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Abstract 
 
Activation of the wnt/wingless pathway is one of the most important alterations 

associated with intestinal carcinogenesis. All tumor relevant mutations resulting in 

wnt/wingless activation cause a stabilization of its central downstream component, β-

catenin. In this study we aimed in elucidating the molecular background of β-catenin 

stabilization in tumors that lack APC mutations, the most common reason for 

wnt/wingless activation in late age onset of large intestinal cancer. We therefore 

analysed tumors known to frequently lack APC mutations, 20 small bowel cancers 

and 20 early age of onset colon cancers, for alternative mechanisms of β-catenin 

stabilization. We demonstrate that in both tumor groups large genomic deletions in 

the β-catenin gene CTNNB1 resulting in an in frame loss of large n-terminal domains 

contribute to tumorigenesis. We also show that mutations with a different extent of 

N-terminal deletions display a different accumulation pattern in the cellular 

compartments and that despite of identical mutational types; the accumulation 

pattern of β-catenin differs between tumors derived from the large bowel and the 

small bowel indicating both intestinal segments to differentially regulate β-catenin. 

The combination of these mutations with lack of general types of genomic instability 

further suggests an as yet poorly characterized tumorigenic pathway in which large 

scale β-catenin mutations play a dominant role. 

To further characterize the mutations, we created mutant clones according to the 

sequence alterations found in the tumors. These were transfected into SW480 

(Intestinal cell line) and MDCK (Kidney epithelial cell line) cell lines in order to 

determine their biologic properties in comparison to the wild type and missense point 

mutations in phosphorylation domains of β-catenin, the most frequent β-catenin 

mutations observed in human tumors. The large N-terminal deletion mutants were 

found to show a similar accumulation pattern in both cell lines as we saw in the 

tissue of small bowel adenocarcinoma. However, β-catenin overexpression (wild 

type less than mutant) was inducing apoptosis in SW480, a large intestinal 

adenocarcinoma cell line harbouring an APC mutation. This observation indicates 

that too large amounts of β-catenin negatively select tumor cells by inducing 

apoptosis, thus providing an explanation for the mutual exclusiveness of APC and β-

catenin mutations in human tumors. β-catenin mutants, however, were oncogenic in 
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MDCK, a cell line with wild type APC and β-catenin. They were found to push cells 

into metastable phenotype with higher proliferation but no elevated migration 

potential, a characteristic of stem cells. The results for large deletion mutants were 

comparable to those of β-catenin point mutations indicating that if a functional 

difference between these two mutational types exists, it is related to a biological 

process other than proliferation or phenotypic switch. Further analysis on β-catenin 

deletion mutants may help to highlight such novel domain dependant functional 

interactions of the protein.   
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Zusammenfassung 
 

Die arretierte Aktivierung des wnt/wingless Signalweges durch eine Mutation ist eine 

der häufigsten Veränderungen bei intestinalen Karzinomen. Unabhängig von der 

wnt/wingless Komponente, die von der Mutation betroffen ist, kommt es zu einer 

Stabilisierung  des transkriptionell aktiven wnt/wingless Mediators β-catenin. Die 

Stablisierung des β-catenin beim Karzinom des Dickdarms beruht in der Regel auf 

Mutationen des degradierenden APC, dies ist bei Karzinomen des Dünndarms, die 

ebenfalls eine Stabilisierung des β-catenin aufweisen, nicht der Fall. Ziel dieser 

Arbeit war zum einen, die Ursache der β-catenin Stabilisierung bei Tumoren ohne 

APC Mutationen zu identifizieren. Hierzu wurden 20 Adenokarzinome des 

Dünndarms und 20 früh manifestierte Kolonkarzinome, die ebenfalls häufig keine 

APC Mutation aufweisen, auf Mutationen im β-catenin Gen (CTNNB1) untersucht. 

Auf diese Weise fanden wir in beiden untersuchten Gruppen einen ungewöhnlichen 

Mutationstyp, der zu einem Verlust von Teilen der für die Degradierung des β-

catenin essentiellen n-terminalen Domäne führte. Der Umfang der Deletionen war 

hierbei variabel und hatte einen Einfluß weniger auf die Intensität der β-catenin 

Stabilisierung als auf die Lokalisation des β-catenin im Zellkern und im Zytoplasma. 

Darüber hinaus fand sich, daß gleichartige Deletions-Mutanten des β-catenin in 

Dünn- und Dickdarmkarzinomen zu unterschiedlichen Akkumulations Typen führten. 

Dies weist auf eine divergente Regulierung des β-catenin in Dünn- und 

Dickdarmmukosa hin. 

Um die identifizierten, ungewöhnlichen Deletionsmutanten des β-catenin näher zu 

charakterisieren und einen Rückschluß auf die Auswirkungen von erweiterten 

Deletionen, die zusätzlich zu der Degradierungsdomäne noch c-terminal lokalisierte 

Domänen verloren haben, ziehen zu können, wurden entsprechende Mutanten mit 

Hilfe der „PCR-driven overlap extension“ Methode generiert und in die Zellkulturen 

SW480 (Kolonkarzinomzelllinie) und MDCK (Nierenepithel Zelllinie) transfiziert. Die 

Ergebnisse für die Deletionsmutanten wurden mit denen von Punktmutationen an 

Phosphorylierungsstellen der Degaradationsbox des β-catenin verglichen. Hierbei 

zeigte sich, daß das Akkumulationsverhalten von β-catenin im Zellkulturmodell den 

Befunden in den humanen Tumoren durchaus vergleichbar ist. In der Zelllinie 

SW480, die bereits eine APC Mutation besitzt, führte die Transfektion jedoch zur 
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Apoptose. Dies ist ein Hinweis für einen negativen Seletionsdruck einer zu starken 

β-catenin Akkumulation und erklärt, warum tumorassoziierte Mutationen entweder im 

APC oder im β-catenin, niemals aber in beiden Molekülen gleichzeitig gefunden 

werden. In der MDCK Zelllinie hingegen, einer Zelllinie ohne β-catenin oder APC 

Mutation, zeigte sich eine onkogene Wirkung der Transfektion der Mutanten. Diese 

ließ sich einerseits in Form einer erhöhten Proliferation nachweisen, andererseits 

fanden sich phenotypische Zellveränderungen die unter dem Begriff des 

„metastasierungsfähigen Phänotyps“ summiert werden. Die onkogenen 

Veränderungen zeigten sich jedoch in gleicher Weise für Deletionsmutanten und 

Punktmutationen des β-catenin, so dass eine höhere onkogene Potenz von 

Deletionsmutanten nicht postuliert werden kann. Die Tumordaten und die 

molekularen Daten weisen jedoch darauf hin, daß funktionelle Unterschiede 

zwischen den Mutationstypen bestehen und dass eine Ursache für die Häufung der 

Deletionsmutanten des β-catenin existiert. Zukünftige Analysen der 

Deletionsmutanten könnten dabei helfen, eine neue, Domänen-abhängige 

Interaktion des β-catenin aufzudecken.            
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INTRODUCTION 
 
1.1 Biology of intestinal epithelium. 
 1.1.1 Anatomy of the intestines. 
 

The intestinal tract consists of a tube with four layers. The outer subserosal layer 

is made up of fatty tissue. It is followed by several sheets of innervated smooth 

muscles (lamina muscularis propria) that functions in peristalsis. The two inner 

layers consist of stromal tissue submucosa, and the mucosa layer which contains 

a small muscle layer (lamina muscularis mucosae), stromal cells and cuboidal 

epithelial cells at the surface. The latter process and absorb nutrients and 

compact stool. The small intestine is divided into the proximal duodenum, which 

makes up approximately 25-30 cm, the jejunum and ileum, both segments 

approximately 2-3 m in length. The large intestine follows the ileum and is 1 m in 

length. The absorptive surface in the small intestine is increased manifold by 

foldings of the inner two layers (Kerckring folds) and several luminal protrusions 

of the mucosa called villi (Figure 1.1). In the mucosa of large intestine there are 

no villi, only crypts, and instead of villi there is a flat epithelium (Figure 1.1)[1] [2] 

[3]. Villi of the small intestine and the flat luminal surfaces of the colon are 

populated by three different cell types, namely enterocytes, enteroendocrine and 

goblet cells. Enterocytes secrete hydrolases and absorb nutrient. Goblet cells are 

more in number in distal intestine and provide a protective mucous lining. The 

enteroendocrine cells are rare and secrete hormones including serotonine, 

substance P, and secretin [4] . A fourth cell type, the Paneth cell, resides at crypt 

bottoms of the small intestine. It secretes antimicrobial peptides and enzymes 

such as cryptidins, defensin, and lysosomes [5]. During embryologic 

development, the intestinal epithelium originates as a pseudo stratified layer of 

endodermal origin that proliferates vigorously, converts into a single layered 

epithelium, which starts forming invaginations. Cell division becomes restricted to 

pockets at the base of the mucosal invaginations (Figure 1.2). Smooth muscles 

and connective stromal tissue differentiate from mesoderm. The proliferative 

pockets of small intestine reshape into mature crypts in the first few weeks after 
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birth. In the large intestine, the fetal crypts become progressively deeper as the 

submucosa grows out, while the number of crypt units increases by crypts fission 

[6-9] . 

 

1.1.2 Cell renewal and stem cells in the intestinal epithelium. 
 
The intestinal mucosa contains a large number of invaginations termed the crypts 

of Lieberkühn. Epithelial cells are constantly being renewed in these crypts in a 

coordinated series of events involving proliferation, differentiation, cell migration, 

and cell shedding towards the intestinal lumen [10, 11]. Only Paneth cells and 

pluripotent stem cells localize at the bottom of crypts and escape this flow. From 

the stem cells, progenitors are generated that occupy the lower third of the crypt, 

the amplification compartment [12] . The crypt progenitors divide every 12- 16 

hours [13], generating 200 cells per crypt every day, until their migration brings 

them to the mid crypt region where they cease proliferation and differentiate into 

one of the functional types of intestinal mucosa. At the surface epithelium, cells 

undergo apoptosis and/or extrusion into the lumen. Proliferation in the intestine is 

not a cell autonomous feature but is dictated by various factors of which 

wnt/wingless signaling (WNT) from mesenchymal cells surrounding the bottom of 

crypts is one of the most important (Figure 1.3). This switch on the WNT 

signaling in the progenitor proliferating cells leads to nuclear accumulation of β-

catenin and increases expression of growth promoting β-catenin/TCF target 

genes such as Cyclin D and C myc [14]. As the cell reaches the mid crypt region, 

β-catenin/TCF activity is down regulated and this results in cell cycle arrest and 

differentiation [15].   
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Figure 1.1 (a,b). The structure of the adult small intestine. Putative stem 
cells reside immediately above the Paneth cells. Base columnar cells, 
intermingled between the Paneth cells, may also behave as stem cells. 
Progenitors stop proliferating at the crypt-villus junction and express 
differentiation markers. Enteroendocrine, absorptive, and mucus secreting 
cells migrate upward, whereas Paneth cells migrate downward and 
localize at the bottom of the crypts. (c,d) Structure of the large intestine. 
Stem cells reside at the crypt bottom. Progenitors are amplified by 
constant division along the bottom two thirds of the crypts. Paneth cells 
are absent in the large intestine. Cell cycle arrest and differentiation occur 
when progenitors reach the top third of the crypts. (Reviewed by Sancho 
E et al. 2004 ) 
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Figure-1.2 Structure of the early multilayered endoderm and the 
compartmentalized late fetal small and large intestines, and development 
into the final structure of the adult small and large intestine after 
invagination of the crypts and elongation of the villi. Inset shows detail of 
the morphogenetic movements that result in the formation of a simple 
epithelium with two compartments, from a multilayered endoderm. 
(Reviewed by Sancho E et al. 2004) 

 
Four features define intestinal stem cells: retention of an undifferentiated 

phenotype, continuous production of all lineages, retention of self maintenance 

capabilities throughout life, and ability to regenerate upon injury.  Colorectal stem 

cells (Figure 1.4b) occupy the crypt bottom whereas stem cells of small intestine 

(Figure 1.4a) reside either immediately above the Paneth cells compartment [16, 

17] or intermingled with Paneth cells at the bottom of the crypts [6,7,8,9]. 

Intervillus pockets are initially polyclonal but rapidly become monoclonal  through 

a poorly understood process of refinement[18]. 
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Figure 1.3 Schematic representation of a colon crypt and proposed model 
for polyp formation. At the bottom third of the crypt, the progenitor 
proliferating cells accumulate nuclear β-catenin. Consequently, they 
express β-catenin/TCF target genes. An uncharacterized source of WNT 
factors likely resides in the mesenchymal cells surrounding the bottom of 
the crypt, depicted in red. As the cells reach the mid-crypt region, β-
catenin/TCF activity is downregulated and this results in cell cycle arrest 
and differentiation.(Reviewed by M. van de Wetering et al. 2002) 
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Figure 1.4 Schematic of the small intestinal and colonic crypts. (A) Within 
the small intestine, stem cells are thought to be located at position 4–5 
distal to the Paneth cells. (B) Within the colon, they are at the base of the 
crypt. In the crypt, the majority of cell proliferation takes place in the 
transit-amplifying region and terminal differentiation usually occurs distal 
to this region. (Reviewed from Nat clin Gastroentrology Hepatol 2006 
Nature Publishing Group)  

 

Intestinal stem cells are extremely susceptible to apoptosis compared to other 

crypt progenitor cells [19]. Apoptosis is usually detected at the bottom of crypts 

after low dose irradiation which is compensated by surviving immediate 

descendents, which acquire stem cell features. Classical studies demonstrated 

existence of 4-6 stem cells at the bottom of crypts, even though  up to the third 

generation of immediate descendents of these stem cells may retain clonogenic 

properties [19, 20]. The remaining approximately 100 cells in the crypts are 

rapidly proliferating, committed progenitors that can no longer regenerate the 

stem cell pool.   

 

1.2 Intestinal cancer. 
 
Cancers of gastrointestinal tract constitute a large group of malignant tumors. 

Among these, colorectal cancer is one of the most common and leading causes 

of cancer related morbidity and mortality in western countries. In Europe alone 

more then 210,000 new cases and 110,000 deaths are reported each year with 

approximately 5-6% risk of developing cancer during lifetime .Small intestinal 
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cancer is comparatively rare and accounts for only 1% of gastrointestinal 

malignancies despite of fact that the small intestine contains 90 % of the mucosal 

surface and is located between two areas of high cancer risk i.e. the stomach 

and the colon [21, 22]. Small intestinal adenocarcinoma is morphologically similar 

to colorectal carcinoma and both tumor types share hereditary and non 

hereditary risk factors, including the hereditary non polyposis colorectal cancer 

syndrome (HNPCC), familial adenomatous polyposis (FAP), Peutz–Jeghers 

syndrome (PJS) and Crohn`s  disease[23]. Cancer is basically a genetic disease, 

caused by somatic DNA mutations initially affecting a single cell and resulting in 

autonomous growth. In general, small and large intestinal carcinogenesis can be 

described in terms of genetic instability that may effect either microsatellite 

sequences (microstatellite instability, MSI) [24, 25] or chromosome number and 

structure (chromosomal instability, CIN) [26]. MSI is caused by deficiency of the 

DNA mismatch repair system and usually found in carcinomas associated with 

hereditary non polyposis colorectal cancer syndrome (HNPCC) and 

approximately 15-20% of sporadic small and large intestinal adenocarcinoma 

[27-29]. Mismatch repair (MMR) was discovered in prokaryotes long ago but its 

involvement in cancer is known only within the last twenty years [22,23,24] 

Microsatellites are genomic regions where short DNA sequences or single 

nucleotides are repeated. During DNA replication, mutations occur through 

misalignment, which results either in contraction or elongation of the 

microsatellite sequences. These mutations are usually repaired by the mismatch 

repair system. Stable mutations occur due to deficiency in one of the mismatch 

repair genes. The MMR system includes six different genes (MSH2, MLH1, 

MSH6, PMS1, PMS2, MSH3) [30, 31]. MSI results in accumulation of mutations 

on a gene level, which become tumor relevant when growth regulating genes 

containing coding microsatellites (cMS) are mutated [27,28,29,30]. MSI tumors 

are normally with diploid karyotypes or with minimal chromosomal changes [32]. 

Chromosomal instability (CIN) describes an increased tendency to acquire 

chromosome aberrations when various processes involved in chromosome 

replication, repair, or segregation are dysfunctional during mitosis [33]. CIN is 

also found in majority of colorectal and small intestinal cancers. It is commonly 

linked to inactivation of the p53 and APC tumor suppersor in the colon but can 
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also be seen in tumors with wild type p53 [34]. CIN positive tumor cells show 

many chromosomal changes, like structural and numerical alternations of the 

chromosomes. The tumerogenic impact of CIN is linked mainly to physical gains 

and losses of tumor promoting oncogenes and tumor suppressor genes.  

One of both types of genetic instability is found in most but not all small and large 

intestinal adenocarcinoma. A share of 10 – 20 % of tumors in both locations is 

microsatellite and chromosomal stable, known as MACS tumors. MACS tumors 

have a unique phenotype with distinct clinicopathologic and molecular 

characteristics [35]. Colon cancer with MACS phenotype is usually reported in 

young patients, indicating existence of a different molecular mechanism of 

carcinogenesis [36, 37] , consisting of few strong oncogenic potential mutations.  

 
1.2.1 Hereditary intestinal cancer predisposition syndromes. 
 
 Approximately 20% of all patients with CRC shows some cancer predisposition, 

however, 3-5% are inherited in an autosomal dominant fashion [38, 39]. 

Hereditary cancer can be divide into two categories based on presence of 

polyposis as follows:- 
 
Familial adenomatous polyposis (FAP) is characterized by initially benign 

neoplasm built from glandular type elements, called as intestinal adenomas [40]. 

FAP is diagnosed by presence of many (100-2500) colonic adenomas. A high 

number of polyps in FAP results in CRC in 100% of cases by the mean age of 40 

years. FAP has an autosomal dominant mode of inheritance and is mainly 

caused by germline  mutations in the tumor suppressor gene adenomatous 

polyposis coli (APC) [41]. However, its inactivation also occurs in a large 

proportion of sporadic colorectal cancer [42] . Colorectal adenomas arising in the 

background of FAP are usually associated with complete inactivation of the APC 

gene through somatic mutations in the remaining wild type allele. Later, these 

adenomas may aquire chromosomal instability and mutations in tumor 

suppressor genes and oncogenes such as K-ras, and p53. With these molecular 

changes adenomas may acquire aggressive behaviour and transform into 

carcinomas which behave aggressively in terms of invasiness and metastasis. 
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Heriditary nonpolyposis colorectal cancer (HNPCC) is an autosomal 

dominant cancer syndrome which predisposes to multiple primary cancer without 

intestinal polyposis. HNPCC tumors are mainly located in the proximal 

colorectum with usually different pathological features [43, 44]. The average age 

of onset is approximately 40-45 years. Microstatellite instability (MSI) is the main 

feature of HNPCC [45]. MLH1 and MSH2 account for almost 90% of all identified 

mutations in MMR genes [46] . In HNPCC tumors, tumor relevant mutations 

caused by microsatellite instability have been identified in the transforming 

growth factor beta receptor II gene (TGFBR2), IGFR2, BAX, APC and CASP5 to 

name just a few [47, 48].  

 

1.2.2 Sporadic colorectal cancer (CRC). 
 
In western countries, the lifetime CRC risk is around 5% [49]. Approximately 50% 

of western population develops an adenoma by the age of 70. Only small 

proportions (between 3 and 5%) of CRCs are attributed to a hereditary cancer 

syndrome while the majority of them arise sporadically or on the background of 

as yet unknown hereditary predisposition. The fact that various stages of 

malignancy coexist from early benign lesion to fully metastatic tumors, have 

allowed the analysis of genetic alternations present at different stages leading to 

well defined adenoma-carcinoma model (figure 1.5) in colorectal cancer [50] 

proposing following points in its pathogenesis:- 
1) CRC tumors occur as a result of the mutational activation of oncogenes 

coupled with inactivation of tumor suppressor genes. 

2) Mutation in several genes is required to produce malignant tumors. 

3) Genetic alternations occur in a preferred sequence but the total number 

of mutations defines tumor’s phenotype rather then chronological order of 

mutation.   
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Figure 1.5 The adenoma carcinoma sequence in sporadic CRC and in 

HNPCC. (Reviewed by Freon and Vogelstein, 1990)  

 

Adenoma - carcinoma sequence in colon cancer development involves an 

ordered succession of genetic changes that affects the genomes of normal 

colonic epithelial cells as they evolve progressively towards malignancy (Figure 

1.5) Nevertheless, the specific sequence of genetic changes depicted in this 

figure is shown by only a small proportion of all colonic tumors. Even though, the 

majority (~70 %) of colon carcinomas suffer inactivation of the APC gene on 

chromosome 5q as an early step in this process, only 40 to 50 % acquire K-ras 

mutations, 50 to 70 % show loss of heterozygosity in p53, and about 60 % show 

a loss of heterozygosity on chromosome 18q [51]. Additionally, about 12 % 

tumors have mutation that leads to functional inactivation of the type 2 TGF-β 

receptor.  
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Therefore, most colon cancer will begin with inactivating APC mutations (or the 

functionally equivalent gain of β-catenin function mutations), but then will take 

alternative genetic pathways to malignant carcinoma. Cells undergoing mutation 

in APC or β-catenin become independent of physiological signals controlling β-

catenin/ TCF downregulation. As a consequence, they continue to behave as 

crypt progenitor cells in the surface epithelium giving rise to aberrant foci 

(adenoma) perhaps providing an early mechanism of disease progression. An 

increased number of cells in the crypt–villus compartment (Figure 1.3) would 

preferably allow opportunities for a second hit.This second hit mutation might 

include mutation in K-ras or any other component of Ras signaling pathway 

giving the cell a growth advantage over normal colon epithelial cells.  

 

1.2.3 Intestinal cancer with stable genome (MACS tumor). 
 
Most intestinal cancers usually show either microsatellite instability (MSI) or 

chromosomal instability (CIN). Recently, a subgroup (17%) of intestinal cancer 

was found to exist with apparently stable genome, with neither CIN nor MSI, 

known as microsatellite and chromosomal stable (MACS) tumors. Sporadic 

colorectal tumors without MSI or CIN exhibit distinct clinicopathologic features 

and genetic presentation, suggesting that these tumors might arise from another 

distinct pathway. [52-55].MACS was found to differ from CIN+ and MSI+ in three 

aspects. The clinicopathologic features of MACS were usually similar to MSI+ but 

different from CIN+. Comparatively, MACS preferred proximal location and poor 

differentiation. However, an immunohistochemical study demonstrates that 

MACS had a lower rate of loss of hMLH1 or BAX protein than MSI+ and less 

inactivation of APC protein than CIN+. In an epigenetic aspect, both MACS and 

MSI+ had a high rate of CpG island methylator phenotype with a difference for 

the presence of hMLH1 methylation. In comparison to CIN+, MACS had a more 

frequent CpG island methylator phenotype and MINT1 methylation. A MACS 

tumor shows divergent biological and behavioral features. MSI tumors arise 

predominantly in the proximal colon, are histologically mucinous or poorly 

differentiated, and are associated with a better prognosis [25, 56-58]. Whereas 
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CIN and MACS tumors are more common in the distal colon and rectum, 

moderately to well differentiated and carry a poorer prognosis than MSI tumors. 

 The research of Chan et al [55], reported a much greater rate of MACS tumors 

in early-onset as compared with late-onset tumors (64 versus 13%). These 

differences are very important to study mainly because of their direct revelance 

to prognosis. Some studies are performed to elucidate carcinogenesis 

mechanism of this subtype. Tang et al [59] found that stabilization of p53 protein 

in the absence of p53 gene mutation may play a critical role in the pathway of 

this subset. Nevertheless, MACS cancer may have a genetic basis different from 

either MSI or CIN, and further studies of these cancers may lead to discovery of 

new mechanisms of carcinogenesis and cancer susceptibility.  

 

1.3 Wnt signaling pathway. 
 
The wnt pathway plays key roles in development, tissue homeoatasis, and 

cancer. It was originally described in Drosophila as wingless pathway and is 

highly conserved among flies, frogs, and mammals [60]. Activation of the 

wnt/wingless pathway is one of the most important alterations associated with 

intestinal carcinogenesis. Nuclear or cytoplasmic accumulation of β-catenin is the 

hallmark of an active canonical Wnt pathway. β-catenin accumulation is present 

even in the smallest detectable lesion as well as in later stages. Complete 

nuclear translocation of β-catenin from the cytoplasm is observed at the invasion 

front providing an evidence for a major role of wnt signaling pathway in intitation, 

progression in situ, and finally metastasis. Other signaling pathways important in 

intestinal carcinogenesis include EGFR-MAPK, TGFβ, and TP53 signaling 

pathways. Interactions among  various signaling pathways involved are being 

studied and will provide new understanding of tumorigenesis [61].    

 

1.3.1 Non-canonical Wnt pathway. 

There are many non-canonical pathways, but the two best-studied pathways are 

the Planar cell polarity (PCP) and Wnt/calcium pathways. Upon binding of Wnt to 
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its receptor, either Frizzled or a complex of  Frizzled and RP5/6, a signal is 

transduced to the cytoplasmic phosphoprotein Dishevelled (Dsh). There are 

three Dsh proteins in mammals (Dsh-1, Dsh-2 and Dsh-3). The ligand/receptor 

interaction induce the phosphorylation of the Dsh family by casein kinase 1ε and 

-2 and PKCα., a common event of all Wnt-induced signaling pathways [62]. At 

the level of Dsh, the Wnt signal branches into roughly three separate pathways, 

the canonical pathway (Wnt/β-catenin pathway), planar cell polarity (PCP) 

pathway, and calcium pathway (Non Canonical pathway) (Figure 1.6).  

 

 
 

Figure 1.6 Wnt Signaling pathways (a) Canonical pathway (b) Non 
Canonical, Planar Cell Polarity pathway (c) Wnt-Ca2+ pathway. (Reviewed 
by Habas et al. 2005) 

 
 

However, the way in which Dsh couples and distributes Wnt signaling into the 

three signaling branches is poorly understood. Furthermore, compared to the 

canonical pathway, PCP pathway and calcium pathway are largely unknown [63]. 

For non-canonical or planar cell polarity (PCP) signaling, Wnt signaling is 
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transduced through Frizzled independent of LPR5/6. Utilizing the PDZ and DEP 

domains of Dsh, this pathway mediates cytoskeletal changes through activation 

of the small GTPases Rho and Rac. For the Wnt-Ca2+ pathway, Wnt signaling 

via Frizzled mediates activation of heterotrimeric G-proteins, which engage Dsh, 

phospholipase C, calcium-calmodulin kinase 2 (CamK2), and protein kinase C 

(PKC). This pathway also uses the PDZ and DEP domains of Dsh to modulate 

cell adhesion and motility. In PCP and Ca2+ pathways Dsh is proposed to 

function at the membrane, whereas for canonical signaling Dsh has been 

proposed to function in the cytoplasm.  

1.3.2 Canonical Wnt pathway (Wnt/β-catenin pathway).  
 
“Canonical pathway” Wnt signaling is initiated when Wnt ligands binds to their 

receptor complex consisting of FZD family and a member of the LDL receptor 

family, LRP5/6. Signaling through the Frizzled (Fz) and LRP5/6 receptor complex 

induces the stabilization of β-catenin via the DIX and PDZ domains of 

Dishevelled (Dsh) and a number of factors including Axin, glycogen synthase 

kinase 3 (GSK3) and casein kinase 1 (CK1). Stabilized β-catenin translocates 

into the nucleus where it complexes with members of the LEF/TCF family of 

transcription factors to mediate transcriptional induction of target genes. β-

catenin is then exported from the nucleus and degraded via the proteosomal 

machinery. The central player here is a cytoplasmic protein termed β-catenin, the 

stability of which is regulated by the destruction complex [64]. When Wnt 

receptors are not engaged, two scaffolding proteins in the destruction complex, 

adenomatous polyposis coli (APC) and axin, bind newly synthesized β-catenin. 

CKI and GSK3, two kinases residing in the destruction complex, then 

sequentially phosphorylates a set of conserved Ser and Thr residues in the N-

terminus of β-catenin. The resulting phosphorylated β-catenin recruits a β-TrCP-

containing E3 ubiquitin ligase, which targets β-catenin for proteasomal 

degradation. In the presence of Wnt ligands, receptor occupancy inhibits the 

kinase activity of the destruction complex by an incompletely understood 

mechanism involving the direct interaction of axin with LRP5/6, and/or the actions 

of an axin-binding molecule, Dsh (Fig.1,7 (a) ) 
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Figure 1.7 Model for the activation of the canonical Wnt/β-catenin 
pathway.(A) In absence of Wnt ligands, β-catenin is phosphorylated and 
degraded  (B) On binding of Wnt to the receptors, FZD and LRP, Dvl 
binds to FZD and recruits the destruction complex through interaction with 
axin. Subsequently, LRP is phosphorylated and acts as docking site for 
axin. (C) Binding of axin to LRP leads to inhibition of the destruction 
complex and stabilization of β-catenin. (Reviewed by Fuerer, C and 
Nusse, R 2008) 

 
As a consequence, β-catenin accumulates (Figure 1.7), travels into the nucleus 

where it engages the N-terminus of DNA-binding proteins of the Tcf/Lef family 

and initiates gene expression of target genes such as Cyclin D1 and c-myc [65] . 

The vertebrate genome encodes four highly similar Tcf/Lef proteins. It is also 

reported that in the absence of a Wnt signal, certain Tcfs repress target genes 

through a direct association with co-repressors such as Groucho. The interaction 

with β-catenin transiently converts Tcf/Lef factors into transcriptional activataors. 

As a consequence, the canonical pathway translates a Wnt signal into the 

transient transcription of a Tcf/Lef target genes. 
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1.4 Components of the Wnt pathway and their contribution to intestinal 
tumors.  
 
1.4.1 Wnt factors, frizzled receptors and dishevelled. 
 
Wnt proteins constitute a large family of at least 16 secreted cysteine rich 

glycoproteins, some of which are shown to promote neoplastic transformation in 

animal models and tissue culture but no direct involvement in human 

carcinogenesis is known [66, 67]. Wnt protein binds to extracellular domain of 

frizzled family of seven transmembrane receptors. 11 different frizzled genes are 

known but not much is known about their specific functions and lipid specificity. 

