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Abstract: 

 

Flavonoids are one of the most abundant secondary metabolites (SM) in the nature. They 

possess a wide range of the biological activity. This work comprises of two chapters, in which 

the application of mass spectrometry (MS) in fields of phytochemistry and secondary 

metabolites bioactivity were emphasized. 

    

The first chapter covered the advantages of the hyphenated techniques of LC-MS in profiling 

flavonoids in some known medicinal plants; Bupleurum marginatum, Camellia sinensis, 

Citrus jambhiri, and Scutellaria immaculata, as well as   Scutellaria ramosisima.  LC-MS proved 

to be a par excellence technique providing many attractive features in the profiling of 

medicinal plant extracts and in the identification of new bioactive polyphenols. 

 

The second chapter covered the applications of ESI-MS in monitoring non-covalent 

interactions between some polyphenols with different peptides. flavonoid glycosides show 

an ability to build non-covalent complexes with angiotensin (I) through ionic bonds. The 

stability of the formed complexes is dependent on the number of sugar residues 

contributing in the structure of the flavonoid glycoside. On the other hand, flavonoid 

aglycones exhibit disability to form stable complexes with angiotensin(I). Co-planarity of 

flavonoid aglycones makes them relatively inflexible and less complaint in forming ionic 

bonds with biomolecules. One exception is taxifolin, whereas the missing π system at C2-C3 

of ring C grants taxifolin more flexibility in comparison to other studied glycones.  

 

Moreover, the quantity of the interacted molecules of the tested flavonoid glycoside will 

increase, as the number of lysine residues in the targeted peptide increases. Complexes such 

as 2:1, 3:1 and even 8:1 polyphenol:peptide have been detected. The polyphenol:peptide 

ratio increases proportionally with the number of the phenolic groups incorporated with the 

chemical structure of the tested flavonoid, e.g.; EGCG˃ rutin˃ hyperoside˃ scutellarin. 
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On the other hand, flavonoid aglycones can interact with the backbone amides forming 

hydrogen bonds, whereas flavonoid glycosides cannot build hydrogen bonds with the 

backbone amides of insulin. Nevertheless, spiraeoside; 4'-O-glucoside of quercetin, can form 

hydrogen bonds. Cleavage of the sugar bridge at 4' position occurs spontaneously, and the 

related aglycone; i.e. quercetin, will be free to undergo the non-covalent interaction.  
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Zusammenfassung: 

 

Flavonoide sind eine der am häufigsten vorkommenden sekundären Pflanzenstoffe (SM) in 

der Natur und besitzen eine Menge attraktiver medizinischen Eigenschaften. Diese Arbeit 

besteht aus zwei Kapiteln, in denen die Anwendungen der Massenspektrometrie (MS) in den 

Bereichen von Phytochemie und Bioaktivität sekundärer Pflanzenstoffe eingesetzt wurden. 

    

Das erste Kapitel umfasst die Vorteile einer Kopplung-Techniken der LC-MS in der 

Profilierung von Flavonoiden in manchen bekannten Heilpflanzen; Bupleurum marginatum, 

Camellia sinensis, Citrus jambhiri, Scutellaria immaculata, sowie Scutellaria ramosisima. 

LC-MS erwies sich als eine „par excellence“ Technik und bietet viele attraktive Eigenschaften 

bezüglich der Profilierung von Pflanzenextrakten und die Identifizierung von neuen 

bioaktiven Polyphenolen. 

 

Das zweite Kapitel umfasst die Anwendungen von ESI-MS in der Beobachtung von nicht-

kovalenten Wechselwirkungen einiger Polyphenole mit verschiedenen Peptiden. 

Flavonoidglykoside besitzen die Fähigkeit, nicht-kovalente Komplexe mit Angiotensin (I) 

durch ionische Wechselwirkung bilden zu können. Die Stabilität der gebildeten Komplexe ist 

abhängig von der Anzahl der Zuckerreste, die sich in der Struktur des Flavonoidglykosids 

befinden. Flavonoidaglykone sind unfähig, stabile Komplexe mit Angiotensin (I) zu bilden. 

Ihre Planarität macht Flavonoidaglykone weniger flexibel und ist verantwortlich für die 

schwache ionische Bindung mit Biomolekülen. Eine Ausnahme ist Taxifolin, dessen fehlendes 

π-System bei C2-C3 von Ring C mehr Flexibilität gewährt, im Vergleich zu anderen 

untersuchten Flavonoidaglykone. 

 

Die Anzahl der an Komplex-Bildung Moleküle von Flavonoidglykoside nimmt zu, je mehr der 

Lysin-Reste in der gezielten Peptid sind. Komplexe wie 2:1, 3:1 und sogar 8:1 

Polyphenol:Peptid wurden detektiert. Außerdem, die Polyphenol:Peptid Werte erhöhen sich 

parallel zur zunehmenden Anzahl der phenolischen Gruppen der chemikalischen Struktur. 
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Auf der anderen Seite, Flavonoidaglykone; in Widerspruch zu ihren Glykosiden, besitzen die 

Fähigkeit mit  Biomolekülen Wasserstoffbrücken zu bilden. Jedenfalls spiraeoside; ein 4'-O-

glukosid von Quercetin, kann diese Wasserstoffbrücken bilden. Die Spaltung der 

glykosidischen Brücke an 4'-Position kann spontan passieren und daher das Aglykon; 

Quercetin, steht frei um der Wasserstoffbrücken zu unterliegen.  
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Preface 

 
 
Medicinal plants and their secondary metabolites (SM) are still providing a fundamental 

source for bioactive agents in our modern medicine. Moreover, the global interest in 

medicinal plants is rapidly growing, as a considerable number of the flora in the world is still 

unexplored. Therefore, researchers were confronted with the necessity to develop new 

methods and technologies, which are more effective and reliable for the identification, 

isolation and evaluation of novel chemical entities. One of these methods is Mass 

spectrometry (MS), which proved to be unavoidable in many scientific inquiries. 

 

One of the most abundant secondary metabolites in nature are polyphenols. They provide 

an enormous field of interest for many scientific disciplines. The aim of this work is to 

highlight the impact of MS techniques in medicinal plant researches. This work consists of 

two chapters, in which the electrospray mass spectrometry (ESI-MS) has been introduced as 

a powerful tool in the field of drug discovery. In the first chapter the benefits of ESI-MS in 

the area of phytochemistry, as an analytical tool coupled with high performance liquid 

chromatography (HPLC), have been presented. LC-MS has been employed successfully in 

profiling polyphenols in some medicinal plants. Compared with many traditional methods, 

LC-MS techniques encompass number of features offering many advantages in one single 

injection, such as; (i) resolving complex samples, (ii) high selectivity in controlling co-eluents, 

and (iii) possibility to elucidate chemical structures. The second chapter focused on ESI-MS 

as an alone-standing technique in studying non-covalent interactions between some 

polyphenols and biomolecules. As a “soft” ionization technique ESI-MS proved to be 

constructive in studying interactions between the different molecules. These techniques 

demonstrate versatile attractive advantages, such as; (i) requirement of small quantities of 

material, (ii) adaptability to high throughput screening (HTS), and (iii) flexibility in 

experimental designation. This pledges for a continuous implementation of ESI-MS in 

monitoring non-covalent complexes as an essential platform in modern drug discovery. 
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1.1. Introduction: 

 

1.1.1. Secondary metabolites and phytotherapy: 

As an evolutionary response plants were obliged to produce and store a wide range of 

organic molecules. These substances are usually termed as secondary metabolites (SM). 

Some of these compounds are involved in the survival of the plants as a defense mechanism 

against natural enemies. Many SM could actively interact with targets in the human body 

inducing a bioactivity of interest (Wink, 2008c; Wink, 2008a).   

Since the early history human beings recognized the curative properties of plants in their 

surrounding environment and developed different preparations for healing purposes. These 

experiences form what so-called ethno-medicine, and the practices were then documented 

through the centuries to build up the traditional medicine. 

 

By modernization of analytical chemistry techniques in the last century the heritage of 

traditional medicine is then moved from the stage of practices documentation to a 

methodological and conceptual reorientation to shape up our modern medicine. Since then 

many phytochemical studies have been carried out to isolate and characterize new SM of 

biological interest (Harborne, 1998; Wink, 1999). An estimation of isolated naturally 

occurred secondary metabolites is presented in Table (1.1). 

 

Most of the plant species in the world have not been yet subjected to phytochemical studied 

for possible biological active constituents. On the other hand, the majority of SM compounds 

that are identified in medicinal plants show a pleiotropic ability to interact with several 

targets (multi-target SM) (Wink, 2008a). Therefore, traditional medicine offers promising 

solutions to face the global increasing demands for new therapeutic agents (Balandrin et al., 

1985; Newman et al., 2000). One of the most universal and widespread secondary 

metabolites in plant kingdom are flavonoids (Daayf and Lattanzio, 2008). The aim of this 

chapter is to profile and characterize number of bioactive flavonoids in some common 

medicinal plants by implementation a state of art of analytical instruments, namely, High 

performance liquid chromatography coupled with electrospray mass spectrometry (LC- MS).  
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Table (1.1) Numbers of known secondary metabolites from higher plants, Wink (2008)(Wink, 
2008b) 

 
 

 

1.1.2. Flavonoids: 

 

1.1.2.1. The biological impact of the flavonoids:  

Flavonoids represent one of the most familiar and widespread group of substances in plant’s 

kingdom (Daayf and Lattanzio, 2008), and have been proved to possess an immense 

biological impact on the health of humans. They exert lipid-lowering properties and thus 

protective effects on the cardiovascular system (Curin and Andriantsitohaina, 2005; 

Pakalapati et al., 2009), and play an active role as immune-modulators (Deng et al., 2010), 

anti-inflammatory (Figueirinha et al., 2010), anti-tumor (Ito et al., 1999) and 

antimicrobial(Weisse et al., 1995) agents. Moreover, isoflavonoids showed encouraging 

bioactivity in hormonal replacement therapies (HRT) (Pakalapati et al., 2009).  Further works 



Introduction 
 

3 
 

confirmed the ability of chatechins to scavenge radicals and eradicate oxidative stress, thus 

recommended them as a supportive remedy in anti-aging (Abbas and Wink, 2009), anti-

neurodegenerative (Abbas and Wink, 2010) and cancer diseases (Henning et al., 2010). The 

biological activity of flavonoids are a result of the diversity in the structural confirmations of 

these compounds, which made them enjoy an tremendous interest in different fields of 

science such as ecology, biotechnology, and medicine (Hattenschwiler and Vitousek, 2000; 

Wink, 2010). 

 

 

1.1.2.2. Chemical structure and classification of flavonoids: 

It is estimated that more than 4000 naturally occurring flavonoids have been identified form 

higher plants (Wink, 2008b). According to their chemical structure flavonoids could be 

divided into four key groups, namely, major flavonoids, neoflavonoids, isoflavonoids, and 

stilbinoids (Baxter and Harborne, 1999). These major groups are then divided into different 

subgroups as shown in figure (1.1) (Ververidis et al., 2007). 

 

 

1.1.3. Profiling SM using high performance liquid chromatography (HPLC): 

Nowadays, high performance liquid chromatography (HPLC) techniques are the most widely 

used methods of analysis in the field of phytochemistry. They have been successfully 

employed in the discovery and identification of new biologically active secondary 

metabolites (Waksmundzka-Hajnos and Sherma, 2011). HPLC methodologies depend on the 

concepts of liquid-solid partition, whereas, the analytes are separated according to the 

differences in their affinity toward a stationary solid phase (column), which is considered the 

heart of a HPLC system. The analytes will be first retained in the column and then migrate 

under the force of the mobile phase. This will result in the separation between the different 

constituents (analytes) of an extract at different elution times, or what so-called retention 

time (RT). 
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MAJOR FLAVONOIDS 

   

Flavonols Flavanols Flavanones 

   
Flavanolols Flavones Anthocyanidins 

 

 

ISOFLAVONOIDS 

   
Isoflavones Isoflavanones Isoflavanols 

 

 

NEOFLAVONOIDS STILBENOIDS 

   
4-Arylcoumarines Neoflavenes Stilbenes 

 

 

Fig. (1.1) Chemical structures of key groups and subgroups of flavonoids. 
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There are two major concepts which are employed considering HPLC; normal-phase (NP) and 

reversed-phase (RP). This makes HPLC a tool par excellence for its capacity to carry out 

separation of compounds at wide range of polarities (McMaster, 2007).  

 

1.1.3.1. Normal-phase HPLC: 

The normal-phase chromatography (NP-HPLC) is the chromatographic mode which was 

discovered by Tswett in 1903. In this mode the column is packed with polar stationary phase. 

In general, NP-HPLC employs an inorganic adsorbent like silica as a polar stationary phase, 

and non-aqueous solvents for retention modulation. Analytes which are retained in the 

stationary phase will elute as the mobile phase polarity increases. The NP-HPLC mode was 

successfully employed in the field of natural product analysis, such as carbohydrates. Also 

compounds that may decompose in aqueous milieus are usually analyze using NP-HPLC 

(Snyder et al., 1988; Meyer, 2010). On the other hand, NP-HPLC proved to be useful to 

control many natural compounds, e.g. phenolic acids, stevioside a sweetener which is 

extracted from the leaves of Stevia rebaudiana, and plumbagin a naphthoquinone derivative 

found in Plumbago zeylanica L. (Gupta et al., 1993; Tateo et al., 1999). Nevertheless, when 

taking in account the analysis of natural products, then reversed-phase chromatography (RP-

HPLC) is often the method of choice, since that NP-HPLC bares many operational difficulties. 

 

1.1.3.2. Reversed-phase HPLC: 

More than 25 years are gone when Horvath and Melander estimated that the majority of all 

analytical separation can be carried out using reversed-phase chromatography (RP-HPLC). In 

general the analyses in this mode are performed using non-polar stationary phase; i.e. a 

modified normal phase polar silica, hence, the name reversed-phase (Kazakevich and 

LoBrutto, 2007). The modification is achieved through covalent bonding of an organic carbon 

chains to the silica column bed. Octadecylsilane modification or C18 columns are the most 

used kind of reversed-phase stationary phases in the analytical chemistry (Kirkland, 2004).  

 

Figure (1.2) shows the differences in the chemical nature of the column package that is used 

to pack HPLC columns in both phases, i.e. normal phase, and reversed phase. Unlike the NP 

chromatography the analytes in this mode will be adsorbed to the non-polar stationary 

phase and then start to elute as the mobile phase polarity decreases.  
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Usually this mobile phase is buffered to prevent the interference of ionic interactions during 

the elution process, since that the separation should be a function of partition between 

stationary and mobile phase. Ionic interactions as a method of separation is observed in Ion-

exchange chromatography (IC) which mainly applied in protein analyses (Small, 1989). There 

are many other concepts concerning chromatography, but that all lay beyond the objective 

of this work. 

 

 

 
Fig. (1.2) Illustration of inorganic silica bed (Left) used to pack the HPLC columns in both modes; the normal-
phase (NP) (Top) and reversed-phase (RP) (Bottom). 
 

        

RP-HPLC was extensively used in the identification of highly bioactive secondary metabolites 

from higher plants, such as, mahanine and mahanimbine alkaloids from Murraya koenigii 

(Pandit et al., 2011), ginkgolide A, ginkgolide B, and bilobalide, terpene lactones in Ginkgo 

biloba (Mesbah et al., 2005), some triterpene saponins from Chenopodium quinoa 

(Kuljanabhagavad et al., 2008), some active phenylpropanoids with anti-oxidative properties 

from Allium sativum L. (Ichikawa et al., 2003), and more. 
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In the case of flavonoids RP-HPLC is still the most utilized technique all over the world. There 

is a huge body of literatures that reported the detection and characterization of flavonoids 

from different medicinal plants. For flavonoid profiling in plants extracts RP-HPLC is a 

straightforward technique that usually does not require complex preliminary sample 

treatment. In general, when preceding RP-HPLC run, the more polar compounds eluted first, 

i.e. flavonoid glycosides, then the less polar aglycones will follow.    

 

 

1.1.3.3. Detection in HPLC: 

Detector is the “Eye” for HPLC system. After the separation is accomplished, detection of 

eluted compounds is achieved depending on the physiochemical properties of these 

compounds. There are many techniques coupled with HPLC systems, such as UV/VIS and 

fluorescence spectroscopy, evaporative light scattering detector (ELSD), refractive index, 

electrochemical, conductivity detectors, and mass spectrometry. 

 

In the field of natural product characterization and identification the UV/Vis detectors have 

been widely used on a routinely basis in the laboratories all over the world. UV/Vis detectors 

offer many advantages; they are generally affordable and have a simple instrumental design, 

amenable to many sorts of method development, and considered as a non-destructive 

technique, whereas the analyzed sample could be kept for further experimental procedures. 

Nevertheless, the growing interest in the identification and characterization of new bioactive 

SM led to the necessity to employ more sensitive and complicated techniques. That was the 

time when mass spectrometry coupled with HPLC became an inevitable technique in 

phytochemistry and rapidly adapted as the work-bench in the profiling plants secondary 

metabolites.      

 

 

1.1.4. Hyphenated techniques, liquid chromatography mass spectrometry  (LC-MS): 

At the early stages of the invention of mass spectrometry, the application of such techniques 

were limited to mass determination and purity of a given sample (Griffiths, 2008). Later on 

by mid 1980s new MS machines were introduce paving the way to the development of 

hyphenated techniques, such as liquid chromatography mass spectrometry LC-MS.  
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By the invention of atmospheric pressure ionization (API) techniques in late 1960s it was 

then possible to transfer the studied analytes from liquid into gas phase in a form of charged 

molecules detectable by means of MS analyzers (Clegg and Dole, 1971). Later in 1980s 

electrospray ionization mass spectrometry (ESI-MS) was invented (Fenn et al., 1989). ESI-MS 

instrumental design allows the last to be coupled to HLPC systems. Gradually, analysts 

started to approve the LC-MS technique as chief platform for researches in the field of 

analytical chemistry. 

