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Zusammenfassung

In der vorliegenden Arbeit zeigen wir umfangreiche Verbesserungen und Erweiterungen
eines im Hause entwickelten Lamellenkollimator (MLC) Kontrollsystems. Das MLC Kon-
trollsystem gleich Organbewegungen während der Bestrahlung aus, indem es die Aper-
tur eines dynamischen MLC in Echtzeit an kontinuierlich detektierte Organbewegungen
anpasst. Unsere wichtigsten Verbesserungen sind: Erstens, die Integration klinisch an-
wendbarer Technologien zur Detektion von Organbewegungen basierend auf implantier-
ten elektromagnetischen Transpondern, einem neuartigen Röntgen-Bildgebungssystem
oder einer Kombination aus einem System zur Detektion von Oberflächen-Bewegungen
und dem Röntgen-Bildgebungssystem. Zweitens, die Verwendung modernster Metho-
den zur Vorhersage von Atembewegungen um die Latenzzeiten des Systems zwischen
0.5 s und 0.6 s auszugleichen. Drittens, die komplette Neuentwicklung der MLC Kon-
trollsoftware mit dem Ziel einer in hohem Maße zuverlässigen und stabilen Anwen-
dung sowie einer wartungsfreundlichen und erweiterbaren Software. Wir charakterisieren
die Leistungsfähigkeit des MLC Kontrollsystems durch Phantomexperimente unter Ver-
wendung sinusförmiger Bewegungsmuster sowie unregelmäßiger Atmungs- und Prostata-
bewegungsmuster. Wir können die verbleibenden geometrischen Unsicherheiten des Be-
wegungsausgleichs auf den Fehler der Bewegungsvorhersage reduzieren. Mittels Filmdo-
simetrie weisen wir nach, dass das MLC Kontrollsystem die negativen Auswirkungen von
Organbewegungen auf die Dosisverteilung weitgehend eliminieren kann.

Abstract

In this thesis, we present substantial improvements and extensions of a previously in-
house developed multileaf collimator (MLC) tracking system. The MLC tracking system
compensates for intra-fractional organ motion by adapting the aperture of a dynamic
MLC in real-time to continuously monitored target motion. Our main improvements
are: Firstly, the integration of clinically applicable intra-fractional motion monitoring
devices based on implanted electromagnetic transponders, a novel x-ray imaging system
or a combined external surrogate monitoring and x-ray imaging system. Secondly, the
implementation of state-of-the-art respiratory motion forward prediction models to com-
pensate for total system latencies of 0.5 s to 0.6 s. Thirdly, a complete redesigned of
the MLC control software towards a high level of application reliability and stability as
well as software maintainability and further extendability. We assess the tracking perfor-
mance in various phantom experiments with sinusoidal, irregular breathing and prostate
trajectories. We can reduce the remaining geometric MLC tracking uncertainties to the
respiratory motion forward prediction error. Our film dosimetry evaluations demonstrate
that the integrated MLC tracking system can largely eliminate the negative effects of
intra-fractional organ motion on the dose distribution.





Contents

1 Introduction 1

2 Prediction of respiratory motion 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Patient breathing data . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 The predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Prediction scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Model parameter selection . . . . . . . . . . . . . . . . . . . . . . 14
2.2.6 Prediction accuracy measures . . . . . . . . . . . . . . . . . . . . 15
2.2.7 Box plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Motion monitoring and correlation models 23
3.1 Internal motion monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 The Calypso System . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 X-ray imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Volumetric non-ionizing soft tissue imaging . . . . . . . . . . . . . 27

3.2 External surrogate monitoring and correlation models . . . . . . . . . . . 28
3.2.1 External surrogate monitoring technologies . . . . . . . . . . . . . 29
3.2.2 Correlation of external surrogate and internal tumor motion . . . 29

3.3 Comparison of correlation models . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Tracking system integration 39
4.1 Radiotherapy delivery system . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 The Siemens ARTISTE linear accelerator . . . . . . . . . . . . . . 40
4.1.2 The Siemens 160 MLC . . . . . . . . . . . . . . . . . . . . . . . . 41

i



4.1.3 Hardware interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Motion-adaptive leaf positioning . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Rigid 3D translations . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Complex forms of organ motion . . . . . . . . . . . . . . . . . . . 45

4.3 MLC tracking workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 Radiotherapy delivery management . . . . . . . . . . . . . . . . . 47
4.3.2 Tracking loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.3 Verification loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 MLC tracking control software . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.1 Software modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 MLC tracking based on the Calypso System 57
5.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.2 Total system latency . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.3 Analysis of latency contributors . . . . . . . . . . . . . . . . . . . 60
5.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Regular motion tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.1 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Comparative performance of MLC tracking and robotic couch tracking . 72
5.3.1 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 MLC tracking applied to dynamic IMRT deliveries . . . . . . . . . . . . 83
5.4.1 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 MLC tracking based on kilovoltage x-ray imagery 89
6.1 MLC tracking based solely on x-ray imagery . . . . . . . . . . . . . . . . 89

6.1.1 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 MLC tracking based on combined external surrogate and x-ray motion
monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.1 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

ii



7 Summary and conclusions 105

Bibliography 113

Acknowledgments 125

iii





1 Introduction

The goal of radiotherapy is to deliver a lethal amount of radiation dose to cancerous tar-
get volumes while sparing the surrounding tissues from dose. The invention of intensity-
modulated radiotherapy (IMRT) has increased the ability to deliver conformal dose dis-
tributions to complex-shaped static target volumes using high energy x-rays. This dose
conformity can however be compromised by organ motion (Bortfeld et al., 2004). In
particular, the dose-blurring effects observed when target motion is present undermine
the delivery of optimized dose distributions exhibiting steep dose gradients to protect,
for instance, organs at risk. Organ motion is classified into two categories:

1. Inter-fractional organ motion: Inter-fractional organ motion refers to changes in the
patient anatomy as well as changes of the positions of the target volume and nearby
organs on timescales, which a larger than the duration of a fraction of fractionated
radiotherapy deliveries (i.e., several minutes to half an hour). It includes, for
example, changes due to patient positioning, bladder or rectal filling, body fat loss
and tumor shrinkage.

2. Intra-fractional organ motion: Intra-fractional organ motion refers to anatomy
changes, which occur during the actual delivery of radiotherapy fractions. Pre-
dominant sources of intra-fractional motion are respiration for lesions in the lung
or the upper abdomen, and digestion for lesions in the lower abdomen.

The uncertainties introduced by organ motion are most commonly handled through the
introduction of population-based safety margins (Van Herk, 2004). Hereby, the spatial
extent of a dose distribution with possibly perfect conformity to the target volume is
intentionally increased to guarantee a high dose-coverage of the target volume in spite of
the presence of organ motion. The disadvantage of this strategy is an increased dose to
nearby healthy tissues and the correspondingly increased risk of radiation induced side
effects. The aim of motion adaptive radiotherapy deliveries is to compensate for organ
motion so that the safety margins can be reduced.

The concepts of image-guided radiotherapy (IGRT) are nowadays routinely applied to
compensate for inter-fractional organ motion (Xing et al., 2006; Dawson and Jaffray,
2007; Verellen et al., 2007; Jaffray et al., 2007). The more challenging compensation of
intra-fractional organ motion (in the following referred to as ’tumor tracking’) is currently
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a lively field of research (Keall et al., 2006b). The general procedure of tumor tracking
can be divided into the following tasks:

1. Monitoring of organ motion

2. Compensation of system latency

3. Physical adaptation of the dose delivery process

Due to generally irregular organ motion patterns, accurate long term predictions of organ
motion are impossible. Organ motion therefore needs to be monitored continuously
during the treatment. Motion monitoring technologies are based on the detection of
external surrogates (Kubo et al., 2000; Bert et al., 2005; Li et al., 2006), x-ray based
detection of implanted internal fiducial markers (Shirato et al., 2000b; Berbeco et al.,
2007; Poulsen et al., 2008; Fast et al., 2011a), electromagnetic tracking of implanted
markers (Balter et al., 2005; Kupelian et al., 2007), or the detection of internal anatomic
structures based on ultrasound imaging (Xu and Hamilton, 2006; Harris et al., 2007),
magnetic resonance imaging (Cerviño et al., 2011) or marker-less x-ray imaging (Richter
et al., 2010; Rottmann et al., 2010).

Processing times as well as mechanical motion constraints within any tumor tracking
system prohibit an instantaneous reaction of the tracking system on an initial target
movement. Especially for the rapid respiration induced organ motion, the resulting lag
time leads to considerable tracking inaccuracies. System latency can be compensated
by means of a forward prediction of the target motion. Prediction of respiratory motion
has therefore been studied extensively using linear regression (Murphy et al., 2002; Sharp
et al., 2004; Ren et al., 2007), neural networks (Isaksson et al., 2005; Murphy and Pokhrel,
2009), sinusoidal models (Vedam et al., 2004), Kalman filters (Sharp et al., 2004; Putra
et al., 2008), support vector regression (Ernst and Schweikard, 2009), and kernel density
estimation (Ruan, 2010).

For the third part of tumor tracking (i.e., the dose adaptation), various techniques have
been proposed, such as gating the treatment beam (Shirato et al., 2000b; Kubo et al.,
2000), repositioning of a robotic linear accelerator (Schweikard et al., 2004; Hoogeman
et al., 2009), repositioning of the treatment couch (D’Souza and McAvoy, 2006; Wilbert
et al., 2008) or a gimbals tracking system (Takayama et al., 2009; Depuydt et al., 2011).

The approach followed in this thesis is tumor tracking through real-time adaption of the
aperture of a dynamic multileaf collimator (MLC) (Keall et al., 2006a; Sawant et al.,
2008; McQuaid et al., 2009). Our work was based on a MLC tumor tracking system,
which was previously developed at our institution (Tacke, 2009; Tacke et al., 2010). The
system supported MLC tracking of rigid 3D target translation, which was detected with
a linear potentiometer. Target motion prediction based on a linear extrapolation of the
two latest position observation was the limiting factor for tracking accuracy.
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1 Introduction

In this thesis, we have substantially extended and improved the functionality of the
previous MLC tracking system. Our guideline for the tracking system enhancements was
to tailor all three parts of the tumor tracking process to the requirements of our final
goal, the clinical application. Our major innovations were:

1. Motion monitoring: We have integrated the MLC tracking system with clinically
applicable motion monitoring technologies: the electromagnetic Calypso System
(Calypso Medical Technologies, Seattle, WA) and a novel x-ray imaging system,
which was recently developed at our institution (Fast et al., 2011a,b). Addition-
ally, we have developed an integrated motion monitoring system, which combines
the complementary strengths of an external surrogate monitoring system and the
novel x-ray imaging system. The combined system is based on a correlation model
between the external and internal motion observations, which is automatically es-
tablished and continuously updated by our MLC tracking control system.

2. Target motion forward prediction: We have systematically tested, optimized and
compared four state-of-the-art respiratory motion forward prediction models for
a wide range of applications beyond our tracking system. We have integrated
two highly promising prediction models into the MLC tracking system to achieve
accurate target tracking in spite of a relatively large latency of our tracking system.
The implementation includes automatic adaptation of the prediction models to
changes in the target motion breathing pattern during a tracking delivery.

3. MLC tracking control system: We have completely redesigned the MLC tracking
control software to realize the following improvements: Firstly, the integration of
MLC tracking of irregular 3D target motion applied to the delivery modes confor-
mal radiotherapy, step-and-shoot IMRT, dynamic IMRT and rotational IMRT into
one software package. Secondly, continuous automated verification of the MLC
tracking performance with automated beam holds in case of tracking inaccuracies.
Thirdly, graphical visualization of the MLC tracking performance to allow man-
ual intervention in case of abnormal behavior. Fourthly, a high level of software
reliability, extendability and maintainability.

The thesis is organized as follows: Chapter 2 introduces four prediction models. The
models are optimized for the respiratory motion prediction problem and their respective
prediction performances are compared. Chapter 3 gives an overview of currently available
motion monitoring devices. It introduces methods to combine different motion monitor-
ing devices through correlation methods and compares the accuracy of three correlation
models. Chapter 4 introduces the hardware and software components of the MLC track-
ing system. The workflow of MLC tracking and its implementation at our system is
outlined in detail. Chapter 5 presents experimental results for MLC tracking integrated
with the Calypso System for motion monitoring. The presented experiments include:
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tracking of regular sinusoidal motion patterns and irregular respiratory and prostate
motion patterns, tracking applied to conformal radiotherapy, step-and-shoot IMRT and
dynamic IMRT, as well as a comparison of tracking performances of MLC tracking and
patient couch tracking. Chapter 6 presents experimental results for MLC tracking inte-
grated with the novel x-ray imaging system for motion monitoring. The x-ray system is
used both alone and in combination with external surrogate motion monitoring. Chap-
ter 7 concludes the thesis with a summary, a general discussion of our achievements in
the context of other research in the field of tumor tracking as well as suggestions for
possible further enhancements of our MLC tracking system.

In accordance with the regulations of the combined faculties for the natural sciences
and for mathematics of the Ruperto-Carola University of Heidelberg, parts of this work
have already been published: Chapter 2 and section 5.2 have been published in two
peer-reviewed journal papers (Krauss et al., 2011b) and (Krauss et al., 2011e). Parts
of the work were also presented at international conferences either orally (Krauss et al.,
2009, 2011d,a), or as a poster (Krauss et al., 2010, 2011c). The results of sections 5.3
and 5.4 were obtained in student projects (Menten, 2011) and (Hofmann, 2011) under
joint supervision of Prof. Dr. Uwe Oelfke and the author.
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2 Prediction of respiratory motion

The latencies of the intergrated MLC tracking systems presented in this thesis amount
0.50 s, 0.59 s and 0.62 s depending on the motion monitoring device (sections 5.1, 6.1.2
and 6.2.2). Especially for the rapid organ motion due to breathing, the system latency
introduces considerable tracking inaccuracies. To guarantee accurate target tracking, the
system latency needs to be compensated by means of a forward prediction of the target
motion.

In order to select a suitable prediction model for our MLC tracking system, we have
extensively tested four state-of-the-art prediction models. The performance of the pre-
diction models depends strongly on the thorough optimization of model parameters. In
the following, we present the comparative performance of the four prediction models.
In contrast to previous studies, we perform extensive model parameter tuning for all
prediction models to guarantee a fair comparison. The presented results are not limited
to the specific settings of our tracking system, but cover a wide range of latencies and
motion monitoring sampling rates.

2.1 Introduction

Every intra-fractional motion compensation system has a specific latency, which is defined
as the lag time between an initial target motion and the response of the tracking system.
Previously reported tracking system latencies range from several tens to several hundreds
of milliseconds: (Depuydt et al., 2011) reported a latency of 0.05 s for the VERO gimbals
tracking system. For respiratory gating based on radiographic detection of implanted
fiducial markers, 0.09 s latency were reported (Shirato et al., 2000b). The latency of the
CyberKnife robotic treatment device (Accuray, Sunnyvale, CA) could be reduced from
0.19 s to 0.12 s (Hoogeman et al., 2009). For MLC tracking, latencies ranging from 0.16 s
(Keall et al., 2006a) to 0.57 s (Poulsen et al., 2010a) were reported.

Especially for systems with longer latencies, forward prediction of the breathing motion
is needed to guarantee accurate target tracking. Various methods for respiratory motion
prediction have been presented previously. Sharp et al. (2004) performed a compari-
son study of linear regression (LR) predictors, neural network (NN) predictors and a
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2.1 Introduction

Kalman filter. Putra et al. (2008) combined two Kalman filters to a multiple model
filter. Kalet et al. (2010) used a hidden Markov model for state-based probabilistic pre-
diction. Ruan (2010) introduced a kernel density estimation-based (KDE) predictor,
which is particularly powerful for longer prediction times up to a second. Ernst and
Schweikard (2009) demonstrated a superior prediction accuracy of an adaptive support
vector regression (SVR) predictor compared to wavelet-based linear prediction.

All these methods learn the patient specific breathing characteristics from a training
data set. Continuous predictor retraining is expected to be advantageous, at least if the
patient breathing characteristics change within the course of a radiotherapy treatment.

Each of the mentioned predictors features several model parameters besides the free
parameters, which are optimized during the training period. For an adaptive neural net-
work, Murphy and Pokhrel (2009) demonstrated the importance of the model parameters
on the prediction accuracy. They showed, that although the best prediction accuracy
can be achieved if the model parameters are optimized on a patient-specific basis, the
transition to a patient-independent set of model parameters deteriorates the prediction
accuracy only slightly.

Because the three components of the breathing data sample are likely to be highly cor-
related, it can be advantageous to incorporate the full three-dimensional (3D) motion
information into the predictor. Ruan and Keall (2010) proposed a procedure to trans-
form the resulting high dimensional prediction problem into a lower dimensional feature
space using principal component analysis (PCA) in order to avoid the ‘curse of dimen-
sionality’ (Bellman, 1957).

In the following, we compare the performance of the LR, NN, KDE and SVR predictors
for a variety of prediction horizons and sampling rates. We apply the predictors to
twelve 3D lung tumor motion data samples. For all predictors, we investigate the effect
of stationary training versus continuous retraining. We also test two modes of 3D motion
processing for all predictors: three independent 1D prediction models for each coordinate,
and full 3D motion processing using PCA.

We perform for each predictor at all considered latencies, sampling rates, training schemes
and the two 3D motion processing modes extensive model parameter optimization through
a grid search in the multi-dimensional model parameter space. Because of extensive com-
putation times, such model parameter optimization procedures are not feasible in clinical
settings. We therefore identify patient-independent model parameter sets, which yield
good prediction performances for all considered breathing traces. We compare the ac-
curacy of the predictors in the clinically applicable setting of patient-independent model
parameters.
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2 Prediction of respiratory motion

Table 2.1: Summary of the 3D breathing data characteristics.

Mean Standard

Breathing
trace

amplitude [mm] deviation [mm] Mean cycle
duration [s]LR SI AP LR SI AP

1 2 6 5 0.5 2.1 1.8 3.2
2 2 8 6 0.4 2.9 2.2 3.0
3 3 8 5 0.9 2.8 1.5 3.5
4 3 8 6 0.7 2.7 1.8 3.7
5 1 9 1 0.3 3.4 0.2 2.4
6 10 2 1 3.6 0.8 0.2 3.4
7 2 12 2 0.7 4.1 0.6 4.4
8 1 10 3 0.2 3.3 0.7 5.6
9 2 13 5 0.7 5.0 1.9 3.0
10 2 14 5 1.1 6.8 2.4 2.9
11 3 9 8 1.0 3.2 3.1 3.1
12 3 8 7 1.0 2.9 2.6 2.9

2.2 Materials and Methods

2.2.1 Patient breathing data

A total of twelve breathing data samples was studied. The samples were acquired during
respiratory gated radiotherapy treatments of six lung cancer patients on two radiotherapy
fractions in each case. Internal 3D lung tumor motion was assessed through stereoscopic
x-ray fluoroscopy tracking of gold markers, which were implanted into the lung tumors
of the patients, at a imaging rate of 30 Hz (Berbeco et al., 2005). Breathing data
characteristics are listed in 2.2.1.

The first 83 s of each sample were split up into a 40 s training data set and a 40 s
test data set, on which the predictive performance was assessed. To simulate a realistic
treatment workflow, a 3 s period between the training and the test data set was reserved
for computation time.

2.2.2 Data preparation

The breathing data sets were expressed as uniformly sampled timeseries{
si := s(ti) =

(
s1(ti), s2(ti), s3(ti)

)T
| i ∈ [1, N ]

}
. (2.1)
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2.2 Materials and Methods

The superscript index labels the euclidean coordinates of the 3D tumor position sj at
discrete point in time tj. N is the total number of recorded positions.

For the considered predictors, pairs of input vectors and target scalars{ (
xki , y

k
i

)
| i ∈ [1, N ] , k ∈ [1, 3]

}
(2.2)

were constructed from the breathing data samples. The subscript index labels points in
time tj, the superscript index labels the euclidean coordinates. The p-dimensional input
vectors xkj were constructed from the history of past tumor positions { si | i ≤ j }. For
the lookahead length τ , the target vectors yj =

(
y1
j , y

2
j , y

3
j

)T
were given as the breathing

data signal τ time steps ahead: yj = sj+τ . If τ was not a multiple of the sampling
interval tj − tj−1, the target vectors were determined through linear interpolation.

Preprocessing.

Data preprocessing was performed to be robust against baseline drifts and large am-
plitude fluctuations. For each point in time tj, an offset value akj and a scaling fac-
tor bkj was calculated for each coordinate k, such that the past 7 s of the breathing
data

{
sk(ti) | ti ∈ [tj−Nsw , tj]

}
had zero mean and unity variance:

akj = 1
Nsw

j∑
i = j−Nsw

sk(ti) ,

bkj =
 1
Nsw(Nsw − 1)

j∑
i = j−Nsw

(
sk(ti)− akj

)2
1/2

.

(2.3)

Nsw is the number of positions within the 7 s sliding window.

These normalization values were applied to each pair of input vectors and target scalars
as described in the following section. The prediction itself as well as predictor training
was performed using the normalized input vectors and target scalars. For prediction
accuracy assessment, the predicted positions were back-transformed using the stored
normalization values.

3D motion data processing.

The preparation of the pairs of input vectors xkj and normalized target scalars ykj,norm
was different for the two ways of 3D breathing motion processing:

8



2 Prediction of respiratory motion

1. Coordinate-wise prediction: Three independent input vectors were established for
each coordinate respectively. To allow for input vectors, which span a relatively
large time window without being composed of too many elements, the lag length δ ∈
N of successive input vector entries was introduced. Using the normalization val-
ues akj and bkj from 2.3, the input vectors and target scalars were given as

xkj =
(
skj−δ(p−1) − akj , skj−δ(p−2) − akj , . . . , skj − akj

)T
/ bkj ,

ykj,norm = ( skj+τ − akj ) / bkj .
(2.4)

2. Multidimensional prediction: A common input vector for the three coordinates was
established, which contained the 3D information of the past breathing data samples.
The superscript index of the input vectors xkj could therefore be omitted. For
normalization, scaling factors bj = max(

{
bkj | k ∈ [1, 3]

}
) and offset values aj =

(a1
j , a

2
j , a

3
j)T from 2.3 were used to produce the 3p-dimensional vectors

x̃j =
(
sj−δ(p−1) − aj , sj−δ(p−2) − aj , . . . , sj − aj

)T
/ bj . (2.5)

In order to avoid the ‘curse of dimensionality’, the vector x̃j was transferred into a
lower dimensional feature space using PCA (Ruan and Keall, 2010): The covariance
matrix Σx̃ of the vectors x̃j of the training data set was estimated. An eigen-
analysis of Σx̃ was performed and the vectors x̃j were transformed into the space
spanned by the first p eigenvectors vj of Σx̃. Input vectors and target scalars were
then given as:

xj = ( v1x̃j , . . . , vpx̃j )T ,

ykj,norm = ( skj+τ − akj ) / bj .
(2.6)

2.2.3 The predictors

The following paragraphs give a short description of the considered predictors. The
formulas apply to one-dimensional prediction problems defined by pairs of p-dimensional
input vectors and target scalars (xj, yj). A prediction function f : Rp → R is inferred
from the training data set { (xi, yi) | i ∈ [1, Ntr] }. Ntr is the number of training data
examples. f(x) is the predicted position of a test input vector x.

To predict 3D breathing motion data, three prediction functions { fi | i ∈ [1, 3] } were
established. For coordinate-wise data processing, predicted positions were given as
ŷnorm = (f1(x1), f2(x2), f3(x3))T . For multidimensional data processing, predicted posi-
tions were given as ŷnorm = (f1(x), f2(x), f3(x))T .
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2.2 Materials and Methods

Both the prediction itself and the predictor training was based on the input vectors and
target scalars 2.4 and 2.6, which were preprocessed using the normalization values 2.3.
For prediction accuracy assessment, the predicted values ŷj,norm = (ŷ1

j,norm, ŷ
2
j,norm, ŷ

3
j,norm)T

were back-transformed to ŷj = (ŷ1
j , ŷ

2
j , ŷ

3
j )T using the stored normalization values

ŷkj =

 bkj · ŷkj,norm + akj for coordinate-wise prediction
bj · ŷkj,norm + akj for multidimensional prediction.

