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Summary 

The neurotrophin receptor TrkB has been shown to regulate neuronal survival, 

migration, differentiation and innervation in the peripheral and central nervous system. In the 

mature nervous system, it can modulate synaptic plasticity and excitatory neuron-specific 

deletion of Trkb results in compromised learning ability and impaired long-term potentiation. 

TrkB is also expressed in interneurons and was reported to regulate interneuron 

differentiation, synapse assembly, maintenance and development of inhibitory networks. 

Given the heterogeneity of interneurons, cell-specific approaches are required to study the 

function of TrkB in different interneuronal subtypes. 

This study investigates the role of TrkB in a specific subset of interneurons that express 

cholecystokinin (CCK). Trkb was specifically deleted from CCK-neurons by crossing a 

transgenic BAC-Cre mouse line that expresses Cre under the CCK-promotor (BAC-CCK-Cre 

line) to a Trkb-floxed mouse line. CCK-Cre specific Trkb-knockout mice (TrkbCCK-KO mice) 

develop mature-onset central obesity and show hyperactivity of the HPA axis with peripheral 

signs of hypercortisolism. Analysis of food intake revealed that central obesity is not 

associated with hyperphagia but is a cause of hypercortisolism. Furthermore, we show that 

hypercortisolism-induced obesity is associated with increased leptin and insulin levels. 

Hyperactivity of the HPA axis in TrkbCCK-KO mice is associated with increased activity of the 

central HPA axis regulator, the paraventricular nucleus of the hypothalamus (PVN). PVN 

activity is strictly regulated by surrounding inhibitory interneurons and glucocorticoid 

feedback inhibition. We show that GABAergic interneurons in the vicinity of the PVN are 

recombined in the BAC-CCK-Cre line and colocalize with the glucocorticoid receptor GR. 

Furthermore, we present data indicating an impaired glucocorticoid feedback inhibition in 

TrkbCCK-KO mice. TrkB was previously shown to interact directly with the GR leading to 

enhanced phosphorylation of PLC 1 by TrkB. Analysis of mice with a mutation in either the 

PLC or SHC adaptor site of TrkB reveals that the phenotype observed here is dependent on 

PLC 1 signalling. Therefore we conclude that TrkB signalling in hypothalamic CCK-

interneurons integrates glucocorticoid feedback inhibition and is required for inhibitory 

control of PVN activity. 



  



Zusammenfassung 

Der Neurotrophinrezeptor TrkB reguliert Neuritenwachstum und Überleben, 

Migration und Differenzierung von Neuronen im peripheren und zentralen Nervensystem. 

Außerdem moduliert TrkB synaptische Plastizität im adulten Organismus. Das spezifische 

Entfernen dieses Rezeptors aus exzitatorischen Neuronen in Mäusen führt zu verminderter 

Lernfähigkeit und Langzeit-Potenzierung. TrkB wird auch in Interneuronen exprimiert und 

spielt eine wichtige Rolle in der Differenzierung, Synapsenbildung und -erhaltung dieser 

Zellen und in der Entwicklung und dem Erhalt von inhibitorischen Neuronennetzwerken. Da 

Interneuronen eine äußerst heterogene Gruppe bilden, sind zellspezifische Methoden 

notwendig, um die Funktion von TrkB in den verschiedenen Subtypen von Interneuronen zu 

untersuchen. 

Diese Arbeit untersucht die Rolle von TrkB in einem spezifischen Subtyp von 

Interneuronen, die Cholecystokinin (CCK) exprimieren. Trkb wurde spezifisch aus CCK-

exprimierenden Neuronen entfernt, indem eine BAC transgene Mauslinie, die die Cre-

Rekombinase unter dem CCK-Promotor exprimiert (BAC-CCK-Cre Linie), mit einer Trkb-

gefloxten Mauslinie gekreuzt wurde. CCK-Cre spezifische Trkb-Knockout Mäuse (TrkbCCK-KO 

Mäuse) entwickeln altersabhängige zentrale Fettleibigkeit, Hyperaktivität der Hypothalamus-

Hypophysen-Nebennierenrindenachse (HHNA) und chronischen Hypercortisolismus. 

Fettleibigkeit ist in diesen Mäusen nicht mit vermehrter Nahrungsaufnahme assoziiert, 

sondern ist eine Folge des Hypercortisolismus und von erhöhten Leptin- und Insulinwerten 

begleitet. Hyperaktivität der HHNA in TrkbCCK-KO Mäusen geht mit einer erhöhten Aktivität 

des zentralen Regulators der HHNA, dem Nucleus Paraventricularis (PVN), einher. Die 

Aktivität des PVN wird strikt durch lokale inhibitorische Interneurone und negative 

Rückkopplung durch Glukokortikoide reguliert. Wir zeigen hier, dass GABAerge Neuronen 

in der Nähe des PVN in der BAC-CCK-Cre Linie rekombiniert sind und mit dem 

Glukokortikoidrezeptor (GR) kolokalisieren. Das Entfernen von Trkb aus diesen Neuronen in 

TrkbCCK-KO Mäusen beeinträchtigt die hemmende Wirkung von Glukokortikoiden auf die 

Aktivität der HHNA. TrkB kann mit dem GR interagieren und dies verstärkt die 

Signaltransduktion über die PLC-Adaptorstelle des TrkB-Rezeptors. Die Analyse von 



Mauslinien mit einer Punktmutation der PLC- oder SHC-Adaptorstelle des TrkB-Rezeptors 

zeigt, dass die Regulierung der HHNA von einer funktionalen PLC-Adaptorstelle abhängig 

ist. Folglich ist die Signaltransduktion über TrkB in CCK-exprimierenden Interneuronen des 

Hypothalamus notwendig, um die Glukokortikoidrückkopplung im ZNS zu integrieren und 

die Aktivität der HHNA zu regulieren. 
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1.1 Neurotrophins and neurotrophin receptors  

1.1.1 Structure and interaction of neurotrophins and their receptors 

Neurotrophins are a small family of soluble growth factors that are important 

regulators of vertebrate nervous system development and maintenance. They were 

originally characterized by their role in target tissue innervation in the periphery. 

Innervating sensory and sympathetic neurons are dependent on neurotrophin support 

and thus the limited amount of neurotrophin expressed by a particular target tissue 

determines the extend of innervation of this tissue (Levi-Montalcini and Booker, 1960; 

Bibel and Barde, 2000; Huang and Reichardt, 2001). Moreover, neurotrophins are also 

expressed by most neurons where they regulate diverse functions including development, 

survival, axon outgrowth, neuronal function and synaptic plasticity (Reichardt, 2006).  

Four members of the neurotrophin family have been characterized in mammals – 

nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 

(NT3) and 4/5 (NT4/5) and two more members were found in fish – NT6 and NT7 

(Huang and Reichardt, 2001). The mature neurotrophins form stable non-covalently 

associated homodimers and are structurally very similar. They contain a structure 

referred to as ‘cysteine knot’, which consists of three disulfide bonds forming an actual 

knot between highly conserved β-strands that build the interface for dimerization. 

Receptor specificity is conferred by the highly variable N-terminus and other more spread 

residues (McDonald et al., 1991; Butte, 2001). Neurotrophins are initially synthesized as 

longer proforms (proneurotrophins) that rapidly homodimerize and are cleaved by furin 

and proconvertases into the mature form in the ER and Golgi. Proneurotrophins can also 

be secreted and have signalling capacity of their own that has opposing effects from their 

mature forms (discussed below). Moreover, proneurotrophins can be cleaved after 

secretion by enzymes in the extracellular space such as matrix metalloproteases or 

plasmin adding a further regulatory mechanism (Seidah et al., 1996; Lee et al., 2001; Teng 

et al., 2010).  
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Neurotrophins bind two different types of receptors (Figure 1.1 A): all 

proneurotrophins and, with lower affinity, mature neurotrophins can bind the p75 

neurotrophin receptor (p75NTR). In contrast, binding to the different Trks (tropomyosin-

receptor kinase), a subfamily of tyrosine kinase receptors, is specific to the different 

mature neurotrophins: NGF binds TrkA, BDNF and NT4/5 bind TrkB, and NT3 binds 

TrkC with high affinity and TrkA and TrkB with lower affinity (Bibel and Barde, 2000; 

Huang and Reichardt, 2001; Lee et al., 2001). 

The p75NTR receptor 

The p75NTR receptor is part of the tumour necrosis factor superfamily (TNFR-SF) 

(Huang and Reichardt, 2001) that is characterized by an extracellular ligand binding 

domain consisting of four repeats of a cysteine-rich domain (Figure 1.1 A) (Johnson et al., 

1986). Dimerization of p75NTR is a prerequisite for neurotrophin-induced signalling and 

occurs via a disulfide bridge between cysteine residues in the transmembrane domain. 

Binding of neurotrophins to the dimer induces separation of the two intracellular 

domains enabling interaction with intracellular signalling molecules (Vilar et al., 2009a, 

2009b). The intracellular domain of p75NTR has no catalytic activity but contains a death 

domain and interacts, depending on the ligand and cellular context, with different 

adaptor proteins (Reichardt, 2006).  

For instance, p75NTR can interact with sortilin leading to formation of a complex 

with high affinity for proneurotrophins. Activation of this complex by proneurotrophins 

induces apoptotic signalling (Lee et al., 2001; Nykjaer et al., 2004; Teng et al., 2005). 

Adaptor proteins binding to p75NTR include TRAF6 (TNF receptor associated factor), 

NRIF (neurotrophin interacting factor) and other factors that then induce Jun kinase 

signalling, p53 activation and apoptosis (Reichardt, 2006). Moreover, similar to the β-

amyloid precursor protein, the intracellular domain of p75NTR can undergo proteolytic 

sequential cleavage by α- and β- secretase. This releases part of the intracellular domain 

(ICD) together with NRIF that can subsequently translocate into the nucleus and activate 

transcription (Kenchappa et al., 2006). This pathway was proposed to be involved in axon 
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growth cone collapse via ICD dependent activation of the GTPase RhoA and myelin-

associated inhibitory factors as well as in axon repellent guidance cues via semaphorin 

and ephrin signalling (Schecterson and Bothwell, 2010). On the other hand p75NTR 

binding by neurotrophins can also induce activation of NF-кB (nuclear factor kappa-

light-chain-enhancer of activated B cells) and subsequent transcription of prosurvival 

genes (Reichardt, 2006). 

P75NTR also interacts with mature neurotrophins and their respective receptors. 

This interaction increases specificity for NGF and BDNF compared to NT3 and NT4/5 

and activates Trk-dependent survival signalling (Bibel et al., 1999). Moreover, interaction 

of p75NTR and Trks could be involved in regulating retrograde transport, ubiquitination 

and endocytosis of Trk receptors (Skaper, 2008). 

As interaction of proneurotrophin with p75NTR and sortilin leads to apoptosis 

while interaction of mature neurotrophins with p75NTR and Trk receptors leads to 

prosurvival signalling the processing of proneurotrophins by proteases is an important 

regulatory step to switch between these two modes (Lee et al., 2001). 

The Trk receptors and mechanisms regulating Trk receptor signal ing 

The tyrosine kinase Trk receptors are transmembrane glycoproteins that only 

dimerize upon ligand binding. This induces auto-crossphosphorylation of intracellular 

kinase domains and activation of downstream signalling pathways (Barbacid, 1995). The 

extracellular domain of Trk receptors consist of a cysteine-rich cluster, three leucine-rich 

repeats, a second cysteine-rich cluster and two Ig-like domains the second of which 

confers ligand specificity (Barbacid, 1995; Urfer et al., 1995). All Trks have a short 

transmembrane domain and a highly conserved intracellular tyrosine kinase domain 

(Figure 1.1 A) (Barbacid, 1995). Signalling via Trk receptors activates MAPK (mitogen-

activated protein kinase), PI3K (phosphatidylinositol 3-kinase), PLCγ1 (phospholipase C-

γ1) and their respective downstream effectors (Huang and Reichardt, 2003). Trk receptor 

signal ing pathways and functions will be discussed in detail in chapters 1.1.2, 1.1.3 and 

1.1.4. 
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Alternative splicing influences Trk signalling. Deletion of a short amino acid 

sequence of the juxtamembrane domain of the extracellular domain of TrkA and TrkB 

increases specificity for NGF and BDNF respectively (Skaper, 2008). Also truncated forms 

without the intracellular catalytic domain exist for TrkB and TrkC. These can dimerize 

with the full length form and inhibit signalling (Eide et al. 1996) but are also able to 

induce signalling by interaction with intracellular scaffold proteins (Schecterson and 

Bothwell, 2010). Whereas the full-length isoforms of TrkB and TrkC are predominant 

during development the truncated forms are more abundant in the mature brain (Fryer et 

al., 1996). 

Another important feature of neurotrophin signal ing is endocytosis and 

retrograde axonal transport. Retrograde transport of the ligand/receptor complex or 

downstream effectors is required to translate events at a distal axon into changes in 

nuclear transcription. Endocytosis of neurotrophin/p75NTR/Trk complexes could regulate 

receptor availability on the cell surface but might also allow for prolonged signal ing via 

the internalized complex (Wu et al., 2009). As components of downstream signa ling 

pathways are differentially distributed in vesicles sorting of TrkB into different vesicles 

can also determine which downstream pathways are activated (Huang and Reichardt, 

2003).The detailed mechanism of Trk receptor endocytosis, retrograde transport and 

degradation is however still controversial. Endocytosis of Trk receptor complexes was 

shown to occur through clathrin-dependent and independent mechanisms as well as 

through macropinocytosis and complexes were found to be localized to stable early and 

late endosomes, multivesicular bodies and macroendosomes (Wu et al., 2009).  

Finally, Trk receptors can also be transactivated by zinc, the low-density 

lipoprotein 1 LRP1 and several G-protein coupled receptors (GPCR) as the A2a adenosine 

receptor, the PAC1 receptor (pituitary adenylate cyclase-activating polypeptide type I 

receptor isoform 1) and endocannabinoid receptors. GPCR induced Trk activation can 

occur intracellularly before receptors exit the Golgi and might inhibit trafficking of the 

receptors to the cell surface (Schecterson and Bothwell, 2010). Transactivation of Trk 
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receptors seems to be dependent on activation of Fyn (Rajagopal et al. 2006; Huang et al. 

2008). 

1.1.2 Signalling pathways downstream of Trk receptors 

This part will concentrate on canonical signalling pathways downstream of Trk 

receptors induced by binding of mature neurotrophins. Binding of neurotrophins to Trk 

receptors induces dimerization of the receptor and subsequent cross-autophosphorylation 

of tyrosine residues by the intracellular kinase domain. Phosphorylated tyrosine residues 

serve as docking sites for cytoplasmic adaptor proteins containing PTB (phosphotyrosine-

binding) or SH2 (Src homology 2) domains which activate downstream signal ing cascades 

(Bibel and Barde, 2000; Alberts et al., 2002). Two main tyrosine adaptor sites have been 

characterized in all Trk receptors: one for the adaptor proteins SHC (Sh2-domain 

containing) and FRS2 (fibroblast growth factor receptor substrate 2) at Y490 (TrkA), 

Y515 (TrkB) or Y516 (TrkC) that activates Ras-MAP-kinase and PI3-kinase signal ing 

cascades and one for PLCγ1 at Y785 (TrkA), Y816 (TrkB) or Y789 (TrkC) (Figure 1.1 B) 

(Huang and Reichardt, 2003).  

Tyrosine residues other than these were reported to bind adaptor proteins and 

activate downstream signal ing cascades. Phosphorylated tyrosines in the activation loop 

for instance can bind rAPS (receptor associated protein of the synapse) and SH2-B 

leading to activation of the Ras-MAPK signa ling cascade (Huang and Reichardt, 2003). 

Ras - MAP-kinase signa ling 

Activation of the Ras-MAPK signa ling cascade by neurotrophins promotes 

neuronal differentiation, migration, and survival of subpopulations of neurons and is 

generally mediated by binding of SHC or FRS2 to the SHC adaptor site (Figure 1.1 B) 

(Medina et al., 2004; Reichardt, 2006). Both adaptor proteins bind to phosphorylated 

tyrosines via a PTB domain and are then phosphorylated in turn. Phosphorylated SHC or 

FRS2 recruit GRB2 (growth factor receptor-bound protein 2) that is associated with SOS 

(son of sevenless) via an SH3 domain. SOS is a guanine nucleotide exchange factor (GEF) 

that activates small GTPases like Ras. Ras activates then PI3K (discussed in next 
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subchapter) and the MAPK cascade via one of the serine/threonine kinases Raf, 

MEKK2/3 (MAP kinase kinase kinase 2/3) or p38 MAPK. Activation of Raf or MEKK 

initiates sequential phosphorylation and activation of members of the MEK (MAP kinase 

kinase), ERK (extracellular signal-regulated kinase, a MAP kinase) and finally RSK 

(ribosomal s6 kinase) families of serine/threonine protein kinases. RSK phosphorylates 

and activates the transcription factor CREB (cAMP responsive element binding protein) 

(Alberts et al., 2002; Reichardt, 2006; Minichiello, 2009). Activation of MAP-kinase 

activated protein kinase-2 by p38 directly activates CREB (Xing et al., 1998). CREB 

regulates expression of genes involved in neuronal differentiation and survival (Bonni et 

al., 1999; Riccio et al., 1999). Activation of the MAPK cascade can be modulated by its 

own downstream effectors as activated ERK and RSK can induce dissociation of SOS from 

GRB2 by phosphorylation (Douville and Downward, 1997). 

Neurotrophin induced MAPK signal ing can be enhanced by different factors. For 

instance, FRS2 recruitment to the SHC adaptor site of TrkA was reported to induce 

prolonged activation of MAPK signal ing via Crk (CT-10 related kinase 3), C3G (also 

RAPGEF, a GEF) and Rap1 (Ras-related protein, a small GTPase) (Kao et al., 2001; Wu et 

al., 2001). MAPK signal ing can also be facilitated by recruitment of the protein 

phosphatase SH-PTP2 (protein-tyrosine phosphatase 2C) by GRB2, most probably 

leading to inactivation of an inhibitory factor (Reichardt, 2006), or by binding of CHK 

(homolog of cytoplasmic tyrosine kinase CSK) to the PLCγ docking site of TrkA 

(Yamashita et al., 1999). 

BDNF not only activates MAPK signal ing pathways but can also modulate signal 

strength by modulating the subcellular distribution and nuclear translocation of activated 

MAP kinases (Patterson et al., 2001). 

Phosphatidylinositol 3-kinase signa ling 

As discussed in the previous chapter, docking of adaptor proteins to the SHC site 

of Trk receptors can activate PI3K signalling promoting neuronal survival (Bibel and 

Barde, 2000). PI3K can be activated by Ras or by GAB1 (GRB2-associated-binding 
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protein 1)-recruitment to GRB2 (Holgado-Madruga et al., 1997) or Trk-dependent 

phosphorylation of IRS1/2 (insulin receptor substrate 1/2) (Figure 1.1 B) (Yamada et al., 

1997). 

PI3K phosphorylates the cytoplasmic inositol ring of membrane-anchored 

phosphatidylinositols, thus generating the phosphoinositides phosphatidylinositol 

phosphate (PIP), phosphatidylinositol bisphosphate (PIP2) and phosphatidylinositol 

trisphosphate (PIP3). Phosphoinositides recruit inositide-dependent protein kinase 

(PDK-1) and protein kinase Akt (protein kinase B, PKB) via their pleckstrin homology 

(PH) domain to the membrane. PDK-1 then phosphorylates and activates Akt (Leevers et 

al., 1999; Alberts et al., 2002). Akt phosphorylates several downstream effectors involved 

in apoptotic signalling including BAD, a Bcl2-family member, and FKHRL1, a 

transcription factor regulating proapoptotic genes (Datta et al., 1997; Brunet et al., 1999). 

Upon phosphorylation by Akt both proteins are sequestered by 14-3-3 proteins 

preventing them from exerting their proapoptotic actions (Datta et al., 2000; Brunet et al., 

2002). Akt also phosphorylates the NF-кB inhibitor I-кB, initiating the release and 

prosurvival signalling of NF- кB (Maggirwar et al., 1998) and S6 kinases that regulate 

translation of certain mRNAs (Kimball et al., 2002). The phosphoinosites generated by 

PI3K can moreover recruit GEFs for Rho family proteins that regulate organization of the 

F-actin cytoskeleton and might therefore be involved in growth cone guidance (Wang et 

al., 2002; Yuan et al., 2003). 

PLCγ signal ing 

Binding of PLCγ1 to the PLC docking site of activated Trk receptors induces 

phosphorylation and activation of PLCγ1 by the receptor (Figure 1.1 B) (Reichardt, 2006). 

PLCγ1 then hydrolyzes phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-

trisphosphate (IP3) and diacylglycerol (DAG) (Alberts et al., 2002). IP3 induces release of 

Ca2+ from internal stores (endo- and sarcoplasmic reticulum) into the cytoplasm by 

binding to IP3-gated Ca2+-release channels. Free Ca2+ is bound by calmodulin and Ca2+-

calmodulin complexes then activate Ca2+/calmodulin-dependent protein kinase II and IV 
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(CaMKII and CaMKIV) (Alberts et al., 2002). Both kinases are involved in regulating 

synaptic plasticity, LTP and learning. CaMKIV phosphorylates CREB inducing 

transcription of genes involved in survival signalling, neuronal differentiation but also 

synaptic plasticity (Finkbeiner et al., 1997). Regulation of synaptic plasticity and LTP by 

neurotrophins via CREB induced transcription was shown to be dependent on activation 

of the PLCγ1 activated pathways, but not the MAPK activated pathways (Minichiello et 

al., 2002). CaMKII regulates synapse formation and remodelling, synaptic plasticity and 

short and long-term memory formation by phosphorylation of members of the 

postsynaptic density (PSD) like the GluR1 subunit of the AMPA receptor and the NMDA 

receptor, both ionotropic glutamate receptors, and transcription of different genes (for 

instance of BDNF). CaMKII can sustain its own activity via autophosphorylation which 

might play an important role in generation of LTP and long-term memory (Soderling, 

2000). DAG, on the other hand, activates PKC isoforms that have also been involved in 

synaptic plasticity and learning (Saito and Shirai, 2002). It is however not clear if this 

pathway is specifically activated downstream of TrkB signalling (Gärtner et al., 2006). 

PLCγ1 activation also results in activation of protein kinase C-δ which can activate 

ERK1/2 in a Ras-independent way (Corbit et al., 1999). 

  



Figure 1.1 Neurotrophins and their receptors 
(A) and neurotrophin signal ing pathways (B). 
A All proneurotrophins bind the p75NTR whereas 
the mature neurotrophins bind specifically to 
their respective receptor.  CR cysteine-rich 
motif, C1/2 cysteine-rich cluster, LRR leucine-
rich repeat, Ig1/2 immunoglobin-like domain. 
B Signalling pathways activiated by neurotro-
phins,  at the example of BDNF and TrkB. Ligand 
binding induces receptor dimerization and 
auto-crossphosphorylation. Phosphorylation 
and docking to Y515 activates mitogen-
activated protein kinase (MAPK) and 
phosphatidylinositol-3-kinase (PI3K) pathways 
that mediate survival, growth and differentia-
tion. Docking of PLCγ1 to phosphorylated Y816 
induces release of internal Ca2+ stores and 
activation of Ca2+/Calmodulin (CaM)-
dependent kinases (CamK) that regulate synap-
tic plasticity and thus behaviour. Additional 
details and abbreviations are provided in the 
main text. 
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1.1.3 Functions of Trk receptors in development 

Neurotrophins and their receptors regulate survival of neurons in the PNS and, to 

a much smaller extent, in the CNS, but regulate also neuronal migration, differentiation 

and neurite outgrowth. 

Neurotrophins control the survival of neurons in the PNS and CNS 

Trk receptors promote survival of sensory and sympathetic neurons in the 

peripheral nervous system whereas neurons of the central nervous system are less 

dependent on neurotrophin signalling. All three Trk receptors are highly expressed 

during development and are expressed in different combinations. Accordingly, different 

subpopulations of neurons are dependent on one or several neurotrophins (Bibel and 

Barde, 2000).  

Trk receptors promote survival of sensory neurons in the trigeminal (facial 

sensory nerves), the dorsal root (sensory nerves of the body), the vestibular and cochlear 

(sensory nerves from ear), the geniculate (sensory nerves from taste buds) and the 

nodose-petrosal ganglia (visceral sensory nerves from organs).  

In the trigeminal and dorsal root ganglia (DRG) sensory neurons are generally 

dependent on one specific Trk receptor. Nociceptive DRG neurons express TrkA and are 

almost completely lost in Trka and Ngf mutants (Crowley et al., 1994; Smeyne et al., 

1994). Proprioceptive DRG neurons are dependent on NT-3 and TrkC from early 

neurogenesis on and are lost in Nt-3 and Trkc mutants (Fariñas et al., 1994). 

Proprioceptive neurons in the mesencephalic nucleus of the trigeminal ganglion are either 

dependent on BDNF/TrkB or on NT-3/TrkC and are partially lost in absence of one of 

these factors and completely lost in Nt-3/Nt-4/Bdnf triple mutants (Fan et al., 2000; 

Matsuo et al., 2000). In mutant mice, the targets innervated by these neurons can be 

affected by the lack of innervation. For instance muscle spindles innervated by 

proprioceptive DRG neurons are lost in Nt-3 and Trkc mutants (Fariñas et al., 1994), and 

cutaneous receptors (for instance D-hair receptors) are affected by loss of NT-3, NT-4 

and a point mutation of the SHC docking sit in TrkB (Minichiello et al., 1998; Huang and 

Reichardt, 2001). Sensory neurons in the vestibular ganglion are dependent on 
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BDNF/TrkB signa ling (Ernfors et al., 1994; Jones et al., 1994; Minichiello et al., 1995; 

Schimmang et al., 1995). In the cochlear ganglion sensory neurons express both TrkB and 

TrkC and, with exceptions, BDNF and NT3 are redundant. As BDNF is not expressed in 

the basal turns of the cochlea at the time of neurotrophin dependency Nt-3 mutants show 

loss of neurons innervating this region (Fariñas et al., 2001). Sensory neurons in the 

nodose-petrosal ganglion that innervate viscera are dependent on either BDNF or NT-4 

and are partially lost in the single mutant mice but completely lost in Trkb or Bdnf/Nt-4 

double mutants (Conover et al., 1995; Minichiello et al., 1998). The geniculate ganglion 

contains sensory neurons that innervate the tongue and palate. These are, comparable to 

nodose-petrosal neurons, dependent on either BDNF or NT-4 and 90-95% are lost in 

double mutants, but only around 50% in the single mutants (Conover et al., 1995; Liu et 

al., 1995). 

In contrast to parasympathetic neurons that develop normal in absence of 

neurotrophins or their receptors, sympathetic neurons are strongly dependent on 

neurotrophic support. In Trka mutants most sympathetic neurons die perinatally starting 

around E17.5 (Fagan et al., 1996). Comparable phenotypes were observed in Ngf and Nt-3 

mutants and it is believed that NT-3 acts through TrkA in this case (Crowley et al., 1994; 

Smeyne et al., 1994). 

In the CNS a role for neurotrophins in supporting survival of neurons is much less 

apparent. Even though all neurotrophins (with exception of NGF) increase the survival 

rate of motorneurons in vitro, a triple mutant of Nt-3, Nt-4 and Bdnf shows only a 20% 

reduction in spinal and facial motor neurons (Liu and Jaenisch, 2000; Huang and 

Reichardt, 2001). Trkb mutant mice show apoptosis of dentate gyrus neurons during 

postnatal development (Alcántara et al., 1997) and reduced expression of TrkB and TrkC 

in double mutant mice causes extensive death of dentate gyrus and cerebellar granule 

neurons. This shows that TrkB and TrkC cooperate in supporting survival of specific CNS 

neurons during postnatal development (Minichiello and Klein, 1996). 
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Neurotrophins control neurite outgrowth 

Neurotrophins not only support survival of neurons during development but 

regulate also growth of axons and dendrites. All neurotrophins can induce neurite 

outgrowth in vitro in responsive neurons (Huang and Reichardt, 2001). NGF was found 

due to its ability to induce growth of sympathetic neurons (Levi-Montalcini and 

Angeletti, 1968) and sympathetic ganglia respond to NGF administration by increasing 

the number and length of neurites. Moreover, innervating preganglionic axons are also 

increased in numbers (Schäfer et al., 1983). The ability of all four neurotrophins to steer 

axon outgrowth was demonstrated by placing beads containing NGF, BDNF, NT-3 or 

NT-4 ectopically on limb buds of E10.5 mice. Sensory axons and few motor axons were 

derouted and grew towards the beads. Administration of function-blocking antibodies 

inhibited outgrowth of both nerve types (Tucker et al., 2001). 

In the central nervous system neurotrophins were shown to control dendrite 

growth. For instance, application of BDNF, NT-3 or NT-4 to organotypic cultures of 

ferret visual cortex increased the arborisation and length of pyramidal neurons 

(McAllister et al., 1995). Mice that lack truncated and full-length forms of TrkB in 

pyramidal neurons show a reduction in the length of pyramidal cell dendrites (Xu et al., 

2000). 

BDNF/TrkB promote neuron migration and differentiation 

Apart from regulating survival and outgrowth of neurons, BDNF and TrkB were 

also shown to promote migration and differentiation of neurons in the CNS. BDNF 

mutants show impaired differentiation of some CNS neurons (Jones et al., 1994) and both 

Bdnf and Trkb mutants display impaired dendritic differentiation of cerebellar Purkinje 

cells (Schwartz et al., 1997; Minichiello et al., 1998).  

Brain-specific deletion of TrkB or point mutation of the SHC and PLCγ docking 

sites cause delayed migration of cortical neurons leading to accumulation of neurons in 

the superficial layers of the cortex. Moreover, defects in differentiation were observed 

even though it is unclear whether these are due to lack of TrkB or due to changes in the 

environment caused by the delay in migration (Medina et al., 2004).  
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1.1.4 Functions of Trk receptors in the adult organism 

Neurotrophin signa ling is not only required during development of the nervous system 

but was also shown to influence function of neurons in the adult PNS and CNS by 

modulating synapse number and transmission. 

For instance, Nja and Purves showed early on that sympathetic neurons of the PNS 

required NGF to maintain incoming synapses (Njå and Purves, 1978). Moreover, NGF 

can acutely sensitize sensory nociceptive neurons. Part of this effect depends on mast cell 

activation by NGF and secretion of further factors by mast cells, but NGF and also BDNF 

and NT-4 were also shown to act directly on sensory neurons in mast cell-free cultures in-

vitro (Shu and Mendell, 1999). Administration of NT-3 can prevent long-term synaptic 

deficiencies after transection of sensory nerves suggesting a requirement of these neurons 

for NT-3 to maintain their synapses (Mendell, 1999). 

In the adult central nervous system TrkB and TrkC are widely expressed by most 

neurons (Klein et al., 1990; Tessarollo et al., 1993), whereas TrkA expression is generally 

restricted to cholinergic neurons in the forebrain (Holtzman et al., 1995). A role for NT-3 

signalling through TrkC in adult CNS function is still uncertain. Neuron-specific deletion 

of Nt-3 does not cause any changes in synaptic transmission or long-term potentiation 

and these mice did not show any apparent phenotype up to the age of 1.5 years (Ma et al., 

1999). Moreover, Trkc heterozygous mice, in contrast to Trkb heterozygous mice, do not 

show any changes in hippocampal spine morphology (von Bohlen und Halbach et al., 

2008). 

NGF/TrkA signalling was proposed to be required for maintenance and function 

of cholinergic neurons. Infusion of NGF increases expression of choline-o-

acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine (Hefti et al., 1989). 

Moreover, Ngf heterozygous mice show partial loss of septal cholinergic neurons and have 

deficits in memory acquisition and retention which can be improved by long-term 

infusion of NGF (Chen et al., 1997). 
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Nt-4 knockout mice show normal basal transmission and short-term memory 

formation in the hippocampus but deficits in long lasting long-term potentiation (LTP) 

and fear conditioning (Xie et al., 2000).  

Involvement of BDNF/TrkB signalling in modulation of synaptic plasticity has 

been extensively studied. BDNF is primarily packaged into vesicles of the regulated 

secretion pathway (the other neurotrophins to a smaller extend) and this allows for 

activity-dependent secretion (Mowla et al., 1999; Brigadski et al., 2005). Activity-

dependent secretion of BDNF at axon terminals and from dendrites has been 

demonstrated by overexpression of green fluorescent protein (GFP)-tagged BDNF, but 

has also been confirmed for endogenous BDNF (Brigadski et al., 2005; Nakajima et al., 

2008). BDNF and TrkB are localized at glutamatergic synapses (Drake et al., 1999) and 

BDNF expression in the hippocampus is increased in response to neuronal activity and 

LTP (Patterson et al., 1992).  

Bdnf knockout mice have less and less well defined synapses and show impaired 

LTP (Pozzo-Miller et al., 1999). Generation of LTP has been correlated to memory 

formation and, accordingly, Bdnf heterozygous mice show learning deficits (Linnarsson et 

al., 1997). Defects in LTP in Bdnf mutants are reversible by re-introduction of BDNF 

which proves that this is not a consequence of developmental defects but that BDNF has a 

role in regulation of synaptic plasticity per se (Korte et al., 1996; Patterson et al., 1996). 

