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1 Summary

Integrins are transmembrane receptors which modulate a wide variety of cel-

lular functions, like survival, proliferation, adhesion and extracellular matrix

(ECM) assembly. The major ligand of α5β1-integrin is fibronectin (FN), a

key component of the ECM. This glycoprotein can be found as fibrillar net-

work in different tissues (cellular FN, cFN) or circulating in plasma (plasma

FN, pFN). These two physiologically ocurring types of FN also differ in their

structure and composition due to alternative splicing.

The objective of this work was to analyze how the different FNs affect cell

spreading and the formation of adhesion sites. Therefore, glass substrates

were coated with either pFN or cFN and cell responses were monitored by

phase contrast or fluorescence microscopy. Cell spreading kinetics was simi-

lar on both substrates. However, it was observed for the first time that there

were differences in the distribution and shape of adhesion sites; while different

focal adhesion (FA) markers localized over the whole cell area on cFN, they

were found preferentially at the cell periphery on pFN coatings. In addition,

cFN favoured a more elongated shape of adhesion sites, a faster transloca-

tion of α5β1-integrin and FN fibril formation, showing that the molecular

composition of this protein affects in turn FN assembly.

Fibroblasts were seeded on gold nanopatterned surfaces biofunctionalized

with cyclic RGD peptides targeting mainly αvβ3-integrin. On substrates

presenting an interligand distance of 58 nm, fibroblasts formed actin stress

fibers and FN fibrils. In contrast, FN was only detected as dot-shaped accu-

mulations on samples with a higher interligand distance (73 nm or 110 nm),

indicating that 58 nm is a critical interligand distance for αvβ3-integrin that

promotes both the formation of stress fibers and FN assembly.

In this study I could show that distinct FNs and the spatial organization of

integrin ligands differentially affect cell adhesion and FN deposition. In addi-

tion, these results reinforce the correlation between FA and fibrillar adhesion

formation, indicating that FN assembly can be regulated by controlling cell

adhesion through substrate functionalization.
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2 Zusammenfassung

Integrine sind Transmembranrezeptoren, welche ein breites Spektrum un-

terschiedlicher Zellfunktionen, wie das Überleben, die Proliferation, die Ad-

häsion und die Bildung der extrazellulären Matrix (ECM) regulieren. Der

wichtigste Ligand des α5β1-Integrins ist das Fibronektin (FN), eine Haupt-

komponente der ECM. Dieses Glykoprotein kommt in diversen Geweben als

fibrilläres Netzwerk (zelluläres FN, cFN) oder im Plasma (Plasma FN, pFN)

vor. Diese zwei physiologisch vorkommenden FN-Typen unterscheiden sich

aufgrund von alternativem Spleißen auch in ihrer molekularen Zusammenset-

zung und Struktur.

Das Ziel dieser Arbeit war, die Einflüsse beider FNs sowohl auf die Zell-

ausbreitung als auch auf die Bildung von Adhäsionsstellen zu analysieren.

Die Zellausbreitung war auf beiden Substraten ähnlich. Zum ersten Mal

wurden allerdings Unterschiede in der Verteilung und Form von Adhäsion-

sstellen aufgezeigt. Fokaladhäsionen (FA) wurden auf der gesamten Zellfläche

auf cFN , während sie auf pFN vorzugsweise in der Zellperipherie beobachtet

wurden. Darüber hinaus wurde gezeigt, dass cFN eine länglichere Form von

Adhäsionsstellen, eine schnellere Translokation von α5β1-Integrin sowie FN

Fibrillenbildung förderte.

Fibroblasten wurden auf Gold-Nanostrukturen, welche mit αvβ3-Liganden

funktionalisiert wurden, gesetzt. Aktin Stressfasern und FN Fibrillen wur-

den auf Substraten beobachtet, die einen Interliganden-Abstand von 58 nm

aufwiesen, im Gegensatz zu Proben mit einem größeren Abstand, auf de-

nen FN lediglich als punktförmige Aggregate sichtbar war. Diese Ergebnisse

zeigten, dass 58 nm ein kritischer Abstand von αvβ3-Liganden ist, welcher

die Bildung von Stressfasern und FN-Fibrillen begünstigte.

In dieser Studie konnte ich zeigen, dass die molekulare Zusammensetzung

von FN und die räumliche Anordnung von Integrinliganden einen Einfluss auf

die Zelladhäsion und die Ablagerung von FN haben. Diese Ergebnisse unter-

streichen den Zusammenhang zwischen der Bildung von FA und fibrillären

Adhäsionen. Darüber hinaus wurde gezeigt, dass die Assemblierung von FN

durch die Regulierung von Zelladhäsion mittels Substratfunktionalisierung

beeinflusst werden kann.
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3 Introduction

Multicellular organisms are composed of cells assembled into tissues and cells

that circulate in the bloodstream. Tissue cells contact and interact with

neighbouring cells and with the acellular material they produce and locally

deposit - referred to as extracellular matrix (ECM).

The most common cell type in connective tissues are fibroblasts, which secrete

and assemble proteins of the ECM and are involved in angiogenesis. There-

fore, they play an important role in wound healing [Werner et al., 2007] as

well as in cancer progression [Kalluri and Zeisberg, 2006].

One of the main cell adhesive components of the ECM is fibronectin, a gly-

coprotein that can be found in connective tissues and circulating in the

bloodstream. It is indispensable during development [George et al., 1993]

and is involved in pathologies, including different types of cancer and fibrosis

[Allen and Jones, 2011]. Although the molecular mechanisms underlying its

functions have been extensively studied, they still remain largely unknown.

This study focusses on the mechanism underlying fibroblast adhesion to fibro-

nectin and its assembly into a fibrillar network.
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3 INTRODUCTION

3.1 Cell adhesion

Cell adhesion can be grouped in two categories: cell-cell and cell-matrix adhe-

sion. Cell-cell interactions are regulated by multiple cell adhesion molecules

(CAMs), which include cadherins, Ig-superfamily CAMs, selectins, mucins

and integrins [Lodish et al., 2000]. Cell-matrix adhesion is modulated mainly

by heterodimeric integrins, which bind fibronectin, laminin, collagen, and

other matrix proteins. Together, these interactions allow cells to adhere to

each other, interconnect the cytoskeletons of adjacent cells, and give tissues

their strength and resistance to shear forces.

The types of molecules involved in cell adhesion are represented schematically

in figure 3.1.

cell-cell adhesions

cell adhesion molecules
(CAMs)

glycosaminoglycans cell-surface
proteoglycan
core protein

matrix proteoglycan
core protein

multiadhesive protein

collagen
fiber

cell-matrix adhesions

cytoskeletal proteins

intracellular
attachment protein

plasma
membrane

Figure 3.1: Schematic overview of the types of molecules that regulate cell-

cell and cell-matrix adhesion. Cell-adhesion molecules (CAMs) connect cytoskeletal

proteins with similar molecules on other cells or with components of the extracellular

matrix. Multiadhesive proteins and proteoglycans bind to cell-surface receptors and to

other matrix components. (Adapted from Lodish et al., 2002)

A dysfunction in cell adhesion can lead to pathological conditions, including

cancer invasion and metastasis or immune disorders [Guadamillas et al., 2011].
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3.1.1 Integrin-mediated cell adhesion

Cell adhesion to the ECM is modulated by interactions between plasma mem-

brane and matrix-associated molecules. The major membrane receptors in-

volved in these interactions belong to the integrin family.

The formation of cell-matrix adhesions is a dynamic and temporally regu-

lated process [Geiger and Yamada, 2011]. An overview of the components of

cell-matrix adhesions is shown in figure 3.2 [Zaidel-Bar et al., 2004].

In some cells, such as chondrocytes, one of the first steps in surface recogni-

tion is mediated by a hyaluronan pericellular coat [Zimmerman et al., 2002].

After attachment, focal complexes (FX) are formed at the edge of lamel-

Hyaluronan
mediated

attachment

Early
FX

Late
FX

Early
FA Mature FA + FB

ɑvβ3
talin

paxillin
pY

ɑvβ3 vinculin
talin FAK

paxillin VASP
pY ɑ-actinin

ARP2/3

ɑvβ3 vinculin
talin FAK

paxillin VASP
pY ɑ-actinin
ɑ5β1 tensin

zyxin

ɑ
5 β

1 tensin

+
ɑvβ3 vinculin

talin FAK
paxillin VASP
pY ɑ-actinin
ɑ5β1 tensin

zyxin

Figure 3.2: Evolution of adhesion sites The scheme depicts the molecular composition

of the different cell-matrix adhesions, starting with hyaluronan-mediated attachment to

focal complexes (FX), focal adhesions (FA) and fibrillar adhesions (FB). (Adapted from

Zaidel-Bar, 2004)

lipodia. FXs have a typical area of approx. 0.25 µm2 and persist for a

few minutes. Early FXs contain αvβ3-integrins, talin, phosphotyrosine and

paxillin. Further proteins are recruited to these structures to give rise to

focal adhesions (FA), which link the ECM to the cytoskeleton through in-

tracellular anchor proteins, such as zyxin and tensin. The recruitment of

some proteins to FAs is force-dependent. For example vinculin, a protein

that connects integrins to actin filaments [Bershadsky et al., 2003], is found

under low force in disassembling or sliding FAs at the trailing edge of migrat-

ing cells. Mediated by interactions with talin, vinculin induces FA growth

[Humphries et al., 2007].

As force is applied to FAs, tensin and α5β1-integrins translocate centripetally
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3 INTRODUCTION

at a rate of 6.5 ± 0.7 µm/h [Pankov et al., 2000] resulting in the formation

of fibrillar adhesions (FBs) and ECM remodeling. The formation of FBs

was shown to depend on actomyosin contractility and matrix reorganization

[Zamir et al., 2000].

3.1.2 The integrin superfamily

The main plasma membrane receptors mediating cell adhesion to extracellu-

lar matrix (ECM) ligands belong to the superfamily of non-covalently linked

heterodimeric integrins [Humphries et al., 2006]. At least 24 different mem-

bers result from the combination of type I transmembrane α and β subunits

[Hynes, 2002]. The different subunits are shown in figure 3.3.

Figure 3.3: The integrin superfamily. Integrins are dimeric proteins consisting of α and

β subunits. At least 24 different integrins result from the combination of these monomers

(Figure from Hynes, 2002)

Integrins not only regulate cell-adhesion and ECM assembly [Hynes, 2002],

but are also crucial in embryonic development, angiogenesis, tissue repair

and hemostasis [Harburger and Calderwood, 2009]. Furthermore, they are

important for hematopoiesis, leukocyte trafficking and formation of immuno-

logical synapses, making integrin-associated proteins interesting as potential
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therapeutic targets [Cantor et al., 2008].

3.1.3 Integrin activation and signaling

Integrins can be found in two different conformations. In a bent conformation

integrins are inactive, due to the fact that the ligand-binding site is directed

towards the cell membrane. Mn2+ is known as a positive regulator of the

receptors and promotes a straightening of the extracellular domain between

the head- and the tailpiece of integrins. In this extended conformation, αvβ3-

integrins were shown to have an increased binding affinity to their ligands

[Takagi and Springer, 2002].

Figure 3.4 depicts schematically the two conformational states of integrins.

