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2. Summary 
Colorectal cancer is the third most common visceral malignancy and remains one of 

the leading causes of cancer-related deaths due to late diagnosis and therapy 

resistance. Even many years after initially successful treatment, the disease recurs 

in many patients and frequently spreads to distant organs. It is currently 

hypothesized that relapse may at least partially, be caused by a small population of 

dormant- or slowly cycling tumor cells. Presumably these cells are more resistant to 

the effects of DNA-damaging agents such as chemotherapy and irradiation than 

cycling cells. Such dormant cells have already been identified in the stem cell 

compartments of many tissues of the body, for instance in the skin, the 

hematopoietic system and the intestine. In parallel, it has been proposed that tumors 

arise from cancer stem cells, which might share common features with normal tissue 

stem cells, such as the ability to remain dormant. However, there is so far very little 

experimental evidence for the existence of dormant- or slow-cycling cells in cancer.  

In order to study the occurrence of dormancy in colorectal cancer, primary tumor 

models were used. Primary colorectal cancer cell lines were labeled with a 

tetracycline-inducible H2B-GFP reporter that enables the detection and in vivo 

isolation of label-retaining cells. 

Slowly cycling cells were identified in vitro and in vivo. Cell cycle analyses 

demonstrated a correlation between label-retention and cell cycle activation, 

suggesting the presence of quiescent tumor cells. The properties and hierarchical 

relation of label-retaining and non-label retaining cells were compared. Sorting into 

fast-, medium- and slowly cycling cell populations and subsequent tracing 

demonstrated that the initial phenotypes were preserved over several days in vitro. 

However, all three populations were capable of generating label-retaining cells as 

well as fast cycling cells, suggesting a dynamic switch between the different 

proliferative phenotypes. Furthermore, slowly cycling cells showed an enhanced 

resistance to standard chemotherapy. 

These findings suggest that label-retaining cells exist within at least some colorectal 

tumors and that they can switch from a dormant to an active proliferative state, 

suggesting a possible role in tumor-recurrence after therapy.  
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3. Zusammenfassung 
Darmkrebs ist eine der häufigsten krebsbedingten Todesursachen in der westlichen 

Welt, verursacht durch eine oftmals verspätete Erstdiagnose und Entwicklung von 

Resistenzen gegenüber Standardtherapien. In einigen Fällen sind Spätrezidive 

bekannt, bei denen Tumorzellen bereits in verschiedene Organe des Körpers 

disseminiert sind. Diese Rezidive werden möglicherweise von einer kleinen 

Tumorzellpopulation verursacht, die sich in einem so genannten Ruhezustand 

befindet oder sich nur langsam teilt. Diese Zellen sind vermutlich resistenter 

gegenüber DNA-schädigenden Therapien, wie der Chemotherapie oder Bestrahlung. 

Ruhende Zellen wurden bereits in verschiedenen Geweben des Körpers identifiziert, 

wie zum Beispiel in der Haut, im hämatopoetischen System und im Darm. Es wurde 

gezeigt, dass diese ruhenden Zellen Behandlungen mit Bestrahlung besser 

überleben und zerstörte Gewebe wiederherstellen können. Es wird ferner spekuliert, 

dass Tumore aus Krebsstammzellen entstehen können, die gemeinsame 

Eigenschaften mit normalen Stammzellen teilen. Dazu gehört die Fähigkeit zur 

Selbsterneuerung sowie Differenzierung und die Möglichkeit in einem Ruhezustand 

zu verharren. Um ruhende Tumorzellen im Darmkrebs zu untersuchen wurden 

geeignete Tumormodelle generiert. Primäre Darmkrebszelllinien wurden mit einem 

Tetrazyklin-induzierbaren H2B-GFP-Reporter markiert, welcher die Detektion und in 

vivo Isolation von sich langsam teilenden- oder ruhenden Tumorzellen ermöglicht. 

Ruhende Tumorzellen behalten diese Markierung, während sich schnell teilende 

Zellen diese mit zunehmenden Zellteilungen verlieren. Sich langsam teilende 

Tumorzellen wurden in vitro und in vivo identifiziert. Zellzyklusanalysen zeigten, dass 

eine Beibehaltung der H2B-GFP Markierung mit der Zellzyklusaktivität und einer 

möglichen ruhenden Tumorzellpopulation korreliert. Die Tumorzellen wurden in drei 

Populationen eingeteilt: schnell-, mittel- und langsam proliferierende Zellen. Die 

verschiedenen Zellpopulationen wurden mittels eines Durchflusszytometers 

separiert, um funktionelle Unterschiede der Populationen zu analysieren. Der 

ursprüngliche Phänotyp der Tumorzellen blieb über mehrere Tage in vitro erhalten. 

Interessanterweise waren alle drei Populationen dazu in der Lage wieder schnell 

proliferierende- und auch langsam proliferierende Zellen zu generieren, was auf 

einen dynamischen Prozess zwischen den verschiedenen Phänotypen schließen 

lässt. Des Weiteren zeigen die langsam teilenden Tumorzellen eine erhöhte 

Resistenz gegenüber einer Standardchemotherapie des Kolonkarzinoms. Diese 

Ergebnisse deuten darauf hin, dass ruhende Tumorzellen in einen aktiv 
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proliferierenden Zustand wechseln können und damit möglicherweise eine Rolle bei 

der Rezidivbildung nach der Therapie spielen. 
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4. Introduction 
 
4.1. Cancer: a global disease 
 
Cancer is the leading cause of death in economically developed countries (WHO, 

2004). The global burden of cancer continuously increases due to growth of the 

world population, aging and an increasing change of lifestyle that favors cancer 

development. This includes smoking, physical inactivity and specific diets. About 

12.7 million cancer cases (Fig. 1) and 7.6 million cancer deaths are estimated to 

have occurred worldwide in 2008. Of these, more than half of the deaths occurred in 

the economically developing world (Ferlay et al., 2011; Jemal et al., 2011).  

 
Fig. 1: Estimated number of new cancer cases by World Area. (adapted from American 
Cancer Society. Global Cancer Facts & Figures 2nd Edition. Atlanta: American Cancer 
Society; 2011) 
 

Even though cancer is an increasing global health problem, the disease is still poorly 

understood. One major reason is the enormous complexity of the neoplastic disease. 

Cancer has been described as a multistep disease where normal cells acquire 

certain functional capabilities, also referred to as “hallmarks” that enable the cells to 

become tumorigenic and finally malignant (Fig.2) (Hanahan and Weinberg, 2000). 

Hanahan and Weinberg proposed six hallmarks of cancer that describe an 

organizing principle in order to better understand the complexity of the disease. 
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These hallmarks include sustaining proliferative signaling, evading growth 

suppressors, activating invasion and metastasis, enabling replicative immortality, 

inducing angiogenesis and resisting cell death (Hanahan and Weinberg, 2000).  New 

insights into the development of cancer have been gained since then and the 

hallmarks of cancer have been extended and revised (Fig. 2). Genomic instability 

and tumor-promoting inflammation have been added as enabling characteristics of 

tumor cells. Moreover, two additional emerging hallmarks, such as reprogramming of 

cellular energy metabolism and the evasion of cancer cells from the attack and 

elimination by immune cells have been suggested to play an important role in tumor 

development and progression (Hanahan and Weinberg, 2011).                                                    

                 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: The hallmarks of cancer - revised and extended version. The six hallmarks of cancer 
proposed by Hanahan and Weinberg are depicted in grey. These hallmarks have been 
extended including emerging and enabling characteristics of cancer cells (depicted in color). 
Some, or possibly all, tumor cells are able to deregulate the cellular energy metabolism in 
order to support cell growth and proliferation. Moreover, the cancer cells are able to evade 
the immune system. Genomic instability enables the acquisition of mutations that favor tumor 
progression and development. Additionally, inflammation and thus immune cells can promote 
tumor progression. Modified and adapted from Hanahan and Weinberg (Hanahan and 
Weinberg, 2000, 2011). 
 
Tumors can be considered as complex tissues containing several different cell types 

that interact with each other in a specific “tumor microenvironment” (Hanahan and 

Weinberg, 2011). The cancer cells need to acquire a certain amount of the described 

hallmarks to become tumorigenic. A few of these hallmarks will be discussed in the 

next chapters in the context of colorectal cancer. 
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4.2. Colorectal cancer, mutations and genomic instability 
 
Colorectal cancer (CRC) is the second most commonly diagnosed cancer in females 

and the third in males. In 2008, over 1.2 million new CRC cases and 608700 deaths 

were estimated to have occurred worldwide (Jemal et al., 2011). The incidence of 

CRC increases with age or in individuals that harbor a genetic predisposition. These 

inherited predispositions can cause familial adenomatous polyposis (FAP) or 

hereditary nonpolyposis colorectal cancer (HNPCC, also referred to as Lynch 

syndrome) (see chapter 4.3.). However the majority of CRCs arise from somatic 

mutations that accumulate over time.  

During the last decades there has been significant progress in investigating specific 

genetic defects in CRC. A model of successive accumulations of genetic changes 

proposed by Fearon and Vogelstein has long been regarded as the paradigm for the 

development of colorectal cancer (Fearon and Vogelstein, 1990). The authors have 

shown that the progression from aberrant crypt foci (ACF) to malignant carcinoma is 

a multistep process and requires at least seven genetic events for completion (Fig. 

3). The molecular defects, resulting in CRC are either alterations that lead to novel or 

increased functions of oncogenes or loss of function of tumor-suppressor genes 

(Fearon, 2011). The most common oncogenes or tumor-suppressor genes that are 

mutated in CRC are adenopolyposis coli (APC), KRAS, TP53 and SMAD family 

member 4 (SMAD4) (Fearon and Vogelstein, 1990).  
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Fig. 3: Genetic changes and growth factors associated with colorectal tumorigenesis. At the 
top of the diagram are the genes depicted that are altered during CRC progression.  APC 
mutations initiate the tumor formation. The progression to malignant CRC results from 
mutations in other genes indicated in the scheme. Moreover, microsatellite instability (MSI) 
and mutations in the Mismatch Repair genes (MMR) accelerate the cancer development. 
Genetic- or epigenietic changes that might be involved in metastasis still need to be 
identified. Growth-factor pathways that are mainly altered during CRC progression are 
depicted at the bottom of the scheme. Adapted from Markowitz and Bertagnolli (Markowitz 
and Bertagnolli, 2009). 
 
 
Furthermore, aberrant DNA-methylation and chromatin-structure changes, together 

with mutational changes orchestrate a deregulation of signaling pathways that are 

involved in proliferation, cellular metabolism, differentiation and survival (Fearon, 

2011). At least four types of genomic or epigenetic instabilities can be found in CRC: 

chromosomal instability (CIN), microsatellite instability (MSI), CpG island methylator 

phenotype (CIMP) and global DNA hypomethylation (Pritchard and Grady, 2011).  

CIN is the most common form of genomic instability that can be found in 85% of 

CRCs (Grady and Carethers, 2008; Lengauer et al., 1998). CIN causes various 

changes in chromosomal copy number and structure that can be recognized by the 

presence of aneuploidy (Lengauer et al., 1998; Miyazaki et al., 1999; Walther et al., 

2008). Moreover, there is some evidence from large meta-analysis that CIN is a 

marker of poor prognosis in CRCs (Popat and Houlston, 2005; Walther et al., 2008). 

MSI is defined as insertion or deletion of repeating units in a microsatellite within a 

tumor that lead to a change of length in comparison to normal tissue (Boland et al., 

1998). Patients with MSI have been shown to have a better prognosis in comparison 

to patients with CIN tumors (Popat et al., 2005; Walther et al., 2008). The 

mechanisms underlying MSI are well understood. The presence of MSI was 



 Introduction 

9 

associated with loss of function of the DNA mismatch repair system (MMR), which 

was first investigated in bacteria and yeast (Boland et al., 2008; Fishel and Kolodner, 

1995). MSI occurs in 15-20% of sporadic CRCs whereas 95% of patients with Lynch 

syndrome display MSI (Grady and Carethers, 2008).  

The clinical relevance of CIMP and global DNA hypomethylation is not yet clear. 

CIMP is defined as hypermethylation of gene promoters that contain CpG islands 

and is associated with BRAF V600E mutations (Barault et al., 2008; Weisenberger et 

al., 2006). Furthermore, a global decrease in methylation has been identified in many 

CRCs (Matsuzaki et al., 2005; Rodriguez et al., 2006). 

 
4.3. Hereditary Colorectal Cancer 
 
Approximately 15-25% of CRCs have been estimated to occur in dominantly 

inherited patterns including first- to third degree relatives (Cannon-Albright et al., 

1988; Kerber et al., 2005; Taylor et al., 2010). Two major hereditary diseases that 

can cause CRC are well studied: Familial Adenomatous Polyposis (FAP) and 

Hereditary Nonpolyposis Colorectal Cancer (HNPCC, also referred to as Lynch 

syndrome). 

The mechanisms responsible for the development of HNPCC are different from FAP. 

The defect in HNPCC mainly affects tumor progression via germline defects in MMR 

genes such as MLH1 and MSH2 (Bronner et al., 1994; Fishel et al., 1993). Patients 

with HNPCC have a lifetime risk of about 80% to develop colorectal cancer on 

average by the age of 45 years while the average age for the onset of sporadic CRC 

is 65 years (Hampel et al., 2005; Lynch et al., 2008). The loss of MMR genes in 

patients with HNPCC is not only due to germline mutations but also to somatic 

inactivation of the wild-type (wt) parental allele (Boland et al., 2008). This MMR 

deficiency causes genomic instability and therefore highly increases the 

development of CRC in HNPCC-patients. Mutation rates in tumor cells with MMR 

deficiency are two to three orders of magnitude higher than in normal cells 

(Bhattacharyya et al., 1994; Eshleman et al., 1995; Shibata et al., 1994). The 

impaired MMR function is associated with MSI leading to mutations at the nucleotide 

level with changes in repeat length or minor changes of typically two base pairs 

(Ionov et al., 1993; Thibodeau et al., 1993). HNPCC accounts for 2 to 4% of the total 

CRC cases in the western world (Lynch et al., 1996). Another 13% of the total CRCs 

account for microsatellite instability in sporadic tumors (Aaltonen et al., 1993; Ionov 

et al., 1993; Thibodeau et al., 1993). 
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FAP is an autosomal, dominantly inherited disease that is caused by germline 

mutations in the APC gene.  The APC gene is regarded as the „gatekeeper“ for 

colorectal tumor initiation (Kinzler and Vogelstein, 1996). This gene is located on 

chromosome 5q21 and consists of 15 exons (Nakamura, 1993). Patients with FAP 

develop hundreds to thousands benign colorectal tumors during their second or third 

decades of life. Even though these tumors are benign, the likelihood that some of 

these tumors will develop into malignant carcinomas is very high due to a genetic 

predisposition (Kinzler and Vogelstein, 1996). However, additional mutations are 

required for the progression of the disease (Fig. 3).  

Since germline mutations of the APC gene have been discovered to cause FAP, 

several studies reported that somatic mutations of the same gene occur in more than 

80% of sporadic (non-familial) colorectal cancers (Miyoshi et al., 1992; Powell et al., 

1992; Smith et al., 1993). This shows that the APC gene is a key player in CRC 

initiation. 

 
4.4. Functions of key molecules involved in CRC development 
 
APC and canonical Wnt signaling 

APC is a tumor-suppressor gene, which was identified by positional cloning of the 

FAP locus (Groden et al., 1991; Kinzler et al., 1991). Subsequently, sporadic 

colorectal tumors were analyzed and have been found to display mutations in both 

alleles of the APC gene (Nagase and Nakamura, 1993). Mutations in the APC gene 

are the earliest genetic alterations in the process of colorectal tumor development 

and have been identified in very early stages of neoplasia (Jen et al., 1994; Kinzler 

and Vogelstein, 1996; Smith et al., 1994a; Vogelstein et al., 1988). APC encodes for 

a multifunctional 312 kDa protein that may be involved in the regulation of cell-cell 

adhesion, cell migration, chromosomal segregation and apoptosis (Aoki and Taketo, 

2007; Fodde et al., 2001; Polakis, 2007). These are all important cellular processes 

that may lead to cancer development but the major role of APC seems to be the 

proper interaction and regulation of intracellular ß-catenin, which is a key molecule in 

the canonical Wnt signaling pathway (Korinek et al., 1997; Morin et al., 1997; 

Munemitsu et al., 1995; Smits et al., 1999). Even though the vast majority of CRC 

patients carry APC mutations, those with an active APC gene display activating 

mutations in ß-catenin that alter the important phosphorylation sites and protect the 

protein from APC-mediated degradation (Morin et al., 1997; Sparks et al., 1998). 

Therefore it seems that the canonical Wnt signaling pathway plays an important role 

in cancer development. More evidence is provided by the fact that additional 
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members of the Wnt pathway can be mutated in rare cases of CRC, such as TCF-4 

and axin (Duval et al., 2000; Liu et al., 2000).  

In the absence of Wnt ligands, ß-catenin is recruited to the destruction complex that 

contains APC, axin/conductin and glycogen synthase kinase 3ß (GSK3ß) (Behrens 

et al., 1998; Fagotto et al., 1999; Hart et al., 1998; Kishida et al., 1999). Following N-

terminal phosphorylation of ß-catenin via GSK3ß and casein kinase 1α (CK1α) 

(Ikeda et al., 2000), ß-catenin is targeted for ubiquitylation by an SCF-complex that 

contains the f-box protein ßTrCP and is proteosomally degraded (Jiang and Struhl, 

1998; Marikawa and Elinson, 1998), leading to low cytoplasmic levels of ß-catenin. 

Moreover, the co-repressor Groucho is recruited to the LEF (lymphoid enhancer 

factor)-TCF (T-cell factor) transcription factors (TFs) in order to repress Wnt 

signaling (Cavallo et al., 1998; Roose et al., 1998) (Fig. 4a).   

In the presence of Wnt ligands, Frizzled receptors are activated and form a complex 

with low-density lipoprotein-related receptor protein 5 and 6 (LRP5 and LRP6). The 

LRP5-LRP6 complex is phosphorylated by GSK3ß and CK1α. Dishevelled (DVL) 

proteins are recruited to the plasma membrane to interact with the intracellular 

domain of Frizzled receptors (Bilic et al., 2007; Schwarz-Romond et al., 2007). The 

phosphorylated LRP5 or LRP6 molecule and Dishevelled interact with axin and lead 

to the inactivation of the destruction complex and subsequent stabilization of ß-

catenin. The exact mechanisms for inactivation of the destruction complex are not 

yet completely understood. Finally, ß-catenin translocates to the nucleus where it 

forms a transcriptionally active complex with LEF and TCF TFs by displacing 

Grouchos and interaction with co-activators (Fig. 4b) (Behrens et al., 1996; Huber et 

al., 1996; Molenaar et al., 1996), such as BCL9 (Kramps et al., 2002), Pygopus 

(Belenkaya et al., 2002), CREB-binding protein (CBP) (Hecht et al., 2000) or Hyrax 

(Mosimann et al., 2006).  

 

 

 

 

 

 

 

 

 

 



 Introduction 

12 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4: The role of APC in canonical Wnt signaling. a) In the absence of Wnt ligands, ß-
catenin is recruited to the destruction complex and phosphorylated at the amino-terminus via 
GSK3ß. The phosphorylated ß-catenin is targeted for proteasome-dependent degradation 
that involves an interaction with ß-TrCP (ß-transducin repeat-containing protein). Cytoplasmic 
ß-catenin levels are low and LEF and TCF that are located in the nucleus interact with 
Grouchos in order to repress transcription of Wnt-specific target genes. b) In the presence of 
Wnt ligands, LRP6 is phosphorylated via GSK3ß and forms a complex with Frizzled. 
Dishevelled is recruited to the plasma membrane where it interacts with Frizzled receptors. 
This leads to an inactiavation of the destruction complex and ß-catenin is stabilized. The 
stabilized ß-catenin translocates to the nucleus where it binds to LEF and TCF and acts as a 
co-activator for the transcription of Wnt target genes. Adapted from Fodde (Fodde et al., 
2001). 
 
 
Taken together, the Wnt signaling pathway is deregulated in the majority of CRCs. 

Important downstream targets of the APC/ß-catenin pathway are c-Myc and cyclin 

D1 (CCND1) that are relevant in tumor formation, due to their role in proliferation, 

apoptosis and cell cycle progression (He et al., 1998; Shtutman et al., 1999; Tetsu 

and McCormick, 1999). Furthermore, Wnt target genes such as metalloproteinase 

matrilysin (MMP-7) (Brabletz et al., 1999; Crawford et al., 1999), CD44 (Wielenga et 

al., 1999) and urokinase-type plasminogen activator receptor (uPAR) (Mann et al., 

1999) seem to be involved in tumor progression. However, not all CRC tumors that 

harbor APC mutations contain active Wnt signaling. Immunohistochemistry studies 

showed that nuclear ß-catenin expression is heterogeneously distributed among 

CRC cells (Brabletz et al., 2001). This phenomenon is also referred to as ß-catenin 

paradox, indicating that different subsets of tumor cells exist with different 

tumorigenic capacities (Fodde and Brabletz, 2007; Vermeulen et al., 2008a). 

Furthermore, Vermeulen and colleagues provide some evidence that Wnt signaling 

activity in CRC is partially regulated by the microenvironment (Vermeulen et al., 

2010). 
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Impact of APC-mutations  

APC encodes for a multi-domain protein that consists of 2843 amino acids. The 

protein contains numerous protein binding sites, including microtubules (Munemitsu 

et al., 1994; Smith et al., 1994b), ß-catenin and axin (Rubinfeld et al., 1993; Su et al., 

1993), cytoskeleton regulators EB1 and dDlg (human homolog of the Drosophila 

Disc large tumor suppressor gene) (Matsumine et al., 1996; Su et al., 1995), and the 

Rac guanine-nucleotide-exchange factor (GEF) Asef1 (Kawasaki et al., 2003; 

Kawasaki et al., 2000) (Fig. 5a).  

The most common identified APC mutations are frameshift, nonsense or splice-site 

mutations, which result in truncations of the APC protein (Kinzler and Vogelstein, 

1996; Klaus and Birchmeier, 2008; Polakis, 2000). In FAP patients and in sporadic 

cancers virtually all mutations lead to C-terminally truncated proteins (Miyoshi et al., 

1992; Nagase and Nakamura, 1993; Powell et al., 1992).  

Germline mutations are scattered throughout the 5′ half of the gene, with two hot 

spot codons identified at positions 1061 and 1309 (Fig. 5b). However, patients 

harboring germline mutations in the APC gene do not necessarily develop CRCs, as 

additional genetic alterations of the wt allele inherited from the unaffected parent are 

required (Ichii et al., 1992; Kinzler and Vogelstein, 1996; Levy et al., 1994; Luongo et 

al., 1994). In contrast to germline mutations, 60% of the somatic mutations are 

concentrated in a mutation cluster region (MCR), with two hot spots occurring at the 

codon positions 1309 and 1450 (Fig. 5c) (Beroud and Soussi, 1996). This MCR is 

located in the central third of the protein among several independent 20 amino acid 

repeats, which are involved in ß-catenin binding (Fig. 5). In contrast to the APC 

mouse model, where all the 20-amino acid repeats are truncated and ß-catenin 

degradation is completely inactivated (Smits et al., 2000), in most CRC patients one 

or two of these repeats are retained (Albuquerque et al., 2002). Recent studies have 

shown that there is an active selection process for tumors that still maintain 20-

amino acid repeats. The genotypes still providing a specific level of downregulation 

activation of ß-catenin signaling have a selection advantage over tumor cells that 

completely lost this regulatory function. This selection process is termed as the “just 

right signaling model” (Albuquerque et al., 2002). Additionally Kim and colleagues 

could show that excessive ß-catenin accumulation in the nucleus leads to 

programmed cell death (Kim et al., 2000). Thus tumors that retain their ß-catenin 

downregulation activity to some degree have an advantage in tumor formation. 
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Fig. 5: Schematic representation of the APC protein and its mutation sites. a) The APC 
protein consists of 2843 amino acids and contains several protein binding sites. The N-
terminal region regulates APC oligomerization (green). In the first third of the amino-terminus 
are the Armadillo repeats located (orange). In the central third of the APC protein, several 
independent 20 amino acid repeats that are involved in ß-catenin binding can be found 
(violet). Furthermore numerous SAMP repeats, that are binding sites for the axin protein, are 
located among the ß-catenin binding sites (blue). The C-terminal part of the protein contains 
a microtubule (MT) binding site (pink) and a region involved in the binding of EB1 and hDlg. 
Schematic representation of hot spot codons that are frequently mutated in b) the germline or 
c) sporadic. Adapted from Fearon (Fearon, 2011). 

Moreover, truncations in the APC protein have been shown to have a major impact 

on Wnt signaling (see chapter 4.4.). However, these are not the only effects. 

Furthermore, these truncating mutations play an important role in chromosome 

segregation and can contribute to CIN, which has been reported to occur for the 

majority of CRCs (see chapter 4.2.). It has been shown that APC localizes to 

kinetochores, spindles and centrosomes during mitosis, where it contributes to the 

regulation of the cytoskeleton function and to the stabilization of the microtubules 

(Dikovskaya et al., 2004; Kaplan et al., 2001; Louie et al., 2004; Olmeda et al., 

2003). Thus the impact of APC truncating mutations on Wnt signaling and 

chromosome segregation is of major importance for tumor progression.  

 

The role of KRAS on colorectal cancer development 

Numerous oncogenes play important roles in the promotion of CRC progression  

(Fig. 3). Fearon and Vogelstein identified KRAS as being involved in the transition 

from small adenomas to larger more dysplastic ones (Fearon and Vogelstein, 1990). 

The RAS family of small-G-proteins comprises over 150 human members 

(Malumbres and Barbacid, 2003; Wennerberg et al., 2005). Somatic mutations in 

three of the various RAS familiy members namely HRAS, NRAS and KRAS have 

been frequently identified in many human cancers (Malumbres and Barbacid, 2003). 

In 40-50% of CRCs, point mutations in the coding sequence of KRAS are prevalent 
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(Bos et al., 1987; Forrester et al., 1987). The majority of these mutations occur in the 

codons 12 and 13 of the KRAS gene and the remaining mutations occur in codon 61. 

These common mutation sites are also referred to as “hotspot codons” (Bos et al., 

1987; Smith et al., 2010). Furthermore, a few other less frequent apparent mutational 

sites have been identified at codons 19, 22 and 146 (Akagi et al., 2007; Miyakura et 

al., 2002; Orita et al., 1991; Smith et al., 2010).  

Most of these mutations lead to constitutive activation of RAS signaling via impaired 

GTPase activity. GTPase-activating proteins (GAPs) are prevented from hydrolysis 

of GTP to GDP and therefore cause RAS to accumulate in the GTP-bound, active 

form (Downward, 2003). RAS proteins serve as signaling nodes that bind and 

activate numerous effector enzymes, which regulate cell proliferation, differentiation 

and survival (Shields et al., 2000; Wennerberg et al., 2005). RAF was the first 

identified mammalian effector (Leevers et al., 1994; Marais et al., 1995), which 

belongs to the family of serine/threonine kinases and exists in three forms: RAF-1, 

ARAF and BRAF (Daum et al., 1994). The KRAS protein signals through BRAF to 

activate the mitogen-activated protein kinase (MAPK) pathway and thus promotes 

cell growth and survival (Pritchard and Grady, 2011). 

RAS can also activate additional effectors such as Phosphoinositide 3-kinases 

(PI3Ks), which in turn are involved in the activation of AKT/PKB (protein kinase B) 

and therefore contribute to cell survival (Brazil et al., 2004; Datta et al., 1999; Franke 

et al., 1995; Klippel et al., 1996). AKT regulates cell survival either directly by 

phosphorylating components of the apoptotic machinery or indirectly by altering the 

expression level of genes encoding for components of the cell survival pathway, 

such as Bad, caspase 9, the Forkhead family of transcription factors (FOXO) and 

inhibitor of nuclear factor kappa-B kinase-ß (IKK-ß) (Datta et al., 1999). 

KRAS is a major downstream target of the epidermal growth factor receptor (EGFR 

= HER1 = ERBB-1), a transmembrane glycoprotein that belongs to the receptor 

tyrosine kinase family (RTKs). The EGFR dimerizes and is autophosphorylated upon 

ligand binding which results in the activation of a signaling cascade triggering many 

cellular processes such as proliferation, prevention of apoptosis, promotion of 

invasion, metastasis and neovascularization (Carpenter, 1987; Carpenter and 

Cohen, 1990; Hynes and Lane, 2005). In CRCs, this receptor is overexpressed in 

approximately 80% of the patients (Spano et al., 2005). The EGFR can be targeted 

either via monoclonal antibodies that are directed against the extracellular domain 

(e.g. cetuximab) of the receptor or via small molecules that act as tyrosine kinase 

(TK) inhibitors in a competitive manner (e.g. erlotinib and gefitinib) (Croce, 2008). 

