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Abstract

Optical tracking has been an important subject of research since several decades. The
utilization of optical tracking systems can be found in a wide range of areas, including
military, medicine, industry, entertainment, etc.

In this thesis a complete hardware platform that targets high-speed optical track-
ing applications is presented. The implemented hardware system contains three main
components: a high-speed camera which is equipped with a 1.3M pixel image sensor
capable of operating at 500 frames per second, a CameraLink grabber which is able to
interface three cameras, and an FPGA+Dual-DSP based image processing platform.
The hardware system is designed using a modular approach. The flexible architecture
enables to construct a scalable optical tracking system, which allows a large number of
cameras to be used in the tracking environment.

One of the greatest challenges in a multi-camera based optical tracking system is
the huge amounts of image data that must be processed in real-time. In this thesis,
the study on FPGA based high-speed image processing is performed. The FPGA
implementation for a number of image processing operators is described. How to exploit
different levels of parallelisms in the algorithm to achieve high processing throughput is
explained in detail. This thesis also presents a new single-pass blob analysis algorithm.
With an optimized FPGA implementation, the geometrical features of a large number
of blobs can be calculated in real-time.

At the end of this thesis, a prototype design which integrates all the implemented
hardware and software modules is demonstrated to prove the usability of the proposed

optical tracking system.






Zusammenfassung

Optisches Tracking ist seit vielen Jahren ein wichtiger Forschungsgegenstand. Anwen-
dungen optischer Trackingsysteme konnen in vielen Gebieten gefunden werden, unter
anderem in militérischen, medizinischen und industriellen Systemen sowie der Unter-
haltungsindustrie.

In dieser Arbeit wird eine komplette Hardware-Plattform vorgestellt, die optisches
Tracking bei hohen Frameraten ermoglicht. Das entwickelte Hardwaresystem besteht
aus 3 wichtigen Teilen: Eine Hochgeschwindigkeitskamera, die mit einem 1,3-Megapixel-
Bildsensor ausgestattet ist und bis zu 500 Bilder pro Sekunde liefern kann; ein Camera-
Link Grabber, an den drei Kameras angeschlossen werden kénnen sowie ein FPGA+Dual-
DSP-Board zur Bildverarbeitung. Das Hardwaresystem ist modular aufgebaut. Die fle-
xible Architektur ermoglicht es, ein skalierbares optisches Trackingsystem mit einer
groflen Anzahl an Kameras zu erstellen.

Fine grofle Herausforderung in Multi-Kamera-Systemen stellt die Datenmenge dar,
die in Echtzeit verarbeitet werden muss. In dieser Arbeit werden FPGA-basierte Syste-
me zur Hochgeschwindigkeitsbildverarbeitung untersucht. Etliche FPGA-Implementier-
ungen fiir Bildverarbeitungsoperatoren werden beschrieben. Es wird detailliert darauf
eingegangen, wie verschiedene Ebenen der Parallelitéit in den Algorithmen ausgenutzt
werden kénnen, um eine hohe Datendurchsatzrate zu erreichen. Des weiteren wird in
der Arbeit ein neuer Single-Pass-Algorithmus zur Blob-Analyse préasentiert. Mit Hil-
fe einer optimierten FPGA-Implementierung kénnen geometrische Eigenschaften einer
groflen Anzahl an Blobs in Echtzeit berechnet werden.

Zum Abschlufl der Arbeit wird ein Prototyp vorgestellt, der alle entwickelten Hard-
und Softwaremodule vereint und so die Niitzlichkeit des vorgestellten Trackingsystems

zeigt.
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1. Introduction

1.1. Tracking Technologies

Tracking or motion tracking is the process of determining the position and orientation
of moving objects in three-dimensional space. It has been an active, interesting and
important subject of research since several decades. The utilization of tracking systems
is nowadays necessary in a wide range of areas, including military, medicine, industry
and entertainment. For example, in the well-known Virtual Reality (VR) and Aug-
mented Reality (AR) applications, the position and orientation of user’s head must be
obtained to calculate the correct perspective of the world from the user’s point of view.
Additionally, one or both of the user’s hands are tracked to provide the capability of
3D interaction [MG96]. In medical applications, such as Computer Assisted Surgery
(CAS), the location and the angle of surgery instruments are determined by a tracking
device, sometimes also the motion of the patient needs to be tracked to provide the
surgeon with real-time guidance during the medical intervention. In Figure 1.1 some

other applications of tracking systems are illustrated.

(¢) human motion analysis (d) robot navigation

Figure 1.1.: Example applications of tracking systems
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The specification of a point in 3D space requires three coordinates (z,y, z). However,
rather than using points, many applications also need to have the orientation of the
target specified by three angles known as pitch, roll and yaw, see Figure 1.2. Thus a
tracking task often requires six degrees of freedom (6 DoF) [Han93].

y

;Bvaw

Pitch Roll
£ ;
Z

Figure 1.2.: 6 DoF in position and orientation

To obtain the 6 DoF information of one or multiple objects, there are mainly five
tracking technologies in use today: Mechanical, Electromagnetic, Acoustic, Inertial and
Optical [MAB92].

Mechanical - A mechanical tracker makes physical connections between the tracked
object and the system. Typically potentiometers or optical encoders are used to mea-
sure the rotation of a joint between rigid linkages. Given the angle of each joint and
length of the rods or wires, together with the known position of the fixed hardware, it
is possible to calculate the position of the tracked object [BS05].

Electromagnetic - An electromagnetic tracker comprises a transmitter and a re-
ceiver. An oscillating magnetic field generated in the three orthogonal coils of the
transmitter is sensed by the receiver in three corresponding coils. The position and
orientation of the object being tracked can be calculated by measuring the intensities
of the received magnetic field [MAB92].

Acoustic - In acoustic tracking, one or more emitters are mounted on a target. They
send out ultrasonic pulses, which are received by several sensors (microphones). The
time taken for the sound pulses to reach the sensors is measured and the distance is
calculated based on the speed of sound in air [MAB92]. The location and the orientation
of the target can then be triangulated from these measurements.

Inertial - Inertial trackers make use of accelerometers and gyroscopes to compute
the relative change in position and orientation from the appearing acceleration and
angular velocity in the moving target with respect to an inertial reference coordinate
system. With a known absolute start position and start orientation the actual position
and orientation of the target can be determined [LKPBO02].

Optical - Optical tracking utilizes optical sensors, typically video cameras, to detect
visual features associated with the tracked objects and so to determine their positions

in 3D space. Usually markers, such as light emitters (active markers) or light reflectors
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(passive markers), are attached to the targets to make them more distinguishable. Using
image processing technologies, the 2D location of markers in each image captured by
the cameras can be obtained. The position and orientation of the targets are then
calculated based on the geometric relationship between the 2D marker location and the
3D camera position known a priori. Figure 1.3 illustrates a typical setup of an optical

tracking system.

Figure 1.3.: Typical setup of an optical tracking system

Compared to other tracking technologies, optical tracking is more widely used in
many areas, especially VR/AR, surgery guidance and motion analysis. The main ad-

vantages of optical tracking systems lie in the fact that they are

e inherently more accurate and reliable as optical sensors are not subject to distor-
tions due to ferromagnetic metals, like electromagnetic techniques, or from drift

problems, like inertial sensors.

e much less intrusive since the markers attached to the objects are normally very

small and lightweight.

e capable of allowing larger tracking volume and higher update rate, as well as

tracking many objects simultaneously.

Optical tracking systems can be divided into two categories: inside-out and outside-in

[Meh06]. The schematic diagram is shown in Figure 1.4.

e Inside-out - In inside-out tracking the cameras are placed on the object being

tracked and observe features in the surrounding environment. Markers are placed
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Inside-Out Outside-In

I I

Target \ Reference Ret‘erenc‘\ Target

Figure 1.4.: Inside-out and outside-in optical tracking systems

at statical positions that can be observed by the cameras. For VR/AR applica-

tions inside-out tracking is frequently used.

e QOutside-in - In outside-in tracking the cameras are mounted at fixed positions
and are oriented towards the objects to be tracked. The objects move freely
in the tracking volume, which is determined by the visible ranges of the cam-
eras. Outside-in tracking is widely utilized in human motion analysis and surgery
guidance applications where objects to be tracked must be allowed to move with

minimum limitation.

1.2. Objective

Optical tracking also suffers from some disadvantages. Omne of the major problems
faced by most optical tracking systems is occlusion. This problem happens when one or
multiple markers are partially or totally invisible from cameras, resulting in insufficient
information for calculating the position of the objects to be tracked.

An effective solution to the occlusion problem is to introduce more cameras into the
tracking environment, or using a many-camera tracking system. When occlusion occurs
from one view, robust tracking can still be achieved using other views’ information if
the occluded markers are visible to other cameras. Meanwhile, some other advantages
can be gained, e.g. larger tracking range. As a camera has a fixed number of pix-
els, one can either achieve larger visible range with lower resolution using wide angle
lens, or smaller visible range with higher resolution using narrow angle lens, but not
both. Therefore, larger tracking range for a given resolution can only be obtained by
combining the visible ranges of increased number of cameras placed at different loca-
tions [Che02]. Furthermore, the overall system robustness can be improved due to the
redundancy provided by a many-camera system. For example, when one or multiple
cameras stop functioning due to some special reasons (such as power failure), tracking
can still proceed as long as a sufficient number of cameras are working in the tracking

volume. In order to implement the above described concept, the system must have a
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high degree of flexibility. For instance, adding or removing cameras to/from the track-
ing environment should not involve a great deal of effort. This requires the tracking
system to be scalable.

The main purpose of this thesis is to develop an optical tracking system with a
scalable architecture, which allows a large number of cameras to be easily integrated
into the tracking environment. In addition, this system should fulfill the following

requirements:

e High Accuracy - Accuracy is measured by the maximum error between the
reported position and the real position. In the case of VR and AR, normally the
positioning error should not exceed 0.5mm and the orientation error should be
below 0.1 degree [WF02]. For medical applications, such as CAS, more decent

tracking accuracy is required.

e High Update Rate - Update rate is defined as the amount of measurements
that can be performed per second (measured in Hz). The maximum update
rate of applications with normal real-time requirement, like VR/AR, is mostly
limited within 60Hz. Nowadays the demand for high-speed tracking (> 200Hz) is
substantially growing because tracking at high update rate enables the possibility

to capture details of fast movements.

e Low Latency - Latency is the time lag between the moment a target’s movement
occurs and the moment it is reported. It determines the responsiveness of the
tracking system. The need for tracking with low latency (< 5ms) becomes more
and more critical, because the effectiveness of many interactive applications (such
as surgery navigation) depends highly on how quickly the system can respond to

the movement of the target being tracked.

To achieve high accuracy, it is often necessary to use high resolution (> 1M pixel)
cameras, since poor resolution leads to larger error in the measurement of 2D target
position on the image plane of cameras, which can significantly degrade the accuracy
of 3D target location. The update rate of an optical tracking system is mainly limited
by the camera frame rate and the system processing capability. With the dramatic
improvement of image sensor technologies, more and more high-speed cameras are
available today for use in applications requiring high update rate. Latency is often
related to update rate. However, high update rate does not necessarily mean low
latency. In order to achieve low tracking latency, it is also required to buffer as few as
possible image data during the processing.

One of the greatest challenges for developing such a system is how to handle the large
amount of image data produced by multiple high resolution cameras running at high
frame rate. Suppose that there are three cameras working in a typical tracking scenario,

each of which is running at 200Hz with a resolution of one mega pixel (1024x1024).
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These cameras yield a total of 600 Mega pixels per second. With the increment of
the number of cameras, the total input data rate can quickly reach multi-gigabyte-
per-second. Considering that most computer vision algorithms are computationally
expensive, even the up-to-date high-performance PC can not handle such a data rate
in real time. Finding a solution to process the huge amount of image data at high speed

is a major objective of this thesis.

1.3. Existing Optical Tracking Systems

Optical tracking has been a topic both in industry and in academic research since
many years. In this section some representative optical tracking systems are presented.
Since the work of this thesis focuses on outside-in tracking, only this type of systems
are covered. For more comprehensive overview of currently available optical tracking
systems, refer to [Rib01] and [Bua05].

1.3.1. Commercial Systems

Vicon Tracker - Vicon Motion Systems Ltd provides high-end solutions for optical
tracking. Vicon Tracker is a passive infrared marker tracking system that consists of
multiple cameras equipped with IR LEDs and IR optical filters, and a set of retro-
reflective markers positioned on the objects to be tracked. Retro-reflective markers are
passive markers, which do not generate light themselves. They are normally coated
with retro-reflective material that reflects the IR radiation from the IR LEDs into the
direction of the incoming radiation. The IR-pass optical filter mounted on the camera
lenses filters out other spectrum and only keeps the one reflected by the markers. As a
result, markers will appear as bright spots in the image of the cameras which can easily
be detected.

Figure 1.5.: Vicon MX camera

The system calculates the center of each marker and reconstructs its 3D position in

the tracking volume. At least 4 markers and 3 cameras are required to provide 6 DoF
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information. The Vicon cameras shown in Figure 1.5 are designed, developed and built
specifically for motion tracking applications. The Vicon MX13 camera, for example,
is equipped with a CMOS image sensor which works in infrared (875nm wavelength)
region. The frame rate with full resolution (1280 x 1024) is 482fps. The on-board
processing capability allows complex marker detection algorithms to be performed in
real-time.

The independently measured positional accuracy (average absolute error through a
large 3D space) reported by the vendor is 0.lmm and the angular accuracy is 0.15
degree. The overall tracking latency is limited within 10ms in general. The update rate
ranges from 200Hz to 1000Hz depending on the resolution of the camera.

ARTTrack System - Similar to Vicon Tracker, the ARTTrack System developed
by Advanced Realtime Tracking GmbH is an infrared-based marker tracking system.
The system utilizes two or more cameras to obtain the tracking information.

All ART tracking cameras are equipped with a low-noise CCD sensor and embedded
processors to accelerate the analysis of the marker data. The cameras also have built-in
infrared flashes (880nm wavelength) to illuminate the tracked objects. Flashes are syn-
chronized by an external sync signal, which is provided to each camera. One ARTTrack
system can contain maximumly 16 cameras. Spherical retro-reflective markers are used
in the system. To get the 6 DoF information, at least 4 markers must be attached to
the object.

data output
Bdof or 3dof

2D data from
cameras to PC

IR flash from

tracking cameras S /

reflected IR Iighi),«\x: T
g " & -
" intersection of optical rays

calculated -~
Loptical ray”

marker position

Figure 1.6.: ARTTrack System

The maximum update rate of the ARTTrack System is 60Hz. According to the prod-
uct information from the vendor, the accuracy results are 0.4mm in position estimation

and 0.12 degree in orientation estimation.
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Raptor-4 Digital RealTime System - Like Vicon Tracker and ARTTrack, the
Raptor-4 Digital RealTime System from Motion Analysis Corporation is a passive op-
tical tracking system based on retro-reflective markers.

The system consists of the Raptor-4 digital cameras and the Cortex software, which
capture complex motion at high accuracy. The Raptor-4 Digital Camera has a CMOS
image sensor with a large pixel array (2352 x 1728). Each camera is equipped with 323
LEDs around the lens. The powerful on-board processing capability allows the system
to operate at 166Hz with full resolution and up to 10,000Hz with partial resolution.

The accuracy data is not directly provided by the vendor. However, according to the
technical specification, Raptor-4 is the only optical tracking system that satisfies the

accuracy requirement of the broadcast tracking applications - 1/100th of a degree.

2
El

o

Figure 1.7.: Raptor-4 Digital Camera

Optotrak Certus Motion Capture System - The Optotrak certus motion cap-
ture system is a 6 DOF motion measurement system made by Northern Digital Inc.
Unlike Vicon, ARTTrack and Raptor-4 trackers Optotrak makes use of active marker
technology. Active markers are infrared light emitting devices, mostly using LEDs.
The disadvantage of active markers is that each marker requires wires and electronic
circuits, making them less compact than passive markers. However, active markers
usually appear as even brighter spots in the captured images than passive markers and
are thus more easily detectable.

In the Optotrak system, synchronized markers are placed on the moving objects
which are tracked by three cameras mounted on a rigid base. Each camera is equipped
with an infrared optical filter. The active markers (LEDs) are connected to a central
control unit, which turns on and off the LEDs in sequence. In this way, the LED that
has been activated can be identified by the system at any point in time.

To get the 6 DOF information, at least one LED must be visible for the position
estimation and at least three must be visible for the orientation estimation. Maximum
number of markers supported by the system is 512. The maximum marker scanning
frequency reaches 4600Hz, which corresponds to about 1500Hz of overall system frame
rate. According to the technical specifications provided by the vendor, the 3D accuracy

in position is 0.lmm. There was no information available regarding the accuracy in
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orientation.

Figure 1.8.: Optotrak Certus Motion Capture System

MicronTracker - MiconTracker is a real-time sub-millimeter 6 DOF optical track-
ing system designed and manufactured by Claron Technology Inc. Unlike all the above
introduced optical tracking systems, which use infrared passive or active markers, Mi-
cronTracker are fully passive, using visible light to detect and track objects.

The key technology of MicronTracker is to mark objects by small checkered target re-
gions called Xpoints. Each Xpoint contains an intersection of 4 high-contrast black and
white regions as shown in Figure 1.9. Advanced computer vision algorithms are used
to detect the Xpoint and calculate the position of the intersection point. Since each of
the four boundary lines of the Xpoint independently serves to pinpoint the location of
the target, portions of the Xpoint region hidden by smudges does not strongly affect
the accuracy. As a result, the MicronTracker provides more robustness than traditional
infrared tracking systems. Additionally Xpoints contain both location and orientation
information which greatly reduces mismatches between targets seen by different cam-
eras. This is also a clear advantage against infrared markers, which do not contain any
geometrical information other than the locations of their center.

The tracking accuracy of the MicronTracker is guaranteed by a very accurate detec-
tion algorithm and high precision custom calibration of the camera. According to the
manufacture specifications, the static jitter (measured by single target at a distance
of 75cm) reaches 0.007mm RMS (Root Mean Square). However, MicronTracker does
not outperform infrared tracking systems in terms of update rate and latency, since all
complicated detection algorithms are done by software. For instance, the maximum
measurement rate supported by MicronTracker(Sx60 Model) is 48Hz. The overall sys-

tem latency reported by the manufacture is around 30ms.
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Figure 1.9.: MicronTracker

1.3.2. Systems Developed in Academic Research

POSTTRACK - POSTTRACK is an optical motion tracking system presented by
Chung et al. [CKKPO1]. This system utilizes four gray-scale cameras, each of which is
equipped with IR illuminating LEDs and an IR pass optical filter. The user is required
to wear one or more retro-reflective markers. A marker needs to be seen by at least two
of the four cameras to make the tracking possible. The Open source computer vision
libraries (OpenCV) is used for camera calibration, which includes the calculation for
camera intrinsic and extrinsic parameters by having the four cameras reference on
known visual features. After calibrating the cameras, the 2D locations of the center of
gravity of the markers are calculated. This step is followed by matching the markers
between the four captured images. Afterwards the 3D position of each marker are
computed.

POSTRACK makes use of standard PC for all the calculations required by the track-
ing algorithms, which greatly limits the system performance in terms of tracking update

rate. For example, the achievable update rate can only reach 15Hz.

Figure 1.10.: Camera and markers used in POSTRACK

Personal Space Station - Jurriaan D. Mulder et al. [MJvRO03] presented a low
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cost optical head tracking system for desktop VR/AR applications called Personal
Space Station. Two FireWire cameras with VGA resolution (640 x 480) image sensor
are utilized, which are available at a low price of less than 100Euro. Personal Space
Station does not make use of IR illuminations and retro-reflective markers. Instead, a
marker pattern consisting of 3 black circular dots on a white background arranged in
a triangular form is used in the system. The camera calibration and 3D reconstruction
algorithms are similar to those utilized by the POSTTRACK. The system provides an
update rate of 30Hz and a delay of 66 ms.

Figure 1.11.: Personal Space Station hardware: cameras and the dot pattern marker

Cyclope Tracker - The innovation introduced by the Cyclope tracker [Mat05] is
that it is a 6 DOF optical tracking system based on a single camera. The camera is
equipped with infrared LEDs mounted on the lens. Retro-reflective markers that have
a pre-defined pattern are used. To build a 3D target, 4 markers must be fixed on a rigid
structure. Given the 3D geometric configuration of 4 markers and their 2D positions in
the image, Cyclope tracker calculates the position and the orientation of the reference

frame attached to the markers with respect to the camera reference frame.

IR FLASH
INDUSTRIAL
CAMERA
FireWire IEFILTER
Link

Figure 1.12.: Cyclope camera
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Up to 4 targets can be simultaneously tracked by Cyclope Tracker. The maximum
system update rate is 60Hz. The latency is limited within 40ms. The achievable accu-

racy is 1.1mm in translation and 0.3 degree in rotation at the depth of 1.5 meter.

None of the optical tracking systems introduced above demonstrates a highly scalable
architecture while simultaneously provides the features of high accuracy, high speed as

well as low tracking latency, which is the purpose of the development of this thesis.

1.4. Contribution

The main contribution of this thesis includes the development of a hardware platform
that satisfies the high demands of a scalable optical tracking system and the study on
performing high-speed image processing tasks.

The hardware system consists of multiple high-speed cameras with mega pixel reso-
lution and an image processing platform. The camera features a modular architecture,
which allows a wide variety of image sensors to be equipped, adding more flexibility to
the system. The image processing platform employs FPGA (Field Programmable Gate
Array) and DSPs (Digital Signal Processors) to provide the capability of processing
large amount of image data in real time.

Parallel implementation for a number of image processing algorithms on the FPGA
has also been explored, including color conversion, noise reduction, edge detection,
morphological filter and blob analysis. All the implemented algorithms are capable of
processing incoming image data on-the-fly, which not only fulfills the high data rate
requirement but also guarantees low system latency.

At the end of this thesis, a prototype optical tracking system is demonstrated to
prove the usability of the proposed concept.

1.5. Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 briefly introduces the
mathematical fundamentals required for optical tracking. Chapter 3 describes the hard-
ware design of the proposed optical tracking system in detail. Chapter 4 deals with
the FPGA implementation of 2D image processing algorithms that are frequently used
in optical tracking. In Chapter 5 a prototype design that integrates all implemented
hardware and software modules is presented to demonstrate the feasibility and perfor-
mance of the proposed tracking system. Chapter 6 summarizes the work done within

this thesis and discusses some directions for future developments.



2. Fundamentals

Optical tracking is a complicated problem covering a wide range of aspects of computer
vision. This chapter attempts to provide a conceptual overview of the entire tracking
process. The mathematical background necessary to understand the problems presented
in different tracking steps is briefly introduced. Throughout this chapter, where not
explicitly mentioned, the book Multiple View Geometry in Computer Vision [HZ04] is
used as a reference.

The overall process of optical tracking contains four main stages:

1) Camera Calibration - Establishing an accurate model of the cameras used in the

tracking environment.
2) 2D Feature Extraction - Identifying and locating features of objects to be tracked.

3) Correspondence Matching - Matching features associated with the same object

among images captured by each camera.

4) 3D Reconstruction - Calculating 3D coordinates of the tracked objects.

2.1. Camera Calibration

Camera calibration is an essential part of optical tracking where the relationship be-
tween the 3D world defined by the physical tracking area and the 2D image plane

defined by the image captured by each camera is determined.

2.1.1. Pinhole Camera Model

The pinhole camera model is the simplest and an ideal camera model that is suitable
for many computer vision and computer graphics applications. It defines a geometric
mapping between the 3D world and a 2D image.

As illustrated in Figure 2.1, a pinhole camera is modeled by its optical center C and
the image plane R. The line through C' and orthogonal to R is called the optical axis.
The point at which the optical axis intersects R is referred to as the principal point py.
f represents the focal length which is determined by the distance between C' and R.