Cell polarity, survival and proliferation,
cytoskeletal structure and gene expression

integrin

ligand

outside-in
signaling inside-out

signaling

cell adhesion, cell migration
ECM assembly

outside

talin

inside

plasma
membrane

inactiveactive

active

Figure 3.4: Bidirectional integrin signaling. Schematical representation of integrin

activation from an inactive, folded (middle) to an active, stretched (left and right) con-

formation. In their active state, integrins regulate intracellular as well as extracellar

processes. (Adapted from Shattil et al., 2010)

The activation of integrins is regulated by intracellular proteins that bind to

the cytoplasmic β tail of integrins, increasing their affinity for ECM binding

partners [Calderwood, 2004]. Talins and kindlins were shown to play a crucial

role in this modulation [Shattil et al., 2010] .
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3 INTRODUCTION

3.2 Extracellular matrix

The space between tissue cells of multicellular animals is filled with extracel-

lular matrix (ECM), a meshwork of proteins and polysaccharides, produced

mainly by the cells surrounded by it. The ECM provides physical scaffolding

for the cells embedded and serves as a reservoir of soluble molecules, such

as growth factors. In connective tissue, cartilage and bone, the ECM is the

functional part of the tissue, while in others, e.g. muscle, it only represents

a minor portion. Depending on the type of matrix, ECM components can

vary significantly.

One of the forms of the ECM is the so-called basal lamina, which underlies

epithelial cell sheets and individual muscle cells, fat cells and Schwann cells.

Basal laminae are usually 40-120 nm thick and not only have structural and

filtering roles but also affect cell survival, proliferation or differentiation, po-

larity, migration and influence cell metabolism [Alberts et al., 2002].

ECM macromolecules can be subdivided into two classes: 1) glycosamino-

glycans (GAGs) and 2) fibrous proteins.

GAGs are linear chains of 20 100 sulfated disaccharides that are usually

linked to proteins, forming proteoglycans. Their high density of negative

charges attracts cations, specially Na+ making them highly hydrophilic. In

connective tissues, they therefore form hydrated gels. Hyaluronan, chon-

droitin sulfate, dermatan sulfate, heparan sulfate and keratan sulfate are

counted among GAGs.

The major proteins of the ECM are collagens, which are secreted by connec-

tive tissue cells. They represent the most abundant proteins in multicellular

animals, where they constitute 25% of the total protein mass. Collagens are

rich in proline - which stabilizes the helical conformation in each α chain -

and in glycine - which, due to its small size, allows the helical chains to pack

tightly together. Collagens are known to spontaneously form fibrils in vitro.

However, their assembly in vivo is a cell-dependent process. The polymeriza-

tion of collagen type I requires the presence of collagen V, collagen-binding

integrins and fibronectin [Kadler et al., 2008].

Elastin, a highly hydrophobic protein, is the main component of the group

of elastic fibers. It is, like collagen, rich in proline and glycine and is about

10



750 aminoacids long.

Basal laminae consist mainly of collagen type IV and laminin, a multiadhe-

sive protein that binds not only collagen IV, but also certain CAMs.

3.2.1 FN types

Fibronectin (from the Latin: fibra, fiber, and nectere: to bind, tie) is a key

component of the ECM. It provides binding sites not only for cell membrane

receptors but also for other ECM proteins. It can be found in two forms that

differ in their molecular composition, solubility and cellular source. Both

types of the protein are encoded in one gene and result from alternative

splicing [Kornblihtt et al., 1996].

In connective tissues and basal laminae FN is present as a fibrillar network,

referred to as “cellular FN” (cFN). This form is produced mainly by fibrob-

lasts, which deposit it locally and assemble it into an insoluble matrix.

The other physiologically ocurring type of the protein is plasma FN (pFN).

This form is secreted by hepatocytes and released in a globular, inactive form

into the plasma, where it circulates at a concentration of 300-400 µg/mL. It

is therefore referred to as “plasma FN” (pFN) and can be incorporated into

the ECM [Moretti et al., 2007].

It has been shown that the presence of cFN in plasma is increased in dis-

eases, such as rheumatoid vasculitis and diabetes [Kanters et al., 2001]. One

functional difference between the two types of the protein was observed by

Asaga et al. [Asaga et al., 1991], who showed that human skin fibroblasts

required cFN but no pFN for collagen gel contraction, which was suppressed

after inhibition of protein biosynthesis.

In wound healing, the two types are temporally regulated. In a first step, the

soluble pFN is incoroprated into fibrin clots regulating platelet function and

hemostasis. Afterwards cFN is synthesized and assembled by cells migrating

into the clot, thus reconstituting the damaged tissue [To and Midwood, 2011].
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3 INTRODUCTION

3.2.2 FN structure

FN is a glycoprotein consisting of two nearly identical monomers linked to

each other by disulfide bonds. Each chain has a mass of approx. 250 kDa, is

60-70 nm long and 2-3 nm thick.

FN is a modular protein composed by three types of domains, referred

to as type I, II and III [Wierzbicka-Patynowski and Schwarzbauer, 2003],

which differ in tertiary structure and biological function. Figure 3.5 depicts

schematically the modular structure of a FN monomer.

Collagen FN Cell Heparin
FNFN

Fibrin FN

RGDSynergy

54

70 kDa fragment CS1
SS

Fig. 1.Domain structure of fibronectin (FN). FN consists of type I (rectangles), type II (ovals) 
and type III (circles) repeats. Sets of repeats constitute binding domains for fibrin, FN, collagen, 
cells and heparin, as indicated. The three alternatively spliced segments, EIIIA, EIIIB and V (or 
IIICS), are in yellow. The assembly domain and FN-binding sites are highlighted in orange. SS 
indicates the C-terminal cysteines that form the dimer. 

The ins and outs of fibronectin matrix assembly 

NH2 COOH

EDB EDA Variable region

Type I Type II Type III

site

Figure 3.5: The modular structure of fibronectin. FN monomers consist of type I

(rectangular), type II (oval) and type III (circular) domains. FN binding sites are colored

in orange and the central cell binding domain containing the RGD and its synergy site

PHSRN are shown in magenta. (Adapted from Wierzbicka-Patynowski and Schwarzbauer,

2003)

One of the major cell-binding domains present in all types of FN contains

an RGD (Arg-Gly-Asp) sequence within FNIII10 that promotes cell adhe-

sion mediated mainly by the α5β1-integrin. The RGD is bound primarily by

the β subunit, while residues outside this sequence are believed to interact

with the α subunit, affecting binding specificity and affinity [Takagi, 2004].

The aminoacid sequence PHSRN (Pro-His-Ser-Arg-Asn) in FNIII9 was iden-

tified to act synergistically with the neighbouring RGD site enhancing its

cell-adhesive function [Aota et al., 1994, Grant et al., 1997].

The extra domains EDA and EDB are alternative splicing sites within the

FN gene that are only expressed in cFN [Kornblihtt et al., 1996]. EDA can

be included between III11 and III12, whereas EDB can be found between III6

and III7. EDA promotes cell adhesion of some cell types and it has a syn-

ergistic activity with the adjacent domains III11 and III12. It further seems

12



to participate in signal transduction through the induction of stress fibers

and focal contact assembly. In some cell systems, EDA containing FN is

more effective in promoting cell spreading and migration than FN lacking

it. A possible explanation for this behavior is the higher avidity of α5β1-

integrins to the first form [Manabe et al., 1997]. EDA was also identified as

a ligand for integrins α9β1 [Shinde et al., 2008], α4β1 [Liao et al., 2002] and

α4β7 [Kohan et al., 2010].

The expression of EDA-containing FN is highly regulated during develop-

ment and aging. The EDA exon was also shown to be necessary for a normal

function of the brain [Chauhan et al., 2005].

Four FN binding domains have been identified, being FNI1−5 essential for

assembly [Mao and Schwarzbauer, 2005a]. Other intramolecular ionic inter-

actions are important for keeping FN in a compact form, unable to form

fibrils in solution [Johnson et al., 1999]. Further domains bind other ECM

components including collagens, fibrin, and various proteoglycans.

3.2.3 FN fibrillogenesis

Although FN assembly has been extensively studied, the mechanisms under-

lying this complex process remain widely unclear.

The protein is secreted in its globular, inactive form. Integrin-mediated cell

binding induces conformational changes that allow the exposure of cryp-

tic FN-FN binding sites, thereby inducing FN polymerization into fibers

[Ingham et al., 1997].

It has been shown that a tensin-dependent translocation of α5β1-integrins,

the major FN receptor, promotes early FN fibrillogenesis [Pankov et al., 2000].

Cytoskeletal tension and cell traction forces are required for FN matrix as-

sembly [Baneyx et al., 2002], and that these forces are largest at the cell

periphery and decrease toward the cell center [Lemmon et al., 2009]. Taken

together, as FN-ligated integrins translocate along actin filaments in cen-

tripetal direction, they apply tension to FN, thereby stretching it into its

fibrillar, active form [Brown and Discher, 2009].

The main steps of FN assembly are depicted in figure 3.6.
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3 INTRODUCTION

Figure 3.6: Principal steps in the process of FN assembly. 1) Globular FN (orange)

binds integrins (gray). 2) Intracellular proteins are recruited to the cytoplasmic domains

of integrins and connected to the actin cytoskeleton (green). As cell contractility increases

(arrows), FN undergoes conformational changes. 3) Integrins cluster, binding and indu-

cing conformational changes in further FN molecules. 4) The exposure of cryptic FN-FN

binding sites allows the polymerization of the protein into an insoluble matrix (adapted

from Singh et al., 2010).

Different studies have shown that cytoskeletal tension is needed to unfold

the dimer [Zhong et al., 1998, Pankov et al., 2000] and to maintain it in a

partially unfolded conformation [Baneyx et al., 2002]. In the majority of

stretched dimers, at least one FNIII is unfolded, allowing the whole molecule

to extend up to 8-fold [Klotzsch et al., 2009].

The importance of FN organization is emphasized by several reports show-

ing that an active FN matrix assembly is required for the incorporation

of other molecules into the ECM, such as fibrillin [Sabatier et al., 2009],

fibrinogen [Pereira et al., 2002] and collagen [Kadler et al., 2008]. Also os-
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teoblast mineralization depends on β1 integrin dependent FN deposition

[Brunner et al., 2011].

Mao and Schwarzbauer have shown 3D extracellular matrix networks stimu-

late fibril assembly compared to 2D culture, suggesting effects of the 3D FN

matrix on integrin activity [Mao and Schwarzbauer, 2005b]. These results

were supported by Midwood et al., who showed that different conformations

of FN activate distinct types of integrins [Midwood et al., 2006]. While sol-

uble FN is bound by α5β1-integrin, in its multimeric form it also stimulates

αvβ3-integrin [Huveneers et al., 2008].
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3 INTRODUCTION

3.3 Biomimetic surfaces as a tool to study cell adhe-

sion

Different in vitro approaches were developed in order to mimic in vivo adhe-

sive environments. These span from glass coatings to artificial 3D matrices

presenting ECM proteins or ECM-derived peptides. FNs, as integrin-ligands,

are widely used as a cell-adhesive coating. Due to its easier availability and

lower cost, pFN is the type that is utilized more often. Nevertheless, cFN

also has adhesive properties and is the actual type of the dimer that pro-

motes cell-adhesion in vivo. In some cell systems, moreover, cFN was shown

to promote a faster spreading than pFN [Zand et al., 2003]. The physical

properties of a substrate coating can be varied in order to study their effect

on cell adhesion. It was reported that the physical state of FN on a glass

surface plays a role on cell adhesion and FN assembly. While physisorbed

pFN promoted matrix reorganization and α5β1-integrin localization to fib-

rillar adhesions, a more rigid FN coating inhibited FN fibrillogenesis and it

induced the formation of FAs rich in α5β1-integrins [Katz et al., 2000].

