of this thesis as follows:

Contributions to Non-rigid Flow Decomposition and Estimation

For the studies of non-rigid flow decomposition and estimation:

1. We propose a flow decomposition based approach to the high-order div-curl regularized

non-rigid flow estimation, where the variational flow estimation problem is reformulated by

the optimization over two potential fields associated to divergence and curl respectively.

Then a space-decomposition algorithm is proposed to explore two subproblems, each of

which has much less unknowns, at each iteration.

2. A mimetic finite difference method is introduced to build up accurate and reliable dis-

cretization schemes of flow decomposition and estimation. Especially, the nonsmooth

functions, e.g. the L1 norm and total-variation function, are also well defined over the

proposed discretization method. Such discretization scheme is applied in all the topics

of this thesis. Experiments show its outstanding performance in implementing fast and

stable algorithms in numerics.
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1.5 Contributions

3. We introduce and study the new nonsmooth div-curl regularizar and show its resulting

structure-texture decomposition of non-rigid flows. In addition, the novel flow estimation

joint with the proposed nonsmooth flow decomposition is also studied. We use the second-

order cone programming to compute the reduced highly nonsmooth convex minimization

problems. Experiments show the proposed nonsmooth flow decomposition is superior in

achieving high accuracy of flow estimation and keeping small-scale flow patterns.

The results of this topics were first published in [177, 181]. Their journal version versions were

published in [178, 179].

Contributions to TV-L1 Image Approximation

To the study of TV-L1 image approximation:

1. We derive new equivalent convex formulations to TV-L1 image approximation (1.7) in

terms of primal and dual, which builds up a new analytical framework and results in a

new variational perspective of (1.7).

2. By the proposed equivalent formulations, we prove that the TV-L1 formulation (1.7)

introduces an exact convex relaxed model for its non-convex model (1.11). This extends

the Chan et al’s results [42] to the more general cases with discrete gray-scales. The

same theoretical results can be naturally extended to image inpainting, which is also new.

3. In term of numerics, we propose the rounding scheme and show that the discrete-

constrained optimization problem (1.11) can be exactly discovered by solving the convex

optimization problem (1.7) which is much simpler than solving (1.11) directly. Besides

its simplicity, it also largely reduces the computational and memory cost. Comparing to

graph-cut based approaches, e.g. [51, 87], such reduction is especially significant when

the total number of gray values is large, e.g. medical images are often recorded by over

thousands of gray levels.

4. We introduce a new and efficient multiplier-based algorithm which explores the equivalent

primal-dual formualtion through two simple projection substeps, instead of tackling the

highly nonsmooth TV-L1 energy functional directly. Its reliability and efficiency can be

verified by standard optimization theories and various experiments.

In parallel to our multiplier-based method, several other dual formulations and algorithmic

schemes were proposed recently in the literature, see [59, 169, 155, 186, 147, 146]. In contrast

to [59, 169, 155, 186], we apply the proposed equivalent primal-dual and dual formulations
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as a comprehensive approach, which seamlessly associate variational convex analyses with the

proposed algorithm to (1.7), not just derive the algorithmic scheme on its own. In addition,

the primal-dual algorithm we have proposed in this study is different from [59, 169, 155, 186].

In our algorithm, the variable u is treated as the multiplier to a linear equality constraint.

A journal version of this study was published in [183] and its extended version appeared as a

technical report [182].

Contributions to Image Segmentaion

For the studies of image segmentation, we propose and study new continuous max-flow formu-

lations which is equivalent to the continuous min-cut model (1.13) in the sense of primal and

dual. This is in analogy with the graph based max-flow and min-cut. We summarize our main

contributions in this topics as follows:

1. We propose the novel continuous max-flow models, which provide a new equivalent con-

vex models of the respective continuous min-cut problem, with or without supervision

constraints, in terms of dual.

2. We revisit and give explanations of fundamental conceptions used in graph cuts, which

connect ’saturated’ / ’unsaturated’ flows with ’cuts’, through a new variational perspec-

tive. This also leads to a new variational viewpoint to understand the classical max-

flow/min-cut algorithms. With helps of the proposed continuous max-flow formulation,

we prove that the nonconvex image segmentation problems, with or without supervision

constraints, can be solved exactly and globally in a convex relaxation manner.

3. For the continuous min-cut model under supervised constraints, the proposed continuous

max-flow formulation encodes such user-input constraints implicitly and does not require

change flow capacities artificially. Meanwhile, the new supervised max-flow share the

same complexity as the unsupervised one.

4. New and fast max-flow based algorithms are proposed, which splits the optimization prob-

lem into simple subproblems over independent flow variables, where the labeling function

u(x) works as a multiplier and is simply updated at each iteration. Their global conver-

gence can be easily validated by standard convex optimization theories. Experiments show

our continuous max-flow algorithms outperforms over the previous continuous min-cut

methods, e.g. [31], in terms of efficiency and graph based methods in terms of accurarcy

and minor metrification errors.
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A shorter conference version of this study appeared in [174]. Its extended version was presented

in the technical report [176]. Another technical report [12] studied the same type of the overlap

constraint by a variant flow-maximization scheme.

Contributions to Multi-Class Image Partition

To the study of multi-class image partition, our contributions can be summarized as follows:

1. We discuss the convex relaxed Potts model under a primal-dual perspective. Two novel

dual models are proposed, both of which equally reformulate the convex relaxed problem

in terms of the dual variables only and thereby avoids the complex side constraint of

the primal labeling functions. This contrasts with previous approaches which tackle the

constrained optimization problem over the labeling function directly.

2. The first dual formulation also provides a new thresholding scheme for recovering binary

primal solutions of the convex relaxed Potts problem which are globally optimal to the

relaxed Potts model in terms of energy, along with an analytical tool to derive sufficient

conditions about when this is possible, i.e. for when the relaxation is exact. In order

to deal with non-smoothness of the resulting dual energy functional, a smoothed version

of the convex dual model is introduced. Such a smoothing scheme for the dual model

has some interesting connections to the formulations of maximum entropy clustering al-

gorithms. A new algorithm derived from the smoothed dual formulation is shown to

be more efficient than the state of art works; and it can be easily implemented. Ex-

periments demonstrate the algorithm for the smoothed model may yield better binary

approximations to the original non-convex problem with lower energy in connection with

the new thresholding scheme. Numerical results are also compared extensively with the

well-known algorithms alpha expansion and alpha-beta swap from discrete optimization,

which show that our algorithm can produce results of equal or lower energy than these

approaches.

3. The second dual model can be interpreted in terms of maximization over flows, hence

called the continuous max-flow method. Variational analysis of the proposed continuous

max-flow formulation leads to a new perspective of the corresponding ’cuts’ or convex

relaxed Potts problem. Therefore, close connections between flow and cut can be pre-

sented in a new variational way. The proposed continuous max-flow model leads to a new

multiplier-based max-flow algorithm. To this end, we propose the fast linearized imple-

mentation of the max-flow based algorithm. Its great advantages over previous works in
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numerics can be clearly presented in the following folds: it avoids pointwise projections

onto the simplex constraint within each outer loop; in comparison to the first dual model

and its related smoothed version, the continuous max-flow algorithm exactly solves the

convex relaxed Potts model without any smoothing procedure; it is globally optimized

based on an efficient and reliable multiplier-based max-flow algorithm, in contrast to the

PDE-descent method whose convergence may suffer from uncareful stepsizes resulting in

suboptimum. Experiments show a faster convergence rate, about 4 times, than previous

methods.

The study of the smoothed duality based method was accepted and will appear in [14]. Its

technical report was published in [13]. The continuous max-flow model to the convex relaxed

Potts model was published in [175].

1.6 Organization

This thesis is organized by the studied topics. Each chapter is used for the discussions of one

topics:

1. In Chapter 2, we study the problems of non-rigid flow decomposition and estimation: in

Sec. 2.1, we first review the mimetic finite-difference method over the 2-D square image

grid at Sec. 2.1.1 and introduce the classical flow decompositions and the equivalent

flow representation in their associated discretized forms at Sec. 2.1.2; the new extended

flow decompositions are presented in Sec. 2.1.4; the proposed flow decomposition based

estimation method is discussed in details at Sec. 2.2; finally, we study the new nonsmooth

flow decomposition and estimation in Sec. 2.3.

2. In Chapter 3, the TV-L1 image approximation and the associated discrete-constrained

TV-L1 image approximation are discussed: we introduce the equivalent convex models to

TV-L1 image approximation at Sec. 3.1; and show its exactness of the convex relaxation

to the discrete-constrained image approximation in Sec. 3.2; in Sec. 3.3, the new

multiplier based TV-L1 algorithm is proposed based on convex optimization theories; we

show related experiment results of TV-L1 image approximation in Sec.3.4.

3. Chapter 4 is for the study of the continuous min-cut approach to image segmentation: in

Sec. 4.1, we shortly review the classical min-cut and max-flow theory over graphs; then

we revisit previous works of continuous min-cut in Sec. 4.2; the new continuous max-flow

theory and its variational analysis are introduced in Sec. 4.3 and Sec. 4.4 to incorporate
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supervision constraints; the continuous max-flow based algorithms are proposed in Sec.

4.5; experiment results are presented in Sec. 4.6.

4. In Chapter 5, the multi-class image partition problem is explored by the convex relaxation

approach: we review the convex relaxed Potts model and related works in Sec. 5.1; then

we discuss the first dual model based approach in Sec. 5.2; we investigate the second

dual model based approach, i.e. the continuous max-flow method, in Sec. 5.3.

5. Finally, conclusions and future topics are stated in Chapter 6. Details of discretization

and some proofs are given in Chapter 7.

19



1 Introduction

20



2 Non-rigid Flow Decomposition and

Estimation

In this chapter, we discuss variational decomposition and estimation of highly non-rigid flow

fields and consider high-order div-curl regularized flow approximation problems, which are for-

mulated in the form of convex optimization. We formulate the studied high-order div-curl

regularizars as follows:

R(u) := α
( ∫

Ω
|∇ divu|2 dx+

∫

Ω
|∇ curlu|2 dx

)
(2.1a)

and

R(u) := α
( ∫

Ω
|∇ divu| dx+

∫

Ω
|∇ curlu| dx

)
. (2.1b)

Higher-order regularization is necessary in order to accurately recover important flow struc-

ture like vortices, and to incorporate key physical properties such as vanishing divergence. For

proper discretization, we apply the finite mimetic difference method, which provides a compat-

ible discretization scheme in numerics, i.e. preserves the identities fulfilled by the continuous

differential operators, and helps to set up reliable numerical computation related to high differ-

ential operators.

We start by introducing our discretization scheme, i.e. the mimetic finite difference method,

which defines scalar and vector fields on primal and dual grids together with appropriate norms.

Then we introduce the associated discrete first-order operators and show how integral identities

such as the Gauss integral identity and the Helmholtz decomposition carry over to the discrete

situation. We also define discrete TV and G norms with respect to the primal and dual grid.

Based on these definitions and results, we first deal with flow decomposition by the TV-G norm

model. To this end, we have to introduce the decomposition of a non-rigid flow field into

components with constant divergence and curl and variable components which can be further
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2 Non-rigid Flow Decomposition and Estimation

decomposed into a "structural" part and a "textural" part. In fact, these parts comprise

flow patterns at different scales. Then we consider the high-order flow estimation taskand

show its outperformance over the other flow estimation approaches in preserving coherent flow

patterns. Finally, we study the flow estimation approach joint with the decomposition model

in order to solve both tasks simultaneously. For challenging tasks of tackling the associated

convex optimization problems, both the variational method and the direct convex programming

method, e.g. second-order cone programming (SOCP), are applied.

2.1 Discrete Representations and Decompositions of

Non-rigid Flows

Now we discuss the discretization of 2-D non-rigid flow fields. As the key step in dealing with

the numerical problems encountered in this thesis, discretization should be taken in such a way

which helps to avoid information losses of the original problem and its structure. In this regard,

we introduce the compatible discretization method, which was proposed and investigated in

various publications for years and well-known to yield numerically stable, accurate and physically

consistent approximations.

We list the following statements for a short review of compatible discretization, in [25, 24, 26,

103], Bossavit et al. demonstrated connections between stable finite elements for the Maxwell’s

equations and Whitney forms. In parallel, the covolume methods have been introduced in

discrete fields of finite volume methods for a long time, see [120, 121, 122, 119]. In [85,

83, 82, 148], the support differential operators and mimetic methods combined the Stokes

theorem with variational Green’s identities were applied to derive compatible schemes in a

finite-difference way, which is called the mimetic finite difference method. Meanwhile, mimetic

discretizations were interpreted and discussed by algebraic topology, first by Hyman et al in

[84] and more recently by Mattiussi [114], Schwalm et al. [145]. We refer [22, 6, 5] for more

detailed explainations.

In the following parts of this section, we focus on and introduce the mimetic finite-difference

method to design discrete consistent integral and differential operators which follow strictly the

vector calculus and theorems in discrete settings. It follows two main advantages: first, an

overall discrete interpretation of operations and calculus is presented; second, the key functions

of differential forms and algebraic topology are revealed and accepted to build up concise

formalism which encodes the structure of problems and exposes their local and global invariants

in the discrete setting.
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2.1 Discrete Representations and Decompositions of Non-rigid Flows

2.1.1 Mimetic Finite Difference Method

Discretization

The mimetic finite difference method was first introduced by Hyman and Shashkov [148, 83,

82, 148]. Its derived defintions of integral and differential operators will be widely used in all

studies of this thesis, since the mimetic finite difference method is useful for us to keep important

properties and structures of the original continuous optimization problems after discretization.

In this work, we focus on the 2-D rectanglar image domain Ω and only consider regular grids

on Ω with unit square cells, where both the side-length h and the area of each cell h2 are 1, i.e.

h = 1. The superscript h is added to denote the discretized counterparts. For examples, Ωh

denotes the whole discretized image area with its discretized boundary ∂Ωh, and uh denotes the

discretized version of the flow field u. We mostly stick to the notations without the superscript

h for easy reading, when the definitions are clear in the context.
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(i+1/2,j+1/2)

Hs

H E

H E

Figure 2.1: Illustrations of discrete scalar fields, HV and HP , and discrete vector fields, HE and HS ,

on a 2-D rectangular grid.

By this, let the grid consist of m × n vertices which are denoted by Pi,j, i = 1, . . . , n j =

1, . . . ,m, at each discrete vertex (i, j), see the filled rounds of Fig. 2.1. For each square area

bounded by four stencils: Pi,j , Pi+1,j, Pi,j+1 and Pi+1,j+1, we call it the cell Ωi+1/2,j+1/2,

see the empty rounds of Fig. 2.1 at its lower-right corner, where (i + 1/2, j + 1/2) denotes

the coordinate of the center of each cell. Let Li,j+1/2 be the edge between vertices Pi,j and

P(i,j+1), see the empty hexagons of Fig. 2.1, where (i, j + 1/2) gives the coordinate of the

center of this edge. To simplify notations, we often index cell Ωα,β and side Lα,β directly by

the corresponding coordinates (α, β).

Based on these discrete elements, the mimetic finite-difference method define four types of

discrete 2-D fields over this discrete 2-D grid: two for scalars and two for vectors, see also the
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2 Non-rigid Flow Decomposition and Estimation

two figures at the righthand of Fig. 2.1:

HV : the space of scalar fields defined on cells: the value of the scalar field is given at

the center of each cell (see the empty circles of the first and second graphs in Fig.

2.1);

HP : the space of scalar fields defined on vertices: the value of the scalar field is given

at each vertex (see the filled circles of the first and of third graphs in Fig. 2.1);

HE: the space of vector fields defined tangential to each edge: the value of the vector

field is given at the center of each edge of the cell and parallel to its hosting edge

(see the edges of the first and third graphs in Fig. 2.1);

HS: the space of vector fields defined normal to each edge: the value of the vector field

is given at the center of each edge of the cell and normal to the hosting edge (see

the edges of the first and second graphs in Fig. 2.1).

Furthermore, we also denote with Ho
P ,H

o
S ,H

o
E the subspaces of inner scalar and inner vector

fields, obtained by restricting the spaces HP ,HS ,HE , respectively, with zero boundary values.

The subspace Ho
V defines the space of all the scalar fields whose values vanish at the extended

boundary.

Inner products and Norms

Thanks to the unit edge-length and area of each cell, i.e. |Lα,β| = 1 and |Ωα,β| = 1, the linear

spaces HP and HV are equipped with their respective inner product

〈f, g〉HV
=

∑

Ωα,β∈Ω

fα,βgα,β , 〈f, g〉HP
=
∑

Pi,j∈Ω

fi,jgi,j ,

and the corresponding L2 norms,

‖g‖2HV
= 〈g, g〉HV

=
∑

Ωα,β∈Ω

g2α,β , ‖g‖HP
= 〈g, g〉HP

=
∑

Pi,j∈Ω

g2i,j .

The inner products on HS and HE are defined as follows: Let the indices D,T,R,L refer to

the four edges around the cell Ωα,β. At each cell Ωα,β, we define u ∈ HS as

u(α,β) :=
1√
2
(uD,uT ,uR,uL)

T

α,β .
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2.1 Discrete Representations and Decompositions of Non-rigid Flows

By the mimetic finite-difference method [83, 82], the inner product of two discrete vector fields

u,v ∈ HS is given by:

〈u,v〉HS
:=

∑

Ωα,β∈Ω

〈u(α,β),v(α,β)〉 =
∑

Ωα,β∈Ω

1

2
(uDvD + uTvT + uRvR + uLvL)α,β ,

and the corresponding L2 norm of u given by: ‖u‖2HS
:= 〈u,u〉HS

.

Definitions of L1 and L∞ Norm

The L1 norm of the scalar field g ∈ HV is defined by

‖g‖L1,HV
:=

∑

Ωα,β∈Ω

|g|α,β ,

where |g|α,β is the absolute value of the scalar field g at the cell Ωα,β.

The L1 norm of a discrete vector field u ∈ HS is given as follows

‖u‖L1,HS
:=

∑

Ωα,β∈Ω

√
〈u(α,β),u(α,β)〉 =

1√
2

∑

Ωα,β∈Ω

√
(u2

D + u2
T + u2

R + u2
L)α,β . (2.2)

Observe that

1√
2

√
(u2

D + u2
T + u2

R + u2
L)α,β = max

p(α,β)

(uDpD + uTpT + uRpR + uLpL)α,β

where
1√
2

√
(p2

D + p2
T + p2

R + p2
L)α,β ≤ 1 , (2.3)

therefore the L1 norm of the vector field u ∈ HS can be expressed as

‖u‖L1,HS
= max

p∈HS

〈u,p〉HS
, ‖p‖L∞,HS

≤ 1

and the infty norm ‖p‖L∞,HS
≤ 1 is equally given by the cell-wise constraint (2.3).

The inner product, L2 norm and L1 norm of the discrete vector field u ∈ HE can also be

defined in the same manner.

Primal and Dual Differential Operators

The mimetic finite-difference method defines the first-order differential operators over primal

and dual grids [83, 82], where two versions of these operators are given in terms of primal and

25



2 Non-rigid Flow Decomposition and Estimation
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Figure 2.2: Primal Grid (normal lines) and Dual Grid (dashed lines)

dual, so as to preserve important identities of vector calculus in the discrete sense and construct

conservative numerical schemes.

In addition to the original 2-D image grid of Ω, so-called primal grid, a dual grid is given such

that it has a half-size shift to the primal grid, see Fig. 2.2. Data can be equivalently expressed

over both the primal grid and the dual one: for example, given one vector field u ∈ HS on the

primal grid, we can also take u as the vector field defined in HE over the dual grid without any

loss of information about u. With this, the support differential operators over the dual grid are

provided.

Now we draft definitions of the four first-order differential operators, div, curl, ∇ and ∇⊥,

over the 2-D square primal and dual grid, respectively, as follows.

1. Primal First-Order Differential Operators:

• Primal divergence operator divh: For ∀u ∈ HS, let the indices D,T,R,L

refer to the four edges around the cell Ωα,β, we have:

(divh u)α,β =
(
(uD − uT ) + (uR − uL)

)
α,β

; (2.4)

which gives the discrete scalar field divh u ∈ HV .

• Primal gradient operator ∇h: For ∀v ∈ HP , let Pi,j and Pk,l be the two

vertices of the edge Lα,β where k ≥ i and l ≥ j, we have:

(∇hv)Lα,β
= vk,l − vi,j , (2.5)

and along the edge direction, which gives the discrete vector field ∇hv ∈ HE.
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2.1 Discrete Representations and Decompositions of Non-rigid Flows

• Primal curl operator curlh: For ∀u ∈ HE, let the indices D,T,R,L refer to

the four edges around the cell Ωα,β, we have:

(curlh u)α,β =
(
(uT − uD) + (uR − uL)

)
α,β

; (2.6)

which gives the discrete scalar field curlh u ∈ HV .

• Primal operator ∇⊥,h: For ∀v ∈ HP , let Pi,j and Pi,j+1 be the two vertices

of the horizontal edge Lα,β, we have

(∇⊥,hv)Lα,β
= vi,j+1 − vi,j , (2.7)

which is perpenticular to the edge direction; and let Pi,j and Pi+1,j be the two

vertices of the vertical edge Lα,β, we have

(∇⊥,hv)Lα,β
= vi,j − vi+1,j , (2.8)

which is perpenticular to the edge direction; thus the discrete vector field ∇⊥,hv ∈
HS .

2. Dual First-Order Differential Operators:

• Dual divergence operator divh: For ∀u ∈ HE, we regard u equally as the dual

vector field (u := u) ∈ HS on the dual grid, we have:

(divhu)i,j := divh uα,β =
(
(uD − uT ) + (uR − uL)

)
α,β

; (2.9)

where the indices D,T,R,L refer to the four edges around the cell Ωα,β of the dual

grid, which gives the discrete scalar field divhu ∈ HP .

• Dual gradient operator ∇h: For ∀v ∈ HV , we regard v equally as the dual

scalar field (v := v) ∈ HP , we have:

(∇hv)Lα,β
:= ∇hvLα,β

= vk,l − vi,j , (2.10)

where Pi,j and Pk,l be the two vertices of the edge Lα,β where k ≥ i and l ≥ j,

and the vector element (∇hv)Lα,β
along the edge direction of its dual grid. This

gives the discrete vector field ∇hv ∈ HS.

• Dual curl operator curlh: For ∀u ∈ HS, we regard u equally as the dual vector

field (u := u) ∈ HE on the dual grid, we have:

(curlhu)i,j := curlh uα,β =
(
(uT − uD) + (uR − uL)

)
α,β

; (2.11)

where the indices D,T,R,L refer to the four edges around the cell Ωα,β along its

dual grid, which gives the discrete scalar field curlhu ∈ HP .
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2 Non-rigid Flow Decomposition and Estimation

• Dual operator ∇⊥,h: For ∀v ∈ HV , we regard v equally as the dual scalar field

(v := v) ∈ HP on the dual grid, we have:

(∇⊥,hv)Lα,β
:= (∇⊥,hv)Lα,β

= vi,j+1 − vi,j , (2.12)

where Pi,j and Pi,j+1 be the two vertices of the horizontal edge Lα,β along its dual

grid, and the vector element (∇⊥,hv)Lα,β
is perpenticular to the edge direction;

(∇⊥,hv)Lα,β
:= (∇⊥,hv)Lα,β

= vi,j − vi+1,j , (2.13)

where Pi,j and Pi,j+1 be the two vertices of the vertical edge Lα,β along its dual

grid, and the vector element (∇⊥,hv)Lα,β
is perpenticular to the edge direction;

thus the discrete vector field ∇⊥,hv ∈ HE.

Finally, for the discretization of the boundary condition n · u|∂Ω, we introduce the boundary

operator

B
h
n : HS → ∂HS := HS\Ho

S .

It restricts the vector field to the vectors at the grid’s boundary which are directed outside the

boundary. Thus for any vector field u ∈ HS, the operator Bhn is just

B
h
nu :=

{
uL̃α,β

at ∂Ω

0 otherwise
,

where L̃α,β are edges locating at the grid’s boundary ∂Ω.

Properties of Mimetic Finite Difference Method

It has been shown [83] that using the operators defined above, elementary properties of con-

tinuous fields in terms of div, curl, ∇ and ∇⊥ carry over to the discrete case.

For example, if the curl of a vector field u is zero, curlh u ≡ 0, then the vector field can be

expressed as the gradient of a scalar field v, u = ∇hv; or, if the divergence of a vector field

u is a zero, divh u ≡ 0, then it should be the curl of another vector field, i.e. in 2-D case

u = ∇⊥,hv (only consider the 2D case in this thesis).

Or the other way round, the curl of the gradient of a scalar field v is always zero, i.e.

curlh∇hv ≡ 0; the divergence of the perpenticular gradient of a scalar field v is also zero,

i.e. divh∇⊥,hv ≡ 0.
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2.1 Discrete Representations and Decompositions of Non-rigid Flows

Moreover, Green’s theorem
∫

Ω
g · divu dx+

∫

Ω
∇g · u dx =

∫

∂Ω
gunds (2.14)

is still kept in discrete setting such that
〈
g,divh u

〉
HV

+
〈
∇hg,u

〉
HS

=
∑

Lα,β∈∂Ω

(gα,β un)α,β , (2.15)

for the discrete vector field u ∈ HS and the discrete scalar field g ∈ HV .

Similarly, Gauss theorem
∫

Ω
divu dx =

∫

∂Ω
unds (2.16)

can be equally rewitten in the discrete case such that
∑

Ωα,β∈Ω

divh u =
∑

Lα,β∈∂Ω

(un)α,β . (2.17)

Using the definitions above, we rewrite this equation more concisely as

1T

dimHV
divh u = 1T

dim∂HS
B
h
nu , (2.18)

when we formulate all discrete scalar and vector fields by one-dimensional vetcors, 1n denotes

the one-vector with n elements and dimH gives the dimension of the linear space H.

Most importantly as shown in (2.15) above, the additional dual operators resolve the incom-

patibilities of domains and ranges of the primal operators, for example, ∇h and divh cannot

be regarded as mutually adjoint operators, whereas ∇h, divh and ∇h, divh do. Thus they are

used to build compound second order differential operators in a more strict sense. For instance,

given a scalar field v ∈ HV , its gradient field ∇hv is provided in HS as above definitions of

dual operators, then it is easy to find that the vector field ∇hv is curl-free, i.e. curlh∇hv = 0,

and its divergence builds up the second-order differential operator, e.g. the Laplacian operator

△D = divh∇h .

2.1.2 Discrete Classical Decompositions

Discrete Orthogonal Decomposition

By means of the defined mimetic finite difference notations in the previous section, we consider

the discrete orthogonal decomposition which corresponds to the classical Helmholtz decompo-

sition [67], i.e. any 2-D vector field u(x) ∈ (L2(Ω))
2 given on a bounded, simply-connected
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2 Non-rigid Flow Decomposition and Estimation

Lipschitz 2-D domain Ω can be uniquely represented by the sum of two orthogonal flow fields

such that

u = ∇ψ +∇⊥φ (2.19)

where ∂nψ = u · n|∂Ω and φ∂Ω = 0. ∇ψ and ∇⊥φ are the curl-free and div-free flow fields

respectively. Similarly, we give the discrete orthogonal decomposition of the given discrete

field u ∈ HS over a 2-D rectangle grid, in terms of div-free and curl-free components, by the

following proposition which was proposed and proved by Hyman and Shashkov [86]:

Theorem 1 (Discrete Orthogonal Decomposition). For any 2D vector field u ∈ HS, it can

represented in terms of ψ ∈ HV+∂V and φ ∈ HP :

u = ∇hψ +∇⊥,hφ, where B
h
nu = B

h
n∇hψ , φ∂Ω = 0 . (2.20)

The decomposition (2.20) is unique up to a constant of ψ and orthogonal such that

〈
∇hψ,∇⊥,hφ

〉
HS

= 0 , ∀u ∈ HS (2.21)

We can directly compute the two discrete potential fields ψ and φ by solving the following linear

equations with the respective Neumann and Dirichlet boundary conditions:

△Dψ = divh u , B
h
n∇hψ = B

h
nu , (2.22)

△Cφ = curlhu , φ∂Ω = 0 , (2.23)

where the discrete Laplacians are defined by

△D := divh∇h , △C := curlh∇⊥,h , (2.24)

and the additional constraint 1T

dimHV
ψ = 0 (continuous case:

∫
Ω ψdv = 0) is used to eliminate

the arbitrary constant in (2.20) and (2.22).

The orthogonality between the two discrete components ∇hψ and ∇⊥,hφ at the righthand

of (2.20) comes naturally from the primal and dual operators of the mimetic finite difference

scheme [83, 82]:

divh∇⊥,h ≡ 0 , curlh∇h ≡ 0 .

Therefore, we have 〈
∇hψ,∇⊥,hφ

〉

HS

=
〈
curlh∇hψ, φ

〉

HP

≡ 0 . (2.25)
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Defining two finite-dimentional subspaces corresponding to discrete curl-free and div-free vector

fields respectively:

Sir :=
{
u ∈ HS |u = ∇hψ

}
, (2.26)

Ssol :=
{
u ∈ HS |u = ∇⊥,hφ, φ∂Ω = 0

}
, (2.27)

Theorem 1 simply asserts:

Theorem 2. For the discrete function space HS, the direct sum holds:

HS = Sir ⊕ Ssol . (2.28)

In summary, Theorem 1 provides an exact orthogonal decomposition of the finite-dimensional

space of vector fields u ∈ HS. Furthermore, as detailed below, the decomposition allows

to estimate the two potentials ψ ∈ HV+∂V and φ ∈ HP , which amount to curl-free and

div-free vector fields respectively, from a image sequence in a direct way. Using variational

optical flow approaches, the estimation can be done in parallel by applying subspace correction

methods. Alternatively, we may first estimate the motion field u, and then compute ψ and φ

in a subsequent step by solving the Neumann and Dirichlet problems (2.22) and (2.23).

Discrete Hodge Decomposition

Given the discrete vector field u ∈ HS , its discrete Hodge decomposition can be expressed as

the following proposition, which corresponds to the classical Hodge decomposition1.

Theorem 3 (Discrete Hodge Decomposition). On the 2-D rectangular grid, any discrete vector

field u ∈ HS can be represented by

u = ∇hψ +∇⊥,hφ+ h, where ψ∂Ω = 0 , φ∂Ω = 0 , (2.30)

and h ∈ HS is harmonic such that divh h = 0 and curlhh = 0.

Moreover, the three elements given at the right side of (2.30) are orthogonal to each other:
〈
h,∇hψ

〉
HS

=< h,∇⊥,hφ >HS
=< ∇hψ,∇⊥,hφ >HS

= 0 . (2.31)

1On a bounded, simply-connected and Lipschitz 2-D domain Ω, any vector field u ∈ (L2(Ω))
2, whose

divergence and curl exist and are integrable, can be represented in terms of two potential fields ψ, φ

together with one harmonic vector field h, i.e. divh = 0 and curlh = 0, such that

u = ∇ψ +∇
⊥
φ+ h, ψ∂Ω = 0 , φ∂Ω = 0 . (2.29)

In addition, the three components given at the rightside of (2.29) are orthogonal to each other.
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2 Non-rigid Flow Decomposition and Estimation

We can simply derive the discrete Hodge decomposition of u ∈ HS from its orthogonal decom-

position:

u = ∇hψ̃ +∇⊥,hφ, where B
h
nu = B

h
n∇hψ̃ , φ∂Ω = 0 . (2.32)

Then we seperate the flow component ∇hψ̃ into two parts:

∇hψ̃ = ∇hψ + h

through the following two linear equations:

△Dψ = △Dψ̃ (:= divh u) ; ψ∂Ω = 0

and

divh h = 0 , curlhh = 0 ; B
h
nh = B

h
n∇h(ψ̃ − ψ)

where △D is the discrete Laplacian operator given by the compound second-order differential

operator divh∇h. The solvablities of the above linear equations can be varified by means of

consistences of matrices.

