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Konzepte für die effiziente Monte Carlo-basierte Optimierung von
Bestrahlungsplänen in der Radiotherapie

Monte Carlo (MC) Algorithmen zur Dosisberechnung gelten als Goldstandard in der
intensitätsmodulierten Radiotherapie (IMRT). Das einfache Hinzufügen von MC Do-
sisberechnungen in gängige Systeme zur Optimierung von Bestrahlungsplänen ist zwar
möglich, jedoch zu ineffizient und resultiert in zu langen Rechenzeiten für eine klinische
Verwendung. In dieser Arbeit wurde ein hybrider Optimierungsalgorithmus entwickelt,
welcher die Genauigkeit von MC Simulationen mit der Effizienz von weniger genauen
Algorithmen zur Dosisberechnung verbindet. Wir präsentieren zwei Methoden, die eine
schnelle Konvergenz des iterativen Optimierungsverfahrens erlauben und die Effizienz
der MC Dosisberechnung erhalten. Die Funktionsweise des hybriden Optimierungsalgo-
rithmus wurde an verschiedenen Körperregionen demonstriert. Die daraus resultierenden
Bestrahlungspläne werden gegen die Ergebnisse eines Referenzalgorithmus verglichen,
welcher auf MC Simulationen im gängigen IMRT Framework basiert. Neben verschiede-
nen Indikatoren zur Qualität der Bestrahlungspläne wurden Konvergenzeigenschaften,
Rechenzeiten und Effizienzen für diesen Vergleich ausgewertet. Die Effizienz der Op-
timierung konnte mit dem neuen Algorithmus von urspünglich 10–30 % auf 80–95 %
gesteigert werden. Aufgrund dieser Steigerung konnten wir – je nach Bestrahlungsplan
– die Rechenzeiten auf 2 bis 28 Minuten verkürzen. Dabei konnte im Vergleich zum
Referenzalgorithmus die Qualität der Bestrahlungspläne beibehalten werden.

Concepts for the efficient Monte Carlo-based treatment plan optimization in
radiotherapy

Monte Carlo (MC) dose calculation algorithms are regarded as the gold standard in
intensity-modulated radiation therapy (IMRT). Simply adding a MC dose calculation
engine to a standard IMRT optimization framework is possible but computationally in-
efficient. Thus, the optimization would be too time consuming for clinical practice. In
this work we developed a hybrid algorithm for the treatment plan optimization that
combines the accuracy of MC simulations with the efficiency of less precise dose calcu-
lation algorithms. Two methods are introduced that allow a rapid convergence of the
iterative optimization algorithm and preserve the efficiency of the MC dose calculation.
The performance of the hybrid optimization algorithm is analyzed on different treat-
ment sites. The results are compared against a reference optimization algorithm, which
is based on MC simulations in the standard IMRT framework. For this comparison we
evaluated several indicators of treatment plan quality, convergence properties, calcula-
tion times and efficiency ratios. The efficiency of the optimization could be improved
from originally 10–30 % to 80–95 %. Due to this improvement the calculation times
could be reduced to 2–28 minutes, depending on the treatment plan complexity. At the
same time, the treatment plan quality could be maintained compared to the reference
algorithm.
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1 Introduction

Radiation therapy is one of the three major columns for the treatment of localized cancer.
Depending on the type and progression of the tumor, it can be applied on its own or in
combination with chemotherapy or surgery. The aim of radiation therapy is to prevent
a further tumor growth by causing severe damage to the DNA of tumor cells.

Radiation therapy is the use of ionizing radiation for medical purposes. The first appli-
ance of X-rays for cancer treatment is dated back to end the of the 19th century. The
breakthrough of clinical radiation therapy was marked by the discovery of radioactivity.
Even nowadays, cobalt-60 sources are used in some treatment devices for the generation
of high energetic photons. In current state of the art devices however, the radioactive
source is replaced with a linear accelerator – also called linac – in which electrons are
accelerated to high energies in the range of several MeV. Due to a deceleration of these
electrons in a tungsten target (or other high-Z materials), a spatially broad photon
beam is created for the therapeutic appliance. These high energy photons transfer some
of their energy to electrons in the patient, which then interact with the tissue. This
interaction is responsible for a cascade of biological effects, including the controlled cell
death (apoptosis). In radiotherapy, the physical effect of the irradiation of a volume is
specified with the irradiation dose. It is defined as the absorbed energy in the volume
divided by its mass.

1.1 The treatment planning process

In clinical practice, a specific irradiation dose is prescribed to a target volume. According
to the ICRU report 50 (ICRU 1993), this target volume comprises the solid tumor
(gross tumor volume/GTV), the surrounding tissue with the microscopic spread of cancer
cells (tumor + spread = clinical target volume/CTV) and a safety margin to account
for organ motion and setup uncertainties of the patient (tumor + spread + margin =
planning target volume/PTV). The physical nature of photons and charged particles (e.g.
electrons, protons, heavy ions) and their interaction with matter prevent an irradiation
of the tumor only. Hence, the art of treatment planning is to find a trade-off between a
high homogeneous target dose while sparing dose in normal tissue as much as possible,
especially in organs at risk (OAR). Traditionally, the treatment plan creation was a
complicated manual and time consuming process. For each treatment plan a number of
decisions have to be made:
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• Decision about the number of incident beams and their directions as their super-
position can be exploited to reduce high doses in healthy tissue and to shape the
high dose region (Mackie et al. 1993).

• Decision about the geometrical field shape of each beam to achieve a target-
conformal dose distribution. The irradiation field can be adjusted to match e.g.
the outline of the tumor using a multileaf collimator (MLC).

• Decision about the relative weight (monitor units or irradiation time) of each beam.

• Decision about tolerated doses in organs at risk and minimum and maximum doses
for the target volume.

Hence, treatment planning was and still is a trial and error process. For a given set of
treatment parameters, a three-dimensional dose distribution is calculated by a computer
program. These parameters have to be adjusted repeatedly until the dose distribution
satisfies the clinical requirements. This manual process of treatment plan creation is
often referred to as forward planning (see figure 1.2(a)).

1.2 IMRT and inverse planning

The intensity-modulated radiation therapy (IMRT) was invented in the early 1980s
(Brahme et al. 1982). Due to the great advantages of IMRT compared to conventional

Figure 1.1: Scheme of the inverse planning principles. The desired 2-dimensional
fluence map is created by irradiating a sequence of different fields shaped with a mul-
tileaf collimator (MLC). An appropriate modulation of the fluence results in a target
conformal dose distribution. Image taken from H̊ardemark et al. (2003, RaySearch
white paper), RaySearch Laboratories AB, Copyright c© 2003
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1.2. IMRT AND INVERSE PLANNING

radiotherapy and not least due to the increasing computing power, IMRT is nowadays
widely used in clinical practice (Bortfeld 2006). IMRT extends 3D-conformal radiother-
apy by additionally modulating the intensity of each treatment field. The modulation of
the photon fluence is realized with a MLC in practice by either irradiating successively
differently shaped fields (step and shoot) or by dynamically adapting the velocity of
each leaf (dMLC). This fluence modulation process with an MLC is illustrated in figure
1.1. An alternative to a MLC for the fluence modulation are compensators, which are
blocks of absorbing material (e.g. brass or aluminum) with varying thickness. IMRT
incorporates many advantages in comparison to conformal radiotherapy: most impor-
tantly, IMRT allows the creation of dose distributions with concave target conformity
(Brahme 1988), for example for the treatment of horse shoe shaped targets like the
intrathoracic lymphatic system (Németh & Schlegel 1987) or the prostate.

The challenge in creating good IMRT treatment plans is to determine the fluence mod-
ulation for each beam, as the number of free parameters is enormous. The solution to
avoid the cumbersome and time consuming manual treatment plan creation is the algo-
rithmic optimization of the fluence patterns. This so-called inverse planning, which was
first described by Webb (1989), simplifies the manual iterative decision making process
described above. In inverse planning, the treatment planner derives organ doses con-
straints from the medical requirements. A fluence map optimization (FMO) algorithm
then tries to find the fluence map that matches these requirements best. To take ac-
count for the finite width of the MLC leafs and to reduce algorithmic complexity, the

OAR Target

?

!!

!
(a) Forward planning

OAR Target

!

??

?
(b) Inverse planning

Figure 1.2: Difference between forward and inverse treatment planning. In forward
planning, the beam parameters as e.g. the fluence maps are defined by the treatment
planner. A dose calculation algorithm then determines the corresponding dose distri-
bution. In inverse planning, dose constraints like the target dose and tolerated doses
in OARs are defined by the planner. An algorithm tries to find the fluence map, that
matches these constraints best.
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two-dimensional fluence map of each beam is discretized into small quadratic sub-beams
(illustrated in figure 1.1). In the following these sub-beams will be called beamlets.

During optimization, the plan quality is estimated by an objective function, which con-
verts the differences between a given dose distribution and the prescribed dose constraints
into a single value (Bortfeld et al. 1990, Spirou & Chui 1998). Then, the FMO algorithm
searches for the fluence weight configuration that minimizes this function. With the tool
of algorithmic optimization, the process of creating treatment plans is considerably sim-
plified and it is reduced to a selection of incident beam directions, beam energies, the
definition of the dose constraints and additional penalty factors, which penalize the vi-
olation of the dose constraints. For a “good” settings of these penalty factors and dose
constraints, this mathematically optimal treatment plan resembles an acceptable trade-
off between high tumor conformity and sparing organs at risk. Still, the finding of this
good set of penalty factors etc. is one crucial part of inverse planning and requires much
experience. The conceptual difference between the forward and inverse planning process
is depicted in figure 1.2.

Technically, each iteration of the optimization consists of two parts: calculating the dose
distribution of a given fluence map and evaluating its corresponding objective function
value. As each dose calculation algorithm incorporates however a systematic error, the
planned/optimized dose distribution and the actually delivered dose to the patient differ.
In particular at treatment sites with strong tissue heterogeneities, the relative error of
established dose calculation algorithms can exceed 20% (Scholz et al. 2003, Krieger &
Sauer 2005). In order to get reliable treatment plans for these body sites, more accurate
dose calculation algorithms have to used for inverse planning.

1.3 The need of Monte Carlo algorithms in inverse planning

The dose calculation with Monte Carlo (MC) simulations is considered one of the most
accurate techniques today (Chetty et al. 2007). Particle transport and scattering in the
patient and at the treatment head are accurately handled. Especially in low density
tissue like in the lung, traditional convolution based methods cannot achieve the accu-
racy of MC simulations (Scholz et al. 2003). It is known that for example pencil beam
algorithms significantly overestimate doses in the lung. As a consequence, lung tumors
would be severely underdosed with an optimized treatment plan that is based on pencil
beams. An example of the clinical effect of an inaccurate dose calculation algorithm is
shown in figure 1.3, which compares a planned dose distribution with the actually deliv-
ered dose of a lung treatment plan. In these cases, the inclusion of MC dose calculation
algorithms into the optimization process is highly desirable.

14



1.4. PROBLEMS OF THE MONTE CARLO-BASED INVERSE PLANNING

(a) Planned dose (b) Delivered dose

Figure 1.3: Example treatment plan of a lung tumor: the figure on the left shows
an optimized dose distribution based on the inaccurate pencil beam dose calculation
method. The dose recalculation by Monte Carlo simulation (b) reveals a significant
underdosage of the tumor of about 20 %.

1.4 Problems of the Monte Carlo-based inverse planning

Since MC methods are stochastic by nature, many particles (photons will be considered
as “particles” from now on) have to be simulated in order to achieve a low statistical
uncertainty of the dose distribution. The computation of a single dose distribution with
multi-purpose MC frameworks, such as EGSnrc (Kawrakow & Rogers 2001) or Geant4
(GEANT4 Collaboration 2003), can take several hours. To achieve clinically acceptable
dose calculation times, modern MC codes were developed in the last decade that utilize
a range of variance reduction techniques, such as XVMC (Kawrakow 1996), VMC++

(Kawrakow & Fippel 2000) and DPM (Sempau et al. 2000).

Fluence map optimization can be formulated as a convex optimization problem (Bortfeld
et al. 1990). Therefore, gradient based optimization algorithms are commonly used
(Bortfeld et al. 1990, Spirou & Chui 1998) as they usually converge faster than stochastic
optimization methods. In order to calculate the gradient of the objective function, the
dose contribution of each beamlet has to be known und thus requires a dose calculation
for each beamlet. In the case of MC algorithms, this calculation can be very time
consuming (Jeraj & Keall 1999) or require computing clusters for reasonable calculation
times (Bergman et al. 2006) and require the simulation of a high number of particles.
In many cases, the final fluence map contains elements with a zero weight, that is, the
irradiation will be blocked from those beamlets. This is often the case if an organ at
risk is placed before or behind the target inside the treatment beam. As a consequence,
simulated particles from these beamlets do not contribute to the dose distribution of the
optimized treatment plan. Therefore, many particles of the original dose calculation are
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wasted and the computation takes more time than necessary. It should be noted that a
waste of particle does not only originate from closed beamlets but also from beamlets
with a small fluence, as the number of simulated particles is higher than required.

In order to decrease computation time, waste of particles has to be avoided. The aim of
this work was to develop an optimization algorithm that increases the efficiency of the
treatment plan optimization by exploring the search space of the optimization problem
without simulating additional particles. Because a large number of patients are treated
each day in clinical practice, long calculation times of several hours are noneconomical.
For that reason, the ultimate goal of this work was to achieve clinically acceptable times
for the total MC-based treatment plan optimization of only a few minutes in combination
with the fast VMC++ package.
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2 Methods

2.1 Algorithmic Optimization

Optimization is part of our everyday life, even if we are not aware of it. Our navigation
systems find the shortest or the fastest route to our destination. Time schedules and
routes of bus lines are set in order to minimize delays and maximize the number of
transported people. The shape of our cars is tuned to reduce drag and fuel consumption.
Many systems on the financial market are built to maximize profit or minimize risk.
Even the basic physical principles can be understood as an optimization problem as
each (physical) system moves to the state of its lowest total energy. These are only a
few examples of an endless list.

Mathematically speaking, optimization is a minimization (or maximization) of a func-
tion. To optimize a real world problem, it has to be converted into a function first. In
navigation systems this function may be the traveling time, the length of the route or
even the expected fuel consumption. This so-called objective function depends on the
free parameters of the system. In our example the parameters are the roads and their
order that we should drive to get to our destination. However, the conversion of the
problem into an objective function is not always as obvious as it seems. Often, different
aspects have to be combined and trade-offs have to be made. Therefore, the quality of
the result of the optimization depends to a great extend on this modelling process.

Let f(~x) be the objective function of n free parameters that are combined in the vector
~x ∈ Rn. Then, a general optimization problem can be formulated as follows (Nocedal &
Wright 1999):

min
~x
f(~x) subject to

{
ci(~x) ≥ 0, i ∈ I
cj(~x) = 0, j ∈ E

(2.1)

Here the functions ci(~x) are called constraints, which define the space in which the
function f should be minimized. We call this space the feasible region. It can be shown
that any optimization problem can be transformed into standard form (2.1). For example
maximization problems, which often occur in the financial business, can be transformed
into the standard form by simply multiplying their objective function with a negative
number.

Optimization problems can be divided into two classes: convex and global optimization
problems. In convex problems, the objective function has only one local minimum that
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resembles the optimal solution. All algorithms for these kinds of problems use basically
the same idea: they start at some initial point ~x0: From there they choose a search
direction that points downhill i.e. they go to a new point ~x1 in order that f(~x1) <
f(~x0). This strategy is continued, until the minimum is reached. On unconstrained
problems this minimum is reached, when the gradient of the objective function is zero
~∇f(~x) = 0. Some of the typical convex optimization algorithms are the steepest descend
method, the conjugate gradients, Newtons methods and quasi-Newton algorithms. The
objective function of global problems usually has a large number of local minima. If we
applied a convex optimization algorithm on a global problem, the optimization would
end up in a local minimum. To avoid this, algorithms for global optimization try to
explore the complete solution space in a stochastic fashion. Typical algorithms for global
optimization are genetic algorithms, simulated annealing and Monte Carlo sampling.

In radiation therapy, the optimization of the fluence maps can be modeled as a con-
vex problem (Bortfeld et al. 1990). Therefore only optimization algorithms for convex
problems will be further discussed.

A function f : S ⊂ Rn → R is convex on a convex set S if for any two arbitrary points
~x1, ~x2 ∈ S the function continues below a line spanning from (~x1, f(~x1)) to (~x2, f(~x2)).
This requirement can be mathematically expressed with

f (α~x1 + [1− α] ~x2) ≤ αf(~x1) + (1− α)f(~x2), ∀α ∈ [0, 1]. (2.2)

It can be shown that this expression holds if and only if the Hessian matrix H(~x) :=
~∇2
xxf(~x) of a twice differentiable function f(~x) is positive-definite at each point ~x ∈ S.

That is, if
~p>H(~x)~p > 0, ∀~p ∈ Rn 6= 0. (2.3)

2.1.1 The steepest descent method

Most of the convex optimization methods are iterative methods. In every iteration k a
direction ~pk is calculated at the current solution ~xk that defines the new path to explore.
Of course, in the function space this search direction ~pk has to point in a direction where
f is decreasing.

The most basic strategy is to choose the direction of the steepest descent. It can be
shown that this direction is given by the negative gradient ~p = −~∇f(~x) at the current
iterate ~x. Depending on the complexity of the optimization problem, this gradient can
be calculated either analytically, by finite differences or with automatic differentiation.
Giving this steepest descend direction, the next iterate ~xk+1 is determined by

~xk+1 = ~xk − αk ~∇xf(~xk), (2.4)

where the parameter αk is called the step-length. As a rule, this step-length αk is found
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by minimizing the function along the search direction ~pk, i.e.

min
αk

f(~xk + αk ~pk). (2.5)

This one-dimensional optimization is relatively easy to solve. It turns out that the
solution does not have to be exact. An approximate solution suffices for most of the
optimization algorithms. More details for efficient line search strategies can be found in
section 2.1.4.

In practice, optimization algorithms will not exactly reach the optimal solution but they
will converge against it. Therefore, the algorithm is usually terminated if the norm of
the gradient is small enough, i.e. if ‖~∇xf(~xk)‖2 < ε.

2.1.2 Newton’s method in optimization

For most optimization problems, the steepest descend method converges very slowly
and requires a large number of iterations. The reason is that it completely ignores the
curvature of the objective function (Nocedal & Wright 1999). Figure 2.1(a) illustrates
the convergence of the steepest descent algorithm on a quadratic function. The zig-zag
pattern is typical for the steepest descend method.

The idea of Newton’s method is to use the curvature information to calculate a better
search direction. At the current iterate ~xk a local quadratic model of the objective
function fqp(~x) is created by a second order Taylor expansion:

fqp
k (~p) := f(~xk) + ~∇xf(~xk)>~p+ ~p>∇2

xxf(~xk)~p (2.6)

The vector ~pk, which minimizes the quadratic model, will be the new search direction.
Fortunately, the optimization of a quadratic model can be analytically solved. Calculat-
ing the derivative of (2.6) and setting it to zero leads to the solution:

~∇pfqp
k (~pk) = ~∇xf(~xk) +∇2

xxf(~xk)~pk
!= 0 (2.7)

⇒ ~pk = −
[
∇2
xxf(~xk)

]−1 ~∇xf(~xk) (2.8)

The process of finding Newton’s direction is depicted in figure 2.1(b) on an one-dimen-
sional problem. At the current iterate ~xk a quadratic model (green) approximates the
objective function (blue). The position of the minimum of the parabola determines the
next iterate ~xk+1. If we look back at figure 2.1(a), it can be seen that contrary to the
steepest descent method, the newton-step instantaneously solves the problem since the
objective function is already quadratic. If the objective function f(~x) is continuously
differentiable and its gradient at the starting point ~∇xf~x0) 6= 0, the convergence of
Newton’s method or Newton based methods is quadratic (Nocedal & Wright 1999).
Practically this means that in each iteration of the algorithm the number of digits of
the current objective function value fk, that match the digits of global minimum f∗,
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Figure 2.1: Illustration of Newton’s method in optimization: Figure (a) compares
the convergence of the steepest descent method (red line) with Newton’s method
(green line) on the quadratic ellipsoid f(x, y) = 1

2x
2 + 2y2. The optimization starts

at (−7,−5). In this example, the steepest-descent method theoretically requires
an infinite number of iterations to reach the optimum at (0, 0). Practically after 5
iterations the solution is found. In contrast, the newton step instantaneously leads to
the exact solution. (b) illustrates how the next iterate is found in Newton’s method:
at the current iterate ~xk, a quadratic model (green) of the objective function (blue)
is built. The position of its minimum defines the next iterate ~xk+1.

doubles. However, if these conditions are not met, convergence to the minimum cannot
be guaranteed.

It should be noted, that it is not necessary to calculate the inverse of the Hessian matrix
∇2
xxf
−1. Instead, it is much more efficient to solve the linear equation ∇2

xxf(~xk)~pk =
−~∇xf(~xk) with the LU-decomposition or the conjugate gradient method (Hestenes &
Stiefel 1952). Still, Newton’s method has the disadvantage that the Hessian matrix
has to be calculated. While this may be an option for low-dimensional optimization
problems, the full computation of ∇2

xxf might be too expensive in terms of memory
requirements and calculation time on problems with a high dimension number.

2.1.3 Quasi-Newton methods: BFGS and limited-memory BFGS

Although Newton’s method has excellent convergence properties, it also implies impor-
tant disadvantages when it comes to high-dimensional real-life problems. Often, the
objective function is not differentiable twice in the complete feasible domain S. Also,
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an analytical representation of its second-derivatives is not always available. On n-
dimensional problems, the calculation of the Hessian ∇2

xxf with finite differences takes
about n2 evaluations of the objective function. This calculation is much too expensive
if the dimensionality is high.

Quasi-Newton methods create an approximation of the Hessian matrix without explicitly
calculating second derivatives. Only information of the iterates ~xi and their gradients
~∇xf(~xi) are used to calculate and update this model of the Hessian in each iteration of
the optimization. Similarly as for Newton’s method, a convex quadratic model of the
objective function at the current iterate ~xk is created:

fqn
k (~p) = f(~xk) + ~∇xf(~xk)>~p+ ~p>Bk~p (2.9)

Here, Bk ∈ Rn×n is a symmetric positive-definite matrix that acts as an approximation
of the current Hessian ∇2

xxf(~xk). Herewith, the search direction ~pk is given by the
vector that minimizes this objective function model and therefore solves the equation
Bk~pk = −~∇xf(~xk).

The BFGS method for the calculation of the matrix Bk (Broyden 1970, Fletcher 1970,
Goldfarb 1970, Shanno 1970) is probably the most popular quasi-Newton variant. It was
proven that the convergence of the BFGS method is superlinear. That is, the rate of
convergence lies between the steepest descent method and Newton’s method. Because
there is no curvature information available, the general idea of this method is that the
gradients of the quadratic model fqn

k (~p) should match the gradients of f at the last two
iterates ~xk and ~xk−1. These two conditions can be written as

~∇pfqn
k (0) = ~∇fk

!= ~∇fk, (always true, p = ~xk − ~xk = 0) (2.10)

~∇pfqn
k (~xk−1 − ~xk) = ~∇fk +Bk(~xk−1 − ~xk)

!= ~∇fk−1. (2.11)

If we rewrite the second expression, we get the so-called secant equation:

Bk(~xk − ~xk−1) = ~∇fk − ~∇fk−1. (2.12)

Because Bk has to be positive-definite, the secant equation has only a solution if (~xk −
~xk−1)>(~∇fk − ~∇fk−1) > 0. If this is not the case, Bk is usually reset to the unit matrix
(Nocedal & Wright 1999) and ~pk gets the steepest descent direction. The secant equation
(2.12) is however not very strong as it is underdetermined. Hence, there are almost an
infinite number of solutions. To limit the number of possible solutions, the BFGS method
additionally forces this matrix to be as close as possible to the matrix of the previous
iteration Bk−1. That is, a symmetric positive-definite matrix Bk has to be chosen that
minimizes the Frobenius norm ‖Bk − Bk−1‖ and fulfills the secant equation. A final
requirement for the BFGS update is that the change of the model matrix Bk − Bk−1

should be a symmetric rank-2 matrix. If we define the vectors ~sk−1 := ~xk − ~xk−1 and
~yk := ~∇fk − ~∇fk−1, then the BFGS update that satisfies all these requirements is given
by

Bk = Bk−1 −
Bk−1~sk−1~s

>
k−1Bk−1

~s
>
k−1Bk−1~sk−1

+
~yk−1~y

>
k−1

~y
>
k−1~sk−1

. (2.13)
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A more detailed derivation of this formula can be found in Nocedal & Wright (1999,
pp. 194). The initial model matrix B0 is often set to the unit matrix if no additional
information about the problem and its scaling exist. In comparison to the calculation of
the true Hessian, the computation of the BFGS update (2.13) is light-weight and can be
executed very efficiently. Instead of first calculating Bk and then solving Bk~pk = −~∇fk,
the inverse Matrix B−1

k can be directly determined by applying the Sherman-Morrison-
Woodbury formula (Sherman & Morrison 1950, Woodbury 1950) to the update formula
(2.13). This makes the calculation of the search direction ~pk even simpler.

