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ABSTRACT

Thin, elastic surfaces are a fundamental building block in each biological system.
Their main representative on the small scale are biomembranes; an important exam-
ple on the larger scale are cell tissues. In both cases, the surfaces define a mechanical
and chemical border, indispensable for the genesis and maintenance of each orga-
nism. An essential property of the surfaces is a lateral inhomogeneous composition
of the surfaces themselves: without these inhomogeneities, the complexity of shapes,
mechanochemical properties and dynamics would not be possible.

In this thesis, we develop continuous mechanobiological models of membranes
and tissues. Since these surfaces are experimentally often difficult to access, our
approaches allow to investigate their behavior theoretically. The developed mathe-
matical models are coupled nonlinear systems of partial differential equations (PDE)
of fourth order. To enable simulations of these models, we significantly extend nume-
rical algorithms for surface deformation based on the finite-element method (FEM).

Extensive systematic simulations of the different models - in close comparison to
recent experimental and theoretical studies on different scales - lead to new findings
in membrane as well as tissue research. The key findings are the prediction and cha-
racterization of new mechanisms of communication between the two monolayers of a
biomembrane, the investigation of the elusive role of the Gaussian rigidity in different
fundamental membrane processes (like budding and lateral sorting), and moreover,
the postulation and investigation of a new model for pattern formation in biological
tissues, leading to experimental evidences for a new key mechanism for symmetry
break in Hydra polyps.
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ZUSAMMENFASSUNG

Dünne, elastische Oberflächen stellen einen fundamentalen Baustein jedes biolo-
gischen Systems dar. Ihre Hauptvertreter auf kleiner Skala sind Biomembranen, ein
wichtiges Beispiel auf größerer Skala sind Zellgewebe. In beiden Fällen definieren
diese Oberflächen mechanische und chemische Grenzen, unverzichtbar für die Entste-
hung und Aufrechterhaltung eines jeden Organismus. Eine wesentliche Eigenschaft
dieser Oberflächen sind dabei laterale Inhomogenitäten, die die komplexe Vielfalt an
Formen, mechanochemischen Eigenschaften und Dynamiken erst ermöglichen.

Im Rahmen der vorliegenden Arbeit werden kontinuierliche mechanobiologische
Modelle dieser Oberflächen entwickelt. Da Membranen und Zellgewebe experimentell
oft nur schwer zugänglich sind, kann deren Verhalten auf diesem Wege theoretisch
studiert werden. Die entwickelten mathematischen Modelle sind als gekoppelte nicht-
lineare Systeme partieller Differentialgleichungen (PDE) vierter Ordnung gegeben.
Um Simulationen der Modelle zu ermöglichen, werden numerische Verfahren, die auf
der Finiten-Elemente Methode (FEM) basieren, deutlich erweitert.

Extensive systematische Simulationen der verschiedenen Modelle in Engführung
mit bisherigen experimentellen und theoretischen Studien unterschiedlicher Skalen
führen zu neuen Erkenntnissen in der Membran- und Gewebeforschung. Zentrale
Erkenntnisse sind die Postulation und Charakterisierung neuartiger Mechanismen
der Kommunikation zwischen den beiden Monolayern einer Biomembran, die Unter-
suchung der bisher unbekannten Rolle der Gaussschen Biegesteifigkeit in verschiede-
nen fundamentalen Membran-Prozessen (wie Knospung und lateraler Organisation),
sowie die Postulation und Analyse eines neuartigen Modells für die Gewebe-Musterbil-
dung während der Embryogenese, was zu experimentellen Hinweisen auf einen bisher
unbekannten Schlüsselmechanismus für den Symmetriebruch in Hydra-Polypen führt.
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CHAPTER I

Introduction

Elastic surfaces with large lateral dimensions but with a relatively small thickness
are one of the basic building blocks of many structures in biology. One example is
provided by biological membranes, which define a mechanical boundary of cells as
well as of substructures inside cells. The lateral extension of these structures is usu-
ally up to a few micrometers, whereas the thickness of a membrane is only a few
nanometers. Another example on a larger scale is cell tissue. For example, the early
human embryo is 100 micrometers in diameter, but the thickness of its cell tissues is
only a few micrometers. In both, membranes and cell tissues, it has been proved that
lateral inhomogeneous distribution of molecules influencing the mechanical properties
of the corresponding surfaces is essential for the genesis and maintenance of biological
structures: in membranes, it has been shown that lateral phase separation of lipid
molecules can lead to vesicle budding [18] (c.f. FIG 1.1 A-B). Furthermore, it has
been suggested that lateral organization in membranes is a necessary condition for
biogenesis and maintenance of cellular membrane systems themselves [175]. Thus,
lateral organization in biological membranes is critical for the function of each biolo-
gical cell. In cell tissues, it has been shown that lateral patterns of certain molecules,
called morphogens, organize tissue morphology in the embryo; the process which is
indispensable for development of any organ [200] (c.f. FIG 1.1 C-D).

In order to understand the complexity and variety of patterns, functions and
dynamics of biological surfaces many different experimental model systems for mem-
branes as well as for tissue-morphogenesis have been developed and used in the past
([18, 114, 172, 203, 245, 264], among many others). But in both, membranes and tis-
sues, experimental techniques are subject to strong limitations, such as unmanageable
complexity or limits of microscopy. To overcome these general experimental limita-
tions, it is necessary to develop theoretical models, allowing e.g. to vary geometry,
size and composition in a well defined way [43]. A strong synergy between theoreti-
cal models, their simulations and experimental approaches is assumed to be a major
driver in the biomechanical research of biological surfaces [43, 85]. This thesis deals
with the mathematical derivation of corresponding models, their numerical approxi-
mation and detailed simulation studies of the new models for different types of lateral
inhomogeneous biological surfaces.
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Figure 1.1: Prominent examples of deforming thin biological surfaces due to lateral inho-
mogeneities, at different levels of complexity. A-B: Biomembrane, two-photon microscopy
image, red and blue color depict different membrane components, respectively (reprinted
by permission from Macmillan Publishers Ltd: Nature, [18], c© 2003). C-D: Tissue of
Hydra polyps, light-microscopical images. C: Tissue during bud formation; blue color de-
picts expression of the morphogen Wnt (reprinted by permission from: Development, [106],
c© 2006); D: Hydra-polyp with budding miniature adults in the body wall (reprinted by
permission from [111]).

1.1 Outline of the Thesis

This thesis is organized as follows: embedded in the context of related experimen-
tal results and previous modeling work, we first formulate a general mathematical
model for the evolution of thin biological surfaces, using the example of biomem-
branes. Based on this, we subsequently develop a computational framework, enabling
numerical simulations of the presented model. Furthermore, we apply the presented
model and its modifications to investigate open questions in the field of mechanobio-
logy, always in close relation to recent experimental and theoretical results. Various
new insights into the mechanisms of deformations and pattern formation in biological
membranes and tissues are gained, summarized at the end of the thesis. Finally, an
outlook is presented, embedding the presented results in a possible future work.

For convenience of the reader, all mathematical notations and definitions as well
as some additional remarks and information are given in Appendix A-D. Readers
not interested in mathematical details, but in simulation results closely connected to
biological processes, may skip Chapter II-III.

2



Chapter II: Mathematical Modeling

In this chapter, we first give an introduction of the biological background of mem-
branes and tissues, the two most prominent examples of thin lateral inhomogeneous
biological surfaces. Then we introduce the basic expressions and relationships of
thermodynamics, constituting the fundament of our framework. We subsequently
summarize previous modeling approaches in the field of membrane and tissue me-
chanics, including discrete as well as continuous approaches.

We recapitulate and generalize a mathematical model proposed in [163], which
describes the dynamics of deforming lateral inhomogeneous biomembranes. (Our
generalized model is from now on termed as the ”basic model”; for modifications of
this model leading to a description of biological tissues, we refer to Section 4.4.) In
agreement with experimental observations, the model membrane consists of different
molecular species undergoing lateral phase separation and influencing the mechanical
properties of the membrane. More specifically, it accounts for line tension, for a mono-
layer area difference and for differences in spontaneous curvature, bending rigidity as
well as Gaussian rigidity between the coexisting phases. The presented parametric
3D model is based on the minimization of a free energy leading to a nonlinear PDE
system of fourth order, related to the Willmore flow and the Cahn-Hilliard equa-
tion. In order to enable a parameterization of independent parameters the model is
nondimensionalized in the last section of Chapter II.

Chapter III: Finite Element Approximation

Here, we present the numerical approximation for the model equations (derived
in Chapter II) using the finite element method (FEM): first, we analytically reformu-
late the model equations, in order to obtain a system of equations appropriate for a
finite element discretization. In the subsequent sections, we present the detailed time
and space discretization technique, since the considered parametric geometric diffe-
rential equations require a non-standard approach. The numerical approach is based
on a mixed finite element method combined with a semi-implicit Euler time-stepping
scheme.

In the end of this chapter, we study the properties of the numerical approximation
of the basic model (derived in Chapter II), including convergence verification of our
approximations and relevant geometric quantities as well as a qualitative and quan-
titative sensitivity analysis.

Up to our knowledge, we present for the fist time a parametric finite element ap-
proach describing realistic dynamics of lateral inhomogeneous biological membranes,
neither restricted to axially symmetric geometries nor to small curvatures.
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Chapter IV: Applications

In this chapter, the basic model and its modifications are used to study fundamen-
tal mechanochemical processes in biological surfaces using numerical simulations in
comparison with recent experimental and theoretical results. We first consider defor-
mations, sorting and communication in biological membranes (Section 4.1-4.3), but
finally adopt our model to investigate pattern formation in the genesis of biological
tissues as well (Section 4.4).

Section 4.1: A Multiscale Approach Investigating Curvature Modulated Sorting
in Membranes

Connecting different theoretical approaches, in this section we investigate curva-
ture modulated sorting in lipid bilayers fixed on non-planar surfaces. Adopting a
truly multiscale approach, we use data from dissipative particle dynamics (DPD) to
parameterize the continuous model, i.e. to derive a corresponding macroscopic model.

Our model predicts that curvature modulated sorting can occur if lipids or pro-
teins differ in at least one of their macroscopic elastic moduli. Gradients in the
spontaneous curvature, the bending rigidity or the Gaussian rigidity create charac-
teristic (metastable) curvature dependent patterns. The structure and dynamics of
these membrane patterns are investigated qualitatively and quantitatively using si-
mulations. These simulations show that the decomposition time decreases and the
stability of patterns increases with enlarging moduli differences or curvature gradients.
Presented phase diagrams allow to estimate if and how stable curvature modulated
sorting will occur for a given geometry and set of elastic parameters.

In addition, we find that the use of upscaled models is imperative studying mem-
brane dynamics. Compared with common linear approximations, the system can
evolve into different local minimum patterns. This emphasizes the importance of pa-
rameters and realistic dynamics in mathematical modeling of biological membranes.

Section 4.2: Impact of Elastic Parameters on Membrane Budding

Dynamic deformations of membranes, like budding, play a crucial role in many
healthy and pathogenic cellular processes. It has been shown that lateral phase se-
paration of different membrane components locally influencing membrane mechanics
plays a key role in these processes.

Here, we use our basic mechanobiological model to investigate numerically the
deformations of incompressible lateral phase separating two-component membranes.
We perform systematic simulations to study the impact of the elastic parameters on
membrane shape and budding, e.g. the impact of the line tension, monolayer area
difference as well as differences in spontaneous curvature, bending rigidity and Gaus-
sian rigidity between the coexisting phases. The impact of each elastic parameter fits
qualitatively and quantitatively well with recent experimental and theoretical (sharp
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line tension) results. Furthermore, we find that changes in each of the elastic parame-
ters can be used to prevent or induce membrane budding. To our knowledge, we prove
for the first time that the Gaussian rigidity plays a role qualitatively comparable to
the impact of the other elastic parameters on dynamics and minimum shapes of the
budding process.

Section 4.3: Lateral Sorting and Transversal Communication in Coupled Mono-
layers

A continuous model of two coupled monolayers constituting a fluid bilayer mem-
brane is presented. The model is based on the minimization of a membrane free energy
considering in both monolayer leaflets two different molecule types, undergoing lateral
phase separation. Differences in the mechanical properties of the molecules, such as
shape, stiffness and length, are considered explicitly by the model. In the presented
model, we couple between the monolayers using an energy based model depending
on the local distance between the two monolayers as well as the lengths of molecules
constituting the local monolayer region.

We numerically study different passive mechanisms for molecule sorting and cor-
relation across the bilayer induced by first order mechanical constraints. Here, we
focus on three aspects: first, we find that the stretching of the two monolayers in the
normal direction yields a sorting of molecules according to their length. Furthermore,
we show that the length of molecules can be used to synchronize phases across the
bilayer membrane. Moreover, we find that generating curvature in one layer (induced
by different curvature creating mechanisms) sorts molecules of the other layer accor-
ding to their shape and stiffness.

Many recent experimental data indicate the importance of specific lipid-protein in-
teractions and the role of the bilayer thickness in membrane protein function and sor-
ting. The presented model proposes different mechanisms leading to a co-localization
of different components in different monolayers at the same place at the same time.

Section 4.4: On the Coupling of Tissue Mechanics with Morphogen Expression:
A new Model for Early Pattern Formation in Hydra Polyps

Morphogens are small molecules, which regulate and coordinate different steps in
the morphogenesis of cell tissues. It has been shown that in many cases morphogen
dynamics are well described by the Turing mechanism, which induces pattern forma-
tion. However, in several other cases this mechanism seems to be unlikely, e.g. if
strong tissue deformations are involved.

Based on recent experimental findings, we propose in this section a simple non-
Turing type model for pattern formation, in which the tissue curvature is coupled
with the morphogen expression. We show numerically that the presented model leads
to a variety of morphogen and curvature patterns, which appear to be insensitive

5



to different stochastic initial conditions. Extensive simulations are used to identify
important parameters in the control of characteristic pattern properties, such as size
and number of appearing buds. Our results suggest that biomechanical interactions
may replace the ”missing” long range inhibitor in the process of Turing type pattern
formation.

Comparing our simulations with recent experimental data, we propose the pre-
sented model as a possible key mechanism for symmetry break and early pattern
formation in Hydra-reaggregates. However, experimental evidences are still weak.
Hence, novel experimental approaches will be necessary to test our central assump-
tion, which is: tissue curvature and morphogen expression are coupled in a positive
feedback loop.
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CHAPTER II

Mathematical Modeling

Membranes and cell tissues, the two main representatives of thin biological sur-
faces, share many biomechanical properties at first sight. However, there are key
differences in their composition, in relevant scales as well as in their biological func-
tion. Let us give an example: both resist normal deformations in an elastic manner,
but lateral dynamics are significantly different: the molecules constituting the me-
chanical membrane surface change their neighbors very fast, i.e. represent a ”lateral
fluid”. On the contrary, cells constituting the mechanical tissue surface do not change
their neighbors and could be considered as an elastic body (at least on small time
scales) but molecules within the cells and tissues can show different and fast lateral
dynamics. Because of these fundamental differences, in the following we will explicitly
distinguish between membranes and cell tissues, if necessary.

2.1 Biological, Biomechanical and Biochemical Background

In this section, we present the mechanochemical properties, the biological func-
tions as well as related experimental findings concerning membranes and cell tissues.

2.1.1 Membranes

Biological cells are composed by a multitude of membrane systems (c.f. FIG 2.1).
Each of these systems provides a specific environment for certain chemical and me-
chanical processes. Lipid molecules (lipids) are the main component of membranes.
In water, due to hydrophobic interactions, lipids form a bilayer structure consisting
of two lipid monolayers, physically opposed to each other (c.f. FIG 2.4). In con-
trast to an elastic behavior with respect to bending, membrane molecules can move
freely in lateral direction of the membrane. Therefore its lateral behavior can be
compared to a two-dimensional (2D) fluid, first described in the ”fluid mosaic” model
by Singer [228]. In living cells, biological membranes are composed of many different
lipids, proteins and other molecules with various functions [4]. Internal cellular mem-
brane systems permanently change their shape, lateral composition and hence their
mechanochemical properties - during the cellular genesis as well as in adult cells. This

7



Figure 2.1: Biomembranes. A: Diagram of different cellular membrane systems. Regions
with local high curvature are marked in red. B-D: Different sample electron micrographs
on different scales (reprinted by permission from Macmillan Publishers Ltd: Nature, [161],
c© 2005).

constant dynamic membrane remodeling is indispensable for the communication be-
tween the different membrane systems as well as for other fundamental processes such
as movement, division and vesicle trafficking [161], but also during infections [16, 249].

Different molecules responsible for dynamical cell remodeling are well characte-
rized from a biological point of view [26, 154, 161, 243, 269]. However, details of the
mechanochemical dynamics and steady states, leading to the impressive diversity of
membrane shapes and composition patterns on larger scales, are far away from being
understood. Especially the resolutional limits of microscopical techniques strongly
restrict experimental studies to certain spatial scales. Hence, processes taking place
on smaller scales need to be investigated theoretically. An additional problem of ex-
perimental techniques is the degree of complexity. In most of the cases, the exact
mechanochemical properties of single components are neither known nor possible to be
controlled or changed in a defined way. Hence, a strong synergy between simulations
on all length scales and experiments is a major driver in the field of membrane research
[43].

2.1.2 Tissues

Life is based on a hierarchy of structured levels, where each level is based on
the level beneath [40]. On the (sub-)cellular level, biological membranes are defi-
ning boundaries, enabling the diversity of chemical and mechanical reactions. On the
larger level, thin cell tissues undertake this task. As opposed to membranes, local
chemical and mechanical properties of adult tissues do not change very much, most
striking conformational changes take place during tissue morphogenesis.

8



Figure 2.2: Cell tissues. A: Drosophila-tissue morphogenesis due to shape changes of single
cells. B: Example of a single cell shape change. (Both pictures reprinted by permission from
Wolters Kluwer Health: Circulation Research [194], c© 2008.)

In order to change or/and keep its (e.g. mechanical) properties, each cell is able to
produce a certain set of small molecules, called proteins [4]. Patterns and dynamics
of protein production thereby depend on various stimuli, where proteins can directly
or indirectly influence the production of other proteins in turn; all in all a network of
unimaginable complexity [10]. Furthermore, proteins can move inter- and intracellu-
larly, observed processes are reaching from simple diffusion up to highly specialized
active transport [246].

It has been shown that certain proteins, conceptually termed as ”morphogens”, are
responsible for pattern formation in tissue development and morphogenesis. Quite a
few of these patterns have been explained by a mechanism discovered by Alan Turing
[241], assuming a certain type of reaction-diffusion system. But in many other cases -
especially when dynamic tissue deformations are involved - the molecular mechanisms
seem to be different [66].

Recent experiments show that the mechanics of biological cells and tissues as
well as their pattern formation, in interplay with morphogen dynamics, involve many
complex biological processes [34, 66, 88, 106, 115, 182, 194] which have been only
partially discovered. Furthermore, since living material is investigated, experimen-
tal requirements are quite sophisticated and experimental techniques are subject to
strong limitations.

In order to avoid these limitations and the unmanageable order of complexity in
experimental tissue mechanics, first theoretical model systems have been developed
within the last years, considering explicitly the interplay of morphogens and tissue
mechanics (c.f. Section 2.3.2). A further development of theoretical models could be
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the future driver to study and filter fundamental biological mechanisms determining
curvature and morphogen patterns during tissue development.

2.2 Thermodynamics

In this section, we will give an introduction to the most important definitions,
quantities and relationships from the standpoint of classical thermodynamics. Since,
within this work, thin biological surfaces are considered as thermodynamical systems,
this introduction is the fundament for the presented modeling approach.

2.2.1 Free Energy of a System

We consider a deforming elastic surface, which is embedded in a fluid. With an
appropriate choice of boundary conditions (or a closed surface), this surface depicts a
closed thermodynamical system. It means that the system always contains the same
amount of matter but heat (and work) can be exchanged via dissipation through the
fluid. Since this transfer is possible, the total internal energy U of the surface can
change due to the first law of thermodynamics. The ”principle of minimum potential
energy” states that the internal energy decreases in time, and that this energy ap-
proaches a minimum value at thermodynamical equilibrium - if the entropy S of the
system is constant. The loss of energy can be explained by the dissipation.

If we consider the deformation of an elastic surface, it can be sufficient to take
into account this total internal energy U with constant entropy S. However, e.g.
if molecules are able to change places with their neighbors (like in the case of late-
rally free moving membrane molecules), the entropy S can change, what should be
considered as well. Hence, due to the second law of thermodynamics, the thermody-
namical equilibrium of the system is given by two conditions: minimal inner energy
but maximal entropy.

For practical considerations and in experimental observations it is rarely possible
and convenient, to distinguish between entropically and energetically dominated ef-
fects. Hence, a state function F (termed as the free energy) is typically introduced,
governing both effects in a phenomenological way if the system has many degrees of
freedom e.g. many particles which are impossible to be tracked individually. The
Helmholtz-free energy may provide an adequate statistical description (that allows
for the determination of mean quantities and fluctuations). This free energy is given
by

F = U − TS,

where T is the thermodynamic temperature. In that way, the minimum of F repre-
sents the optimal (equilibrium) state for each mechanical or chemical system, com-
bining a minimal internal energy with a maximal entropy. For further details of the
nature of free energy and entropy, we refer to [232].
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2.2.2 Mechanical Forces

For each moving particle within a thermodynamical system, the force field acting
on this particle can be seen as the tendency of the system to approach a minimum of
its free energy. In this section, we consider the same elastic mechanical forces in the
framework of biological surfaces: given a closed surface Γ with a free energy functional
F and let ~A( ~X, t) ∈ R3 be the force acting on Γ at ~X at time t. We assume that the
force is determined by the variation F ′ in form of the following elastic L2-gradient
flow ∫

~A · ~ψ ds = −〈F ′, ~ψ〉 = − d

dε

[
F ( ~X + ε~ψ)

]∣∣∣∣
ε=0

, (2.1)

where ~ψ ∈ C∞(Γ,R3) is an arbitrary test function. (For notational clarity, here and
in the following we use square brackets for differential operators.) Since (2.1) holds

for all ~ψ, let us consider the decomposition into the tangential and normal parts
~ψ = ψ~n+

∑
k ψ

k∂k ~X and ~A = −A⊥~n−
∑

uA
u∂u ~X. It follows:∫

Γ

~A · ~ψ ds = −
∫
Γ

(
A⊥~n+

∑
u

Au∂u ~X
)
· ψ~n ds

−
∫
Γ

(
A⊥~n+

∑
u

Au∂u ~X
)
·
(∑

k

ψk∂k ~X
)
ds

= −
∫
Γ

A⊥ψ ds−
∑
u,k

∫
Γ

Au∂u ~X · ∂k ~Xψk ds,

as well as

〈F ′, ~ψ〉 = 〈F ′, ψ~n〉+ 〈F ′,
∑
k

ψk∂k ~X〉

=
d

dε
F ( ~X + εψ~n)

∣∣∣
ε=0

+
d

dε
F ( ~X + ε

∑
k

ψk∂k ~X)

∣∣∣∣∣
ε=0

.

In the following, δ⊥ and δk depict the variation in the normal direction and the k-th
tangential direction (k = 1, 2) with respect to Γ, respectively, where δt =

∑
k δ

k.

In friction dominated regimes, the surface velocity is often assumed to be pro-
portional to the force [15, 211, 237], hence ∂t ~X = LX

~A, where LX is a damping
coefficient. It follows

∂t ~X = −LX
δF

δ ~X
, (2.2)

where δF
δX

denotes the strong and pointwise formulation of the variation
d
dε

[
F ( ~X + ε~ψ)

]∣∣∣
ε=0

.
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One should notice that such a gradient flow approach often finds only stable local
minima. But it has been shown to be also very effective in solving numerically models
of thin biological surfaces [155, 237, 248].

In the case ~A = 0, the minimum of F has been reached. In this case, equation
(2.1) depicts an Euler-Lagrange equation, representing the equilibrium shape of the
considered surface.

2.2.3 Chemical Forces

In chemical solutions where molecules can change their neighbors, the chemical
potential µ is the quantity describing a force field being the cause of molecular move-
ment. Thus, µ can be characterized as ”the tendency of particles to diffuse” [13]. Let
us consider a lateral inhomogeneous surface Γ with a free energy functional F , where
φ describes the volume fraction of particles in the surface. Analogously to elastic
forces (c.f. previous section), µ depends on the derivative of the free energy F with
respect to φ. In that way, µ induces (lateral) diffusion, minimizing F with respect to
φ. Hence [13, 121],

µ =
δF

δφ
,

where δF
δφ

depicts the strong and pointwise formulation of the variation d
dε

[
F (φ+ εψ)

]∣∣
ε=0

.

Neglecting local mass conservation the diffusion velocity is assumed to be pro-
portional to µ (analogous to equation (2.2)). It follows the Landau-Ginzburg type
equation [11, 168, 242]

dtφ = −Lφ
δF

δφ
,

where Lφ is a diffusion coefficient. In case of local mass conservation, the equation

dtφ = −Lφ∆
[δF
δφ

]
has been proposed [38, 185]; for a more detailed derivation of this equation we refer
to Section 2.4.2 and [31]. For more details on the nature of the chemical potential we
refer to [13, 121].

2.3 Previous Theoretical Approaches

To model biological surfaces, two main fundamental approaches have been used
in the past: discrete models and continuous approaches. In the case of discrete mo-
dels, reasonable discrete subunits of the system of interest and their interactions are
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considered. Regarding membranes, usually simplified membrane molecules have been
used [112, 214], whereas in the case of tissues, single cells depict meaningful subunits
[53]. While using discrete approaches, a detailed consideration of surface behavior on
small scales is assured. However, the disadvantage is the increasing computational
cost for larger systems. This restricts discrete modeling approaches, e.g. particle
based membrane studies, to system sizes and times still far away from biologically
relevant scales [36].

In contrast, continuous models are not discretized until they are numerically ap-
proximated. Hence, the scale of consideration can be controlled and the computa-
tional costs (corresponding to the level of discretization) do not scale with the number
of subunits, but the spatial and temporal resolution of the system. Furthermore, con-
tinuous descriptions of deforming surfaces allow a more appropriate coupling of me-
chanics with chemical processes. This is e.g. based on the fact that many biochemical
processes have been already described via continuous formulations [38, 156, 168, 241].

Based on this knowledge, we will develop continuous models to describe the de-
formation of lateral inhomogeneous biological surfaces in this thesis. Nevertheless, to
take into account molecular properties, data from discrete approaches are used to pa-
rameterize the presented continuous models, i.e. to derive macroscopic formulations
based on microscopic models (c.f. Section 4.1).

Thin lateral homogeneous layers bend elastically and in the linear regime are well
described by the plate equation [49], idealizing the layer by a two-dimensional (2D)
bent surface. This idea was further developed by Helfrich [108], describing the stable
shape of a 2D surface by considering the minima of the classical bending energy

FHelfrich =

∫
Γ

κ

2
(H −H0)

2 ds+

∫
Γ

κGK ds. (2.3)

Here, ds denotes the surface measure, H the mean curvature and K the Gaussian
curvature, both depending on the geometry of the surface Γ [64]. If C1 and C2 are
the two principal curvatures, H is defined as their sum and K as their product (see
also FIG 2.3). H0, κ, κG are the elastic moduli, which are constant if the surface is
laterally homogeneous. H0 is the spontaneous curvature and represents the preferred
curvature in the relaxed state. It is nonzero if, for example, membrane molecules or
cells are wedge-shaped. Parameters κ and κG are respectively the bending rigidity
and the Gaussian rigidity. Both parameters represent the stiffness of the surface:
in tubular structures (where K vanishes; c.f. FIG 2.3 B) κ penalizes curvatures; in
saddle structures (where H vanishes; c.f. FIG 2.3 A) κG penalizes curvatures. In
case of κ = 1 and H0 = 0, the L2-gradient flow of (2.3) is known as the Willmore
flow [250]. Since most of the geometries appearing in biological layers exhibit various
structures intermediate between saddles, tubes and spheres (FIG 2.3 A-C), in the
majority of cases both moduli contribute to the energy penalty of curved surfaces. In
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Figure 2.3: Principal curvatures C1, C2, mean curvature H = C1 + C2 and Gaussian
curvature K = C1C2 for different geometries: (A) Saddle, (B) Tube, (C) Sphere.

this context we would like to mention the well known Gauss-Bonnet theorem stating
that for closed surfaces Γ the integral

∫
Γ
K ds is a constant, depending only on the

topology of Γ.