Let

Sir,0 :=
{
u ∈ HS |u = ∇hψ, ψ∂Ω = 0

}
, (2.33)

Ssol :=
{
u ∈ HS |u = ∇⊥,hφ, φ∂Ω = 0

}
, (2.34)

Shm :=
{
u ∈ HS | divh u = 0, curlhu = 0

}
, (2.35)

be the subspaces of discrete vector fields which are div-free, curl-free and harmonic respectively.

Likewise, discrete Hodge decomposition proposed in theorem 3 also leads to the seperation of

the finite-dimensional function space HS :

Theorem 4. For the finite-dimensional function space HS of discrete vector fields, the direct

sum holds:

HS = Sir,0 ⊕ Ssol ⊕ Shm . (2.36)

2.1.3 Equivalent Flow Representations

Now we consider the equivalent representations of the vector field u ∈ HS with the notations

of mimetic finite-difference introduced above.

Consider Gauss’ theorem (2.17) and (2.18) for any vector field u ∈ HS. We say that ρ ∈ HV

and ν ∈ ∂HS fulfill the compatibility condition if

〈1dimHV
, ρ〉HV

= 1T

dim∂HS
ν , (2.37)
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2.1 Discrete Representations and Decompositions of Non-rigid Flows

where 1n is a n−dimensional vector whose elements are all 1 and dimH gives the dimension

of the finite-dimentional space H.

In what follows, we will make use of another equivalent representation, besides u ∈ HS . To

this end, we consider the operetor A : HS → HV ⊕Ho
P ⊕ ∂HS given by

A :=




divh

curlh

B
h
n


 ∈ R

dimHS+1,dimHS , (2.38)

where the curlh operator is naturally extended to the whole space HS. The operator A has full

rank dimHS . Moreover, we see by (2.18) that (ρ, ω, ν)T is in the image of A if and only if ρ and

ν fulfill the compatibility condition (2.37). In this case, the representation of u ∈ HS in terms

of (ρ, ω, ν)T is given by u = A†(ρ, ω, ν)T, where A† = (ATA)−1AT denotes the pseudoinverse

of A.

Proposition 5. There is a one–to–one correspondence between the spaces HS and

VS := {(ρ, ω, ν)T : 1T

dimHV
ρ = 1T

dim∂HS
ν} , (2.39)

where u ∈ HS , ρ = divh u, ω = curlhu, ν = B
h
nu, and

u = A†(ρ, ω, ν)T (2.40)

Remark. In practice, we do not compute u = A†(ρ, ω, ν)T which is ill-conditioned. Rather,

we solve both the Neumann problem (2.22) and the Dirichlet problem (2.23), and insert the

solutions into (2.20).

By means of the equivalent representation (2.39) of u ∈ HS, we can write the discrete orthog-

onal decomposition (2.20) and Hodge decomposition (2.30) in a simplified manner:

(
(u ∈ HS) := (ρ, ω, ν)T

)
= (ρ, 0, ν)T ⊕ (0, ω, 0)T

for the discrete orthogonal decomposition, where (ρ, 0, ν)T represents the curl-free vector field

(the vanishing curl element), (0, ω, 0)T represents the div-free vector fieled (the vanishing curl

element) and the operator ⊕ represents the orthogonality of the two flow elements; and

(
(u ∈ HS) := (ρ, ω, ν)T

)
= (ρ, 0, ν1)

T ⊕ (0, ω, 0)T ⊕ (0, 0, ν2)
T

for discrete Hodge decomposition, where ν = ν1 + ν2 and (0, 0, ν2)
T gives a harmonic vector

field.
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2 Non-rigid Flow Decomposition and Estimation

2.1.4 Discrete Extended Decomposition

Let Cρ and Cω denote the constants proportional to the mean of the divergence and the curl

of u ∈ HS , that is

Cρ = 1T

dimHV
ρ/(mn) , Cω = 1T

dimHo
P
ω/
(
(m− 1) (n − 1)

)
(2.41)

where m and n are the horizontal and vertical dimensions of the image grid.

Using these averaged quantities, we can further decompose the flow u ∈ HS, represented by

(ρ, ω, ν)T ∈ VS such that

(ρ, ω, ν)T = (Cρ, Cω, ν)
T + (ρo, 0, 0)T ⊕ (0, ωo, 0)T (2.42)

where 1T

dimHV
ρo = 0 and 1T

dimHo
P
ωo = 0 are compatible to the boundary conditions in the

sense of (2.39).

Accordingly, we define the components uc = A†(Cρ, Cω, ν)
T, uod = A†(ρo, 0, 0)T and uoc =

A†(0, ωo, 0)T, and have the following flow decomposition with respect to (2.42):

(u ∈ HS) = uc + uod ⊕ uoc .

Vector uc or (Cρ, Cω, ν)
T represents the basic pattern of the non-rigid flow u ∈ HS and its

boundary distribution, while uod and uoc , (ρo, 0, 0)T and (0, ωo, 0)T equivalently, are related

to the oscillating flow patterns that are curl-free and divergence-free, respectively. Due to

nonvanishing spatial averages of Cρ and Cω, the component uc determines the global structure

of the flow field, justifying the term basic flow pattern. It is easy to verify that orthogonality

between the components uod and uoc is preserved such that

〈uod,uoc〉HS
= 0 ,

while the basic flow pattern uc and uod, u
o
c are not orthogonal.

We summarize these properties, thereby extending the discrete orthogonal decomposition The-

orem (1)

Proposition 6 (Discrete Extended Decomposition). Given any 2-D vector field u ∈ HS and

B
h
nu 6= 0, the decomposition (2.42) of u admits the representation in terms of potential

functions ψc, φc, ψo and φo

u = (∇hψc +∇⊥,hφc) +∇hψo +∇⊥,hφo , (2.43)
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2.1 Discrete Representations and Decompositions of Non-rigid Flows

subject to the boundary conditions:

B
h
n∇hψc = B

h
nu , B

h
n∇hψo = 0 , φc∂Ω = φo∂Ω = 0

where △Dψ
c and △Cφ

c are constants. The discrete flow fields ∇hψo and ∇⊥,hφo are in HS

whose diveregence and curl fields are mean-value vanishing respectively.

This representation is unique up to two constants of ψc and ψo, respectively. Moreover, the

orthogonality relation 〈
∇hψo,∇⊥,hφo

〉

HS

= 0 (2.44)

holds.

While the components of the decomposition (2.42) and (2.43) are easy to interpret, a single

orthogonality relation (2.44) only holds. To improve the latter situation, we consider the

alternative decomposition

(ρ, ω, ν)T = (Cρ, 0, ν)
T + (ρo, 0, 0)T + (0, ω(:= Cω + ωo), 0)T . (2.45)

Let ucd = A†(Cρ, 0, ν)
T, uod = A†(ρo, 0, 0)T and uc = A†(0, ω, 0)T. Then the vector field

u ∈ HS can be given by u = ucd + uod + uc. As will be shown below, this decomposition

provides the basis for representing any vector field in HS, under additional conditions to be

specified, by three mutually orthogonal components. We first summarize the properties of

(2.45):

Proposition 7. Given any 2-D vector field u ∈ HS and B
h
nu 6= 0, the decomposition (2.45) of

u admits the representation in terms of potential functions ψc, ψo and φ

u = ∇hψc +∇hψo +∇⊥,hφ , (2.46)

subject to the boundary conditions:

B
h
n∇hψc = B

h
nu , B

h
n∇hψo = 0 , φ∂Ω = 0

where △Dψ
c is constant.

This representation is unique up to two constants of ψc and ψo, respectively. Moreover, the

orthogonality conditions

〈
∇hψc,∇⊥,hφ

〉
HS

= 0 ,
〈
∇hψo,∇⊥,hφ

〉
HS

= 0 (2.47)

holds.
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2 Non-rigid Flow Decomposition and Estimation

It remains to work out conditions under which the flow components ∇hψc and ∇hψo are

orthogonal, too. By Green’s theorem (2.15), we have
〈
∇hψc,∇hψo

〉
HS

= −〈ψo,△Dψ
c〉HV

+ 〈ψo, ν〉∂Ω .

Taking into account the compatibility condition such that 1T

dimHV
△Dψ

c = 1T

dim∂HS
ν , we

observe that the right hand side is invariant with respect to an arbitrary additive constant C of

ψo:

− 〈ψo + C,△Dψ
c〉HV

+ 〈ψo + C, ν〉∂Ω
=− 〈ψo,△Dψ

c〉HV
+ 〈ψo, ν〉∂Ω + C(−1T

dimHV
△Dψ

c + 1T

dim∂HS
ν)

=− 〈ψo,△Dψ
c〉HV

+ 〈ψo, ν〉∂Ω .

Hence, fixing this constant by setting 〈ψo, ν〉∂Ω = 0, we obtain

−〈ψo,△Dψ
c〉HV

+ 〈ψo, ν〉∂Ω = −Cρ
(
1T

dimHV
ψo
)
,

given that △Dψ
c = Cρ is constant. It follows that

〈
∇hψc,∇hψo

〉
HS

= 0 if Cρ = 0, which

means that the total divergence of flow u is zero and that the flow entering and leaving the

domain Ω is balanced.

The above procedures can be summarized as

Proposition 8. Given any 2-D vector field u ∈ HS with B
h
nu 6= 0 and that the balanced

boundary flow condition

1T

dim∂HS
B
h
nu = 0

holds. Then u ∈ HS can be represented in terms of potential functions ψc, ψo and φ

u = ∇hψc +∇hψo +∇⊥,hφ , (2.48)

subject to the boundary conditions:

B
h
n∇hψc = B

h
nu , B

h
n∇hψo = 0 , φ∂Ω = 0

where △Dψ
c ≡ 0.

This representation is unique up to two constants of ψc and ψo, respectively. Moreover, all the

three flow components ∇hψc, ∇hψo and ∇⊥,hφ are mutually orthogonal to each other.

Note that the flow part ∇hψc turns out to be a harmonic flow, since it is both divergence and

curl free.

Now we define further subspaces in addition to (2.26) and (2.27):
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2.2 Non-rigid Flow Estimation

• HS,ō ⊂ HS: the subspace of vector fields with 1T

dim∂HS
B
h
nu = 0;

• Sir,o ⊂ Sir: the subspace of irrotational vector fields with zero boundary flow;

• Sir,C ⊂ Sir: the subspace of irrotational vector fields with constant divergence;

• Ssol,C ⊂ Ssol: the subspace of div-free vector fields with constant curl;

• Sdiv,0: the subspace of vector fields with vanishing divergence.

Based on these definitions, we summarize consequences of Prop. 7 - 8:

Corollary 9. The linear space HS of 2D vector fields admits the following decompositions:

HS = (Sir,C + Sir,o)⊕ Ssol ; (2.49)

HS,ō = Sdiv,0 ⊕ Sir,o ⊕ Ssol . (2.50)

2.2 Non-rigid Flow Estimation

In this part, we consider the variational method to non-rigid flow estimation through two

sequential images. Such technique has been extensively investigated after the pioneering work

of Horn and Schunck [80]. For the applied flow regularizars, we especially focus on the high-

order div-curl penalty term (2.1a).

2.2.1 Introduction

Given the image sequence {g(x, y, t) : t ∈ [0, T ]} with a time parameter t, a common assump-

tion is that intensities of the images given at two sequential time spots t1 and t2, t2 > t1 are

preserved over time:

g1(x+ u1, y + u2) = g2(x, y) , (2.51)

where gi(x, y) = g(x, y, ti), i = 1, 2, and the displacement or flow field u(x, y) = (u1(x, y), u2(x, y))
⊤

denotes the instantaneous displacements of image elements during time t2 − t1.

Then the linearized version of (2.51), by the firs-order expansion of g1(x+u1, y+u2) for small

enough displacements of u1(x, y) and u2(x, y), yields the brightness-contant constraint

g2(x, y)− g1(x+ u1, y + u2) ≃ (gt := g2 − g1)−∇g1 · u = 0 . (2.52)
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2 Non-rigid Flow Decomposition and Estimation

Instead of (2.52), variational optical-flow methods consider the least squares function ‖gt−∇g ·
u‖2 to force the linear equality (2.52) approximately. Other generalizations of the brightness-

constant constraint (2.52) exist, such as the local Lucas-Kanade estimator [32, 33] or L1

penalization term to (2.52), but are out of scope of studies in this thesis.

Obviously, (2.52) can not be uniquely approached because at each location x ∈ Ω and time t

it consists of solving a single scalar equation for two scalar unknowns and leads to an underde-

termined linear equation. This is known as the aperture problem. To overcome it, additional

requirements have to be imposed. Hence, the variational optical-flow method applies a priori

information about the flow field u as the regularization term to construct a theoretically well-

posed energy minimization problem, mostly convex, and single out the unique optimal vector

field u∗, which results in the following flow estimation:

min
u

‖gt −∇g · u‖2 +R(u) . (2.53)

In 1981, Horn and Schunck [80] first introduced such variational formulation (2.53) for the

optical-flow estimation joint with a quadratic flow smoothness term, i.e. the Horn–Schunck

model

min
u

‖gt −∇g · u‖2 + α

∫

Ω

(
|∇u1|2 + |∇u2|2

)
dx . (2.54)

Obviously, the Horn–Schunck model suffers from the same drawbacks as the linear image

filtering. The solution of (2.54) often creates very blurry optic flow fields where the blur

appears also across important flow discontinuities or boundaries. One way to overcome this

limitation consists again of using other nonsmooth function as the regularizer, e.g.,

min
u

‖gt −∇g · u‖2 + α

∫

Ω
(|∇u1|2 + |∇u2|2)

1
2 dx , (2.55)

as counterpart to the total-variation image denoising, cf. [7, 74, 77].

In this thesis, we focus on the estimation of non-rigid motion fields with complex spatial scales,

which poses great challenges for analysis and estimation. Directly using derivatives of coor-

dinates u1 and u2 in the regularizer like (2.54) and (2.55) often yields oversmoothness and

distortion of flow patterns in its computation result, where the nonsmooth total-variation like

regularizar used in (2.55) makes results even more worse. Rather, the high-order div-curl reg-

ularizar (2.1a) which employs the smoothness of variances of divergence and curl was found

to be significantly successful for the recovery of non-rigid vector fields (see Fig. 2.3 for the

motivation). The regularization function (2.1a) was first introduced in vector interpolation by

splines [3]. After that, it was applied for optical flow estimation by Suter [152], then Gupta et
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al [75] for cadiac motions. In [48, 49], Memin et al explicitly applied it to build up a multi-scale

estimation scheme of fluid flows. In this work, we study the non-rigid flow estimation approach

based on flow decomposition (2.20) discussed in the previous section. Introduce the orthogonal

flow decomposition (2.19) of u, i.e. u = ∇ψ + ∇⊥φ, to the high-order div-curl regularizar

(2.1a) and apply it to (2.53), we, therefore, obtain the following energy minimization model:

min
ψ,φ
‖gt −∇g · (∇ψ +∇⊥φ)‖2 + α

∫

Ω

(
|∇△ψ|2 dx+ |∇△φ|2

)
dx (2.56)

A direct advantage for (2.56) in numerics is that it replaces the original estimation of the vector

field u by the approximation of two potential functions ψ and φ, each of which poses a much

smaller estimation problem (nearly half of the original problem in terms of dimensions). At the

same time, flow decompositions also provide a new and deep perspective to analyze non-rigid

flow estimation problem in theory. In addition, (2.56) can be extended to estimate physically

incompressible flows in a straight way such that

min
φ
‖gt −∇g · ∇⊥φ‖2 + |∇△φ|2

)
dx . (2.57)

(2.57) greatly simplifies estimation of such non-rigid flows incorporating the div-free constraint:

it properly avoid forcing the div-free constraint and gives the flow field exactly in the solenoidal

subspace; moreover, the unknown variables of (2.57) are clearly only half of direct estimation

of unknown u!

2.2.2 Flow Decomposition Based Non-rigid Flow Estimation

Now we consider the high-order div-curl regularizar (2.1a). By the orthogonal decomposition

(2.19), it gives

α

∫

Ω

(
|∇ divu|2 dx+ |∇ curlu|2

)
dx = α

∫

Ω

(
|∇△ψ|2 dx+ |∇△φ|2

)
dx . (2.58)

In view of the extended flow decomposition (Prop. 6), (2.1a) measures the variation of flow pat-

terns in terms of variances of divergence and curl, but does not penalize the basic components

(Cρ, Cω, ν)
T.

As discussed in sec.2.1.1, both standard finite differences or finite elements discretization lead

to finite-dimensional representations which do not satisfy (2.20) and (2.21) exactly. As a

result, penalizing one component may affect the other component too. Therefore, we adopt

the mimetic finite-difference framework of sec.2.1.2 which leads to the following discretization
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2 Non-rigid Flow Decomposition and Estimation

Figure 2.3: Estimation of a typical solenoidal flow field u. Top: Restored flow based on the Horn–

Schunck model (2.54). Bottom: Restored flow based on the second-order model (2.56).

Vortex structures are better recovered by the div-curl approach (bottom) introduced in this

section.
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of (2.58):

α

∫

Ω

(
|∇△ψ|2 dx+ |∇△φ|2

)
dx =α

( ∥∥∥∇h divh u
∥∥∥
2

HS

+
∥∥∥∇hcurlhu

∥∥∥
2

HE

)
(2.59)

=α
( ∥∥∥∇h△Dψ

∥∥∥
2

HS

+ λ2

∥∥∥∇h△Cφ
∥∥∥
2

HE

)
. (2.60)

Therefore, for the non-rigid flow estimation (2.56), inserting (2.60) boils down to the following

optimization problem

min
ψ,φ

‖gt −∇hg · (∇hψ +∇⊥,hφ)‖2HV
+ α

(
‖∇h△Dψ‖2HS

+ ‖∇h△Cφ‖2HE

)
(2.61)

subject to the linear constraints

1T

dimHV +∂V
ψ = 0 , φ∂Ω = 0 . (2.62)

Note that the first constraint fixes the free constant mentioned in the Orthogonal Decomposition

Theorem 1. Furthermore, the vector fields in (2.61) are elements in two orthogonal subspaces

(2.28), and thus may be determined parallelly by subspace correction methods [170, 44, 157,

154] in a fast way.

Estimation of Incompressible Flows

An important special case, particularly in applications of experimental fluid dynamics, concerns

the estimation of incompressible flows, i.e. div-free. In this case, the decomposition represented

by (2.48) reduces to :

u = ∇hψc +∇⊥,hφ (2.63)

where ∇hψc gives the harmonic component which only depends on the boundary flow B
h
nu:

△Dψ
c = 0 , B

h
n∇hψc = B

h
nu. (2.64)

Thus, in order to estimate solenoidal flows, we consider, instead of (2.61), the minimization

problem:

min
ψc,φ

Fsol(ψ
c, φ) =

∥∥∥gt −∇hg · (∇hψc +∇⊥,hφ)
∥∥∥
2

HV

+ α
∥∥∥∇h△Cφ

∥∥∥
2

HE

(2.65)

subject to the constraints:

△Dψ
c = 0 , 1T

dimHV +∂V
ψc = 0 , φ∂Ω = 0 (2.66)

Note that the vector fields of (2.65) are elements of orthogonal subspaces of harmonic and

solenoidal, and thus may be determined in parallel by subspace correction methods.
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2.2.3 Well-Posedness and Stability

In this section, we analyse well-posedness of the variational problem (2.61). To this end, we

state the conditions under which the respective functionals are strictly convex to the variable

u ∈ HS .

In order to compactly state the various conditions for well-posedness, we complement the list

of subspaces defined at the end of section 2.1.4. To this end, we denote the linear operator

G := (∇hg · ) and use the notation N(A) for the null-space of a linear operator A:

• Sir,C ∩ Ssol,C gives subspace of HS with both constant div and curl, which gives

SC,div ∩ SC,curl = N(∇h divh) ∩ N(∇hcurlh);

• SG0 ⊂ HS: the subspace of vector fields

SG0 = {u | Gu = 0}.

Well-Posedness of General Flows

In terms of u ∈ HS, the variational approach (2.61) for estimating general non-rigid flows

amounts to the unconstrained convex minimization problem:

min
u∈HS

‖∂tg −Gu‖2HV
+ α

( ∥∥∥∇h divh u
∥∥∥
2

HS

+
∥∥∥∇hcurlhu

∥∥∥
2

HE

)
. (2.67)

As a consequence, the following is immediate:

Proposition 10. Problem (2.61) is well-posed, i.e. strictly convex, if and only if

SG0 ∩ (Sir,C ∩ Ssol,C) = {0}

As the subspace Sir,C ∩ Ssol,C is fixed with the problem dimension, this condition mostly

requires a sufficiently high spatial variation of the grayvalue images g to obtain well-posedness.

A counter-example is given by any image g with △Cg = curlh∇h⊥g = C, because for the

vector field ∇h⊥g ∈ HE the product with ∇hg · ∇h⊥g ≡ 0 vanishes at each grid cell.

Well-Posedness on Solenoidal Flows

The variational approach (2.65) for estimating divergence-free flows amounts to a convex

quadratic minimization problem with linear equality constraints. Expressing the restriction
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uSsol through the constraint divh u = 0, we reformulate (2.65):

min
u∈HS

‖∂tg −Gu‖2HV
+ α

∥∥∥∇hcurlhu
∥∥∥
2

HE

(2.68)

s.t. divh u = 0

As a consequence, its condition for well-posedness reads:

Proposition 11. Problems (2.65) and (2.68) are well-posed if and only if

SG0 ∩ Ssol = {0} .

Stabilities

It is well-known that existence of a unique solution, as established in the previous section,

does not say much about numerical stability. Indeed, inspection of the second-order regularizer

(2.58) reveals a particular sensivity of u with respect to the image data and suggests using a

corresponding regularizer.

To motivate this additional term, we rewrite the estimation functional using the representation

(ρ, ω, un)
T (cf. Prop. 5):

min
ρ,ω,un

∥∥∥∂tg −GA†(ρ, ω, un)
T

∥∥∥
2
+ α(‖∇ρ‖2 + ‖∇ω‖2) . (2.69)

We consider the extended decomposition due to Prop. 6 and (2.43). Considering (2.42), the

variance of divergence and curl field related to the two components (ρo, 0, 0)T and (0, ωo, 0)T

can be penalized and constrained by the respective regularizer terms of (2.1a). However, for

the last part (Cρ, Cω, ν)
T which has constant divergence and curl, both regularization terms

are not effective. This part strongly depends on the normal flow at the boundary ν. In fact,

the flow (Cρ, Cω, ν)
T is only weakly constrained by the data term, that is the gradient field of

image data g at the boundary whose estimate is particularly noisy and unreliable.

Therefore, in practice, it turns out to be useful to reduce this sensivity of u by including an

additional regularizer which constrains the boundary values such that
∫

∂Ω
(∂nu)

2 dl (2.70)

Obviously, this constraint term favors continuity of vector field u(x) between the boundary ∂Ω

and the interior Ω̊. By virtue of the orthogonal decomposition, (2.70) can be directly expressed

in terms of the potential field ψ ∫

∂Ω
|∂n(∇ψ)|2 dl . (2.71)
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Therefore, its discrete version reads ∥∥∥P ∇hψ
∥∥∥
2

bc
(2.72)

where the respective matrix P represents the operator ∂n in (2.71), and ‖·‖bc is the norm

evaluating elements along the boundary ∂Ω.

2.2.4 Space Decomposition Algorithms and Multi-level Implementation

So as to solve the flow estimation problem (2.61), we apply the method of function space

decomposition to restore the two potential fields φ(x) and ψ(x) directly. Space decomposition

provides a nice framework for analysing domain decomposition and multigrid methods [170,

171]. The essence is to decompose the solution space into a sum of subspaces and then solve

the original optimization problem sequentially or in parallel in each subspace. Extensions to the

common convex optimization problems were presented in [156, 157], and convergence rates are

analyzed in [44, 154].

We describe the space decomposition method and its application to our approach in sections

2.2.4 and 2.2.4. Subsequently, we detail in sections 2.2.4 a multi-level representation of flow

fields adapted to the orthogonal decomposition.

Iterative Subspace Corrections

Suppose that for a general convex optimization problem

min
u∈V

F (u) , (2.73)

the solution function space V can be decomposed into a sum of subspaces

V = V1 + V2 + . . .+ Vm , (2.74)

not necessarily orthogonal to each other. For any u ∈ V , there exist ui ∈ Vi, such that

u =
∑m

i=1 ui. Conversely, if ui ∈ Vi, then
∑m

i=1 ui ∈ V . Note that in general the sum is not

the direct sum, and the decomposition of u is also not unique.

There are two versions of iterative algorithms, the Parallel Subspace Corrections (PSC) and the

Successive Subspace Corrections (SSC). In each step, PSC and SSC compute the next iterate

in V through searching each subspaces Vi, i = 1, . . . ,m, in parallel or sequentially, respectively.

We see that either PSC or SSC is an algorithm also called alternating direction method. With

suitable assumptions about the objective function F (u) and the decomposition scheme of the

function space V , both PSC and SSC converge.
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In this thesis, we focus on SSC which often converges faster than PSC in practice and state it

in Alg. 1

Algorithm 1 Successive Subspace Corrections

• Step 1. Choose u0
i ∈ Vi.

• Step 2. For the n-th iteration, compute ûn+1
i ∈ Vi sequentially for i = 1, . . . ,m, by

minimization:

F
( ∑

1≤k<i

un+1
k + ûn+1

i +
∑

i<k≤m

unk
)

≤F
( ∑

1≤k<i

un+1
k + vi +

∑

i<k≤m

unk
)
, ∀vi ∈ Vi. (2.75)

Choose un+1
i ∈ Vi , i = 1, . . . ,m, such that

∥∥un+1
i − ûn+1

i

∥∥
V
≤ ǫ0

∥∥uni − ûn+1
i

∥∥
V
, 0 ≤ ǫ0 ≤ 1 . (2.76)

• Step 3. Go to the next iteration.

In practice, we choose un+1
i = (1− ǫ0)ûn+1

i + ǫ0u
n
i , ǫ0 ∈ [0.5, 0.75], for the SSC algorithm 1.

Application to Flow Estimation

Based on algorithm 1, the estimation of general flows amounts to solving the two subproblems

including the boundary stability term (2.72) with a penalty parameter γ > 0,

min
ψ
F̃ (ψ, φ̄) =

∥∥∥∂tg −∇hg · (∇hψ +∇⊥,hφ̄)
∥∥∥
2

HV

+ (2.77)

α
∥∥∥∇h△Dψ

∥∥∥
2

HS

+ γ
∥∥∥P ∇hψ

∥∥∥
2

bc
,

and

min
φ
F̃ (ψ̄, φ) =

∥∥∥∂tg −∇hg · (∇hψ̄ +∇⊥,hφ)
∥∥∥
2

HV

+ α
∥∥∥∇h△Cφ

∥∥∥
2

HE

, (2.78)

and subject to the linear constraint (2.62) for ψ, whereas the constraint for φ is directly encoded

by the discretization. Here ψ̄ and φ̄ in (2.77) and (2.78) are fixed variables at each iteration.

To this end, each subproblem is an convex quadratic problem to which the preconditioned
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conjugate gradient iteration was applied. The ψ−step includes a simple projection due to the

linear constraint in (2.62).

Concerning estimation of divergence-free flows, approach (2.65) together with (2.66) requires

as part of algorithm 1 to solve a linearly constrained quadratic problem in the subspace of

harmonic flows. To this end, the Augmented Lagrangian Method [21, 20] is applied. The

corresponding augmented Lagrangian function for the ψ−subproblem reads:

Lφ̄(ψ
c, r) =

∥∥∥∂tg −∇hg · (∇hψc +∇⊥,hφ̄)
∥∥∥
2

(2.79)

+ 〈r,△Dψ
c〉+ c

2
‖△Dψ

c‖2HV
+ γ

∥∥∥P ∇hψc
∥∥∥
2

bc

with φ̄ being fixed at each iteration step. Direct incorporation into the augmented Langrangian

iteration of the remaining linear equality
∑

HV +∂V
ψ = 0 in (2.66) would destroy the sparsity

of the matrix of the penalty term and increase computation load. This, in turn, affects the

efficiency of the sparse solver. Instead, we simply remove the average from iterates (ψc)n as a

simple post-processing step. In practice, the augmented Lagrangian iteration converged in less

than 10 iterations to achieve a high accuracy.

Multi-level Implementation

In most cases where large displacements of u exist between the image sequence, the linearized

approximation (2.52) of the brightness-constant condition (2.51) is no longer valid. In order

to alleviate the local minima problem and to capture such large displacements, the standard

multi-level procedure using a sequence of linearizations is applied such that

F l(ul) :=
∥∥∥∂tgl −∇hgl · ul

∥∥∥
2

HV

+R(ul) , (2.80)

where {gl1, gl2}l=0,1,...,m denote linear scale-space representations of the given image pair, ∂tgl =

gl2(x)− gl1(x+ ũl(x)) and ũl is the approximation from the coarser levels.

In this regard, two image pyramids {gli}l=1,...,m, i = 1, 2, are constructed. l = 0 denotes the

original image, and l = m denotes the coarsest level. At the level l, given potential fields ψ̃l, φ̃l

and the velocity field ũl = ∇hψ̃l+∇⊥,hφ̃l, image gl1 is warped to g̃l1 = gl1(x+ ũl). The image

flow between the two images g̃l1 and gl2 is assumed to be small enough to allow for accurate

linearization:

∂tg
l = gl2 − g̃l1 (2.81)

∆l
u
= ∇hgl1 · (ul − ũl) (2.82)

∆l
ψ,φ = ∇hgl1 · (∇h(ψl − ψ̃l) +∇⊥,h(φl − φ̃l)). (2.83)
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The residual motion field ul, in terms of ∇hψl +∇⊥,hφl, is estimated by solving the problem

min
ψl,φl

F (ψl, φl) =
∥∥∥∆l

ψ,φ + ∂tg
l
∥∥∥
2

HV

+ α
∥∥∥∇h△Dψ

l
∥∥∥
2

HS

+ α
∥∥∥∇h△Cφ

l
∥∥∥
2

HE

+ γ
∥∥∥P ∇hψl

∥∥∥
2

bc
(2.84)

The minimizer ψl, φl and ul are postprocessed, by extention, to yield the initialization ψ̃l−1,

φ̃l−1 and ũl−1 of the next finer level l − 1. The whole process is started at the coarsest level

m with ψ̃m = 0, φ̃m = 0 and ũm = 0.

2.2.5 Experiments

In this section, we validate the proposed flow decomposition based approach with numerical

experiments. Some of the vector fields depicted in corresponding figures are scaled by a factor

2 or color-coded for better visibility.

In pactice, evaluating non-rigid flows by computing the average angular and norm error, respec-

tively, induced by the inner product of the space (L2(Ω))2 = L2(Ω)×L2(Ω) [16], appeared to

us too insensitive to the important flow structures. Therefore, we suggest error measures that

also take into account divergence and curl of flow structures:

enorm :=
〈u,u〉DC

N
, eang := arccos

〈u,v〉DC + 1√
〈u,u〉DC + 1

√
〈v,v〉DC + 1

(2.85)

where we adopt the average angular and norm error measures but use the inner products of the

space H(div; Ω) ∩H(curl; Ω) (see, e.g., [67]):

〈u,v〉DC := 〈u,v〉HS
+
〈
divh u,divh v

〉

HV

+
〈
curlhu, curlhv

〉

HP

. (2.86)

Numerical Stability

The additional boundary regularizar (2.71) is essential for numerical stability. To demonstrate

this, we warped a computer-generated grayvalue function with the ground-truth flow field whose

color-coded image is shown in the left panel of Figure 2.4, and examined the numerical stability

for the resulting variational flow estimation problem (2.61).

