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Abstract 

Cell cycle deregulation has been considered as one of the ten described hallmarks of 

cancer. Targeting cell cycle deregulation is therefore thought to be one of the promising 

strategies for cancer treatment. In Traditional Chinese Medicine herbal extracts are by far the 

most common elements used. Several active compounds, the rocaglamide derivatives, have 

been isolated from the genus Aglaia of the plant family Meliaceae. These compounds have 

been shown to exhibit anti-cancer activities via inhibition of tumour proliferation in vitro and 

in vivo and, as such, they have the potential to be developed into new anti-cancer drugs.  

The rocaglamide derivative Roc A exerts anti-proliferative effects on tumour cells. 

However, the direct mechanism remained elusive. Therefore, this study aimed at elucidating 

the mechanism of Roc A-mediated inhibition of tumour cell proliferation. It could be shown 

that Roc A, the first identified Roc compound, induced G0/G1 cell cycle arrest in 

haematological cancer cells through two independent pathways. Rapid cell cycle arrest is 

achieved via Cdc25A downregulation. Cdc25A is an essential protein for regulation of G1-S 

cell cycle transition. Downregulation of this protein will lead to immediate halt in cell cycle 

progression. Further investigation of the molecular mechanisms by which Roc A 

downregulates Cdc25A revealed a new signalling pathway triggered by Roc A that 

resembles the DNA damage response pathway. It could be shown that the cell cycle 

checkpoint kinases Chk1 and Chk2 are involved in the Roc A-mediated downregulation of 

Cdc25A. Investigation how the molecular target of Roc A, PHB1, may be involved in the 

observed cell cycle arrest showed that in PHB1-deficient cells the Erk-pathway is 

downregulated and through this protein de novo synthesis is diminished. This subsequently 

leads to G0/G1 arrest in PHB1-deficient cells and to decreased expression of cell cycle 

proteins.  

In summary, this study revealed a new Roc A-induced signalling pathway that leads to 

inhibition of cell proliferation via rapid downregulation of Cdc25A. In addition, prolonged 

cell cycle arrest is achieved through decreased protein de novo synthesis of necessary cell 

cycle proteins. Thus, this study further supports Roc A as a potential new anti-cancer drug. 
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Zusammenfassung 

Die Fehlregulation des Zellzyklus ist eine von zehn beschriebenen Merkmalen von Krebs. 

Daher ist eine vielversprechende Strategie, in der Krebsbehandlung diese Fehlregulation 

anzugreifen. Die Traditionelle Chinesische Medizin setzt hauptsächlich auf den Einsatz 

pflanzlicher Extrakte. Aus der Pflanzenfamilie Meliaceae, insbesondere dem Genus Aglaia, 

wurden verschiedene aktive Wirkstoffe isoliert, die sogenannten Rocaglamide Derivate. 

Durch ihre proliferationsinhibierende Wirkweise auf Tumorzellen, die in in vitro und in vivo 

Studien gezeigt wurde, hemmen sie das Wachstum von Krebs und sind so potentielle, neue 

Medikamente in der Krebstherapie.  

Insbesondere das Rocaglamide Derivat Roc A verfügt über proliferationsinhibierende 

Effekte auf Tumorzellen, doch bisher war der molekulare Mechanismus unbekannt. Um den 

Mechanismus der Roc A vermittelten Hemmung der Proliferation von Krebszellen zu 

untersuchen, wurden verschiedene Krebszelllinien des blutbildenden Gewebes nach 

Behandlung mit Roc A untersucht. Es wurde gezeigt, dass Roc A durch die 

Herunterregulation von Cdc25A einen schnellen G0/G1 Zellzyklusarrest induziert. Cdc25A 

ist ein essentielles Protein, welches den Übergang der G1 in die S Phase im Zellzyklus 

reguliert. Die Herunterregulation dieses Proteins führt daher zu einem sofortigen Stopp des 

Zellzyklus. Weitere Untersuchungen am molekularen Wirkmechanismus von Roc A konnten 

zeigen, dass Roc A einen ähnlichen Signalweg induziert, wie er nach Schädigung von DNA 

auftritt. Es konnte dargestellt werden, dass die beiden Zellzyklus Checkpoint Kinasen, Chk1 

und Chk2, an der Herunterregulation von Cdc25A beteiligt sind. Nachforschungen, auf 

welche Weise der molekulare Interaktionspartner von Roc A, PHB1, an dem beobachteten 

Zellzyklusarrest beteiligt ist, haben ergeben, dass in PHB1-defizienten Zellen der Erk-

Signalweg herunter reguliert ist. Dies führt zu einer verminderten Proteinneusynthese, 

welches eine verringerte Expression von wichtigen Proteinen des Zellzyklus zur Folge hat. 

Hierdurch wird ein langsamerer aber beständiger Zellzyklusarrest ausgelöst.  

Zusammenfassend lässt sich sagen, dass in dieser Studie ein neuer von Roc A vermittelter 

molekularer Mechanismus identifiziert wurde, der durch die Herunterregulation von 

Cdc25A zu einer schnellen Hemmung der Zellproliferation führt. Ein beständiger 

Zellzyklusarrest wird durch die Interaktion von Roc A mit seinem molekularen 

Interaktionspartner PHB1 ausgelöst. Die vorliegenden Untersuchungen fördern den Ansatz, 

Roc A zu einem neuen, potentiellen Medikament in der Krebstherapie zu entwickeln.  
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1 Introduction 

1.1 Apoptosis 

This chapter is adapted from (Bleumink, 2007), (Sass, 2010), and (Mendelsohn et al., 2008). 

 

One of the fundamental characteristics of multicellular organisms is that some cells must 

die for proper development and to maintain homeostasis and health (Danial & Korsmeyer, 

2004; Krammer, 2000; Thompson, 1995). This propensity to die for the good of the organism 

has evolved so that cells are systematically dismantled through a complex response termed 

programmed cell death (PCD). In mammals, billions of cells die every day, sustaining an 

exquisite balance between proper cell proliferation, differentiation, and cell death. A 

prominent example how PCD is involved in preserving homeostasis of individual tissue can 

be found in vertebrate development. During the sculpting of fingers the cells between the 

digits must be cleared out to maintain the correct size of the tissue and its proper function 

(Glücksmann, 1951). Similarly, cell death plays an important role in the selective removal of 

autoreactive lymphocytes (Surh & Sprent, 1994; Thompson, 1995) and in regulating blood 

cell numbers (Krammer, 2000).  

As early as 1842, Carl Vogt described that cells can die in a regulated process (Vogt, 1842). 

Subsequently, the term apoptosis (from Greek: apo = off; ptosis = falling; depicting the way 

leaves fall off a tree) was proposed by Kerr, Wyllie and Currie to describe the process of PCD 

in 1972  (Kerr et al., 1972). Cells undergoing apoptosis can be distinguished by a set of unique 

morphologic and biochemical changes from other cell death processes, such as necrosis, 

necroptosis, paraptosis, autophagy, and others. The classical morphological features of 

apoptotic cells are nuclear shrinkage (pyknosis), chromatin condensation and DNA 

fragmentation (karyorrhexis) resolved on gels as characteristic DNA ladders (Robertson et 

al., 2000; Steller, 1995; Wyllie, 1980). An important feature of apoptotic cells is that their 

membranes remain intact but they are portioned into many small membrane vesicles, called 

apoptotic bodies, that contain the cytosol, the condensed chromatin, and organelles. 

Therefore, apoptotic cell death is considered as non-immunogenic cell death (Savill et al., 

1993). In contrast, during necrosis membrane swelling, rupture, and release of intracellular 

content can be observed, activating the immune system and inducing inflammation (Majno 

& Joris, 1995). This mainly happens in an uncontrolled fashion resulting from severe and 
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acute injury (Kroemer et al., 1998); however, controlled necrosis has also been described 

leading to a similar phenotype as apoptosis (Krysko et al., 2008). 

Apoptosis is initiated and executed by the action of certain cysteine proteases called 

caspases (Thornberry & Lazebnik, 1998). Caspases are synthesised as inactive zymogens, 

called pro-caspases, and upon activation they cleave substrates on the carboxyl-side of an 

aspartate residue (Cohen, 1997; Stennicke & Salvesen, 1998; Thornberry & Lazebnik, 1998). 

Until now, 14 mammalian caspases have been identified, and these can be subdivided into 

the two classes of initiator and effector caspases based on their function in apoptosis. Upon 

death signals, the initiator caspases, such as caspase-8, -9, and -10, are processed and cleaved. 

In turn, they activate the effector caspases, including caspase-3, -6, and -7, which ultimately 

leads to the cleavage of specific substrates such as nuclear LAMINS or CAD (caspase-

activated deoxyribonuclease, DFF40). Nuclear LAMINS are involved in chromatin 

condensation and nuclear shrinkage, and CAD causes the release of the endonuclease, which 

travels to the nucleus to fragment DNA (Igney & Krammer, 2002). Induction of apoptosis 

and activation of caspases can be achieved by external or internal stimuli via the induction of 

two major pathways, namely the death receptor (extrinsic) cell death pathway which is 

initiated by engagement of extracellular death receptors (DRs), or the mitochondrial 

(intrinsic) cell death pathway which is mainly dependent on mitochondrial changes. An 

overview is shown in Figure 1.1. 

Apoptosis must be tightly regulated, as deregulation leads to a variety of disorders. 

Several diseases are associated with the induction of too much apoptosis including the 

acquired immunodeficiency syndrome (AIDS), neurodegenerative disorders such as 

Parkinson’s, Alzheimer’s, and Huntington’s disease, and ischemic injury. Failure in the 

apoptotic process may result in autoimmune diseases like Lupus erythematosus or Atopic 

dermatitis, and the spreading of viral infections and cancer (Thompson, 1995). In cancer, the 

resistance of tumour cells to death is not complete, but rather confers an enhanced ability to 

survive under conditions of cellular stress. In particular, late-stage, metastatic malignancies 

correlate with acquired resistance to apoptosis (Mendelsohn et al., 2008). The major difficulty 

in cancer treatment is to induce selective apoptosis in cancer cells over normal, healthy 

tissue.  

  



  Introduction 

  19 

 

 

 

Figure 1.1 | The two main apoptotic signalling pathways. 

(A) The extrinsic apoptotic pathway: apoptosis signalling upon engagement of death receptors. (B) 

The intrinsic apoptotic pathway: apoptosis signalling through mitochondria. See text for details. 
Adapted from (Igney & Krammer, 2002). 
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1.1.1 The extrinsic apoptotic pathway 

Initiation of the apoptotic program via the extrinsic apoptotic pathway relies on the 

interactions of extracellular ligands with specific transmembrane DRs, which are 

characterised by a cysteine-rich extracellular domain and a short cytoplasmic (~80 kDa 

residue) domain that contains the death domain (DD) (Itoh & Nagata, 1993; Klein et al., 2002; 

Lorenzo & Susin, 2004; Tartaglia et al., 1993). The best characterised members of this family 

include tumour necrosis factor-α receptor 1 (TNF-R1), CD95 (Apo-1/Fas), TRAIL 

(TNF-related apoptosis-inducing ligand)-R1 and -R2, DR3, DR6, as well as the p75 nerve 

growth factor receptor (reviewed in Debatin & Krammer, 2004). Ligands (L) for these DR, 

such as TNF-α, CD95L (Apo-1L/FasL/CD178) or TRAIL, are type II transmembrane 

proteins. They belong to the TNF/NGF (nerve growth factor) superfamily (Smith et al., 1994) 

and play important roles in tissue homeostasis, in the immune system, in T cell mediated 

cytotoxicity, in deletion of activated T cells after an immune response, and in eliminating 

auto-reactive lymphocytes in the periphery (Ashkenazi & Dixit, 1998). For example, mice 

lacking functional CD95 (lpr/lpr) (lymphoproliferation) show some of the phenotypes of the 

autoimmune disease lupus, and similar to lpr-/- mice, mice lacking functional CD95L 

(gld/gld) (generalised lymphoproliferative diseases) fail to remove autoreactive 

lymphocytes from their immune systems appropriately (Van Parijs & Abbas, 1996). In 

humans a similar disease with a dysfunction of the CD95 system is found, called 

autoimmune lymphoproliferative syndrome (ALPS). These patients show massive, 

non-malignant lymphadenopathy, an altered and enlarged T cell population, and severe 

autoimmunity (Lenardo, 2003).  

CD95 is one of the most studied death receptors and was discovered by the generation of 

monoclonal antibodies which induced apoptosis in various human cell lines (Trauth et al., 

1989; Yonehara et al., 1989). CD95 is a type I transmembrane glycoprotein and has a 

molecular mass of approximately 45 to 52 kDa (Itoh et al., 1991; Oehm et al., 1992). CD95 is 

expressed in many tissues with the highest expression in thymus, heart, lung, and liver 

tissue. Under normal physiological conditions CD95-mediated apoptosis is triggered by its 

natural ligand, CD95L. CD95L is exclusively expressed on activated T and NK cells as well 

as on cells of immune privileged sites, such as the anterior chamber of the eye or the testes 

(Griffith et al., 1995; Yu et al., 1999). It is a type II membrane protein of the TNF family and 

has a molecular mass of 40 kDa (Suda et al., 1993; Takahashi et al., 1994; Yu et al., 1999). Its 

expression can be induced in T cells through activation of the T cell receptor. Cleavage of the 
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transmembrane form by metalloproteases generates the soluble form of CD95L (Kayagaki et 

al., 1995; Mariani et al., 1995; Takahashi et al., 1994). The function of soluble CD95L remains 

elusive. It was reported that the soluble ligand may only be efficient in triggering apoptosis 

at very high concentrations (Bouillet & O'Reilly, 2009; Schneider et al., 1998).  

Engagement by its ligand leads to trimerisation of CD95, which facilitates the binding of 

the adaptor molecule FADD (Fas-associated death domain containing protein). Following 

recruitment to the receptor, FADD forms higher-order oligomers, which in turn recruit via its 

death effector domain (DED) other DED-containing molecules, such as procaspase-8/10 or 

c-FLIP (Boldin et al., 1996; Muzio et al., 1996) to form the death inducing signalling complex 

(DISC) (Kischkel et al., 1995; Peter & Krammer, 2003). At the protein level, three isoforms of 

the c-FLIP family have been identified: c-FLIP long, c-FLIP short and c-FLIP Raji (Krammer 

et al., 2007; Krueger et al., 2001). C-FLIPL is known to be anti-apoptotic but under certain 

conditions may function as a proliferation factor by activating NF-kB. In contrast, c-FLIPS is 

solely anti-apoptotic by itself or through sensitising c-FLIPL (Krammer et al., 2007; Fricker et 

al., 2010). Procaspase-8 normally exhibits low levels of activity, yet the DISC provides a 

scaffold that facilitates its self-cleavage (Chang et al., 2003; Hughes et al., 2009). Activated 

caspase-8 then functions as a heterotetramer, consisting of two small subunits (p10) and two 

large subunits (p18), and transmits apoptotic signalling via cleavage and activation of 

effector kinases such as caspase-3, -6, and -7. In cells that contain too low amounts of 

caspase-8 to activate procaspase-3 directly, signal amplification via caspase-8-mediated 

cleavage of Bid and subsequent mitochondrial permeabilisation can occur, triggering the 

apoptotic cascade via the activation of procaspase-9 (Gross et al., 1999; Luo et al., 1998; 

Korsmeyer et al., 2000).  

 

1.1.2 The intrinsic apoptotic pathway 

The intrinsic apoptotic pathway is regulated by the B-cell lymphoma 2 (Bcl-2) proteins 

and can be induced by a variety of stimuli. This includes the deprivation of nutrients or 

essential survival factors, as well as upon exposure to DNA damage, toxins, irradiation, 

hypoxia, or oxidative stress (Erlacher et al., 2005; Norbury & Zhivotovsky, 2004; Takahashi et 

al., 2004). The founding member of this family, Bcl-2, was identified as an overexpressed 

gene found in the t(14:18)(q32;q21) translocation of follicular B-cell lymphoma (Bakhshi et al., 

1985). By now more than 20 Bcl-2 family members have been identified and it has become 

evident that they all share α-helical domains (BH1-4) homologous to those present in Bcl-2. 



Introduction   

22 

They can be subdivided into three groups on the basis of their structure and anti- or 

pro-apoptotic functions (Cory & Adams, 2002; Gross et al., 1999; Strasser, 2005). 

Anti-apoptotic Bcl-2 family members, such as Bcl-XL, myeloid cell leukemia sequence 1 

(Mcl-1), Bcl-w, and Bcl-2, contain all four BH domains, and the BH4 domain is specifically 

required for their anti-apoptotic functions. The second group consists of the pro-apoptotic 

Bcl-2 family members Bcl-2-associated X protein (Bax), Bcl-2 homologous antagonist killer 

(Bak) and Bcl2-related ovarian killer (Bok), which contain BH1-3 domains. Members of both 

of these groups usually have a transmembrane domain in their C-terminus, and they 

regulate the release of calcium from the endoplasmatic reticulum (ER) and pro-apoptotic 

molecules such as cytochrome c (cyt c), Smac/DIABLO (Second Mitochondria-derived 

Activator of Caspases/Direct IAP Binding Protein with Low PI), and Omi/HtrA2 (Omi/high 

temperature requirement A2) from mitochondria. The third group consists of BH3-only 

family members, such as Bax, Bad, Bak, BH3 interacting domain death agonist (Bid), Bim, 

p53 upregulated modulator of apoptosis (Puma), and Noxa, among others, which function as 

signalling entities that tip the balance towards death in response to intrinsic cell death 

triggers.  

Upon apoptosis induction, the transmembrane domain of Bax inserts into the 

mitochondrial outer membrane, and it then oligomerises to initiate membrane 

permeabilisation. This then leads to the release of cyt c and other pro-apoptotic proteins 

(Green & Kroemer, 2004). In the cytosol, cyt c triggers the formation of a large multimeric 

complex in an ATP-dependent manner. The apoptosome consists of the adapter protein 

Apaf-1, procaspase-9, and cyt c itself. Procaspase-9 is activated at the apoptosome and can 

therefore initiate the caspase signaling cascade by cleavage of caspase-3 (Adams & Cory, 

2002; Zou et al., 1999), ultimately leading to cell death induction. In addition, several other 

factors, such as AIF (Klein et al., 2002; Lipton & Bossy-Wetzel, 2002; Susin et al., 1999) or 

endonuclease G (Li et al., 2001; Parrish et al., 2001) are released from mitochondria into the 

cytosol, contributing to apoptosis. 

The death receptor pathway and the mitochondrial apoptotic pathway are linked by the 

pro-apoptotic BH3 only family member, Bid. Upon stimulation, Bid is cleaved by caspase-8 

to a truncated form (tBID), which translocates to the mitochondria where it acts together 

with the pro-apoptotic Bcl-2 family members Bax and Bak to induce the intrinsic cell death 

pathway (Igney & Krammer, 2002; Krammer et al., 2007; Scaffidi et al., 1998).  
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1.2 Regulation of the cell cycle 

This chapter is partly adapted from (Mendelsohn et al., 2008). 

 

1.2.1 Basic principles of cell cycle progression 

The essential function of cell cycle control is the regulated duplication of the cells’ genetic 

material and its division and distribution to each daughter cell, such that one copy is 

provided to each cell upon cell division. The cell cycle can be divided into two sections: the 

interphase, during which the cell grows and duplicates its DNA, and the M (mitosis) phase, 

during which the cell is split into two distinct cells. M phase itself is composed of two 

processes: mitosis, in which the nucleus divides and the cell's chromosomes are divided 

between the two daughter cells, and cytokinesis, in which the cell splits into two and the 

cell's cytoplasm is divided into two and forms distinct cells. The interphase encompasses the 

remaining three phases of the cell cycle: G1 phase (G = gap), S phase (synthesis) and 

G2 phase (Fig. 1.2). During S phase, the cell replicates its DNA, an essential prerequisite for 

cell division. S phase is flanked by two phases in which the cell continues to grow. The 

G1 phase is the interval between the completion of M phase and the beginning of S phase. 

The G2 phase is the interval between the end of S phase and the beginning of M phase. G0 or 

quiescence occurs when cells exit the cell cycle due to the absence of growth-promoting 

signals or the presence of pro-differentiation signals.  

To monitor and regulate proper cell cycle progression, the cell uses so called cell cycle 

checkpoints (Fig. 1.2). Three cell cycle checkpoints (G1-S, intra-S and G2-M) control the order 

and timing of cell cycle transitions and ensure that critical events such as DNA replication 

and chromosome segregation are completed with high fidelity (Elledge, 1996). Checkpoint 

loss results in genomic instability and has been implicated in the evolution of normal cells 

into cancer cells (Meeran & Katiyar, 2008). 
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Figure 1.2 | The mammalian cell cycle. 

The cell cycle consists of four distinct phases: G1 phase (G = gap), S phase (synthesis), G2 phase and 
M phase (mitosis). Three cell cycle checkpoints (G1-S, intra-S and G2-M) control the order and timing 
of cell cycle transitions and ensure that critical events such as DNA replication and chromosome 
segregation are completed with high fidelity.  

 

1.2.2 Cyclin-dependent kinases 

Progression through the cell cycle is tightly regulated by a set of kinases termed 

cyclin-dependent kinases (Cdks).  Cdks are heterodimeric complexes composed of a catalytic 

kinase subunit and a regulatory cyclin subunit (Deep & Agarwal, 2008; Schwartz & Shah, 

2005; Vermeulen et al., 2003). Cdk subunits associate with specific cyclins during distinct 

phases of the cell cycle, by which they get activated. As active protein kinases they then 

trigger transition through cell cycle phases. Although some Cdks can form complexes with 

multiple cyclins, in most cases active complexes rely on specific cyclin-Cdk interactions.  

Mammals express approximately twenty Cdk-related proteins, of which Cdk1-11 have 

been extensively studied (Satyanarayana & Kaldis, 2009). The associated cyclins can be 

divided into four major classes: D-, E-, A- and B-type cyclins (Satyanarayana & Kaldis, 2009). 

In mammalian cells, cyclin B resides mainly in the cytoplasm, whereas cyclins A, D and E 

show nuclear localisation (Ohtsubo et al., 1995; Pines & Hunter, 1994; Sherr, 1993). D-type 

cyclins (D1, D2 and D3) are expressed in a variety of cell types and tissues with cyclin D1 

being the most ubiquitously expressed (Waclaw & Chatot, 2004). The activities and functions 

G1 

Cell grows

S 

Replication of DNA

G2 

Cell prepares

to divide

M

Cell division

G1

S
G2

M

Cells that cease division

G0

G0 

quiescent/

senescent

G1-S checkpointG2-M checkpoint

Intra-S checkpoint



  Introduction 

  25 

of cyclin/Cdk complexes are regulated by both inhibitory and activating phosphorylations at 

various sites, as well as by two families of cyclin-dependent kinase inhibitors (CKIs).  