 

The mobile phase eluting out of the HPLC system has high pressure comparing to the 

manner of MS machine, this will distort the high-vacuumed mass spectrometer interface and 

the MS analysis. The API ionization interfaces were designed to overcome such problem be 

employing inert nebulizer and drying gas such as N2. Furthermore, a pressure reducer consist 

of electrical lenses is utilized to steer analytes from the atmospheric pressure area to the 

vacuumed MS analyzer (McMaster, 2005). Hence, these MS techniques are called 

atmospheric pressure ionization or (API). Refer to the figure (2.3), page (69). 

 

MS techniques offer a lot of advantages over other conventional ones. Although being a 

destructive method, MS in general does not require large amounts of sample, it is a sensitive 

technique and used to detect impurities at low concentrations (Pelaez et al., 2002). LC-MS 

techniques provide the analysts not only with the retention time (RT) values, but also with 

the molecular mass as shown in figure (1.3).  Moreover analyzers such as quadrupoles assign 

the analysis process with more flexibility. It possible by means of what so-called 

reconstructed ion chromatogram (RIC) to plot a chromatogram obtained from signals 

belongs; (i) even to a chosen m/z value, (ii) or to a series of values of mass spectra recorded 

as a function of retention time.  This option can be valuable in; (i) fishing out a specific signal 

of desired analytes from a signal-rich MS spectrum, (ii) studying the existence of isomers, (iii) 

resolving possible co-eluting analyst in LC-MS runs, and/or (vi) providing more clear LC-MS 

chromatograms of compounds of interest. 
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One more striking feature provided by the MS machines is the tandem mass spectrometry 

(MSn), which facilitate structural elucidation studies (Busch, 2010). Tandem MS is formed 

when MS machine consists of a series of analyzers. In this case the analyst can set the first 

analyzer in the MS machine in order to isolate a specific molecule through what so-called 

selected ion monitoring (SIM). Afterward this molecule will be guided into a second section 

and exposed to collision energy that results in the fragmentation of this molecule. The third 

analyzer will then detect the originated fragments through a function called multiple 

reaction monitoring (MRM). The fragmentation pattern will then facilitate the structure 

elucidation of the chosen molecule.  

 

 
Fig. (1.3) Data obtained from LC-MS could be described as a two dimensional kind of data. It is possible to 
record the values of retention time for each detected analyte and simultaneously to obtain information about 
the molecule mass of this analyte (McMaster, 2005). 
 
 
    
These days LC-MS is successfully established in the characterization and identification of 

many bioactive secondary metabolites in medicinal plants, such as the identification of 

iridoid glycosides in of Scrophularia nodosa (Wink et al., 2007), analysis of triterpene 

glycosides in Cimicifuga racemosa (He et al., 2000), characterization of ginsenosides in the 

root and leaves Panax quinquefolium L. (Ligor et al., 2005), fingerprinting of Psoralea 

corylifolia L. (Zhao et al., 2005), and studying phenylpropanoid glycosides in Tynanthus 

panurensis (Plaza et al., 2005). 
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1.2.  Material and methods: 

 

1.2.1. Chemicals and reagents: 

For HPLC experiment the following solutions were used:  Chromanorm-water, acetonitrile 

and formic acid (HPLC grades from VWR International GmbH, Bruchsal, Germany). Whereas 

ammonium acetate salt (Riedel-de Haën, Seelze, Germany), glacial acetic acid (J.T.Baker, 

Holland) and ammonium hydroxide solution (Fluka, Sigma-Aldrich Chemie GmbH, 

Schnelldorf, Germany) were used to prepare the buffered mobile phase and to adjust pH of 

solutions. 

 

For sample preparation the following solvents (analytical grade) were used: methanol, 

ethanol, dichloromethane, chloroform, petroleum ether, and ethyl acetate purchased from 

(Merck, Darmstadt, Germany). Dimethylsulfoxide (DMSO) was obtained from (J.T.Baker, 

Holland).  

 

Authentic compounds such; rutin, eriocitrin, neoeriocitrin, diosmetin 6-C-glucoside, 

narirutin, naringin, hesperidin, neohesperidin, limonin, nomilin, and palmitic acid were 

obtained from university of Heidelberg, IPMB/Biology, Germany. Epigallocatechin gallate 

(EGCG) was purchased from (sigma-Aldrich Chemie GmbH, Schnelldorf, Germany), and 

scutellarin from Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany. 

 

 

1.2.2.  Sample preparation:  

For sample preparation; a Büchi rotary evaporator system (Büchi, Flawil, Switzerland) consist 

of Rotavapour R-200, heating bath B- 490, and a B-172 vacuum system, as well as a freeze 

dryer Alpa IL-6 (Christ, United Kingdom) provided with vacuum concentration centrifuge 

Univapo 150 H (Uniequip, Planegg, Germany), and a vacuum pumps Edwards 3 (Edwards, 

Crawley, England) were used. Prior to any LC-MS sample injection, all samples are exposed 

to BiofugePico centrifuge ( Heraeus, Hanau, Germany) at speed of 13000X for 30 seconds to 

get rid of any suspended particles.  

  

 

http://en.wikipedia.org/wiki/Crawley�
http://en.wikipedia.org/wiki/England�
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1.2.3.  High-performance liquid chromatography (HPLC): 

The chromatographic separation carried out by HPLC system consists of:   

(L-6200 A) Merck-Hitachi pump (Hitachi, Tokyo, Japan), a (ERC α) degasser (ERC, Japan), and 

a reversed phase (RP-C18) LiChroCART column [250 X 4 id. mm, 5 µm)] (Merck, Darmstadt, 

Germany). 

 

 

1.2.4. Electrospray ionization mass spectrometry (ESI-MS): 

MS analyses were performed using a Quattro II system (VG, England) with electrospray 

ionization (ESI) interface, and a triple-quad quadrupole analyzer, supported with Masslynx 

V4.0 program from data analysis. An Edwards 28 vacuum pump (Edwards, Crawley, England) 

was used to generate the high vacuum, and NG7 nitrogen (Burger, Bern, Switzerland) was 

used to provide the nebulizer and drying gas N2.  

 

http://en.wikipedia.org/wiki/Crawley�
http://en.wikipedia.org/wiki/England�
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1.3.  Polyphenols profiling of some medicinal plants: 

 

1.3.1. Bupleurum marginatum: 

(This work has been done in cooperation with Dr. M. Ashour from Institute of Pharmacy and Molecular 

Biotechnology, Heidelberg University, Germany) 

 

1.3.1.1. Introduction: 

Bupleurum genus, which belongs to the Apiaceae family or Umbelliferae, grows in southern 

and southwestern part of China (Ashour et al., 2009). Also known as Chinese thorough wax 

Bupleurum is widely used in the traditional Chinese medicine (TCM) under the name of 

“Chaihu” (Krapp and Longe, 2001), and officially listed in the Chinese and Japanese 

Pharmacopoeias in addition to the WHO monographs of the commonly used medicinal 

plants of China and Korea (Kim and Song, 2011). 

 

Bupleurum marginatum is a perennial, rarely annual or biennial, herb that requires plenty of 

sun to flourish. The shrubs are bushy and can normally reach height up till one meter. The 

leaves are long with sickle-shaped. They have generally yellow flowers that appear in 

summer time. The root Radix bupleuri, which is the used part in the medicinal practices, is 

pale red with  slightly bitter and spicy taste (DerMarderosian and Beutler, 2008). 

 

Based on the practice of TCM, radix bupleuri has been used successfully for more than 2000 

years either alone or in combination with other herbs for the treatment of common cold 

(Van Wyk and Wink, 2004), inflammation (Just et al., 1998; Zu et al., 2007), cancer and fever 

associated with malaria (Wu, 2005). Also Bupleuri extracts have been reported to have 

protective properties in treatment of chronic hepatitis (Motoo and Sawabu, 1994; Chiang et 

al., 2003). Another study delivered on hot-water extract of B. falcatum confirmed an 

inhibitory activity against ulcerogenesis (Yamada et al., 1991; Matsumoto et al., 2008). 

 

A number of phytochemical studies reported more than 100 compounds (saikosaponins, 

phenylpropanoids, lignans, coumarins, flavonoids, and sterols) to be isolated from different 

species of Bupleurum genus (Sanchez-Contreras et al., 1998; 2002).  

http://en.wikipedia.org/wiki/Apiaceae�
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In addition, minor components including, polysaccharides and few alkaloids have been also 

mentioned in several studies.  

 

LC-ESI/MS was used effectively to profile several saponins in Radix bupleuri, mainly 

saikosaponins which are reported to be responsible for the broad therapeutic effects of B. 

falcatum (Zhao et al., 2011). Also some sulfated saponins have been isolated from 

methanolic extract of the aerial parts of B. rigidum (Sanchez-Contreras et al., 1998). 

  

Nevertheless, techniques like GC and GC-MS were also successfully employed to identify the 

occurrence of diverse essential oil, such as α-pinene, β-phellandrene, and various 

monoterpenes, which have been found in B. fruticosum (Martin et al., 1993; Liu et al., 2009), 

on the other hand the presence of phenylpropanoids was confirmed in other studies (Pistelli 

et al., 1995; Massanet et al., 1997). Meanwhile some groups were successful in isolating 

polyacetylenes from the dichloromethane extract of B. longiradiatum (Huang et al., 2009), 

while others could identify some lignans and polyacetylenes from hexane extract of the 

aerial parts of B. acutifolium (Barrero et al., 1999).     

 

Many polyphenols have been isolated from genus Bupleurum, and they mostly belong to 

flavonoids family, such as kaempferol, isorhamnetin or quercetin. Also some other aglycones 

like apigenin, acacetin, chrysin, luteolin and tamarixetin have been reported (Barrero et al., 

1998; Pistelli et al., 2005; Zhang et al., 2007). Flavonoid glycosides are also isolated, whereas 

rutin is the most common flavonoid. In addition, narcissin, a flavonoid glycoside of 

isorhamnetin, were found in B. flavum and B. fruticosum (Pistelli et al., 2005; Pan, 2006). 

 

1.3.1.2. Sample preparation: 

The plant material was obtained from Yunnan providence, China, and the DNA barcoding 

and morphological identification were done at the Botanical Garden, University of 

Heidelberg. The dried material of aerial parts of B. marginatum was grounded and then 

extracted using maceration with methanol. After filtration the residue was recovered from 

the methanol phase using rotatory evaporator under reduced pressure. The recovered 

residue was then reconstituted in DMSO and kept in -20oC. 
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1.3.1.3. LC-MS parameters: 

The chromatographic separation of the methanol extract was carried out by HPLC using a 

reversed phase C-18 (RP C-18) column. The mobile phase consisted of solvent A; water–

formic acid (99.5: 0.5, v/v) and solvent B; acetonitrile. The HPLC binary pump with a flow 

rate of 1 mL/min was programmed to run the mobile phase as the following: 

0–60 min, gradient from 0–50% B; 60– 70 min, gradient from 50–100% B; 70–73 min, 

isocratic at 100% B; 73–75 min, gradient from 100–0% B; and 75–80 min, isocratic at 100% A. 

 MS analysis was performed in both negative and positive mode under the following 

conditions: 

 

Table (1.2) Tuning parameter of ESI source at both positive and negative mode: 

Tuning Parameters Positive mode ESI(+) Negative mode ESI(-) 

Capillary    (kVolts) 3,5 3,00 

Cone         (Volts) 25 30 

Extracting (Volts) 5 5 

RF Lens     (Volts) 0,2 0,2 

Source Temperature 120 120 

Dynamic range m/z 200-800 200-800 

 

 

 

1.3.1.4. LC-MS profiling of Polyphenols in Bupleurum marginatum: 

Five different polyphenols, figure (1.4), were identified in the methanol extract of the aerial 

parts of B. marginatum using LC-ESI/MS. Figure (1.5) displays the chromatogram analysis of 

the methanol extract at the negative mode. The reconstructed MS spectra from the 

chromatogram revealed the deprotonated molecular-ions [M-H]- of five flavonoids with the 

following m/z values; 609, 463, 623, 301, and 315  belong to rutin, isoquercitrin, narcissin, 

quercetin, and isorhamnetin, respectively. On the other hand figure (1.6) displays the 

chromatogram analysis at the positive mode, and the reconstructed MS spectra revealed 

only four compounds; rutin, narcissin, quercetin, and isorhamnetin.  
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The protonated molecular-ions [M+H]+ of these polyphenol had the m/z values of 611, 625, 

303, and 317, respectively. Only isoquercitrin was not detectable under the positive 

ionization mode. Table (1.3) shows the identified compounds with the values of the detected 

molecular-ions at both negative and positive ionization modes. 

 

 

 
Fig.(1.4) The chemical structure of the flavonoids isolated and identified in the methanol extract of Bupleurum 
marginatum aerial parts. 
 
 
 
 
The MS data that obtained from the negative ionization mode revealed that the methanol 

extract contains small amounts of isoquercitrin. Meanwhile the MS data obtained from the 

positive ionization mode showed no clear signal of isoquercitrin. Thus, ESI at the negative 

ionization mode is more sensitive in detecting polyphenols and has lower limits of detection. 

Meanwhile, many flavonoids show low sensitivity in the positive mode of analysis. This could 

be explained by the fact that polyphenols possess the tendency to form phenolate ions; 

therefore the formation of a deprotonated molecular-ion is favorable over the protonated 

ones. Figure (1.7) represents the molecular-ions of isoquercitrin obtained from combined 

data of LC-MS at the relevent retention time in the negative ionization mode. 
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Table (1.3) Identified compounds with the values of the detected molecular-ions at both 

negative and positive ionization modes 

Compound Molecular weight [M-H]- [M+H]+ 

Rutin 610 609 611 

Isoquercitrin 464 463 465 

Narcissin 625 623 625 

Quercetin 302 301 303 

Isorhamnetin 316 315 317 

 

The LC-MS analyses reveal that the methanol extract of the aerial parts of B. marginatum is 

rich of quercetin. The molecular-ions of quercetin obtained from combining the data of the 

chromatograms are shown in figures (1.8) and (1.9). Quercetin is reported to be the most 

abundant flavonoid aglycone in the Bupleurum genus (Pan, 2006). The bioactivity of the 

methanol extract as an anti-inflammatory by the inhibition of COX-2 and LOX enzymes could 

be due to quercetin (Rathee et al., 2009). 

 

Fig. (1.5) LC-ESI/MS chromatogram of the methanol extract of Bupleurum marginatum aerial part at the 
negative ionization mode. 
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Fig. (1.6) LC-ESI/MS chromatogram of the methanol extract of Bupleurum marginatum aerial part at the 
positive ionization mode. 
 
 
 
Another flavonoid found abundantly in the methanol extract was rutin. The molecular-ions 

obtained for rutin at both negative and positive ion mode are shown in figure (1.10) and 

figure (1.11), respectively. Rutin, a quercetin-3-O-rutinoside, is reported in earlier studies to 

be found in the Bupleurum genus (Pistelli et al., 2005; Zhang et al., 2007). Like many of 

flavonoid compounds, rutin has a wide range of biological activity. For example, its effect as 

anti-hemorrhagic in the treatment of venous insufficiency (Christie et al., 2001). At the 

positive ionization mode rutin tends to lose the sugar residues in two steps, thus it is 

possible to detect at the positive mode the intact rutin, one glucopyranosyl fragment, and 

the quercetin aglycone figure (1.11). Whereas, the negative ionization mode is a softer mode 

and only the intact rutin is detectable figure (1.10).  
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Isorhamnetin is an O-methylated flavonol and also was reported to be found in the 

Bupleurum genus. Figures (1.12) and (1.13) represent the molecular-ions obtained from 

combined data of LC-MS, at both negative and positive modes respectively. Another 

flavonoid glycoside of rutinoside found in the methanol extract of the aerial parts of B. 

marginatum is narcissin. Narcissin is isorhamnetin-3-rutinoside and found in both B. flavum 

and B. fruticosum (Pistelli et al., 2005; Pan, 2006). MS spectra of narcissin at both negative 

and positive ionization modes are presented in figures (1.14) and (1.15), respectively. 

 

 

 

 
Fig. (1.7) molecular-ion of isoquercitrin at the MS negative mode. Isoquercitrin with a molecular weight of 464 
will lose a proton to bear a negative charge and m/z value of 463.  
 
 
 
 
 
 
 
 
 
 

http://en.wikipedia.org/wiki/O-methylated_flavonol�
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Fig.(1.8) molecular-ion of quercetin at the MS negative mode. Quercetin with a molecular weight of 302 will 
lose a proton to bear a negative charge and m/z value of 301. 

   

 
Fig.(1.9) molecular-ion of quercetin at the MS positive mode. In this mode quercetin will be protonated to bear 
a positive charge and a mass of 303 that is one atomic mass unite greater than its molecular weight 302. 
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Fig.(1.10) molecular-ion of rutin at the negative mode. Rutin with a molecular weight of 610 will lose a proton 
to bear a negative charge and m/z value of 609. 
 

 
Fig.(1.11) MS(+) spectrum of rutin. The sugar bridges will cleave leading to form of two fragments, one is a 
mono-sugar residue, and other is the aglycone quercetin. 
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 Fig.(1.12) molecular-ion of isorhamnetin at MS(-). Isorhamnetin with a molecular weight of 316 will lose a 
proton to bear a negative charge and m/z value of 315. 

 
Fig.(1.13) MS(+) spectrum of isorhamnetin. The molecular weight of isorhamnetin is 316 g/mole. In this mode it 
will gain a proton to have m/z value of 317. 
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Fig. (1.14) MS(-) spectrum of narcissin. The molecular weight of narcissin is 624 g/mole. In the negative mode 
narcissin will be deprotonated to show m/z value of 623. 
 