Low density lipoprotein receptor related proteins, LRP5 and LRP6 act as co-

receptors for wnt signal transduction. In addition to membrane bound frizzled 

receptors, secreted frizzled receptors also exist and exert an antagonistic effect 

on Wnt signaling by binding to Wnt proteins. Classical membrane bound frizzled 

receptors are known to activate Wnt signaling. Their exact role in carcinogenesis 

is not known, but it has been reported that frizzled receptor E3 (FzE3) is 

expressed in many oesophageal cancers but not in matched normal tissues [68, 

69]. Moreover, this expression of FzE3 correlates with nuclear translocation of β- 

catenin. Binding of Wnt ligand to a member of frizzled receptor family, results in 

its activation which recruit the cytoplasmic protein Dishevelled to the inner 

membrane and mediates its phosphorylation. Through distinct domains, 

dishevelled transduce Wnt signals and activates the Jun N-terminal kinase 

pathway [70]. Wnt signals are transduced by direct binding to dishevelled and 

axin which inhibits GSK-3β-dependent phosphorylation of β-catenin, mainly, due 

to destruction of APC/AXIN/GSK-3β complex. Additionally, protein kinase CK2 

(casein kinase II), a protein serine/threonine kinase, is also able to phosphorylate 

dishevelled independent of Frizzled. The role of Dishevelled and CK2 in 

neoplastic transformation via β-catenin/TCF is not known and so far no mutations 

in these proteins are reported in any human cancers. 
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1.4.2 GSK-3β, Axin, Casein Kinase I, and β-TrCP: Regulators of β-catenin. 

 
Tight regulation of free cytoplasmic β-catenin is the central switch of the Wnt 

pathway. In the absence of Wnt signal, degradation of β-catenin is initiated by 

promoting phosphorylation of serine 45 (S45) by casein kinase I (CK I). 

Phosphorylation of β-catenin is dependent on binding of CK1 to axin. Next, a 

multiprotein complex consisting of APC, Axin and serine/threonine kinase GSK-

3β is formed and GSK-3β facilitates further phosphorylation of  β-catenin amino 

terminus, starting at threonorine 41, and walking downstream to S37 and S33 

[71, 72]. The aim of this phosphorylation is the generation of the canonical β-trCP 

recognition site around S33/S37 (DS*GXXS*; S* = phosphoserine). 

Phosphorylated β-catenin at all critical residues are bound by the F-box protein 

β-TrCP, a subunit of the SCF-type E3 ubiquitin ligae complex. This complex 

facilitates ubiquitination and subsequent proteasome degradation of 

phosphorylated β-catenin. β-catenin mutations at asparagin 32 or glycine 34 are 

also common in human cancer since they destroy the β-trCP recognition site, 

resulting in stabilization of β-catenin. Besides β-catenin, GSK-3β also 

phosphorylates axin and APC, thereby regulating the stability of axin and the 

binding efficiency of APC to ß-catenin, respectively. For phosphorylation of β-

catenin by GSK-3ß, the presence of axin is required. Axin, or its homolog 

conductin (also called Axil or Axin-2), serves as a scaffold protein allowing 

assembly of the APC/Axin/GSK-3ß/β-catenin complex [73]. Interaction of axin 

proteins with APC, GSK-3β, and axin as well as with dishevelled occurs by non-

overlapping regions. Binding to APC is via the RGS domain and binding to 

dishevelled occurs through a domain called DIX. Based on its function to 

downregulate oncogenic Wnt signaling axin could be viewed as a tumor-

suppressor gene, a fact supported by many evidences [74]. In a subset of HCCs, 

axin is bialleically mutated leading to axin proteins lacking β-catenin binding sites 

and also in colorectal cancer with defective DNA mismatch repair and lacking 

mutation in β-catenin and APC [75]. No muations have been observed in GSK-3β 

gene as yet. This might be explained by the fact that GSK-3β also 
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phosphorylates other regulatory proteins outside the WNT pathway such as 

proteins in insulin and growth factor signaling pathways. 

 

1.4.3 APC: Gatekeepers of large but not of small intestinal tumorigenesis. 
 
The APC gene was identified on chromosome 5q by genetic analysis of familial 

adenomatous polyposis (FAP) families. Patients with FAP develop multiple 

adenomatous polyps of the colorectal epithelium, some of which progress to 

invasive carcinomas. Some FAP patients also suffer from extracolonic tumors, 

such as desmoid tumors, ampullary carcinomas, and hepatoblastomas [76]. The 

sequence of the APC gene spans 15 exons and encodes a 2,843-amino acid 

protein of 310 KD.  APC plays a critical role in the pathogenesis of both, inherited 

and sporadic colorectal cancer and  functions mainly as a regulator of free β-

catenin [77]. While germline inactivation of APC occurs over the entire gene, 

somatic mutations are mainly found at  5’ end of exon 15 between  codons 1280 

and 1500 (mutation cluster region, MCR) resulting in a frame shift or a premature 

stop codon and truncated APC protein [78] (Figure 1.8). Biallelic inactivation of 

APC usually results from a truncating mutation coupled with a deletion of the long 

arm of chromosome 5. Altogether, in ~50% of all colorectal cancers, APC 

function is inactivated by loss of APC expression or expression of a truncated 

protein [79]. The APC protein consists of multiple functional domains that 

mediate oligomerization and interaction with many cellular proteins including ß-

catenin, γ catenin, GSK-3β, Axin/conductin, tubulin, EB1, hDLG, Asef, and Siah-

1. However, the main function of APC appears to be the regulation of the free 

non-membrane bound pool of β-catenin in cooperation with GSK-3ß and 

Axin/conductin. Truncated APC proteins loose its ability to bind Axin which 

results in its inability to downregulate β-catenin resulting in its accumulation in the 

cytoplasm and the nucleus [80] 
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Figure 1.8 Schematic diagram of the adenomatous polyposis coli (APC) 
protein showing major functional domains by amino acid position. APC 
forms homodimers with itself by the oligomerization domain (oligo). The 
armadillo repeat region is made up of a 42- amino acid motif that is 
repeated 13 times. The regions for binding and downregulation of β-
catenin and the binding region of Axin/conductin partly overlap. 
Microtubules bind to the basic region (basic) and the binding regions of 
Siah-1 and EB1 are confined to the carboxy terminus. The mutation 
cluster region (MCR) is located amino terminal to the Axin/conductin-
binding sites. Most mutant APC proteins can no longer bind to Axin and 
are therefore incapable of downregulating ß-catenin. (Reviewed by 
Leedham and Wright 2008) 

 
Recent studies proved a role of APC in the downregulation of non-

phosphorylated, oncogenic forms of β-catenin which escape the ß-TrCP-

dependent destruction. F-box protein, Ebi, is recruited in this alternative 

destruction pathway. This alternative pathway requires the interaction of APC 

with Siah-1, a p53-inducible gene, which is also involved in the regulation of the 

tumor-suppressor gene DCC. As Siah-1 binds to the carboxy terminus of APC 

and most colorectal cancers carry truncating mutations lacking the carboxy 

terminus, both the Axin/GSK-3β/β-TrCP and the Siah-1/Ebi destruction pathways 

are inactive. The Siah-1/Ebi system can have a functional role in regulating β-

catenin only in tumors with β-catenin mutations and expressing wild-type APC 

[81]. Inspite of fact, APC inactivation and oncogenic activation of β-catenin exerts 

similar effect in terms of Tcf-transcriptional activation, APC mutations are found 

in the majority of colorectal cancers, whereas β-catenin mutations are only found 

in a colorectal cancers with wild-type APC, interestingly when both APC alleles 

need to be mutated versus only one β-catenin allele in order to deregulate Tcf 
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signaling. One hypothesis for this different frequency of APC and β-catenin 

mutations is that APC loss may provide the cell with a stronger growth advantage 

than activation of ß catenin, implying that APC has other vital functions like cell 

migration, adhesion, transcriptional activation and apoptosis besides promoting 

β-catenin degradation [82]. Moreover, β-catenin mutations are more common in 

small adenomas than in invasive cancers, and tumors carrying mutated β-catenin 

are less aggressive than tumors showing loss of APC. APC also has Wnt 

independent functions mediated through its carboxy terminus, the region 

commonly lost in colorectal cancer. APC directly associates with the microtubule 

cytoskeleton and binds to microtubule associated proteins of the EB/RP family. 

APC is also involved in the maintenance of chromosomal stability through 

localization to the kinetochore of metaphase chromosomes, a function most likely 

dependent on the interaction with EB1 [83]. 

 

1.4.4 β-catenin: central player of the Wnt pathway.  

 

β-catenin is the mammalian orthologue of the drosophila Arm protein with dual 

role in cell adhesion and a key component of the Wnt signaling pathway. It 

functions both during development and tumorigenesis. β-catenin was first 

identified because of its binding to the cytoplasmic domain of the cell–cell 

adhesion protein E-cadherin. β-catenin protein can be distinguished into three 

main regions namely the N-terminal domain, the central core, and the C-terminal 

domain (Figure 1.9). The central core of β-catenin consists of 12 armadillo 

repeats (R1–R12) [84-86]. Each repeat forms three alpha-helices that are 

arranged together in a compact superhelix. Mutational analyses (deletions, point-

mutations) have demonstrated that all three regions participate in both main 

functions of cell adhesion and cell signaling (Fig 1.9)[74, 87] β-catenin mediated 

cell adhesion depends primarily on its interactions with the cytoplasmic domain of 

cadherin and the N-terminal domain of α-catenin molecules. Sites of cadherin 

interaction are distributed throughout the 12 central repeat domains R1–R12 [88]. 

Interaction with α-catenin occurs at a well defined binding site spanning armadillo 

repeats R1–R2 and adjacent regions of the N-terminal domain [89-91]. The cell 
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signaling function of β-catenin depends on interaction with components of the 

destruction machinery and the transcription factors TCF/LEF-1. In the absence of 

wnt-signaling, β-catenin is efficiently phosphorylated at a site in the N-terminal 

domain. This phosphorylation event is facilitated by a large, multiprotein complex, 

including glycogen synthase kinase 3 beta (GSK-3β), Axin, and the tumor 

suppressor gene product adenomatous polyposis coli (APC)[73, 77]). 

Phosphorylated β-catenin is ubiquitinated and subsequently degraded by the 

proteosome [92]. In contrast, active wnt signaling efficiently decreases the 

destruction of β-catenin via inhibition of GSK-3β. At least two interactions of 

stabilized β-catenin are required for its function in transcriptional activation. β-

catenin binds to TCF/LEF- 1 protein via R3–R10. The β-catenin /TCF complex 

can bind via a TCF binding domain to sites in the regulatory regions of wnt-target 

genes [93] . β-catenin itself contains redundant transactivation domains that have 

been located at R2–R4 and at the C-terminal region including R12[94]. 

 

 

 
 

Figure 1.9 Functional and Structural domains of β-catenin involved in Wnt 
signaling and cell adhesion. (Reviewed by Andrew H. Huber, W.James 
Nelson and William I. Weis 1997) 
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Figure 1.10 Deregulation of Wnt signaling in gastrointestinal tumors. a 
Under physiological conditions free β-catenin (ß)is rapidly degraded. 
Three different mechanisms can lead to deregulation of Wnt/ß-catenin/Tcf 
signaling. Inactivation of the tumor suppressor APC (b) or the scaffold 
protein Axin (c), and activating mutations of β-catenin itself (d)result in 
cellular accumulation of ß-catenin. After nuclear translocation and binding 
to Tcf, transcription of specific target genes is activated. (Reviewed by 
Burkhard Goke 2002) 

 
Under physiological conditions most cellular β-catenin is bound to E-cadherin, a 

process regulated by tyrosine kinases and tyrosine phosphatases [95, 96]. In the 

absence of a Wnt signal free β-catenin is phosphorylated and degraded. β-

catenin has been implicated in human cancer [97] and its oncogenic potential 

has been extensively studied in in vitro tissue culture models [98, 99] and in vivo 

animal models [100-102]. Three separate mechanisms have been found to lead 

to accumulation of β-catenin in the cytoplasm and nucleus of cancer cells: 

inactivation of the APC tumor suppressor gene in colorectal cancer; axin 

mutations in subsets of hepatocellular and colorectal cancers [103, 104], and 

mutations of ß-catenin’s amino terminus in a variety of cancers (Figure 1.10) In 

half of colon tumors with intact APC, gain of function mutations in the β-catenin 

gene have been identified [105-109]. β-catenin mutations in colorectal tumors are 

usually present in the background of microsatellite instability [109, 110] while, 

inactivating APC mutations are mainly found in chromosomal instable cancer. 
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APC inactivating mutations and activating β-catenin mutations are mutually 

exclusive and have not been shown to coexist in a tumor. It indicates that 

coexistence of both mutations does not exert an additive effect on tumorigenic 

potential. 

 
1.4.5 Activation of Tcf-dependent transcription. 
 
Cytosolic accumulation of β-catenin leads to the formation of complexes with 

Tcf/Lef transcription factor which translocates to nucleus [111, 112]. Tcf/Lef 

factors facilitate gene-specific DNA binding and β-catenin serves as 

transcriptional activator. Tcf-4 is the only Tcf protein among all isoforms being 

consistently expressed in colorectal epithelial cells [113]. Mutation in Tcf-4 is 

known in a subset of colorectal cancer but can not substitute for APC or β-

catenin mutations [114-116]. Moreover, Tcf-4 mutations are thought to have an 

additive rather than an initiating effect on neoplastic transformation. Once 

transformation of the colorectal epithelium has occurred, expression of Lef-1, a 

close homolog of Tcf-4, is upregulated. Only expression of the β-catenin 

sensitive isoform of Lef-1 is upregulated and can support the activation of Tcf/Lef 

target genes [117]. Many ß-catenin/Tcf target genes are known to contribute to 

tumor initiation and progression in colorectal adenocarcinoma from mice and 

humans [118]. For eg, c-myc and Cyclin D. c-myc is also overexpressed in other 

type of cancers due to its rearrangement or amplification whereas cyclin D 

overexpression was due to genetic alternations in the p16INK4a growth-inhibitory 

pathway, which includes Rb, CDK4, and Cyclin D1  [119, 120]. Matrilysin/MMP-7 

is another target gene with critical functions in cancer promotion. In the absence 

of the metalloproteinase MMP-7, intestinal tumorigenesis is strongly suppressed 

in APC mutant mice [121-123]. WISP-1 is a ß-catenin/Tcf-4 target gene 

belonging to the CCN family of growth factors and cells overexpressing WISP-1 

show characteristics of transformed cells including induction of tumor growth in 

nude mice [124]. Other genes proposed as targets of ß-catenin/Tcf include the 

gap junction protein connexin 43, peroxisome proliferator-activated receptor-δ, 

survivin, c-jun, fra-1, uPAR, ZO-1, NBL-4 , DRCTNNB1A , MDR1 , brachyury etc. 
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However, expression of target genes in respone to active Wnt signaling is tissue 

specific.   

 
1.4.6 WNT signaling abnormalities in human cancers. 
 
A wide range of human cancers carry mutations in at least one component of the 

canonical Wnt/β-catenin pathway leading to a ligand-independent stabilization of 

β-catenin. Approximately 50% of colorectal cancers (CRC) harbor loss-of-

function mutations in the tumor suppressor gene APC. Loss of APC function is 

observed at an early stage in colorectal carcinogenesis and is believed to be the 

initiating event for formation of adenomatous polyps, and further progression of 

disease by conferring chromosomal instability in both inherited and sporadic 

cases of colon cancer. Inactivation of APC function leads to chromosomal 

instablity because of its important role in chromosomal processing.  Interestingly, 

despite of fact, APC is widely expressed in other tissues, the incidence of its 

mutations  is relatively rare in cancer outside the colon [76, 125]. Neverthless, 

mutation in β-catenin is a more common event in other types of human cancers 

including gastric, hepatocellular and ovarian cancers. Their incidence ranges 

from a few percent to as much as 60%. These mutations of β-catenin affect the 

N-terminal phosphorylation sites and thus render β-catenin resistant to 

phosphorylation and ubiquitination [126-128]. Mutations in Axin are also found in 

5-10% of hepatocellular carcinomas and also in a small number of colorectal 

cancers lacking mutations in APC or β-catenin [103, 109]. Whereas, in ovarian 

cancer, nuclear β-catenin accumulation in approximately one third of cases 

indicates Wnt signaling activation, commonly associated with β-catenin point 

mutations [109].  

A principle that emerges from these studies is that potentially any mutation that 

results in elevated β-catenin levels without decreasing cell viability may 

contribute to a premalignant condition or tumorigenesis. Aberrant activation of 

the other PCP and calcium pathways in malignant tissue is less well 

characterized and their relevance to human cancer is largely unknown. Wnt 

signaling dysregulation due to activating β-catenin mutation is seen in other 

gastrointestinal tumors like hepatoblastoma (52-89%), hepatocellular carcinoma 
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(20% and higher in hepatitis associated carcinoma) but in esophageal cancers 

no ß-catenin, APC or Axin mutations have been reported [129, 130] . Moreover, 

overexpression of FzE3 in squamous cell esophageal cancers correlates with 

nuclear translocation of β-catenin [69, 131]. In intestinal-type gastric cancer β-

catenin mutations have been reported in some cases, but no β-catenin mutations 

were found in diffuse-type gastric cancer [131, [132]]. 

Small Intestinal adenocarcinoma is rare and morphologically similar to the 

colorectal adenocarcinoma. Although the adenoma to carcinoma pathway in 

colorectal cancer is well described, the mechanism of carcinogenesis in small 

intestine remains unclear [50]. Due to morphologic similarity and common 

predisposing etiological factors, it is rationale to presume similar genetic and 

molecular alterations in between small intestinal and colorectal adenocarcinoma. 

However, recent molecular studies have given new dimension to this discussion 

showing that molecular pathways of sporadic tumorigenesis differ in small 

intestine compared to large intestine [82, 83, 133, 134]. Aberrant expression of 

p53, RB and k-ras genes as well as microsatellite instability occurs at similar 

frequency in both small and large intestinal adenocarcinoma. Stabilization of β-

catenin, a central oncogene activated in Wnt/wingless dysregulation, can be 

detected in 50% of sporadic small bowel carcinomas. However, an inactivation of 

the adenomatous polyposis coli (APC), the gatekeeper mutation and an indirect 

evidence of deregulated Wnt signaling pathway in colorectal cancer, is rarely 

observed in small bowel carcinomas [82, 83, 135, 136]. These findings suggest a 

differential regulation of cellular growth in the small intestine conferring higher 

resistance compared to colon.  

These observations prompted us to hypothesize that activated Wnt signaling 

pathway plays an important role in small intestinal adenocarcinoma although the 

mechanism of its activation differs from colorectal carcinoma. Based on this 

hypothesis, the main aim of my research was to elucidate the molecular 

background of β-catenin stabilization in small intestinal adenocarcinoma and to 

compare the findings with early age onset of non hereditary colorectal cancers, 

usually displaying no APC mutations. 
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OBJECTIVES 

 
The molecular background of small bowel adenocarcinomas is incompletely 

understood. Similar to colorectal cancer nuclear accumulation of β-catenin has 

been reported as a common phenomenon in this tumor type. In contrast to 

colorectal cancer, however, this feature can not be explained by inactivation of 

the APC tumor suppressor. 

In this study we aimed in identifying the mechanisms of β-catenin accumulation 

in small bowel cancer by trying to answer the following questions. 

• How important is β-catenin accumulation for small bowel adenocarcinoma 

and are the findings comparable to those in early age onset of non 

hereditary colorectal cancer? 

• Is β-catenin accumulation caused by inactivation of the degradation 

machinery or is it associated with alterations of the β-catenin itself? 

• If β-catenin alterations occurred did they affect single amino acids or did 

gross alterations occur? 

• What is the genetic mechanism behind β-catenin alterations? 

By answering these questions we identified large scale deletions in the CTNNB1 

gene in small intestinal carcinomas and in some early age of onset non 

hereditary colon cancers. Small intestinal carcinomas with large scale β-catenin 

deletions displayed strong homogenous nuclear β-catenin accumulation 

throughout the tumor areas, whereas colon cancers showed patchy areas of 

homogenous nuclear accumulation. We analysed the functional effect of these 

large scale deletion mutations and compared the effects to to those of point 

mutations in order to find out the following : 

• What are the functional consequences of these large scale mutations in 

cell culture models? 

• Do the large scale mutations exhibit a similar effect on proliferation and 

migration like single amino acid substitutions? 

• What is the cellular sub localization of the mutated β-catenin? 

- 32 -  



Therefore,  we analysed paraffin embedded tumor material from a total of 20 

small and 20 large intestinal adenocarcinomas, prepared mutant β-catenin 

clones, corresponding to the mutations found in the tumors, and transfected 

these mutants into two cell lines for functional analysis. 
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3. MATERIAL AND METHODS 
3.1 MATERIALS 
 
3.1.1 Solutions, chemicals and kits 
 
Qproteome FFPE Tissue Kit                       Qiagen (Hilden) 

DNeasy Blood & Tissue Kit                         Qiagen (Hilden) 

RNeasy FFPE Kit                                        Qiagen (Hilden) 

Enzyme and Buffer                                      Peqlab (Erlangen) 

dNTPs  Set                                                  Roche (Mannheim) 

Primers                                                        Thermo Scientific (Braunschweig) 

SuperScript® III One-Step RT-PCR            Invitrogen (Karlsruhe) 

Big Dye Termination                                     Applied Biosystems  
sequencing Kit                                              (Warrington, UK)  
High Pure PCR Product Purification Kit        Roche (Mannheim) 

Filme (Western Blotting)                               Amersham Bioscience 

ECL plus Western Blotting                           (Frieburg) 

Detection System         

Immobilon PVDF  membrane (0.45 µm)      Millipore (Schwalbach) 

Acrylamide gel solution (30%)                     Serva Electrophoresis(Heidelberg) 

TEMED 

Ammonium persulfate                                   

Standard Chemicals                                       Bio-Rad (Munich) 

(not mentioned separately)                             BD Bioscience (Heidelberg)                                                

                                                                       Merck (Darmstadt) 

                                                                       Roche (Mannheim) 

                                                                       Roth (Karlsruhe) 

                                                                       Sigma (Deisenhofen) 

Restriction Enzymes and Buffers                   New England Biolabs (Frankfurt) 

                                                                       MBIFermentas (Bad Durrenberg) 

Rapid Ligation Kit                                           Roche (Mannheim) 

UltraPureTM RNase free Water                     Invitrogen (Karlsruhe) 
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DH5α Competent cell                                     Invitrogen (Karlsruhe) 

QIAprep Spin Miniprep Kit                              Qiagen (Hilden) 

QIAfilter Plasmid Midi Kit                                    Qiagen (Hilden) 

Pipette, Tips and Eppendorf                               Greiner (Nürtinger) 

                                                                            Eppendorf (Hamburg) 

                                                                            ABImed (Langenfeld) 

Media and additionals for the Cell Culture          PAA Laboratories (Cölbe) 

Plasticware Cell Culture                                      Greiner (Nürtinger) 

                                                                            Falcon (Heidelberg) 

                                                                            NuncTM (Wiesbaden) 

                                                                            TPP (Basel, Schweiz) 

Sodium Butyrate                                                 Millipore  (Schwalbach) 

Lipofectamine 2000 and Geneticin                     Invitrogen (Karlsruhe) 

BCA Protein Assay Kit                                        Pierce (Braunschweig)  

VenorGeM, Mycoplasma Detection Kit              Minerva Biolabs (Berlin) 

 
3.1.2 Devices  
ABI – 377 DNA Sequencer                               AppliedBiosystems (Darmstadt) 

Agarose Gel Electrophoresis System               Keutz (Reiskirchen) 

CO2- Incubator (Hera cell 150)                         Heraeus (Hanau) 

Cell Culture centrifuge Universal  R32              Hettich Centrifuge (Tuttlingen) 

Centrifuge Varifuge 3.0/3.0 R                            Heraeus/Kendro (Hanau) 

ELISA-Reader (Multiscan Ascent)                    Thermo Electron Corporation 

FACS CaliburTM                                               BD Bioscience (Heidelberg) 

Gel Documentation System                              Biozym (Oldendorf) 

(Alpha ImagerTM)   

Fluorchem-Imaging System WB                       Alpha Innotech/Biozym 

                                                                          (Oldendorf) 

Film Developer Machine                                   MS Laborgeräte (Heidelberg) 

(Optimax Typ TR) 

Fluorescence Microscope                                 Leica (Wetzlar) 

Inverse Microscope Olympus CKX41               Olympus (Hamburg) 

Inverse Microscope (Axiovert 25)                     Zeiss (Jena) 
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Camera Altra 20 (Soft Imaging System)           Olympus (Hamburg)   

Laminar Flow (Microflow)                                  NuncTM (Wiesbaden) 

Microfuge Micro 200                                       Hettich centrifuge (Tuttlingen) 

Microwave                                                       Panasonic (Heidelberg) 

Nanodrop ND-1000                                         PeqlabBiotechnologie (Erlangen) 

UV-VIS Spectrophotometer 

PAA Gel Electrophoresis System                   Biozym (Oldendorf) 

PCR Block (Multi Cycler PTC)                        Biozym (Oldendorf)                                                             

(pH 210 Microprocessor pH Meter)                Hanna Instruments 

                                                                       (Kehl am  Rhein)                                                                  

Photometer                                                     Eppendorf (Hamburg) 

Orbital Shaker (Biometra WT17)                    Biometra (Göttingen)  

Shaking- Thermoblock                                    Eppendorf (Hamburg) 

Western Blot Apparatus                                  Pharmacia/Pfizer Pharma 

(LKBMultiphorII)                                              (Karlsruhe) 

Western Blot Apparatus (Wetblot)                  Biozym (Oldendorf) 

 

3.1.3 Software  
 
Analysis getIT Vers. 5.0                                Olympus (Hamburg) 

Axio Vision Rel. 4.6                                       Zeiss (Jena) 

CellQuest  Pro                                              BD Bioscience (Heidelberg) 

Multicycle program                                       Phoenix Flow Systems 

                                                                     (San Diego, CA) 

Endnote                                                        Thomson Reuters, USA        

                                                             

3.1.4 Antibody 
 
The following primary antibodies were used: Mouse β-catenin (BD, Heidelberg, 

Germany), Rabbit α catenin and mouse Flag M2 clone (Sigma, Deisenhofen,  

Germany), Rabbit GFP (Abcam, Heidelberg, Germany), Mouse cyclin D (DCS-6 

SC20044) and mouse β-actin (Santacruz, Heidelberg, Germany) . As secondary 

antibodies we used anti-rabbit,anti-mouse (cell signaling, Heidelberg, Germany) 
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coupled to horse raddish peroxidase (HRP) for western blot . For 

immunofluorescence, we used goat anti-mouse ALEXA 568 and goat anti rabbit 

Alexa 466 (Molecular probes, OR, USA). For visualization in IHC, the labelled 

immunoperoxidase method with AEC as a chromogen was applied in an 

automated staining system( Techmate Horizon; Dako, Hamburg, Germany).                  

                                                                                            
3.1.5 Tumor tissues. 
 
Twenty non-FAP-associated small intestinal and 20 non hereditary early age of  

onset colorectal adenocarcinomas were investigated (Table 2.1). Small intestinal 

adenocarcinoma includes eight duodenal, three jejunal and two ileal 

adenocarcinomas, as well as seven carcinomas in segmented small intestinal 

resections without specification of jejunal or ileal origin. Fifteen patients were 

male, five female. Patient age was in the range 35–90 (median 71) years.  

Colorectal adenocarcinoma patient’s age was in the range 22-35. The clinical 

data and tumor location for small intestinal and colorectal adenocarcinoma are 

given in Table 1. The study was approved by the institutional ethics committee 

(Application No. 206/05) at the Medical Faculty at Heidelberg University.  
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Table 2.1: Clinical and pathological data for patients tumor tissues. 

 
ID Age Gender Tumor Location/Differentiation 

Small Intestinal Adenocarcinoma 
 

T3 
T7 

T12 
T13 
T18 
T19 
T24 
T30 

T160 
T172 
T174 
T180 
T206 
T235 
T255 
T256 
T320 
T410 
T716 
T820 

 
71 
66 
75 
83 
74 
68 
74 
71 
79 
84 
61 
64 
90 
44 
53 
35 
37 
74 
54 
72 

 
Male 
Male 
Male 
Male 
Male 
Male 

Female 
Male 

Female 
Male 
Male 
Male 

Female 
Female 

Male 
Male 
Male 

Female 
Male 
Male 

 
Ileum/adenocarcinoma 

Jejunum/ileum/adenocarcinoma 
Jejunum/ileum/mucinous adenocarcinoma 

Ileum/adenocarcinoma 
Duodenum/mucinous adenocarcinoma 
Jejunum/mucinous adenocarcinoma 

Jejunum/adenocarcinoma 
Duodenum/mucinous adenocarcinoma 

Jejunum/ileum/adenocarcinoma 
Jejunum/adenocarcinoma 

Duodenum/adenocarcinoma 
Duodenum/adenocarcinoma 

Jejunum/ileum/adenocarcinoma 
Duodenum/adenocarcinoma 

Jejunum/ileum/adenocarcinoma 
Duodenum/adenocarcinoma 
Duodenum/adenocarcinoma 

Duodenum/mucinous adenocarcinoma 
Duodenum/adenocarcinoma 

Jejunum/ileum/adenocarcinoma 
 

Colorectal Adenocarcinoma 
 

T542 
T128 
T272 
T084 
T123 
T097 
T353 
T576 
T353 
T320 
T273 
T409 
T316 
T240 
T115 
T183 
T173 
T117 
T832 
T218 

 
33 
32 
28 
27 
34 
22 
32 
33 
35 
33 
33 
28 
31 
34 
25 
35 
34 
32 
30 
31 

 
Male 
Male 

Female 
Female 
Female 
Female 

Male 
Female 
Female 

Male 
Female 
Female 

Male 
Male 

Female 
Male 
Male 

Female 
Male 
Male 

 
Right colon/adenocarcinoma 
Liver met/adenocarcinoma 

Periton met/adenocarcinoma 
Pancreas metast/mucinous adenocarcinoma 

Sigma/adenocarcinoma 
Rectum/adenocarcinoma 

Colon nos/adenocarcinoma 
Sigma/adenocarcinoma 

Coecum/adenocarcinoma 
Sigmoid/adenocarcinoma 
Sigmoid/adenocarcinoma 

Right colon/adenocarcinoma 
Coecum/adenocarcinoma 
Metast/adenocarcinoma 

Rectum/mucinous adenocarcinoma 
Perit metast/adenocarcinoma 
Colon nos/adenocarcinoma 

Ascending Colon 
Right colon 
Right colon 
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3.2 METHODS  
3.2.1 In vivo paraffin tumor analysis. 
 