Omitting the boundary term by setting for the corresponding weight parameter γ = 0 leads to

a numerically instable problem. The value γ = 1e− 6 results in an ill-conditioned problem and

very slow convergence of the numerical iteration. Moreover, the resulting vector field shown in

the middle of Figure 2.4 oscillates at the boundary. The value γ = 0.1 yields a well-conditioned

system that converged after 7 iterations and results in an accurate result (Fig. 2.4, right panel).
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Figure 2.4: Influence of the boundary regularizer (2.71). Left: a ground-truth non-rigid velocity field

shown color-coded for better visibility. Middle: the velocity field estimated with λ3 = 1e−6
for the boundary regularizer results in an ill-conditoned problem. The estimated motion field

may oscillate near the boundary. Right: the velocity field estimated with λ3 = 0.1.

Ground Truth Experiment

Figure 2.5 shows a particle image sequence provided by the European project FLUID [35]

through direct numerical simulation (DNS) [134] of an incompressible turbulent flow field.

The traditional Horn-Schunck method (2.54) was used for comparison. We tuned the related

penalty parameters by hand for the Horn-Schunck approach, α = 0.1, and for the flow decom-

position based approach (2.65), α = 0.05 and γ = 0.05 where γ weights the boundary term

(2.72).

Figure 2.5 shows the experimental results. The corresponding errors for the approach (2.56),

enorm = 1.49e − 2 , eang = 6.94◦, are smaller than for the approach of Horn and Schunck

(2.54): enorm = 3.70e − 1 , eang = 31.19◦. By (2.86), these error measures include flow

derivatives, divergence and curl, as opposed to common measures used in the literature. It

can be clearly observed in Figure 2.5 that the flow decomposition based approach recovers

the curl field more accurately. Furthermore, even if the image sequence data correspond to

incompressible flows, ignoring the corresponding constraint leads to significant flow estimation

errors of the Horn and Schunck method (mid-bottom panel).

Estimating Real Solenoidal Flows

Figure 2.6 shows a real world 2D turbulent flow which has been captured in laboratory. This

experimental flow has been generated between two thin glass plates [89]. It is visualized through

a passive scalar (a mixture of fluorescein and water) that is transported by the flow u. A
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Figure 2.5: Top left: the first image of a particle image pair. Top middle and right: the ground-

truth DNS-simulated divergence-free flow and its curl field. Bottom left: the curl field

of the estimated flow, which is totally divergence-free, computed by the potential-based

approach (2.65). Bottom middle: the divergence field, which is also the divergence-

error, of the flow resulting from the Horn-Schunck method (2.54). Bottom right: the

curl field of the flow estimated using the Horn-Schunck approach (2.54). It is apparent

that the recovered curl patterns by our approach are much more accurate. The flow error

measures reported in the text confirm this quantitatively.

diffusion of the passive scaler can also be observed along time. The measurement of a slight

non-vanishing divergence for this 2D flow corresponds to this diffusion effect. Rather than

taking into account this effect through developing a specific data term, we focus in this paper

on imposing vanishing divergence as a constraint, along with the higher order regularization.

Figure 2.6 shows the result of estimating the div-free flow for the real image sequence based

on the multi-level framework, see section 2.2.4 for details. The comparison with first-order

regularization (Horn-Schunck approach) in Figure 2.7 clearly reveals the superiority of the

potential-based approach (2.65) regarding the reconstruction of vortex structures. Furthermore,

the physically plausible constraint of vanishing divergence is satisfied accurately.
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Figure 2.6: Top left: the first frame g1 of a real image sequence together with the estimated solenoidal

flow. Top middle: the divergence field of the flow is less than 3 ∗ 10−12. Top right:

the potential field ψ(Ω) related to the harmonic flow. Bottom left: the potential field

φ(Ω). Bottom middle: the first component of flow: the harmonic flow ∇hψ. Bottom

right: the second component of flow ∇⊥,hφ. A close-up view for comparison with standard

regularization is depicted in Figure 2.7.

Figure 2.7: Left: the restored div-free flow u(Ω). Right: the restored flow uhs(Ω) by the Horn-

Schunck approach (2.54). This result clearly shows that vortex structures are better recov-

ered by the potential fields-based approach. Furthermore, the magnitude of the divergence

is below 10−11, nearly zero, throughout the image plane.
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Estimating General Non-Rigid Real Flows

Figures 2.8 and 2.9 show general non-rigid flows estimated for two different real image se-

quences, by the multi-level scheme (2.84). The images show convective cloud cells at high

altitudes. These clouds undergo strong upward motions until they reach the top of the atmo-

sphere, the tropaupose, and then start to decline slowly. These cells are responsible for violent

showers and generate locally very strong winds. Their apparent motions correspond to highly

divergent motions whose supports roughly correlate with cloud boundaries. Nevertheless, such

a divergent motion does not necessarily have exactly the same shape as the cloud cell. The

recovered motion fields show that we have been able to estimate blobs of diverging motions

which correspond to the apparent motion of these type of cloud systems.

Figure 2.8: Top: the first image g1 with the restored flow field u. Middle left: the divergence field of

u, i.e. △Dψ. Middle right: the curl field of u, i.e. △Cφ. Bottom left: the potential

field ψ. Bottom right: the potential field φ. The divergence field reveals a “source”(blue

blob) corresponding to a convective cloud cell at high altitude (see text).
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2 Non-rigid Flow Decomposition and Estimation

Figure 2.9: Top: the first image g1 with the restored flow field u. Middle left: the divergence field

of u, i.e. △Dψ. Middle right: the curl field of u, i.e. △Cφ. Bottom left: the

potential field ψ(Ω). Bottom right: the potential field φ(Ω). As in the previous figure,

the potential functions provide a useful representation of qualitative properties of the flow.

Application to Particle Image Velocimetry (PIV)

Figure 2.10 shows the result of the multi-level potential-based approach (2.84) applied to the

PIV image sequence from a flow around two cylinders. The divergence field and curl field inside

the area of two cylinders are zero since the apparent motion vanishes there. Note that the two

potential fields ψ(Ω) and φ(Ω) are not zero in these domains, but rather the sum of ∇ψ and

∇⊥φ is.

Finally, Figure 2.11 shows the results computed from a PIV image pair of a liquid freezing

experiment, recorded by Tomasz A. Kowalewski (http://www.ippt.gov.pl/ tkowale/). Again,

both the divergence and the curl field reveal the basic patterns of the underlying non-rigid

motion.
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Figure 2.10: Top: the first image g1 with the restored flow field u. Middle left: the divergence

field of u, i.e. △Dψ. Middle right: the curl field of u, i.e. △Cφ. Bottom left: the

potential field ψ(Ω). Bottom right: the potential field φ(Ω). The two potential fields

ψ and φ are not zero at the area of two cylinders even if the flow they represent disappears

in these domains. The divergence and curl fields provide clear flow information around the

two cylinders.

Comparisons of Incompressible Flow Estimation

An extensive evaluation and comparison have been made based on the large data set of FLUID

poject (http://fluid.irisa.fr/) [76]. Both particle and for scalar synthetic image sequences,

generated from direct numerical simulations (DNS) of two-dimensional turbulence, have been

used. Comparing to the correlation technique of Lavision and Corpetti et al’s second-order

method [47], the proposed approach with the mimetic finite-difference implementation yields an

enlarged dynamic range with accurate measurements at small and large scales. This behaviour

is displayed in Fig. 2.12 showing the better estimated spectrum and the lowest spectrum of

the error obtained by the proposed flow decomposition approach. This higher accuracy is also
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Figure 2.11: Top left and middle: the first image g1 with the restored flow field u. Top right:

the divergence field of u, i.e. △Dψ. Bottom left: the curl field of u, i.e. △Cφ.

Bottom middle: the potential field ψ(Ω). Bottom right: the potential field φ(Ω).

The potential functions provide a useful representation of qualitative properties of the flow.

observed in Fig. 2.13 with vorticity maps and vector fields. With scalar image sequences, the

differences between this approach and the others is more pronounced, especially at large scales,

where as expected the correlation technique completely failed (see Fig. 2.14).

2.3 Nonsmooth Flow Decomposition and Estimation

2.3.1 Introduction

In this section, we investigate a novel class of variational flow decomposition and estimation

schemes by combining nonsmooth higher-order flow regularization, which adapt recent tech-

niques developed for nonsmooth image decomposition to processing of non-rigid flows. As a

result, we obtain variational approaches that not only allow for estimating fluid flow from image

sequences but simultaneously yield a decomposition of the flow into coherent spatio-temporal

flow patterns and small-scale structures.

In the following, we briefly describe the respective basic ideas in a continuous setting. In
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Figure 2.12: Spectrum of the vertical velocity component in a twodimensional turbulent flow. Top

synthetic particle image sequence; Bottom synthetic scalar image sequence. Black line

DNS reference; Red symbols correlation approach; Blue symbols Corpetti et al’s approach

[47]; Green symbols the proposed approach. Spectra of the error for the same data are

shown in inset. Results in this figure come from [76].

Figure 2.13: Vorticity maps and vector fields in a two-dimensional turbulent flow obtained with a syn-

thetic particle image sequence. From left to bottom, correlation approach, Corpetti et al’s

approach [47] and the proposed approach. Results in this figure come from [76].

the remainder of this section, we will derive and investigate discrete approaches using the

mimetic finite difference method introduced in the previous sections, which preserves the integral

identities fulfilled by the corresponding continuous integral operators.

In image denoising, one is typically interested in removing noise without destroying important

structures such as edges. This goal cannot be achieved with linear filters, e.g., by

min
u

1

2
‖u− f‖2Ω + α

∫

Ω
|∇u|2 dx (2.87)

for a given noisy image f(x) in Ω ⊂ R
2. The regularizer incorporates the quadratic function.

Via the Euler–Lagrange equation this variational approach can be related to a linear diffusion
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Figure 2.14: Vorticity maps and vector fields in a two-dimensional turbulent flow obtained with a syn-

thetic scalar image sequence. From left to bottom, correlation approach, Corpetti et al’s

approach [47] and the proposed approach. Results in this figure come from [76].

equation. As a consequence, the optimal solution u∗ smooths the given image f in a completely

homogeneous way and therefore blurs semantically important signal structures. To overcome

this drawback a variety of nonlinear methods have been proposed. One of the frequently applied

approaches replaces the function in the regularization term by the total-variation term and thus

penalizes larger deviations of |∇u| not as hard as the quadratic function:

min
u

1

2
‖u− f‖2Ω + α

∫

Ω
|∇u|dx , (2.88)

which gives the well-known TV-L2 image approximation problem and was first considered by

Rudin, Osher, and Fatemi [141]. In contrast to the linear approach (2.87) we will refer to

this method as the TV-L2 approach. Based on the dual TV norm, the so-called G norm [115],

this denoising model was enlarged for the decomposition of given images f into a structural

(cartoon) part us and a textural part ut as

min
us,ut

‖f − (us + ut)‖2Ω + α

∫

Ω
|∇us|dx , s.t. ‖ut‖G ≤ δ.

For a more sophisticated treatment of the TV and G norms, we refer to [61, 115]. Meanwhile

there exist various numerical realizations of (2.89), e.g. [9, 128, 165]. In Sec. 3.1.3, we also

give a comparative study of such image decomposition and TV-L1 based image decomposition.

In this part, we are interested in the decomposition of vector fields rather than scalar im-

ages. Specifically, we want to deal with optical flow fields arising, e.g., in experimental fluid

dynamics. Inspired by the total-variation regularized image decompisition (2.89), we propose

the nonsmooth second-order div-curl regularizar (2.1b) involving penalization terms that are

additionally suited to preserve jumps of the divergence and the curl of a flow field, respec-

tively, by utilizing the TV-norm. As in image decomposition we will apply this special term to
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our variational approach to the decomposition of motion vector fields into physically relevant

components at different scales by using a discrete equivalent of the G norm. Moreover, we

will study the feasibility of an extension to the simultaneous estimation and decomposition of

optical flows.

2.3.2 Nonsmooth Flow Decomposition

Now we consider the decomposition of a given non-rigid flow field u ∈ HS in a meaningful

way. To this end, we have to compute some basic decomposition of u first. We apply Prop.

5 and consider Au = (ρ, ω, ν)T. Let Cρ and Cω be the mean values of the discrete diver-

gence and curl fields given by (2.41), which are the discrete versions of |Ω|−1
∫
Ω div u dx and

|Ω|−1
∫
Ω curlu dx.

In view of (2.42) and the discrete extended decomposition of Prop. 6, we can decompose the

given flow field, represented by (ρ, ω, ν)T ∈ VS , as

(ρ, ω, ν) = (Cρ, Cω, ν) + (ρo, ωo, 0), (2.89)

where 1T

dimHV
ρo = 1T

dimHo
P
ωo = 0. Obviously, both summands are in VS again, so that

u = uc + uo

is the corresponding basic decomposition of u ∈ HS , where

uc = A†(Cρ, Cω, ν)
T, uo = A†(ρo, ω,0)T .

We call vector uc (resp., (Cρ, Cω, ν)) the basic pattern of the nonrigid flow and its boundary

behavior, while uo (resp., (ρo, ω,0)) is related to the variable (oscillating) flow pattern.

We are interested in further decomposing the intrinsic flow variation uo into a structural part

us and a texture part ut, i.e.,

uo = us + ut .

This can be done in two ways. The first approach uses Prop. 5. Given u ∈ HS , we compute

(ρ, ω, ν)T = Au and then ρo = ρ− Cρ and ωo = ω − Cω. Next we decompose ρo = ρs + ρt

and ωo = ωs + ωt by minimizing separately

min
ρs,ρt

‖ρo − ρs − ρt‖22 + αd‖ρs‖TV + µd‖ρt‖G ,

min
ρs,ρt

‖ωo − ωs − ωt‖22 + αc‖ωs‖TV + µc‖ωt‖G
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where the related TV and G norms are defined in the Appendix 7.1. Clearly, this is reduced to

two image (scalar) decompositions which can be computed as proposed in [9].

By (7.3), we see that ρt equals to ÷p where p ∈ Ho
S such that 1T divh p = 0, we have that

(ρt, ωt, 0)T ∈ VS and further by (2.89) that (ρs, ωs, 0)T ∈ VS . Thus we can finally compute us

and ut by

us = A†(ρs, ωs, 0)T, ut = A†(ρt, ωt, 0)T.

In this section, we prefer the second approach that computes the components of u directly.

This variational approach extends Meyer’s model for the decomposition of scalar functions to

the simultaneous decomposition of vector fields into basic and variable (structure and texture)

flow patterns. Moreover, it also fits into our flow estimation-decomposition model in the next

part.

For u ∈ HS, we propose to find uc ∈ HS and us , ut ∈ Ho
S by minimizing

min
uc,us,ut

αd

∥∥∥divh us
∥∥∥
TV

+ αc

∥∥∥curlhus
∥∥∥
TV

(2.90)

s.t. ‖divh ut‖G ≤ δd , ‖curlh ut‖G ≤ δc ,
uc + us + ut = u ,

∇h divh uc = 0 , ∇hcurlhuc = 0 ,

1T

dimHo
P
curlhus = 0 .

(2.90) minimizes the sum of total-variations of divergence and curl fields of us subject to divut

and curlutwith bounded G−norms.

Concerning the constraints of (2.90), we note the following: to obtain the desired decomposition

we have to ensure that divh uc and curlhuc are constant and that 1T

dimHV
divh(us + ut) = 0,

1T

dimHo
P
curlh(us + ut) = 0 which makes divh uc and curlhuc give the mean values of related

div and curl fields. The first two conditions are fulfilled by the fourth and fifth constraint. The

third condition is fulfilled by the mimetic Gaussian integral identity and since us, ut ∈ Ho
S. The

last condition follows by the last constraint and since curlhut ∈ R(divh) and 1Tdivhut = 0.

2.3.3 Flow Estimation Joint with Flow Decomposition

In contrast to non-rigid flow estimation by the smooth div-curl regularizar (2.1a) which is

discussed in sec 2.2, we study the nonsmooth second-order div-curl regularizar (2.1b) based
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flow estimation which can be formulated by

min
u

‖gt −∇g · u‖2 + αd

∫

Ω
|∇divu| dx+ αc

∫

Ω
|∇curlu| dx+ γ

∫

∂Ω
(∂nu)

2 ds, (2.91)

By means of mimetic finite difference, the estimation problem (2.91) becomes

min
u∈HS

‖gt −∇hg · u‖2HV
+ αd

∥∥∥divh u
∥∥∥
TV

+ αc

∥∥∥curlhu
∥∥∥
TV

+ γ
∥∥∥Bhnu

∥∥∥
2

∂HS

, (2.92)

and by applying the orthogonal decomposition,

min
ψ,φ

‖gt−∇hg·(∇hψ+∇⊥,hφ)‖2HV
+αd ‖△D ψ‖TV+αc ‖△C φ‖TV+γ

∥∥∥BhnGψ
∥∥∥
2

∂HS

(2.93)

where 1T

dimHV +∂V
ψ = 0. In case of solenoidal flows the functional further reduces as in the

linear case.

In the following part of this section, we combine optical flow estimation (2.92) with structure-

texture flow decomposition introduced in the previous section: for the given image sequence,

we want to compute the component uc ∈ HS with constant divergence and curl, the large scale

pattern us ∈ Ho
S of divergence and curl with bounded TV norms, and the small scale pattern

ut ∈ Ho
S of divergence and curl with bounded G norms.

To this end, we introduce the fitting functional

F (uc,us,ut) = ‖gt −∇hg · (uc + us + ut)‖22 . (2.94)

Then, with respect to the previous section, one can consider minimizing

min
uc,us,ut

F (uc,us,ut) + αd‖divh us‖TV + αc‖curlhus‖TV + γ‖Bhnu‖2∂HS

s.t. ‖divh ut‖G ≤ δd , ‖curlh ut‖G ≤ δc,
∇h divh uc = 0 , ∇hcurlhuc = 0 ,

1T

dimHo
P
curlhus = 0 .

Unfortunately, this approach is not well posed. For the image areas where ∇g = 0, the data

term disappears, and the local constraints on the G norms will lead to unbounded solutions.

Therefore, we propose to replace the G norm by the L2 norm to both divh ut and curlhut,

which leads to

min
uc,us,ut

F (uc,us,ut) + αd‖divh us‖TV + αc‖curlhus‖TV

+ µd‖divh ut‖2HV
+ µc‖curlh ut‖2Ho

P
+ γ‖Bhnu‖2∂HS

(2.95)

s.t. ∇h divh uconst = 0, ∇hcurlhuconst = 0,

1T

dimHo
P
(curlhus + curlhut) = 0 .
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Our experiments show that this approach works well, although the superiority of the G norm

over the L2 norm in capturing (scalar) oscillating patterns was experimentally shown in [9].

Finally, we are interested in div-free flows u ∈ HS . Coupling the extended decomposition (2.43)

and its representation u←→ (0, ω, ν)T ∈ VS , we have the following decomposition type:

(0, ω, ν)T = (0, Cω , ν)
T + (0, ωo, 0)T .

Therefore, we have

u = uc + us + ut = (∇hψ +∇⊥,hφc) +∇⊥,hφs +∇⊥,hφt (2.96)

where ωo = ωs + ωt, φs and φt are the potential fields associated with ωs and ωt respectively.

Indeed, given some scalar field φ̃ ∈ HP which extends φc ∈ Ho
P with a non-zero boundary, we

can properly represent the div-free vector field ∇hψ +∇⊥,hφc by ∇⊥,hφ̃. Then, (2.96) can be

rewritten as

u = ∇⊥,h(φ̃+ φs + φt) , φ̃ ∈ HP , φs , φt ∈ Ho
P .

Then the fitting term (2.94) reads

F (φ̃, φs, φt) = ‖gt −∇hg · ∇⊥,h(φ̃+ φs + φt)‖2HV
,

and (2.95) can be reformulated as

min
φ̃,φs,φt

F (φ̃, ϕs, ϕt) + αc‖△Cφ
s‖TV + µc‖△Cφ

t‖2Ho
P
+ γ‖Bhn∇⊥,hφ̃‖2∂HS

(2.97)

s.t. ∇h curlh∇⊥,hφ̃ = 0 , 1T

dimHo
P
△C(φ

s + φt) = 0 , 1T

dimHP
φ̃ = 0 ,

where the last constraint appears since φ̃ is determined only up to an additive constant from

the kernel of ∇⊥,h.

2.3.4 Second-Order Cone Programming (SOCP)

Our computational approach to flow estimation via (2.90) and to simultaneous flow estimation

and decomposition via (2.97) is based on SOCP [113]. This amounts to minimizing a linear

objective function subject to the constraints that several affine functions of the variables have

to lie in a second-order cone Ln+1 ⊂ R
n+1 defined by the convex set

Ln+1 =

{(
x

t

)
= (x1, . . . , xn, t)

⊤ : ‖x‖2 ≤ t
}
.
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With this notation, the general form of an SOCP is given by

inf
x∈Rn

f⊤x , s.t.

(
Aix+ bi

cTi x+ di

)
∈ Ln+1 , i = 1, . . . , r. (2.98)

Problem (2.98) is a convex program for which efficient large-scale solvers are available [117].

In connection with TV-based image decomposition the application of SOCPs was suggested in

[70].

We rewrite the variational approach (2.90) in the form of SOCP

min
uc,us,ut

λd1
T

dimHV
v + λc1

T

dimHo
P
w,

s.t. uuc + us + ut = u , ∇h divh uc = 0 , ∇hcurlhuc = 0 ,

1T

dimHo
P
curlhus = 0 , divh ut = divh pd , curlhut = divh pc,

(
(∇h divh us)

Ωα,β

vΩα,β

)
∈ L5 ,

(
(∇hcurlhus)

Pi,j

w
Pi,j

)
∈ L5,

(
(pd)Ωα,β

δd

)
∈ L5 ,

(
(pc)Pi,j

δc

)
∈ L5

where v ∈ HV and w ∈ Ho
P are two scalar fields, Ωα,β gives the cell of image grid and the last

two types of cone definitions follows from (2.3).

In order to incorporate the quadratic terms of the variational approaches to optical flow esti-

mation, we use the following rotated version of the standard cone:

Rn+2 :=

{(
x, xn+1, xn+2

)⊤ ∈ R
n+2 :

1

2
‖x‖22 ≤ xn+1xn+2, xn+1, xn+2 ≥ 0

}
.

Fixing xn+2 = 1/2, we have ‖x‖22 ≤ xn+1. Now we can rewrite (2.97) as follows:

min
φc,φs,φt

v + µc t+ λc1
T

dimHo
P
w,

s.t. ∇hcurlh∇⊥,hφc = 0 , 1T

dimHP
φc = 0 , 1T

dimHo
P
△C(φ

s + φt) = 0 ,

(
(∇h△Cφ

s)
Ωα,β

w
Ωα,β

)
∈ L5 ,




△Cφ
t

t

1/2


 ∈ R

dimHP+2 ,




∇hg · ∇⊥,h(φc + φs + φt) + gt

v

1/2


 ∈ R

dimHV +2 .
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Figure 2.15: Frame g (left) and its warping with the groundtruth flow (right) for flow estimation by

the linear approach and the TV approach.

2.3.5 Numerical Experiments

In this section we verify our approaches by numerical examples. The programs were written in

MATLAB and used the software package SeDuMi for SOCP (see http://sedumi.mcmaster.ca/

for more information). Unfortunately, we do not have an automatized choice of parameter

values. Parameter values were chosen by hand following two general rules: (i) choose the

weights as small as possible in order to not smooth out turbulent motion, (ii) for TV terms,

smaller values than in the linear case (e.g., (21)) are appropriate, because these regularizers

return larger values than their linear counterparts (assuming that image data are scaled to the

range [0, 1]). Rule (ii) leads to parameter values of the order ∝ 10−4. Thanks to the mimetic

discretization, this suffices for numerical stability.

Flow estimation

We start by comparing flow estimations obtained by the linear approach (2.61) and the TV

approach (2.93). We consider the artificial example in Figure 2.15 with the groundtruth on top

of Figure 2.16. Figure 2.16 (middle) was obtained by solving the linear systems of equations

resulting from (2.61) with parameters λd = 0.06, λc = 0.048. As the boundary parameter

we have used γ = 0.04. The result shows the typical blurring effects at the edges. If we

decrease the parameter values, the rectangular shape of div and curl becomes easier to see, but

the artifacts always visible in Figure 2.16 (middle) increase too. The bottom of Figure 2.16

contains the solution of (2.92) with the parameters λd = 10−6, λc = 10−6, and γ = 10−5

by SOCP and 17 iterations. As expected for this example, the TV approach gives very good

results by preserving discontinuities of the flow derivatives (div, curl).
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Figure 2.16: Top: The groundtruth flow u, its div and curl (left to right). Middle: Linear reconstruction

by (2.61), difference between u and its estimation, reconstructed div and curl (left to

right). Bottom: TV reconstruction by (2.92), difference between u and its estimation,

reconstructed div and curl (left to right).
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Flow decomposition

Figure 2.17 shows a turbulent flow field u as groundtruth along with its divergence ρ and curl

ω. Applying the variational method (2.90) with λd = 0.2 , λc = 0.5, and δd = 0.05 , δc = 0.1,

we obtain the decompositions depicted in Figures 2.18 and 2.19. The structural and textural

components recovered the interesting motion patterns at different scales, which are not easily

visible in the flow u itself.

Figure 2.17: Groundtruth data to be decomposed: flow field u (left), its divergence field ρ (middle),

and its curl field ω (right).

Figure 2.18: The components of the flow u from Figure 2.17: uc (left), us (middle), and ut (right).

The vectors of us,ut are scaled up for better visibility. Note that despite |u| ≈ |uc|, the

structural and texture parts us and ut are recovered well.

Flow estimation and decomposition

In this section we will validate the flow estimation-decomposition model (2.97). First we create

a divergence-free groundtruth flow field u by superimposing a dominant laminar flow with

some turbulent vortex structures; see Figure 2.20. Using this flow, an artificial image sequence

{g1 , g2} was created.
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Figure 2.19: Decomposition of u from Figure 2.17 with the approach (2.90). Top: ρc, ρs, ρt (left to

right). Bottom: ωc, ωs, ωt (left to right). The structure and texture components reveal

turbulent flow patterns at different scales, which are not easily visible in the flow u itself.

Figure 2.20: Groundtruth data u (left) and its curl (right) to be estimated from a corresponding arti-

ficially created image sequence. Here u is a superposition of a laminar flow and turbulent

vortices.

Figures 2.21 and 2.22 show the decomposition-based optical flow estimates, where we have used

λc = 6× 10−5 and µc = 3× 10−4. The boundary parameter was chosen slightly smaller than

λd. The uc component nicely recovers the laminar flow, whereas the structural and textural

components reveal the turbulent curl field. Finally, Figure 2.22 gives a close-up view of a section

of Figure 2.21.
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2 Non-rigid Flow Decomposition and Estimation

Figure 2.21: Estimated and decomposed flow corresponding to Figure 2.20 using the TV −L2 approach

(2.97). Top: uc, us, and ut (left to right). Bottom: ωc, ωs, and ωt (left to right).

Figure 2.22: Close-up view of a section of Figure 2.21. From left to right: ωs, ωt, ωs + ωt with the

corresponding flows as overlays.

A real-world example

Figure 2.23 (top-left) shows a sample image of the experimental evaluation of the spreading of

a low-diffusivity dye in a two-dimensional turbulent flow, forced at a large scale. The passive

scalar is a mixture of fluorescein and water. The divergence of the corresponding flow vanishes.

For more details about the experimental setup, we refer to [89].

Figure 2.23 shows the components of the flow and curl field estimated in terms of φc, φs, φt

by minimizing (2.97) (parameter values: λc = 10−4, µc = 3 × 10−4, γ = 5 × 10−4). This
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2.3 Nonsmooth Flow Decomposition and Estimation

Figure 2.23: Top-left: frame of a real image sequence depicting the mixture of fluorescein and water

[89]. Top-center: the turbulent solenoidal flow estimated by minimizing (2.97). Flow

vectors are color-coded for better visibility (color ≃ direction, magnitude ≃ brightness).

Top-right: the curl field comprising large-scale patterns immersed in turbulent oscillations.

Middle, from left to right: uc,us,ut. Note that uc contains the (nonvanishing) boundary

values, and that us and ut separate coherent motion patterns and turbulent fluctuations,

respectively. Bottom, from left to right: the curl fields ωc, ωs, and ωt.

result clearly demonstrates how the convex constrained optimization approach allows for es-

timating complex flows while simultaneously separating large-scale coherent motion patterns
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2 Non-rigid Flow Decomposition and Estimation

from turbulent fluctuations.
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3 TV-L1 Image Approximation

In this chapter, we study the TV-L1 image approximation approach (1.7) based on modern

convex optimization theories. We propose new equivalent convex models of TV-L1 image ap-

proximation and show that TV-L1 image approximation introduces a new image decomposition

model based on convex cones which is in comparison to the TV-L2 reduced image decompo-

sition. We also prove that the convex TV-L1 image approximation model actually gives an

exact and global optimum to the corresponding discrete-constrained TV-L1 image approxima-

tion problem (1.11), i.e. (1.7) works as the exact convex relaxation model to (1.11). Finally, we

propose the new multiplier-based TV-L1 algorithm based on its equivalent dual model, which

presents an efficient and reliable numerical scheme to (1.7) and can be easily implemented.

We list the formulations of TV-L1 image approximation (1.7) and its discrete-constrained version

(1.11) in this chapter again to ease reading:

min
u

{
P (u) :=

∫

Ω
|f − u| dx + α

∫

Ω
|∇u(x)| dx

}
, (3.1)

and

min
u(x)∈{f1,...,fn}

∫

Ω
|f − u| dx + α

∫

Ω
|∇u(x)| dx , (3.2)

given f(x) ∈ {f1, . . . , fn} and f1 . . . fn are linearly ordered such that f1 < . . . < fn.

3.1 Equivalent Formulations

We call TV-L1 image approximation (3.1) the primal model in this chapter, as comparison to

other convex models introduced in this part.
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3 TV-L1 Image Approximation

3.1.1 Equivalent Primal-Dual Model

With the help of conjugates [137], the data term of (3.1) can be equally expressed by

α

∫

Ω
|f − u| = max

q∈S
〈q, f − u〉 , S := {q | |q(x)| ≤ 1 , ∀x ∈ Ω } . (3.3)

Moreover, it is well known that the total-variation term of (3.1) can also be reformulated [68]

as follows

α

∫

Ω
|∇u| dx = max

p∈Cα

〈div p, u〉 , Cα := {p | p ∈ C1
c (Ω,R

2) , |p(x)| ≤ α , ∀x ∈ Ω } . (3.4)

In view of (3.3) and (3.4), after some rearrangements, the TV-L1 approximation formulation

(1.7) can be equally rewritten as

max
q∈S

max
p∈Cα

min
u

{
E(u; q, p) := 〈q, f〉+ 〈div p− q, u〉

}
, (3.5)

which is called the equivalent primal-dual model to the primal model (3.1).

3.1.2 Equivalent Dual Model

Observe that u is unconstrained, minimizing (3.5) over u, therefore, leads to the linear equality

div p = q , (3.6)

and the constrained maximization problem

max
q∈S

max
p∈Cα

{
D(q, p) := 〈q, f〉

}
, s.t. div p = q . (3.7)

Likewise, we call (3.7) the equivalent dual model to (3.1).

