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1. Summary 

1.1 Summary in English 

Transposable elements are traditionally perceived as “junk DNA”, but they are 

a major evolutionary force in shaping genes and genomes. In this study, I 

investigated the role of MusD endogenous retroviruses as controlling elements in the 

loci they are inserted in and a novel mechanism through which the host genome 

could restrict their ability to change gene expression patterns.  

De novo insertions of two MusD elements into the Fgf8 locus were found to 

be the cause of Dactylaplasia mutations. When MusDs are situated between the 

regulatory elements driving Fgf8 in the limb apical ectodermal ridge (AER) and its 

promoter, they act as enhancer blockers and down-regulate Fgf8 expression in this 

domain. Concomitantly, they also hijack these enhancers to drive their own 

expression in the limbs. We propose that MusDʼs enhancer-blocking activity 

concurrent with its transcription has a broader impact on the locus by re-routing some 

Fgf8 enhancers to new target genes, giving rise to ectopic expression of these genes 

in lieu of Fgf8. This model could also account for the phenotypically related but 

genomically distinct SHFM3 condition, where large duplications in the orthologous 

human locus cause a limb malformation similar to Dactylaplasia. They are moving a 

subset of Fgf8-enhancers away from this gene, a situation that possibly makes them 

accessible to other genes. Using mouse chromosomal engineering, we showed 

indeed that such structural changes in the locus are leading to ectopic expression of 

genes in Fgf8 expression domains. We tested two candidate genes from the locus to 

assess if their ectopic expression could phenocopy the disease. While we did not 

manage to reproduce the ectrodactyly phenotype, ectopic-expression of Lbx1 in the 

AER led to preaxial polydactylies, a feature also observed in several SHFM3 patients 

(specific for this form of ectrodactly). Thus, it is possible that this already complex 

disorder involves the combined action of multiple ectopically expressed genes from 

the locus. 

Therefore, gene expression programs in this SHFM3/Dactylaplasia locus 

seem to be altered in related ways for genomically distinct human and mouse 

mutations. To further understand how MusD could exert this effect, I examined the 

enhancer blocking activity of MusDs using ex-vivo assays. These experiments 

identified several regions within MusD, which have insulator properties as strong as 
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the prototypic HS4 region from the chicken beta-globin locus. This is providing strong 

evidence that MusDs could interfere with the expression of endogenous genes, by 

working as a mobile insulator element. Indeed, I showed that of a MusD found 

between the co-regulated Olig2 and Olig1 genes led to changes in their overall and 

relative expression levels. These changes and the effects of MusD in Dactylaplasia 

mice were intriguingly only observed if these elements were unmethylated. When 

their 5ʼ LTRs were epigenetically repressed, gene expression levels were similar to 

wild type (i.e. in the absence of MusD) and no phenotype was observed. 

These observations suggested that MusD expression and effects were 

depending on epigenetic control over this element. Importantly, the epigenetic status 

of MusD appeared to be strictly dependent on the presence of an additional locus, 

Mdac, which is polymorphic amongst mouse strains. The resistant strain had 

completely methylated MusD 5ʼLTRs in contrast to almost complete lack of 

methylation in the permissive strain, hence the origin of the Mdac allele determined 

the cytosine methylation levels of MusD 5ʼLTR. This effect is limited to a few of MusD 

elements, as many of them are in heterochromatin regions. Nevertheless, Mdac 

seems to be a general controlling factor of MusD, since the strain-specific, differential 

methylation is consistent in all tested tissues independent of its expression. MusD 

elements have almost identical LTRs with ETnII elements. However, Mdac did not 

affect the 5ʼLTR methylation status of ETnIIs, indicating that Mdac is acting 

specifically on MusD elements.  

I genetically mapped the Mdac locus to a small interval of 1.3-1.7 Mb. 

Interestingly, this region is structurally variable between resistant and permissive 

strains, with the permissive strains carrying deletion of a cluster of KRAB-ZFP genes 

and pseudogenes present in the resistant strains. KRAB-ZFPs are good candidates 

for Mdac, as their zinc finger domains provide a modular sequence specific binding 

and their KRAB domain recruits repressing chromatin modifiers. Supporting this 

identification, we found that a BAC that partially covers the mapped region and 

contains one KRAB-ZFP from the resistant strain could lead to MusD repression 

when added to ES cells from a permissive strain. Furthermore, we showed that the 

deletion of KAP1 in resistant strains led to up-regulation of MusD, along side with 

other elements. Our findings argue that KRAB-ZFP play major role in counteracting 

ERVs and that a specific KRAB-ZFP from the Mdac region is targeting repressive 

modification to MusD elements. 
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1.2 Deutsche Zusammenfassung  

Transposons werden traditionell als “junk DNA” aufgefasst. Dennoch stellen 

sie eine bedeutende evolutionäre Kraft da, die Gene und Genome gestaltet. In dieser 

Arbeit habe ich die regulativen Auswirkungen von Insertionen des MusD endogenen 

Retrovirus in einen Lokus sowie einen neuen Mechanismus untersucht, der 

Wirtsgenomen erlaubt diese Auswirkungen zu unterdruecken. 

Zwei unabhängige de novo MusD-Insertionen im Fgf8 Lokus sind ursächlich 

für Dactylaplasia in Mäusen. Diese MusDs befinden sich zwischen den 

regulatorischen Elementen, die die Fgf8 Expression in der apikalen ektodermalen 

Randleiste (AER) steuern, und dessen Promoter. Hierbei blockieren sie die 

Enhancer-Promoter Interaktion, welches letztendlich zu einer reduzierten Fgf8 

Expression in dieser Domäne führt. Parallel dazu nutzten die MusDs diese Enhancer 

um ihre eigene Expression in den Extremitäten zu steuern. Wir stellen die Hypothese 

auf, dass diese Vorgänge umfassendere Auswirkungen auf den Lokus haben können 

und beispielsweise einige Fgf8 Enhancer auf neue Zielgene wirken, welche daraufhin 

ektop in den Extremitäten exprimimiert werden. Dieses Modell könnte auch das 

Auftreten der phänotypisch ähnlichen, doch genomisch unschiedlichen Missbildung 

SHFM3 erklären, der große Duplikationen im orthologen, humanen Lokus zu Grunde 

liegen. Diese trennen eine Reihe von Fgf8 Enhancern von ihrem Zielgen und machen 

sie dadurch verfügbar für andere Gene. Tatsächlich konnten wir mittels „mouse 

chromosomal engineering“ zeigen, dass solche strukturellen Veränderungen des 

Lokus zur ektopen Expression von Genen in den Fgf8 Domänen führen können. 

Daraufhin haben wir zwei Kandidatengene in diesen Bereichen ektop exprimiert, um 

ihr Potential den Phänotyp auszulösen zu ermitteln. Obwohl wir nicht in der Lage 

waren den Ektrodaktyly-Phänotyp zu reproduzieren, führte die Überexpression von 

Lbx1 in der AER zu preaxialer Polydactyly. Dieser Phänotyp wurde ebenfalls in 

mehreren SHFM3 Patienten beobachtet, wobei er spezifisch für diese Form der 

Ektrodaktyly ist. Daher ist es möglich, dass diese Entwicklungsstörung den 

kombinierten Effekt von einigen ektop exprimierten Genen beinhaltet. 

Die Genexpression des SHFM3/Dactylaplasia Lokus scheint also in ähnlicher 

Weise durch unterschiedliche Mutationen in Mensch und Maus verändert zu sein. 

Um besser verstehen zu können, wie ein MusD Element diesen Effekt auslösen 

kann, habe ich das Potential von MusD, Enhancer zu blockieren, mittels ex vivo 

Studien untersucht. Durch diese Experimente wurden mehrere Abschnitte innerhalb 

von MusD bestimmt, die ähnlich starke Insulatoreigenschaften wie bei der 
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prototypischen HS4 Region des Huhn-Betaglobin Lokus aufwiesen. Dies gibt einen 

deutlichen Hinweis darauf, dass MusD Elemente die Expression von endogenen 

Genen stören können. Tatsächlich konnte ich zeigen, dass ein endogenes MusD 

Element zwischen den ko-regulierten Genen Olig2 und Olig1 zu einer Veränderung 

der absoluten und relativen Expression dieser Gene führt. Interessanterweise waren 

die Veränderungen in Dactylaplasia Mäusen nur zu beobachten, wenn die MusDs 

unmethyliert vorlagen. Waren hingegen ihre 5' LTRs epigenetisch reprimiert, waren 

auch die Genexpressionsstärken dem Wildtyp ähnlich und kein Phänotyp trat auf. 

Diese Beobachtungen wiesen darauf hin, dass die Expression von MusD, wie 

auch die weiteren genannten Effekte, von der epigenetischen Kontrolle über das 

Element abhängen. Dabei ist wichtig zu erwähnen, dass dieser epigentische Zustand 

von einem weiteren Lokus, Mdac, abhängt, der in Mauslinien polymorph vorliegt. Die 

resistente und phänotypisch normal Mauslinie zeigt eine vollständige Methylierung 

der MusD 5' LTRs, welche hingegen bei der permissiven Linie fast völlig demethyliert 

vorliegen. Diese Wirkung des Mdac Allels ist auf wenige MusD Elemente begrenzt, 

da die meisten in Heterochromatin liegen. Gleichwohl scheint Mdac  ein universeller 

Kontrollfaktor für MusD zu sein, da die Linien spezifische, differentielle Methylierung 

durchgängig in allen getesteten, exprimierenden wie auch nicht exprimierenden, 

Geweben auftrat. MusDs besitzen nahezu identische LTRs wie die verwandten EtnII 

Elemente. Allerdings beeinflusst Mdac nicht den Methylierungsstatus dieser 

Elemente und scheint daher MusD spezifisch zu sein. 

Ich habe den Mdac Lokus auf ein kleines Intervall von 1,3 – 1,7 Mb genetisch 

kartiert. Interessanterweise ist diese Region zwischen resistenten und permissiven 

Mauslinien strukturell variabel, wobei die permissiven Linien eine Deletion eines 

KRAB-ZFP Gen-Clusters und einiger Pseudogene aufweisen. Diese KRAB-ZFPs 

sind gute Kandidatengene für Mdac, da ihre Zinkfingerdomänen DNA Sequenz-

spezifisch binden und ihre KRAB-Domänen Chromatin modifizierende Proteine 

rekrutieren. Folgerichtig weisen ES Zellen von einer permissiven Mauslinie eine 

Hemmung von MusD auf, wenn sie mit einem BAC aus der kartierten Region mit 

einem KRAB-ZFP der resistenten Linie injiziert wurden. Des Weiteren konnten wir 

zeigen, dass die Deletion von KAP1 in resistenten Mauslinien zu einer gesteigerten 

Expression von MusD und weiteren retroviralen Elementen führt. 

Zusammengenommen zeigen unsere Resultate, dass KRAB-ZFP Proteine eine 

wichtige Rolle bei dem Schutz gegen ERVs spielt und dass ein spezifisches KRAB-

ZFP aus der Mdac Region MusD Elemente durch DNA-Modifikation reprimiert. 
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2. Introduction 

 

Developmental processes require the harmonized activation of multiple genes 

in a strictly controlled manner. This coordination is achieved at the level of 

transcription through the action of cis-regulatory elements such as enhancers. In 

vertebrates these elements are frequently not in close proximity to the promoters of 

the genes they control. Thus, modulated interactions between the remote elements 

and their targets contribute to the precise regulation of gene transcription. The 

specificity of such interactions is often critical, particularly for developmental genes, 

as shown in multiple mutations that interfere with cis-regulatory function (reviewed in 

(Kleinjan and Lettice 2008)). Genome sequencing projects have revealed that a large 

part of the genome is composed, not only of these elements with clear functional 

roles, but also of repeated sequences, to a very large extent (more than 40% in 

mammals) originating from more or less recent transposable elements. While these 

mobile elements are considered to be “junk” or even harmful remnants of their 

proviral ancestors, we now have a different understanding of TEs in shaping 

genomes as initiated by the studies of Barbara McClintock and followed by other 

studies showing TEs as “controlling elements”. As I will discuss here, their role and 

notably in gene regulation, is far from being negligible. 

Regulatory Regions in DNA: Promoters, Enhancers, Silencers, and Insulators 

There are several crucial steps at which gene expression is controlled from 

the production of an mRNA to its maturation, export outside the nucleus and 

translation into proteins. Among these steps, transcription plays an essential role in 

defining the spatial, temporal and quantitative distribution of gene products. The 

production of mRNA transcripts is the result of the action of several genomic 

regulatory elements with distinct functions, and that are distributed around the gene 

they act on. The main regions involved in transcription and transcriptional regulation 

could be distinguished as: the core promoter, proximal promoter elements, 

enhancers, insulators and silencers (as shown in Figure 1).  

1. The promoter: core promoter and promoter proximal region: Classically, the 

core promoter is described as the region around the transcription start site of 

a gene, which contains several DNA elements that facilitate the binding of 

regulatory proteins (J. Courey 2008). These binding events are associated 

with the recruitment of the transcription initiation complex and thus the 
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initiation of the transcription. Canonical core promoter elements include the 

TATA box, the INR, DPE and BRE (Smale and Kadonaga 2003), but the 

number of core promoter elements is increasing with the advancements in 

sequencing technologies (such as the pair-end sequencing strategy in (Ni et 

al. 2010)) that provide precise and comprehensive maps of transcription 

initiation sites within the genome. Lately, core promoters are classified into 

two groups as; those that have a single transcription start site and those that 

have a cluster of transcription sites over a broad region (reviewed in 

(Sandelin et al. 2007)). The first group of promoters, which are also known as 

“focused” promoters, constitute the majority of core promoters in eukaryotes. 

Interestingly, in vertebrates only one-third of the core promoters belong to this 

class and these promoters are associated with regulated, tissue-specific 

genes (Juven-Gershon et al. 2008). In contrast, the latter group, also referred 

to as “dispersed” promoters, are the minority in eukaryotes, but comprises the 

majority of genes in higher eukaryotes and drive the expression of most of the 

house-keeping genes which are more or less uniformly expressed throughout 

development (Carninci et al. 2006). Other promoter elements, which are 

located mostly 100-500bp upstream of the core promoter constitute proximal 

promoter elements (or upstream promoter elements). Examples of such 

elements include the GC box to which the transcription factor Sp1 binds and 

the CAAT box which is recognized by NF1 (Kadonaga and Tjian 1986), 

(Jones et al. 1987). Binding of these transcription factors to promoters that 

contain these elements boosts transcription by enhancing the recruitment of 

RNA polymerase II to nearby core promoter (Jones, Kadonaga et al. 1987). 

Abundant transcription factors such as Sp1 can work co-operatively with 

tissue specific transcription and/or other nuclear factors that also bind to the 

promoter proximal region (Safe and Kim 2004). In addition to these functions, 

some elements were proposed to function as tethering elements for active 

distant regulatory elements (enhancers) and allowing them to interact with the 

core promoter (Calhoun et al. 2002).  

2. Enhancers: These distal regulatory elements can be found up- or 

downstream, and at considerable distances. They can be within the intron of 

the gene that they control or in those of the surrounding genes (Levine and 

Tjian 2003). Recent examples have also shown that coding exons could have 

enhancer functions (Tümpel et al. 2008). A gene regulatory region is often 



Introduction 

7 

 

composed of several physically distant enhancers which act in a modular 

manner: each module can carry out some aspect of the gene expression 

pattern in a specific cell-type or at a given stage during development 

(Blackwood and Kadonaga 1998). However, this modular aspect of regulation 

is also marked by some redundancy with the presence of the so-called called 

“shadow” enhancers. These elements are proposed to ensure precise gene 

expression patterns during embryogenesis (Hong et al. 2008). Such remote 

enhancers may have important functions in controlling gene expression as 

shown by their contribution to phenotypic robustness in response to 

environmental changes (Frankel et al. 2010). Establishing functional 

interactions between an enhancer and its target promoter is crucial for gene 

expression. Enhancers, which are typically kilobases away from the genes 

they influence but which could be found at much considerable distances up to 

several hundreds of kilobases (Lettice et al. 2003) are physically brought 

close to the relevant promoters for these interactions by looping of the 

chromatin structure. It has been shown by DNA-FISH (Osborne et al. 2004), 

(Jhunjhunwala et al. 2008) or by chromatin conformation capture (3C) method 

(Dekker et al. 2002) and later by other follow-up methods (4C, Hi-C ((Simonis 

et al. 2006), (Lieberman-Aiden et al. 2009))).  

 

 

 

 

 

 

 

 

 

 

3. Specificity of enhancer interactions: Given the large number of genes and 

enhancers present within a genomic locus, the specificity of interactions 

should be ensured. Two major mechanisms have been suggested to act 

together to achieve the enhancer-promoter assembly in a specific manner.  

First, factors that bind both enhancers and promoters effectively could bring 

them together and lead to the transcription of a gene of interest. Secondly, 

Figure 1. Mammalian transcriptional unit (taken from (Riethoven 2010))   
This complex arrangement of the mammalian transcriptional unit includes a core promoter 
overlaps with the first exon and upstream promoter elements (UPE) further upstream that 
are brought close to enhancer elements by DNA looping  
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there must be other elements that block unintended interactions between an 

enhancer and the promoter of a gene that should not be expressed at the 

given place and time (reviewed in (Blackwood and Kadonaga 1998)). 

Interestingly, many enhancers are able interact with heterologous promoters 

when they are taken out of context with a few exceptions. One such exception 

is the distinct preference of interaction of an enhancer with the core 

promoters that contain a particular element relative to the ones which do not 

contain it (Ohtsuki et al. 1998), (Butler and Kadonaga 2001), (Juven-Gershon 

et al. 2008). Furthermore, specific enhancer-promoter interactions depend on 

the homotypic relations of common proteins bound to both the enhancer and 

promoter-proximal DNA, such as Sp1 mediated formation of DNA loops 

(Mastrangelo et al. 1991) or GATA binding within the distal locus-control 

region (LCR) as well as promoter-proximal regions of globin genes (Gong and 

Dean 1993). 

Blocking the enhancer-promoter interactions or shutting down the promoter of 

a surrounding gene can also prevent inappropriate interactions. The first 

manner could be achieved by insulator elements with enhancer-blocking 

activity. The enhancer-blocking insulators interfere with the enhancer-

promoter interactions and prevent gene activation, when situated between the 

enhancer and the promoter. Some insulators have as well a chromatin barrier 

activity. These elements lie in the border of heterochromatin and euchromatin 

domains and prevent the spreading of heterochromatin (reviewed in (Gaszner 

and Felsenfeld 2006)). Both activities contribute to make such an element a 

Locus-Control Region, functioning in a manner which is independent of the 

surrounding sequence, as described in the beta globin locus (reviewed in 

(Mahajan et al. 2007)). The activity of the insulator sequence in the globin 

locus is dependent on the binding of the Zinc-finger protein, CCCTC-binding 

factor (CTCF) (Bell et al. 1999). Subsequently, most of the insulators 

identified so far bind to CTCF. Interestingly, CTCF is ubiquitously expressed 

and ChIP-seq experiments showed that it binds to its target sequences 

largely in a cell type invariant manner  (Kim et al. 2007). However, some other 

insulator sequences have more complex features and notably has been 

shown to act in a polar manner. A chromosomal inversion within the HoxD 

cluster involving such a polar element resulted in a reciprocal re-assignment 

of specific regulation for two tissues (Kmita et al. 2000). 
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Insulators are not the only defined elements that are capable of preventing 

the promoter activation. Silencers are DNA sequences generally located in 

the 5ʼ upstream region of the promoter of a gene, which recruit transcription 

factors and interfere with the initiation of transcription in a position 

independent fashion. The position dependent silencers (also called as 

negative regulatory elements, NREs) passively prevent the binding of 

transcription factors to promoters and are not only specific to the upstream 

region (reviewed in (Ogbourne and Antalis 1998)). NRSF/REST was one of 

the first transcriptional regulators found to negatively regulate gene 

expression during vertebrate development. It was initially identified as a 

silencer binding protein that is controlling neuronal differentiation (Lunyak et 

al. 2002). Transcription factor binding mostly plays a transient role in gene 

expression regulation therefore they should be continuously supplied. The 

polycomb group (Pc-G) proteins seem to have overcome this requirements by 

initiating a complex assembly that occupies target genes stably and keeps 

them heritably silenced via histone modifications (Schwartz and Pirrotta 

2007). 

Altogether, these DNA elements that constitute most of the genome are essential for 

the regulation of a relatively smaller but obviously very important portion: protein 

coding genes. Furthermore, the physiological and behavioral complexity that we 

observe in living organisms is correlated with the wide range of gene expression 

patterns, which an organism might acquire by the expansion of cis-regulatory 

regions, underscoring the importance of these elements (Levine and Tjian 2003). 

The repeated genome 
The repeated portion of eukaryotic genomes mostly consists of various 

classes of Transposable Elements (TEs). About half of the human genome is 

composed of such elements (Lander et al. 2001).  Although the origin of TEs is 

obscure, they most likely evolved from a group of proviruses that entered the germ 

lines or germ cell progenitors of their respective animal hosts.  

Eukaryotic transposable elements are usually classified into two main groups 

depending on their mechanism of transposition and both classes of elements have 

autonomous and non-autonomous members. The first class consists of elements, 

called retroelements, which transpose through the re-insertion of an RNA 

intermediate transcribed from the transposon. These elements are further classified 

based on their sequence composition (Long Terminal Repeat containing (LTR) or not 



Introduction 

10 

containing (non-LTR)). The LTR is the control center for gene expression as it 

contains enhancer, promoter, transcription initiation (capping), transcription 

terminator and poly-adenylation signal. Complete copies of non-LTR transposons, 

such as mammalian Long Interspersed Nuclear Elements (LINE), encode proteins 

needed for reverse transcription, but defective transposons lacking proteins 

necessary for transposition are often abundant. A good example of such element is 

provided by the mammalian Short Interspersed Nuclear Elements (SINE) which do 

not encode proteins needed for reverse transcription. These non-autonomous 

elements need the action of LINEs-proteins in trans to complete their reproduction 

cycle (Dewannieux and Heidmann 2005). Drosophila copia and gypsy elements and 

three superfamilies of endogenous retroviruses (ERV-1,2,3) can be given as 

examples of LTR repeats. The second class of elements transpose themselves into 

new locations directly through their DNA copies. These elements are further split into 

three groups depending on their replication strategy: 1) cut and paste, 2) rolling circle 

and 3) self-synthesizing. Cut-and-paste transposons are mobilized by a transposase 

(which determines the superfamily they belong to) that binds to the ends of the 

transposon sequence and introduces nicks to DNA for excision. Usually, the 

transposase is encoded by the transposons, but defective elements can be 

transposed by other elementsʼ transposases produced by other members of the 

same family. Helitrons transpose via replicative rolling-circle transposition and do not 

generate a target site duplication. Finally, polintons propagate through protein primed 

self-synthesis and are the most complex (with their potential to code ten proteins) of 

all the known eukaryotic transposable elements up to date. (summarized in Table 1, 

information gathered from (Charlesworth et al. 1994), (Jurka et al. 2007), (Kapitonov 

and Jurka 2008)) (more specifically for human and mouse transposons see Table 2) 

TEs are often considered to be “selfish” elements that use part of the host system to 

maintain their self replication ability and be transmitted through generations without a 

significant contribution to the host phenotype. Hickey called such a DNA sequence a 

“sexually-transmitted nuclear parasite” (Hickey 1982). These parasites are not 

innocuous: on the contrary, there is a reverse correlation between an increase in 

their copy number and the fitness of the host (Orgel and Crick 1980), (Doolittle and 

Sapienza 1980). The high abundance of TEs in genomes of obligate sexual species 

is not representing a symbiotic situation, but a steady state of a permanent conflict 

between aggressive transposons and their hosts, as suggested by Bestor (Bestor 

1999). To oppose the potentially harmful effects of active TEs, the host genome has 
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evolved multiple “defense” mechanisms that suppress their activity, notably through 

epigenetic silencing. Importantly, this on-going competition between the host 

silencing mechanisms and persistent TEs appeared to have open the way to many 

genetic innovations with transposable elements being used as molecular sources of 

novel genes and functional genomic elements, and with defense mechanisms being 

re-used to control endogenous gene expression. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class  Superfamily 
CRE 
NeSL 

R4 
R2 
L1 

RTE 
Jockey 

CR1 
Rex1 

I 
Randl 
Tx1 

SINE1 
SINE2 
SINE3 

 
 
 
 
 
 
 
               non-LTR 

Penelope 
Copia 
Gypsy 
BEL 

ERV1 
ERV2 
ERV3 

 
 
 
 
 
 
 
 
 
 
  Retrotransposons 

 
 
 
                   LTR 

DIRS 
Chapaev 
En/Spm 

hAT 
Harbinger 
ISL2EU 
Kolobok 

Tc1/Mariner 
Merlin 
Mirage 
MuDR 

Novosib 
P 

PiggyBac 
Rehavkus 

 
 
 
 
 
 
       
         “cut and paste” 

Transib 
Helitrons 

 
 
 
 
 
 
 
 
DNA Transposons 

Polintons 

Table 1. Classification of Eukaryotic Transposable Elements based 
on Repbase (adapted from Kapitonov, V.V. and J. Jurka, A universal 
classification of eukaryotic transposable elements implemented in 
Repbase. Nat Rev Genet, 2008. 9(5): p. 411-2; author reply 414.)                         
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Human 
Genome 
~3200Mb 

#of 
Copies 
(x1000) 

 
% of 
Genome 

 
Activity 

LINEs 868 20.42  
LINE1 516 16.89 Active 
LINE2 315 3.22  
LINE3 37 0.31  
SINEs 1558 13.29  
Alu 1090 10.6 Active using 

L1 RT 
MIR 393 2.2  
MIR3 75 0.34  
SVA 2.76 0.15 Active using 

L1 RT 
LTR retro- 
transposons 

443 8.29  

ERV class I 112 2.89  
ERV (K) class II 8 0.31  
ERV (L) class III 83 1.44  
MaLR 240 3.65  
DNA 
Transposons 

294 2.84  

Charlie 182 1.39  hAT 
Zaphod 13 0.16  
Tigger 57 1.02  
Tc2 4 0.03  

Tc-1 

Mariner 14 0.1  
PiggyBac-like 2 0.02  
Unclassified 22 0.12  

 

 

 

 

 

2.1 Silencing Mechanisms against TE activity 

The defense mechanisms that could prevent potentially harmful effects and 

invasion of the genome by TEs are quite diverse and target different steps of the 

transposon cycle. They could act at the level of: 

(1) Transcription of the TEs 

(2) Post-transcriptional processing of TE RNAs 

(3) Integration of new TE copies. 

2.1.1 Transcriptional control of TE activities 

1. The role of DNA Methylation: (Figure 2.1) In mammals, DNA methylation, 

which targets cytosines within CpG dinucleotides, has a key role in transcriptional 

silencing. DNA methylation was even proposed to have evolved primarily as a 

defense system against TE activity, since most of the methylated DNA is found within 

Mouse 
Genome 
~2800Mb 

#of 
Copies 
(x1000) 

 
% of 
Genome 

 
Activity 

LINEs 660 19.21  
LINE1 599 18.78 Active 
LINE2 53 0.38  
LINE3 8 0.05  
SINEs 1498 8.22  
B1 (Alu) 564 2.66 Active using 

L1 RT 
MIR/MIR3 115 0,57  
B2 348 2.39 Active using 

L1 RT 
B4/RSINE 391 2.36  
ID 79 0.25  
LTR retro- 
transposons 

631 9.87  

ERV class I 34 0.68 Active 
ERV class II 127 3.14 Active 
ERV class III 37 0.58 Active 
MaLR (III) 388 4.82 Active 
DNA 
transposons 

112 0.88  

Charlie 82 0.62  hAT 
Other 
hATs 

8 0.06  

Tiggger 24 0.17  Tc-1 
Mariner 1 0.01  

Table 2. Classification of Human and Mouse Transposable Elements (taken from Mandal, P. and H. 
Kazazianjr, SnapShot: Vertebrate Transposons. Cell, 2008. 135(1): p. 192-192.e1.)   
Mice have greater transposon activity than humans because of a higher content of lineage-specific repeats. 
Endogenous retroviruses (ERVs) are extinct in humans, whereas all three classes of ERVs have active 
members in the mouse.  
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transposons (Yoder et al. 1997). When associated with transcriptional machineries 

(5ʼLTR/5ʼUTR) of the transposons, 5ʼmethyl cytosine (5mC) causes transcriptional 

repression of TEs by blocking the accessibility of transcription factors to their binding 

sites containing a CG or by recruiting transcription repressor complexes such as the 

Polycomb Group (PcG) proteins (reviewed in (Beisel and Paro 2011)). Moreover, 

methylation of a cytosine eventually may lead to deamination generating a uracil, 

which will be replaced by a thymine base in subsequent DNA replications. These 

base conversions introduce changes in binding motifs of regulatory factors and 

immobilize TEs due to irreversible inactivation of their promoters (Rollins et al. 2006). 

 In mammals DNA methylation is governed by four enzymatically functional 

DNA(Cytosine-5-)methyltransferases (Dnmts), Dnmt1, Dnmt3a, Dnmt3b and Dnmt2 

(Jones and Liang 2009), which are all capable of catalyzing the methyl group to C-5 

of cytosine but have different biological activities (Liu et al. 2003). Methylation of 

retroelements has to be re-instituted after the global erasure of methylation that 

occurs in cleavage embryos and later again in primordial germ cells. These marks 

are re-established co-operatively by Dnmt3A, Dnmt3B, and the related Dnmt3L in 

early embryos. A detailed analysis of the mutants revealed a certain degree of 

specificity of de novo methyltransferases for given types of retroelements. For 

example, Dnmt3A methylates SINE-B1 repeats, Dnmt3B  methylates satellite repeats 

and Dnmt3A with the co-factor Dnmt3L are required for Long Interspersed Element-1 

(LINE1-L1) and Intracisternal A-particle (IAP)  repeat methylation in the male 

germline (Kato et al. 2007). Dnmt1 is unique amongst these methylases in the sense 

that it has a strong preference for hemi-methylated DNA and thus is responsible for 

the maintenance of DNA methylation after DNA replication. A loss of Dnmt1 leads to 

progressive loss of cytosine methylation in dividing cells. Consequently, mouse 

embryos lacking Dnmt1 lose methylation on different types of TEs and die before 

mid-gestation stage (~8.5 d.p.c.) (Maksakova et al. 2008). The simultaneous 

inactivation of the Dnmt3A and Dnmt3B genes results in the undermethylation of 

endogenous MLV and IAP elements, but the phenotype is not as severe as the one 

observed with the Dnmt1 knockout (that is a loss of methylation down to 25% of wild 

type levels) (Okano et al. 1999). 