This was confirmed by the finding that postnatal deletion of Trkb in the forebrain results 

in impaired LTP in the CA3-CA1 region and compromised learning ability (Minichiello 

et al., 1999). TrkB involvement in the regulation of synaptic plasticity is mediated by 

PLCγ signalling since mice with a point mutation in the PLCγ docking site show a 

comparable phenotype whereas no deficits in LTP or learning were observed in mice with 

a point mutation in the SHC adaptor site (Minichiello et al., 2002). PLCγ was proposed to 

mediate early LTP by phosphorylation of CaMKII and induce late LTP by CAMKIV-

mediated activation of CREB (Minichiello, 2009). Morover, pre- and postsynaptic 

signalling by the TrkB-PLC site was reported to support hippocampal LTP (Gärtner et al., 
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2006). An involvement of both TrkB adaptor sites was found for fear learning and 

amygdalar synaptic plasticity (Musumeci et al., 2009). 

BDNF/TrkB signalling is not only involved in memory formation but can also 

influence behaviour. BDNF expression in the hippocampus of human post mortem tissue 

is reduced in association with depressive behaviours and upregulated in response to 

antidepressant treatment (Martinowich et al., 2007) However, disruption of BDNF/TrkB 

signalling in mice does not cause depression-like behaviour. Bdnf heterozygous mice 

show clear aggressive behaviour and are hyperactive (Lyons et al., 1999; Kernie et al., 

2000). Also mice with a specific deletion of Bdnf in principal neurons are more aggressive 

and active (Rios et al., 2001). Whereas in this first publication the line was described as 

more anxious, a second publication using a comparable line found decreased anxiety but 

increased depressive behaviour in females but not males (Monteggia et al., 2007). Finally, 

principal neuron-specific deletion of Trkb causes hyperactivity but no change in anxiety 

or depressive behaviour (Zorner et al., 2003). Taken together, these results suggest that at 

least permanent changes in BDNF/TrkB signalling rather influence locomotion and 

aggression than depressive behaviour. It should be noted that even though BDNF might 

not be involved in depressive behaviour it seems to be required for the action of 

antidepressants (Martinowich et al., 2007). 

Involvement of BDNF/TrkB signalling in control of energy intake and the 

hypothalamic-adrenal axis will be discussed in the respective chapters (1.3.2 and 1.4.2). 
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1.2 TrkB signalling in Interneurons 

1.2.1 Interneuron characterization and function 

The function of neuronal networks relies on the interaction of two major neuron 

classes – principal excitatory neurons with long projections, and interneurons that 

innervate local regions and mainly use the inhibitory neurotransmitter GABA (γ-

aminobutyric acid). Interneurons control and synchronize the output of populations of 

excitatory neurons but also integrate input from different regions and different 

neurotransmitter systems. Thus, they are essential to keep neuronal networks in balance 

(Freund, 2003). In the cortex and hippocampus interneurons constitute 15-20% of all 

neurons. Interneurons have a less negative rest potential than principal neurons and have 

therefore a lower spike threshold, i.e. react more sensitive to excitatory input. 

Accordingly, interneurons react faster than principal neurons to excitatory input and 

some interneuron subgroups are characterized by high-frequency firing – a feature 

important for regulation and synchronization of principal neuron activity (Jonas et al., 

2004; Somogyi and Klausberger, 2005). 

Impaired function of interneurons and the GABAergic system has been associated 

with various disorders of the nervous system, most notably with schizophrenia and 

epilepsy, but also with Huntington, Parkinson disease and the Tourette syndrome 

(DeFelipe, 1999; Lewis et al., 2005; Woo and Lu, 2006). 

The inhibitory neurotransmitter GABA 

GABA is, next to glycine, the main inhibitory neurotransmitter in the brain. 

GABA binds to postsynaptic ionotropic GABAA receptors that are ligand-activated 

chloride channels. The GABA-induced chloride influx leads to hyperpolarisation and 

inhibition of the target neuron (Kandel et al., 2000). GABAergic synapses can be found on 

dendrites, soma and the axon initial segment (AIS) of neurons. GABAergic synapses onto 

dendrites of principal neurons modulate specific glutamatergic inputs into that dendritic 

domain whereas synapses onto the soma and AIS (also referred to as perisomatic region) 

rather regulate responsiveness, output and thus synchrony of principal neurons (Figure 
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1.2 A) (Freund and Katona, 2007). Apart from ionotropic receptors, GABA can also bind 

to G-protein coupled metabotropic GABAB receptors that mediate slow long-lasting 

inhibition of network activity (Kohl and Paulsen, 2010). Under some circumstances, 

GABA has an excitatory instead of an inhibitory effect on target neurons. For instance, 

during development GABA is generally excitatory due to the lack of the chloride gradient 

typical for mature neurons (Rivera et al., 1999). 

Interneuron development 

Interneurons differ from principal neurons in their developmental origin. 

Principal cortical neurons are generated in the subventricular zone of the cortical 

neuroepithelium and then migrate radially into the cortical layers in an inside-out 

fashion. Thus earlier born neurons are located in the deeper layers and later born neurons 

are located in the outer layers of the cortex (Kandel et al., 2000). In contrast, interneurons 

are generally generated in the ganglionic eminences and only in primates also partially in 

the subventricular zone (Marín and Rubenstein, 2001; Letinic et al., 2002; Gelman and 

Marín, 2010). The ganglionic eminences are structured into the lateral, the medial and the 

caudal ganglionic eminence (LGE, MGE and CGE) and each of these generate specific 

subtypes of interneurons (Figure 1.2 B). The LGE mainly generates olfactory, striatal 

medium spiny and lateral cortical interneurons (Wonders and Anderson, 2005). The 

MGE is the primary source for cortical interneurons and gives rise to most parvalbumin 

(PV) and somatostatin (SST) expressing interneurons whereas the CGE generates reelin, 

calretinin (CR) and vasointestinal protein (VIP) expressing cortical interneurons 

(Gelman and Marín, 2010). Recently also the preoptical area (POA) has been proposed to 

generate a small proportion of cortical interneurons (Gelman and Marín, 2010). 

Generation of interneurons in the mouse MGE starts at E9.5 and peaks as E13.5 whereas 

CGE-derived interneurons are generated from E12.5 on and peak at E15.5 (Miyoshi and 

Fishell, 2010). Newly generated interneurons migrate from the ganglionic eminences 

tangentially into the cortex and only then migrate radially to their final position (Marín 

and Rubenstein, 2001; Huang et al., 2007). MGE-derived interneurons mirror the age-



Introduction 
 

20 
 

dependent inside-out order of principal neurons, whereas CGE-derived interneurons are 

spaced throughout the cortical layers independent of their birth date (Miyoshi and Fishell, 

2010). Interneuron subtypes are specified in the ganglionic eminences before migration 

(Xu et al., 2003b) but the final morphological features are developed once the neurons 

reaches the final location in the cortex (Huang et al., 2007). 

Interneuron classification 

Interneurons are a very heterogeneous group but are generally characterized by 

several common features. They use the inhibitory neurotransmitter GABA and therefore 

express glutamate decarboxlases (Gad65 and Gad67), the enzymse that synthesize GABA 

from glutamate. Moreover, interneurons generally have short axons and type II synapses 

(or symmetric synapses). The dendritic morphology is generally simpler than that of 

principal neurons and most interneurons do not have dendritic spines (Woo and Lu, 

2006; Ascoli et al., 2008). The axonal arbors of interneurons are very elaborate, branch 

often and have class-specific morphological characteristics (Figure 1.2 A) (Huang et al., 

2007). However, there are exceptions to this characterization as there are interneurons 

with long projections and interneurons that use other neurotransmitters than GABA (for 

instance glycine, or the excitatory neurotransmitter acetylcholine). Also GABA does not 

always lead to inhibition of target neurons and, as already mentioned, especially not 

during development (Maccaferri and Lacaille, 2003; Mott and Dingledine, 2003). The 

large diversity of hippocampal and cortical interneurons has prompted diverse attempts 

to classify interneurons of the hippocampus and cortex into subgroups. A unifying 

nomenclature for classification of cortical interneurons has only recently been published 

by the Petilla Interneuron Nomenclature Group (Ascoli et al., 2008). According to this 

scheme interneurons should be classified by defined morphological (soma, dendrite, axon 

morphology and connections), molecular (expression of neurotransmitter, neuropeptides 

and other markers) and physiological (electrophysiological properties) terms. 

The most recent classification of interneurons that took all three features 

(morphology,  molecular markers,  physiology)  into  account  found  21  subclasses in the 



Figure 1.2 A Innervation of pyramidal neurons (red) by different types of interneurons (green 
and blue) in the cortex. Interneurons have distinct axonal morphologies and innervate differ-
ent domains (distal or proximal dendrites, soma and axon initial segment (AIS)) of pyramidal 
neurons. I-VI: cortical layers I-VI. B Developmental origin of interneurons. Interneurons are 
generated in the lateral, medial or caudal ganglionic eminence (LGE, MGE and CGE) or the 
preoptic area (POA) from where they migrate tangentially into the cortex. C Comparison of 
parvalbumin (PV) basket cells that receive strong glutamatergic input and synchronize 
pyramidal cell firing and cholecystokinin (CCK) basket cells that receive more diverse input 
and integrate information from different regions and neurotransmitter systems. 
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CA1 region of the hippocampus (Klausberger and Somogyi, 2008), an extensive 

description of most of these can be found in Somogyi et al (Somogyi and Klausberger, 

2005). Gelman and colleagues (Gelman and Marín, 2010) proposed that cortical 

interneurons can be described by just four classes that differ in their developmental 

origin, expression of transcription factors during development and in the adult in 

expression of different markers. These four classes are  

(1) fast-spiking, PV-containing basket or chandelier cells from the ventral MGE; 

(2) SST-containing interneurons with either intrinsic burst spiking or adapting 

non-fast-spiking profiles; originate in the dorsal MGE and often have long axons;  

(3) CR and ⁄ or VIP expressing cells with bipolar or double-bouquet morphologies 

that rapidly adapt and are generated in the CGE; 

 (4) NPY and/or reelin but not SST expressing, rapidly adapting interneurons with 

multipolar morphologies that originate in the CGE and the POA. 

1.2.2 CCK-expressing neurons 

Cholecystokinin (CCK) is expressed in numerous classes of interneurons 

(Klausberger and Somogyi, 2008). CCK was initially identified as a gut peptide hormone 

involved in gallbladder motility and pancreatic enzyme secretion but is one of the most 

abundant neuropeptides in the brain (Vanderhaeghen et al., 1980; Beinfeld, 2001; 

Giacobini and Wray, 2008). It is expressed as a 115 amino acid long pre-pro-form that is 

modified by signal peptide cleavage, sulfation and carboxyamdiation and then cleaved 

into several active peptides (CCK-83, CCK-58, CCK-33, CCK-22, CCK-8) of which CCK-

8 is the predominant form found in neurons (Rehfeld et al., 2003). Peripheral and central 

CCK has been implicated in satiety signalling. Peripheral CCK is released from the 

duodenum in response to gastric filling and stimulates vagal afferents that target the NTS 

(nucleus tractus solitarius) in the brainstem (Berthoud et al., 2006; Fan et al., 2004). 

Central CCK is expressed in the NTS and several hypothalamic nuclei, both sites for 

control of food intake (Beinfeld, 2001; Vanderhaeghen et al., 1980). The actual 

mechanism of central CCK in food intake control is controversial (Fink et al., 1998), but 
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CCK knockout mice show changes in the daily rhythm of food intake even though the 

average amount is normal (Lo et al., 2008). CCK has also been implicated in anxiety-

related behaviour and accordingly CCK knockout mice show increased anxiety but also 

impaired spatial memory (Rotzinger and Vaccarino, 2003; Lo et al., 2008). 

CCK was reported to be expressed in numerous brain regions during 

embryogenesis and adulthood. First expression can be detected around E8.5 (mouse) in 

neural crest and neural tube cells. At E12.5 expression is detectable in the spinal cord, 

trigeminal ganglion, the primordium of the anterior pituitary and encephalic regions. At 

E14.5 Cck mRNA is additionally found in the median eminence, the anterior amygdala, 

anterior hypothalamus and the thalamus. By E17.5 expression has spread to most brain 

areas including cortical regions, the hippocampus and most hypothalamic nuclei. At that 

age, expression in the pituitary was restricted to cells directly adjacent to the median 

eminence (Giacobini and Wray, 2008). In adult rats Cck mRNA expression was found in 

the olfactory bulb, the cerebral cortex in layers II/III and V/VI (pyramidal neuron in 

deeper layer), the piriform cortex, the amygdala (especially basolateral and medial ventral 

amygdala), the subiculum, the hippocampus (especially pyramidal neurons in CA1), most 

hypothalamic nuclei (para- and periventricular nucleus, supraoptic, dorsomedial and 

supramammillary nuclei and few cells in the posterior area and the medial mammillary 

nucleus), the thalamus, midbrain (ventral tegmental area, interfascicularis nucleus, 

substantia nigra, linearis rostralis, central gray, edinger-westphal nucleus, superior and 

inferior colliculus) and few cells in the cerebellum (reticular formation, parabrachial 

nucleus) (Schiffmann and Vanderhaeghen, 1991). Absence of expression was reported for 

the white matter, the striatum, and the arcuate and ventromedial nucleus of the 

hypothalamus, cortex and deep nuclei of the cerebellum and brainstem (Schiffmann and 

Vanderhaeghen, 1991), but expression in the rostral striatum and nucleus accumbens was 

reported by Hökfelt and colleagues (Hökfelt et al., 1985). 

Originally, CCK was thought to be exclusively expressed in interneurons (Hendry 

et al., 1984; Nunzi et al., 1985; Sloviter and Nilaver, 1987), however exceptions have been 
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found where CCK is expressed in pyramidal projection neurons. Expression of Cck 

mRNA in pyramidal neurons in cortex and the hippocampus was shown by in-situ 

hybridization (Schiffmann and Vanderhaeghen, 1991) and several tracing studies revealed 

a subset of cortical principal neurons with cortical, striatal and thalamic projections that 

contain Cck mRNA (Burgunder and Young 3rd, 1990; Senatorov et al., 1995). CCK 

positive projections can also be found in the amygdala (Mascagni and McDonald, 2003). 

In this publication it was reported that in pyramidal neurons only the bigger CCK 

precursor forms are present in the soma and get quickly transported into axons where 

they are further processed. Thus pyramidal neurons often do not show immunolabeling 

for CCK unless axonal transport is blocked by colchicine treatment (Mascagni and 

McDonald, 2003). 

Even though CCK-positive neurons are found in most brain regions only CCK-

interneurons of the hippocampus have been characterized further: Most CCK-

interneurons in the CA1 region are basket cells that innervate the soma and 

proximal/basal dendrites of pyramidal cells and interneurons and partially express VIP 

and vGlut3 (Somogyi and Klausberger, 2005). Other subtypes of CCK-interneurons were 

described that also innervate distal/apical dendrites, for instance Schaffer collateral 

associated cells (Somogyi and Klausberger, 2005). Cortical and hippocampal CCK-

interneurons originate in the CGE and hippocampal CCK-interneurons were shown to be 

born in two waves between E9.5 to E12.5 and E12.5 to E16.5 (Morozov et al., 2009; 

Tricoire et al., 2011). In contrast to PV expressing basket cells that receive strong 

glutamatergic input and are thought to regulate network activity and synchrony (the 

‘rhythm’), CCK basket cells were proposed to be able to integrate more diverse inputs 

(Figure 1.2 C). They receive less glutamatergic but more GABAergic and also serotonergic 

input and receive projections from distal (subcortical) regions. CCK-interneurons in the 

CA1 express receptors for serotonin (5-HT3), acetylcholine, GABA, endocannabinoids 

and estrogen. Therefore, they are ideally suited for integration of subcortical inputs 

(Freund, 2003) and have been suggested to fine-tune the emotional, metabolic and 
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physiological state of an animal (Freund and Katona, 2007). However, it should be 

considered that all these characteristics were only described for the CA1. The function 

and characteristics of CCK-expressing neurons in other regions are mostly unknown. 

1.2.3 TrkB signalling in Interneurons 

BDNF/TrkB signalling plays an important role in the regulation of interneuron 

development and function. It is generally accepted that BDNF itself is not expressed in 

mature interneurons (Cellerino et al., 1996; Gorba and Wahle, 1999; Pascual et al., 1999), 

even though one publication suggests that it is expressed in cortical interneurons upon 

neurodegeneration of adjacent pyramidal neurons (Wang et al., 1998). Interneurons do 

however express TrkB (Zachrisson et al., 1996; Gorba and Wahle, 1999; Pascual et al., 

1999) and can thus respond to BDNF released from principal neurons. Pyramidal 

neurons can release BDNF from dendrites (postsynaptically) where it would act on axons 

and synapses of interneurons (presynaptically) or from axon terminals where it would act 

on the postsynapses of several interneurons (Huang et al., 2007). 

Analysis of Bdnf knockout mice gave a first indication for a role of BDNF/TrkB 

signa ling in interneurons. These mice did not show any gross morphological changes in 

the cortex but had reduced expression of the interneuron markers NPY, PV and calbindin 

in the cortex (Jones et al., 1994). Also Trkb knockout mice show impairments in the 

GABAergic system even though the number of active interneurons is normal (Carmona et 

al., 2006). This suggests, that BDNF/TrkB signalling might play a role in differentiation of 

interneurons but is not required for survival. Overexpression of Bdnf was reported to 

accelerate maturation of the inhibitory cortical network in mice (Huang et al., 1999). 

During development, TrkB signalling has been involved in the regulation of 

interneuron migration, neurite outgrowth, differentiation, synaptogenesis, but also in 

regulation of network activity and synchronization. 

A role for TrkB in interneuron migration has so far only been shown in vitro. 

TrkB activation can induce PI3K-dependent tangential migration of MGE- derived 

interneurons (Polleux et al., 2002) and can also induce migration of PV and CCK 
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interneurons (Berghuis et al., 2005) in vitro. However, specific deletion of Trkb from early 

postmitotic GABAergic neurons does not lead to any changes in number or position of 

cortical interneurons suggesting that at least in vivo TrkB is not required for survival or 

migration of cortical interneurons (Sánchez-Huertas and Rico, 2011). 

Involvement of BDNF/TrKB signalling in interneuron neurite outgrowth has only 

been demonstrated in vitro. Administration of BDNF to neuron cultures increases 

dendritic length and branching in an activity-dependent way but not the number of 

interneurons (Jin et al., 2003). This effect was also shown specifically for cultures of PV- 

or CCK-positive interneurons (Berghuis et al., 2004, 2005).  

There is clear evidence that TrkB signalling is important for proper differentiation 

of interneurons as it was shown to regulate expression of several interneurons markers 

essential for proper interneuron function. For instance, overexpression of Bdnf in mice 

increases Gad67 mRNA levels (Aguado et al., 2003) and accordingly, Trkb knockout mice 

show reduced Gad67 mRNA levels (Carmona et al., 2003). Specific deletion of Trkb from 

cortical GABAergic interneurons results in reduced levels of Gad65, Gad67 and VGAT 

(vesicular GABA transporter) that are all imperative for GABAergic function. This 

publication also demonstrated that TrkB directly regulates Gad65 expression via MAPK-

dependent activation of CREB which binds to the Gad65 promotor (Sánchez-Huertas and 

Rico, 2011). Moreover, treatment of neuronal cultures with BDNF increases expression of 

PV, another interneuron marker (Berghuis et al., 2004). 

Numerous in-vitro experiments demonstrate that BDNF promotes the formation 

of GABAergic synapses in hippocampal and cortical cultures (Woo and Lu, 2006; Huang 

et al., 2007). Moreover, specific removal of Trkb from cerebellar precursor cells causes a 

marked decrease in GABAergic synapses even though interneurons are present in normal 

numbers (Rico et al., 2002). Overexpression of Bdnf during mouse development results in 

increased synapse numbers (GABAergic and non-GABAergic) (Aguado et al., 2003) 

whereas deletion of Trkb leads to a reduction of GABAergic synapses in the hippocampus 

(Carmona et al., 2006). Finally, promotion of synaptic adhesion by signalling via the 
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TrkB-PLC site was shown to be required for assembly and maintenance of GABAergic 

synapses (pre- and postsynaptic) in the cerebellum (Chen et al., 2011). 

Spontaneous network activity is an important feature of the developing 

hippocampus and cortex and was suggested to control synapse formation and 

synchronization (Ben-Ari, 2001). In Trkb knockout mice, the impairment in GABAergic 

differentiation and synaptogenesis leads to reduced spontaneous network activity at P2/3 

(when GABA is still excitatory) and hyperexcitability at P8/9 when GABA is inhibitory 

(Carmona et al., 2003, 2006). Also, early overexpression of Bdnf causes premature 

spontaneous activity and synchronization (Aguado et al., 2003) confirming the 

importance of BDNF/TrkB signalling for this developmental step. 

Even though this is not an interneuron-specific function, BDNF/TrkB signalling 

has also been implicated in the developmental switch that alters the response of a 

postsynaptic cell to GABA. During development GABA is excitatory and only later 

becomes inhibitory when the K+/Cl- cotransporter KCC2 is expressed in postsynaptic 

neurons (Rivera et al., 1999; Ben-Ari, 2001). BDNF/TrkB signalling was shown to 

upregulate KCC2 expression during development (Aguado et al., 2003) and it might have 

the reverse effect in adult neurons (Woo and Lu, 2006). 

In the adult brain, BDNF/TrkB signa ling is not only required for maintenance of 

GABAergic synapses but might also regulate adult synaptic transmission by altering 

expression of receptors in postsynaptic clusters. In hippocampal neuron cultures, BDNF 

administration increased the number of GABAA and NMDA receptor clusters in 

postsynaptic densities. The increase of NMDA receptor-positive clusters was dependent 

on prior GABAA activation, suggesting that BDNF/TrkB signalling could thus balance 

inhibitory and excitatory inputs (Elmariah et al., 2004). TrkB might also regulate receptor 

composition as Trkb knockout mice have a different composition of AMPA and GABAA 

receptors which could alter electrophysiological characteristics (Carmona et al., 2003). 

Apart from acting postsynaptically, BDNF/TrkB signalling also regulates expression of 

presynaptic markers. BDNF administration can upregulate expression of syntaxin, 
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synaptobrevin and synaptophysin (Woo and Lu, 2006) and chronic application of BDNF 

increases GABA vesicle release by changing calcium channel distribution (Baldelli et al., 

2005). Impaired GABAergic function has been implicated in the pathogenesis of 

schizophrenia and since patients show reduced levels of Gad67, PV, BDNF and TrkB 

mRNA also BDNF/TrkB signalling might be involved (Hashimoto et al., 2005). 
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1.3 BDNF, TrkB and the central control of energy homeostasis 

1.3.1 Central control of energy intake 

The brain contains two major centers that receive and integrate information about 

short- and long-term changes in energy homeostasis and then adapt energy intake 

correspondingly; these are the hypothalamus and the dorsal vagal complex (DVC) in the 

brainstem which contains the nucleus tractus solitarius (NTS), the area postrema and the 

dorsal motor nucleus of the vagus nerve (Figure 1.3 A) (Lebrun et al., 2006). The arcuate 

nucleus of the hypothalamus (ARC) and the area postrema have fenestrated capillaries 

(they are not separated from the peripheral blood circulation by the blood brain barrier) 

and can therefore sense glucose and other metabolites in the blood (Cone et al., 2001; 

Price et al., 2008). The NTS receives short-term satiety information from the 

gastrointestinal system over the vagal nerve and gustatory information from taste 

receptors (Morton et al., 2006) and controls short-term energy intake by regulating meal 

size independent of the hypothalamus (Gao and Horvath, 2008).  

The hypothalamus can also sense short-term signals as glucose, but more 

importantly, can sense adiposity-related signals and regulates long-term energy intake. 

Adipocytes secrete the hormone leptin and serum levels of leptin are proportional to the 

amount of adipose tissue (Zhang et al., 1994; Gao and Horvath, 2008). Also insulin, which 

is secreted from beta-cells in the pancreas to regulate glucose homeostasis (Schwartz et al., 

2000) shows an increase in serum levels in response to weight gain (Schwartz et al., 2000). 

Leptin and insulin act on two different populations of neurons in the ARC (Figure 1.3 B). 

One population expresses pro-opiomelanocortin (POMC) and cocaine- and 

amphetamine-regulated transcript (CART) and is activated by leptin and insulin whereas 

the other population expresses agouti-related protein (AgRP), NPY and is inhibited by 

leptin and also insulin (Schwartz et al., 2000; Morton et al., 2006). Upon activation, 

POMC/CART neurons secrete the melanocortin α-MSH, one of the peptides synthesized 

from POMC. α-MSH in turn activates neurons expressing MC4R receptors that have 

anorexigenic (food intake suppressing) effects (Figure 1.3 A,B) (Cone, 2005). Neurons 
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expressing MC4R were reported in the ARC itself, the lateral hypothalamus (LHA), 

paraventricular nucleus of the hypothalamus (PVN), the dorsomedial hypothalamus 

(DMH) and ventromedial hypothalamus (VMH) (Figure 1.3 A) (Morton et al., 2006; Gao 

and Horvath, 2008). AgRP/NPY neurons are GABAergic and suppress activity of 

POMC/CART and other anorexigenic neurons and therefore have an orexigenic (food 

intake promoting) effect unless inhibited by leptin and insulin (Figure 1.3 B) (Cowley et 

al., 2001; Gropp et al., 2005; Luquet et al., 2005). 

The medial PVN receives input from arcuate POMC and NPY neurons (Cowley et 

al., 1999) and corticotropin-releasing hormone (CRH) and urocortin, that are both 

expressed in the PVN, can inhibit food intake (Spina et al., 1996; Richard et al., 2000). 

CRH is upregulated in response to leptin (Uehara et al., 1998) and might act through 

suppression of the orexigenic NPY-system (Heinrichs et al., 1993). An involvement of the 

PVN downstream of leptin and melanocortin signal ing was also proven by specific 

reexpression of MC4R in this region on a MC4R knockout background. This restored 

partially the obesity and almost completely the hyperphagia (excessive hunger and food 

intake) found in MC4R knockout mice but not the decreased energy expenditure 

(Balthasar et al., 2005). It is noteworthy that the downstream effector of CRH in the 

hypothalamic-pituitary-adrenal axis (HPA axis), corticosterone, has an orexigenic effect, 

most probably through suppression of CRH expression (Nieuwenhuizen and Rutters, 

2008). 

The VMH expresses receptors for leptin, α-MSH and NPY and receives inputs 

from the ARC. Specific deletion of leptin receptors in the VMH leads to obesity and 

hyperphagia suggesting the VMH is involved in anorexigenic signa ling downstream of 

leptin (Gao and Horvath, 2008). Excitatory VMH neurons might act as a positive 

feedback to the ARC and increase the activity of ARC POMC neurons (Sternson et al., 

2005). Neurons in the LH control food intake and arousal and have in general an 

orexigenic effect whilst neurons in the DMH have an anorexigenic effect (Gao and 

Horvath, 2008). 



Figure 1.3 A  Schematic overview of regions involved in central regulation of food intake and 
coronal sections of single regions. Adiposity signals and nutrients act on the arcuate nucleus 
(ARC) and the nucleus tractus solitarius (NTS) as the blood-brain barrier (BBB) is disrupted at 
the level of the median eminence (ME) and the area postrema (AP). Neurons in the ARC act 
then on downstream targets in the ventromedial, dorsomedial and paraventricular nucleus of 
the hypothalamus (VMH, DMH and PVN) and the lateral hypothalamus (LH). 3V third ventricle, 
OC optic chiasm. B The ARC contains two populations of leptin-responsive neurons, NPY/AgRP 
(neuropeptide Y, agouti-related peptide) gabaergic neurons that are inhibited by leptin and 
suppress activity of downstream targets, and POMC (proopiomelanocortin) neurons that are 
activated by leptin and act on downstream targets via melanocortin signa ling. GABA-R 
γ-aminobutyric acid receptor, LepRb leptin receptor, Mc4r melanocortin receptor 4
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Obesity and the metabolic syndrome 

Disregulation of leptin/melanocortin signa ling can lead to hyperphagia, weight 

gain and obesity. Increase in adipose tissue is generally accompanied by increased insulin 

and leptin levels (hyperinsulinemia and hyperleptinemia) and resistance to both 

hormones (Belgardt and Brüning, 2010).  

As already mentioned, leptin is secreted by adipocytes and therefore leptin 

secretion and serum leptin levels are proportional to the amount of adipose tissue. 

Obesity-induced leptin resistance might partially be due to decreased transport of leptin 

through the blood brain barrier but also due to increase in C-reactive protein in obese 

patients, which binds to leptin and abolishes thus binding to the leptin receptor. 

Moreover, signal ing downstream of the leptin receptor is inhibited by phosphatases that 

were found to be upregulated in obese individuals (Belgardt and Brüning, 2010). Central 

resistance to insulin is based on the same mechanisms as leptin resistance (Belgardt and 

Brüning, 2010). Obesity also induces resistance to insulin in the periphery leading to 

increased insulin secretion, hyperinsulinemia and finally to hyperglycemia and 

development of diabetes type II (Schwartz et al., 2000; Martyn et al., 2008). Obesity is not 

only associated with development of diabetes type II but is also often accompanied by 

further symptoms such as hypertension, dyslipidemia (abnormal lipid levels – fat or 

cholesterol), a risk for coronary heart disease and increased mortality (Spiegelman and 

Flier, 2001).  

This set of metabolic disorders is known as metabolic syndrome (also syndrome X, 

the insulin resistance syndrome or the deadly quartet). Even though the precise definition 

is still controversial, the metabolic syndrome is generally characterized by 1) glucose 

intolerance/insulin resistance, 2) hypertension, 3) dyslipidemia and 4) central obesity 

(Eckel et al., 2010). 

1.3.2 BDNF and TrkB are involved in the central control of energy intake 

Numerous studies show that BDNF/TrkB signa ling is implicated in the central 

control of energy homeostasis. First experiments showed that long-, but not short-term 
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infusion of BDNF into the lateral ventricle of rats strongly suppresses food intake and 

leads to weight loss (Pelleymounter et al., 1995). Further indications for a role of BDNF 

and TrkB in anorexigenic signa ling came from analysis of genetically modified mouse 

lines. Bdnf heterozygous (Bdnf+/-) mice and mice that express Trkb at reduced levels are 

hyperphagic and have increased body weight (Lyons et al., 1999; Xu et al., 2003a). A later 

study showed that only a certain percentage of Bdnf+/- mice developed obesity. This 

segregation correlated with BDNF expression in the LHA and VMH. Non-fat Bdnf+/- mice 

showed decreased expression of BDNF in the LHA in comparison to fat Bdnf+/- mice and 

an altered distribution of BDNF in the VMH. Moreover, obesity in Bdnf+/- mice is 

accompanied by increased insulin and leptin but not increased glucose levels and is 

reversible by infusion of BDNF into the third ventricle (Kernie et al., 2000). This is a 

central and development-independent function of BDNF as specific postnatal deletion of 

Bdnf in principal neurons of the forebrain also results in hyperphagia, obesity, 

hyperleptinemia, hyperinsulinemia and hyperglycemia (Rios et al., 2001).  

Xu and colleagues (Xu et al., 2003a) first showed that BDNF might regulate 

anorectic signa ling downstream of melanocortin (α-MSH) signa ling in the VMH. They 

showed that BDNF expression in the VMH is regulated by melanocortin signa ling in 

response to the nutritional state and that BDNF infusion can rescue the hyperphagia and 

weight gain that melanocortin-signa ling-deficient mice show. A role for BDNF in acute 

anorectic signa ling in the VMH was confirmed by a study using mice with a viral-

mediated knockdown of Bdnf in the VMH and DMH. These mice developed hyperphagia 

and obesity with hyperleptinemia, hyperinsulinemia and hyperglycemia but with normal 

energy expenditure (Unger et al., 2007). Dietary restriction reverses the metabolic 

abnormalities found in these and also in Bdnf+/- mice (Duan, 2003; Unger et al., 2007) 

confirming that hyperphagia is the actual cause of obesity in these mice.  

In the VMH, BDNF is expressed by excitatory neurons that project to numerous 

other nuclei. A direct action of BDNF in the feedback mechanism of VMH neurons to the 

ARC is unlikely, as TrkB does not colocalize with either POMC/CART nor NPY/AgRP 
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neurons in the ARC (Xu et al., 2003a). However, the VMH projects also to the DVC. 

BDNF expression in the DVC is, as in the VMH, regulated by nutritional state (Bariohay 

et al., 2005), and pharmacological blockade of TrkB signa ling in the DVC blocks the 

anorexigenic effect of melanocortin signa ing (Bariohay et al., 2009). Therefore, BDNF 

from the VMH and DVC might be involved in food intake regulation in the DVC 

downstream of melanocortin signa ling. 

Also the PVN has been suggested as a side where BDNF might regulate food 

intake. Injection of BDNF into the PVN suppressed feeding in rats, modulated NPY 

expression in the ARC and suppressed NPY-induced feeding (Wang et al., 2007). Chronic 

infusion of BDNF into the lateral ventricle or into the PVN upregulated expression of the 

anorectic peptides CRH and urocortin and moreover decreased food intake and body 

weight. This effect of BDNF could be abolished by blocking the CRH-R2 receptor that is 

activated by CRH and urocortin. Therefore, long-term regulation of food intake by BDNF 

might be mediated by CRH/urocortin signa ling through CRH-R2 (Toriya et al., 2010). 

