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Abstract

This work presents a method to extract the CP-violating phase φs using the B0
s

meson decay B0
s→ J/ψ φ. The determination of φs is one of the key measurements

of the physics program of the LHCb experiment. The phase φs arises from the
interference between B0

s mixing and the decay and is predicted by the Standard
Model to be φs = (−0.0363± 0.0017) rad [1]. Physics processes beyond the Stan-
dard Model can affect the B0

s mixing amplitude and lead to deviations from this
prediction. The precision measurement of φs therefore constitutes an indirect
search for New Physics.
In the scope of this thesis an unbinned maximum likelihood method to extract φs
has been implemented. Since the decay B0

s→ J/ψ φ is a pseudoscalar to vector-
vector transition the extraction method depends on both decay time and decay
angles. Acceptance and resolution effects are also taken into account. The
procedure is successfully tested on fully simulated events and fast simulated data.
It is used to analyze data taken by the LHCb experiment in 2010 which correspond
to an integrated luminosity of 36 pb−1. With a flavor blind analysis the decay width
difference ∆Γs is determined to be ∆Γs = (0.084± 0.112stat. ± 0.014syst.) ps−1

under the assumption of no CP violation. Using a B0
s production flavor dependent

analysis two-dimensional confidence regions for φs and ∆Γs are extracted. The
Standard Model prediction is found to agree within 1.0 standard deviations with
the data. In one dimension the confidence interval for φs at 68.3% confidence
level is determined to be [−2.78,−0.39] rad.

Kurzfassung

In der vorliegenden Arbeit wird ein Algorithmus zur Bestimmung der CP-
verletzenden phase φs im Zerfall B0

s→ J/ψ φ vorgestellt. Die Bestimmung von φs
stellt eine der Kernanalysen des Physik Programms des LHCb Experiments dar.
Die Phase φs tritt in der Interferenz zwischen B0

s Mischung und Zerfall auf und
wird im Standardmodell zu φs = (−0,0363± 0,0017) rad vorhergesagt [1]. Physi-
kalische Prozesse jenseits des Standardmodells können die B0

s Mischungsamplitude
modifizieren und so zu Abweichungen von dieser Vorhersage führen. Die Messung
von φs stellt daher eine indirekte Suche nach Neuer Physik dar.
Im Kontext dieser Arbeit wurde ein Maximum Likelihood Fit zur Bestimmung
von φs entwickelt. Da der Zerfall B0

s→ J/ψ φ einen Übergang eines pseudoskalaren-
in zwei Vektorteilchen darstellt hängt der Algorithmus sowohl von der Zerfalls-
zeit als auch den Zerfallswinkeln ab. Akzeptanz- und Auflösungseffekte werden
ebenfalls berücksichtigt. Der Algorithmus wurde erfolgreich auf simulierten Daten
getestet. Der Algorithmus wird verwendet um Daten zu analysieren welche
vom LHCb Experiment im Jahr 2010 aufgezeichnet wurden und einer integrier-
ten Luminosität von 36 pb−1 entsprechen. Ohne den Flavor des B0

s Mesons im
Anfangszustand zu berücksichtigen wird der Zerfallsbreitenunterschied ∆Γs zu
∆Γs = (0,084± 0,112stat. ± 0,014syst.) ps−1 bestimmt, wobei der Effekt möglicher

CP Verletzung vernachlässigt wurde. Mittels einer Analyse welche Informationen
über den Flavor des B0

s Mesons im Anfangszustand verwendet werden zweidi-
mensionale Konfidenzregionen für φs and ∆Γs bestimmt. Die Standardmodell-
vorhersage stimmt mit den Daten innerhalb von 1,0 Standardabweichungen überein.
In einer Dimension ergibt sich für φs das Konfidenzintervall [−2,78,−0,39] rad für
ein Konfidenzniveau von 68,3%.
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Introduction

The Standard Model of particle physics in its current form was developed in the
1960s [2, 3, 4]. Over the years it has been tested in numerous experiments and so far it
has been very successful in the description of all available data from particle physics
experiments1. But even though the predictions made by the Standard Model have been
confirmed with astonishing precision some open questions remain

• The predominance of matter over antimatter in the universe is not understood.
Since matter and antimatter are believed to have been produced in equal amounts
in the big bang it is unclear why antimatter in our universe is practically absent.
CP violation2 is one of the prerequisites for the matter abundance seen today [5].

• Cosmological observations show that only 4% of the energy-density of the universe
originates from baryonic matter which is described by the Standard Model. The
remaining 96% are given by dark matter (20%) and dark energy (76%) [6, 7]. The
Standard Model contains no viable dark matter candidate [8].

• Particle masses in the Standard Model are generated by the mechanism of spon-
taneous symmetry breaking. The Higgs boson [9, 10, 11] resulting from this
mechanism is the only particle in the Standard Model which has not been observed
yet.

The Large Hadron Collider (LHC) was constructed to find answers to these questions.
As a proton-proton collider with a nominal center of mass energy of 14 TeV3 and a design
luminosity of 1 · 1034 cm−2s−1 it is the most powerful particle accelerator to date. Four
large experiments are located around the interaction points. Two experiments, CMS and
ATLAS are general purpose detectors performing direct searches for the Higgs boson
and signatures of particles beyond the Standard Model. The other two experiments
are specialized detectors built to study heavy ion collisions (ALICE) and to perform
precision measurements of the decay properties of b hadrons (LHCb).

The LHCb experiment profits from the large bb production cross section σbb ∼ 500µb
at
√
s = 14 TeV. At nominal luminosity4 the Large Hadron Collider will produce

about 1012 bb pairs at the LHCb interaction point per year. LHCb searches for effects
beyond the Standard Model (New Physics) by performing precision measurements of loop
mediated processes. Loop mediated processes are heavily suppressed in the Standard
Model. They are therefore promising candidates to see comparatively large effects from

1With the exception of the observation of non-zero neutrino masses.
2C is the operator which inverts charge, P the parity operator which inverts space ~x→ −~x
3Currently the LHC operates at

√
s = 7 TeV.

4The nominal luminosity at the LHCb interaction point is 2 · 1032 cm−2 s−1.
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physics processes beyond the Standard Model which are not necessarily suppressed.
These possible new contributions can have a large effect on the branching ratios of rare
decays and introduce new sources of CP violation.

This thesis presents the determination of the CP violating phase φs using the B0
s

meson decay B0
s→ J/ψ φ. The phase φs originates from interference between the direct

decay and the decay after the B0
s has oscillated. The mixing of a B0

s meson into its
antiparticle B̄0

s is a flavor changing neutral current process (FCNC) which is forbidden
at tree level in the Standard Model. The transition therefore occurs only at loop level
via so called box-diagrams (Figure 1.3). B0

s mixing is determined by three parameters,
which will be introduced in detail in the next chapter, the mixing frequency ∆ms, the
decay width difference ∆Γs and the mixing phase φs. The phase φs is of particular
interest since it is well predicted in the Standard Model φs = −0.0363± 0.0017 [1] so
that large deviations from this prediction would constitute an unambiguous sign of New
Physics.

One of the key components of the analysis of the decay B0
s→ J/ψ φ was implemented

in the course of this thesis, namely the angular and time dependent unbinned maximum
likelihood fit to extract φs from data taken by the LHCb detector. Parameter estimation
via the unbinned maximum likelihood technique requires the signal and background
components in the data to be modeled by probability density functions depending on the
parameters of interest. The signal component is modeled according to the differential
decay rate of the signal decay given by theory. The background contribution is modeled
empirically. Both components depend on the B0

s decay time, the decay angles and
the reconstructed B0

s mass. In a minimization process the parameters for which the
measured data sample becomes most likely are then determined. The analysis can be
performed either in a flavor blind way or depending on the B0

s production flavor with
the former being only minimally sensitive to φs. The decay time resolution is taken
into account. Decay time and angular acceptance effects due to detector geometry and
selection are also included. The implemented code was rigorously tested using simulated
data. It was used to perform a flavor blind analysis to extract ∆Γs under the assumption
of no CP violation. A B0

s production flavor dependent analysis was performed and
confidence contours in the φs-∆Γs parameter space were deduced from the data. Both
measurements will be discussed in this thesis.

The thesis is organized in eight chapters following this introduction. Chapter 1
introduces the theoretical framework of the Standard Model and gives a short overview
of CP violation focusing on the signal decay B0

s→ J/ψ φ. Chapter 2 describes the LHCb
detector and its subsystems. The selection of the signal decay and reconstruction
effects that need to be accounted for in the extraction of φs are discussed in Chapter 3.
Chapter 4 first summarizes the method of parameter estimation via unbinned maximum
likelihood fits and the determination of confidence intervals. Furthermore it discusses
the description of the data via probability density functions which is necessary for the
determination of the physics parameters. Chapter 5 discusses the fit validation on
simulated events generated using the full detector simulation and via a fast simulation
technique. The extraction of ∆Γs using a flavor blind study under the assumption
of no CP violation is detailed in Chapter 6. Chapter 7 covers the determination of
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confidence regions for φs and ∆Γs exploiting the determination of the B0
s production

flavor. Chapter 8 finally summarizes the results and gives a short outlook on the
determination of φs with the 2011 data sample.





1. Theory

This chapter gives a short overview of the Standard Model focusing on the flavor sector.
The CKM mechanism and the phenomenon of CP violation caused by a non-trivial
CKM phase are discussed in detail. The mixing of neutral B mesons is introduced and
a formalism to describe both mixing and decay of B mesons is presented. The decay
B0

s→ J/ψ φ is introduced as an example of time dependent CP violation. In this decay
the CP violating phase φs arises due to the interference between direct decay and decay
after B0

s -B̄0
s mixing. Finally the current experimental status of the phase φs is presented

and the effect of possible contributions from processes beyond the Standard Model on
φs is discussed.

1.1. The Standard Model

The aim of Particle Physics is to understand the laws of nature at the smallest scales.
The Standard Model of Particle Physics (SM) [2, 3, 4] describes the fundamental building
blocks of matter and their interactions. It is a relativistic renormalizable quantum field
theory encompassing all the current knowledge in the field of Particle Physics. The
Standard Model combines the theory of the strong interactions, Quantum Chromo
Dynamics (QCD) with the Glashow-Salam-Weinberg electroweak theory. It is is well
tested and, with only few exceptions, very successfull in describing the experimental
observations. An enormous amount of literature exists on the topic of the Standard
Model, therefore only the main concepts will be summarized below. For more detailed
review articles on which this overview is based see [12, 13, 14, 15].

The symmetry group of the Standard Model

Symmetries are of central importance in physics since they imply, as Noether’s theorem
states, conservation laws. An example would be Quantum Electro Dynamics (QED)
where the symmetry of the Lagrangian under a global phase rotation of the wave function
results in conservation of the electric charge. Promoting the global symmetry to a local
symmetry gives rise to the gauge boson of QED, the photon, and its interaction with
the matter fields via covariant derivatives.

The matter particles in the Standard Model are described as fermionic spin 1/2 fields.
The 12 fermions of the Standard Model are further subdivided in two classes, quarks and
leptons in three generations each, which are given in Table 1.1. The Standard Model
Lagrangian is characterized by its invariance under local gauge transformations of the
symmetry group SU (3)C⊗SU (2)L⊗U (1)Y. This gauge symmetry fixes the interactions
of the theory. In particular it results in the mediators of the forces, the spin 1 gauge
bosons of the Standard Model.



6 1. Theory

Quantum Chromo Dynamics

SU (3)C is the gauge group of QCD, where the index C denotes color. The gauge bosons
of QCD are the 8 gluons, each corresponding to one of the generators of SU (3)C. Only
the quarks, denoted in Table 1.1a, take part in the strong interaction as the leptons do
not carry color charge. The strong force is the interaction responsible for the binding of
quarks in mesons and baryons and the binding of protons and neutrons in nuclei. The
gluons also carry color charge themselves, a consequence of the non-abelian structure
of SU (3)C, which results in three and four gluon interactions. This also gives rise to a
strong dependency of the effective coupling on the transfered four momentum q2, the
coupling is said to be “running” with q2. For large q2 the coupling is small which is
known as “asymptotic freedom”. The opposite is true for small q2 where the coupling
rises with the inverse logarithm of q2. This behaviour is known as confinement and is
the reason for the absence of free quarks in nature. The gluon self-coupling also implies
that the strong force only has comparatively short range even though the gluons are
massless.

The electroweak sector

SU (2)L⊗U (1)Y is the gauge group of the unified electroweak theory. The gauge bosons
resulting from invariance of the Lagrangian under the gauge transformations are the
electroweak gauge bosons W µ

i and Bµ. The L in SU (2)L denotes that the gauge bosons
W µ
i only couple to left-handed weak isospin doublets. The gauge boson Bµ on the other

hand couples to both the left-handed doublets as well as the right-handed isospin singlets
carrying weak hypercharge denoted by Y . Both quarks and leptons take part in the
electroweak interaction organized as left-handed weak isospin doublets and right-handed
isospin singlets as shown in Table 1.3. The commutators of the SU (2)L generators are,
similar to the SU (3)C generators, nonzero which leads to W µ

i self-interaction. The more
familiar charged weak bosons W+ and W− are given by linear combinations of W µ

1

and W µ
2 . The neutral Z0 boson and the photon are linear combinations of W µ

3 and Bµ,
connected via the weak mixing angle. The gauge bosons of the Standard Model are
summarily listed in Table 1.2.

The photon is the mediator of the electromagnetic force which is responsible for
binding atoms and molecules together. It couples to electric charge Q and is itself
electrically neutral. Since the photon is massless the electromagnetic force has long
range. The electromagnetic interaction has, as has the strong interaction, pure vector
character.

The exchange bosons of the weak interaction are the charged weak bosons W+ and W−

and the neutral Z0. Interactions via the charged weak force are the only processes in the
SM that can change flavor and are thus responsible for all flavor changing processes such
as β decay. Unlike the electromagnetic and the strong interaction, the weak interaction
is not invariant under the Parity operation P due to the different couplings of left- and
right-handed fields.
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Quarks

Generation Particle Mass

1st
(
u

d

)
1.5− 3.3 MeV

3.5− 6.0 MeV

2nd
(
c

s

)
1.27+0.07

−0.11 GeV

104+26
−34 MeV

3rd
(
t

b

)
171.2± 2.1 GeV

4.20+0.17
−0.07 GeV

(a)

Leptons

Generation Particle Mass

1st
(
e−

νe

)
511.0 keV

< 2 eV

2nd
(
µ−

νµ

)
105.7 MeV

< 2 eV

3rd
(
τ−

ντ

)
1776.8 MeV

< 2 eV

(b)

Table 1.1.: (a) Quarks and (b) leptons in the Standard Model. Values for the quark and
lepton masses are compiled from [16].

Spontaneous symmetry breaking

From experimental observation it is well known that the weak bosons W± and Z0, unlike
the photon, are massive. In fact the masses of all massive particles in the Standard
Model, quarks and charged leptons as well as the massive gauge bosons, are generated by
the mechanism of spontaneous symmetry breaking, also known as the Higgs-mechanism.
In its minimal version an isospin doublet Φ of two complex scalar fields with the Higgs-
potential V (Φ) = µ2Φ†Φ +λ(Φ†Φ)2 with µ2 < 0 and λ > 0 is introduced in the Standard
Model Lagrangian. This potential leads to a non-symmetric ground state, breaking the
SU (2)L ⊗ U (1)Y electroweak symmetry down to the U (1)Q electric charge symmetry.
The heavy gauge bosons acquire mass via the covariant derivatives in the kinematic term
(DµΦ)†DµΦ. Fermion masses are introduced via Yukawa couplings to Φ. The Yukawa
couplings are in general not diagonal. Diagonalizing the Yukawa couplings for the quarks
leads to their mass eigenstates given in Table 1.1a. The mismatch between mass and
weak eigenstates is the reason for the introduction of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix which connects the mass and weak eigenstates.

The Higgs-mechanism predicts one observable massive spin 0 particle, the Higgs-boson.
The Higgs-boson is the only particle in the Standard Model which has not yet been
discovered and the search for it is one of the main motivations for the construction of
the Large Hadron Collider.

1.2. The Flavor Sector of the Standard Model

1.2.1. The CKM mechanism

The charged weak interaction is the only interaction in the SM that can change flavor.
The charged current part of the Standard Model Lagrangian wich governs the charged
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Gauge bosons

boson mass couples to

photon γ 0 el. charge

gluons Gi=1...8 0 color

W+ 80.4 GeV weak charge

W− 80.4 GeV weak charge

Z0 91.2 GeV weak & el. charge

Table 1.2.: Gauge bosons in the Standard Model. The masses of the heavy gauge bosons
are compiled from [16].

Fermions

Quarks Q T T3 Y(
u

d′

)
L

(
c

s′

)
L

(
t

b′

)
L

+2
3 1

2

+1
2

+1
3

−1
3

−1
2

+1
3

uR cR tR +2
3

0 0 +4
3

dR sR bR −1
3

0 0 −2
3

Leptons Q T T3 Y(
νe
e

)
L

(
νµ
µ

)
L

(
ντ
τ

)
L

0 1
2

+1
2
−1

−1 −1
2
−1

eR µR τR −1 0 0 −2

Table 1.3.: Quarks and leptons are organized in left-handed doublets and right handed
singlets of the weak isospin T . The dashed quarks d′, s′ and b′ are the weak
eigenstates which are connected to the mass eigenstates in Table 1.1a via
the CKM matrix (see equation 1.2). Y denotes the weak hypercharge which
is connected to the electric charge Q and the third component of the weak
isospin T3 via Y = 2(Q− T3). Table from [17].
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weak interaction is given by

LCC = − g

2
√

2

[
ūiW

+
µ γ

µ(1− γ5)d′i + d̄′iW
−
µ γ

µ(1− γ5)ui

]
, (1.1)

where the dashed quark fields denote the weak eigenstates. The weak eigenstates are
constructed by rotating the mass eigenstates with the Cabbibo-Kobayashi-Maskawa
(CKM) matrix VCKM [18, 19], a complex unitary 3× 3 matrix. It is customary to only
rotate the down-type quarks (d, s, b) to d′

s′

b′

 = VCKM

 d

s

b

 =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 d

s

b

 (1.2)

As VCKM is unitary, VCKMV†CKM = 1, the 18 parameters which describe a complex 3× 3
matrix reduce to nine. Five parameters can be absorbed as unobservable quark phases
which leaves four independent parameters. The standard parametrization of VCKM [20]
is characterized by three Euler angles Θ12, Θ13, Θ23 and the phase δ. Using the shortcuts
cij = cos Θij and sij = sin Θij VCKM is given by

VCKM =

 1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1


=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 . (1.3)

A common parametrization of VCKM which reflects the hierarchy of the matrix elements
is the Wolfenstein parametrization [21]. It uses the real parameters λ, A, ρ and η, with
η being responsible for the imaginary part of the entries in VCKM. It can be obtained by
using the definitions

s12 = λ

s23 = Aλ2

s13e
−iδ = Aλ3 (ρ− iη)

in the standard parametrization. The parameter λ ≈ 0.23 has the role of an expansion
parameter which simplifies the estimation of the size of the elements of VCKM. The
parametrization up to order λ4 is

VCKM =

 1− 1
2
λ2 − 1

8
λ4 λ Aλ3 (ρ− iη)

−λ 1− 1
2
λ2 − 1

8
λ4 (1 + 4A2) Aλ2

Aλ3 (1− ρ− iη) −Aλ2 + 1
2
Aλ4 (1− 2 (ρ+ iη)) 1− 1

2
A4λ4

 [22].
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From this parametrization it is immediately clear that the diagonal elements are large
∼ 1, whereas the off-diagonal elements which are responsible for transitions between
different generations are smaller with Vus,Vcd ∼ λ, Vcb,Vts ∼ λ2 and Vub,Vtd ∼ λ3.
The imaginary part relative to the magnitude of the matrix element is largest for Vub.
Up to order λ4 only Vub, Vtd and Vts have an imaginary component.

1.2.2. CP violation

Applying the CP transformation to the charged current part of the Standard Model
Lagrangian given by

LCC = − g

2
√

2

[
(VCKM)ij ūiW

+
µ γ

µ(1− γ5)dj + (V∗CKM)ij d̄jW
−
µ γ

µ(1− γ5)ui

]
results in the CP conjugated Lagrangian

LCP
CC = − g

2
√

2

[
(VCKM)ij d̄jW

−
µ γ

µ(1− γ5)ui + (V∗CKM)ij ūiW
+
µ γ

µ(1− γ5)dj

]
[22].

Both expressions are identical if (V∗CKM)ij = (VCKM)ij , i.e. all CKM matrix elements are
real. A non-trivial phase δ (see equation 1.3) inducing complex CKM matrix elements
can therefore lead to CP violation.

In nature the CP symmetry is indeed violated. CP violation was first discovered in
1964 in neutral K decays [23]. More recently CP violation has also been observed in the
B meson sector by the BaBar and Belle collaborations [24, 25].

1.2.3. The unitarity triangles

The unitarity condition VCKMV†CKM = 1 results in three equations for the off-diagonal
elements1:

VudV∗us + VcdV∗cs + VtdV∗ts = 0 (1.4)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 (1.5)

VudV∗ub + VcdV∗cb + VtdV∗tb = 0 (1.6)

Since on the left-hand side of the equations are sums of three complex numbers the
conditions can be visualized as triangles in the complex plane. Usually one side of the
three triangles is normalized to coincide with the real axis which results in the equations

VudV∗us

VcdV∗cs

+
VcdV∗cs

VcdV∗cs

+
VtdV∗ts
VcdV∗cs

= 0 (1.7)

VusV
∗
ub

VcsV
∗
cb

+
VcsV

∗
cb

VcsV
∗
cb

+
VtsV

∗
tb

VcsV
∗
cb

= 0 (1.8)

VudV∗ub

VcdV∗cb

+
VcdV∗cb

VcdV∗cb

+
VtdV∗tb
VcdV∗cb

= 0 (1.9)

1The other three off-diagonal elements in the unitarity equation VCKMV†CKM = 1 result in three
equations which are just the compex conjugates of equations 1.4, 1.5 and 1.6. Keep in mind that
each one of the equations 1.4, 1.5 and 1.6 gives two conditions, one for the real part and one for the
imaginary part.
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Figure 1.1.: Illustration of (a) the B0
d triangle and (b) the B0

s triangle in the complex
plane. The B0

s triangle is very flat because the angle βs is very small. Note
that the imaginary axis for this plot is scaled by a factor 10.

An illustration of the unitarity triangle resulting from equation 1.9 is given in Figure 1.1a.
It is also called the “B0

d triangle”, since its sides and angles are accessible through B0
d

decays. The vertices of the triangle are, due to the normalization, (0, 0), (0, 1) and (ρ̄, η̄).
The angles at the vertices are defined as

γ = arg

(
−VudV∗ub

VcdV∗cb

)
(1.10)

β = arg

(
−VcdV∗cb

VtdV∗tb

)
(1.11)

α = arg

(
−VtdV∗tb

VudV∗ub

)
. (1.12)

Figure 1.1b gives the “B0
s unitarity triangle” resulting from equation 1.8. The apex of

the triangle is located at (ρ̄s, η̄s). This unitarity triangle is nearly flat with the small
angle βs at the vertex (1, 0) given by

βs = arg

(
−VtsV

∗
tb

VcsV
∗
cb

)
. (1.13)

1.2.4. Experimental status of the unitarity triangles

The Standard Model does not predict the CKM matrix elements. A central aim of
flavor physics is to overconstrain the CKM triangles to test the unitarity conditions.
Figures 1.2a and 1.2b show the unitarity triangles resulting from a global fit of the
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Figure 1.2.: (a) B0
d triangle and (b) B0

s triangle in the complex plane from a global CKM
fit. Both plots are from [1].

CKM matrix elements in the Standard Model. The lengths of the sides of the unitarity
triangles are determined by the absolute values of CKM matrix elements.

• |Vub| and |Vcb| determine the length of the left side of the B0
d triangle. Both

quantities can be accessed in semileptonic B decays. |Vub| can be extracted from
semileptonic decays to light mesons, e.g. B → π`ν. |Vcb| can be accessed using
semileptonic B decays to charm, e.g. B → D`ν.

• The right side of the B0
d triangle is determined by |Vtd| and |Vtb| which can be

constrained using B0
d-B̄0

d and B0
s -B̄0

s mixing.

The angles of the unitarity triangles are directly related to complex CKM matrix elements.
They can therefore be accessed by precision measurements of CP-violation.

• The angle β appears in B0
d mixing. The precise measurement of sin 2β was one of

the main goal of the experiments BaBar and Belle and confirmed the existence of
CP violation in the B sector for the first time [24, 25]. Both experiments determine
β using the “gold plated” decay channel B0

d→ J/ψK0
S. The most recent combined

result is

sin 2β = (0.671± 0.023) rad [16].

This combination represents the most precise angular constraint entering the fit.
It is given by the dark blue band in Figure 1.2.

• The angle βs appears in B0
s mixing. The current experimental situation is discussed

in detail in section 1.3.4. The determination of φs = −2βs
2 using the decay channel

B0
s→ J/ψ φ is one of the main physics goals of the LHCb experiment and the topic

of this thesis.
2In the Standard Model
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�W− W+

s

Bs

b̄

b

B̄s

s̄

u, c, t

ū, c̄, t̄

�ū, c̄, t̄W−

u, c, t

W+

s

Bs

b̄

b

B̄s

s̄

Figure 1.3.: B0
s mixing in the Standard Model.

1.2.5. Mixing of neutral B mesons

The process of B meson mixing describes transitions between the flavor eigenstates B0
q

and B̄0
q. The flavor content of these states is given by b̄q and bq̄ respectively. Oscillations

between B0
q and B̄0

q therefore constitute flavor changing neutral currents (FCNCs) with
∆b = 2. In the Standard Model FCNCs are forbidden at tree level. FCNCs can however
be induced by the charged weak interaction at loop level. Figure 1.3 shows the Feynman
diagrams which contribute to B0

s mixing in the Standard Model. The diagram which
dominates the mixing is the contribution from the top quark. This is caused by the
strong GIM suppression (Glashow, Iliopoulos, Maiani) of the contribution from the up
and charm quark ∝ (m2

c−m2
u)/M2

W . The top contribution on the other hand experiences
no suppression because (m2

t −m2
c)/M

2
W ∼ 1.

Since it only occurs at loop level B mixing is suppressed in the Standard Model. In
addition B mixing is CKM suppressed due to off-diagonal CKM matrix elements. For
B0

s mixing the CKM matrix element entering is |Vts|, for B0
d mixing the suppression is

even larger with |Vtd| resulting in slower mixing. Possible contributions to B meson
mixing from processes beyond the Standard Model which do not necessarily have to be
suppressed are discussed in section 1.3.5.

The mixing of neutral B0
d mesons was first observed by the ARGUS collabora-

tion [26]. The currently best value for the mixing frequency in the B0
d system is

∆md = (0.507± 0.004) ps−1 [27]. In 2006 mixing of neutral B0
s mesons was established

by the Tevatron [28]. The CDF experiment determined the B0
s mixing frequency to be

∆ms = (17.77±0.12) ps−1 [28]. Using data taken in 2010 the LHCb experiment measures
∆ms = (17.63± 0.11stat. ± 0.03syst.) ps−1 [29] which is well compatible with this value.

1.2.6. Mixing phenomenology

This short overview of the phenomenology of B mixing and decay broadly follows the
more detailed review articles [22, 30, 31, 32, 33]. Even though the formalism developed
below describes neutral B mesons B0

q it is also valid for K and D mesons.
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Decays of neutral mesons B0
q and their CP conjugates B̄0

q into final states f and f̄ are
described by the decay amplitudes

Af = 〈f |H|B0
q〉

Āf = 〈f |H|B̄0
q〉

Af̄ = 〈f̄ |H|B0
q〉

Āf̄ = 〈f̄ |H|B̄0
q〉.

Neutral B-mesons transform under CP operation according to

CP|B0
q〉 = −|B̄0

q〉 and

CP|B̄0
q〉 = −|B0

q〉

where an arbitrary non-physical phase factor has been omitted. If the final state f is a
CP eigenstate f and f̄ are connected via the CP operation according to

CP|f〉 = ηf |f̄〉 and

CP|f̄〉 = ηf |f〉

with ηf = ±1 denoting the CP eigenvalue of the final state.
The time developement of the flavor eigenstates |B0

q〉 and |B̄0
q〉 is given by the phe-

nomenological Schrödinger equation,

i
∂

∂t

(
|B0

q〉
|B̄0

q〉

)
=

(
M− i

2
Γ

)(
|B0

q〉
|B̄0

q〉

)

=

(
M11 − i

2
Γ11 M12 − i

2
Γ12

M21 − i
2
Γ21 M22 − i

2
Γ22

)(
|B0

q〉
|B̄0

q〉

)
,

where the Hamiltonian is constructed from two hermitean matrices, the mass matrix M
and the decay matrix Γ. The mass matrix describes B0

q-B̄0
q mixing which was discussed

in section 1.2.5. In the Standard Model the off-diagonal terms M12 and M∗12 stem from
the flavor changing ∆b = 2 processes given in Figure 1.3. Due to the hermeticity of
M and Γ the off-diagonal elements are complex conjugates, M21 = M∗12 and Γ21 = Γ∗12.
Additionaly, CPT invariance gives Γ = Γ11 = Γ22 and M = M11 = M22 so that the
Hamiltonian simplifies to

i
∂

∂t

(
|B0

q〉
|B̄0

q〉

)
=

(
M− i

2
Γ M12 − i

2
Γ12

M∗12 − i
2
Γ∗12 M− i

2
Γ

)(
|B0

q〉
|B̄0

q〉

)
. (1.14)

Diagonalizing the Hamiltonian in equation 1.14 leads to the mass eigenstates |BL〉 and
|BH〉 .

|BL〉 = p|B0
q〉+ q|B̄0

q〉
|BH〉 = p|B0

q〉 − q|B̄0
q〉
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with |p|2 + |q|2 = 1. |BL〉 denotes the lighter and |BH〉 the heavier mass eigenstate. The
mass eigenstates develop in time with

|BL (t)〉 = e−iMLte−
ΓL
2
t|BL〉

|BH (t)〉 = e−iMHte−
ΓH
2
t|BH〉,

where ML and MH denote the masses and ΓL and ΓH the decay widths of |BL〉 and |BH〉.
The diagonalization procedure relates ML/H and ΓL/H to the elements of the Hamiltonian
in equation 1.14

ML/H −
i

2
ΓL/H =M − i

2
Γ∓

√(
M12 −

i

2
Γ12

)(
M∗12 −

i

2
Γ∗12

)
=M − i

2
Γ∓

√
|M12|2 −

1

4
|Γ12|2 − i |M12| |Γ12| cos (φΓ − φM)(1.15)

with the phases φΓ = arg Γ12 and φM = arg M12. The masses and decay widths of the
mass eigenstates are related to Γ and M via

Γ =
ΓL + ΓH

2

M =
ML + MH

2
.

In the following the mass difference ∆m and decay width difference ∆Γ is defined as

∆m = MH −ML

∆Γ = ΓL − ΓH.

