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Zusammenfassung

Das Aufkommen von Hochleistungs-Lasersystemen ebnete den Weg für La-
serbeschleunigung von Ionenstrahlen. Basierend auf theoretischen Simula-
tionen demonstrieren wir die Realisierbarkeit von Laser-generierten Ionen-
strahlen, welche die strengen Kriterien radio-onkologischer Anwendungen
erfüllen. Teilchenenergien von mehreren hundert MeV und einer niedrigen
Energiestreuung von 1 % sind im Rahmen direkter Laserbeschleunigung
erzeugbar. Wir schlagen einen Mechanismus vor, um Teilchenstrahlen, die
aus Laser-Plasma-Wechselwirkungsprozessen stammen, effizient nachzube-
schleunigen, wobei die Injektion der Teilchen in den Fokus realistisch mo-
delliert wird. Die Einführung eines langwelligen CO2-Lasers führt zu einem
Anstieg in der Gesamtzahl an beschleunigten Teilchen pro Bündel, der um
drei Größenordnungen höher ist verglichen zu Lasern mit Wellenlängen um
1 µm. Durch Anwendung gepulster Lasersysteme in unterschiedlichen Strah-
lenkonfigurationen (einzeln oder zwei gekreuzte Strahlen), zeigen wir, dass
Ionenstrahlen mit hoher Teilchenzahl erzeugt werden können. In einem an-
deren Schema stellen wir, basierend auf Particle-In-Cell-Simulationen, die
Wechselwirkung eines gechirpten Laserpulses mit einem Wasserstoffgastar-
get vor, dessen räumliche Ausdehnung vergleichbar mit der Laserwellenlänge
ist. Die niedrigfrequenten Komponenten des Laserpulses ermöglichen es, be-
reits durch die Wechselwirkung mit modernsten Lasersystemen mit Inten-
sitäten von 1021 W/cm2 klinisch anwendbare Teilchenstrahlen zu erzeugen.

Abstract

The advent of high-power laser systems paved the way for laser accelera-
tion of ion beams. Based on theoretical simulations, we demonstrate the
feasibility of laser-generated ion beams matching the strict requirements for
radio-oncological applications. Particle energies of several hundred MeV
and low energy spreads of 1% are feasible within the framework of direct
laser acceleration. A mechanism is suggested to efficiently post-accelerate
particle beams originating from laser-plasma interaction processes, where
the injection of ions into the focus is modeled in a realistic way. Introduc-
ing a long-wavelength CO2 laser leads to an increase in the total number
of particles accelerated as one bunch by three orders of magnitude as com-
pared to lasers with a wavelength around 1 µm. By employing pulsed laser
systems in a single- and a crossed-beams configuration, we show that ion
beams of high particle numbers can be produced. In a different setting we
put forward the interaction of a chirped laser pulse with a hydrogen gas
target of spatial extension of the order of the laser wavelength studied by
means of particle-in-cell simulations. The low frequency components of the
laser pulse allow for generating clinically applicable beams already while
interacting with state-of-the-art laser systems of intensities of 1021 W/cm2.
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Chapter 1

Introduction

Albert Einstein’s contributions to physics are invaluable. While it is of general
knowledge that he is the father of the theory of relativity, it is less known
that already in 1917 he formulated the fundamental concept of the laser in
his rate equation model of stimulated and spontaneous emission of light [1].
More than four decades later, in 1960, the technical realization of the laser [2]
heralded a new era of technology and fundamental research. At the beginning
of the 1970s the rapid advancement of laser systems and their peak intensities
was suddenly interrupted, when the laser intensities became so extraordinarily
strong to cause severe damage to the gain medium. This barrier was bypassed
by Strickland and Mourou in the mid-1980s [3] by stretching a laser pulse in
time, letting it pass through a gain medium and subsequently recompressing it.
The underlying technique is called Chirped Pulse Amplification (CPA) [4] on
which any modern laser system relies. Only about 20 years later, lasers with a
peak intensity as high as 1022 W/cm2 at a repetition rate of 0.1 Hz have been
realized [5]. Future facilities such as the Extreme Light Infrastructure (ELI) [6]
will even reach laser intensities in the excess of 1024 W/cm2 employing short
pulses of a duration of a few laser cycles and being focused to the order of the
laser wavelength at an output power of several petawatts. At the projected High
Power laser Energy Research (HiPER) facility [7], lasers of several hundred
kilojoule output energy will be realized. For a review on the interaction of
high-power lasers with matter, we refer to [8,9] and for short-pulse attosecond
physics to [10].

The feasibility of creating ultra-intense laser pulses did not only stimulate the
birth of a striking diversity of fundamental research but also let emerge po-
tential applications of paramount importance and far-reaching consequences
to society: Strong electric fields of the order of 1012 V/m involved in high-
intensity laser pulses can be utilized to accelerate charged particles. Particle
accelerators aiming at exploring the smallest structures of the universe have
undergone an impressive development during the past fifty years, which is cul-
minated in the Large Hadron Collider (LHC) [11] being often referred to as
“the world’s largest science experiment” [12]. At the LHC, the limit of the
underlying synchrotron technique is reached. For protons being accelerated to
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Figure 1.1 – Schematic illustration (adapted from Fig. 1 of Ref. [19]) of the
absorption of radiation in tissue.

an energy of 7 TeV which corresponds to almost the speed of light, the energy
loss due to synchrotron radiation prevents the particles from gaining further
energy. Hence, alternative methods to accelerate charged particles such as laser
acceleration are indispensable and may lead to a drastic reduction in size for
high-performance accelerators. Moreover, medical applications would greatly
benefit from more compact accelerators.

Recently, the Heidelberg Ion beam Therapy center (HIT) [13, 14] went online
utilizing accelerated ion beams to treat deep-seated malign tumors, e.g. tumors
located at the skull base [15–18]. The advantage of using ion beams over
conventional gamma rays has its origin in the absorption behavior of radiation
in matter: Photons continuously loose their energy while penetrating a tissue
(see red curve Fig. 1.1) and hence damage both, healthy as well as malign
cells. In contrast, ion beams deposit most of their energy at a characteristic
penetration depth, the so-called Bragg peak (see peak around the penetration
depth of 8 units in the blue curve, Fig. 1.1). The characteristic penetration
depth depends on the initial kinetic energy of the ion beam. To irradiate a
tumor of specific thickness, one superposes ion beams of different energy. For
detailed information, such as the biological effectiveness of several ion species
we refer to [19]. Hadron cancer therapy comes along with strict requirements
for the ion beams:

1. Sufficient kinetic energies (>200 MeV) to be able to treat deep-seated
tumors.

2. Sharp enough energy spread (≈1%) to spare the healthy tissue.
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3. High enough proton flux (> 106 protons/bunch at a 5-Hz repetition rate)
to keep the treatment cycles acceptably short.

Due to the demanding requirements for the accelerated beams, a large per-
centage of the total costs of a facility such as HIT [14], which amount to
119,000,000 EUR [14], is spent on the synchrotron and its concrete shieldings.
Furthermore, in order to irradiate the patients from all angles, a huge gantry
with a total weight of 670 tons is necessary [14]. This enormous cost factor
could be drastically reduced by the adoption of compact laser-based accelera-
tors, which may allow for much simpler beam guidance. Interesting conceptual
design studies of potential laser-based accelerators for medical applications have
been carried out. J. Weichsel et al. [20] propose an optical gantry, such that
the ion beams created by laser-matter interaction could be generated close to
the patient, making a complex beam guidance dispensable. Of course, present
lasers in the PW domain are still quite expensive and relatively large. For
example, the Apollon beamline, a prototype of one of the beamlines of the ELI
project, is expected to operate at a power of 10 PW with a projected cost of
25,000,000 EUR; the Vulcan upgrade [21] at Rutherford Appleton Laboratory
(RAL) in the UK will also operate at 10 PW, with a cost of 25,000,000 GBP.
However, a substantial decrease in price and size is likely by means of, e.g., op-
tical parametric chirped-pulse amplification (OPCPA) [22] within a few years.

Long before the availability of high-intensity laser systems the dynamics of
an electron in a strong laser field has already been studied theoretically [23–
25]. Even for a plane wave multiplied with a temporal pulse envelope, the
dynamics still can be solved by analytical means. This particular solution offers
an important insight: After the electromagnetic pulse passed by an electron
initially being at rest, it returns to rest (for details see Sect. 3.1 of [26]). The
so-called Lawson-Woodward theorem [27,28] generalizes this finding: A charged
particle cannot extract net energy from an electromagnetic plane wave. How
can charged particles then be accelerated by lasers? The answer is given by
the non-uniformity of the intensity distribution of a focused laser following a
Gaussian profile [29] and thus the Lawson-Woodward theorem does not apply.
In particular, high-intensity lasers need to be strongly focused. Additionally, a
point charge exposed to such a laser field feels a non-vanishing average force,
the (relativistic) ponderomotive force [30].

During the past two decades, a multitude of interesting schemes has been pro-
posed to directly accelerate charged particles interacting with strong laser fields.
Early work on electron acceleration [31,32] already indicated promising energy
gain gradients of several GeV/m, outperforming classical synchrotron facilities
by orders of magnitude. For tightly focused laser beams of a waist radius of
only few laser wavelengths it was theoretically predicted [33,34] that electrons
of GeV energies are possible after ejection out of the micron-size focal area.
An electron shot from outside into the focal region of the laser beam may ex-
perience three different scenarios [33]: If its initial energy is too low, it will
be reflected or scattered off the laser beam. Too high initial velocity will lead
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to a transmission through the laser beam and finally for a favorable initial
kinetic energy the electron is captured and accelerated (Capture and Acceler-
ation Scenario (CAS) [35, 36]). The transverse electric field together with the
longitudinal magnetic field confine the particle while the axial electric compo-
nent accelerates it [8]. Further, more involved schemes have been suggested,
e.g. to inject a particle into the focus of two crossed beams [31,32,37,38] or to
let a particle interact with a beat wave (Vacuum Beat Wave Laser Accelerator
(VBWLA)) created by the superposition of two laser waves of slightly different
frequencies [32,39,40]. The latter uses the increased field amplitude of the beat
wave, yielding an increase of the energy gain. Furthermore it was demonstrated
via classical Monte-Carlo simulations that GeV electrons [41] can be created
from highly charged ions. The underlying mechanism is that ionization take
places at the peak intensity of the incident laser beam leading to efficient energy
gain. Another interesting scheme is called autoresonant laser acceleration [42].
Due to a strong static external magnetic field an electron submitted to the laser
wave undergoes cyclotron motion. If the cyclotron frequency of the electron
coincides with the laser frequency, huge energy gains may be realized.

Besides the so-called direct- or vacuum acceleration schemes, another branch of
laser-induced particle beam creation arose. In 1979, Tajima and Dawson [43]
presented the idea of exciting a neutral plasma by an electromagnetic wave.
The concept of laser-wakefield acceleration was born: An electromagnetic wave
entering a plasma displaces the much lighter electrons from the ions, leaving
an area of huge space charge, pulling back the electrons and causing a plasma
oscillation, the so-called wake. Electrons may be trapped and co-propagate in
phase with the wake resulting into considerable energy gain. This has been
confirmed experimentally [44–46] and even monoenergetic electron beams have
been measured in the meantime [47]. Later, a proton-beam-driven plasma
wakefield accelerator allowing for TeV-electrons was proposed [48].

Experiments utilizing high-intensity lasers to interacting with solid targets
opened up the door of laser-plasma-based ion acceleration. Different regimes for
laser-plasma ion acceleration exist [9]. For laser intensities of 1018−1021 W/cm2

and solid targets with a thickness ranging from a few to tens of micrometers,
Target Normal Sheath Acceleration (TNSA) is the prevailing mechanism [49].
In TNSA, a strong quasi-static electric field (often referred to as the “virtual
cathode”) is induced at the rear surface of the target, as a result of emission
and acceleration of the electrons caused by an intense linearly polarized laser
field. Ion acceleration, by the sheath electric field, has been extensively studied
in [50–58]. A similar laser-plasma-interaction process, the Skin-Layer Pondero-
motive Acceleration (S-LPA) resulting from the huge electric potential gradient
of a thick plasma slab at the laser-irradiated side leads to slow (keV) ion beams
of high density [59]. The regime of Radiation-Pressure-Dominant Acceleration
(RPA), has become accessible recently by decreasing the target thickness [49].
Circularly polarized lasers at normal incidence have been employed, which sup-
press electron heating and let all particle species co-propagate as a quasi-neutral
plasma bunch in front of the light wave (”light sail”-mechanism) [49, 60]. De-
spite recent experimental [49] and theoretical [61] progress, clinically useful ion
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beams [13] have not yet been produced within any of those schemes.

In this thesis we demonstrate the creation of laser-induced ion beams fulfilling
the challenging criteria of hadron cancer therapy (as mentioned above) based on
theoretical simulations. Starting point of our investigations in Chapter 2 is the
direct acceleration of an ensemble of ions [62] exposed to tightly focused laser
fields, being either linearly [63] or radially [64, 65] polarized. The mechanism
of acceleration is demonstrated and explained on the basis of the relativistic
equations of motion of an ensemble of charged particles in strong laser fields.
We investigate dependence of the accelerated particle beam properties, e.g.,
the exit kinetic energy distribution, the number of particles accelerated, on
such laser system parameters as wavelength, power and waist radius. It is
shown that the ions gain kinetic energies of several hundred MeV/nucleon, while
interacting with laser beams with powers of the order of 0.1−10 petawatt.1

Additionally, the accelerated ion beams have an energy spread of about 1%1.
In the simulations of Chapter 2, we use CO2 lasers which have a wavelength
of 10.6 µm. Due to the cubic dependence of the focal volume on the laser
wavelength, about three orders of magnitude more particles can be accelerated
than with titan-sapphire lasers of 1.054 µm wavelength, used e.g. in Ref. [62].

Whereas in Chapter 2 the source of the particle ensemble remains untreated,
we resolve this issue in Chapter 3. Herein, we simulate the injection of a
particle ensemble originating from laser-plasma processes such as the above-
mentioned TNSA or S-LPA mechanism into an approaching Gaussian laser
pulse. The initial velocity distributions of the particle ensembles coincide with
the ones of the underlying plasma source [59]. The role of potential particle-
particle interaction effects is investigated based on the coupled Lorentz-Newton
equations of motion for a particle test ensemble at typical ion densities applied
later on. The model includes relativistic effects on the ion-ion interaction to
second order in the scaled velocity β = v/c (with v being the typical particle
velocity). Our simulations clearly demonstrate that in this realistic scenario
the proton beam properties of Chapter 2 can be maintained. The simulations
are carried out not only for a single laser beam but also for two crossed laser
beams (originally introduced for electrons [31,32,37,38]). Due to the coherent
superposition of two laser beams, higher exit kinetic energies can be achieved.
It should be emphasized that we do reach the proton flux threshold necessary
for broader radio-oncological application. To our knowledge, this is the first
scheme fulfilling all criteria for hadron cancer therapy based on an all-optical
set-up.

