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Chapter 1

Introduction

In the study of complex systems, statistical analysis has always been an important tool.
Due to the high number of degrees of freedom an exact calculation of the energy levels
is only possible in a small number of systems, which have enough conserved quantities
to ensure integrability. In all other cases one has to rely on some approximation scheme.
In the statistical approach one refrains a priori from attempts to evaluate the eigenval-
ues of a system exactly and concentrates on their stochastic behavior. Random matrix
theory has been introduced by Wigner into nuclear physics. He was the first to observe
that the spectral fluctuations of complex nuclei coincide with the statistical properties of
a Hamiltionian, whose interactions are completely random. The most prominent charac-
teristic of this Wigner—-Dyson statistics is the repulsion between adjacent levels, i. e. the
vanishing of the nearest neighbor spacing distribution at the origin. Later Wigner-Dyson
statistics turned out not to be restricted to nuclear physics and to systems with many
degrees of freedom. In [BGS] it was for the first time conjectured that Wigner—Dyson
statistics describe also the statistical properties of quantum systems with few degrees of
freedom provided their classical dynamics is chaotic. This conjecture has been confirmed
by overwhelming numerical evidence, although a rigorous proof is still lacking.

Berry and Tabor [BT] had given strong arguments to justify that the eigenvalues of
a generic integrable quantum system with more than one degree of freedom should obey
Poisson statistics. To Poissonian statistics one refers to the statistics of completely uncor-
related eigenvalues. Its most prominent feature is the exponential decrease of the nearest
neighbor spacing distribution.

However, for many realistic systems none of these two limiting cases applies. Such a
situation occurs for example in nuclear physics. Nuclei are capable to collective motion.
A nucleus viewed as a piece of elastic matter can vibrate and also rotate if it is deformed.
In a stochastic model these regular motions should be described by an Hamiltonian Hy
exhibiting Poisson statistics. Apart from these collective modes the nucleus can also have
single-particle excitations which cause the eigenstates of an eigenvalue of H® to spread.
This random part of the Hamiltonian should exhibit Wigner-Dyson statistics. The cru-
cial quantity is the spreading width defined as the mean square of a perturbation matrix
element on the scale of the mean level spacing due to H(©.

A second example of a system exhibiting intermediate statistics is the hydrogen atom
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in a magnetic field. The classical system is essentially integrable for a weak and a very
strong magnetic field. It is chaotic for a intermediate value of the magnetic field. The
level statistics of the quantum system exhibit a crossover from Poisson to Wigner—Dyson
statistics. This is shown in figure 1.1. One can nicely observe that already for a small
magnetic field, i. e. a small chaotic admixture level repulsion occurs.

As a third example we mention the spectral statistics of disordered solids. Suppose we

1.0
= = .40
E=-~g80 Fa”
Pix) { T 20
0.5 ~
it
1.0
E oo qa = BS
E £0 = .35
0.5
1.0
g1
.80
S
0.5
1.0
& Qg =1.00
Eow20  Jl 00
0.5
o
o 1 rd 3

Figure 1.1: Nearest neighbor spacing distribution versus the spacing x on the scale of
the mean level spacing for the hydrogen atom in a strong magnetic field B in units of
By = m2e3c/(2wh)? . The levels are taken from the vicinity of the scaled binding energy
E= E/BQ/?’. Solid and dashed lines are fits, except for the bottom figure which represents
the GOE (taken from [WIN]).

have a quantum particle in a two—dimensional random medium of finite size. For low dis-
order its wavefunction will delocalize over the whole system and eventually over the whole
energy surface. In this regime one expects Wigner-Dyson statistics. In the opposite case
of high disorder the wavefunction localizes in some region of the probe. In this regime
one finds Poisson statistics, since the wavefunctions do not “communicate“. Here, the
decisive quantity is the Thouless energy, defined as the inverse of the classical diffusion
time of the particle through the sample. Efetov [EFE] described the eigenvalue statistics
of a disordered solid by a supersymmetric non—linear c—model. Thereby, he proved that
on energy scales much smaller than the Thouless energy the level fluctuations exhibit in-
deed Wigner-Dyson behavior. Later Altshuler and Shklovskii [ASH] derived corrections



to Wigner-Dyson behavior.

Several stochastic models have been used to describe the transitions from Poisson reg-
ularity to chaos. We mention two of them: a block—diagonal Hamiltonian with one block
that exhibits Poisson statistics and another one with Wigner—Dyson statistics. The sys-
tem will show a transition from Wigner-Dyson statistics to Poisson statistics according
to the ratio of the dimensions of the two blocks. Other frequently studied objects are
random band matrices of dimension N. All matrix elements beyond a certain distance d
from the diagonal are set to zero. Here, a crossover transition takes place from Poisson to
Wigner-Dyson statistics as the ratio d/N increases from zero to unity.

Another natural approach to model a transition from Wigner-Dyson to Poisson statis-
tics is a Hamiltonian which consists of a sum of two matrices,

H(t)=H® + tH®) | (1.1)

The H® is a diagonal matrix and exhibits Poisson statistics while H()) is a random
matrix and models the chaotic admixture. The Hamiltonian can be a model for vari-
ous physical systems. In the case of nuclear physics, the parameter ¢ is related to the
spreading width. In disordered samples, it corresponds to the Thouless energy, while it
is related to the magnetic field strength for the case of a hydrogen atom in a magnetic field.

The exact calculation of the eigenvalue correlation functions of Hamiltonian (1.1) has
only been done for systems with broken time reversal invariance. The physically more
interesting case of time reversal invariant ensembles has so far resisted to an exact an-
alytical treatment. This discrepancy has had an analogue in classical random matrix
theory. While the time reversal non—-invariant ensemble was comparably simple, consider-
able difficulties had to be overcome in calculating the eigenvalue correlation functions for
the time-reversal invariant ensemble. This work addresses the task of finding exact ex-
pressions for the eigenvalue correlation functions of the model (1.1) also for time-reversal
invariant ensembles. We will derive integral expressions for the one-point and the two—
point correlation function, which are exact for all values of the transition parameter.

Dyson [DYS2] connected the random Hamiltonian (1.1) in a beautiful picture with a
stochastic process. He showed that the eigenvalues of the Hamiltonian (1.1) are moving
stochastically in the same way as Brownian particles obeying the laws of two—dimensional
electrodynamics. Starting from a given initial condition the particles move towards the
chaotic equilibrium distribution described by one of the classical Gaussian random ma-
trix ensembles. In this picture it becomes clear that the model (1.1) is just one special
case of a diffusion process for the special case of a Poissonian initial condition. At this
point random matrix theory becomes intertwined with other fields of physics. Dysons’s
Brownian motion is closely related to a class of completely integrable systems, the cele-
brated Calogero—Sutherland Hamiltonians. The field received a strong boost from a com-
pletely different direction, when Itzykson and Zuber calculated the famous group integral
named after them in the context of large N expansion in SU(N) gauge-field theory. This
Itzykson—Zuber integral is the propagator of Dyson’s Brownian motion for the case of a
diffusion into the equilibrium of the Gaussian unitary ensemble. By means of this integral
analytic expressions for the evolution of the eigenvalue correlators became available for
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the transition from a time-reversal invariant ensemble to an ensemble with broken time-
reversal invariance. The “success“ of the Itzykson—Zuber integral in different branches
of physics makes it interesting to study this type of group integrals also for the other
ensembles and on a rather general footing. This is another important goal of this work.

For the evaluation of the eigenvalue correlators the supersymmetric technique has
proved to be quite powerful. Remarkably, an analogue to Dyson’s Brownian motion exists
in superspace [GUH4]. In the very same way as the joint—probability distribution of the
eigenvalues is propagated by a group integral in ordinary space, the k—point correlators
of this probability distribution are propagated by a group integral in superspace. The
evaluation of these integrals in superspace is crucial for the derivation of the eigenvalue
correlators of the random—matrix model. Thus, the general study of group integrals in
superspace is another aim of this work.

The group integrals of the type of the Itzykson—Zuber integral are of the form
/d,u(U) exp(itr UTzUE) | (1.2)

where = and k are diagonal matrices or supermatrices and the integration domain is a
group manifold in ordinary space or in superspace. As we have seen, there exist sufficient
physical motivations for their study. However these integrals are also worth to be studied
on their own right, since they are the generalization of vector Bessel functions to matrix
space and, as we will see, they are just special cases of a much wider class of functions.

The work is organized as follows. In Chapter 2 we give an account on Dyson’s concept

of Brownian motion in matrix and supermatrix space. We particularly emphasize the dis-
tinguished role of the Itzykson—Zuber integral in matrix and supermatrix space. We show
in detail why the group integrals (1.2) are the crucial quantity in the exact evaluation of
the eigenvalue correlators of our random matrix model (1.1).
In the next chapter we derive an explicit parametrization of supergroups by generalizing
ideas originally due to Gelfand. The main characteristic of these so—called Gelfand—Tzetlin
coordinates is their recursive structure. The exhibit many beautiful features indicating
that they are the natural coordinates of the group manifold.

However, for the explicit evaluation of the group integrals (1.2) a small but important
modification of the original method is needed. By introducing the radial Gelfand—Tzetlin
coordinates we find a recursion formula establishing a connection between the group inte-
gral in a matrix space of dimension N and a group integral in a matrix space of dimension
N — 1. This recursion formula is the main result of Chapter 4 and one of the most im-
portant results of this work. Through this recursion formula, though derived by group
theoretical methods, it becomes obvious that the group integrals (1.2) are embedded in
a much wider class of functions. We also derive explicit expressions for some groups in
ordinary space.

In Chapter 5 we finally use the methods developed before, to evaluate the group integral
of type (1.2) over the unitary orthosymplectic supergroups UOSp(2/2) and UOSp(4/4),
which yield the eigenvalue correlators of our model (1.1). The results are summarized in
Chapter 6.



Chapter 2

Brownian motion

In this introductory chapter we compile some basic facts about diffusion processes in
matrix and supermatrix space. In doing so, we emphasize the special role of the unitary
group both in matrix and in supermatrix space. After introducing some notations and
conventions which we will use throughout in the sequel, we introduce Dyson’s Brownian
motion model. In this section we also summarize some basic result of the theory of Lie-
groups essential for the understanding of the Harish—Chandra theorem, which we will state
at the end of the section. In the last section we give an account on diffusion processes in
supermatrix space.

2.1 Basics and notations

We consider N x N Hermitean matrices H whose elements H,,,, n,m = 1,..., N are real,
complex or quaternion variables. In other words, each element H,,, has 8 real components
Hr(ﬁ‘,%, a=0,...,(8—1) with 8 =1, 2,4, respectively,

-1
Hnm = Z Hy(ﬁg T(a) . (2.1)
a=0
Here, we use the basis 79, a =0,..., (6 —1). We have 70 = 1 for the real case with
8 = 1. For the complex case with 8 = 2, we have 7(®) = 1 and 7(!) = . Finally, we choose
© _ 1 0 1 _ 0 +1
T [ 0 1 ] T l -1 0 |’
2 _ 0 — (3) _ +i 0
T [ i 0 ] , T 0 — (2.2)
as a basis for the quaternions. By Hermitecity we always mean H,,, = H},, . Therefore

on the diagonal we have N independent variables H,,,, = H}L‘Q and B(N —1)N/2 indepen-
dent variables outside the diagonal. The classical Gaussian random matrix ensembles are
defined via the infinitesimal probability related to the values = 1,2,4

N/24+N(N-1)3/4
Pyg(H)d[H] = 2N(N-15/4 (%) exp (—%Tr HZ) dH] . (2.3)

7
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The infinitesimal volume element we define as

N -1
dH] = [[ 489 I] II 42 - (2.4)
Furthermore, in order to treat the three cases on the same footing, we introduced in
Eqg. (2.3) the trace Tr and the determinant Det with Tr = tr and Det = det for 5 =1,2
and with

1
TrK = §trK and Det K = VdetK (2.5)

in the case § = 4 for a matrix K with quaternion entries.

For B = 1 H is real symmetric and one obtains the Gaussian orthogonal ensemble
(GOE), which describes systems with time reversal invariance. The set of matrices, which
diagonalize a real symmetric matrix form the orthogonal group O(N) = U(N;1). The
ensemble of Hermitean matrices (GUE) corresponds to 8 = 2. It describe systems with
maximally broken time reversal invariance. The diagonalizing group is the unitary group
U(N) = U(N;2). Finally for § = 4 one obtains the Gaussian symplectic ensemble con-
sisting of Hermitean self-dual matrices. These are diagonalized by the unitary symplectic
group USp(2N) = U(N;4). They describe systems with Kramers degeneracy. The no-
tation U(N;f) for the unitary group defined over the real 8 = 1, the complex § = 2
or the quaternionic field 8 = 4 is due to Gilmore [GIL]. It emphasizes the meaning of
the parameter 8 as the dimension of the field, over which H is defined. One can think
of a generalized concept of Hermitecity and built up H by a sum of § independent real
symmetric matrices with the § diagonal elements merged into a single variable. In this
sense one might also define Gaussian ensembles for other integer values of 3. At this point
we restrict ourselves to the classical random matrix ensembles. The volume of the groups
U(N; ) is given by

N o 6n/2 9N BN(N+1)/4
1U(N;8) = = . 2.
000 = W m = mr 29

We use it to normalize the invariant measure du(U) of U € U(N; 3) to unity,

/ du(U) = 1. 2.7)

The N real eigenvalues z,, n = 1,...,N of H are ordered in the diagonal matrix z.
We have z = diag (z1,...,zy) for 6 =1 and 8 = 2 and = = diag (z1,21,...,zn,zN) for
B = 4. For later purposes we also define the matrix & = diag (z1, ..., z,) in all three cases.
That means we have x = & for § =1,2 and £ = 15 ® & for § = 4. Upon diagonalization

H = U'zU, with  Hpp = UlaUpny (2.8)

the infinitesimal probability Eq. (2.3) transforms to [MEH1]

N 2
Pug(H) = CF) W(@)dialdu(U) , W(z) = [An(2) exp (—25—) (2.9)

d[z] denotes the product of all differentials dz,, and we defined Vandermonde’s determinant

An(z) = H(J}Z —zj) . (2.10)
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The normalization constant
C(m _ e (ﬁ )N/2—|—N(N—1)ﬂ/4 g~ N-BN(N-1)/4 FN(ﬁ/z)
N = N

one obtains from the constants given in Mehta’s book [MEH1] and from Egs. (2.6) and (2.3).
In the sequel we fix the scale by setting the standard deviation a = 1.

2 (2.11)

2.2 Diffusion processes in matrix space

In 1962 [DYS2] Dyson was the first to observe that the eigenvalue distribution of a Gaus-
sian random matrix ensemble (2.9) is the stationary limit of the time-dependent joint
probability density of a diffusion process. This process describes the over-damped motion
of N particles on a line subjected to the Coulomb law of two—dimensional electrodynamics
[DYS1] with each particle confined by a harmonic potential. The corresponding Fokker—
Planck equation reads

] Y 2
—P, t) = E( P t 2.12
ot Nﬂ z, ; IB@.’Ez xZ BSL'ZQ Nﬂ(xa ) ’ ( )
where the drift term is given by
1

i T

In the Brownian motion picture £ plays the role of an inverse temperature. The friction
coefficient we have set to (8a?)~! = 8~!. A second important observation of Dyson was
the following. When the eigenvalues z; of H move according to (2.12), the independent
entries of H move according to another, much simpler law,

0 0
Png(H, ) . 2.14
S Pna(H ) = |~ T (5 H ) + A Pra(H.1) (214)
Here we have defined the gradient and the Laplacian in matrix space
o 1+d; O ( 15} )2
— ] = A=Tr . 2.15
<BH ) ij 2 O0Hy oH (2.15)

Eq. (2.14) is the sum of (N + N(N — 1)3/2) Ornstein—Uhlenbeck processes [GAR]. Its
Green’s function for an arbitrary initial condition P](\? )(H ) is known to be

Prvg(H, | HO)) = O (1 — 72)~N/2=NN=15/4 g (_72 i RN (H_e—th))?) _

e—2t)
(2.16)
Here, Png(H,t|H () is the probability distribution of a Hamiltonian that interpolates
between an arbitrary Hamiltonian H(®) and a random Hamiltonian H()

H(t) =YV )HO +V()HD (2.17)

with
YO =et, D) =1-e /2 . (2.18)
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Matrix ensembles of the type (2.17) are of prominent interest in quantum chaos and many
particle physics, since they represent the generic system exhibiting intermediate spectral
statistics. Much work has been devoted [GMGW] to calculate the k—point eigenvalue
correlators of H(t) for different types of initial conditions H ( ). The dynamics of the
transition depends on the choice of the transition functions ~{ ( ) [LH] Both functions
must be defined on the same interval [to,#;] and the quotient (9 (¢) /4" (¢) should tend
to the limits zero for ¢ — ¢ and infinity for ¢ — ¢;. Any choice of ¥()(¢) essentially
different from Eq. (2.18) yields a propagator for a stochastic process, which differs from
Dyson’s model. However, all these processes propagate to the same equilibrium state of
the classical Gaussian random matrix ensemble. If one is interested only in the equal time
eigenvalue correlators of H(t) for some fixed value of v(O)(t)/y()(t), one chooses most
conveniently

YO =1, 4O =vt . (2.19)

With this choice of () (t) the propagator becomes especially simple

N/24+N(N-1)3/4 9
O _ (o N(v-1)8/2 [ B B T0)
Prs(H, t|HO) = (2) (%t) exp( o (H—HD)

(2.20)

This is the kernel of a pure diffusion in the space of N x N matrices, defined by the
differential equation

ZB%PNﬁ(H, tHO) = AgPys(H,t|H?) ,
lim Pyns(H, t|HO) = §(H - HY). (2.21)
_),
The time dependent joint probability density is the convolution integral
Pro(H,1) = [ Pag(H 4 HO)PD HO)HO) (2.22)
Without loss of generality, we can assume H(®) to have a smaller symmetry than H(),
Therefore the basis rotation which diagonalizes H(® can be absorbed in the measure of the
random matrix HY) and H can be taken to be diagonal. The diffusion only takes place
in the space of eigenvalues of H. We decompose H (t) in angle—eigenvalue coordinates by
writing H(t) = U~ '2U, where U € U(N; () and we average over the group. We obtain
Pu(z, ) /r (@, HO, ) PO (HOY AL (HO)H®) . (2.23)
The diffusion kernel T¥) (2, H©) ) is given by
r® (z, HO t) = 4~ N/2-N(N-1)p/4
exp (;—f (Tra® + Tr (H<°>)2)) &) (—izB/t, HO) (2.24)
1
3P (—iz/t, HO) = / exp (—’I‘r U‘leH(O))du(U) . (2.25)
UeU(N;B) t

The eigenvalue distribution Pyg(z,t) obeys a Fokker-Planck equation, which is obtained
by transforming the Laplacian (2.15) into angle-eigenvalue coordinates. Since Pyg(z,t)
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depends only on the eigenvalues, only the radial part, i. e. the eigenvalue part contributes
AgPng(z,t) = 2B PNg(w t), (2.26)

with the radial part of the Laplacian being

0 0 N 52 B 0 0
B_Y - _
Z |ﬂ3 |An (@) Oz, n;l or? + Z Ty — T, (axn ) )

n<m a‘rm
(2.27)
Thus, we arrived at another type of Brownian motion for the eigenvalues of our matrix en-

semble (2.17) which is somewhat easier to treat than Dyson’s model (2.12). The functions

@%)(x,k) with two diagonal matrices ¢ = diag(x1,...,zx) and k = diag(k1,...,kn)

as arguments, for § = 1,2, and z = 1, ® z, k = 19 ® k for [ = 4 were introduced by
Gelfand [GEL1] as zonal spherical functions. Sometimes they are also called matrix Bessel
functions [GUH1]. These Bessel functions of matrix arguments are in general rather com-
plicated functions with still many unknown properties. However their asymptotics were
stated already in 1958 [HC2]

) 1 detlexp(iznkm)]nm=1,..N
1 @(ﬂ) k ~ — ) ) )
A8 OV R~ TA AN ()P

(2.28)

From this formula together with Eq. (2.24) one derives readily the initial condition for the
diffusion kernel

| det [0(zn — HY)]
N! T [A@@)A(HO)p/2

im '(8) (0) -
%I_I)%P (z, H',1) (2.29)
A special role is played by the unitary group. The matrix Bessel function of the unitary

group, <I>S\2,) (z, k), is the celebrated Itzykson—Zuber integral [IZ1]. Later it was discovered
to be a special case of a more general integral formula due to Harish-Chandra [HC1]

1 det [exp(zk;)], .

@%)(—ix,k):m e AN(k)J . (2.30)

By means of the Itzykson—Zuber formula analytic results for many different transitions
became available. With Eq. (2.30) Pandey and Mehta derived the eigenvalue correlators
from Eq. (2.23) for the time-reversal invariance breaking transition GOE — GUE [MP1,
MP2]. More examples can be found in [GMGW]. There exist several explanations for the
fact, that the unitary case is so much simpler than the other ones. The most sophisticated
one is probably due to Duistermaat and Heckman [DH] within the framework of symplectic
geometry. They interpret the Itzykson—Zuber integral as a partition function with the trace
appearing in the exponential of Eq. (2.25) as Hamiltonian. Then they showed that this
partition function reduces to its asymptotic value, see [SZA] for a review. We prefer a
more simplistic approach to a better understanding of the peculiarity of the unitary case.
To this end we compile some facts about Lie-groups and Lie-algebras. Then we state
Harish-Chandra’s theorem.
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2.2.1 Lie—groups, Lie-algebras and symmetric spaces

We introduce the notation ’H%}) for the Lie-algebras, which are related to the Lie—groups
U(N; ) via the exponential mapping

HN ={G:exp(iG) e U(N;8)} . (2.31)

That means ’Hg\?) is the vector space of Hermitean N X N matrices provided with the

Lie-bracket. ’H%) is the vector space of skew—Hermitean matrices and %53’ is the vector
space of all Hermitean matrices leaving invariant the symplectic metric. An important
subspace of a Lie-algebra is the so—called Cartan subalgebra H(ﬁ ). Tt is defined as

HR = {GiGeny  [GuGjl =0} . (2.32)

That is the maximal subspace of commuting elements. Its dimension r is called the rank
of the Lie—algebra. More explicitly we have

G e 7-[(()27, = diag (ZGl’T L iGr( ))
G e H( ()2r+1) = diag (O,ZG1 . .G, 7 ))
GeHy) = diag(G1,Gs...,G,)
GeHy, = dig (iGh T<3>, Gy ) (2.33)

for the three groups of interest using the notation of (2.2). One can choose a basis for
the algebra in terms of the Cartan subalgebra and generalized ladder operators E,. If
we write an arbitrary element G € ’H(ﬂ) as G =Y ,G;i=1,...,7, then the Cartan
subalgebra relates to the ladder operators via the commutation relation

[Gi,Bo)l = 0iEs , [B_a,Eo]l =) aiGi . (2.34)

The r dimensional vector « is called root vector and its components are called roots.
For example, in case of the unitary group the roots are all possible differences of the
matrix elements G;. The root vectors can be mapped onto each other by reflections in
hyperplanes orthogonal to a root vector. The set of all possible reflections and products
of them forms the Weyl group. Another important notion of group theory is a symmetric
space. A symmetric space is defined as a space of constant curvature, i. e. no points are
singled out. It can be realized as the coset of a Lie group on one of its subgroups. The
subgroup is the set of fixed points of an involutive automorphism'. The classical matrix
ensembles defined in the previous section describe time evolution operators, which form
a subset of the unitary group. For § = 1,2,4 these subsets are given by the symmetric

spaces
U(N) U(N) U(2N)
om) 1 © TSpEN) (2:35)

! An involutive automorphism usually denoted by o, is defined by the properties o # 1 and ¢ = 1.
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For 8 =1 the involutive automorphism is the complex conjugation and for 8 = 4 adjunc-
tion with the symplectic metric

U=¢'Ug , UecUSp(2N), g=D @1y . (2.36)

The geometrical object associated with the GUE is the unitary group, whereas with the
GOE and GSE the symmetric spaces as defined in Eq. (2.35) are associated !

We can now state the Harish-Chandra theorem.

Theorem 2.1 Let V be a compact semi-simple group and G,G" elements of its Cartan
subalgebra Hg, then

/UeV exp (tr U_IGUG') du(U |W| Z = OLIOED)] exp (trs(G)G') ,  (2.37)

where ©(G) is defined as the product of all positive roots of Ho and W is the Weyl reflection
group of V. with |W| elements.

For V = U(N) the Cartan subalgebra consists of diagonal matrices and the product over
the positive roots the Vandermonde determinant and one recovers the Itzykson—Zuber
formula. Regrettably, for V.= O(N) or V. = USp(2N) the diagonal matrices (with
Kramers degeneracy in the symplectic case) do not belong to the algebra of the group.
This means that for the GOE and GSE the matrix Bessel functions are not included in
the Harish-Chandra theorem. This is the reason, why the GOE and GSE in almost all
applications are much more difficult to treat as the GUE. This fact is a major motivation
of this work.

2.2.2 Connection with Calogero—Sutherland models

The diffusion equations (2.27) and (2.12) are closely related to the so called Calogero—
Sutherland Hamiltonians. It is known [RIS] that in one dimension a Fokker—Planck equa-
tion can be cast into an imaginary time Schrédinger equation by adjunction with the
square root of the stationary probability density. In the case of the diffusion equation
(2.12) , (2.13) we define

" :#i L B(e) + 25| \Weal®) (2.38)
’ Weq(z) i=1 Oz; Y Ox? e ’ .

where for the time being Weq(z) = W (z) as given by Eq. (2.9). We obtain an imaginary
time Schrodinger equation

0 1
L ah(8) — — HAp® B = P 2.
at"/) (.’L‘,t) C’(/) (.Z‘,t), d) ('Tat) Weq(x) (wat) ( 39)
with an Hermitean operator H¢
N 2 N N
9°  B(B-2) 1 1 2
_ Z g + 5 Z =) + I sz + const. (2.40)
=1 4 1<j i=1
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which describes the motion of N particles on the line under the influence of a square
pairwise interaction. H¢ is known as Calogero Hamiltonian [CAL]. For the pure diffusion
(2.27) there is no harmonic binding term and the particles keep spreading apart for ¢ —
0o. Although no stationary distribution exists, one can associate with Eq. (2.27) the

Hamiltonian v v
& . BB-2) 1
= — - + 2.41
i:zl B.T,LQ 2 ; (.’EZ - :L‘j)Q ( )
by defining formally
Weq(z) = |An(2)| P2, ¢ O(z,1) = |An(z)PP(z,t) . (2.42)

Hp is in contrast to H¢ a scattering system with a continuous spectrum, the large time
behavior is determined by the states near the ground state. In order to have a well defined
thermodynamic limit one may confine the particles on a circle. Thus one arrives at

Hpg = — f: (i) fj (n/N)* . (2.43)

= Ox? 2 i< sin? [ (z; — z;)/N]

This is the Calogero Sutherland Hamiltonian, which also can be derived directly from
Dyson’s circular ensembles [DYS2, MEH1]. In the thermodynamic limit the particle den-
sity Rj(z) of the ground state is described by Wigner’s semi-circle law. The mean particle
level spacing D = 1/R;(0) scales as D o« 1/v/N. Therefore in the thermodynamic limit
the harmonic confining term in (2.40) vanishes on the scale of the mean level spacing.
On this “unfolded scale“ the correlation functions become independent of the confinement
mechanism. The three Hamiltonians Ho, Hp and Hgg are known to be integrable systems
for arbitrary @ [SU1], for a review see [SU2]. However, the three values 8 = 1,2,4 are
distinguished, since they establish a connection to the random matrix ensembles. Indeed
for these values of 8 they belong to a much wider class of integrable systems, which can
be constructed by means of the root space of a simple Lie algebra or — still more general —
a Kac-Moody algebra [OP]. This class comprises Hamiltonians which can be derived by
an adjunction procedure like in Eq. (2.38) from a Laplace-Beltrami operator of a group
acting in a symmetric space. This space has positive curvature for Hcog and zero curvature
for Hp, Hc 2. The matrix Bessel functions provide in a natural way a set of eigenfunctions
zp,(f)(x) of Hp. For 8 =1,2,4 we have

Hpp(2) = rk?pP(2) , ¢ (@) = |An(@))7?0) (2,k) . (2.44)

Furthermore there also exist orthogonality and completeness relations,

[amiamP v @) = (DY)’ detista - o)l

2 det[é(kz—k')],
/d 1#(@ Q:bk’ ( ) = (D%)CI(\?)) |A(k’)‘ﬂ/2|A(;<;)|ﬁj/2’ (2-45)

with the normalization constant

B _ 1
Dy (27r)”/27rﬁN(N n/4 - (2.46)

*In [BEE, CAS] it was pointed out, that the DMPK equation for scattering matrices with broken time
reversal symmetry corresponds to a Laplace—Beltrami operator in a symmetric space of negative curvature.
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These well known relations will be rederived in Section (4.2.2). We can consider one set
of variables as a set of reals labeling the eigenstates of Hp. To emphasize this, we have
written k£ as an index, although it is still a continuous variable. We remark that for § = 2
the interaction vanishes. The statement of the Itzykson—Zuber formula is in this context
simply that the eigenstates of the Laplacian are plane waves.

