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Abstract

Parameter estimation is central for the analysis of models in Systems Biology. Stochastic models
are of increasing importance. However, parameter estimation for stochastic models is still in the
early phase of development and there is need for efficient methods to estimate model parameters
from time course data which is intrinsically stochastic, only partially observed and has measure-
ment noise.

The thesis investigates methods for parameter estimation for stochastic models presenting one effi-
cient method based on integration of ordinary differential equations (ODE) which allows parameter
estimation even for models which have qualitatively different behavior in stochastic modeling com-
pared to modeling with ODEs. Further methods proposed in the thesis are based on stochastic
simulations. One of the methods uses the stochastic simulations for an estimation of the transition
probabilities in the likelihood function. This method is suggested as an addition to the ODE-based
method and should be used in systems with few reactions and small state spaces. The resulting
stochastic optimization problem can be solved with a Particle Swarm algorithm. To this goal a
stopping criterion suited to the stochasticity is proposed. Another approach is a transformation
to a deterministic optimization problem. Therefore the polynomial chaos expansion is extended to
stochastic functions in this thesis and then used for the transformation.

The ODE-based method is motivated from a fast and efficient method for parameter estimation
for systems of ODEs. A multiple shooting procedure is used in which the continuity constraints
are omitted to allow for stochasticity. Unobserved states are treated by enlarging the optimization
vector or using resulting values from the forward integration. To see how well the method covers
the stochastic dynamics some test functions will be suggested. It is demonstrated that the method
works well even in systems which have qualitatively different behavior in stochastic modeling than
in modeling with ODEs. From a computational point of view, this method allows to tackle systems
as large as those tackled in deterministic modeling.

Zusammenfassung

Parameterschätzung ist sehr wichtig für die Analyse von Modellen in der Systembiologie. Stochas-
tische Modelle sind von wachsender Bedeutung. Allerdings ist Parameterschätzung für stochas-
tische Modelle noch im Anfangssstadium der Entwicklung und es besteht Bedarf an effizienten
Methoden, Modellparameter zu schätzen auf Basis von Zeitreihendaten mit intrinsischer Stochas-
tizität, die nicht vollständig beobachtbar sind und mit Messfehlern aufgezeichnet werden.

Die Arbeit untersucht Methoden für die Parameterschätzung und zeigt eine Methode auf, die auf
Integration von gewöhnlichen Differentialgleichungen basiert, mit der man Parameter selbst von
Modellen schätzen kann, deren Systemdynamik sich im stochastischen Modell qualitativ vom Dif-
ferentialgleichungsmodell unterscheidet. Weitere Methoden basieren auf stochastischen Simula-
tionen. Eine Methode nutzt die stochastischen Simulationen, die Übergangswahrscheinlichkeiten
in der Likelihood Funktion zu schätzen. Diese Methode sei als Ergänzung zur auf Differential-
gleichungen basierten Methode empfohlen für Systeme mit wenigen Reaktionen und kleinen Zu-
standsräumen. Das resultierende Optimierungsproblem ist stochastisch und kann mit Hilfe eines
Particle Swarm Algorithmus gelöst werden. Dafür wird ein an die Stochastizität angepasstes Ab-
bruchkriterium eingeführt. Ein weiterer Ansatz ist eine Transformation in ein deterministisches Op-
timierungsproblem. Dafür erweitert diese Arbeit die sogenannte polynomielle Chaos-Entwicklung
auf stochastische Funktionen und nutzt sie für die Transformation.
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Die auf Differentialgleichungen basierende Methode ist von einer schnellen und effizienten Methode
für Parameterschätzung bei Systeme von Differentialgleichungen motiviert. Ein Mehrzielverfahren
wird verwendet, in dem die Stetigkeitsbedingungen weggelassen werden, um die Stochastizät zu
berücksichtigen. Falls es Systemzustände gibt, die nicht beobachtetet werden, wird der Opti-
mierungsvektor vergrößert oder die Ergebnisse der Vorwärtsintegration verwendet. Um zu prüfen,
wie gut die Methode die Stochastizität widerspiegelt, werden einige Kennzahlen vorgeschlagen. Es
wird demonstriert, dass die Methode auch bei Systemen erfolgreich ist, deren dynamisches Verhal-
ten bei der stochastischen Modellierung qualitativ verschieden ist vom Verhalten bei Modellierung
mit Differentialgleichungen. Was die Rechenzeit betrifft, ermöglicht die Methode eine Behandlung
von Systemen gleicher Größe, wie es bei der Parameterschätzung für Modelle von Differential-
gleichungen geschieht.
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Introduction

Computational modeling is a central approach in Systems Biology for studying increasingly com-
plex biochemical systems. Parameter estimation is very important for the analysis of models in
Systems Biology. Progress in experimental techniques, e.g. the possibility of measuring small
numbers of molecules in single cells [1], highlights the need for stochastic modeling approaches to
analyze this data. Simulation methods have been developed for decades since [2] and nowadays
exist with a lot of variants [3]. Parameter estimation methods for stochastic models however are
still in the early phase of development.

Approaches exist for time series data using stochastic simulations. Due to the Markov property of
the time series the likelihood function factorizes into the product of transition probabilities. These
transition probabilities are generally unknown in stochastic modeling. They can be estimated using
stochastic simulations. This can be done with density estimation methods [4,5]. Another approach
is the use of a reversible jump algorithm [6]. The parameter estimation is then performed with
Bayesian methods. An alternative to that is the use of a stochastic gradient descent [7] and the
use of a reversible jump Markov chain Monte Carlo method for the estimation of the transition
probabilities. Using a surrogate probabilistic model as an approximation is faster from a computa-
tional point of view [8]. Another approximation is suggested in form of an approximate maximum
likelihood method [9], where also a singular value decomposition likelihood method is described.
A second class of methods focuses on a numerical solution of the Chemical Master equation (CME),
which describes the probability for each state in dependence of the time. These systems are gen-
erally high dimensional. To address this problem a state space truncation can be used [10] or
moment-closure methods, which are an approximation focusing on a finite number of moments of
the probability distribution [11,12]. [13,14] use an adaptive Galerkin method for the solution of the
CME. If distribution information is available from measurement a finite state projection [15] can
be used to solve the CME without simulations. The common challenge is the fact that the solution
of the CME as well as simulation-based methods become very time-consuming as the number of
states in the state space becomes larger.

This thesis will investigate methods for parameter estimation for stochastic models and test them
on example systems from Systems Biology suggesting to use a method based on multiple shoot-
ing for the integration of the ordinary differential equations (ODE). This method is able to infer
parameters even from partially observed data with measurement noise. It will be named multiple
shooting for stochastic systems (MSS) in the following. Test functions are suggested to see how
well the method covers the stochastic dynamics. This work has been submitted to PloS ONE and
the description in this thesis is based on this article [16]. Methods based on stochastic simulations
are computationally much more cost intensive. Nevertheless one of them is suggested as addition
for systems with few reactions and small number of states in the state space.

9
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The simulation-based objective functions are an addition in cases where the test functions for the
MSS method advise against its use especially if only few reactions occur. As this is only the case
for one of the considered designs in the Immigration-Death model they will be tested there.
In order to compare results with an exact estimation and to investigate the average behavior of the
simulation-based methods the concept of the probability generating function is used to derive an
exact solution for the CME, which is only possible in few simple systems. The solution is derived
by building a power series with the CME, which satisfies a partial differential equation. For this
a solution can be found, of which derivatives are calculated, which then can be shown to be a
solution of the CME.
Then it is presented that a direct use of the least squares functional with stochastic simulation
leads to a bias in the objective function landscape. The reason is that the least squares functional
is optimal under the assumption of normally distributed measurement error, which is not satisfied
by the intrinsic stochasticity. The effect of the violation is strong so the functional should not be
used.
Therefore the use of the likelihood function is more appropriate. The transition probabilities in the
likelihood function are estimated using a relative frequency of simulations. This objective function
will be named likelihood simulation (LS) function. The functional is unbiased with respect to
stochasticity in the data and simulations, which is tested with an exact solution for the transition
probabilities gained with the probability generating function. Other methods for estimating the
transition probabilities can be found in [4, 6]. However all approaches become computationally
cost intensive with increasing state space. To account for larger state spaces a modification of the
objective function is suggested. It will be named modified likelihood simulation (MLS) function.
For the estimation of the parameter vector a stochastic optimization problem has to be solved,
which can be done using a black box optimizer such as Particle Swarm. To account for the stochas-
ticity in the objective function a stopping criterion suited to the stochasticity is suggested. This
stopping criterion should be also relevant for other black box optimization algorithms in context
of stochastic functions. Another approach is a transformation to a deterministic problem using
the polynomial chaos expansion. The polynomial chaos expansion is already successfully used for
deterministic functions [17] and it is shown here to work for stochastic functions as well.

The MSS procedure is motivated by a method proposed by Bock [18] for the parameter estimation
in systems of ODEs and further developed by [19] and already successfully applied to deterministic
systems with chaotic behavior by [20,21]. The MSS method can tackle models with fully observed
and partially observed data sets. The fact that it works without stochastic simulations and with-
out solving a high dimensional CME means that it is possible to tackle systems of a size as large
as realistic models being tackled with ODEs. The method is based on short time ODE integra-
tion and performs successfully even on models which behave qualitatively different when modeled
stochastically (see [22] for an example of such a model). The advantage of the MSS method is very
high speed since neither solving a high dimensional CME system nor lots of stochastic simulations
are required.
As the objective function of the MSS method is completely deterministic it is possible to apply
derivative-based methods as well as methods without derivatives for the optimization. However,
the focus of this thesis is the formulation of the optimization problem with a suitable objective
function. The choice of the numerical optimization method and especially the question of local
minima will not be the focus of this thesis. Concerning this question section 3.4 will refer to the
literature.
The MSS method is described with equidistant time points of measurements here for notational
simplicity. It is possible to apply it without changes to non-equidistant time points of measure-
ments, which is very important for the applicability of optimum experimental design. Due to its
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structure the method is easily able to handle measurement noise although it will of course reduce
the accuracy of the estimation.
As the MSS method uses ODE integration for stochastic data it loses its theoretical maximum
likelihood property. Nevertheless it is possible to check how much the theoretical assumptions
are violated and the thesis will present that this is not problematic even in models with irregular
stochastic oscillations. Furthermore the MSS method is successfully applied to models which are
structurally not identifiable using “traditional” single shooting ODE methods (TSS method).

The Lotka-Volterra model describes the dynamical development of a predator and prey popula-
tion. It is a proof of concept example for the MSS method as it demonstrates to be able to cope
with partially observed stochastic time course data and measurement noise. The next model is a
Calcium oscillation model [22]. Calcium signaling is important for cell development, fertilization
and death [23]. The model furthermore serves as an example of a qualitatively different behavior
in stochastic modeling than in ODE modeling. The only scenario in which there are test functions
that advise against the use of the MSS method is a certain design in the Immigration-Death model,
for which the MLS objective function is applied.

The thesis is structured as follows:

The first chapter shortly introduces modeling of biochemical reactions (section 1.1) and then de-
scribes why stochastic modeling is relevant and how systems can be modeled stochastically includ-
ing a description of the Gillespie algorithm, which is a very well known method to simulate systems
stochastically (section 1.2). The first chapter concludes with a short motivation why new methods
for parameter estimation should be developed (section 1.3).

The second chapter proposes methods for parameter estimation based on stochastic simulations.
The very first approach is a naive use of the least squares functional with stochastic simulations
(section 2.1). To see the average behavior the concept of the probability generating function is
used (section 2.3.1), which leads to the conclusion that the first functional is biased (section 2.3.2).
Second is a likelihood function-based approach estimating the transition probabilities with simu-
lations (LS function, section 2.2) also suggesting a modification (MLS function) for large state
spaces.
The last section of this chapter is devoted to the solution of the stochastic optimization problem.
One option is the use of a black box optimization algorithm, namely Particle Swarm (section 2.4.2).
Another option is the transformation to a deterministic optimization problem using the polynomial
chaos expansion (section 2.4.3), which is extended to stochastic functions (section 2.4.3).

The third chapter suggest the very fast MSS method based on multiple shooting for the ODE
integration using residuals instead of the transition probabilities. This method is able to handle
partially observed models (section 3.2) as well as measurement noise. As the theoretical maximum
likelihood properties are lost due to the use of the residuals test functions are suggested (section
3.3) to see how strong the maximum likelihood assumptions are violated.

The application chapter applies the suggested methods to examples from systems biology. The first
model is an instructive example: an Immigration-Death model (section 4.1). As in this model the
exact solution can be calculated using the probability generating function it allows a comparison
of the methods: the simulation-based method using the MLS function with two different Particle
Swarm algorithms (section 4.1.1), the polynomial chaos expansion (section 4.1.2) and the MSS
method (4.1.3). Concluding this section some remarks are made concerning the performance of
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the estimation with increasing number of observations or molecules in the steady state.
The MSS method is then applied to a Lotka-Volterra model (section 4.2), where it performs
successfully on partially observed data with measurement noise. The last model is a Calcium os-
cillation model (section 4.3) with qualitatively different behavior in deterministic modeling than
in stochastic modeling.



Chapter 1

Stochastic Modeling

1.1 Modeling of Biochemical Reactions

Computational modeling is a key technique for the analysis of complex systems in the sciences. It
allows creating testable hypotheses, which is of high importance for the verification or falsification
of an assumed systems behavior. Furthermore computational modeling allows a prediction of the
future systems behavior. According to the subject of research the right level of detail has to be
chosen, which means that the model will be a simplification of the real world covering the essential
details [24].
Systems of biochemical reactions are often modeled as systems of ODEs describing the time de-
pendent development of the concentrations of the species involved. [X] = ([X1], . . . , [XD]) denotes
the D reactants and v1, . . . , vr the kinetics of the r reactions. The so called stoichiometric matrix

S =


s11 s12 . . . s1r

s21 s22 . . . s2r

...
...

. . .
...

sD1 sD2 . . . sDr

 (1.1)

is a D× r dimensional matrix where sij describes the gain or loss for substance Xi due to the j-th
reaction. Therefore the system of reactions can be written as

s−1j X1 + s−2j X2 + . . . + s−Dj XD −→ s+
1j X1 + s+

2j X2 + . . . + s+
Dj XD,

for j = 1, . . . , r

where

s−ij =

{
−sij , sij < 0

0, else
and s+

ij =

{
sij , sij > 0

0, else.
(1.2)

In terms of ODEs this systems is written as

d[X](t)

dt
= S v([X], t). (1.3)

For more details on modeling biochemical reactions see amongst many others [24] or [25].

13



14 Stochastic Modeling

1.2 Stochastic models

1.2.1 Background

This section will give a short introduction into the idea of stochastic modeling. For an overview
see [3] or for more details [2].
There are two possible sources of noise or stochasticity in modeling. The first is extrinsic stochas-
ticity, for example the very well known measurement error or noise. Apart from this measurement
noise systems of ODE evolve deterministically and will therefore be called deterministic models in
this text. A second possible source of stochasticity in stochastic systems is systems intrinsic, or also
named inherent. That means that a system evolves stochastically. Think of an radioactive decay
with Poisson distributed decays. Other sources of intrinsic stochasticity can be the orientation or
speed of the molecules.
Whilst the deterministic modeling describes the development of concentrations of substances,
stochastic modeling focuses on single molecules. Therefore deterministic modeling is appropri-
ate for systems with “high” concentrations of the reacting species and stochastic modeling for
“low” concentrations. This can be stated even stronger as it is possible to show that for increasing
number of molecules stochastic systems can be approximated with a so called τ -leap method, which
then can be approximated by stochastic differential equations and finally by ODEs [3, 26].
First it will be presented how it is possible to simulate a system stochastically and then some
remarks will be given.

Probability for collision

Consider a bi-molecular reaction

X1 + X2 → ?

with a right hand side that is neglected right now. This equation describes a reaction in which a
X1-molecule collides with an X2-molecule and reacts. What is the probability for such a reaction?
Under the assumption of a well stirred reactor and randomly diffusing particles the probability
for a collision of a single pair X1, X2 is simply the probability that these two molecules have a
distance less the sum of their reacting distances δ:

P (|PosX1 − PosX2 | < δ) (1.4)

where PosX1
denotes the position of the X1 particle. As the probability for any PosX2

position
will be the same, the probability (1.4) is simply the probability that X1 is in a sphere (around X2)
with radius r:

P (|PosX1 − PosX2 | < r) =
4 π δ3

3 V
(1.5)

with a volume V . As the reactor is well stirred this probability is independent of time. Other
influences are independent of V , for example the probability for a reaction, which depends on the
energy of the molecules.
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Mass action kinetics

Consider a system of chemical reactions as in equation (1.1) and assume that each of the r reactions
Rj , j = 1, . . . , r, has a stochastic rate constant cj which combines the probability for a collision
as in equation 1.5 and the probability for a reaction. The associated rate law or hazard function
hj(x, cj) describes the probability for a reaction Ri of any of the participating species in the next
small time step t, t+ dt and is for

• zeroth-order mass action:

Rj : ∅
cj−→ Xi, hazard function: hj(x, cj) = cj ,

• first-order mass action:

Rj : Xi
cj−→ ?, hazard function: hj(x, cj) = cj xi,

• second-order mass action:

Rj : Xi +Xk
cj−→ ?, hazard function: hj(x, cj) = ci xi xk,

or

Rj : 2Xi
cj−→ ?, hazard function: hj(x, cj) = cj

xi (xi−1)
2 .

For comments and modeling of higher order reactions or other kinetics see [24,27].

Rate law conversion

Now the next question is how to compute the stochastic rate constants cj from the deterministic
rate constants. Denote with [X] the concentration of the species X and with x the number of
molecules, thus x = [X]nAV with the Avogadro constant nA and a volume V .
For deterministic systems the rate laws are usually given with the measurement unit moles per
liter and second or a multiple of it because the concentrations are measured in moles per liter.

• Zeroth-order mass action:
A deterministic rate constant θ given in moles per liter and second corresponds to an influx
of nAV θ molecules per second, consequently the conversion is as follows

Rj : ∅
cj−→ Xi cj = nAV θ.

• First-order mass action:
The deterministic decrease of θ[Xi] means a decrease of nAθ[Xi]V = θxi molecules per second
and therefore

Rj : Xi
cj−→ ? cj = θ.

• Second-order mass action :
The deterministic rate constant means a decrease of θ[Xi][Xk] moles per second, which is
θnA[Xi][Xk]V = θxixk

nAV
molecules per second, which leads to

Rj : Xi +Xk
cj−→ ? cj =

θ

nAV
.
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Remarks on the use of higher order reactions can be found in [28].

1.2.2 Gillespie’s algorithm

Stochastic modeling of systems of biochemical reactions algorithmically means the following: The
time τ until the next reaction event Rj and the choice which reaction is fired next are random
events. Let cj be a reaction constant for reaction Rj , j = 1, . . . , r and hj the hazard function for
reaction Rj such that the probability for a Rj reaction in a small time interval dt is hjdt. Then
the Gillespie algorithm allows to simulate a stochastic time course of the biochemical system: As
stated above the time τ until the next reaction and which reaction is fired are random events. The
basic idea of Gillespie’s algorithm is to draw two random numbers: one determines the time until
the next reaction and the other one chooses the reaction Rj to be fired.