 

1.2.2.1 Regulation of Cdks by small-polypeptide inhibitors 

CKI proteins consist of inhibitor of kinase 4/alternative reading frame (Ink4a/Arf) and 

Cdk interacting protein/Kinase inhibitory protein (Cip/Kip) family members (Deep & 

Agarwal, 2008; Schwartz & Shah, 2005; Shapiro, 2006). CKIs can directly bind to and 

inactivate cyclin/Cdk complexes. The Ink4 bind exclusively to G1 phase cyclin D/Cdk4/6 

complexes and directly inhibit their activity (Sherr & Roberts, 1999). The Ink4a/Arf family of 

proteins consists of four members: p16Ink4a, p15Ink4a, p18Ink4a, and p19Ink4a, which are 

homologous in their primary structure. Further, they share similar biochemical activities and 

comparable tertiary structures. However, their regulation is distinct and expression can be 

triggered by e.g. Ras overexpression (Serrano et al., 1997), retinoblastoma protein (pRB) 

inactivation or can as well be promoted by p53 (Shapiro et al., 1995).  

The Cip/Kip family of CKIs includes three members: p21Cip1, p27Kip1 and p57Kip2, which 

can bind to and inhibit various Cdks. The proteins are highly homologous and share 

approximately 50% of their sequence (Mendelsohn et al., 2008). In particular, in response to 

DNA damage and genotoxic stress p21Cip1 levels are upregulated by p53 activation, which 

leads to G1 cell cycle arrest (Sherr & Roberts, 1999). Nevertheless, it has now become clear 

that p21Cip1 can also be regulated via several p53-independent pathways, such as 

transcriptional regulation by MYC (Abukhdeir & Park, 2008; Coller et al., 2000).  

 

1.2.2.2 Positive and negative regulation of Cdks by phosphorylation  

Besides direct interaction of CKIs with Cdks, the activity of Cdks can also be inhibited by 

phosphorylation at Thr14 and Tyr15 which is mediated by two protein kinases, namely Wee1 

and Myt1 (Bartek & Lukas, 2007; Gutierrez & Ronai, 2006). Phosphorylation of Cdk1 and 

Cdk2 contributes to their timed activation and inactivation during normal cell cycle 

progression. In contrast, Cdk4 and Cdk6 protein kinases appear to be subject to this 

inhibitory phosphorylation only when cells are exposed to DNA damage (Terada et al., 1995). 

Dephosphorylation of Thr14 and Tyr15 is mediated by the cell division cycle 25 (Cdc25) 

family of proteins, which leads to Cdk activation (see below for more details).  
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Activating phosphorylations (Thr161 in Cdk1, Thr160 in Cdk2 and Thr172 in Cdk4) are 

mediated by Cdk-activating kinase (CAK) and are required for the complete activation of 

Cdks (Kaldis, 1999). In mammalian cells, CAK itself is a cyclin-dependent kinase composed 

of cyclin H and Cdk7 (Mäkelä et al., 1994). Throughout the cell cycle, CAK contributes 

constitutively to Cdk activation following cyclin binding. Cyclin H/Cdk7 complexes are also 

involved in transcriptional activation by phosphorylating multiple serine/threonine residues 

located in the carboxyl-terminal domain (CTD) of the largest subunit of DNA polymerase II 

(RNAPII) (Feaver et al., 1994; Shiekhattar et al., 1995). 

 

1.2.3 Transcriptional regulation by E2F transcription factors 

E2F was originally identified as a cellular DNA binding factor that regulated expression 

of the viral E2 promoter (Yee et al., 1987; Kovesdi et al., 1987). Further studies revealed that in 

mammals the E2F family comprises eight genes (E2F1-8), which give rise to nine distinct 

proteins (DeGregori & Johnson, 2006; Polager & Ginsberg, 2009). They can both transactivate 

and repress gene expression to regulate a wide range of biological processes, including 

mitosis, the function of DNA damage checkpoints, DNA replication and repair, 

differentiation, autophagy, and apoptosis (Dimova & Dyson, 2005; Polager & Ginsberg, 

2008).  

For transcriptional control E2F associates with the DNA as a heterodimer with its two 

binding partners DP1 and DP2. In addition to DP1/2, E2F complexes are further modulated 

by members of the pRB family of proteins (pRB, p107, p130). All proteins of this family can 

inhibit E2F-responsive promoters, actively repress transcription, and thereby arrest cellular 

growth (Claudio et al., 1994; Dimova & Dyson, 2005).  

 

1.2.4 Regulation of cell cycle progression 

1.2.4.1 G1 regulation/restriction point control 

During G1 phase cells prepare for DNA replication and synthesise proteins that are 

necessary for genome replication. Once this is finished, all necessary components of the DNA 

replication machinery need to be assembled on the chromatin at what are called the origins of 

replication. When cells enter from quiescence into early G1 phase to prepare for DNA 

replication, Cdk4 and/or Cdk6 form active complexes with D-type cyclins (Fig. 1.3). This 
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step is dependent on the presence of nutrient and growth factors to ensure an environment 

that supports cell division. In G1 phase progression pRB family proteins are key players that 

regulate cell cycle. In the resting or quiescent state pRB family proteins are in a 

hypophoshorylated, active form and bind to E2F transcription factors, thereby repressing 

E2F-dependent transcription. Upon growth factor signalling, cyclin D/Cdk4/6 complexes 

are activated and initiate the phosphorylation and inactivation of the pRB family proteins 

(Sherr & Roberts, 1999; 2004; Meeran & Katiyar, 2008). This leads to the release of E2F 

transcription factors and results in the activation and transcription of E2F responsive genes 

required for cell-cycle progression, such as DNA replication complexes and cyclin E and A 

(Dyson, 1998; Lundberg & Weinberg, 1998). In late G1 phase, Cdk2 is activated by binding to 

cyclin E (Sherr & Roberts, 1999; 2004; Meeran & Katiyar, 2008), thereby increasing the 

phosphorylation of pRB family proteins on additional sites. This leads to irreversible 

initiation of the gene expression program required for S phase and to passage through the 

G1-S restriction point, also known as the G1-S checkpoint (Fig. 1.3). At this cell cycle 

checkpoint the key decision is made whether the cell will divide, delay division, or enter a 

resting stage. It is therefore also called the point of no return. Alterations and mutations in the 

key regulatory players of G1-S transition are frequently observed in cancer, allowing cells to 

proliferate independently of growth factor stimuli (Mendelsohn et al., 2008).  

 

Figure 1.3 | Regulation of the cell cycle.  

The cell cycle is tightly regulated by cyclin/Cdk complexes. When cells enter from quiescence into 
early G1 phase, Cdk4 and/or Cdk6 form active complexes with D-type cyclins. In late G1 phase, Cdk2 
is activated by binding to cyclin E, which leads passage through the G1-S checkpoint. For S phase 
progression cyclin A/Cdk2 complexes are required to enable DNA replication. In late S and beginning 
of G2 phase cyclin B is expressed and associates with Cdk1, together they regulate the transition of G2 
into M phase. See text for more details.  
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1.2.4.2 Regulation of DNA replication (S phase) 

For S phase progression cyclin A/Cdk2 complexes are required to enable DNA 

replication (Fig. 1.3) and to create exactly two identical semi-conserved chromosomes 

(Schwartz & Shah, 2005; Shapiro, 2006). DNA replication is started at the origins of 

replication, which must first be established in G1 phase prior to S phase entry. Origin of 

replication complexes (ORC) are constitutively bound to DNA throughout the cell cycle and 

must first be associated with chromatin to then enable the formation of the pre-replication 

complex (pre-RC). Formation of the pre-RC involves the recruitment of Cdc6 to the ORC. 

Cdc6 subsequently recruits the minichromosome maintenance (MCM) complex and Cdt1 

(Bell & Dutta, 2002). The MCM complex functions as the putative replicate helicase, 

however, MCMs are not stably bound in this step of pre-RC formation. In an 

ATPase-dependent manner Cdc6 loads the MCM complex stably, which results in the release 

of Cdt1 (Tye, 1999). Once the DNA is licensed to replicate, pre-RCs are phosphorylated by 

Dbf4/Cdc7 and cyclin/Cdk complexes. Additional factors are recruited, such as MCM10, 

that recruits Cdc45 and activates the origin. Activation of the pre-RC complex triggers 

unwinding of the replication origin and loading of the single-stranded DNA binding 

proteins Replication Protein A (RPA), DNA polymerase α and primase (Woo & Poon, 2003), 

which subsequently leads to the replication start.  

 

1.2.4.3 G2-M transition regulation 

In late S and beginning of G2 phase, cyclin B is expressed and associates with Cdk1, and 

together they regulate the transition of G2 into M phase (Fig. 1.3). However, the complexes 

remain inactive until late G2 when their activation is required for entry into mitosis 

(Matsusaka & Pines, 2004; Obaya & Sedivy, 2002). The onset of mitosis is triggered by 

dephosphorylation of Cdk1 by a Cdc25 isoform (see below) and includes increased nuclear 

transport and decreased nuclear export of cyclin/Cdk1 complexes. In addition to Cdk1, 

accurate mitotic progression needs a second family of kinases, termed polo-like kinases 

(Plks). Plks are a family of conserved serine/threonine kinases and in mammals, four Plks 

(Plk1-4) are known. Plks are involved in the mitotic processes of centrosome maturation, 

bipolar spindle formation, activation of the Anaphase-Promoting Complex (APC/CCdh1), 

chromosome segregation, and actin ring formation (cytokinesis) (Glover et al., 1998; van de 

Weerdt & Medema , 2006). 
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The primary goal of mitosis is to ensure that each daughter cell receives one pair of 

chromosome after cellular division. This implicates that a cell can only divide after 

chromosomes are attached to the microtubules of the mitotic spindle. The mitotic checkpoint, 

also known as the G2-M checkpoint (Fig. 1.3), insures that cells do not initiate mitosis with 

damaged DNA after replication. Cells that have a defective G2-M checkpoint enter mitosis 

before repairing their DNA through inducing death after cell division (Mendelsohn et al., 

2008). 
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1.3 Cdc25A function and regulation during cell cycle 

The Cdc25 family of proteins are highly conserved dual specificity phosphatases, which 

regulate progression through cell cycle by activating cyclin/Cdk complexes. Cdc25 was first 

identified in fission yeast as a factor required for entry into mitosis (Russell & Nurse, 1986). 

Subsequently, three mammalian isoforms have been identified: Cdc25A, Cdc25B and 

Cdc25C (Galaktionov & Beach, 1991; Nagata et al., 1991; Sadhu et al., 1990). Orthologues of 

these isoforms have been found in Xenopus laevis (Cdc25A and Cdc25C) and in chicken 

(Gallus gallus; Cdc25A and Cdc25B) (Bénazéraf et al., 2006; Izumi & Maller, 1993; Okazaki et 

al., 1996). 

In mammalian cells, Cdc25A, Cdc25B, and Cdc25C display distinct expression patterns 

and specificity for cyclin/Cdk complexes (Draetta & Eckstein, 1997; Fernandez-Vidal et al., 

2008). While Cdc25B and Cdc25C play important roles at the G2/M transition and during 

mitosis by dephosphorylating and activating their respective Cdk substrates (Gabrielli et al., 

1996; Lammer et al., 1998; Millar et al., 1991), Cdc25A, apparently has a more general 

function. During G1–S transition Cdc25A mainly activates the cyclin E/Cdk2 and 

cyclin A/Cdk2 complexes (Blomberg & Hoffmann, 1999; Hoffmann et al., 1994; Jinno et al., 

1994) but it also has a role in the G2–M transition by activating cyclin B/Cdk1 complexes 

(Molinari et al., 2000; Zhao et al., 2002). Importantly, Cdc25A-/- mice display early embryonic 

lethality (Ray et al., 2007) indicating the absence of compensation by Cdc25B or Cdc25C 

isoforms and a non-redundant role in mice. It appears from these data that Cdc25A is solely 

indispensable to drive cell cycle progression.  

Cdc25A is tightly regulated at the protein level, being periodically synthesised and 

degraded via ubiquitin-mediated proteolysis (Donzelli et al., 2002). Therefore, Cdc25A is a 

very short-lived protein. In late G1 phase, Cdc25A accumulates as a result of E2F1- and 

c-Myc-mediated transcriptional activation (Galaktionov et al., 1996; Jinno et al., 1994; Vigo et 

al., 1999). Subsequently, Cdc25A dephosphorylates Cdk2, which activates cyclin E/Cdk2 

complex. This creates an autoamplification loop that further phosphorylates and activates 

Cdc25A and thereby contributes to S phase progression (Hoffmann et al., 1994; Zou & 

Stillman, 1998).  

Regulation of Cdc25A protein levels takes place by two E3 ubiquitin ligase complexes: the 

APC/CCdh1 and the Skp1/Cullin/F-box (SCFβTrCP) protein complexes, each acting at distinct 

stages of the cell cycle (Busino et al., 2003; Donzelli et al., 2002). In unperturbed cells, Cdc25A 
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binding to SCFβTrCP in S and G2 phase requires the phosphorylation of serine residues within 

a so-called DSG motif that is mediated by the checkpoint kinases Chk1 and/or Chk2 and 

another yet unknown kinase (Boutros et al., 2007; Busino et al., 2004; Busino et al., 2003; Jin et 

al., 2003). Interaction with APC/CCdh1 at the late state of mitosis is dependent on a KEN-box 

motif (Fig. 1.4) (Boutros et al., 2007; Busino et al., 2004). During mitosis, Cdc25A is 

phosphorylated by cyclin B/Cdk1 complexes on two specific serine residues (Ser18 and 

Ser116), which results in its stabilisation and uncoupling from its ubiquitin-mediated 

turnover (Fig. 1.4) (Busino et al., 2004; Mailand et al., 2002). This creates a positive feedback 

loop that allows Cdc25A to dephosphorylate and further activate Cdk1, leading to 

APC/CCdh1–mediated ubiquitylation of Cdc25A and its post-mitotic degradation (Donzelli et 

al., 2002). Now, the start is set for another round of replication when, in response to 

transcriptional induction, Cdc25A protein begins to accumulate again at G1-S transition. 

 

 

 

Figure 1.4 | Multiple key phosphorylation events regulate Cdc25A levels. 

Cdc25A is phosphorylated at serine and threonine by multiple kinases that regulate its activity, 
interactions with other proteins, and intracellular localisations (S = serine, T = threonine). Degradation 

by the SCFβTrCP or by the APC/C–ubiquitin (Ub)-dependent degradation pathways is also controlled 

by the indicated phosphorylation events. In mitosis, Cdc25A is stabilised by Cdk1-mediated 
phosphorylation at indicated sites. Upon DNA damage or osmotic stress Cdc25A is phosphorylated 
by Chk1, Chk2 and/or p38 at indicated sites. Modified from (Boutros et al., 2007). 
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1.4 The DNA damage response pathway 

The DNA damage response (DDR) pathway displays a sophisticated signal transduction 

network that enables cells to sense DNA damage and to mount an appropriate response. It 

consists of sensors, mediators, and effectors (Fig. 1.5). Deregulation of the DDR leads to 

genomic instability and cancer. Therefore, depending on the cellular background and extent 

of DNA damage, the DDR triggers either cell cycle checkpoint arrest and DNA repair, or in 

the case of irreparable damage, inactivation of the cells by senescence or removal by 

apoptosis (Bitomsky & Hofmann, 2009). Cell cycle checkpoints supervise the structural 

integrity of chromosomes before progression through crucial cell cycle stages (Canman et al., 

1998; Hartwell & Kastan, 1994; Zhou & Elledge, 2000). The DDR pathway facilitates 

communication between damage recognition proteins and the checkpoint machinery to 

trigger arrest of cell cycle progression and thereby increases the opportunity for repair before 

activating important events, such as replication or mitosis (Löbrich & Jeggo, 2007; Terzoudi 

et al., 2005).  

 

          

Figure 1.5 | The DNA damage response pathway.  

The DNA damage response pathway is a signal transduction pathway consisting of sensors, 
mediators, and effectors that modulate cell cycle transitions, apoptosis, transcription, or DNA repair. 
See text for more details. Adapted from (Shiloh, 2003; Zhou & Elledge, 2000).  
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1.4.1 Activation of cell cycle checkpoints 

1.4.1.1 Sensors of DNA damage 

A complex cellular network of mechanisms has evolved to maintain the integrity of 

genetic information after genotoxic stress. Multiple checkpoint pathways are activated in 

response to DNA damage in order to block the G1–S or G2–M transitions or S phase 

progression to minimise the risks of transmitting mutations to the cells' progeny. The 

upstream factors that initiate a checkpoint response are the sensor phosphatidylinositol 

3-kinase-related kinases (PI3Ks) ATM (ataxia-telangiectasia mutated), ATR 

(ataxia-telangiectasia and Rad3-related) and DNA-PK (DNA-dependent protein kinase) 

(Fig. 1.5). Upon sensing DNA damage, these kinases are believed to be phosphorylated 

(Bakkenist & Kastan, 2003; 2004; Chan et al., 2003; Liu et al., 2011) and subsequently to 

phosphorylate a large number of substrates, such as BRCA1, TopBP1 or NBS1 (Hurley & 

Bunz, 2007). ATM is primarily activated in response to double strand DNA breaks (DSBs), 

whereas ATR is mainly activated by breaks in single-stranded DNA (ssDNA) or at stalled 

DNA replication forks. Nevertheless, redundancy and cooperation between the ATM and 

ATR signalling pathways were reported in vitro (for review see Hurley & Bunz, 2007). 

DNA-PK also cooperates with ATR and ATM to phosphorylate proteins involved in DNA 

damage checkpoint control but has a more pronounced role in DNA repair (Meek et al., 

2008). Various mediators (Fig. 1.5) facilitate the activation of ATM and ATR proteins, which 

then in turn phosphorylate additional downstream kinases, such as checkpoint kinases Chk1 

and Chk2 (Niida & Nakanishi, 2006). These modulate several downstream substrates, 

including Cdc25 phosphatases, that are involved in the DNA repair machinery or DNA 

damage checkpoint maintenance (Fig. 1.5).  

DSB formation induces rapid autophosphorylation on inactive ATM homodimers at 

Ser1981, which results in their dissociation to form partially active monomers (Fig. 1.6) 

(Bakkenist & Kastan, 2003). Ser1981 was the first autophosphorylation site to be identified; 

however, this residue is not essential for ATM function, at least in mice (Pelligrini et al., 

2006), although its modification is tightly linked to ATM activation under most 

circumstances (Bakkenist & Kastan, 2003; Smith et al., 2010). ATM monomers are then 

recruited to sites of DSBs with the aid of the sensor MRN complex, which is comprised of 

meiotic Mre11 (meiotic recombination 11), Rad50, and Nbs1 (Nijmegen breakage 

syndrome 1) (van den Bosch et al., 2003; Berkovich et al., 2007; Lee & Paull, 2005; Uziel et al., 

2003). In addition, DNA-PK senses DSBs, adheres to the damaged site and recruits and 
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activates its catalytic subunit (DNA-PKcs) via the Ku70-Ku80 heterodimer (Smith & Jackson, 

1999). DNA-PKcs, in turn, binds and brings together the broken ends (DeFazio et al., 2002). It 

then undergoes autophosphorylation on several serine residues that are essential for its 

activation (Chan et al., 2002; Douglas et al., 2002; Shiloh, 2003). 

In contrast, replication stress- or ultraviolet (UV) light-mediated ssDNA becomes rapidly 

coated with the trimeric ssDNA-binding protein complex, Replication Protein A (RPA), 

which leads to the recruitment of ATR together with its interacting partner ATRIP (Fig. 1.6) 

(Zou & Elledge, 2003). Full activation of the ATR/ATRIP complex and successful checkpoint 

function requires loading of the sensor Rad17 and 9-1-1 (Rad9, Rad1, and Hus1) complexes, 

together with TopBP1 and Claspin, onto DNA (Kumagai et al., 2006; Liu et al., 2006; Lee et al., 

2002; Cimprich & Cortez, 2008). In the past it was believed that ATR kinase may be 

constitutively active to phosphorylate substrates but is controlled largely by its subcellular 

localisation upon binding of the ATR/ATRIP complex to RPA (Zou & Elledge, 2003). 

However, very recently it was shown that ATR, like ATM and DNA-PK, undergoes 

autophosphorylation at Thr1989, which is thought to be crucial for its full activation (Liu et 

al., 2011). 

The two main DNA damage sensor kinases ATM and ATR respond to very different 

types of stimuli and it was believed for years that they were components of independent 

pathways. However, several reports demonstrated that ATR also responds to DSBs in an 

ATM-dependent manner (Adams et al., 2006; Cuadrado et al., 2006; Hurley & Bunz, 2007; 

Jazayeri et al., 2006; Myers & Cortez, 2006). These studies showed that ATM initiates the 

generation of local regions of RPA-coated ssDNA, thereby recruiting ATR to DSB sites. 

Activated by the former DNA-protein structure, ATR then phosphorylates its downstream 

substrates. Thus, ATM can indirectly cause ATR activation. Vice versa, Stiff and colleagues 

showed that UV-light and hydroxyurea, both potent activators of ATR signalling, also 

activate ATM and, importantly, that this activation is ATR-dependent (Stiff et al., 2006). 
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Figure 1.6 | Simple models for ATR and ATM activation.  

(A) Formation of DSB leads to the recruitment of the MRN complex and the separation of the dimeric, 
inactive form of ATM to a monomeric, phosphorylated form. This monomeric form of ATM binds the 
MRN complex at DSB and is further activated by the DNA and MRN complex. Activated ATM then 
phosphorylates the C-terminal tail of the histone variant H2AX. Phosphorylated H2AX (γH2AX) 
binds to the mediators MDC1, 53BP1 and BRCA1, which leads to recruitment of additional ATM–
MRN complexes and further H2AX phosphorylation. The activated ATM also phosphorylates 
downstream targets, including CHK2. Phosphorylation of downstream targets leads to cell-cycle 
arrest, slow down of origin firing and/or DSB repair. (B) Two complexes, 9-1-1 and one comprising 
ATR and ATRIP, are independently recruited to the junction of the 5' primer with single-stranded 
DNA (ssDNA). RPA binds ATRIP and directs RAD17 to load the 9-1-1 at the 5' primer junction. 
Loading of the 9-1-1 complex brings the ATR activator TOPBP1 to the damage site. TOPBP1 binds and 
activates ATR in an ATRIP-dependent manner, leading to phosphorylation of the downstream 
checkpoint kinase Chk1 and other ATR effectors.  See text for more details. Adapted from (Cimprich 
& Cortez, 2008).  
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1.4.1.2 Mediators of checkpoint signalling 

Several mediator proteins are involved in facilitating the activation of ATM and ATR 

downstream targets. Direct DSBs or ssDNA, which can be converted to DSBs by the action of 

nucleases which cleave ssDNA to yield DSBs (Cimprich & Cortez, 2008), lead to 

phosphorylation of DSB mediator H2AX (γH2AX) flanking the sites of DNA damage 

(Fig. 1.6). Phosphorylation of H2AX at Ser139 can be mediated by ATM, ATR or DNA-PK 

(Bonner et al., 2008). To facilitate the activation of the downstream effector kinase Chk2, 

mediator proteins including mediator of DNA damage checkpoint 1 (Mdc1), p53-binding 

protein (53BP1), and breast cancer 1 (BRCA1) accumulate at γH2AX (Fig. 1.6) (Canman, 

2003). To ease Chk1 activation ATR interacts with the mediator topoisomerase (DNA) 

2-binding protein 1 (TopBP1) (Fig. 1.6) to phosphorylate a number of proteins, including 

H2AX (Liu et al., 2006). The interaction of ATR with TopBP1 and its downstream mediator 

claspin, results in recruitment and phosphorylation of BRCA1 and subsequent activation of 

Chk1 (Bucher & Britten, 2008).  