 
Fig.(1.15) MS(+) spectrum of narcissin. The sugar bridges will cleave leading to the formation of two fragments, 
one is a mono-sugar residue, and other is the aglycone isorhamnetin. 
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In general phenolic compounds are important secondary metabolites that present in genus 

Bupleurum. These compounds have a wide range of biological activity. Because of the huge 

system of phenolic groups they are able interact to different bio-targets (e.g. lipoxygenases 

and cyclooxygenases enzymes which are targets of anti-inflammatory drugs) through non-

covalent bonds leading to functional changes, thus, inducing therapeutically effects (Wink, 

2008). Furthermore, polyphenols are known to have anti-oxidant and radical scavenging 

properties, thus, they play a role in the prevention against cell- and DNA-damaging diseases 

like cancer, atherosclerosis, and neurodegenerative ones.  
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1.3.2. Scutellaria immaculata and Scutellaria ramosissima: 

(This work has been done in cooperation with Dr. N. Mamadalieva from Institute of the Chemistry of Plant 

Substances AS RUz, Tashkent, Uzbekistan) 

 

1.3.2.1. Introduction: 

Skullcap is a name that refers to many plants of genus Scutellaria. Belongs to the family 

Lamiaceae, Scutellaria is a perennial herb native to North America and eastern Asia. In 

herbal medicine the name skullcap refers to Scutellaria lateriflora and the used parts are 

leaves, flowers, and stems (Fundukian, 2009). 

 

The genus Scutellaria contains more than 360 species, many of them have medicinal impact 

on humans, and widely used in TCM. Different secondary metabolites have been isolated 

from Scutellaria species such as essential oils, iridoids, diterpenes, triterpenes, alkaloids, 

phytosterols, polysaccharides, as well as polyphenols.  

 

Scutellaria species are reported to show bioactivity in treatment of neurological disorders, 

and inflammatory diseases. Other species are proved to have anti-viral and anti-bacterial 

properties (Parajuli et al., 2009). In other studies Scutellaria baicalensis demonstrates an 

anti-trypanosomal activity (Yabu et al., 1998; Schinella et al., 2002).   

 

Flavonoids which are abundant in Scutellaria genus are responsible for many 

pharmacological effects. The most commonly reported flavonoids from this genus are 

baicalein, baicalin, wogonin and wogonoside. Despite that these compounds relatively 

exhibit low cytotoxicity, but  they still show an anti-tumor effects due to their properties in 

scavenging oxygen radicals, reducing NF-kappaB activity, and inhibiting several genes, which 

are important for the regulation of cell cycle (Li-Weber, 2009). Baicalein and baicalin also 

have a protective activity preventing tissue damage caused by reactive oxygen species (ROS) 

(Gao et al., 1999). Also it has been reported that Baicalein inhibits HIV-1 reverse 

transcriptase (Li et al., 2000). 

 

 

 

http://en.wikipedia.org/wiki/Perennial_plant�
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1.3.2.2. Sample preparation: 

The aerial parts and roots of S. ramosissima and S. immaculata were collected from 

Tashkent and Namangan region of Uzbekistan, respectively, at flowering stage. The plant 

material (root and aerial parts) was dried at room temperature before grounded to a fine 

powder with. Three different extracts were papered by using the following solvents; water, 

methanol, and chloroform, by over-night maceration of 100 g of plant material with 500 ml 

of solvent. The solvents were evaporated in a rotary vacuum evaporator at 40 °C. The 

extracts were then kept in +4 oC for further use. 

 

 

1.3.2.3. LC-MS parameters: 

The final concentration of all samples was 20 µg in 1 mL methanol. Separation was carried 

out using a RP-C18 end-capped column. The mobile phase consisted of A: water HPLC grade 

with 0.5 % formic acid, B: acetonitrile. 

The mobile phase was delivered into the column in a gradient manner as the following: 

1. for methanol and chloroform fractions: 0 % to 50 % B in 50 min., then to 100 % in 5 min. 

2. for water fraction: from 0 % to 25 % in 50 min., then to 100 % in 5 min. 

To improve the MS analysis a mechanical T splitter is build prior to the MS machine allowing 

only 10% of the eluted mobile phase to enter the ionization interface. 

    

MS analyses were set using ESI interface in negative mode of ionization under the following 

parameters: Drying and nebulizing gas (N2). Capillary temperature 120 °C. Capillary voltage, 

3.00 kV. Lens voltage, 0.5 kV. Cone voltage 30 V. Full scan mode in mass range m/z 200-

1000. 

 

1.3.2.4. LC-MS profiling of Polyphenols in S. immaculata and S. ramosissima: 

Scutellaria species are known to be rich of flavonoids and they have a lot of important 

curative applications in the traditional medicine in China and Japan (Sonoda et al., 2004). 

Flavonoids in the Scutellaria species demonstrate many biological activities. It is reported 

that flavonoids in Scutellaria have an anti-inflammatory activities (Liaw et al., 1999), and also 
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able to inhibit cell proliferation and induce apoptosis in several cancer cells (Chan et al., 

2000).  

  

The LC-ESI/MS spectra reflect that S. immaculata and S. ramosissima species are rich with of 

different kind of flavonoid compounds. Table (1.4) summarizes the flavonoids which are 

identified in S. immaculata and S. ramosissima extracts using LC-ESI/MS at negative 

ionization mode. 

 

Many of these flavonoids, namely, chrysin-7-O-glucuronide, scutellarein-7-O-glucoside, 

apigenin-7-O-glucoside, baicalein-7-O-glucoside, norwogonin-7-O-glucoside,  oroxyloside, 

wogonoside, immaculoside, 5,2'-dihydroxy-6,7,6'-trimethoxyflavanone, 5,2'-dihydroxy-

6,7,8,6'-tetramethoxyflavanone, chrysin, wogonin, apigenin, isoscutellarein, scutellarein, 

cosmosiin (apigenin-7-O-β-D-glucopyranoside), and wogonin-7-O-β-D-glucopyranoside have 

been  already reported in S. immaculata (Yuldashev et al., 1992; Malikov and Yuldashev, 

2002; Yuldashev and Karimov, 2005).  

 

On the other hand studies carried out on S. ramosissima have accounted the following 

flavonoids; chrysin 7-O-β-D-glucuronide, 2(S)-2',5,7-trihydroxyflavanone 7-O-(Me-β-D-

glucopyranosiduronate), 2(S)-2',5,7-trihydroxyflavanone7-O-(Et-β-D-glucopyranosiduronate), 

5,2'-dihydroxy-7-O-β-D-glucopyranosylflavone, rivularin, 5,2'-dihydroxy 7-O-β-D-

glucopyranosylflavanone, oroxylin A, wogonin, norwogonin, 5,2',6'-trihydroxy-6,7,8-

trimethoxyflavone, and 5,6-dihydroxy-7,8-dimethoxyflavone (Yuldashev et al., 1992; 

Yuldashev et al., 1994; Yuldashev et al., 1995). Meanwhile others were identified for the first 

time in our labs. Figures (1.16-1.18) show the LC-MS chromatograms of studied samples 

obtained from S. immaculata and S. ramosissima.  
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Table (1.4) Identification of flavonoids in Scutellaria immaculata and Scutellaria ramosissima 

by LC-MS at the negative ionization mode 

Peak [M-H]-
m/z Compounds 

1 345 Unknown 
2 431 Unknown 
3 341 Unknown 
4 547 Chrysin-6-arabinosyl-8-C-glucoside 
5 623 Isorhamnetin-7-O-rha-glu 
6 623 Rhamnetin-7-O-rha-glu 
7 637 Unknown 
8 461 Scutellarin 
9 445 Baicalin 

10 345 5,7,2`,5`-Tetrahydroxy-8,6`-dimethoxy flavone 
11 445 Oroxylin A-7-O-glucoside 
12 447 5,6,7-Trihydroxy flavanone(dihydroxybaicalein)-7-O-glucuronide 
13 445 Norwogonin-7-O-glucuronide 

14+15 429+459 Chrysin-7-O-glucuronide + oroxylin A-7-O-glucuronide 
16 459 Wogonin-7-O-glucuronide 
17 431 Unknown 
18 329 Unknown 
19 327 Unknown 
20 359 Unknown 

21+22 269 + 299 Norwogonin + 5,7,3-trihydroxy-4`-methoxyflavone 
23+24 269 + 299 Baicalein +5,7,4`-trihydroxy-8-methoxyflavone 

25 283 Wogonin 
26 253 5,7-Dihydroxyflavone (chrysin) 
27 343 5,2`-Dihydroxy-6,7,8-trimethoxyflavone 

 

The LC-MS analyses confirmed that S. immaculata and S. ramosissima extracts contain a 

plentiful of flavonoids with a structural variety. Therefore, the Scutellaria genus enjoys a 

wide spectrum of biological activity. The number and the position of phenolic groups as well 

as other functional groups determine the nature of flavonoid bioactivity. The bioactivity can 

vary from being anti-oxidative (Bors et al., 1990; Rice-Evans et al., 1996), anti-inflammatory, 

anti-proliferative, and/or enzyme modulative (Agullo et al., 1996; Agullo et al., 1997; Gamet-

Payrastre et al., 1999; Sato et al., 2002). Figure (1.19) illustrates the different flavonoids and 

their structural variety that is found in S. immaculata and S. ramosissima extracts, which 

explain the wide spectrum of biological activity of Scutellaria genus. 

 



Results and discussion 
 

28 
 

 
Fig.(1.16) LC-MS of methanol extracts. a. S. immaculata aerial parts. b. S. ramosissima aerial parts. c. S. 
ramosissima roots. 
 

 
Fig.(1.17) LC-MS of chloroform extracts. a. S. immaculata aerial parts. b. S. ramosissima roots. c. S. ramosissima 
aerial parts. 
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Fig.(1.18) LC-MS of water extracts. a. S. immaculata aerial parts. b. S. ramosissima roots.  
c. S. ramosissima aerial parts 
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Substance R1 R2 R3 R4 R5 R6 R7 R8 
4 Chrysin-6-arabinosyl-8-C-glucoside H Ara H Glu H H H H 
5 Isorhamnetin-7-O-rha-glu OH H Rha-Glu H H OCH3 OH H 
6 Rhamnetin-7-O-rha-glu Rha-Glu H OCH3 H H OH OH H 
8 Scutellarin H OH Glu acid H H H OH H 
9 Baicalin H OH Glu acid H H H H H 

10 5,7,2`,5`-Tetrahydroxy-8,6`-
dimethoxy flavones H H H OCH3 OCH3 OH H OH 

11 Oroxylin A-7-O-glucoside H OCH3 Glu H H H H H 
13 Norwogonin-7-O-glucuronide H H Glu acid OH H H H H 
14 Chrysin-7-O-glucuronide H H Glu acid H H H H H 
15 Oroxylin A-7-O-glucuronide H OCH3 Glu acid H H H H H 
16 Wogonin-7-O-glucuronide H H Glu acid OCH3 H H H H 
21 Norwogonin H H H OH H H H H 
22 5,7,3-Trihydroxy-4`-methoxyflavone OH H H H H H OCH3 H 
23 Baicalein H OH H H H H H H 
24 5,7,4`-Trihydroxy-8-methoxyflavone H H H OCH3 H H OH H 
25 Wogonin H H H OCH3 H H H H 
26 Chrysin H H H H H H H H 

27 5,2`-Dihydroxy-6,7,8-
trimethoxyflavone H OCH3 OCH3 OCH3 OH H H H 

28 Apigenin H H H H H H OH H 
29 Apigenin-7-O-glucoside H H Glu H H H OH H 
30 Cynaroside H H Glu H H OH OH H 

Fig. (1.19)  chemical structures of flavonoids that were identified using LC-MS at the negative ionization mode. 
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1.3.3. Citrus jambhiri: 

(This work has been done in cooperation with Dr. D. Hamdan from department of Pharmacognosy, Faculty of 

Pharmacy, Zagazig University, Egypt) 

 

1.3.3.1. Introduction:  

Citrus fruits, belonging to Citrus genus of family Rutaceae, occupy the top of the list in fruits 

industry. The nutritional and medicinal benefits of Citrus fruits have been recognized very 

early in the history. Many studies have demonstrated the medicinal benefits of genus Citrus 

such as cholesterol-lowering, cardio-protective, anti-carcinogenic, anti-viral, anti-bacterial 

and anti-fungal effects (Miller et al., 2004; Manners, 2007; Tripoli et al., 2007). 

 

As well as being an important source of ascorbic acid (Vitamin C.) Citrus fruits are also 

significantly rich of bioactive secondary metabolites, e.g. carotenoids, flavonoids, limonoids, 

essential oils, alkaloids. Significant amounts of highly oxygenated triterpenoid compounds 

called limonoids have been reported (Ladaniya, 2008). Also coumarins have been isolated 

and detected from some Citrus species, such as aurapten, bergapten, and psoralin 

(Sulistyowati et al., 1990; Ogawa et al., 2000). 

 

Among the known secondary metabolites that found in genus Citrus, flavonoids attracted a 

significant interest in the field of phytochemistry for their potential ecological, biological and 

chemotaxonomic impacts (Manners, 2007; Tripoli et al., 2007; Ladaniya, 2008). Citrus fruits 

and Citrus juices are one of most universal dietary sources of phenolic compounds (Ting and 

Rouseff, 1986; Aherne and O'Brien, 2002; Erlund, 2004). The most considerable harvested 

Citrus fruits in the world are oranges, mandarins, grapefruits, lemons, bergamots and 

limes(Gattuso et al., 2007). 

 

 

1.3.3.2. Sample preparation: 

The fresh peel of Citrus jambhiri Lush was extracted three times with 80% aqueous 

methanol. The methanol extracts were then filtered and concentrated under vacuum. The 

residue were reconstituted in water and partitioned against light petroleum, chloroform and 

http://en.wikipedia.org/wiki/Rutaceae�
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ethyl acetate.  The samples was then evaporated under vacuum and kept at -20oC for further 

analyses. Prior to LC-MS analyses a stock solution from 10 mg ethyl acetate fraction is 

dissolved in 1 mL DMSO, afterward 100 µL from the stock solution was diluted with 500 µL 

50% aqueous acetonitrile containing 2% formic acid. 

 

Available authentic reference compounds such as hesperidin, neohesperidin, naringin, and 

rutin were dissolved in DMSO and the stock solutions (10 mg/mL) were stored at 4o C. Prior 

to injection in LC-MS system, the stock solutions were diluted with 50% aqueous acetonitrile 

containing 2% formic acid. 

 

 

1.3.3.3. LC-MS parameters: 

The chromatographic separation of the ethyl acetate fraction was achieved using a reversed 

phase C-18 column (RP C-18) and a mobile phase consisted of solvent A; water–formic acid 

(99.5: 0.5, v/v) and solvent B; acetonitrile. 

  

The elution was carried out at a flow rate of 1 Ml/min. as the following: 0–60 min, gradient 

from 0–25% B; 60–62.5 min, gradient from 25–50% B; 62.5–70 min, isocratic at 50% B; 70–

77 min, gradient from 50–100% B; and 77–87 min, isocratic at 100% B. 

 

To improve the MS analysis a mechanical T splitter is build prior to the MS machine allowing 

only 10% of the eluted mobile phase to enter the ionization interface. 

The MS analysis was performed under the following parameters: acquisition mode, ESI 

negative; nebulizer gas, N2, 0.25 l/min; capillary, 3.00 kV, HV lens –0.50 kV; cone, – 35 V; 

source temp., 120o C; and mass scan range 200–800 m/z.  

 

 

1.3.3.4. LC-MS profiling of Polyphenols in Citrus jambhiri Lush: 

The identification of the flavonoid compounds after HPLC separation is usually carried out 

using a photo diode array detector (PDA). After the invention of MS machines with 

atmospheric pressure ionization techniques (API), it was then possible to couple the HPLC 
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with MS and to determine the molecular mass of the detected compound, adding an extra 

dimension to the analytical procedure and facilitating the identification processes (Seeram et 

al., 2006; Zhou et al., 2006). 

 

Liquid chromatography coupled with mass spectrometry, or so-called LC/MS, proved to be 

highly beneficial in the characterization and identification of flavonoids related compounds 

especially in genus Citrus (Careri et al., 1999; Dugo et al., 2005; Gattuso et al., 2007; Shi et 

al., 2007). Figure (1.20) shows the LC-ESI/MS at the negative ionization mode of the ethyl 

acetate fraction. 

 

 
Fig. (1.20) LC–ESI/MS (negative ion mode) of the ethyl acetate fraction from the peel of Citrus jambhiri. 
Eriocitrin (1), neoeriocitrin (2), rutin (3), diosmetin 6-C-glucoside (4), narirutin (5), naringin (6), hesperidin (7), 
and neohesperidin (8). 
 

 

A total of eight flavonoid glycosides figure (1.21); eriocitrin, neoeriocitrin, rutin, diosmetin 6-

C-glucoside, narirutin, naringin, hesperidin and neohesperidin were identified. Table (1.5) 

summarizes the m/z values and the relative retention time (RRT) of the detected flavonoids 

in the ethyl acetate fraction of Citrus jambhiri peels.  
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The relative retention time was calculated in relation to hesperidin. The identification is 

achieved by the comparison with some authentic standards, and also with the help of 

literature reviews (Cappiello et al., 1999; Cuyckens et al., 2000). 

 

 

 

 
Fig.(1.21) Chemical structure of the identified flavonoid glycosides in the ethyl acetate fraction of Citrus 
jambhiri peel. 
 
