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Summary

Drug resistance in infectious diseases is a significant global concern. This work
aims to quantitatively study drug resistance in infectious diseases by way of math-
ematical modeling, analysis and simulations. Within the thesis, we present two
new models of drug resistance in infectious diseases.

This thesis contains several contributions:

1. The background: We give an overview of the state of the art in mathematical
modeling of drug resistance, covering more than a hundred papers including several
surveys.

2. The modeling process: We contribute to the development of the mathemat-
ical models that describe the dynamics of vector-borne diseases by new models for
both non-structured and structured populations.

3. The theory: We contribute to the mathematical theory of integro-partial
differential equations by expanding the method of characteristics to treat a system
with different characteristics in multi-dimensional space. This provides a strong
background for numerical studies.

4. The numerics: We suggest methods and algorithms to investigate the mod-
els. For the non-structured model, we do parameter estimation and simulation
with a data set taken from Burkina Faso, Africa. For the structured population
model, we propose a constructive algorithm and discuss potential data to investi-
gate the model numerically.

5. The application: We consider different quantitative settings and policies.
With a good data set, the simulations can deliver important results to improve
treatment toward drug resistance control, especially for vector-borne diseases. The
models also suggest the necessity of further experimental work to reach a more
precise understanding.

With all of these contributions, we bridge theory and practice to discover
suitable strategies for reducing drug resistance and controlling infectious diseases.
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Zusammenfassung

Resistenzen bei Infektionskrankheiten stellen ein großes gesundheitliches Problem
in der ganzen Welt dar. Das Ziel dieser Arbeit ist eine quantitative Untersu-
chung von Resistenzen bei Infektionskrankheiten durch mathematische Modellie-
rung, Analyse und Simulation. Im Rahmen unserer Arbeit präsentieren wir zwei
neue Modelle von Resistenzen bei Infektionskrankheiten.

Diese Arbeit enthält mehrere Beiträge:

1. Der Hintergrund: Wir geben einen Überblick über den Stand der mathema-
tischen Modellierung von Resistenzen.

2. Die Modellierung: Durch zwei neue Modelle für nicht-strukturierte und
strukturierte Populationen tragen wir zur Entwicklung der mathematischen Mo-
delle bei, die die Dynamik von vektorübertragenen Krankheiten beschreiben.

3. Die Theorie: Wir tragen zur mathematischen Theorie der Integro-Differential-
gleichungen bei, durch Erweiterung der Methode der Charakteristiken, um ein
System mit unterschiedlichen Charakteristiken in multi-dimensionalem Raum zu
behandeln. Dies bietet eine solide Grundlage für numerische Untersuchungen.

4. Die Numerik: Wir empfehlen geeignete Methoden und Algorithmen, um die
Modelle zu untersuchen. Für das nicht-strukturierte Modell präsentieren wir eine
Parameterschätzung und Simulation mit einem Datensatz aus Burkina Faso, Afri-
ka. Für das strukturierte Modell schlagen wir einen konstruktiven Algorithmus vor
und diskutieren über mögliche Daten, um das Modell numerisch zu untersuchen.

5. Die Anwendung: Wir betrachten verschiedene quantitative Situationen und
Richtlinien. Mit einem guten Datensatz können die Simulationen wichtige Ergeb-
nisse liefern, die die Behandlung von Resistenz, vor allem bei vektorübertragenen
Krankheiten, verbessern. Die Modelle verweisen auch auf die Notwendigkeit wei-
terer experimenteller Arbeiten, um ein genaueres Verständnis zu erreichen.

Mit all diesen Beiträgen bauen wir eine wichtige Brücke von der Theorie zur
Praxis, um geeignete Strategien zur Verminderung von Resistenz und zur Kontrolle
von Infektionskrankheiten herauszufinden.
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Introduction

This chapter introduces our research. In it, we delineate our motivation, specify
the aims and describe the contents of the thesis.

0.1 Motivation

Infectious diseases are also known as communicable diseases, contagious diseases
and transmissible diseases. They are often caused by pathogens, living inside host
bodies. They can be transmitted directly to other susceptible hosts or indirectly
via intermediate hosts.

HIV �

AIDS
Tuberculosis Malaria Traffic

Injuries
Violence War

0.5

1.0

1.5

2.0

2.5

3.0

Unit: one million people

Figure 1: Deaths by causes in World Health Organization (WHO) regions, 2002
[107].

As indicated in figure 1, infectious diseases induce more deaths every year than
war, violence, traffic injuries or any other reasons. They also damage people’s
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0.1. Motivation

health and their ability to live healthy lives. In public health a common measure
for this loss is the disability-adjusted life year (DALY). One DALY is equal to the
loss of one healthy year of life [107]. A concrete comparison concerning DALYs are
expressed in table 1 in regard to some of the most common diseases and injuries.

Table 1: Burden of diseases in DALYs by causes in WHO Regions, approximations
for 2001, [107].

Diseases DALYs (thousand) Percentage(%)
Transmittable conditions 615 737 42.0
HIV/AIDS 88 429 6.0
STDs excluding HIV 12 404 0.8
Diarrheal diseases 62 451 4.3
Childhood diseases 48 268 3.3
Meningitis 6 420 0.4
Malaria 42 280 2.9
Respiratory infections 94 037 6.4
Maternal conditions 30 943 2.1
Perinatal conditions 98 422 6.7
Other 132 043 9.1
Not transmittable conditions 672 865 45.8
Neuropsychiatric disorders 191 260 13.0
Cardiovascular diseases 144 471 9.8
Other 337 134 23.0
Injuries 178 656 12.2
Road traffic accidents 37 719 2.6
Self-inflicted 19 923 1.4
War 8 309 0.6
Other 112 705 7.6

The discovery of antimicrobials signaled a strong weapon against infectious
diseases. However, over the last several decades, antimicrobials and similar drugs
have been losing their ability to fight infections. Recently the World Health Orga-
nization has emphasized the dangers of antimicrobial resistance. If these resistant
strains are spread over the world, we would lose the main solutions to treat pa-
tients.

In the following we show three different reports about multi-resistance in HIV-
AIDS, tuberculosis and malaria, see detail in figures 2, 3 and 4.

More than twenty laboratories accredited by WHO reported about HIV drug
resistance. These laboratories are located in America, Europe, Africa, Asia and
Australia. From 2006 to 2010 WHO also conducted about 102 surveys on HIV

2



Introduction

drug resistance in 52 countries. The data suggested to pay attention to some
common causes, such as adherence and loss of treatment follow-up.

Figure 2: Network of HIV drug resistance laboratories (2011), [100].

In a study published in the Bulletin of the World Health Organization 2007
[14], Bloendal discussed multidrug-resistance in tuberculosis. Figure 3 indicates
that the previously treated patients were more likely to develop multidrug-resistant
tuberculosis compared to those who had not received treatment before.

Figure 4 concerns malaria in South East Asia. This is one of the central
regions of anti-malarial resistance. Some agents, which used to be the first line
of treatment in the past, like Chloroquine or Sulfa-doxine pyrimethamine, now
have almost no effect in some parts of Vietnam, Cambodia, Philippines, Laos and
China. The newly discovered antimalarials of the Artemisinin group also had 40%
resistance in Vietnam. The resistance levels vary a lot from region to region, see
figure 4.

We have now discussed several significant reasons to study drug resistance.
We are going to give some contributions within our project.

3
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Figure 3: Prevalence of multi drug-resistant tuberculosis (2007), [14].

Figure 4: Drug-resistance in Malaria, South East Asia [102].
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0.2 Aims of our research

Despite the fact that many scientists have been studying drug resistance and
searching for practical solutions against it, the results so far are very limited.
Mathematicians have started to pay attention to the topic in recent decades.
However, it is difficult to get all biology-related phenomena in the form of precise
mathematical formulas.

Taking into account that there are many diseases and each of them has various
medical regiments, it is not possible to include all of them in one general model.
Moreover, when categorizing infectious diseases into two groups, the group of
single-host diseases and the multi-host diseases, the latter case is often omitted
from studies. In some sense, single-host diseases (such as HIV and tuberculosis),
are a little bit less complicated for modeling. We will come back to this point
later.

In our study, we have wanted to address the complex case of multi-host dis-
eases. The objectives of the project are as follows:

1. to describe the dynamics of vector-borne diseases, focusing on malaria,
through new mathematical models,

2. to investigate the model system analytically,

3. to study the models numerically,

4. to consider different settings in order to find out suitable strategies to reduce
drug resistance, control the diseases and to suggest which experimental works need
to be done to provide a more precise understanding.

0.3 Description of the contents and our contributions

This dissertation is organized in four main chapters. In each chapter, our contri-
butions are stated concisely in italics.

Chapter 1. We would like to reserve chapter 1 to:

- Summarize the necessary medical background,

- Summarize the state of the art: mathematical models concerning drug resis-
tance.

This chapter starts by explaining the biological and medical background and
reviews shortly some existing epidemic models of drug resistance. We recall most of
the relevant concepts and focus on one of the most common vector-borne diseases,
malaria. The established epidemic models which take drug resistance into account
are classified in different groups: HIV-AIDS, tuberculosis, malaria, other diseases.

5



0.3. Description of the contents and our contributions

In each group we divide the models into deterministic and stochastic forms if
necessary.

Chapter 2. In this chapter, we present our new model of drug resistance in
vector-borne diseases. It is described by a system of ordinary differential equations.
Here we work on:

- Modeling: compartment population dynamics with drug treatment,

- Analysis: proving the existence of local and global solutions, uniqueness and
positivity,

- Numerical study: posing and solving the parameter estimation problem and
numerical simulation.

This chapter presents a new model described by a system of ordinary differen-
tial equations. The first part is modeling, which contains the network system, the
formulas of the dynamical system in differential equations and the detailed expla-
nation of every component appearing in the model. The following two parts study
the model analytically and numerically. We prove here the existence of solutions
locally and globally. The uniqueness and positivity of the solution are included.
We also describe in detail the problem of parameter estimation and numerical sim-
ulation. Using VPLAN - a software package developed in Interdisciplinary Center
for Scientific Computing (IWR) Heidelberg, we estimate the unknown parameters
and obtain an agreement with the data from Burkina Faso, Africa. Numerical
simulations with different model settings are performed leading to useful medical
interpretations which we discuss in detail in the last part of this chapter.

Chapter 3. In chapter 3, we explore a new challenge with structured popu-
lation:

- Modeling: general structured population dynamics of vector-borne diseases,

- Analysis: transforming the system to a new form by expanding the method
of characteristics for system of equations, proving the existence, uniqueness and
positivity of the solution for unknown boundary problem,

- Numerical approach: proposing a constructive method for doing numerical
simulation,

This chapter presents general structured population dynamics in an integral
partial differential equation system. The first part describes and explains the
new network system and the model formula. We extend here the mathematical
theory using more than one characteristic. The boundary conditions for inte-
gral partial differential equations are carefully modeled with inspiration from the
canonical birth law. After transforming the system to integral form, the exis-
tence and uniqueness of the solution are obtained by using the Banach fixed point
theorem with the help of a newly defined norm. Since the model is new and com-
plicated, software for complete simulation has not yet become available. However,

6
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we present an approach for numerical studies. The complete numerical simulation
for such a system can be a new interesting project.

Chapter 4. This chapter provides:

- Summary of the results,

- Discussion of the perspectives of further study.

This chapter summarizes the results and states our remarks on the perspec-
tives. We discuss some open questions of possible directions we could not include
in the study because of time limitations.

7
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Chapter 1

Medical background and
literature review

In this chapter we present the medical background of drug resistance in infectious
diseases and a short review of some existing models in epidemiology to see what
is currently the state of the art.

1.1 Medical background

To be ready for modeling, we first need to understand the fundamental background
of infectious diseases, their transmission and the concept of drug resistance. After-
wards we present some facts on malaria - the most common vector-borne disease.

1.1.1 Infectious diseases and drug treatments

Infection is the invasion of one organism by another (usually smaller) organism.
The invasion agents are often called parasites while the other organisms are their
hosts. Most infections are harmless or even good for the host. However, some
pathogenic infectious agents bring harm to their hosts and cause some severe
diseases [83]. In general, any organism can be the host, such as animals or plants.
In our context, the hosts are normally humans.

A disease that can be transmitted or spread from one host to another is called
an infectious disease.

As suggested by their name, infectious diseases often come with some pathogens.
Infectious diseases are a heavy burden not only because they harm their hosts but
also because of their transmittable property. Infection happens when some specific
types of contacts take place between infected individuals and uninfected individ-

9



1.1. Medical background

uals. In humans these contacts can happen in many ways, e.g. by air, by food, by
blood, by skin contact or by using the same equipments. In addition, some other
organisms can also be involved in the transmission as intermediate hosts.

Provided below is a table that summarizes several types of infectious agents
(reproduced from [83]).

Table 1.1: Different types of infectious agents.

Agent Types Characteristics Examples (diseases)
Micro-parasite
Virus Small, simple, usually can

replicate only inside the liv-
ing cells of organisms

HIV, measles, mumps,
rubella, smallpox, severe
acute respiratory syndrome
(SARS), influenza

Bacteria Larger, more complex than
viruses- many are able to
grow independently but
some require a cell host

Mycobacterium tuberculosis,
Bordetella pertussis (whoop-
ing cough), Salmonella typhi
(typhoid fever)

Protozoa Larger single-celled organ-
ism, more complex than bac-
teria - many are able to grow
independently but some re-
quire a cell host

Plasmodium falciparum
(malaria), Entamoeba
histolytica (dysentery),
trypanosoma brucei & Try-
panosoma cruzi (African &
American sleeping sickness),
Giardia lamblia (Giardiasis)

Macro-parasite
Worms Large (1mm to 10m), multi-

cellular organisms
Schistosoma mansoni (schis-
tosomiasis)

Arthropods Insects, lice, ticks and their
relatives

Ixodes spp (ticks)

From looking at the history, we have learnt that until the beginning of the
twentieth century, there was hardly an effective medication to treat infectious
diseases. Even today under poor health care conditions, infectious diseases con-
tinue to be among the major causes of deaths.

In 1928, Penicillin, the first usable antibiotic agent was discovered. Although
according to rumors, antibiotic-like materials were observed before, the credit
was given to Alexander Fleming, a Scottish biologist and pharmacologist. The
discovery launched a completely new era in human medicine [97]. Penicillin saved
an incredible number of lives during World War II.
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Since then there have been a lot of efforts to search for antimicrobial agents.
Based on the fundamental difference between bacterium and human cells, sci-
entists were able to find many new antibacterial compounds, such as Cefalexin,
Erythromycin, Amoxicillin, Streptomycin, etc. However, some other microorgan-
isms, such as viruses, usually live inside living host cells, therefore making it
harder to fight them. So far only few antiviral or anti-fungal agents have been
made available. Recent news from Lincoln Laboratory, Massachusetts Institute of
Technology, report that a team has been working on a “Broad-Spectrum Antiviral
Therapeutic” and obtained some promising results in trials on mice [71]. The new
drug name is DRACO - a short form of Double-stranded RNA (dsRNA) Activated
Caspase Oligomerizer, see figure 1.1. The group would like to test more on other
animals and then later on humans.

Figure 1.1: DRACO successfully treats virally infected cells and has no toxicity
on healthy cells - trials on mice [108]. Notice how the patterns of the healthy cells
stay the same while the patterns of the infected cells change to healthy patterns
after treatments.

1.1.2 What is drug resistance?

Here we would like to discuss the term “drug resistance” and where it often ap-
pears. From the beginning drug resistance has been mentioned [19] as

11



1.1. Medical background

“the ability of a parasite strain to survive and multiply despite the administration
and absorption of a drug given in doses equal to or higher than those usually
recommended but within tolerance of the subject”.

This definition refers only to the persistence of parasites after treatment, which is
why later it is carefully modified so that the drugs at least

“gain access to the parasite or the infected cells for the duration of the time
necessary for its normal action” [19].

This particular definition was originally about malaria but it sufficiently met
the requirement to be generalized to other diseases. In addition, Medical Sub-
ject Headings suggested that drug resistance should be differentiated from drug
tolerance, which is the progressive diminution of the susceptibility of a human or
animal to the effects of a drug due to long continued administration [96].

Theoretically, a resistance problem can happen to any drug. However, an-
timicrobial agents are the most common group which encounters this issue. Why
do they have much higher potential to encounter this issue compared to other
medicines? The answer relates to microorganisms - the typical pathogens of in-
fectious diseases.

We know that medicines like insulin and anti-hypertensives have been in use
for centuries. They interact directly with human cells so the good or harm is
shown only in the particular patient under treatment. The medicines should have
the same effect worldwide and likely keep their effects in the future [97].

On the other hand, antimicrobial agents are not supposed to harm the patient
at all or no more than a certain permissible limit. They mainly attack the mi-
croorganisms. The sensitive parasites can be cleared, but the resistant strains are
likely to remain. Because microorganisms usually multiply very fast and have op-
portunities to continue their life-cycles in other hosts, they can spread throughout
the community. As a consequence antimicrobial agents lose their effects in future
generations.

Overall, antimicrobial drugs are the most common group facing the resistance
problem. That is the reason why the term “drug resistance” is often used synony-
mously with “antimicrobial resistance”.

Remark. In some places we meet also “bacteria resistance”, “fly resistance”,
“resistant bacteria” or “resistant mosquitoes” or “resistant cell” (in cancer chemo-
therapy), etc. In most of the cases, drug treatments are involved and these terms
actually all imply “drug resistance”.

Since there are numerous types of organisms that cause infectious diseases in
humans and animals, a number of drugs have been used in hospitals and com-
munities. Resistance is also rapidly increasing in all environments. In this tough
battle, we can point out some of the most active leading agents, as in table 1.2.
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Table 1.2: Leading resistant agents, reported by WHO [106].

Species/Genus Diseases Common symptoms
Bacteria community
Escherichia coli Diarrheal diseases,

peritonitis
Diarrhea, abdominal pain

Myco-bacterium TB Tuberculosis Chest pain, blood cough
Neisseria gonorrhea Gonorrhea Vaginal discharge
Salmonella Typhi Typhoid fever Fever, sweat, gastroenteritis
Staphylococcus aureus Pneumonia, menin-

gitis
Cough, chest pain, fever;
headache, neck stiffness

Streptococcus pneu-
monia

Pneumonia, Sinusi-
tis

Cough, chest pain, fever;
headache, facial pain

Bacteria- hospitals
Acinetobacter bau-
mannii

Pneumonia Cough, chest pain, fever

Enterococcus faecalis Infective endocardi-
tis (heart)

Fever (unknown origin),
malaise, fatigue, weight loss

Bacteria- Zoonotic
Campylobacter species Campylobacteriosis Bloody diarrhea or dysentery,

cramps, fever and pain
Salmonella species Typhoid or paraty-

phoid fever
Fever, sweat, gastroenteritis,
malaise;

Fungi
Candida albicans Candidiasis Redness, itching, discomfort
Parasites
Leishmania species Leishmaniasis Fever, sweat, weakness, weight

loss, anemia
Plasmodium species Malaria Fever, shivering, joint pain,

vomiting, anemia
Trypanosoma species Sleeping sickness Fever, headache, joint pain, fa-

tigue, sleep disruption
Viruses
Herpes simplex virus Herpes simplex Watery blisters (skin), mucous

membranes (mouth, lips, geni-
tal)

Human immunodefi-
ciency virus (HIV)

Acquired immune
deficiency syndrome
(AIDS)

Immune deficiency, fever,
night sweat, swollen gland,
chill, weight loss.
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1.1. Medical background

1.1.3 Our focus: malaria and antimalarial drug treatment

There are two main groups of infectious diseases: the first group, such as HIV/AIDS,
tuberculosis, can be transmitted directly from one person to another and the sec-
ond group, such as malaria, dengue hemorrhagic fever, is transmitted mainly via
some intermediate hosts. From the perspective of infectious diseases, vectors are
the transmitters of disease-causing organisms that carry the pathogens from one
host to another [101]. That is why a disease belonging to the second group is called
a vector-borne disease.

In most of the cases vectors are usually arthropods. However, technically
vectors can have big size, such as cat, dog, cow, fox or raccoon, etc. Some of the
well-known vector-borne diseases are shown in table 1.3.

Table 1.3: Some well-known vector-borne diseases.

Diseases Vectors Remarks
American Trypanosomi-
asis, (Chagas diseases)

Triatomine
Bugs

Common in Latin America, can
be transmitted in several ways,
e.g. via blood transfusion.

Dengue Aedes
mosquitoes

Could turn into the life-
threatening dengue hemorrhagic
fever or dengue shock syndrome.

Hemorrhagic fever with
renal syndrome and
Hantavirus pulmonary
syndrome

Rodents (e.g.
Peromyscus
maniculatus)

Cause by Hantavirus, prevalence
in Korean, China, Russia, Ar-
gentina, Chile, Brazil, the United
States, Canada, Panama and
some parts of Europe.

Lyme diseases Ticks (e.g
Ixodes genus)

Mostly appears in Northern
Hemisphere temperate regions.

Lymphocytic chori-
omeningitis

Rodents (e.g.
Mus musculus)

Infections have been reported in
Europe, America, Australia and
Japan.

Malaria Anopheles
mosquitoes

The most deadly vector-borne
disease, prevalence in tropical cli-
mate, e.g. Africa, South Asia,
South America.

Typhus Fever (not ty-
phoid fever)

Arthropod vec-
tors (e.g. hu-
man body lice)

Typhus mostly occurs in Cen-
tral and South America, Africa,
northern China, and certain re-
gions of the Himalayas.
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Figure 1.2 is about all deaths from vector-borne diseases in WHO subregions.
Since most of the vectors, such as flies or ticks, often appear in tropical climate,
these regions seem to be at more risk compared to other regions. In a lot of African
countries, many people were lost due to vector-borne diseases.

Figure 1.2: Deaths from vector-borne diseases, 2004 [109].

Among vector-borne diseases, the most deadly is malaria. It kills millions
of people yearly (appropriately 781 000 people in 2009 [110]). Despite many ef-
forts of World Health Organization as well as malaria-endemic countries to reduce
mosquitoes and protect humans, malaria appears to be one of the most dangerous
diseases for children, especially those under five years old. At this age children do
not have their own strong immunity against malaria.

In the past, most of the malaria patients had to suffer without any treatment.
They often did not know what kind of disease they had encountered and mixed it
up with common fever. The earliest evidence of parasites was found in mosquitoes
preserved in amber from the Paleogene period - around 100 million years old [105].
In addition, research on pre-dynastic mummified remains shows that around 42%
of ancient Egypt carried Plasmodium falciparum malaria, as indicated in figure
1.3. A lot of famous people were lost due to malaria, e.g. Alexander the Great
(Macedonia, 323 BC), Otto II - the King of the Germans and Emperor of Rome
(983), Pope Leo X (1521), King Mongkut of Thailand (1868).

The life cycle of malaria consists of two parts: one inside human hosts and one
inside mosquito hosts. Both are shown in figure 1.5.

Although it is believed that the extract of some herbs have been used to treat
“deadly fever” in Asia a long time ago, the first synthetic medications for malaria
were reported in the twentieth century. Starting from the discoveries of Quinine,
Chloroquine, many other compounds were found, e.g. Amodiaquine, Sulfadoxine,
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Figure 1.3: Percentage of
P. falciparum malaria in
ancient Egypt: investiga-
tion on pre-dynastic mum-
mified remains [63].

Figure 1.4: Insect was trapped in
amber, [105].

Mefloquine, Artemisinin, see more at figure 1.6. At the beginning most of the drugs
were really effective. The fact that they rapidly lost their effects causes a serious
headache for many scientists and doctors. One of the challenges is that malaria
comes together with Anopheles mosquitoes and parasites. The four main types
of parasites are Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale
and Plasmodium malariae. Their organisms are much more complex compared
to pathogens with single-cell or sub-cellular structure, such as bacteria, archaea,
viruses, etc. This also partly explains why there are only few mathematical models
concerning drug treatment of malaria.

What may influence drug resistance?

- In most of the diseases, it takes a long time to find out which factors may
characterize and reduce drug efficiency. Usually there are many individuals of
the pathogen population which already have “resistant” mechanisms. They are
naturally not eliminated by drugs. When infected people take medicine, it reduces
the number of sensitive parasites and makes a good environment for resistance to
grow.
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Figure 1.5: The life cycle of malaria, one of the three most prevalent infectious
diseases and the most deadly vector-borne disease [103].

- In malaria the parasite organisms are very complex. They would either
mutate or adapt variously. Due to natural selection they have a better chance of
survival and maintain their best genetic system. Therefore, their new generations
are “fitter” in a drug environment.

- Another important cause of drug resistance is that malaria is more widespread
in tropical places, such as Africa, where it is difficult to have a global policy to
treat all patients properly.

At the moment a majority of doctors believe that only Artemisinin-based com-
bination therapies can provide some hope for clearing malaria in patients. How-
ever, there is more and more evidence that parasites also resist to them.
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Figure 1.6: Chemical structures of several antimalarial drugs.

1.2 Existing mathematical models of drug resistance

There is a great amount of research on drug resistance in general. We are going to
address here the recent works related to quantitative mathematical models. They
are selected mainly from MathSciNet and have connection with many different
diseases. To make it easy to follow we have divided all of them into four groups:
the first one concerning HIV- AIDS, the second concerning tuberculosis, the third
for malaria, the fourth about cancer and the fifth about other diseases. We are sure
that there are a lot of other relevant papers, which are not listed in mathematics
but in other fields, e.g. epidemics. We will discuss those works elsewhere.