3.2.1.1 Immunohistochemistry. 
 

Immunohistochemistry was performed on 5 μm thick paraffin sections, pretreated 

by 10 min microwave boiling in a 0.2 mM citrate buffer. A monoclonal antibody 

against amino acids 571–781 of human β-catenin (1:200; clone 14, BD 

Heidelberg, Germany) was incubated for 30 min at room temperature. For 

visualization purposes, the labelled immuno peroxidase method with AEC as a 

chromogen was applied in an automated staining system (Techmate Horizon; 

Dako, Hamburg, Germany). The staining pattern and intensity were compared 

between tumor cells and normal mucosa in individual samples and this ratio was 

compared to the other investigated cases. A significant increase of β-catenin 

staining in the cytoplasm was scored as ‘stabilization’. In cases with stabilization, 

two different patterns were distinguished: (a) cytoplasmic accumulation with only 

focal nuclear translocation in the invasion front of the tumors was scored as 

cytoplasmic predominant’; and (b) accumulation in all tumor nuclei was scored as 

‘nuclear-predominant’. 

 

3.2.1.2 Protein extraction from paraffin fixed tumor tissue.       
 
In order to achieve protein isolation from paraffin embedded tissues (nine slides 

with 5 μm each per sample), the Qproteome FFPE tissue kit was used according 

to the manufacturer’s instructions (Qiagen, Hilden, Germany). Total protein 

extracts were quantified (280 nm, Nanodrop photometer), separated on 10% 

SDS–PAGE (40 μg/lane), electro-transferred to a PVDF membrane for western 

blotting. 
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3.2.1.3 DNA and RNA extraction from paraffin fixed tumor tissue. 
 
Sections (5 μm thick) from paraffin-embedded tumor tissues were de-waxed in 

xylene for 10 min, washed in 100%, 90% and 80% ethanol and rehydrated in 

distilled water. Unstained sections were analysed under the microscope to 

scrape tumor areas with at least 70% tumor cells. DNA and RNA, was isolated 

using the DNeasy and the RNeasy FFPE kit (Qiagen). Isolation was performed 

according to the manufacturer’s instructions.  

 

3.2.1.4 Genomic DNA analysis. 
 
For the mutational analysis of exon 3, intra-exonic primers were used as 

previously described [107]. For the mutational analysis of exon 2 and 4 as well as 

for intron 2 and 3, new primers were synthesized (Table 2.2), based on the 

nucleic acid sequences given in the genomic database (RNA: NM 001098209, 

DNA: NT 022517). For the investigations on long-distance deletions, forward 

primers from intron 2 were combined with reverse primers from exon 3 and intron 

3. PCR reactions were performed for 35 cycles under standard temperature 

conditions. 

 

3.2.1.5 cDNA analysis. 
 
For the cDNA-analysis, a one-step RT–PCR procedure (SuperscriptTMIII, 

Invitrogen, CA, USA) was applied according to the manufacturer’s instructions. 

cDNA primers flanking the boundaries of exon 2–5 were applied (Table 2.2). A 

forward primer in exon 2 was combined with a reverse primer from exon 3 to 

check RNA quality. The same exon 2 forward primer was combined with reverse 

primers in exon 4 and 5 in order to identify large deletions of coding sequences.  
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3.2.1.6 Sequencing. 
 
Genomic and RT–PCR fragments were purified using the High Pure PCR 

Purification kit (Roche Diagnostics, Mannheim, Germany) as recommended by 

the manufacturer, subjected to direct cycle sequencing using a bigDye 

termination kit (Applied Biosystems, Warrington, UK) and automated sequencing 

by  ABIPrism 377 (Applied Biosystems). Sequencing was performed in forward 

and reverse directions using primers identical to those for primary PCR (cDNA, 

exon 2–exon 5; DNA, previously published primers [107]). For deletion mutants, 

primers generating the shortened fragments in primary PCR at the DNA level 

were used for sequencing and the case-corresponding RNA was sequenced 

using forward and reverse cDNA primers of exon 2-exon 4 in cases T3, T13 and 

T820, as well as forward primer for cDNA exon 2 and reverse primer for exon 

cDNA exon 5 for case T256.  

 

3.2.2 Generation of mutated coding sequences. 
 
 3.2.2.1 Overlap extension polymerase chain reaction (PCR).  
 

      Extension of overlapping gene segments by PCR is a simple, versatile technique 

for site-directed mutagenesis and gene splicing [137]. We used this method to 

create large in frame deletion mutant constructs of β-catenin. Initial PCRs 

generate overlapping gene segments (AB, CD) as seen in Figure (2.1), are then 

used as template DNA for another PCR to create a full-length product. Internal 

primers generate overlapping, complementary 3' ends on the intermediate 

segments to introduce deletions for site-directed mutagenesis. For  gene splicing, 

internal primers encode the nucleotides found at the junction of adjoining gene 

segments. Overlapping strands of these intermediate products hybridize at this 3' 

region in a subsequent PCR and are extended to generate the full-length 

product, amplified by flanking primers that can include restriction enzyme sites 

for inserting the product into an expression vector for cloning purposes. 
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Table 2.2   Primers for gDNA and cDNA analysis in SIC and CRC 
 

Region                               Forward Primer Reverse Primer 
 

cDNA Exon 2–Exon 3                 
cDNA Exon 2–Exon 4 
cDNA Exon 3–Exon 5 
DNA Intron 2A 
Intron 2B 
Intron 2C 

Intron 3A 
Intron 3B 
Exon 4 

 

 

 

5’-cctgttcccctgagggtatt-3’ 

5’-cctgttcccctgagggtatt-3’ 

5’-tggatacctcccaagtcctg-3’ 

5’-gggtatttgaagtataccatacaactg-3’ 

5’-ccttttgctccattttctgc-3’ 

5’-ctgagctaaccctggctatca-3’ 

5’-tggatacctcccaagtcctg-3’ 

5’-aaatgttgtggtgaagaaaagaga-3’ 

5’-gctgaactgtggatagtgagtggt-3’ 

 

 

 

5’-ctgtggtagtggcaccagaa-3’ 

5’-tgcatgccctcatctaatgt-3’ 

5’-gcatgatagcgtgtctggaa-3’ 

5’-gctggtggcttgtttgcta-3’ 

5’-tcaaatctgaaagacagccaag-3’ 

5’-aacagccgcttttctgtctg-3’ 

5’-tccacagttcagcatttacct-3’ 

5’-ggatgagcagcatcaaactg-3’ 

5’-tgaaactactccccttgagca-3’ 

 
 

3.2.2.2 Mutagenic primers. 
 
A list of primers used for construction of the wild and mutated β-catenin 

constructs are given in Table (2.3).  The primers were designed in a way to 

create desired large in frame deletion. Primers ‘b’ and ‘c’ consist of overlapping 

regions whereas flanking primers ‘a’ and ‘d’ contains restriction enzymes to 

facilitate cloning of modified PCR product into two different mammalian 

expression vector. The primers ‘a’ and‘d’  were constructed to introduce unique 

KpnI  restriction endo nuclease sites at the 5’-end and BamHI sites at the 3’ end 

of the amplified fragments. The primers were used also to screen the cloned 

DNA of β-catenin constructs for the presence of mutant inserts (Hybaid PCR 

Express Thermal Cycler). Flag tag was added at C-terminus of all constructs by 

using reverse primers ‘d’ with flag tag followed by BamHI restriction site. Forward 

primer also consists of Kozak sequence after KpnI restriction site.   
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Figure 2.1 PCR-mediated overlap extension method to generate a 
chimeric gene products. Chimeric gene products were generated by two 
PCRs using two internal primers b and c and flanking primers (a and d) 
containing restriction sites KpnI and BamHI (Primer d also consist of 
FLAG tag) to generate intermediate PCR products AB and CD with an 
overlapping fragments including nucleotides that span the junction of 
segments AB (solid line) and CD (dashed line). Products AB and CD are 
denatured and  used as template DNA for the second PCR; strands of 
each product hybridize at their overlapping, complementary regions  
containing the desired mutation (here the mutation from patient sample) 
.The second PCR generates the hybrid gene product AD with restriction 
sites which is then digested and ligated into mammalian expression vector 
pcDNA3. (Reviewed by Heckman and Pease 2007) 
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3.2.2.3 Plasmid construction. 
 
Human β-catenin cDNA clone (IMAGE: 6151332) in pCMV-SPORT6 (ATCC, 

Wesel, Germany) was used to generate deletion mutants (Fig 4.1). Mutations 

observed in tumor samples (T256 and T3) were generated by joining mutated 

cDNA fragment from paraffin fixed patient tissue to later  wild type β-catenin 

obtained from cDNA clone (IMAGE:6151332) by PCR driven overlap extension 

method. Mutant T256 lacked Δ(A17 – A128) and mutant T3 lacked Δ(A5 – A80). 

Mutant T60 lacking Δ(A60-A110) was prepared by joining initial PCR fragments 

AB containing nucleotide sequence from codon 1 to 60 and second PCR 

fragment CD from codon 110 to 780. Primer ‘b’ was designed to contain few 

overlapping nucleotide sequence from fragment CD. Point mutant ∆S45 & S33Y 

was obtained by RT-PCR from HCT116 (Colon Carcinoma Cell Line) and SW48 

know to harbour deletion of serine at 45 and a point mutation at codon 33, 

respectively. All primers contained restriction site to facilitate cloning into 

pcDNA3 vector (Invitrogen). The β-catenin cDNA insert sequences were PCR-

amplified using forward and reverse primers (Table 2.3 ) containing KpnI site (in 

forward primer) and BamH1 (in reverse primer) restriction sites and cloned in-

frame into pcDNA3.  

FLAG tagged β-catenin pcDNA3 plasmids were used as templates to PCR 

amplify wild type and mutant β-catenin products without the FLAG tag but with 

restriction sites KpnI and BamH1 (Table 2.3) to tag all of these constructs with 

GFP tag at the C-terminus. PCR product were digested and ligated in 

mammalian expression plasmid pEGFP-N1 (Clontech). The β-catenin cDNA 

insert sequences were PCR-amplified using forward and reverse primers 

containing KpnI site (in forward primer) and BamH1 (in reverse primer) restriction 

sites. β-catenin cDNA PCR products were then cloned in-frame into pEGFP-N1 

vector. All clones were confirmed by sequencing. 
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Table 2.3 Primers used for generating wild type and mutant β-catenin and further 
cloning into pcDNA3 and pEGFP-N1 with Flag and GFP tag respectively. 
 
 

Construct FLAG TAG 
at C-terminus in 
pcDNA3 vector 

 
       Forward Primer 

 
Reverse Primer 
 

 
β-catenin(WT)               

5’ taatgcggccgcatggctac 
tcaagctgatttgatggagttg 3’ 
 

5’ attaggatccctacttgtcatcgtcatccttg 
taatccaggtcagtatcaaaccaggccagc 3’ 

β-catenin AB 
 

5’ cctgttcccctgagggtatt3' 5’gcatgatagcgtgtctgga 3’ 

β-catenin CD 
 
 

5’ ctgctaaatgacgaggaccag3' 5’ ccaatcacaatgcaagttcag 3’ 

β-catenin(T256) AD 
 

WT (Forward) WT(Reverse) 

β-catenin(T3) AD 
 

5’    taatgcggccgcatggctactcaag 
        Atattgatggacagtatgc  3’ 

WT(Reverse) 

β-catenin(T60) AB 
 

WT (Forward) 
 

5’catcaaactgtgtagaggaggt 
    atccacatcctcttcctcagg 3’ 

β-catenin(T60) CD 
 

5‘ tctacacagtttgatgctgctcatcccac 
3’ 
 

WT(Reverse) 

β-catenin(T60) AD 
 

WT (Forward) WT(Reverse) 

β-catenin S33Y 
 

WT (Forward) WT(Reverse) 

β-catenin ∆S45 
 

WT (Forward) WT(Reverse) 

Construct GFP TAG 
at C-terminus  in 
pEGFP-N1 Vector 

Forward Primer 
 

Reverse Primer 
 

β-catenin (all 
construct excepet 
T3)----GFP 

    5’gtcgacggtacccatggct                
actcaagctgatttgatg 3’ 

5’accggtggatcccgcagg     
tcagtatcaaaccag 3’ 
 
 

β-catenin(T3)---GFP       5’ gtcgacggtacccatggcta 
         ctcaagatattgatggacagtatgc 
3’ 
 

5’accggtggatcccgcaggt 
    cagtatcaaaccag 3’ 

 

. 
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3.2.3 Standard DNA manipulation techniques. 
 
3.2.3.1 Digestion with restriction endonucleases.  
 
Cleavage by restriction enzymes (or restriction endonucleases) plays a key role 

in all the gene manipulation (cloning) procedures. These enzymes, part of the 

bacterial restriction/modification (or restriction/methylation) systems, allow 

bacteria to monitor the origin of incoming DNA and to destroy the molecules 

recognized as foreign. In particular, the enzymes termed type II restriction 

endonucleases are important in all aspects of molecular biology. They recognize 

specific sequences (usually 4 – 6 bp in length) and of specific base composition, 

and cleave the DNA into fragments in a defined manner. The sequences 

recognized are usually palindromic, that is they read the same in both directions 

on each strand, and when cleaved, they leave a cohesive-ended fragment. The 

ends produced from different molecules but by the same enzyme are 

complementary (also ‘cohesive’ or ‘sticky’) and consequently, anneal to each 

other. The standard reaction mixture contained DNA to be cut, the appropriate 

enzyme, enzyme buffer (from 10 × stock) and sterile distilled water. All digests 

were done at 37°C. To double digest pcDNA3 and PEGFPn1 vector for cloning 

PCR products, 15 μl (5 μg) of vector DNA was digested for 2-3 hours with 1 μl ( 

20 units) of BamHI and 4 μl ( 40 units) of KpnI in 1x BamHI buffer in a total 

reaction volume of 250 μl. Wild type and mutated β-catenin PCR product were 

gel purified and eluted in 30 μl elution buffer for double digestion with BamHI and 

KpnI. For digestion, 30 μl of eluted PCR product was digested overnight with 1 μl 

( 20 units) of BamHI and 4 μl ( 40 units) of KpnI in 1x BamHI buffer in a total 

reaction volume of 60  μl. Both digested vector backbone and PCR products 

were gel purified after excising desired band and used for setting up the ligation 

reaction. However, vector backbone was de-phosphorylated too to avoid 

background colonies, formed of incomplete restriction digestion and ligation.  
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3.2.3.2 Dephosphorylation.  
 

To reduce the background in cloning experiments, phosphatases which remove 

the 5’-terminal phosphate groups from a nucleic acid strand are used. By 

dephosphorylating the restricted cloning vector they prevent its re-ligation, 

eliminating any possibility of dimmer formation or re-circularization of the vector. 

The restricted, linearized vector DNA was treated with calf intestine alkaline 

phosphatase before ligation. For dephosphorylation of restricted vector, 1 – 3 μg 

of DNA was treated with 0.25 – 0.5 units of enzyme for 30 min at 37°C in the final 

volume of 50 μl.  

 

3.2.3.3 DNA purification from gel and solution. 
  
Usually, DNA at subsequent stages of a cloning procedure requires purification 

to remove the contaminants from the previous step, e.g. enzymes, buffer 

components, etc. Purification of DNA from solution or gel during cloning different 

β-catenin constructs, generated by PCR was performed using High pure PCR 

product purification kit from Roche. This kit is designed for the efficient and 

convenient isolation of PCR products from amplification reactions for removing 

primers, mineral oil, salts, unincorporated nucleotides, and the thermostable DNA 

polymerase which may inhibit subsequent enzymatic reactions involved in 

cloning of the PCR products. Moreover, nucleic acids from other modification 

reactions (e.g., restriction endonuclease digests, alkaline-phosphatase treatment, 

or kinase reactions) were also purified using this kit. Briefly, 1 volume of the DNA 

sample mixed with 5 volumes of binding buffer  (allowing efficient recovery of 

DNA fragments starting from 100 bp) was applied to the high pure filter tube and 

centrifuged (microcentrifuge, 13,000 rpm) for 1 min. Flow-through was discarded 

and the column washed twice with wash Buffer (centrifuged as before, flow 

through discarded and centrifuged again). DNA was eluted with Buffer EB (up to 

50 μl) or sterile distilled water (for optimum yield, water pH was adjusted to 7.0 – 

8.5). The purification of DNA fragments from agarose gels was performed 

similarly after dissolving gel containing DNA fragment in binding buffer at 56 

degree in heating block. The procedure followed enzymatic reactions and was 
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done to separate digested DNA from its uncut fraction, but mostly to isolate an 

appropriate DNA fragments prior to the ligation reaction. 

 
3.2.3.4 Ligation. 
 
The cohesive ends produced by certain restriction enzymes anneal and can be 

joined covalently by DNA ligase to create artificially recombinant molecules. The 

ligase forms a covalent bond between the 5’-phosphate at the end of one strand 

and the 3’-hydroxyl of the adjacent one. Ligation of the specific DNA fragment 

with a specialized DNA carrier molecule (vector) is necessary in order to be able 

to propagate the DNA of interest. Ligation was performed using rapid ligation kit 

from Roche as recommended in the manufacturers instruction. Briefly, 1 μl (5 

units) of T4 DNA ligase was used and the vector/insert ratio of 1:5 for all β-

catenin constructs (total DNA about 100 ng) in a final volume of 20 μl was used. 

A control ligation reaction with vector but no insert DNA present was set up at the 

same time to assess the likelihood of vector re-ligation (reaction background). 

The reaction was performed at room temperature for five minutes. 

 

3.2.3.5 Bacterial transformation. 
 
The recombined (cut and ligated) DNA can be replicated indefinitely (cloned) 

within microbial cells. Bacterial transformation, the process by which bacterial 

cells take up naked DNA molecules, is an essential step in many cloning 

experiments. Bacterial cells are made competent  by treatment with calcium 

chloride at low temperature (0 – 5°C) in the early logarithmic phase of growth. 

The bacterial cell membrane is permeable to chloride ions, but not to calcium 

ions. As the chloride ions enter the cell, water molecules accompany the charged 

particle. This influx of water causes the cells to swell and is necessary for the 

uptake of DNA, however the exact mechanism of this process is unknown. 

Calcium chloride treatment has to be followed by a brief increase in temperature, 

termed heat shock (optimum at 42°C). E. coli cells survive at this temperature 

due to the expression of the heat shock genes. We used competent DH5α 

bacterial strain (Invitrogen) for transformation. DH5α, derivative of E. coli is 
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usually used for maintenance and storage of bacterial clones. DH5α is recA- 

(lacking the recombinase A gene) for insert stability of recombinants (and endA-, 

lacking the endonuclease A gene, for improving the quality of plasmid DNA). For 

transformation, 50 μl aliquots of competent cells were pipeted into pre-chilled 

tubes, mixed gently with about 1 μl of plasmid DNA preparation or up to 4 μl (40 

ng of DNA) of ligation mixture, and left on ice for 5 min. The tubes were then 

heated for 30 s in a 42°C water bath and placed on ice for 2 min. Following the 

addition of 80 μl of LB medium at room temperature, the transformation mixtures 

were incubated with shaking for 60 min at 37°C. Cells were plated onto LB agar 

plates containing ampicillin or Kanamycin. Ten to twenty colonies were screened 

for each constructs by colony PCR and further validated by restriction digestion 

after mini prep for presence of insert. Finally, the clones were sequenced to 

avoid existence of any point or misense mutation that can effect the  reading 

frame and eventually the protein sequence. 

 

3.2.3.6 Colony PCR (Polymerase chain reaction). 
 
Colony PCR was performed with single colonies (colony forming units) of 

transformed DH5α cells containing cloned plasmid to confirm that the correct 

gene was inserted into the vector. The transformed cells were grown on Luria-

Bertani (LB) agar plates containing the appropriate antibiotics. Forward and 

reverse primers used for colony PCR had overlapping regions from the plasmid 

vector that would produce a PCR product containing the gene if it had been 

positively cloned. Single colonies were picked from the LB plate and 

resuspended in 6 μL of double distilled water (ddH2O). Four microliters of the 

resuspended colony were added to a PCR mixture with a final volume of 25 μL. 

The reaction volume consisted of 1 unit (U) of Taq DNA polymerase, 100 μM of 

each dNTP, 1X Reaction Buffer, 1 μM of each of the primers. The DNA 

containing the inserted gene was amplified by a PCR Thermocycler using the 

following cycles: 94°C for 2 min; 25 cycles of 94°C for 45 sec, 58°C for 1 min, 

72°C for 1 min; 72°C for 10 min. The PCR products were resolved with a 1% 

agarose gel and the DNA bands were viewed under UV light in the GelDoc. 
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3.2.3.7 Mammalian expression plasmids. 
 
Mammalian expression plasmid pcDNA3 (Invitrogen) and pEGFP-N1 (Clontech) 

were used as vector for cloning β-catenin WT and mutant constructs. pcDNA3 

was used for cloning β-catenin constructs with FLAG tag at C-terminus whereas 

pEGFP-N1 vector generates GFP tag at C-terminus. All constructs were 

generated by cloning PCR product (β-catenin WT and mutant) into above 

mentioned vector using KpnI and BamH1 restriction site. Constructs were used 

for transient and stable transfection in SW480 and MDCK cell culture. 

pcDNA3 (Fig 2.2) is an expression vector widely used for constitutive, high level 

expression in mammalian cells. It is useful for studying protein expression by 

transient transfection as well as by stable integration into the genome. It consists 

of CMV (Immediate-early Cytomegalovirus virus promoter) for high-level 

expression in a wide variety of mammalian cell lines. Flag tag was attached at 

the C-terminus while generating different inserts by PCR. Primer sequences 

were designed to contain the nucleotide sequence for generating Flag tag at the 

C-terminus of the protein upon expression after transfection. pcDNA3 vectors 

were used for transient transfection of SW480 cells. 

pEGFP-N1 (Fig 2.2) is also a mammalian expression vector with a CMV 

promoter. We generated β-catenin wild type and different mutant form pcDNA3 

constructs by PCR. Primers were designed to contain restriction sites for  KpnI 

and BamHI but lacking flag nucleotide sequence. GFP sequence after BamHI 

restriction site, adds GFP tag at C-terminus of β-catenin. These clones were 

used to generate stable cell pool in MDCK cell after transfection and selection 

with G418. Addition of GFP tag facilitates the selection of MDCK cells stably 

transfected with β-catenin wild type and mutants. 
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Figure 2.2 Vector Map of Plasmids used in cloning: a) pcDNA3 vector 
map, used for generating Flag Tag constructs using KpnI and BamHI site 
of MCS region. B) pEGFP-N1 vector map, used for generating GFP tag 
constructs using KpnI and BamHI site of MCS region. 
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3.2.4 Isolation and purification of plasmid DNA. 
 
Isolation of plasmid DNA is a standard requirement for any DNA analysis and/or 

manipulation purposes. In this work the alkaline lysis procedure was used, the 

most common method of DNA isolation. This technique exploits the difference in 

topology and consequently, in denaturation and renaturation characteristics of 

small, covalently closed circular plasmid DNA molecules and much larger 

chromosomal DNA. Under alkaline conditions (pH 11) both DNAs are denatured. 

High pH changes the condition of ionizable groups (ionizing certain groups and 

deionizing others), while SDS (ionic detergent) disrupts cell membranes and 

destabilizes all hydrophobic interactions holding various macromolecules in their 

native conformation. Rapid neutralization of the alkaline medium with a high salt 

potassium acetate buffer causes the chromosomal DNA, being too large to 

renature correctly and form an insoluble aggregate. Small plasmid DNA 

molecules remain in solution due to their covalently closed nature promoting 

interstrand rehybridization. Rapid neutralization also precipitates denatured 

proteins (and cell debris) along with insoluble potassium dodecyl sulphate. This 

allows the entrapment and precipitation of the high molecular weight 

chromosomal DNA. Soluble and insoluble materials are separated by 

centrifugation. The scale of the procedure may vary, depending on the amount of 

DNA that is required. 

 
 3.2.4.1 Small scale isolation (‘Miniprep’).  
 
The Plasmid Mini Kit by Qiagen was used according to the manufacturer’s 

instructions. Qiagen plasmid DNA isolation protocols are based on the modified 

alkaline lysis procedure. However, the deproteinisation step of phenol/chloroform 

extraction is replaced by the column chromatography and the supernatant 

material (after centrifugation following the neutralisation step) is applied to the 

Qiagen Anion-Exchange Resin. The resin binds the plasmid DNA under 
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appropriate low-salt and pH conditions, while all the contaminants (RNA, 

proteins, dyes, low-molecular-weight impurities) are removed by a medium-salt 

wash. DNA is eluted in a high-salt buffer and then desalted and concentrated by 

isopropanol precipitation. DNA, isolated from 10 ml overnight bacterial culture 

and isopropanol precipitated from the lysate, is redissolved in TE buffer and 

loaded onto the Qiagen resin. Then, it is purified according to the general 

protocol. This procedure yielded up to 7 μg of DNA from 10 ml of overnight 

culture. 

 
 3.2.4.2 Large scale isolation (‘Maxiprep’). 
 
Two different Qiagen kits were used for the isolation of DNA in bigger quantities. 

These were the QIAfilter Plasmid Maxi and HiSpeed Plasmid Maxi Kit. Both were 

used according to the manufacturer’s instructions. Both protocols rely on the 

modified alkaline lysis as a cell disruption method. Qiagen QIAfilter Plasmid Maxi 

Kit was used e.g. for DNA isolation from DH5α clones for the sequencing 

purposes. The purification protocol follows essentially the Mini Kit one but uses 

larger culture and reagent volumes. Additionally, QIAfilter Maxi Cartridges are 

used to clear (filter) bacterial lysates without centrifugation. The protocol yielded 

up to about 50 μg from about 250 ml of overnight culture. Qiagen HiSpeed 

Plasmid Maxi Kit was used to prepare plasmid DNA for transient transfection and 

generation of stable cell pools. This kit prepares plasmid of high purity which 

improves upon transfection efficiency. The purification procedure follows 

essentially the Maxi Kit one. Similarly, it employs Maxi Cartridges to clear 

bacterial lysate instead of centrifugation. However, use of the HiSpeed Tip 

packed with Qiagen Resin HS, in place of the conventional Qiagen-tip, reduces 

the time of DNA binding, washing and eluting. Eluted DNA, mixed with 

isopropanol, is applied to the QIAprecipitator Module where it is bound and dried 

and then released with an appropriate buffer. The HiSpeed Maxi Kit yielded up to 

about 70 μg of DNA from about 200 ml of overnight culture. 

 

 

 

- 53 -  



3.2.4.3 Glycerol stocks of bacterial strains. 
 
For long-term storage 8% glycerol stocks of DH5α clones (different mutants) 

were prepared. A single colony of an appropriate clone was inoculated into 50 ml 

of LB broth with ampicillin (0.1 mg/ml ) or kanamycin (0.05 mg/ml) and incubated 

with vigorous shaking at 37°C until the OD600 reached 0.6 – 0.9. 0.9 ml was 

removed from the culture and mixed by vortexing with 0.1 ml of sterile 80% 

glycerol. The stocks were stored frozen at -70°C. Before use, the strains were 

grown from a single colony on freshly prepared agar plates and incubated at 

37°C overnight. Plates were stored at 4°C for up to 1 month. 

 

3.2.5 Mammalian cell culture. 
 
3.2.5.1 Cell lines. 
 
All cultured cells were grown at 37° C in 5 % CO2 humidified atmosphere. MDCK 

(ATCC CCL-34, Normal kidney epithelial cells, ) and SW480 (ATCC CCL-228, 

human colorectal adenocarcinoma cells) cells were grown in DMEM and RPMI 

medium respectively, supplemented with penicillin, streptomycin, and 10 % 

serum. Continuous cell culture was maintained in T75 flask and different 

experiments were performed in other well plate’s format.  MDCK stable cell pools 

over expressing β-catenin wild type and mutants were generated by transfection 

of pEGFP-N1 constructs, followed by selection in G418, were maintained in 

complete DMEM medium supplemented with 500 μg/ml of G418. 
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3.2.5.2 Cell culture media and solutions. 
 
The products used for cell culture and transfection are mentioned below, mostly 

obtained from PAA (Colbe) if mentioned otherwise. 
 

Product Ingredients, Usage 

DMEM, Dulbecco’s 

modified Eagle’s Medium 

Mit L-Glutamine 

Glucose (4.5 g/l), mit L-Glutamin 

MDCK cell cultivation 

DMSO (Sigma) Cell Cryopreservation 

FCS, Fetal Calf Serum Additive for cell culture medium 

RPMI, Roswell Park 

Memorial Institute 

With L-Glutamin, SW480 cell Cultivation 

Lipofectamine 2000 

(Invitrogen) 

Cationic Lipid Formulation for transfecting Plasmid 

DNA 

OptiMEM (Gibco) Medium for Plasmid DNA Transfection 

Pencillin-Streptomycin-

Antibiotic solution 

10,000 U/ml Pencillin and 10mg/ml Streptomycin, 

as an antibacterial additive in cell culture medium. 

Geneticin 500 μg/ml for selecting stable cell pool of MDCK 

cells 

Trypsin EDTA solution 0.5 g/l Trypsin and 0.2 g/l EDTA, For Cell Passage 

 

 

3.2.5.3 Cell line cultivation and passages. 
 
The cell lines were maintained in culture by harvesting and passages. Harvesting 

of the cells was performed as followed: 

The cells were shortly washed with 0.05 % trypsin/0.02 % EDTA in PBS solution 

and subsequently incubated with fresh trypsin/EDTA solution at 37°C. After the 

detachment of the cells trypsin was inhibited by addition of serum containing 

growth medium. EDTA was removed by centrifugation at 180 g to 500 g and 
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subsequently uptake of the cell pellet in fresh growth medium. The cell pellet was 

suspended in complete growth medium and passages into a split ratio of 1:5 or 

1:10 to maintain the stock. The cells were counted by hematocytometer and 

seeded with different cell number depending on experiment to be performed. 