(1) First, calculate the sum over all hazard functions hj :

h0 =

r∑
j=1

hj(x, cj).

(2) The stochastic time step is

τ = − 1

h0
log u1,

with a uniformly distributed random number u1 ∼ U((0, 1]).

(3) For the determination of the reaction, choose µ ∈ N such that

µ−1∑
j=1

hj
h0

< u2 ≤
µ∑
j=1

hj
h0

is fulfilled with another uniformly distributed random number u2 ∼ U((0, 1]).

(4) Realize the reaction Rµ by updating the substrate numbers involved in the reaction and
increase the time by τ . Go to (1) and repeat until the desired end time.

There are some ways of implementing the Gillespie’s algorithm as the Direct Method described
above, the First Reaction Method or the Next Reaction Method, which reduces the computational
complexity making use of the data structure, see [3] for a review. For the following it is important
to know that it is possible to simulate a stochastic time course given some initial conditions and
reaction constants. Reaction constants and correspondingly the rate laws for the ODE represen-
tation will be named parameters. To conclude this paragraph some effects of stochastic modeling
are demonstrated.

1.2.3 A first example and some effects

To illustrate the importance and the effects of such intrinsic stochasticity the example of an
Immigration-Death model is used, which can, for example, model a substance diffusing in a cell:

Ø
θ1−→ X

X
θ2−→ Ø.
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There are two reactions: R1 is the immigration of a species and R2 is the death reaction. Hence
if θ1 and θ2 are given in moles per liter c1 = nAV θ1 and c2 = θ2. Reaction R1 means the
immigration of a species to the system, which should happen independent of the systems state
with a constant rate θ1. Reaction R2 means the death reaction depending on the systems state.
The hazard functions are h1(x, c1) = c1 and h2(x, c2) = c2x. Figure 1.1 shows some realizations of
this process calculated using the Gillespie algorithm (section 1.2.2) with COPASI [28]. To illustrate

0 10 20 30 40 50
t0

5
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20

X

(A) (θ1, θ2) = (1, 0.1)

0 10 20 30 40 50
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X

(B) (θ1, θ2) = (5, 0.5)
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(C) (θ1, θ2) = (20, 2)

Figure 1.1: Stochastic realization of the Immigration-Death model. Three different real-
izations with 100 observations with T = 50 and x0 = 10 for three different parameters.

the importance of stochastic modeling it is now compared to the modeling with ODEs. In terms
of differential equations this systems would read as

d[X]

dt
= θ1 − θ2[X], [X](0) = [X]0

with a solution

[X](θ1,θ2)(t) =
θ1

θ2
for all t

for [X]0 = θ1
θ2

. The steady state is chosen as initial value mainly for illustration purpose. In
addition for many systems transient dynamics is not readily available and therefore steady state
data is typical of these systems. The systems behavior of the Immigration-Death model is then
constant over time in ODE modeling and only depends on the quotient θ1

θ2
and not on the absolute

values of θ1 and θ2. From point of stochastic modeling this means that either no reaction takes
place or two reactions 1 and 2 always at the same time so canceling out the effects. This is in
contradiction to the intuition from modeling on a reaction by reaction basis. Furthermore one
would expect that the absolute value of θ1 and θ2 also has an effect on the systems behavior: this
effect is not represented in ODE modeling but in stochastic modeling, see figure 1.1.

1.3 Why a different method for parameter estimation?

After the introduction to stochastic modeling in the previous section, this section is devoted to
the introduction to parameter estimation questions. For modeling with ODEs and normally dis-
tributed measurement noise the least squares functional is the appropriate choice. The question is
now how to perform a parameter estimation for data which is modeled stochastically.
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Immigration-Death model

The Immigration-Death model with initial conditions in the steady state is not identifiable using
traditional ODE techniques for parameter estimation as the solution of the ODE does in the steady
state only depend on the quotient of the two parameters. Nevertheless if the Immigration-Death
model is modeled stochastically it shows a different behavior for parameters with the same quotient
but different absolute value, namely the reactivity of the systems changes, figure 1.1. Consequently
both parameters should be identifiable, which indicates a need for different methods.

Calcium oscillation model

This can be seen even more distinctly in a Calcium oscillation model [22]. In this model stochastic
modeling leads to systems behavior which is very different from the behavior of the ODE modeled
system. Very different means that it is qualitatively different and can not be modeled as the ODE
solution plus normally distributed measurement noise, see figure 1.2. This example suggests that
the methods for parameter estimation in ODE models should not be used for stochastic models.

0 10 20 30 40 50
t0

2000

4000

6000

8000

10 000

12 000

number of ca

(A) ODE solution

0 10 20 30 40 50
t0
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4000

6000

8000

10 000

12 000

number of ca

(B) Two stochastic simulations

Figure 1.2: Qualitatively different behavior between ODE modeling and stochastic
modeling. (A) shows the ODE solution and (B) two stochastic realizations with 100 observations
and T = 50. Simulation with the Gillespie algorithm (section 1.2.2) with the software COPASI [28].
The model equations and parameters can be found in subsection 4.3.1.



Chapter 2

Evaluation of the objective
function based on stochastic
simulations

2.1 Single Shooting with stochastic trajectory

Measurements ν = (ν0, . . . , νn) are taken at time points t0, . . . , tn. The deterministic optimization
problem with the well known least squares functional is

θ̂ = argmin
θ

Fd(ν, θ)

for normally distributed measurement error with variances σ2
i :

Fd(ν, θ) =

n∑
i=1

‖νi − h(ti, θ, ν0, t0)‖22
σ2
i

(2.1)

with a model response function h describing the model response in dependence on the parameter
θ, time t and initial values ν0 at time t0. The model response h can be, for example, the solution
of a system of ODEs.
To underline its difference to other ODE-based approaches described in chapter 3 this objective
function will be named “traditional single shooting” (TSS) function and correspondingly together
with an optimization it will be named TSS method. Single shooting means that each trajectory is
started in an initial value and then integrated (shot) until the last measurement.
To focus on the intrinsic stochasticity assume from now on that measurements are exact. As
the underlying model is a stochastic model focusing on species’ counts this means νi ∈ ND0 for
i = 1, . . . , n. The main objective of this section is to investigate the behavior of the least squares
functional with stochastic single shooting in stochastic modeling.
The following points are different in stochastic modeling:

• What is the variance σ2
i ? Although there is no measurement noise the observation ν is

stochastic and therefore has a variance. But as the distribution is in most cases not normal
and even unknown this variance is also unknown.

• In contrast to the model response function h(ti, θ, ν0, t0) from (2.1), which is deterministic,
the model response in stochastic modeling is a stochastic process. To underline this the
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capital letter H will be used instead of the small letter h. Hence the value of the objective
function F is now a random variable.

• The state space of the model response h is RD+ where R+ denotes the positive real numbers
and zero. This is different for H, which is the result of the Gillespie algorithm, which
simulates on a single molecule basis. Therefore the state space is ND0 .

• Note that the assumptions for a maximum likelihood estimator are not fulfilled as the distri-
bution is not Gaussian and consequently the theoretical properties are not guaranteed. How
much this influences the estimation will be investigated in this section.

In statistics the law of large numbers states that the average of m independent identically dis-
tributed random variables converges with increasing m to the expectation if the expectation is
finite. One possible approach is to make use of this property to reduce the stochastic fluctuation
in H. Furthermore using more than one simulation of H would allow to estimate a variance from
the simulations. How far this makes sense will be discussed later.
First there are two possibilities of taking the average: averaging the least squares differences cal-
culated for each simulation,

F (m)
s,q (ν, θ) =

1

m

m∑
j=1

n∑
i=1

∥∥∥νi −H(j)(ti, θ, ν0, t0)
∥∥∥q
q
, (2.2)

or averaging the trajectories with a resulting objective functional,

F
(m)
t̄r,q (ν, θ) =

n∑
i=1

∥∥∥∥∥∥νi − 1

m

m∑
j=1

H(j)(ti, θ, ν0, t0)

∥∥∥∥∥∥
q

q

. (2.3)

Remark 2.1 (Using averages of trajectories). One option would be to calculate a mean of the m
observations and then to consider its squared difference to the measurement data as objective

function value as done in F
(m)
t̄r,q , (2.3). This generally seems not to be a good choice because of

oscillatory systems where the stochasticity dislocates the period. Then averaging could simply
yield a constant time series, which is of no sense for the parameter estimation. How big this
effect really is and if there are remedies will not be discussed here but is an open point.

The other option is taking the average of the least squares difference values for each simulation.
This leads to a value close to the expectation of the least squares differences. Next point are the
variances σi. One approach is to assume σi=σ, which makes the optimization independent of the
variance, see equation (2.2). A drawback of this approach is that it ignores different sizes of the
variances, which might occur for different time points of measurement. This can lead to inaccuracies
in the estimation. Results will be shown later in section 2.3, figure 2.1. Another approach is to
use an estimated variance of the simulations, hence σ̂i

2 = V ar
(
{H(j)(ti, θ, t0, ν0), j = 1, . . . ,m}

)
,

resulting in

F
(m)
s̃,q (ν, θ) =

1

m

m∑
j=1

n∑
i=1

∥∥∥∥νi −H(j)(ti, θ, ν0, t0)

σ̂i
2

∥∥∥∥q
q

. (2.4)

Then the variance will be estimated correctly if θ=θ(0) and otherwise not, which questions the
accuracy of this approach. Results will also be shown later in section 2.3, see figure 2.2.
The resulting optimization problem is

θ̂k = argmax
θ

F
(m)
k,q (ν, θ) (2.5)
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with k ∈ {s, s̃} which means σi = σ or σi = σ̂i.
To investigate the properties of that estimator the concept of the probability generating func-
tion will be used in section 2.3 to calculate the expectation of the objective function landscape.
This calculation suggests that the estimator is biased. Therefore it will not be considered in the
application chapter.

2.2 Likelihood Function with transition probabilities

2.2.1 Estimating the transition probabilities

In deterministic modeling with normally distributed measurement errors the least squares func-
tional leads to a maximum likelihood estimator. In stochastic modeling the distribution of the
random variables - namely the stochastic process of the reacting substances - is not known and
not necessarily Gaussian. Therefore the likelihood function is used for the optimization

L(ν, θ) =

n∏
i=1

pθ(νi, ti|νi−1, ti−1) (2.6)

under consideration that the data ν is a Markov process with the transition probability
pθ(νi, ti|νi−1, ti−1) for a transition from state νi−1 at time ti−1 to a state νi at time ti. Hence
the log-likelihood function is

l(ν, θ) =

n∑
i=1

log (pθ(νi, ti|νi−1, ti−1)) . (2.7)

This function will be maximized over θ, which means a search for the parameter θ that gives the
highest probability for the realization ν. But as the probability pθ(νi, ti|νi−1, ti−1) is generally
not known it has to be estimated. As the state space is discrete this can be done with, say m,
simulations:

p̂θ
(m)(νi, ti|νi−1, ti−1) =

∑m
j=1 1{H(j)(ti,θ,νi−1,ti−1) = νi}

m
, (2.8)

where

1{x = y} =

{
0, x 6= y

1, x = y.

Equation (2.8) uses the relative frequency of the m simulations starting at time ti−1 in νi−1 and
those resulting in state νi at time ti as estimate. It is assumed that m is chosen large enough
so that p̂θ

(m) > 0. To relax this assumption the next subsection suggests a modification. The
optimization functional is then

F
(m)
L (ν, θ) =

n∑
i=1

log p̂
(m)
θ (νi, ti|νi−1, ti−1). (2.9)

This method will be named likelihood simulation (LS) method.
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2.2.2 Modification of transition probabilities

Example 2.1 (Example for the state space after short time). The objective function and therefore

also the optimization will fail if for two time points ti−1, ti: p̂θ
(m)(νi, ti|νi−1, ti−1) = 0 holds,

which means that the number of simulated trajectories starting in νi−1 and ending in νi is
zero. This might happen if the parameter is very far from the true parameter or the number
of simulations m is not high enough or the space of possible values which a simulation can
reach after ti − ti−1 is too large.
10 000 simulations are run for t1 − t0 = 0.5 using a Calcium oscillation model [22] with a
parameter setting as in section 4.3. For each species the 10%-quantiles and 90%-quantiles
of the resulting trajectories give a total three dimensional space of a range of 108. Trying
to estimate p̂ with equation (2.8) means trying to find a single point in a 3d range of 108

points. To address this point a weighted stochastic simulation algorithm [29] might be used.
Nevertheless for a good estimate very many simulations are needed (see [30] for the original
stochastic simulation algorithm).

A realization is only counted if it ends up at the right value. If not no information is gained
for the objective function. But intuitively speaking one would guess that there is at least some
information in it. If the parameter is completely wrong all simulations might end up far away from
the data points. If the parameter is somehow close to the true value the simulations might end up
somewhere around the data point. So the distance should give some information.

g
(m)
θ (νi, ti|νi−1, ti−1) =

p̂θ
(m)(νi, ti|νi−1, ti−1), p̂θ

(m)(·|·) > 0(
m
∑m
j=1

∥∥H(j)(ti, θ, νi−1, ti−1) − νi
∥∥2

2

)−1

, else.
(2.10)

Note that also other norms would be possible as well as other switching criteria. Which is best is
up to further research. Note that approximate Bayesian techniques [31] are similar to this with
the difference that they “count” a simulation if their distance or a summary statistics is below a
threshold.
Properties of the modification which will be named modified likelihood simulation (MLS) function:

• If p̂θ
(m) > 0 the function g is the same as the ”old“ function p

(m)
θ in (2.8).

• Any p̂θ
(m) = 0 will result in a lower value of the modification g than p̂θ

(m) > 0.

• g decreases with increasing distances of the simulations H to νi.

• Using a distance measure assumes a distribution of the random variables, but here only for
the case p̂θ

(m) = 0.

Note that for this modification the number of simulations has to be constant within an optimization
procedure. Otherwise the second point of the properties list will not hold any longer. As in section
2.1 it would also be possible to use other norms.
The resulting objective function is:

F (m)
g (ν, θ) =

n∑
i=1

log g
(m)
θ (νi, ti|νi−1, ti−1) (2.11)

and the optimization problem

θ̂k = argmax
θ

F
(m)
k (ν, θ). (2.12)
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It has to be kept in mind that F
(m)
k (ν, θ), k = {L, g} for a fixed data set ν is a random variable in

the simulations p̂θ
(m). How to tackle this kind of stochastic optimization problem will be discussed

in section 2.4.

2.3 The objective function landscapes

In this section the expectation value for the objective function F
(m)
s,q from equation (2.2) and F

(m)
L

from equation (2.9) will be calculated for a simple test case in which it is possible to derive an
exact solution for the transition probability, namely an Immigration-Death model.

2.3.1 The probability-generating function

To derive the transition probability the concept of the probability generating function is necessary.
This subsection will motivate and derive the probability generating function and give some of their
properties. The reaction system of the Immigration-Death model is

Ø
θ1−→ X

X
θ2x−−→ Ø,

(2.13)

with the Chemical Master Equation system

∂

∂t
p(j, t) = −(θ1 + jθ2)p(j, t) + (j + 1)θ2p(j + 1, t) + θ1p(j − 1, t), (j = 0, 1, . . .) (2.14)

with an initial distribution p(j, 0) and t denoting time and j the number of species. The following
derivation of the probability generating function for the Immigration-Death model is taken from
[32], Example 4.5. Multiply equation (2.14) by zj and sum up, which leads to the probability
generating function

G(z, t) =

∞∑
j=0

p(j, t)zj (2.15)

with z ∈ R and |z| < 1.

Remark 2.2 (Convergence of the series). The series G(z, t) is convergent for all |z| < 1: As the
pj are probabilities it holds |p(j, ·)zj | ≤ |p(j, ·)| |zj | ≤ ρj for a ρ < 1 and consequently it is
majorised by the geometric series. As the pj are from a probability density this is not the
maximal radius of convergence.

If the series is convergent and the solution can be given in a close form than it is easily possible to
calculate the probability p(k, t) for k at time t by taking the k − th derivative for z = 0:

1

k!

∂kG(z, t)

∂zk
= p(k, t).

Hence the limit of the power series has to be calculated: Therefore a partial differential equation
is derived, for which a solution can be found, which is identical with the limit of equation (2.15).
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Note first that the derivatives of G(z, t) with respect to t and z are:

∂G(z, t)

∂t
=

∞∑
j=0

∂p(j, t)

∂t
zj

=

∞∑
j=0

(−(θ1 + jθ2)p(j, t) + (j + 1)θ2p(j + 1, t) + θ1p(j − 1, t)) zj

=

∞∑
j=0

−θ1p(j, t)z
j

︸ ︷︷ ︸
−θ1G(z,t)

−
∞∑
j=0

j θ2 p(j, t)z
j +

∞∑
j=0

(j + 1) θ2p(j + 1, t)zj +

∞∑
j=1

θ1p(j − 1, t)zj︸ ︷︷ ︸
θ1zG(t,z)

(it is possible to change limit and differentiation inside the convergence radius) and

∂G(z, t)

∂z
=

∞∑
j=0

jp(j, t)zj−1

and with that it follows

∂G(z, t)

∂t
+ θ2(z − 1)

∂G(z, t)

∂z

= θ1(z − 1)G(z, t)−
∞∑
j=0

θ2 j p(j, t)z
j +

∞∑
j=0

θ2(j + 1)p(j + 1, t)zj + θ2(z − 1)

∞∑
j=0

jp(j, t)zj−1

= θ1(z − 1)G(z, t) + θ2
1

z

∞∑
j=0

(j + 1)p(j + 1, t)zj+1 − θ2

∞∑
j=0

jp(j, t)zj + θ2(z − 1)
1

z

∞∑
j=0

jp(j, t)zj

= θ1(z − 1)G(z, t) + θ2
1

z

∞∑
j=0

(j + 1)p(j + 1, t)zj+1 + θ2

(
(z − 1)

1

z
− 1

) ∞∑
j=0

jp(j, t)zj︸ ︷︷ ︸
=0

= θ1(z − 1)G(z, t),

which is a partial differential equation,

∂G(z, t)

∂t
+ θ2(z − 1)

∂G(z, t)

∂z
= θ1(z − 1)G(t, z). (2.16)

This is a Lagrange’s linear equation, for which an exact solution can be derived. The following
heuristic ansatz is motivated by geometric arguments, see chapter 11 and 12 of [33]. The result
will later be verified. For fixed t and z one gets the following auxiliary equations

dt

1
=

dz

θ2(z − 1)
=

G(z, t)

θ1(z − 1)G(z, t)
.

