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Gegenstand dieser Dissertation ist die Schottky-Massen-Spectrometrie schwerer,

neutronenreicher Nuklide zwischen den Protonenschalen Z = 50 und 82. Dieser Bere-

ich der Nuklidkarte ist noch nicht genau untersucht worden, obwohl die Nuklidmassen

in diesem Gebiet essentiell fr unser Verstndnis der Kernstruktur und auch fr den Ablauf

der Nukleosynthese im r-Prozess sind. Die Messungen wurden 2009 am Ionenspeicher-

ring ESR des GSI Helmholtzzentrums in Darmstadt durchgefhrt. Die untersuchten in-

teressanten Nuklide wurden aus der Fragmentation von 197Au gewonnen. Experiment,

Daten und deren Analyse werden im Detail in der vorliegenden Arbeit beschrieben.

Die Datenanalyse erfolgte mit zwei unabhngigen Methoden, mittels der “Spline” Meth-

ode einerseits und einer Korrelationsmatrix anderseits. Vor- und Nachteile beider

Methoden wurden im Detail untersucht und verglichen. Wichtige Ergebnisse dieses

Arbeit sind u.a.: die erstmalige Bestimmung der Masse von neun Nukliden, 181,183Lu,
185,186Hf, 187,188Ta, 191W und 192,193Re, sowie eine wesentlich genauere Bestimmung

der Massen von drei Nukliden, 189,190W und 195Os. Ferner wurden Korrelationen im

Verhalten von Zwei-Neutronen Separationsenergien und pairing-gap Energien jeweils

mit kollektivem Verhalten der Nukleonen beobachtet und ausfhrlich diskutiert. Die

physikalische Motivation fr weitere Studien dieser Korrelationen, sowie die Perspek-

tiven knftiger Massenmessungen in Speicherringen (einschlielich neuer, wie z.B. in

Lanzhou) werden abschlieend dargestellt.

The present thesis is dedicated to the Schottky mass spectrometry of heavy

neutron-rich nuclides between proton shell closures at Z = 50 and 82. This re-

gion on the chart of nuclides is not well-studied, though masses of these nuclides

are indispensable for our understanding of nuclear structure and in turn of r-process

nucleosynthesis. The measurements were conducted in 2009 at GSI employing 197Au

fragmentation to produce nuclei of interest. The experiment, data acquisition and data

analysis are described in detail in this work. The data analysis was performed with two

independent methods, namely spline and correlation-matrix approaches, advantages

and disadvantages of which were investigated. The obtained results contain masses

for nine nuclides, 181,183Lu, 185,186Hf, 187,188Ta, 191W and 192,193Re, which were mea-

sured for the first time. Furthermore, mass uncertainties for three nuclides, 189,190W

and 195Os, were improved. New data were used to investigate nuclear structure in

this region. Correlations in behavior of two-neutron separation energies as well as

nucleon pairing-gap energies each with nuclear collectivity have been observed and

thoroughly discussed. Motivation for further studies of these correlations, as well as

future perspectives of in-ring mass measurements worldwide are outlined.
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Introduction

Owing to the fact, that human thought precedes human action, the idea that everything

consist of atoms was proposed more than 2000 years before it could be proven to exist.

After the discovery of the first subatomic particle, the electron, in 1897, the necessity

to describe the atomic structure appeared. The development of atomic models went all the

way — from J.J. Thomson’s plum pudding model (1904) through Rutherford’s planetary

(1911) and Bohr (1913) models to a quantum description of the atom — amazingly fast:

within only twenty years [1].

However, an accurate description of the atomic nucleus still remains a challenge. The

residual strong, weak and electromagnetic interactions take place in it. However, these

forces have significantly different ranges and therefore their action can be observed through

different properties of atoms. The binding energy of the atomic nucleus is mainly dictated

by the strong and Coulomb forces, while the lifetime of an unstable atom in respect to a

β-decay is defined principally by the weak interaction.

Thus, in order to describe the atomic nucleus one has to study its various properties. A

nucleus can also absorb energy and redistribute it between constituents in different ways.

Therefore besides the binding energy and the lifetime, various nuclear excited states reveal

the internal structure.

The present work concentrates on precision measurements of nuclear binding energies

or, in other words, atomic masses, which is rather the same, as it will be shown in Chap-

ter 1. There is only a finite number of nuclei that can exist in a form of bound particles,

namely the nuclei between the so-called drip-lines. Neutron drip-line is a boundary of

neutron emission, proton drip-line is the same for proton emission. The chart of nuclides

is also limited by boundary of immediate spontaneous fission. Beyond these drip-lines

nuclei can exist only as unbound resonances with lifetimes of about 10−18–10−24 s. Light

nuclei are well-investigated within the limits of the drip-lines, while heavier isotopes pro-

vide huge unexplored areas of short-lived radioactive nuclides. As nuclei get heavier,

complexity of the nucleonic many-body system increases drastically. Due to large num-

ber of nucleons, different effects in nuclear structure can take place (these effects will

be discussed in Section 2.3). This work is aimed to investigate heavy radioactive nuclei

in order to have a better understanding of their structure and collective effects in such

nuclei. Moreover experimental data on these exotic nuclides can be used for many other
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applications, as for example, new data are valuable for adjusting mass models in this

region of the nuclidic chart, which in turn are used to calculate nuclear properties of even

more exotic nuclei relevant for the understanding of stellar nucleosynthesis processes (see

the discussion in Section 2.4).

Heavy neutron-rich nuclides in the region of 70 ≤ Z ≤ 79 were investigated by means

of Schottky mass spectrometry. These nuclides were produced by 197Au fragmentation

and investigated with the experimental storage ring ESR at GSI, Darmstadt. The exper-

imental techniques, data analysis, mass evaluation as well as interpretation of obtained

results are present in this work in detail. The last part of this thesis provides an outlook

on future mass measurements.
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CHAPTER 1

Nuclear binding energy

Forces in an atom can be separated in two main parts: interaction between the nucleus

and the electrons and interaction between nucleons in the nucleus. Therefore the mass

of an ion can be subdivided into three terms: nuclear mass, electron masses and electron

binding energy

ma = mnucl + (Z − q) ·me −Be(Z, (Z − q)), (1.1)

where ma is the atomic mass, mnucl is the nuclear mass and me is the mass of the electron,

Z is the atomic number of the nucleus, q is the charge state of an atom and Be(Z, (Z−q))
is the electron binding energy of Z − q electrons in the nucleus with Z protons.

The lightest atom is hydrogen with a mass of 0.939 GeV∗, the heaviest measured mass

according to [2] is the one of 269Ds (Z = 110): about 251 GeV [3]. Since the electron is

very light with respect to the nucleus, the mass of the latter corresponds to more than

99.95% of the mass of an atom. As an example, for 257Fm (Z = 100): ma = 239482 MeV,

mnucl = 239432 MeV, 100me = 51 MeV and Be = 0.9 MeV.

The electron mass is known up to about 10−14 u† [4]; the electron binding energies

mainly depend on the atomic number only and are also well-known [5, 6]. That means,

the atomic mass can easily be derived for an ion or a bare nucleus without loosing too

much in precision.

The mass of a nucleus mnucl can be divided into different components:

mnucl = Z ·mp +N ·mn −B(Z,N), (1.2)

where mp and mn are the proton and the neutron masses, respectively, and B(Z,N) is

the nuclear binding energy. The latter is the quantity that reflects all interactions of the

nuclear many body system. However, its value contributes to less than 1% of the total

nuclear mass. The binding energy per nucleon B/A, where A = Z+N is the mass number,

∗in natural units, c = 1
†u is the unified atomic mass unit defined as 1

12m(12C), u = 931494 keV [7]
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Fig. 1.1: Left panel: binding energy per nucleon as a function of mass number A. Only
experimentally investigated nuclides are presented (from [7]). Right panel: the nuclear
binding energy per nucleon as a function of proton number Z for the mass number A =
142. Stable elements of this isobar, 142Ce and 142Nd, are marked in red and have the
highest binding energy per nucleon among these isobars.

shows how tightly nucleons are bound in the nucleus. The nuclear binding energy per

nucleon as a function of A is shown in Fig. 1.1 (left panel). One can see that the largest

binding energy per nucleon corresponds to the iron-nickel region. In the right panel the

binding energy per nucleon for a given isobar (A = 142) is shown. Stable isotopes have

the highest B/A values, while the others, less bound isobars (A = const), decay to these

stable ones via β− or β+ decays. The odd-even staggering reflects pairing forces between

the nucleons of the same type, that is, proton-proton and neutron-neutron correlations.

The proton and the neutron masses are well-defined, therefore the nuclear binding

energy can precisely be derived from the atomic mass.

Besides the nuclear binding energy B(Z,N) there is one other quantity, which is often

used in topics related to nuclear masses. It is the mass excess ME(Z,N), which is defined

as

ME(Z,N) = ma − A · u. (1.3)

The ME shows whether a given nucleus is more strongly bound than the 12C nucleus

(positive values) or less (negative values).

1.1

Nuclear mass models

In order to model the binding energy of an object, the knowledge of its structure as well

as the interactions between the constituents is indispensable. As mentioned above inside

the atomic nucleus the residual strong as well as the weak and the electromagnetic forces

take place. During the last century many aspects of nuclear structure were investigated,

such as shell closures, pairing correlations, different kinds of deformations, etc. These

investigations gave rise to ideas that are used in contemporary mass models.
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However, at the moment there is a variety of nuclear mass models, which use fun-

damentally different approaches to describe the nuclear interactions. Mass models are

conventionally divided into two main classes: macroscopic-microscopic and microscopic.

The former considers a nucleus as one object with complex internal properties, while the

latter considers the nucleus as a composite of many simple interacting objects.

It should also be mentioned that in addition to mass models there are local mass for-

mulas, which are aimed to extrapolate isotope masses beyond the region of experimentally

measured values relying on the smooth behavior of the mass surface. The first example

of this is AME-table predictions based on systematic trends of separation energies and

Q-values [7]. Another example is the Garvey-Kelson relationship, which derives a certain

mass based on six neighboring nuclidic masses [8, 9].

Another interesting approach to mass modeling is the so-called ab-initio theory with

no free parameters. Based on experimental nucleon-nucleon (NN) scattering data, a two-

body interaction potential can be constructed from the first principles to describe light

nuclei with A = 3 or 4. Usage of quantum Monte-Carlo method allows to describe nuclei

up to A = 8 [10].

More information about state-of-the-art mass models can be found in [11, 12].

1.1.1.

Macroscopic-microscopic

models

Under a macroscopic model of the nucleus the Bethe and

Weizsäcker semi-empirical mass formula for the binding en-

ergy is understood as [13, 14]:

B(N,Z) = aVA+ aSA
2/3 + aC

Z2

A1/3
+ aI

(N − Z)2

A
− δ(A), (1.4)

where aV , aS, aC and aI are volume, surface, Coulomb and isospin coefficients, respec-

tively. The volume and surface terms, due to which the formula is also named as “the

liquid drop model”, reflect the fact that the binding energy is given by the counterplay

between the volume and the surface tension. The third term reflects Coulomb repulsion

between protons. The forth, the isospin term, corresponds to the asymmetry energy that

originates from quantum levels filling. This can be understood considering the Pauli prin-

ciple, according to which protons and neutron occupy higher levels in their potential wells

as their numbers increase. Since protons and neutrons have different quantum number,

i.e. the isospin, they have separate wells. Therefore, it is energetically preferable to fill

both wells equally, without asymmetry between proton and neutron numbers. The last

term in the formula, δ(A), is due to the pairing effect, because nuclei with even numbers

of protons or neutrons are more strongly bound (see Fig. 1.1).

This formula can describe general trends in the binding energy as a function of mass

number. However, it requires many additional improvements of microscopical nature to

be able to follow the shell structure, such as the Strutinski shell correction [15]. Moreover,

because of the pairing between nucleons of the same type, corrections for this phenomenon
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are also needed, which can be done using, for example, pairing corrections based on the

Bardeen-Cooper-Schrieffer (BCS) theory [16].

There is a large number of modern macroscopic-microscopic models, which are based

on the liquid drop model but with further improvements. They take into account that,

e.g. Coulomb, volume as well as surface tension terms depend on nuclear deformations.

Macroscopic-microscopic models are among the most accurate models, when speaking

about the reliability of mass prediction. The best-known model is the Finite-Range-

Droplet-Model (FRDM) of Möller, Nix, Myers and Swiatecki [17]. It is worth mentioning

that a new, even further improved version has been published in 2012 [18]. For complete-

ness one should mention that there are local macroscopic-microscopic models which are

tuned to specific regions. For instance, a model of Sobiczewski et. al. can best describe

the heavy and superheavy elements [19]. The model from Liran, Marinov and Zeldes [20]

however, is adjusted in the region between the Z and N magic numbers and still holds

the predictive-power record among the global models that are used to calculate the entire

chart of nuclides with a unique set of free parameters.

1.1.2. Microscopic nuclear

models

The microscopic approach considers interactions of individ-

ual particles in a nucleus. The simplest approximation is

to describe the nucleus as a system of independent particles

moving in a “mean” field with a large mean-free path. This is the basis of the so-called

shell model. It can be described with a one-body Schrödinger equation:

Hϕ(~r) =

[
− ~2

2m
52 +V (r)

]
ϕ(~r) = Eϕ(~r), (1.5)

where V (r) is a central potential, in which particles are moving.

In the simplest approach, a square-well potential is used:

V (r) = −V0 r ≤ R

V (r) =∞ r > R, (1.6)

where r = R is the radius of the nuclear surface. Other potential can also be used like,

e.g., the harmonic oscillator potential:

V (r) = −V0

[
1−

( r
R

)2
]

=
m

2
ω2

0(r2 −R2), (1.7)

where ω0 is the oscillator frequency. Or the Woods-Saxon potential [21]:

V (r) = −V0

[
1 + exp

(
r −R
a

)]−1

, (1.8)

where a is the diffuseness.
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Fig. 1.2: Various types of single-particle nuclear potentials.

These three potentials are shown in Fig. 1.2. With these potentials the shell closures

Np = Nn = 2, 8 and 20 can be reproduced, but not the shell closures for the heavier

nuclides. The latter however are well-known experimentally.

The next step would be considering the spin orbit or ls coupling. Similar to electrons

in atom, the spin dependent force leads to the splitting of otherwise degenerated levels.