Using equation 1.15 the following relations for ∆m and ∆Γ can be derived:

∆m2 − 1

4
∆Γ2 = 4 |M12|2 − |Γ12|2 (1.16)

∆m∆Γ = −4 |M12| |Γ12| cos (φΓ − φM) . (1.17)

In both the B0
d and the B0

s system experimental evidence shows ∆m � ∆Γ which
translates to |M12| � |Γ12|. Neglecting ∆Γ and |Γ12|2 in equation 1.16 results in

∆m = 2 |M12| . (1.18)

Inserting this in equation 1.17 gives

∆Γ = −2 |Γ12| cos (φΓ − φM) . (1.19)

The coefficients of the eigenstates are determined to be

q

p
= −

√
M∗12 − i

2
Γ∗12

M12 − i
2
Γ12

.
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When studying the B0
d and the B0

s system this expression can be expanded in |Γ12| / |M12|
which gives

q

p
= −

√√√√e−2iφM

1− i
2
|Γ12|
|M12|e

−iφΓ+iφM

1− i
2
|Γ12|
|M12|e

+iφΓ−iφM

= −e−iφM

[
1− 1

2
sin (φΓ − φM)

|Γ12|
|M12|

+O
(
|Γ12|2

|M12|2

)]
.

The time developement for |B0
q〉 and |B̄0

q〉 is given by

|B0
q (t)〉 =

1

2p
(|BL (t)〉+ |BH (t)〉)

|B̄0
q (t)〉 =

1

2q
(|BL (t)〉 − |BH (t)〉)

inserting |BL (t)〉 and |BH (t)〉 results in

|B0
q (t)〉 =

1

2

(
e−iMLte−

ΓL
2
t + e−iMHte−

ΓH
2
t
)
|B0

q〉+
q

2p

(
e−iMLte−

ΓL
2
t − e−iMHte−

ΓH
2
t
)
|B̄0

q〉

= g+ (t) |B0
q〉+

q

p
g− (t) |B̄0

q〉

|B̄0
q (t)〉 =

p

2q

(
e−iMLte−

ΓL
2
t − e−iMHte−

ΓH
2
t
)
|B0

q〉+
1

2

(
e−iMLte−

ΓL
2
t + e−iMHte−

ΓH
2
t
)
|B̄0

q〉

=
p

q
g− (t) |B0

q〉+ g+ (t) |B̄0
q〉

with

g± (t) =
1

2

(
e−iMLte−

ΓL
2
t ± e−iMHte−

ΓH
2
t
)
.

For the determination of time dependent decay rates in the following it is convenient to
explicitly calculate some combinations of these terms

|g+ (t)|2 =
1

2
e−Γt

(
cosh

∆Γ

2
t+ cos ∆mt

)
|g− (t)|2 =

1

2
e−Γt

(
cosh

∆Γ

2
t− cos ∆mt

)
g+ (t) g∗− (t) =

1

2
e−Γt

(
− sinh

∆Γ

2
t− i sin ∆mt

)
g∗+ (t) g− (t) =

1

2
e−Γt

(
− sinh

∆Γ

2
t+ i sin ∆mt

)
To simplify the expressions it is further useful to define one central quantity for CP
violation,

λf =
q

p

Āf
Af

.
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While the phases of both Āf/Af and q/p are convention dependent, the phase of λf
is a measurable physical quantity. The time dependent decay rate for the decay of a
produced B0

q to the final state f is

dΓ
(
B0

q → f
)

dtNf
=

∣∣〈f |B0
q (t)〉

∣∣2
=

∣∣∣∣g+ (t)Af +
q

p
g− (t) Āf

∣∣∣∣2
= |Af |2

[
|g+ (t)|2 + |λf |2 |g− (t)|2 + λ∗fg+ (t) g∗− (t) + λfg

∗
+ (t) g− (t)

]
=

1

2
|Af |2 e−Γt

[(
1 + |λf |2

)
cosh

∆Γ

2
t+
(
1− |λf |2

)
cos ∆mt

−2 sinh

(
∆Γ

2
t

)
<λf − 2 sin (∆mt)=λf

]
. (1.20)

Similarly the decay rate for a B̄0
q to decay to f is given by

dΓ
(
B̄0

q → f
)

dtNf
=

∣∣〈f |B̄0
q (t)〉

∣∣2
=

∣∣∣∣pq g− (t)Af + g+ (t) Āf

∣∣∣∣2
= |Af |2

∣∣∣∣pq
∣∣∣∣2 [|g− (t)|2 + |λf |2 |g+ (t)|2 + λ∗fg

∗
+ (t) g− (t) + λfg+ (t) g∗− (t)

]
=

1

2

∣∣∣∣pq
∣∣∣∣2 |Af |2 e−Γt

[(
1 + |λf |2

)
cosh

∆Γ

2
t−
(
1− |λf |2

)
cos ∆mt

−2 sinh

(
∆Γ

2
t

)
<λf + 2 sin (∆mt)=λf

]
(1.21)

where Nf is a normalization factor. The decay rates to the CP conjugated final state
f̄ are given by the above expressions when substituting Af → Af̄ , Āf → Āf̄ and
λf → λf̄ = q/p Āf̄/Af̄ .

1.2.7. Types of CP violation

CP violation in B meson decays can be caused by three different mechanisms

• CP violation in decay
This is the only type of CP violation possible for decays of charged mesons. It
occurs when

∣∣Āf̄/Af ∣∣ 6= 1, i. e. the amplitudes for the process B → f and its CP
conjugate B̄ → f̄ differ. CP violation then manifests itself as asymmetry

AdirCP =
Γ (B− → f−)− Γ (B+ → f+)

Γ (B− → f−) + Γ (B+ → f+)

=

∣∣Āf̄ ∣∣2 − |Af |2∣∣Āf̄ ∣∣2 + |Af |2
=

∣∣Āf̄/Af ∣∣2 − 1∣∣Āf̄/Af ∣∣2 + 1
. (1.22)
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B0
q f

B̄0
q

Figure 1.4.: Interference between decay and decay after mixing.

An example for this kind of CP asymmetry is the decay B0
d → K+π−. In this

decay the tree level amplitude interferes with penguin amplitudes leading to a CP
asymmetry of ∼ 10%.

• CP violation in mixing
CP violation in mixing occurs when |q/p| 6= 1. In this case the probability for a
B0

q to transition into a B̄0
q, P(B0

q → B̄0
q), differs from the probability for the CP

conjugated process, P(B̄0
q → B0

q). The resulting asymmetry assuming no direct
CP violation, i. .e. Af = Āf̄ and Af̄ = Āf = 0, is given by

AmixCP =
Γ
(
B̄0

q → f
)
− Γ

(
B0

q → f
)

Γ
(
B̄0

q → f
)

+ Γ
(
B0

q → f
)

=

∣∣∣pqg− (t)Af

∣∣∣2 − ∣∣∣ qpg− (t) Āf̄

∣∣∣2∣∣∣pqg− (t)Af

∣∣∣2 +
∣∣∣ qpg− (t) Āf̄

∣∣∣2 =
1−

∣∣∣ qp ∣∣∣4
1 +

∣∣∣ qp ∣∣∣4 . (1.23)

CP violation in mixing can be studied using semileptonic decays B0
q → X`+ν.

Events where the B0
q has mixed before decaying semileptonically result in “wrong

sign” decays containing a `− in the final state. Under the assumption of equal
production of B0

q and B̄0
q P(B0

q → B̄0
q) 6= P(B̄0

q → B0
q) will lead to an asymmetry

in the observed number of `+ and `− given by AmixCP .

• Mixing induced CP violation
Mixing induced CP violation can occur when the direct decay B0

q → f interferes
with mixing from B0

q to B̄0
q followed by the decay B̄0

q → f . This situation is
illustrated in Figure 1.4. If the term λf in equations 1.20 and 1.21 has a non-trivial
phase, i. e. = (λf ) = =

(
q/p Āf/Af

)
6= 0, this gives rise to the time dependent CP

asymmetry

ACP(t) =
Γ
(
B̄0

q → f
)
(t)− Γ

(
B0

q → f
)
(t)

Γ
(
B̄0

q → f
)
(t) + Γ

(
B0

q → f
)
(t)

=
−
(
1− |λf |2

)
cos (∆mt) + 2 sin (∆mt)=λf(

1 + |λf |2
)

cosh
(

∆Γ
2
t
)
− 2 sinh

(
∆Γ
2
t
)
<λf

. (1.24)
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Figure 1.5.: Both (a) tree and (b) penguin processes can contribute to the decay
B0

s→ J/ψ φ, but the tree decay amplitude dominates.

For ∆Γ = 0 and |λf | = 1 the asymmetry simplifies to

ACP(t) = sin (∆mt)=λf .
An example for this type of CP violation is the measurement of sin 2βd in the
decay B0

d→ J/ψK0
S. The analogous “golden mode” in the B0

s system is given by the
decay B0

s→ J/ψ φ which is the focus of this thesis. This thesis therefore constitutes
a measurement of a time dependent CP asymmetry induced by mixing.

1.3. The CP-violating phase φs in the decay B0
s → J/ψφ

The decay B0
s→ J/ψ φ implies a b→ cc̄s quark transition as shown in Figure 1.5. The

total amplitude AJ/ψ φ for the transition of a B0
s meson into the final state J/ψ φ is given

by the sum

AJ/ψφ = VcsV
∗
cbT + VusV

∗
ubPu + VcsV

∗
cbPc + VtsV

∗
tbPt

= VcsV
∗
cb (T + Pc − Pt) + VusV

∗
ub (Pu − Pt) ,

where T denotes the tree amplitude (Figure 1.5a) and Pq with q = u, c, t the corresponding
penguin amplitudes (Figure 1.5b). Neglecting the terms proportional to VusV

∗
ub the

amplitude ratio Āf/Af is given by

Āf
Af

= −ηJ/ψφ
VcbV∗cs

V∗cbVcs

= −ηJ/ψφe
2iφD ,

with the decay phase φD = arg (VcbV∗cs) and the CP eigenvalue of the final state denoted
by ηJ/ψφ. The same final state J/ψ φ can be reached if the B0

s first mixes to a B̄0
s (illustrated

in Figure 1.3) and then decays. The ratio q/p is given by

q

p
= −VtsV

∗
tb

V∗tsVtb

= −e−iφM
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with the mixing phase φM = −2 arg (VtsV
∗
tb). Combining Āf/Af and q/p to λf gives

λf = ηJ/ψφ
VcbV∗cs

V∗cbVcs

VtsV
∗
tb

V∗tsVtb

.

= ηJ/ψφe
+2iφD−iφM

= ηJ/ψφe
−iφs

with φs = − arg
(
ηJ/ψφλf

)
. The phase φs can be related to the angle βs in the B0

s unitarity
triangle via the relation φs = −2βs with βs = arg (−VtsV

∗
tb/ (VcsV

∗
cb)) as defined in

equation 1.13. While the mixing and decay phases depend on phase conventions and are
not observable, the phase φs is a measurable physical quantity.

Looking at the Wolfenstein parametrization it is obvious that the the angle βs will be
much smaller than than β since Vts is real up to O (λ3) whereas Vtd is already complex at
O (λ3). The theoretical prediction for βs is indeed very small βs = 0.01817+0.00087

−0.00083 rad [1]
which results in the precise Standard Model prediction φs = −0.0363± 0.0017 rad.

In contrast to the B0
d system, the B0

s system posseses a significant decay width
difference ∆Γs, the SM predicts ∆Γs = (0.087± 0.021) ps−1 [34], which means that the
decay width difference may not be neglected.

In summary the time dependent mixing induced CP asymmetry for the signal decay
B0

s→ J/ψ φ is given by

ACP(t) =
−ηJ/ψφ sin (φs) sin (∆mst)

cosh
(

∆Γs

2
t
)
− ηJ/ψφ cos (φs) sinh

(
∆Γs

2
t
) . (1.25)

1.3.1. Angular analysis

Since both J/ψ and φ are vector mesons, the decay B0
s→ J/ψ φ is a pseudoscalar to

vector-vector transition (P → V V ). This allows the final state mesons to have relative
angular momentum l which leads to different CP eigenvalues of the final state depending
on l,

ηJ/ψφ = ηCP
J/ψη

CP
φ (−1)l

= (−1)l .

To decouple the CP-odd (ηJ/ψφ = −1) and CP-even (ηJ/ψφ = +1) components statistically
an analysis of the angular distributions is necessary. The dependence of the differential
decay rates on the decay angles is expressed in the so called transversity base which is
shown in Figure 1.6 and defines the transversity angles cos θ, ϕ and cosψ.

The angles θ and ϕ are defined in the J/ψ rest frame. The flight direction of the φ
meson defines the x-axis, the φ decay products K+K− the x− y plane. The direction of
the y-axis is chosen such that py (K+) > 0. The angle θ is defined as the angle between
µ+ flight direction relative to the z-axis, while ϕ is defined as the angle between the
x-axis and the projection of the µ+ direction onto the x−y plane. The angle ψ is defined
in the φ rest frame. It is the angle of the K+ relative to the negative flight direction of
the J/ψ.
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Figure 1.6.: The transversity angles. Figure from [35].

1.3.2. Differential decay rates

The time and angular dependent differential decay rate for a B0
s meson produced at

t = 0 to decay to the final state J/ψφ is given by

dΓ (B0
s→ J/ψ φ)

dtdΩ
∝

6∑
i=1

Ai (t) · fi (cos θ, ϕ, cosψ) , (1.26)

where Ai are six combinations of the three complex transversity amplitudes A0(t), A⊥(t)
and A‖(t) [36]. The transversity amplitudes correspond to different linear polarization
states of the vector mesons J/ψ and φ with respect to their direction of motion. A0(t)
corresponds to longitudinal polarization of the vector mesons. The transversity am-
plitudes A‖(t) and A⊥(t) correspond to transverse polarization of the vector mesons,
in the former case the polarization states of J/ψ and φ are parallel in the latter case
perpendicular to each other.

The relative phases of the transversity amplitudes at t = 0 are denoted as δ0 =
arg (A0(0)), δ‖ = arg

(
A‖(0)

)
and δ⊥ = arg (A⊥(0)). The phases arise from strong final

state interactions and are difficult to predict in theory. As they are invariant under
CP they are also called “strong phases”. One of these phases can be chosen freely
since only the relative phases are important, in this thesis the convention δ0 = 0 is
used. The magnitudes of the transversity amplitudes fullfill the normalization condition

|A0(0)|2 + |A⊥(0)|2 +
∣∣A‖(0)

∣∣2 = 1. The angular dependent terms fi (cos θ, ϕ, cosψ) are
given in [31] and summarized in Table 1.4.

The prescription used for produced B̄0
s mesons at t = 0 is very similar and uses Ā0(t),

Ā⊥(t) and Ā‖(t)

dΓ
(
B̄0

s→ J/ψ φ
)

dtdΩ
∝

6∑
i=1

Āi (t) · fi (cos θ, ϕ, cosψ) (1.27)
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with the same angular dependent terms fi (cos θ, ϕ, cosψ). The time dependent amplitude
combinations Ai (t) are given in [31]. For a B0

s meson they are defined as

|A0(t)|2 = |A0(0)|2 e−Γst

[
cosh

(
∆Γs

2
t

)
− cosφs sinh

(
∆Γs

2
t

)
+ sinφs sin (∆mst)

]
∣∣A‖(t)∣∣2 =

∣∣A‖(0)
∣∣2 e−Γst

[
cosh

(
∆Γs

2
t

)
− cosφs sinh

(
∆Γs

2
t

)
+ sinφs sin (∆mst)

]
|A⊥(t)|2 = |A⊥(0)|2 e−Γst

[
cosh

(
∆Γs

2
t

)
+ cosφs sinh

(
∆Γs

2
t

)
− sinφs sin (∆mst)

]
=(A∗‖(t)A⊥(t)) =

∣∣A‖(0)
∣∣ |A⊥(0)| e−Γst

[
− cos

(
δ⊥ − δ‖

)
sinφs sinh

(
∆Γs

2
t

)
+ sin

(
δ⊥ − δ‖

)
cos (∆mst)− cos

(
δ⊥ − δ‖

)
cosφs sin (∆mst)

]
<(A∗0(t)A‖(t)) = |A0(0)|

∣∣A‖(0)
∣∣ e−Γst cos δ‖

[
cosh

(
∆Γs

2
t

)
− cosφs sinh

(
∆Γs

2
t

)
+ sinφs sin (∆mst)

]
=(A∗0(t)A⊥(t)) = |A0(0)| |A⊥(0)| e−Γst

[
− cos δ⊥ sinφs sinh

(
∆Γs

2
t

)
+ sin δ⊥ cos (∆mst)− cos δ⊥ cosφs sin (∆mst)

]

The time dependent amplitudes for a B̄0
s are found by changing the signs in front of all

terms proportional to sin (∆mst) or cos (∆mst) which results in

∣∣Ā0(t)
∣∣2 =

∣∣Ā0(0)
∣∣2 e−Γst

[
cosh

(
∆Γs

2
t

)
− cosφs sinh

(
∆Γs

2
t

)
− sinφs sin (∆mst)

]
∣∣Ā‖(t)∣∣2 =

∣∣Ā‖(0)
∣∣2 e−Γst

[
cosh

(
∆Γs

2
t

)
− cosφs sinh

(
∆Γs

2
t

)
− sinφs sin (∆mst)

]
∣∣Ā⊥(t)

∣∣2 =
∣∣Ā⊥(0)

∣∣2 e−Γst

[
cosh

(
∆Γs

2
t

)
+ cosφs sinh

(
∆Γs

2
t

)
+ sinφs sin (∆mst)

]
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i Ai (t) Āi (t) fi (cos θ, ϕ, cosψ)

1 |A0(t)|2
∣∣Ā0(t)

∣∣2 9
32π

2 cos2 ψ
(
1− sin2 θ cos2 ϕ

)
2

∣∣A‖(t)∣∣2 ∣∣Ā‖(t)∣∣2 9
32π

sin2 ψ
(
1− sin2 θ sin2 ϕ

)
3 |A⊥(t)|2

∣∣Ā⊥(t)
∣∣2 9

32π
sin2 ψ sin2 θ

4 =
(
A∗‖(t)A⊥(t)

)
=
(
Ā∗‖(t)Ā⊥(t)

)
− 9

32π
sin2 ψ sin 2θ sinϕ

5 <
(
A∗0(t)A‖(t)

)
<
(
Ā∗0(t)Ā‖(t)

)
9

32π
√

2
sin 2ψ sin2 θ sin 2ϕ

6 =
(
A∗0(t)A⊥(t)

)
=
(
Ā∗0(t)Ā⊥(t)

)
9

32π
√

2
sin 2ψ sin 2θ cosϕ

Table 1.4.: Angular dependent terms fi (cos θ, ϕ, cosψ) for the P-wave [31].

=(Ā∗‖(t)Ā⊥(t)) =
∣∣Ā‖(0)

∣∣ ∣∣Ā⊥(0)
∣∣ e−Γst

[
− cos

(
δ⊥ − δ‖

)
sinφs sinh

(
∆Γs

2
t

)
− sin

(
δ⊥ − δ‖

)
cos (∆mst) + cos

(
δ⊥ − δ‖

)
cosφs sin (∆mst)

]
<(Ā∗0(t)Ā‖(t)) =

∣∣Ā0(0)
∣∣ ∣∣Ā‖(0)

∣∣ e−Γst cos δ‖

[
cosh

(
∆Γs

2
t

)
− cosφs sinh

(
∆Γs

2
t

)
− sinφs sin (∆mst)

]
=(Ā∗0(t)Ā⊥(t)) =

∣∣Ā0(0)
∣∣ ∣∣Ā⊥(0)

∣∣ e−Γst

[
− cos δ⊥ sinφs sinh

(
∆Γs

2
t

)
− sin δ⊥ cos (∆mst) + cos δ⊥ cosφs sin (∆mst)

]
The decay rates for the decay B0

s→ J/ψ φ given above exhibit an interesting two-fold
symmetry under the substitutions

φs → π − φs
∆Γs → −∆Γs

δ‖ → −δ‖
δ⊥ → π − δ⊥. (1.28)

It is therefore expected to find two solutions when extracting the physics parameters
from the data.

1.3.3. S-wave contribution

The differential decay rates given in the previous section assume that the detected K+K−

system in the final state originates solely from the decay of the φ resonance. Since the φ
is a vector meson the K+K− system is in a P-wave configuration. In addition to this
contribution there is however the possibility that the detected K+K− results from a
non-resonant ` = 0 contribution or decay of the f0(980) which is a scalar meson [37].
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In both cases the K+K− system would be in an S-wave configuration. These decays
represent an irreducible contribution to the final state µ+µ−K+K− of the signal decay.
The contribution to the differential decay rates can be described by the introduction
of the S-wave amplitude As(t) with phase δs. The S-wave amplitude can also interfere
with the P-wave amplitudes so equations 1.26 and 1.27 need to be modified [38] to

dΓ (B0
s → J/ψK+K−)

dtdΩ
∝

10∑
i=1

Ai (t) · fi (cos θ, ϕ, cosψ) (1.29)

dΓ
(
B̄0

s → J/ψK+K−
)

dtdΩ
∝

10∑
i=1

Āi (t) · fi (cos θ, ϕ, cosψ) . (1.30)

The additional amplitude combinations Ai=7...10 are given by [38] as

|As(t)|2 = |As(0)|2 e−Γst

[
cosh

(
∆Γs

2
t

)
+ cosφs sinh

(
∆Γs

2
t

)
− sinφs sin (∆mst)

]
<
(
A∗s (t)A‖(t)

)
= |As(0)|

∣∣A‖(0)
∣∣ e−Γst

[
− sin

(
δ‖ − δs

)
sinφs sinh

(
∆Γs

2
t

)
− sin

(
δ‖ − δs

)
cosφs sin (∆mst) + cos

(
δ‖ − δs

)
cos (∆mst)

]
= (A∗s (t)A⊥(t)) = |A⊥(0)| |As(0)| e−Γst sin (δ⊥ − δs)

[
cosh

(
∆Γs

2
t

)
+ cosφs sinh

(
∆Γs

2
t

)
− sinφs sin (∆mst)

]
<
(
A∗s (t)A0(t)

)
= |A0(0)| |As(0)| e−Γst

[
sin δs sinφs sinh

(
∆Γs

2
t

)
+ sin δs cosφs sin (∆mst)

+ cos δs cos (∆mst)

]
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i Ai (t) Āi (t) fi (cos θ, ϕ, cosψ)

7 As(t) Ās(t)
3

32π
2
(
1− sin2 θ cos2 ϕ

)
8 <

(
A∗s (t)A‖(t)

)
<
(
Ā∗s (t)Ā‖(t)

)
3

32π

√
6 sin2 θ sinψ sin 2ϕ

9 =
(
A∗s (t)A⊥(t)

)
=
(
Ā∗s (t)Ā⊥(t)

)
3

32π

√
6 sin 2θ sinψ cosϕ

10 <
(
A∗s (t)A0(t)

)
<
(
Ā∗s (t)Ā0(t)

)
3

32π
4
√

3 cosψ
(
1− sin2 θ cos2 ϕ

)
Table 1.5.: Angular dependent terms fi (cos θ, ϕ, cosψ) for the S-wave [38].

and the combinations Āi=7...10 as

∣∣Ās(t)
∣∣2 =

∣∣Ās(0)
∣∣2 e−Γst

[
cosh

(
∆Γs

2
t

)
+ cosφs sinh

(
∆Γs

2
t

)
+ sinφs sin (∆mst)

]
<
(
Ā∗s (t)Ā‖(t)

)
=

∣∣Ās(0)
∣∣ ∣∣Ā‖(0)

∣∣ e−Γst

[
− sin

(
δ‖ − δs

)
sinφs sinh

(
∆Γs

2
t

)
+ sin

(
δ‖ − δs

)
cosφs sin (∆mst)− cos

(
δ‖ − δs

)
cos (∆mst)

]
=
(
Ā∗s (t)Ā⊥(t)

)
=

∣∣Ā⊥(0)
∣∣ ∣∣Ās(0)

∣∣ e−Γst sin (δ⊥ − δs)

[
cosh

(
∆Γs

2
t

)
+ cosφs sinh

(
∆Γs

2
t

)
+ sinφs sin (∆mst)

]
<
(
Ā∗s (t)Ā0(t)

)
=

∣∣Ā0(0)
∣∣ ∣∣Ās(0)

∣∣ e−Γst

[
sin δs sinφs sinh

(
∆Γs

2
t

)
− sin δs cosφs sin (∆mst)

− cos δs cos (∆mst)

]
.

In presence of an S-wave contribution the magnitudes of the amplitudes need to fullfill

the new normalization condition |A0(0)|2 + |A⊥(0)|2 +
∣∣A‖(0)

∣∣2 + |As(0)|2 = 1. The
angular dependent terms fi=7...10 are given in Table 1.5. The CDF collaboration has
determined the S-wave fraction to be smaller than 6.7% at the 95% confidence level [39].

1.3.4. Current experimental status of φs

The currently most precise determination of φs was performed by the Tevatron ex-
periments CDF [39] and DØ [40]. Figure 1.7a gives confidence regions in the βs-∆Γs

parameter space determined by the CDF experiment on a data set corresponding to an
integrated luminosity of 5.2 fb−1. Note that CDF chose to quote confidence contours
depending on βs which is related to φs via βs = −φs/2. Figure 1.7b gives the mea-
surement of φs performed by the DØ experiment. Here the contours are given in the
φs-∆Γs parameter space. Both experiments favor negative values for φs, the p-value of
the Standard Model hypothesis corresponds to ∼ 1 standard deviations in both cases.
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Figure 1.7.: Current experimental status of φs from (a) the CDF and (b) DØ experiments.
Shown are coverage corrected confidence regions in the φs (or βs) and ∆Γs

parameter space. Figures from [39] and [40].

1.3.5. Beyond the Standard Model contributions to B mixing

Physics processes beyond the Standard Model (New Physics) can manifest themselves
by introducing additional contributions to B0

d and B0
s mixing. This would affect the

off-diagonal matrix elements M12 in the Hamiltonian in equation 1.14. Figure 1.8 gives
a possible contribution through gluino diagrams [41]. For an overview of New Physics
scenarios that can introduce additional contributions to B mixing see [42].

It is convenient to parametrize possible New Physics contributions to B mixing
in a model independent way. In [42] complex factors ∆d and ∆s are introduced to
parameterize the effect on Md

12 and Ms
12 according to

Md
12 = Md,SM

12 ∆d

Ms
12 = Ms,SM

12 ∆s with

∆d = |∆d|eiφ
∆
d and

∆s = |∆s|eiφ
∆
s .

The Standard Model hypothesis is of course ∆d = ∆s = 1. If the phase φ∆
s is nonzero

this would directly modify the phase of λf leading to the measurement of

φs = φSM
s + φ∆

s .

Assuming the independence of ∆d and ∆s a global fit of the CKM matrix elements
and the parameters ∆d and ∆s describing New Physics contributions in the B sector
was performed in [42]. Figure 1.9 shows the results of the fit for the parameters ∆d

and ∆s in the complex plane. The fit disfavors the Standard Model prediction for B0
d

mixing, ∆d = 1, by 2.7 standard deviations. For B0
s mixing the deviation from the
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The leading Standard Model contribution to Bs mixing is induced by a
top quark box diagram which yields the following effective Hamiltonian [14]

HSM
eff = CSM

LL (s̄γµPLb)(s̄γµPLb), (38)

with the Wilson coefficient matched at MW

CSM
LL =

G2
F

16π2
M2

W (V ∗
tsVtb)

2 S(m2
t/M

2
W ), (39)

where

S(x) =
4x− 11x2 + x3

4(1− x)2
− 2x3 ln x

2(1− x)3
. (40)

Before taking the hadronic matrix element of the effective Hamiltonian we
must first take QCD corrections into account by using the renormalization
group equations (RGE) to evolve the Wilson coefficients down to the low
scale. The general NLO running of the Wilson coefficients for a ∆B = 2
effective Hamiltonian is given in [21] and [22] and involves mixing among
different coefficients. In our case only the two scalar left-left operators mix,
while the vector right-right and the vector-left-left coefficients simply scale
multiplicatively. For simplicity we have evolved both operators from MW

down to the mass of the b-quark.9

9The supersymmetric contribution should in fact run from ∼ mg̃ down to mb. In this
approximation we are ignoring corrections of order 1 − αs(mg̃)/αs(MW ) and potential
contributions from the top quark in loops which is smaller. These corrections are part of
the systematic uncertainty in our calculation.

17

Figure 1.8.: Example for a possible contribution to B0
s mixing through gluino diagrams.

Figure from [41].

Standard Model value ∆s = 1 corresponds to 2.7σ as well. The combined probability
of ∆d = ∆s = 1 is found to be equivalent to 3.6 standard deviations [42]. These hints
at possible problems of the Standard Model description of B mixing represent a strong
motivation for a more precise determination of φs.

1.4. B-meson Production at LHCb

B-hadrons at the LHC are produced in the hadronization of bb quark pairs. bb pairs
are produced via the strong interaction, through gluon and parton fusion. This is shown
in Figure 1.10 where the Feynman graphs of the leading order production channels are
given. The production cross section for bb pairs is strongly dependent on the polar angle
to the beam axis. The reason for this are the, compared with the beam energy, low mass
of the bb system in conjuntion with the parton distribution functions of quarks and
gluons in the colliding protons. Since the quark and the antiquark (or the two gluons)
which produce the bb system can carry very different momentum fractions of the proton,
the bb system will likely be boosted in either forward or backward direction. Figure 1.11
shows the polar angles of the bb quarks as simulated by the PYTHIA event generator
[43]. The forward peaking bb production cross section determines the geometry of the
LHCb detector as forward spectrometer. Figure 1.12 shows the total bb production
cross sections for different SM processes depending on the center of mass energy

√
s.

The cited calculation shows σbb = 633µb at a nominal center of mass energy of 14 TeV.
LHCb studies of Monte Carlo simulated events use conservative values of σbb = 500µb
at
√
s = 14 TeV and σbb = 250µb at

√
s = 7 TeV. A measurement using J/ψ mesons

from b-hadron decays confirms this prediction measuring a total bb cross section of
σbb = (288± 4stat ± 48syst)µb [44] using data taken with the LHCb detector in 2010 at
a center of mass energy of

√
s = 7 TeV.
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Figure 1.10.: Leading order bb production processes. Figure from [45].
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Figure 1.12.: Cross sections for different SM processes depending on
√
s. At

√
s = 14 TeV

the values are σtot = 99.4 mb, σbb = 633µb. Figure from [47].



2. The LHCb experiment

To be able to access the CP violating phase φs large numbers of B0
s mesons are necessary.

With a large bb cross section of σbb ∼ 500µb1 the Large Hadron Collider (LHC) is well
suited to study B decays. Key quantities of the LHC will be briefly introduced in the
first part of this chapter. The LHCb detector which is located at one of the interaction
points of the LHC is used to reconstruct the signal decay B0

s→ J/ψ φ. The discussion
of the LHCb detector and its subsystems constitutes the main part of this chapter. In
addition a short overview of the LHCb software environment is given.

2.1. The Large Hadron Collider

The Large Hadron Collider (LHC) [48], located near Geneva on the Swiss-French border
is a proton-proton collider. With a design energy of 2× 7 TeV and a design luminosity
of L = 1 · 1034 cm−2 s−1 it is the most powerful particle accelerator to date. At nominal
configuration 2808 bunches per beam, with ∼ 1011 protons each, are accelerated to 7 TeV
in the 27 km long tunnel and brought to collision at the four interaction points. The
magnetic fields to hold the beams in orbit are supplied by superconducting magnets
cooled down to 1.9 K and operating at a nominal magnetic field strength of 8.34 T. An
overview of the experimental site is shown in Figure 2.1. The four interaction points
house two general purpose detectors, ATLAS and CMS, the ALICE detector which is
specialized on heavy ion collisions and the LHCb experiment which studies the decays
of B and D mesons. The proton bunches are designed to cross every 25 ns at each of the
interaction points which leads to a bunch crossing rate of Rcrossing = 40 MHz. With the
nominal luminosity of L = 1 · 1034 cm−2 s−1 and a total pp cross section of ∼ 100 mb the
numbers of interactions per collision of two bunches can be calculated according to

N = σtot

∫
Ldt.

