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Imagination is more important than knowledge. For knowledge is limited, whereas 

imagination embraces the entire world, stimulating progress, giving birth to evolution. 

Albert Einstein, 1931 
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SUMMARY 
 

In this thesis, signalling dynamics of the interferon alpha stimulated JAK/STAT 
pathway have been studied using a computational modelling approach. A model 
simulating the kinetic response of an interferon alpha stimulated Huh7.5 cell was 
developed using literature data and experimental measurements. The model was 
used for predictions regarding the kinetic behaviour of the signal transduction. 
IRF-9, a transcription factor necessary for the transcriptionally active ISGF-3 
complex, was predicted to be a major contributor to the time dependent kinetic 
behaviour of the interferon alpha stimulated signal transduction. An 
overexpression of IRF-9 was predicted to enhance and accelerate the anti-viral 
response following interferon alpha stimulation. Furthermore, constitutive 
negative feedback by nuclear phosphatases and induced negative feedback by 
SOCS proteins were predicted to have a major impact on the JAK/STAT 
signalling pathway. Additionally, phosphatase protection of the ISGF-3 complex 
by DNA binding was proposed to be necessary for the observed kinetic 
measurements. Predictions regarding IRF-9 were validated by experimental 
measurements comparing wild-type cells to IRF-9 overexpression cells. Both cell 
lines showed the predicted behaviour after interferon alpha stimulation for active 
signal transducers. 
Furthermore, the effect was observed on a genetic level, as an array experiment 
showed upregulation and acceleration of prominent anti-viral genes such as Mx1 
in the IRF-9 overexpressing cells in comparison to the wild-type environment. 
Therefore, overexpression of IRF-9 was identified as a method to enhance the 
JAK/STAT signalling pathway. 
A bioinformatical approach was used to predict underlying mechanisms 
controlling individual gene induction patterns observed in the array experiment. 
Results showed that hub-gene IRF1 could be involved in a transcriptional network 
controlling early and late anti-viral responses following interferon alpha 
stimulation. 
To improve model predictions and to identify key reactions for additional 
experimental design, a two-phase model reduction and parameter estimation 
approaches were performed. For the first reduction, the model was decreased 
from 61 free parameters to 33 free parameters. After a parameter fitting 
approach, the model retained its ability to accurately fit the experimental data. 
Furthermore, the second model reduction lead to a minimal model with 22 free 
parameters, which was able to fit the experimental data well.  
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ZUSAMMENFASSUNG 
 

In dieser Dissertation wurde die Signaltransduktion des durch Interferon-Alpha 
stimulierten JAK/STAT Signalweges durch die Verwendung eines 
systembiologischen Modelling Ansatzes studiert. Ein Modell, das die kinetische 
Reaktion einer Interferon-Alpha stimulierten Huh7.5 Zelle abbildet, wurde unter 
Zuhilfenahme von experimentellen Messungen und publizierten Daten entwickelt. 
Mit Hilfe des Modells wurden Vorhersagen über das kinetische Verhalten der 
Signaltransduktion getätigt: Die Konzentration von IRF-9, ein Transkriptionsfaktor 
der Bestandteil des transkriptionell-aktiven ISGF-3 Komplexes ist, wurde durch 
die Analyse als wesentlicher Einfluss auf das zeitabhängige kinetische Verhalten 
des JAK/STAT Signalweg prognostiziert. Eine Überexpression von IRF-9 sollte 
demnach eine Beschleunigung und Verstärkung der anti-viralen Antwort nach 
Interferon-Alpha Stimulation zur Folge haben. Des Weiteren wurde konstitutive, 
negative Rückkopplung durch nukleare Phosphatasen sowie induzierte negative 
Rückkopplung durch Neusynthese von SOCS Proteinen als Haupteinflüsse auf 
das kinetische Verhalten des Signalweges vorhergesagt. Die Prognose bezüglich 
IRF-9 Überexpression wurde daraufhin experimentell validiert. Ein Vergleich von 
Wildtyp-Zellen und IRF-9 Überexpressions-Zellen zeigte nach Interferon-
Stimulation das von dem Modell vorhergesagte Verhalten für aktive 
Signaltransduktion-Proteine. 
Des Weiteren wurde der Effekt auf der genetischen Ebene beobachtet, da ein 
entsprechendes Array-Experiment eine Hochregulation sowie eine 
Beschleunigung der Induktion von anti-viralen Genen, wie z.B. Mx1, zeigte. 
Demnach wurde die Überexpression von IRF-9 als Methode identifiziert, um den 
JAK/STAT Signalweg entscheidend zu verstärken. 
Um die Mechanismen der individuellen Gen-Induktions-Muster zu erklären, die 
während des Array Experimentes beobachtet wurden, wurde eine 
bioinformatische Analyse durchgeführt. Die Analyse ergab, dass das Hub-Gen 
IRF1 in einem transkriptionellen Netzwerk involviert sein könnte, das die frühe 
und späte anti-virale Antwort kontrollieren könnte. 
Um die Vorhersagen des Modells zu verbessern und die wesentlichen 
Reaktionen des Signalweges weiter einzugrenzen, was zu verbessertem Design 
von weiteren Experimenten führen könnte, wurde ein Zwei-Phasen 
Modellreduktionsansatz mit darauf folgenden Parameter-Schätzungen 
durchgeführt. Nach der ersten Reduktion wurde das Ursprungsmodell von 61 
freien Parametern auf 33 freie Parameter reduziert, wobei das reduzierte Modell 
nach der entsprechenden Parameter-Schätzung die Fähigkeit beibehielt, 
sämtliche experimentelle Daten akkurat darzustellen. Die zweite Reduktion 
verkleinerte das Modell auf 22 freie Parameter, wobei dieses Modell weiterhin die 
experimentellen Daten gut darstellen konnte. 
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INTRODUCTION 
 

INTERFERON SUBTYPES 

 

Interferons (IFNs) belong to the group of secreted cytokines and are named after 

their ability to interfere with viral activity. They allow communication between cells 

in the situation of a pathogenic threat to the organism. All known IFN subtypes 

bind to one of three receptor complexes and are therefore divided into three 

receptor-specific subgroups: Type I IFNs (discovered in 1957, (Isaacs et al. 

1957)) including interferon α and β which play a pivotal role in the direct response 

to viral infections in most cell types. They bind to the IFN-α receptor (IFNAR). 

Following the receptor binding, the JAK/STAT signalling pathway gets activated, 

which is described in detail below. The class of type II IFNs consists of IFN-γ 

only, which binds to the IFN-γ receptor (IFNGR). Contrary to type I IFNs, IFN-γ is 

not secreted as a direct response to viral infection but exclusively by immune 

cells, e.g. T cells and natural killer cells, reasoning its alternative name “immune 

interferon” (Randall et al. 2008). IFN-γ stimulation of cells leads to the activation 

of another JAK/STAT signalling pathway by phosphorylation of STAT1 

homodimers (Figure 1). These homodimers are then able to bind specific GAS-

sites directly and induce the transcription of specific anti-viral genes. Three 

subtypes of IFN-λ have been recently classified as type III IFNs as they signal 

through a receptor complex consisting of IFNLR1 and IL10R2. Their function and 

associated signalling events are still barely understood but are under 

investigation (Onoguchi et al. 2007). 

 

 

 

 

 

 



Introduction - Interferon alpha signalling through JAK/STAT pathway 
 

6 
 

INTERFERON ALPHA SIGNALLING THROUGH JAK/STAT PATHWAY 
 

IFN-α signalling through receptor complex IFNAR has been studied for the past 

two decades (Stark et al. 1998; Platanias 2005). The general mechanism of the 

underlying JAK/STAT signalling pathway has been well understood (Figure 1). 

Upon ligand binding, IFN receptor subunits IFNAR1 and IFNAR2 are able to bind 

as a heterodimer. This close approximation of the receptor subunits allows 

associated kinases JAK1 and TYK2 to initiate a phosphorylation cascade, first 

phosphorylating each other. Secondly, receptor binding sites are phosphorylated, 

which allow the signalling molecule STAT2 to bind to the receptor. During the 

next step of the cascade, STAT1 forms a heterodimer with receptor-associated 

STAT2. This dimer is stabilized through phosphorylation and released from the 

receptor. To form the transcriptionally active ISGF3 molecule, interferon 

regulatory factor 9 (IRF9/p48/ISGF3γ) is bound to the phosphorylated 

STAT1/STAT2 heterodimer. 



Introduction - Interferon alpha signalling through JAK/STAT pathway 
 

7 
 

 

Figure 1 A schematic model of activation of the JAK–STAT pathway by IFN. Binding of IFNs to their 

receptors results in the activation of the cytoplasmic tyrosine kinases of the Janus kinase (JAK) family, JAK1 
and TYK2 for IFN-α, and JAK1 and JAK2 for IFN-γ. Activated JAKs become phosphorylated  and  
subsequently  phosphorylate  the  receptor  on  specific  tyrosine  residues,  which  function  as  docking  
sites  for  the  src-homology  2  (SH2)  domain  of  STAT1  and  STAT2.  Tyrosine  phosphorylation  by  JAKs  
results  in  heterodimerization  of  STAT1  and  STAT2  or homodimerization of STAT1 and their nuclear 
translocation upon IFN-α or IFN-γ treatment, respectively. STAT1/STAT2 heterodimers bind to ISRE DNA 
sequence in the presence of IRF9 to form the ISGF3 complex whereas STAT1 homodimers bind to GAS 
directly. Kindly provided by Prof. A. E. Koromilas (Koromilas et al. 2001).  
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So far, IRF9 is known to be uniquely essential for IFN-α signalling, distinguishing 

it from other IFN signalling cascades, e.g. IFN-γ signalling. ISGF3 is then actively 

transported into the nucleus. In its trimeric form it is able to bind specific ISRE 

gene sites, the phosphorylated STAT1/STAT2 heterodimer on the other hand 

binds to non-specific binding sites (e.g. IFN-γ stimulated GAS-sites) (Li et al. 