This splitting was experimentally observed. However, note that unlike electrons with l−s,
the lowest energy state of the nucleons is l+s. The shell model improved by incorporating

strong spin orbit term into single particle Hamiltonian [22, 23] can correctly reproduce

all magic numbers.

A further improvement of microscopic nuclear forces is the consideration of the two-

body and three-body interactions:

V =
∑
i<j

V (i, j) +
∑
i<j<k

V (i, j, k). (1.9)

An example of such a potential can be zero-range Skyrme potentials, which describe

nucleons as point objects interacting via two- and three-body δ-forces [24]:

V (i, j) ∝ δ(~ri − ~rj)

V (i, j, k) ∝ δ(~ri − ~rj)δ(~rj − ~rk). (1.10)

Another example of a two- and three- body potential are the finite-range Gogny po-

tentials [25], which differ from zero-range Skyrme by the replacement of some δ-forces

by a sum of Gaussians. To solve the Schrödinger equation with these two- and three-

body potentials, the variational Hartree-Fock method [26, 27] is used in many theoretical

approaches [28].

Another application of mean-field is the RMF (relativistic mean-field) model [29].

Although it has comparably small predictive power, it can automatically reproduce spin

7



Tab. 1.1: Some present mass models

FRDM [17] Finite Range Drop Model Macroscopic description of a nucleus
with additional microscopic corrections

HFB [30, 31] Hartree-Fock-Bogolyubov
model

HFB mean-field approach with Skyrme
or Gogny interactions

DZ [32] Duflo-Zuker HF model with a shell model parame-
terization
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Fig. 1.3: Mass of hafnium isotopes by predictions of different theoretical mass models.

orbit coupling. The main disadvantage of mean-field approach is that the set of free

parameters, which fits to existing data has unclear origin.

1.1.3. State-of-the-art

mass models

Some of mass models with good predictive power are listed in

Tab. 1.1. The mass models quickly diverge in their predictions

beyond the experimentally investigated region (see Fig. 1.3).

This means, in spite of the variety of mass models, there are still different approaches

to understanding of the nuclear structure. Therefore further experimental investigations

are highly important for nuclear physics development.
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CHAPTER 2

Mass spectrometry

Despite the fact that measuring atomic masses is one of the many tasks in nuclear physics,

the whole branch of mass measurements is well-developed on its own: it serves not only

the understanding of the nuclear structure, but also it can be treated as an individual topic

in modern research with applications in nuclear and atomic physics, in astrophysics, in

neutrino physics as well as in metrology, chemistry, biology, environmental radioprotection

and safety, space missions, etc. The history of mass measurements, modern methods of

mass spectrometry and direct applications of obtained results will be briefly discussed in

this chapter.

2.1

History of mass measurements

To find out when the first attempt of atomic mass measurement was done, one needs to

know, when it was realized that there is something to measure. It is interesting to track

back on how human understanding came to the idea of a nuclide, — an atom consisting

of a given number of protons and neutrons.

In fact, the history of chemical elements starts with the history of human being,

because the oldest existing sample of copper is dated 6000 BC [33]. About ten metals

were known already in antique. Therefore mankind knew about different — in a chemical

sense — types of matter, but still had wrong ideas about the origin of these differences.

Medieval times gave birth to the idea of possible instability of elements embodied in

alchemical attempts to transmute lead into gold [34]. And it is amazing that now such a

”transmutation” can simply be done at many accelerator facilities.

Further developments in a more scientific way took place in 17th century with the

distinction between chemistry and alchemistry made by Robert Boyle [35]. And finally in

18th century chemistry became a full-fledged science as Antoine Lavoisier had done some

quantitative observations [36].
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It is interesting to note that until Lavoisier’s time (for about 300 years) people still

thought there were four classical elements like water, earth, fire and air as elementary

constituents. It was thought that metals transform into earth and fire-like element “phlo-

giston” in the combustion process [34].

Lavoisier made a first list of chemical elements, there were 23 of them. Eighty years

later Dmitri I. Mendeleev arranged chemical elements into a periodic table, there were

already 63 elements [37]. Nowadays there are 118 known elements [38], from which 20 are

synthesized artificially in laboratory.

Chemical elements were originally arranged by their atomic weight∗, most of the el-

ements had a weight multiple to that of hydrogen. Nevertheless there was also chlorine

with an atomic weight 35.5, which remained a puzzle until 1913, when isotopes were dis-

covered. One year before the discovery, their existence was suggested by Frederick Soddy,

who analyzed radioactive decay chains. In his work he noticed, that there must be 40

elements between lead and uranium, while the table allowed only 11 [39]. He received the

1921 Nobel Prize in chemistry for his formulation of the theory of isotopes.

Sir Joseph J. Thomson, who had been awarded the 1906 Nobel Prize in physics for the

discovery of the electron, could separate neon-20 and neon-22 [40], thereby he discovered

isotopes and opened up the field of mass spectrometry. Although about 2 decades still

remained before the discovery of the neutron, the era of measurements of nuclidic masses

began.

Francis W. Aston, Thomson’s student, built a mass spectrometer, which allowed him

to identify isotopes of chlorine, bromine and krypton [41]. Aston was awarded the 1922

Nobel Prize in chemistry.

The first modern mass spectrometer was developed by Arthur J. Dempster in 1918; it

allowed him to discover the uranium isotope 235U in 1935. In 1932, Kenneth Bainbridge

developed another spectrometer [42] to verify the equivalence of mass and energy E =

mc2 [43].

In 1954 nuclear-shape deformation was discovered by Benjamin G. Hogg and Henry

E. Duckworth in the rare-earth region [44].

In 1970s at CERN Robert Klapisch and Catherine Thibault connected a mass spec-

trometer to an accelerator and were able to study unstable nuclei [45].

The resolving power of Thomson’s spectrometer was about R=10 ( R = M
∆M
≈ 20

22−20

for the example 20Ne and 22Ne ), Aston reached the resolving power of R=2000 in 1937,

Dempster’s spectrometer had a resolving power of R=3000 and Bainbridge’s spectrometer

had R=10’000 in 1936 [46]. Modern spectrometers have resolving powers of about 105 −
106.

∗average mass of an atom of a given chemical element; depends on the amount of different stable
isotopes in an experimental sample
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Fig. 2.1: A hyperbolical penning trap and a storage ring. From Ref. [54].

2.2

Modern methods for mass measurements

Nowadays a high-precision mass-measurement experiment on radioactive nuclei can be

conducted with a Penning trap or with a storage ring, see in Fig. 2.1. On one side,

penning traps are small devices, under 10 cm in size. They are relatively cheap and

therefore there are many such devices in laboratories around the world. On the other

side, storage rings that are used now for mass measurements of radioactive nuclides have

circumferences of more than 100 meters and presently there are only two such rings in

the world, namely, ESR in Darmstadt, Germany [47] and CSR in Lanzhou, China [48].

One should also note that there are other mass spectrometry techniques: indirect tech-

niques, such as Q-value measurements from reactions (invariant-mass and missing-mass

methods) or using a decay chain, which leads to known masses (superheavy elements’ mass

measurements), and direct techniques such as radiofrequency spectrometers (MISTRAL

at CERN/ISOLDE [49]) or time-of-flight mass spectrometers (SPEG at GANIL [50]) [11]

as well as a new TOF-Bρ method recently developed at Michigan State University [51].

2.2.1. Penning-trap mass

spectrometry

The ion trap technique was developed in the second half of

twentieth century, for which Hans G. Dehmelt and Wolfgang

Paul [52, 53] received the 1989 Nobel Prize in physics. A

Penning trap works as an electromagnetic potential well for charged particles. Preci-

sion mass measurements are most often performed using the destructive Time-of-Flight

Ion Cyclotron Resonance (TOF-ICR) method. However, there are also non-destructive

methods [54].

The particles in a trap can be excited to perform an oscillatory motion, where three
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Fig. 2.2: Time-of-flight measurement in a penning trap (left panel) and measured TOF
value as a function of excitation frequency (right panel). From Ref. [54].

different oscillation modes appear: axial oscillations, magnetron motion and modified cy-

clotron motion. These motions can be converted one into another, changing the total

energy stored by the system. The eigenfrequency of the cyclotron motion ωc is deter-

mined by the charge-to-mass ratio q/m and the magnetic field B only: ωc = q
m
B. In

destructive spectrometry, the particles are released from the trap after excitation and the

time-of-flight (TOF) between the trap and the detector is measured, see Fig. 2.2. If the

excitation frequency matches the cyclotron eigenfrequency, there is a full conversion of

energy between two radial oscillation modes, which means the total energy stored by the

system energy is at its maximum and it has the effect that the total kinetic energy of

particle is maximized. This leads to a shorter time-of-flight after release from the trap.

After TOF measurements the mass-to-charge can be derived from the eigenfrequency [54].

Penning-trap technique has the advantage of extremely high precision. The mass of

nuclides can be measured down to a few keV or even below. However, only a single species

of nuclides can be investigated at once, which means that the beam of particles has to be

purified from any undesirable contamination.

2.2.2. Storage-ring mass

spectrometry

A storage ring is a facility where charged particles can be

stored at a certain (high) energy for extended periods of time.

The revolution frequency of the stored particles can be mea-

sured by a detector placed in the ring and the mass-to-charge ratio can be derived from

the revolution frequency. The advantage of this method is that the ring has a big accep-

tance and many various species can be stored at the same time, similar nuclides that only

differ in charge state can be stored simultaneously. Signals from all stored particles form

a broad spectrum containing species with known and unknown masses. Therefore the

calibration and the data evaluation can be done in situ, that is, using the same spectrum.

The revolution frequencies f , the mass-to-charge ratios m/q and the velocities v of
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stored ions are connected by the following relationship:

∆f

f
= − 1

γ2
t

∆m
q

m
q

+
∆v

v

(
1− γ2

γ2
t

)
, (2.1)

where γ is the Lorentz factor for stored particles and γt is a non-linear ion-optical pa-

rameter of the ring, the so-called transition energy. The momentum compaction factor

αp = 1/γ2
t describes the relative variation of orbit length per relative variation of magnetic

rigidity of the particle (see Subsection 3.1.3 and Section 3.2).

The storage ring can be operated in one of two regimes: SMS (Schottky Mass Spec-

trometry) [55] and IMS (Isochronous Mass Spectrometry) [56]. Both regimes aim to

minimize the second term in Eq. (2.1): the SMS assumes that the relative velocity

spread (∆v/v term) is negligibly small due to cooling, while the IMS exploits the so-

called isochronous mode γ = γt.

The main cooling method used in the SMS is electron cooling, invented in 1966

by Gersh I. Budker [57]. Electron cooling exploits a constantly renewed flux of mono-

energetic electrons, which is used for keeping stored particles at a certain sharp velocity.

Due to Coulomb collisions, the longitudinal as well as the transversal momenta of both,

electrons and ions, are changing. After short interaction length (in the order of a few

meters), the electrons are extracted by a weak toroidal magnetic field, whereas the ions

— only slightly disturbed — remain stored and can interact, when coming back, again

with new, cold electrons. By means of this ingenious “trick”, the emittance† of the ions

will be reduced by many orders of magnitude within a short time which amounts — for

“hot” fragments — to a couple of ten seconds. As the main result, the ions get the same

sharp velocity of the ions with a negligibly small relative velocity spread ∆v/v, and, thus,

a simple relation between m/q and revolution frequency is established.

Another cooling method is the stochastic cooling. It was invented by Simon van der

Meer, who was awarded with the 1984 Nobel prize for that invention [58]. The main

idea is a correction of transversal (betatron) oscillations of stored particles by applying

synchronized detector and kicker, the former detects the transversal position offset of an

ion and the latter then kicks the ion to the “right” orbit. By means of stochastic cooling

the transversal as well as the longitudinal velocity spread can be reduced.

2.2.3. Production and

separation of exotic nuclei

In order to investigate radioactive species, the latter have

to be produced first and then purified. The production of

radioactive species is based on the interaction between the

primary beam and target atoms. There are many possible choices for beam and target

combinations: the beam can consist of heavy or light particles and can have low or high

kinetic energy, the target can also consist of heavy or light particles [59, 60]. There are

†emittance shows distribution of beam in phase space; small emittance corresponds to collimated beam
in space and momentum
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four most often occurring reaction types:

• Projectile fragmentation: a heavy fast beam hits a light-Z target

e.g. 209Bi beam at 600 MeV/u hits 9Be target producing a large number of fragments

with Z ≤ Zp = 83 and N ≤ Np = 126 [61]

• Fusion: a medium-heavy slow beam hits a heavy-Z target

e.g. 70Zn beam at 5 MeV/u hits 208Pb target thereby producing Z=112 element [62]

• Spallation (or target fragmentation): light fast beam hits heavy-Z target

e.g. protons at 1.5 GeV hitting uranium target thus producing hundreds of fragments

with Z ≤ Zt = 92 and N ≤ Nt = 146 [63]

• Fission: uranium fast beam hits light-Z target

e.g. 238U beam at energy of 750 MeV/u hits lead target thereby producing neutron-

rich fragments in the Zn-Sn region [64]

The production target thickness can be selected based on the reaction type. The target

thickness is measured in units of g/cm2, which corresponds to the density ρ of material

multiplied by the size l of the target: ρ
[

g
cm3

]
· l[cm].

There are two main techniques for production and separation of a radioactive beam:

ISOL (Isotope separation on-line) [65, 66] and in-flight [67, 68], whose main properties are

listed in Tab. 2.1. The idea of the ISOL method is to have very thick target (up to a few

100 g/cm2 or a few ten cm in length) so that accelerated protons (or light-ions) induce

many reactions (mainly spallation reaction) until they stop there. Products of reactions

have also no initial kinetic energy and therefore have to be extracted from the target.

In-flight method supposes thiner target (up to a few g/cm2 or a few cm in length), where

neither projectile nor reaction products, which have high kinetic energy and charge, stick

in the target.

Advantages of ISOL method are high production yields (which is the effect of the

target thickness) and good beam emittance due to ionization at rest. The disadvantage

of ISOL is that due to the target thickness the produced particles stick in the target

and they need to be extracted. Various chemical elements have different abilities for

being extracted. Furthermore, extracted particles have to be ionized and post-accelerated.

On the other hand, in-flight method provides very fast highly-charged particles, whose

disadvantage is large beam emittance, which inevitably requires beam cooling, though no

post-acceleration is needed.