In addition to the DNA-methyltransferase themselves, many other proteins 

that assist the methylation reaction and have therefore a role in TE transcriptional 

repression, as exemplified by Lymphoid-specific helicase, Lsh, a member of SNF2 

chromatin-remodelling ATPase. Lsh knockout mice suffer from DNA demethylation of 
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retroelements including IAP, L1 and SINE B1, and subsequently an up-regulation of 

repeat elements (Dennis et al. 2001), (Huang et al. 2004). 

Besides the 5mC, a novel cytosine modification, 5ʼhydroxymethyl cytosine 

(5hmC), has been recently discovered in mammals. It has been shown that 5hmC 

base interferes with DNMT1-mediated methylation (in-vitro tests in (Valinluck and 

Sowers 2007)), suggesting that this base is thought to be responsible for passive 

DNA demethylation by excluding DNMT1 binding/interaction. In trypanosomes a 

similar DNA modification is established by the JBP1/2 enzymes. In mammals 

paralogous proteins to JBP1/2 have been identified and named as Ten Eleven 

Translocation (TET) proteins (Tahiliani et al. 2009). All three proteins can convert 

5mC to 5hmC in Embryonic Stem (ES) cells (Ito et al. 2010). To date, the role of TET 

proteins regarding TE silencing has only been functionally tested for TET1, by a 

knock-down of its expression in ES cells. This analysis showed that TET1 is not 

contributing to IAP or microsatellite repeatsʼ 5mC content (Williams et al. 2011); 

however LINE1 promoters accumulate 5mC while losing 5hmC (Ficz et al. 2011). 

These observations correlated with the methyl cytosine status of IAPs and LINEs in 

wild type ES cells. IAPs are more than 90% methylated whereas LINEs are only 

~40% methylated (Tsumura et al. 2006)) and therefore could be further methylated in 

the absence of TET. Taken as a whole, 5mC has in many ways proven to be 

functioning against TE activity and in the light of newly found cytosine modifications it 

looks like there will be more to add on the mechanisms that regulate TE activity by 

changing DNA accessibility. 

2. Chromatin remodeling: (Figure 2.2) Covalent modifications on certain 

amino acids of histone tails function as one of the main determinants of chromatin 

function and impinge on gene expression. Some histone tail modifications are 

negatively correlated with transcription and are called as “repressive marks”.  In 

general, methylation of histone tails (except histone3 lysine4 (H3K4) mono- and di- 

methylation) is associated with transcriptional repression (Zhou et al. 2011). DNA 

methylation and histone tail methylation are linked together in vivo (notably through 

the interaction of histone methyltransferase G9a with Dnmt3A/B (Dong et al. 2008)) 

and these mechanisms are probably acting in parallel. Repressive marks such as 

histone3 lysine9 (H3K9) tri-methylation and histone4 lysine20 (H4K20) mono-

methylation were found on inactive TE promoters in ES cells (Martens et al. 

2005),(Mikkelsen et al. 2007). Additionally the simultaneous inactivation of Polycomb 

Repressive Complexes PRC1 and PRC2, which are needed to establish the 
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H3K27me3 marks, led to the up-regulation of TEs in ES cells, suggesting a functional 

correlation between TE silencing and the presence of H3K27me3 over them (Leeb et 

al. 2010). Mutation of another histone modifier, the H3K9 methyltransferase gene 

Suv39 resulted also in the up-regulation of TE transcription (Martens, O'Sullivan et al. 

2005). Similarly, the knockout of the H3K9 di and trimethylation mediating protein 

ESET (SETDB1) resulted in the up-regulation of Mouse type-D virus (MusD) and IAP 

transcription (Matsui et al. 2010). Other proteins associated with chromatin 

remodeling or with the recruitment of complexes establishing different chromatin 

modifications have also been implicated in TE silencing. The conditional knock-out of 

KRAB-associated protein 1 (KAP1) in mouse ES cells was shown to lead to the up-

regulation of IAP and MusD elements (Rowe et al. 2010). Importantly KAP1 acts as a 

scaffold for ESET, HP1 family heterochromatin proteins and the NuRD histone 

deacetylase complex (Urrutia 2003). Interestingly KAP1 is brought to specific sites 

through interaction with the KRAB Zinc Finger proteins (KRAB-ZFPs) to which their 

multiple zinc fingers confer sequence specific DNA binding properties. For example, 

binding of ZFP809 to the Primer Binding Site (PBS) of Murine leukemia virus (MLV) 

recruits KAP1 complex and is needed for silencing of these transposons (Wolf and 

Goff 2009).  As KRAB-ZFPs belong to a very large and rapidly evolving family (with 

304 members in human and 219 in mouse, amongst them 20% are contained in 

lineage-specific expansions (Emerson and Thomas 2009), one can speculate that 

some members could target specific chromatin states in a sequence specific manner. 

 

2.1.2 Post-transcriptional control 

 1. Degrading TE transcripts through RNA interference: (Figure 2.3) RNA 

interference (RNAi) also plays a major role in silencing transposable elements. The 

small interfering RNAs (siRNAs) are 21-23 nt long non-coding RNAs processed from 

double stranded RNAs (dsRNAs) by the RNAi machinery. This siRNA pathway is 

involved in transposon silencing in plants, fungi and Drosophila (reviewed in (Girard 

and Hannon 2008)). Repeated sequences contribute abundantly to dsRNAs 

production  due to anti-sense or read-through transcription. The antisense transcript 

could be produced either by promoters of adjacent genes or by cryptic antisense 

transcriptional activities of the transposon itself  (Girard and Hannon 2008). Notably 

transposon terminal inverted repeats are able to generate direct reverse read-

through transcripts, therefore corresponding dsRNA, such as the Tc1 transposon in 



Introduction 

16 

C.elegans (Sijen and Plasterk 2003). The Dicer proteins that are core components of 

RNAi machinery as they process double-stranded transcripts into siRNAs, play 

therefore a central role in detection and silencing of transposons. Indeed, ES cells 

with an inactivation of Dicer gene by knockout displayed elevated levels of IAP and 

L1 and furthermore Dicer-depleted embryos showed also a transcriptional increase of 

IAP and Murine Endogenous Retrovirus-L (MuERV-L) (Svoboda et al. 2004). 

Moreover, disruption of Dicer in growing oocytes leads to the up-regulation of Mouse 

Transposon (MT) and SINEs. The deficiency of Tc1 transposable element silencing 

in C.elegans mut-7 mutants (obtained from a screen of RNAi resistance) provide 

another evidence that RNAi action is a general system for TE silencing in many 

organisms (Ketting et al. 1999). Interestingly, many of the genes up-regulated in 

oocytes without Dicer have 3ʼUTR containing sequences derived from TEs. This is 

suggesting that the regulatory role of Dicer on these genes is mediated via targeting 

the TE-derived motifs that have been gained in these mRNAs (Murchison et al. 

2007).  

Another class of small RNAs has been linked to RNA-interference-based TE 

repression. However, these small RNAs are not derived from dsRNA precursors but 

from single-stranded RNA transcribed from genomic clusters and the processed 

through a complex containing PIWI proteins. These PIWI-interacting RNAs (piRNAs) 

are slightly longer than siRNAs (24-30 nt) (Aravin et al. 2007). Importantly, PIWI 

proteins are strictly restricted to the germline. In Drosophila PIWI-piRNA complex 

interacts with HP1a and is localized at genomic sites enriched for methylated H3K9, 

indicating a close relation to triggering heterochromatin formation for TE silencing 

(Brower-Toland et al. 2007). Mice have three PIWI proteins and among them, MILI 

and MIWI2 are involved in the host defense against TEs (Siomi et al. 2011). Mutants 

of either protein fail to down-regulate L1 and IAP transcripts and lead to a loss of 

DNA methylation of L1 elements resulting in male sterility due to spermatogenic 

arrest (Aravin et al. 2007). Absence of PIWI protein has less dramatic consequences 

for the female since endo-siRNAs can also target TEs in female germline (Watanabe 

et al. 2008).  

Altogether, these findings indicate that both piRNA and siRNA pathways 

suppress transposons expression and activity in mice. 

2. Nucleic acid editing: (Figure 2.4) TEs with RNA intermediates that manage 

to escape transcriptional silencing mechanisms may be targeted by RNA-editing 

enzymes. These enzymes could introduce mutations in TE RNA that may render the 
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newly integrated copy of the transposon inactive. This RNA-editing process has an 

important role in innate immune response against infectious RNA viruses 

(Muramatsu et al. 2000), but also plays a role in controlling endogenous 

retroelements. The proteins of the ADAR family convert adenosines into inosines and 

targets dsRNAs that are formed from inverted Alu and L1 repeats. The APOBEC 

proteins belong to another group of RNA-editing enzymes, which catalyzes 

deamination of cytosines to uracils. A member of this family, APOBEC3G was shown 

to inhibit retrotransposition of IAP and MusD elements, and to induce G-to-A 

hypermutations in their DNA copies (Esnault et al. 2005). Another member of same 

the family, APOBEC1, has the same activity on IAP and MusD elements, but was 

also found to prevent retrotransposition of L1 (Ikeda et al. 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 2. Silencing mechanisms against TE activity 
(adapted from Goodier, J.L. and H.H. Kazazian, Retrotransposons revisited: the 
restraint and rehabilitation of parasites. Cell, 2008. 135(1): p. 23-35.)                         
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2.1.3 Blocking the integration 

 Finally, the last step of the TE cycle, integration, can also be regulated by 

host proteins, notably by the host DNA repair machinery. The ERCC1/XPF complex 

takes part in nucleotide excision repair pathway, through its endonuclease activity. 

The knock-down of XPF in human cells led to an increase in L1 retrotransposition, 

suggesting that this complex might be cleaving the target-site primed reverse 

transcription intermediate, which would effectively block retrotransposition. In an 

opposing direction, another DNA repair enzyme, ATM (a member of double-strand 

break repair) was shown to facilitate L1 integration (reviewed in (Zamudio and 

Bourc'his 2010)). These observations suggest that different DNA repair pathways 

can modulate the process of transposon integration either negatively or positively. 

2.2 Deleterious Effects of Transposable Elements that influence the host 
gene expression  

Besides increasing the cost of DNA replication through their multiplication, 

active transposons could jump into new loci, and there, have specific deleterious 

effects by interfering with the activity of neighboring endogenous genes. Supporting 

this idea, TE insertions result in 0.1% of de novo human mutations. In mice, more 

than 10% of spontaneous mutations are caused by ERV insertions owing to the high 

activity of these elements (Maksakova et al. 2006). Since mobile elements are 

interspersed between the hostʼs genes, they could influence gene expression and 

function in many ways. Interestingly, in some cases, these influences primarily are 

not caused by the insertion of transposon sequences themselves, but by the 

consequences of action of TE silencing mechanisms in these new locations, which 

could spread and then affect the neighboring bystander genes as well.  

2.2.1 Impact on gene transcription 

Many transposons have strong constitutive promoters. When inserted nearby 

a gene, if they are in an active state, they may function for this gene as an alternative 

transcription start site or a cryptic promoter, leading to its ectopic expression (Figure 

3a). For example, in the Aiapy/Avy locus the IAP retrotransposon produces an outward-

reading transcript that extends into the Agouti coat-color gene. Agouti  gene level is 

therefore determined in part by the transcriptional level of the retrotransposon, which 

lead to mice with variegated coat colors (because of the stochastic epigenetic 

silencing of IAP) as well as to obesity and diabetes (Michaud et al. 1994), (Morgan et 
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al. 1999). Alternatively, TEs may change the activity of endogenous genes by 

disrupting their cis-regulatory elements (Figure 3b). They could also modify an 

endogenous gene promoter sequence by introducing new transcription factor-binding 

sites and drive the expression of the gene in a different context; such a case was 

reported for an IAP insertion upstream of Interleukin-3 (IL-3) gene that led to 

constitutive expression of IL-3 in a leukemia cell line (Ymer et al. 1985)(Figure 3c).  

When inserted in an intron or downstream of a gene, a mobile element may 

interfere with the original transcript of the gene by producing an antisense transcript 

(Figure 3d). As described before (in section 2.1.2) TEs can take part in dsRNA 

formation. In such situations, these dsRNAs could incorporate sequences from 

endogenous nearby genes and therefore impinge on their expression levels. Conley 

et al. proposed such a regulatory role for TEs as they observed an enrichment of TE 

initiated transcripts in cis-natural antisense transcripts (cis-NATs are RNAs that are 

transcribed from the antisense strand of a gene locus)  (Conley et al. 2008)) 

Chromatin domains have rather imprecise boundaries, as exemplified by the 

phenomenon of position-effect variegation, representing the stochastic silencing of 

transgenes inserted close to heterochromatic domains (Sun et al. 2004). Similarly, 

repressive chromatin marks can spread from silenced TEs (chromatin spreading in 

yeast and plants is reviewed in (Medstrand et al. 2005)). In humans, Alu sequences 

are major targets for H3K9 methylation thus Alu elements can locally alter the 

chromatin state around their insertion points (Figure 3e) (Martens, O'Sullivan et al. 

2005). This spreading of histone methylation from human Alus has been implicated in 

silencing some tumor-suppressor genes (Goodier and Kazazianjr 2008), suggesting 

that in general TEs could have a role in repressing proximally located genes by 

altering the local chromatin structure. 

2.2.2 Post-transcriptional interference 

A transposon inserted at the 3ʼUTR of a gene can introduce an alternative 

poly-adenylation site (Figure 3f). Since 3ʼUTR contributes to RNA stability, export and 

translation (Mazumder et al. 2003), an alternative 3ʼUTR provided by a TE can 

crucially modify the expression of a targeted gene. For example, the polyadenylation 

signal donated by the gibbon ape leukemia virus insertion into IL-2 gene results in 

the constitutive production of IL-2 in MLA144 leukemia cell line (reviewed in (Keshet 

et al. 1991)). TE insertion at the 3ʼUTR could also bring a binding sequence for a 

miRNA, leading to post-transcriptional silencing of the affected gene in cells 
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expressing the corresponding miRNA (Figure 3g), as proposed by Feschotte and 

colleagues (Feschotte 2008). 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE insertions, especially in introns, can interfere with the normal splicing 

process and lead to the production of abnormal (and often non-functional) transcripts. 

This accounts for most of the mutations caused by de novo insertions of active TEs 

in mice. For instance, the mutation of the Gli3 gene in Polydactyly Nagoya (Pdn, a 

disease that is characterized by a mild polydactyly on the anterior side of the hind 

limbs) is caused by an Early Transposon  (ETn) insertion into 3rd intron, leading to 

alternatively spliced transcripts that produce non-functional protein variants (Thien 

and Rüther 1999) (Figure 3h). 

Finally, when TE sequences are incorporated into coding sequences, they 

may modify protein structure or introduce premature stop codons and trigger 

nonsense mediated decay (NMD) (Figure 3i). This was for example demonstrated in 

Figure 3. Influence of TEs on gene expression 
(adapted from Feschotte, C., Transposable elements and the evolution of regulatory 
networks. Nat Rev Genet, 2008. 9(5): p. 397-405.)                         
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the case of the exonization of an Alu generating splice variants of the Survivin gene 

which are then subject to NMD in the cytoplasm (Mola et al. 2007).  

2.2.3 Alteration of the Genome Structure 

 The activity of TEs can also lead to important changes in the genome 

structure which are not limited to the insertion of their own sequences. The 3ʼ 

processing machinery can sometimes skip the poly-adenylation signal of an L1 

element, and use a downstream signal instead. In such cases, the non-L1 3ʼend 

flanking sequence, usually from the host genome, is transported together with the 

copied L1 to the new genomic location. This process is called transduction and is 

rather common in L1 retrotransposition (Goodier et al. 2000): young L1 elements 

could generate transduction of host sequences in 15-20% of the transposition events. 

Based on this, Pickeral et al. predicted that as high as 1% of the human genome 

could be derived from transduction events (Pickeral et al. 2000).  

Retrotransposition sometimes generates target site deletions, which can be 

quite large as seen in the deletion event of an entire HLA-A gene caused by an SVA 

element insertion, which resulted in leukemia (Takasu et al. 2007). In addition non-

homologous recombination events between different copies of transposons could 

cause deletions, duplications or rearrangements of gene sequence (Goodier and 

Kazazianjr 2008). Non-allelic homologous recombination (NAHR) is the most 

common mechanism underlying the disease associated genome rearrangements and 

it is often triggered by the misalignment between highly homologous sequence 

elements usually arising from segmental duplication and termed Low copy repeats 

(LCRs). The identification of Alu sequences at the junctions of genes/pseudogenes 

within LCR regions led to the proposition that the generation of LCRs could be 

associated with Alu elements (Shaw and Lupski 2004). Alu elements (or longer TEs) 

could provide short regions of homology and when positioned in frequent intervals 

could favor unequal crossing-over caused by these elements. This could result in 

duplications and deletions of the intervening regions or even more complex re-

arrangements. In addition to Alu repeats, LTR repeats can also participate in 

recombination reactions that generate retention of solitary LTRs and an excised 

episomal fragment (reviewed in (Prak and Kazazian 2000)). The observation that 

both human and mouse segmental duplication boundaries are enriched in various 

classes of retrotransposons (Bailey et al. 2004) emphasizes the extent of genome 

alterations associated with transposons and suggests that transposons either 
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through their activities or presence as repeated sequences could promote such re-

arrangements, thus shape the organization and structure of host genomes.  

2.2.4 Transposon Free Regions in mammalian genomes 

 Interestingly, like genes, transposons show an overall unequal distribution of 

transposon sequences across the genome (Lander, Linton et al. 2001). About 20% of 

the genome is considered to be gene poor and these regions also known as gene 

deserts are inconsistently distributed over chromosomes (Venter et al. 2001). These 

gene deserts are however not a pure storage places for junk DNA, as they are 

enriched in non-coding elements showing very high evolutionary constraints and 

conservation (Bejerano et al. 2004). Many of these elements were shown to have 

tissue specific enhancer activities and probably contribute to the expression of 

developmental genes that are often found next to these gene deserts (Nobrega et al. 

2003), (Pennacchio et al. 2006). Interestingly, these gene deserts associated with 

important developmental regulators such as transcription factors, show with a 

decreased density of SINE and an increased number of LINE sequences. The 

depletion of SINEs could be explained by purifying selection: the high-CG 

composition of the SINE sequences which could lead to spreading of DNA 

methylation, and impair the normal activities of regulatory elements localized within 

(Ovcharenko et al. 2005). Strikingly, some genomic regions are almost completely 

depleted of any transposon. These Transposon-free regions (TFRs) are enriched 

around regulatory genes (such as the longest determined TFR (81kb) in the HOXA 

cluster) and miRNA genes in mammals. The expression of regulatory genes usually 

has to be tightly controlled, and this is often achieved through a complex interplay of 

multiple cis-regulatory elements spread over large genomic intervals surrounding 

each gene. Insertion of TEs in this intricate context could modify the delicate 

regulatory interactions and therefore would be eliminated through purifying selection. 

The observation that murine retroviral insertions into TFRs are significantly 

associated with cancer further supports the suggestion of the negative impact of TE 

insertions into such regions (Simons et al. 2006).  

 However, it is interesting to note that, in contrast to mammalian genomes, the 

green anole lizard genome Hox genes clusters have accumulated TEs of non-LTR 

retrotransposon family (Di-Poï et al. 2009). While Hox patterns are usually 

conserved, changes in Hox13 and Hox10 expression features were observed during 

somitogenesis in species which have accumulated repeat elements within Hox 
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clusters, coinciding with altered axial morphologies (Di-Poï et al. 2010). However, 

one could not conclude from these observations whether these TE insertions have 

contributed to Hox expression changes or they were tolerated after changes in the 

Hox regulatory mechanisms that led to relaxed constraints on the structure of the 

region. 

2.2.5 Somatic Retrotransposition 

 As mentioned earlier, the different mechanisms leading to transposon 

silencing are mostly established early during embryogenesis: as a consequence 

retrotransposition occurs mostly during gametogenesis. However, recent work has 

revealed substantial somatic activities of retro-elements leading to somatic 

retrotranspositions as well. First evidence of the existence of a somatic event was 

identified with a colorectal tumor case where an L1 element is inserted into tumor 

suppressor APC gene and disrupting its expression (Miki et al. 1992). Later on taking 

the advantage of cell culture based systems and transgenesis, it has been shown 

that engineered L1 elements can retrotranspose in multipotent neural progenitor cells 

(Muotri et al. 2005) and in human cells (Kubo et al. 2006). This retrotransposition is 

restricted to neural progenitor cells and the suppression of the retrotransposition is 

correlated with Sox2 (Muotri, Chu et al. 2005) and methyl-CpG-binding protein 2 

(MeCP2) expression. As MeCP2 is mutated in Rett syndrome patients, these patients 

could be more sensitive to L1 retrotransposition, raising a possibility that increased 

L1 activity in neurons could contribute to their neurological symptoms (Muotri et al. 

2010). New somatic insertions, especially at early developmental stages, may 

contribute to changes in the genetic and epigenetic status of mature neurons at later 

stages of life and this genomic plasticity created by somatic retrotransposition events 

could contribute to individual variation and to the progression of neurological 

diseases. 

 

2.3 Co-option of Transposable Elements for the host chromosome form 
and function 

 As exemplified above, there is a large and accumulating body of evidence 

that shows that TEs could impact endogenous gene expression in many ways and 

that the resulting changes could be highly detrimental to the host. However, TEs 

evolve to survive and amplify, and in the process they may accumulate numerous 
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beneficial features that are in fact useful for the host too (Kidwell and Lisch 2000). 

Following up on McClintockʼs idea regarding TEs as controlling elements Britten and 

Davidson proposed that mobile elements could offer an opportunity to the host as a 

vector to spread rapidly similar, potential, gene regulatory regions through the 

genome and generate a ʻbatteryʼ of co-regulated genes (Britten and Davidson 1969). 

Indeed, growing evidence show that TEs provide a useful source of raw material to 

their hosts that could assist them in evolving new functions. 

2.3.1 Centromeres and telomeres 

Centromeres and telomeres are essential for genome integrity as they are 

controlling chromosome segregation during cell division and preventing chromosome 

shortening after replication, respectively. Both centromeres and telomeres are made 

of constitutive heterochromatin and are partially composed of retrotransposons.  In 

the plant genome, these regions are frequently associated with the TEs that form 

heterochromatic boundaries within local euchromatic environments (Lippman et al. 

2004). Pericentromeric regions of the human chromosomes are mainly composed of 

LINE and SINE transposons. Reactivation of TEs stored in this portion of constitutive 

heterochromatin leads to impaired genomic stability during mammalian meiosis. This 

chromosomal instability was also demonstrated in Lsh mutants where tandem 

repeats DNA were demethylated (De La Fuente et al. 2006) and in Suv39h mutants 

which lack H3K9 methylation (Peters et al. 2001) in pericentromeric regions. 

Moreover, TEs might have been the origin of centromeric satellite repeats 

themselves. Centromere protein B (CENPB) is highly conserved in mammals and 

helps to regulate centromeric heterochoromatin by binding to a motif in satellite 

repeats. This highly conserved protein resembles the transposase of Tc1/mariner 

DNA transposons. More generally, many organisms have centromeric satellite 

tandem repeats with homology to TE sequences, suggesting that they might have 

originated from TEs (reviewed in (Slotkin and Martienssen 2007)). 

Telomeres are composed of short tandem repeats, which makes the DNA 

replication at these regions inefficient and leads to their shortening. Telomerase is 

the enzyme that is needed for the maintenance of telomere length. This enzyme has 

a reverse transcriptase domain that is structurally similar to the reverse transcriptase 

of non-LTR retrotransposons (Slotkin and Martienssen 2007). Interestingly, 

Drosophila species lack a telomerase homologue; instead, non-LTR 
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retrotransposons named HeT-A and TART have taken over the telomerase function 

by transposing to the chromosome ends (reviewed in (Volff 2006)).  

2.3.2 TEs as regulatory elements: enhancers and chromatin insulators 

 The influence of TEs on gene regulation and expression was first discovered 

through the analysis of mutations found to be caused by individual TE insertions. 

More recent genome studies defined that 25% of experimentally characterized 

human promoters contain TE-derived sequences (Jordan et al. 2003) and some TEs 

are over-represented within predicted (using either analysis of transcription factor 

binding site motifs or DNaseI hypersensitive sites) cis-regulatory modules (Gentles et 

al. 2007), (Mariño-Ramírez and Jordan 2006). Correspondingly, Bourque and his 

colleagues demonstrated that TEs contributed in expanding the repertoire of 

transcription factor binding sites in eukaryotic genomes (Bourque et al. 2008). In 

human ES cells, TEs constitute up to 25% of binding sites for key regulatory proteins 

(OCT4, NANOG and CTCF) for stemness (Kunarso et al. 2010). A large number of 

non-coding elements under selective pressure could also be identified as ancient 

conserved transposable elements, suggesting that they may have been exapted to 

contribute to gene regulation. Interestingly, these elements are mostly located in 

gene deserts and enriched near developmental genes (Lowe et al. 2007). Specific 

examples of such elements include a distal enhancer of the neuro-developmental 

gene Isl1 which was discovered initially as a member of the ancient lobed-fin SINE 

family (Bejerano et al. 2006). Another study showed that extant copies of AmnSINE 

(a member of Deu-SINE superfamily) act as enhancers of Fgf8 and Satb2 genes for 

developing mammalian forebrain. (Sasaki et al. 2008). Besides these examples 

where the TE is apparently directly controlling gene expression, some TEs could 

have a rather modulatory role. An LTR retrotransposon, ERV-9, located upstream of 

human fetal γ- and adult β-globin genes modulates gene switching mechanism in 

long-range. This switch is achieved by RNA polymerase II occupancy on the LTR of 

this element in embryonic cells. When RNA polymerase II is no longer on its LTR, the 

transcription factor occupancies change and fetal to adult globin switch occurs (Pi et 

al. 2010). Another modulatory role of a TE is observed with the Tal1 gene. One of its 

upstream elements is found in open chromatin configuration but does not function as 

an enhancer. It has a quantitative effect on gene expression and boosts the activity 

of a nearby tissue-specific enhancer. Importantly, the Mammalian Interspersed 
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Repeat (MIR) that is comprised in this element is needed for this boosting activity 

(Smith et al. 2008). 

Besides this contribution of TEs to specific and peculiar role for disparate 

genes, TEs contribute to an important part of the transcripts deposited maternally or 

expressed in early embryonic stages. Peaston et al. found that various classes of 

TEs are expressed in mouse oocytes and preimplantation embryos, with a 

domination of Class III ERV family elements. These transcripts are characterized as 

alternative chimeric gene products as their 5ʼ regions carry TE-derived sequences. 

They contribute to maternal mRNA pool largely with many isoforms of the same 

gene. These isoforms could provide additional means of gene regulation as they may 

have variable post-translational modifications. Furthermore, different LTR 

retrotransposons have specific and developmentally regulated expression patterns in 

oocyte-to-embryo transition and could constitute alternative promoters and 5ʼexons of 

the host genes (Peaston et al. 2004).  

 Besides being enhancers and promoters, TEs may function as insulators. 

Chromatin insulators set up territories of gene expression (active or silent states) 

along the chromosome and several TE or TE-derived elements have been shown to 

have similar activities. The insertion of the Drosophila gypsy retrotransposon into 

regulatory regions causes tissue-specific mutations at a number of loci. This insulator 

effect is mediated by Su(Hw) protein, which binds to gypsy sequences, disrupting the 

enhancer-promoter communication (Corces and Geyer 1991) (Jack et al. 1991).  A 

more recent study in mammals reported B2 SINE repeat as a boundary element in 

organogenesis. This activity is associated with bidirectional, non-coding transcription 

from this repeat element. This boundary corresponded to local changes of chromatin 

state during development, but also displayed enhancer-blocking activity in a cellular 

assay (Lunyak et al. 2007). 

2.3.3 X inactivation and Imprinting 

 Transposons have also been proposed to contribute to regulatory 

mechanisms by controlling large chromosomal domains such as X Chromosome 

Inactivation (XCI). In mammals, females inherit two X chromosomes whereas males 

inherit one X and the degenerate Y chromosome. This dosage difference is 

compensated by the females shutting off one of their X chromosomes by 

heterochromatization. Inactivation is initiated at the X-chromosome inactivation 

center (Xic) by  expression of noncoding Xist RNA and then spreads to the rest of the 
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chromosome in cis. This action is regulated by Tsix, the antisense noncoding 

regulator partner of Xist. Interestingly during XCI, Tsix expression is controlled by a 

remnant of an ancient retrotransposon (DXPas34), which initially acts as an 

enhancer and once XCI is established, as a repressor of Tsix (Cohen et al. 2007). In 

addition to DXPas34 it is hypothesized that LINE retrotransposons help as boosters 

for the efficient spreading of the silencing away from the Xic. The decrease in LINE 

sequence density due to translocations between autosomes and X chromosome 

results in the loss of efficient spreading from Xic (Lyon 2000).  

Similar to their proposed role in mammalian X chromosome regulation, TEs 

are densely present within imprinted loci on autosomes. In mammals, interestingly, 

different types of TEs are silenced between females and males: the IAP and LINE1 

retrotransposons are hypomethylated in the female germ line, and contribute highly 

to mRNAs in oocytes, which are deposited in the embryo (Peaston, Evsikov et al. 

2004), whereas non-autonomous SINEs are hypomethylated in sperm (Rubin et al. 

1994). These observations taken together imply that different classes of TEs might 

contribute to establishment of the differential epigenetic marks of paternally and 

maternally imprinted genes. Consistent with this, there is an excess of LINE1 

elements that are associated with paternally expressed autosomal imprinted genes 

(Allen et al. 2003).  