This results in a mean number of

〈n〉 =
σtotL
Rcrossing

= 25

interactions per bunch crossing2.
During the startup in 2010 the LHC operated at a lower center of mass energy of√
s = 7 TeV with up to∼ 400 bunches per beam and 150 ns bunch spacing. Using this con-

figuration the LHC reached peak instantaneous luminosities of up to ∼ 2 · 1032 cm−2s−1.

1At 14 TeV.
2Poisson distributed
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Figure 2.2.: Probabilities for different numbers of interactions per bunch crossing, shown
are the probabilities for up to 5 interactions per bunch crossing. The nominal
luminosity at LHCb was chosen to be 2×1032 cm−2 s−1, the maximal possible
luminosity for which the detector was designed is 5 × 1032 cm−2 s−1. The
plot shows that there are predominantly one or zero interaction per bunch
crossing at nominal luminosity.

2.2. The LHCb Experiment

The LHCb experiment is specialized for the study of B mesons and CP violation in the
B meson sector. The high number of interactions per collision of the proton bunches
severely impacts the ability to associate the B-decay vertices to the correct production
vertices. Therefore the LHCb experiment has decided to run at a lower luminosity
than the nominal 1 · 1034 cm−2 s−1. This is possible since the luminosity at the LHCb
interaction point can be tuned by changing the beam focus. Figure 2.2 shows the poisson
probabilities for different numbers of interactions per crossing depending on the chosen
luminosity. It has been decided to run at a nominal luminosity of 2 · 1032 cm−2 s−1 where
there are predominantly either one or zero interactions per bunch crossing, but in principle
the detectors are designed to be able to run at luminosities of up to 5 · 1032 cm−2 s−1.
This decision also positively impacts track resolution and lowers the occupancy of the
detectors.

The specialization on B mesons determines the detector geometry. As discussed in
section 1.4 the B mesons are produced predominantly in forward direction. Therefore
LHCb is designed as a single-arm forward spectrometer with an acceptance of 10 −
300 mrad in the bending plane and 10 − 250 mrad vertical to the bending plane. An
overview of the detector is given in Figure 2.3. The different subdetectors are, starting
at the left closest to the interaction point

• The Vertex Locator (Velo), LHCb’s silicon vertex tracker, which is built around
the pp interaction point. The Velo resolves the primary interaction vertex and
decay vertices of longlived particles with high precision.
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Figure 2.3.: A side view of the LHCb detector, Figure from [50]. The pp collisions occur
to the very left in LHCb’s silicon vertex tracker, the Vertex Locator (Velo).
Downstream of the Velo the first ring imaging Cherenkov (RICH) detector
and another tracking station (TT) are placed in front of the magnet. The
main tracking stations, consisting of Inner and Outer Tracker are located
behind the magnet. Finally particles traverse the second RICH, RICH2, the
calorimetry (ECAL+HCAL) and the muon chambers.
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• A first ring imaging Cherenkov detector (RICH) for particle identification follows
behind the Velo.

• The Tracker Turicensis (TT), a first tracking station, is located in front of the
magnet.

• The main tracker consists of three tracking stations located behind the magnet.
The Outer Tracker (OT) is implemented as a straw tube gas detector and covers
the largest fraction of the acceptance. The Inner Tracker (IT) covers the high
occupancy region close to the beam pipe and uses silicon strip sensors.

• The RICH2 detector, again a ring imaging Cherenkov detector, is located behind
the main tracker and used for particle identification.

• The calorimetry consists of two subsystems, the electromagnetic (ECAL) and
hadronic (HCAL) calorimeter. The calorimeters measure the energy deposited by
electromagnetic and hadronic showers respectively. In addition they constitute an
important part of LHCb’s trigger system (see section 2.3).

• The rightmost subsystem are the muon chambers called M1-M5 in Figure 2.3. The
muon chambers are used for muon identification and essential for the muon trigger
system.

All subsystems will be briefly reviewed in the next sections. A more detailed overview
of the LHCb detector is given in [50, 51].

2.2.1. Spectrometer and tracking system

The Magnet

The spectrometer uses the fact that charged particles are bent by magnetic fields to
determine their momenta. In the LHCb experiment the magnetic field is provided by
the LHCb dipole magnet. The LHCb dipole is a warm magnet design. The geometry of
the iron yoke and magnet coils is given in Figure 2.4a. The integrated field over 10 m is∫
Bd` = 4 Tm, the y component of the magnetic field depending on the z coordinate

is shown in Figure 2.4b. The particles are predominantly bent in the x-z plane, the
components of the magnetic magnetic field orthogonal to the y axis are small. The total
weight of the magnet is about 1600 t.

The Vertex Locator

The LHCb Vertex Locator (Velo) is the detector closest to the interaction point. Its
purpose is to precisely measure tracks originating from the interaction vertex and possible
secondary vertices originating from weak b or c quark decays. It comprises 21 silicon
modules both left and right alongside the beam axis, as shown in Figure 2.5. Each of
the modules is equipped with two sensors located on opposites sides of each module,
one providing a measurement in radial direction r and one an azimuthal measurement
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Figure 2.4.: (a) The LHCb magnet and (b) the y component of the magnetic field of
the dipole. The direction of the magnetic field can be inverted. Figures
from [50].

in ϕ direction. In addition 2 pileup-stations each consisting of two r sensors are located
upstream which can be used in the trigger. Both r and ϕ sensors are 300µm thick with
variable pitch. The r sensors are concentric semi-circles with a minimal pitch of 40µm
closest to the beam where the occupancy is highest which gradually increases to 102µm
at the outer edge of the sensor. The ϕ sensors are subdivided in two regions, an inner
region and outer region as illustrated in Figure 2.6. Their pitch varies from 38µm to
97µm. The average occupancy expected at nominal luminosity is about 1%.

Since the precision of the determination of primary and secondary vertices is influenced
by extrapolating the measured tracks the Velo modules are placed as close to the beam
as possible. The Velo is separated from the beam vacuum only by a thin aluminum foil
which keeps the amount of material particles have to traverse before passing through
the sensors small. During data taking this foil is only 5 mm away from the beam.
The distance of the active sensors of the Velo modules to the beam is 8 mm. Since
the aperture of the beam during ramp up of the beam energy can be larger than this
distance, the Velo is able to move out into the shadow of the beam pipe while the LHC
is filled and the beam energy is ramped up. Only when the LHC signals stable running
conditions the Velo is moved into its nominal position. Figure 2.6 shows that the Velo
sensors from the two sides overlap when the Velo is closed.

The Tracker Turicensis

The Tracker Turicensis (TT) is a silicon microstrip detector covering the full acceptance
of the experiment located just before the magnet. It consists of four layers in an x-u-v-x
arrangement with vertical x layers and stereo layers u and v which are rotated by −5◦

and +5◦ with respect to the vertical axis. The first two layers, x-u are separated from the
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Figure 2.5.: The vertex locator consists of 21 modules left and right alongside the beam
axis. It is used for the determination of primary interaction vertices and
possible secondary vertices originating from weak decays of b or c quarks.
Figure from [50].

Figure 2.6.: Every Velo module is equipped with two sensors, one provides measurements
in r, the other in ϕ direction. When closed both sides of the Velo overlap.
Figure from [50].
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Figure 2.7.: Layout of the u layer of the TT. The u layer is rotated by −5◦ with respect
to the vertical axis. Figure from [50].

second two layers y-x by 27 cm. Since the charged particle density expected in regions
close to beampipe (up to 5× 10−2 cm−2) is much higher than at the outer edges of the
detector (about 5× 10−4 cm−2) the detector is segmented in different readout sections.
Figure 2.7 shows the layout of a detector layer. A TT layer is made up of half-modules
which are themselves assembled from seven silicon sensors. The silicon sensors are
9.44 cm long, 9.46 cm wide and have a pitch of 183µm. The readout electronics is located
at the bottom and top of the detector outside the LHCb acceptance to minimize multiple
scattering. The single hit resolution of the TT is about 50µm, the strip occupancies do
not exceed a few percent.

The Inner Tracker

Further downstream, behind the magnet, the Inner Tracker (IT) is covering the region
close to the beampipe. Similar to the TT, the IT is a silicon strip detector. The IT also
has arranged its four layers per station in x-u-v-x fashion with the stereo layers u and v
rotated by ∓5◦. It consists of four boxes arranged around the beampipe in three stations.
One station of the IT is shown in Figure 2.8a. Figure 2.8b shows the organization of the
silicon sensors inside the detector boxes. The silicon sensors are 11 cm long and 7.6 cm
wide with a strip pitch of 198µm. In total the IT has an active area of 4.0 m2 with 129k
readout channels. Despite the high charged particle densities of up to 1.5 · 10−2 cm−2

the hit occupancy is expected to be in the order of a few percent. Like the TT, the IT
has a single hit resolution of about 50µm.

The Outer Tracker

The Outer Tracker (OT) is a straw tube detector which consists of three stations located
behind the magnet. It covers the large outer area of the LHCb acceptance with an active
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(a) (b)

Figure 2.8.: (a) The inner tracker comprises three tracking stations each consisting of
four boxes arranged around the beam pipe. (b) Shows one x layer of the IT.
Figures from [50].

area of 6 m × 5 m. Every OT station consists of four layers in x-u-v-x configuration,
where the u and v layers are rotated with respect to the x layers by ∓5◦. The layers are
split in two parts left and right to the beampipe and supported by aluminum support
structures, the so called C-frames. Two half-layers are carried by one C-frame which can
be independently moved on rails to facilitate access to the OT modules and the frontend
electronics. Figure 2.9 shows the mechanical support structure for the C-frames, the
bridge, with two C-frames, one to the left and one to the right of the beampipe in the
opened position. In total twelve C-frames hold the OT detector modules. Two types
of modules exist, full (F) and short (S) modules. The F modules are 4850 mm long
and split into an upper and a lower half. The S modules are used above and below the
beampipe and have about half the length of an F module. An OT half layer consists of
seven F and four S modules. In total the OT comprises 168 full and 96 short modules
corresponding to about 55000 active channels.

Both types of modules consist of two staggered layers of 64 strawtubes each with inner
diameters of 4.9 mm. A cross-section of a module is given in Figure 2.10. The straws are
wound from two foils, the inner foil made of 40µm Kapton-XC36, the outer foil using
37.5µm Kapton-aluminum. As anode wire a 25.4µm thick gold-plated tungsten wire is
used. One of the central goals of the design of the OT was to keep the material budget
as low as possible to minimize multiple scattering effects. The material of the OT in the
LHCb acceptance, consisting of 12 layers of modules, is equivalent to only 9.6% of one
radiation length.

As counting gas a mixture of Argon/CO2 with a ratio of 70/30% was chosen. Fig-
ure 2.11 shows the results of a study performed at a 6 GeV electron test beam at the
DESY II facility in 2005. The straws show efficiencies larger than 99% near the center of
the straw with dropping efficiencies at the edges. The R-t relation shown in Figure 2.11
is used to determine the distance of the throughgoing particle from the wire from the
drift time of the ionization clusters. For single cells a position resolution of less than
200µm is reached for nominal operation voltages of 1550 V.
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Figure 2.9.: The bridge of the Outer Tracker located behind the magnet. Two Outer
Tracker C-frames and one Inner Tracker station are shown. The two C-frames
are in the retracted position. Figure from [50].
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Figure 2.10.: Figure 2.10a shows a cross section through an OT module. A module
consists of two staggered layers of 64 straw tubes each. Figure 2.10b shows
a full module.
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(a) Efficiency over the straw (b) R-t relation

Figure 2.11.: (a) Efficiency for a track to be detected when it is passing through a
strawtube depending on the distance to the wire. (b) R-t relation which is
used to derive the distance of the track from the wire using the measured
drift time. Figures from [50].

Outer Tracker frontend electronics

During my thesis I was involved in the maintenance and improvement of the Outer Tracker
detector control software which is responsible for the configuration and monitoring of
the OT electronics. Therefore the readout of the OT modules will be briefly summarized
below.

The frontend electronics [52] for the readout of the OT modules are located on the
top and bottom of the modules. Their design is shown in Figure 2.12. The signal is
first processed by the ASDBLR chips (Amplifier, Shaper, Discriminator with Base Line
Restoration) which provide amplification and perform a comparison with a variable
threshold. Two ASDBLR boards equipped each with two ASDBLR Asics are connected
to the OTIS board housing the OTIS Asic. The OTIS is a TDC (Time to Digital
Converter) for digitization of the drift times. After digitization the drift times are
stored in the OTIS pipeline and, on a positive trigger decision, they are written to the
derandomizer buffer. Four OTIS boards are connected to one GOL/AUX board which
houses the GOL (Gigabit Optical Link) chip responsible for serialization of the data
and transfer to the TELL1 level 1 buffer board via optical link.

18 frontends in the upper and lower half of a single C-frame are connected to one
control box which distributes the fast and slow control signals to the frontends. The fast
control signals (trigger, bunch clock) are derived from the TFC (Timing and Fast Control)
fiber provided from the TFC system. The slow control (configuration, monitoring) is
realized via the SPECS [53] protocol.

Track reconstruction

The task of the track reconstruction is to determine tracks and their momenta from
measurements (hits) of charged particles traversing the different tracking subsystems. It
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Figure 2.12.: Design schematics of (a) an outer tracker frontend and (b) photograph of
an opened frontend box. Figures from [50].

is convenient to define different track types depending on the subdetectors contributing
to their reconstruction

• Velo tracks consist of only hits in the Velo modules.

• T-tracks are track segments consisting of hits only in the tracking stations after
the magnet.

• Downstream tracks are tracks built from hits in the TT and the tracking stations
after the magnet. They are only useful in rare circumstances, one example being
the reconstruction of longlived K0

S mesons which decay into π+π−.

• Upstream tracks with hits only in the Velo and the TT. They are mostly low
momentum tracks bent out of the acceptance of the OT by the magnet.

• Long tracks are the tracks most commonly used by the physics analyses. They
consist of hits in the Velo and the tracking stations and give the best momentum
resolution due to the long lever arm.

To find hits belonging to a track pattern recognition algorithms are applied. These
algorithms reconstruct track segments in the Velo and the T-Stations. The resulting
Velo and T-tracks are then used to find long tracks. For this purpose two track finding
algorithms are used, forward tracking and track matching.

• Forward tracking starts with a reconstructed Velo segment and a hit in the
tracking stations. The algorithm then searches for additional hits in a windows of
interest around the extrapolated track. If the resulting track candidates satisfy
certain quality criteria they are chosen as long tracks. Finally hits in the TT are
picked up if they are close to the track.

• Track matching tries to match a Velo segment with a T-track by extrapolating
both to the bending plane inside the magnet to see whether they actually belong
together. TT hits are again added afterwards if they are close to the track.
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Two main figures describe the performance of the track finding, the track finding efficiency
and the ghost rate. Ghost tracks are defined as tracks where less than 70% of the hits
originate from a real particle. Typical numbers for long tracks with momenta larger
than 10 GeV are track finding efficiencies of 94% with ghost rates of about 9% [50].

The measurements in the different subdetectors are fitted using a Kalman filter to gain
a momentum estimate for the track. The quality of the track is given by the track fit
χ2

track divided by the number of degrees of freedom. The momentum resolution reached
by the tracking system depends on the particle momentum. For long tracks resolutions
of

δp

p
= 0.35% to 0.55%

are found for track momenta from 10 GeV to about 130 GeV [50].

2.2.2. Particle Identification

The LHCb experiment uses ring imaging Cherenkov counters (RICH) to distinguish
between different charged particle species. When charged particles traverse material
with refraction index n with a higher velocity than the velocity of light in the material
(c′ = c/n) they emit photons under the Cherenkov angle θCherenkov with

cos θCherenkov =
1

nβ

where β = v/c is the velocity of the charged particle. Together with the momentum
measurement of the particle performed by the tracking system this allows to calculate
the particle’s mass and therefore to determine the particle type. Figure 2.13 shows the
Cherenkov angle depending on particle momentum for different particle species and
different radiators.

To guarantee a good K-π separation over the full momentum range from 2 to 100 GeV
LHCb uses three different radiators in two Cherenkov detectors. One of the two detectors,
the RICH 1 (Figure 2.14a), is located before the magnet. It uses two radiators, silica
aerogel (n = 1.03) and C4F10 (n = 1.0014), and is responsible for particle identification
at low momenta from about 1 to 60 GeV. The emitted Cherenkov photons are reflected
by mirrors onto Hybrid Photo Detectors (HPDs) which detect photons in the wavelength
range of 200-600 nm and measure their spatial position.

The second RICH detector, the RICH2 (Figure 2.14b), is located behind the magnet
and tracking stations and is responsible for the identification of particles with momenta
from 15 GeV up to 100 GeV and beyond. It contains CF4 (n = 1.0005) as a gas radiator.
Whereas the RICH 1 detector covers the full LHCb acceptance of 25− 300 mrad (25−
250 mrad) in the horizontal (vertical) plane, RICH2 covers only an angular acceptance
of 15− 120 mrad (15− 100 mrad) horizontally (vertically).
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Figure 2.13.: Cherenkov angle versus particle momentum for different particle species
and the three different radiators used in the RICH detectors. Figure
from [50].

Charged hadron identification

A likelihood approach is used to identify different types of particles from the measured
Cherenkov photons. For every track the Cherenkov angle for all the possible particle
species is calculated (π, K, p, etc.) using the known track momentum. A likelihood is
created by calculating the probability for every detected Cherenkov photon to have been
emitted under the reconstructed angle given the specific track and the particle hypothesis.
Of particular interest for many analyses is the difference between the logarithm of the
likelihoods for different particle species, an example would be the variable

∆ lnLKπ = lnLK − lnLπ

which is used to separate pions from kaons. This variable is important for the study
of final states with charged kaons, where, without particle identification, one would be
overwhelmed by the pion background.

The RICH detectors provide an excellent K-π separation over the full momentum
range of 2-100 GeV with an average kaon identification efficiency of 95% and a π-as-K
misidentification rate of 5% [50].

2.2.3. Calorimetry

The LHCb calorimeter system measures the size and the position of energy depositions
and performs electron, photon and hadron identification. Furthermore the calorimetry
is used in the first level (L0) trigger. This puts stringent requirements on the readout
speed of the calorimeters, since the L0 decision needs to occur after only 4µs.
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(a) RICH 1 (b) RICH 2

Figure 2.14.: Schematic view of (a) RICH 1 and (b) RICH 2. Figures from [50].

Charged incident particles and photons can deposit energy in the electromagnetic
calorimeter by producing electromagnetic showers via bremsstrahlung and pair produc-
tion. Hadrons can produce hadronic showers in the hadronic calorimeter. The particles
of the shower produced in the absorber material traverse active scintillating material
which they are able to excite. Photons emitted during the de-excitation process can
then be read out via wavelength shifting fibers and detected with photomultiplier tubes
(PMTs). LHCb’s calorimeter system consists of the following subsystems:

• The Scintillating Pad Detector (SPD) used for the separation of electrons and
photons.

• The Preshower (PS) follows the SPD after 15 mm of lead absorber. It is used to
distinguish between electrons and charged pions.

• The electromagnetic calorimeter (ECAL) which measures the energy and position
of showers from electrons and photons.

• The hadronic calorimeter (HCAL) which measures the energy and shower shape
of hadrons.
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(a) Scintillating pad (b) SPD/PS module box

Figure 2.15.: (a) Scintillating pad and (b) fiber routing in an inner SPD/PS module box.
Figures from [50].
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Figure 2.16.: Different detector sections of the (a) SPD/PS, ECAL and (b) HCAL. The
corresponding segmentation can be found in Table 2.1. Figures from [50].

Scintillating pad detector and preshower detectors

SPD and PS are located behind the first muon station M1 on the two opposite sides of
a 15 mm thick lead absorber. Both detectors are constructed out of scintillating pads
as shown in Figure 2.15. The detectors are subdivided in three different regions with
different segmentation. Figure 2.16a shows the three different regions, the segmentation
decreases from 4 cm× 4 cm large pads in the inner region to 12 cm× 12 cm large pads in
the outer region as given in Table 2.1.

The purpose of the SPD detector is to separate electrons from photons. The principle
behind the electron-photon separation is that while electrons will give a signal in the
SPD the electrically neutral photons will not. The photon as electron misidentification
rate is found to be below 3%.

The PS detector is built for electron-pion separation. The deposited energy for 50 GeV
electrons and pions is shown in Figure 2.17 in arbitrary units. In tests with e/π beams
the PS showed pion rejection rates of 99.6%, 99.6%, and 99.7% with electron retention
rates of 91%, 92% and 97% for particles with 10 GeV, 20 GeV and 50 GeV respectively.
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depth interaction length segmentation [ cm2]

detector [ cm] X0/λI [% ] inner section middle section outer section

SPD
18 2.5/0.1

4.04× 4.04 6.06× 6.06 12.12× 12.12

PS 4.04× 4.04 6.06× 6.06 12.12× 12.12

ECAL 42 25/1.1 4.04× 4.04 6.06× 6.06 12.12× 12.12

HCAL 165 −/5.6 13.13× 13.13 − 26.26× 26.26

Table 2.1.: The segmentation of the subdetectors of the calorimeter system. SPD, PS
and ECAL have identical segmentation.
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Figure 2.17.: Energy deposition (in arbitrary units) in the PS detector for (a) 50 GeV
electrons and (b) 50 GeV pions. Figure from [50].
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(a) ECAL modules (b) HCAL module

Figure 2.18.: (a) ECAL modules for the three different detector regions. (b) schematics
of an HCAL module. Figures from [50].

Electromagnetic calorimeter

The electromagnetic calorimeter is located behind the PS and built as a so called
“shashlik” calorimeter. It is a sampling structure built from alternating layers of 2 mm
lead absorber and 4 mm scintillator material read out via wavelength shifting fibers. The
segmentation of the ECAL is the same as the one used for the SPD/PS, see Table 2.1, to
have a finer granularity in the regions close to the beam pipe where the particle density
is high. Three different types of modules are produced for this purpose as shown in
Figure 2.18a. The ECAL has a length corresponding to 25 radiation lengths X0 and 1.1
hadronic interaction lengths λI. The energy resolution of the ECAL is given by

σE

E
=

10%√
E( GeV)

⊕ 1%,

where the resolution terms on the right hand side should be added in quadrature.

Hadronic calorimeter

The HCAL is located after the ECAL and uses an iron/scintillator sampling structure
as shown in Figure 2.18b. The segmentation of the HCAL is coarser than for the ECAL
with the cells having a size of about 13 cm× 13 cm in the inner and 26 cm× 26 cm in
the outer region, see Table 2.1. In total the HCAL has a depth corresponding to 5.6
hadronic interaction lengths λI. The energy resolution of the HCAL is given by

σE

E
=

80%√
E( GeV)

⊕ 10%.
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Figure 2.19.: Overview over the five muon stations. Figure from [50].

M1 M2 M3 M4 M5

R1 pad size [ cm2] 1× 2.5 0.63× 3.1 0.67× 3.4 2.9× 3.6 3.1× 3.9

R2 pad size [ cm2] 2× 5 1.25× 6.3 1.35× 6.8 5.8× 7.3 6.2× 7.7

R3 pad size [ cm2] 4× 10 2.5× 12.5 2.7× 13.5 11.6× 14.5 12.4× 15.5

R4 pad size [ cm2] 8× 20 5× 25 5.4× 27 23.1× 29 24.8× 30.9

Table 2.2.: Sizes of the pads for the four regions in the muon stations M1-M5. Numbers
are compiled from [50].

2.2.4. The Muon chambers

The muon chambers are essential for muon identification and triggering of B meson
decays containing muons in the final state. The LHCb muon system consists of five
muon stations (M1-M5), see Figure 2.19. M1 is located upstream of the calorimeters to
improve the pT resolution in the muon trigger by minimizing uncertainties caused by
multiple scattering in the calorimeter material. 80 cm thick iron absorbers are placed
between the muon stations M2-M5 located after the calorimeter to filter out all particles
except muons. To traverse all muon chambers and interleaved absorbers muons need
to have a minimum momentum of 6 GeV. Each of the muon stations is divided in four
regions R1-R4 with finer segmentation in the regions with higher particle multiplicity
close to the beam pipe. Figure 2.20 shows the segmentation of M1. The segmentation
over the four regions R1-R2-R3-R4 scales as 1:2:4:8. The specific pad dimensions are
given in Table 2.2.
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Figure 2.20.: Segmentation of the muon station M1. Figure from [50].

All regions use multiwire proportional chambers (MWPC) except region R1 in M1
which uses triple-GEM detectors since the MWPCs would not meet the requirements
for radiation tolerance in this region of high particle flux. Both detector types are able
to collect the signal in less than 20 ns with an efficiency larger than 95%.

Muon identification

A track which is considered as a muon candidate is extrapolated into the muon system.
To be confirmed as muon candidate a certain number of hits in the muon chambers need
to be found in a field of interest around the track. In addition a likelihood is created
using the distance of the hits from the extrapolated track under both the muon and
pion hypothesis. The difference between the logarithms of the likelihoods for the µ and
π particle hypotheses,

∆ lnLµπ = lnLµ − lnLπ

can be used to differentiate between the two particle types. LHCb’s muon system
exhibits a high muon identification efficiency of 95% and a π-as-µ misidentification rate
of 3% [50].

2.3. The LHCb Trigger system

LHCb uses a multi-level trigger system to reduce the bunch crossing rate of 40 MHz
to a data rate of about 2.2 kHz which is written to tape for later analysis. It therefore
needs to reject events that are of no interest for the LHCb physics program but at
the same time retain events containing decays of B and D mesons. The LHCb trigger
system consists of three levels called Level-0 (L0), High Level Trigger 1 (HLT1) and
High Level Trigger 2 (HLT2). The subsequent reduction of rates enables the trigger
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Figure 2.21.: The three trigger levels of the LHCb trigger system. Figure from [50].

stages to use more and more refined reconstruction mechanisms to decide whether an
event is of interest or can be discarded. An overview of the three trigger levels is given
in Figure 2.21. The trigger system is designed to be very configurable to be able to
adapt to different running conditions. A unique Trigger Configuration Key (TCK) is
assigned to identify every trigger configuration.

2.3.1. Level 0 Trigger

The first trigger level is called L0. The L0 trigger is completely implemented in hardware
to be able to cope with the high interaction rate. It takes advantage of the somewhat
higher transverse momenta of particles from B decays relative to QCD events which in
general show a “softer” pT distribution. The L0 trigger consists of three subsystems, the
calorimeter trigger, the muon trigger and the pileup system.

• The calorimeter trigger sums up the transverse energy ET of an array of 2 × 2
calorimeter cells to form calorimeter clusters. A particle hypothesis (e, γ or hadron)
is assigned to the clusters using information from the SPD, PS, the ECAL and
the HCAL. The trigger then selects the hadron, electron and photon cluster with
the largest transverse energy in the event.

• The muon trigger tries to reconstruct, for each quadrant of the detector, the two
muons with the largest transverse momentum pT . Assuming the muon tracks
originate from the interaction point, the pT of the candidates can be estimated using
the slope in the first two muon stations3. The muon standalone reconstruction
exhibits a momentum resolution of ∼ 25%.

• The pileup system upstream of the Velo can be used to veto events with high
backwards activity indicating multiple interactions4.

The L0 decision unit combines the different trigger subsystems and gives the final trigger
decision. The L0 trigger reduces the rate to 1 MHz with which the detectors are read

3The effect of the magnetic field is described by an effective bending plane.
4The pile-up system is currently not used in the trigger decision.



52 2. The LHCb experiment

out. The buffer size of the readout electronics fixes the latency of the L0 trigger to 4µs.
Since the time of flight of particles and cable lengths, as well as various other delays
need to be taken into account the L0 decision needs to be taken in only 2µs.

2.3.2. High Level Trigger

The High Level Trigger is implemented in software (written in C++) and runs on a large
computing cluster called the event filter farm. It further reduces the event rate from
1 MHz, the L0 output rate, to 2.2 kHz which is written to disk. The High Level Trigger
consists of two stages, the HLT1 and the HLT2.

• The HLT1 performs a partial event reconstruction. It tries to confirm the L0
decision by reconstructing tracks in the Velo and the tracking stations corresponding
to the candidates found by the L0 trigger. This L0 confirmation reduces the event
rate to ∼ 30 kHz.

• The HLT2 fully reconstructs tracks in the event in a manner very similar to the
offline procedure. It performs various inclusive and exclusive selections. The inclu-
sive selections try to partially reconstruct the final states of B decays, an example
would be the reconstruction of b-hadron decays to (J/ψ + X). Exclusive selections
are used for B → hadron decays where the final state is fully reconstructed. The
HLT2 reduces the event rate to 2.2 kHz.

2.4. The LHCb software framework

Several software packages are needed to perform an analysis with the data taken by the
LHCb detector.

• Brunel
Data that was triggered and written to disk by the event filter farm is available
as so called raw data files. The first step in the analysis is to reconstruct physi-
cal quantities from the measurements of the detector subsystems. The Brunel
software package [54] performs this reconstruction step. Brunel performs track
finding and fitting. It also links tracks to the available particle identification
information extracted from the calorimeter, muon and RICH subdetectors. Fur-
thermore Brunel reconstructs the energy of electromagnetic and hadronic showers
using the calorimetry. At the end of the reconstruction step Data Summary Tape
(DST) files are produced on which all further analyses is based.

• DaVinci
DaVinci [55] is the analysis software package of LHCb built on the Gaudi [56]
framework. DaVinci applies particle hypotheses to tracks and combines particles
to reconstruct signal decays.

To make the large amounts of data more manageable for physics analysis preselec-
tions are performed on the reconstructed data. The reconstruction of the signal
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decays and the preselection is performed using the DaVinci analysis software.
This analysis step is also called “stripping”. Similar preselections are combined to
form so called streams for different physics topics. Examples for streams provided
by the stripping are the hadron stream which selects hadronic decays of B mesons,
the charm stream which selects decays of D mesons and the dimuon stream which
is optimized for B decays containing two muons in the final state.

The offline analysis is performed on the appropriate physics stream, again using
the DaVinci analysis software. The full selection is applied using the signal
candidates reconstructed in the stripping stage.

• Dirac
Due to the large quantities of data that need to be processed at LHCb these tasks
are performed on the Grid using the Dirac workload and data management
system [57].

2.5. Generation of simulated events at LHCb

2.5.1. LHCb Monte Carlo Simulation Framework

To asses the feasibility of physics studies and to devise and test appropriate analysis
strategies simulation of the physical processes occurring at LHCb is essential. The
method of Monte Carlo (MC) simulation is used to model both the particles emerging
from the proton-proton collision as well as their interaction with material. The full MC
simulation is performed using the LHCb simulation framework which is based on the
Gaudi framework and consists of several steps

• Gauss
Monte Carlo simulated events are generated using the Gauss [58] software package.
For the simulation of the proton-proton collision Gauss uses the Pythia [43]
program, a general purpose MC event generator. Pythia contains routines for
the hard processes (examples are the b production processes given in section
1.4) in the proton-proton collision as well as initial and final state radiation and
subsequent hadronization. The decay of heavy B mesons is performed using the
EvtGen [59] package which is specialized on the physics of B decays. In contrast
to Pythia EvtGen does not use probabilities but the quantum mechanical
amplitudes to correctly account for the numerous interference effects in decay
and mixing of B mesons. The particles produced in the proton-proton collision
finally decay to longlived particles which traverse the detector. The simulation of
their electromagnetic and hadronic interaction with material is performed by the
Geant [60] software.