However, no changes in peptide expression in the PVN were found in any of the obese 

BDNF or TrkB mutants (Kernie et al., 2000; Rios et al., 2001; Xu et al., 2003a) 
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1.4 The hypothalamic-pituitary-adrenal axis and BDNF/TrkB 

signalling 

1.4.1 The hypothalamic-pituitary-adrenal axis 

The hypothalamic-pituitary-adrenal (HPA) axis is the system that regulates basal 

and stress-induced glucocorticoid secretion (corticosterone in rodents, cortisol in 

humans). The paraventricular nucleus of the hypothalamus (PVN) is considered the 

‘master regulator’ of HPA axis activity as it contains the parvocellular neurons that 

express and secrete corticotropin–releasing hormone (CRH) (Herman et al., 2008). CRH 

is also expressed by other neurons in the CNS and can act as neurotransmitter, but only 

parvocellular neurons project to the median eminence and release CRH as a hormone 

into the portal bloodstream (Drolet and Rivest, 2001). The portal bloodstream is a system 

of blood vessels that connect the median eminence directly with the anterior pituitary. 

Here, CRH induces release of adrenocorticotropic hormone (ACTH), one of the peptides 

cleaved from POMC, into the peripheral bloodstream. ACTH then stimulates 

glucocorticoid synthesis and secretion from the zona fasciculata of the adrenal cortex 

(Felig and Frohman, 2001; Herman and Mueller, 2006; Ulrich-Lai and Herman, 2009). 

After secretion into the peripheral bloodstream glucocorticoids can inhibit PVN activity 

in the hypothalamus and ACTH secretion from the pituitary in a negative feedback loop 

(Figure 1.4 A) (Watts, 2005) that will be discussed in more detail in the next subchapter. 

The effect of CRH on ACTH secretion can be potentiated by co-secretion of 

arginine-vasopressin (AVP) from parvocellular neurons (Volpi et al., 2004). Apart from 

colocalizing with CRH in parvocellular neurons, AVP is also expressed by other neurons 

in the PVN, the magnocellular neurons, which project directly to the posterior pituitary 

(also called neurohypophysis) from where they release AVP into the peripheral blood 

stream for blood pressure control (de Wardener, 2001).  

Changes in AVP and CRH secretion are difficult to measure directly but their 

expression levels in the PVN mirror parvocellular neuron activity and are therefore used 
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as marker for PVN activity (Watts, 2005). A further marker for PVN activity is 

enkephalin that is expressed in an unnamed nucleus laterally to the PVN and only upon 

conditions of elevated HPA axis activity in the PVN itself (Dumont et al., 2000; Viau and 

Sawchenko, 2002; Watts, 2005). 

ACTH and corticosterone are secreted in a daily rhythm that precedes activity. 

Therefore, ACTH and corticosterone reach their basal, lowest levels at the beginning of 

the rest phase (early evening in humans, early morning in rodents) and peak shortly 

before the onset of the active phase (early morning in humans, early evening in rodents). 

The circadian rhythm is based on hourly bursts (or more frequent depending on 

individual and species) of ACTH and corticosterone secretion that persist through rest 

and active phase and only changes in amplitude (Figure 1.4 B) (Watts, 2005; Lightman 

and Conway-Campbell, 2010). CRH secretion is not required for maintenance of this 

ultradian rhythm (Lightman and Conway-Campbell, 2010) but CRH expression in the 

PVN shows an inverse relationship as it is low at the beginning of the active phase and 

then increases (Watts, 2005). Binding of glucocorticoids to the glucocorticoid receptor 

GR follows the hourly burst suggesting that GR activity is involved in regulating the 

ultradian rhythm (Lightman and Conway-Campbell, 2010). However, CNS-specific 

deletion of the Gr in mice did not influence the circadian rhythm per se (Tronche et al. 

1999). Thus, the origin of the circadian rhythm is still controversial with mechanism 

involving GR signalling in the hippocampus, the clock in the suprachiasmatic nucleus, 

and the adrenal itself being proposed (Watts, 2005; Lightman and Conway-Campbell, 

2010; Son et al., 2011). 

Response to a stressor involves the autonomic nervous system, the HPA axis and 

the limbic system. Whilst the sympathetic autonomic nervous systems reacts in seconds 

to a stressor by increasing heart rate, blood pressure and secreting adrenalin, the HPA 

axis reacts more slowly. ACTH is released after seconds (Watanabe and Orth, 1987) but 

corticosterone is only secreted 10-15 minutes after the stressor. However, elevated 

glucocorticoid levels are maintained longer and can therefore adapt body functions to 
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cope with stress by increasing energy metabolism and blocking immune and 

inflammatory responses (de Kloet et al., 2005; Ulrich-Lai and Herman, 2009). The 

hypothalamic nuclei controlling HPA axis activity integrate catecholaminergic input from 

the autonomic nervous system but also inputs from the limbic system and are therefore 

ideally positioned to adapt the reaction to a specific stressor (Jankord and Herman, 2008; 

Ulrich-Lai and Herman, 2009). Processing of psychogenic and systemic stressors requires 

the limbic system (mainly the amygdala, the hippocampus and the prefrontal cortex). The 

limbic system receives and integrates input from cortical areas that are involved in 

sensory processing and memory and input from brainstem areas (locus coeruleus, raphe 

nuclei) that regulate attention and arousal (Ulrich-Lai and Herman, 2009). The limbic 

system is not directly connected to the PVN but via a bisynaptic network over different 

inhibitory GABAergic nuclei (see next subchapter) (Cullinan et al., 2008; Jankord and 

Herman, 2008).  

Central control of HPA axis activity: glucocorticoid feedback and GABAergic 

neurons 

Activity of the HPA axis is tightly regulated on a central level by GABAergic 

inhibitory interneurons and glucocorticoid feedback (Figure 1.4 A,C). 

Glucocorticoids act in a negative feedback loop and suppress HPA axis activity at 

the level of the pituitary and the brain (Watts, 2005). Mineralocorticoid as well as 

glucocorticoid receptors (MR and GR) are activated by glucocorticoids but differ in their 

affinity and expression pattern and therefore also in their function. MRs have a high 

affinity for glucocorticoids and are occupied at basal glucocorticoid serum levels. 

Glucocorticoid receptors (GR) have a 10-fold lower affinity and only bind glucocorticoids 

after bursts of secretion (de Kloet et al., 2005). Both receptors dimerize upon ligand 

binding and translocate to the nucleus where they act as transcription factors (Müller and 

Holsboer, 2006) but can both also function without dimerization but by interacting with 

other receptors and transcription factors (Reichardt et al., 1998; de Kloet et al., 2005). 

CNS expression of MRs is generally restricted to neurons of the limbic system, especially 

the hippocampus, but GRs are widely expressed in neurons and glia (de Kloet et al., 2005; 
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Berger et al., 2006). MRs are occupied at basal glucocorticoid levels and were suggested to 

regulate the basal HPA axis tone. However, neither forebrain-specific deletion of Mr nor 

Mr overexpression caused significant changes in daily or stress-related HPA axis activity 

but resulted rather in cognitive impairment or decreased anxiety, respectively (Berger et 

al., 2006; Kolber et al., 2008). Therefore, MR-involvement in the regulation of HPA axis 

activity is rather limited. 

As GRs only bind glucocorticoids at elevated serum levels and their occupation 

correlates with the circadian cycle they were suggested to mediate feedback inhibition 

(Joëls and Baram, 2009; Ulrich-Lai and Herman, 2009). Indeed, CNS-specific deletion of 

the Gr in mice causes a marked hyperactivity of the HPA axis even though the circadian 

rhythm was still present (Tronche et al., 1999). Deletion of Gr in principal neurons in the 

forebrain in mice resulted in impaired negative glucocorticoid feedback but ACTH and 

corticosterone were only elevated from around four months of age on (Boyle et al., 2005). 

Both mouse models also show decreased anxiety behaviour and the latter also decreased 

depression-like behaviour suggesting these functions of the GR are linked to the limbic 

system (Tronche et al., 1999; Boyle et al., 2005, 2006). Mutation of the GR dimerization 

domain in mice causes elevated basal corticosterone levels but no changes in stress 

response, CRH expression or ACTH secretion, suggesting that these are regulated by a 

DNA-binding independent mechanism (Reichardt et al., 1998). As GRs are widely 

expressed in the brain it is still controversial if they act directly on parvocellular neurons 

or rather on GABAergic neurons that control PVN activity or even in limbic regions. 

CRH expression shows an inverse relationship with serum glucocorticoid levels, 

particularly at glucocorticoid levels between 10 to 150 ng/ml. In vitro studies suggested a 

direct action of glucocorticoids on CRH expression in parvocellular neurons but 

corticosterone administration into the PVN in vivo had little effect on PVN CRH 

expression (Watts 2005). Also the finding that mutation of the GR dimerization domain 

does not alter CRH expression (Reichardt et al. 1998, see above) indicates another 

mechanism than direct inhibition of CRH expression by the GR. 
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Activity of parvocellular neurons is also tightly regulated by local GABAergic 

interneurons. It should be mentioned that these interneurons do not originate in the 

ganglionic eminences like cortical and hippocampal interneurons, but from the intra-

hypothalamic diagonal, a zone between the anterior dorsal and posterior ventral regions 

of the hypothalamus (Blackshaw et al., 2010). GABAergic interneurons that innervate 

parvocellular neurons were found in the peri-PVN (includes the subparaventricular zone, 

neurons directly dorsal and lateral to the PVN and neurons in the dorsomedial anterior 

hypothalamic area (dmAHN) and the perifornical nucleus (Herman et al., 2002), but also 

in the dorsomedial hypothalamus (DMH), the preoptic area and nucleus (POA) and the 

bed nucleus of the stria terminalis (BST) thus building an inhibitory ring around the PVN 

(Figure 1.4 C) (Cullinan et al., 1993, 2008; Bowers et al., 1998; Herman et al., 2002). 

Microinjections of a GABA antagonist into the PVN induce an increase in corticosterone 

levels in unstressed animals. This response is blunted in stressed animals suggesting that 

inhibitory interneurons exert tonic inhibition over the PVN that is only lifted upon stress 

(Cole and Sawchenko, 2002; Hewitt et al., 2009; Wamsteeker and Bains, 2010). 

Apart from exerting tonic inhibition over the PVN, local GABAergic interneurons 

also serve as a gateway for afferent limbic inputs (Figure 1.4 C). As already mentioned, the 

limbic system has few direct inputs into the PVN but rather innervates GABAergic nuclei 

in the vicinity of the PVN. Projections from the hippocampus and prefrontal cortex are 

mainly glutamatergic and activate GABAergic interneurons leading to suppression of 

HPA axis activity. In contrast to this, projections from the amygdala are rather 

GABAergic and inhibit interneurons leading to disinhibition of the PVN (Herman et al., 

2002; Herman, 2003; Cullinan et al., 2008; Jankord and Herman, 2008). Hence, the ring of 

inhibitory interneurons in the hypothalamus and BST integrates excitatory and inhibitory 

inputs from the limbic system, a mechanism that was suggested to be especially important 

for anticipatory responses and habituation to repeated stress (Jankord and Herman, 

2008). 
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Hypercortisolism: Cushing’s syndrome and the metabolic syndrome 

Disregulation of the HPA axis can cause numerous diseases. For instance, 

chronically elevated glucocorticoid levels result in development of Cushing’s syndrome. 

In humans the cause of Cushing’s syndrome is generally a pituitary or adrenal tumor 

leading to increased ACTH and/or cortisol secretion or prolonged glucocorticoid 

treatment. Cushing’s syndrome is characterized by central obesity with increased visceral 

fat mass in the abdominal and trunk area, as well as fat accumulation in the neck/shoulder 

region and the face. This is accompanied by increased leptin and insulin levels, 

hyperglycemia, hypertension and development of diabetes type II. Increased 

glucocorticoid production by the adrenal cortex results in adrenal hypertrophy and the 

chronically elevated glucocorticoid levels cause muscle atrophy, thinning skin with 

decreased subcutaneous fat mass and a decrease in bone density. Also psychological 

disturbances as emotional lability, increased irritability, anxiety, depression and cognitive 

deficits are often found in Cushing’s patients (Felig and Frohman, 2001; Nieuwenhuizen 

and Rutters, 2008; Fernandez-Rodriguez et al., 2009). 

Cushing’s syndrome can be modeled in mice, for instance by overexpression of 

Crh (Stenzel-Poore et al., 1992; Groenink et al., 2002), altered posttranslational processing 

of ACTH (Saiardi and Borrelli, 1998; Westphal et al., 1999) or brain-specific deletion of 

the Gr (Tronche et al., 1999). These models show a subset of the symptoms seen in 

humans, depending on the method used. 

Some of the symptoms observed in Cushing’s syndrome, especially central obesity, 

hyperleptinemia, hyperinsulinemia, hyperglycemia, diabetes type II and hypertension, are 

reminiscent of the metabolic syndrome suggesting that disregulation of the HPA axis and 

glucocorticoid secretion could contribute to the development of this disease (Peeke and 

Chrousos, 1995; Pasquali et al., 2006; Anagnostis et al., 2009). A state of ‘functional 

hypercortisolism’ has been described in obese individuals with subtle increases in HPA 

axis activity and increased activity of glucocorticoids in peripheral tissues, especially 

adipose tissue (Pasquali et al., 2006; Anagnostis et al., 2009). Chronic administration of 
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corticosterone causes hyperphagia in mice leading to development of a full metabolic 

syndrome (Karatsoreos et al., 2010). Glucocorticoids were suggested to have an orexigenic 

effect and to alter food preference towards more fat and sugar-containing food. The 

orexigenic effect might be based on glucocorticoid suppression of CRH which has 

anorexigenic effects (see chapter 1.3.1) (Nieuwenhuizen and Rutters, 2008). 

Glucocorticoids might alter fat distribution by direct action on adipose tissue. For 

instance, increased availability of glucocorticoids in fat tissue by overexpression of 11β-

hydroxysteroid dehydrogenase-1 (11β-Hsd1), a glucocorticoid-converting enzyme, leads 

to obesity (Masuzaki et al., 2001). Furthermore, glucocorticoids were shown to upregulate 

NPY receptors in adipose tissue resulting in abdominal obesity under conditions of stress-

induced NPY release (Kuo et al., 2007). 

1.4.2 Indications for a role of BDNF/TrkB signal ing in the control of HPA axis 

activity 

Both BDNF and TrkB are expressed in the pituitary and the hypothalamic nuclei 

involved in HPA axis control (Tapia-Arancibia et al., 2004). HPA axis activity and the 

ability to cope with stress has been associated with the Val66Met mutation of the Bdnf 

locus in humans (Schule et al., 2006; Shalev et al., 2009; Vinberg et al., 2009). 

Most studies involving BDNF directly in the regulation of HPA axis activity 

originate from just one lab. This group showed that acute immobilization stress increases 

Bdnf mRNA and peptide levels in the pituitary (Givalois et al., 2001), PVN (Rage et al., 

2002), hippocampus (Marmigère et al., 2003) (decrease after longer stress stimuli), and 

median eminence of rats (Givalois et al., 2004a). Furthermore, they demonstrated that 

one injection of BDNF into the lateral ventricle acutely increases serum ACTH and 

corticosterone levels and later also Crh mRNA expression in the PVN (Givalois et al., 

2004b). Chronic infusion of BDNF into the lateral ventricle increased PVN CRH and 

AVP mRNA and peptide levels. However, the net effect on HPA axis activity was unclear 

as serum ACTH levels were decreased but corticosterone levels increased (Naert et al., 

2006). Finally, they showed that exposure of rats to chronic stress leads to upregulation of 
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BDNF peptide levels in hippocampus, hypothalamus and pituitary, to increased PVN 

CRH and AVP mRNA and peptide levels and increased serum ACTH and corticosterone 

levels (Naert et al., 2010). Electrophysiological analysis of GABAergic synapses onto PVN 

neurons suggests that BDNF decreases GABAergic input by removal of GABAA receptors 

via a postsynaptic mechanism (Hewitt and Bains, 2006).  

BDNF and TrkB were also suggested to interact with glucocorticoid feedback. 

Corticosterone was shown to regulate expression of BDNF and TrkB in the hippocampus, 

hypothalamus and , at least for BDNF, in the pituitary (Schaaf et al., 1997; Tapia-

Arancibia et al., 2004). Furthermore, the GR can directly interact with TrkB in vitro 

enhancing BDNF-dependent signa ling via the PLC docking site of TrkB (Numakawa et 

al., 2009). 

Yet, in the Bdnf or Trkb mutant mouse lines in which HPA axis activity was 

analyzed no changes were apparent. For instance, Bdnf+/- mice have normal corticosterone 

levels (Kernie et al., 2000) and conditional deletion of Trkb in principal neurons of the 

forebrain did not cause any changes in HPA axis activity suggesting that, if TrkB has any 

role in regulation of the HPA axis, it is not dependent on principal neurons (Zorner et al., 

2003). 
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1.5 Aim of this Project 

This project aims at characterizing the role of the neurotrophin receptor TrkB in a 

specific subset of interneurons that express CCK. To specifically ablate Trkb from these 

neurons, we have generated a transgenic BAC-Cre mouse line that expresses Cre under 

the CCK-promoter and crossed it to a Trkb-floxed mouse line. 

Little is known concerning the role of CCK-positive interneurons outside of the 

hippocampus and cortex, but CCK is also found in numerous other regions of the brain. 

For instance, analysis of recombination in the BAC-CCK-Cre mice revealed a high 

number of recombined neurons in the hypothalamus in regions involved in control of 

energy intake or regulation of hypothalamic-pituitary-adrenal (HPA) axis activity. 

Intriguingly, BDNF/TrkB signalling has been involved in both central metabolic control 

and regulation of the HPA axis. 

This study investigates the involvement of TrkB signalling in CCK-expressing 

interneurons in control of energy intake and modulation of HPA axis activity. CCK-Cre 

specific Trkb-knockout mice develop central obesity and have elevated ACTH and 

corticosterone levels indicating HPA axis hyperactivity. Therefore, body weight gain, fat 

accumulation and food intake on normal and high-fat diet will be analyzed. Also obesity-

related changes in serum levels of major metabolic hormones as leptin and insulin will be 

described. Peripheral consequences of increased HPA axis activity will be investigated by 

morphological analysis of the adrenal cortex and analysis of fat distribution. A possible 

association of increased HPA axis activity with altered anxiety behaviour will be studied 

by testing anxiety behaviour. The central regulator of HPA axis activity is the 

paraventricular nucleus of the hypothalamus (PVN). Changes in PVN function will be 

assessed by in-situ hybridization for markers of PVN activity. The distribution of 

recombined CCK-neurons in nuclei involved in HPA axis regulation will be analyzed as 

well as their potential to integrate glucocorticoid feedback inhibition. To verify which 

downstream pathways of TrkB are involved in the phenotypes observed, mice with point 

mutations in the TrkB-SHC or TrkB-PLC adaptor site will be analyzed as well. 
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2.1 Standard chemicals and consumables 

All chemicals were purchased from Sigma Aldrich (Sigma-Aldrich Ltd, 

Gillingham, UK and Sigma-Aldrich Chemie GmbH, Munich, Germany) or VWR (VWR 

International, Lutterworth, UK and VWR International GmbH, Darmstadt, Germany) in 

molecular biology grade unless otherwise stated.  

Consumables were purchased from Roth (Carl Roth GmbH, Karlsruhe, Germany), 

Eppendorf (Eppendorf UK Limited, Cambridge, UK), BD (BD, Oxford, UK), Greiner 

(Greiner Bio-One Ltd., Stonehouse, UK), Thermo Fisher Scientific (Fisher Scientific UK 

Ltd., Loughborough, UK and Fisher Scientific GmbH, Schwerte, Germany), Gilson 

(Gilson UK, Luton, UK) and Rainin (Anachem Ltd, Luton, UK). 

 

2.2 Buffers 

All buffers were prepared with ultrafiltered water unless stated otherwise. Water 

was purified using the “Milli-Q-water purification system” from Millipore (Millipore Ltd, 

Watford, UK). For in-situ hybridization water and PBS were treated with DMPC 

(dimethylpyrocarbonate), a less carcinogenic alternative to DEPC (diethylpyrocarbonate) 

in order to inactivate RNases. DMPC was added at a dilution of 0.1 % (v/v), solutions 

incubated at 37 °C for at least one hour and then autoclaved in order to inactivate DMPC. 

 

Buffers in alphabetical order: 

Acidic Alcohol: 

0.25% HCl in 70% ethanol (676 μl of 37% HCl for 100 ml) 

100% avertin stock: 

10 g of 2,2,2-tribromoethyl alcohol (Sigma-Aldrich) were dissolved in 10 ml of tert-amyl 

alcohol (Sigma-Aldrich) by stirring over night at 37 C and then kept at 4 °C protected 

from light. 
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Bluing Solution: 

0.3% ammonium hydroxide in distilled water 

Cresyl Violet (CV) buffer: 

2 g sodium acetate, 3 ml glacial acetic acid for 1 litre 

Cresyl Violet stock solution: 

2% (w/v) cresyl violet in water, stir o/n 

Cryoprotection buffer for floating sections: 

30% (w/v) sucrose, 30% (v/v) ethylene glycol, 1% (w/v) polyvinyl-pyrrolidone (PVP-40) 

in 0.1 M PB pH 7.4  

(for 1 l: add 10 g PVP-40 to 500 ml PB, stir until dissolved, slowly add 300 g sucrose until 

dissolved, add 300 ml ethylene glycol and add up to 1 litre with PB, store at -20 °C) 

10x DNA loading buffer: 

50% glycerol, 0.2% OrangeG (Sigma, O-1625), in 1xTAE or 1xTBE 

Hybridization buffer: 

2x buffer from Sigma (Hybridization Solution I, #53754), dilute 1:1 with formamide, 

contains then 50% formamide, 5x SSC, 5x Denhardt’s solution, 100 μg/ml salmon sperm; 

add 250 μg/ml tRNA 

LB/LB Agar: 

10 g Bacto-tryptone, 5 g Bacto-yeast extract, 10 g NaCl per 1 l (add 15 g Agar for plates) 

NTMT buffer: 

100 mM Tris-HCl pH 9.5, 100 mM NaCl, 100 mM MgCl2, 0.1% Tween-20 

PB: 

100 mM PB, pH 7.4 (77.4 ml of 1 M Na2HPO4, 22.6 ml of 1 M NaH2PO4 for 1 litre) 

PBS: 

0.01 M phosphate buffer, 0.0027 M potassium chloride and 0.137 M sodium chloride, pH 

7.4 (was prepared from Sigma PBS tablets - P4417) 

10x PCR buffer: 

100mM Tris-HCl pH9.0, 500mM KCl, 1% Triton X-100 
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4% PFA: 

For 1 litre final solution 40 g of paraformaldehyde (Sigma, stored at 4 C) were dissolved 

in 800 ml PB buffer (pH 7.4) by heating to 60 °C. The solution was cooled down to room 

temperature, adjusted to pH 7.4 with sodium hydroxide if necessary, and filtered through 

a 50 μm syringe filter. Aliquots were stored at -20 °C, for experiments the required 

amount was thawed at 56 °C and then cooled to 4 °C. 

Ponceau solution: 

0.1% Ponceau S, 5% acetic acid 

5x Protein loading buffer for SDS-PAGE: 

313 mM Tris pH 6.8, 50% glycerol, 10% SDS, 0.05 % bromophenol blue, add 5% β-

mercaptoethanol just before use 

Protein lysis buffer for blotting: 

50 mM Tris pH 8.0, 150 mM NaCl, , 1% NP-40, 0.1% SDS, 1 tablet of SigmaFast 

proteinase inhibitor cocktail per 100 ml (S8820,  Sigma-Aldrich, final concentration: 2 

mM AEBSF, 0.3 μM Aprotinin, 130 μM Bestatin, 1 mM EDTA, 14 μM E-64 and 1 μM 

Leupeptin), aliquot and store at -20°C 

Protein lysis buffer for ELISA: 

25 mM HEPES pH 7.4, 160 mM KCl, 1% Triton-X100, 1 tablet of SigmaFast proteinase 

inhibitor cocktail per 100 ml (as for protein lysis buffer for blotting) 

5x SDS-PAGE Running Buffer: 

will give 1x: 25 mM Tris, 192 mM glycine, 0.1% SDS  

(for 1 l of 5x: 15.5 g Tris base, 72.1 g glycine, 5 g SDS) 

50x TAE: 

2 M Tris, 1 M glacial acetic acid, 50 mM EDTA, pH 8.0 

Tail lysis buffer: 

100 mM Tris, 1 mM EDTA, 250 mM NaCl, 0.2% SDS, pH 7.5 

10x TBE: 

890 mM Tris, 890 mM boric acid, 20 mM EDTA, pH 8.3 
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TB: 

50 mM Tris, pH 8.3 

TBS: 

50 mM Tris, 150 mM NaCl, pH 7.5 

TE: 

10 mM TrisHCl, 1 mM EDTA, pH7.5 

10x Transfer Buffer: 

will give 1x: 50 mM Tris, 40 mM glycine, 0.02% SDS, 10% methanol 

(for 1 l of 10x: 60.6 g Tris base, 30 g glycine, 2 g SDS, methanol is only added to diluted 

buffer just before use) 

Tris-Azide: 

40 mM Tris, 10 mM phosphate, 0.7% NaCl, 0.05 % NaN3 

(for 1l: 4.85 g Tris base, 1.5 g Na2HPO4 x 2H20 or 8.4 ml of 1 M Na2HPO4 x 2H20, 0.22 g 

NaH2PO4 x H2O or 0.8 ml of 2 M NaH2PO4 x H2O, 7 g NaCl, 0.5 g NaN3) 

 

2.3 Animals 

All animal procedures at the Mouse Biology Unit of EMBL Monterotondo were 

conform to national and international laws and policies (EEC Council Directive 86/609, 

OJ L 358, 1, December 12, 1987; NIH Guide for the Care and Use of Laboratory Animals, 

NIH Publication No. 85-23, 1985 revised in 1995). All procedures performed at the 

Centre for Neuroregeneration, Edinburgh, UK were conform to UK legislation (Scientific 

procedures ACT 1986) and the University of Edinburgh ethical review committee policy. 
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2.3.1 Mouse lines 

Mouse line  Description First reference 
   
BAC-CCK-Cre BAC transgenic line expressing Cre 

recombinase and lacZ from the CCK promoter 
PhD thesis of Sylvia 
Badurek/this study 

   
Trkb-floxed Line for conditional deletion of Trkb, loxP sites 

flank the second exon of the kinase domain  
(Minichiello et al., 
1999) 

   
Trkb-CCK-KO Cross of the BAC-CCK-Cre line and the Trkb-

floxed line 
PhD thesis of Sylvia 
Badurek/this study 

   
Z/EG Transgenic reporter line switching from lacZ 

expression to EGFP expression (under the 
pCAGGS promoter) upon Cre-mediated 
recombination 

(Novak et al., 2000) 

   
R26R-EYFP Knockin reporter line expressing EYFP from 

the Rosa-26R locus upon Cre-mediated 
removal of a stop cassette 

(Srinivas et al., 
2001) 

   
TrkbPLC Line with a single point mutation in the PLC 

docking site (Y816F) 
(Minichiello et al., 
2002) 

   
TrkbWT Wildtype knockin mice, used as wildtype 

control for the TrkbPLC line since this line was 
generated by a cDNA knockin approach 

(Minichiello et al., 
2002) 

   
TrkbSHC Line with a single point mutation in the SHC 

docking site (Y515F) 
(Minichiello et al., 
1998) 

 

2.3.2 Generation of the BAC-CCK-Cre line 

The BAC-CCK-Cre line was generated by Sylvia Badurek, a former PhD student in 

the lab. Since this line is not officially published yet the generation of the line will be 

summarized here. 

 The plasmid (pIZKeoX1) containing the Cre-recombinase cassette was generated 

by Che Serguera in E.coli for subsequent insertion into BACs. The cassette consists of a 

hybrid intron (HI) followed by the Cre-recombinase gene. After the Cre-recombinase 
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gene an internal ribosomal entry site (IRES) followed by the beta-galactosidase gene 

(lacZ) was inserted in order to allow for faster identification of transgene expression by X-

gal staining. A neomycin/kanamycin cassette (neo) for selection of E.coli containing the 

modified BAC was inserted (Figure 2.1).  

BAC no. RPCI23-26B6 (256125bp) containing the Cck gene was chosen for 

targeting  by Sylvia Badurek and ordered from BACPAC resources (Children’s Hospital, 

Oakland, USA). Jeannette Rientjes and Annett Spanner from the Gene Expression Service 

at EMBL-Monterotondo cloned the 50 bp homology arms and added these to the Cre-

construct.  The Cre-recombinase construct was then inserted into the first coding ATG of 

the Cck gene of the BAC via ET recombination in E.coli and the neo cassette was removed 

using a Flp-recombinase. Circular BAC DNA was injected at 1-2 ng/ l into pronuclei of 

CBA/C57 hybrid oocytes by José Gonzalez and his team from the Transgenic Service 

Facility at EMBL-Monterotondo.  

The resulting pups were screened by Sylvia Badurek for presence of the transgene 

by PCR for the Cre-recombinase. Several founders were analyzed by beta-galactosidase 

staining and crossing to the Z/EG reporter line. The founder line with an expression best 

corresponding to published expression patterns of Cck was then used for all experiments. 

 

 

 
 

Figure 2.1 Cre-recombinase construct and insertion site in the CCK-BAC. blaP beta-lactamase 
promoter; Cre Cre-recombinase; Ex exons of the Cck gene; FRT flpe recognition site; HI hybrid 
intron; IRES internal ribosome entry site; lacZ beta-galactosidase gene; neo neomycin/ 
kanamycin gene; PA polyadenylation site; SVe SV40 early enhancer/promoter region 
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2.3.3 Animal handling and colony organization 

The TrkbPLC, TrkbWT, TrkbSHC and  R26R-EYFP mice were maintained on a mixed 

genetic background (C57B6/129), Z/EG mice were maintained on a C57B6/129/CD1 

mixed background and Trkb-floxed mice on a C57B6 background. The BAC-CCK-Cre  

transgenic founder was a CBA/C57B6 hybrid that was crossed back to C57B6 mice for at 

least five generations. For the Trkb-CCK-KO line male heterozygous mice (CCK-

Cretg/+,Trkblx/+) were crossed to floxed females (CCK-Cre+/+,Trkblx/lx or Trkblx/lx) as full 

knockout mice did not breed well. 

At EMBL Monterotondo all basic animal handling was performed by animal 

caretaker Giuseppe Chiapparelli, at the Centre for Neuroregeneration in Edinburgh 

animal handling was performed by caretakers Jenni Rennie and Lynn Morrison. Female 

and male mice were housed separately with a maximum of five animals per cage. In the 

case of males only littermates were housed together whereas females were combined from 

several litters if possible. Mice were only kept alone if males had no littermates, were 

removed from a breeding, or if corticosterone or ACTH serum levels were to be 

determined from these animals. In this case mice were kept separately for at least two 

weeks before the experiment. For all other behavioural experiments mice were always 

kept with company. 

For breeding one male was kept with two females, in the Centre for 

Neuroregeneration the first female to litter was generally separated in order to reduce 

stress. The minimal breeding age for males was 8 weeks and for females 6 weeks. Pu s 

were separated from their mother at  about P20. At EMBL Monterotondo animals were 

identified by eartagging with metal eartags from Hauptner (Hauptner Instrumente 

GmbH, Dietlikon-Zürich, Switzerland) and tail biopsies were taken for genotyping by me. 

At the Centre for Neuroregeneration ear punches were taken by the technicians according 

to the Universal mouse numbering system (Dickie, 1975) and were used for identification 

and as biopsies for genotyping. 
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Adult mice were sacrificed either by cervical dislocation or by gassing them with 

CO2; young animals were sacrificed by decapitation unless stated otherwise in the 

respective method. 

2.4 Genotyping  

2.4.1 DNA purification 

Genotyping samples from weaned mice were obtained either by tail clipping or ear 

punching and kept at -20 °C until processed. Biopsies were lysed for at 4 hours to 

overnight at 56°C in a waterbath (Grant Instruments, Shepreth, UK) in 200 μl of tail lysis 

buffer (see chapter 2.2) with 4 μl of Proteinase K (20 mg/ml stock, Sigma-Aldrich)(half 

the volume was used for ear notches). To inactivate the Proteinase K samples were then 

incubated for 10 minutes at 95 °C in a heatblock (Grant Instruments, Shepreth, UK).  

For quick purification 600 μl ddH2O was added to tail samples whereas ear punch 

samples were left undiluted. Tubes were centrifuged for 5 minutes at 8000 g (Eppendorf 

5417R centrifuge) in order to precipitate hair and not lysed tissue. Samples were stored at 

4 °C until genotyped and then transferred to -20 °C. 

For cleaner purification the Qiagen DNeasy Kit (Qiagen, Hilden, Germany) was 

used with a modified protocol. After digestion samples were vortexed (Vortex genie 2, 

Scientific industries) for 10-15 seconds, 400 l of a 1:1 mix of QIAGEN buffer AL and 

99% ethanol was added and samples again vortexed for 10-15 seconds. Samples were then 

transferred to DNeasy mini columns with a collection tube and centrifuged (Eppendorf 

5417R centrifuge) at 8000 rpm at RT for 1 min. The collection tube was exchanged, 

columns washed with 500 l of QIAGEN wash buffer AW1 and centrifuged at 8000 rpm 

at RT for 1 min. Again, the collection tube was exchanged and the column washed with 

500 l of QIAGEN wash buffer AW2 and centrifuged at 13 000 rpm at RT for 3 min. The 

columns were then placed into normal tubes, 150 l ddH2O was applied directly onto the 

membrane and left to incubate for 1 min. Genomic DNA was eluted by centrifugation at 
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8000 rpm at RT for 1min. Samples were stored at 4°C until genotyping and then 

transferred to -20 °C. 

For genotyping of embryos yolk sacs were used. Tissue was stored at -20 °C until 

processed. Lysis was performed as for tail samples. DNA was purified by ethanol 

precipitation. To 200 μl of lysate 24 μl of 5 M NaCl (final concentration 200 mM) and 400 

μl (2 Vol) of 100 % ethanol were added and samples incubated at -20 °C for 30 minutes. 