The treatment response of patients is dependent on specific mutations in 
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oncogenes. KRAS is one of the most important predictors of resistance to targeted 

therapy because its mutation causes EGFR independent signaling (Uberall et al., 

2008). It has been shown that CRC patients that harbor activating mutations in the 

KRAS gene did not benefit from therapy with EGFR-TK inhibitors (Lievre et al., 2008; 

Massarelli et al., 2007).  

 

The complex functions of p53 in colorectal cancer  

Loss of chromosome 17p has been found in approximately 75% of CRCs 

(Vogelstein, 1990). This region harbors the gene TP53, which encodes for p53. It 

has been shown that this chromosomal loss is often associated with the presence of 

missense mutations in the remaining TP53 allele (Baker et al., 1989). TP53 is 

mutated in 40-50% of all CRCs (Hollstein et al., 1991; Olivier et al., 2002; Vogelstein, 

1990). P53 is a stress-response protein that acts as a tetrameric TF, regulating a 

large number of genes involved in cell cycle control, apoptosis, and senescence. 

Several other functions have been described such as regulations of DNA 

metabolism, angiogenesis, cellular differentiation and immune response (Vousden 

and Prives, 2009). The extend of the stress level that influences the tumor cells may 

trigger the decision between cell death or cell cycle arrest. Vousden and Prives 

suggested that low levels of DNA damage induce repair and survival responses 

whereas high levels of DNA damage that cannot be repaired subsequently lead to 

apoptosis or senescence (Vousden and Prives, 2009).  

Germline mutations of TP53 cause the Li-Fraumeni syndrome, a hereditary 

predisposition for various types of cancer (Li and Fraumeni, 1969a, b). Patients that 

harbor these germline mutations have an increased susceptibility to CRCs and 

develop the disease several decades earlier compared to the general population 

(Wong et al., 2006). 

43% of all somatic TP53 mutations in CRC occur mainly in five hotspot codons, such 

as 175, 245, 248, 273 and 282 (Greenblatt et al., 1994; Nigro et al., 1989; Soong et 

al., 2000). These codons are located in the conserved region of TP53 that is 

important for the transcriptional activity of the protein (Fig. 6). Due to the mutations, 

the specific DNA binding capacity of p53 is abrogated, which results in a transition of 

large adenomas into invasive carcinomas (Baker et al., 1990; Vogelstein et al., 

1988). Moreover, some mutations can also induce local or global conformational 

distortions (Brosh and Rotter, 2009).  
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Fig. 6: Schematic representation of the p53 protein. a) Depicted are the functional domains of 
p53. b) The areas of the conserved sequences are shown in orange (I-V). Adapted from 
Soussi and Beroud (Soussi and Beroud, 2001). 
 
However, it has been shown that mutations occurring in TP53 are heterogeneous 

and may have different prognostic significance dependent on the ethnic group 

(Manne et al., 1998), site of tumor origin (Diez et al., 2000; Manne et al., 1998; 

Samowitz et al., 2002; Soong et al., 1997; Sun et al., 1996) and stage of the disease 

(Adrover et al., 1999; Ahnen et al., 1998; Soong et al., 1997). It became also evident 

that different TP53 mutant forms exist harboring properties such as loss of the tumor 

suppressor function, dominant negative activity over the remaining wt-allele (Milner 

and Medcalf, 1991; Milner et al., 1991; Sigal and Rotter, 2000) and gain of new 

oncogenic properties (Blandino et al., 1999; Dittmer et al., 1993; Li et al., 1998; Wolf 

et al., 1984).  

 
Smad4 and TGFß signaling 

Smad4 is a tumor suppressor gene and belongs to the Smad family, which plays a 

major role in transforming growth factor-ß (TGFß) signaling. Eight Smads have been 

identified in mammals: receptor-regulated Smads (R-Smads: Smad 2 and 3 that 

mediate TGFß signaling and Smad 1, 5 and 8 that transduce BMP signaling), one 

co-mediator Smad (Co-Smad: Smad 4) and two inhibitory Smads (I-Smads: Smad 6 

and 7) (Shi and Massague, 2003).  

Smad4 was first identified in pancreatic cancer by Hahn and colleagues. 

Approximately 90% of pancreatic cancers show loss of herterozygosity (LOH) at 

chromosome 18q, in which the candidate tumor suppressor gene Smad4 (also called 

DPC4, deleted in pancreatic carcinoma, locus 4) is located (Hahn et al., 1996). This 

LOH of chromosome 18q was also found in 70% of colorectal cancers, of which 50% 

were late stage adenomas and about 10% were early stage adenomas (Fearon and 

Vogelstein, 1990; Vogelstein et al., 1988). Two additional Smad family members, 

namely Smad2 and Smad7 are also located on chromosome 18q, suggesting that 

LOH of chromosome 18q promotes tumorigenesis at least partially via the TGFß 

pathway (Nakao et al., 1997; Pritchard and Grady, 2011; Roijer et al., 1998). This 

signaling pathway can be transduced in two different ways, either independent of 
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Smads or through Smads (Fig. 7). Both signaling pathways are mediated via TGFß 

ligands that bind to TGFß type 2 receptor (TGFßR2). The TGFßR2 forms a 

heterotetrameric receptor complex together with TGFß type 1 receptor (TGFßR1). 

This complex formation leads to the phosphorylation and activation of TGFßR1 

(Annes et al., 2003; Feng and Derynck, 2005; Heldin et al., 1997; Shi and 

Massague, 2003; Wrana et al., 1994). The activated receptor complex can regulate 

non-Smad pathways, including extracellular signal-regulated kinase (ERK), p38 

MAPK, JUN N-terminal kinase (JNK), PI3K-AKT and small GTPases, as well as 

Smad mediated pathways (Moustakas and Heldin, 2005; Zhang, 2009).  

The Smad mediated pathway is transduced via recruitment of Smad2 and 3 to 

TGFß1R. The two activated R-Smads form a heteromeric complex with Smad4 and 

translocate to the nucleus (Shi and Massague, 2003). This complex binds directly to 

the DNA or indirectly through other DNA binding proteins and regulates the 

transcription of target genes involved the regulation of proliferation and invasion. 

TGFß signaling mediates many cellular processes in a context dependent manner 

(Ikushima and Miyazono, 2010a). The activated Smad pool is shared among many 

competing interaction partners such as co-activators or co-repressors, which in the 

end determine whether a target gene is activated or repressed (Chen et al., 2002; 

Feng et al., 1998; Ikushima and Miyazono, 2010a; Janknecht et al., 1998). Distinct 

repertoires of transcription partners of the Smad complex are expressed dependent 

on the cell type or the conditions the cells are exposed to (Ikushima and Miyazono, 

2010a). 
 
 

Fig. 7: Schematic representation of the TGFß 
signaling pathway. The TGFß signaling pathway is 
mediated upon ligand binding to the TGFßR2, which 
subsequently forms a complex with TGFßR1. This 
results in the phosphorylation of TGFßR1 that in turn 
recruits and phosphorylates Smad2 and 3. The 
activated R-Smads form a complex with Smad4 and 
translocate to the nucleus where they regulate the 
transcription of TGFß target genes in association with 
co-activators or co-repressors. The TGFß signaling 
pathway can be mediated in a Smad independent way 
as well. Adapted from Ikushima and Miyazono 
(Ikushima and Miyazono, 2010b). 
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Perturbations of the TGFß signaling pathway via mutations in proteins involved in the 

regulation of this pathway play a central role in tumorigenesis and tumor 

progression. Homozygous deletions and/or mutations were identified in colorectal 

cancer at frequencies from 10 to 35% (Koyama et al., 1999; MacGrogan et al., 1997; 

Takagi et al., 1996). Miyaki and colleagues showed that the frequency of Smad4 

mutations increases with tumor progression with the highest mutation frequency in 

patients that developed distal metastasis (Maitra et al., 2000; Miyaki et al., 1999). 

These Smad4 gene mutations occur in more than 80% of the cases at the Mad 

homology 2 (MH2) region. This is one of the evolutionary conserved regions, which 

is responsible for heteromerization and transactivation function of the Smad proteins 

(Dai et al., 1998; Liu et al., 1996; Shi et al., 1997). This region also partially interferes 

with the DNA binding function of the Mad homology 1 (MH1) region (Dai et al., 1998; 

Hata et al., 1997; Kim et al., 1997; Zawel et al., 1998), the second conserved region 

in the Smad proteins. The mutations include frameshift, nonsense and missense 

mutations, with a hot spot missense mutation in codon 361. These mutations lead to 

a deregulation of several target genes that play critical roles in tumor progression 

and invasion.  

All of the key molecules described in this chapter contribute to colorectal cancer 

development and progression via different mechanisms. Thereby the above named 

molecules functionally interact via cross-regulating activities with each other.  

For instance, it has been reported that the Wnt- and the TGF-ß signaling pathway 

converge on p27, a tumor suppressor that acts as cell cycle inhibitor (Arends, 2000). 

The disrupted TGF-ß pathway and elevated c-Myc levels, resulting from mutations in 

Wnt signaling, cooperatively increase the proteasomal degradation of p27, which is 

associated with more aggressive CRCs (Kawada et al., 1997; Loda et al., 1997). 

Genomic instability, inactivation of tumor-suppressor genes or activation of 

oncogene pathways can lead to sustained proliferation and evasion of apoptosis, 

which are crucial hallmarks of cancer (Fig. 2). These hallmarks are acquired by 

tumor cells in order to progress to a malignant disease as described by Hanahan 

and Weinberg (Hanahan and Weinberg, 2000, 2011). Furthermore, the tumor cells 

evolve and gain invasive and metastatic capabilities. This additional hallmark 

represents the last step in tumor progression and will be described in the next 

chapter.  
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4.5. Metastasis - a multi step process 
 
Metastasis is a multi step process where tumor cells acquire certain abilities to 

overcome several barriers, as well as produce and respond to various growth factors 

and cytokines. As a first step, the tumor cells separate from the primary tumor and 

breach surrounding tissues and basement membranes, in order to access the 

circulation, the lymphatics or the peritoneal space. On their way to the secondary 

site, the tumor cells are exposed to numerous stresses, such as mechanical forces 

caused by the circulation and cell destruction mediated by the immune system 

(Chambers et al., 2001; Fidler, 1990; Mehlen and Puisieux, 2006; Weiss et al., 

1992). This seeding process is followed by an extravasation into the foreign 

microenvironment of the target organ where the tumor cells proliferate and constitute 

a metastasis (Fig. 8) (Hunter et al., 2008; Welch, 2006). Every single step is rate-

limiting for a tumor cell to develop into overt metastasis (Fidler, 2002; Poste and 

Fidler, 1980), which explains the low efficiency of the metastatic process overall 

(Weiss, 1990). Fidler and colleagues analyzed the metastatic ability of radioactively 

labeled tumor cells in the circulation of animal models. Their studies showed that 

less than 0.1% of tumor cells were still alive after 24 hours and less than 0.01% of 

these cells were able to develop into metastasis (Fidler, 1970), suggesting that not 

every tumor cells is able to successfully metastasize and that tumors are 

heterogeneous consistent of different subpopulations of cells with distinct biological 

characteristics . 

Even though metastasis formation is such an inefficient process, it presents one of 

the most challenging problems in cancer patients. In order to tackle this problem, the 

underlying mechanisms of metastasis need to be uncovered. One important aspect 

is the time point of the metastatic spread to distant organs, which would bring new 

insights into treatment strategies and would help to predict responses to adjuvant 

therapies. Two fundamental models of metastasis are currently discussed in the 

field, namely the linear- and parallel-progression model, reviewed by Klein (Klein, 

2009).   
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Fig. 8: Necessary steps for metastasis formation. a) Transformation of normal cells into tumor 
cells. b) Increasing tumor mass that needs to be vascularized in order to gain access to 
nutrition. Angiogenic factors are secreted to establish a capillary network. c) Tumor cells 
separate from the primary tumor and invade the surrounding host tissue and breach 
basement membranes d) to enter the vasculature, the lymphatics or the peritoneal cavity. In 
the circulation, tumor cells are exposed to the immune system of the host and they need to 
survive mechanical stresses. Tumor cells that survived in the circulation and reached the 
target organs e) need to extravasate and adapt to the new microenvironment. f) As the last 
step in order to grow successfully into an overt metastasis, the tumor cells need to proliferate 
and survive the host defense mechanisms. New vasculature needs to be formed to allow 
sufficient nutrition supply. Adapted from Fidler (Fidler, 2003). 

 
4.6. The Linear- and parallel-progression model of metastasis 
 
The linear progression model 

The linear progression model supports the hypothesis that cells present in a primary 

tumor acquire multiple genetic and epigenetic alterations prior to dissemination 

(Klein, 2009). This indicates that tumor cell dissemination is a rather late event in 

tumor progression (Fig. 9). Furthermore, this model suggests that primary metastasis 

that have adapted to the new microenvironment have the potential to propagate a 

whole series of additional metastasis, a so called “metastatic shower” (Weinberg, 

2008). These cells have already acquired all the genetic alterations needed to 

become a successful metastasis.  
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Fig. 9: The linear progression model. The primary tumor develops for several years and 
accumulates a set of genetic alterations prior to metastasis formation. The metastases are 
able to generate further metastatic foci. This model suggests that metastasis is a late event in 
tumor progression. Adapted from Klein (Klein, 2009). 

These observations represent the basis for the international tumor, node, metastasis 

(TNM) classification system. This system associates larger tumors with higher 

frequencies of metastasis.  

Moreover, the linear progression model is in line with the genetic model for colorectal 

cancer progression proposed by Fearon and colleagues (Fearon and Vogelstein, 

1990) where specific genetic alterations are needed for the transition from 

hyperplasia to an invasive carcinoma. Jones and colleagues performed comparative 

lesion sequencing analysis, which allowed the direct comparison of different 

mutations within the late stage primary tumor and the metastasis from the same 

patient. The authors could show that it takes approximately 17 years for a large 

adenoma to develop into an advanced carcinoma but it takes less than two years for 

the generation of metastasis. Furthermore, Jones and colleagues identified only very 

few additional alterations in metastases in comparison to advanced carcinomas 

(Jones et al., 2008), indicating that metastasis formation is a late event in colorectal 

cancer development. A similar finding was reported for the progression of pancreatic 

cancer. Sequencing data of metastasis from pancreatic cancer patients revealed that 

the progression of the disease takes at least 15 years until the tumor cells have 

acquired their metastatic potential (Yachida et al., 2010), supporting the hypothesis 

that metastasis arise from clones disseminated at late stages during tumor 

progression. 
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The parallel progression model 

In contrast to the linear progression model, the parallel progression model supports 

the idea that the process of metastasis is an early event in tumor progression. Tumor 

cells disseminate before the primary lesion reaches a fully malignant phenotype, 

leading to a divergent development of metastasis and primary tumor (Klein, 2009). 

Moreover, this model suggests that dissemination of tumor cells to distinct target 

organs can occur in parallel and that these cells adapt to the different features of the 

foreign microenvironment (Fig. 10). This might also be a selection process for tumors 

cells that are able to survive in distant organs (Scheel et al., 2007), implying that the 

different metastasis also harbor distinct alterations when compared to each other. 

Furthermore, the disseminated tumor cells may remain in a dormant state after their 

departure from the primary tumor until they have acquired all the alterations needed 

for a successful colonization at the distant site, explaining the fact these cells remain 

undetected at the time point of diagnosis. 

 

 

 

 

 

 

 

 

Fig. 10: The parallel progression model. Tumor cells disseminate from the primary tumor in 
early stages of tumor progression. These disseminating tumor cells depart in parallel from the 
primary tumor to different metastatic sites and adapt to the foreign microenvironment. The 
primary tumor and the metastasis develop divergent genetic alterations. Adapted from Klein 
(Klein, 2009). 

Studies of various types of cancer provide some evidence for the parallel 

progression model. The fact that disseminated tumor cells were observed in the 

bone marrow of cancer patients even in the absence of lymph node metastasis or 

clinical signs of overt metastasis supports the model of an early dissemination 

(Braun et al., 2000; Husemann et al., 2008; Lindemann et al., 1992; Pantel et al., 

1996). Furthermore, Klein and colleagues performed comparative genomic 

hybridization (CGH) of single disseminated tumor cells that were detected in the 
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bone marrow of breast cancer patients. The authors showed that there is genetic 

heterogeneity among these early-disseminated tumor cells (Klein et al., 2002). In 

addition, tumor cells present in the bone marrow and their matched primary tumors 

harbored very divergent genetic alterations (Schmidt-Kittler et al., 2003), indicating 

that the tumor cells have spread already early during tumor progression. However, it 

has never been shown yet whether the tumor cells detected in the bone marrow of 

cancer patients will ever develop into overt metastasis and are therefore functionally 

relevant. Even though some studies indicate that the existence of disseminated 

tumor cells in the bone marrow is associated with unfavorable prognosis (Braun et 

al., 2005; Slade and Coombes, 2007).   

Both metastasis progression models may be valid and several studies provide 

evidence for each of the model systems. However, as tumors are very 

heterogeneous and every tumor type displays different genetic features, either of the 

two models may apply dependent on the tumor type.  

 
4.7. Regulation of metastasis via the microenvironment 
 
The “seed and soil” hypothesis proposed by Steven Paget opened a whole new field 

of research. The concept that malignant cells need a receptive microenvironment in 

order to engraft and to develop into overt metastasis in distant tissues has emerged. 

Paget suggested that certain organs were especially receptive to metastases, such 

as the liver in CRC or the lung in breast cancer (Paget, 1989). Since then, numerous 

studies have been performed and much more attention has been given to the 

interactions of tumor cells with their surrounding microenvironment. Tumors are 

considered as complex tissues consistent of many different cell types such as 

endothelial cells, stromal fibroblasts and various bone marrow-derived cells 

(BMDCs) (Fig. 11) (Joyce and Pollard, 2009). It has been proposed that a specific 

“invasive niche” may exist within the primary tumor. This invasive niche is composed 

of a dense accumulation of all these different cell types that form a complex signaling 

network, resulting in an enhanced invasive and metastatic capacity of the cancer 

cells. This complex network forms a so-called tumor microenvironment of metastasis 

(TMEM) (Robinson et al., 2009).  
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Fig. 11: A tumor is a complex tissue. Tumor cells form complex cellular networks with their 
surrounding microenvironment. The tumor microenvironment consists of various cell types, 
such as endothelial cells, stromal fibroblasts and bone marrow-derived cells, including 
macrophages, mesenchymal stem cells (MSCs), myeloid-derived suppressor cells (MDSCs) 
and TIE2-expressing monocytes (TEMs). Adapted from Joyce and Pollard (Joyce and 
Pollard, 2009). 

Priming of the “foreign soil” 

Recent studies provide some evidence that growth factors secreted by the primary 

tumor prime metastatic target tissues and thus facilitate the engraftment of the 

cancer cells (Hiratsuka et al., 2006; Hiratsuka et al., 2008; Kaplan et al., 2005). 

Subsequently, bone marrow-derived hematopoietic progenitor cells and 

macrophages are recruited to these tissues, creating a so-called “pre-metastatic 

niche” that is permissive for metastatic tumor cells (Hiratsuka et al., 2006; Kaplan et 

al., 2005). These bone marrow-derived cells (BMDCs) have been suggested to 

increase fibronectin deposition. Fibronectin is an important component of the 

extracellular matrix (ECM) and its accumulation facilitates the extravasation of 

metastatic tumor cells that interact with ECM components via cell adhesion 

molecules (Kaplan et al., 2005).  

 
Chemoattractants in the “soil” pave the way for tumor cells 

Tumor cells, pericytes, platelets and fibroblasts synthesize for instance stromal cell-

derived factor 1 (SDF1). SDF1 is a chemokine that interacts with C-X-C chemokine 

receptor type 4- (CXCR4) expressing tumor cells and thus favors their interaction 

with the above mentioned cell types (Jin et al., 2006). Platelets for example express 

numerous pro- and anti-angiogenic factors (Massberg et al., 2006). Moreover, they 

form clots with circulating tumor cells in order to protect them against host-immune 
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cells, which in turn supports the invasive potential of the cancer cells (Samak and 

Israel, 1982). Furthermore, bone marrow stroma is a source of SDF1 and may 

influence the ability of cancer cells to home to the bone marrow. The bone marrow 

has been shown to provide a niche for disseminated breast cancer cells that express 

high levels of CXCR4 (Muller et al., 2001). In CRC, tumor cells often migrate to the 

liver and the lymph nodes. The liver and lymph endothelial cells express C-X-C motif 

chemokine 13 (CXCL13), which is the ligand for C-X-C chemokine receptor type 5 

(CXCR5) that is expressed in many colorectal cancer cells. CXCL13 may act as 

potential chemoattractant and possibly directs tumor cells via the lymphatics to their 

target organs (Meijer et al., 2006). This would support the hypothesis that tumor cells 

have a specific tissue tropism and seed only to a specific “soil” that promotes their 

outgrowth.  

However, the interactions of the microenvironment with tumor cells at secondary 

sites are less well studied than the interactions within the primary tumor. 

 
The role of macrophages within the primary tumor  

In the primary tumor, the recruited macrophages have been suggested to play a role 

in chronic inflammation, matrix remodeling, tumor cell invasion, intravasation and 

angiogenesis (Condeelis and Pollard, 2006). Tumor associated macrophages 

(TAMs) have been shown to secrete vascular endothelial cell growth factor A 

(VEGFA) and therefore favor metastasis by the promotion of angiogenesis (Barbera-

Guillem et al., 2002). In addition, macrophages as well as primary tumors produce 

tumor necrosis factor α (TNFα). TNFα mediates an upregulation of adhesion 

molecules in endothelial cells, such as E-selectin, P-selectin and vascular cell 

adhesion protein 1 (VCAM1), which in turn promote tumor cell migration and 

extravasation (Mannel et al., 1994; Stoelcker et al., 1995). 

Hafner and colleagues proposed that TNFα impairs natural killer (NK) cell activity 

and protects tumors cells from NK cell attacks (Hafner et al., 1996).  

Several studies using mouse models demonstrated that macrophages mediate 

tumor growth. Mice deficient in macrophage function showed decreased levels of 

macrophage infiltration into the tumor surroundings, leading to an inhibition of tumor 

angiogenesis, metastasis and tumor growth (Hiraoka et al., 2008; Lin et al., 2006; Lin 

et al., 2001; Miselis et al., 2008; Zeisberger et al., 2006).  
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The role of fibroblasts within the primary tumor 

Stromal fibroblasts present in the primary tumor are referred to as carcinoma-

associated fibroblasts (CAFs) or myofibroblasts. These fibroblasts constitute a 

source of matrix metalloproteinases (MMPs) that degrade matrix components and 

thereby support tumor cell invasion into the surrounding tissue (Afzal et al., 1998; 

Noel et al., 1998). Rabinovitz and colleagues showed that laminin-1 is released upon 

MMP degradation of the ECM and subsequently promotes cell migration of integrin 

α6ß4 expressing colorectal tumor cells (Rabinovitz and Mercurio, 1997).  

Additionally, Vermeulen et al. suggest that myofibroblasts located at the invasive 

front of the tumor, maintain high Wnt activity in putative colorectal cancer stem cells 

(CSCs) via hepatocyte growth factor (HGF) production (CSCs see chapter 4.10.1). 

These myofibroblasts are able to activate Wnt signaling in more differentiated tumor 

cells and thereby restore their tumorigenic capabilities (Vermeulen et al., 2010). 

Taken together, it is clear that various cell types play a role in both, the primary 

tumor and the metastatic sites. This complex network of diverse cellular interactions 

poses a big challenge for cancer treatment but also opens many new avenues for 

the development of novel therapeutics. 

 
4.8. Current treatment methods of metastatic colorectal cancer 
 

Colorectal cancer is still one of the leading causes of cancer-related death (Jemal et 

al., 2011), even though the death rates have been decreasing in the Western 

countries due to improved treatment and a frequent use of early detection methods 

(Chu et al., 1994; Edwards et al., 2010; Mitry et al., 2002; Sant et al., 2001). The 

major cause of death is the development of metastasis. Approximately 70% of the 

colorectal cancer patients develop metastasis (Wanebo et al., 1978; Welch and 

Donaldson, 1979). The liver is the most common site of metastasis and the median 

survival without treatment is between 6 and 9 months (Simmonds, 2000). Hepatic 

resection is the gold standard in treatment of metastatic CRC patients and the only 

curative treatment for some patients (Rothbarth and van de Velde, 2005), with 5-year 

survival rates ranging from 25 to 39% (Adson et al., 1984; Hughes et al., 1986; 

Scheele et al., 1995). The tumor cells mainly spread via the portal vein to the liver. In 

advanced stages of the disease, metastases are also found in the lungs, the lymph 

nodes or the peritoneal cavity. Weiss and colleagues analyzed autopsy data from 

1541 CRC patients and showed that metastases followed a sequential pattern of first 

liver, then lung and then other organs (Weiss et al., 1986). These data support the 
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linear progression model (see chapter 4.6.), which suggests that primary metastases 

are able to generate additional metastases in a sequential manner. Furthermore, 

some patients harbor bone metastases that are usually associated with widely 

disseminated CRC (Leinung et al., 2000).  

In addition to surgery, patients with metastatic CRC are treated with radio- and/or 

chemotherapy such as 5-Fluorouracil (5-FU) alone or in combination with Oxaliplatin 

or Irinotecan (Pasetto et al., 2005). These three compounds have different modes of 

action. 5-FU is a nucleoside analog that blocks the enzyme thymidylate synthase 

and thus disrupts the synthesis of thymine nucleotides that are needed for DNA 

replication (Segal and Saltz, 2009). Oxaliplatin is a platinum-based compound that 

prevents DNA replication and transcription via the formation of cross-linking DNA 

adducts (Woynarowski et al., 1998). Irinotecan inhibits the nuclear enzyme 

topoisomerase I, which enables the uncoiling of the DNA during replication (Hsiang 

et al., 1985). 

The combinatorial treatment, usually administered as FOLFOX (5-FU / Leucovorin / 

Oxaliplatin) or FOLFRI (5-FU / Leucovorin / Irinotecan), has improved the response-

rates for advanced CRC from 10-20% to 40-50% (Douillard et al., 2000; Giacchetti et 

al., 2000; Raymond et al., 1998). Furthermore, novel targeted therapies have been 

developed, including monoclonal antibodies and small molecule inhibitors directed 

against the vascular endothelial growth factor (VEGF), or epidermal growth factor 

receptor (EGFR). Anti-VEGF therapy targets the vasculature by blocking the VEGF 

function. Numerous small molecule tyrosine kinase inhibitors have been developed 

that compete with ATP for the binding to the EGFR and thereby disable ligand-

induced responses (Chen et al., 1987; Honegger et al., 1987a; Honegger et al., 

1987b).  

Even though therapies against CRC and the understanding of the disease improved 

in the past years, resistance to chemotherapy limits the success of treatment and 

many patients develop recurrent metastatic disease, dependent on the stage of the 

disease. Approximately 95% of these patients relapse within 5 years after treatment 

(Kobayashi et al., 2007). The tumor cells that have shed to distant organs might 

persist in a dormant state, meaning that they do not divide and show low metabolic 

activity (Aguirre-Ghiso, 2007). As chemotherapy regimens target proliferating cells, 

the dormant cells with an altered regulation of the cell cycle may survive these 

treatments. Many studies have started to implement the concept of dormancy and try 

to unravel its role in adult stem cells and cancers.  
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4.9. The concept of dormancy 
 
The term “tumor dormancy” originates from clinical observations in cancer patients 

that relapse years to decades after apparently successful treatment. During this time 

period, tumor cells remain in the body of the patient either at the primary site or as 

distant metastasis. This phenomenon is also referred to as minimal residual disease 

(MRD). The remnant tumor cells are below the detection threshold and therefore 

remain unnoticed (Hedley and Chambers, 2009).  

Breast cancer is one of the most frequent types of solid cancers where dormancy 

has been observed. Demicheli and colleagues for example analyzed the recurrence 

speed in a cohort of 1173 breast cancer patients who had undergone mastectomy. 

Around 50% of the patients suffered from relapse within 15 years (Demicheli et al., 

1996). The time from first-line therapy to recurrence of the disease can take up to 25 

years (Meltzer, 1990) and the relapse rate after more than 5 years is 20% (Marches 

et al., 2006).  

One reasonable hypothesis explaining the long latency period between removal of 

the primary tumor and recurrence is tumor dormancy (Fig. 12). Demicheli and 

colleagues suggested that tumor growth occurs rather rapidly after a period of 

dormancy (Demicheli et al., 1994) and that the activation of the dormant cells may be 

induced via tumor- or microenvironment changes (Demicheli et al., 1996).  

 

Fig. 12: Scheme of possible cancer relapse mechanisms. Tumor cells that have shed to 
distant organs are resistant to chemotherapy and/or targeted agents due to the acquisition of 
a dormant state. These dormant tumor cells are activated years to decades after treatment 
and will develop into overt metastasis. Adapted and modified from Visvader and Lindemann 
(Visvader and Lindemann, 2012). 
 

