
 

 

 

 

 

 

Dissertation 

submitted to the 

Combined Faculties for the Natural Sciences and for Mathematics 

of the Ruperto-Carola University of Heidelberg, Germany 

for the degree of 

Doctor of Natural Sciences 

 

 

 

 

 

 

presented by 

 

Master of Science 

Dario Pedronel Arcos Díaz 

born in 

Pasto, Colombia 

 

Oral examination ........................ 





 

 

 

 

 

 

 

 

Genetic analysis of emotional memory in AMPA 

and NMDA receptor mutant mice 

 

 

 

 

 

 

 

 

 

 

 

 

Referees 

Prof. Dr. Peter H. Seeburg 

Dr. Rolf Sprengel 

Max Planck Institute for Medical Research 

Heidelberg 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Erklärung gemäß § 7 (3) b) und c) der Promotionsordnung: 

Ich erkläre hiermit, dass ich die vorgelegte Dissertation selbst verfaßt und mich 

dabei keiner anderen als der von mir ausdrücklich bezeichneten Quellen und 

Hilfen bedient habe. Desweiteren erkläre ich hiermit, dass ich an keiner 

anderen Stelle ein Prüfungsverfahren beantragt bzw. die Dissertation in dieser 

oder anderer Form bereits anderweitig als Prüfungsarbeit verwendet oder einer 

anderen Fakultät als Dissertation vorgelegt habe. 

 

 

 

 

Heidelberg, den 30. August 2011     Dario Arcos-Díaz 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A mi madre, mi padre y mi hermana 



 



Dario Arcos-Díaz  Table of Contents 

 I 

Table of Contents 

Figures                V 

Tables             VII 

Acknowledgements             IX 

Summary               XI 

Zusammenfassung            XII 

Abbreviations           XIII 

Part I: AMPA and NMDA receptors in emotional learning 

1. Introduction 2 

1.1. A primer on memory formation 2 

1.2. The amygdaloid complex 4 

1.3. AMPA receptors in emotional memory 5 

1.3.1. AMPA receptors 5 

1.3.2. GluA1 knockout mice 6 

1.3.3. GluA3 knockout mice 7 

1.4. NMDA receptors in emotional memory 8 

1.4.1. NMDA Receptors 8 

1.4.2. Pharmacological blockade of NMDARs 9 

1.4.3. Transgenic models of NMDAR-deficient mice 10 

1.5. Virus-based methods for gene manipulations in the brain 12 

1.5.1. Tetracycline-controlled rAAV-mediated gene expression 13 

1.5.2. Neuronal silencing using tetanus toxin light chain 14 

1.6. Aim of thesis 14 

2. Results 16 

2.1. Emotional memory in GluA3 knockout mice 16 

2.1.1. Exploratory behavior of GluA3-/- mice 16 

2.1.2. General cognitive ability of GluA3-/- mice 17 

2.1.3. GluA3-/- mice in fear conditioning and extinction 20 

2.1.4. GluA3-/- mice in passive avoidance 23 

2.2. Emotional memory in GluA1 mutant mice 25 

2.2.1. GluA1R/R mice in fear conditioning 25 



Dario Arcos-Díaz  Table of Contents 

 II 

2.2.2. GluA1-/- mice in fear conditioning 28 

2.2.3. GluA1-/- mice in passive avoidance 31 

2.3. Long-term passive avoidance in GluA1-/- and GluA3-/- mice 33 

2.4. Long-term fear conditioning in GluA3-/- and GluA1+/- mice 36 

2.5. Amygdala neuron silencing by rAAV-mediated TTLC expression 39 

2.5.1. Injection of rAAVs for TTLC expression in the amygdala 39 

2.5.2. Exploratory behavior after amygdala neuron silencing 41 

2.5.3. Fear conditioning after amygdala neuron silencing 42 

2.5.4. Passive avoidance after amygdala neuron silencing 46 

2.6. Fear-conditioning retrieval after GluN1 and GluA1 deletion in the basolateral 

amygdala 48 

2.6.1. Doxycycline-inducible recombination in the BLA of Rosa26-lacZ2lox mice 48 

2.6.2. Retrieval of a consolidated fear-conditioning memory after GluN1 

knockout in the BLA 50 

2.6.3. Exploratory behavior after GluN1 and GluA1 knockout in the BLA 57 

2.6.4. Visual-association swimming task after GluN1 and GluA1 knockout in 

the BLA  58 

2.6.5. Doxycycline-induced GluN1 and GluA1 knockout in the BLA 60 

3. Discussion 63 

3.1. The subtle effects of AMPAR subunit knockout 63 

3.1.1. General cognitive ability of GluA3-/- mice 63 

3.1.2. GluA1-containing AMPARs and short-term fear memory 64 

3.1.3. GluA3- and GluA1-containing AMPARs in long-term fear memory 68 

3.2. rAAV-mediated gene delivery into the BLA and manipulation of fear memories 71 

3.3. Involvement of NMDARs in post-acquisition memory processes 72 

3.3.1. Methodological considerations of the experimental design 72 

3.3.2. Memory retrieval impairment after GluN1 knockout in the BLA 73 

3.3.3. A role of NMDARs in the BLA for offline memory reactivation 76 

3.4. Remarks on rAAV-mediated and transgenic gene manipulation 79 

Part II: An endogenous neuronal promoter for use in rAAV 

4. Introduction 82 

4.1. Lynx2 as a member of the Ly-6/neurotoxin superfamily 83 

4.2. The lynx2 promoter 85 



Dario Arcos-Díaz  Table of Contents 

 III 

5. Results 86 

5.1. Characterization of the lynx2 promoter by rAAV delivery 87 

5.2. Quantification of gene expression under the lynx2 promoter 94 

5.3. Expression of Cre recombinase under the lynx2 promoter 95 

6. Discussion 97 

7. Materials and Methods 101 

7.1. Materials 101 

7.1.1. Laboratory equipment and materials 101 

7.1.2. Buffer compositions 104 

7.2. Animals 105 

7.2.1. Legal aspects 105 

7.2.2. Housing 105 

7.3. Basic molecular biology 105 

7.3.1. Genotyping 106 

7.3.2. Cloning of the lynx2 promoter 106 

7.4. Cell culture 107 

7.4.1. HEK293 cell transfection 107 

7.4.2. Hippocampal primary neurons 107 

7.4.3. Dual luciferase assay 107 

7.5. rAAV production 107 

7.5.1. Sepharose column HPLC purification 107 

7.5.2. Purification with heparin column 108 

7.5.3. Infectious titer determination 108 

7.5.4. Sources of rAAVs 108 

7.6. Protein analysis 109 

7.6.1. Cell lysis for SDS-PAGE 109 

7.6.2. Protein concentration determination 109 

7.6.3. SDS-PAGE 109 

7.6.4. Coomassie staining 109 

7.7. Stereotaxic rAAV delivery 110 

7.7.1. Newborn mice 110 

7.7.2. Adult mice 110 

7.8. Immunohistochemistry 110 

7.8.1. Fluorescence immunostaining 110 



Dario Arcos-Díaz  Table of Contents 

 IV 

7.8.2. Peroxidase immunostaining 111 

7.8.3. X-gal staining 111 

7.9. Drug treatments 111 

7.9.1. Doxycycline 111 

7.10. Behavioral tests 112 

7.10.1. Handling prior to behavioral testing 112 

7.10.2. Open-field test 112 

7.10.3. Light-dark box 112 

7.10.4. Elevated plus maze 112 

7.10.5. Puzzle box 113 

7.10.6. Fear-conditioning acquisition 113 

7.10.7. Contextual fear test 114 

7.10.8. Cued fear test 114 

7.10.9. Extinction of cued fear 114 

7.10.10. Fear conditioning evaluation 114 

7.10.11. Passive avoidance 114 

7.10.12. Visual-association swimming task 115 

7.11. Statistics 115 

8. Appendix 116 

8.1. Tables of results and statistical analyses 116 

8.2. Supplementary data on GluN1∆BLA and GluA1∆BLA mice 129 

8.2.1. Passive avoidance after GluN1 and GluA1 knockout in the BLA 129 

8.2.2. Reacquisition of cued fear after GluN1 and GluA1 knockout in the BLA

 130 

8.2.3. Post-mortem analysis after GluN1 and GluA1 knockout in the BLA 131 

9. Bibliography 137 

 

 

 



Dario Arcos-Díaz  Figures 

 V 

Figures 

Figure 1. Open field test for GluA3-/- mice............................................................................. 16 

Figure 2. General cognitive ability of GluA3-/- mice assessed in the puzzle-box test...... 19 

Figure 3. Cued fear conditioning and extinction in GluA3-/- mice ..................................... 22 

Figure 4. Long-term retrieval of passive avoidance memory in GluA3-/- mice ................ 24 

Figure 5. Fear conditioning of GluA1R/R mutant mice ......................................................... 27 

Figure 6. Cued fear conditioning and extinction in GluA1-/- mice ..................................... 30 

Figure 7. Long-term retrieval of passive-avoidance memory in GluA1-/- mice................ 32 

Figure 8. Passive avoidance in GluA1-/- and GluA3-/- mice.................................................. 35 

Figure 9. Long-term retrieval of fear conditioning in GluA3-/- and GluA1+/- mice........... 38 

Figure 10. Expression of tdTomato in mice injected with rAAV for expression of TTLC 

for amygdala neuron silencing ...................................................................................... 40 

Figure 11. General exploratory behavior and anxiety in amygdala-silenced mice......... 42 

Figure 12. Fear conditioning after amygdala neuron silencing by TTLC expression..... 45 

Figure 13. Passive avoidance after amygdala silencing by TTLC expression.................. 47 

Figure 14. Recombination of loxP-flanked transcriptional silencing cassette of beta 

galactosidase in Rosa26-lacZ2lox mice by Cre expression ............................................ 49 

Figure 15. Fear conditioning protocol for GluN1∆BLA and GluA1∆BLA mice ....................... 51 

Figure 16. Retrieval of cued fear conditioning before and after knockout of GluN1 and 

GluA1 in the BLA by Dox-induced Cre recombinase expression............................. 55 

Figure 17. Extinction of cued fear in GluN1∆BLA and GluA1∆BLA mice ................................ 57 

Figure 18. Open-field behavior of GluN1∆BLA and GluA1∆BLA mice .................................... 58 

Figure 19. Visual association swim task for GluN1∆BLA and GluA1∆BLA mice.................... 59 

Figure 20. Histological analysis of rAAV-mediated Cre expression in the BLA............. 60 

Figure 21. Histological analysis of GluA1∆BLA and GluN1∆BLA mice 6 months after rAAV 

injection ............................................................................................................................. 62 

Figure 22. Endogenous expression of lynx2 in the adult mouse brain as shown by in situ 

hybridization and examples of lynx2 BAC expression studies ................................. 84 

Figure 23. Scaled schematic representation of the lynx2 gene neighborhood ................. 86 

Figure 24. Characterization of rAAV-Plynx2-EGFP ................................................................ 87 

Figure 25. EGFP expression pattern driven by the lynx2 promoter after P0 brain 

injection in mice analyzed at P21................................................................................... 89 



Dario Arcos-Díaz  Figures 

 VI 

Figure 26. EGFP expression after unilateral rAAV injection in adult mice analyzed at 

PId14 .................................................................................................................................. 91 

Figure 27.  The lynx2 promoter drives expression of EGFP in neurons but not in 

astrocytes in the DG......................................................................................................... 92 

Figure 28. Neuronal and interneuronal marker immunostaining after rAAV-Plynx2-

EGFP infection in DG, CA1 and cortex......................................................................... 93 

Figure 29. Quantification of protein expression under different fragments of the lynx2 

promoter by dual luciferase assay................................................................................. 95 

Figure 30. Expression profile induced by rAAV-Plynx2-iCre2A-Venus in Rosa26-

lacZ2lox/2llox mice analyzed at PId21 ................................................................................. 96 

Appendix Figure 31. Retrieval after 24 h of the passive avoidance task in GluN1∆BLA and 

GluA1∆BLA mice................................................................................................................ 130 

Appendix Figure 32. Reacquisition of fear conditioning in GluN1∆BLA and GluA1∆BLA 

mice .................................................................................................................................. 131 

Appendix Figure 33. Fluorescence immunostaining against Cre recombinase in brains 

of GluN1∆BLA and GluA1∆BLA mice................................................................................. 131 

 

 



Dario Arcos-Díaz  Tables 

 VII 

Tables 

Table 1. Cohort properties for long-term retrieval analysis of fear conditioning. .......... 36 

Table 2. Terminology for experimental groups in this study, sample size and age at the 

time of injection. ............................................................................................................... 50 

Table 3. List of reagents and manufacturers....................................................................... 101 

Table 4. List of components and concentrations of the buffers used in this work........ 104 

Table 5. List of mouse lines analyzed in this thesis including reference. ....................... 105 

Table 6. List of rAAVs used in this study including source or reference. ...................... 109 

Appendix Table 7. Open field test for GluA3-/- mice during a 6 min observation period.

........................................................................................................................................... 116 

Appendix Table 8. Median latency to enter the dark chamber in the puzzle-box test for 

GluA3-/- mice.................................................................................................................... 116 

Appendix Table 9. Mean immobility percentage in a minute-by-minute basis for GluA3-

/- mice during the acquisition protocol and 24 h later in a cued retrieval test. ..... 117 

Appendix Table 10. Mean total immobility levels before and during tone presentation 

in the 24 h cued retrieval test for GluA3-/- mice. ......................................................... 117 

Appendix Table 11. Mean total immobility levels by infrared sensor readings during 

the tone presentation in five consecutive extinction trials for GluA3-/- mice......... 118 

Appendix Table 12. Mean total freezing levels by direct observation during the tone 

presentation in five consecutive extinction trials for GluA3-/- mice. ....................... 118 

Appendix Table 13. Median latency to enter the dark compartment in the passive 

avoidance test for GluA3-/- mice. .................................................................................. 119 

Appendix Table 14. Mean immobility percentage of GluA1R/R and C57Bl/6N mice in 

fear conditioning. ........................................................................................................... 119 

Appendix Table 15. Mean immobility percentage by infrared sensor readings in fear 

conditioning of GluA1-/- mice........................................................................................ 120 

Appendix Table 16. Mean total immobility levels before and during tone presentation 

in the 24 h cued retrieval test for GluA1-/- mice.......................................................... 121 

Appendix Table 17. Mean total immobility levels by infrared sensor readings during 

the tone presentation in five consecutive extinction trials GluA1-/- mice. .............. 121 

Appendix Table 18. Median latency to enter the dark compartment in the passive 

avoidance test for GluA1-/- mice. .................................................................................. 121 



Dario Arcos-Díaz  Tables 

 VIII 

Appendix Table 19. Median latency to enter the dark compartment in the passive 

avoidance test for GluA1-/- and GluA3-/- mice. ............................................................ 122 

Appendix Table 20. Log-rank Mantel-Cox comparison of the latency to enter the dark 

compartment in the passive avoidance test between wild-type GluA1+/+ and 

GluA3+/+ mice. ................................................................................................................. 122 

Appendix Table 21. Median latency to enter the dark compartment in the passive 

avoidance test for GluA1-/- and GluA3-/- mice. ............................................................ 122 

Appendix Table 22. Mean immobility percentage by infrared sensor readings in fear 

conditioning of GluA3-/- and GluA1+/- mice during the acquisition phase. ............ 123 

Appendix Table 23. Mean immobility percentage by infrared sensor readings in fear 

conditioning of GluA3-/- and GluA1+/- mice during the cued retrieval tests. ......... 124 

Appendix Table 24. Mean total immobility levels before and during tone presentation 

in the 24 h and 31 d cued retrieval tests for GluA3-/- and GluA1+/- mice................. 124 

Appendix Table 25. Open field, light dark box and elevated plus maze tests for 

amygdala-silenced TTLC mice..................................................................................... 125 

Appendix Table 26. Mean immobility percentage of amygdala-silenced TTLC and 

C57Bl/6N mice in fear conditioning. .......................................................................... 125 

Appendix Table 27. Mean total freezing levels before and during tone presentation in 

the 24 h cued retrieval test for TTLC mice. ................................................................ 126 

Appendix Table 28. Median latency to enter dark chamber in the passive avoidance 

task for amygdala-silenced TTLC mice. ..................................................................... 126 

Appendix Table 29. Mean immobility percentage by infrared sensor readings in fear 

conditioning of GluA1∆BLA and GluN1∆BLA mice during the acquisition phase...... 126 

Appendix Table 30. Mean freezing percentage by direct observation in fear 

conditioning of GluA1∆BLA and GluN1∆BLA mice during the acquisition phase...... 127 

Appendix Table 31. Mean immobility percentage by infrared sensor readings in fear 

conditioning of GluA1∆BLA and GluN1∆BLA mice during the acquisition phase...... 127 

Appendix Table 32. Mean total freezing levels before and after Dox treatment during 

the first 3 min of tone presentation of the cued retrieval tests for GluA1∆BLA and 

GluN1∆BLA mice................................................................................................................ 128 

Appendix Table 33. Mean relative change in freezing before and after Dox treatment in 

GluA1∆BLA and GluN1∆BLA mice ..................................................................................... 128 

 



Dario Arcos-Díaz  Acknowledgements 

 IX 

Acknowledgements 

I want to express my gratitude to Prof. Dr. Peter H. Seeburg for his insightful 

input and thorough revision of my thesis, and for the financial support of my 

work at his department. I am deeply thankful to Dr. Rolf Sprengel for his 

constant guidance, for fostering critical thinking and independence, and for 

having helped me become a better scientist. I also appreciate the participation 

of Prof. Dr. Stephan Frings and Prof. Dr. Andreas Draguhn in the evaluation of 

this thesis. 

I thank Dr. Wannan Tang, Godwin Dogbevia, Yiwei Chen, Ling Zhang, 

Dr. Ilaria Bertocchi, Horst Obenhaus, as well as former members of the 

Sprengel Lab, Dr. Simone Schievink, and Liliana Layer, for the friendly working 

atmosphere and for helping me uncountable times in the everyday challenges. 

To Dr. Verena Bosch, special thanks for introducing me to the different 

techniques and aiding me at the beginning of the project. 

Many thanks to Dr. Soojin Ryu, Dr. Mazahir Hasan, Dr. Georg Köhr, and 

Dr. Miyoko Higuchi for their many productive discussions and advice. In 

particular to Dr. Ryu, for taking part in my advisory committee, and to Miya, 

for her assistance with the organization of the mouse lines and the genotyping 

team. I also want to acknowledge Simone Hundemeer, Sabine Grünewald, 

Martina Lang and Gwenaëlle Matthies for their technical and administrative 

work, and, very specially, Annette Herold for her valuable help with the slicing 

of brains and anything one could need in the lab. 

I thank Ilona Pfeffer and Lili Hocke for their assistance in performing 

some of the behavioral experiments. Additionally, I thank Dr. Evgeny Resnik 

for helping me so many times with MatLab, and Dr. Mario Treviño for his 

assistance with the visual-association swimming task. I also thank Tina Miucci, 

Jessica Birn, and Rita Pfeffer for their constant labor in taking care of the many 

mice. To the rest of the scientists and technicians of the Molecular Neurobiology 

Department, many thanks for having contributed with a friendly smile and a 

useful tip to the development of this thesis. 



Dario Arcos-Díaz  Acknowledgements 

 X 

This work would have been much harder without Ann-Marie Michalski 

and Areej Albariri. I am deeply thankful for their friendship and support, when 

I most needed them. I also want to thank Sabina and Alexander for being 

always there with delicious meals and kind words. 

Many thanks to my dear Göttingen friends Ahmed, Ramya, Chao-Hua, 

and Shahaf, for being my early companions in this German adventure. And to 

my Colombian friends Támara, María, Pilar, Liliana, Fabio, Sergio, and all those 

who supported me from the distance, for always listening and making me 

laugh. Also, many thanks to the amazing people I have met in Heidelberg, who 

have made this little town so entertaining. 

I am especially thankful to Sven and his family for their motivation and 

constant support, which helped me through the rough times and made these 

years much happier. 

And most importantly, I am grateful to my parents and my sister, whom 

I cannot thank enough with words, for their unconditional love, and so I 

dedicate to them this thesis. 

 

 

 

 



Dario Arcos-Díaz  Summary 

 XI 

Summary 

My goal was to study the role of AMPA and NMDA receptors in fear memory 
using genetic tools. In particular, I aimed to unravel the function of these 
glutamate receptors in the long-term retrieval of passive avoidance and fear 
conditioning, both in the brain in general and in the Basolateral Amygdala 
(BLA). 

Through the analysis of GluA3 knockout mice, I could show that the 
AMPA receptor subunit GluA3 is not necessary for the initial phases of cued 
fear learning, but is required for the normal attenuation of fear to a remote 
negative event, both in the passive-avoidance and fear-conditioning paradigms. 

In contrast, GluA1 is essential for the acquisition and short-term retrieval 
of cue- and context-induced fear. Two gene-targeted mouse lines were used, 
one with a global GluA1 knockout, and a ”loss of function“ mutant 
GluA1 (Q586R). Both lines showed impaired acquisition and reduced cue- and 
context-induced retrieval 24 h and 48 h after fear conditioning, supporting the 
hypothesis of involvement of GluA1-containing AMPA receptors in learning of 
emotional associations. Moreover, in a similar way as for GluA3, GluA1 is also 
required for the normal decrease of fear to remote events in the passive 
avoidance test, suggesting that both subunits play an important role in the 
normal destabilization of older memories such as those that no longer provide 
an advantage in survival. 

To study AMPA and NMDA receptor function specifically in the 
retrieval phase of fear conditioning, I used inducible recombinant adeno-
associated virus (rAAV)-mediated gene manipulations in the amygdala. The 
efforts to generate a BLA-specific promoter for rAAV failed. Therefore a 
doxycycline-inducible neuron-specific system was used for synaptic silencing of 
neurons in the amygdala, and to inactivate NMDA and GluA1-containing 
AMPA receptors in the BLA. Altogether, the analysis of rAAV-injected mice 
provided strong evidence that retrieval of cued fear memory is dependent on 
the chronic expression of NMDA receptors in the BLA, whereas the 
contribution of the GluA1-containing AMPA receptors remains to be 
confirmed. 

In the second part of this thesis, I generated and analyzed a new rAAV 
vector for tissue-specific gene delivery. A new endogenous promoter was 
cloned from the murine lynx2 gene, a member of the Ly-6/neurotoxin 
superfamily, for overexpression of genes in dentate gyrus granule cells. This 
virus can be used to further restrict rAAV-mediated targeting to certain groups 
of cells. 
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Zusammenfassung 

Die vorliegende Arbeit beschreibt neue gentechnisch unterstützte 
Untersuchungen zur Funktion von AMPA- und NMDA-Rezeptoren im Gehirn 
und insbesondere der basolateralen Amygdala (BLA) von Mäusen beim 
Erlernen und bei der Ausprägung emotionaler Erinnerungen. 
 In Verhaltensstudien an GluA3-Knockout Mäusen konnte ich zeigen, 
dass AMPA-Rezeptoren, welche die Untereinheit GluA3 tragen, für eine 
Angstkonditionierung nicht benötigt werden. Allerdings sind diese Rezeptoren 
für eine allmähliche Attenuierung der Angstreaktion bezüglich einer 
ursprünglich erworbenen negativen Erfahrung notwendig, wie Messungen des 
passiven Vermeidungsreflexes als auch der Angstreaktion auf den negativ 
assoziierten Reiz einige Wochen nach der Konditionierung belegen können. 
 Im Gegensatz dazu sind die GluA1-haltigen AMPA-Rezeptoren für das 
Erlernen und Memorieren reiz- und kontext-konditionierter Angst essentiell. 
Dies zeigen Verhaltensstudien mit globalen GluA1-Knockout- Mäusen als auch 
mit den „Loss of Function“ GluA1 (Q586R)-Mutanten. In beiden Mauslinien ist 
eine verminderte Lernfähigkeit und eine deutlich reduzierte reiz- bzw. kontext-
induzierte Angstreaktion 24 und 48 Stunden nach der Konditionierung 
nachweisbar, was auf eine Beteiligung von GluA1(Q) haltigen AMPA-
Rezeptoren beim effektiven Erlernen emotionaler Assoziationen hinweist. 
Außerdem werden die GluA1 als auch GluA3 im AMPA-Rezeptorkomplex für 
die normale Abschwächung traumatisierter Angst, die im passiven 
Vermeidungstest quantifiziert wurde, benötigt. Dies deutet darauf hin, dass 
beide Untereinheiten bei der Destabilisierung älterer Erinnerungen, wie z. B. 
solcher, die keine Überlebensvorteile mehr verleihen, eine wichtige Rolle 
spielen. 
 Um die Funktion von AMPA- und NMDA-Rezeptoren bei der Reaktion 
auf einen konditionierten Reiz zu untersuchen, wurden induzierbare 
Genmanipulationen in der Amygdala mit Hilfe von rekombinanten adeno-
assoziierten Viren (rAAV) durchgeführt. Da es nicht möglich war einen BLA-
spezifischen Promotor für rAAV zu generieren, wurde ein Doxycyclin 
induzierbares System benutzt, um die synaptische Aktivität von Neuronen in 
der Amygdala auszuschalten und um NMDA- und GluA1-enthaltende 
Rezeptoren in der BLA zu inaktivieren. Die Analyse der rAAV-infizierten 
Mäuse lieferte erste starke Hinweise für eine Beteiligung der NMDA-
Rezeptoren bei der Erinnerung an einen lange zurückliegenden konditionierten 
Stimulus und somit einen Beweis, dass chronische NMDA-Rezeptorexpression 
für den langfristigen Erhalt einer negativen emotionalen  Erfahrung notwendig 
ist. Die Mitwirkung von GluA1-enthaltenden AMPA-Rezeptoren konnte nicht 
eindeutig gezeigt werden. 
 Im zweiten Teil meiner Dissertation generierte und analysierte ich einen 
neuen rAAV-Vektor für gewebespezifische Genexpression. Genfragmente aus 
der Promotorregion des lynx2-Gens wurden isoliert, um mit deren Hilfe die 
Überexpression von rAAV-transduzierten Genen in den Körnerzellen des 
Gyrus dentatus zu ermöglichen. Ein aus diesen Studien resultierendes neues 
Virus ermöglicht die Eingrenzung eines rAAV-vermittelten Gentransfers auf 
bestimmte neuronale Zellpopulationen. 
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1. Introduction 

We are who we are thanks to the things we remember: from our names to the 

events in our lives, our memories shape our identity. The general curiosity 

about the mechanisms behind learning date back to the ancient civilizations, 

but the systematic study of learning only began with the development of 

simplified models for analysis (Ebbinghaus, 1885; Pavlov, 1927). The 

conditioning paradigm established by Pavlov (Pavlov, 1927) provided strong 

insights into the principles of learning and memory. In brief, the basic principle 

consists in exposing an animal to a harmless stimulus (the conditioned 

stimulus; CS), which is paired with a naturally aversive stimulus (the 

unconditioned stimulus; US), usually an electric shock. Subsequently the 

animal will display a conditioned fear response (CR) when re-exposed to the 

initially harmless CS. 

Several variants of this basic paradigm have been developed and 

different brain structures have been found to be involved in each of them. For 

example, when the CS consists of a tone—termed auditory or cued 

conditioning—the amygdaloid complex is required but not the hippocampus 

(LeDoux, 2003), whereas both regions are necessary if the CS is in the form of a 

context—as in contextual fear conditioning (Phillips and LeDoux, 1994). The CR 

can be measured in several ways, such as the startle reflex (Brown et al., 1951; 

Davis et al., 1993), or, most commonly in the form of ‘freezing’, an inborn 

behavior shown by rodents in response to a frightening stimulus, consisting in 

the total absence of movements except for those necessary for respiration 

(Blanchard and Blanchard, 1969a, b), and is widely used as an index of learned 

fear (Kandel, 2001). The simplicity of the fear-conditioning paradigm allowed 

the systematic study of learning and memory. 

1.1. A primer on memory formation 

The first proposal that memory undergoes maturation over time was made 

more than a century ago (Lechner and Squire, 1999). Since then, a great amount 
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of evidence has been obtained, supporting the general view that memories first 

undergo a phase of lability after they have been learned and become stable over 

time (Kandel, 2001; McGaugh, 2000). However, consolidation can be analyzed 

at different levels. 

At the level of ‘cellular consolidation’, there is a time window lasting 1–2 

days after initial learning during which memories can be disrupted by a 

number of manipulations ranging from inhibition of protein or RNA synthesis 

to head concussions, hypothermia or electroconvulsive shock. After this 

vulnerability period, these amnesic treatments do not exert the same effect and 

memories become stable (Kandel, 2001; McGaugh, 2000). 

Memories also undergo ‘systems consolidation’, which refers to a change 

in their requirement of certain brain regions with the passage of time. Scoville 

and Milner first reported that the medial temporal lobe, a region which contains 

the hippocampus, is required for the recall of recent but not remote memories 

in humans (1957). Several models have proposed that certain types of 

memories, for example, contextual memories, initially depend on the 

hippocampus but later become hippocampus-independent and are ‘transferred’ 

to the neocortex (Frankland and Bontempi, 2005). 

 More recently, attention rose around the long-reported observation that 

memories that had already undergone consolidation and were thought to be 

stable, can again become labile after reactivation (Misanin et al., 1968; Nader et 

al., 2000). This process, termed ‘reconsolidation’, challenged the view that the 

important molecular mechanisms of learning occurred only after initial 

learning. Reconsolidation has been proposed to be a mechanism for updating 

old memories by linking them to, or adding, new information (Sara, 2000a), but 

also as a way of strengthening memories by reactivation (Alberini, 2011; Sara, 

2000b). 

 Another important memory process is ‘extinction’, which consists in the 

formation of a new association between a CS and the absence of a US, where the 

CS had been previously coupled with a US to produce a CR. This process leads 

to the decrease of the CR, e.g. in the form of decreased fear, and can have 

important clinical applications. In practice, whether reactivation of a memory 
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leads to extinction or to reconsolidation depends on many factors like the 

duration of the reactivation trial (Pedreira and Maldonado, 2003) and the 

strength of the memory (Suzuki et al., 2004). Moreover, there are ‘boundary’ 

situations in which subtle changes in the behavioral protocol can lead to either 

strengthening or overwriting of the memory: for example, triggering 

reconsolidation can facilitate the subsequent extinction of a fear memory 

(Monfils et al., 2009). 

Finally, there is evidence that the passage of time alone can change the 

susceptibility of memories to reconsolidate or extinguish (Inda et al., 2011) 

(Dudai and Eisenberg, 2004). This implies that there are ongoing ‘lingering’ 

processes that continue after a memory has been consolidated or 

reconsolidated, but the molecular nature of these phenomena remains unclear. 

1.2. The amygdaloid complex 

The amygdaloid complex is a key player in the emotional modulation of 

learning. Lesion studies in different organisms have shown that ablation of the 

basolateral amygdala (BLA) by mechanical (Weiskrantz, 1956; Zola-Morgan et 

al., 1991), pharmacological (Maren et al., 1996a), or electrical methods (Armony 

et al., 1998) leads to the inability to form associations between noxious (US) and 

non-noxious (CS) events. It is also accepted that synaptic plasticity in the BLA 

plays an important role in the formation of these associations. The firing rate of 

BLA neurons changes during fear conditioning and increases when the CS is 

presented (Collins and Paré, 2000; Quirk et al., 1997; Quirk et al., 1995; Repa et 

al., 2001). Moreover, induction of long-term potentiation (LTP) in the BLA has 

also been correlated with fear learning (Huang and Kandel, 1998; Maren and 

Fanselow, 1995; McKernan and Shinnick-Gallagher, 1997; Rogan et al., 1997). 

Therefore, the analysis of the mechanisms mediating plasticity changes in the 

amygdala became of utmost importance to understand the underpinnings of 

emotional learning. 

Anatomically, the amygdala consists of more than ten different highly 

interconnected nuclei in the medial temporal lobe (Davis and Whalen, 2001). 

The BLA receives afferents from subcortical and cortical sensory systems, 
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among which those from the thalamus and the auditory cortex are critical for 

auditory fear conditioning (Campeau and Davis, 1995; LeDoux et al., 1986). The 

BLA connects with the central amygdala (CeA), which has outputs to the 

brainstem and the hypothalamus, enabling the association of sensory 

information from CS and US with the physiological fear responses (Pare et al., 

2004). Lesion studies showed that the amygdala is necessary for the acquisition 

of fear conditioning and expression of the fear response (Kim and Davis, 1993a; 

Roozendaal et al., 1991) and for the long-term storage of the fear memory (Kim 

and Davis, 1993b; Maren et al., 1996a). 

