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Abstract
Precise regulation of epidermal growth factor (EGF) receptor (EGFR) activated sig-

naling pathways is essential in cell fate decisions. Recent experiments observe

change in EGFR internalization route from clathrin mediated (CME) to clathrin

independent endocytosis (CIE) with rising EGF concentration, which alters the re-

ceptor localization and modulates associated signaling. The regulatory mechanism

controlling the shift in endocytosis remains unknown. In this study, we present a

novel mathematical model that describes the dose dependent regulation of EGFR

trafficking through receptor ubiquitination. We assume that the receptor-ubiquitin

binding reaction follows a sigmoidal behavior as function of EGF dose, which is

responsible for a switch-like activation of CIE. Using the model we illustrate the

change in the EGFR localization as function of EGF dose and route of endocytosis.

The model is further utilized to explore the effect of defective ubiquitination on the

EGFR trafficking. At high EGF concentrations, model results quantitatively cap-

ture experimentally observed changes in receptor localization caused by selective

inhibition of CME or CIE. These results elucidate the ubiquitin guided sorting of

EGFR during internalization. In agreement with experiments for low EGF dose, our

model predicts that CIE remains largely inactive causing prolonged EGFR transport

and decreased ligand degradation and strengthens our assumption of ultrasensitive

receptor-ubiquitin binding. Our model accurately captures the experimentally ob-

served deregulation in EGFR trafficking resulting from mutation induced defective

ubiquitination and demonstrates the importance of receptor ubiquitination. The

predictions obtained clearly indicate that our model successfully captures the un-

derlying dynamics of ubiquitin regulated EGFR sorting and trafficking and provides

valuable insights into the experimental observations. The model may thus provide

a framework to study the dose-dependent attenuation of EGFR activated signaling

pathways.



Zusammenfassung
Die präzise Regulierung der Signalwege, die vom epidermalen Wachstumsfaktor

(EGF)-Rezeptor (EGFR) angeregt werden, ist von wesentlicher Bedeutung für Entschei-

dungen über das Zellschicksal. In jüngsten Experimenten wurde beobachtet, dass

die Internalisierung von EGFRmit steigender EGF-Konzentration von der Clathrin-

vermittelten (CME) zu Clathrin-unabhängiger Endozytose (CIE) wechselt, was mit

Änderungen der Rezeptorlokalisation einhergeht und die damit verbundenen Sig-

nale moduliert. Der Regulationsmechanismus, welcher diese Verschiebung der En-

dozytose steuert, ist bisher nicht bekannt. In dieser Studie präsentieren wir ein

neues mathematisches Modell, das die dosisabhängige Regulierung des EGFR-

Transports durch Rezeptor-Ubiquitinierung beschreibt. Wir nehmen an, dass die

Rezeptor-Ubiquitin-Bindungsreaktion einer sigmoidalen Funktion der EGF-Dosis

folgt, welche als Schalter für die Aktivierung der CIE wirkt. Mithilfe dieses Mod-

ells zeigen wir die Änderung in der EGFR-Lokalisation als Funktion der EGF-Dosis

und der Art der Endozytose. Weiterhin benutzen wir das Modell, um die Wirkung

gestörter Ubiquitinierung auf den EGFR-Transport zu untersuchen. Bei hohen

EGF-Konzentrationen, zeigen die Modellergebnisse quantitative Übereinstimmung

mit experimentell beobachteten Veränderungen in Rezeptorlokalisation, die durch

selektive Hemmung von CME oder CIE verursacht wird, und unterstreichen damit

die Ubiquitin-gesteuerte Sortierung des EGFR. In Übereinstimmung mit den Ex-

perimenten für niedrige EGF-Dosis, sagt unser Modell voraus, dass CIE weit-

gehend inaktiv bleibt und damit verlängerten EGFR-Transport und verringerten

Ligandenabbau verursacht. Dies unterstützt unsere Annahme der ultrasensitiven

Rezeptor-Ubiquitin-Bindung. Unser Modell erfasst die experimentell beobachtete

Deregulierung des EGFR-Transports durch mutationsinduzierte, defekte Ubiqui-

tinierung präzise, und zeigt damit die Bedeutung der Rezeptor-Ubiquitinierung. Die

gewonnenen Vorhersagen zeigen deutlich, dass unser Modell in der Lage ist, die zu-

grunde liegende Dynamik der Ubiquitin-regulierten Sortierung und Transport des
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EGFR zu erfassen, und liefern eine wertvolle Interpretation der experimentellen

Beobachtungen. Das Modell kann somit einen Rahmen für die Untersuchung der

dosisabhängigen Dämpfung der EGFR-aktivierten Signalwege bieten.
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Chapter 1

Introduction

Cells interact with extracellular stimulus through the membrane bound receptors

such as receptor tyrosine kinases (RTKs). These receptors upon binding with the

ligand turn active and initiate cascade of signaling pathways. Through the signal-

ing pathways information is transferred and encoded to generate stimuli specific

responses. Post binding receptors are internalized and transported across the intra-

cellular compartments. From the inside of a cell, receptors activate a different set

of cellular signaling leading to different outcome. These features of the RTK acti-

vation and transport are fundamental to cellular response and adaptation. A class of

RTKs belonging to the family of ErbB plays pivotal role in cell cycle. ErbB family

consists of four receptors namely ErbB1, ErbB2, ErbB3, and ErbB4. Upon binding

with specific ligand, receptor sends an input signal which is processed downstream

to produce distinct outputs ranging from cell division and migration to adhesion,

differentiation and apoptosis (Figure: 1.1). Hence, function of ErbB activated sig-

naling is extremely important in human cancers and other cell cycle related diseases.

1
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The epidermal growth factor receptor (EGFR) orchestrates a cascade of intra-

cellular signaling crucial in cell growth, survival, proliferation and cell differentia-

tion (Oda et al., 2005). It is responsible for the activation of signaling pathways at

cell surface as well as inside of the cell (Sorkin and von Zastrow, 2009). At the cell

surface, EGFR works as a sensor of the extracellular stimuli and across the intracel-

lular compartments as a carrier of stimulating ligand. Various growth factors bind

to the EGFR and form a receptor-ligand complex triggering a series of signaling

events at the cell membrane. These complexes then internalize through different

modes of endocytosis (Mayor and Pagano, 2007; Orth et al., 2006; Sorkin and Goh,

2008). Inside a cell, specific signaling pathways are activated and deactivated de-

pending on the localization of receptors (Murphy et al., 2009). Therefore, accurate

intracellular positioning of the receptors is essential in modulating cellular signal-

ing. Any error in localization of EGFRs and/or ligands leads to the dysfunction

of cellular signaling and may bring a cell on the verge of cancer (Yarden and Sli-

wkowski, 2001). Cells regulate EGF induced signaling in a dose dependent fashion

through systematic regulation of the EGFR trafficking. Yet, the mechanism gov-

erning trafficking and localization of EGFR remains unknown, leaving a gap in the

understanding of dose-dependent regulation in EGF induced signaling.

Post EGF binding, EGFR undergoes further modification through binding

of single or multiple ubiquitin molecules (Dikic et al., 2009). Free ubiquitin is at-

tached to its substrates through an E1-E2-E3 multi-enzyme cascade (Dikic et al.,

2009; Weissman, 2001; Ye and Rape, 2009). In case of EGFR, Cbl ligase (an E3

enzyme) attaches itself to the EGF-EGFR complex and guides the binding of one

or several ubiquitin molecules. This attachment of ubiquitin can affect localiza-

tion, activity, and interaction partners of the ubiquitinated receptors (Woelk et al.,

2007). Various experiments show that ubiquitination plays an important role in en-
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dosomal sorting as it labels ubiquitinated receptors for lysosomal degradation thus

reducing recycling of the receptors (Haglund et al., 2003; Weissman, 2001). Hence,

ubiquitination works as a negative regulator of signaling (Dikic, 2003; Duan et al.,

2003). Studies show receptor modification by ubiquitin is a signal for initiation of

endocytosis. Experiments also show plausible internalization of receptors without

ubiquitin binding (Huang et al., 2007). Another experimental study suggests a link

between external EGF concentration and the extent of EGFR ubiquitination (Sigis-

mund et al., 2005). In the study, data show negligible EGFR ubiquitination for

low EGF dose, however, amount of EGFR ubiquitination is significant at high EGF

concentration. This behavior is seen as a sigmoidal response in receptor-ubiquitin

binding as a function of EGF dose (Acconcia et al., 2009).

Internalization of receptor from cell surface is a key step that regulates entire

EGFR trafficking. Through endocytic routes, ligand bound EGFR travels from the

cell membrane to cytoplasm. In clathrin-mediated endocytosis (CME), ligand re-

ceptor binding initiates formation of clathrin-coated pits that collect ligand-receptor

complexes from the cell membrane. The coated pits detach from the membrane as

clathrin-coated vesicles and transport the ligand-receptor complexes to early endo-

somes. However, many studies provide evidence that in parallel with CME, recep-

tors can also internalize through clathrin independent mode of endocytosis (Mayor

and Pagano, 2007; Orth et al., 2006). The clathrin independent route of endocytosis

exploits cholesterol-rich membrane domains (i.e., rafts and caveolin) (Aguilar and

Wendland, 2005; Mayor and Pagano, 2007). Considering the limitations in under-

standing the molecular nature of clathrin independent endocytosis (CIE), we define

the process as a mode of endocytosis alternative to the CME, which is uninfluenced

by the ablation of clathrin. In addition, drugs that interact with membrane choles-

terol reducing membrane flexibility such as Filipin can impair CI internalization.
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Sigismund et al. (2008) show that EGFR uses CME or both CME and CIE routes

depending on the extracellular concentration of EGF. At low concentration of EGF,

Sigismund et al. observe only CME to be active whereas at high concentration of

EGF both CME and CIE modes are active. Interestingly, the same study shows

that receptor and ligand undergo different fate based on their mode of endocytosis.

Experiments show receptors entering through CME are more favored for recycling

and less for degradation; conversely, those entering through CIE are more prone

to degradation and less to recycling. These findings provide evidence that EGFR

trafficking is regulated in response to a changing external ligand concentration.

From the experimental observations, it can be interpreted that a majority

of ubiquitin-free EGFRs use CME while majority of ubiquitin-bound EGFRs en-

ter through CIE mode. Hence, receptor ubiquitination functions as a regulatory

step controlling the EGFR internalization routes in EGF dose-dependent manner.

We infer this as a new hypothesis for an EGF dose-dependent regulation of EGFR

trafficking. Wherein, at low EGF concentration due to insignificant ubiquitina-

tion of EGFR, CIE route remains largely inactive and entry through CME is domi-

nant. This leads to low degradation and high recycling EGFR providing a sustained

signaling. However, at high EGF level, elevated ubiquitination of EGFR initiates

clathrin independent (CI) internalization. This significantly reduces EGFR count

due to an overall increase in degradation of EGFR concluding in the termination of

trafficking and associated signaling.