Folkman and colleagues provided further evidence of the existence of tumor 

dormancy, where autopsies performed on individuals that died of trauma often 

revealed in situ carcinomas, even though they did not have cancer-related disease 

(Folkman and Kalluri, 2004). This finding indicates that many more individuals than 
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expected harbor tumors that may be in a dormant state for their entire lifetime. The 

following questions arise upon these observations: what keeps certain tumor cells in 

a dormant state and what are the mechanisms leading to their activation and growth. 

The answer to these questions is the key to better understand the process of 

metastasis and relapse. Currently there is no direct evidence of the existence of 

such dormant cells and there are no available markers characterizing them. Indeed, 

the study of tumor dormancy is difficult due to detection limitations and the lack of 

suitable model systems. In order to unravel the process of tumor dormancy, the term 

needs to be properly defined because there may be several independent 

mechanisms leading to this phenomenon. Two major definitions that are used in the 

field should not be confused: tumor mass- and cellular dormancy. Tumor mass 

dormancy refers to a state where proliferation is counterbalanced by apoptosis. The 

tumor cells still actively divide but the tumor mass does not increase. Contrarily, 

tumor cells that are in a state of cellular dormancy show low metabolic activity and 

enter a G0-G1 arrest, also referred to as quiescence. The cellular characteristics of 

one or the other mechanism may be completely different. A transition between the 

two states of dormancy may be possible as well. In the following chapters the current 

knowledge on cellular dormancy and the future impact on cancer patients will be 

discussed.  

 
Quiescence as a feature of adult stem cells 

Multipotent stem cells are crucial to maintain regenerative tissues in the body such 

as the skin, the hematopoietic system and the gut. These cells undergo life-long self-

renewal and have the capacity to generate all different cell types of each lineage 

(Weissman, 2000). Populations of adult stem cells have been identified in several 

tissues of the body, including the skin (Clayton et al., 2007; Cotsarelis et al., 1990; 

Lyle et al., 1998; Snippert et al., 2010), the intestine (Barker et al., 2007; Bjerknes 

and Cheng, 1999; Cheng and Leblond, 1974; Potten et al., 1992; Potten et al., 1974; 

Sangiorgi and Capecchi, 2008), the mammary glands (Shackleton et al., 2006; Welm 

et al., 2002), the brain (Uchida et al., 2000), the prostate (Leong et al., 2008) and the 

hematopoietic system (Morrison and Weissman, 1994; Osawa et al., 1996). It has 

been suggested that infrequent cell division or quiescence might play an important 

role in adult stem cell pool maintenance of some tissues (Orford and Scadden, 

2008). In addition, quiescence may limit the accumulation of mutations during 

numerous rounds of DNA synthesis (Coller et al., 2006; Sang et al., 2008; Viatour et 

al., 2008) and therefore prevent a malignant transformation to putative cancer stem 

cells (CSCs) (Lobo et al., 2007; Park and Gerson, 2005; Wang and Dick, 2005).  
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The mouse hematopoietic stem cells (HSCs) are the best-characterized adult stem 

cells. Slowly cycling HSCs have been identified in several studies (Cheshier et al., 

1999; Foudi et al., 2009; Morrison and Weissman, 1994; Passegue et al., 2005; 

Yoshihara et al., 2007) and the existence of a highly dormant population of functional 

HSCs has been described in mice. These highly dormant cells divide only five times 

during the remaining lifespan of the organism and can be activated in response to 

bone marrow injury. After re-establishment of homeostasis, the activated cells may 

reenter a dormant state (Wilson et al., 2008). Furthermore, it is discussed whether 

different subsets of HSCs may co-exist: dormant- and homeostatic HSCs. The 

dormant cells may represent a reserve stem cell pool that harbors long-term 

reconstitution abilities whereas the homeostatic HSCs cycle more actively and 

therefore support the daily production of new blood cells (Abkowitz et al., 1990; Haug 

et al., 2008; Wilson et al., 2008). 

 
The intestinal stem cell: a complex and heterogeneous system 

In the intestine, the identity of the stem cell is still under debate. Two different 

models were proposed so far: The +4 model and the stem cell zone model. In the +4 

model, cell-tracking experiments predicted a common cell of origin at position 4-5 in 

the crypt just above the Paneth cells (Fig. 13) (Cairnie et al., 1965; Potten, 1977; 

Potten et al., 1974). The +4 cells retain DNA labels for long time periods suggesting 

that these cells are having quiescent features (Potten, 1977; Potten et al., 1974). 

The polycomb group protein Bmi1, marks intestinal stem cells (ISCs) at the +4 

position that are able to give rise to all four epithelial lineages (Sangiorgi and 

Capecchi, 2008).  

In contrast to the +4 model, the stem cell zone model proposes that crypt-based 

columnar cells (CBCs) located among Paneth cells at the crypt bottom represent the 

intestinal stem cells (Fig. 13) (Bjerknes and Cheng, 1999; Cheng and Leblond, 

1974). Barker and colleagues identified leucine-rich-repeat containing G-protein-

coupled receptor 5 (Lgr5) as a marker for the corresponding murine ISCs. These 

Lgr5 positive CBC cells are actively cycling and have the capacity to generate all 

epithelial lineages similar to the Bmi1 expressing cells (Barker et al., 2007).  
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Fig. 13: Schematic representation of the intestinal 
crypt structure. The intestinal crypt is composed of 
actively dividing CBC cells (Lgr5+) located at the 
bottom of the crypt and LRCs cells (Bmi1+) at the +4 
position. Transit amplifying cells produced by the stem 
cells migrate up the crypt where they differentiate into 
distinct functional epithelial lineages, such as 
enterocytes, goblet cells and enteroendocrine cells. 
Adapted from Li and Clevers (Li and Clevers, 2010). 
 
 

 

 

However, the relationship between the two intestinal stem cell types is still poorly 

understood. It has been recently proposed that quiescent and active ISCs coexist in 

two different zones within the crypt: a quiescent- and an active stem cell zone (Li and 

Clevers, 2010; Scoville et al., 2008). The stem cells are stimulated or inhibited via 

the microenvironment. The microenvironment surrounding the crypt bottom, where 

the Lgr5 positive cells are located, has high Wnt activity (Barker et al., 2007) and 

inhibited bone morphogenetic protein (BMP) signaling (He et al., 2004; Kosinski et 

al., 2007). Contrarily, the stem cells at the +4 position are exposed to BMP4 and the 

Wnt inhibitor secreted frizzled-related protein 5 (sFRP5) (Gregorieff and Clevers, 

2005; He et al., 2004). Wnt signaling is involved in the activation of the intestinal 

stem cells whereas BMP signaling was suggested to antagonize crypt formation and 

ISC self-renewal (Haramis et al., 2004; He et al., 2004). 

Greco at al. proposed that the balance between quiescent and actively dividing stem 

cells might be organized via compartmentalization of the stem cell niche. The 

authors suggested that the stem cells might work cooperatively, where one 

compartment is maintained as a stem cell pool and the other one is engaged in 

immediate and rapid new growth. Recent studies indicate that there may be an 

interconversion between the identified stem cell populations. Tian and colleagues 

suggested that Bmi1 positive cells might serve as reserve stem cell pool. In case of 

injury and elimination of Lgr5 positive cells, these cells are able to give rise to Lgr5 

positive cells (Tian et al., 2011). Moreover, the atypical homeobox gene (Hopx) has 

been shown to co-localize with the quiescent ISC population at the +4 position. 

These Hopx expressing cells can give rise to Lgr5-expressing CBC cells and the 

other way around (Takeda et al., 2011), suggesting an interplay between the two cell 

types. Additionally, Montgomery and colleagues identified mouse telomerase reverse 

transcriptase (mTERT) as a marker for slowly cycling intestinal stem cells 

(Montgomery et al., 2011). mTERT expressing cells  give rise to all differentiated cell 
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types present in the intestine. Like the Bmi1 positive cells, these cells are resistant to 

radiation and can give rise to Lgr5 positive cells upon injury (Montgomery et al., 

2011; Yan et al., 2012). Yan et al. demonstrated that Bmi1- and Lgr5 positive cells 

are two functionally distinct but cooperative populations. The authors showed that 

Bmi1 positive ISCs represent a quiescent and injury-inducible reserve ISC pool 

whereas Lgr5 positive cells contribute to homeostasis of the small intestine (Yan et 

al., 2012).  

Recently leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1) have been 

identified as a new ISC marker via gene expression profiling of CD24-purified mouse 

colonic epithelial progenitor cells (Akashi et al., 1994; Gracz et al., 2010; Powell et 

al., 2012; von Furstenberg et al., 2011). Lrig1 has been described as a negative 

feedback inhibitor of ErbB signaling (Laederich et al., 2004) that marks 

predominantly non-cycling, long-lived stem cells. Powell and colleagues proposed 

that Lrig1 positive cells are downstream of the quiescent Bmi1- or mTERT positive 

stem cells giving rise to transient amplifying (TA) cells and/or Lgr5 positive cells. The 

authors showed that most crypt cells express either Lgr5 or Lrig1, however, in rare 

cases colocalization of the two markers occurred in the same cells (Powell et al., 

2012). This is in line with the finding of Itzokoviz and colleagues who investigated an 

overlapping expression of several ISC markers such as Lgr5, Bmi1 and mTert, in 

crypt base cells (Itzkovitz et al., 2012). 

Most of the described studies indicate that several pools of intestinal stem cells 

might coexist. Actively cycling cells that may be important for the homeostasis of the 

regenerative tissue whereas the quiescent SC population may serve as a reserve 

pool that can be activated in cases of injury or stress. The SC function might be 

triggered partially by the microenvironment leading to the presence of 

heterogeneous cellular stem cell states that might transition among each other. 

Further investigations need to be performed to unravel the complex mechanisms of 

ISCs.   

 

4.10. Cancer, cancer stem cells and quiescence: Plasticity vs. Stability 
 
Cancer stem cells in colorectal cancer 

Due to the observation of a cellular hierarchy within several cancer entities (Al-Hajj et 

al., 2003a; Bonnet and Dick, 1997), a parallel has been made between the cellular 

organization of adult tissues and those of tumors. This parallel lead to the 

formulation of the cancer stem cell hypothesis (Reya et al., 2001). According to this 

hypothesis, so called cancer stem cells (CSCs) or tumor initiating cells (TICs) 
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represent a subpopulation within the bulk of the tumor (Lobo et al., 2007; Trumpp 

and Wiestler, 2008) that have the capacity to self-renew as well as to generate all 

the diverse cellular phenotypes of the tumor (Vermeulen et al., 2008a). The current 

standard to test a prospective cell population for those abilities is the 

xenotransplantation into immunocompromised mice. Only cancer stem cells should 

be able to regenerate a heterogeneous tumor with similar properties of the primary 

tumor. In addition, the xenograft must be serially transplantable into new recipient 

mice, which is an indication for long-term self-renewal capacity of the stem cell 

(Vermeulen et al., 2008a) (Fig. 14).  

 
Fig. 14: In vivo CSC assay. CSCs have been defined as a subpopulation of tumor cells, able 
to self-renew and to generate all various cell types present in the original tumor. In order to 
test these CSC functions, diverse tumor cell populations are sorted and transplanted into 
immunodeficient mice, usually at limiting-dilutions. Only if CSCs are present, a 
heterogeneous tumor, resembling the original tumor will develop. Furthermore, primary 
xenografts are dissociated and further transplanted into secondary recipients in order to show 
the long-term self-renewal capacity of the tumor cells. Adapted from Nguyen (Nguyen et al., 
2012) 
 

Many studies were performed in order to identify potential CSC markers in CRCs. 

Most of these studies screened for differentially expressed cell surface markers, 

sorted marker-positive and -negative subpopulations and performed transplantation 

assays to functionally validate these markers as described above.  

In 2007, two groups proposed that CD133 might be a potential marker for CRC stem 

cells (O'Brien et al., 2007; Ricci-Vitiani et al., 2007). CD133, also referred to as 

Prominin-1, has been described as a marker for primitive hematopoietic- and neural 

stem cells (Uchida et al., 2000; Yin et al., 1997). CD133 is a pentaspan membrane 

protein that contains two glycosylated extracellular loops (Corbeil et al., 2001). Even 

though this marker has been described for many years, the function of CD133 is still 

relatively unclear. 
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O’Brien and colleagues sorted CD133 positive and -negative CRC tumor cells and 

performed limiting dilution assays in immunodeficient mice. The authors 

demonstrated that the CD133 positive cell population was highly enriched for tumor 

initiating cells (O'Brien et al., 2007). Similarly Ricci-Vitiani et al. showed that only 

CD133 positive cells give rise to tumors whereas the CD133 negative cell population 

did not develop into tumors after subcutaneous transplantation (Ricci-Vitiani et al., 

2007).  

However, a recent study from Shmelkov and colleagues challenges this finding. 

Here, the authors analyzed the expression pattern of CD133 in CRCs and normal 

murine epithelium using a genetic mouse model harboring the lacZ reporter gene in 

the CD133 locus. The marker expression was detected in a broad spectrum of 

differentiated and undifferentiated epithelial cells, including the colon. This finding 

indicates that CD133 expression is not restricted to the stem cell compartment. 

Furthermore the authors demonstrated that epithelial cell adhesion molecule 

(EpCAM) positive/CD133 negative cells were able to generate tumors in 

immunodeficient nonobese diabetic/severe combined immunodeficiency disease 

(NOD/SCID) mice over serial passages. Surprisingly, the CD133 negative population 

resulted in more aggressive tumors than the ones generated by CD133 positive 

tumor cells (Shmelkov et al., 2008). Nevertheless, CD133 expression has been 

described to correlate with poor prognosis (Horst et al., 2008) and low levels of this 

marker result in a longer relapse-free interval in CRC patients (Artells et al., 2010). 

Taken together these data suggest that CD133 might not be a specific CSC marker 

for CRCs.  

Further investigations have identified novel CSC markers. Dalerba and colleagues 

suggested that EpCAMhighCD44+ tumor cells were able to engraft in immunodeficient 

mice whereas EpCAMlowCD44- populations did not induce the development of 

tumors. The authors also identified CD166 as a co-CSC marker that was 

independent and synergistic with regard to CD44 (Dalerba et al., 2007). 

CD44 has been described as CSC marker in prostate- (Collins et al., 2005; 

Patrawala et al., 2006), pancreatic- (Li et al., 2007) and breast cancer (Al-Hajj et al., 

2003a). The hyaluronic acid receptor CD44 is a transmembrane glycoprotein that 

plays a role in many cellular processes such as cell growth, survival, differentiation 

and motility (Aruffo et al., 1990; Cheng and Sharp, 2006; Nagano and Saya, 2004; 

Vigetti et al., 2008). Moreover, CD166 also referred to as activated leucocyte cell 

adhesion molecule (ALCAM), has been described as mesenchymal stem cell marker 

in melanoma (van Kempen et al., 2000). In addition, CD166 is highly expressed 

within the endogenous intestinal stem cell niche (Levin et al., 2010). Weichert and 
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colleagues report a shortened survival for CRC patients that have an altered CD166 

expression (Weichert et al., 2004).   

Recently, the aldehyde dehydrogenase 1 (ALDH1) has also been suggested to mark 

CRC stem cells. Huang and colleagues identified ALDH1 expression in the bottom of 

the crypts where the ISCs are located. Furthermore transplantation assays revealed 

that only ALDH1 positive cells were able to develop into a tumor, whereas ALDH1 

negative cells failed (Huang et al., 2009). 

In summary, many distinct markers have been proposed as putative CSC markers 

for CRCs. However, the overlap between the different CSC populations described in 

these different studies still remains to be investigated. Furthermore, the specificity of 

these markers is still under debate. Many of these markers are not restricted to the 

stem cell compartment and are expressed in various tissues and cell types. 

Moreover, the function of most of these markers in regard to CSCs is still not fully 

understood.  

An explanation for the discrepancy between the different reported CRC stem cell 

populations might be found among the increasing evidence on the highly plastic and 

dynamic features of CSCs. Indeed, it has been shown that the phenotype of CSCs 

may vary between individual patients and that several CSC clones may coexist 

within the tumor of an individual patient (Anderson et al., 2011; Notta et al., 2011). 

Adding to this complexity, it has also been reported in CRC that non-CSCs might be 

able to acquire CSC function when placed in the right microenvironment (Vermeulen 

et al., 2010).  

 

4.11. Quiescence in cancer 
 
Relatively few studies have been performed to study quiescence in cancer compared 

to adult tissues. This is most probably due to the lack of appropriate model systems. 

However, there is some evidence that quiescence might play an important role in at 

least some tumor entities.  

Gao et al. reported that CD24 positive primary ovarian tumor cells proliferate slower 

than the CD24 negative cell population. CD24 positive cancer cells were more 

tumorigenic and expressed stem cell-associated genes such as nestin, oct4 and 

notch-1 and -4. Furthermore, the slowly cycling CD24 positive cell population was 

more resistant to cisplatin and expressed higher levels of ATP-binding cassette sub-

family G member 2 (ABCG2) transporters that are involved in drug-efflux (Gao et al., 

2010). This study suggests that the cell cycle of cancer cells may be linked to cancer 

stem cell properties, such as higher tumorigenic capacities, quiescence and drug 
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resistance. However, the CD24 positive cell population was enriched in S phase, 

which contradicts the finding of a slowly cycling phenotype. Moreover, quiescent 

cells have been identified in spheroids isolated from ascites of ovarian cancer 

patients. These quiescent cells were able reinitiate cell division upon attachment to a 

favorable environment in an AKT-dependent manner (Correa et al., 2012). To date, it 

is still unclear whether cancer stem cells relate to specific cell cycle distributions. 

Studies performed in breast- and pancreatic cancer did not find any correlation 

between CSCs and a particular cell cycle state (Al-Hajj et al., 2003b; Li et al., 2007). 

Possibly quiescent cells represent a very small subpopulation of the putative 

identified CSC populations in some tumor entities, that a difference in cell cycle state 

is not detectable when analyzing the whole CSC population. To overcome these 

limitations, quiescent cells need to be specifically labeled prior to analysis. 

Moore et al. used Carboxyfluorescein succinimidyl ester (CFSE) to label commonly 

used breast (MDA.MB.231)- and colon (HCT116) cancer cell lines, as well as 

primary human breast tumor cells. They identified a small subpopulation of slowly 

cycling cells that was more resistant to chemotherapy and retained the capacity to 

proliferate after chemotherapy withdrawal (Moore et al., 2011). Their finding 

suggests that slowly cycling cells may be responsible for relapse at least in some 

cancer patients. 

Pece and colleges labeled mammospheres isolated from human normal mammary 

stem cells (hNMSCs) with PKH, a lipophilic dye that is retained in quiescent cells. 

The transcriptional profile of label retaining mammospheres was generated and 

could be used to predict biological and molecular features of breast cancers. In 

addition the authors analyzed mammospheres generated from grade 1 and grade 3 

tumors for label retaining cells (LRCs) and found that grade 3 tumors had higher 

percentages of LRCs suggesting an increase in putative cancer stem cells as the 

tumor progresses (Pece et al., 2010). This study indicates that LRCs may be 

associated with the CSC population. 

Roesch and colleagues identified the histone demethylase JARID1B as a novel 

biomarker for slowly cycling melanoma cells. JARID1B was dispensable for tumor 

initiation but necessary for long-term tumor maintenance, suggesting that JARID1B 

is not a classical CSC marker. The fact that JARID1B negative cells are able to 

generate JARID1B positive cells indicates that the JARID1B phenotype is dynamic. 

The authors suggest that cancer cells are able to transiently acquire stemness 

properties and thereby support the model of dynamic stemness (Roesch et al., 

2010).  
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Dembinski and Krauss used the lipophilic labeling dye DiI to detect slowly cycling 

cells in pancreatic cancer cell lines. The slowly cycling cell population showed an 

increased presence of the pancreatic CSC markers CD24/CD44 and CD133. 

Furthermore, the slowly cycling cells displayed the morphological and genetic 

fingerprint of epithelial-mesenchymal transition (EMT) including increased 

invasiveness, tumor initiating potential and a shift in sensitivity to chemotherapy 

(Dembinski and Krauss, 2009). In line with Roesch et al. is the finding that the DiI 

negative population is able to generate DiI positive cells supporting a dynamic model 

with bidirectional potential in both, subpopulation- and bulk cells. Moreover, data 

from Sharma and colleagues support a dynamic model regarding treatment 

sensitivity. The authors suggest a dynamic survival strategy where human cancer 

cells transiently acquire a drug-tolerant state (Sharma et al., 2010).  

The labeling techniques with lipophilic dyes give a first hint whether slowly cycling 

cells exist in primary tumors. However these dyes have a short half-life and enable 

studies only over short time periods. Thus to study label retention in more detail 

long-term inducible labeling methods for in vivo experiments are needed. 

Additionally, the microenvironment might play a very important role as well. 

Exogenous stimuli and signaling molecules might be involved in the interplay 

between LRCs and fast cycling cells and they may even trigger a switch between the 

two cycling states. Some of these studies hint already towards a more dynamic 

system at least in some tumor entities making it more complex to develop specific 

treatment strategies. 

Moreover, all the studies performed in order to identify and functionally characterize 

LRCs in solid tumors have been performed with the help of cell lines or primary 

human cells that were expanded in vitro and in xenograft models. Whether the 

expansion of dormant tumor cells in any of the model system still preserves the 

phenotype of quiescent cells is still under debate but is to date the only possibility to 

gain insight into possible mechanisms underlying cellular dormancy (Vessella et al., 

2007).  

A huge amount of effort has been made to overcome these hurdles and numerous 

studies in cancer patients have been performed, mainly on disseminating tumor cells 

(DgTCs) detected in the bone marrow.  

 
Clinical relevance of quiescent cancer cells 

Many cancer patients that do not show any sign of metastasis either at the time point 

of prognosis or surgery harbor tumor cells in their bone marrow. The presence of 

these disseminating cells (DgTCs) was associated with poor prognosis in breast- 
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(Braun et al., 2005; Pantel and Woelfle, 2005), prostate- (Morgan et al., 2009) and 

colorectal cancer patients (Leinung et al., 2000). 

These analyses are of great clinical importance and may predict treatment success 

and possible relapse in cancer patients. However further investigations that unravel 

the molecular mechanisms of DgTCs are indispensible. Pantel and colleagues 

performed immunocytochemical analysis on bone marrow aspirates of breast cancer 

patients using monoclonal antibodies directed against cytokeratins in combination 

with antibodies against nuclear proliferation markers, such as Ki-67 and p120. The 

authors showed that the majority of DgTCs are in a quiescent state, one of the 

hallmark features of stem cells (Pantel et al., 1993). This is in line with the finding 

that tumor relapse occurs in some patients even decades after apparently successful 

treatment, indicating that DgTCs may be the source for later developing metastasis.  

Furthermore, two independent studies on breast- and ovarian cancer suggest that 

DgTCs are more resistant to standard chemotherapy treatment (Naumov et al., 

2003; Wimberger et al., 2007). Wimberger et al demonstrated that half of the 

patients harbored remaining DgTCs after first-line therapy (Wimberger et al., 2007).  

In conclusion, these findings suggest that DgTCs may be of clinical relevance. 

DgTCs seem to be in a quiescent state, which might help them to survive standard 

chemotherapy regimens and finally progress into overt metastasis after a certain 

period of time. However, these studies are all descriptive without any functional proof 

that the detected DgTCs are indeed the root of metastasis. Additional studies and 

functional assays are needed to further analyze these cells and to develop novel 

treatment strategies. 

 
4.12. Future perspectives 
 
The existence of slowly cycling cells has been demonstrated in several adult stem 

cells and only a few studies also report evidence for the presence of such cells in the 

context of cancer.  

These quiescent or slowly cycling cell populations seem to be heterogeneous and 

may have different functions. In the hematopoietic system, long-term and short-term 

LRCs exist. Both populations are able to reconstitute the hematopoietic system. 

However, only long-term LRCs retain the capability to reconstitute the blood system 

in serial transplantation assays, suggesting a co-existence of different stem cell 

populations possibly fulfilling different functions (see chapter 4.9). Moreover, there is 

some evidence that these highly dormant HSCs can be activated upon stress 

induction, such as injury. In order to retain the backup population of stem cells, the 

activated HSCs may reenter in a dormant state after replenishing the destroyed cells 
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(Essers et al., 2009; Foudi et al., 2009; Wilson et al., 2008). This dynamic switch 

between quiescent- and actively dividing cells may be also true for several other 

tissue stem cells.  

In the context of cancer, slowly cycling cells may have the capability to better survive 

chemotherapy compared to fast cycling tumor cells. In contrast to adult stem cells, 

the presence of long-term LRCs in tumors has not been described yet 

experimentally. It is of importance to distinguish between long-term LRCs and slowly 

cycling cells. These different cycling cell populations may have distinct functions and 

underlying mechanisms. In tumors, it might be unlikely to detect long-term LRCs, 

due to mutations in oncogenes and/or tumor suppressor genes that generally 

support sustained proliferation capacities (Hanahan and Weinberg, 2000, 2011). 

However, there are several indications that slowly cycling cells exist within a primary 

tumor. As described for HSCs, it seems that tumor cells are able to switch between 

different cycling phenotypes. Slowly cycling tumor cells may survive treatment but 

still retain the potential to proliferate upon so far unknown stimuli and thereby cause 

recurrence. A better understanding of the underlying mechanisms responsible for the 

phenotypic switch or for the maintenance of quiescence will open many new 

avenues for the development of novel therapies.  
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5. Aim of the thesis 
 

The first goal of this PhD work was to test whether dormant or slowly cycling cells 

exist within colorectal tumors. To reach this goal, a suitable in vitro and in vivo model 

was required that fully recapitulated the human disease. In addition, a suitable 

cellular tracking system was required in order to detect slowly cycling cells for long 

time periods in vitro and in vivo.  

If dormant or slowly cycling cells were identified within colorectal tumors, the second 

goal of this PhD work was to characterize the cellular phenotype and to test whether 

these cells had any similarities with the previously identified putative colorectal 

CSCs. 

Finally, if dormant or slowly cycling cells could be detected, the third goal of this PhD 

work was to functionally characterize dormant or slowly cycling colorectal tumor cells 

by investigating their potential role during tumor progression, metastasis and 

chemotherapy resistance.  
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6. Results 
 
6.1. Establishment of a suitable in vivo system to study human colon cancer 
development 
 
In order to study human colorectal cancer (CRC), a suitable model system is needed 

that fully recapitulates the disease. A good model system is an orthotopic one that 

preserves the initial microenvironment of the tumor cells. However, injections of 

primary human tumor cells into the thin colon wall of a mouse are difficult and carry 

the risk of leakage and intraluminal injection (Tseng et al., 2007) and thus may lead 

to less reproducible results.  

To date, two common methods are widely used for xenotransplantations of colon 

cancer cells: subcutaneous injections (s.c.) (Ricci-Vitiani et al., 2007; Todaro et al., 

2007) or injections into the renal capsule (O'Brien et al., 2007). The renal capsule is 

used as a transplantation site due to high vascularization that allows a sufficient 

nutrition supply for the tumor cells.  

Both methods were adapted in the following experiments for the 

xenotransplantations of human colorectal tumor cells. The subcutaneous model was 

used for the expansion of tumor pieces to increase the limited amount of the primary 

material. Renal capsule injections were chosen for the transplantation of cancer cells 

either from primary cancer cell cultures, that are enriched for putative cancer stem 

cells or from cell suspensions directly derived from primary tumor digests.  

Furthermore, the choice of an adequate mouse model is crucial. As reported by 

Quintana and colleagues, the frequency of cancer initiating cells in melanoma is 

increased in NOD/SCID interleukin-2 receptor gamma chain null mice (NSG) 

compared to nonobese diabetic/severe combined immunodeficiency (NOD/SCID) 

mice (Quintana et al., 2008). NOD/SCID mice have an impaired B- and T cell 

lymphocyte development, while NSG mice additionally lack functional NK cells and 

thereby are even more permissive to xenotransplants (Ito et al., 2002; Morton and 

Houghton, 2007; Richmond and Su, 2008). In order to achieve a high engraftment 

rate, the NSG mouse model was chosen for the xenotransplantation assays, in 

knowledge of the limitations due to the partial absence of the immune system that 

also plays an important role in tumor development.  
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Expansion of patient tumor specimen in vivo 

Freshly collected tumor pieces were isolated from colon cancer patients. In order to 

expand the primary material, the tumor pieces were expanded in vivo in NSG mice. 

Therefore small pieces were transplanted s.c. into NSG mice. After reaching a tumor 

size of max. 1.5 cm x 1.5 cm, the tumors were harvested. To investigate whether the 

xenografts were of epithelial human origin, they were digested using collagenase 

and DNase and further analyzed using flow cytometry and immunohistochemistry 

(Fig. 15).  