The mechanisms involved in emotional learning are related to synaptic 

strength changes in the input projections to the lateral amygdala (Maren and 

Quirk, 2004). An example of such changes is LTP, an activity-dependent 

increase of synaptic transmission that lasts for hours or days (Bliss and Lomo, 

1973) and is believed to underlie learning and memory (Malenka and Nicoll, 

1999). LTP has been demonstrated to occur at the input synapses to the lateral 

amygdala (Huang and Kandel, 1998; Maren and Fanselow, 1995; Rogan et al., 

1997) and to be driven by different mechanisms at its thalamic and cortical 

afferents (Sigurdsson et al., 2007). Intensive research efforts have been 

dedicated to study these mechanisms in the hope of improving our 

understanding of memory and learning, but the details of the molecular 

underpinnings are not yet fully understood.  

1.3. AMPA receptors in emotional memory 

1.3.1. AMPA receptors 

Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors 

(AMPARs) are glutamate-gated tetrameric ion channels formed by four types of 

subunits: GluA1 through GluA4 (Collingridge et al., 2008; Keinänen et al., 

1990). Each subunit has an extracellular N-terminus and an intracellular C-tail 

(Hollmann et al., 1989). The ion-permeable pore of the channel is formed by the 

second hydrophobic domain of each subunit and allows the flow of Na+ and K+. 

Ca2+-impermeability is given by the presence of the GluA2 subunit in the 

receptor complex (Hume et al., 1991; Verdoorn et al., 1991). In neurons, 
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AMPARs are dimers of heterodimers, consisting of one GluA2 subunit and 

either one GluA1 or one GluA3 subunit. The crystal structure for a homo-

oligomeric AMPAR has already been determined (Sobolevsky et al., 2009). 

AMPARs have been shown to be involved in synaptic transmission and LTP in 

the lateral amygdala (LA) by pharmacological methods. For example, blockade 

of AMPARs, or the related kainate receptors, by 6-cyano-7-nitroquinoxaline-2,3-

dione (CNQX) or 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-

dione (NBQX) indicates that AMPAR activation in the amygdala is important 

for the formation of fear memories and also for the expression of fear responses 

(Kim et al., 1993; Walker and Davis, 2002), but not for reconsolidation of cued 

fear (Ben Mamou et al., 2006). But pharmacological studies present several 

important drawbacks, e.g. toxicity of the drugs, unspecificity of activity, 

inability to distinguish between affected cell-types. For this reason, it is 

necessary to use a genetic approach to help to elucidate the role of AMPARs in 

the amygdala, including that of its different subunits. 

1.3.2. GluA1 knockout mice 

Genetic targeting revealed a great deal of information about the role of AMPAR 

subunits in behavioral responses. Mice with a global knockout of the GluA1 

subunit (GluA1-/-) are viable and exhibit normal gross behavior (Bannerman et 

al., 2004), they have impaired CA1-to-CA3 LTP in the hippocampus, but their 

spatial reference memory is normal, for example, in the Morris water maze 

(Reisel et al., 2002; Zamanillo et al., 1999) or in the Y-maze (Reisel et al., 2002). 

However, these mice exhibit a memory dissociation, in which the spatial 

working memory is impaired, for example, in the T-maze (Reisel et al., 2002). A 

rescue of GluA1 expression in pyramidal neurons of the hippocampus by 

transgenic methods showed that the T-maze performance could be restored in 

GluA1-/- mice (Mack et al., 2001; Schmitt et al., 2005). 

Regarding GluA1 function in the amygdala, through the analysis of 

global GluA1 and GluA3 knockout mice, it was shown that GluA1-containing 

AMPARs are essential for LTP in the thalamo-LA pathway, whereas both 

GluA1 and GluA3 subunits contribute to LTP at the cortico-LA synapses 
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(Humeau et al., 2007). Moreover, the same study showed that GluA1-/- mice 

exhibit impaired acquisition and retrieval of cued and contextual fear 

conditioning, but since these animals express no GluA1 in any tissue, this 

approach does not allow distinguishing the degree of participation of the 

AMPA receptors in the amygdala specifically. Nonetheless, these data are in 

line with a key involvement of the GluA1 subunit in learning processes in 

regions of the brain other than the hippocampus. 

Further evidence for the role of GluA1 in learning mechanisms in the 

amygdala comes from a virus-mediated approach for disrupting GluA1 

trafficking in LA neurons, which blocked thalamo-LA LTP and impaired the 

acquisition of auditory fear conditioning (Rumpel et al., 2005). However, it is 

not clear from this study whether the observed impairment is solely due to the 

interference with GluA1 trafficking or to unspecific effects of the over-

expression of the C-tail of the GluA1 subunit. 

1.3.3. GluA3 knockout mice 

GluA3 is expressed in high levels only in the cerebellum, and in low levels in 

pyramidal neurons (Keinänen et al., 1990), in contrast to another subunit, 

GluA2, which is expressed in most of the receptors in the adult (Wenthold et al., 

1992). The GluA3 subunit, like GluA2, has a short intracellular C-terminal tail 

and interacts with a subset of PDZ proteins (Song and Huganir, 2002). The exact 

function of GluA2/3-containing AMPARs remains unclear. These receptors are 

thought to be part of a constitutive pathway for constant renewal of the 

AMPAR pool in the membrane and not to be necessary for activity-dependent 

endocytosis of AMPARs (Biou et al., 2008), contrasting with GluA1-containing 

receptors, which are critical for plasticity-related processes, in which synaptic 

strength changes due to experience (Shi et al., 2001). 

The analysis of mice with global GluA3 knockout (GluA3-/-) has only 

revealed subtle abnormalities. Studies in vitro have shown that the synaptic 

properties of the neurons are only weakly affected by GluA3 knockout (Biou et 

al., 2008). Moreover, only a small percentage (~16%) of synaptic AMPARs 

contain GluA3 in CA1 pyramidal neurons (Lu et al., 2009), which would 
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explain the minor effects in fast glutamatergic synaptic transmission. In the 

cerebellum, deletion of GluA3 is correlated with a reduction in the levels of 

GluA1, -2, and -4. This fact might be related to the slight motor coordination 

impairment seen in the rotarod and beam balance tests, as well as the reduced 

locomotor activity shown in the open-field test (Sanchis-Segura et al., 2006). 

However, in areas where there are low constitutive amounts of GluA3, e.g. the 

hippocampus, deletion of the GluA3 gene does not affect the expression of the 

other AMPAR subunits, and the spatial reference memory in the Morris water 

maze is not impaired (Sanchis-Segura et al., 2006). 

Overall, GluA3-/- mouse behavior is largely normal compared with wild-

type littermates, and differences have only been found in very specific tests and 

observations. For example, sleep-related abnormalities have been reported, 

with an absence of non-Rapid Eye Movement sleep phases in GluA3-/- mice and 

abnormal breathing during periods of inactivity (Steenland et al., 2008). 

Additionally, higher locomotor activity was reported in the forced-swim test, a 

test for depression-like behavior. A role in alcohol addiction has also been 

reported: although GluA3-/- mice have a normal alcohol-seeking phenotype, 

they exhibit reduced reinstatement after extinction (Sanchis-Segura et al., 2006). 

1.4. NMDA receptors in emotional memory 

1.4.1. NMDA Receptors 

N-methyl-D-aspartate receptors (NMDARs) are unique tetrameric ion channels 

that require simultaneous binding of glutamate and glycine, as well as 

depolarization of the membrane, in order to be fully activated (Johnson and 

Ascher, 1987). This is due to the blockade of the ion pore by Mg2+ at resting 

membrane potential (Nowak et al., 1984). Hence, NMDARs are thought of as 

coincidence detectors of pre- and postsynaptic neuronal activation. NMDARs 

are formed by different subunits, the most important being GluN1, GluN2A 

and GluN2B. Functional channels require two GluN1 and two GluN2 subunits, 

and the receptor assembly can occur only when GluN1 subunits are available 

(Schüler et al., 2008). 
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1.4.2. Pharmacological blockade of NMDARs 

Among the first attempts to study the molecular processes mediating memory 

formation in the amygdala, pharmacological studies targeting NMDA and 

AMPA receptors were performed. It is now generally accepted that NMDARs 

are essential for the acquisition of fear memories (Bauer et al., 2002; Campeau et 

al., 1992; Fanselow and Kim, 1994; Miserendino et al., 1990).  

 The role of NMDARs in the expression of fear, that is, in the performance 

on the actual retrieval test has been less clear and was intensely disputed for 

several years. Two decades ago, Miserendino and colleagues (1990) showed 

that the NMDAR antagonist 2-amino-5-phosphonopentanoic acid (APV) did 

not impair the expression of fear in a potentiated startle reflex paradigm—

which is different from the fear conditioning paradigm. Later on, Maren and 

colleagues (1996b) found that APV did impair the expression of fear in a 

contextual fear-conditioning paradigm. This observation was again debated by 

Gewirtz and Davis (1997) by showing that APV once again did not impair fear 

potentiated startle. Shortly afterwards, Lee and Kim (Lee and Kim, 1998) 

claimed that APV did impair the expression of fear both in contextual and cued 

fear conditioning and proposed that the role of NMDARs is different for the 

startle and the conditioning paradigms. The controversy remained unresolved 

until a growing amount of evidence supported the notion that NMDARs are 

only required for acquisition but not for expression of fear. More recently, 

Matus-Amat and colleagues (2007) proposed that the reason for the conflicting 

results could be due to the use of different enantiomers in the different studies: 

D-APV was shown not to impair expression of fear, whereas DL-APV and L-

APV did reduce fear expression. 

In the last decade, experiments assessing the effect of intra-BLA APV 

injection in fear extinction have shown that NMDAR blockade does not impair 

expression of fear but does impair the extinction of fear both in avoidance 

learning (Myskiw et al., 2010) and in fear conditioning (Zimmerman and 

Maren, 2010), whereas the NMDAR partial agonist D-cycloserine facilitates 

extinction (Walker et al., 2002). Similarly, injection of APV or ifenprodil, a 

selective blocker of GluN1/GluN2B receptors, into the BLA prior to cued fear 
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reactivation did not have an effect on expression of fear, but did impair 

reconsolidation from occurring afterwards (Ben Mamou et al., 2006). Also, fear-

conditioning reconsolidation can be potentiated by intra-BLA injection of D-

cycloserine (Lee et al., 2006). A requirement of NMDARs for reconsolidation 

has also been reported in rewarded memory paradigms (Torras-Garcia et al., 

2005) and in avoidance memory in invertebrates (Pedreira et al., 2002). 

Therefore, it is currently accepted that NMDARs are essential for the 

acquisition phase, are not required for the expression of memory, and are 

necessary for memory extinction and reconsolidation. 

 Regarding the subunit composition of NMDARs, an important role for 

GluN2B receptors on reconsolidation has been proposed (Wang et al., 2009). 

1.4.3. Transgenic models of NMDAR-deficient mice 

Global knockout of NMDARs in GluN1-/- mice leads to early death within 15 h 

after birth due to respiratory failure (Forrest et al., 1994). Therefore, only 

inducible or subregion-specific GluN1 knockouts can be used for behavioral 

analysis. However, a limiting factor is the low number of specific promoters or 

molecular technologies available for such anatomically restricted 

manipulations. A number of forebrain and hippocampus-specific promoters 

have been used to drive specific transgenic expression of Cre recombinase in 

different regions. Using this approach, distinct roles for NMDARs in different 

regions of the hippocampus have been described. Nevertheless, the transgenic 

promoter’s expression pattern during the lifetime of the animal is often not 

clearly defined, constituting an important drawback for NMDAR functional 

analysis. For example, it has been reported that CA1-specific knockout of 

GluN1 strongly impairs spatial learning in the Morris water maze, but does not 

affect a non-spatial ‘landmark’ version of the task (Tsien et al., 1996). However, 

there is evidence that a strong component of this impairment might be the 

knockout of NMDARs in additional regions of the forebrain in those mice 

(Fukaya et al., 2003; Rondi-Reig et al., 2001; Rondi-Reig et al., 2006; Wiltgen et 

al., 2010). There is a similar situation for the role of NMDARs in the dentate 

gyrus. In one model of knockout of GluN1 specifically in the granule cells of the 



Dario Arcos-Díaz  Part I – Introduction 

 11 

dentate gyrus, no effect on contextual fear conditioning itself was found, but an 

inability to differentiate between two related contexts (McHugh et al., 2007). On 

the other hand, in a different model of GluN1 knockout in dentate gyrus (DG) 

granule cells, no deficit in spatial pattern separation was found (Niewoehner et 

al., 2007). 

In order to study the involvement of NMDARs in different phases of 

learning, inducible systems are necessary to temporally restrict the onset—and 

offset—of the knockout. Using a doxycycline (Dox)-inducible forebrain-specific 

GluN1 knockout mouse, it was first stated that NMDARs could play a role in 

the consolidation processes occurring weeks after learning of hippocampus-

dependent tasks such as Morris water maze or contextual fear conditioning 

(Shimizu et al., 2000). In this study, an exogenous GFP-tagged GluN1 subunit 

was expressed in the absence of Dox for ‘reversibility’. Knockout of GluN1 

during or right after training significantly impaired further recall one month 

later, whereas when the knockout was performed three weeks after 

conditioning, no effect was observed in the one-month retrieval test. The same 

mouse line was analyzed in another long-term experiment (Cui et al., 2004). 

Using this model, it was shown that nine-month retrieval of cued and 

contextual fear conditioning was impaired if NMDARs were removed during a 

four-week period starting six months after training, showing that NMDAR 

expression was required during resting periods for normal retrieval of memory 

at later time-points. 

 Regarding the role of amygdala NMDARs in learning, only one study 

has been published so far. In that study, knockout of GluN1 in the CeA by 

recombinant adeno-associated virus (rAAV)-mediated Cre recombination in 

GluN12lox/2lox mice inhibited the expression of conditioned place aversion 

induced by opioid withdrawal in morphine-addicted mice (Glass et al., 2008). 

The rAAV-mediated approach provides alternative methods for the analysis for 

NMDARs in defined regions of the brain and several examples are presented in 

the following section. 
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1.5. Virus-based methods for gene manipulations in the brain 

A significant limitation of transgenic methods for the modification of gene 

expression in mice is the dependence on cell-type-specific promoters that are 

sufficiently strong, and are active at an appropriate time point in the life of the 

animal. Stereotaxic virus-mediated gene manipulations are, so far, the only 

feasible alternative for the reliable selective alteration of gene expression in 

brain regions such as the amygdaloid complex. Several viral vectors are 

available for gene delivery in neurons, including lenti-, herpes and rabies 

viruses, but I will focus on rAAV systems, since these vectors are easy to 

manipulate and are handled at a low biosecurity level. 

AAVs are small (~26 nm) paraviruses consisting of a single-stranded 

4.7-kb DNA genome and a simple, non-enveloped icosahedral protein coat 

(Klein et al., 2002; Peel and Klein, 2000) and require a helper virus for 

productive infection (Atchison, 1970; Casto et al., 1967; Richardson and 

Westphal, 1984). An estimate of 85% of human adults are carriers for AAV with 

no associated pathology (Muzyczka, 1992). 

Recombinant AAVs are unable to replicate since 96% of the viral genome 

is removed, leaving in the virus only two 145 bp inverted terminal repeats 

(ITRs), which are necessary for packaging (McLaughlin et al., 1988; Samulski et 

al., 1989), however, a 4.7-kb limit still applies. A great advantage of the usage of 

rAAV vectors is their lack of toxicity (Tenenbaum et al., 2004) and their long-

lasting expression of the delivered genes without triggering immune responses 

(Peel and Klein, 2000). Moreover, rAAV vectors do not integrate into the mouse 

genomes or do it with a very low frequency, minimizing possible effects on the 

host cells due to integration (Nakai et al., 2001).  

A variety of tissues have been successfully targeted by rAAVs including 

lung, muscle, brain, spinal cord, retina and liver (Zolotukhin et al., 1999). 

Therefore, rAAVs have been proposed as good candidates for gene therapy in 

the treatment of neurological conditions (Anderson, 1998; Monahan and 

Samulski, 2000). Moreover, the onset of expression of the delivered genes can 

be controlled by drugs, such as tetracycline, RU486 or rapamycin (Haberman 

and McCown, 2002). In a recent notable example, a successful clinical trial was 
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performed for treatment of Parkinson’s Disease using bilateral rAAV-mediated 

expression of glutamic acid decarboxylase in the subthalamic nucleus, leading 

to an improvement of the symptoms of the disease (LeWitt et al., 2011). 

1.5.1. Tetracycline-controlled rAAV-mediated gene expression 

Stereotaxic delivery of rAAV into the brain provides a degree of anatomical 

specificity that cannot be obtained by classical transgenic methods. 

Additionally, temporal regulation of gene expression can be achieved by using 

the tetracycline-controlled transcriptional trans-activator (tTA) system, based 

on the tetracycline resistance operon from Escherichia coli (Gossen and Bujard, 

1992). In general terms, the system relies on the exogenous expression of tTA, 

which binds to a set of seven tetracycline operators (TetO7) directly upstream 

from a minimal cytomegalovirus promoter containing a TATA-box 

transcription start site (Ptet), thus driving expression of the gene(s) of interest 

under that promoter. In the presence of tetracycline or its derivative Dox, tTA 

cannot bind the TetO7 and the promoter is silent. A variation of this system 

consists in using a reverse tTA (rtTA), which has been modified so that it 

requires Dox presence in order to bind to TetO7 and drive gene expression 

(Gossen et al., 1995; Hecht et al., 1993).  

For use in rAAV, the tTA or rtTA gene can be packed in one virus, while 

another virus containing the Ptet responder is simultaneously delivered (McGee 

Sanftner et al., 2001; Zhu et al., 2007). In order to drive expression of two genes 

simultaneously, several approaches are available. The first one consists of a 

bidirectional version of the promoter Ptet (Ptetbi). Moreover, internal ribosomal 

entry sites have also been used, but the degree of expression of the second gene 

can be a limiting factor. More recently, self-cleaving viral peptide bridges, such 

as the 18-aminoacid 2A-peptide from the picornavirus family (Ryan et al., 1991), 

have been adapted for use in rAAV vectors to efficiently express two or three 

genes simultaneously in comparable amounts (Tang et al., 2009). 

By combining the tTA/rtTA systems with rAAV-mediated expression of 

Cre recombinase, the removal of loxP sites for knocking out genes in the mouse 

brain can be delimited both anatomically and temporally, thus enabling 
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important applications. In this study, I applied these tools to restrict the 

knockout of GluN1 and GluA1 subunits to the basolateral amygdala after a 

defined time point to investigate a particular phase of emotional learning. 

1.5.2. Neuronal silencing using tetanus toxin light chain 

Finally, the rAAV system can also be used for the expression of gene products 

that directly modify neuronal activity. This approach has only started recently 

and has proven to have enormous potential for the study of brain function. 

The tetanus toxin light chain (TTLC), a fragment of the tetanus 

neurotoxin from Chlostridium, cleaves the synaptic protein VAMP2 (Link et al., 

1992; Schiavo et al., 1992) and inhibits release of neurotransmitter vesicles in 

neurons (Schoch et al., 2001; Südhof, 1995). The expression of TTLC has been 

used in transgenic mice for the reversible rtTA-regulated silencing of granule 

cells in the cerebellum (Yamamoto et al., 2003), in olfactory sensory neurons (Yu 

et al., 2004), and more recently, in CA3 neurons of the hippocampus (Nakashiba 

et al., 2008). TTLC expression has also been used for the hemilateral silencing of 

substantia nigra neurons in a rat model of Parkinson’s disease using adenoviral 

vectors (Yang et al., 2007). 

So far, TTLC-mediated neuronal silencing in the amygdala has not yet 

been reported. In this study, I used rAAV gene delivery of TTLC as a proof-of-

concept experiment, showing that rAAV-mediated gene expression 

modifications can be applied for the study of amygdala-related learning. 

However, the potential of reversible neuronal silencing in this brain region for 

the study of different phases of learning still remains to be explored.  

1.6. Aim of thesis 

Ionotropic glutamate receptors play an essential role in the mechanisms of 

neuronal plasticity in the brain. Particularly in learning and memory, AMPARs 

and NMDARs are key to the changes in synaptic transmission. A great deal of 

knowledge has been gained from genetic mouse models with altered AMPAR 

and NMDAR signaling, which points to a complex scenario for the roles of 

these two types of receptors. Nevertheless, important limitations are associated 



Dario Arcos-Díaz  Part I – Introduction 

 15 

with the transgenic and pharmacological methods that have been used so far 

for the study of the involvement of glutamate receptors in mental processes. My 

goal is to gain insight into the role of the two main populations of AMPARs in 

principal neurons—GluA1- and GluA3-containing receptors—in short- and 

long-term memory processes through the behavioral analysis of mice deficient 

for each of these subunits. Additionally, I aim to apply rAAV-mediated gene 

delivery in the study of amygdala-dependent learning and, particularly, the 

involvement of NMDARs in long-term memory. 
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2. Results 

2.1. Emotional memory in GluA3 knockout mice 

2.1.1. Exploratory behavior of GluA3-/- mice 

An assessment of general exploratory behavior is of great importance for a 

variety of behavioral tests that rely on measurement of mouse locomotion. The 

global GluA3-deficient mouse line, GluA3-/- (Sanchis-Segura et al., 2006), was 

tested in order to find out what behavioral phenotype arises when GluA3-

containing AMPARs are absent. 

GluA3-/- mice (n = 13 males; age 17 ± 0.2 weeks) and wild-type littermates 

(Control n = 11 males; age 16 ± 0.3 weeks) were used for these experiments. 

Observation of exploratory activity in the open field arena (Figure 1a) for 6 min 

revealed that the control group traveled a longer distance (Figure 1b; t22 = 3.8, 

p = 0.001), indicating a hypoactive behavior of GluA3-/- mice. However, the time 

spent in the center of the arena for all mice was not significantly different 

(Mann-Whitney U = 50, p = 0.22), indicating that the global anxiety levels were 

similar for both groups (Appendix Table 7, Figure 1c). 

 
Figure 1. Open field test for GluA3-/- mice 
a, Diagram of the open field: the 60 cm x 60 cm arena was divided in 16 equal regions, 
with the four internal squares constituting the center. b, Scatter plot of the total 
distance traveled during the 6 min observation calculated from the video recording: 
GluA3-/- mice were significantly less explorative The horizontal line corresponds to the 
mean. c, Scatter plot of the percentage of time spent in the center area of the open field 
with the mean shown as a horizontal line. No significant difference was observed 
between knockouts and controls. Error bars, s.e.m. ***p = 0.001 
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2.1.2. General cognitive ability of GluA3-/- mice 

The puzzle-box test was used to assess the general cognitive ability of GluA3-/- 

mice in a series of executive tasks with increasing difficulty to escape from a lit 

compartment (Abdallah et al., 2011). For each task, the latency to escape from 

the bright compartment and enter the dark compartment of the box was 

measured and the test was stopped after a time limit of 3 or 4 min. A censored-

subject statistical analysis was performed, in which the log-rank Mantel-Cox 

test was used to compare the ‘survival’ curves—i.e. the plot of the percentage of 

mice reaching the goal within a particular latency—between genotypes on 

different trials and tasks and the Bonferroni correction was applied when 

comparing more than two curves (Appendix Table 8). 

In the first task, animals simply passed through an ‘open door’ opening 

from the light to the dark compartment. No differences were found in the 

escape latency for GluA3-/- and controls, indicating that the motivational drive 

to escape from the brightly lit open arena was similar for both genotypes 

(Figure 2a). 

In the second task, animals had to cross to the dark compartment using 

an underpass, in the absence of an open door (Figure 2b). When this new task 

was presented, both groups of mice initially had difficulties in achieving escape 

into the dark chamber (task 2, trial 1), but controls were able to do this reliably 

during further trials (trials 2 and 3). GluA3-/- mice were significantly impaired in 

the solving of this task, as shown by the still high latency to enter the dark 

during trial 2, which was significantly different from the wild types (C21,N=24 = 

11.49, p = 0.0007). Nevertheless, knockouts were also able to learn to solve the 

task, as evidenced by the improved latency to escape the light chamber and the 

absence of significant differences compared to control mice in trial 3. 

In task 3, mice had to dig their way through the sawdust-blocked 

underpass to gain access to the dark compartment (Figure 2c). This increase in 

the difficulty of the task affected primarily GluA3-/- mice, which were strongly 

impaired in their ability to solve the task compared with the wild types (C21,N=24 

= 6.961, p = 0.0083). On the second trial of this task, the difference was less 

marked (C21,N=24 = 4.478, p = 0.0343) and more so in the third trial (C21,N=24 = 
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3.918, p = 0.0478). This shows that GluA3-/- mice were also able to learn to solve 

this task, although it was more challenging for them than for wild-type mice. 

In a final variation of the problem-solving test —task 4—, mice needed to 

remove a cardboard plug to enter the dark compartment (Figure 2d). The 

behavior in this task was similar to that in the previous one. GluA3-/- mice were 

initially strongly impaired compared with controls (trial 1, C21,N=24 = 5.929, p = 

0.0149), but there were no significant differences in subsequent trials (trial 2, 

C21,N=24 = 3.116, p = 0.0775; trial 3, C21,N=24 = 2.160, p = 0.1416). However, mice 

from both groups were able to learn how to solve this task. 

A digging test was performed in order to exclude the possibility that the 

results of the puzzle box test could be explained by impairment in motor ability 

or motivation or ability to dig (Figure 2e). Mice were placed in a Makrolon type 

II cage with 5-cm deep embedding and the time spent digging as well as the 

latency to start to dig were assessed. GluA3-/- mice spent as much time (GluA3-/- 

18.36 ± 3.269 s; Control 16.19 ± 5.15 s; t22 = 36.65, p = 0.7175) and had a similar 

latency to start digging as the wild-type controls (GluA3-/- median 90 s; Control 

median 110 s; C21,N=24 = 0.7491, p = 0.3868). 

In summary, these results show that GluA3-/- mice are able to solve 

complex executive tasks and do not have major motor or motivational 

problems, while they possess a subtle cognitive impairment. 
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Figure 2. General cognitive ability of GluA3-/- mice assessed in the puzzle-box test 
a, Lateral view diagram of the puzzle box depicting the light and dark compartments 
communicated by an open door in task 1. Below the scheme: ‘survival’ curve for the 
latency to enter the dark area showing the percentage of animals that finished the task 
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at a particular time within 180 s. b, In task 2, mice can only enter the dark compartment 
through an underpass (diagram). Below: ‘survival’ curves for the three trials of this 
task. A left-shifted curve indicates that the mice quickly and successfully finished the 
task. A right-shift indicates difficulties in finishing the test. c, In task 3, the underpass is 
filled with sawdust and the mice dig through it to enter the dark. Below: ‘survival’ 
curves for the three trials of this task. A down-shifted curve indicates that few of the 
mice were able to successfully finish the task. d, In task 4, the communicating 
underpass was blocked with a cardboard plug, which had to be removed by the mice. 
Below: ‘survival’ curves for the three trials with a time limit of 240 s. e, Scatter plot for 
the performance in the digging test measured by the percentage of time spent digging. 
The horizontal line indicates the mean. Next to it, ‘survival’ curve for the latency to 
start digging in the digging test. Both the percentage of time spent digging in sawdust 
in a separate test and the latency to start digging were similar for GluA3-/- and wild-
type mice. Error bars, s.e.m. *p < 0.05, ***p < 0.001. 
 

2.1.3. GluA3-/- mice in fear conditioning and extinction 

To study the role of GluA3-containing AMPARs in fear learning, cued 

Pavlovian fear conditioning was performed on the same cohort of mice with an 

acquisition phase consisting of three tone-shock pairings (Figure 3a). To test for 

retrieval of the cued association a memory test was performed by re-exposing 

the mice to the tone and measuring the fear response 24 h after acquisition and 

on four additional subsequent days. Therefore, the cued tests constituted 

extinction trials and are termed E1-E5 in the following analysis. 

 The same cohort of male GluA3-/- mice (n = 13; age 24 ± 0.3 weeks) and 

littermate wild-type controls (n = 11; age 23 ± 0.5 weeks) were trained in the 

fear-conditioning protocol shown in Figure 3a, and the percentage of 

immobility was quantified from infrared sensor readings (movement of less 

than 1 cm/s). There were no differences between both genotypes during the 

first 6 min of the acquisition protocol, showing that both groups have a similar 

baseline activity. During this phase, GluA3-/- mice and wild types sequentially 

increased their immobility in response to each tone-shock pairing (Figure 3b). 

Two-way repeated measures ANOVA showed a significant effect of genotype 

(F1,22 = 12.27, p = 0.0020), time (F14,22 = 27.85, p < 0.0001) and interaction (F14,22 = 

3.780, p < 0.0001). Post hoc comparisons revealed that the final immobility levels 

were higher for the GluA3-/- mice than for the wild types (Appendix Table 9). 

Interestingly, each presentation of the tone was accompanied by decreased 

immobility during the 30 s tone presentation. 
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When tested for cued retrieval of fear 24 h after acquisition, both groups 

of animals increased their immobility in response to the tone (Figure 3c), but the 

strength of the memory was different for both genotypes (F1,22 = 23.31, p < 

0.0001; time effect F13,22 = 16.94, p < 0.0001; interaction F13,22 = 3.122, p = 0.0002). 

Post hoc Bonferroni-corrected t-tests revealed that GluA3-/- mice moved 

significantly less than their wild-type littermates during the first 6 min of the 

tone presentation (Appendix Table 9). 

In order to test if the mice had learned to associate the tone as a 

prediction of the foot shock, total immobility before and during the CS 

presentation was compared (Figure 3d). There was a significant effect of 

genotype (F1,44 = 13.15, p = 0.0007) and tone (F1,44 = 42.59, p < 0.0001). In 

response to the tone, GluA3-/- mice moved significantly less than before the tone 

and the same was true for the controls. Therefore, both groups of mice learned 

the fear association. The total immobility during the CS was higher (~1.5 fold) 

for GluA3-/- mice. 

Subsequently, the mice were subjected to an extinction protocol 

consisting of a repetition of the cued test during four additional days (extinction 

trials 2-5). The total immobility during the tone presentation (solid lines) and 

the baseline immobility (dotted lines) are shown in Figure 3(e). Two-way 

repeated-measures ANOVA showed a significant effect of genotype (F3,44 = 

9.91, p < 0.0001), trial (F4,44 = 11.51, p < 0.0001), and interaction (F12,44 = 7.81, p < 

0.0001). Post hoc tests revealed that GluA3-/- mice exhibited tone-enhanced 

immobility during E1 and E2, but not in the subsequent tests, whereas control 

mice only showed significantly more immobility to the tone compared to the 

baseline at E1 and not in the subsequent days (Appendix Table 11). 

Upon completion of the extinction protocol, all animals were able to 

extinguish the initial CS/US association, as evidenced by the unchanged 

activity levels in response to the CS presentation in E5. The time line of 

extinction, however, was different in both groups. This is confirmed 

additionally by the direct observation of freezing by a blind experimenter, 

defined as the complete absence of movement except for respiration (Appendix 

Table 12, Figure 3f). 
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Figure 3. Cued fear conditioning and extinction in GluA3-/- mice 
a, Schematic representation of the fear conditioning protocol, which  consisted of a 
three-shock acquisition protocol and five extinction tests each every 24 h. The elevated 
segments indicate tone presentation (CS) and the dotted lines represent the 2 s 0.4 mA 
foot shock (US). b, Immobility during the acquisition phase: GluA3-/- mice had a similar 
baseline activity as wild-types. GluA3-/- mice reached significantly higher final 
immobility levels than wild types after each shock. The gray area represents the CS/US 
presentation. c, Immobility during the cued test 24 h after acquisition: GluA3-/- mice 
showed increased immobility compared to controls during the first 6 min of tone 
presentation, before habituating in the last 2 min. The gray area represents CS 
presentation. d, Comparison of total immobility in percent during the initial 6 min 
period and the 8 min tone presentation. Immobility was similar before the tone for 
both groups, but higher for GluA3-/- mice during tone presentation. Both groups of 
mice showed learning of the fear association, when comparing the fear response before 
and during the tone. e, Immobility levels during the five extinction trials: the dotted 
lines represent the immobility before the tone presentation, the solid lines show 
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immobility during the tone presentation. GluA3-/- mice showed higher immobility 
levels during the tone presentation (continuous line) and extinction of the cued 
memory association took longer to occur. f, Comparison of freezing levels during the 
extinction trials assessed by direct observation by a blind experimenter. Dotted lines 
represent the period before the tone, solid lines represent freezing during the tone 
presentation. Error bars, s.e.m. *p < 0.05, **p < 0.01, ***p < 0.001. 