3.3.1 Peptide immobilization on nanopatterned substrates

The covalent immobilization of cell-adhesive peptides offers advantages over

protein adsorption. Physisorbed proteins not only can be degraded by pro-

teases but also their orientation and availability cannot be controlled. One

of the most employed peptides to induce cell adhesion is the RGD sequence,

which occurs in different ECM proteins, such as fibronectin, vitronectin and

fibrinogen [Humphries et al., 2006].

Modified peptides can be either directly covalently linked to substrates or

indirectly coupled using different linkers. His-tagged proteins, for example,

can be bound to Ni2+ ions. These, in turn, can be immobilized by chelation

to NTA (nitrilotriacetic acid) bound to a surface [Knecht et al., 2009].

The immobilization can be carried out either homogeneously on an entire

surface or on patterned substrates, where ligands are presented separated

from each other in defined distances [Lohmüller et al., 2011]. Nanopatterned
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substrates functionalized with cyclic RGD peptides can be used to control

lateral αvβ3-integrin clustering [Arnold et al., 2004]. It was shown that fi-

broblast can form stable FAs on nanopatterned substrates presenting a crit-

ical inter-ligand spacing or lower. When this spacing is increased, not only

adhesion is compromised, but also the synthesis of ECM proteins is affected

[Cavalcanti-Adam, 2005].
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3 INTRODUCTION

3.4 Aim of the study

The aim of this study is to analyze fibroblast adhesion in vitro on substrates

presenting cFN, pFN and peptides derived from FN.

While it is known that the two physiologically ocurring FN types exert dif-

ferent adhesive responses in some cell systems, it has not been studied how

they regulate the formation of adhesion sites and FN fibrillogenesis.

In this work the formation of FAs and FBs was investigated in fibroblasts,

the major cell type present in connective tissues involved in secretion and

assembly of FN. The investigation focussed on the following aspects:

- The regulation of cell spreading by cFN and pFN.

- The molecular composition of FAs on cFN and pFN.

- The effects of FN coatings on integrin distribution and phosphorylation

of paxillin - a major regulator of FN signaling.

- The effects of FNs and adhesive peptides derived from FN on the as-

sembly of FN.
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4 Materials and methods

The aim of this work is the characterization of fibroblast adhesion to differ-

ent types of fibronectin (FN). For this purpose, we used surface coatings of

cellular FN (cFN) produced by fibroblasts, plasma FN (pFN) secreted by

hepatocytes and superfibronectin (sFN) which results from the in vitro mix-

ture of pFN and the FN fragment FNIII1−C -also known as anastellin. Due

to inconsistencies in the results obtained on sFN coatings, the investigations

were restricted to cFN and pFN and only experiments on the two latter types

of FN are shown in this thesis.

4.1 Preparation of homogeneous substrates

4.1.1 Direct physisorption of FNs on glass

Glass coverslips (Carl Roth) were incubated for 1 hr at 37◦C or overnight at

4◦C with 5 µg/mL cFN, pFN or sFN solution in PBS.

cFN (Sigma) from human foreskin fibroblasts was supplied as lyophilized

powder in CAPS (3-(cyclohexylamino)-1-propanesulfonic acid) saline buffer.

After reconstitution in Milli-Q water, the protein concentration was deter-

mined using a BCA (bicinchoninic acid) assay kit (Thermo Scientific) and

aliquots were stored at -20◦C.

For the isolation and purification of human pFN, human serum was cen-

trifuged and after addition of 2 mM PMSF and 10 mM EDTA it was purified

using a Sepharose column. FN was eluted with PBS/6M Urea and the eluate

was dialyzed against PBS. The protein concentration was determined using

the BCA assay. Aliquots were stored at -20◦C.

Bovine pFN (Sigma) was supplied in solution in 0.5 M NaCl, 0.05 M Tris

(Roth), pH 7.5 and stored at 4◦C.

BSA (bovine serum albumin, Sigma, 1 % (w/v) in PBS, sterile filtered) was

used in order to prevent unspecific cell binding. The FN coated substrates

were incubated for 30 min at RT with this solution in order to block parts

of the glass surface which might not have been coated with FN.
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4 MATERIALS AND METHODS

4.1.2 Indirect physisorption of FNs on glass

Glass coverslips were incubated for 20 min with 50 µg/mL PLL (poly-L-

lysine, Sigma), rinsed with Milli-Q water and incubated with 1 % glutaralde-

hyde (Sigma) for 15 min at RT. After extensive washing the coverslips were

incubated for 30 min with 5 µg/mL FN, washed and blocked with 1M

ethanolamine (Sigma) in PBS for 20 min [Katz et al., 2000].

4.1.3 Immobilization of cRGDfK on gold surfaces

After 30 min incubation with a 3:1 mixture of H2O2 and H2SO4 (both from

Carl Roth) and extensive washing with Milli-Q water, glass slides were sput-

tered with a 4 nm thick layer of titanium and a 10 nm thick layer of gold in

the chamber of a modular high vacuum coating unit (BAL-TEC Med 020).

The surfaces were then incubated with a 25 µM solution of the cyclic pen-

tapeptide c(Arg-Gly-Asp-Phe-Lys) (cRGDfK) for 4 hr at RT. To prevent the

Figure 4.1: Chemical structure of the cyclic RGD (cRGDfK) including a linker with

a terminal thiol group that can be covalently bound to the gold surfaces. cRGDfK was

kindly provided by Prof. Dr. Kessler, TU Munich.

22



deposition of organic material on the surfaces, the incubation was performed

immediately after sputtering or following plasma treatment (t = 10 min,

p[O2] = 0.4 mbar, p = 150 W).

Prior to cell seeding the substrates were rinsed extensively with Milli-Q water

and finally with sterile PBS.

4.1.4 Immobilization of FN-fragments on gold surfaces

A fibronectin fragment FNIII9−10 [Staunton et al., 2009] (kindly provided by

David Staunton, Department of Biochemistry, University of Oxford) was

reconstituted in Milli-Q water, aliquoted and stored at -20◦C (figure 4.2).

PHSRN
RGD

K

K K

A

B

Figure 4.2: 3D structure of FNIII9−10. Both boxes show FNIII9−10. In box A the

synergy site PHSRN (Pro-His-Ser-Arg-Asn) in FNIII9 is indicated with a yellow arrow

and the cell-binding tripeptide RGD within FNIII10 with an orange arrow. In box B

green arrows point at the three lysines present in the fragment, which are accessible for

Traut’s Reagent.

The thiolating Traut’s Reagent (2-Iminothiolane*HCl, Thermo Scientific)
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4 MATERIALS AND METHODS

was used for the immobilization of FNIII9−10 to gold. The reagent interacts

with primary amines (-NH2), introducing thiol (-SH) groups (figure 4.3).

Traut´s Reagent primary amine product with a terminal sulfhydryl group

+

Figure 4.3: Chemical reaction between Traut’s Reagent and primary amines.

The compound reacts with primary amines resulting in a product containing a terminal

sulfhydryl group.

5 mM EDTA was added to 1 mg/mL FNIII9−10 to chelate divalent metal

ions in order to prevent the oxidation of -SH groups. An approx. 10-fold

molar excess of Traut’s Reagent dissolved in PBS was added to the protein

solution. After 1 hr incubation at RT, glass coverslips previously sputtered

with a 4 nm thick layer of titanium and 10 nm gold were incubated with the

solution for an additional hour at RT. The substrates were rinsed with PBS

under sterile conditions prior to cell seeding.
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4.2 Preparation of nanopatterned substrates

Nanopatterning of glass substrates was done according to Arnold et al., 2004.

Polystyrene(x)-block -poly(2-vinylpyridine)(y), PS(x)-b-P2VP(y) (Polymer -

Source), is dissolved in toluene or para-xylene. This results in a micellar

solution, where PS forms the outer shell of the micelles. When HAuCl4

(Sigma) is added to this solution, it diffuses into the micelles, protonating

the P2VP while the negatively charged Au(III) complex AuCl4 stabilizes the

micellar core. When a solid inorganic surface, e. g. a glass coverslip, is re-

tracted from the solution after dip-coating, the gold-loaded micelles adsorb

onto the surface building a self assembled monolayer (SAM), where gold par-

ticles are organized in a quasi-hexagonal pattern. The interparticle distance

can be varied depending on the polymer length and the velocity at which the

surface is retracted from the micellar solution [Arnold et al., 2004]. The di-

ameter of the gold particles is determined by the loading, which is the molar

ratio between HAuCl4 and the sum of all P2VP units. The solutions of di-

block copolymers used to obtain the different distances between neighbouring

gold clusters are listed in table 1.

Table 1: Polymers used for the production of nanopatterns. The amount of poly-

mer units is indicated in brackets. MW : molecular weight of the diblock copolymer, c:

concentration of the polymer, L: loading or molar ratio between HAuCl4 and P2VP, d :

interparticle distance.

Polymer MW c L d solvent

[g/mol] [mg/mL] [nm]

PS(240)-b-P2VP(143) 40000 8 0.5 30 para-xylene

PS(1056)-b-P2VP(495) 162000 5 0.5 53-80 toluene

PS(2076)-b-P2VP(571) 276000 2 0.5 110 toluene

Polymer was dissolved in toluene or para-xylene (Merck) and stirred at least

for 24 hr. The polymer solution was then added to the HAuCl4 and stirred

for at least 24 hr at RT until the salt was completely dissolved. The solution

was stored at RT protected from light and was used within six months after

preparation.
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4 MATERIALS AND METHODS

4.2.1 Dip-coating and plasma etching

Glass coverslips were cleaned with lint-free napkins and immersed in a 3:1

mixture of H2SO4 and H2O2 for 30 min. After repeated rinsing with Milli-Q-

water, the coverslips were sonicated for 5 min, rinsed again and dried with a

nitrogen stream. After dipping in the micellar solution, the glass coverslips

were treated with hydrogen plasma (t = 45 min, P = 300 W, p[H2] = 0.4 mbar,

PS 210 Microwave Plasma System or t = 45 min, P = 150 W, p[H2] = 0.4 mbar

in PS 100-E, both from TePla) in order to remove the polymers on the sur-

faces and reduce Au(III) to Au(0).

4.2.2 Passivation of glass surface

The nanopatterned coverslips were subjected to passivation with biologically

inert poly(ethylene glycol) (PEG). The polymer binds to the glass surface

between gold clusters and on the part of the sample that was not immersed

in the gold solution [Blümmel et al., 2007]. The basic structure of PEG is

HO(-CH2-CH2-O)n-H.

In this work a silane terminated PEG2000-carbamate (n = 43, shown in

figure 4.4) was used to passivate the surfaces. PEG was prepared and kindly

provided by Dr. J. Blümmel or T. Pohl.

O

Si

O            O

N

H

O

N

H

O

43

Figure 4.4: Structure of PEG2000-carbamate. Silane-terminated, protein repellent

PEG2000-carbamate used to passivate the glass surface between the gold particles.

The substrates were immersed for 8 hr at 80◦C in a 0.25 mM PEG2000-

carbamate solution in dry toluene and 2.5 µM triethylamine (Fluka), which

acts as a catalyst. After removal of the toluene, the substrates were rinsed
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three times with ethylacetate and then with methanol (both p.A., from Carl

Roth). After nitrogen drying, the surfaces were ready for biofunctionalization

with peptides.