For flow cytometry analysis, HLA (human leucocyte antigen) was chosen as a 

marker to confirm that the cells are of human origin. HLA is the major 

histocompatibility complex class I, which is expressed on most nucleated cells of the 

human body. The mouse counterpart of this protein is H2kD that was chosen to 

exclude mouse cells from the analysis (Steinmetz and Hood, 1983). Additionally, a 

human specific anti-EpCAM antibody was used for the staining of the tumor cells. 

EpCAM is a homophilic cell-to-cell adhesion molecule (Litvinov et al., 1994) that is 

expressed on the basolateral surfaces of most epithelial cells and is overexpressed 

in many cancers (Balzar et al., 1999; Litvinov et al., 1997; Munz et al., 2004). An 

anti-human CD45 antibody was also included in the analysis in order to exclude 

human hematopoietic cells (Hermiston et al., 2003). This is of great importance as it 

has been demonstrated that human hematopoietic cells are also able to expand in 

highly immunocompromized mice (own observations, data not shown) (Chen et al., 

2012; Simpson-Abelson et al., 2008).  

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15: Xenograft tumors are of human epithelial origin. (a) Expansion of tumor pieces 
transplanted s.c. into NSG mice. Flow cytometry analysis of tumor cells for (b) HLA- and 
H2kD expression and (c) EpCAM and CD45 expression (blue = specific staining; red = 
isotype control). 
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The cells isolated from s.c. expanded tumors were HLA+ and EpCAM+ (Fig. 15b and 

c), verifying their human epithelial origin. A few infiltrating mouse cells were identified 

among the tumor cells via the H2kD antibody staining (Fig. 15b). These cells may be 

stromal cells or macrophages of the mouse host. 

To determine whether the xenografts show a similar morphology to the patient 

tumor, immunohistochemistry analyses were performed (Fig. 16). The tumors were 

well differentiated and contained mucin producing cells demonstrated by Periodic 

acid shiff (PAS) stainings (Fig. 16a). Atypical epithelial cells forming glandular 

structures could be observed (Fig. 16b and c, black arrows).  

This shows that the tumor material can be propagated in vivo without loss of 

morphological heterogeneity and that the model is suitable to study colorectal 

cancer.  

Fig. 16: Immunohistochemistry of xenografts. (a) Periodic acid schiff (PAS) staining which 
shows mucin and mucin producing cells (pink staining; black arrows), (b) H & E staining of 
the xenograft, (c) H & E staining of the patient tumor. (b and c) Black arrows mark glandular 
structures (scale bar 50 µm). 
 
6.2. Establishment of a suitable in vitro system to study human colon 
cancer development 
 
The in vivo propagation of the tumor material is a common method to avoid selection 

pressure due to culturing methods. Important interactions between the 

microenvironment and the tumor cells are retained in vivo, except for large parts of 

the immune system, which is impaired in the NSG xenograft model. Nevertheless, 

cell culture is necessary to manipulate the cells and to study cellular mechanisms in 

detail. Up to now, most cell culture media contained fetal calf serum (FCS). It was 

reported that these conditions induce a more differentiated phenotype in the tumor 

cells with less tumor-initiating potential when transplanted into immunocompromized 

mice (Dalerba et al., 2007). Lee and colleges demonstrated that primary human 

glioma cells cultured as spheres under serum-free conditions closely preserve the 

genotype, the gene expression profile and biology of their parental primary tumors 

(Lee et al., 2006). Therefore, serum-free culture conditions were chosen for the 

establishment of primary human colorectal cancer cell lines. 
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Establishment of the colon cancer cell line HD1858 under serum-free conditions 

A tumor piece obtained from a resection of a liver metastasis of a late-stage 

colorectal cancer patient was processed. The freshly isolated tumor piece was 

enzymatically digested with collagenase and DNase to obtain a single cell 

suspension (Appendix 9.14.). The tumor cells were cultured under serum-free 

conditions in cancer stem cell medium (CSC medium, see material and methods) 

and could be successfully maintained and expanded as spheroid cultures (Fig. 17a). 

Furthermore, the tumor cells could be cultured and propagated under adherent 

conditions on collagen I coated plates (Fig. 17b). In contrast to conventional tumor 

cell culture methods, the adherent cells were still maintained in serum-free cancer 

stem cell medium, which preserved the CSC marker expression of the cells, while 

some adhesion molecules showed an altered expression (Appendix 9.15). Moreover, 

adherent cultures facilitate cell dissociation compared to sphere cultures, making it 

easier to count the cells, to sort them or to manipulate them with viruses. Therefore, 

many assays have been performed under adherent conditions. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17: Colon cancer cultures grown under serum-free conditions. The cells can be 
maintained as spheres (a) or grown adherent on collagen I coated plates in serum-free 
cancer stem cell medium (b). 
 
6.3. Characterization of sphere cultures 
 
The colon cancer spheres are tumorigenic in vivo 

As shown in the previous chapter, primary colorectal tumor cells could be 

successfully maintained in cultures. To test whether these cells were still 

tumorigenic, cultured spheres were dissociated with Accutase (Appendix 9.13) and 

5x105 cells were transplanted into the kidney capsule of NSG mice. The mice 

developed tumors two months after transplantation with cellular atypia and tumor 

architecture similar to the patient tumor (Fig. 18). 
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Fig. 18: Colon tumor spheres are tumorigenic. (a) Gross morphology of the tumor invading 
the kidney capsule. (b) H&E staining of the xenograft. (c) H&E staining of the primary patient 
tumor. (b and c) In both sections, atypical ductual structures were observed (T = tumor; S = 
stroma and/or infiltrating immune cells; K = kidney)(scale bar 50 µm). 
 
In vivo tumorigenicity assay of the established colon cancer cell line 

In order to determine the tumorigenic potential of the HD1858 spheres in vivo, 

different amounts of cells, ranging from 5x105 to 103, were injected into the kidney 

capsule of NSG mice. To monitor non-invasively the growth of the tumors in the 

mice, the tumor cells were transduced with a lentiviral vector containing constitutive 

activated reporters such as luciferase and venus. After successful transduction, 

venus positive cells were sorted in order to generate a cell line that was completely 

positive for tumor cells expressing the two reporters. Tumor growth was monitored 

weekly via in vivo bioluminescence imaging using the Xenogen system (IVIS® 200 

series, Caliper) (Fig. 19). The first signal was detected after 7 days for 5x 105 and 1x 

105 cells. Both tumor growth curves show similarities regarding the increase of tumor 

size. However, only in the group where 5x 105 cells were injected, all mice developed 

tumors. In the group where 1x 105 tumor cells were transplanted, only one out of 

three mice showed tumor growth (Tab. 1). For the groups of mice where lower cell 

numbers were injected tumor growth could not be detected in the same time frame.  

 

 

 

 

 

 

 

 
Fig. 19: Tumor growth curve for HD1858 tumor cells. (a) In vivo bioluminescence 
measurement of tumors using the Xenogen system. (b) In vivo growth curve of tumor cells 
that were injected under the kidney capsule into NSG mice (n=3 per group). 
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Tab. 1: Amount of tumor bearing mice. Different amounts  
of HD1858-luc-venus colorectal tumor cells were injected  
into the kidney capsule of NSG mice. 

cell number tumor bearing mice / total mice 
5 x 105 3/3 
1 x 105 1/3 
1 x 104 0/3 
1 x 103 0/3 

 
 
Cell lines derived from single cell clones are able to generate a differentiated tumor 
that recapitulates the human primary tumor 

In order to test whether the established cell line has the potential to regenerate a 

whole tumor out of a single cell, luciferase-venus transduced cells were sorted as 

single cells and expanded in vitro as spheres under serum-free conditions. Two 

sublines derived from single cell clones were generated. The spheres were 

dissociated and 5 x 105 cells were injected into the kidney capsule of NSG-mice. The 

tumor growth was monitored weekly via the IVIS 200 system (Fig. 20).  

 

  
Fig. 20: Cell lines derived from single cell clones generate a tumor in NSG-mice. Tumor 
growth was monitored weekly via non-invasive bioluminescence measurements using the 
Xenogen system (a). Tumor growth curve of luciferase transduced HD1858 sublines 
(n=1/subline) (b).  
 
The tumors grown out of single cell derived tumor cell lines retained their 

morphological heterogeneity and developed into adenocarcinomas that resembled 

the patient tumor, consistent of different cell types, including mucin producing goblet 

cells (Fig. 21). This result suggests that one single cell is capable of generating all 

the different cell types needed to establish a heterogeneous adenocarcinoma. 
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Fig. 21: Tumors grown out of a single cell derived colorectal tumor cell line are 
heterogeneous and resemble the human primary tumor. H&E staining of xenografts (a and b) 
and PAS staining (c, goblet cells depicted by black arrows). The origin of the tumor was one 
single cell that was sorted and expanded in vitro into a subline of the parental line. 
 
The colon cancer spheres show nuclear ß-catenin expression  

Nuclear ß-catenin localization is a prerequisite and surrogate marker for canonical 

Wnt signaling. In order to determine whether the Wnt signaling pathway is activated 

in colon sphere cultures, nuclear ß-catenin expression was measured. Colon 

spheres were fixed and immunohistochemistry (IHC) stainings for nuclear ß-catenin 

were performed. Fig. 22a demonstrates that the spheres maintained their 

heterogeneity regarding Wnt signaling activity and that only a subpopulation of cells 

showed an accumulation of nuclear ß-catenin similar to the xenograft (Fig. 22b and 

c, arrows).  

This finding suggests that the cultured spheres are suitable to study cancer stem 

cells in vitro as Vermeulen et al. proposed that Wnt signaling activity is a marker for 

colon cancer stem cells (Vermeulen et al., 2010). 

Fig. 22: Colon spheres differentially express nuclear ß-catenin. Colon spheres were 
embedded in histogel and nuclear ß-catenin staining was performed (brown). (a) Only a few 
cells within the sphere showed nuclear ß-catenin staining (black arrows) (b) similar to the 
xenograft originating from tumor pieces implanted s.c. or (c) from spheroid cultures 
transplanted into the kidney capsule (scale bar 50 µm).  
 
Colorectal cancer sphere cultures express cancer stem cell markers 

To investigate whether the cultured colon cancer cells express and preserve the 

reported cancer stem cell markers in vitro, flow cytometry analysis on HD1858 cells 

was performed. Additionally, a second cell line (G605) described by Vermeulen and 

colleagues was characterized and used for further experiments (Vermeulen et al., 

2010; Vermeulen et al., 2008b).  
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The marker CD133+ (O'Brien et al., 2007; Ricci-Vitiani et al., 2007) or the 

combination of EpCAMhigh, CD44+ and CD166+ (Dalerba et al., 2007) were 

suggested as potential colorectal CSC markers. Furthermore the marker 

combination of CD24+ and CD44+ was analyzed because this combination was 

described as putative cancer stem cell marker in other types of cancer such as 

pancreatic- and gastric cancer (Li et al., 2007; Zhang et al., 2011) but not yet for 

colon cancer.  

Both cell lines, HD1858 and G605, were completely positive for EpCAM (data not 

shown) but differed in their expression pattern of the other described cancer stem 

cell markers. CD133 was only expressed in G605 cells whereas HD1858 cells were 

completely negative for this marker (Fig. 23a and d). Both cell lines contained a 

double positive population of CD44 and CD166 expressing cells (Fig. 23b and e). 

However this population was smaller in the G605 cells when compared to HD1858 

cells (36% vs. 57%). Surprisingly, the broadest expression pattern was observed for 

the marker combination CD24 and CD44 (Fig. 23c and f). The cell line G605 was 

almost completely positive for both markers (Fig. 23c) with a broad expression 

spectrum, while the HD1858 cell line had a double positive population of 22% and a 

double negative population of 26%. Cells expressing only one of the markers were 

also present (Fig. 23f). 

 
Fig. 23: Colorectal cancer cells express CSC-markers. Doublet- and dead cell exclusion were 
performed. HD1858 cells were negative for CD133 (d) and the G605 cells were completely 
positive for CD133 expression (a). In both cell lines, a population of CD44 and CD166 
positive cells was present (b and e). The expression pattern for CD24 and CD44 was very 
heterogeneous (c and f) (red = Isotype control; blue = specific staining). 
 
 



 Results 

51 

Colorectal cancer cells differentially express cell surface molecules involved in 
migration and metastasis  

In addition to the classical cancer stem cell markers, cell surface proteins that are 

involved in migration and adhesion, including c-Met and the different alpha integrins, 

were analyzed. Most of the HD1858 cells were homogeneous concerning alpha 

integrin expression (Fig. 24b, c and f). The only two alpha integrins that showed a 

broader expression pattern were CD49a (integrin alpha 1) and CD49e (integrin alpha 

5) (Fig. 24a and e). Moreover, 78 % of the cells were positive for c-Met (Fig. 24g). 

Similar results were obtained for the G605 cells. In this cell line, CD49c (integrin 

alpha 3) was differentially expressed in addition to CD49a and CD49e. C-Met was 

expressed in almost all tumor cells (Appendix 9.3).  

This demonstrates that the cells were heterogeneous in regard to some cell surface 

markers that play a potential role in metastasis, even though they were expanded in 

vitro. 

 
 
Fig. 24: HD1858 cells differentially express alpha integrins and c-Met. Dead cell exclusion 
using PI and doublet exclusion were performed. (a) The spheres differentially expressed 
CD49a, (e) CD49e and (g) c-Met. b) Colorectal cancer cells were completely positive for 
CD49b and (c) CD49c. (d) The tumor cells did not express CD49d (red = unstained; blue = 
isotype control; green = specific staining). 
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6.4. Evaluation of the marker combination CD24/CD44 as putative new 
cancer stem cell markers in GFP+ G605 colon cancer spheres 
 
As detected in sphere cultures, CD24 and CD44 showed the broadest expression 

pattern compared to any other marker analyzed in this study. In order to determine 

whether these two markers show any functional differences in vivo, 

CD24high/CD44high and CD24low/CD44low cell populations were sorted (Fig. 25) and 

injected into the kidney capsule of NSG mice (40.000 cells/mouse; n=3 per group). 

For this experiment, the cell line G605 was chosen because it had a higher 

tumorigenicity than the primary cell line HD1858. In addition, this cell line was able to 

metastasize to the liver and the lungs whereas no metastases were observed in 

HD1858 injected mice. Furthermore, G605 cells were transduced with the 

tetracycline-inducible lentirviral vector expressing the H2B-GFP reporter (vector map 

see chapter 9.5.) but without repressing the reporter, in attempt to detect 

micrometastasis in distant organs using flow cytometry. 

 
 
 
 
 
 
 
 
 
 
Fig. 25: Gating scheme of sorted H2B-GFP+G605 colon cells. Doublet- (b) and dead cell 
exclusion (c) were performed. The cells were stained with anti-human CD44-PB and CD24-
APC antibodies (d). A re-analysis was performed after the sort (e-f). Both populations have 
been sufficiently separated (blue = CD24low/CD44low; red = CD24high/CD44high).  
 

The mice were euthanized 3 months after injection and the tumor volume was 

analyzed. Tumors grew in all mice independent of the two markers and the tumor 

size was very variable even within both groups of mice. There was an increase in 

mean tumor volume in CD24high/CD44high injected mice compared to CD24low/CD44low 

injected mice. However, the difference between the two groups was not significant 

(p=0.1998) (Fig. 26). Moreover, the tumor growth was measured only at the end of 

the experiment. Possibly, the onset of tumor growth between the two groups might 

differ. Further analysis including in vivo bioluminescence measurements need to be 
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performed to investigate this further. Limiting dilution transplantation assays would 

provide additional information about the frequency of tumor initiating cells present in 

each population. 

 

 
Fig. 26: The tumorigenicity was not significantly different between CD24high/44high and 
CD24low/44low cells. The tumor volume was estimated via caliper measurements at the 
endpoint of the experiment. A T-test was performed. Error bars represent 95% confidence 
intervals (p = 0.1998).  
 

Furthermore, the presence of macrometastasis was evaluated. Only in the mice 

injected with CD24high/CD44high cells macrometastasis could be observed in the lung 

(n=1/3) and in the liver (n=2/3) (Tab. 2 and Fig. 27). Mice injected with 

CD24low/CD44low cells did not display any macro-metastases. Further evaluation of 

the organs for the presence of H2B-GFP expressing tumor cells using flow cytometry 

was not feasible due to technical challenges. The lungs could not be properly 

dissociated, even with the use of various enzymes and the livers contained too many 

cells, making it difficult to detect the very few tumor cells present (data not shown).  

 
Tab. 2: Evaluation of macro-metastasis after injection of CD24high/CD44high  
and CD24low/CD44low cells into the kidney capsule of NSG mice. 

 CD44high/CD24high CD44low/CD24low 

lung metastasis 1/3 0/3 

liver metastasis 2/3 0/3 
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Fig. 27: Development of macrometastasis after injection of CD24high/CD44high tumor cells. 
Lung (black arrows) (a) and liver metastasis (white arrow) (b) developed. H&E staining of 
liver- (c) and lung metastasis (d) (scale bar 50 µm). 
 

In brief, the expression of the marker combination CD24high/CD44high does not seem 

to have a significant impact on tumor growth in this experimental setting but may 

play a role in metastasis formation. However, the cohort of mice used in this 

experiment was too small to balance the biological variation of tumor growth 

between the different mice. Therefore further studies need to be performed to 

unravel the exact role of this marker combination.  

 
6.5. Functional approach for the identification of putative cancer stem cells  
 
To date, flow cytometry analyses of surface proteins are widely used to identify CSC 

markers. In most studies, panels of antibodies were screened and the existence of 

cancer stem cells was validated via xenograft models. While largely successful, this 

approach also has certain limitations. All of these markers describe only a certain 

phenotype that does not necessarily accurately define a functional phenotype. 

Consequently, a functional role for most of these proteins that would exclusively link 

them to stem cell function has not been demonstrated yet. As most of these proteins 

are also expressed on a variety of somatic cells, it is unlikely that a single marker 

alone has precise predictive power. 

To overcome these limitations, a novel approach based on a more functional read-

out has been developed for the identification of putative cancer- and/or metastasis 

initiating cells. This approach is based on the assumption that these cells might be in 

a quiescent state and therefore survive conventional therapies. Therefore novel 

inducible labeling techniques were used that allow the in vitro and in vivo tracking of 

these cells. 

 
Slowly cycling cells can be detected in vitro in the CRC cultures 

Primary colon cancer cells were transduced with an inducible Tet-off-H2B-GFP 

lentiviral reporter vector that has been generated for the detection and in vivo 
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isolation of LRCs (Falkowska-Hansen et al., 2010) (vector map see chapter 9.5.). 

This system allows the tracking of slowly cycling cells via Doxycyclin (Dox) 

treatment. In the absence of Dox, the transactivator binds to the tet-responsive 

element (TRE) in the promotor region of H2B-GFP and activates the GFP 

expression. In the presence of Dox, the transactivator changes its confirmation and 

does not bind to the TRE anymore. The expression of GFP is blocked. Only the cells 

that do not divide retain their GFP-label whereas actively dividing cells loose their 

label after several divisions. This method was used to track slowly cycling colorectal 

cancer cells in vitro and in vivo. The cells were treated for different time periods with 

Dox in order to analyze the growth kinetics of slowly cycling- or label-retaining cells. 

After specific time points, the cells were analyzed for their GFP expression via flow 

cytometry (Fig. 28). The signal decreased over time in proliferating cells due to the 

loss of the histone label. A small percentage of GFPhigh cells remained detectable 

even after 10 days of Dox treatment, indicating the presence of slowly cycling cells 

(Fig. 28c). 

 
Fig. 28: Slowly cycling cells are present in primary CRC cultures (HD1858). The tumor cells 
were cultured with Doxycyclin (10 ng/ml) for several days. The amount of LRCs was analyzed 
via flow cytometry after 6 (b) and 10 days (c) of treatment and compared to controls (a). 
Cryosections of the spheres after 8 days in culture with Doxycyclin showed label-retaining 
cells (LRCs in green; Dapi in blue) (d). 
 
A Ki-67/Hoechst staining was performed to analyze the cell cycle of the primary cell 

lines. Therefore the bulk population was divided into three fractions upon Dox 

treatment: slowly- (Fig. 29b), medium- (Fig. 29c) and fast cycling cells (Fig. 29d). 

This division was arbitrarily chosen. The gate for the slowly cycling cell population 

was defined according to the control cells not treated with Dox (H2B-GFPhigh). The 

majority of the untreated cells were located in this gate. A pre-test using Ki-

67/Hoechst staining revealed that the medium cycling cell population was directly 

adjacent to this gate. Furthermore, the fast cycling population was defined as the 

lower third of the bulk population.  

The H2B-GFPhigh cells (Fig. 29a) were enriched for a cell population that was in G0 

phase (55%) (Fig. 29b), when compared to medium- (44%) and fast cycling cells 

(31%), confirming that the slowly cycling cells were indeed more quiescent. 
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Fig. 29: Slowly cycling tumor cells are more quiescent (HD1858). The cells were treated for 
10 days with Doxycycline (10 ng/ml) and a Ki67/Hoechst staining was performed (a). More 
than half of the slowly cycling cell population was in G0 phase (55 %) (b), in comparison to 
the medium cycling population (44 %) (c) and the fast cycling population were only 31 % of 
the cells were in G0 phase (d).  
 
Slowly cycling cells are not enriched for CSC markers in vitro (G605 H2B/GFP) 

In order to investigate whether the reported CSC-markers are enriched in slowly 

cycling cell populations, G605-H2B-GFP positive cells were cultured for 10 days 

under serum-free conditions with Dox. Flow cytometry analysis was performed for 

CD133- (Fig. 30b), EpCAM- (Fig. 30c), CD44- (Fig. 30d) and CD166-expression 

(Fig. 30e). The gating of the three different cycling populations (Fig. 30a) was 

performed according to the control cell line that was not treated wit Dox (data not 

shown).  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 30: CSC-markers are not enriched in slowly cycling cells. (a) The cells were treated for 
10 days with Dox to separate the cells into the distinct cycling cell populations. Flow 
cytometry analysis was performed for (b) CD133, (c) EpCAM, (d) CD44, (e) CD166. A 
doublet- and dead cell exclusion were performed prior to analysis.  
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None of the reported CSC-markers was enriched in the slowly cycling cell population 

in vitro arguing that these cells are not enriched for phenotypically defined CSCs. A 

similar result was obtained for the HD1858 cell line (Appendix 9.4.). However, the in 

vivo situation might be different because the cells were cultured under serum-free 

conditions and the medium contained various growths factors favoring the expansion 

of cells with a more “stem-cell-like” phenotype. These cultured cells may have 

already reached the maximum expression of these markers and do not show strong 

differences anymore.  

 

Slowly cycling cells expand in vitro after sorting 

To determine the proliferative potential of the three different cycling cell populations, 

G650-H2B-GFP positive cells were treated with Dox for 10 days. The cells were 

maintained adherent in serum-free medium. Afterwards, the three cell populations 

were sorted according to their cell cycle speed and cultured separately under serum-

free conditions (Fig. 31).  

 

 

 

 

 

 

 

 

 
Fig. 31: Experimental set up to isolate slowly cycling cells in vitro. Colorectal cancer cells that 
express H2B-GFP were treated with Dox (10 ng/ml) for 10 days. The cells were separated 
into three different populations according to their cycling behavior using a cell sorter in order 
to functionally characterize the distinct populations.  
 
The fast-, medium- and slowly cycling cell populations expanded in vitro after the 

sort (Fig. 32), suggesting that the slowly cycling cells are not permanently in a 

quiescent state.  
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Fig. 32: Slowly cycling cells still expand in vitro. Fast-, medium- and slowly cycling cells were 
sorted after 10 days of Dox treatment and cultured under serum-free conditions. All three 
populations expanded in vitro. 
 
Slowly cycling cells grow slower in vitro in comparison to fast cycling cells (G605) 

As shown in Fig 29, slowly cycling cells exist in vitro. In order to test whether these 

cells are functionally different from medium- or fast cycling cells, the three distinct 

proliferating cell populations were sorted and 50.000 cells per population were 

seeded under serum-free conditions. The cells were grown adherent on collagen I 

coated plates and dead cells were washed away before counting. After eight days in 

culture, the cell number was estimated for each population (Fig. 33). The highest cell 

number was detected in the fast cycling population (app. 2.5 x 106). The medium 

cycling population contained 1.7 x 106 cells. The slowly cycling cell population 

accounted for the lowest cell number with 1.1 x 106 cells. This result indicates that 

the cycling behavior of the cells might be stable for at least eight days in vitro after 

the sort. 

                      
Fig. 33: The different cycling populations retain their initial cycling phenotype for one week in 
vitro. Fast-, medium- and slowly cycling cells were sorted and cultured under serum-free 
conditions (50.000 cells/well/population). The cell number of each population was determined 
after eight days in culture (n=1).  
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Slowly cycling cells are less clonogenic than fast cycling cells in vitro  

Clonogenicity is a read-out that characterizes the ability of a single cell to grow into a 

colony (Franken et al., 2006). HD1858-H2B-GFP expressing cells were maintained 

in adherent serum-free cultures. Fast-, medium- and slowly cycling cells were sorted 

after 10 days of Dox treatment and 12.000 cells per population were seeded for 

additional six days on collagen I coated plates. Afterwards, the cells were fixed with 

glutaraldehyde (6.0% v/v) and stained with crystal violet (0.5% w/v) according to the 

protocol of Franken and colleagues (Franken et al., 2006) (Fig. 34a-c). In order to 

determine the colony number and sizes, Image J particle count was used. The fast 

cycling cell population showed higher clonogenic capacities in comparison to the 

medium- and slowly cycling population (Fig. 34d). This result is in line with the cell 

number count of the distinct sorted cell populations of the G605-H2B-GFP cell line 

depicted in Fig. 33, indicating that the initial cycling behavior is preserved at least 

over one week in culture.  

In addition, the average colony sizes were measured using Image J (Fig. 34e). The 

average colony sizes were slightly lower in the slowly cycling cell population in 

comparison to the medium- and fast cycling cell populations. These results suggest 

that the slowly cycling cells retain their initial phenotype at least for six days in vitro 

after the sort. However, the experiment needs to be repeated, to confirm this result. 

 
Fig. 34: Slowly cycling cells are less clonogenic in vitro. Fast-, medium- and slowly cycling 
cells were sorted upon 10 days of Dox (10 ng/ml) treatment in vitro. The sorted cell 
populations were reseeded under adherent, serum-free conditions. Six days later the cells 
were fixed and stained with crystal violet (a-c). The colony numbers (d) and sizes (e) of the 
different cell populations were estimated via Image J particle count (n=1). 
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Furthermore, a different assay was performed to assess the clonogenicity of the 

G605 cells. Therefore different amounts of cells ranging from 1 to 2048 were sorted 

in 8 technical replicates into 96-well plates (Fig. 35). The cells were separated into 

fast-, medium- and slowly cycling populations after culturing with Dox for 10 days.  

 

 

 

 

 

 

 
Fig. 35: Experimental set up to determine the in vitro clonogenicity of the G605-H2B-GFP cell 
line. The tumor cells were cultured with Dox for 10 days and sorted for slowly-, medium- and 
fast cycling cells. Different amounts of cells, ranging from 1 to 2048, were seeded into 96-well 
plates and the cell growth was monitored microscopically. Eight replicates per cell number 
were analyzed.  
 

The growth of the sorted cells was monitored via the microscope. Wells containing 

colonies were counted as positive and wells without growing colonies were counted 

as negative result. In order to estimate the clonogenicity of the different cell 

populations, the ELDA-software (Extreme Limiting Dilution Analysis: 

(http://bioinf.wehi.edu.au/ software/elda/) was applied (Hu and Smyth, 2009).  

 
Tab. 3: Confidence Intervals of 95% for the active cell frequency in each population group.  
Slowly cycling cells are less clonogenic than medium- and fast cycling cells. 

Group Lower Estimate Estimate Upper Estimate 

Fast cycling 2.32 1.59 1.22 

Medium cycling 2.92 1.97 1.43 

Slowly cycling 5.15 3.38 2.30 

 

The ELDA software was used to calculate the active cell frequency in a 95% 

confidence interval (Tab. 3). The result indicates that the slowly cycling cells are less 

clonogenic (1 in 3.38 cells) than the medium- (1 in 1.97 cells) or fast cycling cells (1 

in 1.59 cells). There was a significant difference between all the groups (p=0.0126). 

However all three populations were highly clonogenic, which might be due to the 

culture medium that contained numerous growth factors and therefore enriched 

already for cancer stem cells. Furthermore, pair wise group differences were 
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estimated. Slowly cycling cells were significantly different from fast cycling cells (p = 

0.00449) in terms of clonogenicity (Tab. 4). 
 
Tab. 4: Pairwise group difference between fast-, medium- and slowly cycling cells. 

