University of Heidelberg
Department of Psychology

]anuary 2001

A Connectionist Approach

to Human Planning

Diploma Thesis
of

Wolfram Schenck

Advisor and First Reviewer: Prof. Dr. Joachim Funke

Second Reviewer: Prof. Dr. Klaus Fiedler

Contact: mail(@wolframschenck.de

Abstract

In the present thesis, a connectionist model (called EVA) was developed for the ssimulation of
human planning behavior in the domain of Plan-A-Day. Plan-A-Day is a diagnostic instrument
for the assessment of planning capabilities (Funke & Kruger, 1995), which provides a computer
scenario in which the subjects must find an optimal sequence for several scheduled appoint-
ments by applying operators from a predefined set. EVA is designed to produce sequences of
these operators which are applied within Plan-A-Day. Inthisway, EVA isintended to show the
same kind of operationally defined planning behavior as human subjects do. EVA comprises
three sub-networks of the backpropagation-class, two of which are hierarchical Elman
networks. Based on the situated action account (Clark, 1997; Suchman, 1987), the input of
EVA isfor the most part a representation of the current state of the Plan-A-Day scenario. The
data obtained by simulation runs is compared to empirical data obtained by a study with 45
human subjects. The comparison is carried out with regard to indicators reflecting planning
performance, as well as characteristics of the process of planning. The fit between simulated
and human data is good enough to allow certain theoretical claims. EVA provides evidence that
simple pattern transformation devices like connectionist networks are capable of performing
human-like planning, if these networks are thoroughly embedded into their environment, asit is
demanded by the situated action account. EVA demonstrates that even conventional connec-
tionist models are applicable to tasks from the field of high-level cognition like planning or
problem-solving, which were mostly reserved for symbol-processing models until now.

Zusammenfassung

In der vorliegenden Arbeit wurde ein konnektionistisches Modell (genannt EVA) fir die Simu-
lation von menschlichem Planungsverhaten im Rahmen von Plan-A-Day entwickelt.
Plan-A-Day ist ein diagnostisches Instrument fur die Erfassung von Planungsfahigkeit (Funke
& Kriiger, 1995), in dem den Probanden ein Computerszenario vorgegeben wird. Innerhab die-
ses Szenarios haben die Probanden die optimale Abfolge zahlreicher vorgegebener Termine
herauszufinden, indem sie verschiedene Operatoren aus einer vordefinierten Menge verwenden.
EV A wurde entwickelt, um Sequenzen solcher Operatoren zu erzeugen und diese innerhalb von
Plan-A-Day anzuwenden. Dabei soll EVA &hnliches (durch Plan-A-Day operational definiertes)
Planungsverhalten zeigen wie menschliche Probanden. EVA besteht aus drei konnek-
tionistischen Netzwerken des Backpropagation-Typs, zwel davon sind hierarchische Elman-
Netzwerke. Darliber hinaus basiert EVA auf dem Ansatz der “Situated action” (Clark, 1997;
Suchman, 1987); so représentieren die Eingabeeinheiten von EVA zum grofdten Teil den aktuel-
len Zustand des Plan-A-Day-Szenarios. Die Daten, die in Simulationsldufen mit EVA gewon-
nen wurden, werden in der vorliegenden Arbeit mit empirischen Daten verglichen, die in einer
Studie mit 45 menschlichen Probanden erhoben wurden. Der Vergleich bezieht sich auf ver-
schiedene Indikatoren, die sowohl Planungsleistung als auch den Prozess der Planung erfassen.
Die Ubereinstimmung zwischen simulierten und empirischen Daten ist ausreichend, um
bestimmte theoretische Aussagen zu unterstitzen: EVA liefert Evidenz dafir, dass einfache
Mustertransformation, wie sie von konnektionistischen Netzwerken vorgenommen wird,
genugt, um menschliches Planungsverhalten zu modellieren, vorausgesetzt, dass diese Netz-
werke sorgféltig in ihre Umwelt eingebettet werden, wie es der Ansatz der “Situated action”
verlangt. Somit demonstriert EVA, dass sogar traditionelle konnektionistische Modelle auf Auf-
gaben aus dem Bereich der hoheren kognitiven Funktionen wie Planen oder Problemldsen
anwendbar sind, die bisher zum grofiten Teil symbolverarbeitenden Modellen vorbehalten
waren.

Acknowledgments

It was a great help to me, that Stefanie Nellen (from the University of Heidel-
berg) gave me her kind allowance to use empirical data from a study she car-
ried out. The whole process of model fitting is based on the human sample
assessed in her study.

Bronwyn Jones (from the Humboldt University zu Berlin) had the patience
to correct my imperfect English sentences. She took alot of work upon herself,
for which | am very grateful.

Furthermore, | appreciate the conversations Prof. Joachim Funke and | had,
especialy in the initial phase of the work, in which our discussions helped to
clarify in which way connectionism and planning could come together.

Finaly, | would like to thank both Prof. Joachim Funke and Prof. Klaus
Fiedler for their interest and their readiness to give their expert opinions on this
thesis.

1

2.

