
Inaugural-Dissertation
zur

Erlangung der Doktorwürde

der
Naturwissenschaftlich-Mathematischen Gesamtfakultät

der
Ruprecht-Karls-Universität

Heidelberg

vorgelegt von: Diplom-Informatiker
Lorenzo Masetti
aus Florenz

Tag der mündlichen Prüfung: 25 Oktober 2011

Implementation of a Large Scale
Control System for a

High-Energy Physics Detector:
The CMS Silicon Strip Tracker

Lorenzo Masetti

Gutachter: Prof. Dr. Volker Lindenstruth

Prof. Dr. Peter Fischer

Implementation of a Large Scale Control System for
a High-Energy Physics Detector: The CMS Silicon
Strip Tracker

Control systems for modern High-Energy Physics (HEP) detectors are
large distributed software systems managing a signi�cant data volume
and implementing complex operational procedures. The control software
for the LHC experiments at CERN is built on top of a commercial soft-
ware used in industrial automation. However, HEP speci�c requirements
call for extended functionalities.

This thesis focuses on the design and implementation of the con-
trol system for the CMS Silicon Strip Tracker but presents some general
strategies that have been applied in other contexts.

Speci�c design solutions are developed to ensure acceptable response
times and to provide the operator with an e�ective summary of the status
of the devices. Detector safety is guaranteed by proper con�guration
of independent hardware systems. A software protection mechanism is
used to avoid the widespread intervention of the hardware safety and
to inhibit dangerous commands. A wizard approach allows non expert
operators to recover error situations and minimizes the downtime due to
errors. Finally, the possibility of using a model-based methodology for
prototyping 3D user interfaces for control systems is investigated.

The presented software is in continuous operation for the control of
the CMS tracker while some general solutions have been adopted in the
control systems of other CMS sub-detectors.

Implementierung eines umfangreichen Kontrollystems
für den Siliziumstreifen-Tracker-Detektor des CMS
Hochenergiephysik-Experimentes

Kontrollsysteme für Teilchendetektoren moderner Hochenergiephysik-Ex-
perimente (HEP) bestehen aus einer Vielzahl von verteilten Softwaresys-
temen, die eine signi�kante Menge an Daten verarbeiten und komple-
xe Betriebsprozesse steuern. Bei den Experimenten des LHC am CERN
wurden die Kontrollsysteme auf das kommerzielle Programmpaket PVSS
von ETM aufgebaut, welches auch für die industrielle Automatisierung
verwendet wird. Jedoch forderten die speziellen Anforderungen der HEP
eine weitreichende Erweiterung der Funktionalität.

Diese Arbeit konzentriert sich auf das Design und die Implementie-
rung des Kontrollsystems für den CMS-Siliziumstreifen-Detektor, zeigt
jedoch auch generelle Strategien auf, die in anderen Kontexten erarbei-
tet wurden.

Es wurden spezi�sche Lösungen entwickelt, die geringe Reaktionszei-
ten des Systems gewährleisten und dem Operator e�ektive Übersichten
über den Status des Systems und dessen Bausteine bieten. Die Sicher-
heit des Detektors wird durch die Kon�guration unabhängiger Hardware-
Systeme gewahrt. Ein zusätzlicher, softwarebasierter Schutzmechanismus
wird genutzt, um den Eingri� des Hardware-Sicherheitssystems auf ein
Minimum zu reduzieren, und um potenziell gefährliche Befehle der Ope-
ratoren zu unterdrücken. Des weiteren erlaubt ein �Wizard� auch Opera-
toren, die keine Experten sind, nach einer Störung wieder zum normalen
Betrieb zurück zu gelangen, und somit die Ausfallzeiten zu minimieren.
Zuletzt wird die Möglichkeit untersucht, eine modellbasierte Methodik
zur Verwendung von dreidimensionalen Benutzerober�ächen für das Kon-
trollsystem zu verwenden.

Die derzeitige Software wird dauerhaft für die Kontrolle des CMS-
Trackers verwendet, wobei einige generelle Lösungsansätze auch für die
Kontrolle von anderen CMS-Subdetektoren übernommen wurden.

Contents

Introduction 5

1 Large Control Systems: Domain De�nition, State of the
Art and Trends 7

1.1 De�nition of SCADA . 7
1.2 The Supervisory Layer: Requirements and Architecture . 9
1.3 The Front End Layer . 13
1.4 The Communication Layer 14
1.5 Automatic Actions in a SCADA System 15
1.6 Human-Machine Interface Principles 15
1.7 Security Risks in SCADA Systems 16
1.8 Evolution of SCADA Systems 17
1.9 Short Survey of SCADA Products 19
1.10 The PVSS-II SCADA System 19

2 Requirements for the CMS Tracker Control System 23

2.1 The CMS Experiment at LHC 23
2.1.1 CERN and High-Energy Physics 23
2.1.2 The Large Hadron Collider 25
2.1.3 Overview of the CMS Experiment 26

2.2 The CMS Silicon Strip Tracker 29
2.2.1 Silicon Microstrip Detectors 29
2.2.2 Structure and Geometry 32
2.2.3 Front End and Readout Electronics 34
2.2.4 Radiation Damage E�ects 35

2.3 The Front End Layer for the Control of the CMS Tracker 36
2.3.1 Power Supply System 36
2.3.2 Cooling System 41
2.3.3 Tracker Safety System 42
2.3.4 Detector Control Units 45

2.4 External Systems . 46

CONTENTS

2.5 Data Volume and Expected Change Rate in the Tracker
Control System . 46

3 The CMS/LHC Detector Control System 51
3.1 Scope of the Detector Control System 51

3.1.1 Architecture of the Online System (DAQ, DCS,
Run Control) . 51

3.1.2 Detector Safety System 52
3.1.3 Role of the Detector Control System 52

3.2 Control Layers . 53
3.3 Criteria for the Selection of the SCADA Product 54

3.3.1 Scalability . 54
3.3.2 Structured Runtime Database 55
3.3.3 Extensibility . 56
3.3.4 Constant Development 56
3.3.5 Ease of Use of the Scripting Language 56
3.3.6 Cross-Platform 57
3.3.7 Market and Commercial Aspects 57

3.4 The JCOP Framework 58
3.4.1 Architecture . 58
3.4.2 Hardware and Logical View 59
3.4.3 The JCOP Finite State Machine 60
3.4.4 The Conditions Database for Historical Archiving 63
3.4.5 The Con�guration Database for Changing Run-

ning Conditions 63
3.4.6 Security Policy for LHC Control Systems 64
3.4.7 Access Control in the JCOP Framework 65

3.5 Integration Policies for CMS DCS 66

4 Strategies for the Implementation of the CMS Tracker
Control System 69
4.1 Principles . 69
4.2 Finite State Machine Hierarchy 72
4.3 Handling of the Power Groups 74
4.4 Task Distribution . 74
4.5 PLC Probes Handling in DCS Software 76
4.6 Handling of the DCUs and Communication with the DAQ 79
4.7 The Custom Con�guration Database 80
4.8 Checking Procedures for the Con�guration of the Safety

System . 82
4.9 Performance Analysis of the Communication with the Hard-

ware . 85

2

CONTENTS

4.9.1 Performance of the Communication with the Power
Supply System 85

4.9.2 Performance of the S7 Driver in the Communica-
tion with the PLCs 93

4.10 Performance of PVSS dpGet and dpSet 93
4.11 Caching of Static Data 98
4.12 Implementation of Protection Actions 99
4.13 Propagation Algorithm 100

4.13.1 Summarizing the State of the System 100
4.13.2 Assumptions on the Structure of the Hierarchy . . 104
4.13.3 Strategy for the Propagation of the Information in

a Tree Structure 105
4.13.4 Implementation in PVSS 107
4.13.5 Customization for the Case of CMS Tracker . . . 109
4.13.6 Application of the Propagation Algorithm to the

DCS of Other Sub-detectors 113
4.14 Wizard for Error Diagnosis 115
4.15 De�nition of Alerts . 120
4.16 Periodical Checks . 121
4.17 Graphical User Interface 122

4.17.1 Principles . 122
4.17.2 Tools for Fast Information Retrieval 128
4.17.3 Access Control 129
4.17.4 Tasks and User Interaction During a Typical Shift 130

5 CMS Tracker as a Case Study for Automatic 3D GUI
Prototyping for Control Systems 133
5.1 Introduction and General Objectives 133
5.2 The BATIC3S Methodology and Framework 134

5.2.1 Introduction . 134
5.2.2 Domain De�nition and Requirements 135
5.2.3 Methodology . 135
5.2.4 The Domain Model 137
5.2.5 System Simulator and Model Transformation Tech-

niques . 138
5.2.6 GUI Prototype 139

5.3 The Cosmic Rack Case Study 140
5.4 Outcomes of the Collaboration and Further Development 141

Conclusions 145

Acknowledgements 147

3

CONTENTS

Bibliography 149

4

Introduction

The new generation of High-Energy Physics (HEP) experiments poses
new challenges to the �eld of control systems. The control system of a
large detector, such as the ones installed at the Large Hadron Collider
(LHC) at CERN, must evaluate and operate on more than one million
parameters. These are read out from heterogeneous front end devices
enabling detector operation and ensuring its safety. Despite the com-
plexity of the equipment, the control system should provide the user
with a straightforward and e�ective interface for monitoring and com-
manding the status of the hardware. In order to cope with the huge
data volume and with the complex and varied tasks needed to operate
the experiment, the control system must be distributed over several PCs
managing autonomous but co-operative entities, hierarchically organized
and integrated in an overall supervisor. The control systems for each par-
ticular sub-component or sub-detector of the experiment are developed
in parallel and �nally integrated to ensure coordination between the var-
ious components. To facilitate their integration, the various sub-projects
are developed following the guidelines and exploiting the functionalities
of a common framework developed at CERN.

The present thesis focuses on the design and implementation of the
control system for the Silicon Strip Tracker of the CMS experiment. From
the point of view of controls, the CMS tracker is one of the most com-
plex LHC sub-detectors. The Tracker Control System manages about
105 power supply parameters, 104 parameters read out from the Safety
System and 105 additional environmental values, read out by the Data
Acquisition (DAQ) system. The complexity of the control system called
for innovative solutions both with respect to the current state of the
art, represented by modern industrial automation softwares, and to the
general methodologies adopted in the control of the LHC experiments.

Given the dimensions of the system, a particular emphasis is given
to performance issues. Possible performance bottlenecks were identi�ed
and speci�c design solutions were established to resolve them. Original
strategies include a caching mechanism for most of the static informa-
tion, maximal role distribution among the various machines in order to

INTRODUCTION

avoid unnecessary data exchange over the network and �ne tuning of
the hardware drivers. The detector is controlled by a hierarchy of Finite
State Machine (FSM) objects reporting the state of the detector at di�er-
ent levels of detail. This standard approach needs to be integrated with
quantitative information, providing the user with an e�ective summary
of the status of the individual devices. This requirement led to the devel-
opment of a general library to propagate the status changes in real time
without overloading the system. Given the success of this method, this
library was later adopted by other sub-detectors. Moreover, the con-
trol system includes a tool that automates the analysis and resolution
of problems. This kind of analysis, usually left to human experts, can
be e�ectively performed automatically, thus minimizing downtime and
relieving the experts from unnecessary work.

Outline

Chapter 1 presents the general layered and modular architecture of Su-
pervisory Control and Data Acquisition (SCADA) systems, commonly
used for the control of industrial facilities and distributed infrastructures.

Chapter 2 gives an overview of the requirements for the CMS Tracker
Control System, in the context of the LHC experiments. The detector
and the control front end hardware are described underlining the resulting
requirements for the control system.

Chapter 3 discusses the speci�c requirements for a HEP experiment
control system. The chapter includes the description of the common
framework developed at CERN in order to integrate control-speci�c tasks
with HEP-related features, minimize the duplication of work and ensure
the homogeneity of the developments.

Chapter 4 is the core of the thesis. It presents the innovative and
original solutions developed for the control of the CMS tracker and the
principles that guided the design and the development.

Finally, Chapter 5 presents the results of a study investigating a
model-based development for the automatic prototyping of three-dimen-
sional interfaces for complex control systems.

6

Chapter 1

Large Control Systems: Domain
De�nition, State of the Art and

Trends

The present thesis is focused on the design and implementation of the
Detector Control System (DCS) for a High-Energy Physics (HEP) ex-
periment. This type of control software belongs to the general category
of Supervisory Control and Data Acquisition (SCADA) systems. This
chapter presents the scope and the common problems to be addressed
in this type of distributed software. One particular commercial SCADA
product was selected for the implementation of the control systems at
CERN. Its architecture is presented here in detail, in the context of the
general architecture of a SCADA system.

1.1 De�nition of SCADA

Supervisory Control and Data Acquisition (SCADA) [1] is a general term
for a system for monitoring and controlling a remote process1. SCADA
systems cover a wide range of applications. Typical �elds where SCADA
systems are used include:

• industrial processes, such as manufacturing, production, power gen-
eration

1The meaning of the term Data Acquisition in the context of SCADA is di�erent
from the meaning that the term has in experimental physics, where it is referred to
the data-taking from the equipment for physics purposes. In a SCADA system the
term refers to the reading of the parameters that characterize the front end devices
and has to deal with a much lower data rate than a Data Acquisition (DAQ) system
of a HEP experiment.

Large Control Systems: Domain De�nition, State of the Art
and Trends

• infrastructure processes, such as water treatment, oil and gas pipe-
lines

• facility processes in buildings, airports, ships and space stations.
SCADA systems can be used in this kind of environment for heat
and ventilation control, access management or energy consumption
monitoring.

Control systems are by nature distributed and are typically organized
into three layers:

• a supervisory layer gathering (acquiring) data from the controlled
process for visualization and analysis and sending commands (con-
trol) to the process

• the front end layer, connected to sensors in the process, convert-
ing sensor signals into digital data and sending digital data to the
supervisory system

• a communication layer, connecting the supervisory layer to the
front end layer.

The supervisory layer also implements a Human-Machine Interface
(HMI) that enables the operator to visualize the state of the system and
to give commands. The front end layer can be geographically distributed
over large areas and in some cases (especially in industrial environments)
access to the front end devices can be restricted for safety reasons. These
conditions call for a stable and reliable control system, allowing the re-
mote operation of the process.

SCADA systems are not a complete control system, but only its soft-
ware component, focused on the supervisory level, positioned on top of
the controlled hardware. Most commercial products used in this con-
text are SCADA toolkits that provide a general framework for building
customized SCADA systems.

As the acronym states, a SCADA system implements three distinct
functionalities (Supervision, Control and Data Acquisition).

Supervision is related to all the software tasks that enable the ob-
servation of the present or historical status of the system, including the
processing and analysis of acquired data.

Control tasks imply the change of the state of the system and can be
triggered by user commands or by automatic actions, in response to the
state of the process.

Data Acquisition tasks are related to communication with the front
end devices for reading and writing data. The primary objective of a

8

1.2 The Supervisory Layer: Requirements and Architecture

SCADA system is not the data acquisition itself, but rather the supervi-
sion and control tasks allowed for by the data [2]. Moreover, instead of
data acquisition it would be more correct to talk about data exchange,
since the communication with the front end layer is bidirectional.

Historically a distinction was made between SCADA and Distributed
Control Systems (DCS)2. This distinction is based on the grade of distri-
bution of the system intelligence. According to the traditional de�nition,
in SCADA systems the elaboration and control functions are all imple-
mented in the supervisory level. On the other hand in DCS systems, the
intelligence is distributed over many controllers that implement speci�c
control tasks. The most common example of Distributed Control Sys-
tems are control loop systems that attempt to correct the error between a
measured process variable and a desired setpoint by calculating and then
outputting a corrective action that can adjust the process accordingly.
Currently this distinction is disappearing in the terminology and SCADA
refers to the high level software component of the control architecture.
In most cases a modern control system includes intelligent processing in
the front end layer to deal with safety-critical or time-critical tasks.

1.2 The Supervisory Layer: Requirements and

Architecture

Basic requirements [3] of a modern SCADA system used in industrial
automation are:

• data collecting capabilities to e�ectively conduct the desired mea-
surement and control tasks

• uninterrupted system monitoring and recording of the gathered in-
formation to a historical database

• software versatility allowing the con�guration of system parameters
and the programming of ad hoc supervising procedures

• possibility to develop a user-friendly Graphical User Interface (GUI)
providing a convenient way of interacting with the system

• comprehensive alerting and reporting capabilities in order to promptly
inform the personnel in the presence of emergent situations

2The term DCS is used here with the general meaning of Distributed Control Sys-
tem, di�erent from the meaning of Detector Control System, that is used throughout
the full document.

9

Large Control Systems: Domain De�nition, State of the Art
and Trends

Runtime Database

Archiving

Data
Acquisition

Alarm
Handling

Automatic
Actions

Handling

Communication Layer

Front End Layer

Human-
Machine
Interface

Supervisory Layer

Relational
DB

External
applications

Web Service
Interface

Data
Processing

Figure 1.1: Architecture of the supervisory layer of a SCADA system. A central-
ized collector (runtime database) provides access to the data. The various functional
modules communicate with the Runtime Database only. The users interact with the
HMI layer of the SCADA system and with external applications. External applica-
tions can access historical data via the relational database and online data via a web
service interface.

• openness to the external world by means of standard interfaces.

The supervisory layer of a SCADA system must implement three fun-
damental functionalities: data collecting, data processing and publishing
of the information to external systems.

Data collecting requires a centralized access point where the system
image (i.e., the values of all the variables describing the status of the con-
trolled process) is stored, continuously updated and made available to all
the software processes needing access to the data (see Fig. 1.1). This
centralized collector, usually termed runtime database, should provide
the typical database features and must ensure a very short access time.
For every data element, the runtime database must provide at least one
data identi�er (typically a string), the timestamp of the last reading, the
current value and a quality �ag. For better performance, the system im-
age is typically kept in memory. Data elements are usually called tags or
points. A distinction can be made between hard and soft points. A hard
point represents an actual input or output value, monitored or controlled

10

1.2 The Supervisory Layer: Requirements and Architecture

by the SCADA system, while the value of a soft point is computed from
the values of other points. Most implementations treat hard and soft
points in the same way, allowing the developer to de�ne which points
correspond to a speci�c hardware address.

Since the controlled hardware is often very expensive and has a long
lifetime, SCADA system are typically operated for years without sig-
ni�cant changes to the software. The architecture of SCADA products
meets these requirements. The runtime database is designed to be quite
static. It is typically con�gured once during deployment and then used
to operate the hardware for a long time without changing its structure.

Due to the processing model of the SCADA system, the natural way
to communicate between processes is an event-driven architecture, where
the computation �ow is determined by events. In this case, events cor-
respond to changes in the value of the points in the runtime database.
This is preferred over an architecture where the clients contact the run-
time database periodically (polling) because in case of stable processes
the system load is much lower with the event-driven approach.

The smoothing mechanism is the foundation of an event driven sys-
tem. In its most simple form (old/new comparison) it compares the new
value with the previous value of the element, generating an event only if
the new value is di�erent. In case of measured values, it is useful to de�ne
a threshold (deadband), related to the precision of the instrumentation,
and to update the value only when the di�erence with the previous value
is greater than the de�ned deadband.

The acquired data has to be archived in order to analyze the evolution
of the process. The recommended tool to archive historical data is a
relational database. Relational databases provide a standard interface
to external applications and are suited to handle large amounts of data.
They have a longer response-time compared to the runtime database, but
since the archived data is accessed for o�ine analysis and not for control
purposes, longer access times are not an issue. The event-driven strategy
can also be used for archiving. In this case the deadband is typically
larger than the one used for the data acquisition. This allows the control
system to report small data �uctuations to the user while only signi�cant
trends are archived into the database.

Given the high data volume and the great complexity of the controlled
process, a human operator cannot analyze all the collected data. For this
reason a SCADA system must implement real time procedures to gener-
ate high level information presented to the user. Regarding commands,
the user should be provided with high level commands instead of having
to control each speci�c device individually. To ful�ll these requirements,
data processing must provide the means to deduce the relevant summa-

11

Large Control Systems: Domain De�nition, State of the Art
and Trends

Good Range

Warning
Range
(high)

Warning
Range
(low)

Alert
Range

(too high)

Alert
Range

(too low)

alert went

warning went

warning went

alert went

warning came

alert came

warning came

alert came

Figure 1.2: Example of alert ranges and possible transitions. The range of all
possible values of an element is partitioned into regions corresponding to warning or
critical conditions. CAME transitions occur when the value moves to a more severe
alert range. WENT transitions occur when the value moves to a less severe alert
range.

rized information from the primary data read from the devices, signal to
the user any anomalous value, translate high level commands into proper
sequences of low level actions and provide automatic control procedures
in response to certain state changes.

To achieve the needed �exibility in data processing, SCADA program-
mers should not be limited to the con�guration of the runtime database
or to the design of the user interface. Instead, the SCADA toolkit must be
customizable with the help of a general-purpose programming language,
fully integrated with the SCADA functions.

An important feature of a SCADA system is alert handling. Alerts are
used to identify anomalous values in the system that should be reported
to the user who can take some corrective actions. The range of all possible
values of a parameter can be partitioned into two or more alert ranges.
Each alert range has a priority (0 for the normal range). A CAME
transition is a transition into an alert range with higher priority while
a WENT transition is a transition to an alert range with lower priority
(see Fig. 1.2). Alerts must typically be acknowledged by the user. If

12

1.3 The Front End Layer

 OK

Came /
Unacknowledged

Came

Went /
Unacknowledged

Ack

CameWent

Came /
Acknowledged

Ack

Went

Figure 1.3: Possible states and transitions for an acknowledgeable alert. After a
critical situation, the alert state can go back to OK only if the user has acknowledged
the presence of the alert condition.

the alert has to be acknowledged and the condition passes before the
user acknowledgement, the alert goes to state WENT/Unacknowledged,
so that the information regarding a past critical situation is not lost (see
Fig. 1.3).

Finally a SCADA system must provide the tools for exiting the system
by publishing the data in standard open formats. Historical data are
archived in a relational database that provides a standard interface for
web tools and advanced visualization software. External applications
performing specialized tasks may also require access to online data. This
type of communication is typically provided via a web-service interface
that uses a service-oriented architecture. The use of a standard protocol
favors the integration with third-party software components. The use of
external specialized applications is desirable since they can be specially
designed to handle additional functionalities while allowing the SCADA
system to focus on control tasks.

1.3 The Front End Layer

The front end layer is directly connected to the controlled hardware and
performs the �rst processing steps. Front end layer devices can be used
to measure various physical properties (temperature, humidity, voltages,
currents) or to provide speci�c services (power system, pumps, air con-
ditioning, cooling). Digitization is typically performed at the front end
layer.

13

Large Control Systems: Domain De�nition, State of the Art
and Trends

Programmable Logic Controllers (PLC) are highly robust diskless dig-
ital computers that are commonly used at the front end layer to imple-
ment real-time control features. PLCs produce output results in response
to input conditions within a bounded time. Inputs are collected from
hardwired sensors measuring analog process variables, such as temper-
ature and pressure, or from complex positioning systems. Outputs are
connected to the actuators and can be used to operate electric motors,
pneumatic or hydraulic cylinders, magnetic relays and so on.

1.4 The Communication Layer

The current trend in the �eld control systems is the standardization of the
communication between the front end and supervisory layers. Standard
network protocols used in the Internet, such as TCP/IP and UDP/IP
over Ethernet are commonly adopted. This choice enables use of inexpen-
sive components, existing infrastructure and well-established debugging
techniques.

At the application level, OPC (OLE for Process Control) [4] is emerg-
ing as a de facto standard for process control, providing a homogeneous
way of communicating with di�erent hardware devices. Each hardware
manufacturer typically provides a speci�c OPC server which acts as a
protocol converter for communicating with its custom hardware devices.
The main advantage of standardization at the application level is that
the communication with the hardware can be established with some con-
�guration e�ort rather than with low-level driver programming.

The OPC standard was developed in 1996 in order to solve the lack
of standardization in the �eld of inter-connectivity to di�erent hardware.
The OPC speci�cation is based on protocols primarily based on Microsoft
technologies (currently DCOM) and can only run under the various ver-
sions of the Microsoft Windows operating system3.

While many PLC manufacturers provide an OPC server to commu-
nicate with their hardware, other protocols are still commonly used to
interface SCADA systems to PLCs, without using a speci�c software
component in the communication layer. Examples of proprietary proto-
cols for communicating with PLCs are Siemens S7, published by Siemens,
and Modbus, published by Modicon.

Not all data needed for supervision purposes is directly acquired from

3The �rst step towards a platform-independent implementation of the OPC proto-
col has been taken with the speci�cation of the OPC Uni�ed Architecture (OPCUA)
which is independent from DCOM and is implemented in Java, Microsoft .NET and
ANSI C.

14

1.5 Automatic Actions in a SCADA System

front end hardware. In case of large infrastructures, some data acquired
in one station must be broadcasted to a signi�cant number of other loca-
tions. In this case it is often convenient to use a high level exchange pro-
tocol, such as DIM (developed at CERN). Moreover the SCADA system
may also need to treat data acquired by an external specialized applica-
tion. For this purpose external applications can communicate with the
SCADA system via a web-interface using a standard protocol. SOAP is
a common choice for this type of communication, since it is supported
by most programming frameworks.

1.5 Automatic Actions in a SCADA System

Especially for safety critical tasks, experience shows that user-intervention
in control systems should be minimized. This recommendation is not
based on prejudices or a lack of con�dence in the operators, but rather
on the negative impact of psychological pressure on operator abilities.

Automation is absolutely needed for safety related actions and time
critical tasks. In these cases it is necessary not only to automate the
control but also to distribute the safety logic in peripheral devices at the
front end level. This ensures high reliability and speed. PLCs are the
industrial standard for establishing such safety procedures.

Automatic control procedures are also highly desirable when the de-
cision process is very complex. If a large number of variables needs to
be checked in order to determine the appropriate action, a human oper-
ator is unable to perform this analysis on an acceptable timescale. The
control procedures can be automated in these cases and user interaction
limited to the con�rmation of some actions.

1.6 Human-Machine Interface Principles

Interaction with the user is carried out by the HMI component of a
SCADA System. Usability of the interface is a key-point in the develop-
ment of a control system. Ideally, the control application should act as a
transparent interface between the two real actors, the operator and the
controlled industrial process.

A usable and responsive interface increases the con�dence of the op-
erators in the system, even in critical conditions, limiting the situations
of psychological stress. Minimization of the interaction, automation of
repetitive operations, simpli�cation of common user tasks are all elements
that contribute to the success of a SCADA system.

15

Large Control Systems: Domain De�nition, State of the Art
and Trends

Two types of functionalities can be distinguished in the interaction
with a SCADA system: data presentation and command handling.

Data presentation typically makes use of schematic representations,
symbolical states, tables and temporal trends.

Schematic representation uses standard symbols to improve the us-
ability of the interface. For example, a green LED representing an ON
channel is more e�ective than a text �eld with the string �ON�. The us-
age of a standard color convention favors an immediate understanding
of data presented in symbolic or numerical form. Tables are useful for
expert users, especially when a comparison must be made between two
or more values. History trends are very e�ective for the representation
of the evolution of the process. Expert operators can easily recognize
known patterns from the trends of key variables.

Command submission should be protected from unauthorized access
and from accidental undesired actions. It is important to introduce some
form of feedback when a command is executed, such as command ac-
knowledgement when the feedback time for the expected state change is
longer than a few seconds. In case of complex procedures started by the
user and automatically handled by the system, it is important to have
a feedback for each step and to show the progress of the operation, to
con�rm that the system is properly reacting to commands.

Human interaction in modern SCADA systems is not limited to the
operators that are physically present in the control room. In SCADA
softwares many independent user-interface clients can typically be con-
nected to the system core. The user interface is not limited to standard
computer displays but can involve other telecommunication devices. Au-
tomatic noti�cations using SMS or email can also report unexpected
events to experts. Moreover, information can be published on the web
where it can be accessed from mobile phones or palmtop computers thus
facilitating access to SCADA information from outside the control room.

1.7 Security Risks in SCADA Systems

With the adoption of standard communication infrastructures and com-
mercial products, new vulnerabilities are also inherited in the control
systems [5, 6]. Security threats are becoming more worrisome because of
the desired connection between the dedicated controls networks and the
general network.

The security risk can be expressed as a product of three factors:
threat, vulnerability and consequence.

Threats originate from worms, viruses and malicious attackers com-

16

1.8 Evolution of SCADA Systems

ing from the external network, but also from operators miscon�guring a
device or from broken devices that �ood the network. Protective mea-
sures must be put in place to prevent external threats penetrating control
systems and also to prevent the insiders from (deliberate or accidental)
unauthorized access.

Inherent vulnerabilities a�ect most of the actors in the control sys-
tem networks. PLCs and other controls devices are nowadays directly
connected to the Ethernet but often lack security protections. Control
PCs cannot be patched as fast as o�ce PCs, as any interruption of the
services they provide has to be scheduled beforehand. In addition the
control software might not be compliant with some patches. Some pro-
tocols commonly used in automation systems, such as OPC, also lack
fundamental access control features.

However, these concerns must be addresses since the consequences
from su�ering a security incident can be very severe. In general SCADA
systems are vital components of many critical infrastructures, such as wa-
ter and transportation systems, chemical plants, power stations. There
is a potential for great harm to human life and to the equipment safety if
these control systems are breached. In the HEP environment, an incident
can lead to damage of unique equipment.

A key point for improving SCADA security is network segregation.
Communication between the controls network and the Internet, though
unavoidable, should be reduced to minimum. Additional network segre-
gation allows for further protection of vulnerable devices such as PLCs.
PLCs and other front end devices accessible via Ethernet should be con-
nected only to the restricted set of PCs that are entitled to communicate
with them.

1.8 Evolution of SCADA Systems

The evolution of SCADA systems in the last years and the current
trends for future SCADA applications can be summarized in the fol-
lowing points:

Usage of Standard Protocols In the last ten years, the communica-
tion layer of SCADA systems moved from proprietary protocols
supporting the hardware of a particular vendor, to open standard
protocols such as Modbus or OPC over TCP/IP. Open architecture
SCADA systems enable users to integrate transparently di�erent
manufacturers' equipment.

Openness to the External World Modern SCADA systems are be-
coming more and more integrated with external applications, pro-

17

Large Control Systems: Domain De�nition, State of the Art
and Trends

viding a service oriented interface using standard protocols. Using
network technologies, a SCADA system is no longer con�ned to a
stand-alone or dedicated network but rather allows operators any-
where to access the data in real-time.

Security Issues Communication with the external world calls for im-
proved SCADA security. Security is traditionally a weak aspect of
SCADA systems. Modern SCADA systems should evolve towards
more security.