There exist already sets of eigenfunctions of the Hamiltonians H¢, Hp, Hcs for arbitrary
(. Essentially, these solutions are a product of the ground state wave function and a
symmetric polynomial in the coordinates of the N particles. In case of the Calogero—
Sutherland Hamiltonian Hog these polynomials are known as Jack polynomials [STA,
FOR, HA]. In this approach the energy eigenvalues are labeled by a partition® of length
N. In order to obtain an orthogonality condition like Eq. (2.45) one needs to sum over an
infinite number of partitions. The crucial difference to the matrix Bessel functions is that
the Jack polynomials are symmetric polynomials in one set of variables wheras the matrix
Bessel functions are symmetric in two sets of variables. In addition they are symmetric
under interchange of the two sets of variables. Due to this symmetry the eigenfunctions
w,(cﬁ ) (z) related to the matrix Bessel function via Eq. (2.44) are, at least for Hp, the more
natural eigenfunctions.

We can view the matrix Bessel function defined as the group integral (2.25) as a solution
of the Hamiltonian Hp for the coupling parameters § = 1,2,4. Then one might pose the
question: does such an integral solution exist also for other parameters 37 The affirmative
answer will be given in Section 4.4.

2.3 Diffusion in the space of supermatrices

We now turn to the matrix model (1.1) and (2.17). The problem is to calculate the
eigenvalue correlation functions of an Hamiltonian

H=H 4 tHY (2.47)

interpolating between a Gaussian random matrix H(!) and an arbitrarily distributed ma-
trix H®. That means in the generic case that H(®) breaks the invariance under or-
thogonal, unitary or unitary symplectic transformations of the probability density (2.3).
It is the symmetry breaking term H(®  which causes unsurmountable problems for the
method of orthogonal polynomials. This is the classical method of deriving eigenvalue
correlators from the pure Gaussian ensemble, cf. [MEH1]. For a small chaotic admixture,
i. e. in a perturbative expansion around the regular Poissonian limit, closed expressions
were derived in [FKPT] and by a different method in [LES]. As already mentioned for
non time-reversal invariant systems the Itzykson—Zuber integral is a powerful tool. Lenz
[LEN] obtained an integral representation of the two—point correlator for the transition
from Poisson regularity to chaos in the GUE case. Pandey derived an exact expression for
the two—point correlation function without using the Itzykson—Zuber formula on the scale
of the mean level spacing. For arbitrary level number Guhr derived an exact expression
for the k—point correlation function [GUH4], by using the supersymmetric generalization
of the Itzykson-Zuber formula [GUH1].

3 A partition of an integer A is a decreasing set of integers A1 > A2 > ... > Ay such that vazl Ai=A
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Since one cannot take advantage of a Itzykson-Zuber formula, for the GOE and GSE
much less analytic results are known. Alternative methods are needed. Nagao and For-
rester adressed the model (2.47) with the method of Jack polynomials [NF]. The probably
most promising approach is by supersymmetry. Since its introduction in condensed matter
physics in 1983 [EFE], this has by now become a generally accepted method.*

Remarkably, there also exists a class of diffusion equations in superspace. As we will

see, certain solutions of these diffusion equations can be interpreted as the generating
functional of the k-point eigenvalue correlator, which is defined as

Ry(ar,...,o01) = — / P (HO) Py (5, 1 HO)d[HO1[H )]

(2.48)

where Pyg(H,t|H®) is defined in Eq. (2.20). We use the definition 2* = z + 4e. For
convenience we define another correlation function by including the real part

(0)]PN5(H t|H)d[HW)]

Ek(wla"'awka - _/PO) )
k
1;[ ey R (2.49)

One can convince oneself that the physically relevant correlations (2.48) can always be
constructed as a linear combination of the functions Ry(z1,...,zk,t). We denote this
procedure by the symbol §. We can rewrite Eq. (2.49) in terms of derivatives

- 1 0"
Ri(z1,...,zx,1) = Zp(z + J,t 2.50
O = v A LI (2:50)
of a normalized generating function
Zp(z + J,t) = / PY (HO)d[HO 1 Pyg(H,t H)d[H]]
b 1 0
I1 detg? (ac;,t QLo+ Jp,® [0 _1] —Ht)® 12> . (2.51)

Here the matrices 19 and diag(1,—1) are graded. The next steps in the evaluation of
Zy(x + J,t) are:

e The graded determinant is written as a functional integral over a graded vector field
¢(i),i =1,...,N. The specific form of the vectors has to be chosen according to the
ensemble under consideration. For the orthogonal ensemble they are graded real 4k
vectors as defined in [EFE] and for the symplectic ensemble they are “quaternionic*
like 4k x 2 vectors as defined in [WEG1].

“The model (2.47) has been investigated just recently by a variation of the supersymmetry method in
[DK]
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e The integral over the random matrix ensemble is performed and the quartic terms
are removed by a Hubbard-Stratonovich transformation, i. e. the supersymmetric
generalization of a Fourier transformation.

e Finally the remaining ((7) integrals are evaluated yielding [EFE, VWZ].

Zp(z+ J,t) = 2kE=2) /d[a] exp (—%trg (c—z+ J)2)
/ dHOIPY (HO)detg 72 (1y 0 0* — HO @14) . (252)

The generating function is now represented by an integral over a graded 4k x 4k matrix
o. The advantage of the representation (2.52) is that the matrix dimension of o depends
only on the order of the correlation function but is decoupled from the level number N. o
belongs to the ensemble of graded “real“, Hermitean supermatrices [WEG1], which have

the form
\/EU(R) oAt

T=1 54 —co(HSd) )

For the GOE one has ¢ = 1 and for the GSE ¢ = —1. Both ensembles in ordinary space
are mapped onto the same supermatrix ensemble. Only the fermion—fermion blocks and
boson-boson blocks are interchanged. The two commuting blocks o®) and ¢(#59) are real
symmetric and Hermitean selfdual matrices respectively and ¢4 is of the form

ce{1,-1}. (2.53)

A
A
A
7
A A A .
o = [O'g ), . ,0,(61)] , O'Z( ) = . (2.54)
a(A)
ko1
oA
k'z’l
The entries UZ(JA) are anticommuting numbers. The infinitesimal volume element is given
by
k1 ko
dlo] = [[ [[ do’""doi” T] dotf” H o T do'f*? H do{'5Y (2.55)
i=1j5=1 1<J 1<j
where da(HSd) is the product of the differentials of all independent elements of the quater-

nion oz(JHSd). Moreover, in Eq. (2.52) we have defined the graded 4k x 4k matrix

ztJ=diag (12®@(z+J),1o®(z—J)) , (2.56)
where z = diag (z1,...,z;) and J = diag (J1, ..., Ji) are ordinary diagonal matrices. The
generating function Eq. (2.52) obeys a diffusion equation in supermatrix space in analogy

to the diffusion equation in ordinary matrix spaces as described in the previous section
[GUH4]. Indeed the function

Qu(0,8) = 22 exp (— 1 (0 — p)?) (2.57)
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with o, p graded real, is the kernel of the diffusion equation

B,Qu(00 1) = Qi 1) i Qulo,p,t) = 80— p) (2.58)

where we have defined the delta—function for an anticommuting variable as §({) = v27(.
It is normalized such that

/ SO = 1 . (2.59)
The supersymmetric counterpart of the Laplacian (2.15) reads
o 2
A, = trg (3_p> . (2.60)
According to the block structure of p the diffusion coefficients are different.

(3)_14—(5;7 0 ( 0 )_1-|—6,-j 0 (8)_13
Op(R) ij 2 8p(R) "\ Op(HSd) 4 3p§;{5d) "\ 9pA) ij 4ap§;‘) )

i i
(2.61)
As in ordinary space the diffusion takes place in the radial space of the matrices, thus we
can take the initial condition as a diagonal matrix. Then the solution reads

Zy(r,t) = / Qulo, )2 (0)dlo] , lim Zy(r,t) = Z(r) . (2.62)
—
With the replacement p — = + J and the initial condition
79 (o) = / dHO1PY (H)detg /2 (0* @ 1y — 14 @ H?) (2.63)

this is the generating function Zx(x + J,t) of Eq. (2.52). Conveniently, the entire depen-
dence on the matrix H(® has been absorbed in the initial condition, this allows us to
treat with Eq. (2.52) different transitions on the same footing. The picture of a diffusion
process in superspace is very instructive. In the same way as the joint probability density
Eq. (2.20) evolves towards the chaotic equilibrium distribution Eq. (2.3) the generating
function of the eigenvalue correlators evolves towards the generating function of the eigen-
value correlators of the random matrix ensembles. Indeed, Pandey and Mehta showed
[MP1] that in the transition from a time reversal invariant ensemble towards time rever-
sal symmetry breaking the transition of a GOE correlator to a GUE correlator preserves
for arbitrary transition parameter the structure of a quaternionic determinant which is
characteristic for both ensembles. This becomes immediately clear in the supersymmetric
framework.

In order to evaluate further the generating function, one can in analogy to the ordinary
case, cf. Egs. (2.23) to (2.25), go to angle eigenvalue coordinates [GUH1]. The graded
“real“ Hermitean 4k x 4k matrices are diagonalized by a set of supermatrices, which forms
the so called unitary orthosymplectic group UOSp(2k/2k) [BER]. After the transformation
of variables

o = ulsu ) u € UOSp(2k/2k)
s = diag (\/53(2]9)17 oVesi, V—clasia, ...,V —claso) (2.64)
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we find
Ze(z+ ) = / Ti(s, 2 + J,8) Z0(s) B (s)d[s] (2.65)
T(s,z+ J,t) = 2662 exp (—% (trg 2+ trg (z J)Z))
B opyom) (—i28/t £ J) (2.66)

The nontrivial part of T'x(s,xz + J,t) is a group integral over the unitary orthosymplectic
group

D (ary2k) (—is/t,x £ J) = / exp (lu_lsu(:ﬂ + J)> du(u) . (2.67)
u€ UOSp(2k/2k) t

The Berezinian is given by [GUH4]

Bl (s) = |Agk (1) Ak (is2) BCD () = | Ak (is1)|Ak(s2)
(e Hz?il H§=1(3i1 - i3j2)2 , (2k)% H?L H?=1(i3i1 - 3j2)2

Notice the striking resemblance to Eq. (2.24) and (2.25). The function ® (o) (o) (s, 7), with
both s and r defined according to Eq. (2.64), can be considered as the supersymmetric
generalization of the matrix Bessel functions in ordinary space. As in the ordinary case
only the radial part of the Laplace operator contributes

(2.68)

Ao 1 Z 5 lii P )
5 f”((;?c)k(s) a51 2’“)’“ 831 2 13 (2k 332 ) ;

The diffusion kernel Ty (s, r) satisfies the diffusion equation in the space of the eigenvalues
of both the supermatrix ¢ and the supermatrix p

2Fk(sa Ty t) ) (270)

Arrk(sarat) = Asrk(sara t) = ot

with the initial condition [GUH4]
2k(k=2) det [§(si1 — 7j1)]; j—1. o det [(5(312 752));i j=1..

(2k)!k! \/B(% (% )

Inserting Eq. (2.71) into Eq. (2.65) recovers Eq. (2.62). Similar relations are given in [GW]
for the space of complex matrices in ordinary and in superspace.

(2.71)

%I_I)% Fk(S,T‘, t) =

In Ref. [GUH1] the equations corresponding to Eq. (2.65) to (2.67) have been derived
for the unitary ensemble. In that case one has to average over the unitary supergroup.
The integral can be performed in a closed form. As in the ordinary space, the unitary
group is distinguished also in superspace by the fact that an arbitrary graded diagonal
matrix is contained in its Cartan subalgebra. This is obvious, since the Cartan subalgebra
of U(kyi/ks) is just the direct sum of a Cartan subalgebra of U (k1) and U (ks). This leads
to a direct supersymmetric generalization of the Itzykson—Zuber integral. By the same
reason it is also clear, that the graded diagonal matrices s and (z &+ J) do not belong to
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the Cartan subalgebra of UOSp(2k/2k). In the supersymmetric formalism however the
matrix dimension of the supermatrix is decoupled from the level number. Therefore one
only needs to treat a 4k x 4k matrix in order to derive the k—point correlator. Hence we
are liberated from solving Eq. (2.67) for arbitrary dimension and can focus onto the one—
and two—point correlators. Much of the remainder of this work is devoted to the solution
of Eq. (2.67). We finish this chapter with two comments on the transformation into angle
eigenvalue coordinates.

e The first comment is on the transformation properties of the measure. In going from
the Cartesean coordinates to angle eigenvalue coordinates the measure is transformed
as

dlo] = Blshy (s)dps(uw)d[s] . (2.72)

This is not completely correct. It has been pointed out that there arise additional
terms to the integration measure. These are called Efetov—Wegner—Parisi-Sourlas
terms. A complete mathematical treatment was given by Rothstein [ROT]. They
occur when the integration domain is non compact and a commuting variable is
shifted by nilpotents. In general they have to be added to preserve the symmetry of
the measure. They ensure the normalization of the generating function in Eq. (2.65)
at J = 0. The role of these terms in the context of diffusion equations has been
thoroughly discussed in [GUH4, GW]. The terms represent stationary points of the
diffusion process. We do not worry about them as long as

Zy(r,t) = / Te(s,r, 1) 20 (r) BE) () dls] (2.73)
is the solution of the same diffusion equation

0 .
A Zy(rt) = 2 Ze(rt) . lmZi(nt) = 20() (2.74)

as Zy(r,t) defined in Eq. (2.62). By this condition Zy(r,t) is essentially determined.

e A second comment is on the generating function as it stands in Eq. (2.52). If one
is interested in the correlations on the scale of the mean level spacing, one might
use a saddle—point approximation to solve Eq. (2.52). Within the saddle-point
approximation the model Eq. (2.48) has been treated by an expansion around the
chaotic limit, i. e. for 1/t — 0 in [GWE] and later more carefully in [FGM]. To
use the saddle—point approximation one has to evaluate the average over a retarded
and an advanced Greens function to get a non—vanishing result for the two—point
correlator. This leads to a non—compact symmetry in the boson-boson block. Then,
in the case of the two—point function, the diagonalizing group is not UOSp(4/4) but
UOSp(2,2/4), i. e. a group with non—compact degrees of freedom. This was pointed
out in [SW]. This group is more difficult to treat than the compact one, due to
convergence questions. It is a highly convenient feature of the graded eigenvalue
method that the position of the imaginary increment of the eigenvalues appears
only in the initial condition of the supersymmetric diffusion equation and does not
influence the group manifold.



Chapter 3

Gelfand—Tzetlin coordinates in
superspace

In this chapter we construct an explicit coordinate system for the unitary orthosymplectic
supergroup. If one tackles the problem of calculating the supersymmetric matrix Bessel
function (2.67) by a explicit parametrization of the group, one quickly realizes, that it is
a hopeless enterprise, unless one uses the appropriate coordinate system. Gelfand [GT1]
devised in 1950 a coordinate system for the unitary group, which shows nice features. For
example, it provides a link to representation theory. The coordinates parametrizing the
group can be arranged in a so—called Gelfand—Tzetlin pattern in the very same way as a
set of integers or half-integers labeling the states of a representation. Thus the latter can
be interpreted as the quantized version of the continuous parameters. A full-fledged the-
ory of these so—called Gelfand—Tzetlin coordinates was given by Guillemin and Sternberg
[GS1, GS2], see also [AFS]. Moreover they proved to be a useful tool for the calculation
of group integrals. The Itzykson—Zuber integral in ordinary space [SHA] is easily derived
in this coordinate system.

In [GUH3] the idea of the Gelfand—Tzetlin coordinates was generalized to the unitary
supergroup. The originally more geometric construction by Gelfand was substituted by
an algebraic method. The idea, however, remains the same: to parametrize a column of
the unitary supermatrix by projecting a diagonal matrix onto a space orthogonal to this
column. Again the supersymmetric Itzykson—Zuber integral is readily derived, once the
coordinate system is established.

Our aim is to use the ideas of [GUH3] and [GT1] to construct a coordinate system of
the unitary orthosymplectic groups UOSp(k1/2ks). This group contains the symplectic
group USp(2ks) and the orthogonal group O(k;) as subgroups. Thus, we also construct a
coordinate system for these two groups in ordinary space.

The chapter is organized as follows: After a brief review of the supergroups we intro-
duce the Gelfand—Tzetlin equations. Their solutions are presented and the Haar measure
is derived. An extra section is devoted to the unitary symplectic group. In the final section
the generalized Gelfand-Tzetlin patterns are derived and some aspects of group theory
are discussed.

21
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3.1 The classical supergroups

There exists a classification of the classical superalgebras similar to Cartan’s classifica-
tion of the Lie-algebras in ordinary space [KAC1, KAC1]. In principle to each classical
superalgebra a supergroup is associated via the exponential mapping. However, the classi-
fication pattern of the supergroups is usually somewhat coarser [RIT]. If one omits those
supergroups, which emerge from the exceptional superalgebras, one is left with only four
different types of subgroups of the general linear supergroup GL(k1/ks2), defined as the
group of invertible (k; + k2) X (k1 + k2) matrices of the form

u= [CCL Z] (3.1)

where the diagonal k; X k1 and kg X kg block matrices a and d have commuting elements
and the off-diagonal blocks b,c anticommuting ones. The most important subgroups
for applications in physics are the unitary supergroup U(ki/k2) and the orthosymplectic
supergroup OSp(k1/k2) . They are defined as

Uk /ks) = {u € GL(ky [ks) : ulu = 1} ,

0Sp (ki1 /2ks) = {u € GL(k1/2ks) : ulgu = g} , (3.2)
where we have defined the “orthosymplectic metric“
1y, 0
g = |: O 1k2 ® 7_(1):| . (33)
The Hermitean conjugate we define as [RS]
T
t_[a e

The compact form of OSp(ki/2ks) is usually denoted by UOSp(ki/2k2). Although in
principle it might be possible to construct the Gelfand—Tzetlin coordinate system for
non—compact groups as well, we restrict ourselves to the compact case.

The group elements act on a graded space, which we denote L = °L @ 'L. It decom-
poses in a sum of an even °L and an odd 'L subspace according to its transformation
properties under the parity automorphism A [BER]. In a physical language this means
that the elements of 'L are vectors and the ones of °L pseudovectors. We define a basis
ej = ej1,J =1,...k for L, and k45 = €52, = 1,...2ky for I, respectively. We denote
the algebra of UOSp(k1/2ks) by Hk,2k,- It is defined via the exponential mapping

Hiyok, = {h : exp(ih) € UOSp(k1/2k2)} . (3.5)

Particularly important for the construction of the Gelfand-Tzetlin basis is the Cartan
subalgebra, which we denote by Hg i 21,. It is defined as the direct sum of the Cartan
subalgebras of the orthogonal and symplectic subgroups respectively [KAC1]. For k; even
it reads in the defining matrix representation

h € HO,k12k2 = diag (ihHT(l), ’ihle(l), .. ihg 1’7'(1), h127'(3), ... ,hk227(3)) . (36)

? 1
2

!The two other classical groups are associated with the so called strange superalgebras usually denoted
P(n) and Q(n) [KAC1].
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and for k1 odd
h € Hokyok, = diag (ihir D ihoy 7ML ik 700, By ke ®) o (3.7)
2

where we used the Pauli matrices as defined in Eq. (2.2). The Cartan subalgebra of
UOSp(k1/2ks) is just the direct sum of the Cartan subalgebra of O(k;) and USp(2ks).
This is certainly not true for the entire algebra of UOSp (ki /2ks).

3.2 The Gelfand—Tzetlin equations

The main idea of the Gelfand—Tzetlin coordinates is to make use of the group—chain
structure that holds for the classical groups in ordinary space
U(N; U(N - 1; U(2;
UN-18) U -2p) U(1;8)
in the notation of Section 2.1. What now follows is a generalization of the steps in [GUH3]
to the group chain of the supergroup UOSp(k1/2k2). It looks as

® U(1;8) (3.8)

_ UOSp(k1/2k2) UOSp ((k1 —1)/2ks) UOSp(1/2k3)
vOSe i /k2) = 0%y (( — 1)/2k2)) © T0Sp (k1 —2)/2k)) © "~ Usp(2ka)
USp(2k) USp(4)
Usp(zk, —2) & Su() 05V (3.9)

We apply the method of projecting onto a smaller subspace to construct a coordinate
system. To this end we write u € UOSp(k1/2ks) as u = [u1,us,. .., Uk, +2k,]- Furthermore
we denote by uj; the entries of the normalized supervector u; in the basis e;j1,j = 1,... k1
and ejo,7 = 1,...2ko . The orthogonality condition requires the vectors u;, i < k1 to be
real

uji =uj; , for j<ki and wup, 105 = uZ‘kﬁgjfl)i , for j<ko. (3.10)
If we consider the first vector, it is parametrized by k; real commuting numbers u;; and
2ky complex anticommuting numbers, denoted a; and o = u();, 7 < k2. We define also
laj|? = ajaj. Moreover, we set ki even to compactify the notation. The supervector u;
describes the coset space
~  UOSp(ki/2ks)
~ UOSp((k1 —1)/2k)

which is — similar to ordinary spaces — isomorphic to the surface of the (k1 /2k2) dimensional
sphere S(*1-DI%k2 Now we go from the Cartesian to a new set of coordinates for u,
by projecting a fixed element h of the Cartan subalgebra on a space of superdimension
((k1 — 1)/2k9) orthogonal to ug :

U1 (3.11)

hs) eg,l) = (1- uluJ{)h(l - uluJ{) eél) = (1- ulul{)h eél) . (3.12)

This is the Gelfand—Tzetlin eigenvalue equation. It generalizes [GUH3] for the unitary
supergroup to UOSp(k1/2ks2). It is convenient to rotate the basis so that h becomes
diagonal before solving (3.12)

/ 1 .
€2i—1)1 = /2 (6(%71)1 + 26(2i)1) ;
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1

el(zm = E (’ie(%—m + e(gi)l) ) i=1...k1/2
ey = en , i=ki+1,.. .k +2ks. (3.13)

Notice that the bosonic entries of u} are now complex numbers

Cx _ gD .
'u’l(2j)1:zu’(2j 11 =\/§| i ‘ W y jzl,...,k1/2. (314)

In order to solve the eigenvalue equation (3.12), we look at the characteristic function

z (hg)) = detg ((1 — ulu];) h — hg))

= detg (h—h{") detg (1— (h—h{") " uiulh)

h
= detg (h — hg)) detg (1 — uih ~ ul)

hy)
1
z (hz(,l)) = —hz(,l) detg (h - hg)) uJ{ oW - (3.15)
h - hp
The function z(hi(yl)) behaves differently for the k; eigenvalues of the boson-boson block
h(l) = h;ll), p=1,...,k and the 2ks eigenvalues of the fermion—fermion block h,(C )+p
zh;IQ) ,p=1,...,2ky. Therefore the above equation has to be discussed in the limits
(1) 0 for p=1,...,k
Z(hp) — {oo for p=Fki+1,..., k1 + 2ko (3.16)
Including the normalization condition u{ul = 1 we arrive at the following set of equations:
k‘1/2 ko
L= > o) + Y lafVP, (3.17)
p=1 p=1

k1/2 (1) 2 k2 (1)2

=1 (hq)? — (h?)? 451 (ihg2)? — (R())?
p=1,...,(kr —1),
A n’“/? ((ar)? — (z‘hé?)?)
2 ((ihe2)? — (h3)?)
(’% T . kZ agP ) |
=1 (hq)? — (h$3)? 151 (ihg)? — (ih{3)?2
Zzp—00, p=1,...,2ky . (3.19)

This is a system of equations in (h(l))2 and (ih(l)) respectively. Moreover the second

pl
h(l)

equation has a twofold degenerate solution at = (0. Hence the projected matrix

Y = (1 — wyul)h(1 — uiul) is of the form (3.7) in a certain basis eg-l) and belongs
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itself to the algebra of UOSp((k1 — 1)/2ks). This is crucial for the recursion. Out of the
(k1 + 2k2 + 1) equations in (3.17) to (3.19) only (k1/2 + k2) are independent. Thus a
one to one correspondence is established between the moduli squared of the entries of the
vector u) and the eigenvalues of the supermatrix h(Y). These we call bosonic eigenvalues,
if they satisfy Eq. (3.18) and fermionic eigenvalues if they satisfy Eq. (3.19). With the

substitutions hY) — (h))? and inl) — (in$3))?, j = 1,2 , this set of independent
equations is the same as the corresponding equations for the unitary supergroup. So we

can directly read off its solutions from [GUH3]. They will be stated below.

3.2.1 Recursion

Now a recursion can be performed up to the k;—th level (see [GT1, SHA, AFS] for the
construction in ordinary space and [GUH3| for the one in superspace). The Cartan sub-
algebra looks differently depending on whether the bosonic dimension k1 is even or odd,
cf. Eq. (3.6) and (3.7). For this reason we have to deal with two different sets of equations
in doing the recursion procedure. We refer to a level as an even level, if (k1 —n + 1) is
even, and as an odd level otherwise.

In the n—th step the vector u), is expanded in a set of (k1 —n + 1 + 2ks) basis vectors
e/'(n—l)
J

two disjoint subsets. The first subset contains (k1 —n + 1) vectors e}
(n—1)

, which span the subspace of L orthogonal to [ui,...,un—1]. This set splits into
(=1) gpanning some

subspace of °L. The second one contains 2k, basis vectors €52 spanning 'L. The

entries of u,, in this basis are complex numbers

- . — * 1 _i9(n)
hopn " un =i (€fgp 1y ") = Emg% i
p< ki—n+1 if (k1 — n + 1) even,
ki —
P < 12n if (k1 —n+ 1) odd,
— _ * 1 .
lope " Min = (clopin " Mun) = S p <k (3.20)

For (k1 —n+1) odd, the remaining entry is parametrized by a real number and an integer
r € {0,1} as

_1 _
eyt = (—1)’"'0521_”1 : (3.21)
Moreover we will use the notation
k1+2ks—n—+1
'U/;Sn_l) — Z e‘lj(nil)Tune"j(nil) . (3.22)
j=1

The projection of h onto this subspace

n—1 n—1
(=1 = <1 — Z umi) h (1 - Z umf) (3.23)
=1 =1
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belongs to the Cartan subalgebra of UOSp ((k1 — n)/2k2). The new coordinates are ob-
tained by projecting h("~1) on the subspace orthogonal to u, by

hg,") ez(,") = (1 —upul) A e§,") . (3.24)

For (k1 — n 4+ 1) even, this leads to a equation system as (3.17) to (3.19) reduced by
(n —1)/2 unknown variables. For (k1 —n+ 1) odd, the equations have a slightly different
form:

k1—n
2 kz
IR R D DRI (3.25)
p=1 2 p=1

kl_n n n n n

(& B2 P m e en (B oV

0= hyi Z (n=1)y2 (n)y2 + ‘Uu+1| + z s (n—1)y9 (n)y2
q=1 (hql ) - (h’pl ) 2 q=1 (th2 ) - (hpl )

bl

p=1,...,(kt —n), (3.26)
lq;n n— . n
Sl (") = 3)?)
Zp = —Uy T n— T n
P (GRGY)2 - hf)2)
kin n n n n
(W) k2 (hD)2 |2

Z (n—1)

e (DR LI (710

* +
A o - e

; T lvasn

bl

zp—00 , p=1,...,2k. (3.27)

The difference between Eq. (3.25) to (3.27) and the corresponding equations for the even
levels (3.17) to (3.19) is due to the isolated entry (3.21), which has to be treated sepa-
rately. It reflects the difference between the even orthogonal group O(2N) and the odd
orthogonal group O(2N — 1) in ordinary space.

The new basis vectors e;-(") are related to the basis vectors of the upper level by a
(k1 — n+ 2ks) X (k1 —n + 1 + 2ky) rectangular supermatrix b’ =) The moduli squared of

its entries Z; m(") are determined by rewriting equation (3.24) and multiplying from the
left hand side with e, (n=1)t

o (=D 1) el ™ = p o (=D e ™ 4 e DYy, R (3.28)

where we defined 5" = u], h(”_l)e;,("). On the other hand we have

n— T — n — mn— n
e, "D R o () — pln=1) o (D) g1 () (3.29)
yielding for the matrix elements of ¥/ (=)
~ (n) 1 _
b;m = L (n-1) (n) ulmn(n R b;gn) : (3.30)
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(n)

The modulus squared of by, ’ is determined by the normalization of the rotated basis vectors
y(n ) (n)t .

e'm("yf e;,(") = Omp, 1. by the condition that the matrix o is unity in the (k; —n +
2ky) dimensional subspace orthogonal to [uq,...,uy,)]. Accordmg to the block structure

7(n)

of the supermatrix &' the vector b has commuting and anticommuting elements. For

12 = oY |2 5 1%, p = 1,..., (ki —n +1)/2 for the
")|2 ‘b(n)

2
k1 n—|—1—|—2p| |bk1 n+2p
elements. For (k; —n + 1) odd we define |wp |2 and | ,8,,(,")|2 correspondingly.

