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Abstract: In this thesis we consider the so-called inverse F-curvature flow
(IFCF)

(0.1) i=—-F"ly

in ARW spaces, i.e. in Lorentzian manifolds with a special future singularity. Here,
F' denotes a curvature function of class (K™*), which is homogenous of degree one,
e.g. the n-th root of the Gaussian curvature, and v the past directed normal. We
prove existence of the IFCF for all times and convergence of the rescaled scalar
solution in C°(Sy) to a smooth function. Using the rescaled IFCF we maintain a
transition from big crunch to big bang into a mirrored spacetime.

Zusammenfassung: In dieser Arbeit betrachten wir den sogenannten inversen
F-Kriimmungsfluf} (IFCF)

(0.1) R

in ARW-R&aumen, d.h. in Lorentzmannigfaltigkeiten mit einer speziellen Zukunfts-
singularitit. Hierbei bezeichnet F' eine Krimmungsfunktion der Klasse (K*), die
homogen vom Grade eins ist, z.B. die n-te Wurzel aus der Gaukriimmung, und
v die vergangenheitsgerichtete Normale. Wir beweisen Existenz des IFCF fiir alle
Zeiten und Konvergenz der reskalierten skalaren Losung in C°°(Sy) gegen eine glatte
Funktion. Mittels des IFCF erhalten wir einen Ubergang von big crunch nach big
bang in eine gespiegelte Raumzeit.
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2 THE INVERSE F-CURVATURE FLOW IN ARW SPACES

1. INTRODUCTION

Let N = N"*! be a ARW space with respect to the future, i.e. N is a globally
hyperbolic spacetime and a future end N of N can be written as a product [a, b) x
So, where Sy is a Riemannian space and there exists a future directed time function
7 = 2° such that the metric in N, can be written as

(1.1) ds* = eQQZN’{f(d:BO)2 + 0ij(2°, z)dz'dz},
where Sy corresponds to

(1.2) 2° = a,

1[) is of the form

(1.3) V(2% 2) = f(2°) + (e, 2),

and we assume that there exists a positive constant ¢y and a smooth Riemannian
metric &;; on Sy such that

(1.4) lin})ew =cy A lin%;orij(T,z) =a;(z) A lini f(r) = —o0.
W.lo.g. we may assume ¢y = 1. Then N is ARW with respect to the future, if the

derivatives of arbitrary order with respect to space and time of e~2f Jap converge
uniformly to the corresponding derivatives of the following metric

(1.5) —(d2®)? + 5 (z)dz’ dz?
when ¥ tends to b.
We assume furthermore, that f satisfies the following five conditions

(1.6) 0<—f,
there exists w € R such that
(1.7) n+w—2>0 A h%u?émW@f:m>&

Set 7 = %(n + w — 2), then there exists the limit

(18) lim (7 +31f')

and

(1.9) DI+ AP < emlf [ Ym>1,
as well as

(1.10) IDP ] < elf ™ ¥m > 1.

If Sy is compact, then we call N a normalized ARW spacetime, if

(1.11) / \/det 0i5 = |Sn|
So

In the following Sy is assumed to be compact.

Remark 1.1. (i) If these assumptions are satisfied, then we shall show that the
range of 7 is finite, hence we may—and shall-assume w.l.o.g. that b =0, i.e.

(1.12) a<T1<0.

(ii) Any ARW space with compact Sy can be normalized as one easily checks.
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To guarantee the C3-regularity for the transition flow, see Section 11, especially
(11.37), we have to impose another technical assumption, namely that the following
limit exists

(1.13) lim (f" + 5151 .

We furthermore assume that in the case 4 < 1 the limit metric &;; has non-
negative sectional curvature.
We can now state our main theorem, cf. also Section 2 for notations.

Theorem 1.2. Let N be as above and let F € C(I'y) N C°%T'y) be a curvature
function of class (K*), cf. Definition (2.3), in the positive cone T'y C R™, which is
in addition positiv homogenous of degree one and normalized such that

(1.14) F(1,..,1) =n.

Let My be a smooth, closed, spacelike hypersurface in N which can be written as a
graph over Sy for which we furthermore assume that it is convex and that it satisfies

(1.15) —e< iAI/}gIO <0,
where
(1.16) e =¢€(N, Gap) > 0.
(i) Then the so-called inverse F-curvature flow (IFCF) given by the equation
(1.17) = —%u

with initial surface x(0) = My exists for all times. Here, v denotes the past directed
normal.
(ii) If we express the flow hypersurfaces M(t) as graphs over Sy

(1.18) M (t) = graphu(t, -),
and set
(1.19) i = ue,

where v = %’7, then there are positive constants c1,co such that
(120) —c<u< —c; <0,

and U converges in C*(Sp) to a smooth function, if t goes to infinity.
(tii) Let (gi;) be the induced metric of the leaves M(t) of the inverse F-curvature
flow, then the rescaled metric

(1.21) eAg,
converges in C*(Sp) to
~ i 2 _

(1.22) (¥*m)7 (=) 7ij,
where we are slightly ambiguous by using the same symbol to denote u(t,-) and
limaf(t, -).

(iv) The leaves M (t) of the IFCF get more umbilical, if t tends to infinity, namely

1

(1.23) FYh) — —HS)| < ce .

n
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In case n+w — 4 > 0, we even get a better estimate, namely
1 )
(1.24) |hi — —H6!| < ce— 3 (nFw—4)t
n

In [4] together with [5] this theorem is proved when the curvature F is replaced
by the mean curvature of the flow hypersurfaces.

In our proof we go along the lines of [4] and [5] as far as possible, for Section 5
we use [2].

The thesis is organized as follows. In the remainder of the present section we
list some well-known properties of f, cf. [8, section 7.3], which will be used later.
In Section 2 we introduce some notations and definitions. In Section 3, 4 and 5 we
prove Theorem 1.2 (i), in Section 6, 7, 8, 9 and 10 we prove Theorem 1.2 (ii)-(iv)
and in Section 11 we will define a so-called transition from big crunch to big bang
via the rescaled IFCF into a mirrored universe.

Let us briefly compare our case with the mean curvature case.

Concerning the proof of the existence of the flow the CY-estimates are similar
to the mean curvature case and the C''-estimates are even easier in our case, since
they follow immediately from the convexity of the flow hypersurfaces. For the C2-
estimates we prove the important Lemma 4.11 and obtain with it in Lemma 5.2
the optimal lower bound for the F-curvature of the flow hypersurfaces, at which
optimality is not seen until Section 8. The remaining part of the C?-estimates is
different from the mean curvature case but can be found in [2].

Concerning the asymptotic behaviour of the flow the C%-estimates are similar to
the mean curvature case. But the C'-estimates in Section 7 and particularly the
crucial C2-estimates in Section 8 differ essentially from the mean curvature case.
Using the homogeneity of F' the C?-estimates lead to very good decay properties
of the derivatives of F, so that from this time on the difference between our and
the mean curvature case is only formal.

I would like to thank Claus Gerhardt for many helpful hints.

Lemma 1.3. Let f € C?([a,b)) satisfy the conditions

(1.25) lin%) flr)=—00
and
(1.26) lim 1f 12 = m,

where 7, m are positive, then b is finite.

Corollary 1.4. We may-and shall-therefore assume that b = 0, i.e., the time
interval I is given by I = [a,0).

Lemma 1.5. (3)

(1.27) lim — = —4/m.
(i) There holds

(1.28) et +ym~er?,

where ¢ is a constant, and where the relation

(1.29) @ ~cr?
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means

(1.30) lim 20

0 T2

Lemma 1.6. The asymptotic relation
(1.31) f'r—1~er?

is valid.

2. NOTATIONS AND DEFINITIONS

In this section, where we want to introduce some general notations, we assume
for N all properties listed from the beginning of Section 1 as far as equation (1.2)
except for being ARW and we write ¢ instead of 1). Let M C N be a connected
and spacelike hypersurface with differentiable normal v (which is then timelike).
Geometric quantities in N are denoted by (gag), (Rag,y(;) etc. and those in M
by (9i5), (Rijrt) etc.. Greek indices range from 0 to n, Latin indices from 1 to
n; summation convention is used. Coordinates in N and M are denoted by (z%)
and (8) respectively. Covariant derivatives are written as indices, only in case of
possibly confusion we precede them by a semicolon, i.e. for a function u the gradient
is (uq) and (uag) the hessian, but for the covariant derivative of the Riemannian
curvature tensor we write R(w,ﬂ;;e.

In local coordinates, (z*) in N and (£%) in M, the following four important
equations hold; the Gauss formular

In this implicit definition (h;;) is the second fundamental form of M with respect

to v. Here and in the following a covariant derivative is always a full tensor, i.e.

(2.2) o = 2%, — Thapy + T, 2] 2]

and the comma denotes ordinary partial derivatives.
The second equation is the Weingarten equation
(2.3) v = hFa?,
where v{* is a full tensor. The third equation is the Codazzi equation
(2.4) hijge — higyj = Ramguo‘xfx}xi
and the fourth is the Gaufl equation
(2.5) Rijri = — {hikhji — hathji} + Rawfﬂ?‘xfﬁx?

As an example for the covariant derivative of a full tensor we give

(26) Ra,@fy&;i = Raﬁwé;exfw
where this identity follows by applying the chain rule from the definition of the
covariant derivative of a full tensor; it can be generalized obviously to other quan-
tities.

Let (z*) be a future directed coordinate system in N, then the contravariant
vector (£%) = (1,0,...,0) is future directed; as well its covariant version (&,) =
e?¥ (-1,0,...,0).
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Now we want to express normal, metric and second fundamemtal form for space-
like hypersurfaces, which can be written as graphs over the Cauchyhypersurface.
Let M = graphu|g, be a spacelike hypersurface in N, i.e.

(2.7) M = {(2°2) : 2° = u(z), z € Sp},
then the induced metric is given by
(2.8) gij = €Y {—uiu; + 0y},
where 0;; is evaluated at (u,) and the inverse (") = (g;;) " is given by
- - W]
(2.9) A {Um 4 } ,
v
where (0%7) = (oij)fl and
u' = oy
(2.10) , —_— ,
v:=1—-0"%uu; =1—|Du|”, v>0.

We define v = v~1.
From (2.8) we conclude that graphu is spacelike if and only if |Du| < 1.
The covariant version of the normal of a graph is

(2.11) (Vo) = v te¥ (1, —u;)

and the contravariant version

(2.12) V™) =Fv e ¥ (1,4Y).
We have

Remark 2.1. Let M be a spacelike graph in a future directed coordinate system,
then

(2.13) () =vte ¥ (1,u")
is the contravariant future directed normal and
(2.14) (v™) = —v e ¥ (1,4')

the past directed.

In the following we choose v always as the past directed normal.
Let us consider the component o = 0 in (2.1), so we have due to (2.14) that
—p, —1 =0 0 =0 0

(215) (& ‘/’v hij = —uij — FOOUZ"LL]‘ — Fojui — I‘Oiuj — Fij?
where u;; are covariant derivatives with respect to M. Choosing u = const, we
deduce
(2.16) e Vhij = -T7,
where h;; is the second fundamental form of the hypersurface {xo = const}. An
easy calculation shows

7 1. ;
(2.17) e Vhi; = —50i — Vo,
where the dot indicates differentiation with respect to z°.
Now we define the classes (K) and (K*), which are special classes of curvature
functions; for a more detailed treatment of these classes we refer to [8, Section 2.2].
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For a curvature function F' (i.e. symmetric in its variables) in the positive cone
'y C R™ we define

where the k; are the eigenvalues of an arbitrary symmetric tensor (h;;), whose
eigenvalues are in I'; .

Definition 2.2. A symmetric curvature function F € C%*(I';) N C°(T), posi-
tively homogeneous of degree dg > 0, is said to be of class (K), if

oF .
(2.20) Flor, =0,
and
(2.21) Fiky g < F7Y(F9n,)? — F*W ' mm V€ S,

where F' is evaluated at an arbitrary symmetric tensor (h;;), whose eigenvalues are
in 'y and S denotes the set of symmetric tensors. Here, F; is a partial derivative of
first order with respect to x; and F*"* are second partial derivatives with respect
to (hij). Furthermore (h*/) is the inverse of (h;;).

In Theorem 1.2 the k; in (2.18) are the eigenvalues of the second fundamental
form (h;;) with respect to the metric (g;;), i.e. the principal curvatures of the flow
hypersurfaces.

Definition 2.3. A curvature function F' € (K) is said to be of class (K*), if there
exists 0 < eg = €p(F') such that

(2.22) e H < FYhhl,

for any symmetric (h;;) with all eigenvalues in I}, where F' is evaluated at (h;;).
H represents the mean curvature, i.e. the trace of (h;;).