2.1.4. GluA3-/- mice in passive avoidance 

Fifteen weeks after the fear-extinction protocol for the fear memory, another 

paradigm to test amygdala-dependent fear learning was performed with the 

same cohort of mice (GluA3-/- n = 13, age 39 ± 0.3 weeks; wild-type controls 

n = 11, age 38 ± 0.5 weeks). In the passive avoidance test, mice are placed on a 

square open platform (9 cm2) elevated 1 m above the ground—an aversive 

situation of exposure to dangers—, and then allowed to explore it. Normally, 

mice enter immediately into an adjacent more protected dark chamber with a 

metallic grid floor (habituation phase). After 24 h, the experiment is repeated, 

this time giving the mice a mild electric shock (0.4 mA, 2 s), upon entering the 

dark compartment (acquisition phase). When tested 24 h, 37 d or 67 d later, the 

latency to re-enter the dark compartment is measured (retention tests). The 

experiment was stopped after 5 or 10 min, if the mouse did not enter. A 

censored-subject statistical analysis was performed. The log-rank Mantel-Cox 

test was used to compare the ‘survival’ curves between genotypes on different 

trials and tasks and the Bonferroni correction was applied when comparing 

more than two curves (Appendix Table 13). 

During the acquisition phase, the latencies to leave the open platform 

and enter the dark compartment before the shock administration were 

statistically identical for GluA3-/- and wild-type mice (Figure 4a). Also during 

the retention tests 24 h and 7 d after initial acquisition, the latency was not 

significantly different between the two groups. GluA3-/- mice are, thus, able to 

learn to associate entering the dark chamber with a noxious stimulus. 

Strikingly, the latency to enter was significantly higher in GluA3-/- mice, when 

tested 37 d or 67 d after acquisition. Whereas wild-type mice showed decreased 

latencies with the passage of time, GluA3-/- mice continued to show a strong 

delay to enter the dark chamber.  
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Intra-genotype comparisons of the latency to enter the dark 

compartment at different time points revealed that wild-type mice strongly 

retained the memory for up to 7 d, but the retrieval efficiency decreased after 37 

d, and there was no retention 67 d after acquisition (Figure 4b). On the other 

hand, GluA3-/- mice were able to strongly retain the memory of the shock for up 

to 67 d (Figure 4c). In summary, these data indicate that GluA3-/- mice form a 

stronger association in the passive avoidance test than wild-type controls and 

they retain this association for a considerably longer time period. 

 

 
Figure 4. Long-term retrieval of passive avoidance memory in GluA3-/- mice 
a, ‘Survival’ curves for the latency to enter the dark compartment during the 
acquisition phase (before receiving an electric shock) and during subsequent retrieval 
tests 24 h, 7 d, 37 d, and 67 d later. The Y-axis shows the percentage of mice that 
entered the dark compartment within the latency indicated in the X-axis. The time limit 
for the experiment was 600 s. A left-shifted curve indicates immediate entrance of most 
of the mice into the dark chamber. A right-shifted curve indicates that mice took a 
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longer time before entering the dark. Before the shock, all mice immediately entered 
the dark chamber (latency under 15 s). Both GluA3-/- and wild types exhibited similar 
retention of the fear memory 24 h and 7 d later. At further time points of 37 d and 67 d, 
GluA3-/- mice showed significantly stronger retention of the fear association. b, Side-by-
side comparison of the latency to enter the dark chamber in wild-type mice, during the 
different phases of testing from the acquisition to the 67 d retrieval test. Wild-types 
retained the fear association of entering the dark chamber for up to 37 d. c, Same 
comparison as in (b) for GluA3-/- mice. These mice strongly retained the fear memory 
for up to 67 d. In (b) and (c), s.e.m. bars were omitted for clarity. *p < 0.05, **p < 0.01, 
***p < 0.001. 
 

2.2. Emotional memory in GluA1 mutant mice 

2.2.1. GluA1R/R mice in fear conditioning 

In order to test whether changes resulting from a point mutation of the GluA1 

subunit, such as decreased excitatory drive and Ca2+-permeability of GluA1-

containing AMPARs, are enough to have an effect on the performance in fear 

conditioning, GluA1R/R mice (Vekovischeva et al., 2004; Vekovischeva et al., 

2001) were analyzed. These mice carry a gene-targeted point mutation in the 

GluA1-subunit gene in which a single amino acid residue codon has been 

substituted (Q582R) leading to decreased single-channel conductance and less 

Ca2+-permeability of their AMPARs (Burnashev et al., 1992). GluA1R/R mice 

have many similarities with complete GluA1 knockout mice, for example, they 

also exhibit hyperactive behavior in the open field test (Vekovischeva et al., 

2004; Vekovischeva et al., 2001). 

 Male GluA1R/R (n = 9; age 14 ± 2 weeks) and C57Bl/6N (n = 9; age 

9 weeks) mice were trained in the fear-conditioning paradigm as shown in 

Figure 5a.  The baseline activity of both groups was comparable, as observed 

during the first 6 min of the acquisition phase. Upon presentation of the first 

CS-US pairing, the control mice increased their immobility response and 

continued to increase it after each additional CS-US pair (Figure 5b). GluA1R/R 

mice consistently showed close-to-zero immobility levels even after the three-

shock administration. Two-way repeated-measures ANOVA revealed 

significant differences by genotype (F1,16 = 51.84, p < 0.0001), time (F14,16 = 24.68, 

p < 0.0001), and interaction (F14,16 = 25.12, p < 0.0001). Bonferroni-corrected post 
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hoc comparisons restricted the differences between both groups to minutes 8.5–

13.5 (Appendix Table 14). These results indicate an inability of GluA1R/R mice to 

express fear in response to an acute painful stimulus.  

When tested 24 h later for retrieval of the cued association in a different 

context, GluA1R/R mice consistently showed lower immobility levels than the 

control group (Figure 5c; genotype effect F1,16 = 37.74, p < 0.0001; time effect 

F13,16 = 6.03, p < 0.0001; interaction not significant; post hoc t-tests are shown in 

Appendix Table 14). By comparing the total amount of immobility during the 

period before the tone was presented and during the tone presentation, it was 

evident that GluA1R/R mice moved significantly more than controls (genotype 

effect F1,32 = 61.50, p < 0.0001; CS effect F1,32 = 10.44, p = 0.003), both before the 

tone (t32 = 5.24, p < 0.001) and during the tone (t32 = 5.85, p < 0.001). It was also 

clear from the results, that both control mice (t8 = 4.39, p = 0.002) and GluA1R/R 

mice (t8 = 5.74, p = 0.0004) showed increased immobility in response to the tone, 

indicating that both were able to recall, to a different extent, the tone-shock 

association (Figure 5d). Therefore, GluA1R/R mice were able to recall, although 

weakly, the association between the tone and the foot shock and showed a mild 

fear response when the CS was administered, which was however not as strong 

as that expressed by the wild types. 

 The contextual component of the fear association was tested 48 h after 

acquisition. GluA1R/R mice also showed lower immobility levels than controls 

during this test (Figure 5e; genotype effect F1,16 = 12.06, p = 0.003; time effect 

and interaction not significant; post hoc t-tests are shown in Appendix Table 

14). This phenotype was evident, when comparing the total percent of 

immobility during the context re-exposure for both groups (Figure 5f). The 

immobility levels of GluA1R/R during the context retrieval test were not different 

from the response during the initial 6 min baseline of the acquisition phase (t8 = 

1.57, p = 0.15), whereas the controls did increase the fear response during the 

context retrieval (t8 = 5.56, p = 0.0005). This indicates that GluA1R/R mice showed 

a strong impairment in the retrieval of the contextual component of a fear 

memory. 
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 In summary, when the GluA1 subunit is mutated, mice show an 

abnormal acute response to noxious stimuli during the acquisition of fear 

conditioning, but they are able to recall the learned tone-shock association 24 h 

later. However, the association between the context and the foot shock could 

not be retrieved 48 h later. 

 

 
Figure 5. Fear conditioning of GluA1R/R mutant mice 
a, Schematic representation of the fear conditioning protocol, which  consisted of a 
three-shock acquisition protocol and one cued and one contextual retrieval tests. The 
elevated segments indicate tone presentation (CS) and the dotted lines represent the 2 s 
0.4 mA foot shock (US). The cued retrieval test was performed 1 day later, followed by 
the context retrieval test 2 days after acquisition. The two different contexts used are 
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indicated as I and II. b, Percentage of immobility during the acquisition phase for 
GluAR/R and controls. The gray area represents the CS/US presentation. c, Immobility 
during the cued test 24 h after acquisition. The gray area represents CS presentation. 
d, Comparison of total immobility in percent during the initial 6 min period and the 8 
min tone presentation. Immobility was significantly different between the genotypes 
before and during the tone, and both GluA1R/R and wild-type mice showed learning of 
the fear association, when comparing the fear response before and during the tone. 
e, Contextual retrieval test by re-exposure to the acquisition context with a 1-min time 
bin. f, Total immobility response during the context test revealing a retrieval 
impairment in GluA1R/R mice and normal learning in controls. *p < 0.05, **p < 0.01, ***p 
< 0.001. 
 

2.2.2. GluA1-/- mice in fear conditioning 

To further investigate the role of GluA1-containing AMPARs in the dynamics 

of emotional fear, global GluA1 knockout mice (Zamanillo et al., 1999) were 

tested in the Pavlovian fear-conditioning paradigm. These mice also exhibit an 

abnormal hyperactive behavior in the open-field test (Zamanillo et al., 1999), in 

a way similar to GluA1R/R mice. 

 GluA1-/- (n = 8, age 43 ± 3.2 weeks) and wild-type littermates (n = 9, age 

46 ± 3.6 weeks) were trained in the same fear conditioning protocol used for 

GluA3-/- mice in section 2.1.3 (Figure 6a). The fear response was quantified as 

immobility level from infrared-sensor readings (movement of less than 1 cm/s). 

Both groups had a similar baseline activity during the first 6 min of the 

acquisition protocol.  During this phase, GluA1-/- mice consistently exhibited 

close-to-zero immobility levels and there was no increase in the fear response 

after each tone-shock pairing (Figure 6b). Two-way repeated measures ANOVA 

showed a significant effect of genotype (F1,15 = 120.3, p < 0.0001), time (F14,15 = 

23.55, p < 0.0001) and interaction (F14,15 = 23.05, p < 0.0001). Post hoc 

comparisons revealed that the wild types moved less than GluA1-/- mice after 

the first tone-shock pairing until the end of the protocol (Appendix Table 15). 

These results are in strong parallel with the behavior of GluA1R/R mice in the 

acquisition of fear conditioning, showing a clear impairment in the ability to 

evidence fear after an acute noxious stimulus. 

 GluA1-/- mice further showed a strong impairment in the retrieval of the 

cued fear memory 24 h after the acquisition (Figure 6c). During this cued test, 

the immobility response of these mice was significantly different compared 
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with that of wild types (two-way repeated-measures ANOVA: genotype F1,15 = 

6.802, p < 0.0001; time F13,15 = 10.08, p < 0.0001; interaction F13,15 = 5.151, p < 

0.0001). Post hoc tests revealed that the differences were almost exclusively 

limited to the period of tone re-exposure (Appendix Table 15). 

In order to test whether GluA1-/- mice were able to learn to associate the 

tone with a noxious stimulus, even to a lower degree, the total immobility in the 

cued test before the tone and during the tone presentation was compared 

(Figure 6d). A significant effect of the genotype (F1,30 = 63.12, p < 0.0001), time 

(F1,30 = 23.30, p < 0.0001) and interaction (F1,30 = 11.43, p = 0.002) was found. Post 

hoc comparisons revealed that wild types moved significantly less than GluA1-/- 

both before and during the tone presentation (Appendix Table 16). However, 

both groups of mice showed learning of the tone-shock association, as indicated 

by the significant tone-dependent increased immobility in both cases. 

 In summary, GluA1-/- mice were able to learn a cued fear memory, but 

the weakness of the association indicates a strong impairment in the retrieval of 

cued memory. This phenotype is very similar to the one observed in GluA1R/R 

mice. 

In the extinction protocol for the cued association, GluA1-/- mice reduced 

their immobility response to the tone along the four extinction trials (Figure 6e; 

Appendix Table 17). Already on E2, GluA1-/- mice had similar immobility levels 

before and during the tone, and on the subsequent extinction trials, immobility 

was even slightly higher before the tone. This indicates that the weak cued 

memory formed by GluA1-/- was readily extinguished after one trial, in contrast 

to wild types, which needed four extinction trials to bring their immobility 

levels to the tone back to the baseline. 
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Figure 6. Cued fear conditioning and extinction in GluA1-/- mice 
a, Schematic representation of the fear conditioning protocol consisting of a three-
shock acquisition and four extinction tests each every 24 h. The elevated segments 
indicate tone presentation and the dotted lines represent the 2 s 0.4 mA foot shock. 
Two different contexts were used, indicated as I and II. b, Acquisition phase: GluA1-/- 
mice started at a similar baseline activity as wild types. GluA1-/- mice failed to increase 
immobility after each tone-shock pairing. The gray area represents each CS/US 
presentation. c, Cued test 24 h after acquisition. GluA1-/- mice had a weak increase in 
immobility to the tone re-exposure compared with controls. The gray area represents 
tone presentation. d, Comparison of total immobility during the initial 6 min period 
and the 8 min tone presentation. Immobility was lower for GluA1-/- mice both before 
the tone, and during tone presentation, compared with wild types. Both groups of mice 
showed learning of the fear association, as indicated by the significantly increased 
immobility response after the tone was presented. e, Immobility levels during the 
extinction trials. Immobility before the tone (dotted line) remained constant during the 
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extinction protocol for both genotypes. GluA1-/- mice showed a rapid extinction of their 
weak cued fear memory. Error bars, s.e.m. *p < 0.05, **p < 0.01, ***p < 0.001. 
 

2.2.3. GluA1-/- mice in passive avoidance 

Two weeks after the extinction protocol for the fear memory, the same cohort of 

mice (GluA1-/- n = 8, age 46 ± 3.2 weeks; wild-type littermates n = 9, age 49 ± 3.6 

weeks) was tested in the passive avoidance paradigm. The same protocol was 

used as in section 2.1.4, with the difference that the habituation and acquisition 

phases took place on the same day. Retrieval tests were performed 24 h, 7 d and 

23 d after acquisition. The data and statistical analysis are shown in Appendix 

Table 18. 

No differences were found between the latency to leave the open 

platform and enter the dark compartment during the acquisition before the 

shock administration for GluA1-/- and wild-type mice (Figure 7a). This latency 

to enter was also not significantly different during the retention tests 24 h and 

7 d after initial acquisition. However, the latency to enter was significantly 

higher in GluA1-/- mice, when tested 23 d after acquisition. Whereas wild-type 

mice showed decreased latencies with the passage of time, GluA1 knockouts 

continued to show a strong delay to enter the dark chamber.  

Intra-genotype comparisons of the latency to enter the dark 

compartment at different time points revealed that wild-type mice strongly 

retained the memory for up to 23 d after acquisition (Figure 7b), as well as 

GluA1-/- mice (Figure 7c). But in the case of the knockouts, the strength of the 

retention gradually increased with the passage of time, being highest at the 

later time point of 23 d. In summary, GluA1-/- mice formed a stronger 

association in the passive avoidance test than did wild-type controls and were 

able to maintain this memory strength for a longer period of time. 
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Figure 7. Long-term retrieval of passive-avoidance memory in GluA1-/- mice 
a, Latency to enter the dark compartment during the acquisition phase (before 
receiving an electric shock) and during subsequent retrieval tests 24 h, 7 d and 23 d 
later. The Y-axis shows the percentage of mice that entered the dark compartment 
within the latency indicated in the X-axis. The time limit for the experiment was 600 s. 
A left-shifted curve indicates immediate entrance of most of the mice into the dark 
chamber. A right-shifted curve indicates that mice took a longer time before entering 
the dark. Before the shock, all mice immediately entered the dark chamber (latency 
under 15 s). Both GluA1-/- and wild types exhibited similar retention of the fear 
memory 24 h and 7 d later. At 23 d, GluA1-/- showed significantly stronger retention of 
the fear association. b, Side-by-side comparison of the latency to enter the dark 
chamber in wild-type mice, during the different phases of testing from the acquisition 
to the 67 d retrieval test. Wild types retained the fear association of entering the dark 
chamber for up to 23 d. c, Same comparison as in (b) for GluA1-/- mice. These mice 
strongly retained the fear memory for up to 23 d. In (b) and (c), s.e.m. bars were 
omitted for clarity. *p < 0.05, **p < 0.01, ***p < 0.001. 
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2.3. Long-term passive avoidance in GluA1-/- and GluA3-/- mice 

In order to analyze the performance of GluA1-/- and GluA3-/- mice in the passive-

avoidance test on a long-term basis, a second cohort of mice was trained, which 

included animals deficient for each of these subunits, as well as their respective 

wild-type littermates (Figure 8a). 

Four groups of age-matched mice were analyzed: GluA1-/- (knockouts, 

n = 8, age 17 ± 2.02 weeks), GluA1+/+ (wild types, n = 8, age 15 ± 0.18 w), GluA3-/- 

(knockouts, n = 8, age 16 ± 0.35 w) and GluA3+/+ (wild types, n = 8, age 

16 ± 0.35 w). All subjects were male, except for one GluA1-/- female. GluA1-/- and 

GluA1+/+ mice belonged to the same colony and were littermates. GluA3-/- and 

GluA3+/+ mice were also littermates and belonged to a different colony. 

The same protocol was used as in section 2.1.4, but a slightly higher 

shock intensity (0.5 mA, 2 s) was applied. The median of the latencies to enter 

the dark compartment during the different experimental phases is presented in 

Appendix Table 19. No significant statistical differences were found between 

the two groups of wild-type mice GluA1+/+ and GluA3+/+ in any of the tests 

(Appendix Table 20). Thus, for the sake of clarity, these groups were merged for 

further analysis as wild-type controls. A statistical comparison between the 

knockout groups and the controls is shown in Appendix Table 21. 

During the acquisition phase, all mice entered the dark compartment 

within 1 min, indicating that there was enough motivational drive to escape 

from the open platform and that the dark chamber itself did not have a 

particularly aversive component. GluA3-/- mice did not differ from the controls 

during the acquisition, and immediately entered the dark chamber. GluA1-/- 

mice took significantly longer than the controls to enter the dark compartment, 

although the electric shock had not been administered yet. However, the real 

significance of this difference on the further outcome of the experiment is 

questionable.  

Twenty-four hours after the electric shock administration, mice were 

placed again on the open platform for a retrieval test. At this time point, all 

experimental groups performed similarly and no significant differences were 

found. In all cases, the latency to enter the dark compartment was significantly 
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higher than during the acquisition phase, indicating that the mice were able to 

learn that the entry into the dark chamber is associated with a noxious stimulus. 

When tested 7 d later, wild-type mice still exhibited a higher latency to 

enter the dark compartment than during the acquisition, showing that they 

were still able to recall the fear association. However, the strength of the fear 

response was significantly lower for wild types than for GluA1-/- and GluA3-/- 

mice, as indicated by the higher latency exhibited by the knockouts at this time 

point. A similar recall pattern was observed at later time points of 37 d and 

67 d. 

At 161 d after acquisition, the latency to enter was no longer significantly 

different between GluA3-/- and wild-type mice. GluA1-/- mice continued to show 

a higher latency compared to the controls. The latency to enter for the wild 

types decreased compared to the 67 d test, but it continued to be significantly 

higher than during the acquisition, showing that these mice were still able to 

recall the fear association. 

For all three groups of mice, there was a continuous increase in the fear 

response, measured by the latency, during the 24 h, 7 d and 37 d tests. At 67 d, 

the latency was similar to that of the 37 d time point. Finally, at the latest time 

point of 161 d, the fear response of the mice decreased back to levels similar to 

those at 24 h (Figure 8b,c,d).  

In summary, it was confirmed that GluA1-/- and GluA3-/- mice are able to 

strongly recall a passive avoidance in a more intense fashion for a longer period 

of time than wild-type littermates.  
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Figure 8. Passive avoidance in GluA1-/- and GluA3-/- mice 
a, Latency to enter the dark compartment during the acquisition phase (before 
receiving an electric shock) and during subsequent retrieval tests 24 h, 7 d, 37 d, 67 d, 
and 161 d later. The Y-axis shows the percentage of mice that entered the dark 
compartment within the latency indicated in the X-axis. The time limit for the 
experiment was 600 s. A left-shifted curve indicates immediate entrance of most of the 
mice into the dark chamber. A right-shifted curve indicates that mice took a longer 
time before entering the dark. Before the shock, all mice immediately entered the dark 
chamber (latency under 60 s). GluA1-/-, GluA3-/- and wild types exhibited similar 
retention of the fear memory 24 h later. At further time points of 7 d, 37 d and 67 d, 
GluA1-/- and GluA3-/- showed significantly stronger retention of the fear association. At 
161 d, GluA3-/- mice were no longer different from the controls, and only GluA1-/- still 
exhibited a strong recall of the fear association. b, Side-by-side comparison of the 
latency to enter the dark chamber in wild-type mice, during the different phases of 
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testing from the acquisition to the 161 d retrieval test. c, Same comparison as in (b) for 
GluA3-/- mice. These mice strongly retained the fear memory for up to 161 d. d, Same 
comparison as in (b) for GluA3-/- mice. These mice strongly retained the avoidance 
memory for up to 67 d. In (b), (c) and (d), s.e.m. bars were omitted for clarity. *p < 0.05, 
**p < 0.01, ***p < 0.001. 
 

2.4. Long-term fear conditioning in GluA3-/- and GluA1+/- mice 

In order to find out whether the enhanced long-term retrieval of passive 

avoidance memories observed in GluA3-/- mice could also be observed in a 

different emotional memory paradigm, I tested these mice in Pavlovian fear 

conditioning. 

 A cohort of 37 littermate males corresponding to four different 

genotypes was used (Table 1). All mice underwent the standard three-shock 

fear conditioning acquisition protocol (Figure 9a) and were tested for retrieval 

of cued fear at 24 h or 31 d, depending on the group. 

 
Table 1. Cohort properties for long-term retrieval analysis of fear conditioning.  
Genotype, sample size, age at the start of the experiment and cued retrieval time 
points. 

Group name Genotype n Age (w) Cued test 
GluA3-/- GluA3-/- A1+/+ 13 19 ± 0.26 31 d 
Control GluA3+/+ A1+/+ 4 18.5 ± 0.29 31 d 

GluA3-/- A1+/- GluA3-/- A1+/- 13 19 ± 0.08 24 h and 31 d 
GluA1+/- GluA3+/+ A1+/- 7 18 ± 0.28 24 h and 31 d 

 

 During the acquisition phase, the baseline activity for all groups was 

similar (Figure 9b). All mice showed increased immobility after each tone-shock 

pairing. Repeated measures two-way ANOVA revealed a significant global 

effect of genotype (F3,33 = 10.97, p < 0.0001), time (F14,33 = 51.29, p < 0.0001) and 

interaction (F42,33 = 2.947, p < 0.0001). Post hoc comparisons showed that  

GluA3-/-A1+/- and GluA1+/- mice did not differ from each other, but moved less 

than the GluA3-/- and controls ( 

Appendix Table 22). GluA3-/- and control mice did not show immobility levels 

significantly differently from each other.  

 To show that the mice were able to learn the tone-shock association, a 

cued retrieval test was performed 24 h after acquisition for GluA3-/-A1+/- and 
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GluA1+/- mice (Figure 9c). Both groups of mice showed increased immobility 

levels in response to the tone. Furthermore, repeated-measures two-way 

ANOVA revealed a significant global effect of genotype (F1,18 = 9.624, 

p < 0.0061), time (F13,18 = 14.76, p < 0.0001), but not their interaction 

(F13,18 = 0.5415, p = 0.8970). However, post hoc comparisons did not allow 

determining at what time point these differences occurred (Appendix Table 23). 

The same mice were tested again at a later time point of 31 d (Figure 9d). Again, 

the genotype had a significant effect on the immobility levels (F1,18 = 5.082, 

p < 0.0001), as did time (F13,18 = 5.277, p < 0.0001) and their interaction 

(F13,18 = 2.313, p = 0.0067). In summary, both at 24 h and 31 d, GluA3-/-A1+/- 

moved less than GluA1+/- mice. 

To avoid the possibility of interference of the first cued test (24 h) on the 

retrieval in the second cued test (31 d), GluA3-/- and control mice were only 

tested at the 31 d time point (Figure 9e). Repeated-measures two-way ANOVA 

showed no global significant effect of genotype (F1,15 = 2.341, p = 0.1468), but 

only of time (F13,15 = 3.851, p < 0.0001) and their interaction (F13,15 = 2.398, 

p = 0.0052). 

Due to the variability observed between heterozygous mice for GluA1 

and wild-type mice, a comparison of the total immobility levels before and 

during the tone presentation was made (Figure 9f), revealing a significant effect 

of genotype (F5,51 = 3.027, p < 0.0001), tone (F1,51 = 45.12, p = 0.0181) and their 

interaction (F5,51 = 2.470, p = 0.0444) by two-way repeated-measures ANOVA. 

Post hoc tests comparing the total immobility levels before and during the tone 

revealed in which tests there was significant recall of the tone-shock association 

(Appendix Table 24). During the 24 h test, both tested groups showed 

significant recall of the cued association. However, on the long-term at 31 d, 

only GluA3-/-A1+/- mice robustly recalled this fear memory, whereas GluA1+/- did 

not (Figure 9f). Similarly, the control group of mice did not significantly 

increase its immobility in response to the tone at 31 d, showing an impaired 

recall of the fear association. On the other hand, GluA3-/- mice were still able to 

robustly recall the tone-shock memory even after 31 d. 
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Figure 9. Long-term retrieval of fear conditioning in GluA3-/- and GluA1+/- mice 
a, Schematic representation of the fear conditioning protocol  consisting of a three-
shock acquisition and either one or two cued tests. The elevated segments indicate tone 
presentation and the dotted lines represent the 2 s 0.4 mA foot shock. GluA3-/- and 
control mice were tested for retrieval of the cued memory 31 d after acquisition.  
GluA3-/-A1+/- and GluA1+/- mice were tested at two time points: 24 h and 31 d after 
acquisition. Two different contexts were used as indicated by I and II. b, Acquisition 
phase: All mice started with a similar baseline activity. GluA3-/-A1+/- and GluA1+/- had a 
globally lower immobility response after each tone-shock pairing. GluA3-/- mice 
showed slightly higher immobility levels than the controls. The gray area represents 
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each CS/US presentation. c, Cued test 24 h after acquisition. GluA3-/-A1+/- moved 
slightly less than GluA1+/- mice before and during the CS. A similar comparison was 
found on the 31 d cued test (d). The gray area represents tone presentation. e, Cued test 
31 d after acquisition: GluA3-/- mice had slightly higher immobility levels than the 
controls at this time point. f, Comparison of total immobility during the initial 6 min 
period and the 8 min tone presentation in the 24 h and 31 d retrieval tests. At 24 h, both 
GluA3-/-A1+/- and GluA1+/- were able to recall the tone-shock association, whereas only 
GluA3-/-A1+/- showed significant recall in the 31 d test. Similarly, GluA3-/-, but not 
control mice, moved significantly more in response to the tone during the 31 d retrieval 
test. *p < 0.05, **p < 0.01, ***p < 0.001. 
 

2.5. Amygdala neuron silencing by rAAV-mediated TTLC expression 

The amygdaloid complex is an essential structure for the learning of 

emotionally relevant information. Genetic manipulation of the amygdala is not 

practicable through classical transgenic methods in a specific manner because 

of the lack of specific promoters that target gene expression in this brain region. 

Therefore, a rAAV-mediated approach was taken to deliver genes into the 

amygdala by stereotaxic injection. First, behavioral alterations were tested after 

expression of TTLC in amygdala neurons, as a proof-of-principle experiment 

for the applicability of the rAAV systems to modify behavior. 

2.5.1. Injection of rAAVs for TTLC expression in the amygdala 

One cohort of littermate male C57Bl/6N mice was used in these experiments. 

One group was injected bilaterally into the amygdala with a 1:2 mixture of 

rAAV-syn-tTA and rAAV-Ptetbi-TTLC-tdTomato (TTLC, n = 6, age 10 weeks; 

Figure 10a; Virus sources Section 7.5.4). A second group of uninjected males 

was used as a control (n = 4; age 10 weeks). The neuron-specific human 

synapsin promoter (syn) drives expression of tTA, which binds to the 

bidirectional tetracycline-activated promoter (Ptetbi) and in turn drives 

simultaneous expression of TTLC and the red-fluorescent protein tandem-

dimer tomato (tdTomato). 

 Post-mortem histological analysis of the cohort revealed that tdTomato 

expression in neurons of the amygdala nuclei (Figure 10b) could be used to 

determine the area of infection by the virus. Infected neurons were found in the 



Dario Arcos-Díaz  Part I – Results 

 40 

lateral amygdala, the basal amygdala, the central amygdala and part of the 

piriform cortex (Figure 10c).  

 
Figure 10. Expression of tdTomato in mice injected with rAAV for expression of 
TTLC for amygdala neuron silencing 
a, Schematic representation of the viral system for TTLC expression in neurons. The 
neuron-specific human synapsin promoter (syn) drives expression of the tetracycline 
trans-activator (tTA), which binds to the bidirectional tetracycline-activated promoter 
(Ptetbi) and in turn drives simultaneous expression of TTLC and the red-fluorescent 
protein tdTomato. b, Immunostaining against NeuN shows infected neurons in the 
lateral amygdala (LA), basal amygdala (BA), central amygdala (CeA) and part of the 
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piriform cortex (Pir). Scale bar, 200 µm. c, Extent of infection in the cohort of mice 
analyzed. The smallest area of infection is shown in dark gray, the largest in light gray. 
Scale bar, 1 mm. 

2.5.2. Exploratory behavior after amygdala neuron silencing 

Twenty days after bilateral rAAV injection into the amygdala, mice were 

allowed to explore the open-field arena during 10 min. There were no 

significant differences in the exploratory behavior of amygdala-silenced mice, 

measured as the total distance traveled in the open-field arena (Appendix Table 

25; Figure 11a). The total distance decreased significantly with time indicating 

normal habituation to the novel environment (repeated-measures ANOVA, F9,8 

= 5.441, p < 0.0001). The virus injection had no significant effect (F1,8 = 0.0006, p 

= 0.9809) nor did the interaction of these two factors (F9,8 = 1.861, p = 0.0719). 

Mice were also tested in the light-dark preference test, 35 d after rAAV 

injection, by measuring the time spent in each of two symmetrical 

compartments communicated by a small door (~4 cm wide), one brightly-lit, 

the other dark and covered. Both the TTLC and control groups exhibited a 

similar preference for the dark compartment (Appendix Table 25), indicating 

that the rAAV injection and silencing of neurons did not cause higher levels of 

anxiety. This was indicated both by the percentage of time spent in the dark 

(Figure 11b) or the number of entries into the dark compartment (Figure 11c). 

Consistent with these observations, the elevated plus maze produced 

similar results 36 d after rAAV injection (Appendix Table 25). In this test, mice 

were placed on an elevated plus-shaped maze, with two opposed arms with 

flanking walls that protect mice from falling, and two open arms without walls 

and the time spent in both of these types of arms was measured. No significant 

differences were observed between the amygdala-silenced and the control 

groups (Figure 11d). 

Together, these results show that rAAV-injected mice show similar 

general exploration behavior and anxiety levels and, therefore, can be used in 

order to assess memory impairments by amygdala silencing in the following 

experiments. 
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Figure 11. General exploratory behavior and anxiety in amygdala-silenced mice 
a, Total distance traveled in the open field arena was not different for TTLC and 
control mice during a 10 min period. b,c, Light dark test: no significant difference was 
found between TTLC and control mice neither for the amount of time spent in the dark 
chamber (b), nor for the number of entries into the dark compartment (c). d, Elevated 
plus-maze: TTLC and control mice did not differ significantly in the amount of time 
spent in the closed arm. 
 

2.5.3. Fear conditioning after amygdala neuron silencing 

Mice underwent acquisition of the fear-conditioning paradigm 42 d after rAAV 

injection (n = 10, age 16 weeks). A modified paradigm with only one tone-shock 

pairing was performed with this cohort of mice (Figure 12a). The acquisition 

phase consisted of an initial habituation phase of 2 min, followed by a tone 

presentation for 30 s ended by a 2 s 0.8 mA foot shock and an additional 30 s 

exploration. Both groups had identical baseline activity during the first 2 min 

(Figure 12b). After the shock administration, both amygdala-silenced and 
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control mice slightly increased their immobility. Two-way repeated measures 

ANOVA showed a significant effect of time (F3,8 = 6.974, p = 0.0016), but not of 

the virus injected (F1,8 = 0.4273, p = 0.5317) or the interaction (F3,8 = 0.1262, 

p = 0.9437). This indicates that amygdala-silenced mice were able to show acute 

fear expression during acquisition. 