Before we present in detail our basic mathematical model based on equation (2.3),
we want to summarize previous theoretical approaches in the modeling of biomem-
branes and biological tissues.

2.3.1 Membranes

The complexity of real biological membranes has motivated the development of
various different theoretical membrane models, to allow to vary geometry, size and
composition in a well defined way [35, 43]. The most basic theoretical approaches to
membranes are atomistic as well as coarse grained molecular dynamical approaches
[92, 99]. They allow to investigate different magnitudes of the molecular scale,
and have been used to study different fundamental processes such as endocytosis
[265], rupture [183, 256], fission [229], lipid flip-flop [201], membrane protein diffu-
sion [173, 215], vesicle shapes and transition [157, 158, 159, 253] as well as budding
[56, 112, 132, 252], domain formation [117, 137, 214, 222] and the thermoelastic pro-
perties of bilayers depending on molecular properties [29, 55, 138, 188, 190].

Unfortunately, molecular dynamical approaches are not suited to study membrane
behavior on time and space scales, where most of important cellular processes take
place: in various experimental studies on biological membranes, it has been shown
that relevant scales of fundamental processes are in the range of micrometers and se-
conds [6, 18, 67, 94, 96, 122, 170, 193, 254]. However, molecular dynamical approaches
are still restricted to membrane sizes of tens of nanometers and times of hundreds
of nanoseconds [36]. Although different solvent-free approaches have been developed
to reduce the computational cost [54, 56, 183, 205, 265] it seems to be unlikely that
these restrictions will change very much within the next decades [29].

To investigate larger scales and to compare experiments with analytical estimates,
different continuous approaches have been developed in the past [35, 36, 218]. Mainly
based on the minimization of the Helfrich free energy [108] (c.f. equation (2.3)), dif-
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ferent properties and processes of homogeneous membranes have been investigated:
interaction between different membranes [100], flux through semipermeable mem-
branes [113] as well as the impact of different elastic parameters [39, 75, 76, 119],
of the cytoskeleton [105], of temperature [151], of pressure [197, 266], of mechanical
constraints [119, 169, 219] and of molecular properties [130, 208].

Biological membranes are typically very inhomogeneous structures, composed of
different molecules. Molecule compositions can differ between the two monolayers as
well as between different membrane systems. Furthermore, experimental data reveal
that global surface areas between the two monolayers can differ, and that this area
asymmetry has a striking influence on membrane morphology [174]. Mathematically,
this affect has been first described using a hard constraint based on the bilayer-couple
hypothesis [87, 221, 234], and later - more generally - by the area-difference-elasticity
(ADE) model [169, 218]: in addition to the energy (2.3) depending on the local
curvature, the effect of an area difference between the two monolayers is modeled in
the ADE model considering the additional energy term

FADE =
κ

2

π

AD2
(∆A−∆A0)

2 ,

where ∆A ≡ Aout−Ain and ∆A0 ≡ Aout
0 −Ain

0 depict the actual and the relaxed area
difference between the two coupled monolayers, respectively. A =

∫
Γ
ds is the total

surface area (which is in case of lateral bilayer incompressibility a constant) and κ is
an elastic parameter. The nonlocal term ∆A is related to the local curvature by

∆A = D

∫
Γ

H ds,

where D describes the distance between the two monolayers [169]. Note that the
ADE model reduces for κ → 0 to the Helfrich model and matches for κ → ∞ with
the hard constraint ∆A0 = ∆A. Furthermore, values κ 6= 0 presume local monolayer
compressibility, since they describe an energetic penalty of the relative stretching and
compression of the monolayers, which arise during membrane bending. However, this
does not contradict to the assumption of bilayer incompressibility, since these contri-
butions originate from splaying the molecules in the single monolayers and are of a
much smaller order than lateral bilayer stretching [68].

In contrast to the elastic response with respect to bending, membrane molecules
can move freely in the lateral direction of the membrane. Hence, its lateral behavior
can be compared to a 2D fluids behavior [228]. In living cells, biological membranes
are composed of many different lipids, proteins and other molecules with different
functions [4]. For both lipids [18, 244] and proteins [26], the lateral phase separation
and clustering have been shown. Mathematically, the concentration of two different
laterally distributed components A and B in a surface Γ can be described by an
order parameter (or phase-field variable) φ : Γ → [−1, 1]. That is, if φ = 1 the
membrane is locally composed purely of species A and if φ = −1 locally only species
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B is present. The lateral phase separation of an order parameter φ is well described
by the minimization of the Cahn-Hilliard energy [38] on a surface

FCahn-Hilliard = σ

∫
Γ

(
ξ2

2
(∇Γφ)2 + f(φ)

)
ds, (2.4)

where σ is the (diffuse) line tension, ξ the transition length, ∇Γ the surface gradient,
and f a double-well potential.

The first theoretical work in the field of membrane research considering the in-
terplay of curvature generation and phase separation goes back to Lipowsky [150].
Since then a lot of efforts have been spent in studying membrane budding using con-
tinuous approaches based on the minimization of a free energy, consisting of different
couplings of the two energy components (2.3) and (2.4). Early works have used phe-
nomenological coupling terms [5, 8, 45, 120, 237, 260], whereas more recent works have
derived the coupling terms directly from the first physical principles [83, 84, 155, 248].
The techniques used to describe the membranes range from parametric representa-
tions [83, 84, 120, 237] based on modeling membranes as continuous hypersurfaces,
to phase field descriptions [155, 248], where membranes of a finite thickness are em-
bedded in a surrounding fluid. The advantage of the parametric approach is the
relatively low computational cost of simulations, since they are performed on a 2D
surface embedded in a 3D space.

Based on a coupling between the Helfrich energy (2.3) and a Cahn-Hilliard type en-
ergy (2.4), various properties and processes of lateral inhomogeneous membranes have
been investigated in the past, i.e. membrane budding and fission [5, 155, 171, 240],
periodicity of lateral patterns [255], vesicle fission [47], curvature induced phase se-
paration [217], domain-boundary interaction [71], phase separation under shear flow
[48], and adhesion induced phase separation [128].

The first derivation of the homogeneous layer’s free energy (2.3) has relied on a
phenomenological approach [108]. Since then, different experimental and theoretical
efforts have been made to derive its macroscopic elastic moduli directly from mole-
cular properties [42, 133, 191, 208, 209, 235, 251]. However, most of these approaches
are limited to the impact of selected molecule properties, special surface geometries,
small curvatures, or consideration of one-dimensional (1D) curves. Furthermore, all
these approaches consider lateral homogeneous surfaces. In reality, biological surfaces
often display lateral inhomogeneities. Up to now, there exists no general approach
determining directly from the molecular scale the elastic moduli for an arbitrary
curved and inhomogeneous surface. Dynamics of inhomogeneous membranes depend
strongly on the detailed relationship between mechanical moduli and the local com-
position of the membrane. A rigorous multiscale derivation of this relationship is an
open problem and a rewarding target of research in applied mathematics.
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In this thesis, we present different continuous models describing deformations in
inhomogeneous membranes consisting of two components, using a parametric descrip-
tion of the membrane. The mechanical models are coupled with a diffuse model of
lateral phase separation of the two components. Furthermore, we present a numeri-
cal approximation of these models, using the finite element approach. Although the
models do not result from a rigorous upscaling from the molecular scale, the coupling
between the energies (2.3) and (2.4) is based on first physical principles. All models
take into account the observation that different molecules vary in their shape and
stiffness. In contrast to the very recent works of Elliott and Stinner [83, 84], pre-
sented gradient flows are considered to be realistic models for the dynamics, and not
only to generate equilibrium configurations. This has important mathematical conse-
quences: e.g. we have to consider lateral surface deformations advecting local mass,
combined with a local area constraint instead of a global constraint. Furthermore the
dynamics for the order parameter are taken to be of a Cahn-Hilliard type rather than
of a Allen-Cahn type as in [83, 84].

Considering realistic membrane dynamics is motivated by different reasons from a
biological point of view: on the one hand, it appears that the use of different dynamics
can trap the system in different local minimum patterns (c.f. Section 3.5.4 as well as
Section 4.1). Hence, realistic dynamics for a system in membrane modeling are neces-
sary to ensure biologically reasonable equilibrium configurations. On the other hand,
cellular membrane systems are arranged in dynamic equilibrium rather than static
configurations. Budding and fusion of membrane spheres occur with flux constantly
maintaining the communication between subcellular membrane-bound systems [161].
Furthermore, there seems to be chemical control mechanisms, interacting with the
membrane during the dynamics of fundamental processes [154]. Accordingly, within
this thesis we consider realistic dynamics, in order to provide a model depicting a
basis to describe these processes.

2.3.2 Tissues

During the embryogenesis, an initial homogeneous tissue sphere evolves up to a
complex organism, finally showing various different chemical and mechanical patterns.
Underlying spatial pattern generating mechanisms have been subject of much experi-
mental and theoretical research [176, 179]. However, most of these processes are still
unknown, although the mechanisms behind embryonic pattern formation appear to
be one of the biggest current unsolved biological challenges [176].

First fundamental works in the theory of pattern formation in biological tissues
have been achieved by Turing: he suggested that small molecules within the tissues
(termed as morphogens, c.f. Section 2.1.2) can react and diffuse such that they pro-
duce spontaneously stable morphogen patterns without any initial prepattern [241].
The key mechanism beyond this process is the interaction between an activator and
an inhibitor molecule in combination with diffusion (”diffusion driven instability”)
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[176]. It has appeared that there are experimental evidences for this mechanism
and its modifications [162, 176] in many different tissue pattern formation processes
([25, 103, 224], among many others).

However, in many cases - especially if dynamic tissue deformations are involved
- pure chemical mechanisms seem to be unlikely, suggesting that tissue mechanics is
directly involved in pattern formation [66]. Although a mechanical theory for gene-
rating pattern and form in development has been developed during the last decades,
mechanisms behind pattern establishment in the early embryo are still a field of active
research [176]. Broadly speaking, the main mechanochemical approach during the last
two decades explaining tissue pattern formation has constituted the Murray-Oster ap-
proach (e.g. [144, 177, 186, 189]). This approach considers the role mechanical forces
play in the process of tissue pattern formation and has been applied to several specific
developmental problems such as vasculogenesis [178] or skin patterns [57, 179, 180]
and is experimentally well documented [178]. It considers cell pattern formation of
moving cells within a substrate, usually describing cells by density functions, mode-
ling the system as a planar 2D-surface.

However, tissue curvatures have not been considered explicitly in mechanochemi-
cal modeling of tissue pattern formation up to now - except very few approaches.
Cummings has developed a mathematical fundament to describe the geometry of a
surface with finite thickness, depending on two key morphogens [58, 59]. Further-
more, invagination processes in the Drosophila blastoderm have been studied nume-
rically using a 3D finite element method [53] - but in both cases without considering
any morphogen dynamics. Indeed, on the one hand, experimental evidences for ge-
netic responses depending on tissue curvature have been discovered only very recently
[34, 66, 88, 182]. On the other hand, mathematical models of evolving surfaces em-
bedded in 3D-space are quite challenging: usually they consist of geometric nonlinear
coupled partial differential equations of fourth order [163]. Up to now there seems to
be no mathematical model and numerical approach describing pattern formation in
biological tissues, explicitly accounting for tissue curvatures.

Within this thesis, we present for the first time (up to our knowledge) a non-Turing
type dynamic mechanochemical model explicitly coupling tissue curvature with mor-
phogen dynamics. Based on recent experimental findings, morphogen expression is
coupled with tissue curvature in a positive feedback loop. Furthermore, we present
a numerical approximation of our model equations using a finite element approach.
We numerically show that the proposed model leads to stable patterns without any
initial pre-patterns. Furthermore, we present experimental evidences showing that
the presented mechanism could constitute a key mechanism for pattern formation in
Hydra polyps.
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2.4 Mathematical Model

In the following, we recapitulate and generalize a 3D mathematical model for
dynamics of biological membranes [163], combining a parametric approach for the
deforming surface with a diffuse approach for lateral dynamics. Derivations already
presented in [163] have been shifted to the Appendix D and shortened significantly,
for further details of the proofs we refer to [163]. (For a modification of this model
describing deforming biological tissues, we refer to Section 4.4.)

The dynamic model presented in this section is based on the fundamental ap-
proaches of [38] and [108]. It is a generalization of many other continuum models in
the field of membrane research [5, 45, 60, 83, 84, 120, 123, 150, 155, 237, 260]. In
the proposed model, the bilayer is represented by a continuous two-dimensional (2D)

surface Γ depicted by a parametric representation ~X(u1, u2) : U → Γ ⊂ R3 with e.g.
U = [0, 1] × [0, 1], i.e. we adopt a Lagrangian point of view instead of an Eulerian
point of view (typically adopted in phase field models [155]). Here, we focus on a
membrane composed of two different lipid species (or alternatively one lipid and one
protein species). The concentration of the two components A and B in Γ is described
by the order parameter φ : U → [−1, 1]. That is, if φ = 1 only species A is present
and if φ = −1 the membrane is locally purely composed of species A.

2.4.1 Model Free Energy

Our model is based on the minimization of the free energy F = F1 +F2 +F3 +F4

containing the curvature-dependent part F1+F2, the Cahn-Hilliard energy F3 inducing
lateral phase separation as well as the area-difference-elasticity (ADE) term F4, which
has not been considered in [163]. The energy components F1, F2, F3 and F4 are:

Figure 2.4: Continuous model bilayer membrane: the bilayer is represented by the surface
Γ and its lateral inhomogeneity by the order parameter φ. Mechanical molecule properties
are outlined on the right hand side.
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F1 =
1

2

∫
Γ

κ(φ)(H −H0(φ))
2 ds,

F2 =

∫
Γ

κG(φ)K ds, (2.5)

F3 = σ

∫
Γ

(
ξ2

2
(∇Γφ)2 + f(φ)

)
ds,

F4 =
κ

2

π

AD2
(∆A−∆A0)

2 ,

where for each ~X ∈ Γ the order parameter φ( ~X(~u)) is identified with φ(~u). Since
different components of the membrane may differ in their mechanical properties such
as shape and stiffness, each macroscopic mechanical modulus h, h ∈ {κ, κG, H0}, is a
function of the order parameter φ. Each function h is chosen so that h(1) = hA and
h(−1) = hB, where hA and hB are the mechanical moduli of the pure components.
Furthermore, σ is the line tension, ξ the transition length, ∇Γ the surface gradient,
f a double well potential, A =

∫
Γ
ds the total surface area, ∆A and ∆A0 represent

the current and the relaxed monolayer area difference, respectively, D depicts the dis-
tance between the two monolayers and κ is a dimensionless parameter (c.f. Section
2.3.1).

2.4.2 Dynamical Equations

Instead of directly minimizing F = F1 + F2 + F3 + F4 we adopt a dynamic point
of view considering the evolution of ~X(~u, t) and φ(~u, t) for t ∈ [0, T ). In a first step,
let us consider the evolution of the species A and B within the membrane and in a
second step the evolution of the membrane itself.

Assuming local mass conservation, lateral dynamics of the two species A and B in
the framework of the Lagrangian description is determined by the lateral continuity
equation

dt[φ] +∇Γ · [~j] = 0,

where dt = d/dt is the total time derivative and ∇Γ· is the surface divergence o-
perator [64]. Since we employ a Lagrangian approach, d/dt[φ] can be evaluated
directly. However, in Eulerian approaches it would be necessary to evaluate d

d t
[φ] =

∇Γ[φ] · ∂t[ ~X] + ∂t[φ], i.e. the transport of φ by the deforming surface would have to
be considered.

The flux ~j is determined by the lateral gradient of the chemical potential µ(u1, u2),
i.e. ~j = ∇Γ[µ]. µ is proportional to the variation of the free energy F with respect to
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φ, and thus µ = Lφ
δ
δφ

[
F
]
; the mobility Lφ is assumed to be constant. We obtain the

following dynamical equation for φ:

dt[φ] = Lφ∆
Γ
[ δ
δφ

[
F
]]
,

where ∆Γ is the Laplace-Beltrami operator [64].

Given a certain deformation, the membrane system itself evolves in the direction
of the steepest descent of the free bilayer energy. Assuming overdamped motion (a
typical assumption for molecular systems) as well as lateral incompressibility [70], the

dynamics of the deformation ~X in U × [0, T ) are given by the following gradient flow

dt[ ~X] = −LX
δ

δ ~X

[
F +

∫
Γ

γ ds
]

(2.6)

with a local area constraint,

dt[
√
g] = 0, (2.7)

where LX is the kinetic coefficient, δ

δ ~X
[F ] denotes the variation of F with respect

to ~X, including normal as well as tangential components, γ is the local Lagrange
multiplier modeling local membrane incompressibility, and

√
g is the surface measure

(c.f. Appendix A). For details concerning equation (2.7) and the realization of local
incompressibility, we refer to [93, 237].

Although variations of parts of F have been previously derived in [163], a complete
treatment of F using a sharp interface approach for the membrane and an arbitrary
diffuse interface for φ can not be found in the literature. We present some detailed
calculations of the Fréchet derivatives of F in the following section; proofs developed
in [163] have been significantly shortened and they are presented in Appendix D.

2.4.3 Statement of the Main Result

In the following, we assume vanishing boundary integrals, i.e. closed surfaces or
periodic boundary conditions. Furthermore, we assume that the elastic moduli and
the function f(φ) are regular functions, i.e. κ, κG, H0, f ∈ C∞([−1, 1]).
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Theorem II.1. Deformation of the lateral phase separating local incompressible mem-
brane is given by

dt ~X = −LX
δ

δ ~X

[
F +

∫
Γ

γ ds
]

= −LX

[
A⊥~n+

∑
k

Ak∂k ~X
]

(2.8)

with the constraint

dt
[√
g
]
= 0, (2.9)

where

A⊥ = −∆Γ
[
κ(φ)(H −H0(φ))

]
−κ(φ)(H −H0(φ))(H

2 − 2K) +
κ(φ)

2
(H −H0(φ))

2H

−∆̂Γ
[
κG(φ)

]
−ξ2

∑
i,j

bij∂i
[
φ
]
∂j
[
φ
]
+H(

ξ2

2
(∇Γ

[
φ
]
)2 + f(φ))

+Hγ

+
2κπ

AD
(∆A−∆A0)K

and

Ak = −1

2
∂k
[
κ(φ)

]
(H −H0(φ))

2

+κ(φ)(H −H0(φ))∂
k
[
H0(φ)

]
−∂k

[
κG(φ)

]
K

+ξ2
∑
l

∇l

[
∂kφ∂lφ

]
− ∂k

[ξ2
2
(∇Γφ)2 + f(φ)

]
−∂k

[
γ
]
.

Furthermore, lateral dynamics of the order parameter φ are given by

dt[φ] = Lφ∆
Γ
[ δ
δφ

[
F
]]

(2.10)

= Lφ∆
Γ
[1
2
κ′(φ)(H −H0(φ))

2 − κ(φ)(H −H0(φ))H
′
0(φ)

+κ′G(φ)K − ξ2∆Γφ+ f ′(φ)
]
.

The proof of the theorem is given in the following section and in Appendix D
(Fréchet derivatives of F1 − F3 appear already in [163]. Corresponding shortened
calculations are given in Appendix D). For notational convenience, we consider here
and in the following the case σ = 1.
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2.4.4 Proof of the Main Result

To prove the main result, we rely in the following on already derived variational
expressions (c.f. Appendix C) as well as in some parts on simple reformulations using
the parametric representation.

Lemma II.2.

δ⊥[F4]

δ ~X
=

2κπ

AD
(∆A−∆A0)K.

Proof: Using the chain rule, (C.1)-(C.2) (c.f. Appendix C) as well as ∆A = D
∫
Γ
H
√
gd2u,

we obtain

δ⊥[F4] =
κπ

AD2
(∆A−∆A0)D

∫
Γ

δ⊥
[
H
√
g d2u

]
=

κπ

AD
(∆A−∆A0)

∫
Γ

(
δ⊥
[
H
]√
g d2u+Hδ⊥

[√
g d2u

])
=

κπ

AD
(∆A−∆A0)

∫
Γ

((
−∆Γ[ψ]− ψ(H2 − 2K)

)√
g d2u+HψH

√
g d2u

)
.

From Green’s identities it follows that
∫
Γ
∆Γ[ψ]

√
g d2u = 0 [258], leading to the

assertion of the Lemma. �
Lemma II.3.

δt[F4]

δ ~X
= 0.

Proof: Using Proposition (D.5)-(D.6) (c.f. Appendix D), the chain rule as well as
∆A = D

∫
Γ
H
√
gd2u, we obtain

δt[F4] =
κπ

AD2
(∆A−∆A0)D

∫
Γ

δt
[
H
√
g d2u

]
=

κπ

AD
(∆A−∆A0)

∫
Γ

(
δt
[
H
]√
g d2u+Hδt

[√
g d2u

])
=

κπ

AD
(∆A−∆A0)

∫
Γ

((∑
i,j,k

gij∇k[bij]ψ
k)−

(∑
k,u

∂u[H]gukψ
k
)) √

g d2u.

Using (C.7) and (C.8) (c.f. Appendix C) as well as commutation of the covariant
derivatives and the first metric tensor, we conclude that∑

i,j

gij∇k

[
bij
]

=
∑
i,j

gij∇j

[
bik
]
=
∑
j

∇j

[∑
i

gijbik
]

=
∑
j

∇j

[
bjk
]
= ∂k

[
H
]
=
∑
u

guk∂
u
[
H
]
.

Hence, the claim follows. �
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2.5 Nondimensionalization

In the following section the free energy (c.f. Section 2.4.1) and corresponding
dynamic equations (c.f. Section 2.4.2) of our basic model are nondimensionalized.
This reformulation allows us, on the one hand, to identify essential parameters and
characteristic properties of our system. On the other hand, it enables us to study the
relative dependence of different parameters on spatial and temporal scales.

To nondimensionalize the model, we replace each variable v with a dimensionless
quantity vc which is scaled with a characteristic unit of measure εv.

2.5.1 Free Energy

We set

~X = εx ~Xc,

with [ ~X] = [εx] = m, which implies ds = ε2x dsc, ∇Γ = 1
εx
∇Γ

c , ξ = εxξc, D = εxDc,

A = ε2xAc, ∆A = ε2x∆Ac, ∆A0 = ε2x∆A0c, H = 1
εx
Hc, H0 =

1
εx
H0c and K = 1

ε2x
Kc.

Furthermore, we choose

φ = φc, f = fc, κ(φ) = εκκc(φ), κG(φ) = εκκGc(φ), κ = εκκc

and σ =
εκ
ε2x
σc

with [εκ] = kBT , [κ(φ)] = [κG(φ)] = [κ] = kBT , [σ] = kBT
m2 and [ξ] = m. Since

[φ] = [f ] = 1, φ and f are dimensionless by construction and thus do not need to be
nondimensionalized. The nondimensionalization yields

1

2

∫
Γ

κ(φ)(H −H0(φ))
2 ds+

∫
Γ

κG(φ)K ds+ σ

∫
Γ

(
ξ2

2
(∇Γφ)2 + f(φ)

)
ds

+
κ

2

π

AD2
(∆A−∆A0)

2

= εκ

∫
Γ

(
1

2
κc(φ)(Hc −H0c(φ))

2 + κGc(φ)Kc + σc
(ξ2c
2
(∇Γ

c φ)
2 + f(φ)

)
dsc

+
κc
2

π

AcD2
c

(∆Ac −∆A0c)
2 .
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A consistency check shows that [F ] has units of energy as expected, i.e. F = εκFc

with [Fc] = 1. Calculating the variation of F we obtain for the strong formulation

[ δF
δφ
] = [εκ]

[εx]2
= kBT

m2 as well as [ δF
δ ~X

] = [εκ]
[εx]3

= kBT
m3 .

2.5.2 Dynamics

Considering the dynamics, we set

t = εttc, Lφ = εLLφc, LX = εLLXc, γ =
εκ
ε2x
γc

with εL = ε4x
εκεt

and thus [t] = s, [Lφ] = [LX ] =
m4

kBT s
as well as [γ] = kBT

m2 . Furthermore,

it holds ∂t =
1
εt
∂tc, hence [∂t] =

1
s
. It follows

∂tcφc = −Lφc∆
Γ
c

(δFc

δφ

)
and

∂tc ~Xc = −LXc

(δ(Fc +
∫
γc dsc)

δ ~X

)
. (2.11)
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CHAPTER III

Finite Element Approximation

3.1 Mixed Formulation

Using the finite element library Gascoigne [19], we discretize the fourth order PDE
model in a mixed formulation [33] following the ideas of [14, 15]. Hence, variational
formulations use H1 spaces, and we use quadrangulated surfaces and H1 conforming
bilinear surface finite elements for corresponding approximations. The mean cur-
vature H and the Gaussian curvature K are treated in the following as additional
unknown functions. For this purpose, we use the geometric identities [211]

∆Γ[ ~X] = H~n, (3.1)

and

|∇Γ~n|2 = H2 − 2K, (3.2)

where ~n denotes the unit normal vector. Furthermore, following the approach of [80]
we introduce the chemical potential as an additional unknown function Y , i.e. we
introduce the additional equation

Y =
1

2
κ′(φ)(H −H0(φ))

2 − κ(φ)(H −H0(φ))H
′
0(φ)

(3.3)
+κ′G(φ)K − σ(ξ2∆Γφ− f ′(φ)).

Finally, the additional unknown function G is introduced via the equation

G =
ξ2

2
(∇Γ[φ])2 + f(φ). (3.4)

3.2 Analytical Reformulations

The derivation of a weak formulation of system (2.8)-(2.10) (c.f. Section 2.4.3),
as it will be introduced below, relies mainly on the chain rule and on partial integra-
tion as well as on the following calculations based on reformulation of the parametric
representation.
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Using the definition of the covariant derivative as well as integration by parts
(assuming vanishing boundary conditions) it follows that∫

Γ

∇u

[
∂k[φ]∂u[φ]

]
ψ
√
g d2u

=

∫
Γ

(
∂u
[
∂k[φ]∂u[φ]

]
+
∑
l

Γk
ul∂

l[φ]∂u[φ] +
∑
l

Γu
ul∂

k[φ]∂l[φ]
)
ψ
√
g d2u

= −
∫
Γ

∂k[φ]∂u[φ]∂u
[
ψ
√
g
]
d2u+

∫
Γ

(∑
l

Γk
ul∂

l[φ]∂u[φ] +
∑
l

Γu
ul∂

k[φ]∂l[φ]
)
ψ
√
g d2u

= −
∫
Γ

∂k[φ]∂u[φ]∂u[ψ] ds−
∫
Γ

∂k[φ]∂u[φ]∂u[
√
g]ψ d2u

+

∫
Γ

(∑
l

Γk
ul∂

l[φ]∂u[φ] +
∑
l

Γu
ul∂

k[φ]∂l[φ]
)
ψ ds.

Applying the chain rule to the determinant and using the definition of the Christoffel
symbols leads to ∂u[

√
g] =

∑
r,s

1
2
√
g
ggrs∂u[grs] =

∑
l

√
gΓl

ul. This yields∑
u

∫
Γ

∇u

[
∂k[φ]∂u[φ]

]
ψ
√
g d2u =

∑
u

(
−
∫
Γ

∂k[φ]∂u[φ]∂u[ψ] ds−
∑
l

∫
Γ

∂k[φ]∂u[φ]Γl
ulψ ds

+
∑
l

∫
Γ

Γk
ul∂

l[φ]∂u[φ]ψ ds+
∑
l

∫
Γ

Γu
ul∂

k[φ]∂l[φ]ψ ds
)

= −
∑
u

∫
Γ

∂k[φ]∂u[φ]∂u[ψ] ds+
∑
l,u

∫
Γ

Γk
ul∂

l[φ]∂u[φ]ψ ds.