Distribution and Interconnection The supervisory layer architecture
relies on a central element (the runtime database) that coordinates
all other processes. However, in order to cope with a very large
amount of data, the system needs to be distributed over many cen-
tral coordinators running in several PCs. The distributed elements
should be connected to form a network of autonomous and cooper-
ating nodes, exchanging the needed information but still performing
most of the work locally.

Object-Oriented Architecture Traditional SCADA products are tag-
based. The runtime database provides a completely �at names-
pace that collects a non structured set of elements. Instead, in
object-oriented SCADA systems, each elementary device is con-
trolled within a speci�c class that provides both the data structure
and the relevant methods to operate on that type of objects. In-
heritance and polymorphism allow for the de�nition of standard
templates for similar devices, that can then be specialized to im-
plement a speci�c device model. The object-oriented methodology
favors reusability, eases code development and increases the �exibil-
ity of the application. However, most SCADA products will most
likely not move to a real object-oriented methodology in a near
future, because this would imply a major change in architecture.
Some leading companies in the SCADA �eld, such as Wonderware,
have already developed SCADA toolkits that use an object-oriented
methodology. Wonderware advertises the positive impact of the
methodology on the development in terms of lifecycle savings [7].
In any case, most of the aforementioned advantages can also be
obtained by structuring the runtime database in types (without
object-oriented features).

18

1.9 Short Survey of SCADA Products

1.9 Short Survey of SCADA Products

Most SCADA toolkits used in the industrial environment are commercial
products. A large number of SCADA products is available on the market.
They have varying features and complexity and are aimed at di�erent
applications. Examples of widely-used commercial SCADA products are
Wonderware InTouch, Intellution iFix, Siemens WinCC and ETM PVSS-
II.

In the scienti�c environment, LabVIEW by National Instruments is a
popular choice for controlling small-scale setups. It provides libraries for
data acquisition, signal generation and processing. However, the data�ow
programming approach is un�t to manage a large number of devices in
a distributed system.

Experimental Physics and Industrial Control System (EPICS) 4 is
a collaborative and open source set of software tools and applications
used in building distributed control systems. It has been successfully
used in many HEP applications. EPICS is based on a protocol (Channel
Access) that allows di�erent clients to access the points (termed Process
Variables) published by di�erent servers in a distributed environment.
Di�erent runtime databases (termed Channel Access Services) can be
accessed transparently. The client only needs to know the name of the
Process Variable, and not the address of the Channel Access Service that
publishes it. EPICS can also be used to program closed-loop controllers
at the front end level.

CERN chose the application to use for implementing the control sys-
tems for the new LHC experiments at the end of the 90's. The speci�c
requirements for HEP experiments leading to this choice will be discussed
in detail in Chapter 3.

A survey of the SCADA market was performed, resulting in the se-
lection of PVSS-II5, a product by the Austrian company ETM (recently
absorbed by Siemens). A discussion of the criteria leading to this choice
can be found in Section 3.3.

1.10 The PVSS-II SCADA System

PVSS-II implements the general architecture of a SCADA system. It
presents many advantages compared to other SCADA products, notably
a structured runtime database, a modular architecture and a good scal-

4http://www.aps.anl.gov/epics/
5Acronym for Prozessvisualisierungs und Steuerungssystem, Process Visualization

and Control System

19

Large Control Systems: Domain De�nition, State of the Art
and Trends

Visualization,
Operation

Processing, Archiving

Process Image,
Communication

Interface to hardware

Figure 1.4: Example of the modular architecture of one PVSS-II system contain-
ing many independent distributed managers. The Event Manager (EV) keeps the
system image in memory. The hardware devices are accessed via dedicated driver (D)
managers. Processing, archiving and visualization tasks are carried out by speci�c
managers.

ability thanks to the possibility of interconnecting independent projects.
PVSS is a modular distributed software where the functionalities are

implemented in independent processes, called managers, that commu-
nicate via the standard TCP/IP protocol, either locally or over a local
network (see Fig. 1.4). Managers exchange data following an event-
driven protocol so that in steady-state operation, when the values are
not changing, there is neither communication nor processing load.

Communication with hardware is implemented in special managers
called drivers (D). The common drivers that are provided with PVSS-II
are OPC, S7, Pro�BUS, CANbus, Modbus, TCP/IP and Applicom. The
drivers for speci�c CERN protocols, such as DIM and DIP, have also
been developed.

The central processing unit in PVSS-II is the Event Manager (EV).
The EV keeps in memory the current system image (the runtime database)
and ensures the distribution of data to the other managers that request
it or that have subscribed to it. Every other manager wanting to access
the online data communicates only with the event manager and never
with the speci�c driver.

The runtime database is structured in typed data points, containing
a structured set of elements that can be con�gured to be connected to
a particular driver. The managers can interact with the Event Manager
by getting or setting the value of a speci�c element or by subscribing to

20

1.10 The PVSS-II SCADA System

its changes.
The Database Manager (DB) maintains a persistent image of the

status of the runtime database on disk, which is accessed whenever the
project is restarted, in order to restore the latest recorded values.

The User Interface Managers (UI) provide the HMI for PVSS, while
the Control Managers (CTRL) are used to run background scripts. Scripts
and user interfaces are programmed in a speci�c interpreted language
that uses a C-like syntax but provides some PVSS-speci�c functions.

PVSS-II is extensible by means of an Application Programming In-
terface (API) in the form of C++ classes. The developer can implement
custom functions as additional independent managers.

A Relational DataBase (RDB) manager provides the connection to a
relational database for long-term archiving of the monitored parameters.
This manager was customized and optimized by the IT department at
CERN (see Sec. 3.4.4).

The managers can connect to remote EV and DB managers. If some
managers are connected to a remote event manager, running on a di�er-
ent PC, the PVSS system is said to be scattered.

Many PVSS systems can be connected by adding a Distribution Man-
ager (DM) to each system. Each system keeps a separate namespace for
the data (handled in its own EV), but when two systems are connected,
the remote namespace is available by adding the system name pre�x. To
access the data in a remote PVSS system, a manager issues the request
to the speci�c event manager. The communication with the EV of a
remote system does not have any speci�c overhead since it follows the
same protocol used for contacting the local EV.

21

Large Control Systems: Domain De�nition, State of the Art
and Trends

22

Chapter 2

Requirements for the CMS
Tracker Control System

The newest particle physics experiments also pose new challenges to disci-
plines outside of physics, such as engineering and computer science. This
chapter focuses on the control requirements for operating the CERN ac-
celerator complex and the related experiments.

In particular, the working principle and the geometry of the CMS
Silicon Strip tracker are presented in this chapter. The front end hard-
ware used for the operation of the detector is described in detail. The
Detector Control System (DCS) provides the means to operate the front
end hardware remotely and to monitor the environmental conditions of
the detector. It plays a pivotal role in ensuring the proper con�guration
of the safety features programmed at the front end level. Many parts of
the controlled hardware are not accessible during LHC operation because
of the hostile environment. Finally, the data volume and the expected
change rate to be handled in the Tracker Control System is presented.

2.1 The CMS Experiment at LHC

2.1.1 CERN and High-Energy Physics

Particle physics is the branch of physics that studies the elementary con-
stituents of matter and the interactions between them. Modern particle
physics research is focused on subatomic particles. Many elementary
particles cannot be directly observed under normal circumstances in na-
ture, but can be created and detected during energetic collisions of other
particles. The experiments that enable the observation of elementary
particles rely on sophisticated detectors that employ a range of advanced
technologies to measure and record particle properties. The cost and

Requirements for the CMS Tracker Control System

Figure 2.1: The Standard Model of elementary particles, with the gauge bosons
in the rightmost column.

complexity of the experiments, accelerators and infrastructure call for
international laboratories where large collaborations of scientists work
together. CERN, the European Organization for Nuclear Research, is
the world's largest particle physics laboratory, established in 1954. The
detectors at the LHC accelerator are currently the most advanced exper-
iments in the �eld of particle physics.

Interactions between elementary particles are currently best described
by the Standard Model of particle physics (SM). According to the SM,
elementary particles can be divided into fermions and bosons (see Fig.
2.1). Fermions are the particles that constitute matter and are subdi-
vided into two types, leptons and quarks. Leptons include the electron,
the muon, the tau and their associated neutrinos, forming three pairings,
of increasing mass. Unlike leptons, quarks exist in nature only in com-
bination with other quarks forming hadrons. As in the case of leptons,
quarks are organized in pairs of increasing mass. In addition to electric
charge, the quarks carry a di�erent kind of charge known as color that
is related to the strong interaction.

Each of the pairings �ts together in a structure called a generation
(see Fig. 2.1) The charged particles of the �rst generation are the light-
est and hence do not decay. Almost all ordinary matter is made of such
particles. The charged particles of the second and third generations are
more massive and have short lifetimes. These particles are only observed
in high-energy environments. Neutrinos are extremely light neutral par-
ticles that interact rarely. In addition, for every elementary particle
discussed above there is an antiparticle, that is, a particle with the same

24

2.1 The CMS Experiment at LHC

Figure 2.2: Map of LHC underground areas hosting the accelerator, four main
experiments and service accesses.

properties but with opposite charge.
Particles interact via three fundamental forces: gravity, the strong

force and the electroweak force. Gravity is too weak to have any e�ect
at the elementary particle scale and is not included the Standard Model.
In the SM, interactions correspond to the exchange of force mediating
particles, called bosons.

The SM has been very successful in explaining experimental results,
but cannot be considered a complete theory of fundamental interactions.
All the particles in the theory have been experimentally observed and
their properties have been studied extensively. There is one exception,
the Higgs boson, a particle predicted by the SM, but never con�rmed in
experiment. Data collected at Large Electron-Positron Collider (LEP)
�xed a lower limit for the Higgs boson mass of ∼ 114 GeV. The experi-
ments at the new Large Hadron Collider at CERN will be able to explore
the mass interval up to 1 TeV, an upper limit imposed by the theoretical
consistency of the Standard Model.

2.1.2 The Large Hadron Collider

The Large Hadron Collider (LHC) [8] will be the most powerful hadron
collider running in the next years. It is built in place of the former Large
Electron-Positron Collider (LEP). The LHC tunnel is about 27 km long,
located about 100 m underground underneath the French-Swiss border
between the Jura Mountains and the Lake Geneva. It will provide two
proton beams colliding at a center of mass energy of 14 TeV. The beams

25

Requirements for the CMS Tracker Control System

are initially accelerated by other CERN facilities: a linear accelerator, a
Booster, the Proton Synchrotron (PS) circular accelerator and the Super
Proton Synchrotron (SPS) that injects 450 GeV proton beams into the
LHC ring. As the collisions occur between particles of the same kind,
superconducting magnets generate a vertical magnetic �eld with opposite
direction in the two beam pipes.

The beams are brought to collide in four experimental areas where
the four main LHC experiments are located: ATLAS at Point 1, ALICE
at Point 2, CMS at Point 5 and LHCb at Point 8 (see Fig. 2.2).
ATLAS and CMS are multi-purpose experiments, while the other two
are dedicated experiments, one to heavy ion physics, ALICE, and the
other to b quark physics and precision measurements of CP violation,
LHCb.

As the particles of interest have very low production cross sections,
in order to collect signi�cant statistics, the rate of collisions has to be
higher than in any earlier experiment. The parameter that is commonly
used to quantify the rate of the collisions is the luminosity that is pro-
portional to the number of protons in the two colliding bunches, to the
revolution frequency of the bunches, and to the number of bunches, and
inversely proportional to the cross section of the beam. To achieve a
high luminosity, the two beams will contain 2 808 closely-spaced bunches
�lled with an average of 1.15 × 1011 protons. The bunches collide every
25 ns, corresponding to a frequency of 40 MHz.

2.1.3 Overview of the CMS Experiment

The Compact Muon Solenoid (CMS) experiment [9] is a general pur-
pose detector operating at the LHC. CMS is built following the typical
structure of a general purpose detector designed for a collider: several
cylindrical layers coaxial to the beam direction, referred to as barrel lay-
ers, closed at both ends by detector disks orthogonal to the beam pipe,
the end caps. The detector has a full length of 21.6 m, a diameter of
15 m and a total weight of 12 500 tonnes (see Fig. 2.3).

The coordinate frame used to describe the detector geometry is a
right-handed cartesian system with the x axis pointing to the center of
the LHC ring, the z axis coincident with the CMS cylinder axis (parallel
to the beam direction) and the y axis directed upwards, orthogonal to the
beam direction. Because of the cylindrical symmetry of CMS design, it
is convenient to use an alternative pseudo-angular reference frame, given
by the triplet (r, ϕ, η) where r is the distance from z axis, ϕ the azimuthal
coordinate with respect to x axis and η is the pseudorapidity de�ned as
η = − ln(tan(θ/2)), θ being the angle from the positive z semiaxis.

26

2.1 The CMS Experiment at LHC

Figure 2.3: Schematic picture of the CMS experiment at LHC. CMS is composed
of various sub-detectors that enable detection and measurement of the energy of the
di�erent particles that are produced in a collision.

In this reference frame, we can describe the CMS sub-detectors, in-
stalled radially from inside out:

Tracker r < 1.2 m |η| < 2.5 Silicon tracker composed of a pixel ver-
tex detector and an outer Silicon Strip Tracker (SST) to reconstruct
charged particle tracks and determine primary and secondary ver-
tices. The pixel detector is composed of 3 barrel layers and 2 disks
per side. The SST is composed of 10 layers in the barrel and 3
inner plus 9 outer end cap disks per side.

ECAL 1.2 m< r < 1.8 m |η| < 3 Electromagnetic calorimeter de-
signed to measure with high accuracy the energies of electrons and
photons, composed of PbWO4 scintillating crystals and a forward
preshower detector.

HCAL 1.8 m< r < 2.9 m |η| < 5 Hadron calorimeter system for
jet position and transverse energy measurements, extended in the
forward region with a very forward calorimeter.

Solenoid Magnet 2.9 m< r < 3.8 m |η| < 1.5 The CMS magnet
is a 13 m long superconducting solenoid with a diameter of 5.9 m.
It is large enough to accommodate most of the calorimeters and
the inner tracker. It provides an inner uniform 4 T magnetic �eld,
which allows a precise measurement of the transverse momentum
of charged particles, determined from the curved track that the
particle follows in the magnetic �eld.

27

Requirements for the CMS Tracker Control System

Figure 2.4: View of the CMS detector before closure (August 2008)

Muon System 4.0 m< r < 7.4 m |η| < 2.4 Muons provide a sig-
nature of most of the physics processes the LHC is designed to
explore. Fast muon identi�cation and precise measurements of the
transverse momentum are thus essential for the LHC experiments.
Three types of detector are used in the CMS Muon System: Drift
Tubes (DT), Cathode Strip Chambers (CSC) and Resistive Plate
Chambers (RPC). The DTs are used for precise trajectory mea-
surements in the central barrel region, while the CSCs are used in
the end caps. The RPCs provide a fast signal when a muon passes
through the muon detector and are installed in both the barrel and
the end caps.

To have a good chance of producing a rare particle, such as a Higgs
boson, a very large number of collisions are required. The amount of
raw data from each crossing is approximately 1 MB, which at the 40
MHz crossing rate would result in 40 TB of data a second, an amount
that the experiment cannot process or store. The CMS Trigger and Data
Acquisition System (TriDAS) is designed to inspect part of the detector
information at the full crossing frequency and operate a drastic selection,
reducing the event rate to a manageable value of 100 Hz. The rate of
interesting physics events is orders of magnitude smaller than the total
interaction rate. The TriDAS system must be able to reject a factor of
4× 105 of the collisions while ensuring the selection of interesting events
with high e�ciency.

Contrary to ATLAS and other large general-purpose experiments, in

28

2.2 The CMS Silicon Strip Tracker

CMS the selection task (the Trigger) is split into just two steps. The
�rst step, the Level-1 Trigger, is designed to reduce the rate of events
accepted for further processing from 40 MHz to less than 100 kHz. It
is implemented in fast hardware logical circuits and is based exclusively
on calorimeter and muon chamber information. The remaining event
selection, the High Level Trigger (HLT), is implemented in an analysis
software running on a commercial computer farm.

The CMS experiment is installed at Access Point 5 of the LHC ring,
near Cessy. The experiment is located in the Underground eXperimen-
tal Cavern (UXC) that will be a hostile environment with high radia-
tion levels and a strong magnetic �eld during LHC operation. All the
electronics located in UXC have to be radiation hard, while ordinary
electronic equipment can be used in the adjacent Underground Service
Cavern (USC) in a standard environment. The hostile environment of
the CMS cavern during operation of the accelerator calls for sophisticated
and reliable remote and automatic control of the devices placed in the
UXC.

After the online data taking phase, data has to be stored and an-
alyzed o�ine. Computing and storage requirements for CMS and the
other LHC experiments would be di�cult to ful�ll at any one place, for
both technical and funding reasons. Therefore, the LHC computing en-
vironment uses Grid services, with distributed computing and storage
resources, available to all collaborators, independently of their physical
locations and on a fair share basis.

2.2 The CMS Silicon Strip Tracker

2.2.1 Silicon Microstrip Detectors

The electrical and physical properties of silicon derive from its crystal
structure. In silicon the energetic levels of the outermost atomic elec-
trons are distributed in bands of closely spaced energy states separated
by forbidden energy regions [10]. The higher energy band is called con-
duction band and corresponds to those electrons that are free to migrate
through the crystal. The next lower-lying band, called the valence band,
represents electrons that are bound to speci�c lattice sites within the
crystal. The separation between the energy of the lowest conduction
level and the highest valence one is referred to as the bandgap Eg. This
fundamental parameter determines the energy needed to excite an elec-
tron up to the conduction band, leaving at the same time an empty level
in an otherwise �lled valence band. This vacancy can be �lled by an elec-
tron from an adjacent bond, creating a new vacancy in another position.

29

Requirements for the CMS Tracker Control System

The moving vacancy can be treated as a positive charge free to move in
the material and is called a hole.

In silicon Eg is equal to 1.12 eV (at room temperature) and this
relatively low value classi�es this material as a semiconductor. The small
size of the forbidden gap makes silicon an attractive material for detecting
the passage of particles.

When there are no impurities in the crystal, the material is said to be
intrinsic and the densities of electrons and holes are equal. In the case
of silicon detectors, it is convenient to introduce in the crystal appro-
priate impurities in minute but well-controlled amounts. This process is
called impurity doping and the material that results is termed a doped
semiconductor.

Silicon has four electrons in the valence shell, each one makes a co-
valent bond with one electron of a neighboring atom. The resulting
structure is a regular repetition in three dimensions of a unit cell having
the form of a tetrahedron with an atom at each vertex.

If some of the silicon atoms are replaced by pentavalent ones like phos-
phorus, four of the �ve outer shell electrons will form covalent bonds; it
then takes very little thermal energy to free the extra electron for con-
duction. At room temperature, essentially every pentavalent atom con-
tributes an electron for conduction. This type of elements donate excess
electron carriers and consequently are called donors or n-type impurities.
Each donor atom that becomes ionized by giving up an electron will leave
a �xed positively charged ion in the crystal lattice.

Instead, when trivalent atoms like boron are added to the silicon,
only three of the silicon covalent bonds can be �lled; the vacancy existing
in the fourth unsaturated bond can easily trap a nearby electron from
silicon atoms resulting in a new adjacent vacancy. This mobile vacancy
represents a hole that can move through the lattice. Such elements are
known as acceptor or p-type impurities.

The concentrations of donor and acceptor atom are referred to as the
donor impurity concentration ND and the acceptor impurity concentra-
tion NA. A material where ND > NA is referred to as n-type material,
while in a p-type material NA > ND.

In a single semiconductor crystal, donor impurities can be introduced
in one side and acceptors on another side, forming a p-n junction. Be-
cause of the density gradient across the junction, holes will initially dif-
fuse towards the n-type region and electrons will start to migrate in the
opposite direction. The overall result is that the positive holes that neu-
tralized the acceptor ions near the junction in the p-type silicon have
recombined with electrons that have di�used across the junction. Simi-
larly, the free electrons in the n-type silicon have recombined with holes

30

2.2 The CMS Silicon Strip Tracker

Figure 2.5: Principle of operation of a silicon detector. A particle crossing the
device produces along its trajectory electron-hole pairs that are collected by the metal
electrodes and constitute the electrical signal. The read out elements are divided in
strips in order to obtain a position-sensitive device. Picture taken from [11].

coming from the p side of the junction. Therefore this process creates
a region across the junction where �xed charged ions are located. This
region is depleted of free charge carriers and is called the depletion re-
gion. The migration of free carriers creates at the same time a potential
barrier that contrasts the di�usion process until a state of equilibrium is
reached. The voltage corresponding to the potential barrier is known as
built-in voltage Vbi.

An external voltage, Vbias, of the same sign of the built-in one can be
applied to the junction to increase the width of the depletion zone. In this
situation the junction is said to be reverse-biased. If a su�ciently high
voltage is applied, the whole silicon volume is depleted of free carriers.
The voltage at which this condition is reached is called the full depletion
voltage.

Under equilibrium conditions, electron-hole pairs are thermally gen-
erated everywhere within the volume of the crystal and are separated by
the electric �eld created by the bias voltage giving rise to the leakage or
reverse current.

A reverse-biased p-n junction can be used for particle detection. As a
particle traverses the depletion zone, the charge released can be collected
under the e�ect of the electric �eld and read out. On the other hand, the
charge created in the non depleted zone recombines with the free carriers
and is lost. Hence in silicon detectors the crystal volume is usually fully
depleted.

A simpli�ed view of a silicon detector is depicted in Fig. 2.5. An
n-type silicon bulk serves as the active volume for the detector and a

31

Requirements for the CMS Tracker Control System

Figure 2.6: Test of the insertion of the pixel detector inside the Strip Tracker,
and views of the Tracker Inner Barrel, Tracker Outer Barrel and Tracker End Cap at
the end of the integration process.

heavily doped p+ implantation is used to deplete the junction of free
carriers. The junction is completely depleted by applying a reverse bias
voltage Vbias.

A charged particle crossing the detector creates along its trajectory
electron-hole pairs that drift towards the metal electrodes. This charge
migration induces a current pulse on the read out electrodes and con-
stitutes the basic electrical signal. The total integral of the current is
proportional to the number of produced pairs and hence to the energy
loss of the particle.

In order to obtain position-sensitive devices, the p+ side is divided
into smaller independent elements, constituting an array of narrow strips,
each one equipped with an independent read out circuit.

2.2.2 Structure and Geometry

The SST is divided into four sub-partitions: two barrel structures and two
end cap pairs. The two innermost sectors are the Tracker Inner Barrel
(TIB), the cylindrical section, and the Tracker Inner Disks (TID), the
end cap. The two outer detectors are the Tracker Outer Barrel (TOB),
the cylindrical section, and the Tracker End Cap (TEC) (see Fig. 2.6
and 2.7).

32

2.2 The CMS Silicon Strip Tracker

Figure 2.7: Pictorial view of the CMS tracker. The di�erent colors identify each
sub-detector: TIB (pink), TID (cyan), TOB (orange) and TEC (green). The pixel
detector is yellow.

Figure 2.8: Insertion of the tracker inside the CMS detector.

33

Requirements for the CMS Tracker Control System

The four regions were developed and integrated by three di�erent
communities with a certain degree of independence: the TIB/TID, the
TOB and the TEC communities. While sharing some basic elements, the
three collaborations implemented some speci�c choices.

The SST basic sensitive unit is the module, which comprises a silicon
microstrip sensor and the associated electronics. Modules are arranged in
layers (in the barrel) and in disks (in the end caps). Since some part of the
surface of each module is reserved for the electronics and input/output
connections, the geometrical position of the modules is designed to cover
each layer with the sensitive area of at least one module without leaving
any blind region. The SST is composed of 15 232 modules covering an
overall surface of 206 m2. In terms of silicon surface, the CMS tracker is
the largest silicon tracker ever built.

Tracker modules can be either single-sided or double-sided. Double-
sided modules are made of two independent single-sided modules glued
together back-to-back with a relative rotation of 100 mrad respect to
each other. Single-sided modules allow only the measurement of (r, ϕ) in
the barrel and (z, ϕ) in the end cap. Double-sided modules can measure
the three coordinates.

The modules are integrated in larger structures (sub-assemblies) which
implement mechanical support, cooling and connection with the con-
trol electronics and power supplies. Regarding communication with the
DAQ control system, a branch of modules sharing the same control node,
termed Communications and Control Unit (CCU), form a control group.

2.2.3 Front End and Readout Electronics

The main DAQ device is a custom designed circuit called Analog Pipeline
Voltage-mode chip (APV25), which ampli�es and samples the microstrip
signals. When the APV25 receives the trigger signal, it transmits its
analog output over an optical �ber to the readout components outside
the detector which performs the digitization.

APVs sample the signal from microstrip sensors synchronously with
the clock and, when triggered, serialize these signals on their analog
output lines. The APV25 has 128 analog inputs, each one connected to
a di�erent microstrip of the sensor. The signal is sampled at the full
LHC frequency of 40 MHz and the sampled pulses are placed into the
analog pipeline consisting of 192 cells. When the pipelines are �lled, data
is overwritten by the new samples.

Upon receiving a trigger, all the 128 signals are multiplexed into a
single analog output. The signals from each pair of APVs are then mul-
tiplexed again by the APV multiplexer into a single 40 MHz analog line.

34

2.2 The CMS Silicon Strip Tracker

Figure 2.9: Picture of a single-sided TIB module. Each module has 512 or 768
strips that are read out by a custom-designed circuit that, when triggered, transmits
analog data over an optical �ber.

The electric to optical conversion is done on a dedicated module, called
Analog Opto-Hybrid (AOH), directly connected to each detector module.

The optical �ber outputs are joined together by special extensions
(called ribbons) of 12 �bers that are brought to a panel outside the
tracker (patch panel) where the �bers are further packed in multiribbon
cables. These cables bring the analog signals to the Front End Drivers
(FED), housed in the USC, which perform the signal digitization and the
�rst signal processing.

2.2.4 Radiation Damage E�ects

The CMS tracker silicon detectors will operate in a high radiation envi-
ronment caused both by particles produced in the primary proton-proton
interaction and by neutrons emitted from the calorimeters surrounding
the silicon tracker itself. Because of the high collider luminosity, the
foreseen radiation level is much higher than in previous hadron colliders.

The macroscopic e�ects of radiation damage to a silicon detector are
an increase of the leakage current, the change of the full depletion voltage,
increased noise and reduced charge collection e�ciency. The bias voltage
might be adapted after several years of operation of the silicon strip
tracker, but it should never exceed 500 V for all the modules, including
the inner ones that are exposed to higher �uence.

To reduce the e�ects of radiation damage, the silicon detectors will
be kept cold, working at a temperature of −10 ◦C. Only during limited
maintenance periods, the detectors will be �warmed� up to above 0 ◦C.
The electronics dissipate power, so a cooling system is needed to maintain

35

Requirements for the CMS Tracker Control System

this temperature. A coolant �uid at a temperature of −25 ◦C reaches
all the devices of the tracker. A thermal shield (called thermal screen)
separates the tracker volume from outer detectors. In order to safely
operate the detector under these conditions, temperature and humidity
should be constantly monitored.

2.3 The Front End Layer for the Control of

the CMS Tracker

2.3.1 Power Supply System

The Power Supply System for the CMS Silicon Strip Tracker [12, 13]
provides High Voltage (HV) bias and Low Voltage (LV) power to the
silicon strip modules of the detector. The HV is needed to bias the
modules and allow particle detection. The LV is needed to power the
APVs.

The power supply system must be able to deliver ∼ 15 kA inside the
tracker volume, for a total power of ∼ 33 kW. The design of the power
supply system had to satisfy numerous constraints. The choice of the
electronics was governed by requirements on noise and on the response
to sudden current transients. The need to con�gure the powering of
the system with a �ne granularity and to setup small scale integration
centers for testing di�erent parts of the tracker called for a modular
and distributed design. Under this scheme each group of homogenous
modules are powered by an independent unit, performing low level safety
tasks.

The power supply modules are installed in racks located on balconies
at both sides of the detector, at around 10 m distance from the interaction
region, in the UXC. The hostile environment in the cavern implies that
the power supplies are inaccessible during the operational period of the
experiment.

From the control point of view, these constraints impose the need
for a reliable control and diagnosis system. In addition to providing the
remote control, the DCS should permit the identi�cation of problems and
solve them remotely, when physical access to the experimental cavern is
not possible.

Even though the power system is designed to take autonomous safety
actions in case of critical conditions, current and voltage thresholds are
con�gurable over a large range. Proper con�guration of the channel
parameters, which is one of the main control system duties, is therefore
absolutely critical for the detector safety.

36

2.3 The Front End Layer for the Control of the CMS Tracker

The power supply system was implemented by CAEN1, a leading com-
pany in the �eld of sophisticated electronic equipment for Nuclear Physics
research. The power supply modules are completely custom made for the
CMS tracker and are integrated within the new EASY (Embedded As-
sembly SYstem) scheme. Under this scheme, power supplies are directly
located in the hostile area and remotely controlled by a supervisor main-
frame placed far away in standard environment.

Each silicon strip tracker module requires one HV regulator to bias
the sensors and two LV regulators (one at +2.5 V and one at +1.25 V,
respectively for digital and analog electronics) to power the front end
chips and the other circuitry. Modules are grouped into 1944 �power
groups� consisting of 2 to 12 modules (12 to 56 APV). The grouping
criteria are governed by the mechanics and by the density of channels.
A �ner granularity is adopted at low radii, close to the interaction point.
The digital control optoelectronics requires a distinct powering system.
Control services are grouped in 356 CCU-rings, each one requiring a 2.5 V
power source.

The power supply system building block is the Power Supply Unit
(PSU) providing the two low voltage sources and two high voltage sup-
plies to one power group. To increase �exibility, the PSU has two in-
dependent high voltage channels, each one powering about half of the
modules in the power group. Two PSUs are combined into one Power
Supply Module (PSM) of type A4601H. Another PSM model (A4602),
providing 4 low voltage (+2.5 V) channels is used to power the control
rings and can be included in the same powering scheme.

Up to 9 PSMs are lodged inside one standard crate (19′′ wide, 6U
high). Up to 6 crates (grouped in one rack) can be controlled by one
Branch Controller through a CAENBUS communication link (a custom
implementation of the CANBUS). Up to 16 branch controllers can be
inserted into a CAEN mainframe (SY1527) that can communicate via
ethernet to the supervisory layer of the control system (see Fig. 2.10).
SY1527 mainframes run a standard Linux operating system that acts as
a server to the supervisory layer. A speci�c OPC server is dedicated to
communicate with the mainframe.