1996; Wesoly et al. 2007). Specific ISRE binding leads to a genetic response by 

transcription of anti-viral target genes, such as Mx1 or PKR (Der et al. 1998). The 

JAK/STAT signalling pathway is controlled through several feedback 

mechanisms. Constitutive negative feedback is performed through cytoplasmic 

and nuclear phosphatases (ten Hoeve et al. 2002). Dephosphorylation of the 

active STAT1/STAT2 complex leads to their separation into single proteins. They 

are then able to rebind the active receptor complex, leading to a phosphorylation 

cycle (Levy et al. 2002) (Figure 2). Dephosphorylation of the receptor is achieved 

by phosphatases SHP1 and SHP2 (You et al. 1999; Barua et al. 2007). The 

protein PIAS is responsible for another constitutive negative feedback. It is able to 

bind the ISGF3 complex and therefore specifically controlling the transcriptional 

activity of ISGF3 (O'Shea et al. 2004; Shuai 2006). Upon binding the DNA, ISGF3 

induces gene transcription of additional feedback mechanisms. The dominant 

negative feedback being induced upon IFN stimulation is the SOCS protein. It is 

able to bind the active receptor complex and dephosphorylate the associated 

kinases or actively degrade the receptor complex, terminating the signalling 

cascade at the top level (Kile et al. 2002; Croker et al. 2008). Simultaneously, 

IFN-α signalling induces a positive feedback mechanism, namely the IRF9 

transcription factor. Increasing the amount of IRF9 by overexpression or 

prestimulation of cells with IFN-γ or IL-6, results in a higher degree of 

transcription of interferon-stimulated genes (Bandyopadhyay et al. 1990; Levy et 

al. 1990; Tamada et al. 2002) and an augmented antiviral response (Leonard et 

al. 1997; Weihua et al. 2000). However, the specific impact of IRF9 on the 

dynamics of pathway activation remains to be identified. 
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MISSING LINKS & MEDICAL IMPACT 
 

Many specifics such as dose-dependent influences of molecules on the kinetic 

behaviour of the signalling pathway have not been studied in detail. As time is the 

crucial factor to determine the success of an anti-viral response against a 

pathogen (Sarasin-Filipowicz et al. 2008), a precise understanding of the 

underlying kinetics is required for promising medical applications. Knowledge of 

kinetic-controlling molecule concentrations during various time-points and under 

diverse doses of stimuli, transcription factors and signalling mediators will provide 

us with significant information regarding screening applications or actual 

treatment. This holds especially true for feedback mechanisms, controlling the 

signalling pathway in a positive or negative way (Shuai et al. 2003). Surprisingly, 

studies analysing feedback influences in a time-resolved manner are still a rarity. 

IFN-α is used as a treatment of hepatitis C and B virus infection. However, the 

success of the treatment is highly patient-dependent (Manns et al. 2001). 

Differences between responders and non-responders are currently under 

investigation (Chen et al. 2005; Sarasin-Filipowicz et al. 2008), but have not been 

understood. Several other viral pathogens are known to induce genetic responses 

that hinder the IFN signalling pathway (Randall et al. 2008; Versteeg et al. 2010; 

Harman et al. 2011).  Understanding viral interferences and their influence on the 

kinetic behaviour of the immune response is likely going to lead to new medical 

applications. 
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Figure 2 A schematic overview of the phosphorylation cycle. Upon receptor binding, STAT1, STAT2 and 

IRF9 become closely associated through phosphorylation (top/right). The active trimeric complex is then 

actively transported into the nucleus (right/bottom). Dephosphorylation through nuclear phosphatases leads 

to disassociation and the monomeric proteins are exported into the cytoplasm (bottom/left). If the receptor is 

still active, the exported subunits are able to rebind and reinitiate the phosphorylation cycle (left/top). NP: 

Nuclear phosphatase; Blue ellipse: Nucleus. 
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SYSTEMS BIOLOGY 
 

As understanding of biological processes grows it is often surprising to witness 

the degree of complexity that is discovered. Underlying network structures are 

present on every level of biological life, e.g. on a population based level (Snijder 

et al. 2009), protein interactions in biological pathways (Schoeberl et al. 2002) or 

genetic networks controlled by differently transcribed transcription-factors 

(Zaslavsky et al. 2010). Looking at the interactivity of those networks, it is 

impossible to get a deeper insight without sophisticated computational tools that 

analyse and interpret known data (Kitano 2002a). Systems biology is focussing 

on the discovery of network structures and the according system dynamics 

(Kitano 2002b). Once a system is described or modelled in an appropriate way 

based on information provided by available experimental data, it is possible to 

use this model for predictions about the system. These predictions can be used to 

identify key experiments, which are then able to improve the quality of the model 

(Figure 3). Given that the required amounts of experimental data are available, a 

model is not only able to describe single pathways but also cross-talks, i.e. how 

sub-network influence each other in a time-resolved manner (Aldridge et al. 

2009). Exemplary for future implications of utilizing systems biology are 

demonstrated by the concept of P4 medical treatment introduced by Hood et al. 

(Hood et al. 2011). 

Looking at signalling pathways, systems biology has already been used to 

successfully deepen our insights into biological processes. In one example, 

modelling of the EGF signalling cascade has shown that not ligand concentration 

but initial velocity of receptor activation is the critical parameter for signal 

efficiency (Schoeberl et al. 2002). In another recent example, Epo signalling was 

investigated, uncovering that a rapid receptor turnover-rate is a decisive control 

mechanism required to cope with largely varying ligand concentrations (Becker et 

al. 2010). Apart from explaining biological processes in signalling pathways, 

theoretical systems biology has been used to propose new points of view for 

signal transduction, e.g. how a cell could interpret different messages from the 

same signal in a time-dependent resolution (Behar et al. 2010).  
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In summary, as our understanding of the complexity of biological processes rises, 

systems biology is a decisive tool to manage and learn from experimental data. 

 

 

Figure 3 Hypothesis-driven research in systems biology. Systems biology approaches consist of an 

iterative process    between experiments and modelling. Contradictory biological issues are answered in an 
iterative cycle of quantitative data generation, mathematical modelling, in silico predictions, experimental 

validation and design of new experiments. Adapted from (Kitano 2002b). Kindly provided by Annette 
Schneider. 

 

MODELLING 
 

Interferon signalling has been studied through computational modelling over the 

last decade. The majority of these studies have been focused on the IFN-γ 

signalling pathway (Yamada et al. 2003; Zi et al. 2005; Rateitschak et al. 2009). 

IFN-β signalling has been studied focussing on the pathway termination by 

constitutive negative feedback and the involvement of IFN-γ induced STAT1 

homodimers (Smieja et al. 2008). As mentioned before, the difference between 

type I IFNs and type II IFNs is given by their signalling through different receptor 

complexes. IFN-γ induced signalling leads to the formation of phosphorylated 

STAT1 homodimers. The active STAT1/STAT1 homodimer is then able to bind 

IFN-γ specific GAS-sites (Figure 1) (Randall et al. 2008). Consequently, feedback 

mechanisms based upon the dephosphorylation of signalling mediators and 

receptors, e.g. nuclear phosphatases and induction of SOCS, respectively, apply 
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to both IFN signalling pathways. In the case of IFN-α however, the involvement of 

an additional transcription factor which is required for specific genetic response 

and in particular constitutes a positive feedback loop has a significant impact on 

the kinetic behaviour of the signalling cascade (Randall et al. 2008; Schoggins et 

al. 2011). Therefore, insights gained by studying the IFN-γ signalling pathway or 

kinetics controlled by phosphorylated STAT1 homodimers cannot be transferred 

to IFN-α signalling induced gene transcription. 

 

AIM OF THE STUDY 
 

In this study, a modelling approach has been performed to identify key molecules 

of the IFN-α pathway (Maiwald et al. 2010). The model combines known 

characteristics of the JAK/STAT signalling pathway, parameter values of similar 

modelling approaches from literature and experimental data. The aim of the 

modelling approach is to reproduce experimental measurements reliably and 

expand upon this knowledge to suggest hypotheses which can be experimentally 

verified. A main feature of the model is given by the comprehensive involvement 

of constitutive and induced feedback mechanisms. It is revealed through model 

simulation and experimental verification that overexpression of IRF9 leads to an 

augmented integrated response as well as an acceleration of IFN-α signalling. 

This alteration is directly affecting the genetic level, as experimental 

measurements show augmented and accelerated induction of most IFN-α’s target 

genes. 

Furthermore, the model was improved using various approaches for model 

reduction and parameter estimation. First, the model was reduced using a 

sensitivity-driven method. Following up, a parameter estimation approach utilizing 

the profile likelihood method (Raue et al. 2009) based upon various experimental 

measurements was performed to improve the accuracy of the kinetic behaviour 

presented by the model. Results from the parameter estimation allowed the 

application of a time-scale separation based model reduction (Surovtsova et al. 

2009). 
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RESULTS 

MODELLING OF THE IFN ALPHA SIGNALLING PATHWAY 
 

To examine the IFN-α signalling pathway and in particular the kinetic behaviour of 

its key components, a novel IFN-α signalling model was developed (Figure 4, 

Table 1). The model focuses on a comprehensive involvement of all known 

feedback mechanisms and unique traits of the IFN-α signalling pathway. This 

includes the requirement of the trimeric complex ISGF3 consisting of STAT1, 

STAT2 and IRF9 for specific gene induction, shuttling kinetics of key molecules 

and constitutive and induced feedbacks. Specifically, the model includes 

constitutive negative regulations by general phosphatases and PIAS as well as 

constitutive degradation of receptor, IRF9 and mRNA. Receptor 

dephosphorylation by SHP-2 was represented by a constant kinetic parameter, 

since changes in SHP-2 concentration were assumed to be negligible during the 

measured time-scale. Furthermore, the negative feedback loop of ISGF3-

mediated SOCS induction was incorporated. As a positive feedback mechanism 

IRF9 synthesis was included since its IFN dependent expression was 

experimentally observed within the relevant time frame (Figure 5). Furthermore, 

certain behaviours of pathway components were based upon literature evidence: 

(i) IRF9 is constitutively bound to STAT2 in its unphosphorylated form (Martinez-

Moczygemba et al. 1997), (ii) unphosphorylated STAT1 and STAT2 molecules 

constantly shuttle between nucleus and cytoplasm, while nuclear import of STAT2 

is increased by IRF9 binding (Banninger et al. 2004) and (iii) unbound IRF9 is 

mainly localised in the nucleus (Lau et al. 2000) (for a detailed description see 

model description). The rate law interpretation of the model is assumed to be 

deterministic.  
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MODEL DESCRIPTION 
 

The developed model consists of 38 species and 41 kinetic reactions (Table 1). 

