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Anwendungen des Holographischen Prinzips auf stark gekoppelte Plasmen

Die vorliegende Arbeit befasst sich mit der Untersuchung universeller Eigenschaften mehrerer
physikalischer Größen in stark gekoppelten Plasmen, wie sie in relativistischen Schwerionen-
streuprozessen – zum Beispiel am LHC – beobachtbar sind. Im Fokus stehen hierbei der
Energieverlust eines sich gleichförmig bewegenden sowie eines rotierenden Quarks, die aus der
freien Energie eines statischen Quark-Antiquark (QQ̄)-Paares extrahierte laufende Kopplung
sowie der maximale Bindungsabstand (Screening-Abstand) eines QQ̄-Paares im Plasma. Diese
Observablen wurden mit Hilfe der AdS/CFT Korrespondenz ausgewertet. Für die Untersuchung
universeller Eigenschaften wurden neben der zur konformen N = 4 supersymmetrischen Yang–
Mills Theorie dualen Gravitationstheorie auf der AdS5-Raumzeit auch drei weitere bezüglich
AdS5 deformierte, nicht-konforme Metriken analysiert. Zwei von diesen sind zudem Lösungen
von supergravitativen Bewegungsgleichungen. Es wurde gezeigt, dass die Energieverluste in
allen untersuchten Modellen bei gleichförmiger und rotierender Bewegung des Quarks robust
gegenüber Deformationen sind. Bei der laufenden Kopplung zeigte sich bei Deformation
des Modells ein universeller Anstieg mit größer werdendem Abstand des QQ̄-Paares, der
mit Ergebnissen aus der Gitter-QCD qualitativ übereinstimmt. Im Falle des maximalen
Bindungsabstandes eines QQ̄-Paares konnte die universelle Eigenschaft, dass die konforme
N = 4 supersymmetrische Yang–Mills Theorie bezüglich des Screening-Abstands eine untere
Schranke darstellt, für kleine Deformationen analytisch gezeigt werden. Dies war zuvor aufgrund
numerischer Untersuchungen für alle Deformationen in den oben genannten Modellen vermutet
worden.

Applications of Holography to Strongly Coupled Plasmas

This thesis is concerned with the analysis of universal properties of several physical observables
in strongly coupled plasmas as they are studied in heavy-ion collisions – for example at the
LHC. The focus lies on the energy loss of a uniformly moving and of a rotating quark, the
running coupling as defined via the free energy of static quark-antiquark (QQ̄)-pairs and the
maximum distance (screening distance) of a QQ̄-pair in the hot plasma. All of them have been
computed using the AdS/CFT correspondence. In order to discover a universal behaviour
in the observables, computations have been worked out in the free gravity theory in AdS5

space-time which is dual to N = 4 supersymmetric Yang–Mills theory as well as in three
deformed, non-conformal metric models. Two of these are solutions to Einstein equations
derived from a supergravity action. It has been shown that the energy loss of uniformly moving
and of rotating quarks is very robust in all deformed models compared to the conformal results.
In the case of the running coupling the introduction of deformations leads to a universal
increase for larger QQ̄-distances. This is qualitatively consistent with lattice QCD simulations.
For the screening distance a proof has been presented for the conjecture that the conformal
N = 4T value for the screening distance is a lower bound for small perturbations around the
conformal solution. Such a behaviour had been observed before in numerical studies in all of
the above-mentioned deformed metric models.
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Chapter 1
MOTIVATION

W e live in very exciting times and there are even more fascinating and groundbreaking
days ahead of us. This might be a vague statement in general but it is in particular true

for the current development of fundamental physics due to a handful of pioneering experiments.
Among them the ATLAS, CMS, ALICE and LHCb experiments located at CERN close to
Geneva are very likely to push our knowledge about physics to a new level within the upcoming
years.

At the end of 2011 the ATLAS and CMS experiments presented the status of their searches
for the Standard Model Higgs boson. The discovery of this particle would be a cornerstone of
the theoretical framework, called the Standard Model, that explains the dynamics of subatomic
particles. The results are based on the analysis of data taken over the last two years at the
Large Hadron Collider (LHC) at CERN, which is the largest particle accelerator in the world,
and are sufficient to make significant progress in the search for the Higgs boson. Although a
conclusive statement on the existence or non-existence of the elusive Higgs is still missing, the
two collaborations argued that the mass range is constrained to 122 – 129 GeV (ATLAS) [1–3]
with an excess of events observed around mH = 126 GeV and 115 – 127 GeV (CMS) [4–7]
with an excess around mH = 124 GeV. In addition, the CDF and DZero collaborations at the
Tevatron reported an excess with a significance of 2.2σ that might be interpreted as coming
from a Higgs boson with a mass in the region of 115 – 135 Gev [8]. It is far too early to argue
that ATLAS, CMS or the Tevatron collaborations have discovered the Higgs boson, but these
results have generated a lot of interest in the particle physics community and a conclusive
statement is expected to be given by the end of 2012.

The ALICE collaboration – also running an experiment at the LHC – studies, inter alia,
collisions of lead ions at very high energies (∼2.76ATeV per nucleus) in order to probe a state
of matter known as the quark-gluon plasma (QGP), which is believed to have existed shortly
after the birth of our universe (Big Bang) [9–14]. Similar results can be found at ATLAS
[15–17] and CMS [18, 19]. 12 years ago, similar experiments (STAR, BRAHMS, PHOBOS
and PHENIX) have been initiated to recreate this primordial environment at the Relativistic
Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL) at lower energies
(∼200− 500AGeV per nucleus) and there is evidence that they successfully created the QGP
[20–23] as well. Furthermore, several results indicate that even the SPS experiments at CERN
have already produced the QGP in the mid 90s [24–27]. In Fig. 1.1 a typical non-central

1



2 Chapter 1 — Motivation

Figure 1.1: Sketch of the collision of two heavy ions. The almond-shaped region in the centre represents the
expanding quark-gluon plasma.

heavy-ion collision that happens in the ALICE detector is sketched.
However, many steps in the creation and freeze out process of the QGP are still not fully

understood by both experimental and theoretical physicists due to the surprising property
of being strongly coupled. These strong interactions in the plasma led to the discovery of
numerous interesting properties, e. g. collective behaviour like elliptic flow or charmonium
suppression. However, several other aspects of this state of matter are still unclear.

To diminish the lack of knowledge this thesis tries to shed some light on the complicated
problem of how to describe theoretically the QGP or non-abelian gauge theories at strong
coupling in general. The most important question we want to address in this work is the
following:

What can string-theoretic approaches driven by holography tell us about strongly
coupled plasmas like the QGP?

This is a kind of guiding line through the thesis. Prior to answering this question, an
understanding of the numerous challenges, experimental and theoretical physicists have to face
when dealing with the QGP, is mandatory.

From a theoretical point of view, the physics happening in a heavy-ion collision is mainly
governed by a particular gauge field theory called quantum chromodynamics (QCD). Within
this framework one can understand the strong force which is one of the four fundamental
forces in Nature describing the interaction between quarks and gluons. This force, for example,
leads to the formation of protons and neutrons. The electromagnetic and weak forces are both
written in terms of gauge field theories as well. Together with QCD they are the essential
ingredients of the Standard Model that we have mentioned above in the context of the Higgs
search. However, in the case of the gravitational force which can be described by Einstein’s
theory of general relativity, physicists are still searching for a quantum theory that fits into
the framework of the Standard Model.

But this is not the only problem theoreticians have to cope with: although the fundamental
equation (the Lagrangian) of QCD is known and presentable in one line it remains impossible to
solve the associated equations for all values of the so-called coupling parameter αs. It controls
the strength of interactions between the fundamental constituents of this theory which are the
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quarks (fermions) and gluons (gauge bosons of SU(3) gauge group). An important property of
QCD is the ‘running’ of the coupling that leads to the fact that interactions are not equally
strong at all length scales. This is responsible for two fundamental phenomena, i. e. asymptotic
freedom and confinement. The first causes interactions between particles to become arbitrarily
weak at small length scales (∼ 10−16 m), or, equivalently, at large energy scales (∼ 2 GeV),
and corresponds to a small coupling parameter αs of the strong force. The latter denotes the
physics phenomenon that colour charged particles (quarks and gluons) cannot be isolated. An
individual observation is therefore impossible. This means that constituent quarks in a hadron
(e. g. a proton) cannot be separated from their parent hadron since the coupling parameter αs

becomes large. This happens at larger distances, or, equivalently at lower energies.
The computation of observables that probe the low-energy regime of QCD is a serious

challenge due to the peculiar behaviour of the coupling constant αs. While perturbative
expansions in the coupling parameter αs are highly useful in the regime of small coupling, they
are unreliable in the strong coupling regime, as each successive term in the series becomes
larger than the previous one. This leads in the end to a break down of the approximation
scheme. Another problem is the analysis of QCD at finite temperature which is necessary to
study the QGP theoretically. An approach that tackles the non-perturbative sector at zero-
and finite temperature goes under the name of lattice QCD [28–30]. It stands for the use of an
extensive numerical machinery that allows for studying static problems at strong coupling and
finite temperature, e. g. the computation of the energy density, pressure or entropy density;
however, it falls short in the case of dynamical quantities, e. g. the energy loss of moving quarks
(finite T ) or scattering processes (zero T ).

Another widely used approach is the construction of effective field theories, e. g. chiral
perturbation theory [31, 32] or heavy quark effective theory [33, 34]. These are approximate
theories including appropriate degrees of freedom to describe the physical phenomena occurring
at a chosen length scale, while integrating out substructures and degrees of freedom at shorter
distances. In addition to this, we should mention the applicability of functional renormalisation
group methods [35–37] or the analysis of the Dyson-Schwinger equations that form a system of
infinitely many coupled integral equations for the Green’s functions of the theory.

From an experimental point of view, the general framework for studying properties of
subatomic physical systems of order of 10−15 m are scattering experiments. With the help of
deep-inelastic scattering experiments where, inter alia, single protons and electrons are forced
to collide, it has been possible to study the perturbative regime of QCD with great success.
Whereas theorists have many problems studying finite temperature systems, this is an easy
task in experiments with a lot of unforeseen results.

If normal matter is heated to sufficiently high temperatures, it is believed that a new state
of matter is formed. The same happens if one compresses matter to sufficiently high densities.
This new state consists of a ‘soup’ of quarks and gluons, instead of a sea of nucleons [38].
By soup we mean that the boundaries between nucleons are no longer well-defined. We have
encountered this new state of matter – that Shuryak denoted by quark-gluon plasma [39] – in
the context of the heavy-ion collisions in ALICE, ATLAS and CMS.

As we have already mentioned before, RHIC and LHC which have produced the QGP
found evidence that the thermally equilibrated plasma exhibits some surprising properties.
Among them, the large energy loss of high energy particles traversing the medium, known as
jet quenching, Charmonium suppression and the strong collective behaviour (e. g. elliptic flow)
indicate that interactions within the plasma are very strong [9–14, 20–23, 38]. This is why
it is called strongly coupled plasma. Therefore, the first results of the LHC experiments are
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already a perfect playground to study experimentally the non-perturbative sector of QCD. And
definitely, ALICE, ATLAS, CMS are going to elicit the truth about all the essential processes
occurring after the collision of heavy ions within the next five years.

Up to now – by following [38] – three different stages can be identified. Before the collision,
the two colliding nuclei have the form of flat pancakes since they are Lorentz contracted
(γ > 100). At this stage a concept called colour glass condensate [40] is an appropriate way
to describe the two nuclei. After the collision (τcoll ≈ 0.1 fm/c), a part of the energy of the
nuclei is transformed into a bunch of new particles, which rapidly thermalises at least locally.
The amount of energy that is transformed depends on the centrality of the collision which is
measured by the so-called impact parameter b. This quark-gluon plasma with a temperature of
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Figure 1.2: Sketch of the stages of the QGP during a heavy ion collision.

roughly TLHC ≈ 1000 MeV then expands and cools simultaneously and the matter hadronises
into particles until the chemical freeze out at a temperature of Tch ≈ 170 MeV [41] is reached.
Then, the final products can be observed in the detectors. This is visualised in Fig. 1.2. The
problem is now that the time scale (τ ≈ 1− 20 fm/c) on which the QGP exists is very short
and that a direct investigation of this state of matter is impossible. In addition to this, the
initial (pre-equilibrium) and final (freeze out) stages of the heavy ion collision are theoretically
difficult to treat. A full theoretical description of these phases is beyond the scope of this
thesis, but for interested readers we recommend [42–44] for comprehensive reviews. Due to its
strong coupling behaviour the QGP presents a problem for theoretical physicists because QCD
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is hard to treat in this regime.
However, along with the success of the LHC experiments in studying the non-perturbative

phase of QCD with the help of heavy-ion collisions a tremendous progress of how to theoretically
treat the non-perturbative regime of QCD took place in the last eight years. This progress
has been initiated by Maldacena and others in 1997, when the first practical realisation of the
principle of holography [45, 46] was found. It is known as the Maldacena conjecture [47–49].
This conjecture consists of the duality between a certain gauge theory (N = 4 supersymmetric
Yang–Mills theory in four dimensions) and a string theory (type IIB string theory on an
AdS5 × S5 background). Since the gauge theory is a conformal field theory1 (CFT) this
conjecture is widely referred to as AdS/CFT duality. By the word duality we mean that both
theories describe the same physics. Since those days many other dualities have been discovered
between very different kinds of gauge and string theories. The AdS/CFT duality is highly
useful due to an astonishing property. It is of the so-called strong/weak type. If one theory is
strongly coupled, the dual one is weakly coupled and vice-versa. Thus, although describing the
same physics, calculations may be easier in one theory than in the other.

This brings us back to the question posed above. One can immediately see the applications
of strong/weak dualities to the study of the QGP or other non-abelian gauge theories at
strong coupling [38]. By using the dual gravitational theory of QCD, computations can be
done at weak coupling that lead to numerous new insights of how QCD behaves at strong
coupling. Unfortunately, there is still a lot of work to be done before we can apply these
techniques to QCD. Currently, the AdS/CFT correspondence or the more general class of
gauge/gravity dualities is well developed for theories that include some important properties
of QCD. However, up to now the exact string-theory dual of QCD has not been found. In
addition to this, since it is still only a ‘well-checked’ conjecture, the whole theoretic framework
needs to be mathematically proven. Nevertheless, in this thesis we make use of the AdS/CFT
correspondence in order to investigate the non-perturbative regime of a large class of non-
abelian gauge theories. However, due to the technical subtleties this approach has to cope with
we have to rephrase the question above into a more accurate form:

What are the possible applications of gauge/gravity dualities to strongly coupled
plasmas?

As we have already indicated above, the computation of properties of the quark-gluon plasma
is one of the most interesting problems the AdS/CFT community has solve. Since the amount
of tools available to tackle the strongly coupled, high temperature regime of QCD is very
limited, gauge/gravity dualities are one of the best ways to proceed although this approach
comes with its own problems. Of those, the lacking knowledge about the exact string theory
dual to QCD is the most important. There are several ways how to resolve this issue [38]:

1. Many theorists are working on a proof of the gauge/gravity correspondence and try to
find the string theory dual to QCD or change the basic string theory setup, e. g. by
introducing ‘flavor branes’ in order to derive QCD-like dualities (top down approach)
[50–57]. This is definitely the most elegant way, however, it is also the most complicated
one.

1Conformal symmetry is the property of a physical system to be invariant under scale-, Poincaré- and
special conformal transformations.
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2. It is possible to use known gauge/gravity dualities and modify the string theory back-
ground in order to introduce some essential features of QCD (bottom up approach). This
research field is often referred to as AdS/QCD [38, 58–69].

3. There is hope that many strongly coupled theories share some common features. By
studying different kinds of strongly coupled systems one might discover a universal
behaviour in some observables which is model independent [38]. Such a behaviour can
then be used to conjecture that it would also be applicable to QCD at strong coupling
(universality approach).

In this thesis, we mainly employ the third approach and only compare to QCD data (following
the second approach) when it appears appropriate. The universality approach became very
successful in the case of the ratio of shear viscosity to entropy density η/s, which combines
transport coefficients necessary for the hydrodynamic description of the quark-gluon plasma
[70, 71]. Kovtun, Son and Starinets showed in [72] that for a large class of theories with a
gravity dual, η/s takes on the universal value of 1/4π with } and kB set to 1. It is very
surprising that this result holds for both, conformal and non-conformal theories. This insight
is the origin of the famous KSS bound conjecture [72] which states that all physical substances
should satisfy

η/s ≥ 1

4π
. (1.1)

We are now able to discuss the tasks this thesis tries to tackle. Several QGP-relevant
observables will be analysed in this work, e. g. thermodynamic quantities, the static quark-
antiquark (QQ̄) distance L, the free energy F of a static QQ̄-pair, the running of the coupling
constant αQQ̄ and the energy loss dE/dt of uniformly moving and rotating quarks, in different
dual gravity theories. In order to introduce notation and terminology, computations always
start in the well-known and simple gravitational background of the five-dimensional anti-de
Sitter (AdS5) space-time which is – according to the Maldacena conjecture – dual to N = 4
supersymmetric Yang–Mills (SYM) theory in four dimensions. A complete derivation of the
AdS5 space-time will be given in Sec. 2.1.1 but until then we can think of this space-time as
the ordinary four-dimensional Minkowski space-time plus an addition coordinate often denoted
by z or r as well as an overall scaling factor proportional to z 2. The real focus then lies on
the analysis of the aforementioned observables in a large class of deformed AdS5 space-times
that correspond to non-conformal gauge theories. These metric models will be introduced in
Chap. 3. In doing so we hope to find universal properties for the above-mentioned quantities
in all theories under investigation. Furthermore, we will see that some of the results are even
very close to real-world QCD which tempts us to pose the question whether our models are
good enough to mimic QCD. This is not a completely unrealistic task since even the prototype
realisation of the holographic principle, which is the Maldacena conjecture, can be applied to
finite temperature QCD if temperatures are large enough.2 This will be explained in greater
detail in Sec. 2.3.

Now, the main structure of this work is as follows:

• In Chapter 2 we will give a brief introduction to the holographic principle and derive
its prototype realisation, which is the AdS5/CFT4 correspondence, in two ways. Firstly,

2Above 2Tc with Tc being the critical temperature in QCD, N = 4 supersymmetric Yang–Mills theory and
QCD are comparatively close to each other.
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a heuristic derivation is presented (see Sec. 2.1.1); this represents a very descriptive
way to obtain the five-dimensional metric of the AdS5 space-time. It defines the weakly
coupled gravitational theory dual to N = 4 supersymmetric Yang–Mills theory in four
dimensions at strong coupling. Secondly, for the reader interested in string theory the
AdS5 metric can be obtained by a string-theoretic derivation using well-known objects in
string theory that are called D branes in Sec. 2.1.2. More relevant for the analysis of the
QGP is a finite-temperature generalisation. This will be reviewed using very elementary
methods in Sec. 2.2 leading to the AdS5-Schwarzschild or AdS5 black-hole metric which
is the essential ingredient for the understanding of the subsequent chapters.

• In Chapter 3 we will introduce three different gravity theories, each of them being a
deformation of the AdS5 space-time. The first and simplest deformation is the so-called
finite temperature soft-wall model (SWT -model) which is not consistent but widely
used in the literature [64, 73]. In addition, two consistent models (1-parameter and
2-parameter model) will be derived and analysed. In this context, consistency means that
the metric solution of the deformed space is a solution to Einstein equations derived from
a 5D Einstein–Hilbert-scalar action SEHs. This is a five-dimensional Einstein–Hilbert
action including a scalar that might be the dilaton in string theory. On the gauge-theory
side, these deformations correspond to the breaking of conformality. Therefore, basic
thermodynamic observables like the energy density ε, entropy density s, pressure p and
ε−3p
T 4 will be computed in order to estimate the amount of non-conformality that has

been introduced.

• In Chapter 4 we will then study physical observables in order to analyse the potential
existence of a universal behaviour. A full systematic discussion of the observables listed
below has not been worked out for the above-mentioned class of models in the literature
before. The energy loss of a moving parton (drag force dp/dt), the QQ̄-distance L, free
energy F and the running coupling αQQ̄ will be investigated. The latter quantity is only
known for the original, conformal AdS5 case [74] and has not been studied in the context
of a larger class of non-conformal metric models yet. Unfortunately, we will conclude that
apart from the quark-antiquark distance and the running coupling no other observable
exhibits a systematic change in one direction, but all quantities are at least very robust
when deforming the conformal system. The results of this analysis will be compared to
QCD lattice computations in order to check the applicability of our models to real-world
physics in Sec. 4.3.5.

• In Chapter 5 a particular property of the QQ̄-distance will be discussed. In our previous
work [75, 76] we conjectured that the maximal value of the QQ̄-distance, which is called
screening distance LS, is bounded from below by the conformal N = 4 SYM theory for a
large class of theories. A numerical analysis for a large class of non-conformal models
has confirmed this statement that can be cast into the following form

(LπT )Def
S > (LπT )N=4T

S , (1.2)

where we use the dimensionless combination (LπT )S. However, an analytic proof is still
to be found. Thus, small perturbations around the conformal solutions will be studied in
the context of linearised Einstein equations. For the most general metric ansatz that
satisfies the overall symmetries this conjecture will be proven in Sec. 5.4.
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• In Chapter 6 the energy loss of a rotating quark will be analysed. This quantity allows for
studying the energy loss of accelerated/decelerated particles in the presence of a strongly
coupled, high temperature plasma that is very interesting for current LHC experiments.
The exact string configurations will be worked out in all relevant non-conformal models.
Furthermore, it is possible to distinguish three different regimes of energy loss: a drag
regime (Sec. 6.4.1) where the rotating quark loses energy via elastic collisions, a radiation
regime (Sec. 6.4.2) where the quark emits synchrotron radiation as if it would be in
vacuum and a crossover regime (Sec. 6.4.3) where a destructive interference between
collisional and radiation-induced energy loss can be observed. The computation will be
reviewed in the AdS5 case first, before we extend it to above-mentioned deformed models.
Such a computation has not been done in the literature before. Again, the search for
universal properties will be the guiding principle in this chapter.

• Finally, in Chapter 7, we draw our main conclusions about the study of universal
properties in the physical observables that have been discussed. Among them only the
screening distance and the running coupling show a systematic change in one direction
for all theories under investigation. The other quantities are remarkably robust in a large
regime that we find to be ‘physically’ meaningful. Finally, we mention open questions
and prospects for future investigation. There, we focus on the additional possible content
that can be introduced into the Einstein–Hilbert action, e. g. a gauge field Aµ leading to
a non-vanishing chemical potential [77]. This is a straightforward and computationally
tractable extension of our models.



Chapter 2
INTRODUCTION TO HOLOGRAPHY

I n this thesis we work with a particular realisation of the so-called holographic principle which
is known as the AdS/CFT correspondence. The motivation and discussion of the latter is

the essential part of this chapter. Due to its property of being very counterintuitive an ad hoc
derivation of the AdS/CFT correspondence right from its string-theoretic foundation does not
provide us with the amount of intuition which is necessary in order to deal with applications
of this conjecture. Thus, it is very helpful to start with the general concept of holography to
find a way through this intriguing theory. Here, we follow the introduction of Dobado in [78].
Afterwards the most important details of the AdS/CFT correspondence will be motivated.
However, a complete derivation is far beyond the scope of this thesis. Good reviews on the
subject are [79–86]. The focus here is on applications of this approach to strongly coupled
plasmas; this is the main topic of the thesis and will be studied in detail in Chap. 4, 5 and 6.

The principle of holography was originally proposed to shed some light on the always
obscure interplay between quantum mechanics and general relativity. A first intention was
to find a way to solve the so-called information paradox [78, 87]. This is a paradox occurring
when studying the thermodynamics of black holes. Stephen Hawking argued in the 70s that
black holes emit black body radiation [88], which was a very surprising result that is still
not confirmed experimentally. This radiation is thermal and can be related to a temperature
T = κ

2π with κ denoting the surface gravity at the horizon of the black hole. This led to an
explicit expression of the black hole entropy given by Bekenstein [89]

SBH =
A

4GN

c3

~
, (2.1)

with A denoting the area of the black hole horizon and GN being Newton’s constant. From
now on we will use Planck units defined by c = GN = ~ = kB = 1 in most of our computations.
An equation of entropy proportional to the area is incompatible with its usual understanding
in the realm of non-gravitational physical systems where it scales like the volume since it is an
extensive quantity. In addition to this, a problem arises when studying the evaporation of black
holes. There is a loss of unitarity1 arising in the analysis of the evolution of a gravitationally

1Unitarity originally denotes a restriction on the allowed evolution of quantum systems that ensures, inter
alia, that the sum of probabilities of all possible outcomes of any event is always 1.

9
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collapsed system. Since Hawking this problem is known as the (information paradox ) [87]. It
can be understood – according to Dobado [78] – by considering the case in which the initial
state of the collapsed matter is a pure quantum state. After the black hole has evaporated, we
are left with thermal radiation which has to be described by a density matrix. Thus, many
prior quantum states can evolve into the same thermal state which cannot be a unitary process
– described by a unitary operator – due to the loss of information. A possible solution to this
problem2 is the famous holographic principle that ’t Hooft [45] suggested (followed by Susskind
[46]). The basic idea can be cast into the following general form [78]:

The full physical description of some given region R, in a d-dimensional
universe (including gravity) with a (d− 1)-dimensional boundary ∂R, can be

reflected in processes taking place in ∂R.

A fundamental consequence of this principle is an insight due to Susskind [46] stating that the
maximum information a system can store scales with the area of its external surface and not
with the volume as one might think:

Sm ≤
A

4
— ‘Spherical Entropy Bound ’ , (2.2)

where Sm is the entropy of the matter and radiation content in this particular volume of
space. This is closely related to the entropy of a black hole in (2.1). Therefore, information
is not lost when ‘falling’ into a black hole but gets imprinted on the horizon leading to its
conservation. Equation (2.2) then ensures that all of the information fits on the surface. This
is in clear contradiction to our normal experience according to which the information capacity
– analogous to the entropy – scales like the volume.

Of course, the formulation above is too vague to be of practical interest but still the holo-
graphic principle is regarded as a major clue since any fundamental theory should incorporate
this counterintuitive result, e. g. Quantum Field Theories (QFT) including strong gravitational
effects and string theory [96]. In the case of a QFT that includes gravity Dobado presented in
[78] a nice example that is reviewed in the following. Consider this system to be defined in
a finite volume V in order to avoid infrared divergences. One might think that the number
of degrees of freedom scales with the volume V of the system and not with the external area
even when ultraviolet divergences are regulated by introducing an energy cut-off. This is not
the case since an enormous number of field configurations remains that are gravitationally
unstable [97]. These states would collapse into a black hole. After removing all of them as well
we are left with a finite number of states that scale with the external area of the system in
agreement with the holographic principle.

Applied to the more concrete problems we are dealing with, the holographic principle can
be recast into the following form which is visualised in Fig. 2.1:

The physics of a (d+ 1)-dimensional theory including gravity can be described
by a non-gravitational d-dimensional boundary field theory.

The most famous and first application of this principle is the AdS/CFT correspondence we
have mentioned in Chap. 1. It basically relates the physics of a string theory – including gravity
– on a five-dimensional anti-de Sitter (AdS5) background to the physics of a four-dimensional
maximally supersymmetric conformal field theory (CFT) defined on the boundary of the AdS5

2For other approaches see [90–95].
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Figure 2.1: Visualisation of the holographic principle with a field theory living at the boundary and a string
theory containing closed strings in the so-called bulk.

space-time [47, 48]. A detailed discussion of what this correspondence is all about and why we
can use it to investigate strongly coupled systems in the realm of high-energy physics will be
the subject of the following section.

2.1 The AdS/CFT Correspondence

The basic idea of relating a (d+ 1)-dimensional string theory to a quantum field theory with
one dimension less was again conjectured by Susskind and ’t Hooft by relating the Bekenstein–
Hawking formula (S ∝ A) to the property of any (local) QFT where entropy scales like volume
V . The subsequent derivation follows [79–86].

In 1997, it was a seminal work by Maldacena [47] to find the first concrete realisation of
the holographic principle3 named AdS5/CFT4 correspondence. By considering the low-energy
limit of Nc parallel D3 branes he conjectured that type IIB String Theory on AdS5×S5 is dual
to N = 4 SU(Nc) supersymmetric Yang–Mills theory (without gravity) in four dimensions that
lives on the boundary of AdS5 space-time. Here, N = 4 SYM is the maximally supersymmetric
theory in four dimensions with N = 4 supersymmetries. It contains a massless spin-1 gluon, 4
massless spin-1

2 gluinos (Weyl fermions) and 6 massless spin 0 scalars, all of them being in the
adjoint representation [98–100]. This theory has a vanishing beta function to all orders in the

3Apart from AdS/CFT correspondence many other names are common for describing realisations of the
holographic principle, e. g. gauge/gravity dualities, strong/weak correspondence, holographic dualities, . . .
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coupling constant [101–107]. Thus, N = 4 supersymmetric Yang–Mills theory4 is a conformal
theory. Conformal symmetry preserves, among other things, scale invariance and includes
the Poincaré symmetry. In addition to this, N = 4 has no fundamental quarks. These two
properties help us when applying it to real-world problems. The essentials of N = 4 at finite
temperature (N = 4T ) will be outlined in Sec. 2.3.

From our naive understanding of gauge/gravity dualities we might think that this cor-
respondence is unrelated to the holographic principle, since the gravity side (type IIB string
theory) is living in a 10-dimensional space-time. However, we will focus on the limit in which
the number of colours Nc and the effective coupling of the gauge theory in the large-Nc limit –
that is called ’t Hooft coupling (λ = gYMN2

c ) – are assumed to be large. In this limit string
theory in AdS5 × S5 is described by its low-energy supergravity approximation, which in turn
can be reduced to a gravity theory on pure AdS5 space-time. Since the S5 does not lead to any
dynamical consequences, we will neglect the terms in the metric. This five-dimensional gravity
theory is then dual to the four-dimensional large-Nc supersymmetric Yang–Mills theory on the
boundary and obeys the holographic principle.

Before we will present two explicit procedures how the AdS5 space-time arises in the
derivation of the AdS5/CFT4 correspondence an obvious question appears:

How can we ensure that a particular gauge theory and a gravitational theory
describe the same physics?

Although we might believe now in the existence of such a duality, it is still not clear what
exactly is mapped from one side onto the other. The essential core of all dualities – according
to [108] – is the assumption that there is a relation between partition functions (with Euclidean
signature) of a (d+1)-dimensional string theory living in the so-called bulk and a d-dimensional
QFT – living at the boundary of the bulk theory – which can be written as

ZQFT[φ0] ≡
〈

exp

( ∫
ddxφ0Oφ

)〉
QFT

= Zbulk[φ|bdry ∼ φ0] . (2.3)

ZQFT and Zbulk in (2.3) are functionals of a generating source φ0. On the right hand (bulk)
side of (2.3), φ0 is the boundary (bdry) value of a scalar field φ living in the bulk, whereas in
the QFT φ0 is the source to a dual operator Oφ. This relation was proposed in [49, 52]. In
general, (2.3) is a statement for all values of the ’t Hooft coupling λ and the number of colours
Nc, however, the right hand side simplifies in the limit when the bulk theory becomes classical.
We will see in the next paragraphes that the string theory that lives in the bulk reduces to a
classical, low-energy supergravity description in limit of large Nc and large ’t Hooft coupling λ.
The classical supergravity theory is then equivalent to a saddle point approximation of the
bulk partition function,

Zbulk[φ0] = exp
(
IS(φ)

)
. (2.4)

Here, IS(φ) is the on-shell action of the gravity theory with boundary condition φ|bdry = φ0.
Equation (2.3) is the basic tool to check whether a gauge theory is dual to a string theory

and will be used in Chapter 4 to derive the dual expressions of known gauge theory quantities,
like the distance and free energy of a heavy QQ̄-pair and the energy loss of a moving quark, in
the dual gravitational theory. In addition to the agreement of the partition functions in (2.3),

4N = 4 SYM theory will be abbreviated by N = 4 for short.
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the amount of symmetries of each theory can be compared with each other and has to match
exactly.

By virtue of (2.3) we know what to do when dealing with possible candidates for a
gauge/gravity duality. However, to find those is by no means trivial. We will discuss in the
subsequent Sec. 2.1.1 how a particular duality – the AdS5/CFT4 correspondence – can be
motivated heuristically without using any string theoretical terminology, followed by a more
stringy description where the main facts and relations are stated. As already mentioned before,
a complete and thorough derivation of this duality is not the focus of this thesis. Nevertheless,
the content of Secs. 2.1.1 and 2.1.2 will fit for all subsequent problems this thesis deals with.

2.1.1 Heuristic Derivation of AdS5 Space-Time

We want to motivate the AdS/CFT correspondence from a general gauge theory perspective,
explaining why such a duality is possible. The following subsection is thus more heuristic
without going into any details about string theory and D-branes, but may provide us with a
more intuitive understanding why gauge/gravity dualities should exist. For more information
about this way of motivating the AdS5/CFT4 correspondence [86] is a good review to start
with. The subsequent motivation follows the explanations given by Casalderry-Solana & al. in
[86].

There, they focus on a quantum field theory in d-dimensional Minkowski space-time together
with a short-distance cut-off ε. An important property of many physical systems is that degrees
of freedom at widely separated scales are decoupled from each other. Thus, by organising the
relevant physics in terms of energy, or equivalently, length scales allows us to find so-called
effective theories. If we are interested for example in properties of the system at a certain
length scale z � ε, we obtain an effective theory at z by integrating out short-distance degrees
of freedom. A systematic way of deriving effective theories at different length scales z is
the definition of a renormalisation group (RG) flow. Such an RG flow contains a continuous
family of effective field theories in d-dimensional Minkowski space-time labelled by the scale
z. Casalderry-Solana & al. argued that this family of d-dimensional theories along with an
additional scale z, which has now the meaning of an additional spatial coordinate, can be
interpreted as a single (d+ 1)-dimensional theory. An illustration of this process can be found
in Fig. 2.2(a). Up to this point this construction owns inter alia two interesting properties:

1. The (d + 1)-dimensional theory should have a reparameterisation invariance in the z-
coordinate, since the physics of the original d-dimensional theory does not change under
reparameterisations of the additional z scale.

2. The amount of degrees of freedom in the d-dimensinal should be idential to the (d+ 1)-
dimensional theory. This is clear since all physics happening at a length scale z′ which is
larger than a particular scale z (see Fig. 2.2(a)) should be describable by a d-dimensional
effective theory defined at a length scale z.

Especially, the second statement fits nicely into the concept of holography that we mentioned
earlier since the amount of degrees of freedom stays the same. However, it is physically not clear
how to derive a coherent description of a (d+ 1)-dimensional system out of a continuous family
of d-dimensional theories. A hint is given by the holographic principle indicating that we should
favour a theory containing gravity. Again, we end up with saying that a (d+ 1)-dimensional
string theory should be dual to a d-dimensional boundary field theory. In particular, one may
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(a) Schematic picture of the RG-flow description of a four-dimensional field theory. z represents
the cut-off scale up to which smaller length scales are integrated out.
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(b) Schematic picture of the geometrisation of the RG-flow with a conformal field
theory at the boundary. The higher-dimensional volume represents an anti-de Sitter
space-time AdS5.

Figure 2.2: Heuristic derivation of the AdS/CFT correspondence starting with the geometerisation of the
RG-flow and assuming a conformal field theory at the boundary.
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think of the quantum field theory as living on the z = 0 slice which is the boundary of the
entire space. Although some important properties of gauge/gravity dualities have emerged
we are still far from being at the end of this heuristic discussion. We still do not have any
clue which field theory should have a dual string theory; even less we know what kind of
properties such a gravity system incorporates. A concrete hint was given by ’t Hooft and
his pathbreaking paper on large-Nc limits [109] whose result has been already used in (2.4)
when we simplified the bulk partition function Zbulk. In the large Nc-limit the string theory
can be approximated by its low-energy supergravity which is a non-interacting gravitational
theory with some additional matter fields representing supersymmetry. Thus, by imposing
some amount of symmetries on the gauge theory side we try to fix in the following the higher
dimensional gravity description. The following brief derivation of the AdS5 space-time has
been worked out for example in [86]. The more symmetries our gauge theory contains the
simpler it is to find a dual gravity theory.

According to the holographic principle we assume that a d-dimensional field theory can be
described by a (d+ 1)-dimensional gravity theory and impose that the (d+ 1)-dimensional
space-time should be consistent with d-dimensional Poincaré symmetry which can be made
manifest in the general form of the metric

ds2 = Ω2(z) ( dt2 + d~x 2 + dz2) , (2.5)

with Ω(z) being a global z-dependent function which has to be determined. In general not
much can be said of the form of Ω(z) for a general field theory. As mentioned above, an
increase of symmetries might help.

If we restrict ourselves to a conformal field theory (CFT), the additional amount of
symmetry constraints determines the shape of Ω(z). One of the new symmetry conditions is
scale invariance which means that the theory is invariant under the transformation

(t, ~x) −→ (C t,C ~x) , (2.6)

with constant C. The metric of the gravitational theory which is dual to the conformal field
theory respects the scaling symmetry with the simultaneous scaling of the z coordinate z → Cz,
since z is an ordinary length scale defined in the boundary theory. This condition is fulfilled if
Ω(z) scales as

Ω(z) −→ C−1Ω(z) under z −→ Cz ,

Ω(Cz) =
Ω(z)

C
. (2.7)

It can be solved for Ω(z) giving a unique solution that reads

Ω(z) =
L

z
, with L = const , (2.8)

where L is called the AdS length and reflects the radius of curvature of the AdS5 space-time.
Finally, we substitute (2.8) into (2.5) and obtain the metric Gαβ of the anti-de Sitter space-time
with curvature radius L and constant negative curvature ∝ 1/L2:

ds2 = Gαβ dXαdXβ =
L2

z2
( dt2 + d~x 2 + dz2) , (2.9)
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where Xα = (t, ~x, z) denote the five-dimensional space-time coordinates. This is visualised
in Fig. 2.2(b). The metric given in (2.9) is not only scale-invariant but has the additional
property of being maximally symmetric (conformal) – meaning that it includes also special
conformal transformations. In addition to this it is a solution to Einstein’s equations derived
from a five-dimensional Einstein–Hilbert action SEH with a negative cosmological constant Λ:

SEH =
1

16πG
(5)
N

∫
d5x
√

G
(
R− 2Λ

)
, Λ =

6

L2
. (2.10)

with G(5)
N being Newton’s constant in five dimensions, G = det(Gαβ) being the determinant of

the space-time metric, and R being the Ricci scalar. A derivation of the AdS5 space-time by
extremising (2.10) can be found in Appendix A. The relation to a five-dimensional Einstein–
Hilbert action SEH is very important in the following. In order to study different gauge/gravity
dualities we start with the Einstein–Hilbert action of the well-known AdS5 space-time and
introduce further fields leading to new metric solutions. It is believed that these solutions
describe different dual field theories, all of them being non-conformal. That is an enormous
step in the direction of describing non-abelian plasmas produced in heavy-ion collisions, which
is one of our guiding tasks.

Altogether, this heuristic discussion in this subsection does not lead to N = 4 as the
dual gauge theory to AdS5 although it would be a candidate since the symmetries match.
Apart from scale invariance, a d-dimensional conformal field theory has d special conformal
transformations as additional symmetries forming the d-dimensional group SO(2, d). Not
by accident, the isometry group of the AdSd space-time is also SO(2, d) due to its property
of being maximally symmetric. This is a non-trivial hint that both theories describe the
same physics. Another check would be the matching of gauge invariant operators on the field
theory side with the fields living in AdS space related via their partition functions (2.3). More
precisely, the mass dimension of these fields have to be the same as the scaling dimensions of
the gauge theory operators.

The current stage of our gauge/gravity duality so far is visualised in Fig. 2.2 and can be
formulated in the following way:

There should be a conformal field theory that has a string theory description in
AdS5 space-time.

Further details and relations of both theories will be reviewed briefly in a string theory context
in the subsequent section.

2.1.2 String-Theoretic Derivation – D-branes

The original motivation for a gauge/gravity duality is based on a remarkable discovery made
by Polchinski in the mid 90s [110, 111]. He showed that string theory is not only a theory of
strings but includes also extended membrane-like objects, called branes. D-branes – the D
denotes ‘Dirichlet’ – are objects that serve as endpoints for open strings. Therefore, a typical
string theory – we will specialise to a type called IIB string theory – consists of two types
of excitations: Closed strings with no endpoints and open strings which have endpoints on
a D-brane. Along with these modes the theory is characterised by the coupling constant gs
and by the length of the strings ls. In this paragraph we follow the detailed explanations in
[38, 79–86].
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In order to derive our desired duality we consider in the following a ten-dimensional type
IIB string theory in the background of a stack of Nc D3-branes which are located on top of
each other. This is visualised in Fig. 2.3. Here, a D3-brane is a (3 + 1)-dimensional membrane
with Dirichlet boundary conditions. Nc is just a pure number telling us the number of single
branes. The subscript ‘c’ is in anticipation of the later duality since Nc will be the number
of colours in the dual gauge theory. The whole concept of the AdS/CFT correspondence is
now based on considerations of the low-energy dynamics of this system from two different
viewpoints.

In the first description we consider the D3-branes as endpoints of open strings in the limit
of low energy. This low-energy assumption is necessary since a string theory is located at
very high energies at order of the Planck-energy (1019 GeV) or Planck-length (10−33 cm). At
lower energies strings behave like normal pointlike objects that can be adequately described by
ordinary point particle theories, which is important to find a duality including gauge theories.
Thus, the low-energy regime is equivalent to the limit of small string length ls:

ls =
√
α′ → 0 , (2.11)

where α′ is the so-called Regge slope which is related to the tension of the string via T =
(2πα′)−1.