Samples were then centrifuged for 20 minutes at 20.000 g at 4 °C. The DNA pellet was 

washed with 70% ethanol, pellets were air-dry, resuspended in 40 μl ddH2O and stored at 

4 °C. 

2.4.2 Primers, Reaction setup and PCR conditions 

Primers were ordered in lyophilized form from Metabion or Sigma, reconstituted 

with ddH2O to 100 M and stored at -20 °C. Unless otherwise stated, PCR reactions were 

set up in 50 μl (49 μl mastermix and 1 μl DNA) with 5 μl 10x buffer (see chapter 2.2), 3 μl 

MgCl2 (25m M stock), 8 l dNTPs (1.25 mM stock, 1.25 mM per nucleotide type), 0.5 μl 

of each primer, 31.5 μl ddH2O and 0.5 μl Taq polymerase (Proteomics Core Facility at 

EMBL-Heidelberg). All PCRs were performed on a PTC-200 Peltier Thermal Cycler (MJ 

Research) or on a BioRad DNAEngine Peltier Thermal Cycler. 

 

Cre PCR: 

Primers:  Cre1 5’- GCC TGC ATT ACC GGT CGA TGC AAC GA -3’ 

     Cre2 5’- GTG GCA GAT GGC GCG GCA ACA CCA TT -3’ 

Product size: 726 bp 

Cycling conditions: 94 C 3 min, 94 C 30 sec, 67 C 1min, 72 C 1min, go to step 2: 35 

times, 72 °C 5 min, 4 C 10 min 

Quick or clean DNA preparation 
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R26R-EYFP PCR: 

The R26R-EYFP PCR was set up as 20 μl reaction with 2 μl 10x buffer, 2 μl dNTP (1.25 

mM per nucleotide), 1.2 μl MgCl2 (25mM stock), 0.2 μl of each primer (100 μM), 0.5 μl 

Taq polymerase, 7.9 μl ddH2O and 6 μl DNA. 

Primers:  PK40 5’- AAA GTC GCT CTG AGT TGT TAT -3’ 

  PK41 5’- GCG AAG AGT TTG TCC TCA ACC -3’ 

  PK42 5’- GGA GCG GGA GAA ATG GAT ATG -3’ 

Product size:  WT band (PK40 + PK42): 600 bp 

KI band (PK40 + PK41): 300 bp 

The two PCR reactions were performed separately. 

Cycling conditions: 94 C 3 min, 94 C 30 sec, 58 C 30 sec, 72 C 1min, go to step 2: 40 

times, 72 °C 5 min, 4 C 10 min 

Only clean DNA preparation 

 

Trkb-floxed allele:  

Primers:  prSYB2 5’- AGC ACG AGC ACA TTG TCA AG -3’ 

     prSYB3 5’- AAG GTG ATC AAC AGC CCA AG -3’ 

Product size:  floxed band: 933 bp 

WT band: 850 bp 

Cycling conditions: 94 C 3 min, 94 C 30 sec, 55  C 1min, 72 C 1min, go to step 2: 35 

times, 72 °C 5 min, 4 C 10 min 

Quick or clean DNA preparation 

 

Trkb-PLC and Trkb-WT-control PCR: 

Primers: LM8 5'- CAG CTT CGG TCA TCA GCA ACG -3’ 

  LM9 5'- GCC CAG CAG GAG ACA GAC -3’ 

  LM10 5'- CTC TTG ATG TGC TGA ACA AAT GTG -3’ 

Product size: WT band: 370bp 
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mutant band: 180bp 

The two reactions were performed together. 

Cycling conditions: 94 C 3 min, 94 C 30 sec, 63  C 1min, 72 C 1min, go to step 2: 35 

times, 72 °C 5 min, 4 C 10 min 

Quick or clean DNA purification 

 

Trkb-SHC PCR: 

Primers: LM8 5'- CAG CTT CGG TCA TCA GCA ACG -3’ 

  LM9 5'- GCC CAG CAG GAG ACA GAC -3’ 

  LM33 5'- GAT GTG GAA TGT GTG CGA GGC C -3’ 

Product size:  WT band (LM8 + LM9): 370 bp 

      mutant band (LM9 + LM33): 580 bp 

The two PCR reactions were performed separately. 

Cycling conditions: 94 C 3 min, 94 C 30 sec, 60 C (wt)/55 °C (mut) 30 sec, 72 C 1min, 

go to step 2: 40 times, 72 °C 5 min, 4 C 10 min 

Quick or clean DNA purification 

 

Z/EG PCR: 

Primers:  EGFPgen1 5’ AAG TTC ATC TGC ACC ACC G 3’ 

     EGFPgen2 5’ TCC TTG AAG AAG ATG GTG CG 3’ 

     EGFPgenWT1 5’ CTA GGC CAC AGA ATT GAA AGA TCT 3’ 

     EGFPgenWT2 5’ GTA GGT GGA AAT TCT AGC ATC ATC C 3’ 

Product size: EGFP: 173 bp 

WT (IL-2 locus): 324 bp 

The two PCR reactions were performed separately. 

Cycling conditions: 94 C 1 min 30 sec, 94 C 30 sec, 59 C 45 sec, 72 C 45 sec, go to step 

2: 34 times, 72 C 7 min, 4 C forever 

Clean DNA preparation only 
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2.4.3 Agarose gel electrophoresis 

PCR reactions were run on 1% or 2% agarose gels. Gels were prepared with 

agarose from Sigma in 1x TAE or 1X TBE buffer (see chapter 2.2). Agarose was melted in 

a commercial microwave oven until completely dissolved, cooled down and 2.5 μl of a 10 

mg/ml ethidium bromide stock solution (Sigma) per 100 ml was added before pouring the 

gel (gel apparatus from EMBL workshop). 5 μl of 10x DNA loading buffer (chapter 2.2) 

was added to the samples and 20 μl of each sample loaded. A 1kb DNA ladder 

(Invitrogen) was used as marker. Gels were run at 140 – 200 V until the bands were 

properly separated. Bands were visualized with a Gel Document Illuminator (Uvitech 

Cambridge). 

2.5 Biochemistry 

2.5.1 Antibodies 

Antibodies used for western blotting were a monoclonal rabbit-anti-TrkB  (1:500, 

clone 80E3, Cell Signalling), a monoclonal mouse-anti-TUJ.1 (1:10000, Ab14545, Abcam) 

and HRP-conjugated secondary antibodies (1:10.000, Jackson Lab). 

2.5.2 Tissue collection and preparation of lysates for blotting 

For biochemistry experiments mice were perfused with PBS in order to remove as 

much blood as possible from the brain. Mice were anesthetized with avertin (500 mg kg-1 

i.p., Sigma-Aldrich) or Euthanal® (50 μl, i.p.) and after 3 minutes responsiveness was 

tested by pinching the paw until mice were completely unresponsive. At this point a tail 

sample was taken for genotyping. Mice were fixed on a plastic lid placed at an angle in a 

box to allow liquids to flow down into the box. The chest was opened and a cut performed 

in the right atrium to allow liquid to flow out. For perfusion a pump (Masterflex 

Economy, easy-load II, with tube L/S 13, Cole Parmer) was used with a 30G needle (BD 

Microlance 3 20G x 1 ½ inch) fixed to the tube. Mice were then perfused with PB, pH 7.4 

through the left ventricle of the heart until only clear liquid left the atrium and the liver 

was pale (around 7.5 ml). The head was removed and the brain and pituitary extracted. 
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Dissections were performed as quick as possible on a metal plate placed on ice and tissue 

placed immediately on dry ice. First the cerebellum, hindbrain and the olfactory bulbs 

were removed. Then the  two cortices were carefully separated from the rest of the brain 

by following the corpus callosum. The hippocampus and striatum were removed from the 

cortices. Finally the hypothalamus was dissected from the rest of the brain. Tissues were 

stored at -80°C until further processed. 

Before lysis samples were weighed frozen. Then tissues were quickly transferred 

into 10 volumes (vol/wt) protein lysis buffer (see chapter 2.2) in a tissue grinder (VWR) 

on ice. Tissue was disrupted by 10 slow strokes with the dounce of the grinder or until no 

big particles were visible. Afterwards lysates were homogenized by sonicating  three times 

for 30 seconds at 10 % strength with 10 second breaks on ice (Branson digital sonifier). To 

get rid of remaining particles samples were centrifuged for one hour at 20.000 rpm at 4°C. 

The supernatant was split into a 40 μl aliquot and into a second aliquot which was frozen 

on dry ice and stored at -80 °C. The 40 μl aliquot was mixed with 10 μl protein loading 

buffer (see chapter 2.2) and stored at -20°C for blotting. 

2.5.3 Measurement of protein concentration 

Protein concentration was determined with a BCA (bicinchoninic acid) assay 

(#23227, BCA Protein Assay Kit, Pierce/Thermo Scientific, Cramlington, UK) since it is 

less sensitive to the presence of detergents as Triton X-100 and NP-40 in the lysis buffer 

than other tests.  

The assay was performed according to manufacturer’s instructions. Briefly a 

working solution from the two reagents in the kit was prepared. 50 volumes of reagent A 

(1% BCA-Na2, 2% Na2CO3∙H2O, 0.16% Na2 tartrate, 0.4% NaOH, 0.95% NaHCO3) were 

mixed with 1 volume of reagent B (4% CuSO4∙5H2O in ddH2O). Standards were prepared 

from albumin provided with the kit with the respective lysis buffer in the following 

concentrations: 2,000 μg/ml, 1,500 μg/ml, 1,000 μg/ml, 500 μg/ml, 250 μg/ml, 125 μg/ml, 

25 μg/ml and 0 μg/ml (blank). 10 μl of each standard or sample were applied to a 96-well 

plate in duplicate and 200 μl of working solution was added. The plate was incubated for 
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half an hour at 37°C, then absorption was measured at 562 nm in plate reader (Tecan). If 

the colour reaction was too strong samples were diluted 1:10. 

2.5.4 SDS- gel electrophoresis, blotting and detection of proteins 

Polyacrylamide gels were prepared and run in a miniVE Mini Vertical 

Electrophoresis Unit (Hoefer, Holliston, US). For a 10% separating gel 6.227 ml ddH2O, 

3.25 ml 40% polyacrylamid, 3.25 ml 1.5 M Tris pH 8.8, 130 μl 10% SDS, 130 μl 10% APS 

and 13 μl TEMED were mixed. After casting, the gel was overlayed with 100% ethanol in 

order to insure an even surface. Once the gel had polymerized the ethanol was removed 

and a stacking gel cast (4%: 3.145 ml ddH2O, 0.5 ml 40% polyacrylamid, 1.25 ml 0.5 M 

Tris pH 6.8, 50 μl 10% SDS, 50 μl 10% APS and 5 μl TEMED). The finished gels were 

transferred into the gel chamber with 1x SDS page running buffer. Samples had been 

mixed with protein loading buffer before freezing and were now just thawed and boiled 

for 5 minutes at 95 °C. 20 μl of sample was loaded per well and 5 μl of Benchmark marker 

(Invitrogen). Gels were run at 120 V until the dye had passed the stacking gel and then at 

140 V until the dye ran out of the bottom of the gel.  

Blotting was performed by wet transfer using a Mini Trans-Blot Cell (Biorad). The 

sandwich for blotting was prepared in a box filled with 1x transfer buffer with 10% 

methanol. One layer of blotting paper was placed on a foam pad, then a nitrocellulose 

membrane (GE healthcare) in the size of the gel, the gel, another layer of blotting paper 

and a second foam pad were placed on top. Air bubbles were removed by carefully rolling 

a plastic pipette over the sandwich. The holder was closed (white site towards the 

membrane) and placed into the transfer chamber with the buffer. The transfer was 

performed for 16 hours at 4°C at 30 V. 

After blotting the membrane was rinsed in ddH2O, then Ponceau solution (see 

chapter 2.2) was added for two minutes in order to see if the transfer had worked and all 

samples were equally loaded. The staining was washed out with TBS and the membrane 

was cut in half between the 64 and 80 kDa band. The lower part was used for TUJ.1 (~50 

kDa) and the upper part for TrkB (~145 kDa full length, ~95 kDa truncated). 
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All washing and incubation steps were performed on a rocking platform at RT 

unless otherwise stated. Membranes were blocked in 5% skimmed milk in TBS for one 

hour and then incubated with primary antibodies as stated in chapter 2.5.1 over night at 

4°C on a rocking platform. Afterwards membranes were washed three times ten minutes 

with TBS and incubated with HRP-conjugated secondary antibody as stated in chapter 

2.5.1 for two hours. Three TBS washes of 15 minutes were performed. Bands were 

detected by incubating membranes in 1 ml of a 1:1 mixture of the reagents of the 

SuperSignal West Pico Chemiluminescent Substrate System (Pierce). Membranes were 

placed in a film cassette, covered with Saran wrap and films (BioMax Light Films, Kodak) 

were exposed in the dark room for the 10 seconds, 1 and 5 minutes. Films were developed 

for 2.5 minutes in developing solution (4153, developer for Curix 60, Agfa), washed 

thoroughly in water, fixed 3 minutes in fixative solution (4354 rapid fixer, Agfa), washed 

again and were then dried. 

2.5.5 Quantification of immunoblots 

Films were scanned using a commercial scanner (Epson) in grey-scale with a 

resolution of 1200 dpi and 8 bit. Bands in immunoblots were quantified using ImageJ and 

a method published by Luke Miller (Miller, 2010). Briefly, the rectangular selection tool 

was used to define the position of the bands and a profile of each band was plotted. The 

baseline of each peak (corresponding to one band) was defined by closing of the peak with 

the straight line tool and the area of each peak was measured. The area was expressed as 

percentage of the total area of all peaks (all bands at one size). The relative density was 

calculated by dividing this number by the average percentage of the bands of the control 

animals. The relative density of the TUJ.1 bands was used to normalize the relative 

density of full-length and truncated TrkB bands for differences in loading. 
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2.6 Immunoassays and assays for metabolites 

2.6.1 Assays used 

Hormone Type Manufacturer/Catalogue Number 

ACTH competitive EIA Phoenix Pharmaceuticals/EK-001-21 

ACTH competitive 125I RIA Diasorin/24065 

CCK competitive EIA Phoenix Pharmaceuticals/EK-069-04 

Corticosterone competitive EIA Immunodiagnostic Systems/AC-14F1 

Glucose direct colour reaction BioAssay Systems/DIGL-100 

Insulin Sandwich ELISA Millipore/EZRMI-13K 

Leptin Sandwich ELISA Millipore/EZML-82K 
EIA enzyme immunoassay; ELISA enzyme-linked immunosorbent assay;  
RIA radioimmunoassay 
 

2.6.2 Blood withdrawal and serum extraction 

Blood was withdrawn by cardiac puncture from the right ventricle. For this, a 1 ml 

syringe with a broad needle (22 Gauge) was filled with 50 μl of 0.5 M EDTA (final 

dilution: 50 mM) as anticoagulant. Mice were sacrificed by CO2, the chest opened and 

blood was slowly drawn from the right ventricle of the heart until the needle was filled to 

500 μl. The needle was removed from the syringe and the blood transferred into a 1.5 ml 

tube, mixed well and kept on ice. When all mice were processed, the blood was 

centrifuged for 10 minutes at 2000 rpm and 4 °C to separate the serum. The serum 

(supernatant) was transferred to fresh tubes, frozen on dry ice and kept at -80 °C. 

For measurement of glucose, insulin and leptin mice were fastened for six hours 

before the experiment in order to exclude variations due to food intake. 

For measurement of ACTH and corticosterone it is important to not disturb or 

stress animals before the experiment since this would induce elevated levels of both 

hormones. Animals were therefore separated into single cages at least 2 weeks before the 

experiment (to avoid changes in hormone levels due to social interaction) and animals 

were sacrificed as quickly as possible from the moment the cage was taken out. 
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For morning ACTH levels, animals were quickly decapitated and trunk blood was 

collected in plastic vials with 50 μl 0.5 M EDTA and stored on ice. For centrifugation 

blood was transferred to Eppendorf tubes and then processed as described above. 

2.6.3 Tissue collection and lysis for ELISA 

For tissue collection for ELISA mice were sacrificed by CO2. Brains were 

extracted, frozen on dry ice and stored at -80°C. Before lysis, brains were weighed frozen 

and then transferred into 5 volumes (vol/wt) of protein lysis buffer for ELISA (see chapter 

2.2) on ice. Tissue was sonicated three times for 15 seconds with 45 seconds break at 20% 

output strength (Branson digital sonifier). Samples were rotated at 4 °C for one hour to 

extract proteins and then centrifuged for 20 minutes at 16.000 g at 4 °C. The supernatant 

was aliquoted into 400 μl per tube, frozen on dry ice and stored at -80°C. 

2.6.4 CCK EIA 

For determination of brain CCK content a competitive EIA from Phoenix 

Pharmaceuticals was used. For competitive assays, the wells of a microtiter plate or strip 

are precoated with a secondary antibody specific for the species of the primary antibody. 

The primary antibody (in this case to CCK) is incubated together with the sample or 

standard and biotinylated CCK. The CCK in the standards or samples and the 

biotinylated CCK compete for binding to the primary antibody – the more CCK present 

in the standard/sample, the less biotinylated CCK binds. The primary antibody – CCK 

complexes are captured to the wells by the precoated secondary antibody. The amount of 

bound biotinylated CCK is then detected by incubation with SA-HRP (streptavidin-

horseradish peroxidase) followed by the substrate for HRP (TMB = 3.3’,5,5’-tetra-

methylbenzidine). A blue coloured product forms that is turned into yellow by adding a 

stop solution (hydrochloric acid). Absorption is measured at 450 nm and the background 

at 620 nm in a plate reader (Tecan). The intensity of the final yellow product is 

proportional to the amount of biotinylated peptide bound and therefore inversely 

proportional to the amount of CCK present in the standard or sample. 
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Brain lysates were prepared as described in chapter 2.6.3, thawed quickly at 37°C 

and transferred to ice just before use. A dilution of 1:2 in assay buffer was used. Standards 

with concentrations of 0.01, 0.1, 1, 10 and 100 ng/ml were prepared from the stock 

solution provided with the kit. All reagents were reconstituted according to the 

manufacturer’s instructions. 50 μl of standard, positive controls or sample were added in 

duplicate to the 96-well plate strips provided with the kit. The primary antibody to CCK 

and the biotinylated CCK peptide were added and plates incubated for 2 hours at RT on a 

rocking platform. Wells were washed 5 times with wash buffer and then incubated with a 

SA-HRP solution for one hour at RT on a rocking platform. Wells were again washed five 

times with wash buffer to remove unbound SA-HRP and then the substrate for HRP was 

added. Plates were covered and incubated on a rocking platform for one hour at RT and 

then stop solution was added and absorption measured.  

For analysis the background OD (optical density) and then the blank value (no 

assay buffer, no primary antibody, no biotinylated CCK) were subtracted for each well 

from the OD at 450 nm. Then all values were normalized to the value of total binding 

(assay buffer plus primary antibody plus biotinylated antibody, gives therefore maximum 

colour reaction). Since the standard curve for competitive assays is not linear but 

sigmoidal a log-logit was used for curve fitting. For this the logit (ln(n/1-n)) of each 

normalized OD was calculated and the logit of the standards was plotted over the 

concentration. In this way the sigmoidal curve is transformed into a logarithmic curve 

and logarithmic regression can be performed with Microsoft Excel. (If the x-axis is 

transformed to a logarithmic scale the curve is transformed into a straight line, however 

excel still needs to perform a logarithmic regression). The logarithmic regression gives an 

equation in the form of y=a*ln(x)+b where y is the logit, x the concentration, a the slope 

and b the y-intercept. The concentration of the samples can therefore be calculated by 

x=exp(y-b/a). The resulting concentration was multiplied with the dilution factor to 

obtain the final concentration. Values were not used when duplicates differed more than 

15% or when positive controls were not inside the acceptable range. 
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2.6.5 Glucose Assay 

For measurement of serum glucose, the QuantiChromTM Glucose Assay Kit from 

BioAssay Systems was used. A standard was prepared according to manufacturer’s 

instructions from a glucose stock provided with the kit with concentrations of 0, 50, 100, 

200 and 300 mg/dl glucose. 5 μl of each standard and sample were mixed with 500 μl of 

provided reagent in a 1.5 ml centrifuge tube, boiled for 8 minutes in a heat block at 95 °C 

and cooled down in ice water for 4 minutes. Since glucose concentration in mouse serum 

often reaches 300 mg/dl samples were generally diluted 1:2 in ddH2O beforehand. The 

reagent contains o-toluidine which reacts with the aldehyde group of glucose in hot 

glacial acetic acid (also in the provided reagent) and forms a colour product with an 

absorption maximum at 630 nm. Formation of the colour product is proportional to 

glucose concentration. After cooling down 200 μl of the reaction was transferred in 

duplicate to a 96-well plate and absorption measured at 620 nm in a plate reader (Tecan). 

For analysis, the blank OD (0 mg/dl standard) was subtracted from all measured 

values. The OD of the standards was then plotted over the concentration and the slope 

was determined using linear regression, i.e. fitting a linear curve with Microsoft Excel. 

The concentration of the samples was determined by dividing the respective OD value by 

the slope. Values were only used for further statistical analysis if the duplicates did not 

show a difference of more than 15%. 

2.6.6 Insulin ELISA 

For determination of serum insulin levels, a sandwich ELISA from Millipore was 

used. In this case the wells of the microtiter plate are precoated with a monoclonal 

primary antibody that captures the insulin in the sample or standard. A second primary 

(polyclonal) antibody to insulin is added that is conjugated to biotin. The amount of 

bound biotinylated antibody is determined by adding SA-HRP and then a substrate to 

HRP as described for the competitive immunoassay (see chapter 2.6.4). In this case the 

colour development and therefore absorption is proportional to the amount of insulin 

present in the sample or standard. 
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Serum was prepared as described in chapter 2.6.2, quickly thawn at 37°C and kept 

on ice. Reagents were prepared according to manufacturer’s instructions. All incubation 

steps were performed at RT on a rocking platform unless otherwise stated. Plates were 

prewashed and then 10 μl of standards (concentration: 0.2, 0.5, 1, 2, 5 and 10 ng/ml), 

quality controls, samples or assay buffer as blank were added in duplicate together with 10 

μl matrix solution (to avoid background from serum components). The detection 

antibody (the biotinylated polyclonal primary antibody) was added and the plate 

incubated for 2 hours. Wells were washed three times, incubated for 30 minutes with SA-

HRP and washed six times. The substrate solution was added and after 15 minutes 

incubation the stop solution. Absorption was measured at 450 nm and background at 620 

nm. Concentrations of unknown samples was determined by a log-logit fit as described in 

chapter 2.6.4. Values were only used if the concentration of the quality control was in the 

accepted range and if duplicates did not differ more than 15%. 

2.6.7 Leptin ELISA 

Serum leptin was determined with a sandwich ELISA from Millipore. The 

principle of this assay is described in the above chapter (2.6.6) with the difference that the 

wells for this assay were precoated with a secondary antibody and that the first primary 

antibody was incubated with the standard and samples and captured by the coated wells. 

The second primary antibody was only added in the next incubation step.  

The experiment and analysis was performed as described in chapter 2.6.6 with the 

following differences. Standards were 0.2, 0.5, 1, 2, 5, 10, 20 and 30 ng/ml and 10 μl of 

standards, samples or quality controls were mixed with 10 μl of matrix solution, 30 μl of 

assay buffer and the first primary antibody. Serum from obese animals was diluted 1:5. 

Plates were incubated for 2 hours, washed three times and the detection antibody was 

added and incubated for one hour. Plates were washed three times and SA-HRP, substrate 

incubations and analysis performed as described in chapter 2.6.6. 
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2.6.8 Corticosterone EIA 

Serum corticosterone was determined with a competitive EIA from 

Immunodiagnostic systems. This assay is based on the same principles as the competitive 

CCK EIA (see chapter 2.6.4) but the primary antibody to corticosterone is directly coated 

to the wells and the competing corticosterone is directly labelled with HRP instead of 

using a biotin-streptavidin system. 

Serum was prepared as described in chapter 2.6.2, quickly thawn at 37°C and then 

kept on ice. Reagents were prepared according to manufacturer’s instructions. All 

incubation steps were performed at RT on a rocking platform unless otherwise stated. 100 

μl of standard (0, 1.0, 2.4, 7.0, 17.9, 49.1, 179 ng/ml but slightly different depending on 

lot), positive control or samples were added to wells in duplicate. The HRP-conjugated 

corticosterone was added and plates were incubated over night (16-24 hours) at 4 °C on a 

rocking platform. Wells were then washed three times, substrate solution was added, 

incubated for 30 minutes and then the stop solution added. Absorption was measured at 

450 nm and background at 620 nm. Analysis was performed using a log-logit fit as 

described for the CCK EIA (see chapter 2.6.4) and values were only used if the positive 

controls were in the right range and duplicates did not differ more than 15%. 

2.6.9 ACTH EIA 

Serum levels of ACTH were determined with an ACTH enzyme immunoassay 

from Phoenix Pharmaceuticals. We also tested a radioimmunoassay for ACTH (see next 

chapter) but this proved to be more work intensive, required the use of radioactivity and 

was not more sensitive. Therefore all ACTH sera were analyzed with this enzyme 

immunoassay, apart from the AM ACTH levels that were determined by RIA. 

This assay is a competitive assay that works exactly as the CCK assay and was 

therefore performed and analyzed exactly the same way (see chapter 2.6.4). The only 

difference were the concentrations of the standards which were 0.04, 0.2, 1, 5, 25 ng/ml. It 

is important to use fresh serum aliquots (that were not thawn before) for determination of 

ACTH as it is rapidly degraded. 
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2.6.10 ACTH RIA 

The ACTH radioimmunoassay from Diasorin was used for the morning ACTH 

levels but then not used any more since it proved to be not more sensitive than the EIA 

(previous chapter) but requires the use of radioactivity and is more work intensive. 

The ACTH RIA is a competitive assay, comparable to the competitive EIAs only 

that radioactive ACTH is used as competitor instead of biotinylated ACTH. The samples 

or standards were incubated with an ACTH primary antibody and the 125I-labeled ACTH 

(referred to as tracer). The antibody-ACTH complexes were then captured by a secondary 

antibody that is bound to beads. These were precipitated and radioactivity of the 

precipitate was measured. The radioactivity is then proportional to the amount of tracer 

and inverse proportional to the amount of ACTH in the standard or sample. 

Fresh sera were used, quickly thawn and kept on ice. All reagents were prepared as 

described in the manufacturer’s instructions. 100 μl of standards (0, 11.9, 42.5, 96.1, 212 

and 462 pg/ml), positive controls or samples were incubated over night (16.24 hours) with 

200 μl of tracer and 200 μl of ACTH antiserum in glass vials. Then the beads with the 

secondary antibody were added, incubated for 20 minutes at RT and precipitated by 

centrifugation for 20 minutes at 760 x g at RT. The supernatant was decanted and 

radioactivity was measured in a gamma scintillation counter. For analysis a hill fit was 

performed with Origin (OriginLab) and sample values were read from the fitted curve.  

2.7 Histology and Immunohistochemistry 

2.7.1 Collection, weighing and imaging of fat pads 

Shoulder fat pad were imaged with a commercial digital camera (Panasonic). The 

skin of mice that had been perfused for other purposes was removed from the 

shoulder/neck region and pictures were taken. 

For analysis of gonadal and mesenteric fat the fat tissue was carefully dissected. 

The mesenteric fat pad lines the intestines and can be removed by separating the pancreas 

and then pulling the fat apart from the intestine. The gonadal fat is easily identifiable as it 

is the big fat pad lying on top of the intestine that is immediately visible when opening the 
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abdomen. It is attached to the gonads and can be dissected by carefully removing these 

from the fat. Fat pads were weighed either freshly or were frozen on dry ice and weighed 

later (only one method was used for one batch of mice). Fat pad weight was expressed as 

percentage of body weight. 

2.7.2 Analysis of adrenals 

For analysis of adrenal morphology adrenals were removed, transferred to ice-cold 

4% PFA in an eppendorf tube and fixed over night at 4 °C. We tried to weigh adrenals 

after dissection but since they often only weigh around 1 mg no balance was sensitive 

enough. After fixation adrenals were embedded in paraffin. All steps were performed on a 

rotating wheel or, for the xylene steps, a rotating platform. Adrenals were washed for one 

hour in PBS, one hour in 0.85% NaCl at 4 °C and then dehydrated for one hour at 4 °C in 

each 50%, 70%, 85%, 95% and 2x 100% EtOH (dilutions with 0.85 % NaCl). Either the 

70% or the 100% step was performed over night, and at this point also remaining fat was 

dissected from the adrenals at it is very well distinguishable at this point. Adrenals were 

then transferred to glass vials and dehydrated in two changes of xylene for one hour each. 

Paraffin (at 60 °C) was added to give a 1:1 mixture (by eye) of paraffin to xylene and 

adrenals incubated for 1 hour at 60 °C. Adrenals were then kept in paraffin over night at 

60 °C and on the next day paraffin was exchanged for 4-5 times every hour. Finally, 

adrenals and the last change of paraffin were transferred to plastic molds, adrenals 

positioned and the molds were cooled down and kept at 4°C. 

Adrenals were sectioned into 8 μm serial sections on series of 4 slides (always 4 

consecutive sections on one slide, then 4 on the next slide and so on) on a microtome 

(Leica). Slides were stored at 4 °C until further use. 

Adrenal morphology was visualized by haematoxylin/eosin staining. For this 

sections were dewaxed for 20 minutes in xylene, rehydrated through a series of 100%, 

90%, 70%, 50% ethanol (dilution in water) and tap water for two minutes each. Sections 

were incubated for five minutes in haematoxylin (Accustain Harris Haematoxylin 

solution, modified, Sigma HHS16), washed two minutes in tap water, dipped for 15 
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seconds in acidic ethanol (see buffers, chapter 2.2), washed two minutes in tap water, 

dipped for 30 seconds in bluing solution (see buffers), washed two minutes in tap water, 

dipped 30 seconds in acidic eosin (Accustain Eosin Y Solution aqueous, Sigma HT110216, 

plus 0.5 ml glacial acidic acid per 100 ml), washed two minutes in water and were quickly 

dehydrated for 30 seconds in 95% ethanol (short since eosin is ethanol soluble), two 

minutes in 100% ethanol, six minutes in xylene and mounted with DPX. Haematoxylin 

stains nuclei by binding to lysine residues of histones under acidic conditions. The acidic 

alcohol is used for this purpose and also to remove excessive haematoxylin staining 

(referred as ‘differentiation’) and turns the staining red. The bluing solution stops the 

differentiation process as it has a basic pH and turns the staining blue. Eosin stains 

cytoplasm in red (Lillie, 1965). 

Brightfield images were taken from adrenal cortices with an Axio Scope (Carl 

Zeiss) mounting 10x/0.3 NA, 20x/0.8 NA and 40x/0.75 NA plan-apochromat objectives 

(Carl Zeiss) connected to an AxioCam ICC1 colour camera (Carl Zeiss). For each adrenal 

three pictures were taken from sections through the middle of the adrenal. These pictures 

covered most of the adrenal cortex. The thickness of the zona fasciculata was measured 

with the measurement tool in Image J (Abramoff et al., 2004; Rasband, 2011) or the 

measurement tool in Photoshop in nine locations per adrenal (three per picture) and in 

both adrenals of each mouse. The nine measurements per adrenal were averaged, and 

then the values of both adrenals per mouse were averaged. 

2.7.3 Collection and sectioning of brains and pituitaries 

For immunohistochemistry brains and pituitaries were prefixed by perfusion. 

Mice were perfused with PBS as described in chapter 2.5.2, but perfusion with PBS was 

followed by perfusion with 7.5- 10 ml of 4% PFA/PB, pH7.4. Brains and pituitaries were 

quickly removed and transferred to 4% PFA/PB on ice and postfixed for 3 hours. Initially, 

tissues were postfixed over night, but we realized that most antibodies work better on less 

strongly fixed tissue. After postfixation tissues were washed twice in PBS and then 

cryoprotected in 30% sucrose in Tris-Azide buffer (see buffers in chapter 2.2). Pituitaries 
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were left in sucrose over night and brains for 2-3 days until they were sunk to the bottom 

of the tubes. Tissues were then embedded in OCT in plastic molds and frozen on dry ice 

(pituitaries) or in precooled isopentane on dry ice for one minute and stored at -80 °C. 

For sectioning tissues were calibrated to -20 °C for several hours or overnight in a 

commercial freezer. They were then transferred to a cryostat (Leica) and mounted on 

holders with OCT. Pituitaries were sectioned to 10 μm, directly placed on superfrost plus 

slides, dried for several hours at RT and then stored at -80°C. Brains were either stored as 

floating sections or on slides. For floating sections, brains were sectioned into 30 μm 

sections that were shortly washed in PBS, transferred to 96-well plates with Tris-Azide 

buffer (200 μl per well) and then stored at 4°C. In this way, sections can be stored for 2-3 

months. Alternatively, sections can also be stored in cryoprotection buffer (see buffers in 

chapter 2.2) at -20 °C for much longer. For sections on slides, brains were sectioned into 

10 or 15 μl sections that were placed immediately on superfrost-plus slides, dried for at 

least four hours to over night at RT and then kept at -80 °C. 

