
Dissertation
submitted to the

Combined Faculties for the Natural Sciences and for Mathematics
of the Ruperto-Carola University of Heidelberg, Germany

for the degree of
Doctor of Natural Sciences

presented by

Jessica Legradi
Oral-examination: 21.12.2011



Microarray based transcriptomics and
the search for biomarker genes in

zebrafish

Referees: Prof. Dr. Uwe Strähle
Prof. Dr. Thomas Braunbeck



Abstract

In the past, zebrafish genes were mapped to human or mouse orthologs in order to perform
Gene Ontology or pathway analyses. Therefore, genes without orthologs were removed
and zebrafish-specific pathways were not taken into account. After the zebrafish genome
has been sequenced almost completely, a growing number of biological databases for
zebrafish have been made available. The increasing availability of gene function descrip-
tions and specific pathways improves the applicability of zebrafish for transcriptomics
studies. To make full use of the enhanced capabilities, however, new methods need to be
developed.

In this thesis, I describe results of two different transcriptional studies. In the first
one, I analyzed gene expression data of zebrafish embryos treated with 10 different com-
pounds at 24-48 hpf. I employed multivariate statistical methods to identify compounds
that lead to similar expression pattern changes. Furthermore, I tried to identify similarities
by comparing co-regulated genes. A gene function analysis of the significantly differen-
tially expressed genes was performed in order to gain a better understanding of the modes
of action of the compounds. The findings were validated using literature data. In or-
der to identify biomarker genes, I grouped the compounds based on the identified modes
of action and searched for genes that were only de-regulated after treatment with com-
pounds with the same mode of action. I defined sets of biomarker genes for the following
modes of action: disruption of mitochondrial potential, Acetylcholinesterase inhibition,
Glutathione metabolism, and induction of apoptosis.

During the studies of the 10 compounds, it became obvious that commercially avail-
able zebrafish microarrays lack several important genes. To overcome this problem, I
designed a new array that covers almost the whole zebrafish genome. I could show that
the newly designed whole genome array clearly improves microarray experiments.

Additionally, we aimed at gaining deeper insights into the transcriptional regulation
during zebrafish development. For this reason, I designed a new microarray consisting
only of transcription factors. This array was employed to study six different developmen-
tal stages, covering the complete development from egg till larva. We were also interested
in variations of transcription factor expression in certain tissues like muscle and brain. The
microarray data was analyzed with a newly developed approach using two color arrays
to detect expressed transcription factors. Using the new method, I could detect groups of
transcription factors that exhibited a similar expression pattern over time. With the help
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of Gene Ontology, I was able to identify different gene function mechanisms associated
with specific developmental stages. Transcription factors with highest expression before
gastrulation were mostly involved in protein metabolism, and factors expressed at similar
levels during the whole development period were likely to be involved in organ devel-
opment. Transcription factors with expression peaking at the end of the development
seemed to be mostly involved in development of the nervous system and biosynthesis.
Additionally, I defined biomarker genes specific for the 6 developmental stages and the
tissue samples used in this study.
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Zusammenfassung

Um Analysen der Annotation mit Genfunktionen oder Stoffwechselwegen durchzufüh-
ren, wurden Zebrafischgene in der Vergangenheit mit Orthologen im Menschen oder der
Maus ersetzt. Gene bei denen das nicht möglich war, gingen in diesem Prozess verlo-
ren. Außerdem, wurden Stoffwechselwege, die nur im Zebrafisch vorkommen, ebenfalls
nicht berücksichtigt. Mittlerweile, ist das Zebrafischgenom fast vollständig sequenziert.
Darüber hinaus, stehen auch auch immer mehr biologische Datenbanken auch für Ze-
brafisch zur Verfügung. Diese steigende Verfügbarkeit von Annotationen mit Genfunkti-
on und speziellen Stoffwechselwegen verbessert die Anwendbarkeit von Zebrafisch für
transkriptomische Untersuchungen. Um die neu gewonnen Möglichkeiten möglichst gut
auszuschöpfen, müssen allerdings auch neue Analysemethoden entwickelt werden.

In meiner Arbeit habe ich zwei verschiedene transcriptomische Analysen durchge-
führt. In der ersten, wurden Zebrafischembryonen (24-48 hpf) mit einer von zehn Chemi-
kalien behandelt und danach die Genexpressions analysiert. Mithilfe multivariater statis-
tischer Verfahren, habe ich untersucht, welche Chemikalien ähnliche Expressionsmustern
hervorrufen. Des Weiteren, habe ich versucht die Ähnlichkeiten zwischen Chemikalien
mittels Genen zu definieren, deren Expression gleich reguliert wurde. Um toxikologische
Mechanismen, die durch die verschiedenen Substanzen induziert wurden, zu identifizie-
ren, wurde eine Funktionsanalyse der differientiel expremierten Gene durchgeführt und
die Ergebnisse mit Literaturdaten verglichen. Danach, habe ich die Chemikalien aufgrund
ihrer identifizierten toxischen Mechanismen gruppiert um so die Entwicklung neuer Bio-
marker zu ermöglichen. Auf Basis der Gene, deren Expression nur durch Substanzen mit
dem gleichen toxischen Mechanismus dereguliert wurde, konnte ich Biomarker für ver-
schiedene die Mechanismen definieren: Störung des Mitochondrialmembranpotentials,
Acetylcholinesterase Hemmung, Glutathione Metabolismus und Induktion der Apoptose.

Während dieser Analyse wurde deutlich, dass viele interessant Gene nicht mithil-
fe kommerziell erhältlicher Zebrafischmicroarrays gemessen werden können. Um dieses
Problem zu lösen, habe ich ein neues Array entwickelt, welches fast das ganze Zebrafisch
Genom abdeckt. Ich konnte zeigen, dass dieses Array die Ergebnisse von durchgeführten
Experimente deutlich verbesserte.

Des Weiteren wollte ich einen tieferen Einblick in die transkriptionelle Regulation
während der verschiedenen Entwicklungsphasen des Zebrafisches bekommen. Deswe-
gen habe ich auch ein Transktiptionsfaktorarray entworfen. Mit diesem Arrays wurden
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sechs verschiedene Entwicklungsstadien, vom Ei bis zur Larve, untersucht. Wir waren
auch an den Unterschieden zwischen den Geweben Hirn und Muskel interessiert. Die
Microarrays wurden mit einer neu entwickelten Methode analysiert, die 2-Farbarrays ver-
wendet, um exprimierte Transktipionsfaktoren zu ermitteln. Dadurch konnte ich Gruppen
von Transktiptionsfaktoren ermitteln, die ein ähnliches Expressionsmuster über die ver-
schiedenen Entwicklungsphasen zeigten. Durch Gene Ontology-Analysen wurden Me-
chanismen deutlich, die spezifisch für einzelne Entwicklungsstadien sind. Transcriptions-
faktoren, die vor Beginn der Gastrulation am stärksten exprimiert waren, waren meistens
im Proteinmetabolismus involviert. Transktiptionsfaktoren, deren Expression sich in den
verschiedenen Entwicklungsphasen nicht stark änderte, waren meistens an der Organent-
wicklung beteiligt. Die Transktiptionsfaktoren, die eher am Ende der Entwicklungsphase
exprimiert waren, wiesen meist eine Beteiligung an der Entwicklung des Nervensystems
und der Biosynthese auf. Zusätzlich habe ich noch Biomarker speziell für die sechs ver-
wendeten Entwicklungsstadien und die Gewebearten definiert.
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1

Chapter 1

Introduction

1.1 Zebrafish as Model Organism

(a) zebrafish embryos (b) adult zebrafish
(source: www.en.wikipedia.org)

Figure 1.1: Images of a zebrafish embryos and an adult zebrafish.

In the recent years, the zebrafish has become one of the most important vertebrate model
organisms. It is used in developmental biology, disease modeling, chemical toxicology,
regulatory physiology, behavioral studies, and many more disciplines. Zebrafish have
distinct advantages compared to other model organisms such as mice and rats. They
are inexpensive to maintain and easy to bread, especially compared to mammals. As all
oviparious species, they fertilize and develop outside of the mother animal. Together with
their transparency, this makes them an ideal organism for studying embryo development.
Furthermore, a single female fish can lay up to 300 eggs every week in one clutch (Hill
et al. July 2005). The high number of eggs and the small size of the embryos makes
the zebrafish an ideal organism to perform any kind of high-throughput screen (Spits-
bergen and Kent 2003). Since the late 1960’s when the first zebrafish entered the lab,
a large variety of different molecular biological methods have been established (Grun-
wald and Eisen 2002). Transient gene expression, in situ hybridization, and morpholino
gene knockdowns are only a few examples (Hill et al. July 2005). The genome has been
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almost completely sequenced and several thousand mutants and transgenic lines are avail-
able. Cell culture methods were developed to create cell lines from from adult tissues as
well as from embryos (Spitsbergen and Kent 2003).

1.2 Transcriptomics and Biomarker Genes

The transcriptome is the total set of RNAs in an organism. The messenger RNA (mRNA)
reflects the genes that are expressed at a specific time. Developmental or external en-
vironmental conditions can influence the level of expression. Transcriptomics is the
genome-wide measurement of mRNA expression levels. Microarrays are one of the most
prominent methods to study the transcriptome. Besides that, next-generation sequencing
became quite popular in the recent years. Transcriptomics helps to understand molecu-
lar mechanisms, gene networks, and signaling pathways. Comparative transcriptomics,
compares the expression levels of genes between different developmental stages, tissues,
treatments, and species. Special attention is paid to investigations of transcription patterns
during embryonic development and to the impact of environmental or nutritional factors
on the transcriptome.

Transcriptomics can also help to identify biomarker genes. In general, biomarkers can
be genes, proteins, or enzymes. Biomarker genes are genes whose changes in expression
is associated with a specific biological effect. For example, a disease biomarker gene is
used as an indicator of a disease or to predict the clinical outcome. A toxicity biomarker
gene monitors a specific toxicological effect of a compound (Jain 2010).

Transcriptomics is also an often applied technique in zebrafish research. Many tran-
scriptomics studies have been published, mainly in investigating chemical toxicity. Fan
et al. 2010 studied the gene expression changes in developing zebrafish in order to find
biomarker genes specific for developmental neurotoxicity. Alexeyenko et al. 2010 studied
the gene expression changes in zebrafish embryos exposed to dioxin. The authors gener-
ated a dynamic gene expression network (interactome) based on orthologs and interaction
data from other species.

Toxicogenomics is a sub-field of transcriptomics that deals with the interpretation of
gene and protein activity in an organism in response to toxic substances. In the last years,
zebrafish became a very prominent model organism in this field. Especially the embryos
are often used to study teratogenic effects of xenobiotics. It was shown that the gene
expression pattern of treated zebrafish embryos significantly changes, already at concen-
tration far bellow any visible effect concentration (Voelker et al. 2007). The changes
in the expression pattern are highly specific (barcode-like) for the used treatment (Yang
et al. 2007). Gene expression profiling, for example with DNA microarrays, can help to
characterize toxicological mechanism. Furthermore, modes of action of uncharacterized
compounds can be identified (Neumann and Galvez 2002). Additionally, biomarker genes
can be defined to predict the effects of a toxicant.
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1.3 Overview

This work focuses on the development of new microarray based transcriptomics ap-
proaches and the detection of new biomarker genes in zebrafish. In total, I performed
two different transcriptional analyses. First, I analyzed the modes of action of ten dif-
ferent compounds (Figure 1.1). For most of these compounds, no information regarding
their modes of action in zebrafish or any other fish species were known. To identify the
modes of action, I established a new analysis method based on gene function analysis.
Additionally, I determined biomarker genes specific for the detected modes of action.

During the toxciogenomics analysis, I realized that a certain amount of interesting
genes were missing on commercially available microarrays. Therefore, I decided to de-
sign my own whole genome zebrafish microarray. Due to the size of the genome, I had
to split the design over two separate microarrays. I investigated the error introduced by
the unavoidable splitting of RNA samples. Furthermore, I compared the commercially
available arrays with the new design.

In the second transcriptional analysis, I studied the expression pattern of transcription
factors during development and in adult muscle and brain. Determining the changes of the
interactome during development is a major aim of developmental biology. Several studies
were published investigating the early stages of embryogenesis (Mathavan et al. 2005;
Vesterlund et al. 2011). However, no study has been performed covering the complete
phase from egg till larva so far. Therefore, I designed a microarray covering all transcrip-
tion factors of zebrafish. We performed experiments for 5 different stages and 4 different
tissue samples. The microarray data were analyzed with a newly developed approach us-
ing two color arrays to detect expressed transcription factors. I carried out a time-series
analysis for detecting functional patterns in the dataset. Additionally, I identified stage
and tissue specific biomarker genes.

This thesis is structured into five chapters followed by the bibliography and an ap-
pendix.

Chapter 2 describes the microarray platforms used in this work. Furthermore the
experimental set up of the different experiments is explained. The lab protocols used to
perform the microarrays are also described.

Chapter 3 gives an overview of the studied toxicants including their chemical structure
and the general application.

In Chapter 4, the bioinformatic and statistical methods applied in this work are ex-
plained. Used programs and databases are also named.

Chapter 5 presents the results of the bioinformatic and statistical analysis. The first
part of this chapter deals with the results of the 10 compound study. This is followed by
the results of the whole genome array. Last, the findings of the transcription factor screen
are presented.

Chapter 6 summarizes the results and presents the conclusion drawn from the different
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transcriptional analysis.

The Appendix consists of result tables and figures of the transcriptional analysis.
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Chapter 2

Microarray Material and Methods

In this thesis several microarray based studies are analyzed and compared. This Chapter
describes the methods that were used to perform the microarray experiments. Three dif-
ferent microarray platforms are used. Besides the common two-color control design, a
special two color approach without controls was developed to study transcription factor
time series data. Wilde type zebrafish were utilized for all experiments. Depending on
the RNA sample, two different RNA extraction methods were applied. The amplification,
labeling, hybridization and scanning steps were done according to standard procedures
(Agilent 2006).

2.1 Microarray Platform

To find the most suitable microarray system for our work, we compared the most appro-
priate microarray platforms, which where available. In previous projects performed in
our group, self-printed Compugen (Compugen, Tel Aviv, Israel) zebrafish cDNA arrays
were utilized. The Compugen Zebrafish Oligo Library (Cat # XEBLIB384) was designed
employing the gene information available in 2001. Although good results have been
achieved using these arrays, we decided to look for an updated system. We focused our
search on oligonucleotide arrays, which covered the largest part of the genome. Commer-
cially available arrays have the advantage that they are printed with more than 12 times
more probes on a slide as compared to our established in-house system. Additionally,
they are also printed with a much higher spot quality. Since the commercially available
slides are printed in a clean room, they also provide a much clearer background with less
dust and scratches. For zebrafish, only Agilent (Agilent Technologies, Inc., Santa Clara
CA, USA) offers an updated whole genome microarray.
In 2007, Agilent released the 4x44k two color cDNA array platform, consisting of 4 sep-
arate arrays on one slide. The zebrafish 22k array was already successfully used within
the institute. Agilent also updates its array platforms on a regular basis, typically once
a year. Additionally, they offer the possibility to design custom arrays with their eArray
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system (https://earray.chem.agilent.com/earray/). This gave us the possibility to create
own arrays, which fit perfectly to the requirements of our specific applications. The good
experiences we already made with the system, its high quality, and the regularly updated
system led to the decision to use the 4x44k Agilent array system for this project.
The Agilent Gene Expression 4x44k Microarrays consists of 4 identical blocks (arrays)
each with 45220 spots. The single spots are approximately 65 µm in size. Each block can
be used for hybridization of a different sample. In th efollowing, I will refer to a single
block as array and to the whole array as slide. The 60 nucleotides long oligonucleotides
on the array are called probes.

2.1.1 Agilent 4x44k Zebrafish v1 and v2

The zebrafish v1 array (id 015064) is basically a duplication of the old zerbrafish 22k
array (id 015064) and was published in 2005. The zebrafish v2 array (id 019161), on the
contrary, represents a completely new design. The probes on this array were based on

• RefSeq, Jan 2008

• Unigene (Release 54), Dec 2007

• TIGR (Release 17), Jun 2006

• (Release 48), Dec 2007

• UCSC (danRer5) Zv7, Jul 2007.

Agilent included several control spots on their 4x44k platform for enabling users to easily
check the quality of the experiments. In total, 1470 spots of the array are used as positive
and negative controls. The positive controls consist of different amounts of ten in vitro
synthesized polyadenylated transcripts derived from the Adenovirus E1A transcriptome
and are spiked into the samples to control the amplification, labeling, and hybridization
processes. The negative controls should help to control for background noise. They have
a special secondary structure or are derived from Arabidopsis thaliana or Escherichia coli
genes. Ideally, zebrafish cDNA should not hybridize to them. 50 zebrafish oligos were
replicated 5 times and are distributed equally over the entire array, to control for spacial
problems. All control spots are spread randomly over the array (www.chem.agilent.com).

2.1.2 ITG Whole Genome Array

The Agilent v2 array seems not to include all the genes we were interested in. Therefore,
I analyzed the usability of the Agilent zebrafish v2 array in prospect to our needs.
For our toxicity studies, I made a comparison of genes, which were published to be reg-
ulated by compounds, and the genes on the Agilent v2 array. To this end, I downloaded
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all genes from Homo sapiens (human), Mus musculus (mouse), Rattus norvegicus (rat),
and D. rerio (zebrafish) from the Comparative Toxicity Database (CTD) in March 2009
(Davis et al. 2009). Afterwards, the human, mouse, and rat genes were mapped via their
orthologs to zebrafish genes. The ortologous relationships between genes of the different
organisms were downloaded from the Ensembl Zv7 database (Flicek et al. 2010). Finally,
I compared the list of possible tox-genes with the genes on the used Agilent v2 array.
1302 genes of putative tox-genes were missing from the array. Importantly, some of these
genes had toxicity information published specifically for zebrafish.
In future projects, it was planed to study toxicant-induced transcriptional changes in the
early stages of zebrafish development. To check the usability of the Agilent v2 array, I
looked for genes known to be expressed in the early stages of development. I downloaded
via Biomart (Smedley et al. 2009) all genes from the ZFIN database (Sprague et al. 2008)
that showed expression in the blastula high, blastula dome, 50% epibolie, or bud epibolie
and compared them to the genes on the array. In total, 207 genes known to be expressed
in the early stages, were not present on the Agilent v2 array.
Since the Agilent arrays do not cover all of our genes of interest, we decided to design
our own zebrafish whole genome array, called ITG_WG_Danio. The array is based on
28717 cDNAs from Ensembl zebrafish Zv8, which I downloaded via Biomart (Smedley
et al. 2009). To improve the quality of the arrays, I decided to use three different oligos
per transcript. For 28159 transcripts, I was able to design 3 different probes using the
Agilent eArray system (https://earray.chem.agilent.com/earray/). As the total amount of
oligos exceeds the available space of a single array, I divided the oligos randomly over
two arrays. As controls, I used the Agilent controls from the commercially available ar-
rays.
To further improve the system, I included 3129 spots of self designed Arabidopsis thaliana
controls on the two arrays. The A. thaliana controls were oligos designed for different A.
thaliana genes and show no match with the zebrafish genome larger than 21 base pairs.
The two newly designed arrays have the Agilent ids 024077 and 024078.

2.1.3 Transcription Factor Array

Combined with another screening project, we also wanted to study the transcriptional
regulation during the development of zebrashish embryos. We manually curated a list
of 2,370 transcription factor genes, which contained at least one Interpro (Hunter et al.
2009) or one Pfam domain (Finn et al. 2010) related to transcription or with an entry in
the transcription factor database DBD (Kummerfeld and Teichmann 2006). I compared
the resulting list with the genes on the Agilent zebrafish v2 array. Since 439 genes were
missing on the Agilent v2 array, we decided to design a special array covering only tran-
scription factors. I used the Ensembl (Flicek et al. 2010) cDNA sequences corresponding
to our list of transcription factor genes. We also developed the idea to use other databases
like Refseq (Pruitt et al. 2007) but only 1399 of the selected transcription factor genes
could be mapped to the Refseq database. I also tested the usability of the 3‘UTR se-



2.2 EXPERIMENTAL MICROARRAY DESIGN 9

quences for the oligo design. In most cases the sequence was too short or not specific
enough to find unique regions that could be used for the oligo design. To improve the
quality of the planned experiments and due to available space on the array, I decided to
use 8 different oligos for each transcript. This was possible for 3,957 of the 4,009 tran-
scripts of the selected transcription factor genes. Additionally, 529 unknown sequences
from a zebrafish sequencing project were included. The oligo design was made using the
Agilent eArray system. As controls, I used 30 known zebrafish housekeeping genes, the
A. thaliana controls (Chapter 2.1.2) used for the ITG_WG_Danio array, and the 1,417
standard Agilent controls. The transcription factor array has the Agilent id 022326 and
the name ITG_TF_rerio.

2.2 Experimental Microarray Design

A variety of microarray design strategies has been published previously. Depending on
the underlaying questions, the array system, and available samples, we decided to use
two different approaches. One is the common control design usually used for two color
arrays. For the time series data of the transcription factor study, we decided not to use
reference samples. Instead we developed a control free two color design strategy.

2.2.1 Two Color Control Design

We decided to pool several embryos into one sample. On the one hand, this was the
only way to obtain enough RNA for performing microarray experiments. On the other
hand, the pooling reduces the effect of biological variation. In the beginning, we com-
pared the advantages and capabilities of different design strategies. For the ten compound
study, it was important to be able to compare different treatments in order to find toxicant
specific genes. Furthermore, the individual expression patterns induced through the tox-
icants were of high interest as they offer the possibility to study the toxicant’s modes of
action via pathway or Gene Ontology (Ashburner et al. 2000) analysis. Therefore, we de-
cided to utilize a treatment-control design in which each treatment is hybridized together
with a corresponding solvent-control (Figure 2.1). A common reference design, which
is normally used in such experiments, would clearly improve the quality of the treatment
comparisons. However, it would also make it almost impossible to distinguish between
the signal changes that result from the different treatments and changes that are induced
from using different breeds or fishtanks. To counteract the problems induced through the
pooling and the individual treatment controls, we performed three biological repeats for
each treatment. To avoid differences caused by the different labeling and hybridization
efficiencies of the two dyes, we performed a dye-swap for each sample. Because of the
good quality of the arrays and the high costs, we decided not to do technical repeats.
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Figure 2.1: Two color control design. The green and red arrows represents the labeling
color. For each replicate the labeling was also performed in reverse direction (dye swap),
to correct for color induced dye bias.

2.2.2 Transcription Factor Design

For our transcription factor study, we wanted to compare expression patterns from six
different developmental time points and 4 tissues. Since the design of a reference control
for all our samples is not possible, we decided to use the two color system without any
sample-control. We used the transcription factor array described in Chapter 2.1.3. To
identify expressed genes, we used the A. thaliana controls (Chapter 2.1.2), and for im-
proving the quality, we used four replicates. In Figure 2.2, the experiment design for this
study is shown. One Array was loaded with two different RNA samples from the same
stage. One sample was labeled with cy5 (red) and the other with cy3 (green). To obtain
enough RNA, we pooled 100-300 embryos to get the samples for the early stages and 3-4
larvae for the later stages.

2.3 Zebrafish Lines

For the different studies, zebrafish wild type strains were employed. For the microarray
toxicology studies, the AB2O2 strain was chosen, and the transcription factor screen was
performed with fish from the ABO strain. They were kept and bred as previously described
(Westerfield 1993) in the fish facility of the Institute of Toxicology and Genetics at KIT.
The crossing was performed by single matings. Male and female fish were separated
the evening before spawning. In the morning, the female and the male were transfered
together to a new spawning tank. This way, the eggs all have the same age.
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Figure 2.2: Two color no control design. The green and red arrows represents the labeling
color. Each array consists of two replicates from the same sample.