We also have to state that we are not going to represent the mathematical
formulas in this short chapter, but we do our best to select and show some im-
portant model frameworks. We believe that through these selected models, the
readers can get an overview of the modeling landscape so far. Since modeling in
drug resistance is a fairly recent emerging field, it is not our main aim to make
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evaluations or statements on the quality and the importance of the models we
are going to review. By seeing how much other scientists are interested in the
modeling approach, readers certainly see important and popular models.

1.2.1 HIV- AIDS

To date most of the mathematical models concerning HIV-AIDS are deterministic.
Since HIV is small and very simple, it can multiply very fast. The virus population
has often been studied and considered as a large population. This reason helps to
lessen the stochastic effects.

Deterministic models about HIV- AIDS drug resistance

To begin with, we have a look at the short review written by Heffernan and
Wahl [49]. Here the authors included not only mathematical papers but also those
that came from related resources, such as epidemiology, immunology, etc. They
focused on two parts: adherence and structured treatment interruption. Adher-
ence was described through three papers of Wahl and Nowak (2000), Phillips et
al. (2001), Huang et al. (2003) [84, 69, 52]. Structured treatment interruption
was described through five papers of Kirschner and Webb (1996), Dorman et al.
(2000), Bonhoeffer et al. (2000), Wodarz (2001), Walensky et al. (2002) [59, 30,
18, 88, 85].

Most of the models were given in quite detail. Mathematical parts are not
too complex, such as standard pharmacokinetics in exponential decay, ordinary
differential equations, pattern study, so it is recommended for interested readers.
Besides that, Heffernan and Wahl also discussed the models’ drawbacks, including
their own model. Those drawbacks were, for example, neglecting cross-resistance
between mutations, assuming that all the drug-resistant strains have the same
infectivity (in Wahl and Nowak); neglecting effects of the latently infected cells,
assuming that only one mutation can occur at a time (in Phillips et al.); neglecting
immune response (in Kirschner and Webb, Dorman et al.); assuming that the
early-stage mutants were less fit than the wild-type virus, even when drugs are
present (Dorman et al.), etc. The authors suggested that more research should
be done in both adherence and structured treatment interruption. Their effects
on the drug-resistant mutants are still very challenging for both theoreticians and
clinicians.

Not included in the above review, Smith and Wahl used impulsive differential
equations to describe the dynamics of T cell populations and viruses in different
drug behavior [77]. It was assumed that wild-type strain was controlled by both
intermediate and high drug concentrations, while a mutant strain was controlled
only by high drug concentrations. Using the classical analysis to study the equilib-
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ria and their stability, the authors claimed it was a good approach to capture the
effect of three relatively different drug concentrations (low, intermediate, high).
However, some disadvantages remained, such as: the drug effects must be instan-
taneous; each and every dose must be taken properly. Unlike the previous works,
the relationship between drug resistance and adherence was not included.

Another recent review was written by Rong, Feng and Perelson in 2008 [72].
In fact, these three authors are among productive researchers of the field. Mainly
the works by them and their collaborators were presented. Apart from the part
that introduced general models describing virus and cell dynamics, the authors
paid attention to some specific models related to drug resistance. They considered
several problems, such as dominance of a wild-type strain in the absence of therapy;
development of a resistant strain when antiretroviral (ARV) drugs were used;
eradication of both strains; occurrence of resistance when a small number of drug
doses were missed and cases when more doses were missed.

Targeting drug resistance, Rong et al. had a pretreatment two-strain model
with a wild-type (sensitive) strain and a resistant strain in the form of ordinary
differential equations. The effect of antiretroviral therapy was included by addi-
tional parameters. In analysis, drug efficacies (of reverse transcriptase inhibitors
and protease inhibitors) were first assumed to be constant for both strains. Later,
the authors found it was necessary to include time-varying drug efficacy and effect
of adherence patterns. Following the models, a standard analysis (e.g. concerning
the steady states and stability) was presented. Some of their numerical results are
shown in three figures 1.7, 1.8, 1.9. They related to lots of the common quantities
in the authors’ models.

The upper panel of figure 1.7 contains the relation between reproductive ratio
and the sensitive strain while assuming drug efficacy on resistant strain is different
in (a) and (b). The lower panel is the relation of virus steady states and repro-
ductive ratios. The authors claimed that the wild-type virus could be completely
suppressed even when the reproductive ratio Rs is greater than 1. The resistant
virus would die out only when reproductive ratio was smaller than 1, and remained
at a very low level when reproductive ratio was larger than 1.21 - this was not
clearly shown in the figure due to the magnitude of the vertical axis [72]!

In figure 1.8 and 1.9, the number of uninfected cells, wild-type viruses, resistant
viruses and total viruses were presented under two conditions: perfect adherence
and imperfect adherence. Drug resistance emerged in the second condition much
faster than the first one. In the latter case, missing every other dose or missing
more doses did not change so much the total viruses. According to the authors,
when missing more doses, the wild-type viruses continued to survive while the
resistant viruses stayed low due to not enough selecting force.

In the same paper, the authors also discussed the persistence of HIV. There
were several factors which are not easily included in deterministic models, e.g.
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Figure 1.7: The upper panel: the reproductive ratio of each strain as a function
of the drug efficacy εs for the wild-type strain, (a) εr = 0.5εs, (b) εr = 0.2εs. The
lower panel: the steady states of the wild-type and resistant strains as the function
of reproductive ratios [72].

poor drug penetration in specific sites, activation of latently infected cells. These
reasons would make the problem of HIV eradication very difficult.

After interpreting the results, Rong et al. realized that there were several
serious model drawbacks, e.g. “the patterns of adherence” were not very realistic;
spatial heterogeneity (different drug concentration in different parts of the body)
was not yet taken into account, etc.

Apart from the above works, there were only few other deterministic models,
which shared the same model types as well as analytical and numerical patterns,
such as in [61, 74]. There is a lot of room for model improvement.

Stochastic models about HIV- AIDS drug resistance

Unlike deterministic models, stochastic models about HIV- AIDS drug resistance
are scattered. To our knowledge, none of them really drew a great amount of
attention from the community. In the nineties Tan derived a stochastic model
for drug resistance in AIDS chemotherapy, extended the work by Longini et al.
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Figure 1.8: The dynamics of uninfected cells, wild-type viruses, resistant viruses
and total viruses with perfect adherence [72].

and himself, see [80] and the references therein. By using a probability generated
function, the HIV incubation distribution and its moments were studied under
treatment of antiviral drugs. Later, in a book of Tan and Wu [81], Liang et al.
used “Bayesian approach for assessing drug resistance in HIV infection using viral
load”; Zhou and Dorman used “a branching process” to model HIV drug resistance.
Close to the latter, Healy and DeGruttola mentioned two possible extensions to
the two works of Albert (1962), Foulkes and DeGruttola (2003) in their paper
“Hidden Markov models for settings with interval-censored transition times and
uncertain time origin: application to HIV genetic analyses” [47]. They continued
to use Markov models in two other papers [48, 51]. Here statistical method was
adopted to study viral genetic states. Eriksson et al. [32] also used a statistical
procedure (method of Pyrosequencing) to estimate viral population.

1.2.2 Tuberculosis

There were a lot of mathematical models describing tuberculosis, but only few of
them concerning drug resistance. They were often deterministic although some
stochastic models, such as Markov chain models, were also used in general cases.
Two leading experts in this field, Castillo-Chavez and Song, contributed a review
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Figure 1.9: The dynamics of uninfected cells, wild-type viruses, resistant viruses
and total viruses with imperfect adherence [72].

on “dynamical models of tuberculosis and their applications” [22]. They discussed
the history, models with demography, cell-based models and few others (see ref-
erences therein) shortly. The main part mentioned the intrinsic mechanics of
transmission and control strategies.

In transmission model several authors developed ordinary differential equation
models with drug-sensitive and drug-resistant strains, such as Blower et al. in
[16], Castillo-Chavez and Feng in [21, 6]. Feng et al. also combined models for
both multiple strains and variable latent period. Here the authors included the
age of the infection with drug sensitive strain [34]. Details are presented in figure
1.10. Using analysis and numerical simulation, the authors answered their main
question concerning the effects of variable periods of latency on the transmission
dynamics of tuberculosis. They concluded that the arbitrary distributed latent
stage did not yield very different qualitative dynamics compared to their works
before [21, 35].

Concerning control strategies, the review of Castillo-Chavez and Song recalled
vaccination, treatment of latent period, etc. There was no direct study on how
to reduce drug resistance. A few other papers later also studied tuberculosis
in dynamical consideration [42, 27] using the approach mentioned in the above
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Figure 1.10: Model network of tuberculosis from Feng et al. 2002. The authors
denoted S(t) as the number of susceptibles at time t, i(θ, t) as the infection-age
density of infected individuals with the drug-sensitive strain at time t and J(t) as
the number of infected individuals with a drug-resistant strain at time t [34].

review. The problem of drug resistance in tuberculosis is still a challenging open
field for further investigation.

1.2.3 Malaria

In the previously mentioned diseases, the patients often go to hospital and obtain
certain treatments from clinicians. Treatment policies are well-defined and fol-
lowed. In addition, there is only interaction between parasites and one direct host.
Much worse situations apply to malaria and several other vector-borne diseases.
They often appear in countries where the health care systems are quite weak. Pa-
tients may not have access to any treatment or receive inappropriate treatments.
Lack of proper health care systems causes mixing up the symptoms of malaria
with those of other illnesses, especially common fever. Malaria usually involves
parasites and two hosts. Due to the involvement of non-human hosts, mostly flies
or insects, the dynamics of the whole system become difficult to predict and highly
environment-dependent. Parasites causing malaria, like Plasmodium falciparum,
have complex cell structures which enable them to survive in many tough environ-
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ments. In addition to a quantitative study of malaria, model validation requires
a large collection of data. In practice data collection is often quite imprecise and
very expensive.

So far there have been only a few mathematical models which included drug
resistance in malaria. Readers, who are not interested in complex analysis but
rather in model simulation or numerical methods, can find their ways in the reviews
of Schapira et al., Watkins et al., Hastings et al., Artavanis-Tsakonas et al., White
[73, 86, 46, 7, 87], etc. They covered several classical models in epidemiology,
making them easily accessible to experimentalists and field workers. For readers
who are interested in more analytical works, there are some scattered works in
this field, such as Aneke (2002), Feng et al. (2004), Bacaër and Sokhna (2005),
Esteva et al. (2009) [4, 36, 8, 33].

In short, most of the authors chose differential equations to describe the popu-
lation dynamics. Aneke included an ordinary differential equation model of human
hosts and vectors, then later divided hosts into those that “only carry sensitive
parasites” and those that “carry resistant parasites”. Feng et al. also modeled the
same classes, but divided humans into two groups corresponding to two genotypes
of the sickle-cell gene (AS, AA). Bacaër and Sokhna created a model with spatial
diffusion for similar quantities (five compartments for humans, three compart-
ments for mosquitoes). Esteva et al. had four compartments for humans, three
compartments for mosquitoes in an ordinary differential equation system. Most of
the authors used classical theory of differential equations to study the existence of
the equilibria and their stability, provided numerical simulation to visualize and
support analytical parts. Beside the theoretical results, so far the data for model
calibration and validation is still a big question without an appropriate answer.

In conclusion, there are many phenomena blocking successful models in malaria,
particularly in antimalarial drug resistance. The few existing models really en-
couraged fellows to contribute further studies to improve the situation.

1.2.4 Cancer

Among all mathematical papers concerning drug resistance, more than one third
studies cancer. Although cancer is not an infectious disease, we would like to
mention it briefly here. In cancer tumor cells play the role that microorganism
do in general infectious diseases. They can change, adapt or mutate to escape
from the presence of drugs. The few first records of quantitative models in drug
resistance concerning cancer treatment date back to the end of the seventies and
the beginning of the eighties. It is no surprise that they are mostly initiated
by related studies, both quantitative and non-quantitative concerning medical
treatment. We are going to have a quick look through most of them.

We would like to mention first a work by Clairambault [25]. He wrote a synoptic
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review on “Modelling physiological and pharmacological control on cell prolifera-
tion to optimise cancer treatments”. Having background both in mathematics and
medicine, he answered positively the question how mathematics could help to cure
cancer. In the first part of this review, one can find a nice summary about biolog-
ical basics of cancer. The author stated that among all treatment therapies, (e.g.
surgery, radiotherapy, immunotherapy) drugs were the main weapons for fighting
cancer. However, there were toxic side effects on healthy cells, drug resistance
in tumor cells and genetic difference from each individual when processing drug
treatment, etc. With more than a general interest in modeling tumor cell pro-
liferation, Clairambault was really concerned with drug modeling and anticancer
treatment optimization. The author mentioned drug resistance as a difficult is-
sue in cancer treatment and to prevent this was a big question for scientists and
clinicians. Based on the available literature, he pointed out two different ways of
describing the evolution of cell populations including resistance: the classical way
used ordinary differential equations theory with equilibrium, stability and bifur-
cation; the recent way looked more complex, e.g. adaptive dynamics, structured
populations. The latter was initiated in theoretical settings but remained in devel-
opment. In contrast to the beginning of the review, the last part did not present
detailed information. Clairambault’s review was also a bit biased on differential
equation models.

Numerous studies remind us that there are several model types in cancer treat-
ment. It can be deterministic or stochastic, continuous or discrete, structured or
non-structured, spatial or non-spatial, etc. For convenience we also classify all
models by two groups: deterministic and stochastic. In the following we recall
some stochastic models first, then turn to deterministic models.

Stochastic models of cancer treatment

Goldie and Coldman were credited by a lot of authors as the pioneers who worked
on cancer treatment models. Goldie and Coldman both worked in cancer research
and they contributed a lot of studies in medical treatment. In their few early
papers the existence of drug sensitive and resistant strains was mentioned. They
were among the few first people who began to use quantitative theory to study
cancer development, especially in drug resistance. In 1979, they developed a model
to study drug sensitivity and the mutation rate of tumors [39]. This model showed
that the probability of resistant phenotype increased with mutation. The result
of this paper was cited in several later studies as one of the first few attempts
to model drug resistance in cancer treatment [68, 90, 70]. In 1998, they wrote
the book “Drug resistance in cancer: mechanisms and models” [40]. The book
contained a lot of works by Goldie, Coldman and their collaborators. It included
mechanism of stem cells and tumor growth, molecular aspects of drug resistance
and some quantitative models about random mutation. It was an accessible book,
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especially for oncologists. However, some mathematicians might find this as a
minimized version of mathematical modeling in cancer chemotherapy.

Based on the concepts of Goldie, Coldman, MacKillop et al. [39, 41, 62], Hiep
built a model of mutant growth in tumor cells [31]. The author mainly focused
on mutation dynamic since he believed that mutation was highly connected to
the drug resistance mechanism. A joint probability function was used to describe
the relation between stem cell and mutant cell tumor sizes. Hiep showed that his
result was in good agreement with some other studies [62, 41] despite the fact that
different approaches were employed.

Not far from the direction of Goldie and Coldman, Tan and Brown developed
a non-homogeneous stochastic model for drug resistance in chemotherapy with
immunity [79]. The probability distribution of the number of resistant tumor cells,
the expected value and the cumulants of the number of resistant tumor cells were
of interest. The authors did some simple numerical simulations and showed that
immuno-stimulation plays a great role in determining the above quantities.

As a further probabilistic approach, Birkhead and Gregory proposed a discrete
model for drug resistance [13]. We redraw their diagram in figure 1.11 since this
was and still remains common for a number of cancer treatments.

Figure 1.11: Model diagram from Birkhead and Gregory, [13].

In this paper the fractional tumor reduction of drug dose and the tumor size
in single-agent therapy as well as multi-agents were investigated. However, the
lack of precise measurements and adequate knowledge could limit the potential
applications. Later, Birkhead also developed a model to study the probability
that there is a certain number of mutant and normal cells at a time point. He
used the theory of partial differential equations to find the probability generating
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function.

At around the same time in the eighties another direction to address the drug
resistance issue was suggested by Gyori, Michelson and Leith as an extension of
the ordinary differential equation system from Jansson- Revesz [55, 43, 65]. A
stochastic term was added to the system. The authors briefly discussed analysis
and compared their numerical simulation to experimental data from Leith and his
collaborators.

In 2000 Coldman and Murray continued their probabilistic models with op-
timal control on treatment regimens [26]. They compared their model prediction
to data in clinical breast cancer. In 2004, Gaffney [37] developed the model from
Goldie and Coldman a bit further and included cell cycle effects or age structures.
This was close to what Chiorino et al. had published before [23]. Gaffney also
compared his numerical simulation with the one of the model from Goldie and
Coldman.

In another approach, Harnevo and Agur used the branching process theory to
study the dynamics of gene amplification. Kimmel et al. also investigated the
continuous branching walk models in [56]. This motivated Kimmel, Swierniak,
Polanski, Smieja in further works [58, 78]. There they transformed the model to
infinite system of linear (bilinear) differential equations. From this, they consid-
ered the optimal problem and solved it classically by a gradient method. A review
of this thread, mainly the works by Kimmel, Swierniak and their collaborators,
can be found in [57].

Deterministic models of cancer treatment

Compared to the stochastic direction, developed earlier in the end of the seventies,
eighties and nineties, the deterministic direction has been active more recently, at
least concerning models on drug resistance.

Jackson et al. developed a model based on the model of tumor growth from
Byrne and Chaplain [20]. The model described the reduction in volume of a vascu-
lar tumor in response to chemotherapy. It consisted of a partial differential equa-
tion system, expressing the interaction between drug concentration and tumor
cell density. They began with radially symmetric coordinates, and later relaxed
this assumption partially [54, 53]. The authors did some numerical simulations to
demonstrate how the resistant cell population influenced other quantities, such as
tumor evolution, curing duration, etc. Despite several attempts, the model analy-
sis still required a lot of simplified conditions. In 2003, motivated by Dordal et al.
(1995) [29], Jackson generalized the model to investigate the mechanism of Dox-
orubicin in tumor model. This model aimed to find a dosage strategy for tumor
reduction and parameters which were sensitive to resistant tumors. The author
studied this model numerically, so it was less theoretical than his two previous
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works. Later, using the Banach fixed point theorem, Zhou proved theoretically
that a similar model had a unique global classical solution, [91].

In another context, Banasiak and his co-workers [10], [11] studied a system of
infinite linear ordinary differential equations. In which they modeled neoplastic
cells with different drug resistance levels. This was a simplified alternative to
structured population models.

1.2.5 Other diseases

Other models discussed drug resistance in schistosomiasis, influenza, etc., primar-
ily in relation to antibiotics or antimicrobials. Most of the authors posed their
models in similar forms to what we have seen above. The preferences were dy-
namical systems, differential equations, probability functions and Markov chains,
etc. Many works focused only on mutation, which, the authors argued, was the
main origin of drug resistance. Some others focused on understanding how drugs
had been administrated and studied the development of immunity under differ-
ent treatment policies. Some focused on the transmission of infection and/or the
spread of diseases spatially.

There are two main ways that have been adopted to include the effect of drugs
on patients and community:

- Direct way: drug was mentioned as one independent quantity, can be in
specific name or type, drug concentration, number of doses, patterns of treatment
or adherence, etc.

- Indirect way: drugs were modeled in other quantities, such as immunity
boosting, recovery rate, different effects on sensitive and resistance strains.

After examining drug resistance models, we see that neither the quantity nor
the quality have been comparable to other fields. Scientists, especially mathemati-
cians, have only recently begun to consider drug resistance. In this critical time
when many of our drugs are losing their therapeutic effects, we need to spend more
effort on gaining insight into the related mechanisms and into designing effective
control strategies.
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Chapter 2

Population dynamics with drug
treatment

In this chapter, we present a network of all population compartments, formulate
the dynamical system and study this analytically and numerically.

2.1 Modeling of population dynamics with drug treat-
ment

We divide the modeling process into three sub-sections: the first one introduces
the model network, the second presents the model formulation and the third sum-
marizes the system, all the model parameters and their meanings.

2.1.1 Network of compartments

We would like to model dynamics of pathogen, vector and human populations.
We consider two hosts: number of humans denoted by H1 and number of vectors
denoted by H2. The number of pathogens within the human hosts are denoted
by P . Like in the classical case, there are three compartments for human hosts
which we call susceptible H1s, infected H1i, recovered H1r. We have two com-
partments for vector hosts H2s, H2i - susceptible and infected. Since drugs are
employed, there are two compartments for pathogens, sensitive and resistant Pn,
Pr, respectively. All transmissions among the seven groups are indicated in figure
2.1.
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Figure 2.1: Network for the population dynamics with drug treatment.

2.1.2 Model formulation

Now we give an overview of the modeled processes, as schematically indicated
in figure 2.1. Since our focus is drug treatment for humans, the model does not
include some interference applying on vectors directly. We include the influence
of drugs on the host population and the subsequent effect on vector and pathogen
populations.

Susceptible human population H1s

In vector-borne diseases, human hosts become infected mainly after coming in
contact with vectors. Most of the new infants are susceptible. Like other epi-
demic models, we use common notations for the natural birth rates of susceptible,
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infected, recovered human classes b1s, b1i, b1r. Also, mortality rate of H1s is de-
noted by m1s, infection rate by i1, re-susceptibility rate from infected class H1i

by ρ1 (individuals from infected class H1i could come back to susceptible class
again if they had a very small amount of parasites) and from recovered class H1r

by r (individuals from recovered class H1r after a certain time would come back
to susceptible class H1s). Values of m1s, i1, ρ1 are given before the computation.
The value of r is unknown and it can be found after fitting the data. The dynamic
equation of the susceptible human population is the following:

Ḣ1s = b1s(t, u)H1s + b1i(t, u)H1i + b1r(t, u)H1r −m1s(t, u)H1s

−i1(t, u)
H2i

H2s +H2i
H1s + ρ1(t, u)H1i + r(t, u)H1r

where u(t) := (H1s(t),H1i(t),H1r(t),H2s(t),H2i(t), Pn(t), Pr(t)).

(2.1)

Notice that the infection term depends on H2i

H2i +H2s
, which implies that vectors

have to compete with each other to get successful contact to humans (e.g., obtain
a blood meal in case of malaria). This is a quite usual situation in Africa, where
the tropical climate is suitable for vector (mosquitoes) development. Although
only infected (female) Anopheles can transmit malaria, they still have to compete
with other uninfected (also female) Anopheles to get blood meals. On the other
hand, the size of the mosquito population induces a corresponding protection force
from human side.

Concerning additional details for parameter r, we are aware that different drugs
have different half-lives. They partly remain inside human bodies after treatment
and provide the same protection as immunity. Medically, we consider five times
of drug half-life equal to wash-out time. When drug is washed out and immunity
is no longer active, the person returns to the susceptible class. This process is
modeled by formula r = krr0, where r0 = [max(T, d)]−1, T is natural immune
duration, d is drug wash-out duration; kr is a scalar factor subject to estimation.
After fitting, we use this formula for simulation, with the controllable parameter
d.

Infected human population H1i

After susceptible individuals get infected, they go to the infected class. Here are
some possibilities that they may move out of this class: they can go back to
susceptible class if there is too little amount of parasites; they can recover after
treatment or they might die. The natural and disease-induced mortality rate is
denoted by m1i with value based on literature [89], and the recovery rate µ is
an unknown parameter. In addition, depending on the diseases some recovered
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people from H1r may fall back to infection again with rate ρ2.

Ḣ1i = i1(t, u)
H2i

H2s +H2i
H1s − ρ1(t, u)H1i − µ(t, u)H1i

+ρ2(t, u)H1r −m1i(t, u)H1i.
(2.2)

Moreover, we foresee that the recovery rate µ depends on the individual immunity,
the employed medical treatment and the way how the drug is administrated. We
are going to take the data from Cissé in Burkina Faso, a poor village. We should
notice that most of the local population does not have access to any treatment
easily. With support from a common project between Heidelberg researchers and
local people, classical Chloroquine regimen was given to all patients and showed
good effect. That is why in simulation we can assume that drugs start with a
good efficacy. We then can concentrate on how treatment is administrated. It is a
reasonable assumption that when one patient takes the full dose as recommended,
all his/her sensitive pathogens are killed at rate λ. The proportion of people that
follows proper treatment is expressed by α.

In general, most of the patients carry both sensitive and resistant parasites.
Drug treatment strengthens the immunity and shortens the recovery process. In
the other word, it helps to increase the recovery rate. We combine immune and
treatment effects in formula

µ = kβλβα+ β(1− α),

where β is the rate of parasites which are eliminated by natural host immunity
without treatment, kβλ is the factor which expresses how drugs strengthen the
immunity in treated patients. The value of kβ is subject to estimation.

Recovered human population H1r

All recovered individuals from H1i go to the recovered class H1r. For a cer-
tain while they have protection due to the retained drug and natural immunity.
Depending on different diseases they can or can not be reinfected again. With
malaria, especially in highly endemic areas without medical supplies, some recov-
ered patients with very little protection could get new infection almost instantly
(ρ2). In the setting where most patients are treated, the majority of recovered
individuals have noticeable protection. However, they can lose their immunity
and return to susceptible class (r). The process can be fast or slow depending
on drug wash-out duration and individual health. We have already explained the
detail of r in the section of susceptible human population H1s. We also call m1r

mortality rate of recovered class H1r, the value of m1r is given in table 2.2.

Ḣ1r = µ(t, u)H1i − ρ2(t, u)H1r − r(t, u)H1r −m1r(t, u)H1r. (2.3)
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Susceptible vector population H2s

This compartment is similar to the susceptible human compartment. However,
since parasites do not influence vectors in the same way as humans, there is no
recovery or re-susceptibility effect.