A point in 3D space M is mapped to an image point m where the line through C

and M intersects with R. Using similar triangles shown in Figure 2.2, we can derive

13
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Figure 2.1.: Pinhole camera model

that the point M (X,Y, Z)T is mapped to the point m(fX/Z, fY/Z, )T on the image
plane.

Figure 2.2.: Similar triangles of a pinhole camera model

Ignoring the final image coordinate, we obtain the following mapping relationship:
(X, Y, 2)" = (fX/2, fY/2)" (2.1)

If we use homogeneous vectors to represent the world and image points, then Equation

2.1 can be written in terms of matrix multiplication as

X X
X f 0
=y | = f0 Y (2.2)
Z Z
. Z Lo (]

Let M represent the homogeneous vector of a world point in 3D-space (X,Y, Z, 1)
and m represent the homogeneous vector of an image point in 2D-space, we can write
Equation 2.2 compactly as
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m = PM (2.3)

where P is a 3 X 4 matrix called camera projection matrix. It can be expressed as

— K[15/0] (2.4)

)
I
~
—_
o O O

1 1

The 3 x 3 matrix K in Equation 2.4 is called the camera calibration matrix. So far,
it solely depends on the focal length f.

In Equation 2.1 we assumed that the origin in the image space is at the principal
point. In practice, the origin of an image usually lies in the top-left corner of the image.

Thus, we can write Equation 2.1 more generally as
(XY, 2)" = (fX/Z + uo, fY/Z + vo)" (2.5)

where (ug,v9)? are the coordinates of the principal point. Equation 2.5 can be

expressed in homogeneous coordinates as

X X
v fX + Zug f ug 0 v
M = —wm=|fY +Zu | = f v 0 (2.6)
A Z
A 1 0
1 1
Now we can refine the camera calibration matrix K to
f U
K = f Vo (27)
1
Then Equation 2.6 can be rewritten as
m = K[I|0]M (2.8)

In general, points in space will be expressed in terms of a world coordinate system.
The camera coordinate system and the world coordinate system are related via a ro-
tation and a translation, see Figure 2.3. Now let M be a 3-vector representing the
coordinates of a point in the world coordinate frame and M’ be a 3-vector representing

the same point in the camera coordinate frame. We can express M’ by
M' = R(M - C) (2.9)

where R is a 3 x 3 rotation matrix that represents the orientation of the camera
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Figure 2.3.: Transformation between the camera and world coordinate frames

coordinate frame and C represents the coordinates of the camera center in the world

coordinate frame. Using homogeneous coordinates, Equation 2.9 can be written as

X
— Y —RC
M- R —RC _ R —-R (2.10)
0 1 VA 0 1
1
Combining this together with Equation 2.8, we get
m = KR[I| — C|M (2.11)

where M is in a world coordinate system.

Until now it is assumed that the image coordinates are scaled by the same factor
in both horizontal (z) and vertical (y) directions. However we must consider the fact
that pixels of a real CCD or CMOS camera are not squared, which means that we have
unequal scale factors between x and y directions of the image when measuring point
coordinates in pixels. Let m; and m, be the number of pixels per unit distance in the x
and y direction in image coordinates, then we can write the camera calibration matrix
in the general form as

Oy U
K = Qg Vo (2'12)
1

where o, = fm, and oy = fm, represent the focal length in the z and y direction
in terms of pixel dimensions.
There is one more parameter we need to consider, which is referred to as the skew

parameter s. For most normal cameras, s will be zero. However, it can take non-
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zero values under unusual conditions, e.g., the image plane is not perpendicular to the
optical axis. By adding the skew parameter s, the camera calibration matrix can be

extended as
ap S U

K= @y v (2.13)
1

Based on Equation 2.11, we can generalize the projection matrix P to the form

P =KR[I|—-C] (2.14)

or
P = K|R|t] (2.15)
where t = —RC'. This is the general mapping given by a pinhole camera. In Equation

2.15, the parameters contained in K are called the internal camera parameters, and

the parameters determined by R and C are called external camera parameters.

2.1.2. Lens Distortion

Lens distortion is an unavoidable artifact that can be found in any camera image. Even
cameras equipped with high quality lens are subject to some level of optical distortion.

In Figure 2.4 a raw image with distortion and the image after rectification are shown.

(a) distorted image ) undistorted image

Figure 2.4.: Image distortion

Lens distortion can be modeled by a combination of the radial and the tangential

distortion [HS97b]. The radial distortion is often approximated using the following

a\  fu(kir? 4+ kort4--)
(17) - <U<k17’2 4 kort 4+ - )) (2.16)

where v and v are image coordinates, 4 and © are distorted image coordinates, k; are

expression
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radial distortion coefficients and r = vVu? + v2.

The tangential distortion vector can be expressed by

u 2p1uv + po(r? + 2u2
=Y p22( ) (2.17)
0] p1(r® + 2v%) + 2pauv

where p; and po are tangential distortion coefficients.

In an optical tracking system, where cameras are used for measurement purpose,
a compensation for lens distortion must be performed to ensure reasonable tracking

results.

2.1.3. Calibration

The purpose of camera calibration is to determine the internal and external parameters
used in the camera model discussed above. Since the distortion parameters do not
change when moving a camera, they are usually regarded as internal parameters.

A wide range of different camera calibration methods have been reported in the liter-
ature. One widely used technique was developed by Zhang [Zha00]. Zhang’s approach
requires the camera to observe a planar pattern (normally chessboard pattern) shown
at a few (at least two) different orientations. At first, corners of the checkerboard pat-
tern are extracted and located with sub-pixel precision. Then the algorithm computes
the projective transformation between the corner points of n different images. After-
wards, the camera internal and external parameters are recovered using a closed-form
solution, while the third- and fifth-order radial distortion terms are recovered within a
linear least-squares solution. A final nonlinear minimization of the re-projection error
refines all the recovered parameters.

Since camera calibration is not the focus of this thesis, a more detailed introduction

is not given here. For deeper discussions on this subject, refer to [Hem03].

2.2. 2D Feature Extraction

2D Feature extraction is a crucial step in optical tracking. Before the 3D coordinates
of an object can be reconstructed, the 2D location of the object in images captured by
multiple cameras must be known. The final accuracy of the tracking system is largely
dependent on how precisely the object can be located in each image. Determining where
in the image the object is requires an analysis of the image, which typically involves
looking for the feature points.

Features are distinctive image points corresponding to objective 3D scene elements
that are in most instances accurately locatable and recur in successive images, which
make them explicitly trackable over time [TS04]. A wide variety of feature point or

interest point detectors have been reported in the literature. A comprehensive overview
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(a) Color marker[Bei06] (b) Infrared marker[Sch04]

(c¢) Xpiont marker[MT009] (d) 2D-barcode marker[ABDO04]

Figure 2.5.: Example of markers used in optical tracking

of the current methods for feature extraction is provided in [SMBO00]. To avoid complex
and computationally expensive image processing, optical tracking systems often use
specific or pre-defined markers that can easily be detected [LMO03]. Figure 2.5 illustrates
some examples.

Extracting feature points from an image is something human beings are naturally
talented at, however for a computer it is a complex and computationally intensive
process since it often involves analyzing a large amount of image data. When designing
a solution to the problem of feature extraction, several aspects need to be considered,
including accuracy, reliability and complexity, etc. There is no general solution for
selecting the best features and determining the most appropriate feature extraction

algorithm, since this problem is always application dependent.

2.3. Correspondence Matching

When more than one feature points are found in images, ambiguities may arise. This

problem occurs when trying to establish the correspondence between feature points
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in one image and another [Cou03]. Finding Correspondence is an important step in
optical tracking. Prior to any 3D reconstruction operations, it is necessary to identify
feature points in two or more views that represents the same point in the 3D space.
To solve the correspondence problem, one straightforward approach is to select a
feature pixel in an image and then search through a 2D region around that pixel in the
other image to find the corresponding point. The algorithm is based on the calculation
of Sum-of-Absolute-Differences(SAD) or Sum-of-Squared-Differences (SSD), through
which corresponding points between images can be obtained by finding the minimum
SAD or SSD in an area-based block matching process [SSZ01]. This approach has the
main drawback of high computational cost and low accuracy. As a consequence, it is

rarely used in optical tracking systems.

Epiploar Geometry
The epipolar geometry [PS07] provides an alternative for finding the relationship be-

tween feature points in images captured by different cameras.

M

epipole ¢ epipole e

C! '\I baseline \ c
epipolar line L, epipolar line L_ r

Figure 2.6.: Epipolar geometry

Consider a stereo setup composed by two pinhole cameras whose principal axes are
non-colinear, as illustrated in Figure 2.6. Let C; and C) represent the optical centers
of the left camera and the right camera respectively. A 3D point M is projected onto
both image planes, resulting in the 2D point pair m; and m,. The epipolar plane is
determined by the point M and the two camera optical centers C; and C,.. Given my,
its corresponding point in the right image is constrained to lie on a line called the
epipolar line L,, which is the intersection of the epipolar plane with the image plane of
the right camera. And the same is valid for m,., whose corresponding point must lie in
the epipolar line L; in the image plane of the left camera.

Based on this observation, we can make use of the epipolar constraints to find the

correspondence between two feature points. The epipolar constraints is that, for a given
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point p; in image 1, its possible matches in image 2 must lie on the epipolar line of p;.
As a result, the search space for a correspondence finding is reduced to one dimension.

More detailed discussion on epiploar geometry can be found in [FP02].

2.4. 3D Reconstruction

Once the coordinates of the corresponding feature points from deferent views and the
camera parameters are known, we are ready to calculate the position of the point in
3D space. This process is referred to as 3D reconstruction, or sometimes triangulation.

In Figure 2.6 we see that for two image points m; and m, in two different views that
represent the same point in 3D space M, there exist two back projected rays that pass
through the corresponding image center and image point intersecting at M. Or in other
words, there will be a 3D point M that gives m; = M and m, = P,M, where P, and
P, represent the projection matrix of the left and the right camera respectively.

This however, is the ideal case. In practice, due to inaccuracies in the camera cali-
bration and inherent localization errors of the feature points, the back projected rays

will not exactly intersect at the point M, as shown in Figure 2.7.

M

C, '\i baseline ' c

Figure 2.7.: Epipolar geometry with measurement errors

The idea of 3D triangulation is to estimate a point M , that satisfies

1y = BM and m, = P,M (2.18)

And M is estimated so that it minimizes the reprojection error, which can be calcu-
lated by the summed squared distances between the projection points m; and m,. of M
and the measured image points m; and m,..

There exist a large number of reconstruction approaches. A comprehensive survey is
given in [HS97a].
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2.5. Summary

This chapter briefly introduces the mathematical fundamentals that are necessary to
understand the entire process of optical tracking, which mainly include camera cali-
bration, 2D feature extraction, correspondence matching and 3D reconstruction. As
can be concluded, optical tracking is a very comprehensive subject. This thesis does
not intend to address all problems presented in every aspect of optical tracking. The
research of this thesis focuses on the hardware system design and high-speed image

processing for the 2D feature extraction.



3. Hardware Design

This chapter introduces the hardware architecture and the design methodology of the
implemented optical tracking system. The hardware design in this thesis includes the
development of a high-speed camera, a CameralLink simulator, two different types of
CameralLink grabber and a multi-purpose image processing platform called PowerEye.
The following sections first explain the considerations behind the design decisions and

then describe each hardware component in detail.

3.1. Design Considerations

3.1.1. Choice of Processors

As mentioned in previous chapters, optical tracking is a very computationally expensive
process. Over the past decades, optical tracking systems have taken advantage of high-
end host PC to handle image processing tasks. Today’s high speed optical tracking
applications, however, are making host PC performance reach its limits due to the
huge amounts of image data to be processed. Special hardware resources are strongly
needed to overcome the limitations of host PC.

At present, there are a number of processors available for high speed image processing.
The most commonly used ones are: Application Specific Integrated Circuits (ASICs),
Graphics Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs) and
Digital Signal Processors (DSPs).

e ASICs - ASICs are usually dedicated for high volume production. These devices
are customized for some particular use. Thus, they contain components that
are very specific and necessary for performing only one given task [Art08]. Once
manufactured, the functions of an ASIC can not be changed. Due to the true cus-
tomized hardware architecture, ASICs enable highly optimized implementation
of image processing algorithms at high clock rates. In most cases, ASICs pro-
vide the best performance in the matter of computational capability and power

consumption.

e GPUs - GPUs were originally developed for video games, where massive floating-
point operations need to be executed for real-time 3D graphics rendering. Nowa-
days using GPUs to accelerate 2D /3D image processing is becoming more and

more popular. GPU computing is enabled by its massively parallel architecture

23
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which consists of hundreds of processor cores operating together to crunch through

the data set in the application. Figure 3.1 illustrates a typical schematic layout.

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Figure 3.1.: GPU architecture [CU00S|

It can be seen that there are many processing cores inside the GPU, each grouped
into multiprocessors. Operations are performed by threads that are grouped into
blocks, which are in turn arranged on a grid. Each block is executed by a single
processor. If there are enough resources available, several blocks can be active at
the same time on a processor. The processor will time-slice the blocks to improve
performance, one block performing calculations while another is waiting for a
memory read [ARO08]. Clearly this high parallel processing architecture leads to a
great enhancement in terms of computing performance. For instance, the state-
of-the-art GPU Nvidia GTX295 features 240 processor cores with each operating
at 1.2GHz. The peak performance has reached 2TFLOPS (Tera FLoating point
Operations Per Second) [Lie09].

FPGAs - FPGAs are devices that contain a huge number of logic elements,
configurable interconnects (routing) and I/O blocks [Hed08, Mac05]. The name
field programmable indicates that this kind of devices can be reconfigured by the
designer after manufacturing, which makes them very useful in a wide range of

applications. A typical structure of an FPGA is illustrated in Figure 3.2 .

Each logic block can be programmed to perform both arithmetic and logical oper-
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Figure 3.2.: Conceptual architecture of an FPGA
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Figure 3.3.: Simplified logic block structure of a typical FPGA

ations with limited complexity. A classic FPGA logic block consists of a 4-input
lookup table (LUT), a flip-flop register, and a multiplexer as shown in Figure 3.3.
LUT is a constant delay device that stores combinational logic results. Significant
processing gains are achievable by using LUTs since the device does not have to
perform expensive computations to determine the result of a combinational func-
tion [Far09]. For a long period, 4-input LUTs were the industry standard. In
recent years, manufacturers have started moving to 6-input LUTs based logic
blocks to implement more complex functions with reduced logic level [Xil09]. A
simplified logic block structure of the up-to-date Virex-5 FPGA from Xilinx Inc.

is shown in Figure 3.4.

With the similar architecture to ASICs, FPGAs also provide the possibility to
exploit parallelism when executing image processing operations. In comparison
with general purpose processors (GPPs), which require several cycles to accom-
plish one operation, multiple computations can be performed by an FPGA in
a single clock cycle using the available massive parallel hardware resources. Be-
cause the required clock cycles are significantly reduced, FPGAs can operate with
much slower clocks and still provide a performance boost. The lower clock speeds

result in lower power consumption, making FPGAs power-efficient. In addition,
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Figure 3.4.: Structural diagram of Virtex-5 logic block

modern FPGAs are equipped with dedicated on-chip hardware blocks, e.g. mul-
tipliers, RAMs, and in some cases even embedded CPUs to offer more flexibility
and higher computational capability. Today, FPGAs are being used in a wide
range of applications to accelerate image processing tasks.

DSPs - DSPs are microprocessors with specialized architecture designed to effi-
ciently implement computational algorithms. They were originally developed for
optimizing one-dimensional signal processing in telecommunication areas, nowa-
days DSPs are more and more emerging into the image processing domain. One
advantage of DSPs over GPPs is the switch from the Von Neumann to the Har-
vard architecture, in which independent program bus and data bus are available.
The processor can simultaneously access two or more separate memory banks
through separate communication buses, thereby loading data operands and fetch-
ing instructions concurrently [Cop08, Far09]. To further improve the comput-
ing efficiency, modern high performance DSPs feature the Very Long Instruction
Word (VLIW) architecture, which enables multiple instructions to be fetched and
executed at the same time. As an example, the Texas Instruments TMS320C64x
DSP contains eight independent functional units, with six AL Us supporting single
32-bit, dual 16-bit, or quad 8-bit arithmetic and two multipliers supporting four
16x16-bit multiplies or eight 8 x8-bit multiplies per clock cycle. When operating
at 1GHz, 4000 million MACs per second (MMACS) with 16-bit multiply opera-
tions or 8000 MMACS with 8-bit multiply operations can be achieved. Figure 3.5
illustrates the structural diagram of the TMS320C64x DSP core.

The processors described above have their own field of applications. Each of them
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Figure 3.5.: Block diagram of TMS320C64x DSP core [Tex01]

owns its benefits in some aspects and disadvantages in others. Trade-offs often have to
be made to provide a balanced implementation. There are several factors that affect

the final decision of which technology to choose, such as performance, energy efficiency,
cost, and ease of development.

ASICs offer the best performance in terms of computational power, however, the
biggest problem with ASICs is the long design period due to their non-programmability,
and the extremely high non-recurring engineering costs, which can easily exceed 1 mil-
lion dollars. GPUs are much cheaper and provide excellent programming flexibility, but
the high power consumption (normally >180W) makes them only suited to a PC-based
system. Moreover, GPUs are inferior to FPGAs when the algorithm is data-intensive
and involves a large number of memory access operations [Cop08, CCLWO05], which is

typically the case of low-level image processing (e.g. 2D convolution) required in most
optical tracking systems.

The implemented hardware system is based on an FPGA+DSP architecture, because
for our application these two devices provide the best compromise of performance, cost,
energy efficiency, flexibility and development period. FPGA is an ideal choice for low-
level image processing that typically involves applying the same repetitive function to
each pixel in the image. Such algorithms are usually data-intensive and have a high de-

gree of parallelism. They can be easily and effectively mapped onto an FPGA. Clearly
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an optical tracking system can benefit from the parallel processing capabilities offered
by FPGAs, however, it is also often necessary to implement functions requiring large
control loops and complex branches rather than pixel-by-pixel iterations. Implement-
ing such functions in an FPGA can quickly eat up the available logic resources and
reduce the overall system performance [Wil04]. DSPs provide an ideal complement
to FPGAs, since they enable the implementation of complicated functions in software
(using C/C++). Therefore, the decision was made to make a combination of FPGAs
and DSPs to reap the benefits of both. Data-intensive, repetitive processing tasks
(e.g., 2D image filters) can be performed in the beginning of the processing pipeline
within the FPGA, while the DSP remains free for less computationally expensive but
control/math-intensive processing functions (e.g., correspondence matching and 3D re-

construction).

3.1.2. Modular Design

As mentioned in Section 1.2, scalability is an important consideration for the hardware
system design. Highly scalable architecture would allow new functions to be imple-
mented without complete redesign of the hardware platform. To achieve this objective,
the hardware system was developed using a modular design approach.

A modular system consists of a number of self contained modules, which can be easily
removed and replaced without significantly changing the architecture of the remaining
parts of the system. The replacing module may have a different function or performance,
but it should be able to interface with the existing components. If the overall hardware
system can be partitioned in a modular way, new hardware modules can be added
incrementally to the system, thereby achieving improved scalability [Par06].

From the hardware perspective, the optical tracking system implemented in this the-
sis can be divided into three separate subsystems, namely the camera system, the Cam-
eraLink grabber and the PowerEye image processing system. Additionally a Camera-
Link simulator was developed for simplifying the system verification. The following

sections describe each subsystem in detail.

3.2. High Speed Camera

Cameras play an essential role in optical tracking. They function like human eyes, cap-
turing information from the real world. Human eyes have excellent information acqui-
sition capability (high image resolution) but also have spatial and temporal limitations
[MDPO7]. For example, human vision temporal resolution is close to 100 milliseconds
[TEM96], which will lead to the failure of detecting fast movements. With the dramatic
improvement of image sensor technologies, more and more high-speed image sensors are
available. This provides the possibility to build high-speed cameras that are capable

of capturing fast moving objects. In this thesis, a modular high-speed camera was
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developed. Figure 3.6 depicts the high-level block diagram of the camera system.

Figure 3.6.: High-level block diagram of the camera system

As can be seen, the realized high speed camera consists of three hardware modules.
The first module - the sensor module ! - carries the photo-electrical signal conversion
sensor. The main component of the second module is an FPGA device that bridges
the sensor module and the interface module. The interface module is responsible for
transmitting the pixel data to and communicating with the outside world. Various
circuit boards inside the camera are stacked together using high speed connectors. A

photograph of the overall camera system is illustrated in Figure 3.7.
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Figure 3.7.: Photograph of the camera

!The sensor module was designed and produced by VRMagic GmbH (www.vrmagic.com). It was
adopted for the development of the camera system in this thesis.
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3.2.1. Sensor Module

An image sensor is a device that converts the light intensities to electronic signals.
There exist two different types of image sensors that are widely used in digital cam-
eras: Charge Coupled Device (CCD) sensors and Complementary Metal Oxide Semi-
conductor (CMOS) sensors. The relative advantages of CCD and CMOS sensors have
been discussed frequently in the literature. Today, in many aspects they still remain
complementary [Zur0O1]. However, in recent years CMOS sensors have presented more
and more advantages in comparison with CCD sensors, especially for high-speed appli-

cations, since they
i) are capable of achieving faster frame rate;
ii) support random pixel access;
iii) have less smear and blooming effects;

iv) require less complicated circuits for operation and consume much less power.
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Figure 3.8.: MT9M413 sensor functional block diagram

Taking these advantages in consideration, the MT9M413 sensor from Micron Tech-
nology Inc. was chosen. The MT9M413 is a 1280Hx 1024V (1.3 Mega pixel) CMOS

digital image sensor capable of 500 frames-per-second (fps) operation when running
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at full speed (66MHz). With a partial resolution the maximum frame rate can reach
10,000 fps. Other features of this sensor include the TrueSNAP electronic shutter,
which allows simultaneous exposure of the entire pixel array, the 10-bit on-chip analog-
to-digital converters (ADCs), which are self-calibrating, and a fully digital interface
[Mic06]. The MT9M413 sensor is available in both monochrome and color mode. Fig-

ure 3.8 illustrates the sensor functional block diagram.

As can be seen from Figure 3.7, the sensor module is made up by two circuit boards:

the sensor board and the adapter board. The structural diagram is given in Figure 3.9.

10J98U0D
10J98U02

Image
Sensor
MTOM413

[
L

Sensor Board Adapter Board

Figure 3.9.: Block diagram of the sensor module

The sensor board contains the MT9M413 image sensor mounted on the top of the
PCB and all required external circuitry, including digital-to-analog converters (DACs),
decoupling capacitors and signal connectors on the bottom. The MT9M413 sensor has
ten 10-bit-wide digital output ports. Thus, it outputs a total of 100 bits pixel data per
clock cycle. The on-chip analog-to-digital converters (ADCs) require various reference
voltages for the bias setting operation and the fixed pattern noise (FPN) calibration.
For this reason, the sensor board is equipped with two programmable DACs (DAC6573),
each of which is capable of generating four configurable voltages. Adjusting the voltage
level can be realized by programming the internal registers of the DACs via the 12C

bus.

The adapter board was designed to make the connection between the sensor board
and the FPGA control board. It introduces extra routing length of the high speed
signals transmitted from sensor to FPGA. To minimize signal reflections along long
transmission lines, which can cause serious signal integrity problems, series termination

resistors are placed close to every output pin of the image sensor.
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3.2.2. FPGA Control Module

The MT9M413 sensor needs a controller to guide it through the full sequence of its
operation [Mic06]. An FPGA control board shown in Figure 3.7 was developed to
manage the whole camera system. This module has two main tasks. First, it generates
all control signals required for operating the sensor, and synchronizes the output data
stream from the sensor with the interface module. Second, it reads and executes control
commands from the host, such as the on-line configuration of exposure time, gain, frame
rate, region of interest (ROI), etc.