Nearly all reactions are assumed to be mass action kinetics. Michelis-Menten 

kinetic requires a prerequisite condition to be satisfied: Substrate concentration 

must exceed enzyme concentration significantly. As this is usually not the case in 

signal transduction pathways, Michelis-Menten kinetic is neglected in the analysis 

(Yamada et al. 2003). Two reaction subtypes are excluded from this scheme: 

Nuclear/cytoplasmic shuttling and transcriptional activity. These reactions are 

influenced by modifiers which are independent of the reaction itself, namely 

compartment sizes, occupied DNA-binding sites and cytoplasmic mRNA, 

respectively. Therefore, those reactions required the introduction of individual 

kinetic functions. As a prerequisite, free kinases (JAK and TYK) bind free receptor 

subunits (IFNAR 1 and IFNAR 2) (Table 1, reaction 1 / 2). Resulting receptor-

subunits with attached kinases trimerise with a free IFN molecule into an active 

receptor complex (IFNAR dimer) (Table 1, Reaction 3). This active complex is 

able to bind free cytoplasmic STAT2 and subsequent free cytoplasmic STAT1 

(Table 1, reaction 5-7). The next reaction describes STAT phosphorylation and 

leads to an unbinding of the phosphorylated STAT1/STAT2 heterodimer from the 

active receptor (Table 1, reaction 8). Heterodimers can either bind cytoplasmic 

IRF9 to build the ISGF-3 complex (Table 1, reaction 9) or get transported actively 

into the nucleus (Table 1, reaction 11), where they are able to bind nuclear IRF9 

(Table 1, reaction 12). Cytoplasmic ISGF-3 is transported actively into the 

nucleus as well (Table 1, reaction 10). Once in the nucleus, ISGF-3 is able to bind 

to free DNA binding sites (Table 1, reaction 13). Their DNA-binding induces 

transcriptional activity (Table 1, reaction 14 / 15), leading to production of more 

IRF9 as a positive feedback and SOCS as a negative feedback (Table 1, reaction 

16 / 17). SOCS is able to block and degrade active receptors through binding the 

catalytic cleft of a kinase using the kinase inhibitory region (KIR) and receptor 

ubiquitination, respectively, therefore terminating additional STAT 

phosphorylation (Croker et al. 2008) (Table 1, reaction 18). Furthermore, several 

constitutive negative feedbacks play a role in the model. Cytoplasmic and nuclear 
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phosphatases dephosphorylate both ISGF-3 and phosphorylated STAT 

heterodimers, in the cytoplasm and the nucleus, respectively, leading to the 

complex dissociating into its monomeric subunits STAT1, STAT2 and IRF9 (Table 

1, reaction 23-30). DNA binding protects ISGF3 of nuclear phosphatases (Meyer 

et al. 2003) which is taken into account through adjusted kinetic parameters 

(Table 1, reaction 31 / 32). Other feedbacks like PIAS, specifically inhibiting 

nuclear ISGF-3 (Chung et al. 1997) (Table 1, reaction 33), constitutive receptor, 

IRF9 and mRNA degradation (Table 1, reaction 18 / 20-22 / 34) and receptor-

level phosphatases (SHP2, (Frearson et al. 1997)) (Table 1, reaction 19) were 

also included. Their presence ensures no loss of information about possible 

interplays and dependencies between different species regarding the kinetic 

behaviour of the model that would be neglected by a minimalistic approach. 

Further reactions include: IRF9 is constitutively bound to unphosphorylated 

STAT2 in the unstimulated system in both compartments (Table 1, reaction 37 / 

38) (Reich et al. 2006). Constant shuttling of unphosphorylated STAT1 and 

STAT2 between cytoplasm and nucleus occurs (Table 1, reaction 35 / 36), while 

nuclear import of STAT2 is increased by IRF9 binding (Table 1, reaction 39) 

(Reich et al. 2006). Free IRF9 shuttles between cytoplasm and nucleus, but it is 

mainly localised in the nucleus (Table 1, reaction 40) (Lau et al. 2000). 
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Figure 4 Schematic overview of the full IFN-α signalling model. A simplified view of the model 

architecture is shown with the activation of STAT proteins summarised in one reaction and omitting receptor 
endocytosis, constitutive IRF9 degradation and nuclear translocation of phosphorylated STAT1/STAT2 
heterodimers. For details see Table 1. Lines with empty circles: reaction catalysis; lines with perpendicular 
bars: reaction inhibition; dotted lines: transcription; TFBS: transcription factor binding site. The scheme was 
generated using CellDesigner (Kitano et al. 2005). 
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Table 1 Overview of kinetic reactions and equations. Second column shows reaction formulas. “=” 

defines reversible reactions, “->” irreversible reactions, respectively. Third column displays according 
kinetics.  Compartment changes are considered. Suffixes:  c:  cytoplasm, n:  nucleus, “*”: phosphorylated. 
Kinetic rate laws: s: substrate, p: product according to their correspondent reactions 
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Table 2 Overview of kinetic parameters. According sources that were taken into account as reference 

values are shown in the last row (Yamada et al. 2003; Zi et al. 2005; Gavutis et al. 2006; Barua et al. 2007; 
Jaks et al. 2007; Smieja et al. 2008).  Reactions are numbered according to Table 1.  
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For model calibration kinetic parameters were taken from literature (Table 2) or 

trained against experimental data (Figure 5) with all kinetic parameters being 

estimated within a physiologically meaningful range, i.e. within six orders of 

magnitude. The initial concentrations of STAT1, STAT2, JAK1, TYK2 and IRF9 

were experimentally determined (Figure 6, Table 3). Measurements of 

phosphorylation levels of STAT molecules showed that approximately 30% of the 

total amount of STAT molecules were phosphorylated after IFN alpha stimulation. 

This is in accordance with literature (Vinkemeier 2004). Finally, the major 

signalling peak is assumed to occur between 20 and 60 minutes after IFN alpha 

stimulation. As mentioned above, the model includes all known feedback 

mechanisms of the IFN-α signalling pathway. This is necessary to analyse their 

specific impact in a time-dependend perspective. Consequently, this leads to a 

comprehensive model which represents an underdetermined system due to the 

number of unknown kinetic parameters in comparison to the amout of available 

data points. However the established model is consistent with the experimental 

data (Figure 5) and permits qualitative predictions. 
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Figure 5 Dynamic behaviour of IFN alpha signalling. Activation of pJAK1, pSTAT1 and IRF9 measured by 

quantitative immunoblotting after stimulating Huh7.5 cells with 500 U/ml IFN alpha. A representative plot is 
shown, the experiment was repeated at least three times (see Figure 8A for additional data). The error bars 
represent a technical relative error of 18%, derived from multiple measurements. Experiments were 
performed by Annette Schneider. Filled circles: experimental data; dashed lines: smoothing splines; a.u.: 
arbitrary units. Model simulation (line) for pJAK1, pSTAT1 and IRF9 performed with COPASI (Hoops et al. 
2006). The simulations are within the range of data reproducibility. 

 

 

Table 3 Initial concentrations of model species [nmol/l]. Concentrations of STAT1 and phosphatases are 

from Yamada et al. (Yamada et al. 2003). Measured concentrations (JAK1, TYK2, STAT1, STAT2, IRF9) 
were transformed from molecules per cell to nmol/l by using STAT1 concentration as reference. 
Concentrations for receptors (IFNAR1, IFNAR2) were assumed to be non-limiting and therefore set to a high 
amount. 
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Figure 6 Protein quantification of key pathway components. (A) Dilution series of recombinant calibrator 

proteins were added to cell lysates of Huh7.5 cells and the relative amount of the respective protein was 
determined using quantitative immunoblotting in at least triplicates. For JAK1 and TYK2, an 
immunoprecipitation was performed prior to immunoblotting. (B) The absolute amount of endogenous 

proteins per cell was calculated using the calibrator dilution series as reference, accounting for the molecular 
weight of the recombinant and the endogenous proteins as well as the number of lysed cells. Molecules/cell: 
JAK1: 5000; TYK2: 2000; STAT1: 474000; STAT2: 142000; IRF9: 11000. Experiments were performed by 
Annette Schneider  
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HYPOTHESIS: IRF9 OVEREXPRESSION AMPLIFIES SIGNALLING KINETICS 
 

To systematically identify key components responsible for the speed and extent 

of the IFN-α signalling, a local sensitivity analysis was performed (Figure 7A). As 

an input, the initial protein concentrations of the pathway components were 

varied. Two kinetic behaviours were chosen as an output: (i) The peak time and 

(ii) the area under the curve of the ISGF-3 concentration in the nucleus. These 

system quantities were selected as the concentration of ISGF-3 molecules which 

is bound to the DNA is crucial for the transcriptional activation of an antiviral 

response. Therefore, peak time represents the speed of signalling, whereas the 

integrated response corresponds to the amount of signalling that occurs.  

In contrast to other systems, for which control is widely distributed (Hornberg et 

al. 2005), only few molecules controlled the systems behaviour of IFN alpha 

signalling. Nuclear phosphatases show a prominent negative effect on the 

integrated response while accelerating the occurrence of the signalling peak, 

which is in line with previous theoretical studies (Heinrich et al. 2002). Higher 

doses of free interferon lead to an increased signal amplitude but barely affect the 

peak time and signal duration, which could be confirmed experimentally (Figure 

8B). Focusing on signal mediators STAT1 and STAT2, they present a positive 

control over the integrated response as well as a minor deceleration of the 

signalling peak.  
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Figure 7 Sensitivity analysis for peak time and integrated response. Initial concentrations of all players 

were varied to calculate their control coefficient on the kinetic behaviour of the system. NP/CP: 
nuclear/cytoplasmic phosphatases. (A) Sensitivity analysis using the original parameter set. (B) Global 

sensitivity analysis using an array of 998 parameter sets. 

 

 

The only component that implements a major positive control simultaneously over 

speed and amount of signalling is transcription factor IRF9. 

To ascertain that the results derived by the sensitivity analysis were not restricted 

to the original parameter set, the same approach was repeated using diverse 

parameter sets. For this purpose, random search implemented in Copasi’s 

optimization task was used to vary all model parameters between +/- 50% of their 

original value. As fitting constraints, the resulting kinetic behaviours had to 

reproduce the experimental data (Figure 5). Through this process, 998 different 

parameter sets matching the given criteria were obtained. Further analysis of 

these data sets showed that the kinetic parameters could vary quite substantively 

and still reproduce the experimental data. Therefore, given the system being 

underdetermined, it is important to examine parameter sensitivities not only on a 

single point in parameter space, but rather use a more global approach. The 
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obtained parameter sets were used for a global sensitivity analysis. As shown in 

Figure 7B, the most sensitive component in both analyses was IRF9, supporting 

its central role. The role of free IFN differed between both approaches regarding 

the time of the signalling peak: Whereas the locale approach showed a minor 

positive influence (Figure 7A), the global analysis revealed an increased negative 

control coefficient for most parameter sets (Figure 7B). However, as in the 

experimental data the peak time for different interferon doses was comparable 

(Figure 8B), it was reasonable to retain the original parameter set for further 

analysis. In conclusion, major sensitivities were conserved throughout the 

parameter space, confirming that IRF9 has an important impact on the kinetic 

behaviour of the system independent of specific parameter sets. 