(2.7)

Linear (ridge) regression.

The regression function is a multi-dimensional linear map of the input vector:

f(x) = βTx+ β0, (2.8)

using the coefficient vector β = (β1, . . . , βp)T . Because of data preprocessing to zero
mean values, we fixed the offset term β0 to zero in all calculations.

For ridge regression, the loss function to be minimized is the penalized residual sum of
squares:

R(β) =
Ntr∑
i=1

(yi − f(xi))2 + λ‖β‖2, (2.9)

with the regularization parameter λ ≥ 0. The regularization term shrinks the magnitude
of the coefficient vector β, which leads to a reduction of the noise level of the prediction
signal (Hastie et al., 2001). If the matrix X is defined such that its rows equal the input
vectors xj of the training data, and the vector Y is defined such that its entries equal
the targets yj of the training data, R(β) is minimized by:

β̂ = (XTX + λI)−1XTY. (2.10)

There is no need of an iterative optimization to train the regression function.

Neural networks.

We considered only multilayer perceptrons (MLP) with a single layer of hidden neurons
and a linear output neuron. The MLP prediction function can be expressed as:

f(x) = βTΦ(x) + β0. (2.11)

using the coefficient vector β = (β1, . . . , βNh)T and the number of hidden neurons Nh.
The transformation function Φ(x) = (Φ1(x), . . . ,ΦNh(x))T consists of non-linear activa-
tion functions σ applied to a linear combination of the input vector entries:

Φm(x) = σ
(
ωTmx+ ωm0

)
, (2.12)
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2 Prediction of respiratory motion

with the weights ωm = (ωm1, . . . , ωmp)T and ωm0 and the sigmoid activation function
σ : R → (0, 1) given as σ(v) = 1/ (1 + e−v).

We chose weight decay regularization to overcome the problem of over-fitting, which is
often observed for neural networks. The network weights are shrunk through a penalized
residual sum of squares:

R(β, ω) =
Ntr∑
i=1

(yi − f(xi))2 + λ

‖β‖2 +
∑
m,i

ω2
mi

 . (2.13)

The minimization of 2.13 is a non-convex optimization problem. The solution obtained
by any gradient-based optimizer is consequently highly dependent on the choice of the
starting weights. We therefore trained five independent networks with randomly initial-
ized starting weights in parallel and averaged the obtained predictions. Optimization
was performed using the R-package nnet (Venables and Ripley, 2002).

Kernel density estimation.

In KDE as proposed by Ruan and Keall (2010), prediction is performed through a
weighted sum of the targets of the training data sample:

f(x) = N
Ntr∑
i=1

ωi yi, (2.14)

with the normalization parameter N = (∑ωi)−1. The weights quantify ‘closeness’ to the
input vectors of the training data by means of a kernel function K(x,x′). We chose the
popular Gaussian kernel

Kγ(x,x′) = exp
(
−γ‖x− x′‖2

)
, (2.15)

with the kernel parameter γ > 0. Predictions are performed by computing the weights
wj = Kγ(x,xj) and inserting them into 2.14.

Support vector regression.

SVR can be expressed as a basis expansion method:

f(x) = βTΦ(x) + β0. (2.16)

The coefficient vector of the prediction function is computed by solving the optimization
problem:

min
β

1
2‖β‖

2 + C
Ntr∑
i=1

(ξi + ξ∗i ) (2.17a)

11



2.2 Materials and Methods

subject to

yj −
(
βTΦ(xj) + β0

)
≤ ε+ ξj ,(

βTΦ(xj) + β0
)
− yj ≤ ε+ ξ∗j ,

ξj, ξ
∗
j ≥ 0 .

(2.17b)

The residual sum of squares is replaced by an ‘ε-insensitive’ error measure. The slack-
variables ξj, ξ∗j correspond to the distance of a predicted value f(xj) to a ε-tube around
the targets yj of the training data (2.17b). Deviations smaller than ε do not contribute
to the loss function (2.17a). The regularization term in (2.17a) is weighted through the
cost parameter C.

Using the kernel function K(x,x′) = Φ(x)TΦ(x′), the SVR problem can be reformu-
lated such that the transformation functions Φ(x) enter only implicitly in form of inner
products (Vapnik, 1998):

f(x) =
Ntr∑
i=1

(αi − α∗i )K(x,xi) + β0 . (2.18)

The coefficients αj, α∗j are computed by solving the optimization problem

min
αi,α∗i

ε
∑
i

(αi + α∗i ) −
∑
i

yi(αi − α∗i )

+ 1
2
∑
i,j

(αi − α∗i )(αj − α∗j )K(xi,xj)
(2.19a)

subject to

0 ≤ αj, α
∗
j ≤ C ,∑

i

(αi − α∗i ) = 0 ,

αjα
∗
j = 0 .

(2.19b)

This so-called ‘kernel trick’ allows for implicitly solving a basis expansion problem for
transformation functions Φ mapping into infinite-dimensional feature spaces. After an
appropriate kernel function is selected, the infinite sum (2.16) is replaced by a sum over
the training instances (2.18).

We solved the optimization problem (2.19a) using the R-package e1071, which provides
an R-interface to the LIBSVM package by Chang and Lin (2001). As kernel function,
we chose the previously defined Gaussian kernel (2.15).

2.2.4 Prediction scenarios

Besides the distinction between coordinate-wise and full 3D prediction (2.2.2), the fol-
lowing scenarios were considered.
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2 Prediction of respiratory motion

Latency and sampling rate.

Two design parameters of a predictor for real-time tumor tracking are determined by the
characteristics of the specific tracking system:

1. Latency: The total system latency determines the lookahead length τ of the pre-
dictor. We have considered values of 0.2 s, 0.4 s and 0.6 s to cover the range of
typical latency values for real-time tumor tracking systems.

2. Sampling rate: The breathing data sampling rate is determined by the real-time
motion monitoring system. We have considered values of 30 Hz, 15 Hz and 7.5 Hz.
30 Hz was the sampling rate of the considered breathing data samples. Downsam-
pling was performed to cover the range of typical sampling rates from 30 Hz for the
real-time position management system (RPM system, Varian Medical, Palo Alto,
CA) and 25 Hz for the research real-time data stream of the Calypso System (Ca-
lypso Medical Technologies, Seattle, WA) (Krauss et al., 2011e) down to 7 Hz or
5 Hz for linac-mounted flat panel imagers (Cho et al., 2009; Poulsen et al., 2010a).

Training schemes.

Retraining of the predictors is expected to improve predictions, especially if breathing
patterns change their characteristics during the course of a radiotherapy treatment. We
investigated three different training schemes:

1. Stationary: The predictor is trained once on a 40 s training data window.

2. Adaptive: The predictor is retrained every 3 s on a 40 s training data window,
which is sequentially shifted towards newer target position observations.

3. Adaptive-expansive: The predictor is retrained every 3 s. The training data window
is sequentially expanded from 40 s to 67 s. The 67 s training window is then shifted
towards newer target position observations.

For the adaptive training schemes, the updated predictors were applied to the data
samples that were acquired 3 s after the last sample in the training data set. This
emulated the process of a real-time adaptive filter, which needs 3 s of computation time
for retraining. These 3 s of computation time were for all the considered predictors a
very conservative estimate on a standard 3 GHz processor.
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2.2 Materials and Methods

Table 2.2: Parameters of the predictors. Free parameters are obtained through predictor
training. Model parameters must be selected prior to training. General parameters apply to
every predictor.

Predictor Free parameters Model parameters

LR βj regularization parameter λ
NN βj, ωmj number of hidden neurons Nh

weight decay parameter λ
KDE none kernel parameter γ
SVR αj, α

∗
j , β0 tube width ε

cost parameter C
kernel parameter γ

general input vector dimension p

lag length δ

2.2.5 Model parameter selection

Every respiratory motion predictor can be adjusted to a specific prediction scenario
through the choice of several model parameters. These model parameters cannot, as
opposed to the free parameters, be optimized through predictor training. They can
be divided into general model parameters, which apply to every predictor, and predictor
specific model parameters. An overview of the relevant parameters is listed in table 2.2.

The number of model parameters ranges from 3 to 5 for the selected predictors. Since
these parameters influence each other, they cannot be optimized individually. We there-
fore implemented an extensive grid search in the 3- to 5-dimensional model parameter
space to optimize the model parameters.

Optimum model parameters depend on the prediction scenario (section 2.2.4) as well as
on the specific patient breathing characteristics. Because of the extensive computation
times for a grid search in the model parameter space, we aimed to find a set of model
parameters, which is optimal for the population of considered breathing patterns. For
each breathing pattern, each latency, each sampling rate and each training scheme, we
optimized all the model parameters given in table 2.2 for all considered predictors in
both the coordinate-wise and full 3D data preparation mode.

The optimum, patient-independent model parameter set was identified by minimizing
the average of the prediction errors of the twelve individual breathing patterns. For
the comparison of the different prediction methods, the best patient-independent model
parameter configuration as well as the best training scheme and 3D data processing mode
was selected for each latency and sampling rate.
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2 Prediction of respiratory motion

2.2.6 Prediction accuracy measures

Prediction errors were quantified as root mean squared deviations between predicted
positions ŷj, which were back-transformed using (2.7), and actual target positions yj =
sj+τ of the test data set:

RMSE =

√√√√∑i ‖ŷi − yi‖2

Nte(Nte − 1) . (2.20)

Nte is the number of test data examples. The gain in prediction accuracy compared to
using no prediction was expressed as normalized prediction error:

normalized RMSE = RMSE(prediction)
RMSE(no prediction) . (2.21)

Changes in prediction accuracy for different model parameter sets were compared through
relative root mean squared prediction error changes:

relative RMSE change = RMSE(parameter set 1)
RMSE(parameter set 2) − 1 . (2.22)

2.2.7 Box plots

Distributions of prediction accuracies were displayed as box and whisker plots (Chambers,
1983). The bottom, middle and top of the box represents the lower quartile, the median
and the upper quartile, respectively. The whiskers extend to the lowest data point which
is still within 1.5 times the interquartile range of the lower quartile, and the highest data
point which is still within 1.5 times the interquartile range of the upper quartile. Outside
observations are displayed individually.

2.3 Results

Figure 2.1 shows the impact of the transition from patient-specific optimal to patient-
average optimal model parameters for all prediction scenarios (section 2.2.4). Displayed
are distributions of the relative prediction accuracy loss, that is the increase of the
prediction error using the common parameter set relative to the prediction error using
individually optimal model parameters (section 2.2.6). On a patient level (2.1a), some
cases of extremely high accuracy losses of up to 60 % are observed for both the KDE and
SVR predictors. For the majority of cases, a moderate accuracy loss is observed, with the
third quartile being well below 20 %. If we average over the twelve patient traces (2.1b),
no losses higher than 12 % are observed.
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Figure 2.1: Prediction accuracy loss for patient-independent model parameters relative to
patient-specific model parameter optimization.
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(b) adaptive-expansive retraining

Figure 2.2: Prediction accuracy gain of adaptive retraining schemes relative to stationary
training.
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LR KDE NN SVR

−
4

−
3

−
2

−
1

0
1

re
la

tiv
e 

R
M

S
E

 c
ha

ng
e 

[%
]

(b) latency 0.4 s
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Figure 2.3: Prediction accuracy changes of 3D prediction using PCA relative to independent
coordinate-wise prediction.
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Figure 2.4: Comparison of prediction errors for individual breathing traces and latencies of
0.2 s, 0.4 s and 0.6 s (left to right) and a sampling rate of 15 Hz. Absolute errors (upper row)
and errors normalized to using no prediction (lower row).

Figure 2.2 shows the gain in prediction accuracy of the adaptive retraining schemes rel-
ative to stationary predictor training (section 2.2.4), averaged over the breathing traces.
The impact on the prediction accuracy is surprisingly small, with third quartile improve-
ments of up to 3 % for adaptive retraining (2.2a) and up to 4 % for adaptive-expansive
retraining (2.2b). There are even some scenarios, where the prediction accuracy on
the patient average level is decreased through adaptive retraining. Adaptive-expansive
retraining in contrast is favorable in all scenarios.

Figure 2.3 shows the impact on prediction accuracy of full 3D processing using PCA rel-
ative to three independent coordinate-wise predictors (section 2.2.2). We observe small
improvements for the longer latencies of 0.4 s and 0.6 s except for the NN predictor, for
which no trend can be observed at 0.4 s latency. Except for the LR predictor, deteriora-
tions at 0.2 s latency are observed when changing to full 3D processing.

Figure 2.4 shows the comparative prediction performance of the four predictors for the
twelve patient breathing traces at the considered latencies for a 15 Hz sampling rate. Pre-
diction method ‘none’ refers to using the last position observation as prediction value.

17



2.3 Results

−
4

−
2

0
2

4

am
pl

itu
de

 [m
m

]

LM actual predicted

−
4

−
2

0
2

4

am
pl

itu
de

 [m
m

]

KDE

−
4

−
2

0
2

4

am
pl

itu
de

 [m
m

]

NN

0 10 20 30 40

−
4

−
2

0
2

4

time [s]

am
pl

itu
de

 [m
m

]

SVR

−
10

0
10

am
pl

itu
de

 [m
m

]

LM

−
10

0
10

am
pl

itu
de

 [m
m

]

KDE

−
10

0
10

am
pl

itu
de

 [m
m

]

NN

0 10 20 30 40

−
10

0
10

time [s]

am
pl

itu
de

 [m
m

]

SVR

Figure 2.5: Actual breathing signal in superior-inferior direction and corresponding predic-
tions for 0.4 s latency and 15 Hz sampling rate. The y-axis scaling for breathing trace 10
(right) is three times higher than for trace 1 (left).

Displayed are prediction results using patient-independent model parameters for all pre-
dictors and the adaptive-expansive retraining scheme, which proved advantageous for
all predictors in all scenarios (2.2b). Full 3D versus coordinate-wise predictor setup is
selected according to the patient averaged prediction accuracy of the current scenario.
The lower row displays the prediction accuracy using the individual predictors divided
by using no prediction. KDE yields the worst predictions and NN the best predictions
for almost all breathing patterns.

Figure 2.5 shows actual breathing signals in superior-inferior direction and the corre-
sponding predictions for 0.4 s latency and 15 Hz sampling rate. The displayed breathing
traces 1 and 10 show the range from sub-millimeter to around three-millimeter prediction
accuracy. Prediction was performed using patient-independent model parameters.

Figure 2.6 shows the comparison of the prediction errors averaged over the breathing
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Figure 2.6: Comparison of prediction errors averaged over patient traces for latencies of 0.2
s, 0.4 s and 0.6 s (left to right). Absolute errors (upper row) and errors normalized to using no
prediction (lower row).

traces. Absolute prediction errors (upper row) depend strongly on the latency. Prediction
errors increase roughly linear from 1 mm for 0.2 s latency to 2 mm for 0.6 s latency.
The prediction errors normalized to using no prediction (lower row) show no strong
dependency on the latency. All predictors roughly halve the errors of using no prediction
in all scenarios. An effect of the sampling rate is almost not observable. From the lower
row, we can deduce a ranking of the predictors. Although the differences are small, the
NN outperforms the others, followed by SVR and LR. Especially for 0.2 s latency, KDE
performs clearly worst.

Table 2.3 summarizes the results of figure 2.6. Displayed are absolute and relative RMS
prediction errors averaged over both the breathing traces and the three sampling rates.
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Table 2.3: Prediction errors averaged over both breathing traces and sampling rates for the
different latencies. Absolute root mean squared prediction errors (RMSE) and RMSE normal-
ized to using no prediction.

absolute RMSE [mm] normalized RMSE

latency latency
Predictor 0.6 s 0.4 s 0.2 s 0.6 s 0.4 s 0.2 s

LR 1.93 1.49 0.87 0.46 0.49 0.51
KDE 2.04 1.66 1.07 0.49 0.54 0.63
NN 1.78 1.34 0.80 0.42 0.44 0.47
SVR 1.80 1.40 0.85 0.43 0.46 0.50

2.4 Discussion

All the considered predictors allowed selecting a patient-independent model parameter
set. Although a few cases of strong deteriorations in prediction accuracy were observed
on the patient-specific level, prediction accuracy losses on a patient-average level were
small. The third quartile of the accuracy loss distributions was 4% for LR prediction
and 8% for KDE, NN and SVR prediction.

The impact of adaptive retraining schemes was found to be relatively small. On a patient-
average level, no improvements larger than 5% were observed. The sliding window adap-
tive training even yielded deteriorations compared to stationary training in several sce-
narios. These findings contrast the previously reported strong improvements of adaptive
retraining for KDE (Ruan, 2010). In the present study, baseline and amplitude drifts
were eliminated through data preprocessing (section 2.2.2), which reduced the need of
adaptive retraining.

The effects of full 3D data processing using PCA were below 5%. Moderate improvements
were observed for LR, KDE and SVR prediction for the larger latencies of 0.4 s and
0.6 s. KDE prediction was degraded at 0.2 s latency. The NN predictor showed almost
no effects.

The predictor comparison was based on adaptive-expansive retraining and on patient-
independent model parameters, which were optimized for each latency and sampling
rate individually. 3D data processing mode was also selected for each predictor in each
scenario individually. Because almost no effect of the breathing data sampling rate in
the considered range from 30 Hz to 7.5 Hz was observed, prediction errors were averaged
over all sampling rates to produce the results of table 2.3. Although the differences
between the predictors were small, figure 2.6 allowed deducing a clear ranking between
the predictors: The NN outperformed the others at all latencies and sampling rates.
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2 Prediction of respiratory motion

RMS prediction errors normalized to using no prediction, averaged over all latencies and
sampling rates were 0.44, 0.46, 0.49 and 0.55 for the NN, SVR, LR and KDE predictors,
respectively. Prediction errors relative to the NN deteriorated accordingly only by 4%,
9% and 24% for SVR, LR and KDE.

Ruan (2010) demonstrated clear advantages of KDE over LR prediction; the opposite
was found in our comparison study. Advantages of NN and SVR prediction over LR
prediction reported by Murphy and Dieterich (2006) and Riaz et al. (2009), were by
far more pronounced than our results. The contrary findings of our comparison study
supposedly result from the extensive model parameter tuning, which improved the LR
prediction considerably. In addition, Murphy and Dieterich (2006) used an iterative op-
timization scheme for the parameter vector β, which did not converge for some breathing
traces; a problem, which can not occur with the non-iterative training scheme depicted
in section 2.2.3.

2.5 Conclusions

After thorough model parameter optimization on a patient-average basis, all the consid-
ered predictors succeeded in adapting to the patient-specific breathing motion in spite
of a common set of model parameters for all considered breathing traces. All studied
predictors roughly halved prediction errors compared to using no prediction. A ranking
between the predictors could be deduced: When averaging over all latencies and sam-
pling rates, the NN outperformed the SVR, LR and KDE predictors by 4%, 9% and 24%,
respectively.

The relatively small differences between the predictors indicate that an appropriate choice
of patient-independent model parameters is supposedly more important than the choice
of the actual prediction method. Especially the good performance of the LR predic-
tor contrasts the findings of previously published comparison studies. We therefore
recommend that future assessments of the benefits of new prediction methods should
thoroughly consider model parameter tuning of the benchmark methods to achieve fair
comparisons.
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3 Motion monitoring and correlation
models

Tumor tracking requires precise knowledge of tumor positions throughout the treatment.
An ideal motion monitoring system would provide 3D tumor and surrounding organ
position information including organ displacement, deformation and rotation - optimally
at a high frame-rate, with a short latency. Additionally, the ideal motion monitoring
would be non-invasive and would not deliver x-ray imaging dose to the patient.

In the following we will introduce several motion monitoring technologies. None of these
technologies can fulfill the aforementioned requirements to an ideal motion monitoring
device. Internal motion monitoring is often invasive and restricted to the detection of
single point translations. External surrogate monitoring relies on a strong correlation
between surrogate and organ motion. Combining different modalities is often beneficial;
the mathematics of combining external surrogate monitoring and x-ray imaging will be
discussed in section 3.2.

3.1 Internal motion monitoring

3.1.1 The Calypso System

The Calypso System (Calypso Medical Technologies, Seattle, WA) can detect internal
organ motion at a high frame-rate without delivering ionizing radiation to the patient
(Balter et al., 2005). It is based on three electromagnetic transponders, which are im-
planted either close to or inside the treatment target (figure 3.1b). The transponders
are essentially electromagnetic resonant circuits inside a glass capsule (diameter 1.8 mm,
length 8 mm).

An electromagnetic detector array (figure 3.1a) is placed above the patient in the treat-
ment room. For position detection, the transponders are sequentially excited with their
respective resonance frequencies using source coils within the detector array. The re-
sponse of the transponders following excitation is detected simultaneously in an assembly
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(a) Calypso console (Image
source: Calypso Medical)

(b) Electromagnetic transponder

Figure 3.1: The Calypso System. (a) Control console with the electromagnetic detector array
mounted on the arm. (b) Electromagnetic transponder with clearly visible coil of the resonance
circuit.

of 32 receiver coils (Rau et al., 2008), which allows calculating transponder 3D displace-
ment with respect to the detector array. The detector array position is determined
through a room-fixed infrared camera system.

The research version of the Calypso System, which is available at our institution, provides
the geometric centroid of the three actual transponder positions via Ethernet connection
at a frame-rate of 25 Hz. Additionally, the rotation matrix of the actual transponder
positions with respect to the reference transponder geometry is reported. A position
update is based on the centroid recalculation after detection of one out of the three
transponders.

The Calypso System can currently be used clinically for prostate treatments only. Using a
newly developed anchored transponder design, 100% long term fixation rates of transpon-
ders implanted into canine lungs were demonstrated (Mayse et al., 2008). Recently, the
United States Food and Drug Administration (FDA) granted Investigational Device Ex-
emption (IDE) approval for clinical studies evaluating lung tumor motion monitoring
during radiotherapy. Implantation of anchored transponders in human lung tumors was
found to be feasible and safe (Bolliger et al., 2011).

The Calypso System motion monitoring is limited to displacements and rotations of the
transponder positions. The system can however be combined with x-ray imaging (Rau
et al., 2008), which could additionally allow monitoring target volume deformations or
the motion of nearby organs at risk.
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A disadvantage of the Calypso System is the limited compatibility with magnetic reso-
nance imaging (MRI). Null signals surrounding the transponders with radii of ∼1.5 cm
and lengths of ∼4 cm were observed within MRI imagery (Zhu et al., 2009), which may
prohibit MRI-based radiotherapy treatment follow-up.

3.1.2 X-ray imaging

Kilovoltage (kV) and megavoltage (MV) x-ray image guidance is nowadays widely used
for inter-fractional motion compensation (Jaffray, 2007; Verellen et al., 2008; Korreman
et al., 2010). Volumetric imaging techniques include linac-integrated kV and MV cone-
beam computed tomography (CBCT), MV fan-beam CT and kV in-room CT. Both
CTs and CBCTs can either be acquired in conventional 3D mode, or in time-resolved
respiration-correlated 4D mode (Pan et al., 2004; Sonke et al., 2005).

4D CT and 4D CBCT scans are typically obtained in 1 to 5 minutes. They represent
a snapshot of intra-fractional organ motion prior to the radiotherapy treatment and are
therefore not suitable for tumor tracking. Continuous x-ray based motion monitoring is
accordingly limited to monoscopic 2D or stereoscopic semi-3D solutions.