2.3.4 Protein coding host genes domesticated from transposable elements 

 TE genes can evolve as new genes with functions beneficial to the host. In 

human genome ~4% of the protein coding genes harbor TEs in their coding 

sequence (Nekrutenko and Li 2001). One of the best studied mechanisms is the 

domestication of a transposase protein derived from Transib DNA transposons to 

form the Rag1 gene that is controlling somatic V(D)J recombination in the B and T 

cells (Agrawal et al. 1998). Another example of domestication is of a retroviral 

envelope protein called Syncytin. Syncytin is the envelope protein of a defective 

human ERV, HERV-W. It is expressed in placental syncytiotrophoblasts 

(multinucleated cells that originate from fetal trophoblasts) and contribute to placental 

morphogenesis by mediating the cytotrophoblast fusion, which might help extending 

the surface for maternal-fetal exchange (Mi et al. 2000). In mouse and other Muridae, 

different retroviral envelope genes related to Syncytin gene have been identified, 

suggesting a convergent domestication of these genes in the primate and murine 

lineages (Volff 2006). 
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2.4 Phenotypic variation and Evolutionary Implications 

 The extent of the effects produced by TEs added to the fact that they can 

change location rather rapidly (on an evolutionary time scale) suggests that they 

could contribute significantly to intra-species variation and evolution of species. 

Importantly, they can produce genetic and phenotypic variations between individuals 

by active mechanisms (mutations) as well as by serving as a source of variable 

epigenetic effects on endogenous genes, leading to further phenotypic variation 

without genetic changes. 

This hypothesis has long been discussed, especially for a young L1, specific 

to the human genome and present with variable allelic frequencies among human 

populations (Sheen et al. 2000). A comprehensive map of genetic variation of all 

forms (such as SNPs, indels, and transposon insertions) is in the process of being 

established through the effort of the 1000 Genomes Consortium (Consortium 2010) 

and should help to get better views and understanding of the contribution of TEs. So 

far, analysis of this data set revealed that ~30% of genomic Structural Variations 

(SV) in human populations is due to mobile element insertions, with these SVs 

overlapping with genes region in one third of the cases (Mills et al. 2011).  

Intriguingly, a study on the koala genome discovered a recently inserted 

endogenous retrovirus, KoRV (koala retrovirus) that is vertically transmitted and quite 

active. Some of the isolated koala populations are lacking KoRV and the copy 

numbers are variable between the individual animals where it is present. With its high 

level of activity, KoRV suggests that it is at a transition stage between an exogenous 

virus and endogenous element (Tarlinton et al. 2006). The dynamic character of 

KoRV provides a unique chance to study the invasion of a mammalian genome by 

retroviruses and to observe how it could change the genome of a species.  

As previously introduced in section 2.2.4, transposons may stimulate all types 

of genome re-arrangement events that may eventually lead to speciation. 

Interestingly, there is an association of TEs with species-specific chromosomal re-

arrangements. For instance, in fishes the burst of non-LTR retrotransposons seemed 

to be associated with speciation events (Volff et al. 2000), (Volff et al. 2001). More 

hypothetically, it was suggested that the massive transposition of TEs observed in 

Drosophila inter-species hybrids could contribute to genomic changes and speciation 

(reviewed in (Böhne et al. 2008)). More generally, extending on the view that 

chromosome re-arrangements may play significant roles in speciation (Ayala and 

Coluzzi 2005) the re-arrangements mediated by TEs in vertebrates might have been 
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an important factor for divergence between species (Böhne, Brunet et al. 2008). For 

instance, the primate-specific burst of Alu elements resulted in increased Alu-

mediated recombination events that lead to large homologous segmental 

duplications that are common in the human genome (Bailey et al. 2003). In addition, 

species-specific transposons might have contributed to evolution of humans and 

chimpanzees since the divergence from their last common ancestor (Mills et al. 

2006).  

An important property of mobile elements is that they could generate 

phenotypic variation by creating epialleles, i.e. alleles that display variable 

expressivity in the absence of genetic heterogeneity, because their activity is 

dependent on their epigenetic state. In mammals, retrotransposons become 

demethylated and active at the pre-implantation stage and then undergo co-

suppression around gastrulation stage. Silencing is both stochastic and incomplete 

resulting in a variegated pattern (between cells) or variable expression (between 

individuals) (reviewed in (Rakyan et al. 2002)). Variegating repression of allelic TEs 

can cause differences in the silencing of proximal genes. One example is the 

differential methylation of the IAP present in the mouse agouti locus which is driving 

transcription of A as a cryptic promoter. Isogenic Avy mice have coats that vary in a 

continuous spectrum from full yellow, through variegated yellow/agouti, to full agouti 

(Morgan, Sutherland et al. 1999). Similarly, in Axin-fused (AxinFu) mice the differential 

methylation of the LTR of an adjacent IAP transposon (inserted into intron 6 of axin 

gene) correlates with the severity of the kinked tail phenotype (Rakyan et al. 2003). 

Changes in gene expression contribute importantly to evolutionary process. 

This hypothesis that was originally made by King and Wilson (King and Wilson 1975) 

has now received support from several studies (Carroll 2008). The polymorphic 

influence that TEs can have on endogenous gene expression suggests that indeed 

they could have contributed to speciation as proposed by Jurka (Jurka, Kapitonov et 

al. 2007). Their rapid mode of propagation through the genome could make them 

even provide a fast alternative for the hostʼs evolution when subjected to stress 

(Hurst and Werren 2001). Without going that far, it is that TEs are acting as important 

“controlling elements” as coined by Barbara McClintock (MCCLINTOCK 1956) that 

have shaped and are shaping genome structure and function, thus contribute to 

evolution. 
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2.5 Dactylaplasia: A case study of the influence of transposable 
elements on gene expression and specific silencing mechanisms 

2.5.1 Dactylaplasia mice 

In the 1970s, a spontaneous mutation, with missing digits of the limbs was 

observed in the SM7B/SM inbred mouse strain of the Jackson Laboratory (Bar 

Harbor, Maine). This Dactylaplasia mutation is a semi-dominantly inherited mouse 

limb malformation characterized by the absence of phalangial bones in the middle 

digits of each hand and foot, accompanied by reductions or fusions of metacarpals 

and metatarsals (as shown in Figure 4) (first time demonstrated in (Chai 1981)). 

Later on, a second allele of Dactylaplasia arose spontaneously in the Jackson 

Laboratory (described in (Sidow et al. 1999)). These two alleles of Dactylaplasia 

were named as Dac1j (homozygous with partial neonatal lethality) and Dac2j 

(homozygous with complete prenatal lethality). They were mapped either  within or  

 

 

 

 

 

 

 

 

 

 

close to the F-box gene Fbxw4 on chromosome 19qC3. Both were suggested to be 

insertions of transposable elements (Sidow, Bulotsky et al. 1999). A more recent 

study precisely positioned these mutations for Dac1j to Chr19: 45,723,779 (Mouse 

February 2006 assembly) and ~50kb further for Dac2j to Chr19: 45,669,788 (Mouse 

February 2006 assembly) and that they corresponded to TEs of MusD family (Friedli 

et al. 2008). 

2.5.2 Limb development and the molecular basis of limb malformations in 

Dactylaplasia  

Dactylaplasia embryos show a defect in the maintenance of the Apical 

Ectodermal Ridge (AER), which is most likely the explanation for the observed limb 

Figure 4. Skeletal preps of Dactylaplasia mice E18.5 forelimbs. 
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malformations. When the vertebrate limb bud first appears (at E9.0 in the mouse), it 

consists of mesenchyme surrounded by an ectoderm-derived epithelial layer. Signals 

from the mesenchyme induce the overlying ectodermal cells at the tip of the limb bud 

to change morphology and form a thickened ridge called the AER. After limb buds 

form, their continued growth depends on the continuous presence of a functional 

AER. By day E13.5, the AER is no longer visible as a morphological structure, and 

expression of most AER genes is terminated (Guo et al. 2003).  
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 The AER removal experiments on chick wing buds demonstrated truncation 

of the distal limb elements or the complete absence of the limbs, depending on the 

developmental stage at removal (SAUNDERS 1948), (Summerbell 1974), showing 

that AER produces signals that are continuously required to maintain the 

proximodistal outgrowth of the limb. In Dactylaplasia mice, the AER was found to be 

morphologically normal at embryonic day (E) 10.5; however by E11.5 the central 

aspect of the AER degenerates (as shown in Figure 5) (Crackower et al. 1998). 

Thus, this premature degeneration of the AER as observed in Dactylaplasia 

embryos, in a late stage and predominantly in its central region accounts very well for 

the absent digits found in mutant mice. The signals produced by the AER to maintain 

limb outgrowth are encoded by Fibroblast growth factor (Fgf) gene family members. 

Fgf8 is expressed from the time of specification of the AER and onwards, and it is 

essential for limb development as demonstrated in mice with severe reduction of the 

limb size when Fgf8 is inactivated specifically in the early limb ectoderm (Lewandoski 

et al. 2000), (Moon and Capecchi 2000). However, other Fgfs (Fgff4, Fgf9, Fgf17) 

are activated later in the posterior AER and compensate for Fgf8 absence. Even 

Figure 5. Loss of AER in  
Dactylaplasia mice, Scanning 
electron microscopy of limbs. 
Arrow heads represent AER, here 
it is shown that in homozygous 
mutants at E11.5 only posterior 
AER remains intact. 
 
(adapted from Crackower, M.A., J. 
Motoyama, and L.C. Tsui, Defect in 
the maintenance of the apical 
ectodermal ridge in the 
Dactylaplasia mouse. Dev Biol, 
1998. 201(1): p. 78-89)                         
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though the deletion of any one of these genes resulted in normal skeletal patterning, 

their deletion together with Fgf8 led to more severe abrogation of limb formation, 

which is increasing with the number of deleted Fgfs (Mariani et al. 2008).  

The induction of AER is directed by signaling pathways that operate within the 

ectoderm and between the mesoderm and ectoderm of the prospective limb bud. 

WNT/β-catenin signaling in the limb ectoderm is necessary to induce Fgf8 

expression, and therefore AER. The ligand that activates canonical WNT pathway is 

WNT3 and for AER formation, WNT3 signaling is required in the ventral ectoderm 

(Kawakami et al. 2001), (Barrow et al. 2003). The ability to induce an AER resides in 

the mesoderm and several studies showed that FGF10 is likely to be the 

corresponding factor (Min et al. 1998), (Sekine et al. 1999). Mice with a mutation of 

the FGF10 receptor, Fgfr2b, failed to induce Wnt3 and did not form proper AER (De 

Moerlooze et al. 2000).  

After initiation, the maturation of the AER is marked by the compaction of the 

AER cells over the dorsal-ventral tip of the limb bud. This process is under the control 

of many factors, including the homeodomain-containing transcription factor, 

Engrailed1 (En1). In the absence of En1, the AER did not mature correctly and its 

anterior half expanded ventrally (Loomis et al. 1996). Once induced, the AER 

requires continuous maintenance signals from the limb mesoderm. This maintenance 

needs the balanced and positive inputs of WNT and FGF10 signaling from the 

ectoderm and mesoderm respectively, establishing an epithelial-mesenchymal (e-m) 

feedback loop between FGF8 and FGF10.  

Growth and patterning of the vertebrate limb does not only rely on AER but 

also signals produced by another discrete signaling center: the Zone of Polarizing 

Activity (ZPA). The ZPA produces a signal, sonic hedgehog (Shh), which instructs 

limb bud mesenchymal cells with respect to their anteroposterior fates (Tickle 1981), 

(Riddle et al. 1993). AER is required to maintain the ZPA, and vice versa, indicating 

two interlinked signaling centers patterning the axes (Niswander et al. 1994). The 

BMP antagonist gremlin1 (GREM1) plays an important role in this crosstalk and is 

required to pass the SHH signal to AER. All together, these signals define the SHH-

GREM1-FGF e-m feedback loop (as shown in Figure 6) (Zúñiga et al. 1999). The 

SHH–GREM1–FGF e–m feedback loop is self-terminated when the Shh expressing 

descendant population of cells expand. These cells are resistant to GREM1 signals 

and their expansion generates a gap that moves the Grem1 expression domain 

where SHH signals cannot reach (Figure 6c) (Scherz et al. 2004). Finally, for the 
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regression of the AER, the bone morphogenetic protein (BMP) signaling is required. 

BMP controls apoptosis in the interdigital areas indirectly through their modulation of 

FGF signaling from the AER (Fernandez-Teran and Ros 2008). 

Dactylaplasia has been mapped in proximity to the essential AER factor Fgf8 

(~70kb from Dac1j and ~120kb from Dac2j). Even though a lack of Fgf8 limb 

expression has been observed in the mutants limbs  (Crackower, Motoyama et al. 

1998) (Figure 7), a down-regulation of Fgf8 alone is not enough to explain the 

Dactylaplasia phenotype. Heterozygous Fgf8-KO animals are phenotypically normal 

and even limb-specific homozygous Fgf8-KO mice still have an AER (Lewandoski, 

Sun et al. 2000) and show mild defects compared to Dactylaplasia mice in 

homozygous. Thus, it suggests there is another reason for the observed 

Dactylaplasia phenotype. It has been demonstrated that there is a dramatic cell 

death or lack of cell proliferation in the AER of Dactylaplasia mice (Seto et al. 1997), 

(Crackower, Motoyama et al. 1998). The re-investigation of the mutants revealed 

increased level of apoptosis (after E10.25) and transiently increased level of 

proliferation (between E10.0-E10.5) (PhD thesis, Schwarzer W. 2010, Freie 

Universität Berlin) of cells in the Dactylaplasia limbs. The genes responsible for the 

apoptosis and proliferation differences in mutant limbs remain to be unknown. In fact, 

the absence of Fgf8 is more likely to be the consequence of AER misfunction, and 

not its primary cause.  

2.5.3 Dactylaplasia: A transposon insertion 

 The genomic basis of the Dactylaplasia mutations was analyzed by a 

massive PCR-based screening of the genetically mapped interval. This analysis 

suggested that both alleles were caused by insertion of additional sequences, from 

an ERV-like element (Sidow, Bulotsky et al. 1999). Subsequently, the insertions were 

characterized to belong in fact to the Young-MusD repeat family (Kano, Kurahashi et 

al. 2007), (Friedli, Nikolaev et al. 2008). MusD forms a group of murine ERV, which 

are highly similar at the level of the LTR, Primer Binding Site (PBS) and PolyPurine 

Tract (PPT) regions to the ETn elements (Baust et al. 2003) that were initially thought 

to be inserted in Dactylaplasia locus (Sidow, Bulotsky et al. 1999). Whereas ETn 

elements have no open reading frames (ORFs) or similarity to any known retroviral 

genes, MusD elements have the gag, pro, and pol genes with high resemblance to 

the primate type D viruses (Figure 8) (Mager and Freeman 2000). MusD elements 

are autonomously transposing sequences that lack the viral envelope gene (env; 
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which is needed for the budding off the cell). Therefore, they are members of the 

intracellularized retrovirus family (Ribet et al. 2007). The strong homology between 

MusD and ETn suggests that these latter ones are non-autonomous copies derived 

from an ancestral MusD element (Mager and Freeman 2000), (Ribet et al. 2004). 
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Figure 6. Interlinked feedback loops in limb development,  
a) In the initiation phase, BMP4 up-regulates Grem1 expression and Shh expression is 
activated independently. 
b) in the propagation phase, SHH up-regulates Grem1 expression and GREM1 reinforces 
AER-FGF and ZPA-derived SHH signaling by an e–m feedback loop  
c) In the termination phase, the widening gap between expression domains terminates the 
signaling system.  
(Figure is taken from Zeller, R., J. López-Ríos, and A. Zuniga, Vertebrate limb bud 
development: moving towards integrative analysis of organogenesis. Nat Rev Genet, 2009. 
10(12): p. 845-58 (Zeller et al. 2009))                         

Figure 7. Fgf8 expression in forelimbs and hindlimbs of E11 embryos 
(Photos are taken from Crackower, M.A., J. Motoyama, and L.C. Tsui, Defect in the 
maintenance of the apical ectodermal ridge in the Dactylaplasia mouse. Dev Biol, 1998. 201(1): 
p. 78-89)                         
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The two alleles (Dac1j and Dac2j) of Dactylaplasia are insertions of distinct but highly 

similar (98% sequence identity) MusD elements. They occurred at different positions 

that are 50kb apart and in opposite orientation (Friedli, Nikolaev et al. 2008). The 

locus contains several genes around with Fbxw4 gene being the nearest to both 

insertions (Figure 9). The Dac1j insertion is 10kb upstream of Fbxw4 and the Dac2j 

insertion is in the 5th intron of this gene. Thus, it has been hypothesized that Fbxw4 

expression might be affected by these insertions that this could contribute to the 

phenotype. Indeed, Sidow and colleagues found out that Dac2j insertion gives rise to 

an aberrant transcript (~9.5kb which is bigger than the wild type transcript of 2.8kb) 

with the absence of wild type transcript in homozygous mutants but in Dac1j insertion 

carrying animals expression is not different from wild type levels (Sidow, Bulotsky et 

al. 1999). In the same study, both Dac1j and Dac2j mutants were crossed to a 

transgenic mouse (Krd mouse in (Keller et al. 1994)) with a large deletion on 

chromosome 19 (covering beyond Tlx1 and Fgf8 genes) and none of Krdhet progeny 

showed a limb phenotype. Thus, they concluded that the phenotype of Dactyplasia 

heterozygote was due to a gain of function or dominant negative effect. Despite these 

discrepancies, in several studies, Fbxw4 is considered as the causative gene and 

even named as “Dactylin”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. MusD retrotransposon characteristics 
Proviral genes gag (for viral martix, capsid and nucleoproteins), pro (protease for gag-pol 
protein precursor maturation) and pol (polymerase for DNA and insertion) are found in MusD 
sequence. Primer binding site (PBS) for tRNA priming of reverse transcription (more 
specifically tRNALys) is also predicted in the MusD sequence (Mager and Freeman 2000). 
Transcriptional activity of the 5ʼLTR is characterized and found to be regulated by Sp1 
transcription factor binding and not affected by the absence of its noncanonical TATA box 
(Maksakova and Mager 2005). 
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2.5.4 SHFM Type3: A duplicated locus 

Split hand and foot malformation (SHFM) is a term used to define 

heterogenous limb malformation that is characterized by a deep median cleft in 

hands and feet with the absence of the central rays. The genetic causes of this type 

of disorder have been mapped to several loci. Inheritance is mostly autosomal 

dominant, but forms with autosomal recessive and X-linked inheritance fashion have 

been described (reviewed in (Duijf 2003)).  The severity of the phenotype is variable 

between individuals but also between limbs of a single individual (see figure 10a for 

the phenotype). SHFM Type3 has been mapped to human chromosome 10q24, 

which is syntenic to the region identified for the mouse Dactylaplasia mutants (Nunes 

et al. 1995), (Ozen et al. 1999). In several SHFM3 patients, tandem duplications 

covering ~500kb of this region have been identified (comprising genes from TLX1 to 

FBXW4) (de Mollerat et al. 2003). Study of additional patients and mapping of the 

break points of the corresponding duplications enabled to define a minimal 325kb 

region that is duplicated in all patients. This interval comprises βTRC, POLλ, DPCD 

genes and 3ʼUTR of gene. In most patients, the telomeric break point is localized 

within FBXW4, while the centromeric one is more variable with the presence or 

absence of LBX1 gene in the duplicated region. (see Figure 10b and 10c for 

identification of breakpoints) (Lyle et al. 2006). The genes present in the regions 

code for proteins with different biological functions: an NK-like subfamily homeobox 

transcription factor, Tlx1; a ladybird homeobox protein homolog required for muscle 

cell precursor migration, Lbx1; a component of E3 ubiquitin-protein ligase complex, 

βTrcp; a DNA polymerase, Polλ; an uncharacterized protein (potentially having a role 

in the formation or function of ciliated cells), Dpcd; a recognition protein for ubiquitin 

mediated protein degradation machinery, as well as afore mentioned Fgf8 (see 

Figure 9 and 10 for the locus).  

The consequences of this duplication on gene expression have been 

analyzed in lymphoblastoid cells of SHFM3 patients. People observed an increase in 

βTRC (probably a simple dosage effect resulting from duplications) and SUFU 

(located further downstream of FGF8 gene) expression levels (Lyle, Radhakrishna et 

al. 2006). βTRC is involved in the canonical Wnt signaling pathway regulating β-

catenin levels through ubiquitin-mediated degradation and conditional loss of β-

catenin results in loss of the AER (Barrow, Thomas et al. 2003), similarly SUFU 

regulates β-catenin signaling negatively (Meng et al. 2001). It is difficult to conclude 

whether the above-mentioned findings are biologically significant or not, since these 
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experiments were carried out using a cell type that is not directly relevant to the 

phenotype associated with the disease. However, considering the role of Wnt-

signaling in AER maintenance, detected gene expression changes show a strong 

correlation with the phenotype. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. MusD element insertions in Mus musculus chromose19 
(The chromosome positions are indicated according to Mouse July 2007 assembly) 
 

Figure 10. Human SHFM3 caused by tandem duplication in the syntenic locus of 
Dactylaplasia mouse. a) Severity of the phenotype is variable between hands and feet of an 
affected individual. (taken from  Duijf, P.,Pathogenesis of split-hand/split-foot malformation. 
Human Molecular Genetics, 2003. 12(90001): p.51R-60.) b and c) Duplication is shown by 
probes on a sample from a patient. Breakpoints of the duplication and the frequencies are 
color coded by a darker yellow shade for an increased frequency.(adapted from Lyle, R., et 
al., Split-hand/split-foot malformation 3 (SHFM3) at 10q24, development of rapid diagnostic 
methods and gene expression from the region.Am J Med Genet A, 2006.140(13): p.1384-
95.) 
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As mentioned earlier, several loci have been mapped for other forms of 

ectrodactyly. Interestingly, in one large family affected with split-hand/foot 

malformation, a missense mutation of WNT10b gene has been identified (Ugur and 

Tolun 2008), further suggesting a relationship between Wnt pathway and SHFM. 

However, the other known SHFM loci are pointing to the involvement of various 

genetic pathways. In a large number of cases, mutations of the transcription factor 

p63 have been identified. This gene is however involved in different malformation 

syndromes, some including limb ectrodactyly such as ectodermal dysplasia and cleft 

lip/palate syndrome (EEC, OMIM 604292) and limb mammary syndrome (LMS, 

OMIM 603543), other without limb malformations such as ankyloblepharon-

ectodermal defects-cleft lip/palate syndrome (AEC, OMIM 106260) and Acro-

dermato-ungual-lacrimal-tooth syndrome (ADULT, OMIM 103285) (Celli et al. 1999), 

(van Bokhoven et al. 2001), (Rinne et al. 2007) and p63 deficient mice exhibit limb, 

craniofacial and ectodermal abnormalities (Mills et al. 1999), (Yang et al. 1999). The 

defects are primarily due to the key involvement of p63 in ectodermal differentiation 

and maintenance of the progenitor cells required for epithelial development. The p63 

gene produces multiple isoforms, through alternative promoter usage and splicing, 

with different transcriptional functions. This complexity could contribute to the 

variable spectrum associated with p63 mutations. Interestingly, some genotype-

phenotype correlations could be identified with mutations leading to limb defects 

affecting primarily the DNA binding domain (Celli, Duijf et al. 1999), (Ianakiev et al. 

2000). Transcription factors from DLX family that are expressed in the AER also have 

been associated with SHFM syndromes. These genes are organized in bigenic 

clusters and deletions removing DLX5 and DLX6 or putative cis-regulatory 

sequences have been found in SHFM Type1 patients. Correspondingly, the double 

knock-out of Dlx5 and Dlx6 leads to ectrodactyly in mice (Robledo et al. 2002), 

(Merlo et al. 2002). Similarly, genetic mapping and functional similarities suggest that 

the Dlx1-2 cluster could be a candidate gene for SHFM5 (Duijf 2003). Interestingly, it 

was shown that Dlx5 and Dlx6 are direct transcriptional targets of p63 (Lo Iacono et 

al. 2008), suggesting that the p63/Dlx pathway could have a central role in the 

pathogenesis of SHFM syndromic and non-syndromic forms.  
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2.5.5 Dactylaplasia vs. SHFM3: one phenotype caused by two very different 

kinds of genomic mutations 

The human disease and the mouse mutation are clearly caused by two very 

distinct mutation mechanisms, yet they result in the same limb malformation. There 

have been several hypothesis proposed to explain the phenotypes in human patients 

due to a duplication of a 300-500kb stretch and/or in mice due to insertions of ~7kb 

MusD elements. Importantly, careful quantification of gene copy numbers ruled out 

the possibility of an SHFM3-like duplication in Dactylaplasia mice (Friedli, Nikolaev et 

al. 2008). The duplications found in human patients have been proposed to cause a 

gene dosage imbalance (Lyle, Radhakrishna et al. 2006), similar to a mini-trisomy. 

Indeed, some genes of the locus (including some localized outside of the duplicated 

interval) showed mild up-regulation. In mice, the impaired expression of Fbxw4 was 

thought to be responsible for the phenotype, even though the Dac1j animals did not 

show any expression change for this gene (Sidow, Bulotsky et al. 1999), indicating its 

transcript levels are not essential for the phenotype. 

An alternative hypothesis that I would further explore in this thesis is that both 

mutations could alter the action of remote gene regulatory elements. I have already 

detailed how TEs have a potential to impact gene regulatory mechanisms in multiple 

ways. Similarly, large chromosomal re-arrangements could lead to “position-effects” 

that could affect genes localized at a distance from the re-arrangement break points.  

2.5.6 cis-regulatory mutations as the genetic cause of limb malformations  

Deletions of regulatory elements or chromosomal re-arrangements involving 

regulatory sequences are known to be the cause of several disorders (reviewed in 

(Kleinjan and van Heyningen 2005)). This has been mostly demonstrated for re-

arrangements such as deletions, inversions or translocations, which are moving 

critical enhancers away from their target genes, resulting in a tissue-specific loss-of-

function of the corresponding gene. However, recent studies have exemplified that 

chromosomal duplications of regulatory elements could also lead to abnormal 

phenotypes. A microduplication in the Sonic hedgehog (Shh) locus covering the ZPA 

regulatory sequence, (ZRS) an enhancer for Shh posterior limb bud expression, 

(Lettice, Heaney et al. 2003)) causes triphalangeal thumb-polysyndactyly in humans 

(Klopocki et al. 2008), which is normally caused by the ectopic expression of Shh in 

the anterior region. Surely, Shh locus is not the only one affected by disruptions of 

long-range interactions. A microduplication of ~5.5kb conserved noncoding sequence 
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located ~110kb downstream of BMP2 gene was detected as a causes of an 

autosomal-dominant brachydactyly type A2 (a limb malformation characterized by 

hypoplastic middle phalanges of the second and the fifth finger). BMP2 ablation in 

the mouse limb does not cause a limb malformation; therefore, the underlying 

mechanism for the disease could be due to other means of gene expression 

changes, possibly an up-regulation of the BMP2 level (Dathe et al. 2009). Another 

example of a gene regulatory disruption is in SOX9 (SRY-box containing gene 9) 

locus. SOX9 is a dosage-sensitive, tissue-specific and temporally expressed 

transcription factor that is known to be involved in chondrogenesis through its 

interactions in Wnt–β-catenin pathway (Akiyama et al. 2002). Duplications in a 

minimal ~1.2Mb critical interval on chromosome 17q24.3 that is 5ʼ of SOX9 were 

found to cause brachydactyly and nail aplasia. This region encompasses a large 

gene desert between KCNJ2 and SOX9 involving putative regulatory elements of 

SOX9, suggesting a misexpression and/or overexpression of this gene as the reason 

for abnormal digit and nail development (Kurth et al. 2009). 

2.5.7 Repression of MusD and consequences on Dactylaplasia phenotype 

 The Dactylaplasia mutation arose in a SM7B/SC strain stock in the Jackson 

Laboratory. Subsequently, the Dactylaplasia mice were crossed to SM/Ckc strain for 

a few generations to maintain the line, then breeding tests were initiated using 

SM7B/SC for intercrosses and different strains including SM/Ckc, LG/Ckc, C57BL/6J, 

DBA/2J, C3H/HeJ, SWR/J, AKR/J, BALB/cJ, and 129/J inbred strains for outcrosses. 

The outcrosses produced affected animals in the F1 generation for crosses made 

with LG/Ckc, SM/Ckc, BALB/c, and 129/J but not with the crosses of remaining 

inbred strains. These criteria distinguished inbred strains as two groups: permissive 

and resistant to Dactylaplasia malformation. Intercrossing of F1 generation suggested 

that the Dactylaplasia phenotype was genetically suppressed by a second locus 

(Chai 1981). This unlinked dominant modifier locus was called as Modifier of 

Dactylaplasia (Mdac). 

Initially Mdac was mapped to a 27Mb region on mouse chromosome 13 by 

backcrossing hybrid strains and mapping for polymorphic microsatellite markers of 

origins (Johnson, Lane et al. 1995). The locus is refined to a 9.4Mb fragment 

containing 125 genes, including genes which are important for limb development 

such as Ror2, Msx2, Fgfr4 and Patched (Kano, Kurahashi et al. 2007). In the same 

study a differential DNA methylation of the 5ʼLTR of the MusD inserted in Dac1j 
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animals was found between resistant and permissive strains. Concomitantly, MusD 

expression was detected in the AER of mutant limb buds at E10.5, whereas this 

expression was not seen when the animals were crossed to C57BL/6J strain, 

suggesting that this expression could contribute to limb malformation.  
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3. Aims and Objectives 

 

 Ohno postulated that the generation of additional regulatory systems 

contributes to evolutionary changes more than the generation of new structural 

genes (Ohno 1972). Shortly after, King and Wilson demonstrated that the 

evolutionary changes between chimpanzees and humans could not be explained by 

sequence changes of proteins alone (King and Wilson 1975). Britten and Davidson 

proposed that the change and the increase of complexity in regulatory system as a 

consequence of repetitive sequence dispersion throughout the genome (Britten and 

Davidson 1971). As mentioned above, these models and hypotheses have received 

many recent experimental evidence which support that TEs could contribute to 

evolution of gene functions and modulation of gene expression. Yet, in many 

instances, the detailed mechanistic impact of TEs – apart from the disruption of 

elements – has not been really characterized. 

