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Topic in English � Summary in English

Imaging techniques play an increasingly important role for treatment planning and in-situ
monitoring in ion beam therapy. In this thesis, two novel methods were studied.
For real-time in-vivo range veri�cation, FLUKA Monte Carlo simulations were performed

to address the detection of prompt gammas, emitted during irradiation of homogeneous and
heterogeneous targets, using an ideal detector, highlighting main signal and background
features relevant for clinical application.
For range monitoring prior to or in-between treatment, a dedicated detector prototype

based on a stack of 61 ionization chambers was assembled and its applicability to ion-based
transmission imaging was investigated experimentally. Characterization of the set-up in
terms of beam parameters and settings of the read-out electronics underlined the potential
of heavy ion radiography and tomography as an attractive low dose imaging modality.
Possible sources of image artifacts were analyzed and an original method to improve the
nominal resolution of the used detector set-up was proposed. The resulting images, ex-
pressed directly in water equivalent thickness and path length, of di�erent phantoms of
increasing complexity provided a promising proof of principle of ion-based planar and
volumetric imaging.
Overall, the �ndings of this thesis strongly support the large potential of the investigated

imaging techniques for future clinical use.

Topic in German � Summary in German

Bildgebende Verfahren spielen eine immer gröÿer werdende Rolle für die Behandlungspla-
nung und in-situ Überwachung in der Ionenstrahltherapie. Im Rahmen dieser Dissertation
wurden zwei neue Methoden untersucht.
Im Hinblick auf Echtzeit in-vivo Reichweitenüberprüfung mit Hilfe von prompt gamma

Photonen, die während der Bestrahlung homogener und heterogener Zielobjekte abges-
trahlt werden, wurden FLUKA Monte Carlo Simulationen zur Untersuchung der Mess-
barkeit der Photonen in einem idealen Detektor durchgeführt. Besondere Aufmerksamheit
kam den Hauptmerkmalen des Signals sowie des Hintergrundes zu, die für mögliche klin-
ische Anwendungen von Bedeutung sind.
Zur Reichweitenüberprüfung vor und während der Behandlung wurde ein spezieller

Detektor-Prototyp auf der Grundlage eines Stapels von 61 Ionisationskammern gebaut
und dessen Anwendbarkeit f�r die Transmissionsbildgebung mit Ionenstrahlung experi-
mentell untersucht. Die Charakterisierung des Aufbaus bezüglich Strahlparameter und
Einstellungen der Ausleseelektronik hob das Potential von Schwerionenradiographie und
-tomographie als attraktive bildgebende Techniken bei niedriger Dosisbelastung hervor.
Mögliche Quellen von Bildartefakten wurden analysiert und eine originäre Methode zur
Verbesserung der nominalen Au�ösung des verwendeten Detektoraufbaus vorgeschlagen.
Bilder unterschiedlicher Phantome mit zunehmender Komplexität wurden gewonnen und
direkt in wasser-äquivalenter Dichte bzw. Weglänge ausgedrückt. Sie lieferten einen er-
mutigenden Proof of Principle der planaren und volumetrischen Bildgebung mit Ionen-
strahlen.
Insgesamt untermauern die Befunde dieser Arbeit deutlich das groÿe Potential der un-

tersuchten bildgebenden Techniken für zukünftige klinische Anwendung.
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Chapter 1

INTRODUCTION

Cancer is a heterogeneous class of diseases in which a group of cells, in the malignant case,
grows uncontrolled, intrudes upon and destroys adjacent tissues, and often metastasizes,
wherein the tumor cells spread to other locations in the body via the lymphatic system
or through the bloodstream. Cancer is primarily an environmental disease (e.g. tobacco
use, poor diet and obesity, infection, radiation, lack of physical activity) but it can also
have a hereditary genetics cause. Nowadays, cancer is the second most frequent cause of
death in developed countries after heart diseases. According to estimates by the World
Health Organization (WHO), the number of new cancer patients, worldwide currently at
10 million, will increase by 50% until the year 2020. Cancer will then be the leading cause
of death. Despite extensive research, today only one out of two patients is successfully
cured.
Although surgery remains the most successful cancer cure, approximately 50% of all

patients diagnosed with cancer receive curative or palliative chemotherapy and/or radiation
treatments, the latter being most of the time performed with photon or electron beams
(Durante and Lö�er 2010). All of the radio-therapeutic approaches have in common that
they seek to deliver as e�ectively as possible dose1 to the tumor in the patient, while sparing
the surrounding healthy tissue and the critical structures or organs at risk (OAR) in order
to avoid complications and/or induction of secondary tumors. In fact, the radiation applied
to the patient causes cell-damages by ionization processes, hitting the Deoxyribonucleic
acid (DNA) in the cell nucleus. Single or even more e�ective double strand-breaks, caused
either directly by the radiation or by radiation-induced free radicals, can lead to the death
of the cell.
Technological advancements have brought the di�erent radiotherapy techniques closer

to the ideal goal of conformal dose delivery. It is important to underline, however, that
the physics of the used conventional radiation (e.g., photons and electrons) poses essential
intrinsic limitations to the e�ectiveness of a technique. In this respect, ion beam ther-

1The dose deposited in a medium is de�ned as the mean energy deposited by the ionizing radiation in a
mass element as D = dE/dm and is measured in Gray (Gy).
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Introduction

Figure 1.1.: Comparison of depth-dose pro�les for photons, protons and carbon ions. The
inverse ion depth-dose pro�le, known as Bragg peak, is favorable to treat deep-seated tumors.
Figure adapted from Fokas et al. (2009).

apy has a priori advantages compared to other conventional methods. In particular, ions
exhibit a more selective energy deposition in depth, so called Bragg peak as shown in �g-
ure 1.1. Moreover, heavier ions like carbon beams show an increase of the radiobiological
e�ectiveness (RBE) in depth, reaching the maximum in the distal region of the tumor in
correspondence of the Bragg peak (Kraft 2000).

1.1. Modern high precision external radiotherapy

techniques

An ideal radiotherapy treatment would deliver 100% of the prescribed dose precisely to the
target volume and zero to the surrounding tissues. For this purpose, in the last decades a
lot of e�ort has been put in the development and constant improvement of external beam
radiotherapy using the conventional radiation sources as well as ions.
In the next sections, a brief summary of the most modern techniques for conventional

external beam radiation is given. Section 1.1.2 introduces the development of ion beam
therapy, explaining its advantages as well as technical and economical challenges. More-
over, an overview over the currently existing ion therapy centers in the world is presented
with a special focus on the Heidelberg Ion Therapy center (HIT, c.f section 1.1.2.2).

1.1.1. Conventional external radiotherapy

An example for a conventional external beam radiotherapy that has undergone extensive
development is the Intensity Modulated Radiation Therapy (IMRT, Webb 2003). With
this technique, a high-dose volume is sculpted around the site of disease with millimetric
precision. In modern IMRT, not only the geometrical shape of each irradiation �eld is
spatially modulated via multi-leaf collimators (MLC) throughout the �eld, but even the

2



1.1.2 Introduction to ion beam therapy

radiation �uence is varied for each beam direction. Moreover, multiplying the number of
beam directions (Mackie et al. 1999) from where the irradiation is delivered, it is possible to
better spare the healthy tissues tumor surrounding the tumor. In this way, the dose in the
entrance regions is diluted over larger volumes while the contribution of each irradiation
�eld sums up in the target. Intuitively, one would expect that using more beams will always
help to shape the radiation dose distribution to match the tumor volume. However, a recent
theoretical investigation showed that, in realistic cases, nothing will be gained by using
more than 10-20 beams (Bortfeld 2010).
More recently, another rotational IMRT approach, called �Single-arc�, has been developed

(Wang et al. 2008) and has found a lot of interest as a commercial product (RapidArc,
VMAT). In the Single-arc approach, there is no intensity modulation within individual
beam angles, but the radiation �eld shape is varied dynamically and rapidly by MLCs
as the gantry rotates around the patients. Therefore, in the rotational approaches, the
selection of optimal beam angles is not anymore a problem, but the distribution of dose
over large healthy tissues has been a concern (Bortfeld and Webb 2009).
Another commercial product which has obtained considerable success and is now in-

stalled in more than 150 hospitals is called Cyberknife (Adler Jr. et al. 1997). The two
main technological elements of the Cyberknife system are the linear accelerator (LINAC)
mounted on a robotic arm that allows more degrees of freedom than an isocentric gantry
in choosing the direction of the incoming beam, and a real-time image veri�cation, per-
formed before each beam application, which eliminates the need to use skeletal �xation for
positioning.

1.1.2. Introduction to ion beam therapy

The use of charged hadrons in cancer therapy was already proposed by Wilson (Wilson
1946), who investigated the depth-dose characteristics of protons and already envisioned
the therapeutic applicability of heavier ions like carbon. The �rst patients with a deep
located tumor were treated with protons in 1954 at the Lawrence Berkely Laboratory
(LBL, Tobias 1958).
As already pointed out in Wilson's original proposal, the main argument for particle

therapy is the superior physical selectivity compared to conventional radiations. In fact,
heavy charged particles, like protons or heavier ions (e.g 12C, 16O), show an inverse depth
dose pro�le as depicted in �gure 1.1. The energy deposition, i.e. dose, is relatively low in
the entrance channel (plateau) but increases steeply towards the end of the ion path with a
rapid fall-o�, resulting in a sharp and narrow (few millimetres wide) maximum, commonly
called Bragg peak (Bragg and Kleeman 1905). The Bragg peak can be accurately adjusted
in depth by proper selection of the initial ion beam energy. Therefore, ions allow a highly
conformal dose deposition as can be appreciated from �gure 1.2, showing a comparison
of two treatment plans, one obtain with carbon ions and the other based on IMRT, for a
large tumor of the skull. It can be noticed that only two irradiation �elds for carbon ions
produce the same dose homogeneity in the target as nine IMRT irradiation �elds, and that
the use of carbon ions results in a substantial reduction in the integral dose to the normal
tissues and an improved sparing of critical structures (Durante and Lö�er 2010).

3
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Figure 1.2.: Comparison of treatment plans for large tumor volumes in the base of the
skull. Left: plan for IMRT with nine �elds of irradiation. Right: plan for carbon ions with
two �elds of irradiation. The irradiation with carbon ions results in a substantial reduction
of the integral dose to normal tissue and better spares critical structures. Figure by courtesy
of Oliver Jäkel.

1.1.2.1. Brief overview over ion therapy centers in the world

At LBL, from 1957 to 1992, about 2000 patients have been treated with He ions and from
1975 to 1992, 403 patients have undergone trials with C, Ar, Si and Ne ions (ptcog.web.
psi.ch). In 1990, the �rst hospital-based center for proton therapy, the Loma Linda Uni-
versity Medical Center (LLUMC), opened in the USA and since then, more than 14000
patients have been treated. Afterwards, in 1994, the �rst patient was treated with carbon
ions at the research-based HIMAC facility in Chiba (Japan) and in 1996/1997, the �rst
tumor conform irradiation with scanned (cf. section 1.4) proton beams was performed at
the research-based Paul Scherrer Institut (PSI) in Villigen (Switzerland). At the same
time, �rst treatments with carbon ions at the GSI Helmholtz Center for Heavy Ion Re-
search in Darmstadt (Germany) took place. Nowadays, ion beam therapy is becoming
more and more available in purely clinical centers, e.g., the Francis H. Burr Proton Ther-
apy Center in Boston, MD Anderson in Houston, Hyogo Ion Beam Medical Center in
Japan and HIT in Germany (cf. section 1.1.2.2). Moreover, other new facilities are under
construction/commissioning in Europe: CNAO in Italy, MedAustron in Austria, ETOILE
in France, PTC Marburg and NroCK Kiel, both in Germany.

1.1.2.2. The Heidelberg Ion Therapy Center

In Germany, after a ten years pilot project at GSI, the �rst dual proton and carbon
synchrotron-based facility with an active beam delivery system (c.f section 1.4) has entered
in clinical operation in November 2009 in Heidelberg (HIT, Haberer et al. 2004). At
HIT, there are two treatment rooms supplied with a horizontal beam line, where the
patient is positioned on a robot-controlled table so that di�erent incident beam directions
are accessible. However, the movement of the robot, and so the irradiation directions,
are limited to almost coplanar beams. To be able to rotate all around the patient, the
worldwide �rst heavy ion gantry was built. In addition to these three treatment rooms,
an experimental room has been installed. A sketch of the most important components of

4
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Figure 1.3.: Sketch of HIT. Ions are produced in the sources, then accelerated in a lin-
ear accelerator (LINAC) followed by the synchrotron. The High Energy Beam Transfer line
(HEBT) guides the ions to the two horizontal treatment places, the gantry and the experi-
mental room. Figure adapted from Kle�ner et al. (2009).

HIT is shown in �gure 1.3
Up to now, more than 500 patients have been treated in the two horizontal rooms, since

the gantry is still in the state of commissioning and will become operational at the end of
2011. At HIT, di�erent ion species are available. So far, patients have been treated with
protons and 12C ions. In the future, also irradiation with helium (4He) and oxygen (16O)
ions is planned. The accelerator is designed to be able to switch between ion species within
seconds (cf. section 1.4.3). The �exible design of the HIT facility o�ers the possibility to
contribute signi�cantly to clinical studies on recommendations regarding which ion species
is the superior one for the treatment of certain tumors. In fact, the discussion about
which is the best suited ion for therapy is still ongoing (Durante and Lö�er 2010). A
lot of patients have been treated so far with protons, since they require minor technical
e�ort (e.g., accelerator and beam delivery system) compared to heavier ions, and o�er
the already mentioned physical advantages (c.f section 1.4) resulting in a lower risk of
developing complications/second cancers compared to conventional external radiotherapy.
For these reasons, protons can be a particularly attractive treatment option in the case of
pediatric tumors. On the other hand, very promising results were achieved at HIMAC and
GSI for carbon ion therapy (Hirao 2001). Clinical trials at GSI have shown that carbons are
very e�ective for low-grade and intermediate-grade chondrosarcomas, skull base chordomas
and adenocystic carcinomas (Schulz-Ertner et al. 2007). Nevertheless, con�rmations with
a larger number of patients in randomized clinical trials are still needed.
Another still open debate concerns the cost-bene�t of ion beam therapy, since the con-

struction of a combined ion beam therapy facility requires big economical e�orts. The total
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cost of HIT was e 119 million, �nanced equally by the Heidelberg University Hospital and
the German federal government.

1.2. Physical rationale for ion beam therapy

In ion beam therapy, it is crucial to compose an irradiation plan that delivers the correct
dose in the desired region while sparing the surrounding healthy tissues. To this end, it
is of central importance to correctly predict the spatial distribution of energy deposit and
dose in the patient caused by the incident beam of charged particles. Several physical
processes occur and are necessary to be taken into account in order to fully understand
the dose distribution observed in the patient. This section is dedicated to brie�y review
these e�ects.
In ion beam therapy applications, inelastic Coulomb collisions with atomic electrons

are the dominant contribution to the ion energy deposition, and the overall shape of the
Bragg curve is the result of the so-called Bethe-Bloch formula, describing the interaction
of charged particles at a given energy with matter (cf. section 1.2.1). The absorbed dose
and average range are introduced in section 1.2.2 as central concepts in ion beam therapy.
In an ensemble of primary beam particles, the depth pro�le is slightly smeared out, an
e�ect called range straggling (cf. section 1.2.3). Elastic collisions of beam particles with
target nuclei lead to lateral spreading (cf. section 1.2.4), and �nally, nuclear interactions
are responsible for fragmentation e�ects, which again can signi�cantly alter the depth-dose
pro�le (cf. section 1.2.5).

1.2.1. Inelastic Coulomb scattering and Bethe-Bloch formula

In clinical applications, beam particles typically have a kinetic energy of approximately
70-500 MeV/u. In this range, ions transfer most of their energy to the traversed medium in
inelastic Coulomb collisions with the atomic electrons. The Bethe-Bloch formula (Bethe
et al. 1938, Bloch 1933) quanti�es how much energy a primary beam particle loses on
average per unit path length:

− dE

dx
= 2πr2

emec
2Ne

Z2

β2

[
ln

(
2mec

2Wmaxβ
2γ2

〈I2〉

)
− 2β2 − 2

C

Zt
− δ
]

(1.1)

where Z and β are the particle charge and velocity (scaled to the speed of light c), re-
spectively, re and me are the electron classical radius and rest mass, respectively, Wmax is
the largest possible energy loss in a single collision with a free electron, Ne and I are the
electron density and ionization potential of the medium of atomic number Zt, whereas C
and δ are the energy and absorber dependent shell and density corrections, respectively.
The quantity dE/dx is known as electronic stopping power and equation 1.1 describes the
stopping power above ∼ 1 MeV/u.
At lower energies, the mean charge redistribution due to the dynamic loss and capture

of electrons from the target for ion velocities comparable to the electron orbital velocity
(' 0.008 c) has to be taken into account. Therefore, to extend the Bethe-Bloch formula to
lower energies, the particle charge Z is replaced by an e�ective charge Zeff , which depends
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1.2.2 Absorbed dose and average range

Figure 1.4.: Electronic (full lines) and nuclear (dashed lines) energy loss per unit path
length dE/dx for ions of therapeutic interest in water. dE/dx values are calculated with the
SRIM code (Ziegler 2004). It can be noticed that the nuclear stopping power is negligible
for energy below 10 keV.

on the particle speed. The functional dependence can be well approximated by the Barkas
formula (Barkas 1963):

Zeff = Z

(
1− e−aβZ

− 2
3

)
(1.2)

with a ' 125 in the original proposal.
A graph of the so obtained extended Bethe-Bloch formula, describing the relation between

the electronic stopping power and the particle energy, is shown in �gure 1.4 for di�erent
ions of therapeutic interest.
It is intuitive to understand the typical peak shape of the Bragg curve from equation 1.1:

At non-relativistic energies, the equation is dominated by the 1/β2 ' 1/E energy depen-
dence. In other words, the energy loss rate increases as the kinetic energy of the particle
decreases along the penetration depth, resulting in a steep rise at low residual energy values
on the last few millimeters of the particle path. At very low energy values, the e�ective
charge Zeff is rapidly reduced according to equation 1.2, causing the stopping power of
heavy ions to drop abruptly. Hence, the distribution of the ionization density induced by a
heavy charged particle along its path shows a rather constant plateau followed by a sharp
maximum towards the end, the Bragg peak (cf. �gure 1.1).

1.2.2. Absorbed dose and average range

Two quantities relevant for clinical applications are the absorbed dose and the mean range
of the incident ions. The �rst one (which is to be distinguished from the stopping power,
describing the energy loss rate per primary) refers to the spatial pattern of energy deposited
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Figure 1.5.: Projected mean range for ions of therapeutic interest calculated in water with
SRIM code (Ziegler 2004).

in a medium either directly by the primary ions or by secondary particles. In most practical
conditions, the energy carried in and out of a volume of interest by secondary electrons
is on average the same. It is then said that the secondary electron equilibrium prevails.
Under this assumption, the macroscopic dose D delivered by a �uence Φ of mono-energetic
heavy charged particles to a medium of density ρ can be directly linked to the average loss
dE/dx of the ion:

D =
Φ

ρ

dE

dx
(1.3)

The second one is the mean range of the incident ions. The range refers to the length of
the �nite average path traveled by an ion in a material. Keeping in mind that the stopping
power dE/dx describes the loss rate at which heavy charged particles are continuously slowed
down, the integral of its inverse allows to calculate a well de�ned mean range R for a given
initial energy E0.

R =

∫ 0

E0

(
dE

dx

)−1

dE (1.4)

This is a particularly good approximation in the case of heavier ions since they experience
very little scattering and travel almost on a straight line (cf. section 1.2.4). In �gure 1.5,
the projected ranges in water2 for ions of therapeutic interest are compared. It should
be noted that the range of ions with the same initial velocity scales with a factor of A/Z2

(where A denotes the mass number and Z the atomic number of the particle) and therefore
protons and α particles show the same path in water when plotted as a function of their
speci�c initial energy expressed in MeV/u.

2Water is typically used as reference medium, as the human body consists to about 70% of it.
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1.2.3 Range straggling

Figure 1.6.: Comparison of measured Bragg curves of proton and carbon ions having the
same mean range and initial momentum spread. The measurements are performed in water
with two ionization chambers encompassing a variable water column and normalized to the
same peak height, from (Schardt et al. 2007).

1.2.3. Range straggling

In principle, there are two di�erent processes that can broaden the Bragg peak, in general
at the same order of magnitude . At low energy, the unavoidable momentum dispersion of
the beam from the accelerator (∆p/p ≈ %�) dominates, while at high energy, the e�ect of
range straggling prevails (Parodi 2004).
Regarding the latter, it is important to bear in mind that the Bethe-Bloch formula

(equation 1.1) gives a description of the mean stopping power for a single charged particle.
In reality, in an ensemble of charged particles traversing a target, the number of collisions
and the energy loss per interaction �uctuate (Bohr 1913, Ahlen 1980). This phenomenon
is known as range or energy straggling and results in a broadening of the measured Bragg
peak. The range straggling depends on the mass of the projectile. For di�erent ion species,
it varies approximately as the inverse of the square root of the particle mass (Schardt et al.
2010). Thus, at the same penetration depth, heavier ions exhibit a narrower Bragg peak
with a steeper distal fall-o�. The proton Bragg peak, shown in �gure 1.6, is therefore
broader than the carbon Bragg peak that arises at the same depth in water for comparable
initial momentum spread.
Moreover, the range straggling increases with the penetration depth in a given material,

resulting in Bragg peaks of larger width and smaller height for higher initial energy of the
same ions as represented in �gure 1.7.
The e�ect of straggling is not necessarily a drawback from the treatment point-of-view.

In fact, in most practical clinical cases, it is necessary to irradiate extended tumor volumes,
so it can be even advantageous to widen the sharp Bragg peak in the longitudinal direc-
tion. In fact, for very sharp carbon ion beams, additional broadening in depth is normally
obtained via passive energy degraders (e.g., a ripple �lter, Weber and Kraft 1999). More-
over, to better cover the tumor longitudinal extension, a proper superposition of several
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Figure 1.7.: Depth-dose pro�le in water calculated by means of the FLUKA (Ferrari et al.
2005, Battistoni et al. 2007) code for the same number of primary carbon ions at increasing
energies. The energy spread ∆E/E of the beams is 0.04%. Figure adapted from Mairani
(2008).

Bragg peaks at di�erent depth (SOBP, �gure 1.8), i.e., di�erent primary ion energy, is
accomplished via passive energy degraders or active energy variation of the accelerator.
It is evident that the overlap of several Bragg peaks leads to a reduction of the peak to
plateau dose ratio with respect to the single mono-energetic case.

1.2.4. Lateral dose pro�le

The spatial dose distribution is not only given by the depth pro�le discussed so far, but
also by lateral spreading. In fact, charged particles passing through a medium experience
not only interactions with target electrons but also multiple elastic collisions with target
nuclei. The statistical repetition of these multiple interactions between ions and target
nuclei results in a lateral spread of the ion beam. The net angular distribution of the
out coming particles after a thick absorber with respect to the incident direction can be
interpreted as the result of several highly probable de�ections by small angles. It is well
approximated by a Gaussian shape with a standard deviation σθ given by the empirical
formula proposed by (Highland 1975):

σθ =
14.1MeV

βpc
Z

√
d

Lrad

(
1 +

1

9
log10

d

Lrad

)
(1.5)

where p is the momentum of the particle, d the thickness of the absorber, and Lrad the
radiation length of the traversed medium, respectively. It follows that the angular spread
of ions increases as the particle energy decreases due to the βpc term in the denominator
of equation 1.5.
In �gure 1.9, a comparison of lateral scattering for di�erent ion species of therapeutic

interest is presented. Beams of carbon and heavier ions show little lateral scattering (< 1-
2 mm), while the angular spread of protons is on average approximately three times larger.
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1.2.4 Lateral dose pro�le

Figure 1.8.: Superposition of several carbon ions Bragg curves with di�erent energies (red
lines) to produce a SOBP (blue line). Figure adapted from Mairani (2008).

Figure 1.9.: Mean lateral de�ection of protons and di�erent heavy ion species as a function
of their penetration depth in water. Figure adapted from Parodi (2004).
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(a) (b)

Figure 1.10.: (a) Depth-dose distribution in Polymethyl methacrylate (PMMA) calculated
on the basis of the FLUKA code (Ferrari et al. 2005, Battistoni et al. 2007) for a 175 MeV
proton beam including or neglecting nuclear reactions. The reduction of the peak to plateau
dose ratio in presence of nuclear reactions is found to be about 35%, in agreement with
previous studies (Medin and Andreo 1997). Figure adapted from Parodi (2004). (b) Bragg
curve as a function of depth in water for a 400 MeV/u carbon beam. The points (Haettner
et al. December 2006) and the solid line (Battistoni et al. 2008) represent the experimental
data and the FLUKA calculations, respectively. The dose contribution from primary 12C
ions and secondary fragments is also reported. Both the experimental data and the MC
results are normalized by the integral of the Bragg curve calculated between the entrance
region and the Bragg peak because the experimental data are obtained as relative values.

This scatter behavior of protons is very similar to or even worse than that of photons at
large penetration depths. The small lateral de�ection penetrating a thick absorber is a
particular advantage of heavier ions in comparison to protons since they allow a safer lateral
approach to sensitive structures and a further improvement in the dose distribution in the
target area (Schardt et al. 2010). The lateral beam scattering is also of clinical relevance
for the treatment of tumors in close vicinity to OAR. Indeed, due to uncertainties in the
range of the particles in the patient, caused e.g., by tissue inhomogeneities and patient
positioning, beams stopping right in front of an OAR are typically avoided. Rather, it is
preferred to have the beam passing by it. Hence, the narrower the beam in the lateral
direction, the closer the radiation �eld can get to the adjacent OAR.

1.2.5. Nuclear interactions and fragmentation

The actually observed depth-dose pro�le di�ers from the one expected from the extended
Bethe-Bloch formula (cf. section 1.2.1), including straggling e�ects (cf. sections 1.2.3
and 1.2.4), in two regards as illustrated in �gure 1.10.
Firstly, the ratio of the dose at the peak and at the entrance is reduced (cf. �gure 1.10(a)).
Secondly, even behind the steep fall-o� after the peak, there is still a small but appreciable
dose tail for heavy ions (cf. �gure 1.10(b)). These two e�ects are due to nuclear processes
undergone by the primary beam.
High energy ions penetrating a thick absorber not only interact with the target nuclei
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1.2.5 Nuclear interactions and fragmentation

via electromagnetic interactions (cf. sections 1.2.1, 1.2.3, and 1.2.5), but they experience
as well strong nuclear force interactions mostly resulting in projectile and/or target nuclei
fragmentation. The nuclear interactions cause a decrease of the �uence (Φ) of primary
ions with increasing depth (z) according to:

Φ(z) = Φ0 · e−Nσrz (1.6)

where Φ0 is the initial �uence of primary ions, N the density of nuclei in the target material,
and σr the total reaction cross section. This exponential attenuation lowers the �uence
of primary ions in the Bragg peak with respect to the entrance region. Consequently,
the peak to entrance dose ratio is reduced (cf. �gure 1.10(b)), since the Bragg peak is
produced by a smaller number of primary ions. At low initial energies, the described e�ect
is relatively small. For high energies, the depth-dose distribution shows a decrease of the
plateau dose in depth due to the decrease of the primary ion �uence. In addition, there is a
build-up of secondary charged particles and nuclear fragments, which can compensated to
some extent the mentioned depth-dose decrease due to the depletion of primary ions. The
target fragments typically deliver negligible dose contributions, in contrast to the charged
secondaries and to the projectile fragments produced for ions heavier than protons. The
latter have about the same velocity as the primary ions, but a lower charge Z and thus
their range is in general larger than that of the primary ions. Because of this, they deposit
dose even behind the Bragg peak, leading to the observed dose tail for heavy (Z > 1) ions
(cf. �gure 1.10(b)).
The lateral distribution of secondary particles is broader compared to that of the primary

ions, also due to their stronger lateral scattering. When nuclear reactions are taken into
account, the lateral dose pro�le should thus be described by a superposition of at least two
Gaussian distributions with di�erent widths (the narrower being related to the multiple
scattering of the primary beam according to equation 1.5) in order to include also the
beam halo from nuclear reactions. The broader shape these secondary distributions can
lead to non-negligible amounts of dose o� the central axis, especially if several ion pencil
beams overlap (cf. �gure 1.8).
Heavy ion nuclear reactions can be classi�ed according to the value of the impact parame-

ter between the trajectories of the two colliding nuclei. It is therefore possible to distinguish
three main classes: central collisions, peripheral collisions and various Coulomb force in-
duced processes (Crespo et al. 2006). For geometrical reasons peripheral collisions, where
the beam particle loses one or few nucleons, are the most frequent reactions and they can
be well described by the abrasion-ablation model as a two step process (�gure 1.11, Serber
1947). In the �rst step, nucleons are abrated in the overlapping reaction zone (��reball�),
prefragments are produced within ≈ 10−22 s, while the outer �spectator� nucleons are only
slightly a�ected (Hüfner 1985). In the second step (∼ 10−21 s to 10−16 s), the excitation
energy in the �reball and fragments is released by evaporation (ablation) of nucleons or
clusters and by gamma emission. It should be mentioned that the reaction cross section
σr is nearly constant at higher energies down to about 100 MeV/u. The higher num-
ber of fragments for high energetic ion beams, with related larger dose contribution, is a
consequence of the longer path length traveled by the primary ions.
As the products of the nuclear reactions can be detected directly or indirectly, they

play an important role for imaging purposes. For example, the positrons created as decay
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Figure 1.11.: Illustration of the abrasion-ablation model of peripheral collisions at high
energies (Gunzert-Marx et al. 2008).

products of unstable nuclei among the fragments are used in the Positron Emission To-
mography (PET). Secondary protons are directly revealed in Interaction Vertex Imaging
(IVI). So-called prompt γ-rays result from de-excitation of products of the fragmentation
process and might possibly be used in imaging applications. These di�erent approaches
will be discussed in more detail in section 1.5.2 and chapter 2.