Group 1 Group 2 Chisq Pr(>Chisq) 

Fast cycling Medium cycling 0.747 0.387 

Fast cycling Slowly cycling 8.07 0.00449 

Medium cycling Slowly cycling 3.61 0.0574 

 

All cycling cell populations are able to regenerate slowly-, medium- and fast cycling 
cells in vitro (G605) 

In order to analyze whether all cells are capable of generating all three different cell 

types again the following experimental set up was performed:  

The colon cancer cell lines were cultured with Dox for 10 days and the different 

cycling cell populations were sorted according to the established gating scheme (Fig. 

29a). After the sort, the different populations were cultured separately without Dox in 

order to relabel all the cells with H2B-GFP. Afterwards, the cells were treated again 

with Dox for eight days and the amount of LRCs was analyzed via flow cytometry 

(Fig. 36).  

                                             
 
Fig. 36: Experimental set up to analyze the regeneration capacity of the distinct cycling cell 
populations in vitro. Colorectal cancer cells transduced with the inducible tet-Off-H2B-GFP 
lentiviral vector system were treated with Dox (10 ng/ml) for 10 days. The cells were 
separated in 3 different populations according to their cycling behavior and reseeded without 
Dox to relabel all the cells. Afterwards, the cells were treated again with Dox for 8 days and 
the label-retention was analyzed. 
 

All the three sorted cell populations were able to regenerate fast-, medium- and 

slowly cycling cells in vitro (Fig. 37a-c). However, the sorted slowly- and medium 
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cycling cells gave rise to approximately 5% of label-retaining cells (Fig. 37a and b) 

whereas the fast cycling population regenerated only around 2% of label-retaining 

cells (Fig. 37c).  

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 37: Fast-, medium- and slowly cycling cells are able to regenerate all distinct cycling 
populations in vitro. The distinct cycling cell populations were sorted upon 10 days of Dox 
treatment in vitro and reseeded without Dox for several days. Dox treatment was reapplied to 
the cells for 8 days and the amount of LRCs was estimated for each population (a-c). 
Doublet- and dead cell exclusion were performed (PI) prior to analysis. 
 

This finding indicates that the phenotypic differences regarding cell growth and 

clonogenicity observed in the previous experiments might only be transient. Slowly 

cycling cells are able to reenter the cell cycle and fast cycling cells are able to enter 

a more slowly cycling state suggesting a dynamic switch between the different cell 

cycle states within each population. 

 

Some LRCs loose their ability to switch off H2B-GFP expression under Dox 
treatment (G605) 

The three sorted cycling cell populations were cultured for 22 days with Dox (10 days 

Dox before the sort + 12 days Dox after the sort) in order to detect whether long-term 

LRCs may be present among the slowly cycling cells. Surprisingly, a small 

population of GFPhigh expressing cells of around 1% was detected within the slowly 

cycling cell population (Fig. 38a), while in the other two populations such potential 

long-term LRCs were not present (Fig. 38b-c).  
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Fig. 38: A small population of slowly cycling cells retains the H2B-GFP label in vitro. The 
distinct cycling cell populations were sorted after 10 days of Dox treatment in vitro. The 
sorted cell populations were reseeded and the amount of LRCs was estimated for each 
population after additional 12 days of Dox treatment (10 days prior to sort and 12 days post 
sort) (a-c). Doublet- and dead cell exclusion were performed (PI) prior to analysis. 
 
In order to test whether this small population of GFPhigh expressing cells is indeed a 

highly dormant long-term label-retaining population, a cell cycle analysis was 

performed. The cells were harvested, fixed and stained with a human specific anti-

Ki-67 antibody and Hoechst (Fig. 39). There was no difference in cell cycle behavior 

between cells that have lost their GFP label (Fig. 39c) and GFPhigh expressing cells 

(Fig. 39b) upon 22 days of Dox treatment. The putative long-term LRCs were not 

enriched in G0-phase indicating that this population presents rather an artifact than a 

long-term label-retaining population.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 39: No difference in cell cycle behavior between slowly cycling cells that retained the 
GFP-label and slowly cycling cells that actively divided and lost their GFP-label. a) Ki-
67/Hochst staining was performed on sorted slowly cycling cells that were cultured with Dox 
for 22 days (10 days prior to sort and 12 days post sort). b) Putative long-term LRCs and c) 
initially slowly cycling cells (that lost their GFP label upon long-term Dox treatment), show a 
similar cell cycle distribution. 
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In addition to the cell cycle analysis, the putative long-term LRCs were sorted and 

cultured with Dox (Fig. 40). The cells expanded and still kept their GFP-label. The 

results from the Ki-67/Hoechst staining and from the sort indicate that fast- and 

slowly cycling cells are present in the same population. 

 
 
 
 
 
 
 
 
 
 
Fig. 40: A small artifact of LRCs is present in the slowly cycling cell population. Long-term 
label-retaining cells were sorted (a) and re-cultured with Dox. The cells actively divided and 
still retained their GFP-label (b-c). 
 
However, the cells that constitutively express GFP represent a very small population 

that appeared only after the first sort of slowly cycling cells. Moreover, this population 

contaminates the slowly cycling population with cells that do not belong to this 

population. Therefore it even strengthens the differences observed between the 

different cycling cell populations. 
 
Generation of sublines derived from single cell clones sorted from fast-, medium- 
and slowly cycling cells (G605) 

To test whether the observed phenotype of the three different cycling cell 

populations was more stable in cell lines derived from single cell clones, the 

following experimental set up was performed (Fig. 41): 

G605 H2B-GFP expressing cells were maintained for 10 days with Dox in vitro under 

adherent conditions in serum-free medium. Afterwards, fast-, medium- and slowly 

cycling cells were sorted as single cells into 96-well plates. Each well was analyzed 

manually using a microscope to verify the presence of a single cell per well (Fig. 42). 

The single cells were expanded into sublines, which were analyzed afterwards for 

their capability to regenerate fast-, medium- and slowly cycling cells. 
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Fig. 41: Experimental set up to analyze the regeneration capacity of single cell clone derived 
cells in vitro. G605 H2B-GFP+ cells were cultured for 10 days with Dox (10 ng/ml). Fast-, 
medium- and slowly cycling cells were sorted as single cells into 96-well plates. These single 
cells were expanded into cell lines and afterwards analyzed for their ability to regenerate  
fast-, medium- and slowly cycling cells.  
 
It was possible to expand single cells derived from each cycling cell population into 

sublines. However, in the fast cycling population seven out of eight single cells could 

have been expanded into cell lines whereas only four out of seven single cells were 

able to expand from slowly cycling cells. Furthermore, the colonies of the fast cycling 

cell population were much bigger 21 days after the sort than the colonies of the 

medium- and slowly cycling cells (Fig. 42), indicating again that the initial cycling 

behavior is retained in vitro over a short period of time. 
 

Fig. 42: Sorted single cells derived 
from fast-, medium- and slowly 
cycling cells expand in vitro. Single 
cells from all three cycling cell 
populations were sorted after 10 
days of Dox treatment. The 
presence of the single cells was 
confirmed via microscopy. The 
growth of the single cells was 
monitored at specific time points 
after the sort (SCCs = slowly 
cycling cells; MCCs = medium 
cycling cells; FCCs = fast cycling 
cells). 
 
 

 
After expansion of the sorted single cells, 100.000 cells per population were seeded 

under serum-free conditions on collagen I coated plates. Eight days later, the cell 

number was determined (Fig 43.). As already shown in Fig. 33, the single cell 

derived cell lines showed a similar behavior like the sorted populations. The fast 

cycling cells grew faster in comparison to the medium- and slowly cycling cell 

populations.  
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Fig. 43: Single cell derived fast-, medium- and slowly cycling cell lines retain their initial 
cycling phenotype in vitro for eight days. 100.000 cells from each subline generated from 
single fast-, medium- and slowly cycling cells were seeded on collagen I coated plates and 
were maintained in serum-free medium. The cell number was determined eight days later 
(n=3, technical replicates, SEM).  
 
In summary, several independent in vitro experiments, such as the Ki-67/Hoechst 

stainings and the clonogenicity assays have been performed for both cell lines. All of 

them showed that different cycling cell populations were present in the cultures and 

their initial cycling phenotype was maintained over several days in vitro. Sorted 

slowly cycling cells were less clonogenic than the fast cycling cells. However, the 

distinct cycling phenotypes may only be transiently stable as all the three distinct 

cycling populations were able to expand and to regenerate fast-, medium- and slowly 

cycling cells, suggesting a dynamic switch between the distinct cell populations.  

 

6.6. The influence of the microenvironment on slowly cycling cells 
 
As shown in the previous sections, cells with different cell cycle rates were detected 

in vitro. The cells retained their cycling behavior over a short period of time in vitro. 

However, after more than 10 days in culture all cells lost their GFP-label and divided. 

The in vitro system enables the study of intrinsic effects on the tumor cells. As a 

tumor is a complex structure composed of many different cell types like fibroblasts, 

endothelial- and immune cells (see chapter 4.7.), the interactions between these 

cells and the tumor cells may influence their cycling behavior. In addition, oxygen- 

and nutrition deprivation might regulate tumor growth and may maintain tumor cells 

in a dormant state. Therefore it is crucial to analyze the existence and functionality of 

LRCs or slowly cycling cells in vivo. For the in vivo experiments, the G605 cell line 

was chosen due to its higher tumorigenicity and its ability to metastasize to the lungs 

and liver, allowing the analysis of the primary tumor and the metastasis at the same 

time.  
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Slowly-, medium- and fast cycling cells are able to generate a tumor in vivo 

In order to determine whether the different cycling cells present in the culture system 

are functionally different in a xenograft model, the colon cancer cells (G605 H2B-

GFP+) were cultured for 10 days with Dox and the fast-, medium- and slowly cycling 

cells were sorted. Afterwards 50.000 cells (5 mice per group) were injected into the 

kidney capsule of highly immunocompromised NSG mice (Fig. 44).  

 

 

 
 
 

Fig. 44: Experimental set up for the functional analysis of fast-, medium- and slowly cycling 
cells in vivo. Colon cancer cells (G605 H2B-GFP+) were maintained in vitro for 10 days with 
Dox (10 ng/ml). The cells were maintained adherent in serum-free medium. The cells were 
sorted for fast-, medium and slowly cycling cells and injected into the kidney capsule of NSG-
mice. Tumor growth was analyzed after 3 months. 
 

Approximately 3 % of the cells were considered as slowly cycling cells according to 

the gate of the positive control not treated with Dox (Fig. 45a and b). The lower 15 % 

of the cell population were regarded as medium cycling and the lowest 46 % as fast 

cycling cells (Fig. 45b). This separation scheme was established after cell cycle 

analysis using a human specific anti-Ki-67 antibody and Hoechst. The sorted 

populations were re-analyzed to assess the purity of the sort. All three populations 

were properly separated (Fig. 45c). 

 

 

 
 

 

Fig. 45: Sorting scheme of fast-, medium- and slowly cycling cells. Colon cancer cells not 
treated with Dox were used as a control (a). Colon cancer cells treated for 10 days with Dox 
were sorted for fast-, medium- and slowly cycling cells according to the three gates (b). A re-
analysis was performed after sorting (c). Doublet- and dead cells exclusion (PI) were 
performed. 
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Furthermore, the sorted populations were evaluated for their cell cycle status prior to 

transplantation via Ki-67/Hoechst staining (Fig. 46). The slowly cycling cells were 

indeed more quiescent with more than 60% of the cells being in G0 phase (Fig. 46b) 

in comparison to the fast cycling population with only 38 % of the cells being in G0 

(Fig. 46d). 

 

 

 

 

 

 

 

 

 

Fig. 46: Slowly cycling sorted and injected colon cancer cells were more quiescent. The 
sorted cells were stained with a human specific anti-Ki-67 antibody and Hoechst 33342 to 
verify the quiescent phenotype of the slowly cycling cells. b) Slowly cycling cells were more in 
G0 phase (63.4 %) than c) the medium cycling (55.7 %) and d) the fast cycling cells (38.3 %).  
 
 
Three months after injection of the tumor cells, the mice were euthanized and the 

tumor growth was evaluated via caliper measurements. Tumors grew in all three 

groups of mice independent of the initial cell type transplanted. In the fast cycling 

group two out of six (33%) mice developed tumors, whereas two out of five mice 

(40%) harbored tumors in the slowly cycling group. One out of five (20%) mice 

showed a tumor formation in the medium cycling group (Fig. 47).  

Interestingly, the mean tumor volume was higher in mice injected with initially slowly 

cycling cells compared to the medium- or fast cycling population (Fig. 47). However, 

there was no significant difference between the groups and the variations in each 

group were too high. Nevertheless, the results show that the slowly cycling cells are 

able to generate tumors comparable in size to fast cycling cells and thus most likely 

have the potential to regenerate fast cycling cells. 
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Fig. 47: All different cycling cell types are able to generate tumors in vivo. After 10 days of 
culture with Dox (10 ng/ml), fast-, medium- and slowly cycling cells were sorted. 50.000 cells 
of the different populations were injected into the kidney capsule of NSG mice. The tumor 
volume was measured using a caliper 3 months after injection.  
 

Further analyses need to be performed in order to determine whether the onset of 

tumor growth is different between the distinct cell populations. Moreover, limiting 

dilution transplantation assays would give more insight into frequency of tumor 

initiating cells contained in each cell population.  

 

Kinetics of slowly cycling colorectal tumor cells in vivo 

In all experiments performed so far, the tumor cells were cultured with Dox and 

sorted afterwards to investigate their functionality either in vitro or in vivo. The 

selection of the distinct cycling cell populations was based on this culture system. 

However, the kinetics of the slowly cycling cells might be changed in the context of a 

tumor. Probably a specific niche is needed to retain a pool of slowly cycling cells as 

shown for normal adult stem cells (see chapter 4.9.).  

To investigate the role of slowly cycling cells in an established tumor, the bulk of the 

tumor cells (G605 H2B/GFP+) was injected into the kidney capsule of NSG-mice. 

The mice were palpated weekly and after detection of a tumor, the mice were treated 

with Dox (2 g/l) in the drinking water. The tumors were harvested at different time 

points and digested with collagenase (0.25 %) and DNase for approximately 1 hour 

at 37°C in order to generate single cell suspensions. The tumor cells were purified 

via a density gradient using Optiprep™ and the presence of slowly cycling cells was 

analyzed via flow cytometry (Fig. 48).  
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Fig. 48: Experimental set up for the analysis of the kinetics of SCCs in vivo. The bulk of the 
G605 H2B-GFP+ tumor cells was injected into the kidney capsule of NSG mice. After 
palpation of a tumor, the mice were treated with Dox (2 g/l) in the drinking water. The tumors 
were harvested at different time points and the presence of SCCs was determined via FACS 
(SCCs = slowly cycling cells). 
 
Prior to the analysis of slowly cycling cells, a doublet-exclusion was performed (Fig. 

49b). Additionally, propidium iodide was added to exclude dead cells (Fig. 49c). 

Some tumor bearing mice were not treated with Dox and were used as controls (Fig. 

49d, green curve). The first tumor was harvested after five days of Dox treatment. A 

small shift in the GFP signal was observed. A small population of the cells divided 

already several times and lost their label completely (Fig. 49d, yellow curve). After 12 

days of Dox treatment, the GFP signal shifted even more towards the left site and 

became broader (Fig. 49d, blue curve). Fifteen days after Dox treatment, most of the 

tumor cells divided and only a small population of approximately 7 % retained the 

high GFP-label and did not divide (Fig. 49d, orange curve). The slowly cycling 

population was completely lost after 22 days of Dox treatment (Fig. 49d, black 

curve), indicating that all cells had divided. This result suggests that there are no 

long-term LRCs present in a tumor or at very low frequencies. However, this is only a 

snap shot of a tumor at a certain time point. Probably the cells are dynamic and are 

able to reenter dormancy even though they divide at the beginning. For further 

experiments, 15 days of Dox treatment was chosen because at this time-point the 

distribution of the GFP intensity was very broad enabling a proper selection of the 

fast-, medium- and slowly cycling cells. Nonetheless, this finding needs to be verified 

in additional primary tumor cell lines. 
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Fig. 49: Kinetics of slowly cycling cells in vivo. Tumor bearing mice (injected with G605 H2B-
GFP cells) were treated with Dox (2 g/l) in the drinking for different time periods. The tumors 
were harvested at different time points, dissociated into single cell suspensions and analyzed 
for the presence of slowly cycling cells (GFP expression) via flow cyctometry (a). Doublet (b)- 
and dead cell exclusion (c) were performed. Green curve: positive control, tumor without Dox 
treatment; yellow curve: 5 days of Dox treatment prior to analysis; blue curve: 12 days of Dox 
treatment prior to analysis; orange curve: 15 days of Dox treatment prior to analysis; black 
curve: 22 days of Dox treatment prior to analysis (d).  
 
 

In addition to the flow cytometry analysis, immunohistochemistry stainings using a 

human specific anti-Ki-67- and anti-GFP antibody were performed. The two stainings 

were mutually exclusive in specific areas of the tumors (Fig. 50b-d, black arrow: 

GPF+ and red arrows: Ki-67+) further supporting the findings of the Ki-67/Hoechst 

stainings of the cell lines. The GFP positive cells do not divide and therefore are 

negative for Ki-67. Although the same tumor areas were stained in serial sections, 

one must be aware that these IHC stainings do not allow the analysis of one single 

cell in both stainings simultaneously, due to the thickness of the cuts. Therefore 

immunofluorescence stainings would be necessary. However, the stainings show 

that Ki-67- and GFP positive cells are evenly distributed and located next to each 

other (Fig. 50c and d, green arrows), indicating that Dox reached all the parts of the 

tumor equally.  
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Fig. 50: Slowly cycling cells are present in tumors in vivo. Tumor bearing mice were treated 
with Dox (2 g/l) in the drinking for 15 days. Immunohistochemistry was performed on sections 
of the paraffin embedded tumor using an anti-GFP antibody (b and d) and a human specific 
anti-Ki-67 antibody (c and e). The two stainings were mutually exclusive (black arrow: GFP+ 
and Ki-67-; red arrow: GFP- and Ki-67+; b and c). The GFP+ and the Ki-67- areas were 
located next to each other (green arrows, c and d). 
 

Furthermore, the mice developed lung metastasis upon injection of tumor cells into 

the kidney capsule. The presence of slowly cycling cells in the metastases was 

analyzed via immunohistochemistry. The lungs were embedded in paraffin, 

sectioned and stained with an anti-GFP- and a human specific anti-Ki-67 antibody. 

The lung metastases depicted in Fig. 51 correspond to the primary tumor shown in 

Fig. 50. The metastasis contained only very few slowly cycling cells (Fig. 51a and c) 

as indicated by lower GFP intensities and most of the metastatic foci showed no 

nuclear GFP staining. This result indicates that most of the tumor cells in the lungs 

divided actively during the time of Dox treatment. The actively dividing state of the 

cells was confirmed by the Ki-67 staining (Fig. 51b and d). Most of the tumor cells 

were positive for this marker. Moreover, this result seems to differ from the primary 

tumor where approximately 7% of label-retaining cells were detected at the same 

time (Fig. 53e). However, more cases need to be studied and an exact quantification 

is needed to confirm this observation. 
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Fig. 51: The frequency of Slowly cycling cells appears to be lower in lung metastasis when 
compared to the primary tumor. Tumor bearing mice were treated with Dox (2 g/l) in the 
drinking for 15 days. The lungs were harvested and immunohistochemistry was performed 
using an anti-GFP antibody (a and c) and a human specific anti-Ki-67 antibody (b and d). 
Only very few slowly cycling cells were present in the lungs (black arrows). Most of the tumor 
cells were positive for Ki-67. 
 

Pre-selected slowly-, medium- and fast cycling cells from a tumor regenerate tumors 
in secondary transplants 

The previous experiments demonstrated that the different cycling cell populations 

preselected in vitro developed into a tumor independent of their initial cycling rate. To 

test whether the distinct cell populations preselected in vivo have different functions 

regarding tumor growth, the following experiment was performed (Fig. 52): 

the bulk of the G605-H2B-GFP+ cells was injected into the kidney capsule of NSG 

mice. After palpation of a tumor, the mice were treated with Dox in the drinking water 

for 15 days and the tumors were harvested. Moreover, the tumors were digested into 

single cell suspensions using collagenase and DNase and slowly-, medium- and fast 

cycling cells were sorted according to their GFP expression. The three different cell 

populations were transplanted again into secondary recipients (50.000 cells/mouse, 

5 mice per group). 

 

 

 

 

 
Fig. 52: Experimental set up for functional analysis of slowly-, medium-, and fast cycling cells 
preselected from a xenograft. The bulk of G605-H2B-GFP+ cells was injected into the kidney 
capsule of NSG mice. After tumor growth, mice were treated wit Dox (2g/l) for 15 days and 
the different cycling cell populations were sorted and reinjected into the kidney capsule of 
secondary recipients in order to analyze their tumor growth capacities. 
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The tumor harvested for this experiment had a volume of 5.6 cm3. Prior to the sort, a 

doublet- and dead cell exclusion (PI) were performed (Fig. 53b and c). In order to 

select only for human colorectal tumor cells an anti-HLA antibody was included in the 

analysis. Moreover, the tumor cells were stained with an anti-H2kD antibody to 

determine the amount of murine cells contained in the tumor (Fig. 53d). More than 

80% of the tumor cells were of human origin. Less than 20% of the cells were 

infiltrating murine cells (Fig. 53d). Afterwards the slowly-, medium- and fast cycling 

cell populations were sorted according to the gating scheme in Fig. 53e and further 

transplanted into secondary recipient mice (50.000 cells per mouse; n=5/group). For 

this tumor, seven percent of the cells did not divide during the 15 days of Dox 

treatment whereas about nine percent of the tumor cells divided for several times 

and lost their GFP label completely (Fig. 53e). To ensure that the sort was pure a 

small aliquot of each sorted cell population was reanalyzed on the same cell sorter. 

As depicted in Fig. 53f the populations were efficiently separated.  

 

 

 
Fig. 53: Gating scheme of a xenograft treated with Dox for 15 days. Doublet- (b) and dead 
cell exclusion (c) were performed. The cells were stained with anti-mouse H2kD-PB- and 
anti-human HLA-APC FACS-antibodies (d). Only human cells were included in the analysis. 
Slowly-, medium- and fast cycling cells were sorted (e). A re-analysis was performed after the 
sort. All the three populations have been sufficiently separated (green = fast cycling; blue = 
medium cycling; red = slowly cycling) (f).  
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The secondary recipients were euthanized after two months and the total tumor 

volume was evaluated via caliper measurements (Fig. 54a-d). This measurement 

includes the primary tumor and the lymph node metastases (LN-metastases). All the 

three sorted cell populations generated tumors in the secondary recipients (Tab. 5). 

In the fast- and medium cycling cell population, a tumor take rate of 100% was 

reached whereas the tumor take rate of the slowly cycling cells was 80%. LN-

metastases were detected only in the fast- and medium cycling cell population. The 

tumor volumes were very variable in the different groups with no significant 

difference between the groups.  

 

 

 

 

 
 
 
 
Fig. 54: All different cycling cell types preselected in vivo are able to generate a tumor in 
secondary recipients. Tumor bearing mice were treated for 15 days with Dox and fast-, 
medium- and slowly cycling cells were sorted. 50.000 cells per population were injected into 
the kidney capsule of NSG mice. (a) The total tumor volume (primary tumor + LN-metastasis) 
was measured using a caliper 2 months after injection. Tumors and LN-metastasis grown in 
the kidneys from (b) fast cycling cells (green arrows), (c) medium cycling cells (blue arrows), 
(d) slowly cycling cells (red arrows). The tumor volumes were not significantly different 
between the three groups (ANOVA; p=0.9326). 
 
Tab. 5: Frequency of tumor growth in secondary recipient mice  
(including LN-metastasis).  

Group Total tumor burden/number of mice 

Fast cycling 5/5 

Medium cycling 5/5 

Slowly cycling 4/5 

 

In order to determine whether the morphology of the tumors generated by the 

different cell populations was similar, H&E stainings of the tumor sections were 

performed. Independent of the cell population injected, all the xenografts showed 

similar morphologies. The tumor cells formed glandular structures (Fig. 55d-f, black 

arrows) and stromal cells were recruited (Fig. 55a-c) 
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Fig. 55: Tumors derived from fast-, medium- and slowly cycling cells have similar 
morphologies. H&E staining of xenografts originating from sorted (a and d) slowly-, (b and e) 
medium- and (c and f) fast cycling cells. All xenografts show a similar morphology. Tumors 
had glandular structures (d-f arrows) and stromal cells were recruited (S = stromal cells; T = 
tumor cells; K = kidney). 
 

These data show that all the different cycling cell types were able to form colorectal 

tumors independent of their initial proliferation rate. This is in line with the in vitro 

studies, which showed that all the cells were able to expand after the sort. However, 

this result represents only an endpoint analysis. Possibly, the onset of tumor growth 

may be different. To further investigate the potential role of the different cycling cell 

populations in the onset of tumor growth, in vivo bioluminescence imaging was 

performed. 

 
Pre-selected slowly-, medium- and fast cycling cells from a xenograft show similar 
tumor growth kinetics in vivo 

In order to analyze the tumor growth kinetics of the different cycling cell populations 

preselected from a xenograft, the transduced tumor cells (G605-H2B-GFP) were 

modified prior to transplantation using the pTurboGlow lentiviral vector (vector map 

see Appendix 9.7.). This vector contained luciferase and the fluorescent dye 

eqFP650 (near-infrared protein). Both proteins were linked via an internal ribosomal 

entry site (IRES) sequence allowing the simultaneous expression of the two proteins. 

The cells were selected for H2B-GFP and eqFP650 expression via a FACS sorter. 

This cell line contained both H2B-GFP to study the cell cycle behavior and luciferase 

allowing the non-invasive tracking of the cells using the Xenogen system (IVIS® 200 

series, Caliper).  
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The following experimental set up was chosen for the experiment: 

 

 

 

 

 

 

 
 
Fig. 56: Experimental set up for the generation of a tumor growth curve of slowly-, medium-, 
and fast cycling cells preselected from a xenograft. The bulk of G605-H2B-GFP-pTurboGlow 

cells was injected into the kidney capsule of NSG mice. After tumor growth, mice were 
treated with Dox (2g/l) for 15 days and the different cycling cell populations were sorted and 
reinjected into the kidney capsule of secondary recipients. The tumor growth was monitored 
every week, non-invasively using the Xenogen system and tumor growth curves were 
generated. After the growth of the tumors in the secondary recipients, the mice were treated 
with Dox for 15 days to analyze whether all the cells were able to regenerate fast-, medium- 
and slowly cycling cells. 
 

The bulk of the transduced tumor cells was transplanted into the kidney capsule of 

NSG mice and tumor growth was monitored every other week. After establishment of 

a solid tumor, the mice were treated with Dox (2 g/l) in the drinking water for 15 days. 

The tumor harvested for this experiment had a volume of 529 mm3 and was digested 

using collagenase and DNase. A doublet- and dead cell exclusion (7AAD) were 

performed (Fig. 57b and c). The tumor cells were stained with an anti-human HLA- 

and anti-mouse-H2kD antibody to distinguish between human and murine cells. 69% 

of the tumor cells were of human origin (HLA+). Approximately 15% of the cells were 

infiltrating cells from the mouse host (H2kD+) (Fig. 57d). Slowly-, medium- and fast 

cycling cells were sorted according to their GFP expression pattern (Fig. 57e). 

Approximately 20% of the tumor cells were slowly cycling, which was demonstrated 

by a high GFP expression whereas 14% of the tumor cells divided several times and 

therefore lost their GFP label completely. The majority of the cells divided only a few 

times and their GFP label was slowly diluted. These cells showed a moderate GFP 

expression (Fig. 57e). In order to determine the purity of the sort, the sorted cell 

populations were reanalyzed at the cell sorter. All sorted populations were 

successfully separated with minimal overlap (Fig. 57f).  
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Fig.57: Gating scheme of cells derived from a xenograft treated with Dox for 15 days. 
Doublet- (b) and dead cell exclusion (c) were performed. The cells were stained with an anti-
human HLA and anti-mouse H2kD antibody (d). Only human (HLA positive) cells were 
included in the analysis. Slowly- (20.2%), medium- (31.3%) and fast cycling cells (14%) were 
sorted (e). A reanalysis was performed after the sort. All the three populations have been 
sufficiently separated (green = fast cycling; blue = medium cycling; red = slowly cycling)(f).  
 

25.000 cells of each sorted population were injected into the kidney capsule of 

secondary recipient mice (5 mice per group). The tumor growth was monitored 

weekly using the Xenogen system. The total tumor burden of the mice was 

determined, including metastasis. The first measurement was performed directly 

after implantation of the tumor cells (Fig. 58). The estimated value of the total flux 

was used as the baseline for all the following analysis. 

The tumor growth was monitored weekly to analyze whether the tumor growth 

kinetics were different between the distinct cycling cell populations sorted from the 

primary xenograft. Therefore the mice were injected intra-peritoneally with luciferine 

(15 mg/ml) at a dose of 10 µl per gram body weight ten minutes prior to analysis.  
 