 After 24 h, mice were tested for retrieval of contextual fear by re-

exposure to the acquisition context for 5 min (Figure 12c). Two-way repeated-

measures ANOVA revealed a significant effect of time (F4,8 = 4.205, p = 0.0076), 

and a trend for differences by the virus injected (F1,8 = 4.325, p = 0.0712) and the 

interaction (F4,8 = 2.014, p = 0.1161). Post hoc Bonferroni-corrected t tests 

showed that TTLC-expressing mice were significantly more immobile during 

the first minute of observation, after which both control and TTLC mice 

habituated to the context (Appendix Table 26). The same test was performed 

41 d after acquisition, with no significant effect of the virus injected (Figure 12c; 

F1,8 = 1.704, p = 0.2281), a significant effect of time (F4,8 = 4.614, p = 0.0047), and 

no significant interaction (F4,8 = 0.6447, p = 0.6347). Post hoc tests showed no 

significant differences during the duration of the test. 

Cued fear retrieval was tested 48 h after acquisition in a different context, 

where mice were allowed to explore the chamber for 3 min followed by 3 min 

of tone presentation (Figure 12d). Two-way repeated-measures ANOVA 

showed that the virus injection had a significant effect on the immobility 

(F1,8 = 14.57, p = 0.0051), as did time (F5,8 = 3.012, p = 0.0212), but not their 

interaction (F5,8 = 1.213, p = 0.3208). Post hoc multiple comparisons revealed 

that TTLC mice moved significantly less at the beginning of the test and at the 

beginning of the tone presentation. The same cued test was performed 42 d 

after acquisition and a significant effect of the virus was observed (Figure 12d; 

F1,8 = 17.96, p = 0.0028), but not of time (F4,8 = 2.054, p = 0.0916), or their 

interaction (F3,8 = 1.482, p = 0.2173). Again, at 42 d, post hoc comparisons 

revealed that TTLC mice moved significantly less during the first minute of 

tone presentation. These results indicate a strong impairment in the retrieval of 

the cued component of the fear memory both on the short term (48 h) and on 

the long term (42 d). 
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Quantification of fear by direct observation of total freezing by a blind 

experimenter yielded similar results (Appendix Table 27). By this method, a 

more marked impairment after amygdala silencing in contextual fear (Figure 

12e,f) was observed (F1,8 = 13.12, p = 0.0068), but not of time (F1,8 = 2.159, 

p = 0.1799), or their interaction (F1,8 = 0.5854, p = 0.4662). Similarly, a marked 

effect of TTLC expression in the cued retrieval test (Figure 12e,g) was evidenced 

(F1,8 = 15.51, p < 0.0001), as well as for the interaction of virus and time 

(F3,8 = 16.62, p < 0.0001), but not of time alone (F1,8 = 0.01060, p = 0.9193). 

In summary, amygdala silencing by rAAV-mediated expression of TTLC 

in neurons strongly impaired short-term and long-term cued fear retrieval, and, 

less markedly, contextual fear retrieval. 
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Figure 12. Fear conditioning after amygdala neuron silencing by TTLC expression 
a, Schematic representation of the fear conditioning protocol consisting of a one-shock 
acquisition phase and contextual retrieval tests after 24 h and 41 d, as well as cued 
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retrieval tests after 48 h and 42 d. The elevated segments indicate tone presentation and 
the dotted line represents the 2 s 0.8 mA foot shock. Two different contexts were used 
as indicated by I and II. b, Acquisition phase: amygdala-silenced mice started at a 
similar baseline activity as controls. Both groups increased immobility after the shock. 
The gray area represents the period of CS presentation coupled with US. c, Contextual 
retrieval after 24 h showed an initial impairment in TTLC mice before all mice 
habituated. After 41 d, the contextual retrieval impairment of TTLC mice was less 
marked. d, Cued retrieval after 48 h: TTLC mice were strongly impaired when the tone 
was presented. The gray area represents tone presentation. After 42 d, cued fear 
retrieval continued to be impaired in TTLC mice. e, Scatter-plot for individual freezing 
scores during the contextual and cued retrieval tests (before and during the CS) for 
controls and TTLC mice. f, Comparison of total freezing during the 5 min of contextual 
test 24 h and 48 h after acquisition. Amygdala-silenced mice were impaired at both 
time points. g, Total freezing before and during the tone presentation of the cued 
retrieval tests at 48 h and 41 d. TTLC mice were strongly impaired at both time points. 
*p < 0.05, **p < 0.01, ***p < 0.001. 
  

2.5.4. Passive avoidance after amygdala neuron silencing 

In order to test whether the blockade of amygdala neuronal transmission also 

impairs types of emotional memory other than fear conditioning, the passive-

avoidance paradigm was used 90 d after the last cued fear test (154 d after 

rAAV injection). This paradigm has also long been known to depend on intact 

amygdala function. Silencing of the amygdala by TTLC expression significantly 

impaired the ability of the mice to associate the entrance into a dark 

compartment with the administration of an electric foot shock (Appendix Table 

28). 

During the acquisition phase, both groups of mice entered the dark 

chamber within 30 s and there were no significant differences between them 

(Figure 13a,b). Once inside, mice received a 0.7 mA 2 s foot shock and remained 

additional 60 s in it. After 24 h, wild-type control mice had a significantly 

higher latency to enter the dark chamber compared to the acquisition phase, 

showing that these mice learned to associate the entry with a noxious stimulus 

(Figure 13c). In contrast, all TTLC mice but one entered the dark compartment 

with latency not significantly different from that during the acquisition (Figure 

13c). There was one outlier TTLC mouse that did not enter the dark chamber at 

all. At the 24 h retention time point, the amygdala-silenced group exhibited a 

significantly lower latency compared to the wild-type controls, if the one TTLC 
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outlier was excluded. If it was included, there still was a trend, but this was not 

statistically significant (Figure 13c). 

 In summary, these data indicate that silencing of amygdala synaptic 

transmission by TTLC expression strongly impairs the ability to associate the 

entry into a particular context with a noxious stimulus in the passive avoidance. 

In turn, these observations support the application of rAAV-mediated 

modifications of gene expression in neurons of the amygdala for the study of 

behavioral phenotypes, which is the subject of the next section. 

 

 

 
Figure 13. Passive avoidance after amygdala silencing by TTLC expression 
a, Before/after display of the latency to enter the dark compartment during the 
acquisition and the 24 h retention test for control and TTLC mice. b, ‘Survival’ curve 
for the latency to enter the dark chamber during the acquisition phase, all mice entered 
under 30 s to avoid staying exposed on the open platform. c, In the retention test, 24h 
after the foot shock presentation, control animals exhibit a longer latency to enter. 
Amygdala-silenced TTLC mice do not show fear learning and remain with a 
significantly shorter latency to enter in the retrieval test compared to the controls. 
**p<0.01 
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2.6. Fear-conditioning retrieval after GluN1 and GluA1 deletion in 

the basolateral amygdala  

Since the BLA is intricately linked to the acquisition and retrieval of fear 

conditioning, genetic modifications specific to this region are required to 

understand the role played by AMPARs and NMDARs in long-term retrieval 

processes. There are no transgenic methods available that allow restriction of 

gene targeting to the BLA. Therefore, stereotaxic rAAV-mediated Cre 

recombinase expression was used in this study to knock out the GluN1—and 

therefore NMDARs—and GluA1 genes in the BLA. Furthermore, temporal 

specificity was added to the BLA knockout by taking advantage of the 

doxycycline (Dox)-induced reverse tetracycline trans-activator (rtTA) system 

for the control of Cre recombinase expression. 

2.6.1. Doxycycline-inducible recombination in the BLA of 

Rosa26-lacZ2lox mice 

In order to test the inducible Dox-activated rtTA system for expression of Cre 

recombinase in neurons, rAAVs were injected into the BLA of three 

heterozygous 24-week-old female mice with a Rosa-locus knock-in of beta-

galactosidase with a loxP-flanked transcriptional-silencing cassette 

Rosa26-lacZ2lox/wt (Soriano, 1999). Each mouse was injected with 500 nl of a 

mixture of rAAV-syn-rtTA and rAAV-Ptetbi-iCre-tdTomato in a 1:2 ratio (Figure 

14a; Virus sources Section 7.5.4). The synapsin promoter drives neuron-specific 

expression of the synthetic transcription factor rtTA, which binds to the 

tetracycline operator elements of the Ptetbi bidirectional promoter in the 

presence of Dox. Therefore, upon Dox administration, simultaneous expression 

of Cre recombinase and tdTomato is induced.  

 Seven days after AAV injection, Dox was injected intra-peritoneally in 

two of the Rosa-lacZ2lox/wt mice and all three mice were perfused 48 h later. The 

brains were sliced at 100 µm thickness and X-Gal staining was performed. Mice 

treated with Dox exhibited expression of beta-galactosidase in the BLA, 

indicating recombination of the floxed transcriptional silencing cassette by Cre 

recombinase (Figure 14b). Dox treatment also induced expression of tdTomato 
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in the BLA (Figure 14d). In the absence of Dox treatment, no recombination 

occurred (Figure 14c), and no tdTomato fluorescence was observed (Figure 

14e). Recombination was limited to the basal part of the BLA, extending to the 

apical part of the lateral amygdala, but was also found in portions of the 

piriform cortex and the striatum. The central amygdala was not infected. 

 In summary, the rAAV-mediated Dox-inducible Cre/LoxP system can 

be used to effectively modify gene expression in neurons of the BLA in an 

anatomically and temporally restricted fashion.  

 

 
Figure 14. Recombination of loxP-flanked transcriptional silencing cassette of beta 
galactosidase in Rosa26-lacZ2lox mice by Cre expression 
a, Schematic representation of the rAAV mixture injected. In presence of Dox, rtTA 
expressed in infected neurons binds to the bidirectional Ptetbi promoter and induces 
expression of Cre recombinase and tdTomato. Cre recombines the loxP sites flanking 
the transcriptional silencing cassette in Rosa26-lacZ2lox mice leading to beta-
galactosidase expression. b, Dox-treated (+DOX) AAV-injected mice show 
recombination evidenced by lacZ staining in the BLA (blue). c, In the absence of Dox 
(-DOX), no lacZ staining is observed. d, tdTomato expression after Dox treatment. e, In 
the absence of Dox, no tdTomato fluorescence was observed. Syn: synapsin promoter. 
rtTA: reverse tetracycline trans activator. Dox: doxycycline. LA: lateral amygdala. Str.: 
striatum. BLA: basolateral amygdala. Pir: piriform cortex. Scale bars, 500 µm. 
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2.6.2. Retrieval of a consolidated fear-conditioning memory after 

GluN1 knockout in the BLA 

My goal was to test the involvement of NMDARs and AMPARs in the BLA in 

memory processes following fear memory acquisition. For gene knockout, 

rAAV-mediated Cre expression in mice with loxP-flanked alleles was used. 

Mice carrying loxP-flanked GluN1 alleles were used as a model for NMDAR 

knockout, since NMDA receptors cannot be formed without the GluN1 subunit 

(Schüler et al., 2008). Also, GluA1 is an important subunit of AMPARs in the 

amygdala, but only the GluA1-containing AMPAR population is knocked-out 

in GluA1 floxed mice after Cre recombination (Zamanillo et al., 1999). 

 A detailed clarification of the terminology used for each experimental 

group is shown in Table 2, where ‘rAAV mix’ refers to the rAAV-syn-rtTA and 

rAAV-Ptetbi-iCre-tdTomato mixture in ratio 1:2 that was bilaterally injected into 

the amygdala in all mice. Two GluN1∆BLA and two GluA1∆BLA mice were 

excluded from the behavioral data analysis because only unilateral BLA 

infection was found in these animals after post-mortem analysis. 

Table 2. Terminology for experimental groups in this study, sample size and age at 
the time of injection. 

Genotype Before DOX 
After 
DOX 

N 
Age (w) at 
injection 

GluN12lox/2lox injected 
with rAAV mix GluN12lox GluN1∆BLA 8 

(originally 10) 9.4 ± 0.2 

GluA12lox/2lox injected 
with rAAV mix GluA12lox GluA1∆BLA 5 

(originally 7) 22 

C57Bl/6N injected 
with rAAV mix Control Control 9 9 

 
A series of behavioral tests was performed with the purpose of analyzing 

the effect of GluN1 and GluA1 knockout in the BLA after acquisition of a fear 

conditioning memory (Figure 15). The protocol was based on the idea of 

allowing sufficient time for rAAV infection and expression of rtTA in the 

infected neurons. After 26 d, acquisition of cued fear conditioning was 

performed and no further manipulations of the mice were carried out for 48 h, 

to avoid any interference with the molecular consolidation processes that occur 

during this time window. Two days later, short contextual and cued fear 
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retrieval tests were performed to assess whether all mice learned the tone-shock 

association. Up to this point, mice did not express Cre and therefore still had 

functional GluN1 or GluA1 alleles. Seven days after acquisition, treatment with 

Dox was started with one intra-peritoneal injection and continued with Dox in 

the drinking water for additional 23 d. This period of time was chosen so that 

enough Cre recombinase expression is achieved, recombination of the floxed 

genes has occurred, and loss of NMDARs and GluA1-containing AMPARs at 

the synapses has taken place. At this time point, GluN1 and GluA1 have been 

knocked out in the infected neurons of the BLA. The Dox treatment was then 

stopped to avoid state-dependent interference on the following behavioral tests. 

The effect of the gene knockout on the retrieval of the cued and contextual fear 

memories was assessed with a longer testing protocol. 

 

 
Figure 15. Fear conditioning protocol for GluN1∆BLA and GluA1∆BLA mice 
A three-shock acquisition protocol was performed 26 d after rAAV injection, in which 
a 7.5 kHz tone (elevated line, CS) and 0.4 mA 2 s foot shock (dotted line, US) were 
applied. One contextual and one cued fear test were performed before the Dox 
treatment and after the knockout induction. Then, extinction of cued fear was 
conducted. A reacquisition protocol was performed to test for acute fear expression, 
followed by one final additional cued test. Context I refers to a transparent plexiglass 
chamber with metallic grid floor and ethanol smell. Context II consisted of a black 
plastic box with opaque plastic floor and acetic acid smell. 
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 All three groups, GluA12lox (n = 5), GluN12lox (n = 8) and control mice 

(n = 9), were trained in the same fear-conditioning acquisition protocol (Figure 

16a). The baseline mobility levels of all mice were similar during the first 6 min. 

All mice jumped and emitted vocalizations upon experiencing foot shocks, and 

gradually increased their immobility as evidenced by a significant effect of time 

(two-way repeated-measures ANOVA, F14,19 = 33.59, p < 0.0001), without 

significant differences between the genotypes (F2,19 = 0.9422, p = 0.4072) and no 

interaction (F28,19 = 1.057, p = 0.3922). Therefore, all groups showed a similar 

behavior in the acquisition of a fear-conditioning memory (Appendix Table 29). 

 In order to test that all mice acquired the tone/shock association, a 

contextual and a cued retrieval test were performed three and four days later, 

respectively (Figure 16b,c; Appendix Table 30, 31). Both immobility detected by 

infrared sensors and freezing assessed by direct observation were analyzed. Re-

exposure to the acquisition context triggered low (~20%) levels of immobility 

and freezing and no significant effect of genotype (Figure 16b; immobility, F2,19 = 

0.2960, p = 0.7472; freezing F2,19 = 1.677, p = 0.2134). Time had a significant effect 

on immobility (F2,19 = 4.374, p = 0.0195), as did the genotype-time interaction 

(F4,19 = 4.113, p = 0.0072). GluA12lox mice had a tendency to increase immobility 

and freezing with time, but post hoc Bonferroni-corrected t tests did not reveal 

the exact origin of the differences. In general, the low freezing levels during this 

test indicate that the contextual component of the fear memory was not 

particularly strong in this cohort of mice. 

 In the cued retrieval test, all mice showed little freezing and immobility 

during the initial three minutes and their fear levels significantly increased 

upon tone presentation (Figure 16c; immobility, F5,19 = 37.60, p < 0.0001; freezing 

F5,19 = 70.62, p < 0.0001). There was no significant effect of genotype 

(immobility, F2,19 = 2.014, p = 0.1610; freezing F2,19 = 2.922, p = 0.0783) or the 

interaction (immobility F10,19 = 1.259, p = 0.2647; freezing F2,19 = 1.677, 

p = 0.2134). Post hoc t tests showed that immobility and freezing levels of the 

GluN12lox and control mice were not significantly different, whereas the 

GluA12lox mice tended to freeze more in response to the tone, and this trend was 

significant in minute 6. In summary, all three groups of mice exhibited fear in 
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response to re-exposure to the tone, indicating that the cued component of the 

fear memory was strong. 

 Upon the start of the 23-day Dox treatment, Cre-dependent 

recombination is triggered and GluN1 and GluA1 are knocked out in the rAAV 

infected neurons. Five days after the Dox treatment was stopped, retrieval of 

the cued fear memory was tested in order to assess the effect of GluN1 and 

GluA1 knockout in the BLA (Figure 16e). All groups had similar baseline 

freezing levels during the initial three minutes of the test and these increased in 

response to the tone presentation (time effect, F10,19 = 22.29, p < 0.0001). Two-

way repeated-measures ANOVA revealed only a trend in the effect of 

genotype, which was not significant (F2,19 = 3.223, p = 0.0624). Nevertheless, 

there was a significant interaction between time and genotype (F20,19 = 2.642, p = 

0.0003), indicating that the genotype of the mice did not have a general effect 

over the whole duration of the test, but that this effect was time-specific. Post 

hoc multiple comparisons with t tests showed that GluN1∆BLA failed to reach the 

same freezing levels as the controls during the first two minutes of the tone, 

after which all mice decreased their freezing response due to habituation. On 

the other hand, GluA1∆BLA were not impaired in the tone-dependent increase of 

freezing, and they showed decreased habituation, as evidenced by the higher 

freezing levels during minute 7 compared to control and GluN1∆BLA mice. The 

immobility data for this test showed similar results (Figure 16f), with an increase 

from minute 3 to 4 for all mice. This tone-dependent increase in immobility was 

higher for control mice than for GluN1∆BLA. However, due to the high variation 

of the infrared sensor data, factorial ANOVA was not able to detect such a 

specific impairment (genotype F2,19 = 0.7554, p = 0.4834; time F10,19 = 3.408, p = 

0.0004; interaction F20,19 = 0.9146, p = 0.5691). 

 In contrast to the cued fear component, the contextual retrieval test after 

Dox treatment revealed no gross differences between GluN1∆BLA, GluA1∆BLA and 

control mice (Figure 16d). All mice showed comparably low levels of immobility 

during the duration of the test (genotype F2,19 = 0.6770, p = 0.5200; time 

F7,19 = 1.836, p = 0.0854; interaction F14,19 = 1.499, p = 0.1196), indicating that the 

context did not have a major component in the fear-conditioning memory in 
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this cohort. 

 The inducible nature of the genetic manipulation performed in this study 

allows for the intra-subject comparison of memory retrieval before and after the 

gene knockout. For this purpose, the freezing levels during the first three 

minutes of tone presentation were compared before and after the Dox treatment 

(Figure 16g). The genotype of the mice alone did not reach a significant effect on 

the fear levels (F2,19 = 3.041, p = 0.0715). Time, however, did have a significant 

effect (F1,19 = 19.96, p = 0.0003). Moreover, the interaction of genotype and time 

significantly affected freezing (F2,19 = 4.718, p = 0.0217). Post hoc Bonferroni 

comparisons showed that the freezing levels of control mice did not differ 

significantly before and after Dox administration (Appendix Table 32), 

indicating that the drug treatment alone did not influence amygdala function 

and that there was no significant time-dependent decrease in memory strength. 

GluN1∆BLA mice, however, showed significantly less freezing after gene 

knockout, evidencing impairment in retrieval of cued fear. In the case of 

GluA1∆BLA mice, these froze more than controls during the first cued test and 

showed a significant decrease in freezing levels after GluA1 BLA knockout, 

reaching control levels. 

 Due to the inter-group variability in freezing during the first cued test, a 

relative change in freezing was calculated to include within-subject variation, 

normalizing with the initial cued freezing of each mouse before Dox (Figure 

16h). The relative change was computed with the formula: 

€ 

ΔFreezingrelative =
Freezingafter − Freezingbefore

Freezingbefore
 

 One-way ANOVA showed that the genotype of the mice had a 

significant effect on this parameter (F2,19 = 5.350, p = 0.0144). Bonferroni’s 

multiple comparisons showed that GluN1∆BLA mice had a significantly more 

negative mean relative change, indicating a decrease in freezing after knockout 

in BLA, compared to controls (Appendix Table 33). The mean relative change of 

the controls was close to zero, indicating little or no change after Dox treatment.  

GluA1∆BLA mice, on the other hand, showed a negative trend in their freezing 

relative change, but it was not significantly different from the controls. 



Dario Arcos-Díaz  Part I – Results 

 55 

 
Figure 16. Retrieval of cued fear conditioning before and after knockout of GluN1 
and GluA1 in the BLA by Dox-induced Cre recombinase expression 
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Top, Schematic time-line of the experimental design. Mice were injected with 
rAAV-syn-rtTA and rAAV-Ptetbi-iCre-tdTomato 26 d before acquisition of fear 
conditioning. Dox treatment was started 7 d later during 23 d. Contextual and cued 
retrieval tests were performed before and after the Dox treatment. a, Three-shock 
acquisition of cued fear conditioning. All mice gradually increased their freezing after 
each tone-shock pairing. The gray areas represent CS/US pairings. b, Contextual 
component of the fear memory 2 d after acquisition, before Dox treatment, measured 
by immobility and freezing. c, All three groups showed increased freezing when the 
tone was presented in a cued test 3 d after acquisition. The gray area indicates the CS 
presentation. d, Retrieval of contextual fear after Dox treatment, no significant 
differences in immobility between the three groups were observed. e, Cued fear 
retrieval after Dox treatment, 35 d after acquisition. GluN1∆BLA mice froze significantly 
less than controls during the first two minutes of tone presentation. GluA1∆BLA mice 
froze more than control mice during minute 7. f, Immobility levels during the cued 
retrieval test after Dox treatment reflect a similar trend as freezing. g, Total freezing 
levels during the three initial minutes of tone presentation of the cued tests before and 
after Dox treatment. Mice froze significantly less after GluN1 knockout and after 
GluA1 knockout, whereas freezing levels remained similar after Dox treatment in 
control mice. h, The relative change in freezing during the three initial minutes of tone 
presentation after DOX treatment, calculated by the formula shown, was more 
negative for GluN1∆BLA mice than for controls. *p < 0.05, **p < 0.01, ***p < 0.001. 
 

As a next step, the extinction of cued fear in GluN1∆BLA or GluA1∆BLA was 

analyzed, in order to assess whether the fear memory in these groups was as 

persistent as in control mice. An extinction trial consists of the non-reinforced 

re-exposure to the CS in the absence of US. The cued retrieval test after Dox 

treatment was considered as the first extinction trial, and three additional trials 

were carried out starting 12 d later on three consecutive days. In the extinction 

trial 2 (E2; Figure 17a), control and GluA1∆BLA mice still showed increased 

immobility upon onset of the tone, whereas GluN1∆BLA continued to exhibit 

retrieval impairment. In E3 (Figure 17b), all three groups stopped to show tone-

induced increase in immobility, an observation further confirmed during E4 

(Figure 17c). When comparing the first 3 min of tone presentation across all 

extinction trials (Figure 17d), it becomes evident that extinction took place (time 

effect, F3,19 = 4.712, p = 0.0052), but that there were no significant differences by 

genotype (F2,19 = 1.640, p = 0.2203;  interaction F6,19 = 0.4511, p = 0.8412). 
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Figure 17. Extinction of cued fear in GluN1∆BLA and GluA1∆BLA mice 
a, During extinction trial 2, GluA1∆BLA and control mice still show a tone-dependent 
increase in immobility, in contrast to GluN1∆BLA. This cued fear memory is absent 
during extinction trials 3 (b) and 4 (c). The gray area indicates the period of CS 
presentation. d, The immobility during the first 3 min of tone presentation across 
extinction trials decreased significantly, but there were no significant differences 
between genotypes. The first extinction trial corresponded to the cued retrieval test 
after Dox treatment. 
 

2.6.3. Exploratory behavior after GluN1 and GluA1 knockout in 

the BLA 

As a test for general exploratory behavior, GluN1∆BLA and GluA1∆BLA mice were 

tested in the open field for 5 min, 69 d after the initial fear-conditioning 

acquisition (Figure 18a). The total distance traveled did not differ significantly 

between genotypes (two-way repeated-measures ANOVA, F2,19 = 1.690, p = 

0.2112). There was a significant effect of time (F4,19 = 4.164, p = 0.0042) but not of 

the interaction between these two factors (F8,19 = 1.159, p = 0.3349). This 

indicates that the gross exploratory activity of all three groups was similar. 

Moreover, the percentage of time spent in the center area of the square arena 

(inner 30 x 30 cm2; Figure 18b) was not significantly different between the 

genotypes (one-way ANOVA, F2,19 = 2.204, p = 0.1378), although the variability 

was high. These results indicate that none of the groups had particularly high 

anxiety levels, and their behavior was comparable. 
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Figure 18. Open-field behavior of GluN1∆BLA and GluA1∆BLA mice 
a, Total distance traveled during the test in 1 min time bins. b, Scatter plot of the 
percentage of time spent in the center region of the open-field arena. 
 

2.6.4. Visual-association swimming task after GluN1 and GluA1 

knockout in the BLA 

As a final control test, mice from all three groups were trained in a visual-

association swimming task in order to rule out that any group was unable to 

associate two different stimuli. The test was performed 124 d after the initial 

acquisition of fear conditioning and consisted of a modification of the protocol 

developed by Prusky and colleagues (2000). The training starts with one day of 

habituation to a small swimming pool. Mice swim from an initial start position 

to a hidden escape platform located behind a door marked by a salient star-

shaped visual cue. Ten trials were performed from three different starting 

positions each located further apart from the goal platform (Figure 19a). On the 

following day, mice were trained in a larger swimming pool with two different 

goal options, one marked by the visual cue and containing the hidden platform 

(correct choice), and the other without cues or platform (wrong choice). Both 

options are randomly presented on the left or the right for each trial. Mice learn 

to swim towards the visual cue along five blocks of ten trials distributed on 

three consecutive days. Six mice from each group were tested (Figure 19b). 

Two-way repeated measures ANOVA showed that mice were able to learn this 

task and improve their performance over time (F4,15 = 12.74, p < 0.0001). There 



Dario Arcos-Díaz  Part I – Results 

 59 

were no differences between the genotypes (F2,15 = 0.2285, p = 0.7984) and there 

was no significant interaction with time (F8,15 = 0.3631, p = 0.9359). It becomes 

clear from this result, that the impairments in cued fear retrieval for GluN1∆BLA 

and GluA1∆BLA mice are not simply due to a general cognitive impairment or 

inability to form general associations. 

 
Figure 19. Visual association swim task for GluN1∆BLA and GluA1∆BLA mice 
a, Schematic representation of the testing apparatus and design. On day 1, mice 
habituate to the swimming task in a one-option pool, where they swim to a goal 
hidden platform marked by a salient visual cue, starting from three different gradually 
more distant positions. On days 2–4, mice swim in a larger pool with two goal options 
and learn that the visual cue—and not the left/right position—predicts the location of 
the hidden platform. b, The percentage of correct choices improves across the test 
blocks for all groups of mice without a significant effect of the genotype. The dotted 
line indicates the chance level. 
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2.6.5. Doxycycline-induced GluN1 and GluA1 knockout in the 

BLA 

The histological post-mortem analysis of tdTomato expression was used to 

assess the extent of infection of the BLA in GluN1∆BLA and GluA1∆BLA mice after 

the behavioral experiments were finished (Figure 20). Immunostaining against 

Cre recombinase showed that recombination was restricted to the BLA and a 

small portion of the piriform cortex. The neuronal nuclei marker NeuN was 

used in immunostaining to show that tdTomato expression was neuron-

specific.  

 
Figure 20. Histological analysis of rAAV-mediated Cre expression in the BLA 
Fluorescence immunostaining against Cre recombinase showing restricted expression 
mostly in the BLA. Cre expression overlapped with the red fluorescence of tdTomato. 
NeuN immunostaining shows that the cells expressing tdTomato are mature neurons. 
Scale bar, 200 µm. 
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A set of examples of Cre immunostaining in GluN1∆BLA and GluA1∆BLA 

mice is shown in Appendix Figure 33. An estimate of 30–60% of the BLA 

showed rAAV infection, and within an infected region ~90% of the NeuN-

positive cells were also Cre-positive. 

Furthermore, in order to obtain evidence that the knockout of GluA1 had 

taken place, 3,3'-Diaminobenzidine (DAB) immunohistochemistry was 

performed against the GluA1 subunit using a peroxidase-labeled antibody 

(Figure 21a). GluA1 staining was absent in the infected area of the BLA in 

GluA1∆BLA mice, while it was strongly present in the case of rAAV-injected 

control mice. This was not an artifact of the staining procedure, since other 

regions known to express high levels of GluA1, such as the hippocampus, 

exhibited normal staining in GluA1∆BLA mice. 

 In the case of NMDARs, no reliable immunostaining protocol against 

GluN1 is available. Therefore, slice electrophysiological recordings of rAAV-

infected BLA neurons were obtained in GluN1∆BLA and control mice. In 

GluN1∆BLA mice, the NMDAR component was completely absent from this 

neuron population (Paolo Botta and Andreas Lüthi, personal communication). 

 After the post-mortem injection-site analysis, the variability of the 

infected area in the cohort of mice was assessed, showing that rAAV infection 

was mostly restricted to the BLA, but often extended to the deeper layers of the 

piriform cortex (Figure 21b,c; Appendix Figure 33). Importantly, the output 

region of the amygdaloid complex, the CeA, was spared from rAAV infection 

and gene knockout. These results constitute an important reminder of the 

limitations of the virally-mediated gene manipulation approaches, in which 

great anatomical specificity can be achieved but with often large variability. 



Dario Arcos-Díaz  Part I – Results 

 62 

 
Figure 21. Histological analysis of GluA1∆BLA and GluN1∆BLA mice 6 months after 
rAAV injection 
a, DAB-peroxidase immunostaining against the GluA1 shows absence of the subunit in 
the BLA of GluA1∆BLA mice, whereas it is expressed normally in control mice. GluA1 
expression in the hippocampus of GluA1∆BLA mice was normal. Scale bar, 500 µm. 
b, Extent of infection in the brains of GluA1∆BLA mice. c, Infection area in the brains of 
GluN1∆BLA mice. The smallest area of infection is shown in dark gray, the largest in light 
gray. Scale bar, 1 mm. 
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3. Discussion 

3.1. The subtle effects of AMPAR subunit knockout 

AMPARs have an essential function in mediating glutamatergic synaptic 

transmission and are represented by two populations in forebrain principal 

neurons: GluA1-containing and GluA3-containing AMPARs. Paradoxically, 

complete constitutive absence of one of either of these receptor populations 

yields only subtle behavioral effects. In the following sections, I will elaborate 

on the behavioral analysis of the general cognitive ability and emotional 

memory of GluA3-/- and GluA1-/- mice. 

3.1.1. General cognitive ability of GluA3-/- mice 

I analyzed the general cognitive ability of GluA3-/- mice using the puzzle-box 

problem-solving test (Figure 2). This test has been proposed as an indicator for 

deficits in executive functions related to schizophrenia (Abdallah et al., 2011). I 

found a subtle impairment in selected trials compared to wild-type littermates, 

but GluA3-/- did not differ from controls in most tasks. Particularly, GluA3-/- 

mice had difficulties achieving the improvement observed in wild types after 

subsequent trials, for example, in the ‘underpass’ task 2. GluA3-/- mice were also 

impaired when presented with new problems, as in the first trial of task 3 

(digging) and 4 (plug), and after subsequent trials they did not differ from the 

controls anymore. However, GluA3-/- mice had no general impairment of their 

digging abilities or motivation to dig. 

This is especially interesting in light of the discovery of several 

mutations of the GRIA3 gene that codes for the GluA3 subunit, which lead to 

moderate to severe cases of mental retardation in humans (see below). 