The Power Supply Units are served by two independent +48V DC
sources, one for the service electronics (called service power) and one for
the �nal power stage of the regulators. In the base implementation chosen
by the tracker, each 48V power source serves a crate of power supplies.
Another 48V source provides service power to each rack of crates. A
CAEN 48V converter board2 hosts two independent 48V channels that

1Acronym for the Italian Costruzioni Apparecchiature Elettroniche Nucleari.
2CAEN model A3486, also known as �MAO�

37

Requirements for the CMS Tracker Control System

Figure 2.10: Control chain for the power supply system. The DCS is connected
to a supervisor mainframe. The branch controllers provide connections to the racks
that are placed in the hostile environment. Each rack is composed of several crates
that host the Power Supply Modules, providing LV and HV to the detector. The 48V
converters, providing the service power to the Power Supply Modules, are located in
the same crates.

can be used either as a service or as a power source.

Two types of cables are used to route the power: the power groups
are connected via a Low Impedance Cable (LIC) while the control power
goes through a Power Long Control Cable (PLCC). Power cables cover
a total distance of about 50 m from the PSUs down to the tracker. The
same cables route the LV power, the HV, the sense wire and some en-
vironmental information (temperature and humidity) from the tracker
structure. The connection is made by one 40-45 m long low-impedance
cable placed mostly outside the CMS volume, and one ∼ 5 m long one
lying entirely inside the tracker volume. The two parts are connected at
the periphery of the detector in Patch Panel 1 (PP1) connector boards.

Given the considerable length of the power supply cables, a signi�cant
voltage drop is expected for the low voltages, which have higher currents.
To be able to compensate the voltage drop, a sense wire reports the
measured voltage on the load to the regulator that can adjust the supplied
voltage at the connector side in order to ensure the nominal voltage.
Voltage drops up to 4 V can be compensated by the regulators over up
to 150 m long cables.

The PSUs are controlled by an 8-bit microprocessor. For each of the
four channels it is possible to set the voltage. For the LV source, this
can be adjusted to within ±5% of the nominal value, while for the HV

38

2.3 The Front End Layer for the Control of the CMS Tracker

Figure 2.11: The inner structure of a A4601H Power Supply Module. Each
module hosts two boards. Each board has 2 LV and 2 HV channels serving one power
group of the tracker.

source it can be set to a value between 0 and 600 V. Other con�guration
parameters are the limit for the current and for the sensed voltage and
the reaction time for the channel trip in case of over currents. The
expected current is proportional to the number of APVs served by the
power group, hence the current limit should be con�gured di�erently
for each Power Supply Unit. In the HV channels it is also possible to
set the ramp up and ramp down speed. The parameters that can be
monitored are: the status of a channel, given as a bit�eld of conditions,
the sensed voltages and currents, and the voltage at the connector for
the low voltage channels.

The Power Supply Unit implements some internal safety measures
that switch o� the channel in case of dangerous situations and set its
status to an error condition. Special attention is devoted to prevent
over-voltages a�ecting the powered electronics whenever an abrupt cur-
rent consumption variation occurs. This is a common problem experi-
enced when electronic devices are operated from a long distance using
the sensing technique. The PSUs ensure voltage recovery within 0.5 ms.

In case of a critical condition (over current, over voltage or under
voltage), the channel is switched o� automatically (trip) and an error
bit is set in the status register. Since the requested reaction times are
less than one millisecond, the mainframe cannot implement the safety
features because the delay would not be acceptable. Hence, the safety
procedures are implemented in the PSU microprocessor.

When the internal safety acts on the LV channels, the HV channels
are also switched o�. The two LV channels can only be switched on or

39

Requirements for the CMS Tracker Control System

Figure 2.12: The racks with the power supplies modules installed in the balcony
of the UXC.

o� at the same time.
Each crate provides 5 interlock lines that must be kept at the nominal

voltage of 24 V by the safety system to enable operation of the Power
Supply Modules. When the signal in the interlock line is removed, all the
Power Supply Units ramp down all the voltages to zero. According to the
�positive safety� approach, the normal condition is signaled by a �high�
level, while the alert condition gives �low� levels. In case of hardware
failure, e.g., broken interlock cable, the power supply system is taken to
a safe state.

One interlock line is used for the �crate interlock� which causes a fast
interlock at the speed of 200V/s, while the standard four lines cause
a normal interlock at the speed of 50V/s. The Power Supply Module
can be con�gured to respond only to some of the four interlock lines.
This con�guration is designed to allow a partial interlock of the crate.
However, this feature is not used in the Tracker Safety System because
the safety might be compromised in case a PSM is replaced with another
one with di�erent con�guration.

The �nal power supply system of the CMS Silicon Strip Tracker makes
use of 986 boards of type A4601H, 110 boards of type A4602 and 79 power
converters (A3486). These are spread over 139 crates and 29 racks (placed
in 6 di�erent balconies), which are �nally supervised by 4 mainframes
(SY1527). For performance reasons, the mainframes are not fully loaded.
Figure 2.12 shows the setup in one balcony and �gure 2.13 shows the
LIC and PLCC cables connected to the backboards of the power supply

40

2.3 The Front End Layer for the Control of the CMS Tracker

Figure 2.13: The cabling of three power supply racks. The power cables are
routed from the power supply modules to the PP1 connection boards.

modules.

2.3.2 Cooling System

The cooling system is designed to remove the heat generated by the elec-
tronics and to keep the tracker at the nominal temperature. For cooling
purposes, the strip tracker is divided into 180 cooling loops, served by
two detector cooling units located in the UXC. The Heat Transfer Fluid
circulating in the cooling lines is a �uorocarbon (C6F14). After circulat-
ing into the detector, the �uid returns into the cooling unit to be chilled
again. The working temperature can be set in the chiller. Sensors for
temperature and pressure, �owmeters, and tank level measurements are
integrated in the chiller and report their values to a PLC system. These
parameters are monitored by the cooling plant internal safety system that
is able to switch o� the cooling plant in case of critical conditions. The
cooling units are connected to the Tracker Safety System and interlock
the entire tracker if one unit is not working.

Several parameters can be read and set in the cooling plant PLC,
including the state of the valves and the setpoint for the working tem-
perature. The DCS is responsible for monitoring the PLC values and
should provide the cooling experts with the means of con�guring the
cooling plant.

41

Requirements for the CMS Tracker Control System

2.3.3 Tracker Safety System

The safety of the tracker has to be ensured by avoiding all situations
that may cause permanent damage to the detector hardware or a�ect its
lifetime or performance [14]. Clearly safety must take precedence over
data taking and can take actions that stop the tracker operation in case
of critical conditions. On the other hand, all e�ort has to be taken to
prevent the critical conditions from happening, in order to avoid losing
precious time and data during physics runs.

The main environmental measurement that has to be monitored is
the operating temperature. Temperatures outside the speci�ed operat-
ing range can occur in case of problems with the cooling plants or in
individual cooling loops (e.g., blockage). Over temperatures, in particu-
lar after the tracker has been exposed to signi�cant irradiation, can result
in reduced charge collection e�ciency and eventually preclude tracker op-
eration3. Low temperatures can result in permanent mechanical damage,
or, in the presence of su�ciently high humidity, can lead to condensation.

The humidity is a critical parameter. Since the tracker is operated
at temperatures well below 0 ◦C, it must be kept most of the time in
a dry air or nitrogen atmosphere but it will unavoidably be exposed to
standard atmosphere during any access. To prevent water accumulation
inside the mechanical structure or on the modules, the dew point must
stay well below the operating temperature. The relative humidity is
hence constantly monitored.

External global conditions must also be taken into account in the
safety system. Typical examples are the cooling plant and dry air sys-
tem status and the signals coming from the general CMS safety system,
dealing with events such as �re or �ooding of the cavern. Communica-
tion with external systems is unidirectional and limited to simple boolean
(OK/NOT OK) values.

In case of a critical condition, the safety system interlocks the power
supplies. Hardware action on the cooling system is only foreseen in case
of failure of the dry gas system. While the power supply interlock has
a �ne granularity, the interlock of the cooling system a�ects all detector
cooling units.

The TSS (Tracker Safety System) is implemented in a self-contained
independent Siemens PLC-based system, operating on the information
provided by over 1000 hardwired temperature and humidity sensors. In
case of critical environmental conditions, the system acts by interlocking

3Silicon sensors are operated as reverse-biased p-n junctions, where the whole sen-
sor volume is depleted of free charge carriers. Particle radiation changes the resistivity
of the bulk material, thus the voltage needed to fully deplete the sensor increases.

42

2.3 The Front End Layer for the Control of the CMS Tracker

Figure 2.14: The PLC racks for the Tracker Safety System, installed in the USC.

the power supplies via a hardwired connection from PLC relays to the
crates, cutting the 24 V alive signal by opening the magnetic relay. Three
main types of environmental sensors are used: PT1000 thermometers,
thermistors (of two di�erent models, Murata and Fenwal) and special-
ized relative humidity sensors (HMX), chosen for their radiation-hardness
properties.

Due to its size and complexity, the safety system is split into six inde-
pendent systems, each one serving one side (z+ or z−) of the three sub-
detectors: TIB/TID, TOB and TEC. A separate PLC system (Monitor
PLC) is used to read additional environmental information from around
the whole tracker. Finally, a master PLC system deals with 'global' criti-
cal conditions such as cooling plant failures, main power failure and PLC
internal failures.

Upper and lower limits can be con�gured and disabled individually
for each sensor. The state of the sensor (ok/out-of-limit) is de�ned de-
pending on these limits.

The interlock logic is designed to allow partial regional shutdown. In
this way track reconstruction is still possible in case of a local problem,
as long as the a�ected region is not too large. Interlock granularity is
con�gurable in the PLC by means of interlock groups. Each group is
composed of a map between sensors and relays and a majority threshold.
Each group de�nes a rule: if the number of out-of-limit sensors in the
group reaches the majority threshold, then the corresponding relays are

43

Requirements for the CMS Tracker Control System

opened and cause the interlock of the connected crates. The sensors and
relays of each group are speci�ed with bitmasks.

The supervisory layer is responsible for downloading the con�gura-
tion of the interlock scheme (sensor and relay bitmasks and majority
thresholds for each group) to the PLC. This is a safety-critical operation
that must be absolutely protected from miscon�guration by non-experts
and accurately checked after each recon�guration. A rigorous access con-
trol ensures that the con�guration process is available only to experts.
An accurate checking procedure has been developed to guarantee the
correctness of the interlock con�guration (see Sec. 4.8).

The PLC code is designed to meet the two contrasting aims of stability
and �exibility. Nothing should cause a delay or a failure of the interlock.
However, the scheme should still be con�gurable, adapting to variations
of the constraints. Thanks to its con�gurability, the same general PLC
code can be used for the six independent PLC systems, each one re�ecting
the speci�c cabling.

In order to have a �exible system, bidirectional communication with
the supervisory layer is unavoidable. Nevertheless, all I/O communica-
tion is performed in isolated separate memory spaces, avoiding interfer-
ence with the algorithms to determine whether an action must be taken.
As an additional precaution, the master system, completely isolated from
supervisory layer, checks the heartbeats of all the other PLC racks. In
case of malfunctioning of one PLC rack, the master system is able to
interlock the relevant region of the tracker, bypassing the a�ected PLC
rack.

The PLC continuously executes the same sequence of instructions
(called a PLC cycle). Each PLC cycle takes care of copying the input
data from the sensor to the memory bank where it can be read by the
supervisory system. It then analyzes the data coming from the sensor
generating a list of �ags and receives the acknowledgements. The �ags
can activate external signals (executing the commands). A maximum
time for the execution of a cycle is introduced for safety reasons.

Design of the Interlock Cabling Scheme

Temperature sensors in the tracker can be classi�ed into three types,
depending on their position in the tracker structure. In TIB and TOB,
the temperature sensors are located close to the cooling lines (�on liquid�),
while in TEC they are located on the modules and directly measure
the silicon temperature (�on silicon�). For this reason, when the tracker
is powered and the electronics is con�gured, the sensors on the TEC
consistently measure a temperature that is ∼ 7 ◦C higher than on TIB

44

2.3 The Front End Layer for the Control of the CMS Tracker

and TOB.

In addition, some sensors in TOB and TEC measure the air temper-
ature, and, with the humidity sensors, can be used to compute the dew
points.

The interlock scheme only uses the temperatures on silicon or on
liquid. In the case of the TEC, the modules of one control group are
served by several cooling loops. The power supply modules of one control
group in the TEC must thus be interlocked in case of problems in any of
the four cooling loops related to its sector.

The probes corresponding to the same cooling loop (for TIB/TID and
TOB) or sector (for TEC) are grouped in the same interlock group and
are used to interlock the crate(s) of the corresponding power supplies.
Each relay is connected to one crate block, that is the set of one to three
crates containing the power supplies related to a certain cooling loop or
sector.

The hardware granularity is not su�ciently �ne for switching o� only
the power supplies related to a single cooling loop. As a result, the entire
crate block, including power supplies powering modules served by other
cooling loops, is a�ected by the interlock when one relay is �red. The
supervisory layer implements a protection mechanism (see Sec. 4.5) that
switches o� the cooling loops or sectors with �ner granularity, in order
to avoid an intervention of the safety system that would switch o� as a
side-e�ect other parts of the detector.

2.3.4 Detector Control Units

Due to high levels of LHC radiation, the major damaging e�ects on the
silicon micro-strip detectors are leakage current increase and change in
the detector depletion voltage. For this reason, careful monitoring of the
detector environmental conditions is needed with the highest possible
granularity, that is, for each individual detector module.

An Application Speci�c Integrated Circuit (ASIC), called Detector
Control Unit (DCU) has been developed for this purpose [15]. Every
module is equipped with one front end DCU that measures the detector
leakage current, the APV power supply voltages and the temperature on
the module at three di�erent points (one directly on the silicon sensor,
one on the front end hybrid and one on the DCU itself). A similar circuit
on the CCU provides measurements with the granularity of the control
group.

45

Requirements for the CMS Tracker Control System

2.4 External Systems

Several external systems must be monitored to ensure safe operation of
the tracker. Usually the information from these systems is acquired via
external projects that are not developed by the CMS tracker control
system team.

Although all the critical conditions are handled in hardware, some less
severe problems may trigger a software switch-o� and inhibit switching
on the tracker.

Many of the CMS sub-detectors can operate safely only when beam
conditions are good. For monitoring the quality of the beam, several
Beam & Radiation Monitoring (BRM) sub-detectors have been designed.
These ensure the safety of CMS by causing a shut-down of delicate sys-
tems before beam losses can in�ict serious damage [16]. The status of
the BRM can cause the switch o� of the high voltages in the tracker and
prevent them from being switched on again.

The status of the LHC accelerator has to be taken into account in
the control of the tracker and can inhibit switching on the tracker when
the beam is not stable.

The Thermal Screen is the active thermal interface that insulates ther-
mally the tracker from the surrounding detector, the ECAL. This allows
the two detectors to be operated at di�erent temperatures (the ECAL
runs at +17 ◦C versus the -20 ◦C of the tracker). It is controlled
by a dedicated PLC that regulates its behavior by means of a sophisti-
cated PID (Proportional Integral Derivative) controller. However, from
the point of view of the DCS, the status of the thermal screen can be
regarded as binary information (working/not working) that can prevent
the tracker from being switched on.

2.5 Data Volume and Expected Change Rate

in the Tracker Control System

Control systems for LHC experiments are much more complex than the
analogous systems during the LEP era mainly because of size, complexity
and data volume. In practice, the data handled in a single sub-detector
of an LHC experiment is larger than the data handled in the control
system of an entire LEP experiment. The CMS Silicon Strip Tracker is
the largest silicon tracker ever built, as well as one of the most complex
among all the CMS sub-detectors. This complexity is also re�ected in
the number of parameters handled in the control system.

The main sources of data for the Silicon Strip Tracker, are the power

46

2.5 Data Volume and Expected Change Rate in the Tracker
Control System

supply system, the monitoring of the PLCs in the safety system, the
DCUs and the cooling plant control.

The data volume can be measured using di�erent data units. In
PVSS, data is organized in tree-structured data points (see Sec. 1.10).
Typically, a data point corresponds to a physical hardware device. The
properties describing a device correspond to the data point elements.
However, some elements can be used to store information for internal
processing and not for communicating with the hardware so it is also rel-
evant to count the number of elements associated to a hardware address.

For the CAEN system, 4 PCs are used (see Sec. 4.4) each one
handling 2 500 - 3 000 data points for a total of about 10 000 (Table
2.1). Each data point contains several elements, some being connected
to an OPC address. The elements connected to a hardware address are
about 180 000 (Table 2.2). In the design of the cabling scheme, a large
e�ort has been made to balance the load among the four mainframes and
PCs. Considering the number of constraints that had to be taken into
account in the cabling, the balancing is more than satisfactory.

Type Sys. 1 Sys. 2 Sys. 3 Sys. 4 Total

Channel 1 992 2 244 1 936 2 306 8 478
Board 508 571 493 587 2 159
Crate 32 37 35 35 139
Branch controller 7 8 7 7 29
Mainframe 1 1 1 1 4

Total 2 540 2 861 2 472 2 936 10 809

Table 2.1: Number of CAEN data points. Note the good balancing among the
four systems.

CAEN System # OPC Items

1 42 223
2 47 432
3 40 513
4 48 229

Total 178 397

Table 2.2: Number of OPC Items for the CAEN systems. Spread over four PCs,
the total number is close to 180 000.

47

Requirements for the CMS Tracker Control System

The various types of values read from the safety system total 4 362
data points and about 80 000 addresses (Table 2.3).

Type # Data Points # Addresses

Sensors 954 11 334
HMX Sensors 246 1 722
PLC Con�guration (in / out) 2 400 18 200
Relays 544 3 264
Groups 138 44 712
Digital Inputs 80 640

Total 4 362 79 872

Table 2.3: Number of PLC data points and data point elements with addresses.
Large bitmasks are addressed bit by bit resulting in a large number of addresses in
the data points representing groups.

The DCUs are about 17 000, with 15 000 front end DCUs correspond-
ing to the number of modules. Each type of DCU has a variable number
of elements leading to a total of about 100 000 elements (Table 2.4).

Type # Data Points # DP Elements

Front end DCU 15 148 90 888
DCU on CCU TOB 1 582 6 328
DCU on CCU TEC 716 2 864

Total 17 446 100 080

Table 2.4: Number of DCU data points

However, the performance depends not only on the number of ad-
dresses but also on the change rate. In the communication layer, devices
are typically read out with constant refresh times. Communication at
this level is rarely event driven, because the limited resources at the
front end layer limit the possibility to implement an event driven proto-
col. The front end devices have an intrinsic readout delay that must be
taken into account. For example, the mainframe takes at least 500 ms to
update all the power supply parameters of the boards (see Sec. 4.9.1 for
details). The communication with the front end hardware uses a LAN,
which causes a further delay. Therefore, the refresh times in SCADA
systems are typically of the order of seconds. Every action requiring a
shorter reaction time should be implemented in hardware at the front

48

2.5 Data Volume and Expected Change Rate in the Tracker
Control System

end layer. In large systems, the refresh rate should be set on the basis of
the parameter criticalness, but it is in general useless to set refresh times
under 1-2 seconds.

The addresses can be divided into input and output addresses. The
inputs correspond to the monitored data read from the controlled devices
and the outputs are the commands that the control system sends to the
devices. The commands do not have an impact on the communication
performance, since they are in general much more infrequent than the
typical updating time of the input parameters (although commands tend
to come in bunches).

For the settings, the same address is replicated twice, as an input
and as an output. In this way it is possible to set the element and have
the feedback that the write operation was successful. This choice implies
that the input parameters are by construction more numerous than the
output parameters.

The input elements can be roughly divided into three categories. Very
static elements, such as the serial numbers of the boards and the types for
the PLC probes, change very rarely. The readings of the user settings can
change in case of recon�guration of the hardware but are not expected
to change during standard operation. Finally, some values describe the
present state of the hardware and must be monitored during operation
with a short refresh time. Typically these three classes of elements can
be read with di�erent polling times. This allows for a good response
in the fast-changing parameters at the cost of having to wait longer for
feedback at the moment of con�guration. Table 2.5 shows an example of
the distribution of OPC items in the three polling groups (only the input
items are taken into account), showing how the number of parameters
read with a fast refresh can be reduced to less than a third. In the case
of the PLC readings, the elements can also be partitioned into fast and
slow polling groups. The items that need to be in the fast group are the
online values of sensors and relays giving a total of 1 744 elements (Table
2.6). For further discussion about the optimization of communication
with the hardware, see Section 4.9.

49

Requirements for the CMS Tracker Control System

Sys. 1 Sys. 2 Sys. 3 Sys. 4 Total

Fast (∼ 2 s) 7 870 8 694 7 566 9 090 33 220
Slow (∼ 6 s) 16 364 17 410 15 440 18 354 67 568
Ultraslow (∼ 60 s) 2 948 3 336 2 880 3 412 12 576

Total 27 182 29 440 25 886 30 856 113 364

Table 2.5: Number of input OPC Items grouped by polling times

Polling speed # Addresses

Fast - Sensors (∼ 2 s) 1 200
Medium - Relays (∼ 5 s) 544
Slow (∼ 20 s) ∼ 40 000

Table 2.6: Number of input items in the PLC grouped by polling times

50

Chapter 3

The CMS/LHC Detector
Control System

This chapter describes the architecture of LHC Control Systems and how
the general SCADA architecture presented in Chapter 1 is adapted to a
HEP environment.

The large amount of data to be handled and the need to introduce
HEP-speci�c tasks call for a scalable and extensible SCADA solution.

The overall control system of an experiment is built by integrating
many independently-developed projects. To ease the integration process
and avoid the duplication of work, a framework providing common func-
tionalities and guidelines has been developed at CERN.

The complex structure of the experiment requires various sub-systems
to be operated, debugged and commissioned in parallel. For this reason,
the control system is organized in a hierarchical structure with a �exible
partitioning mechanism.

3.1 Scope of the Detector Control System

3.1.1 Architecture of the Online System (DAQ, DCS,
Run Control)

The operation of a HEP experiment makes use of two main software
systems: Data Acquisition (DAQ) and Detector Control System (DCS).
Data Acquisition is the �nal objective of the experiment. The DAQ is re-
sponsible for acquiring and processing data from the front end electronics
and storing it in a proper format for o�ine analysis. The DCS is respon-
sible for monitoring and controlling the auxiliary hardware, not directly
related to data acquisition. An additional interactive software, the Run
Control and Monitoring System (RCMS) [17], controls and monitors the

The CMS/LHC Detector Control System

collection of data from the detector, ensuring the proper con�guration of
the DAQ processes. RCMS is also responsible for coordinating DAQ and
DCS.

3.1.2 Detector Safety System

Since the DCS is a complex software subject to failures (e.g., LAN prob-
lems, PC failures) and prone to programming mistakes, the detector
safety cannot rely on the DCS and must be guaranteed by an independent
Detector Safety System (DSS).

The DSS has the primary goal of detecting any abnormal and poten-
tially harmful situation and take protective actions in order to minimize
the consequent damage to the experimental equipment [18]. It should be
highly reliable and available, simple and robust. It must operate perma-
nently and independently of the state of the DCS.

The DSS is implemented in a self-contained hardware system that is
able to react to critical conditions within a bounded time, typically by
switching o� parts of the detector. It is based on PLCs that operate on
the information coming from hardwired sensors. Networked information
is not considered reliable and is not used in the DSS.

The DSS is not the only system responsible for safety-related issues.
In the case of CMS, two additional safety systems (CERN Safety System
and CMS Safety System) focus on people's safety and on addressing
widespread severe problems such as �re or �ooding of the cavern. These
two additional safety levels are independent from the DSS and act on
general services, such as the general power to the entire experimental
cavern.

Since the detector safety is managed by an independent hardware
system, the experiment can safely run without continuous human super-
vision. The human interface to the DCS, though important to monitor
and control the status of the detector, is not critical for its safety. No
critical situation should require human intervention to bring the system
to a safe condition.

3.1.3 Role of the Detector Control System

The DCS is the software that enables coherent and safe operation of a
HEP detector. The DCS is responsible for providing continuous supervi-
sion of the detector's auxiliary hardware. It is used to bring the detector
to the �ready for physics� state, an acceptable condition for data taking.
The DCS must be able to display the status of the detector at various
levels of detail, allowing di�erent interactions depending on user exper-

52

3.2 Control Layers

tise. The main users of the DCS are the experiment operators (�DCS
shifters�) and the sub-detector (e.g., calorimeter, tracker, muon system)
or sub-system (e.g., power supply system, cooling system) experts.

The DCS provides the main interface for the experiment shifter to
monitor and control the detector. This interface must be able to sum-
marize e�ectively the status of the system, conveying the information
from hundreds of thousands of monitored parameters in an overall state,
understandable by a non-expert operator. The DCS must be able to
respond to high level commands and translate them into the proper se-
quence of low level commands submitted to the controlled hardware in
order to guarantee safe and e�ective operation.

At the same time, the DCS is used by the sub-detector or sub-system
experts for analyzing and con�guring the state of the system in greater
detail.

The DCS is responsible for signaling to the user any anomalous and
potentially dangerous values (too high temperatures, unexpected cur-
rents, etc). Additionally, even if the safety of the detector is ensured by
DSS, the DCS can take some automatic actions in order to bring the
detector into a safer state. Protection actions programmed in DCS may
avoid the widespread intervention of the safety system, thus minimizing
the downtime due to critical conditions. The DCS should also prevent
the user from giving commands that would result in an unsafe state,
by inhibiting some actions under certain conditions. Finally the DCS is
used to properly con�gure the front end hardware, including the safety
parameters.

The DCS must provide the supervision of the experiment 24 hours a
day, allowing for the coherent combined operation of the di�erent sub-
systems. A working and e�cient DCS is needed to reach the data-taking
phase and to maintain stable and safe running conditions. The DCS
software should run continuously for the duration of the experiment (over
ten years). It is an essential component for the success of the experiment.

3.2 Control Layers

The software architecture for the control of a HEP experiment is orga-
nized in a communications stack where the software at each layer acts
as a server to the higher level software and as a client to the lower level
one (see Fig. 3.1). The usage of various levels of abstraction eases the
implementation of the software at all levels and favors the distribution of
the work among di�erent developers. The modularity facilitates the inte-
gration of di�erent solutions and gives the freedom to adopt commercial

53

The CMS/LHC Detector Control System

Supervisory
Layer

Front-end
Layer

Technologies

Experimental equipment

LAN

WAN

Storage

Controller/

Sensors/devices

Field buses & Nodes

PLC/UNICOS

Communication Protocols

SCADA

Controllers

OPC DIM

FSM

Commercial Custom

Communication
Layer

Figure 3.1: Controls Technologies in the LHC era. The software part is organized
in a communications stack that can be divided into three main layers (supervisory,
communication and front end). The �gure summarizes the most common protocols
and technologies used at the various levels. Modi�ed version of a �gure by CERN
IT/CO - based on an original idea from LHCb.

software where a suitable application exists and write custom software
where needed.

The supervisory layer of the entire CMS experiment uses about 100
PCs (10 for the tracker) installed in the service cavern. The user in-
terfaces run on additional workstations in the control room. Finally,
summarized real-time information is published on the web. Historical
data is archived in dedicated database servers and can later be accessed
from a web interface.

3.3 Criteria for the Selection of the SCADA

Product

All LHC control systems are based on the commercial SCADA product
PVSS-II (see Sec. 1.10).

A discussion of the criteria adopted in the selection of the SCADA
product can be found in [19]. A review of PVSS after four years of
operation at CERN is described in [20].

3.3.1 Scalability

Scalability is probably the most fundamental item in the list of LHC
control requirements. Some reviewed SCADA products resulted un�t

54

3.3 Criteria for the Selection of the SCADA Product

Figure 3.2: Example of tree-structured data point type for the control of a power
supply channel. The information is hierarchically organized to re�ect the structure of
the modeled device.

for the control of large LHC systems because of built-in limits in the
number of controllable items. PVSS has no built-in limit and allows for
the interconnection of several projects to create a distributed coherent
large control system. Extensive tests [21] were performed to show the
possibility of connecting more than 100 PVSS systems according to a
hierarchical approach where every system is connected to all its descen-
dants. This hierarchical connection is the expected con�guration of a
large control system where the main supervisor system is connected to
all other systems and the sub-system supervisors are connected to all the
related PCs.

3.3.2 Structured Runtime Database

PVSS provides a structured runtime database where information is or-
ganized in so-called data points. A data point (DP) is a hierarchically
structured set of data point elements (DPE) of primitive types. Each
data point is an instance of a certain data point type (DPT). The DPT
de�nes the structure of the data point as well as the names and types of
the elements (see Fig. 3.2).

The advantage of using data points rather than data organized in
a �at namespace is that the former organization favors the reusability
of the components and the usage of generic code. In fact, even if the
programming language used in PVSS is not object-oriented, the code
can be organized in generic functions that take as a parameter a data
point name (of an expected type) and execute some action on the speci�c
data point instance. Moreover, PVSS supports generic user interface
objects, called reference panels, that allow a graphical representation of
a device to be developed once and instantiated as many times as needed

55

The CMS/LHC Detector Control System

at runtime. This feature is very important for the HEP environment,
where a large number of homogeneous devices have to be controlled. Still,
PVSS does not follow an object-oriented architecture for data handling,
because any concept of class, inheritance or polymorphism is missing in
the data point types.

PVSS does not distinguish between hard points (corresponding to
the communication with the devices) and soft points (corresponding to
computed or auxiliary information). Instead, PVSS supports the con�g-
uration at the level of data point element of several properties, such as
hardware address (via a particular driver), smoothing, archiving, alert
handling, and connection to the values of other elements.

3.3.3 Extensibility

Extensibility of the SCADA product is a key requirement in a HEP en-
vironment where typical SCADA tasks should be complemented with
more HEP-related tasks. The extensibility of PVSS comes with its pro-
gramming language, called CTRL, that was used to program general
HEP-related libraries (see Sec. 3.4). Moreover, C++ PVSS APIs al-
low the development of custom PVSS managers implementing speci�c
functionalities.

3.3.4 Constant Development

An industrial control system is typically developed in a centralized man-
ner by experienced SCADA experts. Once it is installed and operational,
it is rarely modi�ed. In contrast, the DCS is developed in parallel by dif-
ferent teams. It is constantly modi�ed, often in parallel to the operation
of the experiment. Changes to one component should be available in the
integrated system without stopping the operation of the other compo-
nents. The distributed system features of PVSS, with automatic update
of the changes in the remote namespaces, are suited to these needs.

3.3.5 Ease of Use of the Scripting Language

PVSS control scripts and user interfaces are programmed using a speci�c
C-like interpreted language, named CTRL. This reduces the learning
phase of new developers who are already familiar with C and makes it
possible to use documentation systems like doc++ intended to be used
with C or C++. On the other hand, the CTRL language has some
limitations because it follows a pure procedural programming paradigm
with no object-oriented extensions nor support for exceptions.