2.4 Sample Preparation

2.4.1 Extraction of Total RNA via RNeasy Mini kit

The total RNA was extracted using the QIAGEN RNeasy Mini kit (QIAGEN, Venlo,
Netherlands). First, the frozen samples were lysed in 1.2 ml RLT-Buffer and homogenized
via pipetting. RNases were deactivated through addition of 12 µl ß-mercaptoethanol (ß-
ME) to the lysis buffer. The lysate was then centrifuged, and the supernatant extracted. 1.2
ml of 70% ethanol was added to the lysate to provide ideal binding conditions. The sample
was then loaded onto the RNeasy silica membrane. The spin columns were washed with
700 µl RW1 buffer, 2x 500 µl RPE buffer and centrifuged after each step to remove the
washing solution. The total RNA was eluted in 50 µl RNase-free water. The quality of
the total RNA was examined by denaturing agarose gel electrophoresis, and the quantity
was checked by using the NanoDrop spectrometer (NanoDrop Technologies, Wilmingto,
USA). The exact procedure is descriped in more detail in the RNeasy Handbook.

2.4.2 Extraction of RNA via Trizol

Trizol works by maintaining RNA integrity during tissue homogenization, while at the
same time disrupting and breaking down cells and cell components. For the RNA extrac-
tion via Trizol, the samples were transfered into a 2.0 ml Eppendorf tube with a minimum
quantity of PBS. After adding 1 ml Trizol, the sample was homogenized by pipetting
and vortexing. Then, the sample was incubated for 5 minutes at room temperature. The
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sample can now be stored at -80 ◦C or the extraction can be continued. 200 µl chloro-
form was added, the sample was homogenized again and incubated for 2 minutes at room
temperature. After centrifuging for 15 minutes at 4 ◦C, the upper phase was transfered
to a clean Rnase free 1.5 ml tube. 0.5 µl of glycogen solution (10 mg/ml) and 500 µl
isopropylalcohol were added. The sample was shortly mixed, incubated for 30 minutes
at -80◦C and spun for 30 minutes at 4◦C. The supernatant was removed and 500 µl 75%
ethanol added to precipitate the RNA. After 5 minutes centrifuging, the supernatant was
completely removed. The pellet was resuspended in 100 µl DEPC water and kept at -
80 ◦C. To purify the RNA, the volume was adjusted to 100 µl with DEPC water. After
adding 100 µl chloroform, the sample was vortexed for 1 minute and centrifuged for 30
minutes at 4 ◦C. The upper aqueous phase was transfered into a clean Rnase free 1.5 ml
tube and mixed with 10 µl 3 M sodium acetate DEPC pH5.2 and 250 µl 97% EtOH.
After incubation over night at -20 ◦C, the sample was spun for 30 minutes at 4 ◦C. The
supernatant was removed, and 500 µl 75% ethanol was added. The RNA was stored in
this stage at -80 ◦C. To utilize the RNA, the sample was centrifuged for 5 minutes, the
supernatend was removed, and the pellet was resuspendend in 12 µl DEPC water. The
quality of the total RNA was examined by denaturing agarose gel electrophoresis, and
the quantity was checked by using the NanoDrop spectrometer (NanoDrop technologies,
Wilmingto, USA).

2.4.3 Amplification, Labeling, and Purification

To obtain fluorescently labeled cRNA, we used Agilent’s Low RNA Input Linear Am-
plification Kit PLUS (Agilent 2006). First, the dilutions of the two spike-mixes were
prepared. 1.5-2.5 ng of total RNA were mixed with 2 µl of the corresponding spike con-
trol and 1.2 µl of the T7 promoter primer. Nuclease-free water was added to obtain a
total reaction volume of 11.5 µl. The sample was then incubated for 10 minutes at 65◦C.
Afterwards, the samples were cooled down for 5 minutes on ice. In the next step, 8.5 µl
of cDNA Master Mix (4 µl 5X Strand Buffer, 2 µl 0.1 M DTT, 1 µl 10 mM dNTP mix,
1 µl MMLV-RT, 0.5 µl RNaseOut) were added to each sample. Samples were then first
incubated for 2 hours at 40 ◦C, then for 15 minutes at 65 ◦C, and lastly cooled on ice for
5 minutes. With the help of T7 RNA polymerase, the RNA was simultaneously amplified
and labeled via incorporation of cyanine 3 or cyanine 5 cytidine-tri-phosphates (CTPs).
To this end, 30 µl of the Transcription Master Mix (15.3 µl Nuclease-free water, 20 µl 4X
Transcription Buffer, 6 µl 0.1 M DTT, 8 µl NTP mix, 6.4 µl 50% PEG, 0.5 µl RNaseOut,
0.6 µl Inorganic pyrophosphotase, 0.8 µl T7 RNA Polymerase, 2.4 µl Cyanine 3-CTP or
Cyanine 5-CTP) were added to the samples, followed by an incubation step for 2 hours at
40 ◦C.
The amplified cRNA was then purified using RNeasy mini spin columns from Quiagen
(QIAGEN, Venlo, Netherlands). Nuclease-free water was used to reach a total volume of
100 µl. 350 µl of buffer RLT and 250 µl of ethanol were added and mixed via pipetting.
The sample was then transfered to the RNeasy column and washed twice with 500 µl of
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RPE buffer. The cleaned sample was then eluted in 60 µl of RNase-free water.
For quantification of the cRNA, 1.5 µl of the samples were analyzed with a NanoDrop
spectrometer (NanoDrop technologies, Wilmingto, USA).

2.4.4 Hybridization Procedure

The required volume of 825 ng of labeled cRNA was brought to a total volume of 52.8
µl by adding nuclease-free water. Afterwards, the samples were mixed with 11 µl 10X
blocking agent and 2.2 µl 25X Fragmentation Buffer. In order to fragment the RNA, the
samples were incubated at 60 ◦C for 30 minutes. The fragmentation process was stopped
utilizing 55 µl of 2x GEx Hybridization Buffer HI-RPM. The samples were then imme-
diately loaded onto the arrays. 100 µl sample solution were put on the arrays and cover
slips were careful placed on top to avoid bubbles. The chips were placed in hybridization
chambers and incubated at 65◦C for 17 hours (Agilent 2006).

2.4.5 Washing Procedure

The arrays were removed from the hybridization chambers and washed twice in GE Wash
Buffer 1 at room temperature for 1 minute and once in GE Wash Buffer 2 for 1 minute
at 37◦C. Afterwards, the arrays were dipped into drying solution to avoid droplets on
the arrays. Slides were scanned immediately after finishing the washing procedure, to
minimize the impact of environmental influences on the signal intensities (Agilent 2006).

2.5 Scanning and Image Acquisition

2.5.1 Scanner Settings

The arrays were scanned with the Axon 4000B from Molecular Devices (Molecular De-
vices, Inc., Sunnyvale, CA,United States). The software used for image acquisition and
image analysis was GenePix Pro 6.1 (Molecular Devices, Inc., Sunnyvale, CA,United
States). Both channels (532 nm for green and 635 nm for red) were scanned simulta-
neously with 100% laserpower. The scans were performed with a resolution of 5 µm
without line averageing or adjusting of the focal plane. The PMT was adjusted to reach a
signal ratio between the two color channels of approximately 1. The images were stored
as 16 bit multiple TIFF files.

2.5.2 PMT Setting

In previous projects, the arrays were scanned with three different PMT-settings (low,
medium, and high) in order to increase the signal detection limit. I tested this approach
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for the new Agilent 4x44k arrays. To this end, an array was scanned with three different
PMT settings, and the signal-to-noise ratios of the different scans have been compared.
The signal-to-noise-ratio is a quantitative measure of the ability to distinguish true signal
from background noise. For microarrays, it is calculated as:

SNR =
Signal−Background

Standard deviation of Background
(2.1)

A SNR of three is commonly used as the lower limit for accurate detection. Signal
can be detected below this value, but the accuracy of quantitative measurements decreases
significantly. For only 1.6 % of the spots, I could see an improvement of the SNR (SNR
> 3) using all 3 scanns compared to a single medium scan. One import aspect to consider
is that the SNR dependens on the proper spot detection. A poorly aligned spot will have a
larger standard deviation of the background and therefore a smaller SNR. This indicates
that the true improvement of the low, median and high scans is below 1.6 %. Taking into
account the dye bleaching effect of the scanning and the time needed for a scan, I decided
not to use multiple scanes for this project.

2.5.3 Image Analysis

The spot acquisition was performed utilizing the GenePix Pro 6.0 software (Molecular
Devices, Inc., Sunnyvale, CA,United States). An individual local background area around
each spot was defined, which included 400 pixels of the spot and excluded neighboring
spots. For each channel, the raw data was calculated as the median intensity of all fore-
ground pixels with respect to all background pixels. The background is calculated using
a circular region that is centered around the spot (Figure 2.3). The background area has
a diameter that is three times the diameter of the corresponding spot. All of the pixels
within this area are used to compute the background unless, they are part of a spot or a
two pixel region around a spot. The signals and other statistical parameters calculated
by the software were stored in GenePix Gene List format files (.gal) (Molecular Devices
2005).
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Figure 2.3: Spot detection in GenePix
(source: Molecular Devices 2005)
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Chapter 3

Toxicants

For the toxicological studies, ten different compounds were selected which should cover
a wide range of different toxicological mechanisms. Thereby, we hoped to be able to
detect a larger variety of robust, sensitive toxicological biomarker genes. The experiments
were performed from 24 hpf (hours post fertilization) to 48 hpf. The concentrations were
selected to cause an acute phenotype in less then 10 % of the exposed animals.

Table 3.1: Used concentrations
Name Solvent Purity Used Concentration

Propoxur Water Analytical standard Pestanal 150 mg/l
4-Chlorophenol Water Analytical standard Pestanal 50 mg/l
Chlorothalonil DMSO Analytical standard Pestanal 100 µg/l
Chlorpyrifos Ethanol Analytical standard Pestanal 7 mg/l
Di-n-butyl phthalate DMSO Supelco 1.5 mg/L
Esfenvalerate Ethanol Analytical standard Pestanal 80 µg/l
1,2-Dibromoethane Water Analytical standard Pestanal 400 mg/l
2,4-Dimethylphenol Water Analytical standard Pestanal 40 mg/l
Flucythrinate Ethanol Analytical standard Pestanal 125 µg/l
Methoxychlor Ethanol Analytical standard Pestanal 800 µg/l

Table 3.1 summarizes all selected compounds and their concentrations. The com-
pounds were obtained from Sigma-Aldrich (Sigma-Aldrich GmbH, Seelze, Germany).

3.1 Toxicant Exposure of the Embryos

The toxicant exposure was performed in plastic Petri dishes with 20 ml exposure vol-
ume. To define the concentration, which was later used for the microarray experiments,
the embryos were exposed from 24 to 48 hpf. At 48 hpf, the embryos are transferred to
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control medium (ISO water) until 4 dpf. The concentration of toxicants was determined
as the EC50 at 4dpf after treatment from 24 to 48 hpf. This design should help to dis-
cover a more robust genexpression response which is specific for the treatment. For the
microarray experiments, the embryos were treated from 24 - 48 hpf. After exposure, the
embryos were collected and immersed immediately in liquid nitrogen. The total RNA
was extracted from three independently exposed batches of around 50 embryos each, and
vehicle controls by using the QIAGEN RNeasy kit (QIAGEN, Venlo, Netherlands).

3.2 4-Chlorophenol

Figure 3.1: 4-Chlorophenol
(source: www.en.wikipedia.org)

CAS: 106-48-9 4-Chlorophenol (C6H5CLO) be-
longs to the family of Chlorophenols. Chlorophe-
nols can enter the environment throughout their
production or life cycle. They are commonly used
as a disinfectant in homes and hospitals, and as
an antiseptic for root canal irrigant. Most of the
Chlorophenols released into the environment dis-
solve in water, and only small amounts enter the
air. They stick to soil and to sediments at the bottom
of lakes, rivers, and streams. Low levels in water,
soil, or sediment are broken down by microorgan-
isms and are removed from the environment within
a few days to weeks. Chlorophenols bioconcentrate

in aquatic organisms such as fish. Exposure to high levels of chlorophenols have mainly
effects on the skin, the liver and the immune system (rats and mice). Chlorophenols
uncouple mitochondrial oxidative phosphorylation and produce convulsions (Agency for
Toxic Substances and Disease Registry, http://www.atsdr.cdc.gov/).

3.3 Pyrethroids

Pyrethroids are manufactured chemicals that are very similar in structure to the natural in-
secticides pyrethrins. But they are often more toxic to insects, as well as to mammals, and
last longer in the environment. In air many of the pyrethroids are broken down or degraded
rapidly by sunlight or other compounds found in the atmosphere. The compounds are ex-
tremely toxic to fish. They bind strongly to dirt. Therefore, they are normally not found in
water. They have a toxic effect on the central nervous system and are likely to be cancero-
genic (Agency for Toxic Substances and Disease Registry, http://www.atsdr.cdc.gov/).
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3.3.1 Esfenvalerate

Figure 3.2: Esfenfalerate
(source: www.en.wikipedia.org)

CAS: 662-30-04-4 Esfenvalerate (C25H22CLNO3)
also known as Fenvalerate is a wildly used pesti-
cide. It is used against a wide range of pests like
flea, flies, and other insects. Most commonly it is
used to control insects in food and cotton products,
and for the control of stables. It can affect the en-
docrine, hematologic, neurologic, and reproductive
system. It has been shown that Esfenvalerate has an
influence on the levels of dopamine and muscarinic
receptors from striatal membranes (rat pubs). It

also influences the activity of acetylcholinesterase, monoamine oxidase and Na+- and K+-
ATPase (Agency for Toxic Substances and Disease Registry, http://www.atsdr.cdc.gov/).

3.3.2 Flucythrinate

Figure 3.3: Flucythrinate
(source: www.en.wikipedia.org)

CAS: 662-30-04-4 Flucythrinate is considered to
be toxic to humans. The use of Flucythri-
nate (C26H23F2NO4) has been restricted in the
US and banned in the European Union since
2003 (Pesticide action network North America,
www.panna.org). Flucythrinate is nearly insolu-
ble in water and it has a strong tendency to bind
to soil particles. It is therefore unlikely to con-
taminate groundwater. It affects the neurosystem
(Agency for Toxic Substances and Disease Reg-
istry, http://www.atsdr.cdc.gov/).
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3.4 Methoxychlor

Figure 3.4: Methoxychlor
(source: www.en.wikipedia.org)

CAS: 72-43-5 Methoxychlor (C16H15CL3O2) is
used as an insecticide against flies, mosquitoes, and
a wide variety of other insects. The amount of
Methoxychlor in the environment changes season-
ally due to its use in farming and foresting. It
does not dissolve readily in water and is mostly
found in sediments. Its degradation may take many
months. The use of Methoxychlor as a pesticide
was banned in the United States in 2003 and in the
European Union in 2002 (Pesticide action network
North America, www.panna.org). Methoxychlor
induces toxic effects in the endocrine,nervous and
reproductive systems. Methoxychlor poses estro-

gen activity. It has been shown that Methoxychlor interacts with the members of the vas-
cular endothelial growth factor (VEGF) and the angiopoietin families (Ang) and their re-
ceptors in a dose dependend manner (female rat). Furthermore it is known that Methoxy-
chlor undergoes oxidative metabolism by cytochromes (P450) and produces substrates of
the UDP-glucuronosyltransferases (UGTs) (human liver) (Agency for Toxic Substances
and Disease Registry, http://www.atsdr.cdc.gov/).

3.5 1,2-Dibromoethane

Figure 3.5: 1,2-Dibromoethane
(source: www.en.wikipedia.org)

CAS: 106-93-4 1,2-Dibromoethane (BrCH2CH2Br)
has been used as a pesticide in soil, and on cit-
rus, vegetable, and grain crops. Most of these uses
have been stopped by the Environmental Protection
Agency (EPA) since 1984. It can affect the skin, the
liver, the urinary system, the kidneys, and the repro-
ductive system. It is supposed to be cancerogenic
for humans. 1,2-Dibromoethane is metabolized to
active forms capable of inducing toxic effects by
either of two systems, the microsomal monooxyge-
nase system (cytochrome P-450 oxidation) or the
cytosolic activation system (glutathione conjuga-
tion) (Agency for Toxic Substances and Disease
Registry, http://www.atsdr.cdc.gov/).
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3.6 Chlorpyrifos

Figure 3.6: Chlorpyrifos
(source: www.en.wikipedia.org)

CAS: 2921-88-2 Chlorpyrifos (C9H11C13NO3PS)
is an insecticide that inhibits acetylcholinesterase.
It is widely used in homes and on farms to control
insect pests. Chlorpyrifos is a neurotoxin and sus-
pected endocrine disruptor. It sticks strictly to soil
particles and does not mix well with water, so it is
usually mixed with oily liquids before use. Toxic-
ity induced by Chlorpyrifos results almost entirely
from inhibition of neural acetylcholinesterase by it-
self and its bioactivation product chlorpyrifos oxon.
Chlorpyrifos is bioactivated to chlorpyrifos oxon in
the liver via cytochrome P450 (Ma and Chambers

1994; Sultatos and Murphy 1983). The majority of the neurological symptoms occur due
to the subsequent cholinergic overstimulation. The cardiovasular effects are due to stim-
ulation of muscarinic receptors in the heart (Agency for Toxic Substances and Disease
Registry, http://www.atsdr.cdc.gov/).

3.7 Propoxur

Figure 3.7: Propoxur
(source: www.en.wikipedia.org)

CAS: 114-26-1 Propoxur (C11H15NO3) is a non-
systemic insecticide with long residual effect used
against turf, forest, and household pests and fleas.
It is a synthetic analogue of the insect juvenile hor-
mone. Unlike conventional insecticides that act as
direct poisons, methoprene disrupts the morpho-
logic development of insects. It is moderately to
slightly toxic to fish and other aquatic species. It
is thought to be a carcinogen, cardiovascular or
blood toxicant, reproductive toxicant, and due to
its cholinesterase inhibiting properties, neurotoxic
(United States Environmental Protection Agency,
www.epa.gov).
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3.8 Chlorothalonil

Figure 3.8: Chlorothalonil
(source: www.en.wikipedia.org)

CAS: 1897-45-6 Chlorothalonil (C8Cl4N2) is
mainly used as a broad spectrum, non-systemic
fungicide. It belongs to the top most used
fungicides in the US. Chlorothalonil reduces fun-
gal intracellular glutathione molecules to alternate
forms which cannot participate in essential enzy-
matic reactions, ultimately leading to cell death.
Chlorothalonil is highly toxic to fish and aquatic
invertebrates. Available data on metabolism of
chlorothalonil in rats and dogs indicate that the par-
ent chemical is conjugated in liver to glutathione or
cysteine-S-conjugates (United States Environmen-

tal Protection Agency, www.epa.gov).

3.9 2,4-Dimethylphenol

Figure 3.9: 2,4-Dimethylphenol
(source: www.en.wikipedia.org)

CAS: 105-67-9 2,4-Dimethylphenol (C8H10O) be-
longs to the group of xylenols. They are very im-
portant for the chemical industry. Xylenols are used
for the synthesis of pesticides, antioxidants, and
pharmaceuticals. They are found in the wastewa-
ter of chemical and plastics producing companies.
When released in water, they are biodegraded in a
few days. 2,4-Dimethylphenol is used as micro-
biocide, fungicide and as solvent. Little is known
about the underlying mode of action but due to
its polar structure, it is classified as polar narcotic
(United States Environmental Protection Agency,
www.epa.gov).
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3.10 Di-n-butyl phthalate

Figure 3.10: Di-n-butyl phthalate
(source: www.en.wikipedia.org)

CAS: 84-74-2 Di-n-butyl phthalate (C16H22O4) is
a commonly used plasticizer. The use has been re-
stricted in the European Union for use in children’s
toys and cosmetics. Not much is known about the
mode of action. Until now, it is classified as sus-
pected teratogen and baseline narcotic substance. It
is very toxic to aquatic organisms and badly solu-
ble in water (United States Environmental Protec-
tion Agency, www.epa.gov).
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Chapter 4

Bioinformatic Methods

This Chapter gives an overview of the different bioinformatic methods I used to analyze
the microarray data. The primary analyses were performed using MATLAB (version
R2010a, The MathWorks, Natick, Massachusetts, USA). For the gene function analysis,
several freely available programs were selected.

4.1 Primary Microarray Analysis

The primary microarray analysis consists of five major parts.

• Quality control of the arrays. Exclude low quality arrays from further analysis.

• Spot filtering. Remove spots with bad quality.

• Data transformation. Transform the signal data in a more statistical more usable
format - in general log-ratios (Equation 4.1).

• Data normalization. Normalize the data in order to remove bias, e.g. from dye
effects.

• Detection of differentially expressed genes.

The primary analysis of the microarrays used in this thesis was performed completely
in MATLAB. For the analysis, a special MATLAB application named Gait-CAD was fur-
ther developed with an microarray section, which includes a method for analyzing two
color microarray data. Since the design of the microarray experiments used for the tran-
scription factor study is not the standard approach, the analysis could not be performed
using standard methods and was therefore executed in MATLAB directly. The transcrip-
tion factor analysis is described in Chapter 5.3.



24 4 BIOINFORMATIC METHODS

4.1.1 Gait-CAD Microarray

Figure 4.1: Gait-CAD screenshot

Gait-CAD (Mikut et al. 2008) is a graphical user interface, which allows to easily
analyze different datasets via MATLAB without requiring any programing knowledge.
Gait-CAD includes many statistical and data mining functions. As part of my work, I im-
plemented a Gait-CAD add-on for microarray analysis, which provides different filtering
functions, normalization methods, and statistical hypothesis tests. I used self-developed
analysis functions and some functions from the MATLAB Bioinformatics Toolbox
(http://www.mathworks.com/products/bioinfo/). In Figure 4.1, a screenshot of Gait-CAD
and the microarray section is shown. In the following sections, I describe the different
parts of the Gait-CAD microarray add-on in more detail.

Data Import

The data can be imported into Gait-CAT as gpr-files (GenePix Result-files). This type
of files can be easily produced with many microarray image analysis programs includ-
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ing Agilents Feature Extraction (Agilent Technologies Inc., Santa Clara, CA, USA) and
GenePix (Molecular Devices Inc., Sunnyvale, CA, United States). The input file consists
of a header with general scanning and image analysis information, for instance, color
channels used, laser settings, date and time of scan, feature type, and used grid-file. The
data part consists of the raw signal and background values, several statistical parameters
such as mean, standard deviation, and the annotation provided by the microarray supplier.

Data Transformation

In order to improve the comparability of the data, the raw signal values are transformed
to logarithmic scale. This can be done using uncorrected or background corrected values.
One often used background correction method is to subtract the background values of
single spots from the raw signal. In order to get a more symmetric distribution, I decided
to use the logarithmic ratio transformation. If R denotes the signal value of the red color
channel and G the signal value of the green one, then the log differential expression ratio
for each spot is calculated as follows:

M = log2
R
G

(4.1)

The log intensity of each spot is defined as:

A = log2
√

RG (4.2)

On this scale, M = 0 represents equal expression, M = 1 represents a two fold change
between the expression levels (Russell 2009).