Several existing computational studies help to unravel different aspects of

the dynamics of ligand induced EGFR trafficking and consequent signaling. These

studies levy emphasis on modeling the ligand-receptor interaction and internaliza-

tion (Starbuck and Lauffenburger, 1992; Waters et al., 1990; Wiley and Cunning-

ham, 1981). In order to study the EGFR intracellular trafficking, early experimental
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studies used high EGF concentrations due to technical limitations in data acquisi-

tion. Hence, models developed to explain these experimental data are more suitable

for the condition of high EGF. Additional experimental data gathered from intra-

cellular compartments and the extension of initial models provide a quantitative de-

scription of the intracellular EGFR trafficking (French et al., 1994, 1995). Further

advances in the experimental techniques provided details about the EGFR associ-

ated signaling. Recent models developed using the principles of chemical kinetics

are able to explain the cellular signaling that arises post ligand-receptor binding

(Kholodenko et al., 1999; Resat et al., 2003). These theoretical studies provide

valuable insights into the nature of signaling and its complexity.

Most of the published models assume a single mode of endocytosis in de-

scribing the receptor internalization. This restricts the possibility of studying the

influence of different modes of endocytosis on the EGFR trafficking and signaling.

In these studies, ubiquitin-bound or ubiquitin-free receptor populations are indis-

tinct. Lund et al. (1990) propose that ligand-bound receptors internalize through

clathrin coated pits whereas empty receptors use non-coated pits (smooth pits). The

model by Lund et al., excludes the clathrin independent internalization of ligand-

bound EGFR and receptor ubiquitination. Thus, the role of CIE and ubiquitination

remains unclear. A recently published computational study models a signaling net-

work activated simultaneously by members of ErbB receptor family (Chen et al.,

2009). Their study encompasses key components of the signaling that become ac-

tive in immediate response to the receptor phosphorylation. Chen et al. use a set

of 499 ordinary differential equations to study time evolution of 471 species of the

huge network. Though their model provides details about the dynamic behavior

of the signaling cascades with respect to time and EGF concentration, it excludes

the components required for ubiquitination and CIE mode. Thus, effect of recep-
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tor ubiquitination and CIE mode on the receptor trafficking remains unexplored.

Another modeling study proposes that at high EGF dose, saturation of CME route

activates the CIE generating an ultrasensitive surface sorting of EGFR (Schmidt-

Glenewinkel et al., 2008). The assumptions made by the authors appear inconsis-

tent with recent experimental observations this leaves their proposed mechanism

unconfirmed. Although various experimental studies and existing mathematical

models provide a great deal of information about EGFR trafficking, the regulation

of EGFR transport by means of ubiquitination and clathrin independent internal-

ization, a cause and effect dynamics, however remains poorly understood. Insights

into EGFR trafficking and its regulation are of foremost importance in order to an-

alyze the dose-dependent attenuation of signaling pathways.

In this report, we present a mathematical model to study the role of ubiquiti-

nation and CIE mode in EGFR trafficking. To elucidate the effect of ubiquitination,

our model considers two sub-populations of ligand-receptor complexes: ubiquitin-

free and ubiquitin-bound complexes. The model also accounts for existence of

CME and CIE as two different modes of endocytosis. We fit the model with exper-

imental data to validate it and identify model parameters. We study the impact of

CME/CIE inhibition and influence of EGF dosage on the EGFR trafficking. Fur-

ther, we utilize the model to predict the effect of defective receptor ubiquitination

on the dynamics of EGFR transport. The information provided by our model is ex-

tremely useful in understanding the modulation of cellular signaling with varying

ligand concentration vis-á -vis cellular adaptation in a changing environment.



Chapter 2

Model development

2.1 Model formulation

Scope of our model is to study the influence of receptor ubiquitination, in response

to the changing environment, on the localization of EGFR at the cell surface and

inside endosome. Using the model, we aim to explore the implications of defects in

regulation of EGFR trafficking introduced by selectively disrupting internalization

routes. To construct a basic framework for the model we use information from var-

ious modeling and experimental studies. We write model equations assuming mass

action kinetics for reactions and for the transport and internalization are first order

processes. Figure 2.1 depicts the proposed EGF stimuli dependent receptor ubiq-

uitination, EGFR internalization, and intracellular transport. Figure 2.2 presents

the flow diagram of the EGFR trafficking events. At the cell surface, a reversible

binding between EGF (Lm) and its receptor (Rs) forms a ligand-receptor complex

(Cs). In line with the existing models, we assume activation of receptor to be spon-

taneous and ligand-receptor complex to be active on ligand binding. Unlike other

studies in our model, for ligand-receptor complex we propose two modes of endo-

8
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Figure 2.1: Pictorial representation of proposed EGFR surface sorting and traffick-

ing.

cytosis: clathrin dependent (CME) and clathrin independent (CIE). We assume that

ubiquitin-free complexes enter through CME route. Considering the recent exper-

imental observations (Sigismund et al., 2005), we propose that extent of receptor

ubiquitination is dependent on the amplitude of EGF stimuli. Literature suggests

that receptor ubiquitination displays sigmoidal behavior in response to the level

EGF dose (Acconcia et al., 2009). However, the exact mechanism responsible for

a switch like response remains unclear. To overcome this limitation we assume rate

of receptor ubiquitination to be a function of EGF dose. We relate ubiquitination

rate constant and level of EGF stimuli using Hill kinetics to reproduce the proposed

ultrasensitivity in extent of ubiquitin-complex binding. An approximate value for

the Hill coefficient (nH) can be obtained from the EGF concentration values used

in experiments (as shown in the following section). In the model, we consider that

formation of ubiquitin bound complex (Cu) activates the CIE route and these ubiq-
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uitinated receptors-complexes use the CIE mode for internalization.

Using the respective route of endocytosis, both ubiquitin-free complexes

(Cic) and ubiquitin-bound complexes (Cin) reach the endosomal compartment. In-

side the endosome ligand-receptor complex (Cec and Cen) is recycled or dissociates

giving ligand free receptor and free ligand. The ligand free receptors and free ligand

are sorted for recycling and degradation (Rdc, Rdn, Ldc, & Ldn). It is evident from

various experimental studies that ubiquitin-bound receptors are targeted for lysoso-

mal degradation (Duan et al., 2003; Peschard and Park, 2003). Hence, ubiquitin-

bound complexes internalizing through CIE mode are assumed to be more prone

for degradation and only a small portion of these complexes (Cen), receptors (Ren),

and their ligands (Len) is recycled. Before the degradation of these receptors, ubiq-

uitin molecules dissociate and recycle back to the cell membrane. Experimental

evidence suggest that ubiquitin defective receptors are less likely to degrade and

show an enhanced recycling (Peschard and Park, 2003). Thus, we suspect that a

major faction of ubiquitin-free complexes (Cec), receptors (Rec) and their ligands

(Lec) to be recycled and reminder is degraded.

2.1.1 Model equations

We write model equations assuming mass action kinetics for reactions and for

the transport and internalization are first order processes. We assume amount ubiq-

uitin molecules to be present in abundance compared to ligand-receptors and the

amount of ubiquitin remains constant due to recycling. Thus, we consider receptor

ubiquitination to be first order reaction. We propose that value of rate constant for

ubiquitin binding reaction to be a function of extracellular ligand concentration.
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Model equations representing reactions at the cell surface:

VxNav

dLm

dt
= −kbLmRs + kubCs + klcLec + klnLen (2.1)

dRs

dt
= −kbLmRs + kubCs + krcRec + krnRen (2.2)

dCs

dt
= kbLmRs − kubCs − kecCs − ku

(

LnH

m

1 + LnH
m

)

Cs + krcCec (2.3)

dCu

dt
= ku

(

LnH

m

1 + LnH
m

)

Cs − kenCu + krnCen (2.4)

Intracellular compartment:

dCic

dt
= kecCs − keeCic (2.5)

dCin

dt
= kenCu − keeCin (2.6)

Endosomal compartment:

dCec

dt
= keeCic − kebCec +

keubRecLec

NavVe

− krcCec (2.7)

dCen

dt
= keeCin − kebCen +

keubRenLen

NavVe

− krnCen (2.8)

dRec

dt
= kebCec −

keubRecLec

NavVe

− krcRec − krdcRec (2.9)

dRen

dt
= kebCen −

keubRenLen

NavVe

− krnRen − krdnRen (2.10)

dLec

dt
= kebCec −

keubRecLec

NavVe

− klcLec − kdlcLec (2.11)

dLen

dt
= kebCen −

keubRenLen

NavVe

− klnLen − kdlnLen (2.12)

Outside the endosomal compartment:

dRdu

dt
= kdrnRen − kduRdu (2.13)

dRdc

dt
= kdrcRec (2.14)

dRdn

dt
= kduRdu (2.15)



2 Model formulation 13

dLdc

dt
= kdlcLec (2.16)

dLdn

dt
= kdlnLen (2.17)

Model consists of 17 variables and 17 parameters. Table 2.1 provides the list

of all the variables and parameters that are used in the model. Values for the ligand-

receptor binding/unbinding rate constants at cell surface and inside the endosome

are taken from literature (French et al., 1995). The values of endosomal volume

(Ve) used for the model simulation is 10−14 liter/cell (Tzafriri and Edelman, 2007)

and value of extracellular volume (Vx) is 10−10 liter/cell considering the cell popu-

lation range between 106 and 108 cells/ml. We used standard value of Avogadro’s

number (Nav)= 6.0221415×1023. The set of coupled ODEs is solved in MATLAB.

A code is written to solve the model equations to mimic the experimental proto-

cols. Model equations are solved with continuous stimulation of 100 ng/ml EGF

concentration to calculate the surface and total EGFR concentration. To calculate

EGF degradation and recycling the equations are solved with 20 ng/ml EGF for the

pulse phase of 6 min and 15 min, respectively. In order to replicate the chase phase,

we solve the equations with the external EGF concentration and the ligand-bound

receptor population set to zero as initial condition.