 The Dactylaplasia mutation is an excellent model system to study novel roles 

of transposable elements in gene regulation in mammals. The phenotypic 

resemblance between human patients and mutant mice makes this system 

especially intriguing, as it suggests that insertion of a small element could have the 

same impact as a much larger chromosomal re-arrangement disrupting an 

evolutionarily conserved locus. Moreover, the existence of a modifier locus (Mdac) 

that seems to contribute to the epigenetic control of the mutagenic TE in its inserted 

position opened possibilities of identifying new factors involved in controlling these 

elements and their activities. 

 In the course of this thesis, my first aim was to understand how MusD 

sequences influence interactions between genes and remote regulatory elements. In 

addition to the Dactylaplasia locus, I examined the Olig2-Olig1 locus located on a 

different chromosome to see if the presence of a neighboring MusD could drive gene 

expression changes in multiple contexts. To investigate the mechanism associated 

with the regulatory impact of MusD elements, I developed ex-vivo approaches to test 

their silencing and insulating potential. To gain insights into the gene causing the 

cleft-limbs of SHFM3 patients and Dactylaplasia mice, I used an in-vivo transgenic 

approach to examine the consequences of forced expression of candidate genes 

from this locus in the developing AER. This work is summarized in the first part of the 

“Results” section. 
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 The two-locus model of Dactylaplasia was described more than 30 years ago, 

but the modifier gene and the mechanisms of its action have been enigmatic until 

today. Therefore, the second aim of this thesis was to identify the main player of this 

(potentially) MusD-specific silencing mechanism. Using genetic mapping, I narrowed 

down the Mdac locus to a 1.7Mb interval. I used different approaches to characterize 

this region in different strains and identified a polymorphic deletion corresponding to 

the Mdac/mdac condition. This characterization yielded potential candidates of 

transposon silencing. The deleted region in the Dactylaplasia permissive strains 

contains genes and pseudogenes of the KRAB Zinc Finger family proteins. Further 

functional analysis provided compelling evidence supporting the role of these genes 

in MusD silencing. This work is summarized in the second part of the “Results” 

section. 
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4. Materials and Methods 

4.1 Materials 

4.1.1 Instruments 

Centrifuges 

Name  Supplier 

Microcentrifuge 5424 

Chilling centrifuge 5415 R 

Multifuge 3SRT 

Sorvall RC6T 

Eppendorf 

Eppendorf 

Thermo Scientific 

Thermo Scientific 

  

 

Thermo cyclers 

Name  Supplier 

PTC-200 DNA Engine Cycler 

C1000 Thermal Cycler 

ABI7500 Light cycler 

BIO-RAD 

BIO-RAD 

Applied Biosystems 

  

 

Microscopes 

Name  Supplier 

Leica MZ16F 

Leica MZ16 

Leica DM IL 

Leica 

Leica 

Leica 

  

Other 

Name  Supplier 

Mithras LB 940 

GenePulser Xcell 

Berthold  

BIO-RAD 
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4.1.2 Chemicals 

Unless indicated otherwise, all chemicals were supplied by Merck (Darmstadt) and 

Sigma-Aldrich (Steinheim). 

4.1.3 Buffers 

Unless specified otherwise, all solutions were prepared according to (Sambrook and 

William Russell 2006).  

4.1.4 Kits 

Name  Supplier 

EPITECT Bisulfite Kit (Cat.No. 59104) 

QIAquick PCR Purification Kit (Cat.No. 28104) 

MinElute Gel extraction Kit (Cat.No. 28606) 

QIAEXII Gel extraction Kit (Cat.No. 20021) 

QIAprep Spin miniprep Kit (Cat.No. 27106) 

NucleoBond_XtraMidi /Maxi Prep (Cat.No. 740410.10/ 

740416.10)  

illustra MicroSpin G-50 Columns (Cat.No. 27-5330-01) 

pGEM-T Easy Vector System I (Cat.No. A1360) 

Dual Luciferase Kit (Cat.No. E1960) 

ProtoScript M-MuLV First Strand cDNA Synthesis Kit 

(Cat.No. E6300S) 

PureLink RNA Micro Scale Kit (Cat.No. 12183016) 

PCR DIG Probe Synthesis Kit (Cat.No. 11636090910) 

DIG RNA Labeling Kit (SP6/T7) (Cat.No. 11175025910) 

QIAGEN 

QIAGEN 

QIAGEN 

QIAGEN 

QIAGEN 

MACHEREY-NAGEL 

 

GE Healthcare 

Promega 

Promega 

NEB 

 

Invitrogen 

Roche 

Roche 

  

4.1.5 Enzymes 

Restriction enzymes were purchased from MBI Fermentas (St. Leon-Roth) or NEB.  

DNA polymerase for genotyping was expressed from the construct provided by 

EMBL Protein Expression and Purification Core Facility. Other DNA polymerases 

which were used are: LA Taq (TaKaRa BIO Inc.), Long Range Expand (Roche), and 

Phusion (Finnzymes-Thermo Fisher Scientific). 

Ligases and phosphatases were purchased from NEB. 
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4.1.6 Bacterial Strains 

Name  Supplier 

DH5α 

DH10B 

Stbl3 

JM110 

Invitrogen 

Invitrogen 

Invitrogen 

DSMZ 

  

 

4.1.7 Plasmids 

Name  Supplier 

pGEMT-easy 

pGL4.23 

pGL3 

pRL-SV40 

pCAGGS-Puro linker 

Promega 

Promega 

Promega 

Promega 

M. Treier 

  

 

4.1.8 Oligos 

All oligos were purchased from Sigma-Aldrich. 

 

 

4.1.8.1 For genotyping 
Name  5ʼ->3ʼ sequence target # in DB 

Dac2j_5ʼ_R 

Dac2j_5ʼF_UT 
Dac2j_3ʼR_UT 

Dac1_3ʼR_UT 
Dac1jGNTYP-fln 

Dac2j_3ʼF_UT 
MusDolig2_1 

MusDolig1_1 
lentiWPRE5´ 

lentiWPRE3´rev 

ACTTTAAACCCTTTCTTCTTCCACCT 

ATTCACCACTTTCTCACAAGGGTGGGA 
TCCCTGAACCCCTCACTCTATCCCTCA 

CCTGACTTGAGATGTAACCATAAAT 
GACATTGAATTGAGAAGCTTCACTTAATAG 

TTTCAGTTGTTTACTAGAAAGGACAGT 
GGTTCCAAGAAGCAGCTCGAAG 

AACACCAGACCTCAGCTTGACTTC 
CCCGTATGGCTTTCATTTTCTCC 

AAGGAAGGTCCGCTGGATTGAG 

Dac2j/Dac1jMusD 

Dac2j MusD 
Dac2j MusD 

Dac1j MusD 
Dac1j MusD 

Olig2-1MusD 
Olig2-1MusD 

Olig2-1MusD 
WPRE 

WPRE 

164 

171 
173 

170 
468 

172 
305 

306 
92 

93 
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4.1.8.2 For Bisulfite sequencing 
Name  5ʼ->3ʼ sequence target # in DB 

Dac2j-nested-5'F 
Dac2j-nested-5'R 

Dac2j_5ʼ_F 
Dac2j_5ʼ_R 

Dac2j-nested-3'F 
Dac2j-nested-3'R 

Dac2j_3ʼ_F 
Dac2j_3ʼ_R 

Olig-5LTR-out-F 

Olig-5LTR-out-R 
Olig-5LTR-in-F 

Olig-5LTR-in-R 
Olig-3fln-in-R 

Olig-3LTR-out-F 
Olig-3LTR-in-F 

Olig-3LTR-in-R 
ETnII-SH3bp4-out-F 

ETnII-SH3bp4-in-F 
ETnII-SH3bp4-out-R 

ETnII-SH3bp4-in-R 
ETnII-Chr6-88_5-out-F 

ETnII-Chr6-88_5-in-F 

ETnII-Chr6-88_5-out-R 
ETnII-Chr6-88_5-in-R 

ETnII-Chr11_5-out-F 
ETnII-Chr11_5-in-F 

ETnII-Chr11_5-out-R 
ETnII-Chr11_5-in-R 

chr6:975-ETn2-5'LTR-  
out-F 

chr6:975-ETn2-5'LTR-  
out-R 

chr6:975-ETn2-5'LTR-
in-F 

chr6:975-ETn2-5'LTR-

in-R 

TGGTGTTTTTATTAGGTATTTGTGA 
CTAATATTTCTTCTTCCTTAAACCA 

ATTTATTATTTTTTTATAAGGGTGGGA 
ACTTTAAACCCTTTCTTCTTCCACCT 

GGATGAGAAAATTATTTGATTATTT 
CACACATTAAATACAAAAATCAA 

TTTTAGTTGTTTATTAGAAAGGATAGT 
TCCCTAAACCCCTCACTCTATCCCTCA 

TTTAAGGTGATTTAGAATTAATTAG 

TTCCACAATCTAATATTTCTTCTTCC 
GATTTGAGGATGGATTAGATTTTGTGG 

CTTTAAACCCTTTCTTCTTCCACCTAA 
AAACATTCTCAAAAATATCCTCT 

GGATGAGGGATGAGAAAATTATTTGATTATTT 
AGTTGTTTATTAGAAAGGATAGTT 

TATTTCTCTAAACCTTAAACTTAAA 
GTGAAATATTTTTTTTTGGATGTTGG 

GGTTTTTTTAGAATTTTTTTTTATAGG 
CCCTTTCTTTTCTCACACCTCAT  

CCATAACTTTAAACCCTTTCTTCTTTC 
TTGATTTATGATTTTAAATTTTTTTTTTTTTTA 

GTTGGGTTAGTATTGATTTAA 

TCCAAAACTATAAAATCCAAT  
CAACACATAAATAACTCCATAAATATTTTA 

GGTTTGTTTTGGGTTAAATTTAGTG  
GATTTTAGTAAGGTAGTTGTAGT 

CCTTTCTTTTCTCACACCTCAT 
AACCCTTTCTTCTTCCACCTAA 

ATAGAATATTTATTTATATAGATTGGAT 
 

AAAATATATAAACTCTTCAAAAATAAAAA 
 

AGATAAGATATAAAAGGTAATAGAGTAT 
 

 ATAAACTTATATAATCTCTCCTCCTCC 
 

Dac2j-MusD 5ʼLTR 
Dac2j-MusD 5ʼLTR 

Dac2j-MusD 5ʼLTR 
Dac2j-MusD 5ʼLTR 

Dac2j-MusD 3ʼLTR 
Dac2j-MusD 3ʼLTR 

Dac2j-MusD 3ʼLTR 
Dac2j-MusD 3ʼLTR 

Olig2-1MusD 5ʼLTR 

Olig2-1MusD 5ʼLTR 
Olig2-1MusD 5ʼLTR 

Olig2-1MusD 5ʼLTR 
Olig2-1MusD 3LTR 

Olig2-1MusD 3ʼLTR 
Olig2-1MusD 3ʼLTR 

Olig2-1MusD 3ʼLTR 
ETnIIinSH3bp4 5ʼLTR 

ETnIIinSH3bp4 5ʼLTR 
ETnIIinSH3bp4 5ʼLTR 

ETnIIinSH3bp4 5ʼLTR 
ETnIIonChr6 5ʼLTR 

ETnIIonChr6 5ʼLTR 

ETnIIonChr6 5ʼLTR 
ETnIIonChr6 5ʼLTR 

ETnIIonChr11 5ʼLTR 
ETnIIonChr11 5ʼLTR 

ETnIIonChr11 5ʼLTR 
ETnIIonChr11 5ʼLTR 

ETnIIonChr6_2 5ʼLTR 
 

ETnIIonChr6_2 5ʼLTR 
 

ETnIIonChr6_2 5ʼLTR 
 

ETnIIonChr6_2 5ʼLTR 

 

183 
184 

163 
164 

185 
186 

165 
166 

351 

352 
353 

354 
358 

359 
360 

361 
1053 

1054 
1055 

1056 
1057 

1058 

1059 
1060 

1061 
1062 

1063 
1064 

1173 
 

1174 
 

1175 
 

1176 
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4.1.8.3 For Mdac mapping 
Name  5ʼ->3ʼ sequence # in DB 

snp54232729f 

snp54232729r 
snp55020106f 

snp55020106r 
snp76357515f 

snp76357515r 
snp52637261f 

snp52637261r 
snp52642361f 

snp52642361r 

snp61819596f 
snp61819596r 

snp61814572f 
snp61814572r 

snp61822734f 
snp61822734r 

snp61829035f 
snp61829035r 

snp61817080f 
snp61817080r 

snp61815141f 
snp61815141r 

snp61819714f 

snp61819714r 
snp61823624f 

snp61823624r 
snp61819045f 

snp61819045r 

AAACTGCCTCTGTCTGAGAAGTGG 

GAACCCTGTTGCTAGAAACTCGG 
GGAGGTGCTTCCAAACAAACTG 

CATATTGTGGACTGCATCGTGG 
TAGGCAAGCACCATCCAGGAGTCC 

TGATGAAGGCATTTGTGGAAGCCC 
GCACTCTGTTTAACAGGGAGGAAG 

TGAGCCGTCCCTATTTTCCAG 
GGTTCTGGCAGTCTGTTCTGAAAG 

GCAACAAAGGAAAAGCCATCACAG 

CGCCAGCTCCATAAAGGTAACCTG 
TTCTCACTTGAGCCAAGCCACCTC 

GCCTGCTACAACAGTGGTTCTTTG 
TGTAGGAAACAATCAAGCCTCTGG 

TCATGGTGAGCATGGGACCCTAAC 
CCTGGAACGATATTTCCCCACAATC 

ACCTTATTCCCCCAACTCCGTTTG 
TCTCTTTGGTCAACCCAGGAGCTG 

TCTTCTCTGCCCTAGCAGGAAAC 
GCGTAAATGCAACTTTGAACCG 

AGAAGTCACAGCCTGAGGAGACAG 
AGCTTCACCGCATTCTTGGC 

CGGAAGCTATACAAAAGGAGACTGAATGT 

CGATGCTTACTGGCTGAGATGTGTGA 
ACAGAGCTCAAAAAGGCTGAAGACAAG 

TCTCCCTACTCATTCCCAGGAACAGAGTTC 
GGTGAGTAAGATTTGAAGCCAGAGC 

AGTGTCCTTTGCACCTGAGCAC 

329 

330 
331 

332 
333 

334 
339 

340 
341 

342 

343 
344 

345 
346 

390 
391 

392 
393 

481 
482 

483 
484 

486 

487 
488 

489 
501 

502 
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4.1.8.4 For Mdac locus structural variations characterization 
Name  5ʼ->3ʼ sequence # in DB 

chr13:61730601-61731132F 

chr13:61730601-61731132R 
chr13:61844624-61845085F 

chr13:61844624-61845085R 
chr13:62004906-62005437 F 

chr13:62004906-62005437 R 
chr13:62147244-62147995F 

chr13:62147244-62147995R 
chr13:62304685-62305178F 

chr13:62304685-62305178R 

chr13:62429958-62430522F 
chr13:62429958-62430522R 

chr13:62692278-62692812F 
chr13:62692278-62692812R 

chr13:62889597-62890349F 
chr13:62889597-62890349R 

chr13:62013106-62013880F 
chr13:62013106-62013880R 

GATACACTTCGGTAATTAGGATATGGA 

ATGAACTTGGAAAAGCAATTAATTTTA 
TAAAAGGTCTGATGCCTGTTTACATTT 

ACACAGTGAATATCTTCAGAGGGCATC 
TCTCCTGCTTTTCTCCCAGGGTTGTCT 

GGATGACCCTAGATTCAGATAGATGCA 
CCAGGCACCCAGGAACTCTGCCAATAT 

ATGCTGGGTCTACTCGCTTATGCATTT 
AAGTGGAGTAGGCCACAGAATTATATG 

TTACCTTCTCTGTCTCCTAGAACTTTG 

TCCCATGATCACAATATAGCAATTTAG 
AAGGAGAAGGAAAGTGAGCAGCAGAAG 

TTCATTGGATCAACCTAAATACCTCAA 
TCTTCAGAGGAGCAGTCCCGCTGTTGT 

GCCTGGAGGTATAACAGGTAGAATTAG 
ACATGTCCCAGCAACAGACTGATATAC 

CACTGCACTGCTGAGTTCTCCCTCCTG 
ACTACCGAGTCATGTTAGAAGGATACTTAA 

607 

608 
609 

610 
611 

612 
613 

614 
615 

616 

617 
618 

619 
620 

621 
622 

639 
640 

   

 

4.1.8.5 For qPCR 
Name  5ʼ->3ʼ sequence target # in DB 

Olig1-RT-F 

Olig1-RT-R 
Olig2-RT-F 

Olig2-RT-R 

Fwd_SYBR_MmACTB 
Rev_SYBR_MmACTB 

Fwd_SYBR_MmPGK1 
Rev_SYBR_MmPGK1 

Maksakova_ETnMusD514-s 
Maksakova_ETnII662-as 

Maksakova_MusD690-as 
Maksakova_ETnI-s 

Maksakova_ETnI-as 
MusD-qPCR-F 

MusD-qPCR-R 
LINE-qPCR-F 

LINE-qPCR-R 

IAP-5'UTR-qPCR-F 

CCAAAGAGGAACAGCAGCAG 

GTGGCAATCTTGGAGAGCTT 
CACAGGAGGGACTGTGTCCT 

GGTGCTGGAGGAAGATGACT 

CTAAGGCCAACCGTGAAAAG 
ACCAGAGGCATACAGGGACA 

TACCTGCTGGCTGGATGG 
CACAGCCTCGGCATATTTCT 

GTGCTAACCCAACGCTGGTTC 
ACTGGGGCAATCCGCCTATTC 

CTCTGGCCTGAAACAACTCCTG 
TGAGAAACGGCAAAGGATTTTTGGA 

ATTACCCAGCTCCTCACTGCTGA 
GATTGGTGGAAGTTTAGCTAGCAT 

TAGCATTCTCATAAGCCAATTGCAT 
TTTGGGACACAATGAAAGCA 

CTGCCGTCTACTCCTCTTGG 

CGGGTCGCGGTAATAAAGGT 

Olig1 

Olig1 
Olig2 

Olig2 

Actb 
Actb 

Pgk1 
Pgk1 

ETn/MusD 
ETnII 

MusD 
ETnI 

ETnI 
MusD 

MusD 
LINE1 

LINE1 

IAP 

1219 

1220 
1221 

1222 

1319 
1320 

1321 
1322 

2276 
2277 

2278 
2279 

2280 
2723 

2724 
2725 

2726 

2727 
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IAP-5'UTR-qPCR-R 

Nanog-F 
Nanog-R 

Oct4-F 
Oct4-R 

1214-2-F 
1214-2-R 

ACTCTCGTTCCCCAGCTGAA 

GCAAGCGGTGGCAGAAAA 
GGTGCTGAGCCCTTCTGAATC 

TGGCGTGGAGACTTTGCA 
GAGGTTCCCTCTGAGTTGCTTTC 

GAACATTGTCAAAGTTCTAGAAGAAACAGA 
GACTGTGAGCACATAAAGCAAAGGCT 

IAP 

Nanog 
Nanog 

Oct4 
Oct4 

Tromer 
1214-2 

2728 

2922 
2923 

2924 
2925 

2926 
2927 

    

 

4.1.9 Cultured cell lines 

Name Origin  

HEK293T 

NIH3T3 

E14 ES cells 

Human embryonic kidney 

Swiss mouse immortalized fibroblasts  

129/Ola mouse 

  

 

4.10 Antibodies 

4.10.1 Primary Antibodies 

Antigen Source animal Supplier/ Cat.No. 

HA 

FLAG 

Tubulin 

Mouse 

Mouse  

Mouse 

Sigma-Aldrich/H3663 

Sigma-Aldrich/F1804 

Sigma-Aldrich/T9026 

   

 

4.10.2 Secondary Antibodies 

Antigen Conjugated Supplier/ Cat.No. 

α-mouse HRP GE Healthcare/NA931VS 
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4.11 Animals 

Breeding and crossings were performed by Silke Feller and Andrea Schulz in the 

animal facility (LAR) of EMBL.  

Dac1j animals were maintained from SM/Ckc-Fbxw4Dac/J Jackson Laboratory line by 

crossing to BalbCj and Dac2j animals were from CBy.MRL-Fbxw4Dac-2J/J of Jackson 

Laboratory. 

4.12 Software 

Program Producer Application 

BIQ Analyzer 

MacVector 11.0.2 

ABI7500 Software 

V2.0.5 

ApplicationSuiteV3 

MicroWin 2000 

Max Planck Institut-Informatik 

MacVector Inc. 

Applied Biosystems 

 

Leica 

Berthold 

Bisulfite sequencing analysis 

Sequence analysis, comparison 

Analysis of qPCR data 

 

To acquire embryo photos 

To acquire luciferase reads 

   

 

4.13 Internet Resources 

Resource Address 

UCSC Genome Browser  

Mouse Phenome Database (MPD, 

Jackson Lab) 

Mouse Genome Informatics (MGI, 

Jackson Lab) 

National Center of Biotechnology 

Information (NCBI) 

BiSearch Primer Design Tool 

Simple Modular Architecture Research 

Tool (SMART) 

Interactivate 

GraphPad 

http://genome.ucsc.edu/ 

http://phenome.jax.org/db 

 

http://www.informatics.jax.org/ 

 

http://www.ncbi.nlm.nih.gov/ 

 

http://bisearch.enzim.hu 

http://smart.embl-heidelberg.de/ 

 

http://www.shodor.org/interactivate/activities 

http://www.graphpad.com/quickcalcs 
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4.2 Methods 

4.2.1 Molecular Biology Methods 

4.2.1.1 DNA Isolation  

 

4.2.1.1.1 Plasmid or BAC DNA Isolation 

Plasmid-DNA was isolated with a QIAprep Spin Miniprep Kit (for small scale) or the 

Nucleobond Xtra Midi/Maxi (for medium/maxi scale) according to the manufacturerʼs 

specifications. BAC DNA was isolatated using Nucleobond Xtra Maxi Kit using low 

copy plasmid purification protocol described in user manual provided. 

 

4.2.1.1.2 Genomic DNA Isolation 

Low Purity Isolation (from tails or membranes for genotyping PCR): Tails or 

membranes were lysed in 150-200µL of tail lysis buffer-ProteinaseK mix 

(ProteinaseK was diluted 1:100 from 10mg/mL stock solution) over-night at 56ºC. 

Tail Lysis buffer: 50mM KCl, 5mM Tris pH8.0, 2mM MgCl2, 0.1%w/v Gelatin, 0.45% 

v/v NP40 and Tween-20. 

High Purity Isolation: Tissues or cells were lysed in 150-500µL of lysis buffer-

ProteinaseK mix (ProteinaseK was diluted 1:100 from 10mg/mL stock solution) over-

night at 56ºC. The lysate was mixed with 70% of its volume isopropanol and DNA 

was pelleted. Then the DNA pellet was washed with 70% ethanol. 

Lysis buffer: 100mM Tris pH8.5, 5mM EDTA pH8.0, 0.2% SDS, 200mM NaCl. 

 

4.2.1.2 RNA Isolation 

RNA was isolated from embryonic tissues or cell pellets. Embryonic tissues (Brain, 

Neural Tube and limbs) were collected from either embryonic day E11.0 or E14.5 

and were homogenized in TriZol reagent (volume of TriZol depending on the weight 

of the tissue, 10µL /mg). Cell pellets were obtained from trypsinization of adherent 

cells followed by two times PBS wash and were homogenized in TriZol (10µL/105 

cells). After homogenization, tissue/cells were incubated at room temperature for 5 

minutes, then mixed with Chloroform (amount determined by the 20% of the TriZol 

volume) by shaking the tube vigorously. Chloroform-homogenate mix was incubated 

at room temperature for 3 more minutes and then spun at 12,000g for 15 minutes at 

4ºC. The aqueous phase was collected and mixed with an equal volume of 70% 

ethanol. The ethanol and nucleic acids mix was then loaded on to PureLink columns 
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and clean-up procedure was followed according to manufacturerʼs directions. On-

column DNaseI treatment was performed using PureLink DNaseI. RNA was eluted in 

30µL Nuclease free water. 

 

4.2.1.3 cDNA Synthesis 

First strand cDNA was synthesized using Protoscript MuMLV Kit. 500-1000ng of total 

RNA was used as template for random priming. 

 

4.2.1.4 PCR 

4.2.1.4.1 Standard PCR  

For genotyping: 

 DNA amplification was performed with Taq-polymerase that was produced from the 

construct provided by the Protein Expression Purification Core Facility of the institute. 

The reagents were pipetted into a chilled 0.2 ml reaction tube and incubated in a 

thermocycler with following program: 

 

 

*For Dac1j -MusD, Dac2j-MusD and Olig2,1-MusD genotyping X=56ºC 

*For WPRE genotyping X=62ºC 

Product sizes: 

Dac1j -MusD: WT allele is 974bp and MusD allele is 675bp 

Dac2j-MusD: WT allele is 378bp and MusD allele is 713bp 

Olig2,1-MusD: WT(BalbC) allele is bp and MusD allele is 569bp 

WPRE: 362bp 

 

 

Phase Temperature Time 

(minutes:seconds) 

Cycles 

Initial denaturation  

Denaturation 

Primer annealing 

Elongation 

Final elongation 

Hold 

94ºC 

94ºC 

XºC* 

72ºC 

72ºC 

10ºC 

4:00 

0:30 

0:30 

1:00 

10:00 

∞ 

 

 

 

      30 
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For Mdac mapping using SNPs (followed by restriction enzyme digestion): 

Densely available single nucleotide polymorphisms (SNPs) were selected from the 

SNP-database (Perlegen) of the Jackson Laboratory. The same PCR program 

conditions were used with the same reagent concentration set-up as described in 

4.2.1.4.1, then 10µL of the product was digested with a restriction enzyme to 

distinguish the origin of the allele via SNPs resulting in a restriction enzyme site 

polymorphism. The selected enzymes for particular SNPs and the expected product 

sizes are as follows: 
Primer 
 pair# 

SNP ID 
 

Position  
on Chr13 

Product  
size 

cut in  
C57BL6J 

Sizes  
after cut 

Annealing  
Temperature 

1 49111842 56852545 515 nt EcoRI 361+154 58ºC 

2 51082153 34203888 496 nt  BamHI 389+107 58ºC 
3 51146017 103907426 540 nt  BamHI 306+234 58ºC 
4 52656624 70427030 429 nt  BamHI 306+123 58ºC 
5 61794681 50505420 490 nt  MunI 378+112 58ºC 
6 61805475 53450102 455 nt  BamHI 293+162 58ºC 
7 61827471 60357611 494 nt  BamHI 371+123 58ºC 
8 61801304 54232729 539 nt PvuII 359+179 58ºC 
9 61807097 55020106 657 nt PvuII 332+324 58ºC 
10 52665098 76357515 543 nt PvuII 246+296 58ºC 
11 52637261 57562487 561 nt KpnI 302+258 57ºC 
12 52642361 59071041 585 nt PvuII 291+293 56ºC 

13 61819596 62881702 567 nt HindIII 292+275 56ºC 
14 61814572 64219061 517 nt HindIII 264+253 56ºC 
15 61822734 61653221 562 nt EcoRV 267+295 56ºC 
16 61829035 64837047 531 nt BglII 271+260 56ºC 
17 61817080 63441010 525 nt BglII 259+266 58ºC 

Reagent Amount 

DNA template 

10X PCR buffer 

25mM dNTP mix 

10µM forward primer 

10µM reverse primer 

Taq Polymerase 

ddH2O 

20-100ng of genomic DNA 

2µL 

0.16µL 

0.5µL 

0.5µL 

0.5µL 

15.34µL 
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18 61815141 63984139 521 nt PvuII 300+221 58ºC 
19 61819714 62859021 592 nt BglII 293+299 58ºC 
20 61823624 61302220 600 nt BamHI 151+449 58ºC 
21 61819045 62981912 538 nt  SpeI 302+236 58ºC 
       

 

 

4.2.1.4.2 Amplification of genes for expression constructs 

High fidelity Phusion enzyme was used as the polymerase, PCR conditions were set 

according to user manual (for genomic DNA, 30 seconds elongation / 1000bp to be 

amplified, for low complexity DNA (such as plasmid and BAC), 15 seconds 

elongation / 1000bp to be amplified) 

4.2.1.4.3 Amplification of sequences for probe preparation 

Southern Blot probes were produced with Roche PCR DIG Labeling Kit (Cat.No. 

11636090910) from 100pg-1ng plasmid DNA template with the suggested PCR 

program in the user manual.  

4.2.1.4.4 Quantitative real-time PCR (qPCR) 

SYBR-Green binds specifically to double stranded DNA and can be used for 

quantification of DNA amplification from a template in real time. Suitable primers 

were designed targeting a sequence at the exon/intron boundaries whenever 

possible, to exclude signal variation due to genomic DNA contamination. The 

reaction was carried out in 96-well plates in a volume of 20µl containing 1µL of cDNA 

(prepared as described in section 4.2.1.3), 1 µmol of forward and reverse primer mix 

and 50% 2x SYBR Green PCR Master Mix (Applied Biosystems). Gene expression 

analysis was performed by normalizing the test gene to multiple controls (Actb, Pgk1 

and Gusb), using the 7500software V2.0.5 for analysis (Applied Biosystems).  

 

4.2.1.5 Sanger Sequencing 

Sequencing of plasmids or PCR products were performed by GATC Biotech. For 

plasmid sequencing on 96-wells, bacteria colonies were stabbed into ampicillin 

selection carrying agar media plates. 