Despite the computational efficiency in calculation speed, there is still the problem that
the storage of the model matrix B requires a lot of memory for a large number of
dimensions. The limited-memory BFGS method (Nocedal 1980) solves this problem by
calculating directly the product −B−1

k
~∇fk on the fly from the recent iterates ~xi and the

corresponding gradients ~∇fi. Obviously, a history of these iterates and the gradients
has to be stored, in order to execute the computation. Fortunately the algorithm even
shows super-linear convergence if not the complete history is stored but only the last
m iterations. The typical number of stored iterations is m = 5 . . . 10. An outline for
the recursive calculation of −B−1

k
~∇fk is presented in algorithm 2. We would like to

refer to Nocedal & Wright (1999, pp. 224) for the derivation of this calculation. The
limited-memory BFGS (L-BFGS) method requires the storage of only 2n ·m values. For
a high number of dimensions n and a moderate history size m this is much less than the
requirement of the standard BFGS method, which has to store n2 values. The complete
L-BFGS optimization method is presented in algorithm 1.

Algorithm 1 Limited-memory BFGS algorithm for unconstrained optimization
set the starting parameters for ~x0

compute f0 ← f(~x0) and ~∇f0 ← ~∇xf(~x0)
k ← 0
while ‖~∇fk‖2 > ε do

calculate BFGS direction ~pk according to algorithm 2.
~xk+1 ← ~xk + αk~pk, where αk is determined by a line search
compute fk+1 ← f(~xk+1) and ~∇fk+1 ← ~∇xf(~xk+1)
calculate ~sk ← ~xk+1 − ~xk and ~yk ← ~∇fk+1 − ~∇fk
if ~y>k ~sk > 0 then

insert ~yk and ~sk into l-BFGS history. If history is full, remove oldest element first.
else

clear l-BFGS history
end if
k ← k + 1

end while
return ~xk
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Algorithm 2 Recursive calculation of the search direction ~pk = −B−1
k
~∇fk with the

limited-memory BFGS update, adapted from Nocedal & Wright (1999, p. 225)

~pk ← −~∇fk;
for i = k − 1 . . . k −m do

αi ←
(
~s
>
i ~pk

)(
~y
>
i ~si

)−1
;

~pk ← ~pk − αi~yi;
end for

~pk ←
~s
>
k−1~yk−1

~y
>
k−1~yk−1

~pk

for i = k −m. . . k − 1 do

β ←
(
~y
>
i ~pk

)(
~y
>
i ~si

)−1
;

~pk ← ~pk + ~si(αi − β);
end for
return ~pk

2.1.4 Line search strategies for unconstrained and box-constrained
optimization

After the calculation of a search direction ~pk according to one of the presented schemes,
a so-called line search has to be performed that minimizes the function f(~x) along this
direction. This one-dimensional optimization problem can be formulated as

αk = argmin
α>0

f(~xk + α~pk). (2.14)

It turns out, that the steepest descent and the BFGS method do not need an exact
line search. It is adequate if the parameter αk provides a “sufficient” decrease of the
objective function. Still an inaccurate line search is required for two reasons:

1. Too long steps have to be prevented: the minimum of this 1-d problem can be
overshot by far. In this case, the objective function f(~xk + αk~pk) can be even
larger than f(~xk). Amplifying oscillations would be the result and convergence
would be destroyed.

2. Prevent too short steps: although short steps will keep convergence intact, the
optimization will have a very slow convergence rate.

To prevent too long steps, the step-length α has to provide a sufficient decrease in f .
This can be expressed by the Armijo-condition

f(~xk + α~pk) ≤ f(~xk) + αc1
~∇xf(~xk)>~pk, c1 ∈ (0, 1). (2.15)

The interpretation of this equation is the following: the right hand of the Armijo-
condition is a linear function with a slope that is less steep than the slope of the objective
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(a) (b)

Figure 2.2: Illustration of the Armijo-condition (a) and the Wolfe-condition (b). In
combination, they prevent too long and too short step sizes α during the line search.

function along ~pk. The latter is given by the directional derivative ~∇xf(~xk)>~pk. Thus,
only those step lengths α are accepted where the objective function is located “under”
this line. The parameter c1 defines the steepness of the line. Usually, it is set to a small
value of e.g. c1 = 10−4. The Armijo-condition is illustrated in figure 2.2(a).

The second requirement for the line search is to prevent too short steps. This can be
realized with the Wolfe-condition, which is given by

~∇f(~xk + α~pk)>~pk ≥ c2
~∇f(~xk)>~pk, c2 ∈ (c1, 1). (2.16)

This condition forces the step-length α to come closer to the minimum because the slope
of f at a given step-length has to be larger (less steep, because ~∇f>k ~pk is negative)
than some threshold (see figure 2.2(b)). This threshold is defined by the directional
derivative ~∇f>k ~pk times a factor c2 ∈ (c1, 1). For quasi-Newton and Newton methods
this parameter is set to a relatively high value of c2 = 0.9 (Nocedal & Wright 1999),
which means that this condition is not very strong.

The drawback of the Wolfe-condition (2.16) is that the gradient of f along the search
direction has to be evaluated for each α. Often, the gradient calculation is computation-
ally very expensive. The standard method that prevents the calculation of gradients is
known as back-tracking, which starts from an initially high step-length αmax. Then, the
step-length is iteratively decreased until the Armijo-condition (2.15) is met. In Newton
and quasi-Newton algorithms the maximum step-length is normally set to αmax = 1,
because we expect the minimum of f along the search direction pk to be at about α = 1.

Later it will be shown that the treatment plan optimization has to be modelled as
a constraint optimization problem, where one forces the free parameters (the fluence
weights) to be greater or equal zero. These type of constraints are called box constraints,
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Figure 2.3: Illustration of the line search with boundary constraints. The search
direction ~pk points into the infeasible region from the current iterate ~xk. When
the boundary is crossed, the vectors are projected onto the boundary. Thus, this
one-dimensional search is performed on the red path.

which can be generally described by

li ≤ xi ≤ ui, ∀i = 1 . . . n. (2.17)

During optimization it has to be ensured, that all iterates lie in the feasible region which
is defined by the lower bounds ~l and the upper bounds ~u. Suppose, the current iterate
~xk is located near to one of the bounds and the search direction ~pk points towards this
bound. Then, there is a high chance that this bound will be violated during the line
search. To prevent the violation of the constraints, the vector ~xk +α~pk is projected into
the feasible domain (i.e. into the box) by a projection operator

P (~x)i :=


li, if xi < li

xi, if li ≤ xi ≤ ui
ui, if xi > ui

. (2.18)

With this projection method, the line search changes to

min
α>0

f(~P (~xk + α~pk)) (2.19)

for box-constraints, which ensures that the objective function is only evaluated in the
feasible region. It should be noted, that the direction of the line search is changing
when one of the boundaries is reached, i.e. a constraint becomes active. Hence, at the
beginning of the line search, there will be an effective search direction ~P (~xk + ~pk)− ~xk,
which differs from ~pk. This has to be considered for the formulation of the Armijo-
condition that includes the slope of f along the search direction ~pk. The pseudo-code
for the back-tracking line search with box constraints can be found in algorithm 3.

2.2 Treatment plan optimization in IMRT

The aim of optimization in intensity modulated radiation therapy is to find the intensity
configuration for each beam direction that satisfies the medical requirements as good as
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Algorithm 3 Back-tracking line search with box-constraints
α← αmax

set backtracking factor b ∈ (0, 1)
sk ← ~∇f>k

(
~P (~xk + ~pk)− xk

)
while f(~P (~xk + α~pk)) > fk + αc1sk do
α← α · b

end while
return α

possible. In the IMRT approach each beam is partitioned into small rectangular sub-
beams that we call beamlets. Each of these beamlets has a corresponding weight/intensity
that has to be optimized. The dimensionality of optimization problems in IMRT is
comparably high. Typical values for the number of beamlets n vary from 100 up to
10000, depending on the number of incident beams, the beamlet size and the volume of
the target. In proton therapy, the dimensionality can be even higher. The combination
of the weights of all beamlets is called a fluence map, which we denote with the vector ~w.
During optimization the fluence map ~w is iteratively changed until the irradiation dose
~d(~w) satisfies the target dose prescriptions and the tolerances for organs at risk (OAR)
doses.

2.2.1 Mathematical formulation of inverse planning

In the IMRT optimization framework, the quality of a treatment plan is quantified with
an objective function. This objective function measures the violations of the treatment
constraints in each voxel of the patient. Typical clinical constraints are:

• Minimum and maximum doses for the target volume (tumor).

• Maximum tolerated dose for an OAR.

• Dose-volume constraints for OARs.

• Biologically motivated constraints for OARs as e.g. the equivalent uniform dose
(EUD) (Niemierko 1999).

The widely used objective function quadratically sums up the differences between the
prescribed/tolerated dose and the actual dose value of each voxel i (Brahme 1988, Bort-
feld et al. 1990, Spirou & Chui 1998):

f(~d) :=
∑
i

pi(di) (di − dpi )
2 (2.20)

In this equation the parameter pi is a factor that penalizes a dose deviation from its
prescribed dose dpi . For each volume of interest (VOI), a penalty factor is set by the
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treatment planner to indicate the priorities of the clinical goals. Suppose, the voxel
index i belongs to the VOI v whose penalty factor for underdosage is pvu and pvo for
overdosage. Accordingly, there are the dose threshold values dvo and ddu that define
over- and underdosage. If v belongs to an OAR, the lower dose threshold ddu is set to
zero. With these definitions, the penalty factor of each voxel i is given by

pi(di) :=


pvo, if di > dvo

0, if dvu ≤ di ≤ dvo

pvu, if di < dvu

. (2.21)

Accordingly, the prescribed dose per voxel dpi is set to the upper dose threshold dvo on
overdosage and to the lower dose threshold dvu on underdosage. For some organs it
is clinically important that some fraction of the organ does not exceed a specific dose.
These kind of clinical goals are called dose-volume constraints. We implemented these
constraints into the optimization with the same formalism of prescribed dose values
and penalties (Spirou & Chui 1998): suppose a dose-volume constraint is violated so
that more than p% of the organ v receives a dose greater than dc . Then each voxel,
whose dose exceeds dc, gets a prescribed dose of dc with a penalty factor of pvo. In
our implementation each organ can have up to five different dose-volume constraints.
A detailed description of this inclusion of dose-volume constraints into the optimization
framework is given by Bortfeld et al. (1997).

The objective function 2.20 can be reformulated as

f(~d) = (~d− ~dp)>P (~d)(~d− ~dp), (2.22)

where P is a diagonal matrix with the voxel penalty factors on its diagonal, i.e. Pii = pi.

If we neglect some effects like photon scattering at the leaf edges, inter-leaf leakage and
the tongue-and-grove effect, the dose distribution ~d is a linear function of the fluence
weights ~w and can be characterized by the linear equation

~d(~w) = J ~w. (2.23)

The so-called dose-influence matrix J contains the normalized dose contribution of each
beamlet to the total dose distribution ~d. The advantage of this method is, that the
dose calculation is simplified to a matrix-vector-product which can be calculated very
efficiently. The matrix is usually calculated with a dose calculation algorithm once per
patient prior to the actual optimization loop. With the linearized dose function, we can
denote optimal fluence ~w∗ as the solution of the actual optimization problem:

~w∗ = arg min
~w≥0

(J ~w − ~dp)>P (~d)(J ~w − ~dp) (2.24)

The positivity of ~w is a physical constraint because a “negative fluence” cannot be
realized (that is, it is impossible to remove irradiation dose). In the following this
optimization problem (2.24) is called fluence map optimization (FMO).
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2.2.2 Convexity of the FMO problem

The definition of convexity was already given in equation (2.2) which is equivalent to
the positive-definiteness of the Hessian matrix ∇2

xxf over the feasible domain. The first
and second derivative of our objective function (2.24) are given by

~∇wf(~w) = 2
(
J>PJ ~w − J>P ~dp

)
(2.25)

∇2
wwf(~w) = 2J>PJ. (2.26)

To prove convexity, we show that ~p>
[
∇2
wwf(~w)

]
~p > 0 for all ~w ≥ 0 and ~p ∈ Rn 6= 0:

~p>
[
∇2
wwf(~w)

]
~p (2.27)

= 2~p>J>PJ~p (2.28)

= 2~d(~p)>P ~d(~p) (2.29)
≥ 0, ∀~w ∈ Rn

+, ∀~p 6= 0 (2.30)

The last conclusion holds due to positive-semidefiniteness of the diagonal matrix P as the
penalty values on the diagonal Pii are greater or equal zero. Up to now, we only prove
positive-semidefiniteness of the Hessian. If we suppose that there is some dose deposited
in the patient (~d(~w) 6= 0) and also some of the clinical constraints are violated, then
this expression is strict positive. If no constraints are violated and hence the matrix
P is zero, the problem could be formulated more aggressively by reducing for example
tolerated doses for organs at risk. Alternatively, the optimization can be simply halted.

�

2.2.3 The IMRT optimization cycle

Due to the convexity of the objective function (2.24), all the methods described in
section 2.1 can be directly applied to this problem. Because the objective function is
almost quadratic (there are some plateaus when a medical constraint is not violated),
quasi-Newton methods are well suited for the optimization. Due to the large number of
parameters/dimensions, the calculation of the Hessian matrix for Newton’s method is
too expensive with respect to calculation time and memory usage.

With the gained knowledge of algorithmic optimization, we created a general purpose
optimization library for the use in C++ programs. Our implementation of the limited-
memory BFGS algorithm is an adaptation of the bound-constraint BFGS of Kelley
(1999). The great convergence performance of the limited-memory BFGS algorithm on
IMRT problems was already demonstrated before (Pflugfelder et al. 2008). In addition
to the presented algorithms, we also created a wrapper for the famous NPSOL library
(Gill et al. 1984) for general constraint optimization and for the L-BFGS-B package (Zhu
et al. 1997) for box constraints.
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Figure 2.4: Optimization cycle in IMRT

The typical IMRT optimization cycle is presented in figure 2.4. Due to the linearization of
the dose function ~d(~w), the dose influence matrix J can be calculated before entering the
optimization loop. Not only the dose calculation in each iteration is faster by doing this,
but it also allows a strict decoupling of dose-calculation and optimization algorithms.
Independent of which optimization method is chosen, the optimization follows the general
scheme of figure 2.4. In each iteration the dose distribution ~d = J ~w of the current fluence
map ~wk is calculated first. With these data available, the objective function f(~d(~wk))
and its gradient ~∇wf(~d(~wk)) are computed. If we derive our objective function (2.24)
with respect to the fluence maps ~w, its gradient is given by the following equation:

~∇wf(~w) = 2
(
J>PJ ~w − J>P ~dp

)
(2.31)

⇔
[
~∇wf (~w)

]
k

= 2
∑
i

pi(di)

∑
j

Jijwj − dpi

 Jik. (2.32)

In each iteration, these gradients are used to calculate the search direction ~pk according
to an update scheme that depends on the optimization algorithm (see section 2.1). With
this search direction and the line search parameter αk, the fluence map is changed as
~wk+1 = ~wk + αk~pk. Convergence is detected if the relative change of the objective
functions falls below a threshold. That is, if

|f(~wk)− f(~wk−1)| < εf max (|f(~wk)| , 1). (2.33)

A second convergence criterion is the relative step size. The optimization stops, if

‖∆~w‖2 < εw‖~w‖2. (2.34)
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In our implementation, the threshold values εf and εw can be configured by the user.
Our current configuration uses εf = 10−5 and εw = 10−3.

Currently, the only hard constraint used in the optimization is the positivity of the
fluence map. The clinical goals are treated by the objective function as soft constraints
which are penalized on violation. Other hard constraints, like a maximum monitor-unit
limit are not included in the optimization at the moment. In order to limit the number
of monitor units, an alternative is to treat it as a soft constraint by inserting a term
into the objective function that penalizes the variance of a fluence map, as proposed by
Webb (2001).

2.2.4 Clinical plan quality vs. objective function

It is indisputable that the objective function is only a mathematical concept, trying
to convert a 3-dimensional dose distribution into one single number. Obviously, this
approach has its disadvantages:

• The objective function is not aware of local features of the dose distribution. There-
fore it is impossible to influence directly some part of the dose distribution for ex-
ample to reduce dose hot spots. A typical workaround is to give these local regions
different dose prescriptions or penalties by creating additional “virtual” OARs.

• Penalty factors are abstract. The quality of the resulting treatment plan depends
to a great extend on these factors. The right choice of these penalties requires
much experience.

• Inverse planning is not just “click & go”. Often many correction of dose prescrip-
tions, DVH-constraints and penalties have to be made in order to create a clinically
good plan. As a consequence, dose prescription values in the algorithm may be
different from the clinical goals; often they are tweaked to guide the optimizer in
the right direction.

• There is no connection between mathematical optimality of f(~d) and the clinical
optimality of the dose ~d. Also, after a certain number of iterations of optimization,
the clinical quality of a treatment plan is changing only marginally. However, the
further decrease of the objective function is caused by a “fine-tuning” of the fluence
map that often leads to unsmooth or noisy fluence maps.

• The created fluence maps are not directly deliverable. For the common step-
and-shoot irradiation mode, each 2-dimensional fluence map has to be converted
into a sequence of deliverable apertures. This step is called sequencing and is
often executed as a post-processing step only (Xia & Verhey 1998). In this case,
sequencing leads to a degradation of the treatment plan (Siebers et al. 2002).
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To give the treatment planner more control over the result of a treatment plan, IMRT al-
gorithms were developed with the multi-criteria optimization approach, where each VOI
has its own objective function (Hamacher & Küfer 2002). There, the optimization algo-
rithm creates a database of Pareto optimal treatment plans. After this calculation, the
treatment planner is able to intuitively navigate through the database with a graphical
user interface and hence has direct control over the dose of each VOI (Monz et al. 2008).
In comparison to the standard IMRT optimization algorithm, this approach is however
much more computing intensive.

To avoid the degradation of the treatment plan due to the leaf sequencing step, new
algorithms were proposed that directly incorporate only deliverable apertures into the
optimization. The so-called direct-aperture-optimization (DAO) is unfortunately not
convex. Therefore, the fast gradient based optimization methods do not lead to an
optimal solution. Instead, several methods from global optimization like simulated an-
nealing (Shepard et al. 2002) or a column generation approach from linear programming
(Romeijn et al. 2005) seem promising for the solution of this complex problem.

2.2.5 Compact storage of the dose influence matrix

Before entering the actual optimization loop (see figure 2.4), a dose influence matrix
is calculated that contains the dose contribution of each fluence element (beamlet) to
the total dose. However, the storage requirement for this matrix is huge: the complete
dose influence matrix with n voxels and m beamlets at floating point precision requires
4× n×m bytes of local memory. Thus, a typical treatment plan with 2003 voxels and
2000 beamlets would require 64 GB, which is far too much in comparison to the memory
size of current computers (about 4 GB). Because of the finite size of each beamlet and the
limited range of secondary electrons that lead to a dose smearing, the dose contribution
of each beamlet is locally bounded. Practically this means that there are many voxels
that do not receive any dose from the beamlet. Hence, the dose influence matrix J is
sparse.

Due to the size of J and its sparsity, current state-of-the-art algorithms do not store the
complete matrix but a list of dose values and indices, in which the dose contribution is
larger than zero. A typical dose cube has a size of up to 5003 ≈ 1.3 ·108 voxels. To store
the dose indices, a data-type has to be chosen that covers this range. Our version of
the inverse planning software KonRad (Preiser et al. 1998, Oelfke & Bortfeld 2001, Nill
et al. 2004), which is currently used for inverse treatment planning at the German
Cancer Research Center, uses 4 byte integers for the storage of the voxel indices. To
reduce memory usage, the dose values are discretized into 2 byte integers. That is, the
encoding of the voxel index takes twice as much memory than the actual dose value. If
the memory requirement of the voxel indices can be reduced, we could handle treatment
plans with an even larger number of beamlets or with a finer spatial resolution.
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Here we present a lossless compression method that reduces the required memory of
the stored voxel index to an average of only 1 byte. With the new method only 3
bytes are required for the storage of one dose element in comparison to 6 byte with the
old method. Therefore, the size of the dose influence matrix is halved. The problem:
with one byte per voxel index we can only encode voxel indices from 0 . . . 255. The
solution: we do not store absolute voxel indices but the difference to the previous ones.
Obviously, voxels with dose contributions are physically and spatially connected. Due
to the three-dimensional locality we conclude that the local connection also exists in the
one-dimensional memory model. If one voxel received a dose, its neighbors in memory
often also have dose values larger than zero. Still, there can be gaps between voxel
indices that are larger than 255 and hence cannot be encoded by one byte. In this case,
additional bytes are required to encode the difference to the previous voxel index.

The general idea is that the memory usage of each encoded index difference is dynami-
cally adapted. Because small index differences are more common than large differences,
their storage should require the least memory. To support this argument, the average
distribution of index differences in dose influence matrices is illustrated in figure 2.5. In
about 97% of the cases the difference of two consecutive dose indices is less than 192.
Let Ik, k ∈ 0 . . . n− 1 be the ordered list of the voxel indices with a dose dIk > 0. Then,
the list of index differences is defined by

∆Ik = Ik − Ik−1, and ∆I0 = I0. (2.35)

In our compression algorithm, the index differences are encoded as a list of 1-byte inte-
gers. The first bits of the current 1-byte integer determine, how many following bytes of
the list have to be read, in order to decode the current index difference. According to
the bit pattern of the current 1-byte integer bi, one of each rules have to be applied for
the decoding of ∆Ik:

1111xxxx If this pattern is discovered (the current integer is larger than 240), three
more bytes have to be read to decode the current ∆Ik. With four bits from the
current byte and 24 bits from the three following, we have in total 28 bits which
corresponds to a maximum voxel index difference of about 2.68 · 108. For dose
cube sizes currently used in treatment planning, this should be more than enough.
If the dose cube sizes are increasing in the future, this method can be adapted to
include more additional bytes.

11xxxxxx Bytes bi with 192 ≤ bi < 240 can be recognized by the bit pattern 11xxxxxx.
If this is the case, only one additional byte is read to decode the current index.
14 bits are available in total. However, if the first of the available bits is set, the
second must be zero. Else, we would have case one. Still, this allows the encoding
of integers up to a value of 12287.

else If we exclude all number with the first two highest bit set, we have a range of integer
values from 0 to 191. This is the most probable case, according to figure 2.5.
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Figure 2.5: Motivation for the binning scheme (0–191, 192–12287, 12288–) for the
compression/decompression of sparse dose cubes: illustrated is the distribution of the
index differences ∆Ik in dose influence matrices. These data where generated from
930 matrices with different sizes. Most index differences are smaller than 192 and
can be encoded with only 1 byte.

With these rules, the compression of an index difference list is straight-forward: if the
current voxel difference ∆Ik is smaller than 192, it is stored in one byte. However, if
it is larger or equal than 192 but smaller than 12288, the first two bits are “masked”
with ones and the following 14 bits can be used to encode ∆Ik. In the rare case of
∆Ik ≥ 12288, we set the first 4 bits of the first byte to one and use the remaining 28
bits for the storage of ∆Ik.

The presented method has one significant disadvantage so far. The decoding of the
voxel indices is a serial process because the computation of a voxel index Ik requires the
calculation of the previous index Ik−1 first. As a consequence, the algorithm cannot be
parallelized or used in the parallelized matrix-vector product for the dose calculation.
However, the method can be expanded with little sacrifice of memory usage if every
l−th voxel index of the list I is directly stored instead of saving the difference to its
predecessor. Due to the varying memory usage of each dose element, the position of
each so-called key index (every l−th index of the list) has to be calculated and stored
once. If l is chosen large enough, the additionally memory required for the storage of
the key index list and for the directly stored voxel indices is negligible. In the current
implementation of the optimization framework, we use a key index interval of l = 256.
With the list of key index positions, the key indices can be subdivided amongst all
threads. Then, each thread in a parallelized algorithm can decode a part of the whole
list by jumping directly to its assigned key index.