In the initial phase of the hardware development, the first thought was to integrate
a high-end FPGA (e.g. Virtex-4 or Virtex-5) into the camera system to perform both
sensor control and high data rate image processing tasks. But this solution introduces
a new problem: since the architecture is not optimized for power-efficient applications,
high-end FPGAs normally consume a lot of power and result in significant amounts of
heat during the operation. Considering that the FPGA will be working in a closed cam-
era housing, the large heat dissipation could greatly increase the temperature-sensitive
dark current noise of the image sensor, which in turn limits the system performance.
Furthermore, equipping every camera with a high-end FPGA will potentially raise the
overall system costs. Therefore, it was the decision to utilize an energy-efficient, low-
cost FPGA in the camera system to perform sensor control and data communication
operations. The module containing high performance FPGA and DSPs (the PowerEye
system introduced in Section 3.5) that aims to process multiple pixel streams simulta-

neously was isolated from the camera.

CLink Datax

Cam Data

< Cam Clock
Cam 12C

CLink CLKZ

Figure 3.10.: Block diagram of the FPGA control board

Figure 3.10 shows the block diagram of the FPGA control board used in the cam-

era system. The key component is a low power, mid-size Xilinx Spartan3 FPGA
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(XC3S1000L). This device features 1 Mega system gates, 24 dedicated 18x18 multi-
pliers as well as rich on-chip memory resources, which make it suitable for camera
control and low-complexity image pre-processing tasks, such as color transformations.
The on-board power management circuitry provides all necessary voltages to power the
whole camera system, including the 1.2V FPGA core, the 2.5V FPGA Vccaux, and
the 3.3V power supply required by FPGA I/O banks and the image sensor. A pro-
grammable PLL which is capable of generating up to four clock sources was employed
to drive the FPGA internal logic, the image sensor, as well as the interface module. In
addition, two pairs of signal connectors are available on the board: one is dedicated
for interfacing with the sensor module; the other is used to connect the interface mod-
ule. The FPGA generates all necessary signals for controlling the image sensor. The
received raw image data are organized into pixel streams, which are then forwarded to

the interface module.

3.2.3. Interface Module

High speed image sensor requires a high data transfer rate. For instance, if the
MT9M413 image sensor is running at full frame rate (500fps) and maximum reso-
lution (1280x1024x10bit), a communication link with sustained transfer rate of 782
MBytes (or 6250Mb/s) per second will be needed. Currently, there are four commonly
used high bandwidth camera interface standards [ENO08]: FireWire 800 or IEEE-1394b,
Gigabit Ethernet or GigE, USB 3.0 and CameralLink. Table 3.1 depicts the general

specifications of these interfaces.

Category IEEE- Gigabit- USB Camera-
1394b Ethernet 3.0 Link
Topology Peer-to-Peer | Networked | Master-Slave | Master-Slave
Maximum bit rate | 800 Mb/s | 1000 Mb/s | 5000 Mb/s 6800 Mb/s
Maximum 640 Mb/s 900 Mb/s 4000 Mb/s 6800 Mb/s
sustained bit rate (80%) (90%) (80%) (100%)
Maximum 4.5 m 100 m 3m 10 m
cable distance

Table 3.1.: Specifications of digital camera interface standards

CameraLink was chosen as the communication interface for the camera system, be-
cause it provides the highest data transfer bandwidth, and is in fact the only candidate
that satisfies the transmission bandwidth requirement of our high-speed camera. More-
over, CameraLink supports a long cable connection (up to 10 meter) between cameras
and frame grabbers, making it convenient for applications where cameras must be lo-

cated at long distances from the host. The CameraLink specification [Aut01] defines:

e a standard connector that is used on both camera and frame grabber;
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a standard cable to connect camera and frame grabber;

e image formats for transmitting data from camera to frame grabber;

standard camera control inputs, i.e. CC1, CC2, CC3, and CC4;

a standard method for transmitting serial communication data (SerTC/SerTFG)

between camera and frame grabber;

The key technology of CameraLink is the Channel Link [Nat06], a data transmission
method suggested by National Semiconductor Inc. Channel Link consists of a trans-
mitter and receiver pair. The chipset operates with 3.3V at a maximum clock speed of
85MHz. The transmitter accepts parallelly 28 bits LVI'TL data signals and a single-
ended clock. The data is then serialized 7:1, and the resulting four data streams as well
as the clock signal are transmitted over five LVDS pairs. When operating at full speed,
28 bits LVTTL data can be transmitted at 595 Mbps per LVDS channel. The receiver
accepts the LVDS pairs, then de-serializes and converts them back into 28 bits LVITL
data signals plus one single-ended clock.

Since a single Channel Link chip is limited to 28 bits, some cameras may require
several chips to achieve sufficient data transfer bandwidth. The CameraLink interface

has therefore three configurations with the following naming convention:

(1) Cameralink Base - with three data ports, single Channel Link chip and single
cable connector, supporting up to 255 MByte/s transfer rate.

(2) CameraLink Medium - with six data ports, two Channel Link chips and two cable

connectors, supporting up to 510 MByte/s transfer rate.

(3) Cameralink Full - with ten data ports, three Channel Link chips and two cable

connectors, supporting up to 850 MByte/s transfer rate.

The CLinkTx (CameraLink Transmitter) board shown in Figure 3.7 is responsible
for handling the high data rate image transmission. It incorporates the connector,
signals, pinout, and chipset in compliance with the Cameralink specification. Three
National Semiconductor DS90CR287 chips serve as the high-speed image data trans-
mitter. A DS90LV048A differential line receiver is utilized to receive the camera control
signals (CC1~CC4). The serial data communication (SerTC/SerTFG) defined in the
CameraLink specification is implemented by a DS90LV019 differential line transmit-
ter /receiver. CLinkTx was designed to support all three CameraLink configurations.

The structural block diagram is shown in Figure 3.11.
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Figure 3.11.: Block diagram of the CLinkTx interface module

3.3. CameralLink Grabber

The Cameraliink grabber captures digital image data from one or multiple Camera-
Link cameras and converts the received LVDS signals back to single-ended signals.
Two different types of Cameraliink grabber board were developed, which are named
CLinkRx-TripleBase and CLinkRx-FULL respectively.

3.3.1. CLinkRx-TripleBase

The CLinkRx-TripleBase board shown in Figure 3.12 was designed to simultaneously
capture image streams from three separate Cameralink cameras that are configured
in Base mode. Three independent Channel Link chip sets are used on the board, each
of which consists of one DS90CR288A as image data receiver, one DS90LVO047A as
camera control signal transmitter and one DS90LV019 for the serial communication.
The incoming LVDS signals carrying the image data are de-serialized and converted to

single-ended 3.3V LVTTL signals, which are later routed to a 180-pin high speed con-
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PR
i

Figure 3.12.: Photograph of the CLinkRx-TripleBase board

nector (Samtec QTH-090-01-L-D-A). Termination for both differential and single-ended
signals is provided on board. The schematic block diagram of CLinkRx-TripleBase is

shown in Figure 3.13.

PORT A PORT B PORT C

MDR26 Connector MDR26 Connector MDR26 Connector
DS80 DS90 DS80 DS90 DSS0 DSa0
DS0CR288A LVo19 DS90CR288A LVO19 DSS0CR288A LV019

Figure 3.13.: Block diagram of the CLinkRx-TripleBase board

3.3.2. CLinkRx-FULL

When the MT9M413 sensor is running at full speed (1280x 1024 x 10b@500fps), a Camera-
Link Full interface will be needed since the image data rate (782 MByte/s) exceeds the
maximum bandwidth provided by Cameralink Base and Medium. The CLinkRx-FULL
board is able to connect a single camera and supports all three levels of Cameralink
interface - Base, Medium and Full. As shown in Figure 3.14, Port A operates in the
same way as the Base mode interface, transferring the image data via channel X. Port B
consists of two Channel Link receiver (DS90CR288A) chips that transmit data through
channel Y and channel Z simultaneously. The three on-board Channel Link receivers
are capable of transporting a total of 80 bits image data per clock cycle - 24 bits for
channel X, 28 bits for Channel Y and 28 bits for channel Z. Thus, when clocked at
85MHz, a substantial transmission rate of 850 MByte/s can be achieved.
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Figure 3.14.: Block diagram of the CLinkRx-Full board

3.4. Cameralink Simulator

As described previously, our hardware system is divided into multiple independent
modules in order to achieve high modularity. However, this concept also increases
the complexity of the hardware debugging process, especially when the camera, the
CameraLink grabber and the image processing system (PowerEye) are incorporated

together.

Figure 3.15.: Photograph of the CLinkSim board

A CameralLink simulator - the CLinkSim board shown in Figure 3.15 was devel-
oped for the purpose of simplifying the system verification. The idea is to replace
the complete camera system, which contains multiple circuit boards, by a single-board
simulator, so that the CameralLink grabber and the image processing system can be
tested without connecting a real camera. CLinkSim is basically a video pattern gener-
ator based on a Spartan-3 FPGA (XC35200) device. The FPGA can be programmed
to simulate the timing characteristics of one or multiple real cameras and to output
video streams fully in compliance with the Cameralink standard. CLinkSim supports
both Cameraliink Base and Medium configurations. It can also be used to simulate

the behavior of up to three cameras configured in the Base mode simultaneously. The
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block diagram of CLinkSim is shown in Figure 3.16.

clocks

Figure 3.16.: Block diagram of the CLinkSim board

3.5. PowerEye

PowerEye was designed as a general-purpose hardware platform that can be used in a
wide range of image processing applications. It can be plugged into a PC, serving as
an accelerator for the PC CPU, or can operate in a stand-alone manner, functioning as
an embedded system. There are some basic elements which should be considered when
designing a generic image processing system, such as processors, frame buffer memory
and host interfaces.

Image processors are responsible for performing all necessary computations for imple-
menting the required 2D /3D image processing algorithms. The processors on PowerEye
consist of a high-density FPGA and two high-performance DSPs. The advantages of
such a processing architecture have already been discussed in Section 3.1.1.

Frame buffer memory is an important issue for an image processing system. Many
image processing algorithms need to access the image data in some order other than
the one it is presented by the video source. Thus, it is necessary to collect the im-
age data for each frame in a frame buffer memory that is randomly accessible by the
processor[And96]. On PowerEye, various memory resources can be utilized as frame
buffers, which include 9 Mega bytes ZBTSRAM directly connected to the FPGA, and
128 Mega bytes SDRAM mapped to the DSP memory space.
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An image processing system should provide one or multiple interfaces to connect
with a host (e.g., a PC) for the purpose of system setup, control and data visualization
[And96]. PowerEye has access to three industrial standard interfaces, i.e. PCI-Express,
Gigabit Ethernet and USB2.0. In addition, a 110-bit general purpose expansion con-
nector and a 12-pair high-speed LVDS link connector are provided on-board for use of
interfacing different types of peripherals.

Figure 3.17 and Figure 3.18 illustrate the photograph and the block diagram of
PowerEye respectively. The details of each functional block are introduced in the

following subsections.
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Figure 3.17.: Photograph of the PowerEye board

3.5.1. FPGA

The FPGA selected for PowerEye is one of the Virtex-4 devices [Xil07] from Xilinx
Inc., which are fabricated with 90nm copper CMOS process. Besides a significant
increase in density of logic gates compared with former devices, the Virtex-4 FPGAs
offer several architectural advantages, e.g., the Digital Clock Managers (DCMs) which
provide various clock management features, including clock deskew, frequency synthesis,
and phase shifting, the I/O blocks that support a wide range of voltage standards from
1.5V to 3.3V, the on-chip true dual-port synchronous block RAMs which are capable
of running at 500MHz, and the rich hard-IP core blocks including PowerPC processors,
tri-mode Ethernet MACs, 6.5 Gb/s serial transceivers and dedicated XtremeDSP slices.
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Figure 3.18.: PowerEye block diagram

Considering that the FPGA must be able to interface a number of peripherals, the
XC4VFX60-FF1152 with a large amount of I/O pins (576 programmable I/O pins
in total) was chosen. This device has a footprint that is fully compatible with the
XC4VFEX100 FPGA. If required, the current FPGA on PowerEye can be replaced by a
larger device containing more logic and memory resources without changing anything

regarding the hardware design.

3.5.2. ZBTSRAM

Although the XC4VFX60 FPGA contains a total of 522k bytes on-chip block RAM, an
entire image produced by the MT9M413 sensor (1280 x 1024) consumes 1.3M bytes.
Thus an external frame buffer is required to store the image data.

The choice was made between Synchronous Dynamic RAM (SDRAM) and Static
RAM (SRAM). SDRAMs, such as the DDR2- or DDR3-SDRAMs, have the advantages
of high storage capacity and low cost. Nevertheless, they suffer from a significant
amount of access latency. If the image data must be randomly read from or written
to a frame buffer, the achievable throughput with SDRAMSs can be very low. SRAMs,
on the other side, support very low access latency (typically < 2 clock cycles) and
provide medium-size storage space. They are capable of accessing random data at non-

sequential addresses with constant delay [Alt08]. This characteristic makes SRAMs
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more effective for use not only as image frame buffers, but also as large Look-Up-Tables
(LUTSs) holding the data that is too large to fit in the FPGA on-chip memory.

On PowerEye, the Virtex-4 FPGA has direct access to a total of 9M bytes fast
ZBTSRAM (CY7C1460-250BZC). ZBT stands for "Zero Bus Turnaround”. As the
name implies, this kind of SRAM devices are designed to sustain 100% bus bandwidth
by eliminating turnaround cycles when there is a transmission from Read to Write, or
vice versa. The ZBTSRAMs on PowerEye are organized in two independent 1M x 36bit
banks, as the control path, the address and data buses as well as the clock inputs are
unique to each bank with no sharing of signals. This architecture allows to construct
a ping-pong frame buffer, which enables simultaneous image capture and processing
to improve the system performance. Since both ZBTSRAM banks can be clocked at
200MHz, a maximum data transfer rate of 3.6GByte/s is achievable.

3.5.3. DSP

In addition to the Virtex-4 FPGA, PowerEye contains two TMS320C6414T DSPs
clocked at 1 GHZ, providing a peak performance of 16,000 MIPS (Million Instruction
per Second).

The TMS320C6414T is one of the high-performance fixed-point DSPs from Texas
Instruments. It has a two-level cache architecture. The first level (L1 cache) is a set
of 128 kbit of program cache and 128 kbit of data cache. The second level (L2 cache)

consists of an 8 Mbit memory space that is shared between program and data space.

The TMS320C6414T DSP is equipped with a powerful and diverse set of periph-
erals, in particular three multi-channel full duplex buffered serial ports (McBSPs), a
user-configurable 16bit or 32bit host port interface (HPI), 16 bits general purpose in-
put/output (GPIO), and an external memory interface (EMIF) supporting a glueless
interface to a variety of external memory devices, including SDRAM, SRAM, and first-
in first-out (FIFO) buffers. The TMS320C6414T DSP provides two EMIF options:
EMIF-A (configurable to 32bit or 64bit data width) and EMIF-B (configurable to 8bit
or 16bit data width).

Another powerful feature of the TMS320C6414T DSP is its Enhanced Direct Mem-
ory Access (EDMA) engine, which aims at efficiently transmitting large amounts of
data between the core CPU, device peripherals, and the L2 cache without any CPU
intervention. The EDMA engine has 64 channels for independent transfers, most of
which are specifically triggered by a distinct peripheral event. All of the channels, how-
ever, can be manually triggered by the CPU as long as the particular synchronization

event for the respective channel is not activated. More detailed information about the
TMS320C6414T DSP can be found in [Tex09].
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3.5.4. SDRAM

A total of 128M bytes of SDRAM memory is available on PowerEye, since each DSP is
equipped with 64M bytes SDRAMSs mapped to the CEO memory space. The SDRAMs
are clocked at 133MHz and connected directly to the DSP EMIF-A port. They can be
used as a complement to the ZBTSRAMs for applications requiring a large amount of

data to be stored during the runtime.

3.5.5. FLASH

Flash belongs to the non-volatile memory used frequently in embedded systems. On
PowerEye, a 2M-Byte FLASH is connected to each DSP in the EMIF-B CE1 memory
space. It holds the boot code for the DSP and optional user-defined parameters. The
FLASH is a 16-bit wide device which can also be configured under 8-bit mode. The
boot code must be stored in 8-bit format because this is the mode the DSP requires.
Since the TMS320C6414T DSP only provides 20 address lines on its EMIF-B bus, one
GPIO (GPIO9) pin is connected to the highest address bit of the FLASH for page
mode access to the full 2M-Byte memory space. As a result, the FLASH memory is
seen from each DSP as two separated 1M-Byte pages.

3.5.6. Inter-processor Communication

In all multi-processor systems, one of the most crucial aspects of determining the overall
system performance is the inter-processor communication efficiency in terms of both
latency and data transfer bandwidth. Great attention was paid to this aspect in the
early phase of the hardware architecture design. Figure 3.19 shows the multi-path

inter-processor communication architecture that was implemented on PowerEye.

Figure 3.19.: Multi-path inter-processor communication
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FPGA to DSP Communication

The interface selection between FPGA and DSP is driven by application characteristics
as well as the available interfaces of the processor. On PowerEye, two different DSP
communication interfaces are utilized to connect the FPGA: the 32-bit EMIF-A and
the McBSP.

The 32-bit EMIF-A was selected as a high-speed communication channel between
DSP and FPGA due to its high data transfer rate and the possibility of using the DSP
EDMA engine. The block diagram of this communication method is given in Figure
3.20.

Interrupts

0 )

:

control

q Transmitter - ’
FIFO
FIFO & 32bit data
EMIFA '
Control 12bit address
FIFO DSP_B control

Figure 3.20.: FPGA to DSP communication via EMIF-A

The EMIF&FIFO Control block in the FPGA decodes the EMIF control signals from
the DSP and forwards the data to the receiver FIFO. When the amount of data in the
receiver FIFO reaches a predefined threshold, the FPGA starts to read the data and
process them. The FPGA sends the results to the transmitter FIFO if it has a certain
amount of free space. When the amount of data in the transmitter FIFO reaches a
threshold, the FPGA issues an interrupt and sends a DMA transfer request to the
DSP. The DSP EDMA engine will then move the data from the transmitter FIFO to
its local memory. Since EMIF-A is a 32bit bus that is capable of operating at 133 MHz,
a peak data transfer rate of 532 MByte/s can be achieved.

The second option for the FPGA to DSP communication is enabled by McBSP, which
is a full duplex serial interface capable of running at up to 125 MHz (two 125Mbps
streams). As shown in Figure 3.18, the FPGA has access to the McBSPO port of
both DSPs. Compared with the EMIF interface, the achievable data transfer rate via
McBSP is significantly lower. However, this communication method costs much less
FPGA logic resources due to the simplicity of the transmission protocol. Figure 3.21

illustrates the block diagram of this communication scheme.
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Figure 3.21.: FPGA to DSP communication via McBSP

DSP to DSP Communication

The DSPs on PowerEye were also designed to be capable of exchanging data with each
other. As illustrated in Figure 3.18, the two DSPs are directly linked by their McBSP1
and McBSP2 ports. During the communication, the McBSP transmitter behaves as a
master that generates both clock and frame synchronization signals for data transfer.
The other McBSP portion then acts as a slave awaiting these signals from the master.
For instance, the McBSP1 transmit portion of DSPA is the master of both clock and
frame to the McBSP1 receiver of DSPB, and the McBSP1 transmitter of DSPB is
configured to be the clock and frame master to the McBSP1 receiver of DSPA. The
same arrangement applies for the McBSP2 port.

The main drawback of the communication via McBSP is its low data transfer band-
width due to the sequential nature of McBSP. An alternative is to use dual port RAM
for more efficient inter-DSP communication. A dual port RAM is a static memory with
dual access ports. Each port has separate address, data and control signals, which are
ideal for communication between two asynchronous devices [IDT04]. On PowerEye,
this communication scheme can be easily implemented by using the FPGA internal
RAM resources. The XC4VFX60 FPGA has a total of 232 pieces of block memory,
each of which is organized as a 512x36-bit dual port RAM. They can be seamlessly
connected to the 32-bit EMIF-A port of the DSP. During the communication the dual
port RAM can be considered as a shared buffer that is accessible to both DSPs. The
sender DSP sends data to the shared buffer and notifies the receiver. The receiver
reads the data out and messages the sender that the buffer is free. It is important to
maintain coherency when multiple devices access data from the shared memory. For

applications that require high speed data exchange between DSPs, the EDMA-driven
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large block transfer can be used to maximize the communication bandwidth. Tests in
lab show that a substantial inter-DSP transfer rate of 400MByte/s can be achieved at
the frame size of 4k bytes per DMA.

3.5.7. Interface

PowerEye provides PCI-Express, Gigabit Ethernet and USB2.0 as standard interfaces
for communication with external devices, like a PC. In addition, two expansion con-

nectors are mounted on board that can be used to interface a variety of peripherals.

PCI-Express

PCI-Express is an enhancement to the well-known PCI architecture where the parallel
bus has been replaced with a scalable, fully serial interface. The differences in the
electrical interface are transparent to the software, so existing PCI software implemen-
tations are compatible.

The XC4VFEX60 FPGA enables the possibility to implement a PCI-Express interface
by use of the embedded Multi-Gigabit Transceiver (MGT) blocks. MGT is a full duplex
serial transceiver for point-to-point transmission applications and can operate at any
serial bit rate in the range of 622 Mb/s to 6.5 Gb/s per channel. XC4VFX60 provides
a total of 16 MGTs. Four of them are utilized on PowerEye to build a 4-lane PCI-
Express interface. Each lane has a unidirectional transmit and receive differential pair
supporting a transfer data rate of 2.5 Gb/s.

Using PowerEye in a PCI-Express application requires the logic-level implementation
of the PCI-Express protocol inside the FPGA. Xilinx provides a PCI-Express Endpoint
IP core with a physical interface to the MGT ports. However, the implementation of

PCI-Express is beyond the scope of this thesis due to limited time of development.

Gigabit Ethernet

Ethernet is the most widely used technology for local area networks (LAN). It is very
flexible, easy to implement and highly scalable. Since more than 25 years Ethernet has
been covering 97% of all installed network connections.

An Ethernet device contains mainly three basic components: a physical layer transceiver
(PHY), a media access controller (MAC) and a protocol stack defined in the OSI Ref-
erence Model.

The XC4VFX60 FPGA integrates four hard Tri-Mode Ethernet MAC cores that
support 10/100/1000 Mb/s data rates and are designed to comply with the IEEE
Std 802.3-2002 specifications. The Ethernet MAC features the IEEE standard GMII-
/RGMII interface for accessing the PHY. An Ethernet PHY (88E1011S from Marvell
Inc.) connected to a RJ-45 jack is equipped on-board to implement the physical layer
transmission. The XC4VFX60 FPGA provides the possibility to build a protocol stack
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both in software (using the embedded PowerPC processors) and in hardware (using logic
resources). In this thesis, a hardware based UDP stack was implemented to achieve

maximum transfer bandwidth and lowest latency.

USB 2.0

An on-board micro-controller (Cy7c¢68013 from Cypress Inc.) enables data communica-
tion between PowerEye and PC via a standard USB 2.0 interface. The micro-controller
is a single-chip device that integrats a 8051 core, a Serial Interface Engine (SIE) and a
USB 2.0 transceiver supporting both full-speed (12Mbps) and high-speed (480 Mbps)
operations. A dedicated 64Kb serial EEPROM is provided to maintain the firmware.
The EEPROM can also be accessible by the FPGA via the 12C bus.

1/0 Expansions

Besides the standard interfaces, there are two expansion connectors available on Pow-
erEye, namely the 110-bit general-purpose user I/O connector and the 12-pair LVDS
Link connector, which were designed for easy interfacing with additional off-board com-

ponents.