56

3.4 The JCOP Framework

Figure 3.3: Architecture of the JCOP framework. JCOP provides common li-
braries built on top of PVSS. The control system developer uses the tools from the
framework and PVSS to develop his application.

3.3.6 Cross-Platform

While most of the modern SCADA products are only available for Mi-
crosoft Windows, PVSS is a multiplatform product that o�ers the same
functionalities on Linux and Windows and allows managers running on
the two operating system to be interconnected transparently. Although
the choice of platform is not completely free due to the usage in the
communication layer of some Microsoft-speci�c communication proto-
cols (e.g., OPC), the compatibility with Linux is very valuable in the
scienti�c environment. PVSS under Linux facilitates the communication
with the DAQ, entirely based on the Scienti�c Linux platform, and al-
lows the shifter to use the same Linux workstation for running both the
DAQ and the DCS.

3.3.7 Market and Commercial Aspects

ETM has proven to be a responsive company, accepting to make many
changes, some of them major, as a result of CERN's requests. The relia-
bility of the company is of fundamental importance because the product
has to be supported for the entire lifetime of the LHC experiments.

57

The CMS/LHC Detector Control System

3.4 The JCOP Framework

3.4.1 Architecture

The experience gained in the control of the LEP experiments showed
that the main problem of the old approach was the lack of standardiza-
tion. In fact, the usage of heterogeneous programming languages, custom
hardware and proprietary protocols led to di�culties in maintaining the
software and in integrating the systems under a coherent supervisor. For
these reasons, it was decided to rely as much as possible on commer-
cial components (PLC, SCADA Products) and standard protocols, e.g.,
OPC, DIM. However, the complexity of the task does not allow for the
adoption of any o�-the-shelf solution. A custom platform is therefore
needed to adapt the commercial components to the needs of HEP exper-
iments.

The Joint COntrols Project (JCOP) [22] was started at the end of
1997 with the objective of providing a set of components (the JCOP
Framework) to ease the development of control systems for the LHC ex-
periments. The main aim of the Framework Project is to reduce develop-
ment and maintenance e�ort and avoid duplication by re-using common
components. The framework is also intended to hide the complexity of
the underlying PVSS layer and to de�ne some guidelines that ensure the
creation of a homogeneous control system both from the point of view of
the architecture and of the user interface.

Development tasks are distributed among three roles. The compo-
nent developer extends the framework in order to support new hard-
ware or new functionalities. The system developer develops a control
application for a particular sub-detector using the tools provided by the
framework. System developers are distributed among many autonomous
teams (not only CERN-based but also spread all over the globe). The
person responsible for integration combines the various sub-systems into
a coherent control system for the entire experiment.

The layered structure of the JCOP framework (see Fig. 3.3) pro-
vides a higher level of abstraction over PVSS. The framework gives the
system developers the possibility of using the framework layer but also
to access the original PVSS toolkits, if they need to develop speci�c fea-
tures not implemented in the framework. To accommodate the di�erent
requirements of common facilities, the framework is organized in a series
of components, allowing the system developer to choose which packages
are required for a particular application.

58

3.4 The JCOP Framework

Figure 3.4: Example of hardware and logical view for the power supply system of
the CMS Tracker displayed in the Device Editor and Navigator (a tool provided by
the framework to the system developer). On the left the hardware view re�ecting the
structure of the power supply control chain, on the right the logical view that maps
each power supply to a part of the detector.

3.4.2 Hardware and Logical View

The framework provides the tools for organizing the controlled devices in
a hardware view and a logical view (see Fig. 3.4). The hardware view
is a hierarchy that re�ects the structure of the auxiliary hardware (power
supplies, PLC, etc.) and is not dependent on the correspondence between
the auxiliary hardware and the detector hardware. It is coded into the
data point name and is usually logically related to the hardware address
set in the data point elements. The framework centrally provides the
implementation of common device types, as well as a naming convention
re�ecting the hierarchical organization, e.g., crates that contain boards
that contain channels. This prevents di�erent developers from designing
di�erent structures for the same hardware, resulting in incompatibilities
which would give rise to problems at the time of integration.

The hardware view is mapped to a logical view using aliases for the
data point names. The logical view re�ects the structure of the detector
that is served by the auxiliary hardware. The correspondence between
the hardware view and the logical view re�ects the physical cabling of
the detector.

The logical view typically contains the information of interest to the
user. In fact, in order to operate the experiment one is typically interested

59

The CMS/LHC Detector Control System

Figure 3.5: Example of a detector tree for a generic HEP experiment. The
commands are propagated from the root down to the devices, while the states are
reported bottom up. The internal nodes provide an increasing level of abstraction in
a status that summarizes the conditions of the hardware controlled within a subtree.

in knowing the part of the detector that is related to a certain piece of
information (power supply channel, temperature probe, etc.). Hence, all
the user interfaces and geometrical views are usually based on the logical
view. On the other hand, the front end hardware experts are interested
in the hardware view in order to identify the location of a speci�c device.

3.4.3 The JCOP Finite State Machine

The JCOP framework provides a Finite State Machine tool, which is the
main component for the implementation and the integration of large-scale
control systems. This tool combines the functionalities of the SCADA
system with the State Management Interface (SMI++) tool [23].

The Finite State Machine concept is used in many di�erent �elds with
slightly di�erent de�nitions. In the context of control systems, a Finite
State Machine is a model of the system behavior using a �nite number
of states, transitions between these states, actions and events.

SMI++ supports the hierarchical organization of the Finite State
Machine objects, in order to control the experiment at di�erent levels of
detail. Typically the parent-child relation re�ects a physical container-
contained relation but it could also correspond to other kinds of logical
relations. Logically related objects are grouped into SMI++ domains.
Each domain, which is handled in a separate process, manages the �nite
state machine logic of its objects and communicates with the SCADA
system by using the PVSS API interface. Many SMI++ domains can
be connected to cooperate and �nally the entire experiment can be con-
trolled by giving commands to a single supervisor node, e.g., the DCS
node in �gure 3.5.

The leaves of the hierarchical tree correspond to the elementary de-
vices, while the internal nodes provide an increasing abstraction level, up

60

3.4 The JCOP Framework

to the root that represents the entire control system. States and alerts
are propagated bottom up whereas commands move in the opposite di-
rection. Control systems are by nature asynchronous. The execution of
a command on a device does not change its state directly, but rather
triggers an action on the hardware that can asynchronously lead to a
state change.

The JCOP FSM [24] provides the developer with three types of soft-
ware objects:

• Control Units (CU) are abstract objects corresponding to internal
nodes in the hierarchical tree. CUs run in a separate SMI domain
(process)

• Logical Units (LU) also represent abstract objects but are running
within the process of the CU they are included in

• Device Units represent a device and are connected to a data point
in PVSS.

An FSM type de�nes the possible state of the objects and the available
actions (commands) in each state.

Device Units represent the bridge between SMI++ and PVSS. Two
custom PVSS procedures are associated with every DU type. One PVSS
function computes the device state depending on the values of the data
point elements that characterize the device. Another custom function is
used to translate commands into a sequence of operations on the related
data point.

The state of an internal node (CU or LU) is de�ned on the basis of
rules programmed in the type. The rules are of the form

when (any child | all children [of type T]

in_state | not_in_state S)

move_to NewState

or

when (any child | all children [of type T]

in_state | not_in_state S)

do Action

When a CU/LU object is initialized, it is set to the initial state. The
list of the rules in each state is checked in order. The �rst rule whose
condition is veri�ed is executed, leading to a state transition or to the
triggering of an automatic action. The actions are implemented as a

61

The CMS/LHC Detector Control System

sequence of commands of the form do Action on all children [of

type T] or move_to NewState. When an action is propagated to many
CUs, they can execute the actions in parallel and report their state back
to the parent.

LUs are used at the lower levels, in order to reduce the memory
overhead associated with each SMI process. The number of LUs and
DUs to be handled in a single CU also impacts the memory usage of
the SMI process. For this reason it can be convenient to group strictly
related devices in an abstract device handled in a PVSS script (see Sec.
4.3 for details).

The structure of a complex experiment, composed of di�erent spe-
cialized sub-detectors and sub-partitions, calls for a �exible partitioning
mechanism that allows the users to operate, debug and commission dif-
ferent parts of the experiment in parallel. It is also important to exclude
devices known to have a temporary or permanent malfunction from the
overall control chain.

Partitioning is related to the concept of ownership. An operator can
reserve the whole tree or a certain subtree in which case he/she becomes
the �owner�. Each component has one and only one owner at a time.
The subtree can be taken in �exclusive mode� (only the owner can send
commands) or in �shared mode� (any other operator with the correct
permissions can also send commands). Only the owner can change the
exclusivity mode.

Nodes can be included or excluded from the hierarchy. Excluding
a child from the hierarchy implies that its state is not taken into ac-
count anymore by the parent in its deciding process, the parent does
not send commands to it and the owner operator releases ownership so
that another operator can work with it. Only the owner can exclude a
component from the hierarchy.

Di�erent users can take control of di�erent control units in parallel.
In a typical scenario, the shifter excludes a faulty node from the hierarchy
and gives the control to an expert, who debugs it and, when the problem
is solved, asks the shifter to include the node back in the system.

The FSM hierarchy can be structured to have multiple references to
the same node from di�erent parents. When this feature is used, the
FSM hierarchy is not a tree but a graph. Multiple references to the same
object are useful in many cases to be able to control the same equipment
from di�erent views. However multiple references also involve the loss of
some important tree properties.

62

3.4 The JCOP Framework

3.4.4 The Conditions Database for Historical Archiv-
ing

The Detector Control System is in charge of archiving the changes over
time in the system parameters. The archived data is used for analyzing
the conditions of the hardware at the time of a problem, to crosscheck
the state of the system during physics o�ine data analysis, or for the
control system debugging.

The archiving policy for the CMS control system is to store the data
in an Oracle database on a �change basis�. This means that the values
are not archived by sampling them at constant time intervals, but only
when they change by more than a de�ned deadband. This smoothing
strategy is analogous to the driver-level smoothing, but a larger deadband
is applied to the archiving in order to limit the number of archived events.
The rationale of this methodology is that with a proper choice of the
deadband, it is possible to reduce the amount of data to be written to
the database. The assumptions for the conditions database is to have an
order of 150 PVSS systems and one million parameters per experiment.

Although PVSS comes with an implementation of a database archiver,
that is appropriate for standard industrial use, its performance does not
satisfy the requirements of the LHC experiments. A collaboration was
setup between CERN and ETM (the company that develops PVSS) re-
sulting in major changes in the architecture and several optimizations
in order to achieve the needed performance. The improvements in the
performance were obtained by optimizing both client side (the PVSS
manager communicating to the Oracle database) and server side (the
Oracle Database Server). For details on this optimization process, see
[25].

3.4.5 The Con�guration Database for Changing Run-
ning Conditions

The operation of a complex control system implies proper setting of a
large number of parameters. Typically the hardware can be con�gured in
various �modes� corresponding to di�erent running conditions (e.g., the
temperature limits in the PLC and the alert thresholds must be changed
when the set temperature of the cooling system changes). Settings are
neither uniform nor constant but can be speci�c to the individual de-
vice (e.g., the current trip limit for a high voltage channel) and may be
adjusted by the experts to adapt to changing conditions or to hardware
peculiarities.

Moreover, DCS PCs are subject to failures, so that a complete recov-

63

The CMS/LHC Detector Control System

ery of the functionalities of a PVSS project has to be possible within a
reasonable time.

The framework solution to these issues is a tool known as �Con�gu-
ration DB�. This tool handles two kinds of mass con�guration data:

Device Static Con�guration Data is the con�guration data directly
related to the con�guration of the data points to handle the devices,
e.g., the data point names, the address con�gurations, the data
point aliases, etc.

Device Dynamic Con�guration Data is the con�guration data which
may change (relatively) frequently, such as hardware settings (e.g.,
in the power supplies) or alert limits.

The static con�guration is needed when a system has to be completely
restored and enables the recreation of the project �as it was before the
incident�. The runtime database is restored by creating and con�guring
all the data points according to the static con�guration data saved in the
con�guration database.

The dynamic con�guration maintains the parameters to be set in the
devices in so-called �recipes�. A recipe is described by a set of data point
elements and corresponding values and alert con�gurations. The recipes
provide two-dimensional versioning: each recipe is identi�ed by the oper-
ational mode and the version number. The operational mode corresponds
to a massive change to be applied when basic running conditions change.
The version number keeps track of the changes applied over time to the
original recipe, to adapt to the evolving conditions of the detector.

The Con�guration DB tool uses an Oracle DB as long-term storage
system, but also provides a cache mechanism to optimize the performance
by reading the recipe from dedicated data points.

Once the parameters are sent to the device by writing to the data
points, it is important to check that the changes are e�ectively applied
to the hardware before declaring that the recipe is successfully loaded. In
fact, in case of massive con�guration of a device, some of the commands
may be lost by the driver or in the internal handling of the device. In
many cases, it is critical to check that all the settings are correctly applied
before switching on the detector, because wrong settings may a�ect the
safe operation of the detector. This is achieved by de�ning a mapping
between the output and the read back element names.

3.4.6 Security Policy for LHC Control Systems

The security policy adopted at CERN to mitigate the risks described in
1.7 is based on a �defense-in-depth� approach where pro-active security

64

3.4 The JCOP Framework

measures are applied to every level (the device itself, the �rmware and
operating systems, the network connections and protocols, etc.) [26]. To
protect the controls network from external threats, the CERN network
is separated into various �network domains�. The LHC experiments and
the accelerator use di�erent dedicated experiment networks.

The interconnection of the experiment network to CERN's General
Purpose Network (GPN) cannot be avoided, but tra�c crossing the two
domains is restricted to minimum. The connection to the GPN is needed
for allowing experts to debug the system from remote. Anyway, CERN
policy prohibits operating the detector from outside the control room
and allows only experts to give commands to the system from remote.

The only means for remote user access are Windows Terminal Servers
and Linux-based gateways. For accessing the experiment network from
outside CERN, a double login is needed (�rst into CERN's GPN and
then into the experiment network).

Central installation schemes are adopted for control PCs, running
Linux or Windows [27]. The central installation ensures the coherent
synchronization and monitoring of software versions and system patches
on all controlled PCs. However, upgrades and patches are never sched-
uled automatically. It is up to the system administrator to apply patches
and upgrades in a timely manner.

3.4.7 Access Control in the JCOP Framework

The framework implements a user access control mechanism, based on
the general CERN user accounts, that works at User Interface level. The
framework access control is not meant to protect the control software
against malicious attacks, but rather to protect the system from unau-
thorized non-malicious use (for example, a mistake), to separate the re-
sponsibilities among various user roles and to provide traceability of user
actions.

The framework access control makes use of the concept of domain
representing a set of resources and of privilege levels that de�ne the level
of access that the user can have in that domain.

To ease the de�nition of the access rights, the group of permissions
needed to perform a task is associated to a role (e.g., Tracker Operator,
Tracker Expert). Users are assigned to one or more roles and can take
one of the roles at a time.

65

The CMS/LHC Detector Control System

Figure 3.6: The central CMS control tree: the TTC nodes are replicated in the
CMS central supervisor in a node with physics-related states. The sub-detector TTC
nodes should provide a time estimate for the execution of the command to the central
CMS DCS.

3.5 Integration Policies for CMS DCS

In order to ease the integration of the control systems for the various
sub-detectors of the CMS experiment, some conventions were provided
in the format of an Integration Guidelines document [28].

To integrate the di�erent FSM hierarchies, a central CMS node di-
rectly connected to the top nodes of the CMS sub-detectors (TRACKER,
ECAL, HCAL, MUON, etc.) was initially proposed. However, the small-
est functional unit that can be independently controlled in DAQ is the
Trigger Timing and Control (TTC) partition. Each sub-detector is com-
posed of several TTC partitions (for the SST, these are TIB, TOB, TEC+
and TEC-). Hence, it was decided to use the same granularity in the cen-
tral DCS.

The TTC partitions level is replicated in the CMS supervisor layer
(see Fig. 3.6). The objects provided by the sub-detectors must have a
common state/command interface, with four prede�ned states:

ON the TTC partition is ready for data-taking.

STANDBY Ready for beam injection (usually in this state high volt-
ages are o�, or set to a low value, and low voltages are on).

OFF All low and high voltages are switched o� (used for long shut-down
periods).

66

3.5 Integration Policies for CMS DCS

ERROR A manual intervention is required and no data taking is pos-
sible.

Other states can be de�ned, but are not recognized in the nodes of
the CMS supervisor.

When the command to reach one state is given, the TTC node pro-
vided by the sub-detector sets a parameter containing a worst-case esti-
mate of the time needed to reach the state. This time depends on the
amount of hardware that needs to change state, on the ramping speeds,
etc. The parent node starts a countdown and, if the desired state is not
reached after the timeout, it moves to an ERROR state.

The RCMS connects to the states of the TTC partition and can pause
the data taking, or �ag some data as bad, depending on the status re-
ported in DCS. This implies that the partition should change its state
only if the sub-detector is no longer ready for physics. Some tolerance
may be foreseen: if some small percentage of the detector is not in the
proper state, the data taking can still continue and the TTC partition
should not change state.

67

The CMS/LHC Detector Control System

68

Chapter 4

Strategies for the
Implementation of the CMS
Tracker Control System

The design and implementation of the DCS for the CMS Tracker Control
System is the main subject of this thesis. In this chapter the design phi-
losophy is illustrated and some implementation details are explained. Al-
though the Tracker Control System is completely integrated in the CMS
Control System, its complexity and size called for innovative and very
high-performing original solutions. Some common strategies and general
libraries, originally implemented in the context of the CMS Tracker DCS,
were adopted for the DCS of other CMS sub-detectors.

4.1 Principles

The control system for the tracker is designed and implemented following
some basic principles derived from experience gained during the design
and implementation phases. An advanced prototype of the software was
tested in a commissioning run with 25% of the tracker hardware, in 2007.
A version providing almost all the �nal functionalities has been in use
since early 2008. These principles proved to be robust enough to cope
with the new requirements and with the scaling of the system.

The architecture of the control system is designed to meet three major
criteria:

Safety Maximum priority is given to the checking procedures that en-
sure the correctness of the tracker safety system. Stand-alone
scripts can issue protection actions independently from the stan-
dard command chain.

Strategies for the Implementation of the CMS Tracker Control
System

Performance Given the complexity in terms of number of devices of
the tracker, a special e�ort is made to optimize the performance
for the retrieval of the status of a large number of objects.

E�ective user interaction The shifter is provided with the means for
fast problem �nding; the recovery procedure from error conditions
is automated.

The Tracker Control System extensively uses the JCOP FSM tool
(see Sec. 3.4.3). The FSM is the main interface used by the shifters for
controlling the tracker and provides all the functionalities needed by the
non-expert user during normal operation.

The problem of e�ectively representing the status of such a large sys-
tem is a major challenge. The power supply status is the main parameter
the user is interested in, in order to know if the apparatus is ready for data
taking. On the other hand, the status of other sub-systems (PLC, DCU,
Cooling System, etc) should be available in the user interface. Feedback
is especially needed when the status of a sub-system (e.g., temperatures
read by the PLC) prevents a part of the detector from being switched
on. The experience with FSM interaction stressed the need to integrate
the FSM state with quantitative information and to provide an e�cient
search method for �nding the devices in a certain state. Given the di-
mensions of the tracker power supply system, a certain percentage of
errors in the channels needs to be tolerated in the de�nition of the FSM
states.

Protection actions need to be implemented in DCS. The safety proce-
dures consist of a partial switch-o� command given to the power supply
system depending on the information coming from various sources. The
implementation of protection actions in DCS cannot directly use the
FSM to send commands because the partitioning feature has to be cir-
cumvented. In fact, a safety action must be executed regardless of the
included/excluded state of the devices.

The basic FSM functionalities must be integrated with additional
panels and views that re�ect other aspects of the system. For example,
the expert needs an additional hardware view, in order to commission
and debug the power supplies and the PLC system.

A strategy has to be de�ned to avoid connecting to a large number
of parameters from the user panels. For example, it is impossible for
the shifter to monitor the trend of all the temperature sensors in the
tracker but still it is important to have an e�ective interface showing the
temperature distribution.

On account of these problems, the implementation of the control sys-
tem follows a common strategy that can be summarized in the following

70

4.1 Principles

points. These are analyzed in detail in this chapter. All these issues
and the evolution of the relative solutions have been presented in several
articles at various international conferences [29, 30, 31, 32, 33, 34].

• The FSM hierarchy is kept simple and mainly re�ects the power
status of the individual detector elements, the most important in-
formation to reach the data taking stage.

• The monitoring of the conditions of the other systems (PLC, DCU,
cooling etc) is handled by separate scripts which can react to critical
conditions by issuing a (low-level) switch-o� command to the power
supply system.

• To provide a fast and reliable way to browse the hierarchy, all the
static information is cached in a single data point and loaded in
memory.

• A custom-developed general algorithm for the propagation of state
changes integrates the FSM view with quantitative information.
This methodology is completely general and was later adopted by
other sub-detectors.

• A custom database was developed in order to represent all the hard-
ware elements, their relations and their internal addresses. This
database is used to create the data points and FSM objects. All the
information contained in the database is dumped to PVSS where
it can be used to query the cabling of the detector.

• The control tasks are distributed as much as possible in di�erent
PCs, each one with a speci�c task and able to handle most of the
information locally.

• For some critical parameters (temperatures read from the safety
system) the instantaneous mean, maximum and minimum values
are propagated in the FSM hierarchy, in order to e�ectively identify
the points with possible problems.

• In case of problems, the user-interaction is minimized by providing
a wizard-like procedure for recovery.

• The expert is provided with speci�c user-interfaces that re�ect the
structure of the auxiliary hardware (power supplies, PLCs). The
usage of a parallel FSM hierarchy was avoided because the hardware
view is not needed during the normal operation but only in case of
expert operations. Moreover, the commanding feature of the FSM

71

Strategies for the Implementation of the CMS Tracker Control
System

CMS

TRACKER Muons HCAL ECAL

Cooling BCM Thermal Screen MAO Tracker Inner Barrel Tracker Outer Barrel Tracker End Cap Minus Tracker End Cap Plus

TIB Plus TIB Minus TOB Plus TOB Minus

TEC + Sector 1 TEC + Sector 2 TEC + Sector etcCooling Loop TIB- 1.1 Cooling Loop TIB- 1.2 Cooling Loop TIB- etc

TEC+ Sector 1 Disk 1 TEC+ Sector 1 Disk 2 TEC+ Sector 1 Disk etcControl Group TIB- 1.2.1 Control Group TIB- 1.2.2

TIB- 1.2.1 Ctrl Power Power Group TIB- 1.2.1.1 Power Group TIB- 1.2.1.2 TEC+ 1.2 Ctrl Power Power Group TEC+ 1.2.3.1.1 Power Group TEC+ 1.2.3.1.2

Figure 4.1: Simpli�ed view of the FSM for the control of the Silicon Strip Tracker.
The �gure shows a partial hierarchy down to some power groups in the Tracker Inner
Barrel and in the Tracker End Cap. The main node is divided into four partitions.
The software safeties act on the cooling loops (for TIB and TOB) or on the sectors (for
the TEC). Cooling loops and sectors are composed of control groups. Each control
group has one control channel and several power groups.

is not needed on the hardware view because it is not safe to execute
actions based on the hardware structure.

• The user is provided with some tools to plot the distribution of
the values of di�erent parameters upon request. A single request
avoids the connection to a large number of parameters.

4.2 Finite State Machine Hierarchy

The root of the FSM hierarchy for the control of the tracker is split
into four main nodes that correspond to the Trigger Timing and Con-
trol (TTC) partitions in the DAQ system: Tracker Inner Barrel (TIB),
Tracker Outer Barrel (TOB), TEC+ (Tracker End Cap on z+ side) and
TEC- (Tracker End Cap on z− side) (see Fig. 4.1). Since these par-
titions are handled separately in the DAQ, it is important to provide
their state at the top level in order to notify the DAQ system when the
tracker is ready for data taking. These nodes are directly interfaced to
the broader CMS control system, which duplicates them in a higher level
�physics-oriented� state (see Sec. 3.5). All the auxiliary hardware, such
as the 48 Power Converters (called MAO) and the cooling plant control,
is also handled in direct children of the top node.

The next level re�ects, for TIB and TOB, the division between z+
and z− side followed by a layer of cooling loops, while TEC+ and TEC-

72

4.2 Finite State Machine Hierarchy

are partitioned into sectors. Below cooling loops and sectors, the control
groups represent the state of a control ring, built up from the basic blocks
of the power supply system: the control power channel and the power
groups (Fig. 4.1). The FSM hierarchy includes 4 TTC partitions, 132
cooling loops or sectors, 356 control groups and 1944 power groups.

The modules of a cooling loop share the cooling lines, so that in case
of problems in the cooling system the temperature increases in the entire
loop. The software safety switches o� a single cooling loop in response
to an anomalous value in the environmental probes related to it. In the
case of the TEC, control groups belong to more than one cooling loop, so
the hierarchy must necessarily go directly from sectors to control groups.
For the TEC, the software safety acts at the sector level, just as in the
case of the hardware interlock.

The FSM implements the safe sequence for switching on and o� the
tracker. During the switch-on phase, the control power supply must be
on before being able to switch on the power groups belonging to the
same control group. Low voltages must also be switched on before high
voltages. The switch-o� sequence is reversed. HV are switched o� �rst,
then the LV and �nally the control channels. The FSM does not accept
commands that would bring the detector to a state that does not respect
the switching procedure. If a forbidden condition is reached for some
other reason (e.g., because of a trip that switches o� a control channel),
then an automatic action switches o� the related power supplies (e.g.,
the power groups served by a tripped control channel).

State Meaning

OFF Everything o�
ON_LV LV ON, HV OFF

HVMIXED LV ON, only one HV ON
HVRAMPING Some HV ramping up or down
ON LV and HV ON
HVON_LVOFF HV ON and LV OFF

ERROR CAEN error (e.g., trip, over current)
UNPLUGGED The PSM is unplugged
INTERLOCKED The PSM is interlocked

Table 4.1: Possible states of a power group

The FSM logic is implemented in several object types. The basic
DUs are the power group and the control channel. The possible states
for a power group are listed in table 4.1. The states of the upper nodes

73

Strategies for the Implementation of the CMS Tracker Control
System

summarize the state of the control channels and power groups in the
subtree below. These states depend on the percentage of ON channels
and are discussed in detail in Section 4.13.5.

4.3 Handling of the Power Groups

Although the power group is a complex object, composed of two LV and
two HV channels plus the status information of the A4601H PSU, it is
handled as a device unit in the FSM. For this purpose, a custom script,
running independently from the FSM, computes the states and handles
the execution of the commands for a power group.

The script managing the power groups communicates with the FSM
via a custom data point type that provides a simple client-server inter-
face. This data point type includes a getState element and a send-

Command element. For each power group, a data point of power group
type is created and used as an interface between the FSM and the stan-
dard data points provided by the framework for the control of the CAEN
power supplies. The script to manage the power groups is connected to
the elementary devices of each power group and updates the getState

element accordingly for each power group data point. The state of each
power group in the FSM is connected to getState. The FSM propagates
the commands by writing to sendCommand. The script then connects to
sendCommand and translates the commands into the proper sequence of
actions on the power channels.

The solution of grouping the low-level devices into a single DU signif-
icantly reduces the memory consumption associated with the handling
of the logic in the FSM.

4.4 Task Distribution

The distributed structure of PVSS allows autonomous projects to be
interconnected. Thanks to this feature, the Tracker Control System tries
to maximize the role distribution among the various PCs. This approach
tends to minimize the communication over the network and favors an
architecture based on parallel independent processes that handle the local
resources of each PC (see Fig. 4.2). By distributing the data among
di�erent PCs, exchanging most of the time high level information only,
a large amount of data can be handled e�ectively.

Four PCs are devoted to power supply control, each one communicat-
ing with one of the mainframes via a CAEN OPC server that provides
an abstraction layer between the mainframe and the PVSS OPC client.

74

4.4 Task Distribution

4 SY 1527 Power Supply Controllers

Power

Supply

PC 1

Power

Supply

PC 2

Power

Supply

PC 3

Power

Supply

PC 4

6 TSS PLC Racks

PLC

PC

Supervisor

PC

DCU

PC

Cooling

Plant

PC

DAQ

SOAPMODBUSSIEMENS S7OPC

1 CP PLC

Health

Check PC

Figure 4.2: The organization of the PCs for the Tracker Control System in the
network and the protocols used to communicate with the auxiliary hardware or with
the external systems. The power supply mainframes are one-to-one connected to
a speci�c PC. DSS PLCs and the cooling plant PLC are handled in dedicated PCs.
The DCUs are transmitted by DAQ to a dedicated PVSS system. Finally a supervisor
provides the integration of the di�erent components and speci�c checking procedures
are carried out in yet another PC.

These machines also manage the bottom layers of the FSM hierarchy
(from the cooling loop/sector level down to the power group). To im-
prove the performance of the readout, the number of mainframes has later
been doubled, connecting each PC to two mainframes (see Sec. 4.9.1).

The cabling scheme of the tracker was adapted to ensure the possi-
bility of connecting the four PCs and the four mainframes one-to-one.
In fact, if more than one OPC server connects to the same mainframe
(even if subscribing to di�erent items) the performance drops signi�-
cantly. Moreover, in order to minimize the memory overhead associated
with every Control Unit, the power supply channels corresponding to
one cooling loop or sector have to be handled in a single Control Unit
(corresponding to a separate process running on one machine). To ful�ll
both requirements, all the power supplies of one cooling loop or sector
must be placed in racks controlled by the same mainframe. Moreover,
the power supplies connected to one mainframe are all connected to the
same side (z+ or z−) of the tracker (two mainframes per side).

One PC works as supervisor, managing the upper layers of the FSM
hierarchy and the connection to the auxiliary systems, such as the beam
condition monitoring. All the UI managers are connected to the tracker
supervisor PC and run on remote UI workstations. When CMS is op-
erated centrally, however, the UI managers are connected to the central
CMS supervisor PC. The supervisor is connected to all other tracker PCs
and therefore any data point on any of the other PCs can be accessed
from the supervisor.

75

Strategies for the Implementation of the CMS Tracker Control
System

Communication with external systems (see Sec. 2.4) is handled using
DIP, a custom protocol developed at CERN, which provides an e�ective
way of broadcasting information to several distributed locations, using a
client/server paradigm.