From the first equality, dt
dz = 1

θ2(z−1) , it follows by integrating over z and taking the exponential

value a1 = exp(−θ2t)(z − 1) with a constant a1 ∈ R and from the second equality dG
dz = θ1

θ2
G by
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solving this ODE a2 = G − exp
(
θ1
θ2
z
)

with a constant a2 ∈ R. This would also follow with a

geometric argumentation, which would also motivate the following ansatz: An arbitrary function
φ is a solution of the partial differential equation (2.16) if for a1 and a2 holds φ(a1, a2) = 0. For
the derivation of this argument see again [33]; here a verification that the result satisfies the partial
differential equation shall suffice. Choose φ(a1, a2) = a2−ϕ(a1) with a function ϕ to be determined
by the initial condition and one gets the general solution

G(z, t) = exp

(
θ1

θ2
z

)
ϕ (exp(−θ2t)(z − 1)) . (2.17)

Determine the function ϕ by the initial condition. Assume that at time t = 0 there are ν0 species
present. Then it holds with equation (2.17) and the fact that p(j, 0) = 0 for j 6= ν0 and p(ν0, 0) = 1:

exp

(
θ1

θ2
z

)
ϕ(z − 1) = G(z, 0) = zν0 .

Define an auxiliary variable ρ = z − 1, thus z = ρ+ 1, which leads to the form

f(ρ) =
(ρ+ 1)ν0

exp
(
θ1
θ2

(z + 1)
) .

Now choose ρ = exp(−θ2t)(z − 1) as argument for f , which leads to

G(z, t) = exp

(
θ1

θ2
(z − exp(−θ2t)(z − 1)− 1)

) (
exp(−θ2t)(z − 1) + 1

)ν0
= exp

(
θ1

θ2
(z − 1)(1− e−θ2t)

)(
1 + (z − 1)e−θ2t

)ν0
.

(2.18)

Calculating the derivatives verifies that G(t, z) from equation (2.18) is indeed a solution of the
partial differential equation (2.16).
Now the probabilities can be derived. The probability for νt = k can be calculated by taking the
k-th derivative with respect to z at z = 0 using the Leibniz-rule ( [34]):

p(θ1,θ2) (k, t|ν0, 0) =
1

k!

∂kG(z, t)

∂kz
|z=0

=
1

k!

k∑
j=0

(
k

j

) ((
θ1

θ2

)j (
1− e−θ2t

)j
e
θ1
θ2

(z−1)(1−e−θ2t)

(
1 + (z − 1)e−θ2t

)ν0−(k−j) (
e−θ2t

)k−j k−j−1∏
i=0

(ν0 − i)

)∣∣∣∣∣
z=0

=
1

k!

k∑
j=0

(
k

j

) ((
θ1

θ2

)j (
1− e−θ2t

)j
e−

θ1
θ2

(1−e−θ2t)

(
1− e−θ2t

)ν0−(k−j) (
e−θ2t

)k−j k−j−1∏
i=0

(ν0 − i)

)
.

Inserting this in equation (2.14) verifies it as a solution. The solution is unique, see [35] for the
uniqueness of CME solutions. This derivation of an exact solution is only possible in simple cases.
A further example is an enzymatic reaction treated in [36].



26 Objective function based on simulations

Remark 2.3 (Properties for large and small t). Of high interest is the behavior for large and small
t:

• The steady state for t→∞:
It holds

p(θ1,θ2) (νt = k, t|ν0, 0)
t→∞−−−→

(
θ1
θ2

)k
e−

θ1
θ2

k!
,

which means ν∞ ∼ Pois
(
θ1
θ2

)
with a Poisson distribution Pois, as one would expect for the

steady state, see [37].

• Probability is concentrated in one point for t = 0:
For t→ 0 it holds:

p(θ1,θ2) (νt = k, t|ν0, 0)
t→0−−−→


0 k < ν0∏k−1
l=0 (ν0−l)

k! = 1 k = ν0

0 k > ν0.

The second property means that for infinitesimal small t the probability for no reaction tends
to one.

2.3.2 Expectation of the stochastic single shooting function

In section 2.3.1 a formula for the probability pθ(ν1, t1|ν0, t0) to jump from state ν0 at time t0 to
state ν1 at time t1 given a parameter θ = (θ1, θ2) was derived. Assume now ν0 and t0 fixed. νt is
then a random variable with first moment as follows:

Eθ[νt|ν0] =

∞∑
k=0

pθ(k, t|ν0, t0) k (2.19)

and similar second moment:

Eθ[ν
2
t |ν0] =

∞∑
k=0

pθ(k, t|ν0, t0) k2. (2.20)

Now, what we are interested in is the squared difference between the measurement data and the
simulated data.
Choice σi = σ (which means that the optimization is independent of σ):

Remember the functional F
(m)
s,2 from equation (2.2). There are two different sources of random

effects: stochasticity inherent to the data and stochasticity in the simulation. The expectation
value is taken over the set of possible measurement data with a true parameter θ(0), Ed[·] and (!)
the set of possible simulations with the corresponding parameter θ, Es[·]:

FEs,2(θ) = Ed

[
Es

[
F

(m)
s,2 (ν, θ)

]]
=

1

m

m∑
j=1

n∑
i=1

Ed

[
Es

[
ν2
i +H(j)(ti, θ, t0, ν0)2 − 2νiH

(j)(ti, θ, t0, ν0)
]]

=

n∑
i=1

Ed[ν
2
i ] + Es[H

(1)(ti, θ, t0, ν0)2]− 2Ed[νi]Es[H
(1)(ti, θ, t0, ν0)].

(2.21)
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In the first step the linearity of the expectation value is used. In the second the fact that the
measurement data νi is constant with respect to the expectation Es and that H(ti, θ, t0, ν0) is
constant with respect to the expectation Ed. The term 1

m

∑m
j=1 cancels out as the expectation

over the H(j) is independent of j. Now the expectation values Es and Ed only differ in the
parameter θ in the probability distribution, namely the expectation value Ed is with respect to the
true value θ(0) while Es is with respect to the parameter θ. Hence

FEs,2(θ(0), θ) =

n∑
i=1

(
Eθ(0) [ν

2
i |ν0] + Eθ[H(ti, θ, t0, ν0)2|ν0]− 2Eθ(0) [νi|ν0]Eθ[H(ti, θ, t0, ν0)|ν0]

)
.

The value FEs,2(θ) is the expectation of the fitness function F
(m)
s,2 for a parameter θ when the true

parameter is θ(0) and the expectation value is calculated over the set of possible data and the set
of possible simulations.
For plotting the fitness landscapes for numerical reasons the following approximations for equation
(2.19) and equation (2.20) are used:

Eθ[Xt|ν0] ≈
Ñ∑
k=0

pθ(k, t|ν0, t0)k and (2.22)

Eθ[X
2
t |ν0] ≈

Ñ∑
k=0

pθ(k, t|ν0, t0)k2 (2.23)

with Ñ such that
∑Ñ
k=0 pθ(k, t|ν0, t0) ≥ 1 − 10−6. The reason is that the probability for jumps

to very high k is very small. See figure 2.1 for the graphics. The graphics in figure 2.1-2.4, and
2.7 are plotted with the ColorbarPlot package, which is available in the Wolfram library archive of
Mathematica [38]. The graphics show the landscape of the function encoded in a colored contour
plot. The true parameter is marked with a black dot. The imprecise transitions in color in figures
2.1 (D), (F) or 2.2 (A) are graphical inaccuracies by the plot routine.
In none of the graphics of figure 2.1 the true parameter is in the area of the lowest function values.
Therefore the functional FEs,2 is not unbiased. For further remarks see section 2.3.3.

Choice σi = V ar(H(θ, ti)):

To calculate the expectation of the functional (2.4) keep in mind that only Ed[·] depends on ν:

FEs̃,2(θ) = Es

 Ed
 n∑

i=1

1
m

∑m
j=1

(
νi −H(j) (ti, θ, νi−1, ti−1)

)2
σ̂i


=

n∑
i=1

1

m

m∑
j=1

Es

Ed
[(
νi −H(j) (ti, θ, νi−1, ti−1)

)2]
σ̂i


≈

n∑
i=1

Es

[
Ed

[(
νi −H(j)(ti, θ, ti−1, νi−1)

)2]]
Es
[
H(1)(ti, θ, ti−1, νi−1)2

]
− Es

[
H(1)(ti, θ, ti−1, νi−1)

]2
=

n∑
i=1

Eθ(0) [ν
2
i |ν0] + Eθ[H(ti, θ, t0, ν0)2|ν0]− 2Eθ(0) [νi|ν0]Eθ[H(ti, θ, t0, ν0)|ν0]

Eθ[H(ti, θ, t0, ν0)2|ν0]− Eθ[H(ti, θ, t0, ν0)|ν0]2
.

(2.24)
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(A) ν0 = 5, θ(0) = (1, 0.1), T = 50, ∆t = 0.5 (B) ν0 = 5, θ(0) = (1, 1), T = 50, ∆t = 0.5

(C) ν0 = 100, θ(0) = (1, 0.1), T = 50, ∆t = 0.5 (D) ν0 = 0, θ(0) = (1, 0.1), T = 50, ∆t = 0.5

(E) ν0 = 10, θ(0) = (1, 0.1), T = 50, ∆t = 0.5 (F) ν0 = 10, θ(0) = (1, 0.1), T = 2500, ∆t = 5

Figure 2.1: Expectation of the stochastic single shooting function. FEs,2 from equation

(2.21) of the stochastic single shooting function F
(m)
s,2 , equation (2.2), with different initial values,

parameters and designs. White stands for higher function values than assigned in the color bar.
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(A) θ(0) = (1, 0.1) (B) θ(0) = (1, 1)

Figure 2.2: Expectation of the stochastic single shooting functional with estimated

variances. Expectation FEs̃,2, (2.24) of F
(m)
s̃,2 , (2.4) with ∆t = 0.5, T = 50, ν0 = 5. White stands

for higher function values than assigned in the color bar.

For the approximation one uses the fact that the correlation between (νi − H)2 and σ̂i is small

as only the ith component is the dependent part. Furthermore it holds approximately Es[σ̂2
i ] ≈

Eθ

[(
H(1)

)2]−Eθ [H(1)
]2

as the expectation of the variance converges with m→∞ to the variance.

Last the relations of equation (2.19) and equation (2.20) are inserted. For the results see figure
2.2. The landscape of the function FEs̃,2 is encoded in a colored contour plot. The true parameter
marked with a black dot is in none of the graphics in the area of the lowest function values, which
means that the functional is not unbiased, see also section 2.3.3.

Choice L1-norm:
Again as for the other functionals the expectation values of the fitness can be calculated and plotted
using the relation:

FEs,1(θ) =

m∑
i=1

∞∑
j=0

∞∑
k=0

(|k − j|p(k, ti|ν0, t0)p(j, ti|ν0, t0)) .

Similar approximations as in equation (2.22) are used yielding the figure 2.3, which shows the
landscape of FEs̃,2 is encoded in a colored contour plot. As the true parameter marked with a black
dot is not in the area of the lowest function values the functional is not unbiased.

2.3.3 Discussion of the performance of the stochastic single shooting
functionals

The previous subsection was investigating the performance of the stochastic single shooting func-
tional. To address this goal the expectation of the objective function value landscape was calcu-
lated. It should be noted that the formal statement of unbiasedness is E[argminθ θ̂] = θ(0) (see
equation (2.5) for the estimator), which is slightly different to what was tested in the previous
subsection. Nevertheless it can be stated that the landscapes of the objective function have a
structural bias as this was the case for all tested parameters, initial values and designs. Conse-
quently the stochastic single shooting functional should not be used for parameter estimation in
stochastic models.
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(A) θ(0) = (1, 0.1) (B) θ(0) = (1, 1)

Figure 2.3: Expectation of the L1-based function. Expectation FEs,1 of the objective function

F
(m)
s,1 , (2.2), with ν0 = 5, ∆t = 0.5 and T = 50. White stands for higher function values than

assigned in the color bar.

This leads to the question: Why does the least squares functional appear so poor in stochastic
modeling while it is so successfully applied in deterministic modeling?
The least squares functional is constructed in deterministic modeling in order to get a maximum
likelihood estimator under the assumption of a Gaussian error distribution. This assumption is
crucial. The least squares functional is optimal if the underlying distribution is Gaussian. Oth-
erwise the maximum likelihood property cannot be stated. In stochastic models for biological
systems the distributions at a time point t is unknown due to the nonlinearity of the model and
not necessarily Gaussian. This explains the poor behavior of the canonical least squares approach.
There is a second explanation. Remember the decomposition of the variance of a random variable
Y in statistics:

V ar(Y ) = E[Y 2]− E[Y ]2.

Hence E[Y 2] = V ar(Y ) +E[Y ]2. Now let Y be: Y =
∑n
i=1

(νi−h(ti,θ,νi−1,ti−1))2

σ̂i
2 . In deterministic

modeling V ar(Y ) does not depend on the parameter value θ, consequently it holds: minθ E[Y 2] =
minθ E[Y ]2, which means that a trajectory is fitted in order to obtain minimal squared differences

to the measurements. Now in stochastic modeling with Y =
∑n
i=1

∑m
j=1

(νi−H(j)(ti,θ,νi−1,ti−1))2

σ̂i
2 the

variance V ar(Y ) depends on θ. Moving in the parameter space Θ there are directions in which the
descent of V ar(Y ) is greater than the ascent of E[Y ]2 resulting in a lower value of E[Y 2], which
causes the bias:

σ2
i constant:

• This is for example the case if both parameters become smaller (see figure 2.1(A)), which
means that the system is less reactive (see for an illustration figure 1.1). Therefore the
variance in the stochastic least squares term is smaller. As this effect is stronger than the
increase of the E[Y ]2 term the function value of FEs,2 is smaller in this region than at the
position of the true parameter.

• For higher θ2 a similar effect can be seen. As the system then tends to lower particle numbers
(the deterministic steady state is smaller) the variance is as well smaller, which again leads
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to smaller function values (see figure 2.1(B)).

• Figures 2.1(E,F) with starting value ν0 = 10 in the deterministic steady state also show a
bias, which reduces with increasing ∆t = ti − ti−1 as the distribution then is approximately
Poisson (see remark 2.3) and the least squares function is therefore adequate.

L1-norm and σ̂i

• σ̂i is estimated correctly for the true parameter. Higher parameter values mean higher
reactivity in the system resulting in higher estimated variances σ̂i

2. Dividing by this too
high σ̂i

2 compared to the true parameter leads to a low objective function value for these
parameters. This causes the bias (see figure 2.2).

• Considering the L1-norm the bias is still present although the L1-norm is in general more
robust with respect to outliers.

Whether it is possible to correct the bias is up to future research. Due to the results seen here even
in this simple example model the estimator in this form will not be considered in the application
chapter.

2.3.4 Expectation of the LS function

Remarks on the maximum likelihood properties of the estimator:

First of all equation (2.12) is an estimator which maximizes a likelihood function. Maximum
likelihood estimators are often used because of their asymptotic properties.

• But as νi|νi−1 and νj |νj−1 are not necessarily identically distributed for i 6= j one of the
requirements for the asymptotic properties of a maximum likelihood estimator does not
hold.

• Nevertheless for a “long“ trajectory the state ν = x for a fixed x will ”often” be reached.
Thus the estimation can be done with the distribution information of the transitions from
that single state x. The estimator has the asymptotic properties of a maximum likelihood
estimator.

It will be necessary to test the estimator for a finite number of observations. One option would
be to do simulation runs with an optimization algorithm for simulated data with a true parameter
which is known. This will be done in section 4.1.1. This includes influence from three sources of
stochasticity: optimization algorithm Particle swarm, evaluation of the objective function with the
use of simulations and the stochastic data. To analyze, which effects come from the properties of
the method and which are just stochastic influences, the expectation of the LS function landscapes
is plotted using exact transition probabilities for the Immigration-Death model, equation (2.13).
For the results see figure 2.4. Then the LS function landscapes are plotted using simulations to
evaluate the transition probabilities, which allows for observing the influence of this source of
stochasticity, see figure 2.5 and 2.6.
It should be noted that the formal statement of unbiasedness, E[θ̂] = θ(0), is slightly different to
comparing the minimal point of the expectation of the LS function landscape as the expectation
value and argmin are not interchangeable with equality. Nevertheless the expectation of the LS
function landscape gives a good evaluation of the performance of a functional.

Set FEL (θ) = EdEs[F
(m)
L (ν, θ)] as the expectation over data Ed[·] and simulations Es[·] of the LS
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function F
(m)
L :

Es[F
(m)
L (ν, θ)] =

n∑
i=1

Es

[
log
(
p̂θ

(m)(νi, ti|νi−1, ti−1)
)]

≈
n∑
i=1

log (pθ(νi, ti|νi−1, ti−1)) .

Note that the expectation and the logarithm are not interchangeable with equality. Neverthe-
less for large m the estimation p̂ will be close to p, which allows the approximation. Now the
expectation value over the data will be calculated. Let pν

θ(0)
(ν1, . . . , νn) be the probability den-

sity function which gives the probability to get a realization (ν1, . . . , νn). Set for abbreviation:
pθ(νi, ti|νi−1, ti−1) = pθ(i|i− 1):

FEL (θ) = Ed

[
n∑
i=1

log (pθ(i|i− 1))

]

=
∑

ν1,...,νn

(
n∑
i=1

log (pθ(i|i− 1))

)
pνθ(0)(ν1, . . . , νn)

=
∑
ν1

. . .
∑
νn

(
n∑
i=1

log (pθ(i|i− 1))

)
pθ(0)(n|n− 1) . . . pθ(0)(1|0)

=

n∑
i=1

(∑
ν1

. . .
∑
νn

log (pθ(i|i− 1)) pθ(0)(n|n− 1) . . . pθ(0)(1|0)

)

=

n∑
i=1

∑
νi−1

∑
νi

log (pθ(i|i− 1)) pθ(0)(i|i− 1)

∑
ν1

. . .
∑
νi−2

∑
νi+1

. . .
∑
νn

pθ(0)(n|n− 1) . . . pθ(0)(i+ 1|i)pθ(0)(i− 1|i− 2) . . . pθ(0)(1|0)

=

n∑
i=1

∑
νi−1

∑
νi

log (pθ(i|i− 1)) pθ(0)(i− 1|i)pθ(0)(i− 1|0).

In the second equality the Markov property is used, the third and fourth change the summation
in a suitable order and the fifth uses the following relations:∑

νj

pθ(0)(j|j − 1) = 1 for j = i+ 1, . . . , n,

∑
νl

pθ(0)(j + 1|j) pθ(0)(j|j − 1) = pθ(0)(j + 1|j − 1) for j = 1, . . . , i− 2.