(k1 —n + 1) even we define |w
commuting and |3 |2, p=1,..., ko for the anticommuting

Again there is a difference in the determining equations of [w{™ |? and |8{™ |2 between
the even and the odd levels of the recursion. For (k; —n + 1) even we have

S i U NI S0 A U DN
(n) - _
|wp |2 m=t ((hGy V)2 - () )) m=1 ((ih,")? - (h(”)))
ki—n—1
p=1,... 17 "77 (3.31)
2
For the remaining modulus squared we obtain
(k1—n+1)/2 k2
1 1 1 (n))2
n = Z n— |U”(7?)|2+ Z .y (n— |Otm,| ) (332)
Wil P s (D) w1 (i ")?
2

The moduli squared of the anticommuting coordinates of b fulfil formally a similar
equation. However it is mathematically more precise to write it in the inverted form in
order to avoid the appearance of purely nilpotent numbers in the denominator.

ek
ki—n+1)/2 (n—1)\2 (n)\2 7 (n—1) (n)
(k1 ZJr )/ (hyry 7)? (zh )? \v(”)|2+ kZ? (ih,y )2 + + (hy; )2 a(",)|2
“— ((hmfl)) _(Z-h(n))2)2 " ol <( B D)2 (h("))2)2 ™
ml P2 - pl

p=1,...,k.  (3.33)

The corresponding equations for the odd levels are obtained from Egs. (3.31) and (3.33)
as follows. In Eq. (3.31) the sum over m runs only to (k; —n)/2 and in addition the term

(n)

\vkl,n+1|2/(h](ﬁ))2 is subtracted. The same happens in Eq. (3.33): the first sum runs only
T

to (k1 —n)/2 and the term |v§g) " | /(zh( )? is subtracted. Eq. (3.32) does not exist for

the odd levels.
Again the structure of Eqgs. (3.31) to (3.33) is very similar to the case of the unitary
supergroups. A sketch of its solution is given in Appendix A.1.

3.2.2 Solutions

Up to the k1—th level both sets of equations (3.17) to (3.19) and (3.31) to (3.33) have to
be solved for even and odd levels separately. As already mentioned above, for the even
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levels there is a one to one correspondence to the unitary case. This allows us to carry
over the results for the moduli squared from [GUH3]

Bpznol n— n n— 3 (n—
wp_ ot (592 = (B)?) TIE2, (D)2 = (ks ~D)?)
M n— n— 9 n— g (n
o=t gz (A5 702 = (RE)2) T1E2, ({1002 — (ih3)2)
. 1) p=1,...,(k1—n+1)/2 , (ki —n+1)even,
o = ((ihy3))? — (ibgs )?)

|v

P
k1—n-—1 - n (i (i
Mer (GR%)2 = ()2 T2, oy (GRS )2 = (i D)2)
k1—n+1 _ e e - (n ?
M-z (R )2 = (b)) T2y 4y (i )2 = (i5))2)

p=1,... .k . (3.34)

We have included the first level by setting h = h(®). In solving Egs. (3.31) to (3.33) one
cannot make direct use of the results of the unitary case, but an explicit calculation, given
in Appendix A.1 yields

kij—n+1

oz _ T (i )2 = (B50)?) T2, (B2 = (iR{5))?)
V4 - k1—n—1 _
2(hS))? Tyt g ()2 = (hG)2) TTEZ, (RS2 — (iR D)2
p=1,...,(kt—n—-1)/2 ,
kij—n+1 n n
Wi It (h )2 1R, (i(5)?
kp1—n+1 - k1—n—1 ’
: Mol (WD TTE, (in( )2
8 (n)‘ - ((ihg;)) (zh(" 1))2)

n -7 (M kl_-n+1 A n
Mgy (053)° — 0y ) = (613)° — (')

2h 2T, (Gh)2 — (D)) T2,y (GRS — RS 0)2)
(3.35)

Notice that the squares of the fermionic eigenvalues of the different levels (ihﬁ,’;))Q differ
only by a nilpotent number. We took this into account by introducing the nilpotent
Gelfand—Tzetlin parameters

€2 = (ih$y))? — (ihG)? . (3.36)

We point out that it is a nontrivial fact, that the difference of the fermionic eigenvalues of
two neighbouring levels can be expressed as the modulus squared of one anticommuting
number. The solutions for the odd levels, i.e. for (k1 —n + 1) odd, are stated in Appendix
A.2.

A comparison with the corresponding results for the unitary groups U (k;/2k2) in
Ref. [GUH3| shows, that the above results are in agreement with the following replacement
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in the Cartan subalgebras of U ((ky —n+ 1)) and U ((k1 — n)) defined as

— 1 -1 . —1 1
KD = diag (B, bl )ik, ik )

W = diag (b}, Al ik ik, (3.37)

If one maps A"~ and A(™ in Eq. (3.37) onto the Cartan subalgebra of UOSp ((k; —n + 1))
and UOSp ((ky —n)) as

pn=1) diag(ihg’}‘l%(?’),...,z’h(,:jj)ﬂlﬂ) in{5 7@, iR D @)
W diag R,k @0,k @ik @)
bty

(ky —mn+1) even . (3.38)

the results of Egs. (3.34) and (3.35) as well as the results of Appendix A.2 are recovered.
We stress that this connection between the unitary supergroup and the unitary orthosym-
plectic one is natural but not a priori clear. It indicates a special relationship between the
groups, which will become more apparent in the Gelfand—Tzetlin pattern given in Section
4.3. All results can be checked by inserting them in the defining equations and making
manipulations similar to the ones used in Appendix A.1. Moreover we mention that from
the solutions, stated in Eq. (3.34) and (3.35) and Appendix A.2 one derives the corre-
sponding formulae for the group SO(k;) in ordinary space by setting all anticommuting
numbers to zero.

3.2.3 Invariant measure
In the n—th level the invariant measure of UOSp((k1 — n + 1)/2k2) decomposes as

du(up) dp(u) , ue UOSp((kn —n)/2ke) . (3.39)

To go from the measure of the coset in Cartesian coordinates du(u,) = 6(1—u u,) I1; duin
to the Gelfand—Tzetlin coordinates it is more convenient to evaluate the invariant length
duf du,, rather than to calculate the Berezinian directly. For (k; —n+1) even, the invariant
length element reads, cf. Eq. (3.14)

ky—ntl k- n+1
2

1 n n n & n)y\x* n
du};dun = mZ:1 4|’U£,7Ll)|2( | (n) ) Z: )| d’l9( ) m,z_ld(agnl)) daﬁn,) .

(3.40)

It is a highly welcome feature of the Gelfand—Tzetlin coordinates in ordinary space that the
metric remains diagonal. This holds also in superspace. After calculating the differentials
from Eq. (3.34) and making use of relation (3.30) one arrives at

k1-n—-1

2
dul du, = Z( ! (dhgg))2+|v§g)|2(dq9§g>)2>+

=\ 22

k TL
2 ‘a |2 (n)yx g¢(n)
mfzzl\l 2(ih{"),)2|8M) |2 Wt )" (3.41)
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A sketch of the steps leading to Eq. (3.41) is given in Appendix A.3. Convemently,

the metric ¢(™ is diagonal in the commuting differentials dhgn), 1952) and d\f |2 The
determinant of g(™) can be read off from Eq. (3.41)

) k172n71 |,U(n)|2 ko S(ih(n)2)2|ﬁ(n)|2
n) __ m m’ m’
detg g™ =[] —=oo 11 ™2
=1 2w’ |2 =1 ot/ |
k1—n+1 2
k (n—1)\2 - (n—1)\2
_ gk _ Hp:12 Hq2:]_ ((hpl ) _(thQ ) )
1—n

Mpole ((h)2 = (B )2) 12, (052 = (h57Y)2)

k1—n—1

—_— n n n n kyp—n—1
My (i) = 0g)?) Tty (5)? = 3)?) "2 )
Fi—n—- n . (n 2

Hp:12 ngil ((h;(al))Q - (thﬂ))Q) P

(#?)
pl Bkl_n+1k2 ((h("*l))?)

d[R{")d[9™ ] de ™)

n <k, (kt—n+1)even, (3.43)

where we introduced the function

g>q(hp1 — hq1) Hp>q(7’hp2 ihg2)
[ I15" (hp1 — ihg2)

It can be viewed as the supersymmetric generalization of the Vandermonde determinant.
Furthermore we used the notation

ki—n+1 ki—n+1
2 2 k2

dn") = T[ dhyy, d™)= T @9f" and d[e™) = ] degrdef” . (3.45)
=1 = p=1

For the odd levels we obtain

5 (n n)\2
H£211h£2)Zh§:2 D Bu_ Bk, ((h( ) )
Bkl__"k2 ((h(n—l))Q)

d[R{" )d[9 ™ ]d[e™)]

k1—

-1
"Ry
n <k, (kt—n+1)odd. (3.46)

Now we can write down the Haar measure of u € UOSp(k1/2kz) in the following factorized

form
ihFIN2Y ki ko
du(u)=2’“’“2wﬁﬁm DdpDaleDdu(u’y ,  (3.47)
B%kg(( )) i=1p=1

with ' € USp(2ks). The measure of the orthogonal group in ordinary space can be
obtained from the invariant length (3.40) by setting all anticommuting variables to zero.
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With regard to Egs. (3.43) and (3.46) we notice a remarkable feature of the Gelfand—
Tzetlin coordinates. The measure factorizes in each level. We have

du(un) = dp(h™,h"V) = (™ D)du(r™) . (3.48)

In multiplying the coset measures of the different levels parts of the adjactent levels cancel
each other. This yields the simple expression (3.47). The Gelfand—Tzetlin coordinates
of the unitary group in ordinary and in superspace [GUH3| as well as the ones of the
orthogonal group in ordinary space have the corresponding feature.

3.3 The unitary symplectic group

After the ki-th step of the recursion no more anticommuting variables appear. Now the
task is to parametrize the compact group USp(2k2) in ordinary space. This has a value
in its own right. We achieve it by making use of the isomorphism USp(2ks) =2 U (k2;4).
The parametrization of the group of unitary matrices over the quaternionic field can be
performed analogously to the group U (kg,2) over the complex field. Therefore we can take
advantage of the results in Refs. [GT1, SHA|. We write U € U(ka,q) as U = [Uy, ..., U],
where the normalized vectors U; have quaternionic coordinates. Since we are dealing now
with a group in ordinary space we use capital letters in order to denote vectors. The Cartan
subalgebra is of the form hgkl) = diag (hg’;l)T(?’), ey h,(CIZIQ)T@)). Now the Gelfand—-Tzetlin
equation reads in the first level

1 - uhirda - v, uhEQ = in® Vg (3.49)
Since the operator on the left hand side is not Hermitean selfdual, Eq. (3.49) has not a

unique solution, see e. g. [MEH2]. Nevertheless, if we multiply Eq. (3.49) on both sides
with 1z, ® 73) from the right, we get a well defined eigenvalue equation for a selfdual

matrix, which is known to have ko scalar eigenvalues 7(3)ihg§1+1) which we also denote
by z'hz(,];ﬁl). Now we can make the same steps as the ones which led to Eq. (3.15) and

the equation reduces to the well known Gelfand—Tzetlin equation of the unitary group
U(kge;c) [GT1, SHA].

k2
1 = Z‘Un1|2 ’
n=1

0 = fj U p=1,... ks —1. (3.50)
m=1 z'hgzg) — ih;’;ﬁl) ’ T
Thus a one to one correspondence is established between the (ko — 1) eigenvalues ihz%) and
the moduli squared of the quaternionic entries
Uni? = TrUL U (3.51)

All formulae derived in [GT1] for the unitary group can now be adopted to the unitary
symplectic one.
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The single but important difference arises for the Haar measure. If we decompose the
entries of Up1 as Up1 = |Up1|Un1, with Up1 a unimodular quaternion, the invariant length

element is
ko

1
Trdvtdv, = 3 (|Un1| a0}yl + g AU ) ) . (3.52)

n=1

Using the parametrization of the unimodular quaternion

(’j _ Cos "pg) exp(—i’)’gl) ) —sin 'lpgbl) exp(i'Yv(le) ) (353)
sin zpf}) exp(—i%%)) cos zpf}) exp(z'y,(}l) ) ’

allows us to write the invariant length as

N 2
1 1 2 i)\ 2 2 2
TrdU|dU; = Z <4|U ok S (d|Unn ) +i:Zl|UnN| (d1$9)? + |Unn|?(d cos 1) )
(3.54)
Egs. (3.50) were solved in [GT1]. Using the result
ko—1 h(kl)_ h(k1+1)
[Un1|* = [zt G _ ¢ (kl)) (3.55)
Hm#n(Zth _thQ)
and
k2 1 e 1H’“2¢1( k1+1) (kéﬂ)) (k1+1)y) 2
Y i dUnn?)? = Y " d(ihny 7)), (3.56)
n=1 4|UnN|2 n=1 4Hm:1(z m2) - h(k21+1)) ( " )
we find for the determinant of the metric ¢*1+1) expressed in the new coordinates
AQ ‘h(k1+1)
det gll1+1) — Dkm1ll ) [T %) —inla D)2 (3.57)

4k2=1 AP (in(k1))

I

This yields the measure of the coset in the first level

Agy—1 (iR D) (k1) (ki 1)y 2 (k +1)y 2)
dp(th) = 2’“231A22(ih(k1)) ,I,[n(m“l il H (e ™ )d(cos v )

(3.58)
It is quite remarkable that the factorization property (3.48) does not hold for the unitary
symplectic group. This is a peculiarity of the Gelfand—Tzetlin parametrization of the
unitary—symplectic group.

3.4 Matrix elements

An arbitrary column of the orthosymplectic supermatrix can now be expressed in the
Gelfand—Tzetlin parametrization. In the primed basis we have
T

ul, = FOTHOT )Ty (3.59)



3.5. GELFAND-TZETLIN PATTERN 33

where b(™) and the scalar products are defined in Eq. (3.29) and Eq. (3.20). Up to now we
only have constructed a unitary representation of UOSp(k1/2k2). To obtain an orthosym-
plectic representation we have to assure that when the matrix v’ = [u’l, e ,u;ﬂ tky| 18
rotated back into the unprimed basis, the vectors u;, j < ki become real. We discuss only
the case (k; —n+1) even. To achieve our goal we recall that so far the vector b entering
in the projection matrix in Eq. (3.30) has been determined only up to a phase. There is
an ambiguity in choosing the phase of 5. The Gelfand—Tzetlin coordinates parametrize
the vector u, only up to some phases associated with the action of the Cartan subgroup
of UOSp ((k1 — n + 1)/2k;). Therefore the projection matrix 5 is invariant under the
action of the Cartan subgroup of UOSp ((ky —n + 1)/2k;) as well. Thus we are allowed
to multiply 5™ with an arbitrary elel(ne)znt of the Cartan subgroup without changing its

projection properties. We set bgg) = ibz?,,l y p<(k1—n-1)/2, b,(g)_n = i|Wky—n+1| in the
2

commuting sector and b,(gf)_n tliop = —b,(g)_*n vopr P = 1,..., k2 in the anticommuting one.

The remaining phases we fix to be zero. With this choice of phases and after undoing the
basis rotation the columns as well as the rows of b™7 fulfill the reality condition (3.10).
Also the vectors u%nfl) become real. An explicit form of the real matrices ™) is given in
Appendix A.4.

3.5 Gelfand-Tzetlin pattern

In representation theory the Gelfand Tzetlin scheme is constructed from the following
observation [BAR]. An irreducible representation of a Lie group U(N; () is defined by an
ordered set of integers or half integers called highest weight. This irreducible representa-
tion can be decomposed in irreducible representations of U (N —1; 3). In the decomposition
each irreducible representation of U(N — 1;3) occurs never or exactly once. Only those
irreducible representations appear, whose highest weights satisfy certain betweenness con-
ditions depending on the group under consideration. Following the group chain (3.8) to
the end, one has labelled all states of the irreducible representation of U(N; ) by a set
of integers or half integers, arranged in a Gelfand-Tzetlin pattern.

The analogue for the coordinates is as follows. We consider the adjoint group action
on an element h of the Cartan Subalgebra Oy = UthU, U € U(N; ). This subset of the
complete algebra is usually called orbit. We can map the U(N;[3) orbit labelled by an
ordered set of eigenvalues h; > h;;1 onto many different U(N — 1; 3) orbits by projecting
On onto a (N — 1) dimensional subspace. But only those U(N — 1;3) orbits On_1 can
be reached, whose eigenvalues interlace two neighboring eigenvalues of Oy . This is the so
called minimax principle for selfadjoint operators [DS]. The Gelfand—Tzetlin method uses
the eigenvalues of the projected matrix as coordinates of the coset U(N;3)/U(N — 1; ).

However, h is a fixed point of the action of the Cartan subgroup exp (igg), go € "Hé? ])V
Therefore the coset U(N;3)/U(N —1; ) is parametrized by the eigenvalues of On_1 only
up to equivalence classes with respect to the action of the Cartan subgroup of U(N;f),
parametrized by go. In this way the set of parameters describing the coset is split into
two parts: One part consists of the eigenvalues of Oxn_1, the other one of the indepen-
dent elements of gyg. Guillemin and Sternberg [GS1] introduced the concept of complete
integrability by interpreting the entries of h as action and the elements of gy as angle
coordinates of a generalized mechanical system. This theory applies only to the groups
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U(N;p) , 8 = 1,2 but not to the unitary symplectic group. This can be considered as
the reason for the relatively complicated expression of the measure for U(N;4).

The Gelfand-Tzetlin pattern can be extracted from the positive definiteness of the
moduli squared of the bosonic matrix elements |'uz(n)|2. If one restricts oneself to the
subgroup, which consists of the direct product O(k1)® USp(2kz) the pattern of the SO (k1)
and USp(2ky) are rederived which are well known from representation theory [BAR].
Nevertheless we state them here in a somewhat different form, which emphasizes the

relation to the pattern of the unitary group U(k). This is the famous triangle [GN]

1 1 1 1
WO A, A
(3.60)
hgk_l) hgk_l)
R
with the boundary conditions
hTD <hP <pfiD (3.61)

The first row labels the orbit, by means of which the parametrization was performed. We
underlined them in order to distinguish them from the coordinates of the group. From this
pattern the pattern of the orthogonal group can be derived by the substitution rule (3.38),
i. e. by assigning to the Cartan subalgebra of the unitary group U(k) the corresponding
one of the orthogonal group O(k). We restrict ourselves to the case of even k. The pattern
(3.60) becomes

0 0
Pi” hy” . hel o —hih —hy”  —hi’
R (5.62)

Y N S ) —p{%*?)
B2 0 _p®DT

2k 2k

ACORACD

0

with the boundary conditions

mat << b

(3-1)
| h§2k—2j+2) | < X

2k—2j+1)

; (3.63)

We notice the symmetry along the middle axis. The parameter space of the O(2k + 2)
is already covered by one half of the triangle. The other half can be neglected. Indeed
by restricting ourselves to the left half of the triangle, the patterns appear in their usual
form, as they are known from representation theory [GT2]. This symmetry reflects the
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time reversal invariance of the orthogonal ensembles. By construction the pattern of the
unitary symplectic group USp(2k) coincides with the one of the unitary group U (k).

To the two patterns of the O(ki) ® USp(2k2) subgroup one may add the anticom-
muting Gelfand—Tzetlin coordinates arranged in a rectangular pattern. In this way one

obtains a generalized Gelfand—Tzetlin pattern for the unitary orthosymplectic supergroup
UOSp(k1/2kz).

0 -, ST
1 1 1 - 1 1 1
O A Rt F (BT}
...hgkl_@ hgk1—4i”_hgk1—4) _hgk1—4)m
hgk1—3) 0 _hgk1—3)
ki— ki—
hgl 2) _hg 1 2)
0
(1)2 (1),2 (1) 2
SRS 1€k, |
P2 1P |f,£?|2
|£’“>|2 Ik I£('“|
k k
R k Bl k Bk, )
1 1 ki+1 ki+1
Al A A A
: (3.64)
h§k1+k2—1) ' hgkl+k2_1)
h(k1+k2)
1

with the boundary conditions

D <P <

h&l;)l) < h(k1+l+1) < h(k1+l)
—h('lil 2j-1) <h(k1 27) < h(kl 2j-1)
J

7

where1§j§k1/2—1,1§m§k1—2and OSlSkQ—l.

In [GUHS5] it was pointed out that the unitary supergroup U(1/1) can be represented
by supersymmetric Wigner functions. They are matrix elements of irreducible represen-
tations acting on a Hilbert space. These functions are eigenfunctions to a supersymmet-
ric Casimir operator. The eigenvalues are moduli squared of anticommuting numbers.
Hence, there exists a representation of the supergroup U(1/1) labeled by an anticom-
muting variable. Therefore one might give the supersymmetric Gelfand—Tzetlin pattern
(3.64) a similar interpretation as in ordinary space. The two triangles label the basis of
an irreducible representation of the product O(ki) ® USp(2ky), whereas the remaining
coset UOSp (k1/2k2)/ (O (k1) ® USp(2ks)) is represented by a block of anticommuting vari-
ables. It is an intriguing question, which role the anticommuting numbers play in this
representation and whether the theory of Guillemin and Sternberg has an analogue for
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supergroups.

3.6 Summary of Chapter 3 and outlook

We constructed a coordinate system for the unitary orthosymplectic group UOSp (k1 /2k2).
To this end we generalized a method invented by Gelfand for the unitary group in ordi-
nary space and later generalized by Guhr to the unitary supergroup. By projecting an
element of the Cartan subalgebra onto a space orthogonal to a column of the unitary
orthosymplectic matrix a set of eigenvalue equations is obtained. This set of equations
establishes a one to one correspondence between the moduli squared of the elements of
the column and the eigenvalues of the projected matrix. In this way the set of coordinates
parametrizing the column is split in at one hand the Gelfand—Tzetlin coordinates and on
the other hand additional angles. The principal characteristic of the coordinates is their
recursive structure. The group was parametrized coset by coset according to the group
chain structure of Eq. (3.9). The invariant Haar-measure of the group was derived in
the Gelfand-Tzetlin parametrization. The measure of each column factorizes into terms
containing coordinates of only one level. This yields a remarkably simple structure of the
group measure.

We also constructed paramatrizations of the orthogonal and the unitary symplectic
group, which appear as subgroups of the unitary orthosymplectic one. The latter is dis-
tinguished from the other groups by the fact, that the measure does not show the factor-
ization property mentioned above.

The Gelfand—Tzetlin coordinates can be arranged in a supersymmetric Gelfand—Tzetlin
pattern. An outstanding feature of the pattern is the appearance of moduli squared of an-
ticommuting variables. An interpretation of these anticommuting variables as eigenvalues
of a set of invariant operators is likely to exist. It is an iteresting task to clarify this réle
of the anticommuting numbers in representation theory.

The Gelfand—Tzetlin coordinates might also serve as an important tool for the evalu-
ation of group integrals by an explicit parametrization. Specifically they might be useful
for the calculation of the generalization of the Harish—-Chandra integral to the unitary
orthosymplectic group UOSp(k1/2k2). This is given by

I(g,h) = exp (itrg uflhug) dp(u) , (3.65)

v/’uE UOSp(k1/2k2)
where h and g are elements of the Cartan subalgebra. But also the parametrization of
the orthogonal group in ordinary space seems to be well suited for a certain class of group
integrals in ordinary space. Work in this direction is in progress.

So far the Gelfand—Tzetlin coordinates were only constructed for compact groups. But
there is no apparent obstacle to construct them also for non—compact groups. It might be
interesting to see if such a construction is indeed possible and how the non—compactness
of some parameters is reflected in the corresponding Gelfand—Tzetlin pattern.



Chapter 4

Matrix Bessel functions

The Gelfand—Tzetlin coordinates parametrize the group in terms of the associated algebra.
As pointed out in the previous chapter, they are the most natural coordinates for the group
manifold. However, the matrix Bessel functions as defined in Eq. (2.25) have two diagonal
matrices as argument, which in general do not belong to the algebra. Thus, a connection
between the parameters of the group manifold and the arguments of the matrix Bessel
function can in general not be established by the Gelfand—Tzetlin coordinates. However,
it turns out that we can construct another coordinate system by taking advantage of the
recursive structure of the Gelfand-Tzetlin method. This system establishes the desired
link between the group manifold and the arguments of the matrix Bessel functions by
means of a recursion formula. This formula will be stated and derived in Section 4.3.
Surprisingly this recursion formula has a meaning beyond group theory. It represents an
eigenfunction of the radial Laplace operator (2.27) for arbitrary §. This will be proved in
Section 4.4. Yet another surprise is that closed expressions can be derived for 8 = 4 and
strong evidence exists that this is also possible for all even 8. This will be discussed in
Section 4.5.

In the first two sections we recall some elementary facts of vector and matrix Bessel
functions emphasizing the analogies between them.

4.1 Vector Bessel functions revisited

First we compile some well known results for the vector case [GUHS6]. In a real, d dimen-

sional space with d = 2,3,4,..., we consider a position vector 7= (z1,...,z4) and a wave
vector k = (k1,---,kq).- The plane wave exp (zl; . 7‘") satisfies the wave equation
Aexp (iki-7) = —k? exp (ik - 7) (4.1)
where we define the Laplacean as in the physics literature,
0? 4 9
A= — = — . 4.2
07 Z 0z? (42)
=1 1
The zero—th order Bessel function in this space is the angular average of the plane wave,
xD(kr) = /dQ exp (ZE’F) , (4.3)

37
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over the solid angle €2, defining the orientation of either 7 or k. In our context, it is
advantageous to take (2 as the solid angle of k. Obviously, only the relative angle between
7 and k matters and x(9 (kr) can only depend on the product of the lengths r = |7 and
k = |k| of the two vectors. We normalize the measure d) with the volume 27%2/T'(d/2)
of the unit sphere, i.e. we have

/ aQ = 1. (44)
Thus, by construction, we also have
D) = 1. (4.5)

It is convenient to view 7 as the azimuthal direction of the coordinate system in which we
measure 2. Thus, in these spherical coordinates, one finds k - ¥ = kr cos where 1 is the
azimuthal angle. The measure d§) contains sin?~2 4 and one has

'(d/2)
Vrl((d—1
2042121 (d/2)

9 (kr) / exp (ikr cos ¥) sin® 2 9dy
)/2) Jo
J(a—2)/2(kr)

(e (4.6)

where J, (z) is the standard Bessel function [AS] of order v. The functions (4.6) are often
referred to as zonal functions.

There is a remarkable difference for the functions x(9)(kr) if one compares even and
odd dimensions. For example, one has in d = 2 dimensions x® (kr) = Jy(kr) and in
d = 3 dimensions x®)(kr) = (7/2)Y/2.J; ;9(kr)/(kr)'/? = jo(kr) with the spherical Bessel
function jo(z) of zeroth order [AS]. In d = 2 dimensions, Jy(z) is a complicated infinite
series in the argument z, in d = 3 dimensions, however, jo(z) is the simple ratio jo(z) =
sinz/z. One easily sees how this generalizes. Upon introducing £ = cos® as integration
variable in Eq. (4.6), one finds the representation

X) = g [, oo (1-6) e an

In dimensions d > 3, this can be cast into the form

2T(d/2) il ( (d—3)/2 ) P sinkr

(d) — _Y >

x\Y(kr) = (4.8)
Vrl((d —1)/2) /.LEZ:O H O(kr)2+  kr

For even d, the exponent (d — 3)/2 is a fraction —1/2,+1/2,43/2,..., and the function

(1-— 52)(d_3)/ % in the integrand in Eq. (4.7) is an infinite power series. This yields, for

d =4,6,8,..., the complicated power series (4.8) involving an infinite number of inverse
powers of kr. However, if d is odd, the exponent (d — 3)/2 is an integer 0,1,2,..., and
the function (1 — 52)((1_3)/2 is a finite polynomial of order (d — 3)/2 in 2. Thus, x(¥ (kr)

acquires a comparatively simple structure, because it only contains a finite number of
inverse powers of kr. Formally, this means that for odd d all binomial coefficients for
pu > (d—3)/2 are zero.