• Boole
The output of the detector simulation stage is used as input for Boole [61] which
simulates the detector response to hits deposited in the detector by traversing
particles.
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• Moore
Moore [62] is the high level trigger application of LHCb. It can be run on Monte
Carlo data in practically identical fashion as on the event filter farm, accurately
replicating the behavior of the trigger on real data.

• Brunel
The reconstruction of the events is performed the same way as for real data using
the Brunel software package. For simulated data Brunel additionally performs
the associations (matching) of reconstructed tracks and calorimeter clusters to the
originally generated particles.

• DaVinci
The analysis is performed using the physics analysis software, DaVinci, analogous
to the processing of real data

2.5.2. Simulated signal events

The Monte Carlo simulated signal events used for this thesis contain one B0
s →

J/ψ [µ+µ−]φ [K+K−] signal decay in every event. To achieve this, repeated hadronization
of the generated bb pair is performed until a B0

s is found. The B0
s is then forced to decay

into the signal channel. For the generation of the signal decay EvtGen uses the time
dependent decay amplitudes given in section 1.3. To save computational costs the event
is only kept if the final state particles of the signal decay lie in the acceptance of the
LHCb detector (10 mrad < Θ < 400 mrad). The parameters used in the Monte Carlo
generation are summarized in Table 2.3.

Besides the obvious use of the simulated signal events to test the extraction of the B0
s

mixing phase and to optimize the selection criteria the simulated events are also used for
the determination of possible acceptance effects due to detector geometry, reconstruction
and selection.



Physics Parameter Value

φs -0.70 rad

Γs 0.6793 ps−1

∆Γs 0.0600 ps−1

mB0
s

5366.3 MeV

|A0(0)|2 0.60∣∣A‖(0)
∣∣2 0.24

|A⊥(0)|2 0.16

δ‖ 2.50 rad

δ⊥ -0.17 rad

∆ms 17.8 ps−1

Table 2.3.: Parameters used in the generation of the Monte Carlo simulated signal events.
The value for φs is about twenty times larger than what is expected in the
Standard Model. This is the so called “New Physics” scenario. In total 2 ·106

simulated signal events are generated.





3. Reconstruction and selection of the decay
B0

s → J/ψφ

To perform an analysis of the decay B0
s→ J/ψ φ it is necessary to select a clean sample of

signal events. The first selection stage is performed by the LHCb trigger system which
enriches the B meson content of the data sample. In addition several offline selection
criteria are applied to the data exploiting particle identification information, information
on the reconstructed particle tracks and the kinematics of the signal decay. Both trigger
and offline selection criteria are discussed in this chapter.

Furthermore the chapter outlines the reconstruction of the B0
s decay time and the

transversity angles and the reconstruction effects that need to be accounted for when
trying to determine φs. In addition the determination of the production flavor of the B0

s

meson (flavor tagging) is introduced which is of central importance for the determination
of φs.

3.1. Data sample

The data used in this analysis corresponds to an integrated luminosity of 36 pb−1. It was
taken with the LHCb detector in 2010 with the LHC running at a center of mass energy
of
√
s = 7 TeV. The data is reconstructed using the LHCb reconstruction software

Brunel1. The analysis is performed within the analysis framework DaVinci2.

3.2. Triggering the signal decay

With two muons in the final state the muon trigger lines are used to select the signal
decay B0

s → J/ψ [µ+µ−]φ [K+K−]. There are two L0 muon lines of interest for this
analysis, the single-muon and the L0 dimuon lines. The single-muon L0 line searches for
a single muon track with moderately high pT whereas the dimuon line searches for two
muon tracks with a combined pT = pT (µ1) + pT (µ2) larger than 1 GeV. Only candidates
where the muons from the reconstructed B0

s signal decay triggered the event are used.
These events are called TOS events (Triggered On Signal). The High Level Trigger
for muons consists of two distinctive types of trigger lines, the lifetime biased and the
lifetime unbiased muon lines. Both are used in the analysis and are discussed in detail
below. A single trigger configuration3 was used for the majority of the running period
in 2010.

1Brunel version v37r8p4
2DaVinci version v26r3
3Defined by the TCK 0x002E002A
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Lifetime unbiased trigger lines

There are two lifetime unbiased trigger lines in HLT14. The first line requires a muon
candidate with a well reconstructed track and a transverse momentum of pT > 1.8 GeV.
The second line is able to recover muons with lower pT by requiring the sum of the pT
of the muons to exceed 1 GeV. The invariant mass of the dimuon system is required to
be larger than 2.5 GeV and the closest distance between two muon tracks5 needs to be
smaller than 0.5 mm.

In the second stage of the HLT (HLT2) a J/ψ meson is reconstructed from two muon
tracks which are fit to a common vertex6. The HLT2 trigger line7 requires this vertex fit
to be of good quality. The χ2 of the vertex fit χ2

Vtx is required to be smaller than 25. It
furthermore cuts on the invariant mass of the dimuon system. Finally the reconstructed
J/ψ is required to have a minimum pT exploiting the comparably large mass of the B0

s

meson.

A full list of the criteria used in the lifetime unbiased HLT1 and HLT2 trigger lines is
given in Table 3.1. The events passing the lifetime unbiased trigger lines are referred to
as the lifetime unbiased data sample.

Lifetime biased trigger lines

The lifetime biased triggers used in the analysis consists of two trigger lines8. A full
list of the criteria used in the lifetime biased trigger lines is given in Table 3.2. The
main difference compared to the lifetime unbiased trigger lines is the requirement of a
minimum Impact Parameter (IP) of the muon tracks. The IP is defined as the minimum
distance of the track to the nearest primary vertex. By requiring IP > 0.1 mm the
lifetime biased trigger lines exploit the large lifetimes of the B mesons. The same HLT2
selection as for the unbiased trigger lines is used if events pass the lifetime biased trigger
lines in HLT1. The events passing the lifetime biased trigger lines are referred to as the
lifetime biased data sample.

3.3. Selection of the signal events

The main objectives of the event selection are as follows:

4Hlt1SingleMuonNoIP and Hlt1DiMuonNoIPL0
5Distance Of Closest Approach, or DOCA, of the two tracks
6The vertex fit determines the position of the common decay vertex using the method of least squares

fitting. As input of the vertex fit the estimates of the track parameters and the associated covariance
matrices are provided by the tracking algorithms. The vertex fit minimizes χ2

Vtx which is given
by χ2

Vtx =
∑
i(~mi − ~m(~x)i)

TV −1i (~mi − ~m(~x)i). In this expression ~mi denotes the measured track
parameters and Vi the covariance matrix for track i. ~m(~x)i gives the fit model for track i depending
on the common decay vertex ~x.

7The Hlt2UnbiasedJPsi HLT2 line is used in this analysis.
8Hlt1TrackAllL0 and Hlt1TrackMuon
9The IsMuon criterion requires for muons with 3 GeV < pµ < 6 GeV hits in M2+M3, for 6 GeV <

pµ < 10 GeV hits in M2+M3+(M4 or M5) and for 10 GeV < pµ hits in M2+M3+M4+M5.
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Hlt1SingleMuonNoIP Hlt1DiMuonNoIPL0 Hlt2UnbiasedJPsi

L0 L0-Muon L0-DiMuon -

pT (µ) > 1.8 GeV - > 500 MeV

p(µ) > 10 GeV > 10 GeV -

χ2
Track/ndof(µ) < 10 < 10 -

pT (µ1) + pT (µ2) - > 1 GeV -

Dimuon DOCA - < 0.5 mm -

Dimuon mass - > 2.5 GeV
> 2977 MeV

< 3211 MeV

Dimuon χ2
Vtx - - < 25

Table 3.1.: HLT selection criteria for trigger configuration key (TCK) 0x002E002A which
was used for the majority of the data taking period in 2010. Shown are the
lifetime unbiased trigger lines used in the analysis. Table from [63].

Hlt1TrackAllL0 Hlt1TrackMuon

L0 L0-Muon L0-Muon OR L0-DiMuon

IP > 0.11 mm > 0.11 mm

# velo hits > 9 > 9

# missed velo hits < 3 < 3

pT (µ) > 1.85 GeV > 0.8 GeV

p(µ) > 13.3 GeV > 8 GeV

IP χ2 > 34 > 25

IsMuon9 - True

Table 3.2.: HLT selection criteria for trigger configuration key (TCK) 0x002E002A which
was used for the majority of the data taking period in 2010. Shown are the
lifetime biased trigger lines used in the analysis. The impact parameter and
impact parameter χ2 of the muon track is determined with respect to the
nearest primary vertex. Table from [63].
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J/ψ → µµ selection

Criterion Stripping Offline selection

∆ lnLµπ > 0 > 0

χ2
Track/ndof(µ) < 5 < 4

min(pT (µ+), pT (µ−)) - > 0.5 GeV

χ2
Vtx(J/ψ) < 16 < 11

|M(µ+µ−)−MPDG
J/ψ | < 80 MeV < 80 MeV

|M(µ+µ−)−MPDG
J/ψ |/σM(µ+µ−) - 1.4× 3

Table 3.3.: Common J/ψ selection criteria. Given are the values used in the stripping as
well as in the offline selection. Table from [63].

• Maximize the signal event yield.

• Minimize the contamination by background processes mimicking the signal decay.

• Minimize kinematic distortions due to the event selection. The method to determine
the physics parameters needs to correctly account for these acceptance effects.
This issue is discussed in more detail later in sections 3.6.2 and 4.5.7.

The requirements of both the preselection in the stripping stage as well as the offline
selection are given in Tables 3.3 and 3.4 . The selection was developed in [63] together
with the selections of other B → J/ψX decays.

J/ψ reconstruction

Information from the muon stations is used to select well reconstructed muons (∆Lµπ > 0)
with an associated well fitted track (χ2

Track/ndof < 4) and a minimum transverse mo-
mentum of pT > 0.5 GeV. Two muon tracks are combined to form a J/ψ meson. As the
two muons are supposed to originate from the same vertex a vertex fit is performed and
the vertex χ2

Vtx is determined. If the muons did indeed originate from a common point
the quantity χ2

Vtx should be distributed according to a χ2 distribution. Only events for
which χ2

Vtx/ndof is smaller than 11 are accepted. The invariant mass of the dimuon
system M(µ+µ−) is required to be close to the J/ψ mass given by MPDG

J/ψ . An additional

criterion takes the uncertainty of the reconstructed J/ψ mass, σM(µ+µ−), into account.
This uncertainty is determined by the resolution of the momentum estimates for the
tracks. J/ψ candidates are only accepted if the reconstructed J/ψ mass is no further
than 1.4 · 3 × σM(µ+µ−)

10 away from MPDG
J/ψ . Figure 3.1a gives the distribution of the

reconstructed J/ψ mass.

10The factor 1.4 accounts for an underestimation of the uncertainty of the J/ψ mass reconstruction.
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(a) Reconstructed J/ψ mass

 mass [MeV]φReconstructed 
1010 1015 1020 1025 1030

E
v

e
n

ts
 /

 0
.5

 M
e

V

0

20

40

60

80

100
LHCb Preliminary

­1 = 7 TeV, L = 36pbs

 0.2 MeV± = 2.3 mσ

(b) Reconstructed φ mass

Figure 3.1.: Distribution of (a) the reconstructed J/ψ mass and (b) the reconstructed
φ mass of B0

s→ J/ψ φ candidates triggered by the lifetime unbiased trigger
lines after the full selection.

φ reconstruction

For the reconstruction of the φ → K+K− decay particle identification information
provided by the RICH detectors is used. Two tracks from particles of opposite charge
which are well reconstructed (χ2

track/ndof < 4) and identified as kaons (∆LKπ > 0) are
fit to a common vertex to form a φ meson. The reconstructed meson is required to have
a transverse momentum of pT > 1 GeV again utilizing the large mass of the B0

s meson.
Subsequently a cut on the invariant mass of the reconstructed K+K− system and the
quality of the vertex fit is applied. Figure 3.1b gives the reconstructed φ mass.

B0
s reconstruction

The reconstructed J/ψ and φ mesons are combined to form B0
s candidates. The fit of the

common B0
s decay vertex is required to fulfill χ2

Vtx/ndof < 10. The reconstructed B0
s mass

needs to be in the mass range [5100, 5550] MeV. Furthermore the B0
s impact parameter

with respect to the primary vertex is constrained to ensure that the reconstructed B0
s

originated from the primary vertex.
In addition to the vertex fit which is used to determine the χ2

Vtx discussed in the
last paragraph a global kinematic fit of the decay tree is performed [64]. The global
kinematic fit parameterizes the full decay tree in terms of particle momenta, vertex
positions and decay lengths. The decay tree is fit using least squares minimization taking
into account four-momentum conservation at each vertex. The measurements of the
track momenta and positions as well as their covariance matrices are used as input to
the fit and the uncertainties are correctly propagated. The global kinematic fit also
constrains the B0

s candidate to originate from the primary vertex.
To determine the reconstructed B0

s mass which is used for signal and background
separation an additional constraint is applied. The mass of the dimuon system is fixed
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φ→ K+K− selection

Criterion Stripping Offline selection

∆ lnLKπ > −2 > 0

χ2
Track/ndof(K) < 5 < 4

pT (φ) > 1 GeV > 1 GeV

M(φ) ∈ [980, 1050] MeV ∈ [1008, 1032] MeV

χ2
Vtx(φ) < 16 < 16

Bs → J/ψ φ selection

Criterion Stripping Offline selection

M(Bs) ∈ [5100, 5550] MeV ∈ [5200, 5550] MeV

χ2
Vtx/ndof(Bs) < 10 < 10

χ2
DTF(B+PV)/ndof(Bs) - < 5

χ2
IP/ndof(Bs) - < 25

Table 3.4.: Selection criteria for the signal decay B0
s→ J/ψ φ. The J/ψ selection is given

in Table 3.3. Shown are the selection criteria used in the stripping as well as
in the offline selection. Table from [63].

to the true J/ψ mass given by MPDG
J/ψ . Figure 3.2a shows the reconstructed B0

s mass
for the lifetime unbiased data sample after the full selection with the mass constraint
applied. To illustrate the effect of the J/ψ mass constraint Figure 3.2b shows the
reconstructed B0

s mass without using the J/ψ mass constraint. The mass resolution
in this case decreases from 7.3 MeV to 18.4 MeV. Considering the background levels
applying the J/ψ mass constraint leads to an increase of the signal to background ratio
from 4.6 to 11.2 (evaluated 3σm around the B0

s mass peak). Figure 3.3 shows, in addition,
the reconstructed B0

s mass for both the lifetime unbiased and the lifetime biased data
sample. In both cases the J/ψ mass constraint is applied. The mass peaks are clearly
defined and the observed background contribution is very low.

The χ2 of the global kinematic fit without J/ψ mass constraint, denoted as χ2
DTF(B+PV),

is used as selection criterion to ensure that the reconstructed signal candidate is com-
patible with the decay of a B0

s meson originating from the primary vertex. In the case
of multiple candidates per event the candidate with the smallest χ2

DTF(B+PV) is chosen.

B0
s decay time

The decay time of the B0
s , often also referred to as the B0

s proper time, is defined as the
time after which the B0

s meson decays in its own rest frame. The decay time can be
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(a) J/ψ mass constraint applied
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(b) J/ψ mass constraint not applied

Figure 3.2.: The reconstructed B0
s mass peak (a) with and (b) without the J/ψ mass

constraint for lifetime unbiased data.
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(a) Unbiased events
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(b) Biased events

Figure 3.3.: Distribution of the reconstructed B0
s mass of B0

s→ J/ψ φ candidates triggered
by (a) the unbiased and (b) the biased trigger lines after the full selection.
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(b) Biased events

Figure 3.4.: Proper time distribution of B0
s→ J/ψ φ candidates triggered by (a) the

unbiased and (b) the biased trigger lines after the full selection with the
exception of the proper time criterion t > 0.3 ps.

calculated using the decay length ~d after which the B0
s decays via

t =
|~d|
βγ

=
|~d|
|~p|mB0

s
,

where mB0
s

denotes the reconstructed B0
s mass. The decay length ~d is defined as the

distance between the primary (production) vertex ~PV and the secondary (decay) vertex
~SV. Using ~d = ~SV − ~PV the proper time is given by

t =
~pB0

s
· ( ~SV − ~PV)

|~pB0
s
|2 mB0

s
.

In this analysis the decay time is extracted using the global kinematic fit described in
the last section since it properly propagates the tracking uncertainties. No J/ψ mass
constraint is applied since such a constraint could introduce correlations between the
reconstructed B0

s mass and the decay time. Figure 3.4 shows the decay time for the
lifetime unbiased and the lifetime biased data sample. The very different distributions
for small decay times can be explained by the large correlation of the decay time with
the IP of the muon tracks that are required to be larger than 0.11 mm for the lifetime
biased trigger lines. This criterion clearly cuts into the proper time distribution.

Primary vertex association

For events in which several primary vertices are reconstructed the association of a wrong
primary vertex as production vertex of the B0

s meson would lead to a misreconstruction
of the decay time. To prevent this the IP of the B0

s with respect to all primary vertices
in the event is calculated. If there is more than one primary vertex for which the χ2

IP is
smaller than 50 the B0

s candidate is rejected.
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(b) Biased events

Figure 3.5.: Proper time distribution versus the reconstructed B0
s mass of B0

s→ J/ψ φ
candidates triggered by (a) the unbiased and (b) the biased trigger lines after
the full selection with the exception of the proper time criterion t > 0.3 ps.

Background

Figure 3.5 shows the decay time versus the reconstructed B0
s mass for the lifetime

unbiased and the biased data sample. A clear enhancement around the B0
s mass can

be seen which constitutes the B0
s→ J/ψ φ signal. As is expected for the signal decay

from longlived B0
s mesons (τ(B0

s) = 1.472+0.024
−0.026 ps [27]) the B0

s candidates can reach
large decay times. In contrast to this a large number of candidates around t = 0 in
Figure 3.5a show no discernible enhancement around the B0

s mass. These candidates
constitute combinatoric background from tracks originating from the primary vertex.
In the following this background is referred to as “prompt background”. To reject this
type of background which overwhelms the signal component for small decay times it
was decided to require t > 0.3 ps for the analysis. The loss of sensitivity on the physics
parameters due to this requirement is negligible. However it reduces both the data set
and also the computing requirements for the extraction of the physics parameters by a
factor of ∼ 36.

Figure 3.6 shows the lifetime unbiased and biased data sample in the two-dimensional
plane of the reconstructed B0

s mass and J/ψ mass. Practically no candidates are found in
the J/ψ mass sidebands, i. e. the remaining background events in the B0

s mass sidebands
mainly originate from true J/ψ decays with additional random tracks to form the B0

s

meson.

3.4. Efficiency of trigger and selection

The efficiency of the trigger and the offline selection on signal events is determined in a
study using fully simulated signal events. To lower the computational costs of the event
generation simulated events are only accepted if all decay products of the signal decay
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Figure 3.6.: Reconstructed B0
s mass versus the reconstructed J/ψ mass of B0

s→ J/ψ φ
candidates triggered by the (a) unbiased and (b) biased trigger lines after
the full selection. The cut on the proper time of t > 0.3 ps has also been
applied.

lie in the acceptance of the LHCb detector (10 mrad < Θ < 400 mrad). This requirement
was found to have an efficiency of

εaccept = (18.14± 0.04)% [65].

Two million signal events were produced within the LHCb acceptance and the full signal
selection without trigger requirements is applied. The resulting selection efficiency is
determined to be

εsel = 14.50%.

On the fully selected signal sample the following trigger efficiencies are found

εL0 = 91.88%

εL0 · εHLT
biased = 56.55%

εL0 · εHLT
unbiased = 60.84%

εL0 · εHLT
biased|unbiased = 74.77%.

The resulting total efficiency for a B0
s→ J/ψ [µ+µ−]φ [K+K−] signal decay to be triggered,

reconstructed and selected is therefore

εtot = εaccept · εsel · εL0 · εHLT
biased|unbiased

= 1.97%.

3.5. Signal yield

The expected signal yield can be calculated with the formula

S = Lint · σbb · 2 · fs · Bvis(B
0
s→ J/ψ

[
µ+µ−

]
φ
[
K+K−

]
) · εtot.
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candidates candidates signal yield signal yield

(t > 0.3 ps) (t > 0.3 ps)

unbiased only 38225 250 230± 53 161± 13

biased only 653 345 208± 16 196± 15

both 1123 521 398± 22 400± 20

total 40001 1116 836± 60 757± 28

Table 3.5.: Number of candidates (including background) and signal yields from a one-
dimensional fit to the reconstructed B0

s mass. The number of candidates and
the signal yield are given for both the full proper time range [−1, 14] ps and
for proper times larger than 0.3 ps. Table from [35].

The integrated luminosity Lint taken in 2010 is 36 pb−1. The bb cross section was
measured in [44] to be σbb = (288 ± 4 ± 48)µb. The factor 2 is needed because a
pair of b quarks is produced. fs gives the hadronization probability for a b (b) quark
to form a B0

s (B̄0
s) meson. The hadronization probability is measured to be fs =

(10.7± 1.2)% [27]. Bvis(B
0
s→ J/ψ [µ+µ−]φ [K+K−]) denotes the visible branching fraction

which is the probability for a B0
s to decay into the reconstructed final state µ+µ−K+K−.

The visible branching fraction is therefore the product of the probability of the B0
s meson

to decay into J/ψ φ given by B(B0
s→ J/ψ φ) = (1.3±0.4) ·10−3 [27], the probability of the

J/ψ to decay to two muons B(J/ψ → µ+µ−) = (5.93± 0.06) · 10−2 [27] and the probability
for a φ meson to decay to two kaons B(φ→ K+K−) = (48.9±0.5)·10−2 [27]. This results
in a visible branching fraction of Bvis(B

0
s→ J/ψ [µ+µ−]φ [K+K−]) = (3.77± 1.16) · 10−5.

Putting everything together the expected signal yield for 2010 data is found to be

S = 36 pb−1 · 288µb · 2 · 0.107 · 3.77 · 10−5 · 1.97 · 10−2

= 1645± 605

where the error results from the large uncertainty of the visible branching fraction, the bb
cross section and the hadronization fraction fs. The signal yield found in 2010 data after
the full selection is given in Table 3.5. The predicted signal yield from simulation and
the yield found in data are still compatible considering the large statistical uncertainties.

3.6. Proper time reconstruction

3.6.1. Proper time resolution

The measurement of the proper time of the B0
s is limited by detector resolution and

multiple scattering which results in a finite proper time resolution. It is instructive to
review the influence of the proper time resolution on the time dependent CP asymmetry
in the interference between decay and mixing and decay. For a B0

s meson decaying into
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a CP eigenstate f the CP asymmetry is given by equation 1.25

ACP(t) =
Γ(B̄0

s → f)(t)− Γ(B0
s → f)(t)

Γ(B̄0
s → f)(t) + Γ(B0

s → f)(t)

=
−ηf sinφs sin (∆mst)

cosh
(

∆Γs

2
t
)
− ηf | cosφs| sinh

(
∆Γs

2
t
) ,

where direct CP violation is neglected. Setting ∆Γs = 0 for simplicity and selecting a
final state with definite CP value (e. g. J/ψ f0) the asymmetry becomes11

ACP(t) = sin (∆mst) sinφs.

When the proper time t is determined with a finite resolution σt the oscillation
∼ sin (∆mst) is diluted. To determine the effect of a proper time resolution model
R(t) on the proper time dependent function f(t) the convolution integral

(f ⊗R)(t) =

∫ +∞

−∞
f(t′)R(t− t′)dt′

needs to be solved. For the proper time dependent CP asymmetry ACP(t) and a Gaussian
resolution model this integral is given by

ACP(t)⊗ 1√
2πσt

e
− t2

2σt
2 =

∫ +∞

−∞
sinφs sin (∆mst

′)
1√

2πσt

e
− (t−t′)2

2σt
2 dt′

= e−
∆m2

sσt
2

2 sinφs sin (∆mst) .

The observed CP asymmetry reduces to

Ameas = DresACP

with the dilution factor Dres = exp(−∆m2
sσt

2/2). Using a proper time resolution
model which does not accurately describe the data will lead to a bias for the extracted
asymmetry. The determination of the proper time resolution is therefore very important
for the extraction of φs. A method to extract the proper time resolution from data is
discussed in the next section.

The statistical error of the measured asymmetry Ameas is given by binomial statistics

σ (Ameas) =

√
1−A2

meas

N
.

Propagating the statistical uncertainty from the measured quantity Ameas to the theo-
retical asymmetry ACP related to sinφs results in

σ (ACP) =
1

Dres

√
1−A2

meas

N
,

where possible background pollution is neglected. The statistical power of a data sample
consisting of N events with proper time resolution σt is the same as the statistical power
of a data sample containing D2

res · N events with perfect proper time reconstruction.

11The same derivation qualitatively also applies for the signal decay B0
s→ J/ψ φ with the additional

complication of the angular analysis to separate CP-even and CP-odd amplitudes.
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Per event proper time resolution

As discussed previously the proper time is determined in the global kinematic fit. In
addition to the proper time this fit also provides an estimate for the proper time
uncertainty for each candidate. Using this per event estimate for the proper time
uncertainty is in principle beneficial because events for which the proper time was
determined more precisely get a higher weight in the fit. The uncertainty estimate
σt returned by the kinematic fit can possibly over-or underestimate the proper time
resolution due to imperfect description of material in the detector. To correct for this
effect an additional scaling factor st is introduced and the product stσt is used instead
of σt. The scaling factor can be determined from a fit to prompt background events. For
2010 data a scaling factor of ∼ 1.5 is found.

The statistical power of the per event resolution model is given by

〈
D2

res

〉
=

1

N

N∑
e=1

e−∆m2
s s

2
tσ

2
t,e .

Using this formula the gain in statistical power using the proper time resolution for
every event is found to be smaller than 6%. This results in a sensitivity gain for φs
which is less than 3%.

Determination of the proper time resolution using prompt background events

A way to determine the proper time resolution without relying on Monte Carlo simulation
is to use the prompt background events. Since the prompt background consists mainly of
true J/ψ mesons originating from the primary vertex their true proper time distribution
is given by a delta distribution centered around t = 0. The reconstructed proper time
distribution of the prompt background then reflects the proper time resolution model.

Figure 3.7a gives the proper time distribution of the background component extracted
from data using the sPlot technique [66]12. The large peak around t = 0 constitutes the
prompt background which is used for the determination of the resolution parameters.
The prompt background is described by a triple Gaussian model with widths σsig

t,1 , σsig
t,2 and

σsig
t,3 and relative fractions f sig

t,1 and f sig
t,2 , the exact functional form is given in equation 4.10.

The events with large positive lifetimes in Figure 3.7a are longlived background events.
They are modeled according to a double exponential and not used for the determination
of the resolution parameters. To extract the resolution parameters the sFit technique [67]
is used. The resolution parameters determined in [63] are given in Table 3.6.

To be able to use this background resolution model for the signal decays the assumption
that background and signal component have identical proper time resolution needs to
be confirmed. Figure 3.7b shows the per event proper time error for both the signal
and background component. The sPlot technique [66] is used to extract the two
components from data13. No large difference in proper time resolution is seen for signal

12The reconstructed B0
s mass is used to assign background and signal weights to every event. Using

these weights the background distribution can be extracted from data.
13The reconstructed B0

s mass is used as discriminating variable.
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Figure 3.7.: (a) The proper time distribution for background events is dominated by
the large prompt background component. The background component
is extracted using the sPlot technique [66]. (b) Distribution of the per
event proper time error estimate for background (blue) and signal (red)
events. Both components are extracted using the sPlot technique. The
distributions are statistically compatible which justifies using the resolution
model determined from prompt background events for the signal component.
Figures from [63].

and background component. This justifies using the resolution model determined from
the prompt background for the signal component.

3.6.2. Proper time acceptance

Lifetime biased trigger lines

Figure 3.8a shows the proper time acceptance of the lifetime biased trigger lines for
B0

s→ J/ψ φ events on data. The efficiency of the lifetime biased events is determined
relative to events which are triggered by both the lifetime biased and lifetime unbiased
trigger lines. Events triggered by both lines simultaneously should have the same trigger

Resolution Parameter Value

σsig
t,1 0.0337 ps

σsig
t,2 0.0646 ps

σsig
t,3 0.183 ps

f sig
t,1 0.527

f sig
t,2 0.964

Table 3.6.: Resolution parameters extracted from prompt background events in data [63].
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Figure 3.8.: (a) The efficiency of the biased relative to the unbiased trigger lines on data.
Figure from [35]. (b) Proper time acceptance caused by a reconstruction
effect. The efficiency is determined using simulated signal events. Figure
from [63].

and selection efficiency as events triggered only by the lifetime unbiased line. This
assumption is confirmed in [35].

To determine the efficiency of the lifetime biased trigger lines with respect to the
lifetime unbiased events the sPlot technique [66] is used to extract the B0

s→ J/ψ φ signal
component from both data samples using the reconstructed B0

s mass. The functional
form

ε′(t)Biased = n
(at)c

1 + (at)c

is used as parameterization of the proper time dependent efficiency for the lifetime
biased trigger lines. From a fit to the data the parameters are determined to be
a = (3.23± 0.63) ps−1 and c = 2.48± 1.07 [35].

Reconstruction efficiency

In [63] a study of fully simulated signal events revealed a reconstruction effect which
results in a proper time dependent acceptance. Figure 3.8b shows that the proper time
acceptance declines linearly with the proper time. The acceptance effect is therefore
parameterized as

ε(t)Unbiased = 1 + βt (3.1)

with β = (−0.025± 0.025) ps−1 [63]. A study of the origin of this effect is still ongoing.
At least part of the effect is caused by an inefficiency of the pattern recognition if the
radial distance of the secondary vertex to the beamline is large (> 1 mm). The large
radial distance of the B0

s decay vertex is correlated with large proper times, leading
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Figure 3.9.: The transversity angles from Monte Carlo simulated signal events overlayed
with the angular distributions from theory, calculated according to the
values used in the event generation. The solid blue line denotes the signal
model from theory, the dotted and dashed blue lines denote the CP-even
and CP-odd components respectively. Clear discrepancies in the angles
are seen which need to be corrected for when the physics parameters are
determined from data.

to a proper time dependent efficiency. For this analysis the full size of the correction
parameter is used as systematic uncertainty. The value of ∆Γs determined in chapter 6
is unaffected by this conservative estimate.

Since the time dependent efficiency of the lifetime biased trigger lines was determined
with respect to the lifetime unbiased events the linear reconstruction efficiency also needs
to be applied to the lifetime biased events resulting in

ε(t)Biased = (1 + βt)
(at)c

1 + (at)c
(3.2)

with β = (−0.025± 0.025) ps−1, a = (3.23± 0.63) ps−1 and c = 2.48± 1.07.

3.7. Reconstruction of the transversity angles

The transversity angles Ω = {cos θ, ϕ, cosψ} are reconstructed according to the prescrip-
tion given in Figure 1.6. Figure 3.9 gives the reconstructed transversity angles for a
Monte Carlo simulated signal sample. In addition to the angular distribution of the
reconstructed simulated signal events the expected distributions from theory are shown
as solid blue line. The expectation from theory is calculated using the parameters which
were used in the generation of the simulated signal events. Clear discrepancies between
the reconstructed data and the theoretical distributions are observed. Figure 3.10 shows
the resulting angular dependent acceptance (Plots are normalized). The relative variation
of the angular acceptance is of the order of ±5%.