Fig. 58: In vivo bioluminescence imaging of NSG mice injected with slowly-, medium- and fast 
cycling colon tumor cells. 25.000 cells per sorted cell population were injected into the right 
kidney capsule of secondary recipient mice. The first in vivo bioluminescence imaging was 
performed directly after surgery. The total flux for the region of interest was determined for 
each mouse (red circles).  
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The total flux of the region of interest was determined (Fig. 58) and normalized to the 

values measured at day zero, directly after injection of the cells. The tumor growth 

curves were not significantly different between the different cycling cell populations. 

As described in the previous experiment, all the cells were capable of forming a 

tumor with the same growth kinetics independent of the initial cell cycle state (Fig. 

59).  

 

 

    

 

 

 

 

 
Fig. 59: Slowly-, medium- and fast cycling colorectal tumor cells have similar tumor growth 
kinetics. 25.000 colorectal tumor cells sorted from a xenograft were reinjected into the kidney 
capsule of secondary recipient mice. The tumor growth was monitored weekly via the 
Xenogen system. The first measurement was performed directly after surgery and all the 
following results were normalized to these values. The growth kinetics of the tumors were 
similar between the groups (ANOVA, p=0.3014). 
 
 
The tumor take rate was similar between the three groups. All the mice showed 

tumor growth. One mouse of the medium- and slowly cycling group was not 

analyzed because it died prior to the endpoint analysis. However the in vivo 

bioluminescence measurements indicated that these mice developed tumors.  
 
Tab. 6: Frequency of tumor growth in secondary  
recipient mice.  

Group Tumors/number of mice  

Fast cycling 5/5 

Medium cycling 4*/5 

Slowly cycling 4*/5 

* One mouse died before the end of the experiment.  
The tumor was not analyzed at the endpoint of this  
experiment.But the values were included in the  
bioluminescence measurements. 
 

Moreover, the potential of the different cell populations to regenerate fast-, medium- 

and slowly cycling cells was determined. Therefore, the secondary recipient mice 

were treated for 15 days with Dox (2g/l) in the drinking water prior to analysis. One 

tumor that grew out of initially slowly cycling sorted cells was harvested, digested 
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and stained with an anti-human HLA- and anti-mouse H2kD antibody (Fig. 60d), as 

described for the primary xenograft. This tumor had a volume of 1.65 cm3. The 

initially slowly cycling tumor cells were able to regenerate fast-, medium- and slowly 

cycling cells. Approximately 3% of the tumor cells retained their slowly cycling 

phenotye within the 15 days of Dox treatment. The medium cycling population 

accounted for 57% of the tumor cells and 25% of the cells divided much faster and 

thus lost their GFP label completely (Fig. 60e and f). 

 

 

 
 
 
Fig. 60: Slowly cycling cells have the capacity to regenerate all the different cycling cell 
populations in a secondary recipient in vivo. Slowly cycling cells were sorted from a xenograft 
that was treated for 15 days with Dox and trasplanted into the kidney capsule of secondary 
recipient mice. These secondary recipients were treated again for 15 days with Dox. 
Afterwards, the tumors were harvested and analyzed. Doublet- (b) and dead cell exclusion (c) 
were performed. The cells were stained with an anti-human HLA- and anti-mouse H2kD 
antibody (d). Only human (HLA positive) cells were included in the analysis. The G605-H2B-
GFP cell line was used as a positive control for the GFP expression level (blue curve = 
control; red curve = tumor) (e). The initially slowly cycling cells were able to regenerate fast- 
(25.4%), medium- (57%) and slowly cycling cells (3.22%) (e and f).  
 

The morphology of the tumors was analyzed via IHC stainings. The tumor sections 

were stained with an anti-human Ki-67- and anti-GFP antibody (Fig. 61). The tumor 

cells in the secondary recipients were able to regenerate fast-, medium- and slowly 

cycling cells independent of their cell cycle state prior to injection (Fig. 62). GFP 

positive tumor areas do not stain for Ki-67 and vice versa, further supporting the 

validity of the system. Cells that do not divide keep the GFP label (Ki-67 negative) 

and cells that divide loose the GFP label and harbor a Ki-67 positive phenotype.  
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Fig. 61: In vivo preselected slowly cycling cells are able to regenerate fast-, medium- and 
slowly cycling cells in secondary recipient mice. Secondary recipient tumor bearing mice 
were treated with Dox (2 g/l) in the drinking for 15 days. Immunohistochemistry stainings 
were performed using an anti-GFP antibody (a and b) and a human specific anti-Ki-67 
antibody (c and d). The two stainings were mutually exclusive (black arrow: GFP+ and Ki-67-; 
red arrow: GFP- and Ki-67+). Representation of tumor that was generated from sorted slowly 
cycling cells.  
 

 
Fig. 62: All sorted different cycling cell populations are able to regenerate fast-, medium- and 
slowly cycling cells. Secondary recipient tumor bearing mice were treated with Dox (2 g/l) in 
the drinking for 15 days. Immunohistochemistry stainings were performed using an anti-GFP 
antibody (examples for GFP+ cells, black arrows).  
 

In summary, these experiments demonstrate that slowly cycling cells are present in a 

tumor. The immunohistochemistry stainings further support the data of the Ki-67/ 

Hoechst stainings described in the previous chapter and thereby confirm that the 

system allows the study of quiescent cells in vivo. Nevertheless, after 22 days of Dox 

treatment all the tumor cells within the xenograft divided and thus lost their H2B-GFP 

label (Fig. 49). Interestingly, the tumor cells detected in the lungs divided actively 

and the frequency of the LRCs appeared to be lower in small metastatic foci (Fig. 51) 

when compared to the corresponding primary tumor (Fig. 50). Furthermore, all the 
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three different cycling cell populations were tumorigenic independent of their initial 

cell cycle state (Fig. 54 and 59).  

These results do not exclude the possibility that there may be a dynamic process 

between activation and quiescence. The cells may be activated and probably re-

enter dormancy due to stress signals like chemotherapy treatment or lack of 

nutrition. Moreover, hypoxic areas may serve as a specific niche for dormant tumor 

cells and therefore might maintain the slowly cycling state of the cells. Initial 

experiments using oxygen levels of 3% and 0.5% further support this hypothesis. 

These hypoxic conditions indeed enriched for LRCs compared to standard cell 

culture conditions where the tumor cells were maintained at an oxygen level of 21% 

(see Appendix 9.16). Further investigation is required to validate this hypothesis. 

 
6.7. Chemotherapeutics enrich for slowly cycling cells in vitro 
 
The effect of 5-Fluorouracil (5-FU) and Oxaliplatin on the cell cycle of the primary 

colorectal cells in vitro was determined. The primary colorectal cancer cell line 

HD1858-H2B-GFP was treated for 10 days with Dox (to track LRCs) and either 

Oxaliplatin (0.5 µM) or 5-FU (5 µM). Following treatment, there was a greater 

proportion of GFP+ cells  (Fig. 63a and d, blue square) in comparison to the cells 

that were not treated with one of the chemotherapeutics (Fig. 63a and d, red 

square). A cell cycle analysis was also performed using a human specific anti-Ki-67 

antibody and Hoechst. The non-treated cells showed a normal cell cycle profile with 

app. 20-25% in G0-, 50% in G1- and 20% in S-G2-M-phase (Fig. 63c and f). The cell 

cycle profile of the treated cells showed distinct patterns due to the different 

mechanisms of the two compounds. Oxaliplatin is a platinum based compound that 

forms cross-linking DNA adducts and therefore blocks transcription and replication of 

the DNA. As depicted in Fig. 63b, the cells were blocked in G2-M-phase. In contrast, 

5-FU is a nucleoside analog. It prevents the synthesis of thymine nucleosides and 

thereby impairs DNA replication. As shown in Fig. 63e, the majority of the cells was 

arrested in G0- to G1-phase.  

Two possible mechanisms might explain the enrichment of slowly cycling cells upon 

chemotherapy treatment: at first, slowly cycling cells were more resistant to 

chemotherapy and survived the treatment whereas fast cycling cells may have died. 

Secondly, all the cells were arrested due to the treatment and a slowly cycling 

phenotype may have been induced to all cells. 

In order to study whether slowly cycling cells are more resistant to chemotherapy, 

the different cycling cell populations were sorted prior to treatment.  
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Fig. 63: Chemotherapeutics enrich for slowly cycling cells. The cells were treated for 10 days 
with Dox and Oxaliplatin or 5-FU (blue square). Cells only treated with Dox were used as 
control (red square). After treatment, the cells were harvested and the amount of GFP 
expressing cells was determined (a and d). A Ki-67/Hoechst staining was performed. The 
chemotherapeutic treated cells showed an altered cell cycle behavior (b and e) in comparison 
to the non-treated cells (c and f). 
 
Slowly cycling cells are less sensitive to chemotherapy 

In order to analyze whether the common chemotherapeutics against colorectal 

cancer such as 5-FU and Oxaliplatin have a different effect on slowly cycling cells 

compared to fast cycling cells the following experiment was performed: 

Both cell lines, HD1858-H2B-GFP and G605-H2B-GFP, were treated for 10 days 

with Dox in vitro. The cells were sorted prior to chemotherapy treatment for slowly-, 

medium- and fast cycling cells and seeded in collagen I coated 96-well plates in 

serum-free medium. The G605 cells were seeded at a density of 5000 cells per well 

and for the HD1858 cell line 2500 cells per well were seeded. Chemotherapeutics 

were added in different concentrations to the cells one day after sorting. Four 

technical replicates (G605) and three technical replicates (HD1858) were analyzed 

for each condition. Non-treated cells were used as controls. For the dead cell control, 

10% of triton was added to the cells 16 hour prior to analysis. Four days after 

treatment, the CellTiter-Blue® Assay was used to estimate the amount of viable cells 

per well. Only viable cells are able to reduce the redox dye resazurin into resorufin, a 

flurescent end product (Promega). The cells were incubated for 4 hours at 37°C with 
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the CellTiter-Blue® reagent and the fluorescence signal was measured with a plate 

reader according to the manufacturer’s protocol.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
 

 
 
 
 
 
Fig. 64: The effect of Oxaliplatin and 5-FU on different cycling cell populations. Both cell lines 
(G605-H2B-GFP and HD1858-H2B-GFP) were treated for 10 days with Dox in vitro. Slowly-, 
medium- and fast cycling cells were sorted and treated with different concentrations of 
Oxaliplatin (a, c, e, g) or 5-FU (b, d, f, h) for 4 days. CellTiter-Blue® was added and the 
fluorescence signal of viable cells emitted through resorufin was measured in a plate reader. 
The log IC50 was determined for G605-H2B-GFP (c and d) and HD1858-H2B-GFP cells (g 
and h). The slowly cycling cells had a higher Log IC50 than fast cycling cells in G605-H2B-
GFP cells (c and d). In HD1858-H2B-GFP cells, no difference in Log IC50 between the 
different cycling cell population was observed upon treatment (g and h).   
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Tab. 7: IC50 of slowly-, medium- and fast cycling G605-H2B-GFP and HD1858-H2B-GFP 
cells upon chemotherapy treatment. The different cycling cell populatons were sorted and 
treated for four days with different concentartions of Oxaliplatin and 5-FU. CellTiter-Blue® was 
added and the IC50 was detrmined using GraphPad Prism. 

 G605-H2B-GFP HD1858-H2B-GFP 

Group IC50  

Oxaliplatin 

IC50 

5-FU 

IC50  

Oxaliplatin 

IC50  

5-FU 

Slowly cycling 3.8 7.5 0.3 25.2 

Medium cycling 2.6 3.5 0.4 15.0 

Fast cycling 1.9 4.4 0.5 11.5 

Bulk 2.4 4.7 0.4 13.6 

 

The slowly cycling cells of the G605-H2B-GFP cell line were more resistant to 5-FU 

and Oxaliplatin than fast cycling-, medium cycling- or bulk cells (Fig. 64a and b). The 

IC50 of the slowly cycling cells was higher when compared to the faster cycling cell 

populations (Tab. 7). However the cells seemed to be more sensitive to Oxaliplatin 

than to 5-FU, indicated by higher IC50 values for the latter treatment. Furthermore, 

the Log IC50 was calculated using GraphPad Prism. The Log IC50 was higher in the 

slowly cycling cells compared to medium cycling- and fast cycling cells, upon 

Oxaliplatin (Fig. 64c) or 5-FU (Fig. 64d) treatment. This suggests that the slowly 

cycling cells were more resistant to chemotherapy than the faster cycling cells in 

vitro. 

In HD1858-H2B-GFP cells, the slowly cycling cells show a higher IC50 upon 5-FU 

treatment in comparison to medium cycling-, fast cycling- or bulk cells (Tab. 7). 

However, if treated with Oxaliplatin the cells do not show big differences between the 

different cycling populations (Fig. 64e and g).  

Three out of four experimental settings indicate that slowly cycling cells are more 

resistant to chemotherapy in vitro, even though the difference is more pronounced in 

the G60-H2B-GFP cell line. The two cell lines may behave differently because the 

experimental setting may not be optimal for both cell lines. 

Furthermore, the initial cell number seeded might be critical for the outcome of the 

experiment. Due to differences in seeding density between the two cell lines, the two 

experiments cannot be compared to each other and need to be repeated under the 

same conditions. Also, only technical replicates were analyzed and additional 

biological replicates of the experiment are necessary to draw a significant 

conclusion.  
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Regardless of the effect of the chemotherapeutics on the different cycling cell 

populations, the fluorescence intensities measured indicate again that the different 

cycling phenotypes are retained over four days in vitro after the sort. The slowly 

cycling cells grew much slower than the fast cycling cells, in both cell lines. The 

same cell numbers were seeded for each population but the fluorescence intensities 

measured for the slowly cycling cells were much lower compared to the fast cycling 

cells (Fig. 65a and b). However the differences between the fast cycling-, medium 

cycling- and bulk cells was more pronounced in the HD1858 cell line (Fig. 65b). 

These results are in line with the clonogenicity experiments performed in vitro (see 

chapter 6.5.).  

 

 
 

 
 
 
Fig. 65: The different cycling cell populations retain their phenotype over a short period of 
time in vitro. Both cell lines, (a) G605-H2B-GFP and (b) HD1858-H2B-GFP, were treated for 
10 days with Dox in vitro. Slowly-, medium- and fast cycling were sorted and treated with 
different concentrations of Oxaliplatin for 4 days. CellTiter-Blue® was added and the 
fluorescence signal of viable cells emitted through resorufin was measured in a plate reader. 
The fluorescence intensity of the slowly cyclig cells was much lower compared to the faster 
cycling cell populations, indicating that these cells continue to grow slowly.  
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7. Discussion and Outlook 
 
7.1. Establishment of a suitable in vivo system 
 
The goal of this thesis was to study whether different cycling cells are present within 

colorectal tumors and to phenotypically and functionally characterize the distinct cell 

populations in regard to tumor initiation, progression and chemotherapy resistance. 

Therefore a suitable in vivo system was needed that fully recapitulates the human 

disease. To date, several model systems have been described in order to study CRC 

development. For instance, numerous mouse models have been generated, such as 

the frequently used APCMin/+ model. Similar to FAP patients, these mice harbor 

heterozygous truncating mutations in the APC gene and subsequently develop 

numerous polyps and adenomas in the intestine (Levy et al., 1994; Moser et al., 

1990). Although often used to study CRC this mouse model has some limitiations. In 

contrast to the human situation where the tumors arise in the duodenum and colon, 

the adenomas in the APCMin/+ mice mainly developed in the small- and large intestine 

(Moser et al., 1990). As the recently reported Paneth cells, that have been shown to 

induce Wnt signaling and possibly constitute the niche for the ISCs located at the 

crypt bottom (Sato et al., 2011), are missing in the colon (Medema and Vermeulen, 

2011), the mouse tumors may not fully recapitulate all the aspects colorectal tumors.  

To overcome these drawbacks, xenograft models using either conventional human 

tumor cell lines or primary patient specimen have been established. First, orthotopic 

transplantation models have been generated in order to provide a beneficial 

microenvironment for the cancer cells. Although this appears to be a good model, 

the risk that the injected cancer cells may leak out and thereby influence the 

reproducibility of the experiments is very high (Tseng et al., 2007). Second, 

subcutaneous (s.c.) injections of tumor cells or pieces are widely used to expand the 

tumor material and to study tumor growth (Dalerba et al., 2007; Ricci-Vitiani et al., 

2007; Vermeulen et al., 2008b). Although this method allows sufficient tumor growth, 

the ability of the tumor cells to metastasize to distinct organs is limited due to 

differences in the microenvironment and lack of vasculature supporting tumor cell 

dissemination (Heijstek et al., 2005; Kobaek-Larsen et al., 2000). Third, xenograft 

models using the renal capsule as injection site have been used to study CRC 

progression (O'Brien et al., 2007). The kidney is a “foreign soil“ for the CRC cells but 

the organ is interspersed with numerous blood vessels, facilitating nutrition supply for 

the tumor cells and thereby promoting tumor growth. 
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This model system enables the study of metastasis development, as cells are able to 

disseminate in some cases to the liver and the lungs, as shown for the G605 cell 

line.  

The xenograft experiments were carried out in the NSG mouse strain as these mice 

offer the highest tumor take rate, due to their lack of adaptive immune cells and NK 

cells. The resulting tumors were analyzed via immunohistochemistry and flow 

cytometry in order to confirm the human origin of the cells and to compare the 

morphology with the initial patient tumor. All the tumors preserved the original 

morphology forming atypical glandular structures, as observed in the patient tumor, 

suggesting that the model system is suitable for the characterization of the human 

disease. Interestingly, a small fraction of mouse cells (H2kD+) was detected in the 

tumors, indicating that some murine cells were successfully recruited to the tumor 

surrounding (Fig. 15). These murine cells may include stromal- as well as endothelial 

cells or macrophages but were not characterized in the present study. However, this 

may indicate that in the patient, tumor cells growing in novel foreign sites such as 

distant organs might also be able to recruit healthy stromal cells, creating their own 

niche.  

 
Limitations of xenograft models in highly immunocompromized mice 

The method of the xenotransplantation as well as the selection of patient samples 

can play a critical role in the efficiency of tumor formation. In previous studies, 

several different immunocompromized mice were used for transplantations of human 

tissues, such as NOD/SCID mice, nude mice or NSG mice. These mice are 

genetically modified and harbor defects in important compartments of the immune 

system. Nude mice for example are athymic and develop only precursors of T-cells 

that will not fully maturate (Flanagan, 1966). NOD/SCID mice do not have functional 

T- and B-cells (Bosma and Carroll, 1991) and NSG mice have an additional lack of 

NK cells (Ito et al., 2002). This immunodeficiency is advantageous for 

xenotransplants and inhibits graft rejection by the host immune system. Dependent 

on the mouse strain chosen, the success rate of transplantations can differ. This was 

demonstrated recently in studies on human melanoma cells. A subpopulation 

enriched for human malignant-melanoma-initiating cells defined by the expression of 

the chemoresistance mediator ABCB5 has been identified, occurring at a relatively 

low frequency in patient specimens (Schatton et al., 2008). Moreover, it has been 

reported that the use of the highly immunodeficient NSG mice increased the 

detection of tumorigenic melanoma cells by several orders of magnitude. Co-

injections of melanoma cells with Matrigel even further increased tumor growth and 
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limiting dilution analysis revealed that more tumorigenic melanoma cells were 

identified, in contrast to cases where tumor cells were injected without Matrigel 

(Quintana et al., 2008). Importantly, in the latter study, no correlation of 

tumorigenicity with any of the surface markers tested was observed. However, 

recently, the neural crest stem cell marker CD271 has been shown to be a putative 

stem cell marker for melanomas (Boiko et al., 2010). Boiko et al. used a similar 

transplantation protocol to Quitana et al., however their cohort of patient specimens 

was different and included primary early-stage melanomas, whereas Quintana et al. 

obtained samples from patients with late-stage metastasizing disease. Those 

discrepancies suggest that the ability to detect a distinct CSC population might also 

depend on the differentiation status of the tumor, and not on the choice of the 

xenograft model alone. Furthermore, as proposed by Civenni et al. distinct protocols 

used for the digestion of the primary tumor material might be an additional 

explanation for the contradicting observations. Unlike Quintana and colleagues who 

used trypsin for the dissociation of the tumors, which may have proteolytically 

cleaved the surface epitopes of CD271 and therefore possibly lead to the detection 

of false-negative cell populations, Boiko et al. used a less harsh digestion method, 

which may have better preserved the cell surface molecules (Civenni et al., 2011).  

Although xenograft models enable the study of the human disease and mirror more 

closely the tumor heterogeneity found in the patients, they have an important 

drawback: the murine microenvironment might not be equivalent to the human one, 

potentially missing some aspects of interactions between tumors and the 

microenvironment (Richmond and Su, 2008). Indeed, many differences exist 

between chemokines and chemokine receptors present in mice and in humans 

(Mestas and Hughes, 2004), which may influence tumor development.  

Additionally, the adaptive immune system, which is highly impaired in the 

immunodeficient mice used for transplantation experiments, has been described to 

play an important role in tumor progression and metastasis (DeNardo et al., 2009). 

Thus one must be aware of those limitations and carefully evaluate the impact they 

have on the interpretation of results obtained.  

 
7.2. Establishment of a suitable in vitro system 
 
Even though xenograft models represent a useful method to study human colorectal 

cancer in a more physiological setting, cell culture systems are indispensable for in-

depth studies of numerous cellular processes. Cell culture systems allow 

manipulations of the cells and enable the testing of different hypotheses in numerous 

in vitro assays prior to their validation in more complex animal models. In order to 



 Discussion & Outlook 

90 

establish a primary human colorectal cancer cell line, tumor cells isolated from a 

freshly resected tumor piece of a CRC patient were maintained as spheres in culture 

under serum-free conditions (Fig. 17). The culture conditions are of great importance 

for the genetic stability of the cells. Lee and colleagues compared conventional FCS 

cultured human glioblastoma cell lines with cultures maintained under serum-free 

conditions. The authors could show that tumor cells grown in culture medium 

containing FCS changed genotypically and biologically from the parental tumor. In 

contrast, tumor cells cultured under serum-free conditions did not undergo such 

dramatic changes and still retained the gene expression profile and the phenotype of 

the respective parental tumors (Lee et al., 2006). In transplantation assays, 

conventional serum cultured cell lines usually form a homogenous tumor mass that 

morphologically and phenotypically differs from the initial tumor. To date, serum-free 

cultures are most frequently used for the establishment of tumor cell cultures, 

including colorectal cancer (Ricci-Vitiani et al., 2007; Todaro et al., 2007; Vermeulen 

et al., 2008b). This particular method was therefore selected for the culture of the 

HD1858 and G605 colorectal cancer cell lines.  

 

Characterization of the primary HD1858 colorectal cancer cell line 

The generated HD1858 CRC cell line was tumorigenic in vivo after maintenance in 

culture (Fig. 18b). Even sorted single cells were able to generate a heterogeneous 

tumor cell population in vitro, capable of giving rise to an adenocarcinoma after 

injection into the kidney capsule of NSG mice (Fig. 21). Moreover, the tumors 

morphologically resembled the original patient tumor (Fig. 18c), suggesting that the 

cultures maintain so-called cancer stem cells that have the potential to self-renew 

and to differentiate into all the different cell types.  

The expression of nuclear ß-catenin was evaluated in the spheres and the 

respective xenotransplants. Nuclear ß-catenin is associated with activation of the 

Wnt signaling pathway, which has been proposed to mark colorectal CSCs 

(Vermeulen et al., 2010). Fodde and Brabletz reported that the intracellular 

distribution of ß-catenin is very heterogenous in a tumor with membranous 

expression in well-differentiated parenchymal cells and nuclear expression in tumor 

cells located at the invasive front (Brabletz et al., 1998; Fodde and Brabletz, 2007). 

The CRC spheres as well as the xenografts showed differential expression of 

nuclear ß-catenin (Fig. 22), indicating that the culture system maintains the 

heterogeneity of the initial tumor.  
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CRC cultures differentially express putative CSC markers and cell adhesion 
molecules 

This heterogeneity was further validated via flow cytometry analysis of putative 

colorectal CSC markers. Both cell lines, HD1858 and G605, differentially expressed 

the putative CSC markers EpCAM, CD44 and CD166 (Dalerba et al., 2007), 

indicating that various cell types were present in the cell cultures (Fig. 23). Moreover, 

the expression of a second reported CSC marker, namely CD133 was analyzed 

(O'Brien et al., 2009; Ricci-Vitiani et al., 2007). This marker was only expressed in 

the G605 cell line and not in the HD1858 cells (Fig. 23a an d). However, CD133 is 

controversially discussed as a stem cell marker for CRC. Shmelkov and colleagues 

generated knock-in lacZ reporter mice for CD133 and discovered that this marker 

was ubiquitously expressed in differentiated colonic epithelial cells. Moreover, the 

authors could show that both CD133+ and CD133- cell populations were able to 

form tumors (LaBarge and Bissell, 2008; Shmelkov et al., 2008). Kemper and 

colleagues further demonstrated that CD133 is differentially glycosylated in CSCs 

and differentiated cells. Thereby the binding of the frequently used AC133 antibody 

to the specific epitope in the differentiated cells is prevented, even though the protein 

is still expressed. The authors also propose that the AC133 antibody might still be 

useful for the isolation of CSCs if used in the right conditions (Kemper et al., 2010). 

Nonetheless, as both CRC cell lines, HD1858 (CD133-) and G605 (CD133+), were 

able to generate tumors in mice this marker needs to be revised as being a specific 

CSC marker for CRC.  

A similar diversity in marker expression was observed for cell adhesion molecules, 

such as the different alpha integrins and c-Met (Fig. 24). These molecules are 

involved in metastasis and have the capacity to bind to different ECM molecules. 

Possibly, the heterogeneous expression of at least some of these molecules such as 

integrin alpha 1 (CD49a) and integrin alpha 5 (CD49e), suggests that there might be 

a subpopulation of CRC cells present with different capacities to metastasize. 

 

Evaluation of CD24 and CD44 as novel CSC marker for CRC 

The expression of CD24 in combination with CD44 was analyzed. This marker 

combination was not yet described as a CSC marker for CRC but has been 

proposed for several other types of cancer such as pancreatic cancer (Lee et al., 

2008) and breast cancer (Al-Hajj et al., 2003a). Interestingly, both cell lines 

expressed distinct intensities of the two markers, demonstrating again that different 

cell types were present in the cultures (Fig. 23c and f). In order to test whether 
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CD24high/CD44high and CD24low/CD44low cells have a different function in terms of 

tumor initiating capacity and metastasis, the two cell populations were sorted and 

injected into the kidney capsule of NSG mice. This experiment was only performed 

with the G605 cell line due to its higher tumorigenicity and ability to generate 

metastasis in lungs and livers in contrast to the HD1858 cells that did not form any 

visible metastasis. Both sorted cell populations had tumor initiating capacities, 

although the mean tumor volume was higher in mice injected with CD24high/CD44high 

cells compared to mice injected with CD24low/CD44low cells (Fig. 26). However, this 

result was not significant and needs to be repeated with a bigger cohort of animals. 

Nonetheless, mice injected with CD24high/CD44high cells formed lung and liver 

macrometastasis, in contrast to mice injected with CD24low/CD44low cells (Fig. 27; 

Tab. 2), suggesting that the expression of both or one of the markers may promote 

the potential of tumor cells to metastasize.  

CD24 has been described to play a role in adhesion and tumor cell invasion. Aigner 

et al. reported that CD24 binds to P-selectin, which is expressed in endothelial cells 

and activated platelets. The authors suggest that CD24 mediates tumor cell rolling 

on endothelial monolayers and thereby promotes metastasis (Aigner et al., 1998). 

Furthermore, CD24 has been found to be involved in the activation of α3ß1 and 

α4ß1 integrins, mediating cell adhesion to fibronectin, collagen I, IV and laminin, 

which finally may support extravasation at the distant site (Baumann et al., 2012). 

These studies indicate that CD24 alone might already be important for the metastatic 

process, which is in line with our results demonstrating that CD24high bladder cancer 

cells had in improved binding capacity to the ECM and enhanced metastatic 

potential to colonize lungs when compared to CD24low cells (Hofner et al., 2012). 

However, in our hands CD24 does not seem to be a specific CSC marker for CRC 

as the CD24low population was also able to give rise to tumors (Fig. 26), which is 

further supported by our finding that both CD24high and CD24low bladder cancer cell 

populations were able to initiate tumors in vivo. Nonetheless, in the bladder cancer 

model CD24high expressing cells showed a significantly accelerated tumor onset than 

the CD24low population (Hofner et al., 2012). In order to test this hypothesis for CRC, 

non-invasive imaging methods are needed to measure the growth kinetics of the 

tumor cells at various time points. Additionally, the glycoprotein CD44 has been 

described already as a CSC marker for CRC (Dalerba et al., 2007) and CD24 might 

even further enrich for more aggressive tumor cells potentiating the metastatic 

capabilities of these cells. 
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In conclusion, these results provide a hint that combined expressions of CD24 and 

CD44 might play an important role in metastasis in CRCs. To further validate this 

finding, the animal numbers need to be increased. In addition, limiting dilutions will 

be necessary to analyze whether the two populations have a different tumorigenic 

capacity and to show that the marker combination indeed enriches for more 

aggressive CRC cells. For CD44, only low- and high expressing cells were present, 

making it difficult to draw a conclusion concerning the critical role of this glycoprotein 

for the metastatic process. In the future, knock-down experiments will allow further 

conclusions to be drawn on the role of this receptor for metastasis. 