 

4.2.1.6 Southern Blot 

1-2 µg of genomic DNA was digested over night at 37ºC with the restriction enzyme 

combinations PstI+XhoI, PstI+NotI and PstI+AfeI to distinguish between methylated 

and unmethylated positions of MusD/ETnII transposons (NotI and AfeI activities are 
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blocked by CpG methylation). Digested fragments were run on a 1% Agarose 

(ethidium bromide stained) gel for at least 5 hours at 100Volts. After bands on the gel 

were imaged, gel was denatured (using denaturation solution: 0.5N NaOH, 1.5M 

NaCl) for 30 minutes. Gel was neutralized (using neutralization buffer: 0.5M Tris-

Base, 1.5M NaCl, pH7.2-7.4) until pH strips showed a value around 7.0-7.5 

exchanging the solution every 30 minutes. Capillary transfer was set on a 

nitrocellulose membrane (Amersham Hybond+) overnight by using 10X SSC, pH7.0 

(diluted 1:2 from 20X SSC stock: 3M NaCl, 1M Sodium citrate). The next day 

membrane is washed with 50mM NaPi, pH7.2 for five minutes, then baked/fixed at 

80ºC in the oven for two hours. Pre-hybridization was performed in the hybridization 

buffer (0.5M NaPi pH7.2, 7% SDS, 1mM EDTA pH8.0) for at least thirty minutes at 

65ºC(however up to four hours most of the time) then membrane was hybridized with 

probe (5ng/mL) containing hybridization buffer over night at 65ºC rotating. After over 

night probe hybridization the membrane was washed twice in Church wash buffer 

(0.08M NaPi pH7.2, 1%SDS) for ten minutes, then blocked in blocking buffer ,DIG2, 

(1xDIG1 buffer (0.1M Maleic acid, 0.15M NaCl) with Roche Blocking reagent 

(Cat.No.11096176001)) for thirty minutes and incubated with DIG antibody (Roche 

Cat.No.11093274910, used 1:20000) for thirty minutes more. After antibody 

incubation, the membrane was washed twice in 0.1% Tween-20 containing DIG1 

buffer for twenty minutes. Once the unbound antibody was removed, the membrane 

was washed in DIG3 buffer (0.1M Tris pH9.5, 0.1M NaCl) for five minutes and the 

signal was detected by 6µL/mL  CDP-star reagent (Tropix Cat.No.T2306-0705036 

MSC050) in DIG3. The exposure to the X-Ray film varied from 1 hour to over night. 

 

4.2.1.7 Bisulfite sequencing 

4.2.1.7.1 Chemical treatment and clean-up 

For treatment and cleaning up the treated genomic DNA, QIAGEN EPITECT kit was 

used according to manufacturerʼs instructions. 1000ng of genomic DNA was treated 

and eluted twice in 20µL water after cleaned up. 

4.2.1.7.2 PCR set-up and sequencing 

Nested PCR was performed using the listed primers in section 4.1.8.2 and LA-Taq 

(TaKaRa) on 0.7µL of second elution from bisulfite treatment clean up (section 

4.2.1.7.1) with a PCR program as follows: 
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*50ºC was used for 3ʼLTR amplification 

 

4.2.1.8 BAC targeting 

The BAC clone which was desired to be modified is transformed into EL250 bacterial 

strain and this strain is heat induced for the expression of recombinase. The 

competent cells were made freshly from induced bacteria and the targeting construct 

was electroporated into them. Targeting construct is designed with 50bp long 

homology arms for the site to be targeted in the BAC clone and contained neomycine 

selection under both prokaryotic and eukaryotic expression promoters. 

 

Phase Temperature Time 

(minutes:seconds) 

Cycles 

Initial denaturation 

Primer annealing 

Elongation 

Denaturation 

Primer annealing 

Elongation 

Final elongation 

Hold 

94ºC 

55ºC 

68ºC 

94ºC 

55ºC* 

68ºC 

72ºC 

10ºC 

4:00 

2:00 

2:00 

1:00 

1:00 

2:00 

10:00 

∞ 

 

        

       2 

       

 

      35 

PRIMARY PCR    

Phase Temperature Time 

(minutes:seconds) 

Cycles 

Initial denaturation 

Denaturation 

Primer annealing 

Elongation 

Final elongation 

Hold 

94ºC 

94ºC 

55ºC* 

68ºC 

72ºC 

10ºC 

4:00 

1:00 

1:30 

2:00 

10:00 

∞ 

 

        

        

      35 

SECONDARY PCR    
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4.2.2 Cell culture 

4.2.2.1 Culturing conditions 

HEK293T and NIH3T3 cells were generally cultivated in DMEM (high glucose, with 

glutamine, Gibco Cat.No.41965) supplemented with 10% heat-inactivated 

SerumSupreme (Lonza BioWhittaker, Cat.No.BW14-492F), 1% L-glutamine, 1% 

penicillin/streptavidin (Gibco, Cat.No. 25030-081 and 15070-063 respectively), which 

was warmed up to 37°C prior to cell seeding of feeding. The cells were kept in a 

humidified incubator at 37°C and 5% CO2 and medium cells were passed every 

second or third day. E14 ES cells were cultivated in DMEM (Gibco, Cat.No.41965) 

with 15% FBS (PAN Biotech GmBH, Cat.No.2602), 1% L-glutamine (Gibco, 

Cat.No.25030-081), 1% penicillin/streptavidin (Gibco, Cat.No.15070-063), 1% Non-

essential amino acids (Gibco, Cat.No.11140-050)), 1% Sodium Pyruvate (Gibco, 

Cat.No. 11360-070), 1% 2-mercaptoethanol (diluted 1:100 from the stock solution 

which was made using 35µL of Sigma-Aldrich M7522 in 50mL water stock solution) 

and 1000U/ml of Leukaemia inhibitory factor (LIF, Chemicon, ESG1107). ES cells 

were plated on feeder containing gelatinized (0.1% gelatin incubated on plates for  

one hour) plates and were fed every 24 hours. 

 

4.2.2.2 Thawing cells 

The cells were thawed quickly in a 37°C water bath and immediately transferred into 

a 15mL polypropylene tubes containing 4mL standard medium. After the suspension 

was centrifuged at 1300 rpm for 5 min, the cells were resuspended in 10 mL fresh 

medium and plated on 10cm cell culture plates (Nunc). 

 

4.2.2.3 Splitting cells 

When the cultured cells reached 80-90% confluency, the cells were split into a new  

culture plates. For this purpose, HEK293 and NIH3T3 cells were were washed with 

PBS and trypsinized for three minutes (Trypsin-EDTA, Sigma, Cat.No. T3924) at 

37°C until they detached from the plates. Immediately after, the cells were taken up 

in medium, centrifuged, and resupended 1:6 in fresh medium. ES cells were 

trypsinized for five minutes and plated 1:4 on fresh feeder containing plates. 
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4.2.2.4 Cryopreservation 

All types of cells were frozen in 1mL of freezing medium (90% serum, 10%DMSO) in 

Mr.Frosty (Nalgene Cat.No.5100-0001) that ensures ~1ºC change per minute, at 

minus 80ºC. 

 

4.2.2.5 Cell number determination 

When a defined cell number was required for an experiment, cells were counted in  

Neubauer-chamber (four of the middle-sized squares around four sides of the central 

big square, in total sixteen squares are counted and divided by four which gives the 

number of cells in 1mL when multiplied by 104) and plated out accordingly. 

 

4.2.2.6 Cell transfection 

4.2.2.6.1 Transient transfection 

Cells were seeded one day in advance to transfection with Lipofectamine-2000 

reagent (Invitrogen), which was used as described in userʼs manual, in 1:6 (DNA to 

Lipofectamine) ratio for HEK293T cells and 1:3 ratio for NIH3T3 cells (70-80% 

confluency of both cell types at time of transfection). Cells were harvested for 

luciferase assay (see section 4.2.3.2 ) twenty four hours after transfection. 

4.2.2.6.2 Stable transfection 

HEK293T cells were transfected with expression constructs under the control of CAG 

promoter, using Lipofectamine-2000 reagent (described in section 4.2.2.6.1). Cells 

were split in two different ratios (1:5 and 1:10) 24 hours after transfection and 

Puromycine selection (2.5µg/mL) was performed 24 hours after cell splitting for four 

days. Then the surviving population was further controlled for expression of the 

transfected gene, using Western Bloting (as explained in section 4.2.3.1). 

4.2.2.7 Cell electroporation 

ES cells were grown to 70-80% confluency and fed four hours prior to 

electroporation. Trypsinized 2x106 ES cells were electroporated in ES cell 

electroporation buffer (Millipore) with 10µg of linearized BAC clone under 240Volts, 

500µFarad in 4milimeter cuvettes. After electroporation cells were plated on feeder 

containing plates. 250µg/mL Neomycine (G418, Gibco, Cat.No. 10131-027) selection 

was performed 48 hours after electroporation for 7 days. Resistant colonies were 

picked, expanded and screened further, using PCR. 
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4.2.2.8 Lentivirus production 

4.2.2.8.1 Cell transfection for virus production 

10 times 10 cm dishes with 4 x 106   HEK 293 T cells were plated in order to have 70-

80 % confluency after 24 hours of growing. 2 hours before transfection the medium 

was exchanged with the fresh medium. (Transfection reagents were provided by 

Clontech (Mammalian Transfection kit (Cat.No.631312)))  

(the concentration of each plasmid: 1 µg/µl) 

100µL of plasmid with gene of interest was mixed with 35µL of pMD2G plasmid 

(envelope plasmid), 65µL of pCMVR8.74 plasmid (packing construct) then 620µL of 

2M CaCl2  solution and 4180µlL water. Everything was mixed by vortexing slowly and 

while mixing the tube on the vortex, 5000µL of 2X HBS was added drop wise. This 

mixture was incubated at room temperature for 20 minutes. The incubated mix was 

added drop wise to HEK293T plates (1mL per plate).  

4.2.2.8.2 Virus production 

After cells were incubated at 37o C for 24 hours, the medium was changed to OPTI-

MEM. Media were collected at 48 hours and 72 hours after cell transfection and 

pooled. The supernatant was filtered through Millipore Stericup 0.22µm to remove 

dead cells. Maximum 60mL of the filtered medium was transferred into Centricon 

Plus 70 centrifugal Filter Devices (Millipore UFC710008) and  centrifuged at 2500 g 

for 15 to 20 minutes. The flow-through was discarded and the remaining volume of 

the medium was transferred to the same filter for the next centrifugation. Finally, the 

virus particles were collected from the filter with the leftover of the medium/buffer. 

The amount of concentrated virus was between 200 and 300 µL. To purify the virus 

as much as possible, an additional centrifugation step was performed using Ultrafree 

MC Filter Device (Millipore).  The virus was aliquoted and frozen initially at -20ºC and 

when it was transferred to -80ºC. 

4.2.2.8.3 Viral transduction of primary cell lines 

108 infectious particles per milliliter containing virus was spread on mouse embryonic 

fibroblasts (MEF) or ES cells which are 40-50% confluent. Then cells were kept in 

culture for 72 hours to enable the gene expression from the transfected virus, then 

harvested for RNA, DNA and protein preparations. 
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4.2.3 Biochemical Methods 

4.2.3.1 Western Blotting  

4.2.3.1.1 Gel run and transfer 

Invitrogen precast gel system, NuPAGE, was used for SDS-PAGE. The 4-12% Bis-

Tris gradient gel was loaded with samples (cell pellets) prepared (resuspended) in 

NuPAGE sample buffer (diluted from 4X stock and DTT added to a final 

concentration of 20mM as the reducing reagent, then denatured at 75ºC for 10 

minutes). Gels were run according to manufacturerʼs specifications (NuPAGE MOPS 

running buffer was used). Transfer was performed to PVDF membranes (Immobilion, 

Millipore) with Invitrogen Xcell Lock blot module according to manufacturerʼs 

directions (NuPAGE transfer buffer was used). 

4.2.3.1.2 Detection 

After blotting, the membranes were blocked in 5% milk containing PBS 

+0.03% Tween-20 (PBST) mix for at least one hour at room temperature. After 

blocking membranes were incubated overnight with primary antibody (section 4.10.1, 

for HA and FLAG antibodies 1:1000, and for Tubulin antibody 1:10000 dilution was 

used) in blocking solution at 4°C. The next day, the membranes were washed three 

times for 5 minutes in PBST. After washing the unbound primary antibody, 

membranes were incubated with a suitable HRP-coupled secondary antibody for one 

hour at RT. Finally, the membranes were washed and protein was visualized with 

enhanced chemoluminescence (ECL) solution (Immobilion, Millipore) on a developed 

X-Ray film (Kodak RP X-OMAT processor).  

 

4.2.3.2 Luciferase assay 

Dual Luciferase Kit (Promega) was used according to provided manual by the 

producer. The delay step was removed from the measuring program and 100µL of 

LARII and Stop&Glo substrates were used per well of a 96-well plate. Both reaction 

was read for one second. 

4.2.4 Animal sample preparation 

4.2.3.1 Embryo dissection 

Gestating mice were sacrificed at stage E10.5 and the uteri were removed. Embryos  

were dissected  and placed in 4% PFA/PBS for overnight fixation at 4°C. If 

necessary, the embryonic amnions were collected and processed for genotyping. 

The next day embryos were washed in 0.1% Tween-20 containing PBS (PBS-T) 
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three times for 5minutes, then dehydrated gradually in 30%, 50%, 70% and 100% 

methanol containing PBS-T. Dehydrated embryos were stored in -20ºC. 

 

4.2.3.2 RNA in-situ hybridization (ISH) 

4.2.3.2.1 generation of DIG-labeled probes 

Probe sequences were cloned into pSKII(+)  vector, which contains either a T7 or T3 

recognition sequence at each side of insertion. Depending on probe orientation in the 

vector, either T3- or T7-RNA polymerases were used for the in vitro transcription (on 

linearized and Klenow-blunt plasmids) for digoxygenin-labelled complementary probe 

synthesis, which was conducted with DIG RNA Labelling Kit (Roche) according to the 

manufacturerʼs protocol. After the reaction was stopped, the RNA was cleaned with a 

G-50 column (GE Healthcare) and eluted in ~100 µL RNase-free water. The success 

of the reaction was tested with an agarose gel and the probes were stored at - 20°C 

until further use.  

4.2.3.2.2 Whole mount ISH 

Embryos were re-hydrated and then washed three times in PBS-T for five minutes. 

After washing, the embryos were bleached for an hour in 6% H2O2 (diluted from 30% 

stock in PBS-T) and washed three times in PBS-T for five minutes. Bleached 

embryos were permeabilized by Proteinase-K treatment at room temperature for five 

minutes. The treatment was stopped by washing in 2mg/mL Glycine solution on ice, 

then washed three times in PBS-T for five minutes. The embryos are post-fixed in 4% 

PFA for 20 minutes at room temperature and washed five times in PBS-T for five 

minutes. After PBS-T washes, embryos are washed in W1 (5X SSC pH4.5, 50% 

ionized Formamide, 1% SDS, 0.1% Tween-20) for ten minutes at 65ºC and W1 was 

replaced by H2 (W1+ 5mg/mL Torula yeast RNA and 25µL of 100mg/mL Heparin) in 

order to pre-hybridize for at least 2 hours at 65ºC, then the probe containing H2 was 

incubated overnight with embryos rocking (in tubes) at 65ºC. For second day washes 

pre-heat the wash buffers. Embryos were washed three times in W1 and three times 

in W2 (2X SSC pH4.5, 50% ionized Formamide, 0.1% Tween-20) for thirty minutes at 

65ºC. Then, embryos were washed in W3 (2X SSC pH4.5, 0.1% Tween-20) for 15 

minutes and equilibrated to room temperature for 15 minutes. After embryos reached 

to room temperature, they were washed three times in 1% Tween-20 containing Tris 

buffered saline (TBS, 137mM NaCl, 20mM Tris) and blocked in blocking solution 

(TBS-T with 20µL fetal calf serum and 20µL of 100mg/mL BSA) for at least 2 hours. 

After the blocking, embryos were incubated with DIG antibody (1:3000 dilution in 
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TBS-T) overnight at 4ºC. On the third day of ISH protocol, embryos were washed in 

TBS-T initially three times for 5 minutes then five times for 90 minutes. On the last 

day of the protocol, embryos were first washed to get rid of the unbound antibody in 

NTMT (100mM Tris pH9.5, 100mM NaCl, 1% Tween-20) three times for 10 minutes 

and the color was developed using staining solution (NTMT with 3.4µL/mL of 

100mg/mL NBT and 3.5µL of 100mg/mL BCIP). Staining reaction was stopped by 

exchanging the staining solution with PBS after the required pattern/staining is 

obtained (depends on the gene which was being probed). 

4.2.5 Animal transgenesis 

4.2.5.1 Lentivirus injection 

Female mice were super-ovulated by injecting 5 IU PMSG then 47 hours after by 

injecting 5 IU HCG and were mated on the same day. Embryos were collected from 

plugged females on the day of the plug and incubated in hyaluronidase (Sigma-

Aldrich Cat.No.H3884) solution (0.3mg/ml) to have the zygotes released easier as 

the digestion removes the sticky cumulus cells. Then the hyaluronidase solution was 

washed and zygotes were incubated in KSOM medium (Millipore Cat.No.MR106D) in 

the humidified incubator. Freshly pulled Harvard 1.0mm OD x 0.78 capillaries were 

filled with ~2µL of virus (see section 4.2.2.8.2 for production) and few picoliters of 

virus was injected into perivitelline space of the zygotes. After injection zygotes were 

incubated in KSOM medium at 37ºC incubator (5% CO2) and kept for 3 days in 

culture until they reached the blastocyste stage. 

 

4.2.5.2 Embryo transfer 

The embryos were transferred into timed pseudopregnant CD-1 fosters (2.5 days). 

Foster mice were anesthetized using 10µL per gram of mouse of the 1mL Ketamine, 

0.8mL Xylaxidin in 9.2 mL PBS mix. 
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5. Results and Discussion 

5.1 Impact of MusD sequence on gene expression 

  The phenotype observed in Dactylaplasia mice, the genetic pattern of 

inheritance and the genomic context of the mutations suggested that it could be due 

to an alteration of gene regulation, involving possibly long-range elements from the 

Fgf8 locus. In this study, I aimed to investigate if and how MusD elements could 

modify the communication of regulatory sequences and the normally associated 

promoters. 

5.1.1 Testing the previous models explaining the Dactylaplasia and SHFM3 
conditions 

1. A role of Fbxw4 and Fgf8 

Previous analysis of Dac2j mice had suggested that a down-regulation of 

Fbxw4 (observed by Sidow et al.) or of Fgf8 (because of its function in the AER) 

could be involved in the altered development of the limbs. In order to investigate the 

role of Fbxw4 gene in this limb malformations, we (together with Sandra Ruf) 

engineered mice with a chromosomal deletion between Lbx1 and Fgf8 in the locus 

(DEL(Lbx1-Fgf8) Figure 1) using loxP sites targeted to these genes and in-vivo 

TAMERE strategy (Hérault et al. 1998). The heterozygous animals for the deletion 

did not show any limb malformation. By mating DEL(Lbx1-Fgf8) animals with Dac2j 

animals, I obtained DEL(Lbx1-Fgf8)/Dac2j animals. The limbs of these animals were 

phenotypically similar to Dac2j heterozygous, and did not show the more severe 

monodactyly observed in surviving Dac2j homozygous animals. From these 

observations, we concluded that neither the loss of Fgf8 nor of Fbxw4 in the mutant 

limbs was importantly contributing to the Dactylaplasia phenotype. The role of Fbxw4 

was further questioned as Dac2j animals bred to C57BL/6J background has normal 

limbs despite still having a down-regulation of Fbxw4 caused by the insertion of 

MusD element into one of its introns (Kano, Kurahashi et al. 2007). Altogether, these 

data argued that neither the down-regulation of Fbxw4 nor Fgf8 was sufficient to 

cause the limb phenotype or even modulating its severity, and suggested that other 

genes were implicated most likely through a gain-of-function mutation. 
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2. The toxicity of MusD expression 

Intriguingly, Kano et al. observed an ectopic expression of MusD in the AER 

of Dac1j animals prior to or concomitantly of loss of Fgf8 expression in the AER 

(Kano, Kurahashi et al. 2007). They implied that this ectopic expression could have 

an effect on the survival of the cells in the AER. In theory, this toxicity could be due to 

an over expression of MusD retroviral proteins or to the mutagenic consequences of 

a highly increased transposition of ETn/MusD, via these proteins. However, ETn and 

MusD transposons are broadly expressed in different tissues from E7.5 to E13.5 

(Loebel et al. 2004) in normal mice without apparent problems. To further examine 

this model, I carried out in-situ hybridization studies on whole E10.0 Dac1j and Dac2j 

embryos with the RNA probes specific for MusD/ETn transcripts. These experiments 

confirmed that MusD transcripts were expressed in the AER of Dactylaplasia 

animals. In addition, I detected an ectopic expression of MusD in the forebrain 

domain of Dac1j and Dac2j animals, as well as in the mid-hind brain boundary domain 

of Dac2j animals (see Figures 2 and 3, MusD panel). Like for the AER, these domains 

coincided strikingly with the normal expression domains of Fgf8 in these structures. 

However, brains of Dactylaplasia heterozygous animals seemed to develop normally 

in contrast to what is observed with a hypomorphic allele of Fgf8 (Meyers et al. 

1998), suggesting the absence of massive cell death in this crucial signaling center. 

Thus, while we have confirmed that MusDs were ectopically expressed in 

Dactylaplasia animals, the possible toxic effects evoked by Kano et al. would have to 

be tissue-specific. They are not apparent in other domains of MusD ectopic and 

therefore AER is particularly sensitive to them. Furthermore, as MusD elements are 

Figure 1. The view of chromosomal re-arrangements introduced into locus 

For simplicity genes between Pax2-Tlx1 and Npm3-Pitx3 are not shown. 
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mouse-specific, a model putting forward the ectopic expression of MusD as primary 

cause of Dactylaplasia cannot explain the striking similar conditions resulting from 

duplications in human SHFM3 patients.  

3. SHFM3: a mini-trisomy syndrome leading to gene up-regulation? 

When initially discovered, the duplications found in SHFM3 patients led to the 

proposal that is genomic defect could be due to an altered gene-dosage, such as a 

mini-trisomy condition. To test this hypothesis we have engineered duplications along 

the locus. Mice with a duplication of the critical interval found in SHFM3 patients 

(between Lbx1 and Fgf8 genes (DUP(Lbx1-Fgf8) ) and with a much larger interval 

encompassing the largest duplication found in human (DUP(Pax2-Pitx3)) did not 

show any limb malformations, either in heterozygous or homozygous animals for the 

duplications (not shown). Therefore, the triplication or quadriplication of gene copies 

in the locus in mice did not lead to the phenotype observed in human. In order to test 

if other genes in the locus were expressed in Fgf8 domains, like MusD, we used in-

situ hybridization on E10.0 Dactylaplasia embryos to look at the distribution of 

mRNAs from the genes present in the critical interval in the Dactylaplasia models. 

We were unable to detect any up-regulation or ectopic expression of the genes 

tested (Lbx1, BTrc, PolL, Fbxw4 and Dpcd).  

5.1.2 Dactylaplasia: mutations causing complex regulatory alterations 

1. Effects on Fgf8 expression 

This study however revealed several additional changes for Fgf8 expression. 

In particular, Fgf8 was importantly down-regulated in the forebrain of Dac2j 

homozygous animals, concomitant to the ectopic expression of MusD in this domain. 

However, in Dac1j animals, the expression of Fgf8 was still robust in the forebrain 

(see Figures 2 and 3, Fgf8 panel). These additional effects could explain why Dac2j 

homozygous were never recovered from Dac2j heterozygous crosses. In fact, there 

might be other effects at later stages that were overlooked and contribute to 

additional phenotypes in homozygous mutants, due to Fgf8 loss of function in late 

domains. Furthermore, such loss of expression could account for the additional 

defects found in patients with a syndromic form of SHFM3 (Dimitrov et al. 2010). 

Interestingly, these defects (hearing disorders, micrognathia/microcephaly) are 

observed in regions which developed under the influence of the Fgf8 gene as 
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well. Importantly, this down-regulation in the forebrain was not seen in Dac2j 

homozygous animals over the C57BL/6j background (see Figure 4). Hence, the 

effects of the insertions of MusD on the Fgf8 expression domains correlated with the 

transcriptional status of Dac2j-MusD and the modifier locus, Mdac, is counter-acting 

the consequences of the insertions both at the morphological and molecular level, in 

the limbs and in the forebrain. 

2. Comparing the regulatory effects of the insertions and the position of enhancers 

In a parallel study, a PhD student in the group, Mirna Marinić, has identified 

and localized the position of multiple regulatory elements in this locus that are 

controlling Fgf8 (summarized in Figure 5).  

She found that a BAC covering about 200kb of Fgf8 3ʼflanking sequence 

contained the elements that could drive the expression of the reporter gene in an 

Fgf8-like manner (Figure 5a,b and c). Within this region, she identified several 

individual enhancer modules (size in the range of 800-2000bp) that each drove 

reproducibly the expression of a reporter gene under the control of a minimal 

promoter in a different subset of Fgf8 expression domains. In fact, some expression 

domains were represented with more than one element, indicating a redundancy or 

synergy of distinct elements for Fgf8 control. In particular, she found a total of five 

AER enhancers, four of which were located in introns of Fbxw4; three enhancers 

driving expression at or around the mid-hind brain boundary and as well as a 

forebrain enhancer. These elements are indeed controlling Fgf8 expression, as she 

showed a deletion from Pol λ gene to the middle of Fbxw4, including most of them 

was allelic to Fgf8 (Mirna Marinić, unpublished data). 

Amongst these different elements, one of them was possibly directly 

disrupted in a Dac mutant. The Dac2j insertion is in the middle of a conserved non-

coding element (Figure 6) even though it is only next to the most conserved portion. 

This element was shown to drive the reporter gene in forebrain and mid-to-hind brain 

(element is depicted with the yellow line in Figure 5a and the transgenic for the LacZ 

reporter is shown in Figure 5e), as well as in the neural tube and the developing 

kidneys. This insertion of a MusD next to the core-conserved part of this module 

could have impaired its regulation function and have contributed to the down-

regulation of Fgf8 in Dac2j animals. For some domains (e.g. the kidney) where the 

expression of Fgf8 is under the control of multiple redundant modules, these effects 

are difficult to see and we did not find kidney aplasia in the Dac2j/Fgf8null new borns, 
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in contrast to the DEL(Pol λ-Fbxw4)/ Fgf8null animals (Mirna Marinić, François Spitz 

not shown). Nevertheless, the transgenic analysis suggested that this element play a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

major role in the expression of Fgf8 in the forebrain. Supporting an effect of the 

insertion of its enhancer activity, as mentioned above, we found that Fgf8 was down-

regulated in the forebrain of Dac2j/Dac2j embryos. However, we detected also MusD 

expression in this domain in the place of Fgf8, and when the Dac2j mutation was in 

the C57BL/6J the expression of Fgf8 in the forebrain was unaffected (Figure 4). 

Thus, the Dac2j insertion does not seem to disrupt the regulatory potential associated 

with the conserved region next to where the element is inserted. Instead, as 

illustrated by the in-situ hybridization, both Dac2j and Dac1j animals showed reciprocal 

changes in MusD and Fgf8 expression (see Figure 2 and 3, MusD panel), 

Figure 5. The cis-regulatory architecture of Fgf8 locus 

a) The representations of targeted loxP sites in the locus (loxP into Lbx1 gene replaces Lbx1 with 

GFP). Four different lines that were used to engineer duplications or deletions in the locus are 

shown here. b) in-situ hybridization for Fgf8 c,d,e,f) The regulatory elements characterization by 

transgenic assays, using LacZ as a read-out. E10.5 embryos are shown here. g) The observed 

phenotypes of engineered re-arrangements in the locus. MHB: Midbrain hindbrain boundary, BA: 

Branchial arches, CP: Commissural  plate, AER: Apical ectodermal ridge. 
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b)  c)              d)                     e)                                  f) 
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corresponding to a competition mechanism. Interestingly, the comparison of the 

effects of Dac1j and Dac2j insertions suggested that MusD might be interfering 

differentially with the Fgf8 expression depending on its insertion site. For several 

domains of expression the positive effects on MusD expression and negative effects 

on Fgf8 expression correlated well with the proximity of MusD to the corresponding 

regulatory elements; and particularly when MusD is inserted in-between a regulatory 

module and Fgf8. For instance, expression domains depending on elements 

localized proximal to Fgf8 promoter (e.g. tailbud, somites) seemed to be unaffected 

in Dactylaplasia mice. The contribution of a midbrain enhancer that is more proximal 

to Fgf8 (Mirna Marinić, unpublished data and  (Inoue et al. 2008)) (shown by the red 

line in Figure 5a) could also explain why Fgf8 expression in that domain is mostly 

unaffected, while other mid-hind brain boundary elements localized in Fbxw4 introns 

could activate MusD (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In brief, this set of experimental evidence suggested that the MusDs inserted 

in the Dactylaplasia mice were hijacking several regulatory elements of Fgf8, leading 

to down-regulation of Fgf8 at different degrees, in a tissue-specific manner (Figure 

8). This hijacking is more robust when MusDs are located between the regulatory 

elements and the promoter, suggesting that the relative position of the different 

elements contribute to the outcome of this competition between MusD and Fgf8. 

From an Fgf8 perspective, these MusDs are acting as enhancer blockers. 

Figure 6. The position of Dac2j insertion relative to the closest conserved sequence. 
MusD does not split the region with the highest conservation 
 

 

 

 

 

 

 

 

 

 

Figure 7. The duplicated region in SHFM3 and relative positions of identified AER enhancers 
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Interestingly, the region that is duplicated in SHFM3 contains several of the modules 

shown to regulate Fgf8, notably four elements associated with the AER expression. 

As a consequence of the duplication, a set of these enhancers are moved away from 

Fgf8 (Figure 7). This raises the possibility that this change in their position relative to 

their normal target genes could lead to a change in their gene specific activity, hence 

they could rather act on another gene and drive it in a subset of Fgf8 specific 

domains (AER). Thus, we propose that a common cause underlying the limb 

phenotype in Dactylaplasia mouse and SHFM3 patients could be the ectopic 

expression of an endogenous gene from the locus, under the control of regulatory 

elements normally associated with Fgf8 expression in the AER.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. The model for enhancer blocking activity of MusD 
 
 (Green:AER, Yellow:Forebrain, Red:Mid-hind brain boundary) 
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The ectopic expression would be caused by preventing the normal interactions 

between Fgf8 and its enhancers, either by structurally moving them away from the 

gene (as in SHFM3) or by functionally preventing these interactions through 

enhancer blocking/competition activity (by MusD as in Dactylaplasia). We have not 

been able to directly detect any ectopic expression of additional genes, besides 

MusD in the AER of Dactylaplasia mice, which would have supported our model. 