An action describing the dynamics of such a physical system has three components resem-
bling the string content:

1. Sbrane is the action governing the dynamics of the open strings living on the Nc D3-
branes. This open string spectrum consists of a finite number of massless modes and
an infinite tower of massive string modes with masses of order ms ∼ 1/ls. We follow
Casalderrey-Solana & al. [86] in this paragraph. Let us focus on the massless open
string spectrum of Nc D3-branes separated by a distance r′. Open strings with both
endpoints on the same brane give rise to massless gauge fields which can be denoted
by (Aµ)1

1, (Aµ)2
2, . . . , (Aµ)Nc

Nc
with µ = 0, 1, 2, 3 for a D3 brane. The upper (lower)

index labels the brane where the strings start (end). In addition there are six scalar
fields φi(x), i = 1, . . . , 6 as well as their superpartners which can be neglected in the
present discussion. Along with the massless string modes there are strings connecting
different branes which give rise to additional vector fields (Aµ)ij , i 6= j; i, j ∈ {1, . . . , Nc}
that have a mass proportional to the tension of the string times the distance of the
branes, i. e. m = r′/2πα′. In the case where branes lie on top of each other these modes
become massless as well and altogether these massless vector fields correspond precisely
to the gauge fields of a non-abelian U(Nc) gauge group [112]. In the low-energy limit
the extremely massive modes can be integrated out and the dynamics is solely given by
the massless gauge fields and scalars above, forming a non-abelian gauge theory which is
N = 4 supersymmetric Yang–Mills theory with gauge group U(Nc) in four dimensions
[98–100]. The U(Nc) can be decomposed into

U(Nc) = SU(Nc)×U(1) . (2.12)

The U(1) subgroup of (2.12) describes a motion of the branes’ centre of mass which
decouples from the inter-brane dynamics due to the overall translation invariance, leaving
us with a N = 4 SYM theory with gauge group SU(Nc).
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2. Sbulk is the action governing the dynamics of the closed strings living far away from the
stack of D3-branes. This is a supergravity theory coupled to massive modes of the string.
Since the strength of interactions between the closed strings is controlled by Newton’s
constant G(10)

N , which leads to a dimensionless coupling at energy E scaling like G(10)
N E8,

we have vanishing interactions at low energies. In summary, at low energies only free
supergravity without any massive modes (see the discussion above) remains.

3. Sint is the action governing the interactions between Sbulk and Sbrane.

The final action has then the form

S = Sbulk + Sbrane + Sint . (2.13)

In the low-energy limit α′ → 0, the massive strings can be integrated out and become infinitely
heavy because the mass of the strings scales like 1/ls. In deriving N = 4 as the correct
low-energy theory an important relation between the gauge theory coupling gYM and the string
coupling gs can be found:

g2
YM = 4πgs . (2.14)

That this relation is indeed true can be seen in the following way. In the low-energy limit gYM

is the coupling of the above-mentioned massless gauge fields (Aµ)ij . However, out of two open
strings governed by the gYM open string coupling, we can build up a closed string governed by
the gs coupling which gives rise to the quadratic dependence of the two couplings.

Analogous to the interactions between closed strings the interactions between the closed
and open string sector can be neglected leading to:

Sint ∝
√
G

(10)
N ∼ gs α

′2 α′→0−−−→ 0 . (2.15)

Thus, we arrive at a free (non-interacting) supergravity bulk theory which is decoupled from
the open string sector. In summary, the low-energy limit of this system consists of two fully
decoupled regions (see Fig. 2.3): a N = 4 SYM theory living on the branes and free supergravity
in the bulk.

The second description starts by realising that Nc D3-branes on top of each other carry
considerable amount of energy leading to a curvature of the space-time. Horowitz and
Strominger found in [113] that the resulting supergravity equations of motion allow black-hole
type solutions for the metric given by

ds2 =
1√

1 + L4/r4

(
dt2 + d~x 2

)
+

√
1 +

L4

r4

(
dr2 + r2dΩ2

5

)
, (2.16)

which is called an extremal solution in the supergravity context [114, 115]. With ~x we denote
the three-dimensional space, r is a radial coordinate of the remaining six-dimensional space
orthogonal to the 3D-space and Ω5 is the corresponding five dimensional angular element.
Here, L denotes the characteristic length scale in this system which is the curvature radius of
the space-time and is related to the other quantities via

L4 = 4π gsNc l
4
s ⇐⇒ L8 = 2π−4G

(10)
N N2

c , (2.17)
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Figure 2.3: Visualisation of the first perspective of a stack of Nc D3-branes in a flat 10-dimensional Minkowski
space-time. The low-energy description consists of a U(Nc) gauge theory theory in (3 + 1) dimensions.

with G(10)
N = 8π6 g2

s α
′4. It can also be understood as the length scale characteristic of the

range of the gravitational effects of Nc D3-branes. At r = 0 we have a singularity in this metric.
Along with this metric there are further massless excitations (scalar dilaton and five-form)
which can be neglected for the moment in the derivation of the AdS/CFT correspondence.
As indicated in Fig. 2.4 the second description consists of the ten-dimensional Minkowski
space-time far away from the branes and a ‘throat’ geometry of the form AdS5 × S5 close to
the branes which is given by

ds2 =
r2

L2

(
dt2 + d~x 2

)
+
L2

r2
dr2 + L2dΩ5 . (2.18)

That this is indeed the AdS5 space-time mentioned in sec. 2.1.1 can be seen by applying a
coordinate transformation of the form z = L2

r which directly yields (2.9).
First, we have to note that in this description only closed strings propagate since there are no

open strings. The low-energy limit now consists of focusing on excitations that have arbitrarily
low energy with respect to an observer in the asymptotically flat Minkowski space-time. Again,
we find two distinct sets of low energy excitations which are decoupled. One set is located in
the flat Minkowski region whereas the other lives in the throat space-time. In analogy to the
first description the massive closed string modes in the bulk can be integrated out and the
interactions can be neglected in the low-energy limit leaving free, massless supergravity. In
the throat region, however, the whole tower of massive string excitations survives after taking
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α′ → 0. This can be understood – according to Nastase in [85] – by computing the relation
between the energy Ep of any kind of object at a point r and the corresponding energy E
measured at infinity which is given by

Ep ∼
d

dτ
=

1√
G00

d

dt
∼ 1√

G00
E =⇒ E =

(
1 + L4/r4

)−1/4
Ep ∼ r Ep . (2.19)

This means that for fixed Ep, as r → 0, the energy observed at infinity (E) goes to 0 due to
the gravitational redshift. Consequently, a closed string of high energy close to the throat
singularity at r = 0 may have an arbitrarily low energy as seen by an observer at infinity,
provided the string is located sufficiently deep down the throat. As we focus on lower and
lower energies the massive string modes fall deeper in the throat and decouple from the closed
string modes in the flat Minkowski space-time. We can conclude that in this description, the
interacting sector of the system reduces to a string theory of type IIB in AdS5 × S5 at low
energies along with a decoupled free supergravity theory in the bulk. This is visualised in
Fig. 2.4. These two descriptions can now be compared: we have found two decoupled pieces in

     perspective

redshifted excitations in near-
horizon regime

closed strings in type 
IIB string theory

at low 
energy: free type IIB supergravity

near-horizon geometry:
AdS5 × S5

2nd

at large r

Figure 2.4: Visualisation of the second perspective of a stack of Nc D3-branes in a flat ten-dimensional Minkowski
space-time. If the stack of D3-branes is large, the curved space-time can be described by a classical metric.

each description. The first system consists of N = 4 SYM gauge theory and low-energy closed
string modes. The second system consists of string excitations in the near-horizon regime
of the singularity and low-energy closed string modes deep in the bulk. The conjecture by
Maldacena states now that both systems describe the same physics [47]. After subtracting the
closed string modes far away from the singularity we should equate the remaining elements
giving us Maldacena’s conjecture
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N = 4 SYM theory in four dimensions is dual to type IIB string theory on
AdS5 × S5 at all scales.

After reaching this step we have to ask two important questions, since we want to obtain a
description of the QGP at the end:

• What is the advantage of describing a gauge theory, that can be tackled perturbatively,
by a quantum string theory which is much harder to solve?

• What is the relation between N = 4 SYM and QCD, since the quark-gluon plasma is a
realisation of the latter theory?

The first question will be answered in the following, whereas the answer to the second question
will be postponed until Sec. 2.3.

The main advantage of all types of these dualities is that they reduce to strong/weak
dualities in certain limits meaning that whenever one part of the duality is strongly coupled
the other part has to be weakly coupled, and vice versa. To show this, we recall the relations
we have learned so far between parameters of the gauge and the string theory in (2.14) and
(2.17):

g2
YM = 2πgs , L4 = 4πgsNcl

4
s , λ ≡ g2

YMNc . (2.20)

In (2.20) we have defined the ’t Hooft coupling λ. It describes the effective coupling of the
gauge theory in the large-Nc limit. This has been shown by ’t Hooft in his seminal work [109].
By taking the large-Nc limit and holding the ’t Hooft coupling λ fixed we find

λ fixed , Nc −→∞ : gs ∼ λ/Nc , lplNc ∼ L . (2.21)

The first relation in (2.21) suggests that the coupling gs of the string theory becomes weak,
whereas the second relation tells us that the characteristic gravitational length L of the AdS5

system is much larger than the Plank length lpl meaning that all quantum fluctuations of the
string can be neglected and we just have to deal with a classical string theory. On the gauge
theory side we are now in the limit of large number of colours. In addition, we take the limit
of large ’t Hooft coupling which gives us

λ −→∞ : L4 ∼ λ l4s . (2.22)

The gauge theory is thus strongly coupled and the classical type IIB string theory reduces to
classical supergravity which is just Einstein gravity including further matter fields representing
supersymmetry. That this is indeed the case can be seen by focusing on the behaviour of
massive string modes in this limit. The typical mass of a string excitation in classical string
theory scales like 1/ls. Thus, all the massive states become very heavy in the large-λ limit
and decouple, leaving a massless state, i. e. the graviton. Hence, classical string theory reduces
to a free, weakly coupled gravitational theory. From now on we will focus exclusively on the
following version of the AdS/CFT correspondence:

The large-Nc limit of N = 4 SYM theory in four dimensions at strong coupling
is dual to weakly coupled type IIB supergravity on an AdS5 × S5 background.
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This is an immense progress in the usefulness of the Maldacena conjecture since we are able
to solve strongly coupled problems in the gauge theory by doing classical computations in a
weakly coupled gravity theory. This has many obvious applications. We hope to gain new
insights by applying this duality to the case of strongly coupled, non-conformal systems, e. g.
the quark-gluon plasma. But – as we asked already earlier in this section – do N = 4 and
QCD share some fundamental properties? We will focus on this question in the subsequent
sections before proceeding with a general discussion of why we include additional deformations
in the AdS5 metric models for our computations.

2.2 Holographic Renormalisation

Our main task remains the study of strongly coupled systems at finite temperature (e. g. the
QGP) and we arrived at a description of a strongly coupled gauge theory – which is not QCD –
in terms of a free, gravitational theory in an AdS5 background. Before trying to get closer to
QCD and to study general properties of non-conformal, strongly coupled theories by breaking
the conformal invariance (including deformations) on the AdS side of the duality, we have to
find a way to include finite temperature since the duality so far describes both theories at zero
temperature. Again, two ways seem to be appropriate to achieve this goal.

The first way is to excite the degrees of freedom on the D3-branes to finite temperature
T . By following the same string theoretical computation as in Sec. 2.1.2 it has been shown
in [52, 116] that we end up with the so-called non-extremal solution on the supergravity side
[113]. It turns out that the net effect of this is solely a modification of the AdS5 part of the
metric given by (2.18).

ds2 = Gαβ dXαdXβ =
L2

z2

(
h(z, zh) dt2 + d~x 2 +

dz2

h(z, zh)

)
,

with h(z, zh) = 1− z4

z4
h

. (2.23)

The S5-sphere remains unchanged and has already been neglected in this discussion. Equation
(2.23) is called AdS5-Schwarzschild metric where a black hole of the Schwarzschild type5 is
included in the space filling out the three dimensional space as well as the S5 and being
located at a certain depth z = zh in the 5th-dimensional coordinate. Unfortunately, the
string theoretical derivation is again not very intuitive. That is why we proceed with a more
pedagogical way [117–119] of deriving (2.23) by starting with ordinary AdS5.

According to the basic relation of the AdS/CFT correspondence (2.3) vacuum expectation
values of a class of local operators in the gauge theory can be reconstructed from the asymptotics
of the dual supergravity fields near the boundary [120]. In the case of the energy-momentum
tensor Tµν , the dual field in the bulk is just the metric Gαβ . Thus, it is possible to reconstruct
the vacuum expectation value (VEV) 〈Tµν〉 from the near-boundary asymptotics of the gravity
solution which has been studied in detail in [121–123]. The pure AdS5×S5 metric corresponds
to a vanishing VEV of the energy-momentum tensor in the boundary N = 4 SYM gauge
theory. If we now excite some gravitons in AdS5 × S5 this corresponds to some states in the
gauge theory with 〈Tµν〉 6= 0 and is identical to the procedure of exciting degrees of freedom
on the D3-branes. When many gravitons are excited it is better to interpret this as a change

5The original Schwarzschild horizon function is given by h = 1− rh
r
.



2.2. Holographic Renormalisation 23

in the background metric Gαβ. In deriving the exact relation between the metric and the
energy-momentum tensor we will follow in this paragraph the argument of [119, 123]. So let us
go back to what we already have. We found in the zero-temperature case the basic AdS metric
(2.9). In order to allow the boundary theory to have a non-trivial energy-momentum tensor we
generalise the Minkowski space-time metric ηµν to a general four-dimensional space-time metric
gµν(x

ρ, z) including an additional z-dependence. The fact that this is not a contradiction to
the necessary condition of having Minkowski space-time at the boundary – where the gauge
theory is located – will become clear in the following. The generalised AdS5 metric can now
be written in the form

ds2 =
L2

z2

(
gµν(xρ, z) dxµdxν + dz2

)
, with µ, ν, ρ ∈ {t, ~x} . (2.24)

At this level of generality we have no remaining diffeomorphism (coordinate) freedom. Equation
(2.24) as well as its near-boundary expansion at z = 0 shall, nevertheless, be a solution to
vacuum Einstein equations, with a negative cosmological constant Λ = 6/L2, and is given by

gµν = g(0)
µν + z2 g(2)

µν + z4 g(4)
µν + z6 g(6)

µν + . . . . (2.25)

Note that we are still solving vacuum Einstein equations since there is no energy-momentum
tensor in the dual gravity theory construction. Since we impose Minkowski space-time at the
boundary we set g(0)

µν to the flat Minkowski metric g(0)
µν = ηµν . By proceeding to solve Einstein

equations it can be found in [123] that g(2)
µν is zero, while g(4)

µν is proportional to the VEV of
the boundary energy-momentum tensor:

〈Tµν(xρ)〉 =
N2

c

2π2
g(4)
µν (xρ) . (2.26)

Hence, this method – called holographic renormalisation – allows us to read off the VEV of
the gauge theory energy-momentum tensor 〈Tµν〉 directly from the metric in the bulk. This is
a powerful statement in general. The inverse problem of solving for the metric when 〈Tµν〉 is
known can be posed as well which helps us determining the shape of the full bulk metric in a
situation where the energy-momentum tensor at the boundary is given.

2.2.1 AdS5-Schwarzschild Metric

In order to derive the bulk metric dual to N = 4 SYM at finite temperature we consider
a static, isotropic energy-momentum tensor with ε = 3P ≡ const. with ε being the energy
density and P the pressure. The following analysis has been worked out the first time in
[119, 123]. After imposing translation invariance in the three spatial directions (x1, x2, x3) and
relabelling the z coordinate to z̃ our metric ansatz is given by

ds2 =
L2

z̃2

(
ea(z̃)dt2 + eb(z̃)d~x 2 + dz̃2

)
, (2.27)

with a(z̃), b(z̃) being arbitrary real functions. The relabelling is needed since we have to
impose a coordinate transformation at the end of the computation where we resubstitute the
convenient z notation. Equation (2.27) can now be substituted into the Einstein equations
derived from the Einstein–Hilbert action in (2.10) given by

Rαβ −
1

2
R G̃αβ −

6

L2
G̃αβ = 0 , with α, β ∈ {t, ~x, z̃} . (2.28)
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Out of the five second order non-linear differential equations for a(z̃) and b(z̃) three are
algebraically independent. This is a common effect in General Relativity and will reappear
in Chapter 3 when possible solutions to the Einstein equations are under investigation in a
broader context. The remaining equations have the following form

3b′ + z̃b′ 2 + z̃b′′ = 0 , (2.29)

z̃a′ 2 − 12 b′ + 3z̃b′ 2 + 2a′
[
z̃b′ − 3

]
+ 2z̃

[
a′′ + 2b′′

]
= 0 , (2.30)

b′
[
z̃b′ − 6

]
+ a′

[
z̃b′ − 2

]
= 0 . (2.31)

Together with the boundary conditions a(0) = b(0) = a′(0) = b′(0) = 0 preserving the
Minkowski metric at the boundary and the tracelessness of the energy-momentum tensor we
can derive the following metric

ds2 = G̃αβ dX̃αdX̃β =
L2

z̃2

( (
z̃4 − z̃4

h

)2
z̃h

(
z̃4 + z̃4

h

)dt2 +

(
1 +

z̃4

z̃4
h

)
d~x 2 + dz̃2

)
, (2.32)

that can be recast by a coordinate transformation z = z̃/
√

1 + z̃4/z̃4
h into the standard form

of the gravity dual metric of N = 4T:

ds2 = Gαβ dXαdXβ =
L2

z2

(
h(z, zh) dt2 + d~x 2 +

dz2

h(z, zh)

)
,

with h(z, zh) = 1− z4

z4
h

. (2.33)

Equation (2.33) includes a black hole of the Schwarzschild-type with horizon at z = zh for
which reason (2.33) is often called AdS5-Schwarzschild metric or AdS5-BH metric for short.
Thus, the temperature of the AdS5-BH space (which is identical to that of the gauge theory)
is related to the length scale zh and by dimensional analysis we can state

TN=4T ≡ TAdS−BH ∝
1

zh
. (2.34)

This relation is easy to understand because zh is the only length scale that has been introduced
when temperature is concerned. Furthermore temperature has dimensions of energy, or
equivalently, inverse length. It is interesting to note that N = 4 at finite temperature (N = 4T )
is not conformal anymore because the horizon zh defines a length scale in the system. Due
to our construction there is no trace anomaly but we will compute the coupling αQQ̄ by
differentiating the free energy of a quark-antiquark pair in Sec. 4.3.2 and see that it changes at
length scale zh. Determining the proportionality constant in (2.34) can now be achieved in two
ways by using two fundamental relations of black hole thermodynamics derived by Hawking
and Bekenstein [88, 89]:

1st method : S =
A

4G
(10)
N

, (2.35)

2nd method : T =
κ

2π
. (2.36)
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Here, S is the entropy of the black hole, A the area of the eight-dimensional horizon (~x, S5),
G

(10)
N Newton’s constant in ten dimensions and κ the surface gravity6 at the horizon. In chapter

4 we study general thermodynamical quantities in the (deformed)-AdS space where we make
use of (2.36) extensively in order to compute the temperature. A derivation of T with the help
of (2.36) can be found in Appendix B. In the following we use (2.35) since it leads to a very
intuitive picture of how temperature arises in the graviton excited AdS5 space.

2.2.2 Temperature in AdS5-Schwarzschild Space-Time

In deriving the temperature in AdS5-BH the expression for the energy density ε ≡ 〈T00〉 has
to be extracted from (2.32):

G̃00 =

(
z̃4 − z̃4

h

)2
z̃h

(
z̃4 + z̃4

h

) =⇒ G̃
(4)
00 =

3

z̃4
h

,

ε ≡ 〈T00〉 =
N2

c

2π2

3

z̃4
h

. (2.37)

Since the standard coordinate z is more convenient in the literature we note that zh = z̃h/
√

2
and end up with the following form of the energy density in terms of zh:

ε =
3

8π2
N2

c

1

z4
h

. (2.38)

This is already a remarkable result because it is an expression of the energy density in strongly
coupled N = 4 SYM at finite temperature. The factor of N2

c represents the degrees of freedom
on the gauge theory side. The gauge theory content scales like N2

c − 1 – due to the SU(Nc)
gauge group – that reduces to N2

c in the large-Nc limit.
The derivation now goes as follows: (2.35) provides us with an expression for the entropy

density s which can be related to the energy density ε via the fundamental thermodynamical
relation dε = T ds. In order to compute the entropy S we need to evaluate the area A of the
eight dimensional horizon (~x, S5). The expression for A can be written in the form

A =

∫
dx1dx2dx3

√
G11G22G33 · VS5

= V3
L3

z3
h

2π6/2L6−1

Γ(6/2)︸ ︷︷ ︸
=VS5

=
π3 L8 V3

z3
h

, (2.39)

where V3 is the infinite three dimensional volume, VS5 is the area of the five-sphere and Gii for
i = x1, x2, x3 is defined in (2.33). After dividing by V3 and using (2.17) and (2.35) we obtain
the following expression for the entropy density

s =
S

V3
=

N2
c

2πz3
h

. (2.40)

6The surface gravity κ denotes the gravitational acceleration an object experience at a certain surface. At
the horizon of an ordinary three-dimensional, non-rotating, electrically neutral black-hole κ takes on a value of
κ = M/r2

h.
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The degrees of freedom as well as the dimensions (z−3
h ∼ E3) match perfectly with the

expectation of an entropy density in the gauge theory. The rest of the derivation is simple. By
using the first law of thermodynamics7 dε = T ds we derive the temperature which is given by

T =
dε/dzh

ds/dzh
=

1

πzh
. (2.41)

At this step of the computation we have obtained a formulation of strongly coupled N = 4
SYM at finite temperature in terms of weakly coupled pure gravity description in an AdS-BH
background. Furthermore, we note that the trace of the energy momentum tensor ε − 3p
vanishes by construction of the finite-temperature plasma.

With this powerful description in our hand we are able to tackle an important question in
the subsequent section which is a direct consequence of our considerations in Chap. 1:

Can we use the weakly coupled gravity dual to N = 4T in order to study
strongly coupled, non-conformal plasmas like the QGP?

2.3 First Observations

With the help of the AdS/CFT correspondence we were able to find a weak coupling gravity
description of strongly coupled N = 4 at finite temperature. But this theory is not QCD. Let
us briefly list the differences:

1. N = 4 is a maximally supersymmetric theory whereas QCD does not contain supersym-
metry.

2. N = 4 is a conformal theory. The coupling is constant and the β-function vanishes to all
orders.

3. N = 4 has no confinement and no chiral symmetry breaking.

4. N = 4 is investigated in the large-Nc limit within the gauge/gravity duality approach
and in QCD Nc = 3. However, one expects corrections to be of order 1/N2

c for many
observables.

Thus, at first sight there is no evidence that analysing N = 4 helps in understanding the
properties and dynamics of the quark-gluon plasma. Fortunately, this is indeed not the full
truth. The properties of QCD and N = 4 change dramatically in the high-T regime as pointed
out for example by Liu & al. in [124]:

1. Above about twice the critical temperature Tc of the QCD phase transition between the
confined and deconfined phase, QCD becomes more and more conformal. An example
for this can be given by comparing the ratio of the pressure P in 2- or 3-flavour QCD to
that of a non-interacting gas which is about 0.8. This behaviour is also true in N = 4T
and can be observed in the energy density ε as well [116, 125]. However, non-conformal
properties of QCD become important at temperatures of T < 2Tc. Thus, below this
temperatures the use of a conformal theory in order to describe QCD is unreliable.

7Due to constant volume V and zero chemical potential the terms p dV as well as µ dN drop out.
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2. At twice the critical temperature Tc QCD is not confining anymore.

3. Finite T breaks supersymmetry in N = 4.

Therefore, the differences between these two theories are getting smaller and a valid description
of the QGP in terms of N = 4 at large T seems possible. However, even at finite T , N = 4
has some features that do not match with QCD making a quantitative analysis unreliable.
Nevertheless, many systems at strong coupling that seem to be totally unrelated with each
other share some common physics due to the appearance of a collective behaviour in the strong
coupling phase. A famous example is the study of the expansion of an ultracold fermionic gas
of atoms that leads to a very small number of the shear viscosity to entropy density ratio η/s
[126]. A hydrodynamic description is also possible in the realm of a hot, dense quark-gluon
plasma an it turns out that η/s is again very small [127, 128] and can be related to that for the
ultracold fermionic gas. And there are other observables (e. g. the bulk viscosity ζ) that are
comparable in both systems, although these physical systems are located at different extremal
conditions.

One of the main tasks of this thesis is the study of general properties (qualitative or
quantitative) of strongly coupled systems at finite temperature. The comparison to the QGP
as one particular realisation of a strongly coupled system will be a non-trivial check for the
validity of our models under investigation. Fortunately, N = 4 at finite temperature is not the
only way to study strongly coupled systems with the help of holography. The next chapter
deals with the question how to extend the known AdS5/CFT4 correspondence to a larger
class of theories. Here, we introduce deformations in the metric on the gravity side of the
duality in order to break conformality explicitly leading to a large class of possible models.
This has the great advantage that the calculations of the physical observables (see Chapter 4)
do not differ dramatically from the easy N = 4T computations but let us gain new insight.
Furthermore, there is some chance that QCD shares properties with the class of strongly
coupled, non-conformal metric models that we will study. Unfortunately, this approach has
a strong caveat: by just deforming the well-known AdS5-BH space we lose control over the
dual field theory. That means that we cannot even state what the particle spectrum looks like,
although we can compute plenty of observables.

Finding the gravity dual of QCD is definitely too much to hope for within this approach.
There are a lot of different realisations of the holographic principle beyond the prototype
AdS/CFT approach that resembles many properties of QCD, e. g. the so-called Sakai-Sugimoto
model [57]. The simple approach we are dealing with can be further improved by not only
breaking conformal invariance but e. g. by introducing a chemical potential µ or fundamental
matter [68, 129–132]. The goal of this thesis is not primarily the investigation of a possible
QCD dual but the study of a large class of strongly coupled non-conformal plasmas and their
common properties.

So, let us start in the subsequent chapter by introducing our deformed metric models and
discuss their properties in detail. Thereafter, we proceed with the main part of this thesis,
namely the qualitative and quantitative analysis of physical observables in strongly coupled
systems.





Chapter 3
NON-CONFORMAL METRIC MODELS

I n the last chapter we have introduced the essential ingredients of a concrete gauge/gravity
duality (AdS5/CFT4) which we would like to apply to hot plasmas in this thesis. We pose

now the following question which will be a guiding line through this chapter:

Is it possible to extend the analysis of physical observables beyond N = 4 at
finite T to a larger class of non-conformal theories?

Due to the restrictions of purely conformal models, it is natural to enlarge our discussion to
metric models that incorporate more and more QCD-like properties. However, it is important
to emphasise that we are not trying to derive the string theory dual of QCD but investigate a
large class of different theories that allows us to compare with QCD observables. The QCD
results can be obtained for example with the help of lattice simulations or from experiments.

The simplest way of enlarging our theory is by breaking conformal invariance explicitly in
the metric. One way to achieve this is by including additional deformations into the metric.
This method has some interesting properties:

1. The changes in the metric are small, and thus the computations – on which we will focus
in Chapter 4 – are similar to the well-known conformal case.

2. We have full control of the number of included additional parameters and their strength.

3. It is simple to include additional fields, e. g. the scalar dilaton Φ into the general Einstein–
Hilbert action.

However, in doing so we lose control over the corresponding dual field theory. By breaking
conformal invariance in the gravitational theory, we do not know the particular properties of
the dual field theory, e. g. the amount of symmetries, or the particle content. Fortunately, we
will see in the next chapters that these deformed metric models reproduce many properties
that non-conformal field theories at finite temperature and strong coupling have in common.
That the finding of such universal properties is not an unrealistic task has been shown in [72]
for the case of the shear viscosity of entropy density ratio (η/s) which turns out to be very
small in a very large class of non-conformal gravity duals. In addition, this quantity obeys the

29
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bound conjectured by Kovtun, Starinets and Son (KSS bound),

η

s
≥ 1

4π
, (3.1)

which we have reviewed in Chap. 1. Another interesting example is the ratio of bulk viscosity
ζ and shear viscosity η where Buchel [133] conjectured that this ratio has to obey the so-called
viscosity ratio bound

ζ

η
≥ 2

(
1

3
− c2

s

)
, (3.2)

with c2
s being the speed of sound squared. This bound has been verified in [134–136] for a

large class of (3 + 1)-dimensional finite-temperature field theories. However, also some theories
are known that violate (3.2) [137].

In order to warm up, we study thermodynamic properties of deformed metric models which
will be introduced in the following. More advanced observables like the running coupling
defined via the free energy F of static quark-antiquark pairs, which resembles many properties
of QCD, will be postponed until Chapter 4. The focus is now set on three different ways of
introducing deformations in the basic AdS5-BH background: The SWT -model, the 1-parameter
model and the 2-parameter model. The main difference in these approaches is the property
of being a solution or not to equations of motion derived from a 5D-Einstein–Hilbert action
including an additional real scalar Φ.

3.1 The SWT -Model

The simplest way of deforming the metric which corresponds to a breaking of the conformal
invariance is the insertion of an exponential factor of the form e cz2 without changing anything
else. The deformed AdS5-BH metric extension of (2.33) is then given by

ds2 =
L2

z2
e c z2

(
h(z, zh) dt2 + d~x 2 +

dz2

h(z, zh)

)
,

with h(z, zh) = 1− z4

z4
h

. (3.3)

The free parameter c can take any real number (c ∈ R) without leading into any singularities.
This model was proposed by Andreev in [138] and Kajantie, Tahkokallio and Yee (KTY) in
[64]. The latter authors claimed that this metric extremises a five dimensional Einstein–Hilbert
action – similar to the AdS5-BH case (see (2.10)) – including an additional scalar field Φ(z)
called the dilaton and an undetermined matter part. The dilaton is a scalar well-known in
string theory and has some interesting properties.1 For the current task we just need to know
how a scalar is implemented in an overall Einstein–Hilbert action which is shown in (3.4) and
(4.5). For the more interested reader we recommend [139] as a review. Furthermore, a brief
discussion on how to motivate the Einstein–Hilbert-scalar action as the low-energy limit of a

1A naive implementation of a scalar into string theory would lead to a violation of Weyl invariance. In
order to overcome this problem, the beta function β(Φ) for the dilaton has to vanish. In addition to this, the
constant mode of the dilaton Φ0 is related to the string coupling via gs = eΦ0 .
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full type IIB string theory can be found in Sec. 4.1. In the case of the KTY approach the full
action is written in the form

SSWT
=

1

16πG
(5)
N

∫
d5x
√

G

(
R− 1

2
(∂Φ)2 − V (Φ)

)
+

∫
d5x
√

G eaΦ Lm , (3.4)

where Φ(z) = φ z2 and the negative cosmological constant Λ has been absorbed in the scalar
potential V (Φ). The scalar a is constant and G

(5)
N is again the Newton’s constant in five

dimensions and G = detGαβ the determinant of the space-time metric.
KTY added a matter part Lm since the pure 5D Einstein–Hilbert-scalar action with a

scalar profile proportional to z2 does not allow for the metric in (3.3) which we will call
soft-wall metric or SWT -metric from now on. However, they could not specify the necessary
matter parts. Thus, it is not a solution to Einstein equations derived from a pure 5D-Einstein–
Hilbert-scalar action and therefore inconsistent in our understanding of consistency. That this
model has nevertheless quite some success is a consequence of the good agreement with QCD
thermodynamic observables (energy density, pressure, trace anomaly) [64, 73]. It is important
to note that the choice of the dilaton profile is not arbitrary. Karch & al. showed in [60, 140]
that a dilaton quadratic in the 5th-dimension coordinate reproduces linear Regge trajectories
of the low-lying mesons in agreement with experiments and QCD lattice simulations. In this
context the notion soft-wall model was invented denoting models with a quadratic dilaton in
contrast to earlier approaches called hard-wall models that use a constant dilaton which jumps
to infinity at a certain point. This leads to a sharp cut-off of the AdS space-time and has been
studied extensively in [58, 141–143].

We will use metrics of the soft-wall type in the following chapters in order to study
deformations in general and how observables change with respect to them. This is interesting
because many observables are very robust with respect to deformations or change systematically
in one direction. Nevertheless, some irregularities occur that can be fixed by using more
sophisticated metric models that are of the soft-wall type as well. They also include a breaking
of conformal invariance, but being solutions to the above-mentioned Einstein equations. We
will focus on these models in Sec. 3.2.

The remaining part of this section will be used to discuss this general approach of introducing
deformation in the AdS5 background by studying basic thermodynamic properties of the SWT -
model. In doing so we will gain some insights why this model has been quite successful in the
last years.

3.1.1 Temperature

We have studied the derivation of a finite temperature gravitational background by including
a Schwarzschild type black hole in Sec. 2.2.1. Deriving the temperature with the help of
(2.35) has been shown in sec. 2.2.2. The second approach (2.36) is less intuitive but simplifies
calculations. In the following we use the final result of the temperature derivation that can be
found in Appendix B for a general metric of the form

ds2 = e2A(z)
(
h(z) dt2 + d~x 2

)
+

e2B(z)

h(z)
dz2 . (3.5)
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This metric will be very important in the following chapters and will be derived in the next
section. The temperature is then given by

T = eA(zh)−B(zh) |h′(zh)|
4π

. (3.6)

which is identical to (B.17). Using the SWT -model defined in (3.6) yields

T =
1

π zh
. (3.7)

This is a remarkable result because the temperature stays the same although we have entered
a non-conformal regime with strong deformations. This is a nice side effect simplifying the
model even further. That it is still powerful can be seen by computing the entropy density
s, energy density ε, pressure P and ε− 3P . These observables lead to first insights into how
sensitive this model is with respect to large deformations. The same computations will be
repeated in less detail for more sophisticated models before we focus on dynamical quantities
like the energy loss of moving quarks, the running coupling and the screening distance of
quark-antiquark pairs.

3.1.2 Thermodynamic Observables

The entropy density s is computed with the help of (2.39) in a background given by (3.3). A
similar computation has been worked out in [64]. Since the computation is straightforward
and analogous to the AdS5-BH case we just quote the result:

s(T, c) =
π2

2
N2

c T
3 e

3c
2π2T2 . (3.8)

Now, we follow the reverse direction of Sec. 2.2.2. With the help of the temperature given by
(3.7) and the fundamental relation dε = T ds we solve for the energy density and obtain the
following expression

ε =

T∫
0

dT ′ T ′
ds(T ′, c)

dT ′

=
3

2
N2

c

[
1

8
e

3c
2π2T2 T 2

(
c+ 2π2T 2

)
+

c2

16π2
Ei
( 3c

2π2T 2

)]
, (3.9)

with Ei(z) being the exponential integral function Ei(z) ≡
∫∞
z e−t/t dt. The pressure P can be

obtained by using another relation known from standard thermodynamics

P (T, c) ≡ T s(T, c)− ε(T, c)

=
N2

c

32

[
e

3c
2π2T2

(
4π2T 4 − 6c T 2

)
− 9c2

π2
Ei
( 3 c

2π2T 2

)]
. (3.10)

With the help of (3.9) and (3.10) we can compute the quantity ε − 3p which we will call
trace anomaly for convenience, although there is no anomaly of an underlying symmetry since
non-conformality is introduced by an ad hoc change in the metric.

ε− 3P

T 4
=

3c

8T 4
N2

c

[
2 e

3c
2π2T2 T 2 +

3c

π2
Ei
( 3c

2π2T 2

)]
. (3.11)
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(a) Visualisation of the trace anomaly (ε− 3P )/T 4 in the SWT -model for three values of the
deformation parameter c, c = 0.01 GeV2, 0.127 GeV2 and 0.6 GeV2 and Nc = 3.
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(b) Trace anomaly (ε − 3P )/T 4 in lattice QCD computations with Nc = 3 and with p4 and
asqtad actions on Nτ = 6 and 8 lattices. The solid, dashed and dotted lines represent several
computations with the help of a hadron resonance gas (HRG) model. Figure from Huovinen and
Petreczky [144].

Figure 3.1: Comparison of the trace anomaly computed in the SWT -model and a lattice QCD calculation
of [144]. The computation with c = 0.127 GeV2 has a significant overlap with QCD. In the gauge/gravity
computation we set Nc equal to 3.
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If we choose Nc ≡ 3 we can adjust the deformation c in a way that the sharp increase of
the trace anomaly occurs at a temperature T = Tc with Tc ≡ 176 MeV. Tc has been chosen
from recent computation using particle ratios at RHIC in [145]. The corresponding optimal
deformation copt is copt = 0.127 GeV2 leading to a trace anomaly that can be compared to
QCD lattice data [144, 146–149]. This is plotted in Fig. 3.1 together with recent lattice results
by Huovinen and Petreczky [144]. The optimal value copt = 0.127 GeV2 for the deformation
has been worked out for this model in [64] for the first time.

The finding of such a strong agreement with QCD lattice data by the use of such a simple
computation is a very interesting result. However, we should recall that the SWT model is
very crude and inconsistent. Thus, the computation of thermodynamical observables in a
consistently deformed model will be the main task in the next section. Such an analysis has
not been done in the literature for our class of metric models2. The main focus is on the
general behaviour of thermodynamic observables when leaving the conformal background. The
determination of a concrete value for the deformation parameter in order to resemble QCD
at strong coupling and finite temperature is only a side note because other gauge/gravity
duals have been developed that contain more QCD properties right from the string theoretical
beginning [129, 151, 152].

3.2 Consistently Deformed Metric Models

We now focus on a consistent deformation of the AdS5-BH model. Consistency means in this
context that the metric should be a solution to the Einstein equations derived from a 5D
Einstein–Hilbert-scalar action which is given in standard notation by

SEHs =
1

16πG
(5)
N

∫
d5x
√

G

(
R− 1

2

(
∂Φ)2 − V (Φ)

)
. (3.12)

Here 16πG
(5)
N = 2κ2 is the five dimensional Newton’s constant, G is the determinant of the

space-time metric Gαβ, R is the Ricci scalar, Φ is the scalar (or dilaton) and V (Φ) the
scalar potential. There is one condition the scalar potential V (Φ) has to satisfy which is the
reduction to the conformal AdS5 case V (Φ) −→ 2Λ in the limit of a vanishing scalar (dilaton).
Whether the scalar is treated as the dilaton or not will be discussed in Sec. 4.1. Fortunately,
no differences occur when studying thermodynamic quantities in an empty space. However,
if we insert macroscopic objects, e. g. macroscopic strings into the space-time background we
have to take a non-trivial contribution of the dilaton into account. This will be done in the
next chapter. There are many other fundamental actions to start with, e. g. Gauss-Bonnet
type actions [153, 154] or actions including gauge potentials [155]. Metric solutions to this
actions have been studied for example in [61, 62, 156] but a general study for a large class of
deformations is still missing. In nearly all cases that can be found in the literature a specific
scalar potential has been chosen in order to resemble some properties of QCD-like systems.
The results are quite remarkable but there is still a lack of knowledge of how these deformed
models behave for large classes of deformations.

The derivation of the Einstein equations from the action given in (3.12) is presented in

2Similar approaches are [67–69, 150].
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Appendix A and we just quote the final expressions:

Rαβ −
1

2
RGαβ = Tαβ ,

with Tαβ =
1

2
∂αΦ ∂βΦ− 1

4
Gαβ(∂Φ)2 − 1

2
GαβV (Φ) , (3.13)

and

�LB Φ = V ′(Φ) . (3.14)

Here, α, β ∈ {t, ~x, z}. Furthermore, we have to remember that on general pseudo-Riemannian
manifolds the d’Alembert operator � generalises to the Laplace-Beltrami operator that has
the following form when applied to a scalar Φ in local coordinates:

�LBΦ = ∇α∇αΦ =
1√
G
∂α

(√
GGαβ∂βΦ

)
, (3.15)

where a summation is implied over indices occurring twice. Altogether we have six coupled,
second order differential equations depending on the radial coordinate z. For convenience, we
will abbreviate the Einstein equations by defining

Eαβ ≡ Rαβ −
1

2
RGαβ − Tαβ = 0 . (3.16)

In (3.13) and (3.16) Tαβ denotes the energy-momentum tensor.
In order to be able to solve the system of coupled, non-linear differential equations given in

(3.13) we have to pose the question how the general metric ansatz has to look like. In Sec. 2.1.1
we have imposed scale invariance which has led us to the AdS5 metric given by (2.9). Since
the focus is now on theories which are non-conformal we cannot use such a strong condition on
the metric anymore. In the following subsection we start with a general metric ansatz and
impose the basic symmetries that should be conserved on the gauge theory side. The final
result for the metric can also be found in [62, 136].

3.2.1 General Metric Ansatz

The dual field theory – living on the boundary of the gauge theory – shall describe a four
dimensional Lorentz-invariant gauge theory. Thus, we demand the metric to satisfy the
following conditions:

1. Translation invariance in the R3,1 directions parameterised by (t, ~x).

2. SO(3) symmetry in the ~x-directions but not SO(1,3) boost invariance because boost
invariance is broken by finite temperature.

3. All functions appearing in the metric depend on the radial 5th-dimensional coordinate z
only.

With the help of these symmetries we can write down a general metric ansatz agreeing with
the aforementioned conditions,

ds2 = A(z)
(
d~x 2 − dt2

)
+

3∑
i=1

Ci(z)
(
dxi dz + dz dxi

)
+D(z)

(
dtdz + dz dt

)
+ E(z)dz2 . (3.17)



36 Chapter 3 — Non-Conformal Metric Models

In addition, we have three more parameterisation invariances. First we are free to reset our
clocks by defining a new time coordinate

t′ ≡ t+ ϕ(z) , (3.18)

with ϕ being an arbitrary function of z. This allows us to eliminate one of the off-diagonal
metric elements by setting

dϕ

dz
≡ −D(z)

A(z)
. (3.19)

The total derivative of the new time coordinate t′ is then given by

dt′ = dt+
∂ϕ

∂z
dz =⇒ dt2 = dt′ 2 − ∂ϕ

∂z

(
dtdz + dzdt

)
−
(
∂ϕ

∂z

)2

dz2 , (3.20)

and the line element (3.17) can now be transformed into a more elegant form

ds2 = A(z)
(
d~x 2 − dt2

)
+

3∑
i=1

Ci(z)
(
dxidz + dzdxi

)
+H(z)dz2 ,

with H(z) ≡ E(z) +
D(z)2

A(z)
. (3.21)

Furthermore, we are free to redefine the spatial coordinates xi

x′i = xi + γi(z) , with
dγi(z)

dz
≡ Ci
A
, for i = x1, x2, x3 . (3.22)

The total derivative for each of the three spatial coordinates then reads

dx′i = dxi +
∂γi(z)

∂z
dz =⇒ dx2

i = dx′ 2i −
Ci
A

(
dxidz + dzdxi

)
− C2

i

A2
dz2 . (3.23)

The line element can now be written as

ds2 = A(z)
(
d~x 2 − dt2

)
+

( 3∑
i=1

C(z)2
i

A(z)
+H(z)

)
︸ ︷︷ ︸

J(z)

dz2

= A(z)
(
d~x 2 − dt2

)
+ J(z)dz2 . (3.24)

In the literature a slightly different notation is used where one identifies A(z) ≡ e2A′(z) and
J(z) ≡ e2B(z) and drops the prime ′ of the A′-function. The final expression of the line element
– which we will use in all the subsequent chapters – has the form

ds2 = e2A(z)
(
h(z)dt2 + d~x 2

)
+ e2B(z) dz2

h(z)
, (3.25)

where we have already included the Schwarzschild type horizon h(z) that provides us with
temperature. As we have mentioned above there is a third reparameterisation invariance we
have not used yet. This is the reparameterisation invariance of the z-coordinate. By applying
this to our model we can absorb B(z) or A(z) into a new coordinate z′. But there are other
methods how to make use of this reparameterisation invariance which will be explained in the
next paragraph.