2.1.2 Value of Hill coefficient

The Hill equation is commonly used to describe the reaction velocity though its

use can be extended study the nature of stimuli-response curve. Sigmoidal behavior

of a stimuli-response curve can be quantified using Hill coefficient. Higher the value

of the coefficient steeper is the response curve. As common practice coefficient is

estimated by fitting the equation against the stimuli-response data. The coefficient
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Variable Symbol Rate constants Symbol

Ligand in extracellular

medium

Lm Ligand receptor binding and

unbinding rates surface

kb,kub

Receptors at cell surface Rs Ubiquitin binding constant ku

Surface ligand-receptor com-

plex

Cs CME internalization rate kec

Surface ubiquitin-bound

complex

Cu CIE internalization rate ken

Complexes internalizing

through CME route

Cic Rate of transport from sur-

face to endosome

kee

Complexes internalizing

through CIE route

Cin Ligand receptor binding and

unbinding rates in endosome

keb, keub

CME internalized complex in

endosome

Cec Recycling rate of Cec and

Rec

krc

CIE internalized complex in

endosome

Cen Recycling rate of Cen and

Ren

krn

Receptor dissociated from

Cec

Rec Recycling rate of Lec klc

Ligand dissociated from Cec Lec Recycling rate of Len kln

Receptor dissociated from

Cen

Ren Degradation rate of Rec kdrc

Ligand dissociated from Cen Len Deubiquitination rate of Ren kdrn

Deubiquitinated receptor Rdu Degradation rate of Lec kdlc

Degraded receptor CME,

CIE

Rdc, Rdn Degradation rate of Len kdln

Degraded ligand CME, CIE Ldc, Ldn Degradation rate of Rdu kdu

Table 2.1: List of model variables and parameters.
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can be established when data are provided for 10% and 90% response. Goldbeter

and Koshland (1981) derived a correlation between the Hill coefficient and stimuli

concentrations required for 10% and 90% response. The proposed correlations to

calculate Hill coefficient (nH ) is shown below (see also (Huang and Ferrell, 1996))

nH =
log(81)

log(S0.9)− log(S0.1)
(2.18)

where, S0.1 and S0.9 are the stimuli concentrations responsible for generation 10%

and 90% response, respectively.

When the stimuli concentrations are unavailable, the output response can

be used instead. The above correlation then can also be written in terms of the

substrate consumption. In our case, we consider the percentage of total receptor

undergoing ubiquitination to be the marker of output response. The new correlation

can therefore be written as follows:

nH =
log(81)

log(0.9×RT )− log(0.1× RT )
= 2 (2.19)

where, RT is the total EGFR count.

An alternative way to establish the coefficient is as follows.

In the experiments, Sigismund et al. (2008) use two concentrations of EGF

ligand 1.5 ng/ml (low EGF) and 20 ng/ml (high EGF). Their previous study show

for low EGF dose receptor ubiquitination is minimal and significant ubiquitination

for high EGF (Sigismund et al., 2005). In our model to estimate the value of Hill

coefficient we assume 10% ubiquitin binding response for low EGF and 90% for

high EGF. On substituting the concentration values in the equation 2.18

nH =
log(81)

log(20)− log(1.5)
= 1.7 ∼= 2 (2.20)

Hence, in our model we set the Hill coefficient equal to 2.
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2.2 Parameter estimation

Parameter estimation is a process of finding the values of the unknown parameters

of governing model equations such that the model results match with given exper-

imental measurements with minimum error. Being an inverse problem, parameter

estimation does not provide a general solution (Aster et al., 2005). Yet, estimation

of model parameter values is a crucial step in the model development as model

parameters govern the dynamics of the system. Validity of model predictions is

strongly connected to the correctness of parameter values. Our model consists of

a set of ordinary differential equations related by parameters that are unknown and

need to be either measured or estimated. For the optimization algorithm, we imple-

ment the standard approach of minimizing a cost function. The function quantifies

the value of the difference between the model predicted values and the experimen-

tal observed values. Given a model and a set of experimental data, the objective of

model calibration is to find the best realistic guess for unknown parameters. In our

nonlinear optimization algorithm, only those parameter sets are considered valid

solutions that satisfy the experimentally observed biological conditions imposed as

constraints, denoted by (Γ(P )). The best-fit parameters is computed by solving the

following nonlinear optimization problem

Min
m
∑

i=1

n
∑

j=1

o
∑

k=1

(yij(k)− ypij(k))
2 (2.21)

subject to Γ(P )

where, yij(k) is experimental observation and ypij(k) is the model predicted value at

kth time point. The index i run over the experimental condition and j over species

for which measurements are available. P is set of parameters. In this work, we have

two experimental conditions low EGF and high EGF. For parameter estimation we

are using only the control set of data for high EGF (combined data for 100 ng/ml



2 Parameter estimation 17

and 20 ng/ml of EGF) hence i = 1.

We propose that in the experiments of Sigismund et al. the sorting of the

receptors is more based on ubiquitination status of the receptor than the endocytosis

route used. We consider that in the experimental study receptors population inter-

nalized through the CIE route is ubiquitin-bound and receptor population that used

CME route is ubiquitin-free. Thus, the experimental data regarding the CIE will

correspond to the combined intracellular population of ubiquitin-bound complexes

(Cin and Cen) and dissociation products of these complexes (Ren, Rdu and Len).

Similarly, for the CME measurements correlate to collective intracellular popula-

tion of ubiquitin-free complexes (Cic and Cec) and receptors (Rec) and ligands (Lec)

dissociated from these complexes. The analogies allow us to assign experimentally

measured values to the corresponding model variables. With this information, we

fit the model against the experimental data to obtain the rate constants such as recy-

cling and degradation rates for the ubiquitin-bound and ubiquitin-free complexes,

receptors, and associated ligands.

From the internalization assays, Sigismund et al. calculated the percentage

of EGFR that internalized through CME and CIE. Authors also calculated the per-

centage of CME/CIE internalized EGF that undergoes degradation and recycling.

Using this information a set of conditions have been prepared and converted to

point wise constrains, shown in the table 2.2. Model equations are solved in ac-

cordance with the experimental protocol. To calculate the total and surface EGFR,

equations are solved with initial concentration of EGF (Lm) set to 100 ng/ml and

surface EGFR number (Rs) to 4.5×105/cell. The initial value for all other variables

is set to zero. For the EGF degradation and recycling model equations are simu-

lated for t = 6 min and t = 15 min, respectively, with initial EGF concentration set

to 20 ng/ml. After the this pulse phase, model variable are reinitialized for chase
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CM internalized

(ubiquitin-free)

CI internalized

(ubiquitin-bound)

EGF internalized (after 6 min

of stimulation)

≥ 60 ≤ 40

EGF Degradation (at the end

of chase phase)

≤ 30 ≥ 80

EGF recycled (at the end of

chase phase)

- ≤ 20

Table 2.2: Constrains Γ(P ) placed during the model calibration.

phase with EGF concentration and surface ligand bound receptor population set to

zero. The amount of internalized EGF is measured by summing up all intracel-

lular ligand. From the total internalized EGF, percentages CME internalized and

CIE internalized EGF is calculated. Similarly, amount of EGF internalized during

pulse phase is used to calculate the percentage EGF recycling and degradation. In

addition, to speed up the parameter search we place constrains, such as percent-

age of ubiquitin-free EGF recycled should be higher than the ubiquitin-bound EGF

vise-versa for the EGF degradation. We place a heavy penalty on the individual

parameter set that fails to maintain all the constraints.

Our system contains 13 unknown parameters. To obtain values of these pa-

rameters, we use training data comprising of 18 measurements of 4 species (Surface

EGFR, Total EGFR, EGF degraded, and EGF recycled) with 3 replicates for control

conditions. We used the mean values of 3 replicates to find best set of parameters.

To avoid weighting problem and considering the nature of least square function

which is very sensitive to outliers, during optimization we omit data point at time

point 60 for EGF degradation. Local optimization algorithms like gradient-based
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methods perform well when implemented to find a local minimum. In our case,

degree of freedom and landscape of the objective function preclude use of local op-

timization algorithms. Hence, we opted for a global optimization method namely

genetic algorithm (GA) (Appendix A provides a brief overview of the genetic algo-

rithm). It is more probable that the optimal solution found using GA will lie in the

proximity of a global minimum. We provide a parameter search space by setting

largest possible interval around all the parameters. The interval is decided based

on the values of the similar parameters used in the existing models (French et al.,

1994). Depending on the performance of optimization algorithm in searching the

minimum, the intervals are retuned to get the best possible value for parameter sets.

Each optimization cycle runs up to 500 generations with population size of 100 and

for every generation new population is produced using adaptive mutation function

(MATLAB code is provided in the Appendix A).

2.3 Sensitivity analysis

Parametric sensitivity analysis provides information about the influence of change

in the parameter value on the output of the system. Being a local property, sensi-

tivity can be used to study the change dynamics of a system with variations in the

parameter values. Hence, we use the sensitivity analysis to explore the difference

in the dynamics of EGFR trafficking across different fits. We use the normalized

sensitivity coefficient defined as follows:

sij(t) =
∂ ln(yi(t))

∂ ln(pj)
(2.22)

where, sij(t) is the sensitivity of ith observable variable yi (such as total EGFR

percentage) with respect to change in the change in the jth parameter in pj . We
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convert this sensitivity index into a time independent values by integrating it over

observation time.

Sij =
1

T

∫ T

0

|sij(t)|dt (2.23)

where, T is the final time point of observation and we use absolute values of sensi-

tivity to avoid negative and positive cancellation.

We use software package OpenBio for sensitivity analysis using a code writ-

ten in Jacobian, a scripting environment in OpenBio, to calculate average sensitiv-

ity. To quantify the variability in EGFR dynamics between different fits we calcu-

late the correlation coefficient (R) for parameter sensitivities among the fits.

2.4 Identifiability analysis

Identifiability analysis deals with the problem of uniqueness of the parameter set ob-

tained from model calibration exercise (Cobelli and DiStefano, 1980; Bellman and

Åström, 1970). If a model is not uniquely identifiable, several or infinite parameter

sets can generate identical results for model fitting. Hence, parameter identifiability

analysis plays a critical role in deciding the accuracy of the model predictions. In

general, structural or practical unidentifiability precludes the optimization process

from providing a unique solution. Structural (priori) identifiability as name suggests

depends on the structure of the model, available measured output and it provides an

estimate of information that can be obtained from the experiments. On the other

hand practical identifiability depends not only on model structure but also on ex-

perimental conditions in combination with quantity and quality of the measured

data (Bellman and Åström, 1970). Structural unidentifiability can be resolved ei-

ther by reducing redundant parameters of the model or by increasing the numbers

of measured model variables.
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We performed identifiability analysis using the software toolbox SensSB de-

veloped for MATLAB (Rodriguez-Fernandez and Banga, 2010). We use the tool-

box to calculate the correlation matrix that provides the information about inter-

dependence between the model parameters (details in the Appendix B). The ex-

periments cannot always provide data for all the involved species. In most cases,

indirect measurements such as concentration of related species or cumulative mea-

surements for a group species are practically possible. Thus, very often it is difficult

to distinguished between structural and practical identifiability with the available

experimental data. The problem of limited data can be addressed by providing

measurements for each variable (specie) of the model. The SensSB toolbox allows

us to generate simulated data for each model variable (specie). The data are then

used to determine the structural identifiability of the model. In many cases, even

if a model is structurally identifiable, parameter optimization may fail to determine

definitive parameter values due to practical unidentifiability. Information gathered

through SensSB toolbox will be helpful in finding out whether the limitations in

parameter estimation are emerging from the data or from model structure.