2.7.4 Preparation of gelatine-coated slides 

Gelatine-coated slides were used for mounting floating sections as sections stick 

too strongly to superfrost-slides to allow for wrinkle-free mounting. 0.5% (w/v) gelatine 

was dissolved in water at 70 °C, the solution was cooled to RT and 0.05% (w/v) alum 

chrome (chromium potassium sulphate) was added. The solution was cooled to 4°C and 

immediately used. Normal untreated glass slides (VWR) were placed into plastic slide 

holders and washed two times ten minutes in bidistilled water. Slides were placed into the 

gelatine solution for 5 minutes and bubbles carefully removed. Afterwards, the holders 

were placed on paper towels and tilted to that excess solution could run off. Slides were 

dried in this way under a hood over night or at 100 °C for one to two hours and then 

stored in a sealed box for not more than two months. 

2.7.5 Nissl staining 

Nissl staining which stains the somata of neurons and glia was used to analyze 

general morphology of the brain. For this, floating sections from perfused brains (chapter 
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2.7.3) were placed on gelatine-coated slides (chapter 2.7.4) and dried over night under a 

hood. Sections were then fixed for five minutes in ice-cold 4% PFA and washed twice for 

5 minutes in PBS. In order to permeabilize membranes for cresyl violet, sections were 

incubated in a glass jar in xylene for 30 minutes. A cresyl violet working solution was 

prepared by diluting the cresyl violet stock solution 1/100 in cresyl violet buffer (see 

buffers chapter 2.2). After incubation in xylene, sections were rehydrated in 100% EtOH 

(1 min), 90% EtOH (1 min), 70% EtOH (40 sec) and 50% EtOH (20 sec) and then placed 

into cresyl violet working solution for 20 minutes. Sections were quickly dipped into PBS 

(10 sec) and then dehydrated through 50% EtOH (30 sec to 1 min depending on strength 

of stain), 80%, 95% and 100% EtOH (1 min each) and placed into xylene for at least 10 

minutes. Slides were coverslipped with Eukit or DMX (Sigma) and dried for several hours 

under a hood. Pictures were taken with a brightfield microscope (Leica) with a 10x/0.3 

NA plan-apochromat objective and a Leica camera. 

2.7.6 Antibodies for immunohistochemistry 

Antibody Manufacturer/Catalogue no. Dilution/Comments 

gp-α-AVP (pAb) Peninsula Laboratories/T-5048 1:2000 

m-α-CCK (mAb) Cure Centre UCLA/#9303 1:100 (use 0.05% Tween not Triton) 

rb-α-c-fos (pAb) Santa Cruz/sc-52 1:1000 

gp-α-CRF (CRH) (pAb) Peninsula Laboratories/T-5007 1:1000 

rat-α-Ctip2 (pAb) Abcam/ab18465 1:200 

rb-α-GABA (pAb) Sigma/A2052 1:1000 

ch-α-GFP (pAb) Abcam/ab13970 1:2000 

rb-α-GFP (pAb) Abcam/ab6556 1:1000 

rb-α-GR (pAb) Santa Cruz/sc-1004 1:1000 

rb-α-p133-Creb (pAb) Upstate/06-519 1:200 

rb-α-PV (pAb) Abcam/45542 1:1000 
g = goat, gp = guinea pig, m = mouse, rb = rabbit 
mAb = monoclonal antibody, pAb = polyclonal antibody 
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2.7.7 Immunofluorescence  and analysis of colocalization 

For immunofluorescence 30 μm floating sections or 10-15 μm sections on slides 

were used. For floating sections, sections were transferred to 24-well plates (1-2 sections 

per well for sagittal sections and 1-4 sections per well for coronal sections) where all steps 

were performed. 500 μl were used for washing steps, and 200 μl for antibody incubations. 

All steps were performed at RT on a rocking platform unless otherwise stated. Sections 

were washed twice with PB for 15 minutes, three times with TBS for 15 minutes and then 

blocked for one hour in 10% NGS, 0.3% Carrageenan (0.9% stock solution in TBS), 0.5% 

Triton-X100 in TBS. If high background is observed, this can sometimes be removed by 

quenching for one hour in 0.1 M glycine/0.1 M ammonium chloride after the PB washes. 

Sections were then incubated with primary antibody (dilutions see previous chapter) 

diluted in 1% NGS, 0.3% Carrageenan, 0.1% Triton-X100 in TBS for 36-60 hours at 4°C 

on a rocking platform. Afterwards, sections were washed three times with TBS for ten 

minutes and incubated with secondary antibody (Alexa488/555/633-conjugated goat 

secondary antibodies, Invitrogen) diluted 1:1000 in TBS with 0.1% Triton-X100 for two to 

three hours in the dark. Sections were washed three times in TBS for 10, 15 and 30 

minutes in the dark. For counterstaining with DAPI, sections were rinsed with PBS, 

incubated for five minutes with DAPI in PBS (0.5 μg/ml from 5 mg/ml stock), washed 

three minutes with PBS and transferred to fresh PBS. Sections were placed on gelatine-

coated slides (chapter 2.7.4) and dried over-night under a hood in the dark. Slides were 

then coverslipped with Vectashield (Vector Labs) and stored at 4°C in the dark. 

Fluorescent staining on sections on slides was performed the same way with the 

following differences. If sections were from perfused brains, they were removed from the -

80°C freezer and dried for 30 minutes. If sections were from fresh frozen brains, they were 

removed from the -80°C freezer, warmed up 3-5 minutes and fixed in 4% PFA for at least 

15 minutes. These sections have to be treated with care as they are easily destroyed. 

Washing steps were all shortened to five minutes. For blocking and primary antibody 

incubations no carrageenan but 1% BSA was used. Primary antibody incubations were 
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performed for 12 to 36 hours, secondary antibody incubations were performed for one 

hour and 2.5% BSA was added.  

For fluorescent imaging either standard fluorescent microscopes (Leica and Zeiss) 

were used with 10x/0.3 NA and 20x/0.8 NA plan-apochromat objectives and 

monochrome cameras or confocal microscopes (Leica SP6 or Zeiss LSM710 Meta 

confocal microscope) with plan-apochromat 10x/0.45 M27, 20x/0.8 M27, 40x/1.3 Oil DIC 

M27 and 63/1.40 Oil DIC M27 objectives. 

As the staining for CCK shows high background and requires high antibody 

concentrations specificity of the antibody was tested by using a blocking peptide. For this, 

the primary antibody was incubated with a five-fold excess of a blocking peptide (CCK 

peptide from Santa Cruz) for two hours at RT in TBS before application to the sections. 

As the CCK antibody is a monoclonal antibody from ascite supernatant, a concentration 

of 1 mg/ml was assumed. The final concentration for this antibody would therefore be 10 

μg/ml and accordingly 50 μg/ml of the blocking peptide were used.  

For analysis of YFP/CCK and YFP/GABA colocalization, cell counts were 

performed on three non-consecutive sections (spaced 80 -100 μm) per mouse and three 

mice in total. Counts were done manually as the quality of both the CCK- and GABA- 

staining is not good enough to allow for automatic analysis. An area of 0.124 mm2 was 

analyzed per sections and only clearly labelled cells were counted. 

2.7.8  DAB (3’3-diaminobenzidine) staining 

For DAB staining 30 μm floating sections were used. Sections were transferred to 

24-well plates (1-2 sections per well for sagittal sections and 1-4 sections per well for 

coronal sections) where all steps were performed. 500 μl were used for washing steps, and 

200 μl for antibody incubations. All steps were performed at RT on a rocking platform 

unless otherwise stated. Sections were washed three times with PB for 15 minutes and 

then peroxidase activity was quenched by incubating for 20 minutes in 2% H2O2 (diluted 

in water). Two 15 minute washes in TBS were performed and then sections were blocked 

with 10% NGS, 0.3% Carrageenan (0.9% stock solution in TBS), 0.5% Triton-X100 in TBS 
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for one hour. Sections were incubated with primary antibody (dilutions chapter 2.7.6) 

diluted in 1% NGS, 0.3% Carrageenan, 0.1% Triton-X100 in TBS for 36-60 hours at 4°C 

on a rocking platform. Afterwards, sections were washed three times with 1% NGS, 0.5% 

Triton-X100 in TBS for 15 minutes. Secondary antibodies (biotinylated secondary 

antibodies, Vector Labs) were applied at a dilution of 1:200 in 1% NGS, 0.3% 

Carrageenan, 0.5% Triton-X100 and sections incubated over night at 4 °C. Sections were 

washed three times 15 minutes with 1% NGS, 0.5% Triton-X100 in TBS. For the next step 

the peroxidase Vectastain ABC system from Vector Labs was used. This system contains 

avidin and biotinylated peroxidase that were preincubated for half an hour with 1% NGS 

(1:100 dilution of each reagent A, B and NGS in TBS) to form avidin-biotin-peroxidase 

complexes. These were then incubated with the sections for one hour to allow the free 

biotin-binding sites of avidin to bind to the biotinylated secondary antibody on the 

sections. Sections were washed three times 15 minutes with TBS and two times 15 

minutes with TB. For the colour reaction DAB (3’3-diaminobenzidine) was used that is 

converted to a brown precipitate by the peroxidase in the presence of hydrogen peroxide. 

Tablets from Sigma were used that give a ready-to-use solution when dissolved in water. 

Sections were incubated for 30 seconds to 10 minutes until staining was visible without 

background. For some stainings cobalt chloride was added (also available as tablets) 

which amplifies the signal and gives a dark blue to black colour. The colour reaction was 

stopped by washing three times with ice-cold TB and sections were mounted on gelatine-

coated slides (see chapter 2.7.4) and dried over night. Sections were dehydrated for one 

minute in each 90% and 100% EtOH, incubated 10 minutes in xylene and then 

coverslipped with DMX or Eukit. 

Brightfield images were taken with a Leica Stereo Microscope or a Leica DMI 

microscope mounting 10x and 20x Leica objectives. 
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2.8 In-situ hybridization 

2.8.1 Probes 

gene primers restriction enzyme and 
RNA polymerase for 
antisense/ sense probe 

location  
and length  
of probe 

Avp 5’-GGA GAG AGA ATT CAT GCT CGC CAG GAT 
GCT C 
5-’GAG AGG ATC CCT TGG CAG AAT CCA CGG AC 

EcoRI and SP6/  
BamHI and T7 

exon 1-3 
492 nt 

Crh 5’-GAG AGA ATT CAG AGA GCG CCC CTA ACA TG 
5’-AGA GAG AAG CTT AGC ATG GGC AAT ACA 
AAT AAC G 

EcoRI and SP6/  
HindIII and T7 

exon 2 
807 nt 

Penk 5’-TTC CTG AGG CTT TGC ACC 
5’-TCA CTG CTG GAA AAG GGC 

EcoRI and SP6/  
BamHI and T7 

exon 1-2 
816 nt 

Trkb 5’-TCA GCA TAT CAA GAG ACA C 
5’-CTG TAC ACA TCT CGG GAC AT 

EcoRI and SP6/  
BamHI and T7 

exon 20 – 21 
520 nt 

 

2.8.2 Preparation of p

For in-situ hybridization RNA probes were used. The plasmids containing the 

probes for Penk and Trkb were designed and prepared by Emerald Perlas from the 

Histology Service at the EMBL in Monterotondo. The Penk probe is one of the probes 

published for Penk by the Allen Brain Atlas project (Riboprobe ID: RP_060315_01_A07, 

(Lein et al., 2007)). 

Plasmids and probes for Avp and Crh were designed and cloned by me, the Avp 

probe corresponds to the probe published by the Allen Brain Atlas project (Riboprobe ID: 

RP_Baylor_102643), the Crh probe is slightly modified as the Allen Brain Atlas probe 

(Riboprobe ID: RP_Baylor_102704) contains an intron sequence. Glycogen stocks 

containing the plasmids with the respective cDNA clone were obtained from Open 

Biosystems (Avp clone 5683720, Crh clone 40126240). The probe sequence was subcloned 

from these plasmids into a pGEM-3ZF(+) vector that contains SP6 and T7 RNA 

polymerase start sites. For this, the probe sequence was amplified by PCR directly from 

colonies obtained from the glycerol stock with the primers listed in chapter 2.8.1. These 

contain the actual primer sequence for amplification, the restriction site for subcloning 

plus several AG repeats to improve the restriction digest and to balance the GC-content. 
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PCR was performed with two different annealing temperatures and started with a 10 

minute incubation at 95 °C to disrupt bacterial cells. For the first 5 cycles a lower 

temperature of 53 °C was used that is adapted to the actual primer without restriction 

sites and AG-repeats to allow for efficient amplification of the cDNA. For the next 30 

cycles a higher annealing temperature of 65 °C, adapted to the whole primers, was used to 

ensure specificity. The PCR reaction was separated on a 1.5% agarose gel and the band 

corresponding to the PCR product was cut out and DNA purified using the Geneclean II 

Kit (MP Biomedicals) according to manufacturer’s instructions. The pellet was 

resuspended in 20 μl water and 5 μl were digested with 10 units EcoRI and BamHI (Avp) 

or EcoRI and HindIII (Crh) in the respective buffers (all New England Biolabs) for three 

hours at 37 °C. Also 1 μl of the pGEM plasmid was digested in the same way. The digests 

were separated on an agarose gel and the bands corresponding to the digested PCR 

product (the insert) and the linearized plasmid, respectively, were cut out and purified 

from the gel using the Geneclean II Kit. The plasmid was resuspended in 100 μl water and 

the insert in 20 μl water. For ligation 10 ng of plasmid and insert (6 times molar ratio) and 

20 units of T4 DNA ligase were incubated for three hours at RT and ligation was stopped 

by incubating the reaction for ten minutes at 65 °C.  

1 μl of the ligation reaction was transformed into XL-1 blue competent cells 

(Stratagene) by heat shock according to manufacturers instruction and cells were plated 

on agar containing 100 μg/ml ampicillin and covered with 200 μl of 10 mM IPTG 

(isopropyl thiogalactoside) and 40 μl of 2% x-Gal (5-bromo-4-chloro-3-indolyl-beta-D-

galactopyranoside). The XL-1 strain expresses ß-galactosidase unless a sequence is 

inserted in the multiple cloning site, disrupting the ß-galactosidase gene. When grown on 

agar with IPTG and x-Gal (inducer and substrate for ß-galactosidase) colonies without 

insert turn blue whereas colonies containing an insert stay white. Colonies were grown 

over night at 37 °C and several white colonies were picked and transferred to 5 ml LB with 

100 μg/ml ampicillin and grown over night at 37 °C with shaking. A 4 ml aliquot of each 

culture was used for DNA purification using the Qiagen Miniprep Kit and 0.8 ml of each 
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culture was mixed with 0.8 ml sterile 40% glycogen and frozen at -80°C for storage. 1 μl of 

the purified plasmid was tested for the right insert by a restriction digest (as described 

above).  

2.8.3 Preparation of probes 

Digoxigenin (DIG)-labelled probes were generated from the pGEM plasmids 

containing the probe sequence by run-off transcription. Solution were kept RNase-free 

from phenol-chloroform purification on. For this, solutions were treated with DMPC or 

prepared in DMPC-treated water (preparation see chapter 2.2) and all equipment was 

cleaned with 0.5 % SDS followed by 3% H2O2 or baking at 300 °C for two hours (only 

glassware). 

5 μl of the plasmid were linearized with 30 units of either EcoRI (for antisense) or 

BamHI (Avp sense) or HindIII (Crh sense) in a 50 μl reaction for three hours at 37 °C. For 

run-off transcription, the digestion has to be complete, therefore, 2 μl of the reaction were 

run on a gel to verify this. The rest of the linearized plasmid was purified by 

phenol/chloroform purification. The volume of the restriction digest was increased to 500 

μl with DMPC-treated water and 500 μl of phenol/chloroform/isoamyl alcohol (25:24:1) 

was added. Tubes were vortexed, and phases separated by centrifugation (10 min at 10000 

x g). 500 μl of the upper, anorganic phase was transferred to a new tube, 500 μl 

chloroform was added, tubes vortexed and centrifuged again as above. 400 μl of the upper, 

anorganic phase was transferred to a new tube, 40 μl of sodium acetate (3 M, pH 5.2) and 

880 μl 100% ethanol were added and tubes left at -20 °C for 30 minutes to let DNA 

precipitate. DNA was then pelleted by centrifugation (20 minutes at 4 °C at maximum 

speed = 20000 x g). The ethanol was decanted and the pellet washed with 95% ethanol. 

This was also decanted, the pellet air-dried for three to five minutes and then resuspended 

in 20 μl DMPC-treated water and stored at -20 °C. 

The antisense probe was then generated by run-off transcription with SP6 RNA-

polymerase on the EcoRI-linearized plasmid and the sense probe by transcription with T7 

RNA-polymerase on the BamHI/HindIII-linearized plasmid. 20 μl of the linearized 



Materials and Methods 
 

79 
 

plasmid was mixed with 3 μl of 10x transcription buffer, 3 μl DIG-labelling mix, 3 μl RNA 

polymerase and 1 μl RNase-inhibitor (all reagents from Roche). The DIG labelling mix 

contains ATP, CTP, GTP, UTP and DIG-labelled UTP so that every 20-25 th nucleotide 

of the final probe is DIG-labelled. The reaction was run for two hours at 37 °C and then 

stopped by adding 3 μl of 0.2 M EDTA. RNA was purified by precipitation with 3.3 μl 4 M 

lithium chloride and 72 μl 100% ethanol (chilled to -20°C) for 30 minutes at -20 °C. RNA 

was pelleted by centrifugation at 20.000 x g at 4 °C for 20 minutes (this should give a 

clearly visible pellet). The ethanol was decanted, the pellet washed with 95% ethanol, the 

ethanol decanted, the pellet quickly air-dried and resuspended in 50 μl nuclease free water 

from the DNA-free kit (Ambion) used for the next step.  

As the DNA:RNA content is roughly 1:10 after run-off transcription and DNA 

might give background staining during the in-situ hybridization, probes was Dnase 

treated using the DNA-free kit from Ambion according to manufacturer’s instructions. 1 

μl of RNase inhibitor was added to the final probe, RNA concentration and purity 

measured at a nanodrop (usually between 100 – 1000 ng/μl), the proper size checked on 

an agarose gel and 5-10 μl aliquots of the probes stored at -80°C. Probes were usually first 

tested at 400 ng/ml and concentration only changed if necessary. 

2.8.4 In-situ hybridization 

The in-situ hybridization protocol used here was developed and tested by me from 

standard protocols. For simple in-situ hybridization (Penk, Avp and Crh) brains were used 

fresh-frozen, not prefixed. For this, mice were sacrificed with CO2 or per decapitation. 

Brains were quickly removed, snap frozen for 25 seconds in isopentane on dry ice, 

wrapped in aluminium foil and stored in falcon tubes at -80 °C. For sectioning, brains 

were embedded in OCT in the cryostat and sectioned to 8-10 μm on superfrost plus slides. 

Sections were allowed to dry for 30 seconds at RT, apart from this slides were stored in 

the cryostat and then at -80 °C. For in-situ hybridization plus immunostaining brains 

were prefixed by perfusion as described in chapter 2.7.3 and postfixed for one to three 
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hours (longer postfixation requires very strong digestion of the tissue). Brains were 

processed as in 2.7.3 and sectioned as described above. 

All buffers used up to the hybridization step were either DMPC-treated or 

prepared in DMPC-treated water. All steps were either performed on the slides placed on 

a support in a plastic container or in coplin glass jars. 

Slides were removed from -80 °C and dried shortly. Sections from fresh-frozen 

brains were fixed for 15 minutes in 4% PFA/PBS, whereas sections from prefixed brains 

were washed twice in PBS for five minutes, digested with 10 μg/ml Proteinase K (Roche) 

in PBS for 6 min at 37 °C (slides were covered with parafilm for this step), washed again 

twice five minutes in PBS and refixed for ten minutes in 4% PFA/PBS. All sections were 

then washed twice with PBS for five minutes and equilibrated for 5 min in 0.1 M 

triethanolamine pH 8.0. Amine groups were acetylated to avoid background by 

incubation in 0.25% acetic anhydride in 0.1 M triethanolamine pH 8.0 for 10 min. 

Sections were washed twice in PBS for five minutes and then prehybridized for two hours 

at 58 °C with hybridization buffer (see buffers, chapter 2.2). To avoid drying of the 

sections slides were covered with coverslips for prehybridization and hybridization and 

the plastic box containing the slides was humidified with 50% (vol/vol) formamide/5x 

SSC and closed. Probes were diluted to 400 ng/ml in hybridization buffer, incubated for 5 

min at 80 °C and then chilled in ice-water. 150 μl of probes was applied per slide and 

hybridized at 58 °C for 24-40 hours. 

Slides were checked for dried sections and transferred to a glass jar with 2x SSC to 

let coverslips come off. Coverslips were removed after roughly ten minutes and slides 

incubated for another 20 minutes at RT in 2x SSC. Sections were then washed twice for 30 

minutes in 2x SSC at 65 °C, twice for 30 minutes in 0.1x SSC at 65 °C, transferred to 

warmed PBS (else the glass jar breaks) and gradually cooled down with PBS to RT and 

rinsed twice for five minutes with PBS. Sections were then blocked in 10% normal sheep 

serum and 0.1% Tween-20 in TBS, pH 7.5 for one hour at RT. An alkaline phosphatase-

conjugated anti-DIG antibody (Roche) diluted 1:1000 in blocking solution was applied, 
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slides covered with parafilm and incubated over night at 4°C in a box humidified with 

water. Sections were then washed three times 20 minutes in TBS plus 0.1% Tween-20, 

equilibrated five minutes in NTMT buffer (see buffers, chapter 2.2) and five minutes in 

NTMT buffer with 5 mM levamisole to block endogenous alkaline phosphatases. For 

colour development the alkaline phosphatase substrate BCIP/NTB was used that produces 

a blue precipitate. Section were incubated with NTMT buffer containing 3.75 μl/ml BCIP, 

5 μl/ml NBT, 0.1% Tween-20 and 5 mM levamisole for two hours to overnight in a humid 

chamber at RT until a signal was visible. The Avp and Penk signal develops rather quickly 

(several hours) whereas the signal for Crh and TrkB can take one day to develop and 

might require several changes of developing buffer. Colour development was stopped by 

washing slides in PBS containing 1 mM EDTA for ten minutes. The staining was cleared 

in 95% ethanol for several hours, precipitates were then removed by washing 15 minutes 

in PBS and finally slides were mounted with Vectashield. An aqueous mounting medium 

was used here as the NBT/BCIP precipitate can crystallize in xylene-based mounting 

media and is then not visible any more. 

For immunofluorescence double-labelling the primary anti-GFP antibody was 

added 1:500 to the anti-DIG antibody solution. Afterwards sections were washed three 

times for ten minutes in PBS with 0.1% Tween, the Alexa488-conjugated secondary 

antibody was added diluted 1:1000 in PBS and incubated for two hours at RT. Sections 

were then washed and processed for colour development as described above. This 

protocol worked well for both anti-GFP antibodies (see 2.7.6), for other antibodies the 

staining might have to be performed separately after the colour development. In this case, 

depending on the antibody, the ethanol step might have to be omitted. 

The same microscope used for analysis of the adrenals (see chapter 2.7.2) was used 

here. Staining density and integrated density was measured with ImageJ (Abramoff et al., 

2004; Rasband, 2011). For this, a threshold in the YUV colour space identifying the 

BCIP/NBT signal was defined with the ‘Threshold Color’ plugin as described by Swanson 

and colleagues (Swanson et al., 2006). The measurement tool was then used to restrict 
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analysis to areas bigger than 25 μm2 and to measure stained area and staining density. For 

analysis of Avp, Crh and Penk three sections through the PVN spaced 80 μm were 

analyzed per mouse. 

2.9 Behavioural Studies 

2.9.1 Measurement of food intake  

Food intake was measured in LabMaster metabolic cages from TSE Systems (Bad 

Homburg, Germany) that are equipped with sensors that measure food and water intake 

in ten second intervals. Mice were transferred to the cages at 2-3 months of age and were 

then housed separately. Food and water was provided ad libitum. Food intake was first 

measured on a normal diet for three weeks and then changed to a high fat diet for three 

weeks. Food intake was measured for so long to take short- and longterm changes in food 

intake into account. At the EMBL in Monterotondo, the normal diet was the ‘2018 Teklad 

Rodent Diet’ (60% calories from carbohydrates, 23% from protein and 17% from fat, 3.3 

Kcal/g digestible energy) and at the Centre for Neurodegeneration in Edinburgh the ‘Rat 

and Mouse No.3 Breeding’ diet from Special Diets Services (61.2% calories from 

carbohydrates, 27.3% from protein and 11.5% from fat, 2.9 Kcal/g digestible energy). As 

high-fat diet the Harlan Teklad diet TD.06414 was used with 34% total fat content and 

21.3% calories from carbohydrates, 18.4% from protein and 60.3% from fat with 5.1 kcal/g 

energy. Two experiments with each three controls and three mutant mice were 

performed, one of them with males, in Monterotondo, the other one with females in 

Edinburgh. 

2.9.2 Analysis of immobilization stress induced changes in HPA-axis activity 

In order to measure HPA axis activity in response to immobilization stress, 

animals were placed in restrainers (4x12 cm tubes) for 20 minutes. Animals were then 

killed immediately with CO2 and blood and brains collected as described in chapters 2.6.2 

and 2.7.3. 
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2.9.3 Analysis of locomotion, anxiety and exploratory behaviour 

These behaviour tests were performed with one batch of male animals that were housed 

together as single housing might change behaviour. The tests were performed in the order 

they are listed here. The testing equipment (all from TSE, Bad Homburg, Germany) was 

set up by Mumna Al Banchaabouchi and Dominika Farley from the EMBL-

Monterotondo Phenotyping Core Facility and tests were performed and analyzed by me. 

Mice were transferred to the behaviour facility one week before starting the tests and 

habituated to the respective test room one hour before each test. Mice were marked with 

felt tips with differently coloured rings around the tail to avoid stress through checking 

the eartag. All test equipment was sprayed and wiped with water followed by ethanol 

between each mouse. 

Dark-Light Box 

The Dark-Light Box paradigm is used to test anxiety and exploratory behaviour. 

The same arena as for the open field is used, but half of it is covered by a black box that 

has only a small hole in the middle to allow the mouse to enter. The mouse is placed in 

the open part (light box) and then tracked for 30 minutes by an automatic videotracking 

program (TSE VideoMot2) through a camera placed over the box. As the mouse can only 

be tracked in the light box the time it is not traceable is calculated as the time it spends in 

the dark box. The more often a mouse enters the light box and the more time it spends 

there the less anxious and more exploratory it is considered. 

Elevated Plus Maze 

The Elevated Plus Maze tests anxiety and consists of four elevated arms that build a cross 

and two of which have opaque walls (closed arms) whereas the two others do not (open 

arms). The more time an animal spends in the open arms the less anxious it is considered. 

The animals were placed in the centre of the cross and videotraced (same programme as 

above) for five minutes. The program automatically calculates the time spent in open and 

closed arms and in the centre. 
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Open Field 

The Open Field tests anxiety, locomotion and exploratory behaviour. Here, the test was 

also repeated with each animal on four consecutive days to test for habituation to a novel 

and stressful environment. The animals were placed separately in the middle of an open 

arena (50x50x22 cm) illuminated evenly with 150-200 Lux and are tracked for 30 minutes 

(program as described above). Rearing is measured by light-beam frames placed around 

the arena. Time spent in the border and centre, number of visits to the centre, distance 

travelled and rearings are automatically calculated. 

Inframot 

The Inframot tests for activity of animals in a home cage by sensing the body 

displacement via infrared radiation (body heat). Animals were separately placed into 

inframot cages containing bedding and food and water ad libitum. Activity was recorded 

by the IRMOT programme for four days and nights without prior habituation. 

2.10   Statistical analysis 

All experiments and analysis were carried out blind to the genotype and with at 

least three animals per genotype unless stated otherwise. All results are indicated as mean 

± standard error of the mean unless stated otherwise. Significance between samples was 

assessed by Student’s t-test and one or two-way ANOVA and Fisher’s PLSD post-hoc test. 

Differences were considered significant when p<0.05. 
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3.1 Characterization of the BAC-CCK-Cre mouse line 

The BAC-CCK-Cre mouse line was generated and first analyzed by another PhD 

student in the Minichiello lab, Sylvia Badurek. As the construct for this line contains a 

beta-galactosidase gene, she analyzed expression of the line by staining for beta-

galactosidase (data not shown here). Moreover, she also analyzed recombination by 

crossing the BAC-CCK-Cre line with two different reporter lines, the Z/AP and Z/EG 

reporter lines (Lobe et al., 1999; Novak et al., 2000) that express alkaline-phosphatase or 

EGFP upon Cre-mediated recombination. However, these lines were found to have a low 

recombination efficiency and show an incomplete recombination pattern (data not shown 

here), therefore we repeated this analysis using a Rosa26R-EYFP reporter line . 

3.1.1 Recombination pattern of the BAC-CCK-Cre line 

The recombination pattern of the BAC-CCK-Cre line was characterized by 

crossing the line to a R26R reporter line that expresses EYFP under the Rosa 26-promoter 

after Cre-mediated removal of a stop cassette (R26R-EYFP). The EYFP signal was 

detected by diamino benzidine (DAB) immunostaining or fluorescent immunostaining 

with an anti-GFP antibody that also binds EYFP. The endogenous fluorescent signal of 

EYFP is detectable by confocal microscopy but rather low as the Rosa 26-promotor is not 

very strong, therefore fluorescent immunostaining was used to amplify the signal. 

In adult BAC-CCK-Cre:R26R-EYFP mice recombined cells were found in the 

cortex, hippocampus, olfactory bulb, striatum, thalamus, inferior and superior colliculus, 

amygdala, hypothalamus, midbrain, brainstem and cerebellum (Figure 3.1). In the cortex, 

many recombined cells were found in the more caudal parts as the subiculum, the visual 

and somatosensory cortex and less in the frontal/somatomotor and prefrontal cortex with 

exception of the orbital cortex that also showed a high number of recombined cells 

(Figure 3.1 A). Recombined cells were mainly found in layers V and VI but also in layers 

II-IV. Notably, some of the recombined cells in layer V and VI had the appearance of 

pyramidal neurons with clearly visible apical dendrites (Figure 3.1 B). In the hippocampus 
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scattered recombined cells were found in the dentate gyrus and CA3, and numerous 

recombined cells with the appearance of pyramidal neurons were found in the CA1 

(Figure 3.1 B). The nature of these cells was further characterized by colocalization studies 

(see below and Figure 3.5). Numerous recombined cells were found in the thalamus, the 

caudal basal forebrain in the bed nucleus of the stria terminalis, and in most of the 

hypothalamic nuclei, including the medial preoptic area, the anterior hypothalamic 

nucleus, the paraventricular nucleus and the ventromedial and dorsomedial nucleus 

(Figure 3.1 B page 2). In the midbrain recombined cells were found in the ventral 

tegmental area, the inferior and superior colliculus and the periaqueductal gray (Figure 

3.1 A, B page 2). The cerebellum showed strong recombination in all cell types and also 

the brainstem showed widespread recombination, especially in the dorsal vagal complex 

(Figure 3.1 A, B page 2). The striatum was generally devoid of recombined cells with 

exception of a small number of cells in the rostral striatum (Figure 3.1 B page 2). In the 

olfactory bulb a cluster of recombined neurons was found in the accessory olfactory bulb 

but only few scattered cells were found in the olfactory bulb in the glomerular layer 

(Figure 3.1 B page 2). Also in the amygdala only few recombined cells were found (Figure 

3.1 A coronal section). 

In order to verify recombination at earlier stages and during development, 

recombination in the BAC-CCK-Cre:R26R-EYFP line was analyzed by DAB and 

immunofluorescence staining of sections from P7 brains and E12.5 embryos (Figure 3.2).  

At P7 recombination was found in the same regions as in the adult and especially 

already in the thalamus and hypothalamus. There seemed to be less recombined neurons 

in cortical regions and the hippocampus than in adult mice (Figure 3.2 A). At E12.5 

recombination was seen in the spinal cord, the heart and in single scattered cells in the 

periphery (data not shown). In the brain, recombined cells were found in the future 

midbrain, especially the future colliculus, in the hindbrain (future brainstem) and 

scattered cells in the future preoptic area and hypothalamus. No recombined cells were 

found in the future cortex (Figure 3.2 B). 
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As we are investigating HPA axis activity in the Trkb-CCK-KO line and changes in 

adrenal and pituitary function would influence corticosterone and adrenocorticotropic 

hormone (ACTH) levels recombination was analyzed in these tissues by DAB 

immunostaining for EYFP (Figure 3.3). Stained sections from mice that do not have the 

Cre-recombinase transgene but the R26R-EYFP allele are shown as control. Pituitaries 

were almost devoid of recombined cells and only few scattered recombined cells were 

found in the anterior pituitary from where ACTH and other hormones are secreted and 

posterior pituitary from where oxytocin and vasopressin are secreted. Numerous 

recombined cells were found in the adrenal medulla that synthesizes catecholamines 

whereas the three zones of the adrenal cortex (zona glomerulosa, synthesizes 

mineralocorticoids, zona fasciculata, synthesis glucocorticoids and zona reticularis, 

synthesizes androgens) showed generally no recombination except in a few single cells.  

Sylvia Badurek had analyzed recombination in heart, lung, spleen and kidney of 

BAC-CCK-Cre:Z/EG mice and found recombination in the heart and single cells in the 

spleen but no recombination in lung and kidney (data not shown here). 

3.1.2 Cell type-specificity of recombination 

We next verified that Cre-mediated recombination in the BAC-CCK-Cre line was 

restricted to CCK-expressing cells. Brain sections of BAC-CCK-Cre:R26R-EYFP were 

double- stained for EYFP and CCK by immunofluorescence staining and confocal images 

were taken. As the CCK antibody gives a rather weak and punctate staining with high 

background, specificity was tested by preincubating the antibody with CCK-8 peptide. 