As discussed in section 1.3.1 the angular distributions are necessary to statistically
disentangle the CP-even from the CP-odd component in the final state. Distortions
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Figure 3.10.: Angular efficiencies depending on the three transversity angles (a) cos θ,
(b) ϕ and (c) cosψ. The figures show the efficiency histogram determined
from Monte Carlo simulated signal events. The dashed lines denote relative
variations of the acceptance of ±5%. The y-scale was deliberately set to 1
to be able to easier read off the relative size of the acceptance effect.

of the angular distributions can therefore lead to deviations of the physics parameters
determined in the angular analysis. In particular the transversity amplitudes, giving
the CP-odd and CP-even fractions in data are affected by angular distortions. For the
extraction of the physics parameters from data it is therefore important to model this an-
gular acceptance effect in the fitting method. Section 4.5.7 describes the implementation
of the three-dimensional efficiency ε(Ω) in detail.

Studies using generator level Monte Carlo simulated signal events without any selection
cuts revealed that the angular acceptance effect is mainly caused by the polar angle
acceptance of the LHCb spectrometer and implicit momentum cuts for muons and
kaons [68]. Since the description of the angular acceptance effect is taken from simulated
signal events it is mandatory that these distributions are well described in the simulation.
To verify this assumption the simulated signal events are compared with the signal
component from data extracted using the sideband subtraction technique14. Figure 3.11
shows the polar angle distributions and Figure 3.12 gives the momenta of the final state
particles. The red points denote simulated signal events, the black points give the signal
component extracted from data. Reasonable agreement within the statistics is seen for
all distributions with the possible exception of the muon momenta.

The systematic uncertainty due to a possible incorrect description of the muon
momenta is studied in sections 6.2 and 7.2. The simulated events are reweighted
according to the muon momenta and a new acceptance correction is derived. Repeating
the fit using this acceptance correction gives an estimate of the size of the systematic
effect.

14The sideband subtraction technique extracts the signal component from data by subtracting events
from the B0

s mass sidebands from the signal region. The sideband events that are subtracted are
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Figure 3.11.: Polar angle distributions of the final state particles for simulated signal
events (red) and sideband subtracted data (black). The distributions show
good agreement.
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Figure 3.12.: Momentum distributions of the final state particles for simulated signal
events (red) and sideband subtracted data (black). The distributions
show reasonably good agreement with the possible exception of the muon
momenta. This possible discrepancy is explored as one of the systematic
uncertainties in section 6.2.
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3.8. Determination of the B0
s production flavor

The determination of the B0
s production flavor is essential for the extraction of φs and is

called “Flavor Tagging”. There are two approaches to determine the production flavor
of a reconstructed B0

s meson, same side flavor tagging and opposite side flavor tagging.
Both approaches are illustrated in Figure 3.13.

• Same side flavor tagging exploits the B0
s hadronization. Besides the b̄-quark a

signal B0
s meson also contains an s-quark. The s-quark itself was created together

with its antiparticle in the hadronization process. This s̄-quark may pick up a
light quark and form a K+ kinematically close to the B0

s meson. For a B̄0
s system a

negatively charged K− would be the result of the hadronization process. Searching
for charged kaons in the vicinity of the signal B0

s therefore can give information
on the production flavor of the B0

s . This type of flavor tagging is called same side
kaon tagging (SSK). For the B0

d system pions instead of kaons can be used as same
side tagging particles as indicated in the upper part of Figure 3.13.

• Opposite side tagging algorithms use the b-quark which was created together with
the b̄-quark contained in the signal B0

s meson, as is illustrated in the lower part of
Figure 3.13. This b-quark can decay semileptonically in a b→ c`+ν` transition. The
lepton charge then can be used to determine the production flavor of the signal B.
Further down the decay chain the c quark produced in the decay mentioned above
can hadronize and produce a charmed meson which then decays preferably into
a kaon. The kaon charge can also be used by the tagging algorithms. A final
algorithm to determine the B0

s production flavor exploits the vertex charge of the
secondary vertex. The algorithm sums up the charges of the tracks originating
from the secondary vertex weighted by the track momenta. The combination of
the results of all tagging algorithms is referred to as opposite side tag.

The main quantities describing a tagging algorithm are the tagging efficiency εtag and
the mistag probability ωtag. The tagging efficiency gives the ratio of events for which
the tagging algorithms are able to deliver a decision, the mistag probability gives the
ratio of events for which this decision is wrong.

Tagging dilution

It is again instructive to study the time dependent CP asymmetry from equation 1.25.
For an imperfect determination of the B0

s production flavor the CP asymmetry

ACP(t) =
Γ(B̄0

s → f)(t)− Γ(B0
s → f)(t)

Γ(B̄0
s → f)(t) + Γ(B0

s → f)(t)

weighted according to the background fraction in the signal region.
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is diluted to

Ameas =
(1− ωtag)Γ(B̄0

s → f) + ωtagΓ(B0
s → f)− (1− ωtag)Γ(B0

s → f)− ωtagΓ(B̄0
s → f)

(1− ωtag)Γ(B̄0
s → f) + ωtagΓ(B0

s → f) + (1− ωtag)Γ(B0
s → f) + ωtagΓ(B̄0

s → f)

= DtagACP

with the tagging dilution Dtag = (1− 2ωtag). Together with the proper time resolution,
the observed asymmetry becomes

Ameas = DtagDresACP.

The statistical uncertainty on the CP asymmetry is given by

σ (ACP) =
1

DtagDres

√
1−A2

meas

εtagN

where the tagging efficiency εtag is included to take into account that the tagging
algorithms are not able to determine the flavor tag for every event. From the perspective
of the flavor tagging the statistical power of the data sample is determined by the
effective tagging power defined as

εeff
tag = εtagD2

tag.

A data sample with N signal events and tagging power εeff
tag has the same statistical power

as a data sample with εeff
tag · N signal events and perfect knowledge of the B0

s production
flavor for every event.

Per event mistag

Besides the tagging decision the tagging algorithms also return an estimated mistag
probability for every event depending on kinematic properties of the event. This
constitutes additional information which is beneficial for the extraction of φs since
candidates for which the determination of the production flavor is more reliable are
given a larger weight. The effective tagging power using per event mistag is given by

εtag

〈
D2

tag

〉
=

1

N

∑
tagged e

(1− 2ωtag,e)
2,

where the sum only includes tagged events. On 2010 data an increase in effective tagging
power of ∼ 23% is observed when using per event mistag. This results in an estimated
gain in sensitivity on sinφs of ∼ 11%.

3.8.1. Calibration of the B0
s production flavor determination

To be able to use the per event mistag given by the tagging algorithms it is necessary
to calibrate the algorithms on data. The calibration of the mistag of the opposite side
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Parameter Value

p0 0.338± 0.012

p1 1.01± 0.12

〈ωtag〉 0.339

Table 3.7.: The parameters resulting from the tagging calibration using B+→ J/ψK+

decays [69].

taggers can be performed using B+→ J/ψK+ decays [69]. Since charged B± mesons do
not oscillate the correct production flavor can be determined from the kaon charge in the
final state J/ψK±. The decay is said to be “self-tagging”. In the calibration procedure
the estimated mistag ωest

tag given by the tagging algorithms is compared with the mistag
probability ωtag measured in the calibration channel. A linear dependence between ωest

tag

and ωtag is observed in data. In [69] the parameterization

ωtag = p0 + p1 · (ωest
tag −

〈
ωest

tag

〉
)

is used with the calibration parameters p0 and p1 and the mean estimated mistag
〈
ωest

tag

〉
.

This parameterization of the linear dependence was chosen to minimize correlations
between p0 and p1. The calibration procedure indeed only finds a small negative
correlation of −0.05 which can be neglected. For a calibrated data sample the calibration
parameters are expected to be compatible with p0 =

〈
ωest

tag

〉
and p1 = 1. The values for

p0 and p1 determined in [69] on ∼ 11000 B+→ J/ψK+ events are given in Table 3.7.
The effective tagging power for the opposite side taggers determined from B+→ J/ψK+

events in [69] is (1.97± 0.31) %.
To calibrate the same side tagging the decay B0

s → D∓s π
± can be used15. While

the flavor of the final state D∓s π
± can be extracted from the pion charge the neutral

B0
s meson can oscillate before decay. To determine the B0

s production flavor a time
dependent analysis is therefore necessary. The 2010 data contain too few B0

s → D∓s π
±

events to allow a meaningful calibration via a time-dependent analysis. Therefore this
analysis only uses the opposite side tagging algorithms. With the data sample LHCb
will collect in 2011 a calibration of the same side tagging algorithms will be possible and
an increase of the sensitivity of the analysis by an estimated 30% to 50% is expected.

15The decay B+→ J/ψK+ can not be used since the B± does not contain an s-quark.
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Figure 3.13.: Illustration of the flavor tagging methods. Sketched are both same side
and opposite side flavor tagging. Figure from [69].





4. Technique to determine φs in the decay B0
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Fitting methods are an invaluable tool for the determination of physics parameters from
a given data sample. These parameter estimation techniques fit a theoretical prediction
which depends on the parameters of interest to the data. By varying the parameter
values the fit determines the set of parameters for which the prediction best fits the
data. Two classes of fitting methods exist, binned and unbinned techniques.

Binned techniques subdivide the data sample in bins of the measured quantities and
compare the predicted number of events for every bin with the observed number of
events. Binning leads to a loss of information since variations within one bin can not be
resolved. The two main binned methods are the χ2 fit (method of least squares) and the
binned maximum likelihood technique.

Unbinned methods use the measured quantities directly and therefore do not suffer
from a loss of information due to binning. They are however computationally more
expensive and do not offer a simple measure for the goodness of fit. For the determination
of φs this analysis uses an unbinned maximum likelihood fit. The method of unbinned
maximum likelihood fits for parameter estimation is discussed in detail below. In
addition the determination of errors or rather confidence intervals is discussed in this
chapter. The last part of this chapter details the description of the data using probability
density functions (PDFs). The signal component is modeled according to the differential
decay rates of the signal decay given by theory, the background component is modeled
empirically using the B0

s mass sidebands.

4.1. The principle of maximum likelihood

4.1.1. General remarks

To determine the physics parameters of interest from the data an unbinned maximum
likelihood fit is used. Several steps, listed below, are generally needed when performing
this parameter estimation technique:

1. One or more quantities ~x are measured. Usually multiple measurements of the
quantities ~x exist. These measurements are denoted as ~xe with the index e = 1 . . .N.

2. There exists a theoretical prediction for the probability to measure ~x depending
on one or more parameters ~λ that need to be determined. This prediction for the
distribution of ~x is called probability density function (PDF) and is written as

P(~x;~λ). It is normalized to one,
∫
P(~x;~λ)d~x = 1, because the probability for a

measurement to return any possible result is given by 1.

3. The parameters ~λ are varied to maximize the probability L =
∏N

e=1P(~xe;~λ) to draw
the data set that has been measured in step 1 which constitutes a maximization
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problem. This procedure finds the parameters for which it is most likely to obtain
the drawn data set. For numerical reason one usually minimizes the negative
logarithm of the likelihood

− lnL = −
N∑
e=1

lnP(~xe;~λ)

and makes use of minimization algorithms like Minuit [70].

For large data samples the maximum likelihood estimator is consistent, i. e. it converges
to the true value ~λ in the limit N→∞, and unbiased, which means that its expectation
value is equal to the true ~λ. It is also efficient, i. e. the variance of the maximum
likelihood estimator is small1. However for small data samples the parameter estimation
via unbinned maximum likelihood fits can be biased. For more details on parameter
estimation using maximum likelihood fits see [71].

4.1.2. Resolutions of measured quantities

Possible complications arise due to the fact that the quantities ~x are usually only
measured with a certain resolution ~σ. This modifies the probability to observe an event
with certain measured quantities and therefore needs to be included in the PDF P(~x;~λ).
To describe resolutions, the original PDF has to be convoluted with a resolution model.
Assuming a Gaussian resolution model for the measured quantity xi this results in the
convolution integral

P(~x;~λ)⊗R(xi;σi) =

∫
P(x1, .., x

′
i, .., xM;~λ)R(xi − x′i;σi)dx′i

=

∫
P(x1, .., x

′
i, .., xM;~λ)

1√
2πσi

e
− (xi−x

′
i)

2

2σ2
i dx′i.

Section 4.5.6 discusses the treatment of the detector resolution effects in the analysis of
B0

s→ J/ψ φ.

4.1.3. Acceptance effects

Furthermore, the distributions from theory can be modified by the detector acceptance
and the event selection. This needs to be included in the PDF P(~x;~λ) via a so called
acceptance function ε(~x) which modifies the PDF further

P(~x;~λ) → ε(~x)P(~x;~λ).

Special care needs to be taken for the correct normalization of the PDF when including
acceptance effects,

∫
ε(~x)P(~x;~λ)d~x = 1 must still hold. The implications for the

B0
s→ J/ψ φ analysis are discussed in section 4.5.7.

1Equal to the minimum variance bound −1/〈d2 lnL
dλ2 〉
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4.2. Confidence intervals

4.2.1. Neyman construction

As previously mentioned the PDF P(~x;~λ) denotes the probability to measure ~x given a

parameter set ~λ. It is essential to not confuse this with the probability P(~λ; ~x) for a

parameter set ~λ given a measurement ~x. The Bayesian approach [72] to this problem

is to use the Bayesian theorem P(A;B)P(B) = P(B;A)P(A) to obtain P(~λ; ~x). Note

that this formula requires knowledge on the prior P(~λ). With the help of the Bayesian
theorem confidence intervals (or “credible intervals”) for the parameter λ can easily be
obtained. Assuming an interval [λ1, λ2] it will contain the true value λ with probability

α =

∫ λ2

λ1

P(λ;x)dλ =

∫ λ2

λ1
P(x;λ)P(λ)dλ∫
P(x;λ′)P(λ′)dλ′

.

The frequentist approach does not claim that the true parameter is contained in
the confidence interval determined from the data with a certain probability. Instead
confidence intervals with coverage α obtained via frequentist methods can be interpreted
as follows: If the experiment is repeated a large number of times in identical conditions
a fraction α of the determined confidence intervals contain the true value λ. If the
interval does contain the true value λ in a larger (smaller) fraction of all experiments
the confidence interval is said to overcover (undercover). Intervals that overcover, also
called “conservative” intervals, reduce the sensitivity of the experiment and should be
avoided. Intervals that undercover are even more problematic since they result in an
underestimated uncertainty of the parameter and therefore overestimate the sensitivity
of the experiment.

Classical frequentist confidence intervals are obtained using the Neyman construc-
tion [73]. As illustration Figure 4.1a shows the construction of confidence belts for
one measured quantity x and a parameter λ. For every possible parameter value λ
intervals [x1, x2] are selected such that

∫ x2

x1
P(x;λ)dx = α. The confidence interval for

the parameter λ can then be read of vertically and contains all values λ for which the
measured quantity x0 intersects with the intervals [x1, x2] as illustrated by Figure 4.1b.

There is a certain freedom in what points x to include in the interval [x1, x2]. Upper
limits on λ result from choosing intervals [x1,+∞] with∫ +∞

x1

P(x;λ)dx = α

and lower limits from the interval choice [−∞, x2]∫ x2

−∞
P(x;λ)dx = α.

Another possibility is to choose central confidence intervals [x1, x2] with∫ x1

−∞
P(x;λ)dx =

∫ ∞
x2

P(x;λ)dx = 1− α

2
.
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Figure 4.1.: Illustration of the Neyman construction of confidence belts. (a) The intervals
are constructed horizontally including points x to an interval [x1, x2] such
that

∫ x2

x1
P(x;λ)dx = α. This procedure is done for all possible λ. (b) The

confidence interval for λ is read off vertically. For a measurement x0 it
includes all values of λ for which the interval [x1(λ), x2(λ)] contains the
measurement x0.
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Feldman and Cousins observed that choosing, depending on the data, whether to quote
a one-sided limit or a two-sided interval (flip-flopping) can lead to undercoverage [74].
They proposed an ordering principle based on likelihood ratios which eliminates this
pathology. This likelihood ratio ordering, known as the “Feldman-Cousins method”, is
the method of choice for the determination of confidence intervals for φs.

4.2.2. Feldman-Cousins method

The construction of confidence intervals depends on the choice which points to include
in the confidence interval [x1, x2] to reach the desired coverage. In [74] Feldman and
Cousins proposed to add points x to the interval in descending order of their likelihood
ratio

R =
P(x;λ)

P(x;λbest)
, (4.1)

where λbest is the parameter for which P(x;λ) is maximal2. The Feldman-Cousins
procedure is computation intensive since it requires an additional maximization for every
point x to determine λbest. Confidence intervals can be created by iterating over all
possible values of x and adding them to the confidence interval according to the ordering
principle given above until the desired coverage is reached. The combination of all values
of λ for which the measurement x0 is contained in the confidence intervals [x1(λ), x2(λ)]
gives the frequentist confidence interval for λ.

A more efficient way to determine the confidence interval for λ is to use simulated
events (see also section 5.1.1). For every fixed λ the PDF P(x;λ) is used to generate a
large number N of simulated data samples xi. The fraction of simulated data sets for
which a larger likelihood ratio Rtoy,i is found than for data, i. e.

Rtoy,i =
P(xi;λ)

P(xi;λbest)
> Rdata =

P(x0;λ)

P(x0;λbest)
,

gives the confidence level of the shortest interval containing the measurement x0
3. The

determination of the confidence levels of intervals containing the measurement x0 is
repeated for a grid of all possible parameter values λ. The conjunction of all grid points
in λ with a confidence level of 90% or smaller results in the 90% confidence interval
for λ.

2For simplicity P(x;λ) is assumed to be one dimensional and to depend only on the parameter λ.
In addition the data sample is assumed to consists of a single event, for multiple measurements
xe the ratio in equation 4.1 should read R =

∏
e P(xe;λ)/

∏
e P(xe;λbest) instead. For a large

number of events it is numerically beneficial to use the logarithm of the likelihood ratio lnR =∑
e lnP(xe;λ)−∑e lnP(xe;λbest).

3To understand why confidence intervals can be constructed using simulated data drawn from the PDF
it might be instructive to first use the simpler classical ordering rule to include points in the interval
[x1, x2] according to their probability given by the PDF P(x;λ). Assuming a given parameter λ a
large number of simulated data sets xi are generated. If their probabilities P(xi;λ) are larger than
P(x0;λ) of the data in 90% of the cases x0 belongs to the 90% confidence interval.
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4.2.3. Likelihood ratio method

A common approximate method for the determination of confidence intervals is the
likelihood ratio method, often also referred to as likelihood scan [75]. This method
evaluates error intervals by searching for the points where the negative logarithm of the
likelihood rises by a certain value.

Using a Gaussian PDF it is easy to derive the confidence levels which correspond to
certain values of −2∆ lnL. The integral∫ +a

−a

1√
2π
e−x

2/2dx = erf

(
a√
2

)
gives the probability of a measurement to fall in the interval [λ− a, λ+ a] given pa-
rameter λ. Therefore the confidence interval for λ with confidence level erf

(
a/
√

2
)

is
[x0 − a, x0 + a], given a measurement x0. The difference between the negative logarithm
of the likelihood for the points x0− a and x0 + a relative to the minimum of the negative
logarithm of the likelihood is given by

−∆ lnL = lnLmax − lnL

=
a2

2
.

The points where −2∆ lnL rises by 1 therefore give a confidence interval with coverage
erf
(
1/
√

2
)

= 68.3%. Table 4.1 gives the coverages corresponding to −2∆ lnL in one
and two dimensions.

It should be noted that, in the case of low statistics, this assignment is generally
not valid. Reference [75] gives a classification of PDFs for which the method yields
confidence intervals with correct coverage. Since, due to the central limit theorem, every
likelihood becomes Gaussian for large statistics the likelihood ratio method can also
be useful for non-Gaussian PDFs in the asymptotic limit. In practice the likelihood
is evaluated over a grid in the parameter(s) of interest. When the likelihood depends
on additional parameters it needs to be minimized with respect to these parameters at
each grid point. Unlike the method of parabolic errors discussed in section 4.2.4 the
likelihood ratio method is able to return asymmetric error intervals4.

4.2.4. Parabolic errors

Another frequently used approximate method for error estimation is the inverse second
derivative of the negative logarithm of the likelihood with respect to the parameters of
interest. The error on parameter λ in the limit of large statistics is given by

σ(λ) =

√(
−d2 lnL

dλ2

)−1

(4.2)

4The minimization package Minuit uses the likelihood ratio technique when using the Minos algorithm
for error estimation.
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−2∆ lnL C.L. 1D C.L. 2D

1 68.3% 39.3%

4 95.4% 86.5%

9 99.7% 98.9%

(a)

C.L. −2∆ lnL 1D −2∆ lnL 2D

68.3% 1.00 2.30

90.0% 2.71 4.61

95.0% 3.84 5.99

(b)

Table 4.1.: (a) Confidence levels corresponding to different values of −2∆ lnL for Gaus-
sian PDFs in one and two dimensions. For one dimension the equation
relating C.L. with −2∆ lnL is C.L. = erf

(√
−2∆ lnL/

√
2
)
. For two dimen-

sions C.L. = 1− exp (−(−2∆ lnL)/2) is found after a short calculation. (b)
−2∆ lnL corresponding to different confidence levels.

which is derived for example in [71] using the central limit theorem. The minimization
package Minuit uses this error estimation technique when performing a Hesse step
after the minimization. One obvious disadvantage of the method is that it will only
yield symmetric error intervals. Furthermore it will generally give incorrect coverage for
low statistics.

4.3. Goodness of fit

Unbinned maximum likelihood fits do not return a measure for the goodness of fit. While
binned χ2 fits return the minimized χ2 which should be distributed according to a χ2

distribution with the given numbers of degrees of freedom a fit result obtained from
an unbinned maximum likelihood fit will not return a criterion of how well the data is
described. One-dimensional projections of the data and the fitted PDF can give a first
idea of the quality of the description of the data. However a good description of the data
in the projections does not necessarily mean that the multidimensional distributions are
well described. In [76] several methods to determine a measure of the goodness of fit are
described.

The most well known technique is the binned χ2 method. For this analysis however
the χ2 method is not useful since the PDF used is five-dimensional (proper time,
reconstructed B0

s mass and the threee transversity angles). For 10 bins per dimension
this results in 105 bins in total and only few (if any) entries in every single bin. The χ2

method is however only applicable for large numbers of entries per bin.
Therefore a point-to-point dissimilarity test as described in section 3.3 of [76] is used to

determine how well the data is described by the fitted PDF. To compare the distribution
of the true PDF from which the nD data events were drawn and the fitted PDF the fitted
PDF is used to generate a large amount nMC � nD of simulated events. A weighting
function ψ(~x, ~x′) = − ln(|~x− ~x′|) is used to calculate the distance of two events to be
able to give a measure for the similarity of the data sample and the sample of events
generated by the fitted PDF. The T statistics giving the correlation between the data
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samples is determined according to

T =
1

nD(nD − 1)

nD∑
i,j>1

ψ(~xDi , ~x
D
j )− 1

nDnMC

nD,nMC∑
i,j

ψ(~xDi , ~x
MC
j ) [76].

To obtain the distribution of the test statistics T for the case that the PDF is described
correctly a permutation test is performed. For the permutation test data and simulated
events are combined. Random events of the combination are selected and taken as
new data sample containing nD events. The remaining events are taken as simulated
events and the T statistic is calculated. This procedure is repeated multiple times and a
distribution of T values is obtained. The p-value is given by the fraction of permutations
for which the T value is larger than the T statistics obtained from the real data sample.
The hypothesis that the fitted PDF is identical to the true PDF can be rejected at
confidence level α if the p value is larger than 1− α.

4.4. Description of the decay B0
s → J/ψφ

The physics parameters of interest, in the following denoted as ~λPhys, are extracted using
an unbinned maximum likelihood fit to the measured Bs mass, the proper time t and the
transversity angles Ω = {cos θ, ϕ, cosψ}. For the tagged analysis the tagging decision q
(q = +1 if the tagging algorithm determines the B0

s candidate to be a B0
s at production,

q = −1 if it is determined to be a B̄0
s or q = 0 if no decision can be reached) and the per

event mistag probability ωtag are used additionally.

In addition to the physics parameters ~λPhys more parameters are required to describe

the data for the decay B0
s→ J/ψ φ accurately. Resolution parameters ~λDet are needed to

model the limited detector resolution and background parameters ~λBkg to describe the
background components. Both will be discussed in detail in the following sections.

The negative logarithm of the likelihood which needs to be minimized with respect to
the parameters can be written as

− lnL = −
N∑
e=1

lnP({m, t,Ω, q, ωtag}e;~λPhys, ~λDet, ~λBkg) (4.3)

The PDF P is composed of the signal component S and the background component B
P = fsigS(m, t,Ω, q, ωtag;~λPhys, ~λDet) + (1− fsig)B(m, t,Ω, q, ωtag;~λDet, ~λBkg),

with the signal fraction fsig.

4.5. Signal description

The signal component S(m, t,Ω, q, ωtag;~λPhys, ~λDet) separates in a proper time and
angular dependent and a mass dependent part

S(m, t,Ω, q, ωtag;~λPhys, ~λDet) = S(m;~λPhys, ~λDet)S(t,Ω, q, ωtag;~λPhys, ~λDet).
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4.5.1. Mass dependence

The reconstructed Bs mass (see Figure 3.3) is used for separation of signal and background
events. The signal component is modeled as a single Gaussian

S(m;~λPhys, ~λDet) =
1√

2πσsig
m

e
−

(m−m
B0

s
)2

2σ
sig
m

2

/Csig
m

with width σsig
m . For fits over a limited mass range the normalization factor Csig

m is
important to ensure the proper normalization

∫ mmax

mmin
S(m)dm = 1. It is given by

Csig
m =

[
1

2
erf(

mmax√
2σsig

m

− mB0
s√

2σsig
m

)− 1

2
erf(

mmin√
2σsig

m

− mB0
s√

2σsig
m

)

]
.

4.5.2. Angular and proper time dependence with tagging information

The time and angular dependent differential decay rates of B0
s and B̄0

s mesons to the
final state J/ψ φ are given by theory (see equations 1.26 and 1.27 in section 1.3.2). The
differential decay rates depend on a priori unknown quantities, the physics parameters

~λPhys =
{
φs,Γs,∆Γs, |A0(0)|2, |A⊥(0)|2, δ‖, δ⊥,∆ms

}
. (4.4)

The extraction of these parameters, in particular of φs and ∆Γs is the main goal of this
analysis. Please note that the decay amplitude |A‖(0)|2 does not appear as a free physics

parameter since it is given by the normalization condition |A0(0)|2+
∣∣A‖(0)

∣∣2+|A⊥(0)|2 =
1 as discussed in section 1.3.2.

With perfect knowledge of the B0
s production flavor it would be possible to simply use

the differential decay rates in equations 1.26 and 1.27 as PDFs after normalizing them
properly. Due to the mistag probability ωtag the proper time and angular dependent
signal PDF needs to be modified. Accounting for ωtag the signal component is given by

S(t,Ω, q, ωtag;~λPhys, ~λDet) =

[
ε(t,Ω)

1 + q(1− 2ωtag)

2

dΓ(B0
s → J/ψφ)

dΩ dt

+ε(t,Ω)
1− q(1− 2ωtag)

2

dΓ(B̄0
s → J/ψφ)

dΩ dt

]
/Csig

Ω,t (4.5)

=

[
ε(t,Ω)

1 + q(1− 2ωtag)

2

6∑
i=1

Ai (t) fi (cos θ, ϕ, cosψ)

+ε(t,Ω)
1− q(1− 2ωtag)

2

6∑
i=1

Āi (t) fi (cos θ, ϕ, cosψ)

]
/Csig

Ω,t.

where Ai (t), Āi (t) and fi (cos θ, ϕ, cosψ) are defined as in section 1.3.2 and ε(t,Ω)
denotes a possible angular and proper time dependent acceptance. Note that for perfect
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tagging with ωtag = 0 the above would result in the differential decay rates for B0
s or B̄0

s

mentioned previously. The normalization factor Csig
Ω,t is given by

Csig
Ω,t =

∫
ε(t,Ω)

(
1

2

dΓ(B0
s → J/ψφ)

dΩ dt
+

1

2

dΓ(B̄0
s → J/ψφ)

dΩ dt

)
dΩ dt

=
1

2

6∑
i=1

∫
ε(t,Ω)Ai (t) fi (cos θ, ϕ, cosψ) dΩ dt

+
1

2

6∑
i=1

∫
ε(t,Ω)Āi (t) fi (cos θ, ϕ, cosψ) dΩ dt (4.6)

which assumes equal number of produced B0
s and B̄0

s . The terms fi (cos θ, ϕ, cosψ) do
not depend on the parameters to be determined in the fit. Therefore the angular part of
the normalization integral,

ξi =

∫
ε(t,Ω)fi (cos θ, ϕ, cosψ) dΩ,

can be calculated beforehand which is computationally beneficial. For no acceptance
correction (ε(t,Ω) = 1) the angular integration can easily be performed using the
fi (cos θ, ϕ, cosψ) terms found in Table 1.4. The resulting terms ξi are ξ1 = ξ2 = ξ3 = 1
and ξ4 = ξ5 = ξ6 = 0.

Per event mistag probability ωtag

In this analysis the mistag probability ωtag is included by using the per event estimate
from the tagging algorithms. In section 3.8 this was shown to result in a significant
improvement in sensitivity for sinφs compared to using global mistag rate. To account
for different ωtag distributions of signal and background events additional terms Psig(ωtag)
and Pbkg(ωtag) need to be introduced which give the probability to find a certain ωtag

for signal and background respectively:

P = fsigS(m, t,Ω, q;~λPhys, ~λDet)Psig(ωtag)

+(1− fsig)B(m, t,Ω;~λBkg, ~λDet)Pbkg(ωtag). (4.7)

Figure 4.2 shows the distribution of the tagging dilution Dtag = 1−2ωtag for data samples
representative of signal and background events. The background sample was obtained by
using events from the B0

s mass sidebands [5200, 5321.67] MeV∪ [5411.67, 5550] MeV. The
signal data sample was constructed by performing a sideband subtraction i. e. removing
sidebands events from the signal region [5321.67, 5411.67] MeV weighted according to the
background fraction. The fit uses the distributions in Figure 4.2 as probabilities Psig(ωtag)
and Pbkg(ωtag) to find a certain estimated mistag ωtag for signal and background events.
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Figure 4.2.: Distribution of the tagging dilution Dtag = 1−2ωtag for sideband subtracted
signal (blue) and sideband (red) data. The histograms are normalized to 1.