Stereoscopic x-ray image guidance systems

The first system offering intra-fractional kV image guidance for respiratory gated radio-
therapy treatments was the real-time radiation therapy (RTRT) system jointly developed
by Mitsubishy Electronics Co. Ltd. (Tokyo, Japan) and the Hokkaido University (Shirato
et al., 2000a,b). The RTRT system uses four orthogonal kV imaging systems. Dependent
on the gantry angle, two of the imaging systems are selected for image acquisition and
marker detection at a frame-rate of 30 Hz. The treatment beam is turned on whenever
marker positions are within a predefined window around the planned coordinates.

Similar technologies are the ExacTrac (BrainLAB AG, Feldkirchen, Germany) and Cy-
berKnife (Accuray, Sunnyvale, CA) systems. Both systems offer orthogonal stereoscopic
kV x-ray imaging. Additionally, they feature external surrogate motion monitoring de-
vices, which can be used to correlate external surrogate motion to internal target motion
(section 3.2).

Linac-mounted x-ray imaging devices

Almost all modern linacs are equipped with electronic portal imaging devices (EPID).
Exploiting these technologies for intra-fractional motion monitoring is therefore inter-
esting from an economical point of view. Besides MV portal imaging, Varian Medical
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Systems (Palo Alto, CA) and Elekta Oncology Systems Ltd. (Crawley, UK) offer kV
imaging systems, which consist of an x-ray tube and a flat panel detector (FPD) mounted
orthogonally to the treatment beam axis.

The Siemens in-line kV imaging system (Oelfke et al., 2006) will be available in the near
future and is already installed at the research Siemens Artiste system at our institution.
The 180◦ arrangement of MV treatment and kV imaging beams allows detecting tumor
motion components perpendicular to the treatment beam. The target motion in this
plane is particularly important for tumor tracking, as it usually features steep dose
gradients. Orthogonal imaging can only partly resolve target motion perpendicular to
the treatment beam. The in-line geometry is therefore beneficial for tumor tracking (Nill
et al., 2005).

The use of linac-mounted x-ray imaging systems for MLC tumor tracking has been exten-
sively investigated. MLC tracking based on a single orthogonal kV x-ray imager (Poulsen
et al., 2010c,a) was performed using a correlation model, which estimated 3D target po-
sitions from 2D orthogonal x-ray projections and a 3D probability density function for
the target (Poulsen et al., 2008).

MLC tracking based on MV imaging alone (Poulsen et al., 2011) as well as combined kV
and MV imaging (Cho et al., 2009) was also demonstrated. MV motion monitoring is
limited to high contrast objects, such as radio-opaque markers (Shirato et al., 2000b) or
clearly visible lung tumors (Richter et al., 2010; Rottmann et al., 2010). Additionally,
limited field of view for MV imaging can be problematic especially for IMRT treatments
(Mao et al., 2008). Ma et al. (2009) demonstrated that treatment planning can be
modified to guarantee marker visibility in IMRT segments without severely compromising
final dose distributions.

Intra-fractional imaging in the in-line geometry

We have recently developed an intra-fraction x-ray motion monitoring system based on
the in-line kV imaging concept (Fast et al., 2011a,b). The kV imaging axis was therefore
intentionally tilted by 5.4◦ with respect to the treatment beam axis to achieve geometric
separation of MV treatment and kV imaging signals on the FPD (figure 3.2).

Due to the high treatment beam intensity and the proximity of the FPD to the treatment
beam source, the MV signal by far outnumbered the kV signal. We therefore synchro-
nized every second FPD read-out with the kV imaging pulses to get subsequent frames
containing mixed kV/MV and MV-only signals. Within a region of interest, these frames
were subtracted to give kV-only frames.

Figure 3.3 shows an example kV-only frame. The image quality is limited by a high noise
level and synchronization stripe artifacts. Nevertheless, radio-opaque marker positions
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Figure 3.2: Geometry of in-line imag-
ing system with tilted imaging axis for
geometric separation of kV and MV sig-
nals. (Reprinted from Fast et al. (2011b).
With permission.)

Figure 3.3: Example kV-only image.
Radioopaque marker detected success-
fully in spite of distortions and stripe
artifacts. (Reprinted from Fast et al.
(2011b). With permission.)

could be detected with a latency of 87 ms and a root mean squared (RMS) detection
accuracy of 0.2 mm (Fast et al., 2011b).

3.1.3 Volumetric non-ionizing soft tissue imaging

Ultrasound imaging

Ultrasound imaging has the potential to provide non-ionizing, volumetric imagery of
the treatment target and nearby organs at risk for radiotherapy guidance. Propagation
of ultrasound waves is, however, heavily disturbed by air and bone. Ultrasound imag-
ing is therefore limited to organs such as the heart or organs in the pelvis and neck
region (Hendee and Ritenour, 2002). The most widespread use of ultrasound imaging
in radiotherapy is pre-treatment patient setup for prostate cancers. Of major concern
for ultrasound based positioning is the user-to-user variability of image interpretation
(Langen et al., 2003).

The following studies are encouraging for possible future application of ultrasound imag-
ing for intra-fractional motion compensation: Hsu et al. (2005) have demonstrated the
feasibility of synchronous ultrasound imaging and linac based radiation delivery. Xu and
Hamilton (2006) and Harris et al. (2007) have demonstrated accurate automatic ultra-
sound organ motion tracking based on 2D and 3D imagery, respectively. 3D tracking was
however not performed online due to large computation times. Schlosser et al. (2010)
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have developed a robotic ultrasound probe manipulator to remotely acquire ultrasound
imagery during radiotherapy treatments.

Magnetic resonance imaging

Magnetic resonance imaging (MRI) provides volumetric imagery with excellent soft-tissue
contrast and without delivering dose of ionizing radiation. The integration of MRI with
medical linacs for intra-fractional motion management has become a strong field of re-
search. Prototype integrated systems have been proposed: A group from the University
of Utrecht, The Netherlands, has integrated a 1.5 T MRI scanner with a medical linac,
(Raaymakers et al., 2004; Lagendijk et al., 2008). A group from the University of Alberta,
Edmonton, Canada, have built a prototype system with a 0.2 T MRI scanner (Fallone
et al., 2007, 2009). A third group – ViewRay Inc., Cleveland, OH and the University of
Florida, Gainsville, FL – has integrated a low-field MRI scanner with three 60Co sources
(Dempsey et al., 2005).

Major challenges for the development of such integrated systems are distortions of the
beam generation through the strong static magnetic field and MR image quality dis-
tortions through radiofrequency inferences. Nevertheless, simultaneous MV radiation
delivery and MR imaging has been demonstrated successfully (Fallone et al., 2009). Ad-
ditionally, influences of the magnetic field on the radiation dose deposition have to be
taken into account for treatment planning (Raaijmakers et al., 2005; Kirkby et al., 2008;
Pfaffenberger and Oelfke, 2011).

Recently, real-time tracking of lung tumors within MR imagery has been demonstrated
(Cerviño et al., 2011). However, such tracking systems are restricted to 2D imagery
because of long acquisition times for volumetric MR images as well as long computation
times for tracking algorithms within 3D imagery.

3.2 External surrogate monitoring and correlation
models

Using the aforementioned internal motion monitoring devices alone is not ideal for real-
time tumor tracking. Continuous internal tumor motion monitoring based on kV x-ray
imaging leads to considerable imaging doses. Detection of implanted markers requires a
patient dose of approximately 0.18 mGy per image (Shirato et al., 2000b). Combining
continuous external motion monitoring with occasional x-ray imaging has the potential
to substantially reduce imaging dose while maintaining a high level of internal motion
detection accuracy. Volumetric image acquisition times for both ultrasound and MR as
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well as tumor position detection within the volumetric images can lead to large motion
monitoring latencies and low sampling rates. The combination of external motion moni-
toring with ultrasound or MR imaging could counteract this effect. In the following, we
introduce several external surrogate motion technologies and discuss the mathematics
for combined external-internal motion monitoring strategies.

3.2.1 External surrogate monitoring technologies

Various technologies for external surrogate monitoring have been proposed. The most
extensively used device is the real-time position management (RPM) system (Varian
Medical Systems Inc., Palo Alto, CA) developed by Kubo et al. (2000). The system
uses an infrared marker block, which is placed on the patient’s chest or abdomen. The
markers are detected with an infrared camera system. The vertical coordinate of detected
marker displacements is reported as surrogate motion signal.

Spirometry measures the volume of inhaled and exhaled air through a mouthpiece. An
additional noseclip prevents breathing through the nose. Hoisak et al. (2004) showed
that tidal lung volume changes correlate better to tumor motion than abdominal dis-
placement. Baseline drifts, which are often observed with spirometry (Zhang et al., 2003),
are however concerning for real-time tumor tracking.

Anzai Medical Co. Ltd. (Tokyo, Japan) offers two external motion monitoring systems. A
pressure belt system detects the respiration-induced expansion of an elastic belt around
the patient’s chest or abdomen. Alternatively, vertical abdominal surface motion can be
measured with a laser system. The Anzai system provides an interface for respiratory
gated radiotherapy treatments using Siemens linacs (Li et al., 2006).

Patient surface motion monitoring is provided by VisionRT Ltd. (London, UK). The
system projects a speckle pattern on the patient surface. Individual points in the speckle
pattern are detected with a stereoscopic camera system, which allows 3D surface mapping
through triangulation (Bert et al., 2005). AlignRT is used for accurate pre-treatment
patient positioning (Schöffel et al., 2007). Actually measured patient surfaces are regis-
tered with a reference surface using full translational and rotational degrees of freedom.
GateCT and GateRT produce 1D signals for respiratory gated CT or respiratory gated
radiotherapy by registering surfaces with only one translational degree of freedom.

3.2.2 Correlation of external surrogate and internal tumor motion

Various studies have retrospectively analyzed the correlation between external surrogate
and internal organ motion (Vedam et al., 2003; Ahn et al., 2004; Hoisak et al., 2004;
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3.2 External surrogate monitoring and correlation models

Tsunashima et al., 2004; Gierga et al., 2005). They used different external motion sur-
rogates and x-ray fluoroscopy for either marker-based internal tumor motion monitoring
or internal surrogate (such as diaphragm) motion monitoring. The quality of correlation
was thereby quantified using Pearson’s sample correlation coefficient

R =
∑(Xi − X̄)(Yi − Ȳ )√∑ (Xi − X̄)2

√∑ (Yi − Ȳ )2
, (3.1)

where the pairs (Xj, Yj) represent synchronous external and 1D internal position obser-
vations and (X̄, Ȳ ) the corresponding sample means. The correlation coefficient can be
interpreted as quality indicator of a straight line fit to { (Xi, Yi) | i ∈ [1, N ] }, N being the
total number of observations. Additionally, phase-shifts between external and internal
motion were quantified by shifting the time axes of internal and external observations
such that the correlation coefficient was maximized (Hoisak et al., 2004; Tsunashima
et al., 2004; Korreman et al., 2006; Ionascu et al., 2007). Phase-shifts of more than
0.5 s were frequently observed. The external/internal correlation was found to be more
pronounced in superior-inferior (SI) direction than in anterior-posterior (AP) direction
(Ionascu et al., 2007).

Figure 3.4 shows an example correlation analysis. The external/internal data displayed
in (a) and (b) was normalized to zero mean and unity variance. The internal AP motion
is lagging behind the external surrogate. Deviations of the straight line fit from the
breathing data are therefore larger in AP than in SI direction, which is reflected by a
smaller correlation coefficient.

The generally strong correlation between external surrogate and internal organ motion
justifies the use of external surrogate monitoring for intra-fractional motion compensa-
tion. Commercially available respiratory gating systems often rely implicitly on a fixed
external/internal correlation (Korreman et al., 2008). For amplitude-based gating, the
treatment beam is turned on whenever the external signal enters a predefined gating
window. For phase-based gating, the actual breathing phase is estimated from the sur-
rogate signal and the beam is turned on whenever the actual breathing phase falls into a
predefined window – most commonly centered around peak exhale. Berbeco et al. (2005)
have shown that neither modality is significantly superior in terms of residual internal
tumor motion.

Of major concern are inter-fractional shifts in the baseline of internal tumor breathing
traces. Sonke et al. (2008) have reported systematic and random baseline variations of
3.9 mm and 2.4 mm in SI-direction, respectively. Based on this data, Korreman et al.
(2008) showed that margins can be safely reduced only if daily image guidance is used
to account for baseline shifts. Intra-fractional changes in external/internal correlation
were also observed (Ionascu et al., 2007). Intra-fractional correlation model updates can
substantially reduce internal motion prediction errors (Hoogeman et al., 2009).
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Figure 3.4: Example synchronous external surrogate and internal tumor motion data in SI
and AP directions (upper row). Scatterplot of external/internal data points together with a
straight line fit and Pearson’s correlation coefficient R (lower row).

The simplest and most common external/internal correlation model is a straight line or
linear fit. Correlation models based on linear fitting can however not accurately predict
hysteretic breathing traces (figure 3.4d), which are typical for lung tumor movements
(Keall et al., 2006b). Two ways to account for hysteresis have been proposed: Firstly,
separating the breathing trajectory into inhale and exhale phases and then constructing a
phase-dependent non-linear map through polynomial fitting (Seppenwoolde et al., 2007).
Secondly, the method of state-augmentation (Ruan et al., 2008), which uses not a single
external surrogate position as input for the correlation model, but provides the correlation
model with an input vector of at least two past surrogate position observations.

Ruan et al. (2008) compared prediction accuracies of correlation models based on linear
fitting (LF), polynomial fitting (PF) and state-augmented linear regression (LR). The LR
correlation model clearly outperformed PF and LF. Ernst et al. (2011) showed superior
prediction accuracy of a state-augmented support vector regression (SVR) correlation
model compared to PF.
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Figure 3.5: Squared Pearson’s correlation coefficients R2 for the 12 synchronous external
surrogate and internal tumor motion data sets for left-right (LR), superior-inferior (SI) and
anterior-posterior (AP) directions.

3.3 Comparison of correlation models

To guide our choice of a suitable correlation model for MLC tracking based on x-ray
imagery combined with external motion monitoring (section 6.2), we have compared LF,
augmented LR and augmented SVR correlation models. Similar to the performance
comparison of respiratory motion forward prediction as outlined in chapter 2, we have
evaluated two different intra-fractional correlation model update schemes and have ap-
plied model parameter tuning routines.

3.3.1 Materials and methods

Patient breathing data The comparison of correlation models was based on the same
twelve breathing data samples that were used for the comparison of the previously de-
scribed prediction models (section 2.2.1). The data sets were recorded with the Mit-
subishi RTRT system and consist of synchronous internal 3D tumor position and 1D ab-
dominal motion measurements acquired at a frame-rate of 30 Hz. Figure 3.5 displays
Pearson’s correlation coefficients of the 12 synchronous external/internal breathing data
samples. The linear correlation is strongly pronounced between external and internal SI
motion and relatively poor for LR an AP directions.
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Data preparation The breathing data sets were expressed as uniformly sampled time-
series{

si := s(ti) =
(
sext(ti), s1

int(ti), s2
int(ti), s3

int(ti)
)T
| i ∈ [1, N ]

}
, (3.2)

where sext(tj) and skint(tj) represent the 1D external surrogate position observation and
coordinate k of the internal positon observation at point in time tj. N is the total number
of observations. The breathing samples were split up into a 20 s training data set and a
50 s testing data set. Correlation model training can be performed quickly. We therefore
reserved only 0.5 s of computation time between the training and testing data sets.

For each euclidean coordinate k of the internal motion data, we constructed pairs of input
vectors and target scalars

(
xj, y

k
j

)
from the breathing data samples. Target scalars were

given by internal tumor positions ykj = skint(tj). To simulate sparse internal motion
monitoring, only a small subset of internal positions observations was included into the
training data set:{ (

xi, y
k
i

)
| i ∈ { 1, δint, 2δint, ..., Ntr } , k ∈ [1, 3]

}
. (3.3)

The spacing between training data instances was set to δint = 15 corresponding to 0.5 s.

The p-dimensional input vectors for point in time tj were constructed from the history
of past external surrogate positions:

xj =
(
sext(t(j−δ(p−1))) , sext(t(j−δ(p−2))) , . . . , sext(tj)

)T
, (3.4)

using the lag length δ ∈ N of successive input vector entries. For the linear fit correlation
model, only 1D input vectors (i.e., p = 1) were used.

Preprocessing Preprocessing as depicted in section 2.2.2 could not be applied for the
correlation models. It is based on scaling factors for the input vectors and target scalars,
which are calculated from a sliding window of past internal motion observations. Conse-
quently, the preprocessing procedure relies on continuous internal motion measurements,
which interferes with the actual goal of combined external/internal motion monitoring
strategies – namely accurate tumor tracking in spite of sparse internal motion measure-
ments.

Correlation models The actual prediction of internal tumor positions from external
surrogate data was performed using the previously outlined mathematical procedures
(section 2.2.3). The LF and augmented LR correlation models used equation (2.8) for
internal motion prediction. The offset term β0 was however not set to zero, but was opti-
mized together with the coefficient vector β. The prediction procedure for the augmented
SVR correlation model followed the formalism outlined in section 2.2.3.
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3.3 Comparison of correlation models

Training schemes Besides the stationary correlation model training, we investigated
two modes of intra-fractional correlation model updates. The update schemes are tai-
lored to the MLC tracking mode based on combined external/internal motion monitoring
depicted in section 6.2: During the delivery of step-and-shoot IMRT, five kV x-ray images
are acquired between the delivery of the beam segments with an update-rate of 2 Hz.
Accordingly, the correlation model training schemes are:

1. Stationary: The correlation model is trained once using the 40 internal tumor
position observations within the training data set.

2. Adaptive: The correlation model is retrained every 10 s using 5 newly acquired
internal positions plus the latest 35 positions of the previous training cycle.

3. Adaptive-expansive: The correlation model is retrained every 10 s using 5 newly
acquired internal positions plus all of the previously acquired positions.

Model parameter tuning The augmented LR and SVR correlation models feature
the model parameters listed in table 2.2. Model parameter tuning was performed as
outlined in section 2.2.5. Computation times were however much shorter because our
investigations did not include different latencies, sampling rates or 3D data processing
modes. We also optimized patient-independent model parameter sets and used them for
the actual correlation model comparisons.

Prediction accuracy measures Correlation model prediction accuracy was quantified
using 3D RMS deviations between predicted and actually measured internal positions ob-
servations within the testing data set. The gain in prediction accuracy compared to using
no prediction was expressed as normalized prediction error according to equation (2.21).
Using no correlation model prediction refers to setting the prediction value as the mean
internal tumor position within the testing data set.

3.3.2 Results

Figure 3.6 shows the comparative performance of the three correlation models for the
12 breathing traces using adaptive-expansive training and patient-independent model
parameters. Prediction method ’none’ refers to using the mean value of the internal
tumor positions of the training data set as correlation model prediction. All correlation
models reduce prediction errors substantially, but the correlation model accuracy depends
strongly on the specific breathing trace. In almost all cases, the augmented correlation
models clearly outperform the LF.
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Figure 3.6: Comparison of correlation model prediction errors for individual breathing traces
using adaptive-expansive training. Absolute errors (left) and errors normalized to using no
prediction (right).

Figure 3.7 shows example correlation model predictions for breathing traces 1 and 10
using adaptive-expansive training. The SI-coordinate of trace 1 is almost perfectly pre-
dicted by all three correlation models. The LF prediction of the AP-coordinate is much
worse than the LR and SVR predictions. The actual AP-motion is lagging behind the
LF prediction. This phase shift can be effectively compensated by the LR and SVR
correlation models based on state augmentation.

Breathing trace 10 is the only example which shows superior prediction performance of
the LR correlation model. Obviously, all considered correlation models fail to predict
the AP motion accurately. This is not surprising, as the correlation coefficient between
external motion and internal AP motion of trace 10 is smaller than 0.2 (figure 3.5). The
LF correlation model predicts the SI-coordinate better than LR and SVR. The models
based on state augmentation can not predict the strong baseline drifts and amplitude
fluctuations accurately.

Table 3.1 lists 3D correlation model prediction accuracies averaged over the 12 breathing
traces for patient-independent model parameters. The augmented SVR outperforms the
augmented LR slightly. LF correlation model predictions are substantially less accurate.
The adaptive retraining schemes can slightly improve prediction accuracies. The only
exception is adaptive training for the LF correlation model, which yields worse results
than stationary training. When averaged over the three training modes, the improve-
ments in absolute correlation model prediction accuracy of SVR and LR compared to
LF are 23% and 21%, respectively.
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Figure 3.7: Actual breathing signal in superior-inferior (SI) and anterior-posterior (AP) di-
rection and corresponding correlation model predictions for breathing traces 1 and 10.
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Table 3.1: 3D root mean squared prediction errors of the correlation models for stationary
(1), adaptive (2) and adaptive-expansive (3) training.

RMSE [mm] normalized RMSE

training scheme training scheme
Correlation model (1) (2) (3) (1) (2) (3)

LF 1.69 1.71 1.64 0.42 0.42 0.40
LR 1.41 1.31 1.27 0.35 0.32 0.31
SVR 1.32 1.29 1.26 0.33 0.32 0.31

Table 3.2: Root mean squared prediction errors of the correlation models. 3D prediction
errors and errors of left-right (LR), superior-inferior (SI), anterior-posterior (AP) directions for
adaptive-expansive training.

RMSE [mm] normalized RMSE

Correlation model LR SI AP 3D LR SI AP 3D

LF 0.52 1.02 1.06 1.64 0.58 0.31 0.66 0.40
LR 0.45 0.80 0.79 1.27 0.50 0.25 0.49 0.31
SVR 0.46 0.79 0.78 1.26 0.51 0.24 0.49 0.31

Table 3.2 displays correlation model prediction accuracies for LR, SI and AP directions
using adaptive-expansive training. The absolute prediction errors are almost equal for
SI and AP directions. For LR direction, the absolute prediction errors of SI and AP
directions are roughly halved. Because of the different average amplitudes of the three
coordinates, the normalized prediction errors in SI direction are roughly twice as small as
for AP and LR directions. The correlation models accordingly predict SI motion much
more accurate than LR and AP motion. Beholding the poor linear correlation between
between external motion and internal AP and LR direction as displayed in figure 3.5,
this result is not surprising.

3.3.3 Discussion

We have compared the predictive performance of three correlation models. Two models –
LR and SVR – were based on the method of state-augmentation, which provides the cor-
relation models with a input vector of previously observed external motion observations.
The LF correlation model, in contrast, predicts internal motion from a single external
motion observation.

Similar to the analysis of respiratory motion forward prediction (section 2.3), we observed
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only small improvements of the adaptive correlation model retraining schemes. The
adaptive retraining schemes were tailored to a step-and-shoot IMRT delivery, which
updates the correlation model with 5 internal tumor position observations in between
the delivery of the individual beam segments. The additional information content is
relatively small compared to the initially acquired 40 position observations and induces
therefore only minor correlation model adaptions.

As expected, the models based on state-augmentation clearly outperformed the LF cor-
relation model. The SVR performed slightly better than the LR correlation model.
The largest LR and SVR correlation model prediction errors were observed for breathing
trace 10, which exhibits large baseline drifts and amplitude fluctuations. In this case, LR
and SVR even performed worse than the LF correlation model. For forward prediction
of respiratory motion, we have applied preprocessing routines to minimize baseline drifts
and amplitude fluctuations. The sparse internal motion data available to the correlation
models, however, prohibits such preprocessing.

38



4 Tracking system integration

In this chapter, we present the hardware and software intergration of our MLC track-
ing system. Section 4.1 introduces the hardware components of the tracking system
(i.e., the medical linear accelerator and the multileaf collimator) as well as interfaces to
the hardware components through which we adapt the radiotherapy delivery process to
the real-time monitored target motion. In section 4.2, we describe general strategies for
motion adaptive MLC leaf positioning. In section 4.3, we introduce the workflow of our
integrated MLC tracking control system. Section 4.4 gives a conceptual overview of our
MLC tracking software implementation.