Quality Filtering

The Gait-CAD add-on offers the possibility to filter the data based on different selectable
classifiers, e.g. spot control types or spot names. It is also possible to perform a qual-
ity based spot filtering. Therefore a cut-off value for several quality parameters can be
defined. The quality parameters are:

Flag A spot can be flagged during the image acquisition process. This is done either
manually at the inspection of the array image if the spot is part of an artifact (dust,
scratch), or by the spot detection algorithm if no spot could be found.

Diameter Minimum and Maximum of spot diameter. The size of a spot can be limited to
exclude malformed spots that might be artifacts.

The following parameters can be set independently for each color channel of a spot.
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SNR A minimum signal-to-noise-ratio (SNR) can be defined. In general, a SNR > three
indicates that the spot signal can truly be distinguished from the background signal.
This cut-off can be used to exclude spots with low foreground signals or unequally
and high background signals.

SNR =
mean (Foreground Pixel) − mean (Background Pixel)

Standard deviation (Background Pixel)
(4.3)

CV The coefficient of variation (CV) can be defined to filter spots with a non-uniform
signal distribution, which also might indicate artifacts.

CV =
Standard deviation (Foreground Pixel)

mean (Foreground Pixel)
(4.4)

Minimal signal A cut-off for the maximum percentage of Pixels per spot that are below
the minimal signal can be defined. The minimal signal is defined as the intensity,
which is two standard deviations above the background pixel intensity of the spot.

Maximal signal This defines the maximally accepted percentage of saturated pixel in a
spot. Saturated signals can be used to calculate a signal ratio but this cannot be used
in a comparisons with the other signals.

Afterwards, a general quality measure for each data point (spot) is calculated and used
as a classifier for the data filtering. The qualifier indicates whether a given spot passes the
defined quality check or not, and consequently, is considered a good or bad spot. In order
to be considered a good spot, a spot has to pass all quality tests.

Plots and Sorted Lists

For visualizing the data, different displaying methods are available. Single or groups
of parameters can be selected and the information is presented as sorted list (highest to
lowest value) or plotted in a diagram. The following options are available for plotting the
data:

Box plot A box plot (Figure 4.2) is used in statistics to represent descriptive parameters
like mean, median, and variance of a dataset in a graph. With the help of box plots,
it can easily be shown whether two datasets are significantly different or not. In
microarray analysis, box plots are often used to compare the efficiencies of different
normalization methods (Zhang 2006).
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Figure 4.2: Box plots of the distribution of non-normalized M-values for five different
microarray datasets. The central mark of the box is the median,and the edges are the
25th and 75th percentiles. The variability is indicated by the length of the whiskers. For
microarray experiments the median should be ideally near 0. In the dataset 2 and 5 the
distribution is clearly shifted towards 1. This could indicate dye bias or other labeling
problems.

Spatial plot In a spatial plot, the values are presented according to their position on the
array. Spatial effects can arise from hybridization problems or during the microar-
ray production process. This bias cannot be corrected by most normalization meth-
ods. Therefore, it is very important to investigate the arrays for possible spatial
effects (Zhang 2006). In Figure 4.3 the spatial plot of the red foreground signal
from an microarray is shown.

Histogram An histogram is a representation of the distribution of a parameter (Figure
4.4). The histogram subdivides the data points into equal intervals called bins. For
each bin, the number of points in that interval is presented. Histograms are used to
study the distribution of parameters and to define cut offs (Zhang 2006).
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Figure 4.3: Spatial plot of the raw red foreground signal of an microarray. High (red),
medium (yellow) and low (blue) signals are equally distributed over the array. No arti-
facts, empty regions, signal gradients or accumulations are detectable.

Figure 4.4: Histogram plot for the spot background signals of eight different datasets. The
bars represent the number of spots with a background signal in the corresponding interval
(0-100; 101-200; 201-300; 301-400; 401-500). The background signals for all datasets
show a similar distribution. Most of the spots have a background signal bellow 100.
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Scatter plot A scatter plot can be employed for visualizing the relationship or associa-
tions between two parameters in the same dataset. To display the relation of the two
color channels, the ratio versus intensity plot (M-A plot) is most commonly used.
In these plots, the y-axis displays the ration (M), and the X-axis the intensity (A) of
the signals. Scatter plots of the M- and A-values can be used as quality indicator or
gene selector (Zhang 2006). A scatter plot from M versus A is presented in Figure
4.5.

Figure 4.5: Scatter plot of M versus A before normalization. The plot shows the relation-
ship between the total spot signals (A) and the ratio between the color channels (M). Each
point represents a spot on the array. For low signals (A<6) the ratios are shifted towards
the green color channel and for higher signals (A>8) towards the red channel. This is
typical when dye bias occurs.

Normalization Methods

Microarray data is often influenced by non biological effects like differences in the la-
beling efficiencies of the used colors (dye bias). With the help of normalization methods
the data should be corrected from this influences. Many different statistical methods have
been developed, to address this problem. In order to select the best normalization method
for the dataset it is useful to first have a close look at the data using the different available
display functions. This helps to get an idea of the data distribution and the problems that
may influence the data. Then, several normalization methods should be tested and com-
pared regarding their effect on correcting the possible problems. The best one, sometimes
more than one, is than chosen to perform the data normalization during analysis. In the
following the normalization methods implemented in Gait-CAD are described.

LOWESS normalization The LOWESS (locally weighted scatter plot smoothing) nor-
malization is used to perform an intensity-based normalization. Especially in two
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Figure 4.6: Intensity depended normalization (LOWESS). The M-A scatter plot before
and after LOWESS normalization. Before the normalization a clear shift in the data is
visible (dye bias). After normalization the data is centered around M equals 0.

color arrays, it is known that the used colors have different labeling efficiencies and
stabilities over time. This color effect can be mainly seen in low signal data and
leads to a shift of the signal ratio to the more stable and efficient color. Simplified,
the LOWESS normalization corrects this shift. In an M-A-plot, this is visible as
scattering the data equally around 0 (Simon et al. 2004). Figure 4.6 shows two
M-A scatter plots, one of the raw data and the second one after LOWESS normal-
ization.

Figure 4.7: Scale normalization. Box plots for the M-values from five different microar-
rays. Before the normalization, the signal distributions are clearly different, regarding the
mean and the variance.

Centering The centering normalization is a very conservative form of normalizing ar-
ray data. It is mainly used to perform normalizations between different arrays. It
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basically compacts all signal distributions in the same way and can therefore cor-
rect even for different scanner settings. For each value, centering subtracts the
median of the distribution and divides through its standard deviation. This results
in the median over all values being 1 and the standard deviation being 0 (Russell
2009).Figure 4.7 shows the box plots of a five microarray dataset, before and after
the scaling normalization.

Spike Control Analysis

Since we are using mainly Agilent two color arrays, the analysis of the Agilent spike
in controls is also implemented in the add-on. The log2 signal of the spike controls is
calculated and compared to the expected ratios provided by Agilent. The outcome is
displayed in a scatter plot. If there is no problem, the five different spike groups are
nicely separated and show a linear regression like shown in Figure 4.8.

Figure 4.8: Spike controls. The scatter plot shows the expected log ratios against the
calculated spot ratios. The five different spike control groups are clearly separated and
show a linear relationship.
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Dye Swap Handling

It is very common to use reverse labeling (dye swaps) to correct for the different labeling
efficiencies of the different colors. Gene specific dye bias cannot be completely removed
by normalization. To perform a dye swap, sample A is first labeled with red and sample
B with green. In the reverse experiment, sample A is then labeled with green and sample
B with red. The two experiments are averaged in the end to receive one gene specific
dye-bias corrected dataset.

The Gait-CAD add-on is able to handle dye swap data by calculating a dye swap
specific M-value. To calculate this value, the sign of the M-value of the reverse labeled
experiment is flipped. The averaging (mean) is done considering the previously calculated
quality measure (4.1.1). The average is then computed using:
• both values (when both values pass the quality filtering step)
• one value (if only one value passes the filtering step)
• set as Na N (when no valuable data point was found)

T-test

In order to investigate the differently expressed genes, an ’one-sample’ t-test is used.
First, the array replicates (minimum two) have to be fused together into one dataset. The
implemented function performs a t-test of the null hypothesis, that the data is from a
normal distribution with mean 0 and unknown variance. This null hypothesis was tested
against the alternative hypothesis that the mean is not 0. Therefore, the t-test should
only be applied to the normalized and centered M-values. The used t-test statistics was
calculated as follows:

t =
x−µ

s/
√

n
, (4.5)

where x is the sample mean, µ (=0) is the hypothesized population mean, s is the sample
standard deviation and n the number of replicates. The implemented function calculates
the p-value, which is the probability to obtain a value like the sample mean under the null
hypothesis. P-values below 0.05 are generally considered to be statistically significant.
Furthermore, the function determines the confidence interval, the median, the mean, and
the standard deviation over all replicates (Russell 2009).

Batch Analysis

Since some microarray experiments consists of a larger number of arrays, I performed the
whole analysis as batch analysis. The whole analysis was implemented as macro and then
automatically executed for the complete batch of arrays. This function is part of the Gait-
CAD program and is also applicable to functions that do not belong to the microarray
add-on.



4.1 PRIMARY MICROARRAY ANALYSIS 33

Export Function

The software includes several data export functions. It is possible to save the whole
dataset or a selected part in text or Excel files, which then can be used for further analysis.
Another function allows for saving the different plots and lists using various file formats.

4.1.2 Two Color Control Design Analysis

The goal of using two color microarray experiments is to detect differentially expressed
genes between two samples or a control and a sample. In our case, we wanted to find genes
indicating treatment with a specific toxicant. For this reason, a method was developed
that is focused to detect very robust differentially expressed genes. In the following, the
methods used to analyze the two color control microarray data are described.

1. Data upload. The data is uploaded into Gait-CAD

2. Data transformation. The M- and A-values were calculated based on non back-
ground corrected signals (Equation 4.2 and 4.1). If the background value is larger
than the spot signal, subtracting the background from the signal results in a negative
corrected signal value. These cases must be prevented, since a negative expression
value makes biologically no sense. Furthermore, it is not possible to calculate a log2
ratio of negative values. Since genes with a small signal (smaller than background)
in one color channel and a high signal in the other channel are of special interest as
potential biomarker genes, we did not want to exclude them from the dataset.

3. Quality filtering. A quality measure for flagged and low-signal data is calculated.
Spots were flagged during the image acquisition process as being artifacts or could
not be found at all, are penalized. Spots with low signals in both color channels
are also marked with a bad quality value. Low signals can lead to false, high signal
ratios. For example, two low signals like 40 and 120 might produce a ratio of 3,
but this might be caused by noise instead of a true biological signal. The selec-
tion of the cut-off value for the low signal filtering was based on the analysis of
the background of all microarrays from one experiment. In our dataset, almost all
background signals were below 200. Therefore, I decided to use 200 as low signal
cut-off value (Chapter 4.1.1).

4. Normalization. LOWESS normalization and centering normalization was performed
to correct for intensity dependent dye bias and array differences (Chapter 4.1.1).

5. Quality control. Several quality plots representing the data distribution of the single
arrays were inspected. The spike controls were also analyzed, and the outcome
saved.
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6. Data fusion. The datasets of all arrays that belong to one treatment were fused
together in one large dataset (all Dye Swaps of all replicates).

7. Dye swap averaging. The dye swaps were averaged taking into account the calcu-
lated quality measure (Chapter 4.1.1).

8. T-test. The p-values and other parameters were calculated for the averaged dye
swap values (Chapter 4.1.1).

Figure 4.9: M-value cut-off

9. False discovery rate detection. The number of spots on the array is rather high
(∼44000). If a t-test for this number of values is performed, 2200 false positives are
expected at a p-value cut-off of 0.05. The use of adjusted p-values like Benjamini-
Hochberg or Bonferroni cannot be performed directly on such a large dataset. For
this reason, I decided to define a M-value cut-off based on the variation of the M-
values for reducing the number of false positives. The false positives will have
rather small M-values. The variance of M-values over the replicate is expected to
be smaller when arising from a true signal as compared to being caused by noise.
To test this, the mean M-values are plotted against the coefficient of variation (CV)
over the replicates. The CV is defined as follows:

CV =
Standard deviation (M values)

mean (M values)
(4.6)

A CV value of one is generally used as cut-off between small (CV < 1 ) and high
variance (CV > 1). The M value cut-off is found when looking for the point where
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the M-values scatter over the CV of one. In Figure 4.9 the black line describes the
maximal variance for an particular M value. The gray horizontal lines represent
the CV of 1. The green vertical line the M value cut-off for which the variance
becomes greater than 1. Differentially expressed spots (p-value < 0.05) with M-
values greater than 1.4 are assumed to have a small variance and therefore coming
from true biological signal. Differentially expressed spots (p-value < 0.05) with M-
values smaller than 1.4 might be false positives, and must be treated with caution.

10. Data export. The data is exported in a tab delimited text file for further analysis
steps.

4.2 Multivariate Analysis Methods

In this work, multivariate statistics is mainly applied for analyzing the relationships of dif-
ferent gene expression patterns. Two different types of multivariate analysis were used.
All calculations were performed with MATLAB (version R2010a, The MathWorks, Nat-
ick, Massachusetts, USA).

Principal components analysis (PCA) PCA calculates a set of variables that represent
a summary of the dataset. With the help of these variables, similarities in the data
can be detected.

Clustering Clustering assigns the data objects into groups. Objects that belong to the
same cluster have a higher similarity than objects from different clusters.

4.2.1 Principal Component Analysis

Principal component analysis (PCA) is a mathematical technique that tries to minimize the
number of variables in a dataset. For a set of objects, it calculates uncorrelated variables
called principal components that describe the variability in the data source. This is done
in such a way that the first principal component covers the highest variance, the second
the next highest and so on. If we assume that the highest source of variance in our gene
expression experiment is the treatment, the first two principal components should give us
an indication which treatments induce a similar expression pattern and which are more
dissimilar. To represent the results, the first two principal components for all treatments
were plotted against each other (Figure 4.10). If two treatments are located close to each
other in this plot, it is highly likely that they are similar.
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Figure 4.10: PCA analysis plot of a group of microarrays. Replicates labeled with the
same symbol. A box marks microarrays, that have a similarity based on the first principal
component.

4.2.2 Hierarchical Clustering

For the hierarchical clustering analysis, I used an agglomerative clustering approach. This
means that in the beginning represents a cluster. A distance metric is utilized for calculat-
ing the similarity between two clusters. The linkage method defines which elements of a
cluster are employed for determining the distance between two clusters. During the analy-
sis, the clusters with the highest similarities are fused together until no similar groups can
be found. Several linkage methods and distance metrics are available. The ones which
performed best on our data are described in the following section (Simon et al. 2004).
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Complete Linkage
Complete linkage, also called furthest neighbor, uses the largest distance between
objects in the clusters. The different expression values for a single dataset were
standardized, so that the mean was 0 and the standard deviation was 1. The distance
metric is then defined as follows:

d(r,s) = max(dist(xri,xs j), i ∈ (1, ...,nr), j ∈ (1, ...,ns) (4.7)

r and s are two clusters
nr and ns denote the number of objects in the clusters
xri is the ith object in cluster r
xsi is the ith object in cluster s

Correlation distance
The correlation distance is calculated as one minus the sample correlation between
the data points. It is defined as follows:

dst = 1− (xs− x̄s)(xt− x̄t)
′√

(xs− x̄s)(xs− x̄s)′
√
(xt− x̄t)(xt− x̄t)′

, (4.8)

where

x̄s =
1
n ∑

j
xs j x̄t =

1
n ∑

j
xt j. (4.9)

xs and xt are the vectors of the cluster-representatives calculated with the linkage
method. The distance assumes value between 0 (when correlation coefficient is +1,
i.e. the two samples are most similar) and 2 (when correlation coefficient is -1).

The results of the cluster analysis are usually shown as dendrogram sometimes to-
gether with a heat map like in Figure 4.11.
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Figure 4.11: Two dimensional cluster plot of 42 microarray experiment. Columns rep-
resents microarrays and rows genes. The two dendrograms and the heat map is shown.
Up-regulated genes are red labeled and down regulated genes are green labeled, black
means very low or no signal.

4.2.3 K-means Clustering

K-means clustering is a method of cluster analysis which aims to partition the objects into
a predefined number of clusters.

1. It starts with a random set of cluster centers (of the predefined number of clusters).

2. Each object is than fused with the cluster with the nearest center. To calculate
the distance between object and cluster center, I utilized the previously described
correlation distance metric (Equation 4.8, 4.9).

3. The new cluster centers are calculated and used as a starting point for the next cycle.

4. The objects are again fused with the nearest cluster and the new cluster centers
calculated.

5. This procedure was repeated until stable clusters were obtained.
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The result is the object-cluster assignment after the last calculation cycle. Since the results
can be very different depending on the initial cluster centers, it is useful to repeat the
analysis several times and to calculate an average result cluster.

4.3 Enrichment Analysis Methods

When investigating a subset of genes with respect to their presence in a set of interesting
genes, it might be sometimes very difficult to interpret the results using the raw numbers.
Simply by chance a certain number of genes will be part of the set of interesting genes. A
statistical analysis is needed to evaluate the enrichments. Therefore, an enrichment ratio
can be calculated (Equation 4.11=. The significance (p-value) of the enrichment is then
computed using the hypergeometric test (Zhang et al. 2005). A small p-value indicates a
high probability that the enrichment is not produced simply by chance.

kexp = (n/m)∗ j (4.10)

r = k/kexp (4.11)

P =
n

∑
i=k

(m− j
n−i

)( j
i

)(m
n

) (4.12)

n= number of genes in our interesting gene set
m= number of genes in our reference gene set
k= number of genes of the subset in our interesting gene set
j= number of genes of the subset in our reference gene set
kexp= number of genes which are expected to be in our interesting gene set
r= ratio of enrichment
P= significance of the ratio of enrichment

4.4 Gene Function Analysis

Gene function analysis helps to get a better understanding of the underlaying mechanisms
of a microarray experiment. First, the data are linked to gene function information. Then,
an enrichment analysis is performed to find gene function categories that are overrepre-
sented in the dataset. For these categories a regulation in the dataset is assumed. In order
to gain a better understanding of the mechanisms of the microarray expression patterns, I
decided to use Gene Ontology (Ashburner et al. 2000), KEGG pathways (Kyoto Encyclo-
pedia of Genes and Genomes; Kanehisa and Goto 2000), and WikiPathways (Pico et al.
2008).
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4.4.1 Gene Ontology

The Gene Ontology (GO) categories consists of defined terms representing gene product
properties. The ontology covers three domains:

• cellular component, the parts of a cell or its extracellular environment.

• molecular function, the elemental activities of a gene product at the molecular level,
such as binding or catalysis.

• biological process, operations or sets of molecular events with a defined beginning
and end, pertinent to the functioning of integrated living units: cells, tissues, organs,
and organisms.

The database entries can be accessed and downloaded from the Gene Ontology web page
(www.geneontology.org). The enrichment results of the gene ontology terms can be dis-
played in Tables and as directed acyclic graph (DAG).

4.4.2 KEGG

KEGG is a manually curated database. For my analysis, I used the pathway section
which consists of manually drawn pathway maps for several organisms. The pathways
are categorized into:

• Global Map

• Metabolism

• Genetic Information Processing

• Environmental Information Processing

• Cellular Processes

• Organismal Systems

• Human Diseases

• Drug Development

This data is also accessible via Internet ( www.genome.jp/kegg/).
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4.4.3 WikiPathways

WikiPathways is a Wikipedia-like internet portal. Each pathway is represented by a wiki
entry. The pathways are all manually curated and can be searched via the web-portal
www.wikipathways.org.

4.4.4 Gene Set Analysis Toolkit V2

To perform the gene function analysis of our datasets, the Gene Set Analysis Toolkit
V2 was used (Zhang et al. 2005; http://bioinfo.vanderbilt.edu/webgestalt/option.php). As
gene ids Ensembl Gene ids were used. The reference gene set was comprised of all genes
on the Agilent zebrafish v2 array. As statistical method, I applied the hypergeometric test
with a Benjamini-Hochberg multiple testing correction. For each category, a minimum
number of 2 genes was selected. If a category consists of only a few genes, it can be more
easily significantly enriched. Nevertheless, I did not exclude these categories. This fact
should be taken into account when interpreting the results. Since KEGG and Wikipath-
ways generally produce very high adjusted p-values, the result list consist of the top10
results. Therefore, the KEGG and Wikipathways results must be handled carefully and
manually judged whether the enriched categories are really enriched. Figure 4.12 shows
an example output from the KEGG enrichment analysis performed with the Gene Set
Analysis Toolkit V2.

Figure 4.12: Output Table from an KEGG enrichment analysis performed with the Gene
Set Analysis Toolkit V2. A description of the output parameter is shown in the first row
of the Table.

4.5 GO similarity methods

If many genes are differentially expressed, it is normal that also many Gene Ontology
terms (Ashburner et al. 2000) are enriched. If several microarray studies are to be com-
pared, it is very difficult to do that with large lists of GO terms. Additionally, the in-
terpretation of results is made difficult due to the high redundancy between individual
GO categories. In order to simplify the large lists of GO terms, semantic similarity mea-
sures are used (Schlicker and Albrecht 2008). This helps to remove redundant GO terms
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and to summarize the GO results. For this approach, I used REViGO (Supek et al. 2010;
http://revigo.irb.hr). REViGO is a web service that reduces the lists of uploaded GO terms
and also helps visualizing them in scatter plots, tag clouds, and interactive graphs. Figure
4.13 depicts an example output of REViGO.

Figure 4.13: Output from an REViGO GO similarity analysis. The major GO categories
are presented in light gray. The size of the category boxes represents the calculated ad-
justed p-value of the category enrichment.

4.6 Microarray Annotation

The annotation file provided for microarrays can be from low quality. Sometimes, the an-
notation is very old and the data cannot be linked to the updated information in databases
like Ensembl. In other cases, the annotation is very limited and consist simply of com-
pany ids. When different microarray experiments from different array platforms are to
be compared, the provided annotations are mostly not helpful. To solve this problem,
I developed my own microarray annotation system. All microarray systems are simply
mapped to the same genome information and thereby can be now linked and compared.

1. First the oligo sequences are blasted using a locally installed NCBI blast function
(Altschul et al. 1990). As reference genome information, the Ensemble zebrafish
cDNA Zv8.54 library was used.

2. A self implemented bioperl script extracts the information from the blast output and
filters them (Stajich et al. 2002). An oligo is annotated only if all blast hits with a
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length larger than half of the total length of the oligo belong to the same gene. The
result is than transformed to a Table like format and saved as new annotation file.

3. Afterwards, FileMaker (FileMaker GmbH, Santa Clara, CA, USA) is used to link
the new annotation file with the gene expression data.
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Chapter 5

Results

Depending on the project and the research questions involved, different analysis methods
are needed. In the following Chapter, the results of the different microarray data sets and
the underlaying analysis is described. The interpretation and evaluation of the results are
presented in Chapter 6.

5.1 10 Compound Study

The aim of the 10 compound study is to get a better understanding of the underlaying toxi-
city mechanisms and to find possible biomarker genes for that mechanism. Therefore, the
microarray data were first analyzed as specified in Chapter 4.1.2. To identify similarities
between the compounds and possible shared mechanisms, multivariate statistical methods
and co-expression analysis was used. In the next step, the signal distributions of the ex-
pression data was examined. Furthermore, data sets of published microarray experiments
were linked to our data and compared. Enrichment analysis of important gene sets were
performed. Finally, a gene function analysis was made for discovering affected pathways.