Moreover, a neurological child disease involving epilepsy, hemiplegia, 

dementia and inflammation of the brain known as Rasmussen’s encephalitis 

has been linked to an autoimmune response against the body’s own GluA3 

subunits (Rogers et al., 1994). An X-chromosome translocation within the 

GRIA3 gene was first reported in a patient with bipolar disorder and mental 
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retardation (Gécz et al., 1999). Later, several missense mutations and one 

deletion in the GRIA3 gene were linked to different degrees of mental 

retardation and these mutations were shown to cause misfolding and reduction 

in GluA3 (Wu et al., 2007). Also, two partial tandem duplication of GRIA3 

running in two different families of patients have been linked in to mental 

retardation (Bonnet et al., 2009; Chiyonobu et al., 2007). 

GluA1-/- mice have already previously been analyzed in the same testing 

protocol (Abdallah et al., 2011). That study showed that GluA1-/- mice also had 

selected impairment of some tasks, in particular, in the short-term improvement 

after subsequent trials, normally exhibited by controls. GluA1-/- mice have been 

proposed as an animal model of schizophrenia (Wiedholz et al., 2008). 

Together, the results presented in this thesis, as well as those obtained by 

Abdallah and colleagues, signal that the behavioral phenotype resulting from 

knocking out GluA1 or GluA3 subunits does not cause generalized cognitive 

impairment, but rather a specific deficit in problem solving, and might have 

important applications as a model of schizophrenia and moderate mental 

retardation. More refined testing protocols are required for this type of analysis. 

GluA1 and GluA3 knockout mice are important tools for the establishment of 

such behavioral tests. 

3.1.2. GluA1-containing AMPARs and short-term fear memory 

I analyzed two different mouse lines with altered populations of GluA1-

containing AMPARs. One of them with a global depletion of the subunit, 

GluA1-/- (Zamanillo et al., 1999); the other one with a point mutation, GluA1R/R 

(Vekovischeva et al., 2001). I found that both of this manipulations resulted in a 

severely impaired expression of fear during the acquisition phase of cued fear 

conditioning, nevertheless, with evidence for the formation of long-term 

memory (Figure 5 and 6). 

 Little is known about the processes occurring during the acquisition 

protocol in fear conditioning. However, a general observation is that wild-type 

animals show immediate expression of fear after a US (foot shock) presentation. 

Therefore, the particular phenotype observed in GluA1-/- and GluA1R/R mice, in 
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which they do not increase their fear response, even after three US 

presentations, is of special interest. Several explanations could be given to this 

phenomenon. 

First, the global knockout of normal AMPARs produces general synaptic 

transmission deficiencies in several regions of the brain important for the 

physiological manifestations of fear, including the CeA, hypothalamus, and 

brain stem; for this reason, these mice are unable to express fear. However, this 

hypothesis is not in line with the small but significant increase in immobility in 

response to the CS observed when testing the animals 24 h later. Therefore, the 

expression of fear in the form of immobility is possible in  

GluA1-/- and GluA1R/R mice. 

Second, the global knockout of normal AMPARs affects brain regions 

responsible for motor initiation and/or coordination—e.g. cerebellum, 

substantia nigra, ventral tegmental area, and striatum—thus rendering these 

mice highly hyperactive and reducing the capacity to detect immobile states by 

the experimenters. This hypothesis is supported by the fact that GluA1-/- and 

GluA1R/R mice have higher exploratory activity in the open field test 

(Bannerman et al., 2004; Vekovischeva et al., 2001). However, it does not explain 

the increase in immobility during the cued retrieval test 24 h later, since mouse 

hyperactivity would mask the fear response in all of the testing phases and not 

only during acquisition.  

 Third, there is a specific impairment of fear expression during the 

acquisition phase, which does not affect the fear response in a subsequent test 

after 24 h. I propose that it is this hypothesis that better explains the phenotype 

observed in GluA1-/- and GluA1R/R mice. The supporting evidence for this 

affirmation goes back to studies in spatial memory, where a similar 

interpretation can be made. 

 Previous studies have shown that GluA1-/- mice are strongly impaired in 

solving spatial working memory component in the elevated T-maze (Reisel et 

al., 2002) or the six-arm radial maze (Schmitt et al., 2003). In these tests, mice 

must be able to recall events that occurred seconds to minutes before the 

decision point. In strong contrast, spatial reference memory is normal in these 
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mice, for example, in the Morris water maze (Reisel et al., 2002; Zamanillo et al., 

1999) or in the Y-maze (Reisel et al., 2002); in the reference memory tasks, 

learning occurs during a long period of time involving training for several days. 

Therefore, it has been proposed that GluA1 knockout unravels the dissociation 

of short-term and long-term memory processes (Sanderson et al., 2009). 

 There is a likely parallel between the spatial memory and fear memory 

phenotypes of GluA1 mutant mice. In both cases, a short-term component, 

relying on recently visited spatial locations or recently experienced noxious 

stimuli, is heavily impaired; whereas a long-term component, based on retrieval 

of associations after one or several days, is normal or only slightly affected. The 

fact that a similar phenotype in emotional memory was observed for GluA1-/- 

and GluA1R/R mice shows that there is a requirement for this AMPAR 

population for short-term memory. 

 Sanderson and colleagues (Sanderson et al., 2008) have proposed that the 

dissociation of short and long-term spatial memory processes could be 

explained by a model elaborated by Wagner three decades ago (Wagner, 1981). 

This SOP model (accounting both for Standard Operating Procedures in Memory 

and Sometimes-Opponent Process) is based on the hypothesis that memory 

“nodes” (e.g. stimuli) consist of elements (e.g. different characteristics of each 

stimulus) that can be in one of three possible states: an inactive state (I), and 

two active states, A1 at the focus of attention, and A2 as in marginal working 

memory. The different relationships of the three states are shown in the 

following scheme taken from Wagner (1981): 

 
The SOP model has the advantage that it predicts the occurrence of 

priming of short-term memory. The presentation of a stimulus leads many of its 

elements to move from inactivity into the active state A1, after which these 
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elements will decay to A2, before finally decaying back to I. When the stimulus 

is presented again after a short-enough time period, at which most of its 

elements are still in A2, there will be fewer elements available to enter the A1 

state and the stimulus will be less likely to become the focus of attention the 

second time it is presented. The direct passage from I to A2 is assumed to occur 

only by activation of another ‘node’ that has a positive association with the 

node in the scheme. 

Under this model, the impairment of GluA1-/- mice in spatial working 

memory tasks could be interpreted as an increase of the rate of passage from A2 

to I, so that a stimulus that has just been presented quickly abandons the active 

state. In the T-maze, for example, when wild-type mice visit one arm, the 

representation of this arm remains in the active state A2 for a sufficient amount 

of time as to be less interesting when presented for a second time after a few 

seconds or minutes; thus resulting in the mice exploring the more interesting 

alternative arm. For GluA1-/- mice, on the other hand, the representation of the 

visited arm would quickly go back to the inactive state, so that the same arm 

would be just as interesting during the second visit. Likewise, in the case of fear 

conditioning acquisition, an increased rate of passage of the US (foot shock) 

representation from A2 to inactive in GluA1-/- mice could explain why these 

mice do not express fear during this training, since their marginal working 

memory would be impaired. An alternative possibility is that the transfer of 

information from A1 to A2 is too slow in GluA1-/- mice and the marginal 

working memory is not established at a time when the recall is necessary—e.g. 

in the second run in the T-maze. This slow transfer might also explain the lack 

of fear response during the three shocks observed in GluA1-/- and GluA1R/R 

mice. 

Nevertheless, what makes the SOP model particularly interesting in the 

light of the experimental data regarding GluA1-/- is that, according to this 

model, the formation of long-term memories is not a direct and sequentially 

subordinated consequence of short-term working memory performance, that is, 

of the maintenance of an active representation of a stimulus in the A2 state. But 

rather, Wagner proposed that long-term positive or “excitatory” associations 
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arise from the simultaneous activation of two stimuli in the A1 state—in the 

focus of attention. This would explain, why GluA1-/- mice are able to acquire 

spatial reference memory, even though their spatial working memory is 

impaired. It would also explain why GluA1-/- and GluA1R/R mice are able to form 

a CS/US association, as evidenced in the retrieval test, even though they are 

unable to maintain a working memory representation of the shock—and 

express fear—during the acquisition of fear conditioning. Moreover, this 

particular requirement of GluA1-containing AMPARs in short-term memory 

processes seems to be specific for this receptor population. GluA3-containing 

AMPARs do not seem to be necessary for the maintenance of the A2 active state 

of mental representations of stimuli, since no working memory impairment is 

observed in GluA3-/- mice in the fear-conditioning acquisition. 

In conclusion, my data support the hypothesis that memory does not 

necessarily go through a short-term working memory state, before becoming 

stable on the long-term, but that these two dissociated processes occur in 

parallel. 

3.1.3. GluA3- and GluA1-containing AMPARs in long-term fear 

memory 

In a first experiment, testing the behavior of GluA3-/- mice in the passive 

avoidance task, substantial retrieval of the avoidance memory was observed, 

which was evidenced for as long as 67 d, whereas wild-type mice showed a 

significant decrease in their avoidance response already after 37 d (Figure 4). 

The analysis of GluA1-/- mice in the same paradigm yielded similar results 

(Figure 7), showing significant recall of the avoidance memory in knockout 

mice for up to 23 d, while wild-type mice already exhibited decrease in fear 

memory at this time point. These results suggested that the knockout of each of 

the dominant AMPAR populations in excitatory neurons had a strong effect in 

the retention of long-term fear memories in the passive avoidance task. 

However, in both of these experiments, the mice used were not naïve and had 

already been trained in classical fear conditioning followed by cued fear 

extinction. This pre-exposure to shock stimuli could have interfered with the 
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formation of the passive avoidance memories, in which shocks are also used as 

US. Therefore, confirmation of these results was necessary to be able to draw 

appropriate conclusions. 

 For this reason, a further experiment was performed in which naïve 

GluA1-/- and GluA3-/- mice were analyzed in parallel in the same passive 

avoidance task and repeatedly tested at different time points from acquisition 

to assess changes in the strength of memory with the passage of time (Figure 8). 

These results confirmed the initial observations relating the long-term 

avoidance memory. That is, also in naïve mice an enhancement in the retention 

time of passive avoidance fear memory was observed, indicating that both 

knockout of GluA1 and of GluA3 had an important positive effect in long-term 

memory. 

 Strikingly, in the case of GluA1-/- mice, a remarkably similar situation has 

been reported for habituation of spatial memory in the novelty preference test 

in the Y-maze (Sanderson et al., 2009). In an elegant experimental design, 

Sanderson and colleagues showed strong evidence for an apparently 

paradoxical short-term “working” memory impairment in GluA1-/- mice 

accompanied by a long-term memory enhancement under conditions in which 

wild-type animals performed badly. For this, they showed that short (1 min) 

inter-trial intervals (ITIs) during training improved learning in wild-type mice 

but impaired learning in GluA1-/- mice, whereas long ITIs did exactly the 

opposite. This has been interpreted as evidence for a dissociation between 

short-term (non-associative) GluA1-dependent memory and long-term 

(associative) memory, which in certain occasions could even compete with one 

another (Sanderson and Bannerman, 2010). 

 However, it must be noted that the short-term memory deficit reported 

here was observed in a three-shock acquisition protocol for fear conditioning, 

while the long-term memory enhancement was evidenced in a different 

paradigm—passive avoidance. This was due to two factors. First, a three-shock 

acquisition protocol in passive avoidance is not practicable, since this paradigm 

is designed to produce learning resulting from one single trial. Second, long-

term memory analysis of fear-conditioning memories in GluA1-/- is difficult, 
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since the measure of fear in this paradigm is based on freezing behavior, which 

can be partially masked by their hyperactive phenotype, making the passive 

avoidance protocol more appropriate. 

 The remarkable observation that the GluA1-/- memory phenotype is 

comparable in two types of learning components in spatial and emotional 

learning, supports the view that the short-term/long-term dissociation could be 

a general principle followed by memory systems involving different regions of 

the brain. 

 This reasoning can be extended to explain, at least partially, the 

emotional memory phenotype of GluA3-/- mice. In this case, only the 

enhancement of long-term fear memory was observed, but not short-term 

memory impairment, and this was supported by data from passive avoidance 

learning (Figure 8) as well as from cued fear conditioning (Figure 9). This is not 

in conflict with the model discussed above, since it is possible that the short-

term working memory processes in fear conditioning acquisition do not rely on 

GluA3-containing AMPARs, while the long-term memory processes do. This 

different involvement of GluA1- and GluA3-containing AMPARs is most likely 

related to the different roles of these two receptor populations in synaptic 

transmission and plasticity. This is best exemplified by LTP at different input 

synapses in the amygdaloid system: thamalo-amygdala LTP and intra-BLA LTP 

both depend on GluA1, whereas cortico-amygdala LTP depends both on GluA1 

and GluA3 (Humeau et al., 2007). Interestingly, from lesion studies it is known 

that it is the cortico-amygdala pathway that is necessary for maintaining 

auditory cued fear memories (Boatman and Kim, 2006), while either pathway 

supports their initial learning (Romanski and LeDoux, 1992). Therefore, the 

discrepancies in the roles of GluA1 and GluA3 in conditioned short-term and 

long-term memory can be best explained by different AMPAR subunit 

compositions in distinct synapses of the amygdaloid complex. 
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3.2. rAAV-mediated gene delivery into the BLA and manipulation of 

fear memories 

There is only a limited number of available references for the successful use of 

viral vectors for the modification of gene expression in the amygdala to study 

memory processes, either using rAAVs (Glass et al., 2008; Rumpel et al., 2005) 

or other viral tools, e.g. herpes simplex virus (Han et al., 2009; Zhou et al., 2009). 

Therefore, one of the goals of this thesis was to test whether rAAV-mediated 

expression of gene products that alter neuronal activity could be used to modify 

behavior in mice. For this purpose, TTLC was expressed by injecting rAAVs 

into the amygdaloid complex.  

 I found that rAAV could successfully infect neurons in the amygdala 

without causing cell-death and without altering the general behavioral 

performance, as shown in the open field and elevated plus-maze tests (Figure 

11). In emotional learning, amygdala neuron silencing by TTLC was enough to 

disturb the performance in memory retrieval tests (Figure 12), both on the 

short- and long-term. However, it is not clear whether this impairment is due to 

an alteration in consolidation processes that occur after acquisition or to the 

inability to retrieve the memory during the tests. The deficit was not paradigm-

specific, as a similar deficit was found in another amygdala-dependent learning 

test—passive avoidance (Figure 13). These results were consistent with the 

critical involvement of the amygdaloid complex in both of these tasks revealed 

by lesion studies (Russo et al., 1976; Swartzwelder, 1981; Weiskrantz, 1956; 

Zola-Morgan et al., 1991).  

 Nevertheless, the whole potential of this novel technical approach for 

silencing amygdala neurons has still to be exploited. Importantly, the 

advantage of the reversibility given by the doxycycline-controlled induction can 

be of great use in order to assess, for example, the role of synaptic transmission 

through the BLA in learning phases posterior to initial acquisition, such as 

retrieval, reconsolidation and extinction. 
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3.3. Involvement of NMDARs in post-acquisition memory processes 

3.3.1. Methodological considerations of the experimental design 

I have shown that knockout of NMDARs in the BLA starting 7 d after 

acquisition of cued fear conditioning strongly impairs cued recall of a 35-d-old 

fear memory (Figure 16). 

The design for this experiment was conceived with the purpose of 

sparing consolidation- and reconsolidation-related processes that occur after 

acquisition and reactivation of a memory, respectively (Figure 15). First of all, 

animals were left undisturbed for 2 d after acquisition of fear conditioning 

before being re-exposed to the training context during the first contextual test. 

Re-exposure to the CS (tone) did not occur until the third day. A great amount 

of evidence shows that manipulations as diverse as protein synthesis inhibition, 

NMDAR or AMPAR blockage, electroconvulsive shock, and hypothermia do 

not disturb memory when applied at time points later than 24 h (Kandel, 2001; 

McGaugh, 2000). Furthermore, reactivation of fear memory, by short re-

exposure to the context or the CS, by itself does not produce an impairment of 

memory tested at later time intervals (Suzuki et al., 2004). Therefore, it is safe to 

assume that the retrieval tests performed at this stage, which were normal for 

all mouse groups, did not have a negative effect on further tests. Additionally, 

the CS-reexposure during the first cued test was limited to 3 min, with the goal 

of avoiding the possibility of triggering extinction of memory with too long a 

reactivation trial (Pedreira and Maldonado, 2003). 

Moreover, the Dox treatment for the induction of Cre recombinase 

expression was started 7 d after initial acquisition, i.e. 4 d after the first cued 

test. The choice of this time point for the beginning of the NMDAR and 

AMPAR knockout induction allows two things. First, to rule out effects of the 

knockout on the initial time-window of susceptibility after fear learning, which 

lasts 1–2 d. Second, to rule out that later results from memory testing are due to 

a direct effect of the gene knockout on fear reconsolidation, in the sense of the 

processes that occur after memory reactivation by a short re-exposure to the CS. 

The Dox administration was carried out during 23 d for all mice 
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including controls, to exclude an unspecific effect of the drug alone on general 

body homeostasis that could influence performance on behavioral testing. What 

is more, it has not been reported that Dox treatment by itself can cause major 

alterations in behavior. Nevertheless, since the acquisition of the fear memory 

was performed under no-Dox conditions, the Dox treatment was stopped after 

23 d and the mice were allowed a 5 d drug-free period before further memory 

tests were performed. This was done in order to exclude state-dependent effects 

on the second round of memory tests (Sara, 2000a). 

Altogether, these methodological considerations allow the conclusion 

that the memory outcome of the second cued and context tests are due to the 

knockout of the GluN1 or GluA1 genes. 

3.3.2. Memory retrieval impairment after GluN1 knockout in the 

BLA 

The most remarkable results were obtained in the 35 d cued retrieval test 

(Figure 16). GluN1∆BLA mice showed a clear impairment in their ability to recall 

the CS-US association in contrast to wild types, which had undiminished recall 

of the cued fear memory. The advantage of this study is, however, that it 

enables an intra-subject analysis of memory performance. The quantification of 

the relative change in freezing before and after gene knockout showed that 

NMDAR-knockout had a significant effect on cued memory recall. 

This kind of analysis also proved very useful for understanding the 

GluA1∆BLA phenotype. For these mice, the comparison between the freezing 

levels during the 35 d cued test did not yield differences compared to the wild 

types, suggesting that they were not impaired in their ability to recall the fear 

association. Nevertheless, the comparison of the total freezing levels before and 

after the Dox treatment (Figure 16g) and the intra-subject relative change in 

freezing (Figure 16h) show that GluA1∆BLA mice have a tendency to reduce the 

freezing response after the knockout has taken place. This trend was not 

significant, though, which is likely due to the small sample size (n = 5) for this 

group. Therefore, the role of GluA1-containing receptors in the amygdala for 

memory recall after 35 d remains inconclusive. 
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The extinction protocol performed 13 d after the second cued test 

showed that the immobility levels in response to the tone remained low in 

GluN1∆BLA mice, and decreased in GluA1∆BLA and control mice (Figure 17). The 

effect of the NMDAR knockout on extinction cannot be assessed from this 

experiment, since the fear levels were already low during the first extinction 

trial. GluA1-containing AMPAR knockout on the other hand, did not have a 

significant effect on this extinction protocol. Therefore, the following discussion 

will be limited to the first retrieval tests after gene knockout. 

The impairment observed in the 35 d retrieval test for the cued memory 

after NMDAR knockout in the BLA must be analyzed in two contexts: the 

pharmacological evidence for a non-requirement of NMDARs in retrieval, and 

other long-term NMDAR knockout experiments that follow a similar design of 

post-acquisition manipulations (Cui et al., 2004; Shimizu et al., 2000). 

One of the possible explanations for the retrieval deficit in GluN1∆BLA 

mice could be that these mice simply were unable to express fear in the form of 

freezing due to the NMDAR knockout, rather than due to direct effects on the 

fear association itself. However, this reasoning is unlikely in light of the vast 

experimental evidence obtained from pharmacological experiments in which 

NMDAR antagonists were injected into the BLA shortly before the retrieval 

tests without impairing the recall ability for different fear memory paradigms, 

in different model organisms, and with several pharmacological agents (Ben 

Mamou et al., 2006; Lee et al., 2006; Myskiw et al., 2010; Torras-Garcia et al., 

2005; Walker et al., 2002; Zimmerman and Maren, 2010). Thus, it can be 

concluded that if NMDAR activation is not required for successful retrieval of 

fear memories during a recall test, then, the impairment observed in GluN1∆BLA 

mice is likely related to a specific effect on the fear association itself, which has 

been diminished or erased. 

Different to the previous studies, I used a genetic approach in which the 

GluN1 subunit was knocked out in the BLA starting on day 7 after initial 

acquisition. Therefore, there is an important difference from the 

pharmacological studies, in that NMDARs are completely absent from the 

infected neurons after the induction with Dox, and are not just transiently 
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inactivated. 

There are three other studies in which an inducible genetic approach was 

applied to study NMDAR function in long-term memory. In the first one 

(Shimizu et al., 2000), a Dox-inducible and reversible forebrain-specific 

knockout of GluN1 was used to study long-term memory of hippocampus-

dependent tasks. Shimizu and colleagues found that contextual fear 

conditioning—but not cued—could be disrupted if GluN1 was knocked out for 

the first 14 d after acquisition, when memory was tested at 29 d. If the knockout 

took place during the last 8 d before the memory test, there was no effect on the 

contextual or on the cued recall, further supporting the view that NMDAR 

activity and expression is not necessary for fear expression during a retrieval 

test. The authors found similar results for spatial memory in the Morris water 

maze. This study was the first to propose that a mechanism of synaptic reentry 

reinforcement (SRR) could be necessary for consolidation of long-term 

memories, but, due to the genetic model, this hypothesis was restricted to the 

hippocampus and other regions of the forebrain. 

A second study by the Tsien lab used a similar genetic approach, but 

restricting the knockout to hippocampus, cortex and striatum (Cui et al., 2004). 

They were able to show that retrieval of a 9-month-old contextual and cued fear 

memory was impaired when NMDARs were knocked out during a 1-month 

period 6 months after the initial acquisition, but not if the knockout occurred 

only for one week. They hypothesized that a SRR mechanism relying on 

NMDAR periodic reactivation was necessary for the maintenance and 

stabilization of long-term memories. 

A third study by the same group extended the SRR hypothesis to non-

declarative taste memory in the conditioned taste aversion task (Cui et al., 

2005). Now they showed that NMDAR knockout in cortex, hippocampus and 

striatum during the first two weeks following the training session to develop 

aversion to a particular taste disrupted this memory when the animals were 

tested after 1 month. The same results were obtained when the knockout took 

place during the two weeks prior to the retrieval test, but not when it occurred 

for only 5 days before the recall test. Since conditioned taste aversion does not 
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require the hippocampus and the striatum (Yamamoto et al., 1995), Cui and 

colleagues concluded that cortical NMDAR reactivation during the post-

training consolidation period is necessary for memory stabilization for long-

term storage. 

Taken together, the pharmacological and transgenic studies presented 

above support the conclusion that the memory impairment observed in the 35 d 

cued test in my GluN1∆BLA mouse cohort arises from a disruption of the fear 

association rather than from inhibited fear expression. In other words, NMDAR 

expression in neurons of the BLA is required for the stabilization of cued fear 

memory for long-term retrieval. 

The experiments in this thesis have the advantage of the stereotaxic 

rAAV-mediated high anatomical restriction of the NMDAR knockout to the 

BLA, which is so far not possible by transgenic methods. Also, by using the 

rtTA/Dox system the start of the knockout can also be temporally delimited, 

thus allowing to exclude an intervention on the initial 1–2 d consolidation 

lability period. One limitation, however, is the inability to completely infect and 

express Cre recombinase in all neurons of the BLA. It is important to take this 

into account for the interpretation of the contextual retrieval tests. There were 

no differences in the retrieval of the contextual component before and after 

gene knockout either for GluN1∆BLA or GluA1∆BLA mice. Contextual fear memory 

is dependent on hippocampal function; the role of the amygdaloid complex in 

purely contextual fear is disputed (Phillips and LeDoux, 1992; Vazdarjanova 

and McGaugh, 1998). In my experiments, the hippocampus was left intact, 

which, combined with the remaining subsets of uninfected BLA-neurons that 

still expressed GluN1 and/or GluA1, could explain that no abnormal 

phenotype was observed for the contextual component of the fear memory. 

3.3.3. A role of NMDARs in the BLA for offline memory 

reactivation 

My results point towards a requirement of NMDARs in the BLA for 

stabilization of memory for long-term retrieval and are compatible with the 

SRR hypothesis (Shimizu et al., 2000; Wittenberg and Tsien, 2002). In this sense, 



Dario Arcos-Díaz  Part I – Discussion 

 77 

it is likely that periodic reactivation of NMDARs could serve as a synapse-

stabilizing mechanism that would allow the long-term storage of associations, 

and that this would be a global process not limited to the hippocampus or the 

cortex, but also including the BLA and probably other brain regions. Such a 

mechanism would be said to occur offline, since no direct stimulation is applied 

to elicit recall of the fear memory. The clearest example of learning-related 

offline processes is sleep, but there is no reason to think that these reactivation 

processes do not occur during the awake state. During sleep, sensory input is 

greatly diminished, yet there is strong evidence that there is reactivation of 

memory traces from previous experiences (Sutherland and McNaughton, 2000). 

Therefore, much elaboration has been done for more than a decade on the role 

of sleep in memory consolidation (Buzsáki, 1998). Moreover, there is 

electrophysiological evidence that NMDARs are necessary for some of these 

reactivation events, e.g. for the ensemble spontaneous firing in the striatum 

during sleep in rats, and could be involved in the offline information flow 

during habit formation in rats (Pomata et al., 2008). Further evidence comes 

from human studies in which glutamatergic signaling through NMDARs 

during sleep has been shown to be necessary for visual discrimination memory 

enhancement (Gais et al., 2008), in a process related to memory consolidation. 

Memory offline reactivation, in principle, does not have to be limited to sleep. 

For example, 45 min after conditioned taste aversion learning in rats, there is 

release of glutamate in the insular cortex in the absence of stimulation, which 

does not occur in the absence of training, and which could be blocked by 

NMDAR antagonists (Guzmán-Ramos et al., 2010). 

Together, these offline reactivation events could be seen as conscious or 

unconscious episodes of memory recall, which occur periodically, even in the 

absence of external cues or stimulation, and which would help to stabilize 

memories over time. It could be hypothesized that such reactivation episodes 

could trigger reconsolidation processes, in a similar way as reconsolidation is 

triggered by short re-exposure to a CS, weeks after fear conditioning. NMDARs 

are essential for memory reconsolidation and antagonists or agonists can impair 

or potentiate it, respectively (Ben Mamou et al., 2006; Lee et al., 2006). 
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In light of these studies, the memory impairment observed in GluN1∆BLA 

mice could be interpreted as a result of the periodic offline reactivation of the 

cued fear memory in the absence of NMDARs, which would disrupt 

reconsolidation and reinforcement of the fear association. At least one study has 

shown contextual memory impairment after chronic inhibition of NMDARs by 

daily systemic ketamine injections for two weeks after learning (Amann et al., 

2009). Interestingly, repeated episodes of short reactivation immediately 

followed by MK-801 treatment have been shown to disrupt reconsolidation and 

decrease memory strength of amphetamine-induced conditioned place 

preference (Sadler et al., 2007). Similar results have been obtained for cue-

induced alcohol self-administration, for which the alcohol-seeking behavior 

was strongly reduced in rats after several reactivation sessions coupled with 

NMDAR antagonist treatment (Wouda et al., 2010). In a different study, this 

effect was seen even after one reactivation session (von der Goltz et al., 2009). 

Although the reactivation events in that study were induced and therefore not 

offline, they indicate that even complex and strong memories of addiction can 

be disrupted by manipulations affecting reconsolidation. 

 Finally, through further analysis of the mouse cohort used in this 

experiment, I was able to show that these mice were not essentially impaired in 

their exploratory behavior (Figure 18) or in the ability to make simple cued 

associations in the visual swim task (Figure 19), supporting the view that the 

phenotype observed was specific to fear conditioning. 

 In conclusion, NMDARs in the BLA are necessary after memory 

consolidation for successful retrieval of the fear memory 35 d later. This effect 

was not due to disruption of the initial 1–2 d consolidation window, or the 

expression of fear during the retrieval test, but was the result of disruption of 

the CS/US association. I hypothesize that this impairment arises from the 

disruption of reconsolidation occurring after periodic events of offline (sleep or 

awake) reactivation of the fear memory. The involvement of AMPARs in these 

processes remains inconclusive. 
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3.4. Remarks on rAAV-mediated and transgenic gene manipulation 

One distinctive aspect of this thesis is the combined experimental work with 

two different methods for gene manipulation in the mouse brain. In the first 

part of my analyses, I studied the behavior of complete knockout mice for the 

AMPAR subunits GluA1 and GluA3. In the second part, I used stereotaxic 

rAAV-delivery to modify gene expression in BLA neurons. Both approaches 

can be successfully used to answer appropriate questions. 

 The generation of global knockout and transgenic mouse models 

revolutionized the study of the functions of single genes on behavior. It became 

possible to modify the expression of specific genes, in specific brain areas—

forebrain (Shimshek et al., 2006), hippocampus (Niewoehner et al., 2007)—and 

in specific cell populations such as interneurons (Fuchs et al., 2007) or 

dopaminergic neurons (Lemberger et al., 2007). The generation of brain region-

specific or cell-type-specific mouse lines is time-consuming and expensive, and 

the availability of such lines is still limited. Moreover, several different mouse 

lines typically need to be crossed, involving several generations, to be able to 

define the extent of a gene manipulation. For example, Cui and colleagues 

(2004) used four different lines for their reversible GluN1 forebrain knockout. 

The number of animals that need to be killed in such experiments is high. 

However, the reproducibility of the transgenic expression patterns is 

unprecedented with very low variability from animal to animal—a highly 

desirable property for behavioral analyses. Nevertheless, the most important 

drawbacks of the transgenic approaches in solving questions in neuroscience 

are whether the necessary mouse lines are available, and whether the mouse is 

the appropriate animal model for those questions. 

 Viruses manipulate their host cells in order to express genes that are 

important for their propagation. Therefore, they are logical candidates for use 

in molecular biology and neuroscience. However, most of the available 

recombinant viral vectors suffer from the toxic nature of their natural 

counterparts—e.g. lenti-, rabies, herpes virus. For this reason, rAAVs are an 

exceptional tool for gene manipulation in the brain, since they do not elicit toxic 

or inflammatory responses (Peel and Klein, 2000; Tenenbaum et al., 2004). A 
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great advantage of the use of rAAVs is the specificity of infection in the brain 

that can be achieved just by defining the stereotaxic coordinates of delivery 

(Cetin et al., 2006). Moreover, the number of animals required for a behavioral 

experiment is greatly reduced, since several rAAV vectors can be injected 

simultaneously, as I have shown in this thesis. Using select promoters to drive 

gene expression can further restrict the specificity of infection. The availability 

of such cell-type-specific promoters is a limiting factor, but the contents of the 

rAAV vector can be easily modified by molecular biology methods. The 

potential development of tissue-specific promoters for rAAV is further 

discussed in part II of this thesis. However, the ~4.7 kb packaging limit restricts 

the amount of genetic information that can be packed into one rAAV. 

 Another significant advantage of rAAV-based approaches with respect 

to transgenic methods is that rAAVs can be used to modify gene expression in 

different species, such as rats (Noordmans et al., 2004), macaques (Ciron et al., 

2009), and humans (LeWitt et al., 2011), increasing the number of scientific 

questions that can be addressed. Nevertheless, rAAV-mediated gene delivery 

suffers from an important drawback, which is the high degree of inter-subject 

variability (see Appendix Figure 33). The quality and amount of virus injected 

plays an important role in determining this variation, since the spread of rAAV 

particles could result in anatomically adjacent brain areas being infected. In 

animal experiments, behavioral readout can be influenced by variables, such as 

the age and life history of the animals, and the testing context (Crabbe et al., 

1999; Mandillo et al., 2008; McIlwain et al., 2001). Thus, the variability of 

infection from subject to subject is an important factor to be considered, but it 

can also provide valuable information as to what degree of correlation there is 

between the strength of a given manipulation and the behavioral outcome. 