In the following a '+’ sign attached to the symbol of a metric of the ambient
space refers to the corresponding Riemannian background metric, if attached to
an induced metric, it refers to the induced metric relative to the corresponding
Riemannian background metric. Let us consider as an example the metrics gop
and g;; introduced as above, then

+ ~ . . + +
(2.23) Jop= e*{(dz®)? + 0y;(2°, ) dx'da’}, 9ij=0up x?zf

3. CO-ESTIMATES—-EXISTENCE FOR ALL TIMES

Let M, = {2° = 7} denote the coordinate slices. Then

(3.1) |M,| = / ") [| det o5 (7, )| dr — 0, T — 0.
So

And for the second fundamental form Bij of the M., we have

7i gLk 7
(3.2) hi=—e ¢(§a"“a,€j+zp5j),

hence there exists 79 such that M., is convex for all 7 > 7.



8 THE INVERSE F-CURVATURE FLOW IN ARW SPACES

Choosing 1y if necessary larger we have
~ ~ . 1 ... L ,
(3.3) eVFly. = e‘”F(h;) = F(—Eolka;gj —d}) > —dof =:¢(T) VT >0,

where dy > 0 is a constant.
We will show that the flow does not run into the future singularity within finite
time.

Lemma 3.1. There exists a time function 3° = 3°(2°), so that the F-curvature F
of the slices {3° = const} satisfies

(3.4) eVF>1.

e¥ is the conformal factor in the representation of the metric with respect to the
coordinates (3°, z%), i.e.

(3.5) 5 = 2 {—(di%)? + 6;;(°, x)dx'da’ }.
Furthermore there holds
(3.6) #({r < 2° < 0}) = [0,00)

and the future singularity corresponds to #° = oco.

Proof. Define 7° by

37 = / (s)ds = — / cof = eof (1) — cof(r) — 00, T —0,

0 0

where ¢ is chosen as in (3.3). For the conformal factor in (3.5) we have

. 0 5,.0
(3.8) eV =W =My
and therefore
(3.9) e‘ZF = 6¢F@_1 > 1.
O

The evolution problem (1.17) is a parabolic problem, hence a solution exists on
a maximal time interval [0, T*), 0 < T* < oo.

Lemma 3.2. For any finite 0 < T < T* the flow stays in a precompact set Qo for
0<t<T.

Proof. For the proof we choose with Lemma 3.1 a time function x° such that
(3.10) PF>1

for the coordinate slices {z° = const}. Let

(3.11) M (t) = graphu(t, -)

be the flow hypersurfaces in this coordinate system and

(3.12) p(t) = supult, ) = ult, z,)

So
with suitable z; € Sy. It is well-known that ¢ is Lipschitz continuous and that for
ae. 0<t<T

(3.13) Pl1) = ult, ).
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From (2.15) we deduce in z; the relation

(3.14) hij > hij,
hence
(3.15) F>F.
We look at the component & =0 in (1.17) and get
0
3.16 0= —,
(3.16) b
where
0 .
(3.17) i = 8—;‘ + it
is a total derivative. This yields
ou 71
1 Yy
(3.18) 55 =€ VE
so that we have in z;
0 1 1
(3.19) o < <1

Ot VF ~ eVF
With (3.13) we conclude
(3.20) e <p0)+t YO<t<Tr

which proves the lemma, since the future singularity corresponds to 2° = co. [

Remark 3.3. If we choose
(3.21) o(t) = igfu(t, )
0
in the proof of Lemma 3.2, we can easily derive that the flow runs into the future
singularity, which means—in the coordinate system chosen there—
(3.22) lim inf u(t,-) = oo,

t—o0 Sp

provided the flow exists for all times.

4. C'-ESTIMATES-EXISTENCE FOR ALL TIMES

As a direct consequence of [8, Theorem 2.7.11] and the convexity of the flow
hypersurfaces we have the following

Lemma 4.1. As long as the flow stays in a precompact set Q0 the quantity ¥ is
uniformly bounded by a constant, which only depends on €.

Due to later demand our aim in the remainder of this section will be to prove an
estimate for ¢ for the leaves of the IFCF on the maximal existence interval [0, 7*),
cf. Lemma 4.5 and to prove Lemma 4.11.

To prove this we consider the flow to be embedded in N with the conformal
metric

(4.1) Jop = e_wgaﬁ = —(dz°)* + 0j(2°, z)dz" dx? .
This point of view will be later on also a key ingredient in the proof of the con-

vergence results for the flow. Though, formally we have a different ambient space
we still denote it by the same symbol N and distinguish only the metrics o resp.
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Jas and the corresponding quantities of the hypersurfaces 71»7;]‘, Gij» U resp. hij, Gij,
v, etc., i.e., the standard notations now apply to the case when N is equipped with
the metric (4.1).

The second fundamental forms 71? and hg are related by
(4.2) e’hl = bl 4+ Qo8 = hl — 5 f 61 + o™ =gey B,
cf. [8, Proposition 1.1.11]. When we insert ﬁf into F' we will denote the result in
accordance with our convention as F'. Due to a lack of convexity it would not make

any sense to insert hg into the curvature function F', so that we stipulate that the
symbol F' will stand for

(4.3) F=e"F=F®h —of 6 +pav®),

which will be useful, cf. (4.5).

Quantities like ¥, that are not different if calculated with respect to gng or gag
are denoted in the usual way.

These notations introduced above will be used in the present section as well as
from the beginning of Section 6 to the end of this thesis.

Due to
(4.4) p=e""y
the evolution equation & = —% can be written as
1
4.5 T =——=v.
(45) =

Lemma 4.2. (Evolution of v) Consider the flow (4.5). Then ¥ satisfies the evolu-
tion equation

O — F2F5;; = —F 2Fhy;hfo + F72F Rogosv®al o] adu!
—F_QFijh-'n ﬁyo‘yﬁ — F'napvv VP
(4.6) — F2(Finaa,0%" 1 +2F Jnaga:kxﬁh )
— F2(=of" || Dul|? F”gij — ouf f P gy
+1/1a51/°‘xﬁukF”glj + Yo} kFZ 9ij),
where n = (ny) = (—1,0, ...,0) is a covariant unit vectorfield.

Proof. We have

(4.7) 0 = e,

Let (&%) be local coordinates for M (t); differentiating ¢ covariantly yields
(4.8) = Nag T V* + oV,

and

(4.9) § =My TV NapVf ]+ 10y hij + oty
. + Nay i +77a5$ T hy.

As usual, cf. [8, Lemma 2.3.2], the evolution equation for the normal is
1 1

(4.10) 0 =g (—%)ixf = 29 9" Fix§
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and for the time derivative of v we get

1:3 :naﬁl/aiﬁ + nal)a

(4.11) 1 1,
=— fnaﬁz/o‘yﬁ — ﬁg”Fiuj.
Writing
(4.12) Fie =F"hyj, — opf Fgi — 0f urF g,

+ waﬁyangijgij + 7/)ax?h7];Fijgij
and using the Codazzi equation
K3

(4.13) hijie — hikj = Ragygyax-ﬁx]zi

we deduce the desired evolution equation for v by putting together the above equa-
tions. [l

We now present some auxiliary estimates which will be needed in the following.

Lemma 4.3. Let |||-]|| denote the norm of a tensor with respect to the Riemannian

+
metric g,g, cf Section 2, then

(i)
asv V| <o [naslll;

(4.14) |90y 2| <c6®|||nasy || F gij,
[Pasr zpuF| <cll|nas|||5%.

(i1) For any € > 0 we have

(4.15) | P napae] 1| < cebF hyghf || 1napll| + cc0*FY gigllnas|
(iii)
(4.16) |Fina375uax?m7m?ul| <ct®F'g,;.

(iv) Furthermore
(4.17) [aaghiu'] < ||| Dy|||5?
in points where v; = 0.

Remark 4.4. These are tensor estimates, i.e. not depending on the special local
coordinates of the hypersurface and Sy. But to prove these estimates we sometimes

+
choose special coordinates such that in a fixed point g;; = d;5, 9,;= diagonal.
Proof of Lemma 4.8. We have [||v®]|] < 20,
+ - - . .
(4.18) 9:;< 204; < 20%gi; A gY¥ <cv?o A b =0

and || Du|? = 92| Dul?.
Proof of (i): Using these properties together with Schwarz inequality proves

(i)-
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Proof of (ii):
FY agwy hi||1* = FYFYRThT 9594,  9i = g, 9ij= diagonal
~4 . b k: ]:: / .
<cv F”F”hj higk,;gi;, 9ij = 0ij, hij = Kidy5, FY = diagonal

< Cl~14 Z(F”)Q(h“)Q
S 0’54(2 F”|hii|)2

(4.19)

< et (3 FH(hE + ecvgur))?,

K3

taking the square root yields the result.

Proof of (iii): The following proof can be found in [8, Lemma 5.4.5]. Let
p € M(t) be arbitrary. Let (z%) be the special Gaussian coordinate system of N
and (£%) local coordinates around p such that

a U; a=0
T, a=k

All indices are raised with respect to ¢*/ with exception of
(4.20) it = ouy;.
We point out that

| Dull? = g¥win; = 920" uzu; = 0| Dul?

(4.21) ‘
(v*) = —5(1, )
and
(4.22) nexs gt = —u”.
‘We have
(4.23) —F Rogysval 1) alu® = F Ropsv°a] o) adneafg™.
Let
(424) Q5 = Ra,@wéyaxiﬁxzx?nex?gkl'

We shall show that the symmetrization a;; = %(aij + aj;) of a;; satisfies

(425) —C’(~}3gij S Zlij S 017391']'
with a uniform constant c. We have F¥a;; = F/a;;, and assuming (4.25) as true
the claim then follows by chosing a coordinate system such that g;; = J;; and
a;; = diagonal.

Now we prove (4.25). For this let e,, 1 < r < n, be an orthonormal basis
of T,(M(t)) and let X\"e, be an arbitrary vector in T,,(M(t)) then we have with
e, = (e!) that

(4.26) |@ij A el Afel| < nmax |a;jelel E |A"|?
r,s
=

and

(4.27) g epel = N
T
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so that it will suffice to show that
(4.28) max |a;jetel| < ci®

for some special choice of orthonormal basis e,..
To prove (4.28) we may assume Du # 0 so that we can specialize our orthonormal
basis by requiring that
Du
[ Dul|”
here more precisely we had to write down the contravariant version of Du.

For 2 < k < n, the e;, are also orthonormal with respect to the metric o;; and it
is also valid that

(4.30) oiji'e] =0 V2<k<n.

(4.29) €1 =

In view of (4.22) and the symmetry properties of the Riemann curvature tensor
we have

(4~31) aijuj =0.
Next we shall expand the right side of (4.24) explicitly yielding
aij =Roio;0|| Dul|® + Roigotuju® + Rogp;ou”
(4.32) + }:%l()koﬁukﬁluiuj + Rigo; 00" u; || Du)?
+ Ryopjoualu; + Ryzo;00'|| Dul|?
+ Rypovufatu; 4 Rygjoutal.
For 2 < r,s <n, we deduce from (4.32)

aijetel =Roin;0|| Dul|*etel —I—Rolkjvu ele

(4.33) : y

+ Rliojvu || Dwl| e A levu U e’ eJ
and hence
(4.34) lajelel] <cv® V2 <rs<n.

It remains to estimate a;;jelel for 2 < r < n because of (4.31).
We deduce from (4.32)

(4.35) aijeie{; = ROiojf)HDuHQﬁ*%ief; + Roikj? 1’U,k616j

where we used the symmetry properties of the Riemann curvature tensor.
Hence, we conclude

(4.36) lajeiel| < ct® V2 <r <n,

and the relation (4.28) is proved.
Proof of (iv): Differentiating the equation

(4.37) * =1+ || Dul?
with respect to ¢ yields

(4.38) 0 = 209; = 2u;u’
which implies in view of

(4.39) Vhi; = —uj + Eija
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cf. Section 2, that

(4.40) hiju? = ohju’
hence
(4.41) Yorhiul =aalg™ hu' = f/d)aa:ggklﬁlmi
=hoxl (o + o2 ara Yy
Applying Schwarz inequality finishes the proof. ([l

Lemma 4.5. ¥ is uniformly bounded on [0, T*) namely

(4.42) sup ¥ < c=c(sup?, (N, gag))-
[0,7+) Mo

Proof. We have (1.15) in mind. For 0 < T' < T™* assume that there are 0 <ty < T
and zg € Sy such that

(4.43) sup sup ¥ = 0(tg, xg) > 2.
[0,7] M(t)

In (to, 7o) we have || Du|? > if)Q
(4.44) 0<0—F2Fg;,
and after multiplying this inequality by F? we get if ¢ > 0 sufficiently small that
0 < — F9hy;hFo + FIRop5v xﬁxl:v ut — F9himasvovP
— Fiapr®vP? — Fin,s vz} x] + 2F 9,508 w?hf
(4.45) +0f ||Du||2Fijgij + Dt fFY gy — hograiut F gy,
— o xf kF”gj
1 ..
< - ithkj U+CU3‘f |7 ngj +Uf HDUH F]gzp

which is a contradiction if € > 0 very small.
Hence

(4.46) 0(to, ) < max(supv,2).
My

We prove a decay property of certain tensors.