Furthermore, for h ∈ {H0, κ, κG} it holds

∇Γ[h(φ)] =
∑
i,j

gij∂j[h(φ)]∂i ~X =
∑
i,j

gijh′(φ)∂j[φ]∂i ~X = h′(φ)∇Γ[φ]

and

∂k[h(φ)] =
∑
i

gik∂i[h(φ)] =
∑
i

gikh′(φ)∂i[φ] = h′(φ)∂k[φ],

from the chain rule.
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Thus, using Green’s formula (assuming vanishing boundary conditions, i.e closed
surfaces or periodic boundary conditions) it follows that∫

Γ

∆Γ[κ(φ)(H −H0(φ))]ψ ds = −
∫
Γ

∇Γ[κ(φ)(H −H0(φ)] · ∇Γ[ψ] ds

= −
∫
Γ

(H −H0(φ))κ
′(φ)∇Γ[φ] · ∇Γ[ψ] ds

−
∫
Γ

κ(φ)∇Γ[H] · ∇Γ[ψ] ds

+

∫
Γ

κ(φ)H ′
0(φ)∇Γ[φ] · ∇Γ[ψ] ds

and

1

2
∂k[κ(φ)](H −H0(φ))

2 + κ(φ)(H −H0(φ))∂
k[H0(φ)]

= −1

2
κ′(φ)∂k[φ](H −H0(φ))

2 + κ(φ)(H −H0(φ))H
′
0(φ)∂

k[φ]

= ∂k[φ](H −H0(φ))
(
− 1

2
κ′(φ)(H −H0(φ)) + κ(φ)H ′

0(φ)
)
.

3.3 Finite Element Discretization

The adopted finite element discretization is mainly based on the work of Barrett
et al [15]. Let us assume that 0 = t0 < t1 < ... < tM−1 < tM = T is a discretization
of the time interval [0, T ] into time steps τm := tm+1 − tm, which are not necessari-
ly equidistant. Further, let us assume that Um is a conforming quadrangulation of
U = [0, 1] × [0, 1] at time t = tm. The approximation of the deformed surface Γ will

be given by the parameterization ~Xm : Um → Γm; thus it holds Γm 3 ~qmk = ~Xm(~umk ).
Since we work on U rather than on Γ we pursue a purely Lagrangian approach.
Hence, Γm = ∪J

j=1σ
m
j and {σm

j }Jj=1 is a family of mutually disjoint open quadran-
gles with vertices {~qmk }Kk=1 and areas |σm

j |. By ~qmk1,j and ~qmk2,j we denote the nearest
neighbor vertices of ~qmk in σm

j , i.e. ~qmk , ~q
m
k1,j, ~q

m
k2,j ∈ σm

j . Furthermore, let us define
hmki,j := |~umk − ~umki,j|.

Let ~Nm
j be the unit normal on each quadrangle σm

j . Based on this, we further
introduce the discrete vertex normals by (following [15])

~νm(~qmk ) =
~nm
k

|~nm
k |

where ~nm
k :=

1

|αm
k |

∑
σm
j ∩qmk 6=∅

|σm
j | ~Nm

j , (3.5)

where |αm
k | :=

∑
σm
j ∩qmk 6=∅ |σm

j | represents the total measure of the quadrangles conter-

minous to qmk . Furthermore, we define ~tmi := ∂i[ ~X(~uk, tm)]/|∂i[ ~X(~uk, tm)]| such that
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{νm,~tm1 ,~tm2 } form an orthonormal basis of R3. In addition, we introduce the following
finite difference quotient

~δki,j :=
~Xm(umki,j)− ~Xm(umk )

hmki,j
,

where the index i and the sign of ~δki,j are chosen such that ~δki,j is the differential

quotient corresponding to ∂i[ ~X(~uk, tm)]. Using this finite difference quotient, the
discrete vertex components of the first fundamental tensor gxy can be computed as
follows

gm(x,y)k :=
1

|αm
k |

∑
σm
j ∩qmk 6=∅

|σm
j |(~δkx,j · ~δky,j). (3.6)

In contrast to the approach in reference [15], which does not consider the Cahn-
Hilliard part, we explicitly require a discrete approximation of the first fundamental
tensor to approximate the resulting covariant derivatives. Discrete vertex Christoffel
symbols are defined by

Γ
i(m)
jz (~qmk ) :=

1

2

∑
l

g
(i,l)m
k

(
∂z
[
gm(j,l)k

]
+ ∂j

[
gm(l,z)k

]
− ∂l

[
gm(j,z)k

])
, (3.7)

where g
(i,l)m
k are the components of the inverse of the matrix gm, defined as

gm = (∂i[ ~X
m(~qmk )] · ∂l[ ~Xm(~qmk )])i,l.

Numerical studies indicate that both approximations (3.5) and (3.6) are of order
O(h2), where h := maxj=1→Jdiam(σm

j ).

In the following, we define the finite element space of globally continuous, periodic,
piecewise bilinear elements by V (Γm) := {~ψ ∈ C(Γm,R) : ~ψ|σm

j
is bilinear for j =

1, ..., J} ⊂ H1(Γm,R). Similarly, we introduce the finite element space V (Γm) ⊂
H1(Γm,Rd). For scalar, vector and matrix valued functions f, g ∈ L2 we introduce
the L2 inner product 〈., .〉m over Γm as 〈f, g〉m :=

∫
Γm(f · g) ds, where f · g denotes

the usual inner products for scalars, vectors and matrices.

3.3.1 Discretized Dynamical Equations

In the following we use the ”natural functions” ~X, φ and γ (c.f. Section 2.4) and
the auxiliary functions H, K, G, Y as well as the discrete approximations (3.5)-(3.7).
Furthermore, we use the additional functions B1 and B2 which appear in the weak
approximation of equation (3.1) and play a role in tangential grid control (c.f. Sec-
tion 3.4 as well as [15]). Hence, the discrete approximation of the nonlinear PDE
system (2.8)-(2.10) (c.f. Section 2.4.3) in its weak form containing only the first order
derivatives has the following form.
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Theorem III.1. Discrete formulation of the basic model (presented in Section 2.4.3).

Find
{ ~Xm+1, φm+1, γm+1, Hm+1, Km+1, Bm+1

1 , Bm+1
2 , Gm+1, Y m+1} ∈ V (Γm)11 such that

〈
~Xm+1 − ~Xm

τm
,
ψ~νm

LX

〉m = (3.8)

−〈∇Γ[φm],∇Γ[ψ]κ′(φm)(Hm −H0(φ
m))〉m

−〈κ(φm)∇Γ[Hm+1],∇Γ[ψ]〉m + 〈κ(φm)H ′
0(φ

m)∇Γ[φm],∇Γ[ψ]〉m
+〈(Hm −H0(φ

m))|∇Γ[νm]|2m, ψ〉m

−〈κ(φ
m)

2
(Hm −H0(φ

m)2Hm+1, ψ〉m

−〈κ′G(φm)∇̂Γ[φm],∇Γ[ψ]〉m +
∑
i,j

〈σξ2bij∂i[φm]∂j[φ
m], ψ〉m

−〈Hm(Gm+1 + γm+1), ψ〉m

−〈2κπ
AD

(∆Am −∆A0)K
m, ψ〉m ∀ψ ∈ V (Γm),

and

〈
~Xm+1 − ~Xm

τm
,
ψ∂k[ ~X

m]

LX

〉m = (3.9)

−〈∂k[φm](Hm −H0(φ
m))(

− κ′(φm)

2
(Hm −H0(φ

m)) + κ(φm)H ′
0(φ

m)
)
, ψ〉m

+〈κ′G(φm)Km+1∂k[φm], ψ〉m
+σ
∑
u

〈ξ2∂k[φm]∂u[φm], ∂u[ψ]〉m

−σ
∑
l,u

〈ξ2Γk(m)
ul ∂l[φm]∂u[φm], ψ〉m

+〈∂k[Gm+1 + γm+1], ψ〉m ∀ψ ∈ V (Γm),

hold for k = 1, 2. They are the discrete approximations of the evolution equation (2.8)
in Section 2.4.3. Furthermore, we require that it holds:

〈∇
Γ · [ ~Xm+1]−∇Γ · [ ~Xm]

τm
, ψ〉m = 0 ∀ψ ∈ V (Γm), (3.10)

which is the discrete approximation of the lateral incompressibility equation (2.9) in
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Section 2.4.3 (since ∂t[
√
g] = ∇Γ · [ ~Xt] [93]), as well as

〈Hm+1~νm +
∑
i

Bm+1
i

~tmi ,
~ψ〉m + 〈∇Γ[ ~Xm+1],∇Γ[~ψ]〉m = 0 (3.11)

∀~ψ ∈ V (Γm),

which is the discrete approximation of equation (3.1) (c.f. [15]). Additionally we
require that it holds:

〈Km+1, ψ〉m =
1

2
〈tr2(∇Γ~νm)− |∇Γ~νm|2m, ψ〉m ∀ψ ∈ V (Γm), (3.12)

which is the discrete approximation of equation (3.2), as well as

〈Gm+1, ψ〉m = σ〈ξ
2

2
|∇Γ[φm]|2m + f(φm), ψ〉m ∀ψ ∈ V (Γm), (3.13)

which is the discrete approximation of equation (3.4). Finally the discrete approxima-
tions of the equation determining the evolution of the components (2.10) in Section
2.4.3 and (3.3) are approximated by

〈φ
m+1 − φm

τm
, ψ〉m = −Lφ〈∇Γ[Y m+1],∇Γ[ψ]〉m ∀ψ ∈ V (Γm) (3.14)

and

〈Y m+1, ψ〉m = 〈κ
′(φm)

2
(Hm −H0(φ

m))2, ψ〉m (3.15)

−〈κ(φm)(Hm −H0(φ
m))H ′

0(φ
m)

+κ′G(φ
m)Km + σf ′(φm), ψ〉m

+σξ2〈∇Γ[φm+1],∇Γ[ψ]〉m ∀ψ ∈ V (Γm).

The surface measure ds and the surface gradients ∇Γ and ∇̂Γ depend on the de-
tailed configuration of the membrane ~X, which is an unknown. Thus, the gradients as
well as many other operators are functionals with respect to the current deformation,
leading to a highly nonlinear system. We choose a dependence on the previous time
step, i.e. a dependence on ~Xm and hence dsm, ∇Γm

and ∇̂Γm
. That is, we avoid

true nonlinear formulations to facilitate numerical analysis. Hence, we linearize the
system explicitly considering the nonlinear terms. In this way, the schemes are easy
to solve as they are linear at each time step.

On the top of this non-conservative discretization (3.8)-(3.15) we add non-physical
correction terms to ensure convergence to physically realistic solutions. Accumula-
tion of numerical errors violating the incompressibility of the membrane and hence the
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mass conservation of φ is globally corrected via an artificial global pressure. Further-
more, we correct the grid as outlined in the next section, without violating effective
local mass conservation. We have verified in all simulations that the total area and
the total amount of φ at the minimum configurations,

∫
Γmin ds and

∫
Γmin φ ds, differ

from the initial values
∫
Γ0 ds and

∫
Γ0 φ ds by less than 2.5%.

3.4 Tangential Grid Control

The numerical stability of the finite element scheme depends crucially on a con-
sistent and conforming distribution of vertices on the deformed surface Γm. In order
to control the tangential motion of Γm, we follow the ideas of Barrett [15] introducing
a separate ”mesh redistribution step” after each time step. However, it is not the
mesh on the parameterizing surface U which is redistributed, but the transformed
mesh on the surface Γm. Further alternative approaches preventing mesh distortion
are given in [27, 79, 83]. Since we correct each transformed vertex in the tangential
direction of the surface, the surface does not evolve up to discretization errors (in
the normal direction) and thus the curvatures are not influenced by this correction
step. However, during the correction step the spatial distribution of φ is influenced,
since we have adopted a Lagrangian point of view and coordinate system. It holds:
d
dt
φ[ ~X(u1, u2, t), t] = ∂t[φ(u1, u2, t)] + ∂t ~X · ∇Γ[φ] = 0, with ∂t ~X 6= 0, i.e. φ is ad-

vected with the membrane during the correction movement. In the normal direction
no evolution takes place during the tangential grid control step. Therefore further
corrections balancing this advection are necessary, i.e. φ has to be advected with the
rate −∂t ~X in the opposite direction. Thus, the full grid control problem applied here
reads:

Find { ~Xm+1, Hm+1, Bm+1
1 , Bm+1

2 , φm+1} ∈ V (Γm)7 such that the following equa-
tions hold:

〈
~Xm+1 − ~Xm

τm
, ψ~νm〉m = 0 ∀ψ ∈ V (Γm) (3.16)

and, for k = 1, 2,

〈αm
i

~Xm+1 − ~Xm

τm
, ψ~tmk 〉m = 〈αm

i (δ
m
i B

m+1
i + cmi ), ψ〉m (3.17)

∀ψ ∈ V (Γm),

as well as

〈φ
m+1 − φm

τm
, ψ〉m (3.18)

= 〈−(δm1 B
m+1
1 + ci1)(∇Γ[φm+1])1 − (δm2 B

m+1
2 + cm2 )(∇Γ[φm+1])2, ψ〉m

∀ψ ∈ V (Γm)
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and

〈Hm+1~νm +
∑
i

αm
i B

m+1
i

~tmi ,
~ψ〉m + 〈∇Γ[ ~Xm+1],∇Γ[~ψ]〉m = 0 (3.19)

∀~ψ ∈ V (Γm).

Here, 0 ≤ αm
i , δ

m
i ∈ V (Γm) are the coefficients influencing the strength of the tan-

gential correction and cmi ∈ V (Γm) are the forcing terms, determining the direction
of the tangential correction. A feasible choice for cmi is the tangential projection of
the vector between each vertex ~qmk and the average ~zmk of its neighboring nodes, i.e.

cmi (~q
m
k ) ≡ 1

τm
(~zmk − ~qmk ) · ∂i[ ~Xm] [15]. Note that with the special choice αm

i ≡ 0 equa-
tions (3.16)-(3.19) collapse to a system without any normal and tangential movement.

3.5 General Simulation Behavior

Using the outlined macroscopic modeling approach, in this section we present nu-
merous numerical experiments, including experimental convergence tests as well as
qualitative and quantitative sensitivity analysis.

For all simulations shown in this section we use stochastically perturbed initial
conditions as well as periodic boundary conditions. We have repeated each simula-
tion at least twice using different stochastically perturbed initial conditions to ensure
that this type of stochastic perturbation affects neither the dynamics nor the result-
ing shapes. Furthermore we assume constant rigidities κ, κG and κ but different
spontaneous curvatures HA

0 and HB
0 for the lipid and molecule species A and B,

reflecting the fact that the two components differ in shape. If not otherwise stated,
H0(φ) ≡ H lin

0 is chosen as a linear interpolation between the two values H0(−1) = HA
0

and H0(+1) = HB
0 . Furthermore, we use the double well potential f(φ) = 9

32
(1−φ2)2

(c.f. Appendix B). Mass or energy flux across the boundaries is prevented due to
lateral incompressibility

√
g = const as well as periodic boundary conditions for all

variables.

3.5.1 Simulation of a Membrane Patch

To qualitatively compare the model with the experimental data, we start from the
simulations of membrane patches with slightly curved membranes and stochastically
perturbed initial conditions with the average 〈φ(t = 0)〉 = Φ0 = −0.37 (cf. FIG 3.1
A). We assume κ ≡ 1.5, κG ≡ −1.0, κ ≡ 0, HA

0 = −10.0, HB
0 = 5.0, σ = 450.0,

ξ = 0.03, LX = 0.0005, and Lφ = 0.05. Simulations show the transition from very
heterogeneous initial conditions to a single domain of one component with a budded
geometry being the minimal configuration (cf. FIG 3.1 A-D). This shape and pattern
are comparable to those of stable structures observed in the experiments with real
membranes (cf. FIG 3.1 F). Plotting the energy (2.5) over the simulation period
reveals the expected decay in time (cf. FIG 3.1 E).
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Figure 3.1: Simulation of membrane dynamics (A-D) reveals minimum structures (D)
comparable to experiments (F) starting from disordered initial conditions (A). E: Cor-
responding energy decay. In (A-D) the two colors, red and blue, correspond to locally
high concentrations of membrane species A and species B, respectively. F: Reprinted by
permission from Macmillan Publishers Ltd: Nature, [18], c© 2003.

3.5.2 Correcting Advection of φ

As already described in Section 3.4, due to non-physical lateral grid redistribu-
tions, φ has to be advected back. To check if this correcting advection works properly,
we perform comparative simulations (c.f. FIG 3.2): we simulate Cahn-Hilliard dy-
namics starting with an initial gradient in φ on a planar membrane patch, comparing
a uniformly distributed static mesh (FIG 3.2 A) with a highly nonuniform mesh being
redistributed during the simulation (FIG 3.2 B-C). Simulation with and without cor-
rection advection shows the reliability of the scheme in case of mesh redistribution: in
the case FIG 3.2 B simulation patterns are similar to those of the uniform mesh (FIG
3.2 A), whereas without correcting advections simulations show strikingly different
patterns (FIG 3.2 C).
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Figure 3.2: Numerically proving lateral correcting advection of φ simulating Cahn-Hilliard
dynamics on a planar membrane patch. A: Uniform static mesh. B-C: Nonuniform mesh,
redistributing during simulation time. Active correcting advection terms (B) lead to very
similar patterns as in the case of the uniform mesh (A); inactive correcting advection leads
to nonphysical defective patterns (C).

3.5.3 Convergence Verification

In this section, we present experimental convergence tests. First, we check the ex-
perimental order of convergence (EOC) for the discrete approximations for the normal
and the first metric tensor (c.f. Section 3.3) on a highly curved non-symmetric sur-

face. The EOC is defined by EOC := logE(h1)−logE(h2)
log h1−log h2

, where E is an error functional
and h1 and h2 represent two sequent mesh sizes. Since we have used second order
difference quotients for these approximations, the observed EOC is expected to be of
order 2 while refining the mesh (c.f. Table 3.1). As reference values we use the normal
and first metric tensor of the finite element approximation with K = 48 elements.

K ||~n− ~n′||L2/||~n||L2 EOC ||g− g′||L2/||g||L2 EOC
42 0.003850 —— 0.005675 ——
43 0.001032 0.9497 0.001636 1.7944
44 0.000270 1.9344 0.000441 1.8913
45 0.000069 1.9683 0.000119 1.8898
46 0.000017 2.0211 0.000031 1.9406
47 0.000004 2.0875 0.000007 2.1468

Table 3.1: Relative errors and experimental orders of convergence (EOC) of the discrete
approximations ~n′ and g′ of the normal vector and the first metric tensor, respectively. K
is the number of elements, ~n and g are the finite element approximations using K = 48

elements.

Secondly, we investigate the EOC of the free energy F (c.f. Section 2.4.1) of
a budded minimum configuration of the coupled system. Using the minimum free
energy F ref

min of the finite element approximation withK = 47 elements as the reference
value, we observe that the EOC is of order 2 while refining the mesh (c.f. Table 3.2), as
expected. For the corresponding simulations we use κA = 1.5, κB = 2.0 κG ≡ −1.0,
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HA
0 = −5.0, HB

0 = 0.0, LX = 0.0005, and Lφ = 0.05. Furthermore, we compare
ξ = 0.1, σ = 50 with ξ = 0.05, σ = 100. Hence, in both cases it holds for the sharp
line tension σsi = σξ = 5 (c.f. Appendix B).

ξ = 0.1, σ = 50 ξ = 0.05, σ = 100

K |Fmin − F ref
min| EOC |Fmin − F ref

min| EOC

42 8.6349 —— 3.4178 ——
43 0.6752 3.6768 0.2669 3.6787
44 0.1809 1.9001 0.0393 2.7637
45 0.0446 2.0201 0.0107 1.8769
46 0.0081 2.4610 0.0018 2.5715

Table 3.2: Experimental order of convergence of the free energy Fmin in the minimum
configuration of the coupled system while refining the mesh, using different values for ξ and
σ. K is the number of elements and F ref

min is the finite element approximation using K = 47

elements.

Thirdly, we investigate the EOC of the Willmore free energy
∫
Γ
H2 ds, comparing

minimum configurations of closed lateral homogeneous surfaces with known analytical
solutions (simulations with closed surfaces have been used in Section 4.4, following
the numerical approach of [105]). To do so, we have considered the relaxation to equi-
librium of a strongly deformed lateral incompressible unit sphere K1(0). Comparing
its Willmore energy with the energy of the well known analytical solution K1(0) [227]
yields the expected EOC of approximately 2 (c.f. Table 3.3).

K |
∫
Γ
H2 ds−

∫
K1(0)

H2 ds| EOC

42 31.3126 ——
43 6.6054 2.2450
44 1.6003 2.0453
45 0.3958 2.0155
46 0.0991 1.9978

Table 3.3: Experimental order of convergence (EOC) of the Willmore free energy
∫
ΓH

2 ds
in the equilibrium configuration, based on the deformed unit sphere. K is the number of
elements; as reference we used the Willmore energy of the analytical well known solution
which is the unit sphere itself.
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3.5.4 Qualitative Sensitivity Analysis

To investigate the dependence of lateral dynamics, i.e. phase separation, and
lateral minimum patterns on the choice of the unknown function H0(φ), we per-
form simulations using LX = 0 and fixing a non planar membrane setting X0(U) =
0.06 sin(2πu1) sin(2πu2) (cf. FIG 3.3 B). As initial conditions we choose 〈φ0〉 =
Φ0 = 0. To facilitate the comparison of different simulations, we use exactly the
same stochastically perturbed initial conditions. Corresponding results are presented
in FIG 3.3. We compare the impact of the three different monotonous functions
H

(1)
0 (φ) = a1 + b1φ, H

(2)
0 (φ) = a2 + b2 tanh(−φ) and H

(3)
0 (φ) = a3 + b3x

5 on the
dynamics and minimum patterns of lateral sorting. Here, ai and bi are chosen so that
H

(i)
0 (−1) = 0 and H

(i)
0 (1) = −16 hold for i ∈ {1, 2, 3}. Furthermore we set κ ≡ 0.12,

κG ≡ −0.12, κ ≡ 0.0, σ = 9, ξ = 0.04, and Lφ = 1.0.

Figure 3.3: Lateral sorting on fixed non-planar geometry. A: The decay of the Cahn-
Hilliard energy from unstable initial conditions using different functions for the spontaneous
curvature H0(φ). B: Corresponding membrane geometry. C-D: Various minimum patterns
depending on the definition of H0(φ).

We find that different choices of the function H0(φ) strongly influence the dyna-

mics of the model as well as the minimum patterns. Depending on the choice of H
(i)
0

the Cahn-Hilliard energy decays at different rates from the unstable initial conditions
(c.f. FIG 3.3 A) resulting in the case of H

(3)
0 in a different pattern of minimum (c.f.

FIG 3.3 D) compared to H(1) and H(2) (c.f. FIG 3.3 C). However, stable shapes of
domains can differ from circles and stripes usually known from Cahn-Hilliard dyna-
mics (c.f. FIG 3.3 C). This is caused by the fact that minimum patterns appear as
the minimum of the overall energy, containing a curvature dependent part as well.

3.5.5 Quantitative Sensitivity Analysis

To investigate the sensitivity of the membrane minimum geometry with respect
to the choice of the elastic coefficient, we perform simulations with various values of
HA

0 , keeping H
B
0 = 0. The corresponding results are shown in FIG 3.4, with σ = 90,

ξ = 0.03, LX = 0.0005, Lφ = 0.05. Our simulations reveal that a stepwise increase
of HA

0 from zero up to HA
0 = −8 results in minimum shapes stepwise increasing the
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Figure 3.4: H0-induced budding transition: The minimum geometry is sensitive to the
choice of elastic coefficient. A: HA

0 = −8, B: HB
0 = −9.

strength of budding, but still showing an incomplete bud (cf. FIG 3.4 A). Interes-
tingly, choosing HA

0 = −9 results in a complete bud (c.f. FIG 3.4 B). This effect has
been previously described as the budding transition and can be induced by different
elastic parameters as well as domain size or volume constraints [60, 123, 124, 152].
This example shows prominently that small changes in the parameter value can lead
to very different minimal geometries of the membrane.
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CHAPTER IV

Applications

In the following chapter, we present various modifications of the basic model in
order to investigate fundamental pattern formation mechanisms in both membranes
and tissues. Our approach here is to perform extensive simulations in close com-
parison with recent experimental and theoretical results. Especially, we obtain the
following new results.

Section 4.1:

• Numerical simulations show that curvature modulated sorting can occur if lipids
or proteins differ in at least one of their macroscopic elastic moduli: gradients in
each modulus, the bending rigidity, the Gaussian rigidity and the spontaneous
curvature create characteristic (metastable) curvature dependent patterns.

• Simulations indicate that the larger moduli differences or curvature gradients
are decomposition time decreases and the stability of curvature modulated pat-
terns increases.

• Obtained phase diagrams allow to estimate if and how stable curvature modu-
lated sorting will occur for a given geometry and elastic parameters.

• We present a new upscaling approach for models in membrane research,
using DPD studies. Our results highlight that the use of upscaled models com-
pared with common linear approximations can trap the system in different local
minimum patterns.

Section 4.2:

• In numerical simulations we observe that all five elastic parameters - line tension,
bending rigidity, Gaussian rigidity, spontaneous curvature as well as monolayer
area difference - can be used to induce membrane budding. Particularly, we
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show for the first time that the Gaussian rigidity plays a qualitative equivalent
role in this process as the other parameters.

Section 4.3:

• We find that the stretching of two monolayers in the normal direction yields
a sorting of membrane molecules according to their length. Furthermore, our
simulations indicate that the length of molecules can be used to synchronize
phases across the bilayer membrane.

• Simulations suggest that generating curvature in one monolayer (induced by
different curvature creating mechanisms) sorts molecules of the other layer ac-
cording to their shape and stiffness.

Section 4.4:

• We present for the first time a model for early pattern formation in biological
tissues explicitly considering tissue curvature. Corresponding simulations re-
veal that a positive feedback loop of one morphogen with tissue curvature is
sufficient to create various patterns from stochastic initial conditions without
any prepattern.

• Comparing simulations to experimental data suggests that the proposed me-
chanism for tissue pattern formation is the key mechanism for symmetry break
and early pattern formation in Hydra polyps.

We want to point out that the following Sections 4.1 - 4.4 are closely related to
the publications [164, 165, 166, 167].
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4.1 A Multiscale Approach Investigating Curvature Modu-
lated Sorting in Membranes

4.1.1 Introduction

Biological membranes are composed of many different lipids, proteins and other
molecules with different functions [4]. (For further details concerning the detailed
assembly of biological membranes we refer to Section 2.1.1.) Lateral sorting of these
components is essential for maintaining the diversity of different membrane systems
inside the cell as well as the function of these systems [97]. For both, lipids [18] and
proteins [26], lateral phase separation and clustering have been shown. It is widely ac-
cepted that membrane curvature modulated sorting is a basal mechanism controlling
the spatial organization of lipids and proteins in the absence of specific chemical in-
teractions. However, the exact underlying mechanisms remain mostly unknown [239].

It has been shown that spatial gradients in elastic moduli can exhibit a driving
force for lateral curvature modulated sorting. Membrane proteins are drawn to re-
gions with curvature adapted to the protein shape [202] and lipids with small bending
rigidity are sorted to highly curved membrane regions [193], so that lateral reorga-
nization reduces the membrane curvature energy. Although various theoretical and
experimental studies have been performed to investigate lateral sorting due to gradi-
ents in spontaneous curvature [28, 55, 65, 125, 141, 148, 202, 207, 217] and bending
rigidity [18, 65, 193, 210, 212], the impact of the elusive Gaussian rigidity on lateral
sorting has not been investigated so far. However, experimental studies show that
different membrane components can differ distinctly in their Gaussian rigidities [220].

In this section, we adopt and present a multiscale approach for lateral inhomo-
geneous membranes to parameterize a Cahn-Hilliard/Helfrich-type model (which is
a simplification of the basic model, c.f. Section 2.4). Especially, parameterization of
the continuous model from the molecular scale has been achieved via upscaling from
dissipative particle dynamic (DPD) studies. On the basis of this multiscale modeling
approach, simulations are performed comparing dynamics and minimum patterns of
lateral sorting. We investigate theoretically the impact of an inhomogeneous Gaus-
sian rigidity on lateral sorting and compare it with sorting due to gradients in the
bending rigidity and spontaneous curvature. Following the experimental approach of
[193, 210], we consider membranes attached to non-planar substrates. Thus, by con-
sidering a geometrically fixed membrane, the complexity is reduced facilitating the
extraction of hypotheses to be checked by experimentalists. For large scale studies, we
approximate solutions of the model using a finite element approach. The presented
section is closely related to [165].