1.3. Radio-biological rationale for ion beam therapy

One of the major rationales for the application of heavy charged particle beams in tumor
therapy is their increased biological e�ectiveness due to the achievable high ionization
density at the cell nucleus level. This increased e�ectiveness is usually expressed in terms
of a macroscopically determined quantity, the relative biological e�ectiveness (RBE). This
is de�ned as the ratio of the photon dose (typically 250 KV X-rays) and the dose of the
particle radiation leading to the same biological e�ect (e.g., cell survival):

RBE =
DPhoton

DIon

∣∣∣∣
Isoeffect

(1.7)

The principle of the RBE de�nition is shown in �gure 1.12, where it is also possible to
appreciate that the RBE decreases with increasing dose, or equivalently decreasing cell
survival.
Besides this relation, the RBE depends, e.g., on the considered cell type and the Local

Energy Transfer3 (LET, cf. �gure 1.13). One of the advantages of heavy ions compared to
protons originates from this LET dependence. In fact, it was shown that it is su�cient to
apply only one single RBE value of 1.1 to the whole treatment �eld in the case of protons
(Paganetti et al. 2002). Heavy ions, on the contrary, reach higher values of LET due to the

3The LET of an ion is de�ned as LET∆ = dE∆/dx. It is the energy dE∆ locally transferred to charged
secondary particles of the medium per path length dx. Secondaries above a certain energy threshold
∆ are not taken into account, as they are no longer absorbed locally. The so-called unrestricted LET
with ∆ =∞ is equal to the electronic stopping power (cf. equation 1.1 and �gure 1.4).
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1.3 Radio-biological rationale for ion beam therapy

Figure 1.12.: Principle of the RBE de�nition for the cell survivsl of CHO-K1 cells exposed
to di�erent doses of X-ray and 11 MeV/u carbon ions as example of the biological endpoint
(Krämer et al. 2003).

Z2 dependence of the stopping power and therefore can achieve higher values of RBE, in
particular around the Bragg peak, where ideally most biological dose should be deposited,
as depicted in the right panel of �gure 1.13.
The reason for the LET dependence of the RBE is the track structure (cf. �gure 1.14)

of the stopping ions. The local ion dose deposition is highly inhomogeneous on the scale
of the cell nucleus and shows sharp peaks, as can be seen in �gure 1.15 (Krämer et al.
2003), causing a dense ionization pattern and leading to complex, clustered DNA damages
which are hard to be repaired and thus induce the higher biological e�ectiveness of high
LET radiation. This phenomenon is enhanced for higher LETs (i.e., lower beam energies).
On the contrary, a homogeneous X-ray local dose deposition causes only sparse ionization
processes and the resulting DNA damages can be repaired easily by the cell.
Besides the increased RBE in the tumor compared to the normal tissue, heavy ions may

o�er a further biological advantage: The Oxygen Enhancement Ratio (OER), which is
de�ned as the ratio of dose leading to the same e�ect in hypoxic and oxic cells or tissues, is
reduced for heavy ions. This means that they are more e�ective in damaging the hypoxic
cells of radio resistant tumors.
Due to the rather complex dependencies of RBE on various parameters, it can almost

impossibly be represented by a single number to be used for converting physical dose to
a homogeneous biological dose4 (cf. �gure 1.16). For this reasons, biophysical modeling
is needed to help predicting the response to charged particle radiation from the known
response of the biological object to photon radiation. Several biophysical models have
been proposed for ion beam therapy (Scholz and Elsässer 2007). As an example, a so-
called Local E�ect Model (LEM) based on track structure (�gure 1.15) calculations and
cell response to X-rays was developed at GSI for clinical use in the GSI pilot project (Scholz
and Kraft 1994). The �rst version of the LEM is also used at HIT in clinical routine to

4The biological e�ective dose or RBE weighted dose is normally expressed in GyE.
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Figure 1.13.: RBE as a function of the LET (left) and of the residual range (right) of 12C
for CHO-K1 chinese hamster cells and their repair de�cient mutant xrs-5 (Weyrather et al.
1999).

predict the cell response to a heavy ion beam irradiation. This model can also be used to
predict the detector response in a mixed radiation �eld (cf. application for conventional
�lm dosimetry in section 5.1).

1.4. Technical implementation of ion beam therapy

The implementation of heavy ion therapy is demanding due to the more complex dosimetric
and radio biological issues related to the mixed radiation �elds generated in the patient,
but mainly because of the technically challenging requirements of the accelerator and beam
delivery system. For this reason, heavy ion therapy has spread much slower than proton
therapy.

1.4.1. Accelerator technology

In the last decades, relatively compact (mostly cyclotrons) and commercial solutions able
to accelerate proton beams in the therapeutically relevant energy range of 50�250 MeV have
become available. This has considerably boosted the worldwide development of facilities
for proton therapy, which is nowadays a well-established technique.
Regarding heavy ion therapy, on the other hand, the challenging realization of synchrotron-

based combined facilities (e.g. HIT, CNAO) has more recently been promoted by promis-
ing clinical results achieved so far with carbon ion beams (Hirao 2001, Schulz-Ertner et al.
2007). Currently, technological development is aiming at making ion beam therapy a
compact-designed and commonly a�ordable treatment modality in the next decades. Novel
concepts for the production of energetic proton and heavy ion beams include the use of
compact superconducting cyclotrons (Maggiore et al. 2007), laser-based accelerator sys-
tems (Bulanov et al. 2004, Schwoerer et al. 2006), or dielectric-wall accelerators (Poole
et al. 2007). These approaches have been proposed over the last few years and are being
experimentally investigated in several laboratories worldwide (Parodi 2008).
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Figure 1.14.: Monte Carlo calculations of track structures of atomic electrons liberated
by protons and carbon ions slowing down in water along the z axis (Krämer and Kraft
1994). The left panel shows that protons behave as sparsely ionizing radiation all along their
penetration like photons. The right panel illustrates that carbon ions behave as sparsely
ionizing radiation only at the higher energies corresponding to the entrance region in the
healthy tissue (bottom panel). Di�erently, for lower energies occurring in the Bragg peak
region (middle and top panel) carbon ions induce a much higher ionization density at the
nanometer scale, which is responsible for clustered double strand breaks of DNA molecules
in the tumor cells.

1.4.2. Beam delivery techniques

In the implementation of ion beam therapy, not only an accelerator system suitable for the
desired ions has to be set-up, but it is also necessary to develop techniques to deliver the
dose with a proper lateral and longitudinal conformation to the patient.
In the �rst experimental as well as commercial installations, �passive� techniques using a

combination of scattering-foils, energy degraders (e.g., modulation wheels or range shifters)
and beam shaping systems (e.g., collimators and boli) were applied to achieve the desired
tumor-conformal beam delivery, as schematically illustrated in �gures 1.17.
A disadvantage of these well-established methods is that they are intrinsically limited

in the achievable distal and proximal dose conformality. Additionally, they lack the ca-
pability of a �exible, position-dependent modulation of the ion beam �uence. Moreover,
the additional material in the beam path not only causes a physical as well as biological
(i.e., in terms of diluted high-LET component for heavy ions) degradation of the primary
beam quality. It also leads to the production of secondary radiation like neutrons, which
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Figure 1.15.: Local dose distributions of X-rays and carbon ions at di�erent speci�c en-
ergies. The average dose is 2 Gy in each case. The size of the area is 10 × 10 µm2 and
corresponds to the typical size of mammalian cell nuclei (Krämer et al. 2003).

poses an undesired hazard to the patient as well as shielding issues for radio protection of
personnel and electronic equipment (Parodi 2008).
As an alternative to these �passive� techniques, �active� steering of the extracted ion beam

via magnetic de�ection has been proposed. In this approach, the beam is either swept over
the target in circular patterns of di�erent diameters (�wobbling�, Renner and Chu 1987)
to achieve homogeneous lateral broadening, or a pencil-like beam (≈ 4-10 mm diameter)
is �painted� laterally over an arbitrary complex tumor surface (�scanning�, Renner et al.
1989), as sketched in 1.18, replacing both the scattering system and the transversal beam-
shaping devices. In the latter approach, the conformality of the dose delivery in 3D can still
be improved by combining 2D lateral scanning with a variation of the beam energy (i.e.,
penetration depth). This is done either actively at the accelerator level or with the help
of a passive energy degrader, together with a signi�cant reduction of the overall material
in the beamline (Parodi 2008).
At the pioneering experimental facilities of PSI and GSI, more complex beam scanning

technologies for safe and routine clinical operation in proton and carbon ion therapy have
been demonstrated to be, both, feasible and reliable. The PSI introduced the so-called
�spot scanning� technique (Pedroni et al. 1995) in which the proton beam is magnetically
de�ected in one dimension while the patient couch is moved in the other direction during
treatment. The cyclotron beam is switched o� by a fast kicker before moving from a spot
in the treatment plan to the next yielding a discrete irradiation �eld. The longitudinal
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Figure 1.16.: Correlation between physical and biological dose, cell survival and RBE for
carbon ion irradiation. The top picture shows the physical and biological dose for a SOBP
ranging from 6 to 10 centimeter. The corresponding calculated (solid lines) and measured
(squares) cell survival is shown in the middle picture and the corresponding RBE in the
bottom picture (Crespo et al. 2006).

variation in depth is achieved by means of a passive range shifter. Fully 3D active �raster
scanning� with continuous (i.e., beam always on during movement) 2D steering of a mono
energetic pencil beam within each extraction cycle and variable adjustment of the beam
energy, focus (i.e., lateral dimension) and intensity from pulse to pulse at the accelerator
level has been �rst realized for carbon ion therapy at the SIS heavy ion synchrotron of GSI
(Haberer et al. 1993).
Both techniques require that the desired amount of ions to be applied to each �spot�

or �scan� position within the iso-energy (i.e., iso-depth) slices (IES), in which the target
volume is virtually dissected, is monitored on-line and fed back to the beam steering unit.
They therefore intrinsically o�er the possibility to modulate the intensity, which allows
to compensate partial irradiation of the more proximal slices when delivering the highest
energy beams. Additionally, sharp dose gradients can be achieved yielding optimal coverage
of the tumor volume with excellent sparing of the surrounding radio-sensitive OAR (Parodi
2008).
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Figure 1.17.: Sketch of a fully �passive� beam shaping system. The initially narrow beam is
broadened by a scattering system and adapted to the target volume by various passive beam
shaping devices. Adaptation of the dose �eld to the distal contour of the target volume is
achieved by a compensator, but results in unwanted normal tissue dose in the proximal part
indicated by the doubly hatched area (Schardt et al. 2010).

1.4.3. Scanned ion beam at HIT

This section brie�y outlines the beam delivery system used at HIT (Haberer et al. 1993),
since it plays a fundamental role for the imaging investigations addressed in this thesis.
A more detailed description of some aspects related to the experimental measurements
carried out in this work are in reported in section 5.2.2.
At HIT, a synchrotron is used to accelerate the particles to the requested energy and

to extract them into the subsequent high energy beam transport lines until the treat-
ment/experimental rooms. A synchrotron demands a sequential procedure of particle
injection, acceleration and extraction functions, in contrast to a cyclotron, in which these
phases can be performed continuously. When the extraction is �nished, the settings of
the synchrotron components have to be changed in order to be ready for a new injection.
The total time from one injection to the next is called �cycle time�. The extracted beam
is named �spill�. Right now at HIT, its pulse length is about 5 s (∼5 s is also the average
time to complete one IES during a patient treatment) and the time interval between two
spills is of about 4-5 s. Once the extracted beam leaves the vacuum pipe line, it passes
through a stack of independent detectors mainly consisting of ionization chambers (IC)
and multi-wire proportional chambers (MWPC) within the Beam Applications Monitoring
System (BAMS, Voss et al. 2005), as sketched in �gure 1.19. This detector arrangement
is required for the on-line control of the beam position, the beam dimension, the �uence,
and for a feedback to the raster scan position control system.
In the raster scan technique, the delivery of an optimized 3D dose distribution into a

prede�ned treatment volume is performed through series of 2D �uence distributions, i.e.,
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Figure 1.18.: Principle of the intensity-controlled magnetic scanning system. Left: The
target volume is irradiated by moving a pencil-like ion beam with fast magnets over thin
slices in depth. The required beam parameters are supplied on a pulse-to-pulse operation
by the synchrotron control system. From (Haberer et al. 1993). Right: Beam's eye view of
slices for a typical patient treatment plan. In each panel one slice is shown. The actually
irradiated slice is seen in the magni�ed panel with the raster point positions indicated as
open circles. The superimposed dots show the beam center positions measured on-line by
a multiwire proportional chamber. The spot size of the beam is larger than the circles and
overlaps many positions (Schardt et al. 2010).

varying number of stopping particles per mm2 from one lateral scan position to another,
at �xed initial energy. In this way, the treatment volume is virtually divided in series of
isoenergy slices IES, corresponding to a �xed (water equivalent) depth. The selection of
an IES is achieved by varying the beam energy at the accelerator level. The irradiation
of each IES is performed with two fast scanning magnets (cf. �gure 1.18), de�ecting the
beam in the transversal horizontal and vertical direction at steps ∆x and ∆y, respectively,
to cover all the de�ne raster points. The whole sequence of raster points for every IES
necessary to cover the desired irradiation volume de�nes a plan/scan.
Typically, a tumor volume is divided into 20000 to 50000 raster points. At each raster

point, one pencil beam of ions is applied, but an algorithm is needed to solve the complex
task of overlapping the single pencil beams of each raster point. This algorithm has to
optimize the dose delivered to the patient, taking into account the physical (e.g. Bragg
peak shape, lateral scattering, cf. section 1.2) and biological properties of the ion beam
(cf. section 1.3), as well as the fact that the dose of each raster point contributes to many
di�erent volume elements (i.e. voxel5). This task is performed by the Treatment Planning
System (TPS) that, using an iterative optimization process, yields the number of particles
to be delivered at each raster point.

5The dose in each volume elements comes from many di�erent raster points. The dose in a voxel can,
e.g. , be in�uenced by the dose delivered in two raster points of two subsequent IES.
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Figure 1.19.: Illustration of the 3D raster scanning technique at HIT. Lateral de�ection is
accomplished by the scanning magnets, the penetration depth is actively varied by adapting
the synchrotron energy. The Beam Application Monitoring System (BAMS), consisting of
three ionization chambers (IC) and two multi-wire proportional chambers (MWPC) in front
of the patient is also shown. Figured adapted from Siemens Particle Therapy Technology
(www.siemens.com).

At the GSI pilot project, the challenging task of treatment planning was accomplished
by the dedicated TRiP (TReatment plannIng for Particles) software (Krämer et al. 2000,
Krämer and Scholz 2000). At HIT, a commercial TPS from Siemens is used, which is how-
ever largely based on TRiP. To further optimize the treatment, at HIT the beam settings
(e.g., energies, spot sizes and intensities, cf. section 5.2.2) are stored in corresponding
libraries (Haberer et al. 2004), which are used by the TPS to generate the patient plans.
These libraries were calculated with Monte Carlo (MC) simulations, performed with the
FLUKA code (Ferrari et al. 2005, Battistoni et al. 2007, cf. section 3.1). Moreover, to set
up the database, only some dedicated depth-dose distributions were measured accurately.
These data were used to tune the FLUKA code to match the experimental results. The
whole database was then generated by simulating the remaining depth-dose distributions
for all other energies (Parodi et al. 2009).
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1.5 The role of imaging techniques in ion beam therapy

1.5. The role of imaging techniques in ion beam

therapy

This section brie�y introduces the role of imaging at the di�erent stages in the course of
a heavy ion treatment.
The main physical advantages of ion beam therapy (cf. section 1.2) are due to the �nite

range of ions in tissue, determined by the position of the Bragg peak, which allows a
precise dose delivery. The improvements in the achievable selectivity of the dose delivery
have been accompanied over the last few years by an increasing role of imaging techniques
to support precise diagnosis and identi�cation of the target volume at the planning stage
(Parodi 2008).
However, the ion selectivity can also cause adverse therapeutic results in case of tumor

miss and/or accidental exposure of OAR due to incorrect delivery of the intended dose
during the fractionated treatment course, provoked by uncertainties related to the accu-
racy of the patient set-up and immobilization, to the issue of organ motion for speci�c
anatomical sites like the lung, the liver, the rectum and the prostate as well as to anatomi-
cal modi�cations (e.g., tumor shrinkage) and displacements (e.g., due to rectum or bladder
�lling). To account for these uncertainties, safety margins are typically added around the
identi�ed tumor volume when designing the treatment plan on the basis of X-ray Com-
puted Tomography (CT) data of the patient anatomy (i.e. �planning CT�). In addition,
imaging techniques can come to use to ensure the correspondence between the planning
and treatment situation during the actual irradiation (Parodi 2008).

1.5.1. The planning CT

The ion treatment planning always starts with an imaging application (e.g. Magnetic Res-
onance Imaging (MRI), CT, PET) and in particular with the already mentioned �planning
CT�, which measures the photon attenuation coe�cient µ without any contrast agent ad-
ministrated to the patient. In a speci�c tissue x, µx is then converted to the Houns�eld Unit
(HU) scale using the attenuation coe�cient in water µH2O as described by the following
equation:

HUx = 1000 · µx − µH2O

µH2O

(1.8)

HUx is a normalized value of the measured µx for a speci�c tissue. Normally in a CT,
HUH2O is calibrated to be zero, while, e.g., HUair ≈ -1000. The ion beam range expressed in
water equivalent (WE) thickness is then typically obtained using experimentally validated
calibration curves of the water equivalent path length (WEPL), as shown in �gure 1.20.
The theoretical background for this relationship is that the ratio between the ion stopping

power in the considered material and in water is proportional to the relative electron
density and thus correlated with the photon attenuation measured by the CT scanner. In
practical applications, the HU-WEPL calibration curve is obtained from a piecewise linear
�t to the measured di�erences (∆) of Bragg peak shifts after the traversal of samples of
known thickness (d) and experimentally determined HU values in comparison to water (i.e.,
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Figure 1.20.: HU-WEPL calibration curve used for carbon ion treatment planning at GSI
(Rietzel et al. 2007). The straight line connects measured data points (circles) of WEPL (cf.
equation 1.9), which have been acquired using the experimental set-up of �gure 1.21(a) with
di�erent samples of tissue equivalent materials (Jäkel et al. 2001, Geiÿ et al. 1997).

WEPLH2O = 1 and ∆ = 0, Rietzel et al. 2007, Jäkel et al. 2001, Scha�ner and Pedroni
1998) as illustrated in �gure 1.21 and described by:

WEPL(HU) = 1 +
∆

d
(1.9)

Due to the non-unique correspondence between HU numbers and materials in addition
to unavoidable experimental uncertainties of the CT image (Rietzel et al. 2007) and of
the HU-WEPL calibration curve, the accuracy of the ion range calculation in the patient
is estimated to be within 1-3%. This corresponds to approximately 1-3 mm uncertainty
in a patient at typical depths of 10 cm. A method to directly obtain the distribution of
WEPL in the target volume would circumvent some of these uncertainties (cf. chapter 5).
Besides that, HU values can be improperly assigned along the actual ion beam path due
to artifacts (e.g., because of metallic implants, Jäkel and Reiss 2007) in the planning
CT, or modi�cations of the patient position and/or anatomy in the treatment situation,
introducing deviations up to ≈ 5-20% from the planned range (Parodi 2008).
Because of these intrinsic sources of range uncertainties, as well as the higher sensitivity

of ion beam therapy to discrepancies between the planned and actual treatment situation
(cf. �gure 1.22, Enghardt 2005), cautious safety margins, which can hopefully be reduced
in the future, are still used in routine ion treatment planning.
In the course of fractionated therapy, additional unpredictable range deviations can occur

because of minor inaccuracies in the positioning of the patient or local anatomical changes
with respect to the information of the planning CT, typically acquired several days before
starting the therapy.
For all these reasons, tools for the visualization and monitoring of the particle distribution

within the patient during the irradiation are strongly desirable (cf. chapters 2, 5, and 5).
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1.5.2 Brief overview of ion beam imaging techniques

(a) Measurement set-up for carbon ion
radiography

(b) Measurement results for WEPL

Figure 1.21.: (a) Schematic representation of the experimental set-up used at GSI to
acquire residual carbon ion ranges behind the sample (ph) by varying the thickness of a
water absorber. The relative measurement is performed using two parallel plate ionization
chambers (IC1, IC2) (Rietzel et al. 2007, Jäkel et al. 2001, Scha�ner and Pedroni 1998). (b)
Examples of relative ionization curves acquired for di�erent tissues and the water reference
(Rietzel et al. 2007). According to equation 1.9, it follows that only the sample of fat tissue
exhibits a lower WEPL (i.e., ∆ < 0) than that of water.

1.5.2. Brief overview of ion beam imaging techniques

Nowadays, the only technically feasible method ful�lling the requirement for a 3D, non-
invasive, in-vivo monitoring of the delivered ion treatment and, in particular, of the beam
range in the patient is the PET. However, various alternative or complementary techniques
are currently being explored. Some of them try to exploit the emerging secondary radiation
(e.g., photons as well as light fragments, cf. section 1.2.5), produced during nuclear interac-
tions, while others make use of primary ions at higher energy than used in a treatment for
obtaining low dose transmitted planar (radiographic) or volumetric (tomographic) images
of the patient.
These novel imaging techniques can come to use in di�erent phases of a patient treatment.

In fact, PET (cf. section 2.1) is carried out during or after the irradiation, the techniques
based on the detection of prompt photon radiation (cf. section 2.3) and IVI (cf. section
2.2) are performed simultaneously to the beam delivery, and the Heavy Ion Computed
Tomography (HICT, cf. section 2.4) can be applied before or in-between the treatment.
A more detailed description of the current and proposed imaging modalities in ion beam

therapy is presented in chapter 2.
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Figure 1.22.: Depth-dose deposition in water by a 6 MV photon beam (top) and a carbon
ion extended treatment �eld (bottom) in the reference condition with a 1 cm air gap in
the beam path (solid line) as well as in the case of an unexpected �lling of the cavity with
water (dashed line, e.g., simulating the presence of mucus in a nasal cavity, Enghardt 2005).
Whereas the anatomical change has only a marginal in�uence on the photon depth dose
deposition, a substantial overdosage in the healthy tissue proximal to the tumor as well as
a drastic underdosage in the distal part of the tumor is introduced in the case of carbon ion
irradiation.

1.6. Aim and outline of this thesis

The aim of this thesis was to investigate two possible novel imaging techniques for future
application at HIT. In fact, at HIT a PET/CT device has recently been installed nearby
the treatment rooms for post-treatment veri�cation. However, it would be desirable to
complement o�-line PET with additional novel in-situ imaging techniques. For this pur-
pose, within this thesis, emission imaging techniques were investigated principally using
MC calculations based on the FLUKA code, while experimental studies were carried out
to address the feasibility of ion-based radiographic or tomographic transmission. These
novel imaging techniques could be performed, as shown in �gure 1.23, using:

1. emerging secondaries, in particular gammas, from the therapeutic beams (ET ) to
verify simultaneously and in-vivo the treatment delivery (cf. chapter 4)

2. transmitted high energy (EH) primary particles for low dose 2D and 3D imaging
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1.6 Aim and outline of this thesis

Figure 1.23.: Schematic representation of the alternative or complementary techniques to
PET investigated in this thesis performed using: transmitted high energy (EH) primary

particles or emerging secondaries from the therapeutic beams (ET ).

to evaluate the correct patient positioning and verify the ion range before or in
between the treatment, especially to reveal morphological modi�cation and motion.
Ideally, HICT also aims at substituting the use of the planning CT and HU-WEPL
calibration curve, providing directly a map of the WEPL in a patient (cf. chapter 5).

The investigations presented in this work regarding HICT have been so far concentrated
on carbon ion beam due to the mentioned advantage of reduced lateral beam scattering
in comparison to protons. Moreover, HIT o�ers the unique clinical availability of the
worldwide �rst heavy ion beam gantry, as well as scanned carbon ion beams accelerated
with a synchrotron which is able to provide the initial energies needed to perform HICT.

The thesis is organized in the following way: In the second chapter, the state of the art
of imaging modalities in ion beam therapy is reviewed. Starting from PET, the only
nowadays already clinically used technique, the chapter then gives an overview of new
methods based on the detection of prompt gamma radiation. Moreover, ion-based imaging
techniques are presented. Some of them use heavier fragments (e.g., protons) produced
during ion irradiation, while others consider the primary beam particles directly (e.g.,
protons, carbon ions), yet with a higher initial energy (still in the therapeutic range) than
used for treatment.
The third chapter introduces the MC method as useful tool to simulate the complex pro-

cess of interactions with matter, especially for ion beam therapy applications. In particular,
the FLUKA MC code is presented as a reliable tool to support and validate experimental
investigations for ion beam therapy. Moreover, a speci�c benchmark of the FLUKA code
against experimental data in the case of a proton beam using Multi Layer Faraday Cups
is reported.
Chapter four presents investigations regarding the prompt gamma imaging. The studies

were performed with the help of the FLUKA MC code in the framework of the FLUKA
collaboration, using a dedicated development version, kindly provided by the FLUKA
developer team. In particular, results are shown for the comparison between FLUKA
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calculations and experimental data using carbon ion beams. Moreover, MC studies for
di�erent target complexity scenarios using proton beams are reported. These were carried
out to investigate main features of the prompt gamma detected signal ultimately aiming
at setting up a detector properly designed in order to obtain an optimum signal.
In the �fth chapter, the most extensive part of the thesis, experimental investigations car-

ried out at HIT to address the feasibility of low dose 2D and 3D imaging with transmitted
high energy carbon ions are presented. First of all, the clinical feasibility of HICT at HIT
is demonstrated. Then, following the encouraging results of the �rst experimental proof of
principle, the chapter reports in detail experimental characterizations and results obtained
with a dedicated experimental set-up. The detector has been composed in collaboration
with colleagues from GSI and consists of 61 parallel-plate ionization chambers interleaved
with 3 mm Polymethyl methacrylate (PMMA) absorbers.
Finally, general conclusions and an outlook are given in the last chapter.
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Chapter 2

CURRENT AND PROPOSED

IMAGING TECHNIQUES IN ION

BEAM THERAPY

In this chapter, a brief overview of the current and proposed imaging modalities in ion
beam therapy is given. In particular, the review starts describing the work already done in
the �eld of Positron Emission Tomography (PET), underlying its potentiality and limiting
factors (cf. section 2.1). Afterwards, the techniques under investigation using the detection
of fragments produced during nuclear interactions are presented. The attention is concen-
trated on the Interaction Vertex Imaging based on the detection of charged particles (e.g.,
protons in case of carbon ion beams) emerging from a patient (cf. section 2.2). Moreover,
techniques based on the detection of prompt gammas originated from de-excitation of nu-
clear fragments are reviewed in more detail since they are linked to the studies carried out
within this thesis, reported in chapter 4. Finally, section 2.4 introduces the approach of
the heavy ion CT (HICT), which has been extensively investigated within this thesis from
the experimental point of view (cf. chapter 5).

2.1. Positron Emission Tomography

Presently, PET is the only clinically investigated method for in-vivo and in-situ monitoring
in charged particle therapy (Enghardt et al. 1992). The physical principle of PET-based
veri�cation of ion beam therapy is that during therapeutic irradiation, positron emitters,
such as 11C, 15O and 10C, are produced inside the patient by nuclear fragmentation reac-
tions between the projectiles and the target nuclei of the traversed tissue (cf. section 1.2.5).
PET scanners can detect the photon pairs resulting from the annihilation of the positrons
in a patient either during (on-line) or after (shortly after: in-room, with greater delay:
o�-line) treatment. These measured activities are successively compared with MC simu-
lations based on the prescribed beam plan providing a non-invasive validation method of
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the whole treatment planning and delivery chain (Parodi et al. 2008).
Promising results were achieved so far for ion-based PET imaging for in-vivo veri�cation

of ion treatment and beam range. The �rst clinical activities showed the usefulness but
also the limitations of in-vivo PET range veri�cation. The pioneering investigations were
performed at GSI during the pilot project using a dedicated in-beam double-head detector
integrated into the experimental treatment room for carbon ion therapy (Enghardt et al.
2004a, Parodi 2004). Afterwards, at Massachusetts General Hospital (MGH) in Boston, a
commercial PET/CT scanner was also used for post-treatment imaging in proton therapy
(Parodi et al. 2007, 2008).
The di�erences of these two technical implementations of PET are summarized in the

following. At GSI, the acquisition was performed in between the spill extraction pauses
with a data acquisition system synchronized with the beam delivery and for approximately
40 s after each irradiation with a limited angle detector (Enghardt et al. 2004a). It is evi-
dent that in-beam solutions are technically very demanding but, on the other hand, o�er
the possibility of monitoring individual �elds in the treatment position without losing the
signi�cant activity contribution from the short-lived 15O emitter. At MGH, the patient is
moved, shortly after the irradiation, to a commercial PET/CT scanner in close proximity
to the treatment site (Parodi et al. 2008). The o�-line solution is used nowadays also at
HIT. It has been also investigated at the HIMAC facility, although it is not yet used in
clinical routine for carbon ion dose veri�cation (Schardt et al. 2010). An advantage of
the o�-line PET is the use of commercially available full-ring PET scanners that typically
o�er better imaging performance with respect to in-beam limited angle detectors. The
main drawbacks are patient re-positioning issues as well as the loss of signal from short-
lived positron emitters and the larger in�uence of metabolic processes in the time elapsed
between irradiation and imaging. Moreover, post-treatment imaging only detects the in-
tegral beam delivery, with a loss of range information in the case of multiple treatment
�elds (Parodi et al. 2008).
The characteristics of PET imaging depends on the primary beam used in the treatment.