Sensitivity analyses describe small changes for each given parameter to examine 

an impact on the kinetic behaviour of the system. To prove that large variations of 

IRF9 concentrations behaved accordingly, additional model simulations were 

performed. Indeed, a major increase in IRF9 levels accelerated signal 

transduction from the cytoplasm to the nucleus, resulting in a greater amount of 

active ISGF3 in the nucleus at earlier time points (Figure 9A). Furthermore, the 

model predicted a steeper signalling decline after the peak for elevated IRF9 

levels. To test if this effect was a result of upregulated transcription of negative 

inhibitors (SOCS proteins), we removed SOCS1-induction in silico. Without this 

negative feedback, signal termination was attenuated in the IRF9 overexpressing 

cells, while in the wildtype cells IRF9 de novo-synthesis accounted for enhanced 

signalling during the analysed time frame (Figure 10A). 
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Figure 8 Additional data describing the dynamics of IFN alpha signalling in Huh7.5 cells and primary 
human hepatocytes. The error bars represent a technical relative error of 18%, derived from multiple 
measurements. Dashed lines: smoothing splines. (A) Activation of key components measured by quantitative 

immunoblotting after stimulating Huh7.5 cells with 500 U/ml IFN alpha. Open circles represent data points 
that were treated as outliers.  (B) Activation of key components measured by quantitative immunoblotting 
after stimulating the cells with 500 U/ml or 1000 U/ml IFN alpha. (C) Activation of key components measured 

by quantitative immunoblotting after stimulating primary human hepatocytes with 500 U/ml IFN alpha. 
Experiments were performed by Annette Schneider. 
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Figure 9 IRF9 controls dynamics of IFN alpha signalling. (A) Model prediction of IFN alpha-dependent 

ISGF3 (pSTAT1-pSTAT2-IRF9) accumulation in the nucleus, which is equivalent to the predicted kinetics of 
pSTAT1/pSTAT2. Simulations (lines) were performed for wild type cells (wt) and for cells with 32 fold IRF9 
overexpression (IRF9oe). (B) Experimental validation of the model prediction. Wild type Huh7.5 cells (wt) or 

Huh7.5 cells stably overexpressing IRF9 32 fold (IRF9oe) were stimulated with 500 U/ml IFN alpha and 
phosphorylation of nuclear STAT proteins was measured by quantitative immunoblotting. The error bars 
represent a technical relative error of 18%, derived from multiple measurements. Filled circles: experimental 
data; dashed lines: smoothing splines; a.u.: arbitrary units. Experiments were performed by Annette 
Schneider. (C) In silico analysis of two potential mechanisms for the effect of IRF9. Simulation of DNA bound 

ISGF3 and pSTAT1-pSTAT2 heterodimers in the nucleus, in case of IRF9 leading to increased nuclear 
import of pSTAT1-pSTAT2 and in case of IRF9 protecting from phosphatase degradation. 
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Figure 10 In  silico  analysis  of  changes  in  feedback  control  and  their  effects  on  kinetic  
behaviours  of different  components.  (A)  Concentration  of  occupied  TFBS  in  wild-type  (wt)  and  

IRF9-overexpression  (oe)  simulation  with  and  without  SOCS  synthesis.  (B)  Concentration of ISGF3 
occupied TFBS in wild-type simulation with no IRF9 synthesis, regular IRF9 synthesis and enhanced IRF9 
synthesis. (C) Concentration of total mRNA levels in simulations of wild-type and IRF9-overexpression. 
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To experimentally validate the model predictions, IRF9 was stably overexpressed 

in Huh7.5 cells by lentiviral transduction*. The phosphorylation kinetics of nuclear 

STAT1 and STAT2 in response to stimulation with 500 U/ml IFN alpha was 

determined by quantitative immunoblotting (Figure 9B)*. In line with the model 

analysis, IRF9-overexpressing cells showed a higher and earlier activation peak 

in the nucleus as well as a steeper peak decline compared to wild type cells. To 

determine if different IRF9 induction rates could have a similar effect, we varied 

the parameter for IRF9 synthesis in silico. Indeed, a more rapid IRF9 synthesis 

resulted in enhanced IFN alpha signalling, while eliminating the positive feedback 

dampened the response (Figure 10B). 

In principle, the effects of IRF9 could be achieved by two mechanisms. First, IRF9 

could decelerate dephosphorylation of activated STAT1/2, since phosphorylated 

STAT1/2 complexes can only bind specifically to ISRE sites in combination with 

IRF9 and DNA-bound STAT proteins are protected from nuclear phosphatase 

activity (Meyer et al. 2003). This mechanism was implemented in the model. As a 

potential alternative mechanism, nuclear import of phosphorylated STAT1/2 could 

be increased upon interacting with IRF9. This is based on the observation that 

IRF9 possesses a strong constitutive nuclear localisation signal (NLS) recognized 

by a variety of importins, whereas the NLS of phosphorylated STAT1/2 

heterodimers is only recognized by importin α-5 (Reich 2007). Therefore the 

complex harbouring both types of NLS could have an increased chance to 

interact with a matching importin resulting in enhanced nuclear translocation 

kinetics. 

To dissect the impact of both effects we performed model simulations. In silico 

analysis indicated that increased IRF9-dependend nuclear import kinetics, while 

neglecting IRF9 mediated phosphatase protection, could not represent the 

experimental data. On the contrary, our model describing the observed dynamics 

solely with IRF9 dependent phosphatase protection of DNA-bound ISGF3 was 

necessary and sufficient to reproduce the observed kinetic data (Figure 9C).  

Hence, our analysis identified IRF9 as crucial for both rapid and efficient IFN 

alpha-mediated signal transduction and suggests prolongation of DNA-binding of 

ISGF3 as the underlying mechanism. 



Results - Proving further impact of IRF9 concentration through experimental measurements 
 

30 
 * Experiments were performed by Annette Schneider. 

PROVING FURTHER IMPACT OF IRF9 CONCENTRATION THROUGH 

EXPERIMENTAL MEASUREMENTS 
 

To test whether the accelerated and enhanced nuclear presence of 

phosphorylated STAT1/2 proteins upon IRF9 overexpression resulted in altered 

gene activation kinetics, expression kinetics of IFN alpha-stimulated genes were 

analysed by quantitative real time PCR*. RNA levels of the antiviral genes PKR 

(Balachandran et al. 2000) and ISG56 (Terenzi et al. 2008) as well as the 

negative inhibitors SOCS1 (Alexander 2002) and USP18 were determined at 

different time points for up to 24 hours. USP18 was discovered as a protease 

cleaving the IFN-induced, ubiquitin-like modifier ISG15 from its target proteins 

(Malakhov et al. 2002), but recently was also reported to block phosphorylation of 

JAK1 (Malakhova et al. 2006). 

The examined genes were strongly induced by IFN alpha (Figure 11A). 

Interestingly, each gene analysed displayed different expression kinetics, 

suggesting gene-specific, promoter-dependent regulation mechanisms. SOCS1 

exhibited a very fast induction followed by a rapid repression. USP18, on the 

other hand, displayed an increased expression for up to 24 hours. Similar to 

USP18, the antiviral genes ISG56 and PKR showed a prolonged upregulation. 

Interestingly, for all genes investigated induction of gene expression was faster 

when IRF9 levels were elevated, which was consistent with the general mRNA 

induction predicted by the model (Figure 10C). For ISG56, SOCS1 and USP18 a 

high IRF9 level also resulted in an increased peak amplitude, whereas for PKR 

the peak amplitude was unaltered. The integrated response was larger for each 

of the four genes, with a more pronounced difference during the first 4 hours 

(Figure 11A). 
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To confirm that the observed effect was not restricted to the tested genes, we 

investigated the global induction of IFN alpha stimulated genes by a time-

resolved microarray (Figure 11B/C). For data analysis, genes were selected that 

showed a more than one fold relative expression in both wildtype and IRF9 

overexpressing cells upon stimulation with interferon alpha. A gene ontology 

analysis using DAVID (Huang et al. 2008) showed that those resulting 284 genes 

are related to immune and virus response as well as antigen processing and 

presentation, as expected (Table 4). Gene expression time series were 

characterized regarding difference in mean fold expression and difference in 

temporal regulation (see Materials and Methods for details). 

There was an overall positive correlation between the level of gene expression 

and the expression kinetics: genes that were stronger upregulated in the IRF9 

overexpressing cells were also induced earlier. Remarkably, this was true for the 

majority of the genes in IRF9 overexpressing cells compared to wildtype cells 

(160 out of 257).  One exception was IRF9 itself, as it could not be induced much 

beyond the already high expression level in overexpressing cells. Taken together, 

these data demonstrate that an elevated amount of IRF9 not only results in higher 

levels of transcription, but also in accelerated IFN alpha target gene expression. 
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Figure 11 IRF9 controls dynamics of IFN alpha induced gene expression. Huh7.5 wildtype cells stably 

transduced with an empty vector (wt) or IRF9-overexpressing cells (IRF9oe) were stimulated with 500 U/ml 
IFN alpha and RNA was extracted in biological triplicates at the indicated time points. (A) Quantitative real 

time PCR analysis of four exemplary genes. For each gene, the integrated response up to an early (4 h) and 
a late (24 h) time point was calculated. Experiments were performed by Annette Schneider. (B - C) Time 

resolved microarray analysis performed with one replicate per time point. Experiment was performed by 
Annette Schneider and Norbert Gretz. Analysis was performed by Hauke Busch. (B) Kinetics of 

representative genes in Huh7.5 wildtype cells stably transduced with an empty vector (wt) or IRF9-
overexpressing cells (IRF9oe) (C) Scatter plot depicting the difference in gene induction time and mean fold 

expression in control or IRF9 overexpressing cells. Positive values designate accelerated and augmented 
gene expression in IRF9oe cells. The plotted genes are regulated more than one fold in either wildtype or 
IRF9 overexpressing cells and have less than six hours difference in gene induction time (257 genes). 
Additionally, SOCS1 and IRF9 are included. There is a clear trend for faster and augmented gene expression 
in the IRF9 overexpressing cells, demonstrated by the linear regression (slope: 0.08; p-value: 0.00006). 
Genes from A and B are highlighted in bold. 
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Table 4 GO analysis of the 284 genes with at least 1-fold upregulation in both wildtype and IRF9 

overexpressing cells. Annotation clusters with an overall enrichment score >2 were regarded as significant. 
The Count column denotes the number of genes found in the respective GO category. The P-Value column 
denotes the EASE score, the modified Fisher exact p-value for the respective GO category. Analysis has 
been performed by Hauke Busch. 
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UNDERSTANDING THE DIVERSE GENETIC RESPONSE THROUGH A 

BIOINFORMATICS APPROACH 
 

As gene expression kinetics showed a diverse behaviour upon stimulation with 

IFN-α (Figure 11A), further investigations were required. In theory, several 

mechanisms are able to explain the observed pattern, especially regarding the 

difference between early response (0-8 hours after stimulation) and late response 

(8-24 hours after stimulation). These theories involve:  

 Gene expression networks, where the early response triggers the expression 

of a transcription factor that activates a secondary, late response (Zaslavsky 

et al. 2010) 

 Control through posttranscriptional modifications, e.g. microRNA (Anderson 

2010) 

 Autocrine stimulation by expression of a potent ligand, that is secreted into the 

extracellular environment (Shvartsman et al. 2002) 

 Differences in the stability of individual mRNAs (Guhaniyogi et al. 2001; Hao 

et al. 2009) 

Although these theories might work together in synergy, narrowing the possible 

explanations for the observed behaviour was the aim for further analyses. 

Specifically, finding potential target proteins for additional experimental 

measurements was the main focus. Therefore, a bioinformatics approach was 

chosen using the STRING database (Szklarczyk et al. 2011). The STRING 

database utilizes text-mining algorithms, protein-interaction databases and 

documented experiments to visualize a protein-interaction network for given 

proteins of interest. Using key proteins of the JAK/STAT signalling pathway as an 

input the network structure was predicted to resemble a cascade (Figure 12). In 

detail, highlighted through the red rectangle on the left is ISGF-3, the signalling 

mediator of the JAK/STAT pathway. A green and yellow connection between 

STAT1 and IRF1 represents activation and expression, which is followed by an 

activation connection from IRF1 to DDX58 (RIG-I). This route shows the only 

transcriptionally active path from ISGF-3 towards known IFN-α induced targets on 

the right side of the cascade, i.e. MX1 and ISG15. The central node in this 
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predicted network structure is represented by IRF1.  IRF1 is a well-studied hub-

gene, i.e. it is known to regulate a variety of specific responses. For instance, 

IRF1 is involved in the anti-viral response as a positive feedback (Kalvakolanu V 

2003; Pitha 2011), it is able to bind to a consensus sequences that are very 

similar to the ISRE, namely IRF-E and induces several DNA damage response 

genes (Frontini et al. 2009). It has recently been identified to induce a specific 

gene pattern, partly overlapping with the IFN-α induced response but 

independent of the JAK/STAT signalling pathway (Stirnweiss et al. 2010).  