4.1.2 Mathematical Model

The model presented in this section is a simplified version of the model presented
in Section 2.4. Following the ideas of [193, 210], we consider a curved membrane re-
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Figure 4.1: Experimental results versus mathematical model simulations. A: Experimental
curvature dependent phase separation in corrugated membranes (reprinted with permission
from [193], c© 2006 American Chemical Society). B: Simulations of the mathematical model
coupling curvature with lateral phase separation. High curvatures induce an ordering,
whereas a phase separation on small curvatures appears randomly.

presented by a fixed smooth surface Γ in contrast to a free membrane (or a partially
adhered vesicle) typically studied [2, 18, 107, 125, 196, 210, 239], where Γ itself is
evolving in time.

Again, we consider a membrane composed of two different molecule species, e.g.
two different lipids or lipids and proteins. The concentration of the two compo-
nents φA and φB in Γ is described by the order parameter φ : Γ → [−1, 1], where
φ = φA − φB. That means, if φ = 1 the membrane is locally composed purely of
species A and if φ = −1 locally only species B is present.

It has been shown that sorting depends critically on membrane curvature and
phase separation (in the absence of specific signals actively influencing lateral dy-
namics) [193, 210]. Therefore our model is based on the minimization of the free
energy F = F1+F2+F3 (c.f. Section 2.4.1) containing both the curvature depending
energy F1 + F2 and the Cahn-Hilliard energy F3 modeling lateral phase separation.
The area difference elasticity term F4 has been neglected, since it does not depend
on the local distribution of φ, and hence does not influences lateral sorting.
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Describing the fact that different components may differ in their mechanical
properties (such as shape and stiffness), each macroscopic elastic modulus h (h ∈
{κ, κG, H0}) is assumed to be a function of the concentration φ. Each function h
is chosen so that h(1) = hA and h(−1) = hB, where hA and hB are the elastic
moduli of the pure components. Furthermore, ξ is a transition length, σsi = σξ the
sharp line-tension (c.f. Appendix B), ∇Γ the surface gradient and f a double well po-
tential. The function f : R → R+ is of the form f(φ) = 9

32
(φ2−1)2 (c.f. Appendix B).

Instead of minimizing F = F1 + F2 + F3 directly we adopt a dynamic point of
view. Thus assuming local mass conservation (c.f. Section 2.4.2) as well as a fixed
membrane, the basic model (c.f. Section 2.4.3) reduces to the following evolution
equation for φ, given by

∂t[φ] = Lφ∆
Γ
[ δ
δφ

[
F
]]

= Lφ∆
Γ
[1
2
κ′(φ)(H −H0(φ))

2

− κ(φ)(H −H0(φ))H
′
0(φ) + κ′G(φ)K − σ(ξ2∆Γφ− f ′(φ))

]
. (4.1)

For corresponding existence and uniqueness proofs we refer to [165].

4.1.3 Finite Element Approximation and Parameter Setup

The bilayer is represented by a continuous two-dimensional (2D) surface Γ depicted

by a parametric representation ~X(u1, u2) : U → Γ ⊂ R3, where U = [0, 1] × [0, 1],
corresponding to a membrane patch of 12 µm× 12 µm.

By means of numerical studies, the equation (4.1) will be investigated in detail
using numerical simulations based on the finite element library Gascoigne [19]. Since
here only first order derivatives are available, we discretize this fourth order PDE in a
mixed formulation, [33], with bilinear finite elements. In this section we briefly reca-
pitulate the numerical approach adopted here, for further details we refer to Chapter
III.

Let 0 = t0 < t1 < ... < tM−1 < tM = T be a discretization of the time interval
[0, T ] into time steps τm := tm+1− tm, which may be possibly variable. Let further Γq

be a conforming quadrangulation approximating Γ, where Γq = ∪J
j=1ν̃j and {ν̃j}Jj=1

is a family of mutually disjoint open quadrangles. The finite element space of glo-
bally continuous, piecewise bilinear elements is defined by V (Γq) := {ψ ∈ C(Γq,R) :
ψ|ν̃j is bilinear ∀j = 1, . . . , J} ⊂ H1(Γq,R). For scalar and vector valued functions
f, g ∈ L2 we introduce the L2 inner product 〈., .〉 over Γq as 〈f, g〉 :=

∫
Γq(f · g) d s,

where f · g denotes the usual inner product for scalars and vectors. For details con-
cerning approximations H of the mean curvature H, K of the Gaussian curvature K
and of other geometrical quantities concerning Γ we refer to Section 3.3.

To reformulate the fourth order PDE (4.1) in a weak formulation using only first
order derivatives, we follow the approach presented in Section 3.1. This leads to the
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Figure 4.2: Dissipative particle dynamics (DPD) studies to investigate the nature of
κ(φ). A: Typical DPD simulation snapshot with two lipids depicting different stiffnesses
(headgroups are marked in blue and red, respectively). B: The bending rigidity κ of the
simulated bilayers varies sigmoidal with the concentration φ of lipid species. (Both pictures
reprinted with permission from Jens Kühnle, [131], c© 2011)

following discrete approximation of equation (4.1):

For m ≥ 0, find φm+1, Y m+1 ∈ V (Γq) such that〈φm+1 − φm

τm
, ψ
〉
= −Lφ〈∇Γ[Y m+1],∇Γ[ψ]〉 ∀ψ ∈ V (Γq) (4.2)

and

〈Y m+1, ψ〉 =
〈κ′(φm)

2
(H−H0(φ

m))2, ψ
〉
+ σξ2

〈
∇Γ[φm+1],∇Γ[ψ]

〉
−

〈
κ(φm)(H−H0(φ

m))H ′
0(φ

m) + κ′G(φ
m)K + σf ′(φm), ψ

〉
∀ψ ∈ V (Γq) (4.3)

hold.

4.1.4 Upscaling and Numerical Results

So far, in the first approximation we have used a linear relationship κ(φ) in or-
der to describe the macroscopic dependence of the bending rigidity κ on the lateral
composition φ. Since the exact nature of the function κ(φ) is unknown, discrete Dissi-
pative Particle Dynamics (DPD) studies can be used to determine this dependency in
detail. We want to point out that all DPD studies in this regard have been performed
and evaluated by Jens Kühnle (workgroup Matthias Weiss, Heidelberg University);
for a detailed introduction concerning the DPD method, we refer to [131]. The DPD
simulations use two different lipids showing different intrinsic lipid chain stiffnesses.
Various simulations using different ratios of these two well mixed lipid species in DPD
studies of small membrane patches (c.f. FIG 4.2 A) are performed. Using the methods
of [86, 109, 218] it is possible to extract the corresponding macroscopic bending rigi-
dity κ for each ratio. Finally, a heuristic fit yields that κ is a form of a+ b tanh(−φ),
a, b ∈ R≥0 (c.f. FIG 4.2 B).
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Using the calibrated functional relationship κ(φ) obtained from the DPD studies
on a small scale level, we numerically study the lateral phase separation behavior in
curved lipid bilayers on the large scale. Here, lateral phase separation is induced by
gradients in the macroscopic elastic moduli κ, κG and H0. The molecular counterpart
are differences in stiffness and shape of two kinds of membrane molecules.

In the first part, we compare the difference in dynamics and minimum patterns of
our nonlinear multiscale model with common linear approximations. In the second
part, we qualitatively and quantitatively compare and analyze the impact of gradients
in each of the elastic moduli κ, κG and H0 on lateral phase separation.

In the remainder of this section we use the following setup: the space discretization
Γq consists of J = 4096 quadrangles with periodic boundary conditions for φm and
Y m. Since the Cahn-Hilliard functional has a small length scale, mesh sizes are always
chosen significantly smaller than the transition length ξ. We numerically have proved
that the numerical scheme converges as the mesh sizes are reduced. Furthermore, the
result of simulations does not change with the further reduction of the mesh size (c.f.
FIG 4.3 as well as Section 3.5.3). The time discretization is based on an adaptive
time stepping scheme, starting with τ0 = 0.3 s. Since available experimental data do
not contain the full parameter set necessary to parameterize our model, some values
have been estimated. We always use a stochastically disturbed initial distribution
φ0 = φ(t = 0) of total average 〈φ0〉 = Φ0 over the domain. Additionally, we have
set: σ = 119.47 kBTµm

−2, ξ = 0.133 µm, Lφ = 3.87 · 10−4 µm4s−1(kBT )
−1 and for

the double well potential we have chosen f(φ) = 9
32
(φ2 − 1)2 (c.f. Appendix B). If

not otherwise stated, we have considered HA
0 = HB

0 = 0 µm−1; κA = κB = 25.2 kBT
and κAG = κBG = −25.2 kBT ensuring the stability restriction 0 ≥ κG ≥ −2κ [216].
This set of parameters implies the following molecular membrane diffusion coefficient
D = Lφσ = 1.15 · 10−10 cm2s−1 as well as the following ”sharp” line tension given
by σsi = σξ = 15.84 kBTµm

−1 (c.f. Appendix B). Odd numbers result from the
conversion of abstract nondimensionalized model parameters into physical values.

4.1.4.1 Parameterized Model vs. Linear Approximations

Although the idea of coupling macroscopic elastic moduli with the lateral composi-
tion of lipid bilayers has been used in the past, the exact nature of these dependencies
remains still unrevealed. Different approaches reaching from phenomenological coup-
ling terms [5, 45, 120, 237, 260] to linear [145] and nonlinear [155, 248] functions
κ(φ), κG(φ) and H0(φ) have been used.

In this study a multiscale approach is proposed for the first time. As an example,
the bending rigidity κ of the continuous model is parameterized via DPD experiments.
We find that κ(φ) has the form of a tanh-function (see FIG 4.2 B) rather than a simple
linear relationship. In order to get an impression of the importance of using more
realistic upscaled data, we perform comparative studies: considering parallely the
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Figure 4.3: Using J = 4096, J = 16384 as well as J = 65536 meshpoints reveals a very
similar temporal and spatial behavior.

nonlinear (upscaled) function

κtanh(φ) = a+ b1 tanh(−φ) (4.4)

and the linear case commonly adopted

κlin(φ) = a+ b2φ. (4.5)

In FIG 4.4 the corresponding results are shown. The constants a = κA+κB

2
, b1 =

κA−κB

2 tanh(1)
and b2 = κA−κB

2
are chosen so that in both cases κ(1) = κA = 17.3kBT and

κ(−1) = κB = 25.2kBT are ensured. Furthermore, in both simulations we use the

fixed geometry Γ = ~X(u1, u2) = 0.625 sin(6πu1) µm (cf. FIG 4.1 B) and the initial
conditions 〈φ0〉 = 0, i.e. for a 1 : 1 mixture of both components. The prescribed
geometry ensures K ≡ 0 so that κG does not play any role for this specific geometry.

We observe in early states of phase separation in the nonlinear case of κ a stronger
dependence on the curvature (FIG 4.4 C) than in the linear case (FIG 4.4 A). This
is likely to be a consequence of the steeper gradient of κtanh compared to κlin close
to the initial value 〈φ0〉 = 0. Since the breakage of already formed cross connections
between the phases is energetically costly (it would elongate the overall size of the
boundaries) early sorting effects can trap the system into different minimum patterns,
corresponding to local minima of the free energy (2.5). This becomes obvious in com-
paring the minimum configurations FIG 4.4 B with FIG 4.4 D.

Choosing initial conditions 〈φ0〉 away from zero, e.g. having many molecules
of one component and less of the other, does not result in different local minimum
configurations (results not shown). Since in this case circular phases of the component
with the smaller amount are quickly arising and stable cross-connecting phases (c.f.
green circular marks in FIG 4.4 A) are missing.
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Figure 4.4: Different minimum patterns depending on the form of the function κ(φ).
A-B: κ is linear; C-D: κ is a form of a + b tanh(−φ). Note that early sorting in (A) is
less curvature dependent than in (C), showing cross connections between the red domains
(marked by green circles).

4.1.4.2 Gradients in the Elastic Moduli and Lateral Sorting

So far we have only studied the influence of lipids with differences in the bending
rigidity κ(φ), which has previously shown to induce lateral sorting. In the following,
we will also investigate the impact of spatial gradients in the spontaneous curvature
H0 and the Gaussian rigidity κG. Especially the latter has not been studied so far
in the literature. For this purpose, the moduli are again assumed to be functions
of the order parameter φ. Due to our results from the DPD studies we assume
the rigidity functions κ(φ) as well as κG(φ) having the form a + b1 tanh(−φ). For
the spontaneous curvature, we use the linear function H0(φ) = a + b2φ. In further
studies κG as well as H0 should be identified from DPD studies or other molecular
approaches. Furthermore, for the following simulations we choose for the geometry Γ
= ~X(u1, u2) = 0.75 sin(4πu1) sin(4πu2) µm (cf. FIG 4.5 L) and 〈φ0〉 = −0.6. In the
following, the notation ∆h constitutes the difference |hA − hB| in an elastic modulus
h ∈ {κ, κG, H0} between the two species A and B.
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Figure 4.5: Investigating lateral sorting using different strengths of gradients in the elastic
moduli ∆κ (A,D,G), ∆κG (B,E,H) and ∆H0 (C,F,I) on a fixed non-planar surface. A-C:
The decay of the Cahn-Hilliard energy F2 in time. The stronger ∆h (h ∈ {κ, κG, H0})
is, the earlier is the observed decay of F2. D-F: The time up to the metastable pattern
Tmin decays exponentially with ∆h (red dots: values from simulations; green spotted line:
exponential fit of the kind a + b exp(−c∆h)). G-I: Representative minimum patterns. J:
Mean curvature of Γ. K: Gaussian curvature of Γ. L: Discretized surface Γ, side view.
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Interestingly, by varying independently all three elastic moduli in our simulations,
we observe in principle the same effects: the stronger ∆h is, the faster phase separa-
tion occurs. This can be observed by an early and faster decay of the Cahn-Hilliard
part F2 of the free energy from the instable initial conditions (c.f. FIG 4.5 A-C).
Plotting the time to the achievement of the minimum Tmin against ∆h yields in all
cases an exponential decay of Tmin(∆h) (c.f. FIG 4.5 D-F). The exponential fit leads
to a good approximation for physically reasonable values. However, for significantly
larger values we observe that Tmin decays even stronger, without any offset.

In the case ∆κ = ∆κG = ∆H0 = 0, phase separation occurs randomly (results
not shown). Considering gradients in each of the moduli we observe distinct cur-
vature dependent phase separation patterns: choosing nonzero ∆κG induces phase
separation of the component with the lower absolute value of κG in areas with high
negative Gaussian curvature (FIG 4.5 H). Doing the same with ∆κ we observe phase
separation of the component with the lower bending rigidity in regions with high
mean curvature (FIG 4.5 G). Choosing HA < 0 while HB = 0 (causing ∆H0 6= 0)
drives φA to regions allocating this curvature (FIG 4.5 I). Interestingly, in most of
the cases, these minimum patterns are only metastable, showing only slight changes
in the size of the domains for a long time after Tmin, but resulting very late (t > 300
min) in different minimum patterns with less and larger domains (c.f. Section 4.1.4.4).

The observed minimum patterns (c.f. FIG 4.5 G-I) differ significantly - each mini-
mum pattern is the optimal pattern for the corresponding elastic modulus. Therefore,
it is absolutely necessary to consider all three effects, since neglecting one part could
lead to completely different minimum patterns and thus different biological interpre-
tations.

4.1.4.3 Curvature Gradients and Lateral Sorting

Curvature depending sorting in membranes appears to be the result of the inter-
play between spatial gradients in the elastic moduli and in membrane curvature [193].
In the previous section, we have varied the strength of spatial moduli gradients keeping
the membrane geometry constant. Analogously, in this section we vary the membrane
geometry (i.e. the strength of curvature gradients) keeping differences in the elastic
moduli constant. Corresponding results are shown in FIG 4.6. In order to quan-
tify curvature gradients in mean curvature H and Gaussian curvature K, we define
H ′

max := max{|∇Γ[H( ~X)]| : ~X ∈ Γ} as well as K ′
max := max{|∇Γ[K( ~X)]| : ~X ∈ Γ}.

First, we fix for each elastic modulus h ∈ {κ, κG, H0} a certain difference ∆h 6= 0
(while choosing vanishing differences in the other two moduli) but vary the corres-
ponding curvature gradient G′

max ∈ {H ′
max, K

′
max}. We observe in all three cases that

the stronger G′
max is, the earlier and faster phase separation occurs (c.f. FIG 4.6 A-

C). Plotting the time to the achievement of the minimum Tmin against the strength
of G′

max yields in all cases an exponential decay of Tmin(G
′
max) (c.f. FIG 4.6 D-F).
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Figure 4.6: Investigating lateral sorting using different strengths of curvature gradients
G′

max ∈ {H ′
max,K

′
max} but fixed differences in the elastic moduli ∆κ 6= 0 (A,D), ∆κG 6= 0

(B,E) and ∆H0 6= 0 (C,F). A-C: The decay of the Cahn-Hilliard energy F2 in time. The
stronger G′

max is, the earlier the observed decay of F2 is. D-F: The time up to the metastable
pattern Tmin decays exponentially with G′

max (red dots: values from simulations; green
spotted line: exponential fit of the kind a+ b exp(−c∆h)).

In detail, we have set ∆κ = 0.02kBT and ∆κG = ∆H0 = 0 in FIG 4.6 A and D;
∆κG = 0.02kBT and ∆κ = ∆H0 = 0 in FIG 4.6 B and E as well as ∆H0 = 0.08µm−1

and ∆κ = ∆κG = 0 in FIG 4.6 C and F.

Hence, increasing differences in elastic moduli as well as increasing gradients in
membrane curvature accelerate the lateral sorting process exponentially.

4.1.4.4 Parameter Interplay and its Influence on the Stability of Sorting
Patterns

As mentioned above, most of the observed curvature depending patterns appear
to be metastable: if differences in elastic moduli and curvature gradients are strong
enough, a periodic symmetric pattern appears at t = Tmin, which loses at t = Tmax

its symmetry by fusing into less and bigger domains. The latter can be observed
by a jump in the free energy F2 (c.f. FIG 4.7 A). This process continues stepwise;
the assumed stable minimum pattern is built up of one big domain. To quantify
the stability of a curvature modulated pattern, we define Tstab := Tmax − Tmin which
equals to zero if no curvature depending sorting takes place. In order to quantify the
mechanochemical disposition for curvature modulated sorting subject to line tension
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Figure 4.7: Stability of patterns depending on the interplay of elastic moduli gradients,
curvature gradients and the line tension. A: Tstab := Tmax − Tmin measures the stability
of a curvature modulated pattern, where Tmax defines the time where the symmetry of
the pattern gets lost by fusing domains. Each fusion can be recognized by a jump in the
free energy F2 (black arrows). B-D: for each h ∈ {κ, κG,H0}, Tstab increases with growing
curvature gradient H ′

max and K ′
max, respectively, as well as with growing corresponding

elastic parameter χh
el = ∆h/σ (in figure D the value Tstab has been cutted at Tstab = 2400 sec

due to limited simulation time). E-G: Phase diagrams as a function of the elastic parameter
χel for each elastic modulus and the corresponding curvature gradient. CP: region with
(metastable) curvature modulated sorting, CIP: region with curvature independent sorting.
Green x-marks: simulations with Tstab > 0, red +-marks: simulations with Tstab = 0. Blue
dotted line: heuristically fitted transition line of the kind a/x+ b/x2.
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and modulus differences, for each h ∈ {κ, κG, H0} we introduce the elastic parameter
χh
el = ∆h/σ [212]. We systematically investigate the influence of gradients in elastic

moduli, line tension and curvature gradients on the stability Tstab. For this purpose,
for each modulus h and the corresponding curvature gradient G′

max ∈ {H ′
max, K

′
max}

we have performed ≥ 30 simulations with different parameter sets (G′
max, χ

h
el). Our

results clearly show that increased values for G′
max as well as for χh

el result in an in-
creased stability Tstab (c.f. FIG 4.7 B-D).

For each h ∈ {κ, κG, H0} we present phase diagrams, showing regions with at least
metastable curvature modulated pattern formation (CP) and curvature independent
sorting regions (CIP) relying on χh

el and the corresponding G′
max ∈ {H ′

max, K
′
max}

(c.f. FIG 4.7 E-G). Hence, we assume that the relation χh
el = f̃h

tr(G
′
max) describing

the transition between CP and CIP regions can be approximated by fh
tr(G

′
max) =

a/G′
max + b/(G′

max)
2 for a, b ∈ R≥0. This is physically motivated by the assumption

that the graph(f̃h
tr) asymptotically approaches the axes. Based on our numerical simu-

lations, heuristic fits yield rough approximations of f̃h
tr (blue spotted lines in FIG 4.7

E-G). Especially it holds fκ
tr(H

′
max) = 0.0043/H ′

max + 0.0052/(H ′
max)

2, fκG
tr (K ′

max) =
0.0048/K ′

max as well as fH0
tr (H ′

max) = 0.00023 /H ′
max. In future experiments these

functions can be used to estimate if curvature modulated sorting will occur. This is
the case namely if for at least one elastic modulus h the relationship χh

el >> fh
tr(G

′
max)

holds for the corresponding value G′
max ∈ {H ′

max, K
′
max}.

4.1.5 Discussion

In the Section 4.1 we have outlined a continuous multiscale model for curvature
induced lateral sorting in biological membranes. Passive lateral organization in mem-
branes is involved and actually is a premiss for various cellular processes, such as
budding [18], signaling [233] and sorting [140]. Furthermore, it is assumed to be
an essential condition for the biogenesis and maintenance of cellular organelles [175].
Thus it is critical for the function of each biological cell. The presented model enables
to study how differences of membrane components in at least one of the macroscopic
elastic moduli influence dynamics and the selection of minimum patterns. Here, we
have studied the influence of curvature gradients in interplay with the bending rigidi-
ty κ, the spontaneous curvature H0 and the Gaussian rigidity κG. The latter has not
been studied in the literature so far. In terms of molecular parameters, the different
elastic moduli reflect differences in stiffness and shape of the corresponding molecules.

Differences in the elastic moduli have been experimentally used to study the inter-
play between molecular properties and curvature [18, 107, 125, 193, 196, 210, 239, 262].
Furthermore, various theoretical continuous approaches have already been used to
study the coupling of different moduli with curvature [5, 45, 83, 120, 146, 155, 237,
248, 260]. Despite of this effort, three points have not been studied so far (at least
up to our knowledge):
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• Parameterization of the presented continuous model directly from the molecular
scale.

• Studies of the influence of differences in the Gaussian rigidities on lateral sorting.

• Phase diagrams estimating if and how stable a curvature depending sorting
occurs.

In this thesis, we have addressed these three issues.

First of all, we have studied the influence of the detailed parameterization, i.e. the
functional dependencies used in the model. In collaboration with Jens Kühnle [131]
we have used discrete DPD models to determine the dependence of the bending rigi-
dity κ (φ) on the composition of a binary lipid bilayer. We have restricted ourselves
to lipids of the same length and type yet varied the lipids chain stiffness. Simulation
results reveal that κ(φ) is best described by a sigmoid curve, e.g. having a hyperbolic
tangent form.

In the macroscopic finite element simulations, we have found that the steady state
depends strongly on κ (φ). In FIG 4.4 the dynamics and minimum configurations of
two simulations are shown comparing the use of a linear bending rigidity κlin(φ) with
the nonlinear case κtanh(φ). The latter has been determined directly from DPD stu-
dies. Although the global energy F of a given lateral distribution φ on Γ is the same
for the two cases κlin, κtanh, we observe strong differences in dynamics and minimum
patterns. We postulate that this effect is due to differences in d

dφ
κlin and d

dφ
κtanh,

leading locally (and very early in time) to differences in the strength of curvature
dependent sorting. This again traps the whole system in completely different mini-
mum patterns. These results emphasize the importance of dynamics and parameters
in mathematical modeling. In other words, even if only minimum patterns (with a
certain set of parameters) are studied, the dependence of the minimum configuration
on initial conditions should be carefully checked as well as the robustness with respect
to parameter variation.

Furthermore, we have investigated the impact of differences in each of the macros-
copic elastic moduli on lateral sorting using macroscopic finite element simulations
(c.f. FIG 4.5). Our results suggest that each of the moduli κ, H0 and κG has a
comparable impact on dynamics and curvature dependent patterns: in the parameter
regime studied, the decomposition time decreases roughly exponentially with the gra-
dient of each elastic modulus. The same effect can be observed by fixing the difference
in each elastic modulus and increasing corresponding curvature gradients (c.f. FIG
4.6). Additionally, each gradient can lead to a distinct minimum pattern, influenced
by the mean curvature or the Gaussian curvature of the given geometry, respectively.
These findings suggest that the Gaussian rigidity plays an equivalent role in lateral
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sorting, as the other two moduli, which are well known to influence lateral sorting
[5, 18, 45, 72, 107, 120, 125, 146, 155, 193, 196, 210, 237, 239, 248, 260, 262].

The presented results agree with the following molecular intuition: given an arbi-
trary curved membrane containing a stiff and a flexible component, it is energetically
favorable for the most flexible component to stay in curved regions, independent of
the sign of the principle curvatures. To account for each kind of curvature, we have
to consider both, gradients in the bending rigidity and in the Gaussian rigidity.

These findings are supported by the experimental observation that differences in
bending rigidities usually coincide with differences in Gaussian rigidities [220]. The
importance of the elusive Gaussian rigidity in biological processes has been neglected
for a long time. Only very recently theoretical studies investigate its influence on
membrane shapes [17, 30, 60], fusion [225] and lateral diffusion [263] considering ei-
ther a homogeneous membrane composed of only one component or - in the case of
two component membranes - domains composed of different molecular species have
been assumed to be lateral immobile. In experiments investigating lateral sorting, ef-
fects due to Gaussian rigidities are also generally assumed to be negligible [262]. This
may be caused by the fact that, on the one hand, κG cannot be measured directly
in experiments [226]. On the other hand, the well known Gauss-Bonnet theorem
(stating

∫
S
K dω = const. in homogeneous materials considering closed membranes)

may have led to a misunderstanding that the effect of K is negligible in heterogeneous
membranes as well. However, the results presented in this study show that the impact
of inhomogeneities in Gaussian rigidities have a comparable strong effect on lateral
sorting as the other two moduli, the bending rigidity and the spontaneous curvature.

The results presented in FIG 4.7 show that the appearance and stability of curva-
ture modulated patterns strongly depend on the exact choice of line tension, curvature
gradients and moduli gradients. It appears the question if beside metastable patterns
also stable curvature modulated patterns exist. However, this question has to be
traced by methods of rigorous stability analysis and is far beyond the scope of this
thesis. Nevertheless, the presented phase diagrams in this study allow to estimate, at
least, under which conditions curvature modulated sorting takes place.

In the future, all these findings can help to understand, predict and interpret more
precisely experimental observations concerning curvature dependent lateral organiza-
tion and its stability in biological membranes.
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4.2 Impact of Elastic Parameters on Membrane Budding

4.2.1 Introduction

A biological cell is composed of a multitude of membrane systems. Each of these
systems provides a specific shape and composition of chemical components fulfilling
highly specialized functions. Although most of these systems are physically well se-
parated they are connected among each other via permanent flow of membrane parts.
This happens due to small membrane spheres, called vesicles, constricting from a
donor membrane in a process called budding. Budding plays a key role in various
healthy and pathogenic cellular processes such as sorting, transport, biogenesis and
infections [116, 175, 249].

In vivo, biological membranes are composed of many different lipids, proteins and
other molecules [4]. Recent experiments show that the lateral phase separation or
clustering of certain membrane components serves as a basal mechanism to produce
local membrane deformations, e.g. buds [12, 17, 18, 245]. Although most of the
budding process details still remain unknown, it is assumed that the mechanical pro-
perties and interactions of different membrane molecules play a crucial role in budding
processes. (For further details concerning basic properties of biological membranes as
well as concerning previous general work in the field of membrane modeling, we refer
to Section 2.1.1 and Section 2.3, respectively.)

In this section, the impact of each elastic parameter (the line tension, bending
rigidity, Gaussian rigidity, spontaneous curvature and monolayer area-difference) on
membrane shape and budding is investigated, using the basic model (c.f. Section
2.4) as well as the corresponding computational approach (c.f. Chapter III). Various
simulation results are compared to recent theoretical results (sharp line tension limit)
as well as experimental results. Since within this section most of the studies are
qualitative, we work with abstract nondimensionalized model parameters in place of
physical values (contrary to Section 4.1 and Section 4.3). The presented section is
closely related to [166].