One PC is devoted to PLC reading from 7 independent PLC racks.
The control system takes care of the conversion from ADC counts into
physical units (i.e., degrees Celsius for temperatures and percentages for
humidities), using probe-speci�c �tting constants which are read from the
custom tracker con�guration database (see Sec. 4.7) in the con�guration
stage. No conversion into physical units is performed in the PLC, because
this kind of CPU-consuming procedures would unnecessarily increase the
PLC workload. Instead, also the safety limits are con�gured in the PLC
as ADC counts. Any conversion from and to ADC counts is performed in
PVSS when needed. The communication with the PLC uses the Siemens-
S7 driver, available as PVSS manager. This driver communicates directly
with the PLCs without an additional software layer between PVSS and
the front end level. A control script in this PC is responsible for updating
the mean, minimum and maximum temperatures and to update the state
of the critical conditions (see Sec. 4.5 for details).

The PC for controlling the cooling system uses a dedicated PLC to
access the cooling plant information. The communication with the cool-
ing plant PLC is achieved via the Modbus protocol. A script in this PC
is responsible for updating the cooling plant status presented in the FSM
and for taking automatic actions in response to safety critical situations
regarding the cooling plant (for example, when the valves of a cooling
loop are closed).

The DCU values are managed in a separate machine. In this case the
values are not directly read out by PVSS via a driver, but are received
from the tracker DAQ system. A dedicated control script computes the
mean and maximum values of the various DCU parameters and can issue
a switch-o� action to the power supply data points (see Sec. 4.6 for
details).

4.5 PLC Probes Handling in DCS Software

Cooling pipe or silicon module temperatures are grouped by cooling loop
(in TIB and TOB) or sector (in TEC). This grouping is identical to the
interlock groups de�ned in the safety system (see Sec. 2.3.3).

A dedicated script, running in the PC managing the PLCs, computes
the instantaneous mean, maximum and minimum values of the probes
belonging to each cooling loop/sector. These values are also propagated

76

4.5 PLC Probes Handling in DCS Software

Warning 1

Warning 1

Ok

Alert

Alert

Severe

Severe

Lower Nominal value

PLC Lower Limit

PLC Upper Limit

Upper Nominal value

Software Switch-off
Upper Limit

PLC Upper LimitPLC Upper Limit

Software Switch-off
Lower Limit

Figure 4.3: Alert ranges for the cooling loop: a set of di�erences (represented by
the arrows) are used to de�ne the alert ranges depending on the nominal temperature
and the hardware safety system limits. On the right an example of the con�guration
for a TIB cooling loop in warm mode.

to the upper levels in the FSM hierarchy using the propagation strategy
described in 4.13.

Each PLC probe has two hardware interlock limits, a maximum and
a minimum (see Sec. 2.3.3). The software con�guration de�nes soft-
ware switch-o� limits that are narrower than the hardware ones (soft-
ware maximum below hardware maximum and software minimum above
hardware minimum). In addition, the software de�nes alert ranges of in-
creasing severity to signal an anomalous temperature value. Acceptable
temperatures are de�ned in terms of a nominal range. These ranges are
con�gurable for each cooling loop or sector. It may be noted however
that the absolute software limit values are not explicitly con�gured. In-
stead, the con�guration speci�es relative limits in terms of the di�erence
between the hardware limit and the corresponding software limits. In
this way the software limits are recomputed automatically each time the
hardware con�guration is updated. This ensures that the software limits
are narrower than the hardware interlock limits. For a schematic repre-
sentation of the alert ranges de�ned at the cooling loop level and their
relation with the hardware interlock limits, see Figure 4.3.

The temperatures across a cooling loop are fairly uniform, so the
probe readings are expected to be within a few degrees of each other.
In the case of cooling loops with many probes, the probes give some-
what redundant information. The safety mechanism therefore ignores a
single inconsistent reading, a mismeasurement given by a noisy probe.
However, if two probes in the same group give a consistent out-of-limit

77

Strategies for the Implementation of the CMS Tracker Control
System

measurement, the safety mechanism is triggered. Finally, there is an ad-
ditional software limit for the mean value. When the mean value of the
probes in a cooling loop falls outside a speci�ed range, the protection
action is triggered. The software protection also prevents switching on
a cooling loop until the temperature values are within the normal range
(see Sec. 4.12 for details).

The hardware interlock acts with a coarser granularity than the soft-
ware safety. It interlocks one or more crates instead of several individual
power supplies (see Sec. 2.3.3). The software safety is expected to in-
tervene before the hardware interlock limit is reached. When the cooling
loop is switched o�, the temperature decreases and goes back into the
safe range, preventing the interlock from switching o� other parts of the
detector as a side-e�ect.

Dew point values are computed from pairs of related air temperature
and humidity sensors. The dew points are compared to the coldest point
in the corresponding region of the tracker. An alert is raised when a dew
point gets too close to the coldest temperature in the region. In case a
critical threshold is reached, the corresponding sub-detector is switched
o� and prevented from being switched on again.

If an interlock is �red by the DSS system despite the implemented
software safeties, the DCS must send a double hardware acknowledge
before the tracker can be powered again. When the values are back
in the proper range, the single probes that went out of limits must be
acknowledged in the PLC system to release the interlock. Then the power
supply system has to be cleared with a command given at the level of
the mainframe and the power can be switched on again. The analysis
of which probes must be acknowledged is quite complex and must be
somehow automated. This functionality is integrated in a special recovery
wizard (see Sec. 4.14).

Communication from the control system to the safety system dur-
ing normal operation is limited to acknowledge signals. However, two
kinds of con�guration procedures are foreseen. The �rst, used in case
of change of the running conditions (for example, when the set temper-
ature of the cooling plants is changed), updates the hardware limits for
the PLC probes. In this case, limits are downloaded to the PLC (as ADC
counts) and the software limits are recomputed according to the software
con�guration. The second procedure is the con�guration of the interlock
groups. This is a very safety-critical operation that is performed by the
experts only in case the PLC should be recon�gured from scratch.

The initialization of any con�guration should be made very secure and
restricted to experts only. For this purpose an access control mechanism
is in place. Moreover, to enable con�guration of PLCs only from reliable

78

4.6 Handling of the DCUs and Communication with the DAQ

sources, the communication from the control system to the safety system
must follow a well-de�ned hand-shaking protocol.

At con�guration time, the control system reads back at each step the
last written values to be sure that the writing procedure worked correctly.
After receiving any con�guration from PVSS, the PLC performs some
internal checks. If the con�guration is considered to be safe it is accepted,
otherwise the PLC keeps the old con�guration. The new con�guration is
not accepted, for example, if the communication protocol is not followed
correctly or if the number of participating sensors is too small or if no
interlock groups are de�ned. The settings of each probe (limits, enable
�ags, etc.) are read back by the DCS from a di�erent memory location
than the one that is accessible for writing at con�guration time. The
PLC copies the con�gured values to the �nal location used by the PLC
logic only in case of successful con�guration.

4.6 Handling of the DCUs and Communica-

tion with the DAQ

DCUs (see Sec. 2.3.4) provide environmental information with the gran-
ularity of the individual module. The DCUs include several types of en-
vironmental sensors measuring temperatures at various points, voltages,
currents and humidities. This information should naturally be treated
in DCS that is responsible for displaying and archiving the values read
from the DCUs and for executing protective actions in response to any
critical condition. However, the DCUs are read out by the DAQ system
via the data acquisition control chain. Hence, a communication between
DAQ and DCS is needed. In order to send data to DCS, DAQ uses PVSS
SOAP eXchange (PSX), a server that provides a Simple Object Access
Protocol (SOAP) service that allows external applications to communi-
cate with PVSS using this standard protocol.

When the front end electronics on the modules are switched on, a
DAQ process reads the DCU values periodically and independently for
each TTC Partition. The �nal user is not interested in the raw data of
the DCUs and the DAQ database contains the DCU-speci�c conversion
constants. Hence, the conversion into engineering units is performed in
DAQ, and DCS receives the converted values.

After the DAQ has sent all the DCU data, it sends an acknowledge
command to the control system by writing to a prede�ned data point
element. The update of this element causes the recomputing of the mean
and maximum values of the DCU elements related to each power group
or control group. This strategy is needed to avoid unnecessarily recom-

79

Strategies for the Implementation of the CMS Tracker Control
System

puting these values each time a DCU is updated and to take advantage
of the fact that data is sent in bunches. DAQ implements a smoothing
procedure, by keeping track of the latest values and sending the new data
only in case the di�erence exceeds a de�ned threshold.

For each DCU parameter, limits can be de�ned for both the mean and
the maximum value at the level of power group (for front end DCUs) or
control group (for DCUs on CCU). When these limits are reached, a
safety procedure switches o� the related power supplies. Since the in-
formation coming from the temperature readings in the DCUs has �ner
granularity than the information read from the PLC system, the protec-
tion action based on DCU values should in principle prevent the inter-
vention of the next software safety level.

The information from DCUs is only available when the modules are
powered, so after a safety switch-o� it is not possible to get the updated
values from the DCUs. For this reason, the DCU values do not inhibit
the switching on of the power supplies after a software switch-o�.

4.7 The Custom Con�guration Database

The creation of the tracker logical and FSM hierarchy requires the map-
ping from the hardware (e.g., power supply units and environmental
probes) to the corresponding set of silicon strip modules (e.g., power
group, control group, cooling loop). This information is also needed to
con�gure the interlock logic in the PLC. Moreover, the correctness of the
map is crucial for operation and safety and must be carefully checked.

In order to have a coherent data source describing the tracker struc-
ture, information coming from various and heterogeneous sources has
been assembled into a custom designed Oracle database. This database
holds the representation of all the nodes of the FSM hierarchy and the
cabling and con�guration parameters of the hardware. Because of the
size and the extreme complexity of the tracker hardware, it would not
have been possible to build the required components without the help of
a database. The existing information sources were insu�cient, typically
stored in inadequate formats (simple spreadsheets) and did not provide
the correlation between the di�erent hardware subsystems.

The usage of a relational database has the advantage that data can
be split into di�erent tables, using foreign keys to represent the relations
between di�erent hardware. The information can then be combined in
several views that are used to con�gure all the PVSS projects. Unique
constraints and primary keys provide some �rst checking procedures on
the data. For example, the constraints can automatically check that two

80

4.7 The Custom Con�guration Database

power groups are not connected to the same power supply unit.

Det. a b c d e f

TIB (1) End Layer Cool Loop Ctrl Ring String
TID (2) End Cool Loop Disk Ctrl Ring String
TEC (3) End Sector Disk Cool Loop F/B PG
TOB (4) End Layer Cool Loop Ctrl Ring Rod

Det. a b c d e f Meaning

0 0 0 0 0 0 0 Root (Tracker)
4 0 0 0 0 0 0 TOB
2 2 0 0 0 0 0 TID minus
3 1 2 1 1 1 1 TEC plus Sector 2 Disk 1 1.1.1

Table 4.2: Meaning of the digits in the database key and examples of encoded
names. The convention can be used to de�ne both the internal nodes and the devices.

To ensure a homogeneous naming convention, each detector part has
a unique 7 digit identi�er. The digits have di�erent meanings depending
on the sub-detector, identi�ed by the �rst digit. By using a 0 in the
columns that do not need to be speci�ed, the same convention can be
used for both the lowest level devices (power groups) and the internal
nodes (Table 4.2). The FSM hierarchical tree is represented in a table
with a self-reference, pointing for each node to its parent (see Fig. 4.4).
The same representation can be extended to identify the PLC probes by
adding two additional digits, since the probes are logically related to a
power group or a control group. The two additional digits are needed
because in some cases a power group can host more than one probe.

The con�guration of the interlock groups is an example where the
usage of the database to remove the tight coupling of data is very helpful.
The sensor and relay bitmasks for an interlock group (see Sec. 2.3.3)
must be speci�ed in terms of the PLC internal addresses of sensors and
relays. In the database, it is su�cient to specify the relation between
logical names of the probes and the interlock groups (to de�ne which
probes belong to the group) and between the relays and the crates. The
database automatically computes the bitmasks by �nding the internal
address of the probes and of the relays connected to the crates that must
be interlocked (see Fig. 4.5). In this way, if a mistake is found or a
change in the cabling scheme is introduced, it is su�cient to correct the
information at a single point in the database, and all the related views
are automatically updated to re�ect the changes.

81

Strategies for the Implementation of the CMS Tracker Control
System

Figure 4.4: UML diagram for the tables of the custom con�guration database
describing the FSM hierarchy. The main table DETECTORPARTS has a self refer-
ence, to model the child-parent relation. The reference to the machine table is used
to identify the PC where the FSM node must be created. The table CAENCABLING
gives the position of the Power Supply Unit (or channel) for the power groups and
the control channels.

The database furthermore facilitates the development of the tools
implementing the checking procedures (see Sec. 4.8). During standard
operation the connection to the custom con�guration database is not
needed since all relevant information is available in PVSS (in the FSM
hierarchy or explicitly dumped to special con�guration data points).

The custom con�guration database is used for creating all the PVSS
projects used for the Tracker Control System from scratch. After com-
plete con�guration of the system, an image of each PVSS project is saved
to the general con�guration database provided by the JCOP framework
(see Sec. 3.4.5).

4.8 Checking Procedures for the Con�gura-

tion of the Safety System

To ensure the correctness of the cabling, some checking procedures have
been performed. These procedures ensure that the real cabling of the
detector is consistent with the information contained in the custom con-
�guration database. In fact, the cabling of the CMS tracker involves the
connection of 2300 power cables (1944 LIC cables connecting the power
groups and 356 PLCC cables connecting the control rings). The cabling
of the detector is split into two segments (see Sec. 2.3.1). Hence, there is
a total of 4600 power connection points, where potential mistakes could
be made.

82

4.8 Checking Procedures for the Con�guration of the Safety
System

Figure 4.5: UML diagram for the tables of the custom con�guration database de-
scribing the PLC connection. The main table is TSSLOGICAL, which represents the
environmental probes (identi�ed with the same naming convention used for the de-
tector parts). The probes are mapped to a PLC master, representing the cooling loop
or sector they belong to (table PLCMASTERS), and to the interlock groups (table
GROUP_PARTICULARS). The internal address of the probe is found in two steps:
the logical probe is mapped to the row, slot and channel that identi�es the connection
to the PLC rack, then each position (row, slot and channel) is mapped to the internal
PLC address (table PLC_CONNECTION). Some types of sensors require additional
conversion constants that can belong to the conditioning board (table BOARD) or,
in the case of the HMX sensors, to the probe (table HMX). The table PLC represents
the PLC rack (TIBplus, TIBminus, etc). The relays are listed in the RELAY table
and their connection to the crates is speci�ed in the RELAY2CRATE table. In order
to compute the sensor and relay mask, the information contained in these tables is
combined with the cabling of the power supplies (see Fig. 4.4) to identify the relays
that must be �red.

83

Strategies for the Implementation of the CMS Tracker Control
System

Figure 4.6: The cables for the checkout connected to the PP1 connection board
(left) and the load box used for the checkout (right).

When a small section of the tracker is not powered, the related mod-
ules are completely blind for track reconstruction. Since the detector
hardware is somehow redundant, track reconstruction may still be possi-
ble, provided that the correct information about the availability of each
part of the detector at a certain time is correctly recorded. The condi-
tions database provides the historical status of the power supply system.
The correctness of the mapping is therefore crucial for o�ine analysis.

Moreover, in the worst case a wrong cabling can compromise the
safety, since the hardware interlock would not switch o� the power sup-
ply connected to the correct detector region in case of a critical condition.
Though the Tracker Safety System is completely independent of the con-
trol system during normal running, ensuring its correctness is a crucial
task which must be performed by the control system during commission-
ing.

The �rst checking procedure was the PP1 checkout. This phase was
performed before the tracker was inserted into CMS. During the checkout,
all the PP1 locations were connected to custom load boxes (see Fig. 4.6).
Since the readings of the environmental probes are also transmitted via
the power supply cable, the procedure also checked that the signal is
reported to the PLC in the expected memory address by using special
simulators for the temperature and humidity sensors.

A speci�c program, directly usable on a laptop by the operators per-
forming the test in the UXC, guided the checking procedure. The usage
of a load box with di�erent resistances served to test several PP1 con-
nectors in parallel. The results of the checks were stored in a database
in order to keep track of the errors.

After the successful result of the PP1 checkout, the tracker was in-
serted inside CMS and the last segments of the power supply cables,

84

4.9 Performance Analysis of the Communication with the
Hardware

linking the PP1 to the detector, were connected.
The correctness of this last connection was checked by powering the

power groups one by one and verifying that the unique identi�ers of
the DCUs read out by the DAQ system matched the ones listed in the
Tracker Construction Database. This special procedure was managed by
the DAQ system, giving commands to the DCS via the PSX interface.

The last important check performed was the test of the interlock
safety. Once the correct connection between the power supplies and the
tracker has been checked, it is critical to verify the mapping between
the PLC probes and the crates interlocked by the PLC relays as a result
of one or more out-of-limit probes. This safety-critical test is done by
changing one hardware limit at a time for all the probes that can cause
an interlock and then verifying that the proper crates are interlocked.
When two probes are required to �re an interlock, the program checks
all the pairs of consecutive probes, to be sure that every probe that is
supposed to be in the interlock group actually �res the interlock. This
procedure must be repeated after each recon�guration of the interlock
groups in the PLC. A fast version of the checking procedure, checking
randomly two cooling loops per PLC system and changing the limits for
the needed number of random probes, is also in place.

4.9 Performance Analysis of the Communi-

cation with the Hardware

4.9.1 Performance of the Communication with the
Power Supply System

The communication between DCS and the CAEN power supply system
(see Sec. 2.3.1) uses the OPC protocol. PVSS provides a generic OPC
client while CAEN provides an OPC server that can be interfaced to the
SY1527 mainframe. The client subscribes to some items in the server
and groups them in OPC groups that share various parameters, notably
the refresh time.

The monitored parameters can be divided into three classes, read out
with di�erent polling times. Three types of OPC groups with di�erent
timings are de�ned. Fast groups handle crucial items (channel status,
monitored voltages and currents), slow groups are used for read back of
user settings and very slow groups are used for items that change very
rarely, such as the board serial numbers.

From preliminary tests it became clear that better performance is
achieved with su�ciently small OPC groups. When a single OPC group

85

Strategies for the Implementation of the CMS Tracker Control
System

(or three groups with di�erent polling rates) was used for all the items
of the same mainframe, the performance was very bad and in some cases
led to the impossibility of reading out some items.

Hence two di�erent grouping strategies were tested: three OPC groups
per crate or three OPC groups per rack (branch controller). The tests
were performed in an early development stage when neither the main-
frame �rmware nor the CAEN OPC server had reached a �nal version.
However, there are reasons to believe that the choice of the optimal size
is still valid with the new software. The resulting distribution of the
response time for the state change of one channel in the two di�erent
con�gurations is shown in Figure 4.7. It is clear that the solution to
group the items by crate leads to shorter response times.

Another variable that can be scanned is the polling time of the fast
reading group. It was observed that decreasing the refresh time below a
certain threshold (5 s) does not yield a faster response.

Response time depends of course also on the number of active OPC
groups and increases signi�cantly when more than 20 groups are active
(Fig. 4.8).

The tracker power supply setup was a unique opportunity to perform
these extensive performance tests. In fact the required hardware was
only available at Point 5 and the relevant tests could not be performed
by CAEN.

While the grouping strategy (decided on the basis of this early data)
improved the communication time, the achieved performance was still
not satisfactory. The response time for switching on or o� one single
channel was still longer than 10 seconds, an unacceptable time for any
user to receive feedback for a command. The main problem was that
the polling strategy adopted in the communication between the OPC
server and the mainframe forced the reading of the complete information
at every readout cycle. The unsatisfactory performance of the readout
is due to the fact that the mainframe, originally designed to handle up
to 16 boards with a maximum of 8 channels each, is used, under the
EASY scheme (see Sec. 2.3.1), to control up to 16 branch controllers,
with up to 450 channels per branch controller. The results presented
in this paragraph clearly show the poor scalability of the polling based
communication.

A request for an improved performance was sent to CAEN and led
to a new implementation of the communication between the OPC server
and the mainframe, based on an event-driven strategy.

In PVSS, communication between the Event Manager and the other
types of manager (drivers, control managers, UI managers) is event-
driven. Nevertheless, PVSS managers are not the only components used

86

4.9 Performance Analysis of the Communication with the
Hardware

5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

Response Time (s)

C
o

u
n

ts

Response Times Depending on the OPC Grouping

Grouped by Branch Controller
Grouped by Crate

Figure 4.7: Distribution of the response time for switching on a channel with two
di�erent con�gurations of the OPC groups (by branch controller and by crate). By
grouping by crate, a signi�cantly lower response time is obtained.

0
5

10
15
20
25
30
35
40
45

10 20 30
Active Fast OPC Groups

Re
sp

on
se

 T
im

e
[s

]

Figure 4.8: Distribution of the response time depending on the number of active
OPC groups)

87

Strategies for the Implementation of the CMS Tracker Control
System

CAEN OPC Server

PVSS OPC Client

PVSS data points (EM)

PVSS UI / JCOP FSM

Polling (changed
items)

Polling or Event
Driven

Polling

Event Driven

Event Driven

Branch
Controller

Polling (changed
items)

Mainframe

Power
Supply
Unit

Shared Memory

DCOM

TCP/IP (Local)

TCP/IP (Local)

CAENBUS

TCP/IP or UDP/IP
(LAN)

Communication
Protocol

Communication
Mode

Figure 4.9: Communications stack for the control of the CAEN PSMs. The upper
levels are handled in PVSS and follow an event driven protocol. Communication be-
tween OPC client and server always uses a polling mechanism. The new version of the
OPC server provided by CAEN o�ers the possibility to communicate with the SY1527
mainframe via an event-driven protocol. Communication between the mainframe and
the power supply units is done in two steps and uses a polling mechanism (but only
for the items that have changed since the last cycle).

88

4.9 Performance Analysis of the Communication with the
Hardware

OPC Server
OPC

Group 0
Handler

OPC
Group n
Handler

UDP
Server

OPC Client

Keep
Alive

Internal Cache

TCP / Command UDP / Event

Mainframe

Figure 4.10: Software architecture of the event-driven version of the CAEN OPC
server. When an OPC client creates an OPC group, it initiates a thread inside the
CAEN OPC server that polls the data from the internal cache. The OPC server
subscribes to the relevant items in the mainframe. A separate thread (UDP server)
is responsible for updating the internal cache of the server when it is noti�ed of a
change by the mainframe. The commands are still sent via TCP. The new features
(implemented following the request of the tracker) are represented in red.

89

Strategies for the Implementation of the CMS Tracker Control
System

in the communication with the devices. The communications stack for
the control of the CAEN power supplies is sketched in Figure 4.9 where
all the relevant software layers are represented together with the corre-
sponding communication protocol and communication mode.

The upper layers (User Interface, Event Manager and OPC client)
are handled by PVSS and use an event-driven protocol. The communi-
cation between the PVSS OPC client and the CAEN OPC server uses
a polling mechanism, based on the refresh times de�ned in the OPC
groups. The new features introduced by CAEN (following the request
from the CMS tracker) changed the communication mode between the
CAEN OPC server and the CAEN mainframe. The new implementation
required changes both in the OPC server and in the mainframe �rmware.

When the event-driven strategy is enabled, the CAEN OPC server
keeps the image of the OPC items in memory. This cache is updated by
the mainframe on a change basis (see Fig. 4.10). The event-driven
mode uses UDP instead of TCP as transport protocol. Hence there is no
concept of acknowledgment, retransmission and timeout (some messages
may be lost at the network layer), and the order in which the messages
arrive cannot be guaranteed. To avoid inconsistencies, if some items are
never received within a con�gurable verify time, these items are read
again (using polling) through TCP/IP. UDP was preferred over TCP
essentially for performance reasons. However, CERN IT department is
currently working with CAEN on the optimization of the event-driven
protocol. The optimized version should reduce the tra�c by grouping
several updates in a single packet. This way it should be possible to
implement the event-driven protocol over TCP/IP.

The event mode is transparent for the OPC client, that still queries
the server with the speci�ed polling time and receives the data from the
server cache. The event-driven strategy can only be used for data read
from the mainframe, while a parallel connection using the TCP protocol
manages the commands to the mainframe.

Communication from the mainframe to the PSUs is done in two
steps. The mainframe reads the state from the branch controller and
each branch controller queries independently up to 6 crates.

The mainframe �rmware is responsible for providing the interface
between the branch controllers and the OPC Server. Hence, the OPC
Server can be regarded as a client of the mainframe �rmware. The main-
frame keeps an internal cache, containing the complete image of all the
items exported by the Power Supply Units. This cache is refreshed every
0.5 s by reading the changed items from all the branch controllers. If the
communication takes more than 0.5 s, the process misses one or more
rounds and restarts to communicate with the branch controllers at the

90

4.9 Performance Analysis of the Communication with the
Hardware

0

2

4

6

8

10

2 4 6 8 10
Poll Time [s]

Re
sp

on
se

 T
im

e
[s

]

Figure 4.11: Distribution of the response time for setting a parameter depending
on the polling time of the group when the event mode communication is enabled in
the OPC server. The response time is limited by the polling time.

next time frame. Once the values are updated in the mainframe's cache,
a separate process, called Event Dispatcher, is noti�ed. The dispatcher
keeps a list of all the OPC Servers that have subscribed to each item
and sends the updated values to those that have subscribed to it. In the
tracker setup, only one OPC Server is connected to each mainframe, so
the event dispatcher handles a single client.

The branch controllers are able to communicate in parallel to up to
6 remote EASY crates via 6 independent communication lines. All the
line threads continuously query the remote boards to know which items
have been changed. A shared memory is updated with the received data.
CAEN claims that the branch controller can refresh about 300 items per
crate in 0.5 s. In the case of the tracker, the crates are completely full
and about 500 items have to be handled, so that a complete refresh of
the status of one branch controller should take around one second in the
worst case. However, only the items that have changed are read out, so
most of the time the status of a branch controller should be refreshed in
0.5 s .

Unfortunately it was not possible to extensively test the response
time for switching on one channel depending on the polling time with the
new event mode strategy because of the unavailability of the hardware.
However, some tests were made of the response time for changing the
value of one parameter depending on the poll time.

Figure 4.11 shows the results. When the event-driven mode is used,
the response time increases linearly with the polling time that acts roughly
as an upper limit for the response time. The great impact of the event-
driven communication is evident in the �gure. In this case the updated

91

Strategies for the Implementation of the CMS Tracker Control
System

5

10

15

20

25

30

35

40

2 4 6 8 10
Poll Time [s]

Re
sp

on
se

 T
im

e
[s

]

Figure 4.12: Distribution of the response time for setting a parameter depending
on the polling time of the group when the communication between the OPC server
and the OPC server uses polling. In this case the response time never drops below 15
seconds.

value is retrieved most of the times during the next polling after the set-
ting. For comparison, the same test was performed on a similar setup
where the polling mechanism was used (see Fig. 4.12). In this other
case the mean response time was above 15 s, regardless of the polling
time. However, this very good performance is only observed when the
total number of changes is low. During a massive state change (for exam-
ple, when the entire tracker is interlocked) the performance of the event
mode drops drastically. This e�ect should be mitigated by grouping sev-
eral events in the same communication packet.

Based on these results, polling times of 2 seconds (for fast groups)
and 10 seconds (for slow groups) were used, allowing the OPC client to
retrieve the needed information with a good feedback time during stable
conditions.

An alternative solution for improving the performance of the commu-
nication is to relieve the load of the mainframes by doubling the number
of mainframes and halving the number of branch controllers per main-
frame. This strategy does not require any recabling of the power supplies
and was �nally successfully adopted in the tracker setup (that is currently
using 8 mainframes). The response times for the new setup are accept-
able also when using the polling based communication method.

92

4.10 Performance of PVSS dpGet and dpSet

4.9.2 Performance of the S7 Driver in the Commu-
nication with the PLCs

For optimizing the communication with the S7 driver, used to commu-
nicate with the PLCs of the Tracker Safety System, the polled items are
split into three groups, read out using di�erent polling times. The 1200
sensor readings are assigned to a fast group with a refresh time of 2 sec-
onds. The state of the PLC relays is read out every 5 seconds, giving a
total of 544 items. The other parameters are read at a lower rate (about
20 seconds). A smoothing is applied at the driver level to reduce the
number of events in the event manager. However, fast values are read
every ∼ 3 minutes even if they have not changed, using slightly di�erent
time thresholds to avoid a synchronous mass request. This solution in-
creases the con�dence of the user in the displayed data even in case of
stable temperatures.

Increasing the number of polling groups for the S7 driver does not
achieve a better performance, so a single poll group is used for each
di�erent speed.

4.10 Performance of PVSS dpGet and dpSet

The functions dpGet and dpSet are the basic commands for the inter-
action between a user interface or script and the PVSS Event Manager.
Both commands can be used to get or set many elements in a single
function call, provided that all the data point elements belong to the
same PVSS system. This limitation is due to the fact that each dpGet

or dpSet issues a request to a speci�c event manager.
Commands acting on data points always imply an overhead due to the

connection to the central manager. For optimizing performance, a good
practice is to avoid the calls to dpGet and dpSet as much as possible if the
operation can be directly implemented in the manager's local memory.
It is also useful to group several data point requests in a single call.

As a rough guide, the data not read directly via drivers should be
saved in data points only if it needs to be visualized, accessed from
various concurrent scripts or archived to the historical database. The
intermediate data that needs to be accessed frequently should instead be
kept in memory. When the data contained in some data point elements
has to be accessed for reading by di�erent concurrent threads in the same
control script (that share the same memory), it is recommended to ac-
cess the data from a mirror in memory. This mirror is kept actual by
connecting to all the elements and updating the value in memory. This
approach is particularly advantageous when the mirrored elements are

93

Strategies for the Implementation of the CMS Tracker Control
System

 0

 5

 10

 15

 20

 25

 0 10000 20000 30000 40000 50000 60000

Se
co

nd
s

el
ap

se
d

Total number of datapoint elements to dpGet

Comparison of the dpGet performance

one by one
 all at once

Figure 4.13: Comparison of elapsed time for getting an increasing number of data
point elements one by one or with a single request

changing much less frequently than they are accessed.
In order to investigate the performance of these two fundamental

functions, an extensive set of tests was performed. All the measurement
are referred to a PC equipped with dual core 1.8 GHz Intel processor and
2 GB of RAM.

Plot 4.13 shows that the time needed to perform a dpGet command
scales linearly with the number of retrieved elements. When one single
request is issued for each data point element the overhead time (about
0.3 ms per request) is dominant. By grouping the requests in a single
command, the response time is kept within an acceptable range. For
example, for 5 000 data point elements (which is a reasonable number
in many applications) the grouping strategy improves the elapsed time
from 1.8 to 0.2 seconds.