Chapter 3

Model results

Our primary goal is to study the regulatory influence of ubiquitination on the en-

docytosis and transport of EGFR. In order to achieve a realistic estimate of the

parameters, we fit our model against the control measurements from (Sigismund

et al., 2008), where normal HeLa cells are exposed to high EGF dose.

3.1 Parameter estimates

Using the genetic algorithm we obtain different parameter sets that fit the experi-

mental data equally well. Coefficient of variation for parameter value shows some

parameters such as kec, ku and kln to remain approximately constant across multi-

ple fits, we term them well constrained. While some parameters such as krn, kdrc

and kdrn to vary, termed poorly constrained. The observations are visible in the

box plot (Figure 3.1(a), 3.1(b)) . The characteristics of some parameters being well

constrained while some being poorly constrained, define a “sloppy” model (Brown

and Sethna, 2003) and it is almost a universal property of nonlinear multi-parameter

system biology models (Gutenkunst et al., 2007). The observed sloppiness hinders

22
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(b) Box plot range 0 to 0.1

Figure 3.1: Box plot showing parameter values and their variation.

genetic algorithm from finding the exact global minimum of cost function. The

existence of different sets of parameters for which the model behavior is consistent

with the data, indicates a wide flat valley in objective function domain. To check for

the possibility that our algorithm is getting stuck-up in the flat valley of objective

function, areas outside of valley have been explored by initiating the algorithm in
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different parts of objective function. The results confirm that the best fit parameters

are inside of flat valley. In a collective fit, the parameter set ensemble samples from

all consistent sets of parameters. Sloppy models are very insensitive to parameter

combinations that lie along sloppy directions. The parameter sets ensemble can

extend very far in those directions. Since, discrepancy between different fits with

residue value less than experimental error is practically not significant (Chen et al.,

2009), we consider all fits with a root mean square deviation (RMSD) of approxi-

mately 10% or less from real measurement to be equally good. We collect 21 such

parameter sets for further analysis and parameter set with lowest RMSD is consid-

ered as best-fit and table 3.1 shows the best-fit parameter values.

3.2 Model fitting

Results of the model simulations with 21 parameter sets are shown in the figures

3.2 and 3.3. Figure 3.2(a) shows simulation results and experimental data of to-

tal EGFR. In the experiments, cells were exposed to high EGF does (100 ng/ml)

and total EGFR level was monitored using the Immunoblotting. The measurements

shows drop in the total EGFR count with time post stimulation. The observed drop

is due to the slow and steady degradation of receptors in the lysosomes. The loss of

receptors with time slowly ceases trafficking and subsequently terminates the sig-

naling. For the surface EGFR, cells were exposed to high EGF does (100 ng/ml)

and surface receptor count was measured using 125I-EGF. The data show that recep-

tors internalize after the EGF binding causing ligand-bound receptors to disappear

from the cell membrane. The down-regulation of EGFR lowers the surface count

and also reduces the signaling originating from cell membrane. Figure 3.2(b) shows

the effect of EGF stimulation on the surface EGFR.
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Variable Best fit values

kb 0.063 nM−1 min−1 ∗

kub 0.16 min−1 ∗

ku 0.069546 min−1

kec 0.076521 min−1

ken 1 min−1

kee 0.076204 min−1

keb 0.0085 nM−1 min−1 ∗

keub 0.66 min−1 ∗

krc 0.19147 min−1

krn 0.11565 min−1

klc 0.026875 min−1

kln 0.0030627 min−1

kdrc 0.041646 min−1

kdrn 0.16102 min−1

kdlc 0.015714 min−1

kdln 0.030311 min−1

kdu 0.14123 min−1

Table 3.1: List of parameter with their best-fit values used for the model simula-

tions. ∗ value taken from literature (French et al., 1995).
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(b) Change in surface EGFR in percentage

Figure 3.2: Model simulation results for 21 equally good fits showing change in

EGFR count with time post high EGF stimulation (Dark line represents best-fit

results). Symbols represent experimental data (Sigismund et al., 2008).
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(b) Degradation of EGF

Figure 3.3: Model simulation results for 21 best fits showing EGF recycling and

degradation with time post high EGF stimuli. Symbols represent experimental data

(Sigismund et al., 2008).
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To estimate recycled and degraded EGF pulse-chase experiments were car-

ried out. For the degradation measurements in the pulse phase HeLa cells were

exposed to high 125I-EGF (20 ng/ml) for 6 minute and during the chase phase cell

were kept in the medium with or without excess EGF (∼ 200 ng/ml) (Sigismund

et al., 2008) data were collected for percentage of internalized 125I-EGF that de-

graded with time. For the recycling, pulse phase was of 15 minute and during

the chase phase data were collected for percentage of internalized 125I-EGF that

was present in the medium. Ligand degradation profile shows an increase in the

percentage of degraded EGF (Figure 3.3(b)) with time and similarly there is an in-

crease in the percentage of recycled EGF in the medium (Figure 3.3(a)).

3.3 Variation in parametric sensitivity

The sensitivity analysis of the model revels important information about the behav-

ior of the system. The sensitivity coefficients for four species have been computed

for the 21 equally good fits. The results of sensitivity analysis have been shown in

figure 3.4 and 3.5. We observe variation in the sensitivity values across different

fits. For some parameter the variation in the sensitivity is high and some parame-

ters have no major contribution to the sensitivity. These variations may arise due to

the change in the dynamics of the system. To investigate and measure the change

in the dynamics we compared the sensitivity values from one fit with another.

Comparison between the results of different acceptable fits can be used as a ruler

to measure change in dynamic behavior of system due to poorly constrained pa-

rameters. The results of correlation between parametric sensitivity coefficients in

different fit are shown for 5 representative fits in figure 3.6 and 3.7. The average
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(b) Sensitivity box plot for surface EGFR

Figure 3.4: Box plot showing sensitivity variation for total and surface EGFR.

correlation, R ≈ 0.98 confirms consistent and almost unique behavior of the sys-

tem.

Although, because of sloppiness, the optimization method is not able to find

the global minimum of cost function but result of sensitivity analysis for collective

fits confirm that our model shows a constant dynamic behavior for all 21 parameter
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(a) Sensitivity box plot for recycled EGF
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(b) Sensitivity box plot for EGF degradation

Figure 3.5: Box plot showing sensitivity variation for recycled and degraded EGF.

sets. Thus, we consider that a flat valley of the global minimum lies in the parameter

search space.
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Figure 3.6: Correlation between sensitivity values of 5 representative best fits.

Above diagonal plots show correlation of surface EGFR between fits and below

diagonal plots show correlation of total EGFR between fits. Values in the plot rep-

resents correlation coefficient (R) between each two fits.
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in Figure 3.6. Correlation plots for EGF degraded (above diagonal) and EGF re-

cycled (below diagonal). Values in the plot represents correlation coefficient (R)

between each two fits.
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3.4 Mean values for parameters

Simulations for the 21 fits and the sensitivity correlations indicate presence of a flat

valley in the objective function. This hinders the optimization process from finding

the exact solution. Considering that the 21 fits is a small sample size to accurately

compute mean and standard deviation, we decided to run the optimization algo-

rithm (GA) for large number of time in order to collect big enough sample size that

will allow us to compute mean and confidence intervals. With this information we

can conclusively propose the most identifiable and least identifiable parameters. In

order to achieve this we performed the GA for about 4000 times and with ≈ 25%

success rate we gathered 1022 parameter sets with final RMSD score of less than

10%. The distribution over the obtained parameters remains unknown. Hence, we

calculate the confidence interval on the mean parameter values (Table 3.2) using

Chebyshev’s inequality, which states that at least 100(1 − 1

k2
)% of data lie around

the mean µ in the interval ±kσ where σ is standard deviation. Table shows the

parameter mean value and 95% confidence interval (values of k is 4.47). Here after

we use the mean parameter values for the further model simulations and analysis.

Using the mean parameter values we simulated the model to study the wellness of

fit. We observe that with the mean values model is able to capture the data well.

Figure 3.8 and 3.9 show the model simulation results with mean parameter values.

3.5 Sensitivity analysis with mean values

Using the mean parameter values, we conducted sensitivity analysis to observe the

contribution of each parameter to the dynamics of the system. We also study the

relation between the sensitivity of the parameter and its identifiability, which is re-

lated to confidence interval. Large confidence interval and low sensitivity of the
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Variable Mean µ Std. Deviation σ Confidence interval ±k × σ

ku 0.0729 min−1 0.0069 0.0308

kec 0.0795 min−1 0.0061 0.0271

ken 0.9463 min−1 0.1054 0.4713

kee 0.0789 min−1 0.0132 0.0589

krc 0.2256 min−1 0.0713 0.3186

krn 0.3038 min−1 0.1585 0.7087

klc 0.0307 min−1 0.0073 0.0328

kln 0.0028 min−1 0.0009 0.0042

kdrc 0.0301 min−1 0.0183 0.0819

kdrn 0.5133 min−1 0.2114 0.9448

kdlc 0.0184 min−1 0.0044 0.0197

kdln 0.0332 min−1 0.0022 0.0098

kdu 0.1513 min−1 0.0279 0.1245

Table 3.2: List of fitted parameters with mean values and confidence interval.

parameter may lead to unidentifiability. In our model we observe that many param-

eters have huge confidence intervals and low over all sensitivity (Figure 3.10 and

Table 3.2).

Sensitivity analysis demonstrates the importance of the parameters in dif-

ferent phases of the dynamics and with respect to species. We find ubiquitination

rate (ku) to be the most sensitive parameter in the system. This finding clearly re-

flects the importance of receptor-ubiquitin binding in the regulation trafficking. The

parameter ken shows low sensitive in all the stages of dynamics thus we speculate

that GA is unable to estimate the value for ken (CIE rate) and reaches boundaries of

the defined optimization range, even extending the upper bound on the parameter

did not provide a unique solution. Thus, we consider the parameter to be unidenti-
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Figure 3.8: Model simulation results for mean parameter values showing change in

EGFR count with time post high EGF stimulation. Symbols represent experimental

data (Sigismund et al., 2008).
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Figure 3.9: Model simulation results for mean parameter values showing EGF re-

cycling and degradation with time post high EGF stimuli. Symbols represent ex-

perimental data (Sigismund et al., 2008).
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Figure 3.10: Results of sensitivity analysis with mean parameter values.
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fiable and define the parameter search space in the range 0.5 to 1. System clearly

shows high sensitivity to other trafficking events controlled by kec and kee during

the initial phase of the dynamics. During the continuous EGF stimuli the param-

eters controlling the processes at cell surface are more sensitive. The parameters

dictating the fate of ligand are insensitive to the total and surface EGFR dynamics.