2.3

Nuclear structure properties derived from mass values

What information about nuclear structure can be extracted from a measured mass value?
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Tab. 2.1: Production and separation of radioactive species: ISOL and In-flight techniques

ISOL In-flight

Primary beam protons, light ions stable ions from proton to U

Primary beam energy 100-1500 MeV/u from the Coulomb barrier
up to a few GeV/u

Target density up to a few hundred g/cm2 a few g/cm2

Target thickness ∼ 30 cm ∼ 3 cm

Reactions spallation, fission, fragmen-
tation

fragmentation, fission, fu-
sion

Additional ionization surface ionization, laser ion-
ization, ionization by elec-
tron impact [69]

target backing (Nb foil)

Energy of fragments a few ten keV (after post-
acceleration)

a few hundred MeV/u

Setups ISOLDE at CERN, Geneva
(Switzerland) [70]; ISAC
at TRIUMF, Vancouver
(Canada) [71]; IGISOL,
Jyväskylä (Finland) [72]

GSI, Darmstadt (Ger-
many); GANIL, (France);
JINR, Dubna (Russia);
MSU, (USA) and RIKEN
(Japan)

From the mass value of a single nucleus one can calculate its nuclear binding energy.

It is interesting to note, that the highest binding energy per nucleon corresponds not to

iron-56, but to nickel-62, although iron-56 is by a factor of 200 more abundant in the solar

system than nickel-62. That can be explained as follows: in stars nickel-56 (doubly-magic

nucleus) is widely produced, because it has 28 protons and 28 neutrons and thus consist

of 14 α-particles. The half-live of 56Ni is 6 days, that means after a supernova explosion

all 56Ni decays to 56Co and afterwards to stable 56Fe [73].

Combining two, three or more mass values of neighboring nuclides, one can calculate

different quantities, some of which are listed in Tab. 2.2.

The main features of the nuclear structure that can be understood from all these

energies are listed below, type of energy that reveals the feature is given in parenthesis.

• The drip-lines (separation energies)

The drip-lines are boundaries of nuclear stability with respect to nucleon emission.

The neutron drip-line represents a number of neutrons for a specified element (i.e.

specified proton number Z), when the separation energy becomes negative, meaning

that every additional neutron is not bound. The analog is the proton drip-line: for

a specified number of neutrons N every additional proton is not bound (although it

can live for some short as halo-nucleus), when the proton separation energy becomes

negative.
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Tab. 2.2: Quantities, that can be derived from mass values
fo

r
al

l
Z
,N

Separation
energy

One-
nucleon

Sn mZ,N−1 +mn −mZ,N

Sp mZ−1,N +m1H −mZ,N

Two-
nucleon

S2n mZ,N−2 + 2mn −mZ,N

S2p mZ−2,N + 2m1H −mZ,N

Z
,N

—
ev

en

Pairing-
gap
energy

3-particle
formula

∆n3 0.5(mZ,N−1 −mZ,N −m(Z,N + 1))

∆p3 0.5(mZ−1,N −mZ,N −mZ+1,N )

4-particle
formula

∆n4 0.25(mZ,N−2 − 3mZ,N−1 + 3mZ,N −mZ,N+1)

∆p4 0.25(mZ−2,N − 3mZ−1,N + 3mZ,N −mZ+1,N )

5-particle
formula

∆n5 0.125(mZ,N−2 − 4mZ,N−1 + 6mZ,N − 4mZ,N+1 +mZ,N+2)

∆p5 0.125(mZ−2,N − 4mZ−1,N + 6mZ,N − 4mZ+1,N +mZ+2,N )

Shell gap
Gn 0.5(S2n(Z,N)− S2n(Z,N + 2))

Gp 0.5(S2p(Z,N)− S2p(Z + 2, N))

Proton–Neutron
interaction strength
δVpn

0.25(S2n(Z,N)− S2n(Z − 2, N)) =

= 0.25(S2p(Z,N)− S2p(Z,N − 2)) =

= 0.25(mZ−2,N −mZ,N −mZ−2,N−2 +mZ,N−2)

One can define one- and two-nucleon drip-lines, the latter is smoother, because on

that scale pairing between nucleons of the same type plays an important role; for

example, a very neutron-rich nucleus is able to bear one more neutron if it has an

odd number of them, but is not able if it has already an even number of neutrons

(see in Fig. 2.3).

Up to now, the neutron drip-line is known for only the first eight elements, whereas

the proton drip-line is known for many nuclides. The reason is that the neutron

drip-line is located much further away from stability than the proton drip-line (see

Fig. 2.4). To understand this phenomenon one needs to know, why the drip-lines

are present at all. The proton drip-line could be understood in a classical sense that

very neutron-deficient nuclei have a shorter distance between protons and Coulomb

repulsion overtakes nuclear forces, though this very classical explanation is much

oversimplified for a quantum system.

Both drip-lines can also be understood from the perspective of Pauli principle, since

protons and neutrons are fermions. As experimental data on shell structure show,

neutrons and protons have separate energy levels. It is energetically favorable to fill

energy levels of both protons and neutrons equally. However, there is an asymmetry

of nuclidic chart toward neutron-rich nuclei, because neutrons do not feel Coulomb

repulsion. Roughly speaking it means there is a competition between Coulomb

force and proton-neutron symmetry. The neutron drip-line can be explained now as
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Fig. 2.3: The one- and two-neutron drip-lines location for oxygen isotopes (Z=8). Blue
points are taken from Ref. [76]

a place where asymmetry between neutrons and protons becomes crucially large.

Very interesting things can happen near the drip-lines because of competing nuclear

and Coulomb forces; in Fig. 2.5 potentials for neutrons and protons in a nucleus

are described with the Woods-Saxon potential plus an additional potential from the

Coulomb force for protons [28]. Protons have a different form of potential barrier,

when one sums the Woods-Saxon and the Coulomb potentials, which allows nuclei

to exist beyond the proton drip-line (see [74]). On the other hand, neutrons do

not have a Coulomb barrier although for a nuclei with non-zero spin a centrifugal

barrier can exist, nuclei beyond the neutron drip-line are as a rule very short-lived

(t ≤ 10−18 s) resonances.

• Shell closures (separation energies, shell gap, pairing gap)

It was discovered that nuclei with some certain numbers of neutrons or protons

show extra stability. By analogy with magic numbers of electrons in the atom,

these numbers are considered as nuclear shell closures. Some measurable properties

of nuclei show special features: a drastic change in separation energies (after a shell

is filled, it becomes very easy to remove one or two “excess” nucleons off), significant

increase in energy of the first 2+ excited state (the “magic” nuclei are supposed to

have a non-deformed spherical shape, which makes vibrational excitations 0+ →
2+ [75] energetically less favorable), longer life-time and other properties.

• Deformations (two-nucleon separation energies)

Experimental investigation of deformed nuclei was initiated by Edward Teller and

John A. Wheeler in 1930 with search for rotational bands in alpha- and beta-ray

spectra. Unfortunately, they didn’t known, that their nucleus of interest, 208Pb, is
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Fig. 2.6: Schematic level schemes of spherical and deformed nuclei. From Ref. [77]

doubly magic and spherical!

The atomic nucleus can be exited by giving energy into its vibrational or rotational

motion. The former means multipole surface oscillations, the latter is a collective

rotation around an axis different from the symmetry axis. It is commonly supposed

that exciting a spherical nucleus the energy can be easier converted into the vibra-

tional motion, while exciting a deformed nucleus causes the energy to be converted

into rotation. In Fig. 2.6 one can see level schemes of vibrational states (for spheri-

cal nuclei) as harmonic spectrum E = ~ω(n+ 1/2) and of deformed nucleus model

as E ∼ I(I + 1). In nature these pure cases are not exactly realized, but one can

observe transition between these limits, for example in the region of stable osmium

isotopes [77].

These structures of energy levels can be investigated by spectroscopic studies, usu-

ally energy of the first 2+ state or the ratio R42 = E4+/E2+ can give information

about the deformation of the nucleus (see in Fig. 2.7).

2.4

Other applications of experimental mass data

Since the theory of the atomic nucleus is not yet developed well enough in order to

precisely predict nuclidic masses, experimental mass data are of high significance for

modeling of astrophysical processes. These astrophysical processes proceed in different

stellar environments and different sites and are needed to explain the observed element

abundances in our Solar system as well as in our Galaxy and beyond it. The main ones

are the followings [79]:

• s-process (slow neutron capture process) is introduced to explain the formation of

stable nuclides heavier than iron/nickel until bismuth. This process is believed to
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occur mainly in AGB stars and on a timescale over thousands of years. About half

of element abundance is believed to be produced by s-process.

• r-process (rapid neutron capture process) is a possible explanation of heavy neutron-

rich nuclides origin (see Fig. 2.8). It may occur in core-collapse supernovae, where

temperature and neutron density are very high. r-process is believed to be respon-

sible for roughly another half of the element abundance. And it is the only process

that explains abundance of uranium and thorium.

• rp-process (rapid proton capture process) refers to formation of neutron-deficient

nuclides up to tellurium (Z=52). This process can occur in accreting binary star sys-

tems, in conditions of very high temperature so that protons can overcome Coulomb

barrier.

• p-process (proton capture process) explains the formation of the so-called p-nuclei

that are certain proton-rich, naturally occurring isotopes of some elements between

selenium and mercury (34≤Z≤80), which cannot be produced in either s- or r-

process.

• γ-process occurs when nucleus is excited by a captured photon and emits proton (or

alpha-particle, or neutron). This process of photodisintegration explains occurrence

of some p-nuclei.

• νp-process is anti-neutrino capture on protons, which can also explain the abundance
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of some p-nuclei.

Nucleosynthesis pathways depend on parameters of the environment, such as neutron

density and the temperature, and on parameters of nuclides themselves. For instance,

neutron separation energy Sn can determine the reaction flow in neutron capture processes

and proton separation energy Sp — in proton capture processes.

One other important application of mass data is to test the Standard Model and, in

particular, to test the unitarity of CKM quark-mixing matrix. Since the weak force is

the only interaction that can change the quark flavor and since nucleons are composed

of u- and d-quarks, β-decay investigation can be used to determine the |Vud| element of

the quark-mixing matrix. By measuring the mass values of parent and daughter nuclei,

one can calculate the Q-value of a reaction. Knowing β-decay Q-value, half-life and

branching ratio of this decay channel, one can calculate the CKM-matrix coefficient |Vud|
and combining it with other particle-data one can test the matrix unitarity [80].

Mass measurements on stable and very long-lived ions provide one interesting appli-

cation in the neutrino physics, namely, in search of neutrinoless double-beta decay. As

a very rare decay mode, double-beta decay (ββ) can be studied in order to investigate

the nature of neutrino: whether neutrino is Majorana particle ν = ν̄ or not [81]. The

double-beta decay can have one of two possible scenarios: with two neutrino emitted,

(2νββ), or the neutrinoless double-beta decay, (0νββ) [82]. In order to set a limit of the

neutrinoless mode, reaction Q-value have to be determined very precisely, less than few

keV as it has been determined up to now.

A non-exhaustive list of other applications of high-accuracy mass measurements is

e.g.: test of CPT-symmetry, tests of QED, new definition of the kilogram unit and the

determination of fundamental constants [54].
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CHAPTER 3

Experiment

3.1

Experimental facilities of the GSI Helmholtz Center

The mass measurement experiment discussed within this thesis was performed at the

GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. In Fig. 3.1

a schematic view of the GSI experimental facilities is shown. A stable heavy-ion beam

is produced by an ion source, for this experiment a 197Au beam was used. Then the

beam is accelerated up to 11.4 MeV/u in the linear accelerator UNILAC, and then by

the synchrotron SIS-18 [83] to an energy of 469.35 MeV/u. Before the fragment separator

FRS the beam hits a thin target, initiating the fragmentation reaction. Produced exotic

nuclei are focused into the FRS and after the in-flight separation they are injected and

stored in the storage ring ESR.

3.1.1. Production target The production target placed after SIS is a relatively thin

target as required for the in-flight production and separation.

For the present experiment a 1035 mg/cm2 9Be target was used, meaning that the target

was made of beryllium (Be) with a density of 1.85 g/cm3 and a length of 0.56 cm. In

addition to beryllium, a 223 mg/cm2 niobium (Nb) backing on the back side of the target

was employed to strip electrons.

When a 197Au beam at an energy of about 500 MeV/u hits a 1g/cm2 9Be target

fragmentation reactions takes place. Based on the EPAX formula [84] production cross-

sections of fragments can be estimated as shown in Fig. 3.2. The fragments of this reaction

are highly-charged. The charge state distribution of 197Au fragments after the target for

a 197Au primary beam at different energies is presented in Fig. 3.3 (left panel). As one

can see, at an energy of about 470 Mev/u the charge distribution is as follows: 32% of

bare nuclei, 49% of ions with one electron (H-like) and 18% of ions with two electrons

(He-like). In order to increase the fraction of bare nuclei, the Nb backing was used. After
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Fig. 3.1: Schematic diagram of some experimental facilities of the GSI Helmholtz Center:
the synchrotron SIS-18, the fragment separator FRS and the storage ring ESR. Location
of production target, electron cooler, Schottky detector and other facilities is denoted in
the figure.

the Nb stripper foil heavy nuclides are delivered as bare nuclei or with up to 3 electrons:

the fraction of nuclei with one or more electrons grows with the proton number. Almost

100% of ions with Z < 30 are delivered as bare nuclei. The fraction of H-like nuclei

surpasses 1% for fragments with Z ∼ 35, the fraction of He-like and Li-like nuclei comes

over 0.1% for Z ∼ 55 and Z ∼ 78, respectively (see Fig. 3.3, right panel).

One can also calculate production rates to estimate the minimum cross-section, which

could be accessed in the present experiment. The number of produced fragments of a

given species per injection can be calculated by

Nf = NbNtσε, (3.1)

where Nb is the number of particles in one extraction spill of the primary beam from SIS-

18, Nt the number of particles in the target per 1 cm2 of target surface, σ the production

cross-section in barn∗ of the fragment of interest and ε the transmission of the ion-optical

system between the target and the detector.

The value of Nb for 197Au beam was approximately 108 particles per spill. Nt can be

calculated by the formula

Nt =
ρ[g/cm−2]NA

m[u]
, (3.2)

where ρ is the target thickness, NA is the Avogadro constant and m[u] is the mass of

an atom of the target material in atomic units. For a 1035 mg/cm2 9Be target, Nt =

∗1 barn is 10−24 cm2
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0.069 · 1024[cm−2]. Transmission efficiency of the FRS-ESR is about 1%.