 

1.4.1.3 Chk1 and Chk2 in checkpoint signalling 

Chk1 and Chk2 are structurally unrelated serine/threonine kinases which have 

overlapping functions in response to diverse genotoxic insults (Antoni et al., 2007; Bartek & 

Lukas, 2003; Dai & Grant, 2010). Chk2 is a stable protein expressed throughout the cell cycle 

(Lukas et al., 2001) and appears to be largely inactive in the absence of DNA damage. In 

response to DSBs it is mainly activated by ATM, leading to its phosphorylation at Thr68 

(Ahn et al., 2000; Lee & Chung, 2001; Matsuoka et al., 2000; Melchionna et al., 2000). In 

contrast, Chk1 protein is largely restricted to S and G2 phases (Lukas et al., 2001) and it is 

active even in unperturbed cell cycles (Kaneko et al., 1999; Sorensen et al., 2003; Zhao et al., 

2002). Further, Chk1 is indispensable for embryonic development as Chk1-/- mice are lethal 

(Liu et al., 2000; Takai et al., 2000). The current view is that Chk1 activation does not require 

dimerisation or trans-autophosphorylation. Rather, ATR (predominantly) or ATM (to a 

lesser extent) phosphorylates Chk1 at Ser317/345, directly leading to activation (Dai & 

Grant, 2010).  

Various reports disproved a strict dependency of Chk1 on ATR and Chk2 on ATM, 

demonstrated by phosphorylation/activation of Chk1 by ATM in response to ionising 

radiation (Gatei et al., 2003; Jazayeri et al., 2006; Sørensen et al., 2003). However, 
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ATM-independent activation of Chk2 is also reported (Hirao et al., 2002; Matsuoka et al., 

2000). 

Once activated, Chk1 and Chk2 can phosphorylate and promote degradation or 

sequestration of effector Cdc25s (Boutros et al., 2007; Gatei et al., 2003; Goloudina et al., 2003; 

Sørensen et al., 2003; Xiao et al., 2003; Zhao et al., 2002). In addition, they induce the 

phosphorylation of the effector p53, and thereby increase its stability. Cdc25 inactivation and 

p53 accumulation together halt cell cycle progression G0/G1 or G2/M transitions. 

 

1.4.2 The G1 and G1-S checkpoint responses 

Upon exposure to genotoxic stress cells can enter into a sustained, and sometimes even 

permanent G1 arrest via the ATM(ATR)/Chk2(Chk1)-p53-p21 pathway by p53-dependent 

transcription of effector genes (e.g. p21Cip1, Gadd45, 14-3-3σ) (Fig. 1.7) (Di Leonardo et al., 

1994; Kiyokawa & Ray, 2008; Kastan & Bartek, 2004). The p53 transcription factor is directly 

phosphorylated by ATM within its amino-terminal transactivation domain, particularly on 

Ser15 (Banin et al., 1998; Lambert et al., 1998; Dai & Grant, 2010). Chk1 and/or Chk2 

phosphorylate p53 at Thr18 and Ser20 in the same domain, along with probably some 

additional p53 sequences (Bartek & Lukas, 2003; Craig et al., 2003; Kastan & Lim, 2000; 

Shiloh, 2003; Wahl & Carr, 2001). In addition, the ubiquitin ligase Mdm2, which normally 

binds p53 and ensures rapid p53 turnover, is targeted and decreased after DNA damage by 

ATM (Maya et al., 2001) as well as by Chk1/Chk2 (Kastan & Bartek, 2004). Together, these 

modifications of p53 and Mdm2 contribute to the stabilisation and accumulation of p53 

protein and to its increased activity as a transcription factor.  

In contrast, activation of the ATM(ATR)/Chk2(Chk1)-Cdc25A pathway leads to Cdc25A 

phosphorylation and degradation by the combined actions of Chk1, Chk2 and/or p38 

(Fig. 1.7). It represents a rapid cellular response that induces a DNA synthesis block prior to 

the p53-dependent checkpoint activation. The basal turnover of Cdc25A during S and 

G2 phase requires phosphorylation on four different residues by Chk1 (Ser124, 178, 279 and 

293) (Falck et al., 2001) and is accelerated upon chemically, UV- or ionising radiation 

(IR)-induced DNA damage (Fig. 1.4) (Boutros et al., 2006; Goloudina et al., 2003; Mailand et 

al., 2000; Xiao et al., 2003; Zhao et al., 2002). In addition, it has been shown that IR-induced 

hypophosphorylation of Cdc25A on Ser124, 178 and 293 by both Chk2 and Chk1 promotes 

the accelerated turnover of Cdc25A, which is mediated by SCFβTrCP (Sørensen et al., 2003). 
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Moreover, phosphorylation on Ser76 (Goloudina et al., 2003) and phosphorylations within 

the DSG motif of Cdc25A (Busino et al., 2003) by Chk1 and a yet to be identified kinase is 

required for the binding of SCFβTrCP to the phosphatase and its subsequent ubiquitylation 

(Fig. 1.4). Furthermore, upon accelerated proteolysis of Cdc25A, the inhibitory 

phosphorylations on cyclin/Cdk complexes cease to be removed. This has been proposed to 

lead to the inactivation of the cyclin E/Cdk2 complex. Through these events cells are 

arrested before progression into S phase (Mailand et al., 2000; Sørensen et al., 2003; 

Mendelsohn et al., 2008), which allows additional time to repair damaged DNA (Fig. 1.7) 

(Mailand et al., 2000).  

 

 

Figure 1.7 | Signalling network of DNA damage checkpoints.  

DNA damage (DSB and SSB) initiate complex checkpoint signalling pathways to arrest cells in their 
cell cycle progression and to allow time for DNA repair. See text for details. Adapted from (Dai & 
Grant, 2010). 
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1.4.3 The S-phase checkpoint pathways 

Protecting the integrity of the genome during S phase transition is of highest importance 

as it represents the genetically most vulnerable period during the cell cycle. S phase 

checkpoints are considerably more important for preventing genetic instability than the G1 

or G2 checkpoints or the mitotic-spindle checkpoint (Myung et al., 2001a; 2001b). During the 

DNA synthesis phase, cells may be exposed to genotoxic stress from either difficulties with 

the replication process itself or from DNA-damaging insults. This can lead to the activation 

of two S phase checkpoint pathways: the replication-dependent checkpoint (Fig. 1.8) or the 

replication-independent intra-S phase checkpoint (Fig. 1.7) (Bartek et al., 2004).  

 

1.4.3.1 Replication-dependent checkpoint 

The replication checkpoint serves as protection for the integrity of stalled replication forks 

in response to stresses such as the depletion of deoxyribonucleotide (dNTP) pools, chemical 

inhibition of DNA polymerases, or as a consequence of the collision of replication forks with 

damaged DNA and/or aberrant DNA structures (Bartek et al., 2004; Kastan & Bartek, 2004). 

Activation of the replication checkpoint is ATR-dependent and requires the establishment of 

DNA replication forks (Fig. 1.8) (Lupardus et al., 2002; Stokes et al., 2002; Tercero et al., 2003) 

and the generation of ssDNA. The ssDNA binds RPA, which then triggers the activation of 

the checkpoint response (You et al., 2002; Zou et al., 2003). Besides RPA, the key components 

of this machinery include the ATR–ATRIP complex, the mediator protein claspin, Rad17, and 

the 9-1-1 complex (Bartek et al., 2004; Kastan & Bartek, 2004; Segurado & Tercero, 2009). The 

replication checkpoint response co-ordinates DNA replication, DNA repair, and cell-cycle 

progression. It includes broad regulation of processes, such as the firing of replication 

origins, stabilisation of DNA replication forks in response to DNA damage or replicative 

stress, resumption of stalled DNA replication forks, transcriptional induction of DNA 

damage response genes, choice of the repair pathway, and inhibition of mitosis until 

replication is completed (for review see Segurado & Tercero, 2009).  
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Figure 1.8 | The replication-dependent cell cycle checkpoint.  

In S phase, endogenous/exogenous insults hinder replication fork progression, resulting in stalled 
forks that are unstable and breakage-prone. When a fork ancounters a lesion, DNA polymerase stalls 
whils helicase unwinds DNA, generating a large stretch of ssDNA. ssDNA lesions are then coated by 
RPA, redruiting ATR-ATRIP complexes via recognition and association of RPA-ssDNA by ATRIP. 
ATR/ATRIP activation requires Rad17/9-1-1 complex loading, which is also essential for ATR-
mediated Chk1 activation. Adapted from (Cimprich & Cortez, 2008; Dai & Grant, 2010). 

 

1.4.3.2 Intra-S phase checkpoint 

The intra-S phase checkpoint serves to handle DNA damage that occurred during S phase 

and transduces its signals through two parallel pathways (Fig. 1.7): 

ATM(ATR)/Chk2(Chk1)/Cdc25A/Cdk2 and ATM/MRN complex (Bartek et al., 2004; 

Bucher & Britten, 2008; Falck et al., 2002). The first pathway includes the activation of 

ATM(ATR)/Chk2(Chk1) upon DNA damage, which results in Cdc25A degradation and 

thereby inhibits cyclin E(A)/Cdk2 activity and progression through S phase. Therefore, Chk1 

is thought to be the primary S phase checkpoint kinase, whereas Chk2 plays a supportive 

role. This assumption is supported by studies with siRNAs targeting Chk1 and Chk2, which 
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demonstrate that downregulation of Chk1, but not Chk2, abrogates camptothecin- or 

5-fluorouracil-induced S phase arrest (Xiao et al., 2003). In the second effector branch, the 

sensor MRN complex recruits ATM with the help of Mdc1 to sites of DNA damage (Watrin 

& Peters, 2006). Once localised to damaged DNA, ATM phosphorylates Smc1, a component 

of the cohesin complex, which is thought to function in DNA repair (Bucher & Britten, 2008).  

While p53 displays the key component of the sustained G1 cell cycle arrest, S phase 

checkpoints do not require p53 activity (Fig. 1.7) (Bartek & Lukas, 2001; 2003). Cells that 

experience genotoxic stress during DNA replication only delay their progression through 

S phase in a transient manner. If damage is not repaired during this delay, they exit S phase 

and arrest later when reaching the G2 checkpoint (Bartek et al., 2004). 

 

1.4.4 The G2 checkpoint  

The G2 checkpoint (also known as the G2-M checkpoint) serves to prevent cells with 

genomic DNA damage from entering mitosis (M phase) (Nyberg et al., 2002; Xu et al., 2002). 

In cells exposed to DNA damage during G2, or when they progress into G2 phase with 

unrepaired DNA damage from previous S or G1 phases, the activation of cyclin B/Cdk1 

complexes is blocked (Fig. 1.7). This prevents the initiation of mitotic events until replication 

is complete or DNA damage is repaired (Takizawa & Morgan, 2000). Timing of cyclin 

B/Cdk1 activation and the initiation or inhibition of mitosis involves the collaboration of the 

Cdc25 phosphatases (Kiyokawa & Ray, 2008). Genomic DNA damage at the G2 checkpoint 

activates ATM/ATR and Chk1/Chk2 and/or mitogen-activated protein kinase (MAPK) p38. 

They in turn phosphorylate Cdc25 proteins to inhibit their activity (Lopez-Girona et al., 

2001), to promote their degradation (Jin et al., 2003; Mailand et al., 2000), and/or to induce 

their translocation to the cytoplasm (O'Connell et al., 2000). This sequence of events finally 

leads to inactivation of cyclin B/Cdk1 complexes and accumulation of cells in G2 phase. In 

addition, other upstream regulators, such as the Polo-like kinases Plk3 and Plk1, of Cdc25 

and/or cyclin B/Cdk1 seem to be targeted by DNA damage-induced mechanisms (Nyberg et 

al., 2002). By inducing the transcription of p21Cip1 and other proteins, p53 also plays a role in 

the G2 checkpoint control (Fig. 1.7) (Taylor & Stark, 2001). 
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1.5 Agents targeting the cell cycle in anti-cancer therapy 

Cancer is a major health problem and causes unbearable morbidity and mortality 

worldwide (Ferlay et al., 2010; Parkin et al., 2001). Cell cycle deregulation associated with 

cancer occurs through mutation of proteins important at different levels of the cell cycle 

(Deep & Agarwal, 2008). In cancer, mutations have been observed in genes encoding Cdks, 

cyclins, Cdc25 phosphatases, CKIs, Cdk substrates, and checkpoint proteins (reviewed by 

McDonald & El-Deiry, 2000; Sherr, 1996). Thus, deregulated cell cycle progression has been 

considered as one of the ten (recently) described hallmarks of cancer progression (Hanahan 

& Weinberg, 2011). Therefore, the development of agents targeting the deregulated cell cycle 

has been considered as an ideal strategy for cancer therapy in recent years (Collins & Garrett, 

2005; Deep & Agarwal, 2008; Vermeulen et al., 2003). 

Twenty years ago, the first report by Nagata and colleagues showed the connection of 

Cdc25 isoform expression and cancer (Nagata et al., 1991). Since then, Cdc25 phosphatases, 

particularly the Cdc25A and Cdc25B isoforms have been reported to be overexpressed in 

primary tissue samples from various human cancers (Boutros et al., 2007; Kristjánsdóttir & 

Rudolph, 2004). In detail, for non-Hodgkin lymphoma several reports have been published 

revealing Cdc25A overexpression on RNA and protein levels (Aref et al., 2003; Hernández et 

al., 2000; 1998; Moreira et al., 2003). In most cases, overexpression of Cdc25A (and Cdc25B) 

correlates with more aggressive disease and poor prognosis of patients, raising evidence that 

Cdc25A may act as an oncogene. Accordingly, Cdc25A overexpression has been found to 

lead to unsustained cell proliferation, tumour growth and resistance to chemotherapeutic 

drugs (Draetta & Eckstein, 1997; Boutros et al, 2007).  

The important role of Cdc25 phosphatases as activators of Cdks makes them attractive 

candidates for the development of indirect inhibitors of the kinases. Their potential as anti-

proliferative cancer drugs has been explored in various strategies in recent years. In-depth 

studies of compounds with inhibitory actions on Cdc25A, such as Flavopiridol, Roscovitine 

or ARQ-501, led to their engagement in phase I and II clinical trials on patients with various 

types of relapsed or refractory tumours, both in single or combination treatment (for review 

see Boutros et al., 2007; Deep & Agarwal, 2008).  

Besides direct inhibition of Cdc25A, the activation of the cellular DNA damage pathway 

displays an alternative way in anti-cancer treatment. In chemotherapy, fast-dividing 

malignant cells are targeted by DNA damaging agents such as alkylating agents, 
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antimetabolites, anthracyclines, plant alkaloids, topoisomerase inhibitors and other anti-

tumour agents, all of which affect cell division or DNA synthesis and function (Takimoto & 

Calvo, 2009). The general purpose of these drugs is to induce sufficient amounts of DNA 

damage (Herr & Debatin, 2001; Stahnke et al., 2001) and thereby activate p53-dependent and 

-independent DNA damage signalling pathways, which leads to cell cycle arrest and to the 

induction of cell death pathways. However, cancer cells can become resistant to 

chemotherapy over time through a variety of apoptotic resistance mechanisms (Igney & 

Krammer, 2002). Breaking apoptosis resistance and sensitising malignant cells towards cell 

death are crucial in cancer therapy. The exploration of new anti-cancer drugs with minimal 

side effects on normal cells and the development of enhanced combination therapies with 

cell cycle agents will support the fight against one of the major health problems of our 

century.  
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1.6 Plant extracts in anti-cancer therapy 

This chapter is adapted from (Ebada et al., 2011). 

 

The study of natural products that have traditionally been used to treat human diseases 

throughout the ages is one of the bases for modern drug development. Analysis of medicinal 

plants, bioactive cultures, and increased understanding of micronutrients in the food chain 

has opened the door for the development of purified and defined chemical compounds as 

dose-controlled medicines (Rishton, 2008). The first known preserved medical records 

consist of cuneiform writing on clay tablets found in Mesopotamia (now Iraq) dating from 

about 4600 years ago (Mitscher, 2007). In the 19th century, synthetic medicinal chemistry 

began and drugs were derived by extracting plant, animal or marine products with varying 

degrees of purification (Brown, 2007). Data collected ten years ago revealed that about 120 

compounds used in conventional medicine were derived from traditional medicine plant 

sources; 80% of these compounds were used in the same or related manner as the traditional 

use (Fabricant & Farnsworth, 2001). Further, an analysis of the origin of drugs revealed, that 

almost half of the drugs approved since 1994 were based on natural products (Harvey, 2008). 

Since the beginning of the 21st century, new approaches in drug discovery, such as genomics, 

proteomics and antibody therapy are being widely deployed. They provide new advances to 

drug discovery and display an important source of new drugs. However, natural 

compounds which have existed for thousands of years will continue to be central players in 

the treatment of human disease. 

 

1.6.1 The plant genus Aglaia and its rocaglamide derivatives 

In Traditional Chinese Medicine plant elements and extracts are by far the most common 

elements used (Foster & Chongxi, 1992). The family Meliaceae (= Mahogany family, order 

Sapindales) is an angiosperm plant family of mostly trees and shrubs together with a few 

herbaceous plants (Isman et al., 1997). The genus Aglaia displays the largest genus within the 

family of Meliaceae comprising about 120 woody species with tree heights up to 40 meters, 

mainly distributed in the tropical rain forest of countries in South-East Asia. The active 

compounds isolated from these plant extracts are derivatives of cyclopenta[b]benzofuran, 

also called rocaglamide (King et al., 1982). Plant extracts are traditionally used in folk 

medicine as heart stimulant, febrifuge, and for the treatment of coughs, diarrhea, 
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inflammation, and injuries (Proksch et al., 2001). Extracts have also been used as bactericides, 

insecticides, and in perfumery (Janaki et al., 1999). The phytochemical activities in the natural 

constituents of Aglaia have now been studied for almost 30 years, since the discovery of the 

first cyclopenta[b]benzofuran in 1982 (King et al., 1982). To date, more than one hundred 

naturally occurring rocaglamide-type (= flavagline) compounds have been isolated from 

over 30 Aglaia species (Kim et al., 2006; Proksch et al., 2001; Ebada et al., 2011). Rocaglamide 

derivatives differ from each other by the nature of their backbone structure and of their 

moities at positions R1 – R5 (Fig. 1.9). The activity of rocaglamide derivatives is dependent 

on different substituents, as analysed in previous studies (Ebada et al., 2011).  

 

 

 

 

Figure 1.9 | Rocaglamide derivatives isolated from Aglaia species. 

(A-E) Rocaglamide derivatives differ from each other by the nature of their backbone structures and of 
their moities at positions R1 – R5; the most common ones are for R1: -H, -OH, -OCOCH3, - OCHO, - 
OCHO; R2: -H, - CON(CH3)2, -CONHCH3, -CONH2, -COOCH3; R3: -H, -OH, -OCH3; R4: -H, -OH, - 
OC2H5, - OCH3; R5: - OCH3. The structure of the rocaglamide derivative used in this study is based on 
(A) with R1: -OH, R2: -CON(CH3)2, R3: -H, R4: -OH and R5: - OCH3; it is abbreviated as 
Rocaglamide A (Roc A). (F) Cyclorocaglamide. Modified from (Ebada et al., 2011). 
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1.6.2 Pharmacological significance of rocaglamides 

Since their discovery almost 30 years ago (King et al., 1982), rocaglamides have been 

profoundly studied and besides their insecticidal activity (Bacher, 1999; Brader et al., 1998; 

Dreyer et al., 2001; Grege et al., 2001; Nugroho, 1999; Schneider et al., 2000) various reports 

described them to exhibit anti-inflammatory (Baumann et al., 2002; Proksch et al., 2005) and 

anti-cancer activities (Kim et al., 2006; Proksch et al., 2001; Ebada et al., 2011). Tumour 

inhibiting activities include anti-proliferative (Hayashi et al., 1982; Kim et al., 2006; Lee et al., 

1998; Zhu et al., 2009), translation inhibitory (Bleumink et al., 2010; Bordeleau et al., 2008; Lee 

et al., 1998), and pro-apoptotic actions (Bleumink et al., 2010; Zhu et al. 2007, 2009;). While the 

molecular mechanisms of translation inhibitory (Bleumink et al., 2010; Bordeleau et al., 2008; 

Lee et al., 1998) and pro-apoptotic actions (Bleumink et al., 2010; Zhu et al. 2007, 2009;) of 

rocaglamides are elucidated, how they exert their anti-proliferative activity in cancers 

remains subject to further investigations.  

 

1.6.2.1 Anti-inflammatory activities of rocaglamides 

Inflammatory diseases arise from improper activation of the immune system which leads 

to abnormal expression of pro-inflammatory cytokines, such as TNF-α, INF-γ or IL-4, and 

tissue-destructive enzymes (Li-Weber & Krammer, 2003; O'Shea et al., 2002). 

Over-production of cytokines is known to be tightly associated with autoimmune and 

inflammatory diseases. Traditional medicine in several countries of South-East Asia uses 

leaves and flowers of Aglaia species for the treatment of asthma and inflammatory skin 

diseases. In addition, it has been shown by our group that rocaglamide inhibits TNF-α, INF-γ 

and IL-4 production in human peripheral blood cells at very low doses (25-50 nM) (Proksch 

et al., 2005). Pro-inflammatory cytokines are transcriptional targets of the NF-ĸB pathway 

(Li-Weber & Krammer, 2003b; Macian, 2005; Yamamoto & Gaynor, 2001), which is affected 

by rocaglamides. They were shown to be potent inhibitors of TNF- and PMA (phorbol 

12-myristate 13-acetate)-induced NF-ĸB activity (Baumann et al., 2002). However, the 

conclusion from the study of Baumann and colleagues (Baumann et al., 2002) could not be 

confirmed by later studies. We have shown that rocaglamide at concentrations of 25-100 nM, 

did not show inhibition of PMA-induced IB degradation and also did not block PMA-

induced nuclear translocation of p65 (a subunit of NF-B) (Zhu et al., 2007; Proksch et al., 

2005). Instead, at concentrations of 25-100 nM, rocaglamide even substantially increased 

NF-B-mediated transcription (Proksch et al., 2005). Using an enzyme-based NF-B activity 
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readout it was shown that rocaglamide inhibited NF-B activity only at very high doses 

(IC50 = 2 M) (Salim et al., 2007). Since rocaglamide also inhibits protein synthesis (see 

below), it is, therefore, unclear whether the observed inhibition of NF-B activity at high 

concentrations of rocaglamide was due to inhibition of NF-B activation signalling pathway 

or was rather the consequence of translation inhibition.  

Our group has shown that rocaglamide derivatives inhibit NF-AT activity in activated T 

cells (Proksch et al., 2005). It was demonstrated that rocaglamide derivatives selectively 

inhibit NF-AT-dependent gene expression of several cytokines after stimulation with 

anti-CD3/anti-CD28 antibodies or PMA/ionomycin in peripheral blood T cells. These data 

suggest that rocaglamide derivatives may function as immunosuppressive agents by 

targeting NF-AT activity in T cells. However, the precise molecular mechanism of the 

suppression of cytokines like TNF-α, INF-γ and IL-4 in normal T cells remains unknown.  