Let b2s, b2i be the unknown birth-rates of susceptible and infected vectors. In
addition, eggs from vectors (mosquitoes) are supposed to be able to hibernate over
unfavorable time spans and hatch to become new vectors when the season provides
better conditions. This process has an effect close to immigration and emigration,
modeled by parameter b2. Vectors become infected on contacting infected humans
in class H1i, this is modeled by rate i2. All of these four parameters are subject
to estimation. Mortality rate of vectors m2s is taken as in [89].

Ḣ2s = b2s(t, u)H2s + b2i(t, u)H2i + b2(t, u)

−i2(t, u)
H1i

H1s +H1i +H1r
H2s −m2s(t, u)H2s.

(2.4)

Infected vector population H2i

All infected vectors from susceptible class H2s go to class H2i. Since the life-cycle
of vectors is not so long, in most cases either parasites are transmitted to human
or they stay in vectors’ abdomen until they die. The mortality rate of vectors is
denoted by m2i, its value is given in table 2.2.

Ḣ2i = i2(t, u)
H1i

H1s +H1i +H1r
H2s −m2i(t, u)H2i. (2.5)

Non-resistant parasite population Pn

Now we pay attention to parasite population in humans. They are supposed
to be inside the infected human class H1i so naturally depend on H1i. Since
this dependence is likely reduced when the number of infected humans becomes
large, we use Michaelis– Menten relation, involving H1i

C +H1i
. We also assume that

parasite population growth follows the logistic rule governed by rate bpn, bpr and
some maximal capacity K.

Unlike the hosts, parasites usually clone themselves, so in some sense there
is no “death”. It practically applies for malaria parasites in humans, they only
multiply asexually inside human red blood cells. On the other hand, all parasites
inside the infected hosts also die out due to the mortality of these hosts.

Since drugs are present, there is the proportion α of the infected human popu-
lation H1i, who received full drug treatment. Together with immunity, drugs can
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eliminate pathogens with rate (µ + αλ), λ presents the rate in which (sensitive)
parasites are eliminated by drug.

Also due to drug presence, some sensitive pathogens need to change themselves
to be able to increase their chances of survival, such as by mutation or adaptation.
This makes a certain ratio of sensitive pathogens become resistant, the process is
occurring with rate

s = s0 + kd
αmin(d, d0)

λ
.

The rate s0 describes the mutation and the part kdαmin(d, d0)/λ describes the
adaption rate. We assume that the adaption rate is directly increased in the
same time with the proportion α of treatment and drug wash-out duration d, but
inversely proportional to the efficacy λ of the given treatment. There is also a
parameter d0, an upper threshold of drug wash out duration d, which implies that
above a certain limit parasite adaptation rate would not increase considerably but
rather stay the same. Factor kd is an unknown subject to estimation.

Ṗn = bpn(t, u)
H1i

C +H1i

(
1− Pn + Pr

K

)
Pn −m1i(t, u)Pn

−(µ(t, u) + α(t, u)λ(t))Pn − s(t, u)Pn.
(2.6)

Resistant parasite population Pr

As we discussed before, the resistant parasite population Pr grows with the rate
bpr. Resistant parasites decrease only due to the death of the host H1i or is
eliminated by host immunity. Since resistant parasite population is fitter in drug
presence, it gains some new ones from sensitive population sPn.

Ṗr = bpr(t, u)
H1i

C +H1i

(
1− Pn + Pr

K

)
Pr −m1i(t, u)Pr

−µ(t, u)Pr + s(t, u)Pn.
(2.7)

2.1.3 Full model system and parameters

Now we put together all equations (2.1), (2.2), (2.3), (2.4), (2.5), (2.6) and (2.7).
For convenience we re-write

u = (u1, u2, u3, u4, u5, u6, u7) = (H1s,H1i,H1r,H2s,H2i, Pn, Pr)

and re-denote some factor functions accordingly. The general system is:

u̇ = A(t, u)u+B(t, u).

In this chapter, we would restrict ourselves to the case where all functions (the
details in table 2.1) depend only on the independent variable t. We obtain a
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system that is connected to our network in figure 2.1:

u̇1(t) = b1s(t)u1(t) + b1i(t)u2(t) + b1r(t)u3(t)−m1s(t)u1(t)

−i1(t)
u5(t)

u4(t) + u5(t)
u1(t) + ρ1(t)u2(t) + r(t)u3(t),

u̇2(t) = i1(t)
u5(t)

u4(t) + u5(t)
u1(t)− ρ1(t)u2(t)− µ(t)u2(t)

+ρ2(t, u)u3(t)−m1i(t)u2(t),

u̇3(t) = µ(t)u2(t)− ρ2(t, u)u3(t)− r(t)u3(t)−m1r(t)u3(t),

u̇4(t) = b2s(t)u4(t) + b2i(t)u5(t) + b2(t)

−i2(t)
u2(t)

u1(t) + u2(t) + u3(t)
u4(t)−m2s(t)u4(t),

u̇5(t) = i2(t)
u2(t)

u1(t) + u2(t) + u3(t)
u4(t)−m2i(t)u5(t),

u̇6(t) = bpn(t)
u2(t)

C + u2(t)

(
1− u6(t) + u7(t)

K

)
u6(t)−m1i(t)u6(t)

−(µ(t) + α(t)λ(t))u6(t)− s(t)u6(t),

u̇7(t) = bpr(t)
u2(t)

C + u2(t)

(
1− u6(t) + u7(t)

K

)
u7(t)−m1i(t)u7(t)

−µ(t)u7(t) + s(t)u6(t)

(2.8)

where
r = krr0 = krmax−1(T, d),

µ = kβλβα+ β(1− α),

s = s0 + kdαλ
−1min(d, d0).

All initial conditions are given:

(u1, u2, . . . , u7)(t
0) = (u01, u

0
2, . . . , u

0
7) ≥ 0,

especially the susceptible classes u01, u
0
4 are positive and at least one infected class

should be positive. Without loss of generality, we assume the initial number of
infected vectors u05 is positive.

This is a non-linear differential equation system. The system is designed for
vector-borne diseases. Compared to the already established models concerning
drug resistance of vector-borne diseases, such as in [4, 33], we add two new com-
partments of parasites. They are sensitive and resistant parasites corresponding
to the given treatment. The treatment can take effect on infected human hosts,
sensitive parasites and indirectly on resistant parasites inside the infected humans.
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Details about all model parameters and their biological meanings are presented
in table 2.1. We order them according to the places where they appeared in
equation system (2.8).

Table 2.1: All factors and their biological meaning

Factors Biological meaning
b1s(t) birth rate of susceptible humans H1s

b1i(t) birth rate of infected humans H1i

b1r(t) birth rate of recovered humans H1r

i1(t) infection rate of susceptible humans H1s

ρ1(t) re-susceptibility rate from infected group H1i

r(t) = kr(t)max−1(T, d) re-susceptibility rate of humans H1r

T natural immune duration in humans H1r

d drug wash-out duration
kr(t) unknown factor, appeared in r
m1s(t) mortality rate of susceptible humans H1s

µ(t) = kβ(t)λβ(t)α the recovery rate of patients with treatment
+ β(t)(1− α)

α proportion of full treatment
β(t) rate of parasites eliminated by immunity
λ elimination rate of sensitive parasites (by drug)
kβ(t) unknown factor describing treatment effect
ρ2(t) re-infection rate from recovered group H1r

m1i(t) mortality rate of infected humans H1i

m1r(t) mortality rate of recovered humans H1r

b2s(t) birth rate of susceptible vectors H2s

b2i(t) birth rate of infected vectors H2i

b2(t) hibernated eggs contributing to H2s

i2(t) infection rate of susceptible vectors H2s

m2s(t) mortality rate of susceptible vectors H2s

m2i(t) mortality rate of infected vectors H2i

bpn(t) relative birth rate of sensitive parasites Pn

C constant in the Michaelis- Menten formula
K parasite-holding capacity of human hosts
s(t) = s0(t) selection force of resistance in drug presence
+ kd(t)αλ

−1min(d, d0)
s0(t) parasite mutation rate (become resistant)
d0 effective threshold of drug-wash-out duration
kd(t) unknown factor, appeared in s
bpr(t) relative birth rate of resistant parasites Pr
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2.2 Analytical study

In this section, we study the existence, uniqueness, boundedness and positivity of
solutions of system (2.8). We first consider the local case, then later the global
case.

We shorten the right hand side of system (2.8) by f(t, u(t)) and have a Cauchy
problem:

u̇(t) = f(t, u(t)), t ∈ [t0,∞), ui(t) have values in R,
u(t0) = u0, where u01, u

0
4, u

0
5 > 0 and all other u0i ≥ 0.

(2.9)

We have the classical theorem on the existence and uniqueness of solution: If f
is continuous in (t, u) in a neighborhood of (t0, u0) and Lipschitz continuous in
u, then there exists a unique solution of (2.9), defined in a neighborhood of t0.
In this study, we would like to look at the existence of solutions not only in a
neighborhood of t0 but also in [t0,∞).

Remark. For the whole section, if there is no further notice, one solution u
would be called “positive” if three components u1, u4 and u5 are strictly positive,
the other components are non-negative.

We need the following assumption:
Assumption A
All the factor functions in table 2.1 are continuous, positive and bounded for all
t ∈ [t0,∞).

2.2.1 A local solution

First of all, we would like to prove the local existence in a neighborhood of initial
time t0.

Proposition 2.1. Under assumption A, we have the following statements:
(i) there exists a local solution of system (2.9) in a neighborhood of t0, which is a
closed interval in [t0,∞),
(ii) the solution is “positive” on its defined domain,
(iii) the solution is unique.

Proof. Let b be any arbitrary function. For the rest of this chapter, we use the
common notations for supremum and infimum:

b = sup
t

b(t), b = inf
t
b(t).

Also, for any given x, N(x) is a neighborhood of x. In our case, N(x) is always
connected set.
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(i) Since u01, u
0
4 > 0, there are neighborhoods N(u01), N(u04) such that for all u1 ∈

N(u01) then u1 >
u0
1
2 , all u4 ∈ N(u04) then u4 >

u0
4
2 .

Since u02, u
0
3 ≥ 0, there are neighborhoods N(u02), N(u03) such that for all u2 ∈

N(u02) and u3 ∈ N(u03) then u2 > max(−C
2 ,

−u0
1

4 ) and u3 >
−u0

1
4 .

Since u05 > 0, there are neighborhoods N(u05) such that for all u5 ∈ N(u05) then
u5 >

u0
5
2 .

Take some small enough neighborhoods N(u06), N(u07) and

N(u0) = N(u01)×N(u02)× · · · ×N(u07).

For all u ∈ N(u0) then:

u1 + u2 + u3 >
u01
2

+
−u01
4

+
−u01
4

= 0,

u4 + u5 >
u04
2

+
u05
2

> 0,

C + u2 > C +
−C

2
> 0.

From assumption A, we know K is also positive. Combine all the conditions with
the formula of f , we derive that f is continuous on a small neighborhood N(t0, u0)
of (t0, u0).

So f ∈ C(N(t0, u0),R7). Since all spaces are finite dimensional Banach spaces,
using Cauchy-Peano theorem, there exists (not yet unique) a local solution of
system (2.9) on a small enough neighborhood N0(t0). In case N0(t0) is not a
closed interval we can shorten this to obtain a closed one. E.g., if N0(t0) = [t0, tf ),
then we choose tf such that t0 < tf < tf and [t0, tf ] is a closed neighborhood. We
can denote it by the similar notation N(t0). Its compactness is used in the proof
of part (iii).

(ii) Now we look at the positivity of the solution on the neighborhood N(t0).

Since u is a solution of (2.9) on N(t0), we have all ui are continuous, differen-
tiable on N(t0). For i = 1, 4 and i = 5 we know that u1(t), u4(t), u5(t) are strictly
positive on N(t0), so we mainly need to take care of ui(t) where i = 2, 3, 6, 7.

Now we focus on the local solution defined on N(t0). We set

I+ = {t ∈ N(t0) | ui(t) ≥ 0 ∀i = 2, 3, 6, 7}.

We are going to verify that
I+ = N(t0).

Firstly, using the initial conditions, I+ 6= ∅ because t0 ∈ I+.
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Secondly, I+ is closed because all functions ui(t) are continuous. Indeed, if
there is a series of tj such that ui(t

j) ≥ 0 for all i = 2, 3, 6, 7 then ui( lim
j→∞

tj) ≥ 0.

So lim
j→∞

tj ∈ I+.

Thirdly, I+ is open in N(t0). To verify this, we assume that we have a t1 ∈ I+,
we are going to prove that there exists a neighborhood N(t1) ⊂ N(t0) such that
for all t ∈ N(t1): t ∈ I+.

Using the fact t1 ∈ I+ and assumption A - all the factor functions are positive,
continuous - we get:

u̇2(t
1) = i1(t

1)
u5(t

1)

u5(t1) + u4(t1)
u1(t

1)− ρ1(t
1)u2(t

1)

−µ(t1)u2(t
1) + ρ2(t

1)u3(t
1)−m1i(t

1)u2(t
1)

> −δ(t1)u2(t
1),

where δ(t) = ρ1(t) + µ(t) +m1i(t).
Using assumption A, ρ1(t), µ(t) and m1i(t) are positive bounded, so δ(t) is positive
bounded, too.

Using the continuity of all unknowns ui, i = 1, . . . , 7 on N(t0), we can say there
exists a neighborhood N(t1) ⊂ N(t0) such that for all t ∈ N(t1):

u̇2(t) ≥ −δ(t)u2(t).

Keeping the same initial condition, the solution u2(t) is always larger than or
equal to the solution of the equation:

ẇ(t) = −δ(t)w(t).

Therefore, with nonnegative initial condition u02 ≥ 0, we obtain u2(t) ≥ 0 on
N(t1).

Similarly, we can prove that ui ≥ 0 for i = 3, 6, 7. With different i, the neigh-
borhoods N(t1) can be different. We take the intersection of all neighborhoods,
which still satisfies as a neighborhood of t1. We now can re-denote this new
intersection by N(t1). We have N(t1) ⊂ I+. So I+ is open.

Due to the fact that N(t0) is connected space; I+ is both closed and open in
N(t0) and not empty, we have I+ = N(t0). The part (ii) is proved.

(iii) We already have the existence and the positivity of the local solution, now
we are going to prove that on N(t0, u0), f(t, u) satisfies the Lipschitz continuous
condition with respect to u, so that the local solution is unique. Here we use the
compactness of N(t0, u0). Since the solution is continuous on N(t0, u0), which is
compact, all of their components are bounded.
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2.2. Analytical study

We look at the first right hand side of system (2.9) (represented by f1) and
the first unknown u1 on domain N(t0):∥∥f1(t, u11, u2, . . . , u7)− f1(t, u

2
1, u2, . . . , u7)

∥∥
=

∥∥∥∥(b1s(t)−m1s(t))(u
1
1 − u21)− i1(t)

u5
u5 + u4

(u11 − u21)

∥∥∥∥
≤
∥∥b1s −m1s

∥∥ ∥∥u11 − u21
∥∥+ i1

∥∥u11 − u21
∥∥ (since u4 > 0 and u5 ≥ 0)

≤ (b1s +m1s + i1)
∥∥u11 − u21

∥∥ .
So, f1 is Lipschitz continuous with respect to u1. Similarly, f1 is also Lipschitz
continuous with respect to u2, u3. Now we consider u4:∥∥f1(t, u1, u2, u3, u14, u5, u6, u7)− f1(t, u1, u2, u3, u

2
4, u5, u6, u7)

∥∥
=

∥∥∥∥−i1(t)u1

(
u5

u5 + u14
− u5

u5 + u24

)∥∥∥∥
≤ i1 ‖u1‖

∥∥∥∥ u5
(u5 + u14)(u5 + u24)

∥∥∥∥ ∥∥u14 − u24
∥∥

≤ L
∥∥u14 − u24

∥∥ (0 < L < ∞ since ui is bounded, “positive” on N(t0)).

So we can verify that f1 is Lipschitz on N(t0) for all the unknowns ui, i =
1, 2, . . . , 7. The same procedure can apply for fi, i = 2, . . . , 7 and we obtain that
f is Lipschitz function. The right hand side of system (2.9) satisfy the condition
of the existence and uniqueness equation on N(t0), that’s why system (2.9) has a
unique solution on N(t0), this solution is “positive” (as we stated above).

2.2.2 A global solution

Before the main theorem, we are going to prove a lemma on the boundedness of
the existing solution.
Lemma 2.2. Under assumption A, the solution of system (2.9), whenever it
exists, is exponentially bounded. As a consequence, the solution is always bounded
in finite time.

Proof. We estimate the derivative of the first unknown, using assumption A and
the result of proposition 2.1 above. Notice that the solution is positive on the
defined domain (u1 and u4 is strictly positive, the other components are nonneg-
ative).

u̇1 = b1su1 + b1iu2 + b1ru3 −m1su1 − i1
u5

u5 + u4
u1 + ρ1u2 + ru3

≤ b1su1 + (b1i + ρ1)u2 + (b1r + r)u3.

Since all factors are bounded, their supremum and infimum values are also bounded.
Similar to this, the derivatives of other ui can also be estimated by linear right
hand sides.
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According to proposition 7.8 in [2], the solution of system (2.9) is exponentially
bounded. Using the positivity of the solution in the previous section 2.1, we have
the solution bounded in finite time by positive values (all lower bounds and upper
bounds are non-negative, especially three components u1, u4, u5 are bounded by
positive values).

Now we are going to prove the main theorem concerning a global solution.

Theorem 2.3. Assume that all factors satisfy assumption A as before, system
(2.9) has a unique solution defined on [t0,∞). This solution is positive, exponen-
tially bounded.

Proof. At first, we would like to comment that the positive condition of all fac-
tors is actually not mathematically essential, they just come from the biological
meaning.

We already proved that there exists a unique local solution in a neighborhood
N(t0). From the part where the solution exists, it stays positive, bounded. Taking
t1 ∈ N(t0) and t1 > t0, using the same argument from proposition 2.1, we can
prove that the function f is also Lipschitz in a neighborhood N(t1) of t1, so the
solution can be extended on N(t1).

Assume that the solution can be extend to [t0, a) but not yet [t0, a]. If a is
finite then we define u(a) = lim

t→a
u(t). Due to the continuity of u̇(t) and function

f(t, u(t)), we have:

u̇(a) = lim
t→a

u̇(t) = lim
t→a

f(t, u(t)) = f(a, u(a)).

So the solution can be extended to a. We can also say, the solution exists up to
a. Now we consider:

a := sup
∀t

t (for all t belonging to the domain of the solution).

If a < ∞ then a is finite. Using the same argument as before we obtain that a
belongs to the defined domain of the existing solution of (2.9). Note that from
lemma 2.2, in finite time every component of the solution is bounded by the
constant “positive” value. That means, at the point a, the values of function ui
are “positive” and satisfy the conditions as in the proof of the proposition 2.1.
Because of this, we can continue to apply the proposition 2.1, extend the solution
over a small neighborhood N(a). Denote δ as the radius of this neighborhood
(δ > 0). The solution is now also defined at a + δ

2 > a, this contradicts with the
fact that a is the supremum of all the t in the domain of the solution.

We have proven that a = +∞. By virtue of proposition 2.1, we obtain that
system (2.9) has a unique positive global solution. Using lemma 2.2, this solution
is exponentially bounded.
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2.3. Numerical study

2.2.3 Remarks

Assumption A for all factors is natural. Note that in most of the biological systems,
the resources are often limited. The growth function could have high positive
values from the beginning, but eventually have to decrease when the population
size becomes large. When we consider infinite time, this kind of function is usually
bounded. On the other side, mortality function is obviously bounded.

System (2.8) is just the original form of (2.9), so all results of (2.9) are also
valid for (2.8). That means, under assumption A, system (2.8) has a global unique
solution.

In addition, we would like to mention that the analysis will stay the same
if some quotient terms in the system (2.8) change. For example, if the term
H2i/(H2s + H2i) becomes H2i/(H1s + H1i + H1r) then our analysis will still be
valid.

Before moving to the numerical part, we would like to comment that our model
is designed to study the dynamics on finite time. This period can be quite long as
far as there is no big sudden “jump” in the surrounding environment. For instance,
we approximate the birth rates of humans by functions which depend only on
time, does not depend on the number of the compartments themselves. In finite
time, this approximation is appropriate and gives advantages, particularly in the
parameter estimation and numerical simulation problems. It is necessary to reduce
the complexity. Otherwise, we likely end up with time consuming computation
without gaining much further details.

Considering infinite time, this assumption can be revised to meet a new situa-
tion. For example, the natural resource is often limited over time, so growth rate
of susceptible humans should reduce to 0 or negative when the total number of
humans becomes quite large. Readers who are interested in this kind of situation
may see more information at [5, 82]. Below we switch to a concrete situation and
study this numerically.

2.3 Numerical study

For numerical study, we use finite intervals. For short time periods, parameters
related to human hosts do not change very much. That is why we are going to
specify some factors, in order to reduce the complexity of the problem.

In this section we present data extraction, all known and unknown parameters,
establish a parameter estimation problem and a simulation problem. Using the
software package VPLAN [50, 60], we solve the two problems. The results are
presented in detail.
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2.3.1 Data extraction

Observation data is mainly extracted from [89], in Burkina Faso. We need the
following assumptions:

- The study focused on children and all observations were generalized for the
whole town.

- In the period of study, most of the clinical malaria cases were treated so most
of the infected people recover after treatment. Whole population was only slightly
decreased due to malaria.

- Given a certain drug, all parasites are either sensitive or resistant.

In addition, we assume some appropriate observation errors (based on the
information in [89]) which are normally distributed.

2.3.2 Parameter values

Before simulation in the case of malaria in Burkina Faso, we have to specify all
parameters to meet the specific situation. We present all parameters in two tables:
the first one for known parameters and the second for unknown parameters. Our
time unit is five days.

After several discussions with experts in epidemiology, also based on the
data from literature, we take some factors as constant over the year of study
(2004): birth rate and mortality rate of human classes, mortality rate of vectors
(mosquitoes), etc. We also take into account the properties of the drugs that were
given (mainly Chloroquine) and its efficacy. We then obtain a list of the known
parameters as given in table 2.2. Infection rate i1 is a piecewise linear function as
in figure 2.2.

10 20 30 40 50 60

0.0

0.5

1.0

1.5

2.0

2.5

i1

Figure 2.2: Approximated
function of human infection
rate i1, based on [89] and
information about the propor-
tion of infected human class.
The horizontal axis is the time
and one unit is 5 days.

In table 2.3 we present all unknown parameters. We plan to estimate them by
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2.3. Numerical study

Table 2.2: All known parameters

Parameter Value(unit) References

b1s 0.00063(time−1) [89]
b1i 0.0005(time−1) [89]
b1r 0.00063(time−1) [89]
ρ1 0(time−1) assumed (Cissé)
T 12(time) [92]
d 40(time) [15]
m1s 0.000285(time−1) [104]
α 0.9(dimensionless) [89]
β 0.025(time−1) [67]
λ 0.7 (time−1) assumed, based on [89]
ρ2 0(time−1) assumed (Cissé)
m1i 0.000613(time−1) [89, 104]
m1r 0.000285(time−1) [104]
m2s 0.75(time−1) [89]
m2i 0.75(time−1) [89]
C 5 (dimensionless) based on data size
K 25× 106(dimensionless) [89], scaled 1/1010

s0 7× 10−7(time−1) [46]
d0 73 (time) [15]

piecewise functions, each interval corresponds to one month. We state also some
constraints needed to analyze estimation results.

Table 2.3: All unknown parameters for estimation

Parameter Unit Remark

kr dimensionless kr ≥ 0
kβ time kβ ≥ 0
b2s time−1 b2s ≥ 0
b2i time−1 b2i ≥ 0
b2 dimensionless b2 ≥ 0
i2 time−1 i2 ≥ 0
bpn time−1 bpn ≥ 0
bpr time−1 bpr ≥ 0
kd time−3 kd ≥ 0
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2.3.3 Setup of parameter estimation and simulation problems

In this part, we recall some classical problems concerning parameter estimation
in differential equations and specify our problems to be solved later. Interested
readers can refer to [17] and references therein for related information.

For the rest of this section, without further notice, all variables are elements
in Rn. As we see before, we have established a population dynamics in the form
of a differential equation system (2.8). Generalizing the system, we denote time
by t, state variables by u(t), unknown parameters by p, control parameters by q,
control functions by v(t), the right hand side of system (2.8) by f , the equality
constraints by g. Notice that g is often present due to initial or boundary values.
We have a problem:

u̇(t) = f(t, u(t), p, q, v(t)), t ∈ [t0, tf ],
0 = g(u(t0), u(tf ), p, q).

(2.10)

For all parameter estimation problems, we need data. It is assumed that ex-
periments i, i = 1, . . . , N have been carried out at the given times tj , j = 1, . . . ,M ,
yielding the measurements ηij . On the other hand, measurement errors are εij
and the “true” model response corresponding to these measurements are bij :

ηij = bij(t
j , u(tj), p) + εij .

Parameter p is found by minimizing the deviation between data and model
response. Due to statistical reasons, some weights σ−1

ij can be introduced, see
detail in [17]. In addition, if we have prior knowledge about some approximate
value p0 of parameter p then we can add a regularization term δ(p − p0)

2 to the
objective function. Vector δ has the same dimension as vector p and all components
δl are nonnegative.