Having a new injection every 3 minutes and running the experiment for 12 hours one

can get 240 injections, which gives us

Nf = NbNtσε · 240. (3.3)

If we assume only one particle of a given species Nf = 1 in the entire experimental

time (which is enough for a mass measurement with the uncertainty of about 100 keV), we

can calculate the minimal accessible σ. The minimal production cross-section is σmin =

6 · 10−8 b = 60 nb.

The calculated σmin allows to measure masses of several nuclides in the neutron-rich

region with 67 ≤ Z ≤ 75 as well as masses of several nuclides on the neutron-deficient

side between 55 ≤ Z ≤ 70 for the first time according to Fig. 3.2. However, the present

work was focused on the investigation of the neutron-rich nuclides.

3.1.2. The fragment

separator FRS

The FRS fragment separator is an experimental facility, which con-

sists of dipole and quadrupole magnets (see the scheme in Fig. 3.4).

In the section F2 the degrader can be inserted. FRS allows electro-

magnetic separation of nuclides of interest via the so-called “Bρ−∆E−Bρ” procedure [87].

It means the first step of the separation is due to a set value of the magnetic rigidity,

that is Bρ = p/q, where B is the magnetic field, ρ the effective bending magnet radius,

p the momentum and q the charge of particle. It is usually denoted as Bρ(TA-S2)† and

can be tuned by changing the magnetic field of the magnets between the target and the

degrader.

20 m

F1

F2

F3

F5

beam

F6

to F4

to the ESR

quadrupole
magnets

dipole
magnets

production
target

hexapole
magnets

Fig. 3.4: Schematic diagram of the fragment separator magnets

The middle step ∆E means the usage of the energy degrader, which is a piece of matter

and provides an additional separation criterion due to an atomic interaction with it, in

†TA for target and S2 for F2 section of the FRS
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which energy losses are quadratically proportional to the proton number Z (∼ Z2). After

the degrader, there are two more magnet sections for the electromagnetic separation. By

tuning the magnetic field, one sets Bρ(S2-ESR) on the magnets between the degrader

and the storage ring.

At first the FRS is tuned using the primary beam with no target inserted in order to

reach maximum possible transmission. In the present experiment we aimed at 185Hf72+

fragments and therefore the Bρ settings of FRS-ESR were tuned to this nuclide.

One important point was the elimination of the primary beam particles, since their

amount is so large that it overlays all other peaks in the spectrum. After the stripper

foil the charge distribution of 197Au ions is: 57% of bare nuclei, 36% of H-like ions, 7% of

He-like ions and 0.1% of Li-like ions.

For the mass measurements within this thesis there was no degrader inserted in the

FRS in order to have a large diversity of fragments. A Bρ(TA-ESR) of 7.9 Tm was set.

The transmission of the FRS ∆(Bρ)/(Bρ) is of about 1% [88].

3.1.3. The experimental

storage ring ESR

The ESR experimental storage ring is an experimental facility

to store charged particles at a certain energy (see Fig. 3.5).

The storage ring consist of two linear sections and six sections

with bending magnets of 60◦ each. The bending magnet radius is a fixed quantity, but

the magnetic field can be varied from 0.08 to 1.6 T. Therefore Bρ can be varied within

0.5 – 10 Tm [47]. Varying the range of Bρ one can store different particles of interest:

only ions with Bρmin ≤ mvγ/q ≤ Bρmax can stay in the ring, all other nuclides hit the

walls in the bending sections of the ESR.

Electron
cooler

Quadrupole-
triplet

Septum-
magnet

Dipole magnet

Fast kicker
magnet

Hexapole-
magnets

From the FRS

Quadrupole-
dublet

Schottky pick-ups

Fig. 3.5: Schematic diagram of the experimental storage ring ESR

The acceptance of the ESR is ∆(Bρ)/(Bρ) = ±1.5%, i.e., Bρmax − Bρmin = Bρmin ·
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to be stored under the given experimental settings, i.e. for a range m

q
= 2.52 – 2.62 and

at least in one of the possible charge states.

0.03. As an example, for one of the experimental settings used in the present experiment

the ESR acceptance was (7.74–7.98) Tm.

The ESR acceptance is of the same order of magnitude as that of the FRS, i.e. between

1% and 1.5%, though the ESR injection acceptance is only 0.2%. However, during the

cooling stored particles change their Bρ and therefore occupy the full ESR acceptance.

This fact allows investigation of different species by changing the electron cooler voltage

under the same Bρ setting of the FRS-ESR.

As an example of expected nuclides in the storage ring, one can combine calculated

production cross-section data and experimental settings to be applied. Since all produced

nuclides are bare or have up to 3 electrons, one can choose nuclides fulfilling the condition(
m

q

)
min

≤ A

q
≤
(
m

q

)
max

, (3.4)

where the charge q is Z, Z−1 (for nuclei with Z > 30), Z−2 (Z > 50) or Z−3 (Z > 70).

The expected nuclides for (m/q)min = 2.52 and (m/q)max = 2.62 are shown in Fig. 3.6

As mentioned in Section 2.2.2, the revolution frequencies, the mass-to-charge ratios

and the velocities of the stored ions in the ESR are connected with the following relation-

ship (for details see Appendix A):

∆f

f
= −αp

∆(m/q)

(m/q)
+

∆v

v
(1− αpγ2), (3.5)

where αp is a non-linear ion-optical parameter of the ring, called momentum compaction

factor:

αp =
dC/C

d(Bρ)/Bρ
, (3.6)

where C is the path length of the ions with magnetic rigidity Bρ per one revolution.
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Fig. 3.7: Schmatic presentation of the magnetic rigidity as a function of the experimentally
set electron cooler voltage Uc (as an example, two arbitrary experimental settings are
shown). The pink band represents the ESR Bρ-window. Under fixed other experimental
setting, by varying the electon cooler voltage within a few kV, one can store and investigate
different isotopes in the ESR.

To apply the SMS, one needs to keep particles at a certain velocity, therefore electron

cooling is applied [89]. Varying the electron cooler voltage one changes the velocity

of stored particles and therefore the composition of the stored nuclear species, as it is

shown in Fig. 3.7. While cooling is applied, all particles stored in the ring have the same

velocities, but due to various mass-to-charge ratios they have different trajectories in the

magnets and therefore different revolution frequencies. Their path lengths can differ by

some tens of centimeters per revolution (the full ring circumference is about 108 m), so

that the frequencies differ by only some kHz, while the average revolution frequency is

about 2 MHz.

3.2

Schottky Mass Spectrometry (SMS)

SMS is used for mass measurement experiments at GSI since about fifteen years. For a

detailed description see Refs. [61, 90, 91]. It is the technique used in the measurements

described in this thesis. Practically, the SMS combines two main components: Schottky

pick-up detection and electron cooling. Applying electron cooling, one can reach ∆v/v ≈
10−7. Taking this into account, one can consider Eq. (3.5). The typical ∆f/f value for

neighboring ions (with slightly different A/q ratio) is of about 10−4, therefore the second

term in the right-hand side of this relationship can be neglected. In the case of isobars,

A/q = const, ∆f/f is of order 10−6, therefore for the αp calibration ions with different
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Fig. 3.8: αp as a function of path length in the ring. Data points on the plot are calculated
using Eq. (3.5) in two limiting cases: for a sigle spectrum with applied electon cooling
(shown in black) and for a single nuclear species under different experimental settings
(shown in red). The pink band is drawn to highlight places of non-linearity at C ≈ 108.29
and C ≈ 108.45. For details see Appendix A.

A/q ratios have to be used.

In Fig. 3.8 αp is shown as a function of the path length. To calibrate the αp curve one

can take Eq. (3.5) in two limiting cases:

1. calculate αp from one spectrum, when all ions have approximately the same velocity

and ∆v/v → 0:

αp = −∆f

f
· m/q

∆(m/q)
; (3.7)

2. calculate αp from many spectra but for one species, i.e. scan the revolution frequency

as a function of the electron cooler voltage Uc for one specified ion, (∆m
q

= 0):

αp =
1

γ2

(
1− ∆f/f

∆v/v

)
. (3.8)

For more details about the αp calibration, see Appendix A.

One notices that the αp curve is non-linear, which is reflected in the dependence of

m/q on f . This is the main complication of the mass evaluation procedure.

The SMS carries its name because of the Schottky noise, which is another name for

the shot noise. This phenomenon takes place when the number of particles creating the

noise is small enough and independent events can be of significance. First, this type

of electronic noise was investigated by Walter Schottky in 1918 in a vacuum tube and

therefore named after him. In an electronic circuit this noise occurs due to the quantum

nature of the elementary charge. If a current is created by a small number of charged
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Fig. 3.9: The circuit of the data acquisition system of the Schottky detector. To make
use of resonant behavior of the pickups, tunable λ/2-resonators can be switched on and
adjusted in order to achieve higher signal intensities. Signals from the two horizontal pick-
up plates are amplified and summed up. This sum-signal is mixed to the local-oscillator
frequency (LO) and splitted for immediate on-line FFT analysis and off-line analysis, for
which the signal is digitized and stored with the TCAP system.

particles, then the current intensity apparently fluctuates. These fluctuations are shot

noise. In the detector used for SMS, which consists of two pairs of parallel plates, all

charged particles that pass by induce image charges on the plates and subsequently a

periodic current. The Schottky noise from the pick-up plates consists of signals from the

charged ions.

Ions stored in the ring induce a current in the electronic circuits with intervals equal to

the period of their revolution, so spectrum of this signal is the main source of information

on SMS.

3.3

Data acquisition

The mean revolution frequency of the particles in the ESR is about 2 MHz. To become

able to distinguish between isobars, we need to use a higher harmonic of the signal, since

higher harmonics require shorter recording time to achieve the same resolution. The

30th-34th harmonic is usually taken, since the Schottky pick-up was designed for them.

Signals from both pick-up plates are amplified with low-noise amplifiers and summed up.

Before recording the noise from one of these harmonics, one can subtract all frequencies

below 60 MHz in order to collect data from only one harmonic. This can be done

by mixing the original signal (RF) with a local-oscillator frequency (LO) provided by a

frequency synthesizer [92]. The low-frequency intermediate signal (IF) is splitted into two

parts: for on-line and for off-line analysis. A schematic view of the electronic circuit is

shown in Fig. 3.9. After these transformations of the signal, the ESR storage acceptance
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corresponds to about 300 kHz frequency bandwidth. The same data acquisition system

was used in previous experiments and is described in Ref. [61, 90, 91, 93, 94].

One can make preliminary on-line analysis mainly to be sure in particle identification

and store these data for off-line analysis. The TCAP system was used to collect digitized

data for off-line analysis [95].

TCAP data are written in blocks with a sampling rate of 624 kHz. One block is 0.105

s and 131160 bytes, the header of block is 88 bytes, one data point in time domain is

2 bytes, thus every block contains 65536 “time” data points or 32768 “frequency” data

points after FFT.

According to the Nyquist relation [96], for a 624 kHz sampling rate the frequency

bandwidth is 312 kHz. Taking one block of TCAP data for the digital Fourier transform

one has a resolution of 9.54 Hz per channel. In order to have a resolution of 4.77 Hz per

channel, 131072 data points (two blocks) were taken.

To perform the discrete Fourier transform a fast Fourier transform (FFT), an algorithm

implemented in the FFTW library was used [97, 98].
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CHAPTER 4

Data analysis

The analysis of the mass-measurement data consists of the following steps:

1. Off-line production of revolution-frequency spectra by means of FFT

2. Detection of frequency peaks in each FFT-spectrum (in the following spectrum)

3. Identification of all peaks in the spectra

4. Selection of reference masses for calibration

5. Finding the dependence of m/q as a function of the revolution frequency, which is

needed for the calibration

6. Estimation of unknown mass values using this dependence

All steps are described below in more detail. More information about the software

used for the data analysis can be found in Appendix B.

4.1

Schottky frequency spectra

As it was discussed above, the raw data (i.e. Schottky noise) are continuously recorded in

the time domain. Since highly charged ions induce mirror charges on the pick-up plates

periodically, it is more convenient to work in frequency domain, by using e.g. an FFT.

Since the induced signals are tiny, several hundred thousands of revolutions are nec-

essary to observe a frequency peak corresponding to a single stored ion. FFT-spectrum

created from 131072 data points (two data blocks of the data acquisition) corresponds to

recording time of 0.21 seconds. We are interested in a more precise measurement of the

mass, therefore it is better to average the spectra in order to reduce random noise and

thus to increase the signal-to-noise characteristics of the spectra.
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Every 50 subsequent spectra are averaged and result in one single spectrum, which

corresponds to about 10 seconds of recording time. In Fig. 4.1 an example of a typical

single broad-band spectrum is shown. The full frequency span is about 320 kHz. These

frequency peaks represent the revolution frequencies of the ions at the 30th harmonic with

subtracted LO-frequency. The middle and lower panels of this figure show zooms of the

region around 113 kHz. On the lower panel one can see an isobar multiplet with bare

tungsten-190, H-like rhenium-190 and He-like osmium-190 ions.

About one hundred sequential spectra are shown on top of each other in a time-

resolved 2D-spectrum in Fig. 4.2. The time resolution of this 2D-spectrum is 10 seconds.

Note that there are seven injections within 19 minutes, as one can count by the number

of segments in each trace (empty gaps between segments correspond to new injections

and cooling time). After injection there is often a so-called “cooling tail”: this is a small

tail curved to the left/right, which means that the particle was inserted into the ESR

with the velocity smaller/larger than the velocity of the cooling electrons and therefore

accelerated/decelerated by these electrons. The 2D-spectrum gives a possibility to observe

the behavior of particles in the course of time: their appearance, cooling and sometimes

decay. It also allows us to distinguish between random noise fluctuations and simply weak

traces: the latter appear on the same frequency in a few sequential spectra, though the

peaks can have even lower intensity than random fluctuations.

4.2

Correction for magnetic drifts

As one can see in the upper panel of Fig. 4.3, the frequencies of the ions undergo a drift

in time. This happens because of fluctuations of the magnetic field of the ESR magnets.

One can correct for these drifts. One trace in the spectrum is chosen as a reference for

the correction. This trace should be strong enough but it must have no “cooling tails”

at the beginning of the injection. One projects this trace on the frequency axis and finds

its centroid. The frequency centroid is used as the reference frequency. Afterwards for

each spectrum of the time-resolved 2D-spectrum the correction is given in frequency-bins

(channels) as the difference between the reference frequency and the local maxima. Then,

frame by frame the corrections are applied and every 1D-spectrum in the 2D-spectrum is

shifted to the left or to the right by an integer number of bins (see Fig. 4.3, lower panel).