4.2.2 Finite Element Approximation and Parameter Setup

Since the strongly coupled nonlinear PDE system of fourth order (2.8)-(2.10) (c.f.
Section 2.4.3) can hardly be investigated using analytical techniques, it will be in-
vestigated in detail using numerical studies. Here, we will use the finite element
library Gascoigne [19] using bilinear finite elements. Details of the numerical ap-
proach adopted here are shown in Chapter III.

If not otherwise stated we will use the parameter setup given below. For time
discretization we use an adaptive time stepping scheme starting with τ0 = 10−5.
Local expansion of the grid due to an evolution of the membrane is avoided using
local mesh refinement starting with J = 1024 vertices. Initial conditions for mem-
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Figure 4.8: A-C: Typical simulation snapshots of a deforming two-component membrane
at different time steps (red = local high concentrations of species A, blue = local high
concentrations of species B). D: Corresponding decay of different parts of the free energy.

brane shapes and lateral composition are given by ~X0 = (0, 0, a1(1 + cos(a2π)) and
φ0 = −1+a3 cos(a2π), where the constants a1, a2, a3 are chosen so that

∫
Γ
ds = 1.3 and∫

Γ
φ ds = −0.85. For all variables, periodic boundary conditions are used. (However,

it appears that using Neumann zero boundary conditions leads to the same quali-
tative and quantitative results.) As not otherwise stated, we set: κA = κB = 1.5,
κAG = κBG = −1 (ensuring the stability restriction 0 ≥ κG ≥ −2κ [216]), κ = 0,

σ = 90, ξ = 0.03, f(φ) = 9
32

(
φ2 − 1

)2
, LX = 5 · 10−4 and Lφ = 0.05. Furthermore,

for i ∈ {1, 2} we choose αm
i ≡ βm

i ≡ 0.1. Elastic moduli are assumed to be linear

functions of φ, i.e. h(φ) = hA+hB

2
+ hA−hB

2
φ, where hA and hB are the macroscopic

elastic moduli of the molecular species A and B in Γ, h ∈ {κ, κG, H0}.

In FIG 4.8 A-C snapshots at different time steps of a typical simulation are shown.
Furthermore, the corresponding decay of different parts of the free energy (2.5) is
shown in FIG 4.8 D. In case of energy minimizing geometries consisting of an incom-
plete bud (e.g FIG 4.9 D) the achievement of the local minimum of F can be evaluated

naturally by the corresponding discretized derivative, i.e. by F [ ~Xm+1,φm+1]−F [ ~Xm,φm]
τm+1 .

If the minimum is reached, the simulation is stopped. In case of a complete budding
event (e.g. FIG 4.9 E) the energy minimizing shape contains an infinitesimal narrow
neck and thus is beyond discrete approximations. Hence, we stop simulations just
before the numerically computed solutions ”blow up” due to geometric singularities
knowing that we are close to the energy minimum. The limit represents the fission
of a daughter vesicle from the underlying membrane. This is also the limit of our
mathematical model in different senses: beside the topological limit, the process of
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fission itself includes several complex and partial unknown stages of membrane reor-
ganization [129, 142] which are not considered in our model.

4.2.3 Numerical Results

Using the outlined macroscopic modeling approach (Section 2.4) discretized by
the scheme described in Chapter III, we investigate dynamics and minimum configu-
rations of the deformation of two-component membranes in this section. Particularly,
we study membrane shape and budding transition by varying:

• the line tension σ acting along the phase boundaries and thus tending to shorten
the boundary length,

• the spontaneous curvatures HA
0 and HB

0 modeling an explicit coupling between
different components and the preferred membrane curvature,

• the bending rigidities κA and κB reflecting an explicit coupling of different
components with the stiffness of the membrane,

• the Gaussian rigidities κAG and κBG reflecting again an explicit coupling of diffe-
rent components with the stiffness of the membrane, and

• the monolayer area difference modulus κ, reflecting that different components
may influence the global area difference between the two monolayers in different
ways.

Corresponding results are qualitatively and quantitatively compared in detail and
discussed in context of recent experimental and theoretical results.

In contrast to the often used sharp line tension approaches, which assume axially
symmetric geometries with already separated phases (e.g. [6, 17, 60, 124]), the pre-
sented approach is not restricted to specific geometries (except topological changes)
and includes lateral dynamics as well as a variable interface width. Hence, this ap-
proach can be used to study the complex interplay of membrane geometry and lateral
dynamics in membranes on different scales. Therefore, it is well suited for a compa-
rison with models on the molecular level, e.g. molecular dynamics (MD). The latter
can be used for a computational upscaling approach of membrane models, as pur-
sued in Section 4.1. In the future, the presented dynamical computational approach
could help to get further insights how all the various shaped and beautiful membrane
structures are generated and maintained.

4.2.3.1 Line Tension σ

Clustering of various different molecule species (e.g. mixtures of lipids and choles-
terol or lipids and proteins) into distinct membrane domains has been shown for
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Figure 4.9: The effect of the line tension σ on membrane budding. A: Functional depen-
dence of the free energy Fmin of the minimum configuration on σ. Black dots: simulation
data; arrow marks budding transition. B: The budding time Tmin decays exponentially
with increasing σ; black dots: values from simulations; green spotted line: exponential fit.
C-E: Minimum configurations for different values of σ, C: σ = 90, D: σ = 540, E: σ = 630.
F-G: Budding experiments (pictures reprinted from [231], c© 2004, with permission from
Elsevier) with assumed weak (F) and strong (G) line tension.

different types of biological membranes [12, 17, 18, 245]. The detailed underlying
molecular interactions are still a topic of active research [91]. Here, we are inte-
grating this lateral demixing behavior by the effective parameter σ describing the
(diffuse) line tension.

In this section, we investigate the effects of different values of σ ∈ [90, 1800] on
membrane shapes and budding. In FIG 4.9 we show minimum geometries for σ = 90
(C), σ = 540 (D) and σ = 630 (E). Our results clearly indicate that the line ten-
sion plays an important role in the budding process: with increasing line tension the
membrane shows an increasing budded geometry (c.f. FIG 4.9 C-D). For σ ≥ 630
we observe a qualitative change in the minimum configuration: the minimum shape
of an incomplete bud (c.f. FIG 4.9 D) changes abruptly to the shape of a complete
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bud (c.f. FIG 4.9 E). This observation of a budding transition above a critical value
σ∗ fits well with the theoretical studies of [123, 124, 150] and experimental results of
[231] (c.f. FIG 4.9 F-G). Calculating the critical sharp line tension value σ∗

si obtained
by [150] for equal domain sizes and transformation in the diffuse value (c.f. Appendix
B) yields σ∗ ≈ 711, close to our numerically estimated value.

Although the minimum geometry of the membrane changes discontinuously at σ∗,
the corresponding free energy Fmin(σ) does not show any jump at σ = σ∗ (c.f. FIG
4.9 A, black arrow), indicating that at σ∗ the free energy of the incomplete bud and
of the energy of the complete bud are the same, as proposed by [150]. Once σ ≥ σ∗,
Fmin growths linearly, since the minimum geometry is unchanged and F scales line-
arly with σ. Plotting the budding time Tmin(σ) for σ ≥ σ∗ reveals that the budding
duration is shortened with increasing line tension, which has been previously observed
in dissipative particle dynamics studies [112]. A fit reveals an exponential decay of
Tmin(σ) (c.f. FIG 4.9 B).

Beside the previously assumed role of the line tension energy as a control me-
chanism of membrane shapes and budding [136, 150, 231, 245, 248, 264], our results
emphasize the influence of this parameter also on the relevant time scales.

4.2.3.2 Spontaneous Curvature H0

A variety of molecular curvature generating mechanisms in biological membranes
have been proposed in the past (for reviews see [89, 159, 161]): global quantities
(such as area difference between lipid monolayers [169] or area/volume ratio of vesi-
cles [69]) as well as local accumulations of shaping components [269] can induce local
curvatures. In this subsection, we limit ourselves to the latter case, by modifying
the spontaneous curvature H0. Strongly nonzero spontaneous curvatures have been
described for various membrane proteins, classical examples are clathrin and COP
molecules [23, 24, 160, 195]. Also, for different lipids various effective spontaneous
curvatures have been determined [269].

In this section, we consider the effect of different spontaneous curvatures HA
0 ∈

[−15, 0] (keeping HB
0 = 0) on domain shapes and budding. Corresponding results are

shown in FIG 4.10. As expected, increasing the spontaneous curvature HA
0 results

in a domain adapting its curvature to the value of HA
0 (c.f. FIG 4.10 C-D). Above

a critical value −8.5 ≤ HA∗
0 < −8 budding transition occurs, i.e. we obtain a shape

close to complete bud with an infinitesimal small neck still connected to the rest of
the membrane (as already stated our Lagrangian approach can not handle topology
changes). These results match with the predictions of [123] stating that, even for a
vanishing line tension, the spontaneous curvature alone can cause a complete budding.
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Figure 4.10: The effect of the spontaneous curvature HA
0 on membrane budding. A:

Functional dependence of the free energy Fmin of minimum configurations on HA
0 . Black

dots: simulation data; arrow marks budding transition. B: The budding time Tmin decays
exponentially with decreasing HA

0 ; black dots: values from simulations; green spotted line:
exponential fit. C-E: Minimum configurations for different values of HA

0 , C: H
A
0 = 0, D:

HA
0 = −8, E: HA

0 = −8.5. F-G Experimental results: different sterol structures induce dif-
ferent directions of budding (pictures are taken with permission from the National Academy
of Sciences, [12], c© 2005), H-J: time snapshots of a simulation with HA

0 = 5.
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Calculating the critical spontaneous curvature H
A∗
0 following the approach of [150]

for equal domain sizes (c.f. Appendix B for transition between sharp and diffuse line

tension) yields H
A∗
0 ≈ −4.2. In other words, H

A∗
0 is of the same order, however

not very close to the value HA∗
0 numerically estimated in this study. Plotting the

free energy Fmin(H
A
0 ) of the minimum geometries for different values of HA

0 does
not reveal any discontinuity of Fmin in HA∗

0 (c.f. FIG 4.10 A black arrow). When
|HA

0 | ≥ |HA∗
0 |, Fmin grows quadratically, since the minimum shape is unchanged and

F scales quadratically with (HA
0 −H). Plotting the simulation time Tmin up to the full

bud (i.e. |HA
0 | ≥ |HA∗

0 |) reveals an exponential acceleration of the budding process
by increasing further HA

0 (c.f. FIG 4.10 B).

To stress the influence of the spontaneous curvature on the budding direction,
we further performe simulations in which the sign of HA

0 was opposed to the initial
local curvature of the membrane choosing HA

0 = 5 (c.f. FIG 4.10 H-J). a1, a2 and a3
are chosen so that

∫
Γ
ds = 1.08 and

∫
Γ
φ ds = −0.55. All other elastic parameters

remain constant: κ ≡ 10 ≡ −κG and σ = 900. We observe that also in this case the
spontaneous curvature is able to induce a budding process opposite to the natural
bending of the membrane.

Besides an influence of the spontaneous curvature on budding transition and the
time scale of the budding event itself, our results highlight that the sign of the sponta-
neous curvature could be an important mechanism to control the direction of budding.
This could explain how budding in both directions of the same membrane could be
achieved, since in this case neither the area/volume ratio nor an area difference in
one of the bilayer leaflets can positively influence both budding directions.

Our theoretical predictions are in accordance with the experimental results of [12],
reporting a correlation between molecule structure and budding direction (c.f. FIG
4.10 F-G).

4.2.3.3 Bending Rigidity κ

The molecular origin of the macroscopic bending rigidity κ is still a field of active
research [22, 42, 45, 46, 133, 184, 190, 204, 251]. Its exact role in basic biological
processes such as membrane shaping and budding has not been completely under-
stood yet. Experimentally, κ can be measured via fluctuations analysis of vesicles
[109] based on Helfrich’s theory [218] - exactly the same way as in the DPD studies
in Section 4.1.
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Figure 4.11: The effect of the bending rigidity κA on membrane budding. A: Functional
dependence of the free energy Fmin of the minimum configurations on κA. Black dots:
simulation data; arrow marks budding transition. B: The time Tmin up to the complete
bud decays exponentially decreasing κA; black dots: values from simulations; green spotted
line: exponential fit. C-E: Minimum configurations depending on κA, C: κA = 2.6, D:
κA = 1.45, E: κA = 1.4. F-H: The phase with the higher κ straightens close to the phase
boundary, hence neck induced curvature is stronger in the phase with the lower κ. F:
Experimental result: red component has a lower value of κ (reprinted by permission from
Macmillan Publishers Ltd: Nature, [18], c© 2003); G-H: simulation snapshots; G: HA = 5
but HB = 1 shows a less spherical bud than H: HA = 1 but HB = 5.
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In this section, we consider the effect of the bending rigidity κ on budding choo-
sing different values κA ∈ [0.6, 2.6] and keeping κB = 1.5 and σ = 585 constant.
Corresponding results are shown in FIG 4.11. We find that a strong bending rigidi-
ty κA = 2.6 flattens the domain of the corresponding component (c.f. FIG 4.11 C)
whereas a weaker value κA = 1.45 causes a more budded minimum geometry (c.f.
FIG 4.11 D). Adopting an energetic point of view, in the latter case bending within
the domain is less penalized. Furthermore, we observe that stiffening the domain
(choosing HA = 5 but HB = 1) straightens the domain at the phase boundaries of
species A and B resulting in a less spherical bud than in the case of HA = 1 but
HB = 5. Curvature at the neck is more pronounced in the domain, where κ value
is lower (c.f. FIG 4.11 F-H). This is in accordance with recent experimental and
theoretical observations [17, 18].

Lowering κA below a critical value κA∗ = 1.4 induces a discontinuous budding
transition, resulting in a minimum geometry consisting of a complete bud (c.f. FIG
4.11 E). This fits quite well with the results of [150]. Calculating the critical value
κA∗ for equal domain sizes in the sharp line tension approach of [150] (for transfor-
mation between the diffuse and the sharp line tension value c.f. Appendix B) yields
κA∗ ≈ 1.23, which is of the same order as the value estimated numerically by us.

The free energy Fmin(κ
A) of the minimum configuration shows a kink at the cri-

tical value κA∗ (c.f. FIG 4.11 A, black arrow). It grows up linearly for κA ≤ κA∗

as expected, the minimum geometry is unchanged and F scales linearly with κA.
Furthermore, we observe that for values κA ≤ κA∗ the time up to the full bud Tmin(κ

A)
decays exponentially with further lowering of κA (c.f. FIG 4.11 B). These results
emphasize that the bending rigidity plays a qualitatively equivalent role in the process
of budding transition and dynamics such as the spontaneous curvature and the line
tension.

4.2.3.4 Gaussian Rigidity κG

Theoretical approaches show that differences in molecular properties cause diffe-
rences in the macroscopic membrane Gaussian rigidity κG [22, 42, 209, 251]. Consi-
dering heterogeneous membranes, it has been early predicted that lateral gradients in
the Gaussian rigidity may influence membrane shape and budding [123, 124]. Since
κG cannot be determined directly in experiments [226] recent studies focusing on κG
combine experiments with simulations [6, 17, 30, 60]. These studies usually use a
sharp interface approach for the line tension (assuming a large scale). Furthermore,
they consider fixed and already formed phases as well as axially symmetric geome-
tries. The actual process leading to the formation of buds is ignored.
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Figure 4.12: The effect of the Gaussian rigidity κAG on membrane budding. A: Func-
tional dependence of the free energy Fmin of the minimum configurations on κAG. Black
dots: simulation data; arrow marks budding transition. B: the budding time Tmin decays
exponentially with decreasing κAG; |κAG| ≥ |κA∗

G |. Black dots: simulation data; green spotted
line: exponential fit. C-F: minimum configurations, C: κAG = −0.8, D: κAG = −1.15, E:
κAG = −1.4. F: same values expect a lower domain size compared to (E). G-I: shift of the
neck region (cross-section) relative to the phase boundary due to differences in κG; maxi-
mum values of Gaussian curvature K are marked in green, maximum values of ∇Γφ are
marked in red, overlay appears brown; G: κAG = −3.0, H: κAG = −1.5., I κAG = 0.0.
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In the current section we address the influence of differences in the Gaussian
rigidity κG on the membrane shape and budding, choosing different values of κAG ∈
[−2,−0.8] and keeping κBG = −1.5 and σ = 675 constant. Corresponding results are
shown in FIG 4.12. Starting with κAG = −0.8, we find incomplete budded minimum
geometries (c.f. FIG 4.12 C-D). For κAG ≤ −1.2 a budding transition occurs causing
a minimum geometry of a complete bud (c.f. FIG 4.12 E). These results fit well
with the assumptions of [124]. Furthermore, reducing the size of the domain A by
choosing a3 so that

∫
Γ
φ ds = −0.95 and keeping κAG = −1.4 and σ = 675 constant, we

find that budding is inhibited (c.f. FIG 4.12 F). The latter effect holds for all elastic
parameters inducing budding in the original setting with

∫
Γ
φds = −0.95 (results not

shown) which matches the observations of [123].

At the critical budding transition value κA∗
G (c.f. FIG 4.12 A, black arrow) the

free energy Fmin(κ
A
G) (corresponding to the minimum configurations) shows a well

established kink. For values |κAG| ≥ |κA∗
G |, Fmin increases linearly since the minimum

geometry is unchanged and F scales linearly with κAG. Plotting the corresponding
simulation time Tmin(κ

A
G) reveals an exponential acceleration of the budding process

due to further lowering of κAG (c.f. FIG 4.12 B).

Our results clearly show that differences in the Gaussian rigidity can play a major
role in budding transition and dynamics. Its influences are qualitatively comparable
to the other three elastic parameters σ,H0 and κ ones. The Gaussian term in F2

induces forces only in membrane regions, where gradients of φ and non zero Gaussian
curvatures overlap (e.g. at the neck region). Hence, we expect that the influence of
gradients in κG on budding plays an increased role at small scales where transition
regions and neck induced curvature are relatively large compared to the total domain
size. In agreement with the results of [6, 17, 153], we additionally observe that
differences in κG appear through a shift of the neck into the direction of the phase
with the lower Gaussian rigidity (c.f. FIG 4.12 G-I). The observed shift between neck
and phase boundary in the case of κAG = κBG (c.f. FIG 4.12 H) is likely to be due to
an asymmetry in the domain geometry.

4.2.3.5 Area Difference Elasticity

It has already been shown that there can be differences in the composition of two
monolayers, constituting a lipid bilayer membrane [32]. This asymmetric composition
can lead to differences in monolayer surface areas as well. Experiments with artificial
membranes show that this area difference can have a striking influence on membrane
morphology [21, 174], termed as the ”bilayer-couple mechanism”. However, in prac-
tical terms, the bilayer-couple mechanism seems to be less biological relevant. This
is related to the global impact of this mechanism [269]. Nevertheless, an area dif-
ference between the monolayers induced by certain proteins, called ”flippases”, is
assumed to be involved in initial steps of vesicle formation and membrane remodeling
[37, 67, 199]. Here, we also investigate very briefly the impact of this mechanism on
membrane budding.
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Figure 4.13: The effect of area difference elasticity ∆A0 on membrane budding. Choosing
∆AA

0 = −0.1 (A) results in a complete bud, whereas increasing ∆AA
0 flattens the domain

progressively ( B: ∆AA
0 = −0.02, C: ∆AA

0 = 0.02), resulting in strong curvatures in opposite
direction (D: ∆AA

0 = 0.1).

Since we consider two conserved molecule species A and B within our membrane,
both species may contribute to an average relaxed global area difference ∆A0 between
the two monolayers (e.g. inserting asymmetrically into the membrane, i.e. with pre-
ference to one of the monolayers). If the preferred area difference values for the pure
species are given by ∆AA

0 and ∆AB
0 , respectively, we define the linear dependence

∆A0 =
∆AA

0 +∆AB
0

2
− ∆AA

0 −∆AB
0

2

( ∫
Γ φ ds

A

)
, which is constant in time due to global area

and mass conservation. Hence, for a membrane exclusively composed of species A (B),
it holds ∆A0 = ∆AA

0 (∆A0 = ∆AB
0 ). Since estimated values for the dimensionless

parameter α = κ
κ
yield α ≈ 1.25 [169], in the following we choose κ = 1.25(κA+κB)/2.

To investigate the effect of area difference elasticity on membrane budding, we
choose different values ∆AA

0 ∈ [−0.1, 0.1], but keep ∆AB
0 = 0. Corresponding results

are shown in FIG 4.13. We observe that a strong negative value choosing ∆AA
0 =

−0.1 leads to a budding (c.f. FIG 4.13 A). Whereas increasing ∆AA
0 stepwise up

to ∆AA
0 = 0.1 flattens the domain (c.f. FIG 4.13 B-C) leading finally to strong

curvatures in opposite direction (c.f. FIG 4.13 D). These results are in accordance
with the theoretical and experimental observations that the monolayer area difference
influences budding direction very sensitively [21, 174].
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4.2.4 Discussion

In the present section, we have investigated the impact of different elastic parame-
ters (line tension, bending rigidity, Gaussian rigidity, spontaneous curvature as well
as monolayer area difference) on membrane budding, which is a fundamental process
in biological cells [4]. We have shown numerically that each of the five parameters
can be used to induce budding. Concerning the Gaussian rigidity, this is a new as-
pect in membrane biology. Furthermore, our results reveal that differences in elastic
parameters can be used to influence relevant time scales of the budding process. Pre-
sented simulation results match recent theoretical (sharp-interface) and experimental
findings in membrane research. Hence, in future work, the presented model and its
computation can be used for upscaling approaches of molecular membrane models,
as already pursued in Section 4.1.
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4.3 Lateral Sorting and Transversal Communication in Cou-
pled Monolayers

4.3.1 Introduction

The detailed concerted organization of molecules within a bilayer membrane is
crucial for any biological function of the system. It has been shown that the length
of membrane components [139], their stiffness [193], their shape and structure [161],
as well as lateral phase separation [18] play a major role in membrane organization.
Furthermore, experimental results highlight the strong influence of interactions be-
tween the monolayers on membrane organization. Differences in the composition of
the two monolayers can induce changes in the bilayer shape as well as phase depen-
dent transversal organization [52, 110]. However, the exact mechanisms leading to
the appropriate organization remain unknown. One possibility are passive dynamical
flows driven by mechanical forces, since the properties of the molecular membrane
components directly influence the local mechanical properties of the membrane.

Various theoretical membrane model systems have been developed in the past to
investigate membrane organization, mainly treating the membrane as one layer (c.f.
Section 2.3.1 as well as Section 4.1-4.2). Studies explicitly considering a separate
inner and outer monolayer are either restricted to lateral homogeneous membranes
[149, 257] or deformations have not been considered [7, 247].

In this section, we present a continuous mathematical model of a fluid bilayer mem-
brane, consisting of two explicitly given coupled monolayers. Each monolayer consists
of two different lateral phase separating components. The model accounts for diffe-
rences in the length, stiffness and shape of the molecules (described by macroscopic
elastic moduli) as well as a boundary energy between separating phases. We numeri-
cally study how the interplay of membrane shape, thickness, lateral, and transversal
organization is affected by the exact composition of the membrane as well as the exact
dependence on the mechanical properties of the different membrane components found
in the monolayers. The results are discussed in the context of recent experimental re-
sults and related biological processes. The presented section is closely related to [167].

4.3.2 Mathematical Model

Here, we address a continuous approach to model and simulate the deformations
and in-plane organization of lipids and proteins of a lipid bilayer membrane. In con-
trast to our basic model (c.f. Section 2.4) each monolayer is explicitly considered
treating the bilayer as two coupled individual surfaces. Compared to previous in-
termonolayer coupling studies, where a phenomenological coupling constant has been
used [101, 247], all observed sorting effects result directly from the following two basic
assumptions: I.) the thickness of the bilayer depends on the length of the opposed
molecules; II.) different molecule species can vary in their shape, length or stiffness.
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Figure 4.14: Continuous bilayer model: Each monolayer is represented by a surface Γi

and its lateral composition by an order parameter φi, i ∈ {1, 2}. Molecule properties are
outlined on the right hand side. Intermonolayer distance is measured by D, not necessarily
coinciding with the optimal distance a = (β1B + β2B)/2, as shown on the left hand side.

Furthermore, the model can be explicitly parameterized by the relevant parameters
of molecular length and elastic moduli.

For i ∈ {1, 2}, each monolayer patch is represented by a two-dimensional (2D)

surface Γi curved in 3D space, depicted by a parametric representation ~X i(u1, u2) :
U → Γi ⊂ R3 with U = [0, 1] × [0, 1]. The concentration of two components A
and B in Γi is described by the order parameter φi : U → [−1, 1]. If φi = −1
the membrane Γi is locally composed of 100% species B, if φi = 1 locally only
species A is present. We assume that hydrophobic interactions between the two
monolayers mainly take place between opposed molecules, i.e. molecules only inter-
act with the nearest molecules on the other monolayer. The distance between the
layers, i.e. between interacting molecules, is given locally by the distance function
Di : Γi → Γj, where Di maps ~X i ∈ Γi to ~Xj ∈ Γj so that ~Xj has minimal distance
to ~X i. Hence, for each molecule in layer i the function Di measures the distance to
the nearest opposed molecule in the other layer. To guarantee the uniqueness of the

distance function Di( ~X i) we define it in the following way: Di( ~X i) :=
∑

~Y ∈M i

~Y
|M i|

and M i := {Y ∈ Γj : ∀~Z ∈ Γj|| ~X i − ~Y || ≤ || ~X i − ~Z||}.

Adopting the basic approach (c.f. Section 2.4), our model is based on the mini-
mization of the bilayer free energy F = F 1+F 2, where for each monolayer Γi (i = 1, 2)
the free energy is given by F i = F i

1 + F i
2 + F i

3 + F i
5,

F i
1 =

∫
Γi

κi(φi)

2
(H i −H i

0(φ
i))2 dsi

F i
2 =

∫
Γi

κiG(φ
i)Ki dsi,
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F i
3 = σi

∫
Γi

(
(ξi)2

2
(∇Γi

φi)2 + f i(φi)

)
dsi,

F i
5 =

α

2

∫
Γi

(
Di( ~X i)− a(φi, φj)

)2
dsi.

Here, superscripts denote the monolayer and subscripts refer to different types of
energies/interactions. The area difference elasticity term F4 (c.f. Section 2.4.1) has
been neglected in this model, since area differences between the two monolayers can
be introduced explicitly.

F i
1 + F i

2 is the bending elastic energy of the membrane (c.f. Section 2.4), where
dsi is the surface area element, H and K are the mean curvature and the Gaus-
sian curvature, respectively, H i

0 is the spontaneous curvature and κi and κiG are the
bending rigidity and the Gaussian rigidity, respectively. In the case of homogeneous
monolayers, the elastic moduli κi, κiG and H0 are taken as constant, whereas Ki and
H i depend on the local geometry of the monolayers. In the present model, both
monolayers consist of different molecule species. Since different types of membrane
molecules can display different mechanical properties, elastic moduli are again as-
sumed to depend on the local composition of the monolayers, described by φi. We

assume that elastic moduli are linear functions of φi, i.e. κi(φi) =
κi
A+κi

B

2
+

κi
A−κi

B

2
φi

(although the DPD studies in Section 4.1 suggest a nonlinear relationship), where κiA
and κiB are the bending rigidities of the molecular species A and B in Γi. H i

0 and κiG
are defined analogously.

F i
3 is the Cahn-Hilliard energy (c.f. Section 2.4) describing lateral phase separa-

tion of the two species A and B [38]. This energy contribution is included, since
lateral demixing seems to be a fundamental process underlying spatial organiza-
tion in biological membranes [18, 192]. In this energy part, ξi is a phase transition
length, σi

si = σi · ξi represents the sharp line tension, ∇Γi
the surface gradient, and

f i = 9
32

(
(φi)2 − 1

)2
a double well potential (c.f. Appendix B), causing the separation

into two phases.