 

7.3. Novel approach to study quiescence as a feature of stem cells in 
colorectal cancer 
  

To date, various differentially expressed CSC markers have been identified via cell 

surface screenings in numerous tumor entities, for instance in breast- (Al-Hajj et al., 

2003a), pancreas- (Hermann et al., 2007; Li et al., 2007), brain- (Singh et al., 2003; 

Singh et al., 2004) and prostate cancers (Collins et al., 2005). Using these CSC 

markers, distinct cell populations were sorted using flow cytometry and subsequently 

transplanted into immunodeficient mice in order to test their tumorigenic potential. 

However, CSC marker expression may change dependent on physiological or 

developmental conditions (Nguyen et al., 2012). Therefore it has been proposed to 

define CSCs rather via the “cellular state” than by their phenotype alone (Visvader 

and Lindeman, 2012). Thus, novel approaches are necessary to isolate and 

characterize tumor cells based on more functional properties. 

It has been shown that normal adult stem cells present in the intestine (Potten, 1977; 

Potten et al., 1974), the skin (Cotsarelis et al., 1990) and the bone marrow (Cheshier 

et al., 1999; Foudi et al., 2009; Morrison and Weissman, 1994; Passegue et al., 

2005; Wilson et al., 2009; Yoshihara et al., 2007) harbor quiescent cell populations. 

As a parallel, these quiescent cells might also characterize CSC populations. 

Recently, a lentiviral vector system that mediates the tetracycline-inducible 

expression of a histone H2B-GFP reporter has been developed, which enables 

studies of cell cycle kinetics in vitro and in vivo (Falkowska-Hansen et al., 2010; 

Kanda et al., 1998). In contrast to BrdU pulse chasing experiments, this novel 

approach allows the isolation of viable LRCs and thus their functional study.  
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Slowly cycling cells are present in CRC cultures 

We used this lentiviral vector system and identified tumor cell populations with 

different label-retaining capacites (Fig. 28). For further analysis, these distinct cell 

populations were termed as slowly-, medium- and fast cycling cells. Although Ki-

67/Hoechst stainings confirmed that LRCs had a higher proportion of cells being in 

G0 phase when compared to fast cycling cells (Fig. 29), no long-term LRCs were 

observed upon longer Dox treatment, indicating that these cells still actively divide 

but less frequently. A similar approach on conventional breast- and colorectal cancer 

cell lines using CFSE was performed by Moore and colleagues, who identified 

similar amounts of slowly cycling cells (Moore et al., 2011). 

 
Slowly cycling cells do not express higher levels of putative CSC markers in vitro  

Differences in cell cycle might indicate that slowly cycling cells share common 

features with cancer stem cells and therefore express higher levels of CSC markers. 

To test this hypothesis, the colorectal cancer cell line G605-H2B-GFP was treated 

for ten days with Dox and the expression of the reported CSC markers, such as 

CD133 and EpCAM, CD44 and CD166 was analyzed. There was no difference in 

marker expression, except that there was a greater proportion of CD44 negative 

cells in the slow and medium cycling populations. (Fig. 30). A similar experiment was 

performed with the HD1858 cell line. As an alternative, the well-established lipophilic 

labeling dye PKH-26 was used to identify slowly cycling cells. CD133 was not 

included in the analysis because this cell line was completely negative for this 

marker. In correlation with results obtained for the G605-H2B-GFP cell line, no 

difference in CSC marker expression between fast- and slowly cycling cells was 

observed (see Appendix 9.4.), suggesting that slowly cycling cells are not enriched 

for CSCs in vitro and the variations in cell cycle behavior may be independent of the 

CSC model. This result differs from the finding of Dembinski and Kraus who detected 

an association between slowly cycling pancreatic cancer cells and increased 

expression of cell surface markers, such as CD133, CD24 and CD44, CD133 and 

ALDH1 (Dembinski and Krauss, 2009). However, the phenotypic properties of LRCs 

may vary between distinct tumor entities.  

An alternative explanation for this observation is that in our study, CRC cells were 

cultured under serum-free conditions in medium supplemented with growth factors 

specifically supporting the growth of CSCs (Lee et al., 2006; Ricci-Vitiani et al., 2007; 

Vermeulen et al., 2008b). Due to these particular culture conditions, the expression 
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of the putative CSC markers may already be saturated and differences between the 

distinct cell populations might be undetectable in an in vitro system.  

 

The slowly cycling phenotype is retained over a short period of time in vitro 

As the stability of the cycling phenotypes was of interest, several independent 

experiments were carried out, such as cell count (Fig. 33), clonogenicity assays 

using both crystal violet measurements (Fig. 34) and single cell sorts in 96-well 

plates (Fig. 35). 

In brief, the cycling behavior of the cells was retained over 1 week in culture after 

sorting (Fig. 35). Moreover, the slowly cycling cells divided less frequent and were 

less clonogenic than the fast cycling cells (Fig. 33 and 34; Tab. 3). Also single cell-

derived cell lines originating from fast-, medium- or slowly cycling cell populations 

showed similar cycling behaviors over one week in culture (Fig. 42 and 43). However 

this was only a transient phenotype and all the cells expanded in vitro and were able 

to regenerate fast-, medium- and slowly cycling cells independent of their initial cell 

cycle status (Fig. 37). Furthermore, this finding indicates that the cycling behavior of 

the CRC cells is not static and that there might be a dynamic switch between the 

different cell populations. Fast cycling cells are able to generate slowly cycling cells 

and more importantly slowly cycling cells are able to generate fast cycling cells in 

this experimental setting. One could hypothesize that the slowly cycling cells may 

survive chemotherapy regimens and later on generate fast cycling cells that might be 

responsible for the relapse of the patients.  

However, it is questionable whether the expansion of slowly cycling cells in vitro 

allows the study of quiescent cells. Physiological quiescent tumor cells may have lost 

their original characteristics under in vitro conditions that favor proliferation (Vessella 

et al., 2007).  

The microenvironment plays a crucial role in the maintenance or induction of a 

quiescent phenotype in the tumor cells. For example, myofibroblasts have been 

shown to secrete HGF, a ligand of the canonical Wnt signaling pathway (Vermeulen 

et al., 2010), which in conjunction with other pathways possibly influences the cycling 

behavior of the ISCs. Recent studies suggested that actively cycling ISCs located at 

the bottom of the crypt are exposed to high Wnt signaling whereas this signaling 

pathway may be suppressed in the surrounding microenvironment of the quiescent 

ISCs at the +4 position (Li and Clevers, 2010). Moreover, the medium used for the 

cell cultures of this study contained HGF, which induces proliferation and therefore 
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may have inhibited the quiescent phenotype of some of the tumor cells during in vitro 

experiments.  

Additionally, the level of oxygen the tumor cells are exposed to is known to play a 

critical role. It has been shown that HSCs are located in a specific niche in the bone 

marrow with low oxygen levels (Cipolleschi et al., 1993; Parmar et al., 2007). Thus 

hypoxia regulates stem cell function and may induce quiescence (Simon and Keith, 

2008). Many hypoxic areas are present in a tumor and might be involved in the 

balance between quiescent and actively dividing tumor cells.  

Therefore in vivo studies, which mimic more closely the physiological requirements 

to maintain or induce quiescence, might yield additional insights into the cell cycle 

behavior of CRC cells.  

 
All cycling cell populations preselected in vitro are able to generate tumors in vivo 

The colon cancer cell line G605-H2B-GFP was cultured for 10 days with Dox and 

fast-, medium- and slowly cycling cells were sorted and transplanted into immuno-

compromized mice in order to determine their tumorigenic potential. All the 

populations were able to generate tumors independent of the initial cycling state and 

the mean tumor volume appeared to be higher in the slowly cycling cell population in 

comparison to medium- and fast cycling cells (Fig. 47). However the tumor volume 

was variable even within one group of mice and therefore does not lead to a 

conclusive result. Nevertheless, it is clear that every tumor cell population 

independent of their initial cell cycle state is able to engraft in NSG mice. In this 

experimental set up, the slowly cycling cells generated tumors comparable in size to 

the fast cycling cells (Fig. 47), indicating that these cells might be able to regenerate 

fast cycling cells. However, a small contamination of cells not able to switch off the 

H2B-GFP expression was detected (Fig. 40). These cells may be fast cycling and 

probably contribute to tumor progression within the slowly cycling population. 

Nonetheless, additional experiments, where tumors were treated for more than 20 

days with Dox and still did not harbor long-term LRCs (Fig. 49), could rule out this 

hypothesis. Independent of this observation it has been clearly demonstrated that 

slowly cycling cells are able to regenerate fast cycling cells. 

Furthermore, the different cycling cell populations were preselected in vitro. These 

cells might be different from slowly cycling cells that arise in a tumor 

microenvironment. Therefore additional experiments with different cycling tumor cells 

preselected in vivo were performed.  
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Xenografts do not harbor long-term LRCs in vivo  

Xenografts were examined for the presence of slowly cycling cells upon Dox 

treatment at different time periods. The intensity of the H2B-GFP signal was 

distributed over several log-shifts upon Dox treatment for more than five days (Fig. 

49), confirming that the tumor cells divide at different frequencies. However, after 22 

days of Dox treatment all the tumor cells lost their H2B-GFP label indicating that the 

tumors do not seem to harbor long-term LRCs (Fig. 49, black curve). Several 

possibilities might explain this observation: first, NSG mice lack functional B-, T- and 

NK-cells and therefore may be unable to recapitulate all the microenvironmental 

features required for the establishment of tumor dormancy. However, the impact of 

the immune system on tumor dormancy has not been shown yet, except for the 

murine B cell lymphoma, where cytotoxic CD8+ T-cells or anti-idiotypic antibodies 

against the B-cell receptor are able to arrest tumor cells (Farrar et al., 1999; 

Rabinovsky et al., 2007).  

Second, cancer cells might only switch to a quiescent state when tumors reach a 

certain size. Bigger tumors often develop hypoxic areas and lack nutrition supply due 

to poor vascularization, which in the end may influence the cell cycle state of the 

tumor cells. Probably the tumors analyzed in this study were too small or tumor cells 

that lost the label already reentered into dormancy and could not be detected 

anymore at the time point of analysis. In order to visualize a possible reentry from a 

cycling to a non-cycling state a second labeling method needs to be used at a later 

time point, such as BrdU.  

Furthermore, as described for the in vitro preselected tumor cells, all the different 

cycling cell populations were able to develop into tumors that morphologically 

resembled each other and more importantly the initial primary tumor (Fig. 55). In 

addition, there was no significant difference in mean tumor volume between the 

distinct cell populations, indicating again that there might be a dynamic switch 

between the different cell populations. The observation that all different cycling cell 

populations are able to generate a tumor in a xenograft model is in accordance with 

a recent study from Moore and colleagues who analyzed the function of different 

cycling cells in conventional breast- and colorectal cancer cell lines. Similarly, the 

authors showed that slowly cycling cells are able to develop into a tumor (Moore et 

al., 2011). 

Moreover, lung metastases appear to contain less H2B-GFP positive cells in 

comparison to the matched primary tumor as assessed by IHC (Fig. 51), suggesting 

that slowly cycling cells that arrive at a distant organ start to proliferate. These 
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disseminated tumor cells may reenter a quiescent state if a certain tumor size is 

reached and novel blood vessels and other growth factors are lacking in order to 

develop into overt macrometastases. Furthermore, a different scenario of angiogenic 

dormancy could be envisioned. Possibly all tumor cells actively divide but the tumor 

mass does not increase due to constant balance between proliferation and apoptosis 

(Aguirre-Ghiso, 2007). As previously discussed, a second labeling technique that 

allows the tracking of tumor cells that may reenter quiescence at a later time point 

during tumor progression may give further weight to one hypothesis. This 

observation needs to be confirmed in more mice and the frequency of LRCs needs 

to be quantified. 

Additionally, all these experiments represent endpoint analyses. In order to 

determine whether the onset of tumor growth is different between the fast-, medium- 

and slowly cycling cells an additional labeling with luciferase was performed that 

enabled a non-invasive analysis of the tumor growth kinetics. 

 
Fast-, medium- and slowly cycling cells preselected in vivo induce tumors with 
similar growth kinetics 

In vivo preselected fast-, medium- and slowly cycling cells that express luciferase in 

addition to H2B-GFP were transplanted into secondary recipient mice and the tumor 

growth kinetics were estimated weekly via in vivo bioluminescence measurements. 

There was no significant difference between the different cycling cell populations 

regarding tumor growth (Fig. 59). Furthermore, the secondary recipient mice were 

treated with Dox for 15 days prior to analysis. IHC stainings of the tumor sections 

demonstrated that all the sorted cell populations were able to generate fast-, 

medium- and slowly cycling cells independent of the initial cell cycle state (Fig. 62), 

indicating again that there might be a dynamic and bidirectional process between the 

different cycling cell populations. This is in line with recent studies performed in 

melanoma (Roesch et al., 2010) and pancreatic cancer (Dembinski and Krauss, 

2009). Roesch and colleagues demonstrated that JARID1B negative melanoma cells 

were able to generate slowly cycling JARID1B positive cells similar to the finding of 

Dembinski and Kraus who reported that DiI negative pancreatic tumor cells could 

generate DiI positive cells and also vice versa.  

The authors suggest that heterogenous tumor cell populations follow rather a 

dynamic than a hierarchical model.  

Even though the distinct cycling cell populations analyzed in this study do not seem 

to differ in their contribution to tumor progression, these cells may be involved in 

chemotherapy resistance and relapse.  
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Slowly cycling cells are more resistant to chemotherapy in vitro   

In the intestine, quiescent ISCs marked by Bmi1 and mTert have been identified 

(Cairnie et al., 1965; Montgomery et al., 2011; Potten, 1977; Potten et al., 1974; Yan 

et al., 2012). These ISCs were resistant to high-dose irradiation and tissue injury and 

were subsequently able to repopulate the damaged crypts and villi. Furthermore, the 

quiescent ISC population was capable of giving rise to actively cycling Lgr5+ cells 

(Montgomery et al., 2011; Yan et al., 2012). Thus quiescent ISCs were able to 

survive chemotherapy treatments, which might be also true for slowly cycling tumor 

cells.  

In order to test this hypothesis, we exposed our colorectal tumor cell lines to 

standard chemotherapeutics used to treat metastatic cancer patients, such as 5-FU 

and Oxaliplatin. Slowly cycling cells were enriched upon either of the two treatments 

(Fig. 63). This observation might be explained by two possibilities: either slowly 

cycling cells are more resistant to treatment and have greater survival than fast 

cycling tumor cells, or simply each tumor cell is arrested and thus retains the H2B-

GFP label as a direct consequence of the treatments. In order to exclude the latter 

possibility, the CRC cells were sorted prior to treatment and the IC50 was 

determined. In three independent experimental settings, slowly cycling cells had a 

higher IC50 compared to faster cycling cell populations (Tab. 7), indicating that these 

cells were more resistant to chemotherapy. However this result was not observed in 

the HD1858 cell line treated with Oxaliplatin (Tab. 7). The experimental set up might 

not have been optimal for both cell lines. Different cell numbers were seeded for 

HD1858 and G605 cells, which might impact the outcome of the experiment. 

Furthermore the differences for the IC50 observed between the different cycling cell 

populations were modest (Fig. 64). However, both colorectal tumor cell lines were 

generated from highly metastatic tumors that disseminated to the liver. The patients 

were already under treatment and the tumor cells might have adapted to the 

cytotoxic drugs. This might explain why only minor differences were detected using 

these two cell lines upon chemotherapy treatment. Nonetheless, future studies will 

be needed in order to investigate whether this observation holds true in vivo.  

 

7.4. Conclusion 
 
In conclusion, this study shows that different cycling tumor cell populations exist in 

colorectal tumors. Phenotypical characterizations of these distinct cell populations 

did not reveal an increased expression of the reported CSC markers within the 

slowly cycling cell population in vitro, suggesting that variations in cell cycle might 
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not depend on the CSC model. All the cells were able to proliferate and to generate 

adenocarcinomas in xenograft mouse models that morphologically resemble each 

other and the initial patient tumor. The distinct cycling cell populations were able to 

regenerate fast-, medium- and slowly cycling cells, indicating that the cells are able 

to dynamically switch their cycling phenotype, making it difficult to target specifically 

slowly cycling cells. In addition, slowly cycling cells have an enhanced 

chemoresistance when compared to the medium- or fast cycling cells. These slowly 

cycling cells may survive standard chemotherapy treatment and due to their ability to 

switch to a fast cycling phenotype, upon so far unknown intrinsic or external stimuli 

may cause relapse in CRC patients. Initially fast cycling cells may acquire a more 

quiescent phenotype upon treatment and afterwards switch back to a fast cycling 

phenotype, thereby promoting tumor progression. A more complex and dynamic 

regulatory network as previously expected may exist between distinct tumor cell 

populations (Fig. 66). As these populations may be able to switch their cycling 

behaviors upon intrinsic or external stimuli, this dynamic behavior should be 

considered when developing novel treatment strategies.  

 

Fig. 66: Model proposing a dynamic interplay between slowly- and fast cycling tumor cells. 
Tumor cells are able to switch between different cycling phenotypes within the tumor and 
possibly also at the distant site. This switch may be partially triggered via external stimuli 
mediated by the microenvironment. Specific niches regulating cellular dormancy either due to 
low oxygen levels or a lack of nutrition supply may be present in a tumor. Growth factors and 
ECM could also be involved in the balance between quiescent- and actively dividing cells. 
Conceivably stress such as chemotherapy may support the release of signals that in turn 
induces fast cycling cells to arrest in cell cycle and to switch into a more quiescent state. 
Furthermore, intrinsic mechanisms may also partially determine the cycling phenotype of a 
tumor cell. 
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7.5. Outlook 
 
Several clinical observations, such as minimal residual disease with long latency 

periods between treatment and relapse have led to the concept of tumor cell 

dormancy, assuming that these dormant cells may be more resistant to therapy (see 

chapter 4.9.). However, experimental evidence unraveling the exact drug resistance 

mechanisms in dormant cancer cells is still missing. The experiments performed in 

this study suggest that slowly cycling cells may be involved in relapse and 

chemotherapy resistance. Additional studies using in vivo models will be necessary 

to confirm these results. The following experimental setup would provide further 

insight into the possible role of slowly cycling cells in disease relapse:  

 

 
Fig. 67: Experimental set up to test the ability of LRCs to survive chemotherapy treatment in 
vivo. Mice will be injected with H2B-GFP/luciferase expressing colorectal tumor cells. After 
tumor growth, mice will be treated with Dox for 15 days prior to chemotherapy administration 
(Dox treatment will continue). Mice not treated with chemotherapy but with Dox will be used 
as control. The tumors will be harvested and analyzed for the frequency of LRCs. LRCs and 
non-LRC will be further transplanted into secondary recipients to test their tumor initiating 
capacity.  
 
Firstly, tet-Off-H2B-GFP and luciferase expressing colorectal tumor cells will be 

injected into the renal capsule of NSG mice. After establishment of tumors, mice will 

be treated with Dox in order to mark the different cycling cell populations, according 

to H2B-GFP label-retention. Initial experiments indicated that after 15 days of Dox 

treatment a clear distribution of the distinct cycling cell populations could be reached 

in tumors. Therefore, mice would receive Dox for 15 days. Chemotherapy would then 

be administered in parallel with continuous Dox treatment. It is likely that the tumors 

will shrink upon treatment, due to elimination of cycling cells by the 

chemotherapeutic agent. In order to test whether LRCs are indeed resistant to 

chemotherapy in vivo, the frequency of LRCs will be compared before and after 

treatment. Viable LRCs and non-LRCs, if present, will be further transplanted into 

secondary recipients in order to test whether these cells are still able to regenerate a 

tumor and to compare their tumorigenic potential. For this analysis it is important to 

carefully exclude dead cells, for instance by using PI (Fig. 67). Moreover, limiting 
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dilutions will be necessary to determine the frequency of tumor initiating cells. 

Microarray expression profiling could be performed on the sorted cells in order to get 

further information about the molecular mechanisms involved in the chemotherapy 

resistance. Additionally, an intra-splenic metastasis model could be used to test 

whether the sorted cell populations have different metastasis initiating capacities.  

To further investigate whether chemotherapy can induce a quiescent or slowly 

cycling state in the tumor cells, the following experimental set up would clarify this 

question: 

The primary colorectal tumor cell lines expressing H2B-GFP and luciferase will be 

injected into the renal capsule of NSG mice. After monitoring of tumor growth, the 

mice will be treated with Dox for eight days and afterwards chemotherapy will be 

administered 48 hours prior to BrdU treatment. The mice will be treated with BrdU 

and Dox until the end of the experiment (Fig. 68a). The exact timing for the treatment 

with BrdU and the chemotherapy needs to be determined in independent 

experiments. 

 

 
Fig. 68: Experimental set up to test whether chemotherapy can induce cell cycle arrest. a) 
Mice will be injected with H2B-GFP/luciferase expressing colorectal tumor cells. After tumor 
growth, mice will be treated with Dox for 15 days prior to chemotherapy administration (Dox 
treatment will continue). 48h after chemotherapy treatment, BrdU will be administered in 
order to label cycling cells (BrdU treatment will continue until the end of the experiment). b) 
Possible outcome of the experiment: Cells that arrest upon chemotherapy treatment will not 
incorporate BrdU whereas cells that still actively cycle will be BrdU+. Possibly some cells that 
arrest upon treatment enter senescence.  
 
GFP+ and GFP- cell populations will be isolated and subsequently analyzed for their 

BrdU content and compared with non-treated controls. If the treatment would induce 

a cell cycle arrest, the initially cycling cells would not incorporate BrdU, in contrast to 
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resistant cells (Fig. 68b). By determining the frequency of each population it would 

be possible to analyze the relative effect of the chemotherapy on the distinct cell 

populations. However, this assay does not allow functional studies because the cells 

need to be fixed prior to analysis. 
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8. Material & Methods 
 
Mice 
 
All animal studies were carried out according to the animal protocol approved by GV-

Solas (Gesellschaft für Versuchstierkunde). Mice used for all the experiments were 

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG). Authorization numbers G17/12 and G57/10 

were obtained from the national authorities for research experiments on animals 

(Regierungspräsidium, Karlsruhe). Mice were maintained in the DKFZ animal facility 

in Heidelberg under specific pathogen-free (SPF) conditions and housed in 

individually ventilated cages (IVC).  

 
Subcutaneous transplantations of primary tumor pieces 
 
Primary tumor pieces from colorectal cancer patients or secondary transplants were 

minced into small pieces of 1 mm x 1 mm. The mice were anesthetized using xylazin 

(14.5 mg/kg) and ketamin (90 mg/ml). Ten µl per gram body weight were injected 

intra-peritoneally (i.p.). The anesthetized mice were kept on a heating pad until they 

woke up from anesthesia in order to maintain their body temperature. A small 

incision was made in the flank of the mice with a sterile scissor. The tumor piece was 

placed under the skin and the incision was closed with wound clips. The wound was 

disinfected with Betadine and Cicatrex cream was added to facilitate the healing of 

the wound. Artificial tears were put on the eyes in form of a cream.  

 
Kidney capsule injections of primary tumor cells 
 
Tumors were either digested with collagenase (0.25 %) and DNase to obtain single 

cell suspensions or cells from cultures were used for the injections. The mice were 

anesthetized using xylazin (14.5 mg/kg) and ketamin (90 mg/ml). Ten µl per gram 

body weight were injected i.p.. The anesthetized mice were kept on a heating pad 

until they woke up from anesthesia in order to maintain their body temperature. Prior 

to surgery, the mice were shaved at the abdomen and disinfected. A small incision 

was made in the skin of the mice to expose the kidney. The cells were re-suspended 

and injected in a volume of 30 µl diluted in PBS (Phosphate buffered saline) via a 29 

G syringe. The wound was closed using an absorbable thread and wound clips. The 

wound was disinfected with Betadine and Cicatrex cream was added to facilitate the 

healing of the wound. Artificial tears were put on the eyes in form of a cream.  
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Dox treatment of mice injected with colon tumor cells transduced with tet-Off-H2b-
GFP lentivirus 
 
After tumor growth was verified, the mice were treated with Dox (Sigma) in the 

drinking water at a dose of 2 g/l protected from light. 

 
Dissociation of primary tumors or xenografts 
 
The tumors were washed once with PBS. The PBS was removed and the tumors 

were minced using sterile scalpels. The minced tumor pieces were resuspended in 

CO2-independent medium (Invitrogen) supplemented with BSA (1%) and glutamine. 

Additionally, collagenase IV (0.25%, Sigma) and DNase I (Roche) were added to the 

medium. The tumor pieces were further dissociated in the gentleMACS™ dissociator 

for 30 seconds and incubated at 37°C for 1 hour rotating. Afterwards, the cell 

suspension was filtered through a 100 µm mesh and washed once with PBS.  

In order to purify the tumor cells from erythrocytes and dead cells, an Optiprep™ 

(Axis-Shield) density gradient was performed at 4°C for 20 minutes at 4000 rpm. The 

interphase was collected and washed with PBS. The cells were frozen, cultured, 

analyzed or transplanted dependent on the experiment.  

 
Establishment of primary human tumor cell lines 
 
The tumors were dissociated as described in chapter 9.14. The primary tumor cells 

were maintained in Advanced DMEM/F12 (Invitrogen) supplemented with glutamine 

(2 mM, Gibco), N2-supplement (Invitrogen), trace elements A, B and C 

(Mediatech/Cellgro), heparin (2 mg/ml) (Sigma), glucose (0.6 %) (Sigma), lipid 

mixture (Sigma), HEPES (5 mM) (Gibco), 2-Mercaptoethanol (100 µM, Invitrogen), 

BSA (Millipore), basic Fibroblast Growth Factor (bFGF, 50 ng/ml) (Peprotech), 

Epidermal Growth Factor (EGF, 20 ng/ml) (Peprotech), R3 IGF-I (10 ng/ml, Sigma) 

and Hepatocyte growth factor (HGF, 50 ng/ml) (Peprotech).  

The cells were grown as spheres in hydrophobic suspension culture flasks (Greiner). 

The cells were cultured short-term adherent on collagen I (30 µg/ml; Gibco) coated 

cell culture flasks.  

 

Coating of cell culture flasks with collagen I 
 
Cell culture flasks were covered with collagen I (30 µg/ml) diluted in PBS. The flasks 

were incubated at 37°C for 2 hours and stored at 4°C until usage. Prior to seeding of 

the cells, the collagen I / PBS mixture was discarded and the surface of the flasks 

was washed once with PBS.  
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Clonogenicity assay in vitro using crystal violet 
 
Single cell suspensions were generated and 12.000 cells were seeded into one 6-

well. The cells were distributed evenly in the wells to avoid cell clumps. The cells 

were grown on collagen I coated plates in serum-free cancer stem cell medium. The 

medium was removed and the wells were carefully rinsed with PBS. The PBS was 

removed and the wells were covered with 0.5% crystal violet containing 6% (v/v) 

glutaraldehyd and incubated for 30 minutes at room temperature. Afterwards, the 

crystal violet was removed and the wells were carefully rinsed with tap water. 

Colonies were counted and colony sizes were determined using the Image J 

software (particle count). The protocol was adapted from (Franken et al., 2006). 

 
Lentivirus production 
 
For the generation of high titer lentiviruses the Tronolab protocol was used: 

http://tcf.epfl.ch/site/tcf/page-6764.html. A second generation virus production was 

performed using psPAX2 as a packaging plasmid and pMD2.G as the plasmid 

coding for the envelope. For the transgene, the following plasmids were used:  

 - tet-Off-H2B-GFP (pWPXL-TTT-H2B-GFP) (vector map see chapter 9.5.) 

  -> reporters: H2B-GFP 

 - pV2luc2 (vector map see chapter 9.6) 

  -> reporters: luciferase 2 and venus 

 - pTurboGlow (vector map see chapter 9.7.) 

  -> reporters: luviferase 2 and eqFP650 (Evrogen) 

The pWPXL-TTT-H2B-GFP plasmid was a kindly provided by Prof. Dr. Boukamp and 

Prof. Dr. Kirschner (Falkowska-Hansen et al., 2010). Calcium-phosphate was used 

for the transfection of HEK293T cells. The HEK293T cells were maintained in IMDM 

(Gibco) supplemented with 10% FCS and 2 mM glutamine. Chloroquine (25 µM) was 

added to the medium prior to virus production. Virus was harvested 24- and 48 hours 

after transfection. The supernatant was filtered and spun down to remove cell debris. 