4.3

Peak finding procedure

The software for the automatic peak detection was developed by means of the TSpectrum

class of the ROOT libraries [98]. The procedure of the automatic peak detection consists

firstly of the detection of peaks in each single 1D-spectrum. A very low threshold is
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Fig. 4.1: An example of a single spectrum: broad-band spectrum (top) and two zooms
(middle, bottom). This spectrum corresponds to about 100 s of recording time (about
200 million revolutions in the ring). On the first zoom there are three isobar groups and
on the second zoom there is an isobar with A = 190 and q = 74+.
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Fig. 4.2: An example of the time-resolved 2D-spectrum, which corresponds to 19 minutes
of recording time. Dark colors corresponds to the higher Schottky noise power density
in arbitrary units. The four frequencies correspond to the four different stored species
with given m/q-ratios. One can count the number of injections by the empty gaps and
subsequent “cooling tails”: there are seven injections in this figure.

necessary to detect all weak peaks, as it is shown in Fig. 4.4, upper panel. In order to

find the centroid and its uncertainty, one fits a Gaussian function to every detected peak

(see Fig. 4.4, lower panel).

The low threshold leads to the detection of noise fluctuations, which do not correspond

to real particles. Therefore the automatic noise reduction procedure is implemented. First,

one counts all detected peaks on each frequency channel of the 2D-spectrum. The fre-

quency channels that correspond to ions have bigger number of counts than the channels

on which only random fluctuations were detected, as it is represented in Fig. 4.5. The

frequencies of the ions are selected; it can be done partly automatically, partly only manu-

ally, in the case of weak and short traces that have not enough counts to be automatically

detected. This unit is called the noise reduction routine, which consists of the following

steps:

• Delete points that do not correspond to any real particle;

• Leave only one point that corresponds to an ion in every single spectrum (very often

one peak can be detected twice);

• Delete points with a wrong fit.

In the lower panel of Fig. 4.5 one can see an example of a 2D-spectrum with all detected

points marked with black dots with horizontal error bars, which come from a Gaussian

fitting. On the upper panel of this figure there is a count plot that shows the sums of the

points detected in every frequency bin of the lower histogram.
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Fig. 4.3: The time-resolved 2D-spectrum before and after the drift correction procedure
was applied (for details see text). Every single spectrum is shifted to the left or to the
right by some integer number of bins.

36



Fig. 4.4: Peak detection in a spectrum. Upper panel: red line is a baseline to subtract.
Lower panel: Gaussian fit of detected peaks after subtracting the baseline.
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Fig. 4.5: Lower panel: the black points with error bars correspond to Gaussian fit of
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marked with red triangles are those, which were found with an automatic peak detection
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38



After the noise reduction we have the available information about the particles in the

storage ring: their revolution frequencies. Now one has to identify these particles.

4.4

Isotope identification

According to the relationship between the revolution frequencies and the mass-to-charge

ratios for the SMS
∆f

f
= −αp

∆m
q

m
q

, (4.1)

one can identify the peaks in the spectra. The differences between the frequencies provide

an unique fingerprint, which is used for identification.

Lines in the spectra are located as follows: the distances between isobars (ions with the

same A/q ratios) are in the order of 10–100 Hz. The distances between the neighboring

traces of particles with different A/q are in the order of tens of kHz. Since only bare,

H-, He- and Li-like ions can be stored under applyed experimental settings, isobar groups

usually consist of two or three frequency lines or maybe more due to isomers (nuclear

long-lived isomers of an isobar can also be present, which are seen as individual lines).

Sometimes two different ions have very similar m/q-ratios and thus their resolution in

the spectrum is not feasible, which causes that the spectral line cannot be unambiguously

identified.

In our case, the primary 197Au76+ beam ions were stored under several experimental

settings. The 197Au76+ spectral peak is very broad, because it cannot be cooled completely

within a given timeframe due to its huge intensity. Therefore it is very easy to recognize

the primary beam peak and use it as the starting point of the identification. The ex-

perimental settings were changed in small steps, therefore m/q ranges that are available

under different settings overlap sufficiently to allow for a continuous identification of all

available data.

In Fig. 4.6 the identification under one of the experimental settings is shown. One can

see that many nuclides appear in two charge states in the same spectrum, for example
190Os74+ and 190Os75+ or 195Ir76+ and 195Ir77+.

4.5

Reference masses

After the identification, one has to specify the references for the further mass evaluation.

They must fulfill some criteria:

• Reference isotopes must have an accurately known mass, which was measured more

than once by direct measurements. Only isotopes with mass uncertainties of below

15 keV were considered.
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Fig. 4.6: An example of the identification of frequencies in a broad-band spectrum. This
spectrum was acquired under experimental settings with the electron cooler voltage Uc =
209 kV. Nuclides written in bold face are measured for the first time, and these written
in italics have uncertainties larger than 100 keV.
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Fig. 4.7: The mass-to-charge ratio as a function of the revolution frequency. Upper panel:
the general view, lower panel: same data with subtracted linear fit.

• All traces in the spectra that correspond to a reference nuclide must be well sepa-

rated from the neighbors and be disambigously identified.

Practically that means that about 50% of the identified nuclides are references. The

selected reference nuclides with their tabulated masses, taken from AME-03 [7], are given

in Tab. 5.1.

4.6

Mass evaluation

The goal of the mass evaluation is to describe the mass-to-charge ratio m/q as a function

of the revolution frequency f and to evaluate unknown mass values of given frequencies

using this function.

In Fig. 4.7 it is shown that, as a rough approximation, the m/q ratio depends linearly

on the frequency. After subtracting the linear fit the non-linearity becomes obvious,

therefore the m
q

(f) dependence requires more complicated fitting procedure.

In general, after choosing the references for the calibration of the m
q

(f) function, one

can estimate the mass-to-charge value between two references (interpolation) as well as

outside of the references (extrapolation). It is more reliable to use only interpolations,

since the m
q

(f) dependence is strongly non-linear (see Fig. 4.7).
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4.6.1. The correlation

matrix method (CMM)

The dependence of the m/q ratio on the frequency f can be

found by means of polynomial fitting. The correlation matrix

method (CMM), which is based on the polynomial fitting, was

used in previous mass measurements at GSI [61, 91].

Since the various experimental settings were applied, the spectra obtained under dif-

ferent conditions have to be analyzed separately. However, most of the ions appear in

many spectra recorded under various experimental settings. Therefore, all spectra can

be treated together, in order to take correlations between different fits into account. The

origin of these correlations is the very fact that same nuclides exist in many spectra.

For calibration a polynomial function can be assumed. By applying the fitting pro-

cedure to every spectrum separately, one minimizes the χ2 for each polynomial. Since

the fit polynomial does not pass exactly through data points, there are some deviations

∆i = yi − yfiti . The χ2 of the fit is:

χ2 =
∑
i

∆2
i

σ2
i

, (4.2)

where σi are the standard deviations of data points. In general, the fitting procedure finds

polynomial coefficients that give the minimal χ2.

However, in the case of correlated spectra all fitting polynomials can be treated as a

system with a joint χ2

χ2
joint =

∑
χ2
s, (4.3)

where χ2
s are the χ2 of single polynomials, which are not independent of each other. By

minimizing the χ2
joint one finds fitting polynomials for each spectrum. However, these

polynomials cannot be considered as best fits for the data points in a given spectrum,

although all together they give the best fit of the whole dataset.

For each spectrum one can assume the P -degree polynomial:

m

q
−

P∑
p=0

ap(f)p = l ±∆, (4.4)

where m, q, f, l and ∆ (mass, charge, frequency, deviation of real m/q from the polynomial

value and an uncertainty that will be defined later) have three indices σ, η, ν:

• σ = 0, ..., S−1 corresponds to the spectrum index, where S is the number of spectra;

• η = 0, ..., I − 1 is an index counting different nuclides (Z,A) in spectra (different

charge states of the same nucleus correspond to the same index η), where I is the

total number of all nuclides in all spectra;

• ν = 0, 1, 2 is a number of occurrences of a given nuclide in a given spectrum (can

be 2 or 3 in case the nuclide occurs in this spectrum in different charge states q).
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Explicit form of (4.4) reads

mσην

qσην
−

P∑
p=0

aσp(fσην)
p = lσην ±∆σην . (4.5)

The deviations l should be normally distributed around zero.

From Gaussian fitting (generated in the peak-finding step) one obtains the uncertainty

of the frequency centroid and transforms it in the following way:

∆σην =

d
∑
p

aσp(fσην)
p

dfσην
σfσην , (4.6)

where σfσην are uncertainties from Gaussian fittings.

In order to increase the number of correlations within the dataset one can transform

all masses to the same charge state, e.g. to the bare ones, by subtracting electron masses

and the corresponding electron binding energies, which are well-known [5, 6]:

mσην = mη + Eσην , (4.7)

Eσην = me · (Zη − qσην)−BE(Zη, Zη − qσην), (4.8)

where me is the electron mass and BE(Z,Z − q) is the electron binding energy for a

nucleus with Z protons and (Z − q) electrons.

Due to correlations with other references in all spectra, reference masses may have

some deviations from their table values (AME-03 [7])

mr −mc
r = lr ±∆mc

r, (4.9)

where mr are masses of nuclides used as references (r = 0, ..., R ∈ I, where R is the total

number of the references), mc
r are table values for the reference masses and ∆mc

r are the

uncertainties of these reference masses.

The correlations between the polynomials can be taken into account by applying the

maximum likelihood method [97]; one writes joint probability density function (or like-

lihood function) L, which consists of the calibration likelihood function Lc and of the

experimental likelihood function Lexp:

L = Lc · Lexp =
∏
r

f(lr,∆m
c
r) ·
∏
σην

f(lσην ,∆σην), (4.10)

where f(l, σ) is a Gaussian distribution

f(l, σ) =
1√
2πσ

exp

(
− l2

2σ2

)
. (4.11)
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In order to find the maximum of L, one solves the following equations:

∂ lnL

∂aσp
= 0, (4.12)

∂ lnL

∂mη

= 0. (4.13)

The solving procedure of these equations is described in detail in Appendix C. While

solving the equations the I × I matrix is created, which contains information about all

ions in all spectra, therefore this method is called the correlation matrix method.

The statistical error can be estimated using diagonal elements of the correlation matrix

(see Appendix C). The systematic error can be estimated by “turning-off” one by one all

reference masses as if they were unknown and by solving the equations again; afterwards

one applies the following formula:

R∑
η=r=0

(mr −mc
r)

2

(∆mc
r)

2 + (σstη )2 + (σsys)2
= R. (4.14)

One varies σsys until the sum is equal to the number of references.

The main disadvantage is that the m
q

(f) dependence is not well-described by a quadratic

polynomial (P = 2). For polynomials of higher degree there are not enough points in sin-

gle spectra or, in other words, too much freedom to draw the polynomial, which leads to

huge uncertainties and failures to converge the correlation matrix.

In order to be able to use higher than second degree polynomials, one should have

many well-overlapping spectra with a relatively big number of points in each of them.

In the present case there were only ten different experimental settings applied, under

each of them about 200 ten-second-spectra were recorded. In order to have as much

points as possible in the spectrum, all data from one experimental setting were collected

and averaged. Therefore only ten different overlapping spectra were created, with 13–23

points (overall) in every spectrum. This is not enough for fitting a polynomial function

of degree higher than two; for the second degree polynomials the χ2/DoF ∗ is between 50

and 100, which is too high to claim that the fit describes the data well (see Fig. 4.8).

One should also mention, that the correlation matrix method can be applied without

averaging as well. In that case every single spectrum can be described very well by a

quadratic polynomial with χ2/DoF = 0.1 − 1 due to the higher uncertainties of data

points, but in that case extrapolations are necessary, since single spectra may contain

small number of points, which is not sufficient for fitting. The overall result is dramatically

worse than in the case with averaging, if one judges by the estimated systematic errors.

∗χ2
red = χ2/DoF is the reduced chi-squared statistic, which is simply the chi-squared divided by the

number of degrees of freedom. The number of degrees of freedom can be estimated as the number of data
points minus the number of parameters of the fitting function, see Ref. [99].
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Fig. 4.8: The mass-to-charge ratio as a function of the revolution frequency with the
subtracted linear fit in the range 77-200 kHz. The spline is shown in blue and the quadratic
fit is shown in red.

4.6.2. Spline method Another method for mass evaluation is a newly implemented spline

method. Instead of fitting polynomials to the m
q

(f) dependence,

one can directly connect all reference points with straight lines, which is named linear

spline [97].

From the Gaussian fits one obtains centroids and their uncertainties df (the peak-

finding step). One can convert these uncertainties to the m/q uncertainties d(m/q). For

this purpose the linear fit for the dependence of m/q on f is found:

m

q
= a0 + a1f. (4.15)

Since non-linearities in the m/q(f) are in the order of 10−5 u (see Fig. 4.7); therefore the

coefficient a1 can be simply taken to transfrom df to d(m/q):

d(
m

q
) = a1 · df. (4.16)

The comparison between linear spline and quadratic polynomial is shown in Fig. 4.8;

one can see that the difference between the data points and the polynomial is inadmissibly

huge for the quadratic fit. The χ2 value indicates that the fit hardly describes the data.

An underlying idea of the spline method is simple: in order to evaluate unknown

masses one needs to take a value of the spline at required frequency. Because of the

multiple spectra with the same experimental settings, one needs to average data at some

stage. There are two possible methods:

1. average frequencies for each nuclide and then create a spline and evaluate unknown

masses

2. create a spline for each single spectrum, evaluate unknown mass values and after-
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Fig. 4.9: Mass-to-charge ratiom/q as a function of frequency f with subtracted (arbitrary)
linear fit for different experimental settings. As example 191Re74+ and 191Re75+ ions are
shown in three spectra (settings are Uc = 206, 206.5, 209 kV and LO = 58.06, 58.11, 58.3
MHz for black, blue and red curves correspondingly).

wards average these values.

The second method is better in the sense that one does not introduce additional errors

while averaging all spectra. This additional error can appear for the following reason:

frequencies undergo some drifts and even after the software drift correction there exist

residual shifts. On the other hand the centroid uncertainty is almost always larger than

the residual drift (see Fig. 4.5). The first method has a clear advantage in the statistical

sense: probability to have a reference in every isobar group is much larger after averaging.