So far we considered laser vacuum acceleration schemes. In Chapter 4 we
study the interaction of a frequency-chirped laser beam [66–68] with a hydrogen
plasma target. The numerical simulations are performed within the framework
of Particle-In-Cell (PIC) simulations (cf. Ref. [69] for a review). This method
allows to solve the many-body dynamical problem of an electromagnetic plasma
in a fully relativistic treatment. The basic idea of our model stems from the
realization that an incoming highly relativistic laser pulse quickly ionizes the

1Similar results have been demonstrated in [62] for a different laser wavelength.
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hydrogen atoms in the target and accelerates the electrons away from the much
heavier protons, as the pulse intensity rises. At high enough laser intensities
the protons get accelerated directly by the laser field. We derive an expression
for the energy transfer during interaction of a particle with chirped unfocused
as well as pulsed electromagnetic fields. The results indicate the feasibility of
generating intense (107 particles per bunch) and phase-space collimated beams
of protons (energy spread of about 1%). The low-frequency components of
the applied laser pulse, guaranteed by the appropriate chirping of the laser
frequency, allow the particles to gain sufficient kinetic energy (around 250 MeV
per particle) for hadron cancer therapy. The required laser intensities of the
order of 1021 W/cm2 fall in the range of state-of-the-art laser systems [5].
Furthermore, we show that applying this scheme very collimated beams with a
divergence angle of only 2◦ may be created. Eventually we give a brief summary
and an outlook in Chapter 5.



Chapter 2

Direct intense-field laser

acceleration of ions

The dynamics of ion acceleration in tightly focused laser beams is
investigated in relativistic simulations. Studies are performed to
find the optimal parameters which maximize the energy gain, beam
quality and flux. The exit ionic kinetic energy and its uncertainty
are improved and the number of accelerated particles is increased by
orders of magnitude in comparison with [62], especially when work-
ing with a longer laser wavelength. Laser beams of powers of the
order of 0.1−10 petawatt and focused to sub-wavelength spot radii
are shown to directly accelerate protons and bare nuclei of helium,
carbon, and oxygen from a few to several hundred MeV/nucleon.
Variation of the volume of the initial ionic ensemble, as well as the
introduction of a pulse-shape on the laser fields, have been investi-
gated. Large parts of this Chapter have been published in [70]. The
underlying article has been written predominantly by the co-authors
Z. Harman and Y. I. Salamin.

2.1 Introduction

In this Chapter we present results of theoretical studies in which laser light is
the source of energy to directly accelerate ions produced by other means. These
particles gain substantial energy when subjected to present-day petawatt power
laser systems, capable of generating electric fields several orders of magnitude
stronger than the field of the proton at the site of the electron in a hydrogen
atom (defining the atomic unit of electric field). The mechanism of acceleration
is demonstrated and explained on the basis of the relativistic equations of
motion of an ensemble of charged particles in strong laser fields. We investigate
dependence of the accelerated particle beam properties, e.g., the exit kinetic
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energy distribution, the number of particles accelerated, on such laser system
parameters as wavelength, power and waist radius.

We want to determine the optimal range of parameters. We find that the
number of accelerated ions can be increased by orders of magnitude compared
to earlier vacuum acceleration results [62, 71] by increasing the laser wave-
length by one order of magnitude. Furthermore, the energy gain of ions and
its spread are improved by increasing the wavelength of the laser field. This
can be experimentally achieved, e.g., by using CO2 lasers of a wavelength of
10.6 µm [72], rather than near-infrared lasers with wavelengths around 1 µm.
Simulations in this chapter demonstrate energy gains by protons and helium,
carbon and oxygen nuclei of up to several hundred MeV/nucleon as a result of
interaction with linearly and radially polarized laser beams. These gains may
be achieved even using a multi-terawatt laser system, provided it is focused to
a sub-wavelength waist radius. Focusing beams of multi-terawatt or petawatt
powers to µm spot sizes yields laser intensities of the order of 1020–1023 W/cm2,
which defines the range of interest. In radiotherapy, employing heavier ions,
the required energies fall in the range 20−580 MeV/nucleon with less than 1%
energy fluctuations [73].

This Chapter is organized as follows. In Section 2.2 the linearly and radially
polarized fields of a tightly focused laser beam will be reviewed. Section 2.3 will
be devoted to outlining the main single-particle equations and method of their
solution, while the simulations will be described in Section 2.4. Simulations
for acceleration of nuclei by linearly- and radially-polarized laser beams will be
carried out and their results discussed in sections 2.5 and 2.6, respectively. In
Section 2.7, effects of the size of the initial particle ensemble, and an added
pulse-shape to the laser fields, on the kinetic energies of the accelerated par-
ticles, will be investigated and discussed. Our conclusions will be summarized
in Section 2.8.

2.2 The laser fields

In this Section a derivation1 of the fields of the laser beams will be outlined
based on Ref. [63] for linearly polarized light and on Ref. [64, 65, 71, 74] for
radially polarized light, respectively. First of all, it should be recalled that the
tightly focused beams develop axial as well as transverse electric and magnetic
components. Tight-focusing, to a waist radius w0 < λ, also calls for a more
accurate description of the fields beyond what is familiar from the paraxial
approximation. The corresponding laser power and intensity expressions ought
also to be described to the same level of accuracy. For both linear and radial
polarization, the parameters of a Gaussian beam will be used to model the
fields. Those are the beam waist radius w0, the Rayleigh length (or depth

1Section 2.2 is a purely reproductive part based on the given references. It contains no
own results.
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Figure 2.1 – Sketch [75] of Gaussian beam geometry.

of focus) zr = πw2
0/λ, where λ is the wavelength, and the diffraction angle

ε = w0/zr = λ/(πw0). For a sketch of the beam geometry, we refer to Fig. 2.1.

2.2.1 Linear polarization

Let us start with a derivation of the linearly polarized electric and magnetic
field components used for the simulations carried out below. The basic idea is
to solve the wave equation as a power series in the diffraction angle squared ε2.
First, this was done for the so-called paraxial approximation (up to O(ε2)) [29].
Then the series was extended to O(ε5) [76] and eventually to O(ε11) [63]. The
latter reference will serve as the guideline for the brief derivation and we refer
to it for details. The wave equation for the vector potential reads (SI units)

∇2A =
1

c2
∂2A

∂t2
, (2.1)

which is linked to the scalar potential φ via the Lorentz condition

∇ · A +
1

c2
∂φ

∂t
= 0. (2.2)

After solving the wave equation, the electromagnetic field components may be
obtained via the well-known relations

E = −∇φ− ∂A

∂t
, (2.3)

B = ∇× A. (2.4)

In order to solve Eq. (2.1), one can make the following ansatz which factorizes
the vector potential in a phase-dependent term and a coordinate-dependent
one (ψ) (Cartesian coordinates are assumed):



20 Chapter 2. Direct intense-field laser acceleration of ions 2.2

A(x, y, z, t) = exA0ψ(x, y, z)ei(ωt−kz) (2.5)

Here, A0 is a constant factor and the laser field is assumed to be polarized along
the x-direction and propagating along the z-direction. Plugging this ansatz into
the wave equation yields the following equation for ψ:

∇2ψ − 2ik
∂ψ

∂z
= 0. (2.6)

For further simplification a coordinate rescaling is reasonable

ξ =
x

w0
, v =

y

w0
, ζ =

z

zr
, ρ2 = ξ2 + v2. (2.7)

Using these definitions, Eq. (2.6) reads

∇2
⊥ψ − 4i

∂ψ

∂ζ
+ ε2∂

2ψ

∂ζ2
= 0, (2.8)

where we introduced the transverse Laplacian operator

∇2
⊥ ≡ 1

ρ

∂

∂ρ

(

ρ
∂

∂ρ

)

. (2.9)

The appearance of the typically small parameter ε2 in Eq. (2.8) suggests it as
an expansion parameter for ψ, i.e.,

ψ =
∞

∑

n=0

ε2nψ2n. (2.10)

This turns Eq. (2.8) into

∇2
⊥ψ0 − 4i

∂ψ0

∂ζ
= 0 (n = 0), (2.11)

∇2
⊥ψ2n − 4i

∂ψ2n

∂ζ
+
∂2ψ2n−2

∂ζ2
= 0 (n ≥ 1). (2.12)

The solution of these equations, giving the field components Ex, Ey, Ez, By and
Bz to order ε11 in the diffraction angle, may be found in [63]. We quote here
only the leading couple of terms in each component, for the sake of the useful
discussions to be presented below. With O(εn) meaning the last term to be
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included in the component in question is of order εn, where n =10 or 11, the
field components may be written as

Ex = E

{

S1 + ε2

[

ξ2S3 −
ρ4S4

4

]

+ · · ·+ O(ε10)

}

, (2.13)

Ey = Eξυ
{

ε2 [S3] + · · ·+ O(ε10)
}

, (2.14)

Ez = Eξ
{

ε [C2] + · · ·+ O(ε11)
}

, (2.15)

Bx = 0, (2.16)

By =
E

c

{

S1 + ε2

[

ρ2S3

2
− ρ4S4

4

]

+ · · ·+ O(ε10)

}

, (2.17)

Bz =
E

c
υ

{

ε [C2] + · · ·+ O(ε11)
}

. (2.18)

With ω the angular frequency of the fields, ψG = tan−1 ζ , and r =
√

x2 + y2,
ρ = r/w0, the remaining variables in Eqs. (2.13)-(2.18) have the following
definitions

E = E0le
−r2/w2

; w = w0

√

1 + ζ2, (2.19)

Cn =
(w0

w

)n

cos(ψ + nψG); n = 1, 2, 3, · · · , (2.20)

Sn =
(w0

w

)n

sin(ψ + nψG), (2.21)

where

ψ = ψ0 + ωt− kz − kr2

2R
; R = z +

z2
r

z
, (2.22)

and ψ0 is a constant initial phase. Also, t is the time and k = 2π/λ is the
wavenumber. E0l is the amplitude of the linearly polarized laser field. Note
that the definitions of some quantities differ slightly from [8]. On the other
hand the corresponding power expression may be given, to the same order in ε
as the field components, by

Pl =
πw2

0

4

E2
0l

cµ0

[

1 +
(ε

2

)2

+ 2
(ε

2

)4

+ 6
(ε

2

)6

+
45

2

(ε

2

)8

+
195

2

(ε

2

)10
]

, (2.23)

where c is the speed of light in vacuum, µ0 is the permeability of free space
(cf. [63] for details). It should be emphasized that E0l ∝

√
Pl and that the

leading term in E0l is inversely proportional to w0 [62].

2.2.2 Radial polarization

Since focusing to a waist radius w0 < λ is crucial for achieving the high energy
gains we have in mind [62], it is natural to seek for modes of a Gaussian
beam that may be focused to the tightest spot possible. It has recently been
shown [77–79] that a (low-intensity) radially polarized beam may be focused
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Figure 2.2 – Laser field strength at focus (E0l for linear polarization and E0r

for radial polarization) as a function of the waist radius at focus.

down to a spot size (0.16λ)2. This is better than the spot size of (0.26λ)2

achieved for a linearly polarized beam. The spot size is defined as the area
enclosed by a contour at which the beam intensity corresponds to the half of
its peak value [62]. Radially polarized fields are also referred to axicon beams.

The only components of the electric field of a radially polarized laser beam
are the radial component Er and the axial component Ez. In addition to that
only one magnetic field component, Bθ, which is azimuthal, exists. As will be
demonstrated below, Ez works efficiently to accelerate the particles [62].

The derivation of the radial field components is identical to the one for linear
polarization up to the fact that one starts with assuming cylindrical symmetry
and coordinates for the vector potential:

A(r, θ, z, t) = ezA0ψ(r, z)ei(ωt−kz) (2.24)

Here, the laser propagation direction and its alignment are both along the z-
axis. For further details the reader will be directed elsewhere [64,65,71,74] for
the full expressions, in terms of the Gaussian beam parameters, of the fields of
the radially-polarized beam. We quote here, too, only the leading terms of the
field components

Er = E
{

ερC2 + · · ·+ O(ε11)
}

, (2.25)

Ez = E
{

ε2
[

S2 − ρ2S3

]

+ · · ·+ O(ε10)
}

, (2.26)

Bθ =
E

c

{

ερC2 + · · ·+ O(ε11)
}

. (2.27)

On the other hand, the power expression of the axicon beam, to order ε10, takes
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on the following form

Pr =
πw2

0

2

E2
0r

cµ0

(ε

2

)2
[

1 + 3
(ε

2

)2

+ 9
(ε

2

)4

+30
(ε

2

)6

+
225

2

(ε

2

)8
]

. (2.28)

We want to emphasize here, too, that the radially polarized electric field am-
plitude E0r ∝

√
Pr [62]. Furthermore, the leading term in E0r turns out to

be independent of w0, when plugging in ε = w0/zr. The dependence upon
w0 of the field strength is shown in Fig. 2.2. Note that, whereas the linearly
polarized field strength attains a maximum value beyond which it falls down
with increasing waist radius, the radially polarized strength increases steadily
to an asymptotic constant value (cf. [62, 65]).

2.3 Single-particle trajectory calculations

In this Section the theory of our calculations will be briefly outlined. Mo-
tion of a single particle of mass M and charge Q in the electric and magnetic
fields E and B, respectively, of a laser beam will be considered classically,
and relativistically. The use of laser systems of high-intensity (in excess of
1018 W/cm2) leads to relativistic particle dynamics. Thus the dynamics will
be governed by the Lorentz-Newton (or energy-momentum transfer) equations
(SI units) [62, 80] including the external electromagnetic fields

dp

dt
= Q[E + cβ × B];

dE
dt

= Qcβ · E. (2.29)

The relativistic energy of the particle is given by E = γMc2 and its momentum
by p = γMcβ, respectively. β is the velocity scaled by c, and γ = (1− β2)−1/2

is the Lorentz factor. Out of many single-particle dynamical aspects, we are
mainly interested in the energy gained by the particle as a result of interaction
with a laser beam. Here we first restrict ourselves to continuous fields. The
case of pulsed lasers, which are able to produce the high powers needed, is
treated in Section 2.7. To arrive at the energy gain, numerical solutions to the
equations above will be sought. In most cases of practical utility, a solution
proceeds along the following lines. First, the two equations are combined to
give [71]

dβ

dt
=

Q

γMc
[(E + cβ × B) − β(β · E)] . (2.30)

Then, in principle, a numerical integration of Eq. (2.30) yields β and as a
consequence γf at a later time tf [62]. This time equates to many laser field
cycles such that one ensures that laser-particle interaction is finished. Finally,
one calculates the energy gain [8] of the particle from

G = (γf − γi)Mc2, (2.31)
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Figure 2.3 – A schematic diagram showing the geometry of laser acceleration of
nuclei. θi and θf represent the injection and the ejection angle of the particles,
respectively.

where Ei = γiMc2 is the initial (injection) energy.

Energy carried by an optical photon of wavelength λ ∼ 1µm is of the order of
1 eV, much smaller than a typical nuclear excitation energy. So, barring multi-
photon absorption, these charge states remain intact in, and get accelerated
by, the strong electromagnetic fields of present-day laser intensities already in
excess of 1022 W/cm2. It should be noted that, with the applications in mind,
we treat the acceleration of bare nuclei; the behavior of ions which are not fully
stripped may be more complex due to strong-field ionization processes.