Summing up, a general parameter estimation problem can be formulated as:

min
(u,p)

∑
i,j

(
ηij − bij(t

j , u(tj), p)

σij

)2

+
∑
l

δl(pl − pl0)
2

 ,

s.t. (u, p) solves equation (2.10).

(2.11)

In our case, we have one experiment (i = 1) with all observation data ηj about
the state variables u(tj) and the weights σj . The unknown parameters are given
in table 2.3

p = (kr, kβ, b2s, b2i, b2, i2, bpn, bpr, kd).

The initial values for the state variables, which are implied by g, are given at
t = t0. In the parameter estimation problem, all the control factors are given, we
are interested in finding p.
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2.3. Numerical study

After parameter estimation, values for the parameters are determined. Now
we can consider the simulation. Unlike before, the control parameters q play
the key roles. They are the proportion of full treatment α, the drug wash-out
duration d and the treatment efficacy λ. For each simulation, there is a fixed
set of values. With different values of control parameters, we need to solve the
differential equation (2.8) to compute the simulation.

2.3.4 Software package VPLAN

For both parameter estimation and simulation, we use VPLAN (Versuchplanung),
see [60] and references therein. VPLAN is a software package developed at the
Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg.
VPLAN works well with models in the form of ordinary differential equations or
differential algebraic equations. The four main features of VPLAN are Integration,
Simulation, Parameter Estimation and Optimal Experimental Design. VPLAN
uses the Gauss-Newton method for fitting data. Multiple shooting method is also
integrated to improve the numerical stability.

In order to run properly, VPLAN requires problem description, experiment
description, model description and (optional) measurement data. They are mainly
defined by using Fortran 77 and ini files. The diagrams of the essential files are
shown in figure 2.3, 2.4. In figure 2.5, there is a screen shot of VPLAN main
problem description file. Further information concerning how to install and work
with VPLAN is provided on its wiki page and in [12, 50, 60].

Legend:

<<read>>

<cmdline_arg_1>

1

<exp_in_file>

<num_exp>

<<generate>>

Figure 2.3: DOIT (a VPLAN command) and its related files. DOIT reads problem
description and all experiment files referenced there. Form that DOIT creates a
model function library, which is needed in all other actions in VPLAN [50].
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Only generated, if in

messfileflag=1

<<read>>
<<generate>>

<<read>>

<<read>>

<<generate>>

<<generate>>

Figure 2.4: Input and output files involved in VPLAN simulation. VPLAN reads
problem description, all referenced experiment files and model function library.
After successful run, the measurement prediction files and plot files are generated.
The available data can be used to compute the measurement residual, this is
optional in simulation but absolutely required in parameter estimation [50].

2.3.5 Result of parameter estimation

In this part we are going to present the estimation results. As mentioned before, to
minimize the residual, we take into account all parameters in the form of piecewise
constant functions. We divide the domain into an appropriate number of intervals
and find parameter values in each interval. To be more specific, we solve problem
(2.11) in the first interval, then pass the last state variable values as the initial
values of the next intervals. This assures the continuity of the solutions. The
results of p in all intervals form piecewise constant functions, see figure 2.7.

In addition, we use multiple shooting [17] and maximize the usage of data
information to deliver a good fit, see figure 2.6. Since parasite populations are
very large compared to the host populations, we scale them by 1/1010.

As we can see in figure 2.6, all the predicted populations (green curves) are
in agreement with data (red points) from Cissé, Burkina Faso. The different
scales between hosts and parasites were taken into account by using a weighted
least squares function. Due to technical reasons, in some place we use small
regularization factors (see the problem setup 2.3.3). As we see, the overall residual
is very low.

For clear visibility, we show only half of the data points. The study was
carried out from the end of 2003 to the end of 2004. Since data at the beginning
and closing periods were not very good, we only take the part from middle of
January to November 2004, around 300 days or 60 units of time. There are
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Figure 2.5: A screen shot of VPLAN problem description file.

peaks in the number of mosquitoes and parasites around August since the season
becomes more suitable for vector development. Notice that the eggs can survive
through dry season and hatch in rainy season to become larvae, pupae and then
mosquitoes.

All the parameters are presented in figure 2.7. It shows that most of the
parameters are not constant during the year, they vary a lot due to seasonal
conditions, host environments, interactions among different populations.

As expected, the rainy season creates the peaks of mosquito growth rates, see
figure 2.7. There are many more susceptible mosquitoes available compared to dry
season. Through the contact with infected humans, they also become infected by
parasites. Due to the weather condition, mosquitoes are much more active than in
dry months. With Human Land Capture method, volunteers caught many more
mosquitoes in rainy months compared to just a few in the other months [89].

In the same time, the value of kr has a big drop, indicating that there are
almost no recovered people that come back to susceptible class. In malaria, no
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Figure 2.6: The observed and predicted populations. Data from middle of January
to November 2004, [89]. For clear visibility, we show only half of the data points.
These data (red points) are plotted together with their error bars. Time unit is 5
days.
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Figure 2.7: The fitted parameters. The horizontal axes are time axes, unit 5 days.

recovery or complete clearance is expected in a short period of time. Here we
should mention one common weak point of the malarial data - patients with low
parasite densities sometime are not detected and can be considered healthy. In
fact, the parasite density develops slowly and symptoms appear in patients after
few weeks or much later than the exposure to mosquitoes. Similar to this, the
peak of selection force of resistance also comes later than the intensive treatment
period, this is expressed in the last parameter kd in figure 2.7.

2.3.6 Result of simulation with controllable parameters

In this section, using the set of fitted parameters, we simulate the model (2.8).
Here we can control the proportion of full treatment α, the drug regimen corre-
sponding to drug wash-out duration d and the treatment efficacy λ. Values of
(α, d, λ) are varied within certain ranges. We also use VPLAN to compute the
simulations.
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Proportion of infected human class with full treatment

In this part α is our control parameter. This is the proportion of infected human
class with full treatment. In this case, two drugs are chosen, Chloroquine (CQ)
with wash-out duration d = 40.0 and Sulfadoxine-pyrimethamine (SP) with d =
6.0. Their results turn out to be quite similar. By virtue of the treatment, the
sensitive parasite population is changed much faster than the resistant one.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0  10  20  30  40  50  60

t (time)
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Figure 2.8: Simulations of sensitive parasite populations for different proportions
of treatments. Increasing α leads to rapid decrease in sensitive parasite population
to both treatments. Time unit is 5 days.

Simulation in figure 2.8 shows that the proportion of infected humans receiving
full medical treatment is very critical in disease control. More important, the figure
indicates that at least a certain proportion of the population needs to be treated
properly in order to avoid deadly clinical malaria in the case of very high density
of parasites. Recall that we have shown parasite populations with scale 1/1010 and
Cissé is only a small town with around one thousand habitants. We can calculate
the average density of parasites in each patient accordingly.

Beside that, different levels of treatment strongly influence the fitness between
sensitive and resistant parasite populations. As we see in figure 2.9, full treatments
give resistant parasites a chance to better compete with sensitive parasites to
invade the environment.
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Figure 2.9: Simulations of resistant parasite population for different proportions of
treatment. High proportion of full treatment makes resistant parasite population
increase faster than low proportion of treatment. The green line represents 60%
full treatment with Chloroquine while the red line represents only 1% Chloroquine
full treatment. Time unit is 5 days.

Drug regimens with different half-lives

Using drug regimens with different half-life time would affect the picture of sensi-
tive and resistant parasite populations. This affects the initial ratios of sensitive
and resistant populations and also the number of parasites which become adapted
to the drug environment. In Burkina Faso we do not have any data about different
drug usages and how parasites would resist to certain treatment. It is necessary
to run virtual simulations with different possible values of parameters d. For clear
comparison, we use (artificially) the same initial values for the seven populations
and keep the same treatment efficacy in all simulations. Assuming that all drug
regimens have the same efficacy λ = 0.7(time−1) and that 80% of infected human
receiving full treatment α = 0.8, different therapies lead to noticeable changes in
the resistant parasite population, see figure 2.10.

According to our simulation, for long treatment periods using drugs with
shorter half-life gives better performance. However, in the first period of treat-
ment, the difference is not much due to the fact that a large proportion of parasites
is sensitive to drugs. That is why in this period it does not matter which type of
antimalarial drugs are used. The effect shows later, see the fast increase starting
from t = 30 in figure 2.10.
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Figure 2.10: Simulations of resistant parasites for different drug half-lives. Switch-
ing between different therapies leads to noticeable changes in the number of resis-
tant parasites. Simulations are done for Artesunate (ASU), Quinine (QN), Chloro-
quine (CQ) with approximated wash-out durations dASU = 0.04, dQN = 0.5,
dCQ = 40.0, based on their half-lives given in [15].

We also simulate the case when first Chloroquine is used and afterward switched
to Artesunate in the last three months of study. As expected, the resistant popu-
lation was reduced considerably fast, this provides a good alternative treatments.

Different treatment policies: Combined control of α and d

Taking the setting as in countries like Burkina Faso, we have similar high efficacy
for most of the antimalarial drugs. We simulate here the case when we combine
the two mentioned controls, the proportion of full treatment α and the drug type
expressed by d. Shortly speaking, we have combined advantages. We can keep
both the sensitive and resistant parasite populations under control. The resistant
parasite population is relatively small, as we see with Artesunate treatment in
the lower panel of figure 2.11. On the upper panel, combined control leads to
noticeable change in the infected human population.

Extended setting: Different efficacies of drug treatments

In this part we consider the case in which all the infected people can afford their
necessary medication or the health care systems are good enough to cover all
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Figure 2.11: Simulations
of resistant parasites and
infected humans with
different drug treatment
policies. Time unit is 5
days.
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the cost. So all patients can be treated and α = 1.0. The treatment efficacy
λ and drug d are our control parameters. Simulations are done for Chloroquine
(CQ), Sulfadioxine-pyrimethamine (SP), Mefloquine (MQ), Artesunate (ASU).
The treatment efficacies are close to the values of antimalarial drugs taken from
Asia, especially Vietnam. They are based on a report by WHO in [102]. Note
that in the Burkina Faso setting, most of the antimalarial medication would have
similarly high efficacy - since most of the people living in the rural regions have
had no access to them before.

Figure 2.12 using logarithmic scale, lets us easily see that there are big dif-
ferences between Chloroquine, Sulfadioxine-pyrimethamine, Mefloquine and Arte-
sunate. In the first three drugs, parasite resistance levels in the last period are
very high. In contrast, with Artesunate or the similar Artemisinin Combination
Therapy, the regimens are still effective, they keep parasite resistance low.
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Figure 2.12: Simulations of resistant parasites for different treatment efficacies.
Simulations are done for Chloroquine (CQ), Sulfadioxine-pyrimethamine (SP),
Mefloquine (MQ), Artesunate (ASU) with the values of λ being 0.2, 0.4, 0.6, 0.6
respectively. The wash-out duration d of all drugs is based on [15]: dASU = 0.04,
dQN = 0.5, dMQ = 16.0, dCQ = 40.0. The time unit is 5 days.

2.4 Concluding remarks

We discuss the simulation results and summarize this chapter.

2.4.1 Interpretation of the simulation results

The simulations which have been done with the fitted model lead to the following
interpretations.

- From our result, we have found that the use of medication accelerates resis-
tance in parasite populations. However, we need it to avoid the high (sensitive)
parasite density in infected humans, so as, to keep the average density in human
blood below N parasites per volume unit. Our model can serve as the base for the
control problems, providing an optimal strategy of treatment. We can optimize
the proportion (or number) of patients who need to be treated properly to prevent
an outbreak of drug resistance.

- In case of malaria, our model simulations suggest that parasite mutation and
drug adaptation both play key roles in resistance. Quantitatively, the simulation
shows that: when drugs with long half-lives are employed, drug adaptation is
dominant. Adaptation is weaker in drugs with shorter half-lives. So the shorter
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the drug’s half-life is, the fewer resistant parasites develop.

- During the initial treatment periods, our simulations show that different drug
treatments create similar outcomes. It is explained by the fact that very few people
have access to treatment in Burkina Faso. Most of the drugs are too expensive for
many people in this region, especially in Cissé, where our data comes from. That
is why in Burkina Faso or similar regions in Africa, treatment can start with any
drugs and later switch to a new therapy when the resistant pathogens to the old
drugs become dominant. This shows clearly that despite the type of medication
they are first given, the parasites develop resistance to it and only become weaker
if the type of medication is changed.

- We have also considered different regions with different drug usage. In Asia,
antimalarial drugs are sold openly, and any persons can buy them without pre-
scriptions from doctors. Most patients have been treated more than once. We
observe in our simulations that the drug therapies and their efficacies strongly
influence the success of treatment.

By using a quantitative model, we can simulate multiple scenarios in advance.
Depending on preferred criteria, such as keeping the total parasite density below
certain threshold or reducing the resistant parasite population, clinicians should
be able to choose what they believe to be suitable therapies. In general, the
model’s results are valid not only for malaria but also for other infectious diseases
with similar biological compositions.

2.4.2 Remarks on the chapter

To summarize, in this chapter we have developed a model describing the pop-
ulation dynamics arising in vector-borne diseases. In comparison to the other
mathematical models [4, 33], our model has two new compartments for parasite
populations and it includes parameters describing drug treatment.

We have studied the dynamics analytically and numerically.

By way of analysis, we have been able to prove the existence, uniqueness and
positivity of the solution. This is necessary for all numerical steps. In other words,
it is an essential condition before one can begin to compute numerical simulations.

By way of numerical study, we have solved parameter estimation and simu-
lation problems. We have obtained fitted parameters and an agreement with the
data in Burkina Faso. We have also simulated the fitted model with controllable
parameters. Using the VPLAN package, we have been able to solve the systems
and to see the influence of drug treatment not only on parasites but also on the
host populations.
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Chapter 3

Structured population
dynamics of vector-borne
diseases including drug
treatment

In chapter 2, we have studied the population dynamics without structures among
the different populations. All micro-organism populations and macro-organism
populations appear in the system of equations equally. This model has the form
of ordinary differential equations, so clearly we can use some available methods
to study them analytically. The numerical parameter estimation and simulations
give us a lot of knowledge which we can bring to clinical practice. However, the
model has a certain limit in application. For parameter estimation and numeri-
cal simulation, there is a high cost when we want to obtain high precision data.
For some quantities, we have to accept relatively low precision - such as for par-
asite populations. A common alternative, one may study models of the parasite
population in an individual person, but one loses the global meaning.

This chapter proposes a new model to balance the issues. We are going to
model structured population dynamics, where parasites appear in two structured
variables (sensitive parasite and resistant parasite densities). This type of model
is supposed to “bridge the gap between the individual and the population level”
(Metz and Diekmann, [64]). The model is a system of integro-partial differential
equations. It is naturally more complex, but this motivates us to explore some
new methodology.

In order to understand structured population dynamics, we have to go back
at least to the age structured model of McKendrick 1926, Bailey 1931 [66, 9]. In
1967, Sinko and Streifer included a size structure variable in their model [76, 44].
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According to Sinko and Streifer, despite the fact that the age structured model
had been created in the form of an integro-differential equation system quite early
(Bailey 1931), this system had not been solved until the sixties. Sinko’s thesis [75]
mostly focused on the existence of solutions for the structured model in partial
differential form. Since then, several authors have studied similar types of the
model, but most of the results were limited to a single structured population.

In this chapter, we are going to model the system of hosts and vectors, with
structured variables on the densities of sensitive and resistant parasites. These
quantities are very crucial for drug treatment. For the mathematical model, it is
essential to analyze the existence of solutions and uniqueness. The results can be
used to develop numerical algorithms for simulation. With the rapid development
of modern technologies, especially for life sciences, there is strong evidence that we
can obtain the necessary data for model comparison at an affordable cost. More
details are given in the numerical section.

In the first section we present all the steps necessary to build a new mathemat-
ical model of structured population dynamics. We start by setting up a network of
all related populations and formulating a dynamical system with an explanation
of every component of the model. In the second section we investigate the model
analytically. Based on this investigation, the third section offers an approach to
numerical simulation. In the final section, we discuss the practical meaning of the
structured model and summarize the content of the chapter.

3.1 Modeling of structured population dynamics with
drug treatment

3.1.1 Network of human and vector compartments

We consider here two groups: humans and vectors. There are two compartments
for human hosts which we call uninfected S, infected I. Two compartments for
vectors are uninfected U and infected (real vectors) V . Compared to the previous
studies of vector-borne diseases [4, 36, 8, 33], we divide human hosts into two
compartments with structured infected class I. This knowledge provides a strong
background to investigate different treatment policies. It also brings out the need
to study the same structure in the infected vector class. Hence, we consider
infected humans and vectors which carry sensitive parasites and resistant parasites.
These two groups of parasites show different behavior under medical treatments.
We are going to express them by two separated structured variables in our model,
x and y, representing sensitive and resistant parasite densities. The population
dynamics with all transmissions among four compartments are described in figure
3.1.
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Figure 3.1: Network for the transportation among all the compartments: humans
and vectors.

Based on the network of transmissions, we are going to give an overview of the
parameters and the related phenomena. Because this model is aimed at population
dynamics, we can expect some of the arguments from the previous model to be
still valid.

As we know already, in vector-borne diseases, most of the offspring are sus-
ceptible. We denote the natural growth rates of S, I, U, V by bS , bI , bU , bV ; the
mortality rates (including the cause by diseases) by mS ,mI ,mU ,mV ; currently
we neglect immigration and emigration. The infection rates of S,U are expressed
through iS , iU .

In addition to above, we take into account the influence of drug treatment on
the pathogen population and how its effect appears directly on the host popu-
lation. While immunity is assumed to be able to handle all types of parasites,
each drug regimen only influences those pathogens which are sensitive to them.
We also know that immunity develops very slowly compared to parasite invasion
and multiplication. As usual, both immunity and drug fight together against the
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3.1. Modeling of structured population dynamics

parasites in infected people. Their combined effects are expressed by ρ.

With or without treatment, the sensitive and resistant strains always multiply
inside hosts, so bring the patients from one level of parasites to another level. In
the presence of drugs, the sensitive strain can be killed but the resistant strain
survives. Some mutations, which give advantage to sensitive parasites, are selected
and grow even in drug presence. The sensitive parasites can also adapt to the new
environment and become resistant. All these processes lead to movements inside
infected classes I, V , which are denoted by θI , θV .

3.1.2 Dynamical system

Now we present the model formulation in connection with the above network.
Since our focus is population dynamics with drug treatment on humans, we use
three variables:

- for the dynamics, time variable is denoted by t ∈ R+ = [0,+∞),

- for a given treatment, sensitive and resistant parasite densities in a host or
vector are respectively denoted by x, y; (x, y) ∈ R2

+.

As in our figure 3.1, (S, I, U, V ) are the host and vector compartments. In the
mathematical model, (S, I, U, V ) are four unknown functions. In principle, two
unknowns I, V depend on (t, x, y) - because the corresponding compartments carry
parasites. Two compartments S,U do not carry parasites, so they only depend on
t. We are going to formulate the dynamics of all four populations.

Change in uninfected human population S

The uninfected human population includes all humans who do not carry parasites.
This compartment increases due to recruitment of new-born children (usually sus-
ceptible), which is expressed by birth-functions bS , bI . The population decreases
by natural mortality rate mS . Some part of this compartment moves to the second
compartment after exposure to infected vectors. Due to different environments
and the interaction between all compartments, there is an operator PS , which
represents the movement from uninfected class S to infected class I. This oper-
ator can depend on all unknowns (S, I, U, V ). We are going to talk about the
specific form of PS right below. In addition, uninfected population S also receives
a number of recovered individuals from I class, therefore we have:

dS(t)

dt
= bS(t)S(t) +

∫
R2
+

bI(t, x, y)I(t, x, y)dxdy −mS(t)S(t)

−
∫
R2
+

PS(S, I, U, V )(t, x, y)dxdy +

∫
R2
+

ρ(t, x, y)I(t, x, y)dxdy.
(3.1)
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Now we look at the form of PS . In general, the vector population is noticeably
large. There is certainly some force from the human side to protect themselves
from infection. The vectors, e.g. mosquitoes in malaria, can not easily have
successful contacts to humans. In general, the protection force is often directly
proportional to the total population of vectors. The total population includes in-
fected and uninfected vectors, because they both want to have contact to humans.
This situation commonly happens in tropical diseases, that is why we take PS as
the following:

PS(S, I, U, V )(t, x, y) = S(t)

∫
R2
+

iS(t, x, y, x, y)V (t, x, y)dxdy

Kvec + U(t) +

∫
R2
+

V (t, x, y)dxdy

where Kvec > 0 is a weight value, related to the vector population. Technically,
when the vector population is noticeably large (much more than Kvec), this induces
almost no influence on the quotient value. On the other hand, this excludes the
case when the total number of the vector population is quite small, which is usually
not common.

Change in infectious human population I

We are going to take into account the total change in the infected human pop-
ulation I. On the left hand side, functions gI , hI represent growth rates of the
population due to internal processes regulating the two structured variables x and
y.

As we discussed before, PS represents the movement from uninfected class S to
infected class I. Following network 3.1, θI represents the exchange among different
infection levels inside the compartment I, mI is the mortality rate of the infected
population and ρ is the treatment effect together with immunity.

∂I(t, x, y)

∂t
+

∂

∂x
(gI(t, x, y)I(t, x, y)) +

∂

∂y
(hI(t, x, y)I(t, x, y))

= PS(S, I, U, V )(t, x, y) +

∫
R2
+

θI(t, x, y, x, y)I(t, x, y)dxdy

−mI(t, x, y)I(t, x, y)− ρ(t, x, y)I(t, x, y).

(3.2)

Now we come to the two compartments of vectors: the uninfected and the
infected populations.

63



3.1. Modeling of structured population dynamics

Change in uninfected vector population U

The uninfected vector population has a similar dynamics as the uninfected human
population.

Mosquito’s offspring have no parasite. This is described through birth rates
bU and bV . The natural death rate is mU .

Uninfected vectors get infected when they come into contact with infected
humans, in this case, anyone in I class. Similar to uninfected humans, the number
of uninfected vectors U that become infected is expressed by way of an operator
PU (S, I, U, V ). The value of operator PU (S, I, U, V ) is specified at a particular
point (t, x, y) as follows:

PU (S, I, U, V )(t, x, y) = U(t)

∫
R2
+

iU (t, x, y, x, y)I(t, x, y)dxdy

Khum + S(t) +

∫
R2
+

I(t, x, y)dxdy

where Khum > 0 is a weight value, related to the human population. The dynamics
of the uninfected vector population U is:

dU(t)

dt
= bU (t)U(t) +

∫
R2
+

bV (t, x, y)V (t, x, y)dxdy

−mU (t)U(t)−
∫
R2
+

PU (S, I, U, V )(t, x, y)dxdy.
(3.3)

Change in infected vector population V

This compartment shares the same mechanism as the infected human compart-
ment.

On the left hand side there are two functions gV and hV , having the same
meaning as two functions gI and hI in the dynamics of the infected human popu-
lation.

After obtaining a blood meal from individuals o infected human population I,
the uninfected vectors usually get infected with parasites. This is expressed by
operator PU (S, I, U, V ), whose form is given above.

By the natural multiplication of parasites, the infected vectors change the level
of parasites inside themselves, and often keep the parasites all the rest of their lives.
Within compartment V , this changing process is expressed by θV . There is also a
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natural death, expressed by the rate mV :

∂V (t, x, y)

∂t
+

∂

∂x
(gV (t, x, y)V (t, x, y)) +

∂

∂y
(hV (t, x, y)V (t, x, y))

= PU (S, I, U, V )(t, x, y)

+

∫
R2
+

θV (t, x, y, x, y)V (t, x, y)dxdy −mV (t, x, y)V (t, x, y).

(3.4)

3.1.3 Boundary conditions and the full model

So far we have not mentioned the boundary conditions yet. Now we look for these
conditions on the boundary of R3

+ = [0,∞)× [0,∞)× [0,∞).

Boundary conditions

For two uninfected compartments S and U , we only need to give initial values at
t = 0. Notice that we are modeling vector-borne diseases, so these two compart-
ments are supposed to be positive:

S(0) = S∗ > 0, U(0) = U∗ > 0.

For two infected compartments I and V , the situation is more complex. First,
at t = 0, we have initial conditions:

I(0, x, y) = I∗(x, y), V (0, x, y) = V ∗(x, y).

We need I∗(x, y) ≥ 0, V ∗(x, y) ≥ 0 and satisfy:

0 ≤
∫
R2
+

I∗(x, y)dxdy < ∞, 0 ≤
∫
R2
+

V ∗(x, y)dxdy < ∞.

Second, we consider the part where t 6= 0. Under the influence of immunity
and medical treatment, both sensitive parasite density x and resistant parasite
density y can be reduced to 0. Let t ≤ t and

αI(t, η, t, y) denotes the rate at which I(t, 0, η) changes to I(t, 0, y),

βI(t, ξ, η, t, y) denotes the rate at which I(t, ξ, η) changes to I(t, 0, y),

ζI(t, y) denotes the out-going rate of I(t, 0, y),
αV (t, η, t, y) denotes the rate at which V (t, 0, η) changes to V (t, 0, y),

βV (t, ξ, η, t, y) denotes the rate at which V (t, ξ, η) changes to V (t, 0, y)and

ζV (t, y) denotes the out-going rate of V (t, 0, y).
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We obtain:

I(t, 0, y) = I(0, 0, y) +

∫ t

0

∫
R+

αI(t, η, t, y)I(t, 0, η)dηdt

+

∫ t

0

∫
R2
+

βI(t, ξ, η, t, y)I(t, ξ, η)dξdηdt−
∫ t

0
ζI(t, y)I(t, 0, y)dt,

V (t, 0, y) = V (0, 0, y) +

∫ t

0

∫
R+

αV (t, η, t, y)V (t, 0, η)dηdt

+

∫ t

0

∫
R2
+

βV (t, ξ, η, t, y)V (t, ξ, η)dξdηdt−
∫ t

0
ζV (t, y)V (t, 0, y)dt.