The differential equation for the functions x(¥(kr) is easily obtained by averaging
Eqg. (4.1) over the solid angle € of k, i.e. by integrating both sides,

A / dQexp (if - 7) = R / dexp (iF - 7) . (4.9)
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We notice that the Laplacean A commutes with the integral, because the former is in the
space of the position vector, the latter in the space of the wave vector. Moreover, the
integral trivially commutes with k% = k2. Hence, one arrives at

ATX(d)(kr) = —kzx(d)(kr). (4.10)

Since X(d)(kr) depends exclusively on radial variables, we replaced the full Laplacean A
with its radial part
1 9 4,0 _ & d-10

1oy or W+ r or’ (4.11)

A, =

In general, there are two fundamental solutions x(f) (kr) and X@(k’r) of the differential

equation (4.10) which behave as exp (+ikr) / (kr)(d_l)/2 for large arguments kr. Thus, to
obtain the full solutions, one can make the Hankel ansatz

exp (Likr
P (kr) = W)(mi_l)/;w@(kr). (4.12)

Here, wgg ) (kr) is a function with the property wgg ) (kr) — 1 for kr — oco. The differential

equation follows easily from Eq. (4.11) and is given by
o .0 d—1(d-1 1\ @

For d > 3, one uses the ansatz as an asymptotic power series

o

w\® (kr) = /L 4.14
+ ( ) L;) (:tkr)“ ( )

which yields a recursion for the coefficients

oun = o (W) = 5 (57 1) o (4.15)

with the starting value ap = 1. A special situation occurs when the integer running index
p reaches the critical value p. = (d — 3)/2. If d is odd, p. is integer and the recursion
terminates at y = p., i.e. one has a, = 0, u > p.. Thus, the asymptotic series becomes
a finite polynomial in inverse powers of kr. However, if d is even, u. is half-odd integer
and the series cannot terminate, it is always infinite. This explains the different structure
of the Bessel functions in even and odd dimensional spaces from the viewpoint of the
differential equation.

4.2 Matrix Bessel functions in ordinary space

In this section we compile some more facts about matrix Bessel functions in addition
to the properties already stated in Section 2.2. Specifically the matrix Bessel function
of the orthogonal group is a widely studied object in the field of multivariate statistics
[MUI]. A classical article on the topic of special functions of matrix arguments is by Hertz
[HER]. The matrix Bessel function of the unitary symplectic group has attracted so far
less attention.
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4.2.1 Integral definition and differential equation

As in the case of vector Bessel functions, we start in the matrix case with the plane wave.
For two matrices H and K with the same symmetries HY = H and KT = K, we introduce
the matrix plane wave as exp (i'Tr H K) where the trace is the proper scalar product in the
matrix space. The matrix plane wave has the property

1
(2m)N AN (N-1)/2

/ d[H]exp (iTr HK) = 6(K) (4.16)

where §(K) is the product of the ¢ distributions of all independent variables. The matrix
plane wave is eigenfunction of the Laplacean in matrix space as defined in Eq. (2.15)

Aexp (iTrHK) = —TrK?exp (iTr HK) . (4.17)

Analogously to vector Bessel functions, we define the matrix Bessel functions as the angular
average

3 (z,k) = / dpu(U) exp(iTr HK) . (4.18)
UeU(N;p)

The diagonal matrix k& contains the eigenvalues of K which is diagonalized by a matrix
V such that K = VIkV. Due to the invariance of the measure du(U), the matrix V is

absorbed and the functions <I>§€) (z,k) depend on the eigenvalue z and k only,

oD (2, k) = / du(U) exp(iTr UTzUE) . (4.19)
UeU(N;3)

Thus, in the scalar product Tr H K, solely the relative angles between H and K matter.
The matrix Bessel functions are symmetric in the arguments,

o (k) = o (k,2) (4.20)
and normalized to unity,
32,00 =1 and P00,k = 1. (4.21)

due to Eq. (2.7) As in the vector case, the differential equation is obtained by averaging
Eq. (4.17) over the relative angles,

A du(V)exp (iTt HK) = —TrK? / du(V)exp (iTr HK) . (4.22)
VEU(N;8) VEU(N;B)

Again, the Laplacean A commutes with the integral, because the former is in the space of

the matrix H, the latter over the diagonalizing matrix V' of K. The integral also commutes

with Tr K2 = Trk?. Due to the symmetry between H and K, the integral is obviously

identical to the definition (4.19) and we find

AP (2,k) = —Tr k2P (2, k) . (4.23)

Since the matrix Bessel function (I'S\?) (z,k) depends only on the radial variables, the full
Laplacean reduces to its radial part A, as stated in Eq. (2.27). We notice that these
steps are fully parallel to the corresponding discussion in Sec. 4.1. Importantly, due to the
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(8)

symmetry (4.20), the functions @’ (z, k) must also solve the differential equation in the
kn, n=1,..., N which results from Eq. (4.23) by exchanging = and k. Obviously, this a
very restrictive requirement.

Comparing the radial operator (4.11) in the vector case and the radial operator (2.27),
we see that it is § that corresponds to the spatial dimension d or, more precisely, to
d — 1. The role played by the matriz dimension N is a different one. To illustrate this, we
study the simplest non—trivial case N = 2. We find straightforwardly from the differential
equation (4.23)

P (5. k) = exp (z (21 + $2)2(k1 + kQ)) KB+ ((901 - 1222(7?1 - k2)> (4.24)

where x(4) is the vector Bessel function in d dimensions as defined in Eq. (4.3). This
functions appears in the solution, because the differences 1 — xo and ki1 — ko directly
correspond to the lengths |7] and |k|. In higher matrix dimensions N, this simple corre-
spondence is lost. However, we will see in great detail that the features of the functions
@5{?) (x,k), in particular whether or not explicit solutions can be constructed, are stronger
influenced by 8 than by N.

Another point in this context deserves to be underlined. In the vector case, the dif-
ferential equation (4.10) and the solution (4.6) were constructed for integer dimensions d.
However, both equations are also well defined for any real and positive d. Similarly, we
observe in the matrix case that the differential equation (4.23) was derived for the cases
B =1,2,4. However, neither itself nor its solution (4.24) for N = 2 are confined to these
cases § = 1,2,4, they are valid for any real and positive 8. Thus, the cases § = 1,2,4
which correspond to a matrix model, i.e. to the defining integral (4.18) of the matrix
Bessel functions, are only special cases of a much more general problem, namely finding
the solutions of the differential equation (4.23) for every integer N and for arbitrary real
values of 3. We will return to this in Sec. 4.4.

4.2.2 Fourier—Bessel analysis

One can do a Fourier-analysis on the curved space of the eigenvalues of z,k [HC2]. We
write the Fourier transform of a function f(H) as

F(K) = DY / d[H]exp (iTr HK) f(H) (4.25)

where the matrices H and K have the same symmetries. If we choose a symmetric nor-
malization,

B) _ 1
Dy = (2m)N/2BN(N-1)/4 7 (4.26)
we can write the inverse transform as
f(H) = Dgg)/d[K]exp(—z'TrKH)F(K), (4.27)

We notice that, according to Eq. (4.16), the Fourier transform of the constant D](?) is the
¢ distribution §(K) and vice versa.
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If f is an invariant function such that f(H) = f(z), its Fourier transform turns out to
be invariant as well, F(K) = F (k). Introducing eigenvalue—angle coordinates, we easily
find

k) = DY [ dial | (@) 00w, k) £ (2) (4.25)

for the Fourier transform and
flz) = / d[E] |Aw (k)P % (k, z) F (k) (4.29)

for its inverse. We now insert the transform (4.28) into the inverse (4.29) and conclude
that

2 *
(DRCP) [amianm)’ & @ k) 2" k)

_ det[d(zn — ym)]n,m:l,...,N
T T Av@ANWI? (4.30)

These are the orthogonality and completeness relations given in Section 2.2.2.

4.2.3 Alternative integral representation

We now give a useful integral representation for the matrix Bessel functions 3!y )(x k) in
the cases § = 1,2,4. Although we can hardly believe that this representation is completely
new, we could not find it in the literature. We can write

oW (z,k) = AP /d[T] exp (iTrT) Det /2 (z@k - T®1x) (4.31)

where 1y is the N x N unit matrix. The normalization constant is given by

BN /2, BN(N-1)/4 N
AP = SN H T'(8n/2) . (4.32)

The matrix 7' in Eq. (4.31) is real symmetric, Hermitean or Hermitean self-dual, re-
spectively, for § = 1,2,4. The measure d[T] is Cartesian and given by Eq. (2.4). All
independent variables in T" are integrated over the entire real axis. To ensure convergence,
the diagonal elements of T" have to be given a proper imaginary increment. We notice
that x and T are N x N matrices for 8 = 1,2 and 2N x 2N for 8 = 4 with twofold
degenerated eigenvalues. The matrix k is, in all three cases of 8, just the N x N matrix
k = diag (k1, ko, ..., k), as defined in Section 2.1. The integral representation (4.31) be-
comes especially convenient, if either x or k is highly degenerate. For definiteness consider
the case that z takes only two different values

z = diag (x2 ® Iny_n, 21 @ 1) , M<N . (4.33)
The integral representation (4.31) becomes

(1)(ﬁ)(3U k) = (ﬁ)( Ty — $1)7MNﬂ/2+M exp (i 7 Trk)

/d[texp(xg—wl Zt>|AM \ﬁHHk—t )2 (4.34)

1=17=1
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where d[t] = [TM., dt,. Thus it reduces to an M—fold integral over the real axis. Again
the ¢, have an imaginary increment, which ensures convergence.

In the general case the integral representation (4.31) leads to an integral equation for
the matrix Bessel functions,

@(ﬂ)(l‘ t)
8P (z,k) = BY Det H/2p / d[f]| A (1))} ——N T . (4.35)
where the normalization constant reads
BN2 /21N

N (2m)N N!

The ¢, in Eq. (4.35) have a proper imaginary increment and their domain of integration
is the real axis. Due to the symmetry relation (4.20), the variables  and k can be inter-
changed in Egs. (4.31) and (4.35). A derivation of these results is given in Appendix B.1.

4.3 Recursion formula in ordinary space

The matrix Bessel functions, defined in Eq. (4.19),
Y (z,k) = / du(U) exp(iTr UtzUk) (4.37)

depend on the radial space of the eigenvalues x and k. We emphasize that the radial
spaces do not lie in the manifolds covered by the groups U(N; ). However, we will show
that the group integral (4.37) can be exactly mapped onto a recursive structure which acts
exclusively in the radial space. This remarkable feature is the main result of this section.

The matrix Bessel functions @S\f) (z,k) can be calculated iteratively by means of

Theorem 4.1 (Recursion Formula) Let Q%ﬂ (z,k) be defined as in Eq. (4.37), then it
can be written as

0 (k) = / du(z, ') exp (i(Trz — Tra)ky) 89 (<, %) (4.38)

where @S\f)_l(x',%) is the group integral (4.37) over U(N — 1;3). We have introduced the
diagonal matriz k= diag (k1, e kn_1) for 8=1,2 and k= diag (k1,k1,. . kn—1,kN—1)
for B =4 such that k = diag (k,kn) for 8 =1,2 and k = diag (k,kn,kn) for B =4. The

invariant measure is given by

, 5 A
du(@,) = G A]Zi I o =02 di)
@ _ 2V 1P(Nﬁ/2)
GN = “TN(g) (4.39)

The domain of integration is compact and given by

Tp > Th > Tpi, n=1,...,(N—-1). (4.40)
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This formula and its derivation are due to Guhr [GK]. Importantly, the N — 1 integration

variables 2/, n =1,..., N —1, ordered in the diagonal matrix z’ = diag (z},...,z/y_,) for
B =1,2 and 2’ = diag (z],2],...,2%y_,,2%y_,) for § = 4 are arguments of @Sg)_l(w’,%).

Moreover, we notice that their further appearance in the exponential is a simple one due
to the trace.

The coordinates z’ are constructed in the spirit of, but in general they are different
from, the Gelfand-Tzetlin coordinates as discussed in Chapter 3. To clearly distinguish
these two sets of coordinates from each other, we refer to the latter as angular Gelfand—
Tzetlin coordinates and to the variables z' as radial Gelfand—Tzetlin coordinates. The
difference is at first sight minor, but of crucial importance. In the angular case, z is in
the Cartan subalgebra belonging to U(N;3). In the radial case, however, z is in the
radial space of the eigenvalues of the real-symmetric, Hermitean or Hermitean self-dual
matrix H, which are the arguments of the functions (4.37). While the angular Gelfand—
Tzetlin coordinates never leave the group space, the radial ones establish an exact and
unique relation between the group and the radial space. The radial Gelfand—Tzetlin
coordinates re parametrize the sphere that is described by the N column Uy of the
matrix U € U(N; ). The recursion formula (4.38) can only be constructed in the radial
coordinates z’, but not in the angular ones. The radial and the angular Gelfand-Tzetlin
coordinates are, in general, different. They happen to coincide for § = 2, i.e. for the unitary
group U(N). Remarkably for the unitary-symplectic group the radial Gelfand-Tzetlin
coordinates coincide with the angular ones as well. Indeed in Section 3.3 we mapped the
angular Gelfand-Tzetlin eigenvalue equation onto a radial eigenvalue equation to obtain a
unique solution.

The invariant measure du(z,z') is, apart from phase angles, the invariant measure
du(Up) on the sphere in question, expressed in the radial coordinates z'. It only contains
algebraic functions. The domain of integration reflects a “betweenness condition” for
the radial Gelfand—Tzetlin coordinates. It coincides with the “betweenness” condition
of the unitary group as depicted in the pattern (3.60). This is why the Vandermonde
determinants in the measure (4.39) do not have an absolute value sign.

The general recursion formula (4.38) states an iterative way for constructing the matrix
Bessel function @55) (z,k) for arbitrary N from the matrix Bessel function <I>§ﬂ ) (z,k) for
N = 2 which can usually be obtained trivially. We remark that the recursion formula
allows one to express the matrix Bessel functions in the form

N-1
oQ@w) = [ I dua,a)
n=1
exp (i(Tra™=) = Tra™)ky 1) exp (1o ki) (441)

where we have introduced the radial Gelfand—Tzetlin coordinates mg,?), m=1,...,N—n

on N—1levelsn=1,...,(N —1). We define (% = z and 2(") = 2".

4.3.1 Derivation

We introduce a matrix V = diag (V,Vp) with V € U(N — 1;6) and V, € U(1;6) such
that V€ U(N — 1;68) ® U(1;8) C U(N; () and multiply the right hand side of the
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definition (4.37) with
1= [auv) = [du(y) [du(@) . (442
The invariance of the Haar measure du(U) allows us to replace U with UV and to write
3 (z,k) = / dp(Vp) / du(V) / du(U) exp(iTr UtzUVTEV) (4.43)

We collect the first N — 1 columns U,, of U in the N x (N — 1) rectangular matrix B such
that B = [U1 Uy ---Un—1] and U = [BUy|. We notice that

B'B = 1y, ,
N-1

BBt = S U.UL = 1y - UnU} . (4.44)
n=1

As already stated in Sec. 2.1, the elements of a vector or a matrix are scalar for § = 1,2
and quaternion for 8 = 4. In this sense, we also write 15 as the unit matrix for g = 4
because its elements are 7). By defining the (N —1) x (N — 1) square matrices H = BfzB
and K = VTEV we may rewrite the trace in Eq. (4.43) as

TrU2UVIKV = TrHK + Hynky (4.45)

with Hyy = ULwUN according to Eq. (2.8). We notice that Vj has dropped out. Since
the first term of the right hand side of Eq. (4.45) depends only on the first (N —1) columns
U,, collected in B and the second term depends only on Uy, we use the decomposition

du(U) = du(B)du(Un) (4.46)

of the measure to cast Eq. (4.43) into the form

oP(,k) = [ du(U) explifnnky) [du(V) [ du(B) exp(ir BR) - (4.47)

where we have already done the trivial integration over Vj.

The difficulty to overcome lies in the decomposition (4.46). While du(Uy ) is simply the
invariant measure on the sphere described by Uy, the measure du(B) is rather complicated.
Pictorially speaking, the degrees of freedom in du(B) have always to know that they are
locally orthogonal to Uy. Thus, du(B) depends on Uy. Luckily, there is one distinct
set of coordinates that is perfectly suited to this situation. It is the system of the radial
Gelfand—Tzetlin coordinates. We construct it by applying the methods of Chapter 3. The
N x N matrix (1y — UNUJJ{,) is a projector onto the (N — 1) x (N — 1) space obtained
from the original N x N space by slicing off the vector Uy. We now project the radial
coordinates x onto this space and study the spectrum. The defining equation reads

(Iy —UNUL) 2z (1y — UNUL) El, = 2! E!

n n

n=1,...,N—1, (4.48)

By the steps which led to Eq. (3.15) this equation can be cast into the form

1
0= —a!, Det (z — a) Te U\ —"— U . (4.49)
n
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Together with the normalization Tr U}:[UN = 1, this yields the N equations

N B-1
1= TUUy = Y Y U

n=1a=0
1N N p-1 U‘(Oé)2
0 = TrUL Uy = S Y —mN  p=1...,N-1. (450
xr — ‘In m=1 a=0 Tm — .’L‘n

In these formulae, the trace Tr is only needed in the symplectic case. We notice that the
equations for the variables z’ depend on the variables z as parameters. We emphasize once
more that = in these equations is in the radial space and, in general, not in the Cartan
subalgebra of U(N; f3).

At this point, it is not clear yet why the introduction of the radial Gelfand—Tzetlin
coordinates is at all helpful. The great advantage will reveal itself when we express the
matrix H and the matrix element Hyy in the trace (4.47) in these coordinates. To this
end, we first multiply Eq. (4.48) from the right with E'f and sum over n,

N—-1
(v — UnUR) z(ly — UNUY) = 3 ), ELE}} (4.51)
n=1

where we used the completeness relation

N—1
S ELEY + UNUL = 1y (4.52)
n=1

Taking the trace of the spectral expansion (4.51) we find immediately
Trz — Tre' = TrU\zUy = Hyy . (4.53)

This is a remarkably simple result. An analogous expression exists for the NN matrix
element of the unitary group in the theory of angular Gelfand—Tzetlin coordinates for the
unitary group [GT1, SHA]. Here we have shown that Eq. (4.53) is a general feature in
every radial space.

We now turn to the (N — 1) x (N — 1) matrix H. Its N — 1 eigenvalues y,, n =
1,...,N — 1 are determined by the characteristic equation

0 = Det (H—y,) = Det (BlzB —y,)
= 1 Det (BBTx — yn)
Yn

1
= ——Det ((ly - UNUL)z — ya) (4.54)
Yn

where we used Eq. (4.44) and re-expressed a (N —1) x (N —1) determinant as a N x N de-
terminant. The comparison of Eq. (4.54) with Eq. (4.49) shows that, most advantageously,
we have y, = 2], n=1,...,N — 1. Thus we may write

H = B'zB = U'2'U (4.55)

by introducing the (N — 1) x (N — 1) square matrix U which diagonalizes H. Obviously,
U must be a complicated function of the N x (N — 1) rectangular matrix B, i.e. of the
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columns Uy, n =1,..., N — 1. However, all we need to know is that 17~must be in the
group U(N — 1; 3) because, by construction, H has the symmetry Hf = H.
Collecting everything, we cast Eq. (4.47) into the form

oD (z,k) = / du(z, ') exp (i(Trz — Trz')ky)
/ du(V) / du(B) exp(iTr T/ TRV . (4.56)
We may now use the invariance of the Haar measure du(V) to absorb U such that
8 (a,k) = / du(z, ') exp (i(Trz — Tra')ky)
/ du(V) exp(iTr ' V1EV) / du(B) . (4.57)

Thus, the integration over B is trivial and yields unity due to our normalization. The
remaining integration over 1% gives precisely the matrix Bessel function Q(ﬂ ) (= %) This
completes the derivation of the first part of theorem 4.1. The 1ntroduct10n of the ma-
trix V = diag (V,VO) was not strictly necessary. Alternatively, one could have shown
that the measure du(B) can be identified with du(U) and have done the corresponding in-
tegral. However, the introduction of V' makes this part of the derivation more transparent.

For 8 = 4 the measure entering the recursion formula has already been derived in
Section 3.3. For g = 1,2 the derivation is analogous. The normalization constant is
obtained from results in Gilmore’s book [GIL]. It ensures normalization to unity according
to Eq. (2.7). The three cases are summarized in Eq. (4.39).

4.4 Radial functions for arbitrary g3

We now turn to the question stated at the end of Section 2.2.2. We saw that for the
values # = 1, 2,4 the matrix Bessel functions can be considered as integral solutions of the
differential equation

N
2,9 (@, k) Z K20 (k) , @0,k = 1. (4.58)
The operator
A—ia_?Jr B (a_a) wso)
o n=1 (9117% n<m Tn — Tm Ozn O0Tm '

is — through the adjunction operation (2.41) — related to the Hamiltonian Hp defined in
Eq. (2.41). The definition of matrix Bessel functions as a group integral (4.19) confines (3
to the values § = 1,2,4. Discussing the simplest case N = 2, we already saw in Sec. 4.2.1
that Q(ﬂ ) is well defined for arbitrary values of 8. This was a simple consequence of the
explicit form (4.24) which expresses <I>(’3 ) in terms of the Bessel function xB+D. The
latter is known to be well defined for arbitrary (. It seems natural that this carries over
to arbitrary N.
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We now pose the question. Do integral solutions of Eq. (4.58) exist, which generalize
the matrix Bessel functions to arbitrary §7

They should have the same symmetries as the matrix Bessel functions, i. e. they should
also be solutions of the differential equation

AP (2, k) Zx o (z,k) , oP(z,0) = 1. (4.60)
n=1

Moreover we require that the solutions are symmetric in the argument
3V (z,k) = oV (k,z) . (4.61)

In the sequel, we want to refer to the functions @g\?) (z, k) for arbitrary 3 as radial functions
while we reserve the term matriz Bessel functions to the cases § = 1, 2,4 where the direct
connection to matrices and groups exists.

4.4.1 Recursive solution

The recursion formula (4.38) was derived using group theoretical methods. Nevertheless
the recursion integral itself does not refer to any group properties. However it depends on
the parameter 3 analytically. Therefore the integral (4.38) is also meaningful for arbitrary
B > 0. The statement of the following theorem is that this integral is also a solution of
the differential equations (4.58) and (4.60).

Theorem 4.2 Let @55)_1(35’, k) be the solution of the differential equation (4.59) for N—1,
then an integral solution of Eq. (4.59) for N is given by

@55)(;5 k) /duw x exp( (Zx— Z$>kN> No 1(:v k) (4.62)

where x' is the set of integration variables z},, n =1,...,(N—1). The integration measure
du(z,a’) = ) AN1@ |(6=2)/2 g 4.63
p(z,z') = Aﬁl H|w -, [z'] . (4.63)

is the continuation of Eq. (4.89) to arbitrary 8. The normalization constant

(8) I'(NG/2)
&N =2 )

is the continuation of the constant in Eq. (4.39). As in the cases f = 1,2,4, the inequalities

(4.64)

Tn > T > Tpil, n=1,...,(N—1) (4.65)
define the domain of integration.

The keystone for the proof is the following
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Proposition 4.1 Let f(z') be a symmetric and analytic function in the (N — 1) variables
i, 1=1,...,(N — 1), further let A, be defined as in Eq. (4.59) then we have

N-1
A, /du z,z') exp ( <Z Ty — Z::l x%) kN> f(z") = (4.66)

N-1
—k3 /du z,7') exp ( (Z:::cn Z:l JU;) k'N) fa') +

N—-1
/d,u z, ') exp ( (Z Ty — Z ac;z) kN) Ay f(zh) (4.67)

where the measure du(z,x') is given in Eq. (4.63). The integration domain is defined by
the inequalities (4.65).

A sketch of the proof is given in Appendix B.2. Setting in Eq. (4.66)
fa') = o), o/, k) (4.68)
yields
A (2, k) = —k2,00 (z, k)

N-1
+ /du z, o exp( (Z Ty — Z x%) kN> Azzéggzl(x',g) ,  (4.69)
n=1

This equation establishes a not immediately obvious, but nevertheless natural connection
between, on the one hand, the action of the Laplacean A, in the N variables x,, on the ra-
dial function in N dimensions, i.e. on the recursion integral (4.62), and, on the other hand,
the recursion integral over the Laplacean A,/ in the N —1 variables z], acting on the radial
function in N — 1 dimensions. There is a compensation term which is just _kJZV‘I’S\?) (z,k).
Thus, we can prove the eigenvalue equation (4.58) by induction: assuming that it is correct
for N —1, identity (4.69) implies Eq. (4.58) for N. The induction starts with N = 2 where
the eigenvalue equation (4.58) is clearly valid for arbitrary 8 as shown in Sec. 4.2.1 by
deriving the explicit solution (4.24). The symmetry relation (4.61) is non-trivial. In the
matrix cases § = 1,2,4, it is obvious from the integral definitions (4.18) and (4.19). For
arbitrary 3, we cannot use this argument, we only have the recursion (4.62). In App. B.3,
we prove the symmetry relation (4.61) by an explicit change of variables and derive the

normalization constant Gs\é). This completes the proof. I

Eq. (4.69) is just one example of a relation between operators acting on @gg) (z,k) and

operators acting under the integral on @55) (', k). It turns out that these relations are
crucial in deriving explicit results from the recursion formula. This holds especially in the
supersymmetric case to be discussed later. We mention another examples

N-1
Z Ow k) = iky @ (5)(3: k) + /du z, exp( (Z Ty — Z x%) kN>
m n=1

(Z S ) (k) . (4.70)
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Thus the radial function is an eigenfunction not only of A, but we also have

Yo9
28— 1\'? z, k) —sz @ (w,k) (4.71)
m=1 m=1

and more generally

K K

<Za> 3 (z,k) = (Zk)(b (z,k) . (4.72)

The proof of Eq. (4.70) is along the same lines as the proof of Proposition 4.1.

Finally we comment on the definition domain of . We have seen in Section 4.2.1
that for N = 2 the matrix Bessel function is well defined for arbitrary complex §. This
should also be true for our recursion formula (4.62). However, for 8 < 0 non-integrable
singularities arise at the boundaries in the integral in Eq. (4.62). At the same time the
normalization constant becomes zero for § =0, —2, —4, ... compensating the singularities
of the integral. This makes the recursion formula for 8 < 0 not ill-defined but it gets more
difficult to treat. Therefore we restricted us in the discussion to positive values of 3.

4.4.2 Hankel ansatz

In the spirit of Eq. (4.12) for the vector case, we make a Hankel ansatz for our radial
functions for arbitrary 3. Since the sum over the k2 on the right hand side of the eigenvalue
equation (4.60) is invariant under all permutations of the k,, or, equivalently, their indices

n, we can label a set of solutions CI'%;L

SY of N objects. For these solutions, we make the ansatz

(z,k) by an element w of the permutation group

. N
e — 2 Zari)
M |An(z)An (R)[A/

Wi (2,k) | (4.73)

where w(k) is the diagonal matrix constructed from k by permuting the k,, or the indices

n. The normalized full solution @Sg) (z, k) satisfying the constraint (4.61), is then given as
the linear combination

const alw
o (@,k) = = Y (1)), (w,k) (4.74)
T wesN

of the functions (4.73). Here, m(w) is the parity of the permutation.
We find for the function W](Vﬁ, ‘)u (z,k) the differential equation

Ly iy Wi (2,k) = 0 (4.75)

where the operator is given by

N 9 3
Ly o) Za$2+22zk n)a 5(5—1)2_7

(4.76)
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This differential equation generalizes Eq. (4.13) to the matrix case for § = 1,2,4 and,
furthermore, the latter to general radial function for arbitrary (.

Again, due to the symmetry (4.61), the differential equation (4.75) must also hold
if z and w(k) are interchanged. It is the last term of the operator Ly k) that makes
the differential equation (4.75) so difficult. This shows that the case 8 = 2 correspond-
ing to unitary matrices U € U(N) is special: the last term vanishes and we simply

have WJ(VZ’ ) (z,k) = 1. For arbitrary £, it is obvious from the differential operator that

w
W}f&,(w, k) — 1if |z, — x| — oo for all pairs n < m. Once more, this must also be true
if |k, — k;| = oo. Thus, we expect that W](V‘)d(w, k) is some kind of asymptotic series,
generalizing Eq. (4.14) in the vector case.
Hence, we conclude that the leading contribution in an asymptotic expansion of the
functions (4.73) is given by

o0 (15 5k

(8)
P ~ 4.
Nl k)~ S AN RPP (4.77)
According to Eq. (4.74), this means that
@%)(w,k) N det[exI;(;;Unkm§7ém:1,...,N (4.78)
Ay (z)AN" (k)
(8)

is the asymptotic behavior of the radial functions @’ (z,k) if the differences |z, — 2|
and |k, — k,,| are large for all pairs n < m. This generalizes the well known asymptotic
behavior of the matrix Bessel functions, cf. Eq. (2.28) to arbitrary .