4.1 Radiotherapy delivery system

The most widespread technique to produce treatment beams in radiotherapy is the medi-
cal x-ray producing electron linear accelerator (linac). An electron beam impinges onto a
high density target to produce photons at energies in the MeV range. The photon beam
is spatially limited with a primary collimator. A uniform fluence is produced through a
subsequent flattening filter. The shape of the actual treatment beam is adjusted by a
secondary collimator; most commonly a computer-controlled multileaf collimator (MLC).
A MLC consists of an arrangement of metal plates (leaves) mounted on opposing leaf
carriages. The positions of the leaves can be controlled individually. The leaves block
the beam partially such that the remaining aperture defines the treatment field. The
entire accelerator is mounted on a gantry that can rotate around the patient.

A medical linac equipped with a MLC supports the following radiotherapy delivery
modes:

1. Conformal RT: Radiation dose is delivered from multiple gantry angles. The beam
shape is adjusted to enclose the beam’s eye view of the 3D contour of the target
volume.

2. Step-and-shoot IMRT: The fluence profile from every beam angle is modulated to
achieve better dose homogeneity in the target and better dose sparing of healthy tis-
sues. For step-and-shoot IMRT, the fluence modulation is performed by delivering
the dose of each gantry angle in several segments with different MLC shapes.
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3. Dynamic IMRT: The leaves move continuously on individual trajectories while
the radiation beam is turned on. Fluence modulation along the path of a leaf
pair is achieved through different leaf opening times and correspondingly different
radiation exposure times at each tissue position.

4. Rotational IMRT: Both the gantry and the leaves move continuously during ra-
diation delivery. Additionally, the dose-rate of the linac is often modulated as a
function of the actual gantry rotation angle. Rotational IMRT can be performed
with a single or with multiple arcs.

For conformal RT and step-and-shoot IMRT, radiation delivery is interrupted while the
MLC leaves are moving. Continuous leaf motion during radiation delivery for dynamic
and rotational IMRT requires dynamic MLC control. Such dynamic MLCs have to
control not only precise leaf positioning but also precise leaf dynamics, i.e. leaf velocities
and accelerations.

4.1.1 The Siemens ARTISTE linear accelerator

The Siemens ARTISTE is the most recent radiotherapy suite offered by Siemens Health-
care (Erlangen, Germany). Figure 4.1 shows the research ARTISTE linac, which is
installed at our institution for experimental purposes. The ARTISTE features several
on-board imaging capabilities:

1. MVision: MVision provides megavoltage (MV) cone-beam computed tomogra-
phy (CT). The system uses the treatment beam for imaging. Image acquisition
is based on the amorphous silicon flat panel detector (1024× 1024 pixels, 0.4 mm
× 0.4 mm pixel size) displayed in figure 4.1a.

2. KView: KView uses a modified treatment beam for imaging. The electron tar-
get in the linac head is replaced and the flattening filter is removed to produce
a softer photon energy spectrum. The system yields considerable image quality
improvements compared to MVision (Faddegon et al., 2008; Steinke, 2010).

3. KVision: KVision denotes the on-board kV x-ray imaging solution of the ARTISTE
linac using the in-line geometry (Oelfke et al., 2006). The x-ray source is mounted at
an angle of 180◦ with respect to the treatment beam (figure 4.1b) so that the imag-
ing axis is parallel to the treatment beam axis. Superior imaging quality compared
to MVision (Stützel et al., 2008) and KView (Steinke, 2010) was demonstrated.

KVision is not a commercially available product yet. Siemens however offers the in-room
kV imaging system CTVision. A complete CT scanner is mounted on rails so that it
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(a) (b)

Figure 4.1: The research Siemens ARTISTE linear accelerator at the DKFZ. (a) The MV flat
panel detector for MVision and KView imaging. (b) The x-ray tube and kV flat panel detector
for in-line KVision imaging.

can slide over the patient lying on the radiotherapy treatment couch. The system pro-
vides excellent image quality. Couch shifts into treatment position after CT acquisition
however increase patient setup times.

4.1.2 The Siemens 160 MLC

The ARTISTE linac is equipped with a Siemens 160 MLC. The photograph in figure 4.2
shows the 160 leaves, whose extensions from the two carriages can be controlled individ-
ually. Carriage positions are also computer-controlled. The leaf width amounts to 5 mm
in the isocenter plane. The leaves can be extended from the carriages by 20 cm. The
maximum field size is 40 × 40 cm2. The maximum leaf travel speed is 43 mm/s. The
longitudinal penumbra is 5 mm and the leakage through leaf tips is 13.5% on the central
axis. A more comprehensive characterization of the 160 MLC is given in Tacke et al.
(2008).

The Siemens 160 MLC is not designed for dynamic radiotherapy delivery modes. The
ARTISTE radiotherapy suite therefore supports conformal RT and step-and-shoot IMRT
deliveries only. A solution similar to rotational IMRT called ’mARC’ will be available
soon. Hereby, radiation is delivered in multiple beamlets with a continuously moving
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Figure 4.2: Photograph of the Siemens 160 MLC. The 80 leaves on each carriage can be
positioned individually to form the desired field shape.

gantry but static leaves. MLC shapes are adjusted during beam interruptions between
the beamlets (Salter et al., 2011).

4.1.3 Hardware interfaces

MLC tracking represents a major modification of the radiotherapy delivery process. Our
research ARTISTE radiotherapy suite was therefore endowed with several hardware in-
terfaces, which allow us to both monitor and modify parts of the radiation delivery
process.

Linac interfaces

The MLC tracking deliveries require control of the treatment beam status. For example,
the treatment beam has to be turned off while the MLC prepares new segments of a
step-and-shoot IMRT delivery, during predictor training or if tracking errors occur. The
ARTISTE linac provides an interface for respiratory gated radiotherapy deliveries. We
utilize the gating interface to control the treatment beam during the MLC tracking
deliveries.

Two further interfaces to the ARTISTE linac were established for rotational IMRT de-
liveries: A gantry interface continuously monitors and reports actual gantry angles. A
dose-rate control board performs gantry angle dependent dose-rate modulation (Ulrich,
2009).

42



4 Tracking system integration

MLC interface

The 160 MLC can be operated with a modified Siemens Collimator Control (SCC) unit,
which allows us to move leaves while the treatment beam is turned on (Tacke, 2009). The
modified SCC can receive requests for next leaf positions through Ethernet connection
and report actual leaf positions at the same time. Such position commands include
positions and velocities for both the carriages and the 160 leaves.

The SCC performs the actual hardware control for leaf positioning. It collects several
position packages and then sends the leaves on a trajectory that closely resembles the
requested trajectory. If the SCC receives several identical position packages, it slowly
decelerates the leaf motion to reach the desired position without overshoot. For a series
of different, possibly noisy position requests, the SCC actuates leaf trajectories that
smoothly follow the desired trajectories with a relatively large latency of τmlc ≈ 0.5 s
(see section 5.1 for a detailed discussion of latency measurements).

4.2 Motion-adaptive leaf positioning

The rationale of MLC tracking is to adapt the treatment beam instantaneously to intra-
fractional organ motion by repositioning of the leaves of a dynamic MLC. In section 4.2.1,
our leaf positioning strategy for the relatively simple case of rigid target volume transla-
tions will be introduced. Realistic intra-fraction organ motion is more complex and may
involve rotations, deformations or relative organ displacements. A meaningful compen-
sation of such complex forms of organ motion is challenging. We will discuss the main
problems and previously proposed approaches associated with MLC tracking of complex
organ motion in section 4.2.2.

4.2.1 Rigid 3D translations

Rigid 3D translation refers to a simplistic model of organ motion: the entire target
volume as well as all nearby organs move synchronously into the same direction. Under
this assumption, perfect motion compensation can be achieved in three steps: Firstly,
transformation of the organ motion into coordinates parallel and perpendicular to the
beam axis. Secondly, translation of the treatment field in synchrony with the beam’s
eye view of the organ motion (i.e., the organ motion in the plane perpendicular to the
beam axis). Thirdly, magnification of the treatment field according to the motion parallel
to the beam axis because of the cone-shaped treatment beam. For realistic respiratory
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mτ
1+mτ

kλ
1+kλ

Figure 4.3: Leaf position definition for 3D target translation. The initially planned MLC field
shape (gray) is shifted perpendicular to the leaf travel direction. The leaves are positioned such
that underdosage equals overdosage area.

motion patterns, the magnification step represents a small correction. Given a source-to-
isocenter distance of 100 cm and a motion range of ±10 mm, the magnification amounts
to 1%. We therefore neglect magnification in our leaf positioning algorithms.

Due to the finite leaf width, MLC tracking can only approximate this compensation
strategy. Figure 4.3 illustrates the problem of motion compensation perpendicular to the
leaf travel direction. The leaves are positioned to approximate the desired field shape.
Parts of the desired field shape will be blocked (underdosage). Parts outside the desired
field are irradiated (overdosage). Our leaf positioning algorithm weights underdosage
and overdosage areas equally and therefore optimizes the conformity with the desired
field shape while maintaining the integral fluence.

Optimal leaf positions according to the above definition can be calculated as follows:
Let y(λk) and x(λk) denote the lower edge and the tip of leaf λk. Accordingly let y(τm)
and x(τm) denote the lower and right edges of target segment τm. If leaf λk overlaps the
target segments τm and τm+1, the optimized leaf position x(λk) is given as weighted sum
over target segment edges x(τm) and x(τm+1):

x(λk) = y(τm+1)− y(λk)
y(λk+1)− y(λk)

x(τm) + y(λk+1)− y(τm+1)
y(λk+1)− y(λk)

x(τm+1) . (4.1)

Figure 4.3 shows the positions of closed leaf pairs adjacent to the aperture. The first
closed leaf pair beside the open field is placed in the middle of the positions of the adjacent
open leaf pair to be able to open quickly in case of rapid organ motion perpendicular to
the leaf travel direction. The other closed leaf pairs are retracted by 1 cm and 5 cm to
minimize the leakage through leaf tips, which is largest on the central axis.

44



4 Tracking system integration

4.2.2 Complex forms of organ motion

Besides rigid translation of the entire patient anatomy, a realistic description of intra-
fractional motion has to include:

• non-uniform translation of adjacent organs with different magnitudes or even dif-
ferent directions for individual organs,

• rotation of individual organs or of the initial arrangement of adjacent organs,

• non-uniform deformation of individual organs.

With today’s internal motion monitoring technologies (as reviewed in section 3.1), com-
plex organ motion can not be fully detected. In the majority of cases, motion monitoring
is limited to translations of markers, which are implanted into or close to the target
volume. Relative motion of markers can however give rise to organ rotation as well as
uniform organ deformation. Volumetric imaging technologies could in principle detect
more complex organ motion. Image acquisition times as well as processing times for au-
tomatic segmentation of multiple organs however restrict such monitoring strategies.

Nevertheless, the adaptation of dynamic IMRT deliveries to target volumes translating
and deforming uniformly in 1D has been discussed theoretically (Papiez and Rangaraj,
2005; Papiez et al., 2005; Tacke et al., 2007). These considerations did not include tissue
density changes due to deformation, which may influence the dose deposition.

Compensation of target translation and rotation through MLC tracking has been demon-
strated experimentally (Wu et al., 2011). Motion monitoring was based on the Calypso
System (see section 3.1.1). The study was restricted to rigid target rotations in beam’s
eye view. Rotations out of the beam’s eye view plane can not be compensated by leaf
repositioning alone, but would additionally require gantry and patient table rotations.

Suh et al. (2009) have proposed a 4D planning and 4D delivery approach, which implic-
itly takes complex organ motion into account. Different treatment plans are generated
for each phase of a 4D planning CT. During 4D delivery, the actual breathing phase is
detected and the MLC field for this particular phase of the 4D treatment plan is selected
and adapted in real-time. If the simultaneously monitored tumor position deviates from
the tumor position within the corresponding phase in the planning CT, the MLC aper-
ture is adapted as described in section 4.2.1. 4D planning hereby has to assure, that
the 4D delivery is feasible given the MLC hardware constraints such as maximum leaf
velocities.
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Figure 4.4: Overview of the MLC tracking platform installed at DKFZ.

4.3 MLC tracking workflow

We have implemented a MLC tracking platform based on the research Siemens ARTISTE
radiotherapy suite installed at our institution (section 4.1). For this purpose, we have
developed a MLC tracking control system (MTCS), which uses the hardware interfaces
described in section 4.1.3 to adapt the aperture of the Siemens 160 MLC to continuously
monitored target motion. The system supports the application of MLC tracking to con-
formal RT, step-and-shoot IMRT, dynamic IMRT and rotational IMRT deliveries. MLC
tracking is restricted to the compensation of rigid 3D target translations (section 4.2.1).

Figure 4.4 gives an overview of the MLC tracking platform. The MTCS imports the
leaf sequence L(MU), which is defined in the treatment plan of the radiotherapy deliv-
ery (section 4.3.1). During the MLC tracking delivery, the MTCS continuously receives
current target positions from the motion monitoring device and actual MLC shapes from
the SCC. For rotational IMRT deliveries, the linac reports actual gantry angles. Based on
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the real-time input data, the MTCS adapts the radiotherapy delivery to the current tar-
get motion and controls the treatment beam status. The implementation of the MTCS
relies on two control loops: the tracking loop (section 4.3.2) adapts the leaf sequence
L(MU) to the target motion, the verification loop (section 4.3.3) controls the treatment
beam status based on continuous tracking performance assessments.

Motion monitoring is either based on a single device for direct internal motion monitoring
or on two devices for combined external surrogate and internal motion monitoring. The
motion monitoring devices report current position observations together with a time-
stamp of the position detection to the tracking software. Motion monitoring is either
performed continuously or on demand.

The SCC (section 4.1.3) provides MLC position updates every 50 ms, which include leaf
and carriage positions and velocities. The SCC accepts position requests for desired leaf
motion in every second SCC control cycle. We therefore utilize every second MLC posi-
tion update to trigger the tracking loop, which sends optimizes MLC position packages
to the SCC.

4.3.1 Radiotherapy delivery management

Treatment plan file import

The MTCS can import treatment plan files for all considered delivery modes prior to
the actual delivery. The treatment plan defines leaf sequences L(MU), which determine
leaf and carriage positions of a radiotherapy delivery as a function of delivered monitor
units (MU). For conformal RT and step-and-shoot IMRT treatments, L(MU) is constant
during the delivery of a beam or segment, respectively. For dynamic and rotational IMRT
deliveries, the leaves are continuously moving during the delivery.

The linac does not report delivered monitor units continuously to the tracking system.
For dynamic IMRT deliveries, leaf sequence access is managed through the elapsed de-
livery time t, which corresponds linearly to delivered the monitor units. The dose-rate
of rotational IMRT deliveries is in general not constant. The plan file leaf sequence is
therefore expressed as a function of the gantry angle γ, which is continuously reported to
the tracking system. To simplify the notation, we express treatment plan leaf sequences
as a function of the delivery time t:

L(t) :=

 L(MU(t)) for dynamic IMRT
L(γ(t)) for rotational IMRT.

(4.2)
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Record and verify system based delivery

The tracking system alternatively supports tracking deliveries without the need to man-
ually import treatment plan files. For conformal RT and step-and-shoot IMRT (i.e., the
delivery modes, which are clinically approved with the ARTISTE radiotherapy suite),
the tracking system can access the communication between the record and verify system
of the ARTISTE radiotherapy suite and the linac control console. This communication
is based on the ’digital machine interface protocol’ (DMIP) and includes:

1. Leaf positions transfer for the next segment to be delivered from the record and
verify system to the linac control console.

2. Transfer of delivered parameters after completion of a segment from the linac con-
trol console to the record and verify system.

DMIP-based deliveries with the MTCS can be performed without manual intervention.
The MTCS scans the DMIP communication 1 to import the constant leaf shape L(MU)
prior to the delivery of the next segment or beam. The MLC tracking delivery is then
performed using the gating interface to interrupt the beam if tracking errors are detected.
If the planned monitor units are delivered, the linac control console automatically stops
the beam. After detection of the corresponding DMIP message 2, the MTCS waits for
the next DMIP message 1 to deliver the next segment.

4.3.2 Tracking loop

The tracking loop calculates leaf positions to adapt the radiotherapy delivery to the
current target motion. The actual leaf motion is controlled by the SCC. As outlined in
section 4.1.3, there is a considerable latency τmlc between leaf position requests, which
are sent to the SCC, and the corresponding physical leaf motion. Consequently, the
tracking loop has to optimize leaf positions for a future point in time t0 + τmlc.

The tracking loop performs the following steps:

1. Request MLC shape of the plan file L(t0 + τmlc) for future point in time t0 + τmlc.

2. Predict the target position ŷ(t0 + τmlc) for future point in time t0 + τmlc.

3. Shift the MLC shape L(t0 +τmlc) according to the beam’s eye view of the predicted
target position ŷ(t0 + τmlc).

4. Calculate a MLC shape Lopt(t0 + τmlc), which is optimally adapted to the shifted
MLC shape of step 3.

5. Send the optimized MLC shape Lopt(t0 + τmlc) to the SCC.
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The calculation of Lopt(t0 + τmlc) in step 4 is performed according to the formalism
outlined in section 4.2.1. The tracking loop is triggered by every second MLC position
update of the SCC.

The MTCS uses either linear regression or support vector regression (see chapter 2) for
the prediction of future target positions ŷ(t0+τmlc). For combined external surrogate and
sparse internal motion monitoring, prediction of internal target positions is calculated
in two steps: Firstly, the future external surrogate position ŝext(t0 + τmlc) is predicted.
Secondly, an external/internal correlation model is used to estimate the future internal
target position ŷ(t0+τmlc) from the predicted external position ŝext(t0+τmlc) and previous
external position observations (sections 3.2 and 6.2.1).

The tracking loop obviously controls leaf positions indirectly, as the hardware actuation
is performed by the SCC. The tracking loop sends desired leaf trajectory requests to
the SCC and does consequently not contain any feed-back of the physically realized
leaf motion. The inspection of leaf positioning accuracy is conferred on the verification
loop. The leaf position calculations of the tracking loop are however based on real-time
observations of the carriage positions as reported by the SCC, which is necessary to
compensate for a gravitation induced sag of carriage positions during rotational IMRT
deliveries.

4.3.3 Verification loop

The verification loop continuously evaluates the tracking accuracy. It uses the gating
interface (section 4.1.3) to turn the treatment beam temporarily off, if tracking errors
exceed a predefined tolerance level. The MLC tracking then continues without radiation
delivery. If the tracking accuracy stays within the error tolerance for a certain time
interval, the radiation delivery is resumed.

The verification loop repeats the following steps every 100 ms:

1. Request MLC shape of the plan file L(t0) for current point in time t0.

2. Get the actual target position y(t0).

3. Shift the MLC shape L(t0) according to the beam’s eye view of the actual target
position y(t0).

4. Calculate a MLC shape Lopt(t0), which is optimally adapted to the shifted MLC
shape of step 3.

5. Get the actual MLC shape Lact(t0), that was reported by the SCC.
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6. Compare optimal and actual MLC shapes Lopt(t0) and Lact(t0) and quantify the
tracking error.

7. Turn the beam on or off.

Steps 1 to 4 of the verification loop basically repeat the corresponding steps of the
tracking loop; they are, however, performed for the current point in time t0 as opposed
to the future point in time t0 + τmlc, at which the tracking loop is operating.

The verification loop is sensitive to two sources of tracking errors: firstly, target position
prediction errors and secondly, mismatches between requested leaf trajectories by the
tracking loop and the corresponding physically realized trajectories. The mismatches
between requested and actually realized leaf trajectories are caused by hardware limita-
tions, such as the limited leaf velocity or the limited maximum and minimum extension
of the leaves from the carriages. The inspection of these mismatches by the verification
loop compensates for the lack of feed-back within the tracking loop.

The verification of leaf positioning needs to be performed continuously during radiation
delivery. It consequently has to be based on data streams, which are frequently updated.
This is problematic for MLC tracking deliveries, which are based on sparse internal
motion monitoring combined with continuous external surrogate monitoring (sections 3.2
and 6.2). In this case, step 3 of the verification loop uses the estimation of the actual
internal target position ŷ(t0) of the external/internal correlation model. The verification
is accordingly insensitive to correlation model inaccuracies.

The quantification of tracking errors in step 6 is based on the comparison of the actual
MLC shape Lact(t0) and the MLC shape Lopt(t0) that is optimally adapted to the actual
internal target position y(t0) according to the formalism depicted in section 4.2.1. The
inevitable tracking errors due to the finite leaf width do not contribute to the tracking
error assessment of the verification loop. The actual measure for tracking errors is the
sum of wrongly blocked and wrongly open areas of the MLC shape Lact(t0), normalized to
the area of the optimal radiation field Lopt(t0). Leaf positioning errors are more strictly
penalized for small fields than for large fields.

4.4 MLC tracking control software

To implement the workflow of the MTCS as depicted in section 4.3, we have developed
a large scale C++ software package.1 The software package includes a total of 43 C++
classes implemented in a total of approximately 14 000 lines of physical source code
(without external libraries). It features a graphical user interface (GUI) to select the

1Code implementation with support of Dr. S. Nill
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different radiotherapy delivery modes, the motion monitoring devices, the prediction
models, and the correlation models. It uses the concept of multi-threading to perform
multiple tasks simultaneously. The implementation includes a total of 16 threads. A
maximum of 9 threads run in parallel to the thread for GUI display in the case of MLC
tracking applied to a step-and-shoot IMRT delivery with combined external surrogate
and internal target motion monitoring.

The MTCS adopts parts of a previous in-house developed MLC tracking software pack-
age (Tacke, 2009; Tacke et al., 2010). The previous system supported MLC tracking of
rigid 3D target translation for the delivery modes conformal RT, step-and-shoot IMRT
and rotational IMRT. Tracking applied to dynamic IMRT was restricted to 1D target
translations and 1D uniform target deformations (Tacke et al., 2007). Motion detec-
tion was performed with a potentiometer. Target motion prediction based on a linear
extrapolation of the two latest position observation was the limiting factor for tracking
accuracy.

A complete software redesign was necessary to allow the following substantial extensions
in functionality of the MTCS compared to the previous tracking system:

1. Motion monitoring: The MTCS implements clinically applicable motion monitor-
ing based on the Calypso System (section 3.1.1), x-ray fluoroscopy (section 3.1.2)
or combined external surrogate and internal motion monitoring (section 3.2).

2. Prediction models: The MTCS features the advanced prediction models linear re-
gression and support vector regression. The implementation includes continuous
retraining of the predictors to adapt to changes in the respiratory pattern (sec-
tions 2.2.3 and 2.2.4).

3. Correlation models: The MTCS supports combined external surrogate and internal
motion monitoring. It manages position data streams of two devices and imple-
ments a support vector regression based correlation model, which is continuously
updated during the delivery (sections 3.2 and 6.2).

4. Verification: The continuous assessment of tracking accuracy based on the verifi-
cation loop (section 4.3.3) represents an important step towards quality assurance
requirements for any clinical or pre-clinical application.

5. MLC visualization: The MTCS features real-time display of actual MLC positions.
It also shows the MLC shapes that are optimally adapted to the current target
position as calculated by the verification loop. The real-time visualization enables
the operator to manually intervene in case of undesired MLC behavior.