To evaluate the performance of the decompression algorithm, we compare the runtimes
for the dose calculation and for the calculation of gradients of the objective function with
and without compression. These measurement are performed on the sequential and the
parallel version of those calculations.
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2.3 Monte Carlo simulations

2.3.1 Random number generation from nonuniform distributions

At the heart of each Monte Carlo simulation is the generation of random numbers from
probability distributions. That is, each random event ~r has a certain probability p(~r).
In the following we will discuss methods, how to generate these random events that
obey such a probability distribution. The next methods require that there is access to a
(pseudo) random number generator that creates uniformly distributed random numbers
in the range (0, 1).

Direct/Analytical Sampling

Probably the most elegant method of drawing random numbers is direct sampling. Sup-
pose we have an analytical representation of the one-dimensional probability distribution
p(r). Its cumulative distribution function P (r) is then defined by the integral

P (r) :=
∫ r

−∞
p(t)dt. (2.36)

If P (r) is invertible and u ∈ (0, 1) is an uniformly distributed random variable, the
random number r = P−1(u) obeys the distribution function p(r) (Devroye 1986, pp.
27).

Consider the example of normally distributed random variables: the normal distribu-
tion is defined by p(r) := 1√

2π
e−

1
2
r2

. Calculating the integral (2.36), the cumulative
distribution function of p(r) is given by

P (r) =
1√
2π

∫ r

−∞
e−

1
2
t2dt =

1
2

(
1 + erf

(
r√
2

))
. (2.37)

If we invert this function, we get r =
√

2 erf−1 (2u− 1) and the variable r will be normally
distributed. The inverse of the error function can be calculated by a series expansion.
In practice, normally distributed random variables are generated by less computational
intensive methods. One popular method is the Box-Muller-Transform (Box & Muller
1958) that generates two normally distributed random variables r1, r2 from two uniformly
distributed variables u1, u2 at once.

The advantage of the direct method is that only one input random variable u has to
be drawn for each output random variable r. Thus, it has a maximum efficiency. The
disadvantage is that this method only works if the cumulative distribution function P (r)
is invertible. This is only the case in 1-dimensional sampling problems. Practically, the
analytical or numerical calculation of P (r) can be difficult, especially if the probability
function p(r) has poles or other pathologies.
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Rejection Sampling

The rejection sampling method (von Neumann 1951) can be also utilized on multi-
dimensional probability distribution functions p(~r). In the first stage the random vari-
able ~r is drawn by some arbitrary random number generator. In the second stage, the
algorithm decides according to its probability p(~r), whether to keep ~r or reject it and
draw another random number. Suppose the maximum probability pmax = max p(~r) is
known or can be calculated and u is an uniformly distributed random variable in the
interval (0, 1). Then the random variable ~r is accepted, if

u ≤ p(~r)
pmax

. (2.38)

The algorithm is repeated until some variable ~r is eventually accepted. This is also the
main drawback of the method: first, for each random variable ~r an additional random
number u has to be drawn for the decision process (2.38). Second, if p(~r) is very spiky,
a lot of trial numbers have to be drawn until some ~r is finally accepted. Thus, the
efficiency of the method depends mostly on the shape of p(~r) and can be very poor.

Markov Chain Monte Carlo

Markov chains describe systems that perform transitions from one state to another. The
next state (and/or its probability) depends only on the current state and not on the
whole system.

In the Markov Chain Monte Carlo (MCMC) sampling algorithm, the current value of the
sampling variable ~rc is interpreted as a state of a Markov Chain. Then, the probability of
a state transition to the variable ~r depends only on the probabilities p(~rc) and p(~r). One
of the most important MCMC sampling algorithms is the Metropolis-Hasting algorithm
(Metropolis et al. 1953, Hastings 1970). In this algorithm, the transition probability is
given by

pt(~rc → ~r) =
p(~r)Q(~rc, ~r)
p(~rc)Q(~r, ~rc)

. (2.39)

In this equation, Q(~rc, ~r) is the so-called proposal density function that is used to gener-
ate a proposal variable ~r. That is ~r is sampled from Q. The practical use of this function
is to avoid too large steps in the variable space from one random variable to another.
Consider the random walk as an example. Here, Q could be the normal distribution,
which practically limits the spatial distance ‖~r − ~rc‖2 to be smaller than 2σ in 96% of
the cases.

Given the transition probability function pt, the following steps are executed in the
MCMC algorithm:

1. Sample the proposal variable ~rp from the proposal density function Q(~rc, ~rp).
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2. Calculate the transition probability pt(~rc → ~rp) according to (2.39).

3. Draw an uniformly distributed random number u ∈ (0, 1).

4. If u < pt, accept transition (~r gets ~rp). Else, reject transition and keep current
state (~r gets ~rc).

In principle, the Metropolis-Hastings algorithm is similar to the rejection method. How-
ever, there are important differences: first, the new random variable ~r is set after only
one round of acceptance or rejection. This fact makes the Metropolis-Hastings algorithm
much more efficient. Second, there is no need to determine the maximum probability in
the variable space. Especially when sampling variables from a high-dimensional space,
it is not always possible to determine this maximum (in a limited time).

It should be noted however, that random variables from Markov Chain algorithms are
not statistically independent anymore but are highly correlated (Bishop 2006, section
11.2). Also, the distribution of the generated random numbers only converges against
p(~r) for a large number of samples.

2.3.2 Monte Carlo dose calculation

One important application of Monte Carlo simulations is the dose calculation in radia-
tion therapy. It is regarded as one of the most accurate dose calculation techniques in
radiation therapy. In terms of accuracy, only a novel technique that solves the Boltz-
mann transport equations is able to compete with Monte Carlo simulations (Vassiliev
et al. 2010). Other established dose calculation methods are based on analytic mod-
els and their accuracy is limited in cases with strong tissue inhomogeneities (Scholz
et al. 2003, Krieger & Sauer 2005). Depending on the type of radiation therapy the
tracks of either photons, electrons or protons are initially simulated through a virtual
representation of the treatment machine. The emerging particles are eventually trans-
ported through the patient and their interactions with the tissue are simulated. If
a particle undergoes an inelastic interaction, its transferred energy to the medium is
recorded and is finally converted into the irradiation dose.

The physical and mathematical theory behind Monte Carlo dose calculations is very
complex and its complete description will go beyond the scope of this work. Therefore,
just the basic principles of the theory are mentioned in the following. If the reader is
interested in more details, an excellent introduction into the topic is given by the Monte
Carlo book of Bielajew (2001).
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Figure 2.6: Example of a Monte Carlo simulation of a high energy photon beam
imping on a water phantom. Photons are depicted green, electrons red. Courtesy of
Georg Altenstein, created with Geant4 (GEANT4 Collaboration 2003).

Simulating particle-medium interactions in photon therapy

In radiation therapy with high energy photons, the particle interactions with the patient
can be practically limited to interactions of photons and electrons with matter. Most
of the particles emerging from a typical MeV linear accelerator are photons that were
initially generated in form of bremsstrahlung events, where electrons are stopped in a
target of tungsten or other high-Z materials. When these photons enter the patient,
they interact with the tissue by one of the interaction channels:

Photoelectric effect The dominant interaction for low energy photons is the photoelec-
tric effect. Photons are absorbed by an electron of an atom which then is emitted
by the atom as a consequence. The maximum kinetic energy of the emitted electron
is given by the energy of the photon minus the binding energy of the electron.

Inelastic scattering Also known as Compton scattering, this process removes an electron
from the atom. The initial energy of the photon is split up into the energy of the
resulting photon, the kinetic energy of the outgoing electron and the work required
to remove the electron from the atomic shell. In the medium energy range, where
this effect is dominant (about 100 keV - 10 MeV, depending on the material), the
binding energy of the electrons is negligible and therefore the electrons can be
considered as free.

Pair production If the energy of the incoming photon exceeds about twice the rest
energy of an electron (≈ 1022 MeV) the process of pair production gains impor-
tance. In this process the photon decays into an electron-positron pair. Due to
the conservation of momentum, pair production can only occur in the proximity
of a nucleus which can absorb the momentum of the photon. At high energies
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(> 10 MeV, depending on the material) this process is the dominant channel of
the photon-medium interactions.

Elastic scattering Elastic scattering of photons is also known as Rayleigh scattering.
The energy of the scattered photon remains the same. Rayleigh scattering often
occurs if the wavelength of the photon is large in comparison to the size of the
molecules in the medium. Rayleigh scattering occurs in the atmosphere and is the
cause of the blue color of the sky. Although the cross section of elastic scattering
is at least one order of magnitude less than the photoelectric cross section it is still
important for an accurate Monte Carlo dose calculation (Bielajew 2001).

In a typical Monte Carlo simulation, a list stores all particles, their position, direction,
energy and charge that are currently inside the simulated geometry. Initially, photons
from the particle source will be inserted into the list. Later, also secondary particles
that are produced by the interaction events will be added to the list. With this list of
particles, the Monte Carlo simulation of photons in the medium would then work as
follows (simplified):

1. Draw a photon from the list and get its energy, position and direction. If its energy
is smaller than a predefined threshold, this particle is “absorbed”. That is, the
particle is discarded and its energy is scored as a dose contribution to the current
geometry.

2. The distance z to the next interaction point is sampled from the distribution
p(z) = e−µ(E)z, where µ(E) is the energy dependent attenuation coefficient of the
material in the current geometry. If the medium is made up of compounds (which
is mostly the case), its mass attenuation coefficient µ/ρ is calculated first. With
the mass density ρ, the distance to the next interaction is sampled according to

p(z) = e
−

“
µ
ρ

”
ρz. The photon is discarded if the patient geometry is left.

3. One of the upper four interaction channels is sampled according to their relative
importance µi(E).

4. Finally, the directions and energies of the outgoing particles are sampled from the
differential cross section of the current interaction channel. The resulting particles
and their phase space properties are stored into the list of particles.

This algorithm is repeated until the list of particles is empty. Then, either new particles
from the source are inserted and the algorithm starts over, or the calculation is halted.

All these processes, except from Rayleigh scattering, create secondary electrons which
will themselves interact with the medium. Additionally, positrons are created by pair
production events. Therefore, also electron and positron interactions have to be modeled
in a Monte Carlo dose calculation algorithm. These are:

Electron-electron/positron scattering Electron-electron scattering, also called Möller
scattering, are events in which incident electrons collide with atomic hull electrons.
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Similar to this interaction is the electron-positron (Bhaba) scattering. However,
this type has one additional reaction channel, in which the electron-positron pair
annihilates to a photon which then decays back into an electron-positron pair.
Therefore, the cross section of the Bhaba interaction is larger than the cross section
of the Möller scattering.

Bremsstrahlung Each change in velocity of a charged particle results in the creation
of radiation. Particularly when electrons are decelerated by the electro-magnetic
field of a nucleus, so-called bremsstrahlung photons are emitted by these electrons.

Positron annihilation Another mode is the positron annihilation, where a positron re-
combines with an electron and creates a photon pair. This interaction typically
follows the pair production, where positrons were created.

The simulation of electrons is similar to the photon transport algorithm. There is how-
ever one important difference. The electron processes can be divided into hard and soft
events. Hard events are scattering processes with a large deflection angle. These are
handled by the same transport logic as in the photon case. Soft events are small angle
scattering processes. Usually, many of these soft events are statistically combined and
handled separately by a multiple scattering algorithm. That is, the path between two
hard events is subdivided into many sub-steps. Along these steps, a continuous slowing
down approximation is made from one sub step to another and a small scattering angle
is sampled from a theoretical probability distribution. This distribution can be derived
by multiple scattering theories such as the Molière theory (Molière 1947, Molière 1948),
which is used e.g. by the Geant4 toolkit (GEANT4 Collaboration 2003).

One of the main issues in Monte Carlo dose calculations is the virtual representation
of the patient. Theoretically, the material composition for each point in the patient
has to be known. Because this is not possible, a computer tomography (CT) image of
the patient is created prior to the treatment. This CT image is a three-dimensional
voxelized structure. Each voxel of the image represents the attenuation µ of the x-rays
in this point. The CT value of each voxel is stored in Hounsfield Units (HU), which are
defined by the relative attenuation of x-rays in a material compared to the attenuation
in water:

CTvalue :=
(

µ

µwater
− 1
)
· 1000 HU. (2.40)

Because the attenuation coefficient is normally the only information available for each pa-
tient, the actual tissue composition and materials inside the patient have to be “guessed”
from these data. One method was proposed in a paper by Schneider et al. (2000), which
provides a conversion table to convert HU values into material compositions and mass
densities. Thus, the accuracy of the Monte Carlo dose calculation depends to a great
extend on this conversion, which includes the type and the number of included mate-
rials (du Plessis et al. 1998, Verhaegen & Devic 2005). Another issue is the voxel size
dependency of the MC simulation: the larger the size of one voxel is, the more different
tissues are combined in one voxel and an additional error may occur (Smedt et al. 2005).
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Estimating dose uncertainties by batch statistics

The result of Monte Carlo calculations comes always with an error due to the stochastic
nature of the calculation. For many applications, not only the mean value of the physical
quantity but also its uncertainty has to be known. For example in radiotherapy, the
relative dose uncertainty in high-dose voxels should be small enough (e.g. less than 2 %)
in order to be clinically accepted (Chetty et al. 2007). One of the simplest but very
versatile and effective methods to estimate the uncertainty of a calculation is called
batch processing.

Batch processing splits up a calculation into a certain number of independent calcula-
tions, called batches. In order to provide statistically independent results, the random
number generator in each batch has to be initialized with a different seed (the initial
state of the random number generator). In the case of a MC dose calculation this means
that each batch simulates the same number of particles. Suppose N are the number of
particles to be simulated and there are M batches, then each batch simulates Nb = N/M
particles. The dose d̄i in each voxel and its uncertainty ∆d̄i then are given by the arith-
metic mean and the standard error of the mean

d̄i =
1
M

M∑
j=1

dji (2.41)

∆d̄i =

√∑M
j=1(dji − d̄i)2

M(M − 1)
. (2.42)

Obviously, this calculation gives only reliable results if the number of batches M is “large
enough”. Bielajew (2001, p. 57) recommends at least 30 batches for reasonable estimates
of ∆di. Our configuration of VMC++ uses 50 batches for the uncertainty calculation.

Combining multiple MC runs

Theoretically, the dose in each voxel is a linear function of the number of simulated
particles. The more particles are simulated, the more energy is deposited inside the
patient and the dose increases.

For practical reasons, this behavior is often changed in Monte Carlo simulations and the
dose distribution is eventually normalized by the number of simulated primary particles.
With this modification, the magnitude of the simulated dose distribution does not depend
on the number of particles but only its statistical uncertainty. The simulated particles
then do not act as physical particles anymore but have a certain statistical weight that
increases or decreases their effect. Therefore, these particles are often called histories
instead to emphasize their role in the simulation. To change the dose scaling, these Monte
Carlo dose calculation programs allow to specify the monitor units for each particle
source instead.
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With this modification, the combination of M multiple independent runs is straight for-
ward: if each simulation is calculated with the same number of particles, the combination
is given by their arithmetic mean

d′i =
1
M

M∑
j=1

dji . (2.43)

If the number of particles Nj for each run j is different, the resulting dose in each voxel
d′i is given by the weighted mean

di(N) =
M∑
j=1

Nj

N
di(Nj), withN :=

M∑
j=1

Nj , (2.44)

where di(Nj) is the calculated dose at voxel i by run j. If we apply error propagation
to this formula, we can estimate the statistical error ∆di(N) of the dose in each voxel:

∆di(N) =

√√√√ M∑
j=1

(
Nj

N
∆di(Nj)

)2

(2.45)

Here, ∆di(Nj) is the dose uncertainty in voxel i of run j that is estimated with e.g. batch
processing (as explained in the previous section). From this equation, an important rela-
tion between the number of particles and the dose uncertainty can be derived. Suppose,
the dose calculation is split up into N separate calculations. If we apply previous formula
to this case, we get

∆di(N) =
1
N

√√√√ N∑
j=1

(∆di (1))2 =
∆di(1)√

N
. (2.46)

Strictly speaking, this calculation is not correct because there are no statistics for sim-
ulations with only one particle. This equation holds however if we think of N separate
runs with an equal amount of particles instead. Still, we can conclude the important
and well known general relation

∆d(N) ∼ N−1/2. (2.47)

If this relation holds for the dose uncertainty in each voxel then it holds for the mean
uncertainty of a total dose distribution as well. With this proportionality, we can esti-
mate how many particles N are required in order to get a specific mean dose uncertainty
σ if a previous test run with Nref particles and a dose uncertainty σref was carried out:

N = Nref

(σref

σ

)2
(2.48)

When calculating dose distributions with MC algorithms, the treatment planner should
not be forced to specify the number of particles/histories. Instead, the desired uncer-
tainty of the final dose is usually specified (Chetty et al. 2007). Therefore, a MC dose
algorithm may perform an initial dose calculation with a small number of particles.
Then, the remaining number of particles can be approximated with the upper equation
in order to achieve the requested mean dose uncertainty.
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Smoothing dose distributions

Depending on the final uncertainty of a MC simulation, the visualization of the dose
distribution as dose plots and isodose lines might appear noisy or distorted. With noisy
dose data, local dose features like hot and cold spots can often be hard to identify as they
cannot be distinguished from the noise. One method to reduce the noise was presented
in the previous section, which was the calculation of additional particles. Due to possible
time restrictions, this may not always be a practical solution, because the reduction of
the uncertainty by a factor of 1/2 requires four times as many particles.

One fast alternative to reduce noise is the smoothing of the dose distribution. There
are a variety of smoothing algorithms for dose distributions and their performance was
compared in (Naqa et al. 2005). In this work we used an anisotropic diffusion based filter
whenever smoothing was required. Anisotropic diffusion is a standard image denoising
technique and was first described by Perona & Malik (1990). The advantage of this
method in comparison to standard filters is that it tries to preserve edges and steep gra-
dients. This is achieved by suppressing diffusion at pixels/voxels with a strong gradient
and increase diffusion at homogeneous image data. A diffusion coefficient is assigned
to each pixel, which depends on the size of gradients around the pixel: small gradients
result in large diffusion, large gradients in small diffusion coefficients. Mathematically,
diffusion can be described by the differential equation

∂

∂t
d(~x, t) = div

(
c(~x, t)~∇d(~x, t)

)
. (2.49)

Here, c(~x, t) is the time and spatial dependent diffusion coefficient that controls the
amount of diffusion at each point ~x in space. The image (dose distribution) is repre-
sented by the function d(~x, t). In the original paper, the two gradient-based bell-shaped
functions for the diffusion coefficient were proposed:

c1(~x, t) := e−(‖~∇d(~x,t)‖2/K)2
(2.50)

c2(~x, t) :=
1

1 + (‖~∇d(~x, t)‖2/K)2
(2.51)

The width K of the bell curves acts as a threshold for the gradients. If the size of the
image/dose gradient ‖~∇d(~x, t)‖2 is larger than K, the diffusion coefficients gets small
and diffusion will be suppressed.

The anisotropic diffusion technique was adapted by Miao et al. (2003) to incorporate
also the local dose uncertainty ∆d(~x) into the diffusion process. Herewith, the gradient
threshold K is a function of the spatial dose uncertainty and gets K(~x) = k∆d(~x). The
interpretation of the modified diffusion is simple: voxels with large uncertainty get a
large threshold value K. That is, the dose gradient in this voxel has to be relatively
large in order to suppress smoothing. If the dose uncertainty is already small, diffusion
will be reduced.
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The diffusion process (2.49) is iteratively computed by simulating diffusion in discrete
time steps ∆t. Details about the numerical diffusion calculation can be found in the orig-
inal paper. In the current implementation we are simulating 4 iterations of diffusion with
a threshold of k = 1.75, as proposed in (Miao et al. 2003). The time constant was set to
a lower value ∆t = 3/44 because we also incorporated gradient contributions from diag-
onals into the calculation. Our C++ implementation is based on the MATLAB R©code
by Lopes (2007), who proposed this time constant if gradients from diagonal voxels are
included into the calculation. For the calculation of the diffusion coefficient we chose the
Cauchy-Lorentz function c2(~x, t) as recommended in (Miao et al. 2003).

Objective function estimation from uncertain dose distributions

In the IMRT optimization cycle (section 2.2.3) objective function values are calculated
for each occurring dose distribution to quantify the quality of the treatment plan. If the
underlying dose distribution is however noisy – as it is the case in MC dose calculations
– its objective function value has an uncertainty.

Let ~d be a dose distribution; each entry of the vector corresponds to the dose of a voxel
in the patient. In addition, let ∆~d be the associated dose uncertainty in each voxel. In
section 2.2.1, the objective function was defined as the sum over the dose differences to
the prescribed doses in each voxel i:

f(~d) :=
∑
i

pi(di) (di − dpi )
2
. (2.52)

Suppose there is an underlying true dose distribution without any statistical error. If this
dose distribution is near to the optimal solution, many dose values di will be at close
distance to their prescribed dose values dpi . If we add noise to the dose distribution,
the distance to dpi will increase in many voxels and therefore the value of a quadratic
objective function will increase. In most cases, this objective function value is increasing
with increasing dose uncertainties and vice versa. In the following, we will describe
possible methods to estimate the objective function value of the “true noise-free dose
distribution” from noisy dose data. In MC-based treatment plan optimization, these
objective function values are highly interesting. These values allow to distinguish if an
objective function is decreasing because of an improved fluence map or if the decrease is
just an artifact due to a reduced dose uncertainty.

1. Gaussian error propagation The naive approach of approximating the uncertainty
of the objective function is given by the classical error propagation mechanism. If we
assume that the penalty parameters pi and dose prescriptions dpi are constant for small
variations of di, then the error propagation gives the following relation:

∆Gf(~d)2 ≈
∑
i

(
∂f

∂di
∆di

)2

=
∑
i

(2pi (di) [di − dpi ] ∆di)
2 (2.53)
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The Gaussian error propagation is derived from a first order Taylor expansion. That
is, it is only accurate if the objective function is “linear enough” at the current dose
distribution ~d. However, if this dose distribution is near to the optimal solution, this is
not the case anymore due to the following reason: the mean dose of one organ will be
approximately its prescribed dose and the dose values di inside this organ are scattered
around the prescribed dose. Many dose values will be close to the minimum of the
parabola (di − dpi )2. In this region, a first order Taylor expansion results in large errors
and therefore underestimates the variation of f induced by the uncertainties ∆di.

Because the objective function value of the noise-free dose distribution f(~dt) is always
smaller than the objective function value of the noisy dose f(~d), we approximate

f(~dt) ≈ f(~d)−
√

∆Gf(~d)2. (2.54)

2. Objective function approximation by dose smoothing Another method to evaluate
the objective function of the “true dose distribution” f(~dt) is to apply a smoothing
filter on the noisy dose distribution (see section 2.3.2). Since the smoothing reduces
the variance of the dose distribution but still preserves edges and strong gradients, the
resulting dose distribution ~ds is a better approximation of ~dt.

With the smoothed dose distribution, the objective function of the noise free dose dis-
tribution is given by the approximation

f(~dt) ≈ f(~ds). (2.55)

3. Objective function approximation with noise simulation A third method to ap-
proximate the objective function of the underlying “true dose distribution” is the sim-
ulation of noise. If ~dt is again this true dose distribution, a noisy dose distribution can
be simulated, by randomly adding or subtracting ∆di on each dose element dti. The
objective function value of this noisy dose distribution will be larger than f(~dt) due to
the reason described above.

However, the true dose distribution is unknown. Therefore we can only analyze the
impact on the objective function if noise is added on the already noisy dose distribution
~d. Let N (x) be a function that randomly returns x or −x and let ~N (~x) be its multi-
dimensional variant. Then the objective function of the current dose distribution ~d plus
noise is given by f(~d + ~N (∆~d)). If we finally assume that the absolute increase of the
objective function is constant (independent of the underlying noise), that is

f(~dt + ~N (∆~d))− f(~dt) ≈ f(~d+ ~N (∆~d))− f(~d), (2.56)

and also assume that the objective function values of the noisy dose distribution and
the objective function of the artificially created noisy dose distribution are the same
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(f(~dt + ~N (∆d)) = f(~d) ), we get the approximation for the objective function of the
true dose:

f(~dt) ≈ 2f(~d)− f(~d+ ~N (∆~d)) (2.57)

The assumptions made in this model are quite crude. Still, it will be shown in section
3.4 of the results chapter, that this method of noise simulation creates the best guess of
f(~dt) from all these three methods.