Let the Cin be the intersection set of S and divCα, denoted by Cin := S ∩ divCα. The dual

formulation (3.7) actually can be equally written by

max
q∈Cin

〈q, f〉 . (3.8)

The above formulation (3.8) gives a simpler equivalent expression for TV-L1 image approxi-

mation and illustrates the function of the dual variable q. However, our aim is to compute

the optimal image function u(x) which works as the multiplier function of the linear equality

constraint (3.6) of the its dual model (3.7). To this end, we stick to the dual formulation (3.7).
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3.1 Equivalent Formulations

3.1.3 Optimization and Variational Facts

Minimax Theorem

For the primal-dual formulation (3.5), the conditions of the minimax theorem (see e.g., [58, 62])

are all satisfied. That is: the constraints of dual variables p and q are convex and the energy

function is linear to both u and (p, q), hence convex l.s.c. for fixed u and concave u.s.c. for

fixed p and q. This follows that there exists at least one saddle point, s ee [58, 62]. As a

consequence, the min and max operators of the primal-dual model (3.5) can be interchanged,

i.e.

max
q∈S

max
p∈Cα

{
min
u

E(u; q, p)
}

= min
u

{
max
q∈Sα

max
p∈C1

E(u; q, p)
}
. (3.9)

It is easy to see that the optimization of the primal-dual model (3.5) over the dual variables q

and p react on the primal formulation (3.1) of TV-L1 image approximation, i.e. the right hand

side of (3.9):

P (u) = E(u; q∗, p∗) = max
q∈Sα

max
p∈C1

E(u; q, p) .

Likewise, the dual model (3.7) can be achieved by optimizing the image function u(x) in (3.5),

i.e. the left hand side of (3.9):

D(q, p) = E(u∗, q, p) = min
u

E(u; q, p) . (3.10)

TV-L1 Image Decomposition and Geometrical Explanation

By the definitions of conjugate (3.3) and (3.4), it easy to see that given the optimal saddle

point (q∗, p∗, u∗) to the primal-dual optimization formulation (3.5), we clearly have

f − u∗ ∈ ∂S(q∗) , u∗ ∈ ∂(divCα)(p∗) (3.11)

where S and divCα denote the indicator functions to their associated convex sets given by

(3.3) and (3.4). The subgradients ∂S and ∂(divCα) in (3.11) give rise to the normal cones

[79], denoted by NS(q
∗) and NdivCα(p

∗) respectively, to their corresponding convex set at the

given point.

In view of (3.11), it is easy to see

Proposition 12. Given the optimal saddle point (q∗, p∗, u∗) to the primal-dual optimization

formulation (3.5), q∗, p∗, u∗) gives rise to the decomposition of the input image f(x) such that

f = u∗ + v∗ , where v∗ ∈ NS(q
∗) , u∗ ∈ NdivCα(p

∗) . (3.12)
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3 TV-L1 Image Approximation

Proof directly follows from the fact v∗ = f − u∗.

Now we consider the geometrical explanation of the proposed TV-L1 image decomposition by

Prop. 12: observe the maximization problem (3.8) which is equivalent to the dual model, we

simply have

f ∈ NCin
(q∗) (3.13)

where NCin
is the normal cone of the convex set Cin at q∗. Then by (3.12), we have the

geometrical relationship of three components in TV-L1 image decomposition (3.12) as

(f ∈ NS∩divCα(q
∗)) = u∗ + v∗ , where v∗ ∈ NS(q

∗) , u∗ ∈ NdivCα(p
∗) . (3.14)

Hence, the studied TV-L1 image approximation boilds down to the image decomposition (3.14)

based on the three normal cones NS∩divCα , NS and NdivCα at some specified point q∗ and

p∗. (3.14) is so called the normal cone based image decomposition of the image f(x).

This is in contrast to the classical TV-L2 image approximation (1.6), which gives the following

image decomposition [9, 115]:

f = u∗ + div p∗

where the dual variable p∗ gives the projection of the input image f(x) to the convex set divCα,

i.e.

p∗ := arg min
p∈Cα

‖f − div p‖2 .

This defines a projection based image decomposition of the image f(x).

3.2 Global and Exact Optimums of Discrete-Constrained

TV-L1 Model

In this section, we study the nonconvex optimization problem (3.2) and show that the TV-L1

formulation (3.1), which gives an exact convex relaxed model of (3.2), i.e. solves the nonconvex

minimization problem (3.2) globally and exactly through the proposed rounding scheme. We

state our results and proof by several propositions.

Proposition 13 (Extremum Principle). Given the image function f(x) ∈ {f1, . . . , fn}, ∀x ∈ Ω,

along with the order f1 < . . . < fn, each optimum u∗(x) of (3.1) suffices f1 ≤ u∗(x) ≤ fn.

The same results which state any optimum u∗(x) should suffice u∗(x) ∈ [fmin, fmax], i.e.

u∗(x) ∈ [f1, fn] considering the ascent ordering f1 < . . . < fn in this work, can also be found
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3.2 Global and Exact Optimums of Discrete-Constrained TV-L1 Model

in other works, e.g. [41] where f(x) ∈ {0, 1} or [56] where f(x) ∈ [fmin, fmax]. We also

provide the proof as follows to ease reading.

Proof. Let u∗ be the minimum of (1.7). Due to the convexity of (1.7), u∗ is simply accepted

as the global minimum. We first prove that u∗(x) ≤ fn for ∀x ∈ Ω.

If u∗(x) > fn at some area Ω̃ ⊂ Ω, then we define the function u′ which just threshholds

the value u∗(x) to be not larger than fn, i.e.

u′(x) =

{
fn at x ∈ Ω̃

u∗(x) at x ∈ Ω\Ω̃
.

Obviously, in view of f(x) ≤ fn and u∗(x) > fn for ∀x ∈ Ω̃, we have

∫

Ω
|u∗ − f | dx =

∫

Ω\Ω̃
|u∗ − f | dx +

{ ∫

Ω̃
|fn − f | dx +

∫

Ω̃
|u∗ − fn| dx

}

=

∫

Ω

∣∣u′ − f
∣∣ dx +

∫

Ω̃
|fn − f | dx .

It follows that ∫

Ω

∣∣f − u′
∣∣ dx <

∫

Ω
|f − u∗| dx . (3.15)

By the coarea formula of the total variation term:

TV(u) =

∫ +∞

−∞
Lγ(u) dγ ,

where Lγ(u) is the length of the γ−upper level set of u, it follows that

TV(u′) < TV(u∗) , (3.16)

because the fn−upper level set of u′ is threshholded to vanish.

Observe (3.15) and (3.16), we must have

∫

Ω

∣∣f − u′
∣∣ dx + αTV(u′) <

∫

Ω
|f − u∗| dx + αTV(u∗) .

This is in contradiction to the fact that u∗ is the global minimum of (1.7).

Likewise, we can also prove u∗(x) ≥ f1 x ∈ Ω in the same way. In consequence, we prove

that each minimum u∗(x) of (1.7) suffices u∗(x) ∈ [f1, fn].
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3 TV-L1 Image Approximation

Proposition 14. Given a bounded scalar function f1 ≤ u(x) ≤ fn ∀x ∈ Ω, if p∗ maximizes

the integral
∫
Ω udiv p dx over the convex set Cα, i.e.

∫

Ω
|∇u| dx =

∫

Ω
udiv p∗ dx ,

then in view of (1.10), for every γ−upper level set Uγ(x) of u(x) with γ ∈ [f1, fn), p
∗ also

maximizes the integral
∫
Ω U

γ div p dx over the convex set Cα and

∫

Ω
Uγ div p∗ dx = α |∂Uγ | ,

which is the perimeter of the level set Uγ(x).

Proof. Denote the interval Γ = [f1, fn]. The coarea formula gives

∫

Ω
|∇u| dx =

∫

Γ

∫

Ω
|∇Uγ | dx dγ. (3.17)

By applying this formula we can deduce

∫

Ω
u div p∗ dx =

∫

Ω
|∇u| dx =

∫

Γ

∫

Ω
|∇Uγ | dx dγ =

∫

Γ

(
max
p∈Cα

∫

Ω
Uγ div p dx

)
dγ. (3.18)

By the fact that u(x) =
∫ u(x)
f1

dγ =
∫
Γ U

γ(x)dγ for any x ∈ Ω, we have

∫

Ω
u div p∗ dx =

∫

Ω

(∫

Γ
Uγ(x)dγ

)
div p∗(x) dx =

∫

Γ

∫

Ω
Uγ div p∗ dx dγ. (3.19)

Therefore, combining (3.18) and (3.19):

∫

Γ

∫

Ω
Uγ div p∗ dxdγ =

∫

Γ

(
max
p∈Cα

∫

Ω
Uγ div p dx

)
dγ. (3.20)

This equality (3.20) together with the fact that for any γ ∈ [f1, fn)

∫

Ω
Uγ div p∗ dx ≤ max

p∈Cα

∫

Ω
Uγ div p dx . (3.21)

Then it follows that ∫

Ω
Uγ div p∗ dx = max

p∈Cα

∫

Ω
Uγ div p dx

for almost every γ ∈ [f1, fn). Clearly, the perimeter of the level set Uγ is given by

α |∂Uγ | =
∫

Ω
|∇Uγ | dx = max

p∈Cα

∫

Ω
Uγ div p dx .
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Corollary 15. Given a bounded scalar function f1 ≤ u(x) ≤ fn ∀x ∈ Ω and n − 1 different

values γi, i = 1, . . . , n− 1, such that f1 ≤ γ1 < . . . < γn−1 ≤ fn, if p∗ maximizes the integral
∫
Ω udiv p dx over the convex set Cα, then for the image function

uγ(x) =

n−1∑

i=1

(fi+1 − fi)Uγi(x) ,

p∗ also maximizes the integral
∫
Ω u

γ div p dx over the convex set Cα, i.e. we have

α

∫

Ω
|∇uγ | dx =

∫

Ω
uγ div p∗ dx .

Proof. By virtue of Prop. 14, p∗ also maximize the integral

∫

Ω
Uγi div p dx,

over the convex set Cα for each γi, i = 1, . . . , n− 1.

Then it follows that for the piecewise constant image function

uγ(x) =
n−1∑

i=1

(fi+1 − fi)Uγi(x) ,

p∗ also maximizes the integral

∫

Ω
uγ div p+ dx =

n−1∑

i=1

{
(fi+1 − fi)

∫

Ω
Uγi div p∗ dx

}
,

over the convex set p ∈ Cα, because f1 < . . . < fn is ordered such that

fi+1 − fi > 0 , i = 1, . . . , n − 1 .

Therefore, by Prop. 14, we have

α

∫

Ω
|∇uγ | dx =

∫

Ω
uγ div p∗ dx .

With helps of the above propositions, we then achieve our final result:
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3 TV-L1 Image Approximation

Proposition 16. Given the image function f(x) ∈ {f1, . . . , fn}, where f1 < . . . < fn and the

boundary of each concerning upper level set F fi(x), i = 1, . . . , n, is regular, then for any given

n− 1 values γi, i = 1 . . . n− 1, such that

f1 < γ1 < f2 < . . . < γn−1 < fn , (3.22)

we define the image function uγ(x) by the n − 1 upper level sets (1.10) of any computed

optimum u∗(x) of (3.1):

uγ(x) = f1 +
n−1∑

i=1

(fi+1 − fi)Uγi(x) . (3.23)

Then uγ(x) ∈ {f1, . . . , fn} and uγ(x) gives an exact global optimum of (3.2).

Proof. Let (q∗, p∗, u∗, ) be the optimal primal-dual pair of (3.5). Hence q∗ maximizes the

integral
∫
Ω q(f − u) dx over the convex set S and p∗ maximizes the integral

∫
Ω udiv p dx

over the convex set Cα.

uγ(x) ∈ {f1, . . . , fn} as (3.23) can be rearranged as

uγ(x) = f1 (1− Uγ1(x)) +
n−1∑

i=2

fi (U
γi−1(x)− Uγi(x)) + fn U

γn−1(x) .

Now we prove uγ is also a global optimum of (1.7). It can be shown by considering the

following facts:

By Coro. 15, p∗ also maximizes the integral
∫
Ω u

γ div p dx over the convex set Cα and

α

∫

Ω
|∇uγ | dx = 〈uγ ,div p∗〉 . (3.24)

On the other hand, we can prove
∫

Ω
|f − uγ | dx = 〈q∗, f − uγ〉 . (3.25)

The optimal dual variable q∗(x) actually gives the sign of f(x)−u∗(x) at each x ∈ Ω, when

f(x) 6= u∗(x); when f(x) = u∗(x), q∗(x) can take any value in [−1, 1]. Now we assume

u∗(x) ∈ [fk, fk+1] for the position x ∈ Ω, then in view of (1.10) and (3.23), we have

u∗(x) ∈ [fk, γk] =⇒ uγ(x) = fk ,

and

u∗(x) ∈ (γk, fk+1] =⇒ uγ(x) = fk+1 .
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Since f(x) ∈ {f1, . . . , fn} takes discrete values, we can analyze q∗(x) in two cases: f(x) ≤
fk and f(x) ≥ fk+1.

• When f(x) ≤ fk, in view of u∗(x) ∈ [fk, fk+1], we have q∗(x) = −1 for u∗(x) >

fk or q∗(x) ≥ −1 for u∗(x) = f(x) in order to maximize q(x) · (f(x) − u∗(x))

over q(x) ∈ [−1, 1]. Then in both cases, q∗(x) also maximizes the product q(x) ·
(f(x) − fk) , or q(x) · (f(x) − fk+1) , over q(x) ∈ [−1, 1]. Hence q∗(x) maximizes

q(x) · (f(x)− uγ(x)) over q(x) ∈ [−1, 1].

• When f(x) ≥ fk+1, in view of u∗(x) ≤ fk+1, we have q∗(x) = 1 for u∗(x) < fk+1 or

q∗(x) ≤ 1 for u∗(x) = f(x) in order to maximize q(x) · (f(x) − u∗(x)) over q(x) ∈
[−1, 1]. In both cases, q∗(x) also maximizes the product q(x) · (f(x)− fk) or q(x) ·
(f(x)− fk+1) , over q(x) ∈ [−1, 1]. Hence q∗(x) maximizes q(x) · (f(x)− uγ(x)) over

q(x) ∈ [−1, 1].

Therefore, we have q∗ maximizes the integral 〈q, f − uγ〉 over the convex set S1. Then the

fact (3.25) is proved.

By virtue of (3.24), (3.25) and the dual model (3.7), we have

P (uγ) = E(uγ , p∗, q∗) = 〈q∗, f〉+ 〈uγ ,div p∗ − q∗〉 = 〈q∗, f〉 = P (u∗) .

Then it follows that uγ is also a global minimum of (3.1) as u∗ is the global minimum of

(3.1) and both uγ and u∗ give the same energy. Since (3.1) is just the relaxed version of

(3.2), uγ(x) ∈ {f1, . . . , fn} solves (3.2) exactly and globally.

The proposed rounding scheme (3.23) actually gives

uγ(x) =





f1 , when u∗(x) < γ1

fi , when γi−1 ≤ u∗(x) < γi, i = 2, . . . , n− 1

fn , when u∗(x) ≥ γn−1

.

In the following experiment part, we adopt the above scheme to compute the rounding results.

3.3 Multiplier-Based TV-L1 Algorithm

In this thesis, we build up the algorithm through the equivalent primal-dual model (3.5). Clearly,

the primal variable u works as the multiplier in (3.5) for the linear equality div p− q = 0. The
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3 TV-L1 Image Approximation

energy function of (3.5) just gives the corresponding Lagrangian function to the dual formulation

(3.7). Upon these observations, we define its augmented Lagrangian function as

Lc(q, p, u) = 〈q, f〉+ 〈div p− q, u〉 − c

2
‖div p− q‖2

where c > 0.

Thereafter, the classical augmented Lagrangian algorithm [138, 20] can be applied, which gives

a splitting optimization framework over each dual variables q and p respectively, by exploring

projections to their corresponding convex constrained sets. In this regard, we call Alg. 2 the

multiplier-based algorithm. It explores two simple projection sub-steps: (3.27) and (3.28) at

each iteration, which properly avoids tackling the nonsmooth terms in (3.1) in a direct way.

The projection in (3.27) is easy and cheap to compute. For projection (3.28), we can use one

or a few steps of the iterative algorithm in [39]. In fact, we take just one step of the following

projected-gradient decent to approximately solve (3.28):

pk+1 = Proj‖p‖
∞
≤α

(
pk + τ∇(div pk − (qk+1 + uk/c))

)
(3.26)

where τ ≤ 0.25 gives a positive step-size and its optimal value depends on the discretization

scheme. Its detailed implementation can be found in Appendix 7.2. The optimal value of the

step-size τ for the mimetic finite-difference based discretization in this thesis is around 0.16.

Such one-step inner iteration of updating pk does propose a super fast numerical algorithm to

TV-L1 image approximation, mostly with a superlinear convergence rate!

3.4 Experiments

The experiments for TV-L1 image approximation are designed in two parts: we evaluate both

the theoretical results and efficiency of the proposed algorithm in terms of iterations in the

first part; experiments of practical impulsive denoising are performed in the second part. In all

experiments, convergence is evaluated by:

errk := c
‖div pk − qk‖

|Ω| ,

which just equals to
∫
Ω

∣∣uk+1 − uk
∣∣ dx/ |Ω|, through (3.29), i.e. the avarage absolute difference

between uk+1 and uk per image pixel. All the codes are developed on Matlab.

To evaluate the performance of rounded results in the following experiments, we take the

energy difference associated to the computated optimum u∗ and the rounded result uγ which
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Algorithm 2 Multiplier-Based Algorithm

• Set the starting values: q0, p0 and u0, and let k = 1;

• Start the k−th iteration which includes two successive sub-steps:

1. Optimize qk+1 by fixing pk and uk:

qk+1 := arg max
‖q‖

∞
≤1

Lc(q, p
k, uk)

= arg max
‖q‖

∞
≤1
〈q, f〉 − c

2

∥∥∥q − (div pk − uk/c)
∥∥∥
2
,

which is approximated by the projection

qk+1 = Proj‖q‖
∞
≤1(f/c+ (div pk − uk/c)) ; (3.27)

2. Optimize pk+1 by fixing qk+1 and uk:

pk+1 := arg min
p∈Cλ

1

2

∥∥∥div p− (qk+1 + uk/c)
∥∥∥
2
, (3.28)

which is the projection of (qk+1 + uk/c) to the convex set divCα.

• Update uk+1 by

uk+1 = uk + c (qk+1 − div pk+1) ; (3.29)

and let k = k + 1, repeat untill convergence.

is measured by the ratio:

ratio = |P (u∗)− P (uγ)| /P (u∗) .

For the comparisons to other state of art methods, the Peak Signal to Noise Ratio (PSNR)

between the ground truth and the outputs, i.e.

PSNR(u, v) = 10log10
2552

1
MN

∑
i,j (ui,j − vi,j)2

is measured, where ui,j and vi,j denote the pixel values of initial ground truth images and

denoised images respectively.
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3.4.1 Validation and Convergence

Synthetic Image

Given the synthetic image f(x) ∈ {0, 0.5, 1} (see figure (b) of Fig. 3.1), which is colorized

by red: 0, green: 0.5, blue: 1, we take it for the validation of Prop. 16. We set the penalty

parameter α = 1 and the augmented parameter c = 2. In fact, the projection-gradient step

(3.26) is by setting the step-size τ = 0.16. The experiment shows a fast convergence rate (see

figure (a)): we run the algorithm for 3000 iterations and converges at err ≃ 1× 10−8.

In this experiment, two rounding schemes are taken: {γ1 = 0.25, γ2 = 0.75} and {γ1 =

0.35, γ2 = 0.65}. For the computed result u∗, it gives the energy P (u∗) = 2938.7. The

two corresponding rounded results produce the energy P (uγ) = 2938.7 and 2938.7, i.e. both

rounding schemes give the same energy as the convex relaxed energy P (u∗)! Both energy ratios

are zero.

Gray Value Images

For the given gray-value images f(x) of the experiments, 256 gray-scale levels are naturally

encoded, i.e. f(x) ∈ {0, . . . , 255}.

The experiment results given in Fig. 3.2 show the denoising of the penguin image (see figure (a)

of Fig. 3.2), which is downloaded from the middleburry data set: http://vision.middlebury.edu/MRF.

The rounding scheme is simply taken by γ = {0.5, 1.5, . . . , 254.5}, i.e. it just gives the nearest

integer. For the following experiments where α = 1.3, 1, 0.5, Alg. 2 converges to a very low

error shown as Fig. 3.2 (see figure (e) of Fig. 3.2): 4× 10−11 (red line, for α = 1.3), 5× 10−9

(blue line, for α = 1), 7× 10−8 (green line, for α = 0.5).

The energy differences associated to the computated optimum u∗ and the rounded result uγ

for the three experiments are nearly zero in numerics.

The images processed in the experiments, shown in Fig. 3.3, are downloaded from the Berke-

ley segmentation dataset and benchmark. For all the experiments, we set α = 0.5 and the

experiment results show the ratios of energy differences are nearly zero!

Concerning the efficiency, all the experiments are made on a Linux desktop with AMD Athlon

64x2 5200+ and 3 Gb memory. For the computation of images (about 350× 500 pixels) given

in Fig. 3.3, we set the convergence error bound to be less than 10−4 and computation mostly

converges within 38 iterations (about 3 sec.).
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: (a) convergence rate (300 iterations); (b) the input image f(x) colorized by red: 0, green:

0.5, blue: 1; (c) the computed image u∗(x) where α = 1; (d) the image uγ rounded by

{γ1 = 0.25, γ2 = 0.75}; (e) the image uγ rounded by {γ1 = 0.35, γ2 = 0.65}; (f) the

difference between two rounded results.

3.4.2 Applications and Comparisons

In this section, we apply the propsoed algorithm to some real applications: impulsive image

denoising and image inpainting. In addition, we will also show comparisons to the method

proposed recently by [169].

Impulsive Denoising

For restoration of real images corrupted by impulsive (Salt and Pepper) noises, we first make

the experiment shown by Fig. 3.4, where a Dragonfly image (which has thin and elongated

details) is taken for image denoising: see the image without noise (figure (b)) and the noisy

image (figure (a)) where the Salt and Pepper noise with level 5% has been added. For different

choice of α which trades off the balance of keeping image details and extracting small-scale
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3 TV-L1 Image Approximation

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: (a) the input image f(x); figure (b) - (d) show the computation results when α = 1.3, 1, 0.5

respectively; (b) plot of convergences (1000 iterations): red line: α = 1.3, blue line: α = 1

and green line: α = 0.5; figure (f) - (h) show the rounding results when α = 1.3, 1, 0.5

respectively.

structures, e.g. noises. We achieve restoration images with slight differences as shown in figure

(c)-(e) of Fig. 3.4. Visually, the best result is computed by setting α = 2. The difference

between the input image f(x) and the restored image, given by figure (f) of Fig. 3.4, also

demostrates that detail losts of the image is very small.

In addition, we verify the performance of our method by several experiments with comparisons

to the algorithmic scheme proposed in [169]. The algorithm proposed in [169] involve a substep

where Chambolle-projections need to be performed iteratively. The proposed algorithm in this

thesis only need one projected-gradient descent step, which greatly improve the efficiency in

practice. Experiments show our algorithm is about 4 times faster than the algorithm in [169]

and the computation results are even better than [169].
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Figure 3.3: Four input images are shown in the first row; the computed images u∗(x) are given in the

2nd row respectively; the rounded images u∗(x) are shown in the 3rd row respectively.

In all experiments, we set α = 0.5.

We compare our restoration results with [169], with impulsive noise levels ranging from 10%

to 50%. As the comparison results given by Tab. 3.1, the restored images computed by our

proposed algorithm are better than [169] for experiments with low noise level; for the cases of

high noise level, our method still keeps higher PSNR values, i.e. more image details.

For the experiment of Fig. 3.6, we try high noise levels ranging from 50% to 80%. Results

show that our approach still get reasonable resutls, as shown in Fig. 3.6.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: (a)noisy image noise level 5%, (b)ground truth, (c)restorated image with α = 2, (d)restored

image with α = 1.0, (e)restored image with α = 0.5, (f)image difference between (a) and

(c).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 3.5: Boat denoising result with noise level from 10% to 50%, (256 × 256). (a)-(e)noisy image

with noise level from 10% to 50% respectively,(f)-(j)denoising results by our algorithm with

λ = 0.7, (k)-(o)denoising results by [169].

Noise Level Our Approach ALM of [169]

10% 39.61dB 35.04dB

20% 37.56dB 34.71dB

30% 35.65dB 33.90dB

40% 34.26dB 33.35dB

50% 33.58dB 32.83dB

Table 3.1: Comparison results by PSNR for the experiment (Fig. 3.5)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: Image denoising with noise levels from 50% to 80%: (a) noisy image with noise level

50%,(b)noisy image with noise level 60%,(c)noisy image with noise level 70%, (d)noisy

image with noise level 80%, (e)restored image for 50% noise level, (f)restored image for

60% noise level, (g) restored image for 70% noise level, (h) restored image for 80% noise

level. All experiments are computed by α = 1.1.
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Image Segmentation

In theory of discrete optimization, performing a minimum cut, a.k.a. min-cut, to the connected

weighted graph G := (V, E), together with two special nodes: the source s and the sink t and

associate edges, is a fundamental problem, which is of utmost interest in the applications of

computer vision and image processing, especially image segmentation. Taken such graph as a

single-source, single-sink flow network with flow capacities along edges, the min-cut problem

tries to find the minimum capacity passing through the flow network. It is well-known that

such min-cut problem is equal to the max-flow problem which is to find the maximum feasible

flow through such single-source, single-sink flow network by the max-flow and min-cut theorem

[64]. In addition, most fast min-cut solvers are designed in the manner of recovering max-flow

from the source, e.g. Edmonds-Karp algorithm [57] in O(V E2), push-relabel algorithm [69] in

O(V 2E).

In analogy with the graph based min-cut approach to image segmentation (see Fig. 4.1) where

max-flow presents most fast solvers, we study the min-cut problem over the spatially continuous

image domain, namely the continuous min-cut model

min
u(x)∈[0,1]

∫

Ω
(1− u(x))Cs(x) dx +

∫

Ω
u(x)Ct(x) dx + α

∫

Ω
|∇u(x)| dx . (4.1)

and introduce the new max-flow formulation, so-called the continuous max-flow model. Like

the classical max-flow and min-cut theorem, we prove the proposed continuous max-flow model

is dual and equivalent to the continuous min-cut problem (4.1). Meanwhile, we show the

nonconvex continuous min-cut version (1.12) can be solved exactly and globally by exploring

the new continuous max-flow model. We also revisit and explain the fundamental terminologies

of max-flow and min-cut over graphs, e.g. ’saturated flows’/’unsaturated flows’ and ’cuts’,and

present their close connections under the new variational perspective. For the interative image

87



4 Continuous Max-Flow Approach to Image Segmentation

segmentation which proposes the min-cut problem with supervision constraints, we show the

proposed continuous max-flow approach can easily adapt such constraints without introducing

any additional computational and memory load. In addition, the new fast continuous max-flow

based algorithm can be derived by standard convex optimization theories.

4.1 Max-Flow and Min-Cut: a Classical Viewpoint

1 2 3 4 5

t

s

t

s

Pt

Ps

P
x

Figure 4.1: Settings of Max-Flow and Min-Cut, Discrete (left) vs. Continuous (right)

Now we revisit basic conceptions of the classical max-flow and min-cut. Let the graph G :=

(V, E) consist of the node set V and the edge set E . The node set of graphs used in image

processing and computer vision usually includes all vertices of the 2-D or 3-D nested image

grid, together with two terminal nodes: the source s and the sink t, e.g. see the left graph of

Fig. 4.1. The edge set is comprised of two types of edges:

• Spatial edges (i, j) ∈ E stick to the given grid and link two neighbour stencils i, j ∈
V\{s, t}, except s and t. For the left graph of fig. 4.1, the spatial edges are the edges

between nodes {1, 2, 3, 4, 5}, e.g. (1, 2) (2, 3) (3, 4) (4, 5) (two arrows at each spatial

edge represent the two directions of the flow).

• Terminal edges, e.g. (s, i) or (i, t) where i ∈ V\{s, t}, which link the specified terminal

s or t to the grid node i. For the left graph of fig. 4.1, the terminal edges include the

source edges which link the source s and nodes {1, 2, 3, 4, 5}, e.g. (s, 1) . . . (s, 5), and

the sink edges which link nodes {1, 2, 3, 4, 5} and the sink t, e.g. (1, t) . . . (5, t) (the

arrows of the terminal edges indicate flows along these edges are directed which will be

discussed in more details at the following parts).

We assign the cost C(e) to each edge e, which is assumed to be nonnegative i.e. C(e) ≥ 0.
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4.1 Max-Flow and Min-Cut: a Classical Viewpoint

4.1.1 Min-Cut Formulation

Upon the above configurations, a s-t cut assigns two disjoint partitions to the node set V, i.e.

V = Vs
⋃
Vt , Vs ∩ Vt = ∅ ,

where Vs includes the source s and Vt includes the sink t. Obviously, it segments the spatial

grid vertices V\{s, t} into two disjoint groups: one relates to the source s and the other one

to the sink t (see the right graph of Fig. 1.4).

To each cut, its energy is the total cost of all edges e ∈ Est ⊂ E , whose end-points belong to

two different partitions Vs and Vt respectively. Hence the problem of min-cut is to find the s-t

cut whose cut-energy is minimal. It can be mathematically formulated as

min
Est⊂E

∑

e∈Est

C(e) . (4.2)

4.1.2 Max-Flow Formulation

On the other hand, each edge e ∈ E can be viewed as a pipe and its edge cost C(e) can be

taken as the capacity of this pipe, for which the maximal flow is allowed. For such a ’pipe

network’, the following constraints on flows are applied:

• Capacity of Spatial Flows p: for each spatial edge en = (i, j) ∈ E , i, j ∈ V\{s, t}, the

spatial flow p(en) along en is constrained by:

|p(en)| ≤ C(en) . (4.3)

Note that we consider the simplified case (4.3) to ease exposition, for which flow capacities

of both directions are the same 1. For the 2-D image grid with 4 connected neighbours,

(4.3) corresponds to the well-known anisotropic total-variation regularizar when C(en) is

constant (as discussed below).

• Capacity of Source Flows ps: for each edge (s, i) ∈ E , i ∈ V\{s, t}, the source flow ps(i)

is directed from s to i. Its capacity Cs(i) indicates

ps(i) ≤ Cs(i) . (4.4)

• Capacity of Sink Flows pt: for each edge (i, t) ∈ E , i ∈ V\{s, t}, the sink flow pt(v) is

directed from i to t. Its capacity Ct(i) indicates

pt(i) ≤ Ct(i) . (4.5)

1More general case may also be considered, where the flow capacities at the two directions are different.
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• Flow Conservation: at each node i ∈ V \{s, t}, incoming flows should be balanced

by outgoing flows, i.e. all the flows passing i including the spatial flows p(en) where

en := (N (i), i), the source flow ps(i) and the sink flow pt(i), should be constrained by

the following linear equality:

( ∑

en=(N (i),i)

p(en)
)
− ps(i) + pt(i) = 0 , (4.6)

where N (i) denotes the neighbour system of the node i ∈ V \{s, t}.