This abolished staining confirming that the antibody used specifically binds to CCK (not 

shown). Images from different brain regions show that cells expressing EYFP usually also 

express CCK (Figure 3.4) confirming that recombination is restricted to CCK-positive 

cells. In most areas the majority of CCK-positive cells also expresses EYFP, only in the 

cortex a bigger fraction of CCK cells was not targeted. CCK-EYFP colocalization was 

quantified in the hypothalamus and will be discussed below (see also Figure 3.6). 
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CCK was described to be expressed in a subpopulation of GABAergic 

interneurons, however several publications also reported CCK expression in principal 

neurons (see Introduction, chapter 1.2.2). We therefore analyzed coexpression of EYFP 

and GABA by immunofluorescence staining and confocal imaging (Figure 3.5 A). In the 

CA1 EYFP positive neurons in the stratum pyramidale (the layer of dense EYFP-

expressing neurons, arrows) do not express GABA whereas recombined neurons in other 

layers are also GABA-positive (arrowheads). In the CA3 recombined neurons generally 

also express GABA. In the cortex two different populations can be distinguished. The 

recombined neurons that have clear apical dendrites do not express GABA (arrows) 

whereas other EYFP-positive neurons do (arrowheads). In the prefrontal cortex all 

recombined neurons are GABAergic. Also in the hypothalamus the vast majority of 

recombined neurons is GABAergic (Figure 3.6). Colocalization of GABA and EYFP was 

quantified in the hypothalamus (see text below and Figure 3.6). 

Further colocalization studies were performed to characterize the principal 

neuron-shaped recombined neurons in the hippocampus and cortex (Figure 3.5 B, D). In 

the cortex coexpression of EYFP with CTIP2, a marker for corticospinal motorneurons 

(that are principal neurons), was analyzed (Figure 3.5 B). Recombined neurons with 

stained apical dendrites colocalize with CTIP2 (arrows) whereas other recombined 

neurons do not express CTIP2 (arrowheads). The experiments for the hippocampus were 

performed by Sylvia Badurek. She analyzed coexpression of EGFP and CFP in the 

hippocampus of mice of the BAC-CCK-Cre:Z/EG line crossed to a line that expresses a 

CamKII-CFP fusion protein (C. Serguera and L. Minichiello, unpublished). As CamKII is 

specific to principal neurons, CFP highlights principal neurons, and EGFP indicates Cre-

mediated recombination. The endogenous fluorescent signal was used in this case as anti-

GFP antibodies would bind both EGFP and CFP. As can be seen in Figure 3.5 (D), the 

recombined neurons in the CA1 were also positive for CFP. Finally, colocalization of 

EYFP and parvalbumin was analyzed (Figure 3.5 C). Parvalbumin highlights a 

subpopulation of interneurons that do generally not overlap with CCK-expressing 



Results 
 

91 
 

interneurons. Confocal images of the CA1 and the cortex confirmed that, with a few 

exceptions, recombined neurons do generally not express parvalbumin. 

As the phenotype described for the Trkb-CCK-KO line is dependent on 

hypothalamic neurons, colocalization of EYFP with GABA and CCK was analyzed and 

quantified in the peri-PVN region (Figure 3.6). Colocalization was quantified in sections 

from three mice in total, and in three sections per mouse. Colocalization with GABA 

showed that 41.1 ± 5.9 % (mean ± standard deviation, SD) of GABAergic neurons were 

recombined in the hypothalamus (left graph, red bar representing GABAergic neurons in 

comparison to yellow bar representing double-stained neurons). Of the recombined 

neurons, 86.1 ± 2.6 % (mean ± SD) were GABAergic (left graph, green bar representing 

recombined EYFP expressing neurons in comparison to yellow bar representing double-

stained neurons). Colocalization with CCK showed that 80.2 ± 7.5 % (mean ± SD) of 

CCK-positive neurons expressed also EYFP and were thus successfully targeted (right 

graph, red bar representing CCK-positive neurons in comparison to yellow bar 

representing double-stained neurons). Of recombined neurons 96.9 ± 0.8 % (mean ± SD) 

were positive for CCK (right graph, green bar representing recombined EYFP expressing 

neurons in comparison to yellow bar representing double-stained neurons). 
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Figure 3.3 Recombination pattern of the BAC-CCK-Cre:R26R-EYFP line in pituitary (A) and adre-
nal (B), brightfield images of DAB anti-G/YFP staining. In each case the upper panels are 
control tissues from mice without the Cre-transgene. A Only few single cells are recombined in 
the anterior and posterior pituitary. B Chromaffine cells of the adrenal medulla show recombi-
nation. There is generally no recombination in the adrenal cortex apart from single cells in all 
three zones. ZF zona fasciculata, ZG zona glomerulosa, ZR zona reticularis
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Figure 3.4 Colocalization of CCK and YFP in different brain regions in the BAC-CCK-Cre:R26R-
EYFP line, confocal pictures of fluorescent anti-CCK and anti-G/YFP immunostaining. DVC 
dorsal vagal complex; VTA ventral tegmental area
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Figure 3.5 Colocalization of different neuronal markers with YFP in the BAC-CCK-Cre:R26R-
EYFP line, fluorescent anti-G/YFP staining plus respective marker (A, B, C), or colocalization of 
endogenous EGFP and CFP in the BAC-CCK-Cre:Z/EG:CamKII-CFP line (D), confocal images. A 
Colocalization with the interneuron marker GABA (arrows: absence of colocalization, arrow-
heads: colocalization). B Colocalization with CTIP2, a marker for corticospinal motorneurons in 
principal neurons of the cortex (arrows: absence of colocalization, arrowheads: colocalization) 
C Colocalization with parvalbumin, a marker of another subtype of interneurons D Colocaliza-
tion with a CamKII-CFP fusion protein that highlights principal neurons.
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Figure 3.6 Analysis of CCK and GABA coexpression with the EYFP signal of recombined 
neurons in the rostromedial anterior hypothalamus (peri-PVN) in the BAC-CCK-Cre:R26R-EYFP 
line. Confocal pictures of fluorescent anti-GABA or anti-CCK plus anti-G/YFP staining. Colocali-
zation was analyzed in sections of three mice and expressed as % of the counted cells. 41% of 
the GABAergic neurons in the hypothalamus show Cre- mediated recombination, and 86% of 
recombined neurons express GABA. Of the CCK-expressing neurons 80% show recombination 
and 97% of recombined neurons show clear expression of CCK.
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Figure 3.7 Cre-mediated removal of full-lenghthTrkB in the Trkb-CCK-KO line shown by immu-
noblot (A) and in-situ hybridization. A Immunoblot and quantification for full length (p145TrkB 
and truncated (TrkB-T) TrkB and TUJ.1 as loading control. See text for values. B Trkb mRNA in- 
situ hybridization and anti-GFP double labeling shows expression of Trkb in targeted neurons 
(arrows) in the BAC-CCK-Cre:Z/EG line and removal of Trkb in these cells in the TrkbCCK-KO:Z/EG 
line (arrowheads).
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Figure 3.8 Analysis of TrkbCCK-KO mice. A Distribution of genotype and gender of mice from 
BAC-CCK-Cre and Trkb-CCK-KO breedings at weaning. B Cresyl violet staining demonstrates 
that TrkbCCK-KO mice do not show any general morphological changes in the brain. C Brain 
CCK-levels are unchanged in TrkbCCK-KO mice.
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3.2 Generation of CCK neuron-specific Trkb knockout mice 

To specifically ablate Trkb from CCK-expressing neurons, the BAC-CCK-Cre line 

was crossed to the Trkb-floxed line (line descriptions see Materials and Methods, chapter 

2.3.1). The CCK-specific Trkb knockout mice resulting from these crosses (CCK-

Cretg/+,Trkblx/lx) will be referred to as TrkbCCK-KO mice, the floxed controls (CCK-

Cre+/+,Trkblx/lx) as TrkbCCK-WT mice. In some cases Trkb-floxed mice were included in 

TrkbCCK-WT control groups, this is then stated in the figure legend. Also wildtype and 

transgenic mice from the BAC-CCK-Cre line were used as controls, referred to as WT and 

Cre mice. As Cre and TrkbCCK-KO mice originate from different breedings, WT mice were 

used as control for Cre and TrkbCCK-WT as controls for TrkbCCK-KO mice and data is 

represented in separate graphs. 

3.2.1 Removal of Trkb by Cre-mediated recombination in TrkbCCK-KO mice 

Successful removal of TrkB protein in knockout mice was verified by western blot 

on lysates of cortex and hypothalamus of adult TrkbCCK-WT and TrkbCCK-KO mice. Specific 

expression of Trkb mRNA in recombined cells was analyzed by double-staining for Trkb 

mRNA by in-situ hybridization and EGFP by immunofluorescence staining on brains of 

adult BAC-CCK-Cretg/+:Z/EG-EGFPtg/+ mice and specific deletion in the presence of Trkb-

floxed alleles was analyzed on brains of adult TrkbCCK-KO:Z/EG-EGFPtg/+ mice. We 

attempted to repeat this with the R26R-EYFP reporter line instead of the Z/EG reporter 

line, but failed so far to obtain mice of the TrkbCCK-KO: R26R-EYFPtg/+ genotype. 

Western-blot for TrkB was performed on cortex and hypothalamic lysates of two 

mice per genotype and quantified with ImageJ (Figure 3.7 A). The antibody used binds 

the full-length (p145TrkB) and truncated (TrkB-T) isoforms of TrkB, thus giving a double 

band. Both bands were analyzed separately and normalized to TUJ.1 (neuron-specific 

class III β-tubulin) as loading control. In the cortex expression of full-length TrkB was 

slightly but not significantly reduced and expression of the truncated isoforms was 

unchanged (p145TrkB: TrkbCCK-KO 0.45±0.29 vs TrkbCCK-WT 1.00±0.16, p = 0.071; TrkB-T: 

TrkbCCK-KO 0.84±0.10 vs TrkbCCK-WT 1.00±0.24, p = 0.233; expressed as ratio of TrkbCCK-WT, 
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values are mean ± SD). In the hypothalamus expression of full-length TrkB was reduced 

significantly to 25% and expression of the truncated isoforms was slightly but not 

significantly lower (p145TrkB: TrkbCCK-KO 0.25±0.08 vs TrkbCCK-WT 1.00±0.26, p = 0.031; 

TrkB-T: TrkbCCK-KO 0.65±0.08 vs TrkbCCK-WT 1.00±0.41, p = 0.176; expressed as ratio of 

TrkbCCK-WT, values are mean ± SD). One should note that expression of the truncated 

forms is very high in the hypothalamus, therefore this blot was exposed for a shorter time 

than the blot with cortical lysates. If exposed for the same time, expression levels of the 

full-length form is comparable in cortex and hypothalamus. 

Double staining for Trkb mRNA and EGFP in CA1 and cortex of BAC-CCK-

Cretg/+:Z/EG-EGFPtg/+ mice confirmed expression of Trkb in EGFP-positive cells on a 

wildtype background (Figure 3.7 B, arrows). On the knockout background (TrkbCCK-

KO:Z/EG-EGFPtg/+) recombined EGFP expressing cells were clearly devoid of Trkb mRNA 

expression (Figure 3.7 B, arrowheads). Analysis of hypothalamic neurons was attempted 

but was impossible as very few neurons showed EGFP expression in the BAC-CCK-

Cre:Z/EG line. 

3.2.2 TrkbCCK-KO mice are viable and have normal brain morphology 

TrkbCCK-KO mice are viable and show no increased mortality rate from weaning to 

seven months of age (the maximum age they were kept to so far). The distribution of 

gender and genotypes was analyzed at weaning in litters from BAC-CCK-Cre and Trkb-

CCK-KO lines (Figure 3.8 A). For the BAC-CCK-Cre line 128 mice were analyzed in total 

and no differences were found between WT and Cre mice (Chi-Square test p = 0.723) or 

males and females (Chi-Square test p = 0.216) or gender and genotype considered 

together (Chi-Square test p = 0.194)(for numbers see figure). For the Trkb-CCK-KO line 

198 mice were counted in total and no difference was found between males and females 

(Chi-Square test p = 0.155) or between genotypes (Chi-Square test p = 0.059). There was a 

deviation from the expected distribution when analyzing genotype and gender together 

(Chi-Square test p = 0.011) and, as visible in the graph, the number of heterozygous 

(CCK-Cretg/+,Trkblx/+) and TrkbCCK-KO mice found at weaning age was slightly lower than 
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the number of CCK-Cre+/+,Trkblx/+ control mice, and the number of female mice was lower 

than the number of male mice. This is most probably a random effect that will disappear 

when more mice are counted. 

General brain morphology was analyzed by Nissl staining (Cresyl-violet staining) 

(Figure 3.8 B). No differences were found between the visual cortex, hypothalamus and 

hippocampus of TrkbCCK-WT and TrkbCCK-KO mice. 

We next planned to verify whether targeted neurons were present in normal 

numbers in TrkbCCK-KO mice. Absence of CCK-expressing neurons would lead to decreased 

CCK brain levels, as they are the only source of CCK in the brain. We therefore analyzed 

CCK levels in total brain lysates from TrkbCCK-WT and TrkbCCK-KO mice by ELISA (Figure 3.8 

C). The CCK-concentration was normalized to the protein content in each lysate. No 

difference in CCK levels was found (TrkbCCK-KO 27.9 ± 1.47 pg/mg protein vs TrkbCCK-WT 

28.6 ± 2.18 pg/mg protein, n=3 for both groups, p = 0.410). 

3.3 Disruption of TrkB in CCK-positive neurons results in obesity 

3.3.1 TrkbCCK-KO mice develop mature-onset obesity 

TrkbCCK-KO mice develop clearly visible obesity from around four months of age on. 

To characterize weight gain in TrkbCCK-KO mice male WT, Cre, TrkbCCK-WT and TrkbCCK-KO 

mice were weighed regularly from 1.5 to 5 months of age (Figure 3.9 A and numbers in 

C). Male WT and Cre mice did not show any difference in body weight at any time point, 

but TrkbCCK-KO mice started to be significantly heavier than TrkbCCK-WT controls from four 

months of age on and were clearly heavier at five months of age. Female WT, Cre, and 

TrkbCCK-KO mice were only analyzed at five months of age and again TrkbCCK-KO mice were 

significantly heavier as controls (Figure 3.9 B, numbers in C). 

Sagittal pictures of the recombination pattern in the BAC-CCK-Cre:R26R-EYFP 

line had shown widespread recombination in the hypothalamic nuclei involved in 

metabolic control. As these nuclei can be better identified in coronal sections, coronal 

sections from brains of BAC-CCK-Cre:R26R-EYFP mice were stained for EYFP and 
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analyzed for recombination. As shown later (Figure 3.13 E), the arcuate nucleus, that 

contains the major leptin-responsive neuronal populations (see Introduction, chapter 

1.3.1) was devoid of recombined cells. However, the VMH, in which BDNF was shown to 

play a role downstream of melanocortin signalling (Introduction, chapter 1.3.2), showed 

numerous recombined neurons. 

To verify that body weight gain was due to increased adiposity (accumulation of 

fat tissue) we next dissected and weighed the gonadal and mesenteric fat pads from mice 

of all four genotypes (Figure 3.10). Part of the fat pads were dissected and weighed by the 

research assistant Jacqui Horn. These are the two major visceral fat pads of the abdomen 

and lead to what is known as central obesity in humans. Weight of the fat pads was 

normalized to the body weight and is expressed as % of body weight. The gonadal fat pad 

was significantly enlarged by a factor of 2.2 in female TrkbCCK-KO mice in comparison with 

controls and enlarged, even if not significantly, by a factor of 1.3 in male TrkbCCK-KO mice 

(Figure 3.10 A, numbers in C). The mesenteric fat pad was significantly enlarged by a 

factor of 2.8 in female TrkbCCK-KO mice in comparison with controls and by a factor of 1.6 

in male TrkbCCK-KO mice. No differences were observed between WT and Cre male or 

female mice. 

3.3.2 Food intake on normal and high fat diet in TrkbCCK-KO mice  

As other models of TrkB or BDNF deficiency show hyperphagia (overeating)-

induced obesity we next analyzed food intake in TrkbCCK-KO and TrkbCCK-WT mice. Mice 

were kept separately in metabolic cages and had free access to food and water. The food 

containers were connected to sensors that measured weight of the container and thus 

removal of food every 10 seconds (see also Materials and Methods, chapter 2.9.1). Food 

intake was analyzed in one group of male mice (3 control and 3 knockout mice, 3 months 

old at the start of the experiment) that were kept on a normal diet for three weeks and 

then changed to a high-fat diet for three weeks, and in one group of female mice (3 

control and 3 knockout mice, 2-3 months old at the start of the experiment) that were just 

kept on a normal diet for six weeks. 
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Food intake was analyzed during the active (dark) and resting (light) period for 

one week (Figure 3.11 A and B). No difference between TrkbCCK-KO and TrkbCCK-WT mice 

was found in the accumulated food intake during that week in either period or in total 

(Figure 3.11 A, includes numbers). Also when looking at single day and night intake, no 

difference was visible in food intake or diurnal rhythm (Figure 3.11 B). Next, the 

accumulated food intake over several weeks was analyzed to see if there was any long-

term difference (Figure 3.11 C). After three weeks TrkbCCK-KO male mice had eaten the 

exact same amount in comparison to TrkbCCK-WT mice (TrkbCCK-KO 76.8 ± 2.2 g vs TrkbCCK-

WT 77.0 ± 2.1 g, n=3 for each group, p = 0.478, mean ± SEM, for other numbers see figure 

3.11 C) and also TrkbCCK-KO female mice did not eat significantly more that TrkbCCK-WT 

control mice after five weeks (TrkbCCK-KO 152.3 ± 8.9 g vs TrkbCCK-WT 142.4 ± 5.6 g, n=3 for 

each group, p = 0.200, mean ± SEM, for other numbers see figure 3.11 C). Figure 3.11 D 

shows the average daily food intake of female TrkbCCK-KO and TrkbCCK-WT mice in 

comparison to the weight that these mice gained in exactly that week. Despite eating the 

same amount of food (TrkbCCK-KO 4.0 ± 0.2 g vs TrkbCCK-WT 4.4 ± 0.2 g, n=3 for each group, 

p = 0.157, mean ± SEM), TrkbCCK-KO mice gained significantly more weight (TrkbCCK-KO 0.9 

± 0.1 g vs TrkbCCK-WT 0.6 ± 0.0 g, n=3 for each group, p = 0.003, mean ± SEM). 

The only difference found in food intake was in females during the first two hours 

after they were transferred for the first time into metabolic cages. Whereas the control 

group reacted to this stressful new environment by not eating anything, TrkbCCK-KO female 

mice did eat significantly more during that period (Figure 3.11 E)( TrkbCCK-KO 0.30 ± 0.04 g 

vs TrkbCCK-WT 0.01 ± 0.01 g, n=3 for both groups, p = 0.0009). Three days later at the same 

time no difference was found (Figure 3.11 E) ( TrkbCCK-KO 0.28 ± 0.09 g vs TrkbCCK-WT 0.37 

± 0.06 g, n=3 for both groups, p = 0.213). This behaviour was also seen after changing the 

bedding of cages, but was not found in male TrkbCCK-KO mice (not shown). 

 

 

 



Figure 3.9 TrkBCCK-KO mice gain more weight than control mice. A Body weight of male WT and 
Cre control mice and TrkbCCK-WT control and TrkbCCK-KO mice from the age of six weeks to five 
months. B Body weight of female WT and Cre control mice  and female TrkbCCK-WT control and 
TrkbCCK-KO mice at the age of five months. C Table showing body weight, number of animals 
weighed and significance levels for the data shown in A and B.
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1.5 22.6 ± 0.4 9 22.9 ± 0.3 12 24.0 ± 0.4 6 22.9 ± 0.6 8 0.307 0.108
3 30.1 ± 0.5 13 30.9 ± 0.5 20 32.3 ± 0.8 11 33.1 ± 1.1 16 0.133 0.296
4 31.3 ± 0.9 12 32.0 ± 1.1 12 35.0 ± 1.3 9 38.7 ± 1.0 13 0.340 0.015
5 31.8 ± 1.3 13 33.4 ± 0.9 12 35.0 ± 0.9 11 40.0 ± 0.9 17 0.148 0.0003
5 22.4 ± 0.6 4 24.2 ± 0.9 11 26.2 ± 0.8 24 34.0 ± 1.1 27 0.136 0.0000004
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Figure 3.10 Fat accumulation in visceral fat pads is increased in TrkbCCK-KO mice. A Weight of 
gonadal fat pads in percent of body weight in female and male WT and Cre control mice and 
TrkbCCK-WT and Trkb-floxed (3 females) control and TrkbCCK-KO mice. B Weight of mesenteric fat 
pads in percent of body weight in female and male WT and Cre control mice and TrkbCCK-WT and 
Trkb-floxed (3 females) control and TrkbCCK-KO mice. C Values with standard error of the mean, 
numbers and significance levels for data shown in A and B.
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Figure 3.11 Food intake in control and TrkbCCK-KO mice (both groups n=3 in all experiments). A 
Food intake over 6 days in total and during the dark (active) and light (rest) period in male  
TrkbCCK-KO and TrkbCCK-WT mice B Pattern of food intake during one week in the dark period (N) 
and light period (D), same animals as A. C Cumulative food intake over three (males, left) and 
five (females, right) weeks. D Average daily food intake during one week and body weight gain 
in the same week in female  TrkbCCK-KO and TrkbCCK-WT control mice. E Food intake in the first two 
hours after animals were transfered to metabolic cages and during two hours at the same time 
three days later.
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Figure 3.12 Food intake and weight gain on high-fat diet (HFD) in male TrkbCCK-WT control and 
TrkbCCK-KO mice (both groups n=3). A Development of average daily food intake on normal and 
high-fat diet, arrow indicates start of high-fat diet, for numbers see C and main text. B Devel-
opment of body weight on normal and high-fat diet, arrow indicates start of high fat diet, for 
numbers see main text. C Comparison of average daily food intake on normal and high fat diet 
(third week of HFD), values are mean ± SEM.  D Weekly weight gain after start of high-fat diet, 
values are mean ± SEM. 
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Figure 3.13 A-D Serum leptin, insulin and glucose levels in TrkbCCK-WT control and  TrkbCCK-KO 
mice at different stages and on different diets. A 2.5 months old male mice  B 5 months old 
male and female merged. Note that data was normalized to controls before combining 
genders, and is therefore given here as ratio of  TrkbCCK-WT  and not as concentration as in B and 
C. C 5 months old males on high-fat diet for 3 weeks.
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E

D Leptin [ng/ml] Insulin [ng/ml] Glucose [mg/dl]

2.5 months TrkbCCK-WT
3.6 ± 1.2 1.2 ± 0.3 265.8 ± 11.4

n 3 3 3
TrkbCCK-KO 10.3 ± 3.3 1.3 ± 0.2 278.2 ± 21.3

n 3 3 3
p 0.066 0.375 0.317

5 months TrkbCCK-WT 6.1 ± 1.9 0.6 ± 0.1 233.3 ± 30.5
n 3 3 3

TrkbCCK-KO 38.2 ± 1.7 0.9 ± 0.3 265.3 ± 35.7
n 3 2 3
p 0.0001 0.151 0.267

TrkbCCK-WT 8.1 ± 1.0 1.5 ± 0.5 188.9 ± 6.3
n 5 4 4

TrkbCCK-KO 24.4 ± 10.6 3.5 ± 0.0 258.4 ± 54.9
n 3 2 2
p 0.042 0.030 0.059

WT 3.1 ± 0.6 0.6 ± 0.1 221.8 ± 30.2
n 3 3 3

Cre 5.0 ± 1.1 1.3 ± 0.4 167.7 ± 26.4
n 5 5 5
p 0.131 0.113 0.120

HFD TrkbCCK-WT
57.6 ± 2.7 2.4 ± 0.2 287.1 ± 5.2

n 3 3 3
TrkbCCK-KO

80.6 ± 8.1 3.6 ± 0.4 330.0 ± 2.2
n 3 3 3
p 0.027 0.025 0.0008

Leptin [ratio] Insulin [ratio] Glucose [ratio]

5 months  + TrkbCCK-WT
1.00 ± 0.13 1.00 ± 0.19 1.00 ± 0.05

n 8 7 7
TrkbCCK-KO

4.65 ± 0.95 1.87 ± 0.30 1.23 ± 0.14
n 6 4 5
p 0.0004 0.013 0.054

D Values for serum leptin, insulin and glucose levels for data in A-C. Values are shown as mean 
± SEM and the number of mice used (n) and significance level (p) are shown. 
E Recombination pattern in the BAC-CCK-Cre:R26R-EYFP line in hypothalamic regions involved 
in metabolic control. ARC arcuate nucleus; DMH dorsomedial nucleus of the hypothalamus; 
VMH ventromedial nucleus of the hypothalamus; V3 third ventricle
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We next tested whether TrkbCCK-KO mice were able to downregulate their food 

intake in response to a high fat diet (HFD). Food intake and weight gain were analyzed in 

male mice that were fed a HFD with high calorie content for three weeks (see Materials 

and Methods, chapter 2.9.1). In Figure 3.12 A the average daily food intake is shown at 

three time points on a normal diet and then at two time points after changing to HFD. 

Both TrkbCCK-KO and TrkbCCK-WT mice clearly reduced their food intake and no difference 

was found between genotypes. The average daily food intake of TrkbCCK-KO and TrkbCCK-WT 

mice on normal diet (‘standard chow’) and on the last time point on HFD was compared 

(Figure 3.12 C). No difference in food intake was measured between genotypes but food 

intake was significantly reduced independent of genotype after changing to HFD 

(ANOVA for diet p = 0.001, ANOVA for genotype p = 0.486, ANOVA for diet x genotype 

effect p = 0.663; for other numbers see figure 3.12 C).  

Body weight was measured weekly on normal and HFD (Figure 3.12 B). Note that 

animals were too young (3 months old) at the beginning to show differences in weight. 

Moreover, after transferring animals into metabolic cages they tend to lose weight in the 

first week, most probably due to stress that is inflicted by being alone and in a new 

environment. TrkbCCK-KO males started to gain more weight than controls just before 

changing to HFD. HFD induced a clear weight gain in both genotypes and ANOVA 

analysis revealed a diet x genotype dependent effect. Further analysis by Student’s t-test 

showed a significant weight gain in both the TrkbCCK-KO and TrkbCCK-WT group but no 

significant differences between genotypes at the two time points (TrkbCCK-WT normal diet 

29.8 ± 1.1 g vs HFD 38.8 ± 0.5 g, p = 0.001; TrkbCCK-KO normal diet 31.6 ± 2.2 g vs HFD 

41.5 ± 1.5 g, p = 0.023, ANOVA for diet x genotype effect p = 0.003, no significant 

difference between genotypes with t-test, normal diet p = 0.259, HFD p = 0.074, n=3 for 

each group). Weight gain on HFD was also analyzed for every single week (Figure 3.12 

D). This revealed that TrkbCCK-KO mice gained more weight after one week of HFD, but 

afterwards weight gain was comparable between the two groups and also decreased due to 

the downregulation of food intake. 
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3.3.3 Changes in the metabolic profile of TrkbCCK-KO mice 

Obesity is generally associated with elevated serum leptin levels and leptin 

resistance as leptin is secreted from adipose tissue. Often this is accompanied by insulin 

resistance and elevated serum insulin and glucose levels leading to development of 

diabetes type II (see Introduction, chapter 1.3.1). Therefore, we next verified if obesity in 

TrkbCCK-KO mice was associated with changes in serum leptin, insulin and glucose levels. 

Serum leptin, insulin and glucose levels were tested in young still lean and older 

already obese TrkbCCK-KO mice and controls. Furthermore, serum leptin, insulin and 

glucose levels were also measured in the male mice that had been fed a high-fat diet for 

three weeks (see previous chapter). 

For the first group, 2.5 months old TrkbCCK-WT and TrkbCCK-KO male mice were used 

that did not show any significant differences in body weight even though the TrkbCCK-KO 

male mice were already slightly heavier (TrkbCCK-KO 30.0 ± 0.3 g vs TrkbCCK-WT 27.4 ± 2.1 g, 

n=3 both groups, p = 0.081). Serum leptin levels were slightly but not significantly 

elevated in TrkbCCK-KO mice and insulin and glucose levels were comparable in both groups 

(Figure 3.13 A and D).  

For the second group, serum levels were measured in five months old TrkbCCK-KO, 

TrkbCCK-WT, Cre and WT male mice and in five months old female TrkbCCK-WT and TrkbCCK-

KO mice. In this case TrkbCCK-KO mice were already significantly heavier (see chapter 3.3.1 

and Figure 3.9). The data of male and female groups was combined after normalization to 

the mean of the respective TrkbCCK-WT group to reach high enough numbers (Figure 3.13 B, 

data for combined and single groups in D), therefore the graphs show the ratio to control 

groups and not the concentration as the graphs for younger animals and animals on HFD. 

Serum leptin levels were significantly elevated by a factor of 4.7 in TrkbCCK-KO mice in 

comparison to TrkbCCK-WT mice and also serum insulin was significantly elevated by a 

factor of 1.9. Serum glucose was elevated in TrkbCCK-KO mice but not significantly. When 

analyzing the genders separately (data in Figure 3.13 D), it becomes apparent that female 

TrkbCCK-KO mice showed a stronger and more consistent increase in leptin levels than male 
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TrkbCCK-KO mice (p = 0.0001 in female mice vs p = 0.042 in male mice) whereas serum 

insulin and glucose levels were more increased in male than female TrkbCCK-KO mice. The 

female group was raised at the EMBL in Monterotondo whereas the male group at the 

CNR in Edinburgh. The rodent diet fed in Monterotondo had a higher calorie and fat 

content than the diet fed in Edinburgh (see Materials and Methods, chapter 2.9.1) and 

animals were on average 4 grams lighter in Edinburgh and also had smaller fat pads which 

might influence leptin levels. For the five months old male group also WT and Cre 

controls were added to ensure that Cre expression had no influence on the metabolic 

profile (data in Figure 3.13 D). No differences were found between the two groups. 

The HFD groups did not show significant changes in body weight as both TrkbCCK-

WT and TrkbCCK-KO mice gained a comparable amount of weight (see previous chapter and 

Figure 3.12). However, TrkbCCK-KO mice had significantly elevated serum leptin, insulin 

and glucose levels in comparison to TrkbCCK-WT mice. The HFD had also an effect on 

serum levels of TrkbCCK-WT mice as leptin was elevated by a factor of 7 and insulin by a 

factor of 1.6 in comparison to TrkbCCK-WT mice on a normal diet (data table in Figure 3.13 

D). 

3.4 Hyperactivity of the HPA axis and chronic hypercortisolism in 

TrkbCCK-KO mice 

3.4.1 Corticosterone and ACTH serum levels in TrkbCCK-KO mice 

As we found recombination in several nuclei in the hypothalamus that are 

involved in hypothalamic-pituitary-adrenal axis (HPA axis) regulation we next assessed 

whether HPA axis activity was changed in TrkbCCK-KO mice. For this, we first analyzed 

serum levels of the two peripheral components of the HPA axis, adrenocorticotropic 

hormone that is secreted from the pituitary and corticosterone that is secreted from the 

zona fasciculata of the adrenal cortex (see also Introduction, chapter 1.4.1). 

ACTH and corticosterone serum levels were measured in the morning one hour 

after lights were switched on (AM) and in the late afternoon (PM). Furthermore, both 
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hormones were analyzed separately for each gender as female rodents have higher average 

levels of both hormones and show higher amplitudes (see Introduction, chapter 1.4.1 and 

Figure 1.4). 

Serum ACTH was significantly elevated in female TrkbCCK-KO mice in comparison 

to female TrkbCCK-WT mice at both time points (Figure 3.14 A, with data table). Also male 

TrkbCCK-KO mice had slightly elevated serum ACTH levels at both time points in 

comparison to male TrkbCCK-WT mice but this difference was not significant (p (AM) = 

0.114 and p (PM) = 0.128, for other data see Figure 3.14 A). 

Serum corticosterone basal (AM) levels were normal in male and female TrkbCCK-KO 

mice but PM levels were significantly elevated in male TrkbCCK-KO mice (Figure 3.14 B, 

with data table). Serum corticosterone PM levels in female TrkbCCK-KO mice were not 

significantly different from female TrkbCCK-WT controls (Figure 3.14 B, with data table, p = 

0.099). 

Serum ACTH and corticosterone PM levels were also measured in male and 

female WT and Cre mice to exclude any influence of the Cre transgene. No differences 

were found in either serum ACTH (female Cre 0.482 ± 0.025 ng/ml vs WT 0.524 ± 0.039 

ng/ml, n = 4 for both groups, p = 0.200; male Cre 0.618 ± 0.070 ng/ml vs WT 0.483 ± 

0.031 ng/ml, n = 5/3, p = 0.105) or serum corticosterone levels (female Cre 38.9 ± 9.4 

ng/ml vs WT 29.3 ± 7.9 ng/ml, n = 5/4, p = 0.239; male Cre 33.9 ± 5.2 ng/ml vs WT 29.2 ± 

4.6 ng/ml, n = 5 both groups, p = 0.259). 