5.1.1 Comparative Analysis

In order to find similarities between the expression patterns of the compounds, three dif-
ferent multivariate analyses methods were applied. Agglomerative hierarchical clustering
(Chapter 4.2.2), Principal Component Analysis (PCA, Chapter 4.2.1), and the partition-
ing clustering algorithm K-means (Chapter 4.2.3). A critical questions is which genes
represent the toxicity specific response in the data set. In the complete gene expression
dataset, the toxicity mechanisms might be such a small part that the clustering might
rather reflect the level of the induced damage and the ongoing repair and immune re-
sponses than the underlaying shared mechanisms of toxicity. That is why I created three
different data sets. Missing values were set to 0 indicating no change in the expression
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value (M = log2FC;M = 0 => FoldChange = 1).

• ’all’: The complete gene expression data set.

• ’p-value 0.05’: The data from 14394 transcripts that showed a significant differen-
tial expression with a p-value < 0.05 in at least one treatment.

• ’194’: The 6 most up-regulated and 5 most down-regulated transcripts from each
array (total 194 different transcripts). The selection was based only on transcripts
with a p-value < 0.05. This list showed the best clustering performance regarding
the replicates.

Hierarchical Clustering

In the following section, the results of the hierarchical cluster analysis are described. The
first data analyzed was the complete gene expression data set (all). Although most of the
transcripts show no differential expression, clear clusters are detectable (Figure 5.1). In
most cases the replicates for the different treatments cluster together. The main clusters
found in the dendrogram are:

• chlorophenol and propoxur

• dibromoethane and dimethylphenol

• methoxychlor and esfenvalerate

• dibutylphthalate and flucythrinate

The dendrogram of the p-value 0.05 data set looks very similar to the complete data
set (Figure 5.2). Also here for 6 compounds, the replicates cluster nicely together. The
expression patterns of methoxychlor and esfenvalerate are very similar and are not di-
vidable. For propoxur and flucythrinate, only 2 replicates clustered together. The main
clusters are:

• chlorophenol and propoxur

• dibromoethane and dimethylphenol

• methoxychlor and esfenvalerate

• dibutylphthalate and flucythrinate
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Figure 5.1: Cluster analysis from the complete gene expression data set (all). The
columns indicate the 3 replicates for the 10 treatments. For 6 compounds, the replicates
are clustered together. Esfenvalerate and methoxychlor seem to overlay. For flucythrinate
and propoxur, one replicate clusters not with the other two. Similarities between dibro-
moethane and dimethylphenol were detectable. Chlorophenol and propoxur also cluster
together, as well as flucythrinate and dibutylphthalate.
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Figure 5.2: Cluster analysis from data set p-value 0.05. The replicates of 6 compounds
cluster together. The expression patterns of methoxychlor and esfenvalerate seem to be
very similar and not dividable. For flucythrinate and propoxur, one replicate clusters
not with the other two. Similarities between dibromoethane and dimethylphenol were
detectable. Chlorophenol and propoxur also cluster together, as well as flucythrinate and
dibutylphthalate.
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In the dendrogram of the 194 data set, all replicates cluster perfectly together (Fig-
ure 5.3). This shows that the highly differentially expressed transcripts are very specific
for the used compounds. This could either be caused by a compound-specific mechanism
or by difference in the toxicity response (immune system and repair mechanism). A high-
resolution version of Figure 5.3 is provided on the supplementary CD. The main clusters
for 194 are:

• chlorophenol and propoxur

• dibromoethane and dimethylphenol

• methoxychlor and esfenvalerate

In contrast to the other two data sets, no clustering of dibutylphthalate and flucythri-
nate can be observed in the 194 data set.

Figure 5.3: Cluster analysis from data set 194. All replicates cluster together. Simi-
larities between dibromoethane and dimethylphenol were detectable as well es between
chlorophenol and propoxur. Esfenvalerate and methoxychlor are also clustered together.
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Principal Component Analysis

Due to the high computing power required, no principal component analysis could be
performed for the whole data set. For the p-value 0.05 data set, three clusters can be
observed (Figure 5.4) in the 1. and 2. principal component. The main clusters for p-value
0.05 are:

• Chlorophenol and propoxur (solid line)

• dibromoethane and dimethylphenol (dotted line)

• methoxychlor and esfenvalerate (dashed line)

The principal component analysis of the 194 data set shows two clear clusters (Figure 5.5).
A clustering of the replicates could not be observed. The main clusters for 194 are:

• Chlorophenol and propoxur (solid line)

• methoxychlor and esfenvalerate (dashed line)
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Figure 5.4: PCA from data set p-value 0.05. The boxes indicate groups of compounds
that showed similarity based on the first two principal components. The x-axis describes
the first principal component and the y-axis the second one.
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Figure 5.5: PCA from data set 194. The boxes indicate groups of compounds that showed
similarity based on the first two principal components. The x-axis describes the first
principal component and the y-axis the second one.
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Figure 5.6: Results of the K-means cluster analysis for the three data sets, 194, p-
value<0.05 and the all. The row K-means cluster indicates the pre-specified number
of clusters. Since with every calculation the assignment of the cluster number changes,
reoccurring compound clusters were color labeled.



5.1 10 COMPOUND STUDY 53

K-means cluster analysis was performed for all three data sets. The results are shown in
Figure 5.6. In the all data set, 5 compounds show a perfect clustering of the replicates if
the number of clusters is set to 10. If the number of clusters is defined as 6, all replicates
of two compounds cluster together. The main clusters for all are:

• chlorophenol and propoxur (red)

• methoxychlor and esfenvalerate (green)

In the p-value 0.05 data set, 6 compounds show a perfect clustering of all replicates
when 10 clusters are used. In the case of 6 cluster, three compound clusters can be de-
tected. The main clusters for p-value 0.05 are:

• Chlorophenol and propoxur (red)

• dibromoethane and dimethylphenol (blue)

• methoxychlor and esfenvalerate (green)

If 10 clusters were chosen, the 194 data set shows clustering of all replicates for 7
compounds. For 6 clusters, 3 compound-specific clusters are found. The main clusters
for 194 are:

• chlorophenol and propoxur (red)

• chlorthalonil and dimethylphenol (yellow)

• methoxychlor and esfenvalerate (green)

Summary

To study the similarity of the expression patterns, a variety of statistical analysis methods
was used. This was done to improve the quality of this analysis step. Each algorithm
has its own characteristic of clustering the data. Moreover, the use of different statisti-
cal parameters (e.g distance measures) for a method can result in a completely different
clustering result. Therefore, the occurrence of the same clusters in the results of different
analysis methods clearly underlines the value of these clusters. In Figure 5.7 an overview
of the results from the different methods is shown.
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Figure 5.7: Overview over the results of the comparative analysis. Red boxes indicate
that the two compounds clustered together. Each cluster method is represented with three
boxes per compound, representing the three data sets used. Whereas all is the most left
one, p-value 0.05 the middle one and 194 the most right box.



5.1 10 COMPOUND STUDY 55

As conclusion, a similarity between the following groups of compounds can be as-
sumed:

• chlorophenol and propoxur

• dibromoethane and dimethylphenol

• methoxychlor and esfenvalerate

5.1.2 Co-regulated Genes

When compounds share a similar toxicity mechanism, inducing e.g. a certain pathway,
they should express the same genes. Here I will perform a co-regulation analysis. In
Chapter 5.1.1, I studied the similarity of the expression patterns using multivariate statis-
tical analysis. This method uses all expression values of a defined data set. Therefore,
the similarity is based on the similarity of the expression patterns. Whether compounds
really share a similar toxicity mechanism or display the same levels of general toxicity
response (immune system reaction, repair mechanisms) is unclear.

In the following, I will use the term co-regulation to describe genes that show an
expression in response to exposure by several compounds. The direction of regulation
(up or down regulation) is not taken into account.

In Table 5.1, a summary of all co-regulated transcripts is shown. No transcripts were
found to be co-regulated by all compounds. Therefore no general toxicity response gene
could be detected. The most expressed transcripts were predominantly compound-specific
and not co-regulated by other compounds. The number of co-regulated transcripts is
clearly decreasing when the number of compounds increases.

# compounds total 1 2 3 4 5 6 7 8
194 set 194 111 49 24 3 5 2 0 0

P-value < 0.05 14394 5603 5060 965 306 60 15 3 0
M-value >1.4 2763 2118 452 146 44 3 0 0 0

Table 5.1: Number of co-regulated transcripts. A transcript is categorized as differentially
expressed if the calculated p-value is smaller than 0.05. In the columns the numbers of
transcripts, which are regulated by one compound or co-regulated by 2 to 8 different
compounds are shown.

In Table 5.2, the numbers of regulated transcripts that the compounds share with other
compounds are displayed. For example, dibromoethane induced 1316 differentially ex-
pressed transcripts. Alone 164 transcripts, it has in common with dibutylphthalate, but
not exclusively. Some of the 164 transcripts could also be included by dibromoethane and
dibutylphthalate, or by another compound.
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dibromoethane 1316 164 263 284 67 104 256 69 146 418
dibutylphthalate 164 1718 159 208 81 92 199 65 142 505
dimethylphenol 263 159 1293 258 88 105 240 70 206 566
esfenvalerate 284 208 258 1468 64 102 360 61 119 425
flucythrinate 67 81 88 64 913 34 48 26 66 316
chlorpyrifos 104 92 105 102 34 683 107 41 83 213
methoxychlor 256 199 240 360 48 107 1482 61 149 366
chlorthalonil 69 65 70 61 26 41 61 471 87 141
propoxur 146 142 206 119 66 83 149 87 1339 525
chlorophenol 418 505 566 425 316 213 366 141 525 4510

Table 5.2: Co-regulated transcripts. The table shows the number of differentially ex-
pressed transcripts which the ten compounds share with each other. The total number of
differentially expressed transcripts of a compound is shown in bold.

The number of co-regulated transcripts is dependent on the total number of regulated
transcripts of a compound. The more transcripts a compound has differentially expressed,
the higher the probability is that it shares transcripts with other compounds. To be able
to identify groups of compounds with an enriched number of co-regulated transcripts, I
calculated the percentage of all differentially expressed transcripts the compounds share
with each other.

In Table 5.3, the percentage of co-regulation is shown. Dibromoethane shares 76.75
% of its regulated transcripts with other compounds and 12.46% with dibutylphthalate.
Whereas dibutylphthalate shares 9.55 % of its regulated transcripts with dibromoethane.
A group of compounds shows an enrichment of co-regulated transcripts only when all
compounds of that group show a higher number (> mean + 1*std) of co-regulated tran-
scripts.

Two groups of compounds with an enriched co-regulation were detected:

• esfenvalerate, methoxychlor (green numbers)

• chlorophenol, dimethylphenol (blue numbers)



5.1 10 COMPOUND STUDY 57

dibromoethane

dibutylphthalate

dimethylphenol

esfenvalerate

flucythrinate

chlorpyrifos

methoxychlor

chlorthalonil

propoxur

chlorophenol

di
br

om
oe

th
an

e
10

0
9.

55
20

.3
4

19
.3

5
7.

34
15

.2
3

17
.2

7
14

.6
5

10
.9

9.
27

di
bu

ty
lp

ht
ha

la
te

12
.4

6
10

0
12

.3
14

.1
7

8.
87

13
.4

7
13

.4
3

13
.8

10
.6

11
.2

di
m

et
hy

lp
he

no
l

19
.9

8
9.

25
10

0
17

.5
7

9.
64

15
.3

7
16

.1
9

14
.8

6
15

.3
8

12
.5

5
es

fe
nv

al
er

at
e

21
.5

8
12

.1
1

19
.9

5
10

0
7.

01
14

.9
3

24
.2

9
12

.9
5

8.
89

9.
42

flu
cy

th
ri

na
te

5.
09

4.
71

6.
81

4.
36

10
0

4.
98

3.
24

5.
52

4.
93

7.
01

ch
lo

rp
yr

if
os

7.
9

5.
36

8.
12

6.
95

3.
72

10
0

7.
22

8.
7

6.
2

4.
72

m
et

ho
xy

ch
lo

r
19

.4
5

11
.5

8
18

.5
6

24
.5

2
5.

26
15

.6
7

10
0

12
.9

5
11

.1
3

8.
12

ch
lo

rt
ha

lo
ni

l
5.

24
3.

78
5.

41
4.

16
2.

85
6

4.
12

10
0

6.
5

3.
13

pr
op

ox
ur

11
.0

9
8.

27
15

.9
3

8.
11

7.
23

12
.1

5
10

.0
5

18
.4

7
10

0
11

.6
4

ch
lo

ro
ph

en
ol

31
.7

6
29

.3
9

43
.7

7
28

.9
5

34
.6

1
31

.1
9

24
.7

29
.9

4
39

.2
1

10
0

m
ea

n
+

1*
st

d
23

.8
6

18
.1

4
28

.4
1

23
.2

5
19

.2
5

21
.8

4
21

.3
6

21
.4

8
23

.1
11

.7
3

to
ta

l#
co

-r
eg

ul
at

io
n

76
.7

5
63

.3
9

82
.5

2
75

.9
5

56
.1

9
74

.5
2

73
.7

5
73

.4
6

69
.7

5
52

.0
4

Ta
bl

e
5.

3:
Pe

rc
en

ta
ge

of
co

-r
eg

ul
at

ed
tr

an
sc

ri
pt

s.
T

he
co

lu
m

ns
sh

ow
th

e
pe

rc
en

ta
ge

of
di

ff
er

en
tia

lly
ex

pr
es

se
d

tr
an

sc
ri

pt
s

a
co

m
po

un
d

sh
ar

es
w

ith
ot

he
rc

om
po

un
ds

.
T

he
co

lo
re

d
nu

m
be

rs
in

di
ca

te
gr

ou
ps

of
co

m
po

un
ds

w
he

re
al

lc
om

po
un

ds
ha

ve
a

hi
gh

(>
m

ea
n

+
1*

st
d)

nu
m

be
ro

fc
o-

re
gu

la
te

d
tr

an
sc

ri
pt

s.



58 5 RESULTS

dibromoethane

dibutylphthalate

dimethylphenol

esfenvalerate

flucythrinate

chlorpyrifos

methoxychlor

chlorthalonil

propoxur

chlorophenol

di
br

om
oe

th
an

e
30

.9
3

2.
85

2.
55

3.
68

1.
2

3.
07

3.
24

3.
4

2.
54

2.
33

di
bu

ty
lp

ht
ha

la
te

3.
72

35
.4

5
1.

86
4.

02
3.

18
4.

25
4.

39
4.

25
3.

14
5.

43
di

m
et

hy
lp

he
no

l
2.

51
1.

4
31

.7
1

3.
07

1.
64

2.
05

2.
63

3.
4

2.
84

3.
44

es
fe

nv
al

er
at

e
4.

1
3.

43
3.

48
35

.2
2

2.
19

3.
66

7.
35

4.
03

1.
57

2.
86

flu
cy

th
ri

na
te

0.
84

1.
69

1.
16

1.
36

31
.3

3
0.

59
1.

08
1.

7
1.

19
3.

19
ch

lo
rp

yr
if

os
1.

6
1.

69
1.

08
1.

7
0.

44
31

.0
4

1.
42

1.
91

1.
42

1.
22

m
et

ho
xy

ch
lo

r
3.

65
3.

78
3.

02
7.

43
1.

75
3.

07
34

.4
1

4.
46

3.
44

2.
35

ch
lo

rt
ha

lo
ni

l
1.

22
1.

16
1.

24
1.

29
0.

88
1.

32
1.

42
36

.7
3

1.
19

1.
06

pr
op

ox
ur

2.
58

2.
44

2.
94

1.
43

1.
75

2.
78

3.
1

3.
4

34
.5

8
4.

63
ch

lo
ro

ph
en

ol
7.

98
14

.2
6

11
.9

9
8.

79
15

.7
7

8.
05

7.
15

10
.1

9
15

.6
1

28
.6

9
m

ea
n

+
1*

st
d

5.
28

7.
72

6.
65

6.
39

7.
98

5.
35

5.
89

6.
56

8.
22

4.
39

Ta
bl

e
5.

4:
Pe

rc
en

ta
ge

of
co

-r
eg

ul
at

ed
tr

an
sc

ri
pt

s
be

tw
ee

n
tw

o
co

m
po

un
ds

.
T

he
co

lu
m

ns
sh

ow
th

e
pe

rc
en

ta
ge

of
di

ff
er

en
tia

lly
ex

pr
es

se
d

tr
an

sc
ri

pt
s

a
co

m
po

un
d

sh
ar

es
pa

rt
ic

ul
ar

ly
on

ly
w

ith
on

e
ot

he
r

co
m

po
un

d.
T

he
co

lo
re

d
nu

m
be

rs
in

di
ca

te
co

m
po

un
d

gr
ou

ps
w

ith
a

hi
gh

(>
m

ea
n

+
1*

st
d)

nu
m

be
r

of
co

-r
eg

ul
at

ed
tr

an
sc

ri
pt

s.

In order to get a better overview whether two compounds have an enriched number
of co-regulated transcripts, I restricted the list of transcripts on only the ones that were
shared between two compounds. The percentage of co-regulation, specific for only two
compounds can be seen in Table 5.4.
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Regarding co-expression that is specific for two compounds, three groups are above
average:

• esfenvalerate, methoxychlor (green numbers)

• propoxur, chlorophenol (red numbers)

• chlorophenol, dibutylphthalate (blue numbers)

Chlorophenol and dimethylphenol have only an enriched co-regulation when all dif-
ferentially expressed transcripts were taken into account. This means that they have a
co-regulation but parts of that transcripts were also regulated through other compounds.
Propoxur and chlorophenol as well as chlorophenol and dibutylphthalate show an en-
riched co-regulation based only on transcripts regulated in these compounds. Therefore,
it can be assumed that the underlaying mechanisms are specific for these compounds.

Gene Function Analysis

To get a better understanding of the mechanisms, gene function analysis was performed as
described in Chapter 4.4. Since the numbers of co-regulated transcripts are in some cases
not that high, significant results (p-value < 0.05) could not be found for all co-regulated
compound groups.

In Table 5.5 the significant enriched categories of the gene function analysis from the
co-regulated transcripts of methoxychlor and esfenvalerate is shown. In Table 5.6 the
results for the co-regulated transcripts, only regulated in this compounds is presented.

Gene ontology molecular function KEGG WikiPathways
GTPase activity GO:0003924 Proteasome Proteasome Degradation
isomerase activity GO:0016853 Gap junction

Fatty acid metabolism

Table 5.5: Co-regulated in methoxychlor and esfenvalerate. Result of the gene function
analysis (p-value < 0.05) for the co-regulated transcripts of methoxychlor and esfenvaler-
ate.

The results of the gene function analysis for the co-regulated transcripts of chlorophe-
nol and dimethylphenol are shown in Table 5.7.

The interpretation of the results and the link to the cluster analysis is done in the
discussion part of my thesis (Chapter 6.1.2).
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WikiPathways
IL2 Signaling Pathway
IL6 Signaling Pathway
SIDS Susceptibility Pathways
Proteasome Degradation

Table 5.6: Co-regulated only in methoxychlor and esfenvalerate. Result of the gene func-
tion analysis (p-value < 0.05) for the co-regulated transcripts specific for methoxychlor
and esfenvalerate.

Gene Ontology biological process KEGG
cell cycle GO:0007049 Cell cycle
cellular response to DNA damage stimulus GO:0034984
cellular response to stress GO:0033554
nitrogen compound metabolic process GO:0006807
response to DNA damage stimulus GO:0006974
DNA metabolic process GO:0006259
nucleobase/nucleoside/nucleotide/nucleic acid metabolic process GO:0006139

Gene ontology molecular function
nucleotide binding GO:0000166
nucleic acid binding GO:0003676
purine nucleotide binding GO:0017076
ligase activity, forming carbon-nitrogen bonds GO:0016879
ribonucleotide binding GO:0032553
purine ribonucleotide binding GO:0032555
ligase activity GO:0016874
adenyl nucleotide binding GO:0030554
purine nucleoside binding GO:0001883
DNA binding GO:0003677
nucleoside binding GO:0001882
ATP binding GO:0005524
adenyl ribonucleotide binding GO:0032559
binding GO:0005488
protein serine/threonine kinase activity GO:0004674
polo kinase kinase activity GO:0042801
endonuclease activity GO:0004519
acid-amino acid ligase activity GO:0016881

Table 5.7: Chlorophenol and dimethylphenol. Significantly enriched categories (p-value
< 0.05) for the co-regulated transcripts of chlorophenol and dimethylphenole.
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5.1.3 Intensity Distribution Analysis

To further investigate the gene expression changes in response to the different treatments, I
decided to have a closer look on the overall intensity distribution. Therefore, I compared
for all treatments, the number of differentially expressed transcripts and their intensity
levels. High numbers of differentially expressed transcripts indicate also a higher number
of disturbed pathways. This could be a sign of a more non specific toxicity response (im-
mune system ,apoptosis). Whereas a small number of regulated transcripts might be the
result of a more specific response to the compound. In Figure 5.8, the number of differ-
entially expressed transcripts for each compound is shown. The numbers were calculated
based only on the transcripts that could be perfectly mapped to Zv8 (Chapter 4.6).

Figure 5.8: Number of differentially expressed transcripts. Only transcripts were counted
which could be properly annotated (See Chapter 4.6).

I also compared the maxima of the M-values and the distribution between gene up-
and down-regulation of the different toxicants. In Figure 5.9 the maximum and minimum
M-values for each compound are shown. The distributions of the differently regulated
transcripts (P-value < 0.05), for each compound is presented in Figure 5.10.

The chlorophenol data set show by far the highest number of differentially regulated
transcripts (4550). In comparison, after treatment with chlorpyrifos and chlorthalonil
fewer than 1000 transcripts were detected as being differentially expressed. Accordingly,
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their number of highly regulated transcripts is also comparatively small. It is striking
that methoxychlor has the third largest number of regulated transcripts, but one of the
smallest numbers of highly regulated transcripts. It also shows very small maximum and
minimum M-values. The signal distribution can be described as very broad and flat with
an higher number of up-regulated transcripts than down-regulated ones. This cannot be
explained by the small number of highly regulated transcripts. Chlorthalonil also shows
high maximum values, although only a few transcripts were regulated. The treatment
with propoxur leads to the highest maximum and minimum M-values and an average
number of regulated genes. For most compounds, the signal distribution of the highly
regulated transcripts was very symmetric between up and down regulation. On the con-
trary, chlorthalonil and dibutylphthalate show an increase in the up-regulated M-values.
Chlorpyrifos induced more down-regulated transcripts, but the maxima were similar for
up- and down-regulation.

Figure 5.9: Maximun and Minimum M-values. Only transcripts were counted which
could be properly annotated (See Chapter 4.6).
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(a) Propoxur (b) Chlorthalonil

(c) Chlorophenol (d) Dimethylphenol

(e) Dibutylphthalate (f) Flucythrinate

(g) Esfenvalerate (h) Dibromoethane

(i) Chlorpyrifos (j) Methoxychlor

Figure 5.10: Intensity distribution of the differentially expressed transcripts
(p-value < 0.05)
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5.1.4 Linkage with other Microarray Studies

With the intention to further investigate the underlying mechanisms influencing the gene
expression patterns, I linked other data sets to our data. Since these data sets were not
produced using our microarray system, I mapped the transcripts from the second system to
our array using FileMaker. Knowing that the signal values cannot be compared directly, I
focused on the classification into up- or down-regulated as described in the corresponding
publications (Yang et al. 2007,Stockhammer et al. 2009).

Biosensor Data

This data set was used in the past in our lab for studying different expression patterns of
several compounds in dependency to developmental stages and compound concentrations
(Yang et al. 2007). The data has been published in NCBI GEO as series GSE9357. For
my comparison, I only used the data from treatments which were performed similar to
the 10 compound study (24-48 hpf.). As was shown in the publication by Yang et al, the
expression patterns are different depending on the developmental stage and the exposure
scenario. The list of compounds and the treatment concentrations, of the data sets I used
for the analysis is shown in Table 5.8.