During the chase phase analysis revels the importance of each parameter in EGF

recycling and degradation, kdlc and kdln appears to be very sensitive with respect

to degradation and klc with EGF recycling. Parameters controlling the intracellular

receptor dynamics show less influence on the EGF recycling and degradation. Due

to the absence of EGF stimuli in the chase phase surface parameter do not show any

influence on the down stream dynamics. The parameter variability and their sensi-

tivities clearly indicate that not all model parameter can be identified. For most of

the systems biology models unidentifiability arises due to the use cumulative mea-

surements for calibration. We argue that the in our study, unidentifiability is more

due to the limited data and less due to the structure of the model. In the next section

we aim to investigate cause behind the unidentifiability of the model parameters.

3.6 Model identifiability

To further investigated whether the unidentifiability is arising from the model struc-

ture or form practical limitations of experimental measurements. We used a MAT-

LAB toolbox ‘SensSB’ which provides a platform to investigate the structural iden-

tifiability. For this purpose the toolbox generate simulated data for all the model

variables with zero noise. The simulated data represent an ideal experimental setup

where measurements are available for all the species of the system (Figure 3.11).

With the simulated data, we can speculate that all the non correlated rate constants
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Figure 3.11: Simulated data generated for all the model variables using SensSB.

Mean parameter values were used to generate the data.

in the model can be estimated. If there exist a high correlation between parame-

ters then their estimation will be hindered due to the interdependence (Rodriguez-

Fernandez et al., 2006; Miao et al., 2011). The correlation matrix calculated using

the toolbox gives information about the interrelationships between the parameters

and thereby about the structural identifiability. In the matrix a correlation index

value 0.95 or higher signifies high degree of correlation between the two parame-

ters (see Appendix B). For our model, we investigated this interdependence in order

to identify the correlated model parameters that are not identifiable due to the struc-

ture of the model. Figure 3.12 shows color plot of the parameter correlation matrix
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Figure 3.12: Parameter correlation matrix represented as color plot depicting cor-

relations between the parameters.

is highly correlated (no parameter pair with correlation higher than 0.95). These

results suggest the model parameters to be identifiable provided that the sufficient

data are available. During the analysis we provided data for all the model variables,

which is an ideal situation. Under these conditions we find no high interdepen-

dence between parameters hence we speculate that model is structurally identifi-

able. However, the correlation matrix also provides information about the negative

and positive correlations between the parameters yet lower than the threshold of

0.95. These low correlations provide information about the interrelationships be-
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tween the parameters.

The calculations done so far are based on the local sensitivity analysis car-

ried out in the close range of mean parameter values. Hence, the matrix obtained

is also termed as local correlation matrix obtained for local identifiability analysis.

A pseudo-global identifiability analysis can be performed using SensSB to inves-

tigate the interrelationship between the parameter over a wider range of parameter

values. Figure 3.13 shows a color plot of the pseudo-global correlation matrix. The
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Figure 3.13: Pseudo-global correlation matrix represented as color plot depicting

correlations between the parameters.

results of the pseudo-global identifiability analysis reveals that there are no pairs

of parameters too highly correlated (no correlations greater than 0.95). The re-

sults of local and pseudo-global analysis confirm low interdependence between the
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parameters and indicate that model parameters can be identifiable. The findings of

identifiability analysis further strengthen our argument that the model is structurally

identifiable. Therefore, we propose that the parameter estimation is more limited

by the measured data rather than structure of the model.

As mentioned previously the parameter unidentifiability in systems biology

models also known as sloppiness is universal and mostly arise due to the techno-

logical limitation in the data acquisition (Gutenkunst et al., 2007). Considering the

limitations in obtaining unique values of the model parameters, it is argued that

validation and utility of model should be judged based on the accuracy with which

the model can make predictions (Wang et al., 2009; Chen et al., 2009; Brown and

Sethna, 2003; Gutenkunst et al., 2007). In the next chapter (Model predictions) we

test our model for its capabilities in providing qualitatively as well as quantitatively

accurate predictions.



Chapter 4

Model predictions

4.1 Effect of endocytosis inhibitors

In the model we consider CME and CIE as two independent routes of internal-

ization and rate receptor flow through these routes is governed by the values of

rate constants kec and ken, respectively. Thus, structure of our model permits us to

distinguish between two subpopulations of internalized EGFR: CME internalized

(ubiquitin-free) and CIE internalized (ubiquitin-bound). It is an advantage over the

existing models, which allows us to control each endocytic route and monitor each

subpopulation. Model also allows us to specify for each subpopulation a different

set of values for rate constants such as internalization rate, recycling and degrada-

tion rates for both ligand and receptor. These features of the model let us illustrate

the change in EGFR trafficking pattern for obstructed endocytosis route. In order to

switch off CME or CIE route in the model, we set the corresponding internalization

rate to zero. Simulation results for the closed CME and closed CIE show an altered

EGFR localization (Figures: 4.1, 4.2, 4.3, and 4.4).

With CME mode turned off, ligand-receptor complexes undergo ubiquitina-

43
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tion activating the CI internalization. As all the internalizing complexes are tagged

with ubiquitin, inside the endosome these complexes are targeted to the lysosome

at a higher rate compared to their recycling. For the surface EGFR, model results

show a slightly delayed drop in the level of EGFR due to a delayed internalization

arising from the intermediate ubiquitination reaction (Figure 4.1(b)). In control

state, post ligand binding ubiquitin-free receptors can as well internalize through

the CME. However, the initial lag in receptor internalization has no significant in-

fluence on the later phase of the dynamics. Towards the end, the surface EGFR level

for CME inhibition decreases to zero due to the targeting of receptors for lysosomal

degradation. In line with the argument that ubiquitin binding efficiently targets the

receptors for lysosomal degradation, model results show a steep drop in total EGFR

(Figure 4.1(a)).

On the contrary, when CI internalization rate is set to zero, only the ubiquitin-

free complexes manage to internalize through CME route and ubiquitin-bound com-

plexes appear to remain at the cell surface. Model simulations show an initial drop

in the surface EGFR level due to the clathrin mediated (CM) internalization of

ubiquitin-free complexes. The high recycling of these complexes and their dissoci-

ated receptors is responsible for the observed reappearance of surface EGFR (Figure

4.2(b)). The total EGFR count drops at a much slower rate than the control because

of high recycling and low degradation (Figure 4.2(a)). We compare these model

predictions against experimental data. In the experiments, CME route is blocked by

clathrin knockdown (clathrin-KD) while a cholesterol-binding drug Filipin is used

to hinder the CIE route. We find qualitative agreement between the experimental

data and our model predictions. This suggests our model can accurately capture the

altered surface and total EGFR localization in presence of endocytosis inhibitors.

Several experimental studies show that the sorting of EGFR in the endo-
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Figure 4.1: Model simulation results for mean parameter values showing change in

EGFR count with time, post high EGF stimulation. Continuous line shows simu-

lation results for control condition and ( ) represents simulation with kec set to

zero.
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Figure 4.2: Model simulation results for mean parameter values showing change in

EGFR count with time, post high EGF stimulation. Continuous line shows simu-

lation results for control condition and ( ) represents simulation with ken set to

zero.
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some depends on the ubiquitination status of the receptor (Haglund et al., 2003;

Weissman, 2001). Hence, we assume that ubiquitin dependent sorting mechanism

is present in the experiments of Sigismund et al. and that ubiquitin binding is re-

sponsible for targeting the ligand and receptors for lysosomal degradation. Hence,

to obtain the proposed sorting, we placed constrains in the optimization algorithm

(Table 2.2). This allows the algorithm to search for parameters that not only provide

the proposed sorting but also to capture the control measurement data. Remarkably,

our model results with endocytosis blocking are in agreement with the inhibition ex-

periments. When the CME route is turned-off, model results show high degradation

and low recycling of the internalized EGF in accordance with the proposed sorting

(Figure 4.3(b) and 4.3(a)). Upon comparing the model results with clathrin-KD

experiments, we find an overestimation of recycling and underestimation of degra-

dation. For the case of CIE inhibition, model results for EGF recycling and degra-

dation appear to show a near quantitative match with Filipin data (Figure 4.4(a) and

4.4(b)). These results show that with the assumption of ubiquitin based sorting, our

model can qualitatively explain the change in EGFR localization induced due to the

selective inhibition of endocytosis.

Quantitative comparison with inhibition data: Use of clathrin-KD or Filipin

fails to provide a complete inhibition of the respective endocytosis. We speculate

that the CM internalization with clathrin-KD must be lower than the control. Con-

sidering this aspect of the knockdown, we fit the model against the clathrin-KD

data with CME rate to be the only free parameter and keep values of rest of the

parameter unchanged (Figure 4.5 and 4.6). We use a gradient-based non-linear fit-

ting algorithm, available in MATLAB (lsqcurvefit) to estimate the CME rate. As

speculated, the best-fit estimate for CME rate is considerably lower than the con-
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(b) Degradation of EGF

Figure 4.3: Model simulation results for mean parameter values showing EGF re-

cycling and degradation with time, post high EGF stimuli. Continuous line shows

simulation results for control condition and ( ) represents simulation with kec set

to zero.
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Figure 4.4: Model simulation results for mean parameter values showing EGF re-

cycling and degradation with time, post high EGF stimuli. Continuous line shows

simulation results for control condition and ( ) represents simulation with ken set

to zero.
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Figure 4.5: Model simulation results showing effect of clathrin KD ( ) and Filipin

( ) on the change in EGFR count with time, post high EGF stimulation. Symbols

represent data for clathrin-KD (!) and Filipin (") (Sigismund et al., 2008).
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Figure 4.6: Model simulation results showing effect of clathrin KD ( ) and Filipin

( ) on EGF recycling and degradation with time, post high EGF stimuli. Symbols

represent data for clathrin-KD (!) and Filipin (") (Sigismund et al., 2008).
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trol value. With the use of estimated CME rate, our model captures dynamics of

surface EGFR, degradation and recycling of EGF (Figure 4.5(b), 4.6(b) and 4.6(a)).

Compared to the clathrin-KD data, our model over-estimates the loss in total EGFR

(Figure 4.5(a)). The reason behind this increase in half-life of total EGFR remains

unclear.

Furthermore, Sigismund et al. use a cholesterol-blocking drug called Filipin

in order to obstruct the CI internalization. As it has been argued that the change

in cholesterol level can influence the EGFR activity (Ringerike et al., 2002), we

suspect that the presence of Filipin may have an influence on the ubiquitination

process. Considering this effect, we set ubiquitination rate and CIE rate as free

parameters while fitting the model against the Filipin data and keep the values of

other parameters unchanged. We use the same fitting algorithm from MATLAB as

above. Results of this fitting provide estimates for both the free parameters that are

lower than the control, with the value of CIE rate value being equal to zero. With

two refitted parameters, our model successfully captures the data (Figure 4.5 and

4.6).