The procedure outlined above has been used to study acceleration of electrons
by linearly polarized laser fields [33]. The same procedure has been followed
recently in investigating possible acceleration of electrons by radially polarized
laser fields [71]. In the latter calculations, however, single-particle dynamics
only were emphasized and a set of artificial initial conditions (rest at the origin
of coordinates) was used in most cases. From the single-particle calculations
one learns that electron laser acceleration to GeV energy is possible. As it
has been explained [32, 33], the use of focused fields circumvents the Lawson-
Woodward theorem [27,28] which predicts zero net acceleration in the case of
an infinite plane wave. Study of individual particle trajectories showed that
most of the energy gain takes place during interaction with a small number
of laser field cycles. In addition to that, the role of laser focusing has been
thoroughly discussed. Dependence of the gain on the initial phase ψ0 of the
fields was also demonstrated. Maximum gain from high-intensity laser fields
required that the particles be injected into the focal region at space-time points
corresponding to the neighborhood of some specific value of ψ0 allowing the
particles to surf on the laser waves and gain energy from them. Failing to meet
the conditions of the right value of ψ0 results in phase-slippage and can even
lead to deceleration. An optimum ψ0 value has to be determined for each set
of initial conditions, particle charge, laser polarization and laser power. For
example, for particles released from rest near the beam focus (and origin of
coordinates) maximum gain may be obtained from radially polarized fields for
ψ0 ≈ π, for negatively charged entities, and ψ0 ≈ 0 for positively charged ones.
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Figure 2.4 – Evolution of the kinetic energies of four nuclear species in linearly
polarized laser fields as functions of their excursion distances along the laser
propagation direction (cf. Fig. 3 of [62] calculated at shorter λ and as function
of laser cycle T ). The laser wavelength is λ = 10.6 µm and the beam waist radius
at focus is w0 = 0.48λ. The given powers (0.1, 1 and 10 PW) correspond to peak
intensities I ∼ 2.14×1020 , 2.14×1021 and 2.14×1022 W/cm2, respectively. The
injection angle is θi = 10◦ for all particles. Integration of the equations of motion
was carried out over a range of values ∆η = 60π of the variable η ≡ ω(t − z/c).

These values correspond to space-time points at which the particle is initially
subjected to the accelerating field minimum.

This Chapter is about laser acceleration of bare nuclei (recently done by [71]).
We wish to develop the study of direct laser acceleration of an ensemble of
bare nuclei consisting of a large set of initial positions and momenta of the
particles like it was done in [62] (the methods are adopted from this reference)
and employing the most accurately-represented fields [63, 71] as introduced in
the previous Section.
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An approximate value for the magnitude of energy gain that may be achieved
using present-day laser systems, can be obtained from estimate formulas. Con-
sider a nucleus of charge +Ze, where Z is the atomic number, near the focus
of a linearly polarized laser beam, itself the origin of coordinates. According
to Eqs. (2.13)-(2.18), the fields are transverse near the focus, with Ex and
By being the only non-vanishing components. So, together with the magnetic
force, the force due to Ex will act to accelerate the nucleus. An approximate
expression for the energy gain may then be obtained from the second of Eqs.
(2.29) which now reads dE/dt ≈ QcβxEx. Taking βx ∼ 1, an exaggeration that
will result in the final expression overestimating the gain, and recognizing that
in this limit, E ∼ E0 and S1 ∼ sin(ωt), the approximate equation may now be
formally integrated with respect to time. The final result will then yield the
following approximate expression for the maximum gain per nucleon, in MeV,
when the laser power is given in terawatt (TW)

Gl[MeV/nucleon] ∼ 2Z

A

(

λ

πw0

)

√

30Pl[TW], (2.32)

where A is the atomic number and the field strength E0l has been replaced by
its value from the leading term in the power expression (2.23). As an example, a
nucleus of 6C

12 , or any nucleus having the same charge-to-mass ratio Z/A = 0.5,
will gain approximately 3.63 MeV/nucleon from a 1 TW laser focused to a waist
radius w0 = 0.48λ. A proton, on the other hand, would gain about 7.26 MeV
from the same laser. As will be demonstrated below, these numbers are at least
one order of magnitude greater than the results of calculations that employ the
accurate fields. In addition to employing the values of the fields right at the
focus, this must also be due, in part, to setting βx ∼ 1 in arriving at Eq. (2.32).

Similar analysis involving the radially polarized fields (2.25)-(2.27) gives the
following approximate expression for the maximum gain

Gr[MeV/nucleon] ∼ Z

A

(

λ

πw0

)2
√

240Pr[TW]. (2.33)

According to this expression, a carbon nucleus in a 1 TW field focused to w0 =
0.48λ achieves a gain Gr ∼ 3.41 MeV/nucleon, which is slightly smaller than
what would be obtained from a linearly polarized field of the same parameters.
On the other hand, the gain by a proton would be Gr ∼ 6.81 MeV. In fact,
a comparison of Eqs. (2.32) and (2.33) shows that Gr will be greater than Gl

as long as w0/λ <
√

2/π ∼ 0.45. Unfortunately, only low-intensity radially
polarized beams may be generated in the laboratory at present [77–79].

2.4 The simulations

In this Section the full power of the accurate field expressions will be used to
study the dynamics of bare nuclei on the basis of Eqs. (2.29). A simple order-
of-magnitude estimate [81] reveals that the inter-particle Coulomb force, FC ,
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between a pair of, say, protons in an ensemble of the sort described above is
small compared to the force, FL, felt by a particle of the same type from the
laser electric field. For the laser-field intensities used in our calculations in this
paper, FC ≪ FL for any ionic charge state. Furthermore, as it has been shown
by simulations including the inter-ionic interaction in the relativistic equations
of motion (see [82] and Chapter 3), at the low particle densities considered
in our simulations (approx. 1017 ions/cm3), even the field-free evolution of
the ionic ensemble after acceleration is only negligibly influenced by ion-ion
interaction effects.

We consider an ensemble2 of N non-interacting particles initially in a cylinder
of radius Rc and length Lc oriented along the laser beam axis, taken as the
z-axis, and centered on the origin of coordinates as shown in Fig. 2.3. The
initial position coordinates (x0, y0, z0) will be taken as uniformly distributed
within the cylinder (but will be picked at random in our numerical simulations).
The particles will be assumed to possess initial kinetic energies distributed
normally around a mean value K̄ and having a spread ∆K. Without any loss
of generality, the initial motion of all particles will be taken in the xz-plane
and at some angle θi with respect to the beam axis.

Our interest, in this Section, is mainly in the energy gain, or exit kinetic en-
ergy, of the nuclei, their trajectories and, hence, the aspects that determine the
quality of an accelerated beam of such accelerated nuclei. In the next two sec-
tions we study the laser acceleration of four nuclear species, namely, hydrogen,
helium, carbon and oxygen in some detail.

2.5 Acceleration by a linearly polarized laser

beam

Intense high-energy proton beams are widely generated by irradiating solid
surfaces with intense laser light [43, 50–58]. The mechanism at work in these
experiments is the target normal sheath acceleration (TNSA), caused by the
strong quasi-static electric field, which is generated by the laser-assisted ion-
ization of the target electrons and the positive ions they leave behind. In our
work, alternatively, the method is one of acceleration in vacuum by subject-
ing the particles directly to the laser beam. In the subsequent simulations,
the wavelength will be taken as λ = 10.6 µm, corresponding to a CO2 laser.
Choosing a wavelength larger than the conventional range around 1 µm, which
characterizes titanium-sapphire and Nd:YAG lasers, is motivated by the fact
that the focal volume increases approximately as ∝ λ3, which allows for three
orders of magnitude more particles to be accelerated by the laser pulse as one
bunch. Note that, for w0 ∼ λ, the Rayleigh length zr = πw2

0/λ ∼ πλ. In our
calculations, however, focusing will be to a waist radius w0 = 0.48λ. Note that
the peak intensity of a linearly polarized 100 TW laser system, focused to this

2This method is adapted from [62].
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Figure 2.7 – (a) Exit kinetic energies of 100 He nuclei (alpha particles) in a
1 PW linearly polarized laser beam vs. the excursion of each along the x-axis
(the laser polarization direction). (b) The distribution of final kinetic energies
of 10,000 alpha particles. All other parameters are the same as in Fig. 2.4.

level, is already I ∼ 2.14 × 1020 W/cm2. We consider an initial ensemble of N
= 5000 particles injected at an angle θi = 10◦ relative to the beam axis. The
particles have a mean kinetic energy K̄ = 10 keV and a spread ∆K = 10 eV.
The initial coordinates of the particles will be randomly picked from within a
cylinder of length Lc = 1 µm and radius Rc = 0.1 µm [62].

Results from single-particle calculations are presented in Fig. 2.4. The particle
in each case is selected at random from the ensemble described above. In this
figure, the kinetic energy, K ≡Mc2(γ−1), of each particle is shown as it evolves
along the x-axis of its trajectory. Note that the exit kinetic energy, at the end
of the particle trajectory, displayed in Fig. 2.4 is about ten times greater than
the estimates made above. Such a deviation is not surprising, given that in
the simulations we considered tightly focused laser fields. As the laser power is
tuned from 0.1 PW to 10 PW, a proton’s exit kinetic energy increases roughly
from 4 MeV to 523 MeV. On the other hand, evolution of the kinetic energies
of all the other nuclear species, as well as their exit values, are more or less
the same. This should come as no surprise because the gain depends on the
charge to mass ration Z/A, as shown in the qualitative analysis, Eqs. (2.32)
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Figure 2.8 – (a)-(c) Accelerated particle beam cross-sections in the yz-plane
(cf. Fig. 2 of [62] calculated at shorter λ), and (d)-(f) exit kinetic energies of the
accelerated particles vs. the total excursion distance along the laser polarization
direction. The laser power used in producing each row of figures is 0.1, 1 and
10 PW (top to bottom). The initial ensemble consists of 5000 He2+ nuclei in a
cylinder of length Lc = 1 µm and radius Rc = 0.1 µm. All other parameters are
the same as in Fig. 2.4.

and (2.33). This ratio is 0.5 for helium , carbon and oxygen, while it is equal
to unity in the case of the proton. The exit kinetic energies of the He, C, and
O nuclei increase from roughly 1 MeV/nucleon to 97 MeV/nucleon as the laser
power is increased from 0.1 PW to 10 PW. We would like to note that while
laser powers in the 0.1–1 PW regime are readily available today, powers of the
order of tens of PWs will be provided by upcoming facilities [6, 7]. Also, the
problem of focusing to sub-wavelength waist radii at such powers is yet to be
resolved.

In Fig. 2.5 (a) evolution of the kinetic energy of a nucleus of oxygen (O8+ ion) is
shown as a function of the time. Note that interaction of the particle with the
10 PW laser field is substantial only over a few laser field cycles. No appreciable
energy is gained beyond that. To see which laser electric field components
were most effective in the acceleration process we plot the strengths of all three
components along the particle trajectory in (b)-(d). During the interaction, the
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Power x̄f ± ∆xf ȳf ± ∆yf z̄f ± ∆zf ∆Ω K̄l ± ∆K
(PW ) (λ) (λ) (λ) (sr) (MeV/nucleon)

0.1 1.34 ± 0.03 0.00 ± 0.01 0.10 ± 0.01 1.9 × 10−4 1.044 ± 0.005
1 4.38 ± 0.03 0.00 ± 0.03 0.33 ± 0.01 8.1 × 10−5 10.33 ± 0.04
10 13.37 ± 0.10 0.00 ± 0.09 1.39 ± 0.22 4.7 × 10−4 100.8 ± 2.8

Table 2.1 – Particle coordinates, beam solid angles and kinetic energies at the
ends of the trajectories of helium nuclei accelerated by linearly polarized laser
beams. Results shown here are derived from the data used to produce Fig. 2.8.

figures show that, for the parameter set employed, Ex has been most effective in
accelerating the particle, Ey more than three orders of magnitude less effective,
while Ez has mostly played a negative (decelerating) effect.

For the purpose of illustration, we show trajectories of 100 particles from the
ensemble, in Fig. 2.6. The particles are accelerated in the direction of the
resultant E field, from which they gain the most energy. With time, a particle
develops substantial momentum and the v×B force begins to affect its direction
of motion. Thus, wiggles in the trajectories show up over the part of the figure
that corresponds to effective interaction, which is a few field cycles at most,
followed by particle motion along essentially straight lines. The effect of all the
force components causes the trajectories to lie within a wedge-like structure of
an approximately rectangular cross section.

Shown in Fig. 2.7 are kinetic energies of the particles whose trajectories are
displayed in Fig. 2.6. Note that the spread in the exit kinetic energies is quite
small. More on this topic will be found below.

Next, effect of the acceleration process on an ensemble of 5000 alpha particles
will be discussed. In Fig. 2.8, we show the positions to which the ensem-
ble evolves as a result of the acceleration mechanism, together with the exit
kinetic energies of its members. For example, Figs. 2.8(a)-(c) give the coordi-
nates (zf , yf) at the ends of the 5000 trajectories. As the laser power increases,
the (roughly) rectangular end beam cross-section grows in size indicating an
increase in particle beam divergence. The cross-section also shifts center (to
the right) which indicates the overall combined effect of the laser Ez and mag-
netic field components. This is also accompanied by the expected increase in
the energy gain and final x excursion. Figs. 2.8(d)-(f) give the exit kinetic
energies (at ends of trajectories) against the exit coordinate xf . Note here,
too, that the spread in exit kinetic energies is quite small, so is the spread in
the excursion distance along the polarization direction. These points will be
discussed further below, in connection with the suitability of a particle beam
for use in radiotherapy.

For the purpose of further discussion of the results we denote by x̄f , ȳf , z̄f ,
and K̄l, the ensemble averages of the exit coordinates xf , yf , zf and exit ki-
netic energy Kl, respectively, at the end of the trajectories. Furthermore,
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∆xf ,∆yf ,∆zf , and ∆Kl will denote the standard deviations in these quan-
tities. As usual, a standard deviation will represent a measure of the spread
in the quantity in question. According to Figs. 2.8(a)-(c) the final position
coordinates in the zy-plane are randomly distributed in a region of space that
may be approximated by rectangles whose sides can be estimated by 2∆zf and
2∆yf . Recognizing that x̄f is the largest excursion made by a particle along
one of the three coordinate axes, we may also speak of a solid angle, defined
approximately for our purposes here by ∆Ω ≃ (2∆zf)(2∆yf)/x̄

2
f . Final mean

position coordinates and the spread in each, in units of the laser wavelength λ,
the approximate solid angle, in sr, and the kinetic energy and spread in it, in
MeV/nucleon, are collected in Table 2.1, for the data of Fig. 2.8. Note that the
spread in exit kinetic energy is ∼ 0.5, 0.4 and 2.8%, respectively, in the three
cases considered.

In comparison to these results, according the combined experimental-theoretical
study of Ref. [53], TNSA produces similar maximal proton kinetic energies. At
the laser intensities given in Fig. 2.9, TNSA results in kinetic energies of around
20, 60, and 250 MeV (see Fig. 1a of Ref. [53], showing results for a laser of a
wavelength 1.054 µm), with energy spreads of the order of 20-30%, which is to
be compared to our results of 5.1, 55 and 590 MeV, respectively (see Fig. 2.9).
Thus, while our direct ion acceleration scheme is outperformed by TNSA at
lower intensities, it leads to higher kinetic energy gains at the highest inten-
sity of 7.41 × 1021 W/cm2, and generally to much lower energy spreads (see
Table 2.1). More efficient acceleration has been predicted by RPA schemes;
e.g., in Ref. [83], a relativistic acceleration regime is suggested which leads to
GeV/nucleon ion energies at an intensity of 1022 W/cm2.