 
3.2.5.4 Cell line preservation and thawing. 
 
Cell lines in continuous culture are prone to genetic drift, finite cell lines are fated 

for senescence; all cell cultures are susceptible to microbial contamination.  

Moreover, we generated stable cell pool of MDCK cell over expressing β-catenin 

mutants,  known to loose expression over 8-10 passages due to many different 

mechanism involved in gene silencing. It was vitally important to freeze the initial 

stable cell pool and get back to it in case cell pool in culture losses expression. 

For cryopreservation and thawing of cells, cultures should be healthy with a 

viability of >90% and no signs of microbial contamination. Cultures should be in 

log phase of growth (this can be achieved by using pre-confluent cultures i.e. 

cultures that are below their maximum cell density and by changing the culture 

medium 24 hours before freezing).  Freezing medium containing 90% of serum 

and 10 % DMSO was prepared and maintained at 2 – 8 degree centrigrade. 

DMSO was used as a cryoprotectant to protect the cells from rupture by the 

formation of ice crystals. Cells were harvested by trypsinization. Harvested cell 

pellet was resuspended in cold freezing medium at the recommended viable cell 

density for the specific cell type. Cells were gently mixed to maintain a 

homogeneous cell suspension and freezed at –80°C overnight after keeping 

them in ice for 1 hour. Cells were thawed rapidly and then diluted slowly into 

warm growth medium. The best way to do this is to transfer the contents of the 

thawed vial to a 50 ml centrifuge tube and then add dropwise, with continual 

swirling 10 ml of warm medium. Then the cells were put on a 100 ml dish. This 

way the cells don't suffer osmotic shock. Some cells seem to benefit from being 

diluted into medium, spun down, and then resuspended in warm medium. This 

gets rid of the DMSO, but may disturb fragile cells. If the cells are seeded without 

spinning, the medium was changed as soon as the cells have attached. 
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3.2.5.5 Transient transfection of plasmid DNA. 
 
SW480 were transiently transfected with different Flag tagged β-catenin 

constructs to study effects of mutations on β-catenin localization and oncogenic 

potential.  SW480 cells were transfected with the use of Lipofectamine 2000 

reagent (Invitrogen). Cells were trypsinized briefly 1 d before transfection and 

plated on 35-mm-diameter dishes so that they were 50-80% confluent on the day 

of transfection. 2 µg of DNA and 6 µl of Lipofectamine 2000 reagent was diluted 

in 100 µl of serum-free medium separately and incubated for five minutes. Later, 

DNA- Lipofectamine 2000 mixture was mixed and incubated at room temperature 

for 20 min. While complexes were forming, cells were washed with serum-free 

medium twice and 800 µl of medium without serum and antibiotics was added. 

The DNA-Lipofectamine reagent complexes were applied to the cells and 

incubated at 37°C at 5% CO2
 for 3 h. After incubation, recovery medium with 

10% FBS was added to bring the final volume to 2 ml. After overnight incubation, 

the recovery medium was replaced with fresh, complete medium containing 

serum and antibiotics. Expression of flag tagged β-catenin wild type and mutants 

were analysed by western blotting from protein extracts, prepared after 48 hours 

of transfection. Fluorescence microscopy for localization studies were performed 

after similar transfection of cells initially seeded on coverslips placed in 35 mm 

cell culture dishes. 

 

3.2.5.6 Generation of MDCK stable cell pool. 
 
To obtain MDCK cell lines that stably express the constitutive, GFP-tagged 

constructs of wild type and mutant β-catenin, stable pool of cells were generated. 

The plasmids with wild type and mutant β-catenin were amplified in E. Coli and 

purified using the Maxi Prep kit (Qiagen). Sub-confluent MDCK cells were 

transfected on 10 cm plates with 2 μg DNA : 6 μl of DNA using the Lipofectamin 

2000 reagent (Invitrogen). Two days post transfection, cells were split 1:20 into 

selection medium containing 500 μg/ml G418. Most of the cells died within two 

three days after addition of selection medium, colonies started appearing eleven 
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days after transfection. An approximately equal number of colonies grew up for 

each transfected plasmid. For each transfection, all of the colonies were 

trypsinzed and combined to give stable pools. Stable cell pools were checked for 

expression of GFP tagged wild type and mutant β-catenin by 

immunofluorescence and western blotting. Stable cell pools were maintained in 

G418 supplemented growth media to prevent loss of expression of the gene over 

multiple passages of the clones. 

 

3.2.6 Functional analysis. 
 
Protein analysis was done in transiently transfected SW480 cells and stable cell 

pool of MDCK cells to check the expression of various β-catenin constructs and 

how it effects expression of other genes involved in various other functional 

pathway. Proliferation and migration assays were performed on MDCK stable cell 

pool and 30 hours after transient transfection of SW480 with different β-catenin 

constructs.  

 
3.2.6.1 Preparation of total protein lysate from cultured cells. 
 
Cells were washed 3 times with ice cold PBS and lysed directly on the plates or 

flasks after addition of RIPA protein lysis buffer [50 mM TRIS-HCI pH 7.4, 150 

mM NaCI, 1 % nonidet P-40 (NP- 40), 0.5 % sodium deoxycholate, 0.1 % SDS, 1 

mM EDTA, 1 mM PMSF, 10 μM sodium orthovanadate 10 mM, 20 μg/ml, 

leupeptin, 10 μg/ml pepstatin A, 20 μg/ml of aprotinin]. The cells were scraped 

and lysed by sonication for 20 seconds on ice using UW70 type dounce 

homogenizer and kept on ice for 20 min and centrifuged at 10.000 x g for 12 min.  

 

3.2.6.2 Determination of protein concentration. 
 
The method employing bicinchoninic acid (BCA) was used as an alternative for 

the colourimetric detection and quantification of total protein in 17AATR and 

pET11c control crude extracts. The method depends on the reduction of Cu2+ to 

Cu1+ by protein under alkaline conditions (the biuret reaction) and the highly 
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sensitive colorimetric detection of the cuprous cation (Cu1+) in the reaction with 

BCA. Chelation of two molecules of BCA with one cuprous ion gives an intense 

purple coloured product with a strong absorbance at 562nm. The method seems 

to be more reliable than the Bradford one as the amount of dye binding does not 

depend purely on the content of Arg and Lys (Bradford method) but the 

macromolecular structure of the protein, the number of peptide bonds and the 

presence of four aminoacids (Cys, cystine, Trp and Tyr). The detection limit is 

about 20 μg of protein per ml. The protein concentration was determined using 

BCA protein assay kit (PIERCE) according to the manufacturer’s instructions. A 

set of protein standards was prepared by diluting the 2 mg/ml BSA stock in water 

to get a range from 25 to 1000 μg of protein. 25 μl of each standard or unknown 

sample replicate was added to a microplate well. 200 μl of working reagent was 

added to each well and mixed thoroughly on a plate shaker for 30 seconds. 

Absorbance was measured at 560 nm after incubation at 37°C for 30 

minutes.The readings were corrected for the A560 of the control sample, which 

contained 25μl of the water in place of the protein. The amount of protein in 

unknown samples was determined from standard curve based on known BSA 

concentrations. 

 

3.2.6.3 SDS-polyacrylamide gel electrophoresis. 
 
10-12 % SDS Polyacrylamide gel was prepared according to the following recipe: 

for separating gel of 10 ml volume: 4 - 3.3 ml of distilled water, 2.5 ml of 1.5 M 

Tris-HCl (pH 8.8), 3.3 – 4.0 ml of 30 % Polyacrylamide mix (37.5 : 1 ratio of mono 

and bis acrylamide), 100 μl of 10 % SDS, 100 μl 10 % ammonium persulphate 

(APS) and 4 μl N, N, N’, N’ tetramethylethylenediamine (TEMED). For 5 ml of 

stacking gel: 3.4 ml of distilled water, 630 μl of 1 M Tris-HCl (pH 6.8), 830 μl 30 

% polyacrylamide mix, 50 μl 10% SDS, 50 μl 10 % APS and 5 μl TEMED. The 

gel was cast in MiniProtean III apparatus (BioRad, Germany). The protein 

samples were mixed with SDS sample solution (Rotiload, Roth, Germany) and 

boiled for 5 minutes for complete denaturation. This mixture was loaded onto the 

gel and electrophoresed. 
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3.2.6.4 Immunoblotting. 
 
Immunoblotting was performed utilizing the semi-dry transfer method. 

Nitrocellulose membrane (Schleich and Schuell, Germany) and 6 layers of 

Whatman 3 paper were cut exactly to the size of the gel and soaked in transfer 

buffer along with the gel. A stack was made with 3 sheets on the top and bottom 

of the gel and membrane and placed in between the graphite plates of the 

transfer apparatus (Biometra, Germany). Transfer was performed at 0.8 mA/cm
2 

current for 1 hour. The efficiency of the transfer was confirmed by staining the 

membrane with a 0.1 % solution (containing 1 % acetic acid) of Ponceau S 

(Sigma, Germany). The excess stain was removed with water. After visualisation 

of the protein, the blot was completely washed off the stain with water and put 

into blocking solution (5 % nonfat milk powder in PBS containing 0.05 % tween 

20) for 1 h at room temperature or over night at 4
o
C. The blots were then 

incubated in the blocking solution containing 1: 500 –1:1000 dilution of the 

primary antibody for 1 h at RT. After washing with wash buffer (PBS containing 

0.05 % tween 20) for 10 minutes, the blot was incubated with the secondary 

antibody (against the species of the primary antibody and linked to horse radish 

peroxidase) (1:2000 dilution) for 1 h at RT. After 3 washes of 5 minutes each with 

wash buffer, the specific bands were developed using a chemiluminiscent system 

(Santa Cruz, Germany). Equal volumes of solution A and B were mixed and the 

blot was incubated in this solution for 1 minute. The blot was immediately 

exposed to an X-Ray film in dark for varying periods of time ranging from 5 sec to 

2 min and developed automatically. The specific bands were scanned and 

quantified densitometerically using TINA version 2.09 g. All immunoblots were 

sequentially incubated with anti-β-actin as control, and specific signals adjusted 

in relation to the expression of this house-keeping gene. 
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3.2.6.5 Immunofluorescence. 
 

MDCK stable cell pools were seeded on sterile coverslips at 1.25x105 cells per 

well on a 24-well plate, overnight, in the appropriate growth medium. SW480 

cells were transiently transfected on coverslips with different β-catenin 

constructs, incubated for 30 hours. Coverslips in all cases were gently rinsed 

three times (10 sec) with PBS before fixation in 3% paraformaldehyde for 20 min. 

Coverlips were then washed three times in PBS before permeabilization in 0.2% 

Triton X-100 in PBS for 5 min. Following three more 5 min washes in PBS, cells 

were blocked with 0.3% bovine serum albumin (BSA) in PBS for 20 min. 

Coverslips were incubated with primary antibodies at indicated concentrations for 

1 hr in a humidity chamber. Cells were then washed three times for 5 min in 

wash reagent before incubation in the appropriate fluorescent-conjugated 

secondary antibody or stain (Table ) for 30 min in a humidity chamber. Following 

a final three 5 min washes in wash reagent, coverslips were mounted on glass 

slides using 4ul of either DAKO or Mowiol mounting media, and visualized under 

a Leica TCS confocal microscope. Images were processed using Adobe 

Photoshop and Leica Lite software. 

 

3.2.6.6 Determination of proliferation – “Flow cytometry”. 
 
Analyses were performed using a Galaxy pro flow cytometer (Partec, Münster/ 

FRG) equipped with a mercury vapor lamp (100 W) and filter combination for the 

detection of cells stained with 2,4-diamidino-2-phenylindole (DAPI) and a 488 nm 

laser with filter combination for FITC. For high-resolution flow cytometry, single 

cells were isolated from native sampled tissues using 2.1% citric acid/0.5% 

tween 20 according to the method of Ehemann [138, 139] followed by slight 

shaking at room temperature. For staining cell suspensions were incubated in 

phosphate buffer (7.2g Na2HPO4 x 2H2O in 100ml H2O dist.) of pH 8.0 containing 

DAPI. Each histogram represents 30.000-100.000 cells for measuring DNA-index 

and cell cycle. Histogram analysis was performed with the Multicycle program 

(Phoenix Flow Systems, San Diego, CA). 
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 3.2.6.7 Determination of migration – “Scratch assay”. 
 
Cells were plated onto 6-well tissue culture dishes at near confluence in 

complete tissue culture medium. Confluent cell layer were treated for 3 hours 

with 5 μg/ml of mitomycin C medium containing antibiotic but no FCS to block cell 

proliferation. Cell layers were scratched using a 20 μl eppendorf micropipette tip. 

Wells were washed gently with medium and immediately replaced with complete 

medium. Spontaneous cell migration was monitored over 24 hours. Phase 

contrast images were captured with Altra 20 Olympus camera and documented, 

and wound width was measured at three independent wound sites per group. 

Wound width corresponding to each time point was expressed as the mean of 

three values +/- SE. 
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4. Results 
 

4.1. β-catenin analysis in paraffin embedded tumor samples. 
 

In this study, we investigated 20 small intestinal adenocarcinoma and 20 early 

age of onset colon cancers to elucidate the molecular background of β-catenin 

stabilization for comparison with colon cancer from elderly patients. Unlike small 

bowel cancers and some early age of onset colon cancers, colon carcinomas 

from elderly patients commonly show stabilization of β-catenin through APC 

mutations. To answer the question if other causes of β-catenin stabilization are 

found in early age of onset colon cancers, we compared the findings in the small 

bowel with 20 cases of colorectal cancer. Paraffin embedded tumor sample were 

analysed for β-catenin alterations by immunohistochemistry, western blot 

analysis, and sequence analysis on the RNA and DNA levels. 

        

4.1.1 β-catenin expression pattern in small intestinal and colorectal 
adenocarcinoma. 
 
In the non neoplastic mucosa of the small and the large bowel, the epithelial cells 

displayed a membranous staining, reflecting the role of β-catenin in formation of 

adherens junctions (Figure 4.1 A). Only few cells in the bottom of crypts 

displayed nuclear accumulation of β-catenin, these cells likely reflect progenitor 

cells, the differentiating cells towards the luminal surface displayed lack of 

nuclear β-catenin reactivity (Figure 4.1 B). Approximately 50% of small bowel 

cancers and 75 % of early age of onset colon cancer cells showed increased 

reactivity towards the β-catenin antibody. It was restricted to the cell membrane 

(Figure 4.1C) in approximately 50% of cases while two different patterns of 

strong β-catenin accumulation in the nucleus were observed in the remaining 

carcinomas. In the small and the large bowel, one pattern was associated with 

nuclear accumulation in the carcinoma cells at the invasion front but not in the 

differentiating areas of the tumor (Figure 4.1D) 
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Figure 4.1: β-Catenin immunohistochemistry showing different types of 
protein accumulation. (A, B) Normal mucosa with membranous staining 
and nuclear staining for progenitor cells at crypt (arrow); (C) Increased 
membranous accumulation in both SIC and CRC; (D) nuclear 
accumulation only at the invasive front in both SIC and CRC; (E) 
homogeneous nuclear accumulation in small intestinal cancer; (F, G, H) 
heterogeneous nuclear accumulation at either differentiating or invasive 
front of colon cancer.  
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A second pattern was identified as a homogeneous nuclear accumulation 

throughout tumor areas affecting each cell in small bowel cancers (Figure 4.1E) 

and nuclear accumulation in patchy areas at either differentiating and invasive 

carcinoma cells in the colon (Figure 4.1 F,G,H).        

 
4.1.2 Stabilization of mutated β-catenin. 
 
Immunohistochemical analysis of paraffin embedded tumor tissues showed some 

cases with an abnormal nuclear β-catenin localization and stabilization, in 

comparison to normal mucosa. In order to analysis the basis of β-catenin 

stabilisation, we isolated total protein from paraffin embedded tumor samples and 

performed western blot analyses. Shortened β-catenin isoforms were identified in 

four and three cases out of 20 cases of small intestinal and early age onset 

colorectal adenocarcinoma, respectively (Figure 4.2, Table 4.1A, 4.1B). In 

addition to the wild type β-catenin with a molecular weight of 88 kDa, tumors T3, 

T820 of small intestinal adenocarcinoma and T117,T218 from colorectal 

adenocarcinoma showed a tumor-specific β-catenin isoforms of approximately 80 

kDa. Different β-catenin isoforms were found for T13 and T256 of approximately 

81and 75 kDa, respectively (Figure 4.2). Smallest β-catenin isoforms of 71 kDa 

was observed for T832 from colorectal adenocarcinoma. While only the aberrant 

β-catenin was detected in T13, aberrant and normal β-catenin was seen for all 

other tumors. The presence of both normal and mutated β- catenin is most likely 

a result from an admixture of non-tumorous epithelial cells while protein isolation. 

This observation correlated with the concentration of tumor cells on the whole 

paraffin sections prepared for protein isolation. 

All tumors with shortened β-catenin isoforms displayed aberrant nuclear 

accumulation of β-catenin by immunohistochemistry. While homogenous nuclear 

accumulation was noticed in small bowel cancer, patchy areas of nuclear β-

catenin accumulation were found in the corresponding colon cancers. 
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Figure 4.2 Western blot analysis displaying differently shortened β-
catenin proteins in lanes 1, 3, 5 of colon cancer corresponding to tumors 
117 (lane 1), 218 (lane 3), 832A (lane 5) and lane (7-10) of small intestinal 
cancer corresponding to tumors T13 (lane 7), T820 (lane 8), T256 (lane 9) 
and T3 (lane 10) Normal length β-catenin is seen in tumors loaded in 
lanes 2, 4,6,11 and 12. Lane 13, normal length β-catenin (HuH-7 cell line).  

 
4.1.3 Molecular basis of shortened β-catenin, the RNA level 
 
Immunohistochemical analysis confirmed the Wnt signaling dysregulation and 

western blot data indicated that this dysregulation is primarily due to mutation of  

β-catenin itself and not a secondary effect to mutation of proteins involved in 

degradation machinery of β-catenin. Western blot analysis displayed four 

differently shortened β-catenin proteins.  Thus, the possibility of deletion mutants 

is given. We therefore first tested the mRNA of β-catenin for deletion mutants 

using different primer sets which flank exon boundaries. Mutational analysis of 

exon 3 of β-catenin excluded any point mutation at or near phosphorylation sites. 

However, in four cases of small bowel cancer (Figure 4.4) and 3 cases of colon 

cancer (Figure 4.3, 4.4), all of which displaying aberrantly shifted bands in 

western blot and nuclear accumulation of  β-catenin, shortened RNA fragment at 

the N-coding area of the mRNA were noticed. The most common finding was a 

complete lack of the coding segments of exon 3 found in 2 small and 2 large 

bowel carcinomas, corresponding to the most common shortened β-catenin 

isoform. In tumor T13 an in frame insertion of 15 bp beginning after codon 21 
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was seen. This was combined with a deletion of codons 22-80 of the of β-catenin 

mRNA. T256 showed a deletion from codon 17 to codon 128. In T823 a large 

deletion lacking codons starting from base -48 of the start codon and ending at 

codon 130 was found. The deletion results in an alternative start codon at codon 

131, as indicated by the open reading frame analysis (ORF finder, NCBI) and the 

deduced molecular weight of this shortened β-catenin isoforms corresponds well 

to the length identified by western blot analysis.   

 

4.1.4 Molecular basis of shortened β-catenin, the DNA level 
 

Mutation in small intestinal adenocarcinoma. 
 
T13 harboured a 247 bp insertion in exon 3 of the CTNNB1 gene (codon 22). 

This mutation introduced coding sequences of the serinc gene on chromosome 

9. On a transcriptional level, the mutation was found to result in an in-frame 

insertion of 15 bp of serinc RNA followed by a de novo splicing and fusion to 

exon 4 of CTNNB1 (Figure 4.3, 4.4, 4.5). The resulting mutated protein lacks 

amino acids 22–80 of β-catenin and five novel amino acids were inserted. Two 

carcinomas displayed large genomic deletions, including the complete intron 2 

sequence (T820) or a deletion of exon 3 combined with partial deletions of 

introns 2 and 3 (T3). At transcriptional level, both mutations were found to result 

in a skipping of exon 3 and in-frame fusions of exons 2 and 4 (Figure 4.3, 4.4, 

4.5). The resulting mutated proteins lack amino acids 5–80 of β-catenin. T256 

showed a deletion from codon 17 in exon 3 to codon 128 in exon 4, including the 

complete intron 3 sequences. At the RNA level the mutation resulted in an in 

frame fusion of codon 16 with codon 129, leading to a lack of amino acids 17–

128 of β-catenin. Agarose gel picture in Figure 4.3 shows clearly band of higher 

molecular weight of 223 bp from tumor T13 in comparison to molecular weight of 

157 base pair for exon3 deletion and 295 base pair for novel mutation observed 

in T256. 
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Mutations in colorectal adenocarcinoma 
These mutations were checked at transcriptional level only. Quality of genomic 

DNA isolated for these tissues was good enough to analyse presence or 

absence of long stretches of intron 2 and 3 at genomic level.  

 

 
 

Figure 4.3 RT–PCR analyses for CTNNB1 mutation in SIC (A) Primers 
amplifying from exon 2 to exon 4 for small intestinal adenocarcinoma. The 
expected fragment length including the entire exon 3 is 385 bp (faint band 
N7). A tumor-specific band of 157 bp corresponding to a complete lack of 
exon 3 is seen in T3 and T820. T13 shows a tumor-specific band of 223 
bp. Primers from exon 2 to exon 5 produce a 295 bp fragment in T256, 
while the expected size of WT-cDNA would be 631 bp. 

 
 
Figure 4.4 shows the chromatogram from sequence analysis from all of the 

mutants seen in tumor tissue. Figure 4.5 shows the graphical overview for wild 

type RNA and protein for β-catenin along with deletion mutants observed in 

tumor tissues. It also shows the different domains involved in its phosphorylation, 

degradation and overlapping binding region for certain proteins involved in 

different functional aspects of cell adhesion like E-cadherin and wnt signaling like 

TCF/Lef 1 and APC. 
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Figure 4.4 DNA sequence chromatogram of stabilized three differently 
shortened β-catenin.(a) In frame deletion of exon3 at cDNA leads to 
deletion of amino acids 5 to 80, corresponding to tumors (T3, T820, and 
T13) of SIC, and tumors (T117, T218) of CRC (b)  Tumor T256 from SIC, 
with in frame deletion of amino acids 17 to 28. (C) Tumor T832 from CRC, 
with alternative start codon, in frame deletion of amino acid 1 to 130.(D) 
T13 Insertion of 15 bp associated with a deletion of codons 22 to 80. 
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Figure-4.5: Graphical overview of β catenin wild type and deletion 
mutants, showing the N-terminal domains affected by losses.  
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Figure 4.6 Four novel large in frame deletion mutations of β-catenin 
encodes an in frame fusion protein with N-terminal lacking degradation 
box but with identical C-terminal. (A) Multiple Sequence alignment of the 
mutated β-catenin found in tumor tissues with wild type β-catenin. 
Regions lost in different mutants are highlighted in different colours. (B) 
Schematic representation of the regions lost in different deletion mutants. 
Different mutants have some overlapping regions that are common in 
different mutants. Mutant T13 shows an insertion of five novel amino acids 
(highlighted in yellow) along with deletion of amino acids 22 to 80. Mutant 
T823 lost complete N-terminal and start with an alternative start codon  
 
 
 
 
 

Figure 4.6 shows the multiple alignment of deduced primary amino acid 

sequence of different deletion mutants observed in all investigated tumor tissues 

and wild type β-catenin. All mutations affected the N-terminal of β-catenin lacking 

the complete degradation box, some part of α-catenin binding site or the 

complete N-terminus with alternative start codon but with identical C-terminal 

region (Figure 4.6 a, b). However, while these mutants lack only N-terminal 

regions the large deletions might induce conformational changes in tertitary 

structure affecting their binding affinity to other known binding partners. 

Additionally, homogenous complete nuclear localization of β-catenin for T256 all 

over the tumor area suggests complete loss of regulation over its nucleo-

cytoplasmic shuttling which is still maintained in other deletion mutants. This 

interesting observation suggests loss or gain of known or unknown binding 

partner interaction with a very important role in nuclear cytoplasmic shuttling of β-
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catenin and further strengthen the existing hypothesis, that β-catenin nuclear 

translocation is an active process and not merely based on passive diffusion 

based on its stabilization. 

 

Table 4.1 (A) Immunohistochemical, western blot and sequence analyses for small 
intestinal adenocarcinoma. 

 
ID        IHC WB DNA RNA Protein 

 

T3 

T7 

T12 

T13 

T18 

T19 

T24 

T30 

T160 

T172 

T174 

T180 

T206 

T235 

T255 

T256 

T320 

T410 

T716 

T820 

 

Nuclear 

Cytoplasmic 

Cytoplasmic 

Nuclear 

Normal 

Cytoplasmic 

Normal 

Normal 

Normal 

Cytoplasmic 

Cytoplasmic 

Normal 

Cytoplasmic 

Normal 

Normal 

Nuclear 

Normal 

Normal 

Normal 

Nuclear 

 

Mutant 

WT 

WT 

Mutant 

WT 

WT 

WT 

WT 

WT 

WT 

WT 

WT 

WT 

WT 

WT 

Mutant 

WT 

WT 

WT 

Mutant 

 

IVS2-1 IVS3+56del 

No 

No 

65–66ins247bp 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

49–385del 

No 

No 

No 

IVS2 + 1–IVS2–

1del 

 

c.14-251del 

No 

No 

c.65–

251delins15bp 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

c.49–385del 

No 

No 

No 

c.14–251del 

 

A5-A80del 

WT 

WT 

V22–

A80delins5AA 

WT 

WT 

WT 

WT 

WT 

WT 

WT 

WT 

WT 

WT 

D17–P128del 

WT 

WT 

WT 

A5–A80del 
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Table 4.1 (B) Immunohistochemical, western blot and sequence analyses for 
colorectal carcinoma. Nd: not determined 

 

ID        IHC WB DNA N.d. RNA Protein 

 

T542 

T218 

T275 

T084 

T123 

T097 

T458 

T576 

T353 

T320 

T273 

T409 

T316 

T240 

T115 

T183 

T173 

T117 

T218 

T832 

- 

 

Cytoplasmic 

nuclear 

Cytoplasmic 

Cytoplasmic 

Cytoplasmic 

Cytoplasmic 

Cytoplasmic 

Cytoplasmic 

Cytopl/Nuclear 

Cytoplasmic 

Cytoplasmic 

Cytoplasmic 

Cytoplasmic 

Cytoplasmic 

Cytoplasmic 

Cytoplasmic 

Cytoplasmic 

Cytoplasmic 

nuclear 

Nuclear 

 

Nd 

Mutant 

Nd 

Nd 

Wt 

Nd 

Nd 

Nd 

Wt 

Wt 

Nd 

Nd 

Nd 

Nd 

Nd 

Nd 

Nd 

Nd 

Mutant 

Mutant 

 

 

 

No 

c.14-251del 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

c.14-251del 

c-48-c390 

 

 

Nd 

A5-A80del 

Nd 

Nd 

WT 

Nd 

Nd 

Nd 

WT 

WT 

Nd 

Nd 

Nd 

Nd 

Nd 

Nd 

Nd 

Nd 

A5–A80del 

A1-130del 

 
 
4.1.5. Comparison of CTNNB1 findings with general genetics. 
 

Microsatellite and chromosomal instability (MIN and CIN) are two distinct 

mechanisms underlying intestinal tumor development. One of both types of 

genetic instability can be identified in the majority of intestinal cancers. Recent 

studies have shown, a subset of intestinal cancers (varying from 17 to 50 %), 

especially those diagnosed at young age [52, 53], were found to be 

microsatellite- and chromosomal-stable (MACS) tumors [55]. It is hypothesized 
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that they represent a distinctive group that may arise from an  uncharacterized 

unique molecular pathway [59]. Since development of cancer requires multiple 

somatic mutations in a diversity of genes, microsatellite and chromosomally 

stable tumors must have accumulated such somatic mutations due to a 

mechanism different from CIN and MSI. Second possibility might be one or two 

hit hypothesis where mutation occurs in only one or two gene with high 

oncogenic potential.  

Murata et al [140, 141] described this large deletion mutation in carcinoma with 

microsatellite instability and our data from tumor tissue showed large deletion 

mutation in β-catenin from young aged patients. Therefore, we checked the 

microsatellite and chromosomal stability for all the small intestinal carcinoma 

tumor tissues with differential β-catenin stabilization and localization. However, 

we only analysed microsatellite instability for colon cancer cases with aberrant β-

catenin accumulation. All the tumors from small intestinal carcinomas except T3 

were found to be microsatellite and chromosomal stable (Table 4.2). T3 was 

microstatellite stable but showed chromosomal instability. All colon cancer cases 

were microstatellite stable. 3 out of 4 cases (75%) of small intestinal carcinomas 

were microsatellite stable and chromosomal stable, thus giving us room to 

hypothesize that β-catenin large deletion mutation might activates its oncogenic 

potential to much higher level to induce tumorigenesis in absence of any general 

type of genomic instablity. 

 

      Table 4.2:  Genomic stability data for the tumors with β-catenin mutation. 

Small Intestinal Adenocarcinoma Colorectal Cancer 

ID MSS/MSI CSS/CSI ID MSS/MSI CSS/CSI 
T3 

T820 

T13 

T256 

MSS 

MSS 

MSS 

MSS 

CSI 

CSS 

CSS 

CSS 

T117 

T218 

T832

MSS 

MSS 

MSS 

 

ND 

ND 

ND 
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4.2 Creating β-catenin constructs to generate an in vitro model system.  
  