The behavior of dpSet is di�erent. The time taken for setting the
elements one by one increases linearly with the number of attributes to
be set, whereas the time taken to set the elements with a single command
appears to increase as ∼ N2. The quadratic behavior is shown in �gure
4.14, which compares the times needed to set an increasing number of
data point elements one by one or with a single call. The point where
setting one element at a time becomes faster than setting the elements
in a single request is around 8 000 elements.

This quadratic behavior is unexpected and the underlying reasons
for this poor performance are not fully understood. The issue was dis-
cussed with the company. However, the problem is still not �xed and a
workaround is needed at JCOP framework level.

94

4.10 Performance of PVSS dpGet and dpSet

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2000 4000 6000 8000 10000 12000 14000

Se
co

nd
s

el
ap

se
d

Total number of datapoint elements to dpSet

Comparison of the dpSetWait performance

one by one
 all at once

Figure 4.14: Comparison of elapsed time for setting an increasing number of data
point elements (up to 15 000) one by one or with a single request

 0

 5

 10

 15

 20

 25

 30

 35

 0 10000 20000 30000 40000 50000 60000

Se
co

nd
s

el
ap

se
d

Total number of datapoint elements to dpSet

Comparison of the dpSetWait performance

Group size: 1
Groups size: 2
Groups size: 5

Groups size: 10
Groups size: 20
Groups size: 30
Groups size: 50
Groups size: 60
Groups size: 80

Groups size: 100
Groups size: 200
Groups size: 300
Groups size: 500

Groups size: 1000

Figure 4.15: Comparison of elapsed time for setting an increasing number of data
point elements (up to 60 000) varying the number of requests and the group size (i.e.,
the number of elements per each request)

95

Strategies for the Implementation of the CMS Tracker Control
System

 0

 1

 2

 3

 4

 5

 6

 7

 0 200 400 600 800 1000

Se
co

nd
s

el
ap

se
d

Group size in the dpSet

Comparison of the dpSetWait performance with different groups

300 elements
500 elements

1000 elements
2000 elements
5000 elements
8000 elements

10000 elements
15000 elements
18000 elements
20000 elements

Figure 4.16: Dependence of the elapsed time for setting a constant number of
data point elements on the size of the request. The time taken to set the elements
decreases when the group size goes from 1 to 100 then slowly increases again.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000

Se
co

nd
s

el
ap

se
d

Total number of datapoint elements to dpSet

Comparison of the dpSetWait performance

Groups size: 1
 All at once

Group size: 2
Group size: 5

Group size: 10
Group size: 20
Group size: 30
Group size: 50
Group size: 60
Group size: 80

Group size: 100
Group size: 200
Group size: 300
Group size: 500

Group size: 1000

Figure 4.17: Detail of smaller values (up to 10 000) for groups of di�erent sizes

96

4.10 Performance of PVSS dpGet and dpSet

A study was performed to determine the optimal solution for writing
a large number of attributes. It is clear that grouping the elements in
small groups helps because it is desirable to stay in the region where
the quadratic behavior is performing better than the linear one. A set
of measurements was taken for a large number of data point elements
(up to 60 000) to determine the optimum size of the group. The group
size was varied from 1 to 1 000, changing the number of calls needed
to set the same number of elements according to the group size. For
example, to set 5 000 elements one can call dpSet 5 000 times (once for
each element) (2.76s), 2 500 times with groups of 2 elements (1.65s), 50
times with groups of 100 elements (0.5s) or 5 times with groups of 1 000
elements (0.7s).

By comparing the slopes of the di�erent groupings, the optimal size
for the groups can be estimated to be around 100 elements per dpSet

(see Fig. 4.15). Figure 4.16 shows the dependence of the elapsed time
on the group size. It is evident that when the group size is larger than
200, the elapsed time slightly increases. The optimal size of 100 elements
is also working well for the smaller values as shown in �gure 4.17. The
optimal group size of 100 elements, based on the results of this analysis,
greatly improves system performance. A normal implementation would
have grouped as many elements as possible in a single dpSet request,
leading to a very bad performance when a large number of elements has
to be set.

DPEs Groups of 80 Groups of 100 Groups of 200

50 0.01 0.01 0.01
100 0.01 0.01 0.01
150 0.02 0.02 0.02
500 0.06 0.05 0.05
1000 0.1 0.1 0.09
5000 0.46 0.5 0.48
10000 0.91 0.86 0.97
15000 1.41 1.4 1.45
20000 1.88 1.88 1.93
30000 2.85 2.8 2.86
40000 3.77 3.79 3.88

Table 4.3: Summary table for the time elapsed for setting an increasing number
of data point elements

Table 4.3 is a summary of the elapsed times for three grouping strate-
gies around the optimum of 100. With groups of 100 elements, a linear

97

Strategies for the Implementation of the CMS Tracker Control
System

behavior with a slope of about 0.95 ms / 1000 elements is achieved.
Based on the conclusions of this study, a general function for setting

the data point elements that automatically groups them in sets of 100
elements is widely used in the implementation of the control system.

4.11 Caching of Static Data

Along with dynamic data that changes in response to events coming from
the front end devices, a control system must also handle a good amount
of static information. Typical examples of static data are the structure
of the hierarchical tree or the relations between data points representing
di�erent hardware parts. Handling this kind of data always implies a
trade-o� between �exibility and performance. The standard handling of
the FSM tree in the JCOP framework favors �exibility (once the tree is
modi�ed, the changes are immediately re�ected in the retrieval functions)
at the cost of poor performance. The framework function for getting the
children of one node (the basic functionality to perform a tree-traversal) is
implemented as a dpGet that involves a signi�cant overhead, as discussed
in Section 4.10. Moreover, this approach tends to unnecessarily read data
points that are not changing during normal operation.

The design of the Tracker Control System follows the opposite ap-
proach. The structure of the hierarchical control tree is cached thanks to
the functionalities o�ered by a general library, named treeCache. At the
time of con�guration, all FSM hierarchy information (names and types of
nodes, parent-child relations, data points corresponding to devices, etc.)
is read once and dumped into a single data point. Each client using the
treeCache library, either from a GUI or a script, reads the information
from the single data point once and then keeps it in its local memory. In
this way all the queries on the hierarchical tree structure are performed
in memory with an impressive positive impact on the execution time. As
an example, consider the problem of getting the names of all the power
groups below the TEC plus node in the FSM hierarchy of the tracker.
This query requires to visit 785 nodes, checking their type and selecting
384 out of them based on the type information. Using the framework
FSM functions, this query takes around 40 seconds, while with the cache
approach it takes around 0.6 seconds to read the cache from the data
point (a procedure called only once when the manager starts) and 0.1
seconds to execute the query in memory.

The drawback of this choice is that in case the tree is modi�ed, the
cache data point must be updated by reading the complete structure
again and all the PVSS managers using the cache must be restarted in

98

4.12 Implementation of Protection Actions

Figure 4.18: Order of visiting the nodes in a depth-�rst traversal of a tree. This
order is the natural one for presenting a list of nodes to the user in any interface.

order to force them to read the updated information. This is not an
issue for a production system, where the tree structure should change
only in case of drastic expert interventions, such as the recabling of a
power supply device.

To create the cache, a depth-�rst traversal of the tree is performed,
assigning a sequential index to each node (see Fig. 4.18). Once the
list of nodes is built and loaded into memory, in order to walk a subtree
in depth-�rst order, it is su�cient to loop over all integers from the
root's index to the index of its rightmost descendant. This order is also
the natural one for listing the nodes in any user interface. The map is
represented in memory as an array that lists all the node names and as
a matrix that contains 19 items for each node (e.g., the PVSS system,
the type, the parent, the children). The amount of memory used to store
even a large tree is very low for today's standards (around 1 MB for the
entire structure of the CMS tracker FSM tree).

In principle a general FSM hierarchy can contain references to the
same node from more than one parent. If this kind of link is allowed, the
hierarchy can be a graph rather than a tree (the parent of one node is
not unique). In this case the common subtree is replicated by assigning
di�erent indexes to the same node.

4.12 Implementation of Protection Actions

In case of problems in the environmental parameters or in response to
external events, the DCS intervenes by cutting o� the power supply to a
certain region of the detector. In this case, the normal switch-o� sequence
should not be applied, rather the commands should be issued to all the
power supplies simultaneously. Moreover, in case of critical conditions
the included state of the FSM objects should not be taken into account,
because even a partition that is operated in stand-alone mode should

99

Strategies for the Implementation of the CMS Tracker Control
System

be switched o� in case of emergency. For these reasons standard FSM
commands cannot be used for executing protection actions.

The protection mechanism must also ensure that the portion of the
detector concerned cannot exit the safe state as long as the critical con-
dition holds. Any dangerous command should be inhibited at the lowest
software level possible.

The protection actions are implemented in a general component,
called Detector Protection, designed to meet the requirements of all CMS
sub-detectors.

An action matrix, con�gurable for each PVSS system, de�nes a list
of output data point elements to be set to a given value in response to
each critical condition (e.g., the list of elements to be set for switching
o� the channels related to a portion of the detector). The locking feature
provided by PVSS inhibits any further command on the output elements.
When a DPE is locked by the protection manager, no other process can
write to it. The output elements can be de�ned by specifying a pattern
for the data point name or the alias, or by using the information stored
in treeCache.

The Detector Protection component includes a mechanism for ver-
ifying that the protection action is executed succesfully. For example,
the readback must be checked in order to ensure that all the a�ected
channels are o�. If the veri�cation procedure fails, the elements are set
again, to ensure that the safe state is eventually reached (e.g., if some
commands are lost in the communication with the hardware). When the
veri�cation procedure succeeds, an acknowledgement is sent to the PVSS
system generating the condition.

The tool is used for implementing a handshake protocol with the
LHC. Before injecting the beam, the LHC sends a warning to all the
experiments. In response to this signal, the protection mechanism brings
all CMS sub-detectors to the safe state. When all the PVSS systems
that have subscribed to the condition acknowledge that the safe state
is reached, a con�rmation is sent to the accelerator. The accelerator
activities can then proceed.

The Detector Protection component provides a user interface to an-
alyze the �red conditions and the currently locked data point elements.

4.13 Propagation Algorithm

4.13.1 Summarizing the State of the System

The problem of providing an e�ective summary for the conditions of
a system including a large number of parameters is not trivial. The

100

4.13 Propagation Algorithm

CMS

Subdetector

Part1 Part2 Part3

1.1 1.2 1.3 3.1 3.2 3.3

1.2.1 1.2.2 1.2.3 3.3.1 3.3.2

1.2.1.1 1.2.1.2 1.2.1.3 1.2.1.4 1.2.2.1 1.2.2.2 1.2.2.3 3.3.2.1 3.3.2.2 3.3.2.3

CMS

Subdetector

Part1 Part2 Part3

1.1 1.2 1.3 3.1 3.2 3.3

1.2.1 1.2.2 1.2.3 3.3.1 3.3.2

1.2.1.1 1.2.1.2 1.2.1.3 1.2.1.4 1.2.2.1 1.2.2.2 1.2.2.3 3.3.2.1 3.3.2.2 3.3.2.3

Figure 4.19: Example of loss of the operational mode in case of error (red nodes):
it is impossible to determine (without browsing the hierarchy) whether most nodes
are ON (green) or OFF (blue) in case some errors occur.

101

Strategies for the Implementation of the CMS Tracker Control
System

CMS

Subdetector

Part1 Part2 Part3

1.1 1.2 1.3 3.1 3.2 3.3

1.2.1 1.2.2 1.2.3 3.3.1 3.3.2

1.2.1.1 1.2.1.2 1.2.1.3 1.2.1.4 1.2.2.1 1.2.2.2 1.2.2.3 3.3.2.1 3.3.2.2 3.3.2.3

CMS

Subdetector

Part1 Part2 Part3

1.1 1.2 1.3 3.1 3.2 3.3

1.2.1 1.2.2 1.2.3 3.3.1 3.3.2

1.2.1.1 1.2.1.2 1.2.1.3 1.2.1.4 1.2.2.1 1.2.2.2 1.2.2.3 3.3.2.1 3.3.2.2 3.3.2.3

Figure 4.20: Example of loss of the quantitative information: the state of the top
node is the same if one channel is in ERROR (red) or if almost all channels are in
ERROR.

102

4.13 Propagation Algorithm

hierarchical structure is advantageous because, by partitioning in sub-
components, it provides many abstraction layers and gives the user the
possibility to act at di�erent levels of detail. However, the choice to
summarize the conditions of each node in a single state leads to two
main problems:

Operational mode vs. Fault detection A control system must be
able to cope with two types of information: the �operational mode�,
that is,. the overall status of the hardware (for example, OFF, ON,
MIXED), and the �fault status�, that is, the presence of errors. The
standard approach, which is to combine these two aspects in a sin-
gle state, can lead to the loss of information about the operational
state when an error occurs (see Fig. 4.19). A possible solution to
this problem is to provide two independent states re�ecting both
aspects in each node. That is the implementation choice in the
ATLAS control system [35].

Loss of the quantitative information A second type of problem, not
addressed by the double-state approach, is the loss of quantitative
information in summarizing the state of a node. In fact, if the
state is the only piece of information which is propagated in the
hierarchy, it is not possible to weigh the nodes according to the
number of devices they are related to. Moreover, with this classic
approach, it is impossible, for example, to distinguish between the
case where 1% of the devices are in ERROR and the case where
95% of the devices are in ERROR (see Fig. 4.20). A single
channel that goes OFF could take the system out of the �ready for
operation� state. Instead, it would be desirable to introduce some
tolerance. Since the DCS state is typically synchronized with DAQ
to notify when the system is ready for data taking, it is important
not to stop the experiment in case of small singular errors.

On the other hand, the summary in a single symbolic state has some
relevant advantages. A single state provides a useful level of abstraction
which helps to reduce the complexity of the logic of the upper levels,
minimizes the communication due to state changes and favors the inde-
pendence of the nodes.

The original approach followed in the implementation of the tracker
control system, presented in the next paragraphs, solves the two problems
listed above by relaxing the property that the state of each node in the
hierarchical tree depends only on the symbolic state of its direct children.
Instead, the state of one node can be regarded as a function of the number
of devices of a certain type in a given state included in the subtree related

103

Strategies for the Implementation of the CMS Tracker Control
System

to the node. This way we lose part of the modularity of the design but we
gain a lot in the ability to e�ectively represent the state of a large number
of devices. This approach is valuable in the case of large but homogenous
systems, such as the tracker. The standard state-deduction approach is
more suitable for high level controllers which must collect information
from many sub-systems handling di�erent types of equipment. The two
strategies can easily be combined, by using the information computed
with the new approach to integrate the standard FSM logic. This general
approach was �rst presented in [33].

4.13.2 Assumptions on the Structure of the Hierar-
chy

Let us assume that a homogeneous system is built by devices of di�erent
types (e.g., LV channels, HV channels, temperature sensors), constituting
the leaves of a hierarchical structure. The hierarchy is assumed to be a
tree because this way the number of devices in each subtree is univocally
de�ned. Each device type is typically characterized by some boolean
properties (e.g., o�/on, not in error/in error, ok/out-of-limit) that in
principle can be completely independent (e.g., a channel could be in
error no matter if it is on or o�). Given n device types, each one with
mi basic states (i = 1 . . . n), the state of an internal node is described
by n+

∑n
i=1mi parameters, that are the number of devices in each state

plus the total number of devices of each type in the subtree. From these
numbers it is then easy to compute other parameters, such as percentages
or summary states expressed in words.

The state representation of the system can be regarded as an ab-
straction procedure where a large number of parameters characterizing
the system are �compressed� to fewer parameters that can still e�ectively
describe the system. Assuming that the basic states of the devices fully
describe the state of the system, a hierarchy with n device types, instan-
tiated ci times and each one described by mi parameters is univocally
described by

∑n
i=1mici boolean parameters. In the case of the tracker

the algorithm handles three device types (one with two parameters and
two with three). Hence a total of 356 ∗ 2 + 3888 ∗ 3 + 3888 ∗ 3 = 25464
boolean parameters are compressed in the top node into n+

∑n
i=1mi =

3 + 2 + 3 + 3 = 11 integer parameters.
Homogeneity is the criterion for deciding at what stage in the control

hierarchy the use of the collected information should be replaced by a
logic that combines the states of the children. In one detector which
has di�erent equipment for LV and HV power supplies, for example, the
top node should combine the two states computed with the help of the

104

4.13 Propagation Algorithm

collected information for the two di�erent device types.

4.13.3 Strategy for the Propagation of the Informa-
tion in a Tree Structure

This section presents a general methodology for updating in real time
information for all the nodes of a hierarchical tree. The algorithm is
suited to any function of the state of the devices in which the value in
one node depends only on the value of the same function in the children.
Possible examples are: counting the devices in a state or sum, maximum,
minimum value of a parameter. Although the mean does not satisfy this
basic property (because the di�erent subtrees must be weighted with
the number of devices they contain), it can be computed with the same
strategy, by propagating the sum and the total number of devices.

The strategy assumes that the leaves of the tree can arbitrarily change
their state; the goal of the algorithm is to update, albeit with a certain
delay, the values of the function at all the levels, while avoiding over-
loading the system. A naive implementation where any event causes the
recomputing of the function in all the ancestors would lead to system
overload, because the same information would be accessed and updated
in parallel by many concurrent threads.

The idea of the algorithm is to collect the changes of the children in
a certain time range before propagating the change to the parent in the
hierarchy. To ensure that the topmost levels are eventually updated in
case of continuous �uctuations, the state is propagated up after a certain
number of events, regardless if other events are still coming from the
lower levels.

For each internal node in the hierarchy, the algorithm uses a variable
keeping track of the last thread which updated the node (last_updater)
and a counter of the rejected threads (num_kicked_out). The algorithm
works bottom up. It is initiated by the state changing of one leaf (child).
The event on a leaf starts a new thread executing the following steps:

1. Let parent be the parent node of child in the hierarchy

2. Set last_updater(parent) = my_thread_id

3. Wait for a timeout

4. After the timeout elapsed, if still last_updater(parent) = my_thread�
_id (no other child updated the node) or if the number of rejected
threads has reached the threshold (num_kicked_out(parent) >
max_kicked_out) then:

105

Strategies for the Implementation of the CMS Tracker Control
System

• update the function for parent

• Set num_kicked_out(parent) = 0

• If parent is not the root, restart the algorithm with child =
parent

else

• num_kicked_out(parent)=num_kicked_out(parent)+1

• Stop the thread

All the updates must be executed in mutual exclusion to avoid con-
currency problems. Point 1 requires that the parent of each node is
univocally de�ned, so the hierarchy must be a tree.

Parent

Child2Child1

1+ 2

Child3

Parent

Child2Child1

1

1

Child3

Parent

Child2Child1

1+ 2

Child3

Parent

Child2Child1

1+ 2

Child3

(a) (b)

(c) (d)

Figure 4.21: Propagation example for one node with three children: a �rst thread
reports its change to the parent and then waits for a timeout (a). During the timeout,
a second thread updates the ∆ in the parent (and also waits for a timeout). The
timeout of the �rst thread expires but the value in the parent has been updated by
another thread so the �rst thread dies (b). During the timeout of the second thread,
the value parent is not updated (c). When the timeout in the second thread expires,
it �nds that the value of ∆ in the parent is the same it has written, so the second
thread propagates up the change and resets the value of ∆ in the parent (d). This
strategy results in a great reduction of the number of concurrent threads.

When the function to be computed is just a counter (as in the algo-
rithm to propagate the states), it is possible to avoid reading the values
in the children that did not change and propagate the di�erence from
the previous state (see Fig. 4.21), obtaining this modi�ed algorithm:

106

4.13 Propagation Algorithm

• Before waiting for the timeout, a variable which collects the di�er-
ences of all the children is updated: (delta(parent) = delta(parent)
+ delta(child))

• When, after the timeout, the condition is satis�ed, the number
of devices is updated and the delta is reset to zero (n(parent) =
n(parent)+ delta(parent); delta(parent)=0), then the di�erence is
propagated up.

For this modi�ed version, the condition last_updater(parent) = my-
_thread_id can be replaced with the condition that delta(parent) has
not changed during the waiting time.

4.13.4 Implementation in PVSS

The algorithm for the propagation of the information, implemented in
a library called majority, is based on the hierarchy tree de�ned by the
JCOP FSM. In fact the algorithm was designed to extend and integrate
the functionality of existing and well-tested control hierarchies built with
this general framework tool.

The majority library works on the vectors describing the state of one
node regardless of their meaning. In this way it is possible to provide
a generic tool which handles the propagation of the information in the
tree while a customizable user function computes the state of the de-
vices. This approach is completely analogous to the implementation of
the JCOP FSM (see Sec. 3.4.3), where the user has to write the custom
functions to compute the state of a device unit of a particular device
type. The con�guration of the tool involves the de�nition of the device
types, their possible states and the corresponding type in the FSM. An-
other user function is called to compute for each internal node an overall
symbolic status depending on the percentages of devices in each basic
state. The hierarchical structure must be a tree in order to de�ne a
unique counting for the number of devices. Therefore, multiple links are
not allowed in the subtree handled by the library.

The modi�ed algorithm presented in 4.13.3 runs in a control script.
To navigate in the hierarchy, themajority library makes use of treeCache.
The caching mechanism was a key point for ensuring a good performance,
since the propagation algorithm needs to e�ciently query the structure
of the hierarchy. The script updates a data point for each node, contain-
ing the absolute numbers as well as the percentages and the summary
state. This is the information that needs to be displayed in the GUI. The
auxiliary information (deltas and counters for kicked out nodes) is only
kept in memory.

107

Strategies for the Implementation of the CMS Tracker Control
System

To ensure a satisfactory response time to changes, the timeout must
be kept quite short, especially when handling hierarchies with many lev-
els. To avoid setting the data points too frequently, the propagation
algorithm works in memory while a parallel thread copies the changes
from the memory image to the data points, with a prede�ned refresh
frequency. In this way a lower limit on the refresh time is imposed by
construction and the script is not overloaded in case of massive state
changes. However, in case of a stable state, the workload of the script is
still low, since the script just checks the updating of the state values in
memory.

The hierarchy can be distributed in several PVSS systems: in this
case the majority CTRL script must run in all the di�erent systems
and the propagation of the information from one system to the other
is handled by connecting to the lower level data points from the upper
system. This is needed because the scripts running in two di�erent PVSS
system do not share the memory and must communicate via a data point
connection.

The integration of the states computed by the majority library in the
FSM is obtained by adding the data point related to each internal node
as a child of the related FSM node. Additional logic can be programmed
in the FSM to set the state of the node taking into account the additional
information computed by the majority script. Instead, if no change in
the FSM state is needed depending on the quantitative information, the
user can choose to use the standard FSM logic to compute the state
of the nodes. In this case, the information provided by the propaga-
tion algorithm can just be displayed in the DCS GUI for integrating the
information provided in the FSM state.

A key requirement for the integration of the propagation algorithm
with the JCOP FSM is to take into account the inclusion states of the
nodes in the computed numbers. When a node is excluded from the FSM
hierarchy, all the devices in the subtree below it should be excluded from
the total number, so that an excluded node does not in�uence the status
of the parent. Handling of inclusion and exclusion of nodes is possible
using the same algorithm as for the propagation of the di�erences by
acting on the total number of devices. The script computes independently
the counting of the number of included devices and the total number
regardless of the inclusion state.

The total number of devices in each subtree can of course be computed
a priori from the static structure of the hierarchy. Nevertheless, the total
number of devices is also computed by the script during startup, giving
a good criterion for deciding when the script is completely initialized.

The package comes with some panels, that provide the elements to be

108

4.13 Propagation Algorithm

used in the GUI for displaying the percentages and the absolute number
of devices in each state. The user interface is completely generic and reads
the device types and their states from a speci�c con�guration data point.
The panels are customizable for showing only some of the devices/states,
to adapt to the users' needs. The user interface also includes a basic
search feature that implements a tree traversal to �nd the devices in a
given state.

4.13.5 Customization for the Case of CMS Tracker

State of the Power Supplies

The CMS tracker uses the majority library to compute the state of the
power supply system and manages three types of devices (control chan-
nels, LV channels, HV channels), each one with two basic states (o�/on,
not error/error). Additional information about the percentage of inhib-
ited power groups (not ready to be turned on) is also computed. This
feature is discussed in the next section.

Since the DAQ has to wait for the tracker to be in ON state to take
data and stops when the detector exits from this state, it is important
to introduce some tolerance to keep on running even if some modules are
not powered. For this purpose, the FSM should move from �mixed� to
�pure� states when the percentage goes above a certain threshold (typi-
cally 95%). For the same reason, an error in a single power supply channel
(e.g., a trip) should not bring the entire tracker in ERROR state, so the
transition to the ERROR state is ruled by another threshold (typically
5%). The states for the nodes above the control group are listed in Table
4.4. The �mixed� states are needed for safety reasons, because they re-
port that at least one channel is ON. For example, a single switched-on
HV channel is enough to bring the entire detector into the HVMIXED
state. This state signals that the detector is not ready for beam injection.

The majority scripts are running on �ve PVSS systems: the four
controlling the mainframes and the supervisor. Since the state of the LV
and HV channels are both related to a power group, a device unit in the
CMS tracker FSM, the initial counting of the number of devices in each
basic state is performed by the script handling the state of power groups
(see Sec. 4.3). This script provides, in addition to the state, a bitmask
describing the state of each of the four channels.

The percentages computed in the majority script are presented to
the user with the help of a color convention following the framework
guidelines (see Fig. 4.22). A new color that provides feedback when
100% of the devices are on (see Fig. 4.23) is introduced.

109

Strategies for the Implementation of the CMS Tracker Control
System

Figure 4.22: Summary table for the percentages of channels in the basic states for
the CMS tracker. The majority library keeps track of the state of three device types:
control channels, low voltage channels and high voltage channels. For each device
type, the percentage of channels ON and channels in ERROR is counted. In addition,
the number of LV and HV channels ready to be switched on is computed, in order to
give to the user a useful feedback of the inhibit conditions. The mean, maximum and
minimum temperatures in each node are displayed beside the percentages.

Figure 4.23: Legend for the color convention used for displaying the percentages.
The convention uses the standard framework color but a di�erent kind of green is
used to give the feedback that all the devices are in the �nal state.

110

4.13 Propagation Algorithm

State Ctrl On LV On HV On Err.

OFF 0 0 0 x ≤ 5%

CTRLMIXED 0 < x ≤ 95% 0 0 x ≤ 5%

ON_CTRL x > 95% 0 0 x ≤ 5%

LVMIXED 0 < x ≤ 95% 0 x ≤ 5%

ON_LV x > 95% 0 x ≤ 5%

HVMIXED 0 < x ≤ 95% x ≤ 5%

ON x > 95% x ≤ 5%

ERROR x > 5%

Table 4.4: Meaning of the states in the upper nodes of the Tracker hierarchy. All
the (non empty) conditions in one row must be valid in that state.

The online computing of the percentages in the tracker is an e�cient
way to search the devices in a given state by walking the tree and fol-
lowing the branches where some devices are in the state being searched.

Readiness of the Power Supplies

A guiding principle in the implementation of the Tracker Control System
is to keep the FSM hierarchy as simple as possible and to only re�ect the
status of the power supply system. For this reason, various conditions
coming from the environmental monitoring or from external systems are
not directly taken into account in the FSM status, but only inhibit the
switching on of the relevant power supplies. However, following this
strategy the user may give a high-level command and the inhibit condi-
tions prevent the switching on of a substantial part of the tracker without
giving any direct feedback.

In order to introduce a useful feedback, the counting of the number of
�not-ready� LV and HV channels was introduced in the online computing
of the states.

There are several conditions that can inhibit the switching on of LV
and HV, acting at di�erent levels of detail. Among them:

• some global conditions, such as the general cooling plant status,
act on the entire tracker

• the environmental readings or the cooling status (when the software
threshold on the temperature is reached or if the cooling loop valves
are closed) act at the level of sector / cooling loop

111

Strategies for the Implementation of the CMS Tracker Control
System

• an error on the control group channel inhibits all the power groups
in the control group

Moreover, there are some external global conditions, such as the LHC
state, that should only inhibit the HV and not the LV.

The protection actions are handled in the Detector Protection com-
ponent (see Sec. 4.12), that, in response to a critical condition, switches
o� the a�ected channels and prevents them from being switched on again
with the locking mechanism. The locked state of the channel is propa-
gated in the hierarchy using the propagation algorithm.

In this way the operator can see the percentage of not ready devices
and, if some part of the detector is inhibited and cannot be switched on,
he can access a detailed panel and investigate the cause of the inhibit.

This feature was introduced in a second iteration to the functionalities
of the CMS tracker majority. However, the changes needed were very
limited and only a�ected the user functions, proving the �exibility of the
majority library.

On-line Computing of Mean, Minimum and Maximum Temper-
atures

A variant of the propagation algorithm is used for computing online the
minimum, maximum and average temperature of the top nodes in the
hierarchy. In this case the algorithm is implemented directly in the script
computing the state of the temperatures at the cooling loop level (see
Sec. 4.5) and does not use the majority library. Since in this case
the algorithm has to deal with �oating point numbers, a smoothing algo-
rithm is introduced to avoid the propagation of insigni�cant changes. The
smoothing mechanism reduces the number of events to be handled, allow-
ing an e�cient operation of the algorithm. The �rst smoothing is done
at driver level by ignoring small �uctuations in the reading of the PLC
sensors. Thanks to the smoothing mechanism, the events are not syn-
chronous with every polling cycle from the PLC. However, the changes in
temperature of the di�erent sensors are not independent. When a part of
the detector is switched on or o�, temperatures are consistently increas-
ing or decreasing causing a peak of events. The propagation algorithm is
able to treat these peaks properly by discarding most of the events and
recomputing the relevant parameters after the con�gured timeout.

The propagation of these values immediately allows the user to iden-
tify very high or very low temperatures by using the information collected
in the hierarchy to increase the e�ciency of the search (see Fig. 4.22).

112

4.13 Propagation Algorithm

Figure 4.24: Summary table with percentages and detailed table with absolute
numbers reporting the counts of the propagation algorithm in the BRM power supply
system

4.13.6 Application of the Propagation Algorithm to
the DCS of Other Sub-detectors

Beam & Radiation Monitoring Power Supplies

The Beam Radiation & Monitoring for CMS (see Sec. 2.4) is a complex
safety system used to monitor beam quality. It can trigger a beam abort
in case of unsafe conditions that causes the de�ection of the beams into
the beam dump and shuts down the �at-risk� detectors.

From the point of view of the control, the power supply system must
be integrated in the control of the experiment. Despite the relatively
small number of devices compared to the tracker (a total of 16 LV and
84 HV channels) a tool counting the number of channels in ON or in
ERROR can still be useful. In this case, the customization of the package
is straightforward since both types of channels are handled as a device
unit in the FSM hierarchy.