6. Integration of delivery modes: The MTCS integrates the delivery modes conformal
RT, step-and-shoot IMRT, dynamic IMRT and rotational IMRT into one software

51



4.4 MLC tracking control software

Delivery management Tracking and verification Prediction

start / stop tracking

start / stop prediction

Tracking ctrl.
• optimize MLC 
shapes

Verification ctrl.
• assess tracking 
accuracy

Delivery ctrl.
• manage delivery modes
• control delivery states

Prediction ctrl.
• perform prediction / correlation
• create training data matrices

MLC ctrl.
• send / report
MLC shapes to SCC 

Linac ctrl.
• control gating 
interface

Position ctrl.
• control motion 
monitoring devices 

Regression ctrl.
• perform 
predictor training

Plan ctrl.
• import treatment 
plan files

DMIP ctrl.
• scan DMIP 
communication

get leaf sequence L get next segment
set next MLC shape turn  beam on / off

get actual MLC shape

get target positions activate  regression

request MLC shapes request predicted positions

Figure 4.5: Overview of the three modules of the MLC tracking software package as well as
the main C++ classes within the modules. The arrangement of the classes within the modules
in rows represents the class hierarchy: The classes in the upper row determine the workflow of
the MTCS. The classes in the lower row perform clearly defined tasks upon request.

package. The integration avoids duplication of source code, which makes the soft-
ware more easy to maintain and less prone to programming errors. The GUI allows
the selection of the delivery modes as well as the configuration of all important de-
livery parameters.

4.4.1 Software modules

The guidelines for the MLC tracking software development were maintainability and fur-
ther extendability. We achieved this through a modular software design, as well as clear
interface definition between the modules and classes of the software. Modularity refers to
the separation of the program into several distinct components (i.e., the modules) that
overlap in functionality as little as possible. Definition of interfaces between C++ classes
is achieved naturally by utilizing the concepts of object oriented programming such as
encapsulation, information hiding and inheritance. Figure 4.5 shows the three modules
of the MLC tracking software package, as well as the most important classes, which are
forming these modules. In the following we will discuss the modules in detail.
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Delivery management

The delivery management module is responsible for two tasks: firstly, the management
of leaf sequences for the different delivery modes and secondly, the control of delivery
states. The latter includes activation and deactivation of the tracking and verification
module and the prediction module as well as exception handling.

Management of leaf sequences L(MU) for conformal RT, step-and-shoot IMRT, dynamic
IMRT and rotational IMRT deliveries relies either on the import of treatment plans
through a plan controller class, or on the DMIP-based communication between record
and verify system and linac control console (section 4.3.1). DMIP communication is
hereby scanned continuously by a DMIP controller class. The delivery specific MLC
shape L(t) for time t of the delivery (4.2) is provided to the tracking and verification
module through a function get next MLC shape(t).

The control of the delivery states by the delivery management module will be illustrated
on the example of a DMIP-based step-and-shoot IMRT delivery:

1. Treatment preparation: The delivery controller initializes all C++ classes for the
selected delivery. The prediction module is activated and the network connection
of the DMIP controller is established.

2. Beam preparation: Triggered by the DMIP transfer of the first MLC segment, the
carriages of the MLC are positioned. As simultaneous carriage and leaf motion is
not possible, carriages have to be positioned prior to the delivery of the segment so
that compensation of target motion within the expected range is possible without
further carriage adjustment.

3. Segment preparation: Upon DMIP transfer, the leaves are positioned to the the
MLC shape for the next segment. If the positions are reached, the delivery state
is entered automatically.

4. Delivery: The tracking and verification loops are started. The tracking delivery
is performed with treatment beam control by the verification controller. After
the delivery of the planned monitor units, the tracking and verification loops are
stopped and the system switches into the segment preparation state.

5. Delivery halt: If any hardware or software complication is detected, the delivery
management switches into a ’delivery halt’ state. Such exceptions can be caused
by interlocks from the linac control console, network connection breakups, slow
reactions of a software module or the detection of unrealistically large target move-
ments. The delivery management stores delivery parameters such as already de-
livered monitor units to be able to resume the delivery after the complication is
resolved.
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Tracking and verification

The module is initialized and stopped by the delivery management module before and
after the tracking delivery of each beam or segment. It is responsible for performing the
leaf adaptation to the target motion during the delivery of a beam or segment of the
radiotherapy delivery.

The classes ’tracking controller’ and ’verification controller’ perform the tracking and
verification loops (sections 4.3.2 and 4.3.3). The MLC controller manages the commu-
nication with the SCC and triggers the tracking loop with every second MLC update of
the SCC. The Linac controller uses the gating interface to control the treatment beam
status. For rotational IMRT deliveries, it additionally monitors the gantry motion and
controls the dose-rate modulation.

The tracking and verification controllers request next MLC shapes from the delivery man-
agement module. For this purpose, the delivery management module provides a function
get next MLC shape(t). The implementation of this function within the delivery man-
agement module depends on the actual delivery mode. The different implementations
are not visible to the tracking and verification module, which can therefore operate com-
pletely independent of the actual delivery mode.

The tracking and verification controllers request predicted and actual positions from the
prediction module, respectively. The connection to the prediction module is indepen-
dent of the motion monitoring strategy. The specific implementation of the functions
get actual position() and get predicted position() within the prediction module
is not visible for the tracking and verification module.

The tracking controller is implemented as abstract C++ class, which defines the interface
to the other modules. Individual tracking modes are derived from the abstract class and
inherit the interface. The current implementation supports ’no tracking’ and ’rigid 3D
target translation tracking’ modes. The no tracking mode is useful for the delivery of
dynamic IMRT or rotational IMRT – the delivery modes, which are not supported by
the clinically approved ARTISTE radiotherapy suite. Possible extensions of the MTCS
could implement tracking modes for more complex forms of target motion (for example
rotation and deformation) or tracking modes, which additionally compensate for the
motion of nearby organs at risk.

Prediction

The prediction module provides future target positions ŷ(t0 + τmlc) for the compensation
of the system latency. Additionally, it predicts actual internal target positions ŷ(t0) from
the external surrogate signal based on a external/internal correlation model.
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The module performs continuous retraining of both the future target position predictor
and the external/internal correlation model. It is activated by the delivery management
module at the beginning of a treatment. Unlike the tracking and verification module, the
prediction module is not deactivated until the treatment is finished. Adaptive predictor
retraining is performed throughout the complete treatment.

Upon activation through the delivery management module, the position controller ini-
tializes the motion monitoring devices and stores the reported positions. The prediction
controller then starts the training of prediction and correlation models. It therefore ar-
ranges the stored target positions into training data matrices matrices X and Y contain-
ing input vectors and target scalars (section 2.2.3). It then selects one of the regression
controllers (i.e., linear regression or support vector regression) to establish the prediction
function f based on the training data matrices.

Prediction of 3D motion data is performed for each coordinate independently. Data
preprocessing, as depicted in section 2.2.2, is applied to eliminate baseline drifts and
breathing amplitude fluctuations. The optimal parameter vector β of the linear regres-
sion prediction function (2.8) is calculated by solving (2.10) analytically. Quick matrix
inversion is performed using LU-decomposition. The optimization problem (2.19) for the
support vectors regression prediction function (2.18) is solved using the C++ package
LIBSVM (Chang and Lin, 2001). The linear regression and support vector regression
controllers are derived from an abstract regression controller class, which defies the in-
terface to the prediction controller.

The current implementation includes prediction controllers for a single internal motion
monitoring device or combined external surrogate and internal target motion monitoring.
They are derived from an abstract prediction controller class. The individual prediction
controllers implement different versions of the functions get actual position() and
get predicted position(), which constitute the interface to the tracking and verifica-
tion module.
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5 MLC tracking based on the Calypso
System

This chapter presents various experiments performed with the MLC tracking system in-
tegrated with the Calypso System (section 3.1.1) for motion monitoring. In section 5.1,
we present measurements of the total system latency as well as an analysis of the main la-
tency contributors. In section 5.2, we present experiments of MLC tracking with regular
sinusoidal motion patterns. The study focuses on dosimetric tracking accuracy assess-
ments for conformal radiotherapy and step-and-shoot IMRT deliveries. In section 5.3,
MLC tracking is applied to irregular respiratory motion and prostate motion traces. The
geometric and dosimetric tracking performance is not only assessed for MLC tracking,
but is also compared to a patient couch tracking system, which was installed at our
research ARTISTE linac in a multi-institutional cooperation. In section 5.4, we evaluate
the application of MLC tracking to dynamic IMRT deliveries.

5.1 Latency

Processing times within the individual components of the integrated tracking system
add up to a total system latency. We formally define system latency as the lag time
between an initial target motion and the corresponding beam-target realignment. Precise
knowledge of the total system latency is necessary, as it defines the lookahead length of
the predictor.

The following sections show measurements of the total system latency as well as an
analysis of the contribution of the individual components of the MTCS to the total
system latency.1

5.1.1 Experimental setup

Figure 5.1 shows a photograph of the experimental setup for the latency measurements.
A simple phantom, which consists of a stack of solid water slices, is mounted on a motion

1Measurements performed by M. Menten.
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Siemens ARTISTE linac

Calypso array

Phantom

FPD

Figure 5.1: Experimental setup for MLC tracking based on the Calypso System. Phantom
motion is detected with the Calypso array. The flat panel detector (FPD) captures phantom
and MLC motion at the same time.

platform. The phantom has the three Calypso transponders as well as a radioopaque
marker embedded. The motion platform can reproduce arbitrary 3D trajectories with
sub-millimeter precision. The Calypso System monitors the phantom motion at a frame-
rate of 25 Hz and reports it to the MTCS. The MTCS adapts the MLC aperture to the
reported target motion. The on-board flat panel detector (FPD) acquires portal images
continuously during the tracking experiments. The portal imagery allows capturing the
motion of the radioopaque marker in the phantom and the motion of the MLC aperture
at the same time within each imaging frame.

5.1.2 Total system latency

Total system latency was determined by switching the prediction algorithm of the MTCS
off and measuring the resulting lag time between target motion and the corresponding
beam-target realignment using portal imagery. The phantom was moved on a 1D si-
nusoidal trajectory parallel to the leaf travel direction. During radiation delivery in
tracking mode, portal images were acquired with an update rate of 15 Hz. A circular
MV radiation field with a diameter of 5 cm was chosen. The centroid trajectories of both
the circular field aperture and the radioopaque marker were determined from the portal
imagery automatically. Sine-functions were fitted to the resulting sampled trajectories
of the MV field and the target. The latency could be read off the phase difference of the
two fitted curves.
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(a) (b) (c) (d)

Figure 5.2: Detection of the centroids of the circular radiation field and the radioopaque
marker. (a) raw image, (b) region of interest (ROI) after preprocessing, (c) binary image of
the ROI, (d) result of the image analysis – the green cross lines indicate the centroid of the
radiation field; the red square highlights the metal ball.

Analysis of portal imagery

Figure 5.2a displays a portal image of the circular radiation field including the shadow of
the radioopaque marker. The centroid position of the circular field is determined in two
steps: (1) conversion of the portal image into a binary image by applying a threshold
of 60% of the mean pixel value within the MV field, (2) calculation of the geometric
centroid of the points in the resulting binary image with pixel value 1.

After determination of the centroid of the circular MV field, the radioopaque marker
was detected within a rectangular region of interest (ROI) around the centroid of the
radiation field. The size of the ROI was chosen such that the ROI was completely inside
the radiation field. The algorithm for radioopaque marker detection was essentially
adopted from Rau et al. (2008). The following steps were performed to detect the marker
within the ROI:

1. Image preprocessing including noise reduction through a median filter as well as
contrast maximization. The ROI after preprocessing is displayed in figure 5.2b.

2. Threshold based conversion into a binary image (figure 5.2c).

3. Labeling of the multiple components of the binary image (i.e., the connected areas
with pixel value 1 within the binary image).

4. Analysis of geometric properties of the components – such as area, minor and major
axis length, eccentricity – to distinguish the real radioopaque marker from spurious
components.
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Figure 5.3: Trajectories of centroids of radioopaque marker and circular MV field as extracted
from the portal imagery (crosses). The MV field is lagging behind the target. The total system
latency can be read off the phase difference of the fitted sine-functions (solid lines).

Steps 2 to 4 were repeated with iteratively increased threshold values until the true
marker position was found (i.e., until one of the components fulfilled all constraints on
its geometric properties). The marker position is then given as the geometric centroid of
this component.

Results

Figure 5.3 displays the result of the portal image analysis for a radiation delivery in
tracking mode without target motion prediction. The circular MV field is clearly lagging
behind the target motion. The latency is given by the phase shift of the sinusoidal fits
to the target and MV field trajectories. Five such measurements yielded a total system
latency of τtotal = (586± 3) ms.

5.1.3 Analysis of latency contributors

The MTCS writes dynamic log-files continuously during radiation deliveries. Amongst
others, the following data is stored in the MTCS log-files: (1) the target positions re-
ported by the Calypso System to the MTCS, (2) predicted positions by the MTCS,
(3) the MLC shape requests sent to the SCC (section 4.1.3), and (4) the physically re-
alized MLC shapes reported by the SCC. All log-file entries contain time stamps of the
logged events. Log-file analysis therefore allows us to quantify the contribution to the
total system latency of motion monitoring by the Calypso System, adaptive MLC shape
optimization by the MTCS, and physical leaf position adaptation by the SCC.

Calypso latency The Calypso System reports 3D centroids of the three implanted
transponders. An individual Calypso position update is based on the detection of the
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Figure 5.4: Histogram of position detection latencies reported by the Calypso System.

3D position of only one transponder and the corresponding centroid recalculation. The
Calypso System additionally reports an effective time-stamp of position detection, which
corresponds to a weighted mean value of the three latest individual transponder position
detection times. The latency of each Calypso position update is given as the difference
between the time of position report to the MTCS and the corresponding effective Calypso
time-stamp.

Figure 5.4 displays the distribution of Calypso latencies as extracted from the log-files of
the five latency measurements, which were also used for the portal image analysis. The
wide distribution of Calypso latencies ranges from 50 ms to 180 ms. The distribution ex-
hibits three clearly distinguishable peaks centered roughly at 80 ms, 110 ms and 145 ms.
Analysis of the position packages in the peak at 145 ms suggested that these packages
correspond to transponder detection failures; the packages exactly repeated the position
information of the previous package. We quantify the Calypso position detection latency
as the mean value of the distribution of reported latencies: τcalypso = (93± 27) ms.

Effective Calypso latency Calypso positions updates are not synchronized to the it-
erations of the tracking loop and the corresponding optimized MLC shape requests sent
to the SCC. Poulsen et al. (2010b) therefore proposed an effective position detection
latency, which depends on the sampling frequency f of the motion monitoring system:

τeff = τ + 1
2f . (5.1)

Given the Calypso update rate of 25 Hz, the expected effective Calypso latency accord-
ingly amounts (113± 27) ms.

The effective position detection latency can also be measured with the MTCS log-files.
Log-file entries of predicted target positions are written at the beginning of the tracking
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loop. For the latency measurements, target motion prediction is turned off. The cor-
responding predictor ’none’ logs the latest 3D target position update provided by the
Calypso System with the actual time stamp. The lag time between the target trajectories
based on the effective Calypso position detection time-stamp on the one hand and target
trajectories based on the predictor ’none’ time stamp on the other hand corresponds to
the effective position detection latency.

Similar to the latency analysis based on flat panel imagery, this lag time was quantified
through the phase difference of sinusoidal fits. The effective Calypso latency calculation
for the five measurements yielded: τcalypso,eff = (112 ± 6) ms. This value is in perfect
agreement with the expected value based on (5.1).

Tracking loop The MLC shape log-file entries include carriage and leaf positions as
well as the time-stamps for MLC shape transfer to or from the SCC. The tracking loop
is triggered by every second MLC shape update of the SCC and ends with a MLC
shape request sent to the SCC (section 4.3.2). The calculation time for one iteration of
the tracking loop can therefore be quantified as the difference of time-stamps between
corresponding SCC position updates and requests. The distribution of tracking loop
computation times within the five measurements yielded τloop = (1.4± 0.7) ms.

Total system latency The total system latency can be calculated from the log-files
of the target position trajectory and the centroid trajectory of physically realized MLC
shapes as reported by the SCC. The centroid coordinate of the circular MLC aperture
parallel to the leaf travel direction is hereby quantified as the mean value of the middle
positions of all open leaf pairs. In five measurements we obtained a total system latency
of τtotal,log = (615±8) ms. This value is about 30 ms larger than the corresponding value
of the portal image analysis.

The SCC does not report a time stamp for leaf position detection with its MLC shape
updates. The log-file analysis used the time-stamp of MLC shape reports to the MTCS
as the time-stamp for leaf position detection. It consequently over-estimated the total
system latency. We assume that the over-estimation of the total system latency is solely
caused by the missing time-stamp for leaf position detection within SCC updates. We
neglect possible systematic errors in the effective time-stamp calculation of the Calypso
System. Consequently, time axes of MLC trajectories reported by the SCC have to be
shifted by (29± 9) ms towards smaller values.

MLC latency We quantify the MLC latency as the lag time between an MLC position
request sent to the SCC and the corresponding physical leaf adaptation. The log-file
analysis provides MLC aperture centroid coordinate trajectories parallel to the leaf travel

62



5 MLC tracking based on the Calypso System

Table 5.1: Latencies of the components of the tracking system.

Contributor Latency [ms]

Total (portal imagery) 586 ± 3
Total (log-files) 615 ± 8

Calypso position detection 93 ± 27
Calypso effective 112 ± 6

Tracking loop 1.4 ± 0.7

MLC 503 ± 5
MLC corrected 473 ± 10

direction for MLC shapes sent to or received from the SCC. The phase shift of sinusoidal
fits to these trajectories averaged over five measurements amounts τmlc = (503±5) ms.

The aforementionned over-estimation of the total system due to the missing time-stamp
for leaf position detection within SCC updates also leads to an overestimation of the MLC
latency. Taking into account the correction of time axes of MLC trajectories reported by
the SCC by a shift of (29± 9) ms towards smaller values yields a corrected MLC latency
of τmlc,corrected = (473± 10) ms.

5.1.4 Summary

We have precisely measured the latency of the integrated tracking system using portal
imagery. Based on a log-file analysis, we have additionally quantified the contribution to
the total system latency of the motion monitoring by the Calypso System, the calculation
of optimized MLC positions by the the MTCS and the physical MLC adaptation by the
SCC. We have observed a discrepancy between portal imagery and log-file analysis. We
have identified a missing time-stamp within MLC updates of the SCC as the source
of the discrepancy and have corrected the MLC latency accordingly. The results are
summarized in table 5.1.

The MLC latency of (473 ± 10) ms is by far the main contribution to the total system
latency. It is also substantially larger than the MLC latency of a similar MLC tracking
developed at Stanford University (Keall et al., 2006a; Sawant et al., 2008), for which
Poulsen et al. (2010b) reported a MLC latency of only 52 ms. The total latency of
the Stanford MLC tracking system integrated with the Calypso System amounts 220 ms
(Sawant et al., 2009); it is almost three times smaller than the latency of our tracking
system.
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5.2 Regular motion tracking

In the following, we report on the performance of the MLC tracking platform integrated
with the Calypso System. Tracking performance is characterized in terms of geometric
and dosimetric accuracy. The evaluation is based on conformal RT and IMRT radia-
tion deliveries applied to different phantoms moving on sinusoidal trajectories in two
dimensions.

5.2.1 Materials and methods

Experimental setup

The experimental setup is displayed in figure 5.5. Except for the phantom, the same
equipment as for the latency measurements was used. The displayed phantom mimics a
human thorax. It consists of solid water slices of 10 mm thickness with lung equivalent
inserts and a tumor inlay.

The following coordinate system was used throughout the present study. The origin
coincides with the isocenter. The x-axis points in the left-right direction for a patient
in the head-first, supine position. The y-axis points in superior-inferior direction toward
the linear accelerator, and the z-axis points upward in the anterior-posterior direction.
The collimator angle was set to 90◦ such that the leaf travel direction coincided with the
y-axis.

Prediction of future target positions was based on linear regression (section 2.2.3). The
model parameters were however not systematically optimized. Preprocessing – as de-
picted in section 2.2.2 – was not necessary, as the sinusoidal motion patterns do not
exhibit baseline drifts or amplitude fluctuations.

To assess the geometric accuracy of the tracking system, the phantom was moved on a
Lissajous curve consisting of two sine waves parallel and perpendicular to the leaf travel
direction with a periodicity of 4.5 s and 6.5 s. Portal images were acquired continuously
during radiation delivery in the target tracking mode. Tracking errors were calculated
from the distance between the centroids of the radiation field and the metal ball derived
from the portal images.

Radiologic accuracy

For the assessment of the radiologic benefits achievable with the tracking system, ra-
diochromic films (Gafchromic EBT, International Specialty Products, Wayne, NJ) placed
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Figure 5.5: Experimental setup for MLC tracking based on the Calypso System. Phantom
motion is detected with the Calypso array. The flat panel detector (FPD) captures phantom
and MLC motion at the same time.

in between the solid water slices of the phantoms were irradiated. For each set of mea-
surements, three scenarios were investigated: radiation delivery in static MLC mode to
the non-moving phantom defining the reference standard for the tracking experiments,
delivery in static MLC mode to the moving target, and delivery in the dynamic MLC
tracking mode.

The films were scanned and normalized to the maximal dose of the reference standard
measurement for each set of experiments. A comparison to this reference measure-
ment was performed in terms of the gamma-test, which brings the dose difference and
distance-to-agreement maps together (Low and Dempsey, 2003). For the calculation of
the gamma-metric, we used the maximal value of the reference dose distribution as the
reference value for the accepted percentage of dose deviation.

We assumed that the static radiation delivery to the non-moving target represented
optimal delivery in terms of target coverage and healthy tissue sparing and, therefore,
considered the gamma-index evaluation (i.e., the estimation of the similarity of a dose
distribution to this reference standard distribution) as an appropriate measure of dosi-
metric accuracy. Advancing from a technical to a more clinically relevant viewpoint,
three kinds of experiments using two phantoms were performed:

1. An open, circular radiation field 5 cm in diameter in the isocenter was applied to
a simple phantom, which consisted of a stack of water equivalent slices. The phan-
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Figure 5.6: Tracking accuracy in direction parallel (upper panel) and perpendicular (lower
panel) to leaf travel direction. Trajectories of the centroid of the radiation field, the target
position and the difference between these curves are displayed.

tom was moved both in a twodimensional Lissajous curve and in one-dimensional
sinusoidal trajectories parallel and perpendicular to the leaf travel direction with
a periodicity of 4.5 s and 6.5 s and amplitude of 2 cm and 1 cm, respectively. This
allowed the examination of the influence of the finite leaf width to the total delivery
accuracy, which only played a role for the compensation of movements perpendic-
ular to the leaf travel direction.

2. A single beam out of a step-and-shoot IMRT plan (see below) was applied to the
same simple phantom in two-dimensional tracking mode. Again, the phantom was
moved on the aforementioned Lissajous curve.

3. A complete step-and-shoot IMRT plan was applied to the thorax phantom. The
transponders were embedded in the tumor inlay. The phantom was moved on a
cos4(t)-shaped trajectory in y-direction with an amplitude of 2.4 cm. The slices of
the phantom are aligned perpendicular to the motion axis of the phantom. The
delivery was performed in the completely automatic DMIP mode (section 4.3.1).
The standard five-beam treatment plan was generated for a computed tomography
scan of the lung phantom.

5.2.2 Results

Geometric accuracy

In figure 5.6, the trajectories of the centroid of the field aperture and the target po-
sition are plotted, together with the tracking error (i.e., the difference between these
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Figure 5.7: Dose distributions of the circular field applied to the target moving in two direc-
tions (Upper row). Gamma-test results displayed as grayscale dose distribution with gamma-
indexes > 1 marked in red for overdosage and blue for underdosage (Lower row).

two curves). In both cases, the absolute of the tracking errors remained below 1.6 mm.
A root mean squared error of 0.69 mm mm and 0.80 mm was observed for the direc-
tions parallel and perpendicular to the leaf travel direction, respectively. Parallel to the
leaf travel direction, the maximal tracking errors occurred in the regions of the greatest
leaf velocities. Perpendicular to the leaf travel direction, the greatest deviations were
observed in the peaks of the trajectory.