Afterwards, the viral supernatant was centrifuged at 24000 rpm at 4°C for 2 hours in 

an ulatracentrifuge. Therefore, 20% sucrose solution (1:10) was covered with the 

viral supernatant in order to purify the virus. The viral particles were resuspended in 

PBS/1% BSA and aliquoted. 

 
Transduction of primary colon cancer cell lines 
 
The colon cancer cells were dissociated using StemPro Accutase™ (Invitrogen) and 

single cell suspensions were seeded on collagen I coated plates. Polybrene (10 
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µg/ml) was added to the medium prior to transduction. After successful transduction 

of the colon cancer tumor cells, the cells were sorted for the respective reporter such 

as GFP, venus or eqFP650. The cells were either transduced with one of the 

transgene plasmids or a double transduction was performed using pWPXL-TTT-

H2B-GFP and pTurboGlow. Therefore, the cells were transduced with one plasmid 

and sorted prior to the second transduction. Afterwards, the cells were sorted for 

both transgenes (GFP and eqFP650). 

 
In vivo bioluminescence imaging using the Xenogen system (IVIS-200 Caliper) 
 
Mice were injected intra-peritoneally with D-Luciferine Firefly Potassium salt (15 

mg/ml in PBS) at a dose of 10 µl per gram body weight (Biosynth) 10 minutes before 

imaging. The animals were anesthetized using 4.5% isoflurane in oxygen (0.9 l/min), 

maintained at 1.5 % isoflurane in oxygen and analyzed in the heated camera 

chamber. The Living Image software was used according to the manufacturer’s 

instructions (IVIS 200, Caliper). 

 
Slowly cycling cells in vitro 
 
The spheroid cultures were dissociated with StemPro Accutase™ (Invitrogen) for 10 

minutes at 37°C. A density gradient using OptiPrep™ (Axis-Shield) was performed 

for 20 minutes at 4000 rpm at 4°C to reduce the amount of dead cells and cell 

debris. The inter-phase was collected and washed with PBS. The cells were seeded 

at low densities on collagen I coated tissue culture flasks. One day after seeding, the 

cells were treated with Dox (10 ng/ml) for 10 days. 

 

PKH-26 staining 
 
The PKH-26 cell linker kit from Sigma was used (catalogue number: PKH26GL). 

Single cell suspension was washed once with serum-free medium and centrifuged 

for 5 min at RT with 400 x g. A 2x cell suspension was prepared by adding 1 ml of 

Diluent C. The cells were gently resuspended. Afterwards, 4 µl of PKH-26 

resuspended in 1 ml Diluent C were added to the cells. The cells were incubated for 

5 min at RT with periodic mixing. The reaction was stopped by adding 2 ml of protein 

solution (PBS + 1% BSA) for 1 min. Afterwards 4 ml of medium were added and the 

cells were centrifuged for 5 min at 400 x g at RT. The cells were washed twice with 

medium and the viability was determined using trypan blue.  
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Flow cytometry 
 
All surface stainings were performed in PBS supplemented with 1% BSA and 0.5 M 

EDTA. 1x 106 cells were stained in 100 µl of staining solution for 30 minutes on ice. 

A complete list of antibodies used for the stainings is provided in chapter 9.1. 

For the analysis the following analyzers were used: 

 - LSR II™ (BD) 

 - Fortessa™ (BD) 

 - Cyan ADP™ (Dako, Glostrup, Denmark) 

The cell sorting was performed on a FACS Aria Flow Cytometer (Becton Dickinson, 

San Jose, CA). A 100 µm nozzle was used for the cell sort to ensure that the cells 

are not destroyed. Data were analyzed with the FlowJo software (Tree Star, 

Ashland, OR).  
 
Cell cycle analysis via Ki-67/Hoechst staining 
 
The tumor cells were fixed and permeabilized in ice-cold EtOH (70%) for 2 hours at  

-20°C. Afterwards, the cells were washed twice with PBS and incubated with an anti 

human Ki-67 antibody (BD Biosciences) at room temperature for 1 hour. Hoechst 

(Molecular probes) at 20 µg/ml was added for 15 minutes prior to analysis. The 

analyses were performed on a LSR II or Fortessa (BD Biosciences).  

 

Immunohistochemistry of tumor sections 

All histological samples were fixed in 10% neutral buffered formalin solution (Sigma) 

at room temperature on a rotor. Samples were dehydrated (70%EtOH; 90%EtOH; 

100%EtOh), immersed sequentially into xylol and paraffin (Tissue-Tek®VIP®6) and 

embedded in paraffin (Thermo Scientific, Histo Star®). Embedded tissues were cut at 

4 µm, deparaffinized and rehydrated (3x Xylol; 3x EtOH 100%; 1x EtOH 95%; 1x 

EtOH 80%; distilled (d)H2O). Sections were stained with hematoxylin and eosin 

(H&E) for morphological analysis. Additional stainings were performed according to 

the protocol in chapter 9.8. 

 

Immunohistochemistry of spheres 
 
The spheres were resuspended in Histogel (Thermo Scientific). The mixture of cells 

and Histogel was added to a cloning cylinder (Corning). The cylinder is sealed to a 

plate with silicone high vacuum grease to prevent leakage of the fluid. The cells were 

placed at 4°C until the histogel was solidified. The cloning cylinders were removed 

from the plate and the cells embedded in the solidified histogel were placed into 10% 
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neutral buffered formalin solution (Sigma) on a rotor. The spheres were dehydrated 

(70%EtOH; 90%EtOH; 100%EtOh), immersed sequentially into xylol and paraffin 

(Tissue-Tek®VIP®6) and embedded in paraffin (Thermo Scientific, Histo Star®). 

Embedded spheres were cut at 4 µm, deparaffinized and rehydrated (3x Xylol; 3x 

EtOH 100%; 1x EtOH 95%; 1x EtOH 80%; distilled (d)H2O). Sections were stained 

with hematoxylin and eosin (H&E) for morphological analysis. Additionally, stainings 

with an anti human beta-catenin antibody were performed according to the protocols 

in chapter 9.8. and 9.9. 

 
Hypoxia induction 

 
The CRC cell lines, G605-H2B-GFP and HD1858-H2B-GFP, were maintained on 

collagen I coated plates in cancer stem cell medium in hypoxic chambers 

(BioSpherix) either at oxygen levels of 3% or 0.5% for 10 days prior to analysis.  

 
Image Aquisiton 
 
Light microscopy pictures of the sections were taken via a Leica DM LB2 microscope 

that contained a Leica DC480 CCD camera or with the Zeiss Axioplan microscope 

equipped with the AxioCam ICc 3 colour camera. 

 
Statistical Analysis 
 
Statistical significance was determined by T-test (95% confidence interval) or one-

way ANOVA at p ≤ 0.05. For the one-way ANOVA, a post-test was performed using 

Bonferroni’s multiple comparison test. All data are reported as the mean + SE. 

Statistical significance was considered as * (P < 0.05), ** (P < 0.01), *** (P < 0.001). 
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9. Appendix 
 
9.1. List of antibodies used for flow cytometry analysis of human cells 
 

ANTIGEN COMPANY CAT.# CLONE Isotype Conjugate 

CD24 BD 555427 ML5 Mouse IgG2a  FITC 

 BD 555428 ML5 Mouse IgG2a  PE 

 BioLegend 31106 ML5 Mouse IgG2a  PE 

  BioLegend 311118 ML5 Mouse IgG2a  APC 

CD44 BioLegend 103020 IM7 Rat IgG2b  Pacific Blue 

CD45 BioLegend 304022 HI30 Mouse IgG1  Pacific Blue 

 eBioscience 12-0459-42 HI30 Mouse IgG1  PE 

 ebioscience 11-0459-73 HI30 Mouse IgG1  FITC 

CD49a BD 559596 SR84 Mouse IgG1  PE 

CD49b BD 555669 12F1 Mouse IgG1  PE 

CD49c BD 556025 C3II.1 Mouse IgG1  PE 

CD49d BD 340296 9F10 Mouse IgG1  PE 

CD49e BD 555617 IIa1 Mouse IgG1  PE 

CD49f BD 555736 GoH3 Mouse IgG1  PE 

CD133/1 Milteny 130-090-826 AC133 Mouse IgG1  APC 

  Milteny 130-080-801 AC133 Mouse IgG1  PE 

CD166 MBL K0044-4 3A6 Mouse IgG1  FITC 

  R&D FAB6561P 105902 Mouse IgG1  PE 

CD326 
(EpCAM) BD 347200 EBA-1 Mouse IgG1  APC 

  eBioscience 12.9326-71 1B7 Mouse IgG1  PE 

c-Met eBioscience 13-8858 eBioclone 
97 Mouse IgG1  Biotin 

  R&D FAB3582A 95106 Mouse IgG1 APC 

HLA-ABC BD 555552 G46-2.6 Mouse IgG1  FITC 

 ebioscience 12-9983 W6/32 Mouse IgG2a  PE 

 ebioscience 13-9983 W6/32 Mouse IgG2a  Biotin 

  BD 555555 G46-2.6 Mouse IgG1 APC 

H2Kd BioLegend 116612 SF1-1.1 Mouse IgG2a  AF-647 

Ki-67 BD 558615 B56 Mouse IgG1  AF-647 
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9.2. List of reagents used for cell culture 
 

Article Company Catalog number 

Advanced DMEM/F12  Invitrogen 12634-010 

CO2 Independent Medium Invitrogen 18045-054 

N2 Supplement Invitrogen 17502048 

2-Mercaptoethanol, 50 mM Invitrogen 31350-010 

Glucose 45% Sigma G8769 

Heparine Sigma H-3149-10KU 

Lipid Mixture 1 Sigma L-0288 

basic Fibroblast Growth Factor (bFGF) Preprotec AF-100-18B 

Epidermal Growth Factor Preprotec 500-P45 

LONG®R3 IGF-I human Sigma I1271.1mg 

Trace Elements A Mediatech/Cellgro MT-99-182-CIc 

Trace Elements B Mediatech/Cellgro MT-99-175-CIc 

Trace Elements C Mediatech/Cellgro MT-99-176-CIc 
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9.3. Flow cytometry analysis of G605 cells 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 

 
 
 
 
 

 
 
 
Fig. 69: G605 cells differentially express alpha integrins and c-Met. Doublet- (b) and dead cell 
exclusion, using PI were performed (c). The cells differentially express CD49a (d), CD49c (f) 
and CD49e (h). All the cells homogenously express CD49b (e), CD49f (i) and c-Met (j). 
CD49d is not expressed in G605 cells (g).  
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9.4. Slowly cycling cells are not enriched for putative CSC markers 
 (HD1858) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 70: Slowly cycling HD1858 cells are not enriched for CSC markers. Colon spheres were 
labeled with PKH-26 and maintained in culture for 7 days. Slowly- (b, red square) and fast 
cycling cells (b, green square) were classified according to parental cell line not treated with 
PKH-26 (a). Slowly- and fast cycling cells express the same level of CD44 (c) and CD166 (d) 
(black curve = isotype control; red curve = slowly cycling cells; green curve = fat cycling 
cells). 
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9.5. Vector map pWPXL-TTT-H2B-GFP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Generated by (Falkowska-Hansen et al., 2010). 
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9.6. Vector map pV2luc2 
 
 
 
 

 
 
 
 
 
 
 
 
 
Molecule definition: 
 
Molecule:  pV2luc2; 9331 bp 
Circular 
 
Molecule Features: 
 

Type Start End Name Description 

 
Region 

 
212 

 
816 

 
CMV 

 
promotor 

Region 1067 1204 Psi HIV packaging signal 
Region 1688 1928 RRE Rev responsive element 
Region 2422 2599 cPPT central polypurine tract 
Region 2780 3031 EF1a short promotor 
Gene 3060 4712 Luciferase 2 reporter for bioluminescence 
Region 4763 5364 IRES Internal ribosome entry site 
Gene 5365 6084 Venus reporter for fluorescence 
Region 6219 6808 WPRE enhancer 
 
Generated by Christian Eisen 
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9.7. Vector map pTurboGlow 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Molecule definition: 
 
Molecule:  pTurboGlow; 9407 bp 
Circular 
 
Molecule Features: 
 

Type Start End Name Description 
 
Region 

 
212 

 
816 

 
CMV 

 
promotor 

Region 1067 1204 Psi HIV packaging signal 
Region 1688 1928 RRE Rev responsive element 
Region 2422 2599 cPPT central polypurine tract 
Region 2817 3068 EF1a short promotor 
Gene 3140 4792 Luciferase 2 reporter for bioluminescence 
Region 4843 5439 IRES Internal ribosome entry site 
Gene 5445 6149 Turbo650 reporter near infrared 
Region 6295 6884 WPRE enhancer 
 
Generated by Christian Eisen 
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9.8. Immunohistochemistry protocol: mouse anti-human Ki-67 antibody  
(established by Department of Pathology, Vanessa Vogel, Prof. Dr. Weichert) 
Dako REAL™ Detection System, Peroxidase/AEC, Rabbit/Mouse 

 
Deparaffinize the slides: 
 

• 10 min. Xylol 

• 10 min. Xylol 

• 5 min. 100% Ethanol 

• 5 min. 100% Ethanol 

• 5 min. 96% Ethanol 

• 5 min. 70% Ethanol 

• 5 min. distilled water 

 
Heat-Induced Epitope Retrieval:  
 
Using damp heat in a steam pot with citrate buffer at pH 6.0 
 

• 15 min cooking 

• 30 min cooling outside the pot but within the buffer 

• Rinse slides in distilled water  

 
Avidin/Biotin Blocking Kit: 
 

• Rinse the slides in PBS Tween buffer 

• Apply avidin block for 10 minutes at room temperature  

• Rinse the slides in PBS Tween buffer 

• Apply biotin block for 10 minutes at room temperature  

• Rinse the slides in PBS Tween buffer 

 
Primary Antibody: 
 

• Prepare the primary antibody dilution (total volume 200 µl)  

• Incubation with the Primary Antibody for 30 minutes at room 

temperature  

• Rinse the slides in PBS Tween buffer 
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Secondary Antibody: 
 

• Using the multilink secondary antibody (Goat anti-Rabbit, goat anti-

mouse) from Dako Kit bottle A 

• Apply 200 µl   

• Incubation with the secondary antibody for 20 minutes at room 

temperature  

• Rinse the slides in PBS Tween 

 
H2O2: 
 

• Ready to use (not included in the Dako Kit) 

• Apply 200 µl  

• Incubation for 5 minutes at room temperature  

• Rinse the slides in PBS Tween 

 
HRP (Streptavidin Peroxidase): 
 

• HRP using bottle B (Dako Kit) 

• Apply 200 µl  

• Incubation with HRP for 20 minutes at room temperature  

• Rinse the slides in PBS Tween 

 
AEC (reddish), Chromogen: 
 

• AEC using bottle C (Dako Kit) 

• Apply 200 µl  

• Incubation time will be ascertained microscopically 

• Rinse the slides in 2 changes of PBS Tween 

• Rinse the slides in distilled water 

 
Counterstain with Hematoxylin: 
 

• 3-5 minutes in hematoxylin 

• Rinse the slides in tap water until water is clear 

• Coverslip (Aquatex) 
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9.9. List of antibodies used for immunohistochemistry 
 

Antibody Company Catalog # Clone Isotype Conc. Dilution 

ß-catenin BD 

 
 

610154 

 
14/Beta-
Catenin 

 
 

mIgG1 

 
 

250 µg/ml 1:500 
Ki-67 DAKO M7240 MIB-1 IgG1 35 mg/l 1:200 
GFP Abcam ab290 polyclonal IgG n/a 1:500 

CD24 
Thermo 

Scientific 
 

MS1279P0 
 

SN3b 
 

IgG 
 

200 µg/ml 1:50 
CD44 Sigma HPA005785 polyclonal n/a n/a 1:400 

 

9.10. Reagents used for immunohistochemistry 
 

Reagent Company Catalog # 

 

Avidin/Biotin Blocking Kit Dako 

 

SP-2001 

Staining Kit: Dako REAL™ Detection System, 
Peroxidase/AEC, Rabbit/Mouse Dako 

 
    K5003 

 
Dako Real™Peroxidase Blocking Solution Dako S2023 

Dako Real™Antibody Diluent Dako S2022 

Dako Cytomation Target Retrieval Solution 
Citrate pH 6 Dako  

S2369 
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9.11. Periodic-Acid-Schiff-Reaction (PAS staining) 
(established by Department of Pathology, Vanessa Vogel, Prof. Dr. Weichert) 
 

 
Deparaffinize the slides: 
 

• 10 min. Xylol 

• 10 min. Xylol 

• 5 min. 100% Ethanol 

• 5 min. 100% Ethanol 

• 5 min. 96% Ethanol 

• 5 min. 70% Ethanol 

• 5 min. distilled water 

 

PAS staining: 

• Treat with periodic acid for 5 min. 

• Rinse quickly with distilled water 

• Stain with Schiff’s reagent for 5 min. 

• Rinse quickly with tap water 

• Stain nuclei with haematoxylin for 5 min. 

• Rinse with tap water for 5 min. 

 

Dehydrate the slides: 

• 2x 70% Ethanol  

• 2x 96% Ethanol 

• 4x 100% Ethanol 

• 4x Xylol 
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9.12. Hematoxylin & Eosin staining 
(established by Department of Pathology, Vanessa Vogel, Prof. Dr. Weichert) 
 
 
Deparaffinize the slides: 
 

• 2x 5 min. Xylol 

• 2x 100% Ethanol (fast) 

• 1x 96% Ethanol (fast) 

• 1x 70% Ethanol (fast) 

• 1x distilled water (fast) 

 

Haematoxylin staining: 

• Stain with hematoxylin for 5 min. 

• Rinse with tap water for 5 min.  

 

Eosin staining and dehydration: 

• Stain with eosin for 1 min. 

• Transfer quickly to distilled water containing 2-5 drops of acidic acid 

• 2x 70% Ethanol  

• 2x 96% Ethanol 

• 4x 100% Ethanol 

• 4x Xylol 
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9.13. Dissociation of spheres to single cells and purification using OptiPrep 
 
To prepare in advance: 

- OptiPrep 60% (w/v): www.axis-shiel-density-gradient-media.com Prod. No. 

1114542 

 

1. Working solution of 40% OptiPrep containg 3x concentration of buffer: 

- Mix 2 volumes of OptiPrep with 1 volumes of 3x PBS (or any other buffer solution) 

- Example: 66.7 ml OptiPrep + 33.3 ml of 3x PBS 

 

2. Solution to separate epithelial tumor cells  

(18% OptiPrep: dilute the Working Solution in 1x PBS; density of 1.1 g/cm3): 

- Example: mix 18 ml of working solution (40%) + 22 ml 1x PBS (=18%) 

 

Dissociation protocol: 

• Transfer the medium containing the spheres into a 50 ml Falcon and spin 

down (1600 rpm, 5 min. at 4°C) 

• Discard the supernatant and resuspend the pellet in 1 ml StemPro 

Accutase™ (Invitrogen)  

• Incubate for 2 min. at 37°C 

• Pipet up and down 20-50 times using the P1000 

• Stop digest and wash cells with PBS in excess 

• Spin down and resuspend the pellet in 1 ml PBS/1% BSA/ 2mM EDTA 

• Filter the cells through a cell strainer (100 µm)  

• Add 9 ml of 18% working solution in a 15 ml Falcon and overlay with 1 or 2 

ml of single cell suspension (adapt the volumes according to the amount of 

cells) 

• Spin down at 4000 rpm at 4°C for 20 min. 

• Transfer the interphase into a new tube, wash with PBS and spin down (40 

ml PBS per 10 ml OptiPrep) 

• The cells can be resuspended in medium and seeded or analyzed  

 

 

 

 

 

 

http://www.axis-shiel-density-gradient-media.com/
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9.14. Dissociation of colorectal tumors (primary tumors or xenografts) 
 
CO2-independent medium: 

 Add 5 ml of Glutamin and 1% BSA 

 

Optiprep™ density gradient: 

 See chapter 9.13. 

 

Dissociation protocol: 

• Harvest the tumor under the hoot (sterile conditions) 

• Keep the tumor in CO2-independent medium 

• Wash the tumor with PBS/1% BSA 

• Cut the tumor in small pieces 

• Transfer the tumor pieces into a gentleMACS tube  

• Add 5 to 10 ml of CO2-independent medium + 0.25% collagenase + 

DNase + Y-27632 (5 µM) (Rho-associated kinase (ROCK) inhibitor which 

reduces dissociation induced apoptosis) 

• Dissociate the tumor pieces in the gentle MACS dissociator for 30 sec. 

• Incubate for 45 min. at 37°C in a rotator  

• Pipette the tumor pieces every 10 min. up and down and check digestion 

process under the microscope using a small aliquot 

• Transfer the tumor cell suspension through a cell strainer (100 µM) 

• Wash with PBS/1% BSA 

• Resuspend the pellet in an appropriate amount of CO2-independent 

medium and perform a density gradient using Optiprep™  

• Centrifuge the gradient for 20 min. at 4°C at max. speed (4000 rpm) 

• Transfer the interphase into a new falcon tube  

• Wash with PBS/1% BSA  

• The cell pellet can be used for further processing (injections, flow 

cytometry) 
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9.15. Adherent cultures do not change CSC markers but some adhesion 
molecules compared to spheres 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 71: Spheres vs. adherent cancer stem cell culture. Spheres were dissociated with 
Accutase and single cell suspensions were either maintained as spheres or seeded in flasks 
coated with collagen I. The cells were maintained in serum-free cancer stem cell medium. 
Ten days later the cells were harvested using Accutase and cell surface stainings were 
performed. Doublet- (b and e) and dead cell exclusion (c and f) were performed prior to 
analysis. The adherent cultures contain less dead cells and yield a higher amount of cells (d 
and f) when compared to spheroid cultures (a and c). The reported cancer stem cell markers, 
CD44 (g) and CD133 (i) were not differentially expressed, as well as CD24 (h). However, the 
expression of some adhesion molecules was changed. Adherent grown cells expressed 
higher levels of CD49a (j) and c-Met (l), while spheres expressed higher levels of CD49e (k) 
(blue = spheres; red = adherent). 
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9.16. Hypoxia enriches for slowly cycling cells 
 

 
 
 Fig. 72: Hypoxia enriches for slowly cycling cells. Both colon cancer cell lines, G605-H2B-
GFP and HD1858-H2B-GFP, were maintained on collagen I coated plates for 10 days either 
at oxygen levels of 21%, 3% or 0.5%. The cells were treated with Dox (10 ng/ml) for 10 days 
(d-f and j-l). Non-treated cells were used as controls (a-c and g-i). For the HD1858-H2B-GFP 
cell line, cells maintained at 21% oxygen levels contained 0.5% of slowly cycling cells (d). 
The amount of slowly cycling cells increased in 3% oxygen level to 0.6% (e) and in 0.5% 
oxygen level to 14% (f). The G605-H2B-GFP cell line contained 2.8% of slowly cycling cells 
in 21% of oxygen level (j), whereas this percentage increased to 8.9% in 3% of oxygen (k) 
and remained at 8.8% at 0.5% of oxygen (l). 
 
 
 



 Abbreviations 

127 

10. Abbreviations 
 

15-PGDH 15-Hydroxyprostaglandin Dehydrogenase 

5-FU  5-Fluorouracil  

7AAD  7-Amino-Actinomycin D 

ACF   Abberant Crypt Foci 

AKT/PKB Protein Kinase B 

ALDH1  Aldehyde Dehydrogenase 1  

APC  Adenopolyposis Coli 

bFGF  basic Fibroblast Growth Factor 

BMDC  Bone Marrow-Derived Cells 

BMP  Bone Morphogenic Proten 

BSA  Bovine Serum Albumin 

CAFs  Carcinoma-Associated Fibroblasts  
CBCs  Crypt-Based Columnar cells  

CBP  CREB-Binding Protein 

CCND1 Cyclin D1 

CFSE  Carboxyfluorescein Succinimidyl Ester 

CGH  Comparative Genomic Hybridization 

CIMP  CpG Island Methylator Phenotype 

CIN  Chromosomal Instability 

CK1α  Casein Kinase 1α 

COX-2  Cyclooxygenase-2 

CRC   Colorectal Cancer 

CSCs  Cancer Stem Cells 

CXCL13 C-X-C motif chemokine 13 

CXCR4 C-X-C chemokine receptor type 4 

CXCR5 C-X-C chemokine receptor type 5 

dDlg  human homolog of Drosophila Disc large tumor suppressor gene 

DgTCs  Disseminating Tumor Cells 

DMEM  Dulbecco's Modified Eagle's Medium 

Dox   Doxycyclin 

DPC4  Deleted in Pancreatic Carcinoma, locus 4 

DVL   Dishevelled 

ECM  Extracellular Matrix 

EDTA  Ethylenediaminetetraacetic Acid 
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EGF  Epidermal Growth Factor  

EGFR  Epidermal Growth Factor Receptor 

EMT  Epithelial-Mesenchymal Transition 

EpCAM Epithelial Cell Adhesion Molecule 

ERK  Extracellular signal-Regulated Kinase 

FAP  Familial Adenomatous Polyposis 

FCS  Fetal Calf Serum 

FOLFOX 5-FU / Leucovorin / Oxaliplatin 

FOLFRI 5-FU / Leucovorin / Irinotecan 

GAP  GTPase-Acitvating Protein 

GEF  Guanine nucleotide-Exchange Factor 

GFP  Green Fluorescent Protein 

GSK3ß Glycogen Synthase Kinase 3ß 

H2kD  murine major histocompatibility complex class I antigen 

HEPES Hydroxyethyl piperazineethanesulfonic acid 

HGF  hepatocyte growth factor  

HLA  Human Leucocyte Antigen 

hNMSCs human Normal Mammary Stem Cells 

HNPCC Hereditary Nonpolyposis Colorectal Cancer or Lynch syndrome 

Hopx  Homeobox gene  

HSCs  Hematopoietic Stem Cells 

IKK-ß  Inhibitor of nuclear factor Kappa-B Kinase subunit ß 

I-Smad  Inhibitory Smad 

i.p.  intra peritoneally 

IC50  Inhibitory Concentration 50 

IMDM  Iscove`s Modified Dulbecco`s Medium 

ISCs  Intestinal Stem Cells 

IVC  Individually Ventilated Cages 

JNK  JUN N-terminal Kinase  

LEF  Lymphoid Enhancer Factor 

Lgr5   Leucine-rich-repeat containing G-protein-coupled Receptor 5 

LN  Lymph Node 

LOH  Loss Of Heterozygosity 

LRCs  Label Retaining Cells 

Lrig1  Leucine-rich repeats and immunoglobulin-like domains 1  

LRP5  Low-density lipoprotein-related Receptor Protein 5 

LRP6  Low-density lipoprotein-related Receptor Protein 6 
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mAPC  murine Adenopolyposis Coli 

MAPK  Mitogen-Activated Protein Kinase 

MCR  Mutation Cluster Region 

MH1  Mad Homology 1 

MH2  Mad Homology 2 

MIN  Multiple Intestinal Neoplasia 

MMP  Matrix Metalloproteinase 

MMR  Mismatch Repair 

MRD  Minimal Residual Disease 

MSC  Mesenchymal Stem cells 

MSI  Microsatelite Instability 

mTERT mouse Telomerase Reverse Transcriptase 

NK  Natural Killer 

NOD/SCID Nonobese diabetic/severe combined immunodeficiency 

NSG  NOD/SCID interleukin-2 receptor gamma chain null mice 

PAS  Periodic Acid Shiff 

PBS  Phosphate Buffered Saline 

PI  Propidium Iodide 

PI3K  Phosphoinositide 3-Kinase 

R-Smad Receptor-regulated Smad 

RTK  Receptor Tyrosine Kinase 

s.c.  subcutaneous 

SCs  Stem Cells 

SDF1  Stromal cell-Derived Factor 1 

SMAD4 SMAD family member 4 

SPF  Specific Pathogen-Free 

SV40  Simian-Virus 40 

TA-cells Transient Amplifying cells 

TAMs  Tumor Associated Macrophages  

TCF  T-Cell Factor 

TEM  TIE2-Expressing Monocytes 

TGF-ß  Transforming Growth Factor-ß 

TGFßR1 Transforming Growth Factor ß Receptor 1 

TGFßR2 Transforming Growth Factor ß Receptor 2 

TICs  Tumor Initiating Cells 

TMEM  Tumor Microenvironment of Metastasis 

TNF a  Tumor Necrosis Factor alpha 
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TNM  Tumor, Node, Metastasis 

TRE  Tet-Responsive Element 

uPAR  Urokinase-type Plasminogen Activator 

VCAM1 Vascular cell adhesion protein 1 

VEGFA Vascular Endothelial cell Growth Factor A 

wt  wild-type 
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