Compound Stage Concentration
4-chloroaniline 48 hours 40 ppm
CdCL (cadmium chloride) 48 hours 5 ppm
DDT (dichlordiphenyltrichlorethan) 48 hours 15 ppm
TCDD (2,3,7,8-tetrachlordibenzo-p-Dioxin) 48 hours 500 ppt
Valproic Acid (2-propylpentanoic acid) 48 hours 50 ppm
MeHg (di-methyl mercury) 48 hours 60 ppb

Table 5.8: Biosensor compounds

As cut-off for the identification of regulated transcripts, a p-value < 0.025 and a loga-
rithmic fold change > |1.5| was used as described in the publication (Yang et al. 2007). A
summary of the data is presented in Table 5.9.

Compound DDT Valproic Acid TCCD CdCl MeHg 4-Chloroaniline
# regulated transcripts 280 98 992 16 556 30
Max ln(FC) value 2.95 6.33 6.45 2.83 3.86 4.75
Min ln(FC) value -4.26 -2.29 -2.45 -1.99 -5.86 -4.75

Table 5.9: Compugen data. The number of differentially expressed transcripts (p-value <
0.025, ln(FC)>|1.5|) and the maxima of the ln(FC) values for each compound.



5.1 10 COMPOUND STUDY 65

For the biosensor data the Compugen zebrafish microarray was used. This arrays con-
sists of 16384 oligonucleotides of which 8125 could be mapped to Zv8 (see Chapter 4.6).
807 genes present on the Compugen array were not on the Agilent array employed in our
study. 7256 oligonucleotides could be mapped to the Agilent 4x44k zebrafish v2 array.
These oligonuceotides were used to link the Compugen data set with the 10 Compound
data set. The linked data can be found in the comparison_data table on the supplementary
CD.

To get a better understanding of the similarity of the gene expression patterns from the
linked data sets, I performed a co-regulation analysis as described in Chapter 5.1.2. Table
5.10 delineates the percentage of transcripts that a compound from the biosensor study
shares with the 10 compound study. For cadmium chloride this means, that 20.63 % of its
differentially expressed transcripts were also differentially expressed in dibromoethane.
In Table 5.11 the percentage of transcripts a compound of the 10 compound study shares
with the biosensor compounds is shown. Based on this table, 0.99 % of the differentially
expressed transcripts form dibromoethane were also differentially expressed in cadmium
chloride.

The higher values for chlorophenol, MeHg and TCDD are based on their higher num-
bers of differentially expressed transcripts. They share higher numbers of co-regulated
transcripts with nearly all other compounds. This might be an indication that the mecha-
nism is of a more general toxicity response (e.g. immune system or apoptosis).

CdCL DDT 4-Chloroaniline MeHg TCDD Valproic Acide
dibromoethane 20.63 12.26 8.33 18.29 14.27 20.86
dibutylphthalate 12.70 8.71 8.33 10.86 11.41 9.82
dimethylphenol 17.46 16.13 8.33 16.19 9.99 17.79
esfenvalerate 9.52 9.35 8.33 15.05 11.15 14.72
flucythrinate 3.17 5.48 4.17 4.76 4.41 4.29
chlorpyrifos 11.11 8.39 4.17 5.71 6.36 8.59
methoxychlor 14.29 12.26 4.17 17.71 12.84 18.40
chlorthalonil 6.35 2.90 4.17 5.33 3.63 5.52
propoxur 12.70 9.03 12.50 8.57 8.30 5.52
chlorophenol 33.33 28.06 41.67 29.33 24.38 37.42
mean + 1*std 22.54 18.21 21.74 20.89 16.64 24.37

Table 5.10: Percentage of co-regulated transcripts. The columns show the percentage of
differentially expressed transcripts a compound from the biosensor data set shares with
the 10 compound study. The bold numbers indicate compounds with a high (> mean +
1*std) number of co-regulated transcripts.
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CdCL 0.99 0.47 0.85 0.41 0.22 1.02 0.61 0.85 0.60 0.47
DDT 2.89 1.57 3.87 1.98 1.86 3.81 2.56 1.91 2.09 1.93
4-Chloroaniline 0.15 0.12 0.15 0.14 0.11 0.15 0.07 0.21 0.22 0.22
MeHg 7.29 3.32 6.57 5.38 2.74 4.39 6.28 5.94 3.36 3.41
TCDD 8.36 5.12 5.96 5.86 3.72 7.17 6.68 5.94 4.78 4.17
Valproic Acide 2.58 0.93 2.24 1.63 0.77 2.05 2.02 1.91 0.67 1.35
mean + 1*std 7.07 3.85 5.92 5.04 3.03 5.66 5.86 5.32 3.77 3.51

Table 5.11: Percentage of co-regulated transcripts. The columns show the percentage of
differentially expressed transcripts a compound from the 10 compound study shares with
the compounds from the biosensor data set. The bold numbers indicate compounds with
a high (> mean + 1*std) number of co-regulated transcripts.

TCDD and chlorophenol are the only compounds which showed an enriched co-
regulation for each other. They have 188 transcripts co-regulated. Based on this list
gene function analysis was performed. The results are shown in Table 5.12.

WikiPathways Gene Ontology biological process
FGF signaling pathway negative regulation of cellular process GO:0048523
canonical wnt - zebrafish tube morphogenesis GO:0035239

multicellular organismal development GO:0007275
developmental process GO:0032502
negative regulation of biological process GO:0048519

Table 5.12: Gene function analysis for TCDD and chlorophenol co-regulated transcripts.
Enriched categories were significant with a p-value < 0.05.

Cadmium chloride shows an enriched co-regulation with dibromoethane and leads to
the assumption that they might share a mechanism. In Table 5.13 the co-regulated genes
from cadmium chloride and dibromoethane are shown. Since the number of genes is so
small no further analysis could be performed.
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Ensembl Gene ID Gene Name Ensembl Description
ENSDARG00000006900 impdh2 inosine-5’-monophosphate dehydrogenase 2
ENSDARG00000011989 crx cone-rod homeobox
ENSDARG00000016301 zgc:65894 hypothetical protein LOC335798
ENSDARG00000032619 tob1a transducer of ERBB2, 1a
ENSDARG00000036427 slc3a2 solute carrier family 3, member 2
ENSDARG00000036834 zgc:109868 cytokeratin-like

ENSDARG00000041394 dnajb1b
DnaJ (Hsp40) homolog, subfamily B, mem-
ber 1

ENSDARG00000043561 psmc1b
proteasome(prosome/macropain) 26S sub-
unit,ATPase,1b

ENSDARG00000058039 bhlhe22 class E basic helix-loop-helix protein 22
ENSDARG00000059053 zgc:162495 solute carrier family 13 member 4

Table 5.13: Co-regulated genes from cadmium chloride and dibromoethane.

Immune Response Data

It can be assumed that a part of the gene expression changes found after exposure with
a specific compound are the result of reactions of the immune system of the organism.
These reactions represent a more general response and no toxicity-specific mechanism.
In order to get a better understanding of the compound-specific reactions in the organism,
it would be an advantage to be able to filter the transcripts belonging to the immune sys-
tem from the expression data. Therefore, I used a list of genes that was published in 2009
by Stockhammer et al. (Stockhammer et al. 2009). In this paper, they defined a tran-
scriptional profile of the innate immune system in the zebrafish embryo after Salmonella
infection. The infections were performed between 27 hpf and 48 hpf, which represents
a similar time point as used in our toxicity experiments (24-48 hpf). They also used
wild type zebrafish (AB-strain) for their experiments. As no sequence-information of the
oligonucleotides used by Stockhammer et al. was available, I linked the published list
of genes expressed after infection (Supplementary Table II) to our data via id-translation.
To this end, I extracted the Unigene identifiers and mapped them to Ensembl gene identi-
fiers. This procedure resulted in 1649 up-regulated genes and 1848 down-regulated genes.
2841 genes could be mapped to the Agilent zebrafish v2 array. It cannot be excluded that
some of the genes might not be exclusively part of the reaction of the immune system,
but nevertheless, this data set can give an overview of the general immune response. In
Figure 5.11, the percentage distribution of the immune system related genes in the regu-
lated (p-value < 0.05) and highly regulated (p-value < 0.05 and M > |1.4|) data sets are
presented. The percentage of immune response genes in the highly regulated data set is
for all compounds always higher than in the regulated data set. This indicates that the
compounds induced a strong (M > |1.4|) reaction of the immune system. To get an better
understanding of this effect an enrichment analysis (Chapter 4.3) for the immune response



68 5 RESULTS

genes was performed.

Figure 5.11: Overview over the induced immune response genes. The bars represent
the percentage of genes, which could be linked to the immune system, of the regulated
(p-value < 0.05) and highly regulated data sets (p-value < 0.05; M > |1.4|).

Regulated data set
chlorophenol dibutylphthalate methoxychlor esfenvalerate propoxur

Ratio of enrichment 1.43 1.28 1.46 1.55 1.6
P-value 2.51E-57 8.40E-10 1.39E-19 5.75E-26 5.04E-28

dibromoethane dimethylphenol flucythrinate chlorpyrifos chlorthalonil
Ratio of enrichment 1.65 1.69 1.31 1.43 1.75
P-value 1.07E-31 1.89E-34 1.97E-06 1.60E-08 4.53E-101

Highly regulated data set
chlorophenol dibutylphtalate methoxychlor esfenvalerate propoxur

Ratio of enrichment 2.03 2.01 1.91 1.93 2.35
P-value 1.44E-51 1.94E-14 1.40E-03 1.48E-13 8.09E-29

dibromoethane dimethylphenol flucythrinate chlorpyrifos chlorthalonil
Ratio of enrichment 2.34 2.16 2.22 1.56 1.83
P-value 6.45E-35 2.77E-25 2.45E-04 1.43E-01 4.00E-03

Table 5.14: Enrichment statistics of the immune response genes for the 10 compounds.
An p-value < 0.05 shows that the enrichment of the immune response genes in a data set is
statistically significant. Ratio of enrichment values > 1 indicate an over representation of
immune response genes in the data set, compared to what would be expected by chance.
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In Table 5.14, the ratios of the enrichment analysis of the immune response genes
is shown. The corresponding p-value proves statistically that the number of immune
response genes is truly enriched in the regulated and highly regulated data set. Only for the
highly regulated data set of chlorpyrifos, the p-value is above 0.05. This, however, might
be due to the fact that it shows the smallest number of highly regulated transcripts (22
transcripts). In the highly regulated data sets, the enrichment ratio was higher than in the
regulated one. This indicates that the general immune system reaction represents a main
effect in the highest regulated genes. This shows that it is very important to investigate
the immune response if a specific mechanism is searched. The immune response list is
also included in the comparison_data Table on the supplementary CD.

I also performed a hierarchical cluster analysis for the immune response genes. The
result is shown in Figure 5.12. The dendrogram looks very similar to the results of the
cluster analysis performed in Chapter 5.1.1.

Figure 5.12: Result of the hierarchical cluster analysis. Performed only with the genes
linked to the immune response.

5.1.5 Gene Set Analysis

To further investigate what happened in the treated organism, I decided to have a closer
look on the ’death pathways’ (apotosis, necrosis ans autophagy) and transcriptional pro-
cesses. Apoptosis, necrosis and autophagy are of course very common in toxicity in-
duced expression patterns. With this analysis, I wanted to get an idea how prominent this
pathways are in the treatments. To study the transcriptional processes, I focused on the
differentially regulation of the transcription factors.
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Apoptosis, Necrosis and Autophagy Genes

Unfortunately, no data set was available containing a list of that genes. On that account,
I checked Gene Ontology terms and the gene descriptions provided by Ensembl for the
occurrence of the terms death and apotosis, necrosis or autophagy. The resulting list of
genes was mapped to the Agilent zebrafish v2 array. For necrosis no genes could be iden-
tified and only 11 transcripts were linked to autophagy. Therefore, this two pathways were
not further investigated. But 271 transcripts on the array could be linked to apoptosis. The
percentage of ‘apoptotic’ transcripts for the significantly regulated gene sets (p-value <
0.05) for each compound is shown in Figure 5.13. Even if not all genes involved in apo-
totic processes have been identified, this list should give a good overview of the general
degree of apoptotic damage in the treated organism.

Figure 5.13: Overview over the induced apoptotic Genes. The bars represent the percent-
age of genes, which could be linked to apoptosis in the regulated (p-value < 0.05) data
set.

The percentage of apoptotic transcripts was very low for all compounds. Although
chlorophenol showed a large number of differentially expressed transcripts, there was no
enrichment of apoptotic genes detectable as compared to the other compounds. In Table
5.15, the results from the enrichment analysis (Chapter 4.3) of the apotosis genes are
shown.
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Regulated data set
chlorophenol dibutylphthalate methoxychlor esfenvalerate propoxur

Ratio of enrichment 1.29 1.16 1.13 1.36 1.78
P-value 1.06E-002 2.51E-001 3.17E-001 7.44E-002 1.70E-003

dibromoethane dimethylphenol flucythrinate chlorpyrifos chlorthalonil
Ratio of enrichment 1.21 1.23 0.96 1.4 1.7
P-value 2.19E-001 1.96E-001 5.95E-001 1.51E-001 7.31E-002

Table 5.15: Enrichment analysis for the apotosis genes. A p-value < 0.05 shows that the
enrichment of the immune response genes in a data set is statistically significant. Ratio of
enrichment values > 1 indicate an over representation of apoptosis genes in the data set,
compared to what would be expected by chance.

Only for chlorophenol and propoxur a significant enrichment (P-value < 0.05) was
found. This means that there are more apoptotic genes differentially expressed than would
be expected by chance. Therefore, one can assume that the exposure concentrations of this
compounds are in a range were apoptosis is induced. Nevertheless, no high enrichment
was found, so the influence of apoptosis on the whole expression data set is small and
other processes seem to be more prominent.

Transcription Factors

In order to investigate the regulation of transcriptional process by the compounds, a gene
set analysis for transcription factors was performed. Therefore, a list of possible transcrip-
tion factors was used (Chapter 2.1.3). 2626 transcripts related to transcriptional processes
could be found on the Agilent v2 Array in total. Figure 5.14 gives an overview of the
percentage of transcription factors in the different compound data sets.

Generally, less than 16% of the regulated transcripts belong to transcription factor
genes. For methoxychlor and chlorthalonil the occurence of genes involved in transcrip-
tion in the very highly differentially expressed transcripts was lower than for the other
compounds. Other processes might be more important in these data sets than transcrip-
tion. For dibromoethane, dimethylphenol and flucythrinate even more transcripts anno-
tated with transcription were differentially expressed in the high regulated data set than in
the regulated data set.

In Table 5.16 the results of the enrichment analysis are presented. Based on all differ-
entially expressed transcripts, chlorophenol, dibutylphthalate, dimethylphenol, and chlor-
pyrifos showed a significant enrichment (p-value < 0.05) of transcriptional genes. If
only the highly expressed transcripts were taken into account, only dibromoethane and
dimethylphenol were statistically significant enriched for transcriptional processes.
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Figure 5.14: Overview over the induced transcription factors. The bars represent the
percentage of genes involved in transcription, of the regulated (p-value < 0.05) and highly
regulated data sets (p-value < 0.05; M > |1.4|).

Regulated data set
chlorophenol dibutylphthalate methoxychlor esfenvalerate propoxur

Ratio of enrichment 1.10 1.16 0.95 1.05 0.79
P-value 2.50E-003 6.10E-003 7.73E-001 2.52E-001 9.99E-001

dibromoethane dimethylphenol flucythrinate chlorpyrifos chlorthalonil
Ratio of enrichment 1.09 1.15 0.99 1.22 0.93
P-value 1.06E-001 2.19E-002 5.48E-001 1.97E-002 7.40E-001

Highly regulated data set
chlorophenol dibutylphthalate methoxychlor esfenvalerate propoxur

Ratio of enrichment 1.14 0.92 0.15 1.10 0.82
P-value 6.36E-002 7.15E-001 9.99E-001 2.84E-001 9.09E-001

dibromoethane dimethylphenol flucythrinate chlorpyrifos chlorthalonil
Ratio of enrichment 1.29 1.26 1.18 0.75 0.16
P-value 2.17E-002 3.71E-002 3.99E-001 7.64E-001 9.99E-001

Table 5.16: Transcription factor enrichment statistics. An p-value < 0.05 shows that the
enrichment of the transcription factor genes in a data set is statistically significant. Ratio
of enrichment values > 1 indicate an over representation of transcription factor genes in
the data set, compared to what would be expected by chance.
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5.1.6 Gene Function Analysis

For gaining a better understanding of the mechanisms in the gene expression patterns
of the different compounds, a gene function analysis like described in Chapter 4.4 was
performed. Since it is not clear where in the data set the information about the toxicity
mechanism is located. A specific toxicity mechanism might be stronger induced than
a general toxicity response. Therefore the gene set of the highly regulated transcripts
might be better suited to find them. But it would also be possible that the complete set of
differentially expressed transcripts is need to find the underlaying mechanisms. Pathways
that show up- or down-regulation might be of higher interest than pathways that show a
more mixed regulation. For this reason, I created several data sets and performed a gene
function analysis of each of them. This should help to obtain more information and a
better understanding of the regulation of specific pathways. The following data sets were
used:

• All: All differentially expressed transcripts (p-value < 0.05).

• All up: All up-regulated transcripts.

• All down: All down-regulated transcripts.

• Highly: Highly regulated transcripts (p-value < 0.05, M > |1.4|).

• Highly up: Highly up-regulated transcripts.

• Highly down: Highly down-regulated transcripts.

The Gene Ontology and two pathway databases (KEGG and WikiPathwas) were used
to find enriched functions or processes in the data sets. To improve the Gene Ontology
analysis, the GO categories were summarized via similarity measures (Chapter 4.5). The
results of the analysis for each compound can be found in the appendix Chapter A. The
interpretation is done in the discussion of the individual compound results in Chapter
6.1.1.

5.2 Whole Genome Array

Here I want to address the question of the usability of the system and the problem of
splitting the RNA samples.
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5.2.1 Whole Genome Array versus Agilent Arrays

The whole genome design (Chapter 2.1.2) I created, consists of two 44k Agilent arrays.
Since there is clearly a higher cost and time factor of using two 44xk arrays instead of one,
I wanted to determine if there is really an improvement through the new whole genome
design. To perform the comparison, the arrays were annotated as described in Chapter 4.6
and only the genes and transcripts were counted that gave a significant and specific hit in
the blast search. First, I checked the arrays in total. I included also the newest Agilent
zebrafish v3 array, which was published in the middle of 2010.

Whole Genome Array Agilent v2 Agilent v3
Genes 21690 14869 17719
Transcripts 23873 15390 18609

Table 5.17: Comparison of whole genome array and Agilent arrays. For each array type
the numbers of genes and transcripts are shown which gave an significant hit in the blast
search. The whole genome array contains the most genes and transcripts.

If the complete gene lists are compared, the whole genome array is obviously better
as it contains the largest number of genes and transcripts (Table 5.17). To evaluate the
improvements for real microarray experiments, I compared the list of significantly differ-
entially expressed genes from existing whole genome array experiments with the content
of the Agilent arrays (Table 5.18).

Treatment A Treatment B Treatment C
Whole Genome Array
Significantly regulated transcripts (p-value < 0.05) 679 467 897

Found on Agilent zebrafish v2 606 414 803
Improvement with Whole Genome Array in % 10.75 11.35 10.48

Found on Agilent zebrafish v3 644 441 852
Improvement with Whole Genome Array in % 5.15 5.57 5.02

Table 5.18: Comparison of whole genome array and the Agilent arrays. The significant
regulated transcripts from an microarray experiment performed with the whole genome
array were taken and compared based on there occurrence on the Agilent arrays. The
whole genome arrays delivers 10 % more transcripts compared to the Agilent v2 array
and around 5 % more than the Agilent v3 array.

The whole genome array leads to an improvement of around 10% compared to the
Agilent v2 and still around 5% to the Agilent v3 array. An update of the whole genome
array based on the new gene build Zv9 might further increase this factor.
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5.2.2 Early Stages (10 hpf)

Not much miroarray data is published for such early stages as we used with the whole
genome array (10 hpf). The first problem was to receive enough labeled RNA sample for
the experiments. Several RNA-extraction methods were tested and the Trizol extraction
(Chapter 2.4.2) worked best and was therefore used for the experiments. In the next step,
we had to evaluate whether we receive enough signals to perform a microarray analysis.
The normalization methods in general assume that most of the data comes from genes
with no differentially expression between the treatment and the control. When only a few
genes are expressed at this early stage, this might render the normalization of the data
nearly impossible. The Figures 5.15a and 5.15b were made utilizing our Axon Scanner
with comparable settings and a similar amount of sample RNA. In the early stage sample,
clearly less spots are seen but still enough to carry out a microarray analysis. Importantly,
the most spots are yellow, indicating similar gene expression in sample and control, so
the normalization algorithms should work. The quality control plots of the data produced
during the microarray analysis looked also normal. Based on the scanner images and the
quality plots, the early stages seemed to be no problem for the microarray analysis.

(a) Early stage (10 hpf) (b) Later stage (48 hpf)

Figure 5.15: Microarray scanner pictures of two different sample stages

5.2.3 Splitting RNA Samples

Since each microarray experiment with the whole genome array consists of two arrays,
this is also problematic regarding the sample treatment. To resolve this situation, we
simply used the two color control design (Chapter 2.2.1) and split our RNA samples
in two equal parts and put similar amounts of RNA onto the two corresponding arrays.
Consequently, the same RNA sample is used for the two arrays of one experiment. It
has been postulated that splitting RNA samples over several arrays might introduce some
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errors as the sample can never be completely homogeneous. To study the influence of
these errors on our data, I performed several clustering analyses on the spike-in controls
described in Chapter 2.1.1. Therefore, I used the spike-in control data from an whole
genome array experiment with two replicates. The controls are used for all arrays and are
added to the samples before the labeling process. Due to minimal pipetting differences,
the amount of spike-in controls was always a little bit different for each microarray.

Figure 5.16: Overview on the similarities and differences between the arrays of an whole
genome array experiment. WG1 and WG2 are the two slides belonging to the whole
genome array. Each slide consists of 4 arrays. The replicates are labeled with r1 and r2.

In Figure 5.16 the similarities and differences of the arrays used in this microarray
experiment are shown. Arrays belonging to a dye swap, have the same sample RNA
but the sample RNA was split before the labeling process. On the contrary the sample
RNA is split after the labeling process when used for the two whole genome arrays. The
replicates consist of different sample RNAs but are hybridized on the same slide. To get
a better understanding of the effect introduced through the RNA splitting, hierarchical
cluster analysis was performed as described in Chapter 4.2.2. For the cluster analysis the
signal data from the spike-in controls without any normalization or filtering was used.
Only the M-values were calculated (Equation 4.1).
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Figure 5.17: Cluster analysis of the spike-in control data of an experiment performed with
the whole genome array. Each column represents one array. WG1 and WG2 are the two
slides belonging to one whole genome array. The replicates are labeled with r1 and r2.
The data was not normalized or filtered. The corresponding whole genome arrays cluster
together.
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In Dendrogram 5.17 the spike-in control data of the corresponding whole genome
arrays cluster clearly together. Only for one replicate the dye swap arrays are clustered
near by. This indicates that the error introduced through the splitting of the RNA sample
over two different arrays is smaller than the error produced in a dye swap experiment.
Dye swap experiments are very common in microarray analysis and the introduced errors
known to be not problematic (Simon et al. 2004). Therefore, it can be assumed that the
splitting of the RNA samples is no problem for the experiments performed with the two
whole genome arrays.