In �gure 2.1, the di�erences between PET monitoring performed for an irradiation with
proton and carbon ion beams are depicted. For irradiation with carbon ions (left panel
of �gure 2.1), a peak in the β+-activity is formed in close proximity to the Bragg peak
since the main contributions to the PET signal are given by the positron emitters 10C and
11C projectile fragments. In fact, carbon isotope projectile fragments keep approximately
the same velocity as the primary carbon ions and therefore have almost the same range
due to the A/Z2 dependence (cf. section 1.2.2). Consequently, the maximum of positron
radioactivity is formed at the end of the β+-activity pro�le not far away from the Bragg
peak position in the primary depth-dose distribution. On the contrary, the correlation
between the proton depth-dose curve and the β+-activity pro�le (right panel of �gure 2.1)
is poorer due to the lack of projectile fragmentation which implies that no maximum of
positron radioactivity is formed at the end of the primary proton range (Parodi et al.
2002). Nevertheless, this lack of peak structure in the activity pro�le for proton beams
is balanced to some extent by the three times higher total induced activity for the same
range and dose delivery (Parodi et al. 2002), which is due to the about 20 times higher
number of protons compared to carbon ions necessary to deliver the same physical dose
(Kraft 2000). The ratio could further increase in favor of protons when comparing the
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2.1 Positron Emission Tomography

Figure 2.1.: Measured autoactivation of thick PMMA targets by means of 260 MeV/u
carbon ions (left) and 140 MeV protons (right). The solid lines show the depth pro�les of the
measured β+-activity. For comparison the depth-dose pro�le of the primary beam is shown
as dotted line. Figure from (Parodi 2004).

same biological e�ective dose.
Applications of proton o�-line PET for range monitoring were feasible for head and neck

cases in well co-registered low perfused bony structures, however challenges for millimeter
accurate range veri�cation were encountered especially in extra-cranial anatomical loca-
tions due to limiting factors such as physiological washout, co-registration, and motion
(Knopf et al. 2011).
In any case, the main drawback of PET imaging applied to particle therapy is the low

β+-activity1 induced by fragmentation: about 200 Bq Gy−1 cm−3 for 12C and about 600 Bq
Gy−1 cm−3 for protons (Enghardt et al. 2004b). Moreover, the positron activity is corre-
lated but not directly proportional to the spatial pattern of the delivered dose (Schardt
et al. 2010).
In clinical routine, the therapy control is achieved by visually comparing the measured

β+-activity distribution with a MC prediction based on the treatment plan and the speci�c
time course of the irradiation (cf. �gure 2.2). In case of observed discrepancies between the
measured and expected PET images, the radio-oncologist is provided with a quantitative
estimation of the deviation between the planned and actually applied physical dose (Parodi
2004). Before the next irradiation fraction, the radiotherapist can, e.g., expose the patient
to a new X-ray CT for further investigation of possible anatomical changes and, in case of
signi�cant deviation between the planned and applied dose, a new treatment plan can be
elaborated.
To summarize, the PET monitoring technique, especially in the on-line implementation,

allows to monitor the maximum ion range, to verify the �eld position, and to detect
deviations in the patient positioning or local changes of the patient anatomy in the course
of the fractionated treatment (Schardt et al. 2010). On the other hand, unfortunately,
3D tomographic in-beam PET solutions are, nowadays, not commercially available, but

1The irradiation-induced activity is 2-3 orders of magnitude lower than in conventional tracer imaging
in nuclear medicine PET.
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Figure 2.2.: Example of in-beam PET monitoring showing the irradiation of a skull base
tumor at GSI. Left: Planned dose distribution superimposed on the CT image. The target
volume and the brain stem as an OAR are highlighted. Middle: Predicted β+-activity
distribution calculated from the treatment plan and time course of the irradiation. Right:
Measured β+-activity distribution. By comparison with the prediction it was veri�ed that
the carbon ions were correctly stopped before the brain stem (Crespo et al. 2006).

research is ongoing in several groups to realize new generation dedicated detector solutions.

2.1.1. Ion range veri�cation with in-beam PET at GSI

The systematic deviations observed between measured and calculated PET images in the
early therapy sessions at GSI in 1998 indicated a lack of accuracy in the planned carbon ion
range, especially in the soft tissue region (Parodi 2004). These deviations were attributed to
the non-optimal calibration of the correlation curve between HU-WEPL2 (cf. section 1.5.1
and �gure 1.20) that was therefore successively corrected (Enghardt et al. 1999, Rietzel
et al. 2007). Consequently, the in-vivo veri�ed improvement in the reliability of the TPS ion
range calculation in tissue allowed extending treatment plans to more critical irradiation
�elds, like the cranio-lateral portal of �gure 2.2 in which the beam has to be stopped
precisely in the tumor in front of the brain stem, that in this case represents the OAR.
The analysis of in-beam PET images for 205 patients treated at GSI until 2003 led to

new X-ray CT re-exposure for six of them. In �ve cases the investigation con�rmed a local
anatomical change and for one patient a new treatment plan was elaborated. For the sake
of objectivity, it has to be pointed out that, in practice, proper safety margins and careful
selection of the beam portals help avoid too delicate irradiation �elds. Therefore, in all the
observed cases of ion range deviation, no serious clinical consequences were encountered
(Parodi 2004).
More recently, Fiedler et al. (2010) performed a �rst quantitative study on the accuracy

of the in-beam PET method to detect range deviations between the planned and applied
treatment in clinically relevant situations using MC simulations based on clinical data
obtained with 81 patients treated at GSI. For each patient, a range di�erence of ±6 mm
in water was virtually applied to produce simulated PET images which were then blindly

2It has to be remarked that the PET calculations and the TPS used the same HU-WEPL calibration
curve.
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2.2 Interaction Vertex Imaging

(a) Correct recognition of di�erences in ranges
(b) Incorrect recognition of di�erences in
ranges

Figure 2.3.: Pro�les of reconstructed β+-activity distribution taken in a beam direction
crossing the isocenter of the treatment room, coinciding with the center of the �eld of view
of the PET camera. The di�erent activity distributions are drawn for range variations of
±6 energy steps (ES) corresponding to projected range variation in water of ±6 mm. The
0 ES curve di�ers from the reference distribution only by statistical �uctuations during the
simulation. The region where the range di�erence is expected is marked as an ellipse. In (a)
it is shown a case of a patient in which the larger and smaller ranges have been correctly
recognized while in (b) it is shown an example of patient in which the majority of the
evaluators failed to detect the di�erences in ranges. Figure adapted from (Fiedler et al.
2010).

visually compared by six experienced evaluators, together with the reference PET images
without any change. The results indicate that larger and smaller ranges have been recog-
nized by the evaluators in about 90% of the cases. Nevertheless, there is strong evidence
that speci�c e�ects may impede the visibility of range deviations, such as beam passing
through highly inhomogeneous tissues, large irradiation volumes as well as low doses. As
an example, �gure 2.3 illustrates the pro�les of the reconstructed β+-activity distribution
taken in a beam direction crossing the isocenter of the treatment room, which coincides
with the center of the �eld of view of the PET camera. In �gure 2.3(a), a case of a pa-
tient is represented in which the larger and smaller ranges on the PET images have been
correctly recognized while in �gure 2.3(b), the majority of the evaluators failed to detect
the range di�erences.

2.2. Interaction Vertex Imaging

An alternative technique for ion therapy monitoring and range veri�cation is the IVI (c.f
�gure 2.4), especially attractive in the case of pencil beam scanned delivery. The IVI
is based on the detection of secondary charged particles emerging from the patient, that
were generated in nuclear interactions between the incoming ions and target nuclei (cf. sec-
tion 1.2.5). This technique is currently under investigation, e.g., by a collaboration between
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Figure 2.4.: Artistic scheme of the IVI system. The hodoscope tags the ions in time and
space coordinates. In single-track vertexing, the vertex is reconstructed as the intersection
of the emerging particle trajectory and the beam direction provided by the hodoscope. In
multi-track vertexing, the vertex is reconstructed by the intersection of two or more emerging
particle trajectories arising from the same fragmentation point. Figure adapted from Dau-
vergne et al. (2009).

the groups of Lyon (Institut de Physique Nucléaire de Lyon and CNDRI-INSA, working
on the Regional Research Program for Hadron Therapy (ETOILE)) and the TERA (Ther-
apy with Hadronic Radiations) foundation (Henriquet 2010) and also in the framework of
the Advanced Quality Assurance project (AQUA, http://project-aqua.web.cern.ch/
project-aqua) for CNAO. There are two main advantages which make IVI a potentially
attractive technique: The detection of charged particles is easier and the counting statistic
potentially achievable is larger (i.e., 2-3 orders of magnitude, Henriquet 2010) compared
to systems that detect, e.g., photons (Braunn et al. 2010, Gunzert-Marx et al. 2008, Testa
et al. 2010). This possible new technique is based on the reconstruction of the trajecto-
ries of the emerging particles which are then extrapolated back to their production point
(Dauvergne et al. 2009). Indeed, the position of the fragmentation points are expected
to be correlated with the ion range, and the amount of emerging charged particles could
be, in principle, correlated to the dose. Figure 2.5 illustrates the possible correlations of
proton interaction vertex pro�les and the Bragg peak position obtained with a GEANT4
(Agostinelli et al. 2003, Allison et al. 2006) MC simulation of 400 MeV/u carbon ion beams
hitting a PMMA target.
The vertex reconstruction can be done with two di�erent techniques based on the parti-

cle multiplicity arising from each fragmentation vertex. In the simplest form, also named
single-track vertexing, the vertex is reconstructed as the intersection of the emerging par-
ticle trajectory and the beam direction provided by the hodoscope. While in the more
complex so-called multi-track vertexing, the vertex is reconstructed by the intersection of
two or more emerging particle trajectories arising from the same fragmentation point (cf.
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2.3 Prompt gamma radiation

Figure 2.5.: Vertex distribution of emerging primary, secondary and total protons created
by 400 MeV/u carbon ions impinging onto a PMMA target simulated with the GEANT4 MC
code. The respective Bragg curve is also illustrated in arbitrary units. While not directly
representing the dose distribution, a measurement of the interaction vertex distribution is
somewhat correlated with the Bragg peak position. Figure adapted from the AQUA project
website (http://project-aqua.web.cern.ch/project-aqua).

�gure 2.4 and Henriquet 2010).

2.3. Prompt gamma radiation

Prompt gammas are mainly produced in de-excitation processes during nuclear interactions
(cf. section 1.2.5). The detection of prompt gamma pro�les can be, in principle, correlated
to the Bragg peak position providing one dimensional information on the ion range in a
patient, especially suitable for pencil beam scanning.
In the case of protons, the measurement of the emitted prompt photons, detected at an

angle of 90◦ with respect to the incident direction of a 100 MeV proton beam, has veri�ed
the correlation with the Bragg peak position with an accuracy of 1-2 mm (cf. �gure 2.6,
Min et al. 2006).
More recently, the discussion about the potential use of prompt gamma emission as a

method to verify the accuracy and e�cacy of doses delivered with proton radiotherapy was
raised by Polf et al. (2009a,b). In a �rst work based on MC simulations (Polf et al. 2009a),
the results of a preliminary study on secondary prompt gamma emission produced within
tissue during proton irradiation are presented. A second work (Polf et al. 2009b) presents
the results of comparisons between measured and simulated prompt gamma spectra using
a detector, shielded either with lead (passive shielding) or a Compton suppression system
(active shielding). Although in both studies the analysis focused mainly on the character-
istics of gamma spectra emitted during proton irradiation of elemental and tissue targets, a
correlation was found between the delivered SOBP dose distribution and the characteristic
prompt gamma production (cf. �gure 2.7).
The �rst proof of principle for carbon ion beams was performed by the Lyon groups at the
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(a) Experimental set-up
(b) Correlation between the Bragg peak locations
and prompt gamma scans along the beam pene-
tration in water

Figure 2.6.: (a) Experimental set-up used by Min et al. (2006) for right-angled measurement
of prompt gamma induced by proton beams slowing down in water. A collimator system
consisting of lead, para�n and B4C powder is used to suppress the considerable background
from scattered photons and neutrons, respectively. The gamma detector is a CsI(Tl) scintil-
lator. (b) The resulting prompt gamma scans (PGS) along the beam penetration in water
are compared in the 2.6(b) to depth dose measurements taken with an ionization chamber
(IC) to illustrate the correlation with the Bragg peak location.

GANIL facility (Caen, France) in 2007 with 73 MeV/u 13C6+ ions impinging on a PMMA
target. The correlation between 90◦ angled prompt photon pro�les and the Bragg peak
position, obtained for a carbon ion beam in which both, target nuclei and primary ions,
undergo nuclear fragmentation (Testa et al. 2008), is shown in �gure 2.8, when properly
discriminating the photon signal.
Other experimental investigations with carbon beams were performed in the following

years at GANIL and GSI (Testa et al. 2009, 2010) and details of some of these experiments
will be presented and discussed in chapter 4. The main feature of these experiments
is the introduction of time of �ight (TOF) discrimination between prompt photons and
background radiation, especially neutrons, avoiding the use of bulky neutron shielding
like in the case of the work presented by Min et al. (2006). This feature is of particular
importance since it allows the use, in case of scanned ion beam delivery, of a stacked multi-
detector set-up that, in principle, can be employed clinically for real-time in-situ ion range
monitoring.
The major drawback of this technique, on the other hand, is the low achievable counting

statistic of measured gammas, also related to the detector e�ciency. The Lyon groups
have measured the net gamma count rate along the primary ion path per incident carbon
ion, unit solid angle, and unit path length for a primary beam of 95 MeV/u 12C impinging
onto a PMMA target and using a single scintillator (e.g., BaF2) for gamma detection. The
value was found to be ≈ 1 ·10−7 gammas ion−1 msr−1 mm−1 (Testa et al. 2010). A patient
treatment plan in which, e.g., 7 · 108 carbon ions are required to deliver an absorbed dose
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Figure 2.7.: Two-dimensional pro�les for (A) a proton SOBP in a homogeneous water
phantom and (B) the corresponding gamma production as well as (C) a proton SOBP in a
water phantom with cylindrical compact bone (12 cm), rib (6 cm), muscle (0 cm), fat (-6 cm)
and lung tissue (-12 cm) inserts and (D) the corresponding gamma production. Each graph
is normalized to a point along the beam central axis (x=0 cm) at the proximal edge of the
SOBP at a depth of 5 cm. The color scale located between panels (A) and (B) refers to the
homogeneous phantom and the color scale located between panels (C) and (D) refers to the
phantom with the tissue inserts. Figure adapted from Polf et al. (2009b).

Figure 2.8.: Details of the experiment performed at the GANIL facility in 2007 by the
Lyon groups with 73 MeV/u 13C6+ ions impinging onto a PMMA target. Left: 90◦ angled
prompt gamma detection rates as a function of the longitudinal position of target applying
a TOF selection. The neutron (round symbols) background is also shown. Right: scaled
photograph of the irradiated PMMA sample. Figure adapted from Testa et al. (2008).
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of 1 GyE to a tumor volume of 120 cm3, divided in 39 slices of 3 mm width (Krämer
et al. 2000) corresponds on average to 1.8 · 107 delivered carbon ions per slice. Therefore,
according to the above mentioned value of 1 · 10−7 photons ion−1 msr−1 mm−1, about
7 gamma counts per slice within the ion path would be obtained for the considered set-up.
Detector developments will allow to improve the counting statistic of measured gammas

and thus determine the prompt gammas applicability to 3D total delivery or IES/pencil
beam based imaging. To obtain 3D information, not only prompt gamma pro�les have to
be detected but also precise information on the transverse position of the beam is required
(e.g., from a hodoscope). Prompt gamma based imaging techniques for ion beam therapy
have recently gained remarkable interest and several groups are working on developing an
optimized experimental set-up (e.g., Compton camera, collimated prompt gamma camera).

2.4. Heavy Ion Computed Tomography

The use of energetic ion beams to obtain low dose transmitted planar (radiographic) or
volumetric (tomographic) images of the patient prior to or in between the treatment could
be one alternative method to improve the accuracy of the calculated ion ranges in tissue and
to avoid range uncertainties correlated to the usage of X-ray-based calibration curves (c.f.
section 1.5.1 and �gure 1.20). Primary ions lose their energy in matter mostly in inelastic
Coulomb collisions with atomic electrons (cf. section 1.2.1). This transfered energy is
characterized by the stopping power, which depends on the properties of the traversed
material (i.e., electron density, atomic number and atomic weight). Due to the weak
energy dependence of the stopping power ratio in a traversed material relative to water, the
radiographic images obtained at higher energies than used for therapeutic purposes could
serve for veri�cation of the HU-WEPL calibration curve used in the treatment planning.
In addition, ion radiographic images could be made at the treatment site and employed to
monitor the patient positioning and to check the primary ion range in the target volume,
which is important especially in case of morphological modi�cations and motions.
In the extension to tomographic imaging, the distribution of relative WEPL in the pa-

tient could be reconstructed directly based on the knowledge of the Bethe-Bloch formula
(c.f. equation 1.1) and by irradiating the patient from several di�erent angles with an
energetic ion beam and measuring the corresponding residual energy or range behind the
traversed volume. A so obtained 3D WEPL map could then be directly used by the TPS,
without resorting to the use of the X-ray planning CT and HU-WEPL calibration curve
(c.f. section 1.5.1 and �gure 1.20).
The history of heavy charged particle radiography began already in 1968 with the pioneer-

ing work of Koehler. In Koehler (1968) it is shown that images obtained on a radiographic
�lm irradiating objects with a thickness slightly smaller than the range of the incident
160 MeV proton beam had a much greater contrast than images produced with X-rays
under the same conditions. In the following years, publications about proton radiography
(Koehler and Steward 1974) and tomography (pCT, Cormack and Koehler 1976) addressed
proton imaging as a diagnostic tool (Hanson et al. 1981, 1982).
In those decades, however, most of the technological e�ort was put forward to improve

X-ray CT, so that the interest in developing medical pCT stagnated until the advent of the
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(a) PSI experimental set-up (b) LLUMC experimental set-up

Figure 2.9.: (a) Schematic view of the PSI radiographic experimental apparatus. The
hodoscopes for the measurement of the proton coordinates in front (Hodoscope 1) and behind
the object (Hodoscope 2) are shown as well as the range telescope for the range measurement
(R). A proton trajectory is delineated. The white dots mark the measured coordinates
(x1,y1,x2,y2) in the hodoscopes and the reconstructed coordinate (xR,yR) on a straight line
for the plane of image reconstruction Schneider et al. (2004). (b) Schematic representation of
the LLUMC approach. Primaries with known entry energy (Ein) are recorded one-by-one in
the detector reference system (s; t; u) as they traverse the image object from many di�erent
projection angles θ. The recorded data can include entry and exit positions and entry and
exit angles as well as initial and exit energy prior to and after the imaged object as well as
in the detector (Eout) (Reinhard W. et al. 2005).

�rst medical proton gantries at LLUMC. With the worldwide installation of proton gantries
and the increased number of patients treated with proton therapy, the need of an accurate
prediction of the proton range and veri�cation of the patient position increased. Therefore,
the development of accurate imaging techniques led to the construction of a �rst radio-
graphic system at PSI (Schneider and Pedroni 1995, Schneider et al. 1996, 2004), shown
in �gure 2.9(a). In the same year, within the LLUMC project, a design study concluded
that a pCT scanner, depicted in �gure 2.9(b), should utilize instrumentation developed for
high-energy physics such as silicon track detectors and crystal calorimeters equipped with
fast read-out electronics, allowing one-by-one registration of protons traversing the body
during a full revolution of the proton gantry (Schulte et al. 2004).
One technical challenge of pCT is due to the fact that the range/energy measurements

are strongly dependent on the precise knowledge of the most probable trajectories of the
protons through the patient, since protons are a�ected by multiple Coulomb scattering
(cf. section 1.2.3). To develop algorithms to accurately reconstruct their path through
matter, it is a very complex task (Li et al. 2006). To improve the spatial resolution of
proton radiography or tomography to meet clinical standards, each incident proton has
to be labeled and the range (PSI approach) or the energy (LLUMC approach) for the
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corresponding proton exiting the target has to be revealed (cf. �gure 2.9). PCT also
requires fast data taking methods in order to scan the patient in a tolerable time (Pemler
et al. 1999). The dose received by the patient during a proton radiographic exposure
was found to be smaller than during the acquisition of a comparable X-ray CT image by
approximately a factor of 50-100 (Schneider et al. 2004).
Although the proven advantages of proton-based imaging techniques such as superior

density resolution at lower dose exposure have been experimentally demonstrated (Schnei-
der et al. 2005, Reinhard W. et al. 2005), this technique is not yet used in the clinical
routine.
In 2006 in Japan at HIMAC, the �rst attempt was made to implement HICT, using

broad carbon ion beams and measuring the residual energy behind the targets (Shinoda
et al. 2006, Ohno et al. 2004). Since both, primary and fragmented secondary ions, add
to the residual energy, revealed e.g., by a calorimeter, the discrimination of their contribu-
tions to the signal is di�cult. On the other hand, the Bragg peak position is determined
only by primary ions, suggesting the use of a range telescope as alternative detector in
HICT applications (cf. chapter 5). Contrarily to protons, the trajectories of high energy
carbon ions can be assumed to be straight in �rst approximation (cf. section 1.2.4), thus
simplifying a lot the path reconstruction problem.
Di�culties related to HICT concern the �nancial and technical e�ort needed to accelerate

therapeutic ion beams to su�ciently high initial energy (e.g. ≈ 400 MeV/u) and to deliver
heavy ions with a suitable isocentric system, e.g., with a gantry for carbon ions. At HIT
(cf. sections 1.1.2.2 and 1.4.3), carbon ion beams of initial energy up to ≈ 430 MeV/u, a 3D
fast and precise active raster scanning beam delivery system as well as the worldwide �rst
heavy ion gantry are available and o�er the ideal scenario to develop HICT (cf. chapter 5).
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Chapter 3

FLUKA SIMULATIONS AND FIRST

VALIDATION IN MULTI LAYER

FARADAY CUPS

Monte Carlo (MC) codes are useful tools in ion beam therapy to simulate the complex pro-
cesses of ion interactions with matter. Moreover, they can handle geometries containing
the detailed descriptions of the patient anatomy (e.g., obtained from CT data) and provide
accurate multi-dimensional transport in the volume of interest. Nowadays, MC methods
play an increasingly important role in the �eld of radiation therapy with ions, where they
are used for di�erent purposes. These for example include shielding calculations, beamline
modeling, generation of TPS input data (cf. section 1.4.3), validation of TPS physical
and biological dose calculations, treatment veri�cation, estimation of neutron dose to the
patient, support to the test and the development of quality assurance and imaging modal-
ities (Medin and Andreo 1997, Carlsson et al. 1997, Paganetti 2002, Parodi et al. 2007,
Mairani et al. 2008, Parodi and Enghardt 2000). The precise determination of ion ranges
and ionization losses is of utmost importance in dosimetry and in therapeutic applications
(cf. section 1.2.1 and 1.2.2). Moreover, ion beams, while penetrating tissues, undergo in-
elastic nuclear reactions producing signi�cant secondary fragments (cf. section 1.2.5) and
in�uencing the dose distribution. Therefore, the validation of electromagnetic and nuclear
models adopted in MC codes is a critical requisite for their use in this �eld. Nowadays,
di�erent general purpose MC codes are available for application to ion beam therapy, e.g.,
FLUKA (Ferrari et al. 2005, Battistoni et al. 2007), GEANT4 (Agostinelli et al. 2003,
Allison et al. 2006), MCNPx (Hughes et al. 1997, LANL 2002), PHITS (Niita et al. 2006),
SHIELD-HIT (Dementyev and Sobolevsky 1999, Gudowska et al. 2004).
At HIT (cf. sections 1.1.2.2 and 1.4.3), the FLUKA MC code was chosen as common

computational platform. Several recent studies have reported comparisons between the
FLUKA models and experimental data of interest for ion therapy, especially for carbon
ion beams (Sommerer et al. 2006, Mairani 2008, Sommerer et al. 2009, Mairani et al. 2010,
Böhlen et al. 2010). The results provide evidence that the agreement between FLUKA

41



FLUKA simulations and �rst validation in Multi Layer Faraday Cups

predictions and experimental data is very satisfactory, although there is still room for
improvement, which is especially due to the lack of available experimental data and their
limited precision. Further investigations and validations are especially needed for protons
in the energy range of therapeutic relevance. To this regard, within this thesis, an integral
test of FLUKAmodels has been performed for proton beams. The validation of the FLUKA
code in Multi Layer Faraday Cups (MLFC) is reported in section 3.2 (Rinaldi et al. 2011),
after a brief introduction to the FLUKA code (cf. section 3.1) and to its models relevant
for ion beam therapy (cf. section 3.1.1).
Moreover, the FLUKA MC code was used to support and to validate the experimental

investigations within this thesis, mainly for carbon ion beams (cf. sections 4.2.2 and 5.1)
and as a sound tool to investigate prompt gamma based imaging techniques, especially for
proton beams (cf. sections 4.3 and 4.4).
Due to the continuous evolution and upgrade of the FLUKA code, the used version will

be speci�ed in the respective section.

3.1. The FLUKA code

FLUKA (FLUktuierende KAskade, www.fluka.org, Ferrari et al. 2005, Battistoni et al.
2007) is a general purpose particle and heavy ion transport and interaction code which is
developed and maintained in the framework of an agreement between the European Labo-
ratory for Particle Physics (CERN) and the Italian National Institute for Nuclear Physics
(INFN). It is capable of handling the transport and interactions of hadrons, heavy ions,
and electromagnetic particles from a few keV (or from thermal energies for neutrons) up
to cosmic ray energies in whichever solid, gas or liquid material. FLUKA is used for a
vast variety of applications like proton and electron accelerator shielding applications, tar-
get design, calorimetry, activation, dosimetry, detector design, accelerator driven systems,
space radiation and cosmic ray showers, neutrino physics, and ion beam therapy. Particles
can be transported in arbitrary complex geometries, which can also include magnetic �elds.
For therapeutic applications, a module which handles voxel geometries like CT scans is
available. FLUKA is constantly updated and extended.
An overview of the main physical models relevant for ion beam therapy is given in

section 3.1.1. A description of recent developments can be found in the FLUKA manual
and in the materials of the 1st FLUKA Advanced Course and Workshop (October 2010,
Portugal) on the o�cial FLUKA website.
To work with FLUKA, the user has to write an input �le and, for special problems,

to customize some FORTRAN routines (user routines). A graphical user interface is not
part of the standard FLUKA distribution. However, recently a front-end interface called
FLAIR (FLUKA Advanced Interface) was developed and can be separately downloaded
from the FLUKA website (www.fluka.org/Flair/). It o�ers features like easier creation
of input �les, debugging, compiling, running and monitoring the status of the simulation
during its execuction.
FLUKA has defaults for speci�c problems to support the user in the choice of the physics

options to use. Defaults exist for calorimetry, electromagnetic cascades, low energies neu-
tron experiments, shielding calculations hadrontherapy, and for many other kinds of prob-

42

www.fluka.org,
www.fluka.org/Flair/
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lems. In particular, the DEFAULTS HADROTHE card provides a default con�guration
for ion beam therapy applications. This enables the use of pre-de�ned settings for di�erent
options (e.g., production threshold of δ-rays, energy thresholds for the transport of charged
hadrons, neutrons and, photons, and electrons) suiting best the needs of ion beam therapy
simulations. Moreover, FLUKA gives the possibility to adjust few settings of the available
physical models (cf. section 3.1.1) using the PHYSICS card, allowing to overwrite default
settings for certain physical processes.
Standard scoring is done in binnings which are uniform spatial meshes independent of

the geometry. In such binnings, energy deposition, star density (i.e., inelastic hadron reac-
tions) or particle �uence distributions can be scored. FLUKA has also boundary crossing
and track length estimators as well as estimators to score double-di�erential quantities.
However, in some cases, the standard scoring options are not su�cient, and user-speci�c
applications need to be implemented for the simulation of dedicated problems. For this
purpose, the user routines have to be customized.
In this thesis, typically the DEFAULTS HADROTHERAPY card was used, adjusted as

needed by modifying the production and energy thresholds of the transported radiation,
adding speci�c PHYSICS cards and customizing user routines. Especially, two routines
were extensively used within this thesis: The source.f and mgdraw.f. A user de�ned
source routine is used at HIT to better characterize the available ion beams. The mgdraw
routine o�ers a complete interface to the whole FLUKA transport, allowing, e.g., an event
by event output and scoring.