The functions W](Vﬁ, 3,(:1:, k) are translation invariant, i.e. they depend only on the differ-
ences (L, — ). We show this in Appendix. B.5. Due to the symmetry, this argument car-

(8)

ries also over to k and Wy / (z, k) depends only on the differences (k;, — k) as well. More-
over, the symmetry implies that it depends only on the products (k) — kw(m)) (Tn — Tm)-
Collecting all these pieces of information, we make the ansatz

Wy = Y s
{u} [nem ((kw(n) - kw(m))(fﬂn - fEm))

with coefficients @y, 5.y _,)y that depend on N(N —1)/2 integer indices finm, as many
as there are differences. The summation is over the set of these indices. The presence
of the k,, makes it very difficult to solve Eq. (4.75) with the ansatz (4.79). In the vector
case, one easily sees that the differential equation (4.13) in 7 can be transformed into an
equation in the dimensionless variables kr such that k& does not appear anymore. This
leads to the simple recursion (4.15) for the coefficients. Here, in the matrix case, the k,
cannot easily be absorbed and the recursion formulae for the coefficients will depend on
the k, in a non—trivial way. However, in some simple cases, it is possible to solve them.

4.5 Integrals over the unitary-symplectic group

The difficulties in extracting more explicit expressions from the recursion formula 4.38 are
due to the measure (4.39). We notice that in the case that § is not even, it becomes a
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non-polynomial expression in the integration variables z!,. Particularly for 8 =1, i. e. for
the integration over the orthogonal group we have

An_1(a 1
Wed) = o f (A]%;v_ig)) /Tl on — 1)

exp( <Za:— Z m) kN) No 1(a: k)) dlz'] . (4.80)

We notice that annoying square roots appear. They — in general — inhibit a further eval-
uation. To our knowledge the only generic case which allows for an evaluation in a closed
form is the smallest non—trivial case N = 2 , cf. Eq. (4.24). In general only an infinite
series in a special set of symmetric functions called zonal functions is available [MUI].
Things change completely for even S > 0. In this case the measure is a polynomial in
the integration variables and — in principle — all integrations can be performed in a closed
form. This reflects the correspondence of the matrix Bessel functions for even § to the
vector Bessel functions in odd dimensions and vice versa as stated in Section 4.2.1.

Although all integral involved are elementary, up to now it has only been possible for
N = 3 to evaluate the matrix Bessel function for the unitary symplectic group with the
recursion formula (4.38). We consider now

@%)(—ix, k)= exp (Tr u_lxuk) du(U) ) (4.81)

/U €USp(2N)
z and k are diagonal matrices with Kramers degeneracy.
$:diag($112,...,$N12) , kzdiag(kllg,...,kNIQ) . (482)

Starting point of the recursion is the smallest non—trivial case N = 2. We obtain after
an elementary calculation

W i k) =W 1 — 2 X TWw
ocin) =6 3 (r5razem ~ s atem) )

weS?

(4.83)
The sum runs over all elements of the permutation group SV and the volume of the group
is normalized to unity. After inserting Eq. (4.83) into the recursion formula, we find for
USp(6), the next step in the recursion,

o (in k) = GG Z/ dml/ [Ii- 11_[3 )

fer? (2) A3 (w())
) - 1 2
exp ((Tro = Tra')ks + Traw(k)) | 5o - A2 Ao (w(R)

(4.84)

Although the integrand is finite everywhere, inclusively in 2}y = z%, = x5, the denominators
Ay(z') and AZ(z') raise a technical difficulty. The key to remove them is an integration
by parts in the second term of the round bracket in Eq. (4.84). By writing

2 0 0 1
__ (9 _9\_t 4.
AZ(z") (Bw'l 8$'2> Ag(z!) (4.85)




4.5. INTEGRALS OVER THE UNITARY-SYMPLECTIC GROUP 53

and observing that the product [J3_, H] 1(z; — 2) annihilates all boundary terms, we

can perform an integration by parts and arrive at

@iz 1) — W 1
& (—iz, k) =Gy’ G
’ VO 2 @A)
T1 T2 3 3 ~
/ dz} / dr Z H (zj — ) (z; — 75) exp ((Tra: — Trz')ks + Trxw(k)) ,
Z2 z3 i=1 j=1
i

(4.86)

where no denominator is left. Due to the permutation symmetry of the original integral,
in the further evaluation of Eq. (4.86) we can restrict ourselves to the unity element e
of the permutation group. Thus we need only consider the limits =} — z;, ¢ = 1,2 at
performing a series of integration by parts. After collecting orders in k& we find

(), _ oWa® 1 2)A3(k)
@34716(—13},’@ = G34 G24 W ( A3 +2§ ( i — 1 (k} k. )>
3
4 Z(.’BZ - .’E])(k‘z - k]) + 12) €xXp (Tr :L‘k‘) . (4.87)
1<j

By introducing the composite variable
2y (ij) = (.’IIZ — .’L‘J)(kw(z) - kw(j)) ,7=1,...,3, we€ 83, (488)

we can express <I>g4)(—ix, k) compactly as

@gl)( iz, k) Z Al A3 <4+ H > exp (Trzw(k)) .

wes3 1<j

(4.89)
Crucial in the derivation was the identity (4.85). Regrettably, it is not clear, how to
generalize it to higher matrix dimension. One must find an operator, which annihilates
through integrations by parts all terms containing integration variables in the denominator.
An alternative way of constructing the polynomial part of @55) for arbitrary (8 is the Hankel
ansatz described in the previous section. In Appendix B.4 we derive <I>El4)(—ix, k) in this
way. Up to a normalization constant it is given by

Q)( —ix, k‘ Z A3 A?’( (k)) (H(2 —Zw(ij)) +

west 1<j
2 X M-t X T @) en(o)
l<m<n ”'<J l<m i<j,#lk,#ln
#ln k<n #mk,#Emn,#kn
#mn

(4.90)

Comparing this result with Eq. (4.89) we notice that the composite variables z;; enter only

linearly in the polynomial part of ®\(—iz, k), N = 2,3,4. This is what we expected.
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Also the spherical Bessel function j;(z), the counterpart of @%) (z,k) in the vector case,
cf. Eq. (4.6) and (4.24) has a polynomial part linear in z. We conjecture that this analogy

between the spherical Bessel function j(g/o_1)(2) and the matrix Bessel functions @Sg) (z,k)
holds for all N and all even f.

4.6 Summary of Chapter 4 and outlook

We derived an integral representation for matrix Bessel functions by means of a special
coordinate system. This coordinate system is in general related to but different from
the Gelfand—Tzetlin coordinates as constructed in the previous section. We applied the
Gelfand—Tzetlin method of projecting onto a subspace orthogonal to a column of the uni-
tary, orthogonal or unitary—symplectic matrix. This time we did not project an element
of the algebra but we projected one of the two diagonal matrices appearing as arguments

of the matrix Bessel function @55) (z,k). This lead to a recursion formula for @55) (z, k).

It establishes a connection between @S\é) (z,k) and @Sg)_l(x, k) through a (N — 1)—fold in-
tegral. The measure entering in the integral is an algebraic function. One can say that
these radial Gelfand—Tzetlin coordinates are not the natural coordinates of the group, but
they are the natural coordinates of the matrix Bessel functions.

Though derived by group theoretical methods the recursion formula does not refer to
any group properties at all. Instead, the parameter 8 appears in a natural way as con-
tinuous parameter. This happens in a way similar to the index v of the Bessel functions
Jy, in vector analysis. By analytic continuation of § in the recursion formula we obtained
solutions of a Calogero-Sutherland type Hamiltonian Hp, as defined in Eq. (2.41) for
arbitrary §. Importantly these solutions have the same symmetries as the matrix Bessel
functions. It is an intriguing problem to find a geometric and group theoretical interpre-
tation of the recursion integral for arbitrary 8. We conjecture, that the parameter g is
related to the deformation parameter of quantum groups.

For generic 8 a further evaluation of the recursion formula seems not to be possible
due to the complexity of the measure. An exception are even integers. In this case the
measure becomes particularly simple and the integral can in principle be performed in a
closed form. We derived closed expressions for the smallest non-trivial even integer 8 = 4
and for N < 4. It was crucial in the evaluation to find appropriate operators acting under
the integral which transformed the originally rational function in the integration variables
into a product of an exponential and a polynomial. This, in turn, was elementary. A
generalization of these results to arbitrary matrix dimension N remains as a challenging
task. Work in this direction is in progress.

The recursion formula can be regarded as an integral solution of the Hamiltonian Hp
which describes a scattering system of N particles on the line. In the Calogero—Sutherland
model the particles are enclosed on the circle. It is yet another interesting question whether
an integral solution in the spirit of our recursion formula exists also for this case.



Chapter 5

Supersymmetric matrix Bessel
functions

In this chapter we treat the matrix Bessel function of the unitary orthosymplectic group
UOSp(k1/2k2) with the supersymmetric generalization of the recursion formula. The in-
tegration over supergroups involves integrals over anticommuting variables. These can in
principle always be performed. However, for groups of higher dimension the vast amount
of anticommuting variables is a serious obstacle for the supersymmetric method. It turns
out that the supersymmetric recursion formula is an appropriate tool in this case. The
UOSp(k1/2kz2) contains the orthogonal group O(k;) as subgroup. As we have seen the
matrix Bessel function of the orthogonal group can in general not be expressed in a closed
form. But all other integrals can be performed yielding rather compact expressions.

In the introductory section we compile some facts of supersymmetric matrix Bessel
functions in addition to those already given in Section 2.3. In the next section we state
the supersymmetric version of the recursion formula and sketch its derivation. The latter
is not essentially different from the one in ordinary space.

In the next two sections we derive explicit expressions for the supersymmetric matrix
Bessel functions of the groups UOSp(2/2) and UOSp(4/4), which are, as outlined in the
introductory chapter, important in matrix models.

5.1 Matrix Bessel functions in superspace

Many of the properties of matrix Bessel functions in ordinary space carry over to su-
perspace. For the reasons stated in Sections 2.3 and 3.1, we restrict ourselves to the
discussion of the supersymmetric matrix Bessel function of the unitary orthosymplectic
group UOSp(k1/2ks) . They are defined as

q)k12k2 ('r’ 3) = /

uw€ UOSp(k1 /2ks)

The diagonal supermatrices r = diag (v/cr1, v—cr2) and s = diag (y/cs1, vV—cs2) a twofold
degenerate in either the fermion—fermion or the boson-boson block

exp (z’trg u_lsur) dp(u) . (5.1)

r1 = diag (7"Ic11a7“(k1—1)1, .o.yr11) , ro =diag(riels, ..., Tk,010) (5.2)

55



56 CHAPTER 5. SUPERSYMMETRIC MATRIX BESSEL FUNCTIONS

S1 = dlag (Sk:lla S(kl—l)l ey 811) , S2 = dlag (81212, ey 8k2212) . (53)

We recall that the non-trivial part of the k-point diffusion kernel defined in Egs. (2.66)
and (2.67) belongs to this class of functions. They are eigenfunctions of the radial part
of the Laplace operator acting in the space of “real“ Hermitean matrices as defined in
Egs. (2.53) and (2.54). In the definition (2.53) of the“real“ Hermitean matrices a param-
eter ¢ enters, which yields for ¢ = 1 the real symmetric and for ¢ = —1 the Hermitean
selfdual matrix as boson—boson block. The eigenfunctions of the Laplace operator in the
space of “real“ Hermitean supermatrices A,, defined in Egs. (2.60) are the plane waves

A, exp(itrg op) = —trg p? exp(itrgop) . (5.4)

As in Eq. (4.19) the matrix Bessel functions are obtained by averaging over the angular
coordinates, i. e. over the diagonalizing group . The Laplacian commutes with the average.
Thus we arrive at the differential equation for ®, o, (7, s)

As(ﬁkﬂkz ('l", 3) = _trg T2¢k12k2 (T’ 5) ’ (55)
where we have defined the radial part of A, generalizing Eq. (2.69)
A, = Z B Z BY 0 . (5.6)
Bk & 88 il k1k2 83 il 83 72 k1k2 83 2
1 2

The Berezinian is given by [GUHA4]

1 | Ak, (s1)| AL, (452) ~(_1 |Ag, (i51)| A%, (s2)
’Eil)k2(s) = TERE & J BIE?II%)(S) = e =

k2
i=1 j:1(3i1—13j2)2 i=1115= 21 (isi1 — s52)?

(5.7)

Notice that A; depends on ¢ only by a factor \/c. Thus to simplify the notation we set
¢ = 1 and omit the index c¢. With regard to the initial condition there is a comment in
order. The initial conditions (4.21) do not carry over to the supersymmetric case. The
reason comes from the fact that the volume of some supergroups is zero [BER| resulting
in the vanishing of ®j,,(0,s) for certain values of k; and k9. This is in discrepancy
to the normalization of the plane waves (5.4) to unity at the origin. The reason of this
contradiction was already discussed at the end of Section 2.3: in going from Cartesian to
angle eigenvalue coordinates one has to add additional terms to the measure to preserve
the symmetries of the original integral.

Thus a normalization problem arises. To solve it, we use the following strategy. First
we evaluate the matrix Bessel functions without taking care of the normalization. We
just add a normalization constant (A}’;ﬂ% to the integral definition. We determine its
value afterwards by comparing the asymptotics of the matrix Bessel function for large
arguments with the Gaussian integral. The latter yields normalized ¢ functions for large
arguments.

5.2 Radial Gelfand—Tzetlin coordinates for orthosymplectic
groups

A recursion formula like Theorem 4.1 also exists in superspace.



5.2. RADIAL GELFAND-TZETLIN COORDINATES FOR ORTHOSYMPLECTIC GROUPS 57

Theorem 5.1 (Supersymmetric recursion formula) Let O ok, (s,7) be defined as a
group integral as in Eq. (5.1). It has two diagonal matrices defined as in Eq. (5.3) as
argument. Then it can be written as

Dpyoky (8,7) = Gryony /du(é‘,é") exp (i(trg s — trg s )re, 1) Pgy—1)2k, (s, 7) ,  (5.8)

where (I)Egz—l)?kz(sl’?) is the group integral (5.1) over UOSp ((k1 — 1)/2ks)) and Gy ok, is

a normalization constant. We have introduced the diagonal matriz
7 = diag (r(k,—1)1,- - -, 711, 972) = diag (71,72) (5.9)
such that r = diag (rx,1,7) and the diagonal matriz
s' = diag (s(y,_1)1s- - - 811, 883) = diag (s},4s5) . (5.10)

The invariant measure is given by

du(s,s') = 2k2+1uB(8X 311(),‘[1')F'(3235,2)/1'BF(35Sl)d[gl]d[sll]
! _ k1\51
pB(s1,81) = —
\/ Hp:l Hq:l (spl sql)
A% (s
pr(s2,s3) = 5, (6% ;

k k2 (- ;
| bt Hq2:1(zsp2 - qu2)2
k k ki1—1; .
' lezl ;2 Hq1:11(25;2 — sp1)(isi2 — 3;1)
pBr(s,s) = P —— 3 . (5.11)
| | Py 121 (i35 — spl)

We define the differentials

ko k1—1
di¢') = [T d¢yde,  dlsi)= 1] dspi - (5.12)
p=1 n=1

The domain of integration for the bosonic variables is compact and given by
Snl > Spi > Sl s n=1,...,(ks —1) . (5.13)
The fermionic variables iséﬂ are related to Grassmann variables f;, and f;)* through
&7 =ishy —ispa - (5.14)

Notice the difference of definition (5.14) to the corresponding one (3.36) for the angular
coordinates. We splitted the Jacobian in three parts. One of them, upg(si,s}), depends
only on bosonic eigenvalues and one, pp(s1,s]), only on fermionic eigenvalues, i. e. only
on Grassmann variables. The third part mixes commuting and anticommuting integra-
tion variables. A comparison of the measure (5.11) with the measure in the angular
Gelfand—Tzetlin coordinates (3.43), (3.46) and (3.47) reveals the difference between the
two parametrizations. In the angular Gelfand—Tzetlin coordinates the measure factorizes
according to Eq. (3.48). Upon multiplication, parts of the measures of adjacent levels
cancel each other. In the radial coordinates the measure is a product of differences of all
possible combinations of eigenvalues of the two matrices s and s'.
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As in ordinary space, cf. Eq. (4.41) we can write

k1—1

Beyansl,7) = [ [ duts® D, 5)
n=1
exp(i(trg s(nfl)—tl‘g S(W))T(kl—n+1)1) exp<i3%1_1)’r11)q)%)(—i25§k1_1),7'2) (515)

We have set s = s(9) and s’ = s('). The product of the measures is more complicated than
the corresponding expression in the angular Gelfand—Tzetlin coordinates in Eq. (3.48).
No cancelations take place between the adjacent levels. But the radial Gelfand—Tzetlin
coordinates have the valuable property that the Grassmann variables only appear as mod-
uli squared in the integrand. Thus, the number of integrals over anticommuting variables
is reduced by the half. Moreover the exponential is a simple function of the integration
variables. This is another important advantage of the radial Gelfand—Tzetlin coordinates.
We stress that the radial Gelfand—Tzetlin coordinates are the natural coordinates of the
matrix Bessel functions, because the coordinates emerge from the expression itself and
they are not introduced by hand.

5.2.1 Derivation

A1l crucial steps needed for the derivation of the supersymmetric recursion formula (5.8)
carry over from the ordinary recursion formula (4.38) in Sec. 4.3. We order the columns of
the matrix u € UOSp(k1/2k2) in the form u = [ug, Uk, —1 -+ W1 Up, 41 - - Uky+k,]|- We also
introduce a rectangular matrix b = [ug,—1 -+ U1 Uk, 41 - - - Uk, +k,) Such that u = [uy, b].
Analogously to the ordinary case, we have

b'b = 112k,

k1—1 ko
ot = Y wpuh + Y upul = lyom, —ukIU}LI . (5.16)
p=1 p=1

We define the square matrix & = bfsb and rewrite the trace in the exponent as
trgulsur = trgo7 + op kT ri1 (5.17)
with ok, = uLlsukl. Similarly to the ordinary case, the first term of the right hand side

of Eq. (5.17) depends only on the first k; — 1+ k2 columns u, collected in b and the second
term depends only on ug,. Thus, it is useful to decompose the invariant measure,

du(u) = dp(b) dp(ug,) , (5.18)
and to write Eq. (5.1) in the form
D ok, (s,7) = /du(ukl) exp(10k, ky Thy1) /du(b) exp(itrg o7) . (5.19)

Since the coordinates b are locally orthogonal to ug,, the measure du(b) also depends on
ukl .
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We now generalize the radial Gelfand-Tzetlin coordinates introduced in Sec. 4.3 for
the ordinary spaces to the superspace. Naturally, the projector reads (1,21, — uklu};l)
and we have the defining equation

(1gy2k, — ukluzl) s (1gyok, — uklu;rcl) e;) = s;,e;, p=1,....k1 —1,k1+1,..., k1 + ko

(5.20)
for the (k1 — 1 + k2) radial Gelfand-Tzetlin coordinates s, and the corresponding vectors
ey as eigenvalues and eigenvectors of the matrix (1x, 95, — uklu};l) s (12K, — ukluzl) which

has the generalized rank k; — 1 + k2. Due to u,tle;, =0, we find
(1k12k2—ukluzl)se; = s,€, p=1,....k1 —1,k1 +1,...,ky . (5.21)

The eigenvalues s;, are calculated from the characteristic function
z(s;,) = detg ((1k12k2 — uklu};l)s — s},)
Lg 2k

= —s,detg (s - s;) “Ll : - Sf Uk, (5.22)

which has to be discussed in the limits

2(sh) —> {() for p=1,...,k1 —1

oo for p=Fki+1,...,k + ko (5-23)

Thus, together with the normalization u;rclukl = 1, these are k; + ko equations for the
elements of uy, .

The two parts of the integral (5.19) have to be expressed in terms of the radial Gelfand-
Tzetlin coordinates s;). In a calculation fully analogous to the ordinary case, we find

Okky, = trgs — trgs’ . (5.24)

The eigenvalues t,, p=1,...,k1 —1,k1+1,..., k1 + kg of ¢ obtain from the characteristic
function

w(ty) = detg (6—-t,) = —% detg ((1k12k2 - ukluzl)s - tp) . (5.25)
Comparison with Eq. (5.23) shows that the characteristic functions w(t,) and z(s;) are,
apart from the non-zero factor —%,, identical. This implies t, = s;,, p=1,...,k -1,k +
1,...,k1 + ko. Thus, by introducing the square matrix 4 which diagonalizes &, we may
write

5 = blsb = uls'n. (5.26)

By construction, % must be in the group UOSp(k; — 1/2ks), because o and & share the
same symmetries.
These intermediate results allow us to transform Eq. (5.19) into

Doy (5,7) = / di(s, s') exp(i(trg s — trg s')rp,1) / dp(b) explitrg @t s'i7) (5.27)

where du(s',s) is, apart from phase angles, the invariant measure du(uy,), expressed in
the radial Gelfand-Tzetlin coordinates s’. To do the integration over b, we view, for
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the moment, the vector uy, as fixed and observe that the measure du(b) is the invariant
measure of the group UOSp (k1 —1/2ks) under the constraint that b is locally orthogonal to
ug, . The matrix & € UOSp(k1 — 1/2ks) is constructed from b under the same constraint.
Thus, since b and @ cover the same manifold, the integral over b in Eq. (5.27) must
yield the matrix Bessel function ®;, 1), (s',7) and we arrive at the supersymmetric
recursion formula (5.8). We remark that the in the last step the derivation differs from
the derivation in ordinary space. Since the group volume of supergroups is ill-defined we
could not introduce unity as in ordinary space, cf. (4.42). However, this is just a minor
problem. The invariance of the measure is the crucial property we need for the proof and
this holds both in superspace and in ordinary space.

In order to evaluate the invariant measure, we have to solve the system of equa-
tions (5.22). It is very similar to the system (3.17) to (3.19) of the angular Gelfand—Tzetlin
equation.

k1 ko

1 - Z |U](11)|2 I Z |a§1)|2, (5.28)
p=1 p=1
ST R

O — qi_f_ .qi, p=1,...,k‘1—1, (529)
qgl Sq1 — 8;)1 a=1 18q2 — 3;)1

s
2 ko . -1 \2 N . sl
[1,21(isq2 — ispp) Squ —1Spy oI ¥Sq2 — USpy

k1 .
-y gty (sq1 —isyo) (kl g2 -|-kz2 a2 )

zp =00, p=1,...,ks. (5.30)

In Appendix C.1 we sketch the solution of this equation system for small dimensions.
Inspired by these solutions one can conjecture the general solutions and verify them by

plugging them directly in Eq. (5.30). We state the expressions for |v]()1)\2 = |upk, |* with
1 .
p=1,...,k and |Oz1(; )|2 = |U(k1+2p)lc1 |2 + |u(k1+2p71)k1 |2 with p=1,..., ko.
k1i—1 k .
|U(1)|2 _ | (sp1 — 3211) Hq2=1(3p1 —isg2)? p=1 Ky
p - k . k ’ — Syt )
quzl(spl - ZS:]Z)Q quz]_’q;ép('spl - Sql)
D)2 = 2(is, —isp) [Tgt1 (isp2 — 1) Tlg1 4 (1592 — i502)
- p k . . k . ’
’ ’ TT521 g (isp2 = i870)2 TIgh: (isp — s1)
p=1,....ky . (5.31)

These expressions are similar to the ones derived in [GUH3| for unitary matrices. All
products in (5.31) involving fermionic eigenvalues are squared. This reflects the degeneracy
of s in the fermion-fermion block. As in the case of the angular Gelfand Tzetlin coordinates,
we have introduced a new anticommuting variable by defining

617 =ishy —isp2 - (5.32)

Now the invariant measure can be calculated in the same way as for the angular Gelfand—
Tzetlin coordinates as outlined in Section 3.2.3 and appendix A.3. The result is summa-
rized in Egs. (5.11).
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5.3 Low dimensional example

We apply the recursion formula (5.1) to the matrix Bessel function of UOSp(2/2). In this
case it reads explicitly

Boy(—is,r) = Gag /du(s,s') exp((trg s — trg s')ra1) @1o(—is’,7) . (5.33)
The function ®19(—is’,7) can readily be evaluated as

B19(—is', 7) = G1o (1 — 2(ry1 — ir12)(shy — is'12)) exp(—2ir12is1a). (5.34)
The measure of the coset UOSp(2/2)/UOSp(1/2) can be read off from formula (5.11),

. 2 .
du(s SI) — (2312 - 8111) Hn:l(zSIIQ - 5711)
VT2 (5 — su1) (ishy — s1y)

Performing the Grassmann integration and collecting terms yields

~ds €T de] (5.35)

2

~ S11
Boo(—is,7) = Goo exp (ro1(s11 + S21) — Zislzz’rlg)/ up(s,s)ds), H(islg — Sq1)
521 q:1
z 1
4 1] Gri2 = rjn) = 2(ir2 —ro1) Y ————— + 2M11 (s}, 51)
— —1 1812 — Sq1
Jj=1 g=1
exp (st (r1i1 —ra1)) (5.36)

where we have introduced the operator

k1 k1
1 1 1 1 1 0
Minj(s1,8)) = ——— [ = 3 - —- - -
mj( ) (18m2 — 891) 2 n;l 18m2 — Snl 1Sm2 — 53‘1 nz;l 53‘1 — Sp1 8891
n#j
(5.37)

At first sight it is not clear now, how to proceed further. As we have seen in Sections 4.5
and 4.2 in the general case it is impossible to perform the integration over the orthogonal
group even for the simplest case of O(2). On the other hand one can argue as follows: It is
always possible to parametrize the group element v € UOSp(2/2) in a non—canonical coset
parametrization in the spirit of an Euler parametrization in ordinary space. Inserting this
parametrization into the defining equation of the matrix Bessel function (5.1) one can
expand the trace in all Grassmann variables. The expansion coefficients are polynomials
in the commuting integration variables and — more important — in the matrix elements of
s and r. The invariant measure can be expanded in the Grassmann variables as well. It
does not depend at all on r and s. Although this procedure becomes rapidly out of hand
even for small groups, it is clear that the outcome of this expansion will be polynomial in
the eigenvalues of s and r. In other words: eigenvalues can only appear in the denomi-
nator by an integration over commuting variables and never by a Grassmann integration.
Therefore, before performing any integral over commuting variables, there must exist a
form of ®99(—is,r), which is polynomial in the eigenvalues of s and r.

To remove the denominators we use the following identity:
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Lemma 5.1 Let f(s}) be an analytic, symmetric function in sy,,i = 1,...k1. Further-
more define the operator

0

k1
5.38
g Sm2—3]1 88]1 ( )
Then
51 S(k1-1)1
9 [ (s, ') (s1) dish] =
521 Sky1
S1 S ki—1
(ky—1)1
-/ / 1p(s,5) Y Mug(s1,s1) £(s1) dlsh] (5.39)
$21 S1kq j=1
Derivation:

The derivation is similar to the calculation in Appendix B.2. First we rewrite the integral
in terms of A—functions

l.h.s. = Ln /,uB s,8") f(s)) d[s] HH Sk1 — S11) H0 S;1— Sn1) - (5.40)

k<l l<n

Now the integration domain is the real axis for all integration variables. The action of
L (s) on the integral yields:

l.h.s. = /(uB(s,s') .

H O(sk1 — 3;1) H 9(321 - Snl)) d[sll]

-1

1
2 (’i812 — sil)(sil — 891)

f(sh)

l

1 0 !

+/MB s,5") —_ 0(sk1 — 8)1) H9 s11 — sp1) d[s!] -
ZSm? — i O g I<n

(5.41)

After a decomposition to partial fractions of the first term in Eq. (5.41) we find

k1k11 o
l.h.s. = /(uBss ZZ . 1 — f(s1)—

Pt (is12 — si1) (4812 — sjl)

k1—1
1 0 1
1 ]Zl i812 — 841 08y \/— H§;1(3i1 = s51)

H 0(sk1 — s)1) H 0(s); — sn1) d[s]

k<l I<n

k1
1 0
+ / 1n(s, ') z 0(sk1 — i) T[] 0(sh1 — sn1) dlsl]

=1 15m2 — 8i1 0si1 k<l I<n

(5.42)
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Performing an integration by parts yields

= [ inlsss) Y (~Mung(s1,0) T[ 6o — sta) [T 00sts — sm) dis]) +
j=1 k<l I<n

k1 k1—1
[ msts) £ (z% D3 ;%)

i=1 ¥Sm2 — Si1 dsin j=1 18m2 — 851 0551

H9 Sk1 — 871) H 0(s); — sn1) d[s]] - (5.43)

k<l I<n

The derivatives of the 8—functions yields —functions. Upon integration of the j—distribution
the two terms in the last integral cancel each other. Hence the last term vanishes
identically.1

Setting f(s}) = exp(—s}i(ri1 — r21)) in Lemma 5.1 and inserting Eq. (5.39) into
Eq. (5.36) we arrive at the following expression for ®oy(—is,7):

2
Doo(—is, 1) = Gag exp(—2is12iT12) ( H irig — 1) (1812 — 8j1)—

2
. 0 ,
Z 1812 — Sq1) (zr12 — T — T — 8s—1)> q)gl)(—zsl,rl) ; (5.44)
=1 q

(1)(

where @,/ (s1,71) is the matrix Bessel function of the orthogonal group O(2) in ordinary
space as defined in Eq. (4.19). Although this can already be taken as result, we make
some further manipulations by using the representation (4.24) of ®5(s1,ir1) to underline
the symmetry between r and s

Doy (—1is,7) = Gog exp (trg (rs) — g)

2 2 2
d
( H ’L’r'gl — ‘1“1] 7,821 — Slj) — Z 1821 — Slq Z Z‘T‘Ql — Tlp £> 27[']()(2’/2) y

B (5.45)

where we have introduced z = (s11 —$21)(r11 —712) and the modified Bessel function Iy(z).