CLinkRx_TrippleBase PowerEye

Figure 3.22.: Connection between PowerEye and CLink-TripleBase

The general-purpose user I/0 is made up by 110 single-ended signals routed to a
180-pin high density connector (Samtec QSH-090-01-L-D-A) near the left edge of the
board. These signals are directly connected to the FPGA programmable I/O pins that
are distributed in two different banks. The remaining pins of the connector are ei-
ther connected to ground, for ensuring good signal return path, or connected to the
12V /5V/3.3V power planes of PowerEye, serving as power supplies for an off-board

component. The aim of this general-purpose interface is to allow different hardware
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modules to be interconnected together without them actually being designed to specifi-
cally fit each other, thereby adding more reusability to the whole system. In our optical
tracking system, the general-purpose user 1/0 is used to interface with the CameraLink

grabber board, as shown in Figure 3.22.

Figure 3.23.: Connection between two PowerEye boards via the LVDS Link

The 12-pair LVDS Link was designed for high speed board-to-board communication
as illustrated in Figure 3.23. All 12-pair LVDS signals are connected to the same FPGA
bank powered with 2.5V. These differential signals are distributed across a QSE-014-DP
connector on the board edge, and are routed with 100ohm differential trace impedance
and matched length. Since the maximum speed of the Virtex-4 LVDS I/O reaches
1Gbps, the LVDS Link can serve as a high-speed data communication channel, through

which the image data can be transmitted in real-time between two PowerEye boards.

3.5.8. Clock Distribution

Figure 3.24 depicts the block diagram for the clock distribution scheme on PowerEye.

e sys_clk - A 50 MHz and a 100 MHz oscillator provide the system clock inputs
to the FPGA. They are typically used to generate clocks with various frequencies
and phases within the FPGA fabric.

e user I/0O clocks - Four user I/O pins are connected directly to the FPGA global
clock inputs. This allows an off-board component to supply reference clocks for

PowerEye.

e programmable clocks - To adjust the clock frequencies for one or multiple on-

board components in runtime, a phase-locked loop (PLL) capable of operating
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Figure 3.24.: Clock distribution on PowerEye

over a wide range of frequency is equipped on PowerEye. When combined with
a reference oscillator, the PLL is able to output up to four independent clocks
(CLKA, CLKB, CLKC and CLKD) with various frequencies. On PowerEye,
CLKA is used to drive the DSP EMIF ports. CLKB sources the USB 2.0 micro-
controller. CLKC and CLKD are connected to the FPGA global clock input

pins.

DSP_clk - Each DSP is connected to a clock oscillator with fixed frequency (50
MHz). The PLL inside the DSP multiplies the source clock frequency with a

configurable value to generate the internal operating clock.

EMIF _clk - The EMIF signals of the TMS320C6414T DSP can be synchronized
either by an internal clock or externally by a reference clock. For inter-processor
communication, the second option is preferred, since the internal clocks of the on-
board DSPs are not synchronized to each other. On PowerEye, a Zero-Delay clock
buffer that accepts one reference clock (CLKA output from the programmable
PLL) and generates four zero-delayed low-jitter clocks is used to source the EMIF
ports of both DSPs. Since all these clocks are phase locked with the reference
clock, a strict synchronization of the EMIF signals belonging to different DSPs
is achievable. This greatly decreases the design complexity of the EMIF-based

inter-processor communication.

PCle_clk - In order to function as a PCI-Express device, PowerEye must use
the 100 MHz reference clock provided over the PCI-Express card edge to be
frequency-locked with the host system. The Virtex-4 FPGA requires a 250 MHz
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clock for the MGT clock source to meet the requirements specified in the PCI-
Express standard. A PCI-Express jitter attenuator is utilized to convert the 100
MHz PCI Express clock to the required 250 MHz while still meeting the jitter
tolerance of the Virtex-4 MGTs.

3.56.9. Power Management

Power management is one of the key challenges that have to be faced in complex circuit
design. PowerEye can be powered by 12V DC either from the external power supply
connector or from the PCI Express slot. The on-board power management circuitry
generates various voltages required by different hardware components. Figure 3.25 gives

the high level block diagram of the power management circuitry.

—.—b Ethernet PHY core 1.5V
MGT 2.5V
FPGA core 1.2V

DSP core 1.2V

Unused MGT 1.2V

PROM core 1.8V

il

.

Figure 3.25.: Block diagram of power management

The +1.2V FPGA core and +3.3V power rails are realized by two LT4600 power
modules independently. LT4600 is a switching DC/DC regulator capable of furnishing
up to 10A current. The DSP core power supply is regulated by the PHT12050 module,
which sources up to 6A current. A 5A linear regulator is used to convert +3.3V to
+2.5V for the Ethernet PHY I/O power supply and the 2.5V FPGA VCCO, as well as
the FPGA Vccaux. The +1.5V and +1.8V voltages for the Ethernet PHY and FPGA
PROM are derived from the on-board 3.3V power plane using two linear regulators.

The MGTs of the Virtex-4 FPGA are powered by linear voltage regulators, since
the MGTs are very sensitive to noise of the power. Moreover, dedicated passive high-

frequency filtering circuitry is used to ensure clean power supply for the MGT blocks.
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3.5.10. Printed Circuit Board (PCB) Design

PowerEye operates at high frequency with a complicated circuit structure. High speed
circuit design rules were strictly followed during the PCB development.

The major concern for the PCB design of PowerEye was signal integrity. Several
important issues in this regard have been taken into account, which mainly include
crosstalk reduction, impedance control, signal delay matching, and supply voltage by-
passing.

The root of the crosstalk problem is the large mounts of signal routes on the board.
High routing density can cause serious cross talk problems that drastically degrades
the overall performance. Thus, the primary method for improving signal integrity is to
reduce the routing density[CKRB03]. This can be achieved by increasing the number of
PCB layers when the the dimension of the PCB has already been defined. PowerEye was
fabricated with a 15cmx10cm PCB consisting of 14 layers, which include eight signal
layers, three power planes and three ground planes. The PCB stack-up architecture is

shown in Figure 3.26.
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Figure 3.26.: PowerEye PCB stack-up

As can be seen, every signal plane in the PCB is adjacent to a reference plane, which
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ensures that the return currents always travel as near as possible to their corresponding
trace. Signals in adjacent layers were routed perpendicularly, so that the horizontal and
vertical layers alternate. This significantly limited the crosstalk between signal traces
of adjacent layers.

Impedance mismatch of transmission line on PCB can cause signal reflection prob-
lems, especially in high frequency environments. The impedance of 5052 for single-ended
signals and the impedance of 1002 for differential signals were chosen for approximate
matching with signal drivers and signals on off-board components. The trace widths
of the single-ended signals were adjusted for each layer in order to maintain constant
transmission line impedance across different layers. Series resistor terminations have
been used on long traces to attenuate the signal reflections. All differential signal trace
pairs were routed together with fixed spacing. PCB layer thicknesses and trace widths
were chosen to ensure uniform impedance value throughout the board as shown in
Figure 3.26.

High speed signals, such as the data and address buses of the ZBTSRAMs, DSP
EMIF signals and the clocks were routed with matched lengths to ensure consistent
signal delay, which is important for all high speed synchronous designs.

Ground bounce is another problem due to high switching activities on the high pin-
count FPGA and DSPs. In extreme cases, the voltage drop can be significant enough
to make the on-board ICs momentarily malfunction and produce errors [CKRBO03].
Therefore, as many as possible bypassing capacitors should be provided to ensure proper
system operation. There are over 500 bypassing capacitors placed on PowerEye with

capacitance values ranging from 22pF to 680uF.

3.6. System Setup

As described in the previous sections, the implemented hardware system features a very
flexible architecture that can be easily scaled up. Depending on the requirements, three

different setups can be utilized for various optical tracking applications.

3.6.1. 3-Camera System

The basic setup is a 3-Camera system shown in Figure 3.27, where three cameras
configured in the Cameralink Base mode are connected to PowerEye via the CLinkRx-
TripleBase grabber board.

On PowerEye, three image data streams are fed simultaneously to the FPGA, where
the feature point extraction takes place. The 2D feature point coordinates are calculated
by the FPGA for each camera in parallel. The results are then sent to one or both
DSPs, which are responsible for correspondence matching and 3D reconstruction that
require low computational cost but highly complex math and control operations. A

host, such as a laptop, can access PowerEye via the standard Gigabit Ethernet or USB
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Figure 3.27.: 3-camera system

2.0 interface to initialize the cameras, visualize the 3D tracking data and perform the

overall system control at runtime.

3.6.2. 6-Camera System

It is easy to extend the 3-camera system to a 6-camera system by cascading two Pow-
erEye boards via the high-speed LVDS link, as illustrated in Figure 3.28.

Figure 3.28.: 6-camera system

In this system, the two PowerEye boards can work in a Master-Slave fashion. The
FPGAs of both master and slave PowerEye calculate the 2D feature point positions for
each camera independently as in the 3-camera system. The slave FPGA (FPGA on
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the slave PowerEye) sends its local results to the master FPGA, where the 2D feature
point information from all the 6 cameras are collected. One of the master DSPs is
responsible for establishing the feature point correspondence across the cameras, while
the second master DSP remains free for the final 3D reconstruction.

It is obvious that the inter-board communication is an important issue that can
influence the overall system performance. As discussed in Section 3.5.7, the LVDS link
provides enough data transfer bandwidth for exchanging 2D feature point information
between master and slave PowerEye. It even allows real-time raw image data to be

transmitted from one PowerEye to another.

3.6.3. Many-Camera System

For applications that require even more cameras, it is possible to build a networked

many-camera system using the Gigabit Ethernet interface available on PowerEye. Fig-

ure 3.29 illustrates an architectural diagram.

Figure 3.29.: Many-camera system
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In such a system, every three cameras are grouped together and connected to a Pow-
erEye board, forming a processing node. The FPGA and DSPs on each PowerEye board
perform the 2D image analysis and calculate the feature point positions in images cap-
tured by the local cameras. The results are then sent to a central processor or a server
over Ethernet. The server can be a standard PC, which integrates the 2D information
from various processing nodes and estimates the 3D position and orientation of the
targets to be tracked. Interconnecting processing nodes with the server can be easily
achieved using standard Ethernet switches. Since the 2D object information consumes
very little bandwidth of Gigabit Ethernet, we can scale to large numbers of cameras to
cover a large tracking volume.

One of the most challenging problems in an optical tracking system with a large
number of cameras is camera synchronization. When tracing moving objects, we must
ensure that the images are captured at exactly the same moment in time. If the images
from various cameras are captured at different moments, corresponding feature points
from different views may not represent the same point in space. This will in turn lead to
significant amount of error in the final 3D reconstruction step. Thus, it is a reasonable
requirement to have strictly time-synchronized cameras to guarantee correct tracking
results. The problem of camera synchronization becomes non-trivial as the number
of cameras increases. In this thesis, an efficient solution to this problem is presented.

More details are explained in Section 5.3.4.

3.7. Summary

In this chapter, the hardware design for the proposed optical tracking system is de-
scribed. The complete hardware system is divided into three sub-systems : the high-
speed camera, the CameraLink grabber and the PowerEye image processing system.
The camera features a modular architecture, allowing to easily adapt with various im-
age sensors and interfaces. The currently used MTI9M413 CMOS sensor is able to
output 500 images per second at the resolution of 1280 x 1024. The camera integrates
a low-cost FPGA for sensor control and communication with the outside world. Cam-
eraLink was chosen as the camera interface to transmit large amounts of pixel data
in real-time. Two different CameraLink grabbers have been developed, which can be
used to interface three Cameralink BASE cameras and one CameraLink Full camera
respectively. The PowerEye image processing system takes advantages of both FPGA
and DSP to perform complex image processing algorithms at high frame rate. A Cam-
eraLink Simulator capable of simulating the behavior of three cameras simultaneously
was implemented for simplifying the system verification. The flexible hardware archi-

tecture allows to construct a highly scalable optical tracking system.
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Image processing is mostly very demanding of computing power due to the huge volume
of data to be processed. Even some of the simplest algorithms are computationally
intensive, often requiring multiple additions and multiplications for each pixel [And96].
In an optical tracking system, the highest computational load comes from the 2D image
processing tasks related to calculating the location of the feature points in each image
captured by different cameras. This chapter focuses on high speed 2D image processing
with FPGA based hardware acceleration. The implemented algorithms are frequently
used in optical tracking applications, including color segmentation, noise reduction,

edge detection, morphological filtering and blob analysis.

4.1. Color Segmentation

Segmentation is a commonly used technique in optical tracking, where target objects
are isolated from the rest of the scene in the image, and then tracked by analyzing
the change of positions in successive frames [CTJGO05]. One simple approach is the
color segmentation, in which objects are segmented by analyzing the color information
associated with each pixel. Since the calculation only involves simple repetitive opera-
tions, color segmentation can be easily mapped to an FPGA. The segmentation process

normally consists of two steps:
i) color space conversion

ii) color thresholding

4.1.1. Color Space Conversion

A color space is the format in which pixels are represented when captured, stored or
transmitted in an image processing system. There are three color spaces frequently
used for image segmentation - RGB, YUV and HSI. A summary of the characteristics

of these color spaces is presented in [col09].

Bayer to RGB

The bayer pattern color filter array (CFA) is widely used in single-sensor color cameras

to add color information to the raw pixels [Bra94]. As shown in Figure 4.1, the odd

95
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rows of the filter array are comprised of alternating green and blue pixels, and even
rows are comprised of alternating red and green pixels. As a result, half of the total
number of pixels are green (G), while a quarter of total number are assigned to both
red (R) and blue (B). This color filtering scheme corresponds to the fact that human
eyes are most sensitive to the color green.

Incoming Light

Filter Layer

Sensor Array

Resulting Pattern

Figure 4.1.: Bayer filter [col09]

The MT9IM413 color sensor is equipped with a bayer CFA. To apply color segmenta-
tion to the captured images, it is first necessary to convert the bayer color to the RGB
color space. This process requires interpolating the two missing colors for each pixel.
The most commonly used approach is the neighbor interpolation, which utilizes the
color information of pixels in the 3x3 neighborhood to compute the missing colors of
each pixel. The algorithm can be described by Equation 4.1, where four possible cases

depicted in Figure 4.2 must be considered.

(a) (b) (c) (d)

Figure 4.2.: Four possible cases of the bayer color interpolation
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R(.T, y) — p(:rfl,y);rp(a%#l,y)

case(a) : Gla,y) = p(:}c,y)+p(w71,y71)+p(x+1,yg1)+p(x71,y+1)+p(z+1,y+1) (4.1a)

B(z,y) = p(m,y—l);p(r,yﬂ)

R(z,y) = p(x7y—1)42rp(x7y+1)

case(b) : G(z,y) = p(x,y)-i—p(oc—1,y—1)+p(x+1,yg1)+p(x—1,y+1)+p(x+1,y+1) (4.1b)

B(x7y) — p(mflvy);’p(m‘klvy)

R(z,y) = p(x,y)
case(c) : § G(z,y) = p(w*1,y)+p(w+1,y)Zp(x,yfl)er(x,yH) (4.1c)

B(z,y) = p(fr—1,y—1)+p(r+17y—I)Ip(m+17y—1)+p(r+1,y+1)

R(I7 y) — p(a)—17y_1)+p($+17y_1)1p(1‘+17y—1)+p(1‘+17y+1)

case(d) :  G(z,y) = p(x—17y)+p(x+17y)zp(x7y—1)+p(x7y+1) (4.1d)

B(z,y) = p(z,y)

In Equation 4.1, p(z,y) represents the intensity of the pixel located at (x,y) in the
raw image, while R(x,y), G(z,y) and B(z,y) are the interpolated RGB colors. The
FPGA implementation for the above listed equations is quite straightforward. Figure
4.3 illustrates a block diagram for Equation 4.1a. Equation 4.1b, 4.1c and 4.1d can be

implemented in a similar manner.

As shown in Figure 4.3, the incoming pixels are shifted into a delay logic consisting of
two line buffers and six registers. The delay logic provides simultaneous access to nine
adjacent pixels that form a 3x3 pixel window. The pixels are summed up by adders,
marked with ADD, and then divided by dividers, marked with DIV. The output is a

pixel stream, in which each pixel is represented in the RGB format.

Color segmentation can be performed directly in the RGB color space. However,
this method is frequently unreliable, because segmentation in the RGB space is very
sensitive to luminance changes. The reason lies in the high correlation among the R, G
and B components [Tom86, Cel90]. For instance, if the luminance changes, all the three
components will change accordingly. To achieve better segmentation results, the RGB
color often needs to be converted to other color spaces, e.g. YUV or HSI, in which the

luminance and the chrominance components are separated.
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Figure 4.3.: FPGA implementation for Equation 4.1a

RGB to YUV

The YUV color space is widely used in video and broadcasting [Rus02]. It is also one
of the successful color models for accurate color segmentation, since all information
about the luminance is given by the Y component, while the U and V components
representing the chrominance are independent from the luminance. A standard RGB
to YUV transformation is given by the following formula:

Y 0.299 0.587 0.114 R
Ul =1-0.169 —0.331 0.500| x |G (4.2)
|4 0.500 —0.419 0.081 B

Performing floating point calculations on an FPGA will cause a large area cost. As
can be observed in Equation 4.2, the R, G and B components of each pixel only need to
be multiplied by a constant value. A simple scaling operation illustrated by Equation

4.3 enables the calculation to be converted from floating-point to fixed-point.

Y 306 601 17| [R]
Ul =|-173 —339 512| |G| X 55 (4.3)
1% 512 —429 83| |B

Figure 4.4 depicts the hardware implementation of the fixed-point RGB to YUV color

conversion. As can be seen, the circuitry only requires seven fixed-point multipliers and
three adders to perform the desired computation.
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Figure 4.4.: RGB to YUV color conversion

RGB to HSI

The HSI color space is an important color model for image segmentation applications,
where color information is represented by hue (H) and saturation (S) values, while the
intensity (I), which describes the brightness of an image, is determined by the amount
of the light [JKS95].

The hue component describes the color in the form of an angle between 0° and 360°,
where 0° means red, 120° means green, and 240° means blue. The saturation component
indicates how much the color is polluted with white color and ranges from 0 to 1. The
range of intensity is also [0, 1], where 0 represents black, and 1 represents white. The
HSI model decouples the intensity component from the color-carrying information (hue
and saturation), which makes it very valuable for color segmentation.

The conversion from RGB to HSI is defined as follows:

I = R+G+B (4.4a)
3
3
—1-——~ X MIN B 4.4b
_ 1 [_12(R-G)+(R-B)]
H = cos [\/(R—G>2+(R—B><G—B>} (4-4c)

Equation 4.4 has a significantly higher computational load than Equation 4.3, as it
contains complicated trigonometric and square root functions. Although a logic-level
implementation using the CORDIC [And98] method is achievable, large amounts of
hardware resources will be required. In practice, such functions are often performed by
means of Look-Up-Tables (LUTSs).
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In its simplest form the LUT approach involves pre-calculating the results of an
expression or function for each possible input [JGB04]. The results are loaded either
into an FPGA local RAM (e.g. BlockRAM) or in an off-chip memory, depending on the
size of the input vectors. During the execution, the results that correspond to the input
(memory address) are readout from the LUT with constant delay, which eliminates the
need for performing complicated computations. The ZBTSRAMSs on PowerEye provide
sufficient access bandwidth and storage capacitance, and thus present an ideal choice

for the implementation of a LUT based RGB to HSI color conversion.

4.1.2. Color Thresholding

Thresholding is a point operation that performs a comparison on each pixel to make
a distinction between the interesting objects and the surrounding background. Let us
take the color segmentation in the HSI space as an example. Typically a segmentation
criterion is defined, which consists of three pairs of threshold values applied to each

color component. This can be described by Equation 4.5.

1 if (Hpin < H(z,y) < Hpae) AND
(Smin < S(x,y) < Spmaz) AND
(Imin < I(x7y) < Imaw)

0 else
\

In Equation 4.5, the threshold is composed of three pairs of upper limit value and
lower limit value. If all the H, S and I values of a pixel fall within the desired range, the
output is 1, otherwise the output is 0. The result is a binary image (Ip(z,y)), where
pixels with value 1 represent the foreground pixels, while pixels with value 0 are referred
to as the background pixels. Color thresholding in the YUV space can be performed in

a similar way.

Figure 4.5 depicts a simplified block diagram of a color segmentation system imple-
mented on FPGA. The raw 8-bit pixels output by the MT9IM413 sensor with Bayer
CFA are captured by the Video Grabber module. The Bayer-to-RGB Conversion mod-
ule interpolates the missing two colors for each pixel and yields an output image in
the RGB888 format, where each color component is sampled with 8-bit. Since the
on-board ZBTSRAM only provides a 20-bit address space, the lowest two bits of the R
and B color components are dropped. This is done by the RGB Subsampling module.
The resulting 20 bits RGB686 color values are then used to address the LUT stored
in the ZBTSRAM, where the RGB to HSI color conversion takes place. The LUT is
pre-calculated and can be loaded into the ZBTSRAM dynamically. Once the color
conversion is performed, the image can be thresholded by choosing the preferred upper

and lower limits for H, S and I, depending on the color characteristics of the objects
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and the lighting conditions of the environment. The result is a binary image, where

pixels are valued by either 1 (foreground) or 0 (background).

ZBTSRAM
RGB -> HSI LUT
FPGA b
Memory Interface
Bayer
G 2
B6[B G @
. Bayer G (é’
BlG[B|G Video 8-bit RGBsss | RCGB HSI Thres- .
Camera - - to »  Sub- - »Binary Image
I: Grabber | raw pixel RGR Sampling holding ry 9

Figure 4.5.: Color segmentation on FPGA

Figure 4.6 illustrates an example of color segmentation. As can be seen, three round

markers in different colors (red, green and yellow) are isolated from the background.

(a) Original image (b) Image after color segmentation

Figure 4.6.: An example of color segmentation

4.2. Noise Reduction

Images captured by a camera are often corrupted by random variations in intensity val-
ues, called noise [JKS95]. Noise reduction is a necessary step in most optical tracking
systems, since the final tracking accuracy can be strongly affected by noise. In the fre-
quency domain, noise is typically dominant for the high frequencies, whereas an image
contains mostly low frequency information. Therefore, image noise can be efficiently
reduced using low-pass filters.

In this section, the 2D image convolution is firstly introduced, which constitutes
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the basis of the implementation for numerous image processing filters. Then three
frequently used low-pass filters for image noise reduction, i.e., the mean filter, the

Gaussian smoothing filter and the median filter, are described.

4.2.1. 2D Image convolution

A large number of image processing algorithms are based on filters in the frequency
domain. For instance, image smoothing can be represented by low-pass filters, and im-
age sharpening can be implemented by high-pass filters. One straightforward method
is to convert the original image into its frequency domain using the Fourier Transform,
and apply the desired filters afterwards [Chi06]. For instance, applying a low-pass filter
means zeroing all frequency components above a cutoff frequency, applying a high-pass
filter requires removing all the frequencies below some threshold frequency. Such filter-
ing operations in the frequency domain can be performed using simple multiplication
operations. The result after the frequency filtering is then converted back to the spatial
domain by an Inverse Fourier Transform.

The main disadvantage of this method is the high computational complexity due to
the Fourier Transform which could result in large FPGA logic resource consumption.
An alternative approach is to perform a convolution in the spatial domain of an image.
The convolution theorem states that multiplication in the frequency domain is equiv-
alent to convolution in the time domain [ISUB05]. For an FPGA, the spatial domain
convolution is often faster and easier than the Fourier Transform.