 

1.6.2.2 Anti-tumour activities in vivo  

As early as 1982, the first report on rocaglamides showed their potency to increase the 

lifetime of tumour-bearing mice in a leukaemic model using P388 murine lymphocytic 

leukaemia cells (King et al., 1982). Several rocaglamide derivates were then extensively tested 

in various mouse tumour models (Cencic et al., 2009; Hwang et al., 2004; Lee et al., 1998; Zhu 

et al., 2009). In particular, the work done in our lab showed a significant delay in growth of 

the mouse lymphoma RMA after 16 days of intraperitoneal treatment with 

desmethyl-rocaglamide at 5mg/kg three times per week (Zhu et al., 2009). Together, these 

mice studies prove the anti-cancer activities of rocaglamide derivatives. Importantly, no 

toxicity to the liver (as evaluated by glutamate pyruvate transaminase activity) and no body 

weight loss could be observed upon rocaglamide treatment (Zhu et al., 2009).  

 

1.6.2.3 Anti-proliferative activities of rocaglamides 

A powerful action of rocaglamides is their anti-proliferative activity in cancer cells, which 

was observed upon their first discovery in 1982 and has been studied further since then 

(Hayashi et al., 1982; Kim et al., 2006; Lee et al., 1998; Zhu et al., 2009; Bleumink et al., 2010).  

Inhibition of tumour cell proliferation with a pronounced accumulation of cells in a 

specific phase of the cell cycle was first reported by Lee and colleagues (Lee et al., 1998). It 
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was shown that 4’-demethoxy-3’,4’-methylenedioxy-methyl rocaglate inhabits the potency to 

inhibit tumour cell proliferation of the human lung carcinoma cells Lu1 with cell 

accumulation in G0/G1 phase of the cell cycle accompanied by only marginal cell death. 

Thereafter, other derivatives, such as didesmethyl-rocaglamide, aglaxorin D (aglaiastatin), 

and silvestrol were also shown to inhibit cell proliferation of different malignant cell lines 

with induction of cell cycle arrest in G2/M phase and negligible death (Bohnenstengel et al., 

1999; Hausott et al., 2004; Mi et al., 2006). Further, our group showed that 

1-oxo-11,12-methyldioxyrocaglaol induces G0/G1 cell cycle arrest in human T cell lines 

infected with the human  T cell lymphotropic virus type 1 (HTLV-1) (Bleumink, 2007).  

Taken together, rocaglamide derivatives show anti-proliferative activity with apparent 

accumulation of cells in different cell cycle phases, which was observed for several human 

cancer cell lines in vitro. This potency to halt tumour cells in their cell cycle progression and 

force malignant cells into programmed cell death or senescence suggests rocaglamides as 

promising new chemotherapeutic agents. However, the mechanism(s) of 

rocaglamide-mediated cell cycle arrest is not yet completely understood.  

 

1.6.2.4 Inhibition of translation 

Besides its anti-proliferative activities, rocaglamide derivatives were found to strongly 

inhibit protein biosynthesis in tumour cells determined by 3H-leucine incorporation (Lee et 

al., 1998). However, its mode of function was only recently explored.  

The rate limiting step of translation is largely controlled by binding of the initiation factor 

to the mRNA 5’ cap structure. The activity of eIF4E is regulated by two major signalling 

pathways: the Ras-Erk (extracellular signal-regulated kinase)-Mnk1 (MAP kinase interacting 

kinase 1) and the PI3K-mTOR pathway (Silvera et al., 2010). In the former pathway, 

phosphorylation of eIF4E is mediated by Mnk1 and increases its affinity for the 5’ cap 

structure. It was recently shown by our lab that 1-oxo-11,12-methyldioxyrocaglaol strongly 

inhibits protein synthesis (IC50 = 30 nM) in HTLV-1 infected human T cells (Bleumink et al., 

2010). It was further shown that it does not directly inhibit the translation machinery but 

rather mediates its effects via the Ras-Erk-Mnk1 signalling pathway. Several rocaglamide 

derivates have been shown to suppress Erk phosphorylation and thereby inhibit 

Erk-Mnk1-mediated phosphorylation of eIF4E (Bleumink et al., 2010; Zhu et al., 2007). 
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Importantly, these compounds do not inhibit Erk activity in normal, primary lymphocytes 

(Zhu et al., 2007).  

In addition, a second mechanism of translation inhibition by rocaglamides was reported 

by Bordeleau and colleagues (Bordeleau et al., 2008). Using a small molecule screening 

approach, two rocaglamide derivatives, 1-0-formylaglafoline and silvestrol, were found to 

inhibit translation by interfering with eIF4A activity. It is thought that eIF4A exists as a free 

form or as part of the eIF4F complex and recycles through the eIF4F complex during 

translation initiation. 1-0-formylaglafoline and silvestrol were shown to stimulate the RNA-

binding activity of eIF4A and this action prevents incorporation of free eIF4A into the eIF4F 

complex. 

1.6.2.5 Pro-apoptotic activities of rocaglamides 

The anti-cancer activities of rocaglamides include the potency to induce programmed cell 

death in malignant cells. Almost ten years ago, it was observed that rocaglamide derivatives 

were able to induce and to enhance apoptotic cell death in cancer cells (Baumann et al., 2002). 

Further data by our group support the role of rocaglamides as potent apoptosis inducers, as 

it was shown that they trigger the depolarisation of the mitochondrial membrane potential, 

caspase activation and Bid cleavage upon treatment (Zhu et al., 2007). Importantly, 

rocaglamides showed no or very low toxicity to normal peripheral blood T and 

B lymphocytes as well as to human bone marrow stem cells. Studies of the molecular 

mechanisms by which rocaglamide derivates kill cancer cells but not normal cells revealed 

that these compounds preferentially induce apoptosis in malignant cells by differential 

modulation of the activities of Erk, p38, and Jnk (Zhu et al., 2007). In particular, erk, p38, and 

Jnk activities were not affected in normal lymphocytes upon treatment of rocaglamide 

derivatives.  

Susceptibility to apoptosis induction depends on a balanced level of pro- and 

anti-apoptotic proteins. Proteins with a short half-life are highly vulnerable if treated with 

compounds that inhibit de novo protein synthesis. Therefore, rocaglamide-mediated 

translational inhibition may cause an imbalance of pro- and anti-apoptotic protein levels in 

malignant cells. It was shown that upon treatment of the human breast cancer cells 

MDA-MB-231 with silvestrol the expression of the anti-apoptotic proteins Mcl-1 and survivin 

were reduced (Cencic et al., 2009). Further, our group reported that treatment with different 

rocaglamide derivatives lead to a down-regulation of c-FLIP, the major inhibitor of 

caspase-8, and thereby sensitises tumour cells to programmed cell death (Bleumink et al., 
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2010; Zhu et al., 2009). We could also show the enhancement of CD95L-mediated activation 

induced cell death (AICD) in malignant cells by up-regulation of CD95L but 

down-regulation of c-FLIP expression (Zhu et al., 2009). CD95L promoter is strongly 

regulated by Jnk/AP-1 activity (Li-Weber & Krammer, 2003a) and therefore, an increase of 

p38/Jnk activity leads to an increase of AP-1 activity and consequently enhances promoter 

activity (Zhu et al., 2009). On the other hand, c-FLIP expression in T cells is strongly 

regulated by NF-AT (Ueffing et al., 2008). Since rocaglamides are known to be potent NF-AT 

inhibitors (Proksch et al., 2005), this may explain the downregulation of c-FLIP expression on 

mRNA level (Zhu et al., 2009). Taken together, the capability of rocaglamide derivates to 

induce or sensitise programmed cell death in tumour cells but not in normal cells strongly 

supports the efforts undertaken to develop rocaglamide derivatives into potent anti-cancer 

drugs.  
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1.7 Aim of the study 

It is believed that inhibition of translation is the key mode of action by which 

rocaglamides exert their anti-tumour activities (Kim et al., 2006; Proksch et al., 2001; Ebada et 

al., 2011). Our lab could show that by translational suppression of c-FLIP expression, 

TRAIL-resistant HTLV-1-associated adult T-cell leukaemia/lymphoma cell lines could be 

sensitised towards cell death (Bleumink et al., 2010). However, our group also suggested 

further molecular mechanisms which rendered malignant cells sensitive to cell death by 

treatment with rocaglamides, such as the preferential activation of MAPKs p38 and Jnk 

while suppression of survival MAPK Erk activity in malignant vs. normal cells (Zhu et al., 

2007). We have shown that due to selective activation of p38 and Jnk in tumour cells, 

rocaglamides can sensitise malignant T cells to undergo cell death by upregulation of CD95L 

but downregulation of c-FLIP expression (Zhu et al., 2009). 

Rocaglamides’ pro-apoptotic functions as well as their anti-proliferative activities 

contribute to their anti-tumour properties (Lee et al., 1998; Bleumink, 2007; Bohnenstengel et 

al., 1999; Mi et al., 2006; Hausott et al., 2004). Whether inhibition of proliferation is solely due 

to inhibition of protein de novo synthesis has remained elusive to date. Therefore, the aim of 

this study was to elucidate molecular mechanisms by which rocaglamides exert their 

anti-proliferative activities on cancer cells, and to analyse how cell cycle arrest is induced. 

We hypothesised that in addition to the likely downregulation of important (short-lived) cell 

cycle proteins, the activation of certain cellular signalling pathways contributes to the 

inhibition of proliferation and arrest in a specific cell cycle phase. Several haematological 

cancer cell lines were analysed as model system in this study: Jurkat J16 (acute lymphoblastic 

leukemia (ALL)), Molt-4 (ALL), Hut-78 (cutaneous T cell lymphoma (CTCL)), HL-60 (acute 

myeloid leukemia (AML)), and DND-41 (ALL). Derivative Rocaglamide A (Roc A) was used 

as representative rocaglamide.  

Understanding how rocaglamides exert their anti-proliferative activities in cancers will 

help to develop compounds of the Traditional Chinese Medicine plant Aglaia into new 

potent anti-cancer drugs. Also, as induction of cell cycle arrest is known to be able to trigger 

apoptotic cell death, it is of interest to identify the underlying molecular properties to further 

elucidate the cell death pathways induced by rocaglamides.  
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2 Materials & Methods 

2.1 Materials 

2.1.1 Chemicals  

All chemicals, if not otherwise stated, were purchased from the companies Fluka 

(Neu-Ulm), Merck (Darmstadt), Serva (Heidelberg), Sigma (Munich) or Roth (Karlsruhe). 

 

2.1.2 Instruments  

 

Instrument Manufacturer 

7500 Real-Time PCR system Applied Biosystems, Carlsbad, USA 

Amaxa Nucleofector I Lonza, Cologne, Germany 

Analytical and precision balances Mettler-Toledo, Giessen, Germany 

Bacteria culture incubator/shaker HAT Infors, Bottmingen, Switzerland 

Biofuge Fresco 17 Heraeus, Hanau, Germany 

Biofuge Pico Heraeus, Hanau, Germany 

Cell incubator Stericult ThermoFisher Scientific, Langenselbold, Germany 

Chemiluminescence detector 

Chemi-Smart 5100 

Vilber Lourmat, Eberhardzell, Germany 

FACS Canto II Becton Dickinson, Heidelberg, Germany 

GFL analogue orbital-rocking 

shaker 

GFL, Burgwedel, Germany 

Magnetic stirrer IKA, Staufen, Germany 

Microscope Axiovert 25 Zeiss, Jena, Germany 

Mini Protean II SDS-PAGE 

apparatus 

Bio-Rad, Munich, Germany 
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Instruments continued 

 

 

Multifuge 3SR+ ThermoFisher Scientific, Langenselbold, Germany 

NanoDrop Peqlab, Erlangen, Germany 

Neubauer cell-counting chamber Brand, Wertheim, Germany 

pH-meter Calimatic LHD Labortechnik, Berlin, Germany 

Refrigerator (-20°C) Liebherr, Leimen, Germany 

Refrigerator (-80°C) ThermoLife Science, Egelsbach, Germany 

Semi-dry or wet blotting system Bio-Rad, Munich, Germany 

Sorvall Evolution RC ThermoFisher Scientific, Langenselbold, Germany 

Spectrophotometer BioPhotometer Eppendorf, Hamburg, Germany 

Sterile bench place HeraSafe Heraeus, Hanau, Germany 

Thermocycler PTC-200 DNA engine MJ Research, Watertown, USA 

Thermomixer compact Eppendorf, Hamburg, Germany 

Tomtec multiple automated 

harvester 

Perkin Elmer, Waltham, USA 

Vortex shaker REAX1R Heidolph Instruments, Schwabach, Germany 

Wallac Microbeta Trilux scintillation 

counter 

Perkin Elmer, Waltham, USA 

Water baths Köttermann, Uetze/Hänigsen, Germany 

Zeiss LSM700 Carl Zeiss, Göttingen, Deutschland 

Zeiss LSM710 Carl Zeiss, Göttingen, Deutschland 
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2.1.3 Reagents 

 

Reagent Company 

β-mercaptoethanol  Neolab, Heidelberg, Germany 

Bovine serum albumin (BSA) Sigma, Munich, Germany 

Chk2 II Inhibitor II Calbiochem, Merck, Darmstadt, Germany 

Complete protease inhibitor cocktail Roche Applied Science, Mannheim, Germany 

Cycloheximide Sigma, Munich, Germany 

DNA-PK Inhibitor IV Merck, Darmstadt, Germany 

Doxorubicin Merck, Darmstadt, Germany 

DRAQ5 Cell Signaling Technology, Beverly, USA 

Etoposide Sigma, Munich, Germany 

ER-Tracker™ Red (BODIPY® TR 

glibenclamide) 

Invitrogen, Darmstadt, Germany 

KU-55933 Calbiochem, Merck, Darmstadt, Germany 

MitoTracker® Deep Red FM Invitrogen, Darmstadt, Germany 

SB 203580 Enzo Life Sciences, Lörrach, Germany 

SB 218078 Biozol Diagnostics, Eching, Germany  

Rocaglamide A Enzo Life Sciences, Lörrach, Germany 

UCN-01 Calbiochem, Merck, Darmstadt, Germany 

Western LightningTM Plus-ECL  Amersham, Little Chalfont, GB 
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2.1.4 Buffers and Solutions  

 

Buffer Composition 

PBS 

 

137 mM NaCl 

8.1 mM Na2HPO4 

2.7 mM KCl 

1.5 mM KH2PO4, pH 7.4 

Lysis buffer 

 

120 mM NaCl 

50 mM Tris base/HCl (pH = 8.0) 

1% NP-40 

5 mM DTT 

200 µM Na3VO4 

0.02% (w/v) Complete protease inhibitor cocktail 

1 mM PMSF 

25 mM NaF 

Stacking gel buffer (5%) 24 mM Tris base (pH = 6.8) 

5% (w/v) Acrylamide/Bisacrylamide  

0.1% (w/v) SDS 

0.1% (w/v) Ammoniumpersulfat (APS) 

0.1% (w/v) Tetramethylethylendiamine (TEMED) 

Resolving gel (7.5 – 13%) 37.5 mM Tris base (pH = 8.8) 

7.5 - 13% (w/v) Acrylamid/Bisacrylamid  

0.1% (w/v) SDS 

0.03% (w/v) APS 

0.1% (w/v) TEMED 

Running buffer (SDS-PAGE) 0.19 M Glycin 

0.1% (w/v) SDS 

25 mM Tris base (pH = 6.8) 

Transfer buffer (Western Blot) 25 mM Tris base 

0.19 M Glycine 

20% (v/v) Methanol 

0,037% (w/v) SDS 
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Buffer and Solutions continued 

 

Reducing sample buffer (5x) 50% (v/v) glycerol 

10% (w/v) SDS 

50 mM Tris (pH 6.8) 

25% (v/v) β-mercaptoethanol 

0.25 mg/ml bromophenol blue 

Blocking buffer 5% (w/v) non-fat dry milk in PBS-T 

5% (w/v) BSA in PBS-T 

Nicoletti lysis buffer 0.1% (w/v) Sodium citrate (pH 7.4) 

0.1% (w/v) Triton X-100 

50 μg/ml Propidium iodide 

Annexin V binding buffer 10 mM HEPES 

140 nM NaCl 

2.5 mM CaCl2 

 

2.1.5 Eukaryotic cell lines 

 

Cell line Medium Characteristics 

Jurkat J16 and JE6.1 RPMI Human acute lymphoblastoid T (ALL) cell line 

Molt-4 RPMI Human acute lymphoblastoid T (ALL) cell line 

Hut-78 RPMI Human cutaneous T cell lymphoma (CTCL) cell line 

HL-60 RPMI Human acute myeloid leukemia (AML) cell line 

DND-41 RPMI Human acute lymphoblastoid T (ALL) cell line 

HT-29 DMEM Human colorectal cancer cell line 

PC-3 DMEM Human prostate cancer cell line 

Mcf-7 DMEM Human breast cancer cell line 
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2.1.6 Eukaryotic cell culture media  

Unless otherwise indicated, media were supplemented with 10% (v/v) heat-inactivated 

FCS. All media were stored at 4°C for further use. 

 

Reagent Company 

Dulbecco′s Modified Eagle Medium 

(DMEM) 

Sigma, Munich, Germany 

Roswell Park Memorial Institute 

(RPMI) 1640 medium 

Sigma, Munich, Germany 

Fetal calf serum (FCS) Sigma, Munich, Germany 

Penicillin/Streptomycin Sigma, Munich, Germany 

Trypsin-EDTA Sigma, Munich, Germany 

Methionine-free medium (RPMI) Sigma, Munich, Germany 

 

2.1.7 Antibodies  

2.1.7.1 Primary Antibodies  

 

Name Antigen Isotype Origin 

Anti-Annexin V, 

FITC 

Annexin V Rabbit, polyclonal ImmunoTools 

Anti-ATM (D2E2) ATM (D2E2) Rabbit, monoclonal Cell Signaling 

Technology (CST) 

Anti-phospho-ATM 

(10H11.E12) 

Phospho-ATM 

(Ser1981) 

(10H11.E12) 

Mouse IgG1, 

monoclonal 

CST 

Anti-ATR  ATR Rabbit, polyclonal CST 

   



  Materials and Methods 

  59 

Primary antibodies continued 

 

Anti-phospho-ATR Phospho-ATR 

(Ser428) 

Rabbit, polyclonal CST 

Anti-Cdc25A Ab3 

(Clone DCS-120 + 

DCS-121) 

Cdc25A Mouse IgG2a, 

polyclonal 

NeoMarkers 

Anti-phospho-

Cdc25A (Ser76) 

Phospho-Cdc25A 

(Ser76) 

Rabbit, polyclonal Abgent 

Anti-phospho-

Cdc25A (Ser178) 

Phospho-Cdc25A 

(Ser178) 

Rabbit, polyclonal Abgent 

Anti-Cdc25B Cdc25B Rabbit, polyclonal CST 

Anti-Cdc25C (5H9) Cdc25C (5H9) Rabbit, monoclonal CST 

Anti-Cdk2 Cdk2 Rabbit, monoclonal (Hoffmann et al., 

1994) 

Anti-Cdk4 Cdk4 Mouse IgG1, 

monoclonal 

CST 

Anti-Cdk6 Cdk6 Mouse IgG1, 

monoclonal 

CST 

Anti-Chk1 (FL-476) Chk1 (FL-476) Rabbit, polyclonal Santa Cruz 

Biotechnology (SCB) 

Anti-phospho-Chk1  Phospho-Chk1 

(Ser317) 

Rabbit, polyclonal CST 

Anti-phospho-Chk1 

(133D3)) 

Phospho-Chk1 

(Ser345) 

Rabbit, polyclonal CST 

Anti-Chk2 Chk2 Rabbit, polyclonal CST 

Anti-phospho-Chk2  Phospho-Chk2 

(Th68) 

Rabbit, polyclonal CST 
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Primary antibodies continued 

 

  

Anti-cyclin A (H-

432) 

Cyclin A (H423) Rabbit, polyclonal SCB 

Anti-cyclin D3 Cyclin D3 Mouse IgG1, 

monoclonal 

CST 

Anti-cyclin E (HE12) Cyclin E (HE12) Mouse IgG1, 

monoclonal 

CST 

Anti-Erk1 (MK12) Erk Mouse IgG1, 

monoclonal 

BD Biosciences 

Anti-phospho-Erk 

(E-4) 

Phospho-Erk Mouse IgG2a, 

monoclonal 

SCB 

Anti-γH2AX, clone 

JBW301 

γH2AX (Ser139) Mouse IgG1, 

monoclonal 

Millipore 

Anti-γH2AX, Alexa 

Fluor 488 

γH2AX (Ser139) Mouse IgG2b, 

monoclonal 

Biozol Diagnostics 

Anti-p38 (5F11) p38 Mouse IgG2b, 

monoclonal 

CST 

Anti-phospho p38 

(V121A) 

Phospho-p38 Rabbit, polyclonal Promega 

Anti-PHB1 PHB1 Rabbit, polyclonal (Emerson et al., 2010) 

Anti-Tubulin (clone 

B-5-1-2) 

Tubulin Mouse IgG1, 

monoclonal 

Sigma 
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2.1.7.2 Secondary Antibodies  

 

Name Antigen Isotype Origin 

Anti-mouse IgG1, 

HRP 

Mouse IgG1 Goat, polyclonal SCB 

Anti-mouse IgG2a, 

HRP 

Mouse IgG2a Goat, polyclonal Southern Biotech 

Anti-mouse IgG2b, 

HRP 

Mouse IgG2b Goat, polyclonal Southern Biotech 

Anti-rabbit, HRP Rabbit Goat, polyclonal SCB 

Anti-rabbit, FITC Rabbit Goat, polyclonal Southern Biotech 

 

2.1.8 siRNA oligonucleotides for transfection  

 

Name of gene Sequence (5’3’) 

Control non-silencing siRNA UUCUCCGAACGUGUCACGUTT 

Chk1 #1 AACTGAAGAAGCAGTCGCAGT 

Chk1 #2 AAGAAAGAGATCTGTATCAAT 

Chk2 CAGGATGGATTTGCCAATCTT 

PHB1 CCCAGAAATCACTGTGAAATT 

 

All siRNA oligos were purchased from Qiagen. 
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2.2 Methods 

2.2.1 Cell biological methods 

2.2.1.1 Standard procedures for eukaryotic cell cultures  

All cell lines were cultured at 37°C in an atmosphere with a relative humidity of 90% and 

a CO2 content of 5%. For the inactivation of complement factors, FCS was heated to 56°C for 

30 min before use. Unless otherwise indicated, all media contained 10% (v/v) FCS and were 

supplemented with antibiotics. Cells were harvested by centrifugation for 10 min at 

1500 rpm and 4°C. Cell culture work was performed under sterile conditions using a laminar 

flow hood. 

Adherent growing cell lines PC-3, HT-29 and Mcf-7 were maintained in DMEM medium. 

At a confluency of about 80% cells were split in a ratio of 1:3-1:10. To this end, the 

supernatant was discarded and 2-5 ml of trypsin/EDTA solution was added for 3-5 min at 

37°C. Detached cells were resuspended in fresh DMEM medium and seeded onto new flasks 

with a confluence of 10-25%. 