For computational reasons the lower bound for the summation over νi is zero and the upper is
chosen such that jumps from νi−1 to νi are taken into account if they have a probability larger
than 10−6. The landscapes of the LS function values FE,L(θ) are plotted in figure 2.4. These
graphics show the value of FE,L(θ) encoded in a colored contour plot. The black dot marks the
true parameter.
The optimum is at the position of the true parameter in all settings, which leads to the conclusion
that the functional FL is unbiased. For examples using simulations to evaluate the transition
probabilities see the following subsection. For a simulation study of the estimator estimating the
parameters of 25 different time series of the Immigration-Death model, see section 4.1.
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(A) θ(0) = (1, 0.1), ν0 = 5 (B) θ(0) = (1, 1), ν0 = 5

(C) θ(0) = (1, 0.1), ν0 = 50 (D) θ(0) = (1, 0.1), ν0 = 100

(E) θ(0) = (1, 0.1), ν0 = 0 (F) θ = (1, 0.1), ν0 = 10

Figure 2.4: Expectation of LS function. Expectation value FEL for the LS function F
(m)
L from

equation (2.9). All with ∆t = ti − ti−1 = 0.5 and T = 50. True parameters are marked with
points. White stands for higher function values than assigned in the color bar. As the likelihood
function is negative the optimization problem is here a maximization problem.
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2.3.5 The MLS function using simulations

The analytical investigation is only possible in very simple example systems like the Immigration-
Death system used above. In more complex systems parameter estimation can only be done with
simulations. Therefore simulation methods will be tested in the setting of the simple example
system and compared to the theoretical results to see how well the approximation with simulations
works. First for a given measurement ν1, . . . , νm the value of the MLS function for a parameter
θ is calculated using equation (2.11). In figures 2.5 and 2.6 evaluations of the MLS function are
represented as colored dots for different parameter settings and different stochastic data sets.

Observations:

• The first observation is that the landscape is not smooth as in the plots with the expectation
value but it has discontinuities. This is due to the stochasticity in the simulations. Even
with m = 1000 simulations this leads to a remarkable variability in the objective function
values even for close parameter values, see, for example, the green dots in the yellow (2.5
(A,E)) and even in the purple area, figure 2.5 (D).

• The coarse structure of the landscape is recognizable: there is a region of small function
values in the proximity of the true parameter. The landscape can be considered as a noisy
version of the landscapes in figure 2.4.

• Due to the stochasticity in the evaluation of the transition probabilities the meaning of
minimum is not clearly defined as another realization of the objective function landscape can
result in a different minimal point, see also remarks in section 2.4.1 and the evaluation of a
stopping criterion suited to the stochasticity in section 2.4.2.

• The ground of the valley is sometimes at lower parameter values than the true parameter
as in figure 2.5(A) or at higher parameter values as in figure 2.5(C), which is due to the
stochasticity in the data. This effect can also be seen in deterministic modeling, where the
effect comes from the measurement noise. Remember that an estimator is a random variable
itself.

• This leads to the question of the distribution of the estimator with respect to the stochasticity
in the data and the simulations. This is an open point suggested for further investigation.

• Figure 2.7 shows how strong the effect of the approximation in F
(m)
g is. Around the true

parameter one can observe that the approximation is identical to the exact value F
(m)
L . The

approximation is mostly used “far away” from the true parameter.

For a conclusion it can be stated that the simulation results go along with the theoretical analysis
stating that the MLS objective function is unbiased. This means that its expectation value over
data and simulations has its minimum at the true parameter. This is an important property for
the applicability of the MLS function.
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(A) θ(0) = (1, 0.1), Data1
(118, 120, 125, 130, 135, 140, 150)
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(B) θ(0) = (1, 0.1), Data 2
(137.5, 140, 145, 150, 155, 175, 200)
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(C) θ(0) = (1, 0.1), Data 3
(148.5, 150, 155, 160, 175, 200, 250)
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Θ1
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(D) θ(0) = (1, 1), Data 1
(120.5, 122.5, 125, 130, 140, 150, 200)
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(E) θ(0) = (1, 1), Data 2
(117.5, 120, 122.5, 125, 130, 150, 200)
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(F) θ(0) = (1, 1), Data 3
(101.5, 102.5, 105, 110, 115, 125, 150)

Figure 2.5: Landscape of the MLS function with simulations I. Absolute value of F
(1000)
g

from equation (2.11) for two different parameters and for each parameter three different data sets
simulated with the Gillespie algorithm implemented in COPASI [28] with ν0 = 5, ∆t = 0.5 and
n = 100. Numbers in brackets are for color assignment: smaller values than first number colored
in red, greater or equal than first and smaller than second colored in purple, ... and values greater
than last number colored in black. Due to the absolute value the problem is again a minimization
problem.
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(G) θ(0) = (5, 0.2), Data 1
(196, 197.5, 200, 202.5, 205, 225, 250)
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(H) θ(0) = (5, 0.2), Data 2
(228, 230, 235, 240, 250, 275, 350)
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(I) θ(0) = (5, 0.2), Data 3
(212.5, 215, 220, 225, 235, 250, 300)

Figure 2.6: Landscape of the MLS function with simulations II. Absolute value of F
(1000)
g

from equation (2.11) for a third parameter with three different data sets simulated with the Gillespie
algorithm implemented in COPASI [28] with ν0 = 5, ∆t = 0.5 and n = 100. Coloring as in figure
2.5.
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(A) θ(0) = (1, 0.1), Data1 (B) θ(0) = (1, 0.1), Data 2

(C) θ(0) = (1, 1), Data 1 (D) θ(0) = (1, 1), Data 2

(E) θ(0) = (5, 0.2), Data 1
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(F) θ(0) = (5, 0.2), Data 2

Figure 2.7: Impact of the approximation MLS. Number of transitions from i − 1 to i where

the approximation g, equation (2.10), plays a role in F
(1000)
g : ν0 = 5, ∆t = 0.5, n = 100, m = 1000.

Dark blue: zero, brighter colors: higher numbers.
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2.4 Optimization of the stochastic objective function

2.4.1 Statement of the stochastic problem

To estimate the parameter the LS function F
(m)
L in equation (2.9) or the MLS function F

(m)
g in

equation (2.11) has to be optimized:

θ̂ = argmin
θ

F
(m)
k (ν, θ), k ∈ {g, L}. (2.25)

Before considering algorithms to find a solution for this problem some remarks on its properties
are given:

• To evaluate F
(m)
k , k ∈ {L, g}, Gillespie simulations are used:

– The objective function is a random variable.

– As the objective function is a random variable it is not possible to calculate derivatives
and for the optimization it can be considered as a “black box”. Black box means that
it calculates a function value for a given input but the details of the calculation are not
considered for the optimization.

• For increasing m the random variable F
(m)
L will converge to a limit FL.

• What does optimum mean for finite m?

From definition a minimum xmin of a function f is a point for which holds f(x) ≥ f(xmin) for all
x in a neighborhood Bδ(xmin) of xmin with Bδ(xmin) = {x| ‖x− xmin‖2 < δ} and δ > 0. Directly
used for stochastic problems this formulation does not make sense as for two random variables X,Y
as the meaning of X > Y is not well-defined and consequently an optimum is not well-defined.
Hence one should not expect an exact single point as the result of the estimation problem for finite
m but rather a range of points with low function values.
There is a huge amount of literature on optimization of stochastic quantities, for example [39]
and also on optimization algorithms which are able to handle the so-called black box property,
for example [40, 41]. Here a Particle Swarm optimization will be tested (section 2.4.2). Another
approach is a transformation to a deterministic optimization problem (section 2.4.3). For this work
every evaluation of Fk, k ∈ {L, g}, is computed with a new set of random numbers to reduce the
influence of sets of random numbers with low probabilities. It is also possible to fix the set of
random numbers and do several estimations for different so-called random seeds [4].

2.4.2 Particle Swarm

The likelihood function is calculated with simulations so the objective function can be considered
as a black box.
One approach for this kind of functions is to use non-gradient-based optimization procedures. The
algorithm Particle Swarm for the results shown later is from [42] and the COPASI implementation:
At first a set of points - which will be named particles - will be randomly distributed on the range
considered for optimization. For ranges containing one order of magnitude or less the particles
will be uniformly distributed on the range. For ranges containing several orders of magnitude the
probability for small values will be increased as described in figure 2.8.
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• Input: number of iterations nit, number of particles npa, number of simulations m, data
ν, range of optimization:

[
plo1 , p

up
1

]
× . . . ×

[
plodim, p

up
dim

]
with pij ≥ 0 for i = 1, . . . , dim

and j ∈ {lo, up}, objective function F (·).

• Initialization

– Distribute initial swarm: Set ploi = If
(
ploi > 0 , ploi , 10−10

)
% or any small value greater zero
particles = Table[

If

(
log10 p

up
i − log10 p

lo
i < 1.8, U([ploi , p

up
i ]), ploi

(
pupi
ploi

)U([0,1])
)

,

(i, 1, npa)]
speed = Table [0, (i, 1, npa)]

– function value: fwert = Table [F (particle(i)), (i, 1, npa)]

– best value: gbestvalue = min (fwert)

– best position: gbest = (pi|i = argmini(fwert(i)))

– best personal value: pbestvalue = fwert

– best personal position: pbest = particles

– constants: w = 1
2 log10 2 , c = 1

2 + log10 2

• Iteration: For (i, 1, nit) (

– speed = Table[
w speed(i)
+ c U ([0, 1]) (pbest(i)− particle(i))
+ c U ([0, 1]) (gbest− particle(i)),
(i, 1, npa) ]

– particle = Table[
If(

particle(i) + speed(i) ∈ [ploi , p
up
i ],

particle(i) + speed(i),
particle(i)

),(i, 1, npa)]

– fwert= Table[ F (particle(i)), (i, 1, npa)]

– gbestvalue = min(fwert)

– gbest = (pi|i = argmini(fwert(i)))

– pbestvalue = Table[If(pbestvalue(i) > fwert(i), fwert(i), pbestvalue(i)), (i, 1, npa)]

– pbest = Table[ If(pbestvalue(i) > fwert(i), particle(i), pbest(i)), (i, 1, npa) ]
)

• Output: (gbest, gbestvalue)

Figure 2.8: Pseudo code for Particle Swarm. U([a, b]) stands for a random variable uniformly
distributed on the interval [a, b].
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The function will be evaluated for each of these particles. The best particle with its function value
will be stored in gbest and gbestvalue. In pbest the best “personal” position a particle has reached
during the iteration procedure will be stored with its function value. In each iteration the particle
will move towards the gbest and pbest positions with a certain speed. The speed is updated as
follows: The difference between pbest and the particles position is calculated and multiplied by
a random number distributed uniformly on [0, 1]. The difference between gbest and the particles
position is multiplied by another random number also distributed uniformly on [0, 1]. The sum
of both values is then added to the old speed value. This update is then used for the update of
the particles position. It is simply added to the old particles position and accepted if this value is
inside the range. If not the old position is kept. Then the function will be evaluated with the new
particle positions and gbest and pbest will be updated. After the last iteration the position gbest
is considered as optimum.
This is a heuristic algorithm which performs successfully in many situations in practice but it has
to be stated that there is no guarantee of reaching the global or even a local optimum.

• Input: number of iterations nit, number of particles npa, number of simulations m, data
ν, range of optimization: [plo1 , p

up
1 ]× . . .× [plodim, p

up
dim] with pij ≤ 0 for i = 1, . . . , dim and

j ∈ {lo, up}, objective function F (·), iteration number for termination criterion check ntc.

• Initialization

• Iteration: For (i, 1, nit) (

– speed

– particle

– fwert

– gbestvalue

– gbest

– pbestvalue

– pbest

– If(
Divisible (i, ntc),
(

tc = StdDev (gbestvalue, Table(F (gbest), (i, 1, npa) ) ),
If( tc > 0.5 StdDev (fwert) , Break )

)
)

)

• Output: (gbest, gbestvalue)

Figure 2.9: Pseudo code for modified Particle Swarm. The Pseudo code is identical to the
original Particle Swarm in figure 2.8 except the addition of the termination criterion conditions
and the termination criterion. StdDev stands for Standard Deviation.
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The algorithm is presented here without a stopping criterion although there is one in the COPASI
implementation terminating the algorithm when the variance of the function values of the swarm
as well as the variance of the swarm positions becomes small. For stochastic modeling it is difficult
to use this criterion directly as it is not clear what can be considered to be small in comparison
to the stochasticity in the landscape. In the following a modification will be described to improve
this situation.
In stochastic problems it might happen that the algorithm quickly finds a range of low function
values where the noise or stochasticity is much larger than the differences of the underlying land-
scape, see figure 2.5 and 2.6. The algorithm will continue to pick new points and to calculate more
function evaluations. This might be very time-consuming, especially if a function evaluation is
computationally intensive. Thus a stopping criterion should be introduced. Some stopping criteria
are introduced in [43, 44]. Here a different stopping criterion is suggested: it lets the algorithm
stop as soon as the stochasticity becomes larger than the differences in the underlying landscape.
Evaluate every ntc-th iteration the function in gbest more than once. Then calculate a variance of
these evaluations. Compare this variance to the variance in fwert. If the last one is larger, this
suggests that there is still a chance to reduce the objective function value. If both are about the
same size, it suggests that the fluctuations can be explained by the stochasticity and hence the
algorithm should terminate. A comparison of the different criteria is out of the scope of this thesis.

The modification will be tested in section 4.1.1 for an Immigration-Death model. This stopping
criterion should be also useful for other global optimization algorithms but a deeper investigation
of this question is suggested for further research.
Another option would be the use of a fixed random seed for optimization and a repetition of the
optimization procedure.

2.4.3 Transformation to a deterministic landscape: polynomial chaos
expansion

The aim of using the polynomial chaos expansion is a transformation of the stochastic landscape
into a deterministic landscape. To this aim the stochastic function is evaluated at several points.
These realizations of the stochastic function are then used to construct a deterministic approxi-
mating polynomial, which then can be easily optimized.
The term polynomial chaos was used already very early by Wiener [45]. The concept of the poly-
nomial chaos expansion was applied to optimization in the context of parameter uncertainties, for
example by [17]. Here it will be used in a slightly different context. But before explaining these
differences in detail, the basic idea is explained:
Let Pi be a basis of orthogonal polynomials on L2(Λ) with respect to a weighting function ψ on
an at first one-dimensional interval Λ. Then a function F on L2(Λ) can be expanded in a series of
orthogonal polynomials Pi:

F (θ) =

∞∑
j=0

ajPj(θ)

with

aj =

∫
Λ

F (θ) Pj(θ) ψ(θ) dθ ≈
∑
γ∈Γ

F (γ) Pj(γ) ψ(γ)

with a suitable integration grid Γ. In practice it is often enough to consider F (θ) =
∑NPC
j=0 ajPj(θ)

with small NPC < 10. It is important to note that for each aj , j = 1, . . . , NPC , the same grid Γ
can be used. Hence the number of function evaluations does not directly depend on NPC .
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Example 2.2 (Orthogonal polynomials). The Legendre polynomials on L2([−1, 1]) with the
weighting function ψ(θ) = 1

21([−1,1])(θ) are an example of a complete orthogonal system in
one dimension [46]. They satisfy the following Legendre ODE

(1− θ2)F ′′(θ)− 2θF ′(θ) + j(j + 1)F (θ) = 0, j ∈ N0.

Other examples are the Hermite polynomials with the weighting function ψ(θ) = exp−
θ2

2 on
R or the Laguerre polynomials on [0,∞) with a weighting function ψ(θ) = xα exp−θ with an
α > −1, see also [47].

If the range of interest for a parameter is not identical to the interval of the space on which the
polynomials form an orthogonal system, a suitable transformation has to be used.
The multidimensional case is an extension: For a multi index ξ = (ξ1, . . . , ξd) define (see [17] for
notation)

Pξ(θ) =

d∏
k=1

Pξk(θk)

with a weighting function

ψ(θ) =
d∏
k=1

ψ(θk)

and therefore the approximation

F (θ) =

∞∑
|ξ|=0

aξPξ(θ).

Remark 2.4 (Multidimensional orthogonal system). The system Pξ, |ξ| = 0, 1, . . . is still orthogonal
because for ξ 6= η it holds:

〈Pξ, Pη〉 =

〈
d∏
k=1

Pξk ,

d∏
k=1

Pηk

〉
=

d∏
k=1

∫
Λk

Pξk(θk) Pηk(θk) dθk = 0

and the system is still a basis due to the construction as the product of basis elements [47].

Example 2.3 (Multidimensional polynomials). For example for a two-dimensional polynomial chaos
expansion with degree NPC = 3, the set |ξ| = 2 is {(2, 0), (1, 1), (0, 2)} and P{2,1}(θ1, θ2) =
P2(θ1)P1(θ2).

Extension to stochastic functions

In the polynomial chaos expansion the function F is considered to be deterministic. The context
is slightly different in stochastic optimization problems with the structure of equation (2.25): The
function L is deterministic as in the setting above. But the approximation with the LS function

F
(m)
L is stochastic. Nevertheless a convergence property can be stated if “many” simulations m

are used for the estimation of the transition probabilities in LS function F
(m)
L . Let Ω be the space

on which the random variable F
(m)
L is defined and µ the probability measure on Ω corresponding

to the Gillespie algorithm. Now approximate the function F
(m)
L (θ, ω) for every fixed ω ∈ Ω with a

series of orthogonal polynomials Gmk (θ, ω). The question now is if it holds Gmk (θ, ω) → l(θ) for
k →∞ and m→∞.
The notation “(ω)” in the following will indicate that the function is a random variable.
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Lemma 2.1. For the approximation with the LS function F
(m)
L (θ, ω), equation (2.9), of the like-

lihood function l(θ), equation (2.7), it holds if pθ(νi, ti|νi−1, ti−1) > 0 for every i = 1, . . . , n:

F
(m)
L (θ, ω) → L(θ) a. s. on Ω.

Proof. Use p(m)(i, θ, ω) as a short notation for the random variable pθ(νi, ti|νi−1, ti−1). For i =
1, . . . , n it holds: p̂(m)(i, θ, ω) → p(i, θ) a. s. on Ω (see also [48], chapter 12.1). Thus for pi > 0
also

lim
m→∞

F
(m)
L (θ, ω) = lim

m→∞

n∑
i=1

log p(m)(i, θ, ω)

=

n∑
i=1

log lim
m→∞

p(m)(i, θ, ω)

a.s.
=

n∑
i=1

log p(i, θ)

= l(θ)

where a.s. means almost sure convergence. This leads to the desired convergence.

Theorem 2.1 (Convergence of polynomial chaos expansion for stochastic functions). Define for

each m a series of orthogonal polynomials Gmk (θ, ω) which converges to F
(m)
L (θ, ω) for k → ∞ in

the L2 sense. Then it holds Gmk (θ, ω) → l(θ) in L2 as m, k →∞ if pi(θ) > 0 for all i = 1, . . . , n.

Proof. As F
(m)
L (θ, ω) ≤ 1 for all ω it is in L2(Ω) for each θ. Next the theorem of dominated

convergence allows to conclude the L2 convergence of F
(m)
L (θ, ω) → l(θ) from lemma 2.1. Then:∫

Λ×Ω

|Gmk (θ, ω)− l(θ)|2 d(µ× ψ)

=

∫
Λ×Ω

∣∣∣Gmk (θ, ω)− F (m)
L (θ, ω) + F

(m)
L (θ, ω)− l(θ)

∣∣∣2 d(µ× ψ)

≤
∫

Ω

∫
Λ

∣∣∣Gmk (θ, ω)− F (m)
L (θ, ω)

∣∣∣2 d ψ︸ ︷︷ ︸
k→∞−−−−→0 in L2

d µ+

∫
Λ

∫
Ω

∣∣∣F (m)
L (θ, ω)− l(θ)

∣∣∣2 d µ︸ ︷︷ ︸
m→∞−−−−→0 in L2

d ψ

k,m→∞−−−−−→ 0.