In two dimensional continuous space, the convolution of two functions f(z,y) and

g(z,y) produces a resulting function h(x,y). This can be formally defined as:

+oo +o0
W) = f(z,y) * g(z,y) = / / f@r)g(e — gy —r)dgdr  (46)

In two dimensional discrete space, which is the case of the 2D image processing, the

convolution is defined as follows:

Iz, y] = Iz, y] * wlz,y] = Z_: z_: Im,n|w[x —m,y — n| (4.7)

m=0 n=0

where I and I’ represent the original image and the processed image respectively, and
w is referred to as the convolution kernel or mask with the size given by M x N.
From an algorithmic perspective, 2D image convolution is a local process in which a
convolution mask is slided over the input image to calculate the output pixel values.
For each pixel located at (x,y) in I, a M x N window centered at this pixel is extracted,
then all pixels in this window are multiplied by the corresponding weight defined by w,
afterwards the products are summed up to produce the output pixel value. Figure 4.7

depicts a conceptual view of the 2D image convolution using a 3x3 mask.
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Figure 4.7.: 2D image convolution using a 3x3 mask

Despite its simple representation, the 2D image convolution task is both computa-
tionally expensive and memory-access-intensive. With a M x N convolution mask, the
calculation requires M x N multiplications and M x N — 1 additions, as well as M x N
accesses to the incoming pixel data to get the result of a single output pixel [ZXHOT].
Using an FPGA, one can exploit the inherent parallelism of the computation, and thus
achieve high processing throughput. Figure 4.8 shows the structure of an FPGA-based

implementation for a generic 2D image convolution.
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Figure 4.8.: FPGA based generic 2D image convolution

To speed up the 2D convolution, simultaneous access to M x N pixels belonging to
the convolution window must be provided. This allows the calculation for all pixels in
the window to be performed in parallel. As shown in Figure 4.8, N — 1 line buffers

and N sets of register arrays, each consisting of M shift registers, are utilized for this
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purpose. A line buffer with the depth equal to the number of pixels in each line of the
image is capable of delaying a pixel for a whole image line, and a shift register delays a
pixel by one time step. The incoming pixels are shifted into the FPGA in a raster scan
order. As soon as N — 1 raster lines and M pixels in the current line are loaded, all
pixels belonging to the first M x N convolution window are available. At each node of
the shift register array, the pixels are multiplied with the appropriate filter coefficients
determined by the convolution mask, and then all the multiplier products are added
together by a adder tree to produce the result. Typically, scaling is applied at the final
output. When a new pixel is shifted in, the convolution window will move to the next

position. The same process will be repeated until all pixels in the image are scanned.

4.2.2. Mean Filter

Mean filter is based on a local averaging operation where the value of each pixel is

replaced with the average value of all the pixels in the local neighborhood:

, 1
I'lz,y) =+ (m%ewl[m, n] (4.8)
In Equation 4.8, M is the total number of pixels defined by w. Mean filter can be
calculated by convolving the input image with a mask, in which all coefficients have the
value 1, as shown in Figure 4.9. Pixel values are summed with equal weight, then the
sum is divided by a scaling factor, which is determined by the size of the convolution

mask.

1 1 1 1

(a) 3x3 mean filter (b) 5x5 mean filter

Figure 4.9.: Convolution mask for mean filter

4.2.3. Gaussian Smoothing Filter

Gaussian filters are a class of linear smoothing filters with the weights chosen according
to the shape of a Gaussian function given by Equation 4.9, where ¢ determines the

sharpness of the Gaussian function.

G(z) = e 207 (4.9)
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In the case of image processing, a two-dimensional zero-mean discrete Gaussian func-

tion is often used:

1 =G
e 22 (4.10)

For the practical calculation, the Gaussian function is normally quantized into dis-
crete values in order to develop a convolution kernel of a specific size. Figure 4.10
illustrates a 5 x 5 integer-valued convolution kernel that approximates a Gaussian func-

tion with a o of 1.0.

X
256

(a) Original image

(b) 3 x 3 Mean filter (¢) 5 x 5 Gaussian smoothing filter

Figure 4.11.: Effect of mean and Gaussian smoothing filter
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4.2.4. Median Filter

Both the mean filter and the Gaussian smoothing filter are linear low pass filters, which
have the disadvantage of blurring sharp discontinuities in intensity values while trying
to suppress the noise in an image. This effect is shown in Figure 4.11.

The intensity discontinuities usually contain useful information for image analysis,
e.g. edges and corners. Consequently they should be preserved as well as possible while
performing the noise reduction. An alternative approach is the non-linear median filter,
which is very effective to remove the impulsive noise from an image, while preserve the
sharp edges at the same time [HS93]. The idea is to replace each pixel value with the
median value in the local neighborhood. This can be done by first sorting all the pixel
values from the surrounding neighborhood into numerical order and then picking the
middle pixel value as the output [Bax94]. Figure 4.12 illustrates an example using a
3x3 neighborhood.

input image output image
1012320
159925 20
1928 [ 17 [~~—_] L1
k\\__‘_‘_‘_‘_‘—__-__——_._“_‘

[ 100 23 20 15 99 25 19 28 17 ]

sort

[ 10 15 17 19(20)23 25 28 99 j

"
median

Figure 4.12.: Median filter using a 3x3 neighborhood, from [RPBMO6]

Median filter has a high computational cost, because for sorting N pixels the temporal
complexity is O(N x logN), even with the most efficient sorting algorithms. In Figure
4.13 a block diagram of an FPGA based 3x3 median filter is illustrated. Unlike the
architecture of the 2D convolution shown in Figure 4.8, the median filter is composed
of a set of comparators rather than adders and multipliers.

The FPGA circuitry contains a 3x3 pixel moving window that allows the current
pixel and all the 8 neighborhood pixels to be accessed simultaneously. A sorting network
consisting of 19 Processing Nodes (PN) performs pixel sorting in multiple stages to
produce the result. As detailed in Figure 4.14, each PN is formed by a comparator
together with two 2 : 1 multiplexers for sorting two input pixels. The lower input exits
the node on the top (port L), while the higher leaves on the bottom (port H). The
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Figure 4.14.: Sturcture of the Processing Node in a media filter

intermediate comparison results are fed into PNs in the subsequent stage. The final
result representing the median value of the pixels in a 3x3 window comes from the L
port of the last PN.

Figure 4.15 illustrates the performance of the median filter. As can be seen, the
orignal image is strongly corrupted by impluse noise. After applying a 3x3 median
filter the noise is effectively removed while most image details, such as sharp edges, are

retained.

(a) Original image with impulse noise (b) 3 x 3 median filter

Figure 4.15.: Effect of 3x3 median filter
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4.3. Edge Detection

Edges are considered to be one of the most important features that provide valuable
information for image analysis. In an image, edges typically occur on the boundary
between two different regions, resulting in significant local changes in pixel intensity
[Lin96]. Edge detection is a fundamental tool used in many image processing applica-
tions as a precursor step to feature extraction and object segmentation [FS09].

Most edge detectors make use of a gradient operator that calculates the level of vari-
ance between different pixels. In the case of image processing, the gradient is defined as

a vector which represents the two-dimensional equivalent of the first derivative [GWO06]:

- [af/am] (4.11)
of /0y

The magnitude and the direction of the gradient are given by Equation 4.12 and

G

Glf @l =,

Equation 4.13 respectively.

G(x,y) = /G2 + G2 (4.12)

alz,y) = arct(m(%) (4.13)

x

In Equation 4.13, the angle « is measured with respect to the z axis.

Sobel Edge Detector

The Sobel edge detector is one of the most frequently used edge detectors in image
analysis. It utilizes two 3x3 kernels that are convolved with the original image to
calculate the approximations of the derivatives in two perpendicular directions - one
for horizontal, and the other for vertical. Let I be the input source image, and G, and
G, be the resultant images containing the horizontal and vertical derivative information

respectively, then the computation can be described as follows:

10 -1 1 2 1
Ge=12 0 —2|«I Gy,=]0 0 0]|x*I (4.14)
10 -1 -1 -2 -1

where * represents the 2D convolution. In hardware implementation, the calculation

of the gradient vector magnitude is often simplified using Equation 4.15:

G(z,y) = |Ga| + |Gyl (4.15)

A pixel located at (x,y) in the resulting edge image is considered an edge pixel

E(z,y), if its magnitude G(z,y) exceeds some predefined threshold T'.
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1 if G(z,y) >T
Bla.y) = () (1.16)
0 else

The threshold T in Equation 4.16 is typically chosen using the cumulative histogram
of G(z,y) such that 5 to 10 percent of pixels with largest gradients are declared as
edges [Jai88].

Figure 4.16 depicts the FPGA implementation for the above described Sobel edge
detector. Since the convolution masks used for calculating G, and G, only contain

values of 0, £1 and 42, the computation can be performed by a combination of simple

logic elements such as adders, subtractors and shift registers.
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Figure 4.16.: 3x3 Sobel edge detector

Figure 4.17 shows the result of the Sobel edge detector described above.

(a) Original image (b) Sobel edge image

Figure 4.17.: Result of Sobel edge detection
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4.4. Morphological Filter

The morphological filters are a set of digital image processing filters based on the
concept of mathematical morphology. They are widely used for image pre-processing,
such as thinning, thickening, skeletonization and pruning [Abd07].

Dilation and Erosion are two basic morphological operations, since most existing
morphological filters can be realized by a combination of these two operations [S0i99].
Dilation and Erosion are normally applied to binary images, although there are gray
level versions. In this section, we only deal with binary images, where pixels are grouped

into foreground (with value 1) and background (with value 0).

4.4.1. Dilation

Let A be the input binary image and B represent the structuring element (SE) used to
process A. Dilation is defined by the following equation:

A®B= {z\[(B)ﬁA] gA} (4.17)

The implementation of Dilation is performed by moving the SE over the image and
setting the center pixel to 1 if any pixel in the neighborhood has the value 1; otherwise
setting the center pixel to 0. Applying dilation to an image can increase the sizes of
objects, fill holes and connect areas that are separated by spaces smaller than the size
of the SE.

4.4.2. Erosion

Erosion on the other hand can be considered a narrowing of features on an image.
Again define A as the input binary image and B as the structuring element, the process

of Erosion can be described by:

A6 B ={Z|(B). C A} (4.18)

Erosion is performed by moving the SE over the image and setting the center pixel to
1 if all of the pixels in the neighborhood have the value 1; otherwise setting the center
pixel to 0. This operation decreases the sizes of objects and removes small anomalies

by subtracting objects with a radius smaller than the structuring element.

4.4.3. Opening and Closing

Dilation and Erosion can be combined into complex sequences, such as Opening and
Closing. As mentioned before, Erosion can be used to eliminate small clumps of undesir-
able foreground pixels. However, it will affect all regions of foreground pixels. Opening

overcomes this problem by performing Erosion followed by Dilation on an image:
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AoB=(AcB)® B (4.19)

Dilation is able to fill small background holes in images. Meanwhile, it also distorts
all regions of pixels indiscriminately. One can reduce some of this effect by performing

an erosion on the image after an dilation, i.e., a closing which is defined as:

AeB=(A®B)eB (4.20)

Designing a morphological filter needs to consider the connectivity path among pixels
in an image. Two fundamental pixel connectivity schemes shown in Figure 4.18 are

frequently used in morphological image analysis.

(a) 4-conectivity (b) 8-conectivity

Figure 4.18.: 4- and 8-connectivity

For a pixel p with the coordinate (z,y) the set of pixels in the neighborhood is given
by:

Na(p) ={(z+ Ly),(z - Ly), (x,y + 1), (z,y = 1)} (4.21)

Ng(p) = Na(p) U{(z + 1L,y +1),(z - Ly +1),(z - 1Ly —1),(z+ 1,y — 1)} (4.22)

According to Equation 4.21 and Equation 4.22, two pixels p and q are 4-connected if
q is from the set Ny(p) and 8-connected if q is from Ng(p).

In Figure 4.19 the hardware diagram for a dilation filter supporting both the 4- and
8-connectivity is depicted. The circuitry only contains a set of OR gates since the
process of dilation is to output the value 1 if any of the pixels in the neighborhood is

1, otherwise 0.

The architecture of the erosion filter is the same as that of the dilation filter, apart
from using AND gates instead of OR gates. Opening and closing functions can be easily

implemented by cascading dilation and erosion filters in the desired order.
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Figure 4.19.: Implementation of a Dilation filter
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4.5. Parallel Image Processing on FPGA

The 2D image processing algorithms introduced so far are either pixel operators (e.g.
color conversion) or neighborhood operators (e.g. noise reduction, edge detection and
morphological filtering), both of which are dependent only on a limited portion of the
input image data and require no recursive operations. They are all suited for implemen-
tation utilizing a certain type of parallelism because of the lack of data dependencies
[AS89].

Using an FPGA, one can exploit the inherent parallelism in the algorithm to achieve
significant speed upgrade compared to the sequential software implementation. For
most image processing tasks, there are three levels of parallelism to be exploited:

instruction-level, data-level and task-level.

4.5.1. Instruction-level Parallelism

The most direct approach for applying instruction-level parallelism is Pipelining, which
is a common technique widely used in modern general-purpose processors. The oper-
ation of such processors is based on the well-known fetch-decode-execute-store process.
First, an instruction is fetched from memory, then it is decoded to address the relevant
functional unit. After the execution takes place in the functional unit, the results are
written back into memory. Pipelining allows the processor to overlap multiple instruc-
tions to reduce the execution time [dR06]. For instance, at a certain moment instruction
A can be decoded while simultaneously instruction B is being fetched from memory.
In this way, the processor can process two or more instructions at the same time (in
parallel).

In FPGA computing, it is possible to construct a much deeper pipeline allowing a
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large number of instructions to be overlapped and executed concurrently. Let us take

the 5x5 Gaussian convolution introduced in Section 4.2.3 as an example.
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Figure 4.20.: Pipelined 5x5 Gaussian filter

Figure 4.20 depicts a pipelined 5x5 convolution architecture. The calculation is
divided into 7 pipeline stages. In the first stage, 25 pixels in the 5x5 window are
multiplied with the weights given by the convolution mask. Since the FPGA adder
primitive only supports two input operands, 24 adders distributed in 5 pipeline stages
(stage 2 to stage 6) are employed to sum up the products of the multipliers. The final
result is generated after the scaling operation performed by the last stage.

In Figure 4.20, all pipeline stages are connected in series, so that the output of one

stage is the input of the next. In order to hold the intermediate results, registers
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are placed between adjacent stages. Information that flows throughout the pipeline is
controlled by a common clock applied to all the registers simultaneously. With this
architecture, successive pixel windows can be streamed into the pipeline and get pro-
cessed in an overlapped fashion. For instance, when the first pixel window is received,
pipeline stage 1 may multiply the pixels with the weights. After stage 1 has finished
the multiplications, stage 2 may begin adding the products while stage 1 receives and
begins processing the second pixel window. Similarly, the 7th pixel window can be fed
into stage 1 while the 1st pixel window is being processed by stage 7.

It is easy to understand that at the start of the processing 7 clock cycles are required
to fill the pipeline before the first output pixel is available. However once the pipeline is
filled, a new output pixel is generated every clock cycle. Therefore, processing through-
put of the the pipeline architecture illustrated in Figure 4.20 is 1 pixel per clock cycle
and the latency is n clock cycles, where n equals the number of the pipeline stages.

The pipelining strategy can be applied not only to a specified operator but also to
a complete image processing system which requires a sequence of different operations
to be performed on an image. For example, an object tracking system may comprise
preprocessing, segmentation, feature extraction and target recognition. The intermedi-
ate result of one task is just the input of the next task. Therefore, different processing
modules can be cascaded in a pipelined manner to allow a large number of operations
to be executed in parallel [KDFO01].

An important consideration for designing an image processing pipeline is how to max-
imize the operating frequency, as it is a clear way to improve the processing throughput.
In an FPGA, all logical elements have an inherent propagation delay. That is to say, it
takes a finite amount of time for any digital signal passing from one point to another.
The maximum operating frequency of a pipeline is determined by the largest critical
path delay between successive registers. A straightforward way to increase the clock
speed is to break down the critical path by inserting additional pipeline stages at the
expense of increased latency. However, this solution does not allow an infinitely high
clock frequency due to the physical speed limitation of the FPGA (normally below
250MHz). For a real-time system, the image data to be processed must flow through
the pipeline at least as fast as it is coming in. This requires that the processing pipeline
must be clocked at a higher frequency than the frequency of the incoming pixel clock.
Therefore, using a single path pipeline is not always adequate to high-speed optical

tracking applications, where the image data rate can easily exceed 250MPixel/s.

4.5.2. Data-level Parallelism

It is possible to further parallelize the processing by distributing the image data across
multiple processing elements (PEs) that perform a set of operations on a large number
of data sets at the same time, as shown in Figure 4.21. This kind of parallelism is often

referred to as data-level parallelism.
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Figure 4.21.: Data-level parallelism using a PE array

In Figure 4.21, a PE array consisting of a number of PEs enables the possibility to
process multiple adjacent pixel windows simultaneously. Each PE contains the identical
pipeline, e.g. the 5x5 Gaussian smoothing filter illustrated in Figure 4.20, which pro-
duces one output pixel every clock cycle. As a result, N output pixels can be achieved
per clock cycle, where N represents the number of PEs. Ideally the processing for a
complete image could be accomplished within one clock cycle, if N equals the number
of pixels in the image. In practice, however, it is only possible to fit a limited amount
of PEs into the FPGA due to the hardware resource limitation. Thus, it is important
to find an area-efficient implementation in order to maximize the number of PEs that
are feasible to the target FPGA.

In image processing, a large number of 2D filters are based on symmetric and sep-
arable convolution kernels. A typical example is the 5 x 5 Gaussian smoothing filter
introduced in Section 4.2.3. Figure 4.22 shows that such a 2D convolution can be
divided into two 1D convolutions.

Equation 4.23 gives the expression for a generic separable 2D convolution.

*
B
=,

*
Q
Bl
=,

(4.23)
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Figure 4.22.: Separable Gaussian convolution kernel

The hardware implementation is illustrated in Figure 4.23. In comparison with the
architecture shown in Figure 4.8, a great number of LUTs, flip-flops and multipliers are

saved.
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Figure 4.23.: FPGA based separable 2D image convolution

For non-separable convolution filters, area reduction can be achieved when taking the
data reuse potential into account. As can be observed from Figure 4.21, a significant
portion of pixels are overlapped among adjacent windows. This implies that these
pixels can be reused for the computation of neighboring outputs. Therefore, it is not
necessary to duplicate the processing element N times to build an N-PE array. The
logic block used for processing the overlapped pixels can be shared by adjacent PEs. As
a result, significant FPGA logic resources in terms of LUTs, flip-flops and multipliers

can be saved.

Using the area reduction techniques described above, it is possible to implement a
parallel image processing system in a single chip FPGA with good performance/area
trade-off. As an example, we have successfully integrated 24 parallel PEs into the

FPGA on PowerEye, each of which performs the 5 x 5 Gaussian convolution filter.
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Since the FPGA is able to operate at 200MHz, a substantial processing throughput of
4800M pizels/s can be achieved. This translates into processing 4800 images per second
at the resolution of 1024 x 1024. According to the performance evaluation presented in
[CCLWO05], the FPGA demonstrates a 60x acceleration over a GeForce 6800GT GPU,

and more than 500x speed-up over a 3GHz Pentium 4 processor.

4.5.3. Task-level Parallelism

Task parallelism is the third level of parallelism that the FPGA can readily exploit. By
examining the operation to be performed, multiple tasks may be identified which can
operate independently without introducing any data hazards (data dependency con-
flicts) [dRO6]. This kind of parallelism can be demonstrated by a typical scenario in an
optical tracking system, where the FPGA handles multiple pixel streams from differ-
ent cameras simultaneously. The processing tasks for each camera may be identical or

different, depending on the functions to be implemented.

Although many image processing operators exhibit a high degree of parallelism due to
their local nature and lack of data dependencies, there exist some complex cases where
the operations are global and data dependency among pixels can not be avoided. In
such cases, it is difficult to parallelize the algorithm using the parallelization techniques
described above. A good example for this is the blob analysis discussed in the following

section.

4.6. Blob Analysis

Blob analysis is one of the most fundamental image analysis tools, which is frequently
used in infrared marker tracking applications. Since infrared markers usually have
identical color, they are difficult to be tracked using the color segmentation approach
discussed in Section 4.1. Instead of analyzing the color information associated with
each pixel, blob analysis utilizes a region based segmentation method to identify the
objects and determine their features.

Blob is defined as a maximally connected region of foreground pixels in a binary
image. The task of blob analysis is to isolate blobs from the background and calculate
their geometric features, which involve typically three processing stages. In the first
stage the input gray-level or color image is converted to a binary image consisting of
a number of regions against the background. Next, connected components labelling
is performed to assign each region or blob a unique label, enabling distinct blobs to
be distinguished. In the last stage, each blob is analyzed on the basis of the label
information, and a number of geometric features, e.g., area, center of gravity, bounding

box, are extracted. Figure 4.24 illustrates a simple example.
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Figure 4.24.: Example of blob analysis

4.6.1. Classical Algorithm

In classical algorithms, Connected Components Labelling (CCL) is an essential step
in blob analysis that focuses on separating blobs from the background. The input
or source is a binary image in which all interesting objects are formed by foreground
pixels. CCL translates the source image into a label image which has the property that
all adjacent foreground pixels are assigned the same label as they belong to the same
component, and each component owns a unique label to distinguish from each other.
When analyzing pixel connectivities, either the 4- or the 8-connectivity scheme shown
in Figure 4.18 can be used depending upon the application. In this thesis, we only
consider the case of 8-connectivity.

For image processed in the raster-scan order, the algorithms for CCL require the
information of labels in row N and row N — 1 while labelling row N [RAA95]. Figure
4.25 shows the four neighbor pixels (assuming 8-connectivity is used) that need to be
analyzed for labelling the current pixel p. The neighbor pixels are named pl, p2, p3, p4
to represent the left, the upper-left, the upper-center, and the upper-right pixel with

respect to p.

Figure 4.25.: 8-connectivity used for CCL

Since the shape of an object can be arbitrary, CCL involves significant data computa-
tion and communication and is therefore computationally intensive [WICCcL03]. The
most classical labelling algorithms [RP66][RK82] rely on two subsequent raster-scans
through the image. In the first scan a temporary label is assigned to each foreground
pixel by examining the labels of the neighbors that have already been visited. Specifi-
cally, if the neighborhood pixels (pl, p2, p3, p4 in Figure 4.25) are all background pixels,

a new label is generated and assigned to the current pixel p. If the neighborhood con-
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tains a single foreground pixel which was labelled by L, then L will be copied to p. If
the neighborhood contains more than one foreground pixels, there are two possibilities
to be considered. If pl, p2, p3, p4 were assigned the same label then p is given that label
also. The second case is that the neighbors carry different labels, which occurs typically
when a "U” shaped object is encountered. The two branches of ”U” were assumed to
be two individual regions, and therefore have been labelled by M and N respectively,
where M # N. When they join at the pixel p, label M and label N must be merged.
More precisely, one of the two labels is assigned to p and an equivalence pair is gener-
ated indicating that label M and label N belong to the same object. During the first
scan, different labels may be associated with the same component [dSB99]. Thus, after
completion of the first scan the equivalence pairs need to be resolved. This involves
grouping the equivalence pairs into equivalence classes and assigning a unique class
identifier to each equivalence class. Either the minimum or the maximum label in each
equivalence class can be adopted as the class identifier. Then, a second pass rescans the
image so as to replace each temporary label by the identifier of its equivalence class. As
a result, each pixel belonging to the same object is assigned the same unique label. A

simple example shown in Figure 4.26 illustrates how the classical two-pass CCL works.

Input binary image First pass labelling
1 2
11 3 2| [af4
5|5 10111 2|z2|2| |4
11 1 2| |2
EERERERE 2| |2| |2
1 1 1 2| |2

Equivalence pairs (3<->1, 5<->1, 4<->2)

Second pass labelling

1 2
1] |11 2 2|2
101 1(1(1(1 2|2|2 2
101 1 2 2
11111111 2 2 2
1 1 1 2 2

Figure 4.26.: Two-pass connected components labelling

Once the labels are determined, all objects in image can be easily distinguished.
Afterwards, typically in a third pass, the features of each object are calculated according

to the label information.