With this general metric ansatz in our hands we return to the Einstein equations (3.13)
and try to derive the differential equations for the metric functions A(z), B(z), h(z), Φ(z) and
the scalar potential V (Φ(z)).
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3.2.2 General Einstein Equations

After computing the necessary curvature tensors3 (R,Rαβ) by making use of the general metric
in (3.25) we can substitute the final expressions into (3.13) and end up after some massage
with the following system of non-linear, second order differential equations:

Without specifying a gauge:

(E00 − E11) : h′
(
4A′ −B′

)
+ h′′ = 0 (3.26)

(E00 − E55) : 6A′′ − 6A′B′ + (Φ′)2 = 0 (3.27)

E55 : 6A′h′ + h
(

24A′2 − (Φ′)2
)

+ 2V e2B = 0 (3.28)

Scalar equation : h
(
4A′Φ′ −B′Φ′ + Φ′′

)
+ h′Φ′ − ∂V

∂Φ
e2B = 0 . (3.29)

Remember that Eαβ is given by

Eαβ ≡ Rαβ −
1

2
RGαβ − Tαβ . (3.30)

Two things have to be stated here. Firstly, only three of the four equations are algebraically
independent. By adding, subtracting and differentiating eqs. (3.26), (3.27) and (3.28) we are
able to derive (3.29). On the other hand we have five unknown functions that we have to
determine.

By using the remaining reparameterisation invariance of z we can identify the z-coordinate
with the scalar function Φ. This method was proposed by Gubser in [62]. The metric then
reads

ds2 = e2A(Φ)
(
h(Φ)dt2 + d~x 2

)
+ e2B(Φ) dΦ2

h(Φ)
, (3.31)

and the system of differential equations derived from the Einstein equations in (3.13) can be
written in the form

With gauge Φ = z′ ∝ z2

(E00 − E11) : h′
(
4A′ −B′

)
+ h′′ = 0 (3.32)

(E00 − E55) : A′′ −A′B′ + 1

6
= 0 (3.33)

E55 : 6A′h′ + h
(

24A′ 2 − 1
)

+ 2V e2B = 0 (3.34)

Scalar equation : 4A′ −B′ + h′

h
− V ′

h
e2B = 0 . (3.35)

Now we start with the derivation of the two consistent metric models, i. e. the 1- and 2-parameter
model.

3See Appendix A.3 for a complete list of the curvature related tensors.
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3.2.3 1-Parameter Model

In order to obtain a one-parameter model – with parameter φ – we use the ungauged Einstein
equations (3.26) - (3.29) along with a specific choice of the scalar profile Φ(z) and the horizon
function A(z). This model is intended to be a minimal, non-trivial, consistent generalisation of
AdS5 including deformations via a scalar. We reach the conformal limit smoothly for vanishing
parameter φ.

As mentioned before, Karch & al. suggested a quadratic scalar profile in [60]. In order
to obtain a minimal generalisation of AdS5 the horizon function A(z) has to be identical to
the conformal case. This choice has the main advantage that we analyse a non-conformal
model solving equations of motion whose non-conformality is based only on a non-trivial
scalar function Φ(z). In the 2-parameter model we will include an extra deformation of the
SWT -model type in the metric with parameters φ and c. With these two models in our hand
we are able to discuss the different strengths of metric and scalar deformations, respectively. A
quantitative analysis for several observables is the topic of Chapter 4.

After defining Φ(z) and A(z) as described above by

Φ(z) ≡
√

3

2
φz2 , and A(z) ≡ 1

2
log

L2

z2
, (3.36)

(3.27) can be used to solve for B(z),

B(z) =
1

4

(
z4φ2 + 4 log z

)
+ C . (3.37)

The appearance of the numerical factor
√

3/2 in (3.36) will be explained in Sec. 4.1 when
the string theoretic background is described in more detail. In principle, this factor can be
absorbed in the parameter φ but the final equations turn out to be more elegant when the
factor is included explicitly. The integration constant C can be determined by imposing the
condition that our model has to behave like conformal AdS5 for z −→ 0. This is a reasonable
condition because small z correspond to high temperature as we know from dimensional
analysis (T ∝ 1/zh) and in the very high temperature regime all the non-conformal models
under investigation shall become conformal. This is approximately the same in QCD. Thus,
we can impose:

B(z)
z→0−−−→ A(z) =⇒ C = logL . (3.38)

After substituting eqs. (3.36) and (3.37) into (3.26) the horizon function h(z) can be written as

h(z) = h0 −
h1

φ2

(
1− e

1
4
z4φ2

)
. (3.39)

Again, integration constants – in this case two (h0, h1) – appear and we have to think about
boundary conditions that we still have to impose. By recalling the derivation of the temperature
function in the conformal case (Sec. 2.2.1) we find that the metric has to be flat four dimensional
Minkowski space-time at the boundary in order to allow for a boundary gauge theory that
describes real-world physics. Thus, h(z) has to become unity at z = 0 which is our first
condition. Secondly, the horizon function defines a black hole horizon zh at the first zero.
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Hence, we impose the following conditions:

h(0) ≡ 1 =⇒ h0 = 1 ,

h(zh) ≡ 0 =⇒ h1 =
e

(
1
4
z4
h φ

2
)
φ2

e

(
1
4
z4
h φ

2
)
− 1

. (3.40)

Before deriving the scalar potential V (Φ(z)) we have to mention that in the limit φ −→ 0 the
conformal AdS5 space-time can be recovered. Up to now φ takes on any value in R.

In a last step we can derive the scalar potential V (Φ(z)). This is not of practical interest for
the following computations since only the metric functions contribute. However, this potential
has some general importance. With the help of (3.28) the dilaton potential V (Φ) is fixed and
has the following form

V (Φ) =
2 eΦ2/3

1− eΦ2
h/6

(
Φ2 + 6 e

1
6

(
Φ2

h−Φ2
)
− 6

)
,

=⇒ V (Φ) ≈ 12

L2
− 2

Φ2

L2
+O

(
Φ3
)
. (3.41)

Here, Φh is the scalar Φ(z) evaluated at z = zh. We can state immediately that the condition
of reproducing the cosmological constant 2Λ = 12/L2 in the limit of a vanishing dilaton is
satisfied perfectly. Furthermore, the Φ2-coefficient in the series expansion can be interpreted as
half the scalar mass squared 1

2M
2
Φ. This is a very interesting quantity in string theory. In our

models we obtain a negative mass squared which can be interpreted in general as a tachyonic
behaviour. As a result we would obtain unstable physical solutions. Fortunately, Breitenlohner
and Freedman derived a lower bound [157, 158] for the mass squared of the scalar M2

Φ where
the physical solutions are not unstable. The bound can be written as

M2
Φ ≥

4

L2
, (3.42)

for the case of one extra dimension. The Taylor expansion of (3.41) leads to the following
result for the scalar mass squared

M2
Φ =

4

L2
, (3.43)

which obviously satisfies the Breitenlohner–Freedman bound. Although the mass squared is
negative we should not worry since no instabilities occur in the solutions. Although the dilaton
potential is not of computational interest since it does not appear in the metric functions which
are the only ingredients in the calculation of our observables, it is important when theories with
different temperatures and deformations are compared. By choosing different deformations, it
is obvious that the dilaton potential V is changed and we obtain a different theory. However,
the dilaton potential is very robust with respect to the deformation as we can see in (3.41). A
deviation in the V arises at second order in the deformation.

In contrast to this, we hope that changing the temperature for a fixed deformation does
not change the theory. This is in general not the case due to a dependence of the dilaton
potential on the horizon Φh, or equivalently, zh. A change in the temperature leads a priori to
a different theory. Thus, we can only compare theories with different temperatures for a fixed
deformation if the deviation in the dilaton potential is not too large. A quantitative discussion
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Figure 3.2: Visualisation of temperature T in the 1-parameter model. It reproduces the conformal temperature
T = (πzh) 1 for φ = 0 and is symmetric under φ −→ φ.

of this problem will be worked out in the next paragraph after introducing the formula for the
temperature. For a 2-parameter model being a solution to Einstein equations this problem has
been argued in detail by Dewolfe and Rosen in [156]. Before we start with the applications
of this model let us note that it nicely reproduces conformal N = 4 at finite T in the limit
of φ going to zero. Thus, we can study a smooth, consistent deviation from the conformal
AdS5 model. With the full metric in our hand we can now start computing thermodynamical
quantities that have not been studied in the 1- and 2-parameter model before in the literature.
A simpler model has been studied by Gubser and Nellore in [62].

By using the temperature formula in (3.6) we obtain

T1p = eA(z)−B(z) h
′(zh)

4π
=
z3

hφ
2

4π

(
1− e

1
4
z4
hφ

2)
. (3.44)

This function is visualised in Fig. 3.2 for a large range of deformations φ and zh. Three
properties are remarkable concerning the temperature. Firstly, in the zero-deformation limit
we obtain the conformal temperature T = (πzh) 1. Secondly, the temperature is quadratic in
φ. This means that there is no difference between negative and positive deformations and we
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can restrict ourselves to positive deformations only. The third and most important fact is that
the temperature has a minimum value Tmin for each φ different from zero. This restricts our
model to a specific temperature regime but since we are interested in the high-T behaviour of
strongly coupled systems (e. g. QGP) this is not a severe restriction.

Furthermore, we can now resolve the issue of the differences in the dilaton potential
(3.41) when the temperature is changed. We plot in Fig. 3.3 the dilaton potential V (z)L2

in the 1-parameter model against z for a fixed deformation φ = 0.3 and several values of the
temperature T , T = Tmin, 1, 2, 3. The coloured dots represent the position of the black-hole
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Figure 3.3: Dilaton potential V (z)L2 in the 1-parameter model against z for fixed deformation φ = 0.3 and
several values of the temperature T , T = Tmin, 1, 2, 3. The coloured dots represent the position of the horizon
zh.

horizon zh. Although all dilaton potentials in Fig. 3.3 differ from each other, thus, describing
different theories we can argue that the deviation is not relevant for most of our computations.
The reason for this is the following. By comparing two different temperatures we have to
make sure that the dilaton potentials are similar up to the first horizon4 zh occuring along
the z-coordinate. This means – according to Fig. 3.3 – that for example a comparison with
T = 3 is always possible since each dilaton potential is identical up to the green dot which
indicates the horizon for T = 3. We can state that similar theories are going to compared if
large temperatures are concerned. We have to be careful if we compare small temperatures of
order of Tmin because the dilaton potential varies significantly in this regime. This is visualised
for example for T = Tmin and T = 0.3 in Fig. 3.3. At the blue point which indicates the
horizon of T = 0.3 the scalar potential has already changed significantly compared to the black
curve. The same behaviour can be found in the 2-parameter model as well.

4The first horizon is the one that corresponds to the higher temperature.
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Before introducing the 2-parameter model let us shortly discuss the thermodynamic
properties of this consistent model where a non-conformality is introduced solely in the profile
of the scalar. No further explicit metric deformations are used because the warp factor in front
of the Minkowskian part remains conformal (L2/z2). This enables us to study the different
behaviour of an explicit metric deformation (e. g. the SWT , 2-parameter model) in contrast to
the contribution of a purely dilatonic function (e. g. 1-parameter model) since the 2-parameter
model will include both possibilities of breaking conformality.

Similar to the SWT case (Sec. 3.1.2) we use the following fundamental thermodynamic
equations to compute the energy density ε1p and pressure P1p in the 1-parameter model:

dε1p = T ds1p =⇒ ε1p(T ) =

T∫
Tmin

T ′
∂s

∂T ′
dT ′ =

zmax
h∫
zh

T (z′h)
∂s

∂z′h
dz′h , (3.45)

dP1p = s1p dT =⇒ P1p(T ) =

T∫
Tmin

s(T ′) dT ′ =

zmax
h∫
zh

s(z′h)
∂T

∂z′h
dz′h , (3.46)

where the remaining integration constants are set to zero. The minus sign in (3.45) arises due
to the monotonously falling relation between T and zh. The upper integration limit zmax

h is
the corresponding zh value of the minimal temperature for a given deformation φ. With the
help of (3.45) and (3.46) we can easily compute the trace anomaly that is shown in Fig. 3.4(a).

We compare our calculations to lattice results by Panaro [159, 160] and Gursoy & al.
[161, 162] which are shown in Fig. 3.4(b). The figure is taken from [159] and includes a
holographic computation by Gursoy & al. [65, 66] who used a similar approach of a 5D-
Einstein–Hilbert-scalar action in order to mimic QCD. As we can see in Fig. 3.4(a) the shape
of our results is very robust for all values of the deformation. Thus, it is not very surprising
that Kiritsis found a concrete realisation that resembles this QCD data very nicely since these
models based on the introduction of further scalars in the Einstein–Hilbert action are very
robust in general with respect to changes in the deformations. Many different choices of a
particular metric would lead to similar results. However, it is remarkable that the amount
of non-conformality is almost equal to large-Nc computations on the lattice. By choosing
different values of the deformation φ we can only shift the critical temperature Tc. Although it
is a small leap ahead we would like to state here that even in the 2-parameter case we find a
very robust behaviour. One task in the next chapter will be the investigation whether this
robustness hold also for different observables.

3.2.4 2-Parameter Model

In the last part of this chapter we would like to introduce a recent model proposed by DeWolfe
& al. in [156] that includes the deformation of the SWT -model but in a consistent way by
solving Einstein equations (3.32) – (3.35). The authors of [156] used this model to study jet
quenching in hot plasmas. We will enlarge the analysis of this model to all available parameters
and many other observables in order to gain new insights into how non-conformal theories at
strong coupling and finite temperature behave.

Firstly, let us switch to the specific gauge where we identify the z-coordinate by the dilaton
Φ. This has the advantage that all the final expressions become much shorter. The metric has
the general form of (3.31) and we have to solve equations of motion given by (3.32) – (3.35).
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(a) Trace anomaly (ε− 3P )/T in the 1-parameter model for three different deformations φ,
φ = 0.02 GeV2, 0.2 GeV2 and 1 GeV2.

(b) Trace anomaly M= (ε − 3P )/N2
c in a lattice simulation for gauge field theories with

large-Nc gauge groups of the form SU(Nc) together with an improved holographic model
proposed by Kiritsis [65, 66, 161, 162]. This figure is taken from Panero [159].

Figure 3.4: Comparison of the trace anomaly computed in the 1-parameter model and a lattice QCD computation
made by [159, 160]. The computation with φ = 0.2 GeV2 is in good agreement with large-Nc gauge theories
with gauge group SU(Nc).
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We use the three independent equations to solve for B(Φ), h(Φ) and V (Φ) by assuming a
SWT -like function for A(Φ) that can be rewritten in Φ-form as

A(Φ) ≡ 1

2
log

(
L2

z2

)
− 1

2
cz2

=
1

2
log

(√3
2φL

2√
3
2φ z

2

)
− c

φ
√

6

√
3

2
φ z2

=
1

2
log

(√
3

2
c
L2

α

)
− 1

2
log Φ− α√

6
Φ . (3.47)

Here, the following definitions of the running scalar Φ and α are used:

Φ =

√
3

2
φz2 , and α ≡ c

φ
. (3.48)

Thus, we have used implicitly the exact relation between Φ and z within the definition of A(Φ).
In addition to this, the horizon Φh is defined as the first zero of the horizon function h(Φ).
With the help of (3.47) and eqs. (3.32) – (3.35) we can now determine B(Φ), h(Φ) and V (Φ)
which are given by

B(Φ) = log

(
L

2

)
+

1 + 2α2

2α2
log

(
1 + α

√
2

3
Φ

)
− log Φ− 1

α
√

6
Φ ,

h(Φ) = 1− K(Φ, α)

K(Φh, α)
,

V (Φ, α, Φh) =
1

2
e 2B(Φ,α)

(
h(Φ) + 24h(Φ)A′(Φ)2 + 6A′(Φ)h′(Φ)

)
,

(3.49)

with

K(Φ, α) ≡
(
4α2 − 1

)
Γ

[
2 +

1

2α2
,

1

2α2
− 2

]
+
(
1− 4α2

)
Γ

[
2 +

1

2α2
,

1

6α2

(
4α2 − 1

)(
3 +
√

6αΦ
)]

+ 2α2 Γ

[
3 +

1

2α2
,

1

2α2
− 2

]
− Γ

[
3 +

1

2α2
,

1

6α2

(
4α2 − 1

) (
3 +
√

6αΦ
)]
. (3.50)

Here, Γ[. . . , . . . ] denotes the incomplete Gamma function Γ[a, x] ≡
∫∞
x ta−1 e−t dt. In this

derivation we have fixed the appearing integrations constants in a way that B reduces to AdS5

space-time with matching length scale L in the Φ→ 0 limit. The horizon function h(Φ) has to
fulfil the same boundary conditions that we have introduced in (3.40).

Before we proceed with the computation of the scalar function function, we have to specify
the range of validity for the parameters c and α. Firstly, we have to show that the conformal
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AdS5-BH scenario can be obtained in a certain limit. This can be achieved by taking the limit
c −→ 0 by keeping φ fixed. This is trivial for A(z) and can be shown for B(z) if we transform
it back into the z-coordinates. B(Φ) dΦ2 which appears in the metric (see (3.25)) reduces then
to

e2B(Φ) dΦ2 = e
z2 φ2

c
L2

z2
(1 + c z)2+φ2

c2
c→0−−−→ e

1
2
z4 φ2 L2

z2
= e2B(z) dz2 . (3.51)

Now, the limit φ −→ 0 can be taken in order to obtain the pure AdS5-BH metric as it was
shown in Sec. 3.2.3. In total, we expect the conformal limit by taking the limits c −→ 0 and
α −→∞. This limit is sometimes difficult to visualise since all figures are plotted versus Φ or
Φh where c and α are intrinsically included. Thus, taking one of these limits always changes the
scaling of the curves. Secondly, we have to fix the overall range of values that these parameter
can take on. The integral for h(Φ) in (3.49) can be solved for all positive values of α. This has
been shown by Helmboldt in [163]. In principle, all real numbers can be chosen for c. However
the computation of the temperature (3.54) reveals a T ∝ √c dependence that restricts c to
positive values only. In summary, c and α can take on the following values:

c ∈ [0,∞] , and α ∈ [0,∞] . (3.52)

The scalar potential in (3.49) can be expanded for small values of Φ leading to

V (Φ, α, Φh) ≈ 12

L2
− 2

L2
Φ2 +O(Φ3) . (3.53)

This expansion shows that the potential obeys the Breitenlohner–Freedman bound again, which
is a general property of the metric models under investigation. The most important quantity is
the temperature T which is calculated via the same formula as in the 1-parameter case given
by (3.6) and is cast into a form given by

T2p(Φh, α, c) =
1

πK(Φh, α)

(
2

9
4
− 1

2α2 3
3
4
− 1

2α2 e
2− 1

2α2 +
√

2
3
αΦh

√
c

α

(
4α2 − 1

)3
· Φ3/2

h

(
1 +

√
2

3
αΦh

) 1
2α2
(

1

α2

(
4α2 − 1

) (
3 +
√

6αΦh

)) 1
2α2

)
. (3.54)

The temperature in the 2-parameter case is shown in Fig. 3.5 for a large range of α-values
and four different deformations c, c = 0.1 (lowest surface), 0.4, 0.7 and 1.1 (highest surface) in
units where the AdS length L is set to 1. The most important fact we would like to note
is the existence of a minimal temperature Tmin for each value of the two parameters (α, c)
analogous to the 1-parameter model. In other words, for a given temperature we find a maximal
deformation since the minimal temperature is rising for stronger deviations from the conformal
case. In order to specify a preferred regime of parameters we also compute the trace anomaly
for the 2-parameter model. Although the general focus lies on the general behaviour for all
parameters, it is nevertheless useful to have a particular regime in mind where our model
is similar to real-world physics. Since the fundamental thermodynamic expressions are in
principle similar to (3.45) and (3.46), we skip the details of the computation and focus on the
results of the trace anomaly which are shown for a large class of α- and c-deformations in
Fig. 3.6 with the critical temperature Tc set to 176 MeV. For the combination α = 0.31 and
c = 0.1 GeV2 we are closest to a QCD-like behaviour since the increase occurs at the critical
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Figure 3.5: Temperature T in the 2-parameter model against the parameter α and the horizon Φh for four
different deformations c, c = 0.1 (lowest surface), 0.4, 0.7 and 1.1 (highest surface) in units where the AdS
length L is set to 1. It reproduces the conformal temperature in the c −→ 0 and large-α limit.

temperature. Thus, we will keep this values in mind for later use. It is important to note that
the amplitude of the trace anomaly is almost constant for a large range of α values and in
good agreement with the lattice computations by Panero in Fig. 3.4(b). Larger values of the
parameter c shift the whole curve along the temperature axis towards higher temperatures but
the shape stays almost the same.

In summary, we have extended in this chapter the prototype AdS/CFT correspondence
to non-conformal metric models that allow for a more complete study of strongly coupled,
non-conformal systems. After introducing an inconsistent deformation (SWT -model), two more
sophisticated metrics were presented which will be used in the next chapters to study other
physical observables. A complete analysis of the systems we have introduced in this chapter
has not been worked out yet in the literature.
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Figure 3.6: Trace anomaly in the 2-parameter model against the temperature in units of Tc and the deformation
α for c = 0.1 GeV2. Higher values of c result in a moderate shift of the whole curve along the T -direction
analogously to the 1-parameter computation in Fig. 3.4(a). The curve with α = 0.31 and c = 0.1 GeV2 is closest
to QCD which is indicated by the black, dashed line. The critical temperature Tc fixed at 176 MeV since the
steepest increase in the trace anomaly occurs at the critical temperature.





Chapter 4
PHYSICAL OBSERVABLES

W ith the help of the three deformed metric models that describe non-conformal physics at
strong coupling and high temperature we are now able to study many physical quantities

which are related to the quark-gluon plasma. The main focus of this and the next chapter is
on the following observables:

1. Energy loss of a trailing string in the 1- and 2-parameter model which has not been
worked out in full detail in the literature.

2. Review of the QQ̄-distance computation (see [75] for further reference) as well as definition
and analysis of a running coupling αQQ̄.

3. Analytic derivation of the screening distance for small perturbations.

By studying the aforementioned observables we will focus on two possible effects: firstly,
there might be evidence for a robust behaviour. This means that switching on non-conformality
results in very small changes for a large range of deformations or even no deviation from
the conformal N = 4T result. We have encountered this in the last chapter when discussing
the trace anomaly in the 2-parameter model. There, the deformations in α and c have not
changed the amplitude of the trace anomaly at all and the curves were only shifted to different
temperature regimes.

Secondly, there might be a systematic change detectable in one particular direction. In the
case of the shear viscosity over entropy density ratio η/s, Kovtun, Starinets and Son observed
in [72, 164] that the conformal value in N = 4T ,

η

s
=

1

4π
, (4.1)

is a universal lower bound for a large class of gauge theories with a dual gravitational theory.
To be more precise, η/s is exactly 1/(4π) in all theories we study in this thesis and increases if
higher corrections are included. Evidence for a similar bound has been found in a previous
paper [75] where we studied the maximal distance Lmax of a QQ̄-pair. Unfortunately, this
computation could only be done numerically. We conjectured that this maximum distance
Lmax – also called screening distance – is bounded from below by the value in N = 4T

(LπT )N=4T
max ≈ 0.86912 , (4.2)

49



50 Chapter 4 — Physical Observables

for a large class of gauge theories with a dual gravitational description. Here, (LπT )N=4T
max is

just the corresponding dimensionless quantity to LN=4T
max which plays the rôle of a universal

number. That this conjecture can be verified analytically at least for small perturbations
around the conformal solution will be derived in Chap. 5.

Before we start with the derivation of the energy loss of uniformly moving quark – which
is often written in terms of a drag force – it is necessary to review a particular property of
the consistent metric models. The scalar Φ can be interpreted in two different ways. If it is
just an additional scalar of the theory without any special properties, the particular model is
said to be in the Einstein frame. If the scalar Φ is the dilaton which has some neat features
important in string theory, the metric has to be transformed into the string frame in order
to study non-thermodynamic observables appropriately. The differences between these two
different theories and their relation will be worked out in the next section.

4.1 Einstein- and String Frame

In Sec. 3.2 we have started with a derivation of a consistent metric by using the 5D-Einstein–
Hilbert-scalar action,

SEHs =
1

16πG
(5)
N

∫
d5x
√

G

(
R− 1

2

(
∂Φ)2 − V (Φ)

)
. (4.3)

without any explanations. We have used the basic Einstein–Hilbert action that was solved by
the AdS5 metric in Sec. 2.1.1 and implemented a further scalar Φ along with a potential V (Φ).
However, in string theory, implementing a particular background scalar field usually called
dilaton field is something well-known. It has some interesting properties, e. g. the constant
mode of the dilaton Φ0 determines the string coupling constant gs by

gs = eΦ0 , (4.4)

and it violates Weyl invariance classically. In the low-energy limit of our five-dimensional
theory – where we are always located – an effective action can be derived which is given by

Ss =
1

16πG
(5)
N

∫
d5x
√

Gs e 2Φ5

(
Rs + 4

(
∂Φ5)2 − V s(Φ5)

)
, (4.5)

where Gs is the determinant of the space-time metric Gs
αβ , Φ5 is the five-dimensional dilaton

field, Rs the Ricci scalar derived from Gs
αβ , and V

s(Φ5) the dilaton potential. The term e 2Φ5

in front of the brackets in (4.5) is crucial and represents the coupling of the dilaton to the
metric and other fields. The formulation in (4.5) is called string frame action and is reflected
by the superscript ‘s’ in (4.5).

Equation (4.5) can also be used to derive the metricGs
αβ in the background of a scalar dilaton

field by making use of the variational principle. However, the dilaton coupling term e−2Φ5

complicates the derivation of the metric. Therefore, we use a conformal scaling transformation
of the metric in order to simplify the action. By using

Gs
αβ = e 2ΩGE

αβ , (4.6)
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where GE
αβ denotes the space-time metric in the transformed frame, we can relate the scalar

curvatures in the two frames by

e 2ΩRs = RE − (D − 1)(D − 2) ∂αΩ ∂αΩ− 2(D − 1)∇2Ω . (4.7)

Here, D = 5 is the dimension and ∇2 is defined by 1√
GE

∂α
√

GE ∂α. Thus, the first part of
(4.5) transforms as∫

d5x
√

Gs e 2Φ5 Rs =

∫
d5x
√

GE e 3Ω−2Φ5 e 2ΩRs

=

∫
d5x
√

GE

[
RE − 12(∂αΩ)2

]
, with Ω =

2

3
Φ5 . (4.8)

By choosing Ω = 2
3 Φ5 the ∇2Ω contribution of the rescaled Ricci scalar drops out. Thus the

string frame action (4.5) reduces to the action SE in the so-called Einstein frame which can be
written as:

Ss[Gs
αβ, Rs, V s] =

1

16πG
(5)
N

∫
d5x
√

Gs e 2Φ5

(
Rs + 4

(
∂Φ5)2 − V s(Φ5)

)
=

1

16πG
(5)
N

∫
d5x
√

GE

(
RE − 4

3
(∂Φ5)2 − V E(Φ5)

)
= SE[GE

αβ, RE, V E] .

(4.9)

The corresponding metric GE
αβ = e

4
3

Φ5 Gs
αβ is then called Einstein-frame metric and the

potentials are related by

V s = V E e
4
3

Φ5 . (4.10)

The Einstein frame action in (4.9) is already very similar to (4.3) which we used in the last
chapter. In a last step we make use of a renormalisation of the scalar dilaton Φ5 of the form

Φ5 ≡
√

3

8
Φ , (4.11)

and absorb the cosmological constant 2Λ into the dilaton potential in order to derive the
explicit expression in (4.3).

But, why do we discuss both frames in great detail if they are equivalent nonetheless? A
problem arises when we go beyond the analysis of thermodynamic observables. In the following
sections we do not study the empty deformed AdS5 space-time but implement a macroscopic
string that is connected to the boundary at z = 0 and is hanging into the 5th-dimension. A
sketch of this configuration is shown in Fig. 4.2. This allows for studying the energy loss of a
moving heavy parton at the boundary and a similar configuration is needed to analyse the
screening distance of a quark-antiquark pair. In both cases this macroscopic string is governed
by a Nambu–Goto action SNG

SNG =
1

2πα′

∫
dσdτ

√
det gs

ab , with gs
ab = Gs

αβ ∂aX
α ∂bX

β ,

=
1

2πα′

∫
dσdτ e

4
3

Φ5

√
det gE

ab , with gE
ab = GE

αβ ∂aX
α ∂bX

β , (4.12)
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that can be written in Einstein- and string frame as well. It is a two-dimensional generalisation
of the action governing the motion of the relativistic point particle. Thus, extremising
(4.12) is easier using the string frame metric. Altogether, the procedure of computing non-
thermodynamic observables in a dilatonic theory is the following: derivation of the space-time
metric GE

αβ in Einstein frame, transformation into string frame and computation of the
extremised Nambu–Goto action.

In principle, it is possible to add a scalar field in the Einstein–Hilbert action without
identifying it with the dilaton. It is then just an additional scalar in the theory. This led to
some confusion in the literature since theories including a scalar which is not the dilaton are
often called Einstein frame models whereas models with a dilaton are denoted by string frame
models, although they are not equivalent but represent a totally different theory. In these
Einstein frame models the dilaton is trivial.

In the following we will study both theories. In the model with a non-dilatonic scalar the
Einstein and string frame metric are identical. Thus, we use the Einstein frame action in order
to derive the (Einstein-frame) space-time metric that obeys the equation

GE
αβ = Gs

αβ , (4.13)

since the dilaton is trivial. This result can be used to extremise the Nambu–Goto action in
the string frame. If we are interested in a dilatonic model we compute the Einstein metric as
well which is identical to the metric in the other approach but then transform this metric into

the string frame via Gs
αβ = e

√
2
3

Φ
GE
αβ which can then be used to extremise the Nambu–Goto

action in the string frame. In order to conform with the conventions in the literature we
will refer to the scalar model as an Einstein-frame setup and to the dilaton approach as a
string-frame setup, respectively. Keeping these formal remarks in mind we proceed now with
the computation of several physical quantities in all our models, i. e. SWT -, 1-parameter (string
and Einstein frame) and 2-parameter model (string and Einstein frame).

4.2 Energy Loss of a Moving Quark

In this section we study the energy loss of a uniformly moving quark with velocity v or rapidity
η in a non-conformal background at strong coupling and finite temperature. The analysis
in a conformal background at finite temperature and in the SWT -model is well-known and
can be found in [165–168] and [73], respectively. The investigation in a general, large class of
non-conformal models has not been worked out yet and is the main task of this section. It will
be very interesting to see if one of the above-mentioned behaviours (robustness or universal
change) arise in the computation of the energy loss. In addition to this, studying energy loss
of moving particles in strongly coupled plasmas is also very interesting from a practical point
of view.

RHIC and LHC data exhibit strong quenching of single-hadron spectra connected with large
energy loss in dense, strongly coupled plasmas [169]. However, a full theoretical description of
the essential interactions occurring when a heavy, fast parton traverses the plasma is missing.
The whole process is sketched in Fig. 4.1. Theorists have a good understanding of how the fast
partons get produced due to the large momentum transfer that allows for a precise perturbative
description (see 1 in Fig. 4.1). In the case of the fragmentation process that leads to the
large amount of hadrons observed in the jets at the end, one has several well-developed
approaches although the interactions are non-perturbative (see 3 in Fig. 4.1). Unfortunately,
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Figure 4.1: Schematic picture of the different stages two high energy partons experience on their way through
the plasma including in-medium energy loss effects causing jet quenching in the end.

for the in-medium energy loss one has relevant contributions from interactions at different
coupling scales [170–173] (see 2 in Fig. 4.1). In principle, one can distinguish between elastic,
collisional energy loss ∆Ecoll [174–176] and radiative energy loss ∆Erad [177–180] which is
an inelastic process due to gluon bremsstrahlung. Furthermore, a distinction between light
and heavy partons [181–183] is important. In the first case, radiative energy loss is the most
important process at high energy1. In the latter case, collisional energy loss is dominant
[174, 175, 184–188]. In addition, there is a suppression of the radiative energy loss due to the
so-called Dead Cone Effect [182, 189] telling us that the radiative energy loss gets suppressed
for angles θ < m/E. Here, θ measures the angle between the parton direction and the emitted
gluon.

In the context of gauge/gravity dualities – according to Fadafan & al. [190] – two strategies
are available to tackle this in-medium energy loss. The first approach – we pursue in the
following – assumes that the initial production of hard probes that traverse the plasma is
perturbative. The interactions responsible for the energy loss are then treated to be non-
perturbatively strong at all scales [190]. This is a reasonable ansatz since at low and high

1The Coulomb contribution for the collisional energy loss is weak. For heavy quarks Compton scattering
is getting more and more important which leads to a shift in the dominant energy loss process towards the
collisional contribution
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energies interactions with the plasma occur that involve small momentum transfers which
have to be described non-perturbatively. Furthermore, this system that includes only non-
perturbatively strong interactions at all scales can be perfectly described by the AdS/CFT
correspondence. Within this framework we can compute for example the energy loss dE/dt of a
heavy parton at constant velocity traversing the plasma which is equivalent to the computation
of the external force required to pull the parton through the plasma at a constant velocity v
[74, 165, 167]. This can be worked out in the gravity dual by focusing on a macroscopic string
(bulk analog of the quark in the field theory) that trails behind the quark. This is sketched
in Fig. 4.2. It is important to note that in the conformal computation it was argued that
the force which is needed to keep the quark moving is proportional to the quark momentum
[165], meaning that energy loss occurs via drag. This discussion will be extended in chapter 6
to non-uniformly moving particles when the energy loss of a rotating quark will be analysed
which is very interesting since acceleration/deceleration opens the possibility of additional
mechanisms of parton energy loss. In the regime of a very fast rotating quark for example we
think of the energy loss to be as if the quark radiates in vacuum.

In the other approach that have been mentioned by Fadafan & al. [190] one uses light-like
Wilson loops [191] that incorporate the non-perturbative properties of the strongly coupled
medium. These quantities can then be evaluated via gauge/gravity dualities [124, 192] in order
to obtain for example the jet quenching parameter q̂. This computation is, however, valid
in the regime of very energetic partons only, where the dominant energy loss mechanism is
radiative.

We will focus in the following on the first approach without exception. In the current
setup we will start by reviewing the computational steps that lead to an expression for the
energy loss dE/dt in N = 4 at finite temperature [165] and proceed with a computation of
dE/dt in a large class of metric models with a string configuration given by (3.5) that has not
been worked out before in the literature. The well-defined gravity dual of a heavy, moving
quark in the boundary theory – as we have indicated above – is given by an open macroscopic
string hanging into the bulk that is connected to the boundary, extremising a classical action
of the two-dimensional worldsheet. With worldsheet we denote the two-dimensional surface
spanned by a direction along the string and the time coordinate [165, 168]. The basic setup is
illustrated in Fig. 4.2. The action governing the motion of the string is the above-mentioned
Nambu–Goto action SNG that is given by

SNG =
1

2πα′

∫
dσdτ

√
det gab , with gab = Gαβ ∂aX

α ∂bX
β , (4.14)

where gab is the induced or worldsheet metric, Xα are the space-time coordinates and α′ is the
Regge slope which is a string theory parameter related to the string tension Ts = (2πα′)−1 and
to the string length ls =

√
α′. The coordinates τ and σ parameterise the worldsheet described

by the string.
It is noteworthy that a macroscopic string should in principle influence the background

metric Gαβ which we have derived with the help of the Einstein–Hilbert-(scalar) action without
considering any macroscopic string. Per se, one has to add the Nambu–Goto action of (4.14)
to the full Einstein–Hilbert-(scalar) action in (4.9) and solve the full system for the space-
time metric. This is a very tough task, however. The influence of the Nambu–Goto action
– which is called back-reaction – is a first order effect and can be neglected in our approach.
Besides, a similar argumentation leads to the suppression of flavour. The Nf flavour degrees of
freedom which can be represented in the dual gravity theory by flavour branes are strongly
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Figure 4.2: Schematic picture of a quark moving at constant velocity through a hot plasma including the dual
gravity scenario of a trailing string dragging behind the quark. zc in the bulk denotes the point where the
string velocity exceeds the local speed of light.

suppressed in the large-Nc limit. In particular, this means that we take the so-called probe
limit, Nf � Nc [51, 193]. This is an effect of the large-Nc limit and going beyond cannot be
achieved without increasing difficulty dramatically. Up to now, some frameworks are available
where the supergravity solution is known beyond the probe limit [57, 129, 194]. This limit is
also well-known in the lattice literature where it is called quenched approximation. The full
dynamics of the glue and its effect on the fermions is included, but the back-reaction of the
fermions on the glue is dropped. In the probe limit this approximation becomes exact.

The last assumption we include in the following analysis of the energy loss is the property
of having infinitely massive partons. They are therefore located on a D3 brane at the z = 0
boundary. Putting the partons into the bulk at a certain position zm is equivalent to shifting
the D3 brane into the bulk to a new position zm. This corresponds to a finite quark mass M of

M =

√
λ

2π zm
. (4.15)

M can be computed with the help of the free energy which we will derive in Sec. 4.3.2.
Including finite mass is in principle possible, but there are more sophisticated models where
higher-dimensional branes are included in order to describe flavour and mass. In addition to
this, infinite and finite mass differ only slightly in the observables analysed in the next sections.
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After the remarks on the physical background of this computation let us come back to the
evaluation of the Nambu–Goto action in the limit of infinitely heavy quarks and suppression
of flavour. Since the argument in the Nambu–Goto action (4.14) is the Lagrange density
L ≡ √ g we can use classical Euler–Lagrange mechanics to solve for the equations of motion.
The derivation of the energy loss of a trailing string can thus be divided into four parts:

1. Choose an appropriate parameterisation of the string worldsheet. This means that the
embedding Xµ(τ, σ) has to be defined.

2. Derive the Euler–Lagrange equation of the Nambu–Goto action.

3. Use appropriate boundary conditions to derive the string configuration.

4. The energy loss or drag force of a trailing string is then given by the momentum flux on
the worldsheet of the trailing string along the 5th-dimensional direction,

dp(3)

dt
=

δSNG

δ∂σx3

∣∣∣∣
trailing string

. (4.16)

As we will see below, the right-hand side of (4.16) is a conserved quantity on the worldsheet.
According to Fig. 4.2 we think of the quark to be moving along the x3-direction with

velocity v. The parameterisation of the worldsheet in the convenient static gauge is given by

Xα ≡
(
t = τ, 0, 0, x3(τ, σ), z = σ

)
, with x3(τ, σ) = vτ + ξ(σ) . (4.17)

We present this computation for the general metric ansatz given in Sec. 3.2.1 that is quoted
here for simplicity

ds2 = e2A(z)
(
h(z)dt2 + d~x 2

)
+ e2B(z) dz2

h(z)
. (4.18)

By substituting (4.17) and (4.18) into (4.14) and taking the square root of the negative
determinant we obtain the Lagrange density L:

L ≡
[
e4A(z) h(z) ξ′ 2(z)− e2A(z)+2B(z)

h(z)

(
v2 − h(z)2

)]1/2

, (4.19)

where ′ denotes a derivation ∂
∂z . Due to the ξ-independence of (4.19) the Euler–Lagrange

equation reduces to

∂L
∂ξ′

= const. ⇐⇒ e4A(z) h ξ
′

L = const. ≡ q . (4.20)

Furthermore, we find a relation between the constant q and the definition of the drag in (4.16):

dp(3)

dt
=

δSNG

δ∂σx3

∣∣∣∣
trailing string

=
1

2πα′
∂L
∂ξ′

=
1

2πα′
q , (4.21)

where we used ∂σx
3 = ξ′ according to our parameterisation. Thus, we just have to fix

the conserved canonical momentum q in order to get the energy loss of a moving quark.
Unfortunately, the only given boundary condition is the vanishing of ξ(z) at the boundary
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(z = 0) which is not useful at this stage of the computation. However, by solving (4.20) for ξ′

we can extract a reality condition:

ξ′ =
q

h(z)

[
e2B(z)−2A(z) v2 − h(z)

q2 − e4A(z) h(z)

]1/2

. (4.22)

The negative root has to be chosen in order to have a string trailing behind the quark. Since
ξ′ has to be real for all values of z in order to give a physically meaningful interpretation
of a string hanging into the bulk, the numerator and the denominator have to change signs
simultaneously. This leads to the existence of a point in z-direction which we denote by zc and
which has to fulfil the following conditions

v2 = h(zc) , and q = e2A(zc)
√
h(zc) = e2A(zc) v . (4.23)

zc has a very remarkable property. It defines a so-called worldsheet horizon since the ττ -
component of the induced metric vanishes at this point. In addition to this, the velocity of the
string at this point reaches the local speed of light in the bulk. A derivation of these important
facts is given in Appendix C. This means that there is a causal disconnection between the
string above and below this point. We will discuss the physical effects of this value in the
later part of this section and in Chapter 6, where a similar point arises in the discussion of
rotating quarks. By integrating (4.22) and implementing the condition ξ(0) = 0 as well as
(4.23) that relates q and v we can numerically solve for the explicit string configuration. Results
of this computation are shown in Fig. 4.3, where we plot the string configuration of a trailing
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Figure 4.3: String configuration of a trailing string for the conformal N = 4 case and in the 1-parameter
(Einstein frame) model for fixed velocity v = 0.2 and fixed temperature T = 1. The coloured dots represent the
critical point z = zc. For sake of clarity the results of the other models are neglected since the results are very
similar.

string in N = 4 and in the 1-parameter (Einstein frame) model for fixed velocity v = 0.2 and
fixed temperature T = 1. Analogous to the computation of thermodynamic quantities we
compute all the observables in arbitrary units. If one observable assumes certain dimensions
all other related quantities are fixed as well. ξ(z) is identical to the x3 coordinate for time
τ = 0 (see (4.17)). All curves reach their corresponding horizon asymptotically. Although
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the temperature is the same for all curves the horizon is different due to the φ-dependence in
the temperature function in (3.44). A nice fact to note is the robustness of this model. For
the given temperature T = 1 in Fig. 4.3 the maximal deformation (φmax = 8.6) deviates only
about 20% from the conformal result. The existence of a maximal deformation is a particular
property of the consistent models. As we have seen in Figs. 3.2 and 3.5 both models have a
minimal temperature Tmin for every value of the deformation, or conversely, each temperature
can be related to a maximal deformation φmax. The coloured dots represent the point where
the upper and lower part of the string are causally disconnected because the velocity of the
string exceeds the local speed of light. This point exists in all our models. We do not show
results for the other models because the shape of the string configuration is almost identical.