Radiologic accuracy

The upper row of figure 5.7 shows the dose distributions for the circular field applied
to the non-moving target in the static MLC mode, the target moving in two directions
in the static MLC mode, and the moving target in the dynamic tracking MLC mode.
For the no-tracking case, strong blurring of the static reference dose distribution was
observed. The high-dose area inside the 95% isodose line decreased from 13.8 cm2 to
8.1 cm2. In contrast, the region between the 20% and 95% isodose lines increased from
11.7 cm2 to 24.6 cm2. Both effects were negligible in the tracking case. Except for a
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Table 5.2: Failure rates of the gamma-test for a circular field applied to different target motion
patterns.

Without tracking With tracking

Target motion 2%/2mm [%] 3%/3mm [%] 2%/2mm [%] 3%/3mm [%]

Two-dimensional 59.7 40.6 3.3 0.5
Parallel 51.1 32.3 0.6 0.1
Perpendicular 14.8 1.5 3.6 0.9

smoothing of the sharp edges, the reference dose distribution could be well restored in
the tracking case.

The lower row of figure 5.7 shows maps of the points failing the 2%/2mm gamma-criterion
(i.e., having a gamma-value > 1). A large ring of points receiving an underdosage (blue
spots) inside the target volume followed by an overdosage region (red spots) outside
the target volume could be observed for the no-tracking case. In contrast, only very
few points near the closing position of the adjacent leaves failed the gamma-test in the
tracking case.

Table 5.2 lists the gamma-test results for tracking in two dimensions and for tracking
along the directions parallel and perpendicular to the leaf travel direction. For tracking
parallel to the leaf travel direction, an almost complete recovery of the reference dose
distribution was observed. Only 0.6% of the evaluated points failed the 2%/2mm gamma-
criterion. For tracking perpendicular to the leaf travel direction, an increased failure rate
of 3.6% was observed. For target displacements perpendicular to the leaf travel direction,
the planned field shape could not be completely restored because of the finite leaf width
of 5 mm, which was therefore the main contribution to the radiologic inaccuracy for
twodimensional tracking in this experiment.

Figure 5.8 shows the results of the film evaluation of a single IMRT beam applied to a
target moving in two dimensions. Again, dose distributions (upper row) and maps of
points failing the 2%/2mm gamma-criterion (lower row) are displayed. For the tracking
case, an improvement of the strong blurring effect of the no-tracking case was clearly
visible. The gamma failure rate decreased from 55% to 15.6% and from 31% to 7.6% for
the 2%/2mm and 3%/3mm criterion, respectively. However, an underdosage of the sharp
target edges and an overdosage of the surrounding areas above and below the target area
remained when tracking was applied.

In a third set of measurements, the radiologic effect of our tracking approach to a com-
plete IMRT plan for a lung tumor site was assessed. Four films were sandwiched between
the slices of the lung phantom. Two films (Films 2 and 3) were placed near the center
of the phantom’s tumor inlay; Film 1 was placed 5 mm inside the target volume and
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Figure 5.8: Dose distributions of a single IMRT beam applied to the target moving in two di-
rections (Upper row). Gamma-test results displayed as grayscale dose distribution with gamma-
indexes >1 marked in red for overdosage and blue for underdosage (Lower row).

Film 4 was placed 5 mm outside the target volume. Although for the two central sections
(Films 2 and 3), the target motion induced only minor discrepancies between planned
and delivered dose, the planned dose distribution to Films 1 and 4 was completely com-
promised. The 2%/2mm gamma-analysis results are listed in table 5.3.

Figure 5.9 shows the horizontal dose profiles of Films 1 and 4. Both the strong under-
dosage of Film 1 and the overdosage of Film 4 observed in the no-tracking case were
substantially reduced using the tracking technique. Tracking resulted in a reduction of
the mean overdosage of Film 4 (i.e., the mean dose difference between the measurement
and the reference standard scan), from 20.9%to 5.2% of the maximal target dose.

5.2.3 Discussion

The presented experimental results have demonstrated the feasibility of intra-fractional
motion compensation using a Siemens 160 MLC based on target motion monitoring with
the Calypso System. We could demonstrate highly accurate target tracking and showed
that even complex IMRT dose distributions could be recovered to a high degree using
the integrated tracking system. The experiments represented the ideal case of perfectly
regular target motion patterns. The linear regression predictor therefore induced almost
no error to the overall system, despite the large system latency.
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Figure 5.9: (a,b) Gamma-test results for Films 1 and 4 displayed as dose distributions recorded
on tracking film, with points failing 2%/2mm gamma-criterion marked in red and blue for
overdosage and underdosage, respectively. (c,d) Horizontal profiles of films 1 and 4 for reference,
tracking, and no-tracking cases. Dose values normalized to maximal dose delivered to tumor.

Film dosimetry demonstrated considerable improvements for all the investigated scenar-
ios. An almost complete recovery of the planned dose distribution was observed for open
field tracking. A 2%/2mm gamma-failure rate of 0.6% and 3.6% for target motion par-
allel and perpendicular to the leaf travel direction, respectively, was observed. These
findings emphasize that the prediction errors play no role for the regular motion traces
used in our study. The tracking accuracy was primarily limited by the finite leaf width
of 5 mm in the isocenter.

For a single IMRT beam applied to the phantom moving in two dimensions, the 2%/2mm
gamma-failure rate was reduced from 54.6% to 15.6% by applying the tracking technique.
Again, the remaining inaccuracy could be addressed to the finite leaf width. Because
several segments of the IMRT field exhibited large leaf apertures directly adjacent to a
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Table 5.3: Failure rates of the gamma-test for a five beam IMRT plan applied to the lung
phantom moving on a 1D cos4(t) trajectory with an amplitude of 24 mm and a period of 5 s.

Without tracking With tracking

Film position 2%/2mm [%] 3%/3mm [%] 2%/2mm [%] 3%/3mm [%]

1 99.6 98.5 8.6 2.2
2 10.3 2.4 0.3 0.0
3 27.6 11.1 1.8 0.1
4 98.6 96.7 65.1 51.8

For the no tracking case, the treatment isocenter was placed in full exhale phase of the target
trajectory. Calculation of the gamma-metric refers to the same normalization value for the four
films (i.e., the maximal dose recorded on the reference measurement).

closed leaf pair, the effect of the finite leaf width on the IMRT dose distribution was by
far more pronounced than for the circular field.

To investigate the clinical benefits of the tracking system, the dosimetric accuracy was
assessed for a five-beam IMRT plan. The strong underdosage of the tumor edge traveling
out of the treatment field without tracking applied could be compensated effectively.
The 2%/2mm gamma-failure rate decreased from 99.6% to 8.6%. The overdosage of
the surrounding tissue traveling into the treatment beam without tracking recorded on
Film 4 showed that the dose gradients intended to protect the healthy tissue from an
excessive dose were severely compromised without tracking. This effect could not be
completely eliminated.

Nevertheless, a reduction of the 3%/3mm gamma-failure rate from 96.7% to 51.8% and
of the mean overdosage from 20.9% to 5.2% of the target dose observed for a film placed
5 mm outside the target volume showed at least considerable improvement when the
tracking technique was applied. The dose profiles displayed in figure 5.8 show that
the maximal dose recorded on that particular film for the reference measurement was
approximately 55% of the maximal dose delivered to the tumor. This indicates that
the film was placed in a region of steep dose gradients. The remaining inaccuracy for
the dose delivery thus showed the sensitivity of the steep dose gradients achievable with
IMRT to minor target displacements. Even for the idealized conditions of this tracking
experiment, we were not able to completely restore the planned dose distribution.
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5.3 Comparative performance of MLC tracking and
robotic couch tracking

Compensation of intra-fractional organ motion based on MLC tracking adapts the treat-
ment beam to the observed target motion. Another approach to intra-fractional motion
compensation is robotic patient couch tracking (D’Souza and McAvoy, 2006; Wilbert
et al., 2008). A robotic patient couch is used to move the entire patient to counter-
steer the target motion, i.e. the patient couch is moved such that the tumor position is
fixed within the room coordinate system. Consequently, patient couch tracking does not
influence the radiation delivery process.

In a multi-institutional collaboration, we have performed a comparison study of MLC
tracking and robotic couch tracking. To achieve equal conditions for both tracking sys-
tems, an integrated couch tracking system developed at the University of Würzburg
(Wilbert et al., 2008) was installed at our institution. The couch tracking system relies
on motion compensation through the HexaPOD robotic table top (Medical Intelligence,
Schwabmünchen, Germany). The HexaPOD control system was modified to receive tar-
get position information from the Calypso System.

The study included lung tumor and prostate motion tracking. Tracking performance was
assessed geometrically through portal imagery and dosimetrically through film dosime-
try.2

5.3.1 Materials and methods

Experimental setup

Figure 5.10 displays the experimental setup for the tracking experiments. The HexaPOD
was mounted on top of the standard Siemens treatment couch. The 4D motion stage was
fixed on the HexaPOD. For the couch tracking deliveries, the HexaPOD countersteered
the motion of the 4D stage so that the phantom’s position in the room coordinate system
was minimized. During MLC tracking deliveries we locked the HexaPOD position. The
displayed cylindrical phantom was used for the prostate motion tracking experiments.
It was fixed to the motion stage and contained the Calypso transponders. The Calypso
System detected transponder motion and reported it to either the MTCS or to the Hexa-
POD control system. For the lung tumor tracking experiments, the cylindrical phantom
was replaced by the previously described simple phantom, which consists of stacked solid
water slices. The lung tumor tracking experiments additionally utilized the on-board flat
panel imager to assess geometric tracking accuracy as outlined in section 5.1.2.

2Measurements and initial data evaluation performed by M. Menten
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Siemens ARTISTE linac

Calypso array

Phantom

HexaPOD

Figure 5.10: Experimental setup for MLC and HexaPOD tracking. The HexaPOD is mounted
on top of the Siemens treatment couch. Phantom motion is detected with the Calypso array.

The HexaPOD control system

The HexaPOD tracking control system used the target position updates of the Calypso
System to minimize the phantom motion in the room coordinate system. The motion of
the HexaPOD was detected with a infrared camera system (Polaris, Waterloo, Ontario,
Canada), which monitored a passive infrared marker tool fixed to the HexaPOD. A
closed-loop control algorithm combined the feedback from the phantom and HexaPOD
position updates to maintain the desired state – i.e., a non-moving phantom position.

Lung tumor motion tracking

The study included a total of 8 patient lung tumor motion traces from the breathing
data set introduced in section 2.2.1. The breathing data samples contained internal 3D
tumor motion trajectories acquired with stereoscopic x-ray fluoroscopy at 30 Hz (Berbeco
et al., 2005). The coordinates of the breathing traces were interchanged so that the largest
(second largest) breathing amplitude was in y-direction (x-direction) for the coordinate
system introduced in section 5.2.1. The gantry angle was 0◦ and the collimator angle
was 90◦ so that the leaf travel direction was parallel to the y-axis.

The breathing traces had a minimum length of 80 s. The first 30 s of each breathing trace
were reserved for predictor training. The HexaPOD control system used a prediction
algorithm to compensate for Calypso System latencies. The MTCS used a support
vector regression predictor (section 2.2.3) to compensate for the total system latency of
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Figure 5.11: Example 3D prostate traces. Traces 2 (upper panel) and 4 (lower panel).

586 ms (section 5.1). Tracking performance was assessed during the subsequent delivery
of 225 MU of MV radiation within 45 s.

Tracking performance assessment was based on tracking deliveries with a circular MV
radiation field of 5 cm diameter. Geometric tracking accuracy was determined through
portal image analysis as depicted in sections 5.1.2 and 5.2.1. For MLC tracking deliveries,
geometric tracking errors were quantified as RMS deviations between target and MV field
centroid trajectories. The goal of HexaPOD tracking is to maintain a non-moving target
position within the room coordinate system. Geometric HexaPOD tracking errors were
consequently quantified as RMS deviations of residual target motion from the treatment
room isocenter.

Dosimetric tracking performance was assessed through film dosimetry using radiochromic
EDR2 films (Eastman Kodak, Rochester, NY). Radiation delivery was restricted to the
circular MV field shape. Dosimetric tracking accuracy was quantified through a gamma-
analysis, which compared a static reference dose distribution to the dose distributions of
the MLC and HexaPOD tracking deliveries.

Prostate motion tracking

Tracking performance was evaluated on five prostate motion traces. The prostate motion
data was acquired during daily fractions of radiotherapy prostate treatments (Schmitt
et al., 2010). The length of the motion traces was at least 9 minutes. The motion traces
were shifted to zero displacement at the beginning of the treatment to simulate a perfect
patient setup prior to the delivery. Figure 5.11 displays two example prostate traces.
Trace 2 exhibits large displacement peaks; trace 4 shows a slow prostate position drift.
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Prostate motion tracking accuracy was assessed dosimetrically for the delivery of a com-
plete five beam step-and-shoot IMRT plan. The plan was generated on a CT scan of
the cylindrical prostate phantom with CTV and organ-at-risk contours for prostate and
rectum. The IMRT treatment was delivered within 9 minutes in automatic DMIP mode
(section 4.3.1). A single EDR2 film was inserted into the phantom, oriented parallel
to the y-z-plane. Dosimetric accuracy was quantified through a gamma analysis, which
compared the dose distributions of the tracking deliveries with a static reference dose
distributions.

5.3.2 Results

Respiratory motion

Figure 5.12 shows geometric tracking performances for breathing traces 6 and 8. The
displayed data for MLC tracking was extracted from portal imagery. The data for Hexa-
POD tracking was extracted from dynamic log-files of the control system. It contains
the couch motion for countersteering. The displayed target motion was calculated from
the difference of the couch motion and the residual target motion as reported by the
Calypso system. The portal imagery for HexaPOD tracking, which was used for quan-
titative tracking error analysis, contains only residual target motion (i.e., the difference
between the displayed curves). Both tracking systems could follow the rapid target mo-
tion of breathing trace 6 accurately. Breathing trace 8 exhibited a single extremely
deep breathing cycle, after which the breathing pattern changed strongly. Both tracking
methods failed to adapt quickly to these irregularities.

Figure 5.13 displays geometric RMS errors of MLC and HexaPOD tracking for the 8 lung
tumor motion traces. The tracking errors were quantified through portal image analy-
sis. Tracking method ’none’ refers to static radiation delivery applied to the phantom,
which moved on the same trajectories as for the MLC and HexaPOD tracking deliveries.
Both tracking methods could substantially improve tracking accuracies. Similar to the
prediction accuracy evaluation depicted in section 2.3, the tracking accuracy depended
strongly on the respective breathing trace.

Prediction errors averaged over the 8 breathing traces are listed in table 5.4. Both
methods roughly halved the average geometric errors of no-tracking deliveries. The
averaged geometric accuracy of MLC tracking was slightly better than for HexaPOD
tracking.

Figure 5.14 displays dose distributions for MLC and HexaPOD tracking applied to
breathing trace 6. Both tracking methods could strongly reduce the blurring of the
no-tracking delivery. For MLC tracking, however, overdosage regions on both sides of
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Figure 5.12: Geometric accuracy of MLC and HexaPOD tracking parallel to the leaf travel
direction for breathing traces 6 and 8. MLC data from portal imagery. HexaPOD data from
dynamic log-files.

Table 5.4: Geometric tracking errors averaged over 8 breathing traces. Absolute root mean
squared tracking errors (RMSE) and errors normalized to no-tracking deliveries.

Absolute RMSE [mm] Normalized RMSE

Tracking method x-direction y-direction x-direction y-direction

HexaPOD 0.98 2.15 0.49 0.53
MLC 0.90 2.04 0.49 0.50
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Figure 5.13: Absolute root mean squared tracking errors (RMSE) for MLC and HexaPOD
tracking applied to 8 breathing traces.

the field were observed. The overdosage was caused by leakage through adjacent closed
leaf pairs. The dosimetric tracking accuracy analysis based on the circular field was
slightly different from the analysis outlined in section 5.2.2. For the static reference de-
livery, all closed leaf pairs were retracted by 5 cm from the central axis. The remaining
dosimetric tracking error caused by leakage through closed leaf pairs was consequently
higher than the error displayed in figure 5.7.

Figure 5.15a displays the comparative dosimetric accuracy of the tracking methods for
the 8 breathing traces. The HexaPOD outperformed the MLC for every breathing trace.
The improvements of MLC tracking compared to no tracking were small for breathing
traces 1 to 3. For traces 4 to 8, both tracking methods improved the dosimetric accuracy
substantially. 2%/2mm gamma failure rates averaged over all breathing traces were 76%,
90% and 95% for no tracking, MLC tracking and HexaPOD tracking, respectively.

Figure 5.15b displays 2%/2mm gamma success rates as a function of the geometric 2D
RMS tracking error. For deliveries without tracking, the dosimetric accuracy decreased
strongly with the geometric tracking error. The dosimetric accuracy of the tracking
deliveries was roughly constant for geometric errors below 3 mm. For higher geomet-
ric tracking errors, which only occurred for traces 1 and 8, the decrease of dosimetric
accuracy followed the trend of the deliveries without tracking.
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Figure 5.14: Dose distributions of the circular field applied to the target moving in two direc-
tions and gamma-test results displayed as grayscale dose distribution with gamma-indexes > 1
marked in red for overdosage and blue for underdosage. No tracking (2nd row), MLC tracking
(3rd row), HexaPOD tracking (4th row).
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Figure 5.15: Dosimetric accuracies for lung tumor motion tracking. (a) Success rate of
2%/2mm gamma analysis for the individual breathing traces. (b) 2%/2mm gamma success rate
as a function of the corresponding geometric 2D root mean squared tracking errors (RMSE).

Prostate motion

Figure 5.16 displays results of the 2%/2mm gamma analysis for prostate motion trace 2
(i.e., the trace with the highest dosimetric errors for MLC tracking). The dose distribu-
tion without tracking was strongly blurred. HexaPOD tracking could almost completely
recover the static dose distribution. Considerable dose errors remained with MLC track-
ing at the left and right borders of the high dose area. The horizontal coordinate in the
displayed view is parallel to the y-axis of treatment room coordinate system. The leaf
travel direction was perpendicular to the y-axis for every gantry angle. MLC tracking
accuracy in this direction was limited due to hardware constraints.

Figure 5.17 displays the the dosimetric accuracy for prostate motion tracking with the
MLC and the HexaPOD. Both tracking methods considerably improved dosimetric ac-
curacies of all traces. The HexaPOD clearly outperformed the MLC for every prostate
motion trace. The 2%/2mm gamma success rates for HexaPOD tracking were higher
than 94% for all traces. MLC tracking improved gamma success rates of traces 1, 3
and 5 to more than 90%; traces 2 and 4 were more problematic. Gamma failure rates
averaged over all prostate motion traces were 60%, 85% and 95% for no tracking, MLC
tracking and HexaPOD tracking, respectively.

79



5.3 Comparative performance of MLC tracking and robotic couch tracking

(a) static reference (b) no tracking (c) MLC tracking (d) HexaPOD tracking

Figure 5.16: (a) Static reference dose distributions of the prostate IMRT plan. (b-d) Gamma
test results for prostate motion trace 2.

5.3.3 Discussion

We have compared the performances of tracking systems based on the adaption of the
treatment beam with a dynamic MLC and on repositioning of the entire patient with
a robotic treatment couch. Both tracking systems received continuous target position
updates from the Calypso System and used the same motion data for the experiments.
Tracking performance was assessed for 8 lung tumor and 5 prostate motion traces.

The evaluation of geometric tracking accuracies showed almost equal performances of
the tracking systems. Both systems roughly halved the geometric errors of deliveries
without tracking. The geometric accuracy of MLC tracking was slightly better than for
HexaPOD tracking.

For MLC tracking, the remaining errors were predominantly caused by prediction errors.
The dynamic MTCS log-files of the geometric tracking accuracy measurements contain
target positions as reported by the Calypso System as well as forward predictions of the
target positions. Prediction errors can therefore be calculated from the log-files. The
RMS prediction errors averaged over the 8 breathing traces were 0.85 mm in x-direction
and 1.97 mm in y-direction; this corresponds to 95% and 96% of the respective geometric
tracking errors listed in table 5.4.

The remaining errors of HexaPOD tracking also seem to be caused by the tracking control
system and not by couch travel speed or acceleration limitations: The highest tracking
errors do not occur on breathing trace 6 with the fastest and largest target motion, but
on breathing traces 1 and 8, which exhibit sudden changes in the breathing pattern.
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Figure 5.17: Dosimetric accuracy for prostate motion tracking. Success rate of 2%/2mm
gamma analysis for the individual prostate motion traces.

In spite of the slightly better geometric accuracy of MLC tracking, the HexaPOD tracking
yielded clearly better dosimetric accuracies. We observed that 2%/2mm gamma success
rates of both tracking devices were roughly constant if 2D geometric tracking errors
were below 3 mm (figure 5.15b). This constant level was at around 97% for HexaPOD
tracking and at around 93% for MLC tracking. Dosimetric accuracy for MLC tracking
consequently seems to be limited to this value due the issues raised in section 4.2.1:
the leaf width of 5 mm as well as leakage through closed leaf pairs, which have to be
positioned adjacent to open leaf pairs to be able to quickly open in case of target motion
perpendicular to the leaf travel direction.

The HexaPOD outperformed the MLC even more clearly for the dosimetric tracking
accuracy evaluation with prostate motion traces. Prostate motion typically exhibits
slow drifts over the entire course of a radiotherapy fraction. Roughly constant target
position offsets of several millimeters are often observed during the delivery of individual
IMRT segments or even entire beams. Tracking errors due to the finite leaf width can
not average out and are therefore more pronounced than for lung tumor tracking.

The presented tracking performance measurements did not account for the following con-
cerns associated with robotic couch tracking applied to rapid respiratory motion: Firstly,
patient comfort might be compromised. Secondly, couch motion might be different from
organ motion due to patient anatomy deformation in response to the couch acceleration.
Wilbert et al. (2010) reported that couch tracking of respiratory motion was tolerated
well by a group of patients and volunteers. They also observed no significant changes
within the breathing patterns during couch tracking. To our knowledge, the acceleration
induced patient anatomy deformation has not yet been investigated.
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5.3.4 Conclusion

The performance comparison of MLC and HexaPOD tracking showed a superior dosi-
metric tracking accuracy for HexaPOD tracking. The geometric tracking accuracy was
almost equal for both systems with slight advantages of MLC tracking. Both systems
yielded substantially improved dosimetric accuracies compared to the no-tracking de-
liveries. The dosimetric disadvantage of MLC tracking is caused by to the hardware
limitations of MLC tracking – namely the leaf width of 5 mm and leakage through the
tips of closed leaf pairs. There are concerns associated with rapid patient motion in-
duced by couch tracking of respiratory motion; MLC tracking might therefore be the
preferred method for respiratory motion tracking in spite of the slightly inferior dosi-
metric accuracy. For slow prostate motion compensation, HexaPOD tracking is clearly
favorable.
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5.4 MLC tracking applied to dynamic IMRT deliveries

The MTCS supports rotational and dynamic IMRT (D-IMRT) deliveries in addition to
conformal RT and step-and-shoot IMRT (S-IMRT) – the radiotherapy delivery modes,
which are clinically approved with the ARTISTE radiotherapy suite. In the following,
we compare the dosimetric accuracies of MLC tracking applied to D-IMRT and S-IMRT
deliveries.3 The dosimetric accuracy measurements were based on a single, highly mod-
ulated beam out of a S-IMRT treatment plan. The D-IMRT deliveries were based on
four different leaf sequence calculation methods.