3.1.1. FLUKA models relevant for ion beam therapy

In the following, some of the most important models of the FLUKA code relevant for ion
beam therapy applications are brie�y outlined. More information and details on the imple-
mented FLUKA models can be found in the manual and in the material and publications
provided on the FLUKA website.
In FLUKA, the transport of charged particles is performed through an original Multiple

Coulomb scattering algorithm (Ferrari et al. 1992), supplemented by an optional single
scattering method. Multiple scattering with inclusion of nuclear form factors is applied
also to heavy ion transport. The treatment of ionization energy loss is based on a statistical
approach, alternative to the standard Landau and Valivov one, that provides a very good
reproduction of average ionization and �uctuations (Fassò et al. 1997). Up-to-date e�ective
charge parametrizations are employed, and straggling of ion energy loss is described in
�normal� �rst Born approximation with inclusion of charge exchange e�ects.
In terms of the more complex nuclear processes, hadron-nucleus interactions up to

5 GeV and, therefore, relevant for ion therapy application, especially in the case of pro-
ton beams, are handled by PEANUT (Pre-Equilibrium Approach to NUclear Thermal-
ization). Presently, PEANUT, which has been thoroughly validated against experimental
data, handles interactions of nucleons, pions, kaons, and γ-rays. The reaction mechanism,
depicted in �gure 3.1(a), is modeled in PEANUT by explicit Generalized IntraNuclear
Cascade (GINC) smoothly joined to statistical (exciton) pre-equilibrium emission (Gadioli
and Hodgson 1992, Gri�n 1967). At the end of the GINC and exciton chain, the evapora-
tion of nucleons and light fragments is performed, following the Weisskopf (Weisskopf and
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(a) (b)

Figure 3.1.: Overview of the most important nuclear models in FLUKA below 5 GeV/u,
which are relevant for ion beam therapy applications. (a) PEANUT for hadron-nucleus
interactions. (b) RQMD and BME event generators for nucleus-nucleus interactions. Figure
adapted from the FLUKA website (www.fluka.org).

Ewing 1940) treatment. Competition of �ssion with evaporation is taken into account,
again with a statistical approach. Since the statistical evaporation model becomes less
sound in light nuclei, the so-called Fermi Break-up model (Epherre and Gradsztajn 1967,
Fermi 1950) is used instead. The excitation energy still remaining after evaporation is
dissipated via emission of γ-rays (Ferrari et al. 1996a,b). A description of PEANUT at
low-intermediate energies can be found in Ferrari and Sala (1997).
Nucleus-nucleus interactions generated by heavy ions (Z>1) are treated through inter-

faces to external event generators. Two of them are relevant for ion beam therapy appli-
cations. For energies between 0.1 GeV and 5 GeV per nucleon, an interface to a suitably
modi�ed RQMD (Relativistic Quantum Molecular Dynamics Model) is used. For energies
below 0.1 GeV per nucleon down to the Coulomb barrier, a relatively new event generator
based on the Boltzmann-Master-Equation (BME) theory has been developed (Cerutti et al.
2006, Cavinato et al. 1998, 2001). The excited pre-fragments resulting from these interac-
tions can then undergo several additional steps, like evaporation, Fermi-Break-Up, �ssion
or γ-emission, until they are completely de-excited and transported further by FLUKA. A
sketch of the FLUKA work�ow is given in �gure 3.2.
Secondary radiations like, e.g., neutrons, electrons, gammas are also produced and trans-

ported by FLUKA.

3.2. Validation of the FLUKA code in MLFCs

A simple integral method to test the global e�ect of nuclear reaction models of a MC
code can be performed using a MLFC. This method allows separation of the nuclear and
atomic interaction processes, which are responsible for secondary particle emission and
the �nite primary range, respectively. Previous comparisons of MLFC results with other
MC simulation codes were performed to test GEANT3 and GEANT4 (Gottschalk et al.
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Figure 3.2.: Sketch of the FLUKA work�ow. Figure adapted from the FLUKA website
(www.fluka.org).

1999, Paganetti and Gottschalk 2003, Jarlskog and Paganetti 2008), MCNPx (Mascia et al.
2004) and SHIELD-HIT (Henkner et al. 2009).
Simulations with the FLUKA MC code of a 160 MeV proton beam stopping in two

MLFCs, made of polyethylene (CH2) and copper (Cu), were performed within this thesis
and are presented in the following.

3.2.1. Experimental set-ups

This study relies upon the experimental measurements described in Gottschalk et al. (1999)
and Paganetti and Gottschalk (2003) performed at the Harvard Cyclotron Laboratory
(HCL) using MLFCs (�gure 3.3).
Any MLFC is composed of insulating or conducting materials. If a proton stops in an

insulator, it creates an image charge in the neighboring conducting plates (cf. �gure 3.4(a)).
This image charge attracts an electron from the ground as if the proton had actually
stopped in the conductor (Gottschalk et al. 1999, Paganetti and Gottschalk 2003). If a
proton stops in a conductor, the added charge attracts an electron from ground through
the current integrator electronics (cf. �gure 3.4(b)).
In the experiments two di�erent MLFCs were used. One MLFC is a stack of 66 brass

collector sheets (15 cm × 15 cm × 0.00254 cm) separated by high density (ρ = 0.98 g/cm3)
CH2 sheets (15 cm × 15 cm × 0.317 cm), while the second one is a stack of 66 Cu sheets
(7.6 cm × 7.6 cm × 0.0529 cm) separated by insulator (kapton) sheets (7.6 cm × 7.6 cm ×
0.00254 cm). In both cases the number of active channels connected to current integrators
is 64, while the collector 65 is grounded. Since the beam diameter (FWHM ∼ 1 cm) is
much smaller than the dimension of the MLFC, all the primaries entering the detector will
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Figure 3.3.: CH2 MLFC with its lid open. There are 65 brass collector sheets, nominally
0.00254 cm thick. The one visible is connected to an aluminum foil wrapping applied during
measurements to form a grounded shield. Active collectors 1-64, connected to current inte-
grators, are separated by high density (0.98 g/cm3) polyethylene sheets, nominally 0.3175
cm thick. Collector 65 is grounded. (Paganetti and Gottschalk 2003).

(a) CH2 MLFC (b) Cu MLFC

Figure 3.4.: Sketch of the charge collection in two di�erent MLFCs. In the CH2 MLFC
(3.4(a)), the charge is measured in the brass sheets (gray area), while in the Cu MLFC
(3.4(b)), the charge is measured in the copper sheets (white area). In the illustrated case of
a (p, pn) reaction, for example, the charge measured in B is 0 since there is +1 charge from
the incoming proton and -1 charge from the recoil proton, while in C the charge measured is
+1 due to the stopping proton. Figure by courtesy of Harald Paganetti.
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stop within the volume. The longitudinal charge distribution along the beam penetration
(cf. measured data points in �gure 3.5) exhibits the two expected distinct regions: a build-
up due to nuclear reactions and a sharp peak due to primaries stopping by electromagnetic
interaction.

3.2.2. FLUKA simulations of the MLFC experiments using proton

beams

In this study, the FLUKA MC code version 2008.3 (Ferrari et al. 2005, Battistoni et al.
2007) was used. MC results were used to evaluate the charge distribution. The experimen-
tal geometry was simulated exactly as described in Gottschalk et al. (1999), in Paganetti
and Gottschalk (2003), and in section 3.2.1.
Two approaches were adopted to estimate the charge deposited in each channel. In the

�rst one, equal to all previous works (Gottschalk et al. 1999, Paganetti and Gottschalk
2003, Mascia et al. 2004, Henkner et al. 2009), the charge produced by primaries and
charged nuclear secondaries (i.e., without accounting for ionization electrons) was scored,
using two customized FLUKA user routines (i.e., mgdraw.f and comscw.f). The charge
amount of the recoil nucleus at each nuclear interaction point was calculated subtract-
ing the charge of the �nal state from that of the initial state at each interaction point.
Moreover, for any transported primary or charged nuclear secondary stopped at a certain
position, the appropriate charge amount was added. In the case of more nuclear interac-
tions, for one primary history, the procedure was repeated. Since it is a relatively rare
event for the total charge to appear close to the primary reaction site, the appearance of
negative or zero charge at the nuclear interaction point and of positive charge downstream
is more frequent. Moreover, since the MLFC should stop all charged particles, the net
charge deposit by any event, nuclear or EM, should be +1 proton charge per incident
proton.
The same approach was followed also in the second method accounting for secondary

electron emission. A charge +1 was scored at the production point, and a charge -1 at the
point where the electron was coming at rest. For both processes, if the scoring point was
in a metallic electrode, the charge was attributed to the corresponding channel. When the
scoring point was inside a dielectric, the charge was shared between the two neighboring
channels inversely proportional to the distance from the corresponding electrodes. In
practice, assuming that a dielectric layer has a thickness d, a net charge generated in a
depth z in a channel n, where 0 < z < d, contributes z/d to the (n + 1)th electrode
and (d − z)/d to the nth electrode (as follows from electrostatics). Due to the relatively
short range of secondary electrons, the e�ect of their transport on the simulated charge
collection is expected to be relatively small, unless the electron energy is large enough
(45 keV or more for the Cu MLFC) to cross the dielectric layer between two electrodes.
When electrons are produced and stopped inside the same insulation layer, the e�ect on
the charge collection is proportional to the ratio of the electron projected path along the
longitudinal direction to the electrode separation. Unless in areas of strong gradient in
the deposited charge pro�le, the dielectric charge sharing is expected on average to be
well approximated by attributing all the charge to the closest channel. Under the same
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assumptions and taking into consideration the energy spectrum of secondary electrons
emitted by 160 MeV protons, the in�uence of secondary electron transport is expected to
be small.
In the following, results obtained without and with electron transport and charge sharing

will be presented and referred to as method 1 and method 2, respectively. For every set
of simulations, short test runs were performed to adjust the MC input parameters for
beam energy and beam energy spread to obtain the same position of the EM peak of the
proton beam as in the experimental data. In fact, in the absence of precisely calibrated
beam energy (E) and spread (σ), these are the quantities that can be varied in order to
reproduce the experimental condition. Moreover, the purpose of this investigation is to
assess the relative importance of EM and nuclear models but not the absolute validation
of the FLUKA range calculation in the considered MLFC detectors at the nominal initial
beam parameters. The �nal MC calculations with the chosen optimal input values were
then performed using 10 million protons for 5 independent runs.

3.2.3. Results and discussion

The selected values of the input parameters for reproduction of the two separate experi-
ments and for the two di�erent approaches explained in section 3.2.2 are: E1 = 160.1 MeV
and σ1 = 0.5 MeV (method 1) and E2 = 160.4 MeV and σ2 = 0.35 MeV (method 2) for
the CH2 MLFC, while E1,2 = 159.5 MeV and σ1 = 0.5 MeV and σ2 = 0.35 MeV for the Cu
MLFC. These values are rather consistent with the previous studies using other MC codes
(Gottschalk et al. 1999, Paganetti and Gottschalk 2003, Mascia et al. 2004, Henkner et al.
2009).
The results of method 1, scoring the charge produced by primaries and charged nuclear

secondaries, are shown in �gure 3.5A and 3.5B for the CH2 MLFC and in �gure 3.5C
and 3.5D for the Cu MLFC. This is done for both in a linear representation, where the
electromagnetic peak is suppressed by a factor of 0.04, as well as in a semilogarithmic one
to emphasize the EM peak and the tail. The vertical scale in the �gures, pC per incident
Giga-Proton (109), is absolute for both, the experiment and the simulation.
The results of method 2, which takes into account the e�ect of secondary electrons on the

simulated charge and the charge sharing in the dielectric layers, are shown in �gure 3.6A
and 3.6B for the CH2 MLFC and in �gure 3.6C and 3.6D for the Cu MLFC.
Finally, the comparisons of experimental data and FLUKA MC calculations, performed

by including or excluding the more detailed physics handling, but keeping the same input
beam energy parameters of method 2 for consistency, are reported in �gure 3.7 to appreciate
the impact of the electron (�gure 3.7(a)) and charge sharing contributions (�gure 3.7(b)).
Apparently no big di�erence is visible between the two investigated methods when looking

at �gures 3.5A and 3.5C. This is because method 1 implicitly accounted for the missing
correct handling of the physics via an arbitrary tuning of the beam momentum spread.
However, the di�erences can be appreciated in �gure 3.7, where the same input beam
parameters were used, thus suggesting that if the momentum spread in the experiment was
accurately known, only method 2, which comprises a more correct treatment of physics,
would correctly reproduce the data.
Since the nuclear secondaries from inelastic interactions should stop before reaching the
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Figure 3.5.: Experimental data (circles) and FLUKA MC calculations (line) of the CH2

(A, B) and Cu (C, D) MLFC set-up for method 1. The ordinate is absolute (no arbitrary
normalization). The abscissa shows the channel number. Left panel: linear scale (electro-
magnetic peak suppressed by a factor of 0.04), right panel: logarithmic scale. Figure from
(Rinaldi et al. 2011).

EM peak, the ratio of total charge in the build-up region to the charge deposited in the
entire spectrum from primary and nuclear secondaries can equal the probability of the
primary beam to undergo an inelastic nuclear reaction. The value of this ratio for the
simulation is about (17 ± 1 %) for the CH2 MLFC and about (19 ± 1 %) for the Cu
MLFC, considering as separation between the two regions the channel 48. These values
are in good agreement with the measured ones reported in Paganetti and Gottschalk
(2003). However, the arbitrary choice of the channel which divides the two regions can
in�uence the separation between the two processes. In tables 3.1, 3.2 and 3.3 some detailed
results of the simulations for both MLFCs are summarized, where all the interactions are
individually counted for the primaries and all the descendant particles. Table 3.1 displays
the percentages of di�erent interactions per primary proton, table 3.2 shows the number
of secondaries generated in inelastic reactions per primary proton and table 3.3 lists the
number of secondary interactions, including the elastic ones, created by low energy neutrons
per primary proton. These values agree substantially with Paganetti and Gottschalk (2003)
and ICRU (2000).
On the whole, FLUKA predicts the overall shape of deposited charge and agrees with

the data quite well. Nevertheless, although the more accurate implementation of method
2 improves the signal in the �rst channel, all the simulated approaches show a consistent
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Table 3.1.: Percentages of di�erent interaction channels per primary proton

CH2 MLFC Cu MLFC

inelastic interactions 18.6 % 20.4 %
elastic interactions 27.4 % 27.7 %
low energy neutron interactions (including the elastic ones) 307.04 % 42.3 %

Table 3.2.: Number of secondaries generated in inelastic reactions

CH2 MLFC Cu MLFC

proton 0.231 0.261
deuteron 0.044 0.033
tritium 0.008 0.004
helium-4 0.217 0.062
helium-3 0.018 0.002
neutron 0.102 0.384

Table 3.3.: Number of secondary interactions (including the elastic ones) created by low
energy neutron per primary proton

CH2 MLFC Cu MLFC

proton 0.195 0.011
neutron 3.058 0.421
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Figure 3.6.: Experimental data (circles) and FLUKA MC calculations (line) of the CH2 (A,
B) and Cu (C, D) MLFC set-up for method 2. The ordinate is absolute (no arbitrary normal-
ization). The abscissa shows the channel number. Left panel: linear scale (electromagnetic
peak suppressed by a factor of 0.04), right panel: logarithmic scale.

underestimation of the signal measured in the tail after the EM peak. The possible reasons
of these underestimations especially for the signal in the high channel numbers of the CH2

MLFC (cf. �gures 3.5 and 3.6) were analyzed in detail. In Paganetti and Gottschalk (2003)
it has been suggested that the measured signal beyond the Bragg peak in the CH2 MLFC
is not just noise but due to neutron-induced knock-on protons resulting in a +1 charge for
the proton and a -1 for the recoil. In general if the knock-on protons are generated and
then stop in the same channel the internal charge would be rearranged so that there is
no net charge registered. However a positive signal was claimed to be created beyond the
Bragg peak due to an imbalance between knock-on protons entering and leaving each sheet
because of the neutron �uence attenuation, resulting in a reduction of knock-on proton
yield in depth.
In the FLUKA calculations, this hypothesis was investigated, but a signi�cant imbalance

was not found as shown in �gure 3.8, where the charge di�erence between the knock-on
protons stopping and the ones leaving a recoil behind is shown for each channel. The
explanation is that, even if the neutron �uence decreases with depth and the maximum
energy and range of the recoil protons can reach values up to 90 MeV and 6 cm, respec-
tively, (cf. �gure 3.9), the average energy value is always below 26 MeV, which is the
minimum energy value that these protons need to cross one channel. The average range
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(a) FLUKA results with (green line) and without
(blue line) the secondary electrons contribution for
the Cu MLFC set-up.

(b) FLUKA results with (green line) and without
(blue line) the charge sharing in the dielectric layers
for the CH2 MLFC set-up.

Figure 3.7.: Comparisons of experimental data (circles) and FLUKA MC calculations (line)
to appreciate the impact of the electron transport (especially evident for the Cu MLFC, left)
and charge sharing e�ects (important for the CH2 MLFC, right), when using the same
beam energy and momentum spread for consistency. The ordinate is absolute (no arbitrary
normalization) and in linear scale (electromagnetic peak suppressed by a factor of 0.04). The
abscissa shows the channel number.

is therefore always below the dimension of one channel (about 0.6 cm) in the CH2 MLFC.
This conclusion is independent of the accuracy of the used MC code. In fact, in order to
reproduce the experimental data in the tail, a two orders of magnitude higher neutron �ux
would be necessary, which is beyond the MC uncertainties. Moreover, a good agreement
between the MC nuclear interactions reproduced by FLUKA and the experimental ones
were already observed (cf. tables 3.1, 3.2 and 3.3), thus assuring the consistency of the
presented analysis.
Moreover, �gure 3.10 illustrates the major contributions of the di�erent interaction chan-

nels to the simulated total charge in comparison with the experimental data. The positive
charge is due to protons and alpha particles stopping in electromagnetic interactions, in-
cluding those generated in the build-up region via nuclear interactions as well as the EM
peak of the primary beam. The negative charge, on the other hand, is due to the recoils left
behind in inelastic, elastic and low energy neutron interaction processes for each channel.
Thus, even if a small positive signal is predicted (roughly up to 0.3 pC/Incident Gigapro-

ton) beyond the EM range owing to the total stopping protons (cf. �gure 3.10), only a
net charge of about 0.001 pC/Incident Gigaproton remains due to the imbalance between
stopping and leaving neutron-induced knock-on protons, as estimated from �gure 3.8 for
the channels after the Bragg peak. Moreover, to this net charge additional charge signals
from other reaction channels has to be added, resulting in the signi�cantly lower total
charge detected in the last channels beyond the EM peak (cf. �gures 3.5, 3.6, and 3.10).
Although the validity of these investigations depend on the reliability of the FLUKA

models and deserve deeper investigations resolved for each speci�c reaction channel, the
underestimation may more realistically be due to the e�ect of a background. This back-
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Figure 3.8.: Resulting charge imbalance due to knock-on protons as a function of channel
in the CH2 MLFC, i.e. di�erence between positive charges of stopping protons and negative
ones due to leaving protons or corresponding recoils left behind. Figure from (Rinaldi et al.
2011).

ground, that must not necessarily be identical in the two MLFC experiments since they
were performed in di�erent years and with di�erent detector arrangement, can derive from
the electronic noise (Henkner et al. 2009). In �gure 3.11, the comparisons between the
experimental data and the MC calculations using method 2 are reported (left panel: CH2

MLFC, right panel: Cu MLFC), where a total charge integral background of 1.6%, meaning
0.04 pC/GigaProton for each channel, has been added to the FLUKA values to illustrate
the e�ect of a background addition. Considering this background estimation anyhow rea-
sonable, since also the integral charge is still conserved within 1%, it can be concluded
that the FLUKA results, after background addition, are in very good agreement with the
experimental data even in the �rst channels and in the tail region.

3.3. Conclusion

Investigations with the FLUKA MC code have been presented aiming to reproduce exper-
iments which measured the distribution of projected ranges of charged nuclear secondaries
of proton beams stopped in MLFCs. Since MLFC detectors measure charge rather than
dose, they give the possibility to distinguish between EM and nuclear interactions. As test
case, FLUKA was used to simulate data on 160 MeV protons stopping in CH2 and Cu
MLFCs. From the results shown, it can be concluded that the FLUKA MC code achieves
reliable results against experimental data. The MLFC provides a simple test of the overall
range distribution of charged nuclear secondaries predicted by a MC code, but it does not
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Figure 3.9.: Maximum and average energies [MeV] and ranges [cm] of recoil protons in the
CH2 MLFC. Figure from (Rinaldi et al. 2011).

check any particular reaction channel. Therefore, any event generator suitable for thera-
peutic applications should pass this test, which is necessary but not su�cient to guarantee
its correctness in every aspect.
Moreover, the results obtained with method 2 (i.e., including electron transport and

charge sharing in dielectric) also suggest that while the approach traditionally used in the
literature for other codes (method 1) is indeed su�cient for testing of the nuclear models, it
can be insu�cient to fully characterize the electromagnetic charge deposition in the region
of the Bragg peak for absolute settings of the initial beam parameters (i.e., energy and
momentum spread).
Further works could look at separate channels for processes of interest, e.g., β+ produc-

tion, and also implement the two di�erent kinds of MLFCs (i.e., CH2 and Cu) for similar
tests using a di�erent ion beam (e.g., carbon), where for the latter experimental data are
still unavailable.
Anyhow, this work, performed for therapeutic proton beams, nicely complements the

already done detailed benchmarking of the FLUKA nuclear models in carbon ion therapy,
further supporting the reliability of the code and thus justifying its usage in the thesis as
addressed in chapter 4.
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electromagnetically stopped proton (+)
ectromagnetically stopped alpha (+)
recoils from inelastic interaction (−)
recoils from elastic interaction (−)
recoils from low energy neutron interaction (−)
total simulated charge
experimental data

Figure 3.10.: Contributions of the di�erent interaction channels to the total charge. The
symbols (+) and (-) distinguish between the positive and negative charge contributions to
the total charge, respectively. (Rinaldi et al. 2011)

Figure 3.11.: Experimental data (circles) and FLUKA MC calculations (line) for method
2 of the CH2 (left panel) and Cu (right panel) MLFC set-ups when adding to the MC
data a total charge integral background of 1.6%. The ordinate is absolute (no arbitrary
normalization) in a logarithmic scale. The abscissa shows the channel number. Figure from
(Rinaldi et al. 2011).
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Chapter 4

PROMPT GAMMAS

In order to test the reliability of the FLUKA MC code for investigations on prompt gamma
imaging, comparisons against the currently only available experimental data for which de-
tailed description of the experimental set-up is given, were performed within this thesis (cf.
sections 4.1 and 4.2). Based on the promising results obtained for carbon ions, the FLUKA
MC code was then used as a sound tool to investigate speci�c physical e�ects for proton
beams, in view of future experimental validation when measured data will be available.
The simulations were performed for homogeneous and heterogeneous phantom con�gura-
tions to study the main features of the emerging prompt gammas and to understand how to
set up a detector system to obtain an optimum measured signal (cf. section 4.3). Finally,
�rst results for a real patient case are presented (cf. section 4.4).

4.1. Single-detector experiments at GANIL and GSI

This section presents the two series of experiments for the measurement of prompt photons
produced during 12C ion fragmentation which have been performed by the Lyon groups at
GANIL and GSI facilities (Testa et al. 2008, 2009, 2010, Le Foulher et al. 2010). These
experiments have been simulated with the FLUKA MC code within this thesis.

4.1.1. Experimental set-ups

The �rst experiment was performed with 95 MeV/u 12C ions at GANIL. The primary beam
directly hit a PMMA target (ρ = 1.2 g/cm3, 50 × 50 × 50 mm3). In the second experiment
at GSI, higher energy ions of 310 MeV/u bombarded a water target (12 × 25 × 20 cm3).
In �gure 4.1, the schemes of the two experimental set-ups are shown. In both experiments,
the targets were placed on a table which could be remotely moved along the beam axis
(cf. �gure 4.2). A BaF2 scintillator was used as detector. This scintillator was chosen for
its excellent time response and its high e�ciency for photon detection. In fact, BaF2 has
a time-resolution which is 4-5 times better than NaI(Tl) and an e�ciency rather constant
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Table 4.1.: Characteristics of the experimental set-ups.

GANIL (2008) GSI (2009)

Primary beam 12C 95 MeV/u 12C 310 MeV/u

Target 5×5×5 cm PMMA phantom 21×20×12 cm water �asks

Collimator (5×20×20)×2 cm Pb blocks (5×20×20)×2 cm Pb blocks

Neutron collimator � (15×20×40)×2 cm water phantom

Shielding (7.5×10×5)×2 cm Pb blocks (15×20×30)×2 cm Pb blocks

(3×20×10)×2 cm Pb blocks

Scintillator cyl BAF2 r=4.5 cm h=16 cm cyl BAF2 r=4.5 cm h=16 cm

Slit collimator 2 mm 4 mm

Slit schielding 1 cm 5 cm

Slit neutron collimator � 6 cm

Target-Scint distance* 68 cm 135 cm

Target-Coll distance 25 cm 20 cm

Target-Shielding distance 50 cm �

Target-NeuColl distance � 70 cm

*All the following distance are intended between the center of each volume.

in the photon energy range from 0.1 to 10 MeV. To optimize the collimation of the photon
component for the BaF2 detector, lead bricks were used. The set-up con�guration for both
experiments is shown in �gure 4.2. The characteristics of the experimental set-ups are
summarized in table 4.1.
The main di�erence between GANIL and GSI experiments is related to time pick-up

measurements where the beam structure plays a major role. In fact, the investigated ion
range veri�cation technique based on prompt gammas rests upon the measurement of the
time interval between the impact of the ions on the target and the photon detection by
the scintillators. This is done by means of a Time to Amplitude Converter module (TAC).
At GANIL, where the beam is sharply pulsed (beam pulse of 1 ns every 80 ns), the

cyclotron high frequency signal (suitably delayed) could be used as stop signal. The start
signal was provided by the BaF2 detection of a photon or neutron in an event by event
acquisition mode. The choice of taking the start signal from the detector was adopted to
minimize the number of void events for which a start signal does not have a corresponding
stop signal. An example of the time of �ight (TOF)-energy spectrum measured with
the BaF2 scintillator at the GANIL facility with a 95 MeV/u 12C ion beam is shown in
�gure 4.3. The beam intensity was monitored by the NaI(Tl) �3 inches� detector placed
at a large distance from the target, in order to obtain a counting rate proportional to the
beam intensity but nearly independent of target position and collimation. The NaI(Tl)
detector was calibrated with a Faraday cup at higher intensities. The beam intensity was
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4.1.1 Experimental set-ups

Figure 4.1.: Scheme of the GANIL (left) and GSI (right) experimental set-up. Figure
adapted from Le Foulher et al. (2010)

Figure 4.2.: Left: picture of GANIL experimental set-up. The target-detector distance is
set to 68 cm and a detection angle h = 90◦ (with respect to the beam direction). Figure
adapted from Testa et al. (2009). Right: picture of GSI experimental set-up. This �gure
illustrates the beam line exit window in front of the water �lled �asks (target), the lead
collimator (gray) with additional lead bricks shielding (blue and yellow), the BaF2 detector.
Two thin plastic trigger-scintillators (not present in this picture) were placed between the
vacuum window and the water target. Figure courtesy of the Lyon groups.
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Figure 4.3.: TOF-energy spectrum measured with the BaF2 scintillator at the GANIL
facility with a 95 MeV/u 12C ion beam. The red box marks data points attributed to
prompt gamma detections. Figure adapted from Testa et al. (2008).

set to about 1 nA (109 ions/s), in order to optimize the detector counting rates while
avoiding pile-up and dead-time e�ects.
Di�erently, at the SIS-GSI synchrotron, where an almost continuum1 extraction mode is

used (≈8 s extraction every ≈10 s), the TOF stop signal was provided by two thin plastic
scintillators intercepting the beam. During the carbon ion extraction, the intensity was
kept at a quite low value (≈ 105 ions/s) to allow an ion per ion triggering by the plastic
scintillators (their e�ciency was checked by comparing single and coincidence detection
modes). The scintillators were also used to measure the integrated number of ions hitting
the target. For both experiments, the detector readout (time and energy distributions)
was performed with conventional NIM electronics and a VME data acquisition system.

4.1.2. Prompt gamma scan pro�les

The more interesting and relevant results related to the GANIL and GSI single-detector
experimental set-ups are the scan pro�les reported in the upper part of �gure 4.4. Frag-
mentation occurs almost all along the ion path till 2-3 mm before the Bragg peak, where
nuclear reaction cross sections start dropping as the available energy in the projectile-target

1The beam of GSI has micropulsed structures of approximately Gaussian shape with FWHM of ≈20-60 ns
for periods of ≈250-450 ns (Parodi 2004).
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nuclei center of mass approaches the Coulomb barrier. This implies that the measurement
of the emitted prompt gammas could bring valuable information on the dose distribution
and the Bragg peak position. The prompt photon scan pro�les were obtained by inte-
grating the counts detected by the BaF2 scintillator in the prompt photon peak of the
TOF spectra (cf. red box in �gure 4.3) at various longitudinal positions (position zero
corresponds to the target entrance). The time integration interval was 1.5 ns centered on
the prompt photon peak.
The importance of the TOF discrimination technique is evident from the scan pro�les in

�gure 4.5. A photon energy threshold of 2 MeV was chosen to optimize the statistics and the
signal to background ratio. In the case of the scan obtained by integrating only the prompt
photon component of the TOF spectrum (red points), a correlation is observed between
the ion range (the Bragg peak position is marked by a dashed line) and the detected
photons. The increase of the gamma yield at the end of the ion path can be attributed to
an increase of the fragmentation cross section and photon emission multiplicity, when the
ion energy decreases. On the contrary, the scan pro�le obtained by integrating the entire
TOF spectrum (black points) is completely �at and therefore uncorrelated to the ion range.
This demonstrates the absolute need of TOF selection of the prompt gammas to obtain
photon scan pro�les correlated with the ion range when using the chosen BaF2 detector.
Indeed, it has to be noted that the signal to background ratio measured in the present
set-up was not yet optimized: more than 90% of the 1 liter volume of BaF2 detected only
background, which required a large quantity of lead shielding to be used, which in turn
created a high background (cf. �gure 4.3).