In the simple N = 4 case at finite temperature Gubser & al. found in [195] an analytic
expression of the string configuration that reads

x3(t, z) = vt+ ξ(z, zh, v) ,

with ξ(z, zh, v) =
i v zh

4

(
log

[
z + izh

z − izh

]
+ i log

[
z + zh

z − zh

])
. (4.24)

In the other more advanced models we have to use a numerical integration method in order to
solve (4.22) for ξ(z).

By using (4.21) and (4.23) we obtain the following expression for the energy loss of a
moving quark at constant velocity

dp(3)

dt
=

1

2πα′
q =

√
λ

2πL2
e2A(zc) v . (4.25)

Here, the general relation L4 = λα′ 2 has been used.2 zc in (4.25) can be replaced by v with
the help of a numerical routine using (4.23).

In the context of conformal AdS5 at finite temperature the drag force can be written as

dp(3)

dt
=

π
√
λ

2
T 2 v√

1− v2
=

π
√
λ

2
T 2 p

(3)

m
, (4.26)

where the proportionality with respect to the momentum is obvious. The results for the 1-
and 2-parameter models are shown in Figs. 4.5 and 4.7, Figs. 4.4 and 4.6, respectively. Fig. 4.4
shows the ratio of the drag force in the 2-parameter model in the Einstein frame and the
corresponding conformal result for two fixed temperatures T , T = 0.3 (lower surface) and 1
(upper surface). Four important facts can be extracted from this plot:

1. The higher the temperature T the more robust is the drag force when a deformation is
switched on. This is clear because high T is closer to the undeformed case due to the
suppression of other effects.

2. In the limit of vanishing deformation (α→∞ and c→ 0) we reach the N = 4 limit.

3. The excluded parameter regime (close to α = 0) for a given fixed temperature is larger
for lower temperatures since for a given choice of parameters only temperatures T with

2These relations have been derived for the particular gauge/gravity correspondence of N = 4 and AdS5. It
is not fully understood whether these fundamental relations change if the AdS5 space-time gets deformed.
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Figure 4.4: Ratio of the drag force in the Einstein frame of the 2-parameter model to the corresponding
conformal result against the two deformation parameters α and c for two different fixed temperatures T , T = 0.3
and 1. The smaller the temperature, the earlier occurs the decrease. This means that T = 1 is the upper
surface and T = 0.3 the lower one.

T > Tmin are allowed. Here, a larger deformation (α −→ 0 and/or c −→∞) leads to a
higher minimal temperature Tmin and thus the drag force is not well-defined for a fixed
temperature close to α = 0 because the temperature we want to adjust is below the
minimal temperature for this choice of parameters.

4. The drag force in the 2-parameter (Einstein frame) model is bounded from above by
the conformal values. This is an indication for a general behaviour of the drag force.
Unfortunately, the string frame computation (see Fig. 4.5) suggests a different behaviour.

As already indicated above, the drag force computations in the string frame of the 1- and
2-parameter model – see Fig. 4.5 for the 2-parameter results – show a different behaviour than
the corresponding Einstein-frame computations. In this setup the drag force is larger than
the N = 4 computation for all values of the deformation. Similar results are shown for the
1-parameter model in Fig. 4.6. There, both frames are shown in one figure.

Although the results do not strongly deviate from the conformal result in a physically
meaningful regime around α = 0.31 and c = 0.1 GeV2, suggesting a robust behaviour, we can
find certain limits where the drag force in the 1- or 2-parameter case is very different from the
conformal result. To visualise this fact, we plot in Fig. 4.6 and 4.7 the ratio of the drag force
in the respective model and the corresponding conformal value for the minimal temperature
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Figure 4.5: Drag force in the string frame of the 2-parameter model against the deformation parameters α and
c for three different fixed temperatures T , T = 0.3 (highest surface), 0.5 and 1 (lowest surface). The smaller
the temperature the earlier occurs the increase. Due to the large numerical effort and some minor technical
subtleties therein we could not generate arbitrarily smooth surfaces.

Tmin of each parameter choice. These plots show the maximal deviation of the drag force from
the conformal result for the given choice of deformation parameters since for a given choice of
deformation parameters a temperature T > Tmin would immediately lead to a more conformal
result. The reason for this is the following: higher temperatures lead to the suppression of the
deformation and in the limit T −→∞ all the results are conformal again. Thus the strongest
influence of the deformation happens at the minimal temperature Tmin. Several interesting
facts can be extracted from Figs. 4.6 and 4.7:

1. In the case of the 1-parameter model (Fig. 4.6) the strongest deviation from the conformal
result is bounded from below in the Einstein frame and from above in the string frame.
In particular, in the Einstein frame we have a very robust behaviour.

2. A higher velocity v of the moving quark leads to a more conformal behaviour. In the
1-parameter model this effect is remarkably strong in the string frame case. But it is not
only valid in the 1-parameter case. In Fig. 4.7 where the most strongly deviating drag
force is shown in both frames of the 2-parameter model we observe the same behaviour.
In Fig. 4.7(a) higher surfaces correspond to higher velocities and in Fig. 4.7(b) lower
surfaces correspond to higher velocities.

3. In the 2-parameter case we find a peculiar behaviour of the most strongly deviating drag
force. For more and more conformal values the strongest deviation goes either to zero
(Einstein frame) or to infinity (string frame). This can be explained in the following
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Figure 4.6: Ratio of the most strongly deviating drag force in the 1-parameter model to the conformal result
against the corresponding deformation parameter φ for three different velocities v, v = 0.2, 0.6 and 0.99. The
three lower curves represent the Einstein- and the upper curves the string frame. The strongest deviation from
N = 4 occurs at the minimal temperature Tmin for a given deformation φ.

way: if we go to smaller and smaller deformation parameters (closer to the conformal
limit) we note a strong decrease in the minimal temperature Tmin. This decrease is more
dominant than the loss of non-conformality by taking the conformal limit. Thus, since
a smaller temperature intensifies the effect of a given deformation, we see a stronger
deviation from the conformal result.

In summary, we can state that the analysis of the drag force shows in each of the different
models a consistent, systematic behaviour when a deformation is introduced and that for
physically meaningful parameters only a small deviation from the conformal limit is observed.
This is called a robust behaviour in the literature. However, we do not see a universal increase
or decrease in the drag force for all models under investigation as it has been observed in the
case of the screening distance in [75].

In the next section, we review the computational steps in the analysis of the quark-antiquark
distance needed to derive a very interesting quantity that has not been calculated at all with
the help of holographic methods in non-conformal theories. We focus on the running coupling
αQQ̄ derived from the free energy of a quark-antiquark pair. There we hope to gain some
additional insights about common properties of all our models. That this is indeed quite likely
has been indicated in the analysis of thermodynamic properties in Chapter 3 as well as in the
previous discussion of energy loss; in both cases a very robust behaviour is apparent. From the
thermodynamic analysis in Chapter 3 we have learned for example that these models share
many properties (e. g. the amplitude of the trace anomaly).
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(a) Ratio of the most strongly deviating drag force in the Einstein frame of the
2-parameter model to the corresponding conformal value against the deformation
parameters α and c. The lowest surface is for v = 0.2, the middle one for v = 0.6,
and the highest surface for v = 0.99.

(b) Ratio of the most strongly deviating drag force in the string frame of the
2-parameter model to the corresponding conformal value against the deformation
parameters α and c for four different velocities v, v = 0.2 (highest surface), 0.6,
0.8 and 0.99 (lowest surface).

Figure 4.7: Ratio of the most strongly deviating drag force of the 2-parameter model to the corresponding
conformal value against the deformation parameters.
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4.3 Running Coupling αQQ̄

In this section we want to discuss the running coupling αQQ̄ in deformed AdS-models that
correspond to non-conformal, strongly coupled plasmas at high temperature. This quantity
can be derived with the help of the computation of the quark-antiquark distance L and the
corresponding free energy F . αQQ̄ is very important for the understanding of interactions
between quarks and gluons in confined and deconfined phases of these theories.

On quite general grounds it is expected, that fundamental forces between quarks and gluons
get modified at finite temperature. In particular the forces between static quarks are very
sensitive to changes in the plasma because the gluons, which mediate the interaction between
the static quarks, also interact with the constituents – N2

c − 1 different types of gluons due to
the SU(Nc) – of the thermal bath. We expect that above the deconfinement temperature Tc

the free energy is exponentially screened at large distances (L� T 1). This can be understood
in leading order perturbation theory due to the generation of a chromoelectric Debye mass.
However, beyond leading order, all the different screening effects cannot be disentangled.

On the other hand, knowledge about the short and intermediate distances of static quark-
antiquark pairs is required in order to understand the peculiar properties of hot and dense
matter generated at the LHC and RHIC.

Unfortunately, the computation of the running coupling αQQ̄ at all length scales is very
complicated and most progress has been achieved in the context of lattice simulations [147, 196–
200] where the following definition of the running coupling is widely used:

αQQ̄(L) ≡ 3

4
L2 dV (L)

dL
or αQQ̄(L, T ) ≡ 3

4
L2 dF (L, T )

dL
. (4.27)

Here, V denotes the potential at zero temperature, F the free energy if the analysed model
exhibits a temperature T , and L is the distance between the quark-antiquark pair. The factor
of 3/4 is the Casimir factor of QCD. This formula for αQQ̄ measures the deviation of the
potential or the free energy from a pure coulombic behaviour where the running coupling
would be a constant. Unfortunately, this definition has some caveats. In the case of deformed
AdS-models it is questionable whether we can adapt the definition of a running coupling
in (4.27) since the dual gauge theory and in particular its Casimir factor is unknown. In
addition to this, the main and still not fully understood problem concerns the proper value
of the ’t Hooft coupling λ. Gubser proposed in [74] a value of λ = 5.5 by matching the finite
temperature results in N = 4 to lattice results of Kaczmarek & al. in [199, 200] and Cheng &
al. in [147]. Since we are mainly interested in the qualitative behaviour and only briefly focus
on quantitative agreement with QCD in Sec. 4.3.5 we leave the value of the ’t Hooft coupling
undetermined for the moment.

A necessary ingredient for this analysis is the computation of the quark-antiquark distance
L (Sec. 4.3.1) and of the free energy F (Sec. 4.3.2). Many important results concerning
quark-antiquark distances and free energies have been worked out in [75, 76] and, thus in the
next sections, we will review only the main expressions which are necessary in order to study
the running coupling.

Then, in Chapter 5 we will have a closer look at the screening distance Lmax. This
observable has the remarkable property that Lmax evaluated in N = 4 is a lower bound for
the screening distance in all non-conformal models. This has been studied numerically in our
previous work [75, 76] and will be investigated analytically for small perturbations around the
conformal limit.
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4.3.1 QQ̄-Distance L

The computation of the free energy F and the QQ̄-distance is well-posed in the framework
of the AdS/CFT correspondence. As presented in the seminal work of Maldacena [47, 201]
expectation values of rectangular Wilson loops – which provide gauge invariant information
about the physics in non-abelian Yang–Mills theories – can be computed in the dual gravitational
theory. More precisely it was argued that these expectation values correspond to the area
of a macroscopic string worldsheet on the string theory side whose boundary is the loop in
question. This has been derived with the help of the basic formula in AdS/CFT given in (2.3).
The Wilson loop operator can be written as

〈W (C)〉 = e i T F (L) , with W (C) = TrP exp

[
i

∮
C

dxµA
µ(x)

]
, (4.28)

where C denotes a closed loop in space-time and the trace is over the fundamental representation.
Aµ(x) ≡ Aµa(x)T a is the vector potential and can be expressed in terms of the generators T a

of the corresponding representation. Finally, P denotes the path ordering. In the large-T
limit the free energy F and the quark-antiquark distance L can be extracted. The particular
shape of the Wilson loop is illustrated in Fig. 4.8. The properties of the medium, e. g. the
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Figure 4.8: Shape of a rectangular Wilson loop. The quark-antiquark pair is aligned along the x1-direction.

temperature T , enter into (4.28) via the expectation value 〈. . . 〉. This becomes more obvious
on the gravity side. Maldacena showed in [201] that the expectation value of the Wilson loop
is given by

〈W (C)〉 ∝ e iS , (4.29)
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where S is the extremal action of a macroscopic, fundamental string worldsheet bounded by
the loop C at the boundary of the (deformed) AdS space-time. This setup is shown in Fig. 4.9.
The dynamics of the strings is governed by the same Nambu–Goto action SNG that we have

boundary field theory
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string

Q

zc

z x1

t

Q̄

2-dimensional 
worldsheet

L/2−L/2 0

Figure 4.9: Sketch of a quark-antiquark pair at the boundary with the connecting string hanging into the bulk.
The lowest point of the string in z-direction is denoted by zc.

encountered in (4.14). We just have to adjust the parameterisation of the string worldsheet
and the appropriate boundary conditions. As we will see in the following this Nambu–Goto
action contains a contribution from the mass of the quarks and is therefore infinite since we
assume infinitely heavy quarks. After subtracting this contribution we end up with a finite
result given by

〈W (C)〉 ∝ e i(S−Smass) , with S ≡ SNG =
1

2πα′

∫
dσdτ

√
det gab ,

and gab = Gαβ ∂aX
α ∂bX

β . (4.30)

gab is again the induced metric that describes the particular worldsheet of our problem. Smass

will be computed in Sec. 4.3.2. Therefore, finding the free energy of a quark-antiquark pair is
equivalent to finding the extremal area of a classical string worldsheet. Within this computation
the QQ̄-distance can be obtained as a byproduct.

We will derive the QQ̄-distance for our general metric ansatz. Because of the fact that
the quark-antiquark distance will be discussed in detail in Chapter 5 we will concentrate on
the free energy more intensively in this section. A detailed computation of the QQ̄-distance
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and the free energy in N = 4T and the SWT -model can be found in [73, 124], however, a
computation in the consistently deformed models has not been worked out so far. We use the
metric of (3.25) which we quote here for convenience:

ds2 = e2A(z)
(
h(z)dt2 + d~x 2

)
+ e2B(z) dz2

h(z)
. (4.31)

The parameterisation, also visualised in Fig. 4.9 is given by

Xµ ≡
(
t = τ, σ, 0, 0, z = z(σ)

)
, and σ ∈

[ L

2
,
L

2

]
, (4.32)

which is even simpler than in the trailing string setup (4.17) since we are dealing with a
static configuration. Furthermore, we can make use of a mirror symmetry at σ = 0. We thus
have to compute the string configuration only from σ = 0 to L/2 and take the result twice.
Nevertheless certain boundary conditions for the endpoints of the string at the boundary have
to be imposed because the differential equation is non-linear and first order in derivatives:

z

(
L

2

)
≡ 0 ,

z′(0) ≡ zc , (4.33)

where ′ denotes a derivative with respect to ∂
∂σ . The second equation in (4.33) will be used

to replace a free parameter of the problem by zc which is the minimum value of the string in
z-direction. By using (4.30), (4.31) and (4.32) we can compute the induced metric gab leading
to the following explicit expression of the Nambu–Goto action

S =
T

2πα′

L/2∫
L/2

dσL =
T

2πα′

L/2∫
L/2

dσ

[
h(z)e2A

(
e2A +

e2B

h(z)
z′ 2
)]1/2

, (4.34)

where T is the time in the lab frame that is obtained by the dτ integration and drops out of
the computation when the free energy F = S/T is concerned. However, one should not forget
that the large-T limit ensures the possibility to extract the free energy and the QQ̄-distance
out of the vacuum expectation value of the rectangular Wilson loop. Since the Lagrangian is
independent of σ we have a conserved Hamiltonian given by

H(z) ≡ L(z)− ∂L(z)

∂z′
z′ =

h(z)e2A(z)

L(z)
= q , (4.35)

with q denoting a constant. We can now use the second condition of (4.33) in order to replace
q by an expression in terms of zc:

H(zc) =
√
h(zc) e4A(zc) . (4.36)

The last computational step is to solve (4.35) together with (4.36) for z′ which leads to

z′ =

√
h(z) e2A(z)

h(zc) e2B(z)+4A(zc)

(
h(z) e4A(z) − h(zc) e4A(zc)

)
. (4.37)
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The quark-antiquark distance given by LπT in dimensionless units, where π is multiplied just
for convenience, can now be derived very easily by stating

LπT = 2πT

L/2∫
0

dσ = 2πT

L/2∫
0

dz

z′
= 2πT

zc∫
0

dz

√
h(zc) e2B(z)+4A(zc)−2A(z)

h(z)2 e4A(z) − h(z)h(zc) e4A(zc)
. (4.38)

In (4.38) we have used the above-mentioned symmetry so that we just have to integrate half
the way, as well as a coordinate transformation between σ and z. In Fig. 4.10 the string
configurations are shown in the N = 4T case for three different QQ̄-distances LπT , LπT = 0.48
(red), 0.7 (blue) and (LπT )max = 0.869 (black). Apart from the screening distance (LπT )max

Figure 4.10: String configurations in N = 4 for three different QQ̄-distances LπT , LπT = 0.48 (red), 0.6 (blue)
and (LπT )max = 0.869 (black). The lower string configurations are unstable as a consequence of a higher free
energy (see below).

all values of the quark-antiquark distance in Fig. 4.10 have two configurations: an unstable
configuration closer to the horizon and a shorter, stable one. It is noteworthy that the unstable
configurations do not touch the horizon for any choice of the parameters. Furthermore, a very
interesting universal property arises when studying the screening distance in deformed metric
models. With screening distance we denote the maximal QQ̄-distance Lmax. We showed in
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[75, 76] numerically that the screening distance in N = 4 is always a lower bound for a large
class of metric models. In Chapter 5 an analysis will be presented where we prove this universal
behaviour analytically for small deviations from the conformal background.

The reason for referring to the lower string configuration as an unstable one is based on
the analysis of the free energy F which can be computed with the help of the Nambu–Goto
action. In addition to this, F is the last quantity required to compute the running coupling.
This will be the task of the next section.

4.3.2 Free Energy F

In principle we just have to substitute the result for z′ in (4.37) into the integral of the
Nambu–Goto action S in (4.34) and evaluate the resulting integral. This is given by

S =
T

2πα′

L/2∫
L/2

dσ

√
h e2A

(
e2A +

e2B

h
z′2
)

=
T
√
λ

πL2
AdS

zc∫
0

dz

√
h e2A

(
e2A

z′2
+

e2B

h

)

=
T
√
λ

πL2
AdS

zc∫
0

dz

√√√√ e2A(z)+2B(z)

1− h(zc)
h(z) e4A(zc)−4A(z)

. (4.39)

Here, α′ has been substituted by α′ = L2
AdS/
√
λ. LAdS appearing in the denominator of (4.39)

is the AdS length that should not to be confused with the QQ̄-distance L.
As we have mentioned above the Nambu–Goto action S in (4.39) does not converge

irrespective of the chosen values of zc since the free energy of the quark-antiquark pair includes
the mass of the quarks which is infinite. This mass can be calculated by considering a string
that is hanging down into the bulk and is connected to a certain point at the boundary.
Thus, we can use our trailing string computation by setting the velocity v equal 0. Then, the
trailing-string Lagrangian (4.19) can be substituted back into the Nambu–Goto action (4.14)
and evaluation at v = 0 leads to

2Smass =
T
√
λ

πL2
AdS

zh∫
0

dz

√
e4A(z) h ξ′ 2 − e2A(z)+2B(z)

h
(v2 − h)

v=0−−−→ T
√
λ

πL2
AdS

zh∫
0

dz eA(z)+B(z) . (4.40)

Here, Smass corresponds to the mass of a quark located at the boundary and the factor of
2 appears since we have to compensate twice the mass of a trailing string in the quark-
antiquark scenario. In the second line of (4.40) we have used the fact that for a hanging string
x3(z) ≡ ξ(z) = 0 giving ∂ξ(z)

∂z = 0 for all z. The final expression for the free energy F – or
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potential V in the zero-temperature case – can be written as

F

T
√
λ

=
S − 2Smass

T
√
λ T

=
1

πT L2
AdS

zc∫
0

√√√√ e2A(z)+2B(z)

1− h(zc)
h(z) e4A(zc)−4A(z)

− eA(z)+B(z)

 dz

− 1

πT L2
AdS

zh∫
zc

eA(z)+B(z) dz . (4.41)

Here, we always consider the dimensionless quantity F/T scaled with the square root of the
’t Hooft coupling. Since all these integrals have to be evaluated numerically, it is not possible to
derive the free energy F in terms of the quark-antiquark distance L analytically. This relation
is the main ingredient for the running coupling defined in (4.27).

4.3.3 Running Coupling in N = 4T

The numerics thus work as follows: for every QQ̄-string configuration parameterised by the
minimal point zc in the bulk we compute LπT (zc) and F (zc)

T
√
λ
. After collecting them in a table

the Interpolation routine of mathematicar is used in order to obtain a functional relation
of the table elements that allows for a derivation with respect to L. A plot of the free energy
in the conformal N = 4 case is shown in Fig. 4.11. This figure suggests to think of the black
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Figure 4.11: Free energy F√
λT

against the quark-antiquark distance LπT in the conformal N = 4 case. The
upper (blue) branch represents the unstable string configuration and the lower (black) branch the stable one.

branch as the stable string configuration due to the lower free energy which corresponds to
the upper configuration in Fig. 4.10. Furthermore, the curve exhibits a coulombic shape for
small separation distances of the two quarks but deviates from this form close to the cusp.
This deviation will be measured as a function of the distance L and will be called the running
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coupling αQQ̄:

αQQ̄(L) ≡ 3

4
L2 dV (L)

dL
or αQQ̄(L, T ) ≡ 3

4
L2 dF (L, T )

dL
. (4.42)

There are different approaches known in the lattice community [147, 196–200] but we compare
at the end of this section with lattice results by Kaczmarek & al. [196, 197] and thus focus on
their conventions.

For sake of completeness we start with a brief discussion of the running coupling results for
the conformal case with and without temperature. This will lead to a good understanding of
many features the running coupling exhibits. In section 4.3.4 we try to apply these techniques
to the deformed AdS-models.

The basic computation of the potential V and the QQ̄-distance L in N = 4 at zero
temperature has been known for a long time [201] and the final relation is given by

V (L) =
4π2
√
λ

Γ4
(

1
4

)
L
. (4.43)

A short calculation reveals that the running coupling in N = 4 is given by

αN=4
QQ̄ =

3π2
√
λ

Γ4
(

1
4

) , (4.44)

which is constant. This is obvious, since N = 4 is a conformal theory where the coupling has
to be constant.

In the case of N = 4T we see a different behaviour. Although the energy-momentum
tensor remains traceless by construction of the temperature (see Sec. 2.2.1) we break the
scale invariance since zh defines a length scale in the system. In order to understand the
consequences we recall the necessary expressions needed to derive the running coupling αQQ̄ in
finite temperature N = 4 at strong coupling. Although a functional relation like in (4.43) is
not available Avramis & al. found in [202, 203] analytic expressions for F and L given by

L(zc, zh) =
2
√
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√
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)
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,
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4
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− 2 2F1

(
3

4
,
3

2
,
5

4
,
z4

c

z4
h

)]
, (4.45)

where 2F1(. . . ) denotes the hypergeometric function.
By using the numerical routine mentioned above we end up with Fig. 4.12 for the running

coupling at zero and finite temperature for several values of T , T = 0, 2Tc, 3Tc and 4Tc. Here
we have resubstituted dimensions to the temperature T and have fixed the critical temperature
Tc to be Tc = 176 MeV that we have taken from recent computation using particle ratios at
RHIC in [145]. Although N = 4T has no critical temperature this decrease of the running
coupling as shown in Fig. 4.12 will reappear when we focus on non-conformal models. There
the definition of Tc is meaningful as we have observed in the computation of the trace anomaly
in Sec. 3.1.2. Thus, in order to estimate the influence of temperature in the deformed models
we work with the same temperature definitions already in N = 4T . As we have expected from
our previous considerations the running coupling in N = 4T deviates from a constant due to
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Figure 4.12: Running coupling αQQ̄ against the QQ̄-distance L in N = 4 at zero and finite temperature T ,
T = 0, 2Tc, 3Tc and 4Tc. The ’t Hooft coupling remains undetermined. The constant line represents the value
of (4.44).

the appearance of temperature. It is noteworthy that the deviation from a constant appears at
a length scale L ∼ T 1 at which the corresponding temperature becomes important.

The fact that a decrease in the running coupling arises in general is obvious due to our
discussion at the begin of this section where we argued that gluonic interactions with the
plasma become more and more important at higher temperatures leading to a screening of
the heavy, static quarks. In order to apply these results to heavy-ion collisions at the LHC we
have at least three problems:

’t Hooft coupling In all the holographic models we are working in this thesis the ’t Hooft
coupling λ is not specified. Gubser proposed a value of 5.5 by comparing N = 4T with
QCD. A derivation of λ from first principles is, however, not possible.

Casimir factor We lose knowledge about the properties of the gauge theory when a de-
formation is included. Thus, the Casimir factor remains unknown in all our deformed
models.

TSYM = TQFT It is not clear that the temperature of the supersymmetric Yang–Mills model
is identical to the QCD temperature. This can be seen by comparing the energy density in
2-flavor QCD from perturbation theory and N = 4T . The T 4-proportionality – suggesting
a measure for the degrees of freedom – is by a factor of three larger in N = 4T than the
corresponding QCD value [74].

Studying the running coupling in the case of non-conformal models within a holographic
approach has not been done so far. This will be the task of the next section. Two question



72 Chapter 4 — Physical Observables

serve as a guideline through the subsequent analysis:

1. Does the running coupling show a universal behaviour for arbitrarily chosen values of
the deformation parameters?

2. Is there a regime of deformations mimicking QCD lattice results obtained by Kaczmarek
& al. [196–199]?

4.3.4 Running Coupling in Non-Conformal Models

Since all the necessary computations have been done in the previous sections we can start by
plotting the running coupling αSWT

QQ̄
of the SWT -model in Fig. 4.13 for five temperatures T in

terms of the critical temperature Tc ≈ 176 MeV, T/Tc = 1, 1.1, 1.4, 2 and 4. Recall that the
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Figure 4.13: Running coupling αSWT

QQ̄
in the SWT -model at finite temperature T in terms of the critical

temperature Tc ≈ 176 MeV, T/Tc = 1, 1.1, 1.4, 2 and 4 against the QQ̄-distance L. The deformation is fixed at
the value c = 0.127 GeV2. The ’t Hooft coupling remains undetermined.

definition of a critical temperature was reasonable in this model. We adjusted the value of the
deformation c in a way the the increase of the trace anomaly in Fig. 3.1(a) matches with the
critical temperature Tc = 176 MeV. We identified c = 0.127 GeV2 as the deformation leading
to the most QCD-like SWT -model in Sec. 3.1.2. Before we start with a quantitative analysis
in the consistently deformed models we need to understand the different curves in Fig. 4.13
qualitatively.

The overall scaling of all curves can be adjusted by a particular choice of the ’t Hooft
coupling

√
λ. However, for the moment the ’t Hooft coupling remains undetermined in Fig. 4.13

because only qualitative properties are relevant.
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The most remarkable fact observable in Fig. 4.13 is the universal increase of the running
coupling until a maximum is reached. This rise of the coupling for intermediate distances
Lint – with 0 < Lint < T 1 – is in agreement with lattice QCD computations probing a
regime above Tc where confinement is still valid. There, the quark-antiquark pair feels a
Cornell-type potential like in QCD in the confined phase in vacuum. This reflects the influence
of the non-conformality in our models and is a strong hint that introducing deformations is an
appropriate way to mimic QCD observables. However, one has to keep in mind that our models
are not asymptotically free since the coupling reaches a constant for vanishing QQ̄-distances
whereas the QCD coupling αs vanishes. In the study of 1- and 2-parameter models we obtain
the same universal behaviour for all deformations, e. g. in Fig. 4.16 for the 2-parameter model.

The fact that the running coupling reaches a maximum can be explained as follows. The
decrease is a consequence of temperature as we have noticed already in Fig. 4.12. This
is sufficient to understand the shape of the black, blue, red and green curves in Fig. 4.13.
Furthermore, high temperature leads to more and more conformal models even in highly
deformed metrics as we have seen in previous chapters. The effective influence of the deformation
is thus weaker at high-T and all these curves tend to looks like N = 4T . This nicely explains
the shape of the brown curve in Fig. 4.13.

Let us focus in the following on the maximum value of each curve. The shift along the
L-coordinate is due to temperature and can be quantified by plotting the running coupling
αSWT

QQ̄
against the QQ̄-distance for a fixed temperature and several values of the dimensionless

deformation c/T 2, c/T 2 = 0, 1, 2, 3 and 4, in Fig. 4.14. The amplitude of the maximum is
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Figure 4.14: Running coupling αQQ̄ in the SWT -model against the QQ̄-distance L at a fixed temperature T
and several values of the deformation in dimensionless units c/T 2, c/T 2 = 0, 1, 2, 3 and 4.

defined by the amount of deformation in agreement with our expectations since the rise of the
coupling is in general a consequence of non-conformality. However, it is rather remarkable that
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even for high deformations the QQ̄-distance Lmax of the maximum is almost stationary. A
possible explanation is the dominance of temperature. The influence of the deformation on the
shift of the L-value at the maximum is weak in comparison to temperature.

Although in Fig. 4.13 and 4.14 only SWT results are shown, the behaviour in 1- and
2-parameter models is identical.

The last thing we want to discuss concerns the different length scales that have appeared
in the ongoing discussion. Four different length scales can be distinguished:

LS The endpoint of each curve in the Figs. 4.13 and 4.14 is the maximal distance LS of each
quark-antiquark pair for a given temperature T and deformation c. This point has been
denoted by screening distance in the last section.

Lmax The value of L at which the curve of our holographic computations reaches a maximum
in the running coupling defines the length scale Lmax.

LLat
max Analogous to Lmax a value of L at which αQQ̄ reaches a maximum can be defined in

lattice QCD computations. This point is denoted by LLat
max.

LD In the literature the screening length LD is used extensively as the appropriate length
scale where screening sets in. It is defined as the inverse Debye mass extracted from
exponential fits to the free energy at large quark-antiquark distances L. Since the free
energy F in our holographic description has a sharp cut-off at finite L, this length scale
cannot be obtained via this simple application of the AdS/CFT correspondence.

In Fig. 4.13 LS and Lmax coincide at lower temperatures. This remains true in the more
sophisticated non-conformal metric models. In order to reveal the relation of LS and Lmax to
a lattice QCD computation of LLat

max we plot in Fig. 4.15 LLat
max together with LSWT

S and LSWT
max

for the most QCD-like deformation c = 0.127 GeV2. The lattice curve has been taken from
[197] and satisfies LLat

max(T ) = 0.48Tc/T . In particular, at small and very large temperatures all
length scales coincide. Furthermore, it is important to note that the lattice curve is above the
screening distance curve of the SWT -model. Thus our bound – that the screening distance in
N = 4T is a minimum for a large class of models – is satisfied for QCD-like theories. This nice
agreement of the length scales is even more remarkable due to the independence of the ’t Hooft
coupling λ and the Casimir factor. In the discussion of the maximum of the running coupling
we have left the ’t Hooft coupling undetermined. It is just a scale factor in the αQQ̄. The same
is true for the unknown Casimir factors of the dual gauge theory of the deformed AdS models.
This means, that the two length scales (the screening distance as well as the maximum of the
coupling) are independent of the free parameters providing us with an excellent observable
to compare our models to QCD-like theories. This leads us to the last task of this chapter
dealing with the following question:

Is it possible to find an appropriate value of our deformations in the
2-parameter model in order to mimic QCD?

4.3.5 Mimicking QCD?

Gubser & al. tried in [61, 62] to fix the dilaton potential and a specific deformation in order
to approximate as much QCD thermodynamic observables as they can. Furthermore, they
proposed a value of the ’t Hooft coupling λ = 5.5 in the analysis of the running coupling in
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Figure 4.15: Different length scales against temperature T in units of Tc = 176 MeV. The black solid curve
represents LLat

max(T ) extracted from lattice QCD [197].

N = 4T in [74] leading to models that incorporate many properties of QCD. The problem
of the first approach is that they only studied thermodynamic observables which seem to be
quite robust with respect to a large class of deformations. An observable that is much more
sensitive to changes in the deformation seems to be more interesting. The second approach is
insufficient since only conformal N = 4T is under investigation which is getting closer to QCD
only at large temperatures. That is why we follow a mixed approach.

The running coupling αQQ̄ is on one hand very sensitive to changes in the deformation
whereas on the other hand the absolute value is sensitive to free parameters like the ’t Hooft
coupling. Thus, αQQ̄ is an excellent observable to test whether we can get closer to QCD by
choosing appropriate deformations.

Before proceeding with the results, we briefly focus on the problem of a proper temperature
comparison between QCD and N = 4T . In the previous chapters we compared N = 4 with
deformed models at fixed temperature. In order to be consistent we use the same approach
in the following but want to note that Gubser suggested an alternative way [74]. In order
to mimic QCD he compared QCD and N = 4T at fixed energy density rather than fixed
temperature. This suggestion is not without its own problems, but the resulting comparison
scheme has some physical motivation which would lead to far beyond the current discussion.

Now, after applying our numerical method to the 2-parameter model and adjusting the
values in order to get a reasonable fit we end up with the results in Fig. 4.16, where the running
coupling α2p

QQ̄
in the 2-parameter model is plotted against temperature with Tc = 176 MeV,

α = 0.5, c = 0.3 GeV2 and λ = 5.5. The points represent lattice data taken from Kaczmarek
& al. [197]. For small temperatures above Tc the first two maxima of the lattice calculations
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Figure 4.16: Running coupling αQQ̄ in the 2-parameter model against the QQ̄-distance L for three different
temperatures T/Tc, T/Tc = 1.05, 1.5 and 3. The deformation is fixed at α = 0.5, c = 0.3 GeV2. The ’t Hooft
coupling is given by λ = 5.5.

can be reproduced within 10%. However, at higher T , α2p
QQ̄

decreases faster. This strong
dependence on the temperature has also been found in the SWT -model and we can state that
it emerges from the c/T 2 behaviour. A change in temperature leads to a quadratic change
in the dimensionless ratio c/T 2 which is the ratio that appears in all our expressions. A last
thing to note is that we found λ to be 5.5 which is in very good agreement with the results of
Gubser.

Although the best fit is within the preferred deformation parameter regime that we had
fixed in the analysis of thermodynamic quantities, this model cannot reproduce a very sensitive
QCD observable like the running coupling to high accuracy. To improve this, we suggest a
change in how the deformation is introduced in the 2-parameter model. The metric function
A(z) where the c deformation enters has the following form

A(z) =
1

2
log

(
L2

z2

)
− 1

2
cz2 . (4.46)

We now use a different metric function for the whole computation in order to come closer to
QCD. The new metric function Ã(z) can be written as:

Ã(z) =
1

2
log

(
L2

z2

)
− 1

2
c̃z , (4.47)

where we just have turned the quadratic deformation cz2 into a linear one of the form c̃z. This
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Figure 4.17: Running coupling αQQ̄ in the linear deformed 2-parameter model against the QQ̄-distance L for
four different temperatures T/Tc, T/Tc = 1.05, 1.5, 3 and 6. The deformation is fixed at α̃ = 0.8, c̃ = 1.2 GeV.
The ’t Hooft coupling is given by λ = 0.39.

new approach of A(z) can now be used in order to compute the other metric functions as well
as a new running coupling which is shown in Fig. 4.17 for α̃ = 0.8, c̃ = 1.2 GeV and λ̃ = 0.39.
This plot now nicely resembles QCD lattice data over a large range of temperatures. However,
a quadratic deformation has many advantages, e. g. the possibility to obtain Regge trajectories
of the lowest lying mesons [60]. The fact that a linear combination of c̃ and z is required to
improve the plot will be discussed in the next section.

4.3.6 Different Length Scales

The main task of this subsection – which also leads to an explanation why a linear deformation
improves the comparison to QCD – is to find the appropriate length scale in our holographic
description that can be compared to LLat

max which is the most important length scale in the
lattice data. We have learned in Fig. 4.15 that LLat

max ∝ T 1. In Fig. 4.16 – where we studied
the normal 2-parameter model – we saw a stronger decrease of L2p

max than the lattice results
would suggest.

To quantify this result we compare in Fig. 4.18 the different length scales we can extract
from the running coupling as a function of the temperature. Since the differences between our
holographic models are in principle very small we take the values from the SWT -model for
simplicity. In Fig. 4.18 we can see that the screening distance (blue, dashed curve) LSWT

S is the
best length scale to compare with the LLat

max. Although there are small deviations at smaller
temperatures because in this regime the deformation dominates temperature, we find a nearly
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for a certain deformation c, c = 0.127 GeV2 in the SWT -model.

perfect 1/T behaviour at high T . This is a consequence of the small distance between the
horizon zh and the boundary at z = 0 at large T which restricts the expansion of the string
into the bulk. Thus, the screening distance is exclusively determined by the temperature. This
agrees nicely with the shape of the dashed blue line in Fig. 4.18.

Surprisingly, our values of LSWT
max do not show any 1/T shape and – as we have seen in the

2-parameter case in Fig. 4.16 – are not in a good agreement with the lattice data. This is
visualised by the dashed red line. Even more surprising is the fact that this quantity presents
a rather good 1/T 2 behaviour as indicated by the dotted green line. It seems that LSWT

max is
not fully determined by temperature but enjoys a large dependence on the deformation. That
makes sense since the rise of the coupling is a consequence of the deformation only. Thus,
choosing a deformation with linear dependence on the 5th-dimension z would lead to the
dimensionless ratio c̃/T rather than c/T 2 which is the only way how the deformation appears
in almost all equations we have encountered in this analysis. This leads to a 1/T -dependence
L2p,Lin

max as observed in Fig. 4.17. Besides, the screening distance in this linearly-deformed model
is also very robust since this quantity still scales with temperature in the high-T regime and
is only weakly depending on the deformation in this regime. This nicely explains the good
agreement in Fig. 4.17.

Finally, a third length scale was mentioned by Kaczmarek & al. in [197]. There the authors
try to compute the non-perturbative screening mass mD(T ) by using the following ansatz

F (L, T ) ' 4

3

α(T )

L
e mD(T )L , (4.48)
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to perform a best-fit analysis. As we have mentioned above, such a computation is not possible
in our holographic approaches because the computation stops close to the point where the
exponential drop-off sets in. For holographic theories the best approach to obtain the Debye
mass was proposed by Bak, Karch and Yaffe in [204]. They used an analysis of the complete
IIB supergravity spectrum on the AdS black-hole background and identified the mass of the
lightest supergravity mode that can be sourced by the strings with the Debye mass mD. Such
a computation is unfortunately not possible in deformed AdS models since we are not aware
of the full spectrum. A full derivation of the screening length is thus still beyond the current
state of the AdS/CFT correspondence. Other promising approaches how to implement meson
melting in a holographic setup have been worked out by Peeters & al. in [205–209].

Let us pause for a moment and recall the main progress we have made in the current
chapter. We started with the rather simple calculation of the drag force that measures the
energy loss due to drag of a uniformly moving particle through a strongly coupled plasma. In
each of the different models we found a consistent, systematic behaviour when a deformation
is introduced, however, a general change in one particular direction independent of the studied
model could not be observed. This is in contrast to the screening distance measuring the
largest possible distance of a QQ̄-pair in our holographic setup.3 That this quantity is a lower
bound for a large class of theories has been shown numerically in a previous paper [75, 76] and
will be discussed analytically in the next chapter.

The second part of this chapter has dealt with the analysis of the running coupling αQQ̄.
Several remarkable facts have been observed for the first time:

1. The computation of a running coupling αQQ̄ in deformed AdS models reveals many
features that are known for non-conformal, strongly coupled nonabelian gauge theories
like QCD. The main properties are the rising of the coupling for intermediate distances
of the QQ̄ pair, the development of a maximum for larger distances and a sharp decrease
afterwards.

2. These properties are universal for all models we have studied, irrespective of the particular
embedding of the dilaton.

3. The running coupling is an excellent quantity to check the possibility of mimicking QCD
since it is very sensitive to changes in the deformation parameters and temperature but
remains simple in arithmetical details.

4. A certain model linear in the deformation (c̃z) is suitable to mimic QCD for a large
temperature range.

5. Furthermore, all the length scales we have encountered were below the corresponding
QCD value. This is in particular true for the N = 4T value of the screening distance
(LπT )S = 0.86912 that has been conjectured to be a lower bound for a large class of
non-conformal theories. Furthermore the screening distance (LπT )S is the appropriate
length scale to compare with the lattice QCD length scale (LπT )Lat

max used in this chapter.

The last statement will be investigated in the subsequent chapter. Although an extensive
numerical study in [75, 76] has indicated that the screening distance in N = 4T is a lower bound

3Above the distance L where our QQ̄-computation breaks down a more sophisticated approach has to be
worked out. In this regime we can only argue that a simple connection of the quark and the antiquark via a
single string is not reliable anymore.
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for a large class of nonconformal theories an analytic verification is still missing. To overcome
this problem an analysis of slightly non-conformal theories with only a small deformation will
be done with the help of linearised Einstein equations. Finally, in Chap. 6 we will focus on the
energy loss of rotating quarks which is a quantity strongly correlated to the drag force.