The max-flow problem over the above specified ’pipe network’ tries to push flow from the source

s as much as possible, which can be written as the following form:

max
ps,pt,p

∑

i∈V\{s,t}

ps(i) (4.7)

subject to the above conditions (4.3), (4.4), (4.5) and (4.6).

4.1.3 Duality btw. Max-Flow and Min-Cut

It is well-known that the max-flow problem (4.7) is equivalent to the min-cut problem (4.2)

by the max-flow and min-cut theorem [64]. The proof can be easily found in the classical

textbooks of combinatorial optimization [129, 105] or linear programming [162].

By the graph-cut terminologies, when a flow p(e) on the edge e ∈ E reaches its corresponding

capacity C(e), given in (4.3), (4.4) or (4.5), we call it ’saturated’; otherwise, ’unsaturated’.

Reaching the status with the maximum flow, flows are saturated uniformly on the cut edges

e ∈ Est whose two end-points locate in different partitions, i.e. the total flow is bottlenecked

by the ’saturated pipes’. We will revisit these conceptions under a variational perspective in

the following sections.

4.2 Min-Cut in Spatially Continuous Setting

Under the spatially continuous context, the min-cut problem amounts to finding the optimal

sub-domain Ωs ⊂ Ω such that

min
Ωs⊂Ω

∫

Ωs

Ct(x) dx +

∫

Ω\Ωs

Cs(x) dx + α |∂Ωs| (4.8)

where |∂Ωs| denotes the perimeter of Ωs.
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Given the indicator function u(x) ∈ {0, 1} of Ωs, the continuous min-cut formulation (4.8) can

be rewritten as

min
u(x)∈{0,1}

∫

Ω
u(x)Ct(x) dx +

∫

Ω
(1− u(x))Cs(x) dx + α

∫

Ω
|∇u(x)| dx , (4.9)

where the total-variation term of the indicator function u(x) measures the perimeter of Ωs, i.e.

|∂Ωs| =
∫

Ω
|∇u(x)| dx .

Chan et al [42, 124] proposed the convex relaxation formulation of (4.9), i.e. (4.1), which

relaxes the nonconvex binary constraint u(x) ∈ {0, 1} to the convex one u(x) ∈ [0, 1], and

proved that (4.1) solves the nonconvex optimization problem (4.8) or (4.9) exactly and globally.

It results in a global optimization framework for the well-known active contour/snake model

[91, 36] with region priors, e.g. active contour without edges [40]. Experiments in [124, 31]

showed the proposed convex relaxation scheme properly avoided the trap of local optima and

was reliable with respect to the given data and initial condition.

In this thesis, we also call (4.8) or (4.9) the nonconvex continuous min-cut model and (4.1) the

convex continuous min-cut model if necessary. Otherwise, all of them are called the continuous

min-cut model to ease reading, if not confused.

For the numerical solver of the continuous min-cut model (4.1), Chan et al [42, 124] applied a

PDE-descent scheme in numerics, together with an exact penalty term to enforce the pointwise

[0, 1] constraints at each iteration, which is sensitive to the chosen step-size and converges

slowly to the optimum.

Bresson et al [31] extended Chan et al’s work [42, 124] by applying the generalized weighted

total-variation term. They also proposed a fast algorithm for (4.1) based on its approximation:

min
λ,µ

{
α

∫

Ω
|∇λ(x)| dx +

1

2θ
‖λ− u‖2 +

∫

Ω
u(x)

(
Ct(x)− Cs(x)

)
dx + βP (u)

}
(4.10)

where

P (u) :=

∫

Ω
max{0, 2 |u− 0.5| − 1} dx

is an exact penalty function which forces u(x) to the interval [0, 1] pointwise. Clearly, when

θ > 0 is chosen small enough, it is expected that λ ≃ u and (4.10) solves (4.1) given u(x) ∈
[0, 1]. Therefore, the constrained convex optimization problem (4.1) is approximated by a

relatively simple unconstrained optimization formulation (4.10). Experiments show Bresson et

al’s algorithm is significantly superior than Chan et al’s in terms of accuracy and efficiency [31].
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In view of (4.10), the authors introduced a fast alternation-descent scheme which includes two

inner steps concerning the two variables λ and u within each outer iteration.

For the k-th iteration,

• fix uk and solve

λk+1 := argmin
λ

{
α

∫

Ω
|∇λ(x)| dx +

1

2θ
‖λ(x) − uk(x)‖2

}

which can be computed by the standard Chambolle’s projection algorithm [39];

• fix λk+1 and solve

uk+1 := argmin
u

{ 1

2θ
‖u(x) − λk+1‖2 +

∫

Ω
u(x)

(
Ct(x)−Cs(x)

)
dx + βP (u)

}

which can be simply solved in closed form by shrinkage (see Prop. 4 of [31]).

4.3 Continuous Max-Flow Model

Now we introduce the new continuous max-flow model and build up the duality between the

two models: continuous max-flow and continuous min-cut.

We take the following spatially continuous settings: let Ω be the closed 2-D image domain

and s, t be the source and sink terminals (see the right graph of Fig. 4.1); at each position

x ∈ Ω, we denote the connected source edge and sink edge by (s, x) and (x, t) respectively;

the source flow ps(x) is directed from the source s to x along the source edge (s, x) and

the sink flow is directed from x to the sink t along the sink edge (x, t); under this spatially

continuous perspective, the spatial neighbours of x densely distribute around x and the spatial

flows is given by the local flow field p(x) := (p1(x), p2(x)) around x; the flow excess at x is

evaluated by the divergence div p(x), which actually corresponds to its dicrete version at some

node i ∈ V\{s, t}:
∑

en=(N (i),i)

p(en) , ∀i ∈ V\{s, t} .

More technically, the divergence computes the volume density of the outward flux of a vector

field from an infinitesimal volume around the given point. It can be properly approximated by

the sum of flows over edges around the given node when the grid turns to be infinitely dense.
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4.3.1 Primal Model: Continuous Max-Flow

In view of the flow constraints (4.3), (4.4), (4.5) and (4.6) over the graph setting, we consider

similar constraints on the flows p(x), ps(x) and pt(x) at each x ∈ Ω:

|p(x)| =
√
p1(x)2 + p2(x)2 ≤ C(x) ; (4.11)

ps(x) ≤ Cs(x) ; (4.12)

pt(x) ≤ Ct(x) ; (4.13)

div p(x)− ps(x) + pt(x) = 0 ; (4.14)

where C(x), Cs(x) and Ct(x) give the concerning flow capacity functions and the flow conser-

vation condition at each x ∈ Ω is written in the form of (4.14).

Like the discrete max-flow model (4.7), we try to push flows from the source s as much as

possible which gives rise to the continuous max-flow by

max
ps,pt,p

P (ps, pt, p) =

∫

Ω
ps(x) dx (4.15)

subject to the flow constraints (4.11), (4.12), (4.13) and (4.14).

In this chapter, we also call (4.15) the primal model and all flow variables ps, pt and p primal

variables.

4.3.2 Primal-Dual Model

Introducing the multiplier u(x), which is also called the dual variable, to the linear equality

associated to the flow conservation condition (4.14), the continuous max-flow model (4.15)

can then be reformulated as its equivalent primal-dual model :

max
ps,pt,p

min
u

E(ps, pt, p;u) =

∫

Ω
ps(x) dx+

∫

Ω
u(x)

(
div p(x)− ps(x) + pt(x)

)
dx (4.16)

s.t. ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) .

We rearrange the primal-dual formulation (4.16) and write it by its another identical form:

max
ps,pt,p

min
u

E(ps, pt, p;u) =

∫

Ω

{(
1− u(x)

)
ps(x) + u(x)pt(x) + u(x) div p(x)

}
dx (4.17)

s.t. ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) .
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For the primal-dual model (4.17), the conditions of the minimax theorem (see e.g., [58] Chapter

6, Proposition 2.4) are all satisfied. That is, the constraints of flows are convex, and the energy

function is linear to both the dual variable u and the primal functions ps, pt and p, hence convex

l.s.c. for fixed u and concave u.s.c. for fixed ps, pt and p. This confirms the existence of at

least one saddle point, see [58]. It also follows that the min and max operators in the above

primal-dual model (4.17) can be interchanged, i.e.

max
ps,pt,p

min
u

E(ps, pt, p;u) = min
u

max
ps,pt,p

E(ps, pt, p;u) . (4.18)

Clearly, the minimization of the primal-dual problem over the dual variable u(x) gives back to

the continuous max-flow model (4.15), i.e.

P (ps, pt, p) = min
u

E(ps, pt, p;u) .

4.3.3 Dual Model: Continuous Min-Cut

Now we consider performing the optimization of the minimax formulation (4.18) in another

order, i.e. first maximize (4.17) over the flow functions ps, pt and p, in order to derive its

equivalent dual model :

min
u(x)∈[0,1]

D(u) =

∫

Ω

{(
1− u(x)

)
Cs(x) + u(x)Ct(x) dx+ C(x) |∇u(x)|

}
dx . (4.19)

Obviously, when C(x) = α is constant, (4.19) just leads to the continuous min-cut model (4.1)

proposed by Chan te al [42, 124], i.e.

min
u(x)∈[0,1]

D(u) =

∫

Ω

{(
1− u(x)

)
Cs(x) + u(x)Ct(x) + α |∇u(x)|

}
dx (4.20)

Therefore, we can prove

Proposition 17. The continuous max-flow model (4.15), the primal-dual models: (4.16) and

(4.17), and the continuous min-cut model (4.19) are equivalent to each other.

It is clear that the continuous max-flow model equals to the primal-dual models (4.16) and

(4.17). The proof of the equivalence between the primal-dual model (4.17) and the continuous

min-cut model (4.19) directly comes from the following observations:
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Optimization over Flow Functions ps and pt

In order to maximize the primal-dual model (4.17) over the flow functions ps and pt, let us first

consider the following maximization problem

f(q) = max
p≤C

p · q . (4.21)

Observe that if q < 0, p can be a negative infinity value in order to maximize the value p · q,
hence f(q) = +∞; it follows that q ≥ 0 so as to make the function f(q) meaningful:

{
if q = 0 , then p < C and f(q) reaches maximum 0

if q > 0 , then p = C and f(q) reaches maximum q · C
. (4.22)

Therefore, we can equally express f(q) as

f(q) = q · C , q ≥ 0 . (4.23)

Obviously, the maximization of q · p over p ≤ C in (4.21) provides a prototype to maximize the

primal-dual model (4.17) over the source flow function ps(x) and the sink flow function pt(x).

In view of (4.23), at each position x ∈ Ω we have

fs(x) = max
ps(x)≤Cs(x)

(
1− u(x)

)
· ps(x) ,

=⇒ fs(x) =
(
1− u(x)

)
· Cs(x) , 1− u(x) ≥ 0 . (4.24)

and

ft(x) = max
pt(x)≤Ct(x)

u(x) · pt(x)

=⇒ ft(x) = u(x) · Ct(x) , u(x) ≥ 0 . (4.25)

Optimization over Flow Function p

For the maximization of (4.17) over the spatial flow p(x), it is well-known that [68]

max
|p(x)|≤C(x)

∫

Ω
u div p dx =

∫

Ω
C |∇u| dx (4.26)

where the boundary condition pn|∂Ω = 0 is assumed in this work. By (4.24), (4.25) and (4.26),

the maximization of the primal-dual model (4.17) over flow functions ps(x), pt(x) and p(x)

leads to its equivalent dual model (4.19).
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4.3.4 Global and Exact Optimums of Min-Cut

Chan and Esedoglu [42] proved that the convex continuous min-cut model (4.1) solves the

nonconvex binary partition problem (4.8), i.e. (4.9)

min
u(x)∈{0,1}

∫

Ω
u(x)Ct(x) dx +

∫

Ω
(1− u(x))Cs(x) dx + α

∫

Ω
|∇u(x)| dx (4.27)

where u(x) gives the indicator function of some partition Ωs ⊂ Ω. Chan and Esedoglu [42]

showed that threshhold the optimum u∗(x) of the continuous min-cut model (4.1) by any value

γ ∈ (0, 1] gives a global optimum u∗(x) ∈ {0, 1} of (4.27), which solves (4.8) exactly at the

same time.

When C(x) is a generalized function, e.g. the edge detector C(x) = 1/(1 + |∇f |t) t ≥ 1,

the same result holds such that threshholding the optimum of (4.19) by γ ∈ (0, 1] results in a

global optimum of the concerning binary partition problem (see Theorem 2, Bresson et al [31]).

Now we focus on the case when C(x) = α is constant and show that the same result as above

can also be proved by means of the proposed continuous max-flow model (4.15). In contrast

to [42], our proof is simpler and more elegant. In addition, we show that every continuous

minimum cut of (4.8) contains the same energy as the proposed continuous max-flow model

(4.15). The results can be easily extended to a more general version of non-constant C(x).

Proposition 18. Let p∗s, p
∗
t , p

∗ and u∗(x) be the global optimum of the primal-dual model

(4.16) when C(x) = α. Then each γ−upper level set Sγ := {x |u∗(x) ≥ γ , γ ∈ (0, 1] },
γ ∈ (0, 1], of u∗(x) and its indicator function uγ

uγ(x) :=

{
1 , u∗(x) ≥ γ
0 , u∗(x) < γ

,

solves the nonconvex min-cut problem (4.8) globally and exactly.

Moreover, each cut energy given by Sγ has the same energy as the optimal max-flow energy,

i.e.

P (p∗s, p
∗
t , p

∗) =

∫

Ω
p∗s(x) dx .

Proof. Let p∗s, p
∗
t , p

∗ and u∗(x) be the optimal primal-dual pair of (4.16), then p∗s, p
∗
t , p

∗

optimize the max-flow problem (4.15) and u∗(x) optimizes its dual problem (4.1). Clearly,

the max-flow energy is

P (p∗s, p
∗
t , p

∗) =

∫

Ω
p∗s(x) dx (4.28)
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and satisfies

P (p∗s, p
∗
t , p

∗) = E(p∗s, p
∗
t , p

∗;u∗) = D(u∗) .

For the max-flow problem (4.15), the optimal flow variables p∗s, p
∗
t , p

∗ must suffice the flow

conservation condition (4.14), i.e.

div p∗(x)− p∗s(x) + p∗t (x) = 0 . (4.29)

Given γ ∈ (0, 1], let Sγ be the γ−upper level set of u∗(x) and uγ(x) be its indicator

function, i.e. uγ(x) ∈ {0, 1}.

In view of (4.22), for any point x ∈ Ω\Sγ , i.e. u∗(x) < γ ≤ 1, it is easy to see that

p∗s(x) = Cs(x) . (4.30)

Likewise, for any point x ∈ Sγ , i.e. u∗(x) ≥ γ > 0, we have

p∗t (x) = Ct(x) .

Then by (4.29), it follows that

p∗s(x) = Ct(x) + div p∗(x) , ∀x ∈ Sγ . (4.31)

Therefore, by (4.30) and (4.31), the total energy defined in (4.28), for each level set Sγ , is

P (p∗s, p
∗
t , p

∗) =

∫

Ω\Sγ

Cs(x) dx +

∫

Sγ

(
Ct(x) + div p∗(x)

)
dx

=

∫

Ω\Sγ

Cs(x) dx +

∫

Sγ

Ct(x) dx+

∫

Sγ

div p∗(x) dx

=

∫

Ω\Sγ

Cs(x) dx +

∫

Sγ

Ct(x) dx+ LSγ .

Observe the facts that the energy of the nonconvex min-cut problem (4.8) over the partition

Sγ , indicated by the given binary function uγ(x), is the same as the energy P (p∗s, p
∗
t , p

∗) of

the convex max-flow model (4.15) which is definitely global. It follows that Sγ solves the

nonconvex min-cut problem (4.8) globally.

In comparison to the proof of Chan and Esedoglu [42], our proof is simpler. It can also be easily

extended to the case when C(x) is not constant. Moreover, we further indicate each cut given

by Sγ shares the same energy of the corresponding max-flow model (4.15).
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4 Continuous Max-Flow Approach to Image Segmentation

Observe Prop. 18, the continuous max-flow problem (4.15) equally solves the segmentation of

Ω together with a minimal length, i.e. the minimum cut, where the optimal multiplier u∗ works

as the multiplier function to the flow conservation condition at the same time. This also gives

a clue to design the max-flow based algorithm (see Alg. 3) to compute the continuous min-cut

problem (4.19), which is in contrast to previous works, e.g. [124, 31, 72] etc.

4.3.5 Variational Interpretations of Flows and Cuts

In fact, analyzes of the function given in (4.21) provides a variational interpretation of the

close relationships between flows and cuts, which also recovers conceptions and terminologies

of graph cuts.

By means of variations, for any point p < C strictly, its variation directly leads to q = 0 as its

variation δp can be both negative and positive. On the other hand, for p = C, its variation

under the constraint gives δp < 0 and q > 0. In other words, if p < C, i.e. does not reach

its maximum which means ’unsaturated’ or can be increased, then q = 0 which leads to the

so-called ’cut’ in the sense of graph-cut.

In the same manner, through (4.12), it is easy to see that when the source flow ps(x) < Cs(x)

at x ∈ Ω, i.e. ’unsaturated’, we must have 1 − u(x) = 0, i.e. fs(x) = (1 − u(x))ps(x) = 0,

which means that at the position x, the source flow ps(x) has no contribution to the energy

function and the flow ps(x), from the source s to x, can be ’cut’ off from the energy function

of (4.17). The same holds for the sink flows pt, i.e. ’unsaturated’ flow pt(x) < Ct(x) can be

cut off and means u(x) = 0.

On the other hand, only ’saturated’ source and sink flows have contributions to the total energy.

For the spatial flows p(x), let CαTV := {p | ‖p‖∞ ≤ α , pn|∂Ω = 0 } . Obviously,

max
p∈Cα

TV

〈div p, u〉 = max
p∈Cα

TV

〈p,∇u〉 . (4.32)

The extremum of the inner product 〈p,∇u〉 in (5.46) just indicates the normal cone-based

condition [79] of ∇u such that

∇u ∈ NCα
TV

(p) . (4.33)

Then we simply have:

∇u(x) 6= 0 , if |p∗(x)| = α , (4.34a)

∇u(x) = 0 , if |p∗(x)| < α (4.34b)
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where p∗ is the optimal value maximizing (5.46).

In other words, for some local area around x ∈ Ω where the flow p∗(x) is ’saturated’, i.e.

|p∗(x)| = α, we must have ∇u(x) 6= 0, i.e. there exists jumps of u(x) locally, i.e. a ’cut’

locally. For some local area x ∈ Ω where the flow variable p∗(x) is not ’saturated’, i.e.

|p∗(x)| < α, we must have ∇u(x) = 0, i.e. u(x) is locally constant.

4.4 Supervised Continuous Max-Flow and Min-Cut

In this part, we study continuous max-flow and min-cut models with priori given supervision

constraints. In contrast to the continuous max-flow and min-cut introduced previously, the

supervised max-flow and min-cut computes the optimal partition subject to the user-input

constraints, e.g. some image pixels are labeled in advance as foreground or background. Such

supervised image partitioning problem can be modeled as the following supervised continuous

min-cut problem

min
S

∫

S\Ωf

Cs(x) dx+

∫

(Ω\Ωb)\S
Ct(x) dx+ α |∂S|

s.t. Ωf ⊂ S ⊂ Ω\Ωb (4.35)

where Ωf ,Ωb ⊂ Ω are the two disjoint regions marked a priori by the user: Ωf belongs to the

foreground or objects and Ωb belongs to the background.

The supervised continuous min-cut formulation can be equivalently written in terms of the

binary indicator function u(x) ∈ {0, 1}:

min
u(x)∈{0,1}

∫

Ω
(1− u(x))Cs(x) dx +

∫

Ω
u(x)Ct(x) dx + α

∫

Ω
|∇u(x)| dx (4.36)

subject to the labeling constraints

u(Ωf ) = 1 , u(Ωb) = 0 . (4.37)

Consider the above discussions in Sec. 4.3, we may simply adopt the constraints (4.37) into

the max-flow framework (4.15) by setting flow capacities as

Cs(Ωf ) = +∞ , Ct(Ωb) = +∞ . (4.38)

This says that the source flow ps(x) is not constrained at x ∈ Ωf and the sink flow pt(x) is

not constrained at x ∈ Ωb. In view of discussions of Sec. 4.3, the labeling constraints (4.37)
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directly follows. As in [28], this provides an easy way to couple the max-flow approach to the

min-cut problem with the supervised constraints (4.37).

In this section, we propose new supervised max-flow and min-cut models without such artificial

flow configurations (4.38), which implicitly encode the supervised information (4.37) and share

the same computational complexities and load as the unsupervised ones: (4.15) and (4.19).

Actually, it gives a new way to incorporate the overlap prior of regions in (4.35). It is also

flexible in case the supervised information is not given in a determinant way as (4.37): for

example the marked areas Ωf and Ωb may be provided in a ’probability’ manner:

u(Ωf ) = tf ∈ (0, 1) , u(Ωb) = tb ∈ (0, 1) (4.39)

where tf and tb are positive constants but less than 1. It is easy to see that manually modifying

flow capacities as (4.38) does not work in this case.

To motivate the following approach, we first define two indicator functions concerning the label

constraints (4.37):

uf (x) =

{
1, x ∈ Ωf

0, x /∈ Ωf
, ub(x) =

{
1, x ∈ Ω\Ωb
0, x /∈ Ω\Ωb

. (4.40)

Observe that Ωf and Ωb are disjoint, it follows that

uf (Ωb) = 0 , ub(Ωf ) = 1 . (4.41)

For the ’soft’ version of the constraints (4.39), we define

uf (x) =

{
tf , x ∈ Ωf

0, x /∈ Ωf
, ub(x) =

{
1, x ∈ Ω\Ωb
1− tb, x /∈ Ω\Ωb

. (4.42)

It is easy to see that the functions uf (x) and ub(x) describe the lower and upper bounds of the

probability of labeling the image pixel x ∈ Ω as foreground objective. This is further shown in

Sec. 4.4.3.

In the following discussions, we still focus on the case when (4.37) to ease the derivions. The

results can be simply extended to the case of (4.39).

4.4.1 Supervised Max-Flow Model

We propose the new supervised max-flow model as follows: Consider the source flow ps(x),

which flows from the source s to each pixel x ∈ Ω; when x ∈ Ωb, the flow should have
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no contribution to the energy as it passes through the known background pixel; otherwise,

it is valued as the full flow ps(x). Therefore, in view of (4.40) which implies ub(Ωb) = 0

and ub(Ω\Ωb) = 1, the total source flow ps in Ω is given by
∫
Ω ub(x)ps(x) dx. Concerning

the sink flow pt(x): it flows from each spatial pixel x to the sink t; likewise, in view of

(4.40) where uf (Ωf ) = 1 and uf (Ω\Ωf ) = 0 , we evaluate the total out-flow of pt in Ω as

−
∫
Ω uf (x)pt(x) dx.

In contrast to the continuous max-flow problem (4.15), we formulate the related supervised

max-flow model as the gap of flow-in and flow-out by

sup
ps,pt,p

PS(ps, pt, p) =

∫

Ω
ub(x)ps(x) dx−

∫

Ω
uf (x)pt(x) dx (4.43)

subject to the same flow constraints (4.11), (4.12), (4.13) and (4.14) on ps, pt and p. Likewise,

(4.43) is also called the primal model of the supervised max-flow / min-cut problem.

As the special case when no priori information about foreground and background is given, then

we have the two characteristic functions uf (x) ≡ 0 and ub(x) ≡ 1 for ∀x ∈ Ω. It is easy to

check that the supervised max-flow problem (4.43) coincides with the max-flow formulation

(4.15) without supervised constraints.

4.4.2 Supervised Primal-Dual Model

In analogue with (4.16), we can construct the equivalent primal-dual formulation of (4.43) by

introducing the multiplier function u

sup
ps,pt,p

min
u

ES(ps, pt, p;u) =

∫

Ω
ub(x)ps(x) dx−

∫

Ω
uf (x)pt(x) dx+

∫

Ω
u(x)

(
div p(x)− ps(x) + pt(x)

)
dx (4.44)

s.t. ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) ,

which can be equivalently be formulated by

sup
ps,pt,p

min
u

ES(ps, pt, p;u) =

∫

Ω
(ub − u)ps dx+

∫

Ω
(u− uf )pt dx +

∫

Ω
u(x) div p(x) dx

(4.45)

s.t. ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) .

As discussed in section 4.3.2, we have the same minimax relationship as (4.18), i.e.

sup
ps,pt,p

min
u

ES(ps, pt, p;u) = min
u

sup
ps,pt,p

ES(ps, pt, p;u) ,
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and at least one optimal primal-dual saddle point exist.

4.4.3 Dual Model: Supervised Min-Cut Model

Maximizing all the flow functions ps, pt and p in ES(ps, pt, p;u) of (4.45), in the same manner

as (4.24), (4.25) and (4.26), leads to the equivalent dual model to (4.43), also called the

supervised min-cut model :

min
u

DS(u) =

∫

Ω

(
ub − u

)
Cs dx+

∫

Ω

(
u− uf

)
Ct dx +

∫

Ω
C(x) |∇u(x)| dx (4.46)

s.t. uf (x) ≤ u(x) ≤ ub(x) .

In this paper, we focus on the case that C(x) = α, ∀x ∈ Ω, then (4.46) can be equally written

as

min
u

DS(u) =

∫

Ω

(
ub − u

)
Cs dx+

∫

Ω

(
u− uf

)
Ct dx+ α

∫

Ω
|∇u(x)| dx (4.47)

s.t. uf (x) ≤ u(x) ≤ ub(x) ;

or, observe ub and uf are given in advance, be shortened by

min
u

DS(u) =

∫

Ω
u
(
Ct − Cs

)
dx+ α

∫

Ω
|∇u(x)| dx (4.48)

s.t. uf (x) ≤ u(x) ≤ ub(x) .

We see that (4.48) is just the convex relaxed model of the nonconvex supervised min-cut

problem (4.36), where the subset ordering

Ωf ⊂ S ⊂ Ω\Ωb
in (4.35) is expressed by the inequality ordering

uf (x) ≤ u(x) ≤ ub(x) , x ∈ Ω .

Moreover, the applied inequality constraint of u in (4.48), in view of (4.40) and (4.41), just

gives

u(Ωf ) = 1 , u(Ωb) = 0 . (4.49)

This coincides with the priori information that Ωf is already labeled as foreground objects and

Ωb is labeled as the background. It follows that the inequality constraint of u(x) implicitly

encodes the priori supervision information.

In the special case when no priori information about foreground and background is given, i.e.

uf (x) ≡ 0 and ub(x) ≡ 1, ∀x ∈ Ω, it is easy to see that the supervised min-cut problem (4.47)

is equivalent to the continuous min-cut problem (4.1) such that u(x) ∈ [0, 1].
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4.4.4 Global Binary Supervised Min-Cuts

Now we prove that global optimums of the nonconvex supervised min-cut model (4.35) can

also be obtained by threshholding the global optimum u∗ of its convex relaxed version (4.47)

or (4.48), in a similar manner as Prop. 18.

Proposition 19. Let p∗s, p
∗
t , p

∗ and u∗(x) be a global optimum of the primal-dual problem

(4.44) with C(x) = α. Then each ℓ−upper level set Sℓ := {x |u(x) ≥ ℓ } of u∗(x) where

ℓ ∈ (0, 1], and its indicator function uℓ:

uℓ(x) :=

{
1 , u∗(x) ≥ ℓ
0 , u∗(x) < ℓ

,

is a global solution of the nonconvex supervised min-cut problem (4.35).

Moreover, each supervised cut given by Sℓ has the same energy as the supervised max-flow

energy, i.e.

PS(p
∗
s, p

∗
t , p

∗) =

∫

Ω
ub(x)p

∗
s(x) dx −

∫

Ω
uf (x)p

∗
t (x) dx .

Proof. Let p∗s, p
∗
t , p

∗ and u∗(x) be a global optimum of (4.44). Then p∗s, p
∗
t , p

∗ optimize the

primal problem (4.43) and u∗(x) optimizes (4.47) or (4.48). Meanwhile, the two energies

are equal, i.e.

PS(p
∗
s, p

∗
t , p

∗) = ES(p
∗
s, p

∗
t , p

∗, u∗) = DS(u
∗) .

By the definition of ub and uf in (4.40), the energy of (4.43) is

PS(p
∗
s, p

∗
t , p

∗) =

∫

Ω
ub(x)p

∗
s(x) dx −

∫

Ω
uf (x)p

∗
t (x) dx

=

∫

Ω\Ωb

p∗s(x) dx −
∫

Ωf

p∗t (x) .dx (4.50)

Concerning the supervised min-cut problem, the constraints of (4.49) simply indicates that

u∗(Ωf ) = 1 , u∗(Ωb) = 0 . (4.51)

Then each upper-level set Sℓ, ℓ ∈ (0, 1], of u∗:

Sℓ := {x |u∗(x) ≥ ℓ } ,

contains Ωf and excludes Ωb, i.e. we have

Ωf ⊂ Sℓ ⊂ Ω\Ωb . (4.52)
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As u∗(x) is the optimal multiplier, we must have the flow conservation condition (4.14),

i.e.

div p∗(x)− p∗s(x) + p∗t (x) = 0, a.e. x ∈ Ω. (4.53)

For any point x ∈ Sℓ\Ωf , where u∗(x) ≥ ℓ, it follows from (4.40) that u∗(x) > uf (x),

therefore

p∗t (x) = Ct(x) .

Then by (4.53), we have

p∗s(x) = Ct(x) + div p∗(x) , a.e. x ∈ Sℓ\Ωf . (4.54)

And for any point x ∈ (Ω\Ωb)\Sℓ, i.e. u∗(x) < ℓ, hence u∗(x) < ub(x) and it is easy to see

that

p∗s(x) = Cs(x) . (4.55)

Therefore, in view of (4.55) and (4.54), the total energy of (4.50) is

PS(p
∗
s, p

∗
t , p

∗) =

∫

(Ω\Ωb)\Sℓ

Cs(x) dx +

∫

Sℓ

(
Ct(x) + div p∗(x)

)
dx−

∫

Ωf

p∗(x)dx

=

∫

(Ω\Ωb)\Sℓ

Cs(x) dx +

∫

Sℓ\Ωf

Ct(x) dx+

∫

Sℓ

div p∗(x) dx

=

∫

(Ω\Ωb)\Sℓ

Cs(x) dx +

∫

Sℓ\Ωf

Ct(x) dx+ α
∣∣∣∂Sℓ

∣∣∣ ,

which obviously gives a solution uℓ of the nonconvex supervised min-cut problem (4.35).

The above binary solution uℓ is contained in the relaxed convex set u(x) ∈ [0, 1] and reaches

the globally optimal energy E∗. It follows that such binary solver is globally optimal.

4.5 Continuous Max-Flow Algorithm and Experiments

In this section, we propose the new algorithms for the continuous min-cuts (4.1) and (4.48)

based their respective max-flow formulations (4.15) and (4.43).

4.5.1 Continuous Max-Flow Based Algorithm

Now we consider the algorithm for the constrained optimization problem (4.15). The energy

formulation of (4.16) is just the lagrangian function of (4.15). To this end, we define its
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respective augmented lagrangian function as

Lc(ps, pt, p, u) :=

∫

Ω
ps dx+

∫

Ω
u
(
div p− ps + pt

)
dx− c

2
‖div p− ps + pt‖2 , (4.56)

where c > 0.

Therefore, we derive the algorithm, see Alg. 3, for the continuous maximal flow problem (4.15)

based on the augmented lagrangian method, see [21, 20, 138] for references. The labeling

function u is updated as the multiplier at each iteration.