4.2.3 Immobilization of peptides on gold particles

Immediately after the passivation with PEG, the substrates were incubated

with either cRGDfK for 4 hr at RT or FNIII9−10 for 1 hr at RT after incu-

bation with Traut’s Reagent as described in paragraphs 4.1.3 and 4.1.4.
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4.3 Characterization of FN solutions and coatings

4.3.1 SDS-PAGE and Coomassie staining

1 µg protein was loaded onto a 4-12 % Bis-Tris Novex gel (Invitrogen)

for SDS-PAGE (sodium dodecylsulfate - polyacrylamide gel electrophoresis)

analysis. After electrophoresis (in MOPS buffer, t = 50 min, U = 200 V,

I = 110 mA) the gel was incubated in 0.1 % Coomassie R-250 (Invitrogen)

in 40 % ethanol (AppliChem) and 10 % acetic acid and heated for 1 min in a

microwave oven (P = 300W). It was then gently shaken at RT for 15 min and

rinsed once with Milli-Q water after removing the excess stain. The gel was

heated for 1 min in a solution containing 10 % ethanol and 7.5 % acetic acid

for destaining. Images were acquired with the luminescent image analyzer

LAS-3000 (FUJIFILM).

4.3.2 Chemiluminescence detection of FN in solutions

0.5 µg of each protein solution was analyzed by SDS-PAGE using 4-12 % Bis-

Tris pre-cast gels with NuPAGE system (Invitrogen). After electrophoresis

(in MOPS buffer, 50 min, 200 V, start current 110 mA) proteins were trans-

ferred to a nitrocellulose membrane using iBlot Dry Blotting System (Invit-

rogen). The membrane was blocked for 1 hr at RT with 5 % milk (Carl Roth)

in PBS and incubated overnight at 4◦C with primary antibody against EDA

or vitronectin (see 3) diluted to a final concentration of 0.1-0.5 µg/mL in

PBS-T containing 3 % milk. The nitrocellulose membrane was washed three

times with PBS-T for 5 min, incubated for 45 min with HRP-conjugated sec-

ondary antibody in PBS-T/3 % milk at a final concentration of 0.1 µg/mL

and rinsed three times with PBS-T for 5 min.

The proteins on the nitrocellulose membrane and on the glass substrates were

detected by chemiluminescence (ECL Plus, Amersham Corp.) and imaged

with the luminescent image analyzer LAS-3000 (FUJIFILM).

28



4.3.3 In situ detection of proteins on FN coatings

Glass coverslips were coated and blocked as described in paragraph 4.1.1

and incubated for 1 hr at RT with primary antibody against FN, EDA or

vitronectin (see 3). After rinsing with PBS, substrates were incubated for

45 min in HRP-conjugated anti-mouse antibody (see 4), rinsed with PBS

and the proteins were detected by chemiluminescence as described in para-

graph 4.3.2.

4.3.4 Fluorescence labeling of FN

Bovine pFN was labeled using AlexaFluor 555 Protein Labeling Kit (Invit-

rogen). The dye has a succinimidyl ester moiety that reacts efficiently with

primary amines. Since pFN was supplied in TRIS, which contains an amino

group, it was first dialyzed against PBS. The protein solution was transferred

to a vial of reactive dye. The reaction mixture was stirred for 1 hr at RT. The

labeled FN was purified with a purification column provided in the labeling

kit. The protein-containing fraction was collected and the concentration was

measured by UV-VIS-spectra on an Tecan InfiniteM200 microplate reader

(Tecan).

4.3.5 Quartz Crystal Microbalance with Dissipation

Quartz crystals (L.O.T.-Oriel GmbH & Co. KG) were subjected to oxygen

plasma treatment (t = 30 min, P = 150 W, p[O2] = 0.4 mbar) and mounted

into an E4 sensor system from Q-Sense. The deposition of FN was monitored

on silicon dioxide coated crystals (Q-Sense). The adsorption of His-tagged

FN fragments was measured on gold crystals (QS-QSX301, Q-Sense). The

baseline frequency and dissipation level of buffers were determined before the

addition of proteins or linkers. The solutions were pumped into the chambers

with a velocity of 50 µL/min. Once the chambers were filled with the protein

solution, the pump was stopped and frequency and dissipation level were

measured until an equilibrium was reached. The average mass adsorption,
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4 MATERIALS AND METHODS

dissipation level and corresponding standard deviation were calculated using

values within 10 min after reaching constant levels.

4.3.6 Scanning Electron Microscopy

The gold-nanopatterned surfaces were analyzed after plasma treatment with

scanning electron microscopy (SEM). Samples were coated with a layer of

carbon in the chamber of a sputter coater (BAL-TEC MED 020) and imaged

with SEM (Leo1530, Zeiss). A 50.000 magnification was used to analyze

spacing and order of the gold particles applying the “dot analyzer” plugin

created by Dr. Philippe Girard for ImageJ. This plugin measures the average

distance between neighbouring gold particles and standard deviation. It also

gives an order parameter ranging from 0 to 1 where 1 represents a perfect

order. Only nanopatterns yielding an order parameter above 0.6 were used

for cell experiments.
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4.4 Cell culture

4.4.1 Cell lines and culture conditions

Wild type rat embryonic fibroblasts (REF52WT), REF52YFPpax (REF sta-

bly transfected for the expression of YFP-tagged paxillin), 3T3YPet-FN and

CDP (cells of the dental pulp) cells were cultured in Dulbecco’s Modified Ea-

gle’s Medium (DMEM, Gibco) supplemented with 1 % L-Glutamin and 10 %

serum (Gibco) and were used at passages 5-20. Cells were serum-starved for

16 hr before the experiments.

Every three days the media was replaced. When the cells were confluent (4-7

days after plating) the media was removed and the cell monolayer was first

rinsed with PBS (PAA) to remove residual media and then incubated for

3 min with 2.5 % Trypsin/EDTA (Gibco). Once the cells detached, media

supplemented with 10 % FBS or FCS (fetal bovine serum or fetal calf serum,

see table 2) was added to the flask to neutralize the trypsin. The cell sus-

pension was centrifuged for 5 min at 800 rpm. The pellet was resuspended

in culture media and cells were seeded 1:10 into a new flask.

Table 2: Cells

Name Organism Serum Description Reference

REF52WT rat FBS fibroblast [Franza et al., 1986]

REF52YFPpax rat FBS transfected fibroblast [Zamir et al., 1999]

CDP human FBS cells of the dental pulp [Waddington et al., 2009]

3T3YPet-FN mouse FCS transfected mouse fibroblast [Ohashi and Erickson, 2009]

MEF FN−/− mouse no serum transfected mouse fibroblast [Fässler et al., 1995, Sakai et al., 2001]

MEF FNfl/fl mouse FCS transfected mouse fibroblast [Fässler et al., 1995, Sakai et al., 2001]

MEF FN−/− were first thawed and cultured in DMEM supplemented with

10 % FBS. After the second passage, the culture media was replaced with

a 1:9 mixture of this media and serum-free media. After two passages, cells

were cultured in serum-free media on Petri dishes precoated with 50 µg/µL

type I collagen (BD Biosciences) in 0.02 N acetic acid. Serum-free media was

prepared as follows: 500 mL AimV (Gibco), 500 mL DMEM/HAM’SF-12

(PAA), 20 mL RPMI 1640 (Gibco) and 10 mL NEAA (non-essential amino-

acids, Gibco).
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4.4.2 Mycoplasma test

For each passage after thawing and then bimonthly, the absence of parasitic

mycoplasm in the cell culture was tested. Approximately 30.000 cells were

incubated in 2 mL 10 %-DMEM for 24 hr in a Petri dish. After media re-

moval, cells were fixed with 70 % ice-cold methanol for 4 min. Cells were then

incubated for 15 min in a 1 µg/mL DAPI (4, 6-diamidino-2-phenylindole,

Sigma) solution. The substrate was rinsed with PBS and the presence of

DNA-intercalating DAPI was detected by fluorescence microscopy.

The excitation of the dye is 359 nm, while its emission at 461 nm is enhanced

by approx. 20-fold when bound to DNA. Mycoplasma infected cells show a

characteristic particulate or filamentous staining on the cell surface.

Only mycoplasma-negative cells were used in this study.

4.4.3 Cell seeding

After trypsinization cells were centrifuged and resuspended in media sup-

plemented with 1 % FBS or FCS. The cell titer was determined using a

Neubauer chamber. 30.000 cells in suspension were seeded on each substrate.

The plates were placed in the incubator until the time point of fixation. The

remainder of the cell suspension was used for further passaging.

4.4.4 Cell transfection

For transient transfection and expression of fluorescent protein-constructs,

REF cells were plated in 6-well plates, and allowed to reach 70-80 % conflu-

ence. Transfection was performed with Promofectin (PromoCell) according

to manufacturer’s recommendation.

The α5-integrin-GFP plasmid was obtained from the plasmid bank Addgene

(plasmid 15238); the plasmid was deposited by R. Horwitz (University of

Virginia, USA).
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4.5 Preparation of cell samples

4.5.1 Cell fixation and permeabilization

After removal of the culture media the samples were rinsed three times with

warm PBS and incubated at RT with 3.7 % PFA (Sigma) for 30 min. In

case of staining of intracellular components, cells were fixed for 15 min with

3.7 % paraformaldehyde (PFA) and permeabilized for 10 min with 0.1 %

Triton X-100 in PFA. The samples were rinsed thoroughly with PBS.

4.5.2 Indirect immunofluorescence staining

Fixed cells were blocked with 1 % BSA in PBS for 30 min and incubated

with primary antibody/antibodies in 0.1 % BSA in PBS for 1 hr at RT or

overnight at 4◦C. Primary antibodies are listed in table 3 and were used at

a final concentration of 1-5 µg/mL. Samples were rinsed three times with

PBS and incubated for 45 min at RT with secondary antibody/antibodies in

0.1 % BSA in PBS. For actin labeling, TRITC-conjugated phalloidin (Sigma)

was added to the secondary antibody dilution to a final concentration of

2 µg/mL. Secondary antibodies are listed in table 4 and were used at a final

concentration of 5-10 µg/mL.

After rinsing with PBS, each glass slide was placed on an object holder,

coated with 80 µL mounting media (Elwanol), covered with a microscopy

glass slide and stored protected from light to avoid photobleaching.

4.5.3 Protein isolation and Western blotting

After media removal, cells were first rinsed with warm PBS and then lysed

for 15 min on ice. Lysis buffer contained 20 mM Tris-HCl buffer (Biomol),

1 % NP-40, 150 mM NaCl (Grüssing), 1 mM EGTA, 1 mM sodium ortho-

vanadate, protease inhibitors and 1 % deoxycholic acid, pH 8.0 (all from

Sigma). The lysates were centrifuged at 14.000 rpm for 10 min at 4◦C. Pro-

tein concentration in the supernatant was determined by BCA assay.
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After addition of reducing agent and loading buffer, 4 µg of each sample were

incubated for 10 min at 90◦C. Proteins were analyzed by SDS-PAGE using

4-12 % Bis-Tris pre-cast gels with NuPAGE system (Invitrogen) as described

in paragraph 4.3.2.