5.3 Transcription Factor Study

With the help of the transcription factor study, we hoped to obtain deeper insights in
transcriptional regulation during the different developmental phases of the zebrafish. We
used a specially designed microarray, consisting of transcription factors (Chapter 2.1.3).
Six different stages covering all embryonic stages (Table 5.19) and 4 different adult tissues
(Table 5.20) were used for this study.

Period Time (∼) Stage Replicates
Cleavage 0.75 hpf 2-cell 8
Gastrula 4.5 hpf early gastrula (30% epiboly) 4
Segmentation 10-12 hpf 1-6 somites 4
Pharyngula 24 hpf 24 hpf 6
Hatching 48 hpf 48 hpf 6
Larval 120 hpf 5 dpf 8

Table 5.19: Stages used for the transcription factor study

Tissue Time Replicates
diencephalon > 90dpf 4
telencephalon > 90dpf 4
head (brain) > 90dpf 4
tail (muscle) > 90dpf 4

Table 5.20: Tissues used for the transcription factor study

The RNA was extracted using Trizol (Chapter 2.4.2). The microarray experiments
were performed without any control samples (Chapter 2.2.2) but using two colors (cy3
and cy5). Therefore, the analysis cannot be performed as for the 10 compound study.
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5.3.1 Quality Control

At the beginning of the analysis, it is important to check the quality of the data. The
quality of the arrays needs to be evaluated and possible bad arrays detected. In the next
quality control step, problematic spots on the arrays itself must be removed from the data
set.

Array Level

The following parameters were used to judge the array quality:

Raw image A manual inspection of the raw scanner images.

Signal histogram The scanner software GenePix provides the possibility to produce in-
tensity histograms. The histograms indicate whether the array signals are well dis-
tributed over the detection range of the scanner. Labeling and hybridization prob-
lems or wrong scanner settings can so be detected.

Spike controls We used the Agilent provided spike-in controls (Chapter 2.1.1). I ana-
lyzed them as described in Chapter 4.1.1.

Diameter I compared the minimum and maximum diameters of the spots on the arrays.
Variations in the diameters can occur due to spot detection problems based on too
low signal or impurities on the array surface.

Saturated Spots Saturated spots disturb the analysis as the true signal cannot be calcu-
lated. Many saturated spots can be a sign that the scanner settings are not adjusted
properly.

Coefficient of variation CV High CV values indicate spots with non-uniform signal dis-
tribution which might be due to artifacts.

Correlation Coefficient between replicates I used the Pearson correlation coefficient to
calculate the similarity between arrays. Replicates should show a high correlation.

In general, the quality of the array was good. Only for the samples from the tail tissue,
problems were detected. The tail data from two replicates showed problems in all quality
categories. This data will still be included in the further analysis but should be handled
with care in the interpretation of the results.

Spot Level

Artifacts on the array, low signals, or spot detection problems can lead to spot signals
that are not representative of the biological experiment. In general, such spots can be
identified manually or using quality control parameters. In my case, I used three different
spot quality measurements, besides the manual inspection of the array scanner images.
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Spot diameter The diameter should be between 35 and 75 µm.

Pixel signal variation of a spot The variation of the signal within a spot should be below
70%.

Number of saturated pixels in a spot A spot should have no saturated pixels.

These spots are excluded from the analysis.

5.3.2 Expressed Transcription Factors

As we did not use controls, I had to find a way to distinguish which transcription factors
are expressed in our different samples. For high signal values, it is clear that the transcript
is expressed, but for smaller ones it is not clear where the background noise ends and the
true expression signal starts. To detect the background noise, I used the 7915 A. thaliana
negative controls spots (Chapter 2.1.2). To use as cut-off, the highest value of that controls
might not be useful since cross hybridizations or other impacts may result in a too high
cut-off value. Therefore, I decided to test three distribution based parameters.

99th Percentile The 99th percentile is the value below which 99% of the negative control
signals are.

Median + 2*std This cut-off is the median of all negative controls plus two times the
standard deviation over all controls.

Median + 2*std/median This cut-off is the median calculated from all controls plus two
times the standard deviation divided through the median.

To judge the quality of the different cut-offs, I used published data. Gene expression
data from several development stages can be downloaded from Zfin. This information
is also available via Ensembl Biomart. I used the list of transcription factors that are
found on our array and downloaded all available gene expression descriptions. The Zfin
descriptions covers also the whole embryonic development. The stages were categorized
into 35 subgroups. To be able to compare this information with our array data, I fused
the subgroups into 7 major groups. If one transcript is expressed in only one or a few
subgroups, the whole major group will be counted as expressed. I used the foreground
minus background signal for calculating the number of expressed transcripts based on the
different cut-offs. Spots with bad quality were removed from the data set. Signals of all
8 oligos mapping to one transcript were averaged. I counted a transcript as expressed if it
was expressed at least in one replicate. The literature data were compared with the list of
expressed transcripts from our samples. The results are shown in Table 5.21.

All cut-offs showed a good detection rate of around 85% of the literature data. In the
comparison of all cut-offs, the 99th quantile performed a little bit better than the other two
measures.
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Literature stages Cleavage Blastula Gastrula Segmentation Pharyngula Hatching Larval
Tf-study samples 2-cell 30% Epiboly 30% Epiboly 1-6 Somites 24 hpf 48 hpf 5 dpf
# exp. trans. in literature 368 375 734 756 759 746 155
99th quantile 336 334 552 623 654 642 132 Mean
In % 91.3 89.07 75.2 82.41 86.17 86.06 85.16 85.05
Median + 2*std 330 334 552 621 653 642 125 Mean
In % 89.67 89.07 75.2 82.14 86.03 86.06 80.65 84.12
Median + 2*relstd 335 334 552 623 654 642 132 Mean
In % 91.03 89.07 75.2 82.41 86.17 86.06 85.16 85.01

Table 5.21: Cutoff comparison

5.3.3 Normalization Methods

The normalization is a critical step, especially if signals of different experiments are com-
pared. In Figure 5.18, the differences in the intensity distributions are depicted. The
y-axis represents the signal (intensity), as measured by the scanner. The order is based on
the date when the arrays were performed. The first sample belongs to the red color repli-
cate, the following one to the green replicate. A clear dye-based effect can be observed.
There are only weak differences detectable between the replicates. Interestingly the data
when the arrays were performed showed an influence.

Some normalization methods can only be used on data, where the different data sets
have a similar amount of data points. In our case, the different stages could express a
different amount of transcripts. Early stages might have much less transcripts expressed
than latter stages. To get an idea about the number of expressed transcripts in the different
stages and tissues, I used the list calculated for the cut-off measure comparison (Table
5.22). A transcript is counted as expressed, if it is expressed in at least one replicate.
The amount of expressed transcription factors were all in a similar range, so no special
normalization method will be needed.

2-cell 30% epiboly 1-6 somites 24 hpf 48 hpf 5 dpf diencephalon telencephalon head tail
# tf 3071 2778 2838 2968 2940 3195 2889 2627 2521 2797

Table 5.22: Number of expressed transcription factors for the different tissues and stages.

To find the best suitable normalization method, I tested several approaches. The nor-
malizations are always performed on the whole raw signal data set.

Quantile normalization This normalization technique makes distributions identical in
their statistical properties. All data sets are normalized together. The transcripts are
sorted according to the expression values in the data set and the mean is calculated
for each rank in the sorted lists. Then, the highest expression value is set to the
highest average value and so on for all expression values. This is done for all data
points in all data sets.

In Figure 5.19 the boxplot for the quantile normalized signal data is shown. In
comparison to Table 5.18 all samples have now a similar signal distribution.
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Figure 5.18: Box plot showing the distribution of the signals for all used microarrays. The
red line in the box shows the median. The box represents the middle 50 % of the data.
The red spots (’bars’) are values above the 1.5 interquartile range (IQR). The differences
in the signal distributions can be clearly seen. The median is shifted towards 0, indicating
that most of the data points have very low signals.
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Figure 5.19: Boxplot of the signal distribution for the whole data set after quantile normal-
ization. Compared to Figure 5.18 the signal distribution is here more equal. A description
of the boxplot can be found in Figure 5.18.

Scaling This method scales all data sets to have a mean of 0 and a standard deviation
of 1. Therefore, for each data point the median of the corresponding data set is
subtracted and then it is divided through the standard deviation of the data set. This
operation has the disadvantage of compressing the signal range, and consequently
was not further investigated.

Rank invariant set normalization This method is based on a set of ’invariant transcripts’
that do not change significantly between a data set and the reference set. To find
them, all data points are ranked according to their intensity. Then, data points with
similar ranks are identified. These items are then used to calculate the adjustment
curve for the Lowess normalization, which corrects the data set based on the adjust-
ment curve. As reference set, I used the median over all data sets. This method is
highly depended on the invariant data points and was not able to normalize our data
such that all data sets have the same distribution (Figure 5.20).
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Figure 5.20: Boxplot of the Rank invariant set normalized signal data for all stages and
tissues. A description of the boxplot can be found in Figure 5.18. The method was not
able to normalize the data such that all data sets have the same distribution.

Subgroup normalization Instead of using the whole data set only a subgroup of data
points can be used to calculate an adjustment curve, for instance, for housekeeping
genes, which should be expressed at the same level in all samples. Even if a gene
exists that is a true housekeeping gene in all developmental stages, it might show
varying expression in all tissue samples. Therefore, this approach was not consid-
ered. The Agilent spike-in controls can also be chosen as subgroup (Chapter 2.1.1),
but the intensity distribution of the controls looks different to the one of the sample
data. This could be due to differences in the sample quality or spike control batch.
Hence, this approach was also excluded.

Of all tested normalization methods, quantile normalization performed best.

5.3.4 Transcription Factor Array Analysis

Based on the detailed investigation of our data set and the comparisons of several analysis
methods, I decided to use the following approach for analyzing the data:

1. The foreground minus background signal was used for the analysis (FG-BG)

2. The raw data were normalized using quantile normalization

3. The 99th quantile cut-off was calculated

4. Signals below the cut-off were removed from the data set
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5. Spots with bad quality were excluded from the data set

6. The remaining signals of the 8 oligos from each transcript were averaged (mean)

7. The replicates were averaged using the median of the transcript signals

8. Transcription factors that were expressed in less than 50% of the replicates were
removed.

In Figure 5.21, an overview of the number of expressed transcription factors in the
different stages and tissues is shown.

Figure 5.21: Number of expressed transcription factors after all analysis steps.

It is not clear whether the number of transcription factors that were expressed in the
tail, head and telencephalon sample was really that low or whether this small number
was caused by quality problems of the samples. The fact that the number of transcription
factors in the whole head sample is smaller than in the two brain parts (diencephalon and
telencephalon) might be caused by the RNA detection limitation of the microarrays. In
the head sample the transcription factors from the telencephalon and the diencephalon
could be expressed at such low levels compared that their signals are not detectable in the
whole head sample.
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5.3.5 Clustering Analysis

In order to study the similarity of the different gene expression patterns, I used hierarchical
clustering (Chapter 4.2.2). With this, I want to identify similarities in the level of gene
expression of the transcriptionfactors in the different samples. First, I clustered the raw
signal data shown in Figure 5.22.

Figure 5.22: Result of the hierarchical cluster analysis. Performed on the raw signal data
from all microarrays.

Only the replicates of the 2-cell, 30%-epiboly, and the 1-6 somites stage and the head
tissue cluster nicely together. To improve this results, the cluster analysis was also done
on the normalized data set (quantile normalization).

Figure 5.23: Cluster analysis of the normalized signal data set (quantile normalization, all
microarrays)

In the dendrogram presented in Figure 5.23, the head and the brain tissue replicates
give nice clusters. For the number of embryonic stages, the 24 hpf and 48 hpf replicates
could not be separated. This might indicate that these expression patterns are very similar.
The tail replicates are also not clustered together, maybe because of the array problems



5.3 TRANSCRIPTION FACTOR STUDY 87

identified in the quality analysis step.
After the normalization step, I identified expressed transcription factors via a cut-off based
method and removed bad quality spots (Chapter 5.3.4). I also performed a cluster analysis
on this data set. In Figure 5.24 the dendrogram of this analysis is shown. According to
this analysis, the early stages, 2-cell, and 30%-epiboly show a similar expression pattern.
The 1-6 somites, 24 hpf, and 48 hpf also share a similar transcription profile. The two
brain samples diencephalon and telencephalon cluster also nicly together. The head shows
more similarity with the 5 dpf stage than with the diencephalon and telencephalon sample.

Figure 5.24: Cluster analysis of the analyzed data set

Interestingly, the tail sample clusters together with the very early stages in develop-
ment. Myogenesis starts at the segmentation stage, and therefore, the tail sample would
have been expected to exhibit a higher similarity to the 1-6 somites stage (Lo et al. 2003).
It has been discovered that the first inducing mechanisms of myogenisis begin around the
late blastula period (Ochi et al. 2008). However, it is unlikely that this explains the results
of the cluster analysis.
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myod1 ENSDART00000027661 0 0 1 1 1 1 0 0 1 1
myf5 ENSDART00000014818 0 0 1 1 1 1 0 0 1 0
mef2cb ENSDART00000044083 1 1 0 1 1 1 1 0 1 1
mef2ca ENSDART00000097433 1 1 1 1 1 1 0 0 0 1
myogenin ENSDART00000014062 0 0 1 1 1 1 0 0 1 1

Table 5.23: Expression pattern of known muscle specific transcriptionfactors in the data
set. 1 indicates is expressed and 0 is not expressed in the particular sample.

Therefore, I decided to have a closer look at the expression patterns of some well
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known muscle specific transcription factors. In Table 5.23, the expression patterns of five
muscle specific transcription factors, in the data set are shown. No differences to other
published studies are detectable (Lo et al. 2003). This indicates that the array quality and
the sample integrity seem to be fine.

In order to further investigate the similarity of the very early stages and the tail sam-
ple, I performed a gene function analysis as described in Chapter 4.4. Unfortunately, no
significantly enriched pathways could be detected. However, the GeneOntology analysis
revealed an enrichment of GO-terms involved in:

• chondrocyte differentiation

• methylation

• regulation of apoptosis

• cell cycle

• biological processes

• chromatin modification

The occurrence of many transcription factors related to chondrocyte differentiation
leads to the conclusion that the tail sample seems not be as representative for muscle
tissue as expected. Since we only cut the complete tail and did not extract muscle tissue,
the sample also contains other tissues, such as bone. This mixture of tissues might also
be the reason for the clustering of the tail sample with the very early stages. In order to
improve this study, a more specific muscle sample should be analyzed.

5.3.6 Gene Function Analysis Time Series Data

On the supplementary CD, an Excel file can be found, which contains the expression
pattern of the transcription factor screen transformed to either 1 (expressed) or 0 (not ex-
pressed). With the help of this file, co-regulated transcripts can be found. For example,
1703 transcription factors were expressed continuously over all stages. It is also possible
to search for transcription factors of interest and find similarly expressed ones.
However, besides the fact that a transcription factor is expressed, the changes of the ex-
pression over time (profile) might also be of interest, for example, if there is a very high
expression at a certain stage (peak). To find groups of transcription factors that share the
same profile I used the program STEM (Ernst and Bar-Joseph 2006). This software al-
lows for detecting significant expression profiles in time series data and the genes that are
associated with these profiles. STEM calculates all possible profiles for a certain amount
of time points. It compares the uploaded time series data with the profiles and performs
statistical tests to detect the profiles which are significantly enriched in the data set. At the



5.3 TRANSCRIPTION FACTOR STUDY 89

end it shows basically the most common profiles of the data set. The profiles and the cor-
responding genes can be downloaded. Furthermore a Gene Ontology analysis of the gene
lists can be performed.In Figure 5.25, the most significant profiles of the transcription
factor time series data set is shown.

Figure 5.25: Significant profiles of the transcription factor data set. The boxes represent
the different profiles. Significantly enriched profiles are colored. The profiles are ordered
by p-value, which is shown in the lower left corner of the profiles. The profile number
can be found in the upper left corner.

11 different significant profiles could be detected. The software provides the possibil-
ity to have a closer look at the expression profiles ("‘zoom in"’). I had to define a time
point 0, since we have no data from time point 0, all expression values for that time point
are set to 0. This needs to be taken into account when interpreting the results of the anal-
ysis. In Figure 5.26, the "‘zoom in"’ for profile 43 is presented. The "‘zoom in"’ images
of the 11 profiles can be found on Appendix B. The transcription factors of that profile
show the highest expression at the 2-cell stage. At 30% epiboly the expression goes down
and at the later stages is nearly gone. This transcription factor seems to be expressed till
gastrulation starts.

I also performed a Gene Ontology analysis for the transcription factors of the 11 pro-
files. Therefore I downloaded the Gene Ontology annotation of the transcription factors
from Ensembl Biomart. Then, STEM calculated the enriched GO categories for each pro-
file. Since this list can be very long and difficult to interpret, I used the GO similarity
analysis descried in Chapter 4.5 to simplify the data. In Figure 5.27, the simplified Gene
Ontology results for profile 43 can be seen. As expected from the "‘zoom in"’, gastrula-
tion is an enriched GO category. The results of the GO analysis and the corresponding
profiles can be found in Appendix B. The gene lists are included in the supplementary
CD. In the discussion part of my thesis I will describe the different profiles in more detail
(Chapter 6.3)
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Figure 5.26: "‘Zoom in"’ on the expression signals of profile 43.

Figure 5.27: GO analysis of expression profile 43
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Chapter 6

Discussion

6.1 10 Compound Study

For most of the compounds used in this study, little is known about their effect on ze-
brafish development. Therefore, our results will give the first insights into the xenobiotic
metabolism of these chemicals in the zebrafish embryo. In the following chapter, I will
summarize the results of the microarray analysis and link them with literature data in or-
der to get a better understanding of the induced modes of action of the compounds. Based
on these results, I define biomarker genes, which are specific for different modes of action
of the compounds used in this study.

6.1.1 Results of the Microarray Analysis

The interpretation of microarray results can be very difficult and no standard method is
available, especially not for identifying toxicity induced mechanism. Since there is no
well established database for tox-pathways available, I used KEGG and WikiPathways
to perform the gene function analysis of the data (Chapter 4.4). Therefore, it was nec-
essary to link the obtained pathways to the suggested modes of action of the used com-
pounds (Table 1.1). An extensive literature search was performed, in order to connect the
identified pathways with possible mechanisms of toxicity. The results of the enrichment
analysis and the intensity distribution analysis were used to further support the findings
(Chapter 5.1.3, Chapter 5.1.5).

Esfenvalerate

Esfenvalerate is a pyrethroide and known to interfere with sodium and calcium channels
in adult chinook salmon (Viant et al. 2006a). Chorionated fish embryos reacted less sen-
sitive to the toxicity effects of esfenvalerate, which led to the assumption that the chorion
may have a protective effect (Viant et al. 2006a). In our study, we exposed the embryos
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to a very high concentration (80 µg/l) without detecting any mortality. In comparison,
the LC50 for newly hatched rainbow trout is at around 2 µg/l (Barry et al. 1995). This of
course questions the possibility to detect the mode of action of esfenvalerate in our study.
However the microarray signal intensity distribution, the maximum and minimum signals
of the esfenvalerate treated embryos, looked normal. The amount of differentially ex-
pressed transcripts was also in a normal range (Chapter 5.1.3). My gene function analysis
clearly indicated the activation of the proteasomal degradation pathway and a repressed
RNA degradation pathway (Appendix A). These findings agree very well with previously
published studies. The treatment of catfish with fenvalerate decreased significantly the
total RNA and protein content in brain, liver, and skeletal muscle. The authors suspected
this might be due to reduced enzyme activity, changes in protein and RNA turnover (syn-
thesis/degradation), and a general inhibitory effect on metabolism (Tripathi and Verma
2004). A decrease of ATP concentration and changed metabolism was also seen in chi-
nook salmon treated with esfenvalerate (Viant et al. 2006b). The only direct hint for an
effect on the calcium channel was given by an induced GTP binding function. GTP-
binding proteins can be targets of xenobiotics and it is assumed that some pyrethroids
bind to G-proteins and thereby alter their GTP-binding capabilities. G-proteins can inter-
act with sodium and calcium channels (Dolphin 1998 and it was proposed that pyrethroids
may influence calcium and sodium channels via interaction with G-proteins (Rossignol
1991). Therefore, a change in the GTP-binding functionality might indicate an effect on
the calcium and sodium channels.

In our study the embryo showed less sensitivity to esfenvalerate induced toxicity, pos-
sible caused by protection by the chorion. Based on the microarray data no direct effect
on sodium or calcium channels could be seen, but an increase in GTP-binding might in-
directly lead to this effect. In agreement with other studies in fish, a clear effect on the
protein and RNA metabolism was found (Tripathi and Verma 2004; Viant et al. 2006b).
The cause of this effect could not be identified. Further investigations on protein and en-
zyme levels may help to reveal the cause of toxicity of esfenvalerate in zebrafish embryos.

Methoxychlor

Methoxychlor is a known endocrine disruptor. However, the exact mode of action of
Methoxychlor toxicity is still unknown. In fish it is metabolized to mono- and bisde-
mythelated metabolites. Mono- and/or di-hydroxylated products are also produced some-
times (Berg 2003). It has been shown in rainbow trout that the metabolites have the
potential to act as weak ER agonist (Thorpe 2000). Holdway and Dixon 1986 reported
a protective mechanism in chorinated embryos, which prevents methoxychlor toxicity in
flag fish embryos. We were also able to observe the same protective effect in zebrafish
embryos during our study using a concentration of 800 µg/l for the microarray exposure.
In another study also performed in zebrafish, all larvae died at concentrations higher than
10 µg/l 7 days after hatching (Versonnen et al. 2004). This shows a strongly reduced
sensitivity of the zebrafish embryos compared to the larvae. Whether this is caused by a
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protective effect of the chorion or a lack of metabolic capacity is unknown. The microar-
ray analysis revealed a reduced number of highly expressed transcripts (Chapter 5.1.3).
In the gene function analysis, the proteasome, spliceosome, and the RNA degradation
pathways were induced (Appendix A). Methoxychlor is known to cause protein and DNA
damage in mouse ovary by increasing superoxide production through impairment of mi-
tochondrial respiration (Gupta et al. 2006). In our data, an induction of reactive oxygen
species (ROS) or disturbed mitochondrial respiration could not be identified. Therefore,
the cause of the changes in protein and RNA metabolism remain unclear.

In the chorionated zebrafish embryo, methoxychlor showed less toxicity compared
to 7dpf larvae (Versonnen et al. 2004). In the microarray data, I could not identify an
effect of methoxychlor on the estrogen receptor. However, a change in the protein and
RNA metabolism could be observed. A study in mouse ovary also found a change in pro-
tein metabolism caused by increased ROS production by disruption of the mitochondrial
respiration (Gupta et al. 2006). This could not be confirmed with our data. Therefore,
further investigations are needed to identify the cause of the changes in protein and RNA
metabolism.