The order of the integration may be exchanged due to the theorem of Fubini.

The last two results basically say that using enough simulations and an order of approximation
that is high enough the result is close to the underlying likelihood function. For results see the
application chapter, in which the polynomials are normalized to orthonormal polynomials.

Sparse Grids

To make the polynomial chaos method as efficient as possible it is necessary to use a suitable
integration grid Γ. It is generally not known what kind of Γ would be optimal for stochastic
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optimization problems in systems biology. Hence a multidimensional grid is derived which is
optimal with respect to the polynomial degree. Starting with the one-dimensional case∫

Λ

F (θ)dθ ≈
nl∑
i=1

wliF (γli)

where l ∈ N is the level of the quadrature formula and wli are weights: Γ1
l = (γ1

l1, . . . , γ
1
lnl

). In the
one-dimensional case examples for quadrature formulas are the one-dimensional Gauss quadrature
formulas such as Gauss Legendre or Gauss Hermite quadrature rules [34]. One important subclass
of quadrature formulas are nested quadrature formulas: Γ1

l−1 ⊂ Γ1
l . One option for deriving

multidimensional sparse grids is presented by [49], which will be briefly reviewed here with a
slightly different notation:
For a one-dimensional quadrature formula Γ1

l consider the difference grids:

Ξ1
l = Γ1

l \Γ1
l−1

with Γ1
0 = {}. A sparse grid for the D-dimensional case is built with:

ΓDl =
⊎

|η|≤l+D−1

Ξ1
η1 × . . . × Ξ1

ηD

and η ∈ ND. Note that the calligraphy letter D is used for the dimension of θ to avoid confusion
with the dimension of the data, for which both d and D will be used later.
For the nested case - on which the focus will be in this text - the weight for a point γDηκ =

(γDη1κ1
, . . . , γDηDκD ) can be calculated as follows:

wηκ =
∑

|η+q|≤l+2D−1

v(η1+q1)κ1
. . . v(ηD+qD)κD

with q ∈ ND and

v(k+q)j :=

{
wkj , q = 1

w(k+q−1)r − w(k+q−2)s q > 1, γkj = γ(k+q−1)r = γ(k+q−2)s

with r and s determined by the case by case analysis condition. Smolyak’s algorithm ( [49] and
references therein) can now be written as

∫
Λ

F (θ)dθ ≈
∑

|η|≤l+D−1

nη1∑
κ1=1

. . .

nηD∑
κD=1

wηκ F (γηκ)

where nl denotes the number of elements in Ξ1
l .

Remark 2.5 (Number of points for a sparse grid). The number of points can be determined by

nDl =
∑

|η|≤l+D−1

nη1 . . . nηD .

For example for D = 2 and l = 5, the sum is calculated over all |η| ≤ 6, which yields n2
5 = 33.
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For the following a delayed Kronrod-Patterson rule is used as one-dimensional grid. It is suggested
for numerical computations in [50] (page 742) and is derived from a Kronrod-Patterson rule [50]
(page 731). Points and weights for this rule are given in [51](chapter 3.2 and table M10 and M11).
Further information on points for sparse grids can be found on the website belonging to [52].

Table 2.1: Nodes for sparse grids. Nodes of the one-dimensional delayed Kronrod-Patterson
rule Γ1

l

l = 1 Γ1
l = { 0 }
wl = { 2 }

l = 2, 3 Γ1
l = { 0, ±0.7746 }

wl = { 0.8889, 0.5556 }

l = 4, 5, 6 Γ1
l = {0, ±0.4342 ± 0.7746, ±0.9605 }
wl = { 0.4509, 0.4014, 0.2685, 0.1047 }

l = 7 to 12 Γ1
l = {0,±0.2234,±0.4342,±0.6211,±0.7746,±0.8885,±0.9605,±0.9938}
wl = { 0.2255, 0.2192, 0.2006, 0.1751, 0.1344, 0.0929, 0.0516, 0.0170 }





Chapter 3

Objective function based on short
time ODE integration

This chapter will describe a method for parameter estimation based on short time ODE integration.
The method will be named multiple shooting for stochastic systems (MSS).

3.1 Fully observed case

Denote the measurements at time points t0, . . . , tn with ν = (ν0, . . . , νn). Assume for this subsec-
tion that all states can be measured. As the time course in stochastic modeling is a continuous
time Markov jump process the likelihood function can be factorized into the product of transition
probabilities:

L(ν, θ) =

n∏
i=1

pθ(νi, ti|νi−1, ti−1).

The transition probability pθ is generally not known and might either be estimated by means of
simulations or calculated by using the solution of a high dimensional CME system, both of which is
very time-consuming. The approach approximates the system on the short time interval [ti−1, ti]
with an ODE model. The fact that this is done only on a very short time interval is crucial.
An ODE approximation is stronger than a linear noise approximation but as this approximation
only has to hold on a short time interval it is much less restrictive than the usual linear noise
approximation [53]. The proposed approach is motivated by the methods for parameter estimation
in ODE systems introduced by Bock [18,54] and uses short time ODE integration: starting at time
point ti−1 at state νi−1 the initial value problem of the systems of ODEs is solved with initial value
νi−1 at time ti−1 until time ti. The result, h(ti, θ, νi−1, ti−1), is compared to the data point νi and
the residual is defined as

εi = νi − h(ti, θ, νi−1, ti−1), (3.1)

which for the model leads to the description
ν1

ν2

...
νn

 =


h(t1, θ, ν0, t0)
h(t2, θ, ν1, t1)
...
h(tn, θ, νn−1, tn−1)

+


ε1
ε2
...
εn

 .
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If the residuals ε are independent, normally distributed random variables with mean zero and
constant variance, the least squares estimator

θ̂ = argmin
θ

Fh(ν, θ)

with

Fh(ν, θ) =

n∑
i=1

‖h(ti, θ, νi−1, ti−1)− νi‖22 (3.2)

is a maximum likelihood estimator. In general the distribution for a time point in a stochastic
model is not known and not necessarily Gaussian. Hence theoretically the properties of a maximum
likelihood estimator can not be guaranteed. In practice it is possible to test if the εi perform
approximately like independent, normally distributed random variables with mean zero. If this is
the case the estimator might still be quite powerful. Later in this chapter test functions will be
suggested which describe the properties of the residuals. The structure of equation (3.2) allows
handling normally distributed measurement noise as well without losing the desired properties.
Instead of using the solution of the initial value problem of the ODE system in equation (3.2) one
can also use the mean of the stochastic simulations – the first moment – which can be calculated
with a moment-closure [11] with only the first moment. Although calculating the moment-closure is
fast compared to other calculations this would be slightly slower than the suggested MSS method.
If it is more stable, especially in cases of partially observed models, has to be investigated.
Equation (3.2) corresponds to the multi-experiment setting described in [19]. Each time interval
is regarded as one experiment and the parameter vector θ are the global variables common to all
experiments. There are no local variables which are specific for only some of the experiments. For
the optimization it is consequently possible to apply the efficient methods suggested in [19].

3.2 Partially observed models

Assume that only the first d components of the D-dimensional vector of species ν can be observed.

At time t0 the unobserved states ν
(d+1)
0 , . . . , ν

(D)
0 are also used as optimization variables. In fact the

unobserved states are discrete numbers but for the optimization purpose this condition is relaxed
and they are optimized as real numbers. For the solution of the initial value problem on [ti−1, ti]

instead of the full measurement ν the observed states ν
(1)
i−1, . . . , ν

(d)
i−1 are used from the measurement

and for the unobserved states the result of the initial value problem on the previous time interval
is used, thus h(d+1,...,D)(ti−1, θ, ·, ti−2). Furthermore it is possible and in some situations even
necessary to enlarge the optimization vector even more and to include further unobserved states.
Define an index set K with {t0} ⊂ K which contains all time points at which the unobserved states
will be included in the optimization variable. Denote the unobserved states in the optimization

vector at time tj with ν
(j)
K =

(
ν

(d+1)
j , . . . , ν

(D)
j

)
and the union of unobserved states at different

time points with νK =
(
ν

(j)
K

)
j∈K

. Now define the completion of the observed measurement as ν̃

with

ν̃j =

{
ν

(1)
j , . . . , ν

(d)
j , ν

(j)
K : tj ∈ K

ν
(1)
j , . . . , ν

(d)
j , h(d+1,...,D)(tj , θ, ν̃j−1, tj−1) : tj /∈ K.

Then again as in the fully observed case a distance measure is used to compare the result of the
integration with the data point:

FK(ν, θ, νK) =

n∑
i=1

∥∥∥h(1,...,d)(ti, θ, ν̃i−1, ti−1)− ν(1,...,d)
i

∥∥∥2

2
. (3.3)
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In the multi-experiment setting referred to in the previous section ν
(j)
K can now be considered as

local variables specific to the experiments connected to [tj , tj+1].
The case K = {t0} means that just the first unobserved state is included in the optimization and
the case K = {t0, t1, . . . , tn} means that all unobserved states are included in the optimization.
Remarks on the numerical optimization of the function in equation (3.3) can be found in section
3.4.

3.3 Test functions for the validity of the approximation

As the method uses an approximation it is very important to investigate if a model satisfies the
approximation. Therefore this section suggests test functions to see how well the approximation
works. Although defined for arbitrary parameters the test functions are evaluated with the opti-
mal θ̂ resulting from an optimization of the suggested functionals in order to see if the stochastic
data can be represented with the ODE model together with the optimal parameter. To check
the assumption on the mean of the residuals their average, ε̄ = 1

n

∑n
i=1 εi, can be calculated. If

the model is well approximated this should be small. Note that the assumption requires more,
namely that the expectation of ε for every time point is zero, which can not be tested with a single
trajectory of measurements.
To see if the residuals are approximately normally distributed calculate the Kullback-Leibler di-
vergence of a density estimate from the εi and a centered normal distribution of variance σ2

KL

restricted to the support of the density estimate. The Kullback-Leibler divergence is then mini-
mized over σ2

KL. If the Kullback-Leibler divergence for the optimal σ2
KL is close to zero this means

that the εi can be approximated well by a normal distribution with constant variance. The point
that the variance is constant is important as it is not possible to estimate the variance from only
one observation per time point.
For more theoretical remarks on the relation of the Kullback-Leibler divergence to the goodness of
an approximation by a normal distribution see [55,56]. If the system contains more than one species
the dimension of ε is greater than one. In this case the analysis is done componentwise because
the vector is approximately normally distributed if all components are approximately normally
distributed. It would be interesting for future research to what extend accounting for possible
correlation plays a role: for now it is enough to see that the ε could be a realization from a vector
with independent normal distributions, see also the Cramér-Wold theorem [57].
Calculating the correlation of the residuals between every pair of time points is not possible if only
one time course of measurements is recorded. Instead it will be calculated how long it takes until
the residuals are uncorrelated. Estimate the autocorrelation of the residuals:

R̂(k, ε) =
1

(n− k)σ̂2
ε

n−k∑
i=1

(εti − ε̄)(εti+k − ε̄)

where k represents the time step and σ̂2
ε an estimate for the variance within the residuals ε. If ε

is such that k̃ := min(k|R̂(k, ε) < 0) > 0 exists define the autocorrelation time as act(ε) = tk̃. If
the total horizon of measurements tn − t0 is only of the same size as the autocorrelation time of
the residuals act(ε) this indicates a strong violation of the assumption of uncorrelated residuals.
It would also be possible to calculate a continuous autocorrelation time using an interpolation
between the last positive and the first negative value but this does not give more information than
the suggested procedure.
Furthermore it is an important question for the quality of the estimation how much information
can be found with the MSS method in the intrinsic noisy system. Define a signal to noise ratio for
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each of the observed components,

SNR(ν, θ) =
(
SNR(ν(1), θ), . . . , SNR(ν(d), θ)

)
with (3.4)

SNR(ν(l), θ) =

∑n
i=1 h(l)(ti, θ, νi−1, ti−1)− ν(l)

i−1∑n
i=1 |ε

(l)
i |

. (3.5)

The higher the SNR value is the more information is contained in the data. If the SNR is small
(< 1) many measurements are needed. The componentwise analysis has the advantage that high or
low SNR values can be assigned to the corresponding components. Another criterion is a measure
on the residuals in comparison to the total system’s dynamics:

NDR(ν, θ) =
(
NDR(ν(1), θ), . . . , NDR(ν(d), θ)

)
with (3.6)

NDR(ν(l), θ) =

∑n
i=1 |ε

(l)
i |∑n

i=1 |ν
(l)
i − ν

(l)
i−1|

. (3.7)

If the NDR is small the systems is containing more information than for large NDR. The end of
this section will give a remark on the solution of the minimization problem for the Kullback-Leibler
divergence which is suggested to the interested reader.

Remark 3.1 (Solution of the minimization problem for the Kullback-Leibler divergence). The
Kullback-Leibler divergence KL(f, g) between two probability density functions f and g on
some common space Ω is defined as

KL(f, g) =

∫
Ω

f(x) log

(
f(x)

g(x)

)
dx.

Now let f be the density estimated from the residuals and Ω the support of f , which is
assumed to be an interval. If this is not the case the procedure of the density estimation can
be adopted or a subset of the support chosen. Of course the supports of g, which is R, and
f ,which is in general a subset of R, are not identical. Calculating the KL-divergence on Ω
is hence again an approximation, which will be however adopted without change of notation.
Then the problem from above is to find a σ which minimizes the Kullback-Leibler divergence
between f and a normal distribution with variance σ2 and density g(σ, x):

min
σ

KL(f, g) = min
σ

∫
Ω

f(x) log

(
f(x)

g(σ, x)

)
dx.

For the first derivative it holds

∂

∂σ
KL(f, g) =

∫
Ω

− f(x)

g(σ, x)

∂

∂σ
g(σ, x) dx

=

∫
Ω

f(x)

(
1

σ2
− x2

2σ3

)
dx

=

∫
Ω

x2f(x)dx︸ ︷︷ ︸
Ef [X2]

− σ2.

Note that the order of integration and differentiation may be changed. Thus the optimal σ is
the square root of the second moment of the density estimate and therefore easy to calculate.
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It is in fact a minimum because(
∂

∂σ

)2

KL(f, g) =

∫
Ω

f(x)

(
∂

∂σ

)2(
1

σ2
− x2

2σ3

)
dx

=

∫
Ω

f(x)
3x2 − σ2

2σ2
dx

∣∣∣∣
σ2=Ef [X2]

> 0.

3.4 Optimization

In case of the fully observed system the number of variables to be optimized is exactly the number
of parameters. In case of a partially observed system the number of variables for the optimization
is the number of parameters plus the product of the number of unobserved species and the number
of time points included in the optimization (the length of K).
As the objective function is completely deterministic – meaning, it is calculated without the use
of stochastic simulations – the optimization procedure is the same as in parameter estimation for
ODE systems: it is possible to apply derivative-based methods [58] or global methods [41].
Certainly the optimization of equation (3.3) with larger K can be much more challenging than
with K = {0} due to the increased dimensionality of the optimization problem. However, the focus
of the thesis is the formulation of the optimization problem with a suitable objective function. The
choice of the numerical optimization method, question of local minima or the question whether
derivative-based or global methods are preferable shall not be the focus of this work.





Chapter 4

Applications

Now the different methods will be tested on some biological systems. Units are given in particles,
seconds and moles and in the ODE interpretation of rate laws with a compartment of 1 ml. All
stochastic simulations in this chapter are performed with the software COPASI [28] using an exact
implementation [59] of the Gillespie algorithm (section 1.2.2). In this context exact means a
rigorous equivalence to the CME approach.

4.1 Immigration-Death model

The Immigration-Death model contains one specie X and two reactions: an immigration reaction
independent of the number of species in the systems and a death reaction proportional to the
number of species in the system:

Ø
θ1−→ X

X
θ2−→ Ø

with a representation in ODEs

dx

dt
= θ1 − θ2x, x(0) = x0

as already mentioned in section 1.2.3, where some example trajectories are shown in figure 1.1.

4.1.1 Estimation using the MLS function and a Particle Swarm algo-
rithm

Original Particle Swarm

This subsection will present the results using the original Particle Swarm optimization algorithm
described in section 2.2. For the evaluation of this procedure 25 data sets are simulated using the
Gillespie algorithm implemented in COPASI [28]. For each data set the parameters are estimated

using the MLS function F
(m)
g , equation (2.11), with m = 1000 simulations for the evaluation of the

transition probabilities and a Particle Swarm program as in figure 2.8 of section 2.4.2 implemented
in Mathematica [38] with 100 iterations and 20 particles per iteration on a range of [0, 10]× [0, 10].
This result is compared to an exact result, which is possible for this example using the probabil-
ity generating function in section 2.3.1 to calculate the transition probabilities for the functional
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l, equation (2.7). The optimization is performed with the FindMinimum-routine of the software
Mathematica and the initial value for the optimization is the true parameter and the constraints are
0 < θk < 5, k = 1, 2. The FindMinimum-routine of Mathematica uses generally a quasi-Newton
method. If the function is structurally a sum of squares then a Levenberg-Marquardt variant of the
Gauss-Newton method is chosen, further details can be found in the Mathematica documentation.
The procedure using the functional l will be named exact likelihood (EL) method or estimator
in the following. For both estimators the relative errors are calculated with respect to the true
parameter and for the estimator using simulations the relative error with respect to the EL esti-
mator is calculated. The mean of the estimators and the relative errors are presented in table 4.1.

Table 4.1: Estimation with PS and F
(m)
g . Averages, standard deviation and relative errors for

estimation results for 25 simulated data sets for the Immigration-Death model with x0 = 10, 50
observations, T = 50, θ(0) = (1, 0.1).

Estimation Results Relative error

EL PS with F
(1000)
g EL PS with F

(1000)
g PS with F

(1000)
g versus EL

θ1 0.99 ±0.19 0.96 ±0.19 15% 16% 7%
θ2 0.106 ±0.023 0.104 ±0.025 18% 20% 5%

Table 4.1 indicates that an estimation using the MLS function F
(m)
g is possible and unbiased. The

relative error compared to an exact estimation with the EL method is below 10% and with respect
to the true parameter comparable to an EL estimation. Calculating these different relative error
values has the following reason: The error of the EL estimation to the true parameter is due to
the stochasticity in the data. The error of the estimator using simulations to the EL estimator is
due to the stochasticity of both using simulations and a stochastic optimization algorithm. The
relative error of the estimator using simulations to the true parameter indicates that these effects
cancel out in such a way that the relative errors of both estimators to the true parameter are of
the same size.
The number of function evaluations for the parameter estimation of each time series is the follow-
ing: The number of iterations times the number of particles per iteration, thus 2000. For each
function evaluation 1000 stochastic simulations have to be performed. This results in 2 000 000
stochastic simulations. The average of the computing times of the 25 estimations was 12 hours on
a personal computer with a 2, 66 GHz Intel CoreTM 2 Duo T9550 processor.