4.5.4 Lists of antibodies

Table 3: Primary antibodies WB: Western blotting, IIF: indirect immunofluorescence,

CL: chemiluminescence

Epitope Host Catalogue number Company Application

β-actin mouse A2228 Sigma WB

fibronectin (CCBD) mouse MAB1926 Millipore IF, CL

fibronectin mouse 42040 QED IIF

fibronectin rabbit AB2047 Millipore IIF

FNIII4 mouse F0791 Sigma IIF

fibronectin, cellular mouse MAB1940 Millipore IIF, CL, WB

phospho-paxillinpY 118 rabbit 2541S Cell Signaling IIF

phospho-paxillinpY 118 rabbit AB3837 Millipore WB

paxillin rabbit 2542 Cell Signaling IIF

vinculin mouse V9264 Sigma IIF

vitronectin mouse MAB1945 Millipore IIF, WB

zyxin mouse 307011 Synaptic Systems IIF
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Table 4: Secondary antibodies

Name Conjugation Catalogue number Company Application

goat anti-rabbit IgG HRP sc-2004 Santa Cruz WB

goat anti-mouse IgG HRP sc-2005 Santa Cruz WB

goat anti-rabbit IgG AlexaFluor 360 A-21068 Invitrogen IIF

goat anti-rabbit IgG AlexaFluor 488 A-11001 Invitrogen IIF

goat anti-mouse IgG AlexaFluor 647 A-21236 Invitrogen IIF

4.6 Cell imaging and image processing

4.6.1 Epifluorescence Microscopy

The samples were observed with an Olympus IX inverted fluorescence micro-

scope (Olympus) using a DeltaVision (DV) system (Applied Precision Inc.).

The system is equipped with an incubation chamber for constant temper-

ature (37◦C) and 5 % CO2 pressure thus allowing longer experiments with

live-cells. A 20x air objective was used for phase microscopy. For all other

samples a 60x oil immersion objective was used.

4.6.2 Total Internal Reflection Fluorescence Microscopy

For TIRF microscopy, fibroblasts were seeded on custom-made glass-bottom

Petri dishes and imaged on a Nikon TIRF unit on a TE-2000 E (Nikon)

using a 488- or a 561-nm laser line for excitation. An 60x PlanApo TIRF oil

immersion objective NA 1.45 (Nikon) was used, and images were recorded

with a Hamamatsu ORCA-AG digital camera at 1 Hz.

4.6.3 Image processing and data analysis

Image processing was done using ImageJ software version 1.43d (Rasband,

W.S., ImageJ, U. S. National Institute of Health, Bethesda, Maryland, USA,

http://rsb.info.nih.gov/ij/). Brightness and contrast of microscopy images

were adjusted for the presentation.
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ImageJ was used to assign colors to pictures of cells acquired with fluores-

cence filters and to generate RGB images by merging the different signals.

The software was furthermore used to measure cell area in phase contrast

images and to quantify bands of western blots.

Background subtraction was applied on the images using ImageJ. The pro-

gram calculates the mean intensity of a selected ROI and subtracts the ob-

tained value from each pixel within the image.

Intensity maps of integrin clusters were generated with ImageJ. The images

were pseudocolored with the “spectrum” lookup table.

The velocity of the growth of single α5-integrin clusters was determined by

using the kymograph plugin written by J. Rietdorf and A. Seitz for ImageJ.

Kymographs are assembled from a selected line type Region Of Interest (ROI)

in each frame of a time series. In the resulting time-space-plot the y axis

represents time and the x axis is the length of the ROI. The velocity of the

growth of clusters was determined by measuring the slope of contrast edges

in the kymographs.

The Intensity Correlation Analysis Plugin used to generate PDM (product

of the difference from the mean) values and images was written by T. Collins

and E. Stanley [Li et al., 2004].
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5 Results

5.1 Characterization of FN solutions and of function-

alized substrates

5.1.1 Surface adsorption of cFN was higher than that of pFN

Quartz crystal microbalance with dissipation (QCM-D) was used to analyze

the deposition of proteins on surfaces. Therefore, frequency and dissipation

levels of silicon dioxide coated crystals were monitored during incubation with

the different solutions used for later cell experiments. While the calculated

mass of cFN that adsorbed on the substrate was 555.2 ± 38.0 ng/cm2, the

value of adsorbed pFN was 332.6 ± 27.3 ng/cm2 (figure 5.1). As expected, the
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Figure 5.1: Values of adsorbed mass and dissipation as calculated with QCM-D.

A. Total adsorbed mass after incubation with the indicated solutions. B. Dissipation

levels of the protein coatings. Values on cFN are shown in black, pFN in white (n=3).

frequency level decreased after incubation with 1% BSA in PBS and rinsing

with PBS, indicating an increase in the total amount of adsorbed mass. The

mass calculated after further incubation with DMEM supplemented with

1% FBS and rinsing with PBS increased between 10 and 24%. In contrast,

incubation of coated substrates with DMEM led to an increase in frequency

levels, showing that proteins detached from the crystals. Figure 5.1 B shows

that the measured dissipation levels did not vary significantly between the

two different types of FN coatings, indicating that the amount of proteins

deposited on the surfaces was not affected by the source of the protein.
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5 RESULTS

5.1.2 FN solutions were free from vitronectin contamination

The total protein contents, within the FN solutions used for glass coatings,

and, in FBS and DMEM used for cell experiments, were determined by SDS-

PAGE and Coomassie staining (figure 5.2 A). To determine if vitronectin

(VN), the major ligand for αvβ3-integrin, was present in the solutions, pu-

rified VN was loaded in the second lane and detected at 60 kDa. The lanes

loaded with purified FNs in lanes 3 and 4 showed the expected bands for

monomeric FN at approx. 230 kDa and a higher band representing poly-

meric FN. Further lower bands were detected in cFN. Several bands were

found in FBS. There was no VN visible in DMEM.

The absence of VN in the solutions was further confirmed by western blot

analysis (Figure 5.2 B).
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Figure 5.2: Characterization of FN solutions. A. The total protein content in solu-

tions of purified vitronectin (VN) and FN, FBS and DMEM was stained with Coomassie.

B. Western blotting showed VN contamination neither in FN solutions nor in culture

media.

5.1.3 EDA was present in cFN and absent in pFN solutions

EDA is known to be present exclusively in cFNs and to affect the molecular

conformation of the protein, thus influencing integrin specificity of the cell

binding domain in FNIII10 (RGD). Its presence in the extracts used for the

coatings was determined by western blotting and in situ chemiluminescence
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detection as described in 4.3.3.

260

160
110
80

60

50
40

20

30

cFN    pFN   pFN
          (bov)  (hu)

Figure 5.3: Western blot of

FN solutions. EDA was de-

tected exclusively in cFN.

Western blot analysis shown in figure 5.3 con-

firmed the presence of EDA in cFN. pFN was

not contaminated with EDA-containing cFN.

Furthermore, coated glass substrates were

tested for the accessibility of FNs and in par-

ticular EDA. Therefore, either FN, EDA or VN

were detected on the different coatings previ-

ously incubated with DMEM or DMEM supple-

mented with 1% FBS. Figure 5.4 A shows that

on directly physisorbed FNs, the protein was ac-

cessible to antibodies (top row), as well as EDA

in cFN coatings (middle row). Contamination

with VN was excluded as no chemiluminescence

was detected after incubation with anti-VN an-

tibody.

In addition, figure 5.4 B shows the accessibility of EDA in cFN adsorbed on

glass coverslips both directly (phys.) and indirectly physisorbed (ind. phys.)

through glutaraldehyde on a PLL-layer.

cFN pFN BSA cFN pFN BSA

anti-human
FN

anti-EDA

anti-VN

DMEM DMEM 1%FBS
cFN pFN BSA

phys.

ind. 
phys.

A B

anti-EDA

Figure 5.4: Chemiluminescence detection of FN, EDA and vitronectin on FN

coatings. A. Detection of FN, EDA and vitronectin on glass coated with cFN, pFN or

BSA after incubation with DMEM or DMEM supplemented with 1% FBS. B. Detection

of EDA on directly and indirectly physisorbed FNs.
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5 RESULTS

5.1.4 FNs adsorbed homogeneously on glass

In order to visualize the adsorbed FNs and to analyze how the distributed

on glass, coverslips were coated with 5 µg/ml FNs prelabeled with Alexa-

Fluor 555 (cFN555, pFN555), and imaged with fluorescence microscopy.

Figure 5.5 shows that FNs built a layer on glass, where they distributed

homogeneously over the surface. No aggregations nor fibrils were observed

on any of the samples.

cFN555 pFN555

Figure 5.5: Glass coatings with prelabeled FNs. Glass coverslips were incubated with

either cFN555 or pFN555 and imaged with fluorescence microscopy. (scale bar: 10 µm)

5.1.5 Production of nanopatterned glass surfaces

After the removal of the polymer with H2 plasma treatment, nanopatterned

glass coverslips were sputtered with a layer of graphite and imaged with

SEM (scanning electron microscopy) using a 50,000 magnification. Figure 5.6

shows SEM images of samples presenting the four inter-particle distances

used in this study.

The “dot analyzer” plugin for ImageJ (described in paragraph 4.3.6) was

used to analyze the inter-particle distance as well as the order parameter,

which ranged between 0.55 and 0.7 in all cases, where 0 represents no ordered
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58 nm 73 nm 110 nm30 nm

Figure 5.6: Scanning electron microscopy images of gold nanoarrays. Gold

nanopatterned glass substrates were plasma treated to remove the polymer and imaged

with a 50,000 magnification to analyze inter-particle distance and order parameter. The

mean distance is indicated above each picture. (scale bar: 200 nm)

distribution and 1 indicates perfect order.
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5 RESULTS

5.2 Fibroblast spreading on FN coatings

5.2.1 Cell spreading kinetics was similar on pFN and cFN

To rule out the effect of serum adhesive proteins, REF52WT cells were serum

deprived for 16 hr prior to seeding onto coverslips coated with cFN or pFN.

Non-coated glass coverslips were used as control (not shown). The progres-

sion of the projected cell area was monitored by time-lapse phase contrast

microscopy for the initial 8 hr after seeding. Figure 5.7 A shows images of

a representative cell on each type of surface at the time points indicated

above. The projected cell area was measured and plotted (figure 5.7 B) as
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Figure 5.7: Cell spreading kinetics of REF52WT cells on cFN and pFN coatings.

A. Phase contrast images show representative cells adhering on cFN and pFN. (scale bar:

20 µm) B. The graph shows the progression of the projected cell area relative to the

maximal cell area. C. Bars show the mean cell area on the two substrates. (n=3)
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percentage of the maximal value observed during the spreading phase.

cFN and pFN promoted initial cell spreading in comparison to glass. Here,

the projected cell area increased linearly and reached a value that was ap-

proximately 50% of the maximal cell area compared to the values measured

on FNs. On both types of FNs, spreading kinetics were nearly identical

and the mean projected cell area did not differ significantly, as shown in fig-

ure 5.7 C. 18-23 cells per experiment were measured. Since the maximal area

values were reached on all FN coatings after 4 hr, further experiments for

the characterization of cell adhesion behavior were carried out at this time

point.

cFN
glass

R
el

at
iv

e 
pr

oj
ec

te
d 

ce
ll 

ar
ea

 (%
)

glass
cFN

C
el

l a
re

a 
(µ

m
2 )

10 min 1 hr 2 hr 4 hr 8 hr

gl
as

s
cF

N

A

CB

20

40

60

80

100

120

100 200 300 400 500

Time (min)

1000

2000

3000

4000

5000

6000

7000

Figure 5.8: Cell spreading kinetics of REFYFPpax cells on glass and cFN coat-

ing. A. Phase contrast images show representative cells adhering on glass and cFN.