The model results obtained with and without fitting show that for high EGF

dose our model can accurately capture the dynamics of EGFR trafficking. Further,

our model is able to reproduce the effect of endocytosis inhibition on surface EGFR,

total EGFR and on EGF degradation and recycling. These results further support

the assumption that ubiquitination is responsible for surface as well as endosomal

sorting of the receptors.
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4.2 EGFR transport at low EGF dose

Thus far, we use the model to study the EGFR dynamics in high EGF condition.

Due to the use of Hill kinetics, the extent of receptor ubiquitination follows a sig-

moidal behavior as a function of EGF concentration. This causes negligible receptor

ubiquitination for low EGF level whereas at high EGF level, significant amount of

receptors undergo ubiquitination. The negligible amount of ubiquitin binding gen-

erates insignificant amount of CI internalization. Hence, at low EGF stimuli, most

of the ligand-receptor complexes are ubiquitin-free and internalization is predomi-

nately through CME route. Here we use our model to study change in the dynamics

of EGFR transport with respect to EGF stimuli. We simulate the model with ex-

tracellular ligand concentration (Lm) set to a physiologically low value (1.5 ng/ml)

(Sigismund et al., 2008, 2005) and use the parameter values obtained throughmodel

calibration with high EGF control measurements.

Simulation results when compared to high EGF, show considerably slower

drop in the surface EGFR level (Figure 4.7(b)). The total EGFR population drops at

a slow pace, showing a prolonged EGFR trafficking (Figure 4.7(a)). Inside the en-

dosome, majority of the internalized complexes, dissociated receptors and ligands

are ubiquitin-free. According to proposed ubiquitin dependent endosomal sorting,

these complexes, receptors and ligands are more liable for recycling than for degra-

dation. Results for EGF recycling and degradation show a similar trend. Contrary to

the high EGF stimuli, model simulations for low stimuli show a decrease in degra-

dation and an increase in recycling of EGF (Figure 4.8(b) and 4.8(a)). Remarkably,

results of the model simulation are in quantitative agreement with the low EGF data

(Sigismund et al., 2008) (Figure 4.8(b)). These results show that our model can

explain the dynamics of EGFR for low EGF stimuli. It also implies that at low EGF
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Figure 4.7: Model simulation results show change in EGFR count with time, for

low EGF stimuli ( ) and high EGF stimulation continuous line.
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Figure 4.8: Model simulation results show change in EGFR count with time, for low

EGF stimuli ( ) and high EGF stimulation continuous line. Symbols represent

data for low EGF (!) (Sigismund et al., 2008).
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dose, ubiquitin binding is negligible and supports the assumption of sigmoidal be-

havior of ubiquitin binding as a function of EGF dose. From these results, it can be

interpreted that very low receptor ubiquitination leads to low degradation and high

recycling which keeps the receptor in circulation for longer time. This prolonged

EGFR trafficking causes a sustained signaling (e.g. AKT and ERK signaling) as

seen in findings of Sigismund et al. (2008).

4.3 Dynamics of ubiquitination defective EGFR

Mutations in EGFR are known to cause dysfunctional EGFR trafficking leading to

cancer and other cell cycle related defects (Gschwind et al., 2004). Defective ubiq-

uitination in EGFR is considered responsible for prolonged EGFR signaling and

is associated with cancer (Gschwind et al., 2004; Peschard and Park, 2003). Us-

ing our model, we aim to understand the effect of defective ubiquitination on the

dynamics of EGFR transport. We also validate the model predictions against the

experimental data of Y1045F EGFR mutant (supplementary text from Sigismund

et al. (2008)). In these experiments, total EGFR and EGF recycling are measured

for both wild type EGFR (wt-EGFR) and Y1045F mutant EGFR (mutant-EGFR).

In order to avoid the interference from endogenous EGFR, the mutant-EGFR is

expressed in NR6 fibroblasts lacking endogenous EGFR and for control measure-

ments wt-EGFR is expressed.

To simulate ubiquitin defective mutant-EGFR, we set the ubiquitination

rate to zero. Interestingly, our model qualitatively predicts the experimentally ob-

served trafficking of both wt-EGFR andmutant-EGFR (Figure 4.9 and 4.10). Model

predictions show that with no receptor ubiquitination, CIE route remains inactive

forcing all the ligand-receptor complexes to internalize through CME route. Inside
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Figure 4.9: Model simulation results show change in EGFR count with time, for

mutant EGFR ( ) and wt-EGFR continuous line. Symbols represent data for

mutant (◦) and wild-type (•) EGFR (Sigismund et al., 2008).
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Figure 4.10: Model simulation results show change in EGFR count with time, for

mutant EGFR ( ) and wt-EGFR continuous line. Symbols represent data for

mutant (◦) and wild-type (•) EGFR and error bars represent 8% of mean (Sigismund

et al., 2008).
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the endosome, these ubiquitin-free complexes are sorted for recycling with higher

probability than for degradation. Model predictions for the mutant EGFR show that

after the initial decline, the surface EGFR level remains at higher level compared to

the wt-EGFR (Figure 4.9(b)). Low degradation keeps mutant-EGFRs in circulation

for longer time, causing an increase in half-life of the receptors. Our model pre-

dictions show a qualitative match with data of total mutant-EGFR (Figure 4.9(a))

and near quantitative match with recycled EGF data (Figure 4.10(a)). The drop in

EGF degradation is also visible in model predictions (Figure 4.10(b)). Experiments

with Y1045F mutant show no significant difference in the behavior of total EGFR

and EGF recycling in the presence or absence of Filipin. The unaltered dynamics

of mutant-EGFR in the presence of Filipin suggests a link between ubiquitination

and the activation of CIE. With the ubiquitination rate set to zero in our model,

any change in the CIE rate will not have an influence on the trafficking of mutant-

EGFR. These results support the model assumption that receptor-ubiquitin binding

is a prerequisite for active CI internalization.

Comparison between simulation results of wt-EGFR andmutant-EGFR clearly

reflect the key function of receptor ubiquitination in down-regulating EGFR signal-

ing. Model simulations show that ubiquitin binding initiates CI internalization and

targets the ubiquitinated receptors for lysosomal degradation. Defect in ubiquitin

binding leads to prolonged trafficking of mutant-EGFR due to low degradation and

high recycling. Experimental data show an over-activation of AKT and ERK for

Y1045F mutant (Sigismund et al., 2008). The model predictions can explain these

results as high recycling, low degradation, and increased recirculation of signaling

EGFRs could cause an over-stimulation of AKT and ERK pathway.



Chapter 5

Conclusions and discussion

Readjustments in the speed of EGFR recycling and degradation depending on the

amplitude of stimuli can control overstimulation in signaling. In case of EGF in-

duced signaling, shift from CME to CIE route changes the EGFR localization and

modifies the signaling. In this work, we provide a mathematical model of EGFR

trafficking with receptor ubiquitination as a key regulatory mechanism that alters

the EGFR transport. Experimental studies using ubiquitin defective EGFR mu-

tant show that receptor ubiquitination is not necessary for the receptor endocytosis

(Jiang and Sorkin, 2003; Waterman et al., 2002). In addition, it is being proposed

that receptor ubiquitination activates clathrin-independent route of endocytosis and

ubiquitin binding is observed to be a prerequisite for the CI internalization of EGFR

(Sigismund et al., 2005). These observations are in favor of the assumption that

ubiquitin-free complexes internalize through CME and receptor ubiquitination at

the cell membrane initiates the CI internalization.

The structure of our model allows us to study the effect of ubiquitination on

the EGFR degradation and recycling. Unlike existing models of EGFR trafficking,

our model specifically includes dose dependent receptor ubiquitination that func-
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tions as a regulatory step and incorporates two modes of endocytosis. We calibrated

the model using the experimental data from Sigismund et al. (2008). High corre-

lation between sensitivities of different fits shows that the dynamics of the system

remains unchanged among obtained fits (Figure 3.6 and 3.7). Considering the high

correlations, we speculate that the obtained fits are in the neighborhood of a global

optimal. In order to get an accurate estimate for the parameters, a large number of

parameter sets are obtained by running the GA code multiple times. Using these

fits we calculated mean and confidence interval over the parameters. We observe

that the simulations carried out using mean parameter values can reproduce the ex-

perimental data (Figure 3.8 and 3.9). Thus, we reason that using mean parameter

values our model can make accurate predictions.

The experimental observations suggest a switch-like behavior in ubiquitin

binding in response to the rising extracellular EGF concentration (Sigismund et al.,

2005). Different review articles also argue for a similar idea of concentration de-

pendent ubiquitination initiating EGFR sorting (Acconcia et al., 2009; Woelk et al.,

2007). This points to a regulatory mechanism responsible for the surface sorting of

ligand-receptor complexes depending on the EGF concentration. Use of Hill kinet-

ics in our model gives rise to a sigmoidal behavior in ubiquitin binding rate. Due to

which model predicts an insignificant ubiquitin binding at low EGF dose. At high

EGF dose, a sharp increase in ubiquitination divides receptors into ubiquitin-free

subpopulation internalizing through CME and ubiquitin-bound subpopulation that

uses CIE. Speedy degradation of the ubiquitin-bound receptors then causes rapid

down-regulation in EGFR trafficking and associated signaling.

Another explanation about EGFR surface sorting comes from a computa-

tional study that assumes CME saturation at high EGF stimuli (Schmidt-Glenewinkel

et al., 2008). Authors claim overloading of the CME route forces the receptors



Conclusions and discussion 62

into the CIE route reasoning that at high EGF concentration, depletion of limiting

factors such as adapter proteins and/or cage proteins during CME causes satura-

tion. However, an experimental study by Warren et al. (1997) shows saturation of

transferrin receptor (TfR) (20 fold increase in TfR count), which exclusively uses

CME, does not have a significant influence on the endocytosis of EGFR. These find-

ings clearly indicate that internalization rate of EGFR remains unaffected, although

there is an excessive consumption of clathrin molecules for CM internalization of

overexpressed TfR. In the study of Sigismund et al. (2008) knockdown of adaptor

protein-2 (AP2) is relatively less effective, in blocking CM internalization as com-

pared to clathrin-KD. This observation signifies that limitation of adaptor protein

has lesser influence on the CME probably due to the presence of alternative adaptor

proteins. At low EGF dose, knockdown of CME components may induce saturation

in CME and activation of CIE route. In contrast, knockdown experiments with low

EGF show no significant utilization of CIE route (Sigismund et al., 2008, 2005).

In addition, we argue that continuous recycling maintains a steady supply of CME

component molecules at the cell membrane. Thus, we propose that CIE route is

activated irrespective of CME saturation.