Finally, the free energy F i
5 elastically penalizes deviations of the intermonolayer

distance from an ”optimal bilayer thickness”, described by the function a = a(φi, φj)
and weighted by α. The optimal thickness of a bilayer is mainly determined by the
length of opposite molecules [143, 204]. The physical origin of F i

5 is related to the ”hy-
drophobic effect”, i.e. an interaction force causing the clustering of hydrophobic units
in water [44]. In the case of lipid bilayers, it is based on strong attractions between
hydrophilic parts of membrane molecules and water, partly stabilized by hydrophobic
forces [213]. Furthermore, we assume that different molecule lengths and deviations
from this optimal thickness primarily change the average distance between opposed
molecule heads (leading e.g. to entropic changes) [117, 214, 236]. Additionally, the
lengths shall not significantly influence the molecules equilibrium area per molecule-
head presented to the water, since head groups try to keep a closed surface. Hence,
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bilayer thickness fluctuations do not contradict the assumed lateral area incompres-
sibility of the two monolayer leaflets. (Also incompressibility is considered separately
for each monolayer - in contrast to previous studies where the bilayer mid-plane is
assumed to be incompressible [169, 219].) It has been already shown that the thick-
ness of a lipid bilayer varies linearly with the length of membrane molecules [143].
Hence, we assume that the bilayer optimal thickness function depends linearly on
the average length of locally opposed molecules: if βi

A and βi
B represent the lengths

of the molecules A and B in Γi, the local average molecule length in Γi is given by

βi(φi) :=
βi
A+βi

B

2
+

βi
A−βi

B

2
φi. Since the bilayer optimal thickness function measures the

distance between the mid-planes of the two monolayer leaflets (c.f. FIG 4.14) it is
given by the average of the opposite molecule lengths, i.e. a := (βi(φi) + βj(φj))/2.

Following the dynamical approach presented in Section 2.4.2, dynamics of the
deformation ~X i in U × [0, T ) are given by the following gradient flow under the con-
straint of a strong local area incompressibility of each monolayer leaflet (considered
separately):

∂t[ ~X
i] = −LXi

δ

δ ~X i

[
F +

∫
Γi

γi dsi
]
, (4.6)

∂t[
√
gi] = 0, (4.7)

for i = 1, 2. Hence, an evolution of each monolayer takes place in order to minimize
the free energy, which depends in turn on local curvatures, compositions and the
distance to the other monolayer. Here, LXi is a kinetic coefficient (scaling inversely
with the viscosity of the surrounding medium), δ

δ ~Xi
[F i] = δ

δ ~Xi
[F i

1 + F i
2 + F i

3 + F i
5]

denotes the variation of F i with respect to ~X i, γi is a local Lagrange multiplier and
g is the determinant of the first metric tensor [61, 93]. Since the surface measure of a
curved surface is defined by ds =

√
gd2u, equation (4.7) represents the local surface

incompressibility (c.f. Section 2.4.2).

For detailed calculations of the variations of F i
1, F

i
2 and F i

3 constituting equation
(4.6), we refer to Section 2.4.3 and to the Appendix D. In the following, we calculate

the variations of F i
5 with respect to ~X i. Here, δ⊥

i
[.] (δk

i
[.]) constitutes the normal

(k-tangential) variation with respect to ~X i, and δ⊥

~Xi
[.] ( δk

~Xi
[.]) its pointwise strong for-

mulation. For further notational details and definitions, we refer to the Appendix.

Proposition IV.1. Rewriting Di( ~X i) = || ~X i − ~Xj
min||, it follows:

δ⊥

~X i
[Di( ~X i)] =

〈~ni, ~X i − ~Xj
min〉

Di( ~X i)
. (4.8)
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Proof: Using the chainrule, it follows:

δ⊥
i

[Di( ~X i)] =
1

2
〈 ~X i − ~Xj

min,
~X i − ~Xj

min〉−1/2 δ⊥
i

[〈 ~X i − ~Xj
min,

~X i − ~Xj
min〉]

=
1

|| ~X i − ~Xj
min||

ψ〈~ni, ~X i − ~Xj
min〉,

leading to the claim. �

Since for any ~X i in Γi, ~X i may appear in F j as well, we define: α̃ = α, if there
exists an ~Y j

Xi ∈ Γj with Dj(~Y j
Xi) = ||~Y j

Xi − ~X i||, α̃ = 0 else.

Lemma IV.2.

δ⊥
[
F i
5

]
δ ~X i

= α
(
Di( ~X i)− a(φi, φj)

)
〈 ~X i − ~Xj

min, ~n
i〉Di( ~X i)−1

+
α

2

(
Di( ~X i)− a(φi, φj)

)2
H i

−α̃
(
Dj(~Y j

Xi)− a(φj, φi)
)
〈~Y j

Xi − ~X i, ~ni〉Dj(~Y j
Xi)

−1.

Proof: Using the chain rule and the identity δ⊥
i
[
√
gi] = ψH i

√
gi [267], we obtain

δ⊥
i[
F i
5

]
= α

∫
Γi

(Di( ~X i)− a(φi, φj))δ⊥
i

[(Di( ~X i)− a(φi, φj))]
√
gi d2u

+
α

2

∫
Γi

(Di( ~X i)− a(φi, φj))2H iψ
√
gi d2u.

+α̃

∫
Γj

(Dj(~Y j
Xi)− a(φj, φi))δ⊥

i

[(Dj(~Y j
Xi)− a(φj, φi))]

√
gj d2u.

From Proposition IV.1, it follows:

δ⊥
i[
F i
5

]
= α

∫
Γi

(Di( ~X i)− a(φi, φj))〈 ~X i − ~Xj
min, ~n

i〉Di( ~X i)−1
√
gi d2u

+
α

2

∫
Γi

(Di( ~X i)− a(φi, φj))2H iψ
√
gi d2u,

−α̃
∫
Γj

(Dj(~Y j
Xi)− a(φj, φi))〈~Y j

Xi − ~X i, ~ni〉Dj(~Y j
Xi)

−1
√
gj d2u,

leading to the claim. �
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Proposition IV.3.

δk

~X i
[Di( ~X i)] =

〈∂k ~X, ~X i − ~Xj
min〉

Di( ~X i)
. (4.9)

Proof: The proof goes along the lines of the proof of Proposition IV.1. �

Lemma IV.4.

δk
[
F i
5

]
δ ~X i

= α
(
Di( ~X i)− a(φi, φj)

)(1
2

∑
u

〈 ~X i − ~Xj
min, ∂k

~X i〉(Di( ~X i)g
(i)
uk)

−1
)

−∂k
[α
2

(
Di( ~X i)− a(φi, φj)

)2]
−α̃
(
Dj(~Y j

Xi)− a(φj, φi)
)(1

2

∑
u

〈~Y j
Xi − ~X i, ∂k ~X

i〉(Dj(~Y j
Xi)g

(i)
uk)

−1
)
.

Using again the chain rule and the fact that for functions η ∈ C1(U,R) it holds
that

∫
ηδt[

√
g] d2u = −

∑
k,u

∫
∂u
[
η
]
gukψ

k√g d2u (c.f. Proposition D.6 in Appendix
D), it follows:

δt
i

[F i
5] = α

∫
Γi

(Di( ~X i)− a(φi, φj)) δt
i

[(Di( ~X i)− a(φi, φj))]
√
gi d2u

−
∑
k,u

α

2

∫
Γi

∂u
[
(Di( ~X i)− a(φi, φj))2

]√
gig

(i)
ukψ

k d2u

+α̃

∫
Γj

(Dj(~Y j
Xi)− a(φj, φi)) δt

i

[(Dj(~Y j
Xi)− a(φj, φi))]

√
gj d2u.

Using Proposition IV.3, the relation δt =
∑

k δ
k as well as the identity

〈~Z, ∂k ~X i〉(Di( ~X i))−1 =
1

2

∑
u

g
(i)
uk

g
(i)
uk

〈~Z, ∂k ~X i〉(Di( ~X i))−1

for any ~Z, yields

δt
i

[F i
5] =

α

2

∑
u,k

∫
Γi

(Di( ~X i)− a(φi, φj))
g
(i)
uk

g
(i)
uk

〈 ~X i − ~Xj
min, ∂k

~X i〉(Di( ~X i))−1
√
gi d2u

−
∑
k,u

α

2

∫
Γi

∂u
[
(Di( ~X i)− a(φi, φj))2

]√
gig

(i)
ukψ

k d2u

− α̃
2

∑
u,k

∫
Γj

(Dj(~Y j
Xi)− a(φj, φi))

g
(i)
uk

g
(i)
uk

〈~Y j
Xi − ~X i, ∂k ~X

i〉(Dj(~Y j
Xi))

−1
√
gj d2u,
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leading to the claim. �

Following the approach presented in Section 2.4.2, we have the following dynamical
equation for φ in U × [0, T ) considering both monolayers separately

dt[φ
i] = Lφi∆Γi

[ δ

δφi

[
F
]]

(4.10)

for i = 1, 2. Relative straight forward calculations yield

dt[φ
i] = Lφi∆Γi

[ δ

δφi

[
F i
1 + F i

2 + F i
3

]
−α
(
Di( ~X i)− a(φi, φj)

)
∂φi [a(φi, φj)]

−α̃
(
Dj(~Y j

Xi)− a(φj, φi)
)
∂φi [a(φi, φi)]

]

in U × [0, T ). For a detailed calculation of δ

δ~φi

[
F i
1 +F

i
2 +F

i
3

]
we refer to Section 2.4.3.

4.3.3 Nondimensionalization

Let us now derive a nondimensionalized model of the two coupled monolayers,
constituting a bilayer membrane. Since in Section 2.5 we have already nondimensio-
nalized F i

1 − F i
3, we restrict us here to F i

5, i ∈ {1, 2}.

Hence, we choose

~X = εx ~Xc with [ ~X] = [εx] = m,

which implies ds = ε2x dsc, and a = εxac. Choosing

α =
εκ
ε4x
αc with [α] =

kBT

m4

yields

α

2

∫
Γi

(
Di( ~X i)− a(φi, φj)

)2
dsi = εκ

αc

2

∫
Γi

(
Di

c( ~Xc

i
)− ac(φ

i
c, φ

j
c)
)2
dsic.

Again, a consistency check shows [F i
5] = [εκ] = kBT has units of energy.

4.3.4 Finite Element Approximation and Parameter Setup

Using the outlined macroscopic modeling approach, we investigate the effect of
molecule length variations and curvature modulated sorting. Hence, we numerically
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approximate equations (4.6), (4.7) and (4.10) to study systematically deformations
and lateral dynamics of two coupled monolayers constituting a lipid bilayer. We use
a mixed finite element approach; for corresponding details, we refer to Chapter III.

In the following, the surface of each monolayer is discretized using a quadran-
gular grid with M i = 4096 grid points, i.e. in total 8192 grid points. To control
the complexity, we do not apply any lateral tension [206] and impose Dirichlet-zero
boundary conditions for X i

1 and X i
2 as well as Neumann zero boundary conditions

else. (Anyway, it appears that using periodic or Neumann zero boundary condi-
tions for all variables leads to the same qualitative and quantitative results.) For
time discretization we use an adaptive semi-implicit Euler scheme. If not other-
wise stated, we use in both monolayers stochastic initial conditions, representing the
disordered and homogeneous mixture of molecules at high temperatures. Further-
more, we use the following set of parameters: κi(φi) ≡ 20 kBT , κ

i
G(φ

i) ≡ −10 kBT ,
H i

0(φ
i) ≡ 0 nm−1, σi = 1400 kBT µm−2, ξ = 0.8 nm, α = 9.6 · 107 kBTµm−4,

LXi = 6.25 · 10−11 µm4s−1(kBT )
−1, Lφi = 3.12 · 10−5 µm4s−1(kBT )

−1, a ≡ 2.5 nm,
for i ∈ {1, 2}. This parameter set corresponds to the molecular diffusion coefficient
D = Lφiσi = 1.1 ·10−10 cm2s−1 and the sharp line tension σi

si = σiξ = 1.15 kBTµm
−1

(c.f. Appendix B). (Odd numbers result from the conversion of abstract nondimen-
sionalized model parameters into physical values.) Most of the parameters have been
already characterized by experimental means and these are in the same magnitude
range as the values used here [3, 95, 216, 230].

4.3.5 Numerical Results

Membrane Organization Induced by Varying Molecular Lengths

Motivated by many experimental studies indicating the importance of lipid and
membrane protein interactions due to varying molecule sizes [139], we investigate the
impact of the molecule size on the lateral membrane organization, i.e. molecular sor-
ting. For this purpose, we study two coupled monolayers differing from each other
with respect to their composition of molecules with different lengths (c.f. FIG 4.15).
For all corresponding simulations we use constant elastic moduli. Furthermore, we set
the following initial conditions: A-F: 〈φ1

0〉 = 〈φ2
0〉 = −0.5, A: Γ1

0 = 2.5+0.5ux+0.125u2x
nm and Γ2

0 = −0.5ux − 0.125u2x nm, C-F: Γ1
0 = 2.0 + 0.15 sin(πux) sin(πuy) nm and

Γ2
0 = 0.15 sin(πux) sin(πuy) nm.

In FIG 4.15 A we artificially stretch two monolayers on one side apart by an appro-
priate choice of boundary conditions in the normal direction mimicking big membrane
spanning proteins. In Γ1 we consider molecules with two different lengths β1

A = 3 nm
and β1

B = 2 nm, and in Γ2 two species with the same lengths β2
A = β2

B = 2.5 nm.
During the simulation, we observe a distance relaxation between the monolayers com-
bined with a distance dependent lateral sorting in Γ1 and a distance independent
sorting in Γ2. In Γ1 longer molecules φA separate with a strong preference for the
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Figure 4.15: Influence of molecule lengths on intermonolayer coupling. Red and green
correspond to high local concentrations of species A and B in the upper monolayer; yellow
and blue correspond to local high concentrations of species A and B in the lower monolayer,
respectively. A: Stretching of the two monolayers in the normal direction leads to a sorting
of long molecules to the stretched area in Γ1, whereas the molecules in Γ2 have the same
length. B: Corresponding decay of different parts of the free energy F . D: Long molecules
are sorted opposite to short molecules, whereas all molecules in (C) have the same length.
E: Detailed view of D; non synchronized domains (black circle) induce curvatures in both
layers. (Scale bars: 10 nm).
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region close to the boundary where the normal stretch is applied. Whereas in Γ2

no special preference can be observed - as expected. Furthermore, the Cahn-Hilliard
energy F 1

3 decays faster than F 2
3 (c.f. FIG 4.15 B), i.e. different molecular lengths

do not only lead to an accumulation at specific places but also enhances the speed of
the sorting process (c.f. FIG 4.15 B).

So far we have considered one layer with molecules of the same length and one
layer with molecules of different length. Now let us consider the following two dif-
ferent scenarios: in C β1

A = β1
B = β2

A = β2
B = 2.5 nm and in D β1

A = β2
B = 4 nm

and β1
A = β2

B = 1 nm. In both cases no artificial stretching is applied. We observe
that different molecule lengths induce a spatial phase synchronization between the
monolayers: long molecules of one layer are sorted to short molecules of the other
layer causing (in the given ratio of components) a bilayer of homogeneous thickness.

Membrane Organization Induced by Curvature Modulated Intermono-
layer Coupling

Inspired by the richness of curvature generating mechanisms [223] and recent ex-
perimental evidences for curvature modulated lateral sorting [193, 262], we further
investigate the interplay of curvature and lateral/transversal sorting between two
coupled monolayers. Corresponding results are presented in FIG 4.16. Previous the-
oretical studies typically have used a phenomenological coupling constant to describe
curvature modulated sorting [5, 45, 120, 237, 260]. Whereas the effects observed here
result directly from first physical principles - namely from the assumption that dif-
ferent molecules can vary in their shape and stiffness.

We demonstrate that deformations in one monolayer induced by different mecha-
nisms (identified by experiments) influence the chemical distribution in both layers,
if the molecules vary in stiffness or shape. The latter is modeled via differences in
macroscopic elastic moduli, e.g. the bending rigidity κ, the Gaussian rigidity κG
and the local spontaneous curvature H0. For all corresponding simulations we use
constant molecule lengths. FIG 4.16 shows the interaction of two components A and
B in both layers with different bending moduli leading to molecule sorting. In the
following, we will study the detailed interplay between lateral sorting and curvature
generating mechanisms. Adopting the most basic curvature generating mechanisms
in biological membranes [161], local curvatures are induced via different mechanisms.

In FIG 4.16 B contrary to A we apply a constant circular upward force in the
middle of Γ1 - corresponding e.g. to tubules applying a force via motor proteins
pushing the membrane [210]. In FIG 4.16 C and D we simulate stable clusters
of stiff shaping membrane proteins in Γ1 choosing φ1

0 = sin(5πu1), L
1
φ = 0 and

κ1(1) = 40 kBT with positive curvature H1
0 (1) = 0.2 nm−1 in C as well as negative

curvature H1
0 (1) = −0.2 nm−1 in D. A corresponding example in biological mem-

branes is e.g. the scaffolding mechanism: a huge rigid protein or a protein domain
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that has an intrinsic curvature bends the membrane beneath it, but lateral dynamics
of lipids are possible in at least one monolayer [269]. In FIG 4.16 E, as opposed to F,
the global area A2 of Γ

1 differs from A1, which has been early assumed as a curvature
generation mechanism [221] and is proved to be a frequent mechanism in biological
membranes - a prominent example is the amphipatic helix insertion [74].

In all simulations shown in FIG 4.16, lateral sorting is induced by choosing diffe-
rences in stiffness or shape of different membrane components, expressed by differen-
ces among the species A and B in one of the macroscopic elastic moduli: the bending
rigidity κ, the spontaneous curvature H0 or the Gaussian rigidity κG. In A-B we have
set κi(1) = 19.9 kBT but κi(−1) = 20 kBT ; In C-D H2

0 (1) = −5 · 10−3 nm−1 but
H2

0 (−1) = 5 · 10−3 nm−1 and in E-F κiG(1) = −8.88 kBT but κiG(−1) = −10 kBT ;
i ∈ {1, 2}. For the simulations shown in FIGure 4.16 we use the following initial
conditions: A-B: 〈φ1

0〉 = −0.7; 〈φ2
0〉 = 0, Γ1

0 = 3.5 − 5.0 sin(πux) nm and Γ2
0 =

−5.0 sin(πux) nm; C-D: 〈φ1
0〉 = sin(5πux); 〈φ2

0〉 = 0, Γ1
0 = 1.0 − 2.5 sin(πux) nm and

Γ2
0 = −2.5 sin(πux) nm; E-F: 〈φ1

0〉 = −0.7; 〈φ2
0〉 = 0, Γ1

0 = 3.5 + 2.5 sin(πux) sin(πuy)
nm and Γ2

0 = 2.5 sin(πux) sin(πuy) nm.

The exact choice of the inhomogeneous elastic moduli does not depend on the
curvature generating mechanism. For clarity, we have restricted ourselves to selected
cases of interplay between curvature generating and lateral sorting mechanisms. In-
deed, in real membranes there are many more possible interplays.

4.3.6 Discussion

Above we have addressed the following main aspects of membrane organization:
sorting due to different molecule lengths, phase synchronization across monolayers as
well as the interplay between curvature generation and lateral sorting mechanisms.
The physical interaction and the hereby possible mutual activation or deactivation
of different membrane molecules plays a key role in various cellular processes: in-
tegral membrane proteins are often activated by special lipid molecules surrounding
them [139]. Furthermore, lateral as well as transversal interactions between different
membrane proteins play a key role in various biological processes, such as signaling,
photosynthesis and endocytosis. The mechanisms presented here could constitute
basal mechanisms for these processes, i.e. passive flows of molecules with differences
in length, shape and stiffness lead to a multitude of different lateral and transversal
organized membrane shapes.

Membrane Organization Induced by Varying Molecular Lengths

It has been assumed that the thickness of the membrane or rather the hydrophobic
mismatch of different components influences membrane molecule interactions [127].
To investigate the effect of molecule length on lateral sorting, we have stretched the
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Figure 4.16: Curvature mediated intermonolayer coupling. Red and green correspond to
high local concentrations of species A and B in the upper monolayer; yellow and blue corres-
pond to high local concentrations of species A and B in the lower monolayer, respectively.
Curvature mediated phase separation in each comparative simulation is driven by gradients
in one elastic modulus. Local curvatures have been generated by applying an upward force
to Γ1 in B contrary to A, by choosing contrary spontaneous curvatures H1

0 (1) in C and D,
and by introducing a nontrivial global area difference in E contrary to F. (Scale bars: 10
nm).
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distance between the two monolayers of the bilayer membrane at one edge, corres-
ponding in vivo e.g. to the effects mediated by membrane spanning proteins [77]. We
have observed that this thickness mismatch can induce phase separation and sorts
molecules according to their length: long molecules aggregate very early in time close
to the stretched region (c.f. FIG 4.15 A-B). These observations of an equally sized
molecule aggregation (in order to minimize the hydrophobic mismatch) are in well
accordance with the assumptions of Killian [127], molecular dynamical studies on
small scales [20, 62, 63, 173] as well as experimental results [118]. We would like to
mention that the effect of molecule tilt is not considered within our model but is an
interesting aspect which should be covered in future studies.

In accordance with recent molecular dynamical results [173], the simulations have
revealed that the length of membrane molecules can be used to induce a synchroniza-
tion of phases across the bilayer membrane (c.f. FIG 4.15 C-E). This synchronization
is the result of a combination of two distinct processes: on the one hand the monolayer
bending rigidity prevents the layers from small scale spatial curvature fluctuations.
These fluctuations become more obvious looking at regions where the synchronization
does not take place (FIG 4.15 E black circle) and induce curvatures in both layers.
On the other hand the molecule dynamics drive components in regions where they
”fit the bilayer thickness”. The same mechanism but on the scale of single molecules
has been proposed by [1], investigating interdigitated phases of phospholipids and
alcohols.

Recent studies have proposed different mechanisms for hydrophobic mismatch de-
pendent sorting and interleaflet coupling [9, 51, 90, 139]. These studies have been
mainly focused on energetic and entropic contributions of local compression or stret-
ching of hydrophobic lipid tails. The mechanism presented in this study could explain
how cells achieve lateral and transversal component sorting where molecules do not
exhibit ”flexible” parts, such as membrane proteins. In vivo, the observed sorting
could constitute mechanisms in cells to assemble membrane proteins with certain
chemical or mechanical properties close to each other or to other membrane spanning
or compressing protein complexes, found in various cell processes such as signaling.

Membrane Organization Induced by Curvature Modulated Intermono-
layer Coupling

So far we have considered the influence of different molecule lengths on lateral sor-
ting. Let us now focus on the interplay between lateral sorting and curvature genera-
ting mechanisms in coupled monolayers. Cellular membranes are strikingly dynamic
structures changing their shape in various processes such as movement, division, du-
ring neuronal development, and vesicle traffic. Some of the main mechanisms hereby
are deformations due to external forces such as the actin cytoskeleton, scaffolding by
peripheral membrane proteins and area differences between the two monolayers, e.g.
induced by asymmetric lipid distributions [161, 269]. Although, the shaping mecha-
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nisms themselves are well characterized, the mechanisms for a concerted organization
of different components in different monolayers during the deformation process is
poorly understood.

In this study, for the first time (up to our knowledge) the interplay of different
membrane curvature generating mechanisms with different lateral sorting mechanisms
in both monolayers is investigated (c.f. FIG 4.16). Motivated by experimental data
[193, 262], our results clearly show that differences among molecular species in each
of the three macroscopic mechanical moduli, the bending rigidity κ, the Gaussian
rigidity κG (both reflecting the molecule stiffness) and the spontaneous curvature H0

(reflecting the molecule shape), are sufficient for curvature dependent lateral sorting.
These results highlight the multitude and complexity of different shapes and lateral
patterns that can occur in biological membranes - simply as a result of passive flows
of molecules which differ in their first-order mechanical properties.

In vivo, curvature mediated intermonolayer coupling could be an important selec-
tion mechanism for the cell: while certain components produce local curvatures (for
example shaping proteins or the cytoskeleton) other components can be included in
these regions simply due to their mechanical properties by the sorting mechanisms
outlined above. This could explain how different structural and catalytic components
are getting locally concentrated, e.g. in virus induced deformations [249].
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4.4 On the Coupling of Tissue Mechanics with Morphogen
Expression: A New Model for Early Pattern Formation
in Hydra Polyps

4.4.1 Introduction

During the development of biological tissues, a variety of different signaling mo-
lecules are responsible and indispensable for pattern formation and shape genera-
tion [102] (c.f. Section 2.1.2). Since a seminal paper of Alan Turing [241] a va-
riety of patterns appearing in biological tissues were studied using a framework of
reaction-diffusion equations. That approach assumes that there exist diffusing sig-
naling molecules, called morphogens, which nonlinear interactions combined with
different rates of diffusion may lead to a destabilization of a constant steady state
and formation of spatially heterogeneous structures. The key mechanism of Turing
type patterns is that an inhibitor diffuses faster than an activator. This means: there
is a short range activation and a long range inhibition. However, in many develop-
mental processes, dynamical and complex tissue topologies are likely to prevent the
establishment of the long range inhibitor gradients. These observations support to
look for a different inhibitory mechanism such as mechanical inhibition [66]. Further-
more, diffusion rates of typical morphogens are often found to be quite small [98].

Although the influence of morphogens on tissue mechanics (such as curvature)
has been known for a long time, only very recent studies show that the interplay
is reciprocal and applied curvatures can also influence the expression of genes, e.g.
morphogens [34, 66, 88, 182]. The molecular origin of this mechanotransduction in
cells and tissues is still a field of active research [187]. Furthermore it appears that
tissues may act differently depending on direction of applied stress [181].

Based on these observations, we propose a non-Turing type model for pattern
formation in biological tissues, coupling the expression of a morphogen with tissue
mechanics. In the following, the terms ”positive” and ”negative” curvature refer to
outward and inward bending, respectively, compared to the initial curvature of a tis-
sue. Expanding the ideas of Cummings [58] we assume that a certain morphogen
locally induces positive (negative) curvature, and in turn, positive (negative) curva-
ture induces the expression of this morphogen (c.f. FIG 4.17).

The presented model combines a reaction-diffusion equation for the morphogen
with an elastic gradient flow for tissue mechanics. Finite element simulations re-
veal that the postulated mechanism produces spontaneously a variety of curvature
and morphogen patterns in an asymptotically stable way, i.e. insensitive to small
changes in initial conditions. Based on various simulation results, we present detailed
parameter studies of the model, analyzing a rescaled parameter space. We identify
corresponding parameters to control pattern related scales, such as size, amount and
curvature of appearing patches. Our results suggest that biomechanical interactions
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Figure 4.17: Positive feedback loop of morphogen expression and curvature. In combina-
tion with degradation, this mechanism leads to spontaneous curvature/morphogen patterns,
starting from stochastic initialconditions. Note that positive curvature induces negative cur-
vature at the edges of the domain, replacing the effect of a long range inhibitor molecule.

can constitute the missing link to the Turing long range inhibitor: positive curved
domains induce negative curvatures at their edges; in these regions only morphogen
degradation takes place (c.f. FIG 4.17).

To investigate if the postulated mechanism appears in real biological systems, we
present different comparative studies. As experimental model we use Hydra-reag-
gregates (with β-Catenin as a marker for the symmetry break), constituting a well
established biological model system to study early pattern formation. Since, in these
reaggregates, symmetry break and pattern formation arise from nearly homogeneous
tissue spheres, the model is, due to its simple geometry and well defined initial con-
ditions, very suitable for comparison with simulation data.

Our comparative studies suggest that the presented mechanism could constitute
a key mechanism for pattern formation in Hydra. However, experimental evidences
are still weak. Further experimental work has to be done to approve this mecha-
nism in Hydra and to investigate if it could constitute a key mechanism of pattern
formation in other organisms as well. The presented section is closely related to [164].

4.4.2 Mathematical Model

Similar to the models of biological membranes considered in Section 4.1-4.3,
~X : U → Γ is a parametric representation of a thin cell sheet Γ, where U ⊂ R2

and Γ ⊂ R3. The morphogen level is described by the function φ : U → R≥0; for

each ~X(u1, u2) ∈ Γ the concentration φ( ~X) is identified with φ(u1, u2). Hence, φ is

naturally moving with the deforming tissue, i.e. dtφ = ∇Γ[φ] · ∂t ~X + ∂t[φ], where ∇Γ

is the surface gradient. For convenience of the reader, detailed descriptions of the
used geometrical quantities are given in Appendix A.
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To model the curvature dependent elastic properties of a thin cell tissue, we use
again the Helfrich energy as a model for the tissue free energy, i.e.