Dose calculation with VMC++

All dose calculations performed in this work were accomplished with VMC++ (Kawrakow
& Fippel 2000, Kawrakow 2001). It is one of the new generation Monte Carlo packages
for treatment planning that involve a variety of variance reduction techniques (VRT)
in order to increase the efficiency of the computation. With VMC++, a typical dose
calculation can be carried out in only a few minutes. In comparison, general purpose
Monte Carlo codes like Geant4 (GEANT4 Collaboration 2003) or EGSnrc (Kawrakow &
Rogers 2001) usually take several hours or even up to days for a dose distribution with
the same mean uncertainty.

The efficiency of a Monte Carlo algorithm is defined by

ε := (σ2t)−1, (2.58)

where σ is the statistical uncertainty of the variable of interest and t is the calculation
time required to achieve this accuracy (Bielajew 2001). The efficiency of a certain
MC-algorithm/implementation is a constant, because the calculation time t is linear in
the number of calculated particles/histories N and the uncertainty σ is proportional
to N−1/2 (see section 2.3.2). The aim of VRTs is to increase the efficiency by either
reducing directly the computation time or decreasing the uncertainty of the calculation.
Some of the VRTs – utilized in VMC++ – are:

STOPS Simultaneous transport of particle sets (Kawrakow & Fippel 2000, Kawrakow
2001) speeds up the calculation by transporting particles in sets of the same energy
and charge. The runtime reduction is achieved by calculating material indepen-
dent quantities as “interpolation indices, azimuthal scattering angels, distances
to discrete interaction, etc.” (Kawrakow 2001) once for all particles in one set.
Especially the runtime for multiple scattering simulation of electron tracks can
be substantially reduced. Other quantities that are material dependent, such as
multiple scattering angles and stopping powers, are calculated separately for each
particle of a set.

Photon splitting + Russian roulette When a photon undergoes an interaction, the re-
sulting photon (either scattered or created) is split into Nsplit “subphotons”, each
carrying now a statistical weight of 1/Nsplit. The range to the next interaction
point of the original photon is partitioned onto the subphotons. Herewith, the
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number of required random numbers per particle can be substantially reduced.
Often combined with photon splitting is “Russian roulette”. At some point, the
statistical weight of particles can become very small due the splitting technique.
When a sub-threshold weight photon interacts with the medium by e.g. the Comp-
ton process, the resulting secondary photon is only kept with a certain probability
α; else it is discarded. Because the energy in the system must be conserved, the
particle’s weight is multiplied with 1/α.

Quasi-random numbers Quasi-random number generators are created with the aim to
distribute the sequence of random numbers as evenly as possible over the space
of interest. Therefore, the calculation of the desired quantity (the dose) converges
faster compared to the same simulation with a pseudo-random number generator
(standard random number generator). With quasi-random numbers the dose un-
certainty σ gets smaller in comparison when calculating the dose distribution with
standard random numbers, even if both simulations are carried out with the same
number of particles. Thus, the efficiency increases.

The combination of these variance reduction techniques results in an efficiency increase
about a factor of 5–10 (Kawrakow & Fippel 2000).

The VMC++ package can be either used as a stand-alone program or as a library that
can be linked against user programs. We decided to use the second option to combine the
treatment plan optimization code with the Monte Carlo engine. In this mode, the user
program passes the patient CT as a mass-density cube. Because the CT image is stored
originally in Hounsfield units, it is first converted into mass-densities with Schneider’s
method (Schneider et al. 2000). The VMC++ code then internally converts the mass
density data into material compositions. The dose can be scored either as dose-to-water
or dose-to-medium. In all calculation made for this work, we followed the advice of Ma
& Li (2011) and used the dose-to-medium scoring technique.

The particle source model

The VMC++ Monte Carlo software package can be extended by external plug-ins. Typ-
ical plug-ins are user geometries and special particle sources. We implemented a basic
particle source for a direct simulation of an IMRT fluence map. Currently, the source
creates mono-energetic photons of 2 MeV. The particles emerge from a virtual photon
source with a distance dsad from the beam isocenter. The size of the virtual photon source
can be adjusted by changing the variance parameter of the Gaussian-shaped source.

The initial particles (photons) are sampled from the source according to the fluence map
~w and the primary fluence ψ(x, y). The unnormalized sampling probability of particles
from beamlet j can be expressed by the equation

pj = wjψ̄j , (2.59)
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Gaussian source

Fluence map

Figure 2.7: Illustration of the simple particle source model for fluence map simula-
tion

where ψ̄j is the mean primary fluence at beamlet j and wj is its fluence weight. The par-
ticles are sampled with the Metropolis algorithm (Metropolis et al. 1953, Hastings 1970),
which uses a Markov chain to model the transition probability between two beamlets.
The reasons for this choice from sampling algorithms are the following:

• Sampling probabilities do not have to be normalized. Thus we can sample even
from multi-dimensional probability distributions, where a normalization constant
is hard to calculate. For example, we could even extend the source model to sample
not even an average fluence per beamlet but the true fluence distribution, which
is a 2-dimensional sampling problem.

• Fewer random numbers are wasted than in the rejection method.

• It is fast because only little computation is required.

A potential drawback of the metropolis algorithm is that the number of sampled particles
per beamlet converges only for a large total particle number against the probability
distribution, defined by the fluence map. That is, the dose calculation of a fluence
map ~w gets an additional uncertainty due to a possibly incorrect fluence map sampling,
when simulating too few particles. This uncertainty is reduced, if one ensures that
the number of simulated particles is significantly larger than the number of beamlets.
Typical numbers of simulated particles with VMC++ are at least 2 · 105 and go up to
5 · 107 so that this premise is true in most cases.
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2.4 A reference FMO algorithm for MC based dose calculations

The Monte Carlo dose calculation algorithm is implemented into the standard IMRT
optimization framework. VMC++ is modified to allow a separate dose scoring for each
particle source and thus to calculate the dose influence matrix based on the patient CT
and the beam geometry. The number of particles in the simulation has to be set in the
input script. These number of particles then are equally partitioned onto all beamlets,
i.e. the same number of particles are simulated from each beamlet. The resulting dose
influence matrix is stored in two KonRad-compatible *.dij files, one for the dose values
and one for the dose uncertainties.

To reduce the number of dose elements to store in the dose influence matrix, we use
a dose-dependent sampling strategy (Thieke et al. 2002). This method determines,
whether a dose value is inserted into the dose influence matrix or not. First, the dose
values of voxels are stored that lie in a cylinder of radius r1, which is centered around
the central axis of the beamlet. On the other hand, all dose values from voxels that lie
outside a cylinder of radius r2 > r1 are discarded. For each voxel i that lies in between
both cylinders, a probability pi is calculated that determines if the value has to be stored
or not:

pi := di/d(r1) (2.60)

In this equation d(r1) is the dose at the point where the line from the central axis to
the current voxel i intersects the cylinder of radius r1. The dose value di is stored if
a random number r ∈ [0, 1] is smaller than pi. To conserve energy, each dose value is
divided by pi before storage. For our 2 MeV mono-energetic photon source (see section
2.3.2), the radii r1 = 3 cm and r2 = 7 cm are a good compromise between accuracy and
memory requirement.

We will see later that the dose influence matrix requires a minimal statistical accuracy
in order to get stable optimization results. To characterize the accuracy of the dose
influence matrix, we introduce the average dose uncertainty per beamlet σ̄bix. It is
defined by the arithmetic mean of the mean uncertainties of the dose distribution of
each beamlet:

σ̄bix := N−1
bix

∑
j

σ̄j , with (2.61)

σ̄j :=

√√√√√ 1

N j
50

∑
Dij>50% dmax

j

(
∆Dij

dmax
j

)2

(2.62)

In these equations, dmax
j is the maximum dose value of beamlet j and ∆Dij represents

the dose uncertainty in voxel i from beamlet j. Also, N j
50 is the number of voxels whose

dose value is larger than 0.5·djmax and Nbix is the total number of beamlets. This average
dose uncertainty per beamlet agrees with the general definition of the mean uncertainty
of a dose distribution (2.70).
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The precalculated matrix is then used by KonRad or our optimization framework for
inverse treatment planning. To estimate the error of the resulting dose distribution, we
apply the error propagation law to (2.23):

(∆di)2 =
∑
j

(∆Dijwj)2 (2.63)

The uncertainty of the objective function is estimated with the simulated noise method,
which was presented in section 2.3.2.

2.4.1 Why the reference FMO algorithm is inefficient

The precalculation of the dose influence matrix is elegant, because it decouples the dose
calculation from the optimization. When dealing with MC-based dose calculations, there
are however some problems with this approach:

• Each dose value has its uncertainty. Thus, the objective function is uncertain
too. In order to limit the convergence error of the optimization, the error of the
objective function has to be small enough. But before entering the optimization
loop, it cannot be estimated how many particles are required for the calculation
of the dose influence matrix to get a defined uncertainty of the objective function
in the end.

• In a forward MC dose calculation, the number of particles simulated by each beam-
let is proportional to its beamlet weight. Especially beamlets that were closed by
the optimizer (weights are zero) are completely ignored in the simulation. This
sampling strategy is optimal in terms of uncertainty reduction, because the dose er-
ror is dominated by dose contributions of beamlets with large weight wj (as implied
by (2.63)). When precalculating the dose influence matrix however, the number of
particles per beamlet is either constant or adjusted to get a fixed dose uncertainty
per beamlet (Jeraj & Keall 1999, Bergman et al. 2006, Siebers 2008) because the
optimal fluence map is not previously known. Thus, compared to the forward dose
calculation, too many particles are simulated from small weighted beamlets and
are therefore wasted. As a result, the standard FMO approach with a precalcu-
lated dose influence matrix requires much more particles and thus computation
time than necessary.

2.4.2 Efficiency of a MC based optimization algorithm

To quantify, how a MC based optimization algorithm performs in comparison to a for-
ward MC dose calculation, we define the optimization efficiency similarly as in (Laub
et al. 2000). Suppose the resulting dose distribution – which was created by an opti-
mization algorithm – has a mean dose uncertainty σ̄opt after simulating Nopt particles.
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Now suppose that the simulation of the same fluence map with a forward MC dose cal-
culation requires Nfw particles to achieve the same mean dose uncertainty. Then the
optimization efficiency ε is defined as the quotient of the particle numbers

ε :=
Nfw

Nopt
. (2.64)

This efficiency value can be even calculated if the mean dose uncertainties of the forward
dose calculation σ̄fw and the dose result of the optimization σ̄opt differ. Because the
mean dose uncertainty decreases with N−1/2 (see equation (2.48)), we can estimate the
number of particles to simulate in order to achieve another mean dose uncertainty. The
number of particles in a forward simulation that are required to achieve the same dose
uncertainty as the optimization is given by:

N ′fw = Nfw

(
σ̄fw

σ̄opt

)2

(2.65)

Hence, the general form of the optimization efficiency gets

ε =
Nfw σ̄

2
fw

Nopt σ̄2
opt

. (2.66)

Because each particle has the same statistical weight in the forward dose calculation
and contributes maximally to the decrease of the calculation uncertainty, the forward
dose calculation by MC simulation is the reference in terms of efficiency. Therefore
optimization efficiency values will be always smaller than 1. For the standard IMRT
cycle with a precalculated dose influence matrix, efficiency values of only 0.1–0.3 where
reported (Laub et al. 2000). This implies, that the reference fluence map optimization
method requires up to ten times more particles than a forward dose calculation of the
optimal fluence map.

2.5 A hybrid sequential algorithm for Monte Carlo based plan
optimization

In this section, we introduce an alternative to the reference algorithm that tries to avoid
the explained efficiency problems. The aim of this algorithm is to achieve clinically
relevant calculation times of only a few minutes in combination with the fast VMC++

code. This is done by minimizing the number of MC dose calculations and additionally
decreasing the dose uncertainty for each voxel in every iteration of the optimization.
The first aspect is addressed in section 2.5.1, where we calculate an optimized search
direction that allows the algorithm to walk to the optimum in only a few iterations. The
second aspect makes a dose recalculation after the optimization phase dispensable as the
resulting dose distribution will be indistinguishable from a forward calculated MC dose
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Figure 2.8: Flow diagram of the hybrid optimization algorithm. Explanations to
the steps of the algorithm can be found on the right side of the figure. ∗The initial
guess of the fluence weights can be either zero or a result of a previous fluence map
optimization using the dose model matrix Jmod.

distribution. Also, this dose update, which is executed in every iteration, is designed to
reuse already simulated particles as much as possible – i.e. it minimizes the “waste” of
particles. We call this strategy the incremental dose update and examine it in section
2.5.2. An overview of the algorithm is shown in figure 2.8.

2.5.1 Optimized search direction

In (Laub et al. 2000), the calculation of the gradients ~∇fw(~wk) = ~∇df(~d)TJd is ap-
proximated by calculating the dose influence matrix Jd with a less accurate pencil beam
algorithm. Therefore, a time consuming computation of this matrix with a MC dose
algorithm is avoided. The dose calculation itself, which is required for the evaluation
of the objective function, is purely Monte Carlo-based throughout the optimization.
The change of the fluence map ∆~wk is determined by a conjugate gradient calculation
(Hestenes & Stiefel 1952) in each iteration. Still, if the dose differences between the
pencil beam algorithm and the MC result are large, this optimization algorithm needs
a relatively high number of iterations to converge and therefore requires also a large
number of MC simulations.

Here, we propose a sequential optimization approach for the calculation of the search
direction that allows a faster convergence, without knowing the accurate dose influence
matrix. Inspired by Newton’s method/Sequential Quadratic Programming, the search
direction ∆~wk is a solution of a minimization problem in each iteration k: first, the
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dose is modeled around the current dose distribution ~d(~wk) with a linear hybrid dose
approximation:

~dmod
wk (∆~wk) := ~d(~wk) + Jmod

d ∆~wk ≈ ~d(~wk + ∆~wk) (2.67)

Here, the dose influence matrix Jmod
d is calculated with a simpler dose calculation al-

gorithm, for example with pencil beams. Then, the search direction ∆~wk is given by
minimizing the objective function (2.24) of this dose model – i.e. by solving the following
equation:

min
∆wk

f(~dmod
wk (∆~wk)) := min

∑
i

pi

([
Jmod
d ∆~wk

]
i
+ d(~wk)i − dpi

)2
s.t. ~wk + ∆~wk ≥ 0

(2.68)
This optimization tries to answer the following question: given the current MC-based
dose distribution ~d(~wk), what dose distribution should be added or subtracted in order to
get an optimal dose distribution with respect to the objective function? This additional
dose distribution is estimated with the model dose distribution Jmod

d ∆~wk. If the Monte
Carlo generated dose distribution ~d(~wk) is already optimal, no additional dose is required
and the resulting search direction ∆~wk will be zero. Then, the optimization stops.

For the optimization of the dose model we use the limited-memory BFGS algorithm
presented in section 2.1.3. This optimization can be halted after a certain number of
iterations because optimality is not necessary in order to find a good search direction.
Due to the super-linear convergence of the BFGS method (Broyden 1970, Fletcher 1970,
Goldfarb 1970, Shanno 1970, Liu & Nocedal 1989) we let the optimization run for max-
imum 30 iterations.

With the calculated search direction ∆~wk the fluence map is update according to ~wk+1 =
~wk + α∆~wk. Here, the step-length α is determined by a line search that minimizes
f(~d(~wk)+α~d(∆~wk)), subject to ~wk+α∆~wk ≥ 0. It should be noted that the information
from the dose model is only used to predict a good search direction. The dose calculation
for the current fluence map is always done by Monte Carlo simulation at the end of
each iteration. Because ∆~wk is predicted by a less accurate dose model, it cannot be
guaranteed that it will be a descent direction of f i.e. that the directional derivative
~∇f(~wk)T∆~wk is negative. If it is not negative, the optimization algorithm has to be
halted to avoid loops in the optimization. However, if the dose model (2.67) does not
differ severely from the Monte Carlo-simulated dose distribution, this case might only
occur in the terminal phase of the optimization.

Formally it can be shown, that our method of the optimized search direction can be
transformed into the hybrid optimization algorithm of Siebers et al. (2007) if the line
search parameter is fixed at α = 1. Sieber’s method repeatedly optimizes a pencil beam
dose distribution plus a correction term, which includes the differences of the pencil
beam dose distribution and the MC dose distribution from the previous run. In this
work a more classical optimization approach is chosen, where the change of the fluence
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weights is determined by a search direction. The advantage of this approach is that many
optimization concepts can be directly applied to our method. These concepts include
for example the line search and the downhill direction check.

2.5.2 Efficient incremental dose update

A Monte Carlo dose calculation samples the particles according to their probability
distribution. When simulating fluence maps directly this implies that the number of
simulated particles Nj of a beamlet is proportional to its fluence weight:

Nj = % ψ̄jwj (2.69)

Here, ψ̄j is the mean primary photon fluence of beamlet j, wj is its fluence map value,
and % is some constant which can be interpreted as the density of particles per unit
weight. To be efficient, an optimization technique for Monte Carlo dose engines should
utilize this optimal sampling strategy that minimizes the number of required particles
to simulate, given a desired mean uncertainty of the dose distribution. As a measure for
the mean dose uncertainty we use the definition of Kawrakow (2001):

σ̄ :=

√√√√ 1
N50

∑
di>50% dmax

(
∆di
dmax

)2

(2.70)

Here, ∆di is the absolute dose uncertainty in voxel i and N50 is the number of voxels
whose dose values di are larger than 50 % of dmax.

In each iteration k, the optimized search direction (section 2.5.1) returns a proposed
change of the fluence map; hence the fluence map is updated according to ~wk+1 =
~wk + ∆~wk. To keep efficiency high, the following strategy is pursued: As proposed by
Laub et al. (2000), the changes of fluence are handled by the algorithm by simulating
additional particles, i.e. only the dose of the fluence update ~d(∆~wk) is calculated. This
technique reuses previously simulated particles and fewer particles are therefore required
in each iteration. Assuming ∆~wk ≥ 0, the number of particles required for the dose
update calculation is ∆Nk = %

∑
j ψ̄j∆w

k
j . The particle density % has to be the same as

in (2.69). Let w̃j := ψ̄jwj be the effective beamlet weight and Nk =
∑

j N
k
j be the total

number of particles simulated for the dose distribution ~d(~wk) of the current iteration,
then we can rewrite this relation as

∆Nk = Nk

∑
j ∆w̃kj∑
j w̃

k
j

. (2.71)

The final dose distribution for the current iteration is the sum of the previous dose
distribution and the dose update:

d(~wk+1, Nk + ∆Nk) = ~d(~wk, Nk) + ~d(∆~wk,∆Nk) (2.72)
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Figure 2.9: Simulating negative weight updates by downscaling and compensation

This presented dose update will only maintain high efficiency if the fluence update
∆~wk is positive, because it is not possible to remove particles from a previous simu-
lation. To take account of negative changes in the fluence map, particles from such
beamlets are simulated with a negative statistical weight to remove dose. The sam-
pling probability for these particles then has to be |∆wkj |. Therefore, (2.71) changes to

∆Nk = Nk
(∑

j |∆w̃kj |
)(∑

j w̃
k
j

)−1
. With this strategy however, too many particles

are simulated for beamlets with a negative weight change in combination with the pre-
vious calculation. Thus, a fraction of particles from these beamlets are wasted and the
particle efficiency decreases. This implies that the density of particles per beamlet is not
constant anymore but is increased in these beamlets. To overcome this limitation and
maintain high efficiency, the current dose ~d(~wk) is scaled down by a factor sk and the
dose update has to compensate for the scaling (see figure 2.9). With this strategy the
dose update formula gets its final form

~d(~wk+1, Nk + ∆Nk) = sk · ~d(~wk, Nk) + ~d
([

1− sk
]
~wk + ∆~wk,∆Nk

)
, sk ∈ (0, 1] .

(2.73)

Due to the down-scaling, the particle density per unit weight increases by 1/sk and

gets % = Nk
(
sk
∑

j w̃
k
j

)−1
. Depending on the amount of the scaling sk, the mean dose

uncertainty decreases with each dose update during the optimization. To take account
for the scaling, the number of particles for the dose calculation of the compensated
weight-change (second part of (2.73)) gets:

∆Nk = Nk

∑
j

∣∣∣(1− sk)w̃kj + ∆w̃kj
∣∣∣

sk
∑

j w̃
k
j

(2.74)
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Specifying the amount of down-scaling

It seems intuitive, that the scaling factor is determined by the beamlet weight that gets
the largest relative (negative) change. However, there are situations, when the optimizer
puts one (or more) weight down to zero i.e. if wki + ∆wki = 0. In this case, the scaling
factor sk would be zero; the result of the previous dose calculation could not be reused.
Fortunately, because of the nature of the optimization algorithm, this only happens for
beamlets that had a relatively small weight before and thus had only minor contribution
to the total dose distribution. Therefore, we will concentrate only on beamlets with
“large” weight and negative change. Up to now, only a few particles were simulated for
beamlets with small weight. Therefore we can ignore if some of these few particles are
wasted. Hence, the decision about sk depends only on the subset of all beamlets defined
by

B̂k :=
{
j|wkj ≥ δwmax ∧∆wkj < 0

}
, wmax := max

j
(wkj ), δ ∈ (0, 1), (2.75)

where wmax is the largest element of the fluence map. In our implementation we us a
cut-off value of δ = 0.4. Given the subset B̂k we get for the scaling factor

sk = min
j∈B̂k

(
wkj + ∆wkj

wkj

)
. (2.76)

If B̂ is empty, e.g. if the weight change is positive for all beamlets, s will be set to one.

Limits for the scaling factor

Generally it is advisable to define minimum and maximum bounds for the scaling factor
s to have control over the number of particles to simulate. The minimum bound smin

limits the number of particles for the dose update, because a very small value of s
implies a much increased particle density per weight. Similarly, a maximum bound smax

can be utilized to reduce the mean dose uncertainty in every iteration. Therefore, this
upper bound is determined by the minimum number of particles and the lower bound is
determined by the maximum number of particles we want to simulate for the dose update
calculation. Given the minimum number of particles ∆Nmin and maximum number of
particles ∆Nmax acceptable for the dose update, the bounds for s can be derived as
follows:
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1) smin: We have to enforce, that ∆N ≤ ∆Nmax:

∆N = N

∑
j |(1− s)w̃j + ∆w̃j |

s
∑

j w̃j

≤ N

∑
j(1− s) |w̃j |+

∑
j |∆w̃j |

s
∑

j w̃j

w̃≥0=
N

s

[∑
j |∆w̃j |∑
j w̃j

+ 1

]
−N

=: ∆Nmax

⇒ smin =

[∑
j |∆w̃j |∑
j w̃j

+ 1

]
·
[

∆Nmax

N
+ 1
]−1

(2.77)

2) smax: We have to enforce, that ∆N ≥ ∆Nmin:

∆N = N

∑
j |(1− s)w̃j + ∆w̃j |

s
∑

j w̃j

≥ N

∑
j(1− s)w̃j +

∑
j ∆w̃j

s
∑

j w̃j

=
N

s

[∑
j ∆w̃j∑
j w̃j

+ 1

]
−N

=: ∆Nmin

⇒ smax =

[∑
j ∆w̃j∑
j w̃j

+ 1

]
·
[

∆Nmin

N
+ 1
]−1

(2.78)

In our implementation we use the fixed values ∆Nmax/N = 1.5 and ∆Nmin/N = 0.05 as
particle limits.

2.5.3 Line search with the incremental dose update approach

Because FMO is a box-constraint optimization problem with a lower bound of ~l = 0, the
adequate line search (section 2.1.4) minimizes f(P (~w+α∆~w)). Here P is the projection
operator that was already defined in that section. It ensures that the objective function
is evaluated only in the allowed region Ω := {~w ∈ Rn|~w ≥ 0}. Due to the definition
of the optimized search direction, the possibly new weights ~w + ∆~w are feasible too.
Because ~w is feasible and the solution space Ω is convex, each vector on the straight line
between ~w and ~w + ∆~w is also feasible; that is, (~w + α∆~w) ∈ Ω, α ∈ [0, 1] and P gets
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the identity operator. This property can be exploited by a linear decomposition of the
dose:

f(~d(P (~w + α∆~w)))
α∈[0,1]

= f(~d(~w + α∆~w)) = f(~d(~w) + α~d(∆~w)) (2.79)

In this case the evaluation comes basically for free because both dose distributions ~d(~w)
and ~d(∆~w) were calculated before. Because of the nature of the weight update calculation
there is a high chance that P is not linear any more for α > 1 due to a violation of the
lower bound constraint. As a result, the upper decomposition cannot be performed and
the line search evaluation is very expensive. Therefore we limit the line search parameter
α ∈ [0, 1].