To study the role of different modes of endocytosis in EGFR trafficking, we

block each of the endocytosis routes alternatively by setting corresponding inter-

nalization rate to zero (Figure 4.1, 4.3 and 4.2, 4.4 ). With the CIE rate set to zero,

model predictions show increased recycling which leads to a prolonged EGFR traf-

ficking and signaling. In contrast, restricting the CM internalization causes surface

EGFR to undergo ubiquitination prior to internalization through CIE route. In-

creased degradation and reduced recycling lead to termination of EGFR transport

and associated signaling. These simulation results show that EGF receptors meet

different fate depending on their choice of internalization route. In a similar fashion,



Conclusions and discussion 63

transforming growth factorβ (TGF-β) receptors meet different fate and activate dif-

ferent signaling pathways depending upon the mode of endocytosis (Di Guglielmo

et al., 2003). The study also finds degradation of CIE routed receptor to be respon-

sible for negative regulation of TGF-β signaling.

For low EGF concentration, our model predictions show that receptor-ubiquitin

binding reaction occurs at a slow rate, producing insignificant amount of ubiquiti-

nated receptors (Figure 4.7 and 4.8). CI internalization is minimal and CME ap-

pears dominant, keeping receptors in circulation for a longer time allowing a pro-

longed EGFR trafficking. The model predictions, for both high and low EGF dose

endorse the existence of a switch like behavior in ubiquitination and subsequently

support the assumption of EGF stimuli dependent change in the preference of inter-

nalization route. A similar shift in mode of endocytosis depending on the stimulus

concentrations has been reported for platelet-derived growth factor induced recep-

tor trafficking (De Donatis et al., 2008).

Ubiquitination deficient EGFR mutants are connected to various cancers. In

our model, we simulate one such mutant by setting the ubiquitination rate to zero

(Figure 4.9 and 4.10). Predictions show significant difference in the surface and

total EGFR level, with mutant receptors showing a slower drop than wt-EGFR. De-

fective ubiquitination causes minimal lysosomal degradation leading to prolonged

EGFR trafficking. In addition, the model predictions for ligand degradation and re-

cycling agree with experimental data of Jiang and Sorkin (2003). We argue that the

prolongation of EGFR transport is responsible for experimentally observed over-

stimulation in AKT signaling (Sigismund et al., 2008). These simulation results

reflect the importance of receptor ubiquitination in controlling the EGF induced

signaling.

The simulation results illustrate the regulatory function of ubiquitin binding
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in EGFR trafficking and implications of defective ubiquitination. Yet, the mecha-

nism that converts a graded extracellular signal into an all-or-none response of ubiq-

uitin binding is unknown. Based on the nature of ubiquitin binding various theories

have been proposed. One speculation is based on a possible Grb2 mediated cooper-

ative Cbl binding (Acconcia et al., 2009). However, some other mechanisms such

as the E1-E2-E3 enzyme reaction cascade and/or possibility for cooperative bind-

ing during poly-ubiquitination may give rise to ultrasensitivity. Details about the

mechanism of EGFR-ubiquitin binding will help explore functioning of the sens-

ing mechanism that cells use to detect change in the environment. Considering the

limitations, we use Hill kinetics to replicate the proposed switch like response in re-

ceptor ubiquitination. This simplification allows us to develop a usable model, yet

it limits the reach of our understanding about the mechanistic details of ubiquitin

binding and their role in activation of CIE.

Inside the endosomes, sorting of receptors depending on the ubiquitination

status plays a key role in deciding the fate of the signaling receptors. It is well

recognized that ubiquitin bound receptors are more prone to lysosomal targeting.

Details about the functioning of ubiquitin detection system involved in the endo-

somal sorting remain obscure, limiting further advancements in the model. In our

model, difference in the rate constant values for the ubiquitin-bound and ubiquitin-

free receptor populations is responsible for the proposed endosomal classification.

It is of great interest to identify the key components that participate in the detec-

tion of ubiquitin-bound receptor. The answer to this query may lie in the choice

of CIE. Further investigations are needed to gain a deeper understanding about the

CIE activation and its influence on the endosomal configuration. Results of the

model simulations approve of ubiquitin regulated surface and endosomal sorting of

EGFR. Yet, it is too early to generalize the idea of ubiquitin regulated sorting, as
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across different cell types and/or subtypes diverse mechanisms may exist that regu-

late the EGFR signaling. Hence, to avoid misinterpretation it will be appropriate to

limit the scope of the model to experimental conditions under which the measure-

ments are made (Sigismund et al., 2008).

Simulation results clearly indicate that our model captures the experimen-

tally observed effects of endocytosis inhibition reflecting the regulatory role of

ubiquitination in EGFR endocytosis and in the downstream sorting. Model predic-

tions for low EGF dose emphasize the presence of a switch like behavior in receptor

ubiquitin binding. Model simulations for mutant EGFR corroborate the importance

of ubiquitin binding in the down-regulation of EGFR signaling. The various con-

sequences of ubiquitin binding in the EGFR trafficking observed through model

predictions redefine the role of receptor ubiquitination.

Considering the results obtained from model simulations, we propose that

receptor ubiquitination activates the clathrin independent endocytosis and initiates

surface as well as endosomal sorting responsible for the down-regulation of EGFR

trafficking. In conclusion, our model provides insights into the underlying dynam-

ics of dose-dependent EGFR trafficking and is able successfully explain the ex-

perimental observations. By adding various signaling pathways in it, our model

can be extended to study the effects of altered EGFR localization on the signaling.

This extended model can function as a framework that explains the dose-dependent

modulation of EGF induced signaling. The knowledge gained from the extended

model can be helpful in understanding how cells attenuate signaling and avoid over-

stimulation in order to escape cancer and other cell cycle related disorders.
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Genetic algorithm

Genetic algorithms (GA) are the most popular evolutionary computational methods

known for being the most powerful and broadly applicable stochastic optimization

techniques (Gen and Cheng, 2000). GAs were invented and developed by John

Holland and his students between 1960s and 70s in University of Michigan. Basis

for the algorithm comes from the idea of natural selection observed during the evo-

lution of species. Concept behind the GA is to evolve a population of solutions to

any given problem using the operators responsible for inducing genetics variations

during the natural selections (Mitchell, 1996).

Inspiration from biology

Cells in any living organism carry chromosomes (strings of DNA) containing ge-

netic information of the organism. Each chromosome made up of small fragments

called genes that encodes for a proteins. During the sexual reproduction together

the two processes, crossover (or recombination) that causes exchange of genes be-

tween the two patents’ single chromosomes and mutation which is a copying error,
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introduce variations in the offspring’s genome. This variation comes at cost of fit-

ness, typically defined as the probability to survive and probability to reproduce.

GA mimics the sexual reproduction assuming a candidate solution to be the

chromosome and a gene as a single entity in the solution. Crossover is the exchange

of entities between different candidates and mutation denotes the random change in

the entity. In our case the candidate solution (or individual or chromosome) is a set

containing 13 values given to 13 unknown parameters that we intend to estimate

and a single parameter value in the set hence becomes a gene. Crossover mixes

different individuals and mutation modifies the value of parameters, introducing

variations in newly produced individuals. Fitness of every individual is estimated

using an objective function or a cost function. In our simulations objective func-

tion quantifies the difference between the solution provided by the individual and

the experimental observations. Fitness of an individual is inversely proportional to

the difference calculated by the objective function. Continuous cycle of crossover

and mutation produces more and more fit individuals, which pushes the solution to

the optimal value. Hence, factors governing the crossover and mutation in popula-

tion are important to insure a speedy optimization. A typical genetic algorithm has

following steps (Mitchell, 1996):

1. Generate a random population of desired size n as first guess.

2. Calculate the fitness for each individual in the population.

3. Continue the following process till offspring population reaches to n

(a) Select individual based on the fitness with fittest given the high selection

probability.

(b) Crossover the selected individuals at randomly chosen points to form

new offspring.
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(c) Mutate the offspring at a random location.

4. Replace the old population with the new offspring population.

5. Return to step 2 until an optimal solution is obtained.

In the computational language one iteration in the GA is called a generation and the

number of iterations vary depending on the requirements or based on the desired

optimal of an objective function. The entire set of generation is termed as a run. GA

is a stochastic algorithm hence each run may produce completely different solution

sets. Therefore, an average over multiple GA runs is more reliable than single run.

In the recent time the GAs improved to perform fast and converge in less iteration.

MATLAB global optimization toolbox offers a GA function, which can be accessed

to perform parameter estimation. We build our optimization code that calls the GA

function in the toolbox. Using the optimization code we obtained numerous best fit

solutions.

Optimization code in MATLAB

function mygacoderuninadvance

global datafil tot sur deg rec delow nh

%load data files

load sigismundetalfig1b.txt;

load sigismundetalfig1a.txt;

load sigismundetalfig3a.txt;

load sigismundetalfig5a.txt;

load sigismundetalfig4cLow.txt;

%parameter range file

load UbLb.txt
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%Lower bound[0.0010 0.5000 0.0010 0.0010 0.0010 0.0010

%0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010]

%Upper bound[0.1500 1.0000 0.1500 0.1500 0.5000 0.7000

%0.1500 0.1500 0.1500 1.0000 0.5000 0.1500 0.5000]

%Reset the random number generator to CPU clock

RandStream.setDefaultStream(RandStream('mt19937ar','seed',...

sum(100*clock)));

sur=sigismundetalfig1b;

tot=sigismundetalfig1a;

deg=sigismundetalfig3a;

rec=sigismundetalfig5a;

delow=sigismundetalfig4cLow;

Lb=UbLb(1,:);

Ub=UbLb(2,:);

datafil=[sur; tot; deg; rec; 6 60; 6 40; 0 1; 0 1; 0 1; 0 1];

pops = 100;

gens = 500;

Elite=3;

iv=[Lb;Ub];

nh=2;

for i=1:100

options=...

gaoptimset('Display','off','Generations',gens,'StallGenLimit',...

20,'CrossoverFraction',0.8,'TolFun',1e-3,'PopulationSize',pops,...

'MutationFcn', {@mutationadaptfeasible},'PopInitRange',iv,...

'CrossoverFcn',{@crossoverscattered},'FitnessScalingFcn',...

{@fitscalingrank},...

'SelectionFcn',{@selectionstochunif},'EliteCount',Elite);

[p,fval,exitflag,output,final_pop,scores] =...

ga(@modelobj, 13,[],[],[],[],...

Lb,Ub,[],options);
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M=[i,p,fval];

dlmwrite('myresults.txt',M,'delimiter',...

'\t','precision',6,'-append');

z=strcat('advpset',num2str(i));

if(fval<180)

dlmwrite('mybestfits.txt',M,'delimiter',...

'\t','precision',6,'-append');

save(z);

end

end

end

%Objective function with constraints

function objective=modelobj(beta)

global datafil

xfil=datafil(:,1);

yfil=datafil(:,2);

yhatfil=mixmodelfil(beta,xfil);

objective=sum((yhatfil(1:10)-yfil(1:10)).ˆ2)...