As more transgenic and viral tools become available and their limitations 

become clear, the combination of different methods will continue to provide 

more powerful applications in brain research. 
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An endogenous neuronal promoter for use in rAAV 
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4. Introduction 

The mechanisms by which gene expression is regulated in different regions of 

the brain remain mostly unknown due to the highly complex nature of the 

processes involved. Despite this fact, the regulatory sequences present at the 

promoter regions of genes have long been exploited as an invaluable tool to 

drive expression of proteins in brain research. This approach has been of 

particular use in the generation of tissue-specific transgenic mice, with several 

limited examples available: forebrain (Mayford et al., 1996; Mayford et al., 

1995), dentate gyrus (McHugh et al., 2007; Niewoehner et al., 2007), or CA1 and 

dentate gyrus (von Engelhardt et al., 2008). To exploit the transgenic use for the 

entire set of brain-specific promoters, the GENSAT project was founded. 

GENSAT generated hundreds of independent transgenic lines, which express 

the indicator protein GFP under the endogenous promoter of genes carried on 

recombinant BACs (Gong et al., 2003). This approach revealed several 

promoters that have highly specific expression patterns. However, it still 

requires expensive and time-consuming studies before it convincingly 

demonstrates that the GENSAT patterns can be reproduced in different 

constructs that rely on the very same BAC. Furthermore, a temporal control of 

gene expression is not possible, since most of the brain-specific genes are 

expressed already at early embryonic stages or start expressing in the first three 

postnatal weeks.  

The use of rAAV-mediated gene delivery bypasses several of these 

problems by enabling expression of the genes of interest in a way that depends 

on the site and time of injection, which can be controlled. Use of rAAV vectors 

has been proven not to be toxic (Tenenbaum et al., 2004) and to produce a long-

lasting expression of the delivered gene without triggering immune responses 

(Peel and Klein, 2000). Moreover, rAAV vectors do not integrate into the 

chromosomes of mice or do it with a very low frequency, reducing possible 

effects on the host cells due to integration (Nakai et al., 2001). 
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However, only a small number of promoters might be useful in the 

rAAV system due to the DNA-size packaging limit of around 5 kb. For this 

reason, cell-type-specificity remains an issue that needs considerable 

experimental investigation. The analysis of the conserved regulatory sequences 

of genes with particular expression patterns could lead to the finding of new 

promoter elements for use in rAAV vectors. This study proposes the lynx2 

promoter as a potential candidate for cell-type specific expression in the mouse. 

4.1. Lynx2 as a member of the Ly-6/neurotoxin superfamily 

Lynx2 belongs to the Ly-6/neurotoxin superfamily of proteins, which includes 

the snake venom neurotoxins and the mammalian ly-6 immune system genes 

(Gumley et al., 1995). Lynx2 was identified from embryonic ventral spinal cord 

cDNA and shares the same gene structure, sequence similarity and cystine-rich 

motif of the other members of the Ly-6/neurotoxin superfamily (Dessaud et al., 

2006). The lynx2 gene consists of 3 exons encoding a 141-amino acid protein 

with an N-terminal secretory signal sequence and a hydrophobic C-terminus 

with a glycosyl-phosphatidyl inositol anchor site (Udenfriend and Kodukula, 

1995). Both mouse and human Lynx2 mature proteins have identical sequences. 

In mice, lynx2 mRNA is detected from embryonal day 9.5 in discrete 

neuronal populations along hindbrain and spinal cord and in specific brain 

structures after birth, namely, the CA1 region and the DG of the hippocampus 

and in some cells of the cerebellar granular layer and the cortical layers IV and 

V (Dessaud et al., 2006). In adults, there is also a strong expression in the lateral 

amygdala and the prefrontal cortex (Figure 22a, b, stjudebgem.org; 

allenbrainatlas.org). Previous efforts to generate BACs using lynx2 by the 

GENSAT project (Figure 22c,d) and in our lab (Verena Bosch, Figure 22e) 

produced variable expression patterns. I used the rAAV approach to test if this 

variability, which is likely due to the different integration site of each BAC, 

could be eliminated. 
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Figure 22. Endogenous expression of lynx2 in the adult mouse brain as shown by in 
situ hybridization and examples of lynx2 BAC expression studies 
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a, Coronal view of lynx2 mRNA expression by non-radioactive in situ hybridization 
showing high levels in the lateral amygdala (LA), defined cortical layers and 
hippocampus. Scale bar, 1 mm. b, In the hippocampus, lynx2 mRNA expression is 
limited to the dentate gyrus (DG) granule cells and the CA1 neurons. In CA3 only few 
cells are positive for lynx2 mRNA signal. Scale bar, 500 µm. c, Cre immunostaining of 
lynx2 BAC-Cre line NR149-CRE showing strong Cre expression in piriform cortex, CA1 
and CA3, but not in DG or amygdala. Scale bar, 1 mm. d, Cre immunostaining of lynx2 
BAC-Cre line NR151-CRE with restricted Cre expression in CA1. Scale bar, 1 mm. e, 
GFP immunostaining of eleven lynx2 BAC-GFP founder mice illustrating high 
variation of GFP expression. Scale bar, 1 mm. (a and b: adapted from the Allen Brain 
Atlas, allenbrainatlas.org; c and d: adapted from the GENSAT project, gensat.org; e: 
adapted from Verena Bosch, Inaugural Dissertation 2008).  
 

Regarding the physiological role, Lynx2 binds and modulates nicotinic 

acetylcholine (ACh) receptors (nAChRs) in vitro by increasing receptor 

desensitization and decreasing ACh binding affinity (Tekinay et al., 2009). 

Knockout of Lynx2 is linked to increased anxiety behavior evidenced by fewer 

entries and time spent in the light compartment of a light-dark box and less 

time spent in the open arms of the elevated plus maze (Tekinay et al., 2009). 

Fear learning, as well, is strengthened in the passive avoidance task, and 

whereas contextual fear conditioning is normal, freezing levels in cued fear 

conditioning are higher in the knockout (Tekinay et al., 2009). 

4.2. The lynx2 promoter 

The murine lynx2 gene is about 40 kb long and is located on chromosome 1, 

being antisense to an orphan G-protein associated receptor gene called GPR39 

with a partially overlapping exon (exon 3 of lynx2). Interestingly, these two 

genes have seemingly mutually-excluding expression (Egerod et al., 2007). In 

order to identify the promoter region of the lynx2 gene, I inserted a 1547bp 

fragment around the first exon into a rAAV vector in order to drive EGFP 

expression. For a quantitative analysis of different fragments of this promoter, I 

inserted upstream and downstream fragments of the exon into a luciferase-

expressing construct (Nordeen, 1988) to quantify expression strength in 

HEK293 cells and rat hippocampal primary neurons. I further inserted the lynx2 

promoter into a rAAV for simultaneous expression of Cre recombinase and the 

fluorescent protein Venus linked by the self-cleaving 2A-peptide. 
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5. Results 

The lynx2 gene is localized on chromosome 1 of the mouse. It is an antisense 

gene with its first exon 1422 bp downstream from the first exon of the Nap5 

gene (Figure 23a). Thus, we hypothesized that the promoter region should be at 

least in part contained within this intergenic region. Furthermore, the first exon 

of the lynx2 gene mostly consists of an untranslated sequence with relatively 

high conservation among mammals (UCSC Genome Browser genome.ucsc.edu). 

Based on this, we hypothesized a 1547bp region around exon 1 as the promoter 

region for this gene (Figure 23b).  

 

 
Figure 23. Scaled schematic representation of the lynx2 gene neighborhood 
a, The lynx2 gene is an antisense gene located between the Gpr39 and the Nap5 genes. 
The three exons are indicated by the bold bars and the intronic regions in orange. A 
1422 bp intergenic region precedes exon 1. Conservation across mammals is indicated 
below. b, Region of 1547 bp around the first exon of the lynx2 gene proposed as the 
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promoter region. The mutated transcription initiation codon (TTG) is indicated. The 
30-way mammal conservation analysis for this region is shown below (adapted from 
the UCSC Genome Browser genome.ucsc.edu). 
 

5.1. Characterization of the lynx2 promoter by rAAV delivery 

The 1547 bp lynx2 promoter with mutated start codon (ATG to TTG) was 

cloned into an rAAV construct into the pAAV-6A-SEWB plasmid to drive the 

expression of EGFP (Figure 24a). Successful purification was evidenced by the 

presence of only three protein bands in an SDS-polyacrylamide gel, 

corresponding to the three capsid proteins VP1, VP2 and VP3 (Figure 24b). The 

virus was successfully tested in hippocampal primary neurons and an 

infectious titer of 4494 ± 606 neurons / µl was achieved (Figure 24c). 

 

 
Figure 24. Characterization of rAAV-Plynx2-EGFP 
a, Scheme of the rAAV-Plynx2-EGFP construct. Two inverted terminal repeats (ITRs) 
flank the packaged retion. A transcription block (TB) element precedes the promoter. 
The Woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) was 
used to increase expression (Xu et al., 2001). b, SDS protein gel showing the three major 
bands corresponding to the rAAV packaging proteins in the purified preparation (VP1, 
VP2, VP3); the loaded volume is indicated. c, Mean infectious titer for the rAAV 
preparation of 4494 ± 606 infected primary neurons per microliter of virus. Scale bar, 
200 µm. 
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Then, rAAV-Plynx2-EGFP was injected into the lateral ventricles and both 

hippocampi of P0 mice to achieve global brain infection and be able to test 

whether the presence of the lynx2 promoter gives any specificity to the 

expression of EGFP. Examination of the brains of the injected pups at day P21 

showed a marked specificity of EGFP fluorescence in the DG of the 

hippocampus as well as in a defined region of the neocortex corresponding to 

layer VI (Figure 25a, b). However, scattered cells also expressed EGFP in area 

CA1 of the hippocampus and other layers of the cortex. In the DG, EGFP was 

expressed throughout its dorso-ventral axis (Figure 25d). In cortical layer VI, 

the whole antero-posterior axis showed expression of EGFP (Figure 25c, d). 
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Figure 25. EGFP expression pattern driven by the lynx2 promoter after P0 brain 
injection in mice analyzed at P21 
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a, Coronal slicing revealed strongest EGFP expression in DG as well as in cortical layer 
VI. b, Detailed view showing main expression in DG granule cells and cortical layer VI, 
as well as sparse neurons in other cortical layers, and regions CA1 and CA3 of the 
hippocampus. c, Cortical slicing at the level of the lateral ventricles reveals EGFP 
expression lining the ventricle walls and the cortical layer VI. d, Sagittal slicing 
showing EGFP expression in hippocampal DG and in cortical layer VI along the whole 
antero-posterior length. Ctx: cortex; Hipp: hippocampus; Cereb: cerebellum; Str: 
striatum; l.v.: lateral ventricle; OB: olfactory bulb. DG: dentate gyrus. All scale bars, 
1mm. 
 

To test the tissue specificity of rAAV-Plynx2-EGFP in the adult mice, 

10-week-old males were injected unilaterally into DG, CA1 regions and cortex 

(Figure 26a). At post-injection day 14 (PId14), EGFP expression was strongest 

for DG granule cells and layer VI. Otherwise, scattered single neurons were 

fluorescent in several regions of the cortex and hippocampal CA1 region. DG 

granule cell labeling was strong enough to conspicuously label mossy fibers 

and terminals at the CA1 region more ipsilaterally but also contralaterally. 

Interestingly, after intra-amygdala injection, a strong expression in the lateral 

amygdala (LA) could not be observed, on the contrary, the EGFP expression 

was lower in LA than in the adjacent piriform cortex or central amygdala 

(Figure 26b). 
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Figure 26. EGFP expression after unilateral rAAV injection in adult mice analyzed at 
PId14 
a, After intra-hippocampal and intra-cortical rAAV-Plynx2-EGFP injection, robust EGFP 
expression is evidenced in the DG granule cells as well as in cortical layer VI (VI). 
EGFP fluorescence is also strongly seen in the mossy fibers. Fluorescence is also seen 
more weakly in fibers of the contralateral uninjected hippocampus. b, Intra-amygdala 
injection of rAAV-Plynx2-EGFP showed no specific expression of EGFP in the lateral 
amygdala (LA). In the amygdaloid complex, best expression was found in the central 
amygdala (CeA). Scale bar, 1mm. 
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To assess whether neural types other than neurons were also infected by 

rAAV-Plynx2-EGFP, immunostaining against the glial cell marker glial fibrillary 

acidic protein (GFAP) was performed, revealing no colocalization with EGFP-

expressing cells, which were only positive for the neuronal marker NeuN 

(Figure 27a, b). This holds true for all injection sites tested.  

 
Figure 27.  The lynx2 promoter drives expression of EGFP in neurons but not in 
astrocytes in the DG 
a, Only NeuN-positive cells show expression of EGFP driven by the lynx2 promoter in 
the DG. b, GFAP-positive cells do not express EGFP under the lynx2 promoter in the 
DG. The pictures correspond to adult-injected mice analyzed at PId14. sm: Stratum 
moleculare; g: granule cell layer; hil: hilus. Scale bars, 200 µm. 
 

Further analysis revealed no major colocalization of infected neurons 

with the interneuronal marker parvalbumin, neither in P0 nor in adult injected 

mice (Figure 28a, b). Calbindin-positive EGFP-expressing neurons were only 

present in the DG as expected, since mature granule cells are known to express 

this marker (Rami et al., 1987). Remarkably, in P0-injected mice, only the 

superficial layers of the DG granule cells showed EGFP expression at P21, with 

the inner layers showing no green fluorescence. In contrast, in adult mice, 
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nearly all mature calbindin-positive neurons expressed EGFP at PId14. For 

layer VI neurons, no obvious difference was observed between P0- and adult-

injected mice. 

In conclusion, the lynx2 promoter is able to drive rAAV-mediated EGFP 

expression in mature principal neurons located primarily in DG (granule cells) 

or layer VI of the neocortex. 

 
Figure 28. Neuronal and interneuronal marker immunostaining after rAAV-Plynx2-
EGFP infection in DG, CA1 and cortex 
a, EGFP expression (green) and immunostaining (red) against the neuronal marker 
NeuN and the interneuronal markers parvalbumin and calbindin of P0-injected mice 
analyzed at P21. b, Calbindin and parvalbumin immunostaining of adult-injected mice 
analyzed at PId14. Scale bar, 200 µm 
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5.2. Quantification of gene expression under the lynx2 promoter 

In order to quantify the amount of expressed protein under the lynx2 promoter 

and to test whether the promoter length can be reduced without losing 

neuronal specificity, a dual luciferase assay was performed. The 1547bp lynx2 

promoter was cloned into a firefly luciferase-expressing plasmid pXP1 or pXP2 

(Nordeen, 1988). Additionally, a version of the lynx2 promoter with an intact 

start codon (1547 bp +ATG) in which expression of EGFP should be disrupted, 

as well as three different fragments of the total length of the promoter (800 bp, 

500 bp, 700 bp), was also cloned into the pXP1 or pXP2 promoter canning 

vectors (Figure 29a). Moreover, CMV-firefly luciferase and Syn-firefly luciferase 

plasmids were also used for comparison as examples of strong promoters. 

Cotransfection of each of the constructs with a CMV-Renilla luciferase 

plasmid in HEK293 cells and hippocampal primary neurons was used to 

normalize the effects of transfection efficiency by calculating a firefly-to-Renilla 

luciferase activity ratio (Figure 29b). In HEK293 cells, all tested promoters were 

less than 1% as strong as the CMV promoter, whereas in hippocampal primary 

neurons, both the Syn and the CMV promoter had comparable activity levels. A 

closer look to luciferase activity in HEK293 cells shows that the 1547 bp lynx2 

promoter is very weakly expressed in these cells, with similar levels as the 

ATG-truncated version and the promoter-less pXP1 vector. However, all three 

lynx2 promoter 800 bp, 500 bp and 700 bp fragments produced higher levels of 

luciferase expression, which in the case of the 800 bp fragment were as high as 

for Syn. Very similar results were obtained in hippocampal primary neurons, 

where the lynx2 promoter fragments produced luciferase activity levels 

between three and ten times higher than the complete 1547 bp lynx2 promoter 

or all other constructs compared. In conclusion, the use of fragments smaller 

than the initially hypothesized lynx2 promoter decreases the specificity by 

enhancing expression in cultured cells without tissue properties. 
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Figure 29. Quantification of protein expression under different fragments of the 
lynx2 promoter by dual luciferase assay 
a, Scheme of the 1547 bp Plynx2 and its different fragments cloned, as well as the 
truncated version of the promoter with intact ATG (in green). The relative position of 
the first exon of the lynx2 gene is shown below.  b, Firefly-to-Renilla luciferase activity 
ratio in HEK293 cells or hippocampal primary neurons transfected with different 
promoter constructs. Cells were cotransfected with a CMV-Renilla luciferase plasmid 
and one construct for Firefly luciferase expression under a number of different 
promoters including CMV, Syn, Plynx2 or fragments from it, or a promoter-less pXP1 
construct. 
 

5.3. Expression of Cre recombinase under the lynx2 promoter 

The Cre-loxP system allows for great flexibility to genetically modify mice in a 

controlled manner. Therefore, a rAAV construct for expression of Cre 

recombinase was cloned under the promoter of the lynx2 gene: 

rAAV-Plynx2-iCre2A-Venus. To test if this virus could be used to induce 

recombination, rAAV-Plynx2-iCre2A-Venus was injected into the hippocampus 

and amygdala of 12-week-old Cre indicator mice (Rosa26-lacZ2lox/2lox; Soriano, 

1999). After successful recombination, the cells of these mice express beta-

galactosidase, an enzyme that catalyzes the hydrolysis of X-gal to yield a blue 
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product, which can be detected with high sensitivity. The results of the analysis 

at PId21 show that the highest expression of Cre occurs in the DG, correlating 

with the expression of Venus, which is linked to Cre by the 2A peptide (Figure 

30a). In the CA1 and cortical areas, Cre was only weakly expressed, but these 

low levels were sufficient to drive full recombination of the loxP sites and 

expression of beta-galactosidase, as evidenced by immunostaining (Figure 30b) 

and by X-gal staining (Figure 30c). Additionally, injection of this AAV into the 

amygdala triggered recombination in amygdala neurons as well as in adjacent 

cortical and striatal areas. 

 

 
Figure 30. Expression profile induced by rAAV-Plynx2-iCre2A-Venus in Rosa26-
lacZ2lox/2llox mice analyzed at PId21 
a, Immunostaining against Cre recombinase shows that the highest levels of expression 
occur in the DG, with weaker and more sparse expression in CA1 and cortex. b, 
immunostaining of beta-galactosidase reveals higher expression in the DG than in 
other areas. c, X-gal staining shows that both regions with high and low expression of 
Cre under the lynx2 promoter show complete recombination. Scale bars, 500 µm. 
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6. Discussion 

The regulation of gene expression is a highly complex process that occurs at 

different cellular levels. At the level of DNA, promoters play a significant role 

in driving expression of genes by acting as binding sites for transcription factors 

(Smale and Kadonaga, 2003), or sites of epigenetic regulation by DNA 

methylases (Bird, 2002). However, little is known about the properties of 

neuronal specific promoters and their cell-type specificity. In the present work, 

I attempted to use the promoter region of a CNS-specific gene to generate a 

rAAV vector with specific expression in the BLA. 

 The lynx2 promoter was chosen because in situ hybridization studies 

(Allen Brain Atlas, allenbrainatlas.org, Figure 22) of the expression of lynx2 

mRNA in mice have shown that this gene is highly expressed in the BLA, in 

addition to the hippocampal dentate gyrus and CA1 region (Dessaud et al., 

2006).  Surprisingly, when a ~1.5 kb region was cloned for use as a promoter of 

a gene of interest in a rAAV vector, the specificity of the expression was 

restricted to the hippocampus, and in particular, the dentate gyrus. First, I will 

elaborate on the general characteristics of the cloned Plynx2. 

 The promoter activity of the lynx2 gene fragment cloned was confirmed 

by the successful expression of EGFP by rAAV-mediated delivery to primary 

cultured neurons (Figure 24). Transcription of the gene of interest depends on 

the binding of the RNA polymerase and a series of transcription factors that are 

essential for this process (Smale and Kadonaga, 2003). Therefore, the evidence 

of expression under the cloned lynx2 gene region supports our speculation that 

promoter activity is present within the ~1.5 kb sequence. 

The first remarkable property of the lynx2 promoter is its neuronal 

specificity (Figure 27, Figure 28). This was evident in all injected mice and was 

independent of the virus preparation. Few rAAV-promoters are known to have 

specific neuronal expression. Among these, the synapsin promoter is the most 

widely used, and although it has the advantage of driving strong levels of 

expression in neurons, it lacks any brain-region specificity in rAAV vectors. 
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Other promoters, such as CMV, elongation factor 1α (EF1α), or CAG, also drive 

expression in glial cells in addition to neurons (Alexopoulou et al., 2008; 

Kuroda et al., 2008). Therefore, the neuron specificity of Plynx2 indicates that it 

preserves some of the native properties of the complete lynx2 endogenous 

promoter. 

The injection of rAAV-Plynx2-EGFP into the brains of newborn mice was 

used as a means of testing in which brain regions there was expression driven 

by the promoter, when a broad volume of the brain was exposed to infectious 

rAAV particles. Previous studies have shown that bilateral injection into the 

lateral ventricles with rAAVs can produce widespread infection extending to 

the olfactory bulb and the cerebellum (Pilpel et al., 2009). Plynx2-driven EGFP 

expression was limited almost exclusively to the hippocampus and deeper 

layers of the neocortex (Figure 25). In particular, DG granule cells showed 

strong fluorescence, while only a small portion of the CA1 closest to the site of 

injection showed EGFP expression. This is a stringent test of brain region 

specificity showing evidence of the hippocampus-linked expression driven by 

Plynx2. On the other hand, no EGFP expression was found in the BLA, which was 

the original region of interest for gene manipulation by rAAVs. 

In order to test whether this expression pattern was the same in adult 

mice, rAAV-Plynx2-EGFP was injected into the hippocampus and the BLA 

showing that, indeed, there is a preferential expression in DG granule cells 

(Figure 26). In the BLA, the fluorescent signal was observed in an unspecific 

way in neurons of the injected area, being higher in areas surrounding the BLA, 

in a pattern different from the endogenous mRNA expression of the lynx2 gene. 

This surprising fact suggests that the transcription factors that drive the specific 

expression of lynx2 in BLA neurons do not bind to the ~1.5 kb sequence cloned 

as Plynx2. It is likely that there are other upstream or downstream intergenic or 

intronic sequences that are responsible for regulating expression of lynx2 in the 

BLA. This is in line with the presence of highly conserved intronic regions for 

this gene in different species. The engineering of additional versions of Plynx2 

containing additional conserved regions could help to identify the factors 

behind expression in the BLA. 
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Remarkably, the comparison of P0 and adult-injected mice showed that 

the number of neurons that showed Plynx2-driven EGFP expression was 

different (Figure 28). In P0-injected mice, only the outer layers of the DG were 

EGFP-positive when analyzed at P21. In a pattern coinciding with that of 

granule cell neurogenesis (Zhao et al., 2008), it can be postulated that only the 

younger DG neurons did not express EGFP. It can be inferred that at the time of 

injection, rAAV-Plynx2-EGFP was only able to transduce mature neurons in the 

DG, whereas immature neuronal precursors, which constitute the inner border 

of the granule cell layer were either not infected or did not express EGFP. In 

adult-injected mice, after 14 d post-injection, nearly all mature (calbindin-

positive) granule cells are EGFP-positive. This is in line with the view that only 

mature neurons can be manipulated by rAAVs, because DG granule cell 

neurogenesis occur at a much lower turnover rate as age increases (Lazic, 2011), 

being fastest in newborn mice. This could have important applications in 

systematic studies of the rate of DG neurogenesis. 

By using a luciferase assay to quantify the expression driven by Plynx2, as 

well as several promoter fragments of smaller size, I found that the entire 

~1.5 kb sequence was necessary to retain tissue-specificity (Figure 29). Smaller 

fragments of the promoter in plasmids also gave rise to the expression in 

dissociated neuron cultures and in non-neuronal HEK293 cells. This could be 

explained by the hypothesis that the smaller fragments all have promoter 

activity, in the sense that they can help transcription initiation, but they 

correspond to binding sites for ubiquitous transcription factors required for 

generalized expression. 

The DG-specificity of expression driven by Plynx2 is not exclusive and a 

lower EGFP signal was also observed in some neurons of the CA1 or cortical 

regions. Therefore, a rAAV for Plynx2-driven expression of Cre and Venus was 

tested in Rosa-lacZ2lox/wt mice (Soriano, 1999). Recombination was observed in 

the hippocampus, cortex and amygdala, without regional specificity (Figure 

30). Due to the enzymatic reaction that lacZ detection relies on, the sensitivity of 

the staining is higher than that of fluorescent reporter proteins. Furthermore, 

since the triggered expression of beta-galactosidase is an ‘all-or-none’ effect, 
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low- and high-expressing cells are detected by the same lacZ staining intensity, 

revealing the maximal population of cells expressing the virally transduced 

Plynx2-driven gene. In contrast, when the effects of the gene of interest depend 

on the amount of expression, Plynx2 is an excellent candidate for specific 

targeting of DG, since the expression in granule cells is higher than in 

surrounding regions. Thus, genes for fluorescent proteins or with dominant 

negative mutations can be directed specifically to the DG. 

Nevertheless, not only the base pair sequence in a promoter region 

determines the levels of gene expression. Epigenetic modifications, such as 

DNA methylation can also determine whether a gene is expressed or not. There 

is increasing evidence that rapid changes in DNA methylation occur during the 

adult life, for example during learning (Miller and Sweatt, 2007). Therefore, it is 

a factor that should be kept in mind when working with endogenous 

promoters, in particular, for gene-transfer vectors that integrate into the 

genome, such as those based on lenti- and retroviruses. However, it is not 

resolved yet, whether extrachromosomal gene copies of rAAVs are targets for 

DNA modifying enzymes. Moreover, beyond the DNA sequence within the 

virus, the serotype of the rAAV greatly influences the infectivity, and is always 

discussed as an important factor controlling the specificity of infection (Sin et 

al., 2005). In addition, virus titer and the purification procedure can influence 

the specificity of infection. The impact of both variables, serotype and 

purification method, on the cell-type specificity in rAAV gene-transfer studies 

remains to be investigated on a systematic level. 
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7. Materials and Methods 

7.1. Materials 

7.1.1. Laboratory equipment and materials 

Table 3. List of reagents and manufacturers 

Chemicals, reagents, media Manufacturer 

Acetic acid Sigma 
Acrylamide BioRad 
Agarose Invitrogen 
Ammonium persulfate Sigma 
Ampicilline Sigma 
Aqua Polymount Polysciences 
B27 supplement Gibco 
BCA solution Sigma 
Benchmark Pre-Stained Protein Ladder Invitrogen 
Beta-mercaptoethanol Sigma 
Bovine serum albumin Sigma 
Bradford solution BioRad 
Brilliant blue (Coomassie) Serva 
Bromo-chloro-indolyl-galactopyranoside, X-gal Gerbu 
Bromophenol blue IBI 
Chloramphenicol Roche 
Copper (II) sulfate solution Sigma 
Cytosine arabinoside Sigma 
D-Glucose Roth 
DAPI Sigma 
Diaminobenzidin Fluka 
Diphtheria toxin Sigma 
Doxycycline hyclate Sigma (D9891) 
Ethanol Sigma 
Ethidium bromide Serva 
Formamide Fluka 
Glycerol Roth 
Glycine Gerbu 
HEPES Gerbu 
Horse serum Gibco 
Hydrogen peroxide Sigma 
Isoflurane Baxter 
Isopropanol Merck 
Kanamycine Sigma 
Ketamine (Ketavet®) Inversa 
Kumasi brilliant blue Serva 



Dario Arcos-Díaz  Materials and Methods 

 102 

Licain, lidocaine Delta Select 
Lipofectamine2000 Invitrogen 
Magnesium chloride Merck 
Methanol Merck 
Minimum essential medium Gibco 
Neurobasal medium Gibco 
Nitrocellulose membrane Whatman, Protran 
Normal goat serum Vector 
Paraformaldehyde 37 % Merck 
Passive lysis buffer Promega 
Penicillin/Streptomycin Gibco 
Poly-L-lysine Sigma 
Potassium chloride Roth 
Potassium ferricyanide Sigma 
Potassium ferrocyanide Sigma 
Protein standard BioRad 
Regenerated cellulose filter Amicon, Millipore 
SDS Merck 
Sodium acetate Merck 
Sodium azide Merck 
Sodium chloride Merck 
Sodium deoxycholate Sigma 
Sucrose Sigma 
TEMED BioRad 
Tetracycline Sigma 
Tris-HCl Roth 
Triton X-100 Sigma 
Trizma base Sigma 
Xylazine (Rompun®) Bayer 
 

Enzymes Manufacturer 

Benzonase Sigma 
Escherichia coli Klenow DNA polymerase I Roche 
Phusion DNA polymerase NEB 
Proteinase K Roche 
Restriction endonucleases NEB/Fermentas 
T4 DNA ligase Roche 
Taq DNA polymerase Gibco BRL 
 

Bacterial cells Manufacturer 

TOP10 Invitrogen 
SURE® 2 supercompetent cells Stratagene 
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Antibodies Manufacturer 

Mouse monoclonal antibody against NeuN Chemicon, 1:1000 
Rabbit polyclonal antibody against Cre recombinase Covance, 1:1000 
Rabbit polyclonal antibody against GluA1, ab31232 Abcam, 1:500 
Rabbit polyclonal antibody against GFAP Dako, 1:600 
Rabbit polyclonal antibody against 
beta-Galactosidase Cappel, 1:500 

Peroxidase-coupled goat anti-rabbit antibody Vector Laboratories, 
1:600 

FITC/Cy3-coupled goat anti-mouse antibody Jackson 
ImmunoResearch, 1:250 

FITC/Cy3-coupled goat anti-rabbit antibody Jackson 
ImmunoResearch, 1:250 

 

Virus purification equipment Manufacturer 

Heparin columns Amersham 
Sepharose columns Amersham 
ÄKTAprime plus HPLC setup General Electric 
Amicon Ultra Concentrator Millipore 
 

Kits Manufacturer 

HiSpeed® Plasmid Maxi kit QIAGEN 
Dual-Luciferase® reporter 1000 assay system Promega  
QIAprep® Spin Miniprep kit QIAGEN 
QIAquick® Gel Extraction and PCR purification kit QIAGEN 
QuantiPro™ BCA assay kit Sigma 
Zero Blunt TOPO PCR cloning kit Invitrogen 
 

Laboratory equipment Manufacturer 

Avanti™ J-25 Centrifuge Beckman 
BioFix® Lumi-10 luminometer Macherey-Nagel 
Coverslips Roth 
Fear-conditioning system 303410-BOX-MAU TSE 
LAS-3000 intelligent dark box Fujifilm 
Milli-Q water purification device Millipore 
Passive-avoidance tower 256005M TSE 
Stereotaxic Apparatus Kopf 
Veriti 96 well thermal cycler Applied Biosystems 
Versamax tunable microplate reader Molecular Devices 
Vibratome VT1000S Leica 
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Microscopy equipment Manufacturer 

Zeiss Axio Imager M1 Carl Zeiss 
Zeiss LSM5 PASCAL Carl Zeiss 
Argon laser (457, 476, 488, 514 nm),  
Helium Neon laser (543 nm) Lasos Lasertechnik 

 

Software Manufacturer 

A plasmid Editor M. Wayne Davis 
Gene Construction Kit Textco BioSoftware 
Illustrator CS4 Adobe 
ImageJ National Institutes of Health 
Leica Confocal Software Leica 
MATLAB Mathworks 
Photoshop CS4 Adobe 
Prism v5.0c GraphPad Software Inc. 
R The R Foundation for Statistical Computing 
VideoMot 2 TSE 
 

7.1.2. Buffer compositions 

Table 4. List of components and concentrations of the buffers used in this work. 
10x DNA loading  
buffer 

30% glycerol, 0.25% bromophenol blue, 0.25% 
Xylencyanol, 25 mM EDTA 

5x Laemmli buffer 60 mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol, 5% beta-
mercaptoethanol, 0.01% bromophenol blue 

Growth medium Neurobasal Medium, 2% B27 Supplement, 0.25% L-
Glutamine, 1% Penicillin/Streptomycin 

PBS 137 mM NaCl, 2.7 mM KCl, 1.4 mM KH2PO4, 4.3 mM 
NaH2PO4, pH7.4 

PBS-MK 1 mM MgCl2, 2.5 mM KCl, 1x PBS 

PBS/Hepes/Glucose 30 mM HEPES, 33 mM Glucose, 1x PBS 

Plating medium Minimum Essential Medium with Earl‘s salt, 10% Fetal 
Bovine Serum, 0.5% Glucose, 100 mM Sodium pyruvate, 
1% Penicillin/Streptomycin, 0.11% L-Glutamate 

Resolving gel 375 mM Tris-HCl pH 8.8, 8% acrylamide, 0.1% SDS, 
0.06% TEMED, 0.06% Ammonium persulfate 

Stacking gel 125 mM Tris-HCl pH 6.8, 3.9% acrylamide, 0.1% SDS, 
0.12% TEMED, 0.06% Ammonium persulfate 

TAE buffer 40 mM Tris, 5 mM sodium acetate, 2 mM EDTA, pH 8.3 

TENS Buffer 100 mM Tris-HCl pH 8.0, 5 mM EDTA, 200 mM NaCl, 
0.5% SDS 

TNT buffer 20 mM Tris, 150 mM NaCl, 1% TritonX-100, 10 mM 
MgCl2 (pH 7.5) 
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7.2. Animals 

7.2.1. Legal aspects 

All procedures were performed in accordance with the Tierschutzgesetz, 

25.05.1998, last change 21.06.2005: the national German law for protection of 

animals that also regulates experiments with animals Az: G56/05. 