Similarly, patients carrying resistant parasites y > 0 can be reduced and become
patients with y = 0, so we have the following condition at y = 0:

I(t, x, 0) = I(0, x, 0) +

∫ t

0

∫
R+

γI(t, ξ, t, x)I(t, ξ, 0)dξdt

+

∫ t

0

∫
R2
+

δI(t, ξ, η, t, x)I(t, ξ, η)dξdηdt−
∫ t

0
νI(t, x)I(t, x, 0)dt,

V (t, x, 0) = V (0, x, 0) +

∫ t

0

∫
R+

γV (t, ξ, t, x)V (t, ξ, 0)dξdt

+

∫ t

0

∫
R2
+

δV (t, ξ, η, t, x)V (t, ξ, η)dξdηdt−
∫ t

0
νV (t, x)V (t, x, 0)dt

where

γI(t, ξ, t, x) denotes the rate of I(t, ξ, 0) becoming I(t, x, 0),

δI(t, ξ, η, t, x) denotes the rate of I(t, ξ, η) becoming I(t, x, 0),

νI(t, x) denotes the out-going rate of I(t, x, 0),
γV (t, ξ, t, x) denotes the rate of V (t, ξ, 0) becoming V (t, x, 0),

δV (t, ξ, η, t, x) denotes the rate of V (t, ξ, η) becoming V (t, x, 0),

νV (t, x) denotes the out-going rate of V (t, x, 0).

The full dynamical model

Putting together equations (3.1), (3.2), (3.3), (3.4) in section 3.1.2 and all the
boundary conditions above, we have a complete system of non-linear integro-
partial differential equations. For convenience, we now introduce a new practical
form of this model. We write

u1 = I, u2 = V, u3 = S, u4 = U

and
u = (u1, u2, u3, u4).
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The indexes of all factors are also changed accordingly. The operators PS and PU

are replaced by their explicit formulas. The original system has the practical form
given in (3.5).

∂

∂t
u1(t, x, y) +

∂

∂x
(g1u1(t, x, y)) +

∂

∂y
(h1u1(t, x, y))

= u3(t)

∫
R2
+
i3(t, x, y, x, y)u2(t, x, y)dxdy

Kvec + u4(t) +
∫
R2
+
u2(t, x, y)dxdy

+

∫
R2
+

θ1(t, x, y, x, y)u1(t, x, y)dxdy

−ρ(t, x, y)u1(t, x, y)−m1(t, x, y)u1(t, x, y),

∂

∂t
u2(t, x, y) +

∂

∂x
(g2u2(t, x, y)) +

∂

∂y
(h2u2(t, x, y))

= u4(t)

∫
R2
+
i4(t, x, y, x, y)u1(t, x, y)dxdy

Khum + u3(t) +
∫
R2
+
u1(t, x, y)dxdy

+

∫
R2
+

θ2(t, x, y, x, y)u2(t, x, y)dxdy −m2(t, x, y)u2(t, x, y),

d

dt
u3(t) = b3(t)u3(t) +

∫
R2
+

b1(t, x, y)u1(t, x, y)dxdy −m3(t)u3(t)

−
∫
R2
+

u3(t)

∫
R2
+
i3(t, x, y, x, y)u2(t, x, y)dxdy

Kvec + u4(t) +
∫
R2
+
u2(t, x, y)dxdy

dxdy

+

∫
R2
+

ρ(t, x, y)u1(t, x, y)dxdy,

d

dt
u4(t) = b4(t)u4(t) +

∫
R2
+

b2(t, x, y)u2(t, x, y)dxdy

−m4(t)u4(t)−
∫
R2
+

u4(t)

∫
R2
+
i4(t, x, y, x, y)u1(t, x, y)dxdy

Khum + u3(t) +
∫
R2
+
u1(t, x, y)dxdy

dxdy

(3.5)

where
g1 = gI , h1 = hI , i3 = iS , θ1 = θI ,m1 = mI ,

g2 = gV , h2 = hV , i4 = iU , θ2 = θV ,m2 = mV ,

b3 = bS , b1 = bI ,m3 = mS ,

b4 = bU , b2 = bV ,m4 = mU .

The initial values (also their conditions) and the boundary equations are
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rewritten as the following:

u1(0, x, y) = u∗1(x, y) ≥ 0, 0 ≤
∫
R2
+

u∗1(x, y)dxdy < ∞,

u1(t, 0, y) = u∗1(0, y) +

∫ t

0

∫
R+

α1(t, η, t, y)u1(t, 0, η)dηdt

+

∫ t

0

∫
R2
+

β1(t, ξ, η, t, y)u1(t, ξ, η)dξdηdt−
∫ t

0
ζ1(t, y)u1(t, 0, y)dt,

u1(t, x, 0) = u∗1(x, 0) +

∫ t

0

∫
R+

γ1(t, ξ, t, x)u1(t, ξ, 0)dξdt

+

∫ t

0

∫
R2
+

δ1(t, ξ, η, t, x)u1(t, ξ, η)dξdηdt−
∫ t

0
ν1(t, x)u1(t, x, 0)dt

u2(0, x, y) = u∗2(x, y) ≥ 0, 0 ≤
∫
R2
+

u∗2(x, y)dxdy < ∞,

u2(t, 0, y) = u∗2(0, y) +

∫ t

0

∫
R+

α2(t, η, t, y)u2(t, 0, η)dηdt

+

∫ t

0

∫
R2
+

β2(t, ξ, η, t, y)u2(t, ξ, η)dξdηdt−
∫ t

0
ζ2(t, y)u2(t, 0, y)dt,

u2(t, x, 0) = u∗2(x, 0) +

∫ t

0

∫
R+

γ2(t, ξ, t, x)u2(t, ξ, 0)dξdt

+

∫ t

0

∫
R2
+

δ2(t, ξ, η, t, x)u2(t, ξ, η)dξdηdt−
∫ t

0
ν2(t, x)u2(t, x, 0)dt,

u3(0) = u∗3 > 0,
u4(0) = u∗4 > 0.

(3.6)

Remark on the model system

In system (3.5), functions g(.)(t, x, y), h(.)(t, x, y) are the growth rates of the pop-
ulations due to internal processes regulating the two structured variables x and y
at time t. For technical reason, we are going to consider only the system where
functions g(.), h(.) are positive constants, denoted by g1, h1, g2, h2 respectively.

In different settings we can have further forms of operators P(.). They are
required to be well-defined. Following the biological meaning, they should map
a nonnegative function in function space to a nonnegative one and map function
u ≡ 0 to 0. If we denote by f the operator of the right hand side of system (3.5), we
should be able to obtain f(0) ≡ 0. We also notice that there are several improper
integrals over R+ and R2

+ in the model, they should converge in an appropriate
space.

Compared to the previous model already established in chapter 2, we have two
new variables of parasite densities, representing sensitive and resistant parasites.
The structured population of humans and vectors enable us to obtain more detail
on all infected individuals. This is essential for a drug treatment strategy. The
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Chapter 3. Structured population dynamics of vector-borne diseases

established model brings our attention to develop a method to study the system
of integro-partial differential equations.

3.2 Analytical study

To study our model system (3.5), we first need to set up a normed function space.
In the second subsection we bring the system to a simpler form by using method
of characteristics. In the third subsection we prove that the transformed system
has a unique solution when initial boundary conditions are given. In the fourth
subsection we study the mapping of the initial boundary values to the solution, this
mapping is Lipschitz. Using this result, the fifth subsection is devoted to deriving
unknown boundary conditions. Combining all of them, in the last section we
show that the transformed system (as well as the original system) has a unique
“positive” solution. The interconnection between all the subsections is going to be
explained in detail right after the second subsection, in order to help to understand
the flow of proofs.

3.2.1 Function space

We begin to set up a function space, which is appropriate for the problem.

Let R+ = [0,∞) and

L1,∞(R2
+) = {w| w ∈ L1(R2

+), w ∈ BC0(R2
+)}

with a norm:
‖.‖1,∞ = ‖.‖1 + ‖.‖∞ .

Let u1, u2 ∈ C0([0,∞), L1,∞(R2
+)) and u3, u4 ∈ C0([0,∞)). Furthermore, for

λ ∈ (0,∞) (λ will be chosen later), we consider:

sup
t∈R+

(e−λt ‖uj(t, .)‖L1,∞(R2
+)) < ∞ (j = 1, 2),

sup
t∈R+

(e−λt|uj(t)|) < ∞ (j = 3, 4).

We denote the space of functions u = (u1, u2, u3, u4) by X and define a norm ‖.‖λ
as follows:

‖uj‖λ := sup
t∈R+

(e−λt ‖uj(t, .)‖L1,∞(R2
+)) (j = 1, 2),

‖uj‖λ := sup
t∈R+

(e−λt|uj(t)|) (j = 3, 4),

‖u‖λ := max
1≤j≤4

‖uj‖λ .
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Remark 3.1. Given a λ ∈ (0,∞), ‖.‖λ is a well-defined norm, and (X, ‖.‖λ) or Xλ

is a Banach space.

Throughout all sections, we need an assumption on all factor functions.
Assumption A.

(i) All factor functions bj ,mj , ρ are continuous, nonnegative and bounded.
(ii) Let k be any of the factors ij , θj , αj , βj , γj , δj , (j = 1, 2 or j = 3, 4). We
assume that for all their variables (z = (z1, z2) ∈ Dz1 ×Dz2):

k(z1, z2) ∈ BC0
+(Dz1 , L

1(Dz2)), k(z1, z2) ∈ BC0
+(Dz2 , L

1(Dz1)).

(iii) The derivatives of factor functions αj , βj , γj , δj (j = 1, 2) in the boundary
equations are nonnegative with respect to variable t.
(iv) Four factor functions ζj , νj (j = 1, 2) are bounded and differentiable over
their respective domains.

3.2.2 Transformation of the equations using the method of char-
acteristics

In order to simplify system (3.5), we are going to transform the variables in each
equation. In principle, we keep the original form of the equations corresponding
to u3, u4. We mainly need to transform those two equations which include all the
partial derivatives of the unknown functions.

We consider the equation with the partial derivatives of uj (j = 1, 2). Using the
method of characteristics, we want to find a parameterization t(sj , rj), x(sj , rj),
y(sj , rj) such that:

∂

∂t
uj(t, x, y) +

∂

∂x
(gjuj(t, x, y)) +

∂

∂y
(hjuj(t, x, y))

=
∂

∂sj
uj(t(sj , rj), x(sj , rj), y(sj , rj)),

rj is independent of sj , (rj ∈ ∂R3
+, the boundary of R3

+).

According to the chain rule,
∂

∂sj
uj(t, x, y) =

∂uj
∂t

∂t

∂sj
+

∂uj
∂x

∂x

∂sj
+

∂uj
∂y

∂y

∂sj
,

that is why we choose t(sj , rj), x(sj , rj), y(sj , rj) to satisfy:
∂t

∂sj
= 1,

∂x

∂sj
= gj ,

∂y

∂sj
= hj ,

rj = (t|sj=0, x|sj=0, y|sj=0) ∈ ∂R3
+.

(3.7)
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We have two new coordinate systems, denoted by (sj , rj) (j = 1, 2).

We denote ϕj(j = 1, 2) as the transformations which bring the original coor-
dinate to the coordinates (sj , rj). We need to look at the detailed formula of ϕj .
The parameterization of (t, x, y) in the first equation is described in system (3.7),
so the characteristic curves are parallel to a vector with coordinates (1, g1, h1).
The solution of (3.7) depends on initial value r1 ∈ ∂R3

+. To be more precise, we
have to divide R3

+ into three sub-domains which correspond to three surfaces of
the boundary of R3

+.

In our case, the common boundaries of these domains are three surfaces. They
are shown in figure 3.2, distinguished by rectangle, circle and triangle patterns.

Ω1

Ω3

Ω2

1

h1

g1

Figure 3.2: Three sub-domains divided by characteristic curves. The first one,
Ω1, contains the characteristic curves cutting the positive quadrant of Oxy, the
second one, Ω2, contains the characteristic curves cutting Oty, the third one, Ω3,
contains the characteristic curves cutting Otx.

The three domains are described by Ωj(g1, h1), (j = 1, 2, 3):

Ω1(g1, h1) ={(t, x, y)| t ≥ 0, x ≥ 0, y ≥ 0;

∃r1 = (0, x1, y1) ∈ ∂R3
+: t− 0

1
=

x− x1
g1

=
y − y1
h1

},
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Ω2(g1, h1) ={(t, x, y)| t > 0, x ≥ 0, y ≥ 0;

∃r1 = (t1, 0, y1) ∈ ∂R3
+: t− t1

1
=

x− 0

g1
=

y − y1
h1

},

Ω3(g1, h1) ={(t, x, y)| t > 0, x ≥ 0, y ≥ 0;

∃r1 = (t1, x1, 0) ∈ ∂R3
+: t− t1

1
=

x− x1
g1

=
y − 0

h1
}.

To specify Ωj(g1, h1)(j = 1, 2, 3), we first compute the equation of the blue
circle plane P1 generated by −→

OA and axis Ox, the green triangle plane P2 generated
by −→

OA and axis Oy, the red square plane P3 generated by −→
OA and axis Ot.

Equations of Pj , j = 1, 2, 3 are given by:

(P1) : h1t− y = 0,
(P2) : −g1t+ x = 0,
(P3) : h1x− g1y = 0.

(3.8)

From this we obtain:

Ω1(g1, h1) = {(t, x, y)| 0 ≤ t, h1t ≤ y,
g1y

h1
≤ x}∪

∪{(t, x, y)| 0 ≤ t, g1t ≤ x,
h1
g1

x ≤ y},

Ω2(g1, h1) = {(t, x, y)| 0 < t, 0 < y ≤ h1t, 0 ≤ x ≤ g1
h1

y}∪
∪{(t, x, y)| 0 < t, h1t ≤ y, 0 ≤ x ≤ g1t},

Ω3(g1, h1) = {(t, x, y)| 0 < t, 0 < x ≤ g1t, 0 ≤ y ≤ h1
g1

x}∪

∪{(t, x, y)| 0 < t, g1t ≤ x, 0 ≤ y ≤ h1t}.

Now we can define ϕ1 as follows:
On Ω1(g1, h1): (t, x, y) = ϕ1(s1, r1), (s1, r1) = (s1, (0, x1, y1)) such that:

t = ϕ
(1)
1 (s1, (0, x1, y1)) = s1,

x = ϕ
(2)
1 (s1, (0, x1, y1)) = x1 + g1s1,

y = ϕ
(3)
1 (s1, (0, x1, y1)) = y1 + h1s1.

(3.9)

On Ω2(g1, h1): (t, x, y) = ϕ1(s1, r1), (s1, r1) = (s1, (t1, 0, y1)) such that:

t = ϕ
(1)
1 (s1, (t1, 0, y1)) = t1 + s1,

x = ϕ
(2)
1 (s1, (t1, 0, y1)) = g1s1,

y = ϕ
(3)
1 (s1, (t1, 0, y1)) = y1 + h1s1.

(3.10)

On Ω3(g1, h1): (t, x, y) = ϕ1(s1, r1), (s1, r1) = (s1, (t1, x1, 0)) such that:

t = ϕ
(1)
1 (s1, (t1, x1, 0)) = t1 + s1,

x = ϕ
(2)
1 (s1, (t1, x1, 0)) = x1 + g1s1,

y = ϕ
(3)
1 (s1, (t1, x1, 0)) = h1s1.

(3.11)
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Notice that the three domains are disjointed (except on their common boundaries)
and the map definitions on the same boundary are identical. For example, on the
boundary plane P2 (g1t = x), given (t, x, y) then we obtain the same (s1, r1) using
formula (3.9) or formula (3.10).

In the same manner we obtain three domains Ω1(g2, h2), Ω2(g2, h2), Ω3(g2, h2)
and the map ϕ2. Note that Ωj(.) is just the notation, not a function. In detail:
On Ω1(g2, h2): (t, x, y) = ϕ2(s2, r2), (s2, r2) = (s2, (0, x2, y2)) such that:

t = ϕ
(1)
2 (s2, (0, x2, y2)) = s2,

x = ϕ
(2)
2 (s2, (0, x2, y2)) = x2 + g2s2,

y = ϕ
(3)
2 (s2, (0, x2, y2)) = y2 + h2s2.

(3.12)

On Ω2(g2, h2): (t, x, y) = ϕ2(s2, r2), (s2, r2) = (s2, (t2, 0, y2)) such that:

t = ϕ
(1)
2 (s2, (t2, 0, y2)) = t2 + s2,

x = ϕ
(2)
2 (s2, (t2, 0, y2)) = g2s2,

y = ϕ
(3)
2 (s2, (t2, 0, y2)) = y2 + h2s2.

(3.13)

On Ω3(g2, h2): (t, x, y) = ϕ2(s2, r2), (s2, r2) = (s2, (t2, x2, 0)) such that:

t = ϕ
(1)
2 (s2, (t2, x2, 0)) = t2 + s2,

x = ϕ
(2)
2 (s2, (t2, x2, 0)) = x2 + g2s2,

y = ϕ
(3)
2 (s2, (t2, x2, 0)) = h2s2.

(3.14)

In the following we prove that the map ϕ1 (similarly for ϕ2) is bijective by
using the Jacobian matrix. The Jacobian determinant of transformation ϕ1 on
Ω1(g1, h1) is given as:

Jϕ1|Ω1(g1,h1) =

∣∣∣∣∣∣∣∣∣∣∣

∂t

∂s1

∂t

∂x1

∂t

∂y1
∂x

∂s1

∂x

∂x1

∂x

∂y1
∂y

∂s1

∂y

∂x1

∂y

∂y1

∣∣∣∣∣∣∣∣∣∣∣
Ω1(g1,h1)

=

∣∣∣∣∣∣
1 0 0
g1 1 0
h1 0 1

∣∣∣∣∣∣ = 1,

The Jacobian determinant of transformation ϕ1 on Ω2(g1, h1) is:

Jϕ1|Ω2(g1,h1) =

∣∣∣∣∣∣∣∣∣∣∣

∂t

∂s1

∂t

∂t1

∂t

∂y1
∂x

∂s1

∂x

∂t1

∂x

∂y1
∂y

∂s1

∂y

∂t1

∂y

∂y1

∣∣∣∣∣∣∣∣∣∣∣
Ω2(g1,h1)

=

∣∣∣∣∣∣
1 1 0
g1 0 0
h1 0 1

∣∣∣∣∣∣ = −g1.
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The Jacobian determinant of transformation ϕ1 on Ω3(g1, h1) is:

Jϕ1|Ω3(g1,h1) =

∣∣∣∣∣∣∣∣∣∣∣

∂t

∂s1

∂t

∂t1

∂t

∂x1
∂x

∂s1

∂x

∂t1

∂x

∂x1
∂y

∂s1

∂y

∂t1

∂y

∂x1

∣∣∣∣∣∣∣∣∣∣∣
Ω3(g1,h1)

=

∣∣∣∣∣∣
1 1 0
g1 0 1
h1 0 0

∣∣∣∣∣∣ = h1.

Similarly, we have transformation ϕ2 also with three different corresponding sub-
domains and three corresponding Jacobian determinants. Assuming that for all
j, gj > 0, hj > 0, then all Jacobian determinants are different from 0. That means,
there always exists uniquely a ϕ−1

j (j = 1, 2) so that

(sj , rj) = ϕ−1
j (t, x, y).

Moreover, for both j = 1 and j = 2, we obtain the following domains of (sj , rj)
corresponding to Ω1,Ω2,Ω3:

ϕ−1
j (Ω1(gj , hj)) = [0,∞)× {(0, x, y)| x, y ≥ 0},

ϕ−1
j (Ω2(gj , hj)) = [0,∞)× {(t, 0, y)| t, y ≥ 0},

ϕ−1
j (Ω3(gj , hj)) = [0,∞)× {(t, x, 0)| t, x ≥ 0}.

Recall that we denote f = (f1, f2, f3, f4) as the vector operator of the right
hand side of system (3.5). We write system (3.5) in the differential form:

∂

∂s1
u1 ◦ ϕ1(s1, r1) = f1u ◦ ϕ1(s1, r1)

∂

∂s2
u2 ◦ ϕ2(s2, r2) = f2u ◦ ϕ2(s2, r2)

d

dt
u3(t) = f3u(t)

d

dt
u4(t) = f4u(t)

(3.15)

where
ϕ1(s1, r1) = ϕ2(s2, r2) = (t, x, y)

and

f1u(t, x, y) = u3(t)

∫
R2
+
i3(t, x, y, x, y)u2(t, x, y)dxdy

Kvec + u4(t) +
∫
R2
+
u2(t, x, y)dxdy

+

∫
R2
+

θ1(t, x, y, x, y)u1(t, x, y)dxdy

−ρ(t, x, y)u1(t, x, y)−m1(t, x, y)u1(t, x, y),
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f2u(t, x, y) = u4(t)

∫
R2
+
i4(t, x, y, x, y)u1(t, x, y)dxdy

Khum + u3(t) +
∫
R2
+
u1(t, x, y)dxdy

+

∫
R2
+

θ2(t, x, y, x, y)u2(t, x, y)dxdy −m2(t, x, y)u2(t, x, y),

f3u(t) = b3(t)u3(t) +

∫
R2
+

b1(t, x, y)u1(t, x, y)dxdy

−m3(t)u3(t)−
∫
R2
+

u3(t)

∫
R2
+
i3(t, x, y, x, y)u2(t, x, y)dxdy

Kvec + u4(t) +
∫
R2
+
u2(t, x, y)dxdy

dxdy

+

∫
R2
+

ρ(t, x, y)u1(t, x, y)dxdy,

f4u(t) = b4(t)u4(t) +

∫
R2
+

b2(t, x, y)u2(t, x, y)dxdy

−m4(t)u4(t)−
∫
R2
+

u4(t)

∫
R2
+
i4(t, x, y, x, y)u1(t, x, y)dxdy

Khum + u3(t) +
∫
R2
+
u1(t, x, y)dxdy

dxdy.

We have two different transformations. To write the transformations flexibly,
sometimes we use the notations ϕj and ϕ−1

j , sometimes (if possible) we can use
directly the notations (t, x, y) and (sj , rj) as functions.

If (t, x, y) are given then (sj , rj)(j = 1, 2) are uniquely determined. Given
(sj , rj) (j = 1, 2) with one j then we can also determine (t, x, y) and the other
(sj , rj) (j = 2, 1). After integration of system (3.15) with the corresponding
variables s1, s2 and t, we obtain the following result:

Proposition 3.2. Let gj , hj > 0 for j = 1, 2, we have:
(i) system (3.5) can be transformed to either the differential form (3.15) with the
initial boundary conditions (3.6) or the integral form as the following:

u1 ◦ ϕ1(s1, r1) = u1 ◦ ϕ1(0, r1) +

∫ s1(t,x,y)

0
f1u ◦ ϕ1(s1, r1)ds,

u2 ◦ ϕ2(s2, r2) = u2 ◦ ϕ2(0, r2) +

∫ s2(t,x,y)

0
f2u ◦ ϕ2(s2, r2)ds,

u3(t) = u3(0) +

∫ t

0
f3u(τ)dτ,

u4(t) = u4(0) +

∫ t

0
f4u(τ))dτ.

(3.16)

where ϕ1, ϕ2 are defined explicitly in equations (3.9, 3.10, 3.11), (3.12, 3.13,
3.14).
(ii) The transformation from system (3.5,3.6) to system (3.15,3.6) or system
(3.16) is bijective.
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Remark 3.3. Compared to the other problems of the Volterra type, we have several
difficulties. They include:

- there are implicit boundary equations, given by several equations containing
the unknowns,

- there are several nonlinear operators fj (j = 1, 2, 3, 4),

- the operators fj (j = 1, 2, 3, 4) contain integrals over R2
+,

- there are two additional transformations ϕj (j = 1, 2) on variables (s, rj).

As stated before, we would like to discuss our coming work-flow. To treat the
unknown boundary conditions, we look at figure 3.3. Remember that we have

D C B

A

O

t

x

Figure 3.3: Method to solve the unknown boundary problem. We simplify the
two variables (x, y) by x. When t = 0 we have the known initial conditions, which
shows on Ox. When x = 0 we have the unknown boundary condition, which shows
on OD. We need to compute value on OD.

used the method of characteristics and have obtained system (3.16). The idea in
this figure is:

- If we know the right hand side of system (3.16), for any given initial value at
point A we can compute the value from A to B. Knowing all initial values (t = 0)
allows us to compute the green striped region.

- Only with initial values we can not compute the red dotted part OCD. If the
values on the boundary OD are also given (x = 0), then we can fill this red dotted
region.

- If we know all information inside the infinite strip xODB (combination of
green striped and red dotted regions), then we can compute the values on boundary
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OD by using the boundary equations.

We are going to use the Banach fixed point theorem to solve this problem. We
have to reformulate the problem as a fixed point problem and choose a proper
function space such that the conditions of the Banach theorem are fulfilled. In
this process, we need to study the properties of the operators fj (j = 1, 2, 3, 4)
and the transformations ϕj (j = 1, 2). In other words, we are going to deal with
all the difficulties mentioned in remark 3.3.