 

 

Figure 12 Visualization of the STAT1/STA2/IRF9 induced protein network using STRING database.  

Connecting lines between balls represent a known interaction between both proteins. Connections were 
predicted using the highest possible confidence score. Red rectangle: ISGF3 complex, grey line: unspecified 
interaction, blue line: Binding, yellow line with yellow dot: Expression, yellow line with red bar: Inhibition, 
black line: Reaction, green line: Activation. 
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MODEL REDUCTION AND PARAMETER ESTIMATION 
 

To get a deeper understanding of the IFN-α signalling pathway, eliminating 

assumptions, such as parameters gathered from literature which might not be 

valid in our experimental setup, was the next major goal of the project. Therefore, 

experimental data of different JAK/STAT related proteins under various conditions 

were obtained through time-course measurements performed by Annette 

Schneider (Figure 13). All measurements were performed after cells have been 

treated with a standard IFN-α stimulus (500 U/ml) unless stated otherwise. 

Specifically, these measurements included: 

 Concentration of phosphorylated STAT molecules in the nucleus for wildtype 

and IRF9 overexpression cells (Figure 13, first row) 

 Concentration of phosphorylated receptor complexes, phosphorylated STAT 

molecules in the cytoplasm and IRF9 in the nucleus for wildtype cells (Figure 

13, second row) 

 Concentration of phosphorylated STAT molecules in cytoplasm and nucleus 

for standard and increased dosage of IFN-α stimulus (increased: 1000 U/ml) 

(Figure 13, third row) 

 Concentration of phosphorylated STAT molecules in cytoplasm and nucleus 

for wildtype and IRF9 overexpression cells with the addition of an actinomycin 

D treatment, inhibiting transcriptional activity (Figure 13, fourth and fifth row) 

 Concentration of SOCS mRNA for wildtype and IRF9 overexpression cells 

(Figure 13, sixth row, first and second column) 

 Concentration of SOCS protein for wildtype and IRF9 overexpression cells 

(Figure 13, sixth row, third and fourth column) 
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Figure 13 Data points of experimental measurements X-axis describes the time in seconds, y-axis the 

concentration of the according experimental measurement. Plot titles indicate the performed experiment. 
Individual data points are shown as dots. 
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As a result, measurements provided approximately 180 data points which were 

appropriate for parameter calibration through a parameter estimation approach. 

Parameter estimation describes the method of estimating kinetic parameters by 

comparing given data points against the kinetic behaviour of corresponding 

concentrations in the model. The comparison is scored which allows the usage of 

various algorithms in an attempt to optimize the problem by changing the value of 

the input (free parameters) to get to the lowest possible score (accuracy of the fit) 

(Chen et al. 2010). However, as the model described earlier contains 61 free 

parameters, the ratio between free parameters and available data points 

suggests that many diverse parameter sets are able to reproduce the data. 

Therefore, using the original model for a parameter estimation approach will lead 

to non-conclusive results. 

A statistical test for finding the most suitable model for a given set of data points 

is defined as the ratio between the lowest fitting score and the number of degrees 

of freedom in a regression (Jaqaman et al. 2006). In this test, the lowest value of 

interest defines the most suitable model. 

1)                                               

2)                   
             

                  
 

Concluding, the most suitable model combines a low fitting score with the lowest 

possible amount of free parameters. To improve the number of degrees of 

freedom, a model reduction approach was chosen. The aim of a model reduction 

approach is to decrease the number of kinetic parameters of a model by 

maintaining the ability to fit given data points accurately.  

As a first step, 183 locale parameter fitting approaches were performed for the 

original model using Potterswheel (Maiwald et al. 2008). In detail, all given model 

parameters are randomly disturbed around their initial value. Then, they are 

locally optimized leading into the closest minimum in the surrounding parameter 

space. The resulting locale fits were sorted score-wise and the top 25% were 

selected for further analysis (Figure 14). Using the selected parameter sets, 

averages, standard deviations and coefficients of variation of according 

parameters were calculated (Table 5). Coefficients of variation varied immensely 
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between model parameters. Most parameters with minor impact on the kinetic 

behaviour of the system belonged to side-reactions of the pathway and 

constitutive feedbacks while induced feedbacks such as transcription of IRF9 and 

SOCS and reactions that were responsible for transducing the signal were 

displayed in the low coefficient of variation sector. Consequently, for the current 

model structure, parameters with a low coefficient of variation have to be 

conserved within a certain threshold to produce an accurate fit of the 

experimental data while parameters with high coefficients of variation do not have 

a profound impact on the kinetic behaviour of protein concentrations of interest. 

As a first approach to reduce the model, parameters were sorted according to 

their coefficient of variation and additional local fitting calculations were performed 

where only sub-groups of low coefficient of variation parameters were given as an 

input. An exemplary case is illustrated in Table 5 where the cut-off between free 

and fixed parameters is illustrated by a blue line. All other parameters were fixed 

to their original value. By testing several amounts of free parameters in that way, 

fitting approaches showed that selecting the 33 parameters with the lowest 

standard deviation as free parameters while fixing the other 28 parameters (which 

are presumed to be removable) was the lowest amount of free parameters that 

could still fit the data points sufficiently. 

Following this result, the original model was reduced by mainly simplifying 

reactions that were fixed during the previous approach aiming towards a model 

consisting of 33 parameters. Therefore, model reactions were modified or deleted 

accordingly (For a detailed description see Materials and Methods) (Figure 15, 

Table 6 and Table 7). 
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Figure 14 Set of 183 locale fits and their corresponding fitting score. Each dot along the blue line 

depicts one locale fitting approach starting from randomly disturbed initial parameter values. X-axis shows 
the fit number, y-axis presents the fitting score divided by the number of free parameters N. The best 25% of 
the fitting approaches have been selected for further analysis and marked by a red circle. Figure produced 
using Potterswheel (Maiwald et al. 2008). 
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Table 5 Coefficients of Variation for all parameters in the full model. Selected local fitting approaches shown in 

Figure 14 were analysed and their according coefficient of variation was calculated. X-Axis shows coefficient of 
variation, y-axis the parameter name. Table is sorted according to coefficient of variation. Blue line presents the cut-off 
for further analysis. The 33 parameters above the cut-off were used as free input parameters while the parameters 
below the blue line were fixed. 
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Figure 15 Schematic overview of the reduced IFN-α signalling model. Based on Figure 4. Red signs 

depict reduced or simplified reactions, namely ligand-receptor binding, feedback by cytoplasmic 
phosphatases, constitutive binding of STAT2 and IRF9 and feedback by PIAS. For details see Table 6. Lines 
with empty circles: reaction catalysis; lines with perpendicular bars: reaction inhibition; dotted lines: 
transcription; TFBS: transcription factor binding site. The scheme was generated using CellDesigner (Kitano 
et al. 2005). 
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Table 6 Overview of kinetic reactions and equations of reduced model. Second column shows reaction 

formulas. “=” defines reversible reactions, “->” irreversible reactions, respectively. Third column displays 
according kinetics.  Suffixes:  c:  cytoplasm, n:  nucleus. Kinetic rate laws: s: substrate, p: product according 
to their correspondent reactions. 
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Table 7 Overview of kinetic parameters of reduced model. Reactions and kinetic parameters are 

numbered according to Table 6. 
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The reduction of the model to 33 parameters only improved the ratio between free 

parameters and available data points and made it possible to perform a 

meaningful parameter estimation approach. 

Parameter estimations were performed utilizing a custom framework based upon 

the profile likelihood method (Raue et al. 2009). Using profile likelihood as a tool 

to perform a parameter estimation analysis combines local fitting algorithms and 

parameter distortions in a specific workflow. Upon starting a profile likelihood 

analysis, a single parameter of the input variables is chosen, while all other 

parameters are fixed at first. The chosen parameter is altered around its initial 

value within a defined threshold with:  

                    
         

                   
 

Once the parameter is set to a different value, it is fixed while all other input 

variables are used as an input for a local fitting procedure. This step is repeated 

for each interval within the defined threshold and the resulting scores for each 

local fit are stored. Visualizing all obtained scores for a single parameter will lead 

to one of three scenarios (Figure 16): 

a. A straight line depicting no rise in score values (Structurally non-identifiable 

parameter) (Figure 16B) 

b. A parameter range with a lowest score and a one-sided rise in score values 

(Practically non-identifiable parameter) (Figure 16D) 

c. A parable, describing a central parameter range with a lowest score and a rise 

in score values once the parameter value is moved out of this range 

(Identifiable Parameter) (Figure 16F) 
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Figure 16 Profile Likelihood Approach. Assessing parameter identifiability of parameter    from the profile 

likelihood    
      for: (a) A structural non-identifiability along the functional relation                

     manifesting in a flat profile likelihood in panel (b). (c) A practical non-identifiability manifesting in a 

flatting out of the profile likelihood for      in panel (d). A lower confidence bound can be assessed by the 

point where     
      exceeds    . (e) An identifiable parameter    . The profile likelihood approaches a 

parabola shape indicating a good approximation by standard intervals in panel (f). (a,c,e) Contour lines 

shaded from black to white correspond to low respectively high values of      . Thick contour lines indicate 

likelihood-based confidence regions and asterisk correspond to the optimal parameters   ̂. Dashed lines 
indicate the trace of the profile likelihood for    in terms of parameter values. (b,c,f) Dashed lines indicate 

the profile likelihood    
  of parameter   . The thick lines display the threshold    utilized to asses likelihood-

based confidence regions for a confidence level α.         
     is the α-quantile of the    -distribution with 

   degrees of freedom. Kindly provided by Andreas Raue (Raue et al. 2011). 
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Running a global profile likelihood analysis will apply this algorithm to every free 

parameter in the model. As a result, groups of fitting scores for each parameter 

are obtained. Then, the lowest score of these values with the according set of 

fitted parameters can be selected for further optimization approaches until the 

lowest possible score is reached. 

Using this method on the reduced model to estimate the remaining 33 free 

parameters led to an accurate description of the experimental data by the model 

(Figure 17). However, afore mentioned results that were obtained during the 

usage of the profile likelihood algorithm revealed 7 parameters that were 

characterized as structurally non-identifiable (Figure 18). Structurally non-

identifiable parameters are commonly interpreted to indicate the potential for 

further model reduction approaches. As the expected second reduction of the 

model was going to be minor and more fragile in comparison to the first approach, 

a more schematic reduction approach was chosen. 

 

The time-scale-separation task implemented in COPASI is able to identify the 

speed of each kinetic reaction in the model for different time points and separate 

the time-scale into fast and slow modes (Surovtsova et al. 2009). Once the time-

scale is separated, a participation index for each kinetic reaction is calculated, 

representing the participation of the respective reaction in each individual mode. If 

a reaction is identified as fast over a majority of the time-scale of interest, it is 

likely that this reaction holds no impact on the kinetic behaviour of the model. In 

that case, a common technique is to lump the according reaction. Lumping refers 

to bridging the fast kinetic reaction and connecting the adjacent reactions which 

would make the appointed parameter drop out of the model (Dokoumetzidis et al. 