2.6 Acceleration by a radially polarized laser

beam

Two characteristics give the radially polarized beam an edge over the linearly
polarized one. It can be focused to a tighter spot, and it has three field com-
ponents; one mainly responsible for the acceleration. The tighter spot means
a higher peak intensity (see Fig. 2.2) and, hence, leads to better gain. On the
other hand, the axial electric field component, Ez, which is mainly responsible
for the acceleration, increases in strength with tighter focusing at the expense
of the radial component Er and the azimuthal magnetic component Bθ. Recall
that both Er and Bθ vanish identically on the beam axis, leaving Ez to work
effectively alone to accelerate the particles.

Consequently, due to its geometrical properties, a radially polarized laser beam
is better suited for the purpose of acceleration than a linearly polarized beam.
Unfortunately, generation of high-intensity radially polarized light is still a
challenge. Nevertheless, assuming such beams can be produced in the near
future, we will present and discuss below results of numerical simulations similar
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to the ones considered above, albeit for radially polarized beams.

To begin with, Fig. 2.9, in which evolution of the particle kinetic energies along
the laser beam direction of propagation, is similar to Fig. 2.4. Note first that,
by comparison, the exit kinetic energies in this case are slightly higher than in
the linearly polarized case. The end particle coordinates (along the laser beam
axis) are also greater than the excursion distances along the linearly polarized
beam polarization direction. This hints at the strength of the axial electric
field component, Ez, and its role in the acceleration process.

Further insight into the nature of the trajectories may be gained from Fig. 2.10
that will shed light on the accelerated particle beam quality. The first thing
to note is the increase in transverse spreading, in the xy-plane, with increasing
laser power. This divergence may also be assessed in terms of a solid angle
defined roughly by ∆Ω ≃ (2∆xf )(2∆yf)/z̄

2
f , where the area covered by the

points is considered as a rectangle of sides 2∆xf and 2∆yf . Fig. 2.10 is to be
compared with Fig. 2.5. Note that Ez is the strongest component and from
reading (a) and (d) together one concludes that Ez is the accelerating field
component, while Er (or equivalently its components, in this context, Ex and
Ey) play a minor role.

Figures 2.11 and 2.12 are similar to Figs. 2.6 and 2.7. The rectangular shape
taken by the beam cross section in 2.11 seems to be sharper than in 2.6. This
conclusion is also supported by Fig. 2.13, which is the analog of Fig. 2.8. Evolu-
tion of the kinetic energy with excursion distance, as shown in Fig. 2.12, seems
to suggest that the spread in exit energies is smaller in the radially polarized
case than it is in the corresponding linearly polarized counterpart. Support for
this conclusion may be found by comparing Figs. 2.13(d)-(f) with 2.8(d)-(f).

Results from our simulations employing radially polarized beams, paralleling
those displayed in Table 2.1 for the linearly polarized case, are shown in Ta-
ble 2.2. One observes an increase in energy gain with increasing power, as
expected. Note that the spread in the exit kinetic energies is less than 1% in
all of the three cases considered. Comparing corresponding items in Tables 2.1
and 2.2, one finds that the radially polarized fields result in more energy gain
compared to the linearly polarized ones.

Power x̄f ± ∆xf ȳf ± ∆yf z̄f ± ∆zf ∆Ω K̄r ± ∆K
(PW ) (λ) (λ) (λ) (sr) (MeV/nucleon)

0.1 0.03 ± 0.12 0.00 ± 0.02 2.63 ± 0.01 1.6 × 10−3 1.334 ± 0.011
1 0.02 ± 0.48 0.00 ± 0.09 9.60 ± 0.06 1.8 × 10−3 12.67 ± 0.11
10 0.01 ± 3.13 0.00 ± 0.55 49.15 ± 0.52 2.9 × 10−3 142.3 ± 1.2

Table 2.2 – Particle coordinates, beam solid angles and kinetic energies at the
ends of the trajectories of helium nuclei accelerated by radially polarized laser
beams. Results shown here are derived from the data used to produce Fig. 2.13.
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Figure 2.9 – Evolution of the kinetic energies of four nuclear species in radially
polarized laser fields as functions of their excursion distances along the laser
propagation direction (cf. Fig. 5 of [62] calculated at shorter λ and as function
of laser cycle T ). The laser wavelength is λ = 10.6 µm and the beam waist radius
at focus is w0 = 0.48λ. The given powers (0.1, 1 and 10 PW) correspond to peak
intensities I ∼ 7.41 × 1019, 7.41 × 1020 and 7.41 × 1021 W/cm2, respectively.
(Strictly, at points on the transverse plane through the focus where z = 0 and
r ∼ w0/

√
2). Injection angle is θi = 10◦ for all particles. Integration of the

equations of motion was carried out over a range of values ∆η = 200π of the
variable η ≡ ω(t − z/c).

2.7 Initial ion distribution and pulse-shape ef-

fects

We performed simulations to study the effect of different volumes of the initial
ion distribution on the energy spread of the accelerated particles. The size
(volume) of the initial cylinder (Lc = 1 µm, Rc = 0.1 µm) has been increased
by factors of 2, 4, and 8, while keeping the other parameters fixed. Table 2.3
shows the result of these calculations for a laser power of 10 PW. Given are
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Figure 2.10 – Same as Fig. 2.5, but for a radially polarized beam. Note that
Ex = Er cos θ and Ey = Er sin θ, where θ = arctan(y/x). Integration of the
equations of motion was carried out over a range of values ∆η = 100π of the
variable η ≡ ω(t − z/c). The remaining parameters are the same as in Fig. 2.9.
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Figure 2.11 – Same as Fig. 2.6 but for a radially polarized laser system and
the excursion distance is along the z-axis. Integration of the equations of motion
was carried out over a range of values ∆η = 100π of the variable η ≡ ω(t− z/c).
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Figure 2.12 – Same as Fig. 2.7 but for a radially polarized laser system and
the excursion distance is along the z-axis. Integration of the equations of motion
was carried out over a range of values ∆η = 100π of the variable η ≡ ω(t− z/c).

the average final kinetic energies together with their spreads (standard devi-
ations) and the percentage energy spread. As can be seen, the increase of
the initial volume has a twofold effect: the average energy is slightly lowered
and its spread increases significantly, roughly linearly. The values in the table
give the tolerances on the size of the initial ionic distribution. As can be seen
in Table 2.3, ions accelerated by radially polarized fields are somewhat more
tolerant to the increase in size of the interaction region, thus allowing for the
acceleration of a larger number of particles, while keeping kinetic energy and
energy spread under control.

In addition, we performed simulations which employ laser systems that provide
their energy in pulses of finite duration, and compared the results with those
obtained using continuous wave (cw) lasers, keeping all other parameters fixed.
To lowest order in the time, a pulse-shape can be introduced by multiplying the
laser fields with the phase-dependent factor g(η), where η = ωt−kz, effectively
via the following transformations

E → g(η)E,

B → g(η)B. (2.34)
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Figure 2.13 – Same as Fig. 2.8 but for acceleration employing a radially polar-
ized beam.

Size K̄l ∆Kl/K̄l K̄r ∆Kr/K̄r

(MeV/nucleon) (%) (MeV/nucleon) (%)

H1+ 1× 416.7 ± 24.4 5.9 532.8 ± 13.3 2.5
2× 416.2 ± 50.6 12 530.1 ± 16.8 3.2
4× 403.3 ± 86.9 22 527.2 ± 20.9 4.0
8× 359.2 ± 152 42 517.6 ± 29.0 5.6

He2+ 1× 90.65 ± 0.93 1.0 122.0 ± 1.0 0.8
2× 90.49 ± 1.70 1.9 121.4 ± 1.5 1.2
4× 90.20 ± 2.73 3.1 120.2 ± 2.4 2.0
8× 89.78 ± 4.51 5.0 118.8 ± 3.7 3.1

Table 2.3 – Dependence of the average final kinetic energy K̄ and the relative
kinetic energy spread ∆K/K̄ on the volume of the initial distribution. The size
of the initial ionic distribution is given as a multiple of the volume defined in the
text. The protons and alpha particles are interacting with linearly (l) or radially
(r) polarized light.
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K̄l (MeV/nucleon) ± ∆Kl

K̄l
K̄r (MeV/nucleon) ± ∆Kr

K̄r

cw pulsed cw pulsed

τ = 0.25 ps

C6+ 46.36 ± 0.15 42.58 ± 0.42 57.54 ± 0.50 57.55 ± 0.50
O8+ 46.35 ± 0.15 42.56 ± 0.43 57.50 ± 0.50 57.50 ± 0.50

τ = 0.5 ps

C6+ 46.36 ± 0.15 45.13 ± 0.22 57.54 ± 0.50 57.54 ± 0.50
O8+ 46.35 ± 0.15 45.12 ± 0.22 57.50 ± 0.50 57.50 ± 0.50

Table 2.4 – Average and standard deviation of the final kinetic energies of car-
bon and oxygen bare nuclei accelerated by linearly- and radially-polarized laser
fields. Acceleration cases corresponding to cw and pulsed fields are compared,
using 5 PW laser systems focused to waist radii w0 = λ/2.

Following K. T. McDonald [84, 85], the following pulse-shape factor has been
chosen

g(η) = sech

(

η

η0

)

. (2.35)

This choice justifies using the ansatz given by Eq. (2.34) in the limit η0 ≫ 1
[84, 85]. The dimensionless phase parameter η0 can be directly related to the
pulse duration τ , itself taken as the full width at half maximum (FWHM), via
the relation

η0 = ωτ/ ln

[

2 +
√

3

2 −
√

3

]

, (2.36)

with ω the laser frequency. In order to fulfill the condition η0 ≫ 1, we chose
a pulse duration τ = 0.25 ps (approximately equivalent to 7 laser cycles for
λ = 10.6µm). For this choice, η0 ≈ 16.9 ≫ 1. Infrared laser pulses with a pulse
duration on the ps scale and with TW powers can be generated experimentally
(see e.g. [86]), and an extension to higher powers is anticipated in the near
future.

Table 2.4 summarizes the results of our simulations on the pulse-shape effects.
Listed are the average final kinetic energies together with their spreads for
carbon and oxygen nuclei. It can be seen that the introduction of a pulse-
shape has negligible influence in the case of the longer pulse τ = 0.5 ps (for
both polarizations). Whereas in the case of the shorter pulse τ = 0.25 ps, only
the results for the radially polarized laser fields remain effectively unchanged.
For the pulsed linearly polarized case, the energy is roughly 8% lower than
when the cw systems are used, and the energy spread is more than doubled,
but still remaining less than 1% in any case.
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2.8 Conclusions

In this Chapter, theoretical calculations for electron laser acceleration [33, 62,
71], have been extended to cover similar configurations involving bare nuclei, by
numerically solving the relativistic equations of motion of the particles in radi-
ally and linearly polarized laser fields like it was done in [62]. The main results
include acceleration of bare nuclei of hydrogen, helium, carbon and oxygen, to
energies ranging from a few to several hundred MeV/nucleon, using laser sys-
tems of power 0.1−5 PW, focused down to waist radii in the neighborhood of
half a laser wavelength (w0 ∼ λ/2). For the charge species studied, the radially
polarized fields have been shown to lead to slightly higher energy gains than
would be obtained using the linearly polarized fields. The linearly polarized
fields, however, lead to a lower spread in the particle beam energy gain, at least
for the parameter sets employed in our simulations.

Recognizing that a radially polarized beam may be focused to a tighter spot
than would be the case for a linearly polarized one, our results suggest that a
laser beam of radial polarization once it can be generated with the desired in-
tensities, may be a better candidate for use in laser acceleration of ions and bare
nuclei, for medical and other applications. It has also been demonstrated that
focusing even a 100 TW laser beam to a sub-wavelength spot radius increases
its peak intensity to the levels needed for acceleration of bare nuclei.

Furthermore, choosing a laser system with a wavelength as long as possible is
shown to increase the interaction volume of the focused light beam and the
initial ionic ensemble, which leads to a higher number of particles accelerated
in one bunch at a given initial ionic density. As an example, CO2 lasers with
a wavelength of 10.6 µm accelerate three orders of magnitude more particles
in one shot as the most wide-spread infrared systems with wavelengths around
1 µm, making these systems more appealing for ion acceleration applications
once the power of these laser systems reaches the range required.

Finally, calculations have been performed in order to assess the effect, on the
kinetic energies of the accelerated particles, due to variations in volume of the
initial ionic distribution, and to an added pulse-shape on the laser systems
employed. Our investigations prove that for sufficiently long pulses with a
duration over 0.25 ps, the pulse shape effects are negligibly small, especially in
the case employing laser fields of the radially polarized variety.





Chapter 3

Crossed-beams laser acceleration

Simulations based on the coupled relativistic equations of motion
show that protons stemming from laser-plasma processes can be ef-
ficiently post-accelerated employing single and crossed pulsed laser
beams focused to spot radii on the order of the laser wavelength. We
demonstrate that the crossed beams produce quasi-monoenergetic ac-
celerated protons with kinetic energies exceeding 200 MeV, small en-
ergy spreads of about 1% and high densities as required for hadron
cancer therapy. To our knowledge, this is the first scheme allowing
for this important application based on an all-optical set-up. Parts
of this Chapter have been published in Ref. [82]

.

3.1 Introduction

In this Chapter, we investigate the vacuum post-acceleration of plasma-generated
ions by means of lasers in a single- or crossed-beams configuration. The latter
scheme of laser particle acceleration was first proposed for electrons [31,32,37,
38]. In contrast to the previous Chapter, we performed simulations which model
a controlled particle injection into the focus of a pulsed laser beam in a real-
istic way and which take into account particle-particle interaction effects. We
demonstrate that we do reach the proton flux threshold necessary for broader
radio-oncological use, without compromising the kinetic energy and its spread.

The basic idea is to send the protons originating from a TNSA [43, 50–58] or
S-LPA [59] experiment through the crossing point of two laser beams at a half-
angle θ with respect to the z-axis (see Fig. 3.1 (b) for a scheme and a coordinate
system). A simple illustration of the mechanism may be given in the plane-wave
picture. Based on the assumption that the laser fields have the same amplitude,
frequency, phase and are polarized as shown in Fig. 3.1 (b), the resultant electric
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Figure 3.1 – (a) The protons, produced by laser-plasma interaction (left hand
side), are injected at the angle θi with respect to the propagation direction of a
pulsed beam through its focus. The laser field polarization is denoted by E and
the propagation direction is given by k. The protons are ejected out of the focus
in the polarization direction E. (b) Here, the protons are injected through the
intersection point of two pulsed beams with a crossing half-angle θ. The laser
field polarizations are denoted by E1 and E2 and their propagation directions
are given by k1 and k2. The protons are ejected in direction of the resulting
electric field E.

field component along the symmetry axis of the set-up vanishes for all points
on the x-axis. At the same time, the x-component, increased by constructive
interference, strongly accelerates the particles (similar to [38], but for different
polarization). After the ejection of the charged particles from the focal region,
i.e. no laser-particle interaction takes place anymore, they continue to move
with constant velocity.

The superposition of multiple laser beams to obtain a single beam not only
with correspondingly higher power but also with preserved beam quality plays
a central role in the construction of several laser systems in a wide range of
powers. In order to generate one high-power beam, all single beamlines have
to add coherently. For instance, the laser system of the Extreme Light Infras-
tructure (ELI) facility (see p. 52 of Ref. [6]) will partly be based on a coherent
combination of 10 to 12 beams of petawatt power which will lead to an exawatt-
class output power. Hence, we conclude that experimentally implementing two
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coherently superposed crossed beams and one beam for the laser-plasma inter-
action as a particle injector is certainly demanding, but it is feasible and given
the high potential of the set-up it is worth the effort.