Our data with tumor tissue showed large in frame genomic deletions without any 

point mutation in β-catenin. It showed strong stabilizing potential in 20% of small 

intestinal adenocarcinoma and 15% of non hereditary early age of onset 

colorectal cancer. Three out of four tumors from small intestinal adenocarcinoma 

harbouring large deletion mutations, showed aberrant homogenous nuclear 

accumulation throughout tumor tissues, were exclusively found with MACS 

genotype. Therefore, we hypothesized that large N-terminal deletion mutants in 

our tumor samples in the background of genomic stability may have higher 

oncogenic potential in comparison to β-catenin point mutants.  

On the basis of these observations, we plan to generate an in vitro model system 

by transfecting Flag tagged and GFP tagged β-catenin mutants and express 

them in SW480 (intestinal epithelial from colorectal adenocarcinoma) and MDCK 

(Normal kidney epithelial cell from dog) cell line. SW480 is known to harbour an 

APC mutation as well as chromosomal instability whereas MDCK cells are 

normal immortalized kidney epithelial cells.  Specific aims were:- 

 

 Competitive analysis of oncogenic potential of point mutation with large 

deletion β-catenin mutants and how it differs in SW480 and MDCK. 

 Determining the fate of different β-catenin mutations on its subcellular 

localization in SW480 and MDCK. 
 

To assay and compare the oncogenic potential, we studied the impact of β-

catenin point and large deletion mutation on proliferation and invasion potential of 

SW480 cells and MDCK cells. Therefore, to analyze the effect of different β-

catenin mutations in vitro, we constructed wild type and different large deletion 

mutants of β-catenin (Fig 4.7) using PCR driven overlap extension method (Fig 

3.1. 4.8).  All the mutants were tagged by FLAG or GFP at the C-terminus to 

differentiate it from endogenous β-catenin. Large deletion mutants corresponding 

to T3 and T256 (tumor sample number) lacking amino acids ∆ (A5-A80) and ∆ 
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(A17-A128) were generated to delete the complete degradation box including all 

phosphorylation sites. Mutant ∆ (A17-A128) lacks some part of alpha catenin 

binding site also. A novel large deletion mutant was designed, lacking amino 

acids 60 (coded by exon 3) to amino acid 110 (coded by exon 4) and referred as 

∆(A60-A110). It lacks conserved regions between the degradation box and the α-

catenin binding site with an unknown function and never reported in any studies 

so far. For functional comparison to point mutation, we utilized the ∆ S45 and 

S33Y point mutant, which lacks the serine residue at position 45 and 33, 

mutations mainly found in colon carcinoma. The WT construct represent the 

complete functional β-catenin. .  

FLAG tagged β-catenin constructs were generated in pcDNA3 plasmids (Figure 

4.9). GFP tagged constructs were cloned in pEGFP-N1. The β-catenin cDNA 

insert sequences were reamplified from pcDNA3 construct without FLAG tag 

using forward and reverse primers containing KpnI site (in forward primer) and 

BamH1 (in reverse primer) restriction sites and cloned in-frame into pEGFP-N1. 

All clones were confirmed by sequencing. 
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Figure 4.7 Schematic outline of β-catenin domains and proteins encoded 
by expression constructs. Area marked in blue was mutated. GSK3β 
phosphorylation sites are shown in the β-catenin N-terminal region; 
armadillo repeats in the central region; the C-terminal transcriptional 
activation domain; and the regions required for interaction with α catenin, 
E-cad, APC, Tcf/Lef factors, and conductin/axin. In addition to wild-type 
(WT) β-catenin, the structures of mutated proteins are indicated. Mutants 
were FLAG tagged and GFP tagged at C-terminus when cloned in 
pcDNA3 and Pegfp-n1 respectively. 

 

 

- 78 -  



W
T 

∆
(A

17
-A

12
8)

 

∆
(A

5-
A8

0)

∆
(A

60
-A

11
0)

∆
S3

3 
   

   
  

∆
S4

5

W
T 

∆
(A

17
-A

12
8)

 

∆
(A

5-
A8

0)

∆
(A

60
-A

11
0)

∆
S3

3 
   

   
  

∆
S4

5

 
 

Figure 4.8 β-catenin PCR fragments with mutation and restriction sites , 
generated using PCR driven overlap extension method for cloning into 
pcDNA3 mammalian vector. 
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Figure 4.9 pcDNA3 vectors cloned with β-catenin PCR fragments, 
obtained from PCR driven overlap extension method.   

 
4.3 Transfection and functional assay in SW480 cells. 
 
To examine domains in β-catenin that are important for regulating its subcellular 

distribution and its role in activating oncogenic potential, we overexpressed wild 

type and different β-catenin mutants in SW480 cells. SW480 is a cell line from 

intestinal origin established from a primary colon adenocarcinoma. There is a G -

> A mutation in codon 273 of the p53 gene resulting in an Arg -> His substitution 

and a C -> T mutation in codon 309 resulting in a Pro -> Ser substitution. These 

cells expresses elevated levels of p53 protein and is positive for expression of c-

myc, K-ras, H-ras, N-ras, myb, sis and fos oncogenes. Additionally, it has a 
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truncation mutation of APC that delete the axin binding sites to prevent β-catenin 

degradation, resulting in abnormally high levels of cytoplasmic and nuclear β-

catenin in these tumor cells. 

 
 4.3.1 Transient overexpression of FLAG tagged β-catenin constructs. 
 
Wild type and mutant β-catenin proteins lacking large NH2 terminal areas and 

point mutants (S33Y and ∆S45) were expressed in SW480 cells. The sequence 

for FLAG tag epitope recognized by monoclonal Flag antibody M2 (F3165, 

sigma) was added to the 3’ termini of all cDNA constructs to distinguish these 

protein products from endogenous β-catenin. All constructs were prepared in 

pcDNA3 to constitutively express the β-catenin transgene and transfected 

transiently into SW480. SW480 cells transfected with an empty pcDNA3 vector 

served as a negative control. Following transient transfection, expression of flag 

tagged wild-type and mutated forms of β-catenin were monitored by Western 

blotting (Fig 4.10 A).  Flag immunoblot showed expression of all flag tagged wild 

type and mutated β-catenin in correct size range. However, band intensity was 

lightest for ∆ (A17-A128) followed by mutant ∆ (A5-A80). Negative control cells 

showed no signals with the Flag antibody. Flag Tag Epitope inaccessibility in 

T256 and T3 can be the reason for lighter band intensity. Large deletion mutation 

in T256 and T3 might cause adoption of different three dimensional protein 

structure which can lead to inaccessibility of Flag epitope. 

Immunoblotting with β-catenin antibody (Fig 4.10) showed two bands for cells 

transfected with different β-catenin constructs. One band is an endogenous β-

catenin while other one was the flag tagged β-catenin . Large deletion mutant  ∆ 

(A17-A128), ∆ (A5 - A80) and ∆ (A60-A110) showed shortened mutant β-catenin 

bands along with one band of higher molecular weight corresponding to 

endogenous β-catenin . Two separate bands can not be observed for WT, S33Y 

and ∆S45, since exogenous wild type β-catenin and point mutants were not 

always well separated by SDS-PAGE because of similarity in their 

electrophoretic mobilities, due to very less difference in their molecular weight.  A 

thick band of mutants in contrast to negative control clearly confirms the 

presence of mutated exogenous form of flag tagged β-catenin. 
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Figure 4.10 Expression of Flag taged wild type and mutant β-catenin in 
transiently transfected SW480 cells. A, Equal protein from cytoplasmic 
extract of con, wt, ∆ (A17-A128), ∆ (A5-A80), ∆ (A60-A110), S33Y and 
ΔS45 was immunoblotted with Flag antibody. B, Immunoblot with a β 
catenin antibody.  

 
4.3.2 Differential subcellular localization of β-catenin constructs. 
 
To examine domains of β-catenin important for regulating its subcellular 

distribution, we overexpressed wild type and different β-catenin mutant 

constructs in SW480 cells and checked their localization by immunofluorescence. 

SW480 cells normally have β-catenin in the cytoplasm and the nucleus due to an 

existing APC truncation mutation. SW480 cells were transiently transfected with 

FLAG tagged β-catenin constructs and immunostained with anti Flag antibody. 

The results in Fig 4.11 show complete nuclear accumulation of mutant ∆ (A17-

A128) with no accumulation in the cytoplasm or at the membrane. ∆ (A5-A80), 

S33Y, and ∆S45 showed both nuclear and cytoplasmic accumulation similar to 

wild type SW480 cells with little higher nuclear accumulation in ∆ (A5-A80). 

Mutant ∆ (A60 – A110) showed cytoplasmic accumulation with no nuclear 

accumulation. Mutant ∆ (A17-A128) showed similar subcellular localization both  

- 81 -  



 
 

Figure 4.11 Effect of β-catenin mutation on its accumulation pattern; 
∆(A17-A128) shows complete β-catenin nuclear accumulation without 
cytoplasmic or membranous accumulation and co-localizes with nuclear 
α-catenin similar to as seen in tumor sample. SW480 cells transiently 
transfected with different Flag tagged β-catenin clones and double stained 
with mAb Flag antibody and antiserum against α-catenin. β-catenin (wt), 
S33Y, ∆S45 localizes in the cytoplasm and nucleus but ∆(A60-A110) 
localizes mainly in the cytoplasm. All the mutants co localize with α-
catenin with nuclear translocation in ∆(A17-A128). 
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           in tumor tissue (in vivo) and cell culture (in vitro). However, APC was not mutated 

in the corresponding tumor sample which had a microsatellite and chromosomal 

stable genotype whereas SW480 cells are colon tumor cells with (APC mut/mut) a 

truncated form of APC and also present with a genomic instability.  

 
4.3.3 Nuclear co accumulation of α and β-catenin. 
 
In the initial study with tumor tissue, we described large deletions and one 

insertion in the β-catenin gene, CTNNB1. Mutation-induced generation of 

abnormal transcripts was shown by cDNA analysis. Stabilization of mutated 

protein was demonstrated by immunohistochemistry and western blot analysis, 

respectively. Three tumors (T3, T820, and T13) with a lack of exon 3 sequences 

displayed strong homogenous nuclear accumulation of β-cateninin in the 

background of cytoplasmic accumulation. Tumor (T256) with an additional loss of 

exon 4 showed a nuclear-predominant accumulation of β-catenin with little 

cytoplasmic protein concentration. Tumors with cytoplasmic β-catenin 

stabilization and nuclear translocation solely at the invasion front did not show 

comparable mutations. In accordance with our previous analysis, no point 

mutations within exon 3 were observed in these cases [120]. Most of mutations 

reported here resulted in a loss of N-terminal β-catenin sequences from residues 

5–80. These mutant proteins lost all phosphorylation sites encoded by exon 3 

along with the recognition site for β-TrCP. β-Catenin degradation via 

phosphorylation through the APC–AXIN–GSK3β degradation complex and 

subsequent β-TrCP-mediated ubiquitination is likely to be largely impaired in 

these mutants making it more stabilized but its nuclear/cytoplasmic shuttling is 

still regulated. Accumulation of the largest deletion mutant (D17–P128del in 

T256) was mainly restricted to the nucleus (Fig 4.11), indicating that the 

additional loss of residues 81–128 destabilizes β-catenin in the cytoplasm or 

deregulate the nuclear–cytoplasmic shuttling of the protein. The D17–P128del 

mutant has lost parts of the α-catenin binding site of β-catenin located between 

residues 120–147 and also some part of conserved region with unknown function 

between β-catenin degradation box and α-Catenin binding site. α-catenin is 

known  to sequester β-catenin in the cytoplasm and it can also inhibit the 
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transcriptional activity of β-catenin. Thus, our data indicate that the stability of the 

cytoplasmic β-catenin pool depends on an interaction of α- and β-catenins. Loss 

of the binding motives in either β- or α-catenin may enhance nuclear 

concentrations of β-catenin and α-catenin either through direct interaction or 

through some known or unknown partner. Therefore, we checked for α-Catenin 

localization in all tumor tissues with differential subcellular localization of β-

catenin by Immunohistochemistry. Tumor tissue T256 showed homogenous 

predominant nuclear colocalization of β-catenin and α-catenin (Figure 4.11, 

4.12). Therefore, we hypothesized that this deletion mutant lacks binding site for 

some known or unknown binding partner with a very specific role in regulating 

nucleo cytoplasmic shuttling of β-Catenin. Since, tumor tissue T256 showed 

nuclear co-accumulation of β-catenin and α-catenin, we checked for α and β-

catenin colocalization in SW480 cell culture by double staining with Flag Tag and 

alpha catenin antibody after transient transfection with flag tagged β-catenin 

mutants. As seen in the results (Fig 4.11) all of the mutant’s co localize with α-

Catenin and show similar accumulation pattern as β-catenin. Interestingly, we 

observed  exactly similar nuclear  co accumulation pattern for α-catenin and β-

catenin for SW480 cells transfected with ∆(A17-A128) as seen in vivo for tumor 

sample T256 ( Figure 4.12). The deletion mutant ∆ (A17-A128) lacks the initial 

few amino acids of α-Catenin binding domain (120-147) of β-catenin, shows no 

effect on its binding potential with α-catenin. Mutant T60 lacks the conserved 

domain (amino acid 60-110) spares the nucleus and stabilizes in the cytoplasm. 

As seen on western blot (Fig 4.10), it has a high stabilization potential 

comparable to mutant S33Y and ∆S45, although not seen in any tumor tissues 

so far. However, deletion mutant ∆ (A17-A128) also has deregulated nucleo-

cytoplasmic shuttling without stabilization in the cytoplasm and accumulates into 

the nucleus. Therefore, this nuclear accumulation might be due to efficient 

degradation in the cytoplasm or active import into the nucleus or poor export from 

the nucleus. Therefore, our data provide evidence that β-catenin nuclear 

accumulation is an active process, based not merely on its stabilization, but 

involving a potential binding partner not known so far. 
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Figure 4.12 Nuclear co-accumulation of α- and β-catenin in vivo and in 
vitro for β-catenin mutant ∆(A17 – A128) A) Immunohistochemistry for α- 
and β-catenin in tumor tissue (T256). B) Flag tagged mutant β-catenin co 
localizes with α-catenin in transiently transfected SW480 cells. 
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Figure 4.13 β-catenin overexpression shows no effect on proliferation in 
SW480 cells. A, DNA/flow cytometry analysis of the wild type and mutant 
β-catenin transfected cells have approximately equal number of cells in 
G1, S and G2 phase. B, Bar graph for percentage of cells in resting phase 
and proliferative phase for SW480 cells transfected with different 
constructs. 
 

 

- 86 -  



  
4.3.4   β-catenin mutants show no effect on proliferation. 
 
β-catenin stabilization activates Wnt/β-catenin signaling pathway, known to 

influence cell proliferation due to expression of certain target genes like cyclin D 

and c myc. Therefore, we performed flow cytometric analysis to check the effect 

of β-catenin mutation on alterations in cellular proliferation. We characterized the 

distribution of mock transfected and β-catenin (WT) and mutant expressing 

SW480 cells in the cell cycle analysis during exponential growth phase. 

Expression of β-catenin mutants had no significant effect on cell proliferation (Fig 

4.13) over mock transfected control cells, with approximately equal proportion of 

cells in G1, S and G2 phase. Thus, we concluded that proliferation is not affected 

by expression of any of β-catenin mutant transfected SW480 cells.  

 

4.3.5   β-catenin mutants have no influence on cell migration. 
 
β-catenin stabilization may negatively regulate cell adhesion by translocating 

from membrane to cytoplasm where it is involved in its signaling function. β-

catenin nuclear translocation at the invasive front of cancers indicates it as an 

important event in the transition from a benign tumor to an invasive, metastatic 

cancer. Therefore we expected mutant T256 to be more invasive because of its 

complete homogenous nuclear localization. We performed migration assay on 

mock (empty vector) and β-catenin (WT) and different mutant transfected cells. 

Scratch assays were performed to examine the effect of β-catenin mutation over 

wild type on the invasiveness of SW480 cells. In this assay, the tumor cells have 

to invade through the scratch made in cell monolayer mimicking the basal 

lamina. Cells were treated with mitomycin for three hours at 10μg/ml before 

making scratch to inhibit cell proliferation and prevent filling up of scratch due to 

cell proliferation rather then invasiveness. Comparing mock transfected cells, and 

β-catenin (WT) and mutant over-expressing cells, we did not observe any 

differences between them with regard to their invasiveness (Fig 4.14). 
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Figure 4.14 β-catenin shows no effect on migration of Sw480 cells. 
Scratch wound assays of SW480 cells over expressing β-catenin (WT and 
mutants) and empty vector transfected control SW480 cells. The 
photographs were taken 24 h after the wounds were made.  

 

4.3.6 Expression of GFP tagged wild type and mutant β-catenin constructs. 
 
Transient transfection and expression of Flag tagged wild type and mutant β-

catenin showed difference in their localization but with no functional effect in 

migration and proliferation assay in SW480. Stable cells could not be established 

in SW480 cells with Flag Taged constructs and showed poor transfection 

efficiency of about 10-20%. Therefore, poor transfection efficiencies for different 

β-catenin constructs might be responsible for no significant effect in functional 

assays. Therefore, we transfected SW480 cells with GFP tagged β-catenin 

constructs and checked migration for positively transfected cells. The sequence 

for GFP tag epitope recognized by polyclonal GFP antibody (ab6556, Abcam) 

was added to the 3’ termini of all cDNA constructs to distinguish these protein 

products from endogenous β-catenin. All constructs were prepared in pEGFP-N1 

to constitutively express the β-catenin transgene, and transiently transfected into 

SW480 using empty vector as a negative control. Following transient 

transfection, expression of wild-type and mutated forms of β-catenin was 
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monitored by Western blotting (Fig 4.15) with a GFP epitope tag present at the 

C-terminus of each protein. We could identify the exogenous β-catenin by both 

GFP antibody and β-catenin antibody in correct size range. However, contrary to 

FLAG tagged β-catenin we could observe two bands for all β-catenin constructs. 

The green fluorescent protein (GFP) is a protein composed of 238 amino acid 

residues of 27 Kda that exhibits bright green fluorescence when exposed to blue 

light. Therefore, endogenous β-catenin and GFP tagged β-catenin are well 

separated on SDS page, and identifies two bands on western blotting with β-

catenin antibody. 

 

 

 

Figure 4.15 Expression of GFP tagged wild type and mutant β-catenin in 
transiently transfected SW480 cells. A, Equal protein from cytoplasmic 
extract of con, wt, ∆(A17-A128), ∆(A5-A80), ∆(A60-A110), S33Y and 
ΔS45 was immunoblotted with GFP antibody. B, Immunoblot with a β 
catenin antibody.  

 
 
4.3.7 Overexpression of β-catenin induces apoptosis. 

Expression of different forms of GFP tagged β catenin showed different 

localization as seen for flag tagged constructs (Fig 4.11). Scratch assays were 

performed to examine the effect of β-catenin mutation over wild type on the 

invasiveness of SW480 cells like it was performed for Flag tagged constructs. 

Migration was checked for GFP positive cells immediately after making a scratch 
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and after 24 hours. As seen in Figure 4.16, we didn’t observe any effect on 

migration potential of positively transfected green cells over control cells. Cells in 

pink are wild type cells and positively transfected cells are green. However, cells 

over expressing GFP tagged exogenous β-catenin disappears in time (7-10 

days), it seems possible that β-catenin overexpression causes cell death.  

 

 

 
 

Figure 4.16 Scratch Assay for SW480 cells transiently transfected with 
GFP tagged β-catenin constructs. Cells were evaluated for their ability to 
migrate into a cell free area following physical disruption of the monolayer. 
Overexpression of β-catenin has no effect on migratory potential of 
SW480 cells.  
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Figure 4.17 β-catenin overexpression in SW480 leads to apoptosis; (A) 
SW480  cells transfected with β-catenin constructs lose their spindle-like 
morphology, shrink, and detach from the culture well bottom; in contrast, 
cells transfected with empty vector are fully protected against apoptotic 
death. (B) Caspase 3 immunoblot to show its cleavage in SW480 cells 
transfected with β-catenin constructs. No cleaved caspase 3 is present in 
control cells transfected with empty vector. 

 
 
Moreover, SW480 cells expressing GFP tagged or even Flag tagged wild type 

and mutant β-catenin constructs showed shrinked morphology with shrinked 
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nuclei as seen in DAPI stained nuclei (Fig 4.17). Shrinked nuclei are one of 

hallmark of apoptotic cell death. To further confirm that SW480 cells over 

expressing β-catenin undergo apoptosis and not necrosis, we performed 

immunoblotting for caspase 3. Sequential activation of caspases plays a central 

role in the execution-phase of cell apoptosis. Caspase 3 is a caspase protein that 

interacts with caspase 8 and caspase 9.  Caspase 3 is activated in the apoptotic 

cell both by extrinsic (death ligand) and intrinsic (mitochondrial) pathways. As an 

executioner caspase, the caspase 3 has virtually no activity until it is cleaved by 

an initiator caspase after apoptotic signaling events have occurred. As seen in 

Figure 4.17, we can see the presence of caspase 3 cleavages in wild type and 

mutant β-catenin constructs.  Cleaved product is higher in mutants ∆ (A17-A128) 

and ∆ (A5-A80). This provides evidence that these mutants lead cells into 

apoptosis earlier then wild type, ∆ (A60-A110), S33Y, and ∆S45. Cells over 

expressing mutants T256 and T3 die earlier than other mutants. This explains the 

presence of lighter band on western blot and presence of few cells with positive 

FLAG staining in immunofluorescence.  This also explains the inability to 

generate the stable cells with FLAG tag β-catenin constructs. Since, at end we 

were left only with neomycin resistant cells since all the cell over expressing 

FLAG tagged β-catenin died.  

SW480 is known to harbor an APC truncation mutation [142], which initiates 

transformation, by effects on cell adhesion as well as the known effects on β-

catenin signaling.  Further overexpression of β-catenin and different stabilized 

form, guides them in physiological stress situation that leads to apoptosis and 

hence no conclusion can be made on oncogenic transformation potential of 

different form of β-catenin. APC and β-catenin mutation both affects the Wnt 

signaling pathways. Literature also shows APC and β-catenin mutation are 

mutually exclusive of each other and never found to coexist [105, 143, 144]. Our 

data with SW480 cell culture somehow explains these finding. Therefore, we 

planed to study the β-catenin oncogenic potential in non transformed 

immortalized cell line with no mutation in other genes and having intact 

components of Wnt signaling pathway.  
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4.4 Transfection and functional analysis in MDCK cell culture. 
 
MDCK cells were used to study the oncogenic potential of different β-catenin 

constructs since they contain intact cadherin and Wnt signaling components. We 

used MDCK normal kidney epithelial cell line from canine and β-catenin is shown 

to function as oncogene in it [99, 145]. Additionally, the presence of endogenous 

WT β-catenin mimics human tumors, which exhibit both mutant and WT protein, 

and thus no attempt was made to alter the endogenous protein. We performed 

experiments with MDCK stable cell pool overexpressing different β-catenin 

mutants, since MDCK cell are usually prone to clonal morphological variations. 

Therefore, stable cell pools were used to avoid the phenotypic artifacts that can 

result from selection and propagation of clones derived from single transfected 

cells.  

 
4.4.1 MDCK stable cell pool expressing GFP tagged β-catenin constructs. 
 

The non transformed, epithelial cell line MDCK was used to generate stable cell 

pools harboring cells stably transfected with β-catenin constructs in pEGFP-N1 

mammalian expression vector, constitutively expressing β-catenin (WT) and 

different mutants. β-catenin WT and mutants were GFP tagged at the C-terminus 

to distinguish it from endogenous β-catenin. All the plasmids included the 

neomycin resistance cassette for selection. Cells were transfected with plasmids, 

48 hours later, the cells were split 1 to 20 and cultured for two weeks in the 

presence of 600μg/ml of geneticin. An approximately equal number of colonies 

grew up for each transfected plasmid. For each transfection, all the colonies were 

trypsinzed and combined to give stable pools. As a negative control, a stable cell 

pool was generated from transfecting empty vector. All stable cell pools were 

treated with histone deacetylase inhibitor sodium butyrate at 5mM concentration 

overnight to  non specifically increase transgene expression. Generation of stably 

transfected cell by providing selection pressure using geneticin G418 sometimes 

leads to complete cessation of gene expression over time. This transgene 

expression silencing is usually caused by epigenetic downregulation and occurs 

via DNA methylation, covalent modification of histones, resulting in formation of 
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repressive chromatin structure. Sodium butyrate reverses methylation and 

increase the transgene expression. MDCK stable pools over expressing different 

GFP tagged β-catenin mutants showed presence of GFP positive cells with 

strong green fluorescence on examination by fluorescence microscope.  

MDCK stable pools expressing different mutants were also examined by 

immunoblotting after treatment with sodium butyrate, to evaluate GFP tagged β-

catenin in transfected cells and compare it with control cells. Western blot with 

GFP antibody showed GFP tagged β-catenin in all of β-catenin (WT) and mutant 

stable clones, but not in the vector only control cells. Western blot with β-catenin 

antibody showed two bands for all stable clones, but only one band in vector only 

control cells. The upper band with high molecular weight is the GFP tagged β-

catenin and the lower band is endogenous β-catenin with lower molecular weight 

(Fig 4.18 A) 

 
Figure 4.18 Generation of MDCK stable clones (A) Western blot analysis 
to check expression of β-catenin and GFP tagged β-catenin in stably 
transfected pool of MDCK cells. SDS-PAGE separate GFP tagged β-
catenin from endogenous β-catenin. The upper band is GFP tagged β-
catenin and lower band is endogenous β-catenin. One lower band for 
endogenous β-catenin is there in Vector only transfected control cells. 
Triton lysate was also western blotted with GFP antibody and showed 
GFP- β-catenin in all stable clones (B) Immunofluorescence of GFP- β-
catenin in stable clones. WT and Mutant stable pools are detected by 
immunofluorescence using GFP antibody. The GFP tagged protein was 
absent in vector only transfected control cells 
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4.4.2 Differential subcellular localization of wild type and mutant β-catenin 
in MDCK cells. 
   
We checked the effect of β-catenin mutation on its localization in SW480 cells 

after transient transfection. Stable cells could not be established in SW480, since 

β-catenin overexpression leads them into apoptosis. Moreover, transient 

transfection usually results in very high and non physiological level of expression 

for the transfected transgene. Therefore, to obtain information on the effect of β-

catenin mutation on its localization that is more physiologically relevant, we 

generated stable pools of MDCK cells expressing wild type β-catenin and 

different point and large deletion mutants that were considerably more stable 

than wild type in tumor tissues. As seen in Fig 4.18 (B), β-catenin wild type is 

mainly located at membrane with no accumulation in the cytoplasm or in the 

nucleus. Mutant ∆(A60–A110) and S33Y show strong cytoplasmic accumulation 

with little nuclear translocation whereas mutant ∆ (A5 – A80) and ∆S45 show 

nuclear accumulation in the background of cytoplasmic accumulation. However, 

the largest deletion mutant ∆ (A17 – A128) showed complete nuclear 

accumulation without cytoplasmic or membranous accumulation. Deletion mutant 

∆ (A17 – A128) and ∆ (A5 – A80) showed similar accumulation patterns as 

observed in the corresponding tumor tissues T256 and T3. 

 SW480 has an APC mut/mut genotype that effects the wild type β-catenin 

localization by mainly concentrating it in cytoplasm and nucleus. APC has an 

important role to play in nuclear cytoplasmic shuttling of β-catenin. Therefore, we 

observed difference in localization pattern of wild type β-catenin in SW480 cells 

and MDCK. MDCK cell with wild type APC showed strong membranous 

localization of wild type β-catenin, compared to cytoplasmic and nuclear 

accumulation in SW480. Similarly other mutants also showed slight variation in 

accumulation pattern.  However, mutant ∆ (A17 – A128) had a similar complete 

nuclear localization as seen in SW480 transiently transfected cells and tumor 

tissue T256. Mutants ∆ (A17 – A128) complete nuclear localization in MDCK, a 

normal epithelial cell line with wild type APC and intact components of Wnt 

signaling pathways indicate this mutation to lack components regulating its 

nucleo cytoplasmic shuttling.  
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4.4.3 β-catenin alters cell morphology. 
 

β-catenin is part of protein complex that constitute adherens junctions (AJs). AJs 

are necessary for the creation and maintenance of epithelial cell layers by 

regulating cell growth and adhesion between cells. Any form of β-catenin 

mutation that affects its stability at adherens junction will disturb the epithelial 

cellular phenotype. Overexpression of β-catenin in MDCK cells was shown to 

alter cell morphology previously [146]. Therefore, we examined the morphology 

and colony formation of MDCK stable pool expressing different mutants. The 

morphology of cells expressing β-catenin wild type and mutants was different 

compared to control cells (Fig 4.19). The MDCK stable cell pools used in our 

study also showed somewhat similar morphology as the MDCK cells expressing 

an inducible form of β-catenin mutants in stable clones [146]. The WT and 

mutants were less efficient at forming tight colonies of cells compared to control 

cells.  Moreover, the cells along the edges of WT and mutants colonies tend to 

extend projections giving them a mesenchymal phenotype. However, in low 

density culture, the morphology of cells expressing mutant ∆ (A17–A128) and to 

some extent mutant ∆(A5–A80) and WT, was different from cells expressing 

mutant ∆(A60–A110), S33Y, ∆S45  (Fig 4.19). Cells at the edges of colonies, 

from WT, ∆ (A17–A128) and ∆(A5–A80)  extend few and show less pointed 

projections onto surrounding cell free surfaces. Moreover, many single cells were 

not found associated into colonies for mutant ∆(A60–A110), S33Y, and ∆S45, 

giving them more mesenchymal morphology than control cells. However, WT, 

∆(A17–A128)   and ∆(A5–A80) showed more mesenchymal phenotype then 

control cells but less than mutants ∆(A60–A110), S33Y, and ∆S45, giving them a 

metastable phenotype. The metastable phenotype is acquired by the cell by its 

ability to express attributes of both epithelial and mesenchymal phenotype. 
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Figure 4.19 Effect of β-catenin (wt) and Mutants overexpression in stable 
pool effects colony morphology. WT and mutant cell pools ere less 
efficient at forming tight colonies of cells as compared to only vector 
transfected control cells. 
 