The HPA axis does not only control the daily fluctuations in ACTH and 

corticosterone levels but also secretion of both hormones in response to stress. To test the 

hormonal stress response in TrkbCCK-KO mice, we measured serum ACTH and 

corticosterone in female TrkbCCK-KO and TrkbCCK-WT mice after a 20 minutes restraint 

(description of experiment see Materials and Methods, chapter 2.9.2). Restraint stress 

caused a marked increase in serum ACTH and corticosterone levels in both groups when 

compared to unstressed groups (Figure 3.14 A-C for females). In the TrkbCCK-WT control 

group serum ACTH was elevated by a factor of 1.7 and serum corticosterone was elevated 
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by a factor of almost 10 in comparison to unstressed PM serum levels. However, there was 

no difference in either ACTH or corticosterone serum levels between stressed TrkbCCK-KO 

and TrkbCCK-WT mice. 

3.4.2 Signs of chronic hypercortisolism in the periphery in TrkbCCK-KO mice 

Chronic hypercortisolism as for instance found in Cushing’s Syndrome is 

associated with obesity, increased central fat accumulation, diabetes type II, but also 

hypertrophy of the adrenal cortex and fat accumulation in the shoulder and neck region 

(see Introduction, chapter 1.4.1).  

Obesity and central fat accumulation is present in TrkbCCK-KO mice as was shown in 

chapter 3.3.1 and Figure 3.10. Furthermore, these mice have increased leptin and insulin 

levels, a sign for developing insulin resistance and diabetes type II (chapter 3.3.3 and 

respective discussion and Figure 3.13). 

A more specific sign for chronic hypercortisolism is hypertrophy of the zona 

fasciculata of the adrenal cortex. Therefore, brightfield images of the cortex of 

haematoxylin/eosin-stained adrenals of WT, Cre, TrkbCCK-WT and TrkbCCK-KO male and 

female mice were analyzed (Figure 3.15 A). A clear increase in the thickness of the zona 

fasciculata was found in male and female TrkbCCK-KO mice. For quantification the thickness 

of the zona fasciculata was measured in nine locations per adrenal, in both adrenals per 

mouse and three to four animals per genotype (graphs and numbers in Figure 3.15 A). 

This confirmed a significant increase in the thickness of the zona fasciculata in male and 

female TrkbCCK-KO mice in comparison to TrkbCCK-WT mice. No difference was found 

between WT and Cre groups. 

We next analyzed fat accumulations in the neck/shoulder region of TrkbCCK-WT and 

TrkbCCK-KO male and female mice. For this, mice were culled, the skin was removed from 

the back and pictures were taken with a commercial digital camera (Figure 3.15 B). 

Increased fat accumulations were apparent in female TrkbCCK-KO mice in comparison to 

TrkbCCK-WT mice, in male mice the difference was less clear. 

 



Figure 3.14 Serum ACTH (A) and corticosterone (B) levels in male and female control and 
TrkbCCK-KO mice and female control and TrkbCCK-KO mice after 20 minutes restraint (C). The 
female PM group contained both TrkbCCK-WT and Trkb-floxed mice. All values are mean ± SEM. 
For data of WT and Cre mice see main text. A Morning (AM) and afternoon (PM) serum ACTH 
levels in female (left) and male (right) mice. B  Morning (AM) and afternoon (PM) serum corti-
costerone levels in female (left) and male (right) mice. C Serum ACTH (left) and corticosterone 
(right) levels in female mice after 20 minute restraint.
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Figure 3.15 Thickness of zona fasciculata and fat accumulation in the neck/shoulder region in  
in male  and female WT, Cre and TrkbCCK-WT control and TrkbCCK-KO mice. A Brightfield images of 
adrenal cortex, H&E staining. Zones of the adrenal cortex are indicated in the first picture (ZR 
zona reticularis, ZF zona fasciculata, ZG zona glomerulosa). Thickness of the ZF was quantified 
as shown in the graphs, data is given in the tables as mean ± SEM with the p-values. B Pictures 
of fat accumulations in the shoulder-neck region with the skin removed.
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Figure 3.16 In-situ hybridization for the HPA axis activity markers Crh (A) , Avp (B) and enkepha-
lin (Penk, C) in the PVN and adjacent regions. Density (A,B) or integrated density (C)  of staining 
was quantified in male and female TrkbCCK-WT control and TrkbCCK-KO mice separately, normal-
ized to the expression level in TrkbCCK-WT control mice and then combined as no difference 
between genders was found. Levels are expressed as mean ± SEM, n is the numbers of mice 
used for each analysis . N unnamed nucleus laterally to PVN; PVN paraventricular nucleus
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Figure 3.17 A Detailed recombination pattern of the BAC-CCK-Cre:R26R-EYFP line in the hypo-
thalamus at the level of the PVN, the four images are from coronal sections that are separated 
by 80-100 μm. Targeted neurons are found in nuclei known to exert inhibitory control over the 
PVN such as the MPO (first picture) and the peri-PVN (indicated by arrows, includes dorsome-
dial AHN, perifornical regions (around the fornix), subparaventricular zone and cells immedi-
ately dorsal and lateral to the PVN). B Colocalization of GR immunostaining with EYFP in 
recombined neurons in the BAC-CCK-Cre:R26R-EYFP line in the hypothalamus. Targeted 
neurons in the peri-PVN do express the glucocorticoid receptor GR (B). AHN anterior hypotha-
lamic nucleus; fx fornix; MPO medial preoptic area; PVN paraventricular nucleus; SBPV 
subparaventricular zone; V3 third ventricle
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3.4.3 Increased expression of markers of PVN activity in TrkbCCK-KO mice 

The central regulator of HPA axis activity is the paraventricular nucleus of the 

hypothalamus (PVN), which contains parvocellular neurons that secrete CRH into the 

portal blood stream. CRH then induces secretion of ACTH from the pituitary, which in 

turn induces secretion of glucocorticoids from the adrenal cortex (see Introduction, 

chapter 1.4.1). 

To show that hyperactivity of the HPA axis in TrkbCCK-KO mice is caused by central 

changes we next investigated PVN activity. For this, expression of Crh, Avp and Penk 

(pro-enkephalin) mRNA, all markers of PVN activity, was analyzed by in-situ 

hybridization on coronal sections of brains of male and female TrkbCCK-WT and TrkbCCK-KO 

mice. Density of staining and integrated density (density x area) were analyzed separately 

for each gender in three 80 μm spaced sections per mouse, normalized to the level in the 

respective TrkbCCK-WT group and then data from both genders was combined as no 

differences were visible. Penk mRNA was only analyzed in female mice. 

Density of the Crh signal was only slightly but significantly elevated in TrkbCCK-KO 

mice in comparison to the TrkbCCK-WT group (Figure 3.16 A, with data table). In contrast, 

density of Avp was decreased in TrkbCCK-KO mice compared to the TrkbCCK-WT mice (Figure 

3.16 B, with data table). In both cases only the density but not the integrated density (data 

not shown) was significantly changed indicating that expression levels, but not the 

number of Avp or Crh expressing neurons in the PVN had changed. Penk was almost not 

detectable in the PVN of TrkbCCK-WT mice and ventral to the PVN but was expressed in 

these regions in TrkbCCK-KO mice (Figure 3.16 C). As the PVN is not as clearly 

distinguishable in Penk stainings as in Crh and Avp stainings, the location of the PVN in 

Penk-stained sections was determined by overlaying the pictures with pictures of adjacent, 

Crh-stained sections (all in-situs were done on the same series of sections). 

In the unnamed nucleus laterally to the PVN (for explanation see Introduction, 

chapter 1.4.1) enkephalin positive cells were visible in TrkbCCK-WT mice and staining was to 

be increased in TrkbCCK-KO mice. Density and integrated density of the Penk signal was 
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analyzed in the PVN and surrounding regions together. Mean density was not 

significantly changed (not shown), but integrated density was significantly elevated in 

TrkbCCK-KO mice (data in Figure 3.16 C). This reflects a more spread Penk expression (i.e. 

not only in the unnamed nucleus but also in the PVN and ventral to the PVN) in TrkbCCK-

KO mice. 

We also attempted to analyze PVN activity by staining for further markers of 

neuronal activity as c-Fos and p-Creb. However, both proteins were not expressed in the 

PVN of naïve unstressed animals (not shown). As the restrained-stressed TrkbCCK-KO and 

TrkbCCK-WT animals had similar serum ACTH and corticosterone levels it is improbable 

that any differences in c-Fos, p-Creb or Crh mRNA would be found. Indeed, in-situ 

hybridization for Crh mRNA did not show any apparent differences (not shown). 

Immunostaining for c-Fos and p-Creb was attempted but showed in most animals high 

background so that staining and background was difficult to separate. This is most 

probably due to the fact that these animals had to be quickly culled after restrained and 

brains were only perfused after animals were already dead and blood had been taken, 

leading to suboptimal perfusion.  

3.4.4 Recombination pattern in hypothalamic nuclei controlling PVN activity 

and colocalization with the glucocorticoid receptor 

As hyperactivity of the HPA axis in TrkbCCK-KO mice was associated with increased 

activity in the PVN we next investigated which hypothalamic region would be involved in 

this deregulation. For this, the recombination pattern in the hypothalamus of BAC-CCK-

Cre:R26R-EYFP mice was analyzed in more detail in coronal sections stained for EYFP. 

Four sections on the rostro-caudal axis through the PVN, separated by 80-100 μm and 

stained for EYFP are shown in Figure 3.17 A. The PVN proper contained only few 

recombined cells. However, numerous recombined cells were visible in the medial 

preoptic area (MPO), the dorsomedial part of the anterior hypothalamic nucleus (AHN), 

the subparaventricular zone (SBPV), around the fornix and directly adjacent to the PVN. 

The last four regions (dorsomedial AHN, SBPV, perifornical regions and regions directly 
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adjacent to the PVN) are also described as peri-PVN (see Introduction, chapter 1.4.1, part 

“Central control of HPA axis activity”) and are known, as well as the MPO, to exert tonic 

inhibition over the PVN. Two further regions known for inhibitory inputs into the PVN 

also show recombination, even if not visible on these sections here – the dorsomedial 

hypothalamic nucleus (DMH, see Figure 3.13 E) and the bed nucleus of the stria 

terminalis (BST, see Figure 3.1 A and B second page). 

Recombined and GABAergic neurons in the peri-PVN were further analyzed in 

the first part of this study (see chapter 3.1.2 and Figure 3.6). This revealed that 86% of 

recombined neurons in this region were clearly GABAergic, and represented 41% of the 

total number of GABAergic neurons found. 

PVN activity is also regulated by negative feedback of corticosterone via central 

glucocorticoid receptors (GR), but the region and mechanism mediating this effect is still 

unknown (see Introduction, chapter 1.4.1). Colocalization studies for GR and EYFP in the 

peri-PVN in brains of BAC-CCK-Cre:R26R-EYFP mice were performed to test whether 

targeted CCK-neurons could be involved in glucocorticoid feedback inhibition. All 

recombined neurons expressed the GR (Figure 3.17 B) even though numerous other cells 

expressing the GR were found as well.  

3.4.5 Behavioural analysis of TrkbCCK-KO mice  

Hyperactivity of the HPA axis as in Cushing’s syndrome is often associated with 

psychological disturbances as anxiety. CCK and thus CCK-expressing neurons have been 

implicated in anxiety behaviour (see Introduction, chapter 1.2.2). The Dark-Light Box 

Test (DLT), Elevated Plus-Maze (EPM) and Open Field (OF) were used to test innate 

anxiety behaviour in adult male TrkbCCK-WT and TrkbCCK-KO mice. Mice were tested in the 

Open Field for four consecutive days to test habituation to a stressful environment. For a 

more detailed description of behaviour tests see Materials and Methods, chapter 2.9.3. 

In the DLT the time an animal spent in the light (or dark) box, the distance 

travelled in the light box and the number of visits to the dark box was analyzed. The more 

time an animal spends in the light box the less anxious it is considered. The distance 
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travelled in the light box shows rather how much an animal moves and explores and the 

number of visits between the two boxes is also an indicator for exploration. No difference 

was found between TrkbCCK-WT and TrkbCCK-KO mice in the three instances (Figure 3.18 A, 

with data table). Visits between the two boxes seemed elevated in TrkbCCK-KO mice but 

shows a very high variation in the control group (numbers in the control group vary 

between 1 and 57). 

The EPM tests only anxiety behaviour – the more time an animal spends in open 

arms the less anxious it is considered. Time spent in open and closed arms and the centre 

as well as number of visits into open and closed arms was measured. No difference was 

found between genotypes (Figure 3.18 B, with data table). 

In the Open Field the time spent in the border or centre region, the number of 

visits into the centre, the total distance travelled and the number of rearings was 

measured. The more time a mouse stays in the border region the more anxious it is 

considered. An increased number of visits to the centre and rearings indicate decreased 

anxiety and increased exploratory behaviour and rearing is also an indicator of arousal. 

The total distance travelled is an indicator of locomotor activity and arousal. Mice were 

tested on four consecutive days, this enables animals to get used to the box resulting in 

decreased overall locomotor activity (distance travelled) . 

No differences between TrkbCCK-WT and TrkbCCK-KO mice were found in time spent 

in the border and centre region (Figure 3.19 A, with data table) and visits to the centre 

(Figure 3.19 B, with data table). These numbers also did not change significantly over the 

four days tested. As expected, locomotor activity decreased after the first day in the 

control group and was significantly decreased when comparing distance travelled at day 1 

to day 4. TrkbCCK-KO mice were significantly more active on all days except the first 

trial/day and did not show a significant decrease in locomotor activity at day 4 in 

comparison to day 2 (Figure 3.19 C, with data table). ANOVA could not be used to 

analyze these data, as variances were not homogeneous.  

 



Figure 3.18 Results of the dark-light box test (DLT) (A) and elevated plus-maze (EPM) (B) tested 
in male TrkbCCK-WT and TrkbCCK-KO mice (B). A Graphs representing results from DLT - time spent 
in the light box, distance travelled in the light box and visits to the dark box. Data is given in 
the table as mean ± SEM, n gives the number of animals tested for each group and experi-
ment. B Graphs representing results from EPM - time spent in centre, open or closed arms, and 
the number of visits from the centre into an open or closed arm. Data is given in the table as 
mean ± SEM, n gives the number of animals tested for each group and experiment. 
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Figure 3.19 Results of Open Field tested in male TrkbCCK-WT control and TrkbCCK-KO mice on four 
consecutive days. Data is given in the tables as mean ± SEM, n gives the number of animals 
tested for each group and p the significance level. A Time in minutes spent in the border and 
centre on each day (B Border, C Centre). B Number of visits to the centre on each day. 
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C Distance in meters travelled on each day. ANOVA could not be used to compare a 
genotype-day effect as variances were not homogeneous, p values are calculated by Studen’t 
t-test. D Number of rearings in border and centre regions on day one and two.
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Furthermore, TrkbCCK-KO mice reared significantly more in the border region 

during the first day and in both border and centre region during the second day (Figure 

3.19 D, with data table). 

We planned to measure homecage locomotor activity in inframot cages, but this 

experiment did not deliver reliable results as activity counts varied by a factor of over 10 

in control mice, most probably because sensors were not calibrated properly. 

Another indication for changed behaviour of TrkbCCK-KO mice was found in females 

after placing them for the first time in metabolic cages. During the first two hours female 

TrkbCCK-KO mice ate significantly more than the control group  (this was the only time any 

difference in food intake was found) (see chapter 3.3.2, Figure 3.11 E). 

During handling TrkbCCK-KO mice became easily aroused and reacted more 

aggressively, i.e. generally tried to bite immediately. 

3.5 Analysis of mice with a mutation of the PLC-docking site of TrkB  

TrkB activates downstream signalling pathways via two intracellular docking sites, 

the TrkB-SHC site that activates MAPK and PI3K pathways, and the TrkB-PLC site that 

activates PLCγ1 and calcium/calmodulin kinase pathways (see Introduction, chapter 1.1.2 

and Figure 1.1). 

To assess which of these sites was involved in regulation of HPA axis activity we 

analyzed body weight and thickness of the zona fasciculata of the adrenal cortex in lines 

with heterozygous point mutations in either site (TrkbSHC and TrkbPLC mice). For these 

experiments mice were weighed by Jenni Rennie from the animal facility in Edinburgh, 

and adrenals were embedded, sectioned and stained by a PhD student, Juraj Koudelka. 

TrkbS/+ mice did not show any signs of increased body weight compared to Trkb+/+ 

control mice at an age of five months (females, 5 months old, TrkbS/+ 28.1 ± 0.9 g vs 

Trkb+/+ 32.1 ± 2.4 g, n = 7/3, p = 0.042; males 5 months old, TrkbS/+ 39.1 ± 3.1 g vs Trkb+/+ 

37.3 ± 1.3 g, n = 6/4, p = 0.332) and also no changes in the thickness of the zona 

fasciculata of the adrenal cortex (male mice, TrkbS/+ 116.8 ± 8.5 μm vs Trkb+/+ 123.4 ± 16.1 

μm, n = 3/2, p = 0.357). 



Figure 3.20 Mice with a heterozygous single point mutation of the PLC docking site (TrkbP/+) 
mirror the phenotype of TrkbCCK-KO mice. Data is given in the tables as mean ± SEM with the 
number of mice used per line and the p-value. For data on TrkbSHC mice see main text. A Body 
weight, B Visceral fat pad accumulations C Thickness of the zona fasiculata of the adrenal 
cortex D Serum ACTH levels E Serum leptin and insulin levels 
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In contrast, TrkbP/+ mice were significantly heavier than TrkbW/+ control mice 

(Figure 3.20 A, body weight of 7-8 months old female mice with data table, 5 months old 

female mice: TrkbP/+ 35.8 ± 1.2 g vs TrkbW/+ 27.6 ± 1.7 g, n = 2/4, p = 0.019; 5 months old 

male mice:, TrkbP/+ 42.2 ± 1.3 g vs TrkbW/+ 33.0 ± 0.6 g, n = 6/4, p = 0.0003) and this was 

associated with central obesity with increased mesenteric and gonadal fat pads (Figure 

3.20 B with data table, 7 months old female mice).  

TrkbP/+ mice also showed hypertrophy of the zona fasciculata of the adrenal cortex 

(Figure 3.20 C, with data table) and elevated serum ACTH levels (Figure 3.20 D) clearly 

indicating chronic hypercortisolism. Furthermore, central obesity in TrkbP/+ mice was 

accompanied by significantly increased serum leptin and insulin levels compared to 

TrkbW/+ mice (Figure 3.20 E).  
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4.1 Analysis of the BAC-CCK-Cre line 

4.1.1 Recombination pattern and specificity in the BAC-CCK-Cre line 

The recombination pattern of the BAC-CCK-Cre line was characterized by 

crossing the line to a reporter line that expresses EYFP under the Rosa26 promoter after 

Cre-mediated removal of a stop cassette. EYFP expression was analyzed in the brain, 

pituitary and adrenal by brightfield and confocal microscopy on DAB and fluorescence 

immunostained sections. 

In the brain, the recombination pattern corresponds to the expression pattern 

published for CCK in literature. Recombination was detected in cortex, hippocampus, 

olfactory bulb, rostral striatum, thalamus, bed nucleus of the stria terminalis, 

hypothalamus, midbrain, brainstem and cerebellum. These areas were also found to 

express CCK in in-situ hybridization studies on rat brain (Hökfelt et al., 1985; Schiffmann 

and Vanderhaeghen, 1991) and by the Allen Brain Atlas project (Lein et al., 2007). The 

BAC-CCK-Cre line shows less recombined cells in the frontal regions of the cortex, the 

olfactory bulb and the amygdala and a more widespread recombination in the cerebellum 

than were detected in these studies but otherwise reflects the CCK-expression pattern 

well. The expression in the cerebellum might reflect CCK expression at an earlier 

developmental stage. Indeed, a more spread expression of CCK can be seen in P4 brains 

in pictures published by the Allen Brain Atlas project than in adult brains where it is 

restricted to Purkinje cells. A high number of recombined neurons was found in 

hypothalamic and caudal forebrain nuclei involved in control of energy intake or 

inhibitory control of the hypothalamic-adrenal-pituitary axis (HPA axis). This will be 

discussed in more detail in the chapters addressing these functions in TrkbCCK-KO mice.  

Recombination was also analyzed at postnatal day 7 and embryonal stage E12.5. At 

P7,  the pattern of recombination corresponds generally to the adult pattern and also to 

the expression pattern shown by the Allen Brain Atlas project for P4 and P14. Less 

recombined cells were seen in the cortex and hippocampus in comparison to adult 
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animals but CCK expression in the cortex was also reported to increase up to P21 

(Burgunder and Young 3rd, 1990). At E12.5 expression was mainly found in the spinal 

cord and some recombined cells were visible in the future midbrain, hypothalamus and 

hindbrain. No recombination was found in the future cortex. CCK was published to be 

expressed in the spinal cord at this stage and in some regions in the brain, the earliest 

timepoint expression was detected in the cortex is E15.5 (Burgunder and Young 3rd, 

1990; Giacobini and Wray, 2008), confirming our findings. 

As serum ACTH and corticosterone levels were changed in TrkbCCK-KO mice 

recombination was analyzed in pituitary and adrenals of BAC-CCK-Cre:R26R-EYFP mice. 

The pituitary was reported to express TrkB (Kononen et al., 1994) but only very few CCK-

positive cells at E17.5 (Giacobini and Wray, 2008). Accordingly, only single scattered 

recombined cells were found in the pituitary of BAC-CCK-Cre:R26R-EYFP mice 

precluding a causal role of the pituitary in the phenotype described here. Only few 

publications addressed expression of CCK in the adrenal and these reported the existence 

of few single CCK-positive nerve fibres and neuronal bodies in the medulla and cortex 

(Heym et al., 1995). We found numerous recombined cell bodies in the medulla but only 

few recombined cells in the adrenal cortex that were usually clustered around one 

column. This should have no influence on the phenotype seen in TrkbCCK-KO mice as TrkB 

is not expressed in the adrenal cortex (Schober et al., 1999). 

The cellular specificity of Cre-mediated recombination in the BAC-CCK-

Cre:R26R-EYFP line was verified by fluorescence colocalization studies on EYFP and CCK 

immunostained sections. Confocal pictures from different brain regions showed that 

EYFP expressing cells are generally CCK immunoreactive but that not all CCK-expressing 

cells were targeted. Colocalization was quantified in the peri-PVN as this is the region 

involved in the phenotype described here for TrkbCCK-KO mice. In the peri-PVN, 80% of 

CCK-expressing neurons were successfully targeted (showed Cre-mediated EYFP 

expression) and of the EYFP-expressing neurons 97% expressed CCK. This confirms that 

most CCK-expressing neurons recombine efficiently in the BAC-CCK-Cre line and that 
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recombination is restricted to CCK-expressing neurons. The 3% of EYFP expressing 

neurons in which CCK was not clearly detected might express CCK at too low levels to 

show staining or might have expressed CCK at an earlier stage. CCK was also reported to 

be difficult to detect by immunostaining in some neurons as it is only expressed at low 

levels and quickly transported into axons (see Introduction, chapter 1.2.2 and Mascagni et 

al, 2003). Thus, the cells only positive for EYFP are most probably not false positives but 

are not CCK immunoreactivity for the aforementioned reasons. Also the general absence 

of colocalization between EYFP and parvalbumin, a marker for an interneuron 

population that usually does not express CCK, confirms the specificity of recombination 

in the BAC-CCK-Cre:R26R-EYFP line. 

CCK was described to be expressed in interneurons, however, expression was also 

reported in some pyramidal projection neurons in the cortex, hippocampus and amygdala 

(see Introduction, chapter 1.2.2). Colocalization of Cre-mediated EYFP expression and 

GABA in the BAC-CCK-Cre:R26R-EYFP line confirmed that most recombined neurons 

are GABAergic, but not all. Neurons with a pyramidal shape (a clearly visible apical 

dendrite) in the cortex and CA1 of the hippocampus did not express GABA. The 

recombined cortical neurons were found to be cortico-spinal motorneurons (CSMN), as 

they colocalize with the CSMN marker CTIP2. The recombined neurons in the CA1 were 

positive for a CamKII-CFP fusion protein that is only expressed in principal neurons. 

CCK expression in cortical projection neurons and CA1 pyramidal neurons has been 

reported (Burgunder and Young 3rd, 1990; Senatorov et al., 1995) and recombination in 

these neurons reflects the endogenous CCK expression. Colocalization of GABA and 

EYFP was quantified in the peri-PVN to verify whether targeted neurons in this region 

were GABAergic. The vast majority of recombined neurons (86%) in this region was 

GABAergic and of the GABA-positive cells 41% showed recombination, confirming that 

almost all of the CCK-expressing and half of the inhibitory interneurons in the peri-PVN 

were targeted in the BAC-CCK-Cre line. 
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In conclusion, recombination in the BAC-CCK-Cre line is found in all regions 

known to express CCK and is specific to CCK-expressing cells. Recombination occurs 

efficiently as it is already detected in the expected regions in embryos and young animals. 

Most recombined neurons are GABAergic with the exception of pyramidal neurons in the 

CA1 and projection neurons in the cortex, but this corresponds to the endogenous 

expression pattern published for CCK. 

4.1.2 CCK-neuron specific ablation of Trkb by the BAC-CCK-Cre line 

Trkb was specifically ablated from CCK-neurons by crossing the BAC-CCK-Cre 

line with a Trkb-floxed line. Successful removal of TrkB protein was verified by 

immunoblotting using lysates of cortex and hypothalamus of TrkbCCK-WT and TrkbCCK-KO 

mice. Full-length TrkB protein levels were significantly reduced to 25 % in the 

hypothalamus and also, even if not significantly, in the cortex of TrkbCCK-KO mice. As the 

hypothalamus contains a much higher proportion of recombined neurons than the 

cortex, a stronger reduction in TrkB protein levels in the hypothalamus is to be expected. 

Expression of truncated isoforms of TrkB was not affected as the loxP-sites of the Trkb-

floxed line are downstream of the last exon expressed in the truncated forms. 

Specific ablation of Trkb mRNA from recombined neurons was analyzed in the 

cortex and hippocampus by double-staining for Trkb mRNA by in-situ hybridization and 

for EGFP by immunofluorescence staining on brains of BAC-CCK-Cretg/+:Z/EG-EGFPtg/+ 

and TrkbCCK-KO:Z/EG-EGFPtg/+. The Z/EG line was used in this case as we did not succeed 

in generating TrkbCCK-KO::R26R-EYFPtg/+ mice. On a wildtype background Trkb mRNA was 

found to be expressed in recombined neurons and absence of colocalization on a 

knockout background confirmed successful deletion of Trkb from these neurons. An 

analysis of ablation in hypothalamic neurons was not possible as only single recombined 

neurons were found in the Z/EG line in the hypothalamus, but the reduction in TrkB 

protein levels in the hypothalamus confirmed successful removal of TrkB in this region. 
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4.2 TrkbCCK-KO mice are viable and show no severe loss of neurons 

TrkbCCK-KO mice are viable and did not show increased mortality from weaning age 

on up to seven month of age, the longest they were kept so far. Statistics on the gender 

and genotype of weaned animals show a small decrease in the number of heterozygous 

(CCK-Cretg/+,Trkblx/+) and homozygous (CCK-Cretg/+,Trkblx/lx) knockout mice and female 

mice reaching weaning age, most probably because too small numbers were analysed. No 

changes were found in the number of Cre-positive mice in comparison to wildtype mice 

or gender distribution. 

Cresyl-Violet staining on brain sections showed that the gross morphology of 

TrkbCCK-KO brains is normal. Brain CCK levels were determined by CCK-ELISA on whole 

brain lysates and were also normal in TrkbCCK-KO mice. As recombination occurred in most 

CCK-expressing neurons and as CCK-neurons are the only source of CCK in the brain, 

this finding suggests that ablation of Trkb from CCK-neurons does not lead to significant 

neuronal loss or profound impairment of neuronal function. We had planned to 

investigate potential effects of Trkb ablation on numbers of CCK-neurons by cell counts 

in BAC-CCK-Cre:R26R-EYFP mice on wildtype and mutant background. However, this 

was not possible as we never obtained mice with the reporter allele on a knockout 

background. We did obtain Z/EG reporter mice on a knockout background that were 

used for the Trkb in-situ – EGFP double labelling, however, we did not want to rely on 

this line for cell counts, as it does not recombine efficiently. Another possibility would 

have been to use CCK immunostainings for cell counts. The weak signal of the CCK 

antibody is impossible to analyze automatically requiring counting by hand and we also 

had only small amounts of the antibody as newer lots or any other CCK antibody 

available were not specific. Nonetheless, the finding that TrkbCCK-KO mice have normal 

brain CCK levels is a reliable confirmation that CCK-neurons are present. Moreover, 

TrkB was shown to be rather involved in interneuron differentiation, synaptogenesis and 

synapse maintenance than survival. For instance, Trkb knockout mice were shown to 

have defects in interneuron differentiation but normal numbers of interneurons 
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(Carmona et al. 2006). Also specific deletion of Trkb from early postmitotic GABAergic 

neurons did not influence number and position of cortical interneurons but expression of 

specific markers (Sánchez-Huertas et al. 2011). 

4.3 TrkbCCK-KO mice are obese but not hyperphagic 

TrkbCCK-KO mice develop visible obesity in adulthood. Body weight of male TrkbCCK-

KO mice was comparable to control groups up to three months of age but was significantly 

increased from four months of age on. Also female TrkbCCK-KO mice were significantly 

heavier at five months of age. This increase in body weight was due to increased 

accumulation of adipose tissue as central visceral fat pads, namely the mesenteric and 

gonadal fat pad, were significantly enlarged in five months old male and female TrkbCCK-KO 

mice. 

BDNF/TrkB signalling has been implicated in the central control of energy intake. 

Obesity associated with hyperphagia (over-eating) was found in several models of Bdnf or 

Trkb deficiency such as TrkB hypomorphic mice, BDNF heterozygous mice and principal 

neuron-specific and VMH-specific BDNF knockout mice (Xu et al. 2003, Lyons et al. 

1999, Rios et al. 2001, Unger et al. 2007, see also Introduction, chapter 1.3.2). Besides, the 

BAC-CCK-Cre line showed recombination in hypothalamic (VMH and DMH) and 

brainstem (DVC) regions involved in central control of food intake. 

Therefore, we decided to next measure food intake in TrkbCCK-KO mice and control 

groups. We could not find any differences in food intake, circadian rhythm of food intake 

or accumulated food intake over several weeks in either male or female TrkbCCK-KO mice. 

Indeed, when tracking food intake and weight gain over one week, we found that TrkbCCK-

KO mice gained significantly more weight during that week without eating more than the 

control group. The only difference ever found was in female mice in the first two hours 

after transferring them from home cages into metabolic cages. In this case, female 

TrkbCCK-KO mice did eat significantly more than female mice from control groups. This 

represents rather differences in stressed-induced behaviour than a general difference in 

control of energy intake. 
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Subtle changes in control of food intake might not be easy to detect on a normal 

diet. To assess whether TrkbCCK-KO mice were able to downregulate food intake in response 

to a high-calorie diet, mice were fed a high-fat diet for three weeks. High-fat diet induced 

a significant decrease in food intake and a significant increase in body weight in both the 

control group and TrkbCCK-KO mice. No differences were found in food intake or total 

weight gain between genotypes. TrkbCCK-KO mice gained significantly more weight after the 

first week of high-fat diet but not in the following weeks. This might rather be due to the 

fact that mice were at an age when TrkbCCK-KO mice would gain more weight anyway, than 

a different response to the high-fat diet. 

These results show that control of energy intake is not affected in TrkbCCK-KO mice. 

TrkbCCK-KO mice are not hyperphagic, can decrease food intake in response to a high-

calorie diet and the difference in body weight is not increased but obliterated by a high-fat 

diet. The absence of hyperphagia stands in contrast to other models of Bdnf or Trkb 

deficiency that are clearly hyperphagic. In these models, BDNF was found to be involved 

in anorectic signalling downstream of melanocortin in principal neurons in the VMH (Xu 

et al. 2003, Unger et al. 2007, see also Introduction chapter 1.3). As removal of Trkb from 

principal neurons does not induce obesity (observation in the TrkbCamKII-Cre line in our lab), 

one could hypothesize that BDNF might act on TrkB-expressing interneurons in the 

VMH to suppress food intake. The BAC-CCK-Cre line shows recombination in the CCK-

positive subset of VMH interneurons, but the absence of hyperphagia in the TrkbCCK-KO 

mouse suggests BDNF does not act on these neurons to regulate food intake. The VMH 

also projects to the dorsal vagal complex (DVC) in the brainstem where BDNF and TrkB 

were shown to suppress food intake downstream of melanocortin signalling (Bariohay et 

al. 2005 and 2009, see also Introduction, chapter 1.3.2). Thus, BDNF from the VMH 

might rather act on the DVC than on hypothalamic nuclei. Recombined cells were found 

in the DVC in the BAC-CCK-Cre line but, as with the VMH, these neurons do not seem 

to be involved in BDNF/TrkB signalling downstream of melanocortin signalling as we do 

not see any deregulation of food intake in TrkbCCK-KO mice. In addition to its actions 
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downstream of melanocortin signalling in the VMH and DVC, BDNF was also implicated 

in the anorectic effect of corticotropin-releasing hormone (CRH) in the paraventricular 

nucleus of the hypothalamus (PVN). Infusion of BDNF into the PVN reduces food intake 

by upregulation of CRH and urocortin that both have an anorexigenic effect (via other 

ways than the HPA axis) (Toriya et al. 2010, see also Introduction chapter 1.3.2). This 

does not stand in contrast with our findings, as in this case BDNF acts on TrkB-

expressing PVN neurons that do not show recombination in the BAC-CCK-Cre line. 

In conclusion, obesity in TrkbCCK-KO mice is caused by other mechanisms than 

hyperphagia and BDNF/TrkB signalling in the CCK-positive subset of hypothalamic 

interneurons is not involved in control of energy intake. 