Our plan includes four steps:

1. We assume that the initial boundary values are given, then prove that
system (3.16) has a unique solution. This solution is positive, as long as the initial
boundary values are positive.

2. The mapping from the initial boundary values to this solution is Lipschitz.

3. Considering the equations of the boundaries, we represent the unknowns
in the right hand sides by functionals of the corresponding boundaries. Using the
Banach theorem we can find the boundary values explicitly.

4. Substitute the boundary values to system (3.16) to obtain its solution. This
solution is unique, positive.

All these steps are performed in the following four theorems.

3.2.3 System with given initial boundary values

In this subsection we deal with the first step, which has the longest proof. We are
going to show that there exists a solution for system (3.16) with given positive
initial boundary values. Moreover, the solution is unique, positive. The results
are stated below:

Theorem 3.4. Assuming that the initial boundary conditions of uj , j = 1, 2, 3, 4
and assumption A are given. We have the following:
(i) There is a λ such that on Xλ system (3.16)

u1 ◦ ϕ1(s1, r1) = u1 ◦ ϕ1(0, r1) +

∫ s1(t,x,y)

0
f1u ◦ ϕ1(s1, r1)ds,

u2 ◦ ϕ2(s2, r2) = u2 ◦ ϕ2(0, r2) +

∫ s2(t,x,y)

0
f2u ◦ ϕ2(s2, r2)ds,

u3(t) = u3(0) +

∫ t

0
f3u(τ)dτ,

u4(t) = u4(0) +

∫ t

0
f4u(τ))dτ.

has a unique solution u.
(ii) The solution is positive if the initial boundary values are positive.
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To prove this theorem we also need the Banach fixed point theorem. We need
to carry out this proof in several lemmas. To focus on the main results, we present
at first all the lemmas. If all the lemmas are valid then we can derive theorem 3.4.
Afterward the proofs for all the lemmas are presented sequentially.

Shortly speaking, to be able to treat system (3.16), we first need to treat some
“cut-off” operator of the right hand side. This operator is Lipschitz. Choosing
a suitable λ, the cut-off system has a unique solution. We then prove that the
cut-off is actually inactive. So we can have the unique positive solution for the
original system. All details are given below.

Since the initial boundary values are given, we know all

uj ◦ ϕj(0, rj) = u0j (rj) (rj ∈ ∂R3
+, j = 1, 2) and uj(0) = u0j (j = 3, 4).

We consider an operator K = (K1, . . . ,K4) corresponding to the system. For
j = 1, 2:

Kju(t, x, y) =

∫ sj(t,x,y)

0
fj(u) ◦ (ϕj(s, rj(t, x, y)))ds+ u0j (rj(t, x, y))

and for j = 3, 4

Kju(t) =

∫ t

0
fj(u)(τ)dτ + u0j .

The operator contains unbounded functions, therefore we consider an operator
fM (corresponding KM ), which is similar to the original one.
Let M > 0. we define an operator [.]M0 :

[uj(t)]
M
0 :=


uj(t) if uj(t) ∈ [0,M ],
0 if uj(t) < 0,
M if uj(t) > M

Similarly, [.]0 means only cut from below 0 and [.]M means only cut from above
M . We consider operator fM = (fM

1 , fM
2 , fM

3 , fM
4 ) as follows:

fM
1 (t, x, y) := [u3]

M
0 (t)

∫
R2
+
i3(t, x, y, x, y)[u2]0(t, x, y)dxdy

Kvec + [u4]0(t) +
∫
R2
+
[u2]0(t, x, y)dxdy

+

∫
R2
+

θ1(t, x, y, x, y)u1(t, x, y)dxdy

−ρ(t, x, y)u1(t, x, y)−m1(t, x, y)u1(t, x, y),

fM
2 u(t, x, y) := [u4]

M
0 (t)

∫
R2
+
i4(t, x, y, x, y)[u1]0(t, x, y)dxdy

Khum + [u3]0(t) +
∫
R2
+
[u1]0(t, x, y)dxdy

+

∫
R2
+

θ2(t, x, y, x, y)u2(t, x, y)dxdy −m2(t, x, y)u2(t, x, y),
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fM
3 u(t) := b3(t)u3(t) +

∫
R2
+

b1(t, x, y)u1(t, x, y)dxdy −m3(t)u3(t)

−
∫
R2
+

[u3]
M
0 (t)

∫
R2
+
i3(t, x, y, x, y)[u2]0(t, x, y)dxdy

Kvec + [u4]0(t) +
∫
R2
+
[u2]0(t, x, y)dxdy

dxdy

+

∫
R2
+

ρ(t, x, y)u1(t, x, y)dxdy,

fM
4 u(t) := b4(t)u4(t) +

∫
R2
+

b2(t, x, y)u2(t, x, y)dxdy −m4(t)u4(t)

−
∫
R2
+

[u4]
M
0 (t)

∫
R2
+
i4(t, x, y, x, y)[u1]0(t, x, y)dxdy

Khum + [u3]0(t) +
∫
R2
+
[u1]0(t, x, y)dxdy

dxdy.

To be compatible with norm ‖.‖λ on Xλ, for any given t ∈ [0,∞) and u ∈ X we
also need a L1,∞-norm:

‖u(t, .)‖L1,∞(R2
+) := max

j=1,2
{‖uj(t, .)‖L1,∞(R2

+) , |u3(t)|, |u4(t)|}.

We first have the following lemma:

Lemma 3.5. fM is Lipschitz with norm ‖.‖L1,∞(R2
+). That means, for j ∈

{1, 2, 3, 4}, ∀u, v ∈ X, for any given t ∈ [0,∞) there is a constant l > 0 (l
does not depend on t) such that:∥∥(fM

j u− fM
j v)(t, .)

∥∥
L1,∞(R2

+)
≤ l ‖(u− v)(t, .)‖L1,∞(R2

+) .

To work with operator KM , beside the knowledge of operator fM we also need
to look at transformations ϕj (j = 1, 2). It is necessary to know their Jacobian
determinants and the new domains. We state here a lemma which provides us
with the necessary results to proceed with the next steps.

Lemma 3.6. Let (t, x, y) = ϕ1(s, r1(t, x, y)) over the three domains Ωj (j = 1, 2, 3)
of (t, x, y). We have:
(i) On all three sub-domains:

dtdxdy = dsdxdy.

(ii) The new domains of (t, x, y) can be computed according to (t, x, y). In detail:
- when (t, x, y) ∈ Ω1:

t ∈ [0, t], x ∈ [x− g1t, x], y ∈ [y − h1t, y],

- when (t, x, y) ∈ Ω2:

t ∈ [t− x

g1
, t], x ∈ [0, x], y ∈ [y − h1

g1
x, y],
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- when (t, x, y) ∈ Ω3:

t ∈ [t− y

h1
, t], x ∈ [x− g1

h1
y, x], y ∈ [0, y].

Remark 3.7. Similar results hold for the transformation ϕ2.

We now have enough information to treat operator KM .

Lemma 3.8. For any given M > 0:
There is a λ > 0 such that KM is a contraction map with norm ‖.‖λ. With this
λ, the equation

u = KMu

with given initial boundary conditions has a unique solution.

The next consideration concerns the positiveness of the solution. Taking into
account the meaning of each variable, our definition of positiveness is: if u1, u2 ≥ 0
and u3, u4 > 0 then we call the solution u = (u1, u2, u3, u4) “positive”. This
comes from the fact that the infected populations (humans and vectors) should
be nonnegative and the susceptible populations should be positive.

Lemma 3.9. As far as the initial boundary conditions are positive, the solution
in lemma 3.8 is positive.

To complete the proof of theorem 3.4, we just need to show that the cut-off
M is “inactive”. Concerning this we have the following lemma.

Lemma 3.10. Given an interval [0, T ] with T being arbitrarily large.
The values of u3(t) and u4(t) are bounded by a value u which only depends on T ,
not on M .

So given any T arbitrarily large, we can always choose M > u(T ). The solution
is unique, so the cut-off M is inactive.

Proof of theorem 3.4

It is clear that all lemmas 3.5, 3.6, 3.8, 3.9, 3.10 create a work-flow to solve system
(3.16)

u = Ku.

Proof. First, we cut operator f to fM . Lemma 3.5 proves the Lipschitz property
of operator fM . Lemma 3.6 studies transformations ϕ1, ϕ2. These two provide
the information to deal with operator KM in lemma 3.8. Following this lemma,
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operator KM is a contraction map with an appropriate λ. So using the Banach
fixed point theorem, the equation

u = KMu

possesses a unique solution.

In lemma 3.9, we prove that this solution is positive, so we are free from the
cut-off below of fM . In lemma 3.10, we continue to prove that the cut-off above
is also “inactive”. For any arbitrary large time, we can always choose M > 0 large
enough such that

fM ≡ f.

Since the initial boundary values are given, we obtain

KM ≡ K.

In this way, K is also a contraction map and the original equation

u = Ku

has a unique positive solution. Theorem 3.4 is proved.

Remark 3.11. The Lipschitz property of f is also useful for the next section to
prove that the mapping of the boundary values to the solution is Lipschitz.

Our task now is to prove all the lemmas.

Proof of lemma 3.5

In lemma 3.5, we need to prove that fM is Lipschitz with norm ‖.‖L1,∞ . Since
fM has four components, it is enough if we can prove that each component fM

j

(j = 1, 2, 3, 4) is Lipschitz. Maximum of four Lipschitz constants is the Lipschitz
constant of fM .

Proof. We are going to consider the Lipschitz property of fM
1 , for other fM

j (j =
2, 3, 4) would be similar. We need to compare

∥∥fM
1 u− fM

1 v
∥∥
L1,∞ to ‖u− v‖L1,∞ .
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By looking at all their components, we have:∥∥fM
1 u(t, .)− fM

1 v(t, .)
∥∥
L1,∞(R2

+)

≤ ‖(ρ(t, .) +m1(t, .))(u1(t, .)− v1(t, .))‖L1,∞(R2
+)

+

∥∥∥∥∥
∫
R2
+

θ1(t, x, y, .)(u1(t, x, y)− v1(t, x, y))dxdy

∥∥∥∥∥
L1,∞(R2

+)

+

∥∥∥∥∥([u3]M0 (t)− [v3]
M
0 (t))

∫
R2
+
i3(t, ., x, y)[u2]0(t, x, y)dxdy

Kvec + [u4]0(t) +
∫
R2
+
[u2]0(t, x, y)dxdy

∥∥∥∥∥
L1,∞(R2

+)

+

∥∥∥∥∥[v3]M0 (t)(

∫
R2
+
i3(t, ., x, y)[u2]0(t, x, y)dxdy

Kvec + [u4]0(t) +
∫
R2
+
[u2]0(t, x, y)dxdy

−

∫
R2
+
i3(t, ., x, y)[v2]0(t, x, y)dxdy

Kvec + [v4]0(t) +
∫
R2
+
[v2]0(t, x, y)dxdy

)

∥∥∥∥∥
L1,∞(R2

+)

.

We are going to estimate each term separately. The first term is linear, so it can
be estimated directly:

‖(ρ(t, .) +m1(t, .))(u1(t, .)− v1(t, .))‖L1,∞(R2
+)

≤ l1(t) ‖u1(t, .)− v1(t, .)‖L1,∞(R2
+)

≤ l1 ‖u(t, .)− v(t, .)‖L1,∞(R2
+)

where l1(t) = sup
(x,y)

|ρ(t, x, y) +m1(t, x, y)|

and l1 = sup
t∈R+

l1(t) < ∞, due to assumption A.

The second term is∥∥∥∥∥
∫
R2
+

θ1(t, x, y, .)(u1(t, x, y)− v1(t, x, y))dxdy

∥∥∥∥∥
L1,∞(R2

+)

.

We estimate the two norms separately:∥∥∥∥∥
∫
R2
+

θ1(t, x, y, .)(u1(t, x, y)− v1(t, x, y))dxdy

∥∥∥∥∥
L∞(R2

+)

+

∥∥∥∥∥
∫
R2
+

θ1(t, x, y, .)(u1(t, x, y)− v1(t, x, y))dxdy

∥∥∥∥∥
L1(R2

+)

≤ sup
(x,y)∈R2

+

∣∣∣∣∣
∫
R2
+

θ1(t, x, y, x, y)(u1(t, x, y)− v1(t, x, y))dxdy

∣∣∣∣∣
+

∫
R2
+

∫
R2
+

|θ1(t, x, y, x, y)| |u1(t, x, y)− v1(t, x, y)| dxdydxdy
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≤ sup
(x,y)∈R2

+

∣∣∣∣∣
∫
R2
+

θ1(t, x, y, x, y)dxdy

∣∣∣∣∣ ‖u1(t, .)− v1(t, .)‖L∞(R2
+)

+

∫
R2
+

(∫
R2
+

|θ1(t, x, y, x, y)|dxdy
)
|u1(t, x, y)− v1(t, x, y)| dxdy

≤ sup
(x,y)∈R2

+

‖θ1(t, ., x, y)‖L1(R2
+) ‖u1(t, .)− v1(t, .)‖L∞(R2

+)

+ sup
(x,y)∈R2

+

‖θ1(t, x, y, .)‖L1(R2
+)

∫
R2
+

|u1(t, x, y)− v1(t, x, y)|dxdy

≤l2(t) ‖u1(t, .)− v1(t, .)‖L1,∞(R2
+)

≤l2 ‖u(t, .)− v(t, .)‖L1,∞(R2
+)

where
l2(t) = sup

(x,y)
‖θ1(t, ., x, y)‖L1(R2

+) + sup
(x,y)

‖θ1(t, x, y, .)‖L1(R2
+),

l2 = sup
t∈R+

l2(t) bounded by positive values due to assumption A.

The third term is∥∥∥∥∥([u3]M0 (t)− [v3]
M
0 (t))

∫
R2
+
i3(t, ., x, y)[u2]0(t, x, y)dxdy

Kvec + [u4]0(t) +
∫
R2
+
[u2]0(t, x, y)dxdy

∥∥∥∥∥
L1,∞(R2

+)

.

Since ([u3]
M
0 (t)− [v3]

M
0 (t)) is easy to estimate, we focus on the complex quotient

part. Using the same estimation as in the second term, we have:∥∥∥∥∥
∫
R2
+

i3(t, ., x, y)[u2]0(t, x, y)dxdy

∥∥∥∥∥
L1,∞(R2

+)

≤ l3(t) ‖[u2]0(t, .)‖L1,∞(R2
+)

where l3(t) = sup
(x,y)

‖i3(t, ., x, y)‖L1(R2
+) + sup

(x,y)
‖i3(t, x, y, .)‖L1(R2

+) < ∞.

Substitute this into the third term:

|[u3]M0 (t)− [v3]
M
0 (t)|

∥∥∥∥∥
∫
R2
+
i3(t, ., x, y)[u2]0(t, x, y)dxdy

Kvec + [u4]0(t) +
∫
R2
+
[u2]0(t, x, y)dxdy

∥∥∥∥∥
L1,∞(R2

+)

≤ |[u3]M0 (t)− [v3]
M
0 (t)|

l3(t) ‖[u2]0(t, .)‖L1,∞(R2
+)

Kvec + [u4]0(t) + ‖[u2]0(t, .)‖L1,∞(R2
+)

≤ l3(t)|u3(t)− v3(t)|
≤ l3 ‖u(t, .)− v(t, .)‖L1,∞(R2

+)

where l3 = sup
t∈R+

l3(t) is bounded by a positive value due to assumption A.
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The last term is:∥∥∥∥∥[v3]M0 (t)
( ∫

R2
+
i3(t, ., x, y)[u2]0(t, x, y)dxdy

Kvec + [u4]0(t) +
∫
R2
+
[u2]0(t, x, y)dxdy

−

∫
R2
+
i3(t, ., x, y)[v2]0(t, x, y)dxdy

Kvec + [v4]0(t) +
∫
R2
+
[v2]0(t, x, y)dxdy

)∥∥∥∥∥
L1,∞(R2

+)

.

Since [v3]
M
0 (t) is bounded, we mainly need to take care of the difference. Re-write

g(u) =
p(u)

q(u)

where
p(u)(t, x, y) :=

∫
R2
+

i3(t, x, y, x, y)[u2]0(t, x, y)dxdy,

q(u)(t) := Kvec + [u4]
M
0 (t) +

∫
R2
+

[u2]0(t, x, y)dxdy.

Define wτ = v + (u− v)τ then the difference in the last term is

g(u)− g(v) =

∫ 1

0

d

dτ
g(wτ )dτ.

Now we calculate the derivative of g(wτ ) with respect to variable τ . We begin
with the derivatives of p(wτ ) and q(wτ ):

d

dτ
p(wτ ) =

d

dτ

∫
R2
+

i3(t, x, y, x, y)[v2 + (u2 − v2)τ ]0(t, x, y)dxdy

=

∫
R2
+

i3(t, x, y, x, y)[u2 − v2]0(t, x, y)dxdy;

d

dτ
q(wτ ) =

d

dτ

(
Kvec + [v4 + (u4 − v4)τ ]0(t)

+

∫
R2
+

[v2 + (u2 − v2)τ ]0(t, x, y)dxdy

)

=[u4 − v4]0(t) +

∫
R2
+

[u2 − v2]0(t, x, y)dxdy.

Using the quotient rule, we can calculate the derivative of g(wτ ):

d

dτ
g(wτ ) =

d

dτ

(
p(wτ )

q(wτ )

)
=
pτ (wτ )

q(wτ )
− qτ (wτ )

q(wτ )

p(wτ )

q(wτ )

84



Chapter 3. Structured population dynamics of vector-borne diseases

≤ K−1
vec

∫
R2
+

i3(t, x, y, x, y)[u2 − v2]0(t, x, y)dxdy

+K−1
vec

(
[u4 − v4]0(t) +

∫
R2
+

[u2 − v2]0(t, x, y)dxdy

)
p(wτ )

q(wτ )
.

Now we look at the L1,∞-norm of (g(u) − g(v)). Using the result we have
obtained above, we can estimate the L1-norm and the L∞-norm. We are going to
treat them separately.

‖g(u)− g(v)‖L1(R2
+) =

∥∥∥∥∫ 1

0

d

dτ
g(wτ )dτ

∥∥∥∥
L1(R2

+)

≤
∫
R2
+

∫ 1

0
K−1

vec

∫
R2
+

i3(t, x, y, x, y)[u2 − v2]0(t, x, y)dxdydτdxdy

+

∫
R2
+

∫ 1

0
K−1

vec

(
[u4 − v4]0(t) +

∫
R2
+

[u2 − v2]0(t, x, y)dxdy
)p(wτ )

q(wτ )
dτdxdy

≤ K−1
vec

∫
R2
+

∫
R2
+

i3(t, x, y, x, y)[u2 − v2]0(t, x, y)dxdydxdy

+2K−1
vec ‖(u− v)(t, .)‖L1(R2

+)

×
∫ 1

0

∫
R2
+

∫
R2
+
i3(t, x, y, x, y)[v2 + (u2 − v2)τ ]0(t, x, y)dxdydxdy

Kvec + [v4 + (u4 − v4)τ ]0(t) +
∫
R2
+
[v2 + (u2 − v2)τ ]0(t, x, y)dxdy

dτ

≤ K−1
vec sup

(x,y)∈R2
+

‖i3(t, ., x, y)‖L1(R2
+) ‖(u2 − v2)(t, .)‖L1(R2

+)

+2K−1
vec ‖(u− v)(t, .)‖L1(R2

+)

×
∫ 1

0

sup
(x,y)∈R2

+

‖i3(t, ., x, y)‖L1(R2
+) ‖[v2 + (u2 − v2)τ ]0(t, .)‖L1(R2

+)

Kvec + [v4 + (u4 − v4)τ ]0(t) + ‖[v2 + (u2 − v2)τ ]0(t, .)‖L1(R2
+)

dτ

≤ K−1
vec sup

(x,y)∈R2
+

‖i3(t, ., x, y)‖L1(R2
+) ‖(u2 − v2)(t, .)‖L1(R2

+)

+2K−1
vec ‖(u− v)(t, .)‖L1(R2

+) sup
(x,y)∈R2

+

‖i3(t, ., x, y)‖L1(R2
+)

≤ l14 ‖(u− v)(t, .)‖L1(R2
+)

where l14 = 3K−1
vec sup

(t,x,y)∈R3
+

‖i3(t, ., x, y)‖L1(R2
+) > 0. Similar to this, we can estimate

the L∞-norm:

‖g(u)− g(v)‖L∞(R2
+) =

∥∥∥∥∫ 1

0

d

dτ
g(wτ )dτ

∥∥∥∥
L∞(R2

+)

≤ l24 ‖(u− v)(t, .)‖L∞(R2
+)

where l24 > 0.
Combining the two norms, we obtain:∥∥[v3]M0 (t)(g(u)− g(v))

∥∥
L1,∞(R2

+)
≤ M ‖g(u)− g(v))‖L1,∞(R2

+)

≤ Ml4 ‖(u− v)(t, .)‖L1,∞(R2
+)
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where l4 = max{l14, l24}.

Due to assumption A, all lj4 (j = 1, 2, 3, 4) are positive values. The last term
of operator fM

1 is smaller than l4 ‖u(t, .)− v(t, .)‖L1,∞ . Summing up all the esti-
mations of the four terms, we obtain that fM

1 is Lipschitz with norm ‖.‖L1,∞ .

Similar procedures are applied for fM
j (j = 2, 3, 4). So operator fM is Lipschitz

with norm ‖.‖L1,∞ . For later use, we denote the Lipschitz constant by l. Lemma
3.5 is proved.

Proof of lemma 3.6

Now we prove lemma 3.6, concerning transformation ϕ1, the result for ϕ2 is similar.

Proof. Given (t, x, y) in each domain Ωj (j = 1, 2, 3), based on the formula of ϕ1

given before, we can calculate:

(s1, r1) = (s1(t, x, y), r1(t, x, y)) = ϕ−1
1 (t, x, y).

Knowing r1(t, x, y), given arbitrary s ∈ [0, s1(t, x, y)], we can compute

(t, x, y) = ϕ1(s, r1(t, x, y))

and obtain:

∀(t, x, y) ∈ Ω1(g1, h1) :
(t, x, y) = ϕ1(s, (0, x− g1t, y − h1t)) = (s, x− g1t+ g1s, y − h1t+ h1s),
∀(t, x, y) ∈ Ω2(g1, h1) :

(t, x, y) = ϕ1(s, (t−
x

g1
, 0, y − h1

g1
x)) = (s+ t− x

g1
, g1s, y −

h1
g1

x+ h1s),

∀(t, x, y) ∈ Ω3(g1, h1) :

(t, x, y) = ϕ1(s, (t−
y

h1
, x− g1

h1
y, 0)) = (s+ t− y

h1
, x− g1

h1
y + g1s, h1s).

By standard calculation, we have

dtdxdy = dsdxdy

since the absolute values of the corresponding Jacobian determinants are always
equal to 1 over three domains. So (i) is proved.

Using the formulas of (t, x, y) above, we also obtain part (ii) directly.

The result for ϕ2 is analog of the one for ϕ1. We denote the new domains of
(t, x, y) after applying ϕ1, ϕ2 by Ω(g1, h1) and Ω(g2, h2).
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Proof of lemma 3.8

With the results of the two lemmas above, we can prove lemma 3.8 concerning
operator KM .

Proof. Given u, v ∈ X, we are going to look at KM
j u − KM

j v (j = 1, 2, 3, 4)
with L1,∞-norm, then λ-norm. Since the initial boundary values are given, we
subtract them and they vanish. We then just need knowledge of fM

j and two
transformations ϕ1, ϕ2. First we look at the L1-norm, then the L∞-norm of
KM

j u−KM
j v. The L1-norm is:

∫
R2
+

∣∣∣ ∫ s1(t,x,y)

0
(fM

1 u− fM
1 v) ◦ ϕ1(s, r1(t, x, y))ds

∣∣∣dxdy
≤

∫
R3
+

∣∣χs∈[0,s1(t,x,y)](f
M
1 u− fM

1 v) ◦ ϕ1(s, r1(t, x, y))
∣∣ dsdxdy

≤
∫
R3
+

∣∣∣χ(t,x,y)∈Ω(g1,h1)
(fM

1 u− fM
1 v)(t, x, y)

∣∣∣ dtdxdy
where χ(.) is a characteristic function, which is equal to 1 on the defined set and
equal to 0 on the rest of the domain. Using the explicit form of domain Ωj(h1, g1)
(j = 1, 2, 3), on Ω(h1, g1) = ∪Ωj(h1, g1) we have 0 ≤ t ≤ t, and x ≤ 0, y ≤ 0. So:∫

R3
+

∣∣∣χ(t,x,y)∈Ω(g1,h1)
(fM

1 u− fM
1 v)(t, x, y)

∣∣∣ dtdxdy
≤

∫ t

0

∫
R2
+

∣∣(fM
1 u− fM

1 v)(t, x, y)
∣∣ dtdxdy

=

∫ t

0

∥∥(fM
1 u− fM

1 v)(t, x, y)
∥∥
L1(R2

+)
dt.

Now we continue with the L∞-norm:

sup
(x,y)∈R2

+

∣∣∣ ∫ s1(t,x,y)

0
(fM

1 u− fM
1 v) ◦ ϕ1(s, r1(t, x, y))ds

∣∣∣
≤ sup

(x,y)∈R2
+

∫ t

0
|(fM

1 u− fM
1 v)(t, x, y)|dt

≤
∫ t

0
sup

(x,y)∈R2
+

|(fM
1 u− fM

1 v)(t, x, y)|dt

≤
∫ t

0

∥∥fM
1 u− fM

1 v
∥∥
L∞(R2

+)
dt.