The results of our theoretical simulations demonstrate that the protons gain
kinetic energies larger than 200 MeV (employing two crossed beams each with
a peak intensity of 1.9×1024 W/cm2) with an energy spread of roughly 1%.
Furthermore (assuming a realistic repetition rate of 10 Hz [6, 87]), the total
number of generated protons reaches 1010 min−1. For the first time, all require-
ments are fulfilled for broader radio-oncological use [15,18] based on an optical
accelerator.

This Chapter is organized as follows. In Section 3.2, the injection into a pulsed
beam is described. Then we introduce the equations of motion in Section 3.3
and we discuss the role of particle-particle interaction effects. After defining
the coordinate system for the crossed laser fields in Section 3.4, we present
the results of our simulations in Section 3.5. Our conclusions are given in
Section 3.6.

3.2 Injection mechanism

In order to generate ultra-strong accelerating fields [6, 7] of 1024 W/cm2, one
needs to focus the laser field to a beam waist radius on the order of its wave-
length [5], which also ensures that the Lawson-Woodward theorem [27, 28] is
violated. This necessitates an accurate description of the fields beyond the
widely-used paraxial approximation. The parameters of a linearly polarized
Gaussian beam which propagates in the z-direction and is polarized in the x-
direction and subsequently rotated by θi (Fig. 3.1 (a)) will be used to model the
fields, i.e. the beam waist radius w0, the Rayleigh length zr = πw2

0/λ, where
λ is the laser’s wavelength, and the diffraction angle is ε = w0/zr = λ/(πw0).
For the expressions of the Cartesian field components Ex, Ey, Ez, Bx, By, Bz

of a linearly polarized laser beam, as well as the expression for the power of the
fields to order ε11 in the diffraction angle we refer to Section 2.5 of the previous
Chapter and for details to the literature [62, 63].

High-intensity laser systems provide their energy in short pulses which are al-
ready sufficient to accelerate particles to high velocities [88]. Employing pulsed
fields also ensures that the particles injected into the focus get captured rather
than reflected. To the lowest order in time, this can be described by multiply-
ing the electromagnetic field components with a Gaussian temporal envelope
factor,

E → exp

(

−(t− z/c)2

2∆t2

)

E,

B → exp

(

−(t− z/c)2

2∆t2

)

B, (3.1)
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Figure 3.2 – Schematic of a laser pulse with a Gaussian envelope centered
around t = 0 with a Full Width at Half Maximum (FWHM) pulse duration
∆tFWHM = 2

√
2 log 2∆t.

with ∆t defined via the Full Width at Half Maximum (FWHM) pulse duration
∆tFWHM = 2

√
2 log 2∆t (see Fig. 3.2 for a schematic). This approximation

is valid for T/∆tFWHM ≪ 1, with T being the laser period. For the titanium-
sapphire laser with wavelength λ = 800 nm (T = 2.65 fs) and pulse durations of
∆t & 10 fs used in our simulations, this turns out to be an adequate description.
Hence, further temporal corrections [89] which describe the field solutions as a
dual power series in the diffraction angle ε and in the small ratio T/2π∆t can
be neglected.

In order to simulate a realistic particle injection into the focal point of the
laser pulses, we have to ensure that the ensemble is not already exposed to the
laser fields at the beginning of the simulation. This is realized by starting the
simulations at time ti ≤ −5∆t. At these initial times the laser pulse has not
arrived yet as one can see from Fig 3.2, such that the particles’ motion is only
negligibly influenced by the external laser fields. Hence, it is justified to place
the initial particle ensemble at an arbitrary spatial position.

To underline the importance of the correct initial time, we compare in Fig. 3.3
the motion of a proton starting at the same spatial point but having two dif-
ferent initial times. One can see that in the case when the particle is directly
exposed to the laser fields at ti = 0 (dashed line), it immediately gains energy
and is ejected out of the focus after one laser cycle. In a realistic setting, we
choose an initial time of ti = −10∆t: the particle slowly starts to oscillate and
then gets captured and accelerated by the approaching pulse (full line). Choos-
ing the initial time to be ti = 0 would lead to an energy gain overestimation
by a factor of approximately three. Our above studies on varying the particles
initial conditions have been published in [82]. A similar detailed study has been
published by Wang et al. [90].
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Figure 3.3 – Kinetic energy K for one proton initially being at rest and located
at x = z = λ/30 and y = 0. The initial time is ti = 0 (dashed line) and
ti = −10∆t (full line). The single proton dynamics is compared at same laser
parameters (see text).

3.3 The role of particle-particle interaction ef-

fects

The motion of an interacting ensemble of N identical particles of mass m and
charge q in the electric and magnetic fields E and B, respectively, of a laser
beam is considered classically, with randomized initial distributions. The use
of laser systems of high intensity (exceeding 1024 W/cm2 for protons) requires
a relativistic treatment of particle motion. Thus, the dynamics is governed by
the coupled Lorentz-Newton (or propagation) equations1 (given in SI units):

dpj

dt
= q

(

E(rj) + E int.

j + cβj ×
(

B(rj) + Bint.

j

))

,

dEj

dt
= qcβj ·

(

E(rj) + E int.

j

)

.

(3.2)

The relativistic energy and momentum of a given particle labeled with j are
denoted here by Ej = γjmc

2 and pj = γjmcβj, respectively, with βj = vj/c
its velocity scaled by c, and γj = (1 − β2

j )
−1/2 its Lorentz factor. The fields

mediating inter-ionic interaction are modeled by [80]

1Note this form of equations serve also as propagation equations in PIC simulations [69]
(see Chap. 4).



46 Chapter 3. Crossed-beams laser acceleration 3.3

E int.

j =
∑

k 6=j

(

−∇φjk −
∂

∂t
Ajk

)

, (3.3)

Bint.

j =
∑

k 6=j

(∇× Ajk) , (3.4)

with j, k ∈ {1, 2, . . . , N}. The interaction potentials read

φjk =
q

4πǫ0

1

|rj − rk|
, (3.5)

Ajk =
q

8πǫ0c2|rjk|

(

vk +
rjk(vk · rjk)

|rjk|

)

, (3.6)

with the relative displacement rjk = rj − rk and ǫ0 being the vacuum per-
mittivity. Eq. (3.5) is the scalar part of the interaction given by the Coulomb
potential, whereas relativistic effects such as retardation and current-current
interaction are included in the Darwin vector potential up to O(β2) [80] in
Eq. (3.6). Typical kinetic energies of the accelerated protons are of about
200 MeV (cf. Tab. 3.2), which corresponds to β2 ≈ 0.3. Consequently, the
truncation of the interaction up to O(β2) is justified and higher-order contri-
butions such as those up to O(β4) in Ref. [91] will not be taken into account.

To obtain the kinetic energy gained by interaction with a laser beam, numerical
solutions of the coupled equations of motion have to be determined. Due to
the velocity-dependent Darwin vector potential in Eq. (3.6), the electric field
modeling the interaction in Eq. (3.3) becomes dependent on derivatives of the
velocity with respect to time. Hence, equation (3.2) is a system of differential
algebraic equations of the form

dβ1

dt
= f1

(

r1, . . . , rN ,β1, . . . ,βN ,
dβ1

dt
, . . . ,

dβN

dt
, t

)

,

...
dβN

dt
= fN

(

r1, . . . , rN ,β1, . . . ,βN ,
dβ1

dt
, . . . ,

dβN

dt
, t

)

. (3.7)

For each time step the system has to be solved algebraicly with respect to
the variables dβ1

dt
, . . . , dβN

dt
. The solution of the algebraic system is well-defined

because of the only linear dependence on dβ1

dt
, . . . , dβN

dt
. Then, a standard fourth-

order Runge-Kutta algorithm is used to integrate the remaining system of or-
dinary differential equations that yields βfin

j and, hence, γfin
j at a later final

time tfin taken equal to many laser field cycles, such that it is ensured that
interaction with the full laser pulse takes place. Subsequently, the final kinetic
energy of the particle can be determined as Kfin

j = γfin
j mc2.

Foremost, we carry out simulations based on the coupled equations of motion
Eq. (3.2) for an ensemble of 20 particles at typical distances for later applied
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x̄f ȳf z̄f K̄l

(units of λ) (units of λ) (units of λ) (MeV/nucleon)

without interaction

−4.32701± 0.00992 −0.00025± 0.08083 1.38096± 0.00216 114.571± 0.005

with interaction

−4.34379± 0.02588 −0.00789± 0.06602 1.37911± 0.00579 114.574± 0.24

Table 3.1 – Particle coordinates and kinetic energies at the ends of the trajec-
tories of an interacting proton ensemble of 20 particles accelerated by linearly
polarized laser beams. The laser parameters are P=40 PW, ∆t=10.7 fs, w0 = 1λ
such that the particle dynamics takes place in the relativistic regime.

particle densities in order to determine the dominant nearest-neighbor contri-
bution of proton-proton interaction effects on the resulting particle beam. Due
to the dominating ponderomotive laser forces which lead to a fast drifting apart
of the ensemble’s particles, for relativistic laser intensities, i.e. > 1024 W/cm2

for protons, it turns out that the dynamics, the energy gain and its spread
are influenced only slightly by inter-ionic interaction. A summary is given in
Tab. 3.1. The fluctuation in the particles’ endpoints and exit kinetic energies
is larger, nevertheless the requirements of medical applications are still met.
This is in contrast to the non-relativistic laser regime. Here, the repulsive
Coulomb interaction is the prevailing part of the interaction, which is in this
case non-negligible compared to the electromagnetic fields of the laser. As a
consequence, the accelerated ions occupy a larger phase space volume. From
radio-oncological point of view we are interested in proton beams of fully rela-
tivistic energies, hence for further calculations at these energies and densities
it is sufficient to study the uncoupled equations of motions only, i.e. we set
Bint.

j = E int.

j = 0 in Eq. (3.2).

3.4 Coordinate transformation of the laser fields

The definition of a coordinate system for the crossed beams set-up depicted in
Fig. 3.1 (b) is given by the coordinate transformations (rotations)

x1 = x cos θ − z sin θ,

y1 = y,

z1 = x sin θ + z cos θ, (3.8)

for the first beam and

x2 = x cos θ + z sin θ,

y2 = y,

z2 = −x sin θ + z cos θ (3.9)
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Figure 3.4 – (a) Intensity profile of two crossed Gaussian beams in the prop-
agation plane y = 0. For visualization purpose the crossing-half angle is set to
θ = 35◦. The brighter areas correspond to higher field intensities. (b) Vector
field plot of the polarization plane z = 0 at t = 0.2 fs for the single beam scheme
(blue arrows) with power P and crossed beam scheme (red arrows) with power
P/2 for each beam. The constructive interference of the crossed beams results
in a higher electric field strength in the intersection volume. The background of
the graph shows a density map of the electric field strength |E| of two crossed
beams in the polarization plane.

for the second beam, respectively. The resultant field components which enter
Eq. (3.2) are

Ex = (E1x + E2x) cos θ + (E1z − E2z) sin θ,

Ey = E1y + E2y,

Ez = (−E1x + E2x) sin θ + (E1z + E2z) cos θ,

Bx = (B1z − B2z) sin θ,

By = B1y +B2y,

Bz = (B1z +B2z) cos θ. (3.10)

Choosing a small crossing half-angle θ leads to constructive addition of the
dominating x-components of the electric fields in Eq. (3.10). The adding of
further laser beams would further increase the laser intensity and hence the exit
kinetic energy of the accelerated particles. With respect to the energy spread
we could not achieve substantial improvement, however. For all subsequent
simulations we restrict our analysis to the case of two crossed beams and set
θ = 3◦.

For the intensity profile of the employed Gaussian beams see Fig. 3.4. In par-
ticular, from Fig. 3.4 (b) one can clearly sees that the constructive interference
results in a stronger electric field.



3.5 Results 49

K̄ [MeV] Ni

S-LPA source, P=10 PW, ∆t=19.2 fs, w0 = 1λ
single 28.1 ± 1.2 % 1.0·106

crossed 59.4 ± 1.0 % 1.0·106

S-LPA source, P=40 PW, ∆t=10.7 fs, w0 = 1λ
single 113.2 ± 1.6 % 1.0·106

crossed 233 ± 1.0 % 1.0·106

S-LPA source, P=100 PW, ∆t=23.8 fs, w0 = 2λ
single 73.2 ± 1.6 % 1.3·107

crossed 152 ± 1.0 % 1.3·107

TNSA source, P=100 PW, ∆t=14.4 fs, w0 = 2λ
single 64.6 ± 0.7 % 1.0·105

crossed 141 ± 0.5 % 1.0·105

Table 3.2 – Average particle kinetic energy K̄ and its percentual spread for
different laser system parameters. Ni = ni · Vfocus is the number of ions one can
accelerate as one bunch with nS-LPA

i ≈ 1021 cm−3 and nTNSA

i ≈ 1019 cm−3 is the
ion density of the source used and Vfocus denotes the volume initially containing
all ions. The crossing half-angle is θ = 3◦. The optimal particle injection angle
for the single beam set-up is θi = 3◦ for the S-LPA source and θi = 50◦ in case of
the TNSA source, respectively. For two crossed beams the particles are injected
with an angle θc with respect to the symmetry axis (z-axis) of the laser beam
configuration. In case of the S-LPA source we have θc = 0◦ and for the TNSA
source θc = 50◦.

3.5 Results

We consider an ensemble of 5000 particles initially randomly distributed in
a micron-scale volume Vfocus oriented along the z-axis. The volume initially
containing the particle ensemble has a length of the order of the laser wave-
length and a radius of tens of nanometers, dependent on the focus diameter
of the applied laser system, ensuring that all protons are exposed to a homo-
geneous field. The particles will be assumed to possess initial kinetic energies
distributed normally around a mean value K̄ and having a spread ∆K. As
a source we take protons originating from laser-plasma interactions, such as
the S-LPA mechanism, with K̄ = 17 keV [59] and assuming a large energy
spread of ∆K = 100% or from the TNSA mechanism, with K̄ = 1.2 MeV
and ∆K = 25% [51]. The total power and the beam pulse duration are var-
ied. Note that the peak intensity of one linearly polarized 10-PW laser beam
focused to w0 = 1λ is already I ∼ 9.6 × 1023 W/cm2 [6, 7].

Like in the previous Chapter, our work is motivated by medical applications
and hence our main interest is to match the restrictive radio-oncological re-
quirements for the energy gain and the energy spread. In Tab. 3.2, simulation
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Figure 3.5 – Exit kinetic energy spectrum of particles being injected into an
approaching Gaussian beam.

results for the laser acceleration are summarized. The single and crossed beams
scheme are compared at same total laser power P , pulse duration ∆t and focus
radius w0. The energy gain is ranging from 59 MeV to 233 MeV in case of the
crossed beams setup and from 28 MeV to 113 MeV for injection of the ensemble
into the focus of only one beam, respectively. Looking at the energy spread
one can see that for the crossed beams it is always 1% and a little higher for
the case of the single beam setup. For a typical exit kinetic energy spectrum
of particles being injected into the focus of an approaching Gaussian beam, see
Fig. 3.5.