4.2. Monte Carlo simulations of the GANIL and GSI

experiments

4.2.1. GEANT4 simulations

Parallel to the experiments presented so far, MC simulations have been performed by the
Lyon groups in order to reproduce the measurements and to perform a benchmark of the
GEANT4 (version 9.1) code with measured data of prompt gammas created during nuclear
fragment de-excitation. The details of all these simulations can be found in Le Foulher et al.
(2010). The shape of the experimental pro�le is not perfectly reproduced by the GEANT4
simulations as shown in the bottom of �gure 4.4. In fact, for the GANIL experiment (cf.
left panel in �gure 4.1), the measured counting rates increase with the ion penetration
depth, while the simulated counting rates decrease. GEANT4 fails also to reproduce the
Bragg peak enhancement in the prompt gamma pro�le. Moreover, with the physics list
used in Le Foulher et al. (2010) (i.e., Shen formula, binary cascade model, Weisskopf-
Ewing model, photon evaporation channel and standard electromagnetic physics package),
the gamma evaporation models overestimate the total emission yield by a factor up to
∼12, as consistently observed in several experiments. Further developments of the models
handling the hadronic interactions in GEANT4 are highly desirable and currently ongoing
to �nally make GEANT4 a fully reliable simulation code. Nevertheless, comparisons of
the experimental data and GEANT4 toolkit results with other MC codes are of crucial
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Figure 4.4.: Longitudinal prompt photon scan pro�le obtained for the GANIL experiment
with 95 MeV/u 12C ions (left) and for the GSI set-up with 310 MeV/u 12C ions (right).
Comparison between the measured gamma pro�les at GANIL and GSI (top) and simulated
with GEANT4 (bottom). Figure adapted from Le Foulher et al. (2010).

Figure 4.5.: Example of TOF selection. Longitudinal scan pro�le obtained for GANIL
experiment with 95 MeV/u 12C ions. The origin of the longitudinal axis corresponds to the
target entrance position. The prompt gamma yield obtained with TOF selection (red points)
is strongly correlated to the ion path in the target, whereas the counting rate pro�le without
TOF selection (black points) is almost �at. The calculated Bragg peak position is given by
the dashed vertical line. Figure adapted from Testa et al. (2010).
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4.2.2 FLUKA results

Figure 4.6.: Details of the GSI experimental set-up implemented in FLUKA. The colored
regions indicate collimators (yellow), shielding blocks (green and red), target (gray), detector
(blue), as listed in table 4.1.

importance. For this reason, within this thesis, simulations using the FLUKA MC code
were performed to reproduce the two experiments. The results are presented in section
4.2.2.
Lately, these investigations on prompt gammas for imaging applications have been re-

inforced in the framework of the ENVISION (European NoVel Imaging Systems for ION
therapy, http://envision.web.cern.ch/ENVISION/) European project.

4.2.2. FLUKA results

The geometries shown in �gure 4.1 and described in table 4.1 were implemented in the
FLUKA simulations in order to reproduce the experimental set-ups. In particular, the
details of the GSI geometry as implemented in FLUKA are displayed in �gure 4.6.
For this work and all the following investigations on prompt gammas, the FLUKA devel-

opment version, kindly made available by the FLUKA collaboration, was used in a joint
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(a) GANIL set-up (b) GSI set-up

Figure 4.7.: (a) Comparison between experimental data (stars) and FLUKA results (open
circles) for the GANIL set-up with a beam of 95 MeV/n 12C ions onto a PMMA target. The
experimental data are multiplied by a factor of 1.35. (b) Comparison between experimental
data (stars) and FLUKA results (open circles) for the GSI set-up with a beam of 310 MeV/n
12C ions onto a water target. No normalization was applied here due to larger �uctuations.

research activity together with the code developer team at CERN. This version contains re-
cent developments relevant for the physics of prompt gammas emitted in the de-excitation
phase following nuclear fragmentation (cf. section 1.2.5). The new features are already
partially inserted in the released FLUKA version 2011.2.
The results of the comparison between experimental data and FLUKA simulations for

the GANIL and GSI set-ups are presented in �gures 4.7(a) and 4.7(b), respectively. These
plots show that simulations performed with FLUKA reproduce quite well the enhancement
of the prompt photon detection towards the end of the 12C ion range and more generally the
entire photon scan pro�les. Moreover, it has to be noticed that the GANIL experimental
data are e�ected by background noise visible in the �rst two data points. These have
been taken in the air just in front of the PMMA phantom where theoretically almost no
gammas are expected. The read-out signal can therefore only be attributed to noise. The
real detector e�ciency has not been taken into account in the simulations and the GANIL
experimental data are multiplied by a factor 1.35 to make them overlap.
In regard to the GSI set-up, it has to be remarked that the experimental results include

fewer data points compared to the GANIL experiment and show larger �uctuations due
to the low beam intensity and higher neutron background because of the increased beam
energy. The peak position can be roughly estimated although identifying an accurate
pro�le is di�cult. Therefore, limited conclusions can be drawn from comparison of these
data and the FLUKA results.
Overall, there is a reasonable correspondence between experimental and simulated data
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and it is thus concluded that, thanks to the recent improvements in the modeling carried
out by the developers, the FLUKA MC code already provides a sound tool to investigate
more detailed aspects of prompt gamma detection.

4.3. Prompt gammas to monitor range and density

variation

Some of the following investigations (Biegun et al. 2011) are being pursued within the
framework of a scienti�c collaboration between the RD&M, Delft University of Technol-
ogy (The Netherlands), the Maastro Clinic in Maastricht (The Netherlands), the LIP-
Laboratório de Instrumentação e Física Experimental de Partículas of Coimbra (Portugal),
the ISEC-Instituto Superior de Engenharia de Coimbra (Portugal) and HIT. The aim of
this collaboration is to study the physics related to prompt gamma experiments and in
particular its implications for the use in imaging applications. The interest is to understand
how to set up a detector system and to tune its parameters to obtain an optimum signal of
the gammas. To this end, use has been made of di�erent MC codes (FLUKA, GEANT4,
MCNPx) as independent tools to support the design of detectors and experiments. The
simulations using the development version of the FLUKA MC code, kindly made available
by the FLUKA collaboration, were performed within this thesis and, in the following, the
results are presented.
In these virtual experiments, proton pencil beams of di�erent initial energies impinging

onto PMMA phantoms were simulated. The complexity of the phantoms was successively
increased by adding various internal regions of di�erent materials. In all simulations,
gammas and neutrons were scored in a very thin (1 mm) perfect cylindric detector (i.e.,
having 100% detection e�ciency as well as perfect position and time resolution) as depicted
in �gure 4.8. The calculations were done with 20 · 106 primaries.

4.3.1. Investigations in a homogeneous phantom

In a �rst step, the most simple phantom geometry consisting of homogeneous PMMA was
adopted. This way, the in�uence of the gamma detection angle (cf. section 4.3.1.1), the
primary energy (cf. section 4.3.1.2), and the phantom density (cf. section 4.3.1.3) on the
gamma pro�les and the TOF and energy spectra was studied.

4.3.1.1. Angle of detection

In this section, the dependence of the measurable gamma and neutron yields on the angle
of detection is presented.
A 200 MeV proton pencil beam impinging on a homogeneous PMMA phantom (cf. �g-

ure 4.8) was simulated and the prompt gamma pro�les were detected with di�erent colli-
mation angles θ. The results are shown in �gure 4.9 for �ve di�erent detection angles of
±1◦ centered around θ = 30◦, 60◦, 90◦, 120◦ and 150◦. The collimation of photons is done
taking into account the angle of the gammas entering the ideal detector. The neutrons
remain uncollimated and are counted entirely in the simulations. From these �gures it is
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Figure 4.8.: Side view (left) and the Beam's Eye View (BEV, right) of the �rst set-up
simulated for the prompt gamma investigations. The incoming protons are assumed to be
monoenergetic and the beam shape is pencil-like. The cylinder PMMA target phantom has
a radius of 10 cm and a height of 30 cm. Figure adapted from Biegun et al. (2011).

clear that the dose pro�les match with a sharp and steep fall-o� of the prompt gamma
pro�les only in the case of a collimation angle around 90◦. Alternatively, �gure 4.10 shows
the angular distribution of both, gammas and neutrons, underlining that the former are
detected mostly around 90◦, while the latter occur mostly in the forward direction.
From the physics point of view, this correlation at 90◦ is justi�ed by the spatial relation-

ship between collimated detection and angular emission, the latter being isotropic in the
center of mass.
Moreover, collimation angles centered at 90◦ with di�erent apertures (89.9◦ < θ < 90.1,

89.8◦ < θ < 90.2, 89.7◦ < θ < 90.3◦, 89.5◦ < θ < 90.5◦, 89.3◦ < θ < 90.7◦, 87.0◦ < θ < 93.0◦)
are depicted in �gures 4.11 and 4.9(c).
The distal edges of the prompt gamma pro�les correspond remarkably well to those of

the proton delivered doses for narrow collimation angles until θ ' (90◦±1◦). Enlarging the
acceptance angle to θ = (90◦±3◦) (cf. �gure 4.11(f)), there is an increase in the prompt
gamma yields, but the correlation between the Bragg peak position and the fall-o� of the
prompt gamma pro�les is not so pronounced anymore. Indeed, this is not surprising since
a larger opening angle implies stronger spatial smoothing of the gamma pro�le. In all
following simulations, a detection aperture of (90◦ ± 1◦) was used.
Despite the observed spatial correlation, these graphs also reveal a very large neutron

background. Consequently, some form of neutron discrimination must be implemented to
obtain a measurable signal. Techniques like TOF tagging (Testa et al. 2008, Parodi et al.
2005, Crespo et al. 2007), pulse shape discrimination (Testa et al. 2008) or neutron shielding
(Min et al. 2006) could be a solution, at the expense of increased detector complexity.
It has to be taken into account that the total signal to noise (S/N) ratio is also de-

termined by statistical �uctuations in the photon signal, which improves with increasing
photon counts. Opening up the collimation angle increases the number of detected pho-
tons (improving S/N) but results in a shallower fall-o� of the measured prompt gamma
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4.3.1 Investigations in a homogeneous phantom

0 5 10 15 20 25 30
Depth [cm]

10-8

10-7

10-6

10-5

10-4

10-3

Y
ie

ld
 p

e
r 

p
ri

m
a
ry

proton 200 MeV, photon collimation angle 29.0 < θ < 31.0

neutrons
gammas

(a)

0 5 10 15 20 25 30
Depth [cm]

10-8

10-7

10-6

10-5

10-4

10-3

Y
ie

ld
 p

e
r 

p
ri

m
a
ry

proton 200 MeV, photon collimation angle 59.0 < θ < 61.0

neutrons
gammas

(b)

0 5 10 15 20 25 30
Depth [cm]

10-8

10-7

10-6

10-5

10-4

10-3

Y
ie

ld
 p

e
r 

p
ri

m
a
ry

proton 200 MeV, photon collimation angle 89.0 < θ < 91.0

neutrons
gammas

(c)

0 5 10 15 20 25 30
Depth [cm]

10-8

10-7

10-6

10-5

10-4

10-3

Y
ie

ld
 p

e
r 

p
ri

m
a
ry

proton 200 MeV, photon collimation angle 119.0 < θ < 121.0

neutrons
gammas

(d)

0 5 10 15 20 25 30
Depth [cm]

10-8

10-7

10-6

10-5

10-4

10-3

Y
ie

ld
 p

e
r 

p
ri

m
a
ry

proton 200 MeV, photon collimation angle 149.0 < θ < 151.0

neutrons
gammas

(e)

Figure 4.9.: Correlation between the depth-dose distribution of a 200 MeV proton beam
impinging on a homogeneous PMMA phantom and the detected prompt gamma pro�les
using di�erent collimation angles θ for the photon detection: (a) 29.0◦ < θ < 31.0◦, (b)
59.0◦ < θ < 61.0◦, (c) 89.0◦ < θ < 91.0◦, (d) 119.0◦ < θ < 121.0◦, (e) 149.0◦ < θ < 151.0◦.
Neutrons remain uncollimated and are counted entirely in the simulations.
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Figure 4.10.: Angular distribution of the detected gammas and neutrons.

pro�le. In fact, the accuracy by which the Bragg peak can be localized depends both on
the S/N and the slope of the gamma pro�le in the fall-o� region. During the design of a
detector and/or an experiment, a trade o� has to be made between signal strength and
pro�le shape.

4.3.1.2. In�uence of primary energy

To analyze the in�uence of the primary energy on the prompt gamma pro�les and the
TOF-energy spectra, proton pencil beams of 100, 150, and 200 MeV impinging onto PMMA
phantom were simulated according to the geometry reported in �gure 4.8. Following the
analysis presented in section 4.3.1.1, a collimation angle of 89◦ ≤ θ ≤ 91◦ for the prompt
gammas was used, while all neutrons impinging onto the annulus detector were accepted.
In �gure 4.12, the depth-dose distributions and the pro�les of the collimated prompt

gammas and uncollimated neutrons scored in the ideal detector are shown. It can be seen
that the photon yield per primary is around 5 · 10−6 and quite unchanged by the increase
in primary energy. The number of detected neutrons, on the other hand, increases with
higher beam energy. Regarding the pro�le shape, it can be observed that the distal edge
of the prompt gamma pro�les shifts in depth as the Bragg peak position according to the
primary beam energy
Moreover, the TOF spectra of prompt gammas and neutrons resulting from this set-up

are shown in �gure 4.13. The TOF is the total elapsed time between the generation of the
primary beam and the detection of the gamma (or neutron) in the detector. It is therefore
obtained summing two time components which depend on the distance traveled by the
primary beam particles in the stopping medium and by the gamma itself from the point of
emission to the place of detection. The �gure illustrates that for low proton beam energy
(e.g., �gure 4.13(a)), the gamma and neutron TOF spectra are clearly separated. In fact,
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Figure 4.11.: Investigation of the correlation between the depth-dose distribution of a
200 MeV proton beam on a homogeneous PMMA phantom and the detected prompt gamma
pro�les using di�erent collimation angle θ centered at 90◦ of the photons: (a) 89.9◦ < θ < 90.1,
(b) 89.8◦ < θ < 90.2, (c) 89.7◦ < θ < 90.3◦, (d) 89.5◦ < θ < 90.5◦, (e) 89.3◦ < θ < 90.7◦, (f)
87.0◦ < θ < 93.0◦. Neutrons remain uncollimated and are counted entirely in the simulations.
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(a) (b)

(c)

Figure 4.12.: Depth-dose distributions in the PMMA phantom and the pro�les of the col-
limated prompt gammas and uncollimated neutrons scored in the ideal detector of �gure 4.8
for three di�erent initial energies of the proton pencil beam: 100, 150, and 200 MeV.
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Figure 4.13.: TOF spectra of the collimated gammas and uncollimated neutrons escaping
the PMMA phantom and impinging onto the detector for proton beam at three di�erent
initial energies: 100, 150, and 200 MeV.

the TOF spectrum of the gammas is con�ned between 1 and 2 ns, while the TOF spectrum
of neutrons starts around 3 ns.
In the case of a pencil beam in a homogeneous phantom, the TOF dispersion of the

gammas is due only to the di�erent depths of the points of production of the gammas.
Counting only gammas emitted in a short depth interval would produce a much narrower
TOF distribution. If the beam energy is increased, both, the total yield and the overlap of
the neutron and gamma TOF spectra grow (cf. �gures 4.13(b) and 4.13(c) for 150 and 200
MeV proton beam, respectively). These plots underline the importance of detectors with
a high time resolution (on the order of 1.0 ns or less) for the TOF technique, in particular
at higher energies. Moreover, detectors enabling the use of pulse shape discrimination for
gamma/neutron separation could be utilized.
Additionally, in �gure 4.14, the TOF-energy spectra of the collimated gammas and uncol-

limated neutrons scored in the detector are visualized. These scatter plots show that there
is a maximum energy of the detected prompt gammas at around 10 MeV. The prompt
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photon peak, arising at a few ns, broadens with the increase of the proton beam energy.
Moreover, the di�erence to the experimental TOF-energy spectra (cf. �gure 4.3) is evident,
where a huge background is present due to the shielding and the experimental environment
(e.g., walls of the treatment room).

4.3.1.3. Density changes

The further simulations and analyses concern density changes due to morphological modi-
�cations in the target possible in real radiotherapy scenarios (e.g., tumor or normal tissue
swelling, breathing). In fact, during patient treatment for example the occurrence of ede-
matous swelling of the tumor is possible typically within the �rst three days of treatment
(Cameron et al. 1969, Biegun et al. 2011), with consequent accumulation of additional
material in the beam path producing potential distal tumor underdosage.
For this purpose, the density of the PMMA phantom depicted in �gure 4.8 has been

increased (ρ1 = ρ0 + 5%ρ0) and decreased (ρ2 = ρ0 − 5%ρ0) by a factor of 5% (ρ0 =
1.19 g/cm3). The resulting shift of the Bragg peak is clearly observed and the prompt
photon pro�les are found to change accordingly, as presented in �gure 4.15.

4.3.2. Investigations in heterogeneous phantoms

The next step was to study the potential of this method under the in�uence of local
morphological changes. In fact, another possible biological mechanism that might disturb
the dose distribution are empty cavities in the head �lled with mucus and/or in�amed tissue
(edema). This may arise as a response of healthy and tumor tissues to the consecutive and
fractionated irradiations (Denham and Hauer-Jensen 2002, Biegun et al. 2011). All these
potential morphological modi�cations may change the range of the ion beam.
For this purpose, a bone-tumor-like geometry before (cf. upper panel of �gure 4.16) and

after (cf. lower panel of �gure 4.16) the formation of an edema (treated as water) in an
air cavity was simulated.
Depth-dose distributions and the pro�les of the collimated prompt gammas and uncol-

limated neutrons scored in the ideal detector for two di�erent energies (i.e., 150 and 200
MeV) of the proton pencil beam are shown in �gure 4.17. Within the limitations given
by statistical noise, the pro�les of the collimated prompt gammas are observed to follow
reasonably well the depth-dose distributions of the primary protons.
More interesting for these two geometries (cf. �gure 4.16) are the TOF spectra presented

in �gure 4.18 for two di�erent primary energies (i.e., 150 and 200 MeV). In addition
to the considerations presented in section 4.3.1.2 for the homogeneous phantom, in a
heterogeneous phantom the total TOF distribution of the gammas is not only due to the
di�erent depths of the points of production of the gammas but also due to the di�erent
densities of the traversed materials. This phenomenon is well visible in �gure 4.18 for
the considered phantom with discrete zones of di�erent densities. In fact, the total TOF
spectra are composed of several peaks centered around di�erent points on the time axis each
showing some dispersion. The di�erent positions of the peaks are due to the characteristic
times needed by the collimated gammas to traverse the di�erent materials on their way
to the detector, while, as stated above, the dispersion of the peak is due to the di�erent
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(a) (b)

(c)

Figure 4.14.: Two-dimensional spectra of the energy deposited in the detector as function
of TOF of the collimated gammas and uncollimated neutrons escaping the PMMA phantom
and impinging onto the detector for proton beam at three di�erent energies: 100, 150, and
200 MeV.
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Figure 4.15.: Depth-dose distribution (black) and the pro�les of the collimated prompt
gammas scored in the ideal detector for three di�erent energies of the proton pencil beam:
100, 150, and 200 MeV. Prompt gammas pro�les of PMMA phantom with density ρ0 =
1.19 g/cm3 in blue, 5% higher density ρ1 = ρ0 + 5%ρ0 in red and 5% lower density ρ2 =
ρ0 − 5%ρ0 in green.
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Figure 4.16.: Set-ups simulated for the investigations in heterogeneous phantoms. The
incoming protons are assumed to be monoenergetic and the beam shape is pencil-like. The
cylinder PMMA target phantom has a radius of 10 cm and a height of 30 cm. Additionally,
the simulated geometries include a bone tumor before (upper panel) and after (lower panel)
the formation of an edema, treated as water, in an air cavity. Figure adapted from Biegun
et al. (2011).

depths of the points of production of the gammas.
Summarizing, it can be stated that the prompt gamma scan pro�les are sensitive to

density and morphological changes in phantoms. The detection of collimated gammas can
be potentially used as indicators for these morphological parameters. Further studies will
be needed to assess the feasibility of TOF discrimination techniques.
Moreover, in all of the presented simulations, the neutrons impinging onto the detec-

tor were collected with 100% e�ciency and without considering any angular collimation.
Therefore, the neutron pro�les obtained in this simulation study represent the worst case
scenario. In fact, for example, large scintillator detectors (e.g., BaF2 with approximately
5 dm3 active volume) have a measured detection e�ciency lower or equal to 20% for fast
neutrons (E ≥ 100 MeV). This e�ciency drops down in the case of neutrons with infe-
rior energy (Gunzert-Marx et al. 2005). Finally, it must also be stated that no detector
response was simulated at this stage.

4.4. Simulations in a real patient

The investigations presented in section 4.3 were performed for pencil beams impinging
onto phantoms of di�erent complexities. In this section, �rst results for a real patient case
treated in the last months at HIT are presented.
One objective is to check the validity of the conclusions drawn from the previous sim-

ulations of relatively simple geometries concerning collimated gamma pro�les (cf. sec-
tion 4.4.1) and TOF spectra (cf. section 4.4.2). In particular, an interesting aspect is
to compare cumulative gamma pro�les to the dose delivered by an extended treatment
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Figure 4.17.: Depth-dose distribution and the pro�les of the collimated prompt gammas
and uncollimated neutrons scored in the ideal detector for two di�erent energies of the proton
pencil beam: 150 and 200 MeV. A bone-tumor-like geometry before (a,b) and after (c,d) the
formation of an edema in an air cavity were simulated.
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Figure 4.18.: TOF spectra of the collimated gammas and uncollimated neutrons escaping
the PMMA phantom with a bone-tumor-like geometry before (a,b) and after (c,d) the for-
mation of an edema in an air cavity and impinging onto the detector for proton beam at two
di�erent energies: 150 and 200 MeV.
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Figure 4.19.: 2D projection of the patient head with a sketch of the delivered treatment
plan superimposed as color wash display for a cranial �eld. The red arrow and blue line
indicate the two subsets of the treatment plan that were used for the simulations.

�eld (SOBP). Finally, a �rst approach is introduced to quantitatively correlate the gamma
pro�le and the Bragg peak position (cf. section 4.4.3).
For these studies, patient CT information was imported into the FLUKA MC code and

also the active ion beam delivery scanning of HIT (cf. section 1.4.3), was simulated (Parodi
et al. 2007, 2010). As in the earlier calculations, the ideal cylindric detector set-up was
employed. Figure 4.19 shows a 2D projection of the patient head with a sketch of the
delivered treatment plan superimposed as color wash display. To obtain su�cient gamma
statistics, approximately 107 primary particles are needed for each raster point and IES.
For the sake of reasonable computational time, two simpler subsets of the treatment plan
were used. The �rst contains the central positions of all IESs, spanning a range of 34
proton beam energies from 69.06 MeV to 139.37 MeV, corresponding to the beam passing
through the isocenter. This is indicated by the red arrow in �gure 4.19. The second subset
includes 11 laterally displaced beams belonging to one single IES of 134.04 MeV proton
beam energy, as schematically indicated by the blue line in �gure 4.19.

4.4.1. Prompt gamma pro�les

For illustrative purpose, �gure 4.20 shows the depth pro�les for three selected IESs out
of the �rst subset of the treatment plan corresponding to three di�erent energies of the
proton beam along the red arrow in �gure 4.19, one at the beginning (69.06 MeV), one in
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4.4.2 TOF spectra

the middle (105.43 MeV), and one near the end (134.06 MeV) of the energy range. As in
all the following pro�les, the beam is delivered from the right, thus moves towards negative
depth, and enters into the patient head at around z = 8 cm. As expected, the pro�le of
collimated gammas follows the depth-dose distribution, slightly increasing near the Bragg
peak. Also, the yield of uncollimated neutrons rises with increasing beam energy.
To observe the correspondence of the SOBP from the considered subset of the treatment

plan and the corresponding cumulative gamma and neutron pro�les, all single gamma and
neutron pro�les were summed up and normalized by the number of primaries. This is
presented in �gure 4.21. It should be noted that the fall-o� of collimated gammas in the
tail of the SOBP is about one order of magnitude weaker than the fall-o� of the SOBP
itself.

4.4.2. TOF spectra

The TOF spectra for three selected IESs out of the �rst subset of the treatment plan,
corresponding to three di�erent energies (i.e., 69.06, 105.43, and 134.06 MeV) of the proton
beam along the red arrow in �gure 4.19, are shown in �gure 4.22. It can be observed that
even in the case of a highly heterogeneous head the gamma peak is still well separated
from the neutron signal, especially for lower beam energies. While the height of the gamma
peak changes only slightly, the neutron spectrum increases by about one order of magnitude
between the lowest and highest energy. Interestingly, the gamma peak is shifted by about
15 ns comparing the lowest and highest beam energy, while its width remains relatively
constant. This is explained by the fact that the real beam simulated here traverses some
distance in air before entering the patient. The resulting additional time causes a shift in
the TOF spectra depending on the beam energy. Since the distance outside the patient
is comparatively larger than the distance traveled in the head, the shift is much larger
compared to the width of the gamma TOF peak.
This e�ect becomes clearer in �gure 4.23 where a scatter plot indicates the TOF and

depth of all detected collimated gammas and uncollimated neutrons. The gammas appear
on the leftmost edge which corresponds to the gamma peak found to the left of the neutron
signal in the TOF spectra (cf. �gure 4.22). Moreover, the edge is slightly tilted to the
left illustrating the depth dependence of the gamma TOF in the patient head. These
considerations are summarized in �gure 4.24, where the mean gamma TOF and the width
of its peak in the spectrum are given as a function of the proton beam energy.
To estimate the contribution to the TOF by the prompt gammas traveling from the

point of production to the detector, the mean gamma TOF was determined for the 11
di�erent lateral positions (i.e., di�erent distances to the detector) of the second subset of
the treatment plan (i.e., all within the same IES along the blue line in �gure 4.19). The
results are depicted in �gure 4.25 and demonstrate that the photons contribution to the
TOF is negligible compared to that of the primary particles as described above.

4.4.3. Correlation of gamma pro�le and Bragg peak position

While �gure 4.21 showed a comparison of the SOBP and the cumulative gamma yield, it
might be desirable to deduce quantitative information about the longitudinal Bragg peak

79



Prompt gammas

(a) (b)

(c)

Figure 4.20.: Depth-dose distribution and the pro�les of the collimated prompt gammas
and uncollimated neutrons scored in the ideal detector for three di�erent energies of the
proton beam (i.e., 69.06, 105.43 and 134.06 MeV), con�ned to the central beam axis in the
patient head (cf. red arrow in �gure 4.19).

80



4.4.3 Correlation of gamma pro�le and Bragg peak position
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Figure 4.21.: SOBP of the �rst subset of the treatment plan (cf. red arrow in �gure 4.19)
in arbitrary units and the corresponding cumulative pro�les of collimated gammas and un-
collimated neutrons in yield per primary.

positions from the single pencil beam resolved gamma pro�les. One characteristic feature
of the gamma pro�le is its fall-o� near the Bragg peak. An intuitive way to quantify its
position is to calculate the spatial derivative of the gamma pro�le. Since the pro�le data
are a�ected by small scale statistical noise, smoothing was necessary before performing
such an operation. The smoothing is done by calculating for each point of the gamma
pro�les the mean value within its twenty (ten to the right and ten to the left) neighboring
points. As expected, this approach diminishes the statistical noise but also alters the shape
of the curve2. One simple criterion was then to determine the position of the maximum
of the derivative pro�le which was again smoothed, using the already described approach,
to avoid mis-detections due to noise. Figure 4.26 shows these derivative pro�les for three
selected beam energies (i.e., 69.06, 105.43 and 134.06 MeV) out of the �rst subset of the
treatment plan (cf. red arrow in �gure 4.19). For comparison, the gradient pro�les were
normalized to the height of the Bragg peak.
To obtain an impression on how well the gamma fall-o� correlates with the Bragg peak

position, both are depicted as a function of the 34 beam energies (i.e., from 69.06 to
139.37 MeV) of the �rst subset of the treatment plan in �gure 4.27. Clearly, the two posi-
tions do not exactly match, yet heuristically they do show a quite good spatial correlation.
However, to use the gamma pro�le for tracing the Bragg peak position, more detailed
and quantitative analyses are needed. In particular, since the smoothing operation alters
the pro�le shape, the position of maximum gradient will potentially depend on the spe-
ci�c convolution approach used for the smoothing. Moreover, it should be noted that the

2The damping e�ect of the smoothing operation on a curve depends on its second derivatives. Regions
of large curvature are altered in shape more strongly.
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Figure 4.22.: TOF spectra of the collimated prompt gammas and uncollimated neutrons
scored in the ideal detector for three di�erent energies of the proton beam (i.e., 69.06, 105.43
and 134.06 MeV) along the central beam axis in the patient head (cf. red arrow in �gure 4.19).
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4.4.3 Correlation of gamma pro�le and Bragg peak position

(a) (b)

(c)

Figure 4.23.: Depth-TOF scatter plots of the collimated prompt gammas and uncollimated
neutrons scored in the ideal detector for three di�erent energies of the proton beam (i.e.,
69.06, 105.43 and 134.06 MeV) along the central beam axis in the patient head (cf. red
arrow in �gure 4.19). Note that the depth on the y-axis indicates the longitudinal position
in the detector.
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Figure 4.24.: Mean gamma TOF as a function of beam energy (red line) along the central
axis in the patient head (cf. red arrow in �gure 4.19). The dashed lines indicate the width
of the gamma peak in the TOF spectrum and were calculated as standard deviation of the
peak centered around its mean value.
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Figure 4.25.: Mean gamma TOF (blue circles), plus (red upward triangles) and minus (red
downward triangles) the width of its peak in the spectrum, calculated as standard deviation
of the peak, as functions of the lateral position in the patient head (i.e., all within the same
IES along the blue line in �gure 4.19).