4.5.3. Angular and proper time dependence neglecting tagging information

Neglecting the information on the initial B0
s flavor it is still possible to determine a

subset of the parameters in equation 4.4. Choosing q = 0 in equation 4.5 drops all terms
in the PDF proportional to sin(∆mst) or cos(∆mst) resulting in

S(t,Ω;~λPhys, ~λDet) = ε(t,Ω)e−Γst ·[
f1(Ω) |A0(0)|2

(
cosh

∆Γs

2
t− cosφs sinh

∆Γs

2
t

)
+ f2(Ω)

∣∣A‖(0)
∣∣2(cosh

∆Γs

2
t− cosφs sinh

∆Γs

2
t

)
+ f3(Ω) |A⊥(0)|2

(
cosh

∆Γs

2
t+ cosφs sinh

∆Γs

2
t

)
+ f4(Ω)

∣∣A‖(0)
∣∣ |A⊥(0)|

(
− cos(δ⊥ − δ‖) sinφs sinh

∆Γs

2
t

)
+ f5(Ω) |A0(0)|

∣∣A‖(0)
∣∣ cos δ‖

(
cosh

∆Γs

2
t− cosφs sinh

∆Γs

2
t

)
+ f6(Ω) |A0(0)| |A⊥(0)|

(
− cos δ⊥ sinφs sinh

∆Γs

2
t

)]
/Csig

Ω,t. (4.8)

For the untagged analysis the set of observable physics parameters therefore becomes

~λUntagged
Phys =

{
φs,Γs,∆Γs, |A0(0)|2, |A⊥(0)|2, δ‖, δ⊥

}
.

With the additional assumption of no time dependent CP violation, equivalent to
φs = 0 which is close to the value predicted by the Standard Model, the analysis further
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simplifies. In this case the signal PDF reduces to

S(t,Ω;~λPhys, ~λDet) = ε(t,Ω)e−Γst ·[
f1(Ω) |A0(0)|2 e−∆Γs

2
t + f2(Ω)

∣∣A‖(0)
∣∣2 e−∆Γs

2
t + f3(Ω) |A⊥(0)|2 e+ ∆Γs

2
t

+ f5(Ω) |A0(0)|
∣∣A‖(0)

∣∣ cos δ‖e
−∆Γs

2
t

]
/Csig

Ω,t (4.9)

= ε(t,Ω)e−Γst ·[
e−ΓLt

(
f1(Ω) |A0(0)|2 + f2(Ω)

∣∣A‖(0)
∣∣2 + f5(Ω) |A0(0)|

∣∣A‖(0)
∣∣ cos δ‖

)
+ e−ΓHt

(
f3(Ω) |A⊥(0)|2

)]
/Csig

Ω,t.

This expression is no longer sensitive to the strong phase δ⊥. Only the dependence on
the strong phase δ‖ or, more accurately, on cos δ‖ remains. The above expression also
illustrates that in the case of no CP-violation the CP even component (proportional

to |A0(0)|2 and
∣∣A‖(0)

∣∣2) is equivalent to the light mass eigenstate whereas the time

development of the CP odd component (proportional to |A⊥(0)|2) is given by the heavy
mass eigenstate. The remaining physics parameters are

~λφs=0
Phys =

{
Γs,∆Γs, |A0(0)|2, |A⊥(0)|2, δ‖

}
.

4.5.4. Symmetry of the signal description

While the differential decay rates for B0
s and B̄0

s exhibit the two-fold symmetry given in
equation 1.28 the untagged PDF in equation 4.8 is symmetric under the exchanges

φs → −φs
∆Γs → −∆Γs

and

φs → −φs
δ‖ → −δ‖
δ⊥ → π − δ⊥.

resulting in a four-fold symmetry. It is therefore expected to find four minima for −2 lnL
in the φs and ∆Γs parameter space when the B0

s production flavor is neglected.

4.5.5. S-wave contribution

To account for a possible S-wave contribution to the K+K− final state which was
discussed in section 1.3.3 it is necessary to modify equations 4.5, 4.8 and 4.9. In
equation 4.5 the sum over six terms needs to be expanded to include the four additional
S-wave terms from section 1.3.3

S(t,Ω, q, ωtag;~λPhys, ~λDet) =

[
ε(t,Ω)

1 + q(1− 2ωtag)

2

10∑
i=1

Ai (t) fi (cos θ, ϕ, cosψ)

+ε(t,Ω)
1− q(1− 2ωtag)

2

10∑
i=1

Āi (t) fi (cos θ, ϕ, cosψ)

]
/Csig

Ω,t.
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The normalization condition which needs to be respected by the amplitudes in this case
is |A0(0)|2 + |A‖(0)|2 + |A⊥(0)|2 + |As(0)|2 = 1. The physics parameters are

~λS-wave
Phys =

{
φs,Γs,∆Γs, |A0(0)|2, |A⊥(0)|2, |As(0)|2, δ‖, δ⊥, δs,∆ms

}
.

To determine the correct normalization Csig
Ω,t the additional S-wave terms need to be

included as well.
The PDF for the untagged analysis can be derived from the above equation by setting

q = 0. If the analysis is performed under the assumption of no time dependent CP
violation, φs needs to be set to zero as well.

4.5.6. Proper time resolution

The proper time resolution of the detector needs to be modeled and considered in the
PDF to correctly describe the data. For this analysis a triple Gaussian resolution model
was chosen which describes the prompt background events well (see Figure 3.7a in
section 3.6.1).

G(t;~λDet) = f sig
t,1

1√
2πσsig

t,1

e
− t2

2σ
sig
t,1

2

+ (1− f sig
t,1 )f sig

t,2

1√
2πσsig

t,2

e
− t2

2σ
sig
t,2

2

+ (1− f sig
t,1 )(1− f sig

t,2 )
1√

2πσsig
t,3

e
− t2

2σ
sig
t,3

2

. (4.10)

The resolution parameters used in this analysis are given in Table 3.6. They were
determined using prompt background events as discussed in section 3.6.1.

To correctly account for the proper time resolution all time dependent terms in the
signal PDF need to be convoluted with this model. The convolution integrals that need
to be calculated for this analysis are∫

G(t− t′, ~λDet)Θ(t′)e−Γt′dt′,∫
G(t− t′, ~λDet)Θ(t′) sin(∆mst

′)e−Γt′dt′, and∫
G(t− t′, ~λDet)Θ(t′) cos(∆mst

′)e−Γt′dt′.

All three integrations are performed analytically.

Per event proper time resolution

This analysis does not use the per event estimate of the proper time uncertainty since
it was shown in section 3.6.1 to result in only a small increase in sensitivity on sinφs
compared to a global resolution model.
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The algorithm developed in the scope of this thesis is however able to use the per event
resolution σt which might be useful for future analyses. In this case scaling parameters
are introduced to correct for possible underestimation of the proper time uncertainty
provided by the global kinematic fit as discussed in section 3.6.1. Analogous to the
case of the per event mistag probability additional terms must be included in the PDF
describing the probability to find certain values of σt for signal and background events

P = fsigS(m, t, σt,Ω, q, ωtag;~λPhys, ~λDet)Psig(σt)

+(1− fsig)B(m, t, σt,Ω;~λBkg, ~λDet)Pbkg(σt).

4.5.7. Angular and proper time acceptances

In equation 4.5 an additional factor ε(t,Ω) was introduced to account for possible time
and angular dependent acceptance effects. For this analysis it is assumed that the
acceptance separates in the proper time and the transversity angles ε(t,Ω) = ε(t)ε(Ω).
This assumption seems sensible since the two main reasons for acceptance effects, the
lifetime bias due to IP cuts in the lifetime biased trigger and the angular acceptance due
to detector geometry are unrelated.

Angular acceptance

As discussed in section 3.7 the detector geometry and selection criteria distort the
angular distributions of the particles in the final state for the signal decay B0

s→ J/ψ φ.
This effect has been studied using fully simulated signal events. Figure 3.10 shows the
acceptance depending on the three transversity angles Ω = {cos θ, ϕ, cosψ}.

There are multiple ways the angular acceptances can be treated when using the fitting
code developed for this thesis:

• Three-dimensional histogram: The number of reconstructed and selected
simulated signal events is filled into a three-dimensional histogram and divided by
the number of expected events in the specific bin.

ε(Ω) = H(Ω) =
NSelected(Ω)

NTheory(Ω)
.

The angular integrals ξi are performed analytically before the fit.

ξi =
∑

All bins j

∫
H(Ω)fi(Ω)dΩj

The advantage of this method is that it is relatively easy to implement. However
binning effects due to the limited Monte Carlo statistics might occur. The limited
statistics of the simulated signal events also limits the number of bins per dimension
and thus the ability to resolve possible structures in the acceptance. Figure 4.3
shows the projection of the acceptance histogram.
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• Parameterization using Legendre Polynomials: To reduce possible binning
effects the acceptance effect can be described by an analytic parameterization.
Legendre polynomials are chosen as basis functions for the description of the
efficiency resulting in a sum of combinations of Legendre polynomials,

ε(Ω) =
∑
jkl

cjklPj(cos θ)Pk(ϕ)Pl(cosψ), (4.11)

with the indices j, k and l denoting the degree of the Legendre polynomials.
The coefficients cjkl are determined in a binned maximum likelihood fit to a
three-dimensional efficiency histogram. Only a limited number of combinations of
Legendre polynomials is used5. The integrals ξi are determined analytically

ξi =
∑
jkl

cjkl

∫
fi(Ω)Pj(cos θ)Pk(ϕ)Pl(cosψ)dΩ

Figure 4.3 shows the acceptance parameterization using Legendre polynomials as
solid blue line. The acceptance effect is well described by the parameterization.

• Normalization weights: The angular integrals ξi can also be determined in an
unbinned fashion. The concept of this method is to go to the limit of infinitesimally
small bin sizes in the angular integration

ξi =

∫
fi(Ω)ε(Ω)dΩ

=
∑
bin j

fi(Ωj)ε(Ωj)dΩj.

Using

ε(Ωj) =
∑

events e in bin j

1

P(Ωe)

as efficiency and performing the limit results in

ξi =
∑

all events e

fi(Ωe)∫
P(t,Ωe)dt

.

5In this analysis the maximum order of Legendre polynomials describing the acceptance is jmax = 4
for cos θ, kmax = 8 for ϕ and lmax = 4 for cosψ. These orders were chosen to be able to accurately
describe the shape of the acceptance effect in the angular projections. The sum j + k + l is required
to be smaller or equal to 12. This limit on the possible combinations of higher order polynomials
makes the fit of the coefficients feasible. Within these requirements all combinations of even orders
are allowed. Polynomials with odd order are only allowed in combinations of up to linear order.
This last requirement stems from the fact that the acceptances in the channel B0

s→ J/ψ φ are largely
even.
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Figure 4.3.: Projections of the three-dimensional angular efficiency on the three transver-
sity angles (a) cos θ, (b) ϕ and (c) cosψ. The figures show the efficiency
histogram determined from Monte Carlo simulated signal events. In addi-
tion the analytic parameterization of the acceptance effect using Legendre
polynomials is shown as solid blue line.

This method has the advantage of using the available simulated signal events
optimally, however for both the fit and also plotting procedure the acceptance still
needs to be modeled via a histogram or an analytic parameterization6.

The integrals ξi gained from the three different methods are given in Table 4.2. Excellent
agreement between the three different methods is observed. For this analysis it was
decided to use the parameterization via Legendre polynomials as nominal method.

Proper time acceptance

As discussed in section 3.6.2 both the lifetime unbiased and the lifetime biased data
samples exhibit proper time dependent efficiencies. They are accounted for in the fit
using one-dimensional histograms ε(t)Biased = H(t)Biased and ε(t)Unbiased = H(t)Unbiased

given in Figure 4.4. Both histograms consist of 200 bins over the timerange [0.3, 14] ps
and are filled using the analytic parameterizations given in section 3.6.2. To calculate
the normalization constant Csig

Ω,t of the signal component the necessary proper time
integration is performed analytically for every bin.

6It has been suggested that the efficiency term in front of the signal PDF can be neglected since it
does not depend on the parameters and therefore just constitutes an additional constant term in the
sum of logarithms. However this is only possible if there are no background events present. This is
not the case for the analysis of B0

s→ J/ψ φ unless the background events are subtracted via some
statistical method (e. g. the sFit method [67]).
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Histogram Parameterization Unbinned

ξ1 0.977 0.977 0.976

ξ2 1.030 1.030 1.031

ξ3 1.037 1.037 1.038

ξ4 0.003 0.005 0.003

ξ5 -0.001 0.000 -0.001

ξ6 0.001 0.002 0.001

ξ7 0.997 0.997 0.997

ξ8 -0.003 -0.005 -0.004

ξ9 -0.002 0.000 -0.002

ξ10 0.001 0.002 0.001

Table 4.2.: Integrated terms ξi =
∫
ε(Ω)fi(Ω)dΩ for different methods to describe the

angular acceptance. The terms ξ7, .., ξ10 are only needed for an analysis
including an S-wave component. Excellent agreement between the three
different methods to describe the angular acceptance effect is observed.
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Figure 4.4.: The proper time acceptance histograms used for (a) the lifetime unbiased
and (b) lifetime biased data sample. Each histogram consists of 200 bins in
the proper time. Note that the absolute scale is arbitrary since it will be
absorbed in the normalization constant Csig

Ω,t.
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4.6. Background description

Background events mimicking the signal decay in this analysis can be classified as two
different types

• Prompt background either consists of the combination of four random tracks
from the primary vertex or originates from true prompt J/ψ mesons from the
primary vertex combined with two additional random tracks.

• Longlived background is either caused by misreconstructed non-signalB → J/ψX
decays or by other misidentified non-J/ψ longlived decays (e. g. B→ hadrons).

The background in this analysis is therefore modeled as two components, a prompt
component BPr and a longlived component BLL according to

B(m, t,Ω;~λBkg, ~λDet) = fPrBPr(m, t,Ω;~λBkg, ~λDet) + (1− fPr)BLL(m, t,Ω;~λBkg, ~λDet),

where the parameter fPr gives the fraction of prompt background events. The proper
time cut t > 0.3 ps rejects most of the prompt background, for the nominal analysis
fPr is therefore set to fPr = 0. The PDFs describing the background components
are modeled empirically using events in the B0

s mass sidebands defined as the regions
[5200, 5321.67] MeV ∪ [5411.67, 5550] MeV.

4.6.1. Longlived background

The longlived background component BLL factorizes in a mass, a time and an angular
dependent part

BLL(m, t,Ω;~λBkg, ~λDet) = BLL(m;~λBkg)BLL(t;~λBkg, ~λDet)BLL(Ω).

Mass dependence

The mass dependence of the background components is modeled as a single exponential

BLL(m;~λBkg) = e−α
LL
m m/CLL

m

with normalization

CLL
m =

1

αLL
m

(
e−α

LL
m mmin − e−αLL

m mmax

)
Proper time dependence

Two exponentials are used for the modeling of the proper time dependence of the
longlived background

BLL(t;~λBkg, ~λDet) = ε(t)

[
fLL
τ1
τLL

1 e
− t

τLL
1 + (1− fLL

τ1
)τLL

2 e
− t

τLL
2

]
. (4.12)
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Figure 4.5.: The proper time distribution of the longlived background for both the
(a) lifetime unbiased and (b) lifetime biased data sample. Overlayed is
the fitted distribution. Only the B0

s mass sidebands [5200, 5321.67] MeV ∪
[5411.67, 5550] MeV are shown.

The same time dependent efficiencies ε(t) applied to the signal are also applied to the
longlived background component. Furthermore the time dependent part is convoluted
with the same triple Gaussian resolution model as the signal component. Figure 4.5
shows the proper time distribution for events in the B0

s mass sideband after the full
selection for both the lifetime biased and lifetime unbiased data sample. Overlayed is
the fitted proper time distribution for the background component. For both lifetime
unbiased and biased data sample the same parameters τLL

1 and τLL
2 are used. Good

agreement with data is observed.

Angular dependence

The angular dependence of the background component is modeled using a three-
dimensional analytic parameterization. Correlations between the transversity angles
cos θ, ϕ and cosψ can therefore be described. Legendre polynomials are used as basis
functions resulting in the parameterization

BLL(Ω) =
∑
ijk

αijkPi(cos θ)Pj(ϕ)Pk(cosψ),

which is similar to the analytic description of the angular acceptance effect given in
equation 4.11. The coefficients αijk are determined from a fit to the B0

s mass sidebands,
including also prompt events to obtain a sufficiently large number of background events.
The description uses all combinations of Legendre polynomials up to order i = 4 for
Pi(cos θ), j = 4 for Pj(ϕ) and k = 2 for Pi(cosψ). An overlay of the fitted background
distribution over the sideband data projected on the transversity angles is given in



100 4. Technique to determine φs in the decay B0
s → J/ψ φ

θcos 
­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

E
v

e
n

ts
 /

 0
.0

5

0

2

4

6

8

10

12
LHCb preliminary

­1=7TeV, L=36pbs

 [rad]ϕ

­3 ­2 ­1 0 1 2 3

E
v

e
n

ts
 /

 0
.1

6
 r

a
d

0

2

4

6

8

10

12

14
LHCb preliminary

­1=7TeV, L=36pbs

ψcos 
­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

E
v

e
n

ts
 /

 0
.0

5

0

2

4

6

8

10

12

14
LHCb preliminary

­1=7TeV, L=36pbs

(a) Lifetime unbiased

θcos 
­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

E
v

e
n

ts
 /

 0
.0

5

0

2

4

6

8

10 LHCb preliminary
­1=7TeV, L=36pbs

 [rad]ϕ

­3 ­2 ­1 0 1 2 3

E
v

e
n

ts
 /

 0
.1

6
 r

a
d

0

2

4

6

8

10

LHCb preliminary
­1=7TeV, L=36pbs

ψcos 
­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

E
v

e
n

ts
 /

 0
.0

5

0

2

4

6

8

10

LHCb preliminary
­1=7TeV, L=36pbs

(b) Lifetime biased

Figure 4.6.: The angular distributions of the longlived background for both the (a)
lifetime unbiased and (b) lifetime biased data sample. Overlayed are the
fitted distributions. Only the B0

s mass sidebands [5200, 5321.67] MeV ∪
[5411.67, 5550] MeV are shown. The full selection is applied.

Figure 4.6. The parameterization and the data from the B0
s mass sidebands agree within

the very limited statistics.

4.6.2. Prompt background

For the nominal fit it was decided to require t > 0.3 ps to reject the prompt background
events. However section 6.1.1 gives the results of a cross-check study where the fit was
performed over the full lifetime range. In this case the prompt background is described
according to the prescription given below. As the longlived background the prompt
background separates in a mass, a proper time and an angular dependent part

BPr(m, t,Ω;~λBkg, ~λDet) = BPr(m;~λBkg)BPr(t;~λBkg, ~λDet)BPr(Ω).

Proper time dependence

The proper time distribution of the prompt background is essential for the determination
of the proper time resolution model as was discussed in section 3.6.1. The proper
time distribution of the prompt background is described as a triple Gaussian (see
equation 4.5.6) using the same parameters as the signal resolution model.



4.7. Details of the fitting method 101

Mass dependence

Analogous to the longlived background the mass dependence of the prompt background
is modeled as a single exponential

BPr(m;~λBkg) = e−α
Pr
m m/CPr

m

Angular dependence

The angular dependence uses the same parameterization with Legendre polynomials as
the longlived background

BPr(Ω) =
∑
ijk

αijkPi(cos θ)Pj(ϕ)Pk(cosψ).

The configuration and determination of the coefficients αijk is identical to the description
of the longlived background.

4.7. Details of the fitting method

4.7.1. Implementation details

The fitting algorithm for the extraction of φs which is presented in this thesis is imple-
mented using the C++ programming language and the Minuit minimization package [70].
In the minimization procedure precision is preferred over speed7. After the minimization
the errors are estimated using the Gaussian approximation given in equation 4.28. It
is also possible to use the likelihood ratio method discussed in section 4.2.3 to obtain
asymmetric error intervals9, but this comes at a prize for the performance.

When evaluating the likelihood the sum of logarithms of the probabilities will soon
be very large compared to the logarithm of the probability for a single event. This is
problematic since adding numbers of very different sizes inevitably leads to a loss of
numerical precision. To solve this problem the mean logarithm for the probability of
an event is calculated before minimization at the parameter start values according to
−2 lnPmean = −2

∑N
e=1 lnP/N. For every B0

s candidate this number is subtracted from
the logarithm of its probability. Since the resulting terms in the sum fluctuate around 0
the total sum will be of the same size as the current term. This noticeably improves the
numerical accuracy of the fit.

4.7.2. Constrained parameters

Parameters which have been measured precisely in previous experiments or in different
decay channels can be constrained to the measured value with a Gaussian error. In this

7The fitting algorithm uses the Migrad minimization technique with strategy 2 which allows Minuit
to use more function calls to improve the reliability of the minimization.

8The Hesse algorithm is used for the error estimation.
9Minos is used in this case.
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case the negative logarithm of the likelihood is modified to

−2 lnL = −2
N∑
e=1

lnP({t,Ω,m, q, ωtag}e;~λ)

+
all constraints∑

i

(λi − λPDG
i )2

σPDG
i

2

where λi denotes the parameters which have been measured before to be λPDG
i . The

error of this measurement is given by σPDG
i .

In this analysis a Gaussian constraint is applied on the mixing frequency ∆ms which
was determined previously by the CDF collaboration to be 17.77 ± 0.12 [28]. The
measurement performed by the LHCb collaboration on data taken in 2010 results in
∆ms = (17.63± 0.11stat. ± 0.03syst.) ps−1 [29] which is well compatible with this value.
Additionally the flavor tagging parameters p0 and p1, see section 3.8.1, are constrained
to the values that were found from the calibration procedure, p0 = 0.338± 0.012 and
p1 = 1.01± 0.12. This correctly propagates the systematic uncertainty of the tagging
calibration to the result.

4.7.3. Simultaneous fit

For a maximal sensitivity on the physics parameters all available signal candidates need
to be used in the analysis. For the B0

s production flavor dependent analysis to extract
φs it is therefore necessary to perform a simultaneous fit to both the lifetime biased and
the lifetime unbiased data set. The complete likelihood in this case is given by the sum

−2 lnL = −2 lnLUnbiased − 2 lnLBiased

= −2
∑

Unbiased e

lnP({m, t,Ω, q, ωtag}e;~λPhys, ~λDet, ~λ
Unbiased
Bkg )

−2
∑

Biased e

lnP({m, t,Ω, q, ωtag}e;~λPhys, ~λDet, ~λ
Biased
Bkg )

The physics parameters ~λPhys and resolution parameters ~λDet used in the fit are identical
for both data samples. Besides the different proper time acceptances the data samples
also show different levels of background pollution. For this reason two different signal
fractions, fBiased

sig and fUnbiased
sig are used. In addition the parameters that describe the

distribution of the longlived background events in the reconstructed B0
s mass, αLL

m,Biased

and αLL
m,Unbiased, are allowed to vary independently. All other parameters are identical.



5. Validation of the fitting algorithm and performance
estimates for φs

Before φs can be determined on data the fitting method has to be validated. The fitter
validation ensures that both the parameter values as well as the parameter errors are
determined correctly.

Large amounts of simulated events need to be generated for the fit validation. A fast
generation method is therefore implemented using the rejection sampling method [77].
Both the principle of the rejection sampling method and its implementation used to
generate simulated events are discussed in the first part of this chapter. Using the
simulated events provided by the fast generation the fitting method is validated in the
second part of this chapter. In addition to the validation of the fitting method the
expected sensitivity to the extracted parameters is determined. The last part of the
chapter discusses the validation of the fitting method using fully simulated signal events.
Using fully simulated signal events cross-checks the implementation of the signal decay1.
In addition it ensures that the fitting method takes reconstruction effects correctly into
account.

5.1. Fast event simulation

5.1.1. The rejection sampling method

To thoroughly test the fitting method more simulated events are needed than can be
fully simulated in a reasonable timeframe. Of the order of 108 simulated events are
used for a typical fit validation study. To generate this amount of simulated events the
rejection sampling method [77] is used2.

The principle of the rejection sampling method is illustrated in Figure 5.1. The goal
of the rejection sampling method is to generate events xi according to a given PDF P(x)
(given as blue solid line in Figure 5.1) which can have a complicated dependence on
x. The generation procedure using the rejection sampling method proceeds as follows:
A random number r1 is drawn from the uniform distribution ]0, 1]. Scaling r1 to the
available range of x results in a value for xi. A second random number r2 is drawn from
the uniform distribution ]0, 1]. The event xi is accepted if

r2 · Cmax < P(xi), (5.1)

1Strictly speaking it checks that the description of the signal decay in the EvtGen event generator
and the unbinned maximum likelihood fit is identical. This is an important cross-check since the
fast event generation and the unbinned maximum likelihood fit use largely the same code for the
description of the signal decay.

2Rejection sampling is also known as the accept-reject method
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Figure 5.1.: Illustration of the rejection sampling method. The goal of the rejection
sampling method is to generate events xi according to the PDF P(x) which
is denoted by the blue curve. The functionR(x) given in red is an enveloping
function for P(x) with R(x) > P(x) for all x. The black dots denote 10000
events generated according to the PDF P(x) using the rejection sampling
method.

otherwise it is rejected. The constant Cmax in equation 5.1 needs to fulfill the condition
Cmax > P(x) for all values of x.

It is apparent that this method of event generation is not very efficient if the PDF
P(x) is quickly falling in x. An example would be the PDF used in Figure 5.1 which has
an exponentially falling behavior ∝ exp(−x/τx). The algorithm would produce events
uniformly in x but events with large xi are only rarely accepted. In this case using
an exponential enveloping function R(x) with the property R(x) > P(x) for all x can
be much more efficient. In Figure 5.1 an exponential enveloping function fulfilling this
requirement is given as solid red line. Assuming events xi can be generated according to
the distribution R(x)3 and let r2 be a random number from the interval ]0, 1] events xi
are accepted if

r2 · R(xi) < P(xi).

The number of operations needed for the generation of a certain number of events
scales with the integral of the enveloping function. Using an exponential rather than a
constant Cmax is therefore computationally beneficial, especially for large ranges x.

3To generate events according to an exponential distribution the simple formula xi = −τx · ln(r1) can
be used where r1 is a random number drawn from the uniform distribution in ]0, 1].



5.1. Fast event simulation 105

5.1.2. Fast simulation of signal events

The rejection sampling method described in the last section is used for the generation of
simulated signal events. The PDF P (t,Ω) is given by the differential decay rates 1.26
and 1.27 in section 1.3.2. Events are generated according to flat distributions in the
transversity angles and an exponential distribution in the proper time. The enveloping
function R (t,Ω) according to which the events are generated is therefore given by

R (t,Ω) = ce−αt

with α < ΓL and a sufficiently large constant c such that R (t,Ω) > P (t,Ω) for all
possible values of the proper time and the transversity angles. Candidates drawn from
the distribution R (t,Ω) are accepted if

r2R (t,Ω) < P (t,Ω) = ε(t,Ω)
dΓ(B0

s/B̄
0
s→ J/ψ φ)

dtdΩ
.

where r2 denotes a random number drawn from the uniform distribution in ]0, 1] and
ε(t,Ω) describes a possible proper time and angular dependent acceptance effect. Using
an exponential enveloping function instead of a flat distribution in the proper time is a
factor ∼ 20 more efficient.

The fast generation tries to reproduce the data taken with LHCb as accurately as
possible. Resolution effects are included in the generation by smearing the proper time
according to the resolution model after the signal candidate is accepted. The triple
Gaussian resolution model extracted from the prompt background events in 2010 data
is used (Table 3.6 gives the resolution parameters). Depending on whether lifetime
biased or unbiased events are generated the appropriate proper time dependent efficiency
is used. The angular acceptance is determined from fully simulated signal events as
described in section 3.7. Tagging decision and mistag probability ωtag are generated per
event. Both tagging quantities are generated according to the tagging efficiency and
mistag distribution found from sideband subtracted 2010 data (Figure 4.2). The mass
dependence of the signal decay is generated according to a single Gaussian, the mass
resolution is taken from the fit to the 2010 data.

5.1.3. Fast simulation of background events

Generating events according to the background description in section 4.6 is simpler than to
generate signal events because it is assumed that the proper time and angular dependent
components of the background PDF factorize. The proper time distribution of the
longlived background is generated according to the double exponential in equation 4.12.
Background parameters, i. e. the background fractions and lifetimes are taken from
a fit to the 2010 data. Proper time resolution for background events is implemented
using the same triple Gaussian resolution model as for the signal component. The
transversity angles Ω are generated according to the analytic parameterization described
in section 4.6.1. Angular and proper time projections of the background PDFs used for
the generation of background events are shown in Figures 4.5 and 4.6. The same proper
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time dependent acceptance as for signal events is applied. Tagging of background events
is simulated according to the tagging efficiency of sideband events in 2010 data. The
tagging decision of the background events is chosen randomly (50 : 50). The mistag
probability ωtag for background events is drawn from the mistag distribution extracted
from the sidebands of the 2010 data (Figure 4.2).

5.2. Fit validation and sensitivity studies

The fast generation of signal and background events described in section 5.1.2 and 5.1.3
respectively allows the simulation of large event samples. Multiple data samples of
simulated events are generated and subsequently fit4. The parameters determined in
the fit of these simulated data samples should be compatible with the parameter values
used in the event generation. For a quantitative test that the fit determines both the
parameter values and errors correctly pull distributions are used. The pull for parameter
p is defined as

pull =
pfit − ptrue

σfit(p)
.

Combining the pull values for parameter p resulting from the fit of all simulated data
samples gives the pull distribution for parameter p. The pull distribution should be
described by a Gaussian centered around 05 with a width of 16. To extract the mean
and the width of pull distributions unbinned maximum likelihood fits are performed
using single Gaussians.

The simulated events can also be used to determine the sensitivity to the extracted
parameters, i. e. the expected statistical uncertainty for a certain data sample size. The
sensitivity can be determined from the widths of the distributions of the fitted parameter
values. Unbinned maximum likelihood fits of single Gaussians are used to extract the
sensitivity of the fit to the parameters.

5.2.1. Configuration of the fit validation studies

The fit validation studies performed for this thesis consist of 1000 samples of simulated
events each corresponding to an integrated luminosity of 2 fb−1 which is the integrated
luminosity for one nominal year of data-taking at LHCb. The physics parameters used
in the generation of the simulated signal events are given in Table 5.1.

There are two approaches to the analysis of the decay B0
s→ J/ψ φ. Neglecting infor-

mation on the B0
s production flavor an analysis to extract ∆Γs under the assumption of

no time dependent CP violation (φs = 0) can be performed. The flavor blind analysis
using the 2010 data is described in chapter 6. It is performed using only the lifetime
unbiased events. The validation of the flavor blind fit is discussed in section 5.2.2.

4This is often referred to as a toy study.
5The parameter estimation is said to be unbiased.
6The estimation of the parameter uncertainty is correct.
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Parameter Generator value

φs[ rad]

0 (no CPV) or

−0.0363 (SM) or

−0.70 (NP)

Γs 0.6793 ps−1

∆Γs 0.0600 ps−1

|A0(0)|2 0.60∣∣A‖(0)
∣∣2 0.24

|A⊥(0)|2 0.16

δ‖ 2.50 rad

δ⊥ -0.17 rad

∆ms 17.8 ps−1

Table 5.1.: Physics parameters used for the fast simulation of signal events.

To extract both ∆Γs and φs a B0
s production flavor dependent analysis is necessary.

The B0
s production flavor dependent analysis on data is described in chapter 7. It uses

the maximum available information from the 2010 data by performing a simultaneous
fit to both the lifetime biased and unbiased data sample. For the validation of the B0

s

production flavor dependent fit two different scenarios are studied. The first scenario is
the Standard Model scenario which uses φs = −0.0363 rad in the generation of simulated
signal events. The second scenario assumes a large value of φs caused by possible physics
processes beyond the Standard Model. This is the New Physics scenario which uses
φs = −0.70 rad in the event generation. In section 5.2.3 the tagged fit is validated for
both scenarios.