In the case of the dose down-scaling, the upper evaluation has to be altered again because
a modified update dose ∆̂ ~dk := ~d(∆~wk + [1− sk]~wk) is simulated instead of ~d(∆~wk). If
we exploit the linearity of the dose with respect to the fluence map, we can write

~d(~wk + α∆~wk) = ~d(~wk) + α~d(∆~wk)
= ~d(~wk)− α[1− sk]~d(~wk) + α[1− sk]~d(~wk) + α~d(∆~wk)
= (1 + α[sk − 1])~d(~wk) + α~d(∆~wk + [1− sk]~wk)
= (1 + α[sk − 1])︸ ︷︷ ︸

seff

~dk + α∆̂ ~dk. (2.80)

This result also allows a computational cheap evaluation of the line search for the modi-
fied dose update. The factor (1+α[s−1]) can be understood as the effective down-scaling
factor seff , which is in the range [s, 1] for α ∈ [0, 1].

As a line search strategy we use the Armijo-backtracking approach (algorithm 3) with
αmax = 1. Due to the down-scaling of the dose distribution by the factor sk for the
incremental dose update, the Armijo-condition (2.15) changes to

f
([

1 + α(sk − 1)
]
~dk + α∆̂ ~dk

)
≤ f( ~dk) + αc1

~∇fd( ~dk)>
(

∆̂ ~dk + [sk − 1] ~dk
)
. (2.81)

This line search is specifically necessary in the terminal phase of the optimization in
which the systematic errors of the dose model start to affect the calculation of the
optimized search direction.

2.5.4 Details of the algorithm

In addition to standard convergence criteria – i.e. change of the objective function and
evaluation of the step size – two additional checks are introduced: As mentioned in
section 2.5.1, the search direction ∆~w may not be a descent direction. The directional
derivative of the objective function at the current dose ~dk along the search direction
∆~d(∆~wk) is given by

~∇∆~wkf(~wk) = ~∇df(~dk)>~d(∆~wk)

≈ ~∇df(~dk)>
(

∆ ~̂d− [1− sk]~dk
)
, (2.82)
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where ∆ ~̂d = ~d
([

1− sk
]
~wk + ∆~wk,∆Nk

)
is the dose distribution of the modified dose

update calculation and sk is the down-scaling parameter (see second part of (2.73)). To
avoid loops in the optimization, the algorithm has to be halted if this relation is not
negative. A second additional check determines how much the dose model (2.67) can
reduce the objective function value. If the predicted reduction using the dose model is
too small, convergence is reached. The reason for this check is the following: First, a
further (unnecessary) MC simulation can be avoided. Second, in addition to the method
of simulated noise (see section 2.3.2) this check provides a hint whether the reduction of
f is made by the change of weights ∆~w or if it is just an artifact due to the decreased
dose uncertainty.

The complete optimization algorithm, which is outlined in figure 2.8, works as follows:
First, the dose influence matrix Jmod

d is calculated with a model dose calculation algo-
rithm. Details to possible algorithms are given in the next section. Then, a starting
solution is generated by optimizing the corresponding dose distribution. Second, the
initial MC dose distribution ~d0 of this starting solution is calculated with a mean rela-
tive dose uncertainty of σ̄50 = 1.5% (as defined in (2.70)). Third, the optimization loop
is executed until convergence. Finally, if the mean dose uncertainty is still larger than
σ̄50 = 0.8%, additional particles will be simulated to decrease the dose uncertainty to
this level. The number of additionally required particles are estimated with equation
(2.48).

2.6 Dose models for the hybrid optimization algorithm

The calculation of the search direction ∆~w in the hybrid algorithm (section 2.5.1) re-
quires an approximation of dose influence matrix Jd, which stores the normalized dose
contribution of each beamlet to the patient. This matrix represents the Jacobian of the
dose function with respect to the fluence map and is required for calculating the gradi-
ents of the hybrid dose model (2.67) during the optimization. An ideal dose model would
be very accurate and also fast to calculate. Unfortunately, there is no such algorithm
and a trade-off between accuracy and calculation time has to be made.

In this work we chose two different models, the macroscopic pencil beam algorithm and
the geometric kernel approximation.

2.6.1 Macroscopic pencil beam

In our research version of the KonRad inverse planning system this method is also known
as the external pencil beam algorithm (Bortfeld et al. 1993, Nill et al. 2004, Siggel et al.
2011). It uses a precalculated water-dose distribution caused by a quadratic field of the
size of one beamlet. To remove most of the dependency of the dose on the source-surface-
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Figure 2.10: Scheme for the dose calculation with the macroscopic pencil beam
algorithm.

distance (SSD), this precomputed pencil kernel is stored in a non-divergent geometry. It
can be calculated by either simulating a parallel beam or converting the dose distribution
from a divergent beam into a parallel geometry.

To calculate a beamlet’s dose distribution from arbitrary beam angles, SSDs and patient
geometries, the following equation is used:

D(x, y, d) =
(

dSAD
d+ dSSD

)2

D||
(
x

dSAD
d+ dSSD

, y
dSAD

d+ dSSD
, drad (x, y, d)

)
(2.83)

The first part of this equation is the distance-square-dependency of radiation from point
sources and takes account for the divergent beam geometry. Here, d is the depth of the
calculation point inside the patient, dSAD is the distance from the particle source to the
beam’s isocenter and dSSD is the source-surface-distance. The sum dSSD+d corresponds
to the geometric distance from the source to the calculation point. The term D|| is the
precalculated dose in a parallel geometry at a lateral distance x and y from the beam
center. To incorporate a homogeneity correction into the algorithm, the radiological
depth drad is used in the upper equation. It is defined by the path integral from the
source S to the calculation point P

drad :=
∫ P

S
ρ(x)dx, (2.84)

where ρ(x) is the relative electron density (in relation to the electron density of water) at
position x. In order to calculate this integral, ray-tracing (Siddon 1985, Fox et al. 2006)
has to be performed that returns all voxels and intersection lengths on that path. To
reduce artifacts due to the voxel discretization of the precalculated pencil beam, the
dose values D|| are calculated by a trilinear interpolation.

The external pencil beam is precalculated once with the VMC++ program using the men-
tioned basic 2 MeV particle source. To simulate a parallel beam, the source-isocenter-
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distance is set to 100 m. To support different leaf-widths, pencil beams of 5 mm and
10 mm beamlet sizes are generated. In order to avoid noise artifacts, the large num-
ber of 5 · 106 particle histories were simulated that results in a mean dose uncertainty
of 0.255 % (10 mm beamlet size) and 0.133 % (5 mm beamlet size). The resulting dose
cubes were further post-processed by averaging over the symmetric quadrants of the dose
distributions. The voxel size of the external pencil beam is 1 mm in x and y direction
(perpendicular to the beam) and 3 mm along the z axis (parallel to the beam).

These precalculated pencil beams are eventually used by KonRad to calculate and store
the dose model matrix Jpbd .

2.6.2 Geometric kernel approximation

When applying only one treatment beam to a patient or a phantom, the dose at a voxel
inside the beam consists mainly of the primary dose deposition by a single beamlet that
geometrically lies between the voxel and the irradiation source. A relatively small part of
the dose comes from other beamlets due to photon and electron scattering. Thus, when
having N different beam directions, the main dose in a voxel comes from maximum N
beamlets as long as the voxel is geometrically inside the beams-eye-view of each beam.

We can use this property, to create a rough approximation of the dose influence matrix.
Let dki be the dose in voxel i caused by the k-th beam. Then the dose matrix Jgkd is
given by:

Jdij =

{
0, if voxel i does not lie geometrically “under” beamlet j
dki , if voxel i is “under” beamlet j that belongs to the beam k

(2.85)

The sparsity of the resulting dose matrix (few non-zero elements) offers a great advantage
in computation speed during optimization compared to the pencil beam method. In order
to create this dose influence matrix, a Monte Carlo simulation for each beam direction
has to be performed with a normalized fluence profile. That is each beamlet weight wj is
set to one. Because the matrix Jgkd is only used to estimate a good search direction ∆~w, a
high precision calculation is not necessary. Hence, the number of simulated particles can
be relatively small compared to the number of particles required for the dose calculation
during the optimization.

An advantage of this method is that the magnitude of the voxel’s dose is estimated very
well because of the accuracy of the Monte Carlo method. However, it should be noted
that this approximation removes all scattering information and that the dose values in
the matrix are overestimated. As a result, synergistic dose scattering summation cannot
be exploited and the dose of voxels outside the beams cannot be optimized properly.
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2.7 Clinical evaluation of optimization results, patient cases

We demonstrate the hybrid optimization algorithm on different patient geometries with
both dose models. To quantify the performance of this algorithm, all plans are addi-
tionally optimized with the reference FMO method. In this case, the dose influence
matrix is precalculated by the Monte Carlo dose engine using a constant number of
particles per beamlet. For a fair comparison, both optimization methods use the same
dose prescriptions and penalties.

Because the full FMO method represents the benchmark for the optimization, the dose
distributions from both methods are compared by inspecting dose-volume histograms
(DVHs), dose slices, mean doses d̄, median dose values d50 and maximum doses dmax for
each organ of interest. From the mathematical point of view the final objective function
values of the optimization algorithms are compared, which serve as a measure of plan
quality. The fulfillment of the clinical constraints is checked for all plans.

2.7.1 Lung

The most challenging case for the hybrid optimization algorithm are lung treatment
plans. Due to strong tissue heterogeneities and air cavities, the dose distributions cal-
culated by pencil beam and the Monte Carlo algorithms can differ by a large amount
and it has been shown that pencil beam dose algorithms significantly overestimate the
tumor and lung dose at these treatment sites (Scholz et al. 2003, Krieger & Sauer 2005).
Therefore a larger number of iterations during the optimization can be expected when
using the pencil beam dose model.

(a) (b)

Figure 2.11: Transversal and sagittal isocentric slices of the lung case.
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This particular example is a 10-beam non-coplanar irradiation setup, where the target
is centered in the right lung and is therefore surrounded by low-density tissue. The
spherical PTV (magenta) has a diameter of 29 mm and consist of the GTV (red) plus a
4 mm margin. In order to avoid hot spots inside the healthy lung tissue, a shell (green)
with a margin of 14 mm around the PTV is added. In the optimization, this shell is
handled as an organ at risk with a maximum dose of 30 Gy. The definition of the
prescription dose for the PTV was difficult due to the following reason: in the original
plan (which would be calculated with a pencil beam algorithm), GTV and PTV have
both the same dose prescription of 57 Gy. The PTV margin consists of low density lung
material. If PTV and GTV would be irradiated with a homogeneous photon fluence, the
tumor (GTV) absorbs a higher dose than the PTV margin due to its higher mass density
(if we use dose-to-medium scoring). Thus, in order to provide the same dose at the PTV
margin, the weights from fluence elements at the field boundaries have to be increased.
However, this increase of the beamlet weights causes hot spots behind the beam entry
in the patient. Also, the dose in the PTV margin is only the average dose in each voxel
whereas potential microscopic tumors will likely absorb a higher local dose. The same
happens when the GTV moves inside the PTV margin because of breathing. Due to
these issues, a slightly reduced dose prescription for the PTV of 54 Gy was chosen.

Table 2.1: Clinical goals for the lung treatment plan.

Volume Clinical Goal

GTV d50 = 57 Gy
PTV\GTV d50 = 54 Gy

2.7.2 Nasopharynx

The irradiation of the nasopharynx is a typical head-and-neck IMRT treatment plan
with 9 coplanar beams. The plan contains an integrated boost concept with a high dose
to the tumor of the nasopharynx and a lower dose to the surrounding lymph-drains.
The target volume including the boost and the lymph-drains is 689 cm3. The clinical
constraints are given in table 2.2. The most important organs at risk are the spinal cord
and the parotids. As the spinal cord is a serial organ and dose hot spots have to be
avoided, a safety margin of 5 mm around the spinal cord acts as an organ at risk in the
optimization.

The large target volume requires also large irradiation fields. Thus, a relatively high
number of particles can be expected in order to achieve a relative mean dose uncer-
tainty of 0.8% as in the other treatment plans. Due to the air cavities in the head-
and-neck site, deviations between pencil beam and Monte Carlo dose calculation can be
expected. Therefore the optimization algorithm should require more iterations than e.g.
in a prostate case.
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(a) (b)

Figure 2.12: Transversal and sagittal isocentric slices of the nasopharynx case.

Table 2.2: Clinical goals for the nasopharynx treatment plan.

Volume Clinical Goal

Boost d50 = 66 Gy
Lymph drains d50 = 54 Gy
Spinal cord 5 mm dmax < 40 Gy
Parotids d̄ < 26 Gy and d50 < 30 Gy

2.7.3 Larynx

This case is another coplanar 9-beam IMRT head-and-neck treatment plan. The tumor
of the larynx is mainly located on the right side of the head. Again, an integrated boost
concept is used in which a lower dose is applied to the lymph drains and a high dose to
the boost. The target is comparably large and has a total volume of 1180 cm3. Critical
organs are the spinal cord and the left parotis. The brain stem is located above the
target volumes and therefore does not lie inside the beams. The shortest distance of the
spinal cord to the target volume is about 13 mm. As in the nasopharynx case, a 5 mm
safety margin is created around the spinal cord, which acts as an organ at risk for the
plan optimization. The left parotis partially overlaps with the target volume. Because
the priority of the treatment is a homogeneous dose coverage of the target, a helping
volume is created that consists only of the non-overlapping part of the left parotis. Only
this smaller volume is considered as an organ at risk during the optimization. The right
parotis is affected by the tumor and is therefore ignored by the optimizer.
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(a) (b)

Figure 2.13: Transversal and sagittal isocentric slices of the larynx case.

Table 2.3: Clinical goals for the larynx treatment plan.

Volume Clinical Goal

Boost d50 = 70.6 Gy
Lymph drains d50 = 57.6 Gy
Lymph drains caud. d50 = 57.6 Gy
Spinal cord 5 mm dmax < 40 Gy
Left parotis d̄ < 26 Gy and d50 < 30 Gy

2.7.4 Prostate

The prostate case is a 5-beam photon treatment plan. The directions of the incident
beams are chosen in order to avoid the irradiation of the femoral heads. The CTV
includes the prostate and the seminal vesicles and has a volume of 106 cm3. Adjacent
organs at risk are the rectum and the bladder. Their clinical goals are given in table 2.4.

In addition to these clinical goals, a large maximum dose penalty was set for exceeding
the dose in the normal tissue to avoid dose hot spots behind the entrance of the beams.
To guide the optimizer, additional dose-volume constraints were set for the rectum: less
than 52% should get a dose of more than 13 Gy, less than 33% a dose of more than 24 Gy
and less than 15% of more than 30 Gy. These values should however not be understood
as clinical constraints but more as a help for the optimization algorithm.

Fast convergence can be expected for the prostate case due to the high tissue homogeneity
in this treatment site. The dose distributions of the pencil beam and MC algorithm
should not differ much. Therefore, the hybrid optimization algorithm will likely require
only a few iterations with the pencil beam dose model.
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(a) (b)

Figure 2.14: Transversal and sagittal isocentric slices of the prostate case.

Table 2.4: Clinical goals for the prostate treatment plan.

Volume Clinical Goal

CTV d50 = 66 Gy
Rectum d̄ < 25 Gy
Bladder d̄ < 25 Gy

2.8 Algorithmic performance, efficiency

In addition to the clinical plan quality evaluation, algorithmic properties such as run-
times, number of iterations and particle efficiencies are measured for each patient case.
The particle efficiency values are evaluated for the hybrid optimization method with
both dose models (section 2.5.1 and 2.6) and for the reference FMO algorithm (section
2.4) according to its definition (2.66).

For the reference FMO method we define two different efficiency values: the first can be
understood as the number of particles required for the computation of the dose influence
matrix in order to achieve a resulting dose distribution with the reference mean dose
uncertainty σ̄fw. With (2.66), the efficiency is calculated as

εfmo =
(
Nfwσ̄

2
fw

) (
Nfmoσ̄

2
dc

)−1
. (2.86)

Here, Nfmo is the total number of particles used for the calculation of the dose influence
matrix Jmc

d and σ̄dc is the resulting mean dose uncertainty when calculating the dose
of the optimized fluence map ~wopt via ~d = Jmc

d ~wopt. Accordingly, Nfw is the number of
particles used for the forward MC dose calculation and σ̄fw is its mean dose uncertainty.
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Practically this efficiency cannot be achieved because the average uncertainty of the
resulting dose distribution depends not only on the uncertainty of the dose matrix but
also on the final fluence map vector. However, this is not known in advance. Therefore,
we calculate the second efficiency ε∗fmo that can be understood as an effective efficiency
and is defined by the number of particles required to achieve the desired mean dose
uncertainty in each beamlet of the dose influence matrix:

ε∗fmo =
Nfw σ̄

2
fw

Nfmo σ̄
2
bix

(2.87)

In this equation, σ̄bix is the average dose uncertainty per beamlet of the dose influence
matrix as defined by (2.61). This more realistic efficiency value is typically smaller than
εfmo because the average beamlet dose uncertainty σ̄bix is larger than the mean dose
uncertainty of the final dose distribution σ̄dc (Siebers 2008).

2.9 Evaluation of the macroscopic pencil beam dose model

The hybrid sequential MC optimization algorithm requires an alternative dose calcu-
lation engine in order to calculate search directions in the optimization space. The
performance of this optimization algorithm depends on the accuracy of the alternative
algorithm. One alternative dose calculation algorithm was chosen to be the macroscopic
pencil beam. The better the agreement between pencil beam and MC is, the fewer itera-
tions during optimization have to be performed and the “more optimal” will be the final
solution. In order to quantify the accuracy of the macroscopic pencil beam method, we
will compare the dose differences between the macroscopic pencil beam algorithm and
the MC simulation. These calculations include water and slab phantom simulations and
the dose calculations of the presented patient cases. An analysis of the geometric kernel
approximation in terms of dose calculation accuracy will not be given in this work since
the limits of this approach are obvious.

Water phantom We simulated narrow square beams of 5 mm and 10 mm field side-
length, impinging on a water-phantom with a source-surface-distance (SSD) of 88 cm.
The voxel size for the calculation was chosen to be 1 mm3. The dose distributions of the
MC simulation and the pencil beam calculation are compared by inspecting depth dose
curves and lateral dose profiles.

Slab phantom To increase the difficulty for both dose calculation algorithms, a bone
and an air slab is inserted into the water phantom. Both inserts have the same size,
a height of 3 cm and a length and width of 2 cm × 15 cm. Both slabs are centered on
the beam axis, the bone slab first at a depth from 3 cm to 6 cm and the air slab at a
depth from 9 cm to 12 cm. This setup is illustrated in figure 2.15. We calculated the
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Figure 2.15: Sketch of the slab phantom.

dose distributions of a narrow 1×1 cm2 square field and a broad 7×7 cm2 beam with a
SSD of 90 cm. The dose-to-medium technique was used for dose scoring during the MC
simulation. The dose differences between both algorithm are quantified by comparing
again lateral dose profiles and depth dose curves.

Realistic patient cases In addition to the single-beam water phantom calculations, we
compare the pencil beam dose calculation with the MC simulation on realistic patient
cases. These cases, which we have already been presented in section 2.7, were first
optimized with the standard IMRT optimization method (see section 2.2.3), based on
pencil beam dose distributions. Then, the dose distributions from the resulting fluence
maps were recalculated by MC simulation at a mean dose uncertainty of 0.8 %. For these
calculations we chose a voxel size of (2.6 mm)3 and use the dose-to-medium technique
for MC dose scoring. The differences in dose are quantified by comparing dose-volume-
histograms and by calculating the average dose differences of voxels with d > 0.5 ·dmax.
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3 Results

The hybrid sequential algorithm for inverse treatment planning was implemented into a
small program written in C++. This program features the basic functionality of an in-
verse treatment planning system. In addition to an interface to the VMC++ framework
and the implementation of the hybrid optimization algorithm it includes the conven-
tional dose influence matrix based optimization and dose calculation. It also allows the
inspection of previously calculated dose distributions, calculates and displays important
indicators of dose distributions and calculates the associated dose volume histograms
(DVH). A small graphical user interface (GUI) was written, offering the typical tools
for inverse planning as e.g. displays for DVHs, CT data, dose data, isodose lines and
also controls for adjusting penalties, dose and DVH constraints. This program can be
optionally started without any GUI for the use in scripts for example by setting an envi-
ronment variable. A screenshot of the program running on Linux is shown in figure 3.1.
Most of the following results and data in this chapter are generated by this software.
Only the calculation of the beamlet positions and the generation of the pencil beam dose
matrix is carried out with KonRad.

Figure 3.1: Screenshot of the graphical user interface for the hybrid MC treatment
plan optimizer.
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3.1 Macroscopic pencil beam vs. Monte Carlo

In order to quantify the accuracy of the pencil beam dose model, we compared pencil
beam dose calculations against their MC simulation counterpart. The conceptional
weaknesses of pencil beam algorithms are commonly known and similar results were
published before (Scholz et al. 2003, Krieger & Sauer 2005). Still, knowing the differences
between dose distributions from MC simulations and pencil beam calculation are crucial
for understanding the functioning of the hybrid optimization algorithm.

3.1.1 Water phantom

First, we compared the resulting dose distribution from the precalculated macroscopic
pencil beam (section 3.1.2) algorithm with the results of the Monte Carlo dose calculation
on a water phantom. The results of the calculation are illustrated in figure 3.2. The
figure shows the depth dose curves and the lateral dose profiles of both cases (5 mm and
10 mm field side-length), which are taken at the depths of 15 mm, 50 mm, 100 mm and
200 mm.

The dose calculations of both algorithms of the 10 mm beam agree very well and the
relative dose differences of the two algorithms are less than one percent. In the case of
the 5 mm square beam however, the differences between both algorithms become visible.
In the entrance region of the first 5–10 cm, the pencil beam algorithm overestimates the
dose up to 4 %. The differences become smaller with increasing depth as the pencil beam
also overestimates the attenuation of the incoming photons.

The reason for these differences is not completely understood as the macroscopic pencil
kernel is derived from MC simulations. Even on homogeneous water phantoms, the
macroscopic pencil beam uses approximations. In theory, a separate pencil beam has
to be calculated for each SSD to take account for the changing field sizes of the beam,
measured at the entry of the beam into the patient. These different sizes reflect in
slightly different scattering characteristics that can be expressed with phantom scatter
ratios. This fact is however ignored by the macroscopic pencil beam method in the
KonRad inverse planning system. Another source of error is the voxel size dependence
of the Monte Carlo method since the dose depositions in a voxel are averaged over the
volume of the voxel. On small fields, this averaging causes artifacts especially on the
steep dose gradients at the edges of the irradiation field (Chetty et al. 2007). In contrast,
the pencil beam algorithm evaluates the dose at a point – more specifically at the center
of each voxel – instead of averaging the dose over the voxel’s volume.

70



3.1. MACROSCOPIC PENCIL BEAM VS. MONTE CARLO

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

Depth (mm)

D
o
s
e
 (

c
G

y
/M

U
)

Monte Carlo

Pencil Beam

(a)

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

Position (mm)
D

o
s
e
 (

c
G

y
/M

U
)

 

 

Monte Carlo

Pencil Beam

(b)

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

Depth (mm)

D
o
s
e
 (

c
G

y
/M

U
)

 

 

Monte Carlo

Pencil Beam

(c)

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

Position (mm)

D
o
s
e
 (

c
G

y
/M

U
)

 

 

Monte Carlo

Pencil Beam

(d)

Figure 3.2: Dose distributions in the water phantom at a SSD of 88 cm. (a) and
(b) show depth doses and dose profiles from a 1 × 1 cm2 beam, (c) and (d) from a
0.5 × 0.5 cm2 beam. The dose profiles are taken at the depths 15 mm, 50 mm, 100
mm and 200 mm.
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3.1.2 Slab phantom

The results of the dose calculations of the bone-air phantom (depicted in figure 3.3)
demonstrate the limitations of the pencil beam algorithm. Especially the dose to air
is dramatically overestimated by this algorithm. More subtle, the different scattering
processes inside the bone insert compared to water lead to lateral dose discrepancies,
which can be seen in the plot of the lateral dose profiles. This issue is less pronounced for
the large beam, where the width of the slab insert is smaller than the side length of the
beam. In this case, also laterally scattered high energy particles from the surrounding
water contribute dose to the bone slab and the differences between pencil beam algorithm
and MC simulation become smaller. The same argumentation holds for the air insert.
From a clinical perspective, air doses are uninteresting because they do not affect the
patient. On the other hand, lung tissue is very similar to air and the dose to the lung
has to be considered during the optimization. However, behind an air cavity, a new dose
build-up takes place due to the range of the secondary electrons. This can be clearly seen
in the depth dose curve of the MC dose calculation (figure 3.3(a), black line). Depending
on the photon energy, the dose needs about 1–2 cm depth to reach its maximum.