However, as the limb malformation is caused by massive cell death in the AER, it 

could be difficult to detect such up-regulation, as the cells where it occurs could be 

rapidly lost.  

5.1.3 Characterization of MusD as an insulator using ex-vivo assays 

To test the role of MusD as an insulator/silencer, I used an ex-vivo system 

similar to what has been used previously to characterize other insulator elements 

(Chung et al. 1993). I chose the luciferase as a reporter gene in my experimental set-

up.  Given the size of MusD element, I subdivided the full length MusD into large 

overlapping 9 sequences (Figure 9a). All test constructs were obtained from a 

methylation deficient bacterial strain to avoid epigenetic changes that could impair 

the activity of the tested elements. The different constructs were linearized prior to 

transfection. These constructs were transfected into two different cell lines, Human 

Embryonic Kidney (HEK) 293T and NIH3T3, and the transfection efficiency was 

normalized using a renilla luciferase expression vector as an internal reference. 

These experiments were carried out together with Daria Shlyueva, a summer student 

under my supervision.  

We first investigated the potential of MusD as a silencer sequence by 

comparing the activity of constructs where MusD fragments were cloned upstream of 

the enhancer-promoter region (Figure 9b). We did not observe any reduction in the 

reporter gene activity for any of the fragments tested (Figure 10). Therefore, MusD 

fragments do not seem to act as silencers. Next, in order to test the insulator 

potential of MusD sequences, we inserted the MusD fragments between the SV40 

enhancer element and the promoter and checked firefly luciferase reporter (Figure 

11a). This classical method of insulator testing method is called Enhancer Blocking 

Assay (EBA, defined in the pioneer studies on the 87A7 locus in Drosophila for 

hsp70 and flanking scs (specialized chromatin structures) (Kellum and Schedl 

1992)).  
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Figure 9. Experimental set-up for ex-vivo assays, a) The overview of the test fragments. Each 

line below the annotated sequence represents a CG dimer. Full length MusD is partitioned into 

nine ~1.2kb fragments with ~0.4kb overlaps. These pieces of MusD are shown here as pn  (n 

is [1,9]). First piece (p1) covers 5ʼLTR and last piece (p9) covers 3ʼLTR of MusD.  b) SV40 

(Simian virus 40) early enhancer drives the firefly luciferase gene through an HSV-TK (Herpes 
simplex virus thymidine kinase) minimal promoter  

Figure 10. The silencer test of the MusD fragments 

The arbitrary units representation of luciferase reporter (firefly luciferase normalized to renilla 

luciferase) in HEK293T and NIH3T3 cell lines. Error bars represent the standard deviation 

between experimental triplicates.        
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We included β-globin locus HS4 insulator element (Chung, Whiteley et al. 1993) as a 

positive control. To control for effects that would be due to the increased distance 

between the enhancer and the promoter but not with bona fide insulator activity, we 

cloned a piece of the E.coli Kanamycin resistance gene of the same length (~1.2kb). 

Any fragment that was reducing the reporter gene expression significantly more than 

the neutral Kanamycin sequence and to a level comparable to HS4 insulator was 

considered as a potential insulator sequence. According to these criteria, I found in 

both cell lines that MusD fragments 2, 3, 4 and 6 reproducibly and significantly acted 

as insulator sequences (Figure 11b). 

To further confirm this activity and to complement the classical enhancer 

blocking assay, I repeated this assay with a different experimental design. In this set-

up the enhancer is localized between two distinct copies of the same promoter but 

cloned in opposite orientation. Each promoter drives expression of a different 

luciferase reporter, either renilla or firefly. The MusD fragments to be tested are 

placed between the enhancer and the promoter sequence driving firefly luciferase 

(Figure 12a). Changes in the ratio between renilla and firefly luciferase activities 

could indicate that the shared enhancer activity was re-distributed differently between 

the two promoters. Thus, this design allows identification of elements that could 

influence promoter competition. As a proof of principle, we first tested the HS4 

sequence and found that it showed strong insulator activity when compared to the 

Kanamycin resistance gene fragment (~20 folds reduction by HS4 and ~4 folds 

reduction by Kanamycin). With this assay, we found again that the MusD fragments 

2,3 and 4 acted as insulators in both HEK293T and NIH3T3 cells (Figure 12b). The 

overall values of luciferase activities were not significantly different between the 

constructs (Figure 12c), suggesting that there were not major silencing effects 

associated with the fragments (confirming the previous analysis). However, the 

values obtained with the minimal promoter used (HSV-TK) in NIH3T3 cells were very 

low, and close to background level, this suggests that this promoter is not eliciting a 

strong expression in these cells and explains potentially the greater variability 

obtained in NIH3T3 cells. 

Altogether, these experiments showed that several MusD regions have robust 

insulator/enhancer blocking activity mostly sequences 2, 3, and 4. These fragments 

are only partially overlapping; suggesting that more than one region contains 

insulator activity. In contrast, we did not identify any silencer elements within MusD 

sequence. 
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 To further narrow down the enhancer blocking sequence(s), embedded in this 

2kb long region formed by these 3 pieces altogether (excluding the parts overlapping 

with fragments 1 or 5 without insulator activity) I split it into eight fragments with 

100bp overlaps (Figure 13a). Their enhancer blocking potential was tested with the 

previously used strategies. As expected from the first analysis, I found multiple 

fragments displaying an enhancer blocking activity. From both strategies fragments 

1_2, 6_2 and 8_2 showed insulator activities of similar strength to chicken HS4 

prototypic insulator (Figure 13b,c). 

 

Figure 11. The enhancer blocking test in two cell lines 

a) Design of the construct for EBA. b) The arbitrary units representation of luciferase reporter 

(firefly luciferase normalized to renilla luciferase) in HEK293T and NIH3T3 cell lines.  

(-)enhancer represents the transfection construct without SV40 enhancer sequence (i.e. 

reporter gene expression driven only by the minimal promoter). Error bars represent the 
standard deviation between experimental triplicates.        
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Figure 12. The enhancer blocking test by two reporters  

a) Design of the construct for transient transfection assays. b) The ratio of the firefly luciferase 

activity to renilla luciferase activiy in NIH3T3 and HEK293T cell lines. Error bars represent the 

standard deviation between experimental triplicates.  c) The absolute reads of luciferase and 

renilla activities (shown in log scale) 
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Figure 13. The enhancer-blocking test for further divided fragments 

a) The division of new fragments (with a close-up to MusD element represented in Figure 

9a). b) The arbitrary units representation of luciferase reporter (firefly luciferase 

normalized to renilla luciferase) in HEK293T and NIH3T3 cell lines. c) The ratio of the 

firefly luciferase activity to renilla luciferase activiy in HEK293T cells. Error bars represent 

the standard deviation between experimental triplicates. 
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In vertebrates, several proteins have been shown to bind to insulator 

elements, such as NF-Y/YY1 binding for regulation of Hoxb4 (Gilthorpe et al. 2002) 

or USF proteins that are required for HS4 barrier activity (West et al. 2004). However, 

the CCCTC-binding factor (CTCF) is the only protein identified so far that both binds 

directly to insulator sequences and is required for their enhancer-blocking activity 

(Gaszner and Felsenfeld 2006). CTCF is an evolutionarily conserved DNA-binding 

protein, which binds to different DNA sequences through its 11-Zinc Fingers 

(Ohlsson et al. 2001). ChIP-chip or ChIP-seq arrays have identified consensus 

binding for CTCF (Kim, Abdullaev et al. 2007), (Chen et al. 2008). To see if CTCF 

could be involved in MusD fragment insulator activities, I looked for the presence the 

consensus sequence within fragments (using insulator database, 

http://insulatordb.uthsc.edu). Interestingly, I did not find any significant CTCF binding 

site within the three insulating fragments 1_2, 6_2, and 8_2. I analyzed sequence 

composition similarities of these three fragments (analysis by pairing the fragments 

one to another and searching for at least 90% of similarity for at least 15 bases). This 

analysis showed a short sequence with high similarity between p1_2 and p6_2 with a 

core AAAGGACAGAATA sequence (Figure 14). I performed a preliminary 

experiment to test the insulator function of this similarity region and few nucleotides 

of the flanking sequence from the p1_2 and observed a mild blocking activity, 

suggesting that it could indeed contribute to the insulating activity of the whole 

fragment. However, additional experiments would be required to further confirm this 

hypothesis and identify the possible protein associated with this region(s).  

In summary, we found that MusD elements could behave as functional 

insulators, confirming that, as suggested by the effects on Fgf8 expression in-vivo, 

this activity could account for the observed changes in the Dactylaplasia mice. We 

characterized multiple regions in the MusD sequence that could contribute to this 

activity. Interestingly, these elements do not contain CTCF binding sites, in contrast 

to most vertebrate insulators characterized so far, suggesting that it could correspond 

to new mechanisms of enhancer blocking. 

 

 

 

 

 

Figure 14. The sequence comparison of sequences with blocking activity 
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5.1.4 The characterization of the factors that contribute to Dactylaplasia and 

SHFM3 phenotypes 

 The model proposed in section 5.1.2, suggests that the enhancers that 

control normally Fgf8 expression could be re-directed to other genes, upon structural 

changes of the locus. We, and others, have shown that this is leading to MusD 

expression in an Fgf8-like manner in Dactylaplasia mice. We hypothesized that this 

could be followed by the activation of another gene in the AER, through the action of 

distal AER enhancers that are not able to act on Fgf8 anymore, MusD acting as an 

insulator. This model provides also a simple explanation for the human SHFM3 

relying on the same mechanism. The duplication found in SHFM3 patients includes 

several AER enhancers; the duplicated set of enhancers are moved further away 

from their normal target gene Fgf8, a situation that could free them from normal 

interaction rules and enables them to act on another gene. 

 In order to determine if such a regulatory re-allocation is possible after such a 

structural change we have engineered a tandem duplication of this locus using in 

vivo mediated Cre (Hérault, Rassoulzadegan et al. 1998) recombination between 

loxP sites targeted to Fgf8 (allele from (Meyers, Lewandoski et al. 1998)) and Lbx1 

(allele from (Vasyutina et al. 2005)). The duplication brought a copy of the 3ʼflanking 

region of Fgf8, which contains many regulatory elements contributing Fgf8 

expression, far from the remaining copy of Fgf8, but next to the duplicated copy of 

Lbx1 (Figure 15). This duplicated copy of Lbx1 is not functional, due to the insertion 

of a GFP reporter, under the control of endogenous Lbx1 promoter. Importantly, while 

the expression of Lbx1::GFP is normally restricted to Lbx1 expression domains 

(migrating myoblasts and a few neurons), in the context of the duplication, GFP was 

detected in Fgf8 expression domains such as AER, forebrain, mid-hind brain 

boundary and branchial arches (Figure 15). This experiment demonstrated that upon 

chromosomal re-arrangements in this locus, new enhancer-promoter associations 

could take place leading to ectopic gene expression.  

Lbx1 is coding for transcriptional factor, which determines migratory routes of 

muscle precursor cells (Schäfer and Braun 1999), (Brohmann et al. 2000) and 

contributes to neuronal patterning (Jagla et al. 1995). However, it is not known to be 

involved in limb patterning and growth, apart from its role in limb skeletal muscle 

formation. Interestingly, Marc Friedli (University of Geneva) found that Lbx1 was 

mildly up-regulated in homozygous Dactylaplasia limb buds, using quantitative real 

time PCR on stage E11 whole limbs. However, this analysis also revealed a general 
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up-regulation of genes specific for the proximal limb bud and respectively a down-

regulation of genes specific for distal limb bud (Marc Friedli, personal 

communication). Thus, we concluded these changes could be mainly due to the 

truncation of the distal limb observed in these animals, leading to a relative 

enrichment for proximal cells (including Lbx1-expresing muscle precursors). The 

duplication between Lbx1 and Fgf8 genes covers the duplicated interval in SHFM3, 

but did not lead to limb malformations in transgenic mice. However, in this allele any 

possible effect of Lbx1 in SHFM3 would be functionally masked, as the duplicated 

Lbx1 gene has been replaced by GFP (which we indeed observed expressed 

ectopically).  

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

To test the consequences of ectopic expression of Lbx1 in the AER, I cloned the 

cDNA of this gene under the control of the promoter region of Msx2 gene, which is 

specially driving expression in the AER of the limb buds (Liu et al. 1994). This 

transgene was cloned into a lentiviral backbone to allow efficient production of 

transgenic animals by lentivirus-mediated transduction (Lois et al. 2002). The 

production of the virus and injection into mouse embryos was performed by Katja 

Langenfeld. Out of the 14 transgenic embryos collected at stage E14.5 and E16.0, 

we found four had duplicated or enlarged thumbs (Figure 16). This preaxial 

polydactyly was mostly observed in the hind limbs and was not fully penetrant as 

some animals only showed it in one of their appendages. Interestingly, this 

Figure 15. The response of GFP to position of enhancers 

The duplication between Fgf8 and Lbx1 brings the 3ʼ flank region of Fgf8 close to Lbx1 

promoter driven GFP. As the regulatory elements that are sufficient to form Fgf8 expression 

domains are in this locus, expression of the reporter is gained in the same tissues. 
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   Transgenic&unaffected limb     Affected limbs  
 

 

 
 

              c) 

                            

 

 
          WT                         Msx1/2-/- 

malformation was similar to the polydactylous morphology observed in Msx1-/-;Msx2-/- 

double null forelimbs (Lallemand et al. 2005). This phenotype correlated with the 

delay in AER regression, as Msx genes help control cell death in the anterior 

apoptotic domain (Lallemand et al. 2009). As Lbx1  is structurally similar to Msx and 

has a similar binding sequence (ATTA), we hypothesize that Lbx1 could compete 

with Msx genes and in a dominant negative way, interfere with the regulation of the 

Msx-downstream target genes. Thus, we found that ectopic expression of Lbx1 led to 

abnormal limbs, but instead of an ectrodactyly due to premature death of the AER, 

we observed an additional digit, suggesting rather a maintenance/extension of the 

AER. Interestingly, SHFM3 patients have also frequently proximally placed thumbs 

and/or triphalangeal thumbs (TPT) and preaxial polydactyly, in about 50% of the 

cases (Elliott et al. 2005), (Everman et al. 2006). These features were more 

frequently observed for patients with a duplication break point between LBX1 and 

βTRC, while patient with a duplication that is extending up to the LBX1 gene had 

classical central longitudinal deficiency. However, these comparisons are difficult, 

given the variability of the SHFM phenotypes and the limited number of patients with 

detailed mapping of the break point. Nevertheless, our analysis suggests that an 

over-expression of Lbx1 could be responsible for the observed preaxial polydactyly, 

while another gene or factor is required for the ectrodactyly.  

 

 

 

 

  

 

 

 

 

 

 

 

As mentioned in the introduction, a disruption of the Wnt/β-catenin pathway is 

leading to impaired AER maintenance due to increased apoptosis (Barrow, Thomas 

et al. 2003). βTrc, which is encoded by a gene located in the Dactylaplasia locus, 

binds to the phosphorylated N-terminus of β-catenin. This is causing the 

Figure 16. Limb phenotypes of Msx2::Lbx1 transgenic embryos at E14.5 

Arrows point the duplicated thumbs. 
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ubiquitination of β-catenin by an E2 ligase and over-expression of βTrc promotes the 

down-regulation of β-catenin (Hart et al. 1999). In addition to this, β-catenin and a 

downstream mediator of the Wnt-pathway were reported to be down-regulated in 

limbs of Dactylaplasia embryos (Schwarzer W., PhD thesis, Freie Universität Berlin, 

2010). Considering all these findings, we tested if βTrc expression in the AER could 

be the gene causing ectrodactyly in Dactylaplasia mice and SHFM3 patients. We 

used the same strategy as for Lbx1 expression in the AER via lentiviral-transduced 

transgenesis. Both the Msx2 promoter and a compound driver including an AER Fgf8 

enhancer, which was characterized Mirna, were used for the forced expression 

experiments. With both of the drivers we did not observe ectrodactyly in E14.5 

transgenic animals (thirteen and thirty-eight embryos respectively). Knowing that 

different isoforms of βTrc exist and they display differential activities in the regulation 

of Wnt signaling, we repeated the experiment with a cDNA for the isoform that was 

shown to have the strongest inhibition of the Wnt signaling in (Seo et al. 2009). We 

collected embryos at different stages (E14.5 and E18.0) and did not observe any limb 

malformations (thirty-nine and one embryos respectively). These results suggested 

that either the expression stage of βTrc in our assay differed from the real situation in 

mutant animals or this Dactylaplasia limb phenotype is caused by another gene.  

In brief, we showed that chromosomal re-arrangements, similar to the one 

that is leading to SHFM, could alter the regulatory landscape of the locus and enable 

expression of the other genes in the locus in place of Fgf8. We showed that the 

ectopic expression of Lbx1 in the AER could explain an aspect of the phenotypic 

spectrum observed in SHFM3 patients. However, there seems to be a complex 

relationship between other genes causing variation of limb phenotypes and other 

syndromes. This diversity of phenotypes could be due to different combinations of 

interactions between genes and enhancers depending on the break points, which 

alter their relative locations. Therefore, changes in the enhancersʼ capacity to act on 

genes that could have detrimental consequences upon misregulation in some tissues 

might cause the syndromic forms of the disease.  
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5.1.5 Investigation of the influence of MusD on neighboring genesʼ expression 

in Olig2/Olig1 locus 

 In order to investigate if the MusD-mediated gene regulatory changes were 

specific to the Fgf8 locus, we aimed to examine possible gene expression changes 

associated with MusD insertion/expression in different loci. For this purpose, I 

collected a list of MusD insertions close to genes in the C57BL/6J reference genome 

using the BLAT algorithm with a full length MusD as an input. Only few full length 

MusD elements were found in vicinity of genes. This paucity of MusD elements in 

proximity to genes has already been reported by Maksakova et al. (Maksakova et al. 

2009). It may indicate a preferential insertion of MusDs outside of these regions or 

reflect the consequence of a purifying selection against MusD insertions close to 

genes (i.e. especially if they interfere with the precise way of gene control). However, 

this search revealed the presence of a MusD element inserted on chromosome 16, in 

between the Olig2 and Olig1 genes (see Figure 17 for the locus). Olig genes are 

dynamically expressed from E9.0 to E14.5 in the spinal cord and are associated with 

neurogenesis (Lu et al. 2000) (Sun et al. 2001). These two genes are closely related 

bHLH transcription factors (Olig1 is 98% similar to Olig2 in the bHLH domain) and it 

is considered that this bigenic cluster has arisen via tandem gene duplication. 

Interestingly, these genes are expressed in the same cells and Olig1 could 

complement the effects of a loss of Olig2 for oligodendrocyte development in the 

brain (Lu et al. 2002), underscoring further their functional likeness. The similarities of 

expression of these two genes suggest that they might be controlled by same 

regulatory elements. Indeed regulatory elements, which drive expression of reporter 

genes in co-expression domains of Olig genes, were identified in the locus (Figure 

17a,c) (Sun, Hafler et al. 2006), (Friedli, Barde et al. 2010). The MusD inserted there 

belongs to the same young-MusD family that includes the Dac1j-MusD and Dac2j-

MusD elements. Since MusD insertions are rather polymorphic amongst mouse 

laboratory strains (Zhang et al. 2008), I used PCR to look at its distribution in different 

strains. I found that if this element is present in the C57BL/6J strain, it is absent in 

BALB/cJ and 129 strains. Since the effects of MusD in Dactylaplasia strains were 

strain-dependent and notably different between C57BL/6J and BALB/cJ because of 

the Mdac gene, I considered that this modifier gene could also eventually modulate 

the consequences of the presence of a MusD. For that purpose, I have backcrossed 

C57BL/6J mice with BALB/cJ and obtained the MusD element inserted in the Olig2,1 

locus (from C57BL/6J) with the mdac condition (from BALB/cJ). Both alleles were 
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a) 

 

 

 
b)           c) 

genotyped by PCR, using the polymorphic SNPs for Mdac/mdac (from genetic 

mapping) and the region that flanked the MusD in Olig2,1 locus. Thus, I obtained a 

stock of animals that were homozygous for the MusD insertion in Olig2,1 locus and 

for the permissive modifier allele (Olig2,1-MusDhom; mdac/mdac, depicted as mdac). 

Importantly, bisulfite sequencing analysis showed that the Olig2,1-MusD element is 

methylated in C57BL/6J, while it is unmethylated in the mdac/BALB/cJ background 

(see Figure 20 later).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Then, I compared Olig genes expression levels when MusD was absent (BALB/cJ), 

was present and methylated (C57BL/6J) and was present but unmethylated (mdac). 

Quantitative real time PCR was carried out using E11.0 and E14.5 brain and neural 

tube tissues by normalizing the test genes to multiple housekeeping genes (Pgk1, 

Actb and Gusb). This anaIysis revealed an overall increase of Olig1 gene expression 

for all the tissues and stages of mdac embryos checked but most significantly for 

E11.0 for brain tissue as Olig1 gene level has increased whereas Olig2 gene level 

has decreased in comparison to embryos from parental strains (Figure 18a). This led 

to a change in the ratio between the expression level of these two Olig genes at this 

stage, in case of the presence of an unmethylated MusD element in the locus, while I 

observed no significant difference between two parental strains (Figure 18b). 

Figure 17. Olig2/Olig1 locus 

a) The representation of the genes and the MusD in the locus. b) Expression domains of Olig2 and 

Olig1 genes detected by in-situ hybridization on E11.5 embryo sections (pictures taken from (Friedli 

et al. 2010)). c) Two of the conserved sequences characterized as regulatory elements in the locus 

by transgenic assays (pictures taken from (Friedli, Barde et al. 2010) and (Sun et al. 2006)) The 

elements are depicted as lines in a). 
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b) 
Olig2/Olig1 ratio 

Stage & Tissue 
BALB/cJ mdac C57BL/6J 

E11.0 Brain 13.85 3.02 9.58 

E11.0 Neural Tube 17.91 7.96 12.68 

E14.5 Brain 1.75 0.94 2.31 

E14.5 Neural Tube 1.04 0.73 1.04 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These findings suggested that the MusD insertion altered the expression of the Olig 

genes, depending on the methylation status of the MusD, in a manner analogous to 

what has been observed for the Fgf8 locus. In collaboration with Ben Martynoga and 

François Guillemot (MRC, London), we have investigated the enhancer potential of 

four conserved sequences in the locus that are bound by transcription factors specific 

to neural cell differentiation. In addition to one element from our assays there was 

another element from VISTA enhancer browser that is downstream of Olig1 gene 

and both elements were driving the expression of the reporter gene (LacZ) partially in 

Figure 18. Olig genes expression levels in E11.0 and E14.5 embryos 

a) Olig1 and Olig2 were normalized to multiple internal controls for each sample, then all 

genotypes were compared to C57BL6j. Error bars represent the standard error of the 

mean between biological replicates (four different RNA preps for mdac, three different 

RNA preps for BALB/cJ and C57BL6j) b) ratios of two genes for each strain. 
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the brain expression domains of Olig genes (not shown). MusD element is located in 

between these elements and the Olig2 gene, indicating an enhancer blocking activity 

of MusD when taken into account together with the down-regulation of Olig2 gene. 

The changes in relative levels of Olig genes for mdac embryos were less significant 

at E14.5 (Figure 18b). This could be explained by a compensatory mechanism in 

ratios of two genes during development, similar to the one which has been described 

in the Olig2 knock-out situation (Zhou and Anderson 2002), (Lu, Sun et al. 2002).  

Therefore, an alternative hypothesis would be that MusD is only diminishing the 

expression of Olig2 and Olig1 is up-regulated due to an independent effect. 

In addition to these three strains I have tested a forth one obtained by the 

cross of Olig2,1-MusDhom; mdac/mdac animals with C57BL/6j animals and collected 

embryos from this breeding at same stages as for other strains. These embryos are 

heterozygous for Mdac locus and were expected to be equivalent to C57BL/6j 

embryos in this locus, as MusD would be silent. However, we found that this MusD 

was methylated in the brain tissue in a heterogenous manner (see Figure 20 later), 

and accordingly the Olig gene levels in these embryos were more similar to levels in 

mdac embryos. 

This analysis of a different locus showed that the impact of MusD elements 

on endogenous gene regulation is a prevalent feature and that their potential to 

interfere with gene expression modules is not restricted to the Fgf8 locus. It also 

emphasized that these effects are linked to their transcriptional and epigenetic status, 

which appeared to be under the control of the Mdac locus. 

5.2 Epigenetic control of MusD silencing 

5.2.1 Mdac dependent differential methylation of MusD 5ʼLTRs  

1. Effects of Mdac on MusD 

The Dactylaplasia mice were bred to several other strains, some of the breeding 

gave only offspring with normal limbs (Chai 1981), suggesting that the manifestation 

of the Dactylaplasia phenotype is depending on a second unlinked locus (Mdac). 

Later on, this second locus was mapped to mouse chromosome 13 (Johnson, Lane 

et al. 1995). This correlation of the modifier locus with the Dactylaplasia phenotype 

could be explained by two different mechanisms. According to first model, Mdac may 

act downstream of the Dactylaplasia mutation, for example by counteracting the 

factor(s) that leads to cell death in the AER. In the second one, Mdac could act in 

parallel to the Dactylaplasia mutation and help the survival of the AER in a 
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Dactylaplasia dependent manner. As reported before, Mdac does not only control the 

manifestation of the ectrodactyly in Dactylaplasia mice, but also affects the 

expression of the inserted MusD causing the mutation and the antiparallel changes of 

Fgf8 (in Results part 1). These findings indicated that Mdac is acting prior the down-

regulation of Fgf8 and limb phenotype. As summarized in the “Introduction”, retroviral 

sequences are controlled by many different epigenetic mechanisms, which play an 

important role in controlling their transcriptional activities. Therefore, we considered 

that Mdac might be acting on MusD via an epigenetic silencing mechanism targeted 

either on the element itself or that could alter the degree of specificity of enhancer- 

promoter communications within the locus. In order to address this question, I used 

bisulfite sequencing to explore the cytosine methylation levels of MusD LTRs on DNA 

samples from permissive (Dac2j-MusDhet;mdac/mdac) and resistant (Dac2j-

MusDhet;Mdac/mdac) strains. I performed this experiment with two tissues (brain and 

limb) where MusD transcripts are detected in the homozygous mutants (see Results 

part 1) and one tissue where no MusD expression is not detected (heart). All tissues 

were isolated from E10.5 embryos. I saw a very significant different degree of CpG 

methylation of MusD-5ʼLTR between permissive (mdac) and resistant (Mdac) 

embryos, that is extending into MusD sequence. Resistant (Mdac) embryos had 

excessively methylated 5ʼLTR regions whereas permissive (mdac) embryos almost 

completely lacked DNA methylation inside and around the 5ʼLTR (Figure 19). This 

differential methylation also extended into the MusD sequence downstream of the 

5ʼLTR. However, the 3ʼLTR region of the MusD was only mildly methylated, and to 

the same extend in resistant (Mdac) and permissive (mdac) samples. This finding 

provided an internal control for our assay and also showed that the spreading of the 

DNA methylation found in resistant (Mdac) animals over the Dac2j-MusD was limited 

to its 5ʼend. Altogether, we found that the 5ʼend of the Dac2J-MusD was differentially 

methylated for all the tissues tested depending to the allele of the modifier locus. 

Importantly, this was also true in tissues where MusD was not expressed (heart) or in 

tissues where the proportion of cells showing MusD expression (e.g. AER for limbs) 

was low in comparison to the whole tissue size. This is suggesting that the lack of 

MusD expression observed in resistant (Mdac) animals was due to the epigenetic 

silencing of the transposon, and not the opposite. Conversely, it suggests that the 

capacity of MusD to interfere with Fgf8 expression was blocked by this Mdac-

dependent  

 



Results and Discussion 

90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

epigenetic modification, as its silenced LTR could not titrate or block Fgf8 remote 

enhancers. Noteworthy, during the course of this study, Kano et al. showed 

differential methylation of Dac1j-MusD between permissive and resistant strains, 

further supporting my observations (Kano, Kurahashi et al. 2007). In order to see if 

Figure 19. DNA methylation status of Dac2j-MusD LTRs 

Empty boxes represent unmethylated and full boxes respresent methylated positions. 
Blue rectangle marks the CG positions in LTRs 
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there was a locus-specificity for Mdac dependent methylation of MusD-5ʼLTR, I 

examined the degree of cytosine methylation in the 5ʼLTR for the MusD inserted in 

the Olig2-1 locus, in the three types of embryonic tissues used before. This example 

was particularly interesting because in this case, the MusD insertion occurred in a 

non-permissive strain (C57BL/6J). In this strain, similar to what was found in Dac1j-

MusD and Dac2j-MusD, the 5ʼLTR of the MusD element was strongly methylated in 

resistant (Mdac) animals (e.g. in the limbs) (Figure 20). However, when this MusD 

was brought in a permissive (mdac) background, by breeding it to BALB/cJ, its 5ʼLTR 

became unmethylated. In two other tissues (heart, brain), I found the same 

differential DNA methylation, even though some significant unmethylated LTRs were 

present in these tissues of resistant (Mdac) embryos, suggesting some 

heterogeneity, either in the cell population, or in the epigenetic marks present over 

this LTR (Figure 20). Yet, these results showed that Mdac silencing action on MusD 

element is mostly position and cell-type independent. Furthermore, this methylation 

process seems to be occurring somatically, as embryos obtained from the breeding 

of permissive strain to the resistant strain had methylated the MusD-5ʼLTR.  