5.2.2. Validation of the flavor blind fit

Table 5.2 summarizes the result of the flavor blind analysis under the assumption φs = 07.
Figure 5.3 gives the distribution of the fitted physics parameters. The pull distributions
are given in Figure 5.2. The pull distributions are well described by a single Gaussian.
The mean values of the fitted single Gaussians are within 3σ of 0, their respective widths
are within 3σ of 1. This confirms that the flavor blind fit is able to determine the
parameter values and errors correctly. For simulated data corresponding to 2 fb−1 a
sensitivity of 0.021 ps−1 to ∆Γs is found. The mean correlations between the physics
parameters are given in Table 5.3. As expected from the PDF given by equation 4.9
moderate to large correlations are seen between ∆Γs, Γs and the transversity amplitudes.

7For the influence of values φs 6= 0 on the untagged fit result see section 6.3.
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Sensitivity Pull mean Pull width

Γs 0.008± 0.000 0.06± 0.03 1.02± 0.02

∆Γs 0.021± 0.000 −0.04± 0.03 1.03± 0.02

|A⊥|2 0.008± 0.000 0.05± 0.03 1.02± 0.02

|A0|2 0.005± 0.000 −0.07± 0.03 1.02± 0.02

cos δ‖ 0.027± 0.001 −0.03± 0.03 1.05± 0.02

Table 5.2.: Results of the flavor blind toy study under the assumption of no CP-violation
(φs = 0 rad). 1000 toy data sets are generated and fit. Each data set
corresponds to an integrated luminosity of 2 fb−1.

Γs ∆Γs |A⊥|2 |A0|2 cos δ‖
Γs 1 −0.82 0.61 −0.56 −0.05

∆Γs 1 −0.69 0.66 0.04

|A⊥|2 1 −0.58 −0.34

|A0|2 1 -

cos δ‖ 1

Table 5.3.: Mean correlations of the physics parameters for the flavor blind configuration.
Absolute correlations larger than 0.5 are given in bold, correlations smaller
than 0.005 are omitted. Since the correlations depend on the data sample
the RMS of the correlations is given in Table A.1.
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Figure 5.2.: Pull distributions for the flavor blind toy study with no CP violation. 1000 toy
data sets are generated and fit. Each data set corresponds to an integrated
luminosity of 2 fb−1. The remaining distributions are given in Figure A.1.



5.2. Fit validation and sensitivity studies 109

sΓ∆

­0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
x
p

e
ri

m
e
n

ts

0

10

20

30

40

50

60

70

80

90

 value distributionsΓ∆

 0.00066±Mean = 0.05889 

 0.00047±Width = 0.02085 

 value distributionsΓ∆

(a) ∆Γs fitted parameter values

sΓ

0.65 0.66 0.67 0.68 0.69 0.7 0.71

E
x
p

e
ri

m
e
n

ts

0

20

40

60

80

100

 value distributionsΓ

 0.00024±Mean = 0.67990 

 0.00017±Width = 0.00751 

 value distributionsΓ

(b) Γs fitted parameter values

Figure 5.3.: Distributions of the fitted parameter values for the flavor blind toy study
with no CP violation. 1000 toy data sets are generated and fit. Each
data set corresponds to an integrated luminosity of 2 fb−1. The remaining
distributions are given in Figure A.2.

5.2.3. Validation of the B0
s production flavor dependent fit

Standard Model scenario

Table 5.4 gives the results of the study using the Standard Model configuration with
φs = −0.0363 rad. Figure 5.5 shows the distributions of the fitted physics parameters.
They are well described by a single Gaussian. The widths of the Gaussians give the
sensitivity values quoted in Table 5.4. The expected sensitivity on φs and ∆Γs for one
nominal year of data is 0.097 rad and 0.017 ps−1 respectively. The pull distributions
are shown in Figure 5.4. They are well described by single Gaussians. The means of
the pull distributions are within 3σ of 0, their respective widths are within 3σ of 1.
This confirms that the unbinned maximum likelihood fit is unbiased and estimates the
parameter uncertainties correctly.

Table 5.5 gives the mean correlations of the extracted physics parameters. As is
expected, large correlations between Γs and ∆Γs as well as the transversity amplitudes
are observed. These correlations are an inherent property of the probability density
functions (equations 1.26 and 1.27) for the description of the signal decay. In the
Standard-Model like configuration φs exhibits only very small correlations with the other
physics parameter.

New Physics scenario

The distribution of the fitted parameter values for the New Physics scenario is given in
Figure 5.7. The pull distributions are given in Figure 5.6. Both fitted parameter values
and pull distributions can be described by single Gaussians. The pull means are within
3σ of 0, their widths within 3σ of 1 which validates the fit for the case of a large CP
violating phase φs.
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Sensitivity Pull mean Pull width

Γs 0.006± 0.000 0.05± 0.03 1.02± 0.02

∆Γs 0.018± 0.000 −0.02± 0.03 1.02± 0.02

φs 0.095± 0.002 0.04± 0.03 1.03± 0.02

|A⊥|2 0.007± 0.000 0.05± 0.03 1.00± 0.02

|A0|2 0.005± 0.000 −0.04± 0.03 0.99± 0.02

δ‖ 0.036± 0.001 0.03± 0.03 0.99± 0.02

δ⊥ 0.310± 0.007 −0.04± 0.03 1.00± 0.02

∆ms 0.103± 0.002 −0.01± 0.03 1.04± 0.02

Table 5.4.: Results of the toy study for the Standard Model scenario with φs =
−0.0363 rad. 1000 toy data sets are generated and fit. Each data set corre-
sponds to an integrated luminosity of 2 fb−1.

The largest difference between tables 5.6 and 5.4 is the sensitivity on ∆ms which
increases from 0.107 ps−1 to 0.057 ps−1. This change can be understood by the fact that
the main sensitivity on ∆ms is given by terms proportional to sinφs sin(∆mst). If the
amplitude of this oscillation given by sinφs is small it is naturally difficult to resolve the
oscillation frequency. The sensitivity on φs is slightly reduced to 0.11 rad. The reason for
this becomes apparent when comparing the correlations in Table 5.7 with the correlation
coefficients in the Standard Model study in Table 5.5. The larger correlations allow
the fit to absorb changes of the likelihood originating from different values for φs by
adjusting other parameters thus leading to a larger uncertainty for φs.
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Γs ∆Γs φs |A⊥|2 |A0|2 δ‖ δ⊥ ∆ms

Γs 1 −0.82 −0.04 0.61 −0.56 0.05 - -

∆Γs 1 0.03 −0.70 0.67 −0.04 - -

φs 1 −0.03 0.03 - 0.01 -

|A⊥|2 1 −0.59 0.33 0.02 -

|A0|2 1 - - -

δ‖ 1 0.06 -

δ⊥ 1 0.59

∆ms 1

Table 5.5.: Mean correlations of the physics parameters for the Standard Model scenario
with φs = −0.0363 rad. Absolute correlations larger than 0.5 are given in
bold, correlations smaller than 0.005 are omitted. Since the correlations
depend on the data sample the RMS of the correlations is given in Table A.1b.

Sensitivity Pull mean Pull width

Γs 0.005± 0.000 0.09± 0.03 1.03± 0.02

∆Γs 0.016± 0.000 −0.09± 0.03 0.97± 0.02

φs 0.114± 0.003 0.07± 0.03 0.98± 0.02

|A⊥|2 0.006± 0.000 0.06± 0.03 1.00± 0.02

|A0|2 0.004± 0.000 −0.04± 0.03 1.02± 0.02

δ‖ 0.036± 0.001 0.09± 0.03 0.99± 0.02

δ⊥ 0.278± 0.006 −0.06± 0.03 1.03± 0.02

∆ms 0.057± 0.001 −0.05± 0.03 1.02± 0.02

Table 5.6.: Results of the toy study for the New Physics scenario with φs = −0.70 rad.
1000 toy data sets are generated and fit. Each data set corresponds to an
integrated luminosity of 2 fb−1.
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Γs ∆Γs φs |A⊥|2 |A0|2 δ‖ δ⊥ ∆ms

Γs 1 −0.66 −0.39 0.49 −0.44 0.05 −0.01 0.01

∆Γs 1 0.13 −0.58 0.56 −0.04 0.01 -

φs 1 −0.28 0.25 −0.02 0.01 −0.02

|A⊥|2 1 −0.52 0.36 0.02 -

|A0|2 1 - 0.01 -

δ‖ 1 0.08 -

δ⊥ 1 0.29

∆ms 1

Table 5.7.: Mean correlations of the physics parameters for the New Physics scenario
with φs = −0.70 rad. Absolute correlations larger than 0.5 are given in bold,
correlations smaller than 0.005 are omitted. Since the correlations depend
on the data sample the RMS of the correlations is given in Table A.1c.
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Figure 5.4.: Pull distributions for the Standard Model scenario (φs = −0.0363 rad).
1000 toy data sets are generated and fit. Each data set corresponds to an
integrated luminosity of 2 fb−1. The remaining distributions are given in
Figure A.3.



5.2. Fit validation and sensitivity studies 113

sΓ∆

­0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
x
p

e
ri

m
e
n

ts

0

20

40

60

80

100

 value distributionsΓ∆

 0.00057±Mean = 0.05941 

 0.00040±Width = 0.01800 

 value distributionsΓ∆

(a) ∆Γs fitted parameter values

s
φ

­0.3 ­0.2 ­0.1 0 0.1 0.2 0.3

E
x
p

e
ri

m
e
n

ts

0

20

40

60

80

100

 value distribution
s

φ

 0.0030±Mean = ­0.0327 

 0.0021±Width = 0.0947 

 value distribution
s

φ

(b) φs fitted parameter values

Figure 5.5.: Distributions of the fitted parameter values for the Standard Model sce-
nario (φs = −0.0363 rad). 1000 toy data sets are generated and fit. Each
data set corresponds to an integrated luminosity of 2 fb−1. The remaining
distributions are given in Figure A.4.
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Figure 5.6.: Pull distributions for the New Physics scenario (φs = −0.70 rad). 1000 toy
data sets are generated and fit. Each data set corresponds to an integrated
luminosity of 2 fb−1. The remaining distributions are given in Figure A.5.
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Figure 5.7.: Distributions of the fitted parameter values for the New Physics scenario
(φs = −0.70 rad). 1000 toy data sets are generated and fit. Each data set cor-
responds to an integrated luminosity of 2 fb−1. The remaining distributions
are given in Figure A.6.
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5.3. Fit of fully simulated signal events

Fully simulated signal events generated as described in section 2.5 are used to validate
the fitting method. If the description of the signal decay is implemented correctly the
maximum likelihood fit should extract the parameters given in Table 2.3 that were
used in the generation of the simulated events. After the full selection is applied the
simulated data sample contains 178k signal candidates. This amount of simulated signal
events corresponds to roughly 10 fb−1 of real data8. The fit to the fully simulated events
is performed using a triple Gaussian proper time resolution model. The resolution
parameters are extracted from a fit to the known ttrue− trec distribution of the simulated
events and given in Table 5.8. Only the information provided by the opposite side
taggers is used in the fit.

Table 5.9 gives the resulting fitted parameters and their deviations from the values
used in the generation of the simulated events. All parameters with the exception of Γs

are reproduced with less than one standard deviation (1σstat) from the value used in the
generation. This confirms the correct implementation of the signal description used in
the unbinned maximum likelihood fit.

The deviation of Γs from the generated value is −2.9σstat. As discussed in section 3.6.2
a proper time dependent acceptance correction ε(t) = 1 + βt was found originating
from a reconstruction effect. In [63] the correction factor β was determined to be
β = −0.025. This value of β slightly overestimates the acceptance effect. In section 6.2.2
and 7.2.3 it will be shown that the lifetime acceptance ∝ (1 + βt) only affects the value
of Γs. The other physics parameters are not affected. Using the size of β as systematic
uncertainty fully accounts for the overcorrection. Therefore this thesis uses the value
β = −0.025± 0.025 for the proper time acceptance effect.

Figure 5.8 shows the projection of the fitted signal PDF on the reconstructed B0
s

mass, proper time and the transversity angles. Angular acceptance effects were taken
into account in the fit, which is apparent when comparing the angular description of
Figure 3.9 with Figure 5.8. The description of the angular distributions in the latter
case is excellent9. The correlation matrix for the fit is given in Table 5.10.

8Extrapolated from 628 lifetime unbiased signal events in the 2010 data corresponding to 36 pb−1.
9Note that the same simulated events were used to determine the angular acceptances and to perform

the fit.
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Parameter Value

f sig
t,1 0.314

f sig
t,2 0.821

σsig
t,1 23.6 fs

σsig
t,2 39.4 fs

σsig
t,3 71.9 fs

Table 5.8.: Resolution parameters determined using fully simulated signal events.

Parameter Result Deviation from generation [σstat]

Γs (0.6718± 0.0026) ps−1 -2.9

∆Γs (0.0603± 0.0089) ps−1 0.0

φs (−0.728± 0.045) rad -0.6

|A⊥|2 0.1580± 0.0027 -0.7

|A0|2 0.5991± 0.0019 -0.5

δ‖ (2.500± 0.017) rad -0.0

δ⊥ (−0.27± 0.11) rad -0.9

∆ms (17.803± 0.028) ps−1 0.1

Table 5.9.: Physics parameters extracted from a data sample of fully simulated signal
events corresponding to ca. ∼ 10 fb−1. All physics parameters with the
exception of Γs are extracted with a deviation of less than 1σstat. with respect
to the values used in the event generation.
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Figure 5.8.: Projection of the fitted PDF on (a) the reconstructed B0
s mass, (b) the

proper time and (c)-(e) the transversity angles. The dotted line gives the
CP-even part of the signal PDF, the dashed part denotes the CP-odd part.
A good description of the simulated events is observed. Compared with
Figure 3.9 the improvement of the description of the transversity angles due
to the angular dependent acceptance correction is clearly visible.



Γs ∆Γs φs |A⊥|2 |A0|2 δ‖ δ⊥ ∆ms mBs f sig
m,1 σsig

m,1 σsig
m,2

Γs 1.00 -0.68 -0.33 0.44 -0.37 0.05 -0.01 - - - - -

∆Γs 1.00 0.08 -0.51 0.48 -0.04 0.01 0.01 - - - -

φs 1.00 -0.24 0.18 -0.05 0.02 -0.03 - - - -

|A⊥|2 1.00 -0.44 0.38 0.04 0.01 - - - -

|A0|2 1.00 -0.01 0.01 - - - - -

δ‖ 1.00 0.10 - - - - -

δ⊥ 1.00 0.20 - - - -

∆ms 1.00 - - - -

mBs 1.00 - - -0.01

f sig
m,1 1.00 0.82 0.87

σsig
m,1 1.00 0.68

σsig
m,2 1.00

Table 5.10.: Parameter correlations extracted from a data sample of fully simulated
signal events corresponding to ca. ∼ 10 fb−1. Correlations larger than 0.5
are given in bold.
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The analysis of the decay B0
s→ J/ψ φ is conducted in two subsequent steps. First an

analysis that does not use information about the B0
s production flavor (flavor blind or

untagged analysis) is performed. This was necessary since the calibration of the flavor
tagging algorithms on channels such as B+ → J/ψK+ is challenging, thus flavor tagging
information was not immediately usable after data taking. The untagged analysis of the
decay B0

s→ J/ψ φ is described in this chapter. Only the lifetime unbiased data sample is
used for this study. It will become apparent that the untagged analysis can not constrain
φs using the amount of data taken by LHCb in 2010. Instead the primary aim of the
untagged analysis is to determine ∆Γs under the assumption of no CP violation, i. e.
φs = 0.

The second step of the analysis of the decay B0
s→ J/ψ φ is to perform a B0

s production
flavor dependent fit which is able to constrain φs. This tagged analysis is described in
chapter 7.

6.1. Determination of ∆Γs under the assumption of no CP
violation

The PDF used for the parameter estimation ignoring the information on the initial B0
s

flavor and assuming no CP violation is given by equation 4.9. The physics parameters
are given by

~λφs=0
Phys =

{
Γs,∆Γs, |A0(0)|2, |A⊥(0)|2, δ‖

}
. (6.1)

The strong phase δ‖ only appears as cos δ‖ in the PDF. An alternative parameterization
is therefore

~λφs=0
Phys =

{
Γs,∆Γs, |A0(0)|2, |A⊥(0)|2, cos δ‖

}
. (6.2)

Table 6.1 gives the fit results for both parameterizations using the lifetime unbiased data
set consisting of 771 signal candidates. All parameters show good agreement for the
two different parameterizations. Using the first parameterization the extracted value
for the strong phase δ‖ is exactly +π. This value for δ‖ minimizes the value of cos δ‖
resulting in cos δ‖ = −1. With the second parameterization the fit determines cos δ‖ to
be cos δ‖ = (−1.237± 0.274). This is, probably due to a statistical fluctuation in the
data, smaller than cos π = −1 which is the smallest value accessible for cos δ‖ when using
the parameterization 6.1. The implicit constraint cos δ‖ ∈ [−1,+1] applied when using
the first parameterization prevents the fit from reaching the best description of the data.
This also results in an unreliable error estimate for δ‖. Therefore the parameterization 6.2
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with cos δ‖ as physics parameter has been chosen as nominal fit configuration for the
untagged analysis.

The correlation matrix for this configuration is given in Table 6.2. Correlations larger
than 0.50 are given in bold, correlations smaller than 0.005 are omitted. As expected,
moderately large correlations between the transversity amplitudes and Γs and ∆Γs are
seen. The other correlation coefficients, with the exception of the proper time background
model, are relatively small.

Figure 6.1 shows the fitted PDF and the data projected on the reconstructed B0
s

mass, the proper time and the angles in the transversity base. No large deviations
of the fitted model from the data are seen in the one-dimensional projections. For a
quantitative statement about the goodness of fit the point-to-point dissimilarity method
described in section 4.3 is employed. Figure 6.2 shows the T distribution resulting from
200 permutations. A fraction of 37% of the permutations has a larger T value than the
true data set. The hypothesis that the fitted PDF corresponds to the true underlying
PDF from which the data was drawn can therefore be rejected with a confidence level of
only 63%. This means that the data is indeed well described by the fitted PDF.

Figure 6.3 shows the negative logarithm of the likelihood for the physics parameters.
The negative logarithm of the likelihood is minimized with respect to all other parameters
so that the uncertainty for the parameter is given by the points where −2 lnL rises
by one unit. This is the likelihood ratio method (or likelihood scan) described in
section 4.2.3. Close to the minimum the distributions are approximately parabolic
justifying the assumption of parabolic errors1. A two-dimensional likelihood scan for
Γs and ∆Γs is given in Figure 6.4 showing the correlation between the two parameters.
The resulting confidence regions show very regular behavior, similar to two correlated
Gaussian variables.

6.1.1. Determination of ∆Γs using the full lifetime range

The fit described in the last section was performed using only events with t > 0.3 ps.
This requirement rejects the prompt background events at small proper times which is
computationally beneficial, in particular when using computation intensive methods as
the method proposed by Feldman and Cousins [74]. However when using a simple maxi-
mum likelihood technique the analysis of all events without the proper time requirement
is feasible.

The determination of ∆Γs over the full proper time range serves as an excellent
crosscheck for the stability of the fit result even if no gain in sensitivity on ∆Γs is
expected. Figure 6.5 gives the projection of the PDF for the maximum likelihood fit
over the full range on the measured quantities. The projection on the proper time
clearly shows the large prompt background peak, which is modeled as triple Gaussian
in addition to the longlived background and signal components. The large number of
prompt background events is also evident in the mass projection where the signal to
background ratio is reduced. The maximum order of the Legendre polynomials used to

1In the Minuit fit Hesse is used for error estimation
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Parameter Result

Γs[ ps−1] 0.6792± 0.0360

∆Γs[ ps−1] 0.077± 0.119

|A⊥|2 0.2634± 0.0555

|A0|2 0.5283± 0.0402

δ‖[ rad] 3.141± 0.523

mBs [ MeV] 5366.400± 0.332

σsig
m,1[ MeV] 7.490± 0.270

αLL
m [ MeV−1] 0.000941± 0.000691

fsig 0.7342± 0.0172

fLL
τ,1 0.6999± 0.0722

τLL
1 [ ps] 0.1255± 0.0195

τLL
2 [ ps] 0.867± 0.181

(a)

Parameter Result

Γs[ ps−1] 0.6797± 0.0342

∆Γs[ ps−1] 0.084± 0.112

|A⊥|2 0.2786± 0.0572

|A0|2 0.5323± 0.0403

cos δ‖ −1.237± 0.274

mBs [ MeV] 5366.396± 0.332

σsig
m,1[ MeV] 7.484± 0.269

αLL
m [ MeV−1] 0.000939± 0.000690

fsig 0.7339± 0.0172

fLL
τ,1 0.6993± 0.0721

τLL
1 [ ps] 0.1254± 0.0195

τLL
2 [ ps] 0.868± 0.181

(b)

Table 6.1.: Results of an untagged fit to the lifetime unbiased data sample using two
different parameterizations. (a) gives the results using δ‖ as physics parameter
while (b) uses cos δ‖ for the parameterization. The value returned for δ‖
using the first parameterization is exactly +π. This is consistent with the
value of cos δ‖ which is extracted using the second parameterization. cos δ‖
is lower than −1 but statistically still compatible with it. The uncertainties
given are statistical and determined by Minuits Hesse step.

Γs ∆Γs |A⊥|2 |A0|2 cos δ‖ mBs
σsig
m,1 αLL

m fsig fLLτ,1 τLL1 τLL2

Γs 1.00 -0.43 0.38 -0.32 -0.04 0.01 0.02 - 0.05 - - 0.02

∆Γs 1.00 -0.68 0.68 -0.05 - -0.01 - -0.01 -0.01 - -

|A⊥|2 1.00 -0.58 -0.36 - 0.01 - 0.01 - - -

|A0|2 1.00 -0.12 - -0.03 - -0.03 -0.01 - -0.01

cos δ‖ 1.00 0.01 0.03 - 0.02 0.01 - -

mBs 1.00 0.01 0.01 0.01 - 0.01 -

σsig
m,1 1.00 - 0.14 0.04 -0.02 -0.08

αLL
m 1.00 - - - -

fsig 1.00 0.02 -0.02 -0.03

fLLτ,1 1.00 0.63 0.61

τLL1 1.00 0.46

τLL2 1.00

Table 6.2.: The correlations of the parameters in the nominal untagged fit to the lifetime
unbiased data. Correlations larger than 0.50 are given in bold, correlations
smaller than 0.005 are omitted.
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Figure 6.1.: Projection of the fitted PDF of the untagged analysis on the measured
quantities. Pictured are the reconstructed B0

s mass, the proper time and the
three transversity angles Ω = {cos θ, ϕ, cosψ}. The complete PDF is given
as black line, the signal and background component are denoted by the
blue and red lines respectively. The signal component is further subdivided
into the CP-even (blue, dotted) part ∝ |A0|2, |A‖|2 and the CP-odd (blue,
dashed) part ∝ |A⊥|2. Good agreement of the data with the fitted PDF is
seen for all distributions.
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Figure 6.2.: T distribution from the point-to-point dissimilarity test for the untagged
analysis. The red line denotes the T statistics of the data compared to a
sample of nMC = 20 · nD simulated events generated according to the fitted
PDF. The black histogram gives the T distribution of data samples of nD

events which are randomly drawn from the combination of real data and
simulated events. 200 of these permutations are performed. The fraction
of permutations with a larger T than the T statistics of the data gives a
p-value of 37%.

describe the angular background distributions was increased with respect to the nominal
fit. This ensures an adequate angular description of the large background component.

The fit results are given in Table 6.3. Of particular interest is the extracted value
of ∆Γs which does not change significantly with respect to Table 6.1b. Also the
other physics parameters show remarkably stable behavior. Together with very similar
statistical uncertainties of the physics parameters this illustrates that the parameters are
predominantly determined from signal candidates with larger proper times. Compared
to the nominal fit in section 6.1 additional parameters are needed to describe the time
and mass dependence of the prompt background component. In the proper time the
prompt background is described by a triple Gaussian, as was detailed in section 4.6.2.
The extracted parameters agree well with the triple Gaussian resolution model which is
used in the nominal fit and was determined using the prompt background events in [63].

The correlation matrix for the fit over the full time range is given in Table B.2. The
entries are similar to the correlations found for the nominal fit with t > 0.3 ps in Table 6.2.
Large correlations between the parameters of the triple Gaussian proper time resolution
model are observed, but they are uncorrelated with the physics parameters.

6.2. Systematic uncertainties

Besides the statistical uncertainties of the maximum likelihood fit systematic uncertainties
can influence the result. With the low 2010 statistics the statistical uncertainties are
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Figure 6.3.: One-dimensional likelihood scans for the physics parameters. The negative

logarithm of the likelihood is minimized with respect to all other parameters.
For Gaussian PDFs the resulting dependence on the parameter is parabolic,
in the vicinity of the minimum this is approximately true for the physics
parameters.
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Figure 6.4.: Result of a two-dimensional likelihood scan for Γs and ∆Γs. The resulting
contours correspond to confidence levels of 68.3% (solid), 90% (dashed) and
95% (dotted) determined via the likelihood ratio method (section 4.2.3). The
contours clearly show the negative correlation between the two parameters.
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Figure 6.5.: Projection of the fitted PDF on the measured quantities for the fit over the
full proper time range. The fitted PDF describes the data reasonably well.
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Parameter Result

Γs[ ps−1] 0.675± 0.033

∆Γs[ ps−1] 0.071± 0.105

|A⊥|2 0.284± 0.053

|A0|2 0.536± 0.038

cos δ‖ −1.249± 0.271

mBs [ MeV] 5366.538± 0.318

σsig
m,1[ MeV] 7.396± 0.261

αPr
m [ MeV−1] 0.0004853± 0.0000535

αLL
m [ MeV−1] 0.001120± 0.000545

fsig 0.018011± 0.000748

fPr 0.97004± 0.00300

fLL
τ,1 0.9319± 0.0184

τLL
1 [ ps] 0.1381± 0.0115

τLL
2 [ ps] 0.907± 0.181

f sig
t,1 0.4940± 0.0561

f sig
t,2 0.9387± 0.0111

σsig
t,1 [ ps] 0.03428± 0.00132

σsig
t,2 [ ps] 0.06090± 0.00246

σsig
t,3 [ ps] 0.1462± 0.0103

Table 6.3.: Results of the untagged fit over the full proper time range. Compared with
the nominal fit result for t > 0.3 ps given in Table 6.1b the results are
remarkably stable.
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Parameter Result Abs. deviation

Γs 0.6798± 0.0342 +0.0001

∆Γs 0.084± 0.112 -

|A⊥|2 0.2786± 0.0571 -

|A0|2 0.5323± 0.0403 -

cos δ‖ −1.237± 0.274 -

Table 6.4.: Fit results with a proper time resolution model which is 50% worse than the
nominal model.

expected to dominate. However the systematic uncertainties still need to be estimated.
To estimate the influence of a systematic uncertainty on the physics parameters the fit

is repeated after applying the systematic variation. The fit result is compared with the
nominal result and the deviation is used as systematic uncertainty. A more thorough
approach would be to evaluate the systematic uncertainties using large amounts of
simulated data. However since the systematic uncertainties at this stage are compa-
rably small the simpler approach described above should give correct results in first
approximation.

6.2.1. Proper time resolution

The proper time resolution model used in the nominal fit is a triple Gaussian as described
in section 4.5.6. As previously mentioned the resolution parameters were determined
in a different analysis [63]. The resolution parameters can only be extracted with a
certain uncertainty. To account for a possible incorrect description of the proper time
resolution the widths of the three Gaussians σsig

t,1 , σsig
t,2 and σsig

t,3 are scaled with a factor
1.5. This is a rather conservative estimate and will overestimate the uncertainty of
the resolution parameters which in reality is about 10%. However, since the untagged
analysis does not need to resolve the fast B0

s oscillation the effect is expected to be
negligible. This expectation is confirmed when comparing the result extracted using this
resolution model with the nominal result. Table 6.4 gives the result and the absolute
deviations of the physics parameters with respect to the nominal fit. As expected the
deviations are negligible.

6.2.2. Proper time acceptance

As discussed in section 3.6.2 the event reconstruction exhibits a non-flat proper time
dependent efficiency. In the fit this effect is fully accounted for by parameterizing
the acceptance correction as linear function of the proper time. The full size of the
acceptance correction is used as systematic uncertainty. The extracted parameters when
neglecting the proper time acceptance are given in Table 6.5. As expected, mainly Γs is
affected by the proper time acceptance. The effect on all other parameters is negligible.
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Parameter Result Abs. deviation

Γs 0.7070± 0.0342 +0.0273

∆Γs 0.083± 0.112 −0.001

|A⊥|2 0.2789± 0.0571 +0.0003

|A0|2 0.5321± 0.0403 −0.0002

cos δ‖ −1.237± 0.274 -

Table 6.5.: Fit results under the assumption of a flat proper time acceptance.

6.2.3. Angular acceptance

Two sources of systematic uncertainties are studied that can arise from the description
of the angular acceptance effect using simulated events. The first possible systematic
effect arises from the limited statistics of events generated in the full simulation. To
estimate this effect the number of accepted events in the histogram used to derive
the acceptance parameterization is varied according to the statistical uncertainty. The
acceptance parameterization is then rederived and the parameters are extracted with
this varied acceptance description. This procedure is repeated four times and the largest
deviations of the physics parameters are taken as systematic uncertainties2. The largest
deviations are given in Table 6.6a.

As discussed in section 3.7 the angular acceptance effect is caused by the polar-angle
acceptance of the detector and the implicit momentum cuts on the final state particles.
Any discrepancies in the description of these quantities in the full simulation would
result in incorrect acceptance descriptions. To check that the full simulation describes
these quantities correctly a comparison with data is performed. To compare simulated
signal events with the signal component in data the sideband subtraction technique
is used3. Figures 3.11 and 3.12 show good agreement for sideband subtracted data
(black) and fully simulated signal events (red) in all distributions with the possible
exception of the muon momenta. To estimate the size of this effect the simulated
events are reweighted according to their muon momenta and the acceptance correction
is determined. The resulting new acceptance correction is used to determine the physics
parameters. The deviations from the nominal fit values are used as an estimate of the
systematic uncertainty and given in Table 6.6b.

2To obtain a more accurate estimate of the systematic effect the acceptances should be varied more
often. Considering the large statistical uncertainties and the small observed deviations in the four
variations performed four repetitions are sufficient.

3Events from the B0
s mass sidebands [5200, 5321.67] MeV ∪ [5411.67, 5550] MeV are subtracted from

the signal region [5321.67, 5411.67] MeV according to the background fraction.
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Parameter Largest abs. deviation

Γs −0.0002

∆Γs +0.001

|A⊥|2 −0.0028

|A0|2 −0.0021

cos δ‖ 0.027

(a)

Parameter Result Abs. deviation

Γs 0.6797± 0.0342 -

∆Γs 0.084± 0.112 -

|A⊥|2 0.2782± 0.0571 −0.0004

|A0|2 0.5329± 0.0403 +0.0006

cos δ‖ −1.233± 0.274 +0.004

(b)

Table 6.6.: Systematic uncertainties due to the description of the angular acceptance
effect. (a) gives the systematic uncertainty due to the limited Monte Carlo
statistics. To estimate the effect the simulated signal events were varied four
times within their statistical uncertainty. The largest deviations resulting
from the four different acceptance corrections are taken as systematic uncer-
tainties for the parameters. Table B.1 gives the detailed results of the four
variations.
(b) gives the systematic effect from reweighting the fully simulated signal
events according to the muon momentum.