Therefore, small tumors inside a lung lobe are effected by the build-up effect, which is
completely neglected by the pencil beam algorithm. As a consequence, the dose to the
tumor can be substantially overestimated by a pencil beam algorithm. These findings are
not new and were published before by e.g. Krieger & Sauer (2005) or Scholz et al. (2003).
Aside from the differences in the air and the bone slabs, the pencil beam generated dose
distributions can be seen as a good approximation of the true dose distributions. The
macroscopic pencil beam is therefore a good candidate for the dose model (2.67) in the
hybrid optimization algorithm.
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Figure 3.3: Dose distributions (dose-to-medium) in the slab phantom. (a)-(b) are
depth doses and lateral dose profiles from a narrow 1× 1 cm2 beam; (c) and (d) from
a broad 7 × 7 cm2 beam. The dose profiles are taken at the depths 15 mm, 45 mm,
75 mm and 105 mm.
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3.1.3 Patient cases

In principle, the Monte Carlo simulations of the optimized pencil beam treatment plans
act as a starting point in the hybrid optimization algorithm with the pencil beam dose
model. The magnitude of the dose differences between both dose calculation algorithms
reflect the level of difficulty for the sequential hybrid optimization algorithm and thus
its convergence rate. Also, it is a measure if a MC dose calculation is even required for
the optimization. The results of the dose calculations of the patient plans are illustrated
by the dose-volume histograms (DVH) in figure 3.5.

The lung case shows the largest discrepancies between both dose calculation algorithms.
These differences are practically limited to voxels inside the right lung. In addition
to the DVH, both dose distributions are illustrated as transversal slices in figure 3.4,
which points out these dose differences. The MC recalculation reveals a significant
underdosage of the GTV and the PTV and a worse dose homogeneity in the target.
This underdosage cannot be compensated by a simple upscaling of the fluence weights.
The average relative dose difference between voxels with a dose larger than half the
maximum dose is 25.9 %. This example demonstrates without any doubt, why pencil
beam algorithms are insufficient for a treatment planning of small lung tumors and why
accurate dose calculation algorithms as e.g. MC simulations have to be incorporated into
the optimization.

The deviations in the other cases are considerably smaller. From the DVH of the na-
sopharynx treatment plan (figure 3.5(b)), an underdosage of parts of the boost and the
lymph drains can be identified. It should be noted that the DVHs include voxels of air

(a) PB optimization (b) MC recalculation

Figure 3.4: Transversal slices through the dose distributions of the lung treatment
plan. The left image shows the result of a plan optimization based on a pencil beam
dose calculation algorithm. The right image shows the dose distribution of a plan
recalculation with a MC algorithm. The dose values in the legend are given in Gy.
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Figure 3.5: Dose-volume histograms of four optimized treatment plans using pencil
beams compared to dose distributions of the MC dose recalculation.

and that the underdosed voxels lie inside or behind air cavities like the throat. The
calculated average relative dose differences of voxels with d > 0.5 dmax is 2.24 %. The
differences are even smaller in the larynx case. Here a mean relative dose difference of
only 1.70,% of the voxels with doses larger than half of the maximum dose was calcu-
lated. The DVHs of the pencil beam optimization and the MC recalculation are almost
identical. In principle, a treatment plan optimization with MC dose calculation algo-
rithms is not necessary in this case. The prostate case shows the smallest deviation
between planned and recalculated dose distribution of 1.61 % in average. It should be
noted that the noise of 0.8 % with respect to the maximum dose has a main share on
the differences to the pencil beam doses in the larynx and the prostate case.
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Figure 3.6: (a) - Values of optimized beamlet weights depending on the uncertainty
of the dose influence matrix. The presented six beamlet weights are arbitrarily chosen.
In this particular example, the optimization stabilizes after the mean beamlet dose
uncertainty falls below 2 %. (b) - Runtimes for the calculation of the dose influence
matrix at different uncertainty levels of this treatment plan with 169 beamlets. The
runtime follows a linear trend but shows a significant offset of about 930 seconds.

3.2 Stability of the reference FMO algorithm

Apart from its poor efficiency, one large issue of the reference FMO algorithm is that
the result of the optimization depends on the statistical accuracy of the dose influence
matrix (dose uncertainty). In order to get stable optimization results and therefore limit
the convergence error of the optimization, a certain minimum accuracy is necessary,
which is however different for each treatment plan.

To demonstrate this behavior, we took the lung case as an example (see section 2.7.1)
and calculated its dose influence matrix at different uncertainty levels – varying from
0.5 % – 17 % mean beamlet dose uncertainty. The created dose influence matrices then
were used for the FMO optimization with the limited-memory BFGS algorithm. The
optimization was stopped if the iteration limit of 100 was exceeded. To analyze the
impact of the different uncertainties on the treatment plan quality, the dose distribution
of each optimized fluence map was recalculated at a mean dose uncertainty of 0.8 %.

Figure 3.6(a) illustrates how some of the optimized fluence weights change with the
uncertainty of the dose influence matrix. Obviously, the optimization in this example
becomes unstable if the mean dose uncertainty exceeds 2 %. From 5 % uncertainty the
beamlet weights undergo dramatic changes. For example the weight of one particular
beamlet (not shown in the plot) reduces from 24.3 (at 17 % uncertainty) down to 3.3
(at 0.5 %). That is, the importance of this beamlet is completely overrated by the low

76



3.2. STABILITY OF THE REFERENCE FMO ALGORITHM

45 50 55 60 65 70
0

10

20

30

40

50

60

70

80

90

100

Dose (Gy)

V
o
lu

m
e
 (

%
)

 

 

17.2 %

10.4 %

7.6 %

5.6 %

4 %

1.8 %

0.5 %

(a) Optimized at varying dose uncertainty.

45 50 55 60 65 70
0

10

20

30

40

50

60

70

80

90

100

Dose (Gy)

V
o
lu

m
e
 (

%
)

 

 

17.2 %

10.4 %

7.6 %

5.6 %

4 %

1.8 %

0.5 %

(b) Recalculated at 0.8% uncertainty.

Figure 3.7: Impact of varying uncertainty of the dose influence matrix on the DVH.
The figure shows the DVH of a lung GTV. (a) shows the result of the optimization
depending on the dose uncertainty. (b) shows the results of the high precision dose
recalculation from the optimized fluence maps.

uncertainty optimization. The optimization stabilizes only if the mean beamlet dose
uncertainty is reduced to 1–2 %. The effect of the different dose uncertainty levels on
the optimized dose distributions and thus on the plan quality is presented by the dose
volume histograms (DVH) in figure 3.7. The left plot (figure 3.7(a) shows the DVH of
the GTV as a direct result of the optimization. It can be clearly seen, that the increase
in noise results in a degradation of target dose homogeneity. This effect is however only
an artifact of the noisy dose distribution. The true DVHs are shown in the figure on
the right, which are the result of the high precision recalculation at 0.8 % mean dose
uncertainty. According to these DVHs of the GTV, the optimization seems to stabilize
at 4 % mean beamlet dose uncertainty and lower. These results are however heavily case
specific and are demonstrated only to emphasize the problem of the right choice of the
uncertainty.

Finally, one important issue of the FMO algorithm in connection with the VMC++ Monte
Carlo package will be sketched out here. Naturally, the time for the dose influence matrix
calculation depends linearly on the number of particles: more particles result in a lower
dose uncertainty but require more calculation time. Figure 3.6(b) acknowledges this
linear dependence for the example case. Remarkably, the simulation of a dose influence
matrix with only a few particles (∼ 200000) takes more than 15 minutes (y-axis offset
of 930 s in figure 3.6(b)). Given that the treatment plan consists of 169 beamlets, this
results in a dose calculation delay of 5.5 seconds per beamlet. The program for this
calculation was explicitly written in order to avoid a reinitialization of the VMC interface
(setup of patient specific data and particle source) prior to the dose calculation of each
beamlet. A further investigation into the VMC++ code revealed that the batch statistics
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implementation in VMC++ is responsible for this delay, as it has to iterate 50 times (the
number of batches in VMC++) over the dose cube of each beamlet according to (2.41).
This calculation is independent of the number of simulated particles and has to be even
done if only a few particles are simulated.

3.3 Anisotropic filtering

To demonstrate the effect of dose smoothing, we applied the anisotropic filtering al-
gorithm (section 2.3.2) to dose distributions of a water-phantom treatment plan and
a realistic prostate treatment plan. In the case of the water phantom, the size of the
irradiation beam is 7×7 cm2 (in the beam’s isocenter plane). The MC dose calculation
was carried out at a relative mean dose uncertainty of 1.2 %. The prostate case is a pre-
optimized standard 5-beam IMRT treatment plan. Its dose distribution was calculated
at a mean relative dose uncertainty of 1.8 %. For a “gold standard” comparison, the
same treatment plan was additionally calculated at an uncertainty of 0.5 %. Anisotropic
diffusion for dose smoothing was finally applied to the noisy dose distributions with their
corresponding uncertainty distributions. The standard parameters of k = 1.75, Niter = 4
and ∆t = 3/44 were used for the diffusion algorithm.

The outcome of the dose smoothing is shown in figure 3.8. The isodose lines in the
original dose distribution of the single-beam water phantom case are noisy and distorted
(figure 3.8(c), blue line). The isodose lines of its filtered dose distribution (red lines)
are much smoother and resemble more a realistic dose distribution. Due to the edge-
preserving character of this algorithm, the gradients at the field edges are not effected
by a possible washout. This is backed also by figure 3.8(a) with the lateral dose profiles,
in which doses at the field edges of the original and the denoised dose distribution match
very well. In the region of constant dose however, diffusion increases so that the spikes
caused by the noise are almost completely flattened.

The original dose distribution of the prostate treatment plan seems less noisy compared
to the single-beam scenario, despite the increased uncertainty level. Nevertheless, the
noise has a significant impact on the isodose lines. It creates the impression that the
treatment plan with the noisy dose distribution includes a lot of small hot spot islands
(blue isodose lines). The recalculation at high precision (green lines) reveals however,
that these islands are mostly created by the noise and are not a feature of the treatment
plan. Denoising with the anisotropic filtering algorithm removes these “hot spots” and
also smooths all other isodose lines (red). Its result agrees very well with the high
precision calculation. Still, this denoising technique – and many other noise filters –
decrease maximum doses and spikes, even if these are not caused by noise. Therefore,
also some of the true spots of increased dose that also appear in the accurate calculation
are removed by the filter. This can be particularly recognized in the frontal slice through
the dose distribution.
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Due to these reasons, dose filtering is a great tool for post-processing dose distributions
for e.g. the presentation in the treatment planning software. In a forward dose calcula-
tion, this denoising allows a significant reduction of particle histories (Miao et al. 2003).
During the optimization process however, intermediate dose smoothing removes small
local features as hot and cold spots from a treatment plan. If this technique was ap-
plied after each iteration of the hybrid optimization algorithm with an incremental dose
update, these small effects would accumulate over time and the optimization algorithm
would have no opportunity to correct for hot or cold spots. Therefore, denoising during
the optimization should be avoided.
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Figure 3.8: Results of the anisotropic filtering: (a)-(c) Dose distribution of a single
beam in water, noisy (1.2 % mean dose uncertainty, blue line) and smoothed dose
(red line). (d)-(f) Dose calculation of a prostate treatment plan, noisy (blue line,
1.8 % mean dose uncertainty), filtered (red line) and high precision calculation (0.5 %
mean dose uncertainty, green line).
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3.4 Uncertainty estimation of the objective function

The value of the objective function depends to a great extend on the accuracy/uncertain-
ty of the dose distribution. As a rule of thumb, the larger the dose uncertainty is,
the larger will be the value of a quadratic objective function. We evaluated the three
strategies for the estimation of the objective function value of the “underlying noise-free”
dose distribution that were already discussed in the methods in section 2.3.2. For four
different patient cases (2 prostate, 1 head and neck, 1 lung) we calculated the objective
function for an arbitrary beamlet configuration at different mean dose uncertainties. For
each dose distribution, the estimation of the true objective function f(~dt) was calculated
with all three methods.

Figure 3.9 illustrates the measured and estimated objective function values. The de-
pendency of the objective function from the dose uncertainty is clearly visible (red solid
line). As expected, the objective function value decreases with the dose uncertainty.
The relative decrease in the objective function depends however on the patient case, the
simulated fluence map and the settings of dose constraints and penalties. Particularly
in case (a), the decrease is enormous and f changes about 40% when reducing the mean
dose uncertainty from 2% to 0.4%.

The objective function estimation with the error propagation method is poor (dashed
blue graph). The first order error propagation significantly underestimates the error in
the objective function and the approximation of f(~dt) is much to high.

Although smoothing with the anisotropic diffusion filter creates “visually appealing” dose
distributions, it reduces maximum dose values and small local dose features. Thus, the
resulting dose distributions are often “too good to be true” and their associated objective
function value is too small. The estimation of f(~dt) using smoothing is depicted in figure
3.9 by the magenta dash-dotted line. Because the strength of smoothing decreases with
reduced noise, this method still converges to the objective function values of the noise-
free dose distribution when reducing the dose uncertainty.

The best prediction of the objective function of the noise-free dose distribution provides
the method of noise simulation. Although the assumptions in this model are very crude,
the predicted values are practically constant and in good agreement with the extrapo-
lated guess to zero uncertainty. This method is represented with the green dash-dotted
line in the figure.

Due to these findings, the last method of simulated noise is the best candidate if an
estimation of the error of the objective function or the objective function value of the
noise-free dose distribution is required. First, it gives consistent results over a large range
of dose uncertainties. Therefore it can be used to determine the reason of an objective
function decrease (better treatment plan or reduced dose uncertainty). Second, the
computational overhead for this calculation is small so that the computation of the actual
objective function value and its error estimation can be carried out simultaneously.
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Figure 3.9: Objective function change with increasing dose uncertainty for 4 different
patient cases (a)–(d): the solid red line represents the objective function of the MC
calculated noisy dose distribution at different mean dose uncertainties. The objective
function of the underlying noise-free “true dose distribution” f(~dt) can be estimated
by extrapolating this line to zero uncertainty. The dashed blue line is the estimation
of f(~dt) with the gaussian error propagation method. This method underestimates
the error in f by far. The green dash-dotted line is the estimation of f(~dt) with the
simulated noise method. It shows a good agreement with the extrapolated value. The
dash-dotted magenta line shows the estimation of f(~dt) with the smoothing method.
This method severely underestimates the objective function value.
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3.5 Dose influence matrix compression

3.5.1 Compression ratios

With a small script, each dose influence matrix file (*.dij) on our computer was analyzed
and the possible compression ratios were calculated. These compression factors are given
as the ratio of the file sizes prior compression to the file sizes after compression. In total
930 files were processed, with a file size from 50 KB to 3.2 GB. These files are stored in
an uncompressed format on the hard disc drive. The resulting compression ratios are
presented in figure 3.10. The histogram shows that the theoretical maximum compression
ratio of 2 can be achieved in most cases. This is because the index differences between
two consecutive voxels with a dose value larger than zero is less than 192 for the most
part (as already shown in figure 2.5). These small index gaps are encoded with an one
byte integer instead of using four bytes in the uncompressed case. Because the storage
of the dose value of a voxel takes additional two bytes, only 3 bytes are required for the
tuple (voxel-index, dose-value) with the compression method compared to the 6 bytes
without compression. Interestingly, the probability of a high compression ratio increases
with the file size according to figure 3.10(b). A compression ratio larger than 1.95 could
be generally achieved on dij-files greater than 20 MB.
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Figure 3.10: Results of the dose influence matrix compression from 930 different
files.
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Figure 3.11: Runtimes of the dose calculation and the gradient computation with
and without dose matrix compression for two different patient cases.

3.5.2 Impact on runtime performance

In addition to the pure compressibility analysis, the impact of the dose matrix com-
pression on the calculation time was examined. Because the dose influence matrix Jd
is stored in its compressed form to reduce memory usage, the voxel indices have to be
decoded on-the-fly for the dose calculation ~d = Jd ~w and the calculation of the gradient
of the objective function ~∇wf(~w) = J

>
d
~∇df(~d(~w)). Therefore, we measured the run-

times of the dose and the gradient calculation for two patient cases with and without
compression. The first patient case consists of only 78×55×94 voxels and 463 beamlets
from 5 beams. The file size of the uncompressed dose matrices is 150 MB. The second
case consists of 215 × 149 × 174 voxels with dose contributions from 454 beamlets and
10 beams. Due to the increased number of voxels, the uncompressed dose matrices of
the second case require 656 MB. Because the compression scheme is designed for parallel
code, the runtimes were measured for a different number of calculation threads, varying
from 1 to 8. Each measurement was repeated 5 times. These measurements were exe-
cuted on an Intel R©Core

TM
i7-860 CPU (2.8 GHz, 4 calculations cores, hyper-threading)

with a system memory of 4 GB. The results of this measurements are presented in fig-
ure 3.11. No specific runtime optimizations were used for the implementation of both
calculations as e.g. compiler intrinsics (SSE, SSE2) or data partitioning schemes.

Aside from the gap at 5–6 threads in the first patient case, the runtime for the dose
calculation is about 5 % slower with compression enabled. This performance regression
is however negligible given that there is the huge saving of computer memory that allows
much larger patient cases. A general trend for the calculation of the objective function’s
gradient cannot be observed. In the first patient case, the runtimes are quite on a par
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with each other. Interestingly, there is a large difference between the 4 thread measure-
ments with an advantage for the calculation with compressed data. This behavior could
be reproduced on all subsequent measurements, that is this result is not an outlier. Apart
from that, the calculation with the uncompressed data has a small advantage in runtime.
The calculation of the gradients in the second patient case behaves differently. Here,
the calculation with data compression decreases the runtime up to 20 %. Given that the
decompression adds complexity and CPU instructions, the cause of this behavior has to
be the reduced data size that probably results in fewer cache misses. Attention should
be drawn to the large error bars at the 4-thread measurement. While using 4 threads,
the runtimes were very unstable and varied from 260 ms to 400 ms. Other parallel code
tests with the OpenMP directives (Dagum & Menon 1998) would reproduce an unstable
behavior in some cases. We suspect the outdated operating system (Linux kernel 2.6.31,
OpenSuse 11.2) and the OpenMP library as a source for this issue since it was one of the
first Linux distributions that delivered OpenMP support. Still, the computation with
data compression can be regarded on average as equivalent with respect to the runtime.
Therefore, this presented compression method is an excellent choice when the memory
requirements are critical.

3.6 Comparison of the optimization algorithms - patient cases

We optimized IMRT treatment plans at different body sites with the reference FMO
algorithm and the hybrid optimization algorithm with the pencil beam dose model (Hy-
brid/PB) and the geometric kernel approximation (Hybrid/GK). The patient cases have
been presented in section 2.7. In order to vary the complexity of the optimization,
treatment plans with both 5 mm and 10 mm square beamlets were generated. KonRad
was utilized to calculate spot positions and to generate the dose influence matrix for
the pencil beam dose model. The dose distributions were calculated at a voxel size of
(2.62 mm)3. The reference FMO algorithm was ultimately stopped after 100 iterations.
For a fair comparison, all three optimization algorithms used the same dose prescriptions
and penalties.
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(a) Pencil beam dose model
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Figure 3.12: Resulting DVHs from the hybrid optimization algorithm against the
results of the full FMO algorithm from the Lung case with 5 mm square beamlet size.
The left image represents the hybrid algorithm with the pencil beam dose model, the
right uses the geometric kernel approximation.

3.6.1 Lung – 5 mm × 5 mm square beamlets

For the hybrid optimization with the pencil beam dose model, this patient case is the
most challenging one due to the large differences between pencil beam and Monte Carlo
dose distributions. The plan consists of 454 beamlets in total. The hybrid optimization
with the pencil beam dose model took 8 iterations to converge. Although the geometric
kernel approximation provides a better estimation of the dose values in the lung tissue,
the optimization still took 7 iterations. The approximate minimum of the objective func-
tion, calculated with the reference algorithm, is fmin = 782. The Hybrid/PB algorithm
stopped at an objective function value of f = 924. Using the Hybrid/GK algorithm,
a value of f = 1130 could be reached. Thus, both hybrid algorithms cannot reach the
mathematical minimum of the optimization problem, but the Hybrid/PB generates a
better solution from mathematical point of view.

The clinical differences of the resulting dose distributions of the three algorithms are
presented in the dose-volume histograms (DVHs, figure 3.12) and the transversal dose
slices (figure 3.13). In addition, table 3.1 shows mean doses, median doses (50% of all
voxels have a dose larger than this value) and maximum doses for the target volumes,
the right lung and the body contour. The dose slices reveal that the hybrid algorithm
tends to increased doses behind the beams’ entrance into the patient. The increased dose
comes mainly from a boosting of beamlets that aim at the PTV margin. The maximum
doses inside the patient contour support this finding. The maximum dose of the hybrid
algorithm is about 10 Gy higher than the maximum dose of the reference algorithm
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(a) Full FMO (b) Hybrid / PB (c) Hybrid / GK

Figure 3.13: Lung, 5 mm square beamlets: The figure compares doses in a transver-
sal slice from the reference FMO algorithm (a) against doses from the hybrid algo-
rithm with the pencil beam dose model (b) and the geometric kernel approximation
(c). GTV and PTV are highlighted white. Isodose levels 10 Gy, 20 Gy, 30 Gy, 40 Gy
and 51.3 Gy (95 % of PTV dose prescription) are indicated. The dose values in the
color legend are given in Gy.

Table 3.1: Median, mean and maximum dose values of the Lung case with 5 mm
square beamlets. Comparison of the full FMO algorithm (Full) against the hybrid
algorithm with the pencil beam dose model (PB) and the geometric kernel approxi-
mation (GK).

d50 (Gy) d̄ (Gy) dmax (Gy)

Volume Full PB GK Full PB GK Full PB GK

GTV 56.5 56.2 55.9 56.4 56.2 55.8 58.7 61.5 61.5
PTV 53.7 53.6 53.5 53.3 53.1 53.3 59.3 59.3 65.0
Right lung 0.0 0.1 0.1 1.8 1.9 1.9 34.2 37.9 33.6
Body contour 0.0 0.0 0.0 0.7 0.7 0.7 33.6 44.5 43.7

(44 Gy vs. 34 Gy). The DVH of the Hybrid/PB algorithm does not differ significantly
from the reference DVH. Only the dose homogeneity of the target is slightly worse. In
the case of the Hybrid/GK algorithm, a further degradation of the target dose coverage
can be observed.
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Figure 3.14: Lung, 10 mm square beamlets: Resulting DVHs from the hybrid op-
timization algorithm against the results of the full FMO algorithm. The left image
represents the hybrid algorithm with the pencil beam dose model, the right uses the
geometric kernel approximation.

3.6.2 Lung – 10 mm × 10 mm square beamlets

The results of the lung case with 169 square beamlets with 10 mm side length are similar
to the previous lung case. With the Hybrid/PB algorithm, the optimization took 6
iterations. The optimization stopped because the search direction ∆~w was no longer
pointing downhill in the optimization space. The final objective function value was f =
1340. The Hybrid/GK stopped even after only 3 iterations at a higher objective function
value of about f = 1640. The absolute minimum of this optimization problem of fmin =
1220 was evaluated with the reference FMO method. Again, from a mathematically
point of view, the Hybrid/PB algorithm outclasses the Hybrid/GK algorithm.