Modified Particle Swarm

This subsection will present the results using the modified Particle Swarm optimization algorithm
described in figure 2.9 of section 2.4.2. For the evaluation of this procedure 25 data sets are simu-
lated using the Gillespie algorithm implemented in COPASI [28]. For each data set the parameters

are estimated using the MLS function F
(m)
g with m = 1000 simulations for the estimation of the

transition probabilities and the modification of Particle Swarm program implemented in Mathe-
matica [38] with 20 particles per iteration. The termination criterion is checked every 10 iterations
and 20 particles are used per check. This result is compared to an exact result with the EL method,
which is possible for this example using the probability generating function in section 2.3.1 to calcu-
late the transition probabilities. For both estimators the relative errors are calculated with respect
to the true parameter. For the estimator using simulations the relative error is calculated with
respect to the EL estimator.
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Table 4.2: Estimation with the modified PS and F
(m)
g . Averages, standard deviation and

relative errors for estimation results for 25 simulated data sets for the Immigration-Death model
with x0 = 10, 50 observations, T = 50, θ(0) = (1, 0.1) and m = 1000 simulations for the estimation
of the transition probabilities.

Estimation Results Relative error

EL mod PS with F
(1000)
g EL modPS, F

(1000)
g modPS, F

(1000)
g to EL

θ1 0.99 ±0.19 0.98 ±0.24 18% 15% 10%
θ2 0.106 ±0.023 0.104 ±0.027 22% 18% 9%

The mean of the estimators and the relative errors are presented in table 4.2. Table 4.2 shows that

an estimation using the MLS function F
(m)
g is possible and unbiased. The relative error compared

to an EL estimation is around 10% and with respect to the true parameter of the same size as an
EL estimation. Calculating this different relative error values has the following reason: The error
of the EL estimation to the true parameter is due to the stochasticity in the data. The error of
the estimator using the MLS function to the EL estimator is due to the stochasticity of both using
simulations and a stochastic optimization algorithm. The relative error of the estimator using the
MLS function to the true parameter indicates that these effects cancel out in a way such that the
relative errors of both estimators to the true parameter are of the same size.
Comparing the modification to the original Particle Swarm (table 4.1), which was designed for
the optimization of deterministic functions it has to be stated that the modification terminated
in average after 19 iterations. This means a reduction of function evaluations by a factor 5 with
respect to the original version, which is an important improvement as function evaluations using
simulations are computationally intensive. It would be possible to check the termination criterion
after each iteration leading to a termination with even less function evaluations. But this would
considerably increase the costs of evaluating the termination criterion. This directly leads to the
question of an optimal frequency for the termination criterion check is a point for further research.
An idea for a further speed up would be to start with a small number of simulations m. This
small number of iterations might be enough for a rough and fast search for a good region of low
objective function values. After some iterations the algorithm is restarted on a smaller range with
a higher number of simulations for a fine adjustment.
With an average number of 414 function evaluations and 1000 stochastic simulations per evaluation
the average of the computing times of the 25 estimations was 133 minutes on the same computer
as described in the previous subsection.

4.1.2 Estimation using the MLS function and the polynomial chaos ex-
pansion

This paragraph will investigate the performance of the polynomial chaos expansion for estimating
the parameters for the Immigration-Death model. It is divided into two parts: The first will start
with the same range of the parameter space as for the Particle Swarm method, [0, 10]× [0, 10]. The
graphical output for this range is visually investigated and a manual zoom into smaller ranges with
low function values is performed. Nevertheless due to the small number of function evaluations
for each estimation procedure the total number of function evaluations for the estimation is lower
than for both of the Particle Swarm algorithms in the previous subsection. The second part is an
approach for an automatization of the manual zoom.
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Figure 4.1: Approximation of the MLS function landscape with polynomial chaos ex-
pansion I. Approximation of the Immigration-Death model MLS function landscape and opti-
mization result for simulated data with polynomial chaos expansion with a grid of 33 data points
on [0, 10]× [0, 10]. White stands for higher function values than assigned in the color bar.
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Figure 4.2 (A)

Range: [0, 10]× [0, 1.5]

Estimation
Deg ObjF Parameter

2 156 (5.97, 0.81)
3 143 (3.42, 0.45)
4 138 (2.41, 0.31)
5 138 (1.86, 0.25)
6 138 (1.78, 0.26)
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Figure 4.2 (B)

Range: [0.5, 4]× [0.1, 0.6]

Estimation
Deg ObjF Parameter

2 148 (1.28, 0.10)
3 146 (1.36, 0.15)
4 146 (1.30, 0.17)
5 145 (1.23, 0.17)
6 145 (1.32, 0.18)
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Figure 4.2: Approximation of the MLS function landscape with polynomial chaos ex-
pansion II. Approximation of the Immigration-Death model MLS function landscape and opti-
mization result for simulated data with polynomial chaos expansion with a grid of 33 data points
on different ranges. White stands for higher function values than assigned in the color bar.
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Estimation with manual zoom in:
One data set is simulated stochastically with ν0 = 10, θ(0) = (1, 0.1) and 100 observations with
T = 50. Then the method described in section 2.4.3 is applied with a grid Γd=2

l=5 of 33 points

(section 2.4.3) and the MLS function F
(m)
g , (2.11), is evaluated with 1000 simulations. The figures

4.1 and 4.2 show the plots of the approximated objective function landscape and the tables give the
result for the optimization for different degrees of the polynomial chaos expansion. The graphics in
figure 4.1-4.3 are plotted with the ColorbarPlot package, which is available in the Wolfram library
archive of Mathematica [38]. The optimization is performed with the FindMinimum-routine of
the software Mathematica. The initial value for the optimization is the mean of the range and the
range is as well used as constraints for all cases except 4.1, degree 2, where the lower bound is
chosen as initial value because choosing the mean results in a local minimum.

Figure 4.2 (C)

Range: [0.1, 2]× [0.01, 0.25]

Estimation
Deg ObjF Parameter

2 138 (1.36, 0.17)
3 145 (1.00, 0.14)
4 145 (1.20, 0.21)
5 145 (1.40, 0.21)
6 148 (1.12, 0.09)
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Figure 4.3: Approximation of the MLS function landscape with polynomial chaos ex-
pansion III. Approximation of the Immigration-Death model MLS function landscape and opti-
mization result for simulated data with polynomial chaos expansion with a grid of 33 data points
on different ranges. White stands for higher function values than assigned in the color bar.

All landscapes in figure 4.1 show a valley for small θ2.Therefore for the first zoom in the range
[0, 10] × [0, 1.5] is chosen. The negative value for degree 2 is due to a bad approximation of the
landscape, which might result in negative values. This relatively rough approximation does not
allow for a reliable estimate of the parameters, which can be seen by the table of estimation
results included in figure 4.1. For the first zoom in the graphics for degrees 4 and 6 are shown
representatively in figure 4.2 (A). One point which should be noted is that the landscape seems to
have a valley for θ2 ≈ 0.1θ1, which is the unidentifiability in the ODE modeling. The figure 4.2
(A) suggests a further zoom in to the range [0.5, 4]× [0.1, 0.6]. The estimates are given in the table
included in the figure 4.2 (A). The estimates become better but still are not reliable. The third
and fourth zoom in, figure 4.2 (B)-(D), leads to more accurate representations of the landscape
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and reliable estimates.
Altogether the 4× 33 = 132 function evaluations took 69 minutes of computing time.
Using the EL method with the probability generating function in section 2.3.1 the minimum is
(θ1, θ2) = (1.23, 0.16). For further research it would be interesting if it is possible to improve the
estimation using the distances between the function values of the evaluated grid points and the
approximative landscape. Furthermore the minimum function value of the grid could also provide
some information.

Estimation results for an automatized zoom in:
The question is now whether it is possible to do the zooming automatically. The procedure is
described in the pseudo code in figure 4.4. Now a simulation study is performed as in the Particle

Pseudo code for automatized zoom in

• Initialize range for the first iteration: r(0) =
∏d
i=1[r

(0)
l,i , r

(0)
u,i ].

• For j = 0, . . . , J

1. Calculate estimates θ(l,j) for degree l = 2, ..., NPC on a grid Γj for a range r(j).

2. For i = 1, ..., d

– Calculate Floor

((
θ

(l,j)
i

)
(l=2,...,NPC)

)
=: min and

Ceiling

((
θ

(l,j)
i

)
(l=2,...,NPC)

)
=: max.

– If min < r
(j)
l,i , r

(j+1)
l,i = r

(0)
l,i , else r

(j+1)
l,i = min.

– If max > r
(j)
u,i, r

(j+1)
u,i = r

(0)
u,i , else r

(j+1)
u,i = max.

3. r(j+1) =
∏d
i=1[r

(j+1)
l,i , r

(j+1)
u,i ].

• Output:
(
θ(l,J)

)
(l=1,...,NPC)

of ΓJ .

Figure 4.4: Pseudo code for polynomial chaos expansion with automatized zoom in

Swarm, section 4.1.1. 50 data sets are simulated with the Gillespie algorithm. For each of the data
sets the parameter is estimated using the automatic zoom in with the polynomial chaos expansion
described in figure 4.4 with a grid Γd=3

l=10 of 161 data points (section 2.4.3) and J = 2 iterations.
1000 simulations are used for the estimation of the transition probabilities in the MLS function

F
(m)
g , (2.11), see table 4.3. The average computing time for the 3×161 = 483 function evaluations

was 140 minutes, which is the same magnitude as for the modified Particle Swarm. The results
display a quite large fluctuation of the estimates. Thus the automatization procedure still has to
be improved. Furthermore a stopping criterion should be developed terminating the zoom in when
the landscape is “similar enough” to the evaluated points.
What is nevertheless an advantage of the polynomial chaos expansion is the possibility of having
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Table 4.3: Estimation results for the polynomial chaos expansion with automatized
zoom in. Averages, standard deviation and relative errors for estimation results for 50 simulated
data sets for the Immigration-Death model with x0 = 10. 50 observations, ∆t = 0.5, θ(0) = (1, 0.1).

Estimation Results Rel err
θ1 1.58 ±0.91 60%
θ2 0.14 ±0.10 62%

a graphical representation of the landscape. This allows a much better analysis than just a single
estimate as given with Particle Swarm. For higher dimensions projections can be used to give
information on the parameters of interest. Hence the use of the polynomial chaos expansion seems
to be more an expert tool for investigation of the landscape structure of the objective function
than a general applicable tool being ready for implementation.

4.1.3 Estimation using the MSS method

On the one hand the Immigration-Death model is an instructive example – the partially observed
case even cannot be studied – on the other hand it is highly relevant as it allows a comparison
between the performance of the MSS method with the functional of equation (3.2) and the result
of the EL method with the exact transition probability, which can only be calculated exactly in
very simple cases.
To evaluate the performance of the MSS method it is compared to an EL estimation on 50 data
sets obtained from simulations using the Gillespie method [2] with the software COPASI [28]. The
initial condition is always the steady state of the system. For each of the data sets the objective
function of the MSS method and the objective function of the EL method are optimized using the
FindMinimum-routine of the software Mathematica [38] with true parameter as initial value for
the optimization and constraints 0 < θk < 5 for both components k = 1, 2 of the parameter vector.
For remarks on the optimization method used by Mathematica see section 4.1.1. Then the mean
and the standard deviation of both estimators as well as the average relative error are calculated.
This procedure is done for different parameters and designs. The results are shown in table 4.4. To
check the approximation the mean and autocorrelation time of the residuals as well as the SNR
are calculated.
The results given in table 4.4 lead to two conclusions: An estimation is possible and unbiased if
there are enough measurements, 4.4 (B), (C). If the trajectory is very short 4.4 (A) the estimator
might be biased. The reason for that is that for a low SNR more measurements are needed to
sum up enough information for the estimation - see figure 4.5, which shows the ODE dynamics
in form of the solution of the corresponding initial value problem h(ti, θ, νi−1, ti−1) as well as
the residuals (dotted red line) for each interval [ti−1, ti]. One can see that for this situation the
system’s dynamics are not well represented by the ODE solutions. Nevertheless an estimation
in this scenario is possible, for example using methods suggested in [60]. This method uses the
ODE steady state information to determine the functional relationship between the two parameters
and then uses the stochastic fluctuations to determine their absolute value. The EL method also
makes much better use of the intrinsic fluctuations than the MSS method and therefore results
in more accurate estimates. But it is only possible in this simple example model. The mean and
autocorrelation time of the residuals of the MSS method behave very well with respect to the
comments on the residuals given in the methods section. The computing time for one estimation
is 0.05 seconds on the same machine as mentioned in section 4.1.1.
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Table 4.4: Estimation results for Immigration-Death model. Mean, standard deviation,
average relative error and test functions of estimation results for 50 simulated data sets for the
Immigration-Death model with ν0 = 10.

Estimation Results Rel Err Test functions (averages)
EL MSS EL MSS

(A) 100 observations, ∆t = 0.5, θ(0) = (1, 0.1)
θ1 1.00 ±0.19 1.56 ±0.92 15% 71% ε̄ = 10−8, σ̂ = 1, KL: 0.14
θ2 0.101 ±0.02 0.156 ±0.09 16% 72% act(ε) = 1.2, NDR: 1.07, SNR: 0.21

(B) 2000 observations, ∆t = 0.5, θ(0) = (1, 0.1)
θ1 1.00 ±0.04 1.00 ±0.15 2% 13% ε̄ = 9 · 10−9, σ̂ = 1, KL: 0.18
θ2 0.101 ±0.00 0.101 ±0.015 2% 13% act(ε) = 1.0, NDR: 1.06, SNR: 0.17

(C) 500 observations, ∆t = 5, θ(0) = (1, 0.1)
θ1 1.01 ±0.09 1.02 ±0.11 7% 9% ε̄ = 4 · 10−8, σ̂ = 2.6, KL: 0.01
θ2 0.101 ±0.01 0.102 ±0.01 7% 9% act(ε) = 6.7, NDR: 0.91, SNR: 0.50

(D)100 observations, ∆t = 10, θ(0) = (0.6, 0.06)
θ1 0.60 ±0.12 0.65 ±0.17 15% 21% ε̄ = 10−8, σ̂ = 2.7, KL: 0.03
θ2 0.061 ±0.01 0.065 ±0.018 16% 22% act(ε) = 13.8, NDR: 0.88, SNR: 0.55
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Figure 4.5: Representation of the system’s dynamics with the MSS method. Blue points:
data points, blue curve: system’s dynamics with MSS method, red dotted lines: residuals for
Immigration-Death model with different designs (A) and (B). For the estimation of the parameters
100 observations are used, only the first 50 are shown in the figure.
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This example is a proof of concept example as it demonstrates that an estimation with MSS method
is possible even in a case which would be structurally unidentifiable for TSS methods [41].
The results of table 4.4 (D) can be compared to [7], where a stochastic gradient descent method
is applied to the same setting. The gradients are evaluated with a reversible jump Markov chain
Monte Carlo method. Hence this method does not use any approximation and its results are
a comparison how much influence the approximation of the MSS method has on the estimation
results. As there is only the result of one estimation procedure given a comparison with respect
to unbiasedness and variance is not possible. However 4 out of 5 of the relative errors of table 4.4
(D) are smaller than the relative error of [7]. Table 4.4 (B) - (D) also suggest that using the MSS
method models become identifiable which are unidentifiable using TSS methods.

4.1.4 Limiting cases

This section will present some of the limiting properties of the functional l, (2.7). The idea behind

this is that for large m the functional F
(m)
g will be very close to l. Therefore it is also interesting

to know about the behavior of l.

Number of observations

In the following the EL method is used. It is based on the function l, equation (2.7), with the
exact transition probabilities calculated with the probability generating function in section 2.3.1.

Table 4.5: Asymptotic properties of l. Statistics of the estimates using l for 100 simulated
time series in dependence on the number of observations. θ(0) = (1, 0.1), ∆t = 0.5.

numb obs minimum 10%-quantile mean 90%-quantile maximum
100 θ1 0.64 0.78 1.01 1.25 1.42

θ2 0.054 0.080 0.103 0.132 0.167
250 θ1 0.75 0.85 1.00 1.15 1.30

θ2 0.067 0.085 0.101 0.117 0.131
500 θ1 0.78 0.92 10.2 1.12 1.25

θ2 0.084 0.090 0.101 0.109 0.129
1000 θ1 0.82 0.94 1.00 1.09 1.14

θ2 0.086 0.093 0.101 0.109 0.120
10000 θ1 0.96 0.97 1.00 1.02 1.05

θ2 0.096 0.098 0.100 0.103 0.105
100000 θ1 0.98 0.99 1.00 1.01 1.01

θ2 0.099 0.099 0.100 0.101 0.101

For 100 simulated data sets which are most of the time in the steady state phase of ODE modeling
the estimates with the EL method are calculated. Table 4.5 presents the minimum, 10%-quantile,
mean, 90%-quantile and maximum in dependence of the number of observations, for a visualization
see also figure 4.6. In order to increase the speed of the calculation it is especially important to
change the order of the summation

l(ν, θ) =

n∑
i=1

log (pθ(νi, ti|νi−1, ti−1)) =
∑

(x,y)∈N0×N0

(
log pθ(x, t1|y, t0)

∑
i

1({νi=x,νi−1=y})

)
.
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The reason is that with increasing number of observations the number of identical jumps is strongly
increasing whilst the number of jumps which occur the first time is only slightly increasing.
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Figure 4.6: Asymptotic properties of l. The mean (red line), 10%- and 90%-quantiles (blue
lines) and minimum and maximum (black lines) of the 100 estimation from table 4.5.