2. Comparison of the effects of Mdac on MusD and ETnII methylation 

 Non-autonomous ETnII elements share similar LTR regions with MusD 

elements (Mager and Freeman 2000). Therefore, LTR methylation status of ETn 

elements would be informative for the specificity of MusD methylation. I examined the 

epigenetic status of the 5ʼLTR of three ETnII sequences that were common to both 

mdac (BALB/cJ) and Mdac (C57BL/6J) strains and another ETnII that is specific to 

C57BL/6J that was brought to mdac (BALB/cJ) background via the backcrossing with 

BALB/cJ strains (next to Frmbd4 gene). We did not consider ETnIIs localized in 

regions corresponding to constitutive heterochromatin, but only ones that are in 

similar genomic context (around active genes) to the MusD elements analyzed 

previously. One of these selected EtnII sequences resides inside a protein-coding 

gene (Chr1, SH3bp4) and the other three are around other protein-coding genes 

(Chr6 and 11). The element found only in C57Bl/6J was brought into mdac (BALB/cJ) 

background via outcrossing with BALB/cJ strains, like describe for Olig2,1-MusD. 

Indeed, I used the very same DNA samples that showed differential methylation for 

MusD for this analysis. In contrast to the MusD, none of these ETnII sequences were 

differentially methylated on their 5ʼLTR between permissive (mdac) and resistant 

(Mdac) embryonic tissues (Figure 21). Thus, Mdac seemed to discriminate between  
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 Figure 20. DNA methylation status of Olig2-1-MusD LTRs 

Empty boxes represent unmethylated and full boxes respresent methylated positions. 

Blue rectangle marks the CG positions in LTRs 
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ETnII and MusD, despite their almost identical LTR sequences. As the methylation 

extended further inside the MusD element, it is suggesting that Mdac could initiate 

the methylation of or possibly recognize specifically the regions that are present in 

MusD (e.g. pol, pro, gag) but have been lost in their ETnII derivatives. Accordingly, 

Maksakova et al. showed a difference in the extent of cytosine methylation between 

ETnII and MusD elements (Maksakova, Zhang et al. 2009), suggesting that these 

elements were controlled differently.  

To compare more globally the methylation of ETnII and MusD in BALB/cJ and 

C57BL/6J mice, we compared the Southern Blot profile of samples digested with 

methylation-sensitive restriction enzymes and hybridized with specific probes. This 

method was used for MusD and ETnII repeats in cell lines (Maksakova, Zhang et al. 

2009). I have used the same method on two DNA samples from BALB/cJ and 

C57BL/6J E10.5 brain tissue. The first combination of enzymes (PstI+XhoI) was not 

blocked by cytosine methylation, therefore just released DNA fragments of MusD and 

ETnII at any location they are inserted and represented the input. The second 

(PstI+NotI) and third (PstI+AfeI) sets of enzymes only cut if the cytosine in 

corresponding restriction site in the 5ʼLTR region or respectively in the common 

region was unmethylated. Importantly, the fragment sizes generated for MusD and 

ETnII were different, allowing to distinguish them even when the common region of 

these two repeat sequences was used as a probe. Altogether, these three 

combinations provide global information regarding the methylation status of MusD 

and ETnII at two cytosine positions in the 5ʼLTR and the common region. They 

revealed that BALB/cJ and C57BL/6J tissues showed differential methylation at 

5ʼLTR for MusD, albeit affecting only a small portion of elements (Figure 22). The 

majority of MusD/ETnII elements was methylated independently of the strain, 

considering many elements are away form genes and probably found in 

heterochromatin regions this is not unexpected. Therefore, Mdac allele does not 

control DNA methylation as globally as DNMT1 (in Dnmt1 mutants, MusD underwent 

a dramatic loss of methylation in ES cells (down to ~20%) (Dong, Maksakova et al. 

2008)). However, the specific band corresponding to unmethylated MusD elements 

(as shown in Figure 22, second half of the blot) was much stronger in BALB/cJ than 

in C57BL/6J, despite a similar number of elements in the two strains, as judged by 

the intensity of bands in the first lane. ETnII elements seemed also less methylated in 

BALB/cJ embryos, as the bands obtained with enzyme combinations 2 and 3 

digestions are more intense compared to C57BL/6J
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lanes; however in this case the first lane (input) showed also more intense signal, 

reflecting probably the higher copy number of ETnII elements in BALB/cJ strain. 

Next, I explored the differences in the expression of MusD or ETnII elements 

between C57BL/6J (resistant) and BALB/cJ (permissive) strains by quantitative real 

time PCR on E10.5 embryos (same developmental stage that was used for DNA 

methylation analysis). MusD was not differentially expressed in these two strains, 

most likely due to majority of the silenced population at an earlier stage of 

development (Figure 23). In contrast, ETn family transposons were significantly more 

expressed in BALB/cJ strain (Figure 23). Furthermore, this ~10 fold more expression 

of ETnII elements was halved in the hybrid embryos, that are obtained by crossing 

BALB/cJ and C57BL/6J strains (Figure 23). This effect was probably a reflection of 

the changes in copy numbers, which is consistent with the observations on the 

Southern Blot (Figure 22, BALB/cJ vs. C57BL/6J ETnII intensity comparison in the 

first lane). Indeed, ETns are known to differ in copy number and insertion site among 

different inbred strains (Zhang, Maksakova et al. 2008). Therefore, the differences in 

the expression levels of ETns may correlate with the activity of enhancers that they 

can trap in the loci they are inserted into. Moreover, it is known that ETn elements 

use MusD retrotransposition machinery (Ribet, Dewannieux et al. 2004) and 

therefore in the permissive strain (BALB/cJ), where some MusD elements are 

unmethylated and transcribed, probably had an increased chance of 

retrotransposition and expanding.  

Figure 22. Southern Blotting 

for DNA methylation detection 

DNA was extracted from E10.5 

brain tissue (and the rest of the 

embryo as well, which did not 

differ from the result shown 

here) and digested with three 

different combination of 

enzymes. Combination number 

1, releases the MusD/ETnII 

elements, thus lane1 is for 

input. Combinations 2 and 3 

cut only if cytosine is 

unmethylated. 
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From this analysis, we concluded that Mdac allele is not a factor counteracting the 

cell death in the AER or helping AER maintenance and survival in modifying 

Dactylaplasia phenotype. Instead, the primary target of Mdac is the MusD elements 

themselves. Mdac controls the epigenetic status of MusDs, which is reflected by the 

methylation of their 5ʼ LTR. In doing so, Mdac influences the capability of MusD to 

trap enhancer elements and prevents them from interfering/blocking the expression 

of surrounding genes. Furthermore, dominant mode of inheritance of Mdac suggests 

that it is a gene that is present in the resistant C57BL/6J strain but not in the 

permissive BALB/cJ strain. Importantly, the resistant allele from one of the parents 

could silence a MusD insertion provided by the other parent in all tissues, therefore 

Mdac is acting on MusDs somatically. These effects of Mdac seemed to be more 

prominent on a subset of MusDs, as the majority of MusDs was likely to be silenced 

already via other mechanisms that are probably redundant to the action mechanism 

of Mdac. This also suggests that Mdac has a more specific function to silence 

potential escapers of a more global silencing action, so it may immediately act on 

MusDs somatically. Another possible explanation for the general silenced status of 

MusD elements is that they could be mostly localized in heterochromatin portion of 

the genome. 

 

5.2.2 Mapping of the Mdac locus 

 From this study and another one (Kano, Kurahashi et al. 2007), Mdac 

emerged as a new gene controlling the silencing of a specific type of ERV. Despite 

Figure 23. Expression of 

MusD/ETnII elements at E10.5 

Quantitative real time PCR 

was performed on whole 

embryonic extracts of three 

biological replicates. MusD, 

ETnII and ETnI expression 

was normalized to multiple 

houskeeping control genes 

(Actb and Pgk1), then each 

genotype was normalized to 

C57BL/6J. 
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its broad mapping to chromosome 13, the nature of Mdac was still unknown. In order 

to identify Mdac, we designed a strategy to map this locus finely using a genetic 

segregation approach. For this purpose, we selected SNPs from the Perlegen SNP 

database (Jackson Laboratory, http://phenome.jax.org/) that are associated with 

restriction enzyme site differences between BALB/cJ and C57BL/6j. I have designed 

21 pairs of primers spanning these SNPs covering slightly more than the locus 

mapped by Johnson et al (Johnson, Lane et al. 1995). The breeding scheme for 

mapping involved parents that are heterozygous for the MusD insertion over a 

resistant background (Dac2jhet; MdacC57BL/6j/BALB/cJ) and that are permissive (BALB/cJ) 

to Dactylaplasia phenotype, so none of the parents had malformed limbs. The 

progeny was screened initially for limb malformation, then the presence of the Dac2j-

MusD. The origin (C57BL/6J or BALB/cJ) of the chr13 was deduced from the 

segregation patterns of the specific SNPs allowed to distinguish between the two 

strains (summarized in Table 1).  

 

Generation Genotype Phenotype 

Parent Dac2jhet; MdacC57BL/6j/BALB/cJ WT 

Parent MdacBALB/cJ/BALB/cJ (mdac) WT 

F1 Dac2jhet; MdacC57BL/6j/BALB/cJ WT 

F1 Dac2jhet; Mdac BALB/cJ /BALB/cJ Dactylaplasia 

 

 

 

 

Genomic DNA from 215 Dac2j-MusDhet animals was examined for recombination in 

the Mdac interval by controlling initially for SNPs rs61801304 and rs52665098 

(Chr13: 54232729-76357515, shown as light orange in Figure 24). We found that the 

limb phenotype was 99% penetrant with the status of the mapped Mdac interval 

considering these markers. Twenty-one of 215 offspring exhibited recombination 

between rs61801304 and rs52665098, and were further genotyped with the 

additional SNPs located in between to narrow down the corresponding break point. 

Among these, two independent recombination events placed Mdac within a 1.3 to 

1.7Mb interval (Figure 24). This new interval excluded the previously considered 

strong candidates based on their involvement in limb development, such as Fgfr4, 

Ror2, Msx2 and Ptch1. According to genome annotations, we initially found that the 

Table 1. Breeding scheme for the mapping of Mdac interval. 

Parents and the screened offspring listed here. 
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a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) 
  

new Mdac interval contained a cluster of Cathepsin genes, two fructose 

bisphosphatase genes and a large cluster of tandem Zinc finger proteins that 

contributed highly to repeated nature of the interval (Figure 25).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Mdac locus mapping 

a)In total 215 Dac2j-MusDhet; Mdachet animals were mapped. Two animals formed the smallest boundary for the 

locus (marked with lines). Starting positions for mapping included SNPs at Chr13: 34203888 and Chr13: 

103907429 (~70Mb), the positions for the smallest locus included SNPs at Chr13: 61653221 and Chr13: 

62981912 (~1.3Mb). b) relevant positions of the SNPs that were used in the mapping and the numbers above 

represent the animals that had break points at corresponding positions. 
Orange rectangles in b) represent the SNPs that were used for initial screen and if there was a break point between these SNPs, the 
mapping was continued until the break point was found. Pink rectangles represent the SNPs that gave the smallest interval. 
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5.2.3 Characterization of the Mdac locus 

To better characterize the Mdac interval I used other genomic resource to compare 

its organization in other known resistant and permissive inbred strains. Johnson et al. 

reported SWR/J, AKR/J, C3H/J, DBA/2J strains as resistant in addition to C57BL/6J 

and 129/S1ImJ, NZW/LacJ, SMc/Ckc and LG/Ckc strains as permissive in addition to 

BALB/cJ (Johnson, Lane et al. 1995) and NOD/ShiLtJ was later shown to be a 

permissive strain (Schwarzer W., PhD Thesis, Freie Universität Berlin, 2010) 

(summarized in Table 2). In the wild derived mouse strain CAST/EiJ the inheritance 

of the phenotype was found to be variable, suggesting a partial activity by Mdac in 

this strain (Johnson, Lane et al. 1995). Firstly, the coverage from a 129S7/SvEv BAC 

library over this interval was specifically much lower in comparison to BAC library 

from the C57BL/6J genome or to the immediate surrounding genes (Figure 26, 

Ensembl data). A comparative study probing for segmental duplications and/or CNV 

regions amongst mouse genomes from different strains, in which a microarray 

platform that contained probes against previously identified variable regions was 

used (She et al. 2008), generated a valuable resource for structural variations for 

inbred strains. I have compared several of the known permissive and resistant strain 

on the browser provided by this study. The Mdac interval seemed to be partially 

deleted in the permissive strains 129S1/SvJ, A/J, BALB/cJ and NOD/LtJ (Figure 27). 

All these data pointed out consistently a copy number variation in the locus where 

Mdac was mapped that also correlated with the permissiveness of the strain for 

Dactylaplasia phenotype. It corresponded to ~0.5Mb of sequences that were present 

in the C57BL/6J reference genome, but deleted in a number of other strains. 

 

 

 
 

 

 

 

Inbred strains status for Dactylaplasia permissiveness 

SWR/J, AKR/J, C3H/J, DBA/2J Resistant, normal limbs. 

129/S1ImJ, NZW/LacJ, SMc/Ckc, LG/Ckc, 

NOD/LtJ 

Permissive, malformed limbs. 

CAST/EiJ Resistant F1 hybrids, backcrosses lower penetrance 

than expected. 

Table 2. Mouse inbred strains Mdac allele status. 
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129S1/SvI
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BALB/cByJ 
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DBA/2J 

NOD/LtJ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Mdac interval BAC coverage from 129 strain to C57BL/6J 

Low BAC coverage of the permissive strain in the mapped Mdac interval marked with the red 

frame. 

Figure 27. Comparison of mouse inbred strains for copy number variations (CNVs) 

Resistant strain shown by red shade and the permissive strains with blue shade, all strains are 

compared to C57BL/6J genome (resistant strain). Red bars on the genome bar indicate 

missing positions in that particular strain. (assembly MGSCv3 (mm2) mouse paralogy) 

) 

 

C57Bl/6J  
BAC 
library 

BAC  
from  
129 
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If this interval was predicted to be deleted in the genome of the inbred strain, that 

strain was permissive to Dactylaplasia phenotype. Given the repetitive characteristics 

of the interval, it was difficult to design specific probes or oligos detecting a single 

part of the locus, therefore I designed only one pair of oligos that amplified a single 

product and I found that was missing in the permissive 129 and BALB/cJ genomes 

(Figure 28). Then, taking this as the start point (Chr13:62013106-62013880), the 

presence of PCR products that could be amplified from C57BL/6J genome was 

controlled in BALB/cJ products. I performed the detailed analysis of the boundaries 

for the deleted region from permissive strain (BALB/cJ) using oligos that could 

amplify multiple products spanning the locus. Each product was distinguished after 

sequencing by analysis of product-specific polymorphic nucleotides. Initially, three 

pairs of locus specific oligos, which amplify multiple products, were used on genomic 

DNA from both strains and the PCR products were directly sequenced. I examined 

the chromatogram results of the sequencing at polymorphic bases that were specific 

to one product out of the pool of products that are predicted. I confirmed the 

presence of a product by characterizing three or more polymorphic bases unique for 

this product. Some of the predicted products were not amplified in either strain. The 

presence/absence call of the specific markers was quite consistent and identified a 

contiguous interval. This direct genotyping analysis indicated the presence of a 

deletion in the permissive BALB/cJ and 129 strains, between Chr13:61748793-

62269482 interval (Figure 29b). Interestingly, this interval overlapped with the 

proposed deletion based on micro-array-based analysis (She, Cheng et al. 2008). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Missing region in permissive 

strains 

The start point of PCR based analysis for 

deletion in the Mdac interval. PCR was 

performed with two airs of oligos at the 

same time, internal control amplifies a 
region on Chr5. 
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5.2.4 Identification of Mdac within the KRAB-ZFP genes 

The deleted interval was containing part of a previously annotated KRAB Zinc 

Finger Proteins (KRAB-ZFPs) cluster. Most of these KRAB-ZFPs correspond to 

pseudo-genes, some being transcriptionally active based on ESTs. After in depth 

scrutiny, I have found two distinct clusters of KRAB domain sequences with fourteen 

of them on the plus strand and twelve on the negative strand of DNA, by looking at 

the Mdac interval for the KRAB-ZFPs using BLAT for KRAB domain and tBLASTn for 

C2H2 Zinc finger protein sequence. The separation point of two clusters was very 

close to predicted deleted region in BALB/cJ (Figure 30). Some of these KRAB 

sequences were associated with few Zinc finger domains with no annotation in the 

a) 

 

 

 

 

 

 

 

 
b) 

Figure 29. Assessment of missing region in BALB/cJ genome 

a) The expected products with polymorphic positions were compared to PCR product sequences. b) 

Three different pools of PCR products from BALB/cJ and C57BL/6J were sequenced. Missing 

products in BALB/cJ were compared to C57BL/6J present products. Light blue rectangle represents 
the start point (in Figure 29). 

Absent in BALB/cJ 

Present in both BALB/cJ and C57BL/6J 

PCR 

products 

Predicted products spanning the locus 
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genome browser other than the eight hypothetical KRAB-ZFPs that were previously 

annotated (shown in Figure 30 with grey and blue rectangles). I have checked for the 

potentially coding KRAB-ZFPs sequences and I found two more genes in the 

structurally variant Mdac interval, which were from the transcriptome database 

(MTR064334.13.1214-2 and 6), with EST coverage in addition to one previously 

annotated (EG630579) (shown with blue rectangles in Figure 30). 

 

 

 

 

 

 

 

 

 

 

 
 

I have cloned the coding sequence for all three genes into lentiviral 

expression vectors with N-terminal HA and FLAG tags. Together with Katja 

Langenfeld, we have prepared lentivirus for each construct and she has performed 

injections into BALB/cJ zygotes. The success rate of transgenesis was not very high 

with these transgenes, compared to other provirus injected during the same period. 

So far, I have obtained two transgenic animals for one of the genes 

(MTR064334.13.1214-2). However, and quite unexpectedly, in both animals, the 

transgene was containing distinct 3ʼ truncated versions of the gene leading to 

production of a protein missing some of its zinc fingers (11 left for the first one, 10 for 

the second). Interruption of the reverse transcription process of virus delivered 

transgene or recombination between the repeat could lead to a truncation of the 

highly repeated C2H2 zinc finger domains. However, observing this phenomenon 

twice is rather surprising and, given the low rate of transgenesis observed with this 

transgene, it suggests that eventually there is a counter-selection against full-length 

ones. Indeed, when I tested the transfection of ES cells stably with two of the 

candidate genes under the control of CAGGS promoter, I observed a high rate of 

dying cells and the surviving few clones did not express the protein to a detectable 

Figure 30. KRAB-ZFPs in Mdac interval 
Potentially coding KRAB-ZFPs in the deleted region are marked with blue rectangles. 

 

BAC RP24-210C8 

predicted deletion 
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level by Western Blot, even though I was able to detect protein in HEK293T cells 

stably transfected with the same constructs. This raised the possibility that high-level 

(or non-properly regulated) expression of KRAB-ZFP could have had toxic effects on 

cells and embryos. A similar problem has been reported before by Wolf D. et al who 

also managed only to express a 3ʼtruncated Zfp809 in 293A cells (Wolf and Goff 

2009).  

To circumvent the need of establishing stable clones and by-pass embryonic 

lethality, we tried to see if expression of these genes could have an effect on primary 

mouse embryonic fibroblast (MEF) prepared from Dac2j-MusDhet;Olig2-1-

MusDhet;mdac/mdac embryos. After transduction with lentivirus expressing candidate 

KRAB-ZFPs, these cells were checked for methylation changes of 5ʼLTR-MusD. We 

did not find any significant change in DNA methylation. The same approach was 

used on ES cells but when analyzed for transcript levels of the ERVs (MusD/ETns) 

we observed no change in expression of these. One explanation for these 

observations could be that transient expression (cells were harvested after 48-72 

hours) is not sufficient for the required amount of expression of the genes or 

repression of MusD elements. 

In order to provide a better system that could reproduce the endogenous 

expression levels of KRAB-ZFPs, I complemented this missing locus by the stable 

transfection of a BAC (RP24-210C8, Chr13:61996697-62189261) from C57BL/6J 

(resistant) strain. After retrofitting the BAC with a neomycin selection marker, we 

chose permissive E14 ES cells (129/Ola strain) following several unsuccessful 

attempts to use and grow ES cells from the BALB/cJ background (clone obtained 

from Jackson Laboratories and originated from (Noben-Trauth et al. 1996)). I found a 

similar deletion in the Mdac interval of E14 ES cells, making them a suitable 

alternative to BALB/cJ. Moreover, the expression levels of MusD/ETns were much 

higher in E14 ES cells in comparison to the levels in C57BL/6J ES cells, showing a 

correlation with the Mdac status (Figure 31).  

 

 

 

 

 

 

 

 Figure 31. ERV expression in 

E14 and C57BL/6J ES cells  

ERV expression was 

normalized to Gusb and 

compared to C57BL/6J cells 

(Actb and Pgk1 are the other 

housekeeping control genes) 
(Error bars show technical standard 

deviation) 

 



Results and Discussion 

106 

In total sixteen ES cell colonies were picked and I could amplify fifteen of them. I 

have tried measuring the expression of the KRAB-ZFP gene included in this BAC in 

these picked ES cell clones. However, due to sequence similarity to another KRAB-

ZFP gene I was not able to detect the specific expression of this gene. Therefore, I 

used a genomic approach to examine the presence and the integrity of the BAC 

clone by PCR with six different primer pairs that are amplifying unique products 

spanning the full length BAC (shown in Figure 32 with blue rectangles), as there 

might be a variation in the expression in different clones due to position effects. I 

selected six clones out of fifteen for the preliminary analysis. Clones #3, 6 and #16 

were positive for all products, clones #1,8 and 11 lacked product 4 and in addition to 

this product clone #8 lacked products 10 and 11 as well. I measured MusD/ETn 

expression levels in all six clones by quantitative real time PCR and normalized it to 

multiple housekeeping gene controls (Actb, Pgk1 and Gusb). MusD/ETn transcript 

levels were significantly reduced in clones #1, #3 and #16, whereas other clones 

showed no significant difference in MusD transcript levels compared to wild type ES 

cells (Figure 33).  

 
 

 

 

 

 

 

 

 

 

 

 

Expression levels of various repeat elements are known to go down as ES cells are 

differentiating. I further analyzed clone #3 by measuring the activity of another ERV, 

IAP and the expression level of stem cell markers (Oct4 and Nanog). Oct4 and 

Nanog were expressed at similar levels to those in the parental clone, indicating that 

this clone is not differentiating. For clone #3, ETnII and ETnI transcript levels were 

also reduced, maybe as a secondary effect of MusD repression. Importantly, IAP 

transcripts levels were not changed compared to the parental control (Figure 34), 

indicating a specific effect of Mdac on MusDs.  

 

 

Figure 32. Overview of BAC RP24-210C8  

PCR products from the screening are shown with blue rectangles and the PGK driven 

neomycine cassette is located on the BAC between products 8 and 10. The KRAB-ZFP is 

shown with an arrow. 
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Figure 33. ERV expression levels of BAC complemented ES cells 

In two rounds of experiments in total six clones were investigated for MusD, 

ETnII and ETnI expression levels normalized to Pgk1 and compared to wild 

type ES cell clone (E14 WT). 
(Error bars show technical standard deviation) 
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In this study, I narrowed down the Mdac interval to a repeated region that is 

deleted in permissive strain. This region contains a cluster of KRAB-ZFP genes. 

KAP1 functions as a corepressor with KRAB-ZFPs (Friedman et al. 1996), by 

interacting with HP1 (Ryan et al. 1999) and ESET (Schultz et al. 2002). Furthermore, 

KAP1 was shown to target the primer binding site (PBS) of Murine Leukemia Virus 

(MLV) to silence these retroviruses in Embryonic Carcinoma (EC cells) (Wolf and 

Goff 2007) and ES cells (Wolf et al. 2008) through its interaction with a KRAB-ZFP 

(Zfp809) (Wolf and Goff 2009). In collaboration with Helen Mary Rowe (Trono Group, 

EPFL), we have showed that induced knock-out of KAP1 gene in ES cells from 

C57BL/6J (resistant) strain resulted in an up-regulation of MusDs to seven folds of 

wild type ES cell levels (Figure 35), suggesting KAP1 is needed for the silencing of 

MusDs. (Rowe, Jakobsson et al. 2010). These results coming from a cell line derived 

from a resistant strain are in accord with the lack of the KRAB-ZFP in the permissive 

stains and these observations collectively point out to a role of KAP1/KRAB-ZFP 

assisted ERV silencing mechanism. IAPs were more up-regulated in comparison to 

MusDs in these KAP1 deficient cells. The expression peak and the silencing that 

follows is normally achieved at an earlier stage for IAPs than MusDs (E3.5 vs. E6.5), 

making the observation of KAP1 dependent control of IAPs easier in an ES cell 

Figure 34. Characterization of BAC complemented clone#3 

ERV expression was normalized to Pgk1 and compared to levels in wild 

type E14 ES cells. 
(Error bars represent standard error of the mean between three biological replicates) 
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based system. Nevertheless, we showed that KAP1 was needed for the silencing of 

these ERVs.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The repeated nature of KRAB-ZFPs and the difficulty of expressing full-length forms 

(probably due to toxicity) made it difficult to evaluate the candidate genes for MusD 

silencing, but complementation of the deleted locus by the BAC provided a strong 

evidence for the KRAB-ZFP mediated MusD repression. Knocking-down the 

candidate KRAB-ZFP gene included in the BAC during complementation 

experiments could be further helpful to confirm its role in MusD silencing. Similarly, 

KAP1 dependent silencing could be demonstrated by a knock-down of KAP1 in these 

BAC-complemented cells. Since, MusD expression peaks around sixth to seventh 

day of embryological development, the ES cell based system may not be a accurate 

representation of the KAP1/KRAB-ZFP assisted silencing of MusDs. Therefore, BAC 

complemented cells can be used to generate transgenic animals to measure the 

MusD silencing at later stages as well as to rescue the Dactylaplasia phenotype.  

 Several host restriction factors that block the retroviral replication have been 

characterized for different stages of the retroviral life cycle (see the Introduction for 

details). In this study, I have investigated the polymorphic Mdac interval that is 

responsible for the epigenetic silencing of MusD elements. Mdac acts specifically on 

MusD elements and restricts their transcription and is very likely to be a KRAB-ZFP, 

due to the strong correlation of this gene family with the recruitment of silencing 

complexes to their target loci. Our findings also imply that a group of sequence-

specific KRAB-ZFPs act in early embryogenesis and mediate the association of 

KAP1 with ERV sequences. It is still a mystery which KRAB-ZFP genes are 

responsible for the silencing of each ERV family. Investigation of the genes that are 

Figure 35. KAP1 controls 

ERVs, IAP and MusD in ES 

cells 

Induced KAP1 knock-out of 

ES cells had a 7-fold change 
for MusD expression. 
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expressed around the stages when silencing occurs might help us identify them. The 

data presented here are very promising for the identification of a transcriptional 

restriction gene dedicated to a family of endogenous retroviruses and its mechanism 

of action.  
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6. Conclusions and Outlook 

Our starting point in this study was the ectrodactyly phenotype observed in 

SHFM patients and its phenotypic similarity to the Dactylaplasia mice. In fact, 

Dactylaplasia mice have been accepted widely as a model for human SHFM3 not 

only because of the similarity between the two phenotypes and but importantly due to 

the synteny of the loci which the underlying mutations were mapped. However, the 

mutations that result in abnormal limb formation were radically different between 

human and mice and it was difficult to predict how a transposon insertion of a 

relatively small size in mice could lead to the same malformation caused by a 

duplication of a large genomic region in humans. Since MusD insertions into the Fgf8 

locus are so far the only reported mutagenic insertions of this family (Maksakova, 

Zhang et al. 2009), our understanding of these elements and their action 

mechanisms to cause disease has been very limited. Even though SHFM3 patients 

were carefully explored for different chromosomal re-arrangements, it has been very 

difficult to infer a molecular mechanism from the genomic sequence since it is a 

developmental malformation. Therefore, the basis of the Dactylaplasia/SHFM3 

phenotypes was not sufficiently explained. 

6.1 SHFM3: multi-genic and multi-enhancer explanation to disease 
phenotype 

In this thesis, I demonstrated that in an engineered chromosomal duplication 

between the Fgf8 gene and Lbx1::GFP reporter, transgenic embryos displayed the 

reporter gene expression in Fgf8 expression domains. Thus, we showed that 

chromosomal re-arrangements could cause ectopic gene expression in place of 

endogenous gene expression domains due to the re-allocation of existing regulatory 

modules. We proposed that the re-direction of regulatory sequences to other gene(s) 

in the locus as our model for the ectrodactyly phenotype in both SHFM3 patients and 

Dactylaplasia mutants. We have tried expressing two genes (Lbx1 and βTrc) from 

the locus in the AER in an effort to phenocopy the limb malformation observed in 

Dactylaplasia mice. Lbx1 expression in the AER caused a duplicated or enlarged 

thumb that is also observed in several SHFM3 patients, but we did not observe the 

cleft limb phenotype. On the other hand, βTrc expression in the AER did not cause a 

limb phenotype in transgenic animals. The onset of mutagenic gene expression 

leading to the disease phenotype might be crucial and the expression stage of 
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candidate genes in the AER might not have been the same as the disease situation 

in our experimental set-up. Alternatively, the cleft limb phenotype might simply be 

caused by the ectopic expression of another gene or by multiple genes acting 

cooperatively.  

So far different diseases were associated with multiple structural variations 

that disrupt multiple genes (such as in schizophrenia (Walsh et al. 2008)), however 

the spectrum of the SHFM3 phenotype is caused by structural variations in a single 

locus. The extent of the duplicated region has been related to the variability of the 

limb phenotype in SHFM3 (such as preaxial polydactyly) and to additional syndromes 

(such as hearing disorders and renal hypoplasia). For instance, if the duplication 

break point is found between the LBX1 and βTRC, patients have proximally placed 

thumbs and/or triphalangeal thumbs (TPT) or preaxial polydactyly (Elliott, Reed et al. 

2005), (Everman, Morgan et al. 2006). Based on the results of our forced Lbx1 

expression in the AER, it now seems likely that this duplication might be altering the 

regulatory architecture of the locus in such a way that LBX1 is ectopically expressed 

in the AER of affected patients. Consistently, patients with the duplication break point 

closer to the LBX1 gene have ectrodactyly but not the polydactylous phenotype, 

indicating the difference in regulatory re-allocations for different break points. 