Black arrows point at cell boundaries. (scale bar: 20 µm) B. Graph showing progression

of cell area relative to the maximal cell area. C. Bars showing mean cell area on the two

substrates.
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In order to verify if REF cells stably expressing YFP-tagged paxillin (REF-

YFPpax) spread with similar kinetics on FN coatings as REF52WT cells,

the progression of the projected cell area was monitored on glass and on

cFN (figure 5.8). Also here it was observed that cFN promoted the initial

spreading and increased the mean cell area compared to untreated glass.
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5.3 Molecular mechanism of fibroblast adhesion on FN

coatings

5.3.1 Reorganization of pFN coatings by fibroblasts

REFYFPpax were seeded on FNs prelabeled with AlexaFluor 555 (cFN555,

pFN555) to analyze whether fibroblasts modify the underlying coating. While

cFN555 coatings remained intact, pFN555 was partially uptaken from the sur-

face and reorganized into fibrils. Figure 5.9 shows cells adhering to a cFN555

coating for 20 hr. Images were acquired for 4 hr, but no significant changes

in paxillin structures or in the underlying coating were observed. The fluo-

rescence intensity of cFN555 was slightly lower underneath the cell periphery.

pax cFN555 merge

Figure 5.9: REFYFPpax on cFN555. REFYFPpax (paxillin, green) were seeded on

glass substrates coated with cFN555 (red). The images shown were acquired 20 hr after

seeding (scale bar: 10 µm).

The left images in figure 5.10 show a REFYFPpax cell (green) on pFN555

(red) 20 hr after seeding. The cell shown presented focal complexes (FCs,

yellow arrow), focal adhesions (FAs, white arrow) and fibrillar adhesions

(FBs, blue arrow). The images in the right column show magnifications of

the ROI indicated on the merged image on the left at the indicated time

points.

Paxillin-rich FCs and FAs (yellow and white arrows) show an intact pFN

coating underneath the cell. A partial colocalization of paxillin and fibrillar

FN could be observed at some FBs (blue arrow, 7.5 min), while others only

contained FN (blue arrows, 22.5 min). Pink arrows (15 min) point at spots

on the surface lacking FN. In some areas, FN accumulated at the centripetal

edge of paxillin clusters (gray arrows, 30 min) showing that fibroblasts were
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pax

pFN555

merge

30 min

15 min

22.5 min

7.5 min

1 min

Figure 5.10: REFYFPpax cell on pFN555. Arrows point at focal complexes (FCs,

yellow), focal adhesions (FAs, white) and fibrillar adhesions (FBs, blue). Gray arrows

indicate FN accumulation at the edge of paxillin (green) clusters and pink arrows point

at spots where FN (red) has been completely removed from the substrate. The yellow

box frames the ROI magnified in the right column after time points indicated. (scale bar:

10 µm)
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able to partially reassemble the underlying protein coating.

5.3.2 Molecular composition and distribution of adhesion sites on

different FN types

To determine if the assembly of adhesion sites was affected by the inclusion

of EDA in FN coatings, the distribution of FA molecules in fibroblasts ad-

hering to uncoated glass, cFN and pFN was analyzed by immunostaining.

Fluorescence microscopy images of REFYFPpax cells stained for actin (red),

paxillin (green) and vinculin (blue) are presented in figure 5.11. Paxillin and

gl
as

s
cF

N
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N

Figure 5.11: Molecular composition of adhesion sites on FNs. REFYFPpax (pax-

illin, green) cells were stained for actin (red) and vinculin (cyan) 4 hr after seeding on

glass, cFN or pFN. Yellow boxes are magnified in figure 5.12. (scale bar: 20 µm)

vinculin colocalized on all surfaces; however, while they were found over the

whole cell area in fibroblasts adhering to cFN, cells adhering to pFN pre-

sented a dominant distribution of adhesive structures at the cell periphery.
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A B

< 0

> 0pFN

cFNpFNcFN

Figure 5.12: Molecular composition of adhesion sites on FNs. A. ROIs are in-

dicated in figure 5.11. (scale bar: 5 µm) B. PDM images of two typical adhesion sites

showing colocalization of paxillin and vinculin.

The organization of the actin cytoskeleton differed in that stress fibers were

more pronounced and parallel to the direction of spreading in cells adhering

to pFN, whereas cells on cFN presented a network of thinner fibers mostly

localized along the cell perimeter. Single adhesion clusters in cells adhering

to cFN had a different shape when compared to cells adhering to pFN. In

these cells, paxillin clusters were elongated and radially distributed towards

the cell center, whereas the contacts of cells adhering to pFN were thicker and

less elongated and were localized at the cell periphery. Figure 5.12 A shows

magnifications of the inserts indicated in figure 5.11. Figure 5.12 B shows

two representative adhesion sites on each FN coating after processing with

the intensity correlation analysis plugin from ImageJ. Here the product of

the difference between the mean intensity within an image and the intensity

of each pixel (PDM value) is calculated resulting in negative values, which

represent a low correlation and positive values depict a high correlation. On

both substrates, PDM values for paxillin and vinculin channels were positive,

showing that both molecules colocalized independently from the molecular

composition of the FN used for coating.

5.3.3 Zyxin-rich structures were more prominent on pFN coatings

In order to analyze the localization of zyxin, fibroblasts were transiently

double transfected for YFP-paxillin and mCherry zyxin (figure 5.13). Zyxin

colocalized with paxillin in peripheral structures on both types of FN and,
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Figure 5.13: Paxillin and zyxin distribution on FN coatings. REF52WT were

double-transfected for YFP-paxillin (green) and mCherry-zyxin (red). (scale bar: 20 µm)

in contrast to cFN surfaces, it was found along stress fibers on pFN.

5.3.4 Paxillin phosphorylation at the peripheral end of paxillin

structures

Since paxillin phosphorylation at tyrosine 118 (ppax118) regulates the tran-

sition from FAs to FBs, its distribution on FN coatings was analyzed by

fluorescence microscopy. REFYFPpax cells were fixed and permeabilized

4 hr after seeding and stained for actin and ppax118 (figure 5.14).

Phosphorylated paxillin was detected mainly at the cell boundary at the

peripheral edges of paxillin structures, regardless of the type of FN coating.

51



5 RESULTS

scale bar: 20 µm

actin mergepax ppax118
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Figure 5.14: Distribution of phosphorylated paxillin. REFYFPpax (paxillin, green)

cells were stained for actin (cyan) and phospho-paxillin at Tyr118 (red) 4 hr after seeding

on cFN or pFN. (scale bar: 20 µm)

5.3.5 Distribution and shape of α5-integrin clusters on different

FN types

REF52WT cells were transfected with GFP-α5-integrin. One day after the

transfection, cells were seeded on cFN or pFN coatings and imaged 24 hr

after plating. α5-integrin structures on the two substrates differed in both

cFN pFN

Figure 5.15: REF52WT on physisorbed FNs. Cells transfected with GFP-α5-integrin

were seeded on cFN and pFN. The images were acquired 24 hr after seeding. (scale bar:

20 µm)

52



distribution and shape. While thinner and longer structures located mainly

at central parts of the cell on cFN, integrin clusters on pFN appeared thicker

and shorter on pFN coatings, where they were also found at peripheral sites

of cells.

5.3.6 The mode of FN adsorption affected the distribution of α5-

and β3–integrin

To investigate if the mode of FN adsorption affected the distribution of inte-

grins, cells were seeded either on directly or indirectly physisorbed FNs and

immunostained for β3- (green) and α5-integrins (red).

Since the available antibodies were not specific for rat cells, human CDP

(cells of the dental pulp), another type of mesenchymal cells, were used.

Figure 5.16 shows the typical distribution of these integrins in CDP cells.

Thin, elongated structures were found in cells seeded on cFN, compared to

pFN coated substrates, where clusters appeared thicker but also shorter.

While these structures localized over the whole cell surface on directly ph-

ysisorbed cFN, they were predominantly found at the periphery of cells

seeded on pFN and on indirectly physisorbed FNs.

In order to investigate the impact of distinct FN types and modes of adsorp-

tion on the localization of integrins, CDP cells were seeded on the different

coatings and stained for integrins (figure 5.16).

5.3.7 The mode of adsorption of FN did not affect paxillin phos-

phorylation at Tyr118

Since the phosphorylation state of paxillin at tyrosine 118 plays a crucial role

in the regulation of focal and fibrillar adhesion formation, the phosphoryla-

tion of paxillin at this site was characterized with western blotting.
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Figure 5.16: CDP integrin staining on directly and indirectly physisorbed FNs.

β3-integrins are shown in green, α5-integrins in red. (scale bar: 10 µm)
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phys. cFN ind. phys. cFN phys. pFN ind. phys. pFN

 30´   60´ 120´ 240´  30´   60´ 120´ 240´  30´   60´ 120´ 240´  30´   60´ 120´ 240´ 

Figure 5.17: Western blotting of REF52WT cell lysates. The expression of pPAX118

on directly and indirectly physisorbed FNs was tested after the indicated time points.

Therefore, protein extracts of REF52WT adhering for 30, 60, 120 and 240 min

on the substrates were analyzed. Figure 5.17 shows characteristic double

bands for pPAX118 at 66 kDa. β-actin was used as loading control. On all

four substrates paxillin phosphorylation increased linearly with time. The

intensity of the bands was compared and no differences were observed re-

gardless of the mode of adsorption.
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5.4 FN fibrillogenesis on FN coatings and FN-derived

peptides

5.4.1 Role of FN for fibroblast adhesion on cRGDfK

MEF FN−/− cells (for description and reference see 4.4.1) failed to adhere

to nanopatterns functionalized with cyclic RGD (RGD-NPs) when cultured

and seeded in serum-free media. Even when 1% FCS was added to the

media after seeding on the substrates, the knockout cells did not adhere,

regardless of the inter-ligand distance ranging from 30 to 110 nm, whereas

control MEF FNfl/fl adhered on all NPs. Figure 5.18 shows an example

of the two cell types seeded on nanopatterned surfaces presenting an inter-

ligand distance of 30 nm. Adhesion and survival of FN−/− cells on RGD

was only observed when they were cultured in DMEM supplemented with

10% FCS, suggesting that the presence of either endogenous or exogenous

serum FN, in combination with growth factors present in serum, is required

for fibroblast survival and adhesion on cRGD.

MEF FNfl/fl MEF FN-/-

30 nm

Figure 5.18: MEF FN−/− cells failed to adhere on RGD-functionalized sub-

strates. MEF FNfl/fl adhered and spread on nanopatterned surfaces presenting an

inter-ligand spacing of 30 nm, while MEF FN−/− failed to attach. (scale bar: 100 µm)
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5.4.2 Fibroblasts secreted and deposited FN on the substrate and

assembled it into fibrils

In order to analyze the localization of the secreted FN, REFYFPpax fi-

broblasts were imaged using total internal fluorescence (TIRF) microscopy

(see 4.6.2), which allows to selectively visualize the plane on the plasma mem-

brane. Fig 5.19 shows that exogenous FN was assembled into fibrils that were

co-aligned with paxillin clusters. Indeed, these images show that FN was de-

posited at the ventral side of the cells, where also paxillin structures were

formed.

Figure 5.19: Exogenous FN is assembled and deposited on the substrate REFYF-

Ppax cell on cFN 4 hr after seeding and 1 hr after the addition of pFN555. (scale bar:

20 µm)

5.4.3 The distinct FN types differentially regulated the distribu-

tion and assembly of FN fibrils

To determine the effects of pFN and cFN coatings on the formation of de-

novo contacts and the assembly of FN fibrils, pFN555 was added to cell

culture media and cells were observed for 4 hr with fluorescence microscopy.