The step (4.58) to update p(x) gives a projection problem, which can be easily implemented

by Chambolle’s algorithm [39]. In this work, we solve (4.58) by just one step of its projected-

gradient approximation:

pk+1
i,j = Proj|p(x)|≤α(p

k − β
(
∇(div pk − F k)

)
) , (4.57)

where β ∈ (0, 1/4]. Detailed numerical implementation of (4.57) can be found in the Appendix

7.2. This leads to a very fast implementation in numerics, which significantly outperforms the

state of art algorithms, e.g. Bresson et al’s [31], for the continuous min-cut problem.

4.5.2 Supervised Continuous Max-Flow Based Algorithm

Now we propose the algorithm for the supervision-constrained min-cut problem (4.48) based

upon its equivalent continuous max-flow formulation (4.43). Likewise, its equivalent primal-dual

formulation of (4.44) is obviously the lagrangian function of (4.43). We define its respective

augmented lagrangian function as

Lc(ps, pt, p, u) =

∫

Ω
ubps dx−

∫

Ω
ufpt dx+

∫

Ω
u
(
div p− ps + pt

)
dx

− c

2
‖div p− ps + pt‖2 .

where c > 0.

The supervised continuous max-flow based algorithm is stated in Alg. 4. The step (4.59) to

update p(x) gives a projection problem computed by Chambolle’s algorithm [39]. In this work,

we apply a single projection-descent step as (4.57) to implement Alg. 4 in a fast way (see the

Appendix 7.2).
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Algorithm 3 Multiplier-Based Maximal-Flow Algorithm

Set the starting values p1s, p
1
t , p

1 and u1, let k = 1 and start k−th iteration, which includes

the following steps, till convergence:

• Optimizing p by fixing other variables

pk+1 := arg max
‖p‖

∞
≤α

Lc(p
k
s , p

k
t , p, u

k)

= arg max
‖p‖

∞
≤α
− c
2

∥∥∥div p(x)− F k
∥∥∥
2

(4.58)

where F k is fixed.

• Optimizing ps by fixing other variables

pk+1
s := arg max

ps(x)≤Cs(x)
Lc(ps, p

k
t , p

k+1, uk)

:= arg max
ps(x)≤Cs(x)

∫

Ω
ps dx−

c

2

∥∥∥ps −Gk
∥∥∥
2

where Gk is a fixed variable and optimizing ps can be easily computed in a closed

form such that

ps(x) = min(Gk(x) + 1/c, Cs(x)) ;

• Optimizing pt by fixing other variables

pk+1
t := arg max

pt(x)≤Ct(x)
Lc(p

k+1
s , pt, p

k+1, uk)

:= arg max
pt(x)∈Ct(x)

− c
2

∥∥∥pt −Hk
∥∥∥
2
,

where Hk is a fixed variable and optimizing pt can be simply solved by

pt(x) = min(Hk(x), Ct(x)) ;

• Update u by

uk+1 = uk − c (div pk+1 − pk+1
s + pk+1

t ) ;

• Let k = k + 1 return to the k + 1 iteration till converge.

4.6 Experiments

We show two types of experiments for the proposed continuous max-flow / min-cut models:

unsupervised image segmentation and supervised image segementation. all the experiments are
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Algorithm 4 Multiplier-Based Supervised Max-Flow

Set the starting values p1s, p
1
t , p

1 and u1, let k = 1 and start k−th iteration, which includes

the following steps, till convergence:

• Optimizing p by fixing other variables

pk+1 := arg max
‖p‖

∞
≤α

Lc(p
k
s , p

k
t , p, u

k)

:= arg max
‖p‖

∞
≤α
− c
2

∥∥∥div p− F k
∥∥∥
2
; (4.59)

where F k is some fixed variable;

• Optimizing ps by fixing other variables

pk+1
s := arg max

ps(x)≤Cs(x)
Lc(ps, p

k
t , p

k+1, uk)

:= arg max
ps(x)≤Cs(x)

∫

Ω
ubps dx−

c

2

∥∥∥ps −Gk
∥∥∥
2
,

where Gk is a fixed variable and optimizing ps can be easily computed in a closed

form such that

ps(x) = min(Gk(x) + ub/c, Cs(x)) ;

• Optimizing pt by fixing other variables

pk+1
t := arg max

pt(x)≤Ct(x)
Lc(p

k+1
s , pt, p

k+1, uk)

:= arg max
pt(x)∈Ct(x)

−
∫

Ω
ufpt dx−

c

2

∥∥∥pt −Hk
∥∥∥
2
,

where Hk is a fixed variable and optimizing pt can be also simply solved by

pt(x) = min(Gk(x)− uf/c, Ct(x)) ;

• Update u by

uk+1 = uk − c (div pk+1 − pk+1
s + pk+1

t ) ;

• Let k = k + 1 return to the k + 1 iteration till converge.

made on a Linux desktop with AMD Athlon 64x2 5200+ and 3 Gb memory.
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4 Continuous Max-Flow Approach to Image Segmentation

(a) (b)

Figure 4.2: (a) Input Image, (b) the labeling function u∗(x) computed by Alg. 3 and its threshold by

u∗(x) ≥ 0.5 (red contour).

In view of Alg. 3 and Alg. 4, the update step of the labeling function u(x) at each iteration is

given by the function c (div pk+1−pk+1
s +pk+1

t ). Therefore, in all the experiments, we evaluate

the avarage difference of the labeling functions at two sequential iterations as the convergence

criterion, i.e.

errk = c

∫
Ω

∣∣∣div pk+1 − pk+1
s + pk+1

t

∣∣∣ dx
|Ω| . (4.60)

4.6.1 Validation of Algorithm Parameters

All the experiments in this section are performed on the same 400× 400 image f(x) shown in

Fig. 5.13, where the data terms of (4.1) are given as follows

Cs(x) = |f(x)− C1|p , Ct(x) = |f(x)−C2|p , p = 1 or 2

together with the same parameter setting: C1 = 0.9, C2 = 0.1, p = 1 and the penalty

parameter α = 0.75.

To validate the parameter settings of Alg. 3, we first try different choices of β = {0.10, 0.14,
0.16, 0.18, 0.19, 0.2, 0.21, 0.22, 0.24}, by the fixed augmented parameter c = 0.25 and error

bound ǫ < 5× 10−4 evaluated by (4.60). Experiment results show that around β ∈ [0.18, 0.21]

gives the best convergence result (with 8 iterations and 0.32 sec.), see Tab. 4.1. The first

graph of Fig. 4.3 shows the respective convergences, where the bold black line for β = 0.10,

the bold blue line for β = 0.19 and the bold red line for β = 0.24.
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(a) (b)

Figure 4.3: (a) Convergence results for β = {0.10, 0.14, 0.16, 0.18,0.19, 0.2, 0.21, 0.22, 0.24} by fixed

c = 0.25, where bold black: β = 0.10, bold blue: β = 0.19 and bold red β = 0.24.

(b) Convergence results for c = {0.1, 0.25, 0.35, 0.5, 0.65, 0.8, 1, 2, 3} by fixed β = 0.19,

where bold black: c = 0.1, bold blue: c = 0.25 and bold red c = 3.

Tab. 4.2 and the right graph of Fig. 4.3 show the experiment results for para. settings of

c = {0.1, 0.25, 0.35, 0.5, 0.65, 0.8, 1, 2, 3} by the fixed β = 0.19. It shows that aound

c = 0.25 gives the fastest convergence, e.g. 8 iterations and 0.31 sec. converges below the

error bound 5 × 10−4. The right graph of Fig. 4.3 presents respective convergence results,

where the bold black line for c = 0.1, the bold blue line for c = 0.25 and the bold red line for

c = 3.

Table 4.1: Validation for the step-size β when c = 0.25

β 0.10 0.14 0.16 0.18 0.19 0.20 0.21 0.22 0.24

Iter. 12 10 9 9 8 8 8 9 11

Time (sec.) 0.69 0.40 0.37 0.37 0.32 0.33 0.33 0.37 0.44

4.6.2 Unsupervised Image Segmentation

For image segmentation without user inputs, we adopt piecewise constant functions as the

image model: i.e. two grayvalues C1 and C2 are chosen priori for clues to build data terms:

Cs(x) = |f(x)− C1|p , Ct(x) = |f(x)−C2|p , p = 1 or 2
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4 Continuous Max-Flow Approach to Image Segmentation

Table 4.2: Validation for the augmented parameter c when β = 0.19

c 0.10 0.25 0.35 0.50 0.65 0.8 1 2 3

Iter. 15 8 9 10 11 12 15 20 24

Time (sec.) 0.64 0.31 0.38 0.41 0.43 0.48 0.60 0.76 0.92

together with the same parameter setting: C1 = 0.15, C2 = 0.6, p = 1 and the penalty

parameter α = 0.75.

Fig. 4.4 and Fig. 4.5 show two experiments. Each is computed by the proposed continuous

max-flow based method Alg. 3 and Bresson et al [31] for comparisons. For the experiment

shown in Fig. 4.4, we chose α = 0.4 and threshhold value ℓ = 0.5. Our method converges

to a result (see graphs at the second row of Fig. 4.4), which takes the value 0 or 1 nearly

everywhere. This is in contrast to the result by Bresson’s method (see graphs at the first row

of Fig. 4.4). For the experiment shown in Fig. 4.5, we chose α = 0.4 and threshhold value

ℓ = 0.02. Both results look quite the same, but our method converges significantly faster than

Bresson’s algorithm [31].

In contrast to Bresson et al [31], the proposed Alg. 3 converges within 13 iterations and

about 0.19 sec (the accuracy below 2 × 10−4). It greatly outperforms Bresson’s in terms of

convergence rate, see Fig. 4.6: Bresson’s (blue line) and ours (red line). In addition, our

algorithm is also reliable for a wide range of c.

4.6.3 Supervised Image Segmentation

For supervised image segmentation, we use the Middlebury data set [153] for experiments, see

images in Fig. 4.7. The corresponding data term, i.e. Cs(x) and Ct(x), is based on Gaussian

mixture color models of foreground and background and provided in advance. It is not required

for us to put very large flow capacities artificially at the marked areas Ωf and Ωb as proposed in

the supervised continuous max-flow method (4.43). This in contrast to graph-based supervised

image segmentation [167, 97, 30].

Here the tree-reweighted message passing method [167, 97] and α expansion method [30, 28]

are applied for comparisons. As we see, there are no visual artifact, like metrication errors, in

our results (see details of the results, e.g. the left-bottom pedal of the flower (middle column)).

110



4.6 Experiments

Figure 4.4: At this experiment, we chose α = 0.4 and ℓ = 0.5. Graphs of the first row show the results

by Bresson’s method: (left) computed λ∗(x), (middle) threshholded uℓ(x), (right) seg-

mented image. Graphs of the second row show the results by our method: (left) computed

λ∗(x), (middle) threshholded uℓ(x), (right) segmented image.
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4 Continuous Max-Flow Approach to Image Segmentation

Figure 4.5: At this experiment, we chose α = 0.02 and ℓ = 0.5. Graphs of the first row show

the results by Bresson’s method: (left) computed λ∗(x), (middle) threshholded uℓ(x),

(right) segmented image. Graphs of the second row show the results by our method: (left)

computed λ∗(x), (middle) threshholded uℓ(x), (right) segmented image.
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Figure 4.6: Comparisons of convergence: (left) for the experiment shown in Fig. 4.4, Bresson’s

method (blue line) converges much slower than the proposed continuous max-flow method

(4.15)(red line); (right) for the experiment shown in Fig. 4.5, Bresson’s method (blue line)

also converges much slower than the proposed continuous max-flow method (4.15)(red line).

113



4 Continuous Max-Flow Approach to Image Segmentation

Figure 4.7: 1st. row: The three given images, from the Middlebury data set, with pixels marked as

foreground (white) and background (black). 2nd row: computation result of λ∗ to each

image shown by color images, 0: blue and 1: red. 3rd row: the black-white segmentation

result by a threshhold of λ∗. 4th and 5th rows: respective results computed from

tree-reweighted message passing method [167, 97] and α expansion algorithm [30, 28].
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5 Convex Optimization Approach to

Potts Model

In this chapter, we discuss Potts model (1.14) to multi-class image partition especially in the

spatially continuous setting, which can be mathematically formulated by

min
{Ωi}ni=1

n∑

i=1

∫

Ωi

ρ(li, x) dx+ α

n∑

i=1

|∂Ωi| , (5.1)

s.t. ∪ni=1 Ωi = Ω , Ωk ∩ Ωl = ∅ , ∀k 6= l (5.2)

where ρ(li, x), i = 1, . . . , n, evaluates the cost of each label assignment li to the specified

position x ∈ Ω and |∂Ωi| measures the perimeter of each disjoint subregion Ωi ⊂ Ω, i =

1, . . . , n. Potts model (5.1) favors partitions of the given image domain Ω with the minimum

total data costs and total perimeter.

In this chapter, we study Potts model (5.1) by means of convex relaxation, namely the convex

relaxed Potts model which gives a nonsmooth convex optimization problem with complex

constraints. Previous approaches focus on computing the labeling functions or partitions by

tackling the resulted pixelwise simplex constraints directly, which leads to additional algorithmic

steps with the extra computational load, e.g. projection to the pixelwise simplex. In contrast

to these methods, we introduce two dual models to the concerned convex relaxed Potts model,

which result in two different fast convex optimization approaches: the smoothed entropy-

maximization method and the continuous max-flow method. Both approaches successfully

avoid directly tackling the nonsmoothness and hard constraints of the given convex relaxed

Potts model, and construct their respective fast solver in numerics.

115



5 Convex Optimization Approach to Potts Model

5.1 Convex Relaxation Approaches to Potts Model

Let ui(x), i = 1, . . . , n, denote the indicator function of the disjoint subdomain Ωi, i.e.

ui(x) :=

{
1 , x ∈ Ωi

0 , x /∈ Ωi
, i = 1, . . . , n

The perimeter of each disjoint subdomain can be evaluated by

|∂Ωi| =
∫

Ω
|∇ui| dx , i = 1 . . . n . (5.3)

The Potts model (1.14) can then be rewritten as

min
ui(x)∈{0,1}

n∑

i=1

∫

Ω

{
ui(x)ρ(li, x) + α |∇ui|

}
dx , s.t.

n∑

i=1

ui(x) = 1 , ∀x ∈ Ω (5.4)

where the constraints to ui(x), i = 1 . . . n, just emphasizes the segmentation principle (5.2) of

subdomains Ωi, i = 1 . . . n, i.e. each image pixel can be assigned by only one label from the

label set {l1, . . . , ln}.

Clearly, the Potts model (5.4) proposes a non-convex optimization problem due to the binary

configuration of each labeling function ui(x) ∈ {0, 1}, i = 1, . . . , n. The convex relaxed Potts

model [37, 108] proposes to relax such binary constraints to the convex interval ui(x) ∈ [0, 1],

i = 1, . . . , n, and approximates (5.4) by the reduced convex optimization problem:

min
u∈S

n∑

i=1

∫

Ω
ui(x) ρ(li, x) dx + α

n∑

i=1

∫

Ω
|∇ui| dx (5.5)

where S is the convex constrained set of u(x) := (u1(x), . . . , un(x)):

S = {u(x) | (u1(x), . . . , un(x)) ∈ △+ , ∀x ∈ Ω } , (5.6)

△+ is the simplex set, i.e.

for ∀x ∈ Ω ,
n∑

i=1

ui(x) = 1 ; ui(x) ∈ [0, 1] , i = 1 . . . n .

The computation result of the convex relaxed Potts model (5.5) gives an approximation to the

original Potts model (5.4) which proposes a multi-terminal ’cut’ to the given image domain Ω.

If the minimizer of (5.5) happens to be binary everywhere, it is definitely a global minimizer

of the original problem (5.4). However, unlike the two label problem (4.1), if the computed
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minimizer of (5.5) is not binary, there is no thresholding scheme which can be used to generate

the binary global minimizer of (5.4). Even if such a binary minimizer exists, (5.5) may result in

the non-binary solution. Zach et al [184] and Lellmann et al [108] proposed to use the indicator

function of the largest component u∗i (x) at each pixel x ∈ Ω as the approximate binary solution,

i.e. the thresholded solution was selected as

ũk(x) =

{
1 if k = argmaxi=1...n u

∗
i (x)

0 otherwise.
.

If the above maximizer is not unique, the convention of using the maximizer with smallest index

was suggested.

5.1.1 Previous Approaches

In [184], Zach et al proposed an alternating optimization way to solve (5.5) approximately

through

min
u,v

n∑

i=1

∫

Ω
vi ρ(li, x) dx +

1

2θ
‖u− v‖2 + α

n∑

i=1

∫

Ω
|∇ui| dx

subject to v(x) ∈ △+ for ∀x ∈ Ω. Obviously, when θ takes a value small enough, the above

convex optimization formulation approximates the convex relaxed Potts model (5.5) within

certain accuracy. Within each iteration, two substeps are taken to tackle the total-variation

term and explore the pointwise simplex constrained set △+ respectively, where one solve for

k = 1, ...

uk+1 = argmin
u

E1(u) =
n∑

i=1

∫

Ω

1

2θ
(ui − vki )2 + |∇ui| dx (5.7)

vk+1 = argmin
v∈S

E2(v) =
n∑

i=1

∫

Ω

1

2θ
(uk+1
i − vi)2 + αfivi dx, (5.8)

Here θ is some small parameter. The second problems can be optimized pointwise and has

closed form solutions. However, the first subproblems are TV optimization problems, and must

be solved by some iterative technique such as Chambolle’s algorithm [39].

Lellmann et al [108, 106] applied a Douglas-Rachford like splitting approach [118] to (5.5) along

with a variant of the total-variation term:
∫

Ω

√
|∇u1(x)|2 + . . . + |∇un(x)|2 dx .

After some derivations, such a scheme can be written

uk = argmin
u

1

2

n∑

i=1

∫

Ω
(ui − (zki − τfi))2 dx+ (τα)

∫

Ω
|∇ui| dx (5.9)
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wk = argmin
w∈S

1

2τ

∫

Ω
(w − (2uk − zk))2 dx, zk+1 = zk + wk − uk (5.10)

As we see, this scheme also involves a substep (5.9) where n TV minimization problems need

to be solved iteratively. The second subproblems (5.10) have closed form solutions and can

be solved efficiently. In contrast to (5.7), (5.8), such a scheme can be proved to convergence

provided the subproblems are solved exactly. As we see, both these algorithms require one outer

loop and one inner loop. Also in [106], the similar algorithm was applied to solve the given

convex relaxation problem within a suboptimality bound.

In [37, 131], Pock et al. introduced a variant implementation of the convex constraint u(x) ∈
△+, i.e. a tighter relaxation based on the multi-layered configuration, and this gave a more

complex constraint on the concerning dual variable p to avoid multiple counting. In addition,

a primal-dual projection-descent scheme is applied to approximate the minimum.

In this part, we call the continuous optimization problem (5.5) the primal formulation or primal

model and ui, i = 1, . . . , n, primal variables, in comparison to its equivalent convex models

discussed in the following sections.

5.2 Duality-Based Entropy Maximization Approach

In this section, we introduce an equivalent dual model to the studied convex relaxed Potts

model (5.5) and then build up the corresponding duality based approach. By analyzing the

dual formulation, sufficient conditions can be derived. They show that the relaxation is often

exact, i.e. there exists optimal solutions that are also globally optimal to the original nonconvex

Potts model (5.4).

In order to deal with the highly nonsmooth dual problem, we develop a smoothing method

based on the entropy-maximization regularizar. It leads to a novel smoothed primal-dual model

and suggests labelings with the maximum entropy. Analysis gives the approximation bound of

the proposed smoothing scheme. Such a smoothing method for the dual model also yields a

new thresholding scheme to obtain approximate solutions. An expectation maximization like

algorithm is proposed based on the smoothed version of the dual formulation, which is shown

to be superior in numerical efficiency compared to earlier convex relaxation approaches and

outperforms in various aspects, such as achieving lower energies and better visual quality.
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5.2.1 Equivalent Convex Models

Primal-Dual Model

By using integration by parts, it is well known that the total variation term in (5.5) can

equivalently be formulated as a maximization problem

α

∫

Ω
|∇u| dx = max

p∈Cα

−
∫

Ω
∇u · p dx = max

p∈Cα

∫

Ω
udiv p dx (5.11)

in terms of the dual variable p over the convex set Cα given by

Cα := {p : Ω 7→ R
2 | |p(x)| ≤ α , ∀x ∈ Ω ; pn|∂Ω = 0 } , (5.12)

see e.g. [115].

By inserting this expression, the primal problem (5.5) can be identically formulated as

min
(u1(x),...,un(x))∈△+

max
pi∈Cα

E(u, p) =
n∑

i=1

∫

Ω
ui(x)

(
ρ(li, x) + div pi(x)

)
dx . (5.13)

The variables pi i = 1, . . . , n are named as dual variables in this section. The min-max problem

(5.13) gives an equivalent primal-dual formulation or primal-dual model of (5.5), which can be

optimized over both the primal variables ui and the dual variables pi.

Note that the min and max operators in the above primal-dual model (5.13) can be interchanged

min
(u1(x),...,un(x))∈△+

max
pi∈Cα

E(u, p) = max
pi∈Cα

min
(u1(x),...,un(x))∈△+

E(u, p) (5.14)

because the conditions of the minimax theorem (see e.g., [58] Chapter 6, Proposition 2.4), also

[62]) are all satisfied. That is, Cα and ∆+ are convex, and the energy function E(u, p) is linear

in both variables u and p, hence convex l.s.c. for fixed p and concave u.s.c. for fixed u. This

also implies the existence of at least one saddle point, see [58].

Dual Model

We will now derive another equivalent formulation of (5.5) by optimizing the primal-dual model

(5.13) via the primal variable (u1(x), . . . , un(x)) ∈ △+ at each position x ∈ Ω.

Observe that for any vector q = (q1, . . . , qn) ∈ R
n and v = (v1, . . . , vn) ∈ △+, we have

min
(v1,...,vn)∈△+

n∑

i=1

viqi = min(q1, . . . , qn) , (5.15)
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Therefore, minimizing (5.13) over the primal variables ui(x) i = 1, . . . , n, at each position

x ∈ Ω, leads to

max
pi∈Cλ

ED(p) :=

∫

Ω

{
min(ρ(l1, x) + div p1, . . . , ρ(ln, x) + div pn)

}
dx . (5.16)

We call (5.16) the dual model of the convex relaxed Potts model (5.5). ED(p) is called the

dual energy functional.

By regarding d(li, x) = ρ(li, x) + div pi(x), x ∈ Ω, as the proximity measure of labeling x

as li, i = 1, . . . , n, the minimal distance indicates which label should be assigned at x by the

dual model (5.16). In this sense, the dual formulation (5.16) can be viewed as a generalized

center-based clustering formulation [159, 15], where fi(x) are the data and div pi(x) are the

centroids. In contrast to the classical clustering problem, the spatial centroids are formally

constrained by a convex set. Moreover, updating pi(x) over (5.11) minimizes the perimeter of

the spatial partitions Ωi, i = 1, . . . , n, implicitly! This gives a geometrical explanation of the

dual model (5.16) in the sense of minimal length clusterings.

Discussions and Comments

Now we have two equivalent optimization models, the primal-dual model (5.13) and the dual

model (5.16), to the primal optimization problem (5.5). Clearly, the energy functional EP (u)

of the primal model (5.5) is given by maximizing E(u, p) of the primal-dual problem (5.13)

over the dual variable p first, i.e.

EP (u) := max
pi∈Cλ

E(u, p)

Likewise, the energy functional ED(p) of the dual model (5.16) is resulted by minimizing E(u, p)

first over the primal variable u, i.e.

ED(p) := min
(u1(x),...,un(x))∈△+

E(u, p)

As a consequence, we always have

EP (u) ≥ E(u, p) ≥ ED(p) . (5.17)

Let (u∗, p∗) be the optimal saddle point to the primal-dual model (5.13)), then by (5.14) we

have

EP (u∗) = E(u∗, p∗) = ED(p∗) . (5.18)
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(u∗, p∗) is also called the optimal primal-dual pair.

The equivalences between these models implies that we can also solve the convex relaxed

Potts problem (5.5) by optimizing its dual model (5.16). In fact, when the n values (ρ(l1, x)+

div p∗1(x), ..., ρ(ln, x)+div p∗n(x)) at x ∈ Ω have a unique minimum, an optimal primal variable

u∗(x) of minu(x)∈∆+
E(u, p∗) at x can be uniquely recovered, in view of (5.15), by

u∗k(x) =

{
1 if k = argmini=1,...,n (fi(x) + div p∗i (x))

0 otherwise
, (5.19)

which is a binary indicator vector and exactly indicates the optimal labeling value of u∗ at

position x. Such a binary u∗(x) is globally optimal both to the convex relaxed Potts model

(5.5) and the nonconvex Potts model (5.4).

Based on the above consideration, we propose such a duality-based approach by maximizing

the dual functional ED(p), in contrast to previous works which tackle the primal unknowns

ui(x), i = 1, . . . , n, directly. Moreover, the dual model (5.16) also provides a powerful tool

to analyze the connections between the global optimums of the non-convex Potts model (5.4)

and its relaxed version (5.5).

5.2.2 Global Optimums of Convex Relaxed Potts Model

The existence of a global binary optimum of the convex relaxed formulation (5.4), i.e. the

exactness of (5.4), is still open. However, we can show (5.4) is exact under specified conditions.

To do this, we first state the relationship between a maximum p∗ of the dual model (5.16) and

a minimum u∗ of the primal model (5.4) as follows

Theorem 20. Given any maximum p∗ of the dual problem (5.16), the primal variables u∗ are

defined such that (u∗, p∗) is an optimal primal-dual pair of (5.13). If the n values (ρ(l1, x) +

div p∗1(x), . . . , ρ(ln, x) + div p∗n(x)), at some x ∈ Ω, have a unique minimum, e.g. ρ(lk, x) +

div p∗k(x), then u∗(x) at x must be valued

u∗k(x) = 1 and u∗i (x) = 0 , i 6= k . (5.20)

If the n values (ρ(l1, x) + div p∗1(x), . . . , ρ(ln, x) + div p∗n(x)) at some x ∈ Ω have k > 1

minimums, e.g. ρ(lj , x) + div p∗j(x) j ∈ T = {t1, . . . , tk}, then u∗(x) at x must satisfy

k∑

i=1

u∗ti(x) = 1 and u∗j (x) = 0 , j /∈ {t1, . . . , tk} . (5.21)
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Proof. Assume there exists a primal variable u∗ such that (u∗, p∗) is an optimal primal-

dual pair and u∗ does not satisfy (5.20) and (5.21) for all x ∈ Ω. Let x ∈ Ω be a point

where (5.20) or (5.21) are violated, then for some ε ∈ (0, 1], u∗(x) satisfies

∑

i∈T

u∗i (x) = 1− ε,
∑

i∈{1,...,n}\T

u∗i (x) = ε.

Let min2nd

i∈{1,...,n}(ai) denote the second smallest component of (a1, ..., an), then

∑

j∈T

u∗j (x)(ρ(lj , x) + div p∗j(x)) +
∑

i∈{1,...,n}\T

u∗i (ρ(li, x) + div p∗i (x))

=
∑

j∈T

u∗j(x) min
i∈{1,...,n}

(ρ(li, x) + div p∗i (x)) +
∑

i∈{1,...,n}\T

u∗i (x)(ρ(li, x) + div p∗i (x))

≥
∑

j∈T

u∗j (x) min
i∈{1,...,n}

(ρ(li, x) + div p∗i (x)) +
∑

j∈{1,...,n}\T

u∗j (x)
2nd

min
i∈{1,...,n}

(ρ(li, x) + div p∗i (x)),

(1− ε) min
i∈{1,...,n}

(ρ(li, x) + div p∗i (x)) + ǫ
2nd

min
i∈{1,...,n}

(ρ(li, x) + div p∗i (x)),

= min
i∈{1,...,n}

(ρ(li, x)+div p∗i (x)) + ε
( 2nd

min
i∈{1,...,n}

(ρ(li, x)+div p∗i (x)) − min
i∈{1,...,n}

(ρ(li, x)+div p∗i (x))
)

> min
i∈{1,...,n}

(ρ(li, x) + div p∗i (x)).

Therefore, integrating over all x ∈ Ω

E(u∗, p∗) =
n∑

i=1

∫

Ω
u∗i (x)(ρ(li, x)+div p∗i (x)) dx >

∫

Ω
min

i∈{1,...,n}
(fi(x)+div p∗i (x)) dx = ED(p∗),

a contradiction to the fact that (u∗, p∗) is an optimal primal-dual pair of (5.13).

Then it follows directly from Theorem 20 such that

Proposition 21. Let p∗ be one optimum of the dual problem (5.16). If the values (ρ(l1, x) +

div p∗(x), ..., ρ(ln, x)+div p∗(x)) have a unique minimum at all x in Ω, then the primal variable

u∗ given by (5.19) is a binary global optimum to the convex relaxed Potts problem (5.5) and

to the original non-convex Potts model (5.4).

Proof. By Prop (20) any primal-dual pair must satisfy (5.20) and (5.21). Since the primal

variable u∗ given by (5.19) is the only variable that satisfies these constraints for the given

p∗, it follows that (u∗, p∗) is an optimal primal-dual pair by the existence of such a pair.

Hence u∗ is an optimum of the primal problem (5.5).
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That u∗ is also a global optimum of (5.4) follows from the fact that the feasible set of the

convex relaxed Potts model (5.5) contains the feasible set of the nonconvex Potts model

(5.4). Therefore, any global binary optimum of the convex relaxed Potts model, which

is feasible in the nonconvex Potts model (5.5), is also globally optimal to the nonconvex

Potts model.

5.2.3 Smoothed Models

In order to solve the optimal labeling problem (5.5) through its nonsmooth dual model (5.16),

we propose a smoothing method in this section. It leads to the smoothed primal-dual model

and smoothed dual model, associated with (5.13) and (5.16). We will show the smoothed dual

model also gives rise to a simple and efficient numerical implementation to solve the studied

continuous Potts model.

Asymptotic Function and Smoothed Dual Model

We first introduce the asympototic function in order to derive the smoothing method. The

asymptotic function g∞ of a proper convex function g(u) is also a proper convex function,

positively homogeneous and defined in an approximation way [137, 159] as

g∞(z) = lim
s→0+

{gs(z) := sg(s−1z)} .

For example,

g(u) =

√
1 + ‖u‖2 , g∞(z) = ‖z‖ ;

and

g(u) = log

k∑

j=1

euj , g∞(z) = max
1≤j≤k

zj . (5.22)

We use an example to show the smoothing effects of the Log-Sum exponential function (5.22)

for the highly nonsmooth function max1≤j≤k zj . In Fig. 5.1, the nonsmooth function f(x) =

max(1 − x, x) is given in the first graph. We use the Log-Sum exponential function (5.22) to

approximate it by

fs(x) = s log(exp((1− x)/s) + exp(x/s)) ,

where s > 0. We see, by the two blue lines on the right graph, that the approximation becomes

better when s is chosen smaller.
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5 Convex Optimization Approach to Potts Model

Figure 5.1: The left graph, the black and bold line, gives the function f(x) = max(1 − x, x), in the

interval x ∈ [0, 1]. The right graph shows the the approximation of f(x) by the Log-Sum

exponential function fs(x) = s log(exp((1 − x)/s) + exp(x/s)) where s = 0.3: the upper

blue line, s = 0.05: the lower blue line.

Likewise, we apply (5.22) to approximate the min function in (5.16) by chosing a small parameter

s > 0. In this way, the nonsmooth optimization problem (5.16) can be approximated by

max
pi∈Cλ

EDs>0(p) := −s
∫

Ω

{
log

n∑

i=1

exp(
−ρ(li, x)− div pi

s
)
}
dx . (5.23)

We call the new optimization problem (5.23) the smoothed dual model in comparison to the

original dual one (5.16).