It is obvious that the classical algorithm is not suitable for hardware implementation.
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First, the algorithm is difficult to be parallized due to its sequential nature. In the step
of CCL, prior to assigning the current pixel p a label, the labels of the adjacent pixels
must be provided, which implies a high degree of data dependency. As a consequence,
pixels have to be processed one at a time (in serial). Since labelling one pixel may
take several (say N, where N > 1) clock cycles, the FPGA needs to be clocked at
N x the frequency of the pixel clock to process the incoming image data in real time.
This, however, is unrealistic when the image data rate reaches several hundred-mega-
pixel per second. Second, the algorithm requires multiple raster-scan passes over the
image. Hence, a complete image frame needs to be buffered before the next pass starts.
This not only demands high memory access bandwidth but also results in significant
processing delay (the duration of one frame), which is unacceptable to applications
where the system latency is critical. In many optical tracking systems, it is required
that pixels must be processed ”on-the-fly” to maintain minimum latency.

In this thesis, a high performance single-pass blob analysis is developed. The im-
plemented algorithm is very area-effective, utilizing less than 7% logic resources of the
target FPGA on PowerEye. Moreover, the algorithm requires only one raster-scan
pass to calculate desired blob features. The following sections describe the proposed

algorithm as well as the FPGA implementation in detail.

4.6.2. Proposed Algorithm

The developed blob analysis is a single pass algorithm which allows the progressively
scanned streaming image data to be processed directly from the camera without any
off-chip buffering. The algorithm consists of two main processing blocks: labelling and
merging.

The labelling process in our algorithm follows the rules of the classical CCL:

e Background pixels are labeled by 0.

e If all neighboring pixels are background, then a new label is assigned to the current

pixel.

e If only a single non-zero label is found among the neighbors, that label is copied

to the current pixel.

e If two different non-zero labels are found among the neighbors, a merging condi-
tion occurs. The smaller label is assigned to the current pixel, and an equivalence

pair is registered to indicate that these two labels belong to the same blob.

Labels assigned to each pixel are fed into the feature merging block, in which the

following three geometrical features are calculated:



4.6. Blob Analysis 81

e Area - the total number of pixels that belong to a blob.

A= Y 1 (4.24)

(z,y)eB

e Center of gravity - the equilibrium point at which the entire mass of an object
is concentrated [Kol07]. The center of gravity of a blob CoG = [z,y]? can be
calculated by

T
Z($,y)€B ‘TI(I? y) Z(x,y)eB yl(xv y)

CoG = ,
Z(I,y)EB [(l', y) Z(m,y)GB I(Qj‘, y)

(4.25)

where I(x,y) represents the intensity value of pixel p located at (z,y).

e Bounding-Box - the minimum rectangle that completely surrounds a blob. Bounding-
Box is commonly represented by the coordinates of two corner points: [left, top]

and [right, bottom).

The basic idea of the proposed single pass blob analysis is to calculate the blob fea-
tures while performing the labelling. This removes the need for producing a label image
and thus saves the second re-labelling pass which is necessary in classical algorithms. It
is important to mention that the aim of blob analysis is not assigning pixels in each blob
the same unique label as the classical CCL does. In fact, the outputs of blob analysis
should be properties or features of blobs rather than labels. Therefore, in our algorithm
labelling is only an intermediate step in which pixels belonging to the same blob are
allowed to have different labels. Using a dedicated merging scheme, blob features can
still be correctly calculated.

Since pixels of the image sensor are scanned one by one from left to right and top to
bottom, a blob might be considered as multiple individual or temporary blobs before
it can be completely seen by the camera. Thus, the features of a blob can not be
determined until all pixels belonging to the blob are available in the data stream. In
order to accomplish the feature extraction in one scan pass, a feature RAM which
is addressed by labels associated with each blob, is used to store the temporary blob
features. Whenever a new label is generated, a new entry is created in the feature RAM.
If two different labels are found to be equivalent, the features of the corresponding
blobs are merged immediately, which can be achieved by accumulating the features of
the involved blobs.

Let us take the calculation for the sum of the = coordinates (denoted as sum_x) as an
example. Suppose two blobs that are labeled by L; and L; (with L; > L;) respectively
join at the current pixel p. We assign p the smaller label (L;). To get the merged
sum_x, the sum_z value of both blob[L;] and blob[L;] stored in the feature RAM are

read out and added together, then the result is accumulated with the x coordinate of
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p. The new sum_x is written into the feature RAM at the address pointing to L;, while
the entry at the address L; is discarded.

Selecting the smaller label as the representative works for simple blobs. When an-
alyzing blobs with complex shapes, the above described procedure may return wrong

results. An example shown in Figure 4.27 demonstrates such a scenario.

0 1 2 3 456 7 8 9 0 1 2 3 4 56 7 & 9
0 0
1 ) 1
; Labelling ; 313 2 :
4 4 4 3 2 1
5 s [a]a]3] [2][2|H
[ 6 11
7 7 H
Equivalence chain
(4 <=> 3, 3<=>2 2<=>1)

Label LUT Label _LUT Label LUT Label LUT
o] 0 o 0 ] o[ 0 o] 0
1 1 1st 1 1 2nd 1 1 3rd 1 1
2 Merging 2 - Merging 2 Merging 2 1
3 3 3 3 3 1
4 al 3 4 a1

Figure 4.27.: Blob merging

The first merging condition in Figure 4.27 occurs in row 5 where the pixel is marked
by yellow. To perform the feature merging, we first assign label 3 to the yellow pixel and
register an equivalence pair (4 <=> 3). Then the features of blob[4] and blob[3] stored
in the Feature RAM(denoted as FeatureRAM[4] and FeatureRAM][3] respectively) as
well as the features of the current pixel are accumulated. Afterwards the new features
are written into FeatureRAM|[3]. FeatureRAM][4] is out-of-date and thus can be deleted.
The same operation is performed when the blue and the red pixel are available in the
pixel stream. After the completion of row 5, the features at address 1 in the feature
RAM (FeatureRAM]J1]) represent the current status of the blob. In addition, we get
three equivalence pairs, namely (4 <=> 3), (3 <=> 2), (2 <=> 1), forming an
equivalence chain. So far the algorithm works, however, this procedure can lead to
an incorrect merging operation when processing the green pixel in row 6. As can be
seen, this pixel has two neighbors which have been labelled previously by 4 and 3
respectively. It is important to point out that the features of the green pixel can not
be merged with FeatureRAM][3], since FeatureRAM][3] has already been declared out-
of-date after being merged with FeatureRAM[2]. The correct operation is to merge its
features with FeatureRAM][1], in which the updated blob features are maintained.
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The relationship between label 3 and label 1 can be established when we resolve the
equivalence chain. It is not difficult to find out that label 1 is the root of the chain, to
which all labels point. Because only the root label is associated with the updated blob,
we should use the root rather than the temporary label to perform the feature merging
operation. Therefore, the key point of our algorithm is to resolve the equivalence chain
during the labelling process, so that the feature extraction block always receives the

root labels associated with each blob.

Resolving the equivalence chain is non-trivial work. Searching for the root label
can be very time consuming, especially when the chain contains significant amount
of equivalence pairs. In the classical CCL, the equivalence pairs are represented as
rooted trees and the root can be determined using Union-Find algorithms [DST92].
Unfortunately, such algorithms are not suited for the FPGA implementation because
they all suffer from high computational complexity and require a second scan pass

throughout the image.

In our implementation, this problem is addressed by means of a label look-up table
(Label LUT). The Label LUT is a simple one-dimensional array with the size equal to
the maximum label value. It is addressed by the temporary labels assigned to each blob
and stores for each temporary label its corresponding root. For example, Label LUT[i]
is the root label to which label ¢ points. At the beginning, each entry of the Label LUT
is initialized to contain a value equal to its index, i.e., Label LUT]i] = i, where i = 0, 1,
..., max_label. This means that, initially, each possible label represents a distinct blob.
When two labels, L; and L;, with L; > L;, are found to be equivalent, a Parallel Search
and Multiple Update (PSMU) operation will be performed. More precisely, all entries
of Label LUT containing the value of Label LUT[L;] are updated by Label LUT|[L;].
The C code for this process is given by:

for (address = 0; address < max_label; address++) {
if (Label_ LUT[address] == Label_ LUT[L7j])
Label_ LUT[address] = Label_ LUT[Li];

PSMU is the key operation to keep the Label LUT always in its correct, updated
state. Suppose the current pixel p has two neighbors which are labelled by L; and L; re-
spectively. To perform the correct merging operation, we first compare Label LUT[L;]
with Label _LUT|[L;] to check whether the roots of L; and L; (denoted as Ry, and Ry,
respectively) are different or not. For the former case, if Ry, <Rp,, we assign Ry, to
p and accumulate FeatureRAM[R;,] and FeatureRAM[R;, ] together with the features
of p. The new features are then written into FeatureRAM[R,] and the Label LUT is
updated in the way of PSMU. For the later case, we assign Ry, to p and only have
to accumulate FeatureRAM[R,] with the features of p. Since L; and L; point to the
same root, there is no need to update the Label LUT.
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In the example shown in Figure 4.27, initially, Label LUT is set to [0 1 2 3 4]; after
finding the equivalence pair (4 <=> 3), Label.LUT is updated to [0 1 2 3 3|; then,
after finding (3 <=> 2) and (2 <=> 1) Label LUT becomes [0 1 1 1 1]. When we
get to the the green pixel in row 6, we can easily find out that both temporary labels
in the neighborhood (label 4 and label 3) point to the same root (label 1). Thus, by
checking the Label LUT it is now clear to assign label 1 to the green pixel and merge
its features with FeatureRAM][1].

So far our algorithm can be summarized as follows:

Initialize_Label_ LUT () ;

Initialize_FeatureRAM() ;

for x=0 to image_width, y=0 to image_height loop
if p is a foreground pixel then
if neighbors are all background pixels then
Assign_Label (p, new_label);
MergeFeature (FeatureRAM[new_label], p);
else if neighbors contain only one foreground pixel labelled by L then
R_L = Label LUTI[L];
Assign_Label (p, R_L);
MergeFeature (FeatureRAM[R_L], p);
else if neighbors contain more than one foreground pixels then

/* L1,L2,L3,L4 are temporary labels assigned to pl,p2,p3,p4 respectively =/

R_L1 = Label_ LUTI[L1];
R_L2 = Label LUT[L2];
R_L3 = Label LUT[L3];
R_L4 = Label LUT[LA4];
if R_.IL1 = R_1L2 = R_L3 = R_L4 then

Assign_Label (p, R_L1);
MergeFeature (FeatureRAM[R_L1], p);

else
Label min = min(R_L1, R_L2, R_L3, R_L4);
Label max = max(R_L1, R_L2, R_L3, R_L4);
Assign_Label (p, Label_min);
MergeFeature (FeatureRAM[Label_min], p);
MergeFeature (FeatureRAM[Label_min], FeatureRAM[Label_max]) ;
Update_Label_ LUT (Label_min, Label_max) ;

end if;

end if;
end if;

end loop;

4.6.3. Speed Optimization

As mentioned earlier, the algorithm of blob analysis is sequential in nature. Processing
one pixel may cost multiple clock cycles. In order to handle a large amount of pixels
in real time, which is required by high speed optical tracking, two strategies are used

to speed up our algorithm.
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Strategy 1

The first strategy makes reuse of labels during the scan, which not only saves large
amounts of logic resources but also increases the processing speed. Both Label LUT
and feature RAM require one entry for each label. The worst case for the possible
number of blobs in an N x N image is N/2 x N/2 as illustrated in Figure 4.28.

Figure 4.28.: Worst case number of blobs

Although in practice the actual number of blobs is normally less than that of the
worst case, the Label LUT and the feature RAM can still be large enough to become
unfeasible for an FPGA due to the fact that a single blob may consume multiple
labels. Moreover, the larger the Label LUT, the more cycles are required for finding the
root and performing the update operation. Therefore, if labels are able to be reused,
significant gain in terms of both area and speed can be obtained.

The reuse of labels is not a new concept. A general algorithm for determining
connected components in digital images by reusing temporary labels is presented in
[DST92]. The minimum number of labels is 2N/3 for any N x N image. In [KGH02] a
more effective method which aggressively reuses the labels is described. Only N/2 4 1
labels are needed for an N x N image. The minimum amount of labels required by the
proposed blob analysis algorithm is also N/2 + 1. In addition, labels are reused in a
simpler way, making the algorithm more suitable for the FPGA implementation.

We borrow the term Dead label from [KGHO02| to represent the label which can be
possibly reused during the scan. There are two situations that lead to labels being
declared as Dead:

1. A label may die an Equivalence Death, if it is found equivalent to some label and
is not the root. In Figure 4.29, after finding the equivalence pair (3 <=> 2), we
may consider label 3 as a Dead label because it is equivalent to label 2 and is not
the root. Similarly, after finding (4 <=> 1), label 4 can be declared as a Dead
label.

2. A label may die a Blob Death, if all pixels belonging to the blob have been scanned.

In such a case, the root label associated with the blob is declared as a Dead label.
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In Figure 4.29, label 1 and label 2 become Dead after the corresponding blobs are

completely scanned.
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Figure 4.29.: Reuse of labels

Although Dead labels can be reused, some constraints must be applied to avoid
incorrect labelling and merging operations. In Figure 4.29, at the beginning Label LUT
is initialized as [0 1 2 3 4]. After finding the equivalence pair (3 <=> 2), we update
Label LUT to [0 1 2 2 4] and declare label 3 as a Dead label. If we reuse label 3
immediately in the current row, i.e., instead of assigning label 4 to the pixel at (5, 3)
we label it with 3, then an equivalence pair (3 <=> 1) will be generated after scanning
the pixel at (6,3). As a result, Label LUT will become [0 1 2 1 4]. Thus, when we get
to the pixel at (1,4), we will have to label it 1 after checking the Label LUT. However,
label 2 is the correct label that should be assigned to this pixel.

As demonstrated by the example described above, immediate reuse of labels may
cause unexpected update of Label LUT, which can result in incorrect labelling opera-
tion for the subsequent pixels. To solve this problem, it is suggested in [KGH02] that
all previous instances of a Dead label in the current row must be relabelled by its root
prior to reusing it. However, relabelling is the operation we are trying to avoid, since
it costs significant number of clock cycles. In our algorithm this problem is addressed
in a different way. Suppose label L is assigned to pixel p and declared as Dead in row
N. If we reuse L neither in row N nor in row N + 1, the Label LUTIL] can be kept
unchanged in row N and row N 4+ 1. As a result, every pixel adjacent to p in row
N + 1 will be labelled by its correct root label. After row IV 4 1, there will be no pixels
connected to p. Thus L can be safely reused in row N + 2 and subsequent rows.

For the second case, since the root label is the only representative label of the blob, it
will not be associated with any pixels belonging to the blob after the blob is completely
scanned. Therefore, it is safe to reuse a label immediately after it dies a Blob Death. In
the proposed algorithm, we use the x coordinate of the last pixel of a blob to determine
the blob completion. To describe this process more precisely, we need to define two
special pixel masks, namely leave_blob and finish_blob. leave_blob is a pixel mask in
which the current pixel p is a background pixel and the neighbor pixel pl is a foreground

pixel. Finish_blob defines a pixel mask with the following criteria: the current pixel p
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and its neighbors pl and p3 are all background pixels, meanwhile p2 is a foreground
pixel. If a leave_blob mask is encountered, the x coordinate of p is written into an array
named last_x at the address pointing to the root label of pl, or last_z[R,;]. Whenever
a pixel mask that satisfies the criteria of finish_blob is found, we first read the root label
of p2 from the Label LUT and then compare the x coordinate of the current pixel p
with last_z[Rp]. If © = last_z[R,»], we claim that the blob is completed. Ry can then
be reused immediately. And the features stored in FeatureRAM[R,] can be sent to
the host, e.g., a PC, for further analysis.

Clearly the data structure used to store the labels is a stack. During the scan, if a
label is found to be Dead, it is pushed into the stack for the future reuse. Whenever
a new label is required, we pop one label from the stack and check its validity before
using it. Reusing labels enables detecting a large number of blobs with small amount
of labels. As can be seen in Figure 4.30, it is possible to calculate features of more than
5,000 blobs in an image with only 64 labels.

(c) 32 labels, 96 blobs (d) 64 labels, 5759 blobs

Figure 4.30.: Performance of reusing labels



88 Chapter 4. FPGA accelerated 2D Image Processing

Strategy 2

The second strategy comes out of the realization that the algorithm of blob analysis
processes mostly foreground pixels. For most applications, background pixels con-
tribute the dominate portion of the image. Thus, if background pixels that require no
processing are filtered out, significant reduction of the overall execution time can be
achieved.

Furthermore, it is possible to optimize the processing of foreground pixels by ex-
ploiting the fact that the neighbors in a pixel mask are not independent [WOS09]. For
instance, p3 is a neighbor of p, pl, p2 and p4, which implies that all other foreground
pixels in the mask must share the same root label with p3. Therefore, if p3 is a fore-
ground pixel, it is the only pixel that needs to be checked to process the the current
pixel p. As a result, the number of neighbors to be examined is reduced from four to
one.

The 8-connectivity pixel mask shown in Figure 4.25 consists of 5 binary pixels, which
gives a total of 32 cases. In order to dig out the optimization potential of every pixel
mask, we enumerate all the 32 cases, and group the required operations into 10 cate-

gories, as illustrated in Figure 4.31.

Pixel Mask Category Pixel Mask Category Pixel Mask Category Pixel Mask Category
] new blob | copy pil | MNOP | leave blob
| copy_pd | comp_plipd | MOP | leave blob
] copy_p3 | copy_p3 | NOP | leave_blch
] copy p3 | copy pl | MOP | leave bloh
| copy_p2 | copy_pl | finish_blob | leave blok
] comp_p2pd | copy_pl | finish_blob | leave_bloh
] copy_p2 | comp_plipd | NOP | leave_blob
| copy_pe | copy_pl | MOP | leave_blob

Figure 4.31.: Pixel Mask Categorization

The operations needed by each category are summarized as follows:

e new_blob - pop a new label from the label stack, assign it to p, create a new

entry in blob feature RAM.
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copy_p1 - get the temporary label of p1 (L), assign it to p, merge the features
of p with Feature RAM [Ly].

copy_p2 - get the root label of p2 (Ry2) by checking Label LUT, assign it to p,
merge the features of p with Feature RAM [R,ys].

copy_p3 - get the root label of p3 (R,3) by checking Label LUT, assign it to p,
merge the features of p with Feature RAM[Ry3].

copy_p4 - get the root label of p4 (Ry4) by checking Label LUT, assign it to p,
merge the features of p with Feature RAM[R4].

comp_plp4 - get the temporary label of pl (L) and the root label of p4 (R,4),
compare L,; with Rps. If L,1 = Rpy, assign Ly to p, merge the features of p
with FeatureRAM[Ly); if Lyt < Rps, assign Ly1 to p, merge the features of p
with FeatureRAM[Ly;] and FeatureRAM[Ry4], push R4 into the label stack,
update Label LUT; if Ly1 > R, assign Rp4 to p, merge the features of p with
FeatureRAM|[Ly] and FeatureRAM [Ry4], push Ly; into the label stack, update
Label LUT.

comp_p2p4 - get the root label of p2 (R,2) and the root label of p4 (R,4),
compare R,o with Rps. If Ry = R4, assign Rys to p, merge the features of
p with FeatureRAM[Ry); if Rpyy < Rpa, assign Rpys to p, merge the features
of p with FeatureRAM[Ry;] and FeatureRAM[Rp4], push Ry, into the label
stack, update Label LUT; if Rpo > R4, assign R,4 to p, merge the features of p
with Feature RAM[R,3] and FeatureRAM [R,4], push R,y into the label stack,
update Label LUT.

leave_blob - get the temporary label of pl (L1 ), write the z coordinate of p into
the last_x[Ly1).

finish_blob - get the root label of p2 (R,2), if last_z[Ry2] = =z, declare the
completion of FeatureRAM[R,»], push Ry into the label stack.

e NOP - No operation.

As can be seen, the maximum number of pixels to be examined is 2, which is required

by pixel masks that fall into the comp_plp4 and comp_p2p4 categories. In all other

cases, it is only necessary to check one pixel in the neighborhood.

Combing the above described two optimization strategies together, a significant im-

provement in terms of processing speed can be achieved. Performance analysis shows

'Since pl is the last pixel that has been labelled, the label assigned to pl must be the root label.
Therefore, there is no need to check the Label_ LUT to get Rp:.
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that based on an FPGA implementation, the proposed algorithm is able to satisfy the

throughput requirements of our high speed optical tracking system.

4.6.4. Hardware Implementation

Figure 4.32 illustrates the high level block diagram of the FPGA implementation for

the above described algorithm.
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Figure 4.32.: Block Diagram of FPGA based blob analysis

Pixel Encoder

The pixel encoder module performs the pixel mask categorization.

given a unique 4-bit code named p_state as shown in Figure 4.33.

Each category is

Category p_state Category p_state Category p_state Category p_state Category p_state
new_biob 1000 copy_p1 1001 copy_p2 1010 copy_p3 1011 copy_p4 1100
Category p_state Category p_siate Category p_state Category p_state Category p_siate
comp_p1pd 1101 comg_p2pd 1110 finish_blob 0001 leave_blob 0010 MNOP 0000
Figure 4.33.: Pixel state encoding
It is obvious that each bit of p_state is simply a function of input pixels. Using a

Karnaugh-Map, the calculation of p_state can be expressed as:

p-state(0) =pi epy +pepreps +pep; epseps

(4.26a)
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p_state(l) = pep; e py+ps+ pepl (4.26b)
p_state(2) = p e p3 e pd (4.26¢)
p_state(3) = p (4.26d)

As illustrated in Figure 4.33, if all bits of p_state are zero, the corresponding pixel
mask must belong to the NOP category. In this case, the p_state will not be sent to
the subsequent processing modules. As a result, a large amount of input pixels are
filtered out. The pixel encoder also synchronizes the x and y coordinates as well as the
pixel intensity with each valid p_state, since they are necessary for calculating the blob

features, such as center of gravity and bounding-box.

p_state Buffer

As mentioned previously, there is a high degree of data dependency between pixels in
blob analysis. Thus, pixels can not be streamed smoothly into the processing pipeline at
every clock cycle. The current pixel must wait until the processing of the previous pixel
has been completed. The p_state buffer is used to provide a flow control mechanism.
It is composed of an asynchronous FIFO with the depth of 4096. The results from
the pixel encoder are first written into the buffer before getting processed. Whenever
the processing pipeline is free, a valid p_state together with the x and y coordinates
are read out and then fed into the processing pipeline. If the number of data stored
in the buffer reaches a predefined threshold, the rdy signal is deasserted to inform the

previous module that no input pixel can be accepted at the moment.

Blob Labelling

The Blob Labelling block performs the labelling process in blob analysis. It consists
of five main sub-modules, namely the control state machine (Control FSM), the Label
Line Buffer, the Label_.LUT, the Label Generator and the Label Assignment Logic as
shown in Figure 4.32.

Control FSM The Control FSM is responsible for control of the whole labelling
process. It starts with decoding the p_state and decides which operation to be per-
formed. When the current pixel is completely processed, it issues a read command and
fetches the next p_state from the buffer.

Label Line Buffer The Label Line Buffer functions as a delay element that syn-
chronizes the labels assigned to p2, p3, p4 in the previous line with the label assigned

to pl in the current line. It ensures that the labels of all neighborhood pixels are ready
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for use when the current pixel is being processed. The label line buffer is realized by a
RAM with the depth equal to the number of pixels in an image line.

Label_ LUT The Label_LUT memorizes the root for each temporary label and per-
forms the PSMU operation introduced in 4.6.2. In this thesis, two different implemen-
tations of Label LUT are evaluated.

The first implementation is based on a RAM architecture which executes the PSMU
in serial. The primary advantage is that the RAM based Label_ LUT is very area-
effective. However, three cycles are necessary to accomplish the read, compare and write
operations. As a result, it takes 3NV clock cycles for each PSMU, where N represents
the maximum number of labels used in the design. If there is a large amount of PSMU
to be executed during the scan, this implementation can become very inefficient.