Figure 5.20 shows ROIs of two REF52WT transfected with GFP-α5-integrin

adhering to directly physisorbed cFN and pFN. In both conditions it was

observed that the pFN555 added to the media was partially assembled into

fibrils by cells as α5-integrins translocated towards the cell center. Fibrillar

integrin structures colocalized with FN and correlated with the length and

number of FN fibers. While more fibrillar integrin and FN structures were

seen on cFN, less and shorter fibrils were found on the cell periphery of

fibroblasts grown on pFN. The FN fibril length was quantified with ImageJ

57



5 RESULTS

by measuring selected ROIs. It was observed that the average length was

higher on cFN (ranging from 0.61 to 28.80 µm) in comparison to the length

on pFN (0.15 to 8.29 µm). These results showed that the distinct types

of FN affect both α5-integrin distribution and organization of soluble FN

differentially.
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Figure 5.20: Assembly of exogenous fibronectin. REF52WT cells were transfected

with GFP-α5-integrin (red). Prelabeled pFN (green) was added to the media and changes

in integrin and FN distribution were monitored for the first 4 hr after the addition of FN.

(scale bar: 5 µm)
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5.4.4 cFN promoted the formation of elongated α5-integrin clus-

ters and their centripetal translocation

REF52WT cells were transfected with GFP-α5-integrin and seeded on cFN

or pFN coatings. 16 hr after adhesion, 10 µg/ml of pFN555 was added to

the media and changes in integrin distribution and FN organization were

monitored during the first 4 hr after the addition of exogenous FN. In both

conditions α5-integrins translocated towards the cell center.

A

10 min

4 hr

cFN pFN

min

max
B pFNcFN

Figure 5.21: α5-integrin cluster formation and translocation on cFN and pFN.

A. Fluorescence intensity distribution within two typical α5-integrin clusters 10 min and

4 hr after addition of prelabeled pFN. (scale bar: 2 µm) B. Kymographs of α5-integrins

after the addition of exogenous FN.

The intensity distribution of two typical clusters is shown in figure 5.21 A

in a spectrum scale as indicated in the lookup table. The intensity distribu-

tion was homogeneous within growing structures on cFN. This was in clear

contrast to structures observed on pFN, where it remained higher at the cell

periphery. The velocity of growth of integrin clusters was quantified using

kymographs (figure 5.21 B). A faster centripetal translocation of α5-integrin

was observed in cells adhering to cFN in comparison to cells adhering to pFN,

with an average value of 2.10 ± 0.90 µm/hr for cFN and 1.08 ± 0.80 µm/hr on

pFN, indicating that EDA-containing cFN promoted a faster FB formation.

5.4.5 The inter-ligand spacing of cRGDfK peptides affected actin

organization and FN assembly

REF52WT were seeded on nanopatterned substrates functionalized with

cRGDfK peptides (as described in section 4.2) and fixed after 4 or 24 hr

for staining of actin stress fibers and endogenous FN (figure 5.22). Homoge-
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neous gold surfaces with immobilized cRGDfK (hRGD) were used as control.

4 hr after plating on hRGD and on 58 nm patterns fibroblasts presented a

similar circular shape, but the cell area was higher on hRGD. On these two

substrates actin formed concentric ring-like structures. On nanopatterned

substrates with higher inter-particle distances (73 and 110 nm) cell adhesion

was reduced. Furthermore, no organization of actin stress fibers was visible.

4 
hr

24
 h

r

hRGD 58 nm 73 nm 110 nm

Figure 5.22: Single fibroblasts on RGD-NPs. REF52WT were stained for actin (red)

and endogenous FN (green) 4 and 24 hr after seeding on nanopatterned substrates pre-

senting cRGDfK. The inter-ligand spacing is indicated above.(scale bar: 20 µm)

FN accumulations were observed on all substrates already 4 hr after seeding.

Only on 58 nm patterns, short FN fibrils distributed radially over central

parts of the cell.

After 24 hr cells were spread on all substrates, but showed differences in

shape, stress fiber formation and FN organization. On hRGD and on nanopat-

terns presenting an interparticle distance of 73 or 110 nm, fibroblasts failed

to form actin stress fibers, in contrast to cells adhering to 58 nm patterns.

Here, stress fibers were organized parallel to the major axis of cells. These

results showed for the first time that the distance between neighbouring lig-

ands had an effect not only on cell shape and actin organization, but also on

the assembly of FN.
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5.4.6 Effect of cell density on FN fibrillogenesis

FN fibrils were observed on gold nanopatterned substrates regardless of the

inter-particle distance when cells were seeded at a higher density. Fibrils

were observed over the whole cell area on hRGD substrates and to a greater

extent on 58 nm, where they appeared thicker and denser. On substrates

where the distance between neighbouring peptides was higher, globular FN

was found at central parts of fibroblasts, but on all substrates the major part

of the protein was detected at cell-cell contacts, where it was organized into

fibrils (figure 5.23).

hRGD 58 nm 73 nm 110 nm

4 
hr

24
 h

r

Figure 5.23: FN organization at cell-cell contacts. REF52WT were seeded on

nanopatterned substrates presenting cRGDfK and stained for actin (red) and endoge-

nous FN (green). Note FN accumulation and fibril formation at cell-cell contacts on all

substrates (scale bar: 20 µm).

5.4.7 The synergy site PHSRN enhanced cell adhesion and FN

assembly

3T3YPet-FN cells were seeded on gold nanopatterned substrates functional-

ized with either cRGD or FNIII9−10. 4 hr after seeding, cells showed a rather

circular shape on cRGD, in contrast to FNIII9−10, where they presented a
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more flattened and elongated shape and a larger area (figure 5.24). In order

cRGD FNIII9-10

Figure 5.24: Fibroblasts adhering on cRGD or FNIII9−10 for 4 hr. 3T3YPet-FN

cells were seeded on nanopatterned glass substrates functionalized with either cRGD or

FNIII9−10 (scale bar: 100 µm).

to analyze the formation of adhesion sites on the different ligands, cells were

fixed and permeabilized for immunostaining. Figure 5.25 shows that FAs

actin vin pax merge

cR
G

D
FN

III
9-

10

Figure 5.25: Staining of adhering 3T3YPet-FN cells on cRGD or FNIII9−10 for

4 hr. Two cells adhering on the different samples are shown in the left column (scale bar:

20 µm). The yellow boxes indicate the inserts magnified on the right. Actin is shown in

red, vinculin in cyan and endogenous FN in green. The arrowhead points at a FN fibril.

(scale bar: 10 µm).

formed after 4 hr only on the fragment containing the cell binding domain

and its synergy site in FNIII10. Moreover, a few FN fibrils were detected
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5 RESULTS

on these samples, while FN was only found as dot-shaped accumulations on

cRGD.
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6 Discussion

Fibronectins mediate cell adhesion to the extracellular matrix (ECM) and are

therefore widely used as adhesive substrate for in vitro studies of adherent

cells [Yamada and Olden, 1978]. Although cFN is the type of the protein that

is deposited locally and assembled into an insoluble matrix to promote cell ad-

hesion in vivo, it is not commonly used as an adhesive coating. Instead, pFN

is the protein of choice, due to its lower cost and higher availability. Although

both FN types are derived from the same gene, they differ in their molecular

composition as a result of alternative splicing [Kornblihtt et al., 1996]. The

effects of extra domains that are exclusively present in cFN on cell adhesion

are controversial [Manabe et al., 1997, Guan et al., 1990]. The aim of this

work was to determine how pFN, cFN and FN-derived peptides regulate the

formation of adhesive contacts and FN assembly.

Cell adhesion not only occurs between cells and the ECM but also between

adjacent cells. Since the objective of this study was the investigation of cell-

substrate interactions, only cells that were not in contact with each other

were analyzed.

The focus lied on the segregation of focal (FA) into fibrillar adhesions (FB), a

critical step in the process of FN assembly. Therefore, the distribution of FA

proteins, such as paxillin - a key regulator of FN signaling - were character-

ized in fibroblasts, which in turn produce and assemble cellular FN. Special

emphasis was placed on FN fibrillogenesis due to its impact on ECM assem-

bly. Since α5-integrins are known to translocate from FAs to FBs stretching

FN to allow its polymerization, the localization and dynamics of α5-integrin

clusters were monitored.
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6 DISCUSSION

6.1 FN coatings on glass surfaces

QCM-D was used to analyze the time-dependency and mass of protein de-

position on silicon oxide. The measurements showed that FNs adsorb within

the first 60 min after incubation, regardless of the type of FN used. These

results are in agreement with a previous study on pFN adsorption on silicon

oxide surfaces [Al-Jawad et al., 2009]. The amount of adsorbed protein was

also in the same range. In the present work, the deposition of pFN and cFN

was measured for the first time and yielded a higher adsorbed mass for the

second type of the protein. The amount of protein could not be calculated in

molar concentration, due to the different lengths of the dimers that arise from

alternative splicing. The protein structure of cFN could favor the exposure

of hydrophilic aminoacids, enhancing interactions with the hydrophilic sur-

face. Nevertheless, QCM-D measurements had to be repeated several times

due to high variances in frequency changes in the different repeats. These

inconsistencies could be associated with the high sensitivity of the device, e.

g. nano-bubbles introduced into the liquid chamber interfere with the mea-

surements. In terms of time-dependency, though, both FN types behaved

similarly throughout all the experiments.

BSA was used to block the uncoated glass surface in order to prevent unspe-

cific cell binding. QCM-D measurements showed a decrease in the frequency

as 1% BSA solution was pumped into the chambers. The protein could either

adsorb on the glass or on the preadsorbed FNs.

When DMEM supplemented with FBS was added to the precoated crystals,

frequency levels decreased, showing that serum components adsorbed on the

coatings. Since some of the serum components could influence cell adhesion

and target membrane proteins other than FN receptors, it was necessary to

analyze the protein contents of FBS used for cell experiments (see 6.2).

6.2 Role of serum proteins in cell adhesion

The composition of serum is usually not characterized by companies nor

users. Since some of its protein contents could promote cell adhesion, FBS
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and purified FN solutions were analyzed by SDS-PAGE and subsequent

Coomassie staining or western blotting.

The major ligand for αvβ3-integrins is the cell-adhesive protein vitronectin

[Akiyama et al., 1990]. Therefore, its absence in the FN preparations and

in serum was tested. The differences in the formation of adhesion sites on

the coatings can therefore not be attributed to this potential contaminant.

It is known that high concentrations of serum can affect cell adhesion. For

Figure 6.1: Fibroblasts assemble serum FN into fibrils. NIH3T3 cells on glass

substrates fixed and stained for actin (red) and bovine FN (green) 4 hr after seeding

(scale bar: 20 µm).

this reason, cell experiments were performed with a controlled serum con-

centration. In order to exclude the presence of serum proteins to ensure that

adhesion was promoted only by the provided substrate coating, cells were

serum deprived before seeding.

Figure 6.1, shows NIH3T3 cells adhering on uncoated glass grown in DMEM

containing two different concentrations of FCS. Serum FN not only deposits

on glass, but it can also be assembled into fibrils by fibroblasts.

Since an increase in the serum concentration yields higher FN fibrillogenesis

and cell adhesion is inhibited in the absence of serum, a concentration of 1 %
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6 DISCUSSION

FBS or FCS was used in all cell experiments.

6.3 Role of EDA in cell adhesion

Several isoforms of FN arise from alternative splicing at the domains EDA,

EDB and IIICS. While IIICS is present both in cFN and pFN, the extra

domains EDA and EDB are only included in cFN [Kornblihtt et al., 1985].

It has been observed that the EDA domain, in contrast to EDB, has an effect

on cell adhesion. It has been reported that recombinant EDA-containing FN

was more potent than FN lacking the EDA sequence in inducing spreading

of fibrosarcoma cells [Manabe et al., 1997]. cFN showed the same tendency

when compared to pFN, although the differences were not as striking as in the

first case. A similar effect was observed in synovial cells [Hino et al., 1996].