84



4.4.3 Correlation of gamma pro�le and Bragg peak position
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Figure 4.26.: Depth-dose distribution, pro�les of the collimated prompt gammas and un-
collimated neutrons, and derivative pro�les obtained from smoothed gamma pro�les scored
in the ideal detector for three di�erent energies of the proton beam (i.e., 69.06, 105.43 and
134.06 MeV) in the �rst subset of the treatment plan (cf. red arrow in �gure 4.19). It should
be kept in mind that the pro�les were rescaled to arbitrary units for illustrative purpose.
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Figure 4.27.: Position of fall-o� in gamma pro�le determined from the maximum of the
derivative pro�le (green squares) and position of the maximum of the Bragg curve (black
triangles) as a function of beam energy for the 34 energies in the �rst subset of the treatment
plan (cf. red arrow in �gure 4.19).

derivative is very sensitive to small scale noise and, therefore, more research on robust
de-noising methods is needed once experimental data will be available.
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Chapter 5

HEAVY ION COMPUTED

TOMOGRAPHY

This chapter presents the experimental investigations carried out to address the feasibility
of transmitted high energy 12C ions for low dose 2D and 3D imaging (cf. section 2.4).
Ion radiography and its extension to Heavy Ion Computed Tomography (HICT) implies
that the patient has to be irradiated before or in between (in this case only radiography)
the treatment with a small �ux of ions of initial energy higher than the one used for
therapy, such that the exit range or energy can be measured. This technique aims at
evaluating the correct patient positioning and verifying the ion range before or in between
the treatment. In particular, the distribution of WEPL in the patient reconstructed from
the measurement of the residual range of an energetic ion beam traversing the target could
be directly used for ion treatment planning without resorting to the usage of external
X-ray radiation and semi-empirical HU-WEPL calibration curves (cf. section 1.5.1 and
�gure 1.20 therein). Moreover, a radiographic check of the range uncertanties in between
the treatment becomes crucial in the presence of organ motion (e.g., due to respiratory
breathing).
Initially, the clinical feasibility of HICT at HIT was addressed (cf. section 5.1.1). Then,

experimental data were taken with radiographic �lms at di�erent angles and reconstructed
using a backprojection algorithm, supporting the feasibility of HICT at HIT (cf. sec-
tion 5.1.2). Following these encouraging results, a �rst prototype of a dedicated detector
system, a stack of ionization chambers with newly acquired electronics, has been assembled
and characterized for experimental investigations (cf. sections 5.2 and 5.3). Details and
results are shown in the following (cf. sections 5.4, 5.5, and 5.6).
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Figure 5.1.: Calculated initial carbon ion beam energies, displayed in MeV/u in the rain-
bow color bars, needed to perform transmission imaging in the head case for two di�erent
projection angles of 0◦ on the left and of 90◦ on the right. (Rinaldi et al. 2010)

5.1. Proof of principle of HICT

5.1.1. The clinical feasibility

In a �rst step, the clinical potential of the HICT was studied starting from CT data of
patients that were treated with carbon ions at GSI during the pilot project. Calculations
of the Water Equivalent (WE) thicknesses and beam energies needed to perform the HICT
for head, prostate, and sacral cases were done using an own-written MATLAB routine.
This algorithm, �rst of all, converts the HU map of a patient into a WE map using the
semi-empirical HU-WEPL calibration curve (cf. �gure 1.20 in section 1.5.1). Additionally,
it derives the initial energy of the primary ion necessary to completely traverse the patient
thickness expressed in WE limiting the patient exposure to the plateau region of the Bragg
peak in order to minimize the delivered dose.
The resulting carbon ion beam energies calculated to be needed for transmission imaging

in the head cases are shown in �gure 5.1 for two di�erent projection angles of 0◦and 90◦.
In these cases, the energy values required are in a range between 250 and 400 MeV/u.
Therefore, using the HIT accelerator, which is able to accelerate carbon ions up to 430.10
MeV/u, it is possible to perform the HICT for head cases.
For the prostate and sacral cases, carbon ion beams of up to 500 MeV/u are needed (cf.

upper-left panel in �gure 5.2) for the lateral beam directions, which are normally used
for treatment (i.e., projection angle of 0◦), due to the high density bone structures in the
beam path. However, it is possible to decrease the energy values by roughly 100 MeV/u
via a proper reduction of the beam projections trying to skip the pelvic bone structures,
for example avoiding beam angles in the [0◦, 25◦] interval. Examples for more feasible
projections with angles of 90◦and 60◦are also depicted in �gure 5.2.
These results con�rmed that, using the HIT accelerator, it is possible to perform HICT

for head cases, and even for prostate and sacral cases via a proper reduction of the beam
projections trying to skip the dense bony structures in the hips (Rinaldi et al. 2010).
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5.1.2 The experimental proof of principle

Figure 5.2.: Calculated initial carbon ion beam energies, displayed in MeV/u in the rainbow
color bars, needed to perform transmission imaging in the prostate/sacral case for di�erent
projection angles of 0◦ (left) and 90◦ (right) on the top and 30◦ (left) and 60◦ (right) on the
bottom. (Rinaldi et al. 2010)

5.1.2. The experimental proof of principle

The experimental feasibility of the HICT technique was �rst investigated via measurements
acquired using standard radiographic �lms at HIT. The experiment was performed using
a laterally extended �eld (200 × 30 mm2) of monoenergetic 12C ions with an initial energy
of 396.29 MeV/u and a beam spot with a full width at half maximum (FWHM) of 3.5 mm
delivered with a lateral (∆x) and vertical (∆y) step of 1 mm. The irradiated phantom was
a PMMA cylinder of 80 mm radius R, as depicted in �gure 5.3, with �ve tissue equivalent
rods (one Gammex insert of PMMA, two of Air, one of Lung and one of Cortical Bone)
with a radius r of 14 mm. The phantom has been centrally positioned in the isocenter
of the treatment unit. The data were acquired with Kodak X-Omat V �lm (Spielberger
et al. 2001), a classical silver bromide emulsion commonly used in conventional radiation
therapy. The �lms were arranged perpendicular to the ion beam just after the phantom.
Prior to the experiment, a calibration irradiation at di�erent dose levels was performed to
deduce a dose-response curve. The radiographic projections were acquired by rotating the
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Figure 5.3.: The PMMA cylindrical (R = 80 mm) phantom with �ve tissue equivalent rods
(r = 14 mm) of PMMA (1 rod), Air (2 rods), Lung (1 rod) and one Cortical Bone (1 rod).
The values written on the Gammex inserts indicate the electron density relative to water
(ρwe ).

Figure 5.4.: Examples of data acquired under di�erent projection angles (left: 0◦, right:
90◦) using standard radiographic �lms measured at HIT.

phantom from 0◦ to 180◦ in steps of 7.5◦. Examples of the acquired experimental data for
di�erent angles of the phantom position are shown in �gure 5.4.
After irradiation, the �lms were developed with a KodakM35 processing machine, using

DX31 as developer and FX31 as �xer components. A simple backprojection algorithm
without any �lters in Fourier space was used for the tomographic reconstruction.
The experimental results were also compared with FLUKA MC (cf. section 3.1) calcu-

lations. However, in order to perform this comparison, it was nececessary to include in
the simulations the complex dependence of the �lm response on particle type and energy
(Spielberger et al. 2001, 2002) through the �lm e�ciency.
In fact, as discussed in Geiÿ et al. (1997), on the macroscopic scale �lms saturate at

high doses because of the �nite number of sensitive grains in the emulsion, while on the
microscopic scale saturation e�ects do occur at high local doses. Therefore, due to the
di�erent spatial distribution of ionization events, �lms respond di�erently to irradiation
with photons or ions, showing also dependence on the ion charge and energy. This be-
haviour becomes relevant in heavy ion therapy, where dose distributions are composed by
the superposition of di�erent beam energies. In addition, fragmentation processes of the
primary beam in the absorbing material producing lighter ions of di�erent atomic numbers
and energies have to be taken into account (cf. section 1.2.5).
For these reasons, the approach described in Spielberger et al. (2001) was adopted. First
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5.2 Dedicated experimental set-up

of all, this method proved experimentally that, in general, the shape of the dose-response
curves for heavy ions and high-energy photon radiation follows a purely exponential func-
tion, which is comparable to a single-target single-hit Poisson distribution:

OD(D) = ODmax[1− e−mD]

where ODmax is the saturation optical density and m the exponential slope (James and
Mees 1977). Additionally, this approach expresses the response of �lms to particle irra-
diation depending on ion charge Z and energy E (mHI(Z,E)) relative to the response to
Co-60 photon radiation (mCo−60), yielding the relative �lm e�ciency η(Z,E) independent
of the dose level as:

η(Z,E) =
mHI(Z,E)

mCo−60

This change in the �lm e�ciency depending on ion type and energy is due to a variation
of the spatial energy distribution pattern, which can be explained by the particle track
structure, as outlined in section 1.3.
Following this approach, therefore, the dose scored in the simulations was weighted using

the relative �lm e�ciency factor, used by TRiP (cf. section 1.4.3, Krämer et al. 2000), for
every particle type and energy to correctly estimate the dose-response.
The reconstructed image from the measurements with radiographic �lms shown in �g-

ure 5.5(a), re�ecting the response from the entire mixed radiation �eld without the discrim-
ination of primary and secondary particles, could be well reproduced by the MC simulation
of the experiment (cf. �gure 5.5(b)), accounting for the particle and energy dependent �lm
e�ciency based on a particle track-structure model (Spielberger et al. 2002).
Moreover, the MC study of the calculated reconstructed image for an ideal detector

response taking into account only the contribution due to primary carbon ions showed very
encouraging results for HICT (�gure 5.6). Thus, this �rst proof of principle experiment
motivated new e�orts for the investigation of improved detection systems (cf. section 5.2).

5.2. Dedicated experimental set-up

The dedicated set-up used for HICT experiments is described in the following and depicted
in �gure 5.7. The detector, consisting of a stack of 61 parallel-plate ionisation chambers
(PPICs), is presented in section 5.2.1. It has been equipped with newly acquired electronics
(cf. section 5.2.4) for a real-time data acquisition during the scanned beam delivery. The
experiments have been carried out at the HIT facility. A short summary of elements
relevant to this work is given in sections 5.2.2, 5.2.3 and 5.2.5.

5.2.1. ICs stack

Advantages of revealing the range rather than the residual energy in HICT applications
motivated the choice of an ICs stack as detector (cf. section 2.4). The prototype has
been set-up in collaboration with colleagues from GSI (Voss et al. 2010) and is based on
a detector system using a gaseous active volume. This helps to minimize e�ects which

91



Heavy Ion Computed Tomography

(a) (b)

Figure 5.5.: (a) Reconstructed image from the measurements with radiographic �lms at
HIT re�ecting the response from the entire mixed radiation �eld without the discrimination of
primary and secondary particles. (b) Calculated reconstructed image from the MC simulation
of the experiment reproducing the �lm e�ciency depending on particle type and energy based
on the particle track structure.

Figure 5.6.: Calculated reconstructed image for an ideal detector response taking into
account only the contribution due to primary carbon ions.

92



5.2.1 ICs stack

Figure 5.7.: Experimental set-up: stack of parallel-plate ICs with newly acquired electronics
in the experimental room at HIT.

are strongly linked to the nature and the linear energy transfer of the traversing particles.
Examples are the impact of recombination losses on the achievable detector signals and
the composition of the mixed radiation �eld with respect to the dosimetrically relevant
energy loss. Both e�ects are minimized using interaction volumes composed of low-density
material if compared to high-density solid state detector material (e.g., silicon).
Considerable preparatory work has been done in the framework of the GSI pilot project

looking closely into the feasibility of such a system for 3D dosimetry (Brusasco et al.
2000). Whereas the stack of PPICs can serve to measure the depth-dose pro�le of a single
or spread-out Bragg peak in steady (Voss et al. 2006) or scanned-mode (Brusasco et al.
2000), the combination with appropriate low-mass position detectors (Voss et al. 2007)
allows to do at least a 2 1/2 - D analysis by projecting the initial position into the active
volumes of the ICs downstream.
ICs give an output resulting from the collection of the charge created in a gas volume

crossed by ionizing radiations. In the simplest con�guration, the gas volume is included in a
pair of electrodes that create an electric �eld in the gas by application of an external voltage.
When ionizing radiation traverses the detector, it excites and ionizes the gas molecules. The
created ions and electrons drift along the electric �eld towards the electrodes where they
are collected. In the absence of an applied voltage, no net current should �ow and the ions
and the electrons which are created by ionization in the gas disappear by recombination
or di�usion. As the voltage increased, the resulting electric �eld begins to separate the
ion pairs and the recombination diminishes. The measured current thus increases with the
voltage, approaching a �at plateau corresponding to the region of ion saturation in which
an almost complete collection of the produced charge would be achieved. The current
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collected by the chambers is proportional to the number of ionization interactions per unit
time that took place in the gas, each resulting in the creation of an ion-electron pair. The
mean value of the energy necessary to create an ion-electron pair in the gas, calledW value
(Brusasco et al. 2000), is approximately a constant characteristic of the gas with variation
of only a few percent depending on the interacting particle and its energy (if larger than a
few MeV/u). By de�nition, the W value takes into account also the percentage of energy
that, for each created ion pair, goes into electronic excitation of the gas atoms or molecules,
without resulting in ionizations. With the W value as division factor, the collected charge
in the chamber (Q) is directly proportional to the energy deposited in the gas that is related
to a modi�cation in the electronic structure of the gas atoms and it can be calculated from
the following formula:

Q = N · dE
dx

∣∣∣∣
gas

· ∆xgas
Wgas

e

(5.1)

where N is the number of particles contributing to the signal registered by the electronics,
dE/dx|gas and ∆xgas are respectively the energy loss and the thickness of the considered gas.
The detector system investigated in this work is based on a stack of subsequent large-

area PPICs interleaved with removable absorber plates of homogeneous thickness serving
as high-voltage electrodes and range degrader at the same time. The active cross section
of each IC has been chosen to be 300 × 300 mm2 in order to allow for a scanned carbon ion
beam �eld size of at least 250 × 250 mm2. The collecting gas gap has a thickness of 6 mm
and it is, for easier operation, �lled with air, yielding almost equal performances (Brusasco
et al. 2000) in comparison to other gas (e.g., N2). The collecting electrodes are aluminized
kapton foils of 20 nm. The absorber plates consist of 3 mm slabs of PMMA, since it
consists of elements with a low atomic/mass number, similar to tissue. The thickness of
the absorbers gives the nominal resolution in depth of the ICs stack and the overall sum (3
mm times 61 ICs) de�nes the maximum range covered (' 21 cm in WE) by the detector.
Moreover, the electrodes are supplied with a high voltage of 1000 V and each IC section has
a capacitance of 80 pF. This value is quite large and it has to be taken into account when
choosing the right electronics. The system is kept modular and can be easily upgraded
with respect to the sequence, composition and thickness of the active layers of the detector
units, as well as the absorber plates.
In the use of an ICs stack for absolute dosimetry applications, as done in Brusasco et al.

(2000), it is crucial to precisely relate the measured charge to the delivered dose. In a
HICT application, the ICs stack functions as a range telescope. The relevant information
is encoded in the position of the Bragg peak estimated from the channel number of the
maximum ICs current. In this sense, the signal of 61 ICs gives a discretized approximation
of the theoretical Bragg curve. The absolute level of the ICs current is insigni�cant as long
as the maximum signal position can be precisely determined.

5.2.2. Details of the scanned ion beam at HIT

This section resumes what has already been outlined in section 1.4.3 and clari�es more
details about the beam delivery system used at HIT for ions accelerated with a synchrotron
since it plays a fundamental role for the HICT technique.
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5.2.2 Details of the scanned ion beam at HIT

Figure 5.8.: Sketch of the raster scan beam delivery system (top) and the on-line control
of the beam delivery via the BAMS in the beamline (bottom). Moreover, the red points on
the Bragg curve (top right) show the digitalized signal detected by the ICs stack (bottom
right).

In the raster scan technique (Haberer et al. 1993), the beam resides at a given raster
point (RP) for a certain time and then slews to the next one. The residence time at a
given raster point (tRP ) is not known in advance and can vary depending on the number of
particles delivered in a raster point, NRP , and the beam intensity (I). In fact, tRP = NRP/I.
Moreover, for the principle of the raster scanning, the beam is not turned o� between two
raster points if they are close enough, requiring fast scanning magnets (i.e., having a
maximum speed of about 2 cm/ms at HIT) to keep the dose applied between two raster
points at an acceptable level. When the target dose at the raster point is reached, as
measured by a set of transmission ICs within the BAMS, the beam is moved on. The
whole process is illustrated in �gure 5.8.
The dose for each delivered raster point can be calculated as:

D =
NRP

∆x∆y
· dE
dx

∣∣∣∣
material

(5.2)

where ∆x and ∆y are the lateral steps of the raster scanning system in x and y, and
dE/dx|material is the mass stopping power in the considered material.
The Accelerator Control System (ACS) at HIT allows selection of intensity, energy and

spot size (i.e., focus) of the beam from one synchrotron cycle to the next. In the case of a
12C ion beam, the available intensity values can be set in a range from 105 to 108 ions/s.
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The beam pro�le is approximately symmetric and nominal Gaussian shaped. Di�erent
foci sizes in a range of ≈ 3-10 mm FWHM are available depending on the beam energy.
A list of 255 energies has been set-up, ranging from 89 MeV/u to 430 MeV/u, in order to
achieve a millimeter spacing of the corresponding ranges in water from 20 mm to 330 mm,
respectively.

5.2.3. Trigger

At HIT, at the moment, there are di�erent trigger modalities available. Some of them use
information given by the Siemens Therapy Control System (TCS) which also handles the
delivery of treatment/experimental plan, i.e., the sequence of raster points per IES. Two of
the implemented trigger modalities can be interesting for this work. In one case, the TCS
signal reaches the TWINCAT Ether-CAT system, which generates a pulse of a minimum
width of 50 µs every time a new raster point is selected. For this reason, this kind of
trigger is called Next Point. It should be remarked that the Next Point trigger detects the
delivery of a new raster point but not any real-time information related to the irradiation
status (e.g., actual presence of the beam). The other one is related to the delivery of a
new spill and therefore named Beam On. This trigger starts when a new spill is created,
but it remains always active also during a spill pause (e.g., irradiation pause during beam
acceleration).
Since for all HICT related experiments data points recorded by the electronics had to

be attributed to raster points, the Next Point trigger was used. A sketch of the data
acquisition technique is reported in �gure 5.9.

5.2.4. Electronics

The electronics must be able to collect the currents measured by the individual ionization
chambers. A discretized Bragg curve has to be acquired for each raster point of the beam.
The ideal read-out system suitable for this purpose should integrate each of the chamber

signals for the duration of the trigger, without any deadtime, and store the resulting Bragg
curve. The integration process should start and stop synchronously across all channels.
The process should be repeated for each raster point irradiated during a beam spill, and
for each beam spill. The total number of Bragg curves measurable in an experimental
session could be up to some ten-thousand.
For this purpose, two I3200 Thirty-Two Channel Digital Electrometers1, synchronized

and bu�ered by an A500 module as real-time controller, were chosen as read-out electronics.
The electrometer system is intended to measure 64 low-current signals in synchronization
in the dynamic range of 1 pA to 50 µA per channel. The charge integration period can
in principle be varied in the range of 20 µs to 65 s, which is necessary to accomodate for
di�erent signal levels and time resolution requirements. All analog circuitry, digitization,
and communication of measured data to a host computer system is integrated in the system.
Flexible triggering options allow various data acquisition sequences to be initiated by
external synchronization signals. A host software system is included. To turn the incoming

1Pyramid Technical Consultants, Lexington USA Models A500 I3200 PS455 (http://www.ptcusa.com).
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5.2.4 Electronics

Figure 5.9.: Sketch of the data acquisition technique with the most important parameters:
x and y position of the raster scan, the Next Point Trigger and the beam spill. Moreover,
the red points on the Bragg curve show the digitalized signal detected by the ICs stack.

current signal into readings, the I3200 uses a method called gated integration. In fact, each
single channel of the I3200 at some point in time starts accumulating (i.e., integrating)
the current on a capacitor. The capacitor charges up and an increasing voltage, therefore,
appears across the capacitor. Measuring this voltage with an analog-to-digital converter
(ADC) gives the charge on the capacitor at the time of conversion. The increase in charge
over a known time interval is determined by measuring the voltage at the beginning and
the end of the interval. In this way, the average current during that time interval, called
integration period (tIP), is known since current is simply charge divided by time. The
ADC has a speci�ed input voltage range. Therefore, the capacitor must be periodically
discharged (typical duration of 20 µs) before the cycle can be restarted. The process of
charging the capacitor and discharging to reset is called gated integration. The length
of the integration can be controlled in the recommended working range of 100 µs up to
100 ms. Notice that the �rst ADC conversion does not take place immediately when the
integration starts. This is because the signal is unreliable just after the reset, so it has
to be waited a time, called settle time, before making the �rst conversion. This time is
normally set to 25 µs. To avoid the opening reset switch to spoil the integrated signal,
an additional set-up time is waited between integration and the following reset. Every
measurement made by the I3200 is a response to a trigger. The measurement only starts,
however, when an initiating event is detected. There are several initiation sources and
modes.
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In this work, the minimum available value for (tIP) of 100 µs was selected as well as the
default values for the reset time (treset) of 20 µs, the settle time (tsettle) of 25 µs, and the
set-up time (tsetup) of 20 µs. Moreover, the External Start Hold mode was used because
it works properly in combination with the Next Point trigger as sketched in the top of
�gure 5.10. In fact, a high (low) level on the gate input causes the �rst integration of
the prede�ned sequence, then the I3200 waits in reset for the next high (low) to cause
the second integration. This process continues until the de�ned number of triggers/raster
points is reached, or the �abort� message is received.

5.2.5. Implications for the HICT

In the light of a possible future clinical application of the HICT method at HIT, two critical
factors are particularly relevant. Firstly, for practical reasons, the duration of an entire
scan must be as short as possible. This in turn implies that the acquisition time for each
single data point must be kept at a minimum. Secondly, the dose delivered to the patient
during a scan must be as low as possible, which depends primarily on the number of beam
particles per raster point. Consequently, this parameter has to be minimized as well.
Keeping these clinical requirements and the discussions in the previous sections in mind,

the following conclusions can be drawn regarding the present set-up.
As explained in section 5.2.2 and sketched in �gure 5.10, the beam moves in about tens of

µs from one raster point prescribed by the treatment plan to the next. Because of the settle
and reset time of the electronics, tIP has to be kept shorter than the time interval between
two raster points (tRP). Otherwise, the electronics would still be idle on successive points
and thus lose those data. Therefore, the signal registered by the electronics is recording
only a portion of the actually delivered particles. The ratio of measured to delivered
particles is given by the live time proportion:

Nmeasured

Ndelivered

=
tIP
tRP

=
tIP

tIP + treset + tsettle + tsetup + tlost

(5.3)

In an ideal set-up, tIP would be adjustable depending on the expected tRP as calculated
from the planned Ndelivered and the actual intensity of the extracted beam reducing treset,
tsettle, tsetup and tlost as much as possible. Since the default settings of the settle, reset,
and set-up time are recommended by the manufacturer as lower limits, these values were
used for this work (cf. section 5.2.4). Anyhow for this reason, for future set-ups, it will be
desirable to optimize the live-time proportion of the electronics.
Additionally, the beam delivery time per raster point slightly �uctuates during one treat-

ment plan, since it is given by the number of particles per raster point and the ion beam
intensity, where the latter �uctuates. Speci�cally, the beam intensity expressed in ion/s

can vary by up to 30-40%, causing tRP to vary accordingly, while the number of particles
delivered in a raster point, i.e., the particle �uence, is constantly checked by the BAMS
with a tolerance of 5%. Again, in order not to lose data points, tIP has to be set low
to accommodate for the smallest values of tRP due to intensity �uctuations. On a raster
point, where the irradiation takes a longer time with respect to another raster point at the
same beam intensity, relatively fewer particles contribute to the signal registered by the
electronics. The mean ratio of e�ectively seen particles over an entire laterally extended
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Figure 5.10.: Sketch of the di�erent time intervals of the electronics relative to the beam
delivery.

�eld of monoenergetic 12C ions at the same beam intensity thus depends on the variance
of the time di�erences between subsequent beam positions. This is an intrinsic feature of
the beam delivery and accelerator system which cannot be optimized by the present HICT
set-up.
Concluding, the various timing parameters of the electronics have to be minimized (except

tIP that has to be optimized), as well as the number of beam particles per raster point
and the �uctuations of the beam intensities. On the other hand, the loss of signal quality
must be maintained at a tolerable level to allow the Bragg peak to be detected from the
measured ICs current pro�le.
The scope of the radiographic and tomographic measurements performed in this work was

to demonstrate the potential and feasibility of the HICT imaging technique. Since the ex-
periments had to be performed within the limited available beam time, reliable acquisition
of data for all raster positions prescribed by the irradiation plan was crucial. To guarantee
this, combinations of numbers of beam particles and intensities were chosen to result in
typical delivery times per raster point considerably larger than the electronics cycle period
and the miminal temporal resolution of the trigger which is available. Moreover, in most
of the cases, the smallest available foci at each energy were used to give maximum spatial
resolution, and the energies were set to have the Bragg peak fall inside the range telescope.
Nevertheless, the main conclusions obtained for the chosen experimental setting would not
change when making a choice of parameters more suitable for clinical applications with an
improved electronic set-up.
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5.3. Experimental characterization

Several measurements have been performed with the HICT set-up depicted in �gure 5.7, as
presented in the following. Investigations of the dependence of the acquired ICs signal on
beam intensity and number of particles per raster point are presented in section 5.3.1. A
qualitative assessment of the independence of acquired images on the lateral beam position
relative to the ICs stack is summarized in section 5.3.2. Finally, results of calibration
measurements to parametrize the dependence of the Bragg peak position on beam energy
and target thickness are given in sections 5.3.3 and 5.3.4.

5.3.1. Dependence of ICs stack response on beam intensity and

number of particles per raster point

As outlined in section 5.2.5, it is desirable to lower the number of particles per raster
point, i.e., the dose given to the patient (cf. equation 5.2), in view of possible future
clinical applications. To this regard, the dependence of the ICs stacks signal on beam
intensity and number of particles per raster point was studied.
A laterally extended �eld (206×10 mm2) of monoenergetic 12C ion beam of 270.55 MeV/u

and beam spot with FWHM of 4.1 mm with a lateral step of the raster scanning system ∆x
and ∆y of 1 mm was used without any imaged object in front of the ICs stack. Figure 5.11
shows the ICs current for subsequent raster points plotted over time for di�erent numbers
of beam particles, varying from 7 · 103 to 105, at �xed intensity of I = 2 · 106 s−1. With
tIP = 10−4 s, the integration period was shorter than the typical time of delivery per raster
point, given as tRP = NRP/I = 3.5 · 10−3 − 2.5 · 10−1 s. Therefore, the electronics registered
only the portion of the particles hitting the ICs stack during the integration period.
In the �gure it is seen that for 7000 and 10000 particles per raster point, the plan is

completed within one spill, while for 50000 and 500000 particles, several spills are necessary.
It should be noted that for the latter two plans only a portion of the plan corresponding to
30 s from a total irradiation time of about 50 s and 600 s is shown and that the number of
raster points per spill diminishes with the increase of delivered particles per raster point.
Within the typical intensity �uctuations, the mean IC current at the Bragg curve plateau
and peak is almost equal for all numbers of particles per raster point.
In other words, while the dose delivered to the patient depends on the beam particles

per raster point, the number of particles contributing to the signal measured by the ICs
stack/electronics depends on the intensity and integration period, as long as the latter is
smaller than the typical delivery time per raster point (cf. �gure 5.10). On the contrary,
only once the delivery time per raster point gets shorter than the integration period, the
ICs signal will change with the number of beam particles. Since this acquisition scenario
causes image distortions due to omitted data points, as it will be explained in section 5.4.2,
parameters should be usually set in such a way to prevent this situation.
To test the ICs signal quality as a function of the measured number of beam particles,

the integration period and the number of beam particles per raster point were kept �xed
at tIP = 10−4 s and 500000, respectively, while the intensity was varied between 106 and
108 particles per second, resulting in Nmeasured = I · tIP = 102 − 104 particles �seen� by
the electronics. A laterally extended �eld (30 × 30 mm2) of monoenergetic 12C ion beam
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Figure 5.11.: ICs current at the Bragg curve plateau (black), at the peak (green), and the
overall mean (red) plotted over a portion of the time of the irradiation plan for di�erent
numbers of beam particles, varying from 7 · 103 to 105, at �xed intensity of 2 · 106 s−1. Since
the electronics registers only the portion of the particles hitting the ICs stack during the
integration period, the signal depends principally on the beam intensity.

of 270.55 MeV/u and beam spot with FWHM of 4.1 mm with a lateral step of the raster
scanning system ∆x and ∆y of 1 mm was used without any imaged object in front of the
ICs stack.
Figure 5.12 shows the obtained ICs currents plotted over the ICs channel number. While

the intensity, i.e., e�ective number of particles, increases by two orders of magnitude, the
mean current measured by the ICs grows only by a factor of ten, or in other words, the
ICs current increases roughly with the square root of the intensity. This can be explained
by the fact that the ICs charge collection e�ciency depends on the high voltage applied
to the electrode foils and on recombination e�ects. For higher beam intensities, more
charged particles are created within the gas volume. Those further away from the electrode
experience only an e�ective shielded electric �eld and thus more likely recombine before
reaching the electrode. Therefore, it seems plausible that the measured charge grows less
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Figure 5.12.: ICs current plotted over channel number for di�erent beam intensities, varying
from 106 and 108 particles per second, at �xed integration period tIP = 10−4 s and NRP =
500000.

than linearly with increasing beam intensity.