5.3.1 Alternative derivations of ®oy(s,7)

Lemma (5.1) was crucial in the derivation of ®99(—is,r). By means of this lemma the
denominator problem was overcome in one step. We now want to look to this problem
from a different point of view. It provides both insight into the functioning of the radial
Gelfand—Tzetlin coordinates and an alternative though pedestrian method of removing
the denominators. To this end we rederive Eq.(5.44) in two other ways.
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First we use a different parametrization of the coset UOSp(2/2)/UOSp(1/2) by writing
the first column of u € UOSp(2/2) as

V1 —|al? cosd
V1 —|a?2sind

(5.46)

This is a canonical way to parametrize the supersphere SU2 which is isomorphic to the
coset UOSp(2/2)/UOSp(1/2). It coincides with the angular Gelfand-Tzetlin coordinates as
described in Chapter 3, for the value (h?, —ih%,) = 1, cf. Eq. (3.34). The invariant measure
is in these coordinates simply du(u1) = da*dadd. Thus one obtains directly the volume
V(S'?) = 0, see for example [ZIR1]. This is not at all obvious in the parametrization of
the measure by radial Gelfand-Tzetlin coordinates (5.35). There, one has to perform the
Grassmann integration and apply Lemma 5.1 to achieve this goal.

In order to use the recursion formula in the parametrization (5.46) one has to solve
the Gelfand—Tzetlin equations (5.28) to (5.30) for the eigenvalues. The unique solution of
the bosonic equation (5.29) is

2
< o + —
sy = ag+ W'“'Q . ag =4 . S S . 712 o529 . (5.47)

The fermionic equation yields

2 g
Hz:l(szl @312) ‘a|2

5.48
1812 — Qg (5.48)

isly = is19 +
After inserting Eqgs. (5.47) and (5.48) and the above measure du(u;) into the recursion
formula (5.8), the Grassmann integration can be performed. Remarkably, we arrive at the
“denominator—free“ expression

- 2w
Dos(s,7) = Go ; d exp (trg (rs) —z/2 + %cos 219)

N

> (851 — is12)(riy — ir12)
=

[\Dl'—‘

2
l H(?“il —ir12)(8i1 — @s12) +
i=1

im1

1/. 1
~3 (zrlg — 5(7"11 + 7"21)) (s11 — $21) cos 20—

Z,. .
g(“"u - ‘1“11)(511 - 821) SlIl2 2‘!9] - (549)

To make contact with Eq. (5.45) one has to realize, that in Eq. (5.49) an additional total
derivative appears in the integrand. This becomes obvious if one adds and subtracts
z/4cos 29 in the squared bracket of Eq. (5.49)

- 2w
Doo(s,7) = Go ; did exp (trg (rs) —z/2+ %cos 219)
2

[ (rir — ir12) (s —is12) +
i=1

. . z
(Sjl - 1812)(’1‘,’1 — 27"12) — Z cos 21

N =
Ingb

Il
e

[
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112 — T11

2m 2
/0 dﬂ%ﬁf exp (trg (rs) —z/2+ % cos 219) . (5.50)

™1 —T21

While the first integral reproduces Eq. (5.45), the second vanishes identically. In general
in performing Grassmann integrations one has to take care of boundary contributions
[BER, ROT]. These contributions can appear whenever even coordinates are shifted by
nilpotents and the function one integrates does not have compact support [BER]|. However
in our case the base space is always given by a n-dimensional sphere, i. e. by a compact
manifold without boundary. Thus in a properly chosen coordinate system no boundary
terms should appear. With regard to Eq. (5.50) this means: the fact, that the last term
in Eq. (5.50) vanishes is a direct consequence of the compactness of the circle and of
the analyticity of the function, we integrate. However, by the radial Gelfand—Tzetlin
coordinates only the moduli squared of the vector u; are determined. Therefore not the
whole sphere, but only a 2"t!-ant of it is covered by Eq. (5.31). In our case not the
circle but only a quarter of it is parametrized. This is allowed since the matrix Bessel
functions depend only on the moduli squared |u;1|?. However one has to ensure, that the
introduction of these artificial boundaries does not alter the result. To this end we use
the integration formula

Lemma 5.2 Let so1 < 81 < s11 be real and &', &"™ anticommuting. Furthermore define

F(s11,6,€") = folsy) + Auls1)lEP (5.51)

with two analytic functions fo(s,), f1(s};). Then the integral

1= [ ashidgderehn ) (5.52)
transforms under a shift of s|, by nilpotents
sty =y +g()|¢f (5.53)
as follows:
I= [ ayagtae %I (os).6.8) ~ Unlordg(orn) — folsalglea)] - (550

The proof is by direct calculation. The second term in Eq. (5.54) is often referred to as
boundary term. It can be viewed as the integral of a total derivative (an exact one—form)
which has to be added to the integration measure for functions with non compact support
[ROT]. For functions of an arbitrary number of commuting and anticommuting arguments
a similar integral formula holds with additional boundary terms [BER]. In going from the
“canonical coordinates“ (9, a,a*) to the radial ones (s};,£&],£}*) in principle boundary
terms can arise, since the bosonic Gelfand—Tzetlin eigenvalue (5.47) contains nilpotents.
However, the crucial quantity is g(y) in Lemma 5.2, which in our case is

H?:1(3i1 - 5'11)

N !
1812 — S11

gshy) = (5.55)

So g(s’;) causes the boundary term to vanish at s;; and sg;. It is the product structure
of the left hand side of Eq. (5.31) which always guarantees the vanishing of the boundary
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terms, when one goes from the Cartesian set of coordinates to the radial Gelfand—Tzetlin
coordinates. Therefore one might think of the denominators, arising in Egs. (5.36), (5.37)
as belonging to total derivatives of functions, which vanish at the boundaries. Keeping
this in mind we derive Eq. (5.45) in yet another way. We expand the product

k1 k1 1 o k1
H (iSm2 — 8q1) = Z o (18ma — 391)"m H (3;-1 - sql) , (5.56)
g=1 n=0"" J1/ g=1

and insert it into the integral
s kl_l ! ! ! !
[ e, ) Koy (o1, ) s)lsh] =
§21
51 kl 1 k / ! !
[ /k (o1, T (oma = sua) Mg (o1, ) S(1)dls) - (550
821 n=1

Now we can remove the term proportional to (ism,2 — 391)_2 in the integrand by an inte-
gration by parts. Through the expansion (5.56) the vanishing of the boundary terms is
assured. We arrive at

bog o8
. U — ; I \n—2 !
Kpmj(s1,81) = — Z m(zsm - 3j1) a(si, )" H (Sjl - Sql) +
n=2"" J1 g=1
ki (s k1 !
Hq:1 (isma — Sql) - Hq:1 (Sjl - Sql)
. !
k k
1 1 1 1 L 1 0
5 5 - -
2 iSm2 — Sq1 2 =151~ Sal o= Sj1 T S stl

(5.58)

We notice, that in the new operator K,;(s1, s}) all denominators of the type (ism2 —331)_1

have disappeared. For k1 = 2 we calculate

K1 =— (i812 + 8’11 — 811 — 821) (5.59)

Ospy
which can be inserted into Eq. (5.36) by using the definition (5.57). Finally the result

(5.45) is reproduced by the substitution, cf. Eq. (5.47)

r 811+ 821 811 — 812
S11 = 2 - 2

cos29 . (5.60)

Clearly the result of this procedure is summarized in Lemma, 5.1.
Finally some remarks are in order:

First, one might conclude from the above discussion, that the radial Gelfand—Tzetlin co-
ordinates are less adapted to the problem than the “canonical“ parametrization (5.46),
because in the latter no denominators appear. We stress, that this is not true. Cer-
tainly the denominators appear due to the shift of the bosonic variable by nilpotents in
Eq. (5.47). However, the difficulty in deriving Eq. (5.45) is to identify the different parts of
the integrand after the Grassmann integration. Some of them belong to total derivatives
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and this problem exists in both parametrizations.

Second, we emphasize, that the appearance of total derivatives in the integrand is not
a peculiarity of supersymmetry. Already in Section 4.5, when we were dealing with the
matrix Bessel function in ordinary space we had to overcome the same problem. We con-
clude that the appearance of these total derivatives is an intrinsic property of the recursion
formula. However, a geometrical interpretation of this phenomenon is hard to find.
Third, we want to comment on the last way of deriving Eq. (5.45). At first sight it seems
to be a somehow artificial way. But we emphasize that for groups of higher order such a
series of integration by parts is the only feasible way to remove the denominators and the
total derivatives from the integrand, without identities like Lemma 5.1. Indeed all results
derived in the following section were originally derived in this way. The way of derivation
we sketch now was found afterwards.

5.4 The ®;4(s,r) series

The starting point of the recursion is the matrix Bessel function over the unitary sym-
plectic group <I>g4)(—z'32,r2), which already has been calculated in Eq. (4.83). Since the
subgroup O(1) of UOSp(1/4) is trivial, no commuting integral has to be performed to
derive ®14(—is,r). Plugging the measure (5.11) into the recursion formula (5.8) and per-
forming the Grassmann integrations yields in a straightforward calculation:

N 1 1
Byy(—is,r) =
14( 18, T) G14 €Xp (trg TS) (A% (’LTQ)A% (7:52) + Ag ('],TQ)A%(’LSQ))

(2(2’321 — s11)(iro1 — r11) — 1) (2(1’322 — s11)(iree — r11) — 1) -

Ghy exp (trg (rs)) +  (irie «—iree) . (5.61)

A%(ZTQ)A% (7:82)
The term (ir12 <— irg9) accounts to the permutation group S? in Eq. (4.83). Anticipating
that the structure of ®14(—1s, r) will persist in all levels up to ®44(—is, ), we point out that
®14(—is,r) essentially consists of two parts. A comparison with Egs. (5.34), and (4.83)
shows, that the first part of ®14(—is,r) is a product of an exponential with three other
terms. The first one,

1 1
<A%(ir2)A§(z’32) * A%(im)Ag(i32)> , (5.62)

stems from the integral over the USp(4) subgroup. The other two terms can be identified
with the matrix Bessel functions

<I>12(—i3, 7") , S = diag (811, islg, i312) ; T = diag (7‘11, ir12, ’L"I"u) (5.63)
and
@12(—@9, 7‘) , S = diag (811, iSQQ, iSQQ) , T = diag (7‘11, ’L"l"22, ’L"f‘gg) . (5.64)

The second part can be considered as a correction term, which destroys this product
structure of ®14(—is,r). It would have allowed us to identify the different parts of the
product with the integrations over the corresponding subsets of the group. That is to
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say that @g4)(—i32,7“2) arises from the integration over the USp(4) subgroup, the O(1)
integration yields unity and the other two factors arise from the integration over the coset

U0Sp(1/4)

USp(4) ® O(1) (5.65)

In the next step one has one integration over a commuting variable which in general
cannot be performed. After the Grassmann integration, we are left with a considerable
amount of terms. In order to arrange them in a convenient way we introduce the following
notation for the product of two operators Di(s)D(s) acting on a function f(s)

[D1"(s) D2(s)] f (s) = D1(s) Da(s) f(s) — (Di(s) Da(s)) f(s) - (5.66)

This means, an operator with an arrow only acts on the terms outside the squared bracket.
With this notation we can write

2 2
Doy (—is,r) = G24 exp (tr (ras2) + ra1(s11 + s21)) / dpp(s1,s)) |:H H (isi2 — 851)
1=17=1

1 1
(A?(m)Ag(i@) + A3(ir2)A%(i32))
(4 H (ir12 —1i1) + 2 Z w + 2M77 (s1, sl)>

i=1 k: 171312_3101

2
T 'L'I"
<4H (irge —1i1) +2 Z U LA 2M21(81,S1)> +
i=1 hm1 1522 = Sk1

' 5) | j j ' Mo (s1,81) — ———Mi1(s1, )
<A%(W2)A§(132) A3(ZT2)A4(z32)> (zsu — sl 21(s1,51) F—_ 11(s1, 1)
2 1
‘g | 2trr; —trirg + — ) Myi(s1, 8
A3 (iry) Aj(isg) ( 1 2 ZZI T50g — Sz1> 11(51,57)
2 1
———————— | 2trry — trirg + = Y Moyi(s:.8
A%(Z’I‘Q)A%(zg2) ( 1 2 Z 2512 — 811) 21( 1, 1)
4 2 2 11 — ir i2
—m A3\ —— =1 exp (sh(riy — 7 + (2r19 — ir . (.67
A3(irg) A3(iss) kgljl;[l Sk1 — 0552 p (811 (r11 —721)) + (ir12 22) (5.67)

In Eq. (5.67), the product M7 (s1,s})Ma1(s1,s}) appears. This indicates that an identity
exists which is similar to Lemma 5.1. This identity should map a product of operators
Ly (s)Ly(s) acting on the integral onto a product of operators My (s1,s)) Mo (s1, s}) acting
under the integral. Neither the outer operators, L,,(s), nor the inner ones, My;(s),
commute. Hence the desired identity is non—trivial. It is given by the

Lemma 5.3 We have the same conditions as in Lemma 5.1, furthermore we define
ki ki 1 52

L () La()] = 2. > ¢

n=1g¢g=1

(5.68)

(iSm2 — Sn1) (4812 — 8q1) 0510841

Then it holds that

L (L) [

S11

[ s ) dlst] 161 =

21 Skl
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s1 S(ky— 1)1 ki—1k1—1
I / )| 20 30 M on, ) Mie(sn, ) -
$21 S1kq ‘7 1 k=1
k1—1 1 . 1 .
; Z 7 Mlj(slasl) - 7 Mmj(sl’sl)
1812 — ’LSmQ j=1 ZSmQ - Sjl 1812 — sjl
kl 1 1

-5 Z ] f(sy)dlsi] - (5.69)

(ism2 — Sj1) (ism2 — 851) (isi2 — sjp) (512 — 871)

The derivation goes along the same lines as the derivation of Lemma 5.1 and by using
Lemma 5.1. With Lemma, 5.3 and Lemma 5.1 the denominator problem again is overcome
in one step and after some further manipulations we arrive at the result.

z 1 1
Byy(—is,r) = 2nGays exp (trg (rs) — ) (AQ(ZTQ)A2(182) + A3(iT2)A%(’i82)>

2 2 o
4 [ (rin —iri2)(sa —is12) — Y (51 — is12)(riy — ir1a) — rm
= =
2 2 9
4 H(TZI - 'LTQQ)(SZI - 2522 Z 841 — ZSQQ)(TZl 'l'r22) - Zaz IQ(Z/2)
i=1

2 2
~ z : .
—27Goy exp (trg (rs) — 5) m Z H(Sil —isj0)(rk1 — irj2)Io(2/2)
2

i=1 j—1
=1 '7

e ((trg s)(irgr) — 1) 7 To(2/2)

) A3(irg) A3(isz)
+ (Z"T‘m < iT‘QQ) . (5.70)

—27Glay exp (trg (rs) —

As in Section 5.3 we defined the composite variable z = (s11 — $12)(r11 — r12). A com-
parison with Egs. (5.44) and (5.61) reveals the similarity of the structure of ®94(—is,7)
and ®14(—1is,r). It also decomposes into two parts. The first part is a product, whose
component can be assigned to the integrations over the different submanifolds of the group
in the same way as in the case of ®14(—is,r). The other one might be interpreted as a
correction term due to the non—-commutativity of the operators Ly, in Eq. (5.69).

This structure of ®y,4(—is,r) is likely to hold also for arbitrary ki. However for
k1 > 2 it was up to now not possible to treat the general case. Fortunately, the matrix
Bessel function, appearing in the supersymmetric diffusion kernel of the two—point function
(2.66), has a twofold degeneracy in one matrix argument, cf. Egs. (2.67) and (2.56). In
this case it is possible to carry on the recursion up to ®44(—is,r). From now on we
restrict ourselves to this case. In the case, that one of the two matrices has an additional
degeneracy, one might think of achieving some simplification by applying the projection
procedure onto the degenerate matrix. This results in a simplification of the invariant
measure. However, it turned out to be better to apply the projection onto the non-
degenerate matrix, i. e. to use the measure as it stands in Eq. (5.11). Hence we consider
®34(—1s,7) for the case that

T = diag (7‘21,7‘11,7‘11) . (5.71)
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After performing the Grassmann integral one can arrange the terms in a way similar to
Eq. (5.67). The complete expression is stated in Appendix C.2. We then notice that we
can use Lemma 5.3 and find after some further manipulations

~ 1 1
D3y(—is,r) =4 Gagexp (trrase) (r11 — ir12)(rip —ir [( — + , . )
34( ) 31exp (trrase) (11 12)(r11 22) A2(irg)A2(iss) | Ab(ire)Ad(isy)

2 3 3 3
: . . 0~
4 H Tkl — 2T12 H Sk1 — 1812) +2 E H (Sjl — 2812 (’1"11 + 191 — 1112 — )
k=1 k=1 Osk1

k=1 j#k
2 3 3 3 P
AT (rer —ira2) T (skr —isa2) +2 D [ (sj1 — is22) { r11 + 721 — irap — 6—>
k=1 k=1 k=1j#k Sk1

=1 j=1

3 3
_m Z H S41 — 2312 331 —ngz)
jF#i

2 2 . . . . . . 0
(7‘11 +ry + 111721 — (’1"11 + 7‘21)(’”‘12 + ’L’I"QQ) + 17191790 — (’1"11 + 791 — T2 — 27‘22) s >
il

0 0

3 3 3
851 — 1812) (811 — 1522 ( -
21;[1;[1 ’ ) 0si1  0sp1
j#i l#k

) q):(,’l) (—2'31, 7“1)

B A%(z’rg a(is2)
+ (’iTlg — ’L"l"gg) , (572)

where <1>§,}> (s1,71) is the matrix Bessel function of the orthogonal group. We notice, that
the structure of ®14(—is,r) and Poy(—is,r) reappears in P34(—is,r).

We now turn to ®44(—is,r). Again we consider the case, that the matrix r is degen-
erate.
r = diag (’1"21, 215711, 7‘11) . (5.73)

In evaluating ®44(—is,r) the main problem is to choose a convenient representation for

the matrix Bessel function <I>:(,,1)(—z's'1,771), which enters in the recursion formula . The
representation, we derived in Section 4.2.3 turns out to be very convenient for our purposes.
Due to the degeneracy in 71 the original threefold integral in Eq. (4.32) can be reduced
to a integral over only one variable according to (4.34). By the same token @P(—isl, 1)
can be represented by a twofold integral. Explicit expressions and more details are given
in Appendix C.2. After plugging in Eq. (5.70) into the recursion formula and performing
the Grassmann integration one can arrange the terms in a similar way as in the case of
®34(—is, 7). We then notice, that Lemma 5.1 and Lemma 5.3 do not suffice alone. More

identities are needed. The first one is given by

Lemma 5.4 We have the same conditions as in Lemma 5.1, we define the operator

92 1 1 (a 0

k1
g t3 Z 88(11 B Bsnl

iSm2 — Sq1 33 2 n (28m2 — Sq1)(Sq1 — Sn1)

) - (e

Then we have

) [ [ e s ) =

kyl
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/8 /S(kl o (s,s' [ZM (s1,5)) 68 :| f(sh)d[sy] - (5.75)
§21 S1kq ]1

The proof goes along the same lines as the proof of Lemma 5.1 and the proof of theorem
4.1 in Appendix B.2. Thus, we have yet another prescription how to transform an operator
Lo, (s) acting onto an integral into an operator acting under the integral. However, we
need one more such transformation rule to derive ®44(s, 7). It prescribes how the product
[Lm(s)_’f)l(s)] transforms into operators acting under the integral. This rule is stated in
Appendix C.2. Finally we arrive at

Paa(—is,r) =4 Gy exp (~tx (r22)) [1(rsi = i) [(A%(z‘m)lA%@'sZ) * A%(z‘rz)lA%(z'SZ))

2
2 4 4 4 o
8 [[(rix —ir12) [] (sj1 —is12) +4 > [ (sj1 —is12) (7"11 + 7o —irig — 95 ))
i=1 j=1 i=1j#i Si1
2 4 4 4 9
H Ti1 — 'L'r22 H 8]1 — ’i522) + 42 H(Sjl — ’i822)(1“11 + T91 — Z"I“QQ — 83 )
i=1 j=1 i=1 j#i la
4
_MZH Sj1 —2312 871 —1822)
i A 5
(r%l + 131 4 111791 — (712 + ir92) (111 + T21) + ir19iree + trg (r/2) 83~1>
2
8 4 4 4 9 9 W
s _ . 09 )| s,
A3 (irg) A3 (is2) Z:: g s~ o) ll;l(sll isz2) Osit 0Osj1 + (=ism)
it j
+ (Z"I‘m < Z"I‘QQ) . (5.76)

We stress that in the derivation of Eq. (5.76) we extensively used certain properties of the
matrix Bessel functions @gl)(sl, r1) and @511)(31, 1), which hold only for the case that one
matrix has an additional degeneracy, cf. Egs. (C.18) and (C.24). It is an open question, if
in the general case more identities as Lemma 5.1 and Lemmata 5.3, 5.4 and the identity

C.1 are needed.

5.4.1 Asymptotics

It is gratifying to see that our results for the matrix Bessel functions @y, o, (—is,7), k1 <
4, ko < 2 all have the correct asymptotic behavior for large arguments. We find from the
expressions in Egs. (5.33), (5.44) and in Egs. (5.61), (5.70), (5.72) and (5.76)

ok, I T1E2 ) (51 — d8m2) (rin — i)
! A%Z (iSQ)Az2 (Z"f‘g)

lim @y, o, (—is,r) =

=00

det [exp(2si27j2)]; lim <I>()( is1,r1) . (5.77)

ZJ l..k2 81 —00

7100

In the degenerate case each degenerate eigenvalue contributes according to its multiplicity.
As stated already in Section 2.2 the asymptotics of the matrix Bessel functions of the
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orthogonal group is given by

: , A _ det[exp(sn1rm1/t)lnm=1,...k
1 @(1) _ t — C(kl)t(kl 1)k1/4 n,m=1,...,k1 5.78
tl_I)Ié k1 ( 'LSl/ 7T1) |Ak1 (Sl)Akl (7"1)|1/2 ( )
The constant C*1) can be found in Muirhead’s book [MUI]
Gtk _ Tk1/2) j2popys (5.79)
k!
Thus we have
. . ko) + (k1 — Alk1) A
lim By, o, (—is /2, ) = 20rkegl/ Ak =2k P+ =2k)) GO Gy
detlexp(sp17m1/t)ln,m=1,...k: det [exp(2siarjo/t)]; iy 4, (5.80)

V Braks () Brasa (7)

On the other hand we derive from the Gaussian integral the generalized diffusion kernel
in the curved space of the eigenvalues, cf. Eq. (2.66).

- ) VA k)

I‘klkz(s,r, t) = (—
exp (—

2t
This kernel has, in generalization of Eq. (2.71) the asymptotic behavior

| =

<trg32 + trgr2)) Dy, ok, (—is/t,r) (5.81)

_ o\ ~1/4((k1=2k2)?+(k1—2k2)) ok3—ka—k1/2
%H% Ciyky (8,7, t) = ( ) _
_)

2 k1! ko!
det [0(sit — 51)]; =y g, det [0(siz = m52)]; =1, (5.82)
\/Bk1k2(3)Bk1k2 (’I“)
Comparing Eq. (5.80) with Eq. (5.82) determines the normalization constant @kl Ko -
~ 1 1 2,972 2
Grop — — 1 ((k1—2k2)2+2k7 ~2k2) 93ka(k2—k1)+k}/A—5ka/2-k1/2 5.83
fazky = D (ke /2) (5:83)

Particularly we have verified that the diffusion kernel of the one—point function and of the
two—point function of Dyson’s Brownian motion

Fk(S,T, t) = F(Qk)k(saTa t)

1
= 2k(k=2) oxp (—; (trg s2 4 trg 7‘2)) Dok (2k) (—i28/t,m) ,  (5.84)

yields indeed the initial condition (2.66).
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5.5 Summary of Chapter 5 and outlook

The recursion formula derived in Chapter 4 has an analogue in superspace. By means of
the recursion formula we derived explicit expressions for the matrix Bessel functions of
the unitary orthosymplectic groups ®oo(—is,r) and ®44(—is,r), which yield the diffusion
kernel of the one—point function and the two—point function of Dyson’s Brownian motion.

One major advantage of the radial Gelfand-Tzetlin coordinates in superspace is that
the Grassmann variables only appear as moduli squared. Thus, the number of Grassmann
integrals is a priori reduced by the half. This is an extremely welcome feature of this
parametrization. The evaluation of the Grassmann integrals was performed level by level.
With respect to the recursion formula this was the natural way to proceed. It has the
advantage that one has to perform only a reduced number of integrals, more precisely ko,
over anticommuting variables in each level. Thus the resulting expressions are large but
feasible. The paricular advantage of this way to proceed is that the structure of the ma-
trix Bessel functions is not or very little, influenced by the matrix dimension. Afterwards
we have seen that the structure of ®44(—is,r) was already apparent in ®14(—is,r). The
matrix Bessel functions in ordinary space showed a similar feature. There, the structure
of the Matrix Bessel functions is much more influenced by the group parameter 8 than
by the matrix dimension. However, as in ordinary space it remains as a demanding task
to find the real structure of these matrix Bessel function for arbitrary matrix dimension.
Our results may serve as a guideline how a general solutions looks like.

The main difficulty to be overcome was the appearance of total derivatives in the in-
tegral over the commuting variables after performing the Grassmann integration. These
total derivatives occured already in ordinary space. This lead us to the conclusion that
their occurrence is an intrinsic property of the recursion formula. They were removed by
a set of identities between operators acting onto the integral in the recursion formula (5.8)
and operators acting under the integral. The nature of these operators, particularly their
relation to the Laplacian (5.6) has not become clear so far. We stress that the understand-
ing of these operator identities is crucial for the evaluation of matrix Bessel functions for
arbitrary matrix dimension. Moreover, similar operator identities may be useful in ordi-
nary space to evaluate the matrix Bessel function of the unitary symplectic group.

The radial Gelfand—Tzetlin coordinates are as in ordinary space the natural coordinate
system for the matrix Bessel functions in superspace. This parametrization represents the
appropriate tool for the recursive integration of Grassmann variables. Once the particular
features of this parametrization are better understood, they may allow for the evaluation
of higher dimensional group integral and thereby allow for the calculation of higher order
k—point functions of random matrix models with the supersymmetric method.






Chapter 6

Applications

In this chapter we apply the results of Chapter 5 to our matrix model (2.47). It is both
a summary of the results of the last chapter as well as an outlook. We give integral
expressions for the level density and the two—point correlation function of the random
matrix model Eq. (1.1) which are exact for all transition parameters and all N.

6.1 Level density

We restrict ourselves to the transition towards the GOE and suppress the index ¢. The
corresponding formulae for the transition towards the GSE are derived accordingly. In
Section 5.3 we derived the matrix Bessel function

W exp (trg (rs) — g)
2

2 2
d
H 7,7‘12 - 7“]1 2812 - Sjl) - Z 1812 — Sq1 Z Z’I‘12 ’I‘pl d I()(Z/Q) -
: q:]_ p:].
(6.1)

¢)22(_i3a T) =

Where Iy(z) is the modified Bessel function. With the replacement r — (z + J) and
s — s/t we obtain the diffusion kernel for the level density

L(s,z+ J,t) = (27‘(’)_1/2%

~ | DN

1 1 .
exp (-;(6’11 — 31— J1)° - ¥(321 —z — J1)? 4 S(isie — 21 + J1)2>

(—2% H(islz — 8j1) + Z(islg — Sql)) . (62)

Jj=1 g=1

This yields after inserting into Eq. (2.65) and with Eq. (2.50) the level density

_ )3/
Ri(z1,t) = % /exp (—%(311 —11)? — %(821 —z1)? + %(ism - 371)2>
2
3 (is12 — sq1)Bai(s) Z20(s)d[s] (6.3)
qg=1
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where the Berezinian was defined in Eq. (2.68). This result holds exactly for an arbitrary
initial condition and for arbitrary N. For the initial condition we derive from Eq. (2.63)
for the transition to the GOE

O
ZO (s / d[H©® H<0)H I (is;2 = Hom) (6.4)

1 T15E 1 (s +ie — HWNY2

In the limit ¢ — oo the stationary distribution of classical Gaussian random matrix theory
is recovered. This can be seen by re—writing Eq. (6.2) for the rescaled energy z; = z1/t
and the rescaled source variable J; = Ji/¢, see also [GUH4]. In this limit the average
over the initial condition yields unity and we arrive at an integral representation of the
one—point correlation function of the classical orthogonal Gaussian ensemble

Rl(iL‘l) = (27‘(’)73/2% /exp (—(311 — .’E1)2 — (821 — 331)2 + (i812 — I1)2)

|s11 — s21] ( 1 L 1 ) (is12)N
(is12 — s11) (812 — 821) \is12 — s11 4812 — S21/ (511 + i) V/2 (591 + ig)N/2

d[s]
(6.5)

where the symbol & denotes the imaginary part. Eq. (6.5) is equivalent to the classical
expressions for the one—point functions as derived by Mehta and Gaudin [MEH1].