Jurkat J16, Molt-4, Hut-78, HL-60 and DND41 were grown as suspension cultures and 

maintained by the replacement of RPMI medium every third day of culture. Cell density was 

kept between 1-8 x 105 cells/ml.  

 

2.2.1.2 Storage of eukaryotic cell lines 

Cells were harvested and resuspended in freezing medium containing 70% (v/v) cell 

culture medium, 20% FCS (v/v) and 10% (v/v) DMSO. The cell density was adjusted to 

1-1.5 x 107 cells/ml and 1 ml cell suspension was transferred into a cryo-vial and 

immediately stored at -80°C (-140°C for long term storage). A slow gradient of lowering 

freezing temperatures was achieved by enwrapping the vials with hand tissue papers.  

Frozen cells were thawed directly in a water bath at 37°C. Immediately after thawing, the 

cell solution was transferred into a 10 ml Falcon tube and resuspended in RPMI with 10% 

FCS, and centrifuged at 1500 rpm for 5 min. The supernatant was discarded and cells were 

resuspended in an appropriate volume of fresh culture medium. 

The cell density of a culture was determined by use of a Neubauer chamber slide. If 

necessary, cells were diluted prior to counting. 
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2.2.1.3 Cell death analysis according to Nicoletti  

DNA fragmentation was examined according to the method of Nicolletti (Nicoletti et al., 

1991). Approximately 1 x 106 cells were collected, lysed in 150 μl of Nicoletti-buffer and 

stored at 4 ºC overnight in the dark. The propidium iodide stained DNA fragments were 

quantified by flow cytometry (FACSCanto II). A minimum of 10’000 cells per sample was 

analysed. Specific DNA fragmentation was calculated as: (percentage of experimental DNA 

fragmentation – percentage of spontaneous DNA fragmentation) / (100 – percentage of 

spontaneous DNA fragmentation) x 100%. 

 

2.2.1.4 Annexin V staining 

For analysis of the surface expression of Annexin V, 5 x 105 cells were collected and 

resuspended in 50 μl Annexin V binding buffer supplemented with 10% FCS. Then, 1 μl of 

Annexin V FITC labelled antibody was added and incubated for 10-20 min at 4°C. Cells were 

washed with Annexin V binding buffer and analysed by flow cytometry (FACSCanto II). A 

minimum of 10’000 cells per sample were analysed.  

 

2.2.1.5 Cell cycle analysis 

Treated cells were collected and stained with Nicoletti lysis buffer as described in 2.2.1.4. 

Quiescent and G1 cells have 2N DNA and will therefore have 1X fluorescence intensity. Cells 

in G2/M phase of the cell cycle will have 4N DNA and therefore will have twice the 

intensity. Since the cells in S phase are synthesising DNA, they will have fluorescence values 

between the 1X and 2X populations. The resulting histogram consists of three populations: 

two Gaussian curves (1X and 2X peaks) and the S-phase population. Adjacent populations 

overlap each other. Therefore, a population of cells at different cell cycle state can be 

examined by measuring the amount of fluorescence-labelled DNA by flow cytometry 

(FACSCanto II). A minimum of 10’000 cells per sample were analysed.  
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2.2.1.6 Intracellular FACS staining 

For intracellular FACS staining of γH2AX 1 x 106 cells were collected, washed twice with 

PBS and fixed with 3% paraformaldehyde for 10 min at 37°C. Cells were then permeabilised 

with 90% methanol for a minimum of 30 min at 4°C or left overnight at -20°C. After fixation 

and permeabilisation cells were washed three times with 0.5% BSA in PBS. Afterwards, cells 

were blocked with 5% mouse serum (inactivated) in PBS and stained with 5 µl γH2AX Alexa 

Fluor 488 antibody for 1 h at RT in the dark. Cells were washed once again and co-stained 

with 25 µg/ml propidium iodide containing 100 ng/µl RNase A for 20 min at RT in the dark. 

Subsequent fluorescence intensities were examined by flow cytometry (FACSCanto II). A 

minimum of 10’000 cells per sample were analysed.  

 

2.2.1.7 Proliferation analysis 

For proliferation analysis 1-2 x 106 cells per sample were collected, washed with PBS and 

incubated for 10 min with 100 nM CFSE stain at RT in the dark. For inactivation, equal 

volumes of FCS were added, incubated for 2 min at RT in the dark. Cells were then washed 

twice with culture medium and were incubated as described in 2.2.1.1. Cells were then 

treated with Roc or DMSO control and after 24 h cells were analysed for proliferation by 

flow cytometry (FACSCanto II). A minimum of 10’000 cells per sample were analysed 

 

2.2.1.8 Live cell imaging via confocal microscopy 

To monitor living cells under the microscope, HeLa cells were grown on microscopy 

chamber slides. Cells were treated with respective compounds and staining solutions, 

washed with PBS and incubated again with culture medium. Live cell imaging was 

performed immediately at the Zeiss LSM700 microscope. A minimum of three pictures were 

taken of each sample.  

 

2.2.1.9 Translocation studies with antibody staining via confocal microscopy 

For PHB1 translocation studies HeLa cells were grown on microscopy chamber slides and 

treated appropriately. After washing twice with PBS cells were fixed with 4% 

paraformaldehyde for 15 min at RT in the dark. After additional washing steps cells were 

now subjected to permeabilisation with 0.2% Triton X-100 for 10 min at RT in the dark. Cells 
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were incubated with 1:1250 diluted PHB1 antibody and incubated overnight at 4°C. The next 

day, cells were incubated with secondary FITC labelled antibody for 2 h at RT in the dark. 

For microscopy approximately 10 μl Dapi-mounting medium per slide was added and cells 

were examined at the Zeiss LSM710 microscope. A minimum of three pictures were taken of 

each sample. 

 

2.2.1.10 siRNA-mediated gene silencing 

For siRNA-mediated gene silencing Jurkat JE6.1 cells were transiently transfected by 

nucleofection using the Cell Line Nucleofector® Kit V according to the manufacturer’s 

instructions. 2 x 106 JE6.1 cells were resuspended in appropriate nucleofection solution 

containing 1-2 μM siRNA. Nucleofection was performed using program X-01 for Jurkat JE6.1 

cells. After 48-72 h, knock-down efficiency was assessed and cells were used for subsequent 

analyses. 

 

2.2.1.11 Metabolic labelling 

Protein synthesis was estimated by measuring the amount of incorporated 35S methionine. 

Briefly, 1 x 105 cells were incubated for 2 h with methionine-free medium. Then 7 µCi of 35S 

protein-labelling mix per sample was added and cells were treated with different drugs as 

indicated. After incubation, cells were washed twice with PBS and lysed in ice cold lysis 

buffer for 15 min on ice and centrifuged (20 min, 13’000 rpm). Then, 4 μl of each lysate was 

incubated in 1 ml of Liquid Scintillation Cocktail solution and radioactivity was determined 

with Liquid Scintillation counting. 

  



Materials and Methods   

66 

2.2.2 Biochemical methods 

2.2.2.1 Cell lysis 

Cells were harvested, washed with PBS and 200 μl ice-cold lysis buffer per 1 x 107 cells 

was added. The lysates were incubated on ice for at least 20 min at 4°C and were cleared 

from insoluble cell debris by centrifugation at 14’000 g and 4°C for 30 min. Protein 

concentrations of whole cell lysates were measured by Bradford according to the 

manufacturers’ instructions and adjusted to equal levels. For gel electrophoresis lysates were 

mixed with 50 μl of 5x reducing SDS sample buffer per 1 x 107 cells and heated to 95°C for 

5 min. 

 

2.2.2.2 SDS-PAGE 

For electrophoresis 7.5, 10, or 13% polyacrylamide separating gels and 5% polyacrylamide 

stacking gels were prepared. Polymerisation was initiated by adding 0.1% (v/v) TEMED and 

the polymerising solution was used immediately. The separating gel was covered with 

isopropanol. After 15 min the isopropanol was removed by washing with water, the gel 

surface was dried and the stacking gel was added. Proteins were electrophoretically 

separated at a constant current of 25-30 mA/gel for 1-1.5 h. To estimate apparent molecular 

weights of analysed proteins an appropriate molecular weight marker was used. Subsequent 

to SDS-PAGE, the polyacrylamide gel was subjected to Western blotting (see 2.2.2.3). 

 

2.2.2.3 Western Blot 

For Western blot analysis, proteins separated by SDS-PAGE were electrophoretically 

transferred onto a nitrocellulose membrane using a semi-dry-transfer system (transfer 

conditions: 0.8 mA/cm2; 2 h). Gel and membrane were pre-incubated in transfer buffer. After 

electroblotting, the transferred proteins are bound to the membrane, which providing access 

for detection by specific antibodies. To avoid unspecific binding the membrane was 

incubated in blocking solution (5% (w/v) non-fat dried milk in PBS-T or 5% (w/v) BSA in 

PBS-T) at RT for 1 h on a shaker. The membrane was washed three times with PBS-T for 

5 min each time. For specific detection of proteins the membrane was incubated with a 

primary antibody solution for at least 2 h at RT or overnight at 4°C on a shaker. After 

washing three times with PBS-T, the membrane was incubated with a HRP-conjugated 
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α-immunoglobulin secondary antibody for 1 h at RT on a shaker. Finally, the membrane was 

washed three times with PBS-T for 5 min each time. Detection of membrane bound HRP was 

performed by enhanced chemiluminescence (ECL) using the Western LightningTM Plus-ECL 

reagent according to the manufacturer’s instructions. Chemiluminescence was detected 

using a digital chemiluminescence acquisition system. Analysis was accomplished using the 

software Chemi-Capt. For specific detection of further proteins the enzymatic activity of the 

HRP was inactivated by washing with PBS-T. Thereafter, the membrane was incubated with 

the subsequent primary antibody and the visualisation procedure was repeated as described 

above. 

The quantification of protein levels was performed using ImageJ 1.44p (Abràmoff et al., 

2004) and a method described in the following Web site: 

http://lukemiller.org/index.php/2010/11/analyzing-gels-and-western-blots-with-image-j/. 

For each lane, the protein/phosphorylation level was normalised to its respective loading 

control. 

 

2.2.2.4 Immunprecipitation 

For immunprecipiation (IP) cleared lysates of 1-6 x 107 cells were incubated with the 

desired antibody at 4°C on a rotator for 1 h. Subsequently, 40 µl of protein A-sepharose 

beads were added and the suspension was incubated at 4°C on a rotator for at least 3 h or 

overnight. The matrix was washed 1-5 times with 1 ml of ice-cold lysis buffer of PBS to 

remove unspecifically adsorbed proteins. Subsequently, beads were resuspended in 50 µl of 

lysis buffer and heated in 25 µl  3x sample buffer at 95°C for 5 min. (Co-)purified proteins 

were detected by SDS-PAGE and immunoblotting (see 2.2.2.2 and 2.2.2.3). 
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3 Results 

3.1 Rocaglamide A induces cell cycle arrest  

3.1.1 Rocaglamide A treatment leads to G0/G1 cell cycle arrest in haematological cancer 

cell lines 

Rocaglamide (Roc) derivates inhibit tumour cell proliferation in vivo, which was reported 

by several groups (King et al., 1982; Lee et al., 1998; Hwang et al., 2004; Mi et al., 2006; Zhu et 

al., 2009). Further analysis revealed that inhibition of tumour growth in vitro is accompanied 

by halt in specific phases of the cell cycle. Various reports showed cell cycle arrest in G0/G1 

(Lee et al., 1998; Bleumink, 2007) and G2/M phase of the cell cycle (Bohnenstengel et al., 1999; 

Mi et al., 2006; Hausott et al., 2004) depending on the cell line tested and the derivative used 

(Ebada et al., 2011). However, the molecular mechanism underlying Roc-mediated inhibition 

of proliferation remained elusive.  

In order to elucidate the molecular mechanism(s) how rocaglamide derivatives inhibit 

tumour cell proliferation haematological cancer cell lines Jurkat J16 (ALL), Molt-4 (ALL), 

Hut-78 (CTCL), HL-60 (AML), DND-41 (ALL) were used as model cells. Thus, it was of 

interest whether an anti-proliferative effect and/or cell cycle arrest could be observed in 

these cell lines when treated with Roc A. The death dose curve for Roc A was previously 

determined by Zhu and colleagues (Zhu et al., 2007). Therefore, the cell lines were treated 

with the effective concentrations of 50 nM or 100 nM Roc A, respectively, for up to 48 h. 

Subsequently proliferation, cell cycle and apoptosis status were analysed.  

Consistent with other studies (Kim et al., 2006; Proksch et al., 2001; Ebada et al., 2011), 

upon Roc A exposure Jurkat J16 cells showed a significant (p-value ≤ 0.05) inhibition of cell 

proliferation after 24 h in a dose-dependent manner (Fig. 3.1 A). Cell cycle analysis of J16 and 

other haematological cancer cell lines (Molt-4, HL-60, Hut-78, and DND-41) revealed a 

significant (p-value ≤ 0.05) G0/G1 cell cycle arrest accompanied by a significant 

(p-value ≤ 0.05) decrease of cells in S phase 24 h after Roc A treatment (Fig. 3.1 B, C). This 

was accompanied with only mild apoptosis induction after 24 h as measured by 

Nicoletti-staining and FACS analysis (Fig. 3.1 D).  

The presented data show that Roc A inhibits tumour cell proliferation at G0/G1 phase of 

the cell cycle in haematological cancer cells.  
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Figure 3.1 | Roc A treatment leads to G0/G1 cell cycle arrest in haematological cancer cell lines. 

(A) J16 cells were stained with 1 µM CFSE and afterwards treated with 50 nM, 100 nM Roc A or 
DMSO as a control. Proliferation was measured after 24 h by FACS. Relative proliferation to start of 
treatment was calculated, DMSO control treated cells were set to 100% proliferation. (B - D) 
Haematological cancer cell lines Molt-4, HL-60, Hut-78, J16 and DND-41 were treated with 50 nM 
Roc A or DMSO as a control for up to 48 h. (B, C) Cell cycle was analysed by FACS after 24 h; (B) 
shows representatively J16 original data. (D) Apoptotic cell death was determined by specific DNA 
fragmentation measurement after 24 h and 48 h. Data are representative of at least two independent 
experiments (Error bars represent standard deviations; significance was calculated with Student’s t-
test, * = p-value ≤ 0.05). 
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3.1.2 Rocaglamide A downregulates proteins necessary for G1-S transition 

To investigate further the mechanisms of Roc A-mediated G0/G1 cell cycle arrest various 

Cdks, cyclins and members of the Cdc25 family of dual specificity phosphatases were 

analysed by immunoblotting after treatment with 50 nM Roc A for different time periods 

(Fig. 3.2 A). As seen in Fig. 3.2 B, several proteins necessary for G1-S transition were 

downregulated upon Roc A treatment. Among them, Cdc25A phosphatase showed a fast 

decrease, which could be determined as early as 10-15 min after exposure to Roc A. Later 

events included the downregulation of Cdc25B, Cdk4 and cyclin D3 after 1-2 h and of Cdk6 

and cyclin E after 9-12 h treatment. In contrast, Cdc25C, Cdk2 and cyclin A protein levels 

were not affected in the analysed time frame (Fig. 3.2 B).  

Downregulation of Cdc25A was the first effect seen after Roc A treatment and it is known 

that Cdc25A plays a well characterised role in G1-S transition (Busino et al., 2004, Boutros et 

al., 2008). Therefore, further studies were carried out to address the molecular mechanisms of 

Roc A-mediated suppression of Cdc25A expression. 
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Figure 3.2 | Roc A downregulates proteins necessary for G1-S transition. 

(A) Progression through G1-S transition is mediated by the activities of cyclin D/Cdk4/6 and 
cyclin E/Cdk2 complexes. S phase progression is mediated by the activities of cyclin A/Cdk2 
complexes. The phosphatases Cdc25A, Cdc25B and Cdc25C regulate Cdk2 activity by removal of 
inhibitory phosphorylations. For more details see chapter 1.2.4. (B) J16 cells were treated with 50 nM 
Roc A or DMSO as a control for up to 24 h. Cells were lysed and protein expression was analysed by 
SDS-PAGE followed by immunoblotting with specific antibodies as indicated. Data are representative 
of at least two independent experiments. 
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3.2 Rocaglamide A downregulates Cdc25A 

3.2.1 Rocaglamide A downregulates Cdc25A only partially via translation inhibition 

Cdc25A is subject to multiple regulations and is a very unstable protein with basal 

turnover and protein half-life of 20-30 min (Falck et al., 2001; Mailand et al., 2000; 2002; 

Molinari et al., 2000; Sørensen et al., 2003). Since rocaglamide derivates are known to inhibit 

translation (Bleumink et al., 2010; Lee et al., 1998), it was of interest whether Roc A-mediated 

downregulation of Cdc25A is due to its potency to inhibit protein de novo synthesis.  

The levels of translation inhibition of rocaglamide derivatives depend on treatment 

concentration and time (Bleumink et al., 2010; Lee et al., 1998). Therefore, the inhibitory 

activities of Roc A were analysed by an incorporation assay of 
35

S-labelled methionine. J16 

cells were treated with different concentrations of Roc A or with the well known protein 

synthesis inhibitor cyclohexamide (CHX) as positive control. Protein de novo synthesis was 

analysed after 2 and 6 h of treatment. The experiment showed that Roc A indeed inhibited 

protein de novo synthesis dependent on the concentration used (Fig. 3.3 A). Notably, the 

working concentration of 50 nM Roc A used in this study inhibited 
35

S-incorporation only to 

about 20%.  

In the next step, the kinetics of Cdc25A downregulation in J16 cells treated with Roc A 

was compared to the kinetics of cells treated with CHX to elucidate whether a similar pattern 

could be observed. Therefore, J16 cells were exposed to either 50 nM Roc A or 30 μg/ml CHX 

for up to 120 min. Cdc25A protein levels were analysed by immunoblotting and Western 

blot bands were quantified with the data imaging software ImageJ (see Materials & 

Methods). In CHX-treated cells 50% downregulation of Cdc25A occurred after about 

TCHX = 25 min (Fig. 3.3 B, C). However, Roc A-treated cells showed a faster kinetics of 

downregulation as Cdc25A protein levels were reduced to 50% after about TRoc A = 15 min 

(Fig. 3.3 B, C). Also, downregulation of Cdc25A did not occur completely as compared to 

CHX treatment in the analysed time frame (Fig. 3.3 B, C).  

Bleumink et al. (2010) reported that inhibition of protein de novo synthesis occurs via the 

Mek-Erk-Mnk1 signalling pathway. In line, analysis of J16 cells treated with 50 nM Roc A 

showed downregulation of Erk activity as measured by its phosphorylation after 

approximately 1-2 h (Fig. 3.3 D).  
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In summary, these data indicate that Roc A-mediated downregulation of translation 

occurs at later time points but to only minor extents of about 20%. Therefore, additional 

mechanisms apart from inhibition of protein de novo synthesis may be involved in 

Roc A-induced downregulation of Cdc25A which are analysed in the following sections.  

  

 

  

 

 

 

 

 

 

Figure 3.3 | Roc A downregulates Cdc25A only partially via translation inhibition. 

(A) J16 cells were incubated with 35S-labelled methionine and afterwards treated with different 
concentrations of Roc A (0-500 nM) or with 10 μg/ml cyclohexamide (CHX) for indicated time points. 
Cells were lysed and radioactivity was analysed with a beta counter. (Error bars represent standard 
deviations). (B) J16 cells were treated with either 50 nM Roc A or 30 μg/ml CHX for up to 120 min. 
Cells were lysed and protein expression was analysed by SDS-PAGE followed by immunoblotting 
with specific antibodies. (C) Quantification of (B) with the software ImageJ (see Materials & Methods). 
Cdc25A downregulation was normalised to Tubulin expression. (D) J16 cells were treated with 50 nM 
Roc A for up to 24 h. Cells were lysed and protein expression was analysed by SDS-PAGE followed by 
immunoblotting with specific antibodies. Data are representative of at least two independent 
experiments.  
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3.2.2 Rocaglamide A induces rapid Cdc25A phosphorylation  

So far it could be shown that Roc A-mediated downregulation of Cdc25A protein levels 

may include other mechanisms in addition to translation inhibition. It is known that the 

stability of Cdc25A is under multiple regulations mediated by phosphorylation. Upon 

genotoxic stress the rate of phosphate incorporation into Cdc25A on Ser76, Ser124, Ser178, 

Ser279, Ser 293 and Thr507 increases, which leads to a stronger interaction with the SCFβ-TrCP 

ubiquitin ligase and acceleration of Cdc25A protein turnover. Phosphorylation of these sites 

results in the reduction of protein half-life to up to 10 min (Busino et al., 2003; Jin et al., 2003; 

Bartek et al., 2004; Sørensen et al., 2003). Interestingly, such short half-life was also observed 

upon Roc A treatment (Fig. 3.2 and 3.3 B, C). In order to elucidate whether increased 

phosphorylation of Cdc25A occurs upon exposure to Roc A, J16 cells were treated with 

50 nM Roc A for up to 120 min and the phosphorylation and total protein levels were 

analysed by immunoblotting. The experiments showed that after Roc A treatment for 15 min, 

an increase in phosphorylation of Cdc25A was observed on both Ser76 and Ser178 sites 

(Fig. 3.4). Western blot bands were quantified with the data imaging software ImageJ (see 

Materials & Methods), which revealed an about 6-8 fold increase in Cdc25A phosphorylation 

in the time frame measured(Fig. 3.4).  

Above data demonstrate that upon Roc A treatment the phosphorylation of Cdc25A is 

increased at least on two crucial sites. Accelerated proteasomal degradation of Cdc25A, the 

well acknowledged event occurring upon these phosphorylations, may therefore be involved 

in Roc A-mediated downregulation. So far, increase of phosphate incorporation into Cdc25A 

was described to occur upon genotoxic stress. Therefore, it remains elusive by which 

mechanism(s) Roc A triggers Cdc25A phosphorylation.  
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Figure 3.4 | Roc A induces rapid Cdc25A phosphorylation. 

J16 cells were treated with 50 nM Roc A for up to 120 min. Cells were lysed and phosphorylation 
status of Cdc25A was analysed by SDS-PAGE followed by immunoblotting with specific antibodies. 
Quantification of the western blot bands was conducted with the software ImageJ (see Materials & 
Methods). Cdc25A phosphorylation was normalised to total-Cdc25A expression and total-Cdc25A 
downregulation to Erk1 expression. Data are representative of at least two independent experiments. 

 

 

3.2.3 Rocaglamide A-mediated downregulation of Cdc25A is independent of the p53 

status 

Increased phosphorylation of Cdc25A upon Roc A treatment was analysed in Jurkat J16 

cells, which harbour a heterozygous p53 mutation (Cheng & Haas, 1990). To explore whether 

the Cdc25A signalling pathway was actively chosen or whether it was only chosen as 

alternative pathway to mutant p53, several other cancer cell lines harbouring wild-type (wt) 

or mutated (mut) p53 were analysed (Table 1). The haematological cancer cell lines used 

before in G0/G1 cell cycle arrest measurements (Fig. 3.1 C), and three additional solid 

human cancer cell lines (colorectal cancer cells HT-29, prostate cancer cells PC-3 and breast 

cancer cells Mcf-7) were treated with 50 nM Roc A and Cdc25A protein levels were analysed 

by immunoblotting. The experiments showed that Cdc25A downregulation was 

independent from p53 (Fig. 3.5).  