Table 3.2: Median, mean and maximum dose values of the Lung case with 10 mm
square beamlets. Comparison of the full FMO algorithm (Full) against the hybrid
algorithm with the pencil beam dose model (PB) and the geometric kernel approxi-
mation (GK).

d50 (Gy) d̄ (Gy) dmax (Gy)

Volume Full PB GK Full PB GK Full PB GK

GTV 56.5 56.3 56.0 56.6 56.5 56.2 62.8 64.3 71.4
PTV 52.9 52.8 52.5 52.7 52.7 52.3 61.1 60.6 63.0
Right lung 0.0 0.1 0.1 2.2 2.2 2.2 34.5 35.7 39.3
Body contour 0.0 0.0 0.0 0.8 0.8 0.8 29.9 38.4 40.0
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(a) Full FMO (b) Hybrid / PB (c) Hybrid / GK

Figure 3.15: Lung, 10 mm square beamlets: The figure compares doses in a transver-
sal slice from the reference FMO algorithm (a) against doses from the hybrid algo-
rithm with the pencil beam dose model (b) and the geometric kernel approximation
(c). GTV and PTV are highlighted white. Indicated are the isodose levels 10 Gy,
20 Gy, 30 Gy, 40 Gy and 51.3 Gy (95 % of PTV dose prescription). The dose values
in the color legend are given in Gy.

Clinically, both hybrid optimization algorithm show the same characteristics as in the
previous lung case. Figure 3.15 reveals, that the dose behind the beams’ entrance into
the patient is elevated in the hybrid cases, specifically in voxels inside the beam coming
from the 30◦ gantry position. The 95 % isodose line wraps optimally around the PTV in
all three cases. The Hybrid/GK features however a cold spot inside the GTV. Mean and
median doses are similar in the dose distributions of the three optimization methods.
The hybrid algorithm however increases maximum doses. Inside the body contour, the
maximum dose is increased about 10.1 Gy by the Hybird/GK algorithm and about 8.5 Gy
by the Hybrid/PB method. The DVHs in figure 3.14, which compare the results of both
hybrid algorithm against the outcome of the reference algorithm, support these data. In
the case of the Hybrid/GK algorithm, the dose homogeneity inside the GTV is clearly
worse, the D95 dose is reduced by 2.6 Gy. Using the pencil beam dose model, the target
dose coverage decreases only slightly against the reference algorithm such that the D95

dose is reduced only by 0.9 Gy.
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Figure 3.16: Nasopharynx, 5 mm square beamlets: Resulting DVHs from the hybrid
optimization algorithm against the results of the full FMO algorithm. The left image
represents the hybrid algorithm with the pencil beam dose model, the right uses the
geometric kernel approximation.

3.6.3 Nasopharynx – 5 mm × 5 mm square beamlets

The similarities in the dose distributions of the pencil beam optimized treatment plan
and its Monte Carlo dose recalculation suggest that this case should be much simpler
to optimize than the Lung case. On the other hand, with 5614 beamlets in total the
dimensionality of this optimization problem is huge, which makes the optimization more
difficult.

The reference algorithm with the precalculated MC dose influence matrix converged
at an objective function value of fmin = 590. This is the benchmark for the hybrid
algorithms. Using the Hybrid/PB method, a final objective function of f = 703 was
achieved after 8 iterations. The main improvement over the MC recalculation after the
initial pencil beam optimization was obtained after the first iteration, which reduced
the objective function from 1122 to 780. The Hybrid/GK algorithm stopped after 6
iterations at an objective function value of f = 910. Thus, from a mathematical point
of view, the Hybrid/PB optimization performs better than the Hybrid/GK algorithm.

Looking at the dose data (table 3.3, figure 3.17 and figure 3.16), no significant differences
between all three algorithms can be found. Still, the Hybrid/GK algorithm tends to
produce higher maximum doses, which are specifically higher in the right parotis. Also,
the doses to the spinal cord are increased when optimized with the hybrid algorithms.
Particularly with the Hybrid/GK algorithm, the spinal cord doses increase, as can be
seen in the DVH (figure 3.16(b)). It should be noted, that the allowed maximum dose
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(a) Full FMO (b) Hybrid / PB (c) Hybrid / GK

Figure 3.17: Nasopharynx, 5 mm square beamlets: The figure compares doses in
a transversal slice from the reference FMO algorithm (a) against doses from the
hybrid algorithm with the pencil beam dose model (b) and the geometric kernel
approximation (c). The lymph drains, the boost and the 5 mm margin around the
spinal cord are highlighted white. Indicated are the isodose levels 10 Gy, 20 Gy, 30 Gy,
40 Gy, 51.3 Gy (95 % of lymph drain dose prescription), 62.7 Gy (95 % of boost dose
prescription) and 70 Gy. The dose values in the color legend are given in Gy.

Table 3.3: Median, mean and maximum dose values of the nasopharynx case with
5 mm square beamlets. Comparison of the full FMO algorithm (Full) against the
hybrid algorithm with the pencil beam dose model (PB) and the geometric kernel
approximation (GK).

d50 (Gy) d̄ (Gy) dmax (Gy)

Volume Full PB GK Full PB GK Full PB GK

Boost 65.8 65.6 65.7 65.7 65.6 65.7 71.7 73.8 74.8
Lymph drains 54.0 54.0 54.0 54.3 54.3 54.3 66.8 68.8 68.6
Spinal cord 5 mm 19.1 19.7 20.7 17.4 17.8 18.6 33.8 34.8 35.5
Left parotis 14.9 15.3 15.1 14.1 14.3 14.5 23.6 24.8 25.2
Right parotis 11.9 12.2 11.9 12.0 12.4 12.3 22.8 21.9 30.3

to the spinal cord was set to 33 Gy in the optimization. Since this value is exceeded
and penalized in a few voxels only, the incentive of the optimizer to reduce the spinal
cord dose is small. In all cases, there is a small hot spot at the left jaw close to the
lymph drain target. This hot spot is even more pronounced in the treatment plan of
the Hybrid/GK algorithm. Nevertheless, the clinical constraints could be fulfilled in all
three cases.
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(a) Full FMO (b) Hybrid / PB (c) Hybrid / GK

Figure 3.18: Nasopharynx, 10 mm square beamlets: The figure compares doses in
a transversal slice from the reference FMO algorithm (a) against doses from the
hybrid algorithm with the pencil beam dose model (b) and the geometric kernel
approximation (c). The lymph drains, the boost and the 5 mm margin around the
spinal cord are highlighted white. Indicated are the isodose levels 10 Gy, 20 Gy, 30 Gy,
40 Gy, 51.3 Gy (95 % of lymph drain dose prescription), 62.7 Gy (95 % of boost dose
prescription) and 70 Gy. The dose values in the color legend are given in Gy.

3.6.4 Nasopharynx – 10 mm × 10 mm square beamlets

The outcome of the optimization of the nasopharynx case with 10 mm square beamlets
(1541 in total) follows the trend of the previous cases. The Hybrid/GK stopped with
the highest objective function value of f = 1330 after 4 iterations. This value could be
reduced with the Hybrid/PB optimization algorithm down to f = 1187 after 4 iterations.
The absolute minimum objective function value of fmin = 1105 was determined with the
reference algorithm. Penalty factors and dose prescriptions are identical to the 5 mm
square beamlet case.

From the clinical perspective, a clear plan degradation compared to the 5 mm beamlet
case can be observed. All plans feature a higher dose to the normal tissue, specifically
the dose distribution of the Hybrid/GK. With the high dose region to the left side of the
head, this treatment plan would probably not be applied to a patient. Besides, also the
51.3 Gy isodose line (95 % lymph drain prescription dose) is not very target conformal
and the dent of this isodose level at the right target lobe leads to an underdosage of
the target. The reference optimization algorithm and the Hybrid/PB algorithm could
achieve a significantly better dose coverage of the lymph drains. The dose to the boost
volume is similar in all cases. The maximum dose in the boost is however increased
about 3.5 Gy by the hybrid algorithms. As in the 5 mm beamlet case, the dose to the
spinal cord is increased when optimized with one of the hybrid algorithms. This higher
dose is however not penalized in most of the voxels due to the allowed maximum dose
of 33 Gy. The dose to the left parotis is increased mainly in the treatment plan created
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Figure 3.19: Resulting DVHs from the hybrid optimization algorithm against the
results of the full FMO algorithm from the nasopharynx case with 10 mm square
beamlet size. The left image represents the hybrid algorithm with the pencil beam
dose model, the right uses the geometric kernel approximation.

Table 3.4: Median, mean and maximum dose values of the nasopharynx case with
10 mm square beamlets. Comparison of the full FMO algorithm (Full) against the
hybrid algorithm with the pencil beam dose model (PB) and the geometric kernel
approximation (GK).

d50 (Gy) d̄ (Gy) dmax (Gy)

Volume Full PB GK Full PB GK Full PB GK

Boost 65.8 65.8 65.7 65.6 65.7 65.5 72.9 76.3 76.5
Lymph drains 54.1 54.2 54.1 54.5 54.5 54.5 68.2 67.8 68.2
Spinal cord 5 mm 21.2 22.4 22.2 18.8 19.6 19.5 35.5 36.1 35.9
Left parotis 13.1 13.8 14.7 13.1 13.7 14.5 31.3 30.6 28.2
Right parotis 11.5 11.8 10.4 11.8 12.2 11.3 26.4 25.6 29.7

by the Hybrid/GK algorithm, although its maximum dose could be slightly reduced
with this method. All three treatment plans fulfill the clinical constraints (see section
2.7.2). Still, due to the increased dose to the normal tissue, the plan of the Hybrid/GK
algorithm would probably not be clinically accepted.
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Figure 3.20: Larynx, 5 mm square beamlets: Resulting DVHs from the hybrid op-
timization algorithm against the results of the full FMO algorithm. The left image
represents the hybrid algorithm with the pencil beam dose model, the right uses the
geometric kernel approximation.

3.6.5 Larynx – 5 mm × 5 mm square beamlets

With the 5 mm beamlet side length resulting in not less than 7371 beamlets, this treat-
ment plan is the most complex case to optimize. For the Hybrid/PB optimization algo-
rithm however, this case is comparably easy due to the strong similarities between the
pencil beam and MC dose distributions (see section section 3.1.3). The algorithm took
7 iterations to converge. A final objective function value of f = 1880 could be achieved.
The Hybrid/GK algorithm converged after 7 iterations too with an objective function
value of f = 2060. The reference objective function value fmin = 1720 was determined
again with the reference FMO algorithm that was stopped after 100 iterations. Like in

Table 3.5: Median, mean and maximum dose values of the larynx case with 5 mm
beamlets. Comparison of the full FMO algorithm (Full) against the hybrid algorithm
with the pencil beam dose model (PB) and the geometric kernel approximation (GK).

d50 (Gy) d̄ (Gy) dmax (Gy)

Volume Full PB GK Full PB GK Full PB GK

Boost 70.3 70.1 70.3 70.1 70.0 70.2 75.2 76.9 79.0
Lymph drains 58.0 58.0 58.1 58.3 58.3 58.5 71.8 74.8 75.4
Lymph drains caud. 56.8 56.5 56.4 56.6 56.5 56.4 59.6 61.7 65.8
Spinal cord 5 mm 20.5 20.1 22.3 18.9 19.0 20.7 35.7 36.5 37.2
Left parotis 15.8 16.2 17.0 15.8 16.2 16.8 27.9 28.2 26.0

93



RESULTS

(a) Full FMO (b) Hybrid / PB (c) Hybrid / GK

(d) Full FMO (e) Hybrid / PB (f) Hybrid / GK

Figure 3.21: Larynx, 5 mm square beamlets: The figure compares doses in 2
transversal slices from the reference FMO algorithm (a,d) against doses from the
hybrid algorithm with the pencil beam dose model (b,e) and the geometric kernel
approximation (c,f). The lymph drains, the boost and the 5 mm margin around the
spinal cord are highlighted white. Indicated are the isodose levels 10 Gy, 20 Gy, 30 Gy,
40 Gy, 54.7 Gy (95 % of lymph drain dose prescription), 60 Gy, 67.0 Gy (95 % of boost
dose prescription) and 75 Gy. The dose values in the color legend are given in Gy.

all patient cases before, the Hybrid/PB outperforms the Hybrid/GK algorithm from a
mathematical point of view but neither can achieve the absolute optimum.

If we inspect the dose distributions, some differences between the 3 treatment plans
can be observed: the upper dose slice in figure 3.21 shows 2 spots with elevated doses
at the anterior left side of the lymph drain target in both hybrid plans. The target
dose conformity for the lymph drains and the boost is good and very similar in all
three generated treatment plans. All plans seem to favor one particular beamlet, which
results in a high dose “needle” from the 320◦ gantry position, as can bee seen in the
lower dose slices (figure 3.21 (d)-(f)). This region of high dose is even more boosted
in the Hybrid/GK treatment plan. The reference FMO algorithm and the Hybrid/PB
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Figure 3.22: Larynx, 10 mm square beamlets: Resulting DVHs from the hybrid
optimization algorithm against the results of the full FMO algorithm. The left image
represents the Hybrid/PB algorithm, the right uses the Hybrid/GK method.

algorithm could also achieve a lower dose to the posterior side of the brain. The dose-
volume histograms (figure 3.20) do not differ much from each other. The Hybrid/PB
shows a better sparing of the spinal cord compared to the reference algorithm. Using
the Hybrid/GK algorithm this is contrary. The target dose homogeneity is somewhat
worse using the Hybrid/GK method. This decreased homogeneity originates from many
high dose islands, which can be identified in the illustration of the transversal dose slices.
Again, both hybrid algorithms tend to increase maximum doses. The increase in dose
is however moderate in this case and basically limited to the target volumes (table 3.5).
The clinical constraints are fulfilled in all cases.

3.6.6 Larynx – 10 mm × 10 mm square beamlets

We get similar results if the beamlet size is increased to 10 mm × 10 mm. The complexity
of the optimization then reduces to 2004 beamlets. As in all other cases, the reference
algorithm could achieve the smallest objective function value of fmin = 2450. The
Hybrid/PB algorithm stopped at an objective function value of about f = 2540 after 4
iterations and the Hybrid/GK algorithm achieved an objective function value of f = 2750
after 9 iterations.

If we look at the dose distributions, it can be seen that the same beamlet as in the
5 mm beamlet case is boosted and creates a needle of higher dose. This beamlet gets
even more boosted by the Hybrid/GK algorithm. The increase of the beamlet’s weight
results in a hot spot of about 68 Gy inside the lymph drain target. The 95 % isodose
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(a) Full FMO (b) Hybrid / PB (c) Hybrid / GK

Figure 3.23: Larynx, 10 mm square beamlets: This figure compares doses in a
transversal slice from the reference FMO algorithm (a) against doses from the hybrid
algorithm with the pencil beam dose model (b) and the geometric kernel approxima-
tion (c). The lymph drains, the boost and the 5 mm margin around the spinal cord
are highlighted white. Indicated are the isodose levels 10 Gy, 20 Gy, 30 Gy, 40 Gy,
54.7 Gy (95 % of lymph drain dose prescription), 60 Gy, 67.0 Gy (95 % of boost dose
prescription) and 75 Gy. The dose values in the color legend are given in Gy.

Table 3.6: Median, mean and maximum dose values of the larynx case with 10 mm
beamlets. Comparison of the full FMO algorithm (Full) against the hybrid algorithm
with the pencil beam dose model (PB) and the geometric kernel approximation (GK).

d50 (Gy) d̄ (Gy) dmax (Gy)

Volume Full PB GK Full PB GK Full PB GK

Boost 70.2 70.1 70.2 70.0 70.0 70.0 75.3 77.3 77.0
Lymph drains 58.1 58.2 58.3 58.5 58.6 58.6 71.8 76.0 73.3
Lymph drains caud. 56.5 56.2 56.1 56.4 56.1 56.0 59.9 62.4 60.8
Spinal cord 5 mm 24.2 24.4 24.0 22.2 22.3 22.0 38.0 38.4 38.7
Left parotis 14.3 14.7 16.6 15.2 15.7 17.3 33.0 32.6 29.6

lines (of the boost and the lymph drains) wrap around the target volumes very well and
look similar in all cases. The average dose to the left parotis is similar in the reference
and the Hybrid/PB algorithm and is clearly lower than in the treatment plan of the
Hybrid/GK method (see DVH in figure 3.22). This increase in mean parotis dose is
however compensated with an about 3 Gy lower maximum dose. Both hybrid method
show a slightly better sparing of the spinal cord. Again, the hybrid algorithm tends
to a general increase of the maximum doses in most of the volumes. Remarkably, in
this patient case this behavior is more distinct in the Hybrid/PB algorithm. Due to the
similarities in the dose distributions of the reference and the Hybrid/PB algorithm, both
treatment plans can be considered as clinically equivalent. In addition, all three dose
distributions fulfill the clinical constraints.
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(a) Full FMO (b) Hybrid / PB (c) Hybrid / GK

Figure 3.24: Prostate: The figure compares doses in a transversal slice from the
reference FMO algorithm (a) against doses from the hybrid algorithm with the pencil
beam dose model (b) and the geometric kernel approximation (c). The CTV and the
rectum are highlighted white. Indicated are the isodose levels 10 Gy, 20 Gy, 30 Gy,
40 Gy, 50 Gy and 62.7 Gy (95 % of the CTV dose prescription). The dose values in
the color legend are given in Gy.

3.6.7 Prostate – 10 mm × 10 mm square beamlets

The final case is the prostate treatment plan. Because the MC dose recalculation and the
initial pencil beam optimization lead to very similar dose distributions and the number
of incident beams is relatively small, this treatment plan is a comparably easy case
for the hybrid optimizer. This plan was only selected to demonstrate the versatility
of the hybrid algorithm. Therefore we have limited the optimization to the 10 mm
square beamlet case. The treatment plan consists of 282 beamlets in total. Due to the
low complexity of the optimization problem, the reference FMO algorithm using the
limited-memory BFGS method (section 2.1.3) converged after only 23 iterations with
an objective function value of about fmin = 71330. The Hybrid/PB algorithm reached
its final objective function value f = 72870 after only 2 iterations and the Hybrid/GK
algorithm stopped at about f = 75450 after 3 iterations.

The dose distributions of the three algorithms are presented in the transversal dose slices
(figure 3.24), the DVHs (figure 3.25) and in table 3.7. The symmetry of the patient
setup is recognized by all three optimization algorithms. All three algorithms achieve a
dose sparing of the rectum by reducing the weights of the central beamlets of the beam
impinging from 12 o’clock. The DVHs are very similar to each other but the Hybrid/GK
algorithm produces a slightly worse target dose homogeneity. The maximum doses get
increased by the hybrid algorithms of about 1–2 Gy, specifically by the Hybrid/GK
algorithm. Despite the small differences in the dose distributions, all three treatment
plans can be considered as clinically equivalent and the clinical constraints can be fulfilled
in all cases.
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Figure 3.25: Resulting DVHs from the hybrid optimization algorithm against the
results of the full FMO algorithm from the prostate case. The left image represents
the hybrid algorithm with the pencil beam dose model, the right uses the geometric
kernel approximation.

Table 3.7: Median, mean and maximum dose values of the prostate case. Compar-
ison of the full FMO algorithm (Full) against the hybrid algorithm with the pencil
beam dose model (PB) and the geometric kernel approximation (GK).

d50 (Gy) d̄ (Gy) dmax (Gy)

Volume Full PB GK Full PB GK Full PB GK

CTV 65.2 65.4 65.4 64.4 64.5 64.7 74.2 74.0 76.0
Rectum 22.2 22.0 22.9 23.6 23.7 23.9 62.4 63.4 63.3
Bladder 21.3 21.8 21.3 21.5 21.9 21.6 66.8 66.6 67.0
Outline 1.1 1.6 1.6 6.7 7.0 7.0 66.9 68.3 70.0

3.7 Efficiency

With the number of simulated particles during optimization, the efficiencies of both hy-
brid optimization algorithms and of the reference method were calculated for all clinical
cases as explained in section 2.7. In addition, the runtimes of both hybrid algorithms
were measured for all patient cases.

The efficiency values of the Hybrid/PB and the reference FMO method are shown in
the last three columns of table 3.8. Also included are the number of simulated par-
ticles by each method and the resulting mean relative uncertainties of the associated
dose distributions. The differences in the number of particles from case to case can
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be explained by the varying target volumes, since bigger targets require larger beam
areas and thus more beamlets. The efficiency of the Hybrid/PB algorithm is generally
very high. Except for the lung cases, the efficiency values are larger than 90 %. In the
prostate case, an efficiency of even 99 % could be achieved. These values imply that only
few additional particles are required in the hybrid algorithm compared to a forward MC
dose calculation at the same dose uncertainty. In the lung cases, the efficiency reduces
to 79 % when using (5 mm)2 beamlets and to 84 % with (10 mm)2 beamlets respectively.
The reason for this decrease are simulated particles from beamlets, whose weights were
set to zero during optimization. In such a case, the incremental dose update (section
2.5.2) cannot prevent the waste of particles.

The efficiency of the dose influence matrix based reference algorithm is lower in all
cases. The value εfmo can be understood as an upper efficiency limit for this method.
Practically, this efficiency cannot be achieved, because the uncertainty of the resulting
dose distribution is fluence map dependent and can therefore hardly be estimated from
the average beamlet dose uncertainty. The very small effective efficiencies ε∗fmo of about
10 % to 30 % are a more realistic efficiency measure of the reference method. This value
assumes that the dose influence matrix is calculated at an uncertainty of 0.8 %, which is
the same value as the desired uncertainty of the final dose distributions. A low efficiency
value of about 15 % implies that more than six times as much particles have to be
simulated with the reference method as for the forward dose calculation. These effective
efficiency values for the reference method are in a good agreement with the reported
values of Laub et al. (2000).

Similar results are achieved with the Hybrid/GK algorithm (see table 3.9). The cal-
culated efficiency values are however generally smaller than the efficiencies of the Hy-
brid/PB algorithm (average efficiency about 83 %). The reason is, that the pencil beam

Table 3.8: Particle efficiencies for the Hybrid/PB optimization and the reference
full FMO method. The efficiency values are calculated according to equations (2.66)
and (2.87) by recalculating the dose distributions from the fluence map result of the
Hybrid/PB optimization. The number of particles N are given in millions (106).

forward MC Hybrid/PB opt. full MC-FMO opt. efficiencies (%)

case Nfw σ̄fw (%) Nhyb σ̄hyb (%) Nfmo σ̄dc (%) σ̄bix (%) εhpb εfmo ε∗fmo

Lung† 2.93 0.799 3.82 0.787 100 0.172 0.285 79.1 63.1 23.0

Lung‡ 3.16 0.780 4.51 0.711 50 0.255 0.476 84.3 59.2 17.0

Nasoph.† 20.09 0.796 23.11 0.774 100 0.420 1.003 91.9 72.2 12.7

Nasoph.‡ 18.39 0.800 19.97 0.788 50 0.613 1.435 94.9 62.6 11.4

Larynx† 25.30 0.796 27.04 0.794 100 0.490 1.220 94.1 66.8 10.8

Larynx‡ 24.32 0.799 24.45 0.802 100 0.495 1.210 98.7 63.4 10.6

Prostate‡ 8.26 0.799 8.10 0.810 50 0.400 0.586 99.2 65.9 30.7
†5 mm square beamlets, ‡10 mm square beamlets, ∗effective efficiencies of the full FMO-MC method
(see section 2.7)
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dose model of the Hybrid/PB algorithm represents the true dose distributions much
better than the geometric kernel approximation, because particle scattering is taken
into account. As a result, the hybrid optimization algorithm can estimate better search
directions and has to waste fewer particles.

3.8 Runtime

The runtimes of both algorithms are shown in table 3.10. The computations were done
on a desktop computer with an Intel R©Core

TM
i7-860 CPU at 2.8 GHz and 4 GB system

memory. Seven calculation threads were used for the optimization and the dose calcu-
lation. The task of the remaining extra thread was the visual representation of the dose
distribution in the graphical user interface. It should be noted, that the runtimes do not
include the calculation of the dose influence matrix of the dose model. This calculation
can be done very fast and has to be done only once per patient. The table presents the
calculation times tMC for the MC dose calculations, the times topt spent for optimizing
the dose model (2.68) and the total times ttotal given as the sum of both.