Summing up the two norms above, combined with the fact that fM
1 is Lipschitz

87



3.2. Analytical study

(lemma 3.5), we obtain:∥∥∥∥∥
∫ s1(t,x,y)

0
(fM

1 u− fM
1 v) ◦ ϕ1(s, r1(t, x, y))ds

∥∥∥∥∥
L1,∞(R2

+)

≤
∫ t

0

∥∥fM
1 u(t, .)− fM

1 v(t, .)
∥∥
L1,∞(R2

+)
dt

≤
∫ t

0
l
∥∥(u(t, .)− v(t, .))

∥∥
L1,∞(R2

+)
dt.

Now we use the weight λ:∥∥KM
1 u−KM

1 v
∥∥
λ

≤ sup
t∈R+

{e−λt

∫ t

0
l
∥∥(u(t, .)− v(t, .))

∥∥
L1,∞(R2

+)
dt}

= sup
t∈R+

l {e−λt

∫ t

0

∥∥(u(t, .)− v(t, .))
∥∥
L1,∞(R2

+)
e−λteλtdt}

≤ sup
t∈R+

l {e−λt

∫ t

0
‖(u(., .)− v(., .))‖λ eλtdt}

= l ‖u− v‖λ sup
t∈R+

{e−λt

∫ t

0
eλtdt}

≤
l ‖u− v‖λ

λ
.

So if we choose λ > l then k = l/λ < 1 and KM
1 satisfies:∥∥KM

1 u−KM
1 v
∥∥
λ
≤ k ‖u− v‖λ .

We should also notice that when u = 0 then fM = 0 and given any u ∈ X we
have KM

1 u ∈ X. So the equation KM
1 u = u has a unique solution by the Banach

fixed point theorem.

Proof of lemma 3.9

We already have a solution, now we prove lemma 3.9 to guarantee that it is
“positive”: u1(t, x, y) ≥ 0, u2(t, x, y) ≥ 0, u3(t) > 0, u4(t) > 0.

Proof. We have a unique solution with operator KM . If we can now prove that
the obtained solution is actually “positive”, that means the cut-off below by 0
is inactive for all uj (j = 1, 2, 3, 4). For this, we use the differential form of the
equation, which is given in (3.15), with corresponding cut-off operators as we have
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in KM . Using the transformations ϕ1 and ϕ2 we have the following:

∂

∂s1
u1 ◦ ϕ1(s1, r1) = f1(u) ◦ ϕ1(s1, r1)

≥ −(ρ ◦ ϕ1(s1, r1) +m1 ◦ ϕ1(s1, r1)) u1 ◦ ϕ1(s1, r1)

∂

∂s2
u2 ◦ ϕ2(s2, r2) = f2(u) ◦ ϕ2(s2, r2)

≥ m2 ◦ ϕ2(s2, r2) u2 ◦ ϕ2(s2, r2)

d

dt
u3(t) = f3(u)(t)

≥ −
(
m3(t) +

∫
R2
+

∫
R2
+
i3(t, x, y, x, y)u2(t, x, y)dxdy

Kvec + u4(t) +
∫
R2
+
u2(t, x, y)dxdy

)
u3(t)

d

dt
u4(t) = f4(u)(t)

≥ −
(
m4(t) +

∫
R2
+

∫
R2
+
i4(t, x, y, x, y)u1(t, x, y)dxdy

Khum + u3(t) +
∫
R2
+
u1(t, x, y)dxdy

)
u4(t).

Using standard arguments, we obtain that all functions uj (j = 1, 2, 3, 4) can
not decrease faster than exponential decay. Given an arbitrary large time T and
“positive” initial boundary values, the values of all functions stay “positive”.

Remark 3.12. The “cut-off” below 0 of u3(t), u4(t) and also u1(t, x, y), u2(t, x, y)
are naturally inactive.

Proof of lemma 3.10

To complete the proof of theorem 3.4, we need to show that the cut-off above M
of u3(t), u4(t) is also inactive or fM ≡ f . This is the task in lemma 3.10.

Proof. In this proof we denote

uj(t) =

∫
R2
+

uj(t, x, y)dxdy (j = 1, 2).

We are going to consider a system involving u1(t) and u3(t), then later a system
involving u2(t) and u4(t). We compare them with linear differential systems of
order 1 in order to obtain their upper bounds.

Using the result of lemma 3.9, saying that the solution of the system is positive,
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we can estimate:

d

dt
u1(t) =

∫
R2
+

∂tu1(t, x, y)dxdy

= −
∫
R2
+

(∂x(g1u1(t, x, y)) + ∂y(h1u1(t, x, y)))dxdy +

∫
R2
+

f1u(t, x, y)dxdy

≤
∫
R+

(g1u1(t, 0, y)dy + h1u1(t, x, 0)dx)

+ u3(t) sup
(x,y)∈R2

+

∫
R2
+

i3(t, x, y, x, y)dxdy
u2(t)

Kvec + u4(t) + u2(t)

+ sup
(x,y)∈R2

+

∫
R2
+

θ1(t, x, y, x, y)dxdy u1(t)

≤ c1(t) + c2(t)u3(t) + c3(t)u1(t),

d

dt
u3(t) ≤ (b3(t)−m3(t))u3(t) + sup

(x,y)∈R2
+

(b1(t, x, y) + ρ(t, x, y))u1(t)

= c4(t)u3(t) + c5(t)u1(t).

We consider the system with two unknowns u1(t), u3(t) on the interval [0, T ].
Since it can be compared with a linear system which has a unique solution in
exponential growth, for any T > 0 the solution (u1(t), u3(t)) (which already exists)
is bounded by a constant C. C only depends on T , not M .

Similarly, we obtain the same result for u2(t), u4(t). Combining them, for any
given T > 0, we can always choose M > C(T ), so

sup
t∈[0,T ]

uj(t) < M, (j = 3, 4).

So operator [.]M becomes inactive. Since we can let T → ∞, lemma 3.10 is
proved.

By this proof, we have completed all the lemmas which support theorem 3.4.
So system (3.16) with given initial boundary values has a unique positive solution.

3.2.4 Mapping from the boundary values to the solution

We have shown that if the initial boundary values are given then the system has
a solution. Now we study the mapping from the boundary values to the solution.
Using the results of the last subsection, from now on we always consider t ∈ [0, T ]
(T > 0 is arbitrary large) and write Ω(.) by [Ω(.)]. In this consideration, we can
identify fM by f . That means, f also has the Lipschitz property like fM , with
respect to L1,∞-norm.
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Denote A for {0} × R+, R+ × {0} and

L1,∞(A) = {w| w ∈ L1(A), w ∈ BC0(A)}

with a norm:

‖w(., .)‖L1,∞([0,t]×A) = ‖w(., .)‖L1([0,t]×A) + ‖w(., .)‖L∞([0,t]×A) ds.

We denote the boundary (not initial) function by u0(t, a), which is defined on
[0, T ]× A. Let r = (t, a) ∈ [0, T ]× A and

u01(t, a), u
0
2(t, a) ∈ C0([0, T ), L1,∞(A)).

We have the following theorem.

Theorem 3.13. The mapping from the boundary values to the solution is Lipschitz
with respect to L1,∞-norm. More precisely, we are going to prove that for j = 1, 2
and u0j (t, a), v0j (t, a) given, there is a l0 > 0, such that for all t ∈ [0, T ]:

‖ũ(t, .)− ṽ(t, .)‖L1,∞(R2
+) ≤ l0(t)

∥∥ũ0(., .)− ṽ0(., .)
∥∥
L1,∞([0,t]×A)

where ũ = (u1, u2), ũ
0 = (u01, u

0
2) and

‖ũ(t, .)‖L1,∞([R2
+) := max

j=1,2
‖uj(t, .)‖L1,∞(R2

+) ,∥∥ũ0(., .)∥∥
L1,∞([0,t]×A) := max

j=1,2

∥∥u0j (., .)∥∥L1,∞([0,t]×A) .

Remark. Since there is only one solution corresponding to the fixed initial values,
so

‖u(t, .)− v(t, .)‖L1,∞(R2
+) = ‖ũ(t, .)− ṽ(t, .)‖L1,∞(R2

+) ,

Proof. We are mainly interested in the mapping of boundary functions to the
solution, so we do not need the initial part which corresponds to [Ω1(gj , hj)]. We
only focus on [Ω2(gj , hj)] and [Ω3(gj , hj)]. Given (t, x, y) in these domains, we can
determine uniquely (sj , rj) = ϕ−1

j (t, x, y) for j = 1, 2:

(sj , rj) =


( x

gj
,
(
t− x

gj
, 0, y − hj

x

gj

))
∀(t, x, y) ∈ Ω2(gj , hj),( y

hj
,
(
t− y

hj
, x− gj

y

hj
, 0
))

∀(t, x, y) ∈ Ω3(gj , hj).

We then have for j = 1, 2:

uj(t, x, y) = u0j (rj(t, x, y)) +

∫ sj(t,x,y)

0
fju ◦ ϕj(s, rj(t, x, y))ds,
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vj(t, x, y) = v0j (rj(t, x, y)) +

∫ sj(t,x,y)

0
fjv ◦ ϕj(s, rj(t, x, y))ds.

We can estimate L1,∞-norm for j = 1, 2:

‖uj(t, .)− vj(t, .)‖L1,∞(R2
+) ≤

∥∥u0j (rj(t, .))− v0j (rj(t, .))
∥∥
L1,∞(R2

+)

+

∥∥∥∥∥
∫ sj(t,.)

0
(fju− fjv) ◦ ϕj(s, rj(t, .))ds

∥∥∥∥∥
L1,∞(R2

+)

.

According to the proof of lemmas 3.5 and 3.6, we have:∥∥∥∥∥
∫ sj(t,.)

0
(fju− fjv) ◦ ϕj(s, rj(t, .))ds

∥∥∥∥∥
L1,∞

≤
∫ t

0
l
∥∥u(t, .)− v(t, .)

∥∥
L1,∞ dt.

Since u, v are solutions corresponding to the same initial condition (only boundary
conditions are different), so uj(t) ≡ vj(t), (j = 3, 4). Hence:∥∥∥∥∥

∫ sj(t,.)

0
(fju− fjv) ◦ ϕj(s, rj(t, .))ds

∥∥∥∥∥
L1,∞

≤
∫ t

0
l
∥∥ũ(t, .)− ṽ(t, .)

∥∥
L1,∞ dt.

In addition, we have an inequality (its proof is going to be given in an additional
lemma below):∥∥u0j (rj(t, .))− v0j (rj(t, .))

∥∥
L1,∞(R2

+)
≤ c0

∥∥u0j (., .)− v0j (., .)
∥∥
L1,∞([0,t]×A) (3.17)

Combining j = 1 and j = 2:

‖ũ(t, .)− ṽ(t, .)‖L1,∞(R2
+) ≤ c0

∥∥ũ0(., .)− ṽ0(., .)
∥∥
L1,∞([0,t]×A)

+

∫ t

0
l
∥∥ũ(t, .)− ṽ(t, .)

∥∥
L1,∞(R2

+)
dt.

Using Gronwall’s lemma (note that
∥∥ũ0(., .)− ṽ0(., .)

∥∥
L1,∞([0,t]×A) is nondecreasing

with respect to t), we obtain:

‖ũ(t, .)− ṽ(t, .)‖L1,∞(R2
+) ≤ c0

∥∥ũ0(., .)− ṽ0(., .)
∥∥
L1,∞([0,t]×A) e

lt.

Choosing l0(t) = c0e
lt then

‖ũ(t, .)− ṽ(t, .)‖L1,∞(R2
+) ≤ l0(t)

∥∥ũ0(., .)− ṽ0(., .)
∥∥
L1,∞([0,t]×A) .

The theorem is proved.

Here we would like to complete the proof of the inequality (3.17) stated in
theorem 3.13.
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Lemma 3.14. Given (t, x, y) ∈ [0, T ] × R2
+ and u0j , v

0
j (j = 1, 2) as boundary

functions. There is a constant c0 > 0 such that:∥∥u0j (rj(t, .))− v0j (rj(t, .))
∥∥
L1,∞(R2

+)
≤ c0

∥∥u0j (., .)− v0j (., .)
∥∥
L1,∞([0,t]×A)

where rj(t, x, y) is determined by way of ϕj.

Proof. We are going to consider the L1-norm and the L∞-norm.

Notice that the initial part of the left hand side is formally included, but it
does not contribute anything, since u0j (0, xj , yj) ≡ v0j (0, xj , yj) for all (xj , yj). It
just helps to clarify the variable change in ‖u0j (rj(t, .))‖L1,∞(R2

+).

For (x, y) ∈ R2
+, we are going to fix some t ∈ [0, T ] and use the definition of ϕj

to calculate the domain of rj and the differential dxdy. Recall figure 3.2: when
the value of t below the blue circle and green triangle planes, then (t, x, y) ∈ [Ω1],
otherwise (t, x, y) ∈ [Ω2] ∪ [Ω3].

- The set of (x, y) corresponding to [Ω1] is the positive quadrant Oxy. Fix a value
of t such that (t, x, y) ∈ [Ω1(gj , hj)] then

rj(t, x, y) = (0, xj , yj) = (0, x− gjt, y − hjt), dxdy = dxjdyj

and the domain of rj is:

[Ω1(gj , hj)] = {0} × R2
+.

- The orthogonal projection images of [Ω2] and [Ω3] on Oxy also cover the positive
quadrant Oxy. Fix a value of t such that (t, x, y) ∈ [Ω2(gj , hj)] then

rj(t, x, y) = (tj , 0, yj) =
(
t− x

gj
, 0, y − hj

x

gj

)
, dxdy = gjdtjdyj

and the domain of rj is:

[Ω2(gj , hj)] = [0, t]× {0} × R+.

Fix a value of t such that (t, x, y) ∈ [Ω3(gj , hj)] then

rj(t, x, y) = (tj , xj , 0) =
(
t− y

hj
, x− gj

y

hj
, 0
)
, dxdy = hjdtjdxj

and the domain of rj is:

[Ω3(gj , hj)] = [0, t]× R+ × {0}.

So there are two value classes for t, leading to two possible domains of rj . If
the value of t is below the two planes t = x

gj
and t = y

hj
then domain of rj is

[Ω1(gj , hj)] = {0} × R2
+, otherwise it is

[Ω2(gj , hj)] ∪ [Ω3(gj , hj)] = [0, t]× A.
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We have

∥∥∥u0j (rj(t, .))∥∥∥
L1(R2

+)
=

∫
R2
+

∣∣u0j (rj(t, x, y))∣∣ dxdy
=

[ ∫
R2
+

∣∣u0j (0, xj , yj)∣∣ dxjdyj (if t < x

gj
and t <

y

hj
),

gj

∫
[0,t]×R+

∣∣u0j (tj , 0, yj)∣∣ dtjdyj + hj

∫
[0,t]×R+

∣∣u0j (tj , xj , 0)∣∣ dtjdxj
and ∥∥∥u0j (rj(t, .))∥∥∥

L∞(R2
+)

= sup
(x,y)∈R2

+

∣∣u0j (rj(t, x, y))∣∣
=

[ sup
(xj ,yj)∈R2

+

∣∣u0j (0, xj , yj)∣∣ (if t < x

gj
and t <

y

hj
),

sup
(tj ,aj)∈[0,t]×A

∣∣u0j (tj , aj))∣∣ otherwise.

Similarly, we have the transformation for L1-norm and L∞-norm of v0j (rj(t, .)).
Since the initial condition is given u0j (0, xj , yj) ≡ v0j (0, xj , yj), we obtain:

∥∥∥u0j (rj(t, .))− v0j (rj(t, .))
∥∥∥
L1(R2

+)

≤ gj

∫
[0,t]×R+

∣∣u0j (tj , 0, yj)− v0j (tj , 0, yj)
∣∣ dtjdyj

+hj

∫
[0,t]×R+

∣∣u0j (tj , xj , 0)− v0j (tj , xj , 0)
∣∣ dtjdxj

≤ cj

∥∥∥u0j (., .)− v0j (., .)
∥∥∥
L1([0,t]×A)

where cj = max{gj , hj} for j = 1, 2 and

∥∥u0j (rj(t, .))− v0j (rj(t, .))
∥∥
L∞(R2

+)
≤
∥∥u0j (., .)− v0j (., .)

∥∥
L∞([0,t]×A)

Taking c0 = max{c1, c2, 1} and summing up the two norms above we obtain the
claim in this lemma.
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3.2.5 Solving the unknown boundary equations

In this subsection, we only look at uj where j = 1, 2. For the unknown boundary
equations, we have a system of boundary values uj(t, 0, y) and uj(t, x, 0) (j = 1, 2):

uj(t, 0, y) = u∗j (0, y) +

∫ t

0

∫
R+

αj(t, η, t, y)uj(t, 0, η)dηdt

+

∫ t

0

∫
R2
+

βj(t, ξ, η, t, y)uj(t, ξ, η)dξdηdt−
∫ t

0
ζj(t, y)uj(t, 0, y)dt,

uj(t, x, 0) = u∗j (x, 0) +

∫ t

0

∫
R+

γj(t, ξ, t, x)uj(t, ξ, 0)dξdt

+

∫ t

0

∫
R2
+

δj(t, ξ, η, t, x)uj(t, ξ, η)dξdηdt−
∫ t

0
νj(t, x)uj(t, x, 0)dt.

(3.18)

It is clear that we need to compute values of uj on the boundary. We have denoted

A = ({0} × R+) ∪ (R+ × {0}).

Or more precisely, A is just a short notation for either {0} × R+ or R+ × {0} so
that the points (t, 0, y), (t, x, 0) can be written by (t, a). In the right hand side we
re-denote all the factor functions by

ιj = (αj , γj), κj = (βj , δj), σj = (ζj , νj).

We consider all functions

u01(t, a), u
0
2(t, a) ∈ C0

(
[0, T ], L1(A) ∩BC0(A)

)
such that for any given λ > 0:

sup
t∈[0,T ]

{e−λt
∥∥u0j (., .)∥∥L1,∞([0,t]×A)} < ∞.

Our λ-norm is defined as follows:∥∥u0j (., .)∥∥λ := sup
t∈[0,T ]

{
e−λt

∥∥∥u0j (., .)∥∥∥
L1,∞([0,t]×A)

}
,∥∥ũ0(., .)∥∥

λ
:= max

j=1,2

∥∥∥u0j (., .)∥∥∥
λ

where ũ0(t, a) = (u01(t, a), u
0
2(t, a)).

Remark. The space of all functions ũ0 with λ-norm is a Banach space. We are
going to prove the following theorem.

Theorem 3.15. Given functions uj (j = 1, 2) as in system (3.16). We have the
following:
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(i) There is a suitable λ such that the equation system

u0j (t, a) = u∗j (a) +

∫ t

0

∫
A
ιj(t, a, t, a)u

0
j (t, a)dadt (j = 1, 2)

+

∫ t

0

∫
R2
+

κj(t, ξ, η, t, a)uj(t, ξ, η)dξdηdt−
∫ t

0
σj(t, a)u

0
j (t, a)dt

(3.19)

has a unique solution.
(ii) The solution is nonnegative as long as the initial values are nonnegative.

Proof. Since initial value u∗(a) = (u∗1(a), u
∗
2(a)) is known, we can put it to the

center of the considered ball. For j = 1, 2, let

Tj ũ
0(t, a) := u∗j (a) +

∫ t

0

∫
A
ιj(t, a, t, a)u

0
j (t, a)dadt

+

∫ t

0

∫
R2
+

κj(t, ξ, η, , t, a)uj(t, ξ, η)dξdηdt−
∫ t

0
σj(t, a)u

0
j (t, a)dt

For part (i) we need to prove that there exists a λ such that operator T is a
contraction map. Given ũ0 and ṽ0, we have:

∥∥(Tj ũ
0 − Tj ṽ

0)(., .)
∥∥
λ
≤

∥∥∥∥∥
∫ (.)

0

∫
A
ιj(t, a, ., .)(u

0
j (t, a)− v0j (t, a))dadt

∥∥∥∥∥
λ

+

∥∥∥∥∥
∫ (.)

0

∫
R2
+

κj(t, ξ, η, ., .)(uj(t, ξ, η)− vj(t, ξ, η))dξdηdt

∥∥∥∥∥
λ

+

∥∥∥∥∥
∫ (.)

0
σj(t, .)(uj(t, .)− vj(t, .))dt

∥∥∥∥∥
λ

.

At first, we take care of the L1-norm of the first term:∥∥∥∥∥
∫ (.)

0

∫
A
ιj(t, a, ., .)(u

0
j (t, a)− v0j (t, a))dadt

∥∥∥∥∥
L1([0,t]×A)

=

∫ t

0

∫
A

∣∣∣∣∫ τ

0

∫
A
ιj(t, a, τ, a)(u

0
j (t, a)− v0j (t, a))dadt

∣∣∣∣ dadτ
≤
∫ t

0

∫ τ

0

∫
A

(∫
A

∣∣ιj(t, a, τ, a)∣∣ da) ∣∣u0j (t, a)− v0j (t, a)
∣∣ dadtdτ

≤
∫ t

0
sup

(t,a)∈[0,τ ]×A

∥∥ιj(t, a, τ, .)∥∥L1(A)

∥∥u0j (., .)− v0j (., .)
∥∥
L1([0,τ ]×A) dτ

≤ lj5

∫ t

0

∥∥u0j (., .)− v0j (., .)
∥∥
L1([0,τ ]×A) dτ

where
lj5 = sup

∀(t,a,τ)

∥∥ιj(t, a, τ, .)∥∥L1(A) < ∞.
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Second, the L∞-norm of the first term is:∥∥∥∥∥
∫ (.)

0

∫
A
ιj(t, a, ., .)(u

0
j (t, a)− v0j (t, a))dadt

∥∥∥∥∥
L∞([0,t]×A)

= sup
(τ,a)∈[0,t]×A

∣∣∣∣∫ τ

0

∫
A
ιj(t, a, τ, a)(u

0
j (t, a)− v0j (t, a))dadt

∣∣∣∣
≤ sup

(τ,a)∈[0,t]×A

∫ τ

0

(∫
A

∣∣ιj(t, a, τ, a)∣∣ da) sup
a∈A

∣∣u0j (t, a)− v0j (t, a)
∣∣ dt

≤ sup
(τ,a)∈[0,t]×A

∫ τ

0

∥∥ιj(t, ., τ, a)∥∥L1(A)

∥∥u0j (., .)− v0j (., .)
∥∥
L∞([0,t]×A) dt

≤ sup
∀(t,τ,a)

∥∥ιj(t, ., τ, a)∥∥L1(A) sup
τ∈[0,t]

∫ τ

0

∥∥u0j (., .)− v0j (., .)
∥∥
L∞([0,t]×A) dt

≤ lj6

∫ t

0

∥∥u0j (., .)− v0j (., .)
∥∥
L∞([0,t]×A) dt

where
lj6 = sup

∀(t,τ,a)

∥∥ιj(t, ., τ, a)∥∥L1(A) < ∞.

Taking lj7 = max{lj5, l
j
6} and summing up two parts of the first term, we obtain:∥∥∥∥∥

∫ (.)

0

∫
A
ιj(t, a, ., .)(u

0
j (t, a)− v0j (t, a))dadt

∥∥∥∥∥
λ

= sup
t∈[0,T ]

e−λt

∥∥∥∥∥
∫ (.)

0

∫
A
ιj(t, a, ., .)(u

0
j (t, a)− v0j (t, a))dadt

∥∥∥∥∥
L1,∞([0,t]×A)


≤ sup

t∈[0,T ]

{
e−λtlj7

∫ t

0

∥∥u0j (., .)− v0j (., .)
∥∥
L1,∞([0,t]×A) dt

}
= lj7 sup

t∈[0,T ]

{
e−λt

∫ t

0

∥∥u0j (., .)− v0j (., .)
∥∥
L1,∞([0,t]×A) e

−λteλtdt

}
≤ lj7

∥∥u0j (., .)− v0j (., .)
∥∥
λ

sup
t∈[0,T ]

{
e−λt

∫ t

0
eλtdt

}
≤ lj7

λ

∥∥u0j (., .)− v0j (., .)
∥∥
λ
.

In the next step, we consider the second term. From theorem 3.13, we know that
the mapping from the initial boundary value ũ0, to the solution ũ is Lipschitz with
a constant depending on time t:

‖uj(t, .)‖L1,∞(R2
+) ≤ c0e

lt
∥∥ũ0(., .)∥∥

L1,∞([0,t]×A) (j = 1, 2).

From this, we are able to estimate the L1-norm and L∞-norm of the second term
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in the two following estimates:∥∥∥∥∥
∫ (.)

0

∫
R2
+

κj(t, ξ, η, ., .)(uj(t, ξ, η)− vj(t, ξ, η))dξdηdt

∥∥∥∥∥
L1([0,t]×A)

=

∫ t

0

∫
A

∣∣∣∣∣
∫ τ

0

∫
R2
+

κj(t, ξ, η, τ, a) (uj(t, ξ, η)− vj(t, ξ, η))dξdηdt

∣∣∣∣∣ dadτ
≤
∫ t

0

∫ τ

0

∫
R2
+

(∫
A

∣∣κj(t, ξ, η, τ, a)∣∣ da) ∣∣uj(t, ξ, η)− vj(t, ξ, η)
∣∣ dξdηdtdτ

≤
∫ t

0

∫ τ

0
sup

∀(t,ξ,η,τ)

∥∥κj(t, ξ, η, τ, .)∥∥L1(A)

∥∥uj(t, .)− vj(t, .)
∥∥
L1(R2

+)
dtdτ

≤
∫ t

0

∫ τ

0
lj8
∥∥uj(t, .)− vj(t, .)