Collectively, these data indicate that Roc A treatment leads to the induction of 

p53-independent signalling pathways, which subsequently trigger Cdc25A phosphorylation, 

its proteasomal degradation and this eventually leads to the observed G0/G1 cell cycle 

arrest.  
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Table 1. p53 status of analysed cells. 

 

 

 

 

 

 

 

Figure 3.5 | Roc A-mediated downregulation of Cdc25A is independent of the p53 status. 

Haematological cancer cell lines J16, Molt-4, Hut-78 and HL-60 and solid cancer cell lines HT-29, PC-3 
and Mcf-7 were incubated with 50 nM Roc A or DMSO as a control for 2 h. Cells were lysed and 
protein expression was analysed by SDS-PAGE followed by immunoblotting with specific antibodies 
(* unspecific band). Data are representative of at least two independent experiments.  
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3.3 Rocaglamide A activates a signalling pathway that resembles the 

DNA damage response pathway 

3.3.1 Rocaglamide A activates checkpoint kinases Chk1 and Chk2 

Three kinases, namely the cellular checkpoint kinases Chk1 and Chk2 and the 

mitogen-activated protein kinase (MAPK) p38, are known to regulate Cdc25A stability and 

turn-over via phosphorylation upon exposure to genotoxic stress (Boutros et al., 2007; 

Goloudina et al., 2000; Mailand et al., 2000; Mikhailov et al., 2005; Xiao et al., 2003; Zhao et al., 

2002). As it was shown that Roc A treatment triggers Cdc25A phosphorylation (Fig. 3.4), it 

was of interest which kinase is involved in the rapid phosphorylation of Cdc25A. To 

investigate which kinase is involved in Roc A mediated Cdc25A phosphorylation and 

downregulation, J16 cells were treated with 50 nM Roc A for up to 24 h and kinase activation 

was investigated as changes in their phosphorylation status by immunoblotting.  

The activation of p38 MAPK upon Roc A treatment has been shown by Zhu and 

colleagues (Zhu et al., 2007) and could be confirmed in this study (Fig. 3.6). Exposure to 

Roc A resulted in an activation of this kinase measured by the induction of phosphorylation 

at Thr180/Tyr182 as early as 15 min after treatment. Similar to p38 MAPK activation, Chk2 

activation could be determined by its phosphorylation at Thr68 as early as 30 min upon 

Roc A treatment (Fig. 3.6). In contrast, Chk1 showed a rather transient activation as seen by 

its phosphorylation at Ser317 peaking at 2-4 h.  

In summary, these data provide evidence of possible roles for p38 MAPK and the 

checkpoint kinases Chk1 and Chk2 in Roc A-mediated Cdc25A phosphorylation that is 

involved in the accelerated proteolysis and in stopping cell cycle progression. 
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Figure 3.6 | Roc A activates p38 MAPK and checkpoint kinases Chk1 and Chk2. 

J16 cells were treated with 50 nM Roc A or DMSO as a control for up to 24 h. Cells were lysed and 
kinase activities were analysed by SDS-PAGE followed by immunoblotting with specific antibodies. 
Data are representative of at least two independent experiments. 
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3.3.2 Rocaglamide A activates DNA damage sensor kinases 

DNA damage sensor kinases ATM and ATR are the first to be activated upon exposure to 

genotoxic stress, which then in turn trigger activation of effector kinases Chk1 and Chk2 

(Polager & Ginsberg, 2009). Chk1 is a direct target of the sensor kinase ATR, whereas Chk2 is 

known to be a direct target of ATM (Bartek & Lukas, 2003; Hurley & Bunz, 2007).  

To analyse the upstream signals triggered by Roc A, J16 cells were treated with 50 nM 

Roc A for up to 33 h and the activities of ATR and ATM were analysed by immunoblotting. 

The experiments showed that after Roc A treatment the activation of ATM protein kinase 

could be identified by phosphorylation at Ser1981 (Fig. 3.7 A). In contrast to ATM, the 

activation status of ATR protein kinase measured by phosphorylation at Ser428 remained 

unchanged upon Roc A treatment (Fig. 3.7 A).  

To further prove that ATM is involved in Roc A-mediated Chk2 activation, an inhibitor 

against ATM was used (to date, no specific ATR inhibitor exists). J16 cells were pre-treated 

with 10 μM of the specific ATM inhibitor KU-55933 (ATM i) and then co-incubated with 

50 nM Roc A for 3 h. Since Chk2 is known to be a direct target of ATM (Bartek & Lukas, 2003; 

Hurley & Bunz, 2007), Chk2 activation was analysed by immunoblotting. The experiment 

showed that inhibition of ATM partially abrogated Roc A-mediated Chk2 activation 

(Fig. 3.7 B).  

Collectively, these data indicate the activation of the DNA damage sensor kinase ATM 

but not ATR by Roc A. It could also been shown that ATM may be involved in the activation 

of the downstream effector kinase Chk2. However, the possible involvement of ATM in 

Chk1 activation remains elusive.  
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Figure 3.7 | Roc A activates DNA damage sensor kinases. 

(A) J16 cells were treated with 50 nM Roc A or DMSO as a control for up to 33 h. Cells were lysed and 
kinase activities were analysed by SDS-PAGE followed by immunoblotting with specific antibodies. 
(B) J16 cells were pre-incubated for 0.5 h with 10 μM KU-55933 (ATM i) or DMSO as a control and 
then co-incubated with 50 nM Roc A or DMSO as a control for 8 h. Cells were lysed and protein 
expression was analysed by SDS-PAGE followed by immunoblotting with specific antibodies 
(* unspecific band). Data are representative of at least two independent experiments. 
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3.3.3 Inhibition of Chk1 rescues Rocaglamide A-mediated Cdc25A downregulation 

To identify the kinase(s) which mediate Cdc25A phosphorylation upon Roc A treatment, 

in a first attempt studies with inhibitors against MAPK p38, Chk1 and Chk2 were carried 

out. J16 cells were pre-treated for 0.5 h with 5 μM SB 203580 (p38 i), 5 μM Chk2 inhibitor II 

(Chk2 i), 5 μM SB 218078 (Chk1 i) or DMSO as a control and then co-incubated with 50 nM 

Roc A for 4 h. The experiments showed that Roc A-mediated Cdc25A downregulation could 

be rescued upon treatment with Chk1 i but not with Chk2 i nor p38 i (Fig. 3.8 A).  

To confirm the results obtained with the Chk1 inhibitor SB 218078, the effects of a second 

Chk1 inhibitor, UCN-01, were analysed. J16 cells were pre-treated for 0.5 h with different 

concentrations of SB 218078 (Chk1 i), UCN-01 or DMSO as a control. Cells were then 

co-incubated with 50 nM Roc A for 2 h and Cdc25A protein levels were analysed by 

immunoblotting. Consistent to the former experiment, treatment of the cells with SB 218078 

showed a concentration-dependent rescue of Cdc25A (Fig. 3.8 B). However, concentrations 

up to 5 µM could not fully rescue Roc A-mediated Cdc25A downregulation (Fig. 3.8 B). 

Exposure to UCN-01 showed a similar concentration-dependent rescue of Cdc25A as 

SB 218078 (Fig. 3.8 C). In contrast, UCN-01 at concentrations of 500 nM could fully rescue 

Cdc25A downregulation after 2 h of Roc A treatment (Fig. 3.8 C). Altogether, these data 

strengthen the possible role of Chk1 in Roc A-mediated Cdc25A downregulation.  

ATM was indicated to be an upstream kinase upon Roc A-treatment (Fig. 3.7 A) and 

activation of ATM has been shown to be involved in downregulation of Cdc25A (Boutros et 

al., 2007; Shiloh, 2003). To elucidate whether ATM is involved in Cdc25A downregulation, 

J16 cells were pre-treated with 10 μM of the specific ATM inhibitor KU-55933 (ATM i) and 

DMSO as a control. Cells were then co-incubated with 50 nM Roc A for up to 120 min and 

Cdc25A expression levels were analysed by immunoblotting. As seen in Fig. 3.8 D, inhibition 

of ATM did not rescue Roc A-mediated Cdc25A downregulation. This indicates that other 

upstream kinases, such as ATR and/or DNA-PK, may be involved in Chk1 and Cdc25A 

regulation. 
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Figure 3.8 |  Inhibition of Chk1 rescues Rocaglamide A-mediated Cdc25A downregulation. 

(A) J16 cells were pre-incubated for 0.5 h with 5 μM SB 203580 (p38 i), 5 μM Chk2 inhibitor II (Chk2 i), 
5 μM SB 218078 (Chk1 i) or DMSO as a control and then co-incubated for 4 h with 50 nM Roc A. Cells 
were lysed and protein expression was analysed by SDS-PAGE followed by immunoblotting with 
specific antibodies. (B, C) J16 cells were pre-incubated for 0.5 h with different concentrations of 
SB 218078 (B) or UCN-01 (C) and then co-incubated for 2 h with 50 nM Roc A. Cells were lysed and 
protein expression was analysed by SDS-PAGE followed by immunoblotting with specific antibodies. 
(D) J16 cells were pre-incubated for 0.5 h with 10 μM KU-55933 (ATM i) or DMSO as a control and 
then co-incubated with 50 nM Roc A for up to 120 min. Cells were lysed and protein expression was 
analysed by SDS-PAGE followed by immunoblotting with specific antibodies. Data are representative 
of at least two independent experiments.  
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3.3.4 Combined knock-down of Chk1 and Chk2 rescues Rocaglamide A-mediated 

Cdc25A downregulation 

The previous inhibitor studies indicate an important role of Chk1 in Roc A-mediated 

Cdc25A downregulation. To confirm the obtained results, Jurkat JE6.1 cells were transiently 

transfected with two different Chk1-specific siRNA oligonucleotides (si Chk1 #1, #2). The 

cells were then treated with 50 nM Roc A for up to 120 min and protein levels were analysed 

by immunoblotting. As seen in Fig. 3.9 A, one of the two analysed siRNAs, namely 

si Chk1 #2, displayed a knock-down effect. However, transient knockdown of this kinase 

could not rescue Roc A-mediated Cdc25A downregulation.  

Interestingly, Chk1 deficient cells displayed a normal cell cycle profile after 48 h 

(Fig. 3.9 B), which means that the Chk2 pathway may take over functions of Chk1. Since 

siRNA-mediated knock-down of Chk1 was unable to rescue Cdc25A downregulation after 

Roc A treatment, it was hypothesised that the cells may have adapted and bypassed their 

Chk1 deficiency. It is known that next to Chk1, also MAPK p38 and Chk2 can modulate 

Cdc25A phosphorylation and can impact its protein stability (Boutros et al., 2007; Goloudina 

et al., 2000; Mailand et al., 2000; Mikhailov et al., 2005; Xiao et al., 2003; Zhao et al., 2002). 

Therefore, to elucidate whether inhibition of Chk1 may influence Chk2 and MAPK p38 

activity, J16 cells were treated with 5 μM SB 218078 (Chk1 i) for 7 h and kinase activation was 

investigated as changes in the phosphorylation status by immunoblotting activity. As shown 

in Fig. 3.9 C, abrogation of Chk1 activity upregulated basal activity of Chk2 and MAPK p38. 

This indicates that possibly Chk2 and/or MAPK p38 are able to overtake Chk1 deficiency.  

Several reports showed that Chk1 and Chk2 can have overlapping functions and can 

substitute each other as seen by common downstream targets (Bartek & Lukas, 2003; 

Reinhardt & Yaffe, 2009). This was not reported for MAPK p38 and therefore the focus was 

on Chk2 to possibly overtake Chk1 actions. To analyse whether Chk2 can overtake Chk1 

functions in the Roc A-mediated Cdc25A regulation, a combined transient knock-down of 

Chk1 and Chk2 in JE6.1 cells was performed. The cells were transfected with the 

Chk1-specific siRNA oligonucleotide (si Chk1 #2) and/or a Chk2-specific siRNA 

oligonucleotide (si Chk2). After 48 h cells were then treated with 50 nM Roc A for up to 

120 min and protein levels were analysed by immunoblotting. Whereas single Chk2 

knock-down slightly rescued Roc A-mediated Cdc25A downregulation, significant rescue 

was obtained by combined knock-down of both Chk1 and Chk2 after 120 min of exposure to 

Roc A (Fig. 3.9 D).  
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In summary, these data demonstrate that Chk1 plays an important role in the 

Roc A-induced Cdc25A downregulation. However, siRNA knock-down data indicate that 

Chk2 may also participate in Roc A-mediated downregulation of Cdc25A protein expression.  

 

  



Results   

86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 |  Combined knock-down of Chk1 and Chk2 rescues Roc A-mediated Cdc25A 

downregulation. 

(A, B) JE6.1 cells were transiently transfected with 1 µM scrambled (scr siRNA) or two different 
Chk1-specific siRNA oligonucleotides (si Chk1 #1, #2). After 48 h cells were treated with 50 nM Roc A 
for up to 120 min. (A) Cells were lysed and protein expression was analysed by SDS-PAGE followed 
by immunoblotting with specific antibodies. (B) Cells were stained according to the Nicoletti-method 
and subjected to cell cycle analysis. (C) J16 cells were pre-incubated for 0.5 h with 5 μM SB 218078 
(Chk1 i) or DMSO as a control and then co-incubated for 7 h with 50 nM Roc A. Cells were lysed and 
protein expression was analysed by SDS-PAGE followed by immunoblotting with specific antibodies. 
(D) JE6.1 cells were transiently transfected with 1 µM scrambled (scr siRNA), Chk2-specific siRNA 
(si Chk2) or Chk1-specific siRNA (si Chk1 #2) oligonucleotides either alone or in combination. After 
48 h cells were treated with 50 nM Roc A for up to 120 min. Cells were lysed and protein expression 
was analysed by SDS-PAGE followed by immunoblotting with specific antibodies. Data are 
representative of at least two independent experiments. 
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3.4 Sources of the activation of the Rocaglamide A-resembled DNA 

damage response pathway 

3.4.1 Rocaglamide A does not induce direct DNA double strand breaks 

Roc A was shown to activate ATM (Fig. 3.7 A), however, it still remains elusive how 

Roc A triggered its activation. Most published data show the role of ATM as primary sensor 

protein of DNA double-strand breaks (DSB). However, recently it was reported that ATM 

can be activated by oxidative stress (Guo et al., 2010). Since rocaglamide derivatives do not 

induce oxidative stress (Kim et al., 2006; Proksch et al., 2001; Ebada et al., 2011), the possibility 

of ATM activation by reactive oxygen species (ROS) upon Roc A treatment was excluded 

and the focus drawn to ATM activation by DSB.  

Upon DSB, ATM is recruited to the DNA and leads to phosphorylation of the signal 

mediator Histone H2AX (γH2AX) and foci formation (Canman, 2003). Therefore, γH2AX is 

used as common biomarker for detection of DSB (Bonner et al., 2008; Rogakou et al., 1998). In 

order to detect any development of DSB upon Roc A treatment, the formation of γH2AX was 

determined by intracellular FACS-staining and confocal microscopic analysis.  J16 cells were 

treated with 100 nM Roc A for up to 24 h and for a positive control 200 nM Doxorubicine 

(Dox) was used. At these concentrations, no DNA fragmentation could be seen after 8 h 

treatment and only 10-15% DNA fragmentation was detected after 24 h (Fig. 3.10 A). Thereby 

a role of γH2AX foci formation due to apoptotic DNA fragmentation could be excluded.  

The cells were co-stained with a fluorescent labelled antibody against γH2AX and with 

the DNA staining dye propidium iodide (PI) to visualise distribution of foci formation in the 

different cell cycle phases. As expected, after 8 h treatment with 200 nM Dox about 15% of 

the cells showed γH2AX foci formation and 50% were γH2AX positive after 24 h (Fig. 3.10 B, 

upper panel). Using confocal microscopy analysis the foci formation after Dox treatment 

could be clearly visualised as increasing green dots that represent γH2AX foci (Fig. 3.11, 

upper panel). Nuclear staining via PI showed no apoptotic DNA fragmentation (Fig. 3.11, 

upper panel). This indicates that the increase in fluorescence intensity measured by FACS 

was indeed due to increased γH2AX foci formation in living cells.  

In contrast, 100 nM Roc A treatment did not show any foci formation in living cells as 

measured by FACS (Fig. 3.10 B, lower panel). An increase of γH2AX fluorescent intensity 

could be observed in Roc A-treated cells only after 24 h (Fig. 3.11, lower panel). Consistent 
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with the apoptosis analysis (Fig. 3.10 A), PI-staining clearly showed apoptotic cells as visible 

by condensated DNA (Fig. 3.11, lower panel).  

Collectively, no signs of direct DNA damaging potency of Roc A could be detected by the 

methods used in this study. However, a response similar to DDR occurs immediately upon 

Roc A treatment (Fig. 3.7). Since at this time no apoptotic DNA fragmentation is measurable, 

other kinds of DNA damage or DNA stress might be triggered by Roc A as an alternative 

mechanism.  
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Figure 3.10 | Roc A does not induce direct DNA double strand breaks as measured by FACS. 

(A) J16 cells were treated with 100 nM Roc A, 200 nM Doxorubicin or DMSO as a control. DNA 
fragmentation was measured according to the Nicoletti-method at indicated time points. (B) Cells 
were treated as in (A) and after fixation and permeabilisation of the cells intracellular γH2AX staining 
was performed. After co-staining with propidium iodide (PI) cells were analysed by FACS. Only 
living cells were analysed (blue), PI staining shows cell cycle distribution (G0/G1, S and G2/M 
phase). Increase of γH2AX staining is represented by increase in purple colour. Data are 
representative of at least two independent experiments (Error bars represent standard deviations). 
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Figure 3.11 | Roc A does not induce direct DNA double strand breaks as measured by confocal 

microscopy. 

J16 cells were treated as in Fig. 3.10 B and analysed by confocal microscopy. γH2AX staining is 
represented in green, increase of γH2AX foci formation can be observed as increasing in green dots. 
PI-staining shows DNA (red), overlay of γH2AX- and PI-staining is represented in orange. Data are 
representative of at least two independent experiments.  
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3.4.2 Rocaglamide is not localised in the nucleus 

So far, the mechanism by which Roc A-mediated genotoxic stress in turn activates the 

DDR pathway remains elusive. In chemotherapy, fast-dividing malignant cells are targeted 

by DNA damaging agents such as alkylating agents, antimetabolites, anthracyclines, plant 

alkaloids, and topoisomerase inhibitors, all of these drugs affecting cell division or DNA 

synthesis and function (Takimoto & Calvo, 2009). To investigate the nuclear localisation of 

Roc A and to approach the question whether it exerts similar effects a fluorescent-labelled 

rocaglamide derivate was monitored for its sub-cellular localisation.  

In cooperation with Thuaud and colleagues (Thuad et al., 2009), who reported of a 

fluorescent-labelled synthetic rocaglamide derivative (FLO) with anti-proliferative activities, 

the same compound was analysed in our lab. To exclude artefacts due to cell fixation live cell 

imaging of human cervical cancer cells HeLa was performed. The cells were treated with 

50 μM FLO for 1.5 h and then co-incubated with either 50 nM Mito-Tracker (mitochondrial 

stain), 500 nM ER-Tracker (endoplasmatic reticulum stain) or 1 μM DRAQ5 (nuclear stain) 

for 0.5 h. Analysis by confocal microscopy showed that FLO can be detected in the 

mitochondria (Fig. 3.12, upper panel) as well as in the ER (Fig. 3.12, middle panel) as seen by 

purple colour in the overlay. However, a nuclear localisation of FLO could be ruled out 

(Fig. 3.12, lower panel).  
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Figure 3.12 | Rocaglamide derivatives are not localised in the nucleus.  

HeLa cells were treated for 1.5 h with 50 μM FLO and then co-incubated with 50 nM Mito-Tracker, 
500 nM ER-Tracker or 1 μM DRAQ5 (Nucleus) for 0.5 h. The cells were washed once with PBS, 
incubated in fresh medium and analysed by confocal microscopy. Data are representative of at least 
two independent experiments. 
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3.5 Rocaglamide A binds to PHB1 

3.5.1 Rocaglamide A induces PHB1 translocation into the nucleus 

Recently, it was discovered that Roc A binds to Prohibitin (PHB1) (unpublished data). 

PHB1 belongs to a highly conserved and ubiquitously expressed family of proteins and is 

described to be involved in cell proliferation (Mishra et al., 2005). It has been shown that 

PHB1 can translocate between nucleus, mitochondria, and cytoplasm upon various stimuli 

(Mishra et al., 2005; Theiss & Sitaraman, 2011) and that the sub-cellular localisation of PHB1 

can affect cell fate, specifically apoptosis (Rastogi et al., 2006). Therefore, it was analysed 

whether Roc A exerts genotoxic stress via interaction with PHB1 and subsequent 

translocation of PHB1 into the nucleus.  

One of the most sensitive methods to analyse protein translocation in sub-cellular 

compartments is by confocal analysis. Thus, HeLa cells were treated with 50 nM Roc A for 

4 h and after fixation, permeabilisation, and antibody staining subjected to confocal analysis. 

As it is shown in Fig. 3.13 A, Roc A treatment induces translocation of PHB1 into the nucleus. 

For quantification, the confocal data were analysed with the image software ImageJ. A mask 

of the nucleus was generated and the fluorescence intensity of PHB1 in the nucleus with and 

without Roc A treatment was investigated. The data were calculated via the Student’s t-test 

and visualised by box plots. Quantification of the images displayed a significant (p<0.001) 

translocation of PHB1 into the nucleus upon Roc A treatment (Fig. 3.13 B).  

In summary, these data suggest that elevated levels of PHB1 in the nucleus after Roc A 

treatment might induce and/or contribute to genotoxic stress. This can then lead to the 

activation of the DDR pathway, inhibition of proliferation and induce G0/G1 cell cycle 

arrest.  
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Figure 3.13 | Roc A induces PHB1 translocation into the nucleus.  

HeLa cells were treated with 50 nM Roc A or DMSO as a control for 4 h. Cells were fixed for 15 min 
with 4% PFA and then permeabilised for 10 min with 0.2% T-100. After 1 h blocking with 5% BSA, 
cells were incubated with PHB1 antibody overnight. Then, cells were incubated with fluorescent 
labelled secondary antibody and analysed by confocal microscopy. (A) Representative pictures of 
confocal microscopic analysis. (B) A mask of the nucleus was generated with the software ImageJ and 
the fluorescence intensity of PHB1 treatment in the nucleus with and without Roc A treatment was 
analysed. Data sets of each experiment undertaken are graphically represented in box plots. Data are 
representative of at least two independent experiments. 
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3.5.2 PHB1 knock-down does not increase Chk1 or Chk2 activity 

The previous data obtained suggest that through the Roc A-mediated translocation of 

PHB1 into the nucleus genotoxic stress is exerted to the cells. To test whether PHB1 is 

inducing this genotoxic stress, Jurkat JE6.1 cells were depleted of PHB1 and the activation 

status of Chk1 and/or Chk2 was analysed. Thus, the cells were transiently transfected with a 

PHB1-specific siRNA oligonucleotide (si PHB1) and after 16 and 24 h of knock-down the 

activation status of Chk1 and Chk2 was analysed by immunoblotting. As seen in Fig. 3.14, 

depletion of PHB1 did not lead to an increased activation of Chk1 nor Chk2 as it is seen after 

Roc A treatment.  