6.2.4. Background modeling

In the nominal fit the angular dependence of the background component is described by a
combination of Legendre polynomials. The precision of this description is however limited
by the low number of events in the B0

s mass sidebands where the Legendre coefficients
are determined. To estimate the systematic uncertainty of the background description
due to the limited statistics of the 2010 data the nominal description is compared with
the assumption of flat angular distributions of the background. The resulting parameters
and their deviations from the nominal fit result are given in Table 6.7.

Parameter Result Abs. deviation

Γs 0.6800± 0.0342 +0.0003

∆Γs 0.082± 0.112 −0.002

|A⊥|2 0.2800± 0.0575 +0.0014

|A0|2 0.5308± 0.0403 −0.0015

cos δ‖ −1.231± 0.274 +0.006

Table 6.7.: Fit results under the assumption of a flat angular distribution of the back-
ground component.
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Parameter Result Abs. deviation

Γs 0.6801± 0.0343 +0.0004

∆Γs 0.087± 0.113 +0.003

|A⊥|2 0.2733± 0.0569 −0.0053

|A0|2 0.5310± 0.0400 −0.0013

cos δ‖ −1.201± 0.266 +0.036

Table 6.8.: Fit results using a double Gaussian to describe the signal mass peak.

6.2.5. Mass model

The nominal fit describes the signal component in the reconstructed B0
s mass as a single

Gaussian. To estimate the systematic uncertainty due to a possibly incorrect modeling
of the mass distribution a double Gaussian mass model is used instead. The extracted
parameters and their deviations from the nominal result are given in Table 6.8.

6.2.6. S-wave contribution

The transition of the B0
s to the final state µ+µ−K+K− usually occurs via the J/ψ and

φ resonances. It is however also possible that the K+K− does not originate from the
φ resonance but instead from an additional nonresonant ` = 0 contribution or via the
f0(980) resonance. This contribution is called “S-wave” since the resulting K+K− system
is in an S-wave configuration (` = 0) as was already discussed in sections 1.3.3 and 4.5.5.
In the nominal fit a possible S-wave contribution is neglected. To estimate the systematic
uncertainty this causes when the S-wave is in fact present the fit is repeated with the
largest S-wave contribution currently allowed by experimental data, |As(0)|2 = 0.067 at
the 95% confidence level [39]. Note that the PDF depends on an additional strong phase
difference when an S-wave component is present, namely sin

(
δ‖ − δs

)
. The resulting

parameter values are given in Table 6.9.
This estimation of the systematic uncertainties which result from neglecting the S-wave

contribution is conservative since it assumes the largest S-wave amplitude allowed by
the CDF experiment. Ideally the S-wave contribution should be included by fitting for
both the S-wave phase and the amplitude. However with the small number of signal
candidates in the lifetime unbiased 2010 data sample this leads to fit instabilities.

6.2.7. Summary of the systematic uncertainties

A summary of the systematic uncertainties is given in Table 6.10. The systematic
uncertainty on Γs is, as expected, dominated by the proper time acceptance. For
all other parameters the largest systematic uncertainty stems from the neglected S-
wave. The total systematic error is evaluated by adding the individual contributions
in quadrature. Overall the systematic uncertainties are smaller than the statistical
uncertainties.
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Parameter Result Abs. deviation

Γs 0.6854± 0.0323 +0.0057

∆Γs 0.071± 0.122 −0.013

|A⊥|2 0.2670± 0.0537 −0.0116

|A0|2 0.4973± 0.0408 −0.035

cos δ‖ −1.340± 0.315 −0.103

sin(δ⊥ − δs) −0.122± 0.330 -

Table 6.9.: Fit results under the assumption of a 6.7% S-wave contribution and deviation
of the parameters with respect to the nominal fit.

Syst. uncertainty Γs ∆Γs |A⊥|2 |A0|2 cos δ‖

Proper time resolution model 0.0001 − − − −
Proper time acceptance 0.0273 0.001 0.0003 0.0002 −

Angular acceptance MC statistics 0.0002 0.001 0.0028 0.0021 0.027

Angular acceptance MC description − − 0.0004 0.0006 0.004

Angular background description 0.0003 0.002 0.0014 0.0015 0.006

Mass model 0.0004 0.003 0.0053 0.0013 0.036

S-wave contribution 0.0057 0.013 0.0116 0.035 0.103

Quadratic sum Σ 0.0279 0.0136 0.0131 0.0351 0.113

Table 6.10.: Overview of the different sources of systematic uncertainties. The total
systematic error is evaluated by adding the individual contributions in
quadrature.

Future analyses at LHCb will use a much larger data sample (data corresponding to
more than 500 pb−1 have been taken until August 2011) and will therefore be able to
significantly improve the measurement of the physics parameters.

6.3. Accounting for possible CP violation without using the
tagging information

Equation 4.8 shows that the PDF has a weak dependence on φs even when no tagging
information is used to distinguish the two B0

s production flavors. To determine the
sensitivity on this parameter in the untagged analysis a Feldman-Cousins study [74] is
performed. Confidence regions are constructed in the parameter space of the two physics
parameters φs and ∆Γs. Technically the analysis is performed on a 40×40 grid in φs and
∆Γs. For every grid point the confidence level of the point is evaluated by performing
1000 toy experiments and using the likelihood ratio ordering principle proposed by
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Figure 6.6.: Confidence contours determined by a Feldman-Cousins study in the φs- ∆Γs

parameter space without using information on the B0
s production flavor.

The confidence contours correspond to the 68.3% (solid), 90% (dashed) and
95% (dotted) confidence levels.

Feldman-Cousins which was discussed in detail in section 4.2.2. The resulting confidence
regions for confidence levels of 68.3%, 90% and 95% are given in Figure 6.6. The figure
shows a four-fold symmetry as expected from the discussion in 4.5.4. From the confidence
contours it is clear that with the small size of the data sample taken in 2010 φs can not
be constrained by a flavor-blind analysis. For a determination of φs the use of tagging
information to distinguish between the two B0

s production flavors is therefore critical
and described in detail in the next chapter.

6.4. Summary of the untagged result

The physics parameters determined in the untagged analysis are given in Table 6.11.
The parameters are extracted under the assumption of no time dependent CP violation
(φs = 0) and using data taken by the LHCb detector on 2010. The analysis is performed
on the lifetime unbiased data sample which contains 771 signal candidates over the
full range of the reconstructed B0

s mass [5200 MeV, 5550 MeV]. The most interesting
physics quantity is the decay width difference in the B0

s system ∆Γs which is determined
to be ∆Γs = (0.084± 0.112stat. ± 0.014syst.) ps−1. This is in excellent agreement with
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Parameter Result ± stat. ± syst.

Γs[ ps−1] 0.6797± 0.0342± 0.0279

∆Γs[ ps−1] 0.084± 0.112± 0.014

|A⊥|2 0.2786± 0.0572± 0.0131

|A0|2 0.5323± 0.0403± 0.0351

cos δ‖ −1.237± 0.274± 0.113

Table 6.11.: Summary of the results of the untagged analysis of the data taken by LHCb
in 2010. The study is performed under the assumption φs = 0.

the Standard Model prediction ∆Γs = (0.087 ± 0.021) ps−1 [34]. It also agrees with
the currently best measurement of ∆Γs performed by the CDF collaboration ∆Γs =
(0.075± 0.035stat. ± 0.01syst.) ps−1 [39]. The measurement using the LHCb data is not
yet competitive with the CDF measurement due to the larger statistical uncertainty.
Considering that this analysis was performed on data corresponding to only 36 pb−1

this is expected. Furthermore, the systematic uncertainties which have been estimated
conservatively are already comparable to the systematic uncertainties quoted by CDF.
With an expected integrated luminosity of up to 1 fb−1 in 2011 future measurements
will profit from a much larger data sample. This also simplifies the determination of the
systematic uncertainties. One example would be the S-wave contribution, which could
be included in the nominal fit and extracted from the data. Therefore LHCb will be
able to perform the most precise measurement of ∆Γs with the 2011 data.



7. Determination of φs using information on the B0
s

production flavor

This chapter presents the determination of φs and ∆Γs using information on the initial
B0

s production flavor. Exploiting the largest possible event statistics using both the
lifetime biased and unbiased data it will be shown that it is possible to constrain φs and
∆Γs when using tagging information.

7.1. Two-dimensional constraints on φs and ∆Γs

When using information on the initial B0
s flavor the PDF used for the signal component

is given by equation 4.5 and depends on the physics parameters

~λPhys =
{
φs,Γs,∆Γs, |A0(0)|2, |A⊥(0)|2, δ‖, δ⊥,∆ms

}
.

The fit minimizes the negative logarithm of the likelihood (equation 4.3) by variation
of the parameters and thereby determines the physics parameters for which the data
becomes most likely. These parameter values are given in Table 7.1. Note that no
uncertainties are given since an error estimate via the methods described in section 4.2.3
and 4.2.4 is only possible when the logarithm of the likelihood becomes parabolic. This
is not the case as will become clear later in this section.

Using the fitted parameter values in Table 7.1 the PDF and data are projected on the
measured quantities. Figure 7.1 shows the projection on the proper time. The projections
on the reconstructed B0

s mass and the transversity angles are given in Figures 7.2 and 7.3
respectively. All projections show the lifetime biased and lifetime unbiased data samples
separately. Considering the low statistics good agreement between data and the fitted
PDF is observed in all one-dimensional projections. Since the PDF is five-dimensional
this is of course only a first qualitative hint that the data is well described by the fitted
PDF. For a quantitative conclusion on the goodness of fit the point-to-point dissimilarity
method described in section 4.3 is employed. Figure 7.4 shows the T distribution
resulting from 200 permutations. A fraction of 27% of the permutations has a larger T
value than the true data set. The hypothesis that the fitted PDF corresponds to the
true underlying PDF from which the data was drawn can be rejected with a confidence
level of 73%. The description of the data by the fitted PDF is therefore adequate.

To determine the confidence regions for φs and ∆Γs the Feldman-Cousins method [74]
as described in section 4.2.2 is used. In contrast to the simpler likelihood ratio method
described in section 4.2.3 the Feldman-Cousins method guarantees correct coverage
regardless of the shape of the likelihood. To determine the confidence regions 1000
simulated data sets are generated at every point on a 40× 40 grid in φs and ∆Γs. The
simulated events are fit twice. In the first fit the parameters φs and ∆Γs are fixed to the
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Parameter Result

Γs 0.690 ps−1

∆Γs 0.064 ps−1

φs −1.13 rad

|A⊥|2 0.290

|A0|2 0.524

δ‖ 3.29 rad

δ⊥ 0.19 rad

∆ms 17.75 ps−1

Table 7.1.: Fitted physics parameters for the tagged analysis using both the lifetime
biased and the lifetime unbiased data sample. No error estimates are given
since the negative logarithm of the likelihood is not parabolic.

specific grid point at which the simulated events are generated. The second fit allows for
φs and ∆Γs to vary freely. The result are two negative logarithms of likelihoods, their
difference is the logarithm of the likelihood ratio for the specific toy data set. The same
procedure is performed for the 2010 data sample resulting in a likelihood ratio for the
data at the specific grid point. As discussed in section 4.2.2 the confidence level of a
certain grid point is given by the fraction of toy data sets that have a larger likelihood
ratio than the data.

Figure 7.5 shows the confidence regions resulting from the Feldman-Cousins study.
Three confidence regions are given corresponding to confidence levels of 68.3%, 90% and
95% respectively. Using the information on the B0

s production flavor some points in the
φs-∆Γs parameter space can already be excluded. The black dot denotes the Standard
Model point. The probability for the Standard Model point corresponds to 1.0 standard
deviations. The data is thus compatible with the Standard Model prediction.

7.2. Evaluation of systematic uncertainties

The confidence contours presented in the last section are still quite large due to the limited
number of signal events. To estimate the size of systematic effects confidence contours
in the φs-∆Γs parameter space are determined while varying the systematically limited
parameters. The resulting contours are compared with the nominal confidence contours.
The confidence contours are produced using the likelihood ratio method described in
section 4.2.3. This approach has the advantage of being computationally much less
expensive than the Feldman-Cousins method. While the likelihood ratio method does
not necessarily give the correct coverage, the relative changes of the confidence contours
will give a good estimate of the size of the systematic effects.
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(b) Lifetime biased

Figure 7.1.: Distribution of the proper time for the lifetime biased and the lifetime
unbiased data sample. The solid black line denotes the projection of the
fitted PDF on the proper time. The signal component is given in blue, the
background component in red. The CP-even part of the signal is denoted as
blue dotted line, the CP-odd part is given by the blue dashed line. For the
lifetime biased case the proper time acceptance affecting low proper times is
clearly visible.
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(a) Lifetime unbiased

 mass [MeV]sB
5200 5250 5300 5350 5400 5450 5500 5550

E
v

e
n

ts
 /

 1
.8

 M
e

V

0

5

10

15

20

25

30

35 LHCb preliminary
­1=7TeV, L=36pbs

(b) Lifetime biased

Figure 7.2.: Distribution of the reconstructed B0
s mass for the lifetime biased and the

lifetime unbiased data sample. The solid black line denotes the projection
of the fitted PDF on the reconstructed B0

s mass. The signal component is
given in blue, the background component in red.
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(b) Lifetime biased

Figure 7.3.: Distributions of the transversity angles (from left to right: cos θ, ϕ and
cosψ) for the lifetime biased and the lifetime unbiased data sample. The
solid black line denotes the projection of the fitted PDF on the transversity
angles. The signal component is given in blue, the background component
in red. The CP-even part of the signal is denoted as blue dotted line, the
CP-odd part is given by the blue dashed line.
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Figure 7.4.: T distribution from the point-to-point dissimilarity test for the tagged
analysis. The red line denotes the T statistics of the data compared to a
sample of nMC = 20 · nD simulated events generated according to the fitted
PDF. The black histogram gives the T distribution of data samples of nD

events which are randomly drawn from the combination of real data and
simulated events. 200 of these permutations are performed. The fraction
of permutations with a larger T than the T statistics of the data gives a
p-value of 27%.

7.2.1. Flavor tagging calibration

The flavor tagging calibration described in section 3.8.1 determines the parameters p0

and p1 which are used to obtain a calibrated mistag probability ωtag for the analysis. The
parameters are given in Table 3.7. The calibration procedure can only determine these
parameters with a limited precision due to the limited event numbers of the calibration
channels. A Gaussian constraint as discussed in section 4.7.2 is applied on the tagging
parameters to account for the uncertainty of the tagging calibration. The systematic
uncertainty due to the tagging calibration is therefore already included in the nominal
result given in Figure 7.5.

7.2.2. Proper time resolution

To estimate the effect of an incorrect proper time resolution model the fit is repeated with
the assumption of a 10% worse resolution than used in the nominal fit. The parameters
σsig

t,1, σsig
t,2 and σsig

t,3 are scaled with a factor 1.1. The resulting confidence contours are
given in red in Figure 7.6a. For comparison, the nominal confidence contours are given
in black. Compared to the statistical uncertainty the systematic change due to the
different proper time resolution model is negligible.
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Figure 7.5.: Confidence contours in the φs-∆Γs parameter space determined by the
Feldman-Cousins method using tagging information on the B0

s production
flavor. The confidence contours correspond to confidence levels of 68.3%
(solid), 90% (dashed) and 95% (dotted) respectively. The black dot denotes
the Standard Model prediction of (−0.0363 rad, 0.087 ps−1).
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7.2.3. Proper time acceptance

In section 3.6.2 a proper time dependent efficiency caused by a reconstruction effect
was discussed. In the fit the effect is parameterized as ε(t) = (1 + βt) with β = −0.025.
As systematic uncertainty the full size of β is taken. Figure 7.6b gives the confidence
contours resulting under the assumption of β = 0. The difference with respect to the
nominal contours is negligible.

7.2.4. Angular acceptance

Two sources of systematic uncertainties related to an incorrect description of the angular
acceptance effect are studied. A questionable description of the muon momenta in data
was observed for the simulated signal events (see Figure 3.12). The acceptance correction
is therefore rederived from simulated signal events that were reweighted according to
their muon momenta. The resulting confidence contours are given in Figure 7.7e.

Another possible source of systematic uncertainty is the limited number of simulated
signal events used to determine the acceptance effect. To study this effect the number
of simulated signal events in every bin of the acceptance histogram is varied within
the statistical uncertainty. The acceptance parametrization is then rederived using the
changed acceptance histogram. This is repeated four times which results in four slightly
different acceptance corrections1. The confidence contours when using these acceptance
corrections are given in Figures 7.7a to 7.7d. Both systematic effects are negligible
compared to the large statistical uncertainty.

7.2.5. Background modeling

To estimate the effect of a possible incorrect angular description of the background
component the analysis is performed using a flat angular description. Hardly any
difference to the nominal three-dimensional parametrization is observed for the resulting
contours in Figure 7.6c. This is a consequence of the very low background levels after
the full selection.

7.2.6. Mass model

Instead of the nominal single Gaussian to describe the B0
s signal mass peak a double

Gaussian mass model can also be used. The resulting confidence contours are given in
Figure 7.6d. A small difference with respect ot the nominal contours is seen, however
the systematic effect is negligible compared to the statistical uncertainty.

1As already mentioned in chapter 6.2.3 the estimation of the size of the systematic effect would be
more precise when performing more variations. Considering the large statistical uncertainties and
the small observed systematic deviations four repetitions are sufficient.
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7.2.7. S-wave contribution

The inclusion of a possible S-wave component introduces two additional parameters into
the fit, |As(0)|2 and δs, as described in section 4.5.5. The resulting contours are given in
Figure 7.6e. The small inner contours are artifacts caused by instabilities when fitting
for the two additional physics parameters. Comparing the confidence contours in the
φs-∆Γs parameter space with the nominal fit no large difference is observed.

7.2.8. Summary of the systematic uncertainties

All systematic effects studied are negligible in size compared to the large statistical
uncertainty and do not lead to a significant variation of the confidence contours. The
systematic effects are therefore neglected at this stage.

7.3. One-dimensional confidence intervals for φs

In addition to the two-dimensional confidence regions determined in section 7.1 one-
dimensional confidence intervals for φs are determined using B0

s production flavor
information. The Feldman-Cousins method is employed to determine confidence intervals
with correct coverage. The Feldman-Cousins study is performed for 40 points in φs. At
each point 1000 data samples of simulated events are generated and fitted. The result
of the Feldman-Cousins study is given in Figure 7.8 which shows the confidence level
depending on the value of φs. The confidence intervals corresponding to confidence
levels of 68.3% and 90% are determined to be [−2.78,−0.39] rad and [−3.33, 0.21] rad
respectively and are denoted by the vertical black lines. Since the systematic uncertainties
were shown to be negligible in the two-dimensional φs-∆Γs parameter space these
confidence intervals for φs represent the one-dimensional tagged result2.

7.4. Summary of the B0
s production flavor dependent analysis

The two-dimensional constraints on φs and ∆Γs determined in the tagged analysis are
shown in Figure 7.5. The confidence contours reflect the statistical error as well as the
systematic uncertainty from the tagging calibration. All other systematic errors are
neglected. The Standard Model prediction in the φs-∆Γs parameter space is found to be
in agreement with the data at the 1.0σ level (68.5% confidence level). In addition to the
two-dimensional confidence regions in Figure 7.5 one-dimensional confidence intervals
for φs are determined. The confidence intervals for φs corresponding to confidence levels
of 68.3% and 90% are given by [−2.78,−0.39] rad and [−3.33, 0.21] rad respectively.

Compared with the latest measurements performed at the Tevatron which are given
in Figure 1.7 good agreement is seen. All experiments favor negative φs. The confidence
contours given in Figure 1.7 are somewhat smaller than in Figure 7.5 indicating that the

2Note that the systematic uncertainty due to the tagging calibration is included in the one-dimensional
confidence intervals.
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(a) Proper time resolution model
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(b) Proper time acceptance
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(c) Background model
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(d) Mass model
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(e) S-wave

Figure 7.6.: Effect of systematic deviations on the confidence contours for the tagged
fit. The red curves denote the contours after the systematic change while
the black curves give the nominal confidence contours before the systematic
change. The three contours given correspond to confidence levels of 68.3%
(solid), 90% (dashed) and 95% (dotted) respectively. Systematic effects
shown are (a) the proper time resolution model, (b) the proper time accep-
tance, (c) the background model, (d) the signal mass model and (e) the
S-wave. The systematic changes are negligible compared to the statistical
uncertainty for the 2010 data. The irregular shape of the contours when
including a possible S-wave contribution shows that the fit with the two
additional parameters is not completely stable with the available statistics.
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(a) Random variation within statistics
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(b) Random variation within statistics
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(c) Random variation within statistics
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(d) Random variation within statistics
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(e) Muon momentum reweighted

Figure 7.7.: Systematic deviations of the confidence contours due to the angular ac-
ceptance description. The red curves denote the confidence contours after
the systematic change while the black curves give the nominal confidence
contours before the systematic change. The three contours given correspond
to confidence levels of 68.3% (solid), 90% (dashed) and 95% (dotted) respec-
tively. Figures (a) to (d) show the effect of angular acceptance corrections
that are determined after varying the simulated signal events within their
statistics. Figure (e) gives the confidence contours resulting from an angu-
lar acceptance correction that was determined after reweighting the muon
momenta.
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Figure 7.8.: Confidence levels depending on φs determined in a B0
s production flavor

dependent one-dimensional Feldman-Cousins study. For each of the 40
points in φs 1000 data samples of simulated events are generated and fit.
The vertical black lines denote the range of the 68.3% and the 90% confidence
level intervals. They are given by [−2.78,−0.39] rad and [−3.33, 0.21] rad
respectively.
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LHCb experiment is not yet competitive with the data taken in 2010. Considering that
both Tevatron experiments used data samples corresponding to much larger integrated
luminosities (The CDF experiment used a data sample collected from 2002 to 2009 which
corresponds to an integrated luminosity of 5.2 fb−1) this is not surprising. In this light
the performance of the LHCb detector on the small data sample corresponding to only
36 pb−1 is quite impressive. This amount of data is meanwhile taken in one or two days.

7.5. Outlook on the analysis of data taken in 2011

Currently an analysis of the data taken by the LHCb detector in the first half of 2011 is
underway. The integrated luminosity collected during this time correspond to nearly
400 pb−1. To illustrate what uncertainties can be expected for this data an analysis on
simulated events is performed. Simulated events corresponding to 400 pb−1 are generated
according to the fitted parameter values in Table 7.1. Tagging performance and time
resolution are assumed to be identical to the values found for the data taken in 2010.
The same is assumed for the acceptance effects and the background contribution. The
confidence contours in the φs-∆Γs parameter space determined by the likelihood ratio
method are given in Figure 7.9. Compared to the nominal result for 2010 data the
confidence contours are much smaller. The two minima resulting from the inherent
symmetry of the PDF are well separated for all three contours shown. Finding a similarly
large deviation from the Standard Model prediction in the 2011 data would constitute
an unambiguous sign of physics processes beyond the Standard Model.
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Figure 7.9.: Confidence contours in the φs-∆Γs parameter space determined by the
likelihood ratio method. Simulated events corresponding to an integrated
luminosity of 400 pb−1 and generated according to the parameters given
in Table 7.1 are used. The confidence contours correspond to confidence
levels of 68.3% (solid), 90% (dashed) and 95% (dotted) respectively. An
observation of similar contours on data would constitute an unambiguous
sign of physics processes beyond the Standard Model.





8. Summary and conclusion

A method to determine the CP violating phase φs using the decay B0
s→ J/ψ φ was

developed and is described in this thesis. The extraction method is implemented as
a multidimensional unbinned maximum likelihood fit. The fit uses the reconstructed
B0

s mass for background discrimination and the decay angles to separate CP-even and
CP-odd decay amplitudes. Together with the reconstructed B0

s decay time this enables
the multidimensional fit to perform a measurement of time dependent CP violation.
Both flavor blind and B0

s production flavor dependent studies are possible with the
latter having a significantly higher sensitivity to φs. The developed algorithm takes
the decay time resolution into account. It also incorporates acceptance effects due to
the detector geometry and selection, both for the decay time as well as for the decay
angles. Multiple methods to account for the acceptance effects for both decay angles
and decay time were implemented. To accurately describe the data also the background
contribution was modeled. A sophisticated parameterization of the angular distributions
of the background component was implemented.

The extraction method was tested on fully simulated data and successfully reproduces
the physics parameters used in the generation of the simulated events. In addition a fast
generation method to produce large amounts of simulated events quickly was implemented
to ensure that the fitted parameter values and parameter errors are estimated correctly.

The developed unbinned maximum likelihood fit was used to analyze the data collected
by the LHCb detector during the 2010 data taking period. A flavor blind analysis was
performed to extract ∆Γs, the decay width difference of the B0

s mass eigenstates. ∆Γs

was determined to be ∆Γs = (0.084± 0.112stat. ± 0.014syst.) ps−1. Systematic effects that
were studied include the proper time resolution, angular and proper time acceptance,
modeling of the reconstructed B0

s mass and the angular background description as
well as a possible S-wave contribution. The extracted value for ∆Γs is in excellent
agreement with the current best measurement performed by the CDF experiment,
∆Γs = (0.075± 0.035stat. ± 0.01syst.) ps−1 [39].

Using information on the B0
s production flavor the extraction method implemented

for this thesis was used to determine confidence regions for φs and ∆Γs. The resulting
confidence contours in the φs-∆Γs parameter space are given in Figure 8.1 and constitute
the main result of this thesis. They were determined using an advanced statistical
method proposed by Feldman and Cousins [74] which guarantees correct coverage of
the determined confidence regions. The probability of the Standard Model prediction is
found to correspond to 1.0 standard deviations (68.5% confidence level). The systematic
effect of the flavor tagging calibration is already included in this nominal result. Other
systematic effects that were studied include the proper time and angular acceptance,
the B0

s signal mass model and the angular acceptances as well as a possible S-wave
contribution. They are found to have a negligible effect on the confidence regions
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Figure 8.1.: Confidence contours in the φs-∆Γs parameter space determined by the
Feldman-Cousins method using tagging information on the B0

s production
flavor. The confidence contours correspond to confidence levels of 68.3%
(solid), 90% (dashed) and 95% (dotted) respectively. The black dot denotes
the Standard Model prediction of (−0.0363 rad, 0.087 ps−1).

compared to the large statistical uncertainty. In addition to the two dimensional
confidence regions given by Figure 8.1 one-dimensional confidence intervals for φs are
determined. The resulting confidence intervals for φs are given by [−2.78,−0.39] rad
and [−3.33, 0.21] rad and correspond to confidence levels of 68.3% and 90% respectively.

The confidence regions given in Figure 8.1 are compatible with the latest measurements
performed by the CDF and DØ collaborations which are given in Figure 1.7. All
experiments favor negative values for φs. The confidence regions determined by LHCb
are somewhat larger than the contours extracted by the CDF and DØ collaborations
and therefore not competitive yet.

Currently (as of August 2011) a large effort is underway to analyze the data taken by
the LHCb detector in the first half of 2011 which corresponds to an integrated luminosity
of nearly 400 pb−1. The extraction method developed for this thesis is one of the main
algorithms that are used in the analysis which will be the worlds best measurement of
φs and ∆Γs.
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Figure A.1.: Pull distributions for the flavor blind toy study with no CP violation. 1000
toy data sets are generated and fit each corresponding to an integrated
luminosity of 2 fb−1.
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Figure A.2.: Distributions of the fitted parameter values for the flavor blind toy study with
no CP violation. 1000 toy data sets are generated and fit each corresponding
to an integrated luminosity of 2 fb−1.
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Figure A.3.: Pull distributions for the Standard Model scenario (φs = −0.0363 rad).
1000 toy data sets are generated and fit each corresponding to an integrated
luminosity of 2 fb−1.
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Figure A.4.: Distributions of the fitted parameter values for the Standard Model sce-
nario (φs = −0.0363 rad). 1000 toy data sets are generated and fit each
corresponding to an integrated luminosity of 2 fb−1.
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Figure A.5.: Pull distributions for the New Physics scenario (φs = −0.70 rad). 1000
toy data sets are generated and fit each corresponding to an integrated
luminosity of 2 fb−1.
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Figure A.6.: Distributions of the fitted parameter values for the New Physics scenario
(φs = −0.70 rad). 1000 toy data sets are generated and fit each correspond-
ing to an integrated luminosity of 2 fb−1.
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Γs ∆Γs |A⊥|2 |A0|2 cos δ‖
Γs 0 0.02 0.02 0.03 0.02

∆Γs 0 0.01 0.02 0.02

|A⊥|2 0 0.03 0.02

|A0|2 0 0.01

cos δ‖ 0

(a) RMS of the correlations for the untagged fit
validation study.

Γs ∆Γs φs |A⊥|2 |A0|2 δ‖ δ⊥ ∆ms

Γs 0 0.02 0.10 0.01 0.02 0.02 0.02 0.02

∆Γs 0 0.10 0.01 0.02 0.02 0.02 0.03

φs 0 0.08 0.07 0.01 0.14 0.21

|A⊥|2 0 0.02 0.01 0.02 0.02

|A0|2 0 0.01 0.02 0.02

δ‖ 0 0.02 0.01

δ⊥ 0 0.07

∆ms 0

(b) RMS of the correlations for the tagged fit validation study using
the Standard Model scenario.

Γs ∆Γs φs |A⊥|2 |A0|2 δ‖ δ⊥ ∆ms

Γs 0 0.08 0.11 0.05 0.05 0.02 0.08 0.03

∆Γs 0 0.10 0.05 0.05 0.02 0.13 0.04

φs 0 0.07 0.07 0.01 0.06 0.08

|A⊥|2 0 0.03 0.01 0.08 0.03

|A0|2 0 0.01 0.07 0.02

δ‖ 0 0.02 0.01

δ⊥ 0 0.10

∆ms 0

(c) RMS of the correlations for the tagged fit validation study using
the New Physics scenario.

Table A.1.: RMS of the correlations for (a) the untagged fit validation study, (b) the
tagged fit validation study using the Standard Model scenario and (c) the
tagged fit validation study using the New Physics scenario.
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B. Flavor blind fit

Parameter Result Abs. deviation

Γs 0.6795± 0.0344 −0.0002

∆Γs 0.084± 0.113 -

|A⊥|2 0.2758± 0.0572 −0.0028

|A0|2 0.5321± 0.0403 −0.0002

cos δ‖ −1.210± 0.270 +0.027

(a)

Parameter Result Abs. deviation

Γs 0.6796± 0.0343 −0.0001

∆Γs 0.084± 0.113 -

|A⊥|2 0.2780± 0.0572 −0.0006

|A0|2 0.5304± 0.0403 −0.0019

cos δ‖ −1.227± 0.272 +0.010

(b)

Parameter Result Abs. deviation

Γs 0.6796± 0.0342 −0.0001

∆Γs 0.085± 0.112 +0.001

|A⊥|2 0.2792± 0.0573 +0.0006

|A0|2 0.5302± 0.0403 −0.0021

cos δ‖ −1.233± 0.273 +0.004

(c)

Parameter Result Abs. deviation

Γs 0.6798± 0.0342 +0.0001

∆Γs 0.084± 0.112 -

|A⊥|2 0.2798± 0.0573 +0.0012

|A0|2 0.5309± 0.0404 −0.0014

cos δ‖ −1.232± 0.275 +0.005

(d)

Table B.1.: Systematic uncertainties due to the description of the angular acceptance
effect. (a)-(d) give the systematic effect due to the limited Monte Carlo
statistics. To estimate the effect the Monte Carlo is varied within its statis-
tical uncertainty four times and the largest deviation is taken as systematic
uncertainty.
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