Lemma 4.6. (i) Let ¢ € C*°([a,0)), a <0, and assume

(4.47) lim o®(7) =0 Vk €N,

then for every k € N there exists a ¢, > 0 such that

(4.43) ()] < el

(i1) Let T be a tensor such that for all k € N

(4.49) ||DFT (2% 2)|]| — 0 as 2° — 0 wuniformly in x
then

(4.50) VieN Fep>0  Vaes, |||T($O»$)|||§Ck\xo‘k
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(ii1) For T' = (nap) the relation (4.50) is true, analogously for |||nas, |||, [[[DY]]],
I||Ragysn||], or more generally for any tensor that would vanish identically, if it
would have been formed with respect to the product metric

(4.51) —(d2®)? + 5 da’ da? .

Proof. (i) From the assumptions it follows that

(4.52) sup || < ¢
[a,0)

From the mean value theorem we get

(4.53) sup o] < o®) (70)] + |7 sup [+
[7,70] [7,70]
and therefore
k—1
(4.54) sup ol <> 7@ (7o) + |71 sup o ®],
.70 0 .70

hence taking the limit 79 — 0 yields
(4.55) [P (r)] < exlrl".

(ii) For simplicity we only consider T' = (T*). Choose = € Sy arbitrary and define

+

(4.56) o(r) = ||IT(r,2)||]> =TT" g,
then we have

+ arg
(4.57) W (1) = 2T T? gop +TT? Gops n°

so that one easily checks that ¢ satisfies (4.47) and (4.52) with ¢, not depending
on z. The claim now follows by (i).

(iii) The tensor T = 1,4 is a covariant derivative of 77, with respect to the metric
Jag- If we would have calculated this covariant derivative with respect to the limit
metric

(4.58) —(dz°)? + &4 (z)dx' da?

then it would vanish identically, as well as all its derivatives of arbitrary order. From
this together with the convergence properties of g, we deduce that 7" satisfies the
assumptions in (ii), so that the claim follows. The remaining estimates are similarly
proved via (ii). O

Now we prove a result for general convex, spacelike graphs.

Lemma 4.7. Let ¢ > 0 be arbitrary, then there exists § = 6((N, Jag),€) > 0 such
that for every closed, spacelike, convex hypersurface M in the end N;' = {2 > -5}
holds

(4.59) 5 <elf|7.
Proof. Let p > ~~! and define
(4.60) w = o{ef + [ul?}
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and look at a point, where w attains its maximum, and infer

0 =w; = {e + [ul"} + e " — pluP~ Ju;
(4.61) = {—hgu® + 5  hpu™ el + |ulP} + ol = plulP~ Yu

= {—Eikukeﬂz’ —of i + évug el + ulP} + f){eff/ — plulP~ uy,

where
(4.62) €] < emlul™ ¥ meN.
Multiplying by u* and assuming Du # 0 we get the inequality
(163) os(af+a&f+ka+Jf4mWW*
= —f Jul? + &e +ul’} — pluf~t <0,

if 6 > 0 small, since

(4.64) Fu<y' 4 e
This is a contradiction, hence Du = 0.
Since
(4.65) o(r) =D 4|77, a<7T<0,

is monotone decreasing we conclude

ef(umin) + |umin|p <

. 5 < F(ttmin) PYe—F @)

(4. 66) (VRS ef(“) T ‘u|p = (6 + |um1n| )6 )

where Ui, = infu. Choosing § appropiately small finishes the proof, where we
used Lemma 1.5 (ii). O
Remark 4.8. We also could have chosen

(4.67) w = {Jul3 + |ul?}

in (4.60).

Corollary 4.9. Let § > 0 be small and Ng" and M be as in Lemma 4.7, then
(4.68) Fijl?agn,guaa:i V'Yx? > —céF”gij,

if the limit metric 6;; has non-negative sectional curvature.

Proof. We define

(4.69) Ropys(0,) = lim Raprs(T,°)
and have
Finagﬂ,(;yo‘fo'Yajf
=F"(Rapy5(0,-) + Ragys(u,-) = Rapas(0,))va; v}
(4.70) > F(Rapys(t,+) = Ragys(0, )y ) vl
> — ||F 92 v @[] - ||| Ragys (us -) = Rapas(0,-)]]

> — e |u|"F gy,
for arbitrary m € N and suitable ¢,,. Note that we used for the last inequality that

(471) Raﬁ’yS(an ) - Raﬁ'y&(o, )
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satisfies (4.49). O

We want to formulate the relation of the curvature tensors for conformal metrics.
Lemma 4.10. The curvature tensors of the metrics o, gap are related by
e_QwRaﬁ'yé :Raﬂvé - Qa%z,eé - gﬁ&'&av + gatﬂzﬂv + gﬁ’ﬂ;aé
(4'72) + §a7¢5¢5 + 9[35%4% - gaéwﬁwv - g,@'ywoﬂ/)&
+ {gaégﬂ’y - ga'ygﬁé}HDd)”2~

Now we are able to prove the following lemma which is necessary for the C?-
estimates in the next section.

Lemma 4.11. There exists a constant ¢ > 0 such that we have for the leaves of
the IFCF

(4.73) F R s a7l > & f Pe2?
provided
(4.74) —e < infa" <0,

Mo

where € = €(N, §ap). Here F is evaluated at .

Proof. In view of the homogeneity of F' we have

(4.75) F =F},
hence
(4.76) Fi = 20 i,

We have due to Lemma 4.10
ewﬁ’ij}?amgﬁo‘xfﬁvxi
(4.77) =F" Ropysv®x vl + F”J’x'f:c?@/}m — FY 9o vV
- Fijxiﬁx?l/zﬁ% + FU giithatbyv®vY + FY g5 D2
We have
+ .

(4.78) 9:;< 205 < 209y

Now we estimate each summand in (4.77) separately with the help of the Riem-

+
manian background metric g, 43, namely
o = 4+ 4+ - -
(479)  |FY R gy sval v al| < X (FYFY 959 5)% < ci?Flioy < co*Fil gy,
(4.80) F”xfw?z/?ga = Fijuiujf” + Fijx?xfwg(; > Fijuiujf” — cﬁQFijgij,

o T ey 2pig, i a
—FYgijthayv* v’ = =0 FY g f — FY gijayv T
"

(4.81) . e
> =0 FYgi;f — o FY gy,
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/

—Fijxfxill?azﬁa = —Fuguj(po + f )2 — FIpp; — 2F sy (o + f)
.52) > —F i (o + f: )? =1+ |f’\|lDu|)F“o7j|Dw|
> —FYupui(vho + f)? = ct®(L+|f || Dul) F¥ gi5| Dy
> —Fiugu;(vo + f)? — c|f |07 F g,
where | Dy[* = o4pyip;,
(4.83) FU g b v? > 02 (s + f)2F 9 gi; — c0®|f |[F gy,

Fg | DY|1> = —(f +10)2F9gi; + o 4inh; FY g,
> —(f +40)2Figy; — cFiig,;.

Thus we conclude (using u;u; < (0% — 1)g;5)

(4.84)

ew}%ijéamgﬁo‘xfﬁ'ym? > — ct*Fg;; + Fijuiujf” — ~2f”Fijgi_j

— C’L~12|f/ |Fijgij

+ (Yo + £ )2F (8% gij — uiu; — gi7)

Z — 6174Fijg7;j — 172f”Fijg7;j — C‘f/|1~)2Fijgij.
Now, the claim follows with Lemma 4.7 if 4 > 1, cf. (1.8).
Let us now consider the case ¥ < 1. Due to assumption the limit metric ;;

has non-negative sectional curvature. Now we use Corollary 4.9 to bound the
first summand of the right side of (4.77) from below by the term —cF%g;;, one

easily checks that this term replaces the summand with ¢4 in (4.85) completing the
proof. O

(4.85)

Remark 4.12. Lemma 4.11 is also true for general convex, spacelike graphs over
Sp in a future end of N, we did not use in the proof that the hypersurfaces are flow
hypersurfaces of the IFCF.

Before we consider the C2-estimates in the next section we show that N satisfies
the timelike convergence condition with respect to the future.

Corollary 4.13. Lemma 4.11 remains valid, if we replace inequality (4.73) by

9

(4.86) Rop™ P > & f |Pe2¢

Proof. We substitute F' by 9 and F% by ¢ in the proof of Lemma 4.11. The
proof even simplifies, since we have the estimate

(4.87) |99 Roprsv ) lﬂxg\ = |Rapr®v?| < ¢,

especially the assumption, that the limit metric &;; has non-negative sectional cur-
vature in case ¥ < 1, is not needed. (Il

5. C?-ESTIMATES-EXISTENCE FOR ALL TIMES

In this section we consider N to be equipped only with the metric g5 and will-
—for simplicity—apply standard notation to this case, i.e. no ~ is written down. In
the next section we will go back to the notation of the previous section until the
end oft this thesis.
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Lemma 5.1. The following evolution equation holds

d(1\ 1 . (1 1, R
(51) @ (F) - ﬁF‘] (F) N = _ﬁF‘]hzkh;c - ﬁFJRaB’yzSV Z; I/’Yx?.
ij
Proof. cf. [8, Lemma 2.3.4]. O

Lemma 5.2. Assume (4.74), then
(5.2) F>inf F
Mo
as long as the flow exists. If in addition the IFCF exists for all times, there even
holds
(5.3) F > coertat
with ¢y = Co(Mo) > 0.
Proof. We define

(5.4) o(t) = ﬁ}f) F

and infer from Lemma 5.1

d iy 1 .. 1 .o
- —F - F 2Ry :fF”hikhf + FF”RaMy%fﬂzg
5.5

2
— ﬁF TFFy,
hence using Lemma 4.11 we deduce
"2

(5.6) olt) > el e,

especially ¢(t) > 0 for a.e. 0 <t < T™*.
If the flow exists for all times, we know from Remark 3.3 that the flow runs into
the future singularity

(5.7) lim infu(t,-) = 0.

t—oo

A careful view of the proofs of Lemma 6.1 and Theorem 6.2 shows that everything
needed there is available at this point, so that we infer from (5.6)

(58) () > el Lo

and

4
dt

for a.e. t > 0 and a positive constant ¢ > 0. This implies

(5.9) (ch) > ce2(+ )t

(5.10) (1)* > p(0)” + 2(776+l)(.e2(7+%>f —1)

for all ¢ > 0. O
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Remark 5.3. Due to [8, Lemma 1.8.3], and the remark at the beginning of Sec-
tion 3, especially inequality (3.2), for every relative compact subset Q of N lying
sufficiently far in the future of N, i.e. |infqzY| close to 0, there exists a strictly
convex function x € C%(Q), this means

(5.11) Xag = C0Jag
with a constant ¢g > 0.

Lemma 5.4. The following evolution equation holds

. 1 %] 2 « 1 1] e
(5.12) X — ﬁF Ixij = —pXaV" = ﬁF T XaBTs l‘f
Proof. Direct calculation. O

Lemma 5.5. The following evolution equation holds

A R 1 1 = N
513 (log F) — =5 F (log F)y :ﬁFJhmthrﬁFﬂRawy a7l

1
— ﬁF VF;F}
Proof. Use Lemma 5.1. ]

Lemma 5.6. The following evolution equation holds

N 1o e 2 2
< i 1% - (% ~ 4 a B 2 pijpk..o, B
5,14 U — FQFJUW = F2F7h,khjv 7BV v FzF]hjxi Ty Nas
— g Fapyal w]v® — 5 P Ragsv el wlaineatg,
where (Ng) = e’/;(—l,O7 ., 0).
Proof. cf. [8, Lemma 2.4.4]. O

Lemma 5.7. Let Q@ C N be precompact and assume that the flow stays in 0 for
0<t<T<T* then the F-curvature of the flow hypersurfaces is bounded from
above,

(5.15) 0 < F <c().

Proof. Consider the function

(5.16) w = log F' 4+ A0 + px,

where A, i > 0 will be chosen later appropiately. Assume

(5.17) w(to, o) = sup sup w
(0,77 M (t)
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with 0 < to < T, then we have in (g, zo)

. 1 .
0 SU) — ﬁF Jwij

1 ij k 1 ij B~y 1 ij

:ﬁF hirh; +ﬁF Ragysv™aiv :173 ~ i — FY F;F);
D . 2A o 22X o

- ﬁFﬂhikhfv = eV VP — ﬁthkx xkna[g
(5.18) N
- F jnaﬁy$ﬁ$zya _ ﬁF”Raﬂ—yéVa-Tﬁxkx 7]5%9

200 B a B
fa Fszxaﬁx T

A - cA i 1 [T
<- 60(5 - 1o+ ﬁF 7g9i +clp+ )\)f — o7 I 9i5-
Now we choose A > 2 arbitrary and pu >> 1 large and we deduce that F' is a priori

bounded from above in (tg, o) from which we conclude the Lemma. O

Let 2 C N be precompact and assume that the flow stays in Q for 0 <t <T <
T, then there exist—as we have just proved—constants 0 < ¢1(€2) < c2(€2) such that
(519) Cc1 (Q) <F< CQ(Q)

(concerning the lower bound we proved even more, cf. Lemma 5.2). It remains to
prove that there also holds an estimate for the principal curvatures from above

(520) K; < Cg(Q),
yielding
(521) 0< C4(Q) <kK; < Cg(Q)

due to the convexity of the flow hypersurfaces and (5.19).