The latter argument is very significant, therefore the first method is applied.

As it was mentioned above, in the present experiment ten various settings were applied.

The electron cooler potential Uc and the local-oscillator frequency were being changed in

small steps. Therefore there is a significant overlap between all spectra. That means,

under different settings ions have slightly different trajectories. By varying settings one

moves ions along the m
q

(f) curve, as it is illustrated in Fig. 4.9.

The statistical uncertainty of mass value can be estimated as a sum of the uncertainty

from the frequency centroid σf and the error from the spline calibration σspline. The latter

is determined as a difference between the value of the spline passing through experimental

points and the value of the spline passing through the upper edge of the corresponding

error bars, as it is illustrated in Fig. 4.10:

σ2
stat = σ2

f + σ2
spline. (4.17)

Since the mass of each nuclide is calculated from several spectra independently, the
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Fig. 4.10: The m/q ratio as a function of revolution frequency with subtracted linear
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data points, while the other passes through the upper edge of the data-point error bars.
The error of the evaluated point would be the difference between these two spline values
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centroid determination.

weighted mean is taken as its mass value. The weight w of a data point is determined as

w =
1

σ2
stat

. (4.18)

The statistical uncertainty depends on the number of spectra, in which the nuclide ap-

pears. The more spectra contain this nuclide, the smaller is the uncertainty. The system-

atic uncertainty can be estimated in the same way, as in the CMM, namely by “turning-

off” all references and calculating their values as if they were unknown, then applying

Eq. (4.14).
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CHAPTER 5

Results and discussion

The analysis of the mass-spectrometry data aquired during the experiment described in

this thesis was succusfully accomplished. The mass evaluation was performed via two

different methods: the CMM and the spline method, which are described in the previous

chapter. In total 49 nuclides were identified in frequency spectra. Many of these nuclides

were seen in two or three different atomic charge states. It is noted that isomeric states

of some of these nuclides were resolved. Masses of eleven nuclides could not be calculated

due to unresolved spectral traces or ambigous identification. From the other 38, nine

mass values were measured for the first time, three other mass values were measured with

a higher accuracy than previously available. 18 nuclides were used as references for mass

evaluation. The description and discussion of the results are given in this chapter.

5.1

Mass values measured for the first time

The mass values of the nine nuclides 181,183Lu, 185,186Hf, 187,188Ta, 191W and 192,193Re were

measured for the first time. Also mass uncertainties for the three nuclides 189,190W and
195Os were significantly improved compared to their tabulated values [7]. All measured

values, including the nuclides used as references, are listed in Tab. 5.1. As it was discussed

above, the mass values for nuclides whose masses were known before were re-determined

in the present analysis as if they were unknown, i.e. each reference nuclide was set one-by-

one to “no-reference” and its mass value was obtained from the remaining 17 references.

In Tab. 5.1 mass excess values ME (see Section 1 Eq. (1.3)) of the investigated nuclides

obtained by the spline method are shown. A comparison to the alternative CMM method

is discussed below.

In Fig. 5.1 the comparison of the obtained masses with the atomic-mass evaluation

table (AME-03) [7] and the NuBase table [100] is shown. As can be seen, most of the

masses agree well with the table values within about 100 keV. However, in order to be
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Tab. 5.1: Mass excess values (ME) obtained with the spline method. Mass values mea-
sured for the first time and improved values are highlighted in dark gray (and bold font)
and light-gray, respectively.

El Z A is∗ ref† exp‡ Nset
§ ME, keV ME(AME), keV δ¶, keV

1 Lu 71 181 0 0 1 1 -44797(126) -44740(298) -57
2 71 183 0 0 1 1 -39716(80) -39523(298) -196
3 Hf 72 181 0 1 0 1 -47412(55) -47412(2) 0
4 72 182 1 0 0 4 -44840(50) -44886(6) 46
5 72 183 0 0 0 1 -43214(47) -43286(30) 76
6 72 184 0 0 0 1 -41603(76) -41501(40) -103
7 72 185 0 0 1 1 -38320(64) -38359(196) 40
8 72 186 0 0 1 1 -36424(51) -36431(298) 6
9 Ta 73 181 0 1 0 1 -48383(55) -48442(2) 59
10 73 182 0 1 0 3 -46466(48) -46433(2) -32
11 73 183 0 1 0 3 -45276(41) -45296(2) 20
12 73 184 0 0 0 6 -42804(42) -42841(26) 37
13 73 185 0 1 0 6 -41350(41) -41396(14) 46
14 73 186 0 0 0 5 -38520(40) -38609(60) 90
15 73 187 0 0 1 2 -36896(56) -36766(196) -126
16 73 188 0 0 1 2 -33612(55) -33813(196) 198
17 W 74 184 0 1 0 5 -45663(42) -45707(1) 44
18 74 186 0 1 0 7 -42493(40) -42510(2) 17
19 74 186 2 0 0 1 -38916(92) -38967(3) 51
20 74 187 0 1 0 8 -39863(39) -39905(2) 41
21 74 189 0 0 0 5 -35618(40) -35478(200) -138
22 74 190 0 0 0 7 -34388(41) -34296(165) -88
23 74 191 0 0 1 1 -31176(42) -31112(196) -66
24 Re 75 189 0 1 0 9 -38063(39) -37978(8) -85
25 75 191 0 1 0 9 -34364(38) -34349(10) -15
26 75 192 0 0 1 1 -31589(71) -31708(196) 121
27 75 193 0 0 1 7 -30232(39) -30302(196) 68
28 Os 76 188 0 1 0 7 -41115(40) -41136(1) 21
29 76 190 0 1 0 7 -38637(41) -38706(1) 69
30 76 190 1 0 0 9 -36998(38) -37001(2) 3
31 76 192 0 1 0 7 -35833(39) -35881(3) 48
32 76 193 0 1 0 7 -33329(39) -33393(3) 63
33 76 195 0 0 0 1 -29512(56) -29690(500) 178
34 Ir 77 190 2 0 0 2 -36372(62) -36375(2) 3
35 77 191 0 1 0 1 -36650(80) -36706(2) 56
36 Pt 78 194 0 1 0 4 -34779(45) -34763(1) -16
37 78 196 0 1 0 9 -32655(38) -32647(1) -7
38 Au 79 196 0 1 0 5 -31126(38) -31140(3) 14
∗Isomeric state: 0 — gound state, 1(2) — first (second) excited state
†Reference nuclides are marked with 1
‡0 — measured mass value, 1 — value estimated from systematic trends in AME-03 [7]
§The number of experimental settings, from which the mass value was obtained
¶Difference with AME-03 values: δ = mSpline −mAME = MESpline −MEAME

49



Lu
 1

81
Lu

 1
83

H
f 1

81
H

f 1
82

m
H

f 1
83

H
f 1

84
H

f 1
85

H
f 1

86
Ta

 1
81

Ta
 1

82
Ta

 1
83

Ta
 1

84
Ta

 1
85

Ta
 1

86
Ta

 1
87

Ta
 1

88
W

 1
84

W
 1

86
W

 1
86

n
W

 1
87

W
 1

89
W

 1
90

W
 1

91
R

e 
18

9
R

e 
19

1
R

e 
19

2
R

e 
19

3
O

s 
18

8
O

s 
19

0
O

s 
19

0m
O

s 
19

2
O

s 
19

3
O

s 
19

5
Ir

 1
90

n
Ir

 1
91

P
t 1

94
P

t 1
96

A
u 

19
6

 (
ke

V
)

A
M

E
m

 -
 m

-400

-300

-200

-100

0

100

200

300

400
Spline method
CMM2
New mass

Fig. 5.1: A comparison of the new measured masses obtained with the CMM (blue open
circles) and the spline method (black squares) with the AME-03 table [7] (and the NuBase
table [100] from which the information for isomeric states was extracted). The error bars

represent the total uncertainty σtot =
√
σ2
stat + σ2

sys.

able to choose one of the methods, the CMM or the spline one, one needs to make a

deeper investigation.

One can take the difference between values obtained by the different methods for each

nuclide, as it is shown in Fig. 5.2. Note that most of the points are above the zero-axis,

which can be due to overstating or understating trends in either or both methods. It

should also be mentioned that although most of the values differ within 100 – 150 keV,

the value of 187Ta differs by 400 keV. This can be due to quadratic polynomial fitting in

the CMM as shown in Fig. 5.3. To investigate further the overall shift of the differences,

it is useful to investigate the distributions of the δ-values of the re-calculated reference

masses.

In Fig. 5.4 histograms of corresponding differences δSplinei = mSpline
i −mAME

i as well as

δCMM
i = mCMM

i −mAME
i for reference masses are shown. The histograms are filled with

deviation values δi with the weights

wi =
1

σ2
i

=
1

∆δ2
i

, (5.1)

where ∆δ =
√
σ2
st + σ2

AME.

As can be seen from the histograms in Fig. 5.4, the distributions of δ corresponding to

the two methods look different: the spline distribution is narrower, all reference masses

are re-determined within approximately 100 keV, the CMM distribution is broader, and

therefore the systematic error of this method (which is essentially a standard deviation of

this distribution) is larger. One can find the centroids of these distributions by calculating
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Tab. 5.2: The weighted means of δ-values for 18 nuclides used as references.
δ̄ ± ∆δ̄

Spline method (13 ± 7) keV
CMM (-3 ± 19) keV

deviation from AME-03 (keV)
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CMM

Fig. 5.4: The distributions of δ-values for the masses used as references. One bin of the
histogram corresponds to 25 keV. The spline distribution is shown in orange color while
the CMM one in green. The distributions are normalized to 1.

the weighted means:

δ̄ =

∑
(δiwi)∑
wi

, (5.2)

where the summation runs over the number of references. The standard deviation of the

weighted mean is:

∆δ̄ ≡ σδ̄ · χred =

√
1∑
wi

√∑
(δi − δ̄)2wi
N − 1

, (5.3)

where N = 18 is the number of references.

The weighted means δ̄ of distributions of δ shown in Fig. 5.4 are given in Tab. 5.2. One

can find, that the spline mean δ̄spline is 13 keV above zero, while the CMM mean δ̄CMM is

3 keV below zero, though both mean values are compatible with zero within two σ. This

confirms the observation in Fig. 5.2 that most of the points are above the zero-axis.

The systematic error can be calculated as a standard deviation of the δ distribution

of the references in the following way:

σ2
st.dev. =

∑
[(δi − δ̄)2wi]

∑
wi

(
∑
wi)2 −

∑
w2
i

. (5.4)

This formula is essentially very similar to the previously discussed procedure of error
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nuclide observed in this experiment Au 196 197

mass measured with an improved uncertainty Pt 190 192 194 195 196 197

mass measured for the first time Ir 190 191 192 193 194 195 196

observed isomeric state 184 Os 186 187 188 189 190 191 192 193 194 195

179 reference nuclide Re 185 186 187 188 189 190 191 192 193 194

stable nuclide 180 W 182 183 184 185 186 187 188 189 190 191

Ta 180 181 182 183 184 185 186 187 188

174 Hf 176 177 178 179 180 181 182 183 184 185 186

Lu 175 176 177 178 179 180 181 182 183

Fig. 5.5: All nuclides that were identified in the experiment are marked with colored
squares. The dark-blue ones correspond to nuclides, whose masses were measured for
the first time; the light-blues correspond to nuclides, whose mass uncertainties were sig-
nificantly improved compared to their previous values. Nuclides with observed isomeric
states have grey frames.

propagation, see Eq. (4.14).

The systematic errors given by Eq. (5.4) are 34 and 82 keV for the spline and for the

CMM methods, respectively (38 and 70 keV if calculated by Eq. (4.14)).

As a conclusion to what was said above, the spline method was chosen, because it

has smaller systematic uncertainty. The CMM method is less reliable. This is caused by

second degree polynomials (higher degrees are not possible due to low statistics). Low

reliability results in the higher systematic uncertainty of the CMM.

A general view of identified nuclides in the spectra is shown in Fig. 5.5.

5.2

Comparison to mass models

A comparison of newly measured masses to several often used mass models is illustrated

in Fig. 5.6. In order to characterize the predictive power of theorical models the rms

deviation σrms can be introduced [101]:

σ2
rms =

1

n

∑
(mtheory −mexp)

2, (5.5)

where the summation runs through n compared nuclides (here n = 9).

Interesting to note is that older macroscopic-microscopic models, e.g. FRDM-95 [17]

and Duflo-Zuker [32] models (both were developed around 1995) have relatively large rms

deviations: σrms = 1.11 and 1.00 MeV respectively. While the most recent microscopic
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Fig. 5.6: The comparison of masses measured for the first time in this work with pre-
diction of mass models. The experimentally measured mass values for nine nuclides are
compared with HFB21 [30] (black triangles), HFB-Gogny [31] (green triangles), Duflo-
Zuker [32] (magenta squares) and FRDM-95 [17] (blue circles) models. Grey band repre-
sents uncertainties of mass evaluation.

models, HFB21 [30] and HFB-Gogny [31] developed in 2009, have rms deviations of 0.54

and 0.38 MeV respectively.

5.3

Two-neutron separation energies

Since the present mass measurements aimed at the neutron-rich side of the nuclear chart,

information on the neutron drip-line or on the r-process pathway can be gained. Therefore

the two-neutron separation energies should be investigated. However, the region between

110 ≤ N ≤ 120 and 71 ≤ Z ≤ 76 is far away from both the drip-line and the assumed

r-process pathway. The newly calculated two-neutron separation energies (the formulae

are given in Tab. 2.2) are of about 11-12 MeV (see Fig. 5.7), while the r-process takes

place around neutron separation energies of about 5 MeV and the neutron drip-line is the

zero separation energy by definition.

As described in Section 2.3, the shell structure and deformations can also be investi-

gated based on the separation energies. However, this (Z,N) region is far from nuclear

shell closures, the closest magic numbers are N = 126 and Z = 82. Nevertheless, this

region is interesting for the investigation of nuclear deformations. This region is also

known for the unique interplay of single-particle orbitals which favor high-K high-energy

long-lived isomeric states [102]. Part of the data from this experiment were analyzed in

this respect and several new isomeric states were discovered (see Ref. [103]).

The two-neutron separation energies S2n in the investigated region are plotted in

Fig. 5.7. By inspecting this figure one can observe “knees” and “ankles” in the monotonic
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Fig. 5.7: Two-neutron separation energies for the region covered by the present mass
measurements. The values obtained from improved masses or from masses measured for
the first time within this thesis are marked in red color. The left panel shows the two-
neuton separation energies for the nuclei with even number of protons, the right panel
with odd number of protons.

decrease of the separation energies.