5.3.2. Dependence of ICs stack response on relative lateral beam

position

It is known that the e�ciency of PPICs drops in the regions close to the edges. This is
of peculiar importance in the case of absolute dosimetry as explained in Brusasco (1999).
For HICT, the image information is encoded in the Bragg peak position and not in the
absolute IC signal. It is, therefore, su�cient to check, whether the set-up reproduces
correctly supposedly �at images. To this scope, the ICs stack was irradiated with a laterally
extended �eld of 200×200 mm2 and ∆x and ∆y step sizes of 5 mm of 12C ion at a series of
energies (each at smallest available spot size) to obtain information from all the depths of
the stack. From the data, both the detected peak position as well as the mean IC current
per raster point were determined and separate images were created correlating these values
to the x and y position of the raster point. Two examples are shown in �gure 5.13 and
�gure 5.14, respectively. The former qualitatively con�rms that the acquired image does
not depend on the lateral position of the beam. More interestingly, in the latter images,

102



5.3.3 ICs stack energy calibration

Figure 5.13.: Constructed images obtained from the Bragg peak position for a 12C �eld of
200× 200 mm2 and ∆x and ∆y step sizes of 5 mm at two di�erent energies of 136.92 MeV/u
(spot size of 7.1 mm FWHM) on the left and 313.76 MeV/u (spot size of 3.8 mm FWHM)
on the right.

containing the IC current signal, the start of a beam spill can be recognized by small black
streaks. This is because at the beginning of a spill, the beam intensity gradually reaches
its maximum following an initial ramp that stretches in time over several subsequent raster
points which results in the streaks that gradually fade out. Also, the ICs signal �uctuates
in time, partially due to electronic noise and the �uctuating beam intensity. As long as
this does not interfere with a correct detection of the Bragg peaks (cf. �gure 5.13), this is
of no relevance for HICT applications.

5.3.3. ICs stack energy calibration

The peak in the Bragg curve de�nes the position in the ICs stack, in which most of the
initial energy of the ions has been deposited. It is straightforward that, without any
object in between, this position depends exclusively on the ion beam energy with the
peak appearing at deeper channels in the ICs stack for larger energies (cf. section 1.2.1).
Figure 5.15 illustrates this e�ect. It shows the IC current at �ve �xed channels measured
for a range of ion energies with the same intensity. As the energy increases, the Bragg
curve is shifted from the front to the end of the ICs stack, making the shape of the Bragg
peak appear �ipped in the �gure. The data also show that the ICs current in the region
of the plateau does not signi�cantly vary with beam energy while the height of the peak
changes, as expected.
For two reasons, it is desirable to have a parametrization of the dependence of the peak

position on the beam energy. First, for the preparation of experiments it is necessary to set
an energy according to the target longitudinal dimension and density to make the Bragg
peak fall within the range of the ICs stack. This can be achieved by setting the beam
energy appropriately, or by decreasing the beam energy with absorbers (cf. section 5.3.4).
Secondly, when comparing a sequence of images acquired at di�erent beam energies, they
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Figure 5.14.: Constructed images obtained from the mean ICs stack signal corresponding
to the BP channel position of �gure 5.13 for a 12C �eld of 200 × 200 mm2 and ∆x and ∆y
step sizes of 5 mm at two di�erent energies of 136.92 MeV/u (spot size of 7.1 mm FWHM)
on the left and 313.76 MeV/u (spot size of 3.8 mm FWHM) on the right.

can be re-elaborated based on such a parametrization.
Experimentally, 1681 Bragg curves were registered from a �eld of 200 × 200 mm2 with

∆x and ∆y steps of 5 mm for a series of beam energies and the smallest available foci.
For each curve, the peak position was determined by the criterion of channel identi�cation
with the maximum IC signal for each lateral beam position, and the mean channel position
from all data for each energy was calculated. The result is shown in �gure 5.16. The
parametrization was done by �tting the data with the following expression:

BP pos = a · E1.75 + b (5.4)

as a numerical �t to describe the dependence of the Bragg peak position (BP pos) on the
energy (E) from a semi-empirical formula, according to Leo (1987).
In particular, the so obtained parametrization will be used to express radiographies of

di�erent phantoms in WE thickness in section 5.4.4.

5.3.4. Dependence of Bragg peak position on target thickness

In analogy to the beam energy calibration in section 5.3.3, a parametrization of the Bragg
peak position as a function of target thickness was performed. Again, this is useful to a
priori choose parameters in experiments when an absorber in front of the ICs stack is used
to attenuate the beam as well as to a posteriori compare images acquired with di�erent
absorber thicknesses.
To directly express the Bragg peak position in terms of WE thickness, in an optimum

set-up a water column with variable depth should have been used. Due to practical consid-
erations and limited beam time, a double PMMA wedge was instead used in this work. Its
geometry is depicted in �gure 5.17. This way, a single scan of a lateral �eld (206×10 mm2)

104



5.4 Radiographic measurements

50 100 150 200 250 300 350 400 450
Energy per nucleon in MeV

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
e
a
n
 I
C

 c
u
rr

e
n
t 

in
 A

1e 7

Channel 15
Channel 30
Channel 45
Channel 55
Channel 60

Figure 5.15.: ICs current at �xed channels as a function of energy. The shape of the Bragg
peak can be recognized going from right to left.

of 12C ions of 334.94 MeV/u and focus of 3.7 mm FWHM with ∆x and ∆y steps of 1 mm
was su�cient to obtain data across the di�erent PMMA thicknesses given by the wedge.
For each lateral position corresponding to the same wedge thickness, the mean Bragg peak

position was determined from 11 Bragg curves (i.e., 11 horizontal rows in the irradiation
plan). The result is shown in �gure 5.18. The measured wedge pro�le clearly shows a
step-like structure due to the �nite nominal resolution of the ICs stack, as described in
section 5.2.1. Figure 5.19 reveals the expected linear dependence of the Bragg peak position
on PMMA thickness, which was determined from the lateral position in the wedge based
on its known geometry. The parametrization was obtained as a linear �t to the data.
This parametrization allows to express radiographic images in terms of equivalent thick-

ness in any homogeneous material, in particular in water, since the measured WEPL value
of PMMA at HIT for both, proton and carbon ion beams is known to be WEPLPMMA =
1.165.

5.4. Radiographic measurements

Radiographic images are the basis for a tomographic reconstruction. In sections 5.4.1
and 5.4.2, it is described how images are obtained from the ICs data and how this relates
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Figure 5.16.: Bragg peak position in the ICs stack as a function of energy. The red line
indicate the parametric �t, given by equation 5.4.

Figure 5.17.: Geometry of the double PMMA wedge and the experimental set-up.
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Figure 5.18.: Projection of a radiography of the double PMMA wedge along the lateral
dimension used to relate the Bragg peak position in the ICs stack to the PMMA thickness.
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to correct triggering with respect to the scanned ion beam delivery system. An analysis of
image artifacts at high density contrast interfaces is given in section 5.4.3. Section 5.4.4
describes how images measured with the range telescope can be converted to WE thick-
nesses and section 5.4.5 shows an experimental veri�cation of the implemented approach.
Finally, section 5.4.6 presents results of several experiments and analyses performed with
an anthropomorphic Alderson head phantom.

5.4.1. Image formation from ICs stack data

In the scope of using heavy ions to reconstruct tomographic images, 2D integral WE maps
are needed for several projection angles. The lateral coordinates in each of these images
is given by the beam position while the WE of the material along the traversed path is
obtained from the position of the Bragg peak in the ICs stack. In general, the exact line
of passage through the irradiated medium has to be known to build up an image. This
could be obtained by combining the lateral beam position information given by the BAMS
in the beam line and the one determined by an additional position sensitive multi wire
proportional chamber between the target and the ICs stack. In case of high energy carbon
ion beams, this is not necessarily needed as their trajectories can be assumed to be fairly
straight (cf. section 2.4). Thus, a straightforward way to obtain radiographic projections
is an irradiation plan that scans the �eld row-wise, alternating from left to right. The
electronics produce a time series of data points where each of them contains the current of
the 61 IC channels. These are then spatially distributed according to the irradiation plan
to give a radiographic image. The most simple and most e�ective criterion to establish
the Bragg peak position is to search for the channel with the maximum current signal.
As long as electronic noise is small with respect to the peak height, this method gives
satisfactory results. Compared to alternative methods that might involve �tting theoretical
curves to the measured data, the minimal computational e�ort needed for the criterion of
the maximum identi�cation is also promising having in mind a possible future on-the-�y
analysis. In all of the images obtained so far with the current set-up, the simplicity of the
peak �nding criterion was proven not to pose any relevant limiting factor in terms of image
precision. An alternative approach proposed in this work will consider the derivative of the
measured Bragg curve and identify the peak position by its minimum. This is investigated
in some detail and applied in sections 5.4.3 and 5.4.6.1. Furthermore, a method to increase
the nominal resolution of the ICs stack is proposed in section 5.5.

5.4.2. Image distortions due to omitted data points

As described in the previous section, formation of a radiographic image from the ICs
stack data involves casting a time series into a geometric grid. This requires a one-to-one
correspondence between the measured data points and the beam positions given by the
irradiation plan. Omitted data points lead to image distortions.
Figure 5.20 shows the very �rst radiography obtained with the current ICs stack set-up.

As phantom, a set of PMMA cubicles of increasing thickness attached to a 1 mm thick
PMMA layer was used and it is shown in �gure 5.21. A laterally extended 12C ion �eld
(100× 100 mm2) of 240.65 MeV/u and 4.4 mm FWHM focus was scanned through in ∆x
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Figure 5.20.: Radiography of the �downtown� stairs phantom consisting of PMMA cubicles
of di�erent thicknesses attached to a thin PMMA base. Note the zig-zag shaped borders
caused by omitted data points and artifacts occurring at interfaces of high density contrast
(cf. section 5.4.3).

and ∆y steps of 1 mm. The constructed image demonstrates that the cubicles of di�erent
thicknesses can indeed be identi�ed based on the peak position in the ICs stack and, in this
sense, already provides a �rst proof of principle. Further, the zig-zag shaped structures
along the borders of the squares should be noted. They arise from missing data points
where the trigger, which was not fully optimized to work with the ICs stack set-up at that
early stage of this �rst experimental investigation, failed to recognize a new beam position
and to initiate a new integration process in the electronics. Moreover, these fuzzy edges
can be to some extent caused by an e�ect occurring at interfaces of high density contrast
as will be outlined in section 5.4.3.
To correct for incomplete datasets, the following method was adopted: From the series

of time stamps recorded by the electronics, a list of time di�erences was built. Figure 5.22
shows a series of such intervals plotted over the measurement index. The missed beam
positions can be identi�ed by their time di�erence which is roughly twice the mean over
the entire series. The �gure also shows some regular peaks which are to be attributed to
the beginning of a new spill in the accelerator. To refurbish the image, those points are
individuated as omitted positions, whose time di�erence lies at least 3σ above the average,
and which, on the other hand, appear as isolated peaks, in order not to detect points at
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Figure 5.21.: Photography of the �downtown� stairs phantom consisting of PMMA cubicles
of di�erent thicknesses attached to a thin PMMA base just in front of the ICs stack.

the beginning of the spill. In the constructed image (cf. �gure 5.20), the according pixels
are obtained from a linear interpolation to the neighboring pixels.
Although in the subsequently improved experimental setting, a reliable data acquisition

has been achieved, the correction method presented in this section proved to be e�ective
and might become useful again if the data acquisition speed should be increased in the
future to the edge of its performances, maybe provoking incomplete datasets.

5.4.3. Image artifacts at interfaces of high density contrast

Contrary to an ideal pencil beam, a real particle beam has a �nite Gaussian-like spatial
pro�le described by its focus, as explained in section 5.2.2. This means that depending
on the lateral position within in the beam, the particles traverse materials of di�erent
density, unless the target is completely homogeneous. The ICs stack, on the other hand,
only registers the total charge created per raster point in each IC by all ionizing particles
within the beam distribution.
This is especially important near interfaces of high density contrast in the target, present

also in patients. Considering, for example, a step-shaped density pro�le, a beam impinging
on the interface would produce a superposition of two Bragg curves in the ICs stack. To
investigate this e�ect experimentally, the edge of an 80 mm thick PMMA block in air
was irradiated with a 301 MeV/u 12C �eld of 30× 30 mm2 lateral extension with di�erent
beam foci and a lateral ∆x and ∆y step of 1 mm. Figure 5.23 shows a collection of Bragg
curves for two foci of 3.9 mm (smallest available at the given energy) and 10.0 mm (largest
clinically available) FWHM at di�erent distances of the beam to the interface.
As expected, two Bragg peaks are visible in the ICs stack current pro�le. In case of the

smaller focus, one of the peaks decreases in height rapidly with growing distance of the
beam from the interface. For the larger focus, both peaks are still appreciable even at
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Figure 5.22.: Series of time di�erences of subsequent data points registered by the elec-
tronics. The red line indicates a threshold given by (∆T )mean + 3σ∆T . Several dots, roughly
twice the mean, can be attributed to omitted data points. Note the intrinsic �uctuations,
mentioned in section 5.2.5, and the peaks due to spill beginning.

greater distance. This is also easily seen from �gure 5.24, where the two peak heights are
plotted as a function of beam distance to the interface.
At present, images are elaborated from the ICs stack data by assigning to each raster

point a unique peak position. For this it is presumed that each raster point consists of
locally homogeneous material. Especially in the case of a high contrast interface (i.e.,
air/bone interfaces), this is not true any more.
Figure 5.25 reveals a problem related to image formation caused by that: If two peaks

are present in the IC current pro�le, both contain information on the target densities
in the region around the beam axis de�ned by the beam width. Together, they provide
information on the mean projected density across the beam pro�le. If only one of them is
considered for the construction of the image, the density information encoded in the other
is ignored. This results in a sort of digital noise yielding the zig-zag shaped interface seen
in the �gure.
Another correlated problem is given by the method by which the peaks are located in the

measured Bragg curve. In this work two methods are considered. In the �rst one, the peak
position is determined by the maximum criterion, while in the second one, the derivative
method, outlined in section 5.4.1, is used. In general, the minimum of the derivative of
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Figure 5.23.: Collection of Bragg curves of 301 MeV/u 12C ion beam for two foci of 3.9 mm
(smallest available at the given energy) and 10.0 mm (largest clinically available) FWHM
and di�erent distances of the beam to the interface.
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Figure 5.24.: Heights of the two Bragg peaks corresponding to the materials at the interface
as a function of beam distance to the interface for irradiation of 301 MeV/u 12C ion beam
with the smallest (3.9 mm FWHM, left) and largest (10 mm FWHM, right) focus.
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Figure 5.25.: Images of the PMMA-air interface obtained from the Bragg peak positions
based on two di�erent approaches. The red line indicates the position of the high contrast
interface. For the left image, the channel of maximum signal was chosen. For the right
one, the channel of minimim discrete derivative was selected. The bright zone on the latter
appears larger. Both exhibit a characteristic zig-zag shape.

a Bragg curve lies further to the right of the maximum position, i.e., the Bragg peak. In
particular, the derivative approach might deliver (e.g., in the presence of large straggling
e�ects) slightly varying results for more or less sharp fall-o�s behind the peak.
Figure 5.25 shows, however, an e�ect that cannot be explained by these deviations. In

fact, by the derivative approach (on the right), preferably the peak corresponding to the less
dense component is chosen. As a result, the bright region at the interface appears larger.
The reason probably is that the tail of the �rst of the two Bragg peaks in �gure 5.23 is
overlaid by the plateau of the second one. This yields a shallower drop compared to the
derivative after the second peak.
Both e�ects have also been observed in radiographies of the anthropomorphic Alderson

head form, as will be presented in section 5.4.6.1. In any case, more detailed investigations
will be necessary to optimize image formation methods especially in regard to high density
contrast interfaces and multiple maxima.

5.4.4. Re-elaboration of radiographies in WE thickness

The raw images obtained from the ICs stack data contain the channel of the peak posi-
tion for each pixel. A relevant information would be, though, the projected thickness of
the imaged object, e.g. expressed in WE thickness. To this end, calibration of the IC
stack based on PMMA was performed as described in section 5.3.4. Since the resulting
parametrization was obtained at the beam energy chosen for the calibration, any image ac-
quired at a di�erent energy must �rst be converted by means of the calibration explained in
section 5.3.3. Recalling equation 5.4 therein, a raw image containing Bragg peak positions
(BP pos) depends on the energy (E) at which it has been acquired (measured) as:
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BP pos
measured = a · E1.75

measured + b

The parameters a and b have been experimentally determined (cf. section 5.3.3 and �g-
ure 5.16). The same raw image at some reference (ref) energy would be given as:

BP pos
ref = a · E1.75

ref + b

Therefore, a measured image can be converted to any desired reference energy by:

BP pos
ref = (BP pos

measured − b) ·
(

Eref

Emeasured

)1.75

+ b

The relation of PMMA equivalent thickness and the Bragg peak position in the ICs stack
is given by a linear �t (cf. section 5.3.4 and �gure 5.19) at the reference energy (12C ion
beam of 334.94 MeV/u) as:

BP pos = c ·∆xPMMA + d

therefore combining the following equations ∆xPMMA is obtain as:

∆xPMMA =
1

c
·

[
(BP pos

measured − b) ·
(

Eref

Emeasured

)1.75

+ b

]
− d

c
(5.5)

From this, the WE thickness is obtained simply by multiplication with the known WEPL
of PMMA (WEPLPMMA = 1.165): ∆xWE ≈ WEPLPMMA ·∆xPMMA. Summarizing, a raw
image of peak positions is converted into WE by:

∆xWE = WEPLPMMA ·

{
1

c
·

[
(BP pos

measured − b) ·
(

Eref

Emeasured

)1.75

+ b

]
− d

c

}
(5.6)

5.4.5. Homogeneous cylindric phantom

As a veri�cation, a homogeneous PMMA cylinder with a radius of 8 cm was irradiated
with a laterally extended �eld (200 × 10 mm2) of monoenergetic 12C ions with an initial
energy of 396.29 MeV/u and beam spot with a FWHM of 3.5 mm delivered with a lateral
and vertical step of 1 mm. The acquired raw image was converted to PMMA equivalent
thickness according to equation 5.5. Figure 5.26 shows the calculated path length as a
function of lateral dimension. The values have been plotted half above and half below the
zero axis to make the graph resemble the cylinder contour. Evidently, the y dimension of
the phantom is correctly reconstructed from the image data suggesting the correctness of
the conversion to PMMA, which can be then generalized to WE using equation 5.6 .
It should be noted that zero thickness is not exactly reproduced. In fact, due to the �nite

size of the ICs stack, there is a minimum material thickness which would result in a Bragg
peak still stopping inside the detector for the chosen initial beam energy. Projections
of thicknesses below this minimum resulting in a beam not stopped in the detector will
cause a false peak identi�cation, mostly yielding the last ICs channel. In the case of the
homogeneous PMMA cylinder in �gure 5.26, the two non-zero horizontal lines correspond
to this minimum measurable thickness.
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Figure 5.26.: Contour of the homogeneous cylindric PMMA phantom reconstructed from
a radiographic projection.

5.4.6. Anthropomorphic Alderson full head phantom

To test the capabilities of the current ICs stack set-up on a more complex phantom and
to consider a more realistic case for a clinical application, an Alderson full head form was
used. A photograph of the experimental set-up is shown in �gure 5.27. The head was
irradiated with a lateral �eld of 250×130 mm2 and a ∆x and ∆y step of 1 mm at di�erent
energies and the smallest available foci. The radiographic images were built as explained
in section 5.4.1. Figure 5.28 shows two radiographies taken at 324.26 MeV/u (3.8 mm
FWHM spot size) and 416.73 MeV/u (3.4 mm FWHM spot size). The channel of the
Bragg peak is given as gray value, ranging from 1 to 61. The trachea, nasal cavity, and
the jaw can be easily identi�ed. The limited nominal resolution of the ICs stack caused
step-like changes in the gray value of the image. It can also be seen that at the higher
energy, the image appears overexposed where the WE thickness is small and the Bragg
peak falls beyond the ICs stack.
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Figure 5.27.: Photograph of the anthropomorphic Alderson head phantom and the exper-
imental set-up, used also for tomographic measurements.
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Figure 5.28.: Radiographic images of the Alderson head obtained at 324.26 MeV/u, 3.8 mm
FWHM spot size (left) and 416.73 MeV/u, 3.4 mm FWHM spot size (right) using the criterion
of maximum identi�cation method to locate the Bragg peak position. The right image shows
burned-out regions where the peak fell beyond the ICs stack due to the higher beam energy.
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Figure 5.29.: Bragg curve measured with the ICs stack and the discrete derivative thereof.

5.4.6.1. Comparison of methods to locate the Bragg peak

As discussed in section 5.4.1, the simplest criterion to determine the Bragg peak position
is to �nd the channel of maximum signal. This proved to be very reliable. As for any
other detection method, the problem of incorrect peak identi�cation arises at interfaces
of high density contrast (cf. section 5.4.3) but it is minimized using the smallest foci
available at HIT. Nevertheless, alternative criteria could be possibly adopted, yet they
should prefereably not require signi�cant computational e�ort to possibly allow for on-
the-�y analysis. Another similarly simple approach would be to consider the derivative of
the Bragg curve, i.e., in a discrete dataset the di�erence of the signals in two subsequent
channels. The Bragg peak can then be localized at the point of most negative slope,
as illustrated in �gure 5.29, although it should be kept in mind that the minimum of
the derivative curve systematically yields a position slightly right of the actual peak. In
any case, this deviation is taken into account by a calibration based on a PMMA or
water phantom and thus the derivative could nonetheless provide a criterion to coherently
determine the Bragg peak position. In �gure 5.30, this method has been applied to the
two radiographies of the Alderson head of �gure 5.28.
At �rst sight, no great di�erence between the methods can be identi�ed when comparing

the images in the two �gures. Looking closer, the derivative approach seems to be a�ected
by more wrongly detected points, which seems reasonable, as the di�erence of two signals
is more sensitive to noise. Also, at higher beam energy (in �gures 5.28 and 5.30 on the
right), the over-exposed regions around the head are �lled with a noisy pattern as opposed
to the homogeneous white in �gure 5.28. The reason is that for a Bragg peak falling just
beyond the ICs stack the last channels still carry the highest signal as they lie in the ramp
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Figure 5.30.: Radiographic images of the Alderson head obtained at 324.26 MeV/u, 3.8 mm
FWHM spot size (left) and 416.73 MeV/u, 3.4 mm FWHM spot size (right) using the deriva-
tive method to locate the Bragg peak position. The right image shows burned-out regions
where the peak fell beyond the ICs stack due to the higher beam energy.

of the Bragg peak. The maximum criterion therefore detects high channel number. As
evident from �gure 5.29, the discrete derivative of the Bragg curve, on the other hand, has
a less pronounced ramp. Its minimum in the region before the peak will therefore mostly
be determined by noise.
Slight deviations can also be recognized around lines of strong contrast. In particular,

the derivative method tends to yield more fuzzy edges and to emphasize the brighter
component in the image as can be seen comparing the regions around the jaw bone and
the trachea in �gures 5.28 and 5.30. This is in accordance to the �ndings of section 5.4.3.
More investigations will be necessary to optimize the technique to locate the peak in a
measured Bragg curve and to understand the in�uence on the produced image. For the
analysis in this work, the criterion of the maximum was preferred because of its simplicity
and comparably good and even better results.

5.4.6.2. Radiographies converted to WE thickness

In section 5.4.4, it was explained how raw images containing Bragg peak positions could be
converted into WE thickness based on the PMMA calibration described in section 5.3.4.
The correctness of this conversion principle has been assessed using a massive PMMA
cylinder as target (cf. section 5.4.5). The last step relies on the experimentally validated
PMMA-WE conversion, as described in equation 5.6.
For a more realistic application, this conversion was performed on radiographies of the

Alderson head. As a basis for a rough comparison, X-ray CT images of the anthropo-
morphic Alderson phantom were acquired and also re-elaborated in units of WE thickness
based on the HU-WEPL calibration curve (cf. section 5.1.1). So obtained calibrated
images are shown in �gure 5.31.
Since for the two images di�erent head masks were used causing di�erent inclination an-

gles, a quantitative comparison, e.g., by a di�erence image or sectional pro�les, is di�cult.
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Figure 5.31.: Radiographic image obtained with the ICs stack at 375.32 MeV/u, 3.5 mm
FWHM spot size (left) and CT image (right) of the Alderson head phantom, both converted
to WE. The colorbar indicates WE thickness in mm. It should be noted that the pixel
resolution in the image obtained from X-ray CT data (3 × 0.6 mm2) is lower than in ion-
based radiography (1× 1 mm2).

Qualitatively, the details of the two images do not di�er signi�cantly and apart from some
mis-detected pixels (i.e., white and black dots) in the ion-based radiography the corre-
spondence is satisfying. Nevertheless, more detailed investigations are still necessary to
understand how realistically the WEPL of the tissue is revealed (cf. section 5.6).

5.4.6.3. Dynamic range of the radiographies

The right image of �gure 5.28 demonstrated the e�ect of over-exposure caused by Bragg
peaks falling beyond the ICs stack at the chosen beam energy. This raises the question
of the necessary range of the IC stack to image a typical target, e.g., a human head. An
answer is provided by a histogram plot of the channels in which the Bragg peaks in an image
fall. This is shown in �gure 5.32 for two cases of beam energies of 375.32 MeV/u (3.5 mm
FWHM focus) and 416.73 MeV/u (3.4 mm FWHM focus) delivered to the Alderson head
phantom, respectively. In the left panel, the distribution is concentrated around the center
of the ICs stack channels indicating a properly exposed radiography, while the right panel
corresponds to an over-exposure, as is seen by the distribution cut-o� on the right. The
high peak in channel 61 is responsible for the bright background. From the histograms it
is learnt that the range of the current ICs stack is su�cient for radiographies of a human
head, although it is clear that already slight changes in the beam energy will shift the
brightness spectrum outside the range. This is of particular importance for tomographic
applications, as will be outlined in section 5.6. In any case, a thorough study of the
optimal parameters is needed when an improved version of the current ICs stack will likely
be designed and built in the future for clinical use.
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Figure 5.32.: Histogram of the channels in which the Bragg peaks in an image fall for two
cases of beam energies, 375.32 MeV/u (3.5 mm FWHM spot size) and 416.73 MeV/u (3.4 mm
FWHM spot size) delivered to the Alderson head phantom, respectively. The zero counts in
channels 22 and 30 are due to improperly working ICs in this measurement.