 

 

LC-MS is a soft ionization technique and applied to obtain the total ion account (TIC) 

chromatograms and the related MS spectra of each peak. Figures (1.22-1.29) represent the 

spectra which are obtained from chromatogram shown in chromatogram figure (1.20), and 

reflect the MS data of each peak in addition to the molecular-ion mass of each phenolic 

compound separated using the HPLC method. 
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Table (1.5) the identification of the flavonoids in the ethyl acetate fraction of Citrus jambhiri 

peels using LC-ESI/MS at the negative ionization mode: 

 Compound Observed RRT Reported RRT [M-H]- MW 

1 Eriocitrin 1.26 1.25 595/287 596 

2 Neoeriocitrin 1.33 1.32 595 596 

3 Rutin 1.36 1.40 609/301 610 

4 Diosmetin 6-C-glucoside 1.41 1.42 461 462 

5 Narirutin 1.45 1.45 579/271 580 

6 Naringin 1.52 1.53 579 580 

7 Hesperidin 1.56 1.56 609/301 610 

8 Neohesperidin 1.63 1.67 609 610 

 

 

 

 
Fig. (1.22) ESI-MS(-) spectrum of the deprotonated diosmetin 6-C-glucoside. 
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Fig. (1.23) ESI-MS(-) spectrum of eriocitrin. Eriocitrin with a molecular weight of 596 will lose a proton to bear a 
negative charge and m/z value of 595. A signal at m/z 287 represents the deprotonated aglycone eriodictiol.  
    

   
Fig. (1.24) ESI-MS(-) spectrum of neoeriocitrin. Neoeriocitirn has the same molecular weight of eriocitrin, but 
the MS spectrum does not show any aglycone signal. 
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Fig. (1.25) ESI-MS(-) spectrum of narirutin. The spectrum shows, beside the signal of the intact molecule, a 
signal belong to the free aglycone naringenin. 
 

 
Fig. (1.26) ESI-MS(-) of naringin. Contrarily to narirutin the naringin spectrum does not show any signal related 
to the aglycone naringenin. 
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Fig. (1.27) ESI-MS(-) spectrum of hesperidin. In addition to the molecular-ion of the intact compound a strong 
signal belongs to the aglycone hesperetin can be seen in the spectrum. 
 

 
Fig. (1.28) molecular-ion of the intact neohesperidin (MW=610) under the experimental condition of LC-MS at 
the negative ionization mode. 
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Fig. (1.29) ESI-MS(-) spectrum of rutin. The molecular-ion m/z 609 represent the deprotonated rutin MW=610. 
A small signal related to the aglycone quercetin m/z 301. 
 

 

The MS spectra of all rutinosides (i.e. eriocitrin, rutin, narirutin and hesperidin) reveal, in 

addition to the molecular ion of intact molecules, signals related to the aglycone ions, while 

the neohesperidosides (neoeriocitrin, naringin, neohesperidin) show only the molecular 

ions. This findings agree with previous reports, which confirm that rutinosides tend to 

fragment easier than neohesperidosides (Cuyckens et al., 2000). 

 

Moreover tandem HPLC-MS/MS came as a technique to occupy a vital position considering 

qualitative analysis as well as structural characterization of polyphenolics in many common 

fruit crops (Hughes et al., 2001; Sanchez-Rabaneda et al., 2003a; Sanchez-Rabaneda et al., 

2003b; Sanchez-Rabaneda et al., 2004).  For example, a molecular ion with m/z value of 595 

is obtained from the MS data combined from the chromatogram of the ethyl acetate 

fraction, when applying tandem MS/MS a fragment ion at m/z 287 represent the aglycone of 

eriocitrin and a neutral lost of the sugar. 
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1.3.4. Camellia sinensis: 

(This work has been done in cooperation with Dr. S. Abbas from Institute of Pharmacy and Molecular 

Biotechnology, Heidelberg University, Germany) 

 

1.3.4.1. Introduction: 

Camellia sinensis belongs to theaceae family and originally grows in eastern Asia. It is a large 

shrub with evergreen leaves. The leaves are dark green, and the flowers are white with 

distinctive aroma (Chevallier, 2001). The green leaves of Camellia sinensis are used for more 

than 4000 years to prepare infusions, specially what so-called green tea (Weisburger, 1997).  

 

In the Chinese traditional medicine the green tea has been used as a treatment of many 

ailments. Intensive investigations on of green tea infusions found that polyphenols, which 

are abundantly present in tea, may be the mostly responsible of the curative effects of green 

tea (DerMarderosian and Beutler, 2008). 

 

The main compounds that are reported from Camellia sinensis leaves are tannis, and 

different kind of polyphenols mainly the following catechins; epigallocatechin gallate (EGCG), 

epicatechin gallate (ECG), epigallocatechin (EGC), epicatechin (EC), and catechin. (Graham, 

1992). EGCG accounts for about 50–60% of total catechins in green tea (Weisburger, 1997). 

For the phytochemical studies of catechins in green tea HPLC was employed successfully and 

also coupled technique of HPLC with mass spectrometric has been performed (Khokhar et 

al., 1997; Dalluge et al., 1998). 

 

In general the polyphenols are active antioxidant compounds, thus, it is likely that these 

polyphenols protect against ROS-mediated diseases such as cardiovascular and cancer 

(Hollman et al., 1999). Also since that polyphenols can scavenge free radicals that mediate in 

the cell damage and DNA mutations; therefore, green tea infusions could play a supportive 

role in the curing age-related diseases (Wink and Abbas, 2009; Wink and Abbas, 2010).   
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1.3.4.2. Sample preparation: 

60 g of dried Japanese green tea leaves that were grounded and suspended into 2 L of 

distilled water, then incubated overnight in water bath at 40 °C. The water extract was then 

filtered and freeze-dried. Dissolved in distilled water was used to reconstitute the lyophilized 

samples prior to any experiment. 

 

1.3.4.3. LC-MS parameters: 

The chromatographic separation of the water extract of C. sinensis green leaves was carried 

out by HPLC using a reversed phase C-18 (RP C-18) column. The mobile phase of the HPLC 

system was operated under gradient condition with 0.5% aqueous acetic acid (A) and 

acetonitrile (B), and flow rate 1 ml/min at room temperature as following: 0–60 min 0–40% 

B, 60–70 min 40–100% B. The acquisition of data using the MS machine was performed in 

both negative and positive modes with the following parameters: 

 

 

Table (1.6) Tuning parameter of the electrospray ionization source at both positive and 

negative mode: 

Tuning Parameters Positives mode ESI(+) Negative mode ESI(-) 

Capillary    (kVolts) 3,5 3,00 

Cone         (Volts) 25 30 

Extracting (Volts) 5 5 

RF Lens     (Volts) 0,2 0,2 

Source Temperature 120 120 

Dynamic range m/z 200-800 200-800 

 

 

 

1.3.4.4. LC-MS profiling of catechins in the water extract of C. sinensis green leaves: 

Chromatographic techniques as a method of choice for the analysis of catechins in C. sinensis 

green leaves have been already reported (Dalluge et al., 1998; Rusak et al., 2008).  Also 

others have mentioned LC-MS methods to be advantageous for the analysis of naturally 

occurred catechins, such that in Acacia catechu (Shen et al., 2006), or in Jatropha macrantha 
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stems  (Benavides et al., 2006). The LC-MS analysis of the water extract of C. sinensis green 

leaves under the experimental conditions allowed the identification of six major Flavan-3-

ols; catechin (C),  epigallocatechin (EC), gallocatechin (GC), epicatechin gallate (ECG), and 

epigallocatechin gallate epicatechin (EGCG). Table (1.7) summarize the obtained molecular-

ions of the identified catechins in the water extract of C. sinensis green leaves in both 

negative and positive ionization modes. In the negative ion mode both ECG and EGCG 

compounds expel the galloyl group (a loss of m/z 152) resulting in the formation of EC and 

EGC as shown in figures (1.34) and (1.35), respectively. 

  

Fig.(1.30)  Reconstructed ion chromatogram (RIC) obtained from the LC-MS in the negative ionization mode ESI 
(-) of the aqueous extract of C. sinensis green leaves. 
 
 
Figures (1.30) and (1.31) represent the reconstructed ion chromatogram (RIC) of the LC-MS 

of C. sinensis green leaves water extract in both negative and positive ionization mode. This 

LC-MS findings agree with a previous work carried out with standard catechins in green tea 

samples (Miketova et al., 1998). 

The RIC option considered one of the most valuable aspects that provided when using MS 

techniques. This option assists the analysts to gain clearer chromatograms of compounds of 
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interest and to subtract unwanted signals. When comparing the results obtained from the 

LC-MS at the two different ionization modes it was clear, that ion intensities of catechins 

derivatives were more distinctive when using the negative mode. Thus, it is LC-MS methods 

employing ESI(-) are favorable to that employ the ESI(+). Nevertheless, the RIC option allows 

the refining of the ESI(+) to obtain the desired chromatogram figure (1.31). 

        

  
Fig.(1.31)  Reconstructed ion chromatogram (RIC) obtained from the LC-MS in the positive ionization mode ESI 
(+) of the aqueous extract of C. sinensis green leaves. 
 

The MS spectra obtained of combing data form chromatographic analysis, along with 

retention time data; provide clear information about the molecular weight of the identified 

catechins. Figures (32-36) represent the MS spectra with the characteristic molecular-ions of 

the identified compounds at both negative and positive ionization modes. 

 

Both gallocatechin and epigallocatechin have the same molecular weight and show the same 

m/z values, figure (1.32) and table (1.7). Thus, it is not possible to distinguish between the 

both compounds only by relying on the MS data. Nevertheless, chromatographic data 

signified by retention time values can solve such problem considering the catechins. Base on 

the stereochamical structure the  gallocatechin has 2R:3S configuration (Both B ring at the C2 
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and the OH group at C3 are situated in two different stereo level), therefore would elute 

earlier than epigallocatechin with the 2R:3R configuration (Koupai-Abyazani, 1991). The 

same conclusion can be drawn when comparing both catechin and epicatechin. The MS data 

of epicatechin is shown in figure (1.33). 

 

 

Table (1.7) molecular-ions of the identified catechins in the water extract of C. sinensis green 
leaves in both negative and positive ionization modes and some significant fragments 
Compounds Abbreviation MW [M-H]- [M+H]+ Significant frag. 

Gallocatechin GC 306 305 307 - 

Epigallocatechin EGC 306 305 307 - 

Catechin C 290 289 - - 

Epicatechin EC 290 289 291 - 

Epigallocatechin gallate EGCG 458 457 459 m/z 305; EGC 

Epicatechin gallate ECG 442 441 443 m/z 289; EC 

 

 

Moreover, the MS spectra obtained from LC-MS of ECG; figure (1.34), as well as EGCG; figure 

(1.35) unveil two signals under the experimental parameters of ESI(-) mode. One belongs to 

the intact molecule and the other is a fragment that results from the lost of galloyl group. 

This spontaneous fragmentation leads to the formation of EC; represented with a signal of 

m/z 289, that results from ECG, meanwhile EGCG MS spectrum shows a signal at m/z 305 

that belongs to formation of EGC.   

 

Small amounts of catechin are detected in the water extract of the C. sinensis green leave. 

Nevertheless, catechin could be detected using LC-MS. At the ESI(-) experimental conditions 

catechins (MW 290) loses one proton and the molecular-ion of [M-H]-  with the m/z value of 

289 is formed figure (1.36). Whereas, at the ESI(+) mode no obvious signal was observed. 
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Fig.(1.32) MS spectra of GC. The upper pat shows the spectrum at ESI(-) conditions, while the lower one is the 
MS data obtained at the ESI(+) mode. 
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Fig.(1.33) MS spectra of EC. The upper pat shows the spectrum at ESI(-) conditions, while the lower one is the 
MS data obtained at the ESI(+) mode. 
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Fig.(1.34) MS spectra of EGCG. The upper pat shows the spectrum at ESI(-) conditions, while the lower one is 
the MS data obtained at the ESI(+) mode. ESI(-) spectra shows a signal with m/z 305 correspond to the EGC as a 
result that some EGCG molecules will lose a galloyl group during ionization. 
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Fig.(1.35) MS spectra of ECG. The upper part shows the spectrum at ESI(-) conditions, while the lower one is 
the MS data obtained at the ESI(+) mode. Also some ECG molecules will lose galloyl group during the ionization 
in the negative mode ESI(-), leading to the formation of EC; a signal of m/z 289 confirm the formation of EC. 



Results and discussion 
 

49 
 

 
Fig.(1.36) MS spectrum of catechin (C) obtained from the LC-MS at the negative mode ESI(-). Since that the 
positive ion mode is less sensitive than negative mode, then a clear MS signals from the ESI(+) mode could not 
be obtained. 
 

 

In conclusion the LC-MS analysis of the water extract of C. sinensis green leaves offers a lot 

of worthy information considering the photochemical profiling of the catechins. Since that 

the consumption of the C. sinensis green leaves is increasing dramatically, analyst are urged 

to achieve a fast and reliable techniques to control the green tea products. LC-MS 

techniques can fulfill such growing needs in the global market. The LC-MS analysis of 

catechins content in C. sinensis extracts can also improve our understanding of the 

ecological factors that may affect the quality of the C. sinensis crops. Thus, help us to 

optimize processes such as harvesting, therefore, improving the quality of productions. 
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1.4. Conclusion: 

Plants secondary metabolites SM still occupy an important position as a main resource of 

biologically active compounds and offering many solutions to encounter the excessive global 

demands for new therapeutic agents. To fulfill these demands new analytical techniques 

have been introduced in the last thirty years shaping the modern medicine.  One of the most 

successful analytical techniques is the high performance liquid chromatography HPLC. 

 

Since the presentation of HPLC and many phytochemical studies have been carried out to 

isolate and characterize new SM compounds of biological interest. Later on, and in the 1980s 

after the invention of the electrospray ionization mass spectrometry (ESI-MS), it was 

possible to couple the HPLC with the MS machines leading to the birth of a new powerful 

technique that is becoming unavoidable in every phytochemical study. LC-MS techniques 

offer tremendous benefits over other traditional ones, such as higher sensitivity, 

requirement of relatively small amounts of sample, and are effectiveness in detecting 

impurities. In addition to the retention time (RT) and molecular mass values, LC-MS can 

provide the analysts with a lot of helpful information considering structure elucidation. 

 

An important field of studies, in which LC-MS techniques are intensively employed, is the 

phytochemical studies of polyphenolic compounds and especially flavonoids. Polyphenolic 

compounds are one of the most abundant SM in the nature. A lot of investigations show the 

wide range of the bioactivity of these compounds. They are highly active antioxidant and can 

scavenge free radical; therefore, are successfully used as a supportive remedy in many 

diseases that involved in cell and DNA damaging, like cardiovascular diseases and cancer.  

 

On the other hand, polyphenols can interact with biomolecules through non-covalent forces. 

Such interactions could affect the 3D structure of the biomolecule and lead to some 

desirable bioactivity. Moreover, polyphenols can interact with biomolecules at different 

levels and with several targets (multi-target drug), this aspect provides promising features, 

e.g., the development of anti-microbial activity against the Methicillin-resistant 

Staphylococcus aureus (MRSA) minimizing the probability of resistance development. 
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LC-MS was successfully employed to study the flavonoids content of extract obtained from 

different medicinal plants; 

 

 Bupleurum marginatum is used since a long time in the rational Chinese medicine (TCM). 

The root, radix Bupleuri, had many bioactivities in healing wounds and ameliorating fever 

associated with malaria. Also it shows protective properties in chronic hepatitis. The LC-MS 

flavonoids profiling of methanol extract of B. marginatum roots indicates that the roots rich 

of bioactive flavonoids; quercetin and isorhamnetin, as well as flavonoids glycoside; rutin, 

narcissi, and isoquercitrin. 

 

Camellia sinensis Another plant that is used in the TCM. The green leaves of C. sinensis are 

used to prepare green tea. This infusion is one of the most consumed beverages on the 

globe. A rich source of catechins green tea shows many healthy benefits considering age-

related diseases. The catechins, especially EGCG, are strong antioxidant compounds. They 

can capture radical and interrupt their cell-damaging processes. LC-MS techniques offered 

many attractive aspects and are employed intensively to control and improve the green tea 

production. 

 

LC-MS techniques are also utilized in the chemotaxonomy and profiling of flavonoids in the 

Citrus. Citrus fruits are involved in one of the most flourishing food industry all over the 

world. The need to control the quality of the huge production led to the employment of LC-

MS techniques which are the method of choice in many labs. Citrus jambhiri belong to 

belongs Citrus are wildly cultivated and consumed. The LC-MS investigation has shown that 

the peel of the Citrus jambhiri is rich of many flavonoid glycosides. Some of these flavonoid 

glycosides can play a role in the treatment of cancer as they demonstrate biological 

advantages concerning the multidrug resistance (MDR) phenomenon. 

 

Another example for the application of LC-MS in the phytochemistry is the profiling of 

flavonoids in the genus Scutellaria (known with Skullcap). The genus Scutellaria are widely 

used in TCM and contain a variety of  secondary metabolites such as essential oils, iridoids, 

diterpenes, triterpenoids, alkaloids, phytosterols, polysaccharides, as well as polyphenols. 

The genus Scutellaria exhibit many bioactivity in the treatment of neurological disorders and 
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proved to have anti-viral, anti-bacterial, and anti-trypanosomal activities. Flavonoids are 

abundant in Scutellaria genus and responsible of many pharmacological effects such as anti-

tumor effects and the inhibition of HIV-1 reverse transcriptase. The most commonly 

reported flavonoids are baicalein, baicalin, wogonin and wogonoside.  

 

Although that the field of phytochemistry witnessed intensive activities in the last few years, 

but there are still many of the medicinal plants are not yet subjected to analytical studies. 