In order to find out, whether these features correspond to some changes in the collective

behavior of nucleons (deformations), one can compare the separation energies of given

nuclides with other nuclear properties, for which a known relation exists between their

behavior and collectivity. Examples of such nuclear properties are excitation energies of

the first 2+ state and the ratio between excitation energies of the first 4+ and first 2+

states R42, which are available from spectroscopic data (see Section 2.3).

In order to see features more clearly, we can look at the difference between S2n(N)

and a linear fit (in order to see features more clearly) and compare it with the first 2+

level energies (see Fig. 5.8).

There are “knees” (
∧

) in the S2n at the places, where the 2+ energies show sudden

drops (Pt and Os at N = 98 − 100, Os at N = 106 − 108), and there are “ankles” (
∨

)

in the S2n at the places, where the 2+ energies show sudden jumps (Pt at N = 108− 110

and W at N = 114− 116). The improved mass values of W at N = 115− 116 reproduce

well this behavior. However, the newly improved value for Os at N = 117 does not show

any significant feature, as it could be expected from systematic discussed above.

Sudden drops in the energies of 2+ states is typically accosiated with growing collec-

tivity, while sudden jumps show the approach to spherical shapes. However, the energies

of the first 2+ level are a more direct indicator of these collective effects than the S2n

energies.

The two-neutron separation energy can be divided in two parts: regular part Sr2n,

caused by regular binding between nucleons, and collective part Scol2n , caused by collective
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Fig. 5.8: Comparison between energies of the first 2+ states and the two-neutron sepa-
ration energies (S2n) for the elements with even Z numbers in the region of the present
mass measurements. Magenta squares correspond to newly measured and improved data.
Red squares and circles correspond to the places of “knees” in S2n and sudden drops in
2+ energies, respectively. Cyan squares and circles correspond to the places of “ankles”
in S2n and sudden jumps in 2+ energies, respectively.
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) reflects the number of valence nucleons and holes. 188Pt
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in S2n than 196Os (P-value 3).

effects:

S2n = Sr2n + Scol2n . (5.6)

A useful quantity is the P-factor which is defined as [104]:

P =
NpNn

Np +Nn

, (5.7)

where Np and Nn are the numbers of valence protons and neutrons, respectively. By

analogy with the valence electrons, the number of valence nucleons is the number of

nucleons or holes with respect to nearest closed shell. The P-factor can be used as a

measure of possible collectivity: large numbers correspond to strongly deformed nuclei,

while the zero value to spherical nuclei with magic neutron or proton numbers (see in

Fig. 5.9).

The 188Pt and 190W marked in Fig. 5.9 have P -factor values of 3.2 and 4.4, respectively,

while 196Os also marked with a circle has P = 3. One can conclude that there is no

significant drop in the S2n(Os), because it is closer to sphericity, where the collective

binding only gives a nonsignificant contribution to the total S2n energy.

For more information about collective contributions to two-neutron separation energies

see Ref. [105].
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5.4

Pairing-gap energies

The pairing-gap energies are fundamental quantities that characterize the strength of

nucleon-nucleon pairing correlations in nuclei. It is not possible to measure pairing-gap

energies directly. However they can be related to odd-even staggering of nuclear binding

energies (OES), that is the distance between the odd-A and even-A mass parabolas for

even-Z isotopes (see Fig. 5.10). The OES can be calculated from 3, 4 or 5 masses of

neighboring nuclides (see Tab. 2.2).
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Fig. 5.10: The neutron pairing-gap energies for Hf isotopes. The orange dashed line corre-
sponds to the isotopes with an odd number of neutrons. The red dotted line corresponds
to the isotopes with an even number of neutrons. The distance between these two lines at
a given neutron number represents the odd-even staggering and can be calculated using
3, 4 or 5 neighboring isotopes via the formulae from Tab. 2.2.

The OES can also contain some information about deformation; therefore it is in-

teresting to compare pairing-gap energies with some other properties of nuclei to find

possible explanations of observed trends. As it can be seen in Fig. 5.11, there is an overall

decrease of the neutron and proton pairing-gap energies with the neutron number. For

magic neutron numbers the R42 ratio is minimal, while the neutron pairing-gap energies

exhibit sudden peaks.

Interesting to note is that some regions of the pairing-gap energies show steeper slope,

for example both the neutron and the proton pairing-gap energies around N = 90− 100.

The comparison of experimental and theoretical data of the neutron pairing-gap energies

in this region is shown in Fig. 5.12; the dependence of ∆n on isospin projection (Iz =
N−Z

2
) was discovered and discussed in Ref. [106]. The most interesting fact is that many

presently available mass models, e.g. FRDM [17], Duflo-Zuker [32] and HFB [30], cannot

reproduce this behavior.

The comparison of the pairing-gap energies with the R42 ratio reveals interesting phe-
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Fig. 5.11: The neutron (middle panel) and the proton (lower panel) pairing-gap energies
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R42 ratios. The turning point is observed at N = 108 for W and Os in both the R42 ratios
and the pairing-gap energies; the new data points for the Hf isotopes (marked with full
circles) show no turning point in the proton pairing-gap energy.

nomena around N = 108 (see Fig. 5.13). At N = 108 the pairing gaps in one hand and

R42 values in the other hand have an apparent turning point for Os, which is however less

obvious for W. The neutron number N = 108 corresponds to the region of maximum de-

formations for Os and W. The subsequent decrease of the R42 is a signature of decreasing

deformations.

For Hf it is clear that the pairing gap has monotonic decreasing trend. The R42(Hf)

ratio also has constant slope for N = 100 − 112. Therefore it is very desirable to do

further investigations in this region in order to find out, whether this turning point in the

proton pairing-gap energies can be related to collectivity or it is just a coincidence.
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CHAPTER 6

Summary and outlook

The present thesis is dedicated to the Schottky mass spectrometry of heavy nuclides on the

neutron-rich side of the chart of nuclides. This part of the chart of nuclides is still not well-

investigated, though the short-lived neutron-rich nuclides between proton shell closures at

Z = 50 and 82 are expected to provide indispensable information for our understanding

of nuclear structure as well as for network calculations of r-process nucleosynthesis in

stellar environments. The experiment providing new data in this region was conducted

in 2009 at GSI with 197Au fragmentation. The motivation for this mass measurement

and possible applications of results are discussed in Chapter 2. The experiment and

employed settings are described in Chapter 3. The analysis of the aquired data and the

description of existing and newly developed mass-evaluation methods, the CMM and the

spline method, are discussed in detail in Chapter 4. Obtained results, among which are

newly measured masses of nine nuclides 181,183Lu, 185,186Hf, 187,188Ta, 191W and 192,193Re

and improved uncertainties of mass values of three nuclides 189,190W and 195Os, are listed in

Tab. 5.1. Further applications of the new data in nuclear structure studies are disscussed

in Chapter 5, where the main focus is given to a connection of two-neutron separation

energies as well as pairing-gap energies to nuclear collective effects. In this chapter the

perspectives of in-ring mass spectrometry at the future new-generation radioactive beam

facilities worldwide are outlined.

6.1

Past and future of the ESR

In Fig. 6.1 a chart of nuclides is shown. The nuclides with the masses measured by

storage-ring mass spectrometry at the ESR and the masses of a few proton-rich nuclides

measured at CSRe are marked in red color, and the nuclides with the masses measured by

Penning-trap mass spectrometry are shown in blue. As one can see, over the past decades

many hundreds of masses were measured at the ESR facility, using both the SMS and the
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IMS techniques. Nuclides described in this thesis are not shown in this figure (they are

presented in Fig. 5.5).

Fig. 6.1: The chart of nuclides, where nuclides whose masses were measured with storage
rings (ESR at GSI and CSRe in Lanzhou) are marked with red color and whose masses
were measured with different Penning traps with blue color. The chart considers only the
most precisely measured values. Nuclides with the mass measured with other methods
are colorless. Masses measured for the first time in the measurements described in this
thesis are not shown in the chart (they are presented in Fig. 5.5).

In 2010 a new Schottky resonant detector was installed in the ESR [107]. The new

detector is based on a resonant cavity principle. The working frequency is around 250

MHz, which corresponds to 125th harmonic of the ions revolution frequency, while the

older capacitive pick-up detector operates on 30th harmonic. The new detector has a

much better signal-to-noise characteristics, which is by a factor of about 100 higher than

that of the older detector. The new resonator has a much higher sensitivity, however it

covers a narrower band of frequencies, which makes it not possible to do the broad-band

mass measurements, as discussed in this thesis. Nevertheless, narrow-band measurements

can be done with a much higher quality. More information about the new resonant pick-up

can be found in Ref. [108].

Narrow-band mass measurements are well-suited for isomer studies, when one needs

to focus on a particular ion, as well as for the half-life measurements.

The high time resolution allows the application of the detector to accurate measure-

ments of in-ring radioactive decays. Examples of this are studies of β-decays and β-delayed

decays [109]. The three-body β-decay results in a decrease of charge state, if the electron
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goes away. The Q-values of three-body β-decays extend from several hundred keV to a

few MeV, in case of β-delayed neutron emission about several MeV. This difference in Bρ

between parent and daughter nuclei does not allow to have them both in the narrow-band

spectrum. However, two narrow-band devices placed along in the storage ring could solve

this problem.

The SMS technique requires cooling and therefore has limitation concerning the life-

time of an investigated particle, because of relatively long cooling times (up to some ten

seconds). To study short-lived nuclei in a storage ring the IMS technique is usually ap-

plied and a TOF detector is used. Usage of the new Schottky resonant detector with the

ESR tuned to the isochronous mode allowed us to investigate particles with half-lives on

a time scale of below 100 ms [110].

6.2

CSRe storage ring

Another storage ring for mass measurements is the cooler storage ring (experimental)

CSRe at the Institute for Modern Physics (IMP) in Lanzhou, China [111]. The schematic

view of the experimental facilities at IMP is shown in Fig. 6.2. There are two storage

rings: one, cooler storage ring (main) CSRm, is used as synchrotron for acceleration of the

primary beam, another, CSRe, for storage and subsequent measurements. Combination

of two rings CSRm+CSRe is analogues to the combination of SIS-18+ESR at GSI. At

present time there is only IMS available. A mass-measurement program on neutron-

deficient nuclei started in 2007 and lead in 2009 to the very successful measurements of

the masses of 63Ge, 65As, 67Se, and 71Kr (A = 2Z − 1) for the first time using the IMS

with a TOF-detector [112]. The IMS-measurement program was continued in 2011 on

nuclei with A = 2Z− 2 in the region of 23 ≤ Z ≤ 29, resulting in several newly measured

masses [113]. Furthermore a new Schottky resonant detector, identical to the one installed

in the ESR at GSI, was built and already tested for further measurements [108, 114].

6.3

FAIR and ILIMA

While the number of Penning trap facilities for high-precision mass measurements in the

world grows rapidly, the storage-ring spectrometry has also bright future perspectives.

The construction of the new FAIR (Facility for Antiproton and Ion Research) project is

being started at GSI. FAIR foresees in its final form much more powerful synchrotrons

SIS-100/300, which will accelerate beams up to 10 GeV/u, the Super-FRS — a fragment

separator of a new generation designed to separate fission fragments — and a complex of

storage rings: CR + RESR, HESR and a NESR (collector ring, recuperated, high-energy

and new ESR). These storage rings and the fragment separator are the basis of the new
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Fig. 6.2: Schematic view of the radioactive beam facility at IMP, Lanzhou [111]. The
synchrotron CSRm accelerates primary beams which are then fragmented in a production
target located in front of the in-flight fragment separator RIBLL2. Separated radioactive
ions are injected and stored in the storage ring CSRe. The revolution frequencies of the
electron-cooled ions can be measured by means of a Schottky pick-up. If the CSRe is
tuned to the isochronous ion-optical mode, the revolution frequencies can be obtained
also for uncooled particles by using dedicated time-of-flight detectors.
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experimental project ILIMA (Isomeric Beams, Lifetimes and Masses) [115].

In Fig. 6.3 nuclides that will be available for investigation by ILIMA are shown. The

main improvement of the present capability of GSI is the number of particles that can be

accelerated by the new synchrotron: while SIS-18 allows — due to space-charge limits for

heavy ions — presently only about 109 particles per spill, SIS-100/300 will allow 1011 or

even more (accelerating in the synchrotron the ions at a lower charge state). That will

increase the production yields of fragments by at least two orders of magnitude. Another

significant improvement is the connection between the new fragment separator and storage

rings, well-adjusted to have high transmission: about 80%, while FRS-ESR provides today

transmissions of only about 1%. This will also increase the number of stored particles by

a factor of 100. All these improvements will allow us to study nuclides with production

cross-section of about 10−16 b. GSI allows minimal production cross-section of about

10−12 b∗.

New regions on the chart of nuclides, which become available at FAIR, will allow us

to study nuclides closer the astrophysical r-process as well as the end part of rp-process.

In Fig. 6.3 assumed locations of r-process pathways are shown, the area between the red

lines correspond to the r-process pathways at neutron densities of 1020−26 cm−3 and a

temperature of 1.35·109 K.

∗These numbers correspond to production rate of 1 particle per week in respect to an injection rate
of one per second.
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APPENDIX A

The αp curve

The revolution frequencies f , the mass-to-charge ratios m/q and the velocities v of stored

ions in the ESR storage ring are connected with the following relationship:

∆f

f
= −αp

∆(m/q)

(m/q)
+

∆v

v
(1− αpγ2), (A.1)

where αp is a non-linear ion-optical parameter of the ring, called momentum compaction

factor:

αp =
dC/C

d(Bρ)/Bρ
, (A.2)

where C is the path length of the ions with a magnetic rigidity Bρ per one revolution.

Derivation of Eq. (A.1)

It is interesting to derive this equation, let us do it here. One can start from the definition

of revolution frequency:

f =
v

C
, (A.3)

where v is the velocity of a particle in the storage ring and C is the pathway length

(circumference).