2009). This approach was performed on the reduced model, resulting in a 

minimal model with 22 free parameters (For a detailed description see Materials 

& Methods) (Table 8, Table 9). 
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Figure 17 Parameter estimation approach using the reduced model.  X-axis describes the time in 

seconds, y-axis the concentration of the according experimental measurement. Plot titles indicate the 
performed experiment. Individual data points are shown as dots, error bars depict a standard error. Lines 
present the kinetic behaviour of the model after the parameter estimation, which is in accordance with 
experimental data points. 
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Figure 18 PLE analysis performed on the reduced model. Each plot shows a PLE analysis for one free 

parameter. X-axis defines the parameter value, y-axis the corresponding objective value. Plot-titles indicate 
the examined parameter. Plots in the first two rows titled as Scale depict scaling variables for each 
experiment. 15 parameters are classified as identifiable, 20 parameters are practically non-identifiable and 7 
parameters are structurally non-identifiable (Figure 16).  
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Table 8 Overview of kinetic reactions and equations of minimal model. Second column shows reaction 

formulas. “=” defines reversible reactions, “->” irreversible reactions, respectively. Third column displays 
according kinetics.  Suffixes:  c:  cytoplasm, n:  nucleus. Kinetic rate laws: s: substrate, p: product according 
to their correspondent reactions. 
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Table 9 Overview of kinetic parameters of reduced model. Reactions and kinetic parameters are 

numbered according to Table 8. 
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The time-scale-separation task has been performed on the reduced model. 

Results showed that the participation indices of two reactions were classified as 

fast for 90.9% of the modelled time scale, with only a limited timeframe between 

10.000 and 11.000 seconds showing a switch into a dominant participation into 

slow modes for both reactions (Figure 19). Therefore, constitutive receptor 

dephosphorylation and binding of ISGF-3 to DNA were selected for further 

reduction approaches. Following this result, constitutive receptor 

dephosphorylation was dropped from the model and nuclear accumulation of 

ISGF-3 and constitutive dephosphorylation by nuclear phosphatases was 

simplified. Furthermore, for transport reactions of STAT1, STAT2 and IRF9, 

   values were experimentally measured. For this purpose, mentioned molecules 

were measured in cytoplasm and nucleus without interferon stimulation, and a 

respective ratio was calculated (Figure 20). Following this result, STAT molecules 

were assumed to be present at a 23-fold increased concentration in the 

cytoplasm in comparison to the nucleus, whereas IRF9 molecules are assumed 

to be present at a 14-fold increased concentration in the cytoplasm in comparison 

to the nucleus. The obtained minimal model was used again to perform a 

parameter estimation approach using the aforementioned custom framework by 

Andreas Raue. Resulting parameter values for the minimal model were able to 

describe the experimental data with the exception of the measurement of SOCS 

mRNA in a wildtype environment (Figure 21). For this measurement, the fit does 

not reach the final data point but starts to drop at the data point at 3 hours.  

Concluding, the model has been reduced by 33% from 33 free parameters to 22 

free parameters. Although the second reduction is not able to describe the data 

as accurately as the first reduction, a minimalistic model for the IFN-α signalling 

pathway seems achievable, which is in line with prior results showing that control 

over the signalling pathway is limited to few decisive molecules. 
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Figure 19 Time Scale Separation analysis of (A) DNA binding of ISGF-3 and (B) Receptor 
dephosphorylation. X-Axis represents time in seconds, y-axis shows the participation index of the 

respective reaction for fast modes (blue line) and slow modes (red line). In detail, the normalized sums of all 
participation indices for fast modes and for slow modes have been calculated for each time point. For both 
reactions 90.9% of the time points show a dominant participation of the reaction into the fast modes. 
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Figure 20 Calculation of the ratio of STAT1, STAT2 and IRF9 molecules between cytoplasm and 
nucleus. X-Axis describes the respective measurement for wildtype cells (MCS) or IRF9 overexpression 

cells (IRF9) in cytoplasm (cyt) or nucleus (nuc). Y-axis shows the measured concentration. Four 
measurements were obtained and the average is depicted by the blue bars. Error bars represent the 
standard deviation between those experiments. Ratios calculated from the measurements are: STAT1 and 
STAT2: 23-fold increased concentration in cytoplasm compared to nucleus. IRF9: 14-fold increased 
concentration in cytoplasm compared to nucleus. 
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Figure 21 Parameter estimation approach using the minimal model.  X-axis describes the time in seconds, 

y-axis the concentration of the according experimental measurement. Plot titles indicate the performed 

experiment and the calculated fitting score for the respective measurement. Individual data points are shown as 

dots, grey areas depict a standard error. Lines present the kinetic behaviour of the model after the parameter 

estimation. Black frames indicate experimental measurements that belong together.  
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DISCUSSION 

IDENTIFICATION OF KEY MOLECULES AND REACTIONS OF THE IFN ALPHA 

PATHWAY 
 

In this thesis, a mathematical model for the IFN-α signalling pathway has been 

developed. The focus of the modelling process was to find every known 

interaction of the JAK/STAT signalling pathway from literature and combine this 

knowledge into a comprehensive model. The rate law interpretation of the model 

is assumed to be deterministic. Arguably, a stochastic approach would have been 

appropriate for modelling a signal transduction network, as concentrations of 

involved molecules are low. Therefore, a stochastic interpretation of the used rate 

laws is more likely to describe real life behaviour of single cell signalling 

dynamics. However, as all experimental measurements were retrieved from cell 

populations, it is reasonable to simplify the model behaviour towards a 

deterministic view. Using this model, key molecules and reactions should be 

identified and proposed for further experimental measurements. Specifically, 

perturbing the signalling pathway to change the kinetic behaviour of the system 

and possibly enhance the anti-viral functionality was aimed for. Obviously, a 

mathematical model including all known negative and positive feedbacks 

represents an underdetermined system as it contains too many parameters to be 

reliably estimated from the experimental data. To verify the predictive power of 

the model, a sensitivity analysis of 1000 parameter sets describing the 

experimental data was performed and results were compared to the original 

parameter set (Figure 7). The major observations were comparable, indicating 

that they are intrinsic properties of the model structure. Robustness of sensitivity 

against single parameter changes has been described by Gutenkunst et al. 

(Gutenkunst et al. 2007), suggesting that model predictions are reasonable when 

they are derived from collective fits and can only be improved by precise and 

complete measurements of all kinetic parameters. Analysis of the sensitivity 

calculation led to the understanding that few reactions and protein concentrations 

were decisive for the kinetic behaviour of the signalling pathway. These 
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mechanisms included constitutive negative feedback by nuclear phosphatases, 

induced negative feedback by SOCS proteins and concentration of IRF9. 

Especially raising the level of IRF9 showed a positive influence on the amount of 

signalling as well as the response time (Figure 9A), which is proposed to be 

crucial for the outcome of an anti-viral reaction. This effect was experimentally 

validated, proving concentration, synthesis and degradation of IRF9 to be critical 

for signalling properties like the area under curve or the time of the peak (Figure 

9B). Increasing the initial IRF9 concentration by overexpression resulted in higher 

levels of phosphorylated STAT proteins in the nucleus and consequently in 

augmented expression of IFN alpha target genes. This is consistent with previous 

reports describing the impact of IRF9 on the amount of active ISGF3 

(Bandyopadhyay et al. 1990; Levy et al. 1990; Weihua et al. 2000; Tamada et al. 

2002). However, distinct from previous studies, analysis of the IFN response was 

performed in a time resolved manner. Analysis showed that enhanced IFN 

induced gene expression not only applies for isolated time points but rather for 

the overall integrated response. In addition, it was demonstrated that IRF9 is also 

crucial for the speed of IFN response, with higher IRF9 levels accelerating signal 

transduction and gene expression. Theoretically, these effects of IRF9 could be 

achieved by two mechanisms: by increased nuclear import of the signal 

transducers or by IRF9-mediated protection from nuclear phosphatases. Model 

analysis excluded accelerated nuclear import and indicated protection from 

nuclear phosphatases as the underlying mechanism. In detail, model simulations 

were in accordance with literature over the importance of generous nuclear 

phosphatases (Smieja et al. 2008) and specifically requiring the effect of nuclear 

phosphatase protection through DNA-binding to accurately predict the kinetic of 

an IRF9 overexpression (Figure 9C) (Meyer et al. 2003).  

In summary, inhibition of nuclear phosphatases, inhibition of induced negative 

feedbacks and overexpression of IRF9 were classified as valuable targets to 

strengthen the effectiveness of IFN-α signalling. However, nuclear phosphatases 

are known to be redundant and even a knock-out of the most prominent molecule 

TC45 does not lead towards a significantly lower nuclear phosphatase activity 

(ten Hoeve et al. 2002). Taking this into account, the focus shifts upon the 
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induced feedback mechanisms. Concluding, an alteration of those induced 

feedback mechanisms provides the opportunity to influence the outcome of the 

IFN-α signalling pathway. 

 

 

ANALYSIS OF GENETIC RESPONSE PATTERN 
 

Overexpression of IRF9 has been shown to have a major impact on the kinetic 

response of the JAK/STAT signalling pathway. To learn about following effects of 

this alteration, the genetic response for wild type cells and IRF9 overexpression 

cells has been analysed. Therefore, an array experiment was performed in 

collaboration with Annette Schneider and Norbert Gretz. Analysis of the results 

was performed by Hauke Busch (Figure 11). It showed that wildtype and IRF9 

overexpressing cells displayed different expression kinetics of the analysed 

genes. For instance, SOCS1 expression was rapidly activated and repressed, 

whereas the activation of USP18 was sustained. These observations are 

concordant with a recent report stating that SOCS1 is responsible for early 

inhibition of IFN alpha signalling, whereas USP18 mediates late inhibition 

(Sarasin-Filipowicz et al. 2009). Currently, possible explanations for this diverse 

genetic response are under investigation. Explanations which have been 

mentioned earlier include a transcription factor network, where specific 

transcription factors could selectively upregulate certain genes over a prolonged 

timeframe. A bioinformatical analysis using STRING database supports this 

theory, as results predict IRF1 as the central node in a potential regulatory 

network (Figure 12). IRF1 is a well-studied hub-gene, known to regulate a variety 

of different biological processes. Among others, supporting the cellular anti-viral 

response is the most prominent function of IRF1. Furthermore, IRF1 binds to a 

consensus sequence that is highly similar to the ISRE. Therefore, several 

indications point towards an involvement of IRF1 as a regulatory factor of the 

interferon alpha induced gene response. 
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Another theory is based on auto stimulation of cells by releasing a potent ligand 

upon IFN-α stimulation. For example, small doses of IFN-α could be secreted 

from the cell and restimulate the system. In that case, selective expression of 

IFN-α induced genes would be explained by specificity of transcription factor 

binding sites, i.e. sustained genes would show a high specificity towards ISGF-3, 

whereas bursting genes present a low specificity, respectively. The third theory 

involves miRNA based regulation mechanisms, e.g. induced miRNAs could 

interfere with the transcription of specific mRNAs which would lead to a selective 

response at later time points after the stimulation. The last explanation takes into 

account the different stability rates of mRNA. After a single stimulus, certain 

mRNA could start a short time response before they get actively degraded, 

whereas more stable mRNA could be used for translation over a prolonged 

period. As mentioned before, these theories could work together in synergy, 

making it a difficult task to distinguish single effects. Therefore, further analysis 

combining model simulations and experimental measurements is required to 

improve our understanding of genetic regulatory effects of IFN-α signalling. 