The test of the majority package in the BRM system showed that
the strategy, though designed for large systems, is also suited to smaller
systems. From the point of view of the package user, the programming
work turned out to be very limited. It is su�cient to de�ne the types of
devices that must be handled and the behavior of each device type. The
callback function to compute the basic state of a device could be easily
adapted from the de�nition of the DU state in the JCOP FSM or directly
connect to the FSM state. The library comes with some sample code for
these procedures that could be easily customized. Comparing to the
de�nition of the FSM logic, the customization of majority is easier and
faster because the user does not need to program any kind of speci�c
logic for the high level nodes. Also, the user interface is immediately
available thanks to the generic panels included in the majority package
(see Fig. 4.24).

113

Strategies for the Implementation of the CMS Tracker Control
System

CMS Drift Tubes

The DCS for the CMS Drift Tubes (DT), that are part of the CMS Muon
System, is also using the majority library for determining the state of
the power supply system.

The hierarchy for the DT re�ects the detector geometry. The DT sys-
tem is divided into 5 independent wheels. Each wheel is geometrically
segmented into 12 sectors. Each sector is equipped with 4 chambers, ex-
cept the horizontal top and bottom with 5 chambers each. Each chamber
is divided into 8 or 12 layers. A layer is a complex object including 4 HV
channel and a so-called �macro-channel�, but it is treated as a DU in the
DCS. As for the power groups in the tracker, a separate script computes
the status of the layers independently from the FSM. Additionally, each
chamber needs 4 LV channels. Hence the control system has to deal with
a total of 60 sectors, 250 chambers, 2720 layers and 1000 LV channels.
From the point of view of the DCS, the size is therefore similar to the
tracker. The size and the homogeneity of the DT DCS qualify it as a
proper use-case for the propagation algorithm.

The majority library is used in the DTs to count the number of layers
and LV channels in the di�erent basic states. For the LV channels, the
relevant properties are o�/on and not error/error. For the layers, three
di�erent properties have to be counted: number of ON layers, number
of' �partially ON� layers (corresponding to the ramping phase of the HV
channels), number of layers in ERROR. So the state of an internal node
is de�ned by 5 parameters.

The DT DCS is distributed over 6 PCs. One is used as a supervisor
handling the upper layers of the FSM and all the LV channels. Five PCs
(one per wheel) are devoted to HV control. The majority script runs
on all the PCs. The standard user interfaces are used for displaying the
percentages.

CMS ECAL Control System

The CMS ECAL Detector Control System [36] provides the monitor-
ing of the detector conditions, of the on-detector electronics and of all
ECAL subsystems (High Voltage, Low Voltage, Cooling System, status
of laser monitoring system). ECAL DCS adopted majority to compute
the number of LV and HV channels in the basic ON and ERROR states.
ECAL DCS handles a total of 860 LV channels and 1240 HV channels,
controlled by individual DUs.

The CMS ECAL control hierarchy is driven by ECAL subsystem
structure and geometry. The top node is divided into 6 TTC parti-
tions, further partitioned into �supermodules�. Each supermodule han-

114

4.14 Wizard for Error Diagnosis

dles di�erent subsystems, providing the di�erent services (HV, LV, Cool-
ing, Safety System, etc.). The use of majority applied to LV and HV
systems, allows for the counting of the number of channels in ON and
ERROR. This counting is used to introduce a certain error tolerance in
the FSM states.

ECAL DCS is distributed over a total of 14 computers; majority runs
on 9 of them (three for LV, �ve for HV and the supervisor).

4.14 Wizard for Error Diagnosis

A typical problem that must be addressed in a complex control system
is the analysis of error conditions and the implementation of an e�ective
recovery procedure. Depending on the type of problem, an automated
recovery procedure may be possible or the intervention of an expert may
be needed. In the standard approach, the analysis of the situation is
usually left to an expert (or a highly trained shifter) who deeply under-
stands the architecture of the system and all interconnections between
the di�erent hardware. Still, a human expert could spend a considerable
amount of time to �nd all the information needed to identify the prob-
lem and to execute the recovery procedure manually. Moreover, when a
problem occurs, the typical reaction of a shifter is to try to bring back
the system as soon as possible into normal conditions in order to be able
to restart the operation. To achieve this objective, he will try several
procedures that might be able to solve di�erent kinds of errors, until he
�nds the working one. This approach is harmful, because at the end
of the procedure the user will not have a clear idea of the cause of the
problem, will write confusing logs stating that at some point the error
somehow cleared but will not be able to tell which procedure he followed
in order to solve the problem.

To avoid this kind of interaction, the strategy of the tracker control
system is to avoid relying on the competence of the shifter and to auto-
mate the recovery procedures as much as possible, in order to identify
and automatically log the causes of the error.

As a matter of fact, in most cases a computer program can analyze
the various sources of error in a much more e�ective way than any human
expert. Such a wizard can also be used by untrained shifters who are pro-
vided with a friendly user interface (see Fig. 4.25) adopting an extremely
simpli�ed user interaction. This approach minimizes the downtime due
to errors and relieves the experts from unnecessary work.

A knowledge-based system may seem to be the ideal implementation
for this kind of wizard. In some applications, knowledge-based systems

115

Strategies for the Implementation of the CMS Tracker Control
System

Figure 4.25: The user interface for the CMS Tracker Wizard, called on the CMS
tracker top node. The user interaction is limited to two or three possible choices. The
expert can choose to perform only some of the di�erent kinds of checks.

Figure 4.26: The CMS Tracker Wizard noti�es the user of the cause of the
interlock condition. In this case the wizard gives directly the phone numbers of the
relevant expert.

116

4.14 Wizard for Error Diagnosis

can be integrated with a SCADA system to perform specialized tasks,
such as Fault Diagnosis or Alarm Processing. However, the implementa-
tion of the wizard uses a hardcoded algorithm rather than a knowledge
database. In fact in knowledge-based implementations, data from the
SCADA system is often assumed to be immediately available to perform
the analysis. Instead, the primary goal of the present implementation is
to minimize the amount of information retrieved from the SCADA sys-
tem in order to provide a recovery procedure with a good response time,
by querying only the data needed for the current step. Moreover, the
decision process is not particularly complex and is well documented.

The wizard works in two phases. In the �rst one, the status of the
system is analyzed. If the error condition is not clearable, the user is
noti�ed with the cause of the error (for example, if a global condition
that interlocks the entire tracker is still present), so that he can call the
appropriate expert (see Fig. 4.26). If a recovery procedure is possible,
the output of the analysis is a sequence of instructions that should be
executed in order to bring the system back to a normal situation. In this
case, the wizard proceeds with the second phase, that is, the execution
of the instructions, giving the user a feedback of the current operation.
Some steps in the procedure can fail (for example, if the hardware does
not react as expected, after a certain timeout), and in this case the user
is noti�ed. When the procedure is successfully completed, the user is
noti�ed of the success. The wizard never commands the switching on of
parts of the detector. Instead, when the recovery procedure is completed
successfully, the system is taken to a non-error state (most likely a par-
tially OFF state) and it is ready to receive the proper command from
the user.

The analysis is divided into separate steps that take care of di�erent
types of errors (connection problems with the hardware and with the
DCS PCs, problems in the 48V power converters, interlocks, non com-
municating boards). For each of these conditions a fast check indicates
whether it is necessary to analyze the status of the hardware in more
detail or if the detailed analysis can be skipped.

The wizard makes use of the caching mechanism for retrieving the
structure of the hierarchy. To identify the parts of the detector in error, it
reads the counting of the devices updated by the propagation algorithm.
Information from the custom con�guration database is used to obtain the
cabling relationships. The wizard does not need a direct connection to
the custom con�guration database, because all the relevant information
is stored in speci�c data points (see Sec. 4.7).

The following steps describe the analysis algorithm used by the wiz-
ard. The analysis can result in a success (the recovery is possible) or in

117

Strategies for the Implementation of the CMS Tracker Control
System

a failure (the recovery is not possible). The two possible outcomes are
marked as SUCCESS and FAIL.

• The wizard is called on one node, that is the root of the tree to be
analyzed.

• Find the minimum subtree in error under the given root and limit
the analysis to this subtree. In this way the wizard avoids perform-
ing expensive analysis if the error is limited to a small number of
nodes.

• Analysis of the status of communication with the hardware:

� Check that communication with the controlled hardware (PLC,
power supply mainframes) and with all the DCS PCs is work-
ing. In case of problems, report to the user (FAIL).

• Analysis of the status of the 48V service power:

� Check the status of the 48V channels related to the given
partition (plus side, minus side). If they are all ON, this step
can be skipped.

� Identify the racks or crates in ERROR as a result of missing
48V power.

� Check the corresponding 48V channels. If one channel is OFF,
switch it on (this action requires a user con�rmation). If one
channel is in ERROR, report the fact to the user and suggest
the user to call the power supply expert (FAIL).

• Analysis of the interlock conditions:

� Check if the Master PLC is interlocking as a result of a global
condition (e.g., Cooling Plant Failure). In this case report the
fact to the user (FAIL).

� Check if the interlock is forced in the PLC by the user. If the
interlock is forced, remove it (SUCCESS) or report the fact
(FAIL) depending on the user role.

� Find the interlocked crates.

� Identify the relays connected to the interlocked crates.

� If the connected relays are not �red, acknowledge the power
supply system to remove the interlock condition (SUCCESS).

118

4.14 Wizard for Error Diagnosis

� If there are some �red relays, �nd the interlock groups that
can �re the relays and verify if the interlock condition still
holds (check number of out-of-limit sensors in each group).

� If the interlock condition still holds, report the fact to the user
(FAIL).

� If the interlock condition does not hold anymore:

∗ Acknowledge in the PLC the sensors belonging to the
group.

∗ Wait for the relays to remove the interlock.

∗ Acknowledge the power supply system.

∗ Acknowledge the alerts in DCS (SUCCESS).

• Analysis of the non communicating boards:

� Find all the non communicating boards in the subtree.

� Check if they all belong to a same crate.

� Report the results (FAIL).

• Analysis of inhibit conditions (see page 111):

� Find inhibited subtrees.

� Report the causing condition to the user (FAIL).

• Analysis of power supply conditions:

� Find channels in ERROR (trip, over current etc).

� If some conditions are not clearable (because the problem still
holds), report the fact to the user (FAIL), otherwise acknowl-
edge the power supply system to clear the error and bring back
the channel to OFF (SUCCESS).

In case of success, the wizard executes the instruction to solve the
problem. If the sequence is executed successfully, the wizard checks if
the node is still in error. In case some error is still present, the analysis
is restarted. This strategy allows solving di�erent kinds of problems in
several steps.

The wizard can be used from an interactive interface but is also auto-
matically called without user interaction. This feature is used when the
tracker is operated centrally by the CMS control system.

The wizard works on the standard FSM hierarchy for the control of
the detector and only analyzes the state of the hardware related to the

119

Strategies for the Implementation of the CMS Tracker Control
System

subtree on which it is called. This allows the user to recover the state of
one of the main partitions regardless of if the other partitions still have
a problem.

4.15 De�nition of Alerts

Alerts and FSM error states are two ways to identify the faults in a large
control system. Though the two methods can have some intersection,
they are mostly complementary. The ERROR state of one device usually
corresponds to a hardware status, such as a �red safety feature that must
be acknowledged before bringing the system back to operation, or an
interlocked status of a power supply. On the other hand, alerts indicate
that a certain parameter is outside the expected range and are used to
attract the users' attention on a particular device. Alerts can be de�ned
on binary values, when one of the two states corresponds to an error
condition. For example, the Trip or the Over Current state of a power
supply channel generates an alert. For �oating point values, alerts can
be used to signal that the parameter is outside of the normal operation
interval. Alerts are typically de�ned for monitored currents, voltages or
temperatures. In the case of �oating point values, several alert ranges
can be de�ned for the same element, giving rise to alerts of di�erent
severity.

The number of alerts should never explode in case of overspread prob-
lems. In general the alerts should be de�ned in a way that a single source
of error corresponds only to one alert and not to many. For example, if
a 48V power converter channel is switched o�, an entire crate goes to
an ERROR state because the power supplies do not receive the needed
service power. In this case it is preferable to de�ne an alert on the cause
(the OFF status of the 48V converter channel) rather than on the e�ect
(the �48V is missing� error of the power supply boards). For the same
reason, in case of an interlock, the alert is de�ned on the status of the
PLC relay (the causing condition) rather than on the interlocked bit of
the power supply board (the e�ect).

The alerts on the temperature values are not de�ned on the single
probe reading but rather on the mean, maximum and minimum value
de�ned at the level of cooling loop and sector. This strategy reduces
the number of alerts in the system while still providing the user with an
e�ective tool to identify the region of the detector where the problem is
located.

An alert can be programmed to execute an action corresponding to
its state transitions. These actions can be used to play an audio alarm

120

4.16 Periodical Checks

on the user interface, to notify the experts via SMS, or to keep track of
the error conditions in a speci�c log.

A particular way of using alerts is to de�ne safety limits on the read
back settings of certain parameters. For example, the power supply safety
limits on the monitored current or voltage can be programmed over a
large range. Even if the experts may need to adjust the values, there are
some limits that should never be exceeded in order to ensure detector
safety. Of course the control system does not allow any user to set the
parameters outside the safe region, however, the limits can be exceeded
when a power supply module is replaced with another one that is not
properly con�gured. The safety limits are con�gured in speci�c alerts
de�ned on the read back settings that can set the corresponding power
group or channel to the not ready status (see Sec. 4.13.5) and inhibit
the powering of the channel.

4.16 Periodical Checks

Alerts are an e�ective tool for spotting problems in the parameters de-
pending on their values. However, there are some anomalous conditions
that can only be identi�ed by analyzing the historical trend of the pa-
rameter or by comparing it to other related readings. These problems
do not normally require immediate intervention but must be reported to
the experts or to the shifters and logged for further investigation.

Another kind of problems that must be identi�ed are software and
network failures, relatively common in a distributed system. This kind
of problems cannot be solved by the standard DCS shifter but require
intervention of the DCS software expert. This class of problems is not
sub-detector speci�c and can be addressed by a general tool. The CMS
system overview tool [37] is designed to monitor the control PCs and
provides this kind of functionality for the entire experiment. It will even-
tually replace the custom solution developed for the CMS tracker.

Both kinds of checks are implemented in control scripts that periodi-
cally query the system conditions and report to the experts any anoma-
lous condition via mail or, in case of severe problems, by SMS. These
scripts are running on a separate dedicated PC, connected to all the
other PVSS systems.

For the �rst class of problems (cross-check of system parameters and
trending analysis), the following conditions are detected:

• switched on power supply channels with zero or low current, corre-
sponding to a loose cable

121

Strategies for the Implementation of the CMS Tracker Control
System

• power supply modules losing the communication to the branch con-
troller

• power supply modules with wrong parameters, not matching the
con�guration database

• rising temperatures or dew points that can be detected before they
hit a warning level.

while some examples of software and network checks are

• connection problems between the PVSS systems

• communication loss with the hardware

• scripts not running

The key strategy in the implementation of the periodical check is that
all the procedures are based on massive dpGet rather than on dpConnect.
In this way, the periodical checking procedures can work independently
from the normal system operation and do not have any signi�cative im-
pact on the performance of the system since they do not subscribe to any
parameter. The interval between two subsequent checks can be tuned de-
pending on the severity of the critical condition and on the complexity
of the query.

An automatic analysis of the monitored parameters relieves the users
from routine work, attracting their attention on unusual trends or values.
In many cases, the expert can be noti�ed directly without shifter inter-
vention. Once the problem has been reported to the expert, he can take
protective measures before the parameters reach a critical level. When
the number of parameters to be monitored is huge, the periodical checks
can spot problems that would otherwise go unnoticed.

4.17 Graphical User Interface

4.17.1 Principles

The design of a Graphical User Interface (GUI) for a complex control
system must provide a simple interface for non-expert shifters, while
allowing the expert to act at a very detailed level in case of problems or
for performing a speci�c analysis.

The amount of information to be displayed (especially to the non-
expert users) must be accurately balanced. An information overload

122

4.17 Graphical User Interface

could cause di�culties in the interface usability and preclude an immedi-
ate understanding of the status of the system. On the other hand, all the
essential information should be displayed and tools must be provided for
easy navigation of the hierarchy in order to reach any speci�c detector
part in case of problems.

The user interface has to satisfy some constraints arising from the
need to integrate the Tracker Control System in the overall CMS control
system. The FSM interface is de�ned in the framework and provides a
generic structure for the user panels, with a space that can be customized
for each FSM object. The standard FSM interface (see Fig. 4.27) shows
the state of the current node at the top of the page and, below, the
state of its children in the hierarchy. Each node has a speci�c panel that
can be opened to display its detailed state. Commands can be given by
clicking on a state and a tree navigator on the left provides the access to
the detailed panel of any node.

In the tracker GUI, the percentages computed by the propagation
algorithm (see Sec. 4.13) are displayed beside the states, giving detailed
information about each node. In this way the symbolic state shown in the
standard interface is integrated with the quantitative information that
gives the �state of the node� in terms of number of devices in given basic
states (see Sec. 4.13.2).

The design of the interface for the FSM panels follows a criterion of
uniformity. In order to facilitate usability, some basic elements are used in
all the panels. Of course the user has to be familiar with the metaphor of
the hierarchy used in the representation of the detector, because all user
interaction is based on that. For example, the menus that give access to
all speci�c functions always refer to all the devices below the node where
the command is given. Since the parent-child relation in the hierarchy
usually represents a physical container-contained relation, this metaphor
is quite intuitive. The navigation in a hierarchy is a familiar task for
computer users because it is found in many contexts, from �lesystems to
the web.

The framework recommendation for the shifters is to display the
Alarm Screen (see Fig. 4.28), that is, an interface that displays all
the current alerts. This panel integrates the information provided by the
FSM by displaying the list of current problems. The Alarm Screen allows
the shifter to easily reach the speci�c panel corresponding to the prob-
lematic device. The number of alerts must also be balanced to avoid the
situation where a single problem is re�ected in a large number of alerts
(see Sec. 4.15).

Another kind of user interface that is often used in control systems is
the trend over time of the parameters (see Fig. 4.29), directly connected

123

Strategies for the Implementation of the CMS Tracker Control
System

Figure 4.27: Screenshot of the main user interface for control of the CMS Tracker.
The panel shows the state of the top node and of its children nodes. By clicking on one
node, it is possible to give commands by choosing the command from a drop down list.
A double click on one of the children opens a new panel with detailed information.
The percentages of devices in each state (computed with the propagation algorithm)
are displayed for each node beside its state. The same table displays the mean,
maximum and minimum temperature for each partition. Thanks to the information
summarized in the table, the shifter can immediately identify the error and click to
open a detailed panel that allows him to �nd the speci�c nodes in error without
need of browsing the hierarchy. On the right, some heartbeats give the feedback
that the communication with the hardware is working. The wizard for the automatic
diagnosis and recovery of errors can be opened by clicking on the icon of Einstein.
The emergency commands (forcing the interlock in the PLCs or giving an emergency
OFF to the entire detector) are accessible with two large buttons. A con�rmation
is required to avoid unintentional commands. Some drop down menus, divided in
various categories give access to the plots and specialized views. The button with the
danger sign opens the alarm screen.

124

4.17 Graphical User Interface

Figure 4.28: The alarm screen interface. All the currently active alerts are listed
in the interface that includes information about the time of the last transition and
the current values. By clicking on a speci�c row, the detailed panel of a certain device
can be opened, allowing the user to investigate the problem.

Figure 4.29: Example of the trend of the temperatures in one cooling loop of the
TIB

125

Strategies for the Implementation of the CMS Tracker Control
System

Figure 4.30: Screenshot of the rack view panel presenting the status of all the
power supply units in one rack. The PLC relays that can cause an interlock are also
presented in this panel.

to the conditions database (see Sec. 3.4.4). Trends facilitate the analysis
of the evolution of the conditions and of the correlations between di�erent
parameters. A trend of a large number of parameters must be avoided
because it leads to an overload of the system and to confusing plots.

The expert is provided with some panels that give a view of the
auxiliary hardware (power supplies and PLC) relative to their position
in the rack. For the power supply system, a panel called rack view (see
Fig. 4.30) summarizes the state of the power supplies in one rack with a
color convention. By clicking on one particular board, the expert panel
for the power group (see Fig. 4.32) can be reached. An analogous
panel shows the value of the PLC probes, arranged according to their
connection to the PLC rack (see Fig. 4.31). The detailed panel of the
speci�c devices provide a link between the logical and the hardware view,
by reporting both the logical name and the hardware location.

Finally, an innovative kind of user interface for control systems is the
three-dimensional GUI. There are several issues in developing this type
of interfaces. A preliminary study investigating the possibility of using
a formal model-based methodology in the development of a 3D GUI for
the control of the CMS tracker is presented in chapter 5.

126

4.17 Graphical User Interface

Figure 4.31: The rack view for the PLC probes. In this hardware view, the probes
are displayed according to their connection to a speci�c row, slot and channel in the
PLC rack. The status of the relays is also displayed.

Figure 4.32: The expert panel for a power supply unit powering a power group
(2 LV and 2 HV channels). The parameters are displayed and the settings can be
changed by the experts.

127

Strategies for the Implementation of the CMS Tracker Control
System

Figure 4.33: Example of the histogram GUI for displaying the distribution of
the monitored current in all 2.5 V channels in the tracker (a total of 1175 included
channels). The bins are clickable and open, on the right side. the list of devices whose
values are included in the interval. Clicking on the individual channel then leads to
the speci�c device.

4.17.2 Tools for Fast Information Retrieval

Typical tasks that the detector expert may want to execute in a control
system for a HEP experiment require the analysis of the large number
of parameters. When discussing with the users the features needed, a
common request is to have a way of displaying the value of a certain
parameter (e.g., the monitored current) in all the channels (or probes, or
DCUs) of the system. Even if at a �rst glance it could seem reasonable,
it is not possible to visualize a large number of parameters by just dis-
playing their numeric values. Even with the help of coloring conventions,
any attempt to display more than 20-30 parameters on a user interface
prevents a human user from performing any useful analysis in a reason-
able time. Since in the tracker the users have to deal in many cases with
more than 1000 parameters1, a more e�ective interaction strategy had to
be designed. It must also be stressed that any massive connection to the
values of the parameters should be avoided because it could overload the
event manager.

The solution to these issues is the introduction of histograms for dis-
playing the distribution of the values for all kinds of parameters. His-
tograms are widely used in the scienti�c environments and so the �nal

1For the DCUs with up to 15 000 values simultaneously

128

4.17 Graphical User Interface

Figure 4.34: The interface to query the state of all the nodes of a given type
below a certain node. The list of nodes in a certain state can be easily displayed.
With a further click, the detailed panel of a single node can be found.

users of the control systems are very familiar with the tool. The his-
togram is built by getting the parameters on demand, so that a connec-
tion to the changing values is not needed. To enable the search of devices
with a speci�c value, the bins of the histogram can be clicked, to obtain
the list of all the devices whose value is included in the corresponding
interval. Clicking again, the details of the individual device can be dis-
played. This approach is very e�ective to �nd devices where a parameter
has an unusual value. In addition, all the retrieved data can be saved to
a �le that can be imported in any external analysis tool.

A similar approach is used for searching the nodes in a given state. In
an interactive interface (see Fig. 4.34), the user can choose the type of
node of interest (e.g., cooling loop, control group, power group) and get
all the states of the nodes of that type in a speci�c subtree. The number
of nodes in each state is displayed in a table and the list of nodes in a
given state can then be retrieved.

The �get on demand and compute� approach is also used to implement
speci�c expert tools, such as the computing of the power in the racks and
the e�ciency of the power supply system.

4.17.3 Access Control

The de�nition of the access control for the CMS tracker control system
uses the standard framework access control described in Section 3.4.7.

129

Strategies for the Implementation of the CMS Tracker Control
System

Three roles corresponding to di�erent levels of expertise are de�ned.
The standard shifter can switch the tracker on and o� using the Finite
State Machine commands but cannot change the con�guration of the
power supplies. The detector expert can change some power supply pa-
rameters (inside some de�ned limits), while the DCS expert is allowed to
change some general software con�gurations (for example, the interlock
thresholds in the PLC).

A separate domain and role is used for the control of the cooling
system, since the experts in this �eld are not necessarily detector or DCS
experts.

The access control de�nes the appearance of the GUI. More informa-
tion is displayed to the expert user, while the standard shifter is presented
only with the essential information.

4.17.4 Tasks and User Interaction During a Typical
Shift

During a typical shift, the operators use the DCS system to control and
monitor the detector. When there are no major problems in the tracker,
user interaction is very limited. At the beginning of the run, the DCS
shifter gives the command ON to the entire tracker or to the TTC parti-
tions that need to be operated and waits for the feedback that the power
supply system is completely on. The complete ramping up phase can
last some minutes. All the trips in the channels typically happen during
the switching-on phase. The errors in the channels are reported both in
the Alarm Screen and in the percentages table. Both tools allow the user
to click and �nd immediately the channel(s) involved. Usually a second
trial is su�cient to bring these channels to operation. Otherwise the
intervention of an expert to tune some parameters (set voltage, current
limit, etc.) may be needed.

A workstation with at least two screens is used for the operation of
the DCS interface (eventually four screens will be used). A prede�ned
set of trending panels is kept open to display the evolution of the sys-
tem parameters in real time. Standard trends include the minimum and
maximum temperatures in the four TTC partitions (to immediately de-
tect a temperature increase), the mean temperature in all cooling loops
and sectors, the cooling plant tank levels and the trend of the dew point
values.

The shifter actions are never critical for detector safety. The access
control prevents the shifter from applying dangerous settings to the hard-
ware systems. Any safety action is carried out automatically by the DCS
software, and, if the DCS action fails, by the hardware Tracker Safety

130

4.17 Graphical User Interface

System. In case of a critical event, an audio alarm signals the condition
to the user. The recovery from a critical condition is possible via the
Tracker Wizard (see Sec. 4.14) that is able to recover from most situ-
ations or to identify the cause of the problem and give the name of the
proper expert to call.

The searching tools provided by the propagation algorithm or by
the Alarm Screen allow for an easy identi�cation of the problematic
devices. These tools are much more e�ective than any FSM-based hi-
erarchy browsing and were a key point for increasing the e�ciency of
routine tasks. Moreover, the automation of repetitive operations in a
task carried out by a wizard minimizes the level of expertise needed by
the shifters. During normal operation, the tracker could be successfully
operated by shifters who followed a short introduction course (less than
one hour) on the usage of the DCS interface.

131

Strategies for the Implementation of the CMS Tracker Control
System

132

Chapter 5

CMS Tracker as a Case Study
for Automatic 3D GUI
Prototyping for Control

Systems

This chapter presents a preliminary study investigating the possible use
of a model-based methodology for automatically building a three-dimen-
sional user interface for the CMS Tracker Control System. The study
shows that the proposed methodology can be successfully applied to a
real-world case study. The problematic aspects that still have to be
addressed in order to extend the methodology to a large scale control
system are identi�ed in this study.

5.1 Introduction and General Objectives

Building three-dimensional interfaces for control systems is a complex
task that requires good knowledge of the modeled domain and involves
many issues relating to user interaction and the development process.

For typical computer displays, �three-dimensional graphical user in-
terface� is actually a misnomer since their displays are two-dimensional
projections of three-dimensional images. Although some stereoscopy ex-
periments tried to reproduce an illusion of depth in the image, a real
three-dimensional user interface is still unavailable.

Three-dimensional representation of complex devices can help a hu-
man operator to �nd spatial correlations of errors or states of the hard-
ware. For example, in the case of LHC detectors, unstable particle beams
in the accelerator could produce several errors (voltage trips, etc.) in
various parts of the sub-detectors. Identifying this beam problem in a

CMS Tracker as a Case Study for Automatic 3D GUI
Prototyping for Control Systems

classical 2D or hierarchical view may be di�cult. Instead, a 3D view
can show that alerts are located around a certain region of the detector
allowing a faster identi�cation of the problem.

Even so, a three-dimensional interface is not an absolute must for a
control system. Traditional interfaces can implement all the fundamental
features without an advanced geometrical visualization of the controlled
devices. However, to guide the future developments, it is interesting to
investigate how the classical hierarchical approach can be merged and
integrated with a more user-oriented three-dimensional interface.

The approach to the problem presented in this chapter is a formal
methodology for automatic protottyping 3D user interfaces for control
systems. The BATIC3S (Building Adaptive Three-dimensional Inter-
faces for Critical Complex Control Systems) project is an international
collaboration involving various universities and research institutes (Uni-
versité de Genève, Universidade Nova de Lisboa, Ecole d'ingénieurs de
Genève, HES-SO Valais and CERN). Its goal is to introduce a method-
ology to produce a GUI from a formal speci�cation of the characteristics
of the system under control and to develop an e�ective framework that
implements the methodology. The CMS tracker is used as a case study
to investigate the possibilities of applying this methodology to a real-
word example and to test the possibility of interfacing the prototypes to
a SCADA system for the control of a real physical apparatus.

5.2 The BATIC3S Methodology and Frame-

work

5.2.1 Introduction

The project proposes a methodology to develop 3D graphical user inter-
faces for monitoring and controlling complex control systems [38]. The
interface is not directly speci�ed nor developed, but is automatically pro-
totyped from the knowledge about the system under control.

Since the methodology and the implementation of the framework is
not the subject of the present thesis, only the basic concepts are presented
here. All the details can be found in the bibliography.

Modeling the domain of control systems has requirements and chal-
lenges which are hardly met by standard, general-purpose modeling lan-
guages. A domain speci�c language for specifying control systems has
therefore been designed as a part of the project.

The implementation of the methodology in a coherent framework has
been developed by integrating various well-known and open tools.

134

5.2 The BATIC3S Methodology and Framework

5.2.2 Domain De�nition and Requirements

The domain of Control Systems addressed in the context of the project
is completely analogous to the scope of the detector control systems for
high energy physics experiments. A Control System is de�ned as a mech-
anism to provide output variables of a system by manipulating its inputs
(from sensors or commands). A control system generally has a composite
structure, in which objects can be grouped with others, forming a hierar-
chical tree where the root represents the whole system and the leaves are
its most elementary devices. This hierarchical approach is compatible
with (and actually inspired by) the FSM partitioning approach.

The aim of the project is to provide the system expert with the tools to
specify a model, based only on the knowledge of the system under control,
without a direct GUI programming. From the speci�cation in the domain
speci�c language it must be possible to generate an executable prototype
of the GUI, verify properties to validate the speci�cation, classify users
into pro�les and de�ne tasks which may be available to speci�c user
pro�les.

5.2.3 Methodology

The engineering process for prototyping a GUI is split into four steps,
as illustrated in Fig. 5.1. In the �rst step, the knowledge about the
system is gathered from existing documentation or from human experts.
In the second step, this information is expressed using a domain speci�c
language. The speci�cation is composed of four distinct models. The
system model describes the structure and the behavior of the system un-
der control. The visual model describes the geometry of the constituting
objects. The user model and the task model describe the interactive
aspects of the system. The model is not GUI-oriented.