 

β-catenin immunohistochemistry in tumor tissue (Fig 4.20) also displays a role of 

β-catenin in epithelial mesenchymal transition. As seen in figure 4.20(A), normal 

intestinal mucosa displays nuclear accumulation in few cells at the bottom of 

crypts mainly representing progenitor cells, whereas differentiating cells towards 

the luminal surface display membranous staining with a role in maintenance of 

adherens junction.  
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Figure 4.20: β-catenin Immunohistochemistry shows different pattern of 
protein accumulation for epithelial mesenchymal transition in tumor tissue. 
A) Normal crypts with nuclear staining at base and membranous staining 
at lumen. (B,C) Increased nuclear reactivity with loss of membranous 
staining in differentiating cells. (D,E,F) Cells dissociating from tumor tissue 
into the neighboring stromal tissue with higher nuclear accumulation of  β-
catenin and mesenchymal transformation. 

 

- 99 -  



Tumor tissue in figure 4.20 (B,C,D) displays higher nuclear reactivity with loss of 

membranous staining even in the differentiating cells but still confined to 

intestinal crypts. However, tumor tissue in figure 4.20 (E, F) displays higher 

nuclear β-catenin reactivity in completely dissociated cell, reflecting an important 

role in epithelial mesenchymal transition leading to invasion and metastasis.   

4.4.4 Effect of β-catenin mutation on its migratory and proliferation 
potential. 

β-catenin overexpression  alters cellular morphology by giving it more 

fibroblastic, mesenchymal appearance. Alterations in cellular morphology turn an 

epithelial cell into a mesenchymal cell with altered adhesion and migration 

capacity. Phenotypic markers for an epithelial to mesenchymal transition (EMT) 

include an increased capacity for migration and three-dimensional invasion. EMT 

is a characteristic feature of cells undergoing proliferation. EMT has been shown 

to occur in proliferating cells (e.g. stomach epithelium) when pathways such as 

wnt signaling known to be involved with EMT are altered. Therefore, we checked 

the migratory and proliferative potential of MDCK stable pools expressing 

different β-catenin constructs by scratch assay and flow cytometric analysis 

respectively. Mutants ∆(A60–A110), S33Y, and ∆S45 were found to be more 

fibroblastic in appearance in comparison to WT, ∆(A17–A128) and ∆(A5–A80). 

As expected, wounded monolayers of cells grown on tissue culture plate reveled 

an increased migratory potential for mutants ∆ (A60–A110), S33Y and ∆S45 with 

more fibroblastic appearance, compared to WT and mutants ∆(A17–A128) and 

∆(A5–A80) (FIG 4.21) with metastable phenotype. WT transfected cells have 

their β-catenin localized at the membrane giving it higher adhesive property 

compared to signaling, however it is still actively degraded in cytoplasm.  
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Figure 4.21 Scratch Assay. Cells were evaluated for their ability to 
migrate into a cell free area following physical disruption of the 
monolayer. T60, S33Y and ∆S45 showed relatively higher migration 
then WT, T256 and T3. 
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Mutant ∆ (A17–A128) and ∆ (A5–A80) were localized away from the membrane 

but still have a poor migratory potential. This can be due to metastable 

phenotype since metastability is consistent with the expression of stem cell 

markers in intestinal cells undergoing EMT and such plasticity is found in the 

progenitor cells in various other organs. Cell plasticity can also explain the poor 

EMT in ∆(A17–A128) and ∆(A5–A80). Sustained β-catenin dependent Wnt 

signaling in the crypt epithelial cells results in the persistence of the 

stem/progenitor phenotype; that is continued proliferation, and a failure to 

migrate up the crypt and terminally differentiate. [17]. Chronic persistence of 

stem/progenitor phenotype through mutation of intracellular components of the 

canonical Wnt pathway leads to formation of benign tumors as a initiating event, 

which can later progress to carcinomas [147]. Mutant ∆ (A17–A128) and ∆ (A5–

A80) showed homogenous nuclear β-catenin accumulation and nuclear 

translocation was not only restricted at invasive front. Moreover, existence of 

these mutations in microsatellite stable tumors from relatively younger colon 

cancer patients, provides strong evidence about its involvement in initiating 

tumorigenesis, and implies strong pathogenic effect in generating genomic 

instability later on [140, 141].  

Persistence of stem/progenitor phenotype is also marked by increased 

proliferation. Therefore, we examined the distribution of MDCK stable cell pools 

in different cell cycle phases by flow cytometry. As seen in result (Fig 4.22 A,B),  

all stable pools expressing different β-catenin mutants showed increase in  

proliferation, with more number of cells in S and G2 phase then empty vector 

transfected control cells.  Stable pool ∆ (A17–A128) showed highest percentage 

of cell in proliferative phase followed by ∆ (A5–A80) and then other mutants. 

However, it is interesting to note that the increase in signaling above control 

levels and the differences between various mutants were relatively small 

compared to other published results [98, 99]. It may be explained by the fact that 

we worked with stable pool of cells that stably express a constitutively active 

transgene. G418 selection pressure to select stable pool, results in production of  
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Figure 4.22 β-catenin overexpression alters Cell proliferation. A, 
DNA/flow Cytometry analysis of cell pools demonstrates stable pools with 
β-catenin mutants have significantly higher percentage of cells in S and 
G2 phase and lower percentage of cells in G1 phase. B, Quantification of 
cell cycle analysis in MDCK stable pool. Bar graph for percentage of cells 
in resting phase and proliferative phase for stable cell pool transfected 
with different constructs. 
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cells expressing only moderately elevated β-catenin protein. Nevertheless, 

MDCK stable cell pools also consist of G418 resistant cells not expressing 

mutant β-catenin and hence not showing any functional effect in these cells.  

4.4.5 Analysis of Wnt target gene in MDCK stable cell pools. 

β-catenin (WT) and various mutants showed different accumulation pattern along 

with an effect on proliferation, migration and morphology. Cyclin D acts as cell 

cycle regulator and is one of potential target gene of β-catenin activation. 

Therefore, we analysed Cyclin D expression level in MDCK stable pools 

expressing different constructs by immunoblotting with Cyclin D. However, no 

significant difference among missense mutation and wild type β-catenin in 

comparison to control (Fig 4.23) was detected in stable cell pool at confluence. 

Mutant ∆ (A17–A128) showed a slight decrease in Cyclin D expression 

compared to other mutants.  Earlier studies [145] have shown differences in 

Cyclin D level at RNA level but not at protein level. This can be explained by 

presence of some posttranslational regulation which might down regulate their 

levels. However, we didn’t check their expression at RNA level. Moreover, MDCK 

is a kidney epithelial cell line and hence their β-catenin target gene might be 

different from the cells from intestinal origin. A technical aspect could explain 

these differences. We worked with stable pools of cells, including fractions of 

G418 resistant cells not expressing our β-catenin constructs. Therefore, we can 

never be sure of an equal number of positively transfected cells in the mutants 

studied here. Moreover, we could observe a larger number of GFP positive cells 

in point mutants and ∆(A60 – A110) compared to WT, ∆(A17–A128) and ∆(A5 – 

A80) by fluorescence microscope indicating the efficiency of transfection to differ 

between the mutants and thus providing an explanation for the varying results in 

target gen expression analysis.  
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Figure 4.23 Cyclin D Expression in MDCK stable cell pools. a ) Total 
protein lysate was immunoblotted with Cyclin D antibody. Blot of β actin 
demonstrates equal protein loading. b) Mutant T256 shows slight 
decrease in Cyclin D expression as identified by densitometric analysis. 
The blot was normalized to β actin band.    
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5. DISCUSSION  
 
Carcinogenesis is a sequential process following a series of mutations that result 

in uncontrolled growth and invasive behaviour of cells. The mutations usually 

occur in components of pathways essential for the control of normal growth. It is 

not surprising, therefore, that malignant transformation of cells in organs, in 

which a given pathway plays a dominant role in homeostasis associate with 

mutations in this pathway. However, when the same pathway is affected in two 

different tumor types, the mutated pathway components are frequently different. 

This is the case for example in the epidermal growth factor (EGF) signaling 

cascade. While lung cancers, frequently carry activating mutations in the EGF-

Receptor [121] carcinomas of the pancreatobiliary tract harbor mutations in the k-

ras oncogene, an intracellular downstream component of EGF signaling  

[148].The reason for this difference between tumor types is not clear. Among the 

potential explanations exposure towards different carcinogens that preferentially 

induce a certain type of mutation and organ specific mechanisms of pathway 

control are the most plausible. 

One of the remarkable features of the small intestine is the fact that although the 

crypt stem cells rapidly divide and although the small intestine contains by far the 

most stem cells in the gastrointestinal tract, malignancies are exceedingly rare in 

this location. This must mean that the small intestinal cells, unlike those in the 

colon, where cancer is highly frequent, have evolved some very effective 

mechanisms protecting against genetic damage. 

The wnt/wingless pathway is one of the most frequently altered signaling 

cascades in in a variety of human tumors. Several mechanisms of constitutive 

activation of wnt/wingless exist but stabilization of β-catenin is the common 

dominator of all these alterations. Mutations can occur in members of the β-

catenin degradation complex, namely APC and Axin, as well as in β-catenin 

itself, while mutation in the wingless receptor and its ligands have not been 

reported [149]. It is interesting to note, that APC mutations dominate the reason 

for β-catenin stabilization in colorectal cancer but do not play a significant role for 

tumorigenesis outside the colon. Similarly, Axin mutations have as yet only been 

reported for hepatocellular carcinomas [103], while in all the remaining tumors, in 
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which wingless activation plays a role, like papillary thyroid cancer, pancreatic 

pseudopapillary carcinomas, skin tumors, β-catenin is mutated [106-109].   

Cancer is basically a genetic disease [50]. A cell acquires mutations during life 

time and if these mutations alter growth relevant genetic information, 

transformation may be the consequence. In intestinal cancer, two main different 

types of genomic alteration are seen. On the one hand, the genome of a tumor 

can be characterized by mutations affecting whole chromosomes and resulting in 

gains and losses which are visible by cytogenetic analysis, this type of genomic 

instability, also termed the chromosomal instability type contrasts with the 

microsatellite instability type, where mutations at a gene level occur in the 

presence of normal karyotypes. The latter instability follows inactivation of the 

DNA mismatch repair machinery, which allows for the generation of multiple 

mutations in a cell [150-152]. Chromosomal instability is more frequent than 

microsatellite instability, taken together one of both genomic instability types is 

found in 80% of intestinal cancers. 20% of tumors, however, lack chromosomal 

and microsatellite instability [55]. The pathogenesis of these so called MACS 

tumors (microsatellite and chromosomally stable) is poorly understood.  

Small intestinal adenocarcinoma is an uncommon neoplasm morphologically 

similar to colorectal carcinoma, sharing many risk factors with colorectal 

carcinoma. However, small intestinal adenocarcinoma occurs 50 times less 

frequent than colorectal carcinoma, even though the small intestine occupy 

approximately about 75% of the length and 90 % of the mucosal surface of 

complete gastrointestinal tract [21]. The histological progression to invasive 

colorectal cancer termed as “adenoma-carcinoma sequence”, involves a series 

of defined genetic changes mainly in activation of oncogenes and inactivation of 

tumor suppressor genes [50, 123]. At present, there have been few studies 

regarding genetic pathways involved in small intestinal cancer. However, based 

on similarities between the two cancer types it is suggested that they may share 

many of genetic changes involved in carcinogenesis.  Recent molecular studies 

have shown, however, that the molecular pathways of sporadic tumorigenesis 

differ in small intestine compared to large intestine [82, 120, 124, 125] Mutations 

in the P53 and k-ras genes and microsatellite instability occur at approximately 

similar frequency in both cancers. Inactivation of the Adenomatous polyposis coli 
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(APC) gene is usually not seen in small intestinal adenocarcinoma [82, 83, 126] 

but is a hallmark genetic change in colon cancer. Nevertheless, abnormal 

stabilization of β-catenin was found in approximately 50% of sporadic small 

intestinal adenocarcinoma indicating an alternative mutation to surrogate for APC 

mutation in this pathway [124, 125, 127]. These findings indicate that the control 

of regular cell growth in the small intestine is based on different mechanisms and 

resistant to genetic events that occur in colorectal cancer. Furthermore, if a 

mechanism for any potential differences can be identified, this may have clinical 

implications for future.  

In this study we aimed to elucidate the molecular background of β-catenin 

stabilization in 20 cases small intestinal cancer. Additionally, we also included 20 

cases of early age of onset non hereditary colorectal cancer, since these tumors 

may lack APC mutations and their pathogenesis can not be explained by an age 

related accumulation of mutations, the common finding in late age of onset colon 

cancers. By searching for alterations in β-catenin itself, we identified large 

deletions and insertions in the β-catenin gene, CTNNB1, in (4 out of 20) 20% of 

small intestinal adenocarcinoma and (3 out of 20) 15% of sporadic colorectal 

carcinoma. Mutation-induced generation of abnormal transcripts was shown by 

cDNA analysis and stabilization of mutated protein was demonstrated by 

immunohistochemistry and western blot analysis, respectively. 3 out of 4 small 

intestinal adenocarcinoma, with large deletions in CTNNB1 were found in 

microsatellite stable and chromosomal stable (MACS) carcinomas, with nuclear-

predominant accumulation in all areas of the tumors. In colorectal carcinomas, all 

three tumors with large CTNNB1 deletions were microsatellite stable with patchy 

areas for nuclear accumulation. In small intestinal adenocarcinoma, three tumors 

with a lack of exon 3 sequences displayed strong cytoplasmic accumulation in 

addition to the nuclear accumulation of β-catenin. One tumor with an additional 

loss of residues coded by exon 4 showed a nuclear-predominant β-catenin 

accumulation with only little cytoplasmic protein concentration, a pattern recently 

observed in a subset of small intestinal adenocarcinoma [124, 127]. 

In colorectal carcinoma, two tumors lacked the complete exon 3 coding 

sequences while one tumor lacked the whole N-terminal region with an 

alternative start codon 131, resulting in a protein lacking amino acid residues 
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from 1 to 130. Interestingly, the tumor displayed patchy areas of nuclear β-

catenin accumulation by immunohistochemistry and no homogeneous 

accumulation in the nucleus as seen in small bowel cancer. Tumors with 

cytoplasmic β- catenin stabilization and nuclear translocation solely at the 

invasion front did not show comparable mutations. Most of the mutations 

reported here resulted in a loss of N-terminal β-catenin sequences at residues 

22–80. These mutant proteins have not only lost all phosphorylation sites 

encoded by exon 3, they also lack the recognition site for β-TrCP[153]. β-catenin 

degradation via phosphorylation through the APC–AXIN–GSK3β degradation 

complex and subsequent β-TrCP-mediated ubiquitination is likely to be largely 

impaired in these mutants. It is interesting to note, however, that an accumulation 

of the largest deletion mutant in the small intestine (D17–P128del in T256) was 

mainly restricted to the nucleus, while an even larger deletion (D1-130) in a large 

intestinal carcinoma resulted in cytoplasmic and nuclear accumulation, indicating 

that the loss of residues 81–128 destabilizes β-catenin in the cytoplasm or alters 

the nuclear–cytoplasmic shuttling of the protein in the small but not in the large 

intestine. Both the mutants, D17–P128del in small bowel cancer and D1-130del 

in the large intestine have lost parts of the α-catenin binding site of β-catenin 

located between residues 120–147[87, 128]. α-catenin has not only been shown 

to sequester β-catenin in the cytoplasm [129] but can also inhibit the 

transcriptional activity of β-catenin [130, 131]. Thus, our data indicate that the 

stability of the cytoplasmic β-catenin pool is differentially regulated in the small 

and the large intestine and depends on interaction of α- and β-catenin in the 

small intestinal cells. In the D17-128del mutant we could show, that beside β-

catenin alpha catenin was accumulated in the nucleus. This phenomenon 

indicated a role of α-catenin in the nuclear export of β-catenin, a concept recently 

postulated also in other studies [154]. Loss of the binding motives in either β or 

α-catenin may enhance nuclear concentrations of β-catenin and support the 

oncogenic potential of β-catenin stabilization [155]. While large-scale deletions 

were only found in microsatellite-stable tumors in our study, Murata et al [140, 

141] described this mutational type in a carcinoma with replication error 

phenotype, indicating a pathogenic impact of this alteration also in tumors arising 

in the background of microsatellite instability. Earlier studies, have also described 
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large-scale deletions in β-catenin for colon cancer and hepatocellular carcinoma 

[128, 141, 156, 157] but in contrast to small intestinal adenocarcinoma, this 

mutational type is infrequent compared to missense mutations at β-catenin 

phosphorylation site [107, 109, 127]. While exon 3 deletion mutation was 

described earlier, we identified two novel mutations, a A17-A128del in a small 

intestinal adenocarcinoma and an A1-A130del with an alternative start codon in 

colon cancer. The latter mutant with alternative start codon lacks the complete N-

terminal transactivation domain containing amino acid residues 1 to 130.  

In the herein investigated cohort of small bowel cancers, we did not find any 

tumor with a β-catenin missense mutation, resulting in an amino acid change at 

the conserved phosphorylation sites. Lack of β-catenin missense and APC 

mutations in small intestinal adenocarcinoma is of particular interest. At the 

molecular level, point mutations at β-catenin phosphorylation sites and 

inactivation of APC are considered to exert similar effects on activation of 

wnt/wingless signaling [76, 158]. This hypothesis is strengthened further by the 

observation of mutual exclusiveness of APC and β-catenin mutations in sporadic 

fundic gland polyps, desmoid tumors and colorectal carcinomas [159-162]. β-

catenin stabilization in the cytoplasm with nuclear translocation of β-catenin in 

the invasion front is seen in most colon cancers [133] and almost all colon 

cancers have inactivating mutations in APC or point mutations in CTNNB1 [109, 

134].  

A significant role of APC inactivation has been excluded for sporadic small 

intestinal adenocarcinoma [82, 120, 124]]. Previous data [125] and the data 

reported herein also exclude β-catenin point mutations as an important 

mechanism of small bowel carcinogenesis. Lack of both mutational types which 

are considered to exert similar effects on wnt-signaling in small bowel 

adenocarcinoma indicates that the initial gate keeping mutational events in 

sporadic colorectal and small intestinal carcinogenesis differ fundamentally with 

existence of some as yet unknown resistance mechanism that prevents 

occurrence of β-catenin point mutation and APC mutation in small intestinal cell. 

Idenfication of large deletion mutants of β-catenin in the absence of APC or β-

catenin misense mutations with a MSI negative genotype in small bowel cancers 

and in colon cancers from young patients indicates the existence of an 
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alternative pathway involved in the pathogenesis of early age onset sporadic 

tumor development. 

We describe here large-scale β-catenin deletions with a stabilizing potential as 

an alternative pathway for intestinal tumorogensis in absence of APC mutation 

and β-catenin point mutation which further excluded the possibility that CTNNB1 

point mutations play a significant role in small intestinal carcinogenesis. The 

existing data on mutations in APC and β-catenin to date contrast with the findings 

in colon cancer, which indicates different mechanisms of wnt/wingless control in 

the small and the large intestine. Moreover, the existence of large deletion 

mutants in colon cancers from young patients, which show a different pattern of 

β-catenin accumulation in the tumor cells, suggests an alternative pathway for 

tumorigenesis in the colon. 

Usually, one of both types of genomic instability is found in most but not all small 

and large intestinal adenocarcinoma. According to the few recent studies 

performed, a share of approximately 20 % of colon cancer is negative for either 

CIN or MIN showing MACS phenotype. These MIN and CIN negative tumors 

were found in patients of young age [55]. Our study from small intestinal 

adenocarcinoma and colon cancer, also included tumors that were MIN and CIN 

negative (MACS) from patients younger than 35 years of age at the time of 

diagnosis.  

In a subset of small intestinal and colon cancers we identified large in frame 

deletion deletions of β-catenin including the complete degradation box. The 

mutation result in an aberrant protein not only lacking all 4 phosphorylation sites, 

essential for degradation but also the recognition site for β –TrCp mediated 

ubiquitination. In the small bowel, these mutation lead to peculiar β-catenin 

accumulation pattern, with homogenous nuclear stabilization all over the tumor 

areas and not restricted to invasive front only, a phenotype mostly seen in colon 

cancer.  The large N-terminal in frame deletions of β-catenin is expected to have 

stronger impact on β-catenin stabilization than a single mutation at 

phosphorylation sites. It was postulated that sporadic early age of onset intestinal 

cancer with lack of microsatellite and chromosomal instability (MACS) may 

present a distinctive group that may arise from an as-yet uncharacterized unique 

molecular pathway.  Our finding of CTNNB1 large scale deletions could present 
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one possible mechanism of tumorigenesis in young patients. The existence of 

unusual oncogenic mutations like those we found for β-catenin in single genes 

would provide an explanation for development of cancer with MACS genotype in 

young patients. Few studies have already been performed to probe into the 

carcinogenesis of this subtype [59, 163].  

Therefore, we performed an in vitro study to investigate and compare the 

oncogenic potential of β-catenin large N-terminal deletions to point mutations. 

After having established the mutant clones using a previously described PCR-

based method [164], we transfected Flag tagged and GFP tagged β-catenin wild 

type and different mutants into SW480 and MDCK cells. We analyzed the effect 

on morphology, proliferation and migration of cells after transfection to compare 

the oncogenic potential for wild type β-catenin and different mutant construct. SW 

480 is a colon cancer cell line with an APC mutation that already results in β-

catenin stabilization. We worked with transiently transfected SW480 cells since 

we were not able to establish stable cell pool or clone over expressing β-catenin. 

We could get neomycin resistant SW480 cells after selection, weekly expressing 

different constructs but the expression was lost after a period of three to four 

weeks of culturing the cells. Our experiments with transiently transfected SW480 

cells showed no significant effect on proliferation or migration of cells over 

control. Nevertheless, positively transfected cells over expressing exogenous β-

catenin disappear in time and showed shrunken apoptotic morphologies. We 

observed similar results with both flag tagged and GFP tagged constructs. 

Therefore, it seems likely that β-catenin overexpression causes cell death. Cell 

death was due to apoptosis and not necrosis since we could see the caspase 3 

cleavage in cells over expressing β-catenin over mock transfected control cells. 

Our result was qualitative but still it can be observed that the extent of cleavage 

was more in case of mutant T3 and T256 compared to S33Y, ∆S45. β-catenin wt 

and T60 showed cleavage to a lesser extent compared to other mutants.  

A comprehensive survey of primary colon tumors has shown a strict exclusivity 

between mutation in APC and β-catenin [105] for Wnt pathway activation. None 

of the tumors with mutant APC contains mutant β-catenin whereas tumors with 

wild type APC may contain mutations in amino terminal regulatory domain of β-

catenin. The latter tumors, however, contain missense mutations or infrequently 
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exon 3 interstitial deletions that eliminated all of the regulatory serine/threonine 

residues. The overall frequency of β-catenin mutations in colon tumors is not very 

high probably because APC is mutated in many of these cancers. Nevertheless, 

large deletion mutation in β-catenin in absence of APC might act as initial driving 

force for tumorogenesis in the intestines. Our SW480 cell culture data provide an 

explanation for mutual exclusivity of APC and β-catenin mutation in human 

tumors. All β-catenin mutants, ∆ (A17-A128), ∆ (A5-A80), S33Y & ∆S45 are 

normally observed in human cancers. In the APC mutated cell line SW480 these 

mutations result in apoptosis. Therefore, coexistence of mutations in APC and β-

catenin may associate with a negative selective pressure, a reason why both 

mutational types are not found in combination.  

Mutant ∆ (A60-A110) is not observed in any of human cancers and showed 

relatively less apoptosis even though it was highly stabilized like other β-catenin 

mutants. Similarly, apoptosis was significantly less in wild type β-catenin 

expressing cells compared to cells expressing well characterized mutations 

found in human cancers. We therefore decided that although SW480 is a cell line 

from intestinal origin established from a primary adenocarcinoma of the colon, it 

is not a good model system to study and compare oncogenic potential of β-

catenin. SW480 has a bialleic truncating mutation of APC that delete the axin 

binding sites and prevent β-catenin degradation. This results in abnormally high 

levels of cytoplasmic and nuclear β-catenin in colon tumor cells. Therefore, in 

SW480 no conclusion can be made on oncogenic transformation potential of 

different mutant form of β-catenin. Many controversial data are published 

regarding whether or not β-catenin induces apoptosis and, if so, whether this is a 

direct or indirect effect [99, 100, 136, 137] . The mutants detected in the present 

study, however, may be used for further studies to dissect the mechanism 

involved in apoptosis induced by β-catenin overexpression not only in SW480 but 

also in other cell types.  

Given the above mentioned phenomenon of apoptosis in SW480, we planed to 

study the β-catenin wild type and mutant’s oncogenic potential in non 

transformed immortalized epithelial cell line with no mutation in any other gene. 

We used MDCK cells, a non transformed kidney epithelial cell line from canine 

with intact cadherin and Wnt signaling components. Previous studies [99, 145], 
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used this cell line to study the oncogenic potential for different missense β-

catenin mutations. To assess the functional implications of large in frame N-

terminal deletion mutants in comparison to missense mutation (S33Y, ∆S45) and 

wild type β-catenin, we created stable cell pool expressing various GFP tagged 

β-catenin constructs. We found that β-catenin wild type and all mutants 

contained some level of transforming ability as assayed by increased proliferation 

and migration over control cells. Mutant ∆ (A17-A128), showed highest 

proliferation followed by other mutants. β-catenin wild type showed increased 

proliferation over mock transfected control cells but it was relatively less 

compared to other mutants. In migration assays for MDCK cells, mutant ∆ (A60-

A110), displayed highest migration potential followed by ∆S45 and then S33Y. 

Interestingly, mutants ∆ (A17-A128) and ∆ (A5-A80) were less migrative, slightly 

greater then β-catenin wild type, even though ∆ (A17-A128), displayed relatively 

highest proliferation. As expected, large N-terminal deletion mutants were 

oncogenic and lead to a transformed phenotype. However, it was interesting to 

note that the difference among β-catenin wild type, missense mutation and large 

deletions were relatively small, contrary to our hypothesis and compared to other 

published data [106, 165, 166]. It might be explained by the fact that we 

performed these studies with cells stably expressing a constitutively active GFP 

tagged transgene. In line with our data on SW480 and previous studies [138] 

showing high levels of β-catenin expression and signaling that can be achieved 

by transient transfection is not conducive for cell survival and propagation. 

Therefore, selection pressure against very high expression results in production 

of stable pool of cells expressing only moderately elevated β-catenin protein 

which in turn limits the extent to which more stabilized mutant (large deletion 

mutants) could stimulate signaling with significant functional effect above wild 

type β-catenin or missense mutants. All mutants showed transformed phenotype 

over mock transfected control cells. However, large deletion mutant ∆ (A17-

A128) and ∆ (A5-A80) displayed higher proliferation with relatively lower 

migration potential in contrast to ∆ (A60-A110) and missense mutations. This 

might be due to leakiness in the assay or because of involvement of other 

pathways involved in regulation of β-catenin. Especially, the p53 activated 

Siah/SIP/SCF/Ebi pathway has been shown to degrade β-catenin, but does not 
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rely on phosphorylation of its N-terminus, [139, 140]. However, we didn’t check 

our stable pool expressing different mutant for any p53 activation or Siah 

mediated β-catenin degradation. Future studies can be performed for analyzing 

the influence of these mutations on its turnover. Our novel mutant ∆ (A60-A110), 

is not observed in tumor tissues so far. The mutant lacks codon 60 to 110 while 

its phosphorylation sites are completely intact. The mutant was found to be 

expressed and highly stabilized with transforming ability in in vitro studies. It 

might be due to exemption of this mutant from other pathway involved in β-

catenin regulation. The region from codon 60 to 110 is conserved in β-catenin but 

its function is still unknown. Our data provides some clue that codons 60 to 110 

might have some role to play in maintaining the cellular pool of β-catenin.,It might 

be hypothesized, that large deletion β-catenin mutants can mediate 

transformation by additional mechanisms like effecting interactions among 

different pathway than mere protein stabilization. However, this hypothesis 

requires further experimental validation, where our in vitro model system could 

be used to answer these basic questions.  

 

 

 
 

Figure 5.1 The metastable cell phenotype. Several studies have identified 
a hybrid cell showing both epithelial and mesenchymal traits. These cells 
are summarized here, in conjunction with their epithelial and 
mesenchymal counterparts. (Reviewed By Erik W. Thompson 2006) 
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β-catenin overexpression has a notable effect on cell morphology. The MDCK 

cell line is a non transformed epithelial line with strong intercellular adhesion that 

extends cell membrane only to limited degree. β-catenin overexpression converts 

MDCK into more mesenchymal cell type [141]. At low cell density, cell cell 

adhesion is reduced and the cells take on a more spindly, stretched shape. This 

change in morphology is reminiscent of an epithelial to mesenchymal transition 

(EMT) [142]. EMT is a developmentally important cellular process, especially 

during gastrulation. Moreover, if dysregulated in adult tissue, EMT has been 

suggested to play an important role in progression from benign tumor to 

metastatic carcinoma[143],[167]. β-catenin wild type, ∆ (A60-A110) and 

missense mutants showed a mesenchymal phenotype, however large deletion 

mutants ∆ (A17-A128) and ∆ (A5-A80), displayed the so called “metastable 

phenotype”. The ability of cells to express attributes of both epithelial and 

mesenchymal phenotypes is referred as a “metastable phenotype” (Figure 5.1).  

Metastability is consistent with the expression of stem cell markers in colorectal 

cells undergoing EMT and such plasticity may be found in progenitor cells in 

various organs [168]. One of the hallmark of stem cell is their ability to self renew 

and differentiate. Many studies have been performed to explore the similarities 

and differences that exist between normal stem cell maintenance within tissues 

and organs and the uncontrolled proliferation of cancer [147]. Tumors can be 

considered as small aberrant organ containing a hierarchy of progenitor cells and 

differentiated cells (Figure 5.2). However, dysfunctional in comparison to a 

physiologically functioning organ they still maintain their own survival and 

proliferation[169]. In the cellular hierarchy of tumor cells, there is a differentiation 

mechanism from tumor stem cells to tumor progenitor cells to mature tumor cells 

which ends in apoptosis and turnover [148]. Abnormal cellular behavior in this 

tightly controlled system can occur via genetic alterations, such as tumor 

suppressor loss or gene destabilization, which result in incremental neoplastic 

gains and disruption of the homeostatic system [149] leading to aggressive 

cancer. 