Moreover, one can see from Tab. 3.2 that for the systems studied here, the
average exit kinetic energy K̄ obeys for constant injection angle and injection
energy the rough scaling behavior K̄ ∝ I ∝ P/w2

0. This behavior results from
the fact that the optimal acceleration regime depends strongly on the pulse
duration ∆t rather than only on the electric field strength. It is achieved for the
laser-particle interaction length being of the same order as the Rayleigh length.
In Ref. [92], the same scaling behavior was derived for electrons. Therefore, in
order to maximize the energy gain of the accelerated protons we first choose
the laser power P and the focus radius w0, and then adjust to the optimal pulse
duration ∆t.

A further scaling law can be derived for the particle number, which is pro-
portional to the focus volume. Using Vfocus ∝ w2

0 · zr and the definition of the
Rayleigh length zr ∝ w2

0, one obtains Vfocus ∝ w4
0. The typical particle number

needed for ion cancer treatment is 106-1010 per shot with a repetition rate on
the order of 5 Hz [13], depending on the ionic species. For a typical interaction
volume, one needs at least an ion density of ni = 106/Vfocus ≈ 1020 cm−3 in
order to render our scheme feasible for medical applications. Using plasma-



3.6 Conclusions 51

generated protons one obtains with the TNSA mechanism an ion density up
to the order of nTNSA

i ≈ 1019 cm−3 and the S-LPA ion source generates a den-
sity of nS-LPA

i ≈ 1021 cm−3 [59]. The latter yields particle numbers of 107 per
laser shot. Combined with lasers operated at 10 Hz repetition rate [6, 87] this
ion number is sufficient for cancer therapy while for the TNSA mechanism a
modest improvement would still be necessary.

Such improvement can e.g. be achieved by substituting the assumed titanium-
sapphire laser by a super-intense CO2 laser with a typical wave length of λ =
10.6µm. Using the fact that the waist radius w0 ∝ λ and hence the Rayleigh
length zr ∝ λ, the focal region thus increases by three orders of magnitude.
Consequently, the ion density needed decreases by three orders of magnitude
and the needed laser intensity by two orders of magnitude (cf. Chapter 2). In
the near future the use of high repetition rate laser systems [6, 87] will further
decrease the number of protons needed per shot.

3.6 Conclusions

The achievement of our studies in the present Chapter are threefold:

First, we demonstrated the theoretical feasibility to inject particles created
from laser-plasma interactions (with typical kinetic energy distributions) into
an approaching laser pulse and that one can maintain the proton beam qual-
ity given in Chapter 2. Furthermore, we quantified the difference in the exit
kinetic energy of particles directly exposed to laser fields as it was done in our
calculations in Chapter 2 from the ones being injected into an approaching
laser pulse. The energy differs roughly by a factor of three.

Second, we studied particle-particle interaction effects on the basis of the cou-
pled Lorentz-Newton equations, where we accounted for relativistic effects to
O(β2) on the basis of the Darwin interaction potential. It turned out that
particle-particle effects, eventhough being present, are negligible in the pres-
ence of strong laser fields of intensities of the order of 1024 W/cm2.

Third, we superimposed two laser fields (first proposed for electrons [31,32,37,
38]) to obtain a higher field strength by constructive interference resulting in
higher energy gain and better quality of the created proton beams.

In summary, the combination of the laser-plasma mechanism as a proton source
and the post acceleration process by means of single or crossed laser beams
places laser acceleration of particles on the cusp of medical feasibility utilizing
(present-day or) near-future laser technology [6, 7, 87], while anticipated costs
are presently on the scale of those for current synchrotron facilities (cf. [14]
and [93]). The rapid advancement of laser technology renders significant re-
duction likely for the near future. All requirements needed may be achieved:
sufficient proton density and exit kinetic energies, and sharp energy spread of
approximately 1%. The scheme that we introduce in the present work calls for
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tight focusing mechanisms [5] and relies on results of laser-plasma-interaction
research [51–53,58].



Chapter 4

Chirped laser-plasma interaction

Interaction of a frequency-chirped laser pulse with single protons
and a hydrogen gas target is studied analytically and by means of
two-dimensional particle-in-cell simulations, respectively. Feasibil-
ity of generating intense (107 particles per bunch) and phase-space
collimated beams of protons (energy spread of about 1%) is demon-
strated. The quasi-static laser pulse components, guaranteed by the
appropriate chirping of the laser pulse, allow the particles to gain
sufficient kinetic energy (around 250 MeV) required for such appli-
cations as hadron cancer therapy, from state-of-the-art laser systems
of intensities of the order of 1021 W/cm2. Furthermore, very colli-
mated beams with a divergence angle of 2◦ only are created. Parts
of this Chapter have been published in Ref. [94].

4.1 Introduction

In this Chapter, we demonstrate the theoretical feasibility of creating proton
beams, of unprecedented energy and quality, from illuminating a hydrogen gas
target with an appropriately chirped laser pulse [66–68] of intensity accessible
by state-of-the-art laser systems [5]. The basic idea of our model stems from
the realization that an incoming highly relativistic laser pulse quickly ionizes
hydrogen in the cell and accelerates the electrons away from the much heavier
protons, as the pulse intensity rises. At high enough laser intensities the pro-
tons get accelerated directly by the laser field. See Fig. 4.1 for a schematic.
The strong chirping of the laser pulse introduces quasi-static pulse components
leading to efficient proton energy gain from such fields.

We derive an expression for the energy transfer during interaction of a particle
with chirped unfocused as well as pulsed electromagnetic fields. Results ob-
tained analytically for the particle’s energy gain will be supported by further
simulations which describe the focused fields more accurately than the simple
plane-wave model. Our two-dimensional (2D) particle-in-cell (PIC) simulations



54 Chapter 4. Chirped laser-plasma interaction 4.2

Figure 4.1 – Schematic [95] of the chirped-laser plasma interaction: The im-
pinging chirped laser pulse ionizes the hydrogen gas target leading to an electron
blow-off. The remaining protons become subsequently captured and accelerated
by the laser pulse.

(cf. Ref. [69] for a review about the method) reveal that proton beams of energy
around 250 MeV, energy spread of about 1%, and density of 107 particles per
bunch, can be produced. Beams of such quality may potentially be suitable for
use in hadron cancer therapy assuming the laser-plasma interaction can take
place close to the patient [20]. Following acceleration, the beams have to be
collimated and guided [96] to compensate larger variations in the laser pulse
and its chirp which is still challenging to control at high intensities. Future
laser systems at the ELI or HiPER facilities [6, 7] may be utilized to produce
monoenergetic multi-GeV proton beams.

This Chapter is organized as follows. In Sect. 4.2 we derive the dynamics of a
charged particle in a chirped plane wave field. Then, in Sect. 4.3, we put the
plane wave model to the test while comparing it with the dynamics in focused
fields. Additionally, we derive the optimal chirp parameter. We continue with
the introduction of the particle-in-cell method in Sect. 4.4. The results of the
multi-particle simulations are given in Sect. 4.5. We conclude in Sect. 4.6.

4.2 Analytical plane wave model

A point particle of mass M and charge Q acquires relativistic energy and mo-
mentum, respectively, of E = γMc2 and p = γMcβ, where β is the velocity of
the particle scaled by c, the speed of light in vacuum, and γ = (1 − β2)−1/2,
when interacting with the fields E and B of an intense laser pulse. It suffices in
many applications to represent the fields of the beam by plane waves. A plane
wave propagating along the z−axis and polarized along the x−axis, may be
represented by E = x̂E0f and B = ŷE0f/c. As in the previous Chapters, the
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Figure 4.2 – The normalized electric field at focus of a plane-wave pulse em-
ploying Eq. (4.6). The parameters used are: λ = 1 µm, and τ = 50 fs, φ0 = 0
and η̄ = 4s.

dynamics of the charged particle is described by the Lorentz-Newton equations
(SI units) [62, 80]

dp

dt
= Q (E + cβ × B) ;

dE
dt

= Qcβ · E. (4.1)

The dependence in f on the space-time coordinates is through the combination
ωt− kz, with ω being the frequency and k = ω/c the wave number. This leads
to a break-up of the energy-momentum transfer equations (Eqs. 4.1) into four-
component equations, namely1,

d

dt
(γβx) = aω0(1 − βz)f,

d

dt
(γβy) = 0, (4.2)

d

dt
(γβz) = aω0βxf,

dγ

dt
= aω0βxf, (4.3)

where a = QE0/(Mcω0) is the normalized laser field strength and ω0 will
be defined below. From the second of Eqs. (4.2) we immediately identify a
first constant of the motion, namely, γβy = c1. Furthermore, the constant
γ(1 − βz) = γ0(1 − βz0) = c2 may be arrived at by subtracting the second of
Eqs. (4.3) from the first, and integrating. Substituting the constants c1 and c2
via βy and βz into γ−2 = 1 − (β2

x + β2
y + β2

z ), the following key expression for
the energy of the particle, scaled by its rest energy, may be arrived at

γ =
1 + (γβx)

2 + c21 + c22
2c2

. (4.4)

The combination η = ω0(t− z/c) will be used often below. Note that with the
help of dη/dt = ω0(1 − βz), the first of Eqs. (4.2) may be formally integrated
to give

γβx = γ0βx0 + a

∫ η

η0

f(η′)dη′, (4.5)

1The compact form of Eqs. (4.2) – (4.7) has been introduced by Y. I. Salamin.
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where βx0 = βx(η0) and γ0 = (1 − β2
0)

− 1

2 .

Frequency chirping amounts to letting ω vary with time in some fashion. Ex-
perimentally, laser pulses with a near-uniform spectral intensity over two oc-
taves are feasible [97]. The phase-coherent synthesis of separate femtosecond
lasers [98] and the recent synthesis of multiple optical harmonics [99] put for-
ward lasers with an even wider frequency range. We will work with the linear
chirp ω = ω0 + b0(t − z/c) [66–68], with ω0 denoting the frequency at t = 0
and z = 0, and b0 having a unit of s−2. The chirped frequency thus becomes
ω = ω0(1 + bη), where b = b0/ω

2
0 is a dimensionless chirp parameter. Also,

dependence of the fields on the space-time coordinates may be rewritten as
ωt− kz → η+ bη2, and the chirped field function f(ωt− kz) → f(η+ bη2). We
will initially work with

f = cos(φ0 + η + bη2)g(η); g(η) = exp

(

−(η − η̄)2

2s2

)

, (4.6)

where φ0 is a constant initial phase, g(η) a pulse-shape function, and s is related
to the pulse duration τ (full-width at half-maximum) via s = ω0τ/(2

√
2 ln 2).

In our calculations, we choose a shift in η in the envelope function g(η) denoted
by η̄ = 4s. Equation (4.6) models an actual laser pulse where the non-vanishing
pulse integral may be compensated by a quasi-static tail2.

To illustrate the mechanism of acceleration, we show in Fig. 4.2 the normal-
ized electric field E/E0 as a function of η. Interaction of a particle with the
unchirped pulse will result in no energy gain, due to the plane-wave symmetry:
gain from a positive part of the field gets canceled by loss to an equally strong
negative part. However, the chirping breaks this symmetry. Thus, interaction
with the low-frequency (quasi-static) and strong positive part of the chirped
pulse, which extends over roughly one half of the pulse duration, results in net
energy gain.

For a particle initially (η = η0) at rest, c1 = 0 and c2 = γ0 = 1. Thus, Eqs.
(4.4) and (4.5) give the following expression for evolution in η of the particle
kinetic energy

K(η) = (γ − 1)Mc2 =
Mc2

2
(γβx)

2. (4.7)

Using the initial conditions and Eq. (4.6), Eq. (4.5) can be analytically inte-
grated in terms of a complex error function:

γβx(η) = a
s(−1)1/4

√

π
2

2
√

4b2s4 + 1
exp

[

−4b2η̄2s2 + 2ib (η̄2 − 2iη̄s2 + s4) + s2

8b2s4 + 2

]

×
{

e−iφ0

√
2bs2 + i exp

[

i(−η̄ + 2bs4)

4b2s4 + 1

]

erfi

[

(−1)1/4 (η̄ − i (s2(2bη + 1) − iη))

s
√

4bs2 − 2i

]

+ieiφ0

√
2bs2 − i exp

[

iη̄(1 + 2bη̄)

4b2s4 + 1

]

erfi

[

(−1)3/4 (η̄ + i (s2(2bη + 1) + iη))

s
√

4bs2 + 2i

]}
∣

∣

∣

∣

η

η0

(4.8)

2For a formal discussion on the experimental realization of such a pulse, we refer to Sect.
4.5.3.
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Figure 4.3 – Exit kinetic energy gained by one proton as a function of the
dimensionless chirp parameter b in the limit of large η. For the plane-wave
pulse the optimal chirp parameter is b ∼ −0.003033 and Kexit ∼ 262.933 MeV,
while for the focused pulse b ∼ −0.002979 and Kexit ∼ 256.959 MeV. All other
parameters are the same as in Fig. 4.4.

Thus, Eq. (4.7) gives the kinetic energy of the particle explicitly, and helps us
determine the value of the chirp parameter b that maximizes it. Note from Eqs.
(4.5) and (4.7) that the proton energy scales linearly with the laser intensity.

4.3 Focused laser fields and optimal chirp pa-

rameter

In order to test the applicability of the analytic plane-wave model, we compare
results based on it with those stemming from the use of focused laser fields. For
the focused fields, the Lax series expressions will be adopted, according to which
all components Ex, Ey, Ez, By, and Bz [63] are given in powers of the diffraction
angle ε = λ/πw0, where w0 is the waist radius of the beam at focus. Simulations
are performed to solve the equations of motion numerically for a single proton
submitted to the laser fields from an initial position of rest at the origin of
coordinates (η0 = 0). In the simulations, w0 = 5λ gives ε = 1/5π ≪ 1. Hence,
terms in the Lax series up to O(ε2) only need to be retained. The simulations
demonstrate clearly that the two models predict exit kinetic energies that agree
to within 2−3%, see Fig. 4.3. The linear scaling of the exit kinetic energy with
the laser intensity given by the plane-wave model only holds true for intensities
up to about 5 × 1021 W/cm2. For highly relativistic particles the exit kinetic
energy scales as the square root of the laser intensity, which is the case in
conventional TNSA [53], too.

In Fig. 4.4 the exit kinetic energy K of a single proton is displayed as a function
of b in the limit of large η. The energy gain is found to peak globally at the
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Figure 4.4 – Evolution in η of the kinetic energy of one proton. The peak
power P of the employed laser system is 1 PW, which corresponds to a peak
intensity of 2.54× 1021 W/cm2 (being defined as Ip = 2P/πw2

0 [100] throughout
this Chapter) for w0 = 5λ, τ = 50 fs, and λ = 1 µm. Other parameters used
are: φ0 = 0, and η̄ = 4s.

chirp parameter values of b ∼ −0.003033 and −0.002979 for the plane-wave
and focused pulses, respectively, and for the specific laser system parameter
set used. Other optimal chirp parameter values, which can be determined in
like fashion, lead to local, less pronounced kinetic energy maxima. The fact
that the optimal values of b are so close (and so are the corresponding exit
kinetic energies) demonstrates that the analytic solution is quite reliable and
that the plane-wave representation closely describes the physics involved, at
least for the parameter set used in which w0 ≫ λ. On the other hand, it is
obvious that dependence upon b of the exit particle kinetic energy is sensitive,
especially in the regime where high energy is sought. In fact, the plane-wave
calculation yields the uncertainty δK ≈ 1/2(∂2K/∂b2)|b(δb)2, which results
from an uncertainty δb ∼ 10−6 in determining b. The plane-wave calculation
yields δK ∼ 0.195 MeV, or about 0.074%. When one takes δb ∼ 10−5 instead,
the uncertainties increase by two orders of magnitude (δK ∼ 19.5 MeV and
7.4%).