Contents

INTRODUCTION e e e e e 1
CONNECTIONISM AND PLANNING ..o et 3
2.1 CONNECHIONISIM Lttt e e e e e 3
2.1.1 Paradigm of CoNNECLIONISMottt 3
2.1.1.1 Basic Architecture of Neural Networks 3

21.1.2 Locaist vs. Distributed Representations 5

21.1.3 LearninginNeural N&tWOrkSt 6
Hebbianlearning 6
TheWidrow-Hoffrule i 7
Thegeneralizeddeltarule 7

2.1.2 Connectionismin Psychologyccoiiiiiiii i 9

22 Planning 12
221 Planningin Psychology e 12

2.2.2 Planningin Artificial Intelligence i 14
Classical planning e 15
Beyondclassical planning 17

2.3 Connectionismand Planning i 18
Argumentsin favor of CONNECLIONISMot 18
Arguments against CoONNECLIONISM ot i et 19
INTRODUCTION TO PLAN-A-DAY o e e 22
3.1 Plan-A-Day asDiagnosticlnstrument iiiiiiiinnannnn. 22
3.1 OB ECtiVE .o e e 22

3.0.2 DESCIPlION .ot e e 23

TRE SCENAITO ..ottt e e 23

Applicable operatorsand actions 24

Definition of “ PAD task” and “ plan” withinthe PAD domain 24

Course Of a PAD @SSESSIMENTottt e e 25

Evaluation of aPAD taskoiii i i e e 25

Predefined PAD tasksot e 25

3.1.3 Special Featuresof the PAD Conceptioncc ... 26

3.2 FirssEmpirical RESUItS i e e 26
FIrSt StUAY . .ot e 26
SECONd StUAY . ..ot e e 28

Third StUAY ... e e 28
CONCIUSION .o 28

3.3

Theoretical Classification of PADt e 28

4. A CONNECTIONIST MODEL FOR PLAN-A-DAY ... e 30

4.1
4.2

4.3

4.4

4.5

FOUNdatioNS e 30
EVAInMoreDetailo 33
420 OVEIVIBIW .ttt et e e e e 33
422 The OUIPUL e et e e e e e e e 34
42,3 ThelnpUt ..o e 34
ENVIrONmMENt e 34
External Situation-action Memoryt 35
OIS v ittt et e 36

424 Interna Structure of EVA . oo 36
Precise Specification of Inputand Qutput, 39
4.3.1 Input SPECIfiCationt e 39
Preceding Operatort 41
Preceding reactionttt 41
External situation-action memoryoiiiiiinin i, 41
General remarkS ... 42

4.3.2 Output SPECITICAIONt 43
4.3.21 Output as Evaluation of Operatorsc.coiiinvennn.. 43
4.3.2.2 Accentuation of theBest Evaluators 44
Precise Specification of the Sub-Networks 45
g T 45
44,2 EVA-D 46
A48 EV A-C i 48
444 EVA-a, EVA-b, and EVA-c Considered Together 49
NEtWOrK Trainingttt e e e e e e e 50
45.1 General CoNSIderationsciuriiii e e 50
452 TraningData 51
4521 BasicPrinciplesof DataGenerationccoiiu.... 51
Creation of PAD tasksSot e 52

Creation of sequencesof operatorsc.ovviinnenn.n. 52

4522 TraningDatafor EVA-a/lEVA-b i 53
BV A A 53

EVAD 54

4523 TraningDatafor EVA-C ... 54

453 Traning Algorithm 56
453.1 ChoosingtheBest Training Algorithm 56
4532 Descriptionof RProp ... 57
AlQorithm 57

Parameters 59

4533 WEIGNEDECAY ..ottt e 59

N 61
EVAD EVA-C o 62
5. MODEL FITTING .ttt e e e e e 64
5.1 Obtaining Empirical Datafrom Real Human Subjects 64
5.2 Simulating SubjectswWith EVA 65
5.3 Accessible Parametersin Model Fittingcoo i 65
5.3.1 First Stageof Model Fitting i 65
5.3.2 Second Stageof Model Fitting ... 67
6. RESUL TS . e e e 69
6.1 Resultsof Model Fittingt e 69
6.1.1 PerformanCeiiiii 69
6.1.2 Overt Characteristicsof thePlanningProcess 71
6.1.3 Opearator USeot e 74
6.1.4 Useof HEUNSLICSot e e e 75
6.1.5 Arriving at LOCatioNSottt e e e 78
6.1.6 Courseof Planninguiiuiinii e 79
6.1.6.1 ExamplesfortheCourseof Planning, 79
6.1.6.2 Reationship between the Length of the Operator Sequence
andtheEndScore ... 83
6.1.6.3 FirstUsed Operatoriiiiniii e 83
6.1.7 SUMMAIY oottt e e e e 86
6.2 Performanceof EVA on Randomly Generated PAD Tasks 86
6.3 AFirst Attempt at Validation i 88
7. DISCUSSION .ottt e e 91
7.1 TheFailureof EVAONPAD Task 5 ... e 91
7.2 Initial Claimsof EVA —aReVIeWwt 92
7.3 AsSSESSINgtheResUItS 9
74 EVA’'sContributionto CognitiveSciencecciiiiiiiiiiiiien... 97
REFERENCES e e e e 99
APPENDICES
Appendix A - Instructionsfor PAD Tasks4and5co ... I
Appendix B - Tableof Movement TIMeS ...t "l
Appendix C — Data Sheets Generated by the PAD Simulation System \%

Appendix D - Instructionsfor theUseof NWRun, X1V

Introduction 1

Artificial neural networks are fast but limited sys-
tems that, in effect, substitute pattern recognition
for classical reasoning. As might be expected, this
is both a boon and a burden. [...] A summary char-
acterization