Lemma 5.8. The mixed tensor hg satisfies the parabolic equation

Z Sl 1,
] = 23 F¥IL = —F 2 FR b ]+ el + S0
2 2

73 —_F,FI + —QFklRagvgx%xfoxihf”g”—

+ kal’mhkl;ih;_js — 7

2
_ . 1
- ﬁFklRamgx%xfmle hitg™ — ﬁFklRagwsx xfz ad ™I
L ki B oy 517 2
— ﬁF Raﬁ»ﬂﬂ/al'kl/wzl hz + F
1 kl 8 mj a, B e, mj
JrﬁF R(w.ﬂ;;e {1/ xkxl mg + v%x! xkx i g }

Proof. cf. [8, Lemma 2.4.1]. O

(5.22)

B

Raﬁwéyazi 5 mj

vz, g

Lemma 5.9. Let Q C N be precompact and assume that the flow stays in Q for
0 <t < T*, then there ezists c3() such that

(5.23) ki < c3(Q).
Proof. Let ¢ and w be defined respectively by
o = sup{hyn'n’ [l =1},

(5.24) 5
w = logp + A+ ux,
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where A, o are large positive parameters to be specified later. We claim that w is
bounded for a suitable choice of A, p.

Let 0 < T < T*, and z¢ = xo(to), with 0 < tg < T, be a point in M (ty) such
that
(5.25) supw < sup{sup w: 0 <t < T} = w(xg).

Mo M(t)

We then introduce a Riemannian normal coordinate system (£%) at zg € M (o) such
that at ¢ = z(tg,&y) we have

(5.26) gij =0;; and @ =h.
Let 77 = (7}%) be the contravariant vector field defined by
(5.27) i = (0,...,0,1),
and set
(5.28) o= Ml
i '’

¢ is well defined in a neighbourhood of (tg,&p).
Now, define w by replacing ¢ by ¢ in (5.24); then @ assumes its maximum at
(to,&o). Moreover, at (tg,&p) we have

(5.20) b= I,

and the spatial derivatives do also coincide; in short, at (tg,&p) ¢ satisfies the same
differential equation (5.22) as h?'. For the sake of greater clarity, let us therefore
treat h; like a scalar and pretend that w is defined by

(5.30) w = log h] + A0 + px.

W.lo.g. we assume that p, A and A} are larger than 1.
At (tg,&p) we have w > 0 and in view of the maximum principle, we deduce from
(5.22), (5.14), (5.12) and (5.19)

g N H 3
0 <ch;, + cAFY g;; — —eg¥— + pc — coﬂF”gij
27 F F?
(531) 1 ij n n 2 n 1 kl,rs ni
+ ﬁF (IOg hn)l(log hn)] — hZF‘3F Fn —|— h2F2F 3T hkl;nhrs;ig .
Because of [8, Lemma 2.2.6] we have
kl,rs —1/ pij o 1 i
(532) F* hkl;nhrs;n <F (F hij;n) - hinF hin;nhjn;n
so that we can estimate the last two summands of (5.31) from above by
1 1 ij (M D n D
here
(534) R7 = Raﬁfygl/axgz;yzfl = hin;n - hnn;i

denotes the correction term which comes from the Codazzi equation when changing
the indices from hip;n t0 Rppy.
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Thus the terms in (5.31) containing derivatives of h' are estimated from above
by
1

1 17 ny. m
th2 Y (10g hn)zRJ

Moreover Dw vanishes at &, i.e.,
(log hy;)i = —A; — pix;

5.36
(530 = —~Napa] v = Moz hf — pxaes.

Hence we conclude from (5.31) that

. A _H c
| 0 <chy, + cAF" g;; — 56005 + pe+ HﬁFUgij - 00%FUgij
(5.37 n
.. I .. ..
<erh™ + o \F g, — Aesh™ + pcs + ﬂh%Fljgij — couF g,
n
where ¢;, i = 0, ..., 5, are positive constants and the value of ¢y changed. We note

that we used the estimate
(5.38) Fi9Rmaahl < cF,
which can be immediately proved.

Now suppose h]! to be so large that

Cs 1

(5.39) <32

€0,
and choose A, p such that

A 1
(5.40) 56> and 1 CoH > CaA

yielding that estimating the right side of (5.37) yields
A g
(5.41) 0< —§C3h:§ - %OMF”gij + pcy,
hence h? is apriori bounded at (tg,&p). O

Remark 5.10. Now all neccessary apriori estimates are proved so that we can
deduce existence of the flow for all times in the usual way. In view of Remark 3.3
the flow runs into the future singularity.
The latter property can also be proved as follows. Using Lemma 5.2 and F < H
we infer
(5.42) o0 «— inf F< inf H as t— oo.
M(t) M(t)
The timelike convergence condition with respect to the future, cf. Corollary 4.13,
together with
(5.43) lim inf H = o0
t—0o0 M(t)
implies that the flow runs into the future singularity. To see this we argue as in the
proof of [9, Lemma 4.2].
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6. CO-ESTIMATES-ASYMPTOTIC BEHAVIOUR OF THE FLOW

From now on until the end of this thesis we go back to the notation introduced
in Section 4 and consider the flow as embedded in (N, o), i.e. standard notations
apply to this case.

We prove that the flow runs exponentially fast into the future singularity, which
means more precisely that there are constants c1,cy > 0 such that

(6.1) —cre " <u < —cge
The first step for this will be the following Lemma.

Lemma 6.1. Let u be the scalar solution of the inverse F-curvature flow, then for
every 0 < A <~y there is ¢(A\) > 0 such that

(6.2) lueM| < e(N).
Proof. Define

(6.3) o(t) = xiélsf‘o u(t, )
and

(6.4) w = log(—¢p) + At.
In z; we have, we remind that h;; = —u;; — %é’ij,

F =F(hi; — f gij + v gi;)
<F(cgij — f/gij> (where ¢ > 0)

(6.5) ,
=(c— [ )F(9ij)
=n(c—f)
and
. ou
5 1
u‘;:f+/\:ﬁ+)\:F—+/\
(6.6) ¥ . v v
< —— 4+ X a.e.
cf. (3.13). Now we observe that the argument of f is u and
(6.7) lim inf u(t,x) =0

t—oo x€Sy

because of Remark 5.10. On the other hand

/ 1
(6.8) Jim fu=5" =
in view of (1.31), and we infer

1
o e 7)

hence w(t) <0 for a.e. t > ty, tx > 0 suitable.
Therefore, we deduce

(610) w S w(t)\) Vit Z t)\,
i.e.

(6.11) —ueM <¢(\) VteR,.
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We are now able to prove the exact exponential velocity.
Theorem 6.2. There are constants c1,co > 0 such that
(6.12) —c1 < =ue" < —cy < 0.

Proof. (i) We prove the estimate from above. Define

(6.13) o(t) = sup u(t,x)
z€So

and

(6.14) w = log(—¢) + 7t.

25

Reasoning similar as in the proof of the previous lemma, we obtain for a.e. t > tg,

to sufficiently large,

1
> h
e +v (where ¢ > 0)
(6.15) 71_1“1[/ — eny
~nu(=c= 1)

>Cu,

where ¢ is a positive upper bound for the fraction; note that this fraction converges

due to the assumptions, cf. (1.31).
The previous lemma now yields

(6.16) W > éu > —éexe M ae. t >ty

for any 0 < A < 7. Hence w is bounded from below, or equivalently,

(6.17) i< —cp <0.
(ii) Now, we prove the estimate from below. Define

(6.18) o(t) = inf wu(t,x)
z€Sp)

and w as in (6.14), then we obtain analogously that

(6.19) —cy < il

Lemma 6.3. For any k € N* there exists ¢, > 0 such that
(6.20) IF®)| < cpeb,

where %) is evaluated at u.

Proof. In view of the assumption (1.10) there holds

(6.21) P < el f 18 = el f [FuFakerr,

Then use (1.31) and the preceding theorem.
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7. Cl-ESTIMATES—-ASYMPTOTIC BEHAVIOUR OF THE FLOW

In Section 4 we proved that o is uniformly bounded for all times, cf. Lemma 4.5.
We recall that

(7.1) @ = uet.

Our final goal is to show that || Da|? is uniformly bounded, but this estimate
has to be deferred to Section 8. At the moment we only prove an exponential decay
for any 0 < A < 1, i.e., we shall estimate || Dule*.

We remember that we have

(7.2) F=F(H) = F("h]) = F(h! = of 5] + Yar5)).
We need in the following a slightly different estimate from the one in (4.16).

Lemma 7.1.

73 Finagvguo‘x?xlngul =— ﬁFinagygn“x?xlvx‘s»ul
. —OFYR g,ﬂsu’“xg 5 ul.

iy

With the help of the boundedness of o, cf. Lemma 4.5, we prove the following
estimate.

Lemma 7.2. There exists € > 0 and a constant c. such that

(7.4) | Dulle < ce.
Proof. We have
(7.5) % =1+ || Dul?.

Taking the log yields since v is bounded
(7.6) | Dull*(1 — 1| Dull?) < 2log® = log(1 + || Dul|*) < || Dul|*(1 + 1| Dulf?),

where c; is a positive constant, i.e., it is sufficient to prove that log #e2¢* is uniformly
bounded.
Let € > 0 be small and set

(7.7) © = log ve*,
then ¢ satisfies

. . .. 1
(7.8) ¢ —F2Fip; = — (v — F2F¢;;)e* + F~2 F% ;e + 2ep

IS

hence (cf. Lemma 4.2 )
F?e _2€t(<p F- 2F”gp”) F”luc hk F”Raﬁwuaxfxl T3 ul

1
— fF]h”naﬁu VP Fnagy VP

1 2
— fF Jnagvyax?x;y - fF Unagrga) bt
2 1ij Lok i
+ f || Dul*F Gij +5Uku fF Gij
1 . 1 3
- ?/Jaﬁ'/al‘f“ktf’”gij - 5¢a$?h§cukF”gw

1
+F ijf + 2¢F?log o.
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For T', 0 < T < oo, assume that

(7.10) sup sup ¢ = ¢(tg, o),
(0,77 M(t)

where 0 < tg < T large, xg € Sy.

Applying the maximum principle we deduce in (g, zg) using Lemma 4.3, Lemma
4.6 and Lemma 7.1 that (note that @ = ue? is bounded) for ¢y large and € > 0
small.

| .. ..
0 < — =FYh;h¥ 4+ cu®F gi; + c|ul| Dul| F gy,
_— 55 g3y + clul| Dull P
+cl|Dul?Fgi; + f | Dul*F gij + ce| f |* log 5F 7 gy,
here we used that we have
(7.12) F? < c(FUhyhk + | |PF g;))
due to egF? < Fijﬁkjhf, cf. Definition 2.3.
The log ¥ in (7.11) can be estimated by ¢| Du||? yielding
1 iq ;s 1 " ..
(7.13) 0<— iF”hkjhf + cu F g + 5/ | Dul|2F g;;,

where we have chosen € > 0 small and assumed that ¢y > 0 large.
Hence in (tg, zo)

2
(7.14) ¢ = log 5e*" < || Dul|?e* < %62“ <ec.
O
Lemma 7.3. (Evolution of u)
i— F2Fu;; = 2F Yo 4+ F 202 f Fgy; — F200pqv®Fig,; — F2F Dy,
Proof. The claim follows from the three identities
.
U= —
F —
(715) U5 = —’[Jhij + hz’j
7Fijhij = —F— ’Ljf/F”ng + 7/1al/aFijgij.
O

Lemma 7.4. For any 0 < A < vy, there exists c) such that
(7.16) | Dulle < e.