By differentiating Eq. (A.3) one gets:

df

f
=
dv

v
− dC

C
. (A.4)

In Fig. A.1 (left panel) the particle trajectory with the coordinate system (x,y,s) is
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Fig. A.1: Left panel: the moving curvilinear coordinate system (x, y, s) in ion-optics. The
particle motion is described by a deviation from a reference path (taken from Ref. [116]).
Right panel: a comparison of a central orbit trajectory with a shifted trajectory. The ion
with the magnetic rigidity Bρ moves on the trajectory ds, while the ion with Bρ + dBρ
moves on the trajectory ds+ dL (taken from Ref. [117]).

shown. Let us introduce the momentum compaction factor αp as

αp =
1

C

∮
D(s)

ρ
ds, (A.5)

where ρ is the bending radius of a magnet, s a coordinate in horizontal plane and D(s) a

dispersion function. The dispersion function is defined as:

D(s) =
x(s)

d(Bρ)/(Bρ)
, (A.6)

where x(s) is shift from a central orbit of a particle with magnetic rigidity Bρ.

As can be seen from Fig. A.1 (right panel)

ρ

ρ+ x
=

ds

ds+ dL
or (A.7)

x

ρ
=
dL

ds
. (A.8)

Inserting this and Eq. (A.6) into Eq. (A.5) we obtain:

αp =
1

C

∮
dL

d(Bρ)/(Bρ)
=

dC/C

d(Bρ)/(Bρ)
, (A.9)

where dC =
∮
dL is the difference in the full revolution trajectory.

The magnetic rigidity Bρ by definition is

Bρ =
p

q
= γ

mv

q
. (A.10)
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Differentiating Eq. (A.10) we obtain

d(Bρ) =
∂(Bρ)

∂(m/q)
d(m/q) +

∂(Bρ)

∂v
dv = γvd(m/q) + (m/q)d(γv) (A.11)

or
d(Bρ)

Bρ
=
d(m/q)

m/q
+
d(γv)

γv
=
d(m/q)

m/q
+
dv

v
γ2. (A.12)

Now inserting this into Eq. (A.9) and then the obtained expression for dC/C into Eq. (A.4)

we have

df

f
=
dv

v
− αp

d(Bρ)

Bρ
=
dv

v
− αp

(
d(m/q)

m/q
+ γ2dv

v

)
=

= −αp
d(m/q)

m/q
+
dv

v
(1− αpγ2). (A.13)

Calculation of αp

The compaction factor (non-linear ion-optical parameter of the ring) αp can be calculated

using the measured value of revolution frequency, the mass-to-charge ratio of identified

ions (known from table) or/and the given values of the electron cooler voltage Uc and

current Ic.

The electron cooler voltage and current determine the velocity of the cooling electrons

and accordingly the velocities of all ions stored in the ring. This velocity (and Lorentz

factor) can be calculated via

γ =
Ucr
me

+ 1, (A.14)

β =

√
1− 1

γ2
=
v

c
, (A.15)

where me is the electron mass in eV and Ucr is the real voltage of the electron cooler and

can be found by the following formula:

Ucr = Uc −
113 · Ic√

1− 1
(Uc/me+1)2

. (A.16)

The path length of an ion per one revolution can be calculated by the formula

C =
v

fr
, (A.17)

where fr = (f +LO)/h is the real frequency of the ion, f its frequency from spectrum (on

h-th harmonic), LO the subtracted local-oscillator frequency and h is the signal harmonic.
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The magnetic rigidity of a specified ion in Tesla-meters is

Bρ[Tm] =
m

q
vγ =

(
m

q

)
in u

a.m.u.[kg]

e[C]
v
[m
s

]
γ, (A.18)

where m/q is the mass-to-charge ratio in atomic mass units, a.m.u.[kg] the atomic mass

unit value in kilograms and e[C] the elementary charge value in Coulomb.

The αp can be calculated using Eq. (A.1). There are two methods (see Fig. 3.8):

The first method is to calculate αp from a single spectrum, where all ions have the

same velocity and ∆v/v → 0, then one has

αp = −∆f

f
· m/q

∆(m/q)
, (A.19)

where f is obtained from spectrum and m/q is taken from the table, e.g. AME-03 [7],

as peaks are identified. In order to find the dependence of the αp on the path length C

knowing the frequency f and the electron cooler settings (Uc and Ic), it is necessary to

calculate the corresponding path length C using Eq. (A.14) – (A.17). For every pair of

neighboring lines in a spectrum one has

αp(
C1 + C2

2
) = −f1 − f2

f1 + f2

· (m/q)1 + (m/q)2

(m/q)1 − (m/q)2

. (A.20)

The second method is to scan the frequency as a function of the electron cooler

voltage Uc for one specified ion. Then ∆(m/q) = 0 and

αp =
1

γ2

(
1− ∆f/f

∆v/v

)
, (A.21)

where v can be calculated using Eq. (A.14) – (A.16). For every two neighboring values of

Uc one has

αp(
C1 + C2

2
) =

4

(γ1 + γ2)2

(
1− (f1 − f2)/(f1 + f2)

(v1 − v2)/(v1 + v2)

)
. (A.22)
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APPENDIX B

Software for data analysis

For the data analysis several programs were used. There are separate programs for the

different steps of the analysis (see Section 4): for FFT, for the peak identification, for the

spectra processing and for the mass evaluation, which are listed in Tab. B.1. Most of the

programs are based on the ROOT libraries [98].

Tab. B.1: Software
getheaderinfo reads information from the headers of blocks in TCAP .dat files.

root fft • performs FFT with a given averaging number and a given number of
blocks;

• performs the peak finding in the created FFT spectrum;

• performs Gaussian fitting of the found peaks.

rootrace • displays time-resolved 2D-spectra (many single spectra one above
another);

• corrects magnetic drifts in a 2D-spectrum with respect to a given
reference peak;

• allows for loading the found peak coordinates in ASCII format;

• performs the “noise reduction” procedure automatically and allows
for the manual one;

• allows for loading the peak-identification information and for storing
the data in the format <frequency> - <identification> for further mass
evaluation.

twocalcit • calculates the αp via two given frequencies and their identification;

• identifies a particle via a given reference and the αp value.

cmm performs the mass evaluation by means of the CMM method.

mass spline performs the mass evaluation by means of the spline method.
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APPENDIX C

The correlation matrix method

Introduction The dependence of the mass-to-charge ratio on the revolution frequency

can be described with a P -degree polynomial for each spectrum:

m

q
−

P∑
p=0

ap(f)p = l ±∆, (C.1)

where m, q, f, l and ∆ are functions defined in the lattice with indexes σ, η, ν, where

• σ = 0, ..., S − 1 corresponds to spectrum index, with S — number of spectra;

• η = 0, ..., I − 1 is an index counting different nuclides (Z,A) in spectra (different

charge states of the same nucleus correspond to the same index η);

• ν = 0, 1, 2 is a number of occurrences of a given nuclide in a given spectrum (can

be 2 (or 3) in case the nuclide occurs in this spectrum in different charge states q).

Explicit form of Eq. (C.1) reads

mσην

qσην
−

P∑
p=0

aσp(fσην)
p = lσην ±∆σην . (C.2)

The deviations l of the mass-to-charge ratio from polynomial should be normally dis-

tributed around zero.

From Gaussian fitting (generated in the peak-finding procedure) one obtains the un-

certainty of the frequency centroid and transforms it in the following way:

∆σην =

d
∑
p

aσp(fσην)
p

dfσην
σfσην . (C.3)
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In order to increase the number of correlations within the dataset one can transform

all masses to the same charge state, e.g. to the bare ones, by subtracting electron masses

and the corresponding electron binding energies, which are well-known [5, 6]:

mσην = mη + Eσην , (C.4)

Eσην = me · (Zη − qσην)−BE(Zη, Zη − qσην), (C.5)

where me is the electron mass and BE(Z,Z − q) is the electron binding energy for a

nucleus with Z protons and (Z − q) electrons.

Due to correlations with other references in all spectra, reference masses may have

some deviations from their table values (AME-03 [7])

mr −mc
r = lr ±∆mc

r, (C.6)

where mr are masses of nuclides used as references (r = 0, ..., R ∈ I, where R is the total

number of the references), mc
r are table values for the reference masses and ∆mc

r are the

uncertainties of these reference masses.

Maximum likelihood

method

The correlations between the polynomials can be taken into ac-

count by applying the maximum likelihood method [97]. One

writes the joint probability density function (or likelihood func-

tion) L, which consists of the calibration likelihood function Lc and of the experimental

likelihood function Lexp:

L = Lc · Lexp =
∏
r

f(lr,∆m
c
r) ·
∏
σην

f(lσην ,∆σην), (C.7)

where f(l, σ) is a Gaussian distribution

f(l, σ) =
1√
2πσ

exp

(
− l2

2σ2

)
. (C.8)

To find the maximum of L one solves the following equations:

∂ lnL

∂aσp
= 0, (C.9)

∂ lnL

∂mη

= 0. (C.10)
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Solving equations Let us solve Eq. (C.9).

∂ lnL

∂aσp
= −1

2

∂

∂aσp

∑
σην

(
mσην
qσην
−
∑
P

aσp(fσην)
p

)2

(∆σην)2

 = 0. (C.11)

In what follows fσην means a vector whose pth element is (fσην)
p, thus

∑
P

aσp(fσην)
p

replaced with aσ · fσην , which is a scalar product of two vectors:

∑
P

aσp(fσην)
p = aσ · fσην = aTσ fσην =

(
aσ1 aσ2 · · · aσP

)


1

fσην
...

fPσην

 . (C.12)

Here we should note that for a given σ the summation
∑
ην

runs simply over all masses

in this spectrum.

Although ∆σην depend on coefficients aσp, we consider them as independent in the

present run to simplify the equations (this will be discussed later, c.f. on page 76).

After the differentiation we get S × (P + 1) equations for every p = 0, . . . , P and every

σ = 0, . . . , S − 1: ∑
ην

1

(∆σην)2

(
mσην

qσην
− (aσ · fσην)

)
fpσην = 0 (C.13)

or ∑
ην

1

(∆σην)2
(aσ · fσην)fpσην =

∑
ην

1

(∆σην)2

mσην

qσην
fpσην . (C.14)

For each σ the system of (P + 1) equations can be written as

aσ ·Aσ = bσ, (C.15)

where (Aσ)p,q and bσp can be defined as:

(Aσ)p,q =
∑
ην

1

(∆σην)2
(fσην)

p+q, p, q = 0, . . . , P (C.16)

bσp =
∑
ην

1

(∆σην)2

mσην

qσην
(fσην)

p. (C.17)

The solution for the vector aσ is

aσ = A−1
σ bσ, (C.18)
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aσ = A−1
σ

∑
ην

1

(∆σην)2

mσην

qσην
fσην , (C.19)

where A is a matrix (P + 1)× (P + 1). For each spectrum there is one matrix.

Now we will solve Eq. (C.10):

∂ lnL

∂mη

= −1

2

∂

∂mη

∑
rη

δrη
(mη −mc

η)
2

(∆mc
η)

2
+
∑
σην

(
mσην
qσην
− aσ · fσην

)2

(∆σην)2

 = 0.

For every mass with the index η we have an equation

∑
σν

mσην
qσην
− aσ · fσην

qσην(∆σην)2
= −δrη

mη −mc
η

(∆mc
η)

2
. (C.20)

If η is not a reference mass (η /∈ R), then the right part is zero. In other case mr ≡ mη.

Now let us apply Eq. (C.4) and substitute aσ with Eq. (C.19):

∑
σν

mη + Eσην
(qσην)2(∆σην)2

−

∑
σν

1

qσην(∆σην)2

(
A−1
σ

∑
θµ

mθ + Eσθµ
qσθµ(∆σθµ)2

fσθµ

)
fσην =

−δrη
mη −mc

η

(∆mc
η)

2
, (C.21)

where θ = 0, . . . , I and µ = 0, 1, 2.∑
σν

mη

(qσην)2(∆σην)2
−
∑
σν

∑
θµ

mθ

qσηνqσθµ(∆σην)2(∆σθµ)2
(A−1

σ fσθµ)fσην + δrη
mη

(∆mc
η)

2
=

−
∑
σν

Eσην
(qσην)2(∆σην)2

+
∑
σν

∑
θµ

Eσθµ
qσηνqσθµ(∆σην)2(∆σθµ)2

(A−1
σ fσθµ)fσην + δrη

mc
η

(∆mc
η)

2
.

(C.22)

The term A−1
σ fσθµfσην is the scalar product of the vector A−1

σ fσθµ with fσην , which

gives us the number λ = λ(σ, η, ν, θ, µ):

λ =

A−1
σ ·


1

fσθµ
...

(fσθµ)P


 ·
(

1 fσην · · · (fσην)
P
)

(C.23)

Now we can write

Wm = v, (C.24)
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with

Wη,θ =−
∑
σν

∑
θµ

1

qσηνqσθµ(∆σην)2(∆σθµ)2
· λ (C.25)

Wη,η =
∑
σν

1

(qσην)2(∆σην)2
+

1

(∆mc
r)

2
+ W (η, θ)|η=θ (C.26)

vη =
mc
r

(∆mc
r)

2
+Bη (C.27)

Bη =−
∑
σν

Eσην
(qσην)2(∆σην)2

+
∑
σν

∑
θµ

Eσθµ
qσηνqσθµ(∆σην)2(∆σθµ)2

· λ. (C.28)

(C.29)

The matrix W is a I × I matrix. And the m is a vector with mass values. By solving

Eq. (C.24) we can find the masses.

Iterations The program is working by iterations. For the first one ∆σην were simply

taken from a linear fit of the data. The next iteration uses ∆σην calculated

from previous one.

After solving Eq. (C.24) one can calculate coefficients aσp applying Eq. (C.19):

aσ = Aσ
−1
∑
ην

1

(∆σην)2

mη + Eσην
qσην

fσην , (C.30)

where mη is the ηth element of the vector m with calculated mass values. Then one can

find (∆σην)
2

(∆σην)
2 =

(∑
p

paσp(fσην)
p−1σfσην

)2

. (C.31)

Uncertainty calculation The statistical errors can be estimated as the square root of

the corresponding diagonal element of the inverted W matrix:

σstatmη =
√

W−1
ηη . (C.32)

The systematic error can be estimated in the following way. Each reference nuclide is

“switched off” and its mass is calculated as if it were unknown and its statistical uncer-

tainty is found. Afterwards one can adjust the systematic error σsys using the equation:

R∑
η=r=0

(mr −mc
r)

2

(∆mc
r)

2 + (σstη )2 + (σsys)2
= R, (C.33)

where R is number of references.
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Implementation in

program

The program code is based on the ROOT Matrix Linear Algebra

package. Matrixes are numerically inverted by LU-decomposition

method [97].
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