Obesity in TrkbCCK-KO mice is associated with hyperleptinemia and hyperinsulinemia 

Obesity is usually associated with high levels of the anorexic hormone leptin as 

leptin is secreted by adipocytes. However, obesity also induces leptin resistance, and 

therefore high leptin levels are not effective in suppressing food intake any more (see 

Introduction, chapter 1.3.1). To verify that obesity in TrkbCCK-KO mice was associated with 

an increase in leptin levels, serum leptin was determined in young lean and older obese 

TrkbCCK-KO mice and control groups as well as in the high-fat diet groups. Not yet obese 

TrkbCCK-KO mice had normal serum leptin levels whereas obese TrkbCCK-KO mice showed a 

significant increase. This confirms that, as expected, obesity in TrkbCCK-KO mice is 

associated with elevated serum leptin and leptin resistance. High-fat diet induced a 

profound increase of serum leptin in control group as well as TrkbCCK-KO mice even though 

levels were still significantly higher in TrkbCCK-KO mice. 

Obesity is also often accompanied by elevated insulin levels and insulin resistance 

leading finally to deregulation of glucose metabolism and development of diabetes type II 

(see Introduction, chapter 1.3.1). Therefore, serum insulin and glucose levels were 

determined in the same groups as serum leptin. As for leptin, serum insulin was normal 

in lean but significantly elevated in obese TrkbCCK-KO mice. High-fat diet induced elevated 

insulin levels in the control as well as the knockout group, but was still significantly higher 
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in TrkbCCK-KO mice. Glucose was normal in young and only slightly but not significantly 

elevated in obese TrkbCCK-KO mice, but significantly elevated in TrkbCCK-KO mice on HFD in 

comparison to the control group. However, to assess whether glucose homeostasis is still 

functional a glucose tolerance test would be necessary. 

Thus, obesity in TrkbCCK-KO mice is associated with hyperleptinemia and 

hyperinsulinemia and resistance to both hormones. Glucose levels are not significantly 

elevated in obese TrkbCCK-KO mice. The finding that leptin, insulin and glucose levels are 

significantly elevated in TrkbCCK-KO mice on HFD even though these mice do not weigh 

more than the control group suggests they may be more susceptible to metabolic changes. 

4.4 HPA axis hyperactivity in TrkbCCK-KO mice 

4.4.1 HPA axis hyperactivity and chronic hypercortisolism in TrkbCCK-KO mice 

The BAC-CCK-Cre line showed recombination in hypothalamic nuclei associated 

with food intake control as well as in regions associated with control of HPA axis activity. 

BDNF and TrkB have been associated with HPA axis function, but so far none of the Bdnf 

or Trkb deficient or overexpressing mouse models show changes in HPA axis activity (see 

Introduction, chapter 1.42). This was particularly investigated in the principal neuron-

specific knockout of Trkb, and these mice were found to have no differences in levels of 

HPA axis hormones (ACTH and corticosterone) and to be rather hyperactive than 

anxious or depressed (Zorner et al. 2003). 

To investigate if TrkB signalling in CCK-interneurons might be involved in HPA 

axis regulation serum corticosterone and ACTH levels were measured in TrkbCCK-KO mice 

by ELISA or RIA. Both hormones have a circadian rhythm with the lowest levels at the 

start of the rest phase (morning in rodents – AM) and increased levels towards the end of 

the rest phase (afternoon-evening in rodents – PM). Serum ACTH was significantly 

elevated in five months old female TrkbCCK-KO mice at both time points, in male TrkbCCK-KO 

mice levels were elevated at both time points, but not significantly. Serum corticosterone 

was normal at basal levels but elevated in the afternoon in male TrkbCCK-KO mice. TrkbCCK-
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KO female mice did not show elevated corticosterone levels, but, as shown later, show clear 

signs of hypercortisolism. It is inherently difficult to obtain reliable ACTH and 

corticosterone levels as both hormones show not only a circadian but also an ultradian 

rhythm with hourly bursts of secretion that have a higher amplitude in females (see 

Introduction, chapter 1.4.1 and Figure 1.4 B). This leads to high variations in hormone 

levels between individuals making it very difficult to acquire meaningful data. Moreover, 

handling during the experiments or events prior to the experiment can stress mice, 

resulting in altered ACTH and corticosterone levels. Therefore, changes in corticosterone 

levels of female TrkbCCK-KO mice might not have been detected here even if they are present 

as suggested by adrenal hypertrophy. Altogether, these results suggest increased HPA axis 

activity in TrkbCCK-KO mice. 

HPA axis hyperactivity is often associated with increased hormonal responses to 

stress. Stress response was tested in TrkbCCK-KO mice and control groups by analyzing 

serum ACTH and corticosterone levels after a 20 minutes restraint stress. Both groups 

showed increased serum ACTH and corticosterone levels but no difference between 

genotypes was detected. Thus, the HPA axis response to restraint stress is not affected in 

TrkbCCK-KO mice. As will be discussed later, the HPA axis hyperactivity in TrkbCCK-KO mice 

is caused by decreased inhibitory input from local interneurons to the paraventricular 

nucleus of the hypothalamus (PVN). These interneurons were suggested to tonically 

inhibit PVN activity under normal but not any more under stressful conditions 

(Wamsteeker et al. 2010, see also Introduction chapter 1.4.1). Hence, impaired inhibitory 

input in TrkbCCK-KO mice would be expected to rather affect HPA axis activity under 

normal but not stressful conditions. 

Chronic hypercortisolism can induce hypertrophy of the adrenal cortex due to the 

increased production of glucocorticoids in the zona fasciculata (see Introduction, chapter 

1.4.1). Analysis of the adrenal cortex of TrkbCCK-KO mice and controls revealed that male 

and female TrkbCCK-KO mice had a significantly enlarged zona fasciculata. Diseases of 

chronic hypercortisolism as for instance Cushing’s syndrome (see Introduction chapter 
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1.4.1) are also associated with increased central obesity and fat accumulation in the neck 

and shoulder region. Central obesity is present in TrkbCCK-KO mice as discussed in chapter 

4.3. Pictures of fat accumulations in the neck/shoulder region of female and male TrkbCCK-

KO mice revealed a clear increase in fat mass in female but not male TrkbCCK-KO mice. 

Elevated serum ACTH and corticosterone levels in TrkbCCK-KO mice are thus 

associated with clear signs of chronic hypercortisolism confirming the presence of HPA 

axis hyperactivity in males and females. 

HPA axis hyperactivity in TrkbCCK-KO mice is caused by changes in the central 

regulation as the adrenal cortex does not express TrkB and as only few cells were 

recombined in the pituitary,. The main central regulator of HPA axis activity is the PVN 

as it contains the parvocellular neurons that secret corticotropin releasing hormone 

(CRH) and arginine-vasopressin (AVP) to induce ACTH release from the pituitary (see 

Introduction, chapter 1.4.1). For this reason, CRH and AVP are also good markers for 

PVN activity. However, immunostainings for these peptides in the PVN are not very 

informative as both peptides are mainly located in vesicles in axon endings in the median 

eminence from where they are secreted into the portal blood stream. As both peptides are 

also secreted in response to stress, peptide content might be altered after handling mice 

for collection of tissues. As mRNA expression levels of both Crh and Avp reflect previous 

PVN activity (Watts 2005), in-situ hybridization for these two markers is generally used to 

assess PVN activity. A further marker for PVN activity is enkephalin. Enkephalin is 

mainly expressed in an unnamed nucleus lateral to the PVN and other neurons in the 

vicinity of the PVN and only under conditions of increased HPA axis activity also in the 

PVN itself (Dumont et al. 2000, Viau et al. 2002, Watts et al. 2005, see also Introduction, 

chapter 1.4.1).  

Quantification of the in-situ hybridization signal revealed a small but significant 

elevation of PVN Crh mRNA expression in TrkbCCK-KO mice. Penk mRNA expression was 

significantly increased in TrkbCCK-KO mice and single Penk positive cells were found in the 
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PVN of TrkbCCK-KO mice but not in control mice. In contrast to this, Avp expression was 

reduced in the PVN of TrkbCCK-KO mice. 

Elevated expression of Crh and Penk in the PVN and, in the case of Penk, the PVN 

surroundings, confirms increased activity of the PVN in TrkbCCK-KO mice. The increase in 

Crh expression seems small but, since only the density and not the area of staining 

increases, it could reflect increased expression in the same number of neurons as in 

control animals, rather than an increased number of Crh expressing cells. This kind of 

change is more difficult to detect by in-situ hybridization and might be easier to detect by 

quantitative real-time PCR. The PVN of mice is however so small that dissection by hand 

is impossible and would require the use of microdissection equipment. As CRH is a 

potent ACTH secretagogue, small changes in expression are sufficient to induce changes 

in ACTH secretion (Bradbury et al., 1974). 

Glucocorticoids act in a negative feedback loop and suppress HPA axis activity in 

the pituitary and brain for instance by reducing Crh and Avp expression (Watts 2005, see 

also Introduction, chapter 1.4.1). Crh expression in the PVN and serum glucocorticoid 

concentration have usually an inverse relationship, particularly at glucocorticoid 

concentrations between 10 to 150 ng/ml (Watts 2005). Glucocorticoid receptor (GR) 

ablation from the pituitary impairs feedback inhibition at the pituitary but not the central 

level and results in elevated corticosterone levels but reduced expression of Crh in the 

PVN (Schmidt et al., 2009). The finding that Crh expression is not reduced in TrkbCCK-KO 

mice despite the elevated corticosterone levels confirms that central disregulation is the 

reason for HPA axis hyperactivity in these mice and indicates that this is linked to 

impaired feedback-inhibition of glucocorticoids at a central level. 

Avp expression was reduced in TrkbCCK-KO mice as would be expected in individuals 

with elevated glucocorticoid levels. Thus, glucocorticoid feedback inhibition is able to 

suppress Avp expression in TrkbCCK-KO mice, but not Crh expression. Differential effects of 

glucocorticoids on Avp and Crh expression have been reported before. Avp expression 

was shown to react in a more sensitive way to changes in glucocorticoid levels (Watts 
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2005). On the other hand, analysis of GR knockout mice suggests that GR at the 

hypothalamic level might rather regulate Crh than Avp expression, as only CRH was 

elevated in these animals (Schmidt et al., 2009).  

In conclusion, TrkbCCK-KO mice show hyperactivity of the HPA axis that leads to 

chronic hypercortisolism. HPA axis activity is associated with increased PVN activity and 

impaired glucocorticoid feedback inhibition. Involvement of BDNF/TrkB in GR 

signalling and possible mechanisms for increased PVN activity in TrkbCCK-KO mice will be 

discussed in chapter 4.4.5. 

4.4.2 Chronic hypercortisolism is the reason for obesity in TrkbCCK-KO mice 

In humans chronic hypercortisolism is generally caused by adrenal or pituitary 

tumours or exogenous glucocorticoid administration and can then lead to development of 

Cushing’s syndrome. Cushing’s syndrome is characterized by central obesity, fat 

accumulation in the shoulder/neck region, hyperleptinemia, hyperinsulinemia, risk for 

development of diabetes type II, adrenal hyperplasia, muscle atrophy, thinning skin, 

decreased bone density and psychological disturbances (see also Introduction, chapter 

1.4.1). TrkbCCK-KO mice were found to develop a Cushing’s syndrome-like phenotype, as 

they have hypercortisolism with several of these characteristics. Therefore, the central 

obesity found in TrkbCCK-KO mice is a consequence of HPA axis hyperactivity and chronic 

hypercortisolism and not, as in other models of Bdnf or Trkb deficiency, due to 

hyperphagia and deregulation of melanocortin signalling. 

It is controversial whether Cushing’s syndrome is associated with hyperphagia or 

only changes in food preference in humans as it is difficult to reliably measure food intake 

in patients. In contrast to our findings, chronic hypercortisolism can induce hyperphagia 

in rodent models. For instance, chronic exogenous administration of corticosterone in 

mice induced hyperphagia and obesity (Karatsoreos 2010). As CRH has an anorexigenic 

effect but will be suppressed in these animals by the elevated corticosterone levels, this 

does not reflect an orexigenic action of corticosterone, but rather the suppression of the 

anorexigenic effects of CRH (Nieuwenhuizen et al. 2008, see also Introduction, chapter 
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1.4.1). In TrkbCCK-KO elevated corticosterone levels are a consequence of impaired central 

glucocorticoid feedback. Crh expression is increased rather than decreased in these 

animals and thus the anorexigenic effect of CRH is maintained. 

How do glucocorticoids induce accumulation of adipose tissue? Hypercortisolism 

has been associated with development of obesity due to the fact that Cushing’s syndrome 

and the metabolic syndrome share several symptoms such as central obesity, 

hyperleptinemia, hyperinsulinemia, development diabetes type II, and hypertension 

(Peeke et al. 1995, Pasquali et al. 2006, Anagnostis et al. 2009, see also Introduction, 

chapter 1.4.1). Obese individuals show increased activity of glucocorticoids in peripheral 

tissues, especially adipose tissue (Pasquali et al. 2006, Anagnostis et al. 2009). This might 

be sufficient to induce obesity as increased availability of cortisol in adipose tissue of mice 

was shown to induce an increase in fat mass (Masuzaki et al. 2001). A further indication 

that glucocorticoids could induce obesity without altering food intake is the finding that 

glucocorticoids can upregulate the NPY (neuropeptide Y) receptor in adipose tissue 

resulting in central obesity under conditions of stress-induced NPY release. 

Our model thus confirms that chronic exposure to increased glucocorticoid levels 

is sufficient to induce obesity with resistance to leptin and insulin in the absence of altered 

energy intake. 

4.4.3 Behavioural changes in TrkbCCK-KO mice 

CCK-interneurons as well as BDNF/TrkB signalling were implicated in emotional 

responses and anxiety behaviour (see Introduction, chapter 1.1.4 and 1.2.2). These 

behaviours depend on the limbic system that then interacts with the hypothalamus, for 

instance, to activate the HPA axis in response to psychological stressors (Alberts et al., 

2002; Joëls and Baram, 2009). BDNF has been implicated in increased activity of the HPA 

axis in response to social stress (Shalev et al., 2009). The BAC-CCK-Cre line shows 

recombination in the limbic system, raising the possibility that TrkbCCK-KO mice show 

hyperactivity of the HPA axis due to increased anxiety behaviour. 
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Innate anxiety behaviour was tested in the light-dark box paradigm (DLT), the 

elevated-plus maze (EPM) and the open field (OF). The open field was repeated on four 

consecutive days to test the ability to habituate to a new environment. Habituation to the 

open field is reflected by decreased locomotion (see for instance van Gaalen et al. 2002). 

TrkbCCK-KO mice did not show any changes in anxiety behaviour, but showed 

increased locomotion on day 2-4 in the open field and also increased rearing. This 

suggests increased exploratory behaviour and increased arousal. The fact that locomotion 

in the open field did not decrease in the TrkbCCK-KO group might indicate absence of 

habituation – either to the open field or to handling when mice were placed in the open 

field. Indeed, TrkbCCK-KO mice seem more aggressive when handled and bite more than 

other mice. This was particularly apparent during repeated behaviour testing which 

usually leads to mice getting used to handling. To test whether increased locomotion was 

due to handling or changes in environment we attempted to analyze locomotion in the 

home cage by inframot. However, the data obtained from this experiment could not be 

used due to high variations between individuals (most probably due to not properly 

calibrated detectors). As locomotion was not significantly higher in the light box during 

DLT nor in the first day of the open field, the hyperlocomotion observed on day 2 to 4 is 

rather due to increased arousal caused by repeated handling and changing of 

environment. A further indication that TrkbCCK-KO mice might react differently to changes 

in their environment comes from the observation that female TrkbCCK-KO mice ate more in 

the first two hours after being transferred to metabolic cages.  

We therefore conclude that TrkbCCK-KO mice are not more anxious but rather easily 

aroused, aggressive and, under conditions of increased stress and arousal, hyperactive. 

This confirms that increased HPA axis output in TrkbCCK-KO mice is related to 

hypothalamic mechanisms rather than to changes in upstream circuits as the limbic 

system. Aggressive behaviour was not further studied in TrkbCCK-KO mice. A possible 

explanation for this observation could be disinhibition of nuclei involved in regulating 

aggressive behaviour. For instance, numerous recombined cells were found in the 
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periaqueductal gray and the inferior and superior colliculus in the midbrain, both regions 

in which GABAergic interneurons are known to suppress aversive behaviour (Brandão et 

al., 1999). 

4.4.4 TrkbP/+ mice phenocopy TrkbCCK-KO mice 

Downstream signalling pathways of BDNF/TrkB are activated by binding of 

adaptor proteins to two docking sites in the intracellular domain of TrkB. The 

Ras/mitogen-activated protein kinase pathway and the phosphatidylinositol 3-kinase 

pathway are activated by SHC/FRS-2 recruitment to Y515, and the calcium/calmodulin 

kinase pathway is activated by binding of phospholipase C (PLC ) to Y816 (see 

Introduction, chapter 1.1.2 and Figure 1.1).  

To assess which of these sites was involved in regulation of HPA axis activity body 

weight and thickness of the zona fasciculata of the adrenal cortex were analyzed in mouse 

lines with single point mutations in either adaptor site (TrkbSHC and TrkbPLC mice). 

Heterozygous point mutants were used for this analysis, as they do not show the 

developmental abnormalities in the PNS that are seen in homozygous point mutants 

(Minichiello et al. 1998 and 2002, Medina et al 2004, Musumeci et al. 2009). Basal synaptic 

transmission is normal in these mice confirming the absence of developmental defects in 

the CNS as well. However, heterozygous mutant show deficits in learning suggesting that 

more complex functions of TrkB in the CNS require both copies of a wildtype TrkB allele 

(Musumeci et al. 2009). 

TrkbPLC/+, but not TrkbSHC/+ mice showed increased body weight and an enlarged 

zona fasciculata suggesting involvement of the PLC but not the SHC adaptor site in the 

regulation of HPA axis activity. TrkbPLC/+ mice were further analyzed for changes in serum 

ACTH, leptin and insulin levels as well as central fat accumulation. Comparable to 

TrkbCCK-KO mice, obesity in TrkbPLC/+ mice was associated with enlarged central fat pads 

and elevated serum ACTH, leptin and insulin and ACTH levels.  

In conclusion, regulation of HPA axis activity by TrkB is dependent on signalling 

via the PLC adaptor site. As heterozygous point mutants did not show any developmental 
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defects so far, this finding also suggests that HPA axis regulation by TrkB depends on 

adult mechanisms and is not a consequence of developmental defects. 

4.4.5 Mechanism of HPA axis deregulation in TrkbCCK-KO mice 

We have so far shown that hyperactivity of the HPA axis in TrkbCCK-KO mice is 

caused by increased activity of the PVN and is associated with impaired glucocorticoid 

feedback inhibition on central levels resulting in increased Crh expression. This function 

of TrkB is dependent on activation of the PLCγ1 activated signalling pathways and related 

to adult mechanisms rather than caused by a developmental defect. This chapter will 

address the question how TrkB signalling in CCK-positive neurons might be involved in 

the regulation of PVN activity. 

A more detailed analysis of the recombination pattern around the PVN in the 

BAC-Cck-Cre line revealed that only few cells were recombined in the PVN itself. This 

stands in contrast to findings of Giacobini and colleagues that found strong expression of 

CCK in the PVN (Giacobini et al. 2008). However, other studies find only few positive 

cells in the PVN comparable to the recombination pattern seen in the BAC-CCK-Cre line 

(Schiffmann et al. 1991, Lein et al. 2007). Numerous recombined neurons were found 

rostral to the PVN in the bed nucleus of the stria terminalis, the medial preoptic area, in 

the peri-PVN (including the border of the PVN, a cluster in the rostromedial anterior 

hypothalamic nucleus, the subparaventricular zone and perifornical regions), and caudal 

to the PVN in the dorsomedial nucleus of the hypothalamus. A ring of GABAergic 

neurons that is located around the PVN, in exactly all of these regions, has been reported. 

Inhibitory neurons in this ring integrate glutamatergic and GABAergic inputs from 

limbic areas and exert tonic inhibition over the PVN that is only lifted under stressful 

conditions (Bowers et al. 1998, Herman et al. 2002, Cullinan et al. 1993 and 2008, Cole et 

al. 2002, Hewitt et al. 2009, Wamsteeker et al. 2010, see also Introduction, chapter 1.4.1). 

The majority of recombined neurons in this region in the BAC-CCK-Cre line are 

GABAergic suggesting that they are part of this inhibitory ring. 



Discussion 
 

150 
 

Consequently, increased PVN activity in TrkbCCK-KO mice is caused by reduced 

tonic inhibition of the PVN due to deletion of Trkb from local inhibitory interneurons. 

This is an interneuron-specific function of Trkb, as deletion of Trkb from principal 

neurons does not affect HPA axis function (Zorner et al. 2003). Therefore, involvement of 

principal neurons found to be recombined in the BAC-CCK-Cre line in the phenotype 

observed here could be excluded. TrkB was reported to be required for synapse assembly 

and maintenance in GABAergic neurons of the cerebellum (Chen et al. 2011). Thus, 

ablation of Trkb from hypothalamic CCK-interneurons might affect pre- and/or 

postsynapses in these neurons. A presynaptic defect would reduce the number or strength 

of GABAergic synapses onto PVN neurons. This could be investigated by triple labelling 

for CRH (to highlight PVN neurons), gephyrin, a marker for inhibitory postsynapses, and 

VGAT (vesicular GABA transporter), a marker for GABAergic presynapses. However, 

only few cells with a cytoplasmic CRH staining were detected in the PVN of sections 

stained for CRH. Injections with colchicine prior to tissue collection would increase CRH 

immunoreactivity as colchicine inhibits axonal transport. Unfortunately, colchicine was 

shown to alter dendritic length and spines which might alter synapse number and 

characteristics (Rho and Swanson, 1989). Postsynaptic effects of Trkb deletion could be 

investigated on a reporter background (to highlight CCK-interneurons) with 

colocalization of EGFP and markers for excitatory synapses like PSD-95 (postsynaptic 

density protein 95), presynaptic VGLUT1 (vesicular glutamate transporter 1) and 

markers for inhibitory synapses (gephyrin and VGAT as described above). For this 

analysis, we are still waiting to obtain reporter mice on the mutant background. 

HPA axis activity is also tightly controlled by glucocorticoid feedback inhibition at 

pituitary and central levels (Watts 2005, see also Introduction chapter 1.4.1). 

Glucocorticoid feedback inhibition is mainly dependent on binding of the glucocorticoid 

receptor (GR), not the mineralocorticoid receptor (Ulrich-Lai et al. 2009, Joels et al. 

2009), but the region and cell-type mediating this effect is still not established (see 

Introduction chapter 1.4.1). Recombined neurons in the peri-PVN of BAC-CCK-Cre mice 
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colocalize with the GR, raising the possibility that these neurons might integrate 

glucocorticoid negative feedback. Indeed, the absence of reduced Crh expression by 

elevated corticosterone levels in TrkbCCK-KO mice suggests impaired glucocorticoid 

feedback inhibition. TrkB was reported to interact directly with the GR via the N-terminal 

domain of the GR and this enhanced phosphorylation of PLCγ1 by BDNF/TrkB 

signalling (Numakawa et al. 2009). TrkB signalling via the PLC adaptor site is involved in 

inhibitory control of the HPA axis since we found that mice with a heterozygous single 

point mutation in this site develop the same phenotype as TrkbCCK-KO mice. 

This strongly suggests, that TrkB interacts with the GR in inhibitory CCK-

interneurons in the hypothalamus to mediate glucocorticoid feedback via PLCγ1 

signalling. An action of glucocorticoids rather upstream than directly onto parvocellular 

neurons to suppress Crh expression has been suggested before. For instance, 

administration of corticosterone directly into the PVN had little effect on Crh expression 

(Watts 2005). Furthermore, the GR was shown to not only act via direct DNA binding but 

also by interaction with other receptors (TrkB for instance) in a DNA-binding 

independent mechanism. Mice with a mutation in the GR dimerization domain that is 

required for DNA binding showed no differences in Crh synthesis and ACTH secretion, 

suggesting that these functions are regulated by the GR via a DNA-binding independent 

mechanism. Therefore, we suggest that glucocorticoid feedback is integrated by upstream 

inhibitory CCK-interneurons in which the GR interacts with TrkB. Increased or 

decreased inhibitory input of these neurons into the PVN then decreases or increases 

parvocellular neuron activity. This alone might regulate Crh expression, as the Crh 

promotor contains a CRE (CREB-responsive element) that was shown to regulate Crh 

expression (Wölfl et al., 1999) and CREB is activated in PVN neurons in response to 

neuronal activity (Kovács and Sawchenko, 1996).  

 

Gender differences were observed in several instances. The HPA axis is known to 

be differentially regulated in male and female rodents. For instance, female mice have 
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bigger adrenals with a thicker zona fasciculata (Bielohuby et al., 2007) and show increased 

corticosterone release under basal and stressful conditions (Lightman et al. 2010, see also 

Figure 1.4). This pattern is reversed by gonadectomy confirming the influence of sex 

hormones on HPA axis regulation (Seale et al., 2004). Increased expression of the GR and 

the GABA-synthesizing enzymes Gad65 and Gad67 in stress-responsive areas in male 

mice might allow for greater inhibitory modulation and feedback potential in males (Goel 

and Bale, 2010). Furthermore, a marked difference in the presynaptic innervation of the 

PVN, BST and amygdala was found between genders. Female mice showed higher 

synaptophysin staining in these areas and chronic stress reduced staining intensity in 

females but not males (Carvalho-Netto et al., 2011). Thus, the gender differences observed 

in this study are caused by known sex-dependent differences in the regulation of HPA 

axis activity. 

4.5 Conclusion 

In this study the role of the neurotrophin receptor TrkB in a specific subset of 

interneurons was investigated. For this, Trkb was specifically ablated from 

cholecystokinin (CCK)-expressing neurons by crossing a transgenic BAC-Cre mouse line 

that expresses Cre under the Cck-promotor to a Trkb-floxed mouse line. The BAC-CCK-

Cre line showed particularly high recombination in hypothalamic nuclei involved in 

control of energy intake and regulation of the hypothalamic-pituitary-adrenal (HPA) axis. 

CCK-Cre specific Trkb knockout mice (TrkbCCK-KO mice) develop mature-onset central 

obesity with hyperleptinemia and increased insulin levels but show no signs of 

hyperphagia or other changes in food intake. The absence of hyperphagia stands in 

contrast to other models of Bdnf or Trkb deficiency and shows that BDNF/TrkB signalling 

in the CCK-positive subset of hypothalamic interneurons is not involved in control of 

energy intake. Disruption of TrkB signalling in CCK-positive interneurons induces 

instead hyperactivity of the HPA axis with elevated serum adrenocorticotropic hormone 

(ACTH) and corticosterone levels, hypercortisolism and hypertrophy of the adrenal 

cortex. Chronic hypercortisolism is known to induce central obesity and glucocorticoids 



Discussion 
 

153 
 

were suggested to increase accumulation of adipose tissue. Therefore, the central obesity 

found in TrkbCCK-KO mice is a consequence of HPA axis hyperactivity and confirms that 

chronic exposure to increased glucocorticoid levels is sufficient to induce obesity. 

The main central regulator of HPA axis activity is the paraventricular nucleus of 

the hypothalamus (PVN). Expression of corticotropin-releasing hormone (Crh) and pro-

enkephalin (Penk) is increased in the PVN of TrkbCCK-KO mice indicating increased PVN 

activity. The PVN is under tonic inhibition of local inhibitory interneurons that were 

targeted in the BAC-CCK-Cre line. Thus, deletion of Trkb from hypothalamic inhibitory 

CCK-interneurons leads to decreased inhibitory control over the PVN and hyperactivity 

of the HPA axis in TrkbCCK-KO mice. 

HPA axis activity is also controlled by negative feedback inhibition of 

glucocorticoids via the glucocorticoid receptor (GR). Particularly Crh expression in the 

PVN is known to be reduced by elevated glucocorticoid levels. The finding that TrkbCCK-KO 

mice show increased Crh expression in the PVN despite elevated serum corticosterone 

levels is an indication for impaired hypothalamic glucocorticoid feedback in these 

animals. TrkB and the GR can interact directly enhancing BDNF-activated TrkB 

signalling through the PLC adaptor site of TrkB. Analysis of mice with a point mutation 

in the TrkB-PLC adaptor site revealed that these mice phenocopy TrkbCCK-KO mice. This 

suggests that TrkB interacts with the GR in CCK-interneurons to mediate glucocorticoid 

feedback via PLCγ1 signalling. In TrkbCCK-KO mice deletion of Trkb from these neurons 

impairs glucocorticoid feedback and reduces inhibitory input into PVN neurons resulting 

in HPA axis hyperactivity.  

Thus, this study shows that CCK-expressing inhibitory interneurons in the 

hypothalamus regulate PVN and HPA axis activity. Furthermore, we found a hitherto 

unknown role of TrkB in mediating central glucocorticoid feedback inhibition in these 

interneurons. 
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4.6 Outlook 

Further studies will investigate possible effects of Trkb deletion on pre- and 

postsynapses of hypothalamic interneurons. Inhibitory synapses onto CRH-expressing 

PVN neurons and synapses onto targeted hypothalamic CCK-interneurons will be 

analyzed as discussed in chapter 4.4.5. The BAC-CCK-Cre line used here shows 

recombination from developmental stages on. The finding that TrkbPLC/+ mice share the 

same phenotype suggests that the mechanisms involved in TrkB-mediated regulation of 

HPA axis activity are independent of development as these mice were shown to have no 

developmental deficits in synaptic transmission. An inducible Cre-line could be used to 

exclude developmental effects and to study how TrkB is involved in maintenance of 

GABAergic synapses. To further investigate TrkB functions in CCK-interneurons it 

would also be interesting to compare the transcriptome of CCK-positive interneurons in 

mutant and wildtype mice.  

Several regions involved in inhibitory control of the PVN were targeted in the 

BAC-CCK-Cre line, such as the bed nucleus of the stria terminalis, the medial preoptic 

area, the peri-PVN and the DMH. The wide recombination in this line prevents a more 

detailed analysis of the involvement of the single regions in control of PVN activity. More 

restrictive Cre-lines might be used here, but no specific markers are known for the single 

nuclei yet. Another possibility would be to inject viral vectors containing a Cre-cassette 

into single regions. 

The BAC-CCK-Cre line used for this study might also be used to study other 

functions of CCK-neurons. For instance, we found recombination in numerous brain 

regions in which no function for CCK-neurons is known. Furthermore, CCK-neuron 

specific functions of other proteins could be studied by crossing other floxed lines to the 

BAC-CCK-Cre line. 
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ABBREVIATIONS 

ACTH  adrenocorticotropic  hormone 
AHN  anterior hypothalamic area, see also dmAHN 
Akt  protein kinase B, PKB 
AIS  axon initial segment 
AMPA  alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate 
AMPAR AMPA receptor 
ARC  arcuate nucleus 
AVP  arginine-vasopressin 
BDNF  brain-derived neurotrophic factor 
BST  bed nucleus of the stria terminalis 
CamK  Ca2+/calmodulin-dependent protein kinase 
CCK  cholecystokinin 
CGE  caudal ganglionic eminence 
CR  calretinin 
CREB  cAMP responsive element binding protein 
CRH  corticotropin-releasing hormone 
DAB  3’3- diaminobenzidine 
DAG  diacylglycerol 
DIG  digoxigenin 
dmAHN dorsomedial AHN 
DMH  dorsomedial hypothalamus 
EDTA  ethylene diaminetetraacetic acid 
EIA  enzyme immunoassay 
ELISA  enzyme-linked immunosorbent assay 
ERK  extracellular signal-regulated kinsase, a MAP kinase 
EtOH  ethanol 
FRS2   fibroblast growth factor receptor substrate 2 
GABA  γ-aminobutyric acid 
Gad  glutamate decarboxylase 
GEF  guanine nucleotide exchange factor 
GLUR  glutamate receptor 
GR  glucocorticoid receptor 
GRB2  growth factor receptor-bound protein 2 
GTP  guanosine triphosphate 
HFD  high fat diet 
HPA axis hypothalamic-pituitary-adrenal axis 
IP3  inositol 1,4,5-trisphosphate 
LGE  lateral ganglionic eminence 
LHA  lateral hypothalamus 
LTP  long-term potentiation 
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MAPK  mitogen-activated protein kinase 
MEK  MAP kinase kinase 
MEKK  MAP kinase kinase kinase 
MGE  medial ganglionic eminence 
NGF  nerve growth factor 
NMDA  N-methyl D-aspartate 
NMDAR NMDA receptor 
NPY  neuropeptide Y 
NT  neurotrophin 
NTS  nucleus tractus solitarius 
o/n  over night 
p75NTR  p75 neurotrophin receptor 
PDK-1  inositide-dependent protein kinase 
PENK  pro-enkephalin 
PI3K  phosphatidylinositol 3-kinase 
PKB  protein kinase B 
PLC  phospholipase C 
POA  preoptic area 
POMC  pro-opiomelanocortin 
PTB  phosphotyrosine-binding domain 
PV  parvalbumin 
PVN  paraventricular nucleus of the hypothalamus 
Ras   rat sarcoma 
RIA  radioimmunoassay 
RSK   ribosomal s6 kinase 
RT  room temperature 
SH2  Src  homology 2 protein domain 
SHC   Sh2-domain containing  
SOS  son of sevenless (a GEF) 
SST  somatostatin 
Trk  tropomyosin-receptor kinase 
VIP  vasointestinal peptide 
(v/v)  volume per volume 
(w/v)  weight per volume 
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