+sum((yhatfil(16:19)-yfil(16:19)).ˆ2)...

+sum((yhatfil(11:12)-yfil(11:12)).ˆ2)...

+sum((yhatfil(14:15)-yfil(14:15)).ˆ2);

if (yhatfil(20)<60)

objective=1e6;

end

if (yhatfil(21)>40)

objective=1e6;

end

if (yhatfil(22)>yhatfil(23))

objective=1e6;

end

if (yhatfil(24)>yhatfil(25))

objective =1e6;

end
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if (yhatfil(26)>31)

objective = 1e6;

end

if (yhatfil(27)<80)

objective = 1e6;

end

if(yhatfil(28)<60)

objective = 1e6;

end

if(yhatfil(29)>20)

objective=1e6;

end

end

%Calculation of simulated data for objective function

function yhat=mixmodelfil(beta1,x)

Vx=1e-10;

Ve=1e-14;

Nav=6.02214E23;

R0=4.5e5;

%Total and Surface EGFR

L0=15.771;

I=zeros(17,1);

I(1)=L0;

I(2)=R0;

t1=x(1:6);

t2=x(7:10);

[T,Y] = ode15s(@devcelleqsfil,t1,I,[],beta1);

sur=100.*(Y(:,3)+Y(:,4)+Y(:,2))./R0;

[T1,Y1] = ode15s(@devcelleqsfil,t2,I,[],beta1);

total=100.*(Y1(:,3)+Y1(:,4)+Y1(:,2)+...

Y1(:,5)+Y1(:,6)+Y1(:,7)...

+Y1(:,8)+Y1(:,9)+Y1(:,10)+Y1(:,17))./R0;

%EGF degradation

L0=3.155;
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R0=4.4e5;

t1=[0 6];

t2=[0; x(11:15)];

I=zeros(17,1);

I(1)=L0;

I(2)=R0;

%Pulse phase

[T,Y] = ode15s(@devcelleqsfil,t1,I,[],beta1);

I2=Y(end,:);

inito=(I2(5)+I2(7)+I2(11)+I2(14)+I2(6)+I2(8)+...

I2(12)+I2(15));

intc=100*(I2(5)+I2(7)+I2(11)+I2(14))/inito;

intn=100*(I2(6)+I2(8)+I2(12)+I2(15))/inito;

I2(1:4)=0;

%Chase phase

[T1,Y1] = ode15s(@devcelleqsfil,t2,I2,[],beta1);

Int=Y1(:,5)+Y1(:,6)+Y1(:,7)+Y1(:,8)+Y1(:,11)...

+Y1(:,12)+Y1(:,14)+Y1(:,15)...

+(Nav*Vx).*Y1(:,1);

deg=Y1(:,14)+Y1(:,15);

pdeg=100.*deg(2:end)./Int(2:end);

pdc=sum(Y1(1:end,14)./(I2(5)+I2(7)+I2(11)+I2(14)));

pdn=sum(Y1(1:end,15)./(I2(6)+I2(8)+I2(12)+I2(15)));

pdrc=sum(Y1(1:end,13)./(I2(5)+I2(7)+I2(9)+I2(13)));

pdrn=sum(Y1(1:end,16)./(I2(6)+I2(8)+I2(10)+I2(16)));

pdce=100*Y1(end,14)./(I2(5)+I2(7)+I2(11)+I2(14));

pdne=100*Y1(end,15)./(I2(6)+I2(8)+I2(12)+I2(15));

%Recycling of EGF

%Pulse phase

[T,Y] = ode15s(@devcelleqsfil,[0 15],I,[],beta1);

I2=Y(end,:);

I2(1:4)=0;

I2;

%Chase phase

[T1,Y1] = ode15s(@devcelleqsfil,[0; x(16:19)],I2,[],beta1);
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Y1;

wq=I2(5)+I2(7)+I2(11)+I2(14);

we=(Y1(end,5)+Y1(end,7)+Y1(end,11)+Y1(end,14));

prce=100*((I2(5)+I2(7)+I2(11)+I2(14))-(Y1(end,5)+...

Y1(end,7)+Y1(end,11)...

+Y1(end,14)))./(I2(5)+I2(7)+I2(11)+I2(14));

prne=100*((I2(6)+I2(8)+I2(12)+I2(15))-(Y1(end,6)+...

Y1(end,8)+Y1(end,12)...

+Y1(end,15)))./(I2(6)+I2(8)+I2(12)+I2(15));

Int=Y1(:,5)+Y1(:,6)+Y1(:,7)+Y1(:,8)+Y1(:,11)...

+Y1(:,12)+Y1(:,14)+Y1(:,15)...

+(Nav*Vx).*Y1(:,1);

rec=(Nav*Vx).*Y1(:,1)+Y1(:,3)+Y1(:,4);

prec=100.*rec(2:end)./Int(2:end);

yhat=[sur;total;pdeg;prec; intc; intn; pdc;...

pdn; pdrc; pdrn; pdce; pdne;...

prce; prne];

end

%Model equations

function dy=devcelleqsfil(t,y,beta1)

global nh

dy=zeros(17,1);

Vx=1e-10;

Ve=1e-14;

R0=4.5e5;

Nav=6.02214E23;

kb=0.063;

kub=0.16;

kp=4.9722;

ku=beta1(1)*((y(1))ˆnh)/((1.0)ˆnh+(y(1))ˆnh);

kun=0.0;

ken=beta1(2);

kec=beta1(3);

kee=beta1(4);

keb=0.0085;
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keub=0.66;

krc=beta1(5);

krn=beta1(6);

klc=beta1(7);

kln=beta1(8);

kdrc=beta1(9);

kdrn=beta1(10);

kdlc=beta1(11);

kdln=beta1(12);

kun=0.0;

kdub=beta1(13);

dy(1)=(-kb*y(1)*y(2)+kub*y(3)+klc*y(11)+kln*y(12))/(Nav*Vx);%Lm

dy(2)=-kb*y(1)*y(2)+kub*y(3)+krc*y(9)+krn*y(10);%Rs

dy(3)=kb*y(1)*y(2)-kub*y(3)-kec*y(3)-ku*y(3)+krc*y(7)+kun*y(4);%Cs

dy(4)=ku*y(3)-ken*y(4)-kun*y(4)+krn*y(8);%Cu

dy(5)=kec*y(3)-kee*y(5);%Cic

dy(6)=ken*y(4)-kee*y(6);%Cin

dy(7)=kee*y(5)-keub*y(7)+keb*y(9)*y(11)/(Nav*Ve)-krc*y(7);%Cec

dy(8)=kee*y(6)-keub*y(8)+keb*y(10)*y(12)/(Nav*Ve)-krn*y(8);%Cen

dy(9)=keub*y(7)-keb*y(9)*y(11)/(Nav*Ve)-krc*y(9)-kdrc*y(9);%Rec

dy(10)=keub*y(8)-keb*y(10)*y(12)/(Nav*Ve)-krn*y(10)-kdrn*y(10);%Ren

dy(11)=keub*y(7)-keb*y(9)*y(11)/(Nav*Ve)-klc*y(11)-kdlc*y(11);%Lec

dy(12)=keub*y(8)-keb*y(10)*y(12)/(Nav*Ve)-kln*y(12)-kdln*y(12);%Len

dy(13)=kdrc*y(9);%Rdc

dy(14)=kdlc*y(11);%Ldc

dy(15)=kdln*y(12);%Ldn

dy(16)=kdub*y(17);%Rdn

dy(17)=kdrn*y(10)-kdub*y(17);%Rdu

end



Appendix B

Identifiability analysis

Idea behind the identifiability analysis is to investigate whether or not a unique so-

lution for the unknown parameters of interest can be found using the available data.

Volume of data available represent the amount of information at hand and quality

indicates reliability of the data. Hence, for the purpose of parameter estimation

knowledge about the quality and quantity of any available data is important.

Fisher information matrix

The Fisher information matrix (FIM) is a measure of the amount of information

available in the data about the unknown parameters (Cobelli and DiStefano, 1980;

Goodwin and Payne, 1977). Thus it is closely related to the identifiability of the

parameters. Optimization can be defined as the process of minimizing the objective

function, which can be defined as follows (Englezos, 2001) also defined in docu-

mentation of SensSB toolbox.

S(p) =
N
∑

i=1

((ŷi − yi(p))
TQi(ŷij − yij(p)) (B.1)
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The expected value of the objective function for a differential change in the param-

eter from the optimal is given by:

E[S(p+ δp)] ∼= δpT
[

N
∑

i=1

(

∂yi
∂p

)T

Qi

(

∂yi
∂p

)

]

δp+
N
∑

i=1

tr(CiQi) (B.2)

where, Ci represents the measurement error covariance matrix (typicallyQi is cho-

sen as C−1

i ). In our case we use a unweighted least square hence Qi is unity ma-

trix. In order to minimize the objective function the term in the [·] should be posi-

tive. This termed is called the Fisher information matrix of the estimation problem

(Rehm and Reed, 2001).

FIM =
N
∑

i=1

(

∂yi
∂p

)T

Qi

(

∂yi
∂p

)

(B.3)

Here, the term ∂yi/∂p denotes the output sensitivity of variable yi with respect to

variations in parameter p . Non-singularity of the information matrix is regarded

as the necessary and sufficient condition for identifiability of the systems (Good-

win and Payne, 1977; Cobelli and DiStefano, 1980). If the sensitivity equations

show a linear dependence then FIM will become singular leading to unidentifiabil-

ity (Rodriguez-Fernandez et al., 2006; Rehm and Reed, 2001).

Covariance matrix

The Fisher information matrix is also an approximation of the inverse of the param-

eter estimation error covariance matrix of the best linear unbiased estimator (Rehm

and Reed, 2001).

C = FIM−1 =

[

N
∑

i=1

(

∂yi
∂p

)T

Qi

(

∂yi
∂p

)

]

−1

(B.4)
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Correlation matrix

A correlation matrix provides information about the inter-relation between the es-

timated parameters. In this matrix the elements are the approximate correlation

coefficients between two parameters and can be estimated from the Covariance ma-

trix as follows (Miao et al., 2011):

rij =
Cij

√

CiiCjj

, i )= j, (B.5)

rij = 1, i = j (B.6)

Here, rij is the correlation coefficient between parameter pi and pj . If there exists a

strong correlation between two parameters estimate pi and pj , values of rij is close

to 1, parameters pi and pj are said to be indistinguishable. A strong correlation

between the parameters indicates that the two parameters are strongly dependent on

each other and hence cannot be separately estimated (Miao et al., 2011). A singular

FIM indicates the presence of strong correlation between the parameters where the

value of rij is greater than 0.99 (Rodriguez-Fernandez et al., 2006). In SensSB

toolbox correlation coefficient of 0.95 and above is recommended as strong and if

such strong correlation exists then systems is termed as unidentifiable.
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