Proof. Define

(7.17) p=1logv— g\u|2_€,

with 0 < € < 1 arbitrary and g >> 1 chosen appropriately later. The interesting
case is, when e is close to 0.
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Then ¢ satisfies the following evolution equation, cf. Lemma 4.2 and Lemma
7.3,
B 2 i 2— 1—e —2 g
(6= F2FU5) + = Splul (i — F2Fiiu)

1 . 2— g
+ F_2~—F1]1~)ﬂ~)j + Tu(l —)|u|  F2FYuu;

¢ —F2Fg; =

[STR =

=— F2Fipnk + - F PR mguaxfxlx u'
1
— 5F_2F”hijnaﬁz/au — 5F_ naguayﬁ

1 y 2 .
- 5F_2F”na571/ax@x;’ + 5F_2F”77a5x§x?hf

2

_ " i 1 _ 9. [y
(7.18) + F72f || Dul*F¥ gy + =F “oput fFY gy

— F~ 2%y, ﬁz/o‘asﬁukfF”gZ — fF 2 h%ukFijgij

+ (2 = eppful 70 +(1—*) Jul = F 0% f gy

F
€ —€ —4 (0% 1
—(1- *)/J|u\1 F 20,0 F g;;
-—(1- 7) |u\1 ‘F~ 2F”hu

1 y
+ F2F9%;%; — = +(1- 5)(1 — )plu|  F2FYu;u;

= RHS.
O
We will show
(7.19) p<0 Vt>0.
Assume that this is not the case. Let ty > 0 be minimal such that
(7.20) sup ¢(to,-) =0
So

and zg € Sy such that

(7.21) ¢(to, z0) = 0,
which implies that in (to, o) the RHS in (7.18) is > 0,

1
(7.22) 5|IDull? > log s = g|u\2_5
for > 0 large (which implies ¢o large) and
(7.23) 5i=—(1— %)uﬁ|u|1_€ui.

We now show that RHS in (7.18) is negative, if ¢, is sufficiently large, which can
be guaranteed by increasing p accordingly.
We use

- ij c(0) i ~1 ¢ | i
(7.24) F < [u|' " P6F" hy b + lup_ﬁFﬂgij + 0| f |Fg;;
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where 3 > 0 is chosen according to Lemma 7.2 such that
(7.25) log ¥ < clul?

and ¢ > 0 is small, ¢(d) also depends on the upper bound of |,V
We find

0 <F?*(RHS)

°|

—_

< — —Fhyh + c|Dul|>F9 g;; + cplul F9 gi; + f plu>F gy,

[\)

€ —€ 1 [%]
+ (1= 5)ulul IIDUIIZ(g +cu®)Fg;;

c(9)
fult=7

+(2— E)N\UP_&@(\“|1_B5Fijhikh§ + FYg;; + 17|f/\Fij9ij)

(7.26)
€ —€~ ! ij € ~ —€ 17
+ (1 - §)M\U|1 B f Fg;; +2(1 - 5)2ulogv\u| |Dul*F*¥ g;;
€ —€ %l
+ (1 =)l =€)yl |Dul*F" g;;
€\~ ~ € %l
Sl (=1 + el Dull + (1= )87 + Alul + clul?) Fgyy
<0,

where we have chosen p large (= to large). Here we used

’ 1 " 1
(7.27) \fu—§|§cu2, “f |u2—§’§cu2
and
2logv Bte—2
(7.28) w= T < 2|ul .

8. C2-ESTIMATES—-ASYMPTOTIC BEHAVIOUR OF THE FLOW
F' grows exponentially fast in time, more precisely we have the following
Theorem 8.1. The estimate
(8.1) F>cet
is valid, where ¢ > 0 depends on M.
Proof. Use Lemma 5.2 (note that we used a different notation there) and (4.3). O

For later purposes we obtain an evolution equation for F.
As usual we have (we remark that in our case the evolution equations are the
same as in [8, Lemma 2.3.2, Lemma 2.3.3], see also (7.15))

.. 1 . 1 . 1= i
il ==+ ik + i Ragor eV aig
v :gijF—;x?‘

L 1 oY 1% F;

(8.2) 0 == Znasr v’ — g 53u
B
U ==
F
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and, furthermore, since

(8.3) F=F(h]) = F(h] — f 8] + av*5))
we infer

(8.4) F=Fihi,

and finally

Lemma 8.2.

. 1 .. 2 . 1 .. 1 .. _
F— 5 FIF; = = 2 FIRF; + ZF7hfh + FF”RaWu%fzﬂx;?

(55) gy VO f Flgy — 2 Figy 4 = f Fak Filg,
—%¢aﬁyaVﬁFijgzj + %Tﬁax%FkFijgij-
In the following lemma we prove the important evolution equation for the second
fundamental form ().
Lemma 8.3.
hf — F2F9hf, = —2F 3FFF + F7 " hy + F*léawuazfm 3grk
F2F9hgihihy + F2F7hijhah™ + 2F2gP* F Rog saala) a) h)
- F_2Fina5,y§(Ea£I}6‘Tl 5-hak —F gp’“F”Ramgxr xf:ﬂ;m?h{
— F_2Fina575V x; y'ym‘ihk + F72gPFFiUR, gytsuaxﬁzﬂac?hij
+ F*QQPkFinag,yg.eyo‘xﬁ xlm + F2g"*" FUR o550 xgxﬁyx‘;xl
(8.6) +F~ 2gPtF mhl] phTS;l
+ F*QF"jgij(—ulu ﬁf Qs gpk¢a57uaxgx7 + ¢Q5V°‘Vﬁhf
+ 0P PaprlalhT + Yagrlal B 4 v hy hT™F + paalhTE))
+ F2FY g5 (—g"™ f nagyv®aga] — ¢ f nagaafhi — f nagv®v
— f/nagxra:lﬁh’k —f hrlhrkﬁ + f urhl;r + f u"g pRa,@ (wamﬁ xl
— 1@+ o)+ PR+ onapafalg™).

Bhk

Proof. The starting point of the proof is the equation for hf given in (8.2), which
contains the summand

1 1 2
oY= i 2
(8.7) (—o) = 5 F/ — S FFi.

To finish the proof, we only have to calculate the covariant derivative Fj in detail.
Deriving the purely covariant version of this tensor we first get

(88) Fkl = Fiji’/ij;kl + Fijmsilij;kkrs;la
then ﬁij;kl will be expressed as
(8.9) fzij;kl = hij;k + additional terms

and interchanging indices in the usual way (which is technical using the Codazzi
equations and the Ricci identities, cf. the proof of [8, Lemma 2.4.1]) leads to the
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representation
(8.10) iLij;kl = hii,ij + additional terms,
with different additional terms. O

We already know the estimate
(8.11) —|f'| < #u,

¢ > 0, because of the fact that the &; are positive, remember &; = x; — ﬁf/ + Y.
Now we prove an estimate from above.

Theorem 8.4. We have

(8.12) ki < c.

Proof. Let ¢ be defined by

(8.13) o = sup{hign'n’ : [l = 1}.
We shall prove that

(8.14) w = log w + A\

is uniformly bounded from above, if A is large enough.

The proof is devided into two steps:

(i) There is a p > 0 such that if a maximum of w|jy 7 (where 0 < T" < oo
arbitrary but fixed) is attained in (tg,zo), 0 < tg < T, z9 € Sy, then there holds in

(to, o)
(8.15) e < ulf|

(h]r denotes as usual the largest principal curvature).
(ii) Secondly we prove that

(8.16) h < c

in (to, xo), where, without loss of generality, we may assume that ¢y is large.

Now we prove (i) by contradiction. Introducing Riemannian normal coordinates
around (tg,zp) and arguing as usual, i.e. second derivatives of ¢ with respect to
space and the first derivative with respect to time coincide with the corresponding
ones of A", furthermore g;; = §;; and h] is diagonal, we may assume that w is
defined by

(8.17) w = log h,' + A\D.

Moreover, we assume h > p|f | in (to,x0), where p is large and will be chosen
later. Applying the maximum principle we obtain

1 .
(8.18) 0 < w — ﬁF”wij.

in (to, o). -
Using F' = F"7h;; and F € (K*) we have, cf. Definition 2.3,
eFH < Fijh?hkj = F'(hy;)? < F(hy; + 6|f/|gii + Yo gii)?
(8.19) < (1+ ) F R + 20| f |[Fhj + 02| f PFY gij + cclul F g
< (1+ o) Fh, + 20| f |F,
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where € > 0. In view of
(8.20) A =R = Gf + .
we infer

—(1+ €)F"h2 < —egFH + 20|f |F

1 —

< f%thz - %th +20|f |F

8.21 / /
520 < G Fhy = ZpF|f |+ 28|f |F
S 76*0Fh23
2
where we assume that pu is large; hence there is §g > 0 such that
(8.22) —F9hihf < —6Fhy!
in (o, x0).
In (tg,z0) we have
(8.23) hy.i = —Avihy,

and in view of (8.18)
8.24 < 1 h “2RUpn A(© —2Fg % EhRy
( . ) O—ﬁ( n*F F n;ij)+ (UﬁF F Ul])+ﬁF ViV
n
Multiplying this inequality by F?, inserting the evolution equations for A" and ¥, cf.
Lemma 8.3 and Lemma 4.2, as well as some trivial estimates yield (no summation
with respect to n)
1 c 1 .. .
0<-— 2h—nF 'F"E, +2Fh" + h—nF + h—nFWShijmhmm
n n n
(8.25) +elf 12 Fgi; + 02 f F gi; + Nul FY gy
A ,
- 55F”h§i + N2 F%,;5;.

We remark that we have estimated the term arising from the second term in the
second line of equation (8.6) together with two other terms arising from (8.6) by
employing the homogeneity of F, namely, F = Fih;; — of Fg;; + v Fg,;.

Terms arising from the two terms in (8.6) depending linearly on the derivatives
of the second fundamental form are first rewritten with the help of the Codazzi
equation (the correction terms can be estimated very easily) such that we obtain
the derivative of h)'. The resulting terms can be estimated as follows:

(8.26) o Yaty hy FY gig < Acful Y gij + Mpaarush™ ' gij
for the first term, where we used

(8.27) bi = NagV @] — u,hl,

with (n4) as in Lemma 4.2, cf. also Lemma 4.6, and
(8.28) ﬁf u"hy  FYgi = = Nf w0, F" g
n

for the second one. Both last summands in the previous inequalities appear among
the terms coming from the evolution equation of © with opposite sign.
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Since F' € (K) and homogenous of degree 1 we deduce from [8, Lemma 2.2.14]
that F' is concave, hence [8, Proposition 2.1.23] implies

(829) Fij’rs(ilij)}vlijmilrsm <0.

Together with

(8.30) FY%;5; < clulFY gi; + || Dul[> F¥ hi,h's

(which follows by using ||z — y||* < 2||z||* + 2||y||?, here || - || is the norm induced

by the quadratic form F*) we conclude

0 SQFhZ + h%F + C‘f/|%Fijgij + ’l~}2f”Fijgij + C)\2|U|Fijgij
(8.31) N
For A > 0 large we get a contradiction, which finishes the proof of (i).

We now prove (ii). From (i) we deduce that the largest principal curvature of
M (t) is bounded by ce?t for all £ > 0. Combining this with Lemma 8.1, namely,

(8.32) 0<co < Fehi) = F(e " (hi — o.f 8% + 1av®d})),

we infer that e_'ytﬁé- lies in a compact subset of I'y for all ¢ > 0. Hence we have
constants ¢, ¢1, ¢, ¢1,C2 > 0 (not depending on ¢y or T'), such that for all times and
especially in (o, zp)

(8.33) —ce” <k; <ce? A G < F <& A 0<égi < F9 < C29i;-

We again look at (8.24) multiplied by F? in (tg,7). We assume that h” is large
and will show that it is a priori bounded. We have

(8.34) —F"hi; < =& (hy)?

and furthermore

0 <2Fh" + hinF F A |FF gy + f 02 Fig, — %F"jhikh?{)

(8.35) "
< eF? 4 ce(h)? + A |2 F gy + f 97 Fgij — %Elﬁ(hﬁ)z,
€ > 0 small; we remember
(8.36) < —ce®.
If X is sufficiently large and t sufficiently large we get a contradiction. O
Lemma 8.5.
(8.37) sup max |k;u| — 0 ¢ — oo.
M) *

Proof. We remember that
(8:38) F=F(h}) = F(h] = of 6] + $av*6]) = F(si = 0f +¢ar®),

where the x; are the eigenvalues of hg , now numbered such that k,, is the smallest
one.
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The function ¢ = —uF satisfies the following parabolic equation, cf. Lemma 8.2
and Lemma 7.3,

g QN g o
p—F2Fiip, = F—ZF”FiFj - %F”hfhkj - %F”Rawu%i Vel
u o i u id u "o
6.39) — 5 sy VIFYgij — w2t Fru Fg;5 + fUQf FYgi;
8.39 . ) " )
+ fl//aﬂl/aV’BF”gij - ﬁkaang”gij — 20
0* ij 0 o 1ij 1 ij 7. 2 ij
-t F9g;; + 7 Va? FYgi5 + fthij + ﬁFﬂUiFJW

For ¢ > 0 we define ¢(t) = infg, ¢(¢,-) and choose x; € Sy such that
(8.40) P(t) = (t, 1),

then ¢ is differentiable a.e. and we have

(8.41) G(t) = @(t, )
for a.e. t > 0.