5.5. Method to virtually increase the nominal

resolution of the ICs stack

For the quality of images obtained with the HICT technique, two features are particularly
important. One is the spatial resolution in the image plane, determined by the ∆x and ∆y
steps of the irradiaton plan and the focus of the beam. The second aspect regards the res-
olution of material thickness levels contained in an image, e.g., expressed in WE thickness.
This is given by the nominal resolution of the ICs stack. As seen in section 5.4.6.3, for a
radiography of a human head, about 30 channels of the ICs stack are used, corresponding
to a range of about 110 mm WE in steps of about 3.5 mm WE. In terms of image depth,
this corresponds to a 5-bit image. Consequently, this limits the systems ability to resolve
�ne nuances in thickness in the scanned object.
By improving the nominal resolution of the ICs stack, one could increase the image

depth. One approach would be to utilize thinner slabs of PMMA in the construction
of the ICs. Using sheets of 1 mm instead of the currently employed 3 mm, e.g., would
increase the resolution by a factor of 3. On the other hand, the range of the 61 ICs in the
stack would diminish accordingly from 21 cm WE to about 7 cm WE. This is of particular
importance for tomographic applications, as explained in section 5.6.3, where the typical
thickness of the irradiated object, and thus the necessary range, depends on the angle
of projection. This problem could be overcome either by increasing the total number of
ICs/electronic channels, or by compensating for the range shift by dynamically introducing
suitable absorbers (Brusasco et al. 2000) during a tomographic scan.
Both of these approaches require considerable hardware and �nancial e�ort. These con-

siderations gave the motivation to think about alternative ways to enhance the nominal
resolution of the ICs stack. A straightforward approach could consist of parametrizing
the expected Bragg curve or peak, which would then be �tted to the ICs signal. In the
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following, an alternative method is proposed based on the precise shape of the Bragg peak
and the way it is measured by the ICs stack.
As described in section 5.2.1, the ICs stack consists of interleaved layers of air and PMMA

(disregarding the foil electrodes). Since the density of PMMA is much larger than that
of air, almost all energy deposit occurs in the PMMA slabs. The actual Bragg peak will
therefore always be situated in a PMMA sheet. The ICs, in turn, measure the charge
created by the ionizing particles in air, which depends on the number of particles and their
energy loss (cf. equation 5.1). As the particles deposit energy when passing through the
PMMA, their stopping power changes and so does the charge counted in the subsequent IC.
In this sense, the measured charge in each IC corresponds to the energy loss and number of
particles after the previous PMMA slab. The dataset of IC currents, therefore, corresponds
to a discretization of the real Bragg curve. At the position of the Bragg peak, the number
of primary particles, in this case 12C ions, quickly drops to zero, leaving behind only lighter
secondary fragments. Consequently, the charge created in the IC after the Bragg peak is
much lower and it is from this steep drop that the registered ICs stack signal allows to
deduce in which PMMA slab the Bragg peak is situated. However, the exact position
within the PMMA sheet remains uncertain resulting in the �nite nominal resolution of
3 mm.
While at �rst glance, the Bragg curve seems to drop to zero instantaneously, a closer

look shows that it actually decreases gradually over a distance of about 2-3 mm in PMMA.
Figure 5.33 shows four zoomed-in Bragg peaks, obtained from a FLUKA MC simulation
of a 12C beam at 334.94 MeV/u in PMMA (dominated in the peak by straggling e�ects).
The four panels give di�erent relative positions of the ICs with respect to the physical
Bragg curve. The idea is to compare the signal of the two ICs before and after the PMMA
slab in which the Bragg peak resides. The ratio of these two signals depends on the peak
position in the slab.
In the �gure, the green curves quantify the signal ratio of two neighboring channels

at 3 mm distance. The value of each such channel pair is attributed to the location of
the left channel. A ratio of one is found when the PMMA slab is situated as indicated in
�gure 5.33(a). In that case, the peak lies close to the right edge of the slab. For the channel
of maximum signal situated more to the right (i.e., closer to the theoretical Bragg peak),
the ratio drops below one (cf. �gures 5.33(b), 5.33(c), and 5.33(d)). This way, the ratio of
the two signals provides a way to infer more precisely the position of the Bragg peak within
a PMMA slab, e�ectively increasing the nominal resolution of the range telescope. It has
to be noted, that if the position of the maximum channel moves by one slab width (as it
is almost the case in �gure 5.33(d)), it will be positioned in the adjacent PMMA sheet at
the same relative location reproducing again the case of ratio = 1, shown in �gure 5.33(a).
With respect to a reference point �xed on the Bragg curve, the measured ratio of signals
will therefore be periodic.
To assess the proposed method, data obtained from measurements with the double wedge

(cf. section 5.3.4) were used. As the beam moves across the wedge, the thickness of
traversed PMMA changes continuously, shifting the Bragg curve slowly through several
PMMA slabs in the ICs stack. From the measured Bragg curve at each lateral wedge
position, the ratio of the signals between the channel behind and at the maximum were
calculated. The result is shown in �gure 5.34. As the thickness of the wedge decreases
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Figure 5.33.: Zoomed-in Bragg peak obtained from a FLUKA MC simulation (red line)
of a 12C beam at 334.94 MeV/u and 3.7 mm FWHM spot size in PMMA for four di�erent
relative positions of the Bragg peak with respect to the surrounding ICs. The red dots
indicate discrete points at 3 mm distance corresponding to the measured signal in the ICs
stack channels. The green line is obtained as the ratio of subsequent discrete points at 3 mm
distance on the curve. The green dot gives the inverse ratio of the maximum signal measured
by the ICs and the signal in the subsequent channel.
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Figure 5.34.: Signal ratio of the channel behind and at the maximum current depending on
the thickness of the traversed double PMMA wedge (cf. �gure 5.17). The blue bar indicates
the width of a PMMA slab in the ICs stack.

during a scan and the Bragg peak moves gradually through a PMMA sheet of the ICs
stack, this ratio continuously increases until the peak reaches the next slab. There, it
drops back to a minimum and starts to rise again, resulting in the expected oscillation
about every 3 mm. This proves the concept of the proposed method.
Returning to the simulated Bragg curve in �gure 5.33, all those possible pairs of channels

(i.e., pairs of points on the curve 3 mm apart from each other), of which the left channel
carries the maximum signal of the entire measured Bragg curve, are limited to the blue
shaded region in �gure 5.33(a) by periodicity2.
Therefore, with this applied criterion, only a point on the part of the green curve within

the dark blue area in �gure 5.33(a) can be seen in the data. Turning this around, one
obtains a theoretical curve relating the ratio of signals to the relative position of the Bragg
inside the PMMA slab. This is shown in �gure 5.35. For the slab width of 3 mm in the
current ICs stack, there is no perfect one-to-one correspondence for relative distances to
the Bragg peak around zero. This relationship becomes unique for smaller slab thicknesses
(< 2 mm).
The accuracy of the correction obtained from the ratio of signals depends, �rstly, on

the accuracy of the measured signals themselves and, secondly, on the functional corre-
spondence between ratio and relative peak position (cf. �gure 5.35). The gained nominal
resolution is therefore limited by these two factors. For the current set-up, the improved
nominal resolution is estimated to be around 1 mm in PMMA.

2In fact, if the position of the channel lay outside this region to the left, the corresponding signal ratio
would be larger than one. In other words the signal in the right channel would be higher, violating the
assumption of the left channel being the maximum.
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Figure 5.35.: Relationship of the ratio of signals at the channel of maximum current and
the relative position of the Bragg peak with respect to the maximum channel. The plot is
obtained by inverting the dark blue region in �gure 5.33(a).

5.5.1. Applications of the increased nominal resolution

Following the above method, some radiographic data have been recalculated. To this end,
from the ratio of signals at the channel of maximum current, the correction for the Bragg
peak position was calculated by a simple linear interpolation of the curve in �gure 5.35.
For the double wedge (cf. section 5.3.4) and the massive cylindric PMMA phantom (cf.
section 5.4.5), a comparison of the projections obtained by the simple maximum criterion
with and without the additional correction is shown in �gure 5.36. It is clear that this
method really permits to increase the nominal resolution of the ICs stack, since the ≈ 3 mm
step-like structures in the projections are strongly suppressed. It should be noticed, that
the kinks in the pro�le at channel 14, and 22 are due to malfunctioning channels of the
ICs stack.
Figures 5.37(a) and 5.37(b) show a comparison of radiographies of the anthropomorphic

Alderson head phantom obtained by the simple maximum criterion with and without the
additional correction. The di�erence image in �gure 5.37(c) reveals a step-like structure
due to the limited nominal resolution if no improvement is done. In fact, it can be seen, that
in the re�ned image, the gray values change more gradually. This can also be seen from the
horizontal and vertical sections in the lower four panels of the �gure (cf. �gures 5.37(d),
5.37(e), 5.37(f), and 5.37(g)). Without the increased nominal resolution (cf. panels on
the left), the edgy structure is evident. To obtain still better results, the dependence
of the ratio of signals to the peak position would have to be parametrized more precisely.
Certainly, it will be interesting to investigate how far such a technique could provide higher
nominal resolution images without the need of thinner absorbers between the PPICs. A
thorough study of the in�uence of signal noise on the functioning of the method would
also be necessary, but all these investigations are meant for future improvements outside
the scope of this work.
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Figure 5.36.: Comparison of radiographic projections obtained by the criterion of maximum
identi�cation without (left) and with (right) the additional resolution correction for the
irradiation of the double wedge (top, cf. �gure 5.17) and the massive cylindric PMMA
phantom (bottom, cf. section 5.4.5).

5.6. Tomographic measurements

5.6.1. Principle of image acquisition and reconstruction

The basic dataset for a tomography is given by a series of radiographies acquired at di�erent
angles (cf. section 5.4.1). To these projected images, a standard analytical backprojec-
tion algorithm based on Fourier transforms (Deans 1983) was applied. For best results,
the method requires angles to be equidistant and to cover the entire range necessary for
reconstruction (i.e. at least 0◦−180◦). In the backprojection approach, images are usually
�ltered in Fourier space to produce a correct reconstruction of the WEPL distribution in
the projected object. Without such a �lter, the inner part of the reconstructed image
would be overestimated and contours would be blurred. Although various �lters with spe-
ci�c advantages exist in the literature, in this work, a simple ramp �lter was employed. A
more detailed study of the mathematical reconstruction techniques is out of the scope of
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Figure 5.37.: Comparisons of radiographies of the anthropomorphic Alderson head phantom
obtained by the criterion of maximum identi�cation without (left) and with (right) the
additional correction for improving the nominal depth resolution. In the di�erence image (c),
the step-like structures due to limited resolution can be seen. The lower four panels show
several sections in x and y direction through the radiographies for both methods.
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5.6.2 Adaptation of the range in dependence of the projection angle
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Figure 5.38.: Two radiographies of the anthropomorphic Alderson head form obtained at
the same carbon ion beam energy of 375.32 MeV/u and 3.5 mm FWHM spot size for two
angles of 0◦ (left) and 90◦ (right).

this thesis.
In �gure 5.27, the set-up used for tomographic measurements in the experimental room

at HIT was shown. A rotating table, remotely controllable, was built to speed up the
measurement and to guarantee that the center of rotation was not shifted during data
acquisition. Two of the already described phantoms of di�erent complexity were used:
The PMMA cylinder (R = 8 cm), shown in �gure 5.3, with �ve tissue equivalent rods and
the anthropomorphic Alderson head phantom.

5.6.2. Adaptation of the range in dependence of the projection

angle

An important consideration for the acquisition of radiographies used for tomographic recon-
struction of a non-symmetric object is that the thickness varies with the angle of projection.
This can easily be seen from the two radiographies of the anthropomorphic Alderson head
phantom in �gure 5.38, obtained at the same carbon ion beam energy of 375.32 MeV/u
and 3.5 mm FWHM spot size for 0◦ and 90◦. These two angles constitute the extreme
positions in a head-like case, as can be seen from �gure 5.39. For this plot, the mean Bragg
peak position (expressed in channel number) and the standard deviation were calculated
for all measured angles (0◦ − 360◦ in steps of 2.25◦).
Therefore, it might be necessary to adjust the range of the ICs stack depending on

the angle of projection. This could be achieved either by changing the beam energy or by
inserting absorbers of di�erent thickness during a tomographic scan. Afterwards, the Bragg
peak positions contained in the single images would have to be shifted appropriately to
compensate for the additional absorber or beam energy. For a tomographic reconstruction
to work properly, this re-elaboration must not introduce any mismatches in gray level
between images.
In a heuristic approach, this was checked by taking radiographies at a �xed energy

(416.73 MeV/u and 3.4 mm FWHM spot size) with PMMA sheets of di�erent thickness
in front of the ICs stack. The images, acquired with 20 mm and 80 mm PMMA absorber
plates, respectively, and converted to a common reference thickness of 45 mm PMMA
absorber, are shown in �gure 5.40. To make discrepancies more visible, each image was
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Figure 5.39.: The mean Bragg peak position (expressed in channel number in steps of ten)
and the standard deviation calculated for all measured angles (0◦ − 360◦ in steps of 2.25◦)
for the anthropomorphic Alderson head phantom. The blue line refers to the mean Bragg
peak position, while the red and green line represents the mean value plus and minus one
standard deviation, respectively.

subtracted from a reference image, acquired with a 45 mm PMMA absorber plate, and
normalized by its mean value. The results are presented in the lower two panels.
In principle, the method of correcting the radiographic projections for the amount of

inserted energy degraders seems to yield satisfactory results, although a more precise cal-
ibration is needed and some additional technical e�ort would have to be done, which is
outside the scope of this work.

5.6.3. Tomographic reconstruction of cylindrical PMMA and

Alderson head phantoms

As �rst proof of principle, tomographic reconstructions of two phantoms have been per-
formed. In �gure 5.41, two reconstructions of the cylindric PMMA phantom with �ve tissue
equivalent rods are shown, without (cf. �gure 5.41(a)) and with (cf. �gure 5.41(b)) a ramp
�lter in Fourier space. The radiographies were obtained with a 12C beam of 396.29 MeV/u
and 3.5 mm FWHM spot size scanned through a laterally extended �eld (200 × 10 mm2,
∆x = ∆y = 1 mm) for 36 equi-spaced angles between 0◦ and 180◦, and the method to
virtually increase the nominal resolution of the ICs stack was adopted (cf. section 5.5).
The Bragg peak position in each pixel of the projected radiographies was converted to WE
thickness, according to equation 5.6.
As expected, the reconstruction without �lter is arti�cially bright in the center and
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5.6.3 Tomographic reconstruction of cylindrical PMMA and Alderson head phantoms
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Figure 5.40.: The top panels show images, converted to a common reference thickness of
45 mm PMMA absorber, of two di�erent radiographies obtained at �xed carbon ion beam
energy of 375.32 MeV/u, 3.5 mm FWHM spot size and with di�erent PMMA thickness
(20 mm, left, and 80 mm, right) in front of the ICs stack. The lower panels show images of
the di�erence of the two radiographies above obtained by subtracting each of them from a
reference image obtained with 45 mm absorber and normalizing them by the mean value.

becomes gradually darker outside. On the other hand, the more technically correct recon-
struction with ramp �lter reproduces the right phantom and rod dimensions and allows to
unambiguously identify the structures. It is in the nature of the �lter to emphasize image
noise. The stripe-shaped artifacts are due to the �nite number of angles. In this respect,
the in�uence of the used �lters will still have to be investigated in more detail, but it is
outside the scope of this work.
The reconstruction produces WEPL slightly above one, coherent with the measured ref-

erence value of (WEPLPMMA = 1.165) (cf. section 5.3.4). For the inserted rods, the
tomographic image roughly reproduces the expected WEPL of the di�erent materials
(WEPLair ≈ ρair = 0.0012 g/cm3, WEPLlung = 0.455, and WEPLbone = 1.618), as can best
be seen in the two lower panels of �gure 5.41 showing the horizontal (cf. �gure 5.41(c))
and vertical (cf. �gure 5.41(d)) sections through the center of the phantom.
As the most complex phantom investigated so far, a reconstruction of the anthropomor-

phic Alderson head form was performed. The radiographies were obtained with a 12C ion
beam of 389.36 MeV/u and 3.5 mm FWHM spot size for 160 equi-spaced angles between
0◦ and 360◦ and a �eld of 250× 80 mm2 with a ∆x step of 1 mm and a ∆y step of 10 mm,
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Figure 5.41.: Reconstructions of the cylindric PMMA phantom with �ve tissue equivalent
rods, without (a) and with (b) a ramp �lter in Fourier space. The colorbar indicates WEPL.
The lower two panels show central sections in the horizontal (c) and vertical (d) direction.
The expected WEPL of the materials are indicated for the respective regions.
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5.7 Remarks and suggestions for future improvements

and then converted to WE tickness according to equation 5.6. In �gure 5.42, the seven
reconstructed slices are presented. For qualitative comparison, a set of similar seven slices,
obtained from an X-ray CT, are presented in �gure 5.43. It should be noted, that in both
cases the head had a slightly di�erent inclination with respect to the reference table. The
sections are therefore not expected to be identical.
Although image noise from the carbon ion radiographies shows up as high contrast

streaks, some characteristic features of the human head can be recognized such as the
trachea, the nasal and auditory cavities, as well as some bone structures of the skull and
the jaw. The outer dimensions of the head are reproduced correctly. As in the case of the
cylindric phantom, the WEPL of the reconstructed head is roughly correct. In fact, the
supposedly bone-like tissues have a WEPL larger than 1, while the cavities, being �lled
with air, show a WEPL close to zero.

5.7. Remarks and suggestions for future improvements

The results presented in this chapter have strongly demonstrated the experimental feasibil-
ity of the HICT at HIT using a gaseous based detector consisting of 61 PPICs interleaved
with 3 mm PMMA absorbers. The promising results achieved so far motivate future work
regarding the improvement of the experimental set-up, data analysis and image formation
in order to achieve better image quality and to make �ner details visible in the recon-
structed images. In this respect, a brief collection of ideas to improve future set-ups is
listed in the following:

• Optimization of the absorber slabs used in the ICs stack in terms of thickness and
material, bearing in mind the proposed method to enhance its nominal resolution.

• Design and implementation of a suitable system to dynamically and remotely adapt
the range, e.g., by inserting di�erent absorber sheets, to keep the set-up rather com-
pact and yet cover a su�ciently large range.

• Minimization of the dose delivered to the patient during a HICT scan by lowering the
number of particles per raster point while maintaining a sustainable signal quality
and guaranteeing reliable data acquisition in time.

• Maximization of the time of integration with respect to the time of delivery per raster
point to optimize the ratio of detected to delivered beam particles. To this end, two
independent sets of electronics could be triggered to alternately (e.g., odd and even
channels) record the ICs stacks data.

• Allowance for shorter recording cycles by the trigger to pose a higher upper limit to
the possible scan speed.

• Establishment of optimal corresponding settings of ∆x and ∆y step sizes and foci
to possibly minimize the number of data points necessary for a reconstruction with
acceptable spatial resolution.
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Figure 5.42.: Seven reconstructed slices at 10 mm distance, as shown in the bottom
right panel, of the anthropomorphic Alderson head phantom obtained with a 12C beam
of 389.36 MeV/u and 3.5 mm FWHM spot size for 160 equi-spaced angles between 0◦ and
360◦. The colorbar indicates WEPL.

132



5.7 Remarks and suggestions for future improvements

0 50 100 150 200 250
x dimension in mm

0

20

40

60

80

100

120

140

160

z 
di

m
en

si
on

 in
 m

m

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

WEPL

0 50 100 150 200 250
x dimension in mm

0

20

40

60

80

100

120

140

160

z 
di

m
en

si
on

 in
 m

m

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

WEPL

0 50 100 150 200 250
x dimension in mm

0

20

40

60

80

100

120

140

160

z 
di

m
en

si
on

 in
 m

m

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

WEPL

0 50 100 150 200 250
x dimension in mm

0

20

40

60

80

100

120

140

160

z 
di

m
en

si
on

 in
 m

m

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

WEPL

0 50 100 150 200 250
x dimension in mm

0

20

40

60

80

100

120

140

160

z 
di

m
en

si
on

 in
 m

m

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

WEPL

0 50 100 150 200 250
x dimension in mm

0

20

40

60

80

100

120

140

160

z 
di

m
en

si
on

 in
 m

m

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

WEPL

0 50 100 150 200 250
x dimension in mm

0

20

40

60

80

100

120

140

160

z 
di

m
en

si
on

 in
 m

m

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

WEPL

Figure 5.43.: Seven reconstructed slices at 10 mm distance, as shown in the bottom right
panel, of the anthropomorphic Alderson head form obtained with an X-ray CT. The colorbar
indicates WEPL.
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• Implementation of a faster and more automated system of data acquisition.

• Engagement into more detailed studies to �nd reliable methods for correctly relating
the data measured by the ICs stack to the actual target WEPL. This has been shown
to be of particular importance at interfaces of high density contrast and involves not
only image reconstruction techniques but also more robust methods to precisely
detect the Bragg peak position.
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Chapter 6

CONCLUSIONS & OUTLOOK

Imaging techniques play an increasingly emerging role for treatment planning and range
veri�cation in ion beam therapy. In this thesis, two novel approaches were studied.

The �rst technique is based on the detection of prompt gammas emerging from the patient,
created in the course of nuclear reactions of the beam particles with the target nuclei. After
an initial validation of the FLUKA Monte Carlo code for proton beams in Multi Layer
Faraday Cups to complement previous extensive validation for carbon ion beams, this
technique was investigated especially for protons. In fact, they are expected to be more
favorable due to the reduced neutron background. Theoretical studies were performed
with the help of the FLUKA code in the framework of the FLUKA collaboration, using a
dedicated development version, kindly provided by the FLUKA developer team.
Initially, simulations were done of experiments with carbon ions carried out by groups of

Lyon (IPNL and CNDRI-INSA) at the beam facilities at GANIL and GSI, assessing once
again the reliability of the FLUKA code and supporting its further use in this thesis. Sub-
sequent theoretical studies focused on the detectability of the prompt gammas in idealized
as well as more clinically realistic scenarios. In particular, simulations of an ideal detector
response were performed for proton beams impinging on phantoms of di�erent complexity.
A correspondence of the gamma depth pro�le and the Bragg curve was found for su�cient
collimation around a detection angle of 90◦ relative to the beam axis. The gamma pro�les
could be shown to be sensitive to slight overall density changes as well as local density
variations.
In the framework of a scienti�c international (German, Portugal and Holland) collabo-

ration aiming to develop possible methods for improving the signal-to-noise ratio in future
experimental measurements, the time of �ight (TOF) spectra of the gammas and of the
neutron background were analyzed. The TOF of the gammas was observed to fall in a
peak whose width increases with beam energy, i.e., total path length of the beam in the
phantom. For phantoms of various complexity, the peak was separable from the neutron
continuum, hence encouraging detection methods based on TOF discrimination. Local
density variations in the phantom were visible in the TOF spectra as characteristic struc-
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tures within the gamma peak due to the varying propagation speed of the gammas in
materials of di�erent densities.
As a more clinically relevant case, prompt gammas, revealed in an ideal detector, were

simulated for a real treatment plan of a patient head. Two subsets of the plan were
considered, one at �xed lateral beam position and varying beam energy, the other at �xed
energy and varying the lateral beam position in one dimension. The shape of the gamma
depth pro�les was found to be correlated to the Bragg curve also in this case of an highly
heterogeneous medium. The gamma peak in the TOF spectra was observed to be isolated
from the neutron continuum, as in the case of simpler phantoms. It could be demonstrated
that the in�uence of a real beam delivery in comparison to an idealized monoenergetic set-
up had an in�uence on the position of the gamma peak, yet only marginal on the shape. It
could be shown that the lateral beam position had almost no impact on the TOF spectrum
of the gammas. Finally, a �rst attempt was made to relate the shape of the gamma depth
pro�le emerging from the patient head to the Bragg peak position based on the gradient
of the pro�le and its minimum. The statistical noise due to the low gamma yield made
the use of smoothing algorithms necessary, which might in turn systematically compromise
the inferred Bragg peak position. Further studies will be necessary to this regard.
In general, the potential of prompt gammas for localizing the ion range in a target volume

could be demonstrated in this thesis. Experimental challenges are mainly related to the
low counting statistics of the prompt gamma yield and the related necessity for e�ective
methods to isolate the weak signal from the background radiation. Technical advancements
will still be necessary to develop a suitable detector system and bring the prompt gamma
approach closer to a clinical stage.

As a second novel imaging technique for low dose 2D and 3D transmission imaging, the
Heavy Ion Computed Tomography (HICT) was investigated from an experimental point
of view. This was speci�cally done for carbon ion beams, since their trajectories through
a target can be assumed to be in �rst approximation straight due to their rather small
lateral scattering, thus simplifying a lot the reconstruction of their most probable path
compared to, e.g., proton based approaches.
An initial study showed that the beam energies available at HIT are su�ciently high

to make the Bragg peak fall beyond a typical target volume, such as a patient head,
when irradiated with a carbon ion beam. This is required for HICT to minimize the dose
delivered to the patient during a scan and to make the detection of the Bragg peak behind
the target possible. The promising results of a �rst proof of principle experiment, for which
radiographic �lm as well as FLUKA MC simulations came to use, motivated the set-up of
a new dedicated detector system.
Advantages of revealing the range rather than the residual energy as the earlier is deter-

mined only by primary ions while the latter depends on both, primaries and fragmented
secondaries, led to the choice of a range telescope as detector. In particular, an Ionization
Chambers (IC) stack with 61 chambers was assembled in collaboration with colleagues
at GSI and equipped with a fast multi channel electronics module, which was acquired
to read-out the ICs stack analog signal. The results of detailed characterization studies
underlined the importance of fast data acquisition and triggering to minimize the total
scan duration. It was seen that the ICs signal was su�cient for the purpose of image con-
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struction even for low count rates underlining the potential of HICT as a low dose imaging
technique. On the other hand, the ratio of the number of beam particles seen by the ICs
stack and the total number of beam particles delivered to the patient should be optimized
by minimizing idle times of the electronics. Since 2D radiographic images are constructed
from time series of data points, the reliability of the trigger system even at high scan rates
was found to be crucial, as omitted data points will lead to distortions in the composed
image.
Two calibrations were done with the dedicated set-up, one to obtain the beam energy

dependence of the Bragg peak position revealed in the ICs stack, and the other to relate
the detected peak position to the physical target thickness. For the latter, a PMMA wedge
was used for the sake of simplicity and since the Water Equivalent Path Length (WEPL)
of PMMA is well known from measurements at HIT. Both calibrations can be used to
express heavy ion radiographies obtained at any beam energy in terms of water equivalent
(WE) target thickness. For future applications, a more precise calibration should be done
preferably using a water phantom.
To assess the applicability of the detector system, radiographies were produced for phan-

toms of di�erent complexity, ranging from a simple massive PMMA cylinder to the Alder-
son head phantom, and expressed in WE thickness yielding realistic and consistent results.
Particular attention was paid to interfaces of high density contrast within the irradiated
target. It was shown that they can lead to the superposition of multiple Bragg peaks in the
ICs stack and, ultimately, to image defects. More sophisticated methods will be necessary
to translate the ICs signal into image information in order to avoid such artifacts.
The thickness of the absorber sheets in the ICs stack determines the nominal resolution

of the detector. In the current dedicated set-up, 3 mm PMMA slabs are used. For a
single radiography of the Alderson head phantom, the necessary range was measured to
be about 90 mm in PMMA, corresponding to 30 channels, while for an entire tomographic
scan, up to 50 channels were needed, thus requiring a minimum overall depth of the ICs
stack. On the other hand, a �ne spatial resolution is desirable for high quality tomographic
images calling for thinner absorber sheets. To address this issue, a method was proposed
to virtually increase the nominal resolution. In this approach, the position of the real
Bragg peak relative to the discrete ICs positions is deduced from the ratio of signals in
neighboring channels around the Bragg peak. For the current ICs stack layout, the method
is well applicable although future set-ups could intrinsically be improved by optimizing the
thickness of the absorber slabs. For simple phantoms, such as a PMMA cylinder and a
PMMA wedge, as well as for the more complex Alderson head phantom, the proposed
method was shown to deliver radiographies of considerably �ner gray value resolution.
Nevertheless, the implementation of the method shows still potential for improvement.
As a �nal proof of principle of HICT, tomographic images were reconstructed based

on radiographies (converted to WE thickness) of a cylindric PMMA phantom with small
cylindric inserts of di�erent composition and densities, as well as of the Alderson head
phantom. This way, the tomographic images directly provided WEPL maps of the target.
The latter were also compared to images obtained with a commercial X-ray CT scanner.
Although still a�ected by image noise, the tomographic ion-based images allowed to identify
anatomical structures characteristic for the human head.
A detailed list of possible technical improvements has already been presented in sec-
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tion 5.7. Generally, the research activities proposed for the future can be divided in 3
directions: Firstly, the data acquisition system, including the electronics and the trigger
system, can be improved concerning in particular its speed and reliability. Secondly, the
ICs stack should be optimized in terms of total range, compactness, and spatial resolution,
also bearing in mind the method proposed in this work to virtually increase the nominal
resolution limited by the absorber thickness. The optimized design might imply also the
use of more dedicated materials in the composition of the ICs. The outer dimensions of
the detector are of peculiar importance if a HICT system shall eventually be integrated
in the gantry treatment set-up at HIT. Finally, e�ort has to be put forward to develop
robust algorithms for constructing images out of raw data and for reconstructing adequate
tomographic images therefrom.

Summarizing, the results of this thesis strongly support prompt gamma imaging and HICT
as very promising imaging modalities with interesting potentialities for future clinical ap-
plications to in-vivo range veri�cation on di�erent time scales (i.e., prior to, during, and
in-between treatment), thus encouraging further investigations and developments at HIT
for proton and ion beams, respectively.
It is expected that eventually the two novel imaging techniques investigated within this

thesis will provide valuable information complementary to that from further modalities
being currently clinically evaluated (i.e., Positron Emission Tomography, PET) or ex-
perimentally investigated (i.e., Interaction Vertex Imaging, IVI), with the �nal goal to
integrate several imaging modalities to reduce range uncertainties and thus provide full
clinical exploitation of the physical advantages of ion beams for high precision radiation
therapy.
In such a scenario, HICT could be employed to replace or supplement the use of X-

ray CT and Houns�eld Unit-WEPL calibration curve in the treatment planning as well
as to evaluate the correct patient positioning and to verify the ion range prior to and in-
between treatment. Prompt gamma imaging and IVI could serve for real-time in-vivo range
monitoring of single pencil beams or isoenergy slices during a treatment. PET could be
adopted for tomographic con�rmation of the irradiated volume and for dose reconstruction.
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