Number of molecules

In this subsection the EL estimation and the TSS estimation will be compared for different num-
bers of molecules in the steady state. Therefore different time series are simulated which are not in
steady state for the initial value. This is important to make an estimation with the TSS methods
possible.
For 100 simulated data sets the estimates using l are calculated and in the table 4.6 the mini-
mum, 10%-quantile, mean, 90%-quantile and maximum are given in dependence of the number of
molecules. As with increasing number of molecules the steady state changes, the quotient of the
parameters is also increasing. The parameter θ2 is fixed at 0.1 and the parameter θ1 is increased
in order to achieve the steady state in table 4.6. To compare with a TSS estimation, a TSS es-
timation is performed using COPASI for the same setting. The estimation results in dependence
on the steady state demonstrate that the performance of the TSS estimation is dependent on the
number of molecules in the steady state. In contrast to that the estimation with the likelihood
function using the probability generating function does not depend on the number of molecules in
the steady state. The estimation is performed with the software COPASI [28] using an evolution-
ary programming algorithm with 2000 iterations and 20 individuals in each generation.
The accuracy of the TSS method increases with increasing number of molecules because the sys-
tems behavior can be better and better described with concentrations. For a theoretical argument
why this approximation holds see [3], section Langevin Method. The accuracy of the EL method
remains constant with respect to an increasing molecule number. Due to computational time the
results for the EL method are only calculated up to 500 molecules in the steady state. It would
be interesting for further research to see whether the TSS methods performance for high number
of molecules is really better (which the table might suggest) than the single molecule-based EL
method.
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Table 4.6: Performance of TSS and EL estimation for increasing number of molecules in
steady state. Statistics of 100 estimations with the EL method and TSS method in dependence
of the number of molecules in the steady state. 100 observations per simulated data set, θ2 = 0.1
and θ1 =

xsteady
θ2

. 100 simulated time series of length T = 50 and ∆t = 0.5.

x0 xsteady minimum 10%-quantile mean 90%-quantile maximum
5 10 EL 0.064 0.083 0.105 0.128 0.154

TSS 0 0 0.165 0.342 2.324
10 20 EL 0.074 0.082 0.104 0.125 0.171

TSS 0 0 0.137 0.301 0.943
25 50 EL 0.072 0.081 0.102 0.122 0.137

TSS 0 0.025 0.119 0.239 0.470
50 100 EL 0.067 0.081 0.100 0.121 0.147

TSS 0.010 0.060 0.121 0.198 0.276
100 200 EL 0.075 0.083 0.103 0.121 0.163

TSS 0.028 0.061 0.107 0.155 0.282
250 500 EL 0.077 0.082 0.099 0.115 0.145

TSS 0.039 0.076 0.103 0.132 0.186
500 1 000 TSS 0.063 0.078 0.100 0.121 0.146

1 000 2 000 TSS 0.072 0.083 0.099 0.116 0.143
10 000 20 000 TSS 0.092 0.095 0.100 0.105 0.108

100 000 200 000 TSS 0.098 0.098 0.100 0.102 0.103
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4.2 Lotka-Volterra model

A second example which is still small but allows an investigation of the behavior in partially
observed models is a Lotka-Volterra model:

X
θ1−→ 2 X

X + Y
θ2−→ 2 Y (4.1)

Y
θ3−→ ∅

where X is the prey and Y the predator and θ1, θ2, θ3 parameters. The first reaction of equation
(4.1) is the prey reproduction, the second the predator reproduction and the third is the predator
death. In terms of ODEs this system reads as

d[X]

dt
= θ1[X](t)− θ2[X](t)[Y ](t)

d[Y ]

dt
= θ2[X](t)[Y ](t)− θ3[Y ](t).

In this example different levels of measurement noise are considered.

4.2.1 Fully observed case with noise

To investigate the behavior of the MSS method with the functional from equation (3.2), 50 data sets
are simulated with the Gillespie algorithm using the software COPASI [28]. The true parameter
is θ(0) = (0.5, 0.0025, 0.3) and 40 observations are taken with ∆t = 1. The initial conditions

are (ν
(1)
0 , ν

(2)
0 ) = (71, 79). The setting is chosen in a way such that it is identically with [6]. A

comparison of the results will be given later in this section. Measurement noise is simulated as
follow: For each time point a normally distributed random variable is generated with a given
variance. Then it is rounded to the next integer. Hence the variance remains the same. This is
done because measurements are assumed to be integer counts. This is not necessary for theoretical
reasons or performance of the estimation. Note that due to the added noise negative measurements
may occur. As negative molecule counts are impossible they should be corrected to zero. This will
be done for σ = 25, which effectively leads to a measurement error which is not centered around
zero. For σ = 10 they are not corrected to test whether the method is able to handle negative data
points to some extent. The results demonstrate that the method is able to handle both situations.
For all data sets the objective function is optimized with the software Mathematica [38] with the
true parameter as initial value for the optimization and θ > 0 as constraints. The initial value
problems are solved with the NDSolve-routine. For details of this routine refer to the Mathematica
documentation. The average computing time on a personal computer as in section 4.1.1 was
approximately 3 minutes. Table 4.7 gives the mean and standard deviation of the 50 estimation
results using equation (3.2). For each estimation result the relative error is calculated. The MSS
method works very well in this example. The relative error of the estimation is in the range of the
relative error of the method proposed in [6], where only one data set is used for estimation. The
mean of the residuals is close to zero and the autocorrelation time small compared to the total
duration of observations. The signal to noise ratio is much better than in the Immigration-Death
case. For σ = 25 the mean of the residuals is not close to zero but considering the means of the
10% and 90%-quantiles, −90 and 47, one sees that the residuals still are small.
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Table 4.7: Estimation results for Lotka-Volterra model. Mean, standard deviation, average
relative error and test functions of estimation results for 50 simulated data sets with 40 observations
with ∆t = 1 and true parameter θ(0) = (0.5, 0.0025, 0.3) for the Lotka-Volterra model, ν0 = (71, 79).

Estimation Results Rel Err Test functions (averages)
exact measurements

θ1 0.501 ±0.016 2.5% ε̄ = (0.16, 0.07), σ̂KL = (12, 11),
θ2 0.00250 ±7 ∗ 10−5 2.2% KL: (0.2, 0.1) , act(ε) = (1.5, 1.8),
θ2 0.301 ±0.011 3.1% NDR: (0.24, 0.18), SNR: (4.3, 5.8)

noise: σ = 10
θ1 0.490 ±0.019 3.2% ε̄ = (0.89, 0.62), σ̂KL = (19, 18),
θ2 0.00248 ±9 ∗ 10−5 2.9% KL: (0.1, 0.1) , act(ε) = (1, 1),
θ2 0.302 ±0.012 3.4% NDR: (0.42, 0.34), SNR: (2.2, 2.9)

noise: σ = 25
θ1 0.454 ±0.031 9.7% ε̄ = (3.48, 2.52), σ̂KL = (40, 40),
θ2 0.00243 ±15 ∗ 10−5 5.2% KL: (0.04, 0.04) , act(ε) = (1, 1),
θ2 0.301 ±0.021 5.6% NDR: (0.68, 0.60), SNR: (1.1, 1.3)

4.2.2 Partially observed Lotka-Volterra model with noise

Now assume that only prey can be observed. As in the completely observed case simulated data
with true parameter θ(0) = (0.5, 0.0025, 0.3) and 40 observations with ∆t = 1 is used. Initial

condition is again (ν
(1)
0 , ν

(2)
0 ) = (71, 79) but as only prey can be observed only ν

(1)
0 = 71 will

be used as data point for the parameter estimation. ν
(2)
0 will be a variable for the optimization,

hence there are four variables for the optimization now:
(
θ1, θ2, θ3, ν

(2)
0

)
. Noise is simulated as

in the previous subsection. The optimization is performed with a particle swarm program (figure
2.8) implemented in Mathematica with 100 iteration with 25 particles on a range of [0.3, 0.7] ×
[0.001, 0.005] × [0.2, 0.4] × [25, 150]. The average computing time on a personal computer as in
section 4.1.1 was approximately 3 minutes. Table 4.8 gives the mean and standard deviation
of the 50 estimation results using (3.3) with K = {0}. For each estimation result the relative
error is calculated. The estimation performs still quite well even if only one species is observed.
The residuals are still approximately normally distributed as in the fully observed case. Negative
measurements due to the added measurement noise are treated as in the fully observed case, which

leads to the data points with value zero in figure 4.7. Instead of ν
(1)
0 = 71 the noisy value for ν

(1)
0

is utilized.
The same model is used for parameter estimation in stochastic models by Boys et al. [6], where
a Bayesian approach is used in combination with a reversible jump method for the evaluation of
the likelihood function. As previously mentioned the special choice of true parameters and initial
conditions in this chapter is made to allow for comparison with these results. In two out of three
cases the relative error with the MSS method lies below the smallest relative error of the methods
suggested by Boys et al. [6], where one estimation result per method is given.
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Table 4.8: Estimation results for partially observed Lotka-Volterra model, prey ob-
served: Mean, standard deviation, average relative error and test functions of estimation re-
sults for 50 simulated data sets with 40 observations with T = 40 and true parameter θ(0) =
(0.5, 0.0025, 0.3), only prey can be observed, ν0 = (71, 79).

Estimation Results Rel Err Test functions (averages)
exact measurements

θ1 0.501 ±0.054 8.8% ε̄ = −0.1, σ̂KL = 12,
θ2 0.0026 ±3 ∗ 10−4 11.1% KL: 0.1 , act(ε) = 1.5,
θ2 0.312 ±0.048 13.4% NDR: 0.2, SNR: 4.4

noise: σ = 10
θ1 0.478 ±0.050 9.3% ε̄ = 0.7, σ̂KL = 20,
θ2 0.0026 ±3 ∗ 10−4 10.6% KL: 0.04 , act(ε) = 1,
θ2 0.318 ±0.045 13.4% NDR: 0.4, SNR: 2.3

noise: σ = 25
θ1 0.430 ±0.070 16.6% ε̄ = 3.1, σ̂KL = 19,
θ2 0.0028 ±4 ∗ 10−4 16.8% KL: 0.04 , act(ε) = 1,
θ2 0.336 ±0.048 16.5% NDR: 0.65, SNR: 1.1
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Figure 4.7: Representation of the system’s dynamics with the MSS method for Lotka-
Volterra model. Blue points: data points, blue curve: system’s dynamics with MSS method,
red dotted lines: residuals for partially observed Lotka-Volterra model without (A) and with (B)
measurement noise.
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4.3 Calcium oscillation model

Third model is a Calcium oscillation model [22]:

d [g]

dt
= θ1 + θ2[g](t)− θ5 [g](t) [plc](t)

[g](t) + θ6
− θ7 [g](t) [plc](t)

[g](t) + θ8

d [plc]

dt
= θ3[g](t)− θ9 [plc](t)

[plc](t) + θ10

d [ca]

dt
= θ4[g](t)− θ11 [ca](t)

[ca](t) + θ12
.

(4.2)

where ca stands for the cytosolic Calcium, g for the active subunit of the G-protein and plc for the
activated form of PLC [22].
The behavior of this model differs qualitatively between stochastic and ODE modeling for small
particle numbers as presented in [22] and in figure 1.2. In this model the estimation of the transition
probabilities is a challenge due to the large state space.

4.3.1 Fully observed model

To investigate the behavior of the MSS method with objective functional from equation (3.2), 50
data sets are simulated with the Gillespie algorithm using the software COPASI [28]. The true
parameter and initial condition with the units ml, s and particles (#) and with a compartment
volume of 1 ml are:

θ(0) = (212, 2.95, 1.52, 190, 4.88, 1180, 1.24, 32240, 29090, 13.58, 153000, 160)
(ca0, g0, plc0) = (10, 10, 10).

Note that for this set of parameters the system oscillates irregularly with large amplitudes modeled
stochastically but oscillates regularly with small amplitudes modeled with ODEs. 100 observations
are taken with ∆t = 0.5, which cover about 4 oscillation cycles. For all data sets the objective
function (3.2) is optimized using a Particle Swarm program (see figure 2.8) implemented in the
software Mathematica [38] with 500 iteration with 100 particles on a range of

[150, 250]× [2, 4]× [0.5, 2.5]× [100, 250]× [0, 10]× [500, 3000]× [0.5, 2.5]

×[20000, 40000]× [20000, 40000]× [10, 20]× [100000, 200000]× [100, 200].

This relatively small range is chosen to focus on the objective function and not on optimization
issues such as local minima. The initial value problems are solved with the NDSolve-routine of
Mathematica as in section 4.2.1. The average computation time was 3.5 hours. It should be stated
that this can be reduced drastically using efficient methods as mentioned at the end of section

3.1. Using stochastic simulations each evaluation of F
(m)
g , equation (2.11), with m = 3 would

last approximately 35 seconds. Considering that m = 3 only gives a very rough estimate of the
transition probabilities and that several thousand functional evaluations are necessary this is just
too slow.
Table 4.9 gives mean and standard deviation of the 50 estimation results. For each estimation
result the relative error is calculated. The estimation performs quite successfully. The parameter
θ2, which determines the oscillatory behavior of the system, has very small relative error.
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Figure 4.8: Representation of the system’s dynamics with the MSS method for the
fully observed Calcium oscillation model. Blue points: data points, blue curve: system’s
dynamics with the MSS method, red dotted lines: residuals for fully observed Calcium oscillation
model. 100 observations are used for the estimation of the parameters, only the first 40 are shown
in the figure. The fact that the red dotted lines can hardly be seen underlines that the systems is
very well represented.
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Table 4.9: Estimation results for fully observed Calcium oscillation model. Mean, stan-
dard deviation and average relative error of estimation results for 50 simulated data sets of 100
observations with T = 50 for the Calcium oscillation model, (ca0, g0, plc0) = (10, 10, 10).

True param Estimation results Rel err
θ1 212 219 ±32 13.4%
θ2 2.95 2.94 ±0.03 0.74%
θ3 1.52 1.52 ±0.02 0.87%
θ4 190 192 ±52 24.1%
θ5 4.88 4.93 ±0.30 5.02%
θ6 1180 1381 ±747 52.5%
θ7 1.24 1.24 ±0.01 0.57%
θ8 32240 32390 ±2013 4.08%
θ9 29090 29335 ±2766 5.95%
θ10 13.58 13.63 ±0.39 2.30%
θ11 153000 153587 ±4606 2.40%
θ12 160 162.6 ±7.0 3.46%

To investigate how well the method covers the stochastic dynamics the test functions are evalu-
ated with the optimal parameters for all data sets, the averages are given in the following. Cal-
culating the residuals yields for 10%-quantile, mean and 90%-quantile: ca, {−156, 0.09, 150};
g, {−246,−0.8, 226}; plc, {−123,−0.3, 117}. The estimated variances are σ̂KL = (154, 195, 97)
with a KL divergence value of (0.49, 0.09, 0.05). The autocorrelation times, ca : 0.85, g : 1.01,
plc : 0.95, are much smaller than the total observation time. The NDR are (0.1, 0.2, 0.1), SNR
are (9.7, 8.8, 14.2), which states that the system’s dynamic is well represented, see also figure 4.8,
which shows for Calcium that the residuals (red dotted lines) are small compared to the ODE
system’s dynamics (blue line).
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Figure 4.9: Widely varying amplitudes of two recorded simulated data in ca-oscillations
due to the intrinsic stochasticity and due to the fact that the peak of the oscillation is not always
recorded because of the length of the time interval between two successive points of measurements.

To emphasize the strong influence of the stochasticity figure 4.9 shows two different ca time courses.
The amplitude of the recorded simulated data varies widely, which is due to the fact that the
oscillations have different amplitudes because of the stochasticity and because of the fact that the
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time interval between two successive measurements is so large that the peak of the oscillation is
not always recorded.

4.3.2 Partially observed Calcium oscillation model

Time course data for g

At first assume that only g can be observed. As in the completely observed case simulated data
with true parameter θ(0) and 100 observations with ∆t = 0.5 is used. Initial condition is again
(ca0, g0, plc0) = (10, 10, 10) but as only g can be observed only g0 = 10 will be used as data input
for the parameter estimation. The ODE system is structurally unidentifiable in this case. An
increase in ca or plc can be “compensated” with a change of the parameter values and lead to
exactly the same systems behavior. To illustrate this assume that instead of an amount plc(t) in

the system there is a multiple of this amount present: p̃lc(t) = α plc(t) with α > 0. Adjust θ7 to
θ7
α . Next consider the second ODE of (4.2), which is now in terms of p̃lc:

d [p̃lc]

dt
= θ3[g](t)− θ9 [p̃lc](t)

[p̃lc](t) + θ10

d (α [plc])

dt
= θ3[g](t)− θ9 α [plc](t)

α [plc](t) + θ10

d [plc]

dt
=

θ3

α
[g](t)− θ9 [plc](t)

α [plc](t) + θ10

d [plc]

dt
=

θ3

α
[g](t)−

θ9
α [plc](t)

[plc](t) + θ10
α

,

which shows that the system can be traced back to the old system with adjusted parameter values.
This can be done in a similar way for the amount of ca. The result is that the solution g of the
system has the same behavior for a set of combinations of initial conditions and parameters. The
manifold {ρ(θ, ca0, plc0), ca0, plc0|ca0, plc0 > 0} is two-dimensional and described with the function
ρ:

ρ(θ,ca0, plc0)

= (θ1, θ2,
θ3

plc0
, θ4,

θ5

ca0
, θ6, θ7plc0, θ8plc0, θ9plc0, θ10ca0, θ11ca0, θ12ca0).

Therefore (ca0, plc0) can be fixed at an arbitrary value for the optimization leading to a single

result θ̂, which spans the manifold. Due to that the optimization problem remains 12-dimensional
although the model is only partially observed.
The optimization is again performed with a Particle Swarm (figure 2.8) implemented with Math-
ematica using 250 iterations with 50 particles per iteration on a range of

[100, 500]× [2, 4]× [1, 3]× [1, 1000]× [0.1, 10]× [100, 10000]× [0.1, 10]

×[10000, 100000]× [10000, 100000]× [10, 20]× [100000, 200000]× [10, 500].

The small range is again chosen to focus on the objective function and not on optimization issues
such as local minima. The average computing time was 0.75 hours, which is less than in the fully
observed case as the number of iterations and particles used in the Particle Swarm is smaller. De-
termining an optimal number of particles is an issue for further research. Determining an optimal
number of iterations means the implementation of a suitable stopping criterion. As in the previous
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subsection it should be noted that the use of efficient numerical optimization methods as in [19]
would be most time saving.
Table 4.10 gives mean and standard deviation of the 50 estimation results using (3.3) with
(ca0, plc0) = (1, 1). To calculate the relative errors with respect to the true parameter the es-

timate parameter is transformed with respect to the true initial conditions: ρ(θ̂, 10, 10). This
transformation along the manifold does not change the value of the objective function. The re-
sults depict a quite good estimation. Especially the parameter θ2, which determines whether the
system oscillates, is estimated with very low relative error. Some other parameters still can not be
estimated. Further research has to be carried out to determine the underlying reasons.
To investigate how well the method covers the stochastic dynamics the test functions are evaluated
with the optimal parameters for all data sets, the averages are given in the following. Calculating
the averages of the residuals yields the following numbers for 10%-quantile, mean and 90%-quantile:
g, {−285,−2.7, 270}. The estimated variance is σ̂KL = 232 with a KL divergence value of 0.07.
The autocorrelation time 0.5 is much shorter than the total observation time. Figure 4.10 shows
that the system’s dynamic is well represented, SNR is 7.1 and NDR is 0.14, which demonstrates
that the estimation is possible even with only one observed species.
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Figure 4.10: Representation of the system’s dynamics with the MSS method for the
partially observed (g) Calcium oscillation system. Blue points: data points, blue curve:
system’s dynamics with MSS method, red dotted lines: residuals for partially observed Calcium
oscillation model observing g. 100 observations are used for the estimation of the parameters, only
the first 40 are shown in the figure.
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Table 4.10: Estimation results for partially observed Calcium oscillation model: g.
Mean, standard deviation and average relative error of estimation results for 50 simulated data
sets of 100 observations with T = 50 for the partially observed Calcium oscillation model: only g
observed.