 

 

MEDICAL IMPACT 
 

As mentioned before, IFN-α is used as a treatment of hepatitis C and B virus 

infection and leads to an uncertain outcome as the effectiveness of the treatment 

is highly patient dependent (Manns et al. 2001). Differences that might be 

responsible for the diverse outcome of the treatment have not been identified, but 

are under investigation (Chen et al. 2005; Sarasin-Filipowicz et al. 2008). 

However, it is tempting to speculate that a highly sensitive part of the signalling 

cascade will likely have an impact on the decision process whether to respond or 

not. In that case, previous results could be used to support IFN-α treatment. For 

instance, measuring the concentration of IRF9 protein from a tissue sample and 

comparing responder and non-responder patients might be able to provide further 

insights into the medical use of IFN-α treatment. A difference in IRF9 
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concentration could be used as a screening method to identify responders prior to 

the actual IFN-α treatment. Following this idea, given the opportunity to artificially 

raise the IRF9 levels of a patient before IFN-α treatment could lead to a transition 

of non-responders into responders. To sum up, previous results identifying 

decisive reactions and protein concentrations for the IFN-α signalling cascade 

should be validated in vivo and might therefore lead to an improvement of the 

medical use of IFN-α. 

 

 

SENSITIVITY-BASED MODEL REDUCTION AND PARAMETER ESTIMATION 
 

Focusing on the theory that few decisive molecules are responsible for the kinetic 

outcome of the IFN-α signalling pathway, a two-step model reduction and 

parameter estimation approaches have been performed. First, several local fits 

using the full model were obtained. Parameter values of the resulting fits were 

compared and their respective coefficients of variation were calculated. A high 

variation of a free parameter is interpreted as not having a major impact on the 

kinetic behaviour of the signalling dynamics, whereas a low variation indicates 

that the individual parameter has to be conserved within a certain range to ensure 

a good fit of the data-points. Parameters were sorted by their according 

coefficient of variation and parameters with high variations were fixed. This 

analysis showed that reducing the number of free parameters to 33 only was still 

able to fit the experimental data accordingly. Therefore, the first reduced model 

was built by keeping the parameters with a low coefficient of variation while 

dropping or simplifying the parameters with a high coefficient of variation.  

This sensitivity-based method for model reduction was chosen as the original 

model was meant to be comprehensive and a major decrease of free kinetic 

parameters was aimed for. Obtaining a list of parameters which have been sorted 

according to their probability to influence the pathway offered the possibility to 

test several reduced model structures by adjusting the threshold of imported 

parameters of the original model. Following the selection of the most influential 
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parameters and setting up the reduced model, parameter estimations were 

performed using a custom Matlab based framework by Andreas Raue. As 

described earlier, the approach is based upon several local fitting calculations 

with randomly disturbed starting parameters. Furthermore, the analysis can be 

supported by a profile likelihood analysis, suggesting single parameter values that 

could lead towards improved fitting scores. Another approach was using the 

parameter estimation task implemented in Copasi, where different local and 

global fitting algorithms can be selected to find the most optimal algorithm for the 

given problem. However, global fitting algorithms in Copasi were not able to find 

minima in the same order of magnitude score-wise as the multi-start local fitting 

approach. Local fitting algorithms implemented in Copasi were outperformed by 

the Matlab-based framework, as a single local fit was less time demanding, 

reasoning the choice of the computational tool.  

The resulting reduced model was able to accurately fit the experimental data. As 

another result of the reduction, reactions that can be simplified or dropped without 

losing the potential to fit the experimental data accurately are likely to have a 

similar low impact during the biological signal transduction for the respective 

environment in which experimental measurements have taken place. For 

instance, pre-association of STAT2 and IRF9 before interferon stimulation was 

dropped in the reduced model, pointing towards the idea that this effect does not 

play a major role in IFN-α signalling for the observed timeframe. Another example 

is the reduction of cytoplasmic phosphatases: As ISGF-3 accumulation in the 

nucleus is assumed to be a fast process, the role of a constitutive negative 

feedback is assumed by nuclear phosphatases. Looking at the biological impact 

of this result, an inhibition of cytoplasmic phosphatases is likely to have a minor 

effect on the observed signalling cascade. Finally, the exclusion of 

phosphorylated STAT dimers was performed, as it is assumed in the model that 

these complexes have no influence on the transcriptional activity if they are not 

bound to IRF9. Under this circumstance, activated STAT dimers do not have an 

impact on the induced feedback response of the system and therefore 

comprehend no major control over the global system kinetics.  
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TIME SCALE SEPARATION BASED MODEL REDUCTION AND PARAMETER 

ESTIMATION 
 

As a further approach to decrease the number of free parameters in the model, a 

second model reduction has been performed. For the reduction to a minimal 

model, a more precise identification of reducible reactions was aimed for. Instead 

of using the sensitivity-based identification of non-conserved kinetic parameters, 

the time-scale separation task implemented in Copasi has been utilized. The 

analysis identified two reactions that were fast over 90.9% of the modelled time 

scale, namely constitutive receptor dephosphorylation and ISGF-3 binding to 

DNA. Therefore, receptor dephosphorylation has been dropped from the model 

and the reactions involving ISGF-3 in the nucleus have been simplified, resulting 

in a 33% decrease of free parameters between the first reduced model and the 

minimal model. The simplification of nuclear ISGF-3 concentration, which is 

transcriptionally active without binding of DNA in the minimal model, involved the 

reduction of constitutive negative feedback by nuclear phosphatases to a single 

reaction.  

However, the minimal model has not been able to describe the experimental data 

as accurately as the first reduced model. Looking at the measurement of SOCS 

mRNA in the wildtype environment (Figure 21), the model predicts a decrease of 

the mRNA concentration before the final data point. Taking into account that all 

remaining data points (approximately 180), with the exception of aforementioned 

data point, were fitted accurately, it seems likely that a minimal model describing 

all experimental measurements is achievable. Interestingly, looking at the 

predictions obtained by the full model, phosphatase protection by ISGF-3 binding 

to DNA was required to accurately describe the kinetic behaviour of signalling 

responses in wildtype cells and IRF-9 overexpression cells. Although the model 

has been drastically reduced, the mechanism of phosphatase protection could 

still be decisive to fit the experimental data, despite being identified as dominant 

fast reactions. Another reason for the suboptimal parameter fitting approach could 

be presented in Figure 19: 90.9% of the calculated time points were classified as 

dominant in the fast modes, but both reactions show an area between 10.000 and 
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11.000 seconds where the dominant participation changes and both reactions are 

classified as majorly contributing to the slow modes. Although this behaviour 

affects only a limited time-frame, a reduction of those reactions might not be 

compensatable for the remaining reactions in the minimal model.   

To obtain a minimal model that is able to fit all experimental data and therefore 

identify the core reactions and molecules influencing the IFN-α signalling 

pathway, further computational analysis is required. The structure of the minimal 

model has to be enhanced and other tools for identification of reducible 

parameters should be utilized. 

Concluding, the two-phase reduction approach confirmed earlier results, as 

constitutive negative feedback by nuclear phosphatases and induced feedback 

mechanisms by IRF9 and SOCS remained decisive controllers of the system 

throughout both reductions. Alteration of these three mechanisms is proposed to 

induce strong responses by the biological signalling cascade, turning them into 

the most valuable targets for further studies to exert control over the IFN-α 

signalling pathway. 
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MATERIALS & METHODS 

MODELLING 
 

The IFN alpha model was created and graphical outputs of kinetic behaviours of 

the model were produced using Copasi (Hoops et al. 2006). All reactions are 

defined as ordinary differential equations. Time course data was computed using 

the deterministic LSDOA algorithm (Petzold 1983) provided by Copasi. Copasi 

has been chosen as a modelling environment, as model creation and alteration is 

implemented in a user-friendly way by a graphical user interface. Furthermore, 

SBML support should allow file compatibility between other modelling 

environments (Hucka et al. 2003). Copasi offers a variety of different tasks to 

work with the model and analyse its kinetic behaviour. For this project, modelling 

tasks that have been used include time course calculation, sensitivity analysis, 

parameter estimation, parameter scanning and time scale separation, all of which 

usually require individual tools to be used. Concluding, Copasi offers an ideal 

base to start and work with a new modelling project.  

A detailed overview of the specific reactions defined in the full model is provided 

in Table 1 and kinetic parameters are depicted in Table 2. The reduced model is 

presented in Table 6 and Table 7, respectively. The minimal model is shown in 

Table 8 and Table 9.  

Sensitivity analyses of the model were performed via numerical differentiation of 

simulation results by finite differences (Sahle et al. 2008). The calculation is 

defined as: 

  
 
 (

  

  
 
 

 
)
    

 

 

For the approach presented in this thesis,    describes the change of initial 

concentrations of model species, whereas    stands for the resulting change of 

the specified kinetic behaviours that were selected as an output function, namely 
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the time of the signalling peak and the area under the curve of the ISGF-3 

concentration in the nucleus.  

Obtaining several valid parameter sets was achieved by using the random search 

algorithm implemented in Copasis optimization task. In detail, all model 

parameters were varied randomly between +/- 50% of their original value. For 

selection, the resulting kinetic behaviours had to match the experimental data. 

Matching was determined by several criteria: (i) The amount of maxima in the 

kinetic behaviour had to be identical. (ii) The initial and final concentration, as well 

as the time and height of peak of each simulated species had to fit into a +/- 20% 

threshold of the measured date. In general, out of 10000 evaluated parameter 

sets approximately 1000 valid sets could be retrieved.  

Further analysis of the full model was performed using Potterswheel (Maiwald et 

al. 2008). Potterswheel was developed with the purpose to estimate kinetic 

parameter values from experimental data. Therefore, Potterswheel is a modelling 

environment specialised on one individual task. This definition distinguishes 

Potterswheel from other modelling tools, i.e. Copasi, which tries to offer a wide 

variety of tasks. However, focussing on one task, Potterswheel offers comfortable 

tools and presentations for locale fit sequence performance and analysis. For this 

thesis, standard outputs of Potterswheel have been used for local fit sequence 

analysis depicted in Figure 14 and Table 5. Especially for analysis of individual 

score-wise parameter differentiation between similar parameter sets as shown in 

Table 5, Potterswheel offers an ideal set of computational tools. SBML 

conversion of the model into Matlab format was performed using SBML online 

conversion provided on the Potterswheel website (http://www.potterswheel.de). 

Additional modifications of the conversion were required and performed manually. 