As a general trend, the time for the dose model optimization is significantly smaller in
the Hybrid/GK model. Due to the ignored scattering doses, the resulting dose influ-
ence matrix has much fewer dose entries than the pencil beam generated dose matrix.
Therefore, dose calculation and the computation of the gradient of the objective func-
tion can be executed much faster. A second trend is the increased MC calculation time
with the Hybrid/GK optimization although the total number of simulated particles are
practically the same. The main reason is a higher number of particles per iteration due
to larger fluence weight changes in each iteration. In all cases, the Hybrid/PB algorithm

Table 3.9: Particle efficiencies for the Hybrid/GK optimization and the reference
full FMO method. The efficiency values are calculated according to equations (2.66)
and (2.87) by recalculating the dose distributions from the fluence map result of the
Hybrid/GK optimization. The number of particles N are given in millions (106).

forward MC Hybrid/GK opt. full MC-FMO opt. efficiencies (%)

case Nfw σ̄fw (%) Nhyb σ̄hyb (%) Nfmo σ̄dc (%) σ̄bix (%) εhgk εfmo ε∗fmo

Lung† 2.80 0.791 5.54 0.671 100 0.160 0.285 70.0 68.4 21.5

Lung‡ 2.58 0.798 3.32 0.777 50 0.230 0.476 82.1 61.9 14.5

Nasoph.† 19.63 0.799 25.55 0.763 100 0.406 1.003 84.1 76.1 12.4

Nasoph.‡ 18.65 0.797 21.99 0.778 50 0.627 1.435 89.0 60.4 11.5

Larynx† 24.56 0.800 31.88 0.794 100 0.476 1.220 78.2 69.3 10.6

Larynx‡ 25.11 0.796 33.28 0.757 100 0.513 1.210 83.5 60.5 10.9

Prostate‡ 8.13 0.798 8.70 0.788 50 0.400 0.586 95.9 64.7 30.2
†5 mm square beamlets, ‡10 mm square beamlets, ∗effective efficiencies of the full FMO-MC method
(see section 2.7)
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Table 3.10: Runtimes of the hybrid algorithms.

tMC (s) topt (s) ttotal (min)

case H/PB H/GK H/PB H/GK H/PB H/GK

Lung† 139 179 141 36 4:40 3:35

Lung‡ 168 83 85 16 4:14 1:39

Nasoph.† 579 703 652 75 20:32 12:58

Nasoph.‡ 364 645 131 43 8:15 11:28

Larynx† 716 956 959 117 27:55 17:53

Larynx‡ 409 1066 174 81 9:44 19:07

Prostate‡ 94 93 6 3 1:30 1:36
†5 mm square beamlets, ‡10 mm square beamlets

needs fewer particles until convergence, resulting first in a higher mean dose uncertainty.
Only with a final simulation of additional particles, the desired mean dose uncertainty
of less than 0.8 % is ultimately achieved.

Although the Hybrid/GK algorithm tends to shorter calculation times due to the signif-
icantly smaller size of the dose influence matrix, there is no clear winner with regard to
the runtimes. In the larynx and the nasopharynx case optimized with 10 mm beamlets,
the situation is reversed and this algorithm takes more time. The shortest runtime of
1:30 min could be achieved with the optimization of the prostate plan. This time should
not be considered as a benchmark, since prostate plans are normally optimized with
pencil beam algorithms that are precise enough at that body site. More interesting are
the runtimes for the lung cases of about 4 minutes. These short runtimes are ideal in
a clinical environment, where a great number of treatment plans have to be created
every day. The relatively large runtimes of 20–27 minutes for the optimization of the
head-and-neck cases may be at the limit of what is clinically acceptable.

In contrast, the calculation of the dose influence matrix for the reference algorithm
took generally several hours, depending on the number of beamlets and the number
of simulated particles. This calculation was however not parallelized due to technical
limitations with the VMC++ framework in combination with dose influence matrices.
This fact should be considered when comparing runtimes of the reference algorithm with
the hybrid optimization algorithm.
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4 Discussion and conclusion

4.1 Sequential hybrid optimization

We developed an efficient algorithm for the optimization of IMRT treatment plans based
on Monte Carlo (MC) simulated dose distributions. The aim for this development was
to increase the efficiency of current MC based optimization algorithms to reduce their
calculation times in order to get the high accuracy of MC algorithms into clinical inverse
planning. The increase in computation efficiency is achieved by two proposals: the
optimized search direction uses information of an alternative, faster dose calculation
algorithm to converge in as few iterations as possible to the optimum. This allows keeping
the number of MC simulations small and thus reducing its computational overhead. As
the calculation of the optimized search direction uses an only slightly modified objective
function, established optimization techniques can be extended to include this algorithm
with only minor adjustments. The second idea, called the efficient incremental dose
update, reuses already simulated particles from dose calculations in previous iterations
of the optimization. This strategy allows a significant reduction of required particles.

4.1.1 Quality of optimized treatment plans

This algorithm was tested amongst treatment scenarios at different body sites. The
treatment plans include a lung case, two head-and-neck cases and one prostate plan.
The complexity of the algorithmic inverse planning was varied by simulating beamlet
sizes of 5 mm and 10 mm side length. The algorithm converged in less than 10 iterations
in all cases; in most of the cases the convergence was even reached after less than
5 iterations. We evaluated the impact of two alternative dose calculation models for
the hybrid optimization algorithm on the treatment plan quality and the computational
performance, which are the macroscopic pencil beam (Hybrid/PB, section 2.6.1) and the
geometric kernel approximation (Hybrid/GK, section 2.6.2). In all cases, the optimized
search direction leads to better treatment plans when using the pencil beam based hybrid
dose model. Its advantage is that it featured smaller maximum doses in organs at risk and
also achieved more homogeneous dose coverage of the target volumes. Compared to the
reference fluence map optimization (FMO) method for MC dose algorithms, especially
the Hybrid/PB variant showed good results which are partially indistinguishable from
the dose distributions of the reference algorithm. It should however not be concealed,
that the hybrid algorithm tends to increase maximum doses that can result in dose hot
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spots in healthy tissue. Particularly in the lung case, the maximum dose in the normal
tissue increased from 30 Gy to 40 Gy with the hybrid algorithm. These high dose regions
are often caused by a strong increase of the weights of single beamlets as a result of
contradictory dose information between the dose model and the dose recalculation with
MC. This behavior could be suppressed, by adding a regularization term to the objective
function that penalizes fluence maps with a high variance (Alber & Nüsslin 2000, Kessen
et al. 2000, Webb 2001).

4.1.2 Uncertainty estimation of the objective function

The main idea of the incremental dose update is to decrease the uncertainty of the dose
distribution in each iteration of the optimization. We demonstrated with four exam-
ples that a decreasing average dose uncertainty can lead to a reduction of its objective
function value. This fact raises however a new challenge for the hybrid optimization
algorithm, since the algorithm has to determine, whether an objective function is de-
creasing due to an improved treatment plan quality or only on account of a decreased
dose uncertainty. Therefore we evaluated three different methods for the estimation of
the objective function uncertainty. These are the first order Gaussian error propagation,
the error estimation by dose smoothing and the simulated noise method. The error
propagation method severely underestimates the error of the objective function since a
first order approximation does not take account for the quadratic structure of the objec-
tive function, specifically on nearly optimal dose distributions. The diffusion based dose
smoothing removes cold and hot spots and reduces dose fluctuations in the target. This
leads to an overestimation of the objective function error. Only the method of simulated
noise could calculate objective function values that practically do not depend on the
noise level and which correspond to an objective function value of zero dose uncertainty.
Therefore, the latter method is used in the hybrid optimization algorithm for the calcu-
lation of the “true objective function value”. If this value is increasing, the optimization
will be stopped in order to prevent plan quality degradation.

It should be critically noted, that the strength of the change of the objective function
value depends to a great extend on the set of dose constraints and penalties. If for
example the minimum and maximum dose constraint of the target volume differs, noise
might not be penalized as the dose values in the target could lie in the allowed dose region.
Although very unlikely, the noise could also ”improve” a dose distribution, resulting in a
lower objective function value. Thus, the described methods indeed allow an estimation
of the variability of the objective function but the deduction of the objective function
value of the noise-free dose distribution is simply a heuristic.
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4.1.3 Efficiency and runtime

The efficiency of the algorithm, which is a measure of particle waste, was generally
higher than 80 %. An even higher efficiency of more than 90 % could be measured for
the head-and-neck cases and the prostate treatment plan. Compared to the efficiency of
the reference algorithm, which could achieve effective efficiencies of maximum 30 %, this
is a great improvement which eventually leads to a significant reduction of calculation
time. When comparing the impact of the dose models on the efficiency of the hybrid
optimization algorithm, it reveals that the use of the pencil beam dose model results in
a higher efficiency value in all patient cases. This was the case even in the optimization
of the lung, where it is known that the pencil beam doses differ significantly from MC
calculated dose distributions (Scholz et al. 2003, Krieger & Sauer 2005). The calculation
times of both hybrid algorithms are similar and vary between 1.5–28 minutes. These
low runtimes are achieved to a great extend by the VMC++ framework for fast clinical
Monte Carlo dose calculation (Kawrakow 2001). The Hybrid/GK method allows much
shorter times for the calculation of the search direction due to the sparsity of the dose
model matrix. Because more particles have to be simulated per iteration due to larger
beamlet weight changes, this advantage in computation time is reduced by a longer time
for the MC simulation. Compared to the runtimes of the reference FMO algorithm of
several hours, great time savings were achieved with the hybrid algorithm.

4.1.4 Limitations

In theory, the sequential hybrid algorithm could be classified as a “pseudo optimization
algorithm” as the calculation of the search direction cannot assure a decrease of the
objective function. When a dose distribution has to be tuned only slightly to be optimal,
the dose model (as e.g. the pencil beam algorithm) may predict an improvement of the
objective function whereas the MC recalculation results in the opposite. This is the point
where the optimization has to stop. The minimum of the objective function – and thus
optimality in a mathematical sense – cannot be reached. Accordingly, the convergence
error depends on the accuracy of the dose model. We were able to show that the pencil
beam dose model leads to objective function values close to the optimum. These values
are generally smaller than the objective function values gained with the geometric kernel
approximation. It is still questionable, if other sufficiently fast dose calculation models
could reduce the convergence error even more.

Currently, the optimization does not take into account if the calculated fluence maps
can be realized with a multi-leaf collimator. A further leaf-sequencing step is therefore
required which may result in a degradation of the treatment plan quality (Siebers et al.
2002). From a technical point of view, depending on the sequencing algorithm, further
MC dose calculations could be required, which would lead to an increase of the total
optimization time. One possibility to avoid treatment plan degradation and additional
MC simulations is to incorporate the leaf sequencing directly into the optimization cycle
(Fippel et al. 2000, Siebers et al. 2002).
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4.1.5 Similar methods

During the last decade, other publications have also tried to answer the question of how
Monte Carlo dose calculations can be incorporated into an inverse planning framework
in an efficient manner. The works of Laub et al. (2000) and Siebers et al. (2007) propose
similar hybrid optimization methods, which use pencil beam dose calculation algorithms
in addition to the accurate Monte Carlo simulation. In (Laub et al. 2000), the gradients
of the objective function are approximated by using a pencil beam based dose influence
matrix instead of a MC simulated dose matrix. Inside the optimization, a conjugate
gradient search direction (based on the gradient approximation) leads to a reduction of
the objective function. As in our work, the dose is calculated by Monte Carlo simulation
after each iteration in an incremental fashion. In contrast to our work, the dose update
handles negative fluence weight changes by simulating negative dose instead of down-
scaling the previous dose distribution to keep efficiency high. Although quasi-Newton
methods – as e.g. the BFGS algorithm – are currently hyped in the optimization com-
munity, the conjugate gradient method shows similar performance on many problems
(Nocedal & Wright 1999). According to our experience with the limited-memory BFGS
technique, at least 20–40 iterations are required in a standard FMO approach in order
to get good optimization results (the actual number depends on the treatment plan
complexity and can be much higher). The same applies for the conjugate gradients, so
that the hybrid algorithm of Laub et al. (2000) still requires a relatively large number of
iterations and thus MC simulations. Laub et al. (2000) reduce the number of iterations
by pre-optimizing a pencil beam based treatment plan, which then acts as a starting
solution for the hybrid algorithm. If the dose distributions calculated by the MC and
pencil beam algorithm strongly differ, then it is most likely that the starting solution is
far from optimal. In this case, this algorithm still requires a comparable large amount
of iterations.

A different approach is published in (Siebers et al. 2007), which is also a sequential
optimization algorithm (i.e. each iteration is an optimization). In this work, the dif-
ference between an optimized pencil beam dose distribution and a recalculated Monte
Carlo dose distribution is calculated and stored as a difference cube after each iteration.
In the following iteration of the optimization, the pencil beam dose distributions are
corrected by adding the difference cube from the previous iteration on the pencil beam
generated dose distribution. Although this method seems different from our hybrid se-
quential optimization approach, it can be mathematically shown that it leads to the
same sequence of fluence maps as our optimized search direction strategy, as long as
we omit the line search. The published numbers of required iterations for convergence
(Siebers et al. 2007) are similar to our method, which confirms this hypothesis. Con-
trary to our work, this method does not include an incremental dose update for efficiency
improvement, although Siebers makes the educated guess that it might improve calcu-
lation times. Our more formal optimization approach, which includes the calculation of
a search direction, the minimization of the objective function along the search direction
(line search) and the final update of the beamlet weights, offers advantages as standard
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optimization concepts can be directly applied in order to improve convergence. The ad-
ditional line search is computationally cheap and crucial for preventing too long steps,
which lead to a premature stop of the optimization. In summary, our new sequential
hybrid optimization approach combines the fast convergence of the work of Siebers et al.
(2007) with an incremental dose update to reduce calculation time, similar to the work
of Laub et al. (2000). Its development was focused on maximum efficiency to keep the
number of simulated particles as small as possible.

4.2 Reference FMO algorithm

From the perspective of treatment plan quality the reference FMO algorithm is still
the gold standard. This could be specifically seen at the maximum doses in the organs
at risk, which were smaller in most of the cases compared to the hybrid algorithm.
Another advantage of the algorithm is that it can be included into a classical treatment
plan optimization concept because of the strict separation between dose calculation and
optimization, allowing a very modular design.

Two important issues of this algorithm have to be addressed. First, it is unclear, at
which statistical accuracy the dose influence matrix has to be calculated in order to
limit the convergence error. The minimal accuracy is not only patient specific but some
tests revealed, that is also depends on the actual setting of penalty parameters. The
optimization of the presented lung case stabilized if the mean dose uncertainty was
reduced to less than 2 %. A change of the penalty parameters of the objective function
on the same patient resulted in an unstable optimization over a large range of dose
uncertainties and stabilized only after the mean uncertainty of the dose influence matrix
was reduced to less than 1 %. In contrast to our work, Siebers (2008) published that
an average dose error of 10 % per beam is required, in order to keep the convergence
error small. This conclusion was however drawn for his hybrid optimization algorithm
on prostate cases only and may be not applicable to a dose influence matrix based
optimization approach.

In our work, the reference method was utilized to define the mathematical optimum of
each treatment plan and to control the accuracy of the hybrid optimization algorithm.
To avoid convergence errors, the dose influence matrix was calculated at a sufficient high
accuracy of less than 1 % per beamlet. This high accuracy comes at the price of very
long calculation times.

We demonstrated in section 3.2, that the sequential simulation with VMC++ of the dose
distribution of each beamlet leads to an offset in the calculation time. This comparably
long time prevents a fast dose matrix computation with only a few particles. The offset
is independent of the number of particles and it is a consequence of the repetitive batch
statistic calculation for each beamlet. A possible solution is the use of a different scoring
technique instead as e.g. the history-by-history scoring, whose runtime depends on the
number of simulated particles.
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The second issue is the poor efficiency of the reference method. Due to the decoupling
of dose calculation and optimization, information about the importance of each beamlet
cannot be exploited during the dose calculation. Thus, the dose of each beamlet has to
be simulated with an equal amount of particles or at the same statistical uncertainty. It
is inevitable that this strategy requires more particles than a forward Monte Carlo dose
calculation. In this work and in the publication of Laub et al. (2000) the low effective
efficiencies of 10 %–30 % were calculated.

4.3 Dose influence matrix compression

The method of the dose influence matrix compression is a by-product of the development
of the hybrid optimization algorithm. It originated from the need to include multiple
dose influence matrices into the algorithm in order to test the algorithm for correctness.
The use of this technique is however not limited to the hybrid optimization algorithm.
All gradient based optimization algorithms in radiation therapy require information
about the dose contribution of each beamlet or irradiation segment. If these data are
precalculated, the presented compression technique offers one method that halves the
usage of memory while keeping the computational overhead minimal. Our measurements
could not determine any significant performance regression in the dose calculation and
the computation of the gradients of the objective function when enabling the dose matrix
compression. On the contrary, the calculation of the gradients could lead to a runtime
reduction of up to 20 %, if the dose influence matrix was sufficiently large. The theoretical
maximum compression rate of 2 could be achieved in most of the cases, specifically in
the case of large dose matrices. Because this algorithm adds only few lines of code (32
lines of C code for the decompression), existing optimization algorithms can be easily
adapted for a dose influence matrix decompression “on-the-fly”.

4.4 Clinical relevance

The aim of the work was to combine the high accuracy of Monte Carlo dose calculations
with an optimization framework that allows calculation times of less than 30 minutes on
standard computer hardware. As shown, the inclusion of MC algorithms into the inverse
planning helps to avoid underdosage of tumors in proximity to low density tissue, as it
is the case in lung tumors or in head-and-neck treatment plans. The results show that
this goal could be achieved even at high statistical dose accuracies of 0.8 %. Thus, this
algorithm offers a relevant option for clinical use. Most importantly, the algorithm does
not interfere with the current clinical workflow but can be seen as a post-processing step
after the conventional optimization phase. That is, the treatment plan is first optimized
based on an inaccurate dose model (e.g. pencil beams) using the standard tools. In this
step, the dose constraints and penalty factors are adjusted until an acceptable treatment
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plan is found. After that, the hybrid algorithm can use this solution for its initial guess
and its hybrid dose model will be based on the previously generated dose influence
matrix. The advantage in doing so is that a repetitive Monte Carlo-based optimization
can be avoided as the found constraints and penalties are most likely still a good choice.

There is still some work left, before a clinical application can be considered. First, the
particle source used in this work is extremely simplified and has to be expanded to
include a realistic energy spectrum. At least the fluence of primary photons and the
beam penumbra have to be tuned to match phantom measurements. Better would be a
complete simulation of the treatment head. As discussed above, a leaf sequencing step
has to be implemented that converts abstract fluence maps into a series of deliverable
fields or leaf trajectories. Third, the impact of the CT-to-material conversion process on
the dose calculation error has to be improved and the material conversion table must be
adapted and commissioned to a specific CT scanner. It was shown, that errors during
the CT conversion can lead to dose errors up to 10 % for 6 MV photon beams (Verhaegen
& Devic 2005).

The inclusion of Monte Carlo dose algorithms into the inverse planning raises new chal-
lenges for the definition of treatment plan parameters. In treatment plans for lung
tumors, the PTV includes a relatively large margin around the tumor to account for
tumor motion, which is caused by the breathing of the patient. If the planned dose to
the PTV margin was the same as the CTV dose (tumor dose), the fluence of beamlets
aiming on that margin would have to be severely increased as the energy absorption of
the tissue inside the margin is small. This increase in fluence leads to two problems: first,
the dose to the normal tissue increases as a consequence. Second, if the tumor moves
inside the margin, it also absorbs a higher dose than planned (it is debatable if tumor
overdosage is a problem from a medical point of view). This issue might be reduced
with the dose-to-water scoring method instead of a dose-to-medium scoring. There is
still a large debate of which scoring technique should be clinically used as there are no
official recommendations (Chetty et al. 2007, Ma & Li 2011). The advantage of using
dose-to-water scoring, is that the clinical experience of the last decades was gained from
such data. Also, current equipment for dosimetry reports dose-to-water. On the other
hand, dose-to-medium scoring is consistent with reality as it is a physical measure for
the energy absorption in the patient. Probably the most straight forward solution to
reduce these kinds of problems is the inclusion of organ motion into the optimization
and the treatment delivery (Keall et al. 2004, Chetty et al. 2007).

The question, whether a treatment plan has to be optimized on Monte Carlo based
dose distributions, can only be answered after a Monte Carlo dose recalculation of the
treatment plan is done. If differences between planned dose and MC dose distribution
are too large (if e.g. the failure rate in the gamma test (Low et al. 1998) is unacceptable),
a MC based inverse planning should be considered.
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4.5 Conclusion and outlook

We developed a fluence map optimization algorithm for Monte Carlo-based inverse treat-
ment planning in radiation therapy. This algorithm combines the high dose calculation
accuracy of Monte Carlo (MC) simulations with the high efficiency of less accurate but
faster dose calculation engines. Our hybrid method can be understood as a pseudo op-
timization algorithm as each search direction is determined by a heuristic, in which the
change of the fluence weights is estimated by predicting dose changes with an alternative
dose calculation algorithm. For all patient cases we could demonstrate rapid convergence
of less than 10 iterations; this is a result of the sequential optimization approach. The
particle efficiency of the optimization algorithm – i.e. the statistical impact of each sim-
ulated particle – could be improved to about 80–95 % by reusing particles from previous
iterations with an incremental dose update. This increase in efficiency significantly re-
duces the number of required particles during optimization up to 1/10 of the number
of simulated particles with a reference optimization algorithm. Thus, clinically relevant
calculation times of only a few minutes for the treatment plan optimization, including all
MC simulations, can be achieved in combination with the fast VMC++ package. Due to
these relatively small runtimes, this algorithm is a good candidate for clinical treatment
planning of e.g. small lung tumors, where non MC-based dose calculation algorithms
are known to be inaccurate. Due to the heuristic character of the hybrid optimization
algorithm, optimality in a mathematical sense cannot be guaranteed. Compared to the
(slow) reference optimization method, the resulting treatment plans have a tendency of
slightly increased maximum doses and small hot spots. Still, the quality of the generated
treatment plans are similar to the optimal treatment plans, which were created with the
reference method. The best results in terms of plan quality and efficiency could be
achieved with the hybrid MC/pencil beam dose model for the calculation of the search
directions.

The sequential hybrid optimization method still offers some room for improvement. Af-
ter each iteration, the MC dose calculation gives accurate results that differ from the
prediction of the hybrid dose model. The differences between both dose distributions
could be used to iteratively adapt the dose model. If the dose influence matrix of the
dose model could be improved – that is, if the differences between dose model matrix
and the unknown MC-based dose matrix could be reduced, the hybrid algorithm would
even show better convergence (faster convergence, more optimal solution). A correction
factor based method was tested, however it could only reduce the final objective func-
tion values marginally (the results of this test are not presented in this work). Machine
learning methods, such as e.g. the Bayesian linear regression method (Bishop 2006, pp.
152), seem to be more promising. These methods make predictions based on observed
data and prior knowledge and lead to good results if the prior knowledge is modeled
correctly. In this particular problem, the great challenge for machine learning and other
algorithms lies in the huge number of free parameters to be inferred (#beamlets × #vox-
els). This implies that a complete dose influence matrix (or at least some parts of it) has
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to be derived from only a small number of observed variables, which are given as a series
of dose deviation cubes (#voxels × #iterations). This leads to a heavily underdeter-
mined system of equations which can only produce reasonable results, if as much prior
knowledge as possible about the physical and spatial structure of dose distributions is in-
cluded into this machine learning algorithm. Another challenge is the adaptation of our
method to direct aperture optimization (DAO). This type of treatment plan optimization
tries to find an optimal set of directly deliverable apertures/fields. This optimization
problem is however not convex and requires different optimization techniques (Shepard
et al. 2002, Romeijn et al. 2005, Men et al. 2007). The use of a hybrid dose model in the
DAO is conceivable, which could also be realized by a sequential optimization approach.
It remains open for future research, how an incremental dose update strategy can be
combined with the way a DAO algorithm explores its search space. The presented strate-
gies for efficient MC-based optimization are not only an approach for the conventional
fluence map optimization but they may be also a foundation for further developments
in the Monte Carlo-based inverse planning.
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1.1 Scheme of the inverse planning principles. The desired 2-dimensional
fluence map is created by irradiating a sequence of different fields shaped
with a multileaf collimator (MLC). An appropriate modulation of the
fluence results in a target conformal dose distribution. Image taken from
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1.2 Difference between forward and inverse treatment planning. In forward
planning, the beam parameters as e.g. the fluence maps are defined by
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1.3 Example treatment plan of a lung tumor: the figure on the left shows
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2.1 Illustration of Newton’s method in optimization: Figure (a) compares
the convergence of the steepest descent method (red line) with Newton’s
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