Let o > 0 be sufficiently large, then combining (8.39) and (8.41) and using
p; = 0 yields

. U s o2 . 2,

(8 42) o(t) > — FF”h?hkj +UFf FUgij - Ff F”gij
: 5 Co s

_2U_Fszgij

for a.e. t > tg, where ¢g = co(tp) and the right side is evaluated at (¢,z;). Due to
the assumptions on f we may furthermore assume that for all ¢ > ¢y the following
inequality holds in (¢, z)
U o 17 s 172 [ - CO g
(843) ?UQf F ]gij — ff F Jgij Z 21} — fF jgij,
which leads to
< U Hijrk €0 ij

for a.e. t > tg in view of (8.42); again the right side is evaluated at (¢, ).
We assume that (8.37) is not true, then there are sequences 0 < t;, — oo, 2 € Sp
and a constant ¢; > 0 such that
(8.45) SUP MAaX kil = KnW|(t, zp) — C1,
M(tr) *

which implies

. ~ C1 JUNE R JUp

limsup $(te) < F(= +57537 077

k—oo

(8.46) ~—1

<FE ' —r. A7 —7)
=:¢(r),
for r > 0 sufficiently small and fixed from now on.

Next, we will show that, after increasing t, if necessary, there exists 6 > 0 such
that the following implication holds for a.e. t > tg

(8.47) B(t) < c(r) = ¢(t) > 6
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in contradiction to (8.46).
For that purpose assume ¢y to be sufficiently large. Let ¢ > ¢ty be such that ¢ is
differentiable in ¢t and @(t) < ¢(r), then it follows from (8.38) that we have in (¢, z)

(8.48) ulkin + O f u| + [uftpar® < —r 4+ 571,
i.e.
(8.49) Fop < —

. TR

Hence, we infer from (8.44)

2
r Co ij

8.50 5(t) > — 22 Fig,..

After a possibly further enlargement of t; we get a positive lower bound for the

right side of the last inequality that does not depend on ¢, thus the desired § > 0,
which completes the proof. (I

Now we are able to prove a decay of || AJ|.

Lemma 8.6. For any 0 < A\ <y there exists cx > 0 such that

(8.51) |Alle* < e
Proof. Define ¢ = %||A||262M with 0 < A <, then
- . 1 1 S iy 1 , 4
(8.52) e M (p — T2 F7pi) = —ﬁF’“lh};khf;l + (B} — ﬁF“h;;kl)hf— + A2

Let 0 < T < oo be large, and xg = xo(tg), with 0 < tg < T, be a point in M (tg)
such that

(8.53) sup < sup{sup ¢ : 0 <t < T} = p(z9).
Moy M(t)

From Lemma 8.5 we know that

(8.54) sup ||Aljjlu| — 0 as t— o0
M(#)

so that especially in view of the homogeneity of F’
(855) 0<er < Fz(,‘%l) <cy A |F”(I%l>| < ce 7t
(first and second derivatives of F' considered as a function on I'y). In zy we have
due to (8.52) and Lemma 8.3, after multiplication by F? and some straight-forward
estimates,
klyi j —1 j ir j 35,75 | i
0 <— F¥hjhly —2F 7 F'Fjh] + 2Fh' hejh + F9" hijophe s, hPP

5

+ el f 1A + el f [ AIR + 92| AIPFY gg; + AF?|| A2

B0 o SFMRS L+ 2 AP F g + cFIAIPIA] + el f [+ A]
+clf B IIAI2 + AF?|AJJ2,
For the last inevquality we used that in local coordinates (such that g;j= d;;, hij
diagonal and F* diagonal)
(8.57) IFFj < e hul® + el AP 12 +el 1P,
ikl
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where we used Lemma 7.4, and where 0 < € < 1 is arbitrary but fixed, so that

i Al -1 e
(8.58) F~UF'Fjh < CTZ‘hkl;iFJFC”AHzU |72 Al + el f M)Al
ik,

where ”A” — 0 because of Lemma 8.5.

To estlmate Fij’”fvzij;plvzrs;phg we used [8, inequality (2.1.73)] and (8.55).
Now we have

(8.50) =|f IF(|f |) =|fIF, 1) + | [(F( 7

<nlf' |+ 1f le(t),
where 0 < ¢(t) — 0, hence
7 U NAIPFY gis + AP AJ* <c|AlI* = (v = Nl £ PPIIA]”?
+ Ace(t)|f P14
Together with (8.56) we deduce that ¢ is a priori bounded from above. O

(8.60)

In the next two theorems we prove the optimal decay of ||Dul| and [|A|| which
finishes the C?-estimates.

Theorem 8.7. Let i = ue??, then || Dii| is uniformly bounded during the evolution.
Proof. Let ¢ = ¢(t) be defined by

(8.61) ¢ = sup log ve>"t
M(t)

Then, in view of the maximum principle, we deduce from the evolution equation of
0, cf. Lemma (4.2),

¢ < ce " + F2(f" | Da||>F¥ g;; + 2vF2)

(8.62) < ce™t 4 2F2(f Filg,; + vF?)p
<cem 1+ ),
where € > 0 small, i.e., ¢ is uniformly bounded. O

Theorem 8.8. The quantity w = %||A||2e27t is uniformly bounded during the evo-
lution.

Proof. Define ¢ = ¢(t) by

(8.63) © = sup w.
M(t)

We deduce from Lemma 8.3 that for a.e. t > tg, to > 0 large,

1 1 i 1 ;
QD F2F j@z] 2 Fklh kh’ 2A{t (h] F2 Fklhj kl)hze?‘/t
+ 7||A||2 ot
(8.64) <_ Fklhz B o2t L 3 opii et o B F g
= 2F2 K€ + ( iL'j€ / Uil g gzjv)

+2F 2 (nf 520 + 7 F2p) + ce (1 + @)

15 , §pij 27t
+ F7 Rapysv g via;h e,
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where € > 0 is small.
For the last inequality we estimated the crucial term

(8.65) F5 Ry hys. g P

in the following way.
Since Fg;; > F(1,...,1) and

(8.66) F(gi)gij = F(1,...,1)
we deduce that the derivative vanishes in Ay = gg
(867) Fij7rs(gkl)gij =0.
Hence
. g . 1
(8.68) F95 (h) gig = [l (F77 (Julhy) — F”’”(ggkz))gz‘j

which means by mean value theorem
(8.69) IE7 (hit)gis || < clul®.

Although the last inequality is good enough, we mention that its right side could
be improved to c|u|>~¢, € > 0 arbitrary, cf. Lemma 8.6.
Furthermore, to estimate (8.65) we use

(8.70) hijip = hijp = Opf 9ij — OF Upgij + Yapr® ) gi; + Yaxehygis
and
(8.71) Op = na,gl/o‘xg — urhy

So in view of Lemma 8.6 and Theorem 8.7 we have choosing coordinates such
that (h;;) diagonal and g;; = 0;;
‘Fijmskij;phm;thq‘ < |F97 RijphysighP|
+ 2|Fijyrshr8;pgij(_ﬁqf, - @f”“q + ¢aﬁyamg + ¢a$?h2)hpq|

HFITg,091 Y (—Opf = 0f y + Yapral + Yoz thl)2hD|
P
<clul|| DA|]?||A]| + cl|Al[|ul(| DA + 1).

(8.72)

The second term of the right side of inequality (8.64) can be estimated as follows
F=3 (=2h FF;e® — Ff W aa,F9 g;;0) <
(8.73) F3(=2f 2+ £ 7 )h a0 + cF 3| DA| 2"
+ce” (1 + o).

Now, we observe that

(8.74) (AP ="+ =cf,
where C is a bounded function in view of (1.9). Hence

(8.75) Af P =2 P+ 29 Pf - CIf 1%,
i.e.,

(8.76) 21 2= <ef P
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because of (1.8) and we conclude that the left-hand side of (8.73) can be estimated
from above by

(8.77) ce” (1 4+ @) + cF 2| DA|%e.

Next, we estimate

(8.78) F2(nf 02 + vF?)p < ce

and finally

(8.79) F_1Ra575yal‘§y7$§hij627t <ce 1+ )+ F_ll:lomjhijez”tﬁz,
but

(880) ROin S c|u\,

cf. proof of Lemma 4.6(iii).
Hence we deduce

(8.81) @ <ce 1+ )

for some positive € and for a.e. t > tg, i.e. ¢ is bounded. O

9. HIGHER ORDER ESTIMATES—ASYMPTOTIC BEHAVIOUR OF THE FLOW

In this section and the following two sections many proofs are identical to the
proofs in [5]. For reasons of completeness and convenience for the reader we present
them here.

Let us now introduce the following abbreviations

Definition 9.1. (i) For arbitrary tensors S, T denote by S * T any linear combi-
nation of contractions of S ® T. The result can be a tensor or a function. Note
that we do not distinguish between S * T and ¢S * T', where c¢ is a constant.

(ii) The symbol A represents the second fundamental of the hypersurfaces M (t)
in N, A = Ae™* is the scaled version, and D™A resp. D™ A represent the covariant
derivative of order m.

(iit) For m € N denote by O,, a tensor expression defined on M (t) that satisfies
the pointwise estimate

(9.1) [0mll < em (14 [|A]|m )P
and
(9:2) DOl < eom(1+ [|Allm)Pm (1 + D™ A])),
where ¢,,, p, > 0 are constants and
(9.3) [Allm = > DA
la|<m

(iv) For arbitrary m € N denote by O,, a tensor expression defined on M (t) that
satisfies

(9.4) D*0,, = Opyr Vk eN.

(v) By the symbol O we denote a tensor expression such that DO = Oy.
Remark 9.2.
(9.5) D*0,, = Opyre V(k,m) € Nx N,
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Lemma 9.3. We have

(9.6) D(uf') =e "0
especially
(9.7) D™(uf ) = e "0p_y, m>2.

Proof. Differentiating and adding a zero yields
(98) Di(uf') = uwif (1 = 5f w) +wwi 31 P + 1)
from which we deduce the claim in view of (1.8), (1.9) and (1.10).

O
Lemma 9.4. We have
(9.9) D(uhy) = e 20y + e ' DAO.
Proof. Differentiating yields (¢;; = d;, hi; = diagonal)
(9.10) Di(uhiy) =uihp + u(hgi — naﬁl/afﬁ/}@f/gkl )
+ (Yar®)igr) + wuiki f gr — udf uigr
and now we focus on the last term and write there
(9.11) Fr= A Al
Then all terms can be estimated obviously except for
(9.12) wihia + | f Puduign,
for which we use (1.31). O
Corollary 9.5. We have
(9.13) D™ (uhgy) = e 20y 1 + e 2P D™ A % O.
Deﬁnition 9.6. We denote by D™F the derivatives of order m of F' with respect
to hj.
Lemma 9.7. We have
(9.14) D™DF = ¢ 0, 1 + e 2'D™ A« D*F(Ju|hy) * O,
(9.15) |F% (hit)gis — F* (gr1)gij)| < ce” 7,
(9.16) DF =DF x DA+ e ""DF % Oy + "'DF x O,
and
(9.17) D™F =DF « D"A+ e "0p_1 + €02,
form > 2.

Proof. To prove (9.14) we write

and infer
(919) DDF(ilkl) = DQF(|U‘}VLM)D(|U|}V7JM),

hence the desired result follows in view of (9.13) and the fact that
(9.20) 1™ F(ful )|
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is bounded for all m € N.

(9.15) is proved by applying the mean value theorem.
(9.16) follows by

(9.21) Fiy = Fhijg + F g (=0 f = 0f " + $agr®y, + bazlhy).
To prove (9.17) we differentiate (9.16) and get
D?F =DDF %« DA+ DF « D*A + ¢ "*DDF % O,
(9.22) + e M"DF %Oy + "' DDF % O + "'DF % Oy
=DF x« D*A + ¢ 70, + "0y,
from which the claim follows easily.
Now we want to write the evolution equation for iLf in the form
0.23) hi — F72FMh), =F DA« DA% Oy + F DA% 0y + F~'0,
' + F3DAxDAxO.

To check this we consider all the terms in (8.6) separately and start with

(9.24) (—2F3F*Fy — F2F g, 1" ubw)et |
We have
Fie =F"*hyok = oV T f F™gre = nad®hif Frgrs = 0f urF ™ gpe
(9-25) + Pagr T F s + Yoy ™ gy
=A; + Az + Az + Ay + As + A,
hence
(—2F 3 A Ag—F 2 F" g f vl v)et
=F (20" + £ £ (Fgy) urd e
(9.26) — F2F"h, F g, f uFuyvet
— F‘Q(Fijgij)Qwauo‘f”/ukulﬂe”t
=F~10,,
where we observed that
(9.27) p==20f P+ {1 = AP S =2 AP
In view of the assumptions on f the spatial derivatives of ¢ can be estimated by
(9.28) ID™ || < e (L + lllm-1)P"~* (1 +[|D™al))e**  Vm € N*

for some suitable p,,—1 € N. Furthermore, we have
(9.29) —2F A A " = F~30y x DA % DA.
All remaining terms are estimated as follows

(9.30) —2F 37t Z A;Aj = F2DAx Oy + F20,
() E{(LD).(4,4)}
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hence
(9.31) (—2F 3 F*F—F2F9 g, f " uFun)ert =
' F3DAxDAx O+ F2DA 0y + F10,.