Finally we state an integral expression for the one—point function for the case of Pois-
sonian initial conditions. The Poisson ensemble is characterized by the absence of corre-
lations between the diagonal elements of H(®. All higher correlation functions factorize
into a product of one—point functions. This is most easily done by defining

P(H©)d[HO) Hp<°>( 9) I1 6 (2S)) - (6.6)

n<m

Inserting this distribution into Eq. (6.4) we derive

d j 1(2'3]2 ) N 6.7
/ (= (851 + i — 2)1/2 ’ (6.7)

as initial condition for the diffusion towards orthogonal chaos. Inserting this initial con-
dition into Eq. (6.3) yields the level density of a transition ensemble between Poisson
regularity and GOE chaos in terms of a fourfold integral. A further analysis seems to be
possible and is highly desirable. In a first step one might evaluate Eq. (6.3) with the initial
condition (6.7) on the scale of the mean level spacing and verify that it yields unity. An-
other interesting problem is to choose a deterministic initial condition, i. e. a fixed matrix
H©) which takes only two different values, a and —a. With increasing ¢ the gap between
the two eigenvalues closes. Brézin and Hikami [BH1] investigated the critical behavior of
the level density at the closure of the gap by using the to Eq. (6.3) corresponding integral
representation of the unitary ensemble [GUH4]. The same analysis should be possible with
Eqg. (6.3) in the GOE and GSE case.




6.2. TWO—POINT FUNCTION s

6.2 Two—point function

In Section 5.4 we derived the matrix Bessel function ®44(—is,r). This yields an integral
expression for the two—point function. The derivation of the corresponding formulae for
the GSE being straightforward, we restrict ourselves again to the diffusion towards the
orthogonal chaos.

~ 1 1
u(=is,r) =4 Gy exp(ir(rasr)) IJ[.(T“ ) | seiatn * BTeaTE)
SH ’)"Z1—’L’r‘12 H 8]1—2512 +4ZH 3]1—2812 (T11+T21—’iT12—a ) )>
i=1 Jj=1 1=1 j#¢ Sil
2 4 4 4 9
8 ][ (rin = irao) [ [ (51 = isaa) + 43" [T (51 — dsaa) (ran + ran — a0 — 5—)
i=1 j=1 1=1j#1 Sil
4 4
ST 2 1L ) i)
. 0
(7‘11 + 13, +r11r12 — (6791 + ir) (r11 + To1) + ir12iree + trg (r/2) 8s~1>
(2
4 4 4 P P
~ AB(irs) Al (isa) 811 — 1812 (8k1 — is12) ( — —> Dy(s1,71)
A%(Z’I‘Q ’LSQ %ll;[z kl;[] 83,-1 8sj1
+ (’iT12 —— ’iTQQ) , (68)

where the arrow is to be understood according to Eq. (5.61) in chapter 5. The term
(ir12 <— ir92) accounts to the permutation group S2 acting on iry in the fermion—fermion
block. With the replacement r — (z + J) and s — s/t we obtain the diffusion kernel
for the two—point correlation function

Cp(s,z+ J,t) = exp(—% (trng—l—trg(x:I:J)Z))

Dya(—2is/t,c £ J) . (6.9)

A considerable simplification is achieved through the derivative with respect to the source
terms. We find for the two point correlation function

~

4 . . . o
Ralar,a2,0) = 2 =72 | <§42<s>2§°><s>“’f:1(“” e

(ism — i822)2
exp (—tr s2/t — 2% [t — 222 [t 4 2(is12 — x1)? [t + 2(is0 — .’L‘2)2/t)

i L 1 —t i (x —1 9 ) +
K (’i512 — Skl)(iSQQ — 5j1) ! 83]'1 2 8Sk1

t 0 0
- - - - —1 —1 -
(21 — z2)(is12 — is22) (4812 — sk1) (4822 — 851) (m 383'1) (362 38k1)
1 ¢ 0 0

+ — M _ 18 T S
2 (1 — @2)(is12 — sk1) (1522 — $j1) (9512 — 1522)2 ( j )] P (s )> s

+ (z1 ¢— 22) (6.10)
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where we introduced

4
z = diag (z1, %1, T2, T2) and d[s] = H dsjidsiadsgs . (6.11)
j=1

The last line indicates that the integral with z; and zo interchanged has to be added.
This yields yet another simplification, since all terms in Eq. (6.10) antisymmetric under
interchange of z1 and zo drop out. We arrive at the remarkably compact expression

Ry(wr,a0,) = G t 7572 s (\/mz(s)\/mZé”(s)

exp (—tr s2/t — 223 [t — 222 [t 4 2(isyy — x1)? [t + 2(is90 — $2)2/t)
4

1 0 0 (1) )
kz; l(ism s Py <a:1 — t—asﬂ> (Iz — t—asklﬂ ®y 7 (—2is, [t, x) ) d[s]
(6.12)

The symbol & denotes a certain linear combination of ﬁg(ml, Z9,t) as explained in Section
2.3. The normalization constant is derived from Eq. (5.83)

Gas = 2(2m) (6.13)

This result yields an exact expression for the two—point function of Dyson’s Brownian mo-
tion for every initial condition. Plugging in the initial condition Eq. (6.7) yields an exact
integral representation of the two—point function for our random matrix model Eq. (1.1).

Crucial for a further evaluation is to find a convenient representation for the matrix
Bessel function of the orthogonal group @il)(—%sl /t,z), which enters in the integral
representation of the two—point function. We derived in Section 4.2.3 a representation in

terms of a twofold integral

(I)gl)(sla T) = Bil) (g — 111)_2 exp (11 Tr s1)
4 2

/ dtydty exp (w2 — 31) (b + 1)) [t — to] T[ [[ (so1 — ;)2 (6.14)

n=1j=1

where Bil) is the normalization constant given in Eq. (4.36). As in the case of the one
point—function, an integral representation of the two—point correlation function of the
classical Gaussian random matrix ensemble is obtained by setting the elements of the
diagonal matrix H(® to zero. It is well known that the k—point correlation functions of
the Gaussian random matrix ensembles decompose into a quaternionic determinant of a
self-dual matrix. That means the two—point function can be written schematically as

Ro(x1,29) = S(x1,21) S(x2, 22) — S(21,22) S(T2, 21) + JS(21,22) DS(22,21) . (6.15)

The exact expressions for the functions S(z,y), JS(z,y), DS(z,y) can be found in [MEH1,
GMGW].

It is of greatest interest to see how this structure of a quaternionic determinant comes
about in our integral representation (6.12). In the case of the GUE it turned out that the
structure of a quaternionic determinant appeared already in the diffusion kernel T'x(s, x)



6.3. RESUMEE 79

[GUH1, GUH4]. This followed as a direct consequence of the supersymmetric Itzykson—
Zuber integral. In that case the originally fourfold integral representation of the two-—
point function decomposed into a sum of products of twofold integrals before performing
the eigenvalue integrals. Thereby, with the two—point function one had readily derived
the k—point function due to the structure of a quaternionic determinant of the k—point
correlator. This means, that a coupling to a deterministic matrix H(® does not destroy
the quaternionic structure of the correlation functions. Only averaging over H(® destroys
this structure.

It would be extremely convenient if a similar property also exists for our sixfold integral
representation (6.12). In that case it should decompose into a sum of products of threefold
integrals without performing any eigenvalue integration. Certainly, the clue of any further
analysis of Eq. (6.12) is to find the most convenient representation of @A(f) (s1,z). However,
in our opinion it is extremely probable that such a decomposition exists. The property
that a coupling of a random matrix to a deterministic one does not alter the structure
of a quaternionic determinant should not be restricted to the GUE but also apply to the
GOE and GSE.

6.3 Resumee

We derived integral expressions of the one—point function, Eq. (6.3) and the two—point
function Eq. (6.12) of Dyson‘s Brownian motion model. With the initial condition (6.7)
we get an integral representation of the one and two—point correlation functions of the ran-
dom matrix model (1.1) for arbitrary transition parameter and arbitrary matrix dimension.

However, we stress that the methods we used to derived these expressions have a value
on their own right. Specifically the recursion formula yields new insights in the complicated
structure of matrix Bessel functions. These functions occur in a much wider range in
physics and mathematics than random matrix theory. It came as a great surprise that
there exist closed expressions for group integrals beyond the Harish-Chandra case. The
calculation of the group integrals over the unitary symplectic group for arbitrary matrix
dimension seems to us as important as the further analysis of the integral expression of
the two—point function Eq. (6.12).

Also the fact that the recursion formula represents a generalization of the matrix Bessel
functions to arbitrary group index [ opens another wide field for further investigations.






Appendix A

Calculations to Chapter 3

A.1 Solution of Equations (3.31) to (3.33)

")|2 )|2

We consider equation (3.31). If we plug in the solutions for |v$n and |a$,7 given in
(3.34) the right hand side can be expanded in a sum of monomials in the nilpotent Gelfand—
Tzetlin variables |§Sn)\2, g=1,...,ko. Since each of the |§(Sn)|2 only appears linearly, the
rank of the monomials cannot exceed ky. Formally we can rewrite Eq. (3.31) as follows:

1 k2
— (r)
MO > M (A.1)
Y4 r=0

Where M(") is the nilpotent part of 1/ |w§,n)|2, which consists of monomials in |€((In)|2 of
rank r. Explicitly we have for M(’"), r=1,...,ko,

k1—n+1 k1—n—1 (n—1)\ ()rs o )

n—1 n
j1<§2< . <jr ™ qulz,qim ((h%‘fl)ﬂ _ (h(?*l))2) (h$n1 ))2 — (h';l))2

q
gl .
-1 ., (n—1
1 (5 0)2 = (kS5 )2)
k1—n—1

2 -7 (n—1) (n) .y (n— n

kzz Hq:l,q;ép ((I[‘h’j12 )2 - (h’ql )2) (ih§12 1))2 + (h;l))2
ky—n+1 n— e g (n=1)yo n

o [I,-7 ((z’h§-12 Dy2 _ (hg1 1))2) (thjyp 7)? = (hpy')?

g:l ‘5ji|2 . (A.2)
o ((R550)2 = GRS )?)

The sum over m is the Laplace expansion of a determinant. For its evaluation we use the
formula

1 ! 1
= 2

I (2 = GRGT2) 5 ()2 = 2
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which is well known from complex analysis. After symmetrizing the second sum in the
indices, j;, i = 1,...,r, we arrive at the following expression for M (™).

I Y o= :

J1<j2<..<jr i=1 Hzl;éz ((Zh§72_1))2 - (ZhXin))Z)
k1—n+1 o n 1 1
B ()2 = (h)?)
k1—n+1 - -
" Hq:l%qaém ((hg'?l 1))2 B (hgrlb 1))2)

(b )2 + (hi)? -
()2 = 575 0)2) (B V)7 = (83)?)
(b )2 + (hi)?

()2 = ny )2) (g )2 = (gl )2

1
+ Z )3 = i
71<j2<...<jp 2=1 Hzl;éi ((Zh§12 1))2 - (Zh_gi/QI))Q)
k172n71 n—1 n ' n n
Hq:l,q#p (('Lh§12 ))2 o (ht(zl))Q) (Zhg'lz 1))2 + (h(l) 2
k1—n+1 (n—1)y9 (n—1) h,(n 1) n H |£]7,|
I, ((zhj12 )2 (h,q1 )2) (i 712 )

(A.4)

Now the determinant can be evaluated, using the translational invariance of the Vander-
monde determinant Ay (z) = Anx(z—c). Whereas the second term in the squared bracket
cancels completely, the second sum the first term in the squared bracket yields

uE 1
Z Z <(Zh§:1.2—1))2

i1<a<n<r i=1 L Lirti

— (k"5 ")?)

2b8)2 11,7y (W)~ (172)
()7 = @S ) Tt (002 = (Wy2) =

H €12

Using again identity (A.3) and summing over r gives

kl— n n
1 2 T, g (B)2 = (B57)?)
(n) - k1—n+1 e n
[wp”|* Mo ()2 = (a1)2)

(Z Z ﬁ (hDy2 |§ji|.2 - ) : (A.6)

(n=1)\o
r=0j1<52<...<jr i= 1 (Zh’jﬂ )
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Observing that the double sum in (A.6) amounts to

k2 |£(")|2
I\ —mn e | (A7)
q=1 (h’pl ) - (thQ )

and using the definition (3.36) of |§(S") |2 we arrive at the final result

k1—n+1 _1 ]
Mo (G702 = ()?) T2, ((65D)2 - (in3)?)
kyj—n—1 C(n—1 ’
2(hg)2 Tyt g (BS)? = (R TTEZ, ()2 — (a5~ 1)?)
Equation (3.32) and the corresponding equation for the odd levels are evaluated simi-
larly, yielding the results stated in Section 3.4. Equation (3.33) has to be treated differently

due to the Grassmann singularities, occurring on the left hand side. After plugging in the
expressions Eq. (3.34) into (3.33) we have

(A.8)

|w§n)|2 _

L= a2
k1—n+1
(n—1)y2 (n—1)y2  (;7(n)
22: (B )2 4 (inl3))? o2 4 Z (b )2 + (ihgy))? e
(n—1)yo _ (;p(n ; n—1)yo _ (:p(n)y2 i
(V)2 y3)?) o (o) = g ?)
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o L=t (RS2 = (hS)?) T2 4y (RS D)2 = (iR D))
. -1 . (n fpondl .1 (n—1 n—1
H22:1,q¢p ((Zh;(;g ))2 - (Zh((12))2) [T=1 ((Zh§;2 ))2 - (hél ))2)
(ihgs )2 + (6hfy))?
. (A.9)
(n) |2
&
In order to cancel the singularity, | ﬁ,(,n) |2 has to be expanded as c§,") |§,(,n) |2. The expansion
coeflicient cl(,n) now contains a nonvanishing body and therefore its inverse is well defined.

Dividing both sides by cl(,") and ordering the right hand side by powers of \{,(,n) |2 one arrives

at

1 _
4
kl_.—n_l . n— n . n— . n—
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Z(thQ ) k1 —n+1 +

T1821 0 (G552 = RS2) T=? (R )2 = (b1 D)2)
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(A.10)
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Since cz(,n) and therefore also 1/ cén) are of order zero in |£]§,n)|2 the whole term in round
brackets can be neglected. Indeed it can be shown by manipulations similar to those which

led to Eq. (A.8), that this term leads just to a shift of (ih;g_l))Q — (z'hif,g))2 in the resulting

expression for cg,n). This does not affect | ﬂz(,") 2. One arrives at
B = (R)? - @5 Y)%)
Mzptl n—
T1821 g ((R5)2 = ()2 T2 ((h)% — (gt )?)
kl— n n n . n—
2ihy )2 T? (052 — (S)2) T8, sy (6532 — (iR D)?)

(A.11)

The equations for the odd levels are treated in the same way.

A.2 Solutions for the odd levels

We state the odd solutions of the Gelfand—Tzetlin equations, i .e. the solutions of (3.25)
o (3.27)

o o (592 = i) ez ()2 - ( >)
LTI A (8T - (SR I 1( ”)2)

k1—n
5 (p(7) ky (;p(n—1)
g, o= Tt O I 7
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G PILE (G002 - (G2 I, 0, (G702 — 1)2)
p=1,....ky , (A.12)
and of the Egs. (3.31) to (3. 3) in the case that k1 —n + 1 is odd
I, ; (G D)2 = (i)?) 1182, ((h5)2 = nl3)?)
kq
o2 g ((BS)2 = (AED)2) TTE2, ()2 — (b5 0)?)
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12, 0 ()2 — GV T1,E (GH)? - (G )2)

= (RS2 — (G)2) 1, (D)2 — (iR 0)2)
p=1,...,k (A.13)
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A.3 Derivation of Equation (3.41)

The derivation of Eq. (3.41) follows the lines of the calculation for the unitary case [GUH3].
Restricting ourselves to the first level and assuming that k; is even, we first calculate the
differentials

(n)2 k%— L i W Z o2 (6Mag — ¢ aeM)
dlvy" | = 2h1dh1‘|‘ £ /dE" — &MdE ,
' = (2= (2T T S () - GRGH2 N

(1) klfl o) W gp 4 af” (L)% g¢(1)
do\l) = 2hy dhgy &MdE
? =T () R T E PR
kz2 aél) <§(1)d§(1)* _ f(l)*df(l)) (A 14)
g=1g#p 2 ((ihp2) (Zh(l)) ) v ! !

which gives inserted into Eq. (3.40) for the invariant length element squared after a
straightforward calculation

ki1/2—-1
1 1 1 1 1

h=nhl)  h+nY ) \n-n)  h+nl)

pyq=1
1 f: L i 1 1 1 1
2+ — — U
4,2 i) “ h—ihly h+inly) ) \n—inl)  n+ind) '
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S P ()" 3 e
V2 (a6D)" + = def)deg)
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| th2 h=ny b+ hlY ) \n—inly)  h+inl)
dh{) (5(51)(1@51)* _ 5(51)*(1551)) _ (A.15)

This can be enormously simplified by observing that the bilinear forms in the above
expression are related to the orthonormality relation of the eigenvectors. We relabel the

eigenvalues as h( ) hg; NE —h(l) — hgg)l, j=1,...,k1/2—1 as well as z'hg-lQ) —
Zh§2;—1)2 and —zhg-Q) — Zh§2§')27 j=1,...,ko. Then we find from the orthogonality of the

projection matrix b and from Eq. (3.30)
Opg = ez(,l)Tegl)
1

(h—h](,l)) (h—hgl))ul’ pg=1,...,

which yields together with Eq. (3.31)

|6 2]

ki+k—1  (A.16)
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1 ke th2)2 (ih (1))2 |041(,1)|2
: de=get) (A7
22( DRIEDE Gihy)? — ()2 G (A1

where |a1(,1)|2 and |,6’;,(,1)|2 have to be inserted as they stand in Eq. (3.34) and (3.35). A
further simplification is obtained by expanding in |§§,1) |2 and reordering terms,

(ihy2)? — (ihyy)? T S 1 Sl PO (L0 (1))’
(g PIBVE Ghge)? = G2 (i) = (g2 \ o 21057 22
_ |a§,1 2 (1 N (1 n |f(1)|2’7(1)(h))>
(ihy2)? = (iy3)? T
o

o V1416912400 )
2

2
oD 2 ((ihp2)? = (ih{3)?)
(ihp2)? — (RS2 \ o 21857 2(iRy)2

(A.18)

where 'y;,(,l) (h) is defined through the expansion. Thus, we find the desired result (3.41).

A.4 Real form of the projection matrices

In this appendix we state an explicit form of the projection matrix b, We restrict
ourselves to the case n < k1, (ky—n+1) even. The rectangular (k1 —n+1+ks) X (k1 —n+k2)
matrix 57T can schematically be written as

b = lbéqi bén; bég; : (A.19)
by’ by by

matrix with entries

7(n) . ki—n+l , ki—n—1
Here, b;” is a = x *=

. |v; 1
(b(n))-- =V2—— J _
TG 0y b sind h D cosol”

(A.20)

v(n)\|w§-n)| [ B cos 19§n) hyf_l) sin 195701
)2
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n)

Furthermore 552 isa ’“_27"4'1 x ko matrix with the entries
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2
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Moreover, I;grf) is a ko X matrix with the entries
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() (n) (n) 3 (n—1)
P RN (A2
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% 5 % J i i
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~ h(nfl) h(n) h(n71)+ h(n)
Finally the entries of I;gn) and l;gn) are
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We notice that all elements of 5™ are real quantities.
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Calculations to Chapter 3

B.1 Derivation of an alternative integral representation for
matrix Bessel functions

We rewrite the invariant measure of U € U(N; ) using d—distributions. The invariance
simply means that all columns U,, n = 1,..., N are orthonormal, TrUU,, = §,m. The
trace Tr is only needed for # = 4, because the entries of U are quaternions in this case.
Thus, we may write

dpU) = MY dU] ﬁ 5 (TrUfU, —1) ﬁ 5 (T UfU) (B.1)
n=1 n<m

where d[U] is the Cartesian measure of all entries of U and the integration is for all variables

over the entire real axis. The constant Mj(vﬁ) will be determined later. Ullah [ULL] used
such forms for the measure to work out certain probability density functions. The bilinear
forms in the § distributions have 8 components for n # m,

f—1

0t = 3 [oio] . .
a=0
We notice that [U;‘LUH] () = 0 for a > 0 in the case n = m, because the length of every

vector is real. Thus, because of Eq. (B.2), the § distributions in the measure (B.1) have to

e () .
be products of § distributions for every non—zero component [U;[ Um] . We now introduce
Fourier representations

5 ([UgUm} (a)> — % /_ ™ 4T exp (—z’2 [0} U] (@ T}f;,Q)
5 ([UgUn] ©_ 1) — % /_ " 41 exp (—i ([U);Un] o _ 1) Trg(;,{) (B.3)

for n # m and n = m, respectively. The Fourier variables form the elements

p-1
Tpm = Y TG @) (B.4)

a=0
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of a matrix T" which is real-symmetric, Hermitean or Hermitean self-dual according to
B8 =1,2,4. We notice that the diagonal elements T, = é%) are always real.

1
5 (TrUfUn) = ﬁ/dﬁTnm exp (—iTx U} (Tm ® 18)Un
—iTx U}, (T ® 1n)Up)
1 [teo
5 (UjU,—1) = ﬂ/ AT exp (iTx T —iTr U} (T ® 13)U,)  (B.5)

for n £ m and n = m, as above. Just as the trace Tr, the direct product is only needed
in the case § = 4. We order the columns U,, n = 1,..., N of the matrix U in a vector
U= (U1, Uq,..., UN)T with N? elements. For 8 = 1,2, the elements are scalars, for 8 = 4,
they are quaternions. Collecting everything, we can rewrite the measure (B.1) in the form

M(ﬁ)d[U
(27)N aBN(N-1)/2

du(U) = /d[T exp (It T — iy UH(T @ 15)0) . (B.6)

To use this in the integral (4.19) for the matrix Bessel functions @55) (z,k), we also take
advantage of the relation

TTU 'aUk = TrU(z @ k)U (B.7)
which allows us to write
Mo
CI'E\?)(:B, k) = @0 ¥ Wﬁjjvv N7z /d[U /dT] exp (iTr (T — ig))
exp (iTe U (z @ k — (T — ie) ® 13)0)
MB),;8N? BN/2 . '
= N v /d[T] exp (iTr (T — ig))

Det —#/2 ($®1Ac—(T—is)®1N) . (B.8)

Thus, the integration over U can be done as a Gaussian one and gives the result (4.31).
To ensure the convergence of the Gaussian integrals over U we added to T an imaginary
increment in the diagonal.

Formula (B.8) yields immediately the integral equation (4.35). Upon making the
change of variables

T = '\/?7'5'/% implying d[T] = DetHBWN=1/24q/7"] | (B.9)

we bring x into the exponential function and remove it from the determinant. We diago-
nalize 7' = V'~1¢'V' and find

Det 72 (z@k—T®1y) = Det N2 T (km — 1) 712 (B.10)

n,m

The integral over V' is then just the integral definition (4.19) of the matrix Bessel function
@S{?) (z,t') and we arrive at Eq. (4.35).
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In order to derive formula (4.34) we extract a factor exp (z2 Trk) from the integral
Eq. (4.19). Only the reduced matrix enters now into the group integration

= diag ((z1 —z2) ®1m,0® N) . (B.11)

The non-trivial part only goes over the coset U(N;3)/U(M — N; (). Therefore we are
allowed to replace the product over N by a product over M in Eq. (B.1). The next steps
are analogous to the general case.

The normalization constants remain to be derived. Conveniently, they nicely relate to
a special form of Selberg’s integral which is given in Eq. (17.5.2) of Mehta’s book [MEH1],

N
Tn / ditl|An 02 T (ar +ita) ™ (ag — itn) ™"

(2m)"
(al + a2)(b1+b2)N—'yN(N—1)—N

Nl:ll T(1+ (n+1)y)T (b1 + b2 — (N +n— 1)y —1)
o L(1+~)T(by — ny)'(by — ny) '

(B.12)

We now put z = 0 or k = 0 and have (0, %) = 1 or 7 (z,0) = 1 on the left hand side

of Eq. (B.8). We diagonalize T' = V'tV and use the invariance of the integral. Employing
(8)

the measure in (2.9) and the constant C;’ given in Eq. (2.11), we find the condition

(8) o(B) . BN/2
My C exp(ity,)
- /d[t An()]? H ﬂN/Q . (B.13)

We map this onto Selberg’s integral (B.12) by setting v = /2, by = SN/2 and ay = be,
by using

ay? .

a211_1)noo m = exp(ztn) (B14)

and by considering aév % Jn in the limits a; — 0 and ay — oco. With the help of some

standard asymptotic formulae for the I" function, we obtain M ](vﬂ ) and, eventually, the

constants A and B{’) in Eqs. (4.32) and (4.36).

B.2 Proof of Theorem 4.1

First, in order to compactify the notation we define

N-1
dii(z,z') = du(z, ') exp < (Z Ty — Z :C'n> kN> , (B.15)

where the measure given in Eq. (4.63). In order to prove the theorem we first write the
integral in terms of f—functions. Then the left hand side of Eq. (4.66) reads

L h s = A, / iz, o) f(a") [] OCai — 21) [[ 0, — a)dla’] , (B.16)

i<j i<k
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where now the integration domain is the real axis for all variables. Now we can directly
calculate the action of the operator A, onto the integral. We find

A, / filw, o) (o) ] OCws — 21) [[ 0 — 2x)dla’) =

i<j i<k
/f ) [1 0z — =) T] 0= — =) ( -l-ﬁz @ —a)? —kN> i(z, x')d[z']
1<j i<k n#m Tn = Tm

-I—/f(:v')ﬁ(:v,x')AwHH( — o) [ () — ) dls']

1<j i<k

N
+2/f(a:') Z %ﬁ(x,x')% 1—[0(:1:Z — ) H 0(z; — x)d[z"] (B.17)

where we define the operator

N 2
S oLy B (a8 0
_ n;@ > (8xn ) . (B.18)

o Tn — Tm 0Tm
By a series of integrations by parts, the operator A;,_) acting on fi(z,z') is transformed
to Ay acting only on f(z'). At taking the derivative of the §—functions, we notice that
only adjactent levels contribute, because otherwise terms like 6(z; — ;) with ¢ > j arise
which annihilate the integral due to the chosen ordering. Therefore, we can write

Ba:n H 0(z; — ) H 0z — xp) =

1<j i<k

IO tmryn) (5@n = 24)0(@h_1 = 20) = 6(@h_1 = 2a)0(zn — 7},)) |
(B.19)

where [](0xnn 0#” 1)'n) denotes the product on the left hand side of Eq. (B.19) without
the two factors 6(z),_; — zy,)0(z, — z),). Importantly, this product is symmetric in z/
and z,. The second derivatives yield

n—1

a% 110Gz — %) I 0= — z) = [1(Onmr» On—1)m)

1<j i<k

(5'( Tp — 2h)0(Th_y — Tp) + 8 (2, — 22)0(z0, — z}) + 6(h_q — )0 (Tr — x;l))

The last term vanishes upon integration, since it is symmetric in z},_; and z/,, whereas
the rest of the integrand is antisymmetric due to the Vandermonde determma,nt A(z') in
the measure (4.63). Differentiation with respect to z,, yields

— :1:;) H 9(:6; —xz) =

z<] i<k
H(emnm,em:) (62}, = 2n11)0(zn — 7) = 8(zn — 2)0(a}, — Tni1) )
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Integration by parts of the first term of the right hand side of Eq. (B.17) yields

Ay /u z, ') O(z; —ﬂU}) H 9($;' — zp)d[z'] =

z<] i<k
//ww A f(&)dle') = Ky [ o) (&) dlo
N—-1
+2/f Z ( 0#n’(n+1)70¢nn’)
n=1

(8wn — 22)0(a7, = Tn41) + 82, — ons1)8(an — 7))

0 1 B8
(8—% ox!, _an—xm+_§zw’—w’

m#n N m

)) p(z,z)d[z"] . (B.22)

After inserting in Eq. (B.22) fi(z,z') as it stands in Eq. (B.15) and Eq. (4.63) we find in
a straightforward calculation

Ay /,u z,z') f(2')d[z'] =
/ i, o)A f(@)dla'] = K [ i, o) (')

N—
+2/f Z ( e;én’ (n+1)» 0#7171)( ( ;ﬁyn;w’xl) —g(x;;xn;x,x'o

(8(zn — 24)0(a}, — 1) + (5}, — Tn41)0(wn — w;))>ﬁ<x, )dlz'] ,  (B.23)
with
Nl 1
g(zn;zy;z,a’) = (B/2-1) (mﬂm —m#nm>
Lgmim,x) = 2-1 1 - 1 B.24

We now can perform the integration of the d—distributions in Eq. (B.23). We notice that
the difference (g(z},; zn; z,2") — g(2l; Tn; T, 2")) vanishes linearly, whenever z!, approaches
one of the boundaries of its integration domain. Thus the second integral in Eq. (B.23)
yields zero as long as the measure diverges less than (z, — z!,)~! when z! approaches z,.
This is always the case for § > 0. Eq. (4.70) in Section 4.4 is derived in the same way.}
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B.3 Symmetry of the radial functions for arbitrary § and
calculation of the normalization constant Gg\é)

Applying the recursion formula (4.62) to all (N — 1) levels, we can extend Eq. (4.41) to
arbitrary 8 and write

N-1
O (w, k) = / IT du(a™, 2 Dyexp (izf" k1)
n=1

N-—-n+1 N-—n
exp (z ( Z wsg_l) — Z ng)) an+1)
m=1 m=1

(B.25)

where z(O) = z. We change in Eq. (B.25) on the n-th level the variables xgg),m =
1,...,(N —n) to 7“5,?) setting

Y )

Hl;ém(wsrTzLA) — ")

= r{W (B.26)

forn =1,...,(N —1). These are, on the n'" level, (N — n + 1) equations for making a
change of N — n variables. However, one has

N—n+1
o= (B.27)
m=1

on all levels which eliminates one of the (N — n + 1) equations.