183 local parameter fits were obtained by using the F2 function implemented in 

Potterswheel. A single fit in Potterswheel stands for single execution of a local 

Levenberg-Marquardt fitting algorithm (Marquardt 1963). Levenberg-Marquardt is 

a gradient descent method. It is a hybrid between the steepest descent and the 

Newton method (Battiti 1992). While the Newton method converges quadratically 

towards a minimum in its vicinity using the gradients calculated from the functions 

first and second derivatives, it may not converge if the minimum is far away of the 

http://www.potterswheel.de/
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initial parameter values. In that case, the Levenberg-Marquardt algorithm 

changes into a steepest descent algorithm, converging only linearly towards a 

minimum by calculating only the first derivatives of the function, but the algorithm 

is guaranteed to converge. By definition, the Levenberg-Marquardt algorithm is 

only capable of finding the closest minimum surrounding the starting point in 

parameter space. To overcome this limitation, the F2 function in Potterswheel 

uses multiple procedures of this local fitting algorithm while disturbing the initial 

starting parameters with a defined strength. Therefore, given that enough fitting 

procedures were calculated to cover the parameter space of interest, it is likely 

that a group of single fitting procedures will converge into the global minimum. 

Data and plots of the fit group analysis were retrieved with the linear fit sequence 

analysis function implemented in Potterswheel.  

Parameter estimation of the reduced model was performed using a custom, 

Matlab-based framework by Andreas Raue. Utilizing the profile likelihood method 

(Raue et al. 2009), the framework was used to perform an identifiability analysis 

on the reduced model (Figure 18). Results of this analysis are used as starting 

points for a modified parameters estimation function implemented in the 

framework. Similar to Potterswheel, the framework implemented by Andreas 

Raue is focused on a single task, namely estimation of model parameters to 

describe experimental data. While sharing the same tools for local fitting 

procedures with Potterswheel, namely the multi-start local Levenberg-Marquardt 

fitting algorithm with randomly disturbed initial parameters, the custom 

Framework involves identifiability analysis of the kinetic parameters of the model 

to support the local fitting algorithm. This combination of both methods increases 

the possibility of the parameter fitting approach to find the global minimum of the 

parameter landscape.  

Model reduction was supported by the time scale separation task implemented in 

Copasi. Time Scale Separation was performed using the CSP method 

(Surovtsova et al. 2011, submitted). As a setup, ratio of modes separation was 

set to 0.9, maximum relative error to 0.01 and maximum absolute error to 0.001. 

The analysed timeframe was defined as 12000 seconds with 100 intervals at an 

interval size of 120. 
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SENSITIVITY BASED MODEL REDUCTION 
 

For the first reduction of the model, parameters that were fixed during the 

parameter estimation approach explained earlier were eliminated or simplified. 

Furthermore, it was aimed to reduce the model to 33 parameters, while 

preserving the main features of the model. The receptor-based subgroup of 

reactions was simplified by eliminating the species of kinases JAK and TYK and 

their according receptor subunits, respectively. Consequently, the receptor is 

assumed to be inactive but in a dimeric, kinase-associated form and that receptor 

activation is directly induced by free interferon (Table 6, reaction 2). Binding of 

STAT molecules to the receptor has been transformed into irreversible reactions 

(Table 6, reaction 4 / 5). Phosphorylated STAT molecules are assumed to be in 

complex with IRF9 all the time, which eliminates the cytoplasmic and nuclear 

species of phosphorylated STAT1/STAT2 heterodimers. This change required a 

small modification to the process of ISGF3 complex building, now being 

summarised in a single reaction (Table 6, reaction 7). mRNA of IRF9 and SOCS 

is now produced directly into the cytoplasm (Table 6, reaction 18 / 21). Species 

representing cytoplasmic phosphatases (CP) and PIAS as well as all reactions 

involving these species were deleted. As a general concept, all reversible 

reactions that were described by mass action kinetics in the full model were 

modified to 

   (          
 

  
        ) 

Using these modified mass action kinetics, the reaction is no longer defined by 

two independent variables    and   , but rather by one independent variable    

and one dependent variable   . Consequently, this technical modification leads to 

an improved performance of parameter estimation algorithms. 
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TIME SCALE SEPARATION BASED MODEL REDUCTION 
 

For the second model reduction, reducible reaction parameters were identified 

using the time scale separation task implemented in Copasi (for details on the 

method and setup, see Modelling). For this purpose, participation indices for each 

reaction were calculated over a time scale of 12.000 seconds and for each 

interval, a dynamic amount of fast modes was separated from the complete time 

scale. Following, the sums of all fast and slow modes for each interval step were 

calculated and normalized with: 

∑           ∑           ∑          

∑          

∑         
 ∑                  

∑          

∑         
 ∑                  

After normalization, sums of fast and slow modes were compared for each time 

point. If the sum of fast modes increases the sum of slow modes, the individual 

time step is marked with a “1”, otherwise the time step is marked with a “0”. The 

average of these marks is calculated and used as a ratio of participation in fast 

modes against participation in slow modes for each reaction. 

Receptor dephosphorylation and binding of ISGF-3 to DNA were calculated to be 

fast over 90.9% of the time scale of the model simulation. Therefore, receptor 

dephosphorylation was dropped from the reduced model (Table 6, reaction 3). 

Furthermore, ISGF-3 is assumed to induce transcriptional activity directly, 

replacing the species “Occupied DNA binding sites” in both transcriptional 

reactions (Table 8, reaction 14 and reaction 17). Consequently, ISGF-3 binding to 

DNA was dropped from the model (Table 6, reaction 15), including the species 

“Open DNA binding sites” and the following negative feedback by nuclear 

phosphatases (Table 6, reaction 16 and reaction 17). Two reactions were 

modified: Receptor degradation (Table 8, reaction 5) and IRF9 synthesis (Table 8, 

reaction 16) both include a constant parameter as well as an additive term 

dependent on a modifier: 
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To decrease the orders of magnitude of            during the fitting process, both 

reactions have been modified to: 

                                       

Using these modified rate laws, fitting borders for            have been limited to: 

                 

Furthermore, certain parameters have been fixed to specific values. First, 

constant synthesis of IRF9 has been fixed to represent a 45-fold increase of 

constant IRF9 degradation for the wildtype environment or a 900-fold increase for 

the IRF9 overexpression environment (Table 9, reaction 16, k18 for degradation 

and k21 for fixed constant influx). This modification leads to a constant base level 

of IRF9 which is expected to be found in the cell before IFN stimulation. This base 

level can be altered by increased modifier concentrations, i.e. by activated 

transcriptional activity. For transport reactions of STAT1, STAT2 and IRF9, 

   values were experimentally measured (Figure 20). STAT molecules were 

assumed to be present at a 23-fold increased concentration in the cytoplasm in 

comparison to the nucleus, whereas IRF9 molecules are assumed to be present 

at a 14-fold increased concentration in the cytoplasm in comparison to the 

nucleus. Therefore,     parameters were set accordingly to represent the 

measured ratios under a non-stimulated environment (Table 9, reaction 10, k13, 

reaction 11, k15 and reaction 12, k17). 
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STRING DATABASE 
 

As a bioinformatical approach to analyse the gene-specific response pattern 

following interferon alpha stimulation, the STRING database was used for 

predictions of protein-protein interactions. The STRING database uses the 

combination of several sources, i.e. experimental data and text-mining algorithms, 

to predict a probability for a specific protein-protein interaction and score this 

interaction accordingly. For the analysis the highest possible threshold was used 

(0.9). As an input, all induced genes of the array experiment that showed a 

bursting or a sustained kinetic behaviour were selected (Table 10). After a first 

analysis using the STRING database, genes that showed no interaction were 

dropped from the input and the analysis was repeated.  

apol2 eif2ak2 lamp3 samhd1 

apol6 erap2 lba1 sdpr 

apol6 gbp1 lgals3bp sos1 

bst2 gbp1 mab21l2 sp100 

btn3a1 gnb4 mlkl sp110 

btn3a2 herc5 mx1 stat1 

c19orf66 herc6 myd88 stat2 

c5orf39 herc6 nmi tap1 

casp7 hla-e oas1 tap1 

cd274 ifi44 oas2 tap2 

cd274 ifi44l oas3 tdrd7 

cd38 ifi6 oasl tlr3 

ceacam1 ifih1 parp14 tmem62 

cmpk2 ifit1 parp14 tnfsf10 

cxcl10 ifit2 parp9 tnfsf10 

cxcl11 ifit3 plscr1 trim21 

cyp1a1 ifit5 pml trim22 

cyp1b1 ifitm1 pric285 trim25 

ddx58 ifitm2 prkd2 txnip 

ddx58 ifitm3 psmb8 ube2l6 

ddx60 ifitm3 psmb9 usp18 

ddx60l irf1 rbm43 xaf1 

dtx3l irf9 rsad2 zc3hav1 

egr1 isg15 samd9 znfx1 
 

Table 10 Genes used as an input for the STRING Database.  Bold names have been selected for the 

second analysis as they were predicted with at least one interaction.  
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ESTIMATION OF GENE INDUCTION TIMES 
 

Estimations of gene induction times were obtained by Hauke Busch by fitting the 

mRNA fold expression g(t) to a logistic function: 

1
( )

1 exp( )
g t

t


 


 
 

Parameters α, β and γ were estimated by using a Levenberg-Marquardt nonlinear 

least-squares algorithm. The start of gene regulation was defined as the time of 

maximal change in the acceleration of the fitted function; i.e. upregulation time for 

each gene was defined as the time of maximal acceleration of the logistic function 

g(t), which is calculated from the first maximum of the third derivative of g(t) 

(Zaslavsky et al. 2010). The mean difference of gene expression time series was 

calculated from the mean of the fold expression differences at the respective 

experiment time points. 
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ABBREVIATIONS 

 

 CP: Generic Cytoplasmic Phosphatases 

DNA: Deoxyribonucleic acid  

EGF: Epidermal growth factor 

Epo: Erythropoietin 

Full Model: Comprehensive Model, incorporating of all known feedback 

mechanisms, 61 free parameters 

GAS: Interferon-gamma activated sequence 

IFN: Interferon 

IFNAR: Interferon-α/β receptor 

IL-6: Interleukin 6 

IRF9: Interferon regulatory factor 9 

ISG56: Interferon stimulated gene 56 

ISGF3: Interferon stimulated gene factor 3 

ISRE: Interferon stimulated response element 

JAK: Janus Kinase 

KIR: Kinase inhibitory region 

Minimal Model: Derived from Reduced Model using time-scale separation, 22 free 

parameters 

Mx1: Myxovirus resistance 1 

NP: Generic Nuclear Phosphatases 

PIAS: Protein inhibitor of activated STAT 
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PKR: Protein kinase RNA-activated 

Reduced Model: Derived from Full Model using an sensitivity-based approach, 33 

free parameters 

SHP: Src homology region 2 domain-containing phosphatase 

SOCS: Suppressor of cytokine signalling proteins 

STAT: Signal Transducer and Activator of Transcription 

TFBS: Transcription Factor binding sites 

TSS: Time Scale Separation 

TYK2: Tyrosine Kinase 2 

USP18: Ubiquitin specific peptidase 18 
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