Chapter 5
SCREENING-DISTANCE CONJECTURE

I n this chapter we will focus entirely on the quark-antiquark distance L and in particular on
its maximum value LS called screening distance. In 1998 Maldacena developed a formalism

in [201] to study the free energy F and the binding distance L of a static QQ̄-pair in the N = 4
SYM theory at zero temperature by evaluating vacuum expectation values of rectangular
Wegner-Wilson loops with the help of the AdS/CFT correspondence. On the gravity side
this corresponds to extremising the worldsheet area that connects the two boundary quarks
via the Nambu–Goto action SNG. This procedure has been reviewed in Sec. 4.3.1. Liu &
al. in [124] extended this computation to N = 4 at finite temperature1 and included two
kinematic parameters, i. e. the rapidity η of the quark-antiquark pair with respect to the
surrounding plasma and an orientation angle θ of the QQ̄-pair with respect to the direction of
the velocity. In a last step Liu & al. introduced, in [73], deformations of the SWT -type in order
to study non-conformal metric models. This discussion has been systematically extended in
our work [75, 76] to consistent deformations. There we found evidence for a universal increase
of the screening distance LS when a deformation is introduced. This led to the so-called
screening-distance conjecture stating that the screening distance in N = 4T ,

(LπT )N=4T
S = 0.86912 , (5.1)

is a lower bound for a large class of deformed, non-conformal theories. Here and in the following
sections we always compute the dimensionless quark-antiquark distance LπT where the factor
of π is included just for convenience. Currently, much effort is spend to include finite chemical
potential µ and test the conjecture in this regime as well [77].

Unfortunately, the screening-distance conjecture could not be verified for all deformations
since the corresponding equations (see (4.38)) are only solvable numerically except for the
conformal N = 4 scenario at finite and zero temperature. The explicit, analytic solution in
N = 4T is given by (4.45). In this chapter the task is now

to prove analytically that the screening distance LS for small perturbations
around N = 4T is bounded from below by the corresponding conformal value.

1The solutions in N = 4 at finite temperature will often be denoted as ‘conformal’ solutions for convenience
although conformality is broken by introducing temperature as we have seen in the last chapter in the analysis
of the running coupling.
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This analysis is restricted to static (η = 0) quark-antiquark pairs at finite temperature T and
zero chemical potential (µ = 0) in order to simplify the equations as much as possible. The
subsequent analysis can then be divided into two parts:

1. By studying the expressions for the QQ̄-distance in the SWT -model we expand the
integral in (4.38) to 1st-order and try to solve the result analytically. There the question
occurs whether we should rely on consistently deformed gravity theories only. An
affirmative answer cannot be given in general since already the full SWT -model violates
the conjectured bound for negative values of the deformation parameter c as it was
shown in [75]. Nevertheless, this discussion is very helpful in order to understand the
general procedure of how to compute the linearised contribution to the maximum of the
QQ̄-distance.

2. By expanding the full Einstein equations derived from the Einstein–Hilbert-scalar action
EEHs in Sec. 3.2 to linear order along with a general, appropriate choice of the metric we
compute an integral for the QQ̄-distance for small perturbations around the conformal
solution. This allows for an analytic proof of our conjecture.

In the following section we focus on the study of the screening distance LS in the SWT -model
and try to prove analytically that small negative values of the deformation parameter c, c < 0,
lead to a decrease of LS at first order.

5.1 QQ̄-Distance for Small Deformations in the SWT -Model

From numerical studies in [75] we have learned that the SWT -model shows a universal increase
of the screening distance for the physically meaningful regime of c > 0. We found this range of
parameters appropriate due to the good agreement of thermodynamic quantities with lattice
simulations (see Sec. 3.1.2). For negative values of c this bound is violated. This behaviour had
been expected because it is not a consistent implementation of non-conformality as the metric
is not a solution to Einstein equations. This particular property should be reproducible by
expanding the integral to 1st-order in the deformation, where we try to derive a linear correction
to the conformal value. We hope to find an analytic solution to the integrals describing the
QQ̄-distance and gain some insights how this task can be accomplished in the consistent cases.

Let us recall the general form of the QQ̄-distance for a general metric ansatz in the string
frame given by (4.31):

LπT = 2πT

L/2∫
0

dσ = 2πT

zc∫
0

dz

√
h(zc) e2B(z)+4A(zc)−2A(z)

h(z)2 e4A(z) − h(z)h(zc) e4A(zc)
, (5.2)
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This leads to the following expression in the case of the conformal AdS5-BH (see (2.33)) model:

A(z) = B(z) = logL− log z , h(z, zh) = 1− z4

z4
h

, T (zh) =
1

π zh
,

(Lπ T )N=4T [yc] = 2π T (zh)

zc∫
0

dz

√
z4(z4

h − z4
c )

(z4
c − z4) (z4

h − z4)
=

yc∫
0

dy
2y2
√

1− y4
c√

1− y4
√
y4

c − y4

=
(2π)3/2 yc

Γ
(

1
4

)2 √
1− y4

c · 2F1

(
1

2
,
3

4
,
5

4
, y4

c

)
. (5.3)

In the first line we used the substitution y = z/zh and 2F1

(
·, ·, ·, ·

)
denotes the hypergeometric

function.
The SWT -metric as it is written in (3.3) is formulated in the Einstein frame, but (5.2)

requires the metric functions (A, B and h) given in the string frame. The transformation
between these two frames is not very difficult and has been worked out by Kajantie & al. in
[64]. The string frame metric of the SWT -model is given by

ds2 =
L2

z2
e

29
20
c z2

(
h(z, zh) dt2 + d~x 2 +

dz2

h(z, zh)

)
,

with h(z, zh) = 1− z4

z4
h

. (5.4)

Only the coefficient in the exponential of the deformation has changed due to the assumption
that the dilaton in this model is quadratic in z. With (5.4) in our hand the expression for the
QQ̄-distance can be expanded to first order in c:

(Lπ T )SWT
[yc] =

yc∫
0

dy
2y2

√
y4

c − 1√
y4 − 1

[
y4 (y4

c − 1)− ek (y4 − 1) y4
c

]−1/2

=

yc∫
0

dy
2y2
√

1− y4
c√

1− y4
√
y4

c − y4︸ ︷︷ ︸
(LπT )N=4T

−c
yc∫

0

dy
29 y2 y4

c

√
1− y4

√
1− y4

c

10π2(y2 + y2
c )
√
y4

c − y4
. (5.5)

with k = 29
10π2y2

c
. The first term is the quark-antiquark distance of the conformal N = 4T case.

For sake of simplicity we have used the above-mentioned substitution y = z/zh right from
the beginning. After some massage we end up with the following expression for the 1st-order
correction of the QQ̄-distance in the SWT -model

(Lπ T )SWT

1st [yc] = c
y3

c

√
1− y4

c

4π5/2
√

2

[
Γ

(
1

4

)
Γ

(
3

4

)(
(3 y4

c − 1) 2F1

(
1

4
,
1

2
,
1

4
, y4

c

)

− 2(y4
c − 1) 2F1

(
1

4
,
3

2
,
1

4
, y4

c

))
+ Γ

(
1

4

)2
(

3 2F1

(
3

4
,
1

2
,

1

4
, y4

c

)

+ (4 + 3y4
c ) 2F1

(
1

4
,
1

2
,
3

4
, y4

c

))]
. (5.6)
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Figure 5.1: 1st-order correction of the QQ̄-distance against the maximal extension yc in the bulk given in
dimensionless coordinates yc = zc

zh
. yc = 1 is the location of the horizon.

Eq. (5.6) divided by c is plotted in Fig. 5.1 and agrees with the expectation we had at the
beginning of this section. The endpoint of the curve is precisely the location of the horizon
z = zh which is given by yc = 1 in dimensionless coordinates. The full screening distance is
now the maximum value of the sum of the first-order contribution (5.6) and the conformal
result (5.3). The 1st-order contribution is positive for positive values of c leading to an overall
increase of the screening distance with respect to the conformal result. Analogously, negative
values of c lead to a decrease of the screening distance disrespecting the bound as we have
expected.

In the case of consistently deformed metric models (1- or 2-parameter scenario) the
expression for the 1st-order correction in the deformation parameters cannot be calculated
analytically. Thus, we want to follow a different path in the next section. We use the most
general ansatz given by (3.25) satisfying the symmetry conditions expressed in Sec. 3.2.1 and
linearise the Einstein equations in order to derive particular metric functions for A, B and h
that allow for an analytic solution of the quark-antiquark distance.

5.2 Linearised Einstein-Equations Approach

The procedure in this section is as follows: we derive linearised Einstein equations by making
use of our general 5D Einstein–Hilbert-scalar action (3.12). With the help of these, an analysis
of small perturbations around the conformal AdS5-BH solution will be done. The metric
perturbation – denoted by hαβ with α, β ∈ {t, ~x, z} – obeys the same symmetry conditions
as the full metric since we do not want to break the Poincaré invariance. By specifying a
particular ansatz for the metric functions we find solutions for A, B and h with which we are
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able to compute an analytic expression for the QQ̄-distance.
First, let us recapitulate the unperturbed N = 4T metric solution that is given by

G0
αβ ≡ diag

(
L2

z2
h(z, zh),

L2

z2
,
L2

z2
,
L2

z2
,

L2

z2 h(z, zh)

)
, with h(z, zh) = 1− z4

zh
, (5.7)

which extremises the 5D Einstein–Hilbert action SEH

SEH =
1

16πG
(5)
N

∫
d5x
√

G
(
R− 2Λ

)
, Λ =

6

L2
. (5.8)

In order to distinguish the conformal metric G0
αβ from the perturbed ones below, we add the

superscript/subscript ‘0’ to all unperturbed quantities.2 In general, a perturbation of this
metric should satisfy the equations of motion derived from the 5D Einstein–Hilbert-scalar
action SEHs (3.12) – written in Einstein frame – since these define the overall background we
are interested in:

SEHs =
1

16πG
(5)
N

∫
d5x
√

G

(
R− 1

2

(
∂Φ)2 − V (Φ)

)
. (5.9)

The full Einstein equations derived from this equation are the starting point for our further
analysis and are given by

Eαβ ≡ Gαβ − Tαβ = 0 ,

�LB Φ = V ′(Φ)

with Gαβ ≡ Rαβ −
1

2
RGαβ ,

and Tαβ ≡
1

2
∂αΦ∂βΦ− 1

4
Gαβ(∂Φ)2 − 1

2
GαβV (Φ) . (5.10)

Here, the Laplace–Beltrami operator can be written as

�LBΦ = ∇α∇αΦ =
1√
G
∂α

(√
GGαβ∂βΦ

)
, (5.11)

where G denotes the determinant of Gαβ. We are now interested in small perturbations
around the conformal AdS5 metric denoted by G0

αβ and want to derive a system of linearised
differential equations from (5.10) that determine the perturbations. Thus, a decomposition of
Gαβ of the form

Gαβ ≡ G0
αβ + hαβ , |hαβ| � 1 , (5.12)

is a convenient way to proceed. Eq. (5.12) can now be substituted into (5.10) and will be
evaluated to first order in hαβ . In order to do so we have to specify the linearised form of the
Christoffel symbols δΓγαβ, the Riemann tensor δRρασβ, the Ricci tensor δRαβ and the Ricci
scalar δR.

2The index ‘0’ will be used as a subscript and superscript depending on the best position in the considered
quantity.
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By substituting (5.12) into the definition of the Christoffel symbols we end up with the
following expression

Γγαβ ≡
1

2
Gγη

(
∂βGαη + ∂αGβη − ∂ηGαβ

)
, with Gαβ = Gαβ0 − hαβ

=
1

2
Gγη0

(
∂βG

0
αη + ∂αG

0
βη − ∂ηG0

αβ

)
+ δΓγαβ

≡
(
Γγαβ

)
0

+ δΓγαβ , (5.13)

with the variation of the Christoffel symbols δΓγαβ given by

δΓγαβ =
1

2
Gγη

(
∇βhαη +∇αhβη −∇ηhαβ

)
. (5.14)

In (5.14) the covariant derivative is defined with respect to the unperturbed metric G0
αβ by

∇γhαβ ≡ ∂γhαβ −
(
Γκαγ

)
0
hκβ −

(
Γκβγ

)
0
hακ . (5.15)

In order to express the variation of the Einstein tensor we have to find the perturbed Ricci
tensor δRαβ and Ricci scalar δR. For both quantities the variation of the Riemann tensor
δRρασβ = Rρασβ −

(
Rρασβ

)
0
is required that can be calculated in the following way:

Rρασβ ≡ ∂σΓρβα − ∂βΓρσα + Γρσλ Γλβα − Γρβλ Γλσα , (5.16)

leading to

δRρασβ = ∂σδΓ
ρ
βα − ∂βδΓρσα + δΓρσλ

(
Γλβα

)
0

+
(
Γρσλ

)
0
δΓλβα − δΓρβλ

(
Γλσα)0 −

(
Γρβλ

)
0
δΓλσα

= ∇σ
(
δΓρβα

)
−∇β

(
δΓρσα

)
. (5.17)

In deriving the last line of (5.17) we have used the fact that the variation of the Christoffel
symbols is a difference of two Christoffel symbols that form a tensor. Hence, we can apply the
covariant derivative to this object that can be written as

∇λδΓρβα = ∂λδΓ
ρ
βα +

(
Γρσλ

)
0
δΓσβα −

(
Γσβλ

)
0
δΓρσα −

(
Γσαλ

)
0
δΓρβσ . (5.18)

By use of (5.14) and (5.17) we are able to compute the variation of the Ricci tensor in terms
of the metric perturbation hαβ

δRαβ = δRραρβ = ∇ρ
(
δΓρβα

)
−∇β

(
δΓρρα

)
=

1

2
Gρη0

(
∇ρ∇αhβη +∇ρ∇βhαη −∇ρ∇ηhβα −∇β∇αhρη −∇β∇ρhαη +∇β∇ηhρα

)
=

1

2

(
∇ρ∇αhρβ +∇ρ∇βhρα −∇2hαβ −∇α∇βh

)
, (5.19)

with h ≡ h ηη . The analogous computation is possible for the variation of the Ricci scalar which
reads

δR = δ
(
GαβRαβ

)
= Rαβ δGαβ +Gαβ δRαβ . (5.20)
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In order to linearise (5.10) we have to apply our results to the Einstein tensor Gαβ that is given
by

δGαβ = δRαβ −
1

2
hαβR0 −

1

2
G0
αβ

(
δGµν R0

µν +Gµν0 δRµν
)

=
1

2

(
∇ρ∇α hρβ +∇ρ∇β hρα −∇2 hαβ −∇α∇β h

)
− 1

2
G0
αβ

(
Gµν

1

2

[
∇ρ∇µ hρν +∇ρ∇ν hρµ −∇2 hµν −∇µ∇ν h

])
− 1

2
hαβR0 +

1

2
Gαβ h

µν R0
µν

=
1

2

(
2∇ρ∇(αhβ)ρ −∇2 hαβ −∇α∇β h−G0

αβ

(
∇µ∇ν hµν −∇2 h

)
− hαβR0 +G0

αβ h
µν R0

µν

)
. (5.21)

The vanishing of the last line in (5.21) gives the linearised equations of motion for a 5D
Einstein–Hilbert action without a cosmological constant Λ and any further scalar fields. By
assuming the explicit form of the 5D Einstein–Hilbert action in the unperturbed case in (5.8),
with Λ = 6

L2 being the cosmological constant, we can compute the unperturbed Ricci scalar
R0 and Ricci tensor R0

αβ that are given by

R0 =
20

L2
, (5.22)

and

hαβR0
αβ = hαβ

(
1

2
G0
αβR0 +G0

αβ

6

L2

)
=

4

L2
h . (5.23)

In (5.23) we have used the unperturbed Einstein equations without scalar fields. The contri-
bution of Λ to the linearised equations is covered by the variation of the stress-energy tensor
which will be the next quantity we consider.

The unperturbed stress-energy tensor Tαβ is shown in (5.10). Similar to the metric we can
decompose the full scalar Φ into the constant, unperturbed part Φ0 and the small perturbation
δΦ:

Φ = Φ0 + δΦ . (5.24)

The unperturbed solution is set to zero (Φ0 ≡ 0) since any constant value can be absorbed by
the fields in our action. The stress-energy tensor can thus be written to linear order as

δTαβ =
6

L2
hαβ +

1

2
∂αδΦ ∂βδΦ︸ ︷︷ ︸
O(δΦ2)

−1

4

(
∂δΦ

)2
hαβ︸ ︷︷ ︸

O(δΦ2)

−1

2
hαβ V (δΦ)

=
6

L2
hαβ , (5.25)

where we assume V (δΦ) to be at least quadratic in δΦ since the constant term is the cosmological
constant Λ and a linear one does not arise in general as we have seen in the full metric solution
in Sec. 3.2.
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Finally, we end up with the complete linearised Einstein equations of the 5D-Einstein–
Hilbert-scalar action

0 = 2∇ρ∇(αhβ)ρ −∇α∇β h+G0
αβ

(
∇2 h−∇µ∇ν hµν −

4

L2
h

)
−∇2 hαβ +

8

L2
hαβ ,

∇α∇α δΦ =
1√
G0

∂α
(√

G0Gαβ0 ∂β δΦ
)

=
∂V

∂δΦ
. (5.26)

This system of differential equations has the nice property of being decoupled at first order
which simplifies the computation dramatically.

In the next section we choose a general metric ansatz that we have already used in Sec. 3.2.1
and try to solve (5.26) for hαβ. The scalar equation of motion is not important for the
computation of the screening distance. However, knowledge about the scalar potential V is
important to estimate, inter alia, the stability of the physical solution by evaluating the mass
squared M2

Φ of the scalar.

5.3 Solutions of the Linearised Einstein Equations

With the help of the general, full metric given by

ds2 = e2A(z)
(
h(z)dt2 + d~x 2

)
+ e2B(z) dz2

h(z)
, (5.27)

we are able to extract a 1st-order perturbation which can be substituted into the linearised
Einstein equations. We use the following expansion of the full metric functions around the
conformal AdS5-BH solution

e2A ≈ L2

z2

(
1 + δA(z)

)
,

e2B ≈ L2

z2

(
1 + δB(z)

)
,

h(z) ≈ h0(z) + δh(z) = 1− z4

z4
h

+ δh(z) . (5.28)

In Chapter 3 two boundary conditions were used in order to ensure the consistency of the
model. In the limit z −→ 0 the metric functions should become asymptotically AdS5 and
the horizon function has to reach unity. This translates into conditions for the perturbations
δA(z), δB(z) and δh(z):

δA(0) = δB(0) = δh(0) ≡ 0 . (5.29)

By looking at the full metric we see that there is in principle one last gauge freedom left. We
can use reparameterisation invariance of z in order to gauge the B(z) function away. A possible
choice for a new coordinate z̃ would be

dz̃ =
eB

eA
dz . (5.30)

However, the details of this transformation are given after solving the full Einstein equations.
This is very difficult to ensure in the linearised case since we do not know at this stage whether
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this transformation possesses any singularities or not. Therefore, we use the ungauged solution
including δB(z) for the main part of the computation.

Now, let us turn back to solutions of the linearised Einstein equations. By introducing
a deformation δA(z) and δB(z) we cannot assume that the horizon is still identical to that
in the conformal scenario. There are two ways to derive this fact. Firstly, a look at the full
solution in a numerical study reveals that turning on a deformation immediately leads to a
change in the corresponding horizon. Secondly, we can set δh(z) to zero and check the results
of the linearised Einstein equations. We will do this in Sec. 5.3.1.

But first, let us substitute (5.28) into the full metric (5.27) and collect first order terms.
This calculation leads to

ds2
Lin =

L2

z2

(
1 + δA(z)

)(
−
(
h0(z) + δh(z)

)
dt2 + d~x 2

)
+
L2

z2

(
1 + δB(z)

) dz2

h0(z) + δh(z)

=

(
L2

z2
h0 −

L2

z2
δh− L2

z2
δAh0 −

L2

z2
δA δh︸ ︷︷ ︸
O(δ2)

)
dt2 +

L2

z2

(
1 + δA

)
d~x 2

+

(
L2

z2

1

h0
− L2

z2

δh

h2
0

+
L2

z2

δB

h0
− L2

z2

δBδh

h2
0︸ ︷︷ ︸

O(δ2)

)
dz2

= ds2
AdS5

+
L2

z2

( (
δh+ δAh0

)
dt2 + δAd~x 2

)
+
L2

z2

(
δB

h0
− δh

h2
0

)
dz2 , (5.31)

where ds2
AdS5

is the line element of the conformal AdS5-BH space and second order terms have
been neglected. In addition, we use the following expansion

1

h0 + δh
=

1

h0
− δh

h2
0

+O(δh2) . (5.32)

With the help of (5.31) we can now specify the metric perturbation hαβ

hαβ =


L2

z2 (δh(z) + δA(z)h0(z)) 0 · 11×3 0

0 · 13×1

(
L2

z2 δA(z)
)
· 13×3 0 · 13×1

0 0 · 11×3
L2

z2

(
δB(z)
h0
− δh(z)

h2
0

)
 (5.33)

This can be plugged into the linearised Einstein equations (5.26).
Keeping this in mind we can answer the question whether a small perturbation in A(z)

and B(z) is possible by simultaneously leaving h(z) unchanged. In this case the equations are
very simple. Then, we proceed with the perturbation of all three metric functions and derive
the formulae for the horizon function h(z) and temperature T .

5.3.1 Unperturbed Horizon Solution

In the case of a vanishing horizon perturbation (δh(z) = 0) the line element in (5.31) can be
written as

ds2 = ds2
0 +

L2

z2

(
δAh0 dt2 + δAd~x 2

)
+
L2

z2
δB

dz2

h0
. (5.34)
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By substituting (5.34) into the linearised Einstein equations (5.26) the following system of
second order differential equations can be obtained

z8
h z

2

z4 − z4
h

E00 − z2 z4
h Eii = 4 δA′(z)− δB′(z) = 0

z8
h z

2

z4 − z4
h

E00 + (z6 − z2 z4
h) E44 = δA′(z) + δB′(z) + z δA′′(z) = 0

z2 z4
h Eii + (z6 − z2 z4

h) E44 = (−11 z4 + 3 z4
h) δA′(z)− (z4 − 3 z4

h) δB′(z)

+ 3 z ( z4 + z4
h) δA′′(z) = 0 . (5.35)

Here, Eαα, α = 0, 1, 2, 3, 4 are the diagonal matrix elements of the tensor defined in (5.26) with
Eii, i = 1, 2, 3 being identical due to the global symmetries of the metric. In this particular
case with a unperturbed horizon function h(z) = h0(z) the horizon zh has still its physical
meaning of being related to the temperature T ∼ z 1

h .
This system can be treated exactly by solving the first equation of (5.35) for δB′ and

substituting this into the second equation of (5.35). We end up with

5 δA′(z) + z δA′′(z) = 0 with δB′(z) = 4 δA′(z) , (5.36)

which can now be solved easily by using standard integration techniques

5

z
=
δA′′

δA′
=⇒ 5 log z = log δA′(z) + C

=⇒ δA(z) =
1

4
z−4 C′ + C′′ . (5.37)

The solution for δB is then simply given by

δB = C′ z−4 + C′′′ , (5.38)

where all Cs are integration constants. Finally, we still have to impose our boundary conditions,
meaning that we assume the whole system to approach the conformal limit in the UV. This
corresponds to a vanishing δA and δB for z −→ 0. From (5.37) and (5.38) we conclude that
the deformations do increase dramatically for small values of z in order to cancel possible
fluctuations in the horizon function. This contradicts our general assumption and thus only
the trivial solution

δA = 0 , δB = 0 , (5.39)

is left in accordance with our general consideration at the beginning of this chapter. In the next
paragraph we then start the complete metric in (5.31) and solve for the metric perturbations.

5.3.2 Solutions Including Horizon Perturbations

After substituting the complete perturbed metric (5.31) into the linearised Einstein equations
(5.26) and working out the covariant derivatives and Christoffel symbols we end up with a
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system of second order differential equations that is given by

z8
h z

2

z4 − z4
h

E00 − z2 z4
h Eii = 8 z4 δA′(z) + 2 z4 δB′(z) + z4

h ( 3 δh′(z) + z δh′′(z)) = 0

z8
h z

2

z4 − z4
h

E00 + (z6 − z2 z4
h) E44 = δA′(z) + δB′(z) + z δA′′(z) = 0

z2 z4
h Eii + (z6 − z2 z4

h) E44 = ( 11 z4 + 3 z4
h) δA′(z)− (z4 − 3 z4

h) δB′(z)− 3 z4
hδh
′(z)

− 3z5 δA′′(z) + 3 z z4
h δA

′′(z) + z z4
h δh

′′(z) = 0 . (5.40)

These equations are not algebraically independent which can be seen by subtracting the first
equation of (5.40) from the last ending up with an expression of the second equation. Thus
– analogous to the full, numerical solutions – we specify an ansatz for δA(z) and solve for
the other functions. In order to stay close to the full solutions where an ansatz of the form
A(z) ≈ L2

z2 (1 + cz2) is used we choose

δA(z) = α zk . (5.41)

with k being an arbitrary positive real number and α ∈ R. α should not be confused with the
α given in the 2-parameter model. Both values are completely unrelated. Negative values of
k are not allowed since the perturbation would become dominant in the limit z → 0 where
we expect to recover the conformal result. This ansatz is of course only valid in a linearised
approximation if α zkh is much smaller than 1. It is noteworthy that we cannot argue that
(5.41) is a unique choice. In principle, we have to allow for all kinds of functions that vanish in
the limit z −→ 0 limit. However, a proof for all monomials with positive values of k would be
a satisfying statement.

After substituting (5.41) into the second equation of (5.40) we have to solve the following
equation for δB:

k2 zk−1 α+ δB′(z) = 0 =⇒ δB(z) = k zk α+ C , (5.42)

where the integration constant can be set to zero (C ≡ 0) by using the boundary condition
δB(0) = 0. With this solution for δB we solve the first equation of (5.40) for δh(z) that leads
to

0 = 2 k (4 + k) z3+k α− 3 z4
h δh

′(z) + z z4
h δh

′′(z) , with δh(0) = 0 ,

δh(z) =
2 z4+k α

z4
h

+
1

4
z4 κ . (5.43)

Since we have a second order equation for δh and only one boundary condition, an additional
parameter κ arises that can be absorbed into the new horizon znh which has to obey

h(znh) = 1− z4
nh

z4
h

+ δh(znh) ≡ 0 =⇒ κ =
4
(
z4

h − z4
nh + 2 z4+k

nh α
)

z4
h z

4
nh

h(z, zh, znh, k, α) = 1 +
2 z4+k α

z4
h

+ z4

(
1

z4
nh

− 2 zknh α

z4
h

)
. (5.44)
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Equation (5.44) and the full expression for the other metric functions A and B, are given by

A(z, α, k) =
L2

z2

(
1 + δA(z, α, k)

)
=
L2

z2

(
1 + αzk

)
,

B(z, α, k) =
L2

z2

(
1 + δB(z, α, k)

)
=
L2

z2

(
1− αk zk

)
. (5.45)

These expressions define the metric functions which are required to prove the screening-distance
conjecture in first order.

Altogether, four parameters (α, k, zh, znh) appear in this analysis of small perturbations
around the conformal solution. This seems to be a real mess, but we will find a relation at the
end of this analysis between our primary deformation parameter α and the new horizon znh.
Such a relation has to exist since in the limit of vanishing deformation (α −→ 0) we should
arrive at the conformal AdS5-BH solution. This is the case for δB(z) by looking at (5.42).
However, the horizon function h(z) in (5.44) reduces to

lim
α→0

h(z, zh, znh, k, α) = 1− z4

z4
nh

6= 1− z4

z4
h

. (5.46)

Thus, α is a kind of a primary deformation parameter, since it determines the validity of the
linearisation as well as the deviation of the new horizon znh from the original one zh. This
means that a small value of α, α zkh < 1, is related to a value of znh which has to be even closer
to conformality, znh−zh

zh
� 1, in order to stay within the linearisation. To get a feeling for these

deformations we analyse the horizon function h(z) and the temperature in the following and
try to figure out which parameter ranges are physically meaningful. In Sec. 5.4 we then derive
appropriate relations (5.58) and (5.68) between α and the corresponding most non-conformal,
value of zmax/min

nh in the Einstein and string frame, respectively.
In Fig. 5.2 the horizon function h(z) given by (5.44) is plotted against the 5th-dimensional

coordinate z for a large range of α, 0.4 < α < 0.4 (in arbitrary units) and four different values
of the new horizon znh, znh = 0.8, 0.9, 1 and 1.1. For all choices of parameters we obtain a
horizon function h(z) that fulfils the necessary condition of exhibiting a zero which is the new
horizon znh. In the following computations we set the free parameter zh = 1 since it is just
a rescaling of the other quantities and has no further physical relevance anymore. For the
temperature TLin that is given by the general temperature formula

T = eA(zh)−B(zh) |h′(zh)|
4π

, (5.47)

the new horizon znh is now the dominant length scale and replaces zh but has to be close to
this value because the main deformation parameter α has to be small in general. These values
of znh are not allowed to exceed the ranges of validity set by α as we have mentioned above.
With the full metric functions A, B (5.45) and h (5.44) in our hand we can now compute the
perturbed temperature TLin. The answer can be written as

TLin =

√
1 + zkh α

(
4z4

h − 2k z4+k
nh α

)√
1− k zkh α 4πz4

h znh

,

αzkh�1−−−−→ 1

π znh
+ α

(1 + k)z4+k
h − k z4+k

nh

2π z4
h znh

. (5.48)
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Figure 5.2: Horizon function h(z) for a large range of α values, 0.4 < α < 0.4 (in arbitrary units) and four
different values of the new horizon znh, znh = 0.8 (lowest surface), 0.9, 1 and 1.1 (highest surface). The old
horizon is fixed at zh = 1 and we used k = 2 for simplicity. Other values of k result in similar plots.

The temperature TLin is visualised in Fig. 5.3 for a large range of α values, −0.5 < α < 0.5 (in
arbitrary units) and k = 2. The original horizon is fixed at zh = 1. The transparent surface
located at the back is the small-α expansion and the front surface is the first line in (5.48). For
negative values of α the temperature has the same shape as all our unperturbed, consistent
models (see Figs. 3.2 and 3.5) and assumes a minimal temperature Tmin for all values. For
α = 0 we obtain the conformal result, T = (πznh) 1, and for positive values of α we can find a
horizon znh for every chosen temperature. However, at α > 0.5 for k = 2 the temperature is not
well-defined anymore since the square root in the denominator of (5.48) becomes negative and
our approximation is not valid anymore. This interesting behaviour around α = 0.5 provides
us with a good estimate of where the linearisation finally loses its validity. Remember, that
zh is set to unity, which defines a scale in our model. Thus, we will restrict our analysis to
values of |α| < 0.5 although we always plot in the subsequent figures a slightly larger α-range
for sake of completeness.

The results up to now seem to be very promising and we start in the next two sections (5.4
and 5.4.2) with the derivation of an analytic solution of the QQ̄-distance for small perturbations
around the conformal solution.

5.4 Linearised QQ̄-Distance LLin

In the following computationsA, B and h always refer to the linearised metric functions
specified in (5.45) and (5.44). By using the general expression for the QQ̄-distance given in
(4.38) we can write down a formula of the quark-antiquark distance in the perturbed metric
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Figure 5.3: Temperature TLin (top surface) and small α-approximation (back surface) against znh for a large
range of α values, 0.5 < α < 0.5 (in arbitrary units) and k = 2. The old horizon is fixed at zh = 1. For large
positive values of α the root in the denominator of (5.48) becomes negative which indicates a breakdown of the
linearised theory.

scenario. Furthermore, our computation is only valid to linear order in the perturbation which
is measured by the parameter α. Hence, we use a Taylor expansion of the integrand in α
around α = 0 in order to obtain the 1st-order correction to the conformal quark-antiquark
distance. (LπT )Lin can then be written as

(LπT )Lin = (LπT )N=4 + α

zc∫
0

dz I +O
(
α2
)
, (5.49)

with

I =
z2

znh

√
z4

nh − z4
c

(z4
c − z4) (z4

nh − z4)

[
(1 + k) zkh +

1

(z4 − z4
c ) z4

h (z4 − z4
nh) (z4

c − z4
nh)

·
(
− 2z8+k

c (z4 − z4
nh)2 − (z4 − z4

c )z4+k
nh

(
kz4z4

c −
(
(2 + k)z4

+ (k − 2)z4
c

)
z4

nh + kz8
nh

)
+ 2z4+k (z4

c − z4
nh)
(
z4 (z4

c − z4
nh)− 2z4

cz
4
nh

))
+

1

(z4 − z4
c ) z4

nh

(
2z4+k

c (z4 − z4
nh) + zk

(
(3 + k)z4

cz
4
nh

− z4
(
2z4

c + (1 + k)z4
nh

)))]
. (5.50)
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The nice fact about (5.49) is the possibility to integrate this analytically for all values of k.
The primitive of the linearised part can be found very easily although it is quite lengthy. It is
given in full detail in Appendix D.

By inserting the integration limits some problems occur. The primitive at the lower limit
(z = 0) vanishes whereas at the upper limit (z = zc) we find two putatively divergent terms in
the primitive that cancel each other up to a finite remainder. We focus on these two divergent
terms later on and denote them by FII. The other summands in the primitive are finite in the
limit z → zc and can be collected in the expression FI. Thus, we can express the integral in
(5.49) in the form

α

zc∫
0

dz I = α
(
FI + FII

∣∣
z=zc
− 0
)
, (5.51)

with FI given by

FI = α

√
π zc

42 (3 + k)z4
h z

7
nh

√
z4

nh − z4
c

{
14 (3 + k) z4

nh

(
zkc z

4
h z

4
nh − (1 + k) z4+k

h z4
nh

+ k z8+k
nh + z4+k

c

(
z4

nh − z4
h

)
+ (1 + k)z4

c

(
z4+k

h − z4+k
nh

)) Γ
(
7/4
)

Γ
(
5/4
)

· 2F1

(
1

2
,

3

4
,

5

4
,
z4

c

z4
nh

)
+ 3

[
6 (3 + k)z4

c

(
z8+k

nh + zkc
(
z4

c z
4
h −

(
z4

c + z4
h

)
z4

nh

))

· Γ
(
11/4

)
Γ
(
9/4
) 2F1

(
1

2
,

7

4
,

9

4
,
z4

c

z4
nh

)
+

7zkc z
4
nh Γ

(
7+k

4

)
Γ

(
5+k

4

)
Γ

(
9+k

4

) ( 2(1 + k) z4
h z

4
nh Γ

(
9 + k

4

)

· 2F1

(
1

2
,

3 + k

4
,

5 + k

4
,
z4

c

z4
nh

)
+ z4

c Γ

(
5 + k

4

){
(1 + k) z4

h

· 2F1

(
1

2
,

3 + k

4
,

9 + k

4
,
z4

c

z4
nh

)
+ 2z4

nh 2F1

(
3

2
,

3 + k

4
,

9 + k

4
,
z4

c

z4
nh

)})]}
. (5.52)

The other part reads

FII

∣∣
z=zc

=
z3

c

(
(z4

c + z4
h)z4

nh − z4
cz

4
h

)
(3 + k)z4

hz
5
nh

√
z4

nh − z4
c

lim
z→zc

[
(3 + k)zkc

√
z4 − z4

nh

z4 − z4
c

+ 2
zkz2

nh

z2
c

F1

(
3 + k

4
,

3

2
,

1

2
,

7 + k

4
,
z4

z4
c

,
z4

z4
nh

)]
, (5.53)

where F1(·, ·, ·, ·, ·, ·) is the Appell function of the first kind. For z → zc the result of FII is
finite which has been verified by a numerical computation. However, this finite remainder in
(5.53) could not be extracted analytically. In summary, the quark-antiquark distance for the
linearised case for a general perturbation around the conformal solution reads

(LπT )Lin = (LπT )N=4 + α
(
FI + lim

z→zc
FII

)
. (5.54)
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In the next subsection we discuss (5.54) and try to deduce whether the screening-distance
conjecture holds for small perturbations. This means that the sum of the 0th- and 1st-order of
the screening distance (LπT )S has to be larger than the conformal value (5.1). We have seen
in previous chapters that there is the possibility to interpret the scalar field Φ as the dilaton
(string frame computation) or not (Einstein frame computation). In the latter case, we have a
scalar field Φ in our model and the dilaton vanishes. We discuss the latter frame first since
there we do not need to care about the scalar Φ because it has decoupled from the linearised
Einstein equations (5.26). In Sec. 5.4.2 the dilaton case will be considered and a new – and
definitely the last – parameter φ appears in the derivation.

5.4.1 Einstein-Frame Computation

We have to cope with a bunch of parameters with some of them being more important than
the others. At the beginning of this chapter we argued that the old horizon zh represents a
scaling but does not change the physics in general. Therefore, we set zh = 1 again for sake of
simplicity. An analogous argument can be found for the parameter k measuring the power of
z in the metric function perturbation δA. Larger values of k lead to stronger deformations
but do not introduce further qualitative changes. Thus, in order to stay close to the metric
ansatz chosen when solving full Einstein equations in Chapter 3 we set k = 2 and show plots
for different values of k at the end of this section in Figs. 5.6 and 5.9(a). We end up with two
parameters that are important for this computation:

znh : which is the root of the horizon function h = h0 + δh representing the location of the
black-hole horizon. Furthermore, it is the most dominant parameter in the temperature
formula.

α : which measures the strength of the perturbation. α = 0 is the conformal limit. In this
case the new horizon znh has to coincide with zh ≡ 1.

The main question we have to pose now is the following:

How can we decide analytically that the screening distance in the linearised case
is larger than the conformal value?

In addition to this, we have to determine the appropriate α- and znh-regime. The answer to
the first question is very easy. The quantity (LπT )N=4T

max is a universal number in N = 4T that
reads

(LπT )N=4T
max = 0.86912015361 . (5.55)

Thus, we compute the maximum of the linearised QQ̄-distance (LπT )Lin
max and compare the

result with (5.55). If (LπT )Lin
max > (LπT )N=4T

max the bound is satisfied for the chosen parameters.
In order to find the appropriate regime of validity we recall that the main perturbation
parameter is α. Thus, the deviation of the new horizon znh from the old one expressed in
appropriate units should always be smaller than the corresponding value of α. We do not
expect the bound to be fulfilled for large znh and small α because this perturbation is not
small and our approximation is not valid.

For every value of α we have to find a small real number δ > 0 so that (LπT )Lin
max[α , znh] ≥

(LπT )N=4T
max for every znh with |znh − zh| < δ. This statement ensures that we are always in

the valid limit of our linearisation. Furthermore, we have to assume α zkh to be small.
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The proof goes as follows:

1. The increase of the screening distance will be proven for fixed α = ±0.5, k = 2 and
znh = zh = 1 first.

2. Then, the focus is on fixed α = ±0.5, k = 2 but we allow for znh 6= zh = 1.

3. Finally the discussion will be extended to arbitrary values of α and znh 6= zh for fixed
k = 2.

To this end we plot in Fig. 5.4 the 1st-order correction in α for fixed α = ±0.5 and various
values of the new horizon znh, znh = 0.99, 1 and 1.01. The black solid curve represents the
conformal curve divided by a factor of 2 for znh = 1. Some important facts have to be noted.

Α = -0.5

Α = 0.5

conformal
2

0.0 0.2 0.4 0.6 0.8 1.0

�0.2

�0.1

0.0

0.1

0.2

0.3

0.4

0.5

zc

L
Π
T

N = 4
znh = 0.99
znh = 1
znh = 1.01

Figure 5.4: 1st-order correction in α against the conformal quark-antiquark distance for fixed α = ±0.9 and
various values of the new horizon znh, znh = 0.99, 1 and 1.01. The black solid curve represents the conformal
curve divided by a factor of 2 for znh = 1. The thin vertical line illustrates the fact that the zc-value of the
zero-crossing of the red dotted line coincides precisely with the particular zc-value where the conformal curve
assumes the the maximum QQ̄-distance (LπT )N=4T

max .

Firstly, for all values of α the 1st-order correction given by (5.51) has a positive and a negative
part. This allows in principle for the possibility that positive and negative values of α lead to
an increase of the screening distance (LπT )Lin

max in opposition to the SWT -model in Sec. 5.1
where negative values of c inexorably led to a decrease of the screening distance. Secondly, all
curves end precisely at the horizon which is defined by znh in this discussion. The QQ̄-distance
(LπT )Lin to first order in α is just the sum of twice the conformal black line and one of the
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dashed 1st-order corrections. Thirdly, the red dotted curves that obey znh = zh = 1 cross zero
at a specific value for zc = z∗c given by

z∗c = 0.8498 . (5.56)

z∗c is identical to the zc-value where the conformal curve assumes the maximum QQ̄-distance
(LπT )N=4T

max . The zc value of this to happen is denoted by zmax
c and in the particular case of

znh = zh we find that the following condition holds:

z∗c = zmax
c . (5.57)

This is indicated by the thin vertical line in Fig. 5.4.
The last property is a necessary condition to prove the conjecture. Let us focus now on this

particular case (red dotted line) with α = 0.5 and znh = zh = 1. Here, it should be obvious that
the new maximum of the linearised QQ̄-distance is larger than the pure conformal solution; we
just have to add the black solid curve and the red dotted one. The slope of the conformal curve
(black line) goes to zero close to the maximum whereas the slope of the 1st-order correction
(red dotted line) is non-zero in the limit zc −→ z∗c , where z∗c is again the point where the red
line crosses zero. Therefore, we can argue that in a small region close to z∗c we find points in
the sum of the conformal and 1st-order correction (LπT )Lin that are larger than the conformal
screening distance (5.55). Thus, for α = 0.5 we have a new maximum at znew

max < z∗c and for
α = 0.5 we find a new maximum at znew

max > z∗c .
Up to now, we have shown that at least for znh = zh and α = ±0.5 the screening-distance

conjecture is satisfied. We continue with the second step of our proof and choose values for
znh that slightly differ from zh. This is also visualised in Fig. 5.4 for znh = 0.99 (blue dashed
line) and znh = 1.01 (green dot-dashed line). In this case we encounter the problem that the
z∗c -value of the zero-crossing is not equal to zmax

c anymore. If we go for α = 0.5 to znh < zh,
the increase in the screening distance is obvious. The same happens for α = 0.5 and znh > zh.
Thus, the number δ which determines the range of possible new horizons has to be fixed by
studying znh > zh for α = 0.5 and znh < zh for α = 0.5.