Wnt signaling pathway plays an important role in maintenance of normal stem 

cells. If dysregulated it can result in an expanded progenitor cell population and 

later to cancer. The large N-terminal β-catenin deletion mutations ∆ (A5-A80) and 
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∆ (A17-A128)) lead to homogenous nuclear accumulation both in vitro and in 

vivo. Additionally, these mutations were found in colon cancer patients of young 

age with no genomic instability providing evidence, that this type of mutation 

might act as initiating point in tumorigenesis by transforming stem cells from 

obedient to deviant cells having altered management. Nuclear accumulation of β-

catenin is one of the characteristic features of stem cells [150, 151]. Our in vitro 

and in vivo experiments confirmed the nuclear localization of these large deletion 

mutants. Stably transfected MDCK stable cell pool can be used to generate 

stable clones for further studies on expression of other stem cell markers like 

Lgr5 (leucin rich repeat containing G protein coupled receptor 5-positive) and 

Bmi1 [170]. 

  

 
Figure 5.2 Model for colon cancer initiated by stem cells. Colon stem 
cells are located at the base of the crypt in normal colon and will diff 
erentiate while moving up the crypt in about 5 days. Adenoma will 
develop upon deregulation of stem cell homeostasis. Upon further 
neoplastic injuries, stem cells will transform into cancerous stem cells 
(CSCs) with some limited ability to differentiate. Homogenous nuclear 
accumulation in tumor tissue T256 might suggest cancer formation by 
disruption of stem cell homeostasis. (Reviewed by, Julie M Chandler 
and Eric Lagasse 2010). 

 

To further investigate the downstream elements of wnt/wingless activation we 

analysed the Cyclin D expression by western blot analysis. There was no 

significant increase in its expression for large N-terminal deletion mutations, with 
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slight upregulation in case of missense mutants compared to mock transfected 

control cells. Provost et al. [145], examined and compared the effect of 

overexpression of different β-catenin missense mutations found in benign and 

malignant tumors. Their data did not reveal any detectable difference at protein 

level but a striking overexpression for S45A over other missense mutants at RNA 

level by northern blot. Therefore, our large deletion mutants and missense 

mutations can be compared at both RNA and protein level for activation of 

different downstream target gene activation of β-catenin. Nevertheless, cyclin D1 

might not be the likely target genes with an essential role in the transformation of 

MDCK by β-catenin since target genes for Wnt signaling are very tissue specific.  

Existing literature is full of inconsistent and conflicting data on the oncogenic 

potential of β-catenin. Positive as well as negative results are reported for 

NIH3T3 cells transfected with stabilized mutant forms of β-catenin [98]. L cells 

are transformed by these constructs [154, 155] whereas Rat 1 cells are not[165], 

although the latter are transformed by Wnt-1 which usually functions by activating 

β-catenin-LEF mediated transcriptional activation [165]. Rat kidney epithelial cells 

RK3E, immortalized by EIA, are transformed by stabilized β-catenin [98], but 

TEC-18 rat intestinal epithelial cells or 1811 human epithelial cells are not. 

MDCK cells are sensitive to transformation by wild type and stabilized β-catenin 

constructs [99] but other β-catenin mutants known to produce a stabilized protein 

failed to transform MDCK cells [171]. It can be concluded from these data that 

stabilized β-catenin can transform mammalian fibroblast and epithelial cells but 

the fact that different sublines of the same cell can vary in their susceptibility to 

transformation suggests the requirement for additional genetic changes not 

present in every cell line tested. All of the mammalian cells are from continuous 

lines and have gone through genetic changes leading to loss of growth regulatory 

mechanism.  

In conclusion, based on our in vitro studies in SW480 and MDCK cells, β-catenin 

acts as an oncogene in MDCK. Large N term deletion mutants were oncogenic 

like missense mutants. However, the results were more of qualitative nature. 

Oncogenic potential can be more significantly compared if similar studies will be 

performed with a stable clone of these mutants in an inducible system rather than 

a constitutive active one. Other possibility might be to check these mutants in 
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primary cell line like CEF, non immortal cells that are tested just after a single 

subculture, a time interval that is insufficient for selection of genetic variants. 

Nevertheless, we conclude that the mechanism of transformation is not the same 

for large deletion mutants in comparison to missense mutants. Interestingly, 

mutants ∆ (A17-A128) and ∆ (A5-A80) appear to be less stabilized inspite of 

deletion of complete degradation box and recognition site for β-TrCP as seen on 

western blot. Moreover, expression of these mutants pushes cells into 

“metastable phenotype” with higher proliferation but lower migration potential, 

characteristic features of stem cells. All these evidences might suggest the 

expression of these mutants maintains intestinal stem cell characteristics, whose 

expression might get switched off iN-terminal differentiating cells. Whereas, 

missense mutation are more involved in epithelial to mesenchymal transition in 

later stages involved in metastasis and invasion. Further studies on exploring the 

exact mechanism of transformation by large deletion mutants can unravel the 

different kinase and pathways that play a role in β-catenin mediated signaling, 

and will be essential in understanding the tissue specific behavior of β-catenin. 

Nevertheless, large β-catenin mutations are suggestive of an alternative pathway 

with a role in initiating transformation in small intestine adenocarcinoma and non 

hereditary colon cancer with early age onset of disease, in the absence of APC 

mutations. 

Finally, we analysed localization of different β-catenin mutants in cell culture by 

immunofluorescence since our tumor samples with large scale β-catenin 

mutations showed homogenous nuclear accumulation. SW480 has a truncation 

mutation in APC, which leads to defective β-catenin degradation and its 

accumulation in the cytoplasm and the nucleus. In SW480 cells, wild type β-

catenin was localized in cytoplasm and nucleus while mutant ∆ (A17-A128) 

localize completely in nucleus. Mutants ∆ (A5-A80), S33Y and ∆S45 showed 

both nuclear and cytoplasmic accumulation similar to wild type β-catenin.  Mutant 

∆ (A5-A80) displays a little higher nuclear accumulation whereas ∆ (A60-A110) 

shows cytoplasmic accumulation with no nuclear accumulation. 

Whereas in MDCK, normal non transformed epithelial cells, β-catenin wild type is 

mainly located at membrane with no accumulation in cytoplasm or nucleus. 

Mutant ∆ (A60-A110)  and S33Y show strong cytoplasmic accumulation with little 
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nuclear translocation whereas mutant ∆(A5-A80) and ∆S45 show nuclear 

accumulation in the background of cytoplasmic accumulation. However, Mutant 

∆(A17-A128) showed complete nuclear accumulation similar to SW480, without 

accumulation in the cytoplasm or at the membrane.  

Mutant ∆ (A17-A128) displayed lower stabilization potential as observed on 

western blot but still translocated completely to the nucleus. Therefore, our 

localization studies indicate that β-catenin nuclear translocation is not merely 

based on its stabilization. Moreover, β-catenin has a molecular mass of 90 kDa, 

which should prevent its passive diffusion through the nuclear pores. It does not 

contain nuclear localization signal (NLS) or nuclear export signal (NES) 

sequences which are required for nucleo cytoplasmic transport by the 

importin/exportin system but still efficiently enter and exit the nucleus [157, 158]. 

On the basis of its structural similarities to armadillo repeats of importin β HEAT 

repeats, it has been suggested that β-catenin can directly interact with nuclear 

pore proteins although a later study challenged this view point [159]. However, 

some recent studies provide evidence that the transcriptional activity of β-catenin 

is modulated by direct regulation of its subcellular localization by variety of 

interaction partners. LEF/TCF transcription factor can enrich β-catenin in the 

nucleus [111, 142], and a complex of B-cell lymphoma 9 (BCL9) and its nuclear 

interactor Pygopus can also strongly recruit β-catenin to nuclear compartment 

[160, 161] 

However, APC, axin and axin 2/conductin shifts β-catenin to the cytoplasm [162, 

163], in addition to their role in the destruction complex. As TCF, BCL9, APC and 

axin shuttles between nucleus and cytoplasm[164-166], [161]it is suggested that 

TCFs and BCL9 may act as nuclear import factors for β-catenin, whereas APC 

and axin may actively export β-catenin into the cytoplasm. However, it has not 

been shown directly that these factors regulate β-catenin subcellular localization 

by active transport of β-catenin across the nuclear envelope. Our data showing 

complete nuclear localization for mutant ∆ (A17-A128) in SW480 and MDCK 

indicate that the cytoplasmic and the nuclear pool of β-catenin can be 

differentially regulated. SW480 has an inactive truncated APC while MDCK has a 

complete functional wild type APC. Based on evidence from cell transfection 

experiments [165, 166], APC binds to the CRM1 export receptor via its nuclear 
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export signals and carries β-catenin from nucleus to cytoplasm. Later studies 

[172], demonstrated that APC dependent export of β-catenin is dominant in 

normal cells, whereas the high level of free stabilized β-catenin in tumor cells exit 

the nucleus via unidentified pathway independent of APC and CRM1 exporter. 

Nuclear localization of mutant ∆ (A17-A128) in both MDCK and SW480, further 

proves existence of such APC independent pathway for nuclear export of β-

catenin that might be deregulated. However, ∆ (A17-A128) has an intact binding 

site for APC, but large N-terminal deletions might affect its binding efficiencies to 

interacting partners. Our in vitro model system can be used effectively to study 

the binding affinities of these deletion mutants to various known interacting 

partners of β-catenin. 

α-catenin sequesters β-catenin in the cytoplasm [129, 166], and is also known to 

inhibit the transcriptional activity of β-catenin [130, 131]. The mutant ∆(A17-

A128) has lost parts of the α-catenin binding site of β-catenin located between 

residues 120–147[87,128].Therefore, we performed α- and β-catenin 

colocalization studies in tumor tissues and in vitro for SW480 cells. Our in vivo 

and in vitro colocalization data shows complete nuclear translocation of both α- 

and β-catenin. β-catenin wild type and missense mutants, with no deletion in 

alpha catenin binding site, also co localize with β-catenin. In mutant ∆(A17-A128) 

with deletion of some residues in the α-catenin binding site binding efficiency to 

α-catenin may not be affect. However, expression of mutant ∆ (A17-A128) 

translocated α-catenin along with it completely to nucleus. Loss of the binding 

motives in either β- or α-catenin may enhance nuclear concentrations of β-

catenin. Thus, the complete nuclear accumulation of mutant T256 over other wild 

type and missense mutation may reflect a combination of nuclear retention and 

possibly higher rate of nuclear import with blocked export. Mutant ∆(A17-A128) 

lacks amino acids (D17–P128) which might leads to loss of binding partner 

involved in β-catenin nuclear export. This binding partner can be known or 

unknown. Recently, galectin-3 [167], a novel β-catenin binding partner in the N-

terminal region from amino acids 1 -131 was identified. Galectin-3 (gal-3) is a 

pleiotrophic protein and an important regulator of tumor metastasis, which like β-

catenin shuttles between the nucleus and the cytosol in a phosphorylation 

dependent manner. Moreover, β-catenin stimulation of Cyclin D1 and c-myc 
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expression is gal-3 dependent [173]. Therefore, Galectin along with other known 

β-catenin binding partners (APC, Axin etc) can be checked in vitro for their 

binding efficiency for wild type and mutant ∆(A17-A128) and followed finally for 

their role in nuclear cytoplasmic shuttling. However, yet unknown binding 

partners can also be screened using these mutants by yeast two hybrid assay, 

and later confirm there binding by invitro and in vivo assay. This new binding 

partner might be involved in yet to identify CRM1 and APC independent pathway 

involved in nuclear export of β-catenin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 122 -  



 

REFERENCES 
 

1. Moghaddami M, Cummins A, Mayrhofer G: Lymphocyte-filled villi: 
comparison with other lymphoid aggregations in the mucosa of the 
human small intestine. Gastroenterology 1998, 115(6):1414-1425. 

2. Zhuchenko SP, Bobrik, II: [New data on the structure of the human 
small intestine]. Vrach Delo 1988(11):1-3. 

3. Gasbarrini G, Fontana G, Faggioli F: [Study of the small intestine by 
means of peroral biopsy. Its contribution to the structure of the 
normal human small intestine]. Arch Patol Clin Med 1963, 39:406-430. 

4. Hocker M, Wiedenmann B: Molecular mechanisms of enteroendocrine 
differentiation. Ann N Y Acad Sci 1998, 859:160-174. 

5. Porter EM, Bevins CL, Ghosh D, Ganz T: The multifaceted Paneth cell. 
Cell Mol Life Sci 2002, 59(1):156-170. 

6. Freeman HJ: Crypt region localization of intestinal stem cells in 
adults. World J Gastroenterol 2008, 14(47):7160-7162. 

7. Umar S: Intestinal stem cells. Curr Gastroenterol Rep 2010, 12(5):340-
348. 

8. Ahuja V, Dieckgraefe BK, Anant S: Molecular biology of the small 
intestine. Curr Opin Gastroenterol 2006, 22(2):90-94. 

9. Cairnie AB: Renewal of goblet and Paneth cells in the small intestine. 
Cell Tissue Kinet 1970, 3(1):35-45. 

10. Hammann A, Arveux P, Martin M: Effect of gut-associated lymphoid 
tissue on cellular proliferation in proximal and distal colon of the rat. 
Dig Dis Sci 1992, 37(7):1099-1104. 

11. Heyman M, Crain-Denoyelle AM, Desjeux JF: Endocytosis and 
processing of protein by isolated villus and crypt cells of the mouse 
small intestine. J Pediatr Gastroenterol Nutr 1989, 9(2):238-245. 

12. Bry L, Falk P, Huttner K, Ouellette A, Midtvedt T, Gordon JI: Paneth cell 
differentiation in the developing intestine of normal and transgenic 
mice. Proc Natl Acad Sci U S A 1994, 91(22):10335-10339. 

13. Sancho E, Batlle E, Clevers H: Signaling pathways in intestinal 
development and cancer. Annu Rev Cell Dev Biol 2004, 20:695-723. 

14. Mahmoud NN, Boolbol SK, Bilinski RT, Martucci C, Chadburn A, 
Bertagnolli MM: Apc gene mutation is associated with a dominant-
negative effect upon intestinal cell migration. Cancer Res 1997, 
57(22):5045-5050. 

15. Mahmoud NN, Bilinski RT, Churchill MR, Edelmann W, Kucherlapati R, 
Bertagnolli MM: Genotype-phenotype correlation in murine Apc 
mutation: differences in enterocyte migration and response to 
sulindac. Cancer Res 1999, 59(2):353-359. 

16. Bach SP, Renehan AG, Potten CS: Stem cells: the intestinal stem cell 
as a paradigm. Carcinogenesis 2000, 21(3):469-476. 

17. Booth C, Potten CS: Gut instincts: thoughts on intestinal epithelial 
stem cells. J Clin Invest 2000, 105(11):1493-1499. 

- 123 -  



18. Schmidt GH, Winton DJ, Ponder BA: Development of the pattern of cell 
renewal in the crypt-villus unit of chimaeric mouse small intestine. 
Development 1988, 103(4):785-790. 

19. Potten CS: Stem cells in gastrointestinal epithelium: numbers, 
characteristics and death. Philos Trans R Soc Lond B Biol Sci 1998, 
353(1370):821-830. 

20. Marshman E, Booth C, Potten CS: The intestinal epithelial stem cell. 
Bioessays 2002, 24(1):91-98. 

21. Arber N, Neugut AI, Weinstein IB, Holt P: Molecular genetics of small 
bowel cancer. Cancer Epidemiol Biomarkers Prev 1997, 6(9):745-748. 

22. Sellner F: Investigations on the significance of the adenoma-
carcinoma sequence in the small bowel. Cancer 1990, 66(4):702-715. 

23. Delaunoit T, Neczyporenko F, Limburg PJ, Erlichman C: Pathogenesis 
and risk factors of small bowel adenocarcinoma: a colorectal cancer 
sibling? Am J Gastroenterol 2005, 100(3):703-710. 

24. Aaltonen LA, Peltomaki P, Leach FS, Sistonen P, Pylkkanen L, Mecklin 
JP, Jarvinen H, Powell SM, Jen J, Hamilton SR et al: Clues to the 
pathogenesis of familial colorectal cancer. Science 1993, 
260(5109):812-816. 

25. Lothe RA, Peltomaki P, Meling GI, Aaltonen LA, Nystrom-Lahti M, 
Pylkkanen L, Heimdal K, Andersen TI, Moller P, Rognum TO et al: 
Genomic instability in colorectal cancer: relationship to 
clinicopathological variables and family history. Cancer Res 1993, 
53(24):5849-5852. 

26. Boland CR, Sato J, Saito K, Carethers JM, Marra G, Laghi L, Chauhan 
DP: Genetic instability and chromosomal aberrations in colorectal 
cancer: a review of the current models. Cancer Detect Prev 1998, 
22(5):377-382. 

27. Lindblom A, Tannergard P, Werelius B, Nordenskjold M: Genetic 
mapping of a second locus predisposing to hereditary non-
polyposis colon cancer. Nat Genet 1993, 5(3):279-282. 

28. Peltomaki P, Aaltonen LA, Sistonen P, Pylkkanen L, Mecklin JP, Jarvinen 
H, Green JS, Jass JR, Weber JL, Leach FS et al: Genetic mapping of a 
locus predisposing to human colorectal cancer. Science 1993, 
260(5109):810-812. 

29. Peltomaki P, Lothe RA, Aaltonen LA, Pylkkanen L, Nystrom-Lahti M, 
Seruca R, David L, Holm R, Ryberg D, Haugen A et al: Microsatellite 
instability is associated with tumors that characterize the hereditary 
non-polyposis colorectal carcinoma syndrome. Cancer Res 1993, 
53(24):5853-5855. 

30. Parsons R, Li GM, Longley MJ, Fang WH, Papadopoulos N, Jen J, de la 
Chapelle A, Kinzler KW, Vogelstein B, Modrich P: Hypermutability and 
mismatch repair deficiency in RER+ tumor cells. Cell 1993, 
75(6):1227-1236. 

31. Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, 
Peltomaki P, Sistonen P, Aaltonen LA, Nystrom-Lahti M et al: Mutations 
of a mutS homolog in hereditary nonpolyposis colorectal cancer. 
Cell 1993, 75(6):1215-1225. 

- 124 -  



32. Lengauer C, Kinzler KW, Vogelstein B: Genetic instability in colorectal 
cancers. Nature 1997, 386(6625):623-627. 

33. Kern SE, Fearon ER, Tersmette KW, Enterline JP, Leppert M, Nakamura 
Y, White R, Vogelstein B, Hamilton SR: Clinical and pathological 
associations with allelic loss in colorectal carcinoma [corrected]. 
JAMA 1989, 261(21):3099-3103. 

34. Leung SY, Yuen ST, Chan TL, Chan AS, Ho JW, Kwan K, Fan YW, Hung 
KN, Chung LP, Wyllie AH: Chromosomal instability and p53 
inactivation are required for genesis of glioblastoma but not for 
colorectal cancer in patients with germline mismatch repair gene 
mutation. Oncogene 2000, 19(35):4079-4083. 

35. Banerjea A, Hands RE, Powar MP, Bustin SA, Dorudi S: Microsatellite 
and chromosomal stable colorectal cancers demonstrate poor 
immunogenicity and early disease recurrence. Colorectal Dis 2009, 
11(6):601-608. 

36. Cai G, Xu Y, Lu H, Shi Y, Lian P, Peng J, Du X, Zhou X, Guan Z, Shi D et 
al: Clinicopathologic and molecular features of sporadic 
microsatellite- and chromosomal-stable colorectal cancers. Int J 
Colorectal Dis 2008, 23(4):365-373. 

37. Silver A, Sengupta N, Propper D, Wilson P, Hagemann T, Patel A, Parker 
A, Ghosh A, Feakins R, Dorudi S et al: A distinct DNA methylation 
profile associated with microsatellite and chromosomal stable 
sporadic colorectal cancers. Int J Cancer 2011. 

38. Wagner A, Barrows A, Wijnen JT, van der Klift H, Franken PF, Verkuijlen 
P, Nakagawa H, Geugien M, Jaghmohan-Changur S, Breukel C et al: 
Molecular analysis of hereditary nonpolyposis colorectal cancer in 
the United States: high mutation detection rate among clinically 
selected families and characterization of an American founder 
genomic deletion of the MSH2 gene. Am J Hum Genet 2003, 
72(5):1088-1100. 

39. Lynch HT, de la Chapelle A: Hereditary colorectal cancer. N Engl J Med 
2003, 348(10):919-932. 

40. Haggitt RC, Reid BJ: Hereditary gastrointestinal polyposis 
syndromes. Am J Surg Pathol 1986, 10(12):871-887. 

41. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, 
Joslyn G, Stevens J, Spirio L, Robertson M et al: Identification and 
characterization of the familial adenomatous polyposis coli gene. 
Cell 1991, 66(3):589-600. 

42. Solomon E, Voss R, Hall V, Bodmer WF, Jass JR, Jeffreys AJ, Lucibello 
FC, Patel I, Rider SH: Chromosome 5 allele loss in human colorectal 
carcinomas. Nature 1987, 328(6131):616-619. 

43. Jass JR, Do KA, Simms LA, Iino H, Wynter C, Pillay SP, Searle J, 
Radford-Smith G, Young J, Leggett B: Morphology of sporadic 
colorectal cancer with DNA replication errors. Gut 1998, 42(5):673-
679. 

44. Alexander J, Watanabe T, Wu TT, Rashid A, Li S, Hamilton SR: 
Histopathological identification of colon cancer with microsatellite 
instability. Am J Pathol 2001, 158(2):527-535. 

- 125 -  



45. Thibodeau SN, Bren G, Schaid D: Microsatellite instability in cancer of 
the proximal colon. Science 1993, 260(5109):816-819. 

46. Miyaki M, Konishi M, Tanaka K, Kikuchi-Yanoshita R, Muraoka M, Yasuno 
M, Igari T, Koike M, Chiba M, Mori T: Germline mutation of MSH6 as 
the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 
1997, 17(3):271-272. 

47. Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, Perucho M: 
Somatic frameshift mutations in the BAX gene in colon cancers of 
the microsatellite mutator phenotype. Science 1997, 275(5302):967-
969. 

48. Huang J, Papadopoulos N, McKinley AJ, Farrington SM, Curtis LJ, Wyllie 
AH, Zheng S, Willson JK, Markowitz SD, Morin P et al: APC mutations in 
colorectal tumors with mismatch repair deficiency. Proc Natl Acad Sci 
U S A 1996, 93(17):9049-9054. 

49. Jemal A, Thomas A, Murray T, Thun M: Cancer statistics, 2002. CA 
Cancer J Clin 2002, 52(1):23-47. 

50. Fearon ER, Vogelstein B: A genetic model for colorectal 
tumorigenesis. Cell 1990, 61(5):759-767. 

51. Smith G, Carey FA, Beattie J, Wilkie MJ, Lightfoot TJ, Coxhead J, Garner 
RC, Steele RJ, Wolf CR: Mutations in APC, Kirsten-ras, and p53--
alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci 
U S A 2002, 99(14):9433-9438. 

52. Georgiades IB, Curtis LJ, Morris RM, Bird CC, Wyllie AH: Heterogeneity 
studies identify a subset of sporadic colorectal cancers without 
evidence for chromosomal or microsatellite instability. Oncogene 
1999, 18(56):7933-7940. 

53. Hawkins NJ, Tomlinson I, Meagher A, Ward RL: Microsatellite-stable 
diploid carcinoma: a biologically distinct and aggressive subset of 
sporadic colorectal cancer. Br J Cancer 2001, 84(2):232-236. 

54. Yao J, Eu KW, Seow-Choen F, Vijayan V, Cheah PY: Microsatellite 
instability and aneuploidy rate in young colorectal-cancer patients 
do not differ significantly from those in older patients. Int J Cancer 
1999, 80(5):667-670. 

55. Chan TL, Curtis LC, Leung SY, Farrington SM, Ho JW, Chan AS, Lam 
PW, Tse CW, Dunlop MG, Wyllie AH et al: Early-onset colorectal 
cancer with stable microsatellite DNA and near-diploid 
chromosomes. Oncogene 2001, 20(35):4871-4876. 

56. Bubb VJ, Curtis LJ, Cunningham C, Dunlop MG, Carothers AD, Morris 
RG, White S, Bird CC, Wyllie AH: Microsatellite instability and the role 
of hMSH2 in sporadic colorectalcancer. Oncogene 1996, 12(12):2641-
2649. 

57. Ho JW, Yuen ST, Chung LP, Kwan KY, Chan TL, Leung SY, Chan AS, 
Tse C, Lam PW, Luk IS: Distinct clinical features associated with 
microsatellite instability in colorectal cancers of young patients. Int J 
Cancer 2000, 89(4):356-360. 

58. Gryfe R, Kim H, Hsieh ET, Aronson MD, Holowaty EJ, Bull SB, Redston 
M, Gallinger S: Tumor microsatellite instability and clinical outcome 
in young patients with colorectal cancer. N Engl J Med 2000, 
342(2):69-77. 

- 126 -  



59. Tang R, Changchien CR, Wu MC, Fan CW, Liu KW, Chen JS, Chien HT, 
Hsieh LL: Colorectal cancer without high microsatellite instability and 
chromosomal instability--an alternative genetic pathway to human 
colorectal cancer. Carcinogenesis 2004, 25(5):841-846. 

60. Gregorieff A, Clevers H: Wnt signaling in the intestinal epithelium: 
from endoderm to cancer. Genes Dev 2005, 19(8):877-890. 

61. Olivier S, Mir AM, Michalski JC, Lefebvre T: [Signaling and metabolic 
predispositions linked to the colorectal cancer.]. Med Sci (Paris) 
2011, 27(5):514-520. 

62. Rao TP, Kuhl M: An updated overview on Wnt signaling pathways: a 
prelude for more. Circ Res 2010, 106(12):1798-1806. 

63. Habas R, Dawid IB: Dishevelled and Wnt signaling: is the nucleus the 
final frontier? J Biol 2005, 4(1):2. 

64. Fuerer C, Nusse R, Ten Berge D: Wnt signalling in development and 
disease. Max Delbruck Center for Molecular Medicine meeting on 
Wnt signaling in Development and Disease. EMBO Rep 2008, 
9(2):134-138. 

65. Nishida N, Fukuda Y, Komeda T, Kita R, Sando T, Furukawa M, 
Amenomori M, Shibagaki I, Nakao K, Ikenaga M et al: Amplification and 
overexpression of the cyclin D1 gene in aggressive human 
hepatocellular carcinoma. Cancer Res 1994, 54(12):3107-3110. 

66. Mikels AJ, Nusse R: Wnts as ligands: processing, secretion and 
reception. Oncogene 2006, 25(57):7461-7468. 

67. Mikels AJ, Nusse R: Purified Wnt5a protein activates or inhibits beta-
catenin-TCF signaling depending on receptor context. PLoS Biol 
2006, 4(4):e115. 

68. Wodarz A, Nusse R: Mechanisms of Wnt signaling in development. 
Annu Rev Cell Dev Biol 1998, 14:59-88. 

69. Tanaka S, Akiyoshi T, Mori M, Wands JR, Sugimachi K: A novel frizzled 
gene identified in human esophageal carcinoma mediates APC/beta-
catenin signals. Proc Natl Acad Sci U S A 1998, 95(17):10164-10169. 

70. Moriguchi T, Kawachi K, Kamakura S, Masuyama N, Yamanaka H, 
Matsumoto K, Kikuchi A, Nishida E: Distinct domains of mouse 
dishevelled are responsible for the c-Jun N-terminal kinase/stress-
activated protein kinase activation and the axis formation in 
vertebrates. J Biol Chem 1999, 274(43):30957-30962. 

71. Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A: Axin, a 
negative regulator of the Wnt signaling pathway, forms a complex 
with GSK-3beta and beta-catenin and promotes GSK-3beta-
dependent phosphorylation of beta-catenin. EMBO J 1998, 
17(5):1371-1384. 

72. Yamamoto H, Kishida S, Kishida M, Ikeda S, Takada S, Kikuchi A: 
Phosphorylation of axin, a Wnt signal negative regulator, by 
glycogen synthase kinase-3beta regulates its stability. J Biol Chem 
1999, 274(16):10681-10684. 

73. Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P: Binding of 
GSK3beta to the APC-beta-catenin complex and regulation of 
complex assembly. Science 1996, 272(5264):1023-1026. 

- 127 -  



74. Munemitsu S, Albert I, Rubinfeld B, Polakis P: Deletion of an amino-
terminal sequence beta-catenin in vivo and promotes 
hyperphosporylation of the adenomatous polyposis coli tumor 
suppressor protein. Mol Cell Biol 1996, 16(8):4088-4094. 

75. Kim YD, Park CH, Kim HS, Choi SK, Rew JS, Kim DY, Koh YS, Jeung 
KW, Lee KH, Lee JS et al: Genetic alterations of Wnt signaling 
pathway-associated genes in hepatocellular carcinoma. J 
Gastroenterol Hepatol 2008, 23(1):110-118. 

76. Munemitsu S, Albert I, Souza B, Rubinfeld B, Polakis P: Regulation of 
intracellular beta-catenin levels by the adenomatous polyposis coli 
(APC) tumor-suppressor protein. Proc Natl Acad Sci U S A 1995, 
92(7):3046-3050. 

77. Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, Kuhl 
M, Wedlich D, Birchmeier W: Functional interaction of an axin 
homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 
1998, 280(5363):596-599. 

78. Walon C, Kartheuser A, Michils G, Smaers M, Lannoy N, Ngounou P, 
Mertens G, Verellen-Dumoulin C: Novel germline mutations in the APC 
gene and their phenotypic spectrum in familial adenomatous 
polyposis kindreds. Hum Genet 1997, 100(5-6):601-605. 

79. Wu JS, Paul P, McGannon EA, Church JM: APC genotype, polyp 
number, and surgical options in familial adenomatous polyposis. 
Ann Surg 1998, 227(1):57-62. 

80. Aoki K, Taketo MM: Adenomatous polyposis coli (APC): a multi-
functional tumor suppressor gene. J Cell Sci 2007, 120(Pt 19):3327-
3335. 