In summary, these data indicate that Roc A-mediated PHB1 translocation into the nucleus 

does not lead to genotoxic stress by which subsequently the signalling pathway that 

resembles the DDR is activated. Neither these data indicate that PHB1 is responsible for the 

rapid downregulation of Cdc25A. Instead, the data rather suggest that Roc A triggers 

genotoxic stress prior to (or aside of) binding to PHB1.  

 

                                  

Figure 3.14 | PHB1 knock-down does not increase Chk1 or Chk2 activity.  

JE6.1 cells were transiently transfected with 1 µM scrambled (scr siRNA) or PHB1-specific siRNA 
oligonucleotides (si PHB1). After 16 and 24 h cells were lysed and activation status was analysed by 
SDS-PAGE followed by immunoblotting with specific antibodies. Data are representative of at least 
two independent experiments. 
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3.5.3 PHB1 knock-down mimics the effects of Rocaglamide A on cell cycle progression 

After it could be ruled out that the interaction of Roc A with PHB1 most certainly does not 

trigger genotoxic stress it was questioned by which other mechanism this interaction may 

lead to the observed effects on the cell cycle upon Roc A treatment. To analyse this, Jurkat 

JE6.1 cells were transiently transfected with a PHB1-specific siRNA oligonucleotide and cell 

cycle analysis was performed by Nicoletti staining and FACS measurements. Indeed, PHB1 

knock-down leads to a significant (p-value ≤ 0.05) G0/G1 cell cycle arrest accompanied by a 

significant (p-value ≤ 0.05) decrease of cells in S phase (Fig. 3.15 A). The cells were also 

analysed by immunoblotting with respect to downregulation of cell cycle proteins necessary 

for G1-S transition. Interestingly, those proteins that were donwregulated after Roc A 

treatment (Fig. 3.2 B) showed also decreased expression in PHB1 deficient cells after 24 h, 

such as Cdc25A, Cdc25B, Cdk4, Cdk6 and Cyclin D3 (Fig. 3.15 B).  

Since it is known that Roc A exerts translation inhibitory effects (Fig. 3.3 A) we asked the 

question whether PHB1 knock-down also leads to inhibition of protein de novo synthesis and 

by this to downregulation of the cell cycle proteins. Therefore, PHB1 deficient cells were 

analysed by an incorporation assay of 
35

S-labelled methionine after 2 and 6 h. The 

experiment revealed that PHB1 deficient cells indeed showed a significant (p-value ≤ 0.05) 

decrease in protein de novo synthesis of about 20% (Fig. 3.15 C). Similar to Roc A treated cells 

(Fig. 3.3 D), PHB1 deficient cells also showed decreased Erk activity (Fig. 3.15 D).  

In summary, these data indicate that the main mechanism of Roc A mediated cell cycle 

arrest and downregulation of cell cycle proteins is mediated by the interaction of Roc A with 

PHB1. This interaction leads to downregulation of the Erk pathway by which protein de novo 

synthesis in inhibited (Bleumink et al., 2010). 
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Figure 3.15 | PHB1 knock-down mimics the effects of Rocaglamide A on cell cycle progression. 

(A-D) JE6.1 cells were transiently transfected with 1 µM scrambled (scr siRNA) or PHB1-specific 
siRNA (si PHB1) oligonucleotides. (A) After 16 h cells were stained according to the Nicoletti method 
and subjected to cell cycle analysis by FACS measurement. (B) After 24 h cells were lysed and protein 
expression was analysed by SDS-PAGE followed by immunoblotting with specific antibodies. (C) 
After 72 h cells were incubated with 35S-labelled methionine, after the indicated time points cells were 
lysed and radioactivity was analysed with a beta counter. (D) After 72 hours cells were lysed and 
protein expression was analysed by SDS-PAGE followed by immunoblotting with specific antibodies. 
Data are representative of at least two independent experiments (Error bars represent standard 
deviations). 

 

0

1000

2000

3000

4000

5000

6000

0 2 4 6

C
P

M
 [

x
1

0
0

0
]

Time [h]

scr siRNA

si PHB1

Cdc25A 

Cdk4

PHB1

cyclin D3 

Cdk6

Tubulin

scr
siRNA

si 
PHB1

Cdc25B 

Cdc25C 

cyclin A 

cyclin E 

0,0

10,0

20,0

30,0

40,0

50,0

scr siRNA si PHB1

C
e

ll
s 

[%
]

G0/G1 S G2/M

*

*

p-Erk1/2

PHB1

scr
siRNA

si 
PHB1

Erk1 

Tubulin

*

*

A 

C 

B 

D 



 

98 

 

  



  Discussion 

  99 

4 Discussion 

4.1 Anti-proliferative activities of Rocaglamide A 

Although the anti-proliferative activities of rocaglamide derivatives in cancer have been 

known for 30 years, the molecular mechanisms by which they exert inhibition of 

proliferation are largely unknown. It has been shown that 

4’-demethoxy-3’,4’-methylenedioxy-methylrocaglate inhibits tumour cell proliferation with 

cell accumulation in the G0/G1 phase of the cell cycle in human lung carcinoma cells Lu1 

(Lee et al., 1998). Similarly, treatment of human HTLV1-associated T cells with 

1-oxo-11,12-methylendioxyrocaglaol (Roc AR) resulted in cell accumulation in the 

G0/G1 phase of the cell cycle and decreased cyclin D1 and D2 protein expression (Bleumink, 

2007). Inhibition of tumour cell proliferation with cell accumulation in the G2/M phase of 

the cell cycle (Bohnenstengel et al., 1999; Mi et al., 2006) or cell cycle block in mitosis (Hausott 

et al., 2004) was also observed upon treatment with rocaglamide derivatives. 

Didesmethyl-rocaglamide was even shown to be able to induce growth arrest of human 

monocytic leukemia cells MONO-MAC-1 in the G2/M and probably G0/G1 phases of the 

cell cycle (Bohnenstengel et al., 1999). For the rocaglate derivative silvestrol, it could be 

demonstrated that its cytotoxicity in human prostate cancer cells LNCaP was associated with 

a block at the G2/M cell cycle checkpoint and with a decrease in cyclin B and Cdc25C 

protein levels in a p53-independent manner (Mi et al., 2006). Aglaiastatin, a 

flavonol-cinnamate-derived cyclopenta[b]benzofuran, caused a cell cycle block in colon 

carcinoma cells SW480 in early mitosis (Hausott et al., 2004). This was accompanied with an 

increase in cyclin B and a decrease in cyclin A protein levels upon exposure (Hausott et al., 

2004). Uniformly, all active rocaglamide derivatives demonstrate anti-proliferative activities 

with often only minor cell death induction (Kim et al., 2006). Their way to arrest cells in a 

specific cell cycle phase, however, is dependent on the cell line and/or rocaglamide 

derivative.  

In line with the previous observations, this study shows that the rocaglamide derivative 

Rocaglamide A (Roc A) inhibits proliferation of haematological cancer cell lines with an 

associated G0/G1 cell cycle arrest (Fig. 3.1 A-C). Importantly, this was accompanied by little 

cell death induction after 24 h (Fig. 3.1 D), which gave rise to the working hypothesis of this 

study that Roc A treatment leads firstly to inhibition of proliferation and secondly to 

induction of apoptosis.  
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Deeper analysis of the molecular mechanism by which Roc A may have triggered stop of 

cell proliferation at the G0/G1 cell cycle phase led to the investigation of important key 

players in G1-S transition, such as Cdk2, Cdk4, Cdk6, cyclin D3, A and E and the 

Cdk-activating phosphatases Cdc25A, Cdc25B and Cdc25C, upon treatment (Fig. 3.2 A). 

Downregulation of Cdk4, Cdk6, and cyclin D3 as seen after exposure (Fig. 3.2 B) would 

probably diminish formation of cyclin D3/Cdk4/6 complexes. These complexes are required 

for progression through G1 phase and for the preparation to enter S phase. Therefore, 

decreased cyclin D3/Cdk4/6 levels may contribute to the G0/G1 cell cycle arrest observed in 

the haematological cancer cell lines tested. Consequently, deregulated phosphorylation and 

inactivation of the pRB family proteins, and thereby inhibition of transcription of E2F target 

genes, such as MCMs, cyclin D, E, and A, amongst others (Sherr & Roberts, 1999; 2004; 

Bracken et al., 2004), may occur.  

In late G1 phase, Cdk2 is activated by binding to cyclin E (Sherr & Roberts, 1999; 2004), 

which enhances the phosphorylation of pRB family proteins on additional sites. This is 

known to start the irreversible initiation of the gene expression program for the S phase and 

leads to passage through the G1-S restriction point. The observation that Roc A treatment led 

to downregulation of cyclin E after 5 h treatment (Fig. 3.2 B) hints at decreased formation of 

cyclin E/Cdk2 complexes and implicates a further possible contribution to G0/G1 cell cycle 

arrest and delay in S phase entry.  

Nevertheless, activity of cyclin/Cdk complexes is regulated far beyond the abundance of 

certain proteins. Cdk activity is under the control of multiple regulatory proteins, namely 

Cdk inhibitors from the Cip/Kip and INK4 protein family and activating and inactivating 

phosphorylations (Sherr & Roberts, 1999; 2004). Inactivating phosphorylations are removed 

by the Cdc25 family of dual specificity phosphatases, which thereby activate cyclin/Cdk 

complexes and contribute to proper cell cycle progression and transition through cell cycle 

checkpoints (Boutros et al., 2006). By analysing important key players in G1-S transition upon 

Roc A treatment, the earliest event observed after exposure was the rapid downregulation of 

Cdc25A and Cdc25B protein levels after 15-30 min, while Cdc25C protein levels were not 

changed (Fig. 3.2 B).  

Cdc25A mainly activates the cyclin E/Cdk2 and cyclin A/Cdk2 complexes during G1-S 

transition (Blomberg & Hoffmann, 1999; Hoffmann et al., 1994; Jinno et al., 1994). This 

phosphatase is also described to play a role in G2-M transition (Molinari et al., 2000; Zhao et 

al., 2002) by activating cyclin B/Cdk1 complexes, which are thought to initiate chromosome 
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condensation (Boutros et al., 2006; Lindqvist et al., 2005; Mailand et al., 2002; Molinari et al., 

2000). In contrast, Cdc25B and Cdc25C are primarily required for entry into mitosis (Gabrielli 

et al., 1996; Lammer et al., 1998; Millar et al., 1991). Cdc25B is proposed to be responsible for 

the initial activation of cyclin B/Cdk1 at the centrosome during the G2-M transition (De 

Souza et al., 2000; Gabrielli et al., 1996; Lindqvist et al., 2005), which is then followed by the 

complete activation of cyclin B/Cdk1 complexes by Cdc25C in the nucleus at the onset of 

mitosis (Gabrielli et al., 1997). However, knockdown studies with Cdc25B or Cdc25C using 

antisense or interference RNA showed that these two phosphatases may also be involved in 

the control of S phase entry (Garner-Hamrick & Fisher, 1998; Turowski et al., 2003). In 

general, all three Cdc25 phosphatases are reported to be central regulators of G1-S and G2-M 

transitions and mitosis entry and as such, are involved in spatially and temporally 

controlling their respective Cdk substrates (Boutros et al., 2007). Since Roc A mediated a 

rapid downregulation of Cdc25A and Cdc25B, reduction of these two phosphatases may 

play a decisive role in Roc A-mediated arrest of cell cycle at G0/G1 phase.  

The complex regulatory mechanisms and the overlapping functions of the Cdc25 family 

of dual specificity phosphatases may explain the contradictory findings of rocaglamide 

derivatives that induce cell cycle arrest in different phases of the cell cycle observed by other 

studies (Lee et al., 1998; Bleumink, 2007; Bohnenstengel et al., 1999; Mi et al., 2006; Hausott et 

al., 2004). Depending on the cell type and probably the activation and/or expression status of 

cell cycle regulatory proteins, the same compound can lead to different results. For example, 

Roc A treatment was also analysed in human cervical carcinoma cells HeLa, in which 

exposure to Roc A led to G2/M cell cycle arrest (data not shown).  

 

Taken together, downregulation of important cell cycle proteins are the key to the anti-

proliferative effects of Rocaglamide A and its derivatives, as already shown by others 

(Bleumink, 2007; Mi et al., 2006; Hausott et al., 2004). In which cell cycle phase a certain cell 

type will arrest may strongly depend on its basal expression status of its cell cycle regulatory 

proteins and its capacity to deal with interference in normal cell cycle progression.  
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4.2 Rocaglamide A induces rapid cell cycle arrest 

4.2.1 Rapid cell cycle arrest occurs via downregulation of Cdc25A  

Although all three Cdc25 phosphatases are reported to be involved in all cell cycle phases, 

Cdc25B and Cdc25C have been shown to play more pronounced roles at the G2-M transition 

and during mitosis, whereas Cdc25A is mainly involved in G1-S transition (Busino et al., 

2004, Boutros et al., 2008). Over-expression of Cdc25A accelerates S phase entry, while both 

microinjection of anti-Cdc25A antibodies and transfection of antisense oligonucleotides 

inhibit DNA synthesis (Cangi et al., 2000; Hoffmann et al., 1994; Jinno et al., 1994; Sexl et al., 

1999; Vigo et al., 1999). Moreover, double knockout (Cdc25b-/-, Cdc25c-/-) mice develop 

normally (Ferguson et al., 2005) while Cdc25a-/- knockout mice are embryonically lethal (Ray 

et al., 2007). These studies implicate that Cdc25A is capable of performing Cdc25B and 

Cdc25C functions and is an essential protein in cell cycle progression. Since Roc A-mediated 

downregulation of Cdc25A is faster than that of Cdc25B (Fig. 3.2 B), Cdc25A downregulation 

is suggested to induce rapid inhibition of proliferation and cell cycle arrest, in particular at 

the G0/G1 phase in the haematological cancer cell lines tested.  

 

4.2.2 Rocaglamide A downregulates Cdc25A beyond protein synthesis inhibition 

Cdc25A is a very unstable protein with a half-life of 20-30 min (Falck et al., 2001; Mailand 

et al., 2000; 2002; Molinari et al., 2000; Sørensen et al., 2003). This can be confirmed in this 

study by treatment of J16 cells with the known protein synthesis inhibitor cyclohexamide 

(CHX) (Fig. 3.3 B, C). Since rocaglamide derivatives are known to confer translation 

inhibitory activities (Bleumink et al., 2010; Lee et al., 1998), at the first glance one would 

suspect that Roc A downregulates Cdc25A via protein synthesis inhibition. Indeed, analysis 

of incorporation of 
35

S-labelled methionine in J16 cells treated with Roc A showed inhibition 

of protein de novo synthesis in a dose-dependent manner (Fig. 3.3 A). In an elegant study by 

Bleumink and colleagues (Bleumink et al., 2010) it could be shown that inhibition of 

translation is mediated via downregulation of the Mek-Erk-Mnk1 signalling pathway. It was 

shown that Erk activity was downregulated in the HTLV-1-associated ATL T cell line SP as 

early as 15-30 min which was accompanied with immediate and complete inhibition of 

translation after treatment with 100 nM Roc AR (Bleumink et al., 2010). But in the working 

concentration of 50 nM Roc A the inhibitory effect on 
35

S incorporation on J16 cells was only 
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around 20% (Fig. 3.3 A) and downregulation of Erk activity occurred after approximately 

1-2 h upon exposure to Roc A (Fig. 3.3 D). However, the observed downregulation of the cell 

cycle proteins neccesary for G1-S transition may now be explainable through the diminished 

protein de novo synthesis (Fig. 3.2 B). 

Yet, it was shown that cells treated with Roc A downregulated Cdc25A protein very 

rapidly and even faster than CHX treatment (Fig. 3.3 B, C). Therefore, inhibition of 

translation may add to the downregulation of Cdc25A at later time points, but is not capable 

of explaining the Roc A-mediated fast downregulation after only 15 min.  

 

4.2.3 Rocaglamide A induces Cdc25A degradation by phosphorylation of Cdc25A 

As depicted earlier, the basal turnover of Cdc25A is approximately 20-30 min. Upon 

genotoxic stress induction, however, it can be decreased to only 10 min (Bartek et al., 2004; 

Sørensen et al., 2003). Genotoxic stress increases the rate of Cdc25A phosphorylation through 

the (combined) action of Chk1, Chk2 and/or MAPK p38 (Bulavin et al., 2001; Busino et al., 

2003; Falck et al., 2001; Reinhardt et al., 2007; Sorensen et al., 2003). Chk1 phosphorylates 

Cdc25A on Ser76, Ser124, Ser178, Ser279, Ser 293 and Thr507, while Chk2 phosphorylates 

Ser124, Ser178, Ser279 and Ser 293 (Fig. 1.4; Boutros et al., 2007; Kiyokawa & Ray, 2008). In 

addition, MAPK p38 was reported to phosphorylate Cdc25A at Ser76 and Ser124 in response 

to hyperosmotic stress and cytokine withdrawal (Khaled et al., 2005). Of these sites, Ser76 

phosphorylation functions as priming event, initiating the process of destabilising Cdc25A 

protein (Goloudina et al., 2003; Hassepass et al., 2003). Ser178 contains a 14-3-3 docking site 

and phosphorylation of this site facilitates association of Cdc25A with 14-3-3 scaffold 

proteins (Chen et al., 2003), which inactivates the enzymatic activity of Cdc25A (Hermeking 

& Benzinger, 2006). Increased phosphorylation at these two crucial sites was analysed and 

observed after Roc A treatment (Fig. 3.4).  

Inactivation of Cdc25A phosphatase activity either by protein downregulation or by 

association with 14-3-3 scaffold proteins reduces its ability to dephosphorylate and thereby 

activate Cdk2 at the G1-S and Cdk1 at the G2-M boundary. This subsequently leads to halt in 

cell cycle progression with arrest in G0/G1 and G2/M phase, respectively, depending on the 

cell line or the kind of genotoxic stress (Boutros et al., 2007; Busino et al., 2004; Malumbres & 

Barbacid, 2009). However, the G0/G1 cell cycle arrest analysis in this study did not include 

the investigation of changes in Cdk2 or Cdk1 activity or DNA replication in S phase. 
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Interestingly, both inhibition (Bohnenstengel et al., 1999) and no inhibition (Lee et al., 1998) of 

DNA replication could be seen after exposure to rocaglamide derivatives. Treatment of 

human monocytic leukemia cells MONO-MAC-1 with didesmethyl-rocaglamide resulted in 

arrest in G2/M- and probably G0/G1-phase of the cell cycle and showed inhibition of DNA 

synthesis (Bohnenstengel et al., 1999). In contrast, treatment of human lung carcinoma cells 

Lu1 with 4’-demethoxy-3’,4’-methylenedioxy-methylrocaglate resulted in G0/G1 cell cycle 

arrest but showed no measurable inhibition of DNA replication (Lee et al., 1998). Both groups 

used the same method to measure DNA replication; however, Bohnenstengel and colleagues 

(Bohnenstengel et al., 1999) pulsed cells for 3 h with 1 µCi [methyl-3H]thymidine whereas Lee 

and colleagues (Lee et al., 1998) exposed cells for only 1 h. It remains elusive whether the 

discrepancies in the ability of rocaglamide derivatives in inhibiting DNA replication are due 

to the different techniques employed or whether they are due to the different cell lines or 

compounds used.  

 

4.2.4 Rocaglamide A-mediated downregulation of Cdc25A involves activation of Chk1 

and Chk2 

Three kinases, Chk1, Chk2 and MAPK p38, are known to modulate phosphorylation sites 

on Cdc25A upon genotoxic stress induction and were shown to be activated upon Roc A 

treatment (Fig. 3.6). Whereas activation of Chk2 and MAPK p38 could be observed 

immediately upon exposure to Roc A, activation of Chk1 was very weak and rather transient 

between 1-2 h. As the latter is later shown to play essential roles in the downregulation of 

Cdc25A (Fig. 3.8 and 3.9), additional experiments are needed, in particular a Chk1 kinase 

assay, to confirm activation of the kinase. A kinase assay will give a definitive answer as to 

whether the activation of Chk1 is triggered by Roc A treatment.  

Still, it could be shown that inhibition of Chk1 with a selective Chk1 inhibitor, SB 218078, 

abrogated phosphorylation at Ser76 and Ser178 of Cdc25A. Through this inhibition, a rescue 

of Roc A-mediated Cdc25A downregulation was achieved (Fig. 3.8 A, B). In contrast, Chk2 

and MAPK p38 did not seem to play a role in phosphorylating Cdc25A since neither single 

nor combined inhibition of these kinases resulted in any rescue of phosphorylation or 

downregulation of the phosphatase (Fig. 3.8 A; data not shown). Abrogation of Roc A-

mediated Cdc25A downregulation could be shown with a second Chk1 inhibitor, UCN-01, 

with which an even stronger rescue could be obtained (Fig. 3.8 C).   



  Discussion 

  105 

Both SB 218078 and UCN-01 are potent and selective inhibitors of Chk1 kinase (Jackson et 

al., 2000; Shao et al., 1997; Wang et al., 1996) that displayed in in vitro kinase assays IC50 values 

of 15 nM and 7 nM, respectively (Jackson et al., 2000). Both compounds belong to the group 

of staurosporines that act as inhibitors of serine/threonine protein kinases by preventing 

ATP binding to the kinase. Although both inhibitors show very low IC50 values towards 

Chk1, they exhibit further inhibitory activities towards other kinases, such as for example 

PKC, Cdk1 and Cdk2. Jackson and colleagues (Jackson et al., 2000) reported for SB 218078 

IC50 values of 6 nM for Cdk1 and of 5 nM for PKC. UCN-01 was shown to exhibit inhibitory 

activities with IC50 values of 30 nM for PKC and of 300-600 nM for Cdk1 and Cdk2 in vitro 

(Lapenna & Giordano, 2009). However, as IC50 values are analysed in in vitro kinase assays, 

they may not correspond to the concentrations that enter into the cells used in cell culture. In 

general, higher working concentrations are used when treating living and metabolising cells, 

such as 1-5 µM for SB 218078 and 0.5-1 µM for UCN-01 in the underlying study 

(Fig. 3.8 B, C). Although Chk1 and Chk2 have overlapping functions in response to diverse 

genotoxic insults, they are structurally unrelated serine/threonine kinases (Antoni et al., 

2007; Bartek & Lukas, 2003; Dai & Grant, 2010). As the tested inhibitors are serine/threonine 

kinase inhibitors, it cannot be excluded that they also inhibit Chk2 activity. While inhibitory 

activities of SB 218078 against Chk2 were not reported to be tested, UCN-01 was shown to 

obtain an IC50 value of 1040 nM against Chk2, which makes it 100-fold less potent against 

Chk2 than against Chk1 (Seynaeve et al., 1994). Therefore, it cannot be entirely excluded that 

these inhibitors cause a simultaneous inhibition of Chk2.  