Equivalent Smoothed Models and Maximum Entropy Labelings

Actually, it is well known that the smooth log-sum function has an identical expression [137]:

Lemma 22. For any given µ ∈ △+ and h ∈ R
n,

log

n∑

i=1

µie
hi = max

u∈△+

{
〈u, h〉 −

n∑

i=1

ui log
ui
µi

}
.

Let µi = 1/n, i = 1 . . . n. By the results of lemma 22, we see that the smoothed dual model

(5.23) is just equivalent to

max
pi∈Cλ

min
u(x)∈△+

Es(u, p) =

∫

Ω

{ n∑

i=1

ui(ρ(li, x) + div pi) + s

n∑

i=1

ui log ui
}
dx . (5.24)
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5.2 Duality-Based Entropy Maximization Approach

In view of the primal-dual model (5.13), the energy functional in the optimization problem

(5.24) is just the energy functional of (5.13) plus an entropy-penalizing term. Such entropy

penalization provides a proper regularization or smoothing of the original function. We, likewise,

call the optimization problem (5.24) the smoothed primal-dual model.

Correspondingly, optimizing the dual variables p in (5.24) leads to the equivalent smoothed

primal model :

min
u(x)∈△+

EPs (u) =

∫

Ω

{ n∑

i=1

uiρ(li, x) + λ
n∑

i=1

|∇ui| + s
n∑

i=1

ui log ui
}
dx . (5.25)

Clearly, the positive value s here works as a penalization parameter. When s approaches 0,

the optimization problem (5.24) approaches the original primal-dual problem (5.13) and the

smoothed primal model (5.25) approaches its nonsmooth version (5.5). At this, the smoothed

primal-dual model (5.24) shares the same formulation of the maximum entropy clustering al-

gorithms [139]. To this end, we also call our smoothing approach given by (5.23) or (5.24) the

method of maximum entropy labelings.

Approximation Bounds of Smoothed Models

In fact, the Log-Sum exponential function gives the following approximation bound of the

maximum function max1≤i≤k zi [159]

Lemma 23. For each µ ∈ △+, the following inequalities hold,

k∑

i=1

µizi ≤ log
k∑

i=1

µie
zi ≤ max

1≤i≤k
zi .

Moreover, for s > 0

k∑

i=1

µizi ≤ lim
s→0+

{
s log

k∑

i=1

µie
zi/s
}
≤ max

1≤i≤k
zi .

The proof is referred to [159].

Then in view of Lemma 23, we have the approximation bound of the smoothed dual model:

Proposition 24. For any s > 0, the smoothed dual model (5.23) gives an approximation of

(5.16), which has the bound:

0 ≤ ED(p)− EDs>0(p) ≤ s log n |Ω|

where the functions ED(p) and EDs>0(p) are the energy functional of (5.16) and (5.23) re-

spectively, |Ω| is the area of the domain Ω.
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Proof. Define the function Gs(x) as

Gs(x) := −s log
{ n∑

i=1

exp(
−ρ(li, x)− div pi(x)

s
)
}
,

i.e. the component function of (5.23) to be integrated.

Let µi = 1/n and zi = −(ρ(li, x) + div pi(x)) for each x ∈ Ω. By Lemma 23, we have

n∑

i=1

ρ(li, x) + div pi(x)

n
≥ s log n+Gs(x) ≥ min

1≤i≤k
(ρ(li, x) + div pi(x)) .

Therefore,

min
1≤i≤k

(ρ(li, x) + div pi(x))−Gs(x) ≤ s log n ,

and

ED(p)− EDs>0(p) ≤ s log n |Ω| .

On the other hand, through lemma 22 and (5.24), we have

Gs(x) = min
u∈△+

n∑

i=1

ui(ρ(li, x) + div pi) + s

n∑

i=1

ui log ui .

Hence

0 ≤ −s
n∑

i=1

ui log ui ≤ min
1≤i≤k

(ρ(li, x) + div pi(x))−Gs(x) ;

then

ED(p)− EDs>0(p) ≥ 0 .

By Prop. 24, the approximation bound of the smoothed model (5.23) depends on the smoothing

parameter s. Hence by choosing s small enough, the smoothed dual model (5.23) solves the

original nonsmooth dual model (5.16) within an expected error bound.

5.2.4 Entropy-Maximization Based Algorithm

The smooth energy function considered in the smoothed dual model (5.23) provides the feasi-

bilty to build up an efficient and simple numerical scheme over dual variables pi(x), i = 1 . . . n.

In order to maximize the energy functional of (5.23), we propose a projected gradient algorithm,

see Alg. 5, which contains the same steps as the algorithms suggested in [39, 92].

The two main steps at each iteration can also be explained as the Expectation Maximization

(EM) steps:
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Algorithm 5 Projection-based Smoothing Algorithm

• Let δ > 0 be chosen as some suitable step-size and let p0i , i = 1, . . . , n be chosen as

the starting values, set k = 0 then start;

• Compute

uki (x) =
e

−ρ(li,x)−div pki (x)

s

∑n
i=1 e

−ρ(li,x)−div pk
i
(x)

s

, i = 1, . . . , n ; (5.26)

• Update pk+1
i , i = 1, . . . , n by

pk+1
i = ProjCα

(pki + δ∇uki ) , i = 1, . . . , n ,

where ProjCα
is the projection operator to the convex set Cα;

• Let k = k + 1 and restart k + 1 iteration until convergence. When convergence is

achieved, the primal variable u is recovered by

ul =

{
1 if l = argmini=1,...,n (fi + div pi)

0 otherwise.
.

• Expectation Step, compute the conditional probabilities by fixing the dual variables

pki , i = 1 . . . n:

uki (x) =
e

−ρ(li,x)−div pki (x)

s

∑n
i=1 e

−ρ(li,x)−div pk
i
(x)

s

, i = 1, . . . , n ;

• Maximization Step, maximize the energy functional by fixing uki , i = 1 . . . n:

pk+1
i = ProjCα

(pki + δ∇uki ) , i = 1, . . . , n .

The above maximization step is implemented by the following projected descent steps:

• Gradient-Descent Step, compute

p̃k+1
i = pki + δ∇uki , i = 1, . . . , n

where ∇uki is the gradient of the energy functional of (5.23)
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• Projection Step, compute the projection to the convex set Cα:

pk+1
i = ProjCα

(p̃k+1
i ) , i = 1, . . . , n .

This algorithm can also be seen as a forward-backward splitting algorithm. Convergence proofs

for such algorithms have been established in [45].

Implementation

In this work, we apply the mimetic finite-difference method to implement the two steps for the

proposed Alg. 5, i.e. gradient step and projection step:

• Gradient Step: At each iteration of the algorithm, given pi ∈ HS, fi ∈ HV , i =

1, . . . , n, we have

ωi(α, β) = exp
−fi(α, β) − (divhpi)(α,β)

s
, i = 1, . . . , n ,

then

ρi(α, β) =
ωi(α, β)∑n
i=1 ωi(α, β)

, i = 1, . . . , n ,

for each cell (α, β).

Therefore, the gradient of ρi i = 1, . . . , n is given by

di = ∇hρi , i = 1, . . . , n , (5.27)

and

p̃i = pi + δ di , i = 1, . . . , n .

• Projection Step: Recall the convex constraint set of the dual variables (5.12). In the

discrete setting, by the mimetic finite-difference method, any vector field p ∈ Cλ, at each

cell (α, β) should satisfy

ℓα,β(p) :=

√
1

2

(
(pb)2 + (pr)2 + (pt)2 + (pl)2

)
(α,β)

≤ λ .

The projection of any vector field p to the convex set Cλ can be approximated by the

following two steps:
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– Define ℓ̃(p) ∈ HV :

ℓ̃α,β(p) :=

{
λ/ℓα,β(p) when ℓα,β(p) ≥ λ
1 when ℓα,β(p) < λ

,

and define the discrete vector field q ∈ HS:

qt(α,β) := (ℓ̃(α,β) + ℓ̃(α,β−1))/2, q
b
(α,β) := (ℓ̃(α,β+1) + ℓ̃(α,β))/2

ql(α,β) := (ℓ̃(α,β) + ℓ̃(α−1,β))/2 , q
r
(α,β) := (ℓ̃(α+1,β) + ℓ̃(α,β))/2 ;

– p̃ := ProjCλ
(p) ∈ HS is computed by:

p̃t(α,β) := pt(α,β) q
t
(α,β) , p̃b(α,β) := pb(α,β) q

b
(α,β)

p̃l(α,β) := pl(α,β) q
l
(α,β) , p̃r(α,β) := pr(α,β) q

r
(α,β) .

When the algorithm converges to some optimal p∗i i = 1, . . . , n, evaluate ul by

ul(α, β) =

{
1 if l = argmini=1,...,n (fi + divhpi)(α,β)

0 otherwise
.

5.2.5 Experiments

We demonstrate the performance of the smoothed dual model by several experiments and

compare with established methods. Alpha expansion and alpha-beta swap [30] are widely

considered as state of the art for approximately minimizing the discrete version of (5.1) with

anisotropic total variation (TV) term. The method proposed in this paper instead minimizes the

more ideal energy functional with isotropic TV term, i.e. the euclidian length of the boundaries.

Because of this difference, energy comparison is not straight forward. However, there exists a

result which allows to approximate the euclidian curve length on a discrete grid. This result is

called the Cauchy-Crofton formula and was specialized for computer vision problems in [29].

In short, it gives a formula for edge weights between neighboring grid points such that the

discrete boundary length converges to the euclidean boundary length as the mesh size goes to

zero and the number of neighbors goes to infinity. This result can therefore be used to determine

weights on regularization edges in the discrete model, such that it correctly corresponds to the

continuous model. It is also used to compute the final energy of the outputs produced by the

different methods, i.e. it can be used to compare energy of the thresholded solutions. Secondly,

we evaluate quality and efficiency with the approaches of [184, 108].
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 5.2: (a) Input, (b) alpha expansion 4 neighbors, (c) alpha expansion 8 neighbors, (d) Pock et.

al. (e) dual model. (f)-(g): α = 40, (f) alpha expansion 8 neighbors, (g) dual model.
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(a) (b) (c)

Figure 5.3: Segmentation into 10 regions by using Potts model. (a) Input, (b) result graph cut-

based alpha-expansion [30] with "8-neighborhood system", (c) result our approach. The

full images and experiment are presented in Fig. 5.2.

Energy plots for all experiments can be found in Figure 5.10. The final energies of the different

methods are plotted as a function of the regularization parameter α. Some comparisons are also

made to the very recent convex relaxation approach [133] for minimizing the isotropic variant

of the energy functional, however an extensive experimental comparison with this approach is

out of the scope of this work. The relaxation [133] can be shown to be tighter, but is more

computationally complex, especially when the number of labels is large.

In experiments where the correct solution is known, we have also compared the percentage of

misclassified pixels, Table 5.1. The regularization parameter α has here been manually selected

for each method to minimize the percentage of misclassified pixels. The implementation of the

proposed method is made in matlab and the implementations of alpha expansion and alpha-beta

swap are made in C++ [30]. The input images in Figure 5.2 and 5.8 was first used by Pock et.

al. [132], and the input images in Figure 5.6 and 5.7 was first used by Lellmann et. al. [108].

Qualitative evaluation

In Figure 5.2, it presents the full experiments on the flower image. 10 labels/phases have been

used, with color data fidelity

ρ(li, x) =
3∑

j=1

|Ij(x)− cji |, i = 1, ..., 10, (5.28)

where {ci}10i=1 labeled by li, i = 1 . . . 10, are predefined color vectors.
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(a) (b) (c) (d) (e)

Figure 5.4: Experiment 1: (a) Input, (b) ground truth, (c) alpha expansion, (d) alpha-beta swap, (e)

dual model. Size 100× 100.

(a) (b) (c) (d)

Figure 5.5: Experiment 2: (a) Input, (b) ground truth, (c) alpha expansion, (d) dual model. Size:

100× 100.
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(a) (b) (c) (d) (e) (f)

Figure 5.6: Experiment 3: (a) Input, (b) ground truth, (c) alpha expansion, (d) alpha-beta swap, (e)

Lellmann et. al., (f) dual model. Size: 32× 32.

In Figure 5.2 (b)-(g) a low regularization (α = 10) has been chosen. In Figure 5.2 (f)-(e),

a higher regularization (α = 40) is used. Alpha expansion and alpha beta swap leads to

metrication errors, which is particularly visible with 4 neighbors and low regularization (b) and

8 neighbors and high regularization (f). In addition artifacts are introduced as the energy is

not minimized exactly, see e.g. the transition between flower and sky. In terms of energy,

the smoothed dual model outperforms the graph cut based approaches, see Figure 5.10 (a),

especially when α is large. The results in the introduction, Figure 5.3, were generated with the

largest α in the energy plot. In Figure 5.2 (c) a comparison with the recent method of Pock

et. al. is made. Their method seems to recover almost integer valued solutions up to some

blurring of the boundaries.

Some artificial examples are presented next in experiment 1-4, Fig. 5.4 - 5.7. The leftmost

gray scale image I is to be classified into 4 classes by using the L1 norm in the data fidelity

term

ρ(li, x) = |I(x)− ci|, i = 1, ..., 4, (5.29)

where {ci}4i=1 labeled by li, i = 1 . . . 4, are predefined real values. We observe that in exper-

iment 1,2 and 4 the new method with s = 0.01 outperforms alpha expansion and alpha-beta

swap implemented with 4 neighbors, both in terms of visual quality and number of misclassified

pixels (Table 5.1). In experiment 3, alpha expansion performs best. This is due to the fact that

the correct solution only consists of horizontal boundaries, which are favored by the anisotropic

4-neighborhood model. However, the proposed method outperforms alpha-beta swap and the

primal model for this example. In experiment 4, where the boundaries are diagonal, the dual

model performs best. For energy plots, see Figure 5.10, where we also have used 8 neighbor-

hoods in the discrete models. In terms of energy, our approach performs about equally well as

alpha expansion for these two examples. Observe also that our approach can obtain solutions

of lower energy than the approaches [184, 108]. This is particularly visible in Figure 5.10(c).
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(a) (b) (c) (d) (e) (f)

Figure 5.7: Experiment 4: (a) Input, (b) ground truth, (c) alpha expansion, (d) alpha-beta swap, (e)

Lellmann et. al., (f) dual model. Size: 32× 32.

The advantage of the smoothing is illustrated in the next example, Figure 5.8, where we want

to recover a triple junction by filling in the gray area. The data term is given by ρ(li, x) = 0 for

i = 1, 2, 3 inside the gray disk, and by the color distance (5.28) outside the gray disk. This is a

typically difficult example as the data term is equal for all labels. The global minimum of Potts

model will fill in the gray area such that the total length of the boundaries between the labels are

minimized, i.e. the boundaries meet with 120 degree angles in the center. In this example we

expect that for the non-smooth model (ρ(l1, x)+div p∗1(x), ..., ρ(l3, x)+div p∗3)) does not have

a unique minimum for some points inside the gray area, which makes it difficult to determine the

label at such points. However, for the smooth model a unique minimum can be obtained at each

point. The final result is shown in Figure (5.8), where we also compare with other methods.

The difference between the components of (ρ(l1, x) + div ps1(x), ..., ρ(l3 , x) + div ps3)) is small

near the center of the image, hence it is difficult to verify whether the reconstructed solution is

also globally optimal to the original problem, although it can be verified visually, since the global

solution is known. As seen in the following subfigures, the approach of Lellmann et. al. does

not recover a binary solution. Alpha expansion yields a binary, but incorrect result, Figure (5.8)

(d). It can easily be seen geometrically that this is a local optimum, i.e. no alpha expansion

move can yield a result of lower energy. We also compare with the convex relaxation of Pock

et. al. [132], who first tested their method on this image. As can be seen, they are not able to

recover the integer valued global minimum, although they are close for this particular example.

After thresholding, they are also able reconstruct the triple junction. Numerical calculations

for triple junctions have also been tested in [109] showing that the piecewise constant level set

method is able to produce 120 degrees for the junctions.

Figure 5.11 (b) shows the result of 4 class segmentation of a brain MRI image. One would like

to classify the input image in Figure 5.11 (a) into the classes: background, cerebrospinal fluid,

gray matter and white matter. For this example we have used the Mumford-Shah model with
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(a) (b) (c) (d) (e)

Figure 5.8: (a) Input, (b) Lellmann et. al., (c) Pock et. al., (d) Alpha expansion (e) dual model

L2 data term

ρ(li, x) = |I(x)− ci|2 , i = 1, ..., 4.

In order to estimate the optimal constant values {ci}ni=1, we alternate optimization with respect

to {ci}ni=1 and the labeling function as described in more details in [11]. This algorithm finds

a local minimum with respect the constant values. For energy plots, see Fig. 5.10.

The positive parameter s controls how well the dual model is approximated. The lower s is

the better the dual model is approximated. We found that setting s = 0.01 or s = 0.005

is sufficient and often optimal: setting s lower does not seem to lower the energy of the

binary result. This indicates there is a certain benefit of the smoothing in connection with the

thresholding scheme. This benefit can also be observed in the energy plots of Figure 5.10: we

can obtain binary solutions of lower energy than the approaches of [184, 108].

Table 5.1: Percentage of misclassified pixels for experiment 1-4 (α-expansion and α − β-swap imple-

mented with 4 neighborhood system)

α-exp α− β-swap Lellmann et. al. dual

Experiment1 8.89 6.12 - 5.51

Experiment2 1.17 1.17 - 1.06

Experiment3 7.42 15.72 12.30 11.72

Experiment4 6.64 7.23 6.25 5.86
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Figure 5.9: Energy plot as a function of regularization parameter α of binary solutions obtained by each

method. Red: smoothed dual model, black dotted: alpha expansion 8 neighbors, light blue:

alpha expansion 4 neighbors, green +: alpha-beta swap 8 neighbors, blue x: Zach et. al.

[184]. (a) Flower, (b) brain (c)-(d) Experiment 3 and 4. In all experiments the smoothed

dual model (red) performs better than or as good as competitive approaches. Fig (a) is a

typically difficult example with a large number of labels, where the smoothed dual model

clearly performs best.
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Figure 5.10: Convergence rate for flower image. Solid: percentage of misclassified pixels as a function of

the iteration count for the smoothed dual model. Dotted: percentage of misclassified pixels

as a function of the outer iteration count for the Douglas-Rachford splitting approach.

Evaluation of efficiency and convergence

We will now compare the cpu time and convergence with the approaches [184, 108]. In order

to deal with the simplex constraint in the primal optimization problem (5.5), an alternating

optimization approach was used in [184] where each iteration includes two substeps (5.7) and

(5.8). In [108] a Douglas-Rachford splitting scheme was applied to deal with the simplex

constraint, see (5.9) and (5.10). As we see, both these schemes require one outer loop and

one inner loop. In contrast, the simplex constraint is inherent in our dual formulation, therefore

only one loop is enough. Furthermore, each iteration of this loop has a computational cost

approximately equal to one inner loop iteration of [184, 108]. When θ is low, the problem is

solved with high accuracy, but more iterations are required. Therefore, one could say θ plays the

same role as the smoothing parameter s in our approach. When s is low, the relaxed problem

is solved with higher accuracy, but more iterations are required as the time step size δ depends

Table 5.2: Number of iterations to reach exact solution

Zach et. al. Douglas Rachford dual

Experiment 3 1178 (× 30) 610 (× 30) 481

Experiment 4 1504 (× 30) 540 (× 30) 425
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(a) (b)

(c) (d)

Figure 5.11: (a) Input, (b) alpha expansion 4 neighbors, (c) alpha expansion 8 neighbors, (d) dual

model. Size: 709× 591.

on s to have stability. Trial and error indicate that this dependency is given by δ ≤ 1
2s when

images are scaled between 0 and 1. The approaches [108, 184] require more parameters, like

the outer time step θ, inner time step, accuracy of solving inner problem etc. We have done

our best to optimize these parameters such that the algorithms converge as fast as possible.

Convergence is measured as the number of iterations required to reach the exact thresholded

solutions. Since there are finitely many possibilities for such thresholded solutions, converge

will occur in a finite number of steps. The exact solutions are determined by running each

method for 5000 iterations. The iteration counts for the experiments in Figure 5.6 and 5.7

are shown in Table 5.2. Around 400 iterations are required for the smoothed dual model. The

Douglas-Rachford method requires slightly more outer iterations, but also contains an inner loop

for each such outer iteration. As indicated in the parenthesis, the inner problems are solved

138



5.3 Continuous Max-Flow Approach

approximately by 30 iterations of Chambolle’s algorithm. Overall our approach is therefore

significantly faster. The splitting approach (5.7) (5.8) falls even further behind. The flower

image in figure 5.10 is larger (508× 336), hence such a pixel-wise termination criterion is more

strict. Figure 5.10 shows the percentage of incorrect pixels compared to the exact solution, as

a function of the iteration count for the dual model (solid) and the outer iteration count of the

Douglas-Rachford splitting approach (dotted). In this example the dual model also outperforms

the Douglas Rachford scheme in terms of outer iterations. After 70 iterations, more than 99%

of the pixels have reached steady state. After 300 iterations more than 99.8% have reached

steady state.

Comparison with graph cut based alpha expansion and alpha beta swap is more difficult. We

have used the highly optimized c++ implementation [30, 28] of these methods, while the algo-

rithm for the dual model is implemented in a simple matlab program. There has recently been

much effort on comparing continuous and discrete (graph cut) techniques in computer vision,

see e.g. [93] for an extensive discussion about two phase partitioning problems. Continuous

convex optimization techniques consist mainly of floating point matrix/vector arithmetic, which

is highly suited for massive parallel implementation on GPU. In contrast, combinatorial max-flow

algorithms have a much more serial nature. In this regard, continuous convex optimization has

been shown to be faster [93]. This is especially evident in 3D. The development of processor

technology is expected to be largely of the parallel aspect in the future. Hence we see our work

as more suitable for current and future generations of hardware. Unfortunately, we don’t have

the resources to implement our method in such a parallel manner on GPU. We can mention

that Zach et. al. implemented their algorithm on GPU and thereby claimed to beat the graph

cut based approaches in terms of efficiency by a factor of 30. The cpu times for our simple

matlab implementation are as follows: For the 709× 591 brain image convergence was reached

in 1 minutes and 32 seconds for our implementation. For the 32× 32 images in Figure 5.6 and

5.7 convergence averaged around 2.5 seconds. For the 100× 100 images in Figure 5.4 and 5.5

convergence took 10.21 and 4.68 seconds respectively. Due to the extreme amount of noise

on these small images the regularization parameter must be set very high, which increases cpu

time compared to images of the same size with lower noise level.

5.3 Continuous Max-Flow Approach

In this section, we propose the new continuous max-flow formulation and prove it is equivalent

to the convex relaxed Potts model (5.5) in terms of primal and dual. Similar as introduced
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5 Convex Optimization Approach to Potts Model

Figure 5.12: Continuous configuration of max-flow with n labels.

in the continuous max-flow and min-cut models (see Chapter. 4), we can also provide a new

variational perspective of ’flows’ and ’cuts’.

Comparing to the entropy-maximization method introduced in the previous section, the new

continuous max-flow approach solves the convex relaxed Potts model (5.5) exactly in stead of

its smoothed version.

5.3.1 Continuous Max-Flow Model

Spatially Continuous Configurations

We propose the continuous configuration of the new max-flow model with n labels, see Fig.

??:

1. n copies Ωi, i = 1, . . . , n, of the image domain Ω are given in parallel;

2. For each position x ∈ Ω, the same source flow ps(x) tries to stream from the source s

to x at each copy Ωi, i = 1, . . . , n, simultaneously, i.e. the source flow field ps(x) is the

same for each Ωi, i = 1, . . . , n;

3. For each position x ∈ Ω, the sink flow pi(x) is directed from x at each copy Ωi, i =

1, . . . , n, of Ω to the sink t. The sink flow fields pi(x), i = 1, . . . , n, may be different to

each other;

4. The spatial flow field qi(x), i = 1, . . . , n, is defined within each Ωi, i = 1, . . . , n.
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5.3 Continuous Max-Flow Approach

Continuous Max-Flow Model

Under such a contiuous setting, we define the constraints of flows pi(x) and qi(x), at x ∈ Ω,

as follows:

|qi(x)| ≤ Ci(x) , pi(x) ≤ ρ(li, x) , i = 1 . . . n ; (5.30)

(
div qi − ps + pi

)
(x) = 0 , i = 1 . . . n . (5.31)

Note: there is no constraint for the source flow ps(x). (5.30) gives the flow capacity constraints.

The equality constraint (5.31) is anologous to the flow conservation condition of graph cuts

such that div qi(x) corresponds to the excess of the spatial flow at each image pixel x of Ωi,

i = 1 . . . n.

We formulate the continuous max-flow model, over all flows ps(x), p(x) := (p1(x), . . . , pn(x))

and q(x) := (q1(x), . . . , qn(x)), as follows:

max
ps,p,q

{
PML(ps, p, q) :=

∫

Ω
ps(x) dx

}
(5.32)

subject to (5.30) and (5.31).

Preliminary Remarks and Connections

The continuous max-flow model (5.32) tries to perform the maximization of the total source

flow ps(x) over the whole image domain Ω subject to certain flow capacity and conservation

conditions. It is easy to notice that, in view of the flow conservation condition (5.31), at the

same place x of each Ωi, i = 1 . . . n, we have

ps(x) = div qi(x) + pi(x) , i = 1 . . . n . (5.33)

Observe the righthand of (5.33) and the flow capacity constraints given in (5.30), ps(x) is

thus constrained and should be consistent to all the n flow configurations of div qi(x) + pi(x),

i = 1 . . . n, at x. It naturally boils down to

ps(x) = min
(
div q1(x) + p1(x), . . . ,div qn(x) + pn(x)

)
, ∀x ∈ Ω . (5.34)

In this regard, we can prove

Proposition 25. The proposed continuous max-flow model (5.32) is equivalent to

max
|qi(x)|≤Ci(x)

∫

Ω

{
min

(
ρ(l1, x) + div q1(x), . . . , ρ(ln, x) + div qn(x)

)}
dx . (5.35)
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Proof. Following the result (5.34), the continuous max-flow model (5.32) can be equally

reformulated by

max
p(x),q(x)

∫

Ω

{
min

(
p1(x) + div q1(x), . . . , pn(x) + div qn(x)

)}
dx

subject to the flow capacity constraints (5.30).

Given u(x) := (u1(x), . . . , un(x)) ∈ S where S denotes the piecewise simplex constraint

(5.6), the above formulation can then be rewritten as

max
p(x),q(x)

min
u(x)

∫

Ω

{ n∑

i=1

ui(x)
(
pi(x) + div qi(x)

)}
dx . (5.36)

Then it is easy to see that the maximization over pi(x) ≤ ρ(li, x), i = 1 . . . n, is consistent

to the constraint u(x) ∈ S. By simple variation computations over p(x) and u(x), (5.36)

just amounts to (5.35).

The result (5.35) of Prop. (25) simply discovers the nonsmooth dual model (5.16) introduced

in Sec. 5.2, when Ci(x) = α are constant.

In addition, observing the conclusion (5.34), we can regard each image copy Ωi, i = 1 . . . n,

together with the constrained sink flow field pi(x) and the spatial flow field qi(x) given in (5.30),

as a ’filter’ Fi whose filtering capacity at x ∈ Ω is constrained by div qi(x) + pi(x) along with

(5.30), i.e. the passing source flow ps(x) at each x does not overflow the minimal flow allowed

by the n ’filter’ configurations. Then one can explain the continuous max-flow model (5.32)

such that all the filters Fi, i = 1, . . . , n, are layered one by one and the source flow ps(x) tries

to pass such a stack of such ’filters’ in one time. It is obvious that ps(x) is bottlenecked by

the minimum capacity of div qi(x) + pi(x), i = 1 . . . n. In such a ’filter’ configuration, (5.32)

aims to maximize the total flow passing through this ’filter’ set.

In the following section, we introduce the equivalent representations of the continuous max-flow

formulation (5.32) and show its equivalent dual formulation just amounts to the convex relaxed

Potts model (5.5) when Ci(x) = α are constant.

142



5.3 Continuous Max-Flow Approach

5.3.2 Equivalent Primal-Dual Formulation

By the introdution of the multiplier functions ui(x), i = 1 . . . n, to the n flow conservation

equalities (5.31), then we have the equivalent primal-dual model of (5.32) as follows:

max
ps,p,q

min
u

{
E(ps, p, q;u) :=

∫

Ω
ps dx +

n∑

i=1

∫

Ω
ui(div qi − ps + pi) dx

}
(5.37)

s.t. pi(x) ≤ ρ(ℓi, x) , |qi(x)| ≤ Ci(x) ; i = 1 . . . n

where u(x) := (u1(x), . . . , un(x)) ∈ R
n for ∀x ∈ Ω.

Rearranging the energy function E(ps, p, q;u) of (5.37), we have

E(ps, p, q;u) =

∫

Ω

{
(1−

n∑

i=1

ui) ps +

n∑

i=1

ui pi +

n∑

i=1

ui div qi
}
dx (5.38)

For the primal-dual model (5.37), the conditions of the minimax theorem (see e.g., [58] Chapter

6, Proposition 2.4) are all satisfied. That is, the constraints of flows are convex, and the energy

function is linear in both the multiplier u and the flow functions ps, p and q, hence convex l.s.c.

for fixed u and concave u.s.c. for fixed ps, p and q. This confirms the existence of at least one

saddle point, see [58, 62]. It also follows that the min and max operators of the primal-dual

model (5.37) can be interchanged, i.e.

max
ps,p,q

{
min
u

E(ps, p, q;u)
}

= min
u

{
max
ps,p,q

E(ps, p, q;u)
}
. (5.39)

5.3.3 Equivalent Dual Formulation

Now we investigate the optimization of (5.37) by the min-max order as the righthand side of

(5.39), i.e. we first maximize E(ps, p, q;u) over the flow functions ps, p and q then minimize

over the multiplier function u. We show that this leads to the equivalent dual model of the

continuous max-flow formulation (5.32), i.e.

min
u

{
D(u) :=

n∑

i=1

( ∫

Ω
ui(x) ρ(ℓi, x) dx +

∫

Ω
Ci(x) |∇ui| dx

)}
(5.40)

s.t.
n∑

i=1

ui(x) = 1 , ui(x) ≥ 0 .
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Optimization of Flow Functions p, q and ps

In order to optimize the flow function p(x) in (5.38), let us consider the maximization problem

(4.21), i.e.

f(q) = max
p≤C

p · q . (5.41)

where p, q and C are scalars.

By virtue of (4.22), we can equally express f(q) by

f(q) = q · C , q ≥ 0 . (5.42)

Observe (4.21) and (4.23), we can maximize E(ps, p, q;u) of (5.38) over the sink flows pi(x),

i = 1 . . . n, then we have

max
pi(x)≤ρ(li,x)

∫

Ω
uipi dx =

∫

Ω
ui(x)ρ(li, x) dx , ui(x) ≥ 0 , i = 1, . . . , n . (5.43)

For the maximization over the spatial flow functions qi(x), i = 1, . . . , n, it is well-known [68]

that

max
|qi(x)|≤Ci(x)

∫

Ω
ui div qi dx =

∫

Ω
Ci(x) |∇ui| dx . (5.44)

Furthermore, observe the source flow function ps(x) is unconstrained, the maximization of

(5.38) over ps simply leads to

1−
n∑

i=1

ui(x) = 0 , ∀x ∈ Ω . (5.45)

By the results of (5.45), (5.43) and (5.44), it is easy to conclude that the maximization of

the primal-dual model (5.38) over flow functions ps, p and q boils down to its equivalent dual

model (5.40). Therefore, we have

Proposition 26. The continuous max-flow model (5.32), the primal-dual model (5.37) and

the dual model (5.40) are equivalent to each other, i.e.