By focusing on the green, dot-dashed line in Fig. 5.4 and α = 0.5 we can argue in this case
that the absolute value of the slope of the 1st-order correction at z∗c is much steeper than the
corresponding slope of the conformal black curve at z∗c . Thus, if the difference of the conformal
QQ̄-distance value at z∗c and the conformal screening distance (LπT )N=4T

max is not too large, the
stronger increase of the 1st-order correction than the decrease of the conformal curve ensures
an overall increase in the screening distance of the linearised model. On the other hand, if
the difference is too large, we choose a znh closer to zh which pushes z∗c closer to zmax

c leading
to a smaller slope of the conformal curve whereas this choice of znh has almost no influence
on the slope at z∗c of the 1st-order correction. In an analogous way, an overall increase in the
screening distance can be achieved for α = 0.5. In summary, we can state that a δ can be
found so that every znh with |znh − zh| < δ leads to (LπT )Lin

max ≥ (LπT )N=4T
max for α = ±0.5.

An extension to arbitrary values of α is now straightforward by plotting in Fig. 5.5 the
1st-order correction in α against the conformal quark-antiquark distance for fixed znh = 1.01
and various values of the deformation α, α = ±0.6, ±0.5, ±0.4, and ±0.3. The black solid
curve represents the conformal curve for znh = 1.01. We find that for fixed value of the new
horizon znh all curves intersect at one particular point z∗c which is independent of α. Thus,
our discussion about how to choose znh in order to obtain an increase of the overall screening
distance is nearly independent of the chosen α. A different value of α leads – according to
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Figure 5.5: 1st-order correction in α against the conformal quark-antiquark distance for fixed znh = 1.01 and
various values of the deformation α, α = ±0.6, ±0.5, ±0.4, and ±0.3. The black solid curve represents the
conformal curve for znh = 1.01.

Fig. 5.5 – to different slopes at z∗c but all of them being non-zero which is sufficient to find a δ
that satisfies above-mentioned condition.

Finally, this allows us to conclude that we can find for every value of α a small δ > 0 so
that (LπT )Lin

max[α , znh] ≥ (LπT )N=4T
max for every znh with |znh − zh| < δ.

Nevertheless, a numerically study for very small values of α is computationally quite
intensive since znh has to be much smaller and we have to increase the precision of the whole
computation dramatically. The results of the previous discussion are shown in Fig. 5.6 and
Fig. 5.7. The first one is a 3D plot of the screening distances in the linearised framework for
k = 2, 3 and 4 together with the conformal bound normalised to 1. The second figure consists
of two contour plots of the full linearised screening distance (LπT )Lin

max against the deformation
α and the new horizon znh for k = 2 as well as a sketch of this contour plot that illustrates
the discussion from above once more. Fig. 5.6 agrees perfectly with our analytic discussion
before. For every α we find a small regime in znh in which the screening distance is larger
than the conformal value. In addition, the tough numerical computations become visible,
especially close to the conformal point znh = zh = 1. A last interesting result in this plot is the
universality for other values of k. The surfaces become steeper for higher values of k but do
not change qualitatively as we have mentioned already at the beginning of this discussion.

The last missing part of this analysis is a proper relation between the largest deviating
znh = z

max/min
nh from zh and the corresponding α. This is now visualised in Fig. 5.7(a) using

a contour plot for fixed k = 2. It reveals again the numerical problems since not all edges
are as smooth as they should. In Fig. 5.7(b) we have included the black LN=4T

max contour lines
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Figure 5.6: Full linearised screening distance (LπT )Lin
max against the deformation α and the new horizon znh for

three values of k, k = 2 (lowest surface at negative α), 3 and 4 (highest surface at negatie α).

which are not accessible in the numerics. It is demonstrated for six choices of α (brown dots)
how to choose the maximal regime of znh with (LπT )Lin

max ≥ (LπT )N=4T
max . Two facts are quite

remarkable by studying Fig. 5.7(b). Firstly, for α > 0 the regime of possible new horizons
znh that still obey the screening-distance conjecture can be extended to arbitrary small values
of znh > 0. However, we cannot assume that all of these values are still valid within our
approximation. The range of possible znh is limited by the values larger one since there we
find a sharp point where the screening distance falls below the conformal value indication the
breakdown of the approximation. We have the analogous effect for negative values of α where
the valid range is limited by the positive values of znh. This behaviour has been explained
in full detail in the preceding discussion. It was a direct consequence of the slope at z∗c of
the 1st-order correction (LπT )Lin

1st . By changing znh we move more or less the whole 1st-order
correction of the QQ̄-distance along the zc-coordinate. If we move in a direction where the
conformal maximum (LπT )N=4T

max is at the same zc-value as a positive contribution of the
1st-order correction, we have an immediate increase of the screening distance.

Secondly, at the beginning of Sec. 5.3.2 we expected the valid regime of the new horizons
to be linear in α. However, we could not find a concrete relation analytically since we only
know how znh behaves for vanishing α (see (5.46)). By using our numerical study we can now
use the maximal (minimal) value of the new horizon zmax/min

nh for positive (negative) α in order
to find a relation between these two quantities. Fig. 5.7(b) already suggests a linear relation
which we want to specify in the following.

By extracting the maximal (minimal) values of zmax/min
nh that still satisfies the screening-

distance conjecture numerically for several values of α and fixed k = 2 and zh = 1, we can use
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Figure 5.7: Visualisation of the analytic discussion with the help of two contour plots.
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a fitting routine to compute the functional relation zmax/min
nh (α). The result can be written as

z
max/min
nh (±α, zh, k) = zh

(
1± const · |α| · zkh

)
with const ≈ 0.0123 for k = 2 . (5.58)

For different values of k similar linear relations between α and zmax/min
nh can be found. This

completes the proof of the screening-distance conjecture for small perturbations around the
conformal solution in Einstein frame.

In the next section we will extend our discussion to the string frame case since the
screening-distance conjecture holds numerically in this regime as well. This has been verified
in [75, 76].

5.4.2 String-Frame Computation

Most of the computations in the string frame are analogous to the preceding calculations.
After implementing the changes due to the dilaton in the perturbed metric functions we
derive the linearised QQ̄-distance function at first order in α and introduce a new parameter φ
characterising the dilaton profile. The integrals can be calculated analytically and are presented
along with some plots in full detail at the end of this section. Furthermore, we will show that
the parameter describing the dilaton is not independent of α and that we can find a relation
between these two quantities similar to the Einstein-frame case.

In the full solution we have implemented a dilaton of the form

Φ =

√
3

2
φ z2 , (5.59)

with φ being the same parameter we have encountered in all the previous chapters. This
definition of the dilaton will be used in the following as well. The freedom to choose the dilaton
arbitrarily becomes clear by recalling the linearised scalar equation (5.26). The differential
equation has two unknown functions (Φ and V ). Before we proceed with the discussion of
the screening length in the string frame we have to show that the dilaton potential does not
lead to tachyonic instabilities. Thus, we have to compute the mass which has to satisfy the
Breitenlohner–Freedman bound given in (3.42). By substituting the conformal metric G0

αβ into
the linearised scalar equation (5.26) we end up with the following differential equation

2
√

6 z2
(
z4 + z4

h

)
φ

L2 z4
h

=
4Φ
(
Φ2 + Φ2

h

)
L2 Φ2

h

=
∂V

∂Φ
. (5.60)

The dilaton potential V (Φ) is then given by

V (Φ) =
2Φ2

L2
− Φ4

L2 Φ2
h

. (5.61)

Since we have separated the cosmological constant Λ from the dilaton potential the first
contribution in (5.61) is a Φ2 term. The massM2

Φ is equal to 4
L2 and satisfies the Breitenlohner–

Freedman bound.
According to our discussion in Sec. 4.2 a dilaton quadratic in the 5th-dimension has some

neat features when computing Regge trajectories [60]. Implementing the string frame is then
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very easy since we just have to transform the Einstein frame metric via

Gs
αβ ≡ GE

αβ e

√
2
3

Φ(z)

=⇒ Gs,Lin
αβ = GE,Lin

αβ

(
1 + φ z2

)
. (5.62)

Thus, we have to multiply our solutions for A and B in (5.45) just by (1 + φ z2) and we
end up with the metric functions in the string frame

Adil(z, α, φ, k) =
1

z2

(
1 + α zk

)
· (1 + φ z2) ,

Bdil(z, α, φ, k) =
1

z2

(
1− αk zk

)
· (1 + φ z2) . (5.63)

It is worth mentioning that the parameter φ exhibits an analogous asymptotic behaviour as the
new horizon znh meaning that it has to vanish for α −→ 0. The vanishing of the parameter φ
is equivalent to the vanishing of the whole scalar Φ which is necessary in the α→ 0 limit since
we have to recover the pure Einstein–Hilbert action SEH where no scalar is included. Thus, we
have to prove that we find for small α – with ‘small’ we mean α zkh � 1 – a φ-neighbourhood
around 0 such that every maximum of the QQ̄-distance is larger than the conformal value
(LπT )N=4T

max . It is important to notice that the horizon function h(z) as well as the temperature
T are identical to the Einstein frame case.

With these assumptions we can start with the expansion of the integral of the full quark-
antiquark distance in (4.38) in the string frame for small values of α and φ. This can be written
as

(LπT )Lin
dil = (LπT )N=4 + α

zc∫
0

dz I + φ

zc∫
0

dz J +O
(
αφ, α2, φ2

)
, (5.64)

with I being identical to (5.50) and J given by

J =
2z4

c z
2
√
z4 − z4

nh

√
z4

c − z4
nh(

z2 + z2
c

)3/2
z5

nh

√
z2

c − z2
. (5.65)

Since α and φ are small, contributions of order αφ are of second order and can be neglected in
the expansion in (5.64). It is noteworthy that our result is the same as the linearised expression
in Einstein frame plus a small contribution from the J -term in (5.64). By use of the following
two substitutions

1. : y ≡ znh

z
, and yc ≡

znh

zc
,

2. : u ≡ y2

y2
c

, (5.66)
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mathematicar can solve the J -integral in (5.64) leading to

φ

zc∫
0

dz J = φ
z7

c

√
z4

nh − z4
c

3
√

2π z7
nh

√
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nh
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,
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, (5.67)

where we resubstituted our old coordinates. The 1st-order correction in φ given by (5.67) is
shown in Fig. 5.8 for four values of the new horizon znh, znh = 0.8, 1, 1.3 and 1.5. It is an
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Figure 5.8: 1st-order correction term in φ against zc for four values of the new horizon znh, znh = 0.8, 1, 1.3 and
1.5. The function does not depend on zh and k. The endpoints are precisely the location of the new black-hole
horizon znh.

interesting result that the dilaton contribution has no change in the sign when varying znh.
Thus the overall sign of φ matters and we have to divide the analysis into two parts:

1. For all sufficiently small values of α that satisfy the linearisation we have to find a δ > 0
and a φ > 0 so that (LπT )Lin

dil,max[αφ, znh] ≥ (LπT )N=4T
max for every znh with |znh−zh| < δ.

2. The same has to be proven for negative values of φ.
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It is important to recall once more that φ is not independent of α since the scalar has to vanish
in the limit α→ 0 as mentioned above. At the end of this discussion we try to derive a relation
between φ and α analogous to the Einstein-frame case.

The proof is trivial for φ > 0 as indicated in Fig. 5.8 since every choice of φ leads to a
positive contribution to the screening distance irrespective of the chosen value for α, znh and
k. We have to focus, therefore, exclusively on the φ < 0 case of the full, linearised screening
distance (LπT )Lin

dil,max in the string frame.
Our argumentation is now as follows. For a given choice of α we use the Einstein-frame

discussion in order to find an appropriate value for δ that satisfies the screening-distance
conjecture and focus then on the φ-contribution which leads to a smaller value of δ. This
is a reasonable way to proceed since the string frame computation just adds a particular φ-
dependant contribution to the well-known Einstein-frame expression (5.49) of the QQ̄-distance.
In addition to this we do not have to focus on the other parameters zh and k due to the fact
that the J -integral (5.67) is independent of zh and k. For a given choice of α and δ in the
Einstein-frame case we can now find a φ < 0 with |φ| being small enough that the negative
contribution due to the J -integral is smaller than the prior increase of the screening distance
(LπT )Lin

max given by the I-integral in (5.49) by virtue of the appropriate choice of δ. That such
a sufficiently small value of |φ| has to exist is ensured by the vanishing of the whole J -integral
in the limit of vanishing φ.

In summary, we can state that for every α that satisfies the linearisation and every k a
δ > 0 and φ < 0 can be found so that (LπT )Lin

dil,max[αφ, znh] ≥ (LπT )N=4T
max for every znh with

|znh − zh| < δ. This is visualised in Fig. 5.9(a) where a 3D plot of the screening distance
(LπT )Lin

dil,max in the linearised string frame against the main deformation parameter α and
the dilaton parameter φ for several values of k, k = 2, 3 and 4, for fixed znh = zh = 1 is
shown. There we have normalised all values to the conformal screening distance (LπT )N=4T

max .
In Fig. 5.9(b) the data for k = 2 is shown in a contour plot. In analogy to the Einstein-frame
case we can argue that different values of k do not change the results qualitatively.

One last task of this section is to find the explicit relation between α and the absolute
value of the smallest possible dilaton measured by |φmin| that still obeys the conjecture. We
focus entirely on φ < 0 since the other case is trivial. For every α such a value has to exist
due to the fact that the string frame computation is just the Einstein frame computation of
Sec. 5.4.1 including an additional φ-dependent contribution. The exact coefficients of this
relation may vary since the δ is not unique for a given choice of α, zh and k. We can always
go to smaller δ which results in a smaller value for the smallest possible dilaton |φmin|. For a
fixed choice of parameters zh = znh = 1 and k = 2 we extract the relation between α and the
smallest possible dilaton |φmin| from the data in Fig. 5.9(a). The figure already suggests an
α2-dependence which can be stated precisely in the following form:

|φmin(α, zh, k)| = C(k) · α2 · z2k−2
h , with C(2) ≈ 0.322 , (5.68)

that nicely reproduces the data. C(k) is a constant for each choice of k. An α2-relation is
a priori not a bad sign. Our linearisation in α only concerns the quark-antiquark distance
integrals. The screening distance (LπT )max is a totally different quantity and it is obvious in
all of the 3D plots (Fig. 5.6 and Fig. 5.9(a)) that the relation between (LπT )max and α is at
least quadratic. This is indeed a necessary condition for the conjecture to be valid.

Let us summarise what we have achieved in this chapter. We have started with an explicit,
analytic check of the small-perturbation regime of the inconsistent SWT -model where we
argued that the screening-distance conjecture ((LπT )Def

max > (LπT )N=4T
max ) cannot be fulfilled for
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(a) 3D plot of the screening distance (LπT )Lin
dil,max in the linearised string frame against

the main deformation parameter α and the dilaton parameter φ for several values of k,
k = 2, 3 and 4 for fixed znh = zh = 1.
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(b) Contour plot of the full linearised screening distance (LπT )Lin
dil,max in

string frame against the deformation α and the dilaton parameter φ for
k = 2.

Figure 5.9: Visualisation of the linearised screening distance in string frame.
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negative values of the deformation. After that, we have investigated small perturbations around
the conformal N = 4T solution including a non-trivial dilaton with the help of a consistent
approach based on the linearisation of Einstein equations derived from a 5D Einstein–Hilbert-
scalar action SEHs. Our main goal – the proof of the screening-distance conjecture – has been
achieved for a large class of solutions in Einstein and string frame. Some subtleties have been
worked out, e. g. the regime of validity of our linearised Einstein equations, measured by the
parameter α. This choice of α has large influence on the other parameters znh and φ.

There are many other possibilities how to extend our well-defined setting, e. g. by imple-
menting higher dimensional branes or including gauge fields in the 5D Einstein–Hilbert action.
In these scenarios it is, a priori, not clear whether the screening distance is higher than the
conformal value. Furthermore, a rigorous proof to all orders in the deformation is still not
possible in the case of our models. Nevertheless, the current state of the screening-distance
conjecture can be used for physical interpretations. We have argued – by looking at Fig. 4.15 –
that the length scale of the melting of a quark-antiquark pair in QCD from lattice computations
is comparable to the length scale we obtain in our computations and that, even better, the
conformal screening distance (LπT )N=4T

max in N = 4T is lower. This statement nicely agrees
with the above-mentioned conjecture.

In the last main chapter – before summarising what has been achieved – we focus on another
observable related to the drag force. By analysing rotating quarks we want to study the energy
loss of accelerated partons in a strongly coupled plasma. We will extend the computation from
the well-known conformal case to deformed metric models where we analyse the SWT -, 1- and
2-parameter models as possible examples.





Chapter 6
ROTATING QUARKS

I n Chapter 4 we focused on the behaviour of the energy loss of a quark moving through
a non-abelian plasma and on the running coupling αQQ̄ in non-conformal metric models.

We found a universal increase of the coupling when a deformation is introduced and a robust
behaviour of the energy loss over a large parameter range.

However, a direct comparison to experiments at the LHC is still very difficult. The most
important problems that are related to our current work are listed in the following:

1. It is often very complicated for experimental physicists to extract the appropriate
observable (e. g. the energy loss) out of the data. Thus, a comparison to our computation
of the energy loss of a fast moving, heavy parton is a challenging task.

2. In the gravity dual, a computation of a heavy parton moving through a strongly coupled
plasma has been accomplished at fixed velocity and it was shown that the energy loss
occurs via drag. However, an analysis of the energy loss would be more reliable if there
were no external force keeping the parton at constant velocity since deceleration leads
to larger gluon-bremsstrahlung, especially at high velocities. This important radiative
contribution is not included in the drag force computation.

In the following discussion we would like to analyse a non-trivial angular acceleration/decelera-
tion a by forcing the quark at the boundary to move on a circle. This is visualised in Fig. 6.1.
According to Fadafan & al. [190], two energy regimes can be distinguished:

As already indicated in Sec. 4.2 the dominant contribution to the energy loss of a re-
lativistic particle at high energies is gluon bremsstrahlung (synchrotron radiation and QCD-
bremsstrahlung) which can be tackled by using perturbative QCD techniques [179, 210–214].
In addition to this, we have interactions of the particle with the coloured, finite temperat-
ure medium. These interactions should involve small momentum transfers, of order of the
temperature, that have to be described non-perturbatively since the coupling constant is large.

In the limit of lower energies we have already mentioned in Sec. 4.2 that for example
collisional energy loss due to drag via elastic interactions is important. By analysing a rotating
quark which circulates at the boundary with a certain radius R0 and angular velocity ω, we
can smoothly explore the regime of slowly moving quarks – where drag is dominant – and a
regime of highly rotating quarks where deceleration-induced radiative energy loss (synchrotron

109
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radiation and gluon bremsstrahlung) should be favoured. In addition to this, the intermediate
regime is accessible where interferences between energy loss via drag and radiation-induced
energy loss occur.

The guiding task that leads us through this analysis is the behaviour (robustness, univer-
sality) of the energy loss of a rotating quark in these different regimes when a deformation of
the metric is involved. This discussion will be similar to the trailing string analysis in Sec. 4.2
although the string configuration in the bulk is now slightly different (see Fig. 6.1). Therefore,

boundary field theory

horizon

string

zc

x3

x1

z

Qω

Figure 6.1: Schematic picture of a rotating quark moving at constant angular velocity ω through a hot plasma
including the dual gravity scenario of a string forming spirals in the bulk. zc denotes again the point where the
string exceeds the local speed of light in the bulk.

we begin with the a review of the computation of the string configuration of a rotating quark in
the well-known and analytically tractable regime of N = 4 at zero temperature (Sec. 6.1) [215]
and proceed with finite temperature in Sec. 6.2 [190]. Then this observable will be analysed
in non-conformal models in Sec. 6.3. A discussion of non-conformal theories has not been
worked out before in the context of rotating quarks. The knowledge of the string configuration
is the main ingredient in order to study the energy loss in all the aforementioned models in
Sec. 6.4 leading to the identification of two regimes, one in which energy loss due to linear
drag (Sec. 6.4.1) is dominant and a second one where energy loss can be explained in terms of
vacuum radiation (see Sec. 6.4.2). This has been studied for the conformal case in [190].



6.1. Conformal AdS5 Metric 111

6.1 Conformal AdS5 Metric

In the next two sections we review the N = 4 computation at zero and finite temperature
of a rotating quark [215]. Thus, the well-known AdS5 and AdS5 black-hole metric in the
z-parameterisation will be used which are given by

ds2 =
L2

z2

(
h(z) dt2 + d~x 2 +

dz2

h(z)

)
, (6.1)

with

N = 4: h(z) = 1 ,

N = 4T : h(z) = 1− z4

z4
h

. (6.2)

We start with the zero-temperature computation first. It can be solved analytically (see [215])
and consists of a straightforward computation which will be helpful in order to understand the
more complicated, non-conformal analysis. Since there is no plasma on the field theory side,
we expect to find pure vacuum radiation.

We place a rotating quark with radius R0 and angular velocity ω at the three-dimensional
boundary and compute the classical configuration of a string hanging into the bulk (see
Fig. 6.1) that obeys the boundary conditions specified in the gauge theory at z = 0. The
metric perturbations that this string creates are small in the large-Nc limit so that we can
neglect their backreaction on the shape of the string itself. Thus, we start with deriving the
shape of the rotating string in pure AdS5, in the absence of any metric perturbations. The
Nambu–Goto action of the string, which we have to extremise, reads

SNG =

√
λ

2πL2

∫
dτ dσ

√
det gab . (6.3)

which is the same formula as in the previous chapters. Before we can write down the induced
metric, we have to fix the parameterisation of the system. The string embedding functions are
given by

Xα(t, z) =
(
t, ~rs(t, z), z

)
, (6.4)

where the three-vector ~rs is given in spherical coordinates (r, θ, ϕ):

~rs(t, z) ≡
(
R(z),

π

2
, ϕ = φ(z) + ωt

)
. (6.5)

Here, the rotating character of our configuration becomes apparent. φ(z) denotes the z-
dependent angular function and should not be confused with the scalar parameter of the
dilaton φ. This approach has the property that the angular velocity ω is constant for all values
of z. It is not clear whether other ansätze – including a z-depending angular-velocity function
ω(z) – lead to valid string configurations of a moving quark at the boundary. In any case,
computations are much more involved.

The special dependence on z, t and ω shown in (6.4) is everything we have to put into this
computation at this stage. In the later part we just have to specify the radius of the circle on
which the quark is moving at the boundary. The further computation of the induced metric is
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now similar to the previous cases in Sec. 4.2 and Sec. 4.3.1 and leads to a Lagrangian of the
following form:

LN=4 =
√

det gab =
L2

z2

√(
1− ω2R(z)2

) (
1 +R′(z)2

)
+R(z)2φ′(z)2 . (6.6)

Here, L is again the AdS length. Due to the fact that we have to deal with two unknown
functions φ(z) and R(z) in (6.6) we compute equations of motion for φ(z) and R(z) by
extremising the Nambu–Goto action (6.3). Following Athanasiou & al. in [215] we obtain a
constant of motion Π by noting that (6.6) is independent of φ(z):

Π ≡ ∂L
∂φ′

, (6.7)

where ′ means ∂
∂z . The minus sign in front of (6.7) is needed to have positive momenta for

positive angular velocities ω leading to a more physical configuration. This means that the
string always trails behind the quark.

In total, two parameters have to be adjusted: the radius R0 of the rotating quark and its
angular velocity ω which can be related to the quantity Π. Equation (6.7) can be solved for
φ′(z) giving

φ′(z) =
z2Π

√
1− ω2R(z)2

√
1 +R′(z)2

R(z)
√
R(z)2 − z4Π2

, (6.8)

which will be used to eliminate the φ(z)-dependence in the final differential equation for R(z).
The Euler–Lagrange equation for R(z) reads

∂L
∂R
− ∂

∂z

∂L
∂R′

= 0 , (6.9)

and can be transformed by using (6.8) into the following form

R′′ +

(
z5Π2 − zω2R4 + 2R3R′ − 2ω2R5R′

) (
1 +R′2

)
z
(
1− ω2R2

) (
z4Π2R−R3

) = 0

⇐⇒ R′′ +
R
(
z + 2RR′

) (
1 +R′2

)
z
(
z4Π2 −R2

) +
1 +R′2

R
(
1− ω2R2

) = 0 . (6.10)

From the first to the second line we have used a partial fraction decomposition to separate the
two diverging parts of the second order differential equation. One expects that (6.10) requires
two initial conditions to specify a unique solution. As shown in a numerical study of a rotating
quark in N = 4 at non-zero temperature by [190], which we will briefly discuss in section 6.2,
this kind of differential equations are fully determined by only one external, initial condition.
The other one can be fixed by studying the differential equation itself. This can be understood
in the following way. Firstly, we note that (6.10) is singular when 1− ω2R(z)2 = 0 or when
R(z)2 − z4Π2 = 0. In analogy to the case of the drag force we would like to maintain reality of
(6.8) and thus both divergent parts have to vanish at the same value of z, z ≡ zc. This gives
us a condition for the special values zc and R(zc):

zc ≡
1√
Πω

, R(zc) = Rc ≡
1

ω
. (6.11)
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zc has many interesting properties one of them being that it is the point where the second,
intrinsic, initial condition can be extracted from. Furthermore, as the notation already indicates,
it is again the point where the velocity of the string exceeds the local speed of light1. For the
current computation we still need in principle a second initial condition for R′(zc) in order to
determine the shape of the rotating string in the bulk. This condition will be extracted from
(6.10) in the following. We solve (6.10) in the vicinity of z = zc by using an expansion of R(z)
given by

R(z) ≡ Rc +R′c (z − zc) +
1

2
R′′c (z − zc)

2 +O
(
(z − zc)

2
)

(6.12)

In (6.12) we can substitute what we know about Rc in (6.11). Since the second and third
terms of (6.10) are divergent at z = zc whereas R′′ is finite, we can collect powers of z− zc and
observe that they do not involve any factors of R′′c but lead to an equation for R′c. This means
that the equation of motion itself determines R′c. This was shown in [215]. After substituting
(6.12) into (6.10) and collecting powers of z − zc we obtain

1 +R′ 2c

ω2z4
c

(
z(z + zc)(z

2 + z2
c )− 4z4

c R
′
c (Rc + z ω)

)
(z − zc) +O

(
(z − zc)

2
)

= 0 (6.13)

The coefficient of (z − zc) has to vanish for all z. By taking the limit z → zc we find an
equation for R′c that reads

R′c =
1

2

(
zc ω +

√
4 + z2

c ω
2

)
=

1

2

(√
ω

Π
+ 4−

√
ω

Π

)
. (6.14)

As far as we know, the differential equation in (6.10) with the given initial conditions in (6.11)
and (6.14) cannot in general be solved analytically. In the particular case of N = 4 at zero
temperature we can use the series expansion of R(z) (see (6.12)) and recognise that this can
be analytically continued for all values of z leading to the following function:

R(z) =
1

2
√
zcω

√(
zc ω +

√
4 + z2

c ω
2

)(
2z2 ω + zc

(
zc ω +

√
4 + z2

c ω
2
))

. (6.15)

In the final expression we just want to have R0 and ω as parameters. Therefore, we express zc

as given in (6.11) in terms of Π and ω. Π itself can now be related to R0 by calculating the
value of R(0) in (6.15) which can be written in the form

R0 ≡ R(0) =
zc ω +

√
4 + z2

c ω
2

2ω
. (6.16)

With the help of (6.16) the function of the string configuration R(z) in (6.15) gets simplified
and is given by

R(z) =

√
R2

0 ω
2

1−R2
0 ω

2
z2 +R2

0 =
√
v2γ2z2 +R2

0 , (6.17)

where we used the definition of the velocity v = R0 ω and the Lorentz boost factor γ ≡
1/
√

1− v2 in the second step. This compact form was presented for the first time in [215]. In
Fig. 6.2 we show the radial function in N = 4 at zero temperature for a fixed radius R0 = 1
at the boundary and four values of the angular velocity ω, ω = 0.2, 0.5, 0.8 and 0.9. As in

1These important properties of zc are derived for the rotating quark in Appendix C.
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Figure 6.2: Radial string configuration in N = 4 at zero temperature for a rotating quark with radius R0 = 1
and four angular velocities ω, ω = 0.2, 0.5, 0.8 and 0.9 in dimensionless units. The AdS length L is set to 1 for
simplicity. The coloured dots denote the point zc where the upper and lower parts of the string are causally
disconnected. The black dot is behind the plotting range.

the previous chapter we use arbitrary units. By fixing the unit for one observable the units
for all other quantities are determined. For larger values of the angular velocity ω the radial
extension in the bulk increases monotonously. This is an interesting behaviour because in finite
temperature models the horizon is reached at a certain value z = zh and the radial extension
into the bulk will be finite.

Since v = R0 ω, we have a maximum angular velocity of ω = 1 for R0 = 1. The closer we
are to this limiting velocity the closer is the special point zc to the boundary. Physically, zc

marks the point where the upper and lower string parts are causally disconnected [216].
In order to obtain a final three-dimensional (3D) visualisation of the rotating string

configuration we need to integrate the first derivative of the angular function φ(z) given in
(6.8) which leads to

φ(z) = zγ ω + arctan(zγ ω) . (6.18)

This leads to the following form of the angular shape of the rotating string

ϕ(t, z) = ω(t− zγ) + arctan(zγ ω) . (6.19)

In Fig. 6.3 we plot the string configuration of a rotating quark and the moving string in the
bulk at radius R0 = 1 and angular velocity ω, ω = 0.3 (blue) and 0.7 (black). A higher
angular velocity ω leads to broader spirals and higher winding numbers which agrees with our
discussion of the radial function.
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Figure 6.3: 3D plot of a string configuration of a rotating quark in N = 4 at zero temperature and radius
R0 = 1 and angular velocity ω, ω = 0.3 (blue) and 0.7 (black). The small black circle at the top represents the
trajectory of the rotating quark.

We postpone the computation of the energy loss dE/dt until Sec. 6.4 and focus in the next
section on the calculation of the string configuration in finite temperature models. The easiest
one is N = 4T which will be discussed now.

6.2 Conformal AdS5 Black-Hole Metric

We review now the string configuration of a rotating quark in N = 4 at finite temperature.
This analysis has been done by Fadafan & al. in [190] for the first time in the literature. The
basic metric is now AdS5-BH which is given in (6.1) but with h(z) = 1 − z4

z4
h
. As we have

learned in Sec. 2.2.2 temperature is given by

T =
1

πzh
. (6.20)
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We can use the same parameterisation (6.4) as in the previous section and obtain a Lagrangian
of the form

LN=4T =
L2

z2

√(
h(z)− ω2R(z)2

)( 1

h(z)
+R′(z)2

)
+ h(z)R(z)2φ′(z)2 . (6.21)

Although this equation is very similar to the previous case we have to cope with the problem that
the equations of motion cannot be solved analytically. The calculation of the Euler–Lagrange
equation for the derivative of the angular function φN=4T (z) leads to

φ′N=4T
(z) =

z2Π
√
h(z)− ω2R(z)2

√
1 + h(z)R′(z)2

h(z)R(z)
√
z4 Π2 − h(z)R(z)2

, (6.22)

and the equation of motion for the radial function R(z) – after using a partial fraction
decomposition – is given by

R′′ +
R
(
1 + hR′2

)(
4hRR′ + z

(
2 +Rh′R′

))
2z
(
z4 Π2 − hR2

)
+

(
2 +Rh′R′ + 2hR′2 + ω2R3h′R′3

)
2R
(
h− ω2R2

) = 0 . (6.23)

In order to find a solution for R(z) we have to specify the initial conditions. Again, two
singularities appear that have to be located at the same point due to the reality condition of
(6.22). Fortunately, it is possible to solve for zc and Rc analytically:

h(zc)− ω2R(zc)
2 = 0 =⇒ R(zc) =

√
h(zc)

ω

z4
c Π2 ω2 − h(zc)

2 = 0 =⇒ zc =
1√
2

√
z2

h

(
z2

h Πω +
√

4 + z4
h Π2 ω2

)
. (6.24)

Before proceeding with the computation of the radial string shape we focus on the behaviour
of zc. This point reflects the causal disconnection between the upper and lower part of the
string. To compute the boundary radius R0 it is sufficient to start an upward integration
process at this point. This means that a value of zc close to the boundary leads to a physical
configuration which is nearly insensitive to the properties of the bulk since the boundary physics
is determined by the part of the string above zc only. We observed in the zero-temperature
case that high velocity v = R0 ω leads to small zc. In (6.24) we can note that zc strongly
depends on the horizon zh:

zc
zh large−−−−→ 1√

Πω
,

zc
zh small−−−−−→ 0 , (6.25)

Thus, large values of zh lead to the zero-temperature limit whereas zc vanishes for small values
of zh. Thus the high-temperature regime (small zh) is similar to a regime where ω is very large
since zc is very small in both cases which reduces the volume where the boundary is sensitive
to the bulk. This interesting behaviour will be relevant when we focus on the energy loss in



6.2. Conformal AdS5 Black-Hole Metric 117

different models in Sec. 6.4. In order to find the full expansion of R(z) in powers of z − zc we
need the relation between Πω and zc which is simply the second condition in (6.24):

Πω =
h(zc)

z2
c

. (6.26)

With these formulae in our hand we can now fix R′(zc) by expanding R(z) in powers of z − zc

as in (6.12) and substituting this into the differential equation (6.23). We focus here only on
the coefficient in front of the z − zc term since no R′′(zc) is involved anymore. The vanishing
of this coefficient determines again the second initial condition R′c which is required to solve
the differential equation in (6.23). The condition on R′c can then be written in the form

2Rc zc ω
2 + 2ω

√
h(zc)− 2R′2c ωh(zc)

3/2 +Rc h(zc)h
′(zc) = 0 . (6.27)

In (6.27) we have used the relation between Πω and zc and have taken the limit z → zc. The
solution to this expression can be given analytically by

R′c =
2zc ω

2 + h(zc)h
′(zc) +

√
16ω2h(zc)2 +

(
− 2zc ω2 + h(zc)h′(zc)

)2
4ω h(zc)3/2

T=0−−−→ 1

2

(
zc ω +

√
4 + z2

c ω
2

)
, (6.28)

where we take the positive root which leads to positive values of R′(zc). This is physically
meaningful because we want the string to trail and curl behind the quark. Furthermore, if we
set h = 1 representing the zero-temperature case this condition nicely reproduces what we have
found in (6.14). The remaining parameters are again ω, Π and the horizon zh representing the
temperature.

We could not find an analytic solution to the differential equation for the radial function
R(z) in (6.23) with the given initial conditions (6.24) and (6.28). Thus, the NDSolve routine
of mathematicar was used. It is important to note that the start of the integration process
has to be slightly above the singular point zc in order to integrate towards the boundary. The
integration upwards allows for the computation of the boundary radius R0 of the rotating
quark. The numerical relation between R0 and Π will be explained in subsection 6.2.1. In a
second step a downward integration has been done and the full radial extension of the string
for fixed angular velocity ω = 0.2 and boundary radius R0 = 4 is shown in Fig. 6.4 for several
values of the temperature T , T = 0, 0.05, 0.07, 0.09, 0.1 and 0.15. Again the temperatures are
given in arbitrary units.

A few things are noteworthy: the lower the temperature the closer is the radial function to
the zero-T case. This can be seen analytically be setting h = 1 in the differential equation
(6.23) and in the initial conditions (6.24) and (6.28).

The endpoint of each curve is the location of the horizon and in fact each string has a finite
radial extension at the horizon. This is indeed a very interesting observation indicating that
the energy is deposited in the medium up to a finite radius and not up to infinity as in the
zero-temperature case.

In order to see that the string has nevertheless an infinite length we must compute the
angular function φ(z). It will be obvious that the winding number of the string diverges at
the horizon. For higher temperatures, the radial extension into the bulk is smaller due to the
stronger interaction of the plasma with the rotating string. A full 3D picture of a certain string
configuration will be shown in Sec. 6.2.2.
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Figure 6.4: Radial function R(z) in N = 4T for fixed angular velocity ω = 0.2, boundary radius R0 = 4 and
several values of the temperature T , T = 0, 0.05, 0.07, 0.09, 0.1 and 0.15. The points mark the value zc where
the upper part of the string is causally disconnected from the lower one. Each curve ends at the respective
horizon.

6.2.1 Π–R0 Relation

Since we have to insert Π in our initial conditions, it is not easy to fix the boundary radius
R0 right from the beginning of the calculation. In the zero-temperature case we could find an
analytic relation between these two parameters. However, here and in the following models,
we have to choose Π and integrate upwards to the boundary in order to find the boundary
radius. In N = 4 at zero temperature the equation that relates Π and R0 has the form:

Π =
R2

0 ω
3

(1−R2
0 ω

2)2
= γ4 v2 ω . (6.29)

For fixed angular velocity ω = 0.1 we have plotted the Π–R0 relation in Fig. 6.5. For small
temperatures the relation approaches the zero-T computation. Furthermore, we can state
that small values of Π lead to small radii. For larger values of Π an upper limit is reached
since we are limited by the speed of light v = 1. This means that for fixed ω = 0.1 we can
reach a maximum radius of R0 = v/ω = 10. Thus, we can state that Π has the meaning
of a scaled velocity which can be seen in (6.29). A similar plot (Fig. 6.6) can be drawn for
fixed temperature but varying angular velocity ω. Again, we encounter a monotonous relation
between Π and R0 for all values of the angular velocity ω. The flat regime for high angular
velocities arises due to the small values of allowed radii; thus, the change in R0 is small when
Π increases since the kinematics dominate this regime.

Before we proceed with more advanced metric models we will compute the angular function
in the next paragraph and show finally the string configuration for the finite temperature case.
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Figure 6.5: Π–R0 relation in N = 4T against the temperature T for fixed angular velocity ω = 0.1.

Figure 6.6: Π–R0 relation in N = 4T against the angular velocity ω for fixed temperature T = 1 in arbitrary
units. The high-Π regime represents the highest possible values for R0
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6.2.2 String Configuration in N = 4T

A problem that occurred in the previous discussion is the finiteness of the radial extension R(z)
although we know that the string has to have infinite length. If we substitute the numerical
solution of the differential equation for R(z) (6.23) into the integral representation of φ(z)
(6.22) we can solve for φ(z) numerically. Here, one has to be careful since two integrations have
to be worked out in order to obtain the full R(z). An upward2 integration of the differential
equation in (6.23) starting at zc leads to R<(z) for z < zc and a downward integration leads
to R>(z) for z > zc. The angular function φ(z) then reads

φ(z) =

z∫
0

dz̃
z̃2Π

√
h(z̃) + ω2R(z̃)2

√
1 + h(z̃)R′(z̃)2

h(z̃)R(z̃)
√
z4 Π2 − h(z̃)R(z̃)2

≡
z∫

0

dz̃F
(
z̃, R(z̃)

)

=

zc−ε∫
0

dz̃F
(
z̃, R<(z̃)

)
+

z∫
zc+ε

dz̃F
(
z̃, R>(z̃)

)
. (6.30)

z denotes the point in the bulk where we want to compute the angle of the string. It can be
chosen in the range of 0 to zh. For every value of the free parameters R0, ω and T we have
interpolated the radial function R(z) and have computed the angular function φ(z) with the
help of the NIntegrate routine of mathematicar. The second line ensures that the correct
radial functions are used: R< for z < zc and R> for z > zc. In addition to this, the numerical
integration requires a slight shift of the initial value zc by a small ε > 0 in order to specify the
direction of integration.

The results are shown in Fig. 6.7 where we plot the angular function φ(z) versus z for
two angular velocities ω, ω = 0.3 and 0.7 and three different temperatures T , T = 0.01, 0.015
and 0.02. For small values of z we see an approximately linear increase of the angle. This
can be verified in Fig. 6.3 where the distance between two spirals is always constant. The
introduction of temperature leads to a strong increase in the angle close to the horizon zh which
is indicated by the small thin black lines at the z-axis. Thus, we can argue that the string
has infinite length since the number of windings diverges close to the horizon. Furthermore, a
larger increase in the angle can be achieved by higher values of the angular velocity but this
effect is only noticeable if we consider regions far away from the boundary.

If we now put all the details together we obtain a 3D plot (Fig. 6.8) of a rotating quark in
N = 4 at finite temperature. The blue circle at the boundary is the circle on which the quark
is moving in the three-dimensional space.

We saw in this chapter that temperature has a huge impact on the shape of the string and
we will figure out in the Sec. 6.4 that this behaviour is true for other physical observables like
the energy loss. Thus it is interesting if a more reliable and realistic model shows a similar
effect in the shape of the string. Unfortunately, the energy loss cannot be extracted directly
from the string configuration. We will discuss these problems in Secs. 6.3 and 6.4.

2In this context upwards means towards the boundary.



6.3. Non-Conformal Metric Models 121

Ω = 0.7

Ω = 0.3
0 5 10 15 20 25 30

0

2 Π

4 Π

6 Π

8 Π

10 Π

12 Π

14 Π

z

Φ�z�

T  = 0.01
T  = 0.015
T  = 0.02

Figure 6.7: Angular function Φ(z) in N = 4T against z for two angular velocities ω, ω = 0.3 and 0.7 and three
different temperatures T , T = 0.01, 0.015 and 0.02 in arbitrary units.

6.3 Non-Conformal Metric Models

In this section we focus on the non-conformal extensions of the basic N = 4 model that we
have derived in Chap. 3. On one hand we want to see whether the changes from conformal to
non-conformal models are small and on the other hand we want to find similarities to QCD-like
observables. The computation is in principle analogous to the last section. We will consider the
same three models as before: the SWT -model which does not solve any supergravity equations
of motion and the consistent 1- and 2-parameter models. With the detailed knowledge of the
configuration of the string which is attached to the quark in the dual description we will finally
compute the energy loss in Sec. 6.4.

6.3.1 SWT -Model

The basic parameterisation of the string worldsheet is again the same as in the previous sections.
The metric has the following form

ds2 = ec z
2 L2

z2

(
h(z) dt2 + d~x 2 +

dz2

h(z)

)
, (6.31)

and the Lagrangian reads

LSWT
= ec z

2L2

z2

√(
h(z)− ω2R(z)2

)( 1

h(z)
+R′(z)2

)
+ h(z)R(z)2φ′(z)2 . (6.32)
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Figure 6.8: Full 3D string configuration in N = 4T at T = 1 2 in arbitrary units and angular velocity ω = 0.7
with boundary radius (blue circle) R0 = 1.4.