Ftissue =

∫
Γ

κ(φ)(H −H0(φ))
2 ds.

Here, H is the mean curvature and ds is the surface measure. The mechanical moduli
κ and H0 are usually taken as constant, if the surface is laterally homogeneous. κ con-
stitutes the bending rigidity and reflects the stiffness of the tissue, the spontaneous
curvature H0 reflects the preferred local tissue curvature (which can be non-zero,
e.g. if cells are wedge-shaped). As opposed to almost incompressible biomembranes,
all tissues behave elastically with respect to lateral deformations. For simplicity, we
assume here a local tissue incompressibility. However, in future investigations the
impact of this assumption should be carefully investigated.

As already motivated in Section 4.4.1 we assume that the morphogen locally can
influence tissue mechanics, such as stiffness and curvature. Here, we assume that
tissue rigidity κ and the spontaneous curvature H0 depend on the morphogen level φ.
In first approximation we take κ(φ) = a+αφ and H0(φ) = b+ βφ as linear functions
of φ, where a ≥ 0.

Adopting an energy point of view (and analogue to Section 2.4.2), the evolution

of the tissue deformation ~X up to time T > 0 in U × [0, T ) is given by the following
L2−gradient flow under the constraint of local incompressibility of the tissue:

dt ~X = −LX
δ

δ ~X

[
Ftissue +

∫
Γ

η ds
]

(4.11)

∂t
√
g = 0, (4.12)

where dt is the total time derivative, LX is a kinetic coefficient, δ

δ ~X
[.] denotes the

variation with respect to the arbitrary vector ~X, and η is a local Lagrange multiplier
[93] keeping the local area constant. Volume constraints are not considered, since
in experiments with Hydra-reaggregates it appears that tissue spheres are able to
exchange internal fluid with its surrounding [268]. The gradient flow (4.11) leads
to a minimization of the free energy Ftissue under the constraint of incompressibility
(4.12). For detailed calculation of the variations of Ftissue we refer to Section 2.4.3
and Appendix D.

In the following, we consider the dynamics of the morphogen φ within the tissue.
In contrast to the modeling of membrane dynamics showing a fluid behavior with
respect to lateral/tangential flows, the evolution of morphogens is modeled separate-
ly rather than obtained by a corresponding variation of a free energy. Beside the
basic assumptions concerning diffusion and degradation [4, 98, 238], we define the
morphogen production as a function depending on the surface curvature. We first as-
sume that at the beginning of the pattern formation process, the tissue is arranged in
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a mechanically relaxed configuration with initial curvature Hi = H(t = 0, ~X). Based
on recent findings [34, 66, 88] we consider that the expression of φ can be induced
by local curvatures H 6= Hi. Especially in the following we assume that only in case
H > Hi (in contrast to H < Hi) the expression of φ is induced. (If both, negative and
positive curvatures would induce morphogen expression, we would expect oscillations
instead of stable patterns.) Hence, φ induces local positive curvatures and positive
curvatures induce locally the expression of φ, constituting a positive feedback loop.

Using Michaelis-Menten kinetics (due to the existence of a maximal expression rate
of the φ-promoter) and defining H≥0 := max{(H −Hi), 0}, we obtain the dynamical
equation for φ:

∂tφ = γ∆Γ[φ]− δφ+
( ζH≥0

ω +H≥0

)
, (4.13)

with constants γ, δ, ζ, ω ∈ R≥0. Hence, the model is given by a nonlinear PDE sys-
tem of fourth order, coupling the gradient flow for tissue mechanics (4.11) under the
constraint of local area incompressibility (4.12) with the reaction-diffusion equation
(4.13) for morphogen dynamics.

4.4.3 Nondimensionalization

Let us now derive the nondimensionalized version of the model introduced above.
Since in Section 2.5, we have already nondimensionalized Ftissue (and the correspon-
ding dynamical surface equation), we restrict us here to the dynamical equation of
the morphogen.

Hence, we choose again

~X = εx ~Xc as well as t = εttc,

with [ ~X] = [εx] = m and [t] = [εt] = s which implies ∆Γ = 1
ε2x
∆Γ

c , H≥0 = 1
εx
H≥0c

and ∂t =
1
εt
∂tc . Setting γ̃ = εtγ

ε2x
, δ̃ = εtδ, ζ̃ = εt

εφ
ζ, ω̃ = εxω as well as φ = εφφc with

[φ] = [εφ] =
Mol
m2 , we obtain

∂tcφc = γ̃∆Γ
c [φc]− δ̃φc +

( ζ̃H≥0c

ω̃ +H≥0c

)
.

Choosing εt appropriately we can always guarantee δ̃ = 1, thus the total parameter
space can be reduced to six independent constants, namely γ̃, ζ̃, ω̃, α, β and LXc .
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4.4.4 Finite Element Approximation and Parameter Setup

Using the outlined modeling approach, we investigate the effect of different model
parameters, system sizes and initial conditions on the pattern formation process.
Hence, we numerically approximate equations (4.11)-(4.13), respectively the nondi-
mensionalized form derived in Section 4.4.3, to study systematically spontaneous
pattern formation induced by the proposed mechanism. In the following, we will
work only with the nondimensionalized form of equations (4.11)-(4.13) and thus drop
subindices c for convenience, i.e. we will work with dimensionsless variables and pa-
rameters. For spatial discretization we use a biquadratic mixed finite element method
(FEM) closely related to the approach presented in Chapter III. To consider a closed
surface we adopt the extensions proposed in [104, 105] (for further details we refer to
these works). The tissue surface is discretized using a quadrangular grid with 1664
grid points. For time discretization we use an adaptive semi-implicit Euler scheme.
Based on the experimental setup for Hydra-reaggregates, initial conditions are the
sphere SR(0), R > 0 for tissue geometry as well as a stochastic distribution of average
〈φ0〉 =

∫
SR(0)

φ(t = 0) ds for the morphogen concentration. In the following, we re-

strict our studies to the case of morphogens influencing the tissue curvature but not
the tissue rigidity, setting κ ≡ 1 (i.e. a = 1 and α = 0). Furthermore, we set ω̃ = 1
and b = Hi.

4.4.5 Numerical Results

Here, we will work only with the nondimensionalized form of equations (4.11)-
(4.13). Thus, we drop subindices c for convenience, i.e. we will work with dimen-
sionsless variables and parameters. To investigate the variety of patterns produced
by the presented model, we have performed more than 250 simulations using the
nondimensionalized parameters γ̃, ζ̃ as well as β and LX (setting a = ω̃ = 1, b = Hi

and α = 0, c.f. previous sections), starting with different values 〈φ0〉. Depending on
the exact choice of parameters, simulation results show two different types of long
time behavior: either the system equilibrates with a symmetric medium curved pat-
tern and seems to be stable at least for simulated times (c.f. FIG 4.18 A), or strong
budding appears (c.f. FIG 4.18 B) till the numerics break down; it is likely that the
limiting shape consist of fully budded patches. For the corresponding simulations we
have set R = 1, LX = γ̃ = 1, β = 1 and ζ̃ = 4 in A,C,D as well as ζ̃ = 8 in B.
Using different initial conditions (e.g. different values 〈φ0〉 6= 0 on a smooth sphere)
we obtain that equilibrium patterns appear to be independent of the exact choice of
initial conditions, i.e. morphogen levels equal after some time (c.f. FIG 4.18 C) and
corresponding equilibrium patterns are very similar (c.f. FIG 4.18 D). Even starting
with no morphogen (〈φ0〉 = 0) on a stochastically perturbed geometry yields the
same result (not shown). Hence, the presented mechanism appears to be asymptoti-
cally stable and the formation of stable structures does not need the existence of any
prepattern.
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Figure 4.18: Simulation examples of spontaneous tissue pattern formation starting from
stochastically distributed morphogen on a sphere. A: The system reaches a symmetric
mechanical equilibrium at t > 50 (red color: φ = 3, blue color φ = 0). B: The system shows
strong budding, numerics breaks down for t > 20; the likely equilibrium shape consists of
fully budded morphogen patches (red color: φ = 6, blue color φ = 0). C-D: Equilibrium
patterns are insensitive to different choices of initial conditions. C: Plot of total morphogen
level

∫
Γ φds during tissue development for different values 〈φ0〉 = 10 (green dashed line),

〈φ0〉 = 22 (red line) and 〈φ0〉 = 35 (blue dotted line). D: Corresponding equilibrium
patterns (red color: φ = 1.5, blue color φ = 0).

Checking the influence of the different model parameters γ̃, ζ̃, β and LX on the
corresponding emerging patterns, reveals the following relationships:

• Size of appearing patches can be controlled by diffusion: stepwise increasing
γ̃ = 0.005 up to γ̃ = 0.1 (keeping ζ̃ = 1, β = 4 and LX = 0.01 constant) results
in bigger patches (c.f. FIG 4.19 A) and their number decreases.

• The distance between the patches (and hence the number as well, but not the
size) and its curvature can be controlled by the strength of the curvature de-
pendent production ζ̃ (c.f. FIG 4.19 B) or alternatively by the morphogen level
dependent curvature β = 6 (c.f. FIG 4.19 C): stepwise increasing ζ̃ = 2 up to
ζ̃ = 9 but keeping R = 1, γ̃ = 0.01, β = 1 and LX = 0.0001 constant shows the
same results as increasing β = 2 up to β = 9 but keeping R = 1, γ̃ = 0.01, ζ̃ = 1,
and LX = 0.0001 constant. The only difference is the morphogen level, increa-
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Figure 4.19: Influence of different model parameters on appearing patterns. A: Increasing
diffusion by changing γ̃ results in bigger morphogen patches. B-C: An increase of curva-
ture dependent morphogen expression ζ̃ (B) results just as an increase of morphogen level
dependent tissue curvature β (C) in more but still equally sized patches.

sing only if ζ̃ increases. The similar influence of ζ̃ and β on curvature patterns is
as expected: both - curvature dependent production as well as morphogen level
dependent curvature - depend linearly on the morphogen level, and additionally
both are connected to each other in a positive feedback loop. Furthermore, it
seems that these two parameters influence, whether full patch budding occurs
or if the system stabilizes within a symmetric pattern.

• Changing LX does not result in striking differences in pattern formation but
only influences relevant time scales.

Investigating the dynamical behavior of the simulations reveals that all performed
simulations typically show three qualitative different events during their evolution (c.f.
FIG 4.20 B; for the corresponding simulation we have set β = 8, R = 1, γ̃ = 0.01, ζ̃ =
1, and LX = 0.01.):

• fast smoothing of initially stochastically distributed morphogen distribution,
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• appearance of new and bigger slightly curved morphogen patches, and

• distinct visible curvature patterns coinciding with strong morphogen levels, ei-
ther stabilizing at a symmetric pattern or strongly budding.

Interestingly, fluorescent microscopical data of evolving Hydra-reaggregates (using
β−Catenin as marker for symmetry break) show striking similarities to our simula-
tions (c.f. FIG 4.20 A-D): starting with stochastically distributed marker, the fluo-
rescence level first decays [268], followed by appearence of morphogen patches first
without visible curvatures (c.f. FIG 4.20 A: 7 h) then with local tissue curvatures (c.f.
FIG 4.20 A: 25 h). Finally strongly curved patches with a high level of fluorescence
appear (c.f. FIG 4.20 A: 45 h). Furthermore, reducing the total size of the system
results in both, simulations (setting R = 0.5) and experiments, in a smaller number
of strongly deformed patches (c.f. FIG 4.20 D). We would like to point out that
all corresponding experiments with Hydra-reaggregates have been performed by Dr.
Mihaela Žigman (Centre for Organismal Studies, Heidelberg University).

4.4.6 Discussion

In the present section we have proposed a new non-Turing type model for early
pattern formation in tissue development. Based on recent experimental findings, the
key assumption is a positive feedback loop between tissue curvature and morphogen
production. We have shown numerically that this simple mechanism leads sponta-
neously to various morphogen and curvature patterns. Since presented experimental
evidences for the proposed mechanism in Hydra are still week, we hope to motivate
further experimental research to prove or reject the presented mechanism for early
pattern formation in Hydra or other organisms.

However, if further experimental evidences can be obtained, the proposed mecha-
nism could constitute an essential step in the evolution of an initial homogeneous
tissue sphere to a complex organism. This appears to be one of the greatest current
unsolved biological questions [176].
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Figure 4.20: Comparative studies of simulations and experimental data showing early
pattern formation in Hydra. A: Fluorescence microscopical pictures showing the temporal
development of a Hydra-reaggregate, using fluorescent β−Catenin as marker for symmetry
break. B: Comparative simulation data. C: Morphogen level in simulation corresponding
to (B). D: Smaller experimental and simulated systems lead to less patches.
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CHAPTER V

Summary and Outlook

Elastic thin surfaces constitute a basic building block of a variety of structures in
biology. Prominent examples are biological membranes as well as cell tissues. Dy-
namics and stable patterns of both, membranes and tissues, play an indispensable
role for the development and maintenance of cells and organs in any living being.
Experimental approaches to study these surfaces are subject to strong limitations.
Furthermore, tissues and membranes in vivo often show a very high degree of com-
plexity, limiting reliable experimental analysis.

Avoiding these experimental difficulties, different mathematical models for biolo-
gical surfaces have been developed and presented within this work. Due to its mathe-
matical structure, specific non-standard numerical approaches have been developed,
to enable simulations. Finally, extensive simulation experiments closely related to
experimental data have been performed, resulting in various new insights into the de-
formation and pattern formation mechanisms of biological membranes and cell tissues.

Mathematical Modeling

Using the example of biological membranes, in Chapter II we have generalized
a continuous mathematical model of elastic surface deformations induced by bio-
molecules on the surface itself. The dynamical 3D-model combines a parametric
description for the deforming surface with a diffuse interface approach for the lateral
dynamics of molecules. Our continuous model is based on the minimization of a free
energy and is given as a strongly coupled nonlinear PDE system of fourth order, re-
lated to the Willmore flow and the Cahn-Hilliard equation.

Considering a biological membrane consisting of two different lateral phase sepa-
rating components, the presented model accounts for differences in shape, rigidities,
line tension, and monolayer area difference between the two coexisting phases. It
is neither restricted to small curvatures nor to certain geometries and can be easily
adapted to describe deformations of biological tissues.
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Finite Element Approximation

In Chapter III we have presented a numerical method approximating solutions of
the mathematical model presented in Chapter II. Since strongly coupled geometric
nonlinear PDE systems of fourth order (describing strong curvatures) have been con-
sidered, numerical implementations have required a non-standard approach. For the
first time, we have presented a numerical scheme treating realistic dynamics of lateral
inhomogeneous biological membranes without restriction to small curvatures.

The proposed discretization is based on the finite element method, combining a
mixed finite element approach for spatial discretization with a semi-implicit Euler
scheme for temporal discretization. Furthermore, we have relied on an algorithm
keeping good properties with respect to the distribution of meshpoints during defor-
mations without violating effective local mass conservation. In order to prove the
reliability of the presented algorithm, we have numerically proved energy decay in
time, experimental order of convergence as well as qualitative and quantitative sta-
bility analyses.

A Multiscale Approach Investigating Curvature Modulated Sorting in
Membranes

In Section 4.1, an extended continuous multiscale model for curvature modulated
sorting in biological membranes has been proposed. Here, we have restricted our-
selves to fixed membranes, e.g. attached to a rigid substrate. We have presented
simulations using a finite element approach and have derived detailed functional re-
lationships from the molecular level using data from DPD studies. Our simulations
show that gradients in the three elastic moduli result in distinct metastable minimum
patterns and that the decomposition time decreases exponentially with increasing dif-
ference in the modulus or corresponding curvature gradient. Additionally, we have
shown that the stability of curvature modulated patterns increases with increasing
moduli or curvature gradients. Presented phase diagrams allow to estimate if curva-
ture modulated sorting may occur for a given set of geometry and elastic parameters.

Furthermore, our results emphasize that local sorting is quite sensitive to the
specific choice of parameters and functional dependencies of macroscopic models.
Comparing minimum patterns computed with a model based on nonlinear upscaled
parameter functions from microscopic DPD studies and the commonly adopted linear
functions shows significant differences. This shows the relevance of a careful choice
of fundamental relationships and underlines the importance of multiscale approaches
in biological systems.
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Impact of Elastic Parameters on Membrane Budding

In Section 4.2, various finite element simulations of the basic model have been
performed to study the impact of the elastic parameters on membrane shape and
budding. To do so, we have systematically varied the (diffuse) line tension, the elas-
tic moduli - the bending rigidity κ, the spontaneous curvature H0 and the Gaussian
rigidity κG - of the two membrane components as well as the monolayer area diffe-
rence. For the first time, we have shown that the influence of the Gaussian curvature
(i.e. the Gaussian rigidity κG) on membrane dynamics is similar to the influence of
the other elastic moduli κ, H0 and σ.

Our simulation results are in good qualitative and quantitative agreement with
recent experimental and theoretical (sharp-interface) results. Besides individual qua-
litative differences, we have shown that changes in each of the five elastic parameters
can be used to cause or prevent a budding event. Furthermore, we have found that
for each elastic parameter σ, κ, κG, and H0 the budding time decreases exponentially
with further changes in these parameters once a critical value has been exceeded.

Lateral Sorting and Transversal Communication in Coupled
Monolayers

In Section 4.3, we have studied a continuous model of two coupled monolayers
consisting of different molecule species. Coupling of the layers has been achieved by
an elastic intermonolayer-distance energy, depending on the molecule lengths in the
two opposed layers. We have shown that both, the curvature of one layer as well as
the distance to the other layer, can influence the chemistry distribution in the other
layer: our results show that phase separation and local accumulation of membrane
components in stretched regions can be induced by a mismatch between molecule size
and bilayer thickness. Furthermore, our results suggest that this thickness mismatch
effect can serve as a mechanism to synchronize phases across the bilayer membrane.
Additionally, we have analyzed the interplay between membrane curvature and lateral
sorting of molecules, showing that differences in stiffness and shape of molecules lead
to various possible scenarios of interplays between lateral sorting and local curvature
generating mechanisms.

On the Coupling of Tissue Mechanics with Morphogen Expression: A
New Model for Early Pattern Formation in Hydra Polyps

In Section 4.4, we have proposed a new mechanism for symmetry break and early
pattern formation in biological tissues. Based on recent experimental findings, the
key property of this mechanism is the coupling of morphogen expression with tissue
deformations in a positive feedback loop. We have formulated this idea in terms of a
mechanobiological model coupling an elastic gradient flow for tissue mechanics with
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a reaction-diffusion equation for the morphogen, resulting in a nonlinear PDE system
of fourth order. Using the finite element method, systematic simulations have shown
that various patterns appear spontaneously and are asymptotically stable with res-
pect to stochastic initial conditions. Furthermore, we have analyzed in which way
different model parameters influence characteristic properties of the emerging pat-
terns. Comparison with experimental data using Hydra-reaggregates have indicated
that the proposed mechanism might be a key mechanism for pattern formation in
Hydra. However, further experiments are necessary to confirm this hypothesis.

Outlook

In this thesis, we have developed new mathematical models and numerical appro-
ximation techniques to describe dynamics and steady states of biological membranes
and cell tissues. Presented models and numerics are neither restricted to certain geo-
metries (except topological changes) nor to small surface curvatures and account for
realistic dynamics. Furthermore, presented parametric approaches require relatively
low computational costs and hence are suitable for performing large numbers of si-
mulations (e.g. parameter searches).

Corresponding mathematical models are given in terms of nonlinear coupled PDE
systems of fourth order. Proofs concerning existence and uniqueness of solutions have
been beyond the scope of this work. However, parts of this thesis have motivated cor-
responding analysis for at least one of the presented models [165]. For all other
models derived within this work, rigorous analytical work proving well-posedness is
a challenging open problem, analysis of some related but simplified equations have
been obtained by [78, 81, 82, 134, 198].

As already pointed out, presented approaches may serve as a future basis to in-
tensify the junction between experimental and different theoretical techniques: para-
meterization of the presented models e.g. based on a comparison of simulations with
experimental data on experimentally accessible time and space scales. Based on this,
mechanochemical processes on experimentally inaccessible scales could be investi-
gated theoretically via simulations, in turn motivating new experimental approaches.
Particularly, upscaling techniques deriving macroscopical models from lower (dis-
crete) scales are desirable. Using molecular dynamical techniques, first upscaling
approaches for membrane models have been presented within this thesis, as well as in
[55, 147, 159, 222]. An alternative approach, which may be suitable for tissue models
as well as for membrane models, is rigorous multiscale analysis (e.g. based on the
density functional theory [208]).

Within this work, novel continuous models and their computation have been used
to investigate and explain different new mechanisms of pattern formation in mem-
branes and tissues. One the one hand, presented models and techniques can be used
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in the future to intensify the conjunction between different theoretical and experi-
mental techniques in membrane and tissue research. On the other hand, presented
simulation results can motivate future research to focus on new aspects, e.g. the role
of the Gaussian curvature in membrane sorting and budding or the influence of tissue
deformations on embryonic pattern formation processes.
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APPENDIX A

Notation

For the convenience of the reader, let us shortly repeat the general notations and
definitions used in this thesis. For a more detailed survey of differential geometry we
refer to [61, 64, 163].

General Notation

a scalar,
~a covariant vector ai, e.g. (~a)i = ai,
a matrix, e.g. (a)ij = aij,

~a ·~b standard vector scalar product, e.g. (~a ·~b) =
∑

i aibi,
ab standard matrix multiplication, e.g. (ab)ik =

∑
j aijbjk,

a inverse of a matrix, e.g. (a−1)ij = (a)ij = aij,
~n unit normal,
H mean curvature,
H0 spontaneous curvature,
K Gaussian curvature.
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Differential and Integral Operators

∂i[.] partial derivative with respect to ui,

∂i ~X basis vector of the tangential space, e.g. ∂i ~X = ∂i
[
~X
]
,

∂t
[
.
]

partial time derivative,
dt
[
.
]

total time derivative,

(gij)i,j first fundamental tensor, gij = ∂i ~X · ∂j ~X. It holds: gij = gji,

(bij)i,j second fundamental tensor, bij = −∂i ~X · ∂j~n. It holds: bij = bji,
gij component of the inverse first fundamental tensor,
bij contravariant component of the second fundamental tensor, bij =∑

kl g
ikgjlbkl,

αi contravariant characterization of a vector or matrix component or
a derivative regarding index i, e.g. αi =

∑
j g

ijαj where (gij)i,j is
the inverse of the first fundamental tensor and α ∈ {a, aj, ∂,∇},

a i
j mixed notation, a i

j =
∑

u gjua
ui =

∑
u g

uiaju and aji =∑
u giua

ju =
∑

u g
juaui. It holds:

∑
u g

iuguj = gji = δji ,

∇Γ[.] first surface gradient: ∇Γ
[
f
]
=
∑

i,j g
ij∂j
[
f
]
∂i ~X,

∆Γ
[
.
]

first surface Laplacian: ∆Γ
[
f
]
= 1√

g

∑
i,j ∂i

[√
ggij∂j[f ]

]
. For the

corresponding Green’s formula and further integral theorems we
refer to reference [261],

∇̂Γ
[
.
]

second surface gradient: ∇̂Γ
[
f
]
=
∑

i,j b
ijK∂j[f ]∂i ~X, where (bij) =

(bij)
−1,

∆̂Γ
[
.
]

second surface Laplacian: ∆̂Γ
[
f
]
= 1√

g

∑
i,j ∂i

[√
gbijK∂j[f ]

]
. For

the corresponding Green’s formula and further integral theorems
we refer to [259].

δα
[
F
]

Fréchet-derivative or variation with respect to α,

δF/δ ~X(~u) strong formulation of δ
~X
[
F
]
in ~X(~u),∫

. . . ds surface integral on a manifold, where ds =
√
g d2u, and g is the

determinant of the first fundamental tensor,

H mean curvature, H = trace(b j
i ),

K Gaussian curvature, K = det(b j
i ),

Γi
jk Christoffel-symbol, it holds Γi

jk = Γi
kj =

1
2

∑
l g

il
(
∂k
[
gjl
]
+∂j

[
glk
]
−

∂l
[
gjk
])

.

∇k

[
ai1...iPj1...jQ

]
covariant derivative of the type-(P/Q)-tensor field in the direction
of k. In particular it holds: ∇k

[
a
]
= ∂k

[
a
]
, ∇k

[
ai
]
= ∂k

[
ai
]
+∑

l Γ
i
kla

l, ∇k

[
a i
j

]
= ∂k

[
a i
j

]
+
∑

l Γ
i
kla

l
j −

∑
l Γ

l
kja

i
l and ∇k

[
aji
]
=

∂k
[
aji
]
+
∑

l Γ
i
kla

jl +
∑

l Γ
l
kja

li.
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APPENDIX B

Transition Between Sharp and Diffuse Line

Tension

Line tension forces in the dynamical equation for the membrane deformation ~X,
e.g. equation (2.8), result from the Cahn-Hilliard part of the free energy. Hence, they
are based on a diffuse interface. Nevertheless, in case of already separated phases in
the largest part of Γ it holds φ ≡ ±1. The line tension forces act only in the transition
region of width ξ at the boundary of the phases, where −1 < φ < 1.

However, many theoretical approaches consider already separated phases approxi-
mating the diffuse line tension by a sharp one [6, 17, 60, 124]. In this sharp-interface
models the line tension energy is given by the line integral

Fsi = σsi

∮
dl

along the domain boundary, where σsi is a surface energy constant.

The sharp line tension energy Fsi is basically the limit ξ → 0 of the reformulated
diffuse Cahn Hilliard energy

Fε = σ̂

∫
Γ

(
ξ

2
|∇Γ[φ]|2 + 1

ξ
f(φ)

)
ds, (B.1)

weighted by σ̂ = σξ, where ξ is small and related to the thickness of the diffuse
interface between the phases (in the limit ξ → 0; σ̂ is kept constant). Considering
the limit ξ → 0, the relationship between sharp and diffuse interface line tension
constants is given by [135]

σsi = 2σ̂

1∫
−1

√
f(φ)

2
dφ. (B.2)
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Hence, using f(φ) = 9
32
(φ2 − 1)2 the following simple relationship between sharp and

diffuse line tension is obtained:

σsi = 2σξ

1∫
−1

√
9

32

(z2 − 1)2

2
dz = σξ. (B.3)

Choosing f(φ) = 1
2
(φ2 − 1)2 in equation (B.2) yields σsi =

4
3
σ̂, matching with the

very recent results of [84] who investigated the line tension limit on arbitrary curved
surfaces.

104



APPENDIX C

Technical Remarks

In this Appendix we summarize some important results of differential geometry
which are used in this thesis. We remember that δ⊥ and δk constitute the varia-
tion in normal direction and k-tangential direction regarding Γ, respectively, where
δt =

∑
k δ

k (c.f. Section 2.2.2).

We mention furthermore the following geometric relations derived in [267]

δ⊥[H] = −∆Γ
[
ψ
]
− ψ(H2 − 2K) (C.1)

and

δ⊥[
√
g] = ψH

√
g, (C.2)

where g is the determinant of the first fundamental tensor [64] (corresponding defini-
tions of geometric operators and quantities are given for convenience in the Appendix
A).

Following [73] it holds that

δ⊥[K] = ∆̂Γ
[
ψ
]
−HKψ, (C.3)

where ∆̂Γ is the second surface laplacian (c.f. Appendix A). Following [126], it has
been shown that

δ⊥[gij] = −2
∑
k

gjkbikψ = −2bijψ, (C.4)

δt
[
gij
]

= −∇i
[
ψj
]
−∇j

[
ψi
]
, (C.5)

where (gij) is the first fundamental tensor, (bij) is the second fundamental tensor, ∇i

is the covariant derivative in the direction of i and raised indices denote contravariant
indices (c.f. Appendix A). Furthermore, it holds

δt
[
bij
]
=
∑
k

(
∇j

[
ψk
]
bik +∇i

[
ψk
]
bjk +∇k

[
bij
]
ψk
)

(C.6)
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according to [41], as well as the Mainardi-Codazzi-equation [50]

∇c

[
bab
]
= ∇b

[
bac
]
. (C.7)

In addition, we will use the results of [119] stating∑
a

∇a

[
bab
]
= ∂b

[
H
]
. (C.8)

We would like to point out that in some of the publications cited above, the mean
curvature Ĥ differs from the definition used in this thesis, e.g. the relation Ĥ = −H/2
or Ĥ = −H has been adopted.