The second implementation is intended to perform the PSMU operation in a single

clock cycle. It features a parallel architecture as shown in Figure 4.34.
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Figure 4.34.: parallel implementation of Label LUT

The parallel Label LUT is made up by a number of identical memory cells, each of
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which contains a register, two address decoders and a output buffer. In comparison
with conventional RAMs, there is additionally a comparator in each memory cell that
is responsible for comparing the data stored in the register and the data driven by the
D_COMP bus. If a match is found, registers containing the value of D_COM P will be
updated by the data presented on the the D_I'N bus. In this way, the PSMU operation
can be executed in one clock cycle.

The main drawback of the parallel Label LUT is its large area cost. As illustrated in
Figure 4.35, the amount of required FPGA LUTs and flip-flops increases dramatically

as the number of labels increases.
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Figure 4.35.: Parallel Label LUT resource utilization

The concept of reusing labels enables the usage of a parallel Label LUT with a rea-
sonable resource cost and satisfactory performance. In our FPGA design, the number
of labels is set to 64, which allows to build a parallel Label LUT with only 767 FPGA
LUTs and 390 flip-flops. As demonstrated in Figure 4.30, 64 labels should be enough
for most optical tracking applications.

Label Assignment The Label Assignment module has two main tasks:
1. select the correct label among the neighbors, assign it to the current pixel p,
2. determine the value of D_COMP and D_IN to update the Label_LUT.

As summarized in Figure 4.31, the possible labels that can be assigned to the current

pixel are:

e the temporary label of pl (Ly1),

the root label of p2 (Ry2),

the root label of p3 (Rp3),

the root label of p4 (Rpa4),

the smaller label between L, and R4,
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e the smaller label between Ry and R4,

e the new label popped from the label generator.

Similarly, labels to be updated in the Label LUT can be selected from one of the

following two options:
e the larger label between L, and R4,
e the larger label between Rp2 and R,4.

Figure 4.36 shows the simplified circuit architecture of the Label Assignment module.
A 7-way multiplexer decides which label should be output as the label of p. Two
comparators together with two multiplexers select the labels that should be passed to
the D_COMP bus and the D_IN bus of the Label_ LUT respectively. Moreover, an
UPDATE_FEN signal determines whether it is necessary to update the Label LUT.
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Figure 4.36.: Structure of the Label Assignment module

Label Generator the Label Generator is formed by a synchronous FIFO with the
size of 64. If a new_blob operation is decoded, the next available label is popped from
the FIFO. Whenever a label is found to be Dead, this label is pushed into the FIFO
for future reuse. Since labels can not be reused arbitrarily, it is necessary to check
the validity of a label before using it. As explained in Section 4.6.3, if a label dies an
FEquivalence Death in row N, it can only be reused in row M, where M > N + 1. In
our FPGA design, when a label is declared Dead, the current row number is recorded
into a RAM at the address pointing to this label. When a label is popped from the
Label Generator, we compare the pre-recorded row number attached to this label with
the current scan row number to check if it can be legally reused. For the case where
a label dies a Blob Death, we write the maximum line number of the image into the

RAM, since this kind of label can be reused immediately after being declared Dead.
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It is obvious that the proposed algorithm can not support the detection of an infinite
number of blobs, even labels can be reused. A warning must be given in case the image
contains too many blobs. In our FPGA design, this functionality is implemented by

asserting the too_many_blobs signal if one of the following two conditions is satisfied:

1. there is no label available in the Label Generator, when a new_blob operation is
decoded,

2. a Dead label is illegally reused.

Feature Merging

The Feature Merging module takes the label information, the x and y coordinates as
well as the pixel intensity from the labelling block as input to calculate the blob features.
As each pixel is assigned a label, the feature RAM is updated to reflect the current state
of each blob. When two blobs are merged, the update of the feature RAM requires a
read of the existing features of both blobs followed by a write of the update features.
This enables a Dual-Port RAM to be used for the feature data storage. Figure 4.37
shows the circuit structure for calculation of the blob center of gravity. Other features,

such as area and bounding-box can be implemented in a similar manner.
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Figure 4.37.: Circuit structure for the blob CoG calculation
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FPGA Resource Utilization

The logic resource utilization for the above described implementation is shown in Table
4.1. The target FPGA is the XC4VFX60 device used on PowerEye. As can be seen,

the implemented design consumes a very small portion of the available FPGA hardware

resources.
Used | Available | Utilization

Number of Slices 1653 25280 6.6%

Number of Block RAMs 12 232 5.2%

Number of DSP Blocks 2 128 1.6%

Table 4.1.: Blob analysis FPGA resource utilization

4.6.5. Performance Estimation

As discussed in Section 4.6.3, the proposed algorithm groups pixels to be processed
into categories that require different processing time. For instance, labelling the pixel
that falls into the comp_plp4 category contains the following operations: fetch the
temporary label of p4, check Label LUT to get the root label of p4, compare it with
the label of pl, push the Dead label into the label stack and update Label LUT. Since
the last two operations can be executed simultaneously, a total of 4 clock cycles are
needed. In comparison, labelling a pixel belonging to the copy_p1l category requires
only 2 clock cycles. As a result, time needed to process an image depends highly on
the image content.

The processing performance in terms of speed can be evaluated by the number of
frames that can be processed per second. To estimate the frame rate, we need to count

the number of required clock cycles for every image, which is given by:

N =) NG (4.27)

where N, is the number of pixels that belong to the same category and C repre-
sents the clock cycles needed for processing such a pixel. Once N is obtained, we can
easily calculate the processing frame rate by dividing the number of FPGA operating
frequency by N. Let us take the two images in Figure 4.38 as an example.

The 1.3 Mega pixel (1280 x 1024) sized image shown in Figure 4.38(a) was captured
by the WheelWatch photogrammetry system that measures the wheel position of a
driving car in real time [WBMO4]. A total of 154 infrared markers are attached to the
vehicle wheel which are seen as white blobs. We consider this image as the typical case
scenario in optical tracking.

The algorithm calculates the area, the centre of gravity and the bounding box for each

blob. According to the pixel statistics listed in Table 4.2, only a very small portion
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(b) worst case

Figure 4.38.: Typical and worst case scenario of blob analysis

of pixels need to be processed. And most of them belong to the simplest category
(copy-pl). As a result, 15,496 clock cycles are required for processing the entire
image. Since implemented FPGA design has a maximum operating clock frequency of
150MHz, a processing frame rate of 9,679fps can be obtained.

In Figure 4.38(b), the same image used for the typical case scenario is strongly
corrupted by salt noise. After the image binarization, there will be a large number of
small blobs cased by the noise pixels. We use this image to simulate the worst case
scenario. The proposed algorithm detects 16,786 blobs at the cost of 143,308 clock
cycles per image. When being clocked at 150MHz, the FPGA is able to process 1,046
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I

typical case

|

extreme case

category Number of Number of Number of Number of
pixels required cycles pixels required cycles

new_blob 194 2 16921 2
copy-pl 4706 2 5242 2
copy_p2 197 3 742 3
copy_p3 423 3 950 3
copy-_p4 190 3 704 3
comp_plp4 37 4 89 4
comp_p2p4 0 4 20 4
leave_blob 1004 2 19309 2
finish_blob 370 3 17580 3
total | 721 15496 | 61557 143308

Table 4.2.: Pixel statistic for the typical and worst case scenario of blob analysis

such images per second. It is clear that the throughput requirement of our high-speed

camera can still be satisfied.

4.7. Summary

High-speed optical tracking systems require excessive processing power due to huge
amount of pixel data yielded by multiple high-speed cameras. This chapter describes
the FPGA implementation for a number of image processing algorithms which are
frequently used in optical tracking applications. One can easily exploit the parallelism
for some image processing operators, such as color segmentation, noise reduction, edge
detection and morphological filtering. Using an FPGA, a processing throughput of
several thousand Mega pixels per second can be obtained. A more complicated case
studied in this chapter is the blob analysis, in which a high degree of data dependency
between pixels can not be avoided. A new high performance, one pass blob analysis
algorithm is presented. With a highly optimized FPGA implementation, it is possible

to process several thousand images per second depending upon the application.



5. System Integration and Evaluation

This chapter presents a prototype design that proves the usability of the proposed op-
tical tracking system. First, the hardware setup is briefly introduced. Then two FPGA
designs that focus on operating the camera system and performing the calculation of
2D object positions at high frame rate are described in detail. Finally, the system

performance in terms of accuracy, speed and latency is evaluated.

5.1. Hardware Setup

Figure 5.1 illustrates the hardware setup of the prototype system.

Figure 5.1.: Hardware setup of the prototype system

Due to the lack of image sensors, the prototype system contains two cameras that
are connected to a PowerEye board via the CLinkRx-TripleBase adapter. Each camera
is equipped with a monochrome MT9M413 sensor and an infrared illuminator. Con-
figured in the Cameralink Base mode, the camera outputs 205 images per second at
the resolution of 1.1 Mega pixel (1080 x 1024). The tracking targets are spherical,
retro-reflective markers that reflect infrared light emitted by the illuminators. The goal
is to calculate the 2D position of each marker in real time. A laptop which accesses
PowerEye via Ethernet is used for the purpose of system control and data visualization.

The data flow throughout the entire system can be briefly described as follows:

i) Each image sensor captures images under the control of the camera FPGA.

99
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ii) The camera FPGA receives pixel data from the sensor, packs the data into Cam-

eraLink streams and sends them to the CLinkTx board.

iii) The CLinkTx board converts the single-ended LVCMOS signals from the FPGA

to LVDS signals that are transmitted over a Cameral.ink cable.

iv) The CLinkRx-TripleBase board receives two LVDS data streams from the cameras
simultaneously, converts them back into single-ended LVCMOS signals that are
fed to the FPGA on PowerEye.

v) The PowerEye FPGA performs all necessary operations for calculating the 2D

marker positions and sends the results to PC via Gigabit Ethernet.

vi) A software program running on the PC visualizes the image data as well as the

tracking data to verify the correctness of the results delivered by the hardware.

The camera FPGA and the PowerEye FPGA play an essential role in the prototype
system. The following sections detail the designs for the two FPGAs respectively.

5.2. Camera FPGA Design

The camera FPGA is responsible for the control of the whole camera system, which
mainly includes guiding the image sensor through the full sequence of its operation and
packing the high-speed data from the sensor into pixel streams that comply with the
Cameralink standard. It also manages low-speed communication between sensor and

PowerEye. Figure 5.2 depicts the high level block diagram of the camera FPGA design.
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PicoBlaze |« » UART
PLL RAM |« SerTFG,
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Figure 5.2.: Block diagram of the camera fpga design
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5.2.1. Sensor Interface

The Sensor Interface module illustrated in Figure 5.2 generates all required signals to
operate the MT9M413 image sensor. Two main control procedures, the sensor exposure

and the pixel read-out, are implemented in this module.

Exposure Control

The MT9M413 sensor integrates the TrueSNAP electronic shutter which allows simul-
taneous exposure of the entire pixel array. The exposure procedure is controlled by two
signals: PG_N and TX_N, as shown in Figure 5.3. Clearing pixels and starting new
photo-signal integration are enabled by making PG_N low. Forcing TX_N low allows to
transfer the data into pixel memory. The exposure time is determined by the interval
between the falling edges of PG_N and TX_N [Mic06].

Pixel
Na TX_N
Photo A Pixel
~a| Detector _'J Memory _[>
(!)PG_N
VRST_PIX

Figure 5.3.: MT9M413 exposure control [Mic06]

The camera FPGA supports the following two exposure modes:

e Free-run mode - The FPGA generates an internal signal to continuously trigger

the exposure for each frame at a programmed frame rate.

e External trigger mode - The sensor exposure is controlled by an externally gener-
ated trigger (ExTrg) signal. This mode is frequently used in multi-camera systems
for the purpose of camera synchronization. In the prototype system, the Power-
Eye FPGA broadcasts an ExTrg signal to all cameras over Cameralink. Each
camera starts the exposure at the positive edge of ExTrg and ends when the
falling edge of ExTrg arrives. As shown in Figure 5.2, the camera control pin
CCl1 is selected to transfer the ExTrg, since the CC1 signals for all cameras were

routed with matched length throughout the entire system.

Pixel read-out Control

Pixel read-out involves the process of selecting the pixel rows to be read, storing the

digitized data in the ADC register and transferring the data to the output register.
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The MT9M413 sensor can be configured in two different read-out mode: sequential
and simultaneous. In the sequential mode, a frame is read out after the exposure. In
the simultaneous mode, the current frame can be exposed while the previous frame
is being read out. The camera FPGA was designed to support both sequential and
simultaneous read-out.

The read-out control also implements the ROI (region of interest) function for ap-
plications where the full image resolution (1280 x 1024) is not needed. A ROI refers
to a rectangular window that is specified by its position and size within the full frame.
In the FPGA design, generating a ROI is realized by two counters - one for horizontal
and the other for vertical. These counters are controlled by four registers which set the
start and stop positions separately in both directions. This allows the definition of a

ROI at any location with the size ranging from one pixel to the entire sensor.

5.2.2. Pixel Serializer

As mentioned in Section 3.2.1, the MT9M413 sensor integrates 10-bit ADCs to perform
the analog-to-digital conversion and clocks out 10 pixels in parallel. Inside the FPGA,
the least two significant bits of each pixel are dropped, which results in a total of 80
bits pixel data per clock cycle. These pixels need to be serialized to comply with the
transmission protocol defined by the CameraLink standard. As illustrated in Figure
5.2, three different serializers together with a 3:1 multiplexer are integrated in the Pixel
Serializer module so that all the three possible configurations of CameralLink can be
supported. For example, when the camera is configured in CameralLink BASE mode,
the 10:3 serializer is activated, as Cameralink BASE defines three pixel data ports.
Similarly, the 10:6 and the 10:8 serializer can be selected for the Medium mode and
Full mode respectively. In the prototype system, cameras are configured in the BASE
mode, since they must be connected to the CLinkRx TripleBase board which only
supports the Cameralink BASE configuration.

The SYNC_GEN block in the Pixel Serializer generates the FVAL (frame valid),
LVAL (line valid) and DVAL (data valid) signals to mask valid image data, as specified
in the CameraLink standard. Figure 5.4 illustrates the pixel data timing diagram under

the simultaneous read-out mode.

5.2.3. UART Interface

In addition to the signals for pixel data and camera control, the Cameraliink standard
also defines a RS232 compatible asynchronous serial interface for changing camera
operating mode and parameters. It can also be used to query the camera about its
current status. This interface is enabled by the UART module shown in Figure 5.2.
The implemented UART interface supports half-duplex communication with a standard

11-bit frame format - one start bit, eight data bits, one parity bit and one stop bit.
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Figure 5.4.: Pixel data timing diagram simultaneous read-out mode

5.2.4. PicoBlaze Processor

The camera FPGA integrates an 8-bit PicoBlaze micro processor, which handles all low-
speed operations. The PicoBlaze processor consists of a Havard CPU core, a 1K x16-bit
instruction memory and a 1K x8-bit data memory. One of its main tasks is to implement
an 12C master interface to initialize the on-board PLL and DACs.

The PLL can be programmed to provide clock sources with desired frequency that
are used for driving the image sensor, FPGA internal logic and the ChannelLink
transceivers on the CLinkTx board. Figure 5.5 illustrates the clock distribution struc-

ture of the camera system.
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Figure 5.5.: Clock distribution of the camera system

The DACs must be configured via the I12C bus to generate proper reference voltages
for the sensor gain and offset adjustment as well as the fixed pattern noise correction.
During the run-time, all communication data traveling to and from the UART in-

terface, e.g., ROI and exposure time configuration, inquiry request of camera status,
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etc., are collected and analyzed by the PicoBlaze processor and forwarded to the ex-
pected destinations afterwards. The advantage of using a PicoBlaze processor is that
it enables implementing complex control operations in software and thus increases the

system flexibility.

5.3. PowerEye FPGA Design

The main task of the PowerEye FPGA is to analyze pixel data from the cameras and
perform all the necessary operations to calculate the 2D maker positions. Moreover, it
also handles off-chip memory management, data communication with PC over Ethernet
and camera synchronization. The high-level FPGA design block diagram is illustrated
in Figure 5.6. Despite the fact that only two cameras are used in the prototype system,
three independent pixel processing pipelines are integrated in the FPGA to provide the

capability of processing pixel streams from three cameras simultaneously.

5.3.1. Video Input Controller

The Video Input Controller is where the entire image acquisition process takes place.
The inputs to this module are three Cameraliink video streams, each of which contains
three parallel 8-bit pixel data ports as shown in Figure 5.6. In order to improve the
processing parallelism and the memory bandwidth utilization, a 3:4 pixel deserializer is
applied to each camera which packs every four pixels into a 32-bit word. Asynchronous
FIFOs are utilized in the pixel deserializer to synchronize signals between camera clock

domain and FPGA internal clock domain.

5.3.2. Pixel Processing Pipeline

The Pixel Processing Pipeline performs all necessary operations to calculate the 2D
marker positions in each captured image. To achieve high processing throughput, all
window-based modules are designed to process parallelly 4 pixels every clock cycle, us-
ing the technique described in Section 4.5.1. The entire pipeline consists of six process-
ing stages: Gaussian Smoothing, Sobel Edge Detection, Region Filling, Morphological
Filtering, Blob Analysis and Blob Classification.

Gaussian Smoothing

The incoming image from the Video Input Controller, denoted as I, is first smoothed
by a Gaussian filter for the purpose of noise suppression. This process is implemented

by convolving I with a 5 x 5 Gaussian smoothing kernel shown in Figure 4.10.
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Figure 5.6.: Block diagram of the PowerEye FPGA design
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Sobel Edge Detection

The second stage of the Pixel Processing Pipeline is an edge detection process. The
goal is to extract the contour of each marker. The Sobel edge detector that not only
determines the edge pixels but also calculates the edge direction is chosen. As described
in Section 4.3, the Sobel edge detector utilizes two 3 x 3 kernels which are convolved
with the original image to calculate approximation of the derivatives - one for horizontal
(Gz) and the other for vertical (Gy). In the implemented design, two optimized Sobel
convolution kernels given by Equation 5.1 are used since they produce much less error
of local direction than the kernels defined in Equation 4.14 [JGH99].

3 0 =3 3 10 3
Gy= |10 0 —10| =1 Gy=10 0 0]xI (5.1)
3 0 =3 -3 —-10 -3

The edge strength at each point can be determined by the sum of the absolute values
of the derivatives in both directions, as presented in Equation 4.15.

The output of this module is an edge image (I.), where pixels close to the marker
border have a high intensity value. As a result, marker contours can be easily extracted
by binarizing I. with a given threshold. The threshold must be carefully chosen so that
the contour extracted for each marker defines a closed region. Moreover, the sign of
G provides the information to distinguish the left and right side of the contour. For a
pixel on the contour of a marker, its G, is negative on the left side and positive on the

right side.

Hole Filling

Once the edge detection is complete, we have a binary image where each pixel is marked
as either an edge pixel or a non-edge pixel. Markers in the binary image are seen as
hollow circles, which are filled by the Region Filling module. The region filling approach
presented in [WBMO04] is adopted in the implemented design since the algorithm can
be easily parallized. The criterion that determines whether a pixel should be filled or
not is described as follows:

Suppose pixel p located at (x,y) is the current pixel under scan. pl and p2 represent
pixels located at (x — 1,y) and (x,y — 1) respectively. Then p is filled if it is an edge
pixel, or both the pl and p2 are filled and the G, of pl is not a positive number.

Morphological Filtering

The next step of the pixel processing pipeline is a morphological filter. The objective is
to remove small foreground regions which can be caused by noise. An erosion filter and
a dilation filter are integrated in the module. The order for which filter is applied first

is configurable. By changing the order of erosion/dilation, both opening and closing
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operations are achievable. In order to provide more processing flexibility, both erosion
and dilation filters are designed to support bypassing the input pixels directly to the

output without them being processed.

Blob Analysis

The Blob Analysis module labels all foreground pixel regions and calculates their 2D
geometrical features, including center of gravity, area and bounding-box. The algorithm
and the FPGA implementation have been detailed in Section 4.6.

Blob Classification

The Blob Classification module refines the tracking result according to the information
of blob area and bounding-box. By checking the area, blobs that are too small or too
large are filtered out. Moreover, based on the assumption that all markers are circular
in shape a simple roundness check is performed. If the width of the bounding box is
close to its height, we probably have a circle rather than long rectangular blob. Addi-
tionally, the blob extent is calculated as a double-check. The extent of a blob is defined
as the area of this blob divided by the area of its bounding-box. Given the circular
form, the extent value of a marker should be between 0.8 and 0.9. Thus, any blob with

an extent out of this range is eliminated.

Figure 5.7 demonstrates an example, which shows the resulting images produced by

the Pixel Processing Pipeline.

5.3.3. Multi-Port Memory Controller

Memory management is an important aspect in the PowerEye FPGA design. In order
to verify the tracking results during the run-time, the FPGA must provide the possi-
bility to transmit the original or intermediate result image data from one or multiple
high-speed cameras to PC. In the prototype system, Gigabit Ethernet is the only avail-
able communication path between PowerEye and PC, which has a physical bandwidth
limitation of 1Gbps. Since the pixel data rate is much higher than 1Gbps, a complete
image frame needs to be buffered. Storing image data produced by multiple high-speed
cameras in real time requires not only large storage capacitance but also high memory
bandwidth. This makes the off-chip ZBTSRAMs on PowerEye an ideal choice for use
as a frame buffer.

As mentioned in Section 3.5.2, PowerEye features two independent ZBTSRAM banks,
allowing to construct a "ping-pong” architecture. More precisely, the memory bank
that is being read from and written to the ZBTSRAM can alternate every frame. This
avoids concurrent reads and writes on the same chip and thus improves the image data

transmission efficiency.
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(a) Original image

(b) Gaussian Smoothing (c) Sobel Edge Detection

(d) Hole Filling (e) Morphological Filtering

(f) Blob Analysis (g) Blob Classification

Figure 5.7.: Intermediate results produced by the Pixel Processing Pipeline
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One great challenge for managing the image data storage in PowerEye is how to
handle concurrent pixel streams from multiple cameras. As mentioned in Section 5.3.1,
the Video Input Controller packs every 4 pixels into a 32-bit word for each camera,
yielding a total of 96 bits data per clock cycle. However, one ZBTSRAM bank has only
a 36-bit wide data bus. In the PowerEye FPGA design, this problem is addressed by a
Multi-Port Memory Controller (MPMC).

The implemented MPMC is a triple-port memory controller which can arbitrate up
to three concurrent pixel streams. Each memory port has a 36-bit wide data interface.
Either a read or a write access can be served at a time, since the address control is
shared between read and write. A read buffer and a write buffer with the depth of
32 are integrated in each memory port so that the read and write requests can be
buffered and get processed only when the memory bus is available. The arbiter assigns
time slices to each port for accessing the ZBTSRAM and arbitrates all three ports in a
round-robin fashion. Figure 5.8 illustrates the block diagram of MPMC.
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Figure 5.8.: Block diagram of the MPMC

In the prototype system, all Cameralink pixel streams have an operating clock fre-
quency of 80MHz. After the 3:4 pixel deserialization performed by the Video Input
Controller, the pixel clock is degraded to 60MHz. In order to write three pixel streams
concurrently into the memory without any data lost, the ZBTSRAM must be clocked
at least at 3 x 60M Hz = 180M Hz. An important consideration for designing a high
speed memory interface is minimizing the clock skew, which is caused by delay in the
clock path. Clock skew potentially reduces the overall design performance by increasing
setup times and lengthening clock-to-output delays, both of which increase the clock
cycle period [Xil06]. The solution presented in [Bap00] is adopted in the PowerEye
FPGA design. The key point is to route the clock signals driving the both ZBTSRAM
banks back to the FPGA and use them as feedback inputs to the Digital Clock Man-
agers (DCMs). Inside the FPGA, three DCMs are employed to minimize the clock
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skew as shown in Figure 5.9: one to de-skew and generate a 2x controller clock and
two to de-skew and generate a board-level 2x clock. As a result, both the controller
and the ZBTSRAMs are driven by de-skewed clocks. Based on this architecture, the
physical interface of the MPMC can operate at 186MHz, which satisfies the clock rate

requirement.
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Figure 5.9.: Clock de-skew scheme of MPMC

5.3.4. Ethernet Packet Controller

As mentioned in Section 3.5.7, the PowerEye FPGA contains embedded Gigabit EMAC
blocks. Together with the on-board PHY, a Gigabit Ethernet connection to an external
device, e.g., a network, a PC, or another PowerEye board, can be established. Although
the EMAC greatly simplifies the design for data communication over Ethernet, extra
logic is still required for creating packets that comply with the network transmission
protocol. This functionality is implemented by the Ethernet Packet Controller module.
In addition, this module also handles camera synchronization for applications where a
large number of cameras and PowerEye boards are used in the tracking environment.
The high level block diagram is shown in Figure 5.10.