The original domains of integration are x%il) > m%) > :vgf;ll ). These boundaries

transform to a positive definiteness condition for the new variable rgf ). The Jakobi deter-
minant of the variable transformation (B.26) is readily derived from the results of Gelfand

[GT1, SHA], cf. Egs. (3.55) and (3.56). It is given by
AN(x(n_l))

(n)
A(rm’) nm=1,...,(N—1) An-1(z™)

The full invariant S— dependent measure (4.63) can now be written in terms of 7"7(775 ) as

N—-n+1 52 (N—n+1)
du(r™) = H \/7"1(7?) 5(1— Z 7"7(7?)) dfr™7 (B.29)

m=1 m=1

where d[r(™] = [[N =7+ dr?. In Eq. (B.29) it is obvious, that the measure is independent
from z and k and therefore trivially symmetric in z and k. This allows us to write

dp(z™, 2" ) = du(r™) = du (k™ kD) (B.30)
(1)

The coordinates 7, = r,’, n = 1,...,N on the first level of the recursion can be in-
terpreted as the moduli squared of the coordinates on the unit sphere in the complex
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N-dimensional space. Thus, in order to evaluate the normalization constant, it is natural
to use the following type of hyperspherical coordinates

n—1
T, = Cosﬂanim‘}y, n=1,...,(N-1),
v=1
N-2
riy = sindy_1 [] sind, (B.31)
v=1

where the positive semidefiniteness of the r], restricts the domain of integration to 0 <
Ip < /2, n = 1,...,(N —1). Thus, we integrate over a (2V)* segment of the unit
sphere. The measure (B.29) becomes

N-1
du(r') = [J sin®™ 719, cosd, dd, . (B.32)

n=1

It is, apart from the phase angles, the measure on the unit sphere. Collecting everything,
we have

N-1 /2

= G%i) sinV=mB-1 g9 cosP~1 9, did,

n=1 0
_ o T DN —n)B/2T6/2) _ e TNE/2) (B.33)
N L AD(N-n+1)8/2) TN 2NTIT(NB/2) '

where the integral over ¥, is just Euler’s integral of the first kind.
It remains to be shown that the change of variables (B.26) leads to the identity

N—-1 /N—n+1 N—n N_1
> ( >ooarh -y 3?52)) kn—ni1 + 2 Vky
n=1 m=1 m=1

N—-n+1

N-1 N-n
=2 ( IR ARED Y kﬁ,?)) aN-np1 + BN Yoy . (B.34)
n=1 m=1 m=1

Since the symmetry relation (4.61) holds for § = 1,2,4, we know that Eq. (B.34) must
be true in these cases. However, as Eq. (B.34) does not involve § at all, it must also be
valid for arbitrary 8. We notice that this line of arguing cannot be spoiled by any other
contribution to the argument of the exponential functions, because all other terms in the
integrand are purely algebraic. This completes the proof of the symmetry relation (4.61)
for arbitrary S.

B.4 Derivation of (I)ffl)(a:, k) by an Hankel ansatz

We perform the derivation for @514)(—ix, k) in order to avoid inconvenient factors i. First

we observe that the operator L, ) defined in Eq. (4.76) splits into two parts. One part
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does not change the order in k,

N
) = ;;x D T (B.35)

n<m

The other one raises the order in k£ by one

ww(k = QZk n)ax - (B.36)

Since we can restrict ourselves to one element of the permutation group, in the sequel we
discuss only the identity permutation. The symmetry of z and k together with the result
for ¢§4) suggests an expansion in the composite variable z;; as defined in Eq. (4.88). To
this end we define the elementary symmetric functions

es(z) = Z ﬁ Zigje (B.37)

Z.ljl <z2]2<<1u]u k=1

with the the following ordering of the composite index {igjr}, ix < jx- We say {igjr} <
{@1g1} if ig < 4 or i, =4; and ji < ;. All indices run to N. The highest order elementary
symmetric function is of order N(N — 1)/2 and is given by A(z)A(k). The asymptotic
formula (4.77) yields the leading term for large arguments. It is the starting point for a
recursion in powers of z~!

W N(N—1)/2 X
WN (Z) = Z pu(z_ ) ’ (B38)
v=0

where p,(z) is a symmetric function of order v in z; and k;. We investigate the action of
the two operators defined in Eq. (B.35),(B.36) and find

N 1

Agre,(z71) = =2 — = e, izt B.39
ok ( ) n;n ($n—$m)2 1( ;énm) ( )

Apges(z7) = —4 Z 2 (2 2nm)
n<m
—2 Z z;kl Zop Ev=2(Zm ) - (B.40)
n<m #nk
k#n #mk
k#m

The function e, (z4pm) is the elementary symmetric function e,(z) with all terms con-
taining z,,,, omitted. For v = 0,1,2 we simply have p,(27!) = (=2)"e,(271). For v > 3
the last term in Eq. (B.40) causes the appearance of correction terms to the elementary
symmetric functions. It arises due to the mixed derivatives, which have to be taken into
account in the action of A:ﬂ,k onto e, (27 !) for v > 3. Because of this term the Hankel
Ansatz seems to be of limited use, since one has to construct a set of correction terms,
which become for higher order of N increasingly complicated. Up to now the construction
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was only possible for N = 4. In order to construct the correction terms we define a new
set of symmetric functions as follows

N
fu(z™h) = Z 2 2o Zprev—3(2 4 ) - (B.41)
k<l<m s

Again we have to investigate the action of A, and Aw,k on f,(z1). We find

Agifs(z7h)=-4>" 5 [3(2Zmm) (B.42)

and

Mgy fa(z") = =2 Z @ — a2 Znk Tk (B.43)
75&2"
k#m

thus f3(z!) is the desired “correction term“. We have

p3(z7l) = —23<63( —1)+ f3( —1)) . (B.44)

Favoritely, due to Eq. (B.42) in the next step the “correction term*“ itself has not to be
corrected. We find

pa(z7h) =2° (64(2!_1) + %f4(z_1)> . (B.45)

Up to now these results are valid for arbitrary N. The action of Aw,k onto the symmetric
function f4(z~!) is not as simple as Eq. (B.42). After a series of manipulations we arrive
at

N
_ ~ 1 Z
n<m \*1 n<m 5‘“’“
k#n #mk
k#m
(B.46)

The contribution (B.40) has to be added to this expression stemming from the action of
Ay g onto es(z71). On the other hand we calculate

N
_ 1 _
Aw,k f5(z 1) = _2 Z _ 2 f4 Z#nm 2 Z 2 nk;l zmi (z#}zm) °
n<m ('T” z ) n<m — ITm #nk
::m .
(B.47)

Therefore we have to look for yet another correction term to compensate the second term
in Eq. (B.46). We define

—1 -1 -1,-1

11<22<13<t4 <] r<j IJ<<77;
Ag i fi(271) yields exactly the second term of Eq. (B.46). Pushing forward this procedure
becomes more complicated step by step. There seems to be no obvious way of constructing
the additional terms. Apparently for higher orders the correction terms also involve an
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increasing amount of indices. Nevertheless for N = 4 we are already at the end of the
recursion. Then the general expression

po(a™) = <2 (es(a) 4 S5 + 4 GT) (B.49)

reduces to
ps(z7l) = —T2es(271) . (B.50)

The last step can readily be done, since the action of Aw,k onto e5(z~!) is already known
by Eq. (B.40). Thus we arrive at

pe(z71) =288es(27!) . (B.51)

Importantly, we have

Appes(z7l) = Agp m =0 . (B.52)

That means, the sequence finishes after the 6-th step. Collecting everything and observing
that, for N =4, f5(z) = 2e5(z) and fg(z) = 4deg(2), we get
W (2, k) = 3 (=2)%en(z7H) + 3 (=2)" " u(z™) —8es(z7!) + 96 es(271) . (B.53)

This can be rewritten more compactly in the spirit of Eq. (4.89) as

LA m(m‘%’”

1<J
s He-=+;y I (2—zz-j)> . (B54)
l<m<'n, i<j l<m i<j #lk #ln
#im k<n #mk #mn #kn
#In
#mn

This form indicates a general structure for WJ(\? ) (z,k). the leading term is always the
generating function of the elementary symmetric functions in z. To this term are added
combinations of other symmetric functions, where certain combinations of indices are cut
out.

B.5 Translation invariance of WJ(Vﬁ ZJ(:E, k)

We shift every z,, in the the recursion formula (4.62) for arbitrary by a constant Z and
obtain

@S@(w—l—x, /du:v z+ ) exp( (Zw—I—N:U—Zac)kN)
n=1

o\ (/%) (B.55)
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with z, + < z), < 41 + T as the domains of integration. The change of variables
zl, — z, + T removes T from the measure given in Eq. (4.63) and the domains of
integration. We find

N—1
@55)($+:E,k) = exp (iZky) /duw z exp( (Z:v— Zgﬂ) kN)

n=1

o\® («' +2,F) . (B.56)

Now we want to employ an induction. We assume that the radial functions for arbitrary
[ have the property

o (z+z,k) = exp< i ) k) . (B.57)

If this is correct for N — 1, formula (B.56) implies that it is also true for N. The induction
starts with N = 2 where the correctness of Eq. (B.57) is immediately obvious from the
explicit solution (4.24) for arbitrary 8. Thus, Eq. (B.57) is valid for all N.

Since the k, are arbitrary and since the sum over all k, is invariant under the per-
mutations w(k), the property (B.57) must also be true for every function @g\é)w(:c, k) with
w € Sy. We compare this with the expression ’

€xp (Z Efzvzl wnkw(n))
(An(z)An (k)P

N
@Sg,)w(a: +z,k) = exp (z:ﬁ Z kn)

n=1

W (z+2,k)  (B.58)

which results from the Hankel ansatz (4.73). Hence, we conclude that we necessarily have
W (z+ 2,k) = W) (k) - (B.59)

This is the translational invariance.






Appendix C

Calculations to Chapter 4

C.1 Radial Gelfand—Tzetlin coordinates for the unitary or-
thosymplectic group UOSp(ki/2ks)

In this appendix we calculate the moduli squared of an orthogonal (k;/2ks)-dimensional
unit supervector in radial Gelfand—Tzetlin coordinates. We expect that they are products
of differences of eigenvalues. The smallest group, which allows for a construction of dif-
ferences both in the bosonic as well as in the fermionic sector is the group UOSp(2/4).
The set of solutions of the Gelfand-Tzetlin equations (5.30) involves one bosonic and two
fermionic eigenvalues. The eigenvalue equation reads

2
1 = 2( [oD1? + Jag)?) (C.1)
2 (1))2
_ |Uq | ‘O‘q |
0 = Z(s —mt ) (C.2)

(1)y 2 (1))2 (1))2
Ty (S —isy”) |vg | lag”|
z = 18 Hq—(21)22< q_(l)—l—. q.(l) , z—o00. (C3)
g=1 (82 — 153 7)? =1 \ Sq1 — 153 iSq2 — 15y

(1)

The bosonic equation (C.2) has a unique solution sy’ = s};. Taking s}, as new parameter,
Eq. (C.1) and Eq. (C.2) can be solved for the commuting moduli squared

|,U£1)‘2:3p1_311 1_2M| W) p—1,2 . (C.4)
Sp1 — Sq1 i1 vSk2 11

These relations are plugged in Eq. (C.3) and we obtain

. (1) 2
, Sq1 — 18 c
2= zsgl) (s — zsgl)) I I (s =iy ) (21)) (1 + E — k. ) |a,(€1)\2> , z—o00, (C5)
g=1 (isq2 — is3")? k=11%Sk2 — 189

where we have defined the commuting c—numbers

2 i
cp = [Tg=1(isk2 — sq1) k=1,2. (C.6)

; !
ZSkQ - 311

101
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It remains to determine the set of solutions of the “fermionic“ eigenvalue equation (C.5).
To this end both sides are inverted

2 2

. .

0 = [ (isqo — iss")? <1—27 |2+2H )|ak \2> . (C.7)
q=1 k=1 1Sk2 — 182 k=1 zst — 182

Now one can take the square root on both sides

2
1 1
H 'LSqZ_'LSz < _52 - 1)|a( )|2+

k=1 ’LS}CQ — 252

=W

2
Ck 1
. . (1)'|041(c )|2> . (C.8)
k=1 1Sk2 — 159

The most general form of the fermionic eigenvalue is

2 2
zsg ) = =aqg + Z ak|oz§c1)|2 + a9 H \a,(cl)|2 . (C.9)
k=1 k=1

After inserting this ansatz in Eq. (C.8) we obtain two sets of solutions for the coefficients
a0, a;12 and a;; 1 =1,2,5 = 1,2

isly = isip+ (c + 12 |y (U|2> Joi 21

2= 12 ! 1312 — 1322 @2 2
Ny iS00 - ( n C1C2 | (1)|2> |ag1)‘2 (C.10)
18 = 18 C — | e . .

2 22 2 i822 — i812 1 2

Remarkably, we have ai2 = ag; = 0. This allows us to write the nilpotent part of is}, as
the modulus squared of a new anticommuting coordinate.

ishy = iska + &7 (C.11)

Solving now the equations (C.10) for |a§1) |2, and inserting the results in Eq. (C.4) finally
yields

|U(n)‘2 — (sp1 — 3511)) ngl(spl zsq2)2
p (sp1 — 5q1) TTo—1(sp1 — )2
N _
M2 = (zs(Q) — iSp2) (isp2 — ( ))(’3102 —isg)”
P P

(isp2 — nglz))2 Hq 1(isp2 — 5q1)

pa=12 q#p. (C12)
The structure of Eq. (C.12) indicates the form of the solutions for groups of higher order
as they were stated in Eq. (5.31). They are checked by inserting them directly into the

Gelfand Tzetlin equations (5.30). Then the manipulations to be performed are similar to
the ones, which we applied in Appendix A.1. Therefore we do not reproduce them here.

C.2 Derivation of supersymmetric matrix Bessel functions
for groups of higher order

We sketch the derivation of the two supersymmetric matrix Bessel functions ®34(—is,r)
and ®44(—is,r) for the case, that one matrix has an additional degeneracy according to
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Eq. (5.71) and (5.73). For ®34(—is,r) the recursion formula reads
D3y (—is,7) = @34/(1/1(3,3') exp ((trg s — trg s')ra1) ) Pos(—is’,7) . (C.13)
We introduce the notation
Sij = (si1 — isj2) , Rij = (rin —irj2) . (C.14)

Due to the degeneracy ®94(—is,7) is much simpler than the general case (5.70). The
integral over the O(2) subgroup is trivial. After performing the Grassmann integrals one
arrives at an expression similar to Eq. (5.67)

2 3
D34(—is,7) = 4 Gagexp (trrosg + r91(s11 + S91)) /duB(81,S'1) H Ry H Sj;
i=1 j=1
1 1 2 3 2
- — + , 4TI R —2S RS +2 M7 (sy,s,
<A%(W2)A§(182) A%(irz)A3(132)> z:l_Il " 192::1 Hk 32_21 15 (51:91)

2 3 2
(4 H Ry —2 Z R12Sk_21 + 2 ZMQj(Sl,Sll)) +

i=1 k=1 =1

1 1 ) 2 4 4 .
: R — My(sy,8)) — ——— My (s1, s
(Ag(Zm)A%(zbﬁ) A3(Z””2)A (is2) F (1312 - 591 24(s1,51) = 1822 — iy (51 1)>

I
—_

(st * syosgion) L sy
A3 (ir2) A (is2) 3(iro) A3 (is2)) 1 isps — s,

2 £
I S (ot RSP o
Ag('lTQ)A%(ZSQ) ( rgr + 21 Z 12 > ]gl 15 31,81)

2 2
—— g | trgr + 1791 — 51,8
AJ(irz) A (is2) ( BT+ ra Z )JZ:‘; 2351, 1)

4 3 . , /
TAB i NA3 o) RS, . . .
A3(ire) A3(iss) 1;91;[1 15k | exp (821 + 811)(r11 —r21)) + (ir12 ¢ irag)

(C.15)

We realize that lemma 5.3 and lemma 5.1 are sufficient to remove the denominators. this
happens in the same way as for ®94(s,7). A single sum E?Zl M;;(s1,s}) transforms ac-
cording to lemma 5.1. Moreover we observe that the fourth and fifth line of Eq. (C.15)
together with the product Z M7} (s1,57) S2_ | Moy(s1,s)) yield exactly the integrand
of lemma 5.3. Thus, it can be transformed according to lemma 5.3. After rearranging
terms we arrive at the result as stated in Eq. (5.72).

We now turn to ®44(s,r). We state again the recursion formula
Byq(—is, ) = Guy / du(s,s') exp ((trs —trs’) roy) ®34(—is’,7) (C.16)

with degenerate 7 = diag (721,711, 711) according to Eq. (5.71). It proves to be useful to

(1)(

take advantage of the representation (4.34) for ®5’(—is],71). Up to a normalization we
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have
‘Pgl)(—iSi,ﬁ) o (o1 — 7"11)_1/2 exp (r11trsh)
/ d[t] exp (i(ra1 — r11)t) ﬁ(sgl —it)"Y?2 (C.17)
i=1
Hence it follows the useful identity
621 5383'1 exp (—riitrs)) (I)gl)(_isﬁa ) =
; St i s} (8? 33&3‘1) exp (—ristrs) @57 (<is, 7). (C.18)

We stress that this relation, which is crucial in the derivation, only holds, because of the
degeneracy in the matrix ;. With Eq. (C.17) and another identity,
’ 1 1
Z exp —ri1tr s}) @g )(—is'l, 71) = (ro1 — r11) exp (—ri1tr s) @:(), )(—is'l,ﬁ) ,
(C.19)
we are able to arrange the terms emerging from the Grassmann integration in a way similar
to the former cases. We obtain

Dyy(—is,r) =4 G44 exp (trraosg + rortrsy) /duB s1,54) 1—[}21Z H Sji
=1 j=1

1 1
[(A%(im)A%(z’sQ) + Ag(m)Ag(isQ))
4 3 9~
8R11R%1 —4R11 Ry Z Sk_ll + 42 <R11 — ﬁ) Ml_j)(sl,sll)

k=1 j 1
8R12R22 4R12R2225k2 +4z R12_3—1 Ms;(s1,51)
k=1 j=1 J

16 3
N M (s, 8 B
+Ag(ir2)A%(z’32 z_: 17 (s1,51) < Ro1 Ry (trgr Zsﬂ )

=1

o 4
r11 — 7121 — 55— | | R12Ra2 + Ro1Roo + R11Ra + (R12 + Ry) > S
0s,
551 i=1
16
———— M5 (s1,8 Ro1Ros | trgr — S
~ AJ(irs) Af(is:) Z o) < o ( : Z ? )
0 LI
(Tll — T2 — 55/ > <R11R21 + Ro1Rog + RioRoo + (R12 + Ry) Z Sz-21>>
Ji i=1
16 1 2 1 (1) z
_—A%(irz)A%(iSZ) Z H Rz-jSk_j exp (—roitrs}) @37 (—ish, 1)
k=1 %,j
+ C(S,’l") + (’L"l"12 — ’L"l"22) . (020)

Again all operators with an arrow are understood to act only onto the term outside
the squared bracket, i. e. onto exp (—rgitrs)) @gl)(—is’l,ﬁ). Under the notion C(s,7)
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we summarized terms, which are expected to arise due to non—commutativity of some
operators acting on the integral and some operators acting under the integral. The last
two lines in Eq. (5.69) in Lemma 5.3 are examples of such terms

2 4
C(s,r)=4 G44 exp (trrasg + rortr s1 /d/,LB 51,8 H Ry; H Sji

=1 7j=1

[(A (W2)1A2(132) + A%(irg)lAé(i82)>

3
a—)
> | Ra1Ra2 + (Ro1 + Raz)(rin —721) — (R + 11222)(9 >

j=1 91

16 16
T Mo U T / !
(’L'812 —8;1 2](31531) ’L'SQQ —8;-1 1](31,31)>

~(symaren * swosten)
A3(irg) Af(isz) — A3(ir2) A3 (is2)
II H <R21R22 + (Ro1 + Ra2)(r11 — ra21) — (Ra1 + Raz) 0 ) . S

! /!
stl iSk2 — S5

1 1
- <A%(’ir2)A§(iS2) N A%(irz)Ag(ié’z))
3 P o
Do —ra) - W) ((7‘11 —ra) 5 ) My Moy,

m it k1
8 3 4
A3(ir;) A3 (iss) ; <( ) sﬂ> (Z b2 kgl - ’2>
0 0 Na(), g o~
+A%(z’r2) (i52) (; MM (8 o 839—1>)] exp (—raitrsy) @37 (—is|, 1) .

(C.21)

In order to evaluate Egs. (C.20) and (C.21) we need some more properties of the matrix
(1)(

Bessel function @Ell)(—isl,m). We investigate the action of Ly on L))
again the representation (4.34)

—181,71) using

@gl)(—isl,ﬁ) o« (ro1 — 7‘11)_ exp (r1tr 31)

/ (exp( (7‘21 — Tll)(tl + t2 H H Si1 — 2t ) 1/2) |t1 - t2|dt1dt2 (022)

i=1n=1

After a straightforward calculation involving an integration by parts we find

4
~ , 0
Ly exp (—rortrs1) @5 (—isy, r1) ; EF—— ( ri1—ro1)? + (r11 — r21) 83i1>
exp (—ro1tr $1) <I>L(Ll)(—z'31, 1) (C.23)
Now Egs. (C.20) and (C.21) can be enormously simplified by the observation that

((’1"11 - T'Ql)Lk — f/k) €xXp (—T‘Qltr 31) q)gl)(—isl,'r‘l) =0 y (0.24)
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which follows directly from Eq. (C.23). We find for Eq. (C.20)

2 4

Dyy(—is,r) =4 G44 exp (trraosg + rojtr s1) /duB (s1,5)) H Ry; H Ski
i=1 k=1

KA%(z‘rz)lA%(isz) " A%(z‘m)lA%(is?))

4 4 3
(R22R21 <8R12R22 —4Ri9 Z Sk21> (8R11R21 — 4Ry Z St +4 Z M (s1, 3’1)) -

k=1 k=1 j=1

4 4 3
RooRoq <8R11R21 —4R14 Z Sk_ll) <8R12R22 —4R9 Z Sk_zl +4 z ng(sl, 83))

k=1 k=1 j=1

8—)
+ZR21 (7“11 —T21 — 6—) M (s1,51) Myj(s1,s1)
Gy 5j1

8*}
+) R (7‘11 —T21 — W) My (s1,81) My;j(s1,s7)
4, il

+ Y Ro1Roo M (s1,81) Ma;(s1, Sﬁ))

Jst
8 4 3
+————Ro R tregr — M 8,3 M'S,sl
A3(irg)Al(iss) 21 22( & ZZI )g 1j(s1,51) 25 (s1,51))
S i HR- S exp (=rortrsh) <I>(1)(—z's’ 71)
A3 (irg) A (is2) =i k] 1) 3 15
+ C(s,r) + (ir12 +—>irea) . (C.25)

The terms contained in Eq. (C.21) simplify, too. We arrive at

2 4

C(s,r) =4 G44exp (trrosg + rortr s1) /d,uB 51,8 HRM H Sji
=1 7j=1

K 7,1"21 zsz)+Ag(z‘r2)lAg(i52))

3
8—)
> | RaiRa2 + (Roy + Raa)(r11 — r21) — (Ra1 + Rag) o

j=1 0sy

16 16
——M>; N———FM; ]
<i512 _ 391 2j(s1,51) 1599 _591 13(31>31)>

(3 * STFaT)
(ZTQQAQ(ZSQ) A3(ZT2)A% (’iSQ)
H <R21R22 + (Ra1 + Rg2)(r11 — ro1) — (Ra1 + Raa) 0 ) : S

! !
085y ) isk2 — S

o

0 0

exp (—raitrsh) @gl)(—is'l, 1) - (C.26)

o ol -
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In order to further simplify the expressions we can now invoke a symmetry argument
between the eigenvalues r1; and 191 respectively. Since the product Ri;Ri2 appears as
prefactor in front of the integral (C.25) in the final result also Rs; Rgo must appear as
prefactor, due to the symmetry in 717 and r9;. Thus all terms in Egs. (C.25) and (C.26)
which do not contain Roj Ry as a factor must yield zero. The remaining terms which are
proportional to Ra1R2e can be treated again with Lemma 5.1 and Lemma 5.3. However,
we show that the other terms indeed vanish. To this end we need an additional identity
to treat the operator product

2
7 (s1,87) Z Moy (s1,5}) . (C.27)
k=1

||Mw

It is provided by the

Lemma C.1 We have the conditions of Lemma 5.1, furthermore we define

. B k1 1 o°
L L, =
m(S) (3) % (Zst — 311)(7/8712 — 3]1) 831183

1 & 1 & 1 o 9
2 (’Lsmg — 811)(%’”2 — 831) 8811 Py — Sk1 8sj1 88k1

(C.28)
Then it holds that

) [ [ e alstl(sh) =

5k11
k1—1k1—1
$(ky—11 o~
/ > X Maio1,58) Mo o1, (5) -
S1kq j=1 =1 j
k1—1
1 o~ 1 0
— M, A [ / !
iSn2 — i8m2 = (z’smg — sty 0sly ni(s1, 1) iSpo — S5y O0s)y mi (31, 31)>
1k 1 o
2 Py (ism2 — k1) (isn2 — Sk1) (1 — 571)% Ospa
1 il 1 o~ / ! /
+o >~ 7 Y f(s1)up(s,s')dls1] . (C.29)

2 = (48m2 — 8)1) (iSn2 — 871) (S} — 871)? Ospa

The proof is along the same lines as the proof of Lemma 5.1. We notice that the different
use of the arrow in Eq. (C.28). The operator L’ (s) acts also on a part of L, (s). This
is not consistent with the definition in Eq. (5.66). However, we use the arrow in order to
avoid yet another notation. Now we are in the position to translate the left hand side of
Eq. (C.30) into an expression in terms of @511)(—1'5, r). After some further manipulations
involving the identities in Eqgs. (C.24), (C.18) and (C.19) we arrive at

2 4
Dyqa(—is,T) = Guaexp (trrosg + rortrsy) H Rj; H Ski
i, k=1

(Sxaazin * axmati)
AZ(irg)A2(ise)  A3(ira)A3(is2)
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4 4
<8R12R22 —4R13 ) Siy — 4L2(s)> <8R11R21 — 4R Y Sii — 4L1(s)>
k=1 k=1

8 4 B
- A3(ir2) Aj(isz) (trgr - ;Sﬂ ) (L1(s) — La(s))

16 402 . R
A (ir2) A3 (is2) ;ER”S’W exp (—raitrs1) D37 (s1,71)
(Z"l"lg —— ’iTQQ) . (C30)

After rearranging terms this yields the result for ®44(—is,r) as stated in Eq. (5.76).
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