Since we just inserted an exponential factor into the metric the computational steps change
only slightly compared to the N = 4T case. However, this model is very interesting due to
the simplicity and the fact that it includes non-conformality. The problem of not solving any
equations of motion might lead to some inconsistencies which we hope to solve be studying more
reliable models in the next subsection. Nevertheless, any universal behaviour that might occur
by studying this model should be observable in the more reliable models as well. Although the
equations are in principle simple we are not able to solve analytically the differential equations
for the angular function φ(z)

φ′SWT
(z) =

z2 Π
√

h(z) + ω2R(z)2
√

1 + h(z)R′(z)2

h(z)R(z)
√
z4 Π2 − e2cz2h(z)R(z)2

, (6.33)
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and for the radial function R(z)

R′′ +
e2c z2

R
(
1 + hR′2

)[
4( 1 + c z2)hRR′ + z

(
2 +Rh′R′

)]
2z
(
z4 Π2 − e2c z2 hR2

)
+

(
2 +Rh′R′ + 2hR′2 + ω2R3h′R′3

)
2R
(
h− ω2R2

) = 0 . (6.34)

Again we fix the initial conditions with the help of the singular point zc which has to satisfy
the following equation:

z4
c Π2 ω2 − e2c z2

c h(zc)
2 = 0 =⇒ ξ(zc) ≡

ec z
2
c h(zc)

z2
c

−Πω = 0 , (6.35)

Rc ≡ R(zc) =

√
h(zc)

ω
. (6.36)

Here, we have introduced the function ξ(z) that has to be solved numerically and that defines
zc as its first zero. If we now naively choose Π, ω and T and vary the deformation c we
encounter the problem that zc is not defined for all values of c. For large c the zc-defining
equation ξ(z) = 0 has no solution if we assume a particular range of boundary radii R0. This
is illustrated in Fig. 6.9 for fixed R0 = 4.6, ω = 0.2 and T = 0.02 and several values of the
deformation c, c = 0, 0.1, 0.2, 0.3, 0.6 and 1. Here, we observe that zc is very robust for a
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Figure 6.9: Function ζ(z) defining zc against z for fixed R0 = 4.6, ω = 0.2 and T = 0.02 and various values
of the deformation c, c = 0, 0.1, 0.2, 0.3, 0.6 and 1. The value of zc is the first zero of this function. For
deformations larger than c ∼ 1.05 no zc can be found.

large range of deformations c. It is not easy to fix R0 in ξ(z) given by (6.35). R0 has to be
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adjusted dynamically by computing R(0) with the help of the full differential equation for R(z)
(6.34) for a large range of Π until the particular Π-value is found that leads to R0 = 4.6. We
see that zc is well-defined for a large range of deformations c but at a certain critical value
c ≈ 1.05 the computation breaks down. An analogous behaviour can be found in the case of
the drag force in the SWT model. There the results become physically inconsistent above a
certain value of the deformation c [77]. In both cases these results are just an artefact due to
the inconsistency concerning the supergravity equations of motion that will be discussed in the
next section when we consider consistent models. There we will show that zc is well-defined
for all values of the deformation.

In order to calculate Rc we make use of the expansion in (6.12) and evaluate the function
R(z) at z = zc. This leads to the following expression

0 =
Rc zc ω

2

1− c z2
c

+ ω
√
h(zc)−R′ 2c ω h(zc)

3/2 +
1

2
Rc h(zc)h

′(zc) ,

=⇒ R′c =
2zc ω

2 − (1− c z2
c )h(zc)h

′(zc)

4( 1 + c z2
c )ωh(zc)3/2

−

√
16(1− c z2

c )2 ω2h(zc)2 +
(

2zc ω + (1− c z2
c )h(zc)h′(zc)

)2
4(c z2

c − 1)ωh(zc)3/2
. (6.37)

The radial function for several values of the deformation c, c = 0, 0.1, 0.2 and 0.4 is plotted in
Fig. 6.10. We find many similarities to the conformal case that will be noted briefly. However,
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Figure 6.10: Radial function R(z) in the SWT model against z for fixed temperature T = 0.02, angular velocity
ω = 0.2 and boundary radius R0 = 4.6 and several values of the deformation c, c = 0, 0.1, 0.2 and 0.4. Each
curve shows an abrupt ending before the horizon (zh = 15.9) is reached. Since such a behaviour is not apparent
in consistent models, it seems to be a consequence of the inconsistency concerning supergravity equations of
motion.
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some qualitative changes arise that have to be discussed in greater detail. This model has the
advantage that the temperature T = (πzh) 1 is independent of the deformation parameter c.
Thus, we can fix the temperature and study different regimes of c. Even for large values of
the deformation the shape of the radial function is similar to the conformal case. Since zc is
always below 1 in the curves shown, we state that the string shape is almost unchanged in the
physically meaningful regime. This regime is called physically meaningful due to the causal
disconnection between the part of the string with z values larger than zc and values smaller zc.
The boundary field theory only probes the regime of z < zc.

In all curves in Fig. 6.10 the numerical computation collapses at certain values of z above
the horizon (zh = 15.9). The higher the deformation the shorter are the curves. Since this
behaviour disappears in the consistently deformed models, it seems to be an artefact due to
the inconsistency of the model concerning the supergravity equations of motion.

In the next subsections we focus on consistently deformed models. The expressions are
more complicated but still numerically tractable. In addition, we have to distinguish between
the string- and Einstein frame. After that discussion we compute the energy loss for all models
and explain the differences.

6.3.2 1-Parameter Deformation

The 1-parameter model has the big difference to the SWT -model that we now change the tem-
perature if we choose different values of the deformation parameterised by φ. The temperature
is quoted here for convenience and has the form

T =
z3

h φ
2

4π
(

1− e
z4
h
φ2

4

) . (6.38)

Thus, we have to be more careful when comparing different deformations for fixed values of
the angular velocity ω, temperature T and the radius R0. In the following discussion we will
focus on both, Einstein and string frame, and discuss the differences therein.

1-Parameter Model: Einstein Frame

If we use again the parameterisation in (6.4) the Lagrangian in the Nambu–Goto action of this
model can be written as

L1p = e2A(z)

√√√√(h(z)− ω2R(z)2
)( e2B(z)

h(z) e2A(z)
+R′(z)2

)
+ h(z)R(z)2 φ′1p(z)2 , (6.39)

where A(z), B(z) and h(z) are the metric functions in the Einstein frame which have been
derived in (3.36) and (3.37) and are quoted here for convenience:

A(z) =
1

2
log

(
L2

z2

)
,

B(z) =
1

4

(
z4 φ2 − 4 log(z)

)
+ logL

h(z) =
1− e 1

4

(
z4
h−z

4
)
φ2

1− e
z4
h
φ2

4

. (6.40)
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The angular function will be denoted by φ1p(z) in the following since the deformation parameter
of the 1-parameter model is also called φ. By using the Euler–Lagrange equation for φ1p(z) we
end up with a differential equation given by

φ′1p(z) =
Π
√
e−2A(z)

(
ω2R(z)2 − h(z)

) (
e2B(z) + e2A(z) h(z)R′(z)2

)
R(z)h(z)

√
Π2 − e4A(z) h(z)R(z)2

. (6.41)

The computation of the equation of motion for R(z) leads to the following differential equation

R′′ +
e2A−2B R

(
2e2B − 4e2A hRA′R′ − e2ARh′R′

) (
e2B + e2A hR′2

)
2
(
Π2 − e4A hR2

)
+

e 2(A+B)

2R
(
h− ω2R2

)[2e4B + e2(A+B)R
(

2
(
h− ω2R2

) (
A′ −B′

)
+ h′

)
+ 2e2(A+B) hR′2 + e4A ω2R3 h′R′3

]
= 0 . (6.42)

Together with the two expressions for the initial conditions Rc and R′c evaluated at zc given by

Π2 ω2 − e4A(zc) h(zc)
2 ≡ 0 =⇒ ξ(zc) ≡ e2A(zc) h(zc)−Πω = 0 ,

R(zc) ≡
√
h(zc)

ω
, (6.43)

and

0 = 2e4A+2B z5
c ω

2Rc + 2e2B ω
√
h+ 2e6A z5

c ω h
3/2A′R′2c + e2A hh′Rc

=⇒ R′c =
e 6A

4z5
c ω h

3/2A′

[
2 e4A+2B z5

c ω
2 − e2A hh′

−
√

16e6A+2B z5
c ω

2 h2A′ +
(

2e4A+2B z5
c ω

2 + e2A hh′
)2
]
, (6.44)

we can now compute the string configuration of a rotating quark in a non-conformal metric
model in the Einstein frame. We want to note that (6.41) – (6.44) are expressed by general
A(z),B(z) and h(z) functions. These equations will be also used for the string frame case
and the whole 2-parameter model where a relabelling to Φ-coordinates has to happen. Before
computing the string configuration for various parameters ω, Π and T in the Einstein frame
of the 1-parameter model we have to make sure that a configuration exists. There are two
subtleties due to which this computation may break down.

As we have seen in Sec. 3.2.3 we can find a minimal temperature for each value of the
deformation φ. In other words, a fixed temperature determines the highest possible deformation
φmax. Furthermore, we want to compare to the behaviour of the SWT -model where the condition
on zc given by (6.35) does not lead to physical results for certain values of the deformation.
Thus, the function ξ(z) given in (6.43) is plotted in Fig. 6.11 in the 1-parameter Einstein frame
for fixed values of the temperature T = 1, angular velocity ω = 0.2, boundary radius R0 = 4
for and several values of the deformation φ, φ = 0, 1, 1.5, 2, 5 and φmax. Here, we note that
for every deformation we have chosen, a zero in ξ(z) exists leading to the existence of zc. Since
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Figure 6.11: zc-defining function ξ(z) against z for fixed values of the temperature T = 1, angular velocity
ω = 0.2 and boundary radius R0 = 4 and various deformation parameters φ, φ = 0, 1, 1.5, 2, 5, φmax. The
conformal case (black line) has no turning point and extends to minus infinity.

this is not the case in the SWT -model, this seems to be a consequence of the consistency of
this model which is now a solution to Einstein equations.

In order to obtain the boundary radius R0 for a given value of Π we have to go through
the numerical calculation of R(z) (6.42) and evaluate this at R(0). This procedure has to be
done until we find the value of Π which leads to the appropriate value of R0. In Fig. 6.11 it is
obvious that every possible value of φ results in a crossing of the curve with zero. For fixed
temperature T = 1 the upper limit of the deformation is φmax ≈ 8.6 as visualised in Fig. 3.2.
The existence of a minimal temperature Tmin, or equivalently, a maximal deformation φmax is a
property that appeared as a consequence of the consistent implementation of non-conformality
as explained in Sec. 3.

With all the initial conditions in our hand we can now compute and plot the radial
function R(z) in the 1-parameter model in the Einstein frame by using again the NIntegrate
routine of mathematicar. This is shown in Fig. 6.12 for fixed temperature T = 1, angular
velocity ω = 0.2 and boundary radius R0 = 4 for three different values of the deformation
φ, φ = 0, 5, φmax. First, we can state that the string configuration of a rotating quark in
the 1-parameter model in the Einstein frame is very robust in comparison to the conformal
case. The dotted, red curve shown in Fig. 6.12 is the maximal deformation possible at this
temperature and differs only slightly from the solid, black conformal curve. This robust
behaviour can be found in nearly all figures in this chapter. When the focus is on the energy
loss we have to focus on the point zc where the upper part is causally disconnected from the
lower part since only the upper part is relevant for the energy-loss discussion.

After introducing a deformation the string tends to rotate at larger radii for a fixed set
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Figure 6.12: Radius function R(z) in the 1-parameter (Einstein frame) model against the 5th-dimension
coordinate z for fixed temperature T = 1, angular velocity ω = 0.2 and boundary radius R0 = 4 for three
different values of the deformation φ, φ = 0, 5, φmax. The endpoints of the string represent the horizon zh of
each string configuration.

of our free parameters. The value of zc where the string velocity exceeds the local speed of
light is between zc = 0.24 for the conformal case and zc = 0.27 for the deformed case with
φ = φmax. At these small values of z below zc ≈ 0.3 both string configurations (the conformal
and highly deformed one) are nearly identical. Thus, physical observables – like the energy loss
– may be robust with respect to these range of parameters. A last thing we have to note is the
different length of each curve. Since the temperature is not solely a function of the horizon but
φ-dependent, we have to adjust the horizon zh after choosing the deformation. In principle, a
larger deformation leads to a larger horizon for constant temperature.

The shape of the curves we have seen in Fig. 6.12 is very robust, which means that it
is similar for a large range of temperatures, angular velocities, boundary radii and possible
deformations. In opposition to the SWT -model, the 1-parameter case has string configurations
that are valid up to the horizon for every choice of parameters. This agrees nicely with
our previous result indicating that we should favour a consistent model being a solution to
supergravity equations of motion.

1-Parameter Model: String Frame

Before we proceed with the analysis of the 2-parameter model in section 6.3.3 a brief description
of the string frame computation is helpful. Although many observables are robust concerning
the interchange of string and Einstein frame3, we found in Sec. 4.2 that the energy loss of
trailing string decreases in the latter but rises in the former. Thus we have to discuss both
frames in the context of rotating quarks more carefully. However, we will not go through all
the computational details and just explain the changes in the metric functions together with
some plots.

3The temperature T and the horizon function h(z) is independent of the frame. Thus the values Tmin and
φmax are identical for a given choice of parameters.
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Switching to the string frame leads to a change in the metric functions A and B which can
now be written as

As =
1

2

(
log

(
L2

z2

)
+ φ z2

)
,

Bs =
1

4

(
z4 φ2 − 4 log z

)
+

1

2
φ z2 + logL . (6.45)

The horizon function h and the temperature T remain unchanged. Although the temperature
is quadratic in φ the linear φ-contribution in (6.45) allows for choosing negative deformations
with different physical properties than its positive counterparts. Thus, we have to make sure
that the subtleties occurring in the SWT -model are still not possible here and plot ξs(z) defined
by

Π2 ω2 − e4As(zc) h(zc)
2 ≡ 0 =⇒ ξs(zc) ≡ e2As(zc) h(zc)−Πω = 0 ,

Rs(zc) ≡
√
h(zc)

ω
, (6.46)

in Fig. 6.13 for the same fixed parameters (ω = 0.2, R0 = 4) but negative and positive values
of φ, φ = 8, 5, 0, 1.5, 2 and 5. The curves with negative φ show a behaviour similar to the
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Figure 6.13: zc-defining function ξ(z) in the string frame of the 1-parameter model against z for fixed values
of the temperature T = 1, angular velocity ω = 0.2 and boundary radius R0 = 4 and various deformation
parameters φ, φ = 8, 5, 0, 1.5, 2 and 5.

previous Einstein frame case. The curves with positive values of φ are decreasing faster than
the N = 4T case, but all of them cross zero at some particular value of z = zc. Due to the fact
that the function of the temperature remains unchanged the valid regime for the deformation
is still |φ| < 8.6 for T = 1.



130 Chapter 6 — Rotating Quarks

The radial function can now be computed numerically and is plotted for fixed T = 1,
ω = 0.2 and R0 = 4 and various deformations φ, φ = 8, 5, 0, 1.5, 2 and 5 in Fig. 6.14. Again,
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Figure 6.14: Radius function R(z) in the string frame of the 1-parameter model against the 5th-dimension
coordinate z for fixed temperature T = 1, angular velocity ω = 0.2 and boundary radius R0 = 4 for six different
values of the deformation φ, φ = −8, −5, 0, 1.5, 2 and 5

the string configuration is very robust, although we have small deviations at large z close to
the horizon. Furthermore, we have to mention that all curves cross the N = 4T one. Whereas
the Einstein frame has a universal increase of the radial function towards larger radii when a
deformation is introduced, this behaviour cannot be reproduced in the string frame due to the
crossing of the conformal curve. This is analogous to the drag force where we did not find a
universal behaviour either. These drag force results will become important when focusing on
the energy loss because a slowly rotating quark can be interpreted as a linearly dragged quark
and should lead to the same expressions and physical results.

Now we turn to the 2-parameter model and try to verify the results we found in this section.
The string configuration should be very robust again, although we have an additional free
parameter. There, we will plot the total 3D string configuration of a deformed model.

6.3.3 2-Parameter Deformation

To keep things as simple as possible we will not quote the differential equation (6.42) which is
applicable to the 2-parameter model without restrictions again and again since we just need
to change the metric functions. In the 2-parameter model we have functions that depend on
the scalar (dilaton) Φ which will be used as the 5th-dimensional coordinate. This has been
defined in (3.48). The metric functions of this model are given in eqs. (3.47) and (3.49). The
5th-dimensional coordinate Φ should not be confused with the deformation parameter φ. The
deformation parameters in this case are c and α ≡ c/φ, where φ is the deformation parameter
of the last section. In the following we will derive the string configuration in the Einstein- and
string frame.
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2-Parameter Model: Einstein Frame

The initial conditions are given by the following expressions:

Φc : ξ(Φc) ≡ e2A(Φc, α, c) h(Φc, α,Φh)−Πω = 0 ,

Rc : Rc ≡ R(Φc) =

√
h(Φc, α, Φh)

ω
, (6.47)

and
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√
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√
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]
. (6.48)

Here, we have used the following definitions:

Ac ≡ A(Φc, α, c) , Bc ≡ B(Φc, α, c) , hc ≡ h(Φc, α, c) ,

K(Φc) ≡ 8 e
2
√

2
3
αΦc+4Ac+2Bc α2 Φ3

c ω
2 − c2 e2Ac
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c ,
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c

(
3 +
√

6αΦc

)
ω2 h2

c A
′
c , (6.49)

and the ′ denotes derivatives with respect to Φ. The special value Φ = Φc corresponds to
zc which we have defined in the SWT -model (6.35) and in the 1-parameter model (6.43). It
defines the point where the singularities in the differential equation for R(Φ) (6.42) appear.

By plotting the Φc-defining function ξ(Φ) we check whether the 2-parameter model contains
a range of parameters that do not allow for a definition of Φc. Furthermore, we have again a
maximal deformation for a given temperature T in this model as visualised in Fig. 3.5. The
results for ξ(Φ) are shown in Fig. 6.15 for fixed values of the temperature T = 1, angular
velocity ω = 0.2, deformation α = 0.2 and boundary radius R0 = 4 and various deformation
parameters c, c = 0.1, 0.4, 0.8, 1 and 2. Several things have to be mentioned. Since every new
choice of the deformation parameters α and c changes the coordinates via the formula,

Φc ≡
√

3

2

c

α
z2

c , (6.50)

we cannot compare the N = 4T result with all of these curves. In principle, we should plot each
of the deformed curves together with the corresponding conformal one. This is a disadvantage
of the Φ gauge. By using this gauge choice every conformal N = 4T curve, which has only a T
dependence in z-coordinates, is c and α dependant due to the coordinate transformation.

For the sake of clarity, only the conformal curve for the dashed, blue line with deformation
c = 0.1 is shown in Fig. 6.15. We can state by studying this figure that for each combination of
parameters the initial value Φc is perfectly determined. Some combinations are forbidden due
to the lack of a well-defined temperature. This behaviour stays the same if we change α over a
wide range of parameters. We choose c = 2 as the highest deformation in Fig. 6.15 because for
this given set of parameters we have a maximal deformation of cmax = 2.45. The existence of a
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Figure 6.15: zc-defining function ξ(z) in the Einstein frame of the 2-parameter model against z for fixed values
of the temperature T = 1, angular velocity ω = 0.2, deformation α = 0.2 and boundary radius R0 = 4 and
various deformation parameters c, c = 0.1, 0.4, 0.8, 1 and 2. The solid, black line represents the N = 4T
computation.

maximal deformation cmax and αmax for every temperature is analogous to the 1-parameter
case and can be reviewed in Fig. 3.5.

In summary, we can finally argue that the non-existence of zc for several sets of parameters
in the SWT -model is just an artefact due to its inconsistency.

The numerical solution of the radial function R(z) can now easily be computed and is
shown in Fig. 6.16 in the Einstein frame of the 2-parameter model for fixed temperature T = 1,
angular velocity ω = 0.2, deformation parameter α = 0.2 and boundary radius R0 = 4 and
three different values of the deformation c, c = 0.4, 1 and 2. In contrast to Fig. 6.15 all the
curves are transformed into the z-coordinate and we can now compare all curves with each
other. In particular, in this z-parameterisation there is only one universal N = 4T curve. We
argue that higher deformations lead to larger extensions in the radial direction of the string.
However, the largest possible deformation is around cmax = 2.45 and the model is, as shown
in the figure, quite robust, especially if we are in the regime 0 < z < zc which is physically
meaningful. zc is in this figure around zc ≈ 0.3.

The endpoints of each curve are exactly at the respective zh. The fact that they do not
coincide can again explained by the c- and α-dependence of the temperature leading to different
values zh of the horizon.

Before we use the previous computations in order to compute the energy loss we finally
focus on the string-frame computation where we just show the final results.
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Figure 6.16: Radius function R(z) in the Einstein frame of the 2-parameter model against the 5th-dimension
coordinate z for fixed temperature T = 1, angular velocity ω = 0.2, deformation parameter α = 0.2 and
boundary radius R0 = 4 for three different values of the deformation c, c = 0.4, 1 and 2. The black solid line
represents the conformal N = 4T .

2-Parameter Model: String Frame

In the string frame the metric functions can be written as

As =
1

2
log

(√
3

2
c
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log Φ +

1− α√
6

Φ ,
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3
Φ

)
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α
√

6
+

1√
6

Φ . (6.51)

The initial conditions Φc, Rc, R
′
c that can be computed by substituting (6.51) into (6.43) and

(6.44) are well-defined and we can immediately solve the differential equation (6.42) where
the metric functions of (6.51) are used. The horizon function h(Φ) and the temperature
T remain unchanged with respect to the Einstein frame. After transforming back into the
z-parameterisation we plot in Fig. 6.17 the radial function R(z) in the string frame of the 2-
parameter model for fixed temperature T = 1, angular velocity ω = 0.2, deformation parameter
α = 0.2 and boundary radius R0 = 4 for three different values of the deformation c, c = 1, 2
and 2.44. The results are very similar to the 1-parameter case in Fig. 6.14. The curves seem
again to oscillate around the conformal one. The length of each string is determined by the
horizon value zh which reaches values lower than the N = 4T one. Although many other
observables that we investigated in previous chapters presented a strong deviation from the
conformal values, the radial string configuration is very robust. This can also be verified by
plotting the full 3D string configuration of the maximally distorted curve and N = 4T in
Fig. 6.18. This plot visualises the similarities of the different models. For sake of clarity we have
chosen a higher angular velocity ω = 0.7 than in the previous figures, a smaller temperature
T = 0.01 and the largest possible deformation α = 0.2 and c = cmax = 0.00024 for the chosen
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Figure 6.17: Radial function R(z) in the string frame of the 2-parameter model against the 5th-dimension
coordinate z for fixed temperature T = 1, angular velocity ω = 0.2, deformation parameter α = 0.2 and
boundary radius R0 = 4 for three different values of the deformation c, c = 1, 2 and 2.44. The solid black line is
representing the conformal N = 4T result.

temperature. The small blue circle at the top is again the trajectory which the quark describes
at the boundary. Although we choose almost the strongest deformation in c and α we can
barely see a deviation from the N = 4T curve for small values of the 5th-dimension coordinate
z. Furthermore, boundary quantities can only be influenced by deviations up to zc which is
close to zc ≈ 3. The main difference between the conformal computation and the deformed
case is a consequence of the different horizons zN=4T

h and zdef
h . They have to be different since

the deformation has an impact on the temperature which has to be equal in both case. Thus,
the horizon has to be adjusted.

These results give a hint for the energy loss which should be – according to this discussion
– very robust in this consistent 2-parameter model. For larger values of z we clearly see larger
differences due to the different horizons these models define. However, the overall radial and
angular deviation still remains small.

With this detailed knowledge of the string configurations in the four different models in
our hand we can now derive an expression for the energy loss and try to figure out relevant
deviations in comparison to the conformal case.

6.4 Energy Loss at High and Low Velocities

In this section we want to focus on the energy loss of a rotating quark. While a constant, linear
motion is very easy to describe, it is more difficult to analyse accelerated motion, especially in
non-conformal metric models. Thus, we want to tackle two main problems:

1. What are the properties of the energy loss of a moving quark with non-zero angular
acceleration?



6.4. Energy Loss at High and Low Velocities 135

Figure 6.18: Full 3D string configuration of a 2-parameter model system (blue line) in string frame with α = 0.2
and c = cmax = 0.00024 together with the corresponding N = 4T computation (black line) at T = 0.01, R0 = 1
and ω = 0.7.

2. How strong is the deviation in the energy loss in the transition from dragging to fast
rotating quarks in non-conformal models?

A very interesting question is whether the energy loss of a highly rotating test particle can be
interpreted as synchrotron radiation in vacuum although it is moving in a high-temperature
plasma.

First, we derive the equation for the energy loss in a general formulation for all our metric
models. The basic expression was derived by Herzog & al. [168] and Gubser [165] for the case
of a quark moving in a straight line with constant velocity. This can be extended to other
motions once the string configuration has been determined. It is in principle the same formula
that we have derived in Sec. 4.2 for the trailing string. Then, an expression for the energy
deposited in the medium per unit time can be given by

dE

dt
=Mσ

t , (6.52)
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where

Mσ
t =
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2π α′
√−g . (6.53)

From the first to the second line we used the property of the Lagrangian L in the Nambu–Goto
action of being the negative determinant of the induced two-dimensional worldsheet metric gab:

L =
√

det gαβ , where gab ≡ Gαβ ∂aXα ∂bX
β . (6.54)

In (6.53) and (6.54) Gαβ denotes the five-dimensional space-time metric which we now have to
determine explicitly. In addition, the appropriate parameterisation of our rotating string has
to be used. This description is equivalent to the power deposited by an external agent pulling
the quark through the plasma. According to our discussion in the last sections we use the same
general metric ansatz (3.25) that has been derived in Sec. 3.2.1 and which can be written as

ds2 = e2A
(
hdt2 + d~x 2

)
+
e2B

h
dz2 ,

with d~x 2 = dR2 +R2 dθ2 +R2 sin2 θ dϕ2 . (6.55)

The parameterisation of the string coordinates is again given by (6.4) which we quote here for
convenience:

Xµ ≡
(
t, R(z),

π

2
, φ(z) + ω t, z

)
. (6.56)

After computing the Lagrangian L we can substitute this into (6.53) and derive a compact
expression for the energy loss of a rotating quark

dE

dt
=Mσ

t =
h(z) e2A(z)

2π α′
√−g φ

′(z)ωR2(z) e2A(z)

=
1

2π α′
Πω ,

=
1

2π α′
e2A(zc) h(zc) , (6.57)

where we used the fact that ∂zXt ≡ 0 since the t-component of the coordinates Xµ has no
z-dependence. From the first to the second line we used the explicit form of the Lagrangian
(6.39) and the equation of motion for the φ-derivative (6.41). In the last step of the derivation
in (6.57) the relationship between Πω and zc is used which has been derived in (6.43) and
(6.47). The derivation of the energy loss of a rotating quark has been worked out explicitly for
the N = 4T case in [190] and we have extended it in (6.57) to a wider class of metric models.
It is very important to note that the energy loss of a rotating quark is mainly determined
by Π; for fixed angular velocity ω, temperature T and boundary radius R0 only Π has to be
computed.
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In the case of the conformal model we can simplify (6.57) even further and derive a
well-known expression. By making use of

e2A(zc) =
L2

z2
c

, h(zc) = 1− z4
c

z4
h

, Rc =

√
h(zc)

ω
, z4

c Π2 − L4 h(zc)R(zc) = 0 ,

=⇒ zc =
1√
2L

√
z2

h

(
z2

h Πω +
√

4L4 + z4
h Π2 ω2

)
, (6.58)

the energy loss can be further simplified and has the form of

dE

dt
=

1

2π α′
R2(zc)ω

2 L2

z2
h

√
1−R2(zc)ω2

=
1

2π α′
v2

c√
1− v2

c

L2π2T 2 , with Rc ω ≡ vc and T =
1

π zh

=

√
λπ

2
T 2 v2

c√
1− v2

c

, with α′ = L2
√
λ . (6.59)

The last line in (6.59) is exactly the energy loss of a linearly moving particle with constant
velocity due to drag. However, this time the expression is not evaluated at the boundary velocity
v = R0 ω but at the velocity vc = Rc ω of the special point zc in the bulk. Thus, wherever
vc ' v, the standard linear drag result for dE/dt is obtained. For non-conformal models
we have to rely on the numerical relation between Π and R0 since no explicit expression for
zc(Π, ω) can be derived. Then we can calculate for each combination of parameters (R0, ω, T )
the corresponding energy loss.

The above result for the energy loss in N = 4T leads us to the question if we can take a
certain limit of our kinematic parameters in order to reach the pure drag regime. That this
is indeed possible at least for the conformal case was shown in [190]. We can extend their
procedure to all our non-conformal metric models. Let us start with a short review of the
N = 4T computation.

6.4.1 Linear Drag Limit

In order to obtain a purely dragging quark we should take the limit of v = R0 ω = const and
a = v ω → 0. This means we keep the velocity fixed by simultaneously decreasing the angular
velocity ω and increasing the boundary radius R0. Thus, R0 has to be proportional to 1

ω in
order not to exceed the speed of light, clight = 1. An ω-expansion of R(z) and v(z) has then
the following form

R(z) =
R0(z)

ω
+R1(z) +R2(z)ω +O(ω2) ,

v(z) = v0(z) + v1(z)ω + v2(z)ω2 +O(ω3) , with v(z) = ωR(z) . (6.60)

By substituting (6.60) into the differential equation for R(z) in the conformal finite temperature
case (6.23) we can extract an expression for v0 in the limit ω −→ 0 that is given by

h(z)
(

4h(z) + 4v2
0(z) + z h′(z)

)
v′ 30 (z)

z
(
h(z)− v2

0(z)
) = 0 . (6.61)
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A solution to this equation is v′0(z) = 0 for all z. This means that in the limit ω −→ 0 the
velocity is constant at all points in the bulk, in particular for z = zc leading to the final form
of the energy loss in N = 4T :

v(z = 0) = vc ≡ v ,
dE

dt

∣∣∣∣
RotQ

=

√
λπ

2
T 2 v2

c√
1− v2

c

=

√
λπ

2
T 2 v2

√
1− v2

=
dE

dt

∣∣∣∣
Drag

. (6.62)

This can be visualised by taking a closer look at the radial functions R(z) in all of our models.
For small angular velocities ω the string is hanging almost straight down into the bulk and is
curved slightly outwards close to the horizon.

The same analysis can now be done for the other metric models under investigation. We
recall the general form of the drag force (4.25) which can be written as

dE

dt

∣∣∣∣
Drag

=
1

2π α′
e2A(z∗) v2 , (6.63)

where v is the velocity of the moving quark at the boundary and z∗ is the point in the bulk
where the following condition is satisfied

z∗ : h(z∗) = v2 . (6.64)

By recalling the condition for zc:

zc : h(zc) = v2
c , (6.65)

we already see that if we could prove that vc = v, then both regimes coincide. Therefore,
we just have to verify again that the velocity function v(z) has to have the same behaviour
in the small-ω limit as the conformal model. Since the discussion in the last section showed
the robustness of the string configuration in strongly deformed models, we expect that the
substitution of v(z) (6.60) into the differential equation (6.42) leads to a condition similar to
the conformal case (6.61). And indeed, we find

e2A(z)−2B(z) h(z)
(
4h(z)A′(z)− 4v2

0(z)A′(z) + h′(z)
)
v′ 30 (z)

2
(
h(z)− v2

0(z)
) = 0 . (6.66)

Here, A(z) and B(z) represent general metric functions which can be identified for example
with (6.40) and (6.45) for the 1-parameter model in Einstein and string frame or with (3.47)
and (3.49) for the 2-parameter model in each frame.

We note by studying (6.66) that the exact form of the metric functions is not relevant and
that the unique solution is again v(z) = const for all values of z. Thus, we can state that in
systems with a non-conformal metric the linear-drag regime of each model can be obtained by
taking the limit ω −→ 0 and R0 −→∞ keeping v = R0 ω constant.

Fadafan & al. mentioned in [190] for the conformal N = 4T case that it is not sufficient to
take just the limit of angular acceleration going to zero because they could find a deviation from
the drag result for fixed angular velocity at very low radii, although the angular acceleration
a = R0 ω

2 should be very small at this point. That these limits are not sufficient remains
true after including deformations which can be verified in Fig. 6.19 where we plotted the ratio
Π/ΠDrag versus R0 for a fixed deformation φ = 8 and temperature T = 1 in the 1-parameter
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Figure 6.19: Ratio Π/ΠDrag against R0 in the Einstein frame of the 1-parameter model for a fixed deformation
φ, φ = 8 and temperature T , T = 1 and several values of ω, ω = 0.2, 0.33, 0.5, 1 and 2.

model and several values of ω, ω = 0.2, 0.33, 0.5, 1 and 2. Here, ΠDrag is just the drag force
in the 1-parameter model. For convenience it is presented again in (6.67). Remember that
(6.57) told us that the knowledge of Π is enough to determine the energy loss for fixed angular
velocity.

The computation of Π/ΠDrag is not very complicated in the 1-parameter case. For given
parameters (Π, ω, T, φ) we can use our numerical routine to calculate R0. The denominator
which is essentially (6.63) can be simplified in the 1-parameter model and has the following
form

dE

dt

∣∣∣∣
Drag

≡ 1

2πα′
ΠDrag ω ≡

1

2πα′
e2A(z∗) v2

=
L2

2πα′
v2

z2
∗
, with v2 = h(z∗) . (6.67)

The defining condition for z∗ can be solved analytically for z∗ and thus we have

Π

ΠDrag
=

Πω

φ (R0 ω)2

√
z4

h φ
2 − 4 log

[
1 +

(
1 + e

z4
h
φ2

4

)
(R0 ω)2

]
. (6.68)

Now we can understand the different curves in Fig. 6.19. In the case of small ω the ratio is 1
for nearly all values of R0. This means that the energy loss of a rotating quark is identical to
the energy loss of uniformly moving quark. This has been derived analytically at the beginning
of this section.
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For ω > 1 (green and brown curve) it is not possible to decrease R0 that far in order to
reach the pure drag regime. This is indeed a very peculiar behaviour since the acceleration
a = R0 ω

2 goes to zero in the limit of R0 → 0. In addition, we see in Fig. 6.19 that at large
radii for all values of ω we are definitely not in the drag regime anymore because the quark is
now rotating on a circle with nearly the speed of light. This explains the sharp increase of all
curves at large R.

We have to figure out in the next subsection if the regime at very large R can be explained
by synchrotron radiation. The problem of not being in the drag regime for a going to zero
while keeping v fixed can be solved in N = 4T – according to Fadafan & al. – by imposing a
new condition that defines a new valid drag regime. We will focus on this condition after taking
a closer look at the naive vacuum radiation regime (large ω, small R0) and try to figure out if
it remains true in non-conformal models. A last thing we want to discuss is the robustness of
the vacuum-radiation regime with respect to the deformation parameter φ. Variation over the
whole possible range of φ-values will not lead to a visible change in the ratio Π

ΠVacRad
. Here,

ΠVacRad denotes the energy loss of N = 4 at zero temperature. This will be explained in full
detail in the next section.

6.4.2 Vacuum-Radiation Limit

In this subsection we want to investigate if the fast moving regime a = v ω −→ ∞, or
equivalently, R0 −→ 0 and ω −→ ∞ can be described in terms of synchrotron radiation in
vacuum of N = 4. This is the case in finite temperature N = 4 which has been shown by
Fadafan & al. in [190].

In order to compare our computation with vacuum-synchrotron radiation we use the N = 4
result at zero temperature of Mikhailov [217] which can be written in a very compact form
given by

dE

dt

∣∣∣∣
VacRad

≡
√
λ

2π

~a 2 − (~a× ~x)2

(1− v2)3
. (6.69)

This expression is true for arbitrary accelerations and is indeed equivalent to Liénard’s result
for electromagnetic radiation from an accelerating charge [218] upon replacing 2e2/3 – with e
being the electric charge – in the latter by

√
λ/(2π). For the case of circular motion (6.69) is

given by

dE

dt

∣∣∣∣
VacRad

=

√
λ

2π
ΠVacRad ω =

√
λ

2π

~a 2 (1− v2)

(1− v2)3
=

√
λ

2π
a2 γ4 , (6.70)

where

γ =
1√

1− v2
, and a = v ω = R0 ω

2 . (6.71)

With the help of (6.70) we are now in the position to define the ratio Π
ΠVacRad

in the high-ω
regime that can be written as

Π

ΠVacRad
=

Π

(R0 ω)2 ω

(
1− (R0 ω)2

)2
. (6.72)

Again, we compute Π for a given choice of our parameters (R0, ω, T ) in the 1-parameter model
and plot the ratio Π

ΠVacRad
for the 1-parameter model in Einstein frame in Fig. 6.20 for fixed
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Figure 6.20: Ratio Π/ΠVacRad against R0 in the Einstein frame of the 1-parameter model for a fixed deformation
φ, φ = 8 and temperature T , T = 1 and several values of ω, ω = 1, 1.42, 2 and 5.

deformation φ = φmax, temperature T = 1 and several values of ω, ω = 1, 1.42, 2 and 5. We
have tested all the computations in the other non-conformal metric models but the results
are qualitatively the same. Thus, for sake for clarity we focus on the 1-parameter model in
Einstein frame only.

For large values of ω we note that the ratio is close to 1 for all values of the boundary
radius R0. This means that the energy loss in the highly deformed model is identical to the
energy loss due to vacuum-synchrotron radiation in a conformal N = 4 computation at zero
temperature. This is a very peculiar behaviour that leads to the following questions:

1. Why does the energy loss of a rotating quark show a vacuum-radiation behaviour although
we are in the regime of finite temperature? Is this behaviour also true at high T?

2. Why is this ratio φ-independent? Π is computed at very high deformations in the
1-parameter model but ΠVacRad is the N = 4 value at zero temperature.

Before we try to answer these questions we further note that – according to Fadafan & al.
[190] – the limit of high acceleration a = v ω is not enough to produce pure vacuum radiation
because for small values of ω (ω ∼ 1) the green curve is not close to unity although we are at
sufficiently high R0. This can be observed in Fig. 6.20. Only close to the speed of light v = 1
the energy loss is due to vacuum radiation. Thus, a new condition is needed to distinguish the
drag- and vacuum-radiation regimes. After answering the above questions we will address this
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issue in section 6.4.3 which will not only give us the right description of the validity of both
limits, but furthermore allows us to access the cross-over regime.

We give now a partial explanation for the phenomenon that in the acceleration-dominated
regime, dE/dt is as it would be in vacuum although a high deformation is considered. To this
end, we plot in Fig. 6.21(a) the radial function R(z) against z in the Einstein frame of the
1-parameter model for two different temperatures T , T = 1 and 5 and two deformations φ,
φ = 0 (N = 4T ) and φmax. To ensure that our setup is located deeply in the vacuum-radiation
regime we used R0 = 0.2 and ω = 4 which leads to a Π/ΠVacRad ratio close to unity as visualised
in Fig. 6.20. Here, we can argue that the energy loss of the finite temperature, conformal
N = 4T case (solid, black line) is equal to the highly deformed configuration (dashed, blue
line) since the depth zc in the bulk up to which we have to integrate in order to determine the
energy loss is almost identical. This is remarkable since both string configurations are quite
different, especially, when we consider the string configuration at large z > zc. However, up to
zc the dashed, blue string in Fig. 6.21(a) has not yet developed its deviation from N = 4T
and thus leads to the same result for the energy loss. This discussion nicely explains the
φ-independence of the vacuum-radiation regime. So, the kinematic effect that higher rotation
leads to a smaller value of zc decreases the influence of any kind of deformation. This behaviour
is indeed universal and can be seen in the 2-parameter model as well.

That this universal behaviour does not appear in the linear drag regime is visualised in
Fig. 6.21(b) where the radial function R(z) is plotted against z in the Einstein frame of the
1-parameter model for the maximal deformation φmax and in the conformal N = 4 case for
fixed boundary radius R0 = 4, angular velocity ω = 0.2 and two different temperatures T ,
T = 1 and 5. The black and blue points denote again the value of zc up to which the bulk
influences the boundary. This choice of ω and R0 is located deep in the linear-drag regime as
shown in Fig. 6.19. In contrast to the vacuum-radiation discussion, zc is now totally different
in the conformal N = 4T case and the deformed scenario. Thus, the energy loss noticeably
differs in both models in the linear-drag regime. In addition to this, we note that at high
enough temperatures the effect of deformations weakens since the horizon is now very close to
the boundary and the string cannot develop any deviation from the conformal scenario.

After we have explained the φ-independence of the vacuum-radiation regime and the strong
φ-sensitivity of the linear-drag regime, we can now address the first question raised at the
beginning of this subsection. In Fig. 6.21(c) the radial function R(z) is plotted against z for
N = 4 at finite (coloured lines) and zero temperature (black, solid line) for fixed values of
the angular velocity ω, ω = 4, and boundary radius R0, R0 = 0.2. So we are deep in the
vacuum-radiation regime but without any deformation switched on.

Here, we can argue that for small temperatures (T ∼ 1) the energy loss is indeed due to
vacuum-radiation because both curves and the corresponding values of zc are nearly identical
at least up to zc which is enough in order to compute the energy loss. However, we have to
admit that for very high temperatures (T ≈ 5) the energy loss is not like vacuum radiation.
The agreement between N = 4 vacuum radiation and (deformed), high-T computations is
better for higher angular velocities ω since zc is closer to the boundary. Thus, there has to
be a relation between ω and T that allows us to specify whether our string is located in the
vacuum-radiation regime or not. This will be derived in the next section (6.4.3) and the relation
we are looking for is given in (6.76). A comparison of N = 4 with and without temperature in
the linear drag regime is illustrated in Fig. 6.4.

In summary, we can state that the deformation can be neglected if the quark is deep in the
regime of vacuum radiation. This seems to be true for all models (SWT , 1- and 2-parameter)
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causally disconnected.
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we have studied. Nevertheless, the linear drag regime gets strongly shifted by a deformation.
In the next section we now focus on the problem which limit has to been taken in order to
enter the linear drag or vacuum radiation regime. This finally leads to a ω-T relation.

6.4.3 Crossover Regime

The criterion for the validity of the vacuum-radiation approximation applied to our non-
conformal models for the energy loss of the rotating quark is not simply a −→ ∞. It turns
out that we should directly relate the angular velocity ω to the velocity v or the boundary
radius R0. The question we should ask is which of the two processes of energy loss dE/dt is
dominant.