(5.32) ⇐⇒ (5.37) ⇐⇒ (5.40) .

The proof of Prop. 26 follows the above statements.

In this work, we focus on the case when Ci(x) = α, ∀x ∈ Ω and i = 1, . . . , n. Obviously,

144



5.3 Continuous Max-Flow Approach

Proposition 27. When Ci(x) = α, ∀x ∈ Ω and i = 1 . . . n, the dual model (5.40) amounts

to the convex relaxed Potts model (5.5). Hence, in this case,

continuous max-flow model (5.32) ⇐⇒ convex relaxed Potts model (5.5) .

Its proof simply follows by Prop. 26, which is omitted here.

5.3.4 Variational Perspective of Flows and Cuts

Through the above analytical procedures, we can build up a variational perspective of flows and

cuts, which recovers conceptions and terminologies used in graph-cuts.

Consider the maximization problem (4.21), for any fixed q, let some optimal p∗ maximize q · p
over p ≤ C. By means of variations, if such p∗ < C strictly, its variation directly leads to q = 0

since the variation δp can be both negative and positive. On the other hand, for p∗ = C, its

variation under the constraint p ≤ C gives δp < 0, then we must have q > 0.

In terms of graph-cuts, some maximum flow p∗(e) < C(e), over the edge e ∈ E , just means

the considered flow p(e) does not reach its maximum or capacity C(e) along the edge e, i.e.

’unsaturated’; which results the so-called ’cut’ over the edge e.

In the same manner, for the maximum sink flow function p∗i (x), i = 1 . . . n, it is easy to see

that when the flow p∗i (x) < ρ(li, x) at some x ∈ Ω, i.e. ’unsaturated’, we must have ui(x) = 0,

i.e. ui(x)p
∗
i (x) = 0. This means that at the position x, the flow pi(x) has no contribution

to the energy function and the flow pi(x), from x ∈ Ωi to the sink t, can be ’cut’ off from

the energy function of (5.37). On the other hand, the indicator function ui(x) = 0 definitely

means the position x is not labeled as li.

For the spatial flows q∗i (x), i = 1 . . . n, let

CiTV := {qi(x) | |qi(x)| ≤ Ci(x) , n · qi|∂Ω = 0 } .

Observe that

sup
qi∈Ci

TV

∫

Ω
ui(x) div qi(x) dx = sup

p∈Cα
TV

∫

Ω
qi(x)∇ui(x) dx , (5.46)

the extremum of the righthand in (5.46) just indicates the normal cone-based condition [79] of

∇u∗i (x), i.e.

∇u∗i ∈ NCi
TV

(q∗i ) , (5.47)

for i = 1 . . . n.
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Then we simply have:

if ∇u∗i (x) 6= 0 , then |q∗i (x)|= Ci(x) , (5.48a)

if |q∗i (x)|< Ci(x) , then ∇u∗i (x) = 0 . (5.48b)

In other words, at some locations x ∈ Ω where ∇u∗i (x) 6= 0, the spatial flow q∗i (x) is ’saturated’

(5.48a), i.e. |q∗i (x)| = Ci(x); at some locations x ∈ Ω where |q∗i (x)| < α is not saturated, we

must have ∇u∗i (x) = 0, i.e. no variances of u∗i (x) around x, and therefore the ’cut’ does not

appear around the spatial domain at x.

5.3.5 Multiplier-Based Max-Flow Algorithm

Observe that the energy function of the primal-dual model (5.37) just gives the Lagrangian

function of the continuous max-flow model (5.32) where ui(x), i = 1 . . . n, are the corre-

sponding multiplier functions to the flow conservation equalities (5.31). Now we introduce

our multiplier-based max-flow algorithm, which is based on the augmented lagrangian method

[21, 20, 138]. In this respect, we define the augmented Lagrangian function

Lc(ps, p, q, u) =

∫

Ω
ps dx +

n∑

i=1

〈ui,div qi − ps + pi〉 −
c

2

n∑

i=1

‖div qi − ps + pi‖2

where c > 0.

By the standard augmented Lagrangian method, each iteration of the algorithm can then be

generalized as follows:

• Optimize spatial flows qi, i = 1 . . . n, by fixing other variables:

qk+1
i := arg max

‖qi‖∞≤α
− c
2

∥∥∥div qi + pki − pks − uki /c
∥∥∥
2
, (5.49)

which can be solved by Chambolle’s projection algorithm [39].

• Optimize sink flows pi, i = 1...n, by fixing other variables

pk+1
i := arg max

pi(x)≤ρ(li,x)
− c
2

∥∥∥pi + div qk+1
i − pks − uki /c

∥∥∥
2
, (5.50)

which can be computed at each x ∈ Ω in a closed form.

• Optimize the source flow ps and update multipliers ui, i = 1 . . . n

pk+1
s := argmax

ps

∫

Ω
ps dx−

c

2

n∑

i=1

∥∥∥ps − (pk+1
i + div qk+1

i ) + uki /c
∥∥∥
2
, (5.51)

uk+1
i =uki − c (div qk+1

i − pk+1
s + pk+1

i ) . (5.52)
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Both (5.51) and (5.52) can be obtained in the closed form.

Consider the above numerical steps, it is easy to see that the two flows qi and pi, i = 1 . . . n,

computed by (5.49) and (5.50) can be handled independently for each label i. Hence, (5.49) and

(5.50) can be implemented in a parallel way. Once such two steps are finished, the source flow

ps(x) and the labeling functions ui(x), i = 1 . . . n, are updated. Obviously, such parallelism

naturally originates the configuration shown in Fig. 5.12.

Fast Linearized Max-Flow Based Algorithm

Actually, the sub-step (5.49) at each iteration can be solved in an inexact manner, i.e. with-

out solving the Chambolle-projection exactly which is time-consuming. Now, we consider the

minimizaion problem

qk+1
i (x) := arg min

|qi(x)|≤α

∥∥∥div qi −Dk
i

∥∥∥
2

(5.53)

where Dk
i (x) = (pks + uki /c − pki )(x) for i = 1 . . . n. We apply a linearized solver which just

performs a simple projection-gradient step to the proposed problem (5.53) such that

qk+1
i := Proj|qi(x)|≤α

(
qki − γ∇(div qki −Dk

i )
)

(5.54)

where γ is the step-size and its maximum value depends on the largest eigen-value of the dis-

cretized ∇ div, i.e. the matrix ∇h divh after discretization. In this work, we apply the mimetic

finite-difference method [83, 82] over the regular image grid and its detailed implementation

of (5.54) can be found in the Appendix 7.2. The largest eigen-value of the resulted matrix

∇h divh is just 1/8. Hence we apply γ ≤ 1/4 in the following experiments, i.e. two times of

the largest eigen-value, in order to construct a nonexpansive operator for the proposed iterative

updating step (5.55) of qi(x), i = 1 . . . n. Similar linearized solver appeared in the recent study

of the Bregman-Splitting algorithm [72], which results in a fast solver to the continuous min-cut

problem.

In this regard, we propose the fast linearized max-flow based algorithm as Alg. 6, where every

substep at each iteration only performs one simple computation.

5.3.6 Experiments

In this section, we first make experiments to validate the proposed continuous max-flow algo-

rithm, i.e. Alg. 6, for its associated parameter settings and convergence. We then show its
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Algorithm 6 Multiplier-Based Maximal Potts Flow Algorithm

Set the starting values p1s(x), p
1(x), q1(x) and u1(x), let k = 1 and start k-th iteration,

which includes the following steps, till convergence:

• Update qi, i = 1 . . . n, by fixing other variables

qk+1
i =Proj|qi(x)|≤α

(
qki − γ∇(div qki −Dk

i )
)
, (5.55)

where Dk
i (x) = (pks + uki /c− pki )(x) for i = 1 . . . n.

• Update pi, i = 1 . . . n, by solving the substep (5.50) which results in

pk+1
i (x) = min

(
ρ(li, x), F

k
i (x)

)

where F ki (x) = (pks + uki /c− div qk+1
i )(x) for for i = 1 . . . n;

• Update ps by solving the substep (5.51)

pk+1
s (x) = (1 + c

n∑

i=1

Gki (x))/n c ,

where Gki (x) = (pk+1
i + div qk+1

i − uki )(x)/c for i = 1 . . . n.

• Update multipliers ui, i = 1, . . . , n, by

uk+1
i = uki − c (div qk+1

i − pk+1
s + pk+1

i ) ;

• Let k = k + 1 return to the k + 1 iteration till converge.

significant outperformance over other state of art convex optimization approaches. In compar-

ison to graph-cuts, e.g. alpha-expansion, the studied convex relaxation model comes with the

important advantage of rotational invariance, which means that metrication errors are prop-

erly avoided. The quality of the relaxation approach (5.5) has been evaluated extensively in

[184, 108, 13] where its outperformance over the state of art methods from discrete optimiza-

tion, e.g. alpha expansion and alpha-beta swap [30] has been shown for effectively minimizing

the Pott’s energy. All the experiments are made on a Linux desktop with AMD Athlon 64x2

5200+ and 3 Gb memory.
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Algorithm Validations

For the proposed Alg. 6, there are two parameters: the step-size γ and the augmented parameter

c. In view of (5.52), the update of the labeling function ui(x), i = 1 . . . n, at each iteration

gives us an appropriate criterion of convergence

ǫa =

∑n
i=1

∣∣∣c (div qk+1
i − pk+1

s + pk+1
i )

∣∣∣
n |Ω|

which evaluates the avarage change of the labeling function for each pixel x and each label.

In the following experiments, we apply ǫa to be less than some small positive value as the

convergence criterion.

We make labeling experiments in this part with the same input image (see Fig. 5.13(a) and

Fig. 5.13(b) for the input and ground-truth images). Four data terms ρ(li, x) = |I(x) − li|p,
i = 1 . . . 4, are used, where I(x) and li, i = 1 . . . 4, take the triple RGB values and p = 1.

In this respect, we make labeling experiments of the input image (see Fig. 5.13(a) and

Fig. 5.13(b) for the input and ground-truth images) together with various step-size γ =

0.1, 0.11, . . . , 0.18 and the fixed augmented parameter c = 0.25. We set ǫa < 5× 10−4 as the

stopping criterion. When γ > 0.18, the proposed algorithm fails to achieve convergence within

300 iterations and more than one updating of qi, i = 1 . . . n, for each iteration are required

to obtain a faster convergence. Tab. 5.3 list detailed results in terms of the total number of

iterations and computation time. Fig. 5.13(d) shows their respective convergence graph with

log-log illustration. Clearly, when the step-size γ takes values between 0.1 and 0.17, Alg. 6

performs very similarly and obtains convergence within about 35 iterations.

To evaluate Alg. 6 with various settings of the augmented parameter c, we make experiments

for the same input along with c = 0.1, 0.25, 0.4, 0.55, 0.7, 0.85, 1, 2, 3 and the fixed step-size

γ = 0.17. We set ǫa < 5×10−4 as the stopping criterion. Tab. 5.4 list detailed results in terms

of the total number of iterations and computation time. Fig. 5.13(e) shows their respective

convergence graph with log-log illustration. Clearly, when the augmented parameter c takes

values between 0.1 and 0.85, Alg. 6 converges relatively faster and obtains convergence within

40 iterations. In Fig. 5.13(e), the bolded black line shows the convergence result (fastest) of

c = 0.25 and the bolded black line shows the convergence result (slowest) of c = 3.
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5 Convex Optimization Approach to Potts Model

Table 5.3: Validation for the step-size γ when c = 2.5

γ 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18

Iter. 36 35 35 34 34 34 34 34 195

Time (sec.) 5.56 5.03 4.72 4.30 4.20 4.56 4.10 4.33 26.28

Table 5.4: Validation for the augmented parameter c when β = 0.18

c 0.1 0.25 0.4 0.55 0.7 0.85 1 2 3

Iter. 37 34 34 38 39 40 42 63 83

Time (sec.) 5.97 5.50 5.88 6.11 6.57 6.74 6.87 9.64 13.39

5.3.7 Comparisons to Other Approaches

Examples are given in Figure (5.14), where we have used the Mumford-Shah data term ρ(ℓi, x) =

|I(x) − ℓi|2, i = 1, ..., n. As we see, equally good solutions as alpha expansion are produced,

but without the metrication artifacts.

In contrast to the minimization approach of Zach et. al. [184], the proposed algorithm can be

proved to converge by classical optimization theories. The Douglas-Rachford splitting approach

given in [108] can also be proved to converge (in the discrete setting), but we experienced

that our approach was more efficient than both these approaches. The inner problem has

the same complexity for all approaches, since it is dominated by the process of iteratively

solve a tv minimization problem. However, in contrast to [184, 108] our approach avoids

iterative projections to the convex set S and consequently require much less outer iterations.

Convergence is reached for a wide range of the outer ’step-size’ c. To measure converge, we find

a good estimate of the final energy E∗ by solving the problem with 10000 outer iterations. The

energy precision at iteration k is then measured by ǫ = Ek−E∗

E∗ . For the three images (see Fig.

2), different precision ǫ are taken and the total number of iterations to reach convergence is

evaluated, see Tab 5.5: clearly, our method is about 4 times faster than the Douglas-Rachford-

splitting [108], the approach in [184] is even slower and failed to reach such a low precision.
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5.3 Continuous Max-Flow Approach

Brain ǫ ≤ 10−5 Flower ǫ ≤ 10−4 Bear ǫ ≤ 10−4

Zach et al [184] fail to reach such a precision

Lellmann et al [108] 421 iter. 580 iter. 535 iter.

Proposed algorithm 88 iter. 147 iter. 133 iter.

Table 5.5: Comparisons between algorithms: Zach et al [184], Lellmann [108] and the proposed max-

flow algorithm: for the three images (see Fig. 2), different precision ǫ are taken and the

total number of iterations to reach convergence is evaluated.

(a) (b) (c)

(d)

Figure 5.13: (a) Input Image, (b) Ground-truth Image (c) Computation Result u(x) with γ = 0.17

and c = 0.55, (d) Convergence results associated to different step-size settings of γ, (e)

Convergence results associated to different settings of the augmented parameter c.
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5 Convex Optimization Approach to Potts Model

Figure 5.14: Each row (from left to right): the input image, result by Alpha expansion with

8 neighbors, result by the proposed max-flow approach. For the experiment in 1st row

(inpainting in gray area), α = 0.03 and n = 3; 2nd row, α = 0.04 and n = 4, 3rd row,

α = 0.047 and n = 10; 4th row, α = 0.02 and n = 8.

152



6 Conclusions and Future Topics

In this thesis, we explored four challenging topics of computer vision and image processing: non-

rigid flow estimation, TV-L1 image approximation, image segmentation and multi-class image

partition, by means of modern convex optimization techniques. Due to their diverse back-

grounds and mathematical formulations, we study and solve these problems through different

ways.

Non-rigid Flow Estimation

For non-rigid flow decomposition and estimation, we propose a flow decomposition based ap-

proach to compute the high-order div-curl regularized non-rigid flow estimation, where the vari-

ational flow estimation problem is reformulated by the optimization over two potential fields

associated to divergence and curl respectively. A space-decomposition algorithm is proposed to

explore both two subproblems, each of which has much less unknowns, at each iteration.

In order to achieve numerical compatibilty and stability, a mimetic finite difference method

is introduced to build up accurate and reliable discretization schemes of flow decomposition

and estimation. The nonsmooth functions, e.g. total-variation function, are defined as well

over the proposed discretization method. Experiments show its outstanding performance in

implementing fast and stable algorithms in numerics.

Moreover, we also introduce and study the new nonsmooth div-curl regularizar and show its

resulting structure-texture decomposition of non-rigid flows. In addition, the novel flow esti-

mation joint with the proposed nonsmooth flow decomposition is also studied. We use the

second-order cone programming to compute the reduced highly nonsmooth convex minimiza-

tion problems. Experiments show the proposed nonsmooth flow decomposition is superior in

achieving high accuracy of flow estimation and keeping small-scale flow patterns.
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6 Conclusions and Future Topics

We would mention the primal-dual optimization approach also works for the flow estimation

problem. In the following, we draft the main ideas.

Now we consider the flow estimation problem as follows:

min
u

D(∂tg −∇g · u) +Rd(divu) +Rc(curlu) , (6.1)

where D(·) is the convex penalty function to force fitting the brightness-constant condition

and the regularization functions Rd(·) and Rc(·) are also convex. Let D∗, R∗
d and R∗

c be their

respective conjugate function.

Then after simple computation, we have the equivalent primal-dual model of (6.1):

min
u

max
q,ψ,φ

〈q, ∂tg〉 −D∗(q)−R∗
d(ψ) −R∗

c(φ) +
〈
∇ψ +∇⊥φ− q∇g,u

〉
. (6.2)

Optimize the minimax problem (6.2) over u directly gives its equivalent dual model such that

(6.1):

max
q,ψ,φ

〈q, ∂tg〉 −D∗(q)−R∗
d(ψ) −R∗

c(φ) (6.3)

s.t. ∇ψ +∇⊥φ = q∇g . (6.4)

Clearly, the constraint (6.4) is just the orthogonal decomposition of the vector field q∇g. In

this sense, the dual model (6.3) just corresponds to the optimal control formulation of such

orthogonal decomposition (6.4).

Similarly, the multiplier-based algorithmic scheme works for the linear equality constrained

optimization problem (6.3).

Let

L(u, q, ψ, φ) = 〈q, ∂tg〉 −D∗(q)−R∗
d(ψ)−R∗

c(φ) +
〈
∇ψ +∇⊥φ− q∇g,u

〉
,

and its augmented Lagrangian function be given by

Lc(u, q, ψ, φ) = 〈q, ∂tg〉 −D∗(q)−R∗
d(ψ) −R∗

c(φ) +
〈
∇ψ +∇⊥φ− q∇g,u

〉
(6.5)

− c

2

∥∥∥∇ψ +∇⊥φ− q∇g
∥∥∥
2

(6.6)

where c > 0. Therefore, we have the duality based flow estimation algorithm, see Alg 7.

The great advantage of performing (6.3) instead of the primal problem (6.1) is that it avoids

the possible nonsmoothness of the energy function. For example, for the L1 data fidelity term

D(∂tg −∇g · u) =

∫

Ω
|∂tg −∇g · u| dx
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Algorithm 7 Duality-Based Flow Estimation Algorithm for

Set the starting values of q1, ψ1, φ1 and u1, and let k = 1 then start;

• Start k-th iteration, optimize q by fixing other variables:

qk+1 := argmax
q

Lc(u
k, q, ψk, φk)

= argmax
q
〈q, ∂tg〉 −D∗(q)− c

2

∥∥∥q∇g − (∇ψk +∇⊥φk − uk/c)
∥∥∥
2
,

which can be computed in the following closed form

qk+1 =
gt + c∇g · (∇ψk +∇⊥φk − uk/c)

1 + c |∇g|2
; (6.7)

optimize (ψ, φ) by fixing other variables:

(ψ, φ)k+1 := argmax
ψ,φ

Lc(u
k, qk+1, ψ, φ)

= argmax
ψ,φ
−R∗

d(ψ) −R∗
c(φ)−

c

2

∥∥∥∇ψ +∇⊥φ− (qk+1∇g + uk/c)
∥∥∥
2
;

(6.8)

• Update u by

uk+1 := uk + c(qk+1∇g −∇ψk+1 +∇⊥φk+1) ;

• Let k = k + 1 and repeat the above steps till convergence is achieved.

we have

D∗(q) := IS(q)

where IS is the characteristic function of the convex set S and S is

S := {q | q(x) ∈ [0, 1] } .

Obviously, to explore such nonsmooth data fitting term one only need to perform the simple

projection operation to the convex set S at each iteration. The same for the nonsmooth div-

curl regularizar. This algorithm appears when I changed my research topics to primal-dual

convex optimization approaches. However, I have no time to implement it, especially for the

nonsmooth high-order div-curl regularizar (2.1b).
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6 Conclusions and Future Topics

TV-L1 Image Approximation

This topics studies both the convex TV-L1 image approximation model and the discrete con-

strained TV-L1 image approximation, with applications to image denoising. We prove that the

convex TV-L1 approximation model (3.1) can be applied to solve such nonconvex optimization

problem (3.2) exactly and globally, in the spatially continuous context. This greatly extends

recent studies of Chan et al. [41, 42], from the simplest binary case to the general gray-scale

case. In numerics, the proposed fast multiplier-based algorithm upon the constructed equivalent

convex formulations, which properly avoids the nonsmoothness of the studied TV-L1 energy

function. Its numerical reliability and efficiency have been verified by experiments and compar-

isons to the state of art method, e.g. [169]. In contrast to the graph-cut based approach [51],

the proposed approach also avoids heavy memory and computation load especially when the

total number of discrete values is large.

The TV-L1 scheme has a close connection to the shape or surface regularization. It application

to the shape regularization, especially in 3-D, could be an interesting topics in the future. In

addition, the duality based algorithm to TV-L1 color image approximation also seems open.

Image Segmentation: Continuous Min-Cut Model

For this topics, we study continuous max-flow and min-cut models, with or without supervised

constraints. Dualities between max-flow and min-cut in the spatially continuous setting are then

set up and investigated through primal and dual. In this regard, terminologies used by graph-

cuts based techniques are revisited and explained under a new variational perspective. New

optimization results on the exactness of the proposed convex models are derived and discussed

with helps of the continuous max-flow formulations. The proposed continuous max-flow based

algorithms are based upon classical convex optimization theories, which provide fast and reliable

numerical schemes. In contrast to discrete graph-based methods, the algorithms can be easily

speeded up by adopting a multigrid or parallel numerical scheme, e.g. GPU.

The max-flow methods can also be extended to other min-cut problems with multiple phases,

e.g. [12]. It also paves the way to understand the classical graph based max-flow / min-cut

algorithms in a completely variational manner. To this end, the proposed max-flow algorithmic

scheme can also be generalized to solve min-cut problems over a general weighted graph, where

the cut information, i.e. labeling function, works as associated multipliers. This is one topic of

our future studies.
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Parallel to the development of this thesis, the Split-Bregman method has been applied to solve

the convexified labeling problem (1.13), and was also shown to significantly outperform the

method of Bresson et al [31], see [72]. A detailed comparison with this method will be another

interesting work in the future.

Moreover, the GPU implementation of the proposed continuous max-flow algorithm and its

application to massive 3-D data are of great interests both in practice and theory.

Multi-Class Image Partition: Potts Model

Multi-class image partition with the minimum total perimeter can be expressed as the well-

known Potts model. We essentially study the convex relaxed Potts model through two ap-

proaches: the entropy-maximization smoothed method and the continuous max-flow method.

The first study proposes a novel duality-based approach for continuous multi-labeling problems

based on a convex relaxation of Potts model. The dual model could be used to give insight into

the exactness of the relaxation. Sufficient conditions were derived for when optimal solutions to

the Potts model could be obtained from a dual solution to the relaxed model. Close connections

between optimal labelings and geometrical clustering of spatial points were also revealed. We

then suggested a smoothing method based on the log-sum exponential function, so as to deal

with the nonsmooth dual problem, and indicated that such a smoothing approach leads to

a novel smoothed primal-dual model and suggests labelings with maximum entropy. A new

expectation maximization like algorithm was proposed based on smoothed dual model which

was shown to be superior in efficiency compared to earlier approaches. Numerical experiments

also showed that this approach could outperform several competitive approaches in various

aspects, such as lower energies and better visual quality.

The second approach introduces and investigates the novel continuous max-flow model which is

dual to the studied convex relaxed Potts problem, which results in a new variational perspective

of flows and cuts in the spatially continuous configuration and properly recovers close connec-

tions between flows and cuts. Moreover, in comparison to previous efforts which are trying to

compute the optimal labeling functions in a direct way, we propose the new multiplier-based

max-flow algorithm. The main advantages of such max-flow based algorithm are: it avoids

extra computation load to explicitly explore the pointwise simplex constraint, each flow func-

tion is updated in a simple way; in addition, its numerical scheme contains a natural parallel

framework, which can be easily accelarated by the modern parallel computation platform, e.g.

GPU. Numerical experiments show it outperforms state of art approaches in terms of quality
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6 Conclusions and Future Topics

and efficiency.

For both approaches, their GPU implementations are of utmost interests for many practical

applications of Potts model. To consider the non-Euclidean distances to the Potts model, as

mentioned in [106], provides a useful cue to solve some practical computer vision problems. In

addition, to incorporate the shape prior and some global clues, e.g. histogram matching, are

also amazing future directions of studies.

Especially, the MDL based Potts model was just proposed by Yuan and Boykov [27], which

optimize the smoothness of partition boundaries joint with the total number of appearence

models. In [27], the direct convex programming method was considered, which can only work

with images of relatively small size and takes a longer time to compute (a couple of hours to

proceed an image with 200×200 pixels and about 20 labels). The application of the continuous

max-flow to this problem is of great interests and importances. A fast continuous max-flow

solver to MDL based image segmentation is expected to significantly speed up computation

with high-accuracy!
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7 Appendix

7.1 Detailed Matrix Representations of MFD

By the definitions of mimetic finite-difference (MFD) over the 2-D square grid, reshaping the

scalar/vector fields columnwise into vectors of appropriate lengths, these operators act on the

corresponding vector spaces as matrices which can be described by using the first-order forward

difference matrix

Dm :=




−1 1 0 . . . 0 0 0

0 −1 1 . . . 0 0 0
. . . . . . . . .

0 0 0 . . . −1 1 0

0 0 0 . . . 0 −1 1




∈ R
m−1,m

and the tensor product ⊗ of matrices. Then we have

G =

(
In ⊗Dm

Dn ⊗ Im

)
, GP =

(
−Dn ⊗ Im

In ⊗Dm

)
,

which explains the notation ⊥. The operator∇⊥,h is just the restriction of GP toHo
P . Although

∇h is not the restriction of G to Ho
P , we will again use the notation ⊥. More precisely, we

define

∇h =

(
In−2 ⊗Dm−2

Dn−2 ⊗ Im−2

)
, ∇⊥,h =

(
D

T

n−1 ⊗ Im−2

−In−2 ⊗D
T

m−1

)
,

divh =
(

In−1 ⊗Dm,Dn ⊗ Im−1

)
,

where In denotes the n × n identity matrix and the matrices are considered without the zero

rows/columns due to embedding. Then we have on the dual grid

∇h = −(divh|Ho
S

)∗, divh = −(∇h)∗, curlh = (∇⊥,h)∗, (7.1)
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7 Appendix

where the adjoint operator corresponds to the transposed matrices. Using properties of the

tensor product of matrices, we obtain that curl∇ = 0 reads as

curlh∇h = 0, divh ∇⊥,h = −∇h ∗ curlh ∗ = 0. (7.2)

We extend the operator ∇h to HV+∂V by incorporating the boundary elements H∂V into the

forward differences. Since the distance of a boundary point to its neighboring inner point is

only 0.5, we have to multiply the difference filter (−1, 1) at the boundary by 2. The matrix of

the resulting operator,

∇h1 : HV+∂V → HS .

Discrete TV/G Norms

For our optical flow decomposition and estimation we need discrete versions of the TV norm

‖f‖TV :=
∫
|∇f |dx and the G norm ‖f‖G := inff=divp ‖ |p| ‖L∞

, where |p(x)| := (p1(x)
2 +

p2(x)
2)1/2 for a vector field p(x) = (p1(x), p2(x)), p1, p2 ∈ L∞. For a more sophisticated

treatment of these norms in the continuous setting, see, e.g., [61, 115].

For ω ∈ Ho
P , we observe the definition (2.2) and define

‖ω‖TV := ‖∇h ω‖L1,Ho
E

==
1√
2

∑

Ωα,β∈Ω

√
(v2
D + v2

T + v2
R + v2

L)α,β

where v = ∇h ω. This defines a seminorm on Ho
P . As usual we will skip the prefix “semi” in

the following.

Now the G norm of ω is defined by

‖ω‖G = min
ω=divh p

‖p ‖L∞,HE

which is computed similarly as (2.3).

We define the TV and the G norm on HV . For ρ ∈ HV , let

‖ρ‖TV := ‖∇h ρ‖L1,HS

which is given in (2.2). By (2.3), we also define

‖ρ‖G := min
ρ=divh p

‖p‖L∞,HS
(7.3)

where p is set to be zero at the boundary edges, i.e. p ∈ Ho
S.
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7.2 Projected-Gradient Descent Step for Total-Variation Minimization

Discrete integral identities Next we are interested in a discrete version of the Gaussian

integral identity
∫
Ω div udx =

∫
∂Ω n · uds. To this end, we introduce the boundary operator

B
h :=

(
In−1 ⊗Bm 0

0 Bn ⊗ Im−1

)
,

where 0 are zero matrices of appropriate sizes and

Bm :=

(
−1 0 . . . 0 0

0 0 . . . 0 1

)
∈ R

2,m.

Then the mimetic Gaussian integral identity becomes

1T

dimHV
divh u = 1T

dim∂HV
B
hu. (7.4)

7.2 Projected-Gradient Descent Step for Total-Variation

Minimization

In this thesis, many algorithms rely on solving the subproblem of the total-variation minimiza-

tion:

min
p∈Cλ

‖div p− f‖2 . (7.5)

where Cλ is the convex set such that

Cλ := {p | p ∈ C1
c (Ω,R

2) , |p(x)| ≤ λ , ∀x ∈ Ω } .

With helps of the mimetic finite-difference method, (7.5) can be represented by

min
p∈Cλ⊂H

o
S

∥∥∥divh p− f
∥∥∥
2

HV

(7.6)

where f is the scalar field defined in HV and for any vector field p ∈ Cλ ⊂⊂ Ho
S, at each cell

Ω(α,β) should satisfy

ℓα,β(p) :=

√
1

2

(
(pb)2 + (pr)2 + (pt)2 + (pl)2

)
(α,β)

≤ λ .

(7.5) can be solved by iterative projected-gradient descent steps as follows:

pk+1 = Proj‖p‖
∞
≤λ

(
pk + τ∇(div pk − f)

)
.
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7 Appendix

For its discretized version (7.6), the above step can be

pk+1 = ProjCλ

(
pk + τ∇h(divh pk − f)

)
(7.7)

where the step-size τ is mostly chosen depending on the largest eigen-value of the matrix

∇h divh.

The projection operation in (7.7) for any vector field p ∈ Ho
S to the convex set Cλ can be

approximated by the following two steps:

• Define ℓ̃(p) ∈ HV :

ℓ̃α,β(p) :=

{
λ/ℓα,β(p) when ℓα,β(p) ≥ λ
1 when ℓα,β(p) < λ

,

and define the discrete vector field q ∈ HS:

qt(α,β) := (ℓ̃(α,β) + ℓ̃(α,β−1))/2 , qb(α,β) := (ℓ̃(α,β+1) + ℓ̃(α,β))/2

ql(α,β) := (ℓ̃(α,β) + ℓ̃(α−1,β))/2 , qr(α,β) := (ℓ̃(α+1,β) + ℓ̃(α,β))/2 ;

• p̃ := ProjCλ
(p) ∈ HS is computed by:

p̃t(α,β) := pt(α,β) q
t
(α,β) , p̃b(α,β) := pb(α,β) q

b
(α,β)

p̃l(α,β) := pl(α,β) q
l
(α,β) , p̃r(α,β) := pr(α,β) q

r
(α,β) .
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