In the third step, the system model is automatically transformed into
two independent components: a visual and interaction model, which is
stored in a database and contains all information about the geometry, and
an executable system simulator. The simulator has a formally de�ned
semantics and uses the CO-OPN (Concurrent Object Oriented Petri Net)
[39] language.

The fourth and �nal step is the dynamic generation of a GUI proto-
type built from the database, which interacts with the system simulator.
Finally, the simulator can be replaced by a driver communicating with
the real system. The simulator is useful because for various reasons (cost,
time, unavailability of hardware) the real system may not be available
for evaluating the GUI against the real reactive system.

135

CMS Tracker as a Case Study for Automatic 3D GUI
Prototyping for Control Systems

Figure 5.1: Schematic view of the methodology process. A system speci�cation
is created by gathering information from existing �les or databases or from informal
system knowledge. Two components are automatically created from the system spec-
i�cation: a system simulator and a geometrical database. The GUI loads the system
speci�cation from the database and presents the user with a 3D interface. The inter-
face uses the system simulator to provide a feedback to the user. Finally the system
simulator can be replaced with a driver providing the communication with the real
system.

136

5.2 The BATIC3S Methodology and Framework

5.2.4 The Domain Model

The system model describes the logical structure of the system. The
concepts used for modeling are: objects, types, hierarchical composition,
object behavior, state dependency, properties, commands and events.

Objects represent components in the system. Each object is of a
speci�c type. All features that are not speci�c to individual instances of
the objects are de�ned in the type.

The hierarchical composition is de�ned as a tree of objects. The
behavior of the object is modeled by Finite State Machines. The state
dependency is expressed with conditional rules on the children objects in
the hierarchical tree. Properties are speci�c values that can be attached
to objects. Commands de�ne an action on an object. For the sake of
simulation, a simpli�ed behavior for the commands on the devices can be
provided. Events are triggered by state transitions (also of the children
objects in the hierarchical tree), commands, or property changes.

The behavior of the objects, their commands, events, and properties
are associated to the types, because these features are common to all
objects of a given type.

The visual model describes the geometry of the devices. It is com-
posed of the geometrical shape information, that is related to the type,
and the position in space, that is related to each object. The de�nition
of the geometrical shape can make use of prede�ned common primitive
shapes (box, sphere, cylinder...) or load a user-de�ned geometry �le.
The position can be speci�ed in absolute coordinates (translation and
rotation) or in relation to another object, in order to ease the de�nition
of repetitive patterns in the geometry.

The user model is based on a subset of the Generic Ontology based
User Model [40]. Each user (or agent) is mapped to a pro�le (behavior)
and to the knowledge of a speci�c task, with a certain expertise level.

The task model de�nes how the user can reach a goal in a speci�c
application domain. The task model is based on the ConcurTaskTrees
formalism [41]. According to this formalism, tasks can be classi�ed into
four types: abstract (a complex task de�ned in terms of its subtasks),
user (that is something that the user does without interaction with the
system, e.g., a decision), application (something that is executed by the
system) and interaction (e.g., clicking a button).

Tasks can be combined by means of process algebra operators. For
example, T1 ||| T2 means interleaving (the actions of the two tasks can
be performed in any order), T1 [] T2 represents a choice between two
di�erent tasks and T1 � T2 is an enabling relation, meaning that the
second task is activated when the �rst one is terminated.

137

CMS Tracker as a Case Study for Automatic 3D GUI
Prototyping for Control Systems

The domain model speci�cation is implemented in a custom designed
Domain Speci�c Language (DSL), called COntrol system SPEci�cation
Language (Cospel), that is made of di�erent packages, modeling the dif-
ferent aspects of the system. The abstract syntax of Cospel is speci�ed
using the Eclipse Modeling Framework (EMF). Thanks to EMF, a visual
editor is automatically generated from the abstract syntax of the lan-
guage and can be used by the system engineer for specifying the system
model.

Properties of the structure of the system can be directly checked in
the speci�cation using a constraint language on the model. It is possible
for example, to check if a certain type of object always has children of a
certain other type.

5.2.5 System Simulator and Model Transformation
Techniques

The system simulator is obtained through model transformation tech-
niques from the syntactic speci�cation by giving executable semantics to
the model.

The result is an executable concurrent model that implements the
execution of the FSMs, the command input model and the event model.

The semantics of a Cospel model is obtained by de�ning proper map-
ping rules between the Cospel metamodel and the CO-OPN metamodel.
CO-OPN (Concurrent Object-Oriented Petri Nets) is an object oriented
modeling language based on algebraic Petri Nets, providing tools for sim-
ulation, veri�cation and test generation.

The model transformation is performed with the ATLAS Transfor-
mation Language (ATL) [42], a declarative language in which rules can
be de�ned to transform an input model, conforming to a given meta-
model, to an output model, conforming to another metamodel. In this
way, since the semantics of CO-OPN is well-de�ned, the transformation
gives semantics to the Cospel syntax.

ATL produces another model from the Cospel speci�cation, that is
used to �ll the geometry database. Since the system simulation is purely
behavioral, no visualization-related information is used for building the
CO-OPN model.

From the point of view of the user, the model transformation is an
automatic one-click operation because the transformation rules have been
de�ned in the framework,.

Properties and constraints of the model can be speci�ed in a suitable
formalism, like temporal logic, and can be automatically veri�ed by a
model checking tool on the state space of the simulator. Testing is also

138

5.2 The BATIC3S Methodology and Framework

possible: the simulator is fed a known input and the is output checked
for the expected values.

5.2.6 GUI Prototype

The GUI engine is capable of loading the system speci�cation from the
database and presenting the user with an interface allowing interaction
with the system. A driver instantiates and runs the system simulator,
that emulates the feedback of the real system. Commands and events are
transmitted to and from the driver. The driver can instantiate the sys-
tem simulator or provide the communication with the actual controlled
system.

The task model information is used to show the available tasks for
a given object. When the task is purely sequential (composed only of
enabling operators), it can be completely automated in the GUI. Other-
wise a wizard-like approach can be adopted presenting the user with the
possible choices. The user model is used as an authorization model for
the determination of the available tasks.

A crucial problem in the implementation of three-dimensional GUIs is
the de�nition of a strategy to highlight components that require special
attention from the user (for example, in case of error). In a three-dimen-
sional environment, an object may be hidden by other objects or may
be out of the current view. To address this problem, without forcing
the user to specify low-level adaptation behavior in the speci�cation of
the model, the GUI engine uses adaptation rules. These rules depend
on the user pro�le and on current tasks and are triggered by an error
event. Common strategies used in this context are: centering the camera
on the object, moving objects which block the view of the faulty object
or making them transparent.

The GUI engine provides both a three-dimensional view built accord-
ing to the geometry and a hierarchical view that shows the control tree
of the system under control. The two views correspond to two di�erent
navigation modes, spatial and hierarchical, that are complementary and
can be both useful for di�erent types of tasks. The spatial navigation
is useful to �nd spatial correlation when investigating faults and alerts.
When alerts are of environmental nature, it makes sense to check the
geometrical nearby components. The spatial navigation system provides
easy access to the nearby objects by moving the camera and clicking on
them. This also works well for components that might belong to a whole
di�erent branch in the system hierarchy. For example, in the case of the
tracker, the outer layer of the TIB is spatially adjacent to the inner layer
of the TOB but this proximity is not re�ected in the control hierarchy.

139

CMS Tracker as a Case Study for Automatic 3D GUI
Prototyping for Control Systems

Figure 5.2: Schematic view of the Cosmic Rack and a picture of the Cosmic Rack
during the integration phase

On the other hand, if the user wants to quickly jump to a speci�c part of
the system, spatial navigation is not e�cient as it requires several zoom-
ing, panning and rotating operations. In these cases, the hierarchical
view provides a quick focus switch to any region of the system.

Rendering is done by the JoGL API, a Java binding of the OpenGL
libraries. JoGL has built-in support for stereoscopic simulation.

The GUI can be used for validation purposes: tasks can be auto-
matically executed to check if they have the expected behavior, or the
validation can be performed in a more user-centric way, by asking the
user to execute a certain task and evaluating manually the ease (or pos-
sibility) to perform it.

According to the common practice in the �eld, the states of the ob-
jects are represented in the scene by colors (green=ok or on, red=error,
etc). When an object is clicked, additional information about its state is
displayed with a string description (OFF, ON, MIXED, etc). When an
object is selected and if the current user model has the authorization to
perform a task (according to the user model speci�ed in the model), the
commands are displayed in the interface.

5.3 The Cosmic Rack Case Study

The CMS Tracker Cosmic Rack has been chosen as a case study [43]
for the application of the BATIC3S methodology. The Cosmic Rack is a
structure used to make Data Acquisition tests before the complete tracker
was assembled. It corresponds to a section of the TOB and, from the
point of view of control, maintains the same hierarchical complexity as

140

5.4 Outcomes of the Collaboration and Further Development

Power Group 1 Power Group 10 Power Group 11 Power Group 20

Cosmic Rack

Control Group 1-5 Control Group 6-10

Control Channel 1 Control Channel 2

Figure 5.3: Cosmic Rack control hierarchy

the tracker, but with a reduced number of components. The test setup
corresponds to a cooling segment (cooling loop) and has two control rings
and a total of 20 rods (power groups) of 6 modules each.

In the Cospel speci�cation, four types are de�ned (power group, con-
trol channel, control group, cooling loop). The state and the logic of
these types are completely analogous to the CU and DU types imple-
mented in the JCOP FSM for the control of the tracker (see Sec. 4.2).
The rules de�ne the state depending on the state of the children and
without taking into account the percentages. The types are instantiated
in the tree represented in Fig. 5.3.

The geometry of the cosmic rack is speci�ed in the model on the basis
of an informal description. The cosmic rack hosts 20 rods (each rod is a
power group) organized in 10 layers. Each control group serves 5 layers
(see Fig. 5.2). If the case study has to be extended to the whole tracker,
a more precise geometry description will have to be retrieved from an
existing geometry database. In any case, both the functional and the
geometrical description used for modeling are normally already available
in the speci�cation of a complex control system.

5.4 Outcomes of the Collaboration and Fur-

ther Development

The collaboration aimed to be useful for both the CMS Tracker Control
System and the BATIC3S collaboration. From the point of view of the
BATIC3S project, an important point to be investigated is the possibility
to connect the GUI engine with a real SCADA system. In fact, even if
the architecture of the system is designed to allow the system simulator
to be easily replaced by an external system, in practice this test had
never been performed previously. In order to establish the connection
to a PVSS project controlling the Cosmic Rack, the obvious choice is to
use PSX, a server that allows any external application to communicate

141

CMS Tracker as a Case Study for Automatic 3D GUI
Prototyping for Control Systems

Figure 5.4: Screenshot of the prototyped 3D user interface for the control of the
Cosmic Rack. One rod is selected. The state of all the rods in control group �1 to 5�
and the state of control group �6 to 10� are shown in the interface

142

5.4 Outcomes of the Collaboration and Further Development

to PVSS via the standard SOAP protocol. An existing interface for
PSX written in Java (providing a high level of abstraction) is used to
implement the driver. PSX provides the means to connect to the state
of an FSM object and to send commands directly to the JCOP FSM.
In a �rst phase, the GUI was connected to a PVSS system simulating
the feedback for the power supply channels with a script. Finally the
interface was tested on the real Cosmic Rack hardware.

From the point of view of the Tracker Control System, the use-case
was useful to investigate how a 3D visualization can simplify the user in-
teraction and to determine if the three dimensional interface is e�ective
enough for operation or must be integrated with the standard FSM inter-
face. To be able to extend the same methodology to the entire tracker,
the model speci�cation has to be automated by converting existing struc-
tural and geometrical information to the proper format.

Moreover, the exercise underlined various problematic aspects that
have to be addressed:

• As discussed in Section 4.17.2, it is important to avoid the connec-
tion to the status of all the controlled objects (see Sec. 4.17.2). In
fact, in case of a control system dealing with a large number of ob-
jects, this strategy could overload the Event Manager. Moreover,
in the case of the tracker, the outer layers and disks are hiding
the inner parts, making di�cult to visualize the state of all the
equipment (this is also true for the cosmic rack, even if in this case
the situation is less severe because only a section is represented).
The FSM states o�er a higher level of abstraction and should be
somehow exploited also in a three-dimensional interface. A possi-
ble solution is to connect to the states of some higher level objects
(e.g., a control group) and only connect to the lower level objects
when a detailed view of a certain region is needed.

• The geometry for the higher level objects (such as a control group)
that do not have a clear physical counterpart has to be somehow
de�ned. One possibility, that can be appropriate in case of non
overlapping regions, is to use the bounding box of the contained
elementary objects. Otherwise one can de�ne the geometry of a
high level object as the union of all the geometries of the contained
elementary objects (treated as a single object and hence �lled in
the same color).

• The 3D interface cannot replicate all the functionalities of the stan-
dard DCS GUI. Therefore, the Java interface must be integrated

143

CMS Tracker as a Case Study for Automatic 3D GUI
Prototyping for Control Systems

with the PVSS GUI in order to be able to use the prototyped inter-
face in a real control system. For example, it should be possible for
the user to click on the 3D representation of the object and open
the related PVSS panel.

144

Conclusions

This thesis gives a detailed overview of the problems arising in the im-
plementation of control systems for large scale and complex equipment,
such as the LHC experiments.

The CMS Silicon Strip Tracker, the largest silicon tracker ever built
and one of the most complex CMS sub-detectors from the point of view
of control, has been used as a real-world example for verifying the validity
of the proposed solutions.

While the DCS for a HEP experiment is built on top of a SCADA
product used in industrial automation, it has some HEP speci�c require-
ments that call for extended functionalities. Moreover, the complexity
of the control tasks for operating the tracker call for innovative solutions
with respect to the general framework developed at CERN for the control
of the LHC experiments.

My work includes detailed performance studies of the SCADA prod-
uct chosen for implementing the control systems of the LHC experiments
and of the drivers used in the communication with the devices. The re-
sults of these studies led to a �ne tuning of the communication with the
hardware and to some architectural choices, such as caching of the stat-
ical information and maximal role distribution among the control PCs,
to ensure an acceptable performance.

An especially challenging issue is the e�ective representation of the
state of a system composed of a large number of parameters. A hierarchi-
cal approach is obviously needed, but a single state is often not enough
to cover all the relevant aspects. The propagation algorithm presented in
this work provides a �exible and e�cient tool for integrating the control
hierarchy with quantitative information. It is now a standard tool sup-
ported centrally for the entire CMS experiment and has been adopted by
other CMS sub-detectors, such as RPC and CSC.

Additionally, the standard hierarchical approach is not suited for en-
suring that the detector is in a safe state (e.g., all the HV channels are
o� before beam injection). Rather than using the standard control chain,
the lowest level is checked and any command exiting from the safe state
is inhibited. The package implementing these requirements is now used

CONCLUSIONS

for all CMS sub-detectors.
Although the detector safety is ensured by independent hardware

systems, DCS is responsible for their con�guration. The proper con�g-
uration of the Tracker Safety System is cross-checked by comparing the
real hardware behavior with the data stored in an ad hoc con�guration
database.

A HEP experiment must be controlled and monitored by non expert
operators that should be able to perform most of the needed tasks, includ-
ing error recovery, without expert intervention. A usable and responsive
user interface is a key component of a control system. Common operator
tasks are simpli�ed by using an e�cient search mechanism to easily iden-
tify devices in error or with unusual values. A wizard approach to the
resolution of problems allows non expert operators to recover problematic
situations that require the analysis of numerous parameters.

In addition, the possibility of using three-dimensional user interfaces
is investigated. This kind of UI may be very useful to to �nd spatial cor-
relations of errors or states of the hardware. The model-based approach
presented in the last chapter allows for automatic prototyping of 3D user
interfaces.

The control system components are still open to substantial improve-
ment, especially in the communication layer where better performance in
the communication with the hardware devices can be achieved. At the
supervisory layer, the systematic use of an object oriented methodology
may improve the maintainability and extensibility of SCADA systems.

As the issues presented in this thesis show, the state-of-the-art soft-
ware solutions commonly employed in automation industry are not ide-
ally suited to the number of devices and complex requirements of a large
HEP experiment. However, they can still successfully be used in this
context with the help of special techniques presented in this thesis.

146

Acknowledgements

It is a pleasure to thank those who made this thesis possible, �rst of
all my supervising professor, Prof. Volker Lindenstruth, whose support
during thesis writing greatly helped me in the presentation of my work. I
would also like to thank Prof. Dr. Peter Fischer for taking time from his
busy schedule to serve as my second referee. I am particularly grateful to
Dr. Jan de Cuveland for his punctual remarks and advices that helped
me �nalizing the thesis.

I wish to thank all the people of the CMS Tracker DCS and DSS
team I have worked with during the last four years: Frank Hartmann,
Guido Dirkes, Andromachi Tsirou, Piero Giorgio Verdini, Manuel Fahrer,
Yousaf Shah, Robert Stringer, Otilia Militaru, Martin Frey, William
Gabella, Helena Malbouisson, Christian Barth. Most of the original so-
lutions and strategies presented in this thesis were designed, discussed
and reviewed during long and enlightening meetings within this group.
Frank Glege and Robert Gomez-Reino Garrido from the central DCS
group also contributed to the design of some key components, in partic-
ular the Detector Protection package.

A special thanks to Verena for her precious help in making my English
clearer and more understandable.

Oliver Holme has made available his support in a number of ways,
helping the Tracker DCS team to make the right choices during the design
phase and providing feedback for the performance studies on PVSS.

Some DCS developers of other CMS sub-detectors particularly helped
me in the generalization of the majority and Detector Protection pack-
ages. Thanks to Marina Giunta, Diogo Di Cala�ori, Giovanni Polese,
Evaldas Juska.

I would also like to thank all people from the CMS group in Florence,
where I started my work on DCS. I am particularly grateful to professor
Gregorio Landi for introducing me to work in this �eld, and to Simone
Paoletti for his advice and help with the present thesis.

It was a pleasure to work with Matteo Risoldi and Prof. Didier Buchs
from the University of Geneva at the model-based studies used for 3D
UI prototyping.

ACKNOWLEDGEMENTS

148

Bibliography

[1] A. Daneels and W. Salter. What is SCADA? In proceedings of the
7th International Conference on Accelerator and Large Experimental
Physics Control Systems, Trieste, Italy, 1999.

[2] S. Bimbo and E. Colaiacovo. Sistemi SCADA Supervisory con-
trol and data acquisition. Apogeo online, 2006. available online
at http://www.apogeonline.com/libri/88-503-1042-0/scheda.

[3] L. Wang and K. C. Tan. Modern Industrial Automation Software
Design. Wiley, Newark, NJ, 2006.

[4] OPC fundation. OPC speci�cations. available online at
http://www.opcfoundation.org.

[5] Ronald L Krutz. Securing SCADA Systems. Wiley, Newark, NJ,
2006.

[6] S. Lüders. Summary of the Control System Cyber-Security
(CS)2/HEP Workshop. In proceedings of the 11th International
Conference on Accelerator and Large Experimental Physics Control
Systems, Knoxville, TN, USA, 2007.

[7] S. D. Garbrecht. The Bene�ts of Component Object-Based SCADA
and Supervisory System Application Development. available
online at http://global.wonderware.com/EN/PDF%20Library/-
COBSS_wp_Final_r1_a.pdf.

[8] T. S. Pettersson and P. Lefèvre. The Large Hadron Collider: con-
ceptual design. Technical Report CERN-AC-95-05 LHC, CERN,
Geneva, Oct 1995.

[9] CMS, the Compact Muon Solenoid: technical proposal. LHC Tech.
Proposal.

[10] S M Sze. Physics of semiconductor devices. Wiley, New York, NY,
second edition, 1981.

BIBLIOGRAPHY

[11] F. Hartmann. Evolution of silicon sensor technology in particle
physics. Springer Tracts in Modern Physics. Springer, 2008.

[12] S. Paoletti, A. Bocci, R. D'Alessandro, and G. Parrini. The Powering
Scheme of the CMS Silicon Strip Tracker. In Proceedings of 10th
Workshop on Electronics for LHC and Future Experiments, Boston,
2004.

[13] S. Paoletti. The Implementation of the power supply system of the
CMS Silicon Strip Tracker. In Proceedings of the Topical work-
shop on Electronics for Particle Physics, TWEPP-07, CERN report
CERN-2007-007, pp 377-81, 2007.

[14] E. Carrone, A. Tsirou, and P. G. Verdini. A discrete event system
for the CMS Tracker interlocks. In proceedings of 10th International
Conference on Accelerator and Large Experimental Physics Control
Systems, Geneva, Switzerland, 2005.

[15] G. Magazzù, A. Marchioro, and P. Moreira. The Detector Control
Unit: An ASIC for the monitoring of the CMS silicon tracker. IEEE
Trans. Nucl. Sci., 51:1333�1336, 2004.

[16] A. J. Bell. Beam & Radiation Monitoring for CMS. In proceedings
of the Nuclear Science Symposium, Medical Imaging Conference and
16th Room Temperature Semiconductor Detector Workshop, Dres-
den, Germany, 2008.

[17] M. Bellato, L. Berti, V. Brigljevic, G. Bruno, E. Cano, S. Cittolin,
A. Csilling, S. Erhan, D. Gigi, F. Glege, et al. Run Control and Mon-
itor System for the CMS Experiment. In proceedings of Computing
in High Energy and Nuclear Physics 2003 conference, La Jolla CA,
2003.

[18] S. Schmeling, R. Bruce Flockhart, S. Lüders, and G. Morpurgo. The
detector safety system for LHC experiments. IEEE Trans. Nucl. Sci.,
51:521�525, 2004.

[19] A. Daneelsand and W. Salter. Selection and Evaluation of Com-
mercial SCADA Systems for the Controls of the CERN LHC Ex-
periments. In International Conference on Accelerator and Large
Experimental Physics Control Systems, Trieste, Italy, 1999.

[20] P. C. Burkimsher. JCOP Experience with a Commercial SCADA
Product, PVSS. In International Conference on Accelerator and
Large Experimental Physics Control Systems, Gyeongju, Korea,
2003.

150

BIBLIOGRAPHY

[21] P. C. Burkimsher. Scaling up PVSS. Technical Report CERN-
OPEN-2005-029, CERN, Geneva, Oct 2005.

[22] JCOP Architecture Working Group. Framework Design Proposal.
Technical Report CERN-JCOP-2000-008, CERN, Geneva, 2001.

[23] B. Franek and C. Gaspar. SMI++ Object Oriented Framework for
Designing and Implementing Distributed Control Systems. Techni-
cal Report SLAC-PUB-12067, SLAC, Stanford, CA, Sep 2006.

[24] C. Gaspar. Hierarchical Controls Con�guration & Operation.
Technical report, CERN, 2004. available online at http://lhcb-
online.web.cern.ch/lhcb-online/ecs/fw/FSMCon�g.pdf.

[25] M. González-Berges. The high-performance database archiver for
the LHC experiments. Technical Report CERN-IT-Note-2007-027,
CERN, Geneva, Oct 2007.

[26] S. Lüders. Update on the CERN Computing and Network Infras-
tructure for Controls (CNIC). Technical Report CERN-IT-Note-
2007-022, CERN, Geneva, Sep 2007.

[27] F. Varela. Software management of the LHC detector control sys-
tems. In proceedings of the 11th International Conference on Accel-
erator and Large Experimental Physics Control Systems, Knoxville,
TN, USA, 2007.

[28] CMS DCS Integration Guidelines document.

[29] M. Frey on behalf of the CMS Tracker Collaboration. The CMS
Tracker Detector Controls System. 2005.

[30] F. Hartmann for the CMS Tracker Control System Group. The CMS
Tracker Control & Safety System. In proceedings of the Vienna
Conference on Instrumentation VCI 2007, 2007.

[31] A. Dierlamm, G. H. Dirkes, M. Fahrer, M. Frey, F. Hartmann,
L. Masetti, O. Militaru, S. Y. Shah, R. Stringer, and A. Tsirou.
The CMS tracker control system. Journal of Physics: Conference
Series, 119(2):022019 (9pp), 2008.

[32] M. Fahrer, J. Chen, A. Dierlamm, M. Frey, F. Hartmann, L. Masetti,
O. Militaru, S. Y. Shah, R. Stringer, and A. Tsirou. The Control
System for the CMS Strip Tracking Detector. In proceedings of 10th
ICATPP Conference on Astroparticle, Particle, Space Physics, De-
tectors and Medical Physics Applications, Villa Olmo, Como, Italy,
2007.

151

BIBLIOGRAPHY

[33] L. Masetti, F. Hartmann, S. Y. Shah, and R. Stringer. The CMS
Tracker Detector Control System. In proceedings of the Nuclear Sci-
ence Symposium, Medical Imaging Conference and 16th Room Tem-
perature Semiconductor Detector Workshop, Dresden, Germany,
2008.

[34] S. Y. Shah, A. Tsirou, P. G. Verdini, F. Hartmann, L. Masetti, G. H.
Dirkes, R. Stringer, and M. Fahrer. The CMS tracker detector con-
trol system. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, In Press, Corrected Proof, 2009.

[35] A. Barriuso-Poy. Hierarchical Control of the ATLAS Experiment.
PhD thesis, Universitat Rovira i Virgili, Departament d'Enginyeria
Electrònica, Elèctrica i Automàtica, Tarragona, 2007. Presented on
14 May 2007.

[36] P. Milenovic, A. Brett, G. Dissertori, G. Leshev, T. Punz, S. Zele-
poukine, S.D. Di Cala�ori, R. Gomez-Reino, R. O�erzynski, et al.
The Detector Control System for the Electromagnetic Calorimeter
of the CMS Experiment at LHC. In proceedings of the 11th Inter-
national Conference on Accelerator and Large Experimental Physics
Control Systems, Knoxville, TN, USA, 2007.

[37] B M González Berges, F Varela, and K Joshi. The system overview
tool of the joint controls project (jcop) framework. In proceedings
of the 11th International Conference on Accelerator and Large Ex-
perimental Physics Control Systems, Knoxville, TN, USA, 2007.

[38] V. Amaral, B. Barroca, M. Risoldi, D. Buchs, and G. Falquet. A
language and a methodology for prototyping user interfaces for con-
trol systems, pages 223�252. Springer-Verlag, 2009.

[39] O. Biberstein. CO-OPN/2: A concurrent object-oriented formalism
for the Speci�cation of Concurrent Systems. PhD thesis, University
of Geneva, 1997.

[40] A.L. Calvé F. Cretton. Generic ontology based user modeling -
GenOUM. Technical report, HES-SO Valais, Sierre, Switzerland,
2007.

[41] F. Paternò, C. Mancini, and S. Meniconi. ConcurTaskTrees: A
diagrammatic notation for specifying task models. In Proceedings
of the IFIP TC13 Interantional Conference on Human-Computer

152

BIBLIOGRAPHY

Interaction, pages 362�369. Chapman & Hall, Ltd. London, UK,
UK, 1997.

[42] ATLAS Group. Atlas transformation language, 2008.
http://www.eclipse.org/m2m/atl/.

[43] M. Risoldi, D. Buchs, L. Masetti, V. Amaral, and B. Barroca. A
Methodology for Control Systems GUI Prototyping - a case study.
In 7th international workshop on Personal Computers and Particle
Accelerator Controls (PCaPAC 2008), Ljubljana, Slovenia, 2008.

153

	Introduction
	Large Control Systems: Domain Definition, State of the Art and Trends
	Definition of SCADA
	The Supervisory Layer: Requirements and Architecture
	The Front End Layer
	The Communication Layer
	Automatic Actions in a SCADA System
	Human-Machine Interface Principles
	Security Risks in SCADA Systems
	Evolution of SCADA Systems
	Short Survey of SCADA Products
	The PVSS-II SCADA System

	Requirements for the CMS Tracker Control System
	The CMS Experiment at LHC
	CERN and High-Energy Physics
	The Large Hadron Collider
	Overview of the CMS Experiment

	The CMS Silicon Strip Tracker
	Silicon Microstrip Detectors
	Structure and Geometry
	Front End and Readout Electronics
	Radiation Damage Effects

	The Front End Layer for the Control of the CMS Tracker
	Power Supply System
	Cooling System
	Tracker Safety System
	Detector Control Units

	External Systems
	Data Volume and Expected Change Rate in the Tracker Control System

	The CMS/LHC Detector Control System
	Scope of the Detector Control System
	Architecture of the Online System (DAQ, DCS, Run Control)
	Detector Safety System
	Role of the Detector Control System

	Control Layers
	Criteria for the Selection of the SCADA Product
	Scalability
	Structured Runtime Database
	Extensibility
	Constant Development
	Ease of Use of the Scripting Language
	Cross-Platform
	Market and Commercial Aspects

	The JCOP Framework
	Architecture
	Hardware and Logical View
	The JCOP Finite State Machine
	The Conditions Database for Historical Archiving
	The Configuration Database for Changing Running Conditions
	Security Policy for LHC Control Systems
	Access Control in the JCOP Framework

	Integration Policies for CMS DCS

	Strategies for the Implementation of the CMS Tracker Control System
	Principles
	Finite State Machine Hierarchy
	Handling of the Power Groups
	Task Distribution
	PLC Probes Handling in DCS Software
	Handling of the DCUs and Communication with the DAQ
	The Custom Configuration Database
	Checking Procedures for the Configuration of the Safety System
	Performance Analysis of the Communication with the Hardware
	Performance of the Communication with the Power Supply System
	Performance of the S7 Driver in the Communication with the PLCs

	Performance of PVSS dpGet and dpSet
	Caching of Static Data
	Implementation of Protection Actions
	Propagation Algorithm
	Summarizing the State of the System
	Assumptions on the Structure of the Hierarchy
	Strategy for the Propagation of the Information in a Tree Structure
	Implementation in PVSS
	Customization for the Case of CMS Tracker
	Application of the Propagation Algorithm to the DCS of Other Sub-detectors

	Wizard for Error Diagnosis
	Definition of Alerts
	Periodical Checks
	Graphical User Interface
	Principles
	Tools for Fast Information Retrieval
	Access Control
	Tasks and User Interaction During a Typical Shift

	CMS Tracker as a Case Study for Automatic 3D GUI Prototyping for Control Systems
	Introduction and General Objectives
	The BATIC3S Methodology and Framework
	Introduction
	Domain Definition and Requirements
	Methodology
	The Domain Model
	System Simulator and Model Transformation Techniques
	GUI Prototype

	The Cosmic Rack Case Study
	Outcomes of the Collaboration and Further Development

	Conclusions
	Acknowledgements
	Bibliography