7.2.2. Housing 

Mice were housed individually or in groups of 2–6 subjects in Makrolon type 

IIA cages. Room temperature was 21-23 ºC and humidity 90%. A circadian 

rhythm of 12 h / 12 h was maintained with light phase starting at 8 a.m. All 

experiments were performed during the light phase. Food and water were 

available ad libitum unless otherwise indicated. 

 

Table 5. List of mouse lines analyzed in this thesis including reference. 

Mouse line Reference / Provider 
C57Bl/6N Charles River 
GluA1-/- Zamanillo et al., 1999 
GluA12lox/2lox Zamanillo et al., 1999 
GluA1R/R Vekovischeva et al., 2001  
GluA3-/- (Sanchis-Segura et al., 2006) 
GluN12lox/2lox Niewoehner et al., 2007 
Rosa26-lacZ2lox/2lox Soriano et al., 1999 

 

7.3. Basic molecular biology 

Standard methods for cloning of plasmids, bacteria cultures, transformation of 

competent Escherichia coli, transfection of HEK293 cells, SDS-PAGE and PCR 

techniques, were adapted from classical protocols (Ausubel, 2000; Sambrook 

and Russell, 2001). 

 For amplification of DNA, Luria-Bertani, Standard I, and TBA/B 

medium were used to culture E. coli cells at 37ºC. Plasmid DNA was purified 

using QIAprep Spin Miniprep / Maxiprep Kits. For DNA extraction from 

agarose gels or PCR, the QIAquick Gel Extraction or PCR purification kits were 

used. DNA sequencing was performed by GATC Biotech AG (Konstanz, 
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Germany). Oligonucleotides and primers were synthesized by Thermo Fisher 

Scientific GmbH (Ulm, Germany). Restriction enzymes were purchased from 

New England Biolabs (Ipswich, MA, USA) or Fermentas GmbH (Germany). 

7.3.1. Genotyping 

Mouse tails were digested with Proteinase K (1 mg/ml) in TENS-buffer at 55 ºC 

for 8–12 h. Genomic DNA was precipitated by adding one volume of 

isopropanol and washed with 70% ethanol. After adding distilled water, 

genotyping PCRs were performed in 10 µl reactions containing 1x PCR buffer, 2 

mM MgCl2, 0.2 mM per nucleotide dNTPs, sense- and antisense primers 0.4 µM 

each, 0.4 U Taq polymerase, water and 1 µl template DNA. 

7.3.2. Cloning of the lynx2 promoter 

The lynx2 promoter was first cloned using the following primers: 

5’ccggatccAGTGAGGTGGGTTTCTCTCAGG, 5’GCAAAAgcTTGCTGCGATGC

CGAGAACCCACAaCCTCCCGG; 5’GCAGCAAgcTTTTGCGGATTGTTCTGG

CTTCC, 5’gcctcgagTGTGCGCGTCTGCTTAGGGAC, into plasmid pCR®-Blunt 

II-TOPO® to be used for further cloning between the ApaI and NheI sites of 

plasmid pAAV-6A-SEWB to generate plasmid pAAV-Plynx2-EGFP. From this 

construct, the region containing the promoter was cloned between the MluI and 

EcoRI sites of plasmid pAAV-syn-iCre2A-Venus (Tang et al., 2009) to generate 

plasmid pAAV-Plynx2-iCre2A-Venus. Venus is a modified version of YFP (Nagai 

et al., 2002). For luciferase expression analysis, the lynx2 promoter or fragments 

of it were cloned using the BamHI, XhoI, HindIII sites of plasmid pXP1. The 

synapsin promoter was cloned between the XhoI and BglII sites of plasmid 

pXP2. 
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7.4. Cell culture 

7.4.1. HEK293 cell transfection 

HEK293 cells and primary hippocampal neurons were transfected with 

Lipofectamine2000 by standard methods (Dalby et al., 2004). 

7.4.2. Hippocampal primary neurons 

Pregnant rats were killed by isoflurane overdose and the uterus was surgically 

removed. The rat embryos were decapitated at embryonic day 18, the 

hippocampi were dissected in PBS/Hepes/Glucose buffer and tripsinized at 

37 ºC for 10 min. Dissociated cells were plated at a concentration of 50000 per 

13-mm coverslip on poly-L-lysine-coated glass coverslips in plating medium. 

After 24 h, the plating medium was replaced with growth medium, followed by 

a further renewal of half of the medium volume and addition of 4 µm Ara-C 

after three days. Further manipulations of the primary neuron culture 

(infection, transfection) were performed at least seven days after plating. 

7.4.3. Dual luciferase assay 

HEK293 and hippocampal primary neurons were cotransfected with one of the 

firefly luciferase-expressing plasmids and a CMV-Renilla luciferase construct. 

Two days after transfection, cells in a well of a 24-well plate were lysed with 

100 µl passive lysis buffer. From the lysate, 20 µl were used for firefly luciferase 

and Renilla luciferase activity measurement using the Dual-Luciferase® 

reporter 1000 assay system. Luciferase activity was quantified with a BioFix® 

Lumi-10 luminometer 15 s after addition of substrate. 

 

7.5. rAAV production 

7.5.1. Sepharose column HPLC purification 

Plasmids corresponding to rAAV constructs were cotransfected with plasmid 

pFdelta6 (containing helper Adenovirus genes), pRV1 (rep1 and cap1 genes), 

and pH21 in HEK293 cells in a 5:18:5:5 weight ratio. Forty-eight hours after 
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transfection, the cells were pelleted at 800 rpm and lysed by resuspension in 

TNT buffer (20 mM Tris, 150 mM NaCl, 1% TritonX-100, 10 mM MgCl2, pH 7.5) 

for 10 min at room temperature. Unpackaged DNA was degraded by 

incubating the lysate with benzonase (40 U / ml). Packaged viruses were 

purified through 5 ml Sepharose columns and eluted in 50 mM Glycine pH 2.7. 

Viral fractions were neutralized by adding Tris-HCl pH 8.0 to a concentration 

of 100 mM. Finally, rAAVs were washed with PBS (pH 7.5) and concentrated in 

a regenerated Amicon ultra cellulose concentrator. 

7.5.2. Purification with heparin column 

This method was used for viruses rAAV-syn-tTA, rAAV-syn-rtTA, 

rAAV-Ptetbi-TTLC-tdTomato, and rAAV-Ptetbi-iCre-tdTomato. Plasmids 

corresponding to the rAAV constructs were cotransfected with pDP1 and pDP2 

helper plasmids in HEK293 cells. Forty-eight hours after transfection, HEK293 

cells were collected and lysed by resuspension in 20 mM Tris 150 mM NaCl 

buffer (pH 8.0), repeated freeze-thaw cycles in liquid nitrogen and 0.5% sodium 

deoxycholate treatment. Unpackaged DNA was degraded with 40 U/ml 

Benzonase. Packaged viruses were purified through 5 ml Heparin columns and 

concentrated in a regenerated Amicon ultra cellulose concentrator. 

7.5.3. Infectious titer determination 

Primary hippocampal neurons in 24-well plates were infected at day 4 in vitro 

with different volumes of rAAV. Fourteen days later, the highest dilution at 

which fluorescent cells were present was used for counting. Six 10x 

magnification fields were photographed and the number of fluorescent neurons 

was determined. This number was multiplied by ratio of the total well surface 

area to the 10x field area and divided by the volume of virus applied to yield 

the number of neurons infected per microliter of virus. 

7.5.4. Sources of rAAVs 

A detailed list of the rAAV construct references as well as the sources of the 

purified viral preparations is given in the following table: 
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Table 6. List of rAAVs used in this study including source or reference. 

rAAV Source/Reference 
rAAV-syn-tTA Zhu et al., 2007 
rAAV-syn-rtTA Mazahir T. Hasan 

rAAV-Ptetbi-iCre-tdTomato Godwin Dogbevia/ 
Mazahir T. Hasan 

rAAV-Ptetbi-TTLC-tdTomato Godwin Dogbevia/ 
Mazahir T. Hasan 

rAAV-6A-SEWB (Shevtsova et al., 2005) 
rAAV-syn-iCre-2A-Venus Tang et al., 2009 
rAAV-Plynx2-EGFP Own 
rAAV-Plynx2-iCre-2A-Venus Own 

 

7.6. Protein analysis 

7.6.1. Cell lysis for SDS-PAGE 

The medium was removed from the cell culture and gentle washing with PBS 

was performed. Cultured cells were resuspended in 1x passive lysis buffer and 

shaken for 15 min. 

7.6.2. Protein concentration determination 

To determine the concentration of protein in a lysate, absorbance measurements 

after Bradford (595 nm) or BCA assay were performed and linear regression to 

an appropriate bovine serum albumin standard curve was calculated. 

7.6.3. SDS-PAGE 

Protein samples (2–10 µg) were boiled in 1x protein loading buffer and loaded 

on a stacking gel at 90 mV and 400 mA. After reaching the resolving gel, 

samples were run at 150 mV and 400 mA. 

7.6.4. Coomassie staining 

For total protein visualization, the SDS-PAG was incubated in Coomassie (also 

Kumasi) staining solution (0.6 g/L brilliant blue, 50% methanol, 10% acetic acid 

in water) for 30 min. Next, the gel was washed at least three times in destaining 

solution (50% methanol, 7,5% acetic acid in water). 
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7.7. Stereotaxic rAAV delivery 

7.7.1. Newborn mice 

Postnatal day 0 (P0) mice were rendered immobile by cooling on ice and 

injected with 1 µ l of rAAV per point at coordinates relative to bregma: 

anteroposterior -2.00 mm, lateral ±1.00 mm, dorsoventral from skin -1.00 mm 

for hippocampus; and anterioposterior -1.00 mm, lateral ±0.7 mm, dorsoventral 

from skin -1.00 mm for lateral ventricle. 

7.7.2. Adult mice 

Adult mice were injected using a well established method (Cetin et al., 2006). 

Mice were anesthetized with an intraperitoneal injection of Rompun® 

(20 mg / kg) and Ketavet® (100 mg / kg) and secured in a Kopf stereotaxic 

apparatus. The coordinates relative to bregma used for the hippocampus were: 

anteroposterior (AP) -2.00 mm; mediolateral (ML) ±1.5 mm; dorsoventral (DV) 

from pial surface -1.55 mm for dentate gyrus, -1.05 mm for CA1, -0.35 mm for 

cortex (Paxinos and Franklin, 2001). For targeting the complete amygdala, 

following coordinates were used AP -1.50 mm, ML ±3.35 mm, DV -3.70 mm. 

For the BLA only, the coordinates were: AP -1.80 mm, ML ±3.60 mm, DV 

-3.75 mm. 

 

7.8. Immunohistochemistry 

Mice were anesthetized by isoflurane inhalation and transcardially perfused 

with ice-cold PBS (pH 7.5) and ice-cold 4% paraformaldehyde in PBS. Brains 

were post-fixed overnight in the same fixative and sliced to 50 µm-thick 

sections using a vibratome. Slices were stored in PBS with 

penicillin/streptomycin (100 U/ml and 100 µ g/ml respectively) and 0.01% 

sodium azide at 4 ºC. 

7.8.1. Fluorescence immunostaining 

Free-floating immunostaining was performed in 24-well plates. Sections were 

first blocked (3% normal goat serum and 1% TritonX-100 in PBS) for 1 h, and 
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then incubated for 24 h at 4ºC with the appropriate primary antibodies diluted 

in 1% serum, 0.3% TritonX-100 in PBS. Afterwards, three washes in the same 

diluent were performed, followed by incubation with the appropriate 

fluorescence-coupled secondary antibodies for 2 h at room temperature. Finally, 

the sections were treated with DAPI and then mounted, dehydrated, and 

coverslipped with Aquamount. 

7.8.2. Peroxidase immunostaining 

Endogenous peroxidase activity in the brain slices was saturated with 3% H2O2 

for 15 min and blocked for 1 h. The slices were incubated with the primary 

antibody for 24 h at 4ºC, then washed, and incubated with peroxidase-coupled 

secondary antibody for 1 h at room temperature. After washing, slices were 

developed in DAB solution (0.35 mg/ml DAB, 0.0075% H2O2 in PBS) for  

5–30 min. Repeated washing in PBS stopped the reaction and the slices were 

cleared in xylol for 5 min, before being mounted with Aquamount. 

7.8.3. X-gal staining 

Brain slices were incubated in 5 mM K4Fe(CN)6, 5 mM K3Fe(CN)6, 2 mM MgCl2, 

2 mg/ml X-Gal in 1x Dimethylformamid/PBS solution at room temperature for 

5–60 min or overnight. Afterwards, slices were washed in PBS, immersed in 

10 mM Tris-HCl pH 7.5, and mounted with Aquamount. 

 

7.9. Drug treatments 

7.9.1. Doxycycline 

Doxycycline was diluted in water and administered intra-peritoneally at 

100 µg/g body weight. Oral administration was at a concentration of 2 mg/ml 

in drinking water with 5% sucrose. 
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7.10. Behavioral tests 

7.10.1. Handling prior to behavioral testing 

Three to seven days before start of behavioral experiments, mice were taken out 

of their cages and manipulated for 5 min in order for them to get accustomed to 

human contact. 

7.10.2. Open-field test 

Mice were placed on the center of a 50 cm x 50 cm square gray opaque plastic 

arena illuminated with 1000 lux and allowed to explore for 5–15 min. A video 

tracking system monitoring the arena from the top was used to measure the 

distance traveled by the mice in 1 min bins, as well as the percentage of time 

spent exploring the central 25 cm x 25 cm area of the arena. 

7.10.3. Light-dark box 

Mice were kept under dark conditions for 30 min before the start of the 

experiment. The apparatus consisted of a plastic box (40 cm long, 30 cm wide, 

36 cm high) consisting of two symmetrical compartments communicated by a 

small opening (3.5 cm wide, 3 cm high): one of them with white walls and 

brightly lit with 1000 lux; the other with black walls and a black lid to create a 

dark interior. Mice were first placed in the light compartment and the amount 

of time spent exploring each of the two chambers was measured during 5 min, 

as well as the number of entries into the dark compartment. 

7.10.4. Elevated plus maze 

The apparatus consisted of a plus-shaped platform elevated 1 m from the 

ground with 38 cm long arms and a 3.5 cm x 3.5 cm intersection. Two opposed 

arms were flanked by 3 cm high walls that protected the mice from falling, 

while the other two arms were open. The mice were placed on the central 

intersection of the maze and the amount of time spent in the closed arms and 

the number of entries into the closed arms were measured during 10 min. The 

central area of the cross was considered part of the closed arms. 
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7.10.5. Puzzle box 

A previously published detailed protocol was used (Abdallah et al., 2011). The 

apparatus used was identical: a plastic white arena with two compartments, 

divided by a removable barrier. The start zone was a brightly lit area (58 cm 

long, 28 cm wide). The goal zone was a smaller area closed with a black lid 

(15 cm long, 28 cm wide).  Mice were trained in a series of trials that started 

with the mouse being placed in the start zone and allowing exploration until 

the mouse found the entrance (~4 cm wide) to the goal zone. The latency to 

enter the goal area with all four paws was measured. In the first task, there was 

one only trial in which the entrance to the goal zone was an open door, which 

could be easily crossed by the mouse. The second task consisted of three trials, 

in which the entrance was an underpass, through which the mouse had to 

crawl. The third task had three trials and mice had to dig their way through 

sawdust embedding blocking the underpass. The fourth task consisted of three 

trials in which mice had to remove a cardboard plug. Tasks 1, 2 and 3 were 

limited to 3 min, after which the experiment was stopped and animals that did 

not cross were gently pushed through the entrance to the goal zone. Task 4 was 

limited to 4 min. For tasks 2, 3 and 4 the first and second trials were performed 

on the same day, trial 3 was carried out on the following day. 

7.10.6. Fear-conditioning acquisition 

Mice were placed into the fear-conditioning box (TSE; 25 cm wide, 25 cm long, 

35 cm high) with a metallic grid floor, transparent plexiglass walls, 70% ethanol 

smell, and 800 lux illumination (Context I). The conditioning box contains a 

frame with 16 infrared sensors (1.5 cm spacing) for each axis—x,y,z—to monitor 

the position and speed of the animals. Mice were allowed to explore for 6 or 3 

min, after which a 30 s 80 dB 7.5 kHz tone was presented. The last 2 s of the 

tone coincided with a 0.4 mA foot shock. The tone (CS) and shock (US) 

presentation was repeated two more times with 2 min intervals between tone 

presentations and a final 2 min exploration period after the last shock. In the 

case of the one-shock protocol, only one CS/US pairing was presented followed 

by a 1 min exploration period. 
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7.10.7. Contextual fear test 

The contextual retrieval test was performed by placing the mice in context I and 

monitoring freezing during a 3 or 8 min period. 

7.10.8. Cued fear test 

The cued retrieval test was performed by placing the mice in a different box 

with gray plastic floor, black plastic walls, 1 % acetic acid smell and 400 lux 

illumination (Context II). Mice were allowed to explore for 3 or 6 min, after 

which the CS was presented continuously for 3 min or 8 min. 

7.10.9. Extinction of cued fear 

The extinction training consisted in performing a daily cued test every 24 h for 

several consecutive days. 

7.10.10. Fear conditioning evaluation 

MatLab (Mathworks, Germany) was used to create a continuous time-line for 

the immobility of the mice in 10 s intervals. Immobility was considered when 

mice moved less than 1 cm/s. The percentage of time mice spent immobile was 

calculated for 1 min or 30 s bins. In some cases, freezing was quantified by 

observation of video recordings with a time-sampling procedure. Freezing was 

assessed every 5 s and defined as the absence of visible movement, except for 

respiration (Blanchard and Blanchard, 1969). The percentage of freezing was 

calculated for 1 min or 30 s bins. 

7.10.11. Passive avoidance 

The passive avoidance apparatus consisted of a dark chamber with a metallic 

grid floor placed on top of a tower. The chamber has an entrance that leads to a 

small platform, which is elevated 1 m above the ground and illuminated with 

1000 lux from the top. When indicated, a habituation session was conducted, in 

which the mice were placed on the platform and allowed to enter the dark 

chamber and explore for 3 min. In the acquisition phase, mice were placed on 

the platform and allowed to explore for 1 min. If they did not enter within this 

time, mice were returned to the home cage and the procedure was repeated 
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after 5 min. The latency to enter was measured and, once the mouse was inside, 

the entrance was blocked and a 2 s 0.7 mA foot shock was administered, after 

which mice remained an additional 1 min inside before returning to their home 

cage. In the test session, mice were again placed on the open platform and the 

latency to enter the dark chamber was measured. 

7.10.12. Visual-association swimming task 

The protocol used was modified from Prusky and colleagues (2000). The 

apparatus consisted of a small trapezoidal pool (36 cm and 24 cm sides, 137 cm 

long, 50 cm high) and a large trapezoidal pool (70 cm and 24 cm sides, 137 cm 

long) filled with water at a depth of 15 cm, in which a 14 cm high platform 

could be completely submerged. The water temperature was constantly kept at 

21ºC. 

 

7.11. Statistics 

All results are presented in the form Mean ± Standard Error of the Mean (s.e.m.) 

unless otherwise indicated. Data were tested for normality using the 

D'Agostino-Pearson or the Shapiro-Wilk tests. For one-factor comparisons 

between two independent groups, two-tailed Student’s t-test was performed to 

compare the means. For comparing more than two groups and/or more than 

one factor, one- or two-way —repeated-measures, when applicable— analysis 

of variance (ANOVA) were run. When the data was not normally distributed, 

the Mann-Whitney U test was performed to compare two groups. For 

comparison of ‘survival’ curves, a censored-subject analysis using the log-rank 

Mantel-Cox test was carried out. When significant differences were found, post 

hoc pairwise two-tailed t-statistic comparisons were performed with Bonferroni 

correction for type I error minimization. Unless otherwise indicated, the 

significance value used was always α = 0.05. 
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8. Appendix 

8.1. Tables of results and statistical analyses 

This section corresponds to the raw data analyzed from the different behavioral 

experiments and the respective statistical analysis. In all cases an α = 0.05 was 

used for significance tests. Test results are summarized as *p < 0.05, **p < 0.01, 

***p < 0.001, or ‘ns’ as not significant. t is the value of the Student’s statistic. 

When necessary, the Bonferroni-corrected α is shown. Sum.: summary. 

 

Appendix Table 7. Open field test for GluA3-/- mice during a 6 min observation 
period. 

 GluA3-/- Wild type 
Total traveled distance (m) 25.50 ± 1.719 34.46 ± 1.565 

Time in center (%) 3.177 ± 0.6844 5.757 ± 1.542 
 
Appendix Table 8. Median latency to enter the dark chamber in the puzzle-box test 
for GluA3-/- mice. 
Log-rank Mantel-Cox C2 and p value for comparisons by genotype. The Bonferroni-
corrected α is presented for comparisons of tasks with multiple trials. 

Task.trial GluA3-/- Wild type C21,N=24 p Bonferroni 
α  

1 94 94 0.1175 0.7317 0.05 
2.1 46 48 2.597 0.1070 0.016 
2.2 35.00 10.00 11.49 0.0007 0.016 
2.3 99 62 0.001273 0.9715 0.016 
3.1 180 143 6.961 0.0083 0.016 
3.2 180 81 4.478 0.0343 0.016 
3.3 180 180 3.918 0.0478 0.016 
4.1 240 160 5.929 0.0149 0.016 
4.2 240 144 3.116 0.0775 0.016 
4.3 240 163 2.055 0.1517 0.016 
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Appendix Table 9. Mean immobility percentage in a minute-by-minute basis for 
GluA3-/- mice during the acquisition protocol and 24 h later in a cued retrieval test. 
Student’s t statistics and p value with Bonferroni-corrected α for 16 comparisons. 

Acquisition 
Minute CS/US GluA3-/- Wild type t p Summary 

1 - 0.7692 0.0 0.1486 P > 0.05 ns 
2 - 2.564 0.6061 0.3783 P > 0.05 ns 
3 - 4.231 0.9091 0.6418 P > 0.05 ns 
4 - 5.641 2.121 0.6801 P > 0.05 ns 
5 - 5.513 4.242 0.2455 P > 0.05 ns 
6 - 7.821 3.939 0.7499 P > 0.05 ns 

6.5 Tone/Shock 11.03 2.727 1.603 P > 0.05 ns 
7.5 - 18.08 10.15 1.531 P > 0.05 ns 
8.5 - 23.33 18.48 0.9369 P > 0.05 ns 
9 Tone/Shock 32.56 9.697 4.419 P<0.001 *** 

10 - 29.36 14.55 2.862 P > 0.05 ns 
11 - 35.77 20.45 2.959 P < 0.05 * 

11.5 Tone/Shock 42.05 15.45 5.139 P<0.001 *** 
12.5 - 40.77 21.67 3.691 P<0.01 ** 
13.5 - 39.87 21.06 3.635 P<0.01 ** 

Cued retrieval test 
Minute CS GluA3-/- Wild type t p Summary 

1 - 12.05 7.879 0.5502 P > 0.05 ns 
2 - 15.90 5.606 1.357 P > 0.05 ns 
3 - 18.46 6.212 1.615 P > 0.05 ns 
4 - 27.05 6.818 2.668 P > 0.05 ns 
5 - 18.21 6.364 1.561 P > 0.05 ns 
6 - 15.51 6.061 1.246 P > 0.05 ns 
7 Tone 55.26 30.30 3.290 P < 0.05 * 
8 Tone 59.23 25.30 4.474 P<0.001 *** 
9 Tone 65.13 22.42 5.631 P<0.001 *** 

10 Tone 51.92 19.70 4.249 P<0.001 *** 
11 Tone 52.31 21.36 4.080 P<0.001 *** 
12 Tone 45.90 17.27 3.774 P<0.01 ** 
13 Tone 37.69 23.03 1.933 P > 0.05 ns 
14 Tone 35.26 19.85 2.032 P > 0.05 ns 

 

Appendix Table 10. Mean total immobility levels before and during tone 
presentation in the 24 h cued retrieval test for GluA3-/- mice. 
Student's t pairwise comparisons. 

 GluA3-/- Wild type t p Summary 
Before tone 17.86 8.864 1.558 >0.05 ns 

Tone 50.34 29.71 3.570 <0.01 ** 
t 6.858 3.979    
p <0.0001 0.0026    

Summary *** **    
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Appendix Table 11. Mean total immobility levels by infrared sensor readings during 
the tone presentation in five consecutive extinction trials for GluA3-/- mice.  
Bonferroni-corrected Student’s t pairwise comparisons between genotypes and 
experimental conditions. 

 GluA3-/- Wild type 
Tone 

GluA3-/- vs. Wild type 
Trial Before Tone Before Tone t p Summary 
E1 17.86 50.34 8.864 29.71 4.176 P<0.001 *** 
E2 18.78 43.86 16.24 25.95 3.627 P<0.01 ** 
E3 19.62 31.65 17.05 22.61 1.830 P > 0.05 ns 
E4 16.79 22.21 17.53 17.52 0.9501 P > 0.05 ns 
E5 15.85 21.39 16.72 16.12 1.068 P > 0.05 ns 

 Before/Tone Before/Tone    
 t p Summary t p Summary    

E1 6.867 P<0.001 *** 4.055 P<0.001 ***    
E2 5.304 P<0.001 *** 1.889 P > 0.05 ns    
E3 2.545 P > 0.05 ns 1.083 P > 0.05 ns    
E4 1.145 P > 0.05 ns 0.001228 P > 0.05 ns    
E5 1.171 P > 0.05 ns 0.1167 P > 0.05 ns    
 

Appendix Table 12. Mean total freezing levels by direct observation during the tone 
presentation in five consecutive extinction trials for GluA3-/- mice.  
Bonferroni-corrected Student’s t pairwise comparisons between genotypes and 
experimental conditions. 

 GluA3-/- Wild type 
Tone 

GluA3-/- vs. Wild type 
Trial Before Tone Before Tone t p Summary 

E1 17.00 70.00 3.788 30.68 6.858 P<0.001 *** 
E2 19.00 57.00 12.12 28.41 4.987 P<0.001 *** 
E3 6.000 33.00 5.303 14.39 3.245 P<0.01 ** 
E4 7.000 9.000 0.7576 8.333 0.1163 P > 0.05 ns 
E5 5.000 6.000 3.788 4.545 0.2537 P > 0.05 ns 

 Before/Tone Before/Tone    
 t p Summary t p Summary    

E1 8.882 P<0.001 *** 4.900 P<0.001 ***    
E2 6.368 P<0.001 *** 2.967 P < 0.05 *    
E3 4.525 P<0.001 *** 1.656 P > 0.05 ns    
E4 0.3352 P > 0.05 ns 1.380 P > 0.05 ns    
E5 0.1676 P > 0.05 ns 0.1380 P > 0.05 ns    
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Appendix Table 13. Median latency to enter the dark compartment in the passive 
avoidance test for GluA3-/- mice. 
Log-rank Mantel-Cox C2 and p value for comparisons with Bonferroni-corrected α for 
multiple comparisons. 
Phase GluA3-/- Wild type C21,N=24 p Bonferroni α  

Acquisition 3 3 0.37860 0.5384 0.01 
24 h 40 35 0.35380 0.5520 0.01 
7 d 42 27 0.02142 0.8836 0.01 

37 d 60 14 9.03800 0.0026 0.01 
67 d 168.5 6 16.89000 0.0001 0.01 

Comparison C21,N=24 p C21,N=24 p Bonferroni α  
Acq. 24 h 22.02 <0.0001 14.88 0.0001 0.0125 
Acq. 7 d 22.07 <0.0001 16.71 <0.0001 0.0125 
Acq. 37 d 17.56 <0.0001 7.845 0.0051 0.0125 
Acq. 67 d 27.1 <0.0001 4.778 0.0288 0.0125 

 
 
Appendix Table 14. Mean immobility percentage of GluA1R/R and C57Bl/6N mice in 
fear conditioning.  
Bonferroni-corrected multiple pairwise Student’s t comparisons. 

Acquisition 
Minute CS/US GluA1R/R Wild type t p Summary 

1 - 0.1852 0.3704 0.04854 P > 0.05 ns 
2 - 0.0 1.481 0.3883 P > 0.05 ns 
3 - 0.0 1.481 0.3883 P > 0.05 ns 
4 - 0.3704 1.481 0.2912 P > 0.05 ns 
5 - 0.1852 2.963 0.7280 P > 0.05 ns 
6 - 0.7407 3.519 0.7280 P > 0.05 ns 

6.5 Tone/Shock 1.852 2.963 0.2912 P > 0.05 ns 
7.5 - 0.3704 7.407 1.844 P > 0.05 ns 
8.5 - 0.1852 16.11 4.174 P<0.001 *** 
9 Tone/Shock 0.0 14.44 3.786 P<0.01 ** 

10 - 0.0 19.44 5.096 P<0.001 *** 
11 - 0.5556 35.00 9.028 P<0.001 *** 

11.5 Tone/Shock 0.0 39.26 10.29 P<0.001 *** 
12.5 - 0.1852 31.67 8.251 P<0.001 *** 
13.5 - 0.3704 51.11 13.30 P<0.001 *** 

Cued retrieval test 
Minute CS GluA1R/R Wild type t p Summary 

1 - 1.296 27.04 3.269 P < 0.05 * 
2 - 2.222 28.52 3.340 P < 0.05 * 
3 - 0.3704 31.48 3.951 P<0.01 ** 
4 - 1.667 37.96 4.609 P<0.001 *** 
5 - 1.296 36.85 4.515 P<0.001 *** 
6 - 1.667 29.07 3.481 P<0.01 ** 
7 Tone 15.37 42.04 3.387 P < 0.05 * 
8 Tone 16.67 47.41 3.904 P<0.01 ** 
9 Tone 14.81 47.78 4.186 P<0.001 *** 

10 Tone 12.78 51.30 4.892 P<0.001 *** 
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11 Tone 11.85 56.67 5.691 P<0.001 *** 
12 Tone 8.333 51.48 5.480 P<0.001 *** 
13 Tone 13.15 43.89 3.904 P<0.01 ** 
14 Tone 10.19 34.44 3.081 P < 0.05 * 

Context retrieval test 
Minute CS GluA1R/R Wild type t p Summary 

1 Context 3.519 24.63 2.679 P > 0.05 ns 
2 Context 5.926 36.48 3.877 P<0.01 ** 
3 Context 3.704 31.85 3.572 P<0.01 ** 
4 Context 5.556 21.67 2.044 P > 0.05 ns 
5 Context 5.926 22.59 2.115 P > 0.05 ns 
6 Context 7.593 24.81 2.185 P > 0.05 ns 
7 Context 7.037 23.89 2.138 P > 0.05 ns 
8 Context 6.667 27.96 2.702 P > 0.05 ns 

 
 
Appendix Table 15. Mean immobility percentage by infrared sensor readings in fear 
conditioning of GluA1-/- mice. 