Now, there are some quiet easy estimates, namely

2F hFT et | = F20,

—F 72" Fiih, h$hf | = F20,

(9.32)

2F_2gkainam§acfx£ x; ?hre”t = F20,

F~ gka”Rang Euamgx xlx = Flo,.

Furthermore, we have

F_le"’t]:?agwgl/axlﬁy"*xfgrk = —F_ll?aﬁvgnaﬁx’lgu“’x‘sew
(9.33) — Fﬁleﬂ,ﬂ;uiIl n q;igrke’yt + Fﬁlézﬂj(g’[)izu ijégrkﬁ’yt
= F20,
(9.34) F_Qeytgkaij’TSiLij?PiL”‘ﬂ = F_ze’Ytgpkhij;leFij
=F 2DAx0O+F 3DA*DA*xO+ F3DAx0y+ F 20,
and
(9.35) F2 Fi g (0oah™, + fu"hf,) | = F72DA x Oy,

so that only the following term is left

(936) | 2" Figy £ 52hf +yhfer | = P20 (F gy f 0%hf + vF2hf).

There holds
F2 :(Fijhij)2 - 2Fijhijﬂf/FngTs + 2Fijhij'(/)aVaFrsgrs

(9.37) o L N

+ 02| |P(F gij)* — 200av®0f (FYgi;)* 4+ (Yar®)?(F g;5)?
and
(9.38) £ PhE + AR f PF Y gy = BhE(F + 1S Pn)

+ PR P(F gi; — n),
so that we infer
(9.39) F 2 Fi g f 52 hF +yhiert = F20,.
Using the fact that
(9.40) gij = —2F 'h;; = F20,
(9.23) is proved.

41
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Differentiating (9.23) covariantly with respect to a spatial variable we deduce
%(Dfl) — F2F9(DA);; = F'Og + F3D?*Ax DAO,
(9.41) + F 20y« D*A+ F*DAx DAx DA% O + F 20y DA DA
+ F2DA% Oy + F DA% DAx DOy + F"2DA x DOy + F~1DO.

And using induction we conclude for m € N*

D - . -
a(Dm“A) — F2F9 (D™ A),; = F710O,,
+OF D" A« D™ A% Oy + F 3D 2 A% DA« O,
+ F2D"M A% 0,, + F2D™ 24 %0,

+ F2DO,,,

(9.42)

where © =1if m =1 and © =0 else. ~
We are now going to prove uniform bounds for || D™*!A|| for all m € N. First
we observe that

D (GIDAIR) ~ P29 L(IDAIP) = ~F2F9(DA)(DA);
+ F 0y« DA+ F3D?Ax DA% Og % DA+ F 20y * D*Ax DA
(9.43) +F *DAxDAxDAxOyx DA+ F 200+« DAx DA% DA
+F2DAx0yx DA+ F3DAx DAx DOy« DA
+ F2DAx DOy * DA+ F~'DOy * DA.
Furthermore we have for m € N*
D 1 ~ 1 -
@(glle“AIIQ) - F’QF”i(HDm“AHz)u =
— F2F49 (D™ A), (D™ A); + F10,, « D™ A
(9-44) +OF 3D™ A% D" A% Oy x D™ A
+ F 3D A%x DAx Oy« D" A+ F2D™H A% O,, x DT A
+ F72D"™ 24 % O« D" A4+ F~2DO,, « D" A.
Theorem 9.8. The quantities %HD’”AHQ are uniformly bounded during the evolu-
tion for all m € N*

Proof. We prove the theorem recursively by estimating
1 ~ 1 ~
(9.45) p =log S[|D™AI? + pg [ DA 4 Ae

where p is a small positive constant and A >> 1 large.
We shall only treat the case m = 0.
Fix 0 < T < oo, T very large, and suppose that

(9.46) 0 < sup sup ¢ = ¢(to,&o)
[0,T] M (t)

for large 0 < tg < T.
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Applying the maximum principle we deduce
1 D
0<—— (=
[ DAJ> " dt
+ F2FIA; A (—p + p2A2) — Nye !

(9.47) <_ 1 1~
2| DAJ?
+cF 72| DA| + F2F9A;Aj(—p + p2 A?)

<0,

IDA|? = F=2FY|DA|) + pA(A — F-2FY Ayj)

F72F9(DA);(DA); — gye—vt + cF~4|DA|?

here we assumed that | DA|| is larger than a sufficiently large positive constant that
does not depend on tgy, 7.

Thus ¢ is a priori bounded.

The proof for m > 1 is similar. ([

10. CONVERGENCE OF % AND THE BEHAVIOUR OF DERIVATIVES IN ¢

Lemma 10.1. @ converges in C™(Sy) for any m € N, if t tends to infinity, and
hence D™ A converges.

Proof. u satisfies the evolution equation

et

* ! g YU g yu o g
(101) u:T(l—'yuf Fjgu—f—?thU—f—?an F]g”)
Using (9.15) and the already known exponential decays we deduce
(10.2) ] < ce”2,

hence @ converges uniformly. Due to Theorem 9.8 D™ is uniformly bounded,
hence @ converges in C"™(Sp).

The convergence of D™ A follows from Theorem 9.8 and the convergence of h
which in turn can be deduced from

AR

(103) h”’f) = —U4y + h”

Combining the equations (9.23), (9.41) and (9.42) we immediately conclude

Lemma 10.2. |2D™A| and |2 D™ A|| decay by the order e~ for any m € N.

Corollary 10.3. %DmAth converges, if t tends to infinity.

Proof. Applying the product rule we obtain

D_,. - D .
(10.4) DA = £DmA67t +yD™A,

hence the result, since the left-hand side converges to zero and D™ A converges. O
Corollary 10.4. We have

(10.5) |ID"F7 Y <ecnF™' VmeN.

Proof. Use (9.17). O

In the next Lemmas we prove some auxiliary estimates.
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Lemma 10.5. The following estimates are valid

(10.6) | Dit]| < ce™ ",

(10.7) 1L F1) < oFt
' dt - ’

and

(10.8) o] < ce™ 2t

(10.9) =
in view of Corollary 10.4.
”(10.7)” Differentiating with respect to ¢ we obtain

d

L pl P 5 " . d -
fF—lz_F—Z Fljhi,_~ FY i — 0 L » L (o @y i g
(10.10)  dt ( j—0f Fgi; —0f 4 9J+dt(¢ v FYgi5)

+ Fij(—ﬁf/ + ™) gij

and the result follows from (10.8) and the known estimates for |u| and F'.
”7(10.8)” We differentiate the relation n,v% to get

L LB .o
b = agri? + nai

(10.11) .
= —NapV VP F T 4+ (F71)pu”,

cf. (8.2), yielding the estimate for |9, in view of Corollary 10.4.

Lemma 10.6.
(10.12) [F9H () gigl| < ce™",
(10.13) [FPR (Julhrs)gi || < ce™",
D .
(10.14) |2 ()| < e,
D ik —34t
(10.15) | P9 ) gl < e,
D ijkl(7 —t
(10.16) | P ()| < ce
D ..
(10.17) ||£F”|| < e,

D . D
10.1 =D ZDF| < cet.
(10.18) | 5 Dhuall + | 2 DF]| < ce
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Proof. 7(10.12)” Use Theorem 8.8, (8.67) and (8.68).
”(10.13)” Obvious.
”(10.14)” We have

D, . v 3
@( hit) = whg + uhp
17 v . R Iz 17 .
(10.19) :Fhkl + uhp —uof g —uv f T Ik~ ud f g
D
+ anal/agkl),
hence in view of (10.8)
D 7 —2~t f}2 / ” —2~t
(10.20) = (whia) | < ce™™" +n| 2 (=f —uf )] < ce™™"
Here, concerning the summand
B o
(10.21) fhkl —uvf 7 IkD
we use
(10.22) | = —uf I < = F Al P+ elul,

which follows from (1.8), and then (1.31).
”(10.15), (10.16)” We have

D .. . D .. -
(1023) %FU,kl(hrs) = %(|U|F”7kl(|u|h7“5))

which implies the claim together with (10.13) und (10.14).
7(10.17)” Use (10.14) and F¥ (h,s) = F9(|u|h,s).
”(10.18)” Obvious in view of (10.6) and (10.8). O

Lemma 10.7. We have
(10.24) 9| + || D?|| < ce™

t t

and 0e27 and ve®* converge, if t goes to infinity.

Proof. Differentiating (10.11) covariantly with respect to z we infer the estimate
for ||Dv||. A direct computation and easy check of each of the (many) appearing
terms yield the convergence of ve??* and ve??*, especially the lemma is proved. [

Finally let us estimate A7 and h.
Lemma 10.8. /! and h? decay like e=".

Proof. The estimate for hf follows immediately by differentiating equation (8.6)
covariantly with respect to ¢ and by applying the above lemmata as well as Theorem
9.8. .

Now we estimate ﬁz . We have

(10.25) iL{“ = eV hE 4+ 2ve A + 2Rl

Now we insert (8.6) and the equation which results from (8.6) after covariant
differentiation with respect to ¢ into (10.25).
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Then many of the appearing terms decay like e=7* obviously. To see the decay
of the remaining terms, namely

D, _ D, _ o
S (FPFER)E +  (F 2" F 9 by ho )t
D p—2pij b eyt D2 o o2 ki vt
- @(F FYg;wu™of e +%(F [ 0*h{FYg;5)e
(10.26) — dyF3F*Fie?t + 2y F2gPR Py o hyg et

— 27F_2uluk17fmFijgije'yt
+ 279" F 2 f PR F g 4+ A2V hy
=S + ...+ Sy,

we use the technique developed in (9.23) et seq., confer also the proof of Theorem
8.8, to rearrange terms. In this way we see the claimed decay of S5 4+ S; and
%Sg + Sy. The summand S7 + S3 can be handled similar. The summand S decays
as it should due to Lemma 10.6. Sg is obvious. To estimate Sy+ %Sg we differentiate

in Sy by product rule and use (8.6) to substitute h{“ Then a little bit rearranging
terms leads to the desired estimate. (]

From Corollary 10.3, Lemma 10.8 and (10.25) we infer
Corollary 10.9. The tensor H?e” converges, if t tends to infinity.

The claims in Theorem 1.2 are now almost all proved with the exception of two.
In order to prove the remaining claims we need:

Lemma 10.10. The function ¢ = eV u™! converges to —¥/m in C=(Sy), if t
tends to infinity.

Proof. ¢ converges to —y+/m in view of (1.7). Hence, we only have to show that

(10.27) ID" || < ¢ Vm € N,
which will be achieved by induction.
We have
(10.28) 0 = e fluu — e u2u; = (3 f u— Du ;.
Now, we observe that
(10.29) w iy =0

and flu have uniformly bounded C™-norms in view of Lemma 10.1 and Lemma
9.3.
The proof of the lemma is then completed by a simple induction argument. [

When we formulated Theorem 1.2 (iii) and (iv) we did not use the current
notation where we distinguish quantities related to g, in contrast to those related
to gas by the superscript ~.

In the following two lemmas we reformulate Theorem 1.2 (iii) and (iv) using the
current notation.

Lemma 10.11. Let (§;;) be the induced metric of the leaves M(t) of the IFCF,
then the rescaled metric

(10.30) entii
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converges in C*°(Sp) to
(10.31) (32m)7 (—a) 3 45,
where we are slightly ambiguous by using the same symbol to denote u(t,-) and
limaf(t, -).
Proof. There holds
(10.32) Gij = e e (—usuj + oyj(u, ).
Thus, it suffices to prove that
(10.33) et = (32m)7 (—i) %
in C*°(Sy). But this is evident in view of the preceding lemma, since
(10.34) e2f o2t _ (_e&fu—l)%(_ﬂ)%.
O

Lemma 10.12. The leaves M(t) of the IFCF get more umbilical, if t tends to
infinity, namely

o v |
(10.35) FYn! - 5H5§| < ce N,

In case n+w —4 > 0, we even get a better estimate, namely
NP
(10.36) |hi — —H§I| < ce™2n (PHo—21,

n
Proof. Denote by ;Lij, v, etc., the geometric quantities of the hypersurfaces M (t)
with respect to the original metric (gog) in IV, then

(10.37) PR =0 4+ ), F=eF
and hence,
o o 1o .1 ;
(10.38) FYh) — —HS)| = F Y h] — —HE| < ce™ .
n n

In case n +w — 4 > 0, we even get a better estimate, namely
o 1 o 1 : 1 ; 1 1
(10.39)  |h! — —Hd!| = e Ve e nt|h! — —H|eMeln —Vt < cemzn (w4t
n n
in view of (10.33). O

11. TRANSITION FROM BIG CRUNCH TO BIG BANG

We shall define a new spacetime N by reflection and time reversal such that the
IFCF in the old spacetime transforms to an IFCF in the new one.