Nevertheless, LC-MS as a par excellence technique is providing promising solutions in the 

profiling of plants extracts, and in the identification of new bioactive compounds. On the 

other hand LC-MS could pave the way to understand one of the most attractive aspects of 

plant extracts, namely, the activity of multi-component mixtures in the phytomedicine. 
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2.1.  Introduction: 

 

2.1.1. Evolutionary advantages of plants secondary metabolites: 

Plants secondary metabolites (SM) are involved in many vital aspects of plants biology and 

mainly play a key role as a protection mechanism against natural enemies such as 

herbivores, bacteria, fungi and viruses (Wink, 2003). The utilization of SM in curing diseases 

have a long history in what so-called traditional medicine and still considered as a major 

source of new therapeutic agents in the modern medicine.  

In order to implement their defensive role, plants evolved by building up variety of 

secondary metabolites that can actively interact with crucial targets; such as functional and 

structural proteins, biomembrane, and nucleic acids. Consequently, most SM appear to 

show pleiotropic effects against many targets  (Wink, 2008a). Figure (2.1) illustrates the 

major bio-targets of microorganisms that SM may interfere with.  

In general, secondary metabolites interact with targets inducing changes in the 

conformation of structural biomolecules preventing them to achieve their assigned 

functionalities (Wink, 2005). These interactions could be divided into two major categories 

from the physicochemical point of view; covalent and non-covalent interactions (Wink, 

2008b). 

 
 

Fig.(2.1) Important molecular targets in microorganisms  (Wink, 2008b).                 
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2.1.2. Polyphenols and non-covalent interactions: 

One of the most abundant secondary metabolites in nature is the polyphenol derivatives, 

e.g. flavonoids, stilbenes, anthocyanins and catechins.  

 

The structure of polyphenols based on phenolic hydroxyl functions, these are able to bind to 

biomolecule via non-covalent bonds; i.e., hydrogen bridges and hydrophobic interactions, 

but mostly by means of ionic forces, whereas under physiological conditions phenolic 

hydroxyl groups dissociate forming negatively charged phenolate ions, which in return are 

able to interact with positively charged centers in biomolecules, such as amino acid residues 

(lysine, arginine, histidine) in proteins figure (2.2).  

 

Since polyphenols possess plenty of 

phenolic hydroxyl functions, thus a single 

polyphenol will bind at several sites on a 

single biomolecule or even with several 

biomolecules at the same time. This will 

make the non-covalent complex stable 

enough to impair or slow down the 

bioactivity of the targeted biomolecule 

(Wink, 2008b).  

 
Fig.(2.2) The ionic interactions between a 
polyphenolic compound and a biomolecule (Wink, 
2008b).
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2.1.3.   Employing non-covalent interactions in drug discovery: 

To approve a compound as drug candidate it should be first confirmed, whether this 

candidate is capable to interact with a biomolecule to induce a desirable bioactivity or not. 

Monitoring non-covalent interactions between biomolecules and drug candidates is 

considered as one of the most substantial approaches in the approval of new therapeutic 

agents. 

Non-covalent forces and interactions play a vital role in living cells. On one hand, they 

maintaining the conformational structure of the biomolecules (Frieden, 1975). On the other 

hand, the nonstop formation and dissociation of non-covalent complexes ensure many 

biological functions including molecular recognition, which is one of the most important 

fields of drug development. The curative purposes of a drug candidate (ligand) will be then 

achieved when the ligand  shows a capability to  interact with a biomolecule, inducing either 

distortion of the 3D structure of the targeted molecule, or masking active sites that leads 

even to the alteration of the bioactivity or the interruption of key pathways (Hofstadler and 

Sannes-Lowery, 2006). 

 

Many techniques have been developed to monitor non-covalent interactions and served in 

the determination of new therapeutic agents. Since the invention of soft ionization mass 

spectrometry, analysts started to employ these technologies in the field of drug discovery 

 

 

2.1.4. Techniques used in monitoring non-covalent interactions: 

Generally it is not easy to monitor complexes formed through non-covalent interactions, due 

to the ephemeral nature of such complexes. Though, several well-established techniques 

have been developed in the past for that purpose, such as circular dichroism spectroscopy 

(CD), isothermal titration calorimeter (lTC) (Hensley, 1996), nuclear magnetic resonance 

(NMR) (Zuiderweg, 2002), Surface Plasmon resonance spectroscopy (SPR) (Szabo et al., 

1995), and X-ray crystallography (Palmer and Niwa, 2003a). In the last few years technique 

electrospray ionization mass spectrometry (ESI-MS) has emerged to be an essential tool to 

study non-covalent interactions is (Veenstra, 1999b; Veenstra, 1999a). ESI-MS has several 
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advantages over many traditional methods, this advantages according to McLafferty are: 

specificity, sensitivity, and speed (Loo, 1997). 

 

 

2.1.4.1. Isothermal titration calorimetry (Wadso, 1997; Pierce et al., 1999; Roselin et al., 

2010): 

Isothermal titration calorimetry (lTC) is a physical approach used to study bindings between 

molecules in solution by measuring the heat of reaction that develops during the binding 

interaction. The experiment starts when a ligand is titrated into a measurement cell that 

contains a target molecule and the temperature differences are assessed in comparison to a 

reference cell. ITC methods allow analysts to determine thermodynamic parameters in a 

direct way. When compared to MS approaches ITC shows two major disadvantages; (i) ITC is 

a time consuming method with a low productivity (Mathur et al., 2007). (ii) Requires 

relatively high mount of samples (Baranauskiene et al., 2009).  

 

 

2.1.4.2. Circular dichroism spectroscopy: 

CD spectroscopy is widely employed to study secondary structure of proteins, as well as the 

conformation of peptides (Woody, 1995). The concept of this method is based on Beer-

Lambert law by monitoring the differences in the absorption of a linear polarized light 

traveling through an optically active substance.  

This method attracted the interest of many researchers, whereas high sample amounts are 

not required. Moreover, the design of  CD spectroscopy experiments shows flexibility in the 

determination of crucial variables such as pH and temperature (Wallace and Janes, 2003).  

CD spectroscopy is proven to be an effective technique in studying non-covalent interaction 

(Palivec et al., 2005; Rodger et al., 2005). Nevertheless, MS techniques still can provide 

researchers with higher specificity considering structural information. 

 

 

2.1.4.3. Nuclear Magnetic Resonance Spectroscopy: 

Nuclear magnetic resonance (NMR) spectroscopy is a fundamental technique used to resolve 

chemical structures. It has been also employed to study non-covalent interactions in solution 
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(Zuiderweg, 2002). Although NMR spectroscopy is considered as “non-destructive” 

approach, but a high amount of sample are required to produce desired images (Loo, 1997; 

Smith et al., 1997). Moreover, it is not applicable at higher molecular masses up to 30 kDa 

(Daniel et al., 2002; Chalmers et al., 2006), and measurements are susceptible to sample 

impurities. On the other hand, MS are known to be “destructive” techniques, even though 

smaller amount of samples are required and experiments can be processed for higher 

molecular masses. In addition, MS techniques are robust and impurities effects can be easily 

subtracted from obtained data.    

 

 

2.1.4.4. Surface Plasmon Resonance: 

Surface plasmon resonance (SPR) spectroscopy is routinely used to investigate non-covalent 

interactions (Hensley, 1996). It is based on monitoring changes in optical properties of target 

molecule in the presence of tested compounds. The target is immobilized on a surface layer 

and a stream of mobile fluid phase containing the tested compound flows through an 

interaction channel. Once the interaction takes place between the tested compound and the 

immobilized target, changes in the optical properties of the target will be registered and 

later on binding constant could be calculated.  Since this method requires immobilization of 

one of the interacting partners, a possible artificial non-covalent interactions many occur 

causing false interpretation (Mathur et al., 2007).  

 

 

2.1.4.5. X-ray chrystallography: 

X-ray chrystallography is a widely employed technique to determine structural conformation 

of biomolecules. The concept of X-ray chrystallography based on resolving X-ray diffraction 

patterns that occurred from scattered X-ray beam after striking the crystallized biomolecule.  

Since late 1940s and X-ray crystallography is employed for providing useful information 

about non-covalent interactions (Palmer and Niwa, 2003a). Nevertheless, the quality of 

formed crystals plays a critical role in the manner of the X-ray diffraction and consequently it 

can impair the resolution (Palmer and Niwa, 2003b; Chalmers et al., 2006). 
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2.1.4.6. Mass Spectrometry: 

Mass spectrometry (MS) is increasingly gaining the interest of researchers in many fields 

beyond its basic application as analytical tool for the determination of molecular masses. 

The main concept of MS techniques is base on the early works of J. J. Thomson, who 

managed to measure what so-called charge-to-mass ratio (e/m) of electron.  

 

Later MS machines have employed the mass-to-charge ratio (m/z) concept (Griffiths, 2008), 

where  studied molecules are first ionized, then transferred into a vacuum, and later 

detected and measured in response to their trajectories when they are exposed in the 

vacuum to electric and/or magnetic fields (Fenn et al., 1989b).  

At the early stages the applications of MS machines were limited to molecular mass 

determination and later in the detection of impurities (Griffiths, 2008), but as the mid 80s 

approached “softer” ionization techniques were invented allowing analysts for the first time 

to probe masses at the range of biomolecules (Baytekin et al., 2006; Griffiths, 2008). Later in 

the 90s different reports mentioned that non-covalent complexes can be detected using soft 

ionization mass spectrometry. Gradually, researchers became more aware of the quite 

significant influence of MS techniques as an ideal device in probing fields of structural 

biology and molecular recognition based on non-covalent chemistry (Loo, 2000).  

   

Nowadays there are two soft ionization techniques that are proven to be method of choice 

for ionizing proteins and peptides, namely, electrospray ionization (ESI) and matrix-assisted 

laser desorption ionization (MALDI) (Glish and Vachet, 2003; Griffiths, 2008)., and  these 

techniques have attracted the awareness of biologists and pharmacologists as useful tools in 

the field of drug discovery (Glish and Vachet, 2003; Hofstadler and Sannes-Lowery, 2006).  

 

The MALDI sources are mainly found within the area of proteomics, but also they were 

reported to be employed to monitor interactions in the solid phase (Wortmann et al., 2007; 

Poetsch et al., 2008). On the other hand, ESI sources were successfully utilized to study 

interactions in solutions and increasingly emerged to be an essential tools in studying non-

covalent interactions in a way that simulate an interaction taking place in biological milieu 

(Veenstra, 1999b; Veenstra, 1999a).  

 



Introduction 

67 
 

Although considered as complementary techniques MS approaches have many several 

advantages over other traditional ones, some of these attractive advantages according to 

McLafferty are: specificity, sensitivity, and speed (Loo, 1997). Table (2.1) summarizes some 

of the disadvantages of traditional methods which have been overcome by MS techniques. 

 

2.1.5. Electrospary Ionization Mass Spectrometry (ESI-MS): 

Late 60s Dole and colleagues had made the way free to the invention of atmospheric 

pressure ionization (API) mass spectrometry. It was then possible to generate charged 

nonvolatile solutes from solution into gas form and transfer them directly to the mass 

analyzer (Clegg and Dole, 1971). By 80s the effort of Fenn and collaborators resulted into the 

invention of new generation of MS techniques, namely,  the electrospray ionization mass 

spectrometry (ESI-MS) (Fenn et al., 1989b). The electrospray mechanism proved to be 

suitable to preserve complexes formed out of weak molecular interactions (Cole, 2003). 

Consequently, researchers exploited this concept and employed ESI-MS to gain a deeper 

insight in the nature of interactions present in living systems.  

 

Table (2.1) the disadvantages of some classical methods used in monitoring non-covalent 
interactions bypassed when using MS techniques: 

Technique Disadvantages  

ITC • Elaborative and time consuming 
• Low productivity 

CD Spectroscopy • Low sensitivity 

NMR • High samples amount 
• Mass rage restriction 

SPR • Ligands and/or targets need modification 
• Relatively expensive 

X-ray crystallography • Requires multi-milligram quantities 
• Difficulties in attaining optimal crystals  

 

 

In the last few years a considerable body of literatures focused on ESI-MS as a technique to 

examine non-covalent interactions, e.g.,  studying the effect of metal ions on the folding of 

protein Kinase C (Shindo et al., 2003), investigate the importance of Protein-Protein and 

Protein-RNA interaction in drug development (Klebe et al., 2009), exploring the interactions 

between DNA and polyphenols in anti-cancer and anti-bacterial field of studies (Liu et al., 
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2009), probing the role of melatonin in Alzheimer’s disease (Bazoti et al., 2005), and 

applications in the field of gene therapy (He et al., 2011). 

 

2.1.6. The electrospray ionization source: 

The main concept of electrospray ionization methods based originally on both Zeleny’s 

works about the effects of electrical fields on liquid surfaces, and Taylor observations 

considering “free jet” phenomenon. In 1968 Dole and co-workers reported the possibility of 

using electrospray to generate ions of macromolecules. Then in 1988 Fenn and colleagues 

conducted the first reliable experimental results on a large molecules (Wilm and Mann, 

1994). 

 

Figure (2.3) illustrates the ESI source. Sample solution is introduced into the ESI source, 

through a capillary with inert metal surfaces, either directly using syringe pump or by means 

of LC system. A pressurized inert gas (Nebulizing gas) turns the sample solution into small 

droplets (Spray form) inside the ionization space, this all occurs under atmospheric pressure. 

A high voltage at the metal capillary tip is generated leads to the formation of charged 

droplets. The droplets are pushed from the capillary tip towards a counter electrode 

(Extracting Cone).  Assisted by inert heated gas (Drying gas) the evaporation (desolvation) of 

the solvent occurs as the droplets traverse the space between the capillary tip and the 

extracting cone.  The highly charged droplets shrink gradually as the solvent evaporates and 

the charged molecules turn into their gas phase state. These charged molecules, or what so-

called molecular ions, are driven by means of the extracting cone from the ionization 

chamber under atmospheric pressure towards the mass analyzer under high vacuum. 

Afterward, a set of electrical lenses transfer the ions to the analyzer focusing them to obtain 

a precise measurements. 

 

Many types of MS analyzers have been developed to fulfill the versatile needs of the 

analysts, but quadrupole (Q) analyzers are the most used analyzers in combination with 

electrospray ionization sources. 
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Figure (2.3) an illustration of electrospray ionization source. (Obtained from original scheme, University of 
Bristol, School of Chemistry). 
 

 

2.1.6.1. Quadrupole analyzer (Q): 

A quadrupole mass analyzer consists of four parallel metal electrodes. These electrodes are 

organized in a square configuration, and an electromagnetic field is generated in between. 

The molecular ions cross the quadrupole parallel to the electrodes in the center of the 

square configuration. Only ions of a certain mass-to-charge ratio (m/z) that can oscillate in 

the electromagnetic field will reach the ion counter, others will have unstable trajectories, 

will ramp into the electrodes and will be neutralized. Figure (2.4) illustrate the quadrupole 

analyzer and the two possible trajectories that ions may follow under the generated effects 

of the electromagnetic field.  

 

This kind of analyzer allows; even (i) the selection of one molecular ion with a particular m/z 

by fixing the force of the electromagnetic field, this process called selected ion monitoring 

(SIM), or (ii) the application of multiple reactions monitoring (MRM) scan mode, in which a 

variable electromagnetic field is applied permitting the detection of different molecular ions 

with different m/z values. The first procedure permits the studying of the chemical structure 

and the purity of a chosen compound, meanwhile the second procedure is applied to study 

samples containing two analytes and more.  One of the most important features of 

quadrupole analyzer is being robust, and the ability to provide pretty good sensitivity at low 

limits of detection (Pelaez et al., 2002). 

http://en.wikipedia.org/wiki/Mass-to-charge_ratio�
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A triple-quad MS is a mass spectrometry instrument provided with three quadrupole 

analyzers lined up, or what so-called tandem mass spectrometry. The first (Q1) and third 

(Q3) quadrupoles act as analyzers, while the middle one (q2) is designed to work as a 

fragmentation chamber. A selected molecular ion (parent ion) at Q1 in the SIM mode will be 

steered into the q2 to undergo a fragmentation process assist with collision energy. The 

formed fragments (daughter ions) will pass to Q3 and analyzed using the MRM scan mode. 

Tandem mass spectrometry was implemented intensively  to work out structural elucidation 

studies (Busch, 2010).  

  
Fig. (2.4) Depiction of quadrupole analyzer. After ions enter quadrupole electromagnetic field ion resonate 
through the quadrupole to the analyzer, meanwhile others are unstable will be neutralized at the electrode 
surfaces. (Obtained from original scheme, University of Bristol, School of Chemistry). 
 
 
 
 
2.1.7. Monitoring non-covalent interactions using ESI-MS: 

Three main approaches are applied to find out whether a drug undergoes a desirable 

interaction with a targeted biomolecule or not. (i) Non-covalent mass spectrometry; the 

drug-biomolecule complexes remain intact while transferred from the sample solution to the 

MS detector. Therefore, the formed complexes are directly monitored and furthermore 

tandem MS can be used to assay these complexes. (ii) Hydrogen/deuterium mass 

spectrometry; whereas the interactions are indirectly gauged through observing the shifts in 



Introduction 

71 
 

hydrogen/deuterium exchanging rates. (iii) Condensed-phase separation techniques; are 

indirect techniques based of chromatographic methods to prepare the sample and separate 

the complexes to be monitored with MS as a supplementary detector for each individual 

non-covalent complex. 