Studies with RNAi against Chk1 could not confirm the rescue observed with the chemical 

inhibitors against Chk1 (Fig. 3.9 A). This could be due to the involvement of inhibition of 

both Chk1 and Chk2 kinases by the Chk1 inhibitors. However, one could also assume that 

the cells had adapted to their Chk1 deficiency and that Chk2 and/or MAPK p38 had taken 

over its functions. Chk1 is described to be an essential kinase during embryonic 

development as Chk1-/- (Liu et al., 2000; Takai et al., 2000) but not Chk2-/- (Hirao et al., 2002; 

Takai et al., 2002) mice are lethal. In addition, Chk1 but not Chk2 is an important kinase in 

normal cell cycle progression and is involved in several cellular events (Kaneko et al., 1999; 

Sorensen et al., 2003; 2004; Zhao et al., 2002; Shechter et al., 2004; Krämer et al., 2004). Yet, 

complete deficiency of Chk1 in somatic cells can be tolerated and does not affect cell division 

(Jin et al., 2008; Petermann et al., 2010; Syljuasen et al., 2005; Tang et al., 2006; Zachos et al., 

2003), as shown also in this study (Fig. 3.9 B). Cells with depleted Chk1 exhibited a similar 

cell cycle profile with the same distribution of cells in the different cell cycle phases as 
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compared to control transfected cells (Fig. 3.9 B). This hints at possible overlapping functions 

of Chk2 and Chk1 and indeed, combined transient knockdown of Chk1 and Chk2 was found 

in this study to be able to delay Roc A-mediated downregulation of Cdc25A (Fig. 3.9 D).  

In response to ionising radiation (IR) it was reported that Chk2 is unable to overtake Chk1 

functions (Jin et al., 2008). Several studies showed that Chk1 mediates phosphorylation of 

Cdc25A at Ser76, which promotes its ubiquitination by the SCFβ-TRCP ubiquitin ligase (Busino 

et al., 2003; Donzelli et al., 2002; Jin et al., 2003). Phosphorylation of Ser76 is thought to serve 

as essential priming phosphorylation for accelerated proteolysis (Goloudina et al., 2003; 

Hassepass et al., 2003). Chk2 was shown to be unable to phosphorylate efficiently Ser76 in 

Cdc25A in response to IR and to support SCFβ-TRCP-mediated ubiquitination of Cdc25A in 

vitro (Jin et al., 2008). The authors suggested that in response to IR, Chk1 is the major 

checkpoint kinase controlling Cdc25A degradation and that Chk2 has only a minor 

contributory role. However, the data obtained in this study suggest that Roc A mediated 

downregulation of Cdc25A involves Chk1 as well as Chk2 kinase activities. Still, the rescue 

of Cdc25A was not complete and other mechanisms are assumed to take place, such as the 

well-known translation inhibitory effects by Roc A via the Mek-Erk-Mnk1 pathway.  
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4.3 Activation of the DNA damage response pathway by 

Rocaglamide A 

Activation of the DNA damage sensor kinase ATM could be shown immediately after 

exposure to Roc A (Fig. 3.7 A). The hallmark of ATM is its rapid response to DSBs measured 

by increase in its kinase activity through autophosphorylation at Ser1981 (Banin et al., 1998; 

Canman et al., 1998; Driscoll & Jeggo, 2002). However, in response to UV treatment or 

replication fork stalling, which induces prominently ssDNA and ATR-dependent 

phosphorylation, activation of ATM was also reported (Stiff et al., 2006). This phenomenon 

might be explainable by the action of nucleases, which cleave ssDNA to yield DSBs 

(Cimprich & Cortez, 2008), and by this mechanism ATR is activated initially and 

subsequently triggers ATM activation.  

ATM activation upon Roc A treatment could be further confirmed by inhibitor studies 

with the specific ATM inhibitor KU-55933 (Fig. 3.7 B). Inhibition of ATM partially abrogated 

Roc A-mediated Chk2 activation. However, since inhibition of Chk2 activation was not 

complete, it could be assumed that other DNA damage sensor kinases are involved in the 

Roc A-mediated Chk2 activation, such as ATR and/or DNA-PK. While activation of DNA-

PK upon Roc A treatment was not analysed, no change in the phosphorylation status of ATR 

at Ser428 after treatment could be observed (Fig. 3.7 A). Although several modifications of 

ATR, including phosphorylation at Ser428, were reported to take place upon DNA damage, 

none of them had been clearly demonstrated to be a reliable indicator of ATR activation 

(Cimprich & Cortez, 2008). It was suggested that ATR kinase may be constitutively ready to 

phosphorylate substrates but is mainly controlled by its subcellular localisation. Activation 

of ATR was thought to occur by the translocation to the site of the DNA damage and the 

formation of a complex with ATRIP and RPA (Kastan & Bartek, 2004; Cimprich & Cortez, 

2008). However, recently it was shown that ATR, like ATM and DNA-PK, undergoes 

autophosphorylation at Thr1989 after translocation to the DNA damage site, which is 

thought to be crucial for its full activation (Liu et al., 2011). Since this report was published 

after having conducted the experimental part of this study, it remains to analyse further 

whether Roc A activated ATR at Thr1989 upon exposure.  

The activation of Chk1 could be shown by increased phosphorylation at Ser317 after 

Roc A exposure (Fig. 3.6). Next to Ser345, Ser317 is discussed to be a reliable indicator of 

Chk1 activation (Cimprich & Cortez, 2008). Chk1 is a known direct target of ATR but as 
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discussed earlier, it is so far not clear whether Roc A mediated ATR activation. Yet, it should 

be pointed out that Gatei and colleagues (Gatei et al., 2003) reported an ATM-dependent 

phosphorylation of Chk1 at Ser317 after exposure to IR. This would hint at a possible 

Roc A-mediated Chk1 activation independent of ATR but rather through ATM. However, 

inhibition of the upstream kinase ATM could not rescue Cdc25A downregulation 

(Fig. 3.8 D). This suggests a more complex DNA damage sensing and signalling mechanism 

than could be shown so far in this study. Further studies with single and combined 

inhibition of the upstream kinases ATM, ATR and DNA-PK are needed to elucidate their 

involvements in Chk1 and Chk2 activation and Cdc25A downregulation.  

Taken together, data in this study show that Roc A triggers a signalling pathway that 

resembles the DDR pathway. It could not be demonstrated in the experiments undertaken so 

far that the DNA damage sensing kinases are clearly involved in the Roc A-mediated 

activation of Chk1 and Chk2 as well as Cdc25A downregulation. Therefore, possible 

mechanisms of Chk1 and Chk2 activation other than via activation of the DDR pathway 

upon treatment with Roc A may be assumed.  
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4.4 Rocaglamide A does not induce direct DNA double strand 

breaks 

To this point, data in this study indicated that Roc A treatment leads to ATM activation 

that is mainly activated by DSBs. Therefore, the possibility that Roc A induces activation of 

DSBs was analysed (Fig. 3.10 and 3.11). A reliable read-out and acknowledged biomarker of 

DSB formation is the analysis of phosphorylation of H2AX (Bonner et al., 2008; Rogakou et 

al., 1998). Immediately upon DSB formation, ATM, ATR and/or DNA-PK are activated and 

phosphorylate H2AX next to other DNA repair and checkpoint proteins (Bonner et al., 2008). 

Thus, formation of γH2AX was analysed by intracellular FACS staining and confocal 

microscopy.  

Treatment with the known direct DSB-inducing agent doxorubicine showed increasing 

γH2AX foci formation in living cells as analysed by intracellular FACS staining (Fig. 3.10 B, 

upper panel) and microscopic analysis (Fig. 3.11, upper panel). In contrast, γH2AX foci 

formation could not be observed upon Roc A-treatment (Fig. 3.10 B, lower panel; Fig. 3.11, 

lower panel). Microscopic analysis of Roc A-treated cells after 24 h showed a diffuse pattern 

referred to as pan-nuclear staining (Bonner et al., 2008). In a similar manner peripheral nuclear 

staining and pan-staining were also observed during TRAIL (TNF-related 

apoptosis-inducing ligand)-induced apoptosis (Solier et al., 2009).  

Thus, intracellular FACS and confocal microscopy analysis suggest that γH2AX formation 

at later time points might be due to apoptotic DNA fragmentation. But still it does not 

explain the early activation of Chk1 and Chk2 when Roc A-mediated apoptosis had not yet 

occurred. This data indicate that Roc A activates Chk1 and Chk2 through a mechanism other 

than DDR. However, more sensitive methods to detect low levels of DSBs and ssDNA, such 

as the quantitative PCR-based measurement of DNA damage (Santos et al., 2005), need to be 

applied in further experiments.  
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4.5 Rocaglamide A is not localised in the nucleus 

Analysis of a synthetic fluorescent labelled rocaglamide derivative (FLO) showed that 

FLO could be detected in the ER and mitochondria but was excluded from the nucleus 

(Fig. 3.12). FLO was assembled by Thuaud and colleagues (Thuaud et al., 2009) by 

conjugating a chemically synthesised rocaglic derivative through a linker to the small 

molecule N,N-dimethyl-7-aminocoumarin (Coumarin) (Alexander et al., 2006). This dye was 

selected because of its lack of biological activity and because it displays suitable 

photophysical properties for fluorescence microscopy, it easily penetrates into cells, and it 

does not localise preferentially in a subcellular compartment (Alexander et al., 2006). 

Therefore, the fluorescent labelled compound should not have problems penetrating the 

nuclear membrane. Thus, it can be excluded that FLO was not present in the nucleus because 

of its incapability to enter the nucleus due to its fluorescent label.   

Further, it has to be considered that FLO does not entirely resemble Roc A in its chemical 

structure and properties and therefore might exhibit slightly different molecular 

mechanisms. However, the data observed do not contradict the findings of Thuaud and 

colleagues (Thuaud et al., 2009). They showed that FLO is located in the ER, which could also 

be observed in the experiments undertaken in our laboratory (Fig. 3.12, middle panel). In 

addition, co-localisation studies of FLO with the mitochondria showed that it is also located 

in this sub-cellular compartment (Fig. 3.12, upper panel).  

Taken together, these data show that FLO is not located in the nucleus and thus do not 

support a model, in which Roc A directly interacts with the DNA in the nucleus and triggers 

DNA damage/stress.  
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4.6 Rocaglamide A binds to Prohibitin  

4.6.1 Prohibitin translocation into the nucleus does not lead to genotoxic stress 

In our lab it was discovered that Roc A binds to/ interacts with Prohibitin (PHB1) 

(unpublished data). Interestingly, it could be shown that upon Roc A treatment PHB1 

translocates into the nucleus (Fig. 3.13). It was therefore hypothesised that PHB1 interacted 

as a mediator of some kind with the DNA, which then resulted in genotoxic stress. In 

unperturbed cells it was reported that PHB1 can co-localise with the transcription factors 

E2F1 and p53 (Fusaro et al., 2003) and with the DNA replication proteins MCM (Rizwani et 

al., 2009). Since all three proteins are closely located to the DNA, Roc A-mediated increase of 

PHB1 in the nucleus would lead to increased interaction with these proteins and thereby 

induce DNA stress.  

However, siRNA-mediated knock-down of PHB1 did not show increased activity of Chk1 

and/or Chk2 (Fig. 3.14) which were earlier shown to be responsible for the rapid Roc A-

mediated downregulation of Cdc25A and subsequent rapid cell cycle arrest. To verify these 

results, more siRNA oligos against PHB1 have to be tested, and the possibility that PHB2 

took over functions of PHB1 need to be validated by combined knockdown of PHB1 and 

PHB2. 

These data demonstrate no hint of the importance of the interaction of Roc A with PHB1 

regarding the induction of genotoxic stress that leads to the activation of a signalling 

pathway that resembles the DDR. In contrast, these findings suggest a model in which Roc A 

induces independently from its interaction with PHB1 genotoxic stress to the cells. This may 

occur prior to binding of Roc A to PHB1 or simultaneously.  
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4.6.2 Prohibitin knockdown mimics the effects of Rocaglamide A on cell cycle 

progression 

Analysis of cell cycle distribution and status of cell cycle proteins in PHB1 deficient cells 

showed the same effects as they were seen for Roc A treated cells (Fig. 3.15 A, B). PHB1 was 

shown to physically interact with Raf and to be required for Ras-induced Raf-Mek-Erk 

activation (Rajalingam et al., 2005). Consistent with this data, we could show that knock-

down of PHB1 leads to a significant decrease of protein de novo synthesis (Fig. 3.15 C) and to 

reduction of Erk1 activity (Fig. 3.15 D). This is in line with data observed upon treatment 

with Roc A and other rocaglamide derivatives (Fig. 3.3 D; Zhu et al., 2007; Bleumink et al., 

2010). Therefore, these data strongly imply that PHB1 deficiency leads to translation 

inhibition via the downregulation of the Raf-Mek-Erk-pathway. This mimics the effects of 

Roc A on cell cycle progression and thus, displays the molecular mechanism of Roc A 

through which cell cycle proteins are downregulated that are needed for proper cell cycle 

progression.  

Further, E2F-mediated transcription is regulated via signal transduction pathways 

mediated by the family of Ras and Rho GTPase proteins (Coleman et al., 2004). Therefore, 

one would assume that interaction of Roc A with PHB1 might contribute to downregulation 

of E2F-target genes needed for proper cell cycle transition from G1 to S phase, such as 

MCMs, cyclin D, E and A and Cdc25A, amongst others (Dyson, 1998; Lundberg & Weinberg, 

1998). This would potentially add further evidence to explain the Roc A-mediated inhibition 

of proliferation and in particular the G0/G1 cell cycle arrest observed in the haematological 

cancer cell lines used in this study. However, this needs to be analysed in future quantitative 

PCR experiments.  
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4.7 Proposed model of anti-proliferative effects of Rocaglamide A  

The data discussed above demonstrate a model of anti-proliferative effects of Roc A 

through two independent pathways (Fig. 4). At the first instance rapid cell cycle arrest is 

induced via the Roc A-mediated downregulation of Cdc25A. This occurs immediately after 

exposure of the cells to the drug which induces a signalling pathway that resembles the 

DNA damage pathway. However, the molecular mechanism of induction of genotoxic stress 

remains so far unknown.  

Prolonged cell cycle arrest is induced by Roc A through its interaction with PHB1 which 

downregulates the Raf-Mek-Erk pathway (Fig. 4). Thereby, protein de novo synthesis is 

diminished that leads to decreased expression of cell cycle proteins.  

 

 

Figure 4 | Proposed model of anti-proliferative effects of Rocaglamide A. 

Upon Roc A treatment rapid cell cycle arrest is induced via the downregulation of Cdc25A. This is 
mediated through a signalling pathway that resembles the DNA damage pathway. Slow and 
prolonged cell cycle arrest occurs through the interaction of Roc A with PHB1 that leads to 
downregulation of translation and cell cycle protein expression.  
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4.8 Outlook: Rocaglamide A in anti-cancer treatment 

Many cancer cells show deregulated cell cycle progression with overexpression of 

positive regulators and inhibition of negative regulators, which gives them unlimited 

replication potential (Deep & Agarwal, 2008). In recent years, much effort has been made to 

develop new agents, which target the deregulated cell cycle and are considered as an ideal 

strategy for cancer therapy. Cell cycle based agents have been categorised as Cdk, Cdc25, 

checkpoint, and mitotic inhibitors. In particular, the crucial role played by Cdks in the 

control of cell cycle make them attractive pharmacological targets for the development of 

anti-proliferative cancer drugs (Senderowicz, 2004; 2005). Various strategies have been 

proposed to inhibit directly or indirectly the activities of these enzymes (Boutros et al., 2007). 

Direct inhibition is based on the use of competitive ATP analogues with well known 

compounds such as Flavopiridol, which targets Cdk1, Cdk2, Cdk4, Cdk6, Cdk7, and Cdk9, 

and Roscovitine, which targets Cdk1, Cdk2, Cdk7, and Cdk9 amongst many others (Lapenna 

& Giordano, 2009). Both were applied in phase I and II clinical trials in patients with various 

types of relapsed or refractory tumours, either alone or in association with currently used 

chemotherapeutic agents (Benson et al., 2007; Byrd et al., 2007).  

As activators of Cdks, Cdc25 phosphatases are obvious candidates for the development of 

approaches to indirectly inhibit Cdks and their associated effects on cell-cycle control 

(Boutros et al., 2007). Several Cdc25 inhibitory compounds have been reported, which belong 

to various groups, including quinonoids, phosphate surrogates, and electrophilic entities. 

Much effort has been made in the development of Cdc25 phosphatase inhibitors, especially 

during the past five years, and more than 40 patents were applied for which reported new 

applications of natural and synthetic compounds (Lavecchia et al., 2010). However, only very 

few Cdc25 inhibitory compounds have been shown to inhibit the proliferation of cancer cells 

efficiently and which are active in vivo on xenografted human tumours (Boutros et al., 2007; 

Lavecchia et al., 2010). Published data are limited to the BN82002 (Brezak et al., 2004), 

BN82685 (Brezak et al., 2005), IRC-083864 (Brezak et al., 2009) and PM20 (Kar et al., 2006) 

compounds, and therefore other approaches to target Cdc25 phosphatases and cell cycle 

progression need to be considered.  

In the underlying study it could be demonstrated that Roc A treatment leads to 

downregulation of Cdc25A protein levels, which is assumed to lead to cell cycle arrest and 

inhibition of cell proliferation. Inhibition of Cdc25A activity towards Cdks was not achieved 

by direct inhibition but rather via activation of cellular signalling pathways, which in turn 
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mediated Cdc25A downregulation. Compared to direct Cdc25 phosphatase inhibitors, 

rocaglamide derivatives were shown to exhibit potent anti-proliferative activities in vitro 

(Hayashi et al., 1982; Kim et al., 2006; Lee et al., 1998; Zhu et al., 2009) and to inhibit tumour 

growth in vivo (King et al., 1982; Lee et al., 1998; Hwang et al., 2004; Mi et al., 2006; Zhu et al., 

2009). Importantly, rocaglamide derivatives displayed only minor cytotoxic effects towards 

normal, healthy cells (Zhu et al., 2007), which suggests they could form the basis of new and 

promising anti-cancer dugs. 

Treatment of haematological cancer cells with 50 nM Roc A resulted in pronounced cell 

death induction after 48 h (Fig. 3.1 C). In contrast, colorectal cancer cells HT-29, prostate 

cancer cells PC-3 and breast cancer cells Mcf-7 displayed only minor cell death after similar 

treatment for 48 h (data not shown). However, Cdc25A downregulation was observed in 

these cells after exposure to Roc A (Fig. 3.5), which indeed led to inhibition of cell 

proliferation (data not shown). Therefore, even growth inhibition of solid tumours can be 

achieved by Roc A treatment, which increases its potential to be applied in further 

development as a new anti-cancer drug. 
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Abbreviations 

4E-BP1 eIF4E-binding protein 

53BP1 p53-binding protein 

9-1-1  Rad9 – Rad1 - Hus1 

Ab antibody 

AICD activation-induced cell death 

AIDS acquired immunodeficiency syndrome 

ALPS autoimmune lymphoproliferative syndrome 

ALL acute lymphoblastic leukemia 

AML acute myeloid leukemia 

Apaf-1 apoptosis protease-activating factor 1 

APC anaphase-promoting complex 

APS ammonium peroxidisulfate 

Asp cspartate 

ATM ataxia-telangiectasia mutated 

ATL adult T-cell leukemia/lymphoma 

ATP adenosine triphosphate 

ATR ataxia-telangiectasia and Rad3-related 

Bcl-2 B-cell lymphoma-2 

Bid  BH3 interacting domain death agonist 

Bim Bcl-2-interacting mediator of death 

BH Bcl-2 homology 

bp base pare 

BRCA1 breast cancer 1 

BSA bovine serum albumin 

CAK Cdk-activating kinase  

caspase cysteine aspartate-specific protease 

CD cluster of differentiation 

Cdc25 cell division cycle 25 

Cdk cyclin-dependent kinase 

c-FLIP cellular FLICE-inhibitory protein 
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CFSE carboxyfluorescein succinimidyl ester 

Chk checkpoint kinases  

CHX cycloheximide 

CKI cyclin-dependent kinase inhibitors 

Cip/Kip  Cdk interacting protein/Kinase inhibitory protein 

DMSO  dimethyl sulphoxide 

CREB cAMP responsive element binding factor 

cs catalytic subunit 

CTCL cutaneous T cell lymphoma 

CTD carboxyl-terminal domain  

DD death domain 

DDR DNA damage response 

DED death effector domain 

DISC death-inducing 138ignalling complex 

DMEM Dulbecco’s modified Eagle medium 

DNA desoxy-ribose-nucleic acid 

DNA-PK  DNA-dependent protein kinase 

dNTP deoxyribonucleotide 

Dox doxorubicine 

DR death receptor 

DSB double strand DNA break 

DTT dithiotreitol 

ECL enhanced chemiluminescence 

eIF eukaryotic initiation factor 

Erk extracellular signal-regulated kinase 

Etop etoposide 

FADD Fas-associated death domain protein 

FCS fetal calf serum 

FLICE FADD-like ICE 

h hour 

HDAC histone deacetylases 

HRP horseradish peroxidase 
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HTLV human T cell leukemia virus 

IAP inhibitors of apoptotic proteins 

IC50 inhibitory concentration 50% 

IgG immunoglobulin G class 

IĸB inhibitor of ĸB proteins 

IKK I-ĸB kinase 

IL interleukine 

IFN-γ  interferon γ 

Ink4a/Arf Ink4a/Arf (Inhibitor of Kinase 4/Alternative Reading Frame 

IP Immunprecipitation 

IR ionising radiation 

JNK c-Jun N-terminal Kinase 

kD kilodalton 

mAb monoclonal antibody 

MAPK mitogen-activated protein kinase 

Mcl-1 myeloid cell leukemia sequence 1 

MCM minichromosome maintenance  

Mdc1 mediator of DNA damage checkpoint 1 

min minute 

Mnk1 MAP kinase interacting kinase 1 

Mre11 meiotic recombination 11 

MRN  Mre11 - Rad50 - Nbs1 

mTOR mammalian target of rapamycin 

Nbs1  Nijmegen breakage syndrome 1 

NFAT nuclear factor of activated T cells 

NF-ĸB nuclear factor ĸB 

NGF nerve growth factor 

O/N over night 

ORC origin of replication complexes 

p- phospho- 

PAGE polyacrylamide gel-elektrophoresis 

PBS  phosphate buffered saline 
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PCD programmed cell death  

PI3K phosphoinositide-3 kinase 

Plk polo-like kinases 

PMA phorbol 12-myristate 13-acetate 

RNA  ribonucleic acid 

Roc A Rocaglamide A 

RPA replication protein A 

rpm  rotations per minute 

RPMI Roswell Park Memorial Institute medium 

pRB retinoblastoma protein  

pre-RC pre-replication complex 

RT room temperature 

SCFβTrCP Skp1/Cullin/F-box 

Ser serine 

SDS natriumdodecylsulfate 

siRNA  small interfering RNA 

Smac  second mitochondria-derived activator of caspases 

Smc1 structural maintenance of chromosome 1 

ssDNA single-stranded DNA 

TCR T cell receptor 

TEMED tetramethylethyl endiamin 

Thr threonine 

TNF Tumor Necrosis Factor 

TopBP1 topoisomerase (DNA) 2-binding protein 1 

TRAIL TNF-related apoptosis-inducing ligand 

Tyr tyrosine 

UV ultraviolet 

V Volt 

WB western blot 
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