81. Wang D, Wang Y, Kong T, Fan F, Jiang Y: Hypoxia-induced beta-
catenin downregulation involves p53-dependent activation of Siah-1. 
Cancer Sci 2011. 

82. Arai M, Shimizu S, Imai Y, Nakatsuru Y, Oda H, Oohara T, Ishikawa T: 
Mutations of the Ki-ras, p53 and APC genes in adenocarcinomas of 
the human small intestine. Int J Cancer 1997, 70(4):390-395. 

83. Blaker H, von Herbay A, Penzel R, Gross S, Otto HF: Genetics of 
adenocarcinomas of the small intestine: frequent deletions at 
chromosome 18q and mutations of the SMAD4 gene. Oncogene 2002, 
21(1):158-164. 

84. Peifer M, Wieschaus E: The segment polarity gene armadillo encodes 
a functionally modular protein that is the Drosophila homolog of 
human plakoglobin. Cell 1990, 63(6):1167-1176. 

85. McCrea PD, Turck CW, Gumbiner B: A homolog of the armadillo 
protein in Drosophila (plakoglobin) associated with E-cadherin. 
Science 1991, 254(5036):1359-1361. 

86. Butz S, Stappert J, Weissig H, Kemler R: Plakoglobin and beta-catenin: 
distinct but closely related. Science 1992, 257(5073):1142-1144. 

87. Orsulic S, Peifer M: An in vivo structure-function study of armadillo, 
the beta-catenin homologue, reveals both separate and overlapping 
regions of the protein required for cell adhesion and for wingless 
signaling. J Cell Biol 1996, 134(5):1283-1300. 

- 128 -  



88. Huber AH, Weis WI: The structure of the beta-catenin/E-cadherin 
complex and the molecular basis of diverse ligand recognition by 
beta-catenin. Cell 2001, 105(3):391-402. 

89. Pokutta S, Weis WI: Structure of the dimerization and beta-catenin-
binding region of alpha-catenin. Mol Cell 2000, 5(3):533-543. 

90. Chitaev NA, Averbakh AZ, Troyanovsky RB, Troyanovsky SM: Molecular 
organization of the desmoglein-plakoglobin complex. J Cell Sci 1998, 
111 ( Pt 14):1941-1949. 

91. Aberle H, Schwartz H, Hoschuetzky H, Kemler R: Single amino acid 
substitutions in proteins of the armadillo gene family abolish their 
binding to alpha-catenin. J Biol Chem 1996, 271(3):1520-1526. 

92. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R: beta-catenin is a 
target for the ubiquitin-proteasome pathway. EMBO J 1997, 
16(13):3797-3804. 

93. Clevers H, van de Wetering M: TCF/LEF factor earn their wings. Trends 
Genet 1997, 13(12):485-489. 

94. Vleminckx K, Kemler R, Hecht A: The C-terminal transactivation 
domain of beta-catenin is necessary and sufficient for signaling by 
the LEF-1/beta-catenin complex in Xenopus laevis. Mech Dev 1999, 
81(1-2):65-74. 

95. Barth AI, Nathke IS, Nelson WJ: Cadherins, catenins and APC protein: 
interplay between cytoskeletal complexes and signaling pathways. 
Curr Opin Cell Biol 1997, 9(5):683-690. 

96. Huber O, Bierkamp C, Kemler R: Cadherins and catenins in 
development. Curr Opin Cell Biol 1996, 8(5):685-691. 

97. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, 
Vogelstein B, Clevers H: Constitutive transcriptional activation by a 
beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 1997, 
275(5307):1784-1787. 

98. Kolligs FT, Hu G, Dang CV, Fearon ER: Neoplastic transformation of 
RK3E by mutant beta-catenin requires deregulation of Tcf/Lef 
transcription but not activation of c-myc expression. Mol Cell Biol 
1999, 19(8):5696-5706. 

99. Orford K, Orford CC, Byers SW: Exogenous expression of beta-catenin 
regulates contact inhibition, anchorage-independent growth, anoikis, 
and radiation-induced cell cycle arrest. J Cell Biol 1999, 146(4):855-
868. 

100. Gat U, DasGupta R, Degenstein L, Fuchs E: De Novo hair follicle 
morphogenesis and hair tumors in mice expressing a truncated 
beta-catenin in skin. Cell 1998, 95(5):605-614. 

101. Romagnolo B, Berrebi D, Saadi-Keddoucci S, Porteu A, Pichard AL, 
Peuchmaur M, Vandewalle A, Kahn A, Perret C: Intestinal dysplasia and 
adenoma in transgenic mice after overexpression of an activated 
beta-catenin. Cancer Res 1999, 59(16):3875-3879. 

102. Chan EF, Gat U, McNiff JM, Fuchs E: A common human skin tumour is 
caused by activating mutations in beta-catenin. Nat Genet 1999, 
21(4):410-413. 

103. Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawasoe T, 
Ishiguro H, Fujita M, Tokino T et al: AXIN1 mutations in hepatocellular 

- 129 -  



carcinomas, and growth suppression in cancer cells by virus-
mediated transfer of AXIN1. Nat Genet 2000, 24(3):245-250. 

104. Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK, Halling 
KC, Cunningham JM, Boardman LA, Qian C et al: Mutations in AXIN2 
cause colorectal cancer with defective mismatch repair by activating 
beta-catenin/TCF signalling. Nat Genet 2000, 26(2):146-147. 

105. Sparks AB, Morin PJ, Vogelstein B, Kinzler KW: Mutational analysis of 
the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res 
1998, 58(6):1130-1134. 

106. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, 
Kinzler KW: Activation of beta-catenin-Tcf signaling in colon cancer 
by mutations in beta-catenin or APC. Science 1997, 275(5307):1787-
1790. 

107. Kitaeva MN, Grogan L, Williams JP, Dimond E, Nakahara K, Hausner P, 
DeNobile JW, Soballe PW, Kirsch IR: Mutations in beta-catenin are 
uncommon in colorectal cancer occurring in occasional replication 
error-positive tumors. Cancer Res 1997, 57(20):4478-4481. 

108. Iwao K, Nakamori S, Kameyama M, Imaoka S, Kinoshita M, Fukui T, 
Ishiguro S, Nakamura Y, Miyoshi Y: Activation of the beta-catenin gene 
by interstitial deletions involving exon 3 in primary colorectal 
carcinomas without adenomatous polyposis coli mutations. Cancer 
Res 1998, 58(5):1021-1026. 

109. Mirabelli-Primdahl L, Gryfe R, Kim H, Millar A, Luceri C, Dale D, Holowaty 
E, Bapat B, Gallinger S, Redston M: Beta-catenin mutations are 
specific for colorectal carcinomas with microsatellite instability but 
occur in endometrial carcinomas irrespective of mutator pathway. 
Cancer Res 1999, 59(14):3346-3351. 

110. Miyaki M, Iijima T, Kimura J, Yasuno M, Mori T, Hayashi Y, Koike M, 
Shitara N, Iwama T, Kuroki T: Frequent mutation of beta-catenin and 
APC genes in primary colorectal tumors from patients with 
hereditary nonpolyposis colorectal cancer. Cancer Res 1999, 
59(18):4506-4509. 

111. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, 
Birchmeier W: Functional interaction of beta-catenin with the 
transcription factor LEF-1. Nature 1996, 382(6592):638-642. 

112. Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, 
Godsave S, Korinek V, Roose J, Destree O, Clevers H: XTcf-3 
transcription factor mediates beta-catenin-induced axis formation in 
Xenopus embryos. Cell 1996, 86(3):391-399. 

113. Morin PJ: beta-catenin signaling and cancer. Bioessays 1999, 
21(12):1021-1030. 

114. Duval A, Iacopetta B, Ranzani GN, Lothe RA, Thomas G, Hamelin R: 
Variable mutation frequencies in coding repeats of TCF-4 and other 
target genes in colon, gastric and endometrial carcinoma showing 
microsatellite instability. Oncogene 1999, 18(48):6806-6809. 

115. Duval A, Gayet J, Zhou XP, Iacopetta B, Thomas G, Hamelin R: Frequent 
frameshift mutations of the TCF-4 gene in colorectal cancers with 
microsatellite instability. Cancer Res 1999, 59(17):4213-4215. 

- 130 -  



116. Duval A, Rolland S, Tubacher E, Bui H, Thomas G, Hamelin R: The 
human T-cell transcription factor-4 gene: structure, extensive 
characterization of alternative splicings, and mutational analysis in 
colorectal cancer cell lines. Cancer Res 2000, 60(14):3872-3879. 

117. Hovanes K, Li TW, Munguia JE, Truong T, Milovanovic T, Lawrence 
Marsh J, Holcombe RF, Waterman ML: Beta-catenin-sensitive isoforms 
of lymphoid enhancer factor-1 are selectively expressed in colon 
cancer. Nat Genet 2001, 28(1):53-57. 

118. Smith DR, Myint T, Goh HS: Over-expression of the c-myc proto-
oncogene in colorectal carcinoma. Br J Cancer 1993, 68(2):407-413. 

119. Sherr CJ: Cancer cell cycles. Science 1996, 274(5293):1672-1677. 
120. Tetsu O, McCormick F: Beta-catenin regulates expression of cyclin D1 

in colon carcinoma cells. Nature 1999, 398(6726):422-426. 
121. Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, 

Polakis P, Matrisian LM: The metalloproteinase matrilysin is a target of 
beta-catenin transactivation in intestinal tumors. Oncogene 1999, 
18(18):2883-2891. 

122. Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T: beta-catenin regulates 
the expression of the matrix metalloproteinase-7 in human colorectal 
cancer. Am J Pathol 1999, 155(4):1033-1038. 

123. Wilson CL, Heppner KJ, Labosky PA, Hogan BL, Matrisian LM: Intestinal 
tumorigenesis is suppressed in mice lacking the metalloproteinase 
matrilysin. Proc Natl Acad Sci U S A 1997, 94(4):1402-1407. 

124. Xu L, Corcoran RB, Welsh JW, Pennica D, Levine AJ: WISP-1 is a Wnt-
1- and beta-catenin-responsive oncogene. Genes Dev 2000, 
14(5):585-595. 

125. Rubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, 
Munemitsu S, Polakis P: Association of the APC gene product with 
beta-catenin. Science 1993, 262(5140):1731-1734. 

126. de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, 
Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A et al: Somatic 
mutations of the beta-catenin gene are frequent in mouse and 
human hepatocellular carcinomas. Proc Natl Acad Sci U S A 1998, 
95(15):8847-8851. 

127. Miyoshi Y, Iwao K, Nawa G, Yoshikawa H, Ochi T, Nakamura Y: 
Frequent mutations in the beta-catenin gene in desmoid tumors from 
patients without familial adenomatous polyposis. Oncol Res 1998, 
10(11-12):591-594. 

128. Miyoshi Y, Iwao K, Nagasawa Y, Aihara T, Sasaki Y, Imaoka S, Murata M, 
Shimano T, Nakamura Y: Activation of the beta-catenin gene in 
primary hepatocellular carcinomas by somatic alterations involving 
exon 3. Cancer Res 1998, 58(12):2524-2527. 

129. Choi YW, Heath EI, Heitmiller R, Forastiere AA, Wu TT: Mutations in 
beta-catenin and APC genes are uncommon in esophageal and 
esophagogastric junction adenocarcinomas. Mod Pathol 2000, 
13(10):1055-1059. 

130. Wijnhoven BP, Nollet F, De Both NJ, Tilanus HW, Dinjens WN: Genetic 
alterations involving exon 3 of the beta-catenin gene do not play a 

- 131 -  



role in adenocarcinomas of the esophagus. Int J Cancer 2000, 
86(4):533-537. 

131. Park WS, Oh RR, Park JY, Lee SH, Shin MS, Kim YS, Kim SY, Lee HK, 
Kim PJ, Oh ST et al: Frequent somatic mutations of the beta-catenin 
gene in intestinal-type gastric cancer. Cancer Res 1999, 59(17):4257-
4260. 

132. Sekine S, Shibata T, Yamauchi Y, Nakanishi Y, Shimoda T, Sakamoto M, 
Hirohashi S: Beta-catenin mutations in sporadic fundic gland polyps. 
Virchows Arch 2002, 440(4):381-386. 

133. Wheeler JM, Warren BF, Mortensen NJ, Kim HC, Biddolph SC, Elia G, 
Beck NE, Williams GT, Shepherd NA, Bateman AC et al: An insight into 
the genetic pathway of adenocarcinoma of the small intestine. Gut 
2002, 50(2):218-223. 

134. Blaker H, Helmchen B, Bonisch A, Aulmann S, Penzel R, Otto HF, Rieker 
RJ: Mutational activation of the RAS-RAF-MAPK and the Wnt 
pathway in small intestinal adenocarcinomas. Scand J Gastroenterol 
2004, 39(8):748-753. 

135. Blaker H, Sutter C, Kadmon M, Otto HF, Von Knebel-Doeberitz M, Gebert 
J, Helmke BM: Analysis of somatic APC mutations in rare 
extracolonic tumors of patients with familial adenomatous polyposis 
coli. Genes Chromosomes Cancer 2004, 41(2):93-98. 

136. Planck M, Ericson K, Piotrowska Z, Halvarsson B, Rambech E, Nilbert M: 
Microsatellite instability and expression of MLH1 and MSH2 in 
carcinomas of the small intestine. Cancer 2003, 97(6):1551-1557. 

137. Horton RM, Cai ZL, Ho SN, Pease LR: Gene splicing by overlap 
extension: tailor-made genes using the polymerase chain reaction. 
Biotechniques 1990, 8(5):528-535. 

138. Ehemann V, Hashemi B, Lange A, Otto HF: Flow cytometric DNA 
analysis and chromosomal aberrations in malignant glioblastomas. 
Cancer Lett 1999, 138(1-2):101-106. 

139. Ehemann V, Sykora J, Vera-Delgado J, Lange A, Otto HF: Flow 
cytometric detection of spontaneous apoptosis in human breast 
cancer using the TUNEL-technique. Cancer Lett 2003, 194(1):125-131. 

140. Murata M, Iwao K, Miyoshi Y, Nagasawa Y, Ohta T, Shibata K, Oda K, 
Wada H, Tominaga S, Matsuda Y et al: Molecular and biological 
analysis of carcinoma of the small intestine: beta-catenin gene 
mutation by interstitial deletion involving exon 3 and replication 
error phenotype. Am J Gastroenterol 2000, 95(6):1576-1580. 

141. Murata M, Iwao K, Miyoshi Y, Nagasawa Y, Yabu M, Himeno S, Imanishi 
K, Ohsawa M, Wada H, Tominaga S et al: Activation of the beta-catenin 
gene by interstitial deletions involving exon 3 as an early event in 
colorectal tumorigenesis. Cancer Lett 2000, 159(1):73-78. 

142. Yang J, Zhang W, Evans PM, Chen X, He X, Liu C: Adenomatous 
polyposis coli (APC) differentially regulates beta-catenin 
phosphorylation and ubiquitination in colon cancer cells. J Biol Chem 
2006, 281(26):17751-17757. 

143. Polakis P, Hart M, Rubinfeld B: Defects in the regulation of beta-
catenin in colorectal cancer. Adv Exp Med Biol 1999, 470:23-32. 

- 132 -  



144. Samowitz WS, Powers MD, Spirio LN, Nollet F, van Roy F, Slattery ML: 
Beta-catenin mutations are more frequent in small colorectal 
adenomas than in larger adenomas and invasive carcinomas. Cancer 
Res 1999, 59(7):1442-1444. 

145. Provost E, Yamamoto Y, Lizardi I, Stern J, D'Aquila TG, Gaynor RB, 
Rimm DL: Functional correlates of mutations in beta-catenin exon 3 
phosphorylation sites. J Biol Chem 2003, 278(34):31781-31789. 

146. Barth AI, Pollack AL, Altschuler Y, Mostov KE, Nelson WJ: NH2-terminal 
deletion of beta-catenin results in stable colocalization of mutant 
beta-catenin with adenomatous polyposis coli protein and altered 
MDCK cell adhesion. J Cell Biol 1997, 136(3):693-706. 

147. Reya T, Clevers H: Wnt signalling in stem cells and cancer. Nature 
2005, 434(7035):843-850. 

148. Smit VT, Boot AJ, Smits AM, Fleuren GJ, Cornelisse CJ, Bos JL: KRAS 
codon 12 mutations occur very frequently in pancreatic 
adenocarcinomas. Nucleic Acids Res 1988, 16(16):7773-7782. 

149. Karim R, Tse G, Putti T, Scolyer R, Lee S: The significance of the Wnt 
pathway in the pathology of human cancers. Pathology 2004, 
36(2):120-128. 

150. Ionov Y, Yamamoto H, Krajewski S, Reed JC, Perucho M: Mutational 
inactivation of the proapoptotic gene BAX confers selective 
advantage during tumor clonal evolution. Proc Natl Acad Sci U S A 
2000, 97(20):10872-10877. 

151. Shibata D, Peinado MA, Ionov Y, Malkhosyan S, Perucho M: Genomic 
instability in repeated sequences is an early somatic event in 
colorectal tumorigenesis that persists after transformation. Nat 
Genet 1994, 6(3):273-281. 

152. Perucho M, Peinado MA, Ionov Y, Casares S, Malkhosyan S, Stanbridge 
E: Defects in replication fidelity of simple repeated sequences reveal 
a new mutator mechanism for oncogenesis. Cold Spring Harb Symp 
Quant Biol 1994, 59:339-348. 

153. Xu W, Kimelman D: Mechanistic insights from structural studies of 
beta-catenin and its binding partners. J Cell Sci 2007, 120(Pt 19):3337-
3344. 

154. Giannini A, Mazor M, Orme M, Vivanco M, Waxman J, Kypta R: Nuclear 
export of alpha-catenin: overlap between nuclear export signal 
sequences and the beta-catenin binding site. Exp Cell Res 2004, 
295(1):150-160. 

155. Giannini AL, Vivanco MM, Kypta RM: Analysis of beta-catenin 
aggregation and localization using GFP fusion proteins: nuclear 
import of alpha-catenin by the beta-catenin/Tcf complex. Exp Cell 
Res 2000, 255(2):207-220. 

156. Nosho K, Yamamoto H, Mikami M, Takahashi T, Adachi Y, Endo T, Hirata 
K, Imai K, Shinomura Y: Laterally spreading tumour in which 
interstitial deletion of beta-catenin exon 3 was detected. Gut 2005, 
54(10):1504-1505. 

157. Nhieu JT, Renard CA, Wei Y, Cherqui D, Zafrani ES, Buendia MA: 
Nuclear accumulation of mutated beta-catenin in hepatocellular 

- 133 -  



carcinoma is associated with increased cell proliferation. Am J Pathol 
1999, 155(3):703-710. 

158. Ilyas M, Tomlinson IP, Rowan A, Pignatelli M, Bodmer WF: Beta-catenin 
mutations in cell lines established from human colorectal cancers. 
Proc Natl Acad Sci U S A 1997, 94(19):10330-10334. 

159. Abraham SC, Nobukawa B, Giardiello FM, Hamilton SR, Wu TT: Fundic 
gland polyps in familial adenomatous polyposis: neoplasms with 
frequent somatic adenomatous polyposis coli gene alterations. Am J 
Pathol 2000, 157(3):747-754. 

160. Abraham SC, Montgomery EA, Giardiello FM, Wu TT: Frequent beta-
catenin mutations in juvenile nasopharyngeal angiofibromas. Am J 
Pathol 2001, 158(3):1073-1078. 

161. Abraham SC, Nobukawa B, Giardiello FM, Hamilton SR, Wu TT: 
Sporadic fundic gland polyps: common gastric polyps arising 
through activating mutations in the beta-catenin gene. Am J Pathol 
2001, 158(3):1005-1010. 

162. Tejpar S, Nollet F, Li C, Wunder JS, Michils G, dal Cin P, Van Cutsem E, 
Bapat B, van Roy F, Cassiman JJ et al: Predominance of beta-catenin 
mutations and beta-catenin dysregulation in sporadic aggressive 
fibromatosis (desmoid tumor). Oncogene 1999, 18(47):6615-6620. 

163. Tang R, Wang JY, Fan CW, Tsao KC, Chen HH, Wu CM, Chen JS, 
Changchien CR, Hsieh LL: p53 is an independent pre-treatment 
markers for long-term survival in stage II and III colorectal cancers: 
an analysis of interaction between genetic markers and fluorouracil-
based adjuvant therapy. Cancer Lett 2004, 210(1):101-109. 

164. Heckman KL, Pease LR: Gene splicing and mutagenesis by PCR-
driven overlap extension. Nat Protoc 2007, 2(4):924-932. 

165. Young CS, Kitamura M, Hardy S, Kitajewski J: Wnt-1 induces growth, 
cytosolic beta-catenin, and Tcf/Lef transcriptional activation in Rat-1 
fibroblasts. Mol Cell Biol 1998, 18(5):2474-2485. 

166. Porfiri E, Rubinfeld B, Albert I, Hovanes K, Waterman M, Polakis P: 
Induction of a beta-catenin-LEF-1 complex by wnt-1 and 
transforming mutants of beta-catenin. Oncogene 1997, 15(23):2833-
2839. 

167. Birchmeier C, Birchmeier W, Brand-Saberi B: Epithelial-mesenchymal 
transitions in cancer progression. Acta Anat (Basel) 1996, 156(3):217-
226. 

168. Bjerknes M, Cheng H: Clonal analysis of mouse intestinal epithelial 
progenitors. Gastroenterology 1999, 116(1):7-14. 

169. Chandler JM, Lagasse E: Cancerous stem cells: deviant stem cells 
with cancer-causing misbehavior. Stem Cell Res Ther 2010, 1(2):13. 

170. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, 
Haegebarth A, Korving J, Begthel H, Peters PJ et al: Identification of 
stem cells in small intestine and colon by marker gene Lgr5. Nature 
2007, 449(7165):1003-1007. 

171. Barth AI, Stewart DB, Nelson WJ: T cell factor-activated transcription 
is not sufficient to induce anchorage-independent growth of 
epithelial cells expressing mutant beta-catenin. Proc Natl Acad Sci U 
S A 1999, 96(9):4947-4952. 

- 134 -  



172. Eleftheriou A, Yoshida M, Henderson BR: Nuclear export of human 
beta-catenin can occur independent of CRM1 and the adenomatous 
polyposis coli tumor suppressor. J Biol Chem 2001, 276(28):25883-
25888. 

173. Lin HM, Pestell RG, Raz A, Kim HR: Galectin-3 enhances cyclin D(1) 
promoter activity through SP1 and a cAMP-responsive element in 
human breast epithelial cells. Oncogene 2002, 21(52):8001-8010. 

 
 

 

 
 
 

 

 
 

 

 
 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

- 135 -  



 

ACKNOWLEDGMENTS 

 
I would like to express my gratitude to my supervisor, PD Dr. med. Hendrik 

Bläker, Institute of Pathology, University Medical Centre, Heidelberg, for giving 

me the opportunity to accomplish this dissertation work in his laboratory and for 

his supervision and guidance throughout the study. I appreciate his vast 

knowledge, expertise, understanding, patience and his assistance in writing this 

thesis which has added considerably to my graduate experience. I would like to 

thank the other members of my committee, Prof Herbert Steinbeisser, and Prof 

Peter altevogt for the assistance they provided at all levels of the research 

project. Finally, I would like to thank Prof. Dr. Thomas Holstein, Institute of 

Zoology, University of Heidelberg for taking time out from his busy schedule to 

serve as my first doctor father. I have deep appreciation for his valuable 

constructive and encouraging suggestions during the course of work.  

My special thanks also go to other collaborators and colleagues in the 

neighboring labs. I especially acknowledge Dr. rer. nat. Kai Breuhahn, for 

allowing me to use instruments in his laboratory and Dr. med. Wilfried Roth, for 

helpful discussion and providing every support to conduct and troubleshoot 

various experiments.  

I wish to thank all fellow PhD students and technicians in AG Breuhan and AG 

Roth, past and present, for their help and support during my study. I especially 

acknowledge Michaela, Eva and Martina for their useful suggestion and their 

help in solving all instrumental and analytical problems. I also wish to thank all 

those colleagues and friends who were involved and collaborated in so many 

ways to conduct these studies. 

Finally, my deepest gratitude goes to my husband Hridayesh Prakash and my 

little kids, Dhruv and Vanshita. Without their inspiration, constant encouragement 

and prayers the completion of this dissertation would never ever have been 

possible. My cordial thanks also go to my entire family for their love affections, 

moral support and understanding during the different phases of study. 

 

- 136 -  



 

DECLARATION 

 
I hereby declare that this submission is my own work and that, to the best of my 

knowledge and belief, it contains no material previously published or written by 

another person nor material which to a substantial extent has been accepted for 

the award of any other degree or diploma of the university or other institute of 

higher learning, except where due acknowledgment has been made in the text. 

 
 
 
Heidelberg, 12 July, 2011 
  
  
Sandhya Singh 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 137 -  



SANDHYA SINGH 
 

Institute Of Pathology, University Klinikum, Im NeuenheimerFeld 220/221 D 69120, 
Heidelberg / Germany, sandhya_singh1@yahoo.com 

 

PERSONAL DETAILS  
 

Nationality: Indian 
Citizenship: Indian 

 

EDUCATION  
 
Advance Postgraduate Diploma in Bioinformatics, 2002, University of Pune, 
India with Ist division (65.08%). 

Master of Sciences in Biotechnology, 2001, Indian Institute of Technology, 
Roorkee, India with honours Ist divison (76.2 %) 
 
Bachelor of Sciences in Bioscience, 1999, Jamia Millia Islamia, New Delhi, India 
with Ist division 73.3% (73.3%). 
 
AWARDS 
 
2004                       Qualified CSIR-UGC National Eligibility Award. 
2001                       Qualified ICMR JRF Examination. 
2001                       DBT scholarship Award for bioinformatics course duration. 
 

RESEARCH EXPERIENCE  
 
Present -     Graduate Student Researcher Institute of Pathology, University   

Klinikum, University of Heidelberg, Heidelberg, Germany  

Feb 2005            Project Fellow at Eicosanoid Research Division, Department of 
- Nov 2005          Experimental Gynaecology UKBF, Charite, Berlin, Germany.   
 
Jan 2004             Project Fellow at National Brain Research Centre Gurgaon,     
- Jan 2005           Haryana, India 
 
Aug 2002            Junior Research Fellow at Institute of Genomics and Integrated 
- Oct 2003           Biology, Delhi, India 
 
 
 
 
 

- 138 -  

mailto:sandhya_singh1@yahoo.com


 
 
PUBLICATIONS  
 
 
1). Breuhahn K, Sandhya Singh, Schirmacher P, Bläker H: Large-scale N-terminal 

deletions but not point mutations stabilize β-cateninin small bowel carcinomas, 

suggesting divergent molecular pathways of small and large intestinal 

carcinogenesis. Journal of Pathology, 2008; 215: 300-7.(Shared First Authorship)  

 
2). Michel S, Kloor M, Sandhya Singh, Gdynia G, Roth W, von Knebel Doeberitz M, 

Schirmacher P, Bläker H : Coding microsatellite instability analysis in microsatellite 

unstable small intestinal adenocarcinoma identifies MARCKS as a common target of 

inactivation Molecular Carcinogenesis. 2010 Feb;49(2):175-82.  

 

3). Bergmann F, Sandhya Singh, Michel S, Kahlert C, Schirmacher P, Helmke B, 

Von Knebel Doeberitz M, Kloor M, Bläker H : Small bowel adenocarcinomas in celiac 

disease follow the CIM-MSI pathway. Oncology Reports. 2010 Dec; 24(6):1535-9.  

 

4). Roberto Ciccoli, Shakti Sahi, Sandhya Singh, Hridayesh Prakash, Maria-Patapia 

Zafiriou, Ganchimeg Ishdorj, Johan L.F. Kock, Santosh Nigam: Oxygenation by 

cyclooxygenase-2 (cox-2) of 3 Hydroxyeicostetraenoic acid (3-HETE), a fungal 

mimetic of arachidonic acid, produce a cascade of novel bioactive 3-hydroxy-

eicosanoids. Biochem. J. 390, 737–747, 2005. 

 

 

 

 

 

 

 

 

 

 

 

- 139 -  



 

 
POSTER PRESENTATION          
               
 
1. Poster Presentation in “Wnt symposium 2010” held at DKFZ, Communication 

Center, Im Neuenheimer Feld 280, Heidelberg from October 25 – 26, 2010.  

• Breuhahn, K.,S Singh, S., Schirmacher, P. and Blaeker,H. Large scale N-

terminal deletions but not point mutations stabilize β-catenin in small bowel 

carcinomas, suggesting different mechanism for Wnt signaling activation. 

Abstract: 30  

 

2. Poster Presentation in “9th International Conference on Eicosanoids and Other 

Bioactive Lipids in Cancer, Inflammation and Related Diseases.” held at San 

Francisco, California, USA. 11-14 September, 2005.  

• Nigam, S., Deva, R., Ishdorj, G., Ciccoli, R., Singh, S., Zafiriou, M.P., Lui, S., 

Baran, A., Dewitz, J., Sahi, S., Kothekar, V., Ivanov, I., Groza, N., Venter, P., 

Bareetseng, A., Kock, L., Van der Merwe, R.R., Stapelton, E.H., and 

Agabian, N. 3-hydroxyoxylipins, novel fungal fatty acid metabolites, in the 

analysis of candidiasis: host-pathogen-interactions. Abstract No: L-82.   

• Ciccoli, R., Sahi, S., Singh, S., Deva, R., Zafiriou, M.P., Ishdorj, G., Kock, L., 

and Nigam, S. 3-hydroxyeicosanoids: novel bioactive compounds obtained 

from the interaction of 3-HETE, a fungal mimetic of AA, with COX-2 Abstract 

No: P-149.  

 

 
 
 
 
 
 

 
 
 

- 140 -  


	SANDHYA THESIS TITEL AND INDEX
	Table of contents
	SANDHYA THESIS BODY TEXT
	1.3.1 Non-canonical Wnt pathway.
	SuperScript® III One-Step RT-PCR            Invitrogen (Karlsruhe)
	PERSONAL DETAILS 
	EDUCATION 
	RESEARCH EXPERIENCE 