Acquisition 
Minute CS/US GluA1-/- Wild type t p Summary 

1 - 1.458 2.778 0.2816 P > 0.05 ns 
2 - 1.458 3.889 0.5188 P > 0.05 ns 
3 - 0.8333 5.370 0.9683 P > 0.05 ns 
4 - 0.4167 3.333 0.6225 P > 0.05 ns 
5 - 0.4167 2.963 0.5435 P > 0.05 ns 
6 - 0.2083 3.333 0.6670 P > 0.05 ns 

6.5 Tone/Shock 3.333 7.778 0.9486 P > 0.05 ns 
7.5 - 2.708 20.74 3.849 P<0.01 ** 
8.5 - 0.8333 18.33 3.735 P<0.01 ** 
9 Tone/Shock 0.4167 24.07 5.049 P<0.001 *** 

10 - 0.8333 45.37 9.506 P<0.001 *** 
11 - 2.083 50.37 10.31 P<0.001 *** 

11.5 Tone/Shock 0.8333 37.41 7.806 P<0.001 *** 
12.5 - 2.708 51.11 10.33 P<0.001 *** 
13.5 - 0.4167 62.59 13.27 P<0.001 *** 

       
Cued retrieval test 

Minute CS GluA1-/- Wild type t p Summary 
1 - 5.208 25.93 2.860 P > 0.05 ns 
2 - 5.417 21.67 2.243 P > 0.05 ns 
3 - 3.958 27.59 3.263 P < 0.05 * 
4 - 4.375 18.89 2.004 P > 0.05 ns 
5 - 4.167 13.15 1.240 P > 0.05 ns 
6 - 2.500 15.56 1.802 P > 0.05 ns 
7 Tone 17.08 51.85 4.800 P<0.001 *** 
8 Tone 11.04 56.85 6.324 P<0.001 *** 
9 Tone 9.375 62.96 7.398 P<0.001 *** 

10 Tone 6.667 47.04 5.573 P<0.001 *** 
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11 Tone 6.042 45.37 5.429 P<0.001 *** 
12 Tone 5.417 40.56 4.851 P<0.001 *** 
13 Tone 8.125 50.37 5.832 P<0.001 *** 
14 Tone 11.46 41.67 4.170 P<0.001 *** 

 

Appendix Table 16. Mean total immobility levels before and during tone 
presentation in the 24 h cued retrieval test for GluA1-/- mice.  
Student's t pairwise comparisons. 

 GluA1-/- Wild type t7 p Summary 
Before tone 4.271 20.46 5.055 0.0015 ** 

Tone 9.401 49.58 6.810 0.0003 *** 
t14 2.391 5.277    
p 0.0314 0.0007    

Summary * ***    
 

Appendix Table 17. Mean total immobility levels by infrared sensor readings during 
the tone presentation in five consecutive extinction trials GluA1-/- mice. 
Bonferroni-corrected Student’s t pairwise comparisons between genotypes and 
experimental conditions. 

 GluA1-/- Wild type 
Tone 

GluA1-/- vs. Wild type 
Trial Before Tone Before Tone t p Summary 
E1 4.271 9.401 20.46 49.58 6.204 P<0.001 *** 
E2 10.03 13.36 27.35 38.54 3.888 P<0.001 *** 
E3 15.24 8.438 21.17 32.75 3.754 P<0.01 ** 
E4 14.25 8.423 17.56 24.70 2.423 P > 0.05 ns 

 Before/Tone Before/Tone    
 t7 p Summary t8 p Summary    

E1 3.136 0.0165 * 5.277 0.0007 ***    
E2 0.1856 0.1059 ns 3.648 0.0065 **    
E3 3.320 0.0128 * 4.303 0.0026 **    
E4 1.772 0.1269 ns 2,355 0.0463 *    
 

Appendix Table 18. Median latency to enter the dark compartment in the passive 
avoidance test for GluA1-/- mice.  
Log-rank Mantel-Cox C2 and p value for comparisons with Bonferroni-corrected α for 
multiple comparisons. 
Phase GluA3-/- Wild type C21,N=17 p Bonferroni α  

Acquisition 14.5 3 5.127 0.0236 0.0125 
24 h 600 115 1.479 0.2239 0.0125 
7 d 600 88 3.496 0.0615 0.0125 

23 d 600 200 7.726 0.0054 0.0125 
Comparison C21,N=8 p C21,N=9 p Bonferroni α  
Acq. 24 h 8.59 0.0034 8.824 0.0030 0.0166 
Acq. 7 d 7.576 0.0059 6.235 0.0125 0.0166 
Acq. 23 d 13.5 0.0002 8.330 0.0039 0.0166 
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Appendix Table 19. Median latency to enter the dark compartment in the passive 
avoidance test for GluA1-/- and GluA3-/- mice.  

Phase GluA1-/- GluA3-/- GluA1+/+ GluA3+/+ 
Wild types 
(merged) 

Acquisition 10 6.5 3 3 3 
24 h 600 324 44 20.5 29 
7 d 600 600 536 56 93.5 

37 d 600 600 270 89.5 200 
67 d 600 600 595 84.5 197.5 

161 d 600 399.5 86.5 79 86.5 
 
Appendix Table 20. Log-rank Mantel-Cox comparison of the latency to enter the 
dark compartment in the passive avoidance test between wild-type GluA1+/+ and 
GluA3+/+ mice.  

 GluA1+/+ vs. GluA3+/+ 
Phase C21,N=16 p Summary 

Acquisition 0.1328 0.7155 ns 
24 h 1.147 0.2841 ns 
7 d 1.848 0.1740 ns 

37 d 2.152 0.1423 ns 
67 d 3.079 0.0793 ns 

161 d 1.134 0.2870 ns 
 
Appendix Table 21. Median latency to enter the dark compartment in the passive 
avoidance test for GluA1-/- and GluA3-/- mice.  
Log-rank Mantel-Cox C2 and p value for comparisons with Bonferroni-corrected α for 
multiple comparisons. 

 GluA1-/- vs. Wild type GluA3-/- vs. Wild type GluA1-/- vs. GluA3-/-  
Phase C21,N=16 p Sum. C21,N=16 p Sum. C21,N=16 p Sum. α 

Acquisition 7.849 0.0051 * 3.162 0.0754 ns 2.193 0.1387 ns 0.0167 
24 h 4.101 0.0429 ns 1.576 0.2093 ns 0.5069 0.4765 ns 0.0167 
7 d 6.218 0.0126 * 6.218 0.0126 * 0.0022 0.9624 ns 0.0167 

37 d 7.631 0.0057 * 10.07 0.0015 ** 1.00 0.3173 ns 0.0167 
67 d 6.416 0.0113 * 8.607 0.0033 ** 1.00 0.3173 ns 0.0167 

161 d 6.919 0.0085 * 2.352 0.1251 ns 3.142 0.0763 ns 0.0167 
 

  GluA1-/- GluA3-/- Wild type  
Comparison C21,N=16 p Sum. C21,N=16 p Sum. C21,N=16 p Sum. α  

Acq. 24 h 13.08 0.0003 *** 14.94 0.0001 *** 17.00 <0.0001 *** 0.01 
 7 d 17.06 <0.0001 *** 16.75 <0.0001 *** 15.81 <0.0001 *** 0.01 
 37 d 17.06 <0.0001 *** 16.75 <0.0001 *** 34.35 <0.0001 *** 0.01 
 67 d 17.06 <0.0001 *** 27.08 <0.0001 *** 28.43 <0.0001 *** 0.01 
 161 d 13.99 0.0002 *** 16.75 <0.0001 *** 33.15 <0.0001 *** 0.01 
  GluA1-/- GluA3-/- Wild type  

Comparison C21,N=16 p Sum. C21,N=16 p Sum. C21,N=16 p Sum. α  
24 h Acq. 13.08 0.0003 *** 14.94 0.0001 *** 17.00 <0.0001 *** 0.01 

 7 d 1.518 0.2179 ns 3.568 0.0589 ns 0.4739 0.4912 ns  
 37 d 1.518 0.2179 ns 6.929 0.0085 * 1.302 0.2539 ns  
 67 d 1.518 0.2179 ns 6.929 0.0085 * 1.562 0.2113 ns  
 161 d 0.0270 0.8694 ns 0.3263 0.5678 ns 0.1021 0.7494 ns  
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  GluA1-/- GluA3-/- Wild type  
Comparison C21,N=16 p Sum. C21,N=16 p Sum. C21,N=16 p Sum. α  
7 d Acq. 17.06 <0.0001 *** 16.75 <0.0001 *** 15.81 <0.0001 *** 0.01 

 24 h 1.518 0.2179 ns 3.568 0.0589 ns 0.4739 0.4912 ns  
 37 d 0.0022 0.9624 ns 1.00 0.3173 ns 0.0192 0.8897 ns  
 67 d 0.0022 0.9624 ns 1.00 0.3173 ns 0.1433 0.7050 ns  
 161 d 1.317 0.2511 ns 7.660 0.0056 * 0.7068 0.4005 ns  

 

Appendix Table 22. Mean immobility percentage by infrared sensor readings in fear 
conditioning of GluA3-/- and GluA1+/- mice during the acquisition phase. 

  Acquisition 

Min. CS/US GluA3-/- Control t p Sum. 
GluA3-/- 

A1+/- 
GluA1+/- t p Sum. 

1 - 1.026 0.0 0.1452 >0.05 ns 0.5128 0.2381 0.04745 >0.05 ns 
2 - 5.128 0.8333 0.6082 >0.05 ns 0.2564 1.905 0.2847 >0.05 ns 
3 - 3.205 5.000 0.2542 >0.05 ns 0.5128 3.333 0.4871 >0.05 ns 
4 - 3.590 1.250 0.3313 >0.05 ns 0.7692 0.9524 0.03163 >0.05 ns 
5 - 5.641 3.333 0.3268 >0.05 ns 1.026 0.7143 0.05378 >0.05 ns 
6 - 7.949 6.250 0.2406 >0.05 ns 0.3846 3.333 0.5093 >0.05 ns 

6.5 CS/US 8.718 8.333 0.05447 >0.05 ns 1.538 2.857 0.2278 >0.05 ns 
7.5 - 14.87 13.75 0.1589 >0.05 ns 2.051 3.810 0.3037 >0.05 ns 
8.5 - 26.79 30.00 0.4539 >0.05 ns 3.846 4.286 0.07592 >0.05 ns 
9 CS/US 36.41 19.17 2.442 >0.05 ns 10.51 13.33 0.4871 >0.05 ns 

10 - 32.44 36.25 0.5401 >0.05 ns 11.03 13.57 0.4397 >0.05 ns 
11 - 46.15 43.33 0.3994 >0.05 ns 11.67 22.14 1.809 >0.05 ns 

11.5 CS/US 48.46 34.17 2.024 >0.05 ns 33.33 31.43 0.3290 >0.05 ns 
12.5 - 36.92 50.00 1.852 >0.05 ns 21.03 19.52 0.2594 >0.05 ns 
13.5 - 53.46 45.00 1.198 >0.05 ns 30.26 35.00 0.8193 >0.05 ns 

Min. CS/US GluA3-/- 
GluA3-/- 

A1+/- t p Sum. Control GluA1+/- t p Sum. 

1 - 1.026 0.5128 0.1059 >0.05 ns 0.0 0.2381 0.03076 >0.05 ns 
2 - 5.128 0.2564 1.006 >0.05 ns 0.8333 1.905 0.1384 >0.05 ns 
3 - 3.205 0.5128 0.5558 >0.05 ns 5.000 3.333 0.2153 >0.05 ns 
4 - 3.590 0.7692 0.5823 >0.05 ns 1.250 0.9524 0.03845 >0.05 ns 
5 - 5.641 1.026 0.9528 >0.05 ns 3.333 0.7143 0.3383 >0.05 ns 
6 - 7.949 0.3846 1.562 >0.05 ns 6.250 3.333 0.3768 >0.05 ns 

6.5 CS/US 8.718 1.538 1.482 >0.05 ns 8.333 2.857 0.7074 >0.05 ns 
7.5 - 14.87 2.051 2.647 >0.05 ns 13.75 3.810 1.284 >0.05 ns 
8.5 - 26.79 3.846 4.737 <0.001 *** 30.00 4.286 3.322 <0.05 * 
9 CS/US 36.41 10.51 5.346 <0.001 *** 19.17 13.33 0.7536 >0.05 ns 

10 - 32.44 11.03 4.420 <0.001 *** 36.25 13.57 2.930 >0.05 ns 
11 - 46.15 11.67 7.119 <0.001 *** 43.33 22.14 2.737 >0.05 ns 

11.5 CS/US 48.46 33.33 3.123 <0.05 * 34.17 31.43 0.3537 >0.05 ns 
12.5 - 36.92 21.03 3.282 <0.05 * 50.00 19.52 3.937 <0.01 ** 
13.5 - 53.46 30.26 4.790 <0.001 *** 45.00 35.00 1.292 >0.05 ns 
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Appendix Table 23. Mean immobility percentage by infrared sensor readings in fear 
conditioning of GluA3-/- and GluA1+/- mice during the cued retrieval tests. 

  Cued test 
  24 h 31 d 

Min. CS 
GluA3-/- 

A1+/- GluA1+/- t p Sum. 
GluA3-/- 

A1+/- GluA1+/- t p Sum. 

1 - 17.56 10.24 0.8529 >0.05 ns 24.74 29.76 0.5549 >0.05 ns 
2 - 22.69 18.81 0.4520 >0.05 ns 28.59 28.81 0.02430 >0.05 ns 
3 - 24.23 12.62 1.352 >0.05 ns 32.82 19.05 1.523 >0.05 ns 
4 - 24.87 13.57 1.316 >0.05 ns 22.69 18.81 0.4294 >0.05 ns 
5 - 27.95 11.67 1.895 >0.05 ns 28.46 13.57 1.647 >0.05 ns 
6 - 34.23 15.95 2.128 >0.05 ns 35.38 20.71 1.622 >0.05 ns 
7 CS 70.77 48.81 2.556 >0.05 ns 57.95 39.05 2.090 >0.05 ns 
8 CS 54.87 39.52 1.787 >0.05 ns 43.85 32.62 1.241 >0.05 ns 
9 CS 58.08 38.81 2.243 >0.05 ns 52.31 32.14 2.230 >0.05 ns 

10 CS 51.67 42.86 1.026 >0.05 ns 47.56 31.19 1.811 >0.05 ns 
11 CS 53.97 44.76 1.072 >0.05 ns 49.36 14.52 3.852 <0.01 ** 
12 CS 41.67 28.10 1.580 >0.05 ns 37.69 12.14 2.825 >0.05 ns 
13 CS 43.59 20.48 2.691 >0.05 ns 41.41 23.10 2.025 >0.05 ns 
14 CS 37.05 24.05 1.514 >0.05 ns 33.97 33.10 0.09721 >0.05 ns 

 
  Cued test 31 d 

Min. CS/US GluA3-/- Control t p Sum. 
1 - 21.54 45.83 2.175 >0.05 ns 
2 - 38.21 34.17 0.3615 >0.05 ns 
3 - 36.15 21.67 1.297 >0.05 ns 
4 - 36.79 20.83 1.429 >0.05 ns 
5 - 31.28 15.42 1.420 >0.05 ns 
6 - 34.36 17.92 1.472 >0.05 ns 
7 CS 46.79 44.58 0.1980 >0.05 ns 
8 CS 47.05 58.75 1.047 >0.05 ns 
9 CS 54.74 36.67 1.618 >0.05 ns 

10 CS 47.95 35.42 1.122 >0.05 ns 
11 CS 50.00 29.17 1.865 >0.05 ns 
12 CS 39.23 17.92 1.908 >0.05 ns 
13 CS 41.03 18.75 1.994 >0.05 ns 
14 CS 40.90 17.50 2.094 >0.05 ns 

 

Appendix Table 24. Mean total immobility levels before and during tone 
presentation in the 24 h and 31 d cued retrieval tests for GluA3-/- and GluA1+/- mice.  
Student's t pairwise before/tone comparisons. 

 24 h 31 d 

 GluA3-/- 
A1+/- GluA1+/- GluA3-/- 

A1+/- GluA1+/- GluA3-/- Control 

Before tone 25.26 13.81 28.78 21.79 33.06 25.97 
Tone 51.46 35.92 45.51 27.23 45.96 32.34 

t 6.189 3.833 3.952 0.944 3.048 0.8348 
p <0.001 <0.01 <0.01 >0.05 <0.05 >0.05 

Summary *** ** ** ns * ns 
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Appendix Table 25. Open field, light dark box and elevated plus maze tests for 
amygdala-silenced TTLC mice. 

Test  TTLC Control    
Minute 1 418.1 351.1    
Minute 2 378.6 349.6    
Minute 3 378.3 313.2    
Minute 4 310.5 323.1    
Minute 5 289.9 290.7    
Minute 6 277.1 242.7    
Minute 7 267.4 256.6    
Minute 8 258.6 334.6    
Minute 9 257.2 323.8    

Open Field 
Total Distance (cm) 

Minute 10 225.8 287.6 t p Sum. 
Time in the dark (%) 73.53±4.52 69.17±2.15 0.7394 0.4808 ns Light-dark box 
Entries into the dark 14.00±1.06 14.75±3.06 0.2713 0.7930 ns 

Elevated plus maze Time in closed arm 83.72±15.09 89.67±3.94 0.3811 0.7188 ns 
 
Appendix Table 26. Mean immobility percentage of amygdala-silenced TTLC and 
C57Bl/6N mice in fear conditioning.  

Context retrieval test 24 h 

Minute CS TTLC Control t p Summary 
1 Context 13.06 39.58 3.255 <0.05 * 
2 Context 27.50 25.83 0.2045 >0.05 ns 
3 Context 8.611 16.67 0.9884 >0.05 Ns 
4 Context 9.444 20.00 1.295 >0.05 ns 
5 Context 7.778 16.67 1.091 >0.05 ns 

Context retrieval test 41 d 

Minute CS TTLC Control t p Summary 
1 Context 31.67 45.42 1.472 >0.05 ns 
2 Context 33.06 37.08 0.4311 >0.05 ns 
3 Context 24.17 24.17 0.000 >0.05 ns 
4 Context 13.89 21.25 0.7878 >0.05 ns 
5 Context 18.89 33.75 1.591 >0.05 ns 

Cued retrieval test 48 h 

Minute CS TTLC Control t p Summary 
1 - 5.278 25.83 2.868 <0.05 * 
2 - 12.22 24.58 1.725 >0.05 ns 
3 - 7.500 23.33 2.209 >0.05 ns 

12 Tone 12.50 39.17 3.721 <0.01 ** 
13 Tone 14.72 34.58 2.771 <0.05 * 
14 Tone 23.33 30.83 1.046 >0.05 ns 

Cued retrieval test 42 d 

Minute CS TTLC Control t p Summary 
1 - 14.44 23.75 1.329 >0.05 ns 
2 - 16.11 26.25 1.448 >0.05 ns 
3 - 9.444 24.17 2.103 >0.05 ns 

12 Tone 15.56 45.00 4.206 <0.001 *** 
13 Tone 16.11 22.08 0.8532 >0.05 ns 
14 Tone 12.22 23.75 1.647 >0.05 ns 
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Appendix Table 27. Mean total freezing levels before and during tone presentation 
in the 24 h cued retrieval test for TTLC mice. 
Student's t pairwise comparisons. 
Time point Test TTLC Control t p Summary 

24 h Context 23.15 56.94 2.755 0.0248 * 
41 d Context 18.33 41.67 2.842 0.0218 * 
48 h Before tone 14.81 25.00 1.629 0.1421 ns 
48 h Tone 11.11 52.78 6.852 0.0001 *** 
42 d Before tone 12.960 48.61 4.142 0.0032 ** 
42 d Tone 7.407 29.17 4.937 0.0011 ** 

 

Appendix Table 28. Median latency to enter dark chamber in the passive avoidance 
task for amygdala-silenced TTLC mice. 

Phase TTLC Wild type C21,N=10 p Bonferroni α  
Acquisition 8 13.5 0.2765 0.5990 0.025 

24 h test 12.5 182.5 1.825 0.1767 0.025 
24 h (w/o outlier) 11 182.5 7.914 0.0049 0.025 

Comparison C21,N=6 p C21,N=4 p Bonferroni α  
Acq. 24 h 0.7239 0.3949 7.344 0.0067 0.05 

 

Appendix Table 29. Mean immobility percentage by infrared sensor readings in fear 
conditioning of GluA1∆BLA and GluN1∆BLA mice during the acquisition phase. 

  Acquisition 
Min. CS/US Control GluA1∆BLA t p Sum. GluN1∆BLA t p Sum. 

1 - 2.407 0.3333 0.2530 >0.05 ns 2.083 0.04538 >0.05 ns 
2 - 4.259 2.000 0.2756 >0.05 ns 3.542 0.1005 >0.05 ns 
3 - 6.111 1.333 0.5829 >0.05 ns 5.208 0.1264 >0.05 ns 
4 - 2.593 3.000 0.04970 >0.05 ns 6.458 0.5414 >0.05 ns 
5 - 2.222 5.667 0.4202 >0.05 ns 5.833 0.5057 >0.05 ns 
6 - 5.000 6.000 0.1220 >0.05 ns 5.625 0.08752 >0.05 ns 

6.5 CS/US 3.333 4.667 0.1627 >0.05 ns 6.667 0.4668 >0.05 ns 
7.5 - 12.59 20.67 0.9850 >0.05 ns 29.58 2.379 >0.05 ns 
8.5 - 13.52 20.67 0.8721 >0.05 ns 23.75 1.433 >0.05 ns 
9 CS/US 22.96 28.67 0.6958 >0.05 ns 22.08 0.1232 >0.05 ns 

10 - 30.19 42.00 1.441 >0.05 ns 32.50 0.3242 >0.05 ns 
11 - 35.93 52.00 1.961 >0.05 ns 43.75 1.096 >0.05 ns 

11.5 CS/US 41.48 42.00 0.06326 >0.05 ns 34.58 0.9660 >0.05 ns 
12.5 - 38.89 42.33 0.4202 >0.05 ns 52.08 1.848 >0.05 ns 
13.5 - 37.78 31.33 0.7862 >0.05 ns 55.63 2.499 >0.05 ns 
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Appendix Table 30. Mean freezing percentage by direct observation in fear 
conditioning of GluA1∆BLA and GluN1∆BLA mice during the acquisition phase 

  Context test before DOX 
Min. CS/US Control GluA1∆BLA t p Sum. GluN1∆BLA t p Sum. 

1 Context 12.96 16.67 0.2903 >0.05 ns 22.92 0.8955 >0.05 ns 
2 Context 16.67 33.33 1.306 >0.05 ns 14.58 0.1874 >0.05 ns 
3 Context 11.11 40.00 2.264 >0.05 ns 10.42 0.06247 >0.05 ns 
  Cued test before DOX 

Min. CS/US Control GluA1∆BLA t p Sum. GluN1∆BLA t p Sum. 
1 - 0.0 3.333 0.5113 >0.05 ns 2.083 0.3668 >0.05 ns 
2 - 0.9259 1.667 0.1136 >0.05 ns 0.0 0.1630 >0.05 ns 
3 - 0.0 1.667 0.2557 >0.05 ns 0.0 0.0 >0.05 ns 
4 CS 36.11 48.33 1.875 >0.05 ns 39.58 0.6114 >0.05 ns 
5 CS 30.56 45.00 2.216 >0.05 ns 40.63 1.773 >0.05 ns 
6 CS 25.00 43.33 2.812 <0.05 * 21.88 0.5503 >0.05 ns 
  Cued test after DOX 

Min. CS/US Control GluA1∆BLA t p Sum. GluN1∆BLA t p Sum. 
1 - 4.630 3.333 0.2103 >0.05 ns 4.167 0.08623 >0.05 ns 
2 - 5.556 5.000 0.09015 >0.05 ns 6.250 0.1293 >0.05 ns 
3 - 2.778 3.333 0.09015 >0.05 ns 3.125 0.06467 >0.05 ns 
4 CS 39.81 41.67 0.3005 >0.05 ns 20.83 3.535 <0.01 ** 
5 CS 25.93 23.33 0.4207 >0.05 ns 6.250 3.665 <0.01 ** 
6 CS 20.37 21.67 0.2103 >0.05 ns 11.46 1.660 >0.05 ns 
7 CS 7.407 30.00 3.666 <0.01 ** 8.333 0.1725 >0.05 ns 
8 CS 8.333 16.67 1.352 >0.05 ns 4.167 0.7761 >0.05 ns 
9 CS 9.259 16.67 1.202 >0.05 ns 4.167 0.9485 >0.05 ns 

10 CS 1.852 13.33 1.863 >0.05 ns 3.125 0.2371 >0.05 ns 
11 CS 0.9259 6.667 0.9315 >0.05 ns 1.042 0.02156 >0.05 ns 
 
 

Appendix Table 31. Mean immobility percentage by infrared sensor readings in fear 
conditioning of GluA1∆BLA and GluN1∆BLA mice during the acquisition phase. 

  Context test before DOX 
Min. CS/US Control GluA1∆BLA t p Sum. GluN1∆BLA t p Sum. 

1 Context 14.44 11.00 0.5036 >0.05 ns 18.33 0.6527 >0.05 ns 
2 Context 19.26 21.33 0.3033 >0.05 ns 17.92 0.2253 >0.05 ns 
3 Context 18.15 31.33 1.928 >0.05 ns 14.38 0.6333 >0.05 ns 
  Cued test before DOX 

Min. CS/US Control GluA1∆BLA t p Sum. GluN1∆BLA t p Sum. 
1 - 7.407 7.667 0.03411 >0.05 ns 5.833 0.2377 >0.05 ns 
2 - 14.81 13.33 0.1949 >0.05 ns 10.63 0.6328 >0.05 ns 
3 - 12.41 11.67 0.09746 >0.05 ns 7.917 0.6783 >0.05 ns 
4 CS 41.30 49.00 1.014 >0.05 ns 30.63 1.612 >0.05 ns 
5 CS 30.56 46.67 2.120 >0.05 ns 33.96 0.5139 >0.05 ns 
6 CS 33.15 49.67 2.173 >0.05 ns 29.58 0.5384 >0.05 ns 
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  Cued test after DOX 
Min. CS/US Control GluA1∆BLA t p Sum. GluN1∆BLA t p Sum. 

1 - 21.85 36.67 1.548 >0.05 ns 24.17 0.2777 >0.05 ns 
2 - 23.70 33.00 0.9717 >0.05 ns 25.63 0.2305 >0.05 ns 
3 - 20.37 17.67 0.2826 >0.05 ns 14.79 0.6693 >0.05 ns 
4 CS 51.30 43.33 0.8323 >0.05 ns 29.58 2.605 >0.05 ns 
5 CS 34.26 28.00 0.6542 >0.05 ns 22.50 1.411 >0.05 ns 
6 CS 24.81 25.67 0.08904 >0.05 ns 20.63 0.5027 >0.05 ns 
7 CS 22.41 34.00 1.212 >0.05 ns 23.33 0.1111 >0.05 ns 
8 CS 27.96 33.33 0.5613 >0.05 ns 31.88 0.4694 >0.05 ns 
9 CS 32.96 27.00 0.6233 >0.05 ns 30.83 0.2555 >0.05 ns 

10 CS 23.89 27.33 0.3600 >0.05 ns 16.25 0.9165 >0.05 ns 
11 CS 19.26 32.33 1.367 >0.05 ns 23.96 0.5638 >0.05 ns 

  Context test after DOX 
Min. CS/US Control GluA1∆BLA t p Sum. GluN1∆BLA t p Sum. 

1 Context 19.44 16.67 0.2969 >0.05 ns 16.67 0.3408 >0.05 ns 
2 Context 27.59 22.33 0.5622 >0.05 ns 26.46 0.1392 >0.05 ns 
3 Context 24.63 41.00 1.750 >0.05 ns 21.88 0.3380 >0.05 ns 
4 Context 25.19 23.67 0.1623 >0.05 ns 11.25 1.710 >0.05 ns 
5 Context 20.00 20.67 0.07126 >0.05 ns 22.29 0.2812 >0.05 ns 
6 Context 17.41 32.33 1.596 >0.05 ns 28.75 1.392 >0.05 ns 
7 Context 18.89 21.00 0.2257 >0.05 ns 16.67 0.2727 >0.05 ns 
8 Context 8.333 33.33 2.672 >0.05 ns 16.67 1.023 >0.05 ns 
 

Appendix Table 32. Mean total freezing levels before and after Dox treatment 
during the first 3 min of tone presentation of the cued retrieval tests for GluA1∆BLA 
and GluN1∆BLA mice  
Student's t pairwise before Dox/after Dox comparisons. 

 Control GluA1∆BLA GluN1∆BLA 
Before Dox 45.56 30.56 34.03 
After Dox 28.89 28.70 12.85 

t 2.77 0.4129 4.452 
p <0.05 >0.05 <0.001 

Summary * ns *** 
 

Appendix Table 33. Mean relative change in freezing before and after Dox treatment 
in GluA1∆BLA and GluN1∆BLA mice  
Student's t pairwise comparisons with Control. 

 Control GluA1∆BLA GluN1∆BLA 
Mean -0.3660 0.005727 -0.6092 
s.e.m. 0.1002 0.1661 0.1122 

 t 1.708 3.245 
 p >0.05 <0.05 
 Summary ns * 

 



Dario Arcos-Díaz  Appendix 

 129 

8.2. Supplementary data on GluN1∆BLA and GluA1∆BLA mice 

The following data correspond to experiments performed after the extinction 

protocol in GluN1∆BLA and GluA1∆BLA mice. However, the interpretation of these 

results is masked by possible interference of the previous behavioral 

manipulations (fear conditioning, retrieval tests, extinction) on the outcome of 

further tests of this cohort of mice. 

8.2.1. Passive avoidance after GluN1 and GluA1 knockout in the 

BLA 

In order to test whether a new fear-related task could be acquired after GluN1 

or GluA1 knockout in the BLA, mice were trained in the passive avoidance. In 

short, the latency to enter a dark compartment is measured, after this had been 

associated with a foot shock. The acquisition phase for this paradigm was 

performed 63 d after the start of the previous fear conditioning. A retrieval test 

was performed after 24 h (Appendix Figure 31a). The statistical analysis did not 

reveal significant differences between the groups (Log-rank Mantel-Cox, c22,N=22 

= 0.2376, p = 0.8880). A closer look at the latencies showed a high variation for 

all groups of mice (Appendix Figure 31b). Even in the control group, mice 

ranged from immediately entering the dark compartment, even though they 

had experienced a foot shock in it before, to not entering within 5 min. 

Therefore, no straightforward conclusions could be drawn from this test 

regarding the ability to acquire a new fear association in GluN1∆BLA and 

GluA1∆BLA mice, since the test protocol, in this case, was not reliable.  
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Appendix Figure 31. Retrieval after 24 h of the passive avoidance task in GluN1∆BLA 
and GluA1∆BLA mice 
a, ‘Survival’ analysis of the latency to enter the dark compartment during the 24 h 
retrieval test. No significant differences between the curves. b, Scatter plot of the 
latency to enter dark chamber including censored mice. The horizontal lines indicate 
the medians. 
 

8.2.2. Reacquisition of cued fear after GluN1 and GluA1 

knockout in the BLA 

A final test in the fear-conditioning paradigm was performed in order to test if 

GluN1∆BLA mice were altogether unable to show expression of fear. Mice were 

subjected to a second acquisition protocol (re-acquisition), consisting of three 

tone-shock pairings, after which immobility levels to the context and the tone 

were immediately assessed (Appendix Figure 32a). All three groups of mice 

showed comparable levels of freezing when evaluated immediately after the 

three-shock administration and during the final 3 min of tone presentation 

(genotype F2,19 = 0.3333, p = 0.7206; time F11,19 = 4.187, p < 0.0001; interaction 

F22,19 = 0.7602, p = 0.7717). A further cued retrieval test, 9 d after re-acquisition 

showed that there no longer were any significant differences between the three 

groups (Appendix Figure 32b; genotype F2,19 = 1.088, p = 0.3570; time F5,19 = 

2.179, p < 0.0629; interaction F10,19 = 0.6707, p = 0.7488). These results indicate 

that GluN1∆BLA mice, as well as controls and GluA1∆BLA mice, were able to 

express fear in an acute protocol, suggesting that the central nucleus of the 

amygdala, responsible for fear expression, remained functional. 
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Appendix Figure 32. Reacquisition of fear conditioning in GluN1∆BLA and GluA1∆BLA 
mice 
a, Reacquisition of fear conditioning by a three-shock protocol, followed by immediate 
assessment of contextual and cued fear. No significant differences between the 
genotypes were observed. b, Cued retrieval test 9 d after reacquisition. 
 

 

8.2.3. Post-mortem analysis after GluN1 and GluA1 knockout in 

the BLA 

 

Appendix Figure 33. Fluorescence immunostaining against Cre recombinase in 
brains of GluN1∆BLA and GluA1∆BLA mice (next page) 
a, Schematic representation of the coronal section levels showed in (b), indicating the 
localization of the BLA, CeA, striatum and piriform cortex. b, Examples of Cre 
immunostaining shown in green and DAPI nuclear staining in blue for GluN1∆BLA and 
GluA1∆BLA mice. Scale bar, 1 mm. 
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