 

2.1.7.1. Non-covalent mass spectrometry: 

As a gentle ionization technique ESI-MS can maintain the non-covalent complexes intact and 

being directly detected (Loo, 2000). Formation of adducts and aggregates have been 

reported in the early the works of investigating biomolecules using ESI techniques 

(Whitehouse et al., 1985; Smith et al., 1990). These adducts and aggregates are nothing but 

kind of non-covalently weak-bounded complexes that reflect even a self-assembly 

phenomena, or an interaction between biomolecules and ions that may exist in lab wares 

and equipments. These observations has been utilized to investigate the Heme-globin 

complex formation (Katta and Chait, 1991) and further in probing a wide variety of 

macromolecular host-guest interactions (Ganem et al., 1991). These early paved the way for 

analysts to embrace ESI-MS in studying non-covalent interactions as a powerful tool in drug 

discovery at different domains (Drummond et al., 1993; Tang et al., 1994; Greig et al., 1995; 

Cheng et al., 1996). 

 

In this approach complexes are formed in solution by the addition of desired ligand to 

buffered target at required pH. Samples are then infused directly in the MS machine through 

the ESI source using syringe pump, and complexes are monitored by direct evaluation of MS 

spectra. By means of this approach the effect of many variables on the formation of the non-

covalent complexes can be monitored instantly, such as pH, solvent, temperature, and 

incubation time. Moreover, it is a straightforward approach in detecting sample adulterants, 

biomolecule degradation, artifacts and self-assembly complexes.         

 

2.1.7.2. Hydrogen/Deuterium MS: 

The hydrogen/deuterium exchange (HDX) phenomenon was successfully used to study the 

structural changes of proteins (Woodward et al., 1982). This approach was successfully 

combined with many, such as infrared, ultraviolet absorption spectroscopy and NMR (Smith 

et al., 1997). Later on, and after the intervention of MS, the hydrogen/deuterium exchange  
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was rapidly applied with mass spectrometry to obtain a high-resolution technique in the 

field of proteins structure, dynamics, and functions (Garcia et al., 2004). When compared to 

earlier techniques, MS techniques possess many attractive features, such as sensitivity, 

ability to analyze larger molecule (Hoofnagle et al., 2003), and amenability to high 

throughput screening.  

 

The hydrogen/deuterium exchange is a chemical interaction, in which covalently bounded 

hydrogen atoms will be exchanged with deuterium atoms when the surrounding is offering a 

plenty of deuterium atoms. In HDX approaches only hydrogen atoms that are located on the 

amide linkage ( also known as backbone amines) can be assayed, since that the other 

exchangeable hydrogen atoms possess fast exchange rates that make it inaccessible to any 

known detectors (Smith et al., 1997). Since that deuterium atom is a one mass heavier than 

hydrogen atom, this extra one mass unit from each exchangeable hydrogen atom will be 

incorporated into the biomolecule increasing its total mass. These changes in mass value can 

be easily calculated using MS machines and with the measurement of HDX rates it is possible 

to, draw conclusions about dynamics of biomolecules and monitoring their interactions with 

tested ligands. 

 

2.1.7.3. Condensed-phase Separation techniques: 

In this category “Spin Column” is the most common applied method. The method utilizes the 

principles of size exclusion chromatography in a form of short chromatographic columns 

(Dunayevskiy et al., 1997). Sample, which consists of the target (protein) and a candidate, is 

usually loaded on top of short gel packed chromatographic column (GPC) and exposed to 

centrifugation. The eluted buffer will then contain both of free unbounded target and ligand-

target complexes, while free unbounded ligands would be retained in the GPC spin column. 

The collected elutes from different experimental settings are then denatured to win back 

bounded ligands, afterward these ligands are subjected to mass spectrometric measurement 

to find out which of tested ligand was capable to bind targeted biomolecule (Siegel, 2009). 
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2.1.8. Why studying non-covalent interactions of the polyphenols? 

Polyphenolic compounds are considered one of the most widespread secondary metabolites 

(SM) in the kingdom of higher plants. They are extremely important components in human 

diets, and possess a versatile of pharmacological activities. Polyphenols exert hypolipidemic 

properties, thus they have protective effects on the cardiovascular system (Curin and 

Andriantsitohaina, 2005; Pakalapati et al., 2009), they play an active role as immune-

modulators (Deng et al., 2010), anti-inflammatory (Figueirinha et al., 2010), anti-tumor (Ito 

et al., 1999) and antimicrobial(Weisse et al., 1995) agents. Moreover, some polyphenols 

(Isoflavonoids) proved to be effective in the hormonal replacement therapy (HRT) 

(Pakalapati et al., 2009). Some other polyphenols, namely catechins, are proved to be highly 

active as radicals scavengers and oxidative stress eradicators, thus been recommended as a 

supportive anti-aging remedy (Abbas and Wink, 2009), anti-neurodegenerative (Abbas and 

Wink, 2010) and cancer (Henning et al., 2010) therapies. 

 

The bioactivity of polyphenols as antioxidant and radical scavengers has been extensively 

reported. Less attention has been drawn to the reactivity of polyphenols towards 

biomolecules. It is becoming more obvious that the mechanisms of action of polyphenols go 

beyond the suppression of oxidative stress (Scalbert et al., 2005). Through non-covalent 

forces polyphenols are able to modulate the 3D structure of proteins leading even to the 

obstruction or the slowing down of the protein bioactivity (Wink, 2008b). In the last few 

years a considerable body of literatures focused on ESI-MS as a technique to investigate the 

non-covalent interaction of polyphenols with DNA, as potential anti-cancer and anti-

bacterial therapeutic agents (Liu et al., 2009). Meanwhile, applications of ESI-MS in 

monitoring non-covalent interactions of polyphenols with proteins have been less 

mentioned. 
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2.2.  Materials and methods: 

 

2.2.1. Chemical reagents: 

Hydroxyflavone, kaempferol, rhamnetin, quercetin, myricetin, taxifolin, procyanidin B2, 

procyanidin C1, L-epicatechin, rutin, quercitrin, spiraeoside, hyperoside, and scutellarin were 

obtained from Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany. 

 

Epigallocatechin gallate (EGCG), angiotensin (I), insulin, as well as deuterium oxide were 

purchased from Sigma-Aldrich Chemie GmbH, Schnelldorf, Germany. 

 

Angiotensin (I) was reconstituted in an aqueous solution of 20% acetonitrile to obtain a final 

concentration of 1mM and kept at -20oC, whereas stock solutions of polyphenols were 

prepared in methanol (J.T.Baker) and reserved in 4oC. Figures (2.5a), (2.5b) and (2.5c) 

illustrate the chemical structures of the polyphenols utilized in this study. Chromanorm-

water, acetonitrile and formic acid (HPLC grades from VWR International GmbH, Bruchsal, 

Germany) were used throughout all experiments. 

 

For mass spectrometric analysis, ammonium acetate salt (Riedel-de Haën, Seelze, Germany), 

glacial acetic acid (J.T.Baker) and ammonium hydroxide solution (Fluka, sigma-Aldrich 

Chemie GmbH, Schnelldorf, Germany) were used to prepare the buffered solution and adjust 

pH of measured samples. 

D-(+)-glucose (Roth Carl GmbH, Karlsruhe, Germany) a monosaccharide and stachyose 

(sigma-Aldrich Chemie GmbH, Schnelldorf, Germany) a tetrasaccharide, were both tested to 

find out whether the sugar residues in the polyphenol glycosides play any role in the non-

covalent interactions.   

To gain a deeper scope into how amino acids sequence affect the formation of the non-

covalent complexes, four synthesized oligopeptides were used. Table (2.2) summarize the 

sequence of the four oligopeptides and shows their mono-isotopic mass value. The stock 

solutions of 1mM were prepared using 30% aqueous acetonitrile and kept at -20oC. 
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Table (2.2) four synthesized oligopeptides were used to study the structure-interaction 

relationship. The oligopeptides synthesis was performed by Dr. D. Sarko, in the research 

group of PD Dr. Walter Mier, at Radiopharmazeutisches Labor, Nuklearmedizin, Kopfklinik, 

Heidelberg, Germany:  

Peptide code Number of lysine residues The mon-isotopic mass in Dalton 

P1 2 2310 

P2 4 2340 

P3 8 2401 

P4 8 2401 

 
P1 Leu-Leu-Leu-Lys-Leu-Leu-Leu-Leu-Leu-Leu- Leu-Leu-Leu-Leu-Leu-Leu-Lys-Leu-Leu-Leu 

P2 Leu-Leu-Leu-Lys-Leu-Leu-Leu-Lys-Leu-Leu-Leu-Leu-Lys-Leu-Leu-Leu-Lys-Leu-Leu-Leu  

P3 Leu-Leu-Lys-Leu-Lys-Leu-Lys-Leu-Lys-Leu-Leu-Lys-Leu-Lys-Leu-Lys-Leu-Lys-Leu-Leu 

P4 Leu-Leu-Lys-Lys-Lys-Lys-Leu-Leu-Leu-Leu-Leu-Leu-Leu-Leu-Lys-Lys-Lys-Lys-Leu-Leu 

 

 

2.2.2. Mass spectrometry instrumentation: 

Mass spectrometry experiments were performed using Micromass VG Quttro II machine 

equipped with ESI source (paragraph 2.1.5.) and quadrupole analyzer (paragraph 2.1.5.1.). 

Samples were directly infused into the source region at a rate of 10 μL/min using syringe 

pump (Razel; Fisher Scientific, France), and data were acquired in positive full scan mode. 

Datas processing were performed using MassLynx V. 4.0. and all registered m/z values were 

calculated based on the mono-isotopic mass value. 

 

Samples were analyzed under the following parameters: Positive ionization mode, 

quadrupole analyzer in scan option (MRM) at dynamic range 400-1500 m/z, drying and 

nebulizing gas N2, source temperature 120oC and Cone voltage: 30 kV. 
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Figure (2.5a) chemical structures of flavonoid aglycones. 

 

 

 
 

Figure (2.5b) chemical structures of flavonoid glycosides. 
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Figure (2.5c) chemical structures of procyanidins and catechins . 

 

 

2.2.3. ESI-MS in monitoring the non-covalent interactions: 

To investigate the non-covalent interactions by means of ESI-MS two methods were 

employed. (i) Non-covalent mass spectrometry (paragraph 3.2.1.), where both target and 

ligand are mixed and a direct detection of the whole complexes are feasible, (ii) 

hydrogen/deuterium exchange (paragraph 3.2.2.). The monitoring of the non-covalent 

interactions is assessed indirectly after. 
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2.2.3.1. Non-covalent mass spectrometry: 

Polyphenols at different molar ratios were mixed with angiotensin (I). The final 

concentration of angiotensin (I) was 8 µM, and polyphenols were mixed with angiotensin (I) 

at four different concentrations (8, 16, 32 and 80 µM). Samples were buffered using 

ammonium acetate, and left to equilibrate at room temperature for 5 minutes. To monitor 

the relationship between peptide sequence and complexes formation, the peptides shown 

in table (2.2) were mixed with the polyphenols at fixed pH value of 7.0 in a ratio of 1:10 

peptide to a polyphenol.  

 

On the other hand, and since ionic interactions between polyphenols and biomolecules are 

dependent on the formation of phenolate ions, thus, the effect of pH alteration is 

monitored, where data were acquired for the samples at different points of pH values. For 

this purpose ammonium acetate buffer was used adjusted by adding glacial acetic acid or 

ammonium hydroxide solutions and the following equation is applied to evaluate the 

relative intensity (Int.complex) of the formed complex in comparison to the unbounded target: 

 

Int.complex= (TIC /Σ TIC*) 

 

Where is TIC represents the total ion count number of ligand-target complex and TIC* 

represents the total ion count number for ions which related to unbounded target. 

 

 

2.2.3.2. Hydrogen/Deuterium Exchange mass spectrometry: 

HDX mass spectrometry is proven to be a very attractive method to study the formation of 

hydrogen bonds between biomolecules. The experiment was done according to Zhu et 

al.(Zhu et al., 2004), whereas ice-cold, 20% acetonitrile solution containing formic acid at pH 

2.5 was used instead of HCl solution to quench the reaction. Hence, the desalting step using 

the small RP C-18 column mentioned by Zhu is not any more necessary. 

 

The experiment starts by allowing the targeted biomolecule to equilibrate with different 

concentrations of polyphenols at pH value of 7.0.The protocol starts with a high D/H ratio by 

adding deuterium to initiate the exchange of hydrogen with deuterium. As soon as the 
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exchange reaches a point near to equilibrium, the exchange is quenched by adding ice-cold 

solution of 20% aqueous acetonitrile containing 2% formic acid, which decreases the pH to 

nearby 2.5. The non-covalent interactions of the ligands with the biomolecule are then 

calculated using the following equation:  

 

ΔD = |Mobs - Mlig| 

 

Where ΔD is the calculated difference of deuterium uptake number, Mobs is observed mass 

of deuterized biomolecule in the absence of ligand and Mlig is the observed mass in the 

presence of ligand. Calculations are done based on mono-isotopic mass number. 
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2.3.1. The ionic interaction between angiotensin (I) and polyphenols: 

 

2.3.1.1. MS spectrum of angiotensin (I): 

Angiotensin (I) consists of 10 amino acids with the following sequence: Asp-Arg-Val-Tyr-Ile-

His-Pro-Phe-His-Leu. The mono-isotopic mass of the anhydrous free base of angiotensin (I) is 

1295.68 Dalton. Since nitrogen atoms in amino acid residues could be theoretically  

protonated, thus, peptides and proteins tend to formed a multiply charged molecular ions 

such as (M+nH)+n  when using the ESI-MS at the positive ionization mode (Fenn et al., 1989).  

Fig (2.6) demonstrates the MS spectrum of 8 µM angiotensin (I) in ammonium acetate buffer 

solution at pH 7.0 under ESI-MS experimental conditions. Two major peaks at m/z 649 and 

m/z 433 were detected, representing double and triple charged molecular ions, respectively. 

A peak with low intensity was detected at m/z 1297 representing the single charged 

angiotensin (I). The signal at m/z 649.35 peak is the most intensive one. Thus, it is expected, 

that any formed complex between angiotensin (I) and polyphenols will probably belong to 

doubled charged molecular ions species. Table (2.3) show the different detected signal 

species obtained from angiotensin when (I) using ESI-MS. 

 

 

The calculation of the mass value of angiotensin (I) from the obtained m/z signals can be 

expressed by following: 

 

m/z = (MW + nH+)/n 

 

Where; m/z is the mass-to-charge ratio obtained from the spectrum.  

MW represents the molecular mass of the sample. 

Value n represents the number of charges of detected ions, and H the mass of a proton 

(approximately 1.008 Dalton). 
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The vale n can be calculated by assuming that any two nearby m/z signals differ by one 

charge. For example, if a signal at m/z 649  have "n"  value of charges, then the ions at m/z 

433 should have "n+1" charges, and the above equation can be used for both ions: 

 

649 = (MW + nH+)/n   

433 = [MW + (n+1) H+] /(n+1) 

By solving the two equations the unknown can be identified. In this case n=2, and by 

inserting the value of n back into the upper equation we got: 

 

649 = (MW + nH+) n 

649 x 2 = MW + (2 x 1.008)  

MW = 1298 – 2.016 

MW = 1295.99 Da 

 

The calculated value of 1295.99 Da. obtained from experimental data is in a good agreement 

with the theoretical mass of 1295.68 Dalton with mass error of 0.015%, which is accepted 

when using ESI sources.  

 

 
Fig. (2.6) ESI-MS (+) of 8 µM angiotensin (I) in ammonium acetate at pH 7. 
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Table (2.3) Detected peaks of angiotensin (I) at ESI-MS experimental conditions: 

Signal species m/z observed m/z  Calculated 

[M+H]+1 1297 1296.69 

[M+2H]+2 649 648.85 

[M+3H]+3 433 432.90 

 

 

 

2.3.1.2. The interaction of angiotensin (I) with polyphenols:  

Acquired data showed that rutin; a flavonoid glycoside of quercetin that has two sugar 

residues, is able to form 1:1 ligand-target complexes with angiotensin (I). A detected peak at 

m/z 954 represents the mono-isotopic double charged molecular ion complex of rutin and 

angiotensin (I). Figure (2.7) shows the MS spectrum of angiotensin (I) with rutin at molar 

ratio of 10 to1 rutin to angiotensin (I) in ammonium acetate buffer solution at pH 7.0. The 

detected signal at m/z 954 in the spectrum belongs to the doubled charged complex. 

Therefore, the observed Mobs are calculated as following: 

  

m/z = (Mobs + nH+)/n 

954 = (Mobs + 2 X 1.008)/2 

Mobs = 1905.98  

 

Mobs represents the mono-isotopic deconvulated mass of the complex observed using ESI 

mass spectrometry. Since that the mono-isotopic mass of rutin is 610.15 Dalton and mono-

isotopic mass angiotensin (I) equals 1295.68 Dalton. Thus, the 1:1 rutin-angiotensin (I) 

complex should have the theoretical mass value of 1905.83 Da. Compared with the observed 

one Mobs, we can confirm that the value 1905.98 stands for 1:1 rutin-angiotensin (I) complex 

with an good agreement at mass error of approximately 0.016%.  

http://en.wikipedia.org/wiki/Glycoside�
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Fig. (2.7) ESI-MS (+) of angiotensin (I) and rutin at molar ration 1:10 in ammonium acetate at pH 7.  The signal 

at m/z 954 represents 1:1 rutin-angiotensin complex. Signal at m/z 611 belongs to single-charged molecular-

ion of rutin and m/z 694 is the molecular-ion of angiotensin bearing two protons. 

 

 

MS spectra obtained from the different tested polyphenols showed only 1:1 binding 

stoichiometries complexes with angiotensin (I), and all observed and detected signals were 

belonged to double-charged molecular ions species molecular ions, e.g. [M+2H]+2. 