As can be seen, there are three main types of packets traveling over the Ethernet

Packet Controller:

1. video packet, which carries the raw image data reading from the MPMC and the

tracking results produced by the Pixel Processing Pipelines.

2. configuration packet, which contains the configuration information for the com-

plete system.

3. PTP (Precise Timing Protocol) packet, which is dedicated for time synchroniza-

tion between different network nodes.
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Figure 5.10.: Block diagram of the Ethernet Packet Controller

UDP Packet Transmitter

The Packet Transmitter is responsible for organizing the video data and the config-
uration data in standard Ethernet packets, so that they can be accepted by another
Ethernet device.

Considering that high network bandwidth utilization and low transmission latency
are critical for the overall system performance, the User Datagram Protocol (UDP)
[Pos80] was chosen as the network communication protocol. UDP is a transport layer

protocol defined in the well-known Open Systems Interconnection (OSI) model [Zim80).

0 4 8 12 16 20 24 28 31
Destination MAC Address (Byte0O-Byte3)
Destination MAC Address (Byle4-Byteb) Source MAC Address (ByteQ-Byte1)
Source MAC Address (Byte2-Byte5)
EtherType Version HL | Type of Service
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Flags Fragment Offset Time To Live | Protocol
Header Checksum Source |IP Address (byteO-byte3)
Saource P Address (byted-byte7) Destination 1P Address{bytel-byted)
Destination IP Address(byted-byteT) Source Port
Destination Port Length
Checksum
Data

I:I : MAC Header :\ . IP Header I:\ : UDP Header

Figure 5.11.: UDP packet format
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As shown in Figure 5.11 , a UDP packet consists of four data segments: the 14-byte
MAC header, the 20-byte IP header, the 8-byte UDP header and the payload data to
be transmitted. All data fields of the headers can be considered as static, except for

the following parts:

o Total Length and Header Checksum belonging to the IP header,

o Length and Checksum belonging to the UDP header.

The calculation for UDP checksum is optional, which means it can be set to zero
without the packet being rejected by the receiver [ABS10] [Pos80]. The computation of
IP header checksum is defined as the 16-bit one’s complement of the one’s complement
sum of all 16-bit words in the header [Int81]. If we exclude the Total Length, all fields
in the IP header section are constant. Therefore, the IP header checksum can be seen
as a function of Total Length. To simplify the FPGA design, the length of the payload
data for both video packet and configuration packet is set to be equal to the width of
the image. Then the Total Length of the IP header and the Length of the UDP header

can simply be calculated as :

Total_Length = 20(1 P_header) + 8(U D P_header) + Image_Width (5.2a)

Length = 8(UDP_header) + Image_Width (5.2b)

Since the resolution of the camera will rarely be changed after initialization, we
can pre-calculate the IP header checksum by software. As a result, the entire header
required for generating the video and configuration packets can be stored in a header
RAM. After power-on, we send a special init packet from PC to PowerEye. The init
packet contains basic information used for initializing the head of UDP packets carrying
video and configuration data. This includes pre-calculated IP header length, IP head
checksum, UDP length and all other static data fields such as MAC addresses, 1P
addresses, UDP port numbers, etc.

When the payload data is ready to be sent, the constant header fields stored in the
header RAM are read out and transmitted first. Since the transmission of the header
takes only 44 clock cycles, a small amount of payload data need to be buffered. The
transmission of the payload data can start immediately after all header bytes are sent.
This removes the need of buffering the entire payload data for calculating the length
and checksum, and thus significantly reduces the transmission latency.

In order to measure the transmission throughput when sending data from FPGA to
PC, the following experiment was performed. The FPGA was programmed to generate
a large number of UDP packets which are continuously transfered to PC. The packets
contain fixed header stored in the header RAM. A serial number is attached to the
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data field of each packet so that packet loss can be detected. On the PC side, a C++
application based on the open source WinPcap library [WP11] was developed to receive
the packets. Packet loss and corruption are monitored by checking the serial number
and the IP header checksum. According to the measurement results shown in Figure
5.12, when sending packets with the size greater than 1024 bytes, a substantial data
transfer (without any packet loss or corruption) rate of 887Mbps can be achieved. This
allows to transmit approximately 110 images per second from PowerEye to PC at the
resolution of 1024 x 1024.
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Figure 5.12.: Results of the Gigabit Ethernet transmission throughput measurement

The transmission latency over Gigabit Ethernet was measured by performing a round-
trip test. The FPGA sends a UDP packet to PC. Meanwhile, a timer inside the FPGA
starts. The PC acknowledges back as soon as the packet from the FPGA is received.
The timer stops at the moment when the acknowledge arrives in the FPGA and the
round-trip time (RTT) is recorded. The one-way latency can be estimated by dividing
the RTT in half. Figure 5.13 illustrates the results of the latency measurement.
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Figure 5.13.: Results of the Gigabit Ethernet transmission latency measurement
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Precise Time Synchronization

e The problem of camera synchronization

As already mentioned in Section 3.6.3, camera synchronization is an important issue
in a multi-camera based optical tracking system. Images delivered by various cameras
must be captured at the same moment to ensure correct tracking results.

In the prototype system, synchronization of two cameras connected to one PowerEye
board is easy to achieve. Dedicated hardware architecture enables that the PowerEye
FPGA can send a common external trigger signal (ExTrg) to the cameras, which starts
the exposure and pixel readout processes for both image sensors simultaneously.

In some more complicated cases, where a large number of cameras and PowerEye
boards are used, the problem now becomes how to synchronize the ExTrg signals from
different PowerEye boards with each other. ExTrg is activated by the PowerEye FPGA
immediately after power-on. There are two main reasons that cause the ExTrg signals
generated by various PowerEye boards to be asynchronous. First, the PowerEye boards
can not be powered up at the same time. All PowerEye boards in the tracking envi-
ronment are powered independently. In practice, it is difficult to activate the power for
all PowerEye boards at exactly the same moment. The second reason for the synchro-
nization problem is that each PowerEye FPGA has a unique oscillator with an inherent
error in frequency, which means that each oscillator has its own output frequency near
the nominal value but not exactly equals the nominal value. The tolerance is often
measured in PPM (parts per million). Suppose we have two clock oscillators running
at 100MHz with a frequency tolerance of +=100PPM (the typical value for commercial
crystal oscillators), in 10 seconds one clock can run 2ms faster or slower than the other
for the worst case scenario. Moreover, the output frequency of a crystal oscillator can
drift due to change of environmental conditions, such as temperature. Therefore, even
if we can power up all PowerEye boards simultaneously, the ExTrg signals will not keep
synchronized since the temporal drifting caused by clock oscillators can be accumulated

over time.
e Precision Time Protocol

Considering that Ethernet is the only way to interconnect a large number of PowerEye
boards (see Figure 3.29), the IEEE1588 standardized Precision Clock Synchronization
Protocol (also known as Precision Time Protocol or PTP) [LE02] is adopted to solve
the problem of camera synchronization. PTP provides a mechanism to allow network
devices exchanging their time information. By precisely time-stamping special packets
as they leave and arrive at the network nodes, PTP can measure and compensate offset,
delay and clock drifting among different devices to provide a common time base at sub-
microsecond precision to all nodes on the network. For our application, if all PowerEye

boards in the tracking environment are running on the basis of the same time reference,
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it is easy to create synchronized ExTrg signals to achieve strict camera synchronization.
The following describes how the precise time synchronization works in PTP.

In a PTP network, one device is selected to provide the grand-master clock. The
master device usually has the "best” or most accurate clock, to which the local clock
of other (slave) devices must be synchronized. The master broadcasts its time to all
slave nodes at a predefined interval (also known as Sync Interval). The slave nodes
collect the time information from the master and adjust their local clock accordingly.
It is important to mention that the Sync Interval must be chosen to avoid significant
overheads on the bus traffic. Commonly used values for the Sync Interval are 1, 2, 8,
16 and 64 seconds.

In PTP, four messages are defined to manage the time information traveling between
master and slave: Sync, Followup, DelayReq, and DelayResp. Figure 5.14 and Figure

5.15 illustrate how the offset and delay between master and slave are calculated and

compensated.
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Figure 5.14.: PTP offset measurement

In Figure 5.14, the master inserts its local system time into a Sync message, then
sends the message out. A Followup message containing the time when the Sync message
actually leaves the master (T},,1) is sent later to the slave. On the slave side, the time
when the Sync message arrives (Ts;) is recorded. After receiving the Followup message,
the slave may calculate the offset with respect to the master under the assumption that
there is no delay on the communication path. Since then, the slave can synchronize
itself to the master with a constant error due to the unknown transmission delay.

The correction for the transmission delay works as follows. The slave sends a De-
layReq message to the master and time-stamps the moment when the message actually

leaves (Ts3). The master records the time when the DelayReq message arrives (1,3),
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Figure 5.15.: PTP delay measurement

puts it into the DelayResp message and sends it back to the slave. Based on the as-
sumption that the communication path is symmetric, the transmission delay can be
calculated as shown in Figure 5.15.

As mentioned previously, in order to avoid occupying significant Ethernet bandwidth,
the corrections for offset and delay are performed at a relatively long interval, for
instance, once a second. Therefore, to achieve sub-microsecond accuracy and maintain
linear time, it is also necessary to estimate and compensate the clock drifting between

slave and master so that the slave clock runs at the same speed of the master clock.
e PTP in FPGA

The key components used to implement the PTP based time synchronization are shown
in Figure 5.10, which mainly include the Real Time Clock (RTC) logic, the Tx and Rx
Time Stamping logic, the RTC Correction module and the PTP Tx Buffer.

The RTC is formed by a 48-bit seconds field counter and a 32-bit nanoseconds field
counter. When the nanoseconds field counter reaches 1x10? (1 second), it resets back to
zero and the seconds field counter increments by 1. In the implemented FPGA design,
both the master RT'C and the slave RTC are clocked at 125MHz, since this is a readily
available clock source used to drive the transmission logic of the Gigabit Ethernet MAC.
Thus, by default the nanoseconds counter increments by 8 on every rising edge of the
125 MHz clock. During the operation, the slave clock frequency must be fine tuned to
match the frequency of the master clock. For this reason, the RT'C nanoseconds counter
is extended by a 16-bit sub-nanoseconds counter, so that the nominal 8 ns increment
step can be adjusted at a high degree of accuracy (1/2!6 ns). The fine-tuned RTC
increment step is a 20-bit integer value calculated by the RTC correction module. The

upper 4 bits overlaps with the lower 4 bits of the RTC nanoseconds counter and the
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lower 16 bits align with the 16-bit sub-nanoseconds counter, as shown in Figure 5.16.

48-bit Seconds field 32-bit Nanoeconds field
-

16-bit
Sub-nanoeconds field
-

20-bit RTC
Incremet step

Figure 5.16.: Real Time Clock (RTC)

Time stamping plays an essential role in PTP. Whenever a PTP packet is transmitted
or received, the current value of the RTC is sampled. The final time synchronization
accuracy directly depends on the time stamp accuracy. Clearly, the most accurate
method is to time stamp all PTP messages at the physical layer. This is however
not feasible for the FPGA, since the FPGA has no direct access to the physical layer
signals. As illustrated in Figure 5.10, in the PowerEye FPGA design, PTP time stamps
are taken on the client interface of the Embedded Ethernet MAC. Since the Ethernet
MAC has a known fixed latency, high accuracy can still be achieved.

The RTC Correction module functions only when the PowerEye board is identified
as a slave device in the network. It is responsible for calculating the offset and delay
values to update the slave RT'C using the time stamps extracted from the PTP packets.
Furthermore, this module also determines the value of the RTC increment step to
compensate the clock drifting with respect to the master. The adjustment of the
increment step takes place at the frequency of the Sync message. Suppose at time
T1 the master sends a Sync message to the slave. A counter on the slave is cleared
when the Sync message arrives and starts counting on every rising edge of the local
clock immediately afterwards. At time 75 the master sends another Sync message.
The slave counter stops counting and latches the current count value (clk_cnt) when
the second Sync message is received. If both T} and 75 are normalized in nanoseconds,
the increment step of the slave RTC can be estimated by (75 —11)/clk_cnt. The result
is represented by a 20-bit value to maintain high accuracy.

According to the IEEE1588 standard, PTP is an application layer protocol built over
UDP. The PTP Tx buffer stores the constant data fields of all necessary PTP massages,
including MAC addresses, IP addresses, UDP ports, ect. Whenever a PTP message
needs to be sent, it is only necessary to update a few bytes of the complete frame,
such as message type, message length, time stamp. The UDP Packet Analyzer shown
in Figure 5.10 monitors all received packets from the Ethernet MAC. If the packet

is identified to be a PTP message, the integrated time stamp is extracted for further
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analysis.

Figure 5.17 shows a setup used to evaluate the performance of the implemented
PTP. Two PowerEye boards are interconnected via a Gigabit Ethernet switch. The
PowerEye board on the top serves as a PTP master, while the other functions as a
slave. In order to test the difference between the slave RTC and the master RTC as
application realistically as possible, the FPGAs on both PowerEye boards output a
Pulse Per Second (PPS) signal which is connected to an oscilloscope. Measurements
show that the time deviation between master and slave was limited in £300 ns (max.

jitter), which is good enough for the purpose of camera synchronization.
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Figure 5.17.: Time deviation measurement between two PowerEye boards

5.4. Performance Evaluation

This section presents the performance evaluation of the above described prototype

system in terms of processing throughput, latency and accuracy.

5.4.1. Processing Throughput

The processing throughput is determined by the maximum number of pixels or the
maximum number of images at a known resolution that can be processed per second.
In the implemented PowerEye FPGA design, all three Pixel Processing Pipelines are
able to be clocked at 150MHz. Since all window-based processing modules, including
Gaussian Smoothing, Sobel Edge Detection, Hole Filling and Morphological Filtering,
are designed to process 4 pixels every clock cycle, up to 600M pixzels/s can be processed
in real-time. Although the blob analysis module processes pixels in serial rather than
in parallel, a throughput of 600M pizels/s can still be achieved according to the per-

formance evaluation presented in Section 4.6.5. Therefore, we may conclude that the
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processing power provided by PowerEye is 600M pixzels/s or 600 frames per second at
the resolution of 1M pixel for each camera.

However, such a processing throughput is not achievable due to the bandwidth limita-
tion of CameraLink. In the prototype system, the cameras are connected to a PowerEye
board via the CLinkRx_TripleBase board, which supports only the Cameralink Base
interface. As a result, both cameras are configured in the CameralLink Base mode with
the operating clock frequency of 80MHz. Since Cameralink Base has three parallel
pixel ports, the theoretical pixel transfer rate can reach 240Mpizels/s. In practice, the
achievable pixel transfer rate will be degraded due to the horizontal blanking time and
the vertical blanking time (hblank and vblank shown in Figure 5.4). Given a resolution,

the maximum frame rate of the camera can be calculated by the following equation.

CameraLink_clock_rate(Hz)
(Image_Width/3 + hblank) x Image_H eight + vblank

frame_rate(fps) = (5.3)
In order to obtain a frame rate of more than 200 fps, the resolution of the MT9M413
sensor is reduced from 1280 x 1024 to 1080 x 1024 in the prototype system. The
hblank and vblank values are set to 16 clock cycles and 5200 clock cycles respectively.
According to Equation 5.3, the camera can output 205 frames per second.
As a result, the real processing throughput of the prototype system is 225M pizels/s

or 205 frames per second at the resolution of 1080 x 1024 for each camera.

5.4.2. Latency

Latency can be defined as the time that elapses between a movement and the report
of that movement. For optical tracking applications, latency is usually expressed in
milliseconds. In the presented prototype system, there are mainly three sources that

cause latency:

1. After the sensor has been exposed to light, the camera FPGA needs time to read

pixels out.

2. The PowerEye FPGA needs to buffer a certain amount of pixels for 2D image

processing.

3. It takes time to transmit the tracking results to PC via Ethernet.

Figure 5.18 illustrates a timing chart for better understanding the latency introduced
by the hardware system.

The latency estimation is done based on the following two assumptions:

1. Latency is the interval between the time when the image sensor finishes exposure

and the time when the host PC gets the 2D marker positions from PowerEye.
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Figure 5.18.: System latency timing

2. The cameras run at 205 fps with the resolution of 1080 x 1024.

In Figure 5.18, time required to readout a complete frame (from 77 to 7%) can be

calculated as follows.

T, — Th = (Image_-Width/3 + hblank) x Image_Height X Ty, (5.4)

where T, represents the clock period of the CameraLink interface. Given that the
CameralLink interface operates at 80MHz and hblank = 16 clock cycles, we can get a
latency of 4.813 ms which is caused by the process of pixel readout.

Latency introduced by the PowerEye FPGA is determined by the number of pixels
that have to be buffered. Since all modules in the Pixel Processing Pipeline are designed
to process pixels "on-the-fly”, only a small amount of pixels are buffered. More precisely,
4 image lines for Gaussian Smoothing, 2 image lines for Sobel Edge Detection, 1 image
line for Hole Filling, 4 image lines for Morphological Filtering and 1 image line for Blob
Analysis. Therefore, we can get that (75 — T) equals the duration of 12 image lines or
0.057 ms.

The transmission delay between PowerEye and PC Ethernet via Ethernet depends
on the size of the packet. As mentioned in Section 5.3.4, the UDP Packet Transmitter
organizes pixel data and tracking results into packets with constant size. When the
camera is running at the resolution of 1080 x 1024, the UDP packet size is fixed to
1122. According to Figure 5.13, the transmission latency over Ethernet (Ty — T3) is
around 0.11 ms.

By summing up the numbers listed above, we can get the result that the overall

system latency (Ty — T1) of the prototype system is 4.98 ms.

5.4.3. Accuracy

The tracking accuracy is evaluated by analyzing the static jitter of the extracted 2D
marker positions. In the accuracy measurement setup both cameras and infrared mark-

ers were placed at stationary positions. The distance between cameras and markers was
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about 1.5 meter. The tracking results for 20,000 frames were recorded. It was measured
that the 2D positions of the marker center of gravity jitter on the x axis by averagely
0.029 pixels and on the y axis by averagely 0.033 pixels, and with a standard deviation
of 0.014 and 0.019 pixels respectively.

5.5. Summary

This chapter presents a prototype system that incorporates all implemented hardware
and software modules in this thesis. Two FPGA designs are described in detail. The
Camera FPGA is responsible for sensor control and image data transmission via the
CameralLink interface. The PowerEye FPGA integrates three Pixel Processing Pipelines
to process pixel streams from three high speed cameras simultaneously. Moreover,
a PTP based solution is presented to solve the camera synchronization problem for
applications where a large number of cameras and PowerEye boards are used in the
tracking environment. At last, the performance evaluation of the prototype system is

performed.






6. Summary and Future Work

This chapter summarizes the work presented in this thesis and discusses some options

for the future development.

6.1. Summary

In this thesis, a complete hardware platform was designed, implemented and evaluated,
for the purpose of high-speed optical tracking.

The developed hardware system consists of three main components: the high-speed
camera, the Cameralink grabber and the PowerEye image processing platform. The
high-speed camera is equipped with a 1.3M pixel (1280 x 1024) CMOS sensor, which
is capable of operating at 500 frames per second. A low-cost, low-power FPGA is
used for operating the image sensor as well as handling the data communication with
the host. In order to transfer large amounts of image data produced by the sensor in
real-time, Cameralink was chosen as the camera interface. Two different CameralLink
grabbers, namely the CLinkRx TripleBase and the CLinkRx FULL were developed
for connecting cameras with PowerEye. CLinkRx TripleBase was designed to inter-
face three cameras that are all configured in the Cameralink BASE mode. Using
CLinkRx FULL, it is possible to interface one camera which is configured in the Cam-
eralLink FULL mode. PowerEye was designed as a high performance image processing
platform, which employs both FPGA and DSPs to perform complex image processing
algorithms at high frame rate. In addition to the core processors, high-speed memories,
such as the ZBTSRAMSs, and rich interface resources, including USB2.0, Gigabit Ether-
net, PCI-Express and the 110-bit general-purpose user I/O as well as the 12-pair LVDS
Link, are equipped on-board to boost the system performance. The overall hardware
system was designed in a modular manner to achieve high scalability. One can scale
up from a 3-camera system to a many-camera system which allows a large number of
cameras to be introduced in the tracking environment.

One of the most challenging problem presented in a multi-camera based optical track-
ing system is how to handle the large amounts of image data in real-time. Within the
scope of this thesis, the study on FPGA accelerated 2D image processing was per-
formed. The FPGA implementation for a number of image processing algorithms,
which are frequently used for optical tracking applications, has been described. For

some of the algorithms, such as color segmentation, noise reduction, edge detection
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and morphological filtering, one can easily exploit different levels of parallelism. Tak-
ing advantage of the parallel processing architecture of the FPGA, a high processing
throughput of several thousand Mega pixels per second can be achieved. A new blob
analysis algorithm was presented in this thesis. The proposed algorithm supports the
detection of tens of thousand blobs and requires only one raster-scan pass through-
out the image. Using a highly optimized FPGA implementation, both high processing
throughput and low latency can be obtained.

In order to prove the usability of the proposed hardware concept, a prototype system
was developed. Individual hardware and software modules were integrated to demon-
strate a functioning tracking system. The obtained tracking update rate (205 fps at
the resolution of 1080 x 1024) and latency (< 5ms) fulfill the design objective of this
work.

Another important issue in a multi-camera based optical tracking system is camera
synchronization. A time synchronization solution was implemented using the PTP pro-
tocol. By exchanging time information between different network nodes, it is possible

to synchronize a large number of cameras at sub-microsecond precision.

6.2. Future Work

As can be observed from previous discussions, the performance of the proposed optical
tracking system is not limited by the computing power of PowerEye but by the trans-
mission bandwidth of Cameralink. To achieve higher tracking update rate and lower
latency, it is necessary to utilize more advanced transmission technologies. Recently,
the Automated Imaging Association (AIA) has released the draft of the CameraLink
HS standard - the next generation of CameralLink. CameraLink HS features high band-
width (up to 33.6 Gbit/s), data reliability, low jitter and built-in fault tolerance with
CRC (cyclical redundancy check). The standard is expected to be finalized and released
in 2012. Integrating the CameralLink HS interface inside the FPGA can be considered
to be one of the future development areas.

The work in this thesis focuses on the hardware system design and the FPGA based
high-speed 2D image processing. However, a complete optical tracking system should
also include camera calibration, feature point matching and 3D reconstruction. At the
moment, the two DSPs on PowerEye remain free for accomplishing these jobs. It is an
important aspect of the future research to develop suitable algorithms for the missing

parts in optical tracking and map them into DSPs.
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140 Appendix A. Schematics

A.3. CLinkRx_TripleBase Board
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A.4. CameralLink Simulator Board
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