In other cell types, such as baby hamster kidney cells (BHK), however, no dif-

ferences were detected [Yamada and Kennedy, 1979]. These seemingly con-

tradictory observations can be attributed to a cell-dependent integrin expres-

sion.

The EDA-sequence was shown to induce a conformational change within

the FN molecule, thus increasing the affinity for α5β1-integrin. EDA was

also identified as a ligand for other integrin types. One of them is α9β1,

which is constitutively expressed in rat keratinocytes and mediates cell adhe-

sion to EDA [Shinde et al., 2008]. EDA was also reported to promote α4β1

[Liao et al., 2002] and α4β7 [Kohan et al., 2010] mediated adhesion and to

affect cell signaling. The presence of EDA was assessed in cFN used in this

study. Fibroblasts were tested for cell spreading kinetics on the two types

of the protein and on glass. In agreement with previous studies, both FNs

promoted cell adhesion when compared to untreated glass. A comparison

between the two FNs showed no significant differences in the spreading nor

in the projected cell area, showing that EDA is dispensable for cell spreading

in fibroblasts.
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6.4 Molecular composition of FAs on different FNs

Cells sense their environment through different membrane receptors that can

mediate adhesion. Different types of adhesion sites were identified in cells

cultured on rigid, flat surfaces.

The distribution of various adhesion site markers was analyzed on the two

FN types. FAs were found 4 hr after seeding on the coatings and were rich

in paxillin and vinculin. These two proteins strongly colocalized on the two

coatings. However, slight differences were observed regarding the localization

and shape of adhesion sites, which were found over the entire surface of cells

seeded on cFN. While the majority of these structures in cells adhering to

pFN located predominantly at the cell periphery, they presented a more

elongated shape in fibroblasts seeded on cFN coatings.

6.5 Effect of immobilization of cell-adhesive ligands on

adhesion

To investigate how the mode of deposition of the coating affects the formation

of adhesive contacts, the two types of FN were either directly physisorbed

on glass or cross-linked on an subjacent layer of poly-L-lysine according

to Katz et al. [Katz et al., 2000]. Furthermore, discrete FN fragments or

FN-derived peptides were immobilized on nanopatterned surfaces in order

to analyze how they regulate cell adhesion and FN assembly. Substrate

nanopatterning and functionalization with specific ligands were employed,

since they allow the regulation of integrin activation and lateral cluster-

ing [Arnold et al., 2004, Cavalcanti-Adam et al., 2007]. Thus, this technique

is useful to control the formation of FAs [Cluzel et al., 2005], which are pre-

cursors of FBs [Zaidel-Bar et al., 2004, Zamir and Geiger, 2001].

In agreement with this model, it could be observed that substrates that favor

the formation of stable FAs allowed the assembly of actin into stress fibers

and FN fibrillogenesis. When the distance between cRGD peptides was in-

creased, thus hindering FA formation, assembly of FN was also compromised

and it was found in an inactive state.
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6 DISCUSSION

In this work, a FN fragment including the RGD sequence and the synergy

site PHSRN was immobilized on gold nanostructures for the first time. The

employed technique allows control of the orientation of the protein fragment

and the accessibility of the cell binding domain. When cells were seeded on

these surfaces, they showed better adhesion than on cRGD, indicated by the

cell size and the organization of actin and vinculin. Shortly after seeding, it

could be also observed that FN fibrils were starting to form.

6.6 α5-integrin dynamics and FN assembly

In this work it was observed that FA composition on different FNs was simi-

lar, but differences were found in dynamics of α5-integrins and FN assembly.

A possible explanation for this observation could be the distinct molecu-

lar compositions of the two types of the protein, based on the presence of

the extra domain A (EDA) in cFN. It has been previously shown that this

alternatively spliced domain of FN increases the affinity to α5β1-integrins

[Manabe et al., 1997], probably because EDA favors an open conformation

of FN [Johnson et al., 1999].

6.7 Role of endogenous FN in cell adhesion

Fibronectin-null cells were grown in serum-free medium, allowing a control

of the levels of fibronectin in the system. However, when MEF FN−/− were

seeded on nanopatterns presenting cRGD-peptides, adhesion was abrogated.

Control cells MEF FNfl/fl, which are able to synthesize FN, in contrast, did

spread and adhere on these substrates, suggesting that endogenous FN is

indispensable for cell adhesion to nanopatterned surfaces. TIRF imaging re-

vealed that FN is deposited by adhering fibroblasts on the underlying surface.

These observations indicate that the presence of cRGD alone is not sufficient

to mediate adhesion of MEF FN−/− cells and are in agreement with previous

studies. It has been shown that microvascular cells cannot adhere on pFN

upon blocking with an anti-FN antibody, while human umbilical vein cells

(HUVEC) did [Clark et al., 1986]. This was explained by the fact that the
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first type of cells, in contrast to HUVEC, is not able to synthesize endogenous

FN, which could compensate for the lost adherence.
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7 Conclusions and outlook

The two physiologically ocurring types of FN differ in their molecular com-

position and structure. Previous studies indicated that the EDA domain,

which is exclusively present in cFN, has an effect on the global conformation

of the protein, increasing the accessibility of RGD for α5β1. This domain

was also shown to affect cell adhesion.

In this work, it was studied how pFN and EDA-containing cFN influence cell

spreading, the formation of FA and FB and FN fibrillogenesis. While both

FNs yielded similar spreading kinetics, FA formation and phosphorylation

of paxillin at the peripheral edge of adhesions, cFN favored the transition

from FA to FB and FN assembly. This type of the protein promoted the

formation of more elongated adhesions distributed over the entire cell and

the translocation of α5-integrins in centripetal direction.

It was concluded that extra domains in cFN play a role in fibroblast adhesion

mediated by this type of integrin enhancing FB formation. These observa-

tions indicate that this type of the protein might contribute to the stabillity of

cell-ECM interactions in vivo, while pFN acts mainly as an adhesive molecule

by inducing the assembly of robust FAs. However, the mechanism regulating

the differential effects of the distinct FN types on FB formation need to be

elucidated. The differences observed could be attributed to the fact that

extra domains in cFN not only represent further integrin binding sites, en-

hancing the translocation of the receptors, but also increase the accessibility

of RGD in the central cell binding domain of the protein.

Moreover, this study offered further insights into the contribution of the lat-

eral organization of integrin ligands on the assembly of adhesions. It has been

previously shown in vitro that the spacing between αvβ3-integrin ligands is

critical for cell adhesion. An inter-ligand spacing of 58 nm induced stable

FA formation, which was inhibited at higher distances. This work showed

that the spatial organization of these ligands additionally plays a role in FN

fibrillogenesis. These observations are in agreement with previous studies

indicating that FA formation is indispensable for FBs to arise.

Hence, FN assembly can be regulated by controlling cell adhesion through

the immobilization of specific integrin ligands on surfaces. Nevertheless, the
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7 CONCLUSIONS AND OUTLOOK

mechanism underlying the modulation of FA and FB formation by the spa-

tial arrangement of integrin ligands remains to be determined.
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8 Appendix

8.1 Colocalization of paxillin and YFP-paxillin

24 hr after seeding on uncoated glass substrates, REF52YFP-paxillin cells

were fixed and permeabilized for indirect immunostaining of paxillin. Typ-

ical images are shown in figure 8.1 A and B. The background from the

Manders coeff. 0.91 +/- 0.02
Pearson coeff. 0.9 +/- 0.03 scale bar: 20 µm

A B C

D E F

Figure 8.1: Immunostaining of paxillin in REF52YFP-paxillin. Cells were seeded

on glass substrates, fixed and permeabilized after 24 hr for immunostaining of paxillin. A.

YFP-tagged paxillin. B. Immunostained paxillin. Overlay of images A and B is shown in

C.. Thresholded images A and B are shown in D and E, respectively. F. presents merged

fluorescence patches in boxes D and E. Colocalized pixels are shown in yellow. (scale bar:

20 µm.)

acquired images was substracted and a threshold was applied to generate

binary images (figure 8.1 D and E). Binary images of YFP-paxillin and im-

munostained paxillin were merged showing colocalized pixels in yellow (fig-

ure 8.1 F). Two colocalization coefficients were determined to characterize
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8 APPENDIX

the degree of overlap between the two channels. Manders coefficient was

0.91 ± 0.02 [Manders and Verbeek, 1993] and Pearson coefficient 0.9 ± 0.03,

where 0 represents a random distribution of both channels and 1 indicates a

perfect colocalization [Gonzalez and Wintz, 1987] .
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8.2 List of abbreviations

cFN cellular fibronectin

BCA bicinchoninic acid

BSA bovine serum albumin

CAPS 3-(Cyclohexylamino)-1-propanesulfonic acid

CCBD central cell-binding domain

CDP cells of the dental pulp

cRGDfK cyclic Arg-Gly-Asp-Phe-Lys

DMEM Dulbecco’s modified Eagle’s medium

EDTA ethylenediaminetetraacetic acid

FA focal adhesion

FB fibrillar adhesion

FC focal complex

FCS fetal calf serum

FN fibronectin

GFP green fluorescent protein

MOPS 4-morpholinepropanesulfonic acid

PBS phosphate buffered saline

PBS-T phosphate buffered saline with tween 20

PEG poly(ethylene glycol)

pFN plasma fibronectin

PLL poly-L-lysine
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8 APPENDIX

PMSF phenylmethanesulfonyl fluoride

QCM-D quartz crystal microbalance with dissipation

REF rat embryonic fibroblast

ROI region of interest

SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis

sFN superfibronectin

TIRF total internal reflection fluorescence

YFP yellow fluorescent protein

YPet a derivative of YFP: YFP for energy transfer
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Prof. Reinhard Fässler and Josephine Gibson for providing MEF FNfl/fl and

MEF FN−/− cells.

It would have also been nearly impossible for me to study in Heidelberg with-

out the support from the German Academic Exchange Service. Through the

DAAD I met students with whom I have lasting friendships, and specially

close to me are Renate, Zuzi, Dani, Paula and Santo.

I would have probably never come to Germany if it hadn’t been for Rolf

Maier. He encouraged me to make my Deutsches Abitur, and together with

his family made me feel a bit less far away from home, specially during my

first months in Germany.

Last but not least, I thank all my friends in Germany and in Argentina for

being so supportive and motivating with me. Very special thanks to Bart,

who accompanied and encouraged me, specially during this last and very

stressful year. Dankjewel, schatje! And of course, I thank my parents, my

sister and my uncle for the sacrifice it meant to send me to a private German

school, specially when our country started going through such difficult times.

84







References

[Akiyama et al., 1990] Akiyama, S. K., Nagata, K., and Yamada, K. M.

(1990). Cell surface receptors for extracellular matrix components.

Biochim. Biophys. Acta, 1031(1):91–110.

[Al-Jawad et al., 2009] Al-Jawad, M., Fragneto, G., Liu, J., Chang, S. R.,

and Clarkson, B. (2009). Fibronectin adsorption studied using neutron

reflectometry and complementary techniques. Eur Phys J E Soft Matter,

30(2):175–9.

[Alberts et al., 2002] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts,

K., and Walter, P. (2002). Molecular Biology of the Cell. Garland Science,

4th edition.

[Allen and Jones, 2011] Allen, M. and Jones, J. L. (2011). Jekyll and Hyde:

the role of the microenvironment on the progression of cancer. J. Pathol.,

223(2):162–76.

[Aota et al., 1994] Aota, S., Nomizu, M., and Yamada, K. M. (1994). The

short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin en-

hances cell-adhesive function. J. Biol. Chem., 269(40):24756–61.

[Arnold et al., 2004] Arnold, M., Cavalcanti-Adam, E. A., Glass, R.,
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