 

In comparison to rutin both hyperoside and spiraeoside could form a complex with 

angiotensin (I); figures (2.8) and (2.9). Both have the same molecular weight of 464 g/mole, 

and showed a signal at m/z 881 which is related to 1:1 binding stoichiometries. On the other 

hand, the spectrum of angiotensin (I) and quercetin; the aglycon counterpart of rutin and 

both hyperoside and spiraeoside, revealed no signals related to any kind of complexes figure 

(2.10).  
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Fig.(2.8) ESI-MS (+) of angiotensin (I) and hyperoside at molar ration 1:10 in ammonium acetate at pH 7. The 

signal at m/z 881 represents 1:1 hyperoside-angiotensin complex. Signal at m/z 465 belongs to single-charged 

molecular-ion of hyperoside and m/z 694 is the molecular-ion of angiotensin bearing two protons. 

 
Fig.(2.9) ESI-MS (+) of angiotensin (I) and spiraeoside at molar ration 1:10 in ammonium acetate at pH 7. 
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Again by applying the above mentioned equation we can calculate the observed mass using 

m/z values obtained from MS spectra and compare it with the theoretical one: 

 

m/z = (Mobs + nH+)/n 

881 = (Mobs + 2 X 1.008)/2 

Mobs = 1759.98  

 

Mobs represents the mono-isotopic deconvulated mass of the complex. The mono-isotopic 

mass of hyperoside is 464.09 Dalton and of angiotensin (I) equals to 1295.68 Dalton. 

Therefore, the 1:1 rutin-angiotensin (I) complex should have the theoretical mass value of 

1759.77 Da. Compared with the observed one above; we can conclude that the value 

1759.98 stands for 1:1 hyperoside-angiotensin (I) complex with a good agreement at mass 

error of approximately 0.012%.  

 

 
Fig.(2.10) ESI-MS (+) of angiotensin (I) and quercetin at molar ration 1:10 in ammonium acetate at pH 7. 

Signal at m/z 694 belongs to a doubled charged molecular-ion of angiotensin. No signal belongs to complex of 

quercetin-angiotensin could be detected. The presumed complex of 1:1 quercetin-angiotensin should show a 

signal at m/z 800. 
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In the case of quercetin; the mono-isotopic mass of quercetin is 302.04 Dalton and the 

mono-isotopic mass of angiotensin (I) equals to 1295.68 Dalton. Thus, the 1:1 complex of 

quercetin-angiotensin(I) should have the theoretical mass value of 1597.72 Dalton. Thus, a 

signal at approximately m/z 800 should be observed. From figure (2.10) we found out, that 

no complex is formed between the quercetin and angiotensin (I). 

 

From the above findings we could conclude, that the sugar residue in the flavonoid glycoside 

is involved in the formation of the complex with angiotensin (I). To explore how the sugar 

residue is evolved in the formation of the complexes, two sugar compounds; D-(+)-glucose a 

monosaccharide, and stachyose a tetrasaccharide, were tested with angiotensin (I). The 

spectra of both sugar parts revealed no signals related to any kind of interactions. In 

consequence, it becomes clear that the formation of such complexes with angiotensin (I) is 

not directly taking place at level of sugar residues, but still dependent on the degree of 

glycolysation. 

 

In general, all flavonoid glycosides used in this study proved to be capable to interact with 

angiotensin (I). Whereas, MS spectra obtained from aglycones – except that of taxifolin – 

unveil no signals  in contribution to any kind of complex, referring to even no interaction, or 

weak bonding under experimental conditions figures (2.11) and (2.12). Only taxifolin, or 

dihydroquercetin, belongs to flavanolols could interact to angiotensin (I). The peculiarity of 

taxifolin chemical structure is the missing π system at C2-C3 at the ring C.    

 

Since that polyphenols can dissociate under biological conditions forming negatively charged 

phenolate ions, that leads to the building of ionic bonds (Wink, 2008), thus, the increasing in 

phenol groups will result in a stronger interaction between both polyphenol and 

biomolecule. This explain how EGCG, which is rich of phenol groups, is able to form a 

stronger complexes with angiotensin (I) in comparison to other flavonoid glycosides as 

shown in figure (2.13). Table (4) summarizes m/z values, which related to detected ligand-

target complexes of 1:1 binding stoichiometries in comparison to their theoretical calculated 

m/z. 
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These observations regarding the ionic interactions between angiotensin (I) and polyphenols 

could be explained on the basis of the physiochemical properties of the tested compounds, 

especially what concerns flexibility and hydrophobicity. In the aqueous solutions the polar 

amino acid residues in angiotensin (I) tend to bound outwards forming a polar surface rich of 

positively charged amino acids. On the other hand, the formed phenolate groups will target 

the positively charged amino acid residues in angiotensin (I) building strong and stable ionic 

bridges (Wink, 2008). Since these interactions are taking place at the polar surfaces, thus, 

compounds with higher polar surface area (PSA) will be able to form more stable complexes. 

Flavonoid glycosides, which have in general PSA values that are approximately twice greater 

than of their aglycone counterparts, will bind to angiotensin (I) forming stable complexes.  

 

 

  
Fig.(2.11) ESI-MS (+) of angiotensin (I) and rhamnetin at molar ration 1:10 in ammonium acetate at pH 7. 

Signal at m/z 694 belongs to a doubled charged molecular-ion of angiotensin. No signal belongs to complex of 

rhamnetin-angiotensin could be detected. The presumed complex of 1:1 rhamnetin-angiotensin should show 

a signal at m/z 807. 
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Fig.(2.12) ESI-MS (+) of angiotensin (I) and kaempferol at molar ration 1:10 in ammonium acetate at pH 7. No 

signal belongs to rhamnetin-angiotensin complex could be detected. 

 
Fig.(2.13) ESI-MS (+) of angiotensin (I) and EGCG at molar ration 1:10 in ammonium acetate at pH 7. Signal at 

m/z 694 belongs to a doubled charged molecular-ion of angiotensin. An intensive signal at m/z 878 represent 

the complex of 1:1 EGCG-angiotensin(I). 
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Meanwhile, flavonoid aglycones will tend to interact with angiotensin (I) at the non-polar 

sites by means of hydrogen bridges and hydrophobic bonds. These kind of non-covalent 

forces are much weaker than the ionic ones, and the formed bonds of that kind cannot stay 

intact under the ionization conditions. This view is supported by the results obtained from 

H/D mass spectrometry experiment (paragraph 2.3.3.).  

Although taxifolin has PSA value close to that of the above tested flavonoid aglycones. 

However, result obtained from MS spectrum of taxifolin proves the ability of taxifolin to 

form ionic bonds with angiotensin (I). In this case the missing π bond at C2-C3 of ring C 

granted taxifolin more flexibility. For that reason, taxifolin is less prone to the structural 

fluctuations of the biomolecule, and are able to form stable complexes with angiotensin (I) 

under experimental conditions. 

     

Table (2.4) summarizes m/z value related to detected ligand-target complexes compared to 

their theoretical calculated m/z values and the error in the mass differences: 

Compound Monoisotopic mass m/z observed m/z calculated Error % 

Angiotensin 1295.68 649 648.85 0.015 

Flavonoid glycosides 

Rutin 610.15 954 953.92 0.008 

Spiraeoside 464.09 881 880.89 0.012 

Hyperoside 464.09 881 880.89 0.012 

Aglycones 

Quercetin 302.04 No 799.87 - 

Rhamnetin 316.06 No 806.88 - 

Kaempferol 286.04 No 791.87 - 

Taxifolin 304.06 801 800.88 0.015 

Catechins 

EGCG 458.08 878 877.88 0.013 
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2.3.1.3. Effect of degree of glycolysation on ligand affinity: 

The interpretation of the ESI-MS spectra obtained from studying flavonoid glycosides and 

their aglycone partners emphasize the role of sugar residues in the formation of the 

complexes. To study the relative affinity between the different flavonoid glycosides a 

competition experiment is performed. 

 

Two flavonoid glycosides are mixed simultaneously with angiotensin (I) at 10:10:1 molar 

ratio, respectively and the competition coefficient was calculated by means of the following 

equation: 

Comp.coef. = TICA/TICB 

 

Whereas competition coefficient is calculated from the total ion count (TIC) number of 

formed complex with substance A, in comparison to total ion count number of the formed 

complex with substance B. When comparing rutin; a disaccharide flavonoid, with 

hyperoside; a quercetin-3-O-galactoside, and spiraeoside; a quercetin-4'-O-glucoside, a 

higher affinity toward angiotensin (I) was observed in favor to rutin with a competition 

coefficient value of 1.7, figures (2.14a) and (2.14b).  

 

Generally, phenolate ions interact with the positively charged amino acids residues groups 

and form ionic bonds. Whereas the OH groups of the sugar rests will form weak hydrogen 

bonds. In conclusion, the stability of the formed complex between the angiotensin (I) and 

flavonoid glycoside will be greater as the number of sugar rests increase.    

 

 

http://en.wikipedia.org/wiki/Quercetin�
http://en.wikipedia.org/wiki/Galactoside�
http://en.wikipedia.org/wiki/Quercetin�
http://en.wikipedia.org/wiki/Glucoside�
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Fig. (2.14a) ESI-MS (+) of rutin and hyperoside in presence of angiotensin (I). Rutin shows higher affinity toward 

angiotensin(I) in comparison to hyperoside. The signal at m/z 954 is more intensive than the one at m/z 881. 

 
Fig. (2.14b) ESI-MS (+) of rutin and spiraeoside in presence of angiotensin (I). Rutin shows higher affinity toward 

angiotensin(I) in comparison to spiraeoside. The signal at m/z 954 is more intensive than the one at m/z 881. 

This proves that the degree of glycolysation affects the formation of the non-covalent complex between the 

biomolecule and the flavonoid glycoside. 
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2.3.1.4. Effect of ligand concentration on signal intensity: 

To monitor the influence of ligand concentration on the signal intensity of formed 

complexes, polyphenols at different concentration (8, 16, 32 and 80 µM) were added to 8 

µM of angiotensin (I). 

 

The following equation is used to evaluate the relative binding affinity of the ligand to 

angiotensin (I): 

 

Contribution% = (TICcomplex /Σ TICtarget) X100              

 

Where TICcomplex represents the total ion count number of ligand-angiotensin (I) complex and 

TICtarget represents the total ion count number which related to angiotensin (I) at the 

different charge-states. 

 

Obtained spectra from rutin, figure (2.15), and hyperoside, figure (2.16), demonstrate that 

non-covalent complexes could be first detected at a molar ratio of 2:1 polyphenol to 

angiotensin (I). Moreover, the acquired data confirmed that the higher the ligand 

concentration is, the more intensive are the signal related to the complexes. Nevertheless, 

and because of self-assembly phenomenon no signals related to polyphenol-angiotensin (I) 

complex could be detected when polyphenols concentration exceed 80 µM. 
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Fig. (2.15) ESI-MS(+) of rutin and angiotensin. The signal at m/z 954 represents rutin-angiotensin(I) complex 

and the intensity of this signal increases with the concentration of rutin from 8 (bottom) to 32 µM (top).    

 
Fig. (2.16) ESI-MS(+) of hyperoside and angiotensin. The signal at m/z 881 represents hyperoside-

angiotensin(I) complex. Signal intensity increases with the concentration of hyperoside from 8 (bottom) to 32 

µM (top). 
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2.3.1.5. Effect of pH on complex formation: 

Since that polyphenols tend to form more phenolate ions in basic milieu, therefore the 

intensity of the signal related to the complexes should increase in a direct proportional 

manner to the increasing of pH values. To monitor this effects angiotensin (I) was mixed with 

rutin at two different molar ratios 1:5 and 1:10 and data were acquired under different pH 

values by using ammonium acetate buffer. Following equation was applied to calculate the 

signal intensities result from the interaction between rutin and angiotensin(I): 

 

Int.complex = (TIC /Σ TIC*) 

 

Where is TIC represents the total ion count number of rutin-angiotensin complex and TIC* 

represents the total ion count number of ions related to angiotensin (I) at the different 

charge-states. Results are summarized in figure (2.17). 

Figure (2.17) illustrate the MS spectra of rutin mixed with angiotensin at molar ratio of 1:10, 

whereas the intensity of the signals related to 1:1 rutin-angiotensin complex are monitored 

in relation to pH values. Results are evaluated using the upper equation and summarized in 

figure (2.18). Signal intensity of rutin-angiotensin(I) complex increases comparatively to pH 

values to reach the highest level at pH values around 7 (black bars), then decreases again 

slightly at higher pH points. At lower molar ratio of 1:5 angiotensin to rutin the pH point, at 

which the signal intensity of complex reaches its highest level, is shifted to reach values near 

to 8 (grey bars). The explanation of the decrease in the interaction at higher pH values can 

be based on self-assembly phenomenon, since that the clustering of polyphenols molecules 

would also increase at high pH value. For the same reason the optimum pH to obtain the 

best affinity between rutin and angiotensin (I) is shifted from 7 to 8 when lower 

concentration of rutin are used.    
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Fig.(2.17) ESI-MS(+) of rutin and angiotensin (I) at different pH points. The intensity of the MS signals related to 

1:1 rutin-angiotensin(I) complexes are assessed in  relation to pH values. Signal intensity of complex increases 

starting from pH values near 4 till reaching points near 7, before it drops again as pH reaches values around 10.   

 

 
Fig. (2.18) The relationship between pH values and rutin-angiotensin(I) complex formation. Signal intensity of 

rutin-angiotensin(I) complex increases in a direct manner to the increase of  pH values till it reaches points 

around 7 and 8 to drop again at higher pH levels because of phenol self-assembly phenomenon. 
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2.3.2. Peptide sequence-dependence of complex formation: 

A Protein comprises in its structure usually several positively charged amino acid residues, 

e.g. lysine, arginine, and histidine. Since polyphenols possess the ability to build negatively 

charged phenolate ions, therefore, these positively charged amino acid residues would be 

targeted by the formed phenolate ions and consequently ionic bond could occur. Hence, the 

increase of such positively charged amino acid residues would have significant effects on the 

nature of the formed complexes. As mentioned pervious (paragraph 2.3.1.2.), the different 

tested polyphenols could only demonstrate 1:1 binding stoichiometries with angiotensin (I). 

Therefore, higher binding stoichiometries are expected to be observed, when the targeted 

peptide comprises enough positively charged amino acid residues.   

 

To investigate the effect of the number of positively charged amino acid residues on the 

nature of formed complexes, three peptides containing increasing number of lysine residues 

were employed. Table (2.2) shows the synthesized, whereas peptides P1, P2, and P3 

contained 2, 4, and 8 lysine residues, respectively. Moreover, a fourth peptide, P4, was 

employed to monitor the relationship between the formation of complexes and the 

sequence of the lysine residues. P4 is designed to have the same number of lysine residues 

as peptide P3, only that lysine residues were built in a different order. Table (2.5) 

summarizes how the polyphenol-peptide binding stoichiometries increases in correspond to 

the increasing number of lysine residues. 

 

The MS spectra obtained using non-covalent ESI-MS (+) technique reflected a clear 

relationship between the number of lysine residues in the target peptide, as well as the kind 

of formed non-covalent complexes. In comparison to the results obtained when using 

angiotensin (I), new stoichiometries other than 1:1 ligand-target complexes were observed 

to be formed between the studied polyphenols and the synthesized peptides. Ligand-target 

binding stoichiometries such as 2:1, 3:1 and higher were registered. Meanwhile, no 

substantial differences have been monitored when comparing MS spectra gained from both 

P3 and P4, reflecting no significant relationship between the kind of formed complexes and 

the order of the lysine residues, but on the other hand, a possible relationship could be 

expected between the order of the lysine residues in the peptide and the stability of the 

formed complexes. 
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Table (2.5) the relationship between the numbers of formed complexes to the number of 

lysine residues in the targeted peptides for the tested polyphenols 

 (polyphenol: peptide) Ratio 

Compounds 
P1 

(2 lysine residue) 

P2 

(4 lysine residue) 

P3 

(8 lysine residue) 

Rutin 1:1 3:1 6:1 

Quercitrin 1:1 3:1 4:1 

Spiraeoside 1:1 2:1 4:1 

Hyperoside 1:1 3:1 5:1 

Scutellarin 1:1 2:1 2:1 

EGCG 2:1 4:1 8:1 

Procyanidin B2 2:1 3:1 7:1 

Procyanidin C1 2:1 3:1 5:1 

 

 

When testing P1 with Rutin complexes of 1:1 have been observed in the MS spectra, 

meanwhile P2 formed 3:1 complexes. With the most lysine-rich peptide P3, rutin built 

complexes of 6:1. Quercitirn, spiraeoside and hyperoside share with rutin the same 

flavonoid aglycone core, i.e. quercetin, therefore, they can build as many ionic bonds as 

rutin does. Consequently, these flavonoid glycosides reacted with the synthesized peptides 

in a similar manner to rutin. Nevertheless, and since they possess less sugar rests, the 

complexes they build are less stable, hence, the lower intensity in the MS signals of the 

formed complexes. Scutellarin comprises fewer phenolic groups than rutin. This explain the 

low binding stoichiometries, e.g. 2:1 scutellarin-P3, reflecting a lower affinity of scutellarin 

toward the studied peptides in comparison to rutin. On the other hand, EGCG possess much 

more phenolic groups than rutin. When interacting with peptide P3, EGCG could form 8:1 

EGCG-P3 complexes, while rutin could form only 6:1 complexes with the same peptide. For 

the same reason procyanidin B2 could show higher binding stoichiometries when compared 

to rutin, and reacted with the above mentioned peptides nearly in a similar manner to EGCG. 

Meanwhile, procyanidin C1 possesses more phenolic groups compared to each EGCG and 

procyanidin B1, yet results obtained from procyanidin C1 reflect a lower affinity toward the 
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tested peptides. This controversy could be explained through the complexity of the chemical 

structure of procyanidin C1.  