Di-n-buthyl phthalate

Phthalate esters are suspected to act as endocrine disruptors by mimicking the effects
of natural estrogens. Dibutylphthalat can alter the vitellogenin (VTG) protein and gene
expression levels in treated zebrafish larvae but there was no clear induction (Ortiz-
Zarragoitia et al. 2006). In our data, I found a strong induction of VTG gene expression
with a 3.74 fold (M-value) up-regulation. Other evidence hinting at altered estrogen levels
were not found. Besides the capability to influence estrogen levels, dibutylphthalat is also
known to act as peroxisome proliferator. The effect of peroxisome proliferation is caused
by interactions with nuclear hormone receptors like pregnane X receptor (PXR), consti-
tutive androstane receptor (CAR), and the peroxisome proliferation-activated receptors
(PPARs) Ortiz-Zarragoitia et al. 2006. Nuclear receptors are involved in the regulation
of many metabolic pathways. Wyde and colleagues could show in fetal rat liver that
dibutylphthalat can modulate nuclear receptors and thereby influence the metabolism of
lipids, steroids, and other biological processes, including lipid homeostasis, cholesterol
metabolism, and steroidogenesis (Wyde et al. 2005). The gene function analysis of the
microarray data revealed an up-regulation in lipid biosythesis and metabolism, choles-
terol biosynthesis, and other metabolic pathways. Besides that, I also identified the up-
regulation of oxidative phorsphorylation and the electron transport chain pathways (Ap-
pendix A). Not much is known about the effects of dibutylphthalat on the respiratory chain
in fish species. In mitochondria of male rats, dibutylphthalat seems to act as an energy
transfer inhibitor, and at the same time, to influence ATPase activity. It was suggested
that dibutylphthalat may act as uncoupler of the mitochondrial oxidative phosphorylation
(Inouye et al. 1978).

The microarray data led us to the conclude that dibutylphthalat seemed to act via two
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different modes of action in zebrafish embryos. On the one hand, dibutylphthalat seemed
to interact with several nuclear hormone receptors. In zebrafish larvae, VTG gene expres-
sion is altered via dibutylphthalat treatment (Ortiz-Zarragoitia et al. 2006). First, VTG
was highly induced. VTG might be induced via the estrogen receptor (Hill and Janz
2003). I could also detect an induction of the lipid and cholesterol metabolism. Like
shown in fetal rat liver, this leads to the assumption that dibutylphthalat also interacts
with the nuclear hormone receptor PXR, CAR and PPARs (Wyde et al. 2005). Second,
the microarray data revealed an effect on the mitochondrial respiration of the zebrafish
embryos. It was suggested that dibutylphthalat acts as uncoupler of the mitochondrial
oxidative phosphorylation in male rats (Inouye et al. 1978). Based on our data dibutylph-
thalat seems to also act as uncoupler in treated zebrafish embryos.

Flucythrinate

Flucythrinate is a type II pyrethroide. In a reporter gene assay using COS-7 simian kid-
ney cells flucythrinate was detected to have strong PXR agonist, weaker ER agonist, and
AR agonist capabilities (Kojima et al. 2010). In our microarray data, the gene CYP3A65
was highly induced (M-value > 1.5). CYP3A65 can be activated through regulation of
its upstream transcription factors, such as PXR (Tseng et al. 2005). The lack of highly
regulated genes in the microarray data limited the gene function analysis. A detailed
investigation of the regulated pathways and genes involved suggested an anti-apoptotic
effect (Appendix A). Several genes with known anti-apototic capabilities were highly up-
regulated. In colon cancer cells, it has been shown that PXR can have an anti-apoptotic
effect. Nevertheless, it is not known whether flucythinate has any anti-apoptotic capabil-
ity. Based on our microarray results, flucythrinate seemed to have an antiapototic effect,
possibly induced by PXR activation. This effect needs to be confirmed in future investi-
gations.

Gene name Reference Organism
stat3 Lu et al. 2006 murine embryonic fibroblast
hsp90 Erdmann et al. 2007 neoblastoma cells
socs3 Jo et al. 2005 mice
bag3 Virador et al. 2009 HeLa human cancer cells

Table 6.1: Table of genes with known antiapototic properties which are highly upregulated
in the flucythrinate microarrays.

2,4-Dimethylphenol

Dimethylphenol is categorized as polar narcotic (Tsai and Chen 2007). Little is known
about the mode of action behind dimethylphenol toxicity. In human erythrocytes, a de-
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crease in ATPase activity has been shown Duchnowicz et al. 2005. Our microarray data
indicate the down-regulation of several subunits of the F-ATPase complex. Additionally,
the mitochondrial glutathione reductase gene (zgc:110010) was highly induced. The mi-
tochondrial glutathione reductase belongs to the mitochondrial antioxidant defense sys-
tem. An up-regulation indicates production of reactive oxygen species (ROS) (Fleury
et al. 2002). Other up-regulated genes were involved in apoptosis (tp53, caspase8). Sev-
eral pathways linked with DNA damage (response to DNA damage, DNA replication,
damaged DNA binding) were also activated (Appendix A). However, a possible DNA
damaging effect of dimethylphenol is not yet known. Our data suggest ROS as a possible
mechanism for this effect.

In the zebrafish embryos, dimethylphenol seemed to interact with the F-ATPase com-
plex. Based on the microarray data, this seems to induce a change in the mitochondrial
respiration leading to an induction of ROS. The higher levels of ROS then might have led
to DNA damage in the treated embryos.

Chlorpyrifos

The microarray data for chlorpyrifos gave no clear results with respect to possible modes
of action (Appendix A). The number of expressed transcripts was very small. It was
also the only compound with more down- than up-regulated transcripts (Chapter 5.1.3).
Chlorpyrifos is almost not soluble in water, therefore, ethanol was used as solvent. The
LC50 in 8dpf old zebrafish was reported to be around 0.5 mg/l (Kienle et al. 2009). In our
experiment, we used 7 mg/l without observing any mortality in the embryos. A protective
effect of the chorion from chlorpyrifos toxicity has not been seen but is suggested by the
high treatment concentration used in our experiments. Surprisingly, CYP1A was highly
induced. It is known that CYP1A is specifically induced in fish by polycyclic aromatic hy-
drocarbons (PAH). Since chlorpyrifos is no PAH, CYP1A should not be induced (Levine
and Oris 1999). However, it was also shown, especially in zebrafish, that CYP1A can be
induced by activation of the aryl-hydrocarbon receptor (AhR) (Alderton et al. 2010). In
a mouse hepatoma reporter cell line, chlorpyrifos showed AhR-mediated transcriptional
activity (Takeuchi et al. 2008).

The high concentration used and the low number of expressed transcripts suggests
that the uptake of the compound in the embryos is rather low. The gene function analysis
revealed unfortunately nothing. Only the induction of CYP1A might give a hint, for an
activation of the AhR via chlorpyrifos treatment.

4-Chlorophenol

Of all tested compounds, chlorophenol induced the biggest expression changes (Chapter
5.1.3). In the gene enrichment analysis, the gene sets for apoptosis and transcription were
found to be enriched (Chapter 5.1.5). The gene function analysis revealed the activation



96 6 DISCUSSION

of many pathways involved in apoptosis (p53 signaling, apoptosis, death, and regulation
of caspase activity) (Appendix A). Furthermore, genes known to be activated during apo-
tosis were induced (casp8, tp53), but the cause for the apoptotic activity remains unclear.
Chlorophenol is known to disrupt oxphos in aquatic organisms (Comparative et al. 2001).
The only hint for oxphos disruption was an increased level of mitochondrial glutathione
reductase gene expression (zgc:110010). This gene is activated by increased ROS produc-
tion in the mitochondria, which can be caused by oxphos disruption (Fleury et al. 2002).
The mode of action, oxphos disruption is concentration dependent. High concentrations
inhibit respiration, decrease ATPase activity and lead to break-down of electron-transport-
processes. Low concentrations, on the other hand, lead to an increase in ATPase activity
(Agency for Toxic Substances and Disease Registry, http://www.atsdr.cdc.gov/). In yeast-
two-hybrid systems, chlorophenol also showed estrogen receptor activity (Ogawa et al.
2006). The gene expression of vitellogenin (VTG) was highly induced in our experiment
leading to the hypothesis that 4-chlorophenol also has ER activity in zebrafish embryos.

The used concentration of chlorophenol seemed a little bit to high, as most of the genes
and regulated pathways were linked to apoptosis. Nevertheless, I could find evidence
that chlorpyrifos might act through two different modes of action in the embryos. First,
VTG was highly expressed indicating an ER activation. Secondly, ROS was induced in
the mitochondria, which leads to the assumption that chlorophenol has an effect on the
mitochondrial respiration. Based on the literature data, an ATPase inhibition might be the
cause for the disruption of respiration.

Chlorthalonil

Chlorthalonil is metabolized via glutathione (GSH) conjugation in the Phase II detox-
ification pathway in adult fish. The glutathione metabolites are then excreted through
the bile and urinary systems (Davies and White 1985; Davies 1985a,b). The results of
my gene function analysis suggested a high activation of the glutathione metabolism.
Metabolism of xenobiotics by cytochrome P450 was also induced (Appendix A).
The gene with the highest up-regulation (9 fold) was glutathione-S-transferas (gstp1).
Glutathione-s-transferase (GST) mediates the metabolism of chlorthalonil in the liver
and gill in channel catfish. GST induction has been suggested as biomarker gene for
chlorthalonil toxicity in fish (Gallagher et al. 1991). The toxicity of chlorthalonil might
be caused by the glutathione depletion followed by interactions with other thiol-rich pro-
teins (Davies and White 1985).

In the microarray data the metabolism of chlorthalonil via the glutathione metabolism
was clearly detectable. Since the microarray experiment showed the smallest number of
differentially expressed transcripts, it can be assumed that glutathion is not yet completely
depleted and that no toxic mechanism are activated.
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Propoxur

The carbamate propoxur is well known as Ache inhibitor (Smulders et al. 2003). Be-
sides that, it is assumed that propoxur induces oxidative stress through lipid peroxidation.
The authors showed a decrease of glutathione reductase (GR), glutathione S-transferase
(GST), and glutathione peroxidase (GPX) enzyme levels and a decrease of glutathione
(GSH). GPX detoxifies lipid hydroperoxide and hydro peroxide by using GSH. GR is
the enzyme that produces the reduced GSH needed for detoxification of GPX. GST uses
GSH during xenobiotic metabolism (Seth et al. 2001). In the microarray results, the
expression levels of mitochondrial glutathione reductase (zgc:110010), glutathione S-
transferase (gstp2), and glutathione peroxidase (gpx1a) were highly up-regulated. The
propoxur microarrays showed the highest expression signals and gstp2 was the second
highest induced gene. In the gene function analysis, the glutathione pathway was also
shown to be activated. Abd-Elraof et al. 1981 suggested that propoxur is metabolized via
the Phase I cytochrome P-450 pathway. Our data did not confirm this hypothesis. Many
pathways linked to apoptosis were induced (apoptosis, death, p53 signaling) (Appendix
A); differentially expressed genes were also found to be enriched with apoptosis genes
(Chapter 5.1.5), although apoptotic genes like tp53 and casp8 were only slightly induced.

The microarray data confirmed the finding that propoxur induces oxidative stress (Seth
et al. 2001). This might be due to lipid peroxidation. The induced oxidative stress seems
to be so high that it induces apoptosis. The metabolism of propoxur via Phase I detoxifi-
cation could not be seen in the embryos (Abd-Elraof et al. 1981).

1,2-Dibromoethane

Dibromoethane is a well-known carcinogen in rats and mice. It is known to be metabo-
lized in the liver by cytosolic glutathione-S-transferase into S-2-bromoethylglutamthione,
a glutathione (GSH) conjugate. Microsomal oxidation produces bromoacetaldehyde, which
also produces a conjugate with GSH. It is suggested that microsomal metabolites prefer-
entially bind to proteins while the gluthatione conjugates prefer to bind to DNA (White
et al. 1983; Botti et al. 1989). In the microarray data the microsomal glutathione-s-
transferase was induced (mgst1). In the gene function analysis the proteasomal degra-
dation complex was down regulated (Appendix A). This effect of dibromoethane has not
been shown till now. A DNA damaging effect could not be detected (White et al. 1983;
Botti et al. 1989). In rat liver mitochondria, dibromoethane disrupts oxidative phosphory-
lation via respiratory enzyme inhibition (Thomas et al. 2001). This effect could also not
be seen in the microarray data.

In the zebrafish embryos, dibromoethane seems to be metabolized via microsomal
oxidation. This was indicated by the up regulation of mgst1. Several genes of the pro-
teasome complex were down regulated. Further effects could not be identified. The used
concentration might be to small to induce further toxic effects in the zebrafish embryos.
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6.1.2 Clustering and Gene Co-regulation

The comparative and gene co-regulation analysis tries to identify groups of compounds
which share similar modes of action. This can help to gain new insights into the modes
of action of the compounds. In the following, I summarize the findings from the cluster
analysis (Chapter 5.1.1) and the co-regulation analysis (Chapter 5.1.2), and investigate
the common modes of action.

Methoxychlor and Esfenvalerate

Methoxychlor and esfenvalerate were clustered together by almost all clustering methods
applied. They also had an above average number of co-regulated transcripts (Chapter
5.1.2). The pathways detected in the gene function analysis gave also quite similar results
(Appendix A, Appendix A. The proteasomal degradation pathway was activated for both
compounds. The FGF signaling pathway and the BMP signaling pathway were down-
regulated in both cases. In contrast, the RNA degradation pathway was down-regulated
in the esfenvalerate data but upregulated in the methoxychlor data. The gene function
analysis of the co-regulated genes led to the assumption that both compounds interact
with G-proteins. GTPase activity, Gap-junctions, and fatty acid turnover can all be linked
to G-protein signaling (Rossignol 1991; Rouach et al. 2006; Pashkov et al. 2011). It is
known that esfenvalerate influences calcium and sodium channels, presumably through
interactions with G-proteins (Rossignol 1991). The real mode of action of methoxychlor
is still unclear, but there are first hints that it also interacts with G-proteins and thereby
alters the calcium flux (Wu et al. 2006). The changes in the proteasome degradation
pathway, the RNA degradation pathway, and the IL2 and IL6 pathways might be part of
the secondary response since no direct effects of esfenvalerate or methoxychlor on these
pathways are known.

Chlorophenol and Propoxur

Chlorophenol and Propoxur cluster together and also share an above-average number of
co-regulated genes (Chapter 5.1.2). The two compounds express the highest amount of
apoptotic genes, and they have been the only compounds with a significant enrichment
of apoptotic genes (Chapter 5.1.5). The comparison of the gene function analysis results
does not suggest further shared possible modes of action besides apoptosis. Therefore, it
can be assumed that these two compounds share the same ’level’ of toxicity rather than
the same mode of action.

Dimethylphenol and Dibromoethane

In the cluster analysis, dimethylphenol and dibromoethane seem to share a similar gene
expression pattern (Chapter 5.1.1), although they do not share a significant amount of
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co-regulated genes. In the gene function analysis of the data, some similarities were also
obvious. Both compounds down-regulated the proteasome and both showed a decreased
activity in the microtubule-based movement and process. It is known that both com-
pounds have an effect on the mitochondrial membrane potential. I could not identify a
link between the two compounds and the down-regulation of the proteasome. However,
it is known that rotenon, a electron-transport-chain complex I inhibitor, causes protea-
some inhibition. Chou et al. 2010 showed that rotenon induces mitochondrial inhibition,
reactive oxygen species, reactive nitrogen species, influences the microtubule assembly,
and inhibits the proteasome. How these effects are linked and what causes the protea-
some inhibition is unclear. Nevertheless, based on the gene function analysis results of
dimethylphenol and dibromoethane, I assume that these compounds act through a similar
toxicity mechanism as rotenon.

Chlorophenol and Dimethylphenol

Chlorophenol and dimethylphenol show no similarity in the cluster analysis but in the co-
regulation analysis. The gene function analysis of the co-regulated genes resulted mostly
in pathways involved in regulation of DNA damage (Chapter 5.1.2). In the gene function
analysis results of the whole data set, both compounds also shared several pathways (Ap-
pendix A, Appendix A). P53 signaling, glycineserine and threonine metabolism, senes-
cence and autophagy, and androgen receptor signaling pathways were induced. These
pathways could also indicate a high degree of DNA damage. Therefore, this leads me to
the conclusion that the mode of action shared by chlorophenol and dimethylphenol seems
to be DNA damage. For both compounds, no direct effects on the DNA are known. Both
compounds induced reactive oxygen species suggesting that ROS might be the cause of
the induced DNA damage (COOKE et al. 2003). Since both compounds are substituted
phenols, an effect based on the phenol group can also not be excluded.

Chlorophenol and Dibutylphthalate

Chlorophenol and dibutylphthalate have no similarity based on the clustering of the gene
expression patterns, but they share a significantly large number of genes. Interestingly,
the number of co-regulated genes was significant for genes which are expressed only
after treatment with these two compounds (Chapter 5.1.2). The gene function analysis of
these genes did not lead to significant results. A comparison of the regulated pathways
also showed no similarities (Appendix A). Therefore, the shared mode of action remains
unclear. Both compounds act as estrogen receptor agonists, but an analysis of the lists of
co-regulated genes could not proof this. A secondary effect, such as induction of apoptosis
or response of the immune system, could be the cause, but this could not be confirmed
either with the data.
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6.1.3 Biomarker genes

The goal of this study was to identify new biomarker genes that are specific for different
modes of action. I used the results of the microarray analysis to identify compounds
sharing toxic mechanisms (Chapter 6.1.1 and Chapter 6.1.2). Compounds with the same
modes of action were than used to identify toxicity specific biomarker genes. This was
done by searching for genes that were highly expressed only in these compounds. Since a
biomarker gene should change significantly only for a specific mode of action, I decided
to focus on highly expressed genes.

Disruption of Mitochondrial Respiration

An effect on the mitochondrial respiration could be seen in the microarray results of
chlorophenol, dibutylphthalte, dibromoethane, and dimethylphenol. When all compounds
were taken into account, only one gene came up as possible biomarker gene (Table 6.2).
This gene encodes a membrane-bound protein which is a member of the ELO family. This
proteins participate in the biosynthesis of fatty acids. Elovl4 plays an important role in
photoreceptor cells. In NIH3T3 and HEK293 cells elovl4 is localized preferentially to the
endoplasmic reticulum (ER) and was not found in the mitochondria (ßcitealt Karan2004).
Nothing is known about the relationship between mitochondrial respiration and elovl4.
Therefore, I decided to further specify my list of compounds. I excluded compounds
which showed no clear effect on the mitochondrial respiration.
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Table 6.2: Expression values (M-value) of possible biomarker genes for disruption of
mitochondrial respiration when chlorophenol, dimethylphenol, dibutylphthalate, and di-
bromoethane were taken into account.

Since the effect of dibromoethane on the mitochondrial respiration was only found
indirectly by co-regulation of dimethylphenol, I decided to exclude the compound. The
gene stathmin-2 (stmn2b) was highly repressed (Table 6.3). Stmn2b (previous name:
SCG10) is neuron-specific, membrane-associated, and concentrated in growth cones. Its



6.1 10 COMPOUND STUDY 101

expression is high in the developing nervous system (Riederer et al. 1997). In the litera-
ture, no direct link between stathmin-2 and the mitochondrial respiration could be found.
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Table 6.3: Expression values (M-value) of possible biomarker genes for disruption of the
mitochondrial respiration when chlorophenol, dimethylphenol and dibutylphthalate were
taken into account.

Dibutylphthalte is the only oxidative phorsohorylation uncoupler, all other compounds
seem to rather act as inhibitors of the electron-transport-chain. When dibutylphthalate was
excluded, more genes could be identified as potential biomarker genes (Table 6.4). Espe-
cially the mitochondrial uncoupling protein 4 (UCP4) and the ATPase atp1a1a.4, might be
good candidates for biomarker genes. It is known that uncoupling proteins are regulated
by ATP. Furthermore, an impairment of the mitochondrial respiration reduces the level of
ATP and thereby induces uncoupling proteins (Criscuolo et al. 2006). The ATPase is part
of the mitochondrial respiration system and a regulation in case of a disruption can be
assumed. For the other genes, no hints of a regulation of mitochondrial respiration could
be found in the literature.

The list of identified genes needs to be further analyzed and validated. Based on
the literature data, however, ucp4 and atp1a1a.4 seem to be good candidates as possible
biomarker genes for the disruption of the mitochondrial respiration.

Estrogen Receptor Activity

Only chlorophenol and dibutylphthalte effected estrogen receptor activity as shown by
changes of the known biomarker gene vitellogenin (Table 6.5). It is known that vitel-
logenin is regulated in different fish species in an estrogen specifc manner and is there-
fore a good biomarker gene for estrogen receptor activity (Sumpter and Jobling 1995).
No other evidence strengthened this hypothesis. However, one would assume that both
compounds should display stronger similarities regarding other modes of action. The two
compounds regulated over 200 genes in a similar way whose expression is not effected
by any of one of the other compounds. 32 of them are highly expressed, but none of them
could be linked to the estrogenic system (Table 6.6).
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Besides vitellogenin, no other good candidate emerged as possible biomarker genes
for estrogen receptor activity. Consequently, an extension of the data set with compounds
that act more specifically on the estrogen receptor would be required to obtain a better
understanding of regulated pathways and might lead to a more promising set of biomarker
genes.
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Table 6.5: The expression levels (M-value) of vitellogenin in the dibutylphthalate and
chlorophenol microarrays.

Pregnan-X-Receptor Activity

In our data set, two compounds seem to have an effect on the pregnan-x-receptor (PXR)
activity (Tabel 6.7). Dibutylphthalate and flucythrinate showed an up-regulation of the
cyp3a65 gene. This gene is known to be regulated by PXR (Tseng et al. 2005). Unfor-
tunately, no other evidence could be found to proof this. Additionally, no other gene was
highly deregulated only by this two compounds. Therefore, it is not possible to suggest
further biomarker genes specific for PXR activity.

Acetylcholinesterase Inhibition

Acetylcholinesterase (AChE) inhibition is a well studied toxicological mechanism. In
our data, I was not able to detect any AChE inhibitory effect. It is possible that none of
the 4 predicted AChE inhibitors were able to inhibited AChE in the zebrafish embryos,
probably due to a low sensitivity of the embryos. On the other hand, very little is known
about the effects of AChe inhibitors on gene expression levels. Although it is not possible
to clearly determine whether specific compounds acted as AChE inhibitors, I still tried
to detect possible biomarker genes. Propoxur (Smulders et al. 2003), chlorophenol(Liu
and Liu 2011), dibutylphthalate (Jee et al. 2009), and chlorpyrifos (Sandahl et al. 2005)
are the compounds predicted to act as AChE inhibitors. I excluded chlorpyrifos from
that list because there was an obvious problem with the uptake of the compound in the
embryo (Chapter 6.1.1). In Table 6.8 genes are shown with were highly regulated only in
the three remaining compounds. Hspb11 is a promising candidate and is currently under
investigation by a collaboration partner as possible biomarker gene for effects on AChE
(data not published yet). This might indicate that the compounds had an effect on AChE
activity, and that the other genes might also be good candidates as biomarker genes for
this effect.