∥∥
L1(R2

+)
dtdτ

≤ lj8

∫ t

0

∫ τ

0
c0e

lt
∥∥ũ0(., .)− ṽ0(., .)

∥∥
L1,∞([0,t]×A) dtdτ (theorem 3.13)

≤ c0l
j
8

∫ t

0

(∥∥ũ0(., .)− ṽ0(., .)
∥∥
L1,∞([0,τ ]×A)

∫ τ

0
eltdt

)
dτ

≤ c0l
j
8

l

∫ t

0

∥∥ũ0(., .)− ṽ0(., .)
∥∥
L1,∞([0,τ ]×A) e

lτdτ

where
lj8 = sup

∀(t,ξ,η,τ)

∥∥κj(t, ξ, η, τ, .)∥∥L1(A) < ∞.

∥∥∥∥∥
∫ (.)

0

∫
R2
+

κj(t, ξ, η, ., .)(uj(t, ξ, η)− vj(t, ξ, η))dξdηdt

∥∥∥∥∥
L∞([0,t]×A)

= sup
(τ,a)∈[0,t]×A

∣∣∣∣∣
∫ τ

0

∫
R2
+

κj(t, ξ, η, τ, a) (uj(t, ξ, η)− vj(t, ξ, η))dξdηdt

∣∣∣∣∣
≤ sup

(τ,a)∈[0,t]×A

∫ τ

0

(∫
R2
+

∣∣κj(t, ξ, η, τ, a)∣∣ dξdη)∥∥uj(t, .)− vj(t, .)
∥∥
L∞(R2

+)
dt

≤ sup
(τ,a)∈[0,t]×A

∫ τ

0

∥∥κj(t, ., τ, a)∥∥L1(R2
+)

∥∥uj(t, .)− vj(t, .)
∥∥
L∞(R2

+)
dt

≤ lj9 sup
τ∈[0,t]

∫ τ

0

∥∥uj(t, .)− vj(t, .)
∥∥
L∞(R2

+)
dt

≤ lj9 sup
τ∈[0,t]

∫ τ

0
c0e

lt
∥∥ũ0(., .)− ṽ0(., .)

∥∥
L1,∞([0,t]×A) dt (theorem 3.13)

≤ c0l
j
9

∫ t

0

∥∥ũ0(., .)− ṽ0(., .)
∥∥
L1,∞([0,t]×A) e

ltdt

where
lj9 = sup

∀(t,τ,a)

∥∥κj(t, ., τ, a)∥∥L1(R2
+)

< ∞.

Taking lj10 =
c0l

j
8

l + c0l
j
9, we can sum up the two estimates above and obtain the
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estimate for λ-norm:∥∥∥∥∥
∫ (.)

0

∫
R2
+

κj(t, ξ, η, ., .)(uj(t, ξ, η)− vj(t, ξ, η))dξdηdt

∥∥∥∥∥
λ

= sup
t∈[0,T ]

{
e−λt

∥∥∥∥∥
∫ (.)

0

∫
R2
+

κj(t, ξ, η, ., .)(uj(t, ξ, η)

−vj(t, ξ, η))dξdηdt
∥∥
L1,∞([0,t]×A)

}

≤ sup
t∈[0,T ]

{
e−λtlj10

∫ t

0

∥∥ũ0(., .)− ṽ0(., .)
∥∥
L1,∞([0,t]×A) e

ltdt

}

= lj10 sup
t∈[0,T ]

{
e−λt

∫ t

0

∥∥ũ0(., .)− ṽ0(., .)
∥∥
L1,∞([0,t]×A) e

−λteλteltdt

}

≤ lj10
∥∥ũ0(., .)− ṽ0(., .)

∥∥
λ

sup
t∈[0,T ]

{
e−λt

∫ t

0
e(λ+l)tdt

}
≤ lj10e

lT

λ+ l

∥∥ũ0(., .)− ṽ0(., .)
∥∥
λ
.

The last component of
∥∥(Tj ũ

0 − Tj ṽ
0)(., .)

∥∥
λ

is a linear term and factor function
σj is bounded (due to assumption A) by:

lj11 := sup
t,a

|σj(t, a)| < ∞.

Using the λ-norm with a similar procedure, we have:∥∥∥∥∫ t

0
σj(t, a)(u

0
j (t, a)− v0j (t, a))dt

∥∥∥∥
λ

≤ lj11
λ
.

Together with the estimates for the first term and the second term, we can sum
up all the three terms and get:

∥∥Tj ũ
0(., .)− Tj ṽ

0(., .)
∥∥
λ
≤

(
lj7
λ
+

lj10e
lT

λ+ l
+

lj11
λ

)∥∥ũ0(., .)− ṽ0(., .)
∥∥
λ

Choosing λ > 0 large enough, we have

max
j=1,2

(
lj7
λ
+

lj10e
lT

λ+ l
+

lj11
λ

)
< 1.

So T is a contraction map. Part (i) is proved.

In the next part, we would like to show the positivity in (ii). We first dif-
ferentiate the unknown boundary system with respect to variable t. Considering
the equivalent differential system with given initial values at t = 0, we can study
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the positivity of its solution. Since the integral system and the differential system
have the same unique solution, they have the same properties.

∂

∂t
u0j (t, a) =

∂

∂t

∫ t

0

∫
A
ιj(t, a, t, a)u

0
j (t, a)dadt

+
∂

∂t

∫ t

0

∫
R2
+

κj(t, ξ, η, t, a)uj(t, ξ, η)dξdηdt−
∂

∂t

∫ t

0
σj(t, a)u

0
j (t, a)dt

=

∫ t

0

∫
A

∂

∂t
ιj(t, a, t, a)u

0
j (t, a)dadt+

∫
A
ιj(t, a, t, a)u

0
j (t, a)da

+

∫ t

0

∫
R2
+

∂

∂t
κj(t, ξ, η, t, a)uj(t, ξ, η)dξdηdt

+

∫
R2
+

κj(t, ξ, η, t, a)uj(t, ξ, η)dξdη − σj(t, a)u
0
j (t, a)

(3.20)

Using cut-off operator [.]0 defined above, we consider the system:
∂

∂t
u0j (t, a) = −σj(t, a)u

0
j (t, a)

+

∫ t

0

∫
A

∂

∂t
ιj(t, a, t, a)[u

0
j ]0(t, a)dadt+

∫
A
ιj(t, a, t, a)[u

0
j ]0(t, a)da

+

∫ t

0

∫
R2
+

∂

∂t
κj(t, ξ, η, t, a)[uj ]0(t, ξ, η)dξdηdt

+

∫
R2
+

κj(t, ξ, η, t, a)[uj ]0(t, ξ, η)dξdη

(3.21)

Using assumption A, factor functions ιj , κj and their derivatives with respect to
t are nonnegative, so from the equation above:

∂

∂t
u0j (t, a) ≥ −σj(t, a)u

0
j (t, a).

With initial value u∗j (a) ≥ 0 for j = 1, 2, we obtain that the solution of system
(3.21) is nonnegative.

In theorem 3.4, we have proved that if the given boundary values u0j and
the initial value u∗j are nonnegative then the solution u of system (3.16) is also
nonnegative. So in equation (3.21), we can identify

[u0j ]0 ≡ u0j , [uj ]0 ≡ uj (j = 1, 2).

The solution of equation (3.20) has the same property as equation (3.21). So
equation (3.20) as well as integral equation (3.19) both have a unique nonnegative
solution. The proof of theorem 3.15 is complete.

3.2.6 Solution of the original system

Combining the results obtained up to now, we see that we can choose λ large
enough such that both theorems 3.4 and 3.15 are valid.
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Now we come back to the systems (3.16) and (3.5) with unknown boundary
conditions. Remember that we always have assumption A.

Theorem 3.16. Given assumption A, we have the following:
(i) There exists a λ such that system (3.16) with unknown boundary conditions
has a unique solution.
(ii) The solution is positive if the initial values are positive (more precisely, u1, u2 ≥
0 and u3, u4 > 0).

Proof. (i) Taking λ large enough such that theorems 3.4 and 3.15 are valid. Then:

- The system of unknown boundary (3.19) is solvable and gives explicit bound-
ary conditions.

- Substitute these boundary conditions into system (3.16) then we have the
solution for original unknown u.

(ii) The uniqueness and the positiveness of the solution are induced from the
corresponding properties in the two theorems 3.4 and 3.15.

Remark. Coming back from system (3.16) to system (3.5), we use the two
bijective transformations ϕj (j = 1, 2). So with the same assumption in A, all the
results for system (3.16) are also valid for the original system (3.5). System (3.5)
with its initial boundary conditions also has a unique positive solution.

3.3 Numerical approach

To the best of our knowledge, systems of integro-partial differential equations
which are similar to the one in this paper have not been treated numerically so
far. Most of the literature focused on a simpler case where only a single unknown
structured variable was considered, as in the survey by Abia et al. [1]. Some
authors included the second unknown without structured variables, such as the
Lotka-Volterra model with age-structured prey population and non-structured
predator population.

3.3.1 Iteration method

Based on the theory we have just established above, we can derive an algorithm
to find the numerical solution of system (3.16). This opens a possibility to solve
system (3.5).

The iteration method, based on theorem 3.16, is leading to an approximation
of the solution. However, other possible approaches have to be investigated and
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evaluated. In sketching the steps of this iteration, we may assume that the kernels
have compact support.

Step 1. Specify the initial time t0 (often as 0), the final time tend and the
initial values of u1(0, x, y), u2(0, x, y), u3(0), u4(0). Calculate the transformations
ϕ1, ϕ2, ϕ−1

1 , ϕ−1
2 . Specify a small enough ε > 0 as a stopping condition.

Step 2. Give a starting function u0j (t, a) (where j = 1, 2, t ∈ [0, T ] and a ∈ A).
By iteration with stopping condition defined by ε, we can compute the solution
at (t, x, y) ∈ [0, T ]× R2

+ as the fixed point of the system:

u1 ◦ ϕ1(s1, r1) = u1 ◦ ϕ1(0, r1) +

∫ s1(t,x,y)

0
f1u ◦ ϕ1(s1, r1)ds,

u2 ◦ ϕ2(s2, r2) = u2 ◦ ϕ2(0, r2) +

∫ s2(t,x,y)

0
f2u ◦ ϕ2(s2, r2)ds,

u3(t) = u3(0) +

∫ t

0
f3u(τ)dτ,

u4(t) = u4(0) +

∫ t

0
f4u(τ))dτ.

Step 3. We can then compute the boundary values from equation (3.19) for
j = 1, 2:

u0j (t, a) = u∗j (a) +

∫ t

0

∫
A
ιj(t, a, s, a)u

0
j (s, a)dads

+

∫ t

0

∫
R2
+

κj(t, a, s, ξ, η)uj(s, ξ, η)dξdηds−
∫ t

0
σj(s, a)u

0
j (s, a)ds

Step 4. Compute the distance d between the new boundary function and the
one before. If d > ε then take the newly obtained boundary functions to step 2 to
continue the iteration process.

Step 5. The iteration runs until d ≤ ε. We obtain the boundary values as
the fixed point of the loop. The solution is finally computed using these explicit
boundary values.

This algorithm is constructed directly from the analysis. We have proved that
there is a converging solution for the continuous problem. However, in numerical
solution we have a discrete system, so consistency and stability should be consid-
ered. We are also aware of other methods, such as Galerkin or Finite Difference
which have been employed to solve a single equation of a structured population.
The study of the convergence would be very essential topic.

3.3.2 Data for the model quantities

For the validation of the mathematical model, we need some field data. The
question is whether we can obtain this data with medium amount of cost and
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time. In the following we are going to address this question.

In malaria, we know that there are some common methods to detect drug
resistance, such as in vivo, in vitro, animal model studies, and molecular charac-
terization [15]. One of the main differences between these methods is the infor-
mation resolution. In vivo, treated patients are monitored over time for “either
failure to clear parasites or for reappearance of parasites” [98] while the molec-
ular characterization method zooms in on genetic markers of resistant parasites
in blood samples. For our model, it is necessary to distinguish and quantify the
amount of sensitive and resistant parasites, this is the reason why we are inter-
ested in high resolution methods. In the following we draw the readers’ attention
to the molecular characterization, which often involves blood samples of humans
or animals.

Concerning the molecular characterization method, there are two important
parts. Both of them involve intensive laboratorial works.

- In the first part, scientists have to identify genes and molecular markers which
confer resistance of given drugs (e.g. antimalarial). A lot of genes have been found
so far, some of them cause multi-drug resistance, see table 3.1.

- In the second part, molecular techniques, such as the polymerase chain re-
action (PCR) or gene sequencing are used to check the presence of the identified
markers in blood samples [98].

For the last few decades many experts have been paying attention to this field.
Although there is still a long way to go, many valuable results have been achieved.

For identification of parasite genes that are linked with antimalarial drug re-
sistance, there was a work by Anderson et al [3] which referred to more than
two hundred related papers. In this work, the authors collected linkage analy-
sis of drug resistance traits in Plasmodium falciparum and Plasmodium chabaudi
(the two prevalent parasites causing malaria in man and mouse, respectively) for
many antimalarial drugs, such as Chloroquine, Sulfadoxine, Amodiaquine, Qui-
nine, Trimethoprim, Triamterene, Mefloquine, Artemisinin, etc. Most of them
were described in detail, including their markers, their quantitative trait loci re-
gions, their corresponding genes as well as the gene positions on the parasite
chromosomes, see table 3.1.

Concerning the molecular techniques to identify specific markers on genomes,
especially for malaria parasite genomes, we should emphasize some key information
as follows:

- In the late 1970’s, two DNA sequencing techniques for considerably long DNA
molecules were invented. One is the Maxam–Gilbert method and the other one is
the Sanger method. The Sanger method, based on “dideoxy” chain-termination,
has several advantages and rapidly became the method of choice [95].
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Table 3.1: Linkage analysis of drug resistance traits in Plasmodium [3]. Classic
LM: Classic Linkage Mapping; LGS: Linkage Group Selection; AFLP: Amplified
fragment length polymorphism; Chr.: Chromosome; DHMS: Dihydroergotamine
methanesulfonate; Pc: Plasmodium chabaudi; Pf: Plasmodium falciparum; QTL:
Quantitative trait loci region; Pyroseq: Pyrosequence.

Trait Sp. Notes Markers QTL Gene

Classic LM

Chloroquine Pf Dd2 x HB3 cross,
16 progeny

85 RFLPs 400 kb,
90 genes

Chloroquine Pf Dd2 x HB3 cross,
35 progeny

Micro-
satellites

40 kb, 9
genes

pfcrt

Sulfadoxine Pf Dd2 x HB3 cross,
16 progeny

Micro-
satellites

Chr.8,

Endogenous
folate utiliza-
tion

Pf Dd2 x HB3 cross,
22 progeny

Micro-
satellites

49 kb Chr.4,
possibly
dhfr

Amodiaquine Pf Dd2 x HB3 cross,
35 progeny

Micro-
satellites

pfmdr1

Monosesethyl-
amodiaquine

Pf 7G8 x GB4 cross,
32 progeny

Quinine Pf Dd2 x HB3 cross,
35 progeny

Micro-
satellites

Chr.13,
pfnhe-1

Transcription
phenotypes

Pf Dd2 x HB3 cross,
35 progeny

Micro-
satellites

DHMS Pf 7G8 x GB4 cross,
32 progeny

Micro-
satellites

150 kb,
34 genes

pfmdr1

Trimethoprim Pf 7G8 x GB4 cross,
32 progeny

Micro-
satellites

59 kb, 10
genes

dhfr

Triamterene Pf 7G8 x GB4 cross,
32 progeny

Micro-
satellites

59 kb, 10
genes

dhfr

Chloroquine Pc AS(3CQ) x AJ, 20
progeny

46 RFLPs 250 kb,
50 genes

Chr.11 lo-
cus

Mefloquine Pc AS(15MF/3) x
AJ, 16 progeny

46 RFLPs Chr.4,

Sulfadoxine/
pyrimethamine

Pc AS(50S/P) x AJ 31 RFLPs Chr.7
&chr.13

LGS

Artemisinin Pc Pyroseq pcubp1
Chloroquine Pc Pyroseq Chr.11
Mefloquine Pc Pyroseq Chr.4
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- Typically, the automated Sanger reaction is only accurate for sequences up
to 700-800 base-pairs in length. However, it is possible to obtain full sequences of
larger genes and also whole genomes, using step-wise methods such as the Primer
Walking and the Shotgun sequencing [95].

- The high demand for low-cost sequencing has driven the development of high-
throughput sequencing technologies [45, 24]. Among them are Lynx Therapeutics’
Massively Parallel Signature Sequencing (MPSS), Polony sequencing, 454 pyrose-
quencing, Illumina sequencing, SOLiD sequencing, Ion semiconductor sequencing,
etc. Table 3.2 provides some details about three popular methods.

Table 3.2: Some available sequencing methods [38].

Ion Torrent 318 Illumina HiSeq
2000- v3

SOLiD- 5500xl
(4hq)

Sequencing
method

Synthesis Synthesis Ligation

Amplification
method

Emulsion PCR Bridge PCR Emulsion PCR

Mb per run >1000 ≤ 600 000 155 100
Time per run 2 hours 10 days 8 days
Read length >100 bp 100 + 100 (bp) 75 + 35 (bp)
Cost per run $ 925 USD $ 23 470 USD $ 10 503 USD
Cost per Mb $ 0.93 USD $ ≥ 0.04 USD $ < 0.07 USD

- During the last ten years, the cost of DNA sequencing has been rapidly
decreasing, as shown in figure 3.4. The current technology restriction-site asso-
ciated DNA sequencing can provide high resolution population genomic data at
reasonable cost [28, 99].

- The Plasmodium genome is about 23 Mb (Mega base pairs) [3]. With the
help of genetic markers, only about 1-2 Mb contain the identified genes of inter-
est, see table 3.1. The cost for sequencing these parts is about 0.06$ and takes
approximately a few seconds on average (Illumina, table 3.2).

With an approximate calculation, we can see that the sequencing of all para-
sites in malaria blood samples is now in reach [93]. With the current global efforts
toward exploring the “Code of Life”, we strongly believe that the data concerning
our model quantities can be attained at a medium cost.

3.3.3 The inverse problem of parameter determination

We have shown that it is now possible to obtain the necessary data for our model
quantities. Now we would like to discuss the model parameters. They are the
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Figure 3.4: Cost per Megabase of DNA Sequence from July 2001 to July 2011
[94].

function factors, the integral kernels which appear in the equation system (3.15).

Usually, some parameters can be found directly from careful clinical observa-
tions or laboratorial experiments. The rest, such as some parameters in the form
of integral kernels, we can find by way of parameter estimations. Here mathemat-
ics and computer science can help. Assuming a suitable data set is given, there
is a possibility to estimate some unknown parameters in the model. The setup
of parameter estimation is similar to the corresponding part in chapter 2. The
unknown parameters are found by minimizing the deviation between data and
model responses. Some available approaches, e.g. the Gauss Newton method can
be considered.

The inverse problem of parameter determination is one of the important, chal-
lenging problems to connect the model to practice. It is crucial that our established
model and analytical study provide a background and a strong motivation toward
several interesting problems.
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3.4 Concluding remarks

3.4.1 The practical meaning of the structured model

Beyond the theoretical contribution, it is very essential that the model has a
practical meaning. During the study, we have shown evidence that

1. we can obtain data concerning the model quantities (e.g. malaria) at a medium
cost.

2. we can consider the parameter estimation problem and make numerical simu-
lations with the structured model to predict different scenarios.

As we have discussed in the section above, with current technologies it is pos-
sible that we can obtain a complete data set. It is also likely that the laboratorial
and experimental costs rapidly decrease. If we gain enough information from the
data set, we have a chance to determine the parameters and validate the con-
crete model. This model then can be used to simulate many different scenarios in
advance and deliver critical results to improve drug treatment policies.

3.4.2 Remark on the chapter

So far we have built a structured model to describe the population dynamics in
vector-borne diseases and studied this analytically.

Compared to the established model in chapter 2, the structured population of
humans and vectors contains more detailed information of all infected individuals.
We introduce the two new variables of sensitive and resistant parasite densities.
The system appears in the form of integro-partial differential equations with im-
plicit boundary conditions. This demands for a new method for analytical and
numerical studies.

Within the chapter, we have developed the transformations to change the
system to an integral equation system. Motivated by the fixed point theorem, we
have reformulated the problem to solve the difficulties coming from the unknown
boundaries. By constructing an appropriate function space, we have proved the
existence and the uniqueness of the boundary conditions. With these boundary
values, we have found a unique solution for the original problem. We have also
proved that the solution is positive as long as the initial values are positive.

Moreover, our analysis provides a strong background for performing numerical
simulations. Together with the potential data concerning model quantities, the
model can be used for parameter estimation as well as can deliver simulation
results to help in designing drug treatment policies. The software development
and implementation for the validation of the theoretical model and for numerical
simulations are very inspiring topics for future studies.

107



3.4. Concluding remarks

108



Chapter 4

Results and perspectives

In this chapter we summarize the results and discuss some open questions for the
future.

4.1 Results

This dissertation has contributed to several fields concerning the topic of drug
resistance. We state these contributions concisely in the following.

1. The background: We have summarized the medical background which
is related to the diseases, the micro-organism and the difficult issues in medical
treatment. Covering more than a hundred mathematical papers including several
surveys, we have given the state-of-the-art of drug resistance models. This has
included the model types, the study methods and the linked interpretations.

2. The modeling process: We have developed two models describing the
population dynamics of vector borne diseases. The first one is a non-structured
population model in the form of ordinary differential equations and the second
one is a structured population model in the form of integro-partial differential
equations. In comparison to established models in the past they are both new
models offering unique approaches to the subject. They take into account more
phenomena, especially the drug treatment and drug resistance problems. These
newly created models are the bases with which to obtain theoretical and numerical
results as well as to open clinical applications. They also serve as a basis for further
studies, such as the investigation of optimal control problems.

3. The theory: Modeling vector-borne diseases has been long considered a
difficult task because it involves a second host. This is also shown quantitatively
in our mathematical problems. We had a lot of challenges when dealing with
analysis parts of the models. Overcoming all that, we have analyzed the two
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models systematically. Especially through the structured population model, we
contribute to the mathematical theory of integro-partial differential equations by
treating a system with different characteristics in multi-dimensional space. The
results provide an opportunity for solving a lot of similar-type systems that have
not been solved so far.

4. The numerics: In addition to the analysis, we have concerned ourselves
with numerical studies. We have performed parameter estimation and simulation
for the non-structured model. The data set was taken from Burkina Faso, Africa.
We have proposed an algorithm and discussed the potential data to investigate
the structured population model numerically. A software for doing numerical
simulations of this model is becoming much more within reach.

5. The application: We are able to deliver several practical applications by
way of our models, particularly through the simulations of the first model. Along
with the data set, the model simulations give important results with which to
improve treatment policies toward drug resistance control, especially for malaria
and other vector-borne diseases.

4.2 Perspectives: open questions

Of course, drug resistance is a big topic. There are some problems which are open
for further studies.

Concerning the non-structured population model, there are optimal strategy
problems, which we have not considered formally. To work with this, we would
need more related data. For example, to optimize the drug regimen, we would need
precise data concerning drug efficacies, their own mechanism and the interaction
between different drugs. We would like to mention here that the used software,
VPLAN, also supports Optimal Experimental Design.

Concerning the structured population model, we have not analyzed all classes
of the model. Several coefficients and also the boundary conditions can be gen-
eralized to cover more cases. The method which we developed here can be used
to study these generalized problems. Mathematically, our transformations can be
extended to larger classes of equation systems, covering any finite number of vari-
ables and unknowns. Based on our analysis, a software for solving the equation
system could be developed and implemented. Theoretical works show that the it-
erations should converge to a global solution. However, the study of convergence
speed and also comparisons to different possible methods would provide valuable
information.

Concerning the application of the models, we need to search for clinical data
to be able to estimate the model quantities. We would like to point out that our
modeling process and theoretical works open a great channel for cooperation be-
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tween theoreticians and clinicians. Clinicians can provide material such as data,
problems for modeling. Theoreticians can provide models and tools for quan-
titative investigations. Provided suitable experimental data, parameters can be
determined, and the simulations of the model can run in computers to produce
concrete predictions of clinical quantities of interest. Optimal control methods
can then be used to deliver better strategies for practical treatment.
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[8] Bacaër N. and Sokhna C. “A reaction-diffusion system modeling the spread
of resistance to an antimalarial drug”. In: Math. Biosci. Eng. 2.2 (2005),
pp. 227–238. issn: 1547-1063.

[9] Bailey V. A. “The interaction between hosts and parasites”. In: The Quar-
terly Journal of Mathematics os-2.1 (1931), pp. 68–77. doi: 10.1093/qma
th/os-2.1.68. eprint: http://qjmath.oxfordjournals.org/content/o
s-2/1/68.full.pdf+html. url: http://qjmath.oxfordjournals.org/c
ontent/os-2/1/68.short.

[10] Banasiak J., Lachowicz M., and Moszyński M. “Topological chaos: when
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