 

 

2.3.3.  Hydrogen/Deuterium Mass Spectrometry (HDX-MS): 

H/D mass spectrometry is a well established technique to study the formation of hydrogen 

bonds. Insulin was used as a target to study the relationship between the structure of 

polyphenols and the formation of the hydrogen bridges. Insulin was incubated with different 

polyphenols in D2O solution. After the hydrogen/deuterium exchange reach a point near to 

equilibrium the sample was directly injected in the MS source and the m/z values were 

registered. The shifts in the mass values were then calculated using the following equation: 

 

ΔD = |Mobs - Mlig| 

 

Where ΔD is the calculated difference of deuterium uptake number, Mobs is observed mass 

of insulin after incubation in D2O in the absence of a ligand and Mlig is the observed mass of 

insulin when incubated with a ligand in medium rich of deuterium. 

 

 

2.3.3.1. Insulin before and after deuteration: 

Insulin is a hormone consists of 52 amino acids with mono-isotopic mass of 5803.65 Dalton. 

The positive mode ESI-MS (+) spectrum of insulin reveals series of multiple charged 

molecular ions in range of +4 to +6, figure (2.18) represents the ESI-MS spectra of insulin 

dissolved in ammonium acetate buffer at pH 7. When insulin is mixed with deuterium water 

and left to equilibrate at room temperature for approximately 3 hours a shift in the mass 

values of the different states of charge is observed. The shift reflects an increase of an 

averagely 43 amu (atomic mass unite) of insulin, caused by the exchanging of 43 protons 

with averagely 43 deuterons. Table (2.6) shows the different ion-species of insulin before 

and after exchange. Figure (2.19) represents the ESI-MS (+) spectrum of insulin after 

incubation with D2O water for approximately three hours. 
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Fig.(2.18) ESI-MS(+) of insulin in ammonium acetate buffer at pH 7. Insulin has the mono-isotopic mass of 

5803.65 Dalton and shows under the positive mode of electrospray ionization MS three main signals that 

belong to the ion species of 4, 5, and 6. 

 
Fig.(2.19) ESI-MS(+) of insulin after three hours of incubation in D2O water. A shift in the masses of each ion 

species can be observed. These shifts reflect an exchange of nearly 43 hydrogen atoms with deuterium. 
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Table (2.6) Observed signals insulin as a function of charge state before and after 

deuteration 

Charge state 
m/z before 

deuteration 

m/z after 

deuteration 

Average increase in 

mass units 

+6 969.05 976.44 7.39 

+5 1162.48 1171.35 8.87 

+4 1453.06 1464.05 10,99 

 

 

  

2.3.3.2. Non-covalent interactions between insulin and polyphenols (studying the 

formation of hydrogen bonds): 

When a ligand interacts with the backbone amides forming hydrogen bonds, the backbone 

amide groups are then masked by the interacted molecule, therefore, the accessibility of the 

solvent, namely D2O water will be impeded. This leads to the prevention of the 

hydrogen/deuterium exchange to take place at the masked sites and consequently to the 

decrease in deuterium up-take of the targeted biomolecule. MS spectrum of insulin in the 

absence of any ligand shows an H/D exchange rate of 43 amu (atomic mass units), fig. (2.19). 

In the presence of flavonoid aglycones a decrease in the deuterium uptake have been 

registered, which confirms, that the tested flavonoid aglycones are able to build hydrogen 

bond, causing a decrease in deuterium up-take in range around 3 to 9 amu. Figures (2.20) 

and (2.21) demonstrate H/D exchange of insulin before and after adding quercetin and 

myricetin, respectively. The top part of figure (2.20) represents the MS spectrum of insulin in 

the absence of quercetin. The most intensive signal is m/z 1170.66 and belongs to the 

[M+5H]+5 molecular-ion specie. This represents a mass of approximately 5848.4 Dalton. 

When adding quercetin the [M+5H]+5 molecular-ion specie shifts backward showing a value 

of m/z 1169.30 as seen in the bottom part of figure (2.20).  
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The calculated mass from this molecular-ion will be Dalton 5841.5 Dalton. Applying the 

equation we can assess the shift in the deuterium up-take: 

 

 

ΔD = |Mobs - Mlig| 

ΔD = |5848.4 – 5841.5| 

ΔD = 6.9 

 

The value ΔD = 6.9 confirms the capability of quercetin to interact with insulin backbone 

amides through hydrogen bonds. The hydrogen bridges caused the masking of nearly 6.9 

exchangeable hydrogen atoms. Due to the fact that myricetin has more phenolic groups 

than quercetin; refer to figure (2.5), therefore, the observed shift in the deuterium up-take 

was greater and a value of ΔD = 9.02 have been calculated. Whereas, the smallest shift 

belongs to rhamnetin, since that rhamnetin has the least OH groups.  

 

On the other hand, when incubating flavonoid glycosides with insulin, no significant changes 

in deuterium uptake could be observed in the obtained MS spectra. Figure (2.22) confirms 

how rutin is unable to build hydrogen bond with the backbone amides of insulin. 

Nevertheless, spiraeoside; a 4'-O-glucoside of quercetin, was able to reduce deuterium up-

take number causing an average shift of approximately 6 mass units as shown in figure 

(2.23).  Table (2.7) summarizes the changes of insulin deuterium-uptake in relationship to 

the tested polyphenols. Bold numbers represent ligand prevention of H/D exchange; thus, 

reflect ability of that ligand to build hydrogen bounds. 

 

Insulin which is pretty a huge biomolecule has a globular shape. In aqueous solutions the 

non-polar amino acid residues are imbedded in the core to minimize the interaction with the 

aqueous solvent. These non-polar groups are called the backbone amides. In the absence of 

a ligand, the backbone amides are accessible to solvent molecules and will undergo the H/D 

exchange reaction. The average mass of insulin increases in order of one mass unit for each 

exchangeable hydrogen atom. In the presence of an active ligand, a number of non-covalent 

bonds will be formed with some backbone amides preventing them from being involved in 

the H/D exchange reaction.  
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Table (2.7) the changes of insulin deuterium-uptake in the absence and presence of the 
ligand (polyphenol). Number in Bold reflect significant mass shift, therefore formation of 
hydrogen bond. 
 

Ligand Average deuterium up-take      Mass shift   ΔD 

In absence of ligand In presence of ligand 

Flavonoid aglycones 

Quercetin 44.67 37.97 6.70 

Myricetin 43.82 34.80 9.02 

Taxifolin 44.19 39.65 6.54 

Rhamnetin 44.56 41.12 3.44 

Flavonoid glycosides 

Rutin 43.59 43.10 0.49 

Spiraeoside 43.27 37.47 5.80 

Hyperoside 43.65 43.20 0.45 

Scutellarin 44.43 43.81 0.62 

 

 
Fig.(2.20) ESI-MS(+) of insulin after been incubated in D2O water for three hours (top). The deuterium uptake is 

decreased when insulin incubated with quercetin (bottom). 
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 Fig.(2.21) ESI-MS(+) of insulin after been incubated in D2O water for three hours (top). The deuterium uptake 

decreases when insulin incubated in the presence of myricetin (bottom). 

 
Fig.(2.22) ESI-MS(+) of insulin in the presence of rutin (bottom). No significant change in deuterium-uptake can 

be observed, when compared with MS spectrum of insulin in the absence of rutin (top).  
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Fig.(2.23) ESI-MS(+) of insulin after been incubated in D2O water for three hours (top). The deuterium uptake is 

decreased when insulin incubated in the presence of spiraeoside (bottom). 

 

 

Because of the flexibly in the chemical structure and the tendency to interact at the polar 

surfaces through ionic bonds, flavonoid glycosides will not reach the backbone amides. 

Meanwhile, flavonoid agylcones are less flexible (coplanar) and have lower PSA values in 

comparison to the glycoside partners, therefore, flavonoid agylcones are capable to reach 

the non-polar core, and in consequence, are able to build hydrogen bonds with the 

backbone amides. This explains the decrease in insulin H/D rate of exchange. On the other 

hand, no significant changes observed when applying flavonoid glycosides. Only spiraeoside, 

4'-O-glucoside of quercetin, showed a distinctive shift in the H/D exchanging rate. A 

Cleavage of the sugar rest at 4' position needs quiet low energy (Petsalo et al., 2006); 

consequently the aglycone; in this case quercetin, will be set free interacting with the 

backbone amides causing the shift. 
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2.4. Conclusion: 

Under ecological demands plants evolved to produce complex mixtures of natural products 

of different structural classes. These substances are sometimes termed as secondary 

metabolites (SM). Phytochemists have nearly described more than 100000 SM compounds 

belong to different groups; many of these demonstrate curative properties and had been 

employed actively throughout centuries in traditional medicines. Nowadays, the modern 

medicine still recognizes the plants secondary metabolites as a crucial source of new 

therapeutic agents.  

 

In general, secondary metabolites interact with targets; such as, structural proteins, 

enzymes, biomembranes, and nucleic acids, inducing changes in the conformation of the 

targeted molecules preventing them to achieve their assigned functionalities. These 

interactions could be divided into two major categories from the physicochemical point of 

view; covalent and non-covalent interactions. In the last few decades, many techniques have 

been invented and developed to explore the nature of these interactions to understand the 

mechanism of the bioactivity of natural products. At the early 90s mass spectrometry arose 

to be a promising technique in the field of drug discovery, due to many attractive features 

such as; sensitivity, specificity, speed, and amenability to high throughput screening.     

     

In the early stages mass spectrometry was only used to identify the molecular mass of a 

compound and to elucidate its chemical structure. After the invention of API sources a major 

breakthroughs took place to enable MS techniques to prevail the field of bio- and macro-

molecules. Mass spectrometry techniques have been employed to conduct many useful 

information concerning ligand-target interactions, such as; exploring of the interaction 

between antibiotics and  bacterial cell wall peptide analogues (Lim et al., 1995), monitoring 

the interaction with enzymes (Cheng et al., 1995), studying the binding of metal ions to 

oligonucleotides (Wu et al., 1996), and probing the interaction between flavonoids and DNA 

triplexes (Liu et al., 2009). 

 

One of the most abundant SM in the nature are polyphenols. Polyphenols have been 

reported to possess many beneficial aspects to the health of human beings. They possess 

anti-inflammatory and antimicrobial properties. They also proved to be useful in 
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cardiovascular disorders, and in the prevention against carcinogens. Moreover, they are 

recommended as a supportive therapy in neurodegenerative and ageing-related diseases. 

Polyphenols bioactivity has been mainly related to their anti-oxidative properties and to 

their ability to scavenge free radicals and suppress oxidative stress, but it has become more 

clear that the mechanism of action of polyphenols goes beyond these features (Scalbert et 

al., 2005). Polyphenols can interact with different biomolecules through non-covalent forces 

modifying and altering their biological structure (Wink, 2008), and leading to achieve a 

variety of desirable bioactivities. 

 

This work focused on the application of ESI-MS in monitoring the non-covalent interactions 

of some polyphenols with different peptides and their relevance to drug discovery. Two 

approaches have been applied for this purpose; the first approach, namely non-covalent MS, 

was applied to study the ionic interactions with angiotensin (I) and other synthesized 

peptides. While the second one H/D exchange MS was used to monitor the formation of 

hydrogen bonds with the backbone amides in insulin. 

 

Polyphenols; and under physiological conditions build spontaneous negatively charged 

phenolate ions, will target the positively charged amino acid residues in the peptides, thus, 

forming ionic bonds. Since polyphenols possess many phenolate functional groups, 

therefore, the targeted peptide would be even immobilized, or its 3D structure would 

impaired, these all lead to changes in the bioactivity of this peptide.  

 

The obtained ESI-MS spectra proved that polyphenols can interaction with different peptides 

through non-covalent bonds. MS spectra of mixtures of falvonoids glycosides and 

angiotensin (I) showed signals related to 1:1 ligand-target complexes. Rutin, as well as both 

hyperoside and spiraeoside were able to build ionic bonds with angiotensin (I). Nevertheless, 

the MS spectra of rutin revealed that rutin-angiotensin (I) complexes are more stable than 

complexes build with hyperoside or spiraeoside. Rutin shares both hyperoside and 

spiraeoside with the same aglycone, namely quercetin, but rutin has two sugar residues, 

whereas hyperoside and spiraeoside both has one sugar residue. Therefore, rutin can build 

more hydrogen bonds with angiotensin (I) making its complex more stable. On the other 

hand, MS spectra of flavonoid aglycones; such as quercetin, rhamnetin and kaempferol, 
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exhibited no signals related to complexes with angiotensin (I). This is due to the fact that the 

complexes build by flavonoids aglycones are not stable enough to be detected using the ESI-

MS technique. The reason behind the weakness of these complexes is the co-planarity of 

flavonoid aglycones making them relatively rigid; therefore, they are more susceptible to the 

small fluctuations of the targeted biomolecule. On exception was taxifolin, whereas 

obtained MS spectra proved, that taxifolin is capability to form ionic bonds with angiotensin. 

The reason is that taxifolin belongs to flavonolol, where π system at C2-C3 of ring C is missing 

granting taxifolin more flexibility than other studied flavonoid aglycones, and in 

consequence more compliance to fit on the surface of the biomolecule. 

 

Since that polyphenols build ionic bonds with peptides and proteins through interacting with 

the positively charged amino acid residues, e.g. lysine, arginine, and histidine. Hence, the 

increase of the number of such amino acid residues would cause that several polyphenol 

molecules will interact with one peptide showing binding stoichiometries other than 1:1 

polyphenol-peptide. The tested polyphenols formed with angiotensin (I) revealed only 1:1 

complexes. When polyphenols were mixed with peptides comprising increasing number of 

positively charged amino acid residues; e.g. 2, 4 and 8 lysine residues, a complexes such as 

2:1, 3:1 and even 8:1 polyphenol-peptide have been monitored in the MS spectra of some 

tested polyphenols. 

When testing rutin with peptides containing the increasing number of lysine residues, 

complexes 1:1, 3:1 and 6:1 have been observed in the MS spectra. Quercitirn, spiraeoside 

and hyperoside share with rutin the same flavonoid aglycone core, i.e. quercetin, therefore, 

they interact with in a similar manner such that rutin does. The only difference that the MS 

spectra obtained form rutin demonstrates more intensive signals related to rutin-peptide 

complexes. On the other hand scutellarin comprises fewer phenolic groups than rutin. Thus, 

scutellarin showed lower binding stoichiometries comparing to rutin, i.e. 1:1 and 2:1 

scutellarin-peptide. From the tested polyphenols, EGCG possesses a huge phenolic system 

showing the highest binding stoichiometries toward lysine rich peptides. EGCG interacted 

with peptide containing 8 lysine residues forming 8:1 EGCG-peptide complexes. These 

results concerning EGCG turn in favor of the bioactivity of catechnis toward biomolecules 

and comply with the findings reported in many publications (Abbas and Wink, 2009; Abbas 

and Wink, 2010; Henning et al., 2010). Moreover, procyanidin B2 reacted with the peptides 
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nearly in a similar manner to EGCG. Meanwhile, procyanidin C1 possesses the most phenolic 

groups; nevertheless, MS data of procyanidin C1 reflect a lower affinity toward the tested 

peptides as expected. The complexity of the chemical structure of procyanidin C1 is behind 

this controversy. 

 

Another important, yet weaker, sort of non-covalent interactions is the hydrogen bonds. H/D 

mass spectrometry is considered as a method of choice to monitor the formation of 

hydrogen bonds between the polyphenols. When a polyphenol interacts with the a peptide 

building hydrogen bonds, the hydrogen atoms at the level of the backbone amides therefore 

this will be mask, and the hydrogen/deuterium exchange reaction is impeded from taking 

place at levels where the polyphenol interacted. MS spectrum of insulin in the presence of 

flavonoid aglycones, e.g. quercetin and myricetin, demonstrate a decrease in the deuterium 

uptake confirming the formation of hydrogen bonds.  

 

Results obtained from quercetin confirm that quercetin is capable to interact with insulin 

backbone amides masking nearly 7 of the exchangeable hydrogen atoms. Since that 

myricetin has more OH groups than quercetin; therefore, myricetin could build around 9 

hydrogen bonds with insulin. On the other hand, rhamnetin has the least OH groups building 

less than 4 hydrogen bridges. Moreover, the studied flavonoid glycosides show no significant 

shifts in deuterium uptakes. Rutin, as well as hyperoside and scutellarin all were not able to 

build hydrogen bonds with the backbone amides of insulin. Nevertheless, the MS spectra of 

spiraeoside; a 4'-O-glucoside of quercetin, confirmed an interaction with backbone amides 

and the masking of nearly 6 of the exchangeable hydrogen atoms. 

 

Insulin in aqueous solutions tends to bury the non-polar amino acid residues in the core 

reducing the contact surface with the aqueous surrounding. These amino acid residues, also 

known the backbone amides, form the non-polar core. The backbone amides hydrogen 

atoms in insulin can undergo H/D exchange reaction in the medium rich with D2O water, but 

in the presence of an active ligand, some hydrogen bonds are formed with some backbone 

amides excluding the last from the H/D exchange reaction. MS spectra of falvonoid 

glycosides proved their disability to build hydrogen bonds. This due to the fact, that 

falvonoid glycosides prone to build ionic bonds at the polar surfaces and have less tendency 
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to form hydrogen bonds with the backbone amides at the non-polar core. One exception 

was in the case of spiraeoside; 4'-O-glucoside of quercetin. A Cleavage of the sugar bridge at 

4' position can occur spontaneously, and the related aglycone; i.e. quercetin, will achieve the 

interaction with the backbone amides. In the case of flavonoids aglycones, MS data confirm 

the ability of flavonoids aglycones to build hydrogen bonds with the backbone amides. 

Flavonoids aglycones are less flexible and have lower PSA values in comparison to their 

glycoside counter partners; therefore, they are able to reach the non-polar core of insulin, 

and in consequence, building the hydrogen bonds with the backbone amides.  
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