5.4.1 Materials and methods

Leaf sequencing

Intensity modulation of D-IMRT deliveries is achieved by continuous leaf motion during
radiation delivery. An arbitrary intensity profile along the leaf travel direction I(x) can
be generated by multiple (in fact, infinitely many) leaf sequences. Stein et al. (1994)
proposed a method to calculate D-IMRT leaf sequences, which minimize the treatment
time based on the following equations:

vl(x) = vmax vt(x) = vmax
1 + I ′(x) vmax

, for I ′(x) ≥ 0

vl(x) = vmax
1− I ′(x) vmax

vt(x) = vmax , for I ′(x) < 0 .
(5.2)

The equations determine the leaf velocities vl(x) and vt(x) of leading and trailing leaves
for each position x within the interval [x1, x2]. I ′(x) denotes the derivative of I(x) along
the x-coordinate and vmax denotes the maximum physically achievable leaf velocity. The
corresponding leaf trajectories sl(x) and st(x) are calculated through integration with
vl(x1) = vt(x1) = 0.

The leaf sequences defined through (5.2) are valid only for an ideal MLC with zero
penumbra. Our leaf sequence calculations were therefore based on an algorithm pro-
posed also by Stein et al. (1994), which takes penumbra into account. The algorithm
iterative modifies the leaf sequences obtained through (5.2) to generate the desired in-
tensity profile I(x) given a measured penumbra function.

A 2D intensity map can be generated by applying the outlined method to each leaf
pair independently. This will, however, lead to underdosage effects due to the tongue-
and-groove design of the MLC (Tacke et al., 2008). We have therefore implemented an

3Measurements and initial data evaluation performed by K. Hofmann
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algorithm proposed by Rangaraj and Papiez (2005), which eliminates the tongue-and-
groove effect through synchronization of trajectories of adjacent leaf pairs. Depending
on the level of modulation of the 2D intensity map, the synchronization algorithm can
increase the delivery time considerably.

For MLC tracking applied to D-IMRT deliveries, the leaf motion for intensity modulation
is superimposed with the leaf motion for target tracking. The maximal leaf velocity vmax
for initial leaf sequence calculation according to (5.2) should consequently be set to
smaller values than the maximal physically achievable leaf velocity (43 mm/s for the
160 MLC).

To investigate the influence of leaf trajectory synchronization as well as the influence
of vmax on the tracking accuracy, our study included the following four leaf sequence
calculation methods:4

1. non-synchronized with vmax = 36 mm/s,

2. non-synchronized with vmax = 25 mm/s,

3. synchronized with vmax = 36 mm/s,

4. synchronized with vmax = 25 mm/s.

Experimental methodology

The experimental setup was the same as introduced in section 5.1. We used two target
motion patterns: a regular 2D sin4 trajectory with amplitudes of 10 mm and 20 mm
in x and y-directions and a period of 4 s, and a 3D respiratory motion trace from the
data set described in section 2.2.1. Geometric tracking accuracy was determined with
a circular MV radiation field as outlined in section 5.1.2. Dosimetric tracking accuracy
measurement was based on Gafchromic EBT and EBT2 films (International Specialty
Products, Wayne, NJ). EBT films were used for the experiments with irregular breathing
motion and EBT2 films for the regular sin4 motion. Dose distributions for all tracking
deliveries were compared to the dose distribution of a static S-IMRT delivery using the
2%/2mm gamma criterion.

5.4.2 Results

Figure 5.18 displays the result of the geometric tracking accuracy evaluation with a
circular MV radiation field for the breathing motion trace. The RMS tracking error was

4Leaf sequence calculations performed by K. Hofmann
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Figure 5.18: Geometric tracking accuracy in direction perpendicular (upper panel) and par-
allel (lower panel) to the leaf travel direction for the patient breathing trace.

0.99 mm in x-direction and 1.51 mm in y-direction. For the sin4 motion trace, geometric
tracking errors were 0.40 mm in x-direction and 0.67 mm in y-direction.

Figure 5.19 displays results of the 2%/2mm gamma analysis for respiratory motion track-
ing. The IMRT field exhibited large dose gradients at the borders of, but also within
the field (figure 5.19a). In the displayed view, the leaves travel in horizontal direction to
modulate the D-IMRT dose distributions. For both S-IMRT and D-IMRT, the tracking
deliveries yielded substantially reduced gamma failure rates. In contrast to previously
displayed gamma analysis results – for example in figures 5.7 and 5.8 – we observed pixels
failing the 2%/2mm gamma criterion not only at the border of, but also within the high
dose area of the field.

Table 5.5 summarizes the results of the dosimetric accuracy analysis for the regular sin4

motion and the irregular respiratory motion traces. In both cases, tracking increased the
dosimetric accuracy substantially. 2%/2mm gamma failure rates for tracking applied to
S-IMRT were smaller than those for D-IMRT.

5.4.3 Discussion

As pointed out in sections 5.2.3 and 5.3.3, the main contributions to the remaining
dosimetric errors of MLC tracking are: Firstly, geometric uncertainties due to respiratory
motion forward prediction errors. Secondly, hardware limitations, such as the leaf width
of 5 mm, the limited maximal leaf velocity and leakage through closed leaf pairs.
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(a) static reference

(b) S-IMRT, without tracking (c) S-IMRT, with tracking

(d) D-IMRT, without tracking (e) D-IMRT, with tracking

Figure 5.19: Dosimetric accuracy for breathing motion tracking. (a) Static reference dose
distribution. (b-e) 2%/2mm gamma-test results displayed as grayscale dose distribution with
gamma-indexes >1 marked in red for overdosage and blue for underdosage. (b, c) S-IMRT
delivery. (d, e) Synchronized D-IMRT delivery with vmax = 36 mm/s.
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Table 5.5: Dosimetric tracking accuracy for sin4 and breathing motion traces. Displayed are
percentage 2%/2mm gamma failure rates.

sin4 motion Breathing motion

Delivery mode w/o w/ w/o w/

D-IMRT / non-sync / 36 44.6 22.6 41.8 22.0
D-IMRT / non-sync / 25 44.6 23.5 35.3 22.1
D-IMRT / sync / 36 51.8 20.0 37.6 23.9
D-IMRT / sync / 25 37.6 20.8 39.4 22.8

S-IMRT 42.9 13.7 35.5 16.7

’w/’ and ’w/o’ refer to deliveries with and without tracking applied.
’D-IMRT / non-sync / 36’ refers to non-synchronized D-IMRT delivery with vmax = 36 mm/s.

The results displayed in table 5.5 demonstrate that the relative importance of geometric
uncertainties and hardware limitations depends on the D-IMRT delivery mode. The
non-synchronized deliveries exhibit complex field shapes with large distances between
adjacent leaf tips. The field shapes of synchronized deliveries are generally smaller,
more compact and adjacent leaf tips are closely aligned. The influence of hardware
limitations is consequently more pronounced for non-synchronized deliveries. Geometric
uncertainties induce dosimetric errors at the borders of the radiation field. Their influence
is accordingly more pronounced for synchronized deliveries.

For sin4 motion tracking, geometric uncertainties played no role. The tracking accuracies
of the synchronized deliveries were better than for non-synchronized deliveries. For respi-
ratory motion tracking, in contrast, the geometric uncertainties dominated the tracking
performance. The non-synchronized deliveries were more accurate than the synchronized
deliveries.

The sin4 motion had larger amplitudes than the respiratory motion; the influence of
hardware limitations was consequently more pronounced than for respiratory motion
tracking. For non-synchronized deliveries, the hardware limitations were obviously more
important than the geometric uncertainties. Tracking of the more rapid regular motion
yielded worse dosimetric tracking accuracies in spite of the better geometric accuracy.

The differences between the deliveries with maximum leaf velocity vmax = 36 mm/s and
vmax = 25 mm/s were small. The dosimetric accuracy measurement were based on EBT
and EBT2 films, which are optimized for complete radiotherapy fraction doses. The noise
level of the measured single-beam doses is consequently relatively large. We therefore
consider the observed differences between 36 mm/s and 25 mm/s as not significant.
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6 MLC tracking based on kilovoltage
x-ray imagery

The research ARTISTE radiotherapy suite installed at our institution features the KVi-
sion on-board kilovoltage (kV) x-ray imaging system introduced in section 4.1.1. We have
recently developed a novel intra-fractional target motion monitoring system based on the
KVision system (Fast et al., 2011a) as outlined in section 3.1.2. The imaging system can
be operated either continuously with a maximum update rate of 7.1 Hz or on demand.
In the following we present the results of MLC tracking based solely on continuous x-ray
imaging (section 6.1). In section 6.2, we report on MLC tracking based on a combined
external surrogate motion and internal x-ray based target motion monitoring system.
The results of sections 6.1 and 6.2 are jointly discussed in section 6.3.

6.1 MLC tracking based solely on x-ray imagery

6.1.1 Materials and methods

Experimental setup

Figure 6.1 shows the experimental setup for MLC tracking based on x-ray imaging in
the in-line geometry. In addition to the on-board megavoltage (MV) flat panel detector
(FPD), we have equipped the linac with a second FPD directly underneath the linac
head. The kV x-ray source of the KVision system is mounted such that the kV beam
points towards the linac head. We tilted the kV beam intentionally by 5.4◦ from the
MV beam axis so that the two beams were spatially separated on both FPDs. A simple
phantom consisting of stacked solid water slices was mounted on the 4D motion stage
introduced in section 5.1.1. The phantom had a radioopaque marker embedded, whose
position was detected with the x-ray imaging system at a frame-rate of 7.1 Hz. Target
positions were reported to the MTCS through Ethernet connection.

The lower FPD displayed in figure 6.1 was used to monitor the MV beam and the marker
of the phantom continuously during the tracking experiments. The images recorded
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Siemens 
ARTISTE linac

FPD for kV 
images

Programmable 
phantom stage

FPD for MV 
images

kV x-ray tube

Figure 6.1: Experimental setup. The kV an MV beams pass through both flat panel detec-
tors (FPD). The 4D motion stage moves on patient breathing traces. Target motion is detected
with the upper FPD. The lower FPD is used for geometric accuracy assessment.

with the MV FPD were used for geometric tracking accuracy assessment and latency
measurements. Obviously, both the kV imaging and the MV treatment beams passed
through both FPDs.

Analysis of MV portal images

Latency and geometric tracking accuracy were assessed through an analysis of portal
images based on the image analysis algorithm outlined in section 5.1.2. MV portal images
were therefore acquired at a frame-rate of 10 Hz during the experiments. As a result of
the in-line imaging geometry, both the MV treatment beam and the kV imaging beam
were visible on both FPDs. Separation of MV and kV signals detected with the upper
kV FPD for intra-fractional motion monitoring was outlined in section 3.1.2. Example
images acquired with the lower MV FPD are displayed in figure 6.2. Because MV FPD
readout and kV imaging pulses were not synchronized, the shape of the kV field alters
from frame to frame.

To extract MV field and radioopaque marker centroids from the images with the previ-
ously described algorithm (section 5.1.2), the kV imaging field was subtracted from the
mixed kV/MV images. The individual steps of the subtraction algorithm are displayed in
figure 6.3. An image containing kV-only information (c) was constructed from the frame
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Figure 6.2: Example images acquired with the MV FPD during tracking experiments. The
circular MV treatment field is overlaid with the rectangular kV imaging field.

(a) (b) (c) (d)

Figure 6.3: Illustration of steps for subtraction of kV signals from MV imagery. (a) kV-only
template frame, (b) frame to be analyzed, (c) calculated kV-only frame, (d) calculated MV-only
frame

to be analyzed (b) using a kV-only template frame (a). Therefore, horizontal profiles of
frames (a) and (b) at pixel position 200 were calculated (indicated by the blue lines).
The horizontal profile of (b) is divided by the profile of (a). Finally, each vertical profile
of the template frame (a) is multiplied with the corresponding entry of the division of
profiles to generate the kV-only frame (c). MV-only images (d) are then calculated by
subtracting the kV-only image (c) from the frame to be analyzed (b).

Geometric tracking accuracy

Geometric tracking accuracy was quantified by calculating RMS deviations between
phantom motion and circular MV field motion extracted from the portal imagery. Three
breathing traces from the previously described data set (section 2.2.1) were used. Tar-
get motion forward prediction was performed with a support vector regression predictor
(section 2.2.3). Predictor training was based on the adaptive-expansive training scheme
(section 2.2.4) with a training window expanding from 30 s to 67 s. The influence of
forward prediction on the geometric tracking accuracy was assessed through an analysis
of dynamic log-files of the MTCS.
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6.1 MLC tracking based solely on x-ray imagery

Table 6.1: Geometric tracking accuracy for three breathing traces.

Absolute RMSE [mm] Normalized RMSE

Breathing trace x y x y

1 0.52 1.22 0.40 0.43
2 0.23 1.62 0.40 0.40
3 0.91 2.49 0.36 0.38

6.1.2 Results

Latency

The total system latency was measured as described in section 5.1.2. Sinusoidal tar-
get motion was tracked without target motion prediction. The resulting lag time was
quantified as the phase difference between sine-function fits to the target and the MV
field motion as extracted from the portal imagery. Four measurements yielded a total
tracking system latency of (618± 6) ms.

The kV imaging system reported target position packages together with a time-stamp of
position detection to the MTCS. The average latency value of the kV imaging system was
(82 ± 1) ms. Given the position update rate of imaging system of 7.1 Hz, the effective
motion monitoring latency according to equation (5.1) amounts to (152 ± 1) ms. In
section 5.1.3, values for the MLC latency and MTCS computation times of (473±10) ms
and (1.4±0.7) ms were obtained. The accordingly expected total system latency of (626±
10) ms is in accordance with the measurement.

Geometric tracking accuracy

Table 6.1 lists the results of the geometric tracking accuracy analysis based on MV
portal imagery for the three breathing motion traces. Tracking errors in x-direction
(perpendicular to leaf travel direction) were below 1 mm. In y-direction (parallel to
leaf travel direction), higher absolute tracking errors up to 2.5 mm were observed. The
increased errors in y-direction were due to the larger breathing motion amplitudes. The
normalized tracking errors for both the x- and y-direction approximately amounted to 0.4,
which corresponded to a 60% improvement compared to the no tracking deliveries.

Figure 6.4 displays the results of the log-file based prediction errors analysis. Predicted
positions in y-direction are shown together with the target motion and the circular MV
field centroid motion. The MV field closely followed the predicted positions. Minor
deviations were observed at the turning points of the predicted trajectory. The noise level
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Figure 6.4: Influence of target motion forward prediction on geometric tracking accuracy for
breathing traces 1 (upper panel) to 3 (lower panel). Trajectories parallel to leaf travel direction
of target motion (black), MV field motion (red) and predicted positions (green) are extracted
from the dynamic MTCS log-files.

of the predicted trajectories was smoothed by the MV field. Consequently, the remaining
geometric tracking errors observed at irregularities of target motion were predominantly
caused by prediction errors.
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6.2 MLC tracking based on combined external surrogate and x-ray motion monitoring

6.2 MLC tracking based on combined external surrogate
and x-ray motion monitoring

In the previous section, we have demonstrated highly accurate MLC tracking based on
a single kV x-ray imager in in-line geometry. The obvious disadvantage of the system
is the additional dose of ionizing radiation due to x-ray imaging. With the maximum
image acquisition frequency of 7.1 Hz, the average imaging dose would reach 1 Gy after
approximately 22 minutes (Fast et al., 2011a).

The rationale for combined external surrogate and internal x-ray motion monitoring is
to substantially reduce imaging dose. A correlation model between external and internal
motion is established based on sparse internal motion data as outlined in section 3.2.
The real-time part of the MLC tracking procedure (i.e., the tracking loop depicted in
section 4.3.2) then relies solely on the continuously monitored external motion signal.
Consequently, the number of x-ray acquisitions during a tracking delivery can be drasti-
cally reduced.

Besides the dose saving through less x-ray acquisitions, combined external and internal
x-ray motion monitoring offers two further advantages: Firstly, the total system latency
can be reduced. External motion monitoring – for example with the infrared marker
detection or the pressure belt systems depicted in section 3.2.1 – can be performed
with considerably shorter latencies and higher update rates as x-ray imaging. Secondly,
intra-fractional x-ray imaging can be performed while the treatment beam is turned off,
for example in between the delivery of individual beams or segments of a radiotherapy
treatment. This generally yields either increased image quality given the same imaging
dose per x-ray pulse, or the same image quality with a lower imaging dose per x-ray pulse.
The decreased image quality of synchronous x-ray imaging and MV radiation delivery in
the in-line geometry is obviously due to the detection of both beams with the FPD for
imaging. For orthogonal imaging geometries, image quality is compromised by scattered
MV radiation.

The disadvantage of combined external and internal motion monitoring is the additional
complexity; two monitoring devices have to be operated and two motion data streams
have to be managed by the tracking system. Additionally, the estimation of internal
target positions with the correlation model introduces further geometric uncertainties.
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6.2.1 Materials and methods

Experimental setup

The experimental setup was similar to the previously described setup for MLC track-
ing based solely on x-ray imagery (section 6.1.1). The tracking performance assessment
was based on the same three respiratory motion traces. The breathing data consisted
of simultaneously measured internal 3D lung tumor motion and external chestwall dis-
placement (section 3.3.1). The internal motion component with the largest and second
largest amplitude was put on the y- and x-axes of the 4D motion stage, respectively. The
external surrogate motion was put on the z-axis. Due to the in-line imaging geometry,
the kV imaging system can only detect motion components parallel to the xy-plane. It
consequently detected the beam’s eye view of the internal target motion and was blind
for the external motion. The external surrogate motion was measured with a linear po-
tentiometer, which was fixed to the z-axis of the motion stage. An analog-to-digital (AD)
converter reported potentiometer voltages to the MTCS at a frame-rate of 30 Hz.

Latency

The real-time part of the MLC tracking procedure is based on the external motion signal.
The total system latency accordingly equals the latency of the MLC tracking system
with potentiometer based motion monitoring. Total system latency was measured by
moving the phantom on a sinusoidal trajectory in y- and z-direction simultaneously.
The z-motion detected with the potentiometer was reported to the MTCS as internal
y-motion. The motion monitored with the potentiometer was tracked in y-direction with
a circular MV field without target motion forward prediction. The time lag between
target and MV field motion was quantified through portal image analysis as outlined in
section 5.1.2.

In addition to the total system latency measurements, the latency of the AD readout
system for the potentiometer (in the following referred to as ’AD latency’) was ana-
lyzed. The phantom was moved again on the simultaneous sinusoidal trajectories in
y- and z-direction. Target motion was monitored with both the x-ray system and the
potentiometer. The latency of the x-ray imaging system is known (section 6.1.2). The
AD latency can consequently be calculated from the time shift of the target trajectories
measured with the two monitoring systems.
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6.2 MLC tracking based on combined external surrogate and x-ray motion monitoring

Prediction and correlation model setup

Both the tracking and the verification loop of the MTCS relied on internal target position
estimations of the correlation model based on the external surrogate motion signal. The
training data set of the correlation model for internal target motion coordinate k consisted
of pairs (xj, ykj ) of input vectors and target scalars (section 3.3.1). We selected the
support vector regression based correlation model, which performed favorably in the
comparison study presented in section 3.3.2. According to the results of the model
parameter optimization procedure, we selected an input vector dimensionality of p = 3
and a spacing between input vector entries of δ = 0.8 s. For each internal x-ray target
position observations sint = (s1

int, s
2
int, s

3
int) within the training data set, input vectors

and target scalars were constructed as:

xj = ( sext(tj−2δ) , sext(tj−δ) , sext(tj) )
ykj = skint(tj) ,

(6.1)

for point in time tj and external position observations sext.

In order to compensate for the total system latency τtotal, the MLC shape calculations
within the tracking loop at time t were based on the estimated internal target positions at
future point in time t+τmlc. The estimation of future internal target positions ŝint(t+τmlc)
required a combination of external motion forward prediction and the external/internal
correlation model. The corresponding correlation model input vector was then given
by the predicted external position ŝext(t + τmlc) and two previously detected external
positions according to (6.1).

The external motion forward prediction was based on support vector regression (sec-
tion 2.2.3). The predictor was continuously retrained during the tracking experiments
using the adaptive-expansive training mode (section 2.2.4). The training window was
expanded from 30 s to 67 s.

Step-and-shoot IMRT delivery

Tracking accuracy assessment was based on a single, highly modulated beam out of
a step-and-shoot IMRT treatment plan. The highly modulated field consisting of ten
segments has already been used for the dynamic IMRT tracking accuracy assessment
outlined in section 5.4. The tracking delivery was performed completely automatic using
the DMIP delivery mode (section 4.3.1). The delivery time for the total of 180 MU was
approximately 85 s.

The first 30 s of the tracking experiments were reserved for external/internal correlation
model setup and predictor training. For the initial correlation model setup, internal tar-
get motion was detected with 40 x-ray images acquired at a frame-rate of 2 Hz within
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seconds 10 to 30 of the tracking experiments. The correlation model was trained directly
after receipt of the 40th x-ray image. After successful initial predictor and correlation
model training, the MTCS started the delivery of the first segment. During the adjust-
ment of a new segment, the acquisition of five x-ray images at a frame-rate of 2 Hz was
triggered. These five new internal motion measurements were used to update the correla-
tion model based on the adaptive retraining scheme (section 3.3.1). After the correlation
model was re-established, the next segment was delivered.

Analysis of prediction and correlation model errors

The accuracies of external motion forward prediction and the external/internal corre-
lation model were determined through an analysis of dynamic log-files. For combined
external and internal motion monitoring, the MTCS does not monitor internal target
motion continuously. The internal motion information was therefore extracted from the
log-files of the 4D motion stage.

The log-files of the MTCS and the 4D motion stage are created by different programs
on different computers. Both programs continuously log the z-motion (i.e., the external
surrogate motion) of the phantom, which allowed the synchronization of the time-axes
of the two programs.

External motion forward prediction errors were quantified as RMS deviations between
actual z-motion extracted from 4D motion stage log-files and the prediction values ex-
tracted from MTCS log-files. The correlation model estimates internal target positions
based on the forward prediction of external position and past external position observa-
tions. The correlation model error therefore depends on the forward prediction model
error. The accordingly combined correlation and prediction error was quantified as RMS
deviations between actual x- and y-motion extracted from 4D motion stage log-files and
the correlation model predictions extracted from MTCS log-files. Absolute prediction
and correlation model errors as well as errors normalized with the standard deviation of
the corresponding breathing trajectories were calculated.

Dosimetric tracking accuracy

Dosimetric tracking accuracy assessment was based on EDR2 films (Eastman Kodak,
Rochester, NY). A static radiation delivery to the non-moving phantom provided a ref-
erence dose distribution. Dose distributions of the tracking deliveries and of deliveries
with a moving phantom but without tracking were compared to the static reference dose
distribution in terms of the 2%/2mm gamma criterion.
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6.2 MLC tracking based on combined external surrogate and x-ray motion monitoring

6.2.2 Results

Latency

Three measurements based on portal image analysis of target motion and circular MV
field motion yielded a total system latency of (507± 14) ms.

We have additionally performed a MTCS log-file analysis for a delivery with simultane-
ously measured external motion as detected with the potentiometer and internal motion
as detected with the x-ray system. The time shift of the target trajectories measured
with the two system yielded an AD latency of (23 ± 2) ms. Using the results of the
latency contributor analysis of section 5.1.3, the expected total system latency amounts
(513± 10) ms, which is in accordance to the measured value.

Accuracies of prediction and correlation models

Normalized external motion forward prediction errors – as extracted from the dynamic
MTCS and 4D motion stage log-files of the step-and-shoot IMRT deliveries – amounted to
0.31, 0.29 and 0.23 for breathing traces 1, 2 and 3, respectively. As the magnitude of the
external motion has no influence on the tracking accuracy, we did not evaluate absolute
external motion prediction errors. The normalized prediction errors are smaller than the
normalized geometric tracking errors of the same breathing traces of approximately 0.4
shown previously for MLC tracking based solely on x-ray imagery.