4.4 The Particle-In-Cell method

Before coming to the results of our multi-particle simulations, we introduce
the particle-in-cell method (cf. Ref. [69] for a review) to the reader. As it is
depicted in Fig. 4.1, the starting point of our simulations in this Chapter is a
neutral electromagnetic plasma. Thus two questions may arise:
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1. How can one model such an interacting system, in particular in the pres-
ence of an impinging laser pulse, which leads to relativistic particle dy-
namics and the related effects?

2. Having in mind that we aspire towards the creation of dense particle
beams, we need an electromagnetic plasma of high particle densities in the
excess of 1020 particles/cm3. How could one minimize the computational
efforts of modeling such a system?

Let us answer these questions. Due to the long-range Coulomb interaction
between the charges, it is clear that a typical collision-based approach would
not work here, as singularities would arise. Vlasov circumvented this [101,102]
by introducing a particle distribution function which we denote by fi,e(r,v)3,
where the subscript i stands for ions and the subscript e for electrons, respec-
tively. The Vlasov evolution equation for the distribution function is given
by

∂fi,e

∂t
+ v · ∂fi,e

∂r
+ Fi,e ·

∂fi,e

∂p
= 0. (4.9)

We are concentrating on electromagnetic plasmas only, hence the force Fi,e

entering Eq. (4.9) is given by the Lorentz force [80]

Fi,e = qi,e (E + v × B) . (4.10)

Through the Lorentz force the charged particle dynamics is coupled to Maxwell’s
equations, which read in SI units (cf. Ref. [80]):

∇ · B = 0 (4.11)

∇× E +
∂B

∂t
= 0 (4.12)

∇ · E =
ρ

ǫ0
(4.13)

∇× B − µ0ǫ0
∂E

∂t
= µ0j (4.14)

ǫ0 is the permittivity and µ0 the permeability of vacuum, respectively. The
latter two Maxwell equations contain the sources that can be recovered from
the distribution functions:

j =
∑

i,e

qi,e

∫

fievd
3v, (4.15)

ρ =
∑

i,e

qi,e

∫

fi,ed
3v. (4.16)

Even for the simplest cases, this complicated system of coupled partial differ-
ential equations is cumbersome to solve. As a consequence, in the 1960s a more

3Normally the distribution has to be normalized. Here it is just for illustration purposes.
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Figure 4.5 – Illustration of the particle-in-cell method (adapted from Fig. 6.7
of Ref. [26]).

applicable method to tackle plasma dynamics has been developed [26], the so-
called particle-in-cell (PIC) method. The basic principle of this method is to
replace the particle distribution function by so-called quasi- or super-particles
of mass mi and charge qi. Due to the high number of charged particles in
a dense plasma, each quasi-particle of course does not represent a single real
particle, but rather a couple of particles.

After discretization of the distribution function fi,e, the N quasi-particles can
be simply propagated by means of the Lorentz-Newton equation [80]

d

dt
pi = qi(E + vi × B), (4.17)

with i = 1 . . .N . To solve these equations, we have to solve Maxwell’s equa-
tions, hence, we need the electromagnetic source terms ρ(r) and j(r). Compu-
tational effort can be further minimized by introducing a spatial grid. Then,
the electromagnetic source terms are mapped onto the grid via [26]

ρ(r) =
∑

j

qjS(rj − r),

j(r) =
∑

j

qjvjS(rj − r), j = 1 . . .Ncell, (4.18)

where S(rj − r) is the weighting function and Ncell is the total number of cells
[26]. For most practical purposes it is sufficient to employ a linear weighting
function, that maps the particles’ charges and currents to the grid. Now,
Maxwell’s equations can be integrated numerically on the grid. Afterwards,
the electromagnetic fields at the particle positions may be obtained by using
again the weighting function. Eventually, Eqs. 4.17 are applied to propagate
the particles. This cyclic procedure is illustrated in Fig. 4.5. For further details
on the PIC method, we refer to Ref. [69].

For the subsequent simulations we use a version of the UMKA2D3V code [103–
105] adapted for our purposes, i.e., changing the initial distribution of the quasi-
particles and introducing the above described chirped laser pulse. It is a fully
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Figure 4.6 – Schematic illustration of the particle-in-cell simulation environ-
ment.

kinetic electromagnetic two-dimensional PIC code with three momentum-space
degrees of freedom. The spatial dimensions are restricted to the propagation-
polarization plane of the incident laser. The numerical realization of advanc-
ing the electromagnetic fields, is treated in UMKA2D3V via a finite-difference
second-order Yee scheme, which is defined by the following [106]:

(En+1 − En)/∆t = ∇+ × Bn+1/2 − jn+1/2, (4.19)

(Bn+1/2 − Bn−1/2)/∆t = −∇− × En, (4.20)

∇+ · En = ρn, (4.21)

∇− · Bn+1/2 = 0. (4.22)

The vector representation of the electromagnetic fields on the spatial grid is
defined via En ≡ En

i,j [106], where the space-time coordinates can be restored
as z = i ·∆z, y = j ·∆y and t = n ·∆t, with ∆z, ∆y being the spatial resolution
and ∆t the temporal resolution, respectively [106]. The partial derivatives of
the nabla operators are defined as [106], e.g.,

∂+
z E

n
i,j ≡ En

i+1,j − En
i,j/∆z, (4.23)

∂−z E
n
i,j ≡ En

i,j − En
i,j−1/∆z. (4.24)
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In UMKA2D3V, rescaled units are used of the form [106]

time → time/
2π

ω0
, (4.25)

length → length/λ, (4.26)

electric field → electric field/
mecω0

2πe
, (4.27)

electron/ion density → electron/ion density/
meω

2
0

16π3e2
. (4.28)

To propagate the particles, a second order leap-frog scheme is used in UMKA2D3V,
that turns the Lorentz-Newton equations into [106]

(un+1/2 − un−1/2)/∆t = qα/mα ·
(

E(xn
α, t) +

un
α

γα

× Bn(xn
α, t)

)

,(4.29)

(xn+1 − xn)/∆t =
u

n+1/2
α

γ
n+1/2
α

, (4.30)

where Greek indices denote particles.

The simulation environment is sketched in Fig. 4.6. The laser pulse (green)
enters the simulation box (illustrated as a spatial grid) from the left and is
propagated through vacuum until it reaches the left edge of the plasma target,
which is modeled by positively (red points) and negatively (blue points) charged
quasi particles.

4.5 Results

Having studied the single-particle aspects and the basic principles of the PIC
algorithms, we now present typical simulation results of the interaction of the
chirped laser pulse with a pre-ionized hydrogen target. The target might be
either an expanding hydrogen cluster available at sizes ranging from 1 nm to
1 µm [107] or part of a hydrogen gas jet. We are using the following simu-
lation environment: The spatial resolution of our simulation box is given by
∆z = ∆x = λ/100, where the laser wavelength is still assumed to be λ = 1 µm.
The particle number per cell is 100 both for protons and electrons. The x-
polarized laser enters the simulation box from the left and propagates in the
z-direction. For the fields used to calculate the exit kinetic energy distribution
(see. Fig. 4.9), we choose a simple modification of the plane wave fields given
by E = x̂E0fe

−x2/(2w2
0
) and B = ŷ(E0/c)fe

−x2/(2w2
0
), with f from Eq. (4.6) and

the factor e−x2/(2w2
0
) mimicking spatial focusing in the polarization direction.

The target dimensions are assumed to have a length of 0.2λ in the laser propa-
gation direction, and an extension of 0.6λ in the transverse direction. Here, we
assume the electrons (in the hydrogen gas) to be underdense ne = 0.1 nc, where
nc = 1.1× 1021 cm−3 is the critical density for the wavelength of λ = 1µm. For
the protons, the total number per shot being accelerated as one bunch amounts
to ≈ 107.
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Figure 4.7 – Snap-shots (a) of the electron and proton density distribution
during laser–plasma interaction and (b) of the proton density distribution after
laser–plasma interaction for various times. The laser peak intensity is 2.54 ×
1021 W/cm2.

4.5.1 Plasma dynamics and beam divergence

Fig. 4.7 provides an insight into the acceleration mechanism and the plasma
dynamics. From Fig. 4.7 (a), one can see that when the laser pulse approaches
the gas target, the electrons get blown off the target. The density profile of the
electrons follows approximately the laser field oscillations. At this time (t = 16
laser cycles), the proton distribution almost maintains its initial shape. After
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pulse length 5% longer 10% longer 5% shorter 10% shorter
emission angle 69.4◦ 69.4◦ 71.2◦ 73.4◦

initial phase +1◦ +3◦ +5◦ +10◦

emission angle 69.9◦ 69.9◦ 70.0◦ 70.3◦

target dimension 2× 3× 2× 3×
in propagation direction in polarization direction

emission angle 69.9◦ 69.9◦ 70.0◦ 70.2◦

Table 4.1 – Effects of the variation in the pulse parameters and the initial
target’s dimension on the proton bunch emission angle. The data were calculated
in the framework of the non-interacting proton ensemble.

the interaction of the gas target with the laser pulse, one can see from Fig.
4.7 (b) that the protons are accelerated as a symmetric bunch of homogeneous
density (average density at t = 50 laser cycles: n̄p ≈ 0.04 nc). Note that
the proton bunch is emitted at 70◦ relative to the laser propagation direction
(z-direction).

The control of laser systems in the excess of 1021 W/cm2 is a rather challenging
experimental problem. Probably, not every single laser shot is reproducible at
the same parameters. Due to the fact that our work is motivated by hadron
cancer therapy demanding high reproducibility, it would be interesting to know
how the emission angle varies with small changes in the laser parameters and
in the target dimensions. Investigations on that are summarized in Tab. 4.1.

The table demonstrates that our scheme is quite robust against changes in the
initial set of parameters. In order to investigate the beam displacement at the
tumor due to variation in the initial conditions, we have to estimate the distance
the proton bunch has to travel before arriving at the patient. There have been
interesting conceptual design studies of potential laser-plasma accelerators for
medical applications. J. Weichsel et al. [20] propose an optical gantry, such that
the laser-plasma interaction could take place close to the patient. Assuming
this distance to be 30 cm, the displacement at the tumor amounts to approx.
1 mm for a typical small variation of 0.2◦ in the emission angle. This reaches
the precision of current synchrotron facilities used for hadron cancer therapy.

To make the proton beams applicable for larger variations in the emission
angle, they have to be focused and guided by conventional means after the
laser-plasma interaction has taken place. Recently, this was demonstrated suc-
cessfully by M. Schollmeier et al. [96]. They managed to focus and collimate a
laser-accelerated proton beam with an initial divergence angle of about 60◦ to
a spot diameter of 1 mm.

Due to the comparatively low density of the plasma target and, hence, sup-
pressed Coulomb explosion, the time-dependent beam divergence is low. In or-
der to estimate the spread of the proton ensemble over macroscopic distances,
i.e., upon arrival at a patient, we calculated the two-dimensional volume con-
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Figure 4.8 – Quadratic fit of the proton beam divergence for further time steps.

taining all protons V (t) at further time steps. We then applied a least-squares
fit on the basis of a quadratic function (see Fig. 4.8). We obtained the following
function roughly describing the divergence of the particle beam as a function
of time, V (t) = 1179.25 − 37.26t + 0.40t2, where V (t) is in units of λ2/1000.
The time step t has units of laser cycles.

Assuming the proton bunch moving with a kinetic energy of 250 MeV (corre-
sponding to β = 0.61), and further assuming the patient being located 30 cm
away from the laser-plasma interaction, it takes the proton bunch approx.
δt = 4.92 × 105 time steps to arrive at the tumor tissue. Using the above
formula, the spread of the proton beam increases to V (δt) ≈ 0.98 cm2; this
number roughly corresponds to a divergence angle (opening angle of the cone
defined by the beam) of 2◦.

While this number sounds promising and compares well to other laser accel-
eration schemes, the generated proton beams are not directly applicable for
radiotherapy. Following acceleration, the particles need to be focused and
guided [96] to render the scheme feasible for tumors of various dimensions and
densities. This is probably required in every case whenever ion beams are
generated by laser means.

4.5.2 Exit kinetic energy and its spread

In Fig. 4.9 we compare the exit kinetic energy distribution of 3000 initially
randomly distributed non-interacting particles (see Chaps. 2 and 3 for the
method) in a spatial volume with the same dimensions as the gas target (cf.
Fig 4.7 (a)), with the one stemming from the laser – gas target interaction. In
the case of pure vacuum acceleration K = 258.3 MeV ± 1.2%, while for the
laser-plasma-cell acceleration K = 245.2 MeV ± 0.8%. The small discrepancy
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Figure 4.9 – Proton kinetic energy distributions after the interaction of a
chirped laser pulse (b = −0.003033) with a hydrogen gas target (red) and with
an ensemble of protons without particle-particle interaction effects (black). The
laser peak intensity is 2.54 × 1021 W/cm2 and w0 = 5λ for both cases.

between the reported mean kinetic energies is about 5%, which can be at-
tributed to particle-particle interaction effects. Moreover, the simulation of the
randomly distributed non-interacting particle ensemble has been carried out in
three spatial dimensions, whereas the PIC simulation is two dimensional. Due
to the similar values of the exit kinetic energy in both methods, it is obvious
that the prevailing part of the proton’s kinetic energy is transferred via direct
interaction with the laser field.

To study the effect of shooting on more common gas targets of larger spatial
extent such as hydrogen gas jets, we performed further simulations summarized
in the table below. We studied two possibilities to enlarge the gas target,
namely, in polarization and propagation directions. In both cases the energy
spread increases and the mean energy decreases slightly.

enlargement of initial 2× 3× 5×
distribution energy (MeV)

in pol. direction 250.8 ± 2.9% 244.9 ± 4.6% 228.4 ± 9.4%
in prop. direction 254.3 ± 1.4% 251.1 ± 2.5% 245.1 ± 5.4%

Table 4.2 – Variation of the plasma distribution’s dimensions (initially 0.6λ in
pol. direction and 0.2λ in prop. direction) with resulting mean kinetic energy
and percentage energy spread. Other parameters are as in the captions of Fig.
4.4. The data were calculated in the framework of the non-interacting proton
ensemble.
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(a)

(b)

Figure 4.10 – (a) Histogram showing the spectrum for a large initial distri-
bution. (b) Histogram for the particles with Ekin > 250 MeV. The data were
calculated in the framework of the non-interacting proton ensemble.

In case of enlarging the target in polarization direction, the exponential inten-
sity gradient of the focused fields explains this behavior: particles at different
positions are exposed to laser fields of different strengths. However, we want
to emphasize that even for a considerable increase of the target dimensions
one could still produce proton beams for applications, employing some velocity
filtering after the laser-plasma interaction. Figure 4.10 (a) shows the spectrum
from shooting on a target which was increased by a factor of 40 along the trans-
verse directions. In this case, most particles, i.e., the ones outside of the focus
are certainly not accelerated at all. Cutting the spectrum at a threshold energy
of Ethresh. = 250 MeV yields a monoenergetic spectrum with an energy spread
of about 3% of the remaining particles (cf. Fig. 4.10 (b)). Although only a
small fraction of the total number of particles are within this range, there are
still about 107 particles accelerated in one bunch. As a consequence, it seems
to be sufficient to study the interaction of a chirped laser pulse with a small
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plasma target only.