106



APPENDIX D

Fréchet Derivatives

In the following, we present the calculation of the Fréchet derivatives of F1, F2 and
F3 (c.f. Section 2.4.1). Calculations have been already presented in [163], here we
present a significantly shortened version of the proofs. In certain parts, proofs could
be further shortened using for example the calculus of surface gradients [15, 83].
However, here we will rely on a formulation which should be easy to follow for non-
experts in the field of differential geometry.

Lemma D.1.

δ⊥
[
F1

]
δ ~X

= −∆Γ
[
κ(φ)(H −H0(φ))

]
−κ(φ)(H −H0(φ))(H

2 − 2K) +
κ(φ)

2
(H −H0(φ))

2H

Proof: Using the chain rule, ds =
√
gd2u as well as (C.1) and (C.2) yields

δ⊥[F1] =

∫ {
κ(φ)(H −H0(φ))(−∆Γ

[
ψ
]
− ψ(H2 − 2K))

+
κ(φ)

2
(H −H0(φ))

2ψH
}√

g d2u.

Using twice the Green’s identities for the first surface Laplace operator [261] results in

δ⊥[F1] =

∫ {
−∆Γ

[
κ(φ)(H −H0(φ)

]
ψ − κ(φ)(H −H0(φ))(H

2 − 2K)ψ

+
κ(φ)

2
(H −H0(φ))

2ψH
}√

g d2u,

leading to the assertion of the lemma. �
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Lemma D.2.

δ⊥
[
F2

]
δ ~X

= −∆̂Γ
[
κG(φ)

]
.

Proof: Using the product rule and considering (C.3), we obtain

δ⊥[F2] =

∫
κG(φ)(−∆̂Γ

[
ψ
]
−HKψ)

√
g d2u+

∫
κG(φ)KψH

√
g d2u

= −
∫
κG(φ)∆̂

Γ
[
ψ
]√
g d2u.

Green’s identities for the second Laplacian [261] yield

δ⊥[F2] = −
∫

∆̂Γ
[
κG(φ)

]
ψ
√
g d2u.

�

Lemma D.3.

δ⊥[F3]

δ ~X
= −ξ2

∑
i,j

bij∂i
[
φ
]
∂j
[
φ
]
+H(

ξ2

2
(∇Γ

[
φ
]
)2 + f(φ)).

Proof: Equality (C.2) and the product rule yield

δ⊥[F3] =

∫
δ⊥
[ξ2
2
(∇Γ

[
φ
]
)2 + f(φ) +

]√
g d2u

+

∫
{ξ

2

2
(∇Γ

[
φ
]
)2 + f(φ)}ψH√

g d2u.

Using (∇Γ
[
φ
]
)2 =

∑
i,j g

ij∂i
[
φ
]
∂j
[
φ
]
as well as (C.4) we obtain

δ⊥[F3] =

∫
ξ2

2

∑
i,j

δ⊥
[
gij
]
∂i
[
φ
]
∂j
[
φ
]√
g d2u

+

∫
{ξ

2

2
(∇Γ

[
φ
]
)2 + f(φ)}ψH√

g d2u

=

∫
{−ξ2

∑
i,j

bij∂i
[
φ
]
∂j
[
φ
]
+
ξ2

2
H((∇Γ

[
φ
]
)2 + f(φ)}ψ√g d2u,

which yields the assertion of the Lemma. �

Proposition D.4.

δk
[
gij
]
= ∂i

[
∂k ~Xψ

k
]
· ∂j ~X + ∂j

[
∂k ~Xψ

k
]
· ∂i ~X
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Proof: It holds that

δk
[
gij] = ∂i

[
δk[ ~X]

]
· ∂j ~X + ∂i ~X · ∂j

[
δk[ ~X]

]
.

The claim of the proposition directly follows from

δk[ ~X] :=
d

dε

[
~X + ε∂k ~Xψ

k
]∣∣∣∣

ε=0

= ∂k ~Xψ
k.

�

Proposition D.5.

δt
[
H
]
=
∑
i,j,k

gij∇k

[
bij
]
ψk.

Proof: It holds that

δt
[
H
]

= δt
[∑

i

b i
i

]
= δt

[∑
i,j

gijbij
]

=
∑
i,j

δt
[
gij
]
bij +

∑
i,j

gijδt
[
bij
]
,

due to (C.5) and (C.6). Since (bij)i,j and (gij)i,j are symmetric, it follows that

δt
[
H
]

= −2
∑
i,j

∇i
[
ψj
]
bij + 2

∑
i,j,k

gij∇i

[
ψk
]
bjk +

∑
i,j,k

gij∇k

[
bij
]
ψk.

Furthermore, it holds

2
∑
i,j,k

gij∇i

[
ψk
]
bjk = 2

∑
j,k

∇j
[
ψk
]
bjk

= 2
∑
i,j

∇i
[
ψj
]
bij,

i.e. the first two terms vanish, and the claim holds true. �

Proposition D.6. For any η ∈ C1(U) it holds:∫
ηδt[

√
g] d2u = −

∑
k,u

∫
∂u
[
η
]
gukψ

k√g d2u.

Proof: Applying the chain rule to the determinant yields∫
ηδk[

√
g] d2u =

∫
1

2

∑
i,j

√
ggijδk[gij]η d

2u.

Using Proposition D.4 and integration by parts yields∫
ηδk[

√
g] d2u = −

∫ ∑
i,j

∂i
[
ηgij

√
g∂j ~X

]
· ∂k ~Xψk d2u.
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Since
∑

i,j ∂
[
gij

√
g∂j ~X

]
· ∂k ~X = −√

g∆Γ ~X · ∂k ~X =
√
gH~n · ∂k ~X = 0 it holds that∫

ηδk[
√
g] d2u = −

∑
j

∫
∂j
[
η
]
gjkψ

k√g d2u.

Since δt =
∑

k δ
k, the claim directly follows. �

Lemma D.7.

δk
[
F1

]
δ ~X

= −1

2
∂k
[
κ(φ)

]
(H −H0(φ))

2 + κ(φ)(H −H0(φ))∂
k
[
H0(φ)

]
.

Proof: Using the product rule we obtain

δt
[1
2

∫
κ(φ)(H −H0(φ))

2√g d2u
]

=
1

2

∫
κ(φ)δt

[
(H −H0(φ))

2
]√
g d2u+

1

2

∫
κ(φ)(H −H0(φ))

2δt
[√
g
]
d2u.

Propositions D.5 and D.6 as well as the product rule provide

δt
[1
2

∫
κ(φ)(H −H0(φ))

2√g d2u
]

=

∫
κ(φ)(H −H0(φ))

∑
i,j,k

gij∇k

[
bij
]
ψk√g d2u

−1

2

∑
k,u

∫
∂u
[
κ(φ)

]
(H −H0(φ))

2gukψ
k√g d2u

−
∑
k,u

∫
κ(φ)(H −H0(φ))∂

u
[
H
]
gukψ

k√g d2u

+
∑
u,k

∫
κ(φ)(H −H0(φ))∂

u
[
H0(φ)

]
gukψ

k√g d2u.

Due to (C.7) and (C.8) and since the covariant derivatives and the first metric tensor
commute, it follows that∑

i,j

gij∇k

[
bij
]

=
∑
i,j

gij∇j

[
bik
]
=
∑
j

∇j

[∑
i

gijbik
]

=
∑
j

∇j

[
bjk
]
= ∂k

[
H
]
=
∑
u

guk∂
u
[
H
]
.

Since the first and third term cancel each other, we obtain

δt
[1
2

∫
κ(φ)(H −H0(φ))

2√g d2u
]

= −1

2

∑
k,u

∫
∂u
[
κ(φ)

]
(H −H0(φ))

2gukψ
k√g d2u

+
∑
k,u

∫
κ(φ)(H −H0(φ))∂

u[H0(φ)]gukψ
k√g d2u.

�
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Proposition D.8. ∑
i

bijbik = gjk,

where bij are components of the inverse of the matrix (b j
i ).

Proof: It holds that ∑
i

bijbik =
∑
i

(∑
l

glibjl
)
bik

and since (AB)−1 = B−1A−1 it follows that∑
i

bijbik =
∑
i

(∑
l

gljbil
)
bik

=
∑
i

(∑
l

gljbil
)
bik =

∑
l

(∑
i

bilbik
)
glj =

∑
l

δkl glj = gkj,

as it is claimed. �
Proposition D.9.

δt
[
K
]
=
∑
i,j,k

bij∇k

[
b j
i

]
ψkK.

Proof: It holds that

δt
[
K
]

=
∑
i,j,k

Kbijδ
t
[
gki
]
bjk +

∑
i,j,k

Kbijg
kiδt
[
bjk
]
.

Using (C.8) and (C.6), tedious calculations [163] yield

δt
[
K
]

= −2
∑
i,j,k

Kbij∇k
[
ψi
]
bjk

+2
∑
i,j,k

Kbijbjk∇i
[
ψk
]
+
∑
i,j,k,u

Kbijg
ki∇u

[
bjk
]
ψu.

Proposition D.8 yields

δt
[
K
]

= −2
∑
i,k

gikK∇k
[
ψi
]
+ 2

∑
i,k

Kgik∇i
[
ψk
]
+
∑
i,j,k,u

Kbijg
ki∇u

[
bjk
]
ψu

=
∑
i,j,k,u

bijg
ki∇u

[
bjk
]
ψuK.

Since the covariant derivatives and the first metric tensor commute, we obtain

δt
[
K
]

=
∑
i,j,u

bij∇u

[
b i
j

]
ψuK,

which is the claim. �
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Lemma D.10.

δk[F2]

δ ~X
= −∂k

[
κG(φ)

]
K.

Proof: It holds that

∂t
[ ∫

κG(φ)K
√
g d2u

]
=

∫
κG(φ)∂

t
[
K
]√
g d2u+

∫
κG(φ)K∂

t
[√
g
]
d2u.

Using Propositions D.5 and D.9, the product rule as well as the definition of the
covariant derivative, we obtain

∂t
[ ∫

κG(φ)K
√
g d2u

]
=

∑
i,j,k

κG(φ)bij

{
∂k
[
b i
j

]
+
∑
l

(
Γi
klb

l
j − Γl

kjb
i
l

)}
Kψk√gd2u

−
∑
u,k

∫
∂u
[
κG(φ)

]
Kgukψ

k√g d2u−
∑
k

∫
κG(φ)∂k

[
K
]
ψk√g d2u.

Applying the chain rule to the determinant leads to

∂t
[ ∫

κG(φ)K
√
g d2u

]
=

∫
κG(φ)

{∑
i,j,k,l

bijb
l
j Γ

i
kl −

∑
i,j,k,l

bijb
i
l Γ

l
kj

}
ψkK

√
g d2u

−
∑
u,k

∫
∂u
[
κG(φ)

]
Kgukψ

k√g d2u.

Since
∑

l b
l
i b

j
l = δji , where δ

j
i is the Kronecker symbol, it follows

∂t
[ ∫

κG(φ)K
√
g d2u

]
= −

∑
u,k

∫
∂u
[
κG(φ)

]
Kgukψ

k√g d2u,

which is the claim. �

Proposition D.11.

∇a

[
ψz
]
=
∑
b,k

gzb∂b ~X · ∂a
[
∂k ~Xψ

k
]
, (D.1)
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Proof: It holds that∑
b,k

gzb∂b ~X · ∂a
[
∂k ~Xψ

k
]

=
∑
k

1

2

∑
b

gzb
{
∂k
[
gba
]
+ ∂a

[
gbk
]
− ∂b

[
gak
]}
ψk + ∂a

[
ψz
]
.

Using the definition of the Christoffel symbol, we obtain that∑
b,k

gzb∂b ~X · ∂a
[
∂k ~Xψ

k
]
= ∂a

[
ψz
]
+
∑
k

Γz
akψ

k = ∇a

[
ψz
]
,

which was the claim. In particular, we obtain
∑

b g
zb∂b ~X · ∂a

[
∂k ~X

]
= Γz

ak. �

Proposition D.12.

∇b

[
ψa

]
=
∑
k

∂a ~X · ∂b
[
∂k ~Xψ

k
]
. (D.2)

Proof: It holds that

∇b

[
ψa

]
=

∑
l

gla∇b

[
ψl
]
=
∑
l

gla
∑
u,k

gul∂u ~X · ∂b
[
∂k ~Xψ

k
]

=
∑
u,k

δua∂u
~X · ∂b

[
∂k ~Xψ

k
]
=
∑
k

∂a ~X · ∂b
[
∂k ~Xψ

k
]
,

which was the claim. �

Lemma D.13.

δk[F3]

δ ~X
= ξ2

∑
u

∇u

[
∂k[φ]∂u[φ]

]
− ∂k

[ξ2
2
(∇Γ[φ])2 + f(φ)

]
.

Proof: Using the chain rule it follows that

δt
[ ∫ {ξ2

2
(∇Γ

[
φ
]
)2 + f(φ)

}√
g d2u

]
(D.3)

=

∫ {ξ2
2
δt
[
(∇Γ

[
φ
]
)2
]√
g d2u+

∫ {ξ2
2
(∇Γ

[
φ
]
)2 + f(φ)

}
δt
[√
g
]
d2u.

Considering the first term of equation (D.3) results in∫
ξ2

2
δt
[
(∇Γ

[
φ
]
)2
]√
g d2u =

ξ2

2

∫
δt
[∑

i,j

gij∂i
[
φ
]
∂j[φ]

]√
g d2u.

From [126] it follows that δt
[
gij
]
= −∇i

[
ψj
]
−∇j

[
ψi
]
. Thus, it follows that∫

ξ2

2
δt
[
(∇Γ

[
φ
]
)2
]√
g d2u = −ξ2

∑
i,j,u

∫
giu∇u

[
ψj
]
∂i
[
φ
]
∂j
[
φ
]√
g d2u.
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Proposition D.11 yields∫
ξ2

2
δt
[
(∇Γ

[
φ
]
)2
]√
g d2u

= −ξ2
∑
i,j,u

∫
giu
(∑

b,k

gjb∂b ~X · ∂u
[
∂k ~Xψ

k
])
∂i
[
φ
]
∂j
[
φ
]√
g d2u

= −ξ2
∑
u,b,k

∫
∂u
[
φ
]
∂b
[
φ
]
∂b ~X · ∂u

[
∂k ~Xψ

k
]√
g d2u.

Applying Green’s formula provides∫
ξ2

2
δt
[
(∇Γ

[
φ
]
)2
]√
g d2u

= ξ2
∑
u,b,k

∫
∂u
[
∂u[φ]∂b[φ]∂b ~X

√
g
]
· ∂k ~Xψk d2u

= ξ2
∑
u,b,k

∫ {
∂u
[
∂b[φ]∂b ~X

]
· ∂k ~X∂u[φ]

√
gψk + ∂u

[√
g∂u[φ]

]
gbk∂

b[φ]ψk
}
d2u.

Thus, it holds that∫
ξ2

2
δt
[
(∇Γ

[
φ
]
)2
]√
g d2u

(D.4)

= ξ2
∑
u,b,k

∫ {
∂u
[
∂b[φ]∂b ~X

]
· ∂k ~X∂u[φ]

√
gψk + ∂u

[√
g∂u[φ]

]
gbk∂

b[φ]ψk
}
d2u.

Applying Proposition D.11 to the first term on the right-hand side of equation (D.4),
we obtain

ξ2
∑
u,b,k

∫
∂u
[
∂b[φ]∂b ~X

]
· ∂k ~X∂u[φ]ψk√g d2u

= ξ2
∑
u,b,k

∫
∇u

[
∂bφ
]
∂u[φ]gbkψ

k√g d2u.

For the second term of (D.4) it holds that

ξ2
∑
u,b,k

∫
∂u
[√
g∂u[φ]

]
gbk∂

b[φ]ψk d2u

= ξ2
∑
u,b,k

∫ {
∂u
[
∂u[φ]

]√
g + ∂u

[√
g
]
∂u[φ]

}
∂b[φ]gbkψ

k d2u.
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Applying the chain rule to the determinant results in [163]

ξ2
∑
u,b,k

∫
∂u
[
∂b[φ]∂b ~X

]
· ∂k ~X∂u[φ]ψk√g d2u

= ξ2
∑
u,b,k

∫
∂u
[
∂uφ

]
∂b[φ]gbkψ

k√g d2u

+ξ2
∑

u,b,k,i,j

∫
gij∂u

[
∂i ~X

]
· ∂j ~X∂b[φ]gbkψk√g d2u.

Using the alternative definition of the Christoffel symbol
∑

b g
zb∂b ~X · ∂a

[
∂k ~X

]
= Γz

ak

(see the proof of Proposition D.11), we obtain

ξ2
∑
u,b,k

∫
∂u
[
∂b[φ]∂b ~X

]
· ∂k ~X∂u[φ]ψk√g d2u

= ξ2
∑
u,b,k

∫
∂u
[
∂uφ

]
∂b[φ]gbkψ

k√g d2u

+ξ2
∑
u,b,k,i

∫
Γi
ui∂

u[φ]∂b[φ]gbkψ
k√g d2u.

Transposition of the indices u↔ i, use of Γi
ui = Γi

iu, and the definition of the covariant
derivative lead to [163]

ξ2
∑
u,b,k

∫
∂u
[
∂b[φ]∂b ~X

]
· ∂k ~X∂u[φ]ψk√g d2u

= ξ2
∑
u,b,k

∫
∇u

[
∂uφ

]
∂b[φ]gbkψ

k√g d2u.

Reformulating the terms of Equation (D.4), we obtain that∫
ξ2

2
∂t
[(
∇Γ[φ]

)2]√
g d2u = ξ2

∑
u,b,k

∫
∇u

[
∂b[φ]

]
∂u[φ]ψkgbk

√
g d2u

(D.5)

+ξ2
∑
u,b,k

∫
∇u

[
∂u[φ]

]
∂b[φ]gbkψ

k√g d2u.

Furthermore, substituting in equation (D.3) provides

δt
[ ∫ {ξ2

2
(∇Γ

[
φ
]
)2 + f(φ)

}√
g d2u

]
= ξ2

∑
u,b,k

∫ {
∇u

[
∂b[φ]

]
∂u[φ] +∇u

[
∂u[φ]

]
∂b[φ]

}
gbkψ

k√g d2u

+

∫ {ξ2
2
(∇Γ

[
φ
]
)2 + f(φ)

}
δt
[√
g
]
d2u.
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Finally, using the chain rule for covariant derivatives we obtain that

δt
[ ∫ {ξ2

2
(∇Γ

[
φ
]
)2 + f(φ)

}√
g d2u

]
= ξ2

∑
u,b,k

∫
∇u

[
∂b[φ]∂u[φ]

]
gbkψ

k√g d2u

−
∑
u,k

∫
∂u
[ξ2
2
(∇Γ

[
φ
]
)2 + f(φ)

]
gukψ

k√g d2u,

leading to the claim. �

Lemma D.14. (c.f. [84])

dt[φ(~u, t)] = Lφ∆
Γ
[1
2
κ′(φ)(H −H0(φ))

2 + κ(φ)(H −H0(φ))H
′
0(φ)

+κ′G(φ)K − ξ2∆Γφ+ f ′(φ)
]
.

Proof:

δφ
[
F1

]
=

1

2

∫
δφ
[
κ(φ)

]
(H −H0(φ))

2 ds−
∫
κ(φ)(H −H0(φ))δ

φ
[
H0(φ)

]
ds

=
1

2

∫
κ′(φ)(H −H0(φ))

2ψ ds+

∫
κ(φ)(H −H0(φ))H

′
0(φ)ψ ds.

Thus, it follows that

δF1

δφ(~u)
=

1

2
κ′(φ)(H −H0(φ))

2 − κ(φ)(H −H0(φ))H
′
0(φ).

Furthermore, we have

δφ
[
F2

]
=

∫
δφ
[
κG(φ)

]
K ds =

∫
κ′G(φ)Kψ ds

and consequently

δ
[
F2

]
δφ(~u)

= κ′G(φ)K.

The third energy term reads

δφ
[
F3

]
= ξ2

∫
(∇Γ

[
φ
]
)(∇Γ

[
ψ
]
) ds+

∫
f ′(φ)ψ ds.

Then, using Green’s formula we obtain that

δφ
[
F3

]
= −ξ2

∫
∆Γ
[
φ
]
ψ ds+

∫
f ′(φ)ψ ds.
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Finally, it holds that

δF3

δφ(~u)
= −ξ2∆Γ

[
φ
]
+ f ′(φ),

and since δF4/δφ = 0, we obtain

δF

δφ(~u)
=

1

2
κ′(φ)(H −H0(φ))

2 − κ(φ)(H −H0(φ))H
′
0(φ)

+κ′G(φ)K − ξ2∆Γ
[
φ
]
+ f ′(φ).
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[69] H. G. Döbereiner, J. Käs, D. Noppl, I. Sprenger, and E. Sackmann. Budding
and fission of vesicles. Biophys J, 65:1396–1403, 1993.

[70] M. Dogterom and G. Koenderink. Cell-membrane mechanics: Vesicles in and
tubes out. Nat Mater, 10:561–562, 2011.

125



[71] N. Dong, S. Hui-Ji, Y. Ya-Jun, and N. Li-Sha. Dynamics of phase separation in
mixed lipid membranes between two bounding walls. Physica B, 388:159–166,
2007.

[72] N. Dong, S. Huiji, Y. Yajun, and N. Lisha. Stability of biphasic vesicles with
membrane embedded proteins. J Biomech, 40:1512–1517, 2007.

[73] N. Dong, Y. Yajun, and S. Huiji. Equilibrium shape equation and geometrically
permissible condition for two-component lipid bilayer vesicles. J Biol Phys,
31:135–143, 2005.

[74] G. Drin and B. Antonny. Amphipathic helices and membrane curvature. FEBS
Lett, 584:1840–1847, 2010.

[75] Q. Du, C. Liu, R. Ryham, and X. Wang. Modeling the spontaneous curvature
effects in static cell membrane deformations by a phase field formulation. Comm
Pure Appl Anal, 4:537–548, 2005.

[76] Q. Du, C. Liu, and X. Wang. Simulating the deformation of vesicle membranes
under elastic bending energy in three dimensions. J Comp Phys, 212:757–777,
2006.

[77] D. Duque, X.-J. Li, K. Katsov, and M. Schick. Molecular theory of hydrophobic
mismatch between lipids and peptides. J Chem Phys, 116:10478, 2002.

[78] G. Dziuk, E. Kuwert, and R. Schätzle. Evolution of elastic curves in Rn: Exis-
tence and computation. SIAM J Math Anal, 33:1228–1245, 2002.

[79] C. Eilks and C. M. Elliott. Numerical simulation of dealloying by surface disso-
lution via the evolving surface finite element method. J Comp Phys, 227:9727–
9741, 2008.

[80] C. Elliott, D. French, and F. Milner. A second order splitting method for the
Cahn-Hilliard equation. Num Math, 54:575–590, 1989.

[81] C. Elliott and H. Garcke. On the Cahn-Hilliard equation with degenerate mo-
bility. SIAM J Math Anal, 27:404–423, 1996.

[82] C. Elliott and Z. Songmu. On the Cahn-Hilliard equation. Arch Rat Mech Anal,
96:339–357, 1986.

[83] C. Elliott and B. Stinner. Modeling and computation of two phase geometric
biomembranes using surface finite elements. J Comp Phys, 229:6585–6612, 2010.

[84] C. M. Elliott and B. Stinner. A surface phase field model for two-phase biological
membranes. SIAM J Appl Math, 70:2904–2928, 2010.

[85] E. L. Elson, E. Fried, J. E. Dolbow, and G. M. Genin. Phase separation in bio-
logical membranes: Integration of theory and experiment. Annu Rev Biophys,
39:207–226, 2010.

126



[86] H. Engelhardt, H. P. Duwe, and E. Sackmann. Bilayer bending elasticity mea-
sured by fourier analysis of thermally exited surface undulations of flaccid vesi-
cles. J Physique Lett, 46:395–400, 1985.

[87] E. A. Evans. Bending resistance and chemically induced moments in membrane
bilayers. Biophys J, 14:923–931, 1974.

[88] E. Farge. Mechanotransduction in development. Curr Top Dev Biol, 95:243–
265, 2011.

[89] K. Farsad and P. D. Camilli. Mechanisms of membrane deformation. Curr Opin
Cell Biol, 15:372–381, 2003.

[90] D. R. Fattal and A. Ben-Shaul. A molecular model for lipid-protein interaction
in membranes: the role of hydrophobic mismatch. Biophys J, 65:1795–1809,
1993.

[91] G. W. Feigenson. Phase boundaries and biological membranes. Annu Rev
Biophys Biomol Struct, 36:63–77, 2007.

[92] S. E. Feller. Molecular dynamics simulations of lipid bilayers. Cur Op Coll
Interf Sci, 5:217–223, 2000.

[93] G. Foltin. Dynamics of incompressible fluid membranes. Phys Rev E Stat Phys
Plasmas Fluids Relat Interdiscip Topics, 49:5243–5248, 1994.

[94] V. A. Frolov, V. A. Lizunov, A. Y. Dunina-Barkovskaya, A. V. Samsonov, and
J. Zimmerberg. Shape bistability of a membrane neck: a toggle switch to control
vesicle content release. PNAS, 100:8698–8703, 2003.

[95] V. A. J. Frolov, Y. A. Chizmadzhev, F. S. Cohen, and J. Zimmerberg. ”en-
tropic traps” in the kinetics of phase separation in multicomponent membranes
stabilize nanodomains. Biophys J, 91:189–205, 2006.

[96] A. J. Garcia-Saez, S. Chiantia, and P. Schwille. Effect of line tension on the
lateral organization of lipid membranes. J Biol Chem, 282:33537–33544, 2007.

[97] R. Gennis. Biomembranes: Molecular Structure and Function. Springer-Verlag,
New York, 1989.

[98] T. Gregor, E. F. Wieschaus, A. P. McGregor, W. Bialek, and D. W. Tank.
Stability and nuclear dynamics of the bicoid morphogen gradient. Cell, 130:141–
152, 2007.

[99] G. Guigas, D. Morozova, and M. Weiss. Exploring membrane and protein
dynamics with dissipative particle dynamics. Adv Protein Chem Struct Biol,
85:143–182, 2011.

127



[100] K. Guo and J. Li. Exploration of the shapes of double-walled vesicles with a
confined inner membrane. J Phys Condens Matter, 23:285103, 2011.

[101] P. L. Hansen, L. Miao, and J. H. Ipsen. Fluid lipid bilayers: Intermonolayer
coupling and its thermodynamic manifestations. Phys Rev E, 58:2311–2324,
1998.

[102] F. M. Harold. From morphogens to morphogenesis. Microbiology, 141:2765–
2778, 1995.

[103] M. P. Harris, S. Williamson, J. F. Fallon, H. Meinhardt, and R. O. Prum. Molec-
ular evidence for an activator-inhibitor mechanism in development of embryonic
feather branching. PNAS, 102:11734–11739, 2005.

[104] D. Hartmann. Multiscale Modelling, Analysis, and Simulation in Mechanobiol-
ogy. PhD thesis, Heidelberg University, 2007.

[105] D. Hartmann. A multiscale model for red blood cell mechanics. Biomech Model
Mechanobiol, 9:1–17, 2010.

[106] X. He and J. D. Axelrod. A WNTer wonderland in snowbird. Development,
133:2597–2603, 2006.

[107] M. Heinrich, A. Tian, C. Esposito, and T. Baumgart. Dynamic sorting of
lipids and proteins in membrane tubes with a moving phase boundary. PNAS,
107:7208–7213, 2010.

[108] W. Helfrich. Elastic properties of lipid bilayers: theory and possible experi-
ments. Z Naturforsch [C], 28:693–703, 1973.

[109] J. Henriksen, A. C. Rowat, and J. H. Ipsen. Vesicle fluctuation analysis of the
effects of sterols on membrane bending rigidity. Eur Biophys J, 33:732–741,
2004.

[110] J. M. Holopainen, M. I. Angelova, and P. K. Kinnunen. Vectorial budding of
vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes.
Biophys J, 78:830–838, 2000.

[111] T. Holstein. Unpublished data (2011).

[112] B. Hong, F. Qiu, H. Zhang, and Y. Yang. Budding dynamics of individual do-
mains in multicomponent membranes simulated by N-varied dissipative particle
dynamics. J Phys Chem B, 111:5837–5849, 2007.
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