By switching the light cone we obtain a new spacetime N. If we extend F', which
is defined in the positive cone I'y C R™, to I'y U (=I'y) by

(11.1) F(k;) = —F(—k;)
for (k;) € —T'4 the flow equation in N is independent of the time orientation, and

we can write it as
(11.2) = —F = —(=F)7 (=) = —F'p,

9

where the normal vector 7 = —v is past directed in N and the curvature F' = —F
negative.



48 THE INVERSE F-CURVATURE FLOW IN ARW SPACES

0

Introducing a new time function 2° = —2° and formally new coordinates (%)

by setting
(11.3) V=20 =2

we define a spacetime N having the same metric as N-only expressed in the new
coordinate system—such that the flow equation has the form

(11.4) i=—F"1p,

where M (t) = graph4(t), &« = —u, and
(11.5) (™) = —ve (1, 4")
in the new coordinates, since

~
(11.6) 0= —50% =0
and
(11.7) =

The singularity in £° = 0 is now a past singularity, and can be referred to as a big
bang singularity.

The union N U N is a smooth manifold, topologically a product (—a,a) x Sy—
we are well aware that formally the singularity {0} x Sy is not part of the union;
equipped with the respective metrics and time orientations it is a spacetime which
has a (metric) singularity in 2° = 0. The time function

29 in N
11.8 i = ’ .
( ) v {—xo, in N

is smooth across the singularity and future directed.

NUN can be regarded as a cyclic universe with a contracting part N = {2° < 0}
and an expanding part N = {#° > 0} which are joined at the singularity {#° = 0}.

We shall show that the inverse F-curvature flow, properly rescaled, defines a
natural C3-diffeomorphism across the singularity and with respect to this diffeo-
morphism we speak of a transition from big crunch to big bang.

The inverse F-curvature flows in N and N can be uniformly expressed in the
form

(11.9) i=—F"1p,
where (11.9) represents the original flow in N, if 20 < 0, and the flow in (11.4), if

> 0.
Let us now introduce a new flow parameter

—vy~ e  for the flow in N
(11.10) s =

v~te=7t for the flow in N

and define the flow y = y(s) by y(s) = Z(t). y = y(s,&) is then defined in

[—y~1,771] x Sp, smooth in {s # 0}, and satisfies the evolution equation
. d —F1pe, s<0

11.11 = —y =< 4 ’

(11.11) v {F—lﬁevt, 5> 0.
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Theorem 11.1. The flowy = y(s, &) is of class C2 in (—y~ 1,7~ 1) x Sy and defines
a natural diffeomorphism across the singularity. The flow parameter s can be used
as a new time function.

The flow y is certainly continuous across the singularity, and also future directed,
i.e., it runs into the singularity, if s < 0, and moves away from it, if s > 0. The
continuous differentiability of y = y(s, ) with respect to s and £ up to order three
will be proved in a series of lemmata.

As in the previous sections we again view the hypersurfaces as embeddings with
respect to the ambient metric

(11.12) ds? = —(dz°)? + 0;;(2°, x)dz'da? .
The flow equation for s < 0 can therefore be written as
(11.13) y = —F lve.

To prove that y is of class C® in (—y~1,7~1) x Sy we must show that v, v,
y;, y/lv Yijs y/”, y;j, y;/, yijr (and derivatives obtained by commuting the order of
differentiation) are continuous in {0} x Sy, which means that we must show that
for each of these derivatives the limits limgyg, lim,) (uniformly with respect to the

space variables £%) exist and are the same.

Due to
(11.14) y0(s) = 2°(t), y'(s) =2'(t) Vs <O,
and
(11.15) yO(s) = —2°(t), y'(s) =a'(t) Vs>0

we will consider the 0-component and the i-component of each of the above deriva-
tives separately and calculate their limits as s T 0 and s | 0. Since in each case
the limit s T 0 has the same value or the same value up to a sign as the limit s | 0
(provided one of them exists) it is sufficient to have a look at the limit s T 0 and
prove its existence or that it is in addition zero respectively.

Lemma 11.2. y is of class C! in (—y~1, v~ 1) x Sp.

Proof. y is continuous across the singularity if

od oy .
(11.16) 181%1 7Y ,151%1% exist,
and if

Lod oo
(11.17) ls%lgy —181%1% = 0.

Only the limit limg1o yf is not obvious, but one easily checks that xz is a ’Cauchy
sequence’ as ¢ — oo since its derivative with respect to ¢ can be estimated by ce
hence limgo y] exists as well.

Remark 11.3. The limit relations for (D™y, %) and (D™y, %), where D™y
stands for covariant derivatives of order m of y with respect to s or £ are identical
to those for (D™y, —v) and (D™y,z;) because v converges to —»2g, if s 1 0. We
want to point out that we have chosen local coordinates in Sy which are given by
the limit of the embedding vector x so that we also have z; — %.

O
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Let us examine the second derivatives
Lemma 11.4. y is of class C? in (—y~1, v~ 1) x Sp.

Proof. ” y;”: The normal component of y; has to converge and the tangential com-
ponents have to converge to zero as s T 0. For s < 0 we have

’

(11.18) y = —Fle'ty
and
(11.19) y; = F2Fe'ty — F ey,

The normal component is therefore equal to
(11.20)

—F 2 (FM gy — FR g f — FR g f wi + F¥ gutpapal v + FH gaipaadhy)
which converges to
(11.21) limn(Fu)~2f u?a;.
The tangential components are equal to
(11.22) —F e hy,
which converge to zero.
"yi;”: The Gaufiformula yields
(11.23) Yij = hijv

which converges to zero as it should.
”y 7. Here, the normal component has to converge to zero, while the tangential
ones have to converge.

We get for s < 0
122 D
y = 7@(F711/)627t o F71V’Y€2’Yt

= —F 1pe?t 4 F2pFe®t — F~lyyet,

(11.24)

The normal component is equal to
—F 2 (Fhy; —of Fg, —of aFYg,;
(11.25) + Yo iP F g + ho v FY g5 — v F)
— F72e2 (<0 f 4 hov®)F g,
F~2e2t converges, all terms converge to zero with the possible exception of
(11.26) —FUgiof i —yF = —F N (Fg0° f " +4F?),

which however converges to zero, too.

The tangential components are equal to
(11.27) FIDR(F~1)e?" = — F2e " (F hyj — o, f F gy
— 0wk F gij + apra] F gi; + bt b F Y gij),

which converge to

(11.28) lim —3n(Fu) "3 (f u) .
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Lemma 11.5. y is of class C3 in (—y~1,771) x Sp.

Proof. ”y;;1”: Now, the normal component has to converge to zero, while the
tangential ones should converge. Again we look at s < 0 and get

(11.29) Yi; = hsjv,

(11.30) Yijk = hijk.y + hi]’I/k.
Hence, y;;1, converges to zero.

7 y;j”: The normal component has to converge, while the tangential ones should
converge to zero.

Using the Ricci identities and Lemma 4.6 (iii) it can be easily checked that,
instead of y;j, we may look at %(yij).

From (11.29) we deduce

D . .

(11.31) Vi = hijre’ + hie,
and conclude further that the normal component converges in view of Corollary
10.3 and the tangential ones converge to zero, since © vanishes in the limit.

"y, 7+ The normal component has to converge to zero and the tangential ones

have to converge.
From (11.24) we infer

y' == F 3 FI(h b — ok g — of ubgiy + (ar®) i) o
+ P72 (Ffy — of Fligy + %(%V‘)‘)Fijgij)lf
+ F3eP (02 P g [f "+ yFi gy f 2] — y[(Fhij)?
+ (Yar™)*(Fgy)° = 20f FUhi Fg;
+ 200V F his F g5 — 20 f o™ (F gi5)%))v
+2F 32 (5 f Fii Ry — par® Fi by

(11.32)

and thus

"

Yy == (Ff?)e%tFij(hij;k — % f gij — 17f/lukgij + (Yar®)*)gij iz
— P3ANRU(hE —h f g — 0 f gy + (Yar®)F gis) v
+ (F 22N (Fiihy — of Fgy + %(%VQ)F”%))IV

+ F_2€2’Yt(Fiji1ij - ULf/Fijgij + %(Q/JaVa)Fijgij)Vl

+ (P32 (2 F gy [f " + 9 F 9 g5 f 2] = Y[(F 7 hy)?

+ (o) (F Y gi)2 = 20f FhijF gy + 20 F'9h; F' gy
— 20f v (Fgi) ) + F 32 (02 F gy + 7 F gij|f )
= (Fhij)* + (Pav™)?(F gij)? = 20f Fhi FY gy,

+ 200V F i Y gij — 20 o™ (F7 gij)*) v,

+ 2F 73 (0 Fhiy — pav®Fhy)) 1w

+2F 3 f Fhyy — v FiIh)uy.

(11.33)
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Therefore, the normal component converges to zero, while the tangential ones con-
verge.
” y/””: Differentiating the equation (11.32) we get
y' = 31*—'_4‘63%F'Fij(hij;IC — 0" f gij — 0f uFgi; + (Var®)*gij)n
- 2'yF_3e?’A”5Fij(hij;]c — 0" f gi; — 0f uFgi; + (har™) gij)an
_ D 7 ~ / ~ (e}
- F 363""5&(}7 J(hij;k — 0" f gij — 0f uFgi + (ar™) gi;))
— P33 FI bk — 68 f giy — 5 uF gy + (Gar®) gig)ie
. Ny D s
—2F 33V (Fihy; — of FYg;; + 21 War ) EY gij)v
s D g
+ 29 F 2 (FV hiy = 0f Vg3 + — ($ar®) FVgis)v
D ... C o D ”
=+ FﬁZGBWt@(F”hij — ’Df F”gij + %(QZJOAVQ)FUQU)V
C o D g
+ P2 (F9hy; —of Fg;; + 7 War ™) FY gig)i
- 3F’4637t(—f)2Fijgij [f” + ’yFijgz‘j|fl ?] - ’Y[(Fijhij)2
+ (ar™)* (FY gis)* = 20f F9hy F¥ g,
+ 200V Fh; i FY g — 277f/¢a1’a(Fijgij)2])V
(11.34) + 2y F 3 (—2 F gy If + ’YFijgij|f, ?] = Y[(FYhiz)?
+ (ar™)* (FY giy)* = 20f F9hiF¥ g,
+ 20 FOhiiFgi; — 20 dar® (Fgi;)" v
_ D - i 17 i ’ 17
+F gegwt@(*sz Tgilf +vF7 gij|f 1 = A[(F7 hig)®
+ (o) (F Y gi;)? — 20f FhijF'i g,
+ 2oV Fhy; F gii — 20 f o™ (F9 gi5)?))v
+ P3SN (T FU gyl f 4+ yF9 gyl f 2] — A[(F 7 hiz)?
+ (o) (Fgyy)° = 20f F7hi Fgy,
+ 200V FIhi 9 gij — 20 f hav® (F gij)?))i
- 6F_4e37t(1~)f/Fijhij - ¢aVaFijhij)V
+AyF 2 (0 f FUhyy — v Fohj)v
D ;. -
+ 2F‘3e37ta(@f Fh;j — v FY hij)v
+ 2F_3e37t(ﬁleijhij — YoV Fhij)i.
We remark that
(11.35) iy = F2Fw— F 1y,
and

(11.36) tp = F~ 'y, — F20F,
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and that in the following especially the results of Lemma 10.5, Lemma 10.8 and
Corollary 10.9 will be used.

Let us consider the normal component of ym first, which has to converge. We
will present here only how to handle the following term, the other terms are easier.

D 1" . . ’ _D 12 ’ _D .. ’
= Fig,.; 21 2 5 2 —(F¥9g;; — 2
S+ AP glf P =T AP+ (P g =S|
+2(FYgiy —n)vf [
Ell—f—lg—i-lg.

I; converges due to assumption (1.13), and the convergence of I3 is obvious. For
I we use

(11.37)

D ijrs(l 17 D, ij -
(11.38) = 1giy =F" (|U|hij)9ij%(|u|hr5) + F" gij

together with (8.2), (10.13) and (10.14).
Now we consider the tangential component of ym7 i.e. we prove

1"

(11.39) (y ,x1) — 0.
The crucial terms are
34 (F g )20 (f )2 au® + 2y F 33 o f uk Fid gy
+ F73637t6f///ukﬂFijgij + F75637t(Fijgij)2173|f” \2uk
and can be rearranged to yield
(11.41) Foo ot (4 (f +3F P) = £ (7 + AP
Hence the tangential components tend to zero.

The remaining mixed derivatives of y which are obtained by commuting the order
of differentiation in the derivatives we already treated are also continuous across

(11.40)

the singularity in view of the Ricci identities and Lemma 4.6 (iii). O
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