It turns out that

dE

dt

∣∣∣∣
VacRad

� dE

dt

∣∣∣∣
Drag

, (6.73)

leads to an appropriate relation between ω, T and R0 telling us when we are located in each of
the different regimes. This has been figured out in the conformal N = 4T case by Fadafen &
al. in [190] and as we will show in the following this relation is also valid in the case of highly
deformed metric models. The notation in (6.73) can be related to the corresponding values of
Π as we have derived in (6.57). Equation (6.73) then reads in a general deformed metric model

ΠVacRad � ΠDrag ⇐⇒ v2 ω γ4 � v2

z2
∗ ω

Vacuum radiation : γ2 ω z∗ � 1 ,

Linear drag : γ2 ω z∗ � 1 . (6.74)

Here, z∗ denotes again the point where the velocity v of the string in the drag-force computation
reaches the local speed of light cbulk at that depth in the bulk. z∗ was defined in (6.67).

Relation (6.74) is the natural generalisation of the N = 4T computation of Fadafen & al.
in [190] to non-conformal metric models with arbitrary metric functions A and B. In order
to see that (6.74) reduces to the known N = 4T case we take the conformal limit of φ −→ 0.
Then (6.74) for the vacuum-radiation regime reads

z∗
φ→0−−−→ (1− v2)1/4 zh =

γ−1/2

πT

=⇒ ω2 γ3

π2T 2
� 1 , (6.75)

which is exactly the conformal expression that has been derived in [190]. Although the
deformation has in general an influence on the shape of the string and on the linear drag regime
of the energy loss, we discussed in the last paragraph that the vacuum radiation regime is
φ-independent. Thus, we can take the limit in (6.75) and state that this condition for being in
the vacuum-radiation regime should be valid in the case of highly deformed metric models as
well. We end up with the desired relation between T and ω. Equation (6.75) can be rewritten
in the form

ω �
(
1− v2

)3/4
π T . (6.76)
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Therefore, we can state that ω � πT or ω �
(
1 − v2

)3/4 is a good condition for vacuum
radiation even in the highly deformed models. To fulfil this condition a large value of R0 or a
large ω in comparison to T directly leads into the vacuum radiation regime. This is confirmed
in our Figs. 6.19, 6.20 and 6.21(c).

Let us now turn back to the visualisation of both regimes in one figure. We plot Πω z2
∗

v2 over
γ4 ω2 z2

∗ in Fig. 6.22 in the Einstein frame of the 1-parameter model for fixed temperature T ,
T = 1 and deformation φ, φ = 8 and several values of ω, ω = 0.02, 0.2 and 2. This is nothing
else than a plot of ΠRot/ΠDrag over ΠVacRad/ΠDrag. Thus it is clear that in the drag regime
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Figure 6.22: Combination Πω z2
∗/v

2 against γ4 ω2 z2
∗ in the Einstein frame of the 1-parameter model for fixed

temperature T , T = 1 and deformation φ, φ = 8 and several values of ω, ω = 0.02, 0.2 and 2. The solid line
represents the incoherent sum of the drag and vacuum-radiation regime.

the function Πωz2
∗/v

2 is 1 and linear in the radiation dominated regime, since in the first case
ΠRot is almost ΠDrag and in the latter case it is almost ΠVacRad.

The solid black line in Fig. 6.22 denotes the incoherent sum Πω
∣∣
IncSum

= Πω
∣∣
Drag

+

Πω
∣∣
VacRad

that has been plotted in [190] for the first time. As in the conformal case we can
state that general deformations lead to negative interference. In addition to this, our results
illustrate that the analysis of the energy loss of rotating quarks in hot non-conformal plasmas
allows us to study the crossover from a linear drag dominated to an acceleration dominated
regime in a computation that is valid in both regimes. The main point is that we cannot only
derive each regime but we have full control of the cross-over regime. We clearly see that the
energy loss is dominated by linear drag when γ2 ω z∗ � 1 and by radiation as if in vacuum
when γ2 ω z∗ � 1. Furthermore all curves are very robust when different values of the angular
velocity ω are chosen.

Two interesting points have to be stated. First, we observe that all the curves for different
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ω come very close to lying on a single universal scaling curve even in the crossover regime. This
is still not fully understood in a conformal system and remains very complicated in a highly
non-conformal model. For the sake of clarity we did not plot other curves with the deformation
parameter φ changed in this figure because the deviation is not visible. The endpoints of each
curve can be understood as the points where the velocity v is zero and γ = 1 for a fixed angular
velocity ω. Each curve then extends arbitrarily far to the right as γ increases. Similar to the
change of deformation a change of temperature within a certain regime would not dramatically
change the curves. Thus, we find another argument for the robustness of the energy loss of
rotating quarks in hot, non-conformal plasmas.

Fadafan & al. [190] have tried to give a more physically motivated explanation for the fact
that in the acceleration-dominated regime dE/dt is as it would be in vacuum. In QED one
would expect that the spectrum of synchrotron radiation rises for larger frequencies ω until a
critical value of ω = ωc is reached and falls off exponentially for even larger ω. The critical
frequency is given by

ωc = 3γ3 ω . (6.77)

This can interpreted as follows: Small frequencies do not contribute to the radiative energy loss
since almost all energy is carried by radiation modes ω of order ωc. Thus, in QED, a plasma
with temperature T has no influence on the radiation whenever ωc � πT [190]. This condition
is fulfilled in the acceleration-dominated regime as shown in (6.76) and tempts us to argue that
dE/dt for a rotating quark is as it would be in vacuum. However, it is questionable whether
we can apply QED results to our strongly coupled plasma that contains coloured excitations.
Although the differences between Liénard’s result in QED and Mikhailov’s one (6.70) for
radiation of an accelerating charge in N = 4 is only the coupling constant, we have on one
hand a weakly coupled plasma (QED) and on the other hand a strongly coupled one (N = 4).
The radiation in the weakly coupled QED plasma consists neutral photons, whereas the latter
has a synchrotron radiation which is composed of coloured excitations. Since the plasma
carries colour as well the coloured excitations will not propagate for times large compared to
the inverse of the temperature due to a strong quenching by the plasma. Fortunately, this
is exactly what we see. Although the rotating quark is emitting synchrotron radiation as
in vacuum, in the acceleration-dominated regime, the energy that the quark deposits in the
plasma is different than that of synchrotron radiation in vacuum. By going back to Fig. 6.2
where N = 4 at zero temperature is shown we note that the rotating string extends out to
R −→∞ indicating that the radiated energy propagates to infinity. In the finite temperature
regime – with or without deformation – the string approaches the horizon and coils on top of
itself over and over and the radius remains finite. Thus, the energy is deposited in the plasma
within a certain, finite radius. This nicely agrees with the physical interpretation of Fadafan &
al. [190] we have mentioned above.

With the results derived in the current chapter we close the computational paragraphs in
this thesis and draw some conclusions in the last chapter. There, we summarise the different
behaviours (universality and robustness) of the observables under investigation.



Chapter 7
SUMMARY AND CONCLUSIONS

Before concluding what this thesis has achieved we have to summarise the main results of
the last chapters first. Therefore, we have to recall the three main questions this work was

driven by which have been posed at the beginning:

1. RHIC and the LHC provide us with data of a strongly coupled, expanding, hot quark-
gluon plasma and many standard methods are insufficient to explain all the phenomena
that arise in the experiments. Is there a way to apply the theoretical framework of
gauge/gravity dualities in order to gain insights into how matter behaves under these
extreme conditions?

2. Gauge/gravity dualities are very helpful in various fields. In the realm of relativistic,
strongly coupled, finite temperature systems many realisations of the holographic principle
are known. They can be applied to several physical systems from ultracold atomic gases
to hot, dense plasmas. Do many of these different systems share the same collective
phenomena and is there a way to extract a universal behaviour by studying gauge/gravity
dualities?

3. Is there a way to mimic QCD in the regime of strong coupling and finite temperature
and maybe even finite density by finding appropriate holographic models?

As the second question already states, the range of physical systems that can be tackled
with a gauge/gravity approach is considerably large. Apart from the prototype realisation of
the holographic principle that we are using in order to study strongly coupled gauge theories at
finite temperatures, AdS/CFT frameworks have been developed to study e. g. superconductors
[219–223], non-relativistic systems [216, 224–229], relativistic fluids [127, 128, 230, 231] and
holographic neutron stars [232]. Within our particular field of interest we restricted ourselves
to a class of models that can be described on the gravitational side by metric solutions of a
5D Einstein–Hilbert-scalar action SEHs. The pure AdS5 space-time is dual – according to the
Maldacena conjecture – to conformal N = 4 SYM, whereas deformed AdS5 space-times that
are solutions to SEHs introduce non-conformalities right from the beginning. These deformed
metric models are then mapped onto gauge theories that are non-conformal as well. In doing
so, we lose knowledge about the exact dual gauge theory as we have mentioned in Chap. 3.
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Since the string theory dual to QCD has not been found up to now, it is not sufficient to
choose a particular deformation and claim that this choice is the best way to study real-world
physics. More promising is to proceed by searching for universal behaviour in a large class of
deformed AdS5 space-times.

In the class of models under investigation in this thesis we have tried to be as complete as
possible by choosing a very general metric ansatz in Sec. 3.2.1 that satisfies basic symmetries
like Poincaré symmetry. After a general introduction in Chap. 2 to gauge/gravity dualities, we
introduced the following three different deformed models in Chap. 3 that are representatives of
our class of theories.

SWT -model A simple overall deformation factor of the form ec z
2 in front of the pure AdS5-

BH metric leads to this non-conformal metric. The model has been proposed by Kajantie
& al. in [64] and a similar approach is due to [63]. The computation of various physical
quantities like the QQ̄-distance, drag force and trace anomaly is very similar to the
conformal AdS5-BH case. However, the model has some general disadvantages since it is
not a solution to Einstein equations derived from any kind of 5D Einstein–Hilbert-scalar
action.

1-parameter model A simple but very useful consistent deformation of the AdS5-BH case
has been studied as well. This model has not been analysed in the literature so far. It
is the model which is closest to the conformal configuration with the scalar (dilaton)
playing the dominant rôle in this deformation. No other deformations have been included
by hand. The deformation parameter is called φ.

2-parameter model A more complicated deformation of the conformal case has been used
that has two parameters c and φ. It was proposed by Gubser & al. in [62]. Apart
from the parameter φ due to the scalar it includes another deformation c similar to the
SWT -model. These two parameters can be expressed in terms of dimensionless ratios
c/T 2 and α = c/φ, where T is the temperature. One can assume the scalar Φ ∝ φ z2 to
be the string theory dilaton (string frame) or as a simple scalar of the theory (Einstein
frame). Within this framework we have studied various observables and compared them
to the other deformed models and the conformal case in order to extract conditions when
a universal behaviour becomes apparent.

By using these metric models we have analysed the applicability – according to the first
question – of holographic approaches to heavy-ion collisions. All of them contain strong
coupling, non-conformality and finite temperature but lack for example fundamental quarks.
This has the advantage that the class of our models incorporates a considerable amount of
QCD properties but remains computationally simple for a large range of parameters.

We have been able to find, as was asked in the second question, that certain observables
are either very robust or show a universal change in a certain direction. These results – most
of them obtained for the first time in this thesis – will be summarised in the following. In
order to study experimental results from RHIC and LHC several observables have been studied.
Three of them, the quark-antiquark distance LπT in Sec. 4.3.1 and Chap. 5, the drag force
dp/dt in Sec. 4.2 and the energy loss of rotating quarks dE/dt in Chap. 6 are well-known in
the conformal AdS5-BH background1 and the analysis has been systematically extended in

1For the drag force see [74, 165], for the QQ̄-distance see [124], for the energy loss of rotating quarks see
[190, 215].
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this work to the large class of deformed, non-conformal metric models specified above.
In the case of the quark-antiquark distance various studies are known even in non-conformal

metric models in the literature [64, 65, 73]. However, a systematic analysis has only been done
in our previous work [75, 76] where a universal behaviour was revealed numerically. There, we
conjectured that the maximal value (LπT )S of the QQ̄-distance is in consistently deformed
metric models always larger than the corresponding conformal N = 4T value (LπT )max

N=4T
.

In Chap. 5, this has now been proven analytically for a general class of small perturbations
around the conformal solution by using linearised Einstein equations derived from the overall
5D Einstein–Hilbert-scalar action SEHs. Here, ‘general’ means that the perturbations have to
obey the same symmetries as the full solution. The conjecture has been verified in Einstein-
(Sec. 5.4.1) and string frame models (Sec. 5.4.2). The proof of this screening-distance conjecture
confirms nicely the expectation expressed in the second question above. Based on these results
it is now much simpler to consider, in a next step, additional kinematic parameters like the
rapidity η of the QQ̄-pair as well as a possible orientation θ with respect to the rapidity that
have also been studied numerically in [75, 76].

A similar systematic increase of an observable after introducing deformations has been
found in the case of the running coupling αQQ̄ derived from the free energy of a static QQ̄-pair
in Sec. 4.3. The analysis of this quantity that has hitherto been studied only in a conformal
N = 4T plasma has been extended to all our non-conformal metric models. There it exhibits a
universal increase for larger QQ̄-distances up to a maximum value that defines a length scale
Lmax. This in turn can be compared to the maximum QQ̄-distance LS and both quantities
are in the ballpark of a length scale LLat

max obtained from lattice simulations [196–199]. These
results that we have obtained by studying the running coupling address the last question raised
at the beginning of this chapter.

Thermodynamic observables like the energy density, pressure and trace anomaly have
been studied in Chap. 3 and have reproduced QCD results2 known from lattice simulations
[159, 160]. However, they are in principle not very useful to compare particular properties
of several non-conformal models with QCD. This is due to their robust behaviour. It was
shown that large deformations only lead to small changes in these observables. They resemble
QCD irrespective of the chosen deformation. On the other hand the running coupling is very
sensitive to a change of the deformation and it was possible in Sec. 4.3.5 to find a particular
non-conformal, deformed AdS5 model that mimics QCD even on a quantitative level. Driven by
these promising results it might be possible to improve the agreement with QCD lattice results
even more by using more advanced string-theoretic models that include for example asymptotic
freedom. This would be advantageous since all our theories have a constant running coupling
in the limit of very small QQ̄-distances. However, due to the higher amount of complexity
those models incorporate, a computation of αQQ̄ has not been accomplished so far.

Although the other observables analysed in this thesis do not exhibit a systematic change
in a certain direction when a deformation is implemented, they nevertheless show a universal
behaviour that we have called robustness. In a large class of deformed metric models these
observables deviate only slightly from the conformal N = 4 value or even do not change at
all. The property of being robust is very prominent for example in the case of the drag force
that has been analysed in Sec. 4.2. This quantity is very robust in the Einstein frame of the

2The best-fit values are: c = 0.127 GeV2 for the SWT -model, φ = 0.02 GeV2 for the 1-parameter and
φ = 0.32 GeV2, c = 0.1 GeV2 for the 2-parameter model.
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1-parameter model3 for all values of the parameters as shown in Fig. 4.6. In the string frame
robustness can be found in the regime of φ < 1 for the 1-parameter model and α > 0.3 and
c < 0.5 for the 2-parameter model as we have presented in Sec. 4.2. These regimes include the
physically meaningful, best-fit values mentioned above.

The robust behaviour of the drag force is in good agreement with the results that we
have found in the case of the energy loss of rotating quarks in Chap. 6. In the conformal
finite-temperature case that has been studied extensively in [190] this observable can be divided
into three different regimes (drag, radiation-dominated and crossover). We have worked out
that the same distinction between these different regimes is possible in deformed non-conformal
models that have not been applied to the energy loss of a rotating quark so far in the literature.
It was shown analytically that for certain limits of the radius at the boundary R0 and the
angular velocity ω pure energy loss due to drag or due to radiation can be recovered. The
energy loss is in general very robust which has been visualised in Fig. 6.18. Furthermore, in the
radiation-dominated regime of highly deformed models we obtained almost the same results as
in the vacuum of N = 4 at zero temperature. The important condition for this to happen is

ω �
(
1− v2

)3/4
π T , (7.1)

where v = R0 ω is the velocity of the rotating quark, T is the temperature and ω the angular
velocity. This states for example that we enter the regime of almost pure vacuum radiation by
choosing the angular velocity ω very large in comparison to the temperature. In addition to
this, deformation does not matter in the vacuum-radiation regime. Furthermore, the crossover
regime has been explored in non-conformal models for the first time and turns out to deviate
only slightly from the conformal case. These robust results are very remarkable in the sense
that it is not relevant for many observables if we do our computations in a conformal or highly
non-conformal system, or equivalently, the energy loss of a rotating quark is not affected by
the implementation of non-conformality.

The main problem in comparing the results of our computations with RHIC or LHC data
is that these observables cannot be measured directly in the experiment. The energy loss of
a rotating or a decelerated quark is encoded deeply in the data. The same is true for the
screening distance of a fast-moving quark-antiquark pair. However, if QCD at strong coupling
and high temperature is not that far away from what we have done, we can use our results in
order to gain more insights into how such systems behave. The crossover regime for rotating
quarks in Sec. 6.22, for example, tells us about the destructive interference of energy loss via
drag and via vacuum radiation. In addition to this, Fig. 4.15 illustrates that all the length
scales (LS, Lmax, L

Lat
max) that could be extracted from the QQ̄-pair analysis in lattice QCD and

holographic approaches are only slightly above the conformal N = 4 result,

(LπT )N=4T
S = 0.86912 , (7.2)

indicating that the screening-distance conjecture is satisfied in real-world physics.
There are already some approaches where holography-driven computations are applicable to

measurements in the experiments at the LHC and RHIC. A famous example is the measurement
of the elliptic flow in terms of the coefficient v2 that can be used in hydrodynamic simulations
in order to compute the shear viscosity over entropy ratio η/s being close to the value that
AdS/CFT suggests [233]. It will be very interesting whether further agreement between

3There the maximal deviation from the conformal results is around 30 %.
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theory and experiment for other observables can be achieved. But this is not the end of the
applicability of the holographic principle to non-abelian gauge theories at strong coupling.
By including gauge fields Aµ into the 5D Einstein–Hilbert-scalar action [155] it is possible
to describe physical systems at non-zero chemical potential. It would be desirable to apply
our discussion to this even larger class of theories. As far as recent computations by Samberg
[77] are concerned, there is already strong evidence that these systems behave similarly to the
models we have analysed in this work.

Further, more elaborate theories have been developed that incorporate higher-dimensional
string theory input (D4, D7 branes) as studied for example by Erdmenger & al. in [129],
Klebanov, Witten and Strassler in [55, 234–236] or by Sakai and Sugimoto in [57]. Some of
these approaches include fundamental quarks and reproduce confinement leading to more
QCD-like theories. However, these approaches are not without their own problems. The large
amount of complexity impedes applications to the observables we have studied. Thus, our
approach is well balanced between complexity and applicability.

In summary, we can state that the analysis performed in this thesis provides us with a better
understanding of how strongly coupled, non-abelian gauge theories behave at high temperatures.
Nearly all observables under investigation exhibit universal or robust behaviour for a large class
of theories and it was even possible to take some steps in the direction of exploring QCD-like
theories. But many issues still remain to be resolved. There are fundamental ones like the
mathematical proof of the AdS/CFT-conjecture and more specific issues like the search for
the exact gravity dual to QCD and it is very likely that the principle of holography will also
lead to many new and interesting applications to various other physical systems in the near
future. Thus, not only in high-energy experiments but also in the particular field of theoretical
physics where issues at strong coupling are addressed, life is currently very exciting, and even
more fascinating and groundbreaking days are ahead of us.





AppendixA
VARIATION OF EINSTEIN–HILBERT ACTION

Let us derive the general Einstein equations by varying an action of the Einstein–Hilbert
form. Since this thesis deals with two different types of actions we derive the precise form

of the Einstein equations in both cases. At the beginning of this work we stumbled over the
basic Einstein–Hilbert action with a negative cosmological constant in Sec. 2.1.1 when the
AdS5 metric has been derived. Then, an extension of this action including a scalar (that might
be the dilaton) has been studied in Sec. 3.2 with an action given by (3.12). Thus, this chapter
is divided into two parts, each dealing with one of the two above-mentioned actions.

A.1 Derivation of AdS5 Metric

We recall the Einstein–Hilbert action (2.10) that leads to the AdS5 metric:

SEH =
1

16πG
(5)
N

∫
d5x
√

G
(
R− 2Λ

)
, Λ =

6

L2
, (A.1)

with R being the Ricci scalar and Gαβ being the five-dimensional space-time metric. The Ricci
scalar is defined by

R = Rαα = GαβRραρβ = Gαβ 2Γρα[β,ρ] + 2Γρλ[ρΓ
λ
β]α , (A.2)

where Rραµβ is the Riemann tensor and Γραβ are the Christoffel symbols. The only unknown
field in this action is the metric. Thus, the variation of the action with respect to the metric
Gαβ has to vanish:

δSEH

δGαβ
= 0

=
1

16πG
(5)
N

∫
d5x

[
δ
√

G

δGαβ
R+

√
G

δR
δGαβ

− δ
√

G

δGαβ
2Λ

]
. (A.3)
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By using basic relations in general relativity

δ
√

G =
1

2
√

G
δG =

1

2

√
GGαβ δGαβ =

1

2

√
GGαβ δG

αβ ,

δR
δGαβ

= Rαβ , (A.4)

(A.3) can be simplified in order to obtain Einstein equations in five dimensions including a
negative cosmological constant Λ that are given by∫

d5x

[
1

2

√
GGαβR+

√
GRαβ +

1

2

√
GGαβ 2Λ

]
= 0

=⇒ Rαβ −
1

2
RGαβ + λGαβ = 0 . (A.5)

We derived the AdS5-BH metric in (2.33) which reads

ds2 = Gαβ dXαdXβ =
L2

z2

(
h(z, zh) dt2 + d~x 2 +

dz2

h(z, zh)

)
,

with h(z, zh) = 1− z4

z4
h

. (A.6)

Thus, by using Mathematicar to compute the Ricci tensor Rαβ and Ricci scalar R we end
up with the following expressions

R00 =
4

z2
− 4z2

zh
,

Rii = − 4

z2
, with i ∈ {x1, x2, x3} ,

R44 =
4z4

h

z6 − z2 z4
h

,

R =
20

L2
. (A.7)

By substituting (A.7) into (A.5) it can be shown immediately that the Einstein equations are
satisfied. Note that they are also satisfied if we go to zero temperature (zh =∞). In the second
part of this appendix we turn to the more sophisticated approach where the Einstein–Hilbert
action has an additional dilaton term.

A.2 Variation of Extended Einstein–Hilbert Action

The action SEHs which will be analysed in this section is given by (3.12) and reads

SEHs =
1

16πG
(5)
N

∫
d5x
√

G

(
R− 1

2

(
∂Φ)2 − V (Φ)

)
. (A.8)

In this action two fields (Gαβ and Φ) have to be determined. Therefore, we have to vary (A.8)
with respect to the metric Gαβ and the scalar field Φ. The first variation leads to the following
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expression

δSEHs

δGαβ
=

1

16πG
(5)
N

∫
d5x

[
δ
√

G

δGαβ
(
R− 1

2
(∂Φ)2 − V (Φ)

)
+
√

G
( δR
δGαβ

− 1

2

δ(∂Φ)2

δGαβ

)]
=

1

16πG
(5)
N

∫
d5x

[
1

2

√
GGαβ

(
R− 1

2
(∂Φ)2 − V (Φ)

)
+
√

G
(
Rαβ −

1

2
∂αΦ ∂βΦ

)]
. (A.9)

In the last line we used the identity

(∂Φ)2 = ∂αΦ ∂αΦ = (∂αΦ) (∂βΦ)Gαβ . (A.10)

The variation with respect to Φ can be written as

δSEHs

δΦ
=

1

16πG
(5)
N

∫
d5x
√

G

[
1

2

δ(∂Φ)2

δΦ
− δV (Φ)

δΦ

]
=

1

16πG
(5)
N

∫
d5x
√

G

[
�LBΦ− V ′(Φ)

]
, (A.11)

where ′ denotes the derivative with respect to Φ and �LB the Laplace–Beltrami operator. In
order to obtain the last line of (A.11) two integrations by parts have been used

1

2

δ
(
∇αΦ∇βΦGαβ

)
δΦ

=
1

2

[
∇βΦ

δ∇αΦ

δΦ
+∇αΦ

δ∇βΦ

δΦ

]
Gαβ

= ∇α∇βΦGαβ = ∇α∇αΦ = �LBΦ , (A.12)

that are well-defined under the integral in (A.11). Furthermore, we can neglect the boundary
terms that arise in the integration by parts since Φ is supposed to vanish identically at large
Xα.

In summary, the variation of (A.8) with respect to Gαβ and Φ leads to the following
equations of motion

Rαβ −
1

2
RGαβ = Tαβ , with Tαβ =

1

2
∂αΦ ∂βΦ− 1

4
(∂Φ)2Gαβ −

1

2
V (Φ)Gαβ ,

�LBΦ = V ′(Φ) , with �LBΦ =
1√
G
∂α

(√
GGαβ∂βΦ

)
. (A.13)

In the last line of eq. (A.13) we recall the definition of the Laplace–Beltrami operator �LB

which is a generalisation of the common d’Alembert operator. These coupled, non-linear
differential equations in (A.13) have to be solved with an appropriate ansatz for the metric.
This is discussed in detail in Sec. 3.2.
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A.3 Curvature Properties

By specifying to the general metric ansatz derived in Sec. 3.2.1 the metric reads

ds2 = e2A(z)
(
h(z)dt2 + d~x 2

)
+ e2B(z) dz2

h(z)
. (A.14)

With the help of mathematicar we quote in the following the expressions for the Christoffel
symbols Γγαβ, Riemann tensor Rραβγδ, Ricci tensor Rαβ and Ricci scalar R. The Christoffel
symbols are then given by

Γtzt = A′(z) +
h′(z)

2h(z)
, Γizi = A′(z) , Γzii = e2A(z)−2B(z) h(z)A′(z) ,

Γztt =
1

2
e2A(z)−B(z) h(z)

(
2h(z)A′(z) + h′(z)

)
, Γzzz = B′(z)− h′(z)

2h(z)
, (A.15)

with i ∈ {x1, x2, x3}. The elements of the Riemann tensor can be written as

Rtiit =
1

2
e2A(z)−2B(z)A′(z)

(
2h(z)A′(z) + h′(z)

)
,

Rtzzt =
1

2h(z)

[
3A′(z)h′(z)−B′(z)h′(z) + 2h(z)

(
A′(z)2 −A′(z)B′(z) +A′′(z)

)
+ h′′(z)

]
,

Ritit =
1

2
e2A(z)−2B(z) h(z)A′(z)

(
2h(z)A′(z) + h′(z)

)
,

Rx1
x2x2x1

= Rx1
x3x3x1

= Rx2
x3x3x2

= e2A(z)−2B(z) h(z)A′(z)2 ,

Rx2
x1x2x1
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x1x3x1

= Rx3
x2x3x2

= e2A(z)−2B(z) h(z)A′(z)2 ,

Rizzi = A′(z)2 +A′(z)

(
B′(z) +

h′(z)

2h(z)

)
+A′′(z) ,

Rztzt =
1

2
e2A(z)−2B(z) h(z)

[
3A′(z)h′(z)−B′(z)h′(z) + 2h(z)

(
A′(z)2

−A′(z)B′(z) +A′′(z)
)

+ h′′(z)

]
,

Rzizi =
1

2
e2A(z)−2B(z)

[
A′(z)h′(z) + 2h(z)

(
A′(z)2 −A′(z)B′(z) +A′′(z)

)]
. (A.16)

The elements of the Ricci tensor can be computed using the Riemann tensor and have the
following form:

Rtt =
1

2
e2A(z)−2B(z) h(z)

[
6A′(z)h′(z)−B′(z)h′(z)

+ 2h(z)
(
4A′(z)2 −A′(z)B′(z) +A′′(z)

)
+ h′′(z)

]
,

Rii = e2A(z)−2B(z)

[
A′(z)h′(z) + h(z)

(
4A′(z)2 −A′(z)B′(z) +A′′(z)

)]
,

Rzz =
1

2h(z)

[
6A′(z)h′(z)−B′(z)h′(z) + 8h(z)
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A′(z)2 −A′(z)B′(z) +A′′(z)

)
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]
.

(A.17)
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The last necessary component in order to derive the explicit system of differential equations in
(3.26) – (3.29) is the Ricci scalar R given by

R = e 2B(z)

[
9A′(z)h′(z) +B′(z)h′(z)

− 4h(z)
(
5A′(z)2 − 2A′(z)B′(z) + 2A′′(z)

)
− h′′(z)

]
. (A.18)





AppendixB
DERIVATION OF THE TEMPERATURE

FORMULA

T he derivation of the temperature as a function of the metric is well-known in black-hole
thermodynamics [237]. The main ingredient of this computation is the Bekenstein–Hawking

temperature relation

T =
κ

2π
, (B.1)

where κ is the surface gravity computed at the horizon zh. There are two ways to determine κ:

1. In terms of the Killing vector which is orthogonal to the horizon.

2. In terms of the d-acceleration and d-velocity of a free particle.1

In this chapter, by following Gron and Hervik [237], we focus on the first method because it
leads directly to a formulation in terms of the metric functions, although the second approach
is more descriptive. From general relativity it is known that the horizon of a black hole is a
so-called null surface: any vector normal to the horizon surface is a null vector. Let us consider
the Killing vector that generates time translations given in a general form by

ξ = ξα eα , with α ∈ {t, ~x, z} . (B.2)

In a Schwarzschild-like space-time this vector is simply given by

ξ = et . (B.3)

In other space-times the Killing vector of time translations looks different (e.g. in Kerr space-
time it is a linear combination of ∂

∂t and
∂
∂φ). The Killing vector is by definition normal to the

horizon which leads to

ξα ξ
α = 0 , (B.4)

1In the case of d = 4 dimensions these quantities reduce to the well-known four-acceleration and four-velocity.
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since the horizon is a null surface. A particular property of the Killing vector is the invariance
of ξα ξα along the horizon. Thus the gradient ∇α (ξβ ξ

β) is also normal to the horizon. The
surface gravity κ is now the proportionality constant between these two quantities and can be
cast into the following form

∇α (ξβ ξ
β) = 2κ ξα . (B.5)

This can be rewritten as

ξβ∇α ξβ = ξβ∇β ξα = κ ξα , (B.6)

where we have used the Killing equation ∇α ξβ +∇β ξα = 0.
Now, we have to solve (B.6) for κ. By using Frobenius’ theorem it can be shown that the

Killing vector ξα is hypersurface-orthogonal. This means, that the Killing vector satisfies

ξ[α∇β ξγ] = 0 . (B.7)

The bracket denotes total anti-symmetrisation which is the alternating sum over permutations
of the indices α, β and γ. This can be transformed into the following form:

ξ[α∇β ξγ] =
1

3!

[
ξα∇β ξγ − ξα∇γ ξβ + ξγ ∇α ξβ − ξβ∇α ξγ + ξβ∇γ ξα − ξγ ∇β ξα

]
= 0

⇐⇒ 0 = −ξα∇γ ξβ − ξγ ∇β ξα − ξβ∇α ξγ . (B.8)

A short computation shows that (B.8) can be cast into the form

ξγ ∇β ξα =
(
ξβ∇α ξγ − ξα∇β ξγ

)
= 2ξ[β∇α] ξγ . (B.9)

After contracting this with ∇α ξβ , we obtain

ξγ
(
∇α ξβ

) (
∇α ξβ

)
= 2

(
∇α ξβ

) (
ξ[α∇β] ξγ

)
= 2

(
∇α ξβ

)(1

2

(
ξα∇β − ξβ∇α

)
ξγ

)
=
(
ξα∇α ξβ∇β + ξβ∇α ξβ∇α

)
ξγ

=
(
κ ξβ∇β − κξα∇α

)
ξγ = 2κ ξα∇α ξγ = 2κ2 ξγ . (B.10)

In the last line we used the definition of the surface gravity (B.6). This equation can be solved
for κ2 and we end up with an elegant expression for the surface gravity:

κ2 =
1

2

(
∇α ξβ

)(
∇α ξβ

)
. (B.11)

In this thesis we work with Schwarzschild-like geometries only and the time-like Killing vector
is thus given as

ξα = δαt ξα = δαtGtt , (B.12)

where the covariant expression simplifies to the form shown in (B.12) due to the diagonal form
of the space-time metric Gαβ. To simplify (B.11) knowledge about the covariant derivative
∇α ξβ is required. This in turn is given in terms of the Christoffel symbols

∇α ξβ = ∂α ξβ − Γγβα ξγ , (B.13)
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where we can set ∂α ξβ = ∂z ξt = ∂z Gtt because the space-time metric is a function of z only.
Now, we focus on the right hand side of (B.13) that reduces to

Γγβα ξγ =
1

2
Gγη

(
∂β Gαη + ∂αGβη − ∂η Gβα

)
ξγ

=
1

2
Gtt
(
∂β Gαt + ∂αGβt − 0

)
ξt . (B.14)

Thus, only two terms contribute to (B.13): those with β = t, α = z and α = t, β = z. From
Killing’s equation ∇α ξβ = ∇β ξα and the fact that in a coordinate basis the Christoffel
symbols are symmetric in the lower indices we deduce that only ∇z ξt and ∇t ξz are non-zero.
These two expressions can be written in terms of the metric elements by using (B.14):

∇t ξz = Γttz ξt =
1

2
Gtt ∂z Gtt · gtt , ∇z ξt =

1

2
Gtt ∂z gtt · gtt . (B.15)

Now we are able to derive κ2 in terms of the metric functions by substituting (B.15) into (B.11)
which leads to

κ2 =
1

2

(
∇zξt∇zξt +∇tξz∇tξz

)
=

1

2
∇zξt

(
∇zξt −∇tξz

)
=

1

4
∂zGtt

(
Gzz∇zξt −Gtt∇tξz

)
=

1

4
∂zGtt

(
Gzz

1

2
Gtt ∂zGtt +

1

2
Gzz Gtt ∂zGtt

)
=

1

4
Gzz Gtt

(
∂zGtt

)2
. (B.16)

By using the specific metric elements of the general metric ansatz derived in Sec. 3.2.1 we end
up with an explicit expression of the temperature T given by

Gtt = h e2A , Gtt =
1

he2A
, Gzz =

e2B

h
, Gzz =

h

e2B
,

=⇒ T =
κ

2π
=

1

2π

[
1

4

h

e2B
· 1

h e2A
·
(
∂zh
)2
e4A

]1/2
∣∣∣∣∣
z=zh

=
eA−B |h′(zh)|

4π
. (B.17)

This is the final expression that can be found in (3.6) as well and is used throughout this work
because Schwarzschild-like metrics are used without exception.





AppendixC
WORLDSHEET HORIZON

F or the energy loss of a trailing string in Sec. 4.2 and for the energy loss of a rotating
quark in Sec. 6.1 we encountered the special point zc in the bulk. In both cases this point

denoted the position in the bulk where the reality condition (4.23) for the moving quark and
(6.43) for the rotating quark has to be applied. In this chapter we want to show that this point
zc is identical to the worldsheet horizon z∗ where the induced (worldsheet) metric gab has a
vanishing ττ -component which in turn is equivalent to the point where the string exceeds the
local speed of light cbulk(zc) at that position in the bulk. Thus the upper and lower parts of
the string are causally disconnected. This computation has been worked out for the conformal
N = 4 case by Giecold & al. in [216]. We will recall the reality conditions of the dragging-quark
and rotating-quark scenario and derive the worldsheet horizon in both cases.

In a general metric ansatz given by

ds2 = Gαβ dXαdXβ = e2A(z)
(
h(z)dt2 + d~x 2

)
+ e2B(z) dz2

h(z)
, (C.1)

the reality conditions can be written as

Dragging quark: h(zc) = v2 , (C.2)

Rotating quark: Πω = e2A(zc) h(zc) . (C.3)

The horizon function h(zc) in (C.3) can be transformed using the second initial condition for
the rotating quark in (6.43) that reads

R(zc) ≡
√
h(zc)

ω
. (C.4)

Thus, Π can be cast into the following form:

Πω = e2A(zc)
(
R(zc)ω

)2
, (C.5)

and the zc-defining equation is finally given by

h(zc) =
(
R(zc)ω

)2
≡ v2

c , (C.6)

163



164 Appendix C — Worldsheet Horizon

where we just combined (C.5) and (C.3) in order to eliminate Π in favour of the radial extension
R(zc) of the string at bulk position zc. vc is now the velocity of the string at zc in the bulk.
This is the main difference to the drag case. There, the velocity is constant for all values of
z, whereas in the rotating case the string moves faster at greater depth. This was the main
reason for the robustness of this observable.

With the condition for each zc in our hand we can now compute the worldsheet horizon.
This is the point in the bulk – which we will call z∗ – where the worldsheet metric gab has a
vanishing coefficient for the τ -coordinate. This is equivalent to the emergence of a horizon at
z∗. For the drag force computation the calculation goes as follows.

C.1 Dragging Quark

The first thing we have to calculate is the induced (worldsheet) metric gab = Gαβ ∂aX
α ∂bX

β

with a, b ∈ {τ, σ}. By using the parameterisation of the dragging quark given by

Xα ≡
(
t = τ, 0, 0, x3(τ, σ), z = σ

)
, with x3(τ, σ) = vτ + ξ(σ) , (C.7)

the ττ -component of the worldsheet metric reads

gττ = Gtt (Ẋt)2 +Gx3x3 ẋ
2
3 = e2A(z) h(z) + e2A(z) v2 . (C.8)

The requirement that eq. (C.8) has to vanish defines the worldsheet horizon z∗ that can be
written as

z∗ : h(z∗) = v2 . (C.9)

By comparing (C.9) with (C.2) we can state immediately that

zc ≡ z∗ (C.10)

holds for all values of the velocity v. Thus the point where our reality condition has to be
applied is the same point where the string worldsheet has a horizon. Before we show that the
velocity of the string at this point is equal to the local speed of light cbulk(z) in the bulk, we
first derive the worldsheet horizon for the rotating quark.

C.2 Rotating Quark

In the rotating-quark scenario the derivation of the worldsheet is completely analogous to the
dragging-quark setup. Again, we have to compute the ττ -component of the induced metric by
using an appropriate parameterisation:

Xα(τ, σ) =
(
t = τ, ~rs(τ, σ), z = σ

)
, (C.11)

where the three-vector ~rs is given in spherical coordinates (R, θ, ϕ):

~rs(τ, σ) ≡
(
R(σ),

π

2
, ϕ = φ(σ) + ωτ

)
. (C.12)
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Since we are dealing with static gauge (τ = t and σ = z), we use the old coordinates t and z
in the following. The ττ -component of the induced metric is given by

gττ = Gtt (Ẋt)2 +Gϕϕ ϕ̇
2 = e2A(z) h(z) +R(z)2 sin2 π

2
e2A(z) ω2 . (C.13)

Remember that we are working in spherical coordinates. This gives rise to the additional factor
R(z)2 sin2 π

2 . The condition for the worldsheet horizon z∗ is then written as

z∗ : h(z∗) = R(z∗)
2 ω2 = v2

∗ . (C.14)

Comparing (C.14) with (C.6) leads again to

zc ≡ z∗ , (C.15)

Thus, both observables that have been studied in this thesis share the property that zc marks
the point where the reality condition has to be applied as well as the worldsheet horizon. In a
last step we show that this point is also identical to the point where the string reaches the
local speed of light cbulk(z).

C.3 Local Speed of Light in the Bulk

The definition of the local speed of light in the bulk is a very straightforward generalisation of
the boundary value c. In principle one has to impose ds2 = 0 in order to compute a lightlike
world line and solve for dx/dt. At the boundary we have a pure Minkowski space-time that is
given by

gµν dxµdxν = c2 dt2 + d~x 2 . (C.16)

In the general metric ansatz of eq. (C.1) we define the speed of light cbulk(z) at a particular
position at the bulk by

Gαβ dXαdXβ = . . .
(
h(z) dt2 + d~x 2

)
. . . ,

cbulk(z) =
√
h(z) . (C.17)

This definition can now be compared with the definition of zc in eq. (C.2) and eq. (C.6). Since
zc is always the point in the bulk where the condition h(zc) = v2 is fulfilled, it is automatically
the point where the string exceeds the local speed of light at that depth in the bulk.





AppendixD
PRIMITIVE OF LINEARISED QQ̄-DISTANCE

INTEGRAL

I n this chapter we present the primitive of the linearised QQ̄-distance integral which is given
in (5.49). The essential integral that has to be computed is given by

(LπT )Lin
1st = α

zc∫
0

I dz , (D.1)

with

I =
z2

znh

√
z4

nh − z4
c

(z4
c − z4) (z4

nh − z4)

[
(1 + k) zkh +

1

(z4 − z4
c ) z4

h (z4 − z4
nh) (z4

c − z4
nh)

·
(

2z8+k
c (z4 − z4

nh)2 − (z4 − z4
c )z4+k

nh

(
kz4z4

c −
(
(2 + k)z4

+ (k − 2)z4
c

)
z4

nh + kz8
nh

)
+ 2z4+k (z4

c − z4
nh)
(
z4 (z4

c − z4
nh)− 2z4

cz
4
nh

))
+

1

(z4 − z4
c ) z4

nh

(
2z4+k

c (z4 − z4
nh) + zk

(
(3 + k)z4

cz
4
nh

− z4
(
2z4

c + (1 + k)z4
nh

)))]
. (D.2)
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The primitive can be computed – after some massage – using the Integrate method of
Mathematicar. It is given in full glory by

(LπT )Lin
1st

α
=

z3

21z4
h z

5
nh

((
z4

nh − z4
c

) (
z4 − z4

c

) (
z4 − z4

nh

)) 1/2
[

21

((
z4 − z4

c

)
z8+k

nh

− zkc
(
z4 − z4

nh

) (
z4

c z
4
h +

(
z4

c − z4
h

)
z4

nh

))
+

1

3 + k

√
1− z4

z4
c

√
1− z4

z4
nh

·
(

7 (3 + k) z4
nh

(
zkc z

4
h z

4
nh − (1 + k) z4+k

h z4
nh + k z8+k

nh + z4+k
c

(
z4

nh − z4
h

)
+ (1 + k) z4

c

(
z4+k
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nh
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F1
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3

4
,

1

2
,

1

2
,

7

4
,
z4
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,
z4

z4
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]
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