True param Estimation results Rel err
θ1 212 293 ±100 52%
θ2 2.95 2.97 ±0.05 1.8%
θ3 1.52 1.88 ±0.6 36%
θ4 190 410.6 ±178 123%
θ5 4.88 4.86 ±0.67 10.7%
θ6 1180 1610 ±1332 86%
θ7 1.24 1.10 ±0.39 28.4%
θ8 32240 48216 ±11676 51%
θ9 29090 56510 ±17299 94%
θ10 13.58 14.26 ±1.67 10.3%
θ11 153000 160625 ±18698 10.3%
θ12 160 167.0 ±29.7 15.4%

Time course data for Calcium

Observing Calcium in time course data is the realistic case from biological point of view. The system
is again structurally unidentifiable in this case. The reason is the same as described in the previous
subsection. Instead of ca the amount of g can now vary. The manifold {(ρ(θ, g0, plc0), g0, plc0) |
g0, plc0 > 0} is two-dimensional and described with the function ρ:

ρ(θ, g0, plc0) = (θ1g0, θ2,
θ3g0

plc0
, θ4g0, θ5g0, θ6g0,

θ7plc0
g0

, θ8plc0, θ9plc0,
θ10

g0
, θ11, θ12).

Therefore for the optimization (g0, plc0) can be fixed leading to a single result θ̂, which spans the
manifold. Due to that the optimization problem remains 12-dimensional although the model is
only partially observed. But this situation leads to difficulties. An estimation is now performed
with the functional (3.3) with (g0, plc0) = (1, 1) as it is done for case where g is observed. After a

transformation to ρ(θ̂, 10, 10) due to the true initial conditions as in the previous subsection yields
for one example to an estimate of

θ̂ = (45.8, 2.46, 1.46, 501, 7.26, 71.7, 1.89, 54833, 10862, 23.6, 106135, 1.0),

which is far away from the true parameter. Again the Particle Swarm (figure 2.8) was used with
250 iterations and 100 particles on a range of

[10, 1000]× [2, 4]× [1, 2]× [10, 1000]× [1, 100]× [10, 10000]× [0.1, 2]

×[10000, 100000]× [10000, 35000]× [1, 100]× [10000, 200000]× [1, 200].

To investigate how well the method covers the stochastic dynamics the test functions are evaluated
with the optimal parameter. The residuals yield as above with 10%-quantile, mean and 90%-
quantile: ca, {−469, 376, 1621}, which seems to question the hypothesis of centered normally
distributed residuals. The estimated variance is σ̂KL = 1203 with a KL divergence value of 1.02.
The autocorrelation time is 3, SNR(ν(ca), θ̂) = 1.05 and NDR(ν(ca), θ̂) = 0.65 and the system’s
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dynamics are not at all represented, see also figure 4.11 (A). With the knowledge of the true
parameter one can identify the problem: For a short time interval the system’s dynamics are well
represented but then due to the development of the unobserved species it is not well represented
any longer, see figure 4.11 (B). Hence in this case it is better to enlarge the optimization vector
and use functional (3.3) with K = {0, 5, 10, . . . , 45}, which means that also unobserved states at
other time points than zero are included in the optimization vector. Again (g0, plc0) = (1, 1) is

fixed for t0 and the results transformed to ρ(θ̂, 10, 10).
The optimization is performed again with the Particle Swarm (figure 2.8) with 250 iterations and
250 particles on a range of

[10, 1000]× [2, 4]× [1, 2]× [10, 1000]× [1, 100]× [10, 10000]× [1, 2]

×[10000, 100000]× [10000, 35000]× [1, 100]× [100000, 200000]× [10, 200].

For the unobserved states included in the optimization (gtj , plctj ), 0 6= tj ∈ K, the range for
the optimization is [0.9gtj , 1.1gtj ] × [0.9plctj , 1.1plctj ]. This is done to focus on the objective
function and not on optimization issues such as local minima. The average computing time was
approximately 4 hours, again the remark stated in the fully observable case applies here.
The results demonstrate that an estimation is possible with this functional, see table 4.11.
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Figure 4.11: Representation of the system’s dynamics with the MSS method for the
partially observed (ca) Calcium oscillation system I. Blue points: data points, blue curve:
system’s dynamics with MSS method, red dotted lines: residuals for partially observed Calcium
oscillation model observing ca. (A) with an estimated parameter and (B) with the true parameter.
100 observations are used for the estimation of the parameters, the first 40 are shown in the figure.
Around t = 15 it seems that the blue lines do not start at the blue points. This is only due to
graphical resolution.
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Table 4.11: Estimation results for partially observed Calcium oscillation model: ca.
Mean, standard deviation and average relative error of estimation results for 50 simulated data
sets of 100 observations with T = 50 for the partially observed Calcium oscillation model, only ca
observed.

True param Estimation results Rel err
θ1 212 145.4 ±115.1 56.2%
θ2 2.95 3.06 ±0.39 9.9%
θ3 1.52 1.49 ±0.22 11.5%
θ4 190 212.3 ±200.5 76.5%
θ5 4.88 7.85 ±5.58 70.4%
θ6 1180 1944 ±2405 144.4%
θ7 1.24 1.48 ±0.20 21.7%
θ8 32240 33860 ±8578 20.9%
θ9 29090 23670 ±6278 23.7%
θ10 13.58 15.12 ±5.55 24.3%
θ11 153000 161206 ±22965 13.0%
θ12 160 101 ±56.9 43.0%



76 Applications

0 5 10 15 20
t0

2000

4000

6000

8000

10 000

12 000

ca

Figure 4.12: Representation of the system’s dynamics with the MSS method for the
partially observed (ca) Calcium oscillation system II. Blue points: data points, blue curve:
system’s dynamics with MSS method, red dotted lines: residuals for partially observed Calcium
oscillation model observing ca with the objective function (3.3). 100 observations are used for the
estimation of the parameters, only the first 40 are shown in the figure.

Now the situation has improved. To investigate how well the method covers the stochastic dynamics
the test functions are evaluated with the optimal parameters for all data sets, the averages are given
in the following: 10%-quantile, mean and 90%-quantile of the residuals are (−1997, 162, 1214). The
estimated variance is σ̂Kl = 1823 with a KL divergence value of 0.67. The autocorrelation time is
1.16 and the SNR is 1.7 and NDR 5.2. The relatively high value of the NDR is due to the fact
that it is small on most intervals of the form [tj , tj + 5] with tj ∈ K and very high on very few
intervals. This means that the other intervals give enough information for the estimation but the
NDR value is influenced by this single high value because the average is not resistant to outliers.
Figure 4.12 shows that the system’s dynamic is well represented.
The unidentifiability is caused by an identical system’s dynamics of the ODE system on a set of
parameters and initial conditions. There is a method for tackling identifiability problems caused by
this situation [60] using the intrinsic fluctuations. It is suggested for further research to investigate
its impact on the Calcium identifiability problem.
This example is highly important as it demonstrates that the short time ODE integration method
can still be used if the system’s behavior is very different in ODE modeling or stochastic modeling.
The method is even applicable to partially observed models.



Discussion and conclusion

The thesis investigates methods for parameter estimation for stochastic models. In particular it
presents a fast method (MSS method) motivated by multiple shooting for the ODE integration.
The MSS method is able to estimate parameters from partially observed stochastic time course data
with measurement noise even in models which behave qualitatively different in stochastic modeling
and in ODE modeling. The method using the MLS function with simulations to estimate the tran-
sition probabilities of the likelihood function is much more cost-intensive from computational point
of view. Therefore it can be seen as an addition for situations where the test functions advise that
the MSS method does not cover the stochasticity very well. Amongst the investigated examples
this happened only in the Immigration-Death example under certain designs where only very few
reactions occurred.

Before presenting the MSS method the thesis also investigates methods based on stochastic simu-
lations. The first simulation-based method uses a least squares functional, well known from ODE
parameter estimation, evaluated with stochastic simulations. Although being clear from a statis-
tical point of view that the Gaussian distribution assumption does not hold for stochastic models
it was not clear how strong this would affect the estimation. To get a result not based on simu-
lations and stochastic simulated data sets the concept of the probability generating function is
used to derive a solution of the CME for an Immigration-Death model. This is done by building a
power series of the probabilities for the states and verifying that the power series satisfies a partial
differential equation. This can be solved analytically in this specific example. This leads to the
solution of the CME. Applied to the objective function this leads to the conclusion that the average
landscape of the objective function is biased.

Therefore the likelihood function in which the transition probabilities are estimated using simu-
lations (LS function) is more appropriate for the estimation of model parameters in stochastic sys-
tems. Again the expectation value of the landscape of the objective function is calculated using the
concept of the probability generating function. The behavior is unbiased. For the estimation of the
transition probabilities also other more sophisticated methods could be applied [4,6], nevertheless
large state spaces remain a challenge. Especially for this situation a modification is suggested with
the MLS function to cope with cases where estimates of the transition probabilities could be zero
due to simulation effects.

The optimization of the resulting stochastic landscape can be done using black box optimizers
such as Particle Swarm, for which a stopping criterion that takes into account the stochasticity is
suggested. This stopping criterion could be also useful for other global optimization algorithms
applied to stochastic problems. Another approach is a transformation to a deterministic landscape
with the polynomial chaos expansion. This is normally used for deterministic functions and here
extended to stochastic functions.

77



78 Discussion and conclusion

As the MSS method did not represent the stochasticity very well for certain designs in the
Immigration-Death model and therefore led to biased estimates, the MLS function is tested in
this scenario and compared to exact results with the EL method gained by the application of the
probability generating function. Using a Particle Swarm algorithms (section 2.4.2) demonstrates
that the parameters can be estimated with a similar relative error to the true parameter as with the
EL method. Applying the stopping criterion proposed in figure 2.9 leads to a significant reduction
in the number of function evaluations. This is an important improvement as the function evalu-
ations using stochastic simulation are time intensive from a computational point of view. With the
stopping criterion the computing time was 133 minutes with averagely 414 function evaluations
(see section 4.1.1 for details). Using the polynomial chaos expansion the number of function evalu-
ations can be further reduced to 132 function evaluations but to this end a zoom in procedure has
to be carried out manually (section 4.1.2). An automatization is not yet successful (table 4.3).
Therefore the application of the polynomial chaos seems to be more an expert tool for gaining
information concerning the structure of the landscape than a tool being ready for implementation.

Further investigating the properties of the likelihood function – to which the MLS function F
(m)
g

(2.11) should be close if enough simulations are performed – demonstrates that the relative error
decreases with increasing numbers of observations. For increasing number of molecules the perfor-
mance of the TSS method improves while the performance of the EL method remains constant.

For larger models with larger state spaces all simulation-based methods become very time-consum-
ing. Therefore chapter 3.1 suggests the MSS method calculating the residuals between the ODE
dynamics of the system and the stochastic data points on short time intervals. The MSS method is
able to estimate parameters even in models which have a qualitatively different behavior in stochas-
tic modeling than in ODE modeling [22]. The advantage of the MSS method is that it does not
need stochastic simulations nor a solution of a high-dimensional CME, which increases its speed.
Hence it is well applicable in larger realistic size models, which would be very time-consuming in
simulation-based methods.
The approximation with an ODE model on a short time interval does not pose a problem as the
test functions demonstrate that the approximation works even in models with qualitatively dif-
ferent behavior in stochastic modeling than in ODE modeling. For this it is important that the
approximation is only done on a relatively short time interval. In models with very few reactions
per time interval such as the Immigration-Death model the signal to noise ratio is bad so that many
observations are necessary or the inter sample distance has to be increased (table 4.4 (C)), which
underlines the importance of experimental design. But in many realistic models it is not possible
to measure fast enough to capture every single reaction so this fact does not reduce the applicabil-
ity of the method much. Especially in oscillatory systems such as Lotka-Volterra or the Calcium
oscillation model, in which a larger state space makes other approaches more time-consuming, the
MSS method proposed in this thesis performs very well.
Therefore the use of a moment-closure approach [11] as mentioned in section 3.1 with only the first
moment does not seem to be necessary. Whether a moment-closure with higher moments would
be advantageous in cases with poor test function values is up to further research.

The results for the Immigration-Death model demonstrate that the MSS method yields an unbiased
result compared to an exact analytical estimation with the EL method if there are enough measure-
ments or the measurements are placed considering the concept of experimental design. An analysis
how an optimum experimental design could be calculated for stochastic models is suggested for
further research. The standard deviation of the MSS method seems to be slightly higher than the
standard deviation of the EL method. Compared to a stochastic approach by Wang et al. [7], the
suggested MSS method performed well: the results for sample data sets were more accurate in



Discussion and conclusion 79

80% of the 50 sample data sets, which still might be due to the stochastic effects as [7] provided
a single data set. The big advantage of the MSS method is the fast computation, which took in
average 0.05 seconds per sample data set. The case of table 4.4 (A), in which the MSS method is
biased, is a situation when only very few reactions happen per time interval between two points of
measurements as can be detected with the test functions. In reality this is generally not the case.
If the system which is under investigation shows that behavior it is suggested to use CME-based
methods, which will work fast in that case due to the very small state space. An alternative is a
method using the ODE steady state information in combination with the stochastic fluctuations.
This work has also been part of the parameter estimation for stochastic models project and its
manuscript is in preparation [60].
The results of the Lotka-Volterra model demonstrate that the MSS method is well able to provide
estimates for fully and partially observed models within the accuracy of methods using stochastic
simulations [6]. Further simulated data sets – not shown here – containing time courses in which
the species prey dies out indicate that the MSS method handles even such cases successfully.
The Calcium oscillation model was a very important test case and the MSS method showed good
performance in estimating the parameters although the system’s behavior is completely different
in stochastic and deterministic modeling. Figure 4.9 shows that even the amplitudes of the oscil-
lations for a single time course vary widely. This is due to two reasons: the stochasticity causes
different amplitudes and the distance between two succeeding measurements leads to the effect
that the peak of the oscillation is not always recorded. Computing times are in the order of a few
hours and can be reduced by using efficient numerical optimization methods. Tackling this model
with methods using stochastic simulations seems by far too slow from computational point of view.
For the partially observed case the amount of information depends on the fact which species is
observed. Observing g the estimation is possible. Observing only Ca the objective function of the
MSS method has to be modified to equation (3.3) with K = {0, 5, . . . , 45}.
The examples demonstrate that although the maximum likelihood property is theoretically lost
for the MSS method the estimation is still quite precise because the violations of the maximum
likelihood conditions are not strong. The proposed test functions work fine as they identify those
situations which lead to a bias and “accept” the others. The two measures SNR and NDR perform
inversely proportionally so it would be enough to calculate only one of them. The MSS method
also allows for the extension to the case of measurement noise, in which even data points with
resulting negative molecule counts can be used. An example with measurement noise is given for
the Lotka-Volterra example.

The investigation of methods for parameter estimation for stochastic models results in the fast
and efficient MSS method based on multiple shooting and the method based on the MLS function
for cases where the MSS method does not cover the stochasticity well. Test functions are used to
support the decision on the appropriate use of the methods. As the MSS method with multiple
shooting is based on ODEs it allows from computational point of view to tackle systems from point
of state space as large as systems tackled in deterministic modeling.

Outlook for future work:

An interesting point for future research would be an in-depth analysis of the question which method
is appropriate for which class of models and a criterion to classify models a priori into the classes.
Furthermore research on the statistical properties of the estimates, e.g. confidence intervals for
the parameters, would be important for the quality assessment of the estimates. Another point is
the investigation of optimum experimental design, which helps in saving experimental cost whilst
increasing the estimation accuracy, which is important, e.g. in table 4.4.
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List of Symbols

This list of symbols contains the frequently used symbols and whenever necessary the equation
and page of the first mention.

Objective functions I

Fd(ν, θ) based on ODE single shooting see eq (2.1), page 19

F
(m)
s,q (ν, θ) based on stochastic single shooting, aver-

age on squared differences, Lq-norm
see eq (2.2), page 20

F
(m)
t̄r,q (ν, θ) based on stochastic single shooting, aver-

age on trajectories
see eq (2.3), page 20

F
(m)
s̃,q (ν, θ) based on stochastic single shooting, aver-

age on squared differences, Lq-norm with
σi

see eq (2.4), page 20

L(ν, θ) Likelihood function giving the probability
to get the data ν given the parameter θ

see eq (2.6), page 21

l(ν, θ) log likelihood function: log L(ν, θ) see eq (2.7), page 21

F
(m)
L (ν, θ) based on likelihood function factorized in

transition probabilities, LS function
see eq (2.9), page 21

F
(m)
g (ν, θ) based on modification of the transition

probabilities, MLS function
see eq (2.11), page 22

FEs,2(θ) expectation of the stochastic single shoot-

ing function F
(m)
s,2

see eq (2.21), page 26

FEs̃,2(θ) expectation of the stochastic single shoot-

ing function F
(m)
s̃,2 with σi

see eq (2.24), page 27

83



84 List of Symbols

Objective functions II

FEL (θ) expectation of the likelihood-based func-
tional FEL

see page 31

Fh(ν, θ) MSS objective function see eq (3.2), page 48

FK(ν, θ, νK) MSS objective function for partially ob-
served models

see eq (3.3), page 48

Notation for transition probabilities

h(t, θ, x0, t0) ODE solution at time t − t0 of the initial
value problem with parameter θ and initial
value x0

see eq (2.1), page 19

H(j)(t, θ, x0, t0) Stochastic simulation with parameter θ
and initial value x0 at time t0

see eq (2.2), page 20

pθ(νi, ti|νi−1, ti−1) Transition probability for a transition from
state νi−1 at time ti−1 to state νi at time
ti

see eq (2.6), page 21

p̂
(m)
θ (νi, ti|νi−1, ti−1) Estimation of pθ with the relative fre-

quency from m simulations
see eq (2.8), page 21

g
(m)
θ (νi, ti|νi−1, ti−1) Modification of p̂

(m)
θ with m simulations see eq (2.10), page 22

Functions

SNR(ν, θ) signal to noise ratio see eq (3.4), page 50

NDR(ν, θ) noise to dynamics ratio see eq (3.6), page 50

E[ ] expectation value page 26
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Further notation

n number of measurements see eq (2.1), page 19

X substance or species, in reaction equation
also on entity of the species

page 13

x number of particles X in the system page 15

[X] concentration of X see eq (1.3), page 13

ν ν = (ν1, . . . , νn) measurements at time
points t1, . . . , tn, exact: νi ∈ ND0 , noisy:
νi ∈ ZD

page 19

D dimension of ν see page 48

d observed dimensions of ν see page 48

m number of simulations used to evaluate
transition probabilities

see eq (2.2), page 20

θ parameter page 15

θ(0) true parameter page 20

ε ε = (ε1, . . . , εn), residuals see eq (3.1), page 47

Abbreviations

CME Chemical Master Equation page 9

ODE Ordinary Differential Equation page 5

TSS Traditional single shooting method see eq (2.1), page 19

LS Likelihood simulation function F
(m)
L (ν, θ) see eq (2.9), page 21

MLS Modified likelihood simulation function
F

(m)
g (ν, θ)

see eq (2.11), page 22

MSS Multiple shooting for stochastic systems page 47

KL Kullback-Leibler divergence page 49

EL exact likelihood method, using l(ν, θ) with
the exact transition probabilities from the
probability generating function

page 54
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