6.1 10 COMPOUND STUDY 105

dibutylphthalate

chlorophenol

E
ns

em
bl

D
es

cr
ip

tio
n

G
en

e
N

am
e

-2
.1

-6
.2

4
N

eu
ro

ge
ni

c
di

ff
er

en
tia

tio
n

fa
ct

or
2

(N
eu

ro
D

2)
[S

ou
rc

e:
U

ni
Pr

ot
K

B
/S

w
is

s-
Pr

ot
;A

cc
:Q

9W
6C

8]
ne

ur
od

2
-1

.6
9

-5
.5

5
re

tin
os

ch
is

in
[S

ou
rc

e:
R

ef
Se

q
pe

pt
id

e;
A

cc
:N

P_
00

10
03

43
8]

rs
1

-2
.1

3
-5

.0
3

hy
po

th
et

ic
al

pr
ot

ei
n

L
O

C
61

92
66

[S
ou

rc
e:

R
ef

Se
q

pe
pt

id
e;

A
cc

:N
P_

00
10

28
91

9]
zg

c:
10

99
65

-1
.5

5
-4

.6
7

re
co

ve
ri

n
[S

ou
rc

e:
R

ef
Se

q
pe

pt
id

e;
A

cc
:N

P_
00

10
25

41
9]

zg
c:

11
41

80
-1

.5
5

-3
.8

4
N

eu
ro

ge
ni

c
di

ff
er

en
tia

tio
n

fa
ct

or
6-

A
(N

eu
ro

D
6-

A
)(

Pr
ot

ei
n

at
on

al
ho

m
ol

og
2-

A
)

[S
ou

rc
e:

U
ni

Pr
ot

K
B

/S
w

is
s-

Pr
ot

;A
cc

:Q
6N

Y
U

3]
at

oh
2a

-1
.8

4
-3

.2
7

re
co

ve
ri

n
[S

ou
rc

e:
R

ef
Se

q
pe

pt
id

e;
A

cc
:N

P_
95

62
58

]
rc

v1
-1

.6
-2

.3
2

L
O

C
56

83
55

-1
.7

-1
.8

5
hy

al
ur

on
id

as
e

PH
-2

0
[S

ou
rc

e:
R

ef
Se

q
pe

pt
id

e;
A

cc
:N

P_
00

10
74

15
4]

sp
am

1
-1

.6
7

-1
.6

7
A

5P
N

32
_D

A
N

R
E

-1
.6

6
-1

.5
8

Z
in

c
fin

ge
rp

ro
te

in
D

PF
3

[S
ou

rc
e:

U
ni

Pr
ot

K
B

/S
w

is
s-

Pr
ot

;A
cc

:A
9L

M
C

0]
dp

f3
-2

.0
8

-1
.5

6
ad

en
om

at
os

is
po

ly
po

si
s

co
li

[S
ou

rc
e:

R
ef

Se
q

pe
pt

id
e;

A
cc

:N
P_

00
11

37
31

2]
ap

c
1.

57
1.

53
C

ha
rg

ed
m

ul
tiv

es
ic

ul
ar

bo
dy

pr
ot

ei
n

5
(C

hr
om

at
in

-m
od

if
yi

ng
pr

ot
ei

n
5)

[S
ou

rc
e:

U
ni

Pr
ot

K
B

/S
w

is
s-

Pr
ot

;A
cc

:Q
7T

33
9]

ch
m

p5

1.
98

1.
56

Tr
an

sm
em

br
an

e
pr

ot
ei

n
55

B
-B

(E
C

3.
1.

3.
-)

(T
yp

e
Ip

ho
sp

ha
tid

yl
in

os
ito

l4
,5

-b
is

ph
os

ph
at

e
4-

ph
os

ph
at

as
e-

B
)(

Pt
dI

ns
-

4,
5-

P2
4-

Pt
as

e
I-

B
)[

So
ur

ce
:U

ni
Pr

ot
K

B
/S

w
is

s-
Pr

ot
;A

cc
:Q

66
I5

1]
T

55
B

B
_D

A
N

R
E

2.
92

1.
57

hy
po

th
et

ic
al

pr
ot

ei
n

L
O

C
41

52
23

[S
ou

rc
e:

R
ef

Se
q

pe
pt

id
e;

A
cc

:N
P_

00
10

02
13

3]
zg

c:
86

75
7

3.
05

1.
68

In
ve

rs
in

[S
ou

rc
e:

U
ni

Pr
ot

K
B

/S
w

is
s-

Pr
ot

;A
cc

:Q
8U

V
C

1]
in

vs
2.

54
1.

69
hy

po
th

et
ic

al
pr

ot
ei

n
L

O
C

41
52

23
[S

ou
rc

e:
R

ef
Se

q
pe

pt
id

e;
A

cc
:N

P_
00

10
02

13
3]

zg
c:

86
75

7
1.

53
1.

75
hy

po
th

et
ic

al
pr

ot
ei

n
L

O
C

10
01

49
41

9
[S

ou
rc

e:
R

ef
Se

q
pe

pt
id

e;
A

cc
:N

P_
00

11
37

52
7]

N
P_

00
11

37
52

7.
1

1.
88

1.
82

3.
34

1.
89

as
pa

ra
gi

ne
sy

nt
he

ta
se

[S
ou

rc
e:

R
ef

Se
q

pe
pt

id
e;

A
cc

:N
P_

95
74

57
]

as
ns

1.
82

2.
11

E
st

er
hy

dr
ol

as
e

C
11

or
f5

4
ho

m
ol

og
(E

C
3.

1.
-.-

)[
So

ur
ce

:U
ni

Pr
ot

K
B

/S
w

is
s-

Pr
ot

;A
cc

:Q
6N

W
E

0]
zg

c:
85

78
9

3.
01

2.
12

w
u:

fk
66

d0
5

3.
15

2.
24

st
an

ni
oc

al
ci

n-
2

[S
ou

rc
e:

R
ef

Se
q

pe
pt

id
e;

A
cc

:N
P_

00
10

14
82

7]
st

c2
4.

31
2.

32
ne

ut
ra

la
m

in
o

ac
id

tr
an

sp
or

te
rA

[S
ou

rc
e:

R
ef

Se
q

pe
pt

id
e;

A
cc

:N
P_

00
10

02
51

3]
sl

c1
a4

5.
19

2.
44

rh
om

bo
id

do
m

ai
n-

co
nt

ai
ni

ng
pr

ot
ei

n
1

[S
ou

rc
e:

R
ef

Se
q

pe
pt

id
e;

A
cc

:N
P_

00
10

17
61

4]
zg

c:
11

02
66

2.
45

2.
49

Pr
ot

ei
n

sp
in

st
er

ho
m

ol
og

1
(S

pi
ns

te
r-

lik
e

pr
ot

ei
n)

(P
ro

te
in

no
t

re
al

ly
st

ar
te

d)
[S

ou
rc

e:
U

ni
Pr

ot
K

B
/S

w
is

s-
Pr

ot
;A

cc
:Q

7Z
U

13
]

sp
ns

1

3.
2

2.
56

pr
ol

ac
tin

[S
ou

rc
e:

R
ef

Se
q

pe
pt

id
e;

A
cc

:N
P_

85
21

02
]

pr
l

2.
62

2.
58

N
ov

el
pr

ot
ei

n
si

m
ila

r
to

ve
rt

eb
ra

te
ca

rn
iti

ne
pa

lm
ito

yl
tr

an
sf

er
as

e
1A

(L
iv

er
)

(C
PT

1A
)

Fr
ag

m
en

t
[S

ou
rc

e:
U

ni
Pr

ot
K

B
/T

rE
M

B
L

;A
cc

:B
7Z

C
Z

8]
si

:c
h2

11
-2

36
l1

4.
3

2.
63

2.
67

Z
gc

:1
12

39
9

pr
ot

ei
n

[S
ou

rc
e:

U
ni

Pr
ot

K
B

/T
rE

M
B

L
;A

cc
:A

7M
C

A
6]

zg
c:

11
23

99
1.

52
2.

76
m

al
on

yl
-C

oA
de

ca
rb

ox
yl

as
e,

m
ito

ch
on

dr
ia

l[
So

ur
ce

:R
ef

Se
q

pe
pt

id
e;

A
cc

:N
P_

00
10

82
97

2]
zg

c:
16

29
77

2.
06

3.
16

hy
po

th
et

ic
al

pr
ot

ei
n

L
O

C
76

81
72

[S
ou

rc
e:

R
ef

Se
q

pe
pt

id
e;

A
cc

:N
P_

00
10

70
78

3]
zg

c:
15

39
11

4.
83

3.
17

H
ep

at
oc

el
lu

la
r

ca
rc

in
om

a
do

w
n-

re
gu

la
te

d
m

ito
ch

on
dr

ia
l

ca
rr

ie
r

ho
m

ol
og

A
[S

ou
rc

e:
U

ni
Pr

ot
K

B
/S

w
is

s-
Pr

ot
;A

cc
:Q

1E
C

W
7]

zg
c:

13
67

52

5.
66

3.
39

as
pa

ra
gi

ne
sy

nt
he

ta
se

[S
ou

rc
e:

R
ef

Se
q

pe
pt

id
e;

A
cc

:N
P_

95
74

57
]

as
ns

Ta
bl

e
6.

6:
T

he
ex

pr
es

si
on

le
ve

ls
(M

-v
al

ue
)o

fg
en

es
ex

pr
es

se
d

on
ly

in
th

e
di

bu
ty

lp
ht

ha
la

te
an

d
ch

lo
ro

ph
en

ol
m

ic
ro

ar
ra

ys
.



106 6 DISCUSSION

di
bu
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ha

la
te

flu
cy

th
ri

na
te

Ensembl Description Gene Name

4.99 2.39
cytochrome P450, family 3, subfamily
A, polypeptide 65 [Source:RefSeq pep-
tide;Acc:NP_001032515]

cyp3a65

Table 6.7: The expression value (M-value) of cyp3a65 in dibutylphthalate and flucythri-
nate

Glutathione Metabolism

Some compounds do not have direct toxic effects on the organism since they are directly
metabolized to less harmful substances. One of the ways to detoxify compounds is by
the glutathione metabolism. In our study, propoxur (Chapter 6.1.1) and chlorthalonil
(Chapter 6.1.1) showed an effect on this metabolic pathway. Although the glutathione
metabolism should protect the organism, it can also be the cause for toxicity. The pro-
duced metabolites can be more toxic than the original compounds. Additionally, the glu-
tathione, which is needed for the metabolic process, can be depleted. Glutathione is used
in many metabolic and biochemical reactions, and a lack of the protein impairs normal
cell functions (Di Giulio 2008). For this reason, I decided to also look for biomarker
genes specific for effects on the glutathione metabolism. Table 6.9 summarizes the re-
sults. UDP glycosyltransferase 1 (ugt1ab), glutathione peroxidase 1 (gpx1a), glutathione
S-transferase pi (gstp1) are all known to be a part of the glutathione metabolic pathway
(Di Giulio 2008). Therefore, these genes are the most promising candidate biomarker
genes. However, further investigations are necessary to test whether the expression levels
of these genes are really glutathione dependent.
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Induction of Apoptosis

Apoptosis can be induced by many compounds. In most cases, apoptosis occurs as a sec-
ondary toxicity effect in response to an impairment of another pathway. In the microarray
analysis, I defined a set of genes specific for apoptosis based on Gene Ontology terms
(Chapter 5.1.5). This list consisted of 271 transcripts. A comparison of differentially reg-
ulated genes with this list suggested that propoxur and chlorophenol induced apoptosis.
During the analysis of the regulated pathways, dimethylphenol also appeared to induce
apoptosis. This was confirmed by the strong induction of the known apoptosis biomarker
genes, caspase 8 and tp53 (Chapter 6.1.1). In order to get a better set of genes, I searched
for genes that were only highly regulated by chlorophenol, propoxur, and dimethylphe-
nol. Table 6.10 contains the resulting gene list. For rasd1, mmp, thioredoxin, and tp53
a connection with apoptosis could be found in the literature (Vaidyanathan et al. 2004;
Nordskog et al. 2003; Masutani et al. 2005). This suggests that the list of genes presented
in Table 6.10 is a good indicator for induced apoptosis.

6.1.4 Linkage to other studies

In the present work, I tried to link our microarray data to other studies previously per-
formed in zebrafish. Only few studies have been published using the early developmental
stage and none which employed fish at the same stage and the same microarray system.
Nevertheless, I could link the data from our study with two other studies. As described in
Chapter 5.1.4, I mapped the genes of the different platforms to our Agilent system. This
renders the datasets comparable on the basis whether a gene is de-regulated or not. The
expression levels can not be compared and any multivariate statistics analysis, such as
clustering, is also not possible.

Biosensor Data

When I compared the data of the biosensor study (Yang et al. 2007) with our 10 com-
pound study, I could find only four compounds that showed similarity (Chapter 5.1.4).
Chlorophenol and TCDD have 188 regulated transcripts in common. The gene function
analysis of these genes revealed an effect on the canonical WNT and FGF signaling path-
ways. Biological processes in development were also affected. In the literature, no simi-
larity of the effects of the two compounds could be found. TCDD is known to influence
the canonical WNT pathway through the aryl hydrocarbon receptor in zebrafish (Mathew
et al. 2008). However, such an effect has not been previously shown for chlorophenol.
The only link between TCDD and chlorophenol I could find is that TCDD is known to
be a trace by-product in the synthesis of chlorophenols (Beischlag et al. 2008). However,
it is not to be expected that the amount of TCDD in our used chlorophenol sample (Pes-
tanal analytical standard grade) is so high that it can alter gene expression. To answer the
question why these two compounds regulate these genes, further detailed experiments are
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necessary. In case of the other two compounds, cadmiumchloride and dibromoethane, the
number of co-regulated genes is so small (10 transcripts) that no gene function analysis
could be performed. In the literature no evidence of shared modes of action could be
found. Even if they co-regulated more genes than most other compounds in these studies,
the small number might still be simply by chance. In general, it proved to be quite diffi-
cult to link data sets of different studies. Especially when the used microarray platforms
are so different (Compugen 22k and Agilent 4x44k) with only around 7000 genes shared
between both arrays.

Immune Response Data

Based on the list of genes involved in immune response published by Stockhammer et al.
2009, all compounds showed an effect on the immune system. This is not surprising
as the immune system is the defense system that protects the organism from external
induced damage. With this analysis, I hoped to identify compounds that have a specific
immunotoxic effect. Whether none of the compounds were immunotoxic or the set of
genes was too generic for this purpose remains unclear. Genes like tp53 and several
caspases are contained in the list of immune response genes. Therefore, it can be assumed
that this list describes a very broad gene response including apotosis and therefore is not
specific for the basic immune reaction.

6.1.5 Conclusion

In this study I analyzed the gene expression data of zebrafish embryos treated from 24-
48 hpf with 10 different compounds. I used multivariate statistical methods to identify
compounds with similar expression patterns. Furthermore, I tried to identify similari-
ties by counting the number of co-regulated genes. To understand the modes of action of
the compounds, I performed a gene function analysis of the significantly differentially ex-
pressed genes. I validated my findings using literature data. In order to identify biomarker
genes, I grouped the compounds based on the identified modes of action and searched for
genes that were only de-regulated after treatment with compounds with the same mode of
action. I defined sets of biomarker genes for the modes of action: disruption of mitochon-
drial potential, Acetylcholinesterase inhibition, Glutathione metabolism, and induction
of apoptosis. These lists of biomarker genes are interesting hypotheses but require fur-
ther validation through experiments. I also tried to link the data obtained from the ten
compounds to other toxicity microarray studies performed in zebrafish embryos. Unfor-
tunately, the comparability of the used microarray platforms was too small to obtain any
usable results.

In this work, I described the modes of action of 10 different compounds. For some of
the compounds, this was the first time they have been studied in a fish species. I could
show that most compounds act through several modes of action at the same time. The
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detected toxicity mechanisms were not always expected based on the available literature.
This underlines how important it is to first identify the modes of action and search for
biomarker genes based on these results. I defined lists of biomarker genes for four differ-
ent modes of action. In this study, we showed that the zebrafish embryo is a very useful
tool to study the toxicity of chemical compounds. Nevertheless, my results also show
that it needs to be taken into account that the chorion might influence the uptake of a
compound.

6.2 Whole Genome Array

During my studies, I realized that the commercially available zebrafish microarrays al-
ways lack several important genes. To overcome this problem, I designed an array that
covers almost the whole zebrafish genome. This array design led to an improvement of
around 10% compared to the Agilent v2 and around 5% to the Agilent v3 array (Chapter
5.2.1). An update of the whole genome array based on the new gene build Zv9 might
further increase this factor. I could also show that our new array can be used for very
early stages in the development like gastrulation (Chapter 5.2.2). One disadvantage of my
design is that due to the number of oligos needed to cover the whole genome, it consists
of two arrays. Therefore, the RNA samples need to be split. This might introduce errors
as the sample can never be completely homogeneous. In order to investigate possible neg-
ative effects of this design, I used spike-in controls. I could show that splitting the RNA
sample after the labeling process induces less errors than splitting the samples before the
labeling process (Chapter 5.2.3). For dye swap experiments, the samples are usually split
before the labeling process. Dye swap experiments are very common in microarray anal-
ysis and the introduced errors are known to be not problematic (Simon et al. 2004). The
newly designed whole genome array can clearly improve microarray experiments. Split-
ting the RNA is not a major problem and data from the first studies performed with this
array look very promising (data not published yet).

6.3 Transcription Factor Study

For this study, I analyzed the expression patterns of the transcription factors during ze-
brafish development, in the adult brain, and muscle tissue. In the following, I summarize
the results and present a list of biomarker genes specific for 5 different developmental
stages and the examined tissue samples.

6.3.1 Developmental Stages

The analysis of the different developmental stages showed that in all stages a similar
amount of around 2670 transcription factors is expressed. In the cluster analysis, three
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main clusters were detectable (Chapter 5.3.5. The very early stages (2-cell, 30%- epiboly)
formed a cluster as well as the middle embryonic stages (1-6 somites, 24hpf and 48hpf),
and the late embryonic stage (5 dpf) dataset represented the third group. This suggests
that at least two major transcriptional regulation changes exist. The first at the beginning
of the early gastrulation, and a second one when the embryos hatch.

Gene Ontology Analysis

To further investigate the transcriptional changes during development, I decided to per-
form a more detailed analysis of the changes of the expression over time. I aimed at
detecting transcription factors that showed a similar pattern in their expression over time.
Furthermore, I wanted to know which patterns (profiles) are the most common ones. With
the help of the program STEM (Ernst and Bar-Joseph 2006), I could detect 11 signifi-
cantly enriched profiles (Chapter 5.3.6). To further evaluate the profiles, I performed a
Gene Ontology analysis with the genes associated with each profile. The results are pre-
sented in Table 6.11 and Appendix B. Profiles having the highest expression (peak) at the
2-cell and 30% epiboly stage were related with gastrulation and protein metabolism. Tay
et al. 2006 showed also a peak in protein expression at around 6 hpf. Profiles describing a
similar expression over the whole development (Profile 49 and 48) were linked with organ
development. The profiles that peaked at the 5 dpf stage were enriched in nervous system
development and biosynthesis according to the GO analysis.

Time Depended Biomarker Genes

Based on the results of the developmental stages in the transcription factor study, I defined
a set of biomarker genes that are specific for each of the six developmental stages used.
289 transcription factors were expressed only in one stage. These biomarker genes can be
used to identify, for example, developmental delays in compound exposure experiments.
The number of specific transcripts for each stage can be found in Table 6.12.

The early 2-cell and the late 5dpf stage showed the highest amount of specifically
expressed transcription factors. Due to the size of the list, it is only included on the
supplementary CD.
In order to detect whether certain treatments caused a developmental delay, I used the
24 hpf biomarker gene set on the 10 compound data. However, none of the genes was
differentially regulated. This might be because the concentrations were chosen not to
cause any phenotypic effect.

6.3.2 Tissues

I analyzed four different tissue samples. The tail sample represented a muscle rich tissue;
the other three samples were whole head, representing the brain, and two specific parts
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2-cell 30% epiboly 1-6 somites 24 hpf 48 hpf 5 dpf
unique 119 40 27 6 16 81

Table 6.12: Stage specific expressed transcription factors

of the brain, the diencephalon and the telencephalon. In the cluster analysis, the head
sample clustered together with the 5dpf larva stage. Interestingly, the tail sample clustered
with the pre-gastrula stages. Further analysis revealed that this seems to be caused due
to bone and other tissue impurities in the tail sample. The two brain tissues shared no
high similarity with any of the developmental stages. They also did not show a high
similarity with the head, but as expected, they had more similarity with the head than
with the tail sample (Chapter 5.3.5). Interestingly, the diencephalon showed the highest
amount of expressed transcription factors (2666). The other tissues were slightly bellow
(head 2391, telencephanoln 2443, tail 2493) (Chapter 5.3.4). Based on the results of the
microarray analysis, I defined sets of biomarker genes specific for the four tissues. The
lists are shown in Appendix C. Transcription factors expressed in the head sample were
not excluded from being a possible biomarker gene specific for the telencephalon or the
diencephalon and the other way around.

6.3.3 Conclusion

The transcription factor study should help to obtain deeper insights into the transcriptional
regulation during zebrafish development. Additionally, we were also interested in the dif-
ferent transcription factors expressed in muscle and brain. For this reason, I designed a
new microarray consisting only of transcription factors. We performed microarrays for
6 different developmental stages and four different tissue samples. In order to be able to
compare all the different datasets, I developed a new analysis method. My approach is
able to detect expressed transcripts without requiring a control dataset but still makes use
of both color channels. In general, around 2670 transcription factors were expressed in the
different developmental samples. I could detect two major changes in the transcriptional
expression pattern during the development. One at the beginning of gastrulation and a
second one at around 48 hpf when the embryos hatch. I could also detect groups of tran-
scription factors that exhibited a similar expression pattern over time. The Gene Ontology
analysis of the patterns revealed that transcription factors with highest expression before
gastrulation were mostly involved in protein metabolism. Transcription factors expressed
at similar levels during the whole development period were likely involved in organ de-
velopment, and transcription factors peaking at the end of the development seemed to be
mostly involved in the nervous system development and biosynthesis. Based on the re-
sults of the microarray analysis, I defined biomarker genes specific for the 6 developmen-
tal stages used in this study. The analysis of the tissue samples revealed that expression
patterns of the adult tail shared high similarity with pre-gastrula stages whereas the adult
head showed a similar expression like the 5 dpf larva. Further analysis revealed that this
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seems to be caused due to bone and other tissue impurities in the tail sample. In all tis-
sue samples, more then 2400 transcription factors were expressed. With the help of the
microarray results, I designed biomarker genes specific for diencephalon, telencephalon,
whole brain (head sample), and for tail tissue (tail sample). For most of the biomarker
genes, I could find evidence that they are expressed in certain tissues or stages, but in
all cases, it is known that they are also expressed in other stages or tissues. The detec-
tion limit of microarrays makes it quite difficult to use them for identification of specific
biomarker genes. If genes are only expressed in a few cells, microarrays are not able to
detect an expression signal. This means that genes need to be either highly expressed
in a few cells or at moderate levels across the whole tissue or embryo. Furthermore, we
used only four different tissues. Consequently, we cannot exclude the possibility that a
transcription factor is expressed in any other tissue. The same applies for the biomarker
genes specific for the developmental stages. The biomarker genes are not specific in the
sense that they are expressed uniquely in one specific tissue or stage. They rather repre-
sent transcription factors exhibiting a striking expression pattern specific for only one of
the samples in our study. Since transcription factors are key players in the regulation of
gene transcription, the biomarker genes identified here may still play an important role in
the transcriptional regulation in their associated stage or tissue.
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Appendix B

GO Analysis Figures

Figure B.1: Expression signals and GO analysis of profile 39.



150 B GO ANALYSIS FIGURES

Figure B.2: Expression signals and GO analysis of profile 43.

Figure B.3: Expression signals and GO analysis of profile 45.
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Figure B.4: Expression signals and GO analysis of profile 47.

Figure B.5: Expression signals and GO analysis of profile 49.
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Figure B.6: Expression signals and GO analysis of profile 44.

Figure B.7: Expression signals and GO analysis of profile 48.
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Figure B.8: Expression signals and GO analysis of profile 18.

Figure B.9: Expression signals and GO analysis of profile 41.
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Figure B.10: Expression signals and GO analysis of profile 38.

Figure B.11: Expression signals and GO analysis of profile 23.
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Appendix C

Tissue Specific Transcription Factors
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