Furthermore, patients that have a similar size of duplication to previously reported 

cases with a different break point closer to FGF8 gene have additional syndromes to 

the limb defects (Dimitrov, de Ravel et al. 2010). These reports indicate a multi-genic 

and multi-regulatory contribution to the disease phenotype that is caused by 

structural variation in a single locus. When our chromosomal engineering and 

transgenic approaches are taken into consideration, we have provided an 

explanation for the regulatory re-arrangements and their consequences on gene 

expression. Therefore, the disease phenotype is better understood than just having 

the information on the break points of the duplications in the mapped locus. As a 

result, SHFM3 has been a case example that warns us about the way of interpreting 

structural variations and their impact on human phenotypes. 

6.2 MusDʼs impact on gene expression 

In Dactylaplasia mutants, MusD insertions bring a regulatory reshuffling 

activity to the locus that is similar to the duplications in SHFM3 patients. As also 

shown for the Olig2-1 locus, MusDʼs capacity to act on gene regulation seems to be 

a general feature of this element. However, MusDʼs specific impact on gene 
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expression depends on the locus of insertion and to the regulatory potential therein. 

This regulatory re-shuffling induced by MusDs seems to correlate with their insulator 

activity. Insulators may function as transcriptional decoys for enhancer sequences, 

interrupting chromatin loops that bring enhancers and promoters together. In 

concordance with this, many insulators include promoter-proximal elements (listed in 

(Geyer and Clark 2002)) that may prevent enhancers from interacting with promoters 

(Ohtsuki and Levine 1998). Furthermore, in some circumstances, insulator 

sequences are not transcriptionally inert, such as the gypsy insulator that can act as 

a transcriptional activator (Wei and Brennan 2001). In fact, insulator sequences were 

also considered to have evolved from promoter sequences, supporting this 

transcriptional decoy model (Geyer and Clark 2002). Evidence to this model comes 

from the α-globin gene cluster, in which a gain-of-function regulatory SNP can 

potentially create a new binding site for the GATA-1 transcription factor, leading to 

the preferential interaction of this heterologous promoter with the upstream elements 

that results in a competition between the endogenous promoters of α-globin genes 

(De Gobbi et al. 2006). Thus, this SNP was insulating the regulatory elements from 

their cognate promoters. Another functional insulator in relation to promoter 

sequences was shown for stalled Hox promoters in Drosophila (Chopra et al. 2009). 

In this study, stalled RNA polymerase II (PolII) and its interaction with insulator 

sequences through NELF and DSIF protein complexes was proposed to result in an 

enhancer blocking activity via the formation of high-order loops. These loop domains 

would prevent aberrant interactions and favor proper gene regulation. A different 

example of transcription-triggered insulation was shown in the Growth Hormone (GH) 

gene locus (Lunyak, Prefontaine et al. 2007). In GH locus the transcriptional 

regulation of a SINE B2 repeat determined by the state of histone modifications 

controls the regulatory potential in the locus. These transcriptional activities driven by 

PolII or by PolIII in opposite orientations correlated with the epigenetic switch as well 

as the GH expression. These findings indicated an insulator function determined by 

the changes in SINE B2 expression at embryological stages when the gene 

expression was not needed. Similar to the above listed examples, MusD insertions in 

the Fgf8 locus seem to be functioning as insulator elements and introduce a 

competition for the endogenous enhancer-promoter interactions. This competition 

manifests itselfs as the expression of MusD in Fgf8 domains. However, the enhancer 

blocking function may be explained by additional properties of MusD elements. In ex-

vivo enhancer blocking assays, the insulator activity seemed to be through a few 
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regions in the retroviral gene sequences, and did not support the idea that 

transcriptional initiation from the LTR is the cause of MusDʼs insulator activity. 

Nevertheless, as a consequence of MusD-5ʼLTR accessibility, the transposon is 

transcribed and thus insulator sequences are opened to the possibility of interacting 

with new nuclear factors. Bisulfite sequencing showed that there is an extension of 

methylated cytosine positions toward the inside of the MusD elements. This could be 

masking the insulator fragments and preventing the binding of a factor that can be 

necessary for the insulator function. Furthermore, ex-vivo experiments also showed 

that the enhancer-blocking activity of MusD sequences potentially re-allocates the 

enhancers within the locus. Thus, MusD fragments that displayed insulator function 

in ex-vivo assays should be further examined for the binding of novel proteins that 

could explain this redirection of the enhancers to other gene(s) in the locus.  

The first model of insulator function is mainly based on the transcriptional 

activity of the insulator sequence as described above. There is another model which 

proposes that insulators influence the physical organization of chromosomes in order 

to protect gene expression in a locus from the effect of surrounding chromatin. This 

model suggests that insulators primarily participate in the formation of higher-order 

chromatin structures and transcription is subsequently affected by these structures 

(Gerasimova and Corces 1998), (Scott et al. 1999). Our data supports the first model 

since the insulator activity of MusD element is related to its transcriptional status. 

However, we do not know if and how the insertion of a MusD element can affect the 

architecture of the surrounding chromatin and further experiments are required to 

determine if MusDʼs insulator function depends on structural alteration of the inserted 

locus. 

6.3 Novel ERV silencing mechanisms 

In the case of Dactylaplasia mice, manifestation of the limb phenotype upon 

MusD transposon insertions depends on an unlinked modifier locus. Previously, 

transposonsʼ role in phenotypic variation has been suggested to be due to the 

stochasticity in their epigenetic silencing (Reiss and Mager 2007) and hence the 

presence of a modifier locus in the case of Dactylaplasia provided a striking example 

for the modulating effect of the genetic background. In contrast to the IAP insertions 

in AxinFu and Agouti loci, modifier of Dactylaplasia (Mdac) does not act on MusDs to 

make them function as cryptic promoters to cause differential expression of the 

nearby genes or cause a stochastic silencing of the MusD elements that would lead 
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to the spreading of repressive epigenetic marks over the locus of insertion. The 

presence of the dominant allele of Mdac suppresses the Dactylaplasia phenotype 

and leads to the epigenetic silencing of MusD elements. However, the majority of 

MusD elements remain silenced in the presence of the the Mdac allele from the 

permissive strain, suggesting this mechanism could be used as a back up to ensure 

the silencing of specific elements that are outside heterochromatin regions or nearby 

genes. Therefore, the major defense mechanism seems to be the prurifying selection 

due to deleterious effects of MusDʼs impact on endogenous gene regulation. When I 

investigated the extent of cytosine methylation of ETnII elements that are degenerate 

derivatives of MusD transposons I observed no differences in cytosine methylation 

among different strains, even though these elements share a high sequence 

similarity of their LTRs and a short region upstream of viral genes. Therefore, they 

are presumably controlled by different silencing mechanisms and Mdac-dependent 

silencing is specific to MusD elements. The specificity of repression to the MusD 

elements suggests an epigenetic spreading of silencing over the 5ʼ LTR that follows 

the recognition of MusD specific sequences encoded by Mdac. The silencing of the 

5ʼLTRs, which serve as promoters for retrotransposons, seems to be enough for the 

repression of MusD activity, as this spreading does not reach to the 3ʼ of the MusD.  

KAP1 seems to function as a general repressor of retroviral activities, as 

shown for MLV (Wolf and Goff 2007), IAP and MusD (Rowe, Jakobsson et al. 2010). 

The specificity of this repression to a particular family of transposons could be 

achieved via the KRAB-ZFPs. According to the phylogenetic analyses KRAB ZFP 

genes appeared first in the tetrapods, and have since been under strong positive 

selection (Emerson and Thomas 2009) and subject to rapid expansion (Consortium 

et al. 2002). The reason for the expansion of this family in tetrapods is currently 

unknown. The KRAB-ZFP cluster in the Mdac locus seems to be important for the 

epigenetic control of MusD elements. Therefore, it is also likely to find different 

clusters of KRAB-ZFP that evolved by duplications in time, each specialized to 

silence a specific family of transposable element. Indeed, a recent study proposed a 

correlation across vertebrate genomes between the number of LTR-transposons and 

the number of hostʼs tandem zinc finger genes (Thomas and Schneider 2011). MusD 

sequences are believed to have entered in the germ line of a Muridae, as these 

elements are found only in the Mus genus (i.e., 5 Myr) (Mager and Freeman 2000), 

(Ribet, Harper et al. 2007). The KRAB-ZFP cluster in the Mdac interval seems to be 

unique to the mouse genome. When the locus was explored for conservation, none 
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was found between the mouse and the rat genomes except for the surrounding 

metabolic genes and the Cathepsin cluster. This raises the possibility of a co-

evolution of MusDs and as a host response, KRAB zinc-finger proteins, which can 

repress MusD transcription and prevent detrimental mutations that can be caused by 

these retrotransposons. There seems to be an expansion of zinc-finger domains that 

specifies the DNA binding, whereas KRAB domains remain conserved (Thomas and 

Schneider 2011). This indicates a modular zinc-finger part of the protein, which can 

provide opportunities for targeting specific families of retrotransposons through a 

global repressor, KAP1, via interactions with the more conserved KRAB domain. This 

modularity in the substrate recognition module together with an invariable effector 

domain is reminiscent of the well-known antibody-antigen phenomena and the 

possibility of creating new binding modules through deletion/duplication of the zinc-

finger domains suggests an analogous mechanism to generating immunoglobulin 

diversity. This idea supports the rapid expansion model for a key role in immune 

system, as KRAB-ZFPs seem to prevent viral element invasion of the genomes. 

This arms race between the host genome and transposon activity is an on-

going process, thus MusD elements that manage to escape the KRAB-ZFP 

interactions would be preserved and amplified in the genome. In this respect, it is 

possible to propose that ETnII elements sacrificed their genes that code for viral 

proteins required for transposition and became MusD-dependent, but in turn 

managed to escape from silencing mechanisms when compared to MusD elements.  

MusD and its silencing elements were noticeable owing to the presence of a 

modifier locus that is variable in different mouse strains. In order to investigate such 

KRAB-ZFP genes dedicated to one family of transposons, one could investigate the 

appearance of a transposon family and its relation to the divergence of a KRAB-ZFP 

cluster in an evolutionary time scale. Subsequently, the mutagenesis of such 

candidates could be used to test this proposition of co-evolution and help us 

understand why this family of genes is expanding in mammalian genomes. 

6.4 The working model 

In this thesis, I have presented a multigenic model of Dactylaplasia phenotype 

in relation to SHFM3 and its modifier locus. The data presented here suggest a 

model with a gene that is specifically responsible for the epigenetic silencing of MusD 

elements. In the absence of this repressor protein, MusD acts as an insulator 

sequence by hijacking nearby enhancers and introducing new enhancer-promoter 
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associations. Binding of a novel insulator protein to MusD sequences could drive this 

re-direction of regulatory elements. Similarly, the duplication found in SHFM3 patients 

changes the position of enhancers relative to their target gene, possibly enabling 

them act on other gene(s). Ultimately, when the enhancers activate other gene(s) 

from the locus, the AER terminates prematurely and leads to ectrodactyly (see Figure 

36 for the model).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 36. The working model for the Dactylaplasia mutation 

MusD as an epigenetically controlled mobile insulator element. 

KRAB-ZFP specific binding to the transposon sequences recruits repressor proteins 

and induces the DNA methylation. In the absence of this protein, transcriptional 

activity from the transposon blocks or titrates endogenous enhancers, re-shuffling 

the regulatory interactions. 
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transcript 
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EBA Enhancer blocking assay 

EDTA Ethylenediaminetetraacetic 

acid 

ERV Endogeneous Retrovirus 

ES Embryonic Stem 

et al. et alii (and others) 

ETn Early Transposon 

FGF Fibroblast growth factor 

g gram 

H3K4/9/2027 histone3 

lysine4/9/20/27 

i.e. id est (that is) 

IAP Intracisternal A-particle 

IPTG Isopropyl β-D-1-

thiogalactopyranoside 

kb kilobase 

KoRV Koala retrovirus 

 

 
L1 (LINE1) Long Interspersed 

Nuclear Element-1 

LCR Low copy repeats 

LINE Long Interspersed Nuclear 

Element 

LTR Long Terminal Repeat 

m mili (prefix) 

M molar 

Mb megabase 

Mdac Modifier of Dactylaplasia 

MLV Murine Leukemia Virus 

MOPS 3-(N-morpholino) 

propanesulfonic acid 

MT Mouse Transposon 

MuERV-L Murine 

endogenousretrovirus-L 

MusD Mouse type-D virus 

n nano (prefix) 
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NAHR Non-allelic homologous 

recombination 

NBT 4-Nitro blue tetrazolium 

chloride 

NHEJ Non-homologous end joining 

NMD Nonsense mediated decay 

ORF Open reading frame 

p pico (prefix) 

PBS Phosphate buffered saline 

PBS Primer binding site 

PcG Polycomb Group 
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PPT Poly purine tract 
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PRC Polycomb Repressive Complex 

RNA  ribonucleic acid 

RNAi RNA interference 
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propane-1,3-diol 
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XCI X Chromosome inactivation 
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center 
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KAP1 controls endogenous retroviruses in embryonic
stem cells
Helen M. Rowe1, Johan Jakobsson1{, Daniel Mesnard1, Jacques Rougemont1, Séverine Reynard1, Tugce Aktas2,
Pierre V. Maillard1, Hillary Layard-Liesching1, Sonia Verp1, Julien Marquis1, François Spitz2, Daniel B. Constam1

& Didier Trono1

More than forty per cent of the mammalian genome is derived from
retroelements, of which about one-quarter are endogenous retro-
viruses (ERVs)1. Some are still active, notably in mice the highly
polymorphic early transposon (ETn)/MusD and intracisternal
A-type particles (IAP)2,3. ERVs are transcriptionally silenced during
early embryogenesis by histone and DNA methylation4–6 (and
reviewed in ref. 7), although the initiators of this process, which is
essential to protect genome integrity8, remain largely unknown.
KAP1 (KRAB-associated protein 1, also known as tripartite motif-
containing protein 28, TRIM28) represses genes by recruiting the
histone methyltransferase SETDB1, heterochromatin protein 1
(HP1) and the NuRD histone deacetylase complex9, but few of its
physiological targets are known. Two lines of evidence suggest that
KAP1-mediated repression could contribute to the control of ERVs:
first, KAP1 can trigger permanent gene silencing during early
embryogenesis10, and second, a KAP1 complex silences the retrovirus
murine leukaemia virus in embryonic cells11–13. Consistent with this
hypothesis, here we show that KAP1 deletion leads to a marked
upregulation of a range of ERVs, in particular IAP elements, in
mouse embryonic stem (ES) cells and in early embryos. We further
demonstrate that KAP1 acts synergistically with DNA methylation to
silence IAP elements, and that it is enriched at the 59 untranslated
region (59UTR) of IAP genomes, where KAP1 deletion leads to the
loss of histone 3 lysine 9 trimethylation (H3K9me3), a hallmark of
KAP1-mediated repression. Correspondingly, IAP 59UTR sequences
can impose in cis KAP1-dependent repression on a heterologous
promoter in ES cells. Our results establish that KAP1 controls endo-
genous retroelements during early embryonic development.

KAP1, a member of the RBCC (ring, B-box, coiled–coiled) or TRIM
(tripartite motif) family of proteins, is recruited to genes by the tetrapod-
specific, DNA sequence-specific KRAB-ZFPs (Krüppel-associated box
domain-zinc finger proteins)14, which constitute the largest family of
transcriptional regulators encoded by higher vertebrates. However, until
now, few KAP1 target genes and their KRAB zinc finger intermediates
have been identified15. To assess the potential role of KAP1 in ERV
regulation we generated two conditional KAP1-knockout ES cell lines,
in which the Kap1 gene could be inactivated by a 4-hydroxytamoxifen
(4-OHT)-inducible system. Both lines expressed pluripotency markers,
and one was used to demonstrate contribution to mouse chimaeras
after injection into blastocysts (Fig. 1, Supplementary Fig. 1 and data
not shown). Control and KAP1-deleted ES cells (see Fig. 1a) were sub-
jected to a combination of large-scale RNA sequencing and specific
PCR with reverse transcription (RT–PCR) measurements. The results
showed a modest increase in LINE1 (long interspersed nuclear ele-
ments 1) transcripts after KAP1 removal, but a marked upregulation
of a range of ERVs, in particular IAP elements, which exhibited 15- and

66-fold overexpression in the two ES cell lines, respectively (Fig. 1b–d
and Supplementary Figs 1 and 2). Because ES cells progressively lose self-
renewal ability after KAP1 depletion (refs 16, 17 and data not shown), as
a control we examined ES cells cultured in the absence of leukaemia
inhibitory factor (LIF). Under these conditions we also observed a
decrease in the stem cell markers NANOG and to a lesser extent
OCT4 (also known as POU5F1), but IAP elements were not upregulated
(Fig. 1a, c). Furthermore, partially restoring KAP1 levels by transduction
with a KAP1-expressing lentiviral vector proportionately reduced the
upregulation of IAP elements in KAP1-deleted ES cells (Supplementary
Fig. 3). Notably, the stimulation of IAP transcription was accompanied
by an increase in the IAP DNA load of KAP1-deleted compared to
control ES cells, demonstrating that IAP genes were not only over-
expressed but could also reverse transcribe and probably integrate into
the genome (Fig. 1e). In contrast, IAP expression was not increased after
KAP1 deletion in mouse embryonic fibroblasts (MEFs) (Supplementary
Fig. 4), which supports a model in which ERV control in differentiated
cells relies on more stable silencing mechanisms4,5.

To investigate more thoroughly the mechanisms of IAP control
during early embryogenesis, we treated ES cells with the DNA methyl-
transferase inhibitor 5-azacytidine (5-aza) and observed a similar
upregulation of IAP elements. Notably, combining this drug with
KAP1-knockout induced a synergistic effect on IAP overexpression
(Fig. 1f). This suggests that DNA methylation and KAP1 repression act
cooperatively to silence these elements. Moreover, validating the
results of our ES cell-based experiments, we found that IAP elements
were markedly increased in KAP1-depleted blastocysts cultured ex
vivo (Supplementary Fig. 5), and, most importantly, were upregulated
more than five-hundred times in KAP1-knockout embryos (Fig. 2).

These data indicate that KAP1 has a crucial role in controlling ERVs
during early embryonic development. To determine whether this effect
is direct, we performed chromatin immunoprecipitation (ChIP) stud-
ies. First, we found that KAP1 associates with the IAP genome in ES
cells (Fig. 3a, b). Notably, KAP1 was significantly enriched over the IAP
59UTR compared to the U3 (P 5 0.034) or gag (P 5 0.026) regions in
control cells. Furthermore, KAP1 knockout correlated with a decrease
in H3K9 trimethylation and an increase in H4 acetylation on the IAP
genome (Fig. 3c, d). This combination of chromatin modifications is
consistent with a loss of KAP1-mediated repression9. We also assessed
the global level of IAP DNA methylation by Southern blot and more
specifically by bisulphite sequencing, but did not detect a significant
difference with or without KAP1 (not shown).

To evaluate the genetic diversity of IAP elements controlled by
KAP1, we sequenced the 59UTR of IAP complementary DNAs iso-
lated from KAP1-depleted cells. The 33 sequences thereby analysed
were highly diverse (Fig. 4a and Supplementary Fig. 7). Of interest
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was their heterogeneity in the region coding for the primer-binding
site (PBS)—the sequence complementary to the cellular transfer
RNA that acts as primer for retroviral minus-strand DNA synthesis.
Murine leukaemia virus (MLV) is indeed silenced in embryonic cells
by the ZFP809-mediated recruitment of a KAP1-containing complex
to its proline tRNA PBS (PBS Pro)11–13. The PBS of IAP elements
expressed in KAP1-depleted cells covered a range closely related to
PBS Phe (Supplementary Fig. 8). To address whether these PBS variants
were sufficient to confer KAP1-sensitivity to a heterologous promoter

in ES cells, we cloned them into a lentiviral vector expressing a green
fluorescent protein (GFP) transgene from the MND (myeloprolifera-
tive sarcoma virus enhancer, negative control region deleted18) pro-
moter. We then transduced KAP1-excisable ES cells with the resulting
vectors and examined GFP expression. Although the MLV Pro
sequence induced potent KAP1-dependent silencing compared to its
functionally inactive B2 point mutant, none of the IAP PBS variants
induced significant repression (Supplementary Fig. 8). This concurs
with the results of a previous study in which the silencing activity of two
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Figure 1 | IAP elements are upregulated in KAP1-depleted ES cells.
a, Western blot and KAP1 PCR27 after 4-OHT addition (times indicated).
WT, wild-type; WT*, treated with 4-OHT; 2LIF, cultured without LIF; Cre,
cells transduced with a 4-OHT-inducible Cre vector; KO, KAP1 knockout
Cre cells treated with 4-OHT. KAP1 is 95 kDa, tubulin 52 kDa, and NANOG
42 kDa. PCR: 152-, 171- and 390-bp products correspond to wild-type, loxP-
flanked or excised Kap1, respectively. b, RNA-sequencing. Histogram shows
the difference in gene expression between wild-type and knockout samples
after Gapdh normalization. Double asterisks, #1% of genes are more highly
upregulated than IAP and MERVL elements. NLM GenBank accession
numbers: X04120 (IAP-IL3), M17551 (IAP-MIA14), X03521 (106–494 bp,
insertion sequence specific to IAP-II class), AF030883 (SINEB1 and 2),
AB305072/3 (MusD) and M13002 (LINE1). MERVL was from Repbase (see
Supplementary Fig. 2). c, Quantitative RT–PCR analysis on stated treatment

groups (n 5 3) normalized to ES wild-type cells showing the mean and s.d.
IAP primers were specific for the 59UTR region. One representative
experiment of three is shown. Unpaired t-tests were used to compare wild-
type and knockout ES cells. *P , 0.05, **P , 0.01, ***P , 0.001. P 5 0.002
(Kap1), P 5 0.039 (Oct4), P 5 0.004 (Nanog), P # 0.001 (IAP) and P 5 0.023
(LINE1). d, Results for the second ES line, analysed as described in
a. P # 0.001 for MusD. See also Supplementary Fig. 1. e, Relative IAP DNA
content was measured by quantitative PCR (qPCR) on genomic DNA. A
summary of three experiments is shown (n 5 7) as a box plot with error bars
indicating the lowest and highest values. P 5 0.0012, two-tailed
Mann–Whitney test. f, IAP upregulation was compared after treatment with
5-aza (n 5 3) (at 7 mM, added for 24 h), after KAP1 deletion, or after a
combination of both (5-aza was added for 24 h 3 days after 4-OHT addition).
Results are mean and s.d. One representative experiment of two is shown.
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Figure 2 | KAP1 controls IAP elements in embryogenesis. a, Embryos from
Kap11/2 intercrosses were dissected and in situ hybridization performed
with a 500-bp IAP probe (specific for a cDNA region spanning the IAP
59UTR as shown in Fig. 4a). One litter is shown; in total, 23 out of 84
embryos (27%) stained positive for IAP elements. See also Supplementary

Fig. 6. E5.5, embryonic day 5.5. b, Mice were crossed as above and embryos
dissected at E6.5, and two mutant versus two wild-type embryos selected and
pooled based on morphology. Samples were analysed by qRT-PCR at three
dilutions and results show the mean and s.d. One of two experiments is
shown.
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other IAP PBS sequences was evaluated19. However, when we cloned
500-base-pair-(bp)-long fragments overlapping the 59UTR of IAP ele-
ments expressed in KAP1-null cells (shown in Fig. 4a) either upstream
or downstream of the MND promoter, we could induce up to 53-fold
KAP1-dependent silencing, which was comparable to the 50-fold
repression induced by the MLV Pro sequence (Fig. 4b). Notably, the
same region cloned from an IAP element expressed in control cells

(IAP1, which has multiple sequence differences, see Supplementary
Fig. 10) failed to repress the MND–GFP reporter, thereby serving as
a negative control.

Taken together, these data demonstrate that ERVs are repressed in
murine embryonic stem cells by the recruitment of a KAP1-containing
chromatin remodelling complex to their 59UTRs, corroborating the
previously noted marked enrichment for H3K9me3 at and near ERV
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Figure 3 | KAP1 is enriched at the 59UTR of IAP genomes and loss of KAP1
leads to loss of H3K9me3 and an increase in H4 acetylation. a, IAP map
(based on IAP-MIA14; ref. 28) with positions of primers used for ChIPs.
LTR, long terminal repeat. b, KAP1 ChIP results 4 days after 4-OHT
addition to control (ES WT*) or Cre-expressing (ES KO) ES cells. Graphs
show the mean enrichment in the immunoprecipitations (n 5 3) relative to
the total input samples and error bars show the s.d. A control with no
antibody (Ab) gave background enrichment (mean 0.008%). All significant
differences between wild-type and knockout for IAP primers are marked.

Mest (mesoderm-specific transcript), a direct target of KAP1 in embryonic
carcinoma (EC) cells29, was a positive control and Gapdh a negative control.
c, d, ChIPs as above but with an anti-H3K9me3 antibody (c), and with an
antibody specific for acetylated H4 (d). Data are representative of 2–3
experiments. P values (by unpaired t tests) are Kap1: P 5 0.037 (U3);
P 5 0.036 (59UTR); P 5 0.047 (pol), but summary values for the three
experiments are P , 0.0001 for the U3 and 59UTR, and P , 0.003 for gag and
pol. H3K9me3: P # 0.001 (U3, 59UTR, gag and pol). H4Ac: P 5 0.049 (U3);
P 5 0.037 (59UTR); P 5 0.022 (gag).
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Figure 4 | IAP 59UTR sequences expressed in KAP1-depleted ES cells are
polymorphic and can repress a GFP reporter in a KAP1-dependent way.
a, Map showing the 500-bp 59UTR/59gag region of IAP transcripts
sequenced, and a phylogenetic tree of the 33 sequences obtained. Sequences
for IAP-MIA14 and IAP-IL3 were included in the alignment and are marked
by an asterisk. b, Lentiviral vector map with a GFP reporter and the test site
where the following sequences were cloned antisense: IAP fragments 1–4 or
PBS sequences Pro, B2 or Phe2 (see Supplementary Fig. 8). ES cells were
transduced (1 day after 4-OHT treatment) with these vectors (or an empty

vector) and GFP was measured 3 days later in the SSEA-1hI cell fraction (see
Supplementary Fig. 9). Fold repression shows the ratio of expression
between these vectors and the control B2 one, normalized to 3T3 cells where
the ratio equals 1. The bottom panel shows the results for IAP fragments 1–3
or the PBS sequences, Pro or B2 cloned upstream of the promoter. All
sequences are in antisense orientation except IAP2, which is in sense
orientation. Results were normalized as above and are representative of 2–3
experiments. Results were also reproduced in E14 ES cells (see
Supplementary Fig. 11).
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DNA in these cells5. The described mechanism thus seems to represent
a tetrapod-specific complement to the small-RNA-mediated retro-
transposon silencing that is at play from plants to mammals20,21.

By analogy with the demonstrated mechanism of repression of other
targets including MLV, it is likely that KAP1 is tethered to IAP genomes
by KRAB-ZFPs. The observed sequence diversity of KAP1-dependent
ERVs further suggests a corresponding degree of polymorphism in the
zinc fingers mediating their recognition. Our large-scale RNA sequen-
cing analysis detected more than 250 KRAB-ZFP transcripts in ES cells,
including 56 at levels higher than ZFP809 (data not shown).
Phylogenetic studies further show that the DNA-binding domains of
KRAB-ZFPs have been under strong positive selection during evolu-
tion, pointing to their participation in genetic conflicts22. Our data are
consistent with a model in which rapidly mutating retroelements have
been protagonists of these conflicts, exerting strong selective pressures
on KRAB-ZFPs responsible for their control.

Finally, considering that epigenetic silencing can spread from
repetitive elements to neighbouring genes5,23,24, the work presented
here opens new perspectives to explore ERV-mediated control of
cellular genes in development and in adult tissues.

METHODS SUMMARY
ES cells. Two ES cell lines were derived from Kap1loxp/loxP mice (gift from F.

Cammas), karyotyped and cultured as described25. KAP1-knockout cells were ana-

lysed 4 days after treatment with 4-OHT (used at 1mM overnight, from Sigma).

Differentiation was monitored using an anti-SSEA-1 antibody (BD Pharmingen,

MC480). Western blots were performed as described26 using antibodies specific for

KAP1 (Chemicon, MAB3662), NANOG (Abcam, 21603-100), OCT4 (Santa Cruz,

sc5279) and a-tubulin (Sigma).

Lentiviral vectors. The LVCT10 vector was modified to express CAG-4-OHT-

inducible Cre (from P. Chambon) and an SV40-puro cassette. An LV PGK-GFP

vector was modified by substituting GFP with Cre for MEF experiments, and was also

used to construct LV-silencing vectors by replacing PGK with MND18 and including

test sequences upstream or downstream. Vectors were titrated on 3T3 cells.

RT–PCR. Total RNA was purified using a Trizol kit (Invitrogen), treated with

DNase (Ambion), and 0.5 mg was reverse transcribed using random primers and

SuperScript II (Invitrogen). Alternatively, for low starting material, an RNeasy
micro kit was used. Primers (see Supplementary Table 1) were used for SYBR

green Q-PCR (Applied Biosystems) and their specificity confirmed with dissoci-

ation curves. All data are Gapdh normalized, although the actin gene gave similar

results. IAP DNA PCR was normalized to the titin gene and results confirmed

with Gapdh, MusD and major satellite primers.

ChIP. Chromatin was prepared according to the Upstate protocol, and starting

material was normalized between wild-type and knockout samples. Triplicate

immunoprecipitations were performed using protein A agarose beads (Millipore)

and the following rabbit antibodies: KAP1 (ref. 9) (from D. Schultz), H3K9me3

(Abcam, ab8898) and acetyl H4 (Upstate, 06-866). Input and immunoprecipitation

samples were analysed by SYBR green Q-PCR.

Bioinformatics. Sequences were aligned with Mafft and a phylogenetic tree

generated using RAxML (Randomized Axelerated Maximum Likelihood).

Illumina RNA-sequencing was analysed with MAQ 0.7.1 and reads mapped to

the collection of mouse transcripts from RefSeq (version 36).
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