In case of enlarging the target in propagation direction of the laser pulse, the
energy spread increases as well. Here, it is not possible to enlarge the target
arbitrarily. Otherwise the electrons located at the rear surface are pushed into
the neighboring plasma, leading to different acceleration dynamics not covered
anymore by our model. The target thickness allowed is in the range of a few
micrometers (cf. second line Tab. 4.2), which may be implemented as a gas jet
generated by a micro-nozzle.

In order to reach similar particle energies as given above by using an unchirped
laser pulse one would have to raise the laser intensity by three orders of magni-
tude, to 1024W/cm2. At such an intensity the chirped laser scheme (employing
the same parameters as in Fig. 4.4) already yields monoenergetic proton beams
with K = 17.3 GeV ± 1.0%. This value was calculated in the framework of
the non-interacting proton ensemble.

4.5.3 The pulse form f(η), its frequency spectrum and

the underlying acceleration mechanism

In this subsection we discuss the realization of the pulse form f(η) introduced
in Eq. (4.6). For an electromagnetic pulse purely consisting of oscillating
components, the integral over the pulse form has to vanish. This is not the case
for the pulse form as given by Eq. 4.6, hence, it contains a static component. In
order to realize our pulse as being composed of purely oscillating components,
we have to remove the static zero-frequency component from its frequency
spectrum. First, we have to calculate the Fourier transform of the pulse form
f(η) denoted by f̃(η̃) in order to obtain the frequency spectrum being defined
as |f̃(η̃)|2. We denote the Fourier transformed variable of η by η̃. Recall that
for the coordinate z = 0, η is linearly related to the laser frequency η = ω0t
and it is η̃ = ω/ω0. We work with the symmetric Fourier transform given by

f̃(η̃) ≡ 1√
2π

∫ ∞

−∞

f(η)eiη̃ηdη. (4.31)

For the specific f(η) from Eq. (4.6) the Fourier transform can be carried out
fully analytically based on the assumptions b < 0, s > 0, η̄ > 0:

f̃(η̃) =
Cosh

[

−2η̄(1+bη̄−η̃)+is2(−1+η̃)2

−2i+4bs2

]

2
√

2ib+ 1
s2

+
Cosh

[

is2(1+η̃)2+2η̄(1+bη̄+η̃)
2i+4bs2

]

2
√

−2ib+ 1
s2

+
Sinh

[

−2η̄(1+bη̄−η̃)+is2(−1+η̃)2

−2i+4bs2

]

2
√

2ib+ 1
s2

−
Sinh

[

is2(1+η̃)2+2η̄(1+bη̄+η̃)
2i+4bs2

]

2
√

−2ib+ 1
s2

(4.32)
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Figure 4.11 – Frequency spectrum with applied low-frequency filter (∆ = 0.01)
(green curve), with applied low- (∆ = 0.01) and high- (δ = 0.01) frequency filters
(black curve) and without filter (violet curve). The Fourier transformed variable
is η̃ = ω/ω0.

To cancel the static component one can multiply f̃(η̃) simply by a filter func-
tion, e.g.,

g1(η̃) = 1 − e−
η̃2

2∆2 , (4.33)

where the width ∆ (in units of ω/ω0) introduces a smooth cut-off to the
lower frequency part of the spectrum (see Fig. 4.11). The filtered spectrum
(|f̃filt.(η̃)|2) may then be defined via

f̃filt.(η̃) ≡ g1(η̃)f̃(η̃). (4.34)

In order to determine the total frequency range of a spectrum with the applied
filter bandwidth ∆, one has to define minimal and maximal frequencies of the
spectrum. A reasonable choice may be frequencies at which the intensity drops
down to 1% its peak value, i.e. not influencing particle dynamics. For a filter
choice ∆ = 0.0002 that leaves the kinetic energy gain almost unchanged (see
Fig. 4.12 (b)) it yields ωmin. ≈ 0.0001ω0 and ωmax. ≈ 0.6ω0. The peak of the
dominant low frequency part is located at ω ≈ 0.0010632ω0. For our choice of
ω0 it implies frequencies ranging from approx. νmin. = 10 GHz to νmax. = 100
THz. The peak of the low frequency part of the spectrum in absolute units is
located at ν = 0.32 THz. On the experimental side, such a spectrum may be
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thought of as composed from different types of synchronized lasers, e.g. near-
infrared and CO2 laser systems [72], potentially also terahertz lasers. The rapid
advancement in larger wavelength lasers and spectral synthesis [108] give hope
to availability in near future.

From the intensity distribution of the frequency spectrum in Fig. 4.11 it be-
comes obvious that a charged particle gains the prevailing part of its kinetic
energy from interaction with the low-frequency part of the spectrum. This
can be shown by removing the peaks at higher frequencies from the spectrum
(black line of Fig. 4.11). Mathematically this may be achieved by introducing
another filter function

g2(η̃) = e−
η̃2

2δ2 . (4.35)

The spectrum without peaks at higher frequencies reads then

h̃filt.(η̃) ≡ g2(η̃)f̃filt.(η̃). (4.36)

A high-frequency filter of width δ = 0.1 implies a cut-off frequency at ωc ≈
0.12ω0. Note that ω0 can be related to the scale set by the inverse of the FWHM
pulse duration T−1

FWHM via T−1
FWHM = ω0/30π. This yields ωc ≈ 11.3T−1

FWHM. The
exit kinetic energy gain corresponds in this case to 94% of the unfiltered value.

To arrive at the filtered pulse form factor in η-space we have to apply the
inverse Fourier transform defined as

ffilt.(η) ≡
1√
2π

∫ ∞

−∞

f̃filt.(η̃)e
−iη̃ηdη̃,

hfilt.(η) ≡
1√
2π

∫ ∞

−∞

h̃filt.(η̃)e
−iη̃ηdη̃. (4.37)

This can also be carried out fully analytically. As an example we give the full
expression for ffilt.(η) in Appendix A, Eq. (A.2).

In Fig. 4.12 (a) we plot ffilt.(η) (blue and green line) for different filter band-
widths ∆. The smaller the filter width becomes, the closer the modified pulse
form looks to the original one f(η). For ∆ = 0.0002, the curve of ffilt.(η)
and f(η) cannot be differentiated on the plot’s scale. Furthermore, from
Fig. 4.12 (a) (black line) one can see that even without the high frequency
part of the spectrum the strong positive part in the center of the pulse re-
mains maintained. In case of a non-optimal choice of the chirp parameter (red
line), the positive and negative areas in the center of the pulse cancel partially,
resulting in low energy gain.

Figure 4.12 (b) shows the evolution of the kinetic energy for the pulse form
factor f(η) and for the filtered pulse form factors ffilt.(η) and hfilt.(η), respec-
tively. The difference in the exit kinetic energy of f(η) and ffilt.(η) amounts
only to approximately 3% and for f(η) and hfilt.(η) the difference is about 6%.
This clearly explains the underlying acceleration mechanism: The large posi-
tive (asymmetric) part of the pulse caused by the peak in the low-frequency
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Figure 4.12 – (a) Low-frequency filtered pulse form factor ffilt.(η) for different
filter widths ∆. High- and low-frequency filtered pulse form factor hfilt.(η) for
optimal chirp parameter b = −0.003033 (black line) and for a non-optimal chirp
parameter b = −0.00298 (red line). (b) Evolution of the kinetic energy for f(η),
ffilt.(η) and hfilt.(η).

part of the spectrum results in net energy gain of the particles. Even for a
wider η-range (e.g. η ∈ [−12s,+12s]), the exit kinetic energy remains almost
unchanged. Hence, it is possible to obtain approximately the same results from
a pulse form without a static component.
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We may verify that the integral over the filtered pulse form vanishes, as re-
quired:

lim
a→∞

∫ a

−a

ffilt.(η)dη
!
= 0. (4.38)

Whereas the integration can still be carried out analytically (resulting in a
large expression), the limiting procedure is to be done numerically with ”∞”
being replaced by a large number, e.g. a→ 106. This calculation yields a small
numerical value close to 0.

We would like to annotate that in the plane wave case the integration over
η from −∞ to +∞ would result in zero energy gain for a particle exposed
to a purely oscillating pulse. Hence, Sect. 4.2 only yields a good estimate
of the exit kinetic energy for a finite range of integration centered around the
strong positive part of the pulse. In an experimental set-up the interaction with
the quasi-static negative (decelerating) tail resulting from the above-described
filtering of the static component can be circumvented by shooting in the gas jet
just shortly before the arrival of the positive part of the laser pulse. In further
studies, it would be interesting to study the interaction of the long quasi-static
tail with a hydrogen cluster in order to check if and when ionization takes place.
In Ref. [41] it was demonstrated that for Highly Charged Ions (HCI) ionization
first takes place at the peak of the envelope of the incident laser (at comparable
intensities as those used in our set-up), which leads to GeV electron energies.

4.6 Conclusions

In this Chapter we studied the interaction of a frequency-chirped laser pulse
with an underdense hydrogen plasma target of spatial extent of the order of the
laser wavelength. The electrons are quickly blown off the target, while the more
inert protons become subsequently accelerated via direct energy transfer from
the quasi-static laser field. We have demonstrated the theoretical feasibility
of creating a dense proton beam (107 protons per bunch) of high energy (≈
250 MeV) and good quality (energy spread ∼ 1%). The required laser peak
intensity of about 1021 W/cm2 is within the range of state-of-the-art high-
intensity laser systems [5].

Furthermore, we developed an analytical model for determining the optimal
pulse shape and the final kinetic energy of the particles, which is in good
agreement with the performed 2D-PIC simulations. The agreement of the
kinetic energy with calculations assuming a non-interacting initial ensemble is
also within 5%.

Our work has mainly been concerned with proton acceleration to energies and
densities required for hadron therapy. Following acceleration, ion beam shaping
[96] beyond the scope of this thesis has to be applied.
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Summary and Outlook

We began our theoretical studies in Chapter 2 in the framework of vacuum
laser acceleration of charged particles, investigated first for electrons [32, 33]
and later for ions [62]. The basic idea is to directly expose a random, non-
interacting ensemble of bare nuclei to an intense laser field [62]. We apply laser
fields of linear [63] and radial polarization [64, 65, 71, 74]. Key to achieving
relativistic laser intensities in the excess of 1020 W/cm2 is the tight focusing to
the order of the laser wavelength [62]. The use of long-wavelength CO2 laser
systems leads to an increase by three orders of magnitude in the total particle
number per bunch being accelerated, as compared to usual optical lasers with
wavelengths around 1 µm. Based on relativistic simulations, we demonstrate
the theoretical feasibility of creating ion beams of energies of several hundred
MeV having a low energy spread of only 1 %.

In Chapter 3, we study the interaction of a pulsed laser system with a particle
source having the typical properties as being created from a laser-plasma inter-
action process such as TNSA or S-LPA. While in Chapter 2 the particles are
assumed to be “born” in the focus of the laser beam at the peak value of its in-
tensity as it might be the case for an ionization process [41], we model a realistic
particle injection mechanism in Chapter 3 letting the particle ensemble inter-
act with the full pulse. Schemes in a single- and a crossed-beams [31,32,37,38]
configuration are studied. Particle-particle interaction effects are shown to be
negligible in the presence of ultra-strong laser fields. We show the theoret-
ical feasibility of creating dense particle beams maintaining the good beam
properties of Chapter 2. For the first time, all requirements for broader radio-
oncological use are fulfilled based on an all-optical set-up (I ≈ 1024 W/cm2).

Chapter is devoted to the study of the interaction of a strongly chirped [66–68]
laser pulse with a plasma target. The target is assumed to be an underdense
hydrogen plasma with spatial dimensions of the order of the laser wavelength.
Interaction between the laser pulse and the target is studied within the nu-
merical framework of two-dimensional PIC simulations (cf. Ref. [69] for a
review). This allows for a fully relativistic treatment of the classical dynamical
many-body problem of an electromagnetic plasma. Our theoretical investiga-
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tions indicate the possibility of creating dense monoenergetic proton beams of
low angular divergence while interacting with laser systems of intensities being
available at present-day facilities (I ≈ 1021 W/cm2). The results of the PIC
simulation for the exit kinetic energy agrees on a five-percent level with results
obtained from a non-interacting ensemble, letting us conclude that at the in-
tensities used, particle-particle interactions only yield minor contributions to
the underlying process [94].

The present work may stimulate further studies in the field. It would be cer-
tainly interesting to also investigate the dynamics and the acceleration gradi-
ents of electrons being shot into the strong quasi-static fields used in Chapter 4.
Also, the Fourier analysis of chirped pulses used in Chapter 4 may be extended
to a general ansatz of a laser pulse represented as a superposition of finite
frequency components. The amplitudes of the different components may then
be numerically optimized to yield a pulse form that maximizes the particles’
final kinetic energy. Furthermore, in the light of future high-intensity laser
facilities such as ELI [6] or HiPER [7], the interaction of even an unchirped
laser pulse with micron-size targets (possibly of spherical symmetry [109]) may
reveal further interesting properties for the creation of ion beams. In particu-
lar, at intensities exceeding 1023 W/cm2, it was recently shown based on the
Landau-Lifshitz propagation equation that radiation back-reaction effects play
an important role for linearly polarized laser light [110].

Recently, there arose a discussion about the possibility of creating electron-
positron pair cascades at laser intensities > 1024 W/cm2 in particular in the
presence of matter [111, 112]. These QED effects lead to laser field absorp-
tion and may put limitations the proposed acceleration process. Hence, also
further quantum mechanical studies on the underlying concept of laser accel-
eration would be appealing. Additionally, the interaction of the quasi-static
tail preceding the laser pulse applied in Chapter 4 could be investigated quan-
tum mechanically by solving the time-dependent Dirac equation in order to
make quantitative predictions about the role of a ionization in the acceleration
process.

Furthermore, the dynamics of a highly relativistic electron ensemble in autores-
onance acceleration [42], where the frequency of cyclotron motion (caused by a
strong static external magnetic field) of the electrons’ orbits coincides with the
laser frequency, may lead to the emission of intense coherent radiation of short
wavelengths. Such autoresonant acceleration and the possibility of creating co-
herent hard x-ray or gamma radiation may also be studied in the framework of
Particle-In-Cell simulations describing the creation of an electron bunch from
an underdense gas target in an ab initio manner. Current results indicate a
gamma ray spectrum with photon energies of up to 150 keV from electrons
undergoing autoresonant betatron motion in a laser wakefield scenario [113].



Appendix A

Inverse Fourier transform

Here we give an analytical expression for the inverse Fourier transform of Eq.
(4.34) defined as
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lustige gemeinsame Stunden danke ich Anis Dadi, Dr. Hossein Ebadi, Dr. Hua-
yu Hu, Dr. Mihai Macovei, Dr. Bennaceur Najjari, Dr. Octavian Postavaru,
Sandra Schmid, Dr. Jacek Zatorski, . . . .



Für immer dankbar bin ich meiner Familie, die mich all die Jahre lang mit
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