Figure 6.5 displays the results of the log-file analysis for combined prediction and cor-
relation model errors of the step-and-shoot IMRT tracking deliveries. Target motion
trajectories from the 4D motion stage log-files are available throughout the delivery. The
predictions of the correlation model are available only during the deliveries of the ten
segments. X-ray images were acquired only prior to the delivery or in between the de-
livery of the ten segments. For breathing traces 1 and 2, the predicted values of the
correlation model followed the actual target motion accurately. For the x-direction of
breathing trace 3, in contrast, the correlation model predictions showed substantial de-
viations from the target trajectory. The correlation model completely failed to predict
the baseline shifts observed in segments 1 to 3.

Table 6.2 lists the combined RMS prediction and correlation model errors of the step-
and-shoot IMRT deliveries. The combined prediction and correlation model errors were
considerably larger than the aforementioned prediction error alone for trace 2 and the
x-coordinate of trace 3. In these cases, the correlation model contributed substantially
to the overall prediction error, which was consequently higher than the previously re-
ported respective geometric tracking accuracies of the x-ray only system (table 6.1). For
breathing trace 1 and the y-coordinates of trace 3, the correlation model error played
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Figure 6.5: Trajectories of target motion (black) and predictions of the correlation model (red)
in x-direction (upper panels) and y-direction (lower panels) for the three breathing traces. The
shaded areas correspond to beam holds. Blue crosses represent internal motion observations of
the x-ray imaging system.
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6.2 MLC tracking based on combined external surrogate and x-ray motion monitoring

Table 6.2: Combined prediction and correlation model errors for the three breathing traces
in x- and y-directions as extracted from dynamic log-files. Absolute root mean squared errors
(RMSE) and errors normalized with standard deviations of breathing trajectories.

Absolute RMSE (mm) Normalized RMSE

Breathing trace x y x y

1 0.47 1.03 0.37 0.37
2 0.32 1.76 0.52 0.45
3 2.41 1.96 1.03 0.29

only a minor role for the overall prediction accuracy. As a consequence of the decreased
latency, the corresponding total RMSE values were smaller than the previously observed
geometric tracking errors.

Dosimetric tracking accuracy

Figure 6.6 illustrates the dosimetric accuracy analysis for breathing trace 3. For the no-
tracking delivery, almost all pixels within the high dose area failed the 2%/2mm gamma
criterion. In spite of the relatively large geometric uncertainties shown in table 6.2, the
tracking delivery could substantially reduce the gamma failure rate.

Table 6.3 summarizes the results of the dosimetric tracking accuracy analysis for the
three breathing traces. 2%/2mm failure rates were decreased substantially for breathing
traces 2 and 3. For trace 1, the gamma failure rate of the no-tracking delivery was already
small and tracking yielded only a slight improvement.
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6 MLC tracking based on kilovoltage x-ray imagery

Figure 6.6: (Upper row) Dose distributions of the single IMRT beam. Static reference (left)
and deliveries to the target moving on breathing trace 3 without (middle) and with (right)
tracking applied. (Lower row) Gamma-test results displayed as grayscale dose distribution
with gamma-indexes >1 marked in red for overdosage and blue for underdosage.

Table 6.3: 2%/2mm gamma failure rates of the single IMRT beam applied to the target moving
on three breathing traces.

Without tracking With tracking
Breathing trace [%] [%]

1 5.0 4.0
2 18.2 11.3
3 41.3 16.1
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6.3 Discussion

6.3 Discussion

We have successfully integrated a novel x-ray intra-fractional motion monitoring system
with our MLC tracking control system, the MTCS. The x-ray imaging system uses the
in-line geometry to monitor the most relevant part of intra-fractional target motion
perpendicular to the treatment beam – the directions which usually feature steep dose
gradients. The imaging system can monitor target motion continuously at a maximum
frame-rate of 7.1 Hz while the treatment beam is turned on. We have evaluated the MLC
tracking performance based on the x-ray imaging system for two setups: Firstly, based
solely on the x-ray imagery and secondly, based on combined external surrogate motion
monitoring and sparse x-ray internal motion monitoring.

The x-ray imaging system can detect marker positions with a latency of (82±1) ms. The
total system latency for MLC tracking based solely on x-ray imagery was (618± 6) ms.
The performance of the tracking system based solely on x-ray imagery was assess geo-
metrically through an analysis of portal images acquired during the tracking deliveries.
Tracking errors normalized to the no-tracking deliveries were approximately 0.4 for both
the x- and y-coordinate of three breathing traces. An analysis of dynamic MTCS log-
files showed that the remaining geometric tracking errors were almost completely caused
by prediction errors. Target motion forward prediction was based on support vector
regression prediction (section 2.2.3) with continuous adaptive-expansive retraining (sec-
tion 2.2.4). The predictor showed a good prediction performance when compared to
three other state-of-the-art respiratory motion predictors (section 2.3). We can therefore
conclude that, given the large latency of the integrated tracking system, the geometric
tracking accuracy can not be further improved.

The MLC tracking performance based on the combined external surrogate and internal
x-ray target motion monitoring system was assessed dosimetrically for a singly, highly
modulated step-and-shoot IMRT beam. The system established an external/internal
correlation model based on sparse internal motion observations. The x-ray images were
acquired prior to or in between the delivery of the individual segments of the IMRT
beam. The correlation model was also based on support vector regression. It showed
superior prediction accuracies in the correlation model comparison study presented in
section 3.3.1. The real-time part of the integrated tracking system is based solely on
the external surrogate motion. The total system latency of (507± 14) ms was therefore
smaller than for the tracking system based solely on x-ray imagery.

The accuracies of external motion forward prediction and of correlation model errors were
assessed through an analysis of dynamic log-files of the MTCS and the 4D motion stage.
The results of the prediction and correlation model accuracy analysis were compared
with the geometric tracking errors of the tracking system based solely on x-ray imagery.
This comparison is meaningful, because geometric tracking errors were primarily caused
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by prediction errors. External motion forward prediction accuracy of the combined
external/internal system was superior to the x-ray only system due to the smaller latency.
For three out of six analyzed trajectories (x- and y-directions of three breathing traces),
the correlation model introduced only minor errors and the combined prediction and
correlation model error was superior to the geometric tracking error of the x-ray only
system. Two cases were however slightly deteriorated and one case was even drastically
deteriorated compared to the x-ray only system. In the latter case, the correlation model
completely failed to adapt to a strong baseline drift in x-direction.

The results of the dosimetric tracking accuracy analysis showed substantially reduced
2%/2mm gamma failure rates for the tracking deliveries. Similar to the dosimetric
tracking accuracy analysis of dynamic IMRT deliveries in section 5.4.2, pixels failing
the gamma criterion with tracking applied were observed not only at the border of,
but also within the high dose area of the IMRT field. The remaining dosimetric errors
were strongly dependent on the geometric tracking accuracy. The previously reported
dosimetric error of a the step-and-shoot IMRT tracking delivery in section 5.4.2 was
approximately equal to the result for breathing trace 3, although the geometric errors
were much smaller. We suspect that this inconsistency is due to the different films used
for dosimetric accuracy quantification. The radiographic EDR2 films used for the x-ray
system measurements show a strongly reduced noise level compared to the radiochromic
EBT films used for the Calypso System measurements in section 5.4.2.
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7 Summary and conclusions

Tracking system integration

In this thesis, we have substantially extended and improved a previously in-house devel-
oped MLC tracking system (Tacke, 2009; Tacke et al., 2010) based on a Siemens 160 MLC
mounted on a research Siemens ARTISTE linac. The system is able to adapt the MLC
aperture in real-time to continuously monitored irregular 3D target motion. The system
supports MLC tracking deliveries of conformal radiotherapy, step-and-shoot IMRT, dy-
namic IMRT and rotational IMRT. We have integrated the system with three motion
monitoring systems: the electromagnetic Calypso System, a recently in-house developed
x-ray imaging system (Fast et al., 2011a,b), and a combined external surrogate motion
and internal x-ray motion monitoring system. The external surrogate monitoring sys-
tem was based on a linear potentiometer, which could however be easily replaced with a
clinically applicable system.

The implementation of the combined external and internal motion monitoring system
is based on a correlation model between external and internal motion. During MLC
tracking deliveries, the MLC tracking control system (MTCS) automatically establishes
the external/internal correlation model based on sparse x-ray image acquisitions. The
real-time MLC tracking procedure is then based solely on the external motion monitoring
system. The combined external/internal motion monitoring system drastically reduces
additional ionizing radiation doses of the x-ray only system and is therefore suitable
for clinical applications. The integrated MLC tracking system based on combined ex-
ternal/internal motion monitoring requires no additional hardware components for the
ARTISTE radiotherapy suite except for the external surrogate monitoring system. An
implementation of the system into a clinical setting could consequently be relatively
cost-effective.

The MTCS does not directly control leaf positions and velocities, but sends MLC shape
requests to a Siemens Collimator Control (SCC) unit, which performs the physical leaf ac-
tuation. The MLC aperture adaptation process involves consequently no feedback of the
physically realized leaf motion. We have therefore implemented a verification loop into
the MTCS, which continuously assesses the tracking performance and turns the treat-
ment beam automatically off in case of tracking inaccuracies. As an additional tracking
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performance verification tool, we have implemented a real-time visualization of the leaf
positions, which allows the operator to manual intervene in abnormal situations.

The vastly extended functionality of the MTCS was realized through a complete redesign
of the MLC tracking software package. As an additional benefit, the software redesign
yielded a strongly improved application reliability. Upon the detection of exceptions
– such as connection break-ups to the external devices or abnormally long computation
times of individual subroutines – the MTCS turns the treatment beam off and enters a
waiting state until the exception is resolved. From a technical point of view, we consider
the MTCS to be well prepared for clinical applications, provided that thorough quality
assurance routines for MLC tracking – for instance as proposed by Sawant et al. (2010) –
are implemented.

Prediction of respiratory motion

As a consequence of the indirect MLC control through the SCC, the latency between MLC
shape requests and the corresponding physical leaf motion is large. We have measured
a MLC latency of (473± 10) ms, which is the major contribution to the total latency of
the tracking systems integrated with the Calypso System (586± 3 ms), the x-ray motion
monitoring system (618± 6 ms), and the combined external surrogate and internal x-ray
motion monitoring system (507 ± 14 ms). Consequently, the compensation of the total
system latency by means of a forward prediction of the target motion is essential for
accurate tracking of rapid organ motion due to respiration.

To guide our choice of a suitable target motion forward prediction model, we have per-
formed a comprehensive comparison study of four state-of-the-art respiratory motion
predictors. The comparison study was not limited to the specific prediction scenario
of our tracking system, but covered a wide range of latencies and motion monitoring
sampling rates.

The considered prediction models learn the patient specific breathing pattern from a
training data set. Besides the free parameters of the prediction model, which are au-
tomatically optimized in the predictor training phase, the considered predictors feature
a set of model parameters, which have to be selected prior to predictor training. Our
study revealed that the prediction performance depended strongly on the choice of the
model parameters. We have therefore optimized the model parameters of the considered
predictors through a grid search in the multidimensional model parameter space. The
time-consuming model parameter optimization was performed on a patient-population
level so that model parameter sets were obtained, which yielded good prediction perfor-
mances for all considered breathing traces.
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The comparative prediction model performance assessments were performed with the
patient-population optimized model parameters. Our study showed that the performance
differences of the considered prediction models were surprisingly small; all considered pre-
dictors roughly halved the errors of using no prediction. The neural network predictor
slightly outperformed the support vector regression, linear regression and kernel density
estimation predictors. The small difference between the predictors were contradictory
to previously published studies, which did however not consider model parameter opti-
mization to a – from our point of view – sufficient degree. We conclude from our results
that the correct usage of the considered respiratory motion predictors (i.e., the thorough
model parameter tuning) is supposedly more important than the actual choice of the
prediction model. Due to implementation advantages, we integrated the support vector
regression and linear regression predictors into the MTCS.

Tracking performance assessments

The tracking performance assessments presented in chapters 5 and 6 evaluated geomet-
ric and dosimetric tracking accuracies. Geometric tracking errors were quantified by
measuring deviations of target positions and MLC aperture centroid positions based on
portal imagery acquired during the tracking experiments. Dosimetric tracking accuracy
was assessed in terms of the gamma criterion based on radiographic and radiochromic
film dosimetry. We found that the geometric tracking errors were predominantly caused
by target motion forward prediction errors and correlation model prediction errors. The
MLC aperture followed accurately the MLC shape requests sent to the SCC, thereby
smoothing the noisy trajectory requests. For the given large MLC latency, we have
consequently reached the optimum achievable geometric tracking performance through
the implementation of state-of-the-art prediction models with thorough model parameter
tuning.

The dosimetric tracking performance assessments identified geometric tracking errors
as well as MLC hardware constraints as main contributors to dosimetric tracking errors.
The main MLC hardware limitations were: the leaf width of 5 mm, the limited maximum
leaf velocity of 43 mm/s and the radiation leakage through the tips of closed leaf pairs.
The hardware constraints limited the dosimetric accuracy of target motion compensation
perpendicular to the leaf travel direction. The relative importance of the geometric un-
certainties and the hardware limitations depended on the radiotherapy delivery mode.

The dosimetric tracking accuracy assessments were based on the gamma criterion, which
brings dose difference and distance-to-agreement maps together. For deliveries with a
circular radiation field, we observed roughly constant 2%/2mm gamma failure rates, if 2D
root mean squared geometric tracking errors were smaller than 3 mm. The gamma failure
rates however increased rapidly for geometric tracking errors larger than 3 mm. The

107



remaining gamma failures for small geometric uncertainties were located at overdosage
regions besides the high dose area. The overdosage was primarily caused by leakage
through closed leaf pairs, which were positioned adjacent to the open field to be able to
quickly open in case of target motion perpendicular to the leaf travel direction.

For step-and-shoot IMRT deliveries, dosimetric tracking errors were generally larger and
occurred not only at the border of, but also within the high dose area of the IMRT
field. The distribution of dosimetric errors over the modulated field is probably due
to different positions of closed leaf pairs of the individual segments of the step-and-
shoot IMRT fields. In contrast to the tracking deliveries with the circular radiation
field, the dosimetric errors of step-and-shoot IMRT deliveries depended strongly on the
corresponding geometric uncertainties.

We have evaluated the dosimetric tracking accuracies for multiple dynamic IMRT deliv-
ery modes. The dosimetric tracking errors were generally larger than for step-and-shoot
IMRT deliveries. The relative importance of the geometric uncertainties and the hard-
ware limitations depended on both the dynamic IMRT delivery mode and the specific
characteristics of the target motion pattern.

An analysis of the dosimetric tracking accuracy in terms of the gamma failure rate has
several weaknesses: It does neither give insight into the location nor the magnitude of
the dose deviations. Furthermore, the insensitivity of the gamma metric to shifts of
the entire dose distribution below its spatial tolerance limit is problematic in regions
of sharp dose gradients intended to protect organs at risk. The presented dosimetric
tracking accuracy evaluation can consequently not comprehensively quantify the clinical
benefit of the tracking deliveries.

Comparison with other MLC tracking systems

Real-time MLC tracking has been pioneered at the University of Stanford (Keall et al.,
2006a). The Stanford MLC tracking system is based on the Varian Millennium MLC
(Varian Medical Systems, Palo Alto, CA). The latency of the Varian MLC tracking
system is substantially smaller than for our Siemens MLC tracking system. Poulsen
et al. (2010b) reported a MLC latency of only 52 ms. For the total latency of the
integrated MLC tracking system, values of 220 ms with the Calypso System (Sawant
et al., 2009) and 450 ms and 570 ms with MV and kV x-ray imaging (Cho et al., 2009;
Poulsen et al., 2010a) were reported. The large latency values of the imaging systems
were due to an indirect image transfer via image file storage and subsequent hard disk
access. The latency could be substantially reduced through a direct image access to
382 ms and 264 ms with MV and kV x-ray imaging at a frame-rate of 5 Hz (Fledelius
et al., 2011).
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7 Summary and conclusions

Various geometric tracking accuracy assessments have been reported for the Stanford
MLC tracking system integrated with: optical external surrogate monitoring (Keall et al.,
2006a; Sawant et al., 2008), the Calypso System (Sawant et al., 2009), combined kV and
MV, kV-only and MV-only x-ray imaging (Cho et al., 2009; Poulsen et al., 2010a, 2011),
as well as kV and MV imaging combined with external surrogate monitoring (Cho et al.,
2011). Respiratory motion tracking accuracies were well below 2 mm with all investigated
tracking system integrations. It is evident from our presented results that geometric
tracking accuracies depend strongly on the specific breathing trace. A comparison of
experimental results obtained with different breathing traces is therefore problematic.
Our prediction accuracy analysis showed strongly increased prediction errors for increased
system latencies. The shorter latency of the Stanford MLC tracking system represents
consequently a clear advantage in terms of geometric tracking accuracy.

Sawant et al. (2008) reported on dosimetric tracking accuracies of the Stanford MLC
tracking system for conformal radiotherapy, step-and-shoot IMRT, dynamic IMRT and
rotational IMRT based on film dosimetry. The results were similar to our findings: The
gamma failure rates were drastically reduced by the tracking deliveries, but could not
be completely eliminated in spite of sub-millimeter geometric tracking accuracies for
sinusoidal motion patterns. The results of the IMRT deliveries were considerably less
accurate than for the conformal radiotherapy delivery.

McQuaid et al. (2009) has performed a feasibility study of MLC tracking based on the
Elekta MLCi (Elekta Oncology Systems Ltd., Crawley, UK). The tracking experiments
were performed with sinusoidal motion patterns. Considerable dosimetric accuracy im-
provements were observed, especially if the collimator angle was aligned with the major
axis of the target motion trajectory. The presented tracking system was neither able to
monitor target motion in real-time, nor did it support MLC adaptation during the radio-
therapy delivery. It accounted for target motion during the treatment planning phase and
relied on a perfectly long-term predictable target motion. The system is consequently
not applicable to irregular patient breathing trajectories.

Comparison with other tumor tracking systems

Besides the MLC tracking approach, other techniques for tumor tracking have been pro-
posed, such as repositioning of the entire linear accelerator with the CyberKnife System
(Schweikard et al., 2004; Hoogeman et al., 2009), robotic patient couch tracking with
the HexaPOD (D’Souza and McAvoy, 2006; Wilbert et al., 2008), or the VERO gimbals
tracking system (Takayama et al., 2009; Depuydt et al., 2011). The CyberKnife Syn-
chrony system (Accuray Inc., Sunnyvale, CA) is a real-time tracking system for tumors
in the lung or the upper abdomen. Up to now, it is the only clinically applied tumor
tracking system. Motion monitoring of the CyberKnife system is based on a combined
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external surrogate and internal stereoscopic x-ray system. The total system latency
amounts to 115 ms. Hoogeman et al. (2009) quantified average prediction and correla-
tion model errors for 44 lung cancer patients through a straight line fit to absolute RMS
errors as a function of the standard deviation of the raw breathing signals. The slopes
were 0.1 for external motion forward prediction and 0.36 (SI), 0.40 (LR), and 0.33 (AP)
for the correlation model estimations. Due to the small latency, the geometric tracking
error of the CyberKnife system is dominated by the correlation model error.

The VERO system (BrainLAB AG, Feldkirchen, Germany and Mitsubishi Heavy Indus-
tries, Tokyo, Japan) features a 6 MV linac with a relatively small MLC mounted on a
O-ring gantry. A gimbals system allows pan and tilt rotation of the entire linac-MLC
assembly for tumor tracking. The latency of the tracking system integrated with optical
external surrogate motion monitoring amounts to 47 ms. Depuydt et al. (2011) reported
RMS geometric tracking accuracies for lung tumor motion below 0.22 mm.

The comparative performance of a HexaPOD tracking system developed by Wilbert et al.
(2008) and MLC tracking was evaluated in this section 5.3. The HexaPOD tracking
system clearly outperformed our MLC tracking in terms of dosimetric accuracy in spite
of slightly worse geometric tracking accuracies.

The hardware limitations of MLC tracking due to the leaf width of 5 mm, the limited
leaf velocity and the intra-leaf leakage represent a clear disadvantage of MLC tracking
compared to VERO, CyberKnife and HexaPOD tracking. The dosimetric MLC tracking
errors even for small geometric uncertainties complicate the estimation of the clinical
benefits achievable with the tracking approach. For the VERO, CyberKnife and Hexa-
POD systems, in contrast, the achievable clinical benefits can easily estimated from the
geometric tracking accuracies, for instance with aid of the population-based safety margin
recipe proposed by Van Herk (2004).

A clear advantage of MLC tracking compared to HexaPOD tracking is the increased
patient comfort as well as the avoidance of possible dose errors due to organ deformations
induced by the rapid accelerations of the entire patient during respiratory motion couch
tracking deliveries. Compared to the VERO and CyberKnife tracking systems, MLC
tracking offers several advantages: The field size of the VERO system is relatively small,
which limits its possible fields of application. The CyberKnife system is not equipped
with a MLC and the delivery times are often substantially larger than for comparable
radiotherapy deliveries with a medical x-ray producing linac. Additionally, MLC tracking
could be advantageous from an economical point of view. Medical x-ray producing linacs
equipped with MLCs are the ’working horses’ of modern radiotherapy. MLC tracking
essentially requires software modifications and has therefore the potential for a relatively
cost-effective, widespread clinical implementation.
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7 Summary and conclusions

Outlook

The MLC tracking performance assessments presented in this thesis demonstrated that
the geometric tracking accuracy can hardly be further improved with the given large
latency of the Siemens 160 MLC. In order to possibly enhance the dosimetric track-
ing accuracy, we suggest the following further investigations: Firstly, the influence of
positioning strategies of closed leaf pairs adjacent to the MLC aperture should be sys-
tematically studied. The number of closed leaf pairs could be adapted to the amplitude
of the breathing motion. It could also be helpful to frequently shift the position of
closed leaf pairs relative to the open field so that the local overdosage would be reduced
through a smearing over a larger area. Secondly, the y-laws of the MLC could be used
to dynamically collimate the treatment beam perpendicular to the leaf travel direction.
This could not only eliminate the leakage through closed leaf pairs, but also increase the
5 mm resolution of MLC tracking determined by the leaf width at the borders of the
MLC field. Thirdly, the alignment of the collimator angle with the major axis of the
target motion trajectory as proposed by McQuaid et al. (2009) should be investigated.
It should however be noted that the – generally beam angle dependent – collimator angle
alignment has to be performed at the treatment planning phase. The approach conse-
quently requires that the main axis of the target motion trajectory is stable over the
entire course of the radiotherapy treatment.

Our MLC tracking implementation accounts for 3D rigid target translations. In sec-
tion 4.2.2 we have introduced several previously proposed strategies to account for more
complex forms of organ motion, such as 1D translations and deformations (Papiez and
Rangaraj, 2005; Tacke et al., 2007), differential organ motion (Webb and Binnie, 2006;
McClelland et al., 2007), or the compensation of in-plane rotations (Wu et al., 2011). We
consider the 4D planning and 4D delivery strategy proposed by Suh et al. (2009) to be
highly promising. As our tracking software implementation is already prepared for the
delivery of 4D treatment plans, we suggest future experimental validation of 4D planning
and 4D delivery strategies.

Our dosimetric tracking accuracy assessments based on the gamma metric could not
comprehensively quantify the clinical benefits of MLC tracking. Future work should ex-
perimentally evaluate more clinically relevant measures for dosimetric accuracy of MLC
tracking deliveries, such as dose-volume histograms of the target volume and nearby or-
gans. Such studies should also investigate the extend to which the dosimetric tracking
errors can be compensated by means of adequate safety margins. If such investigations
were performed with several target motion traces as well as several patient geometries,
they could finally yield a safety margin recipe for remaining geometric errors of MLC
tracking deliveries. Although our presented dosimetric tracking accuracy assessments
could not fully quantify the clinical benefits of the MLC tracking system, we demon-
strated substantial improvements in terms of the gamma criterion, which shows that the
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negative effects of intra-fractional organ motion on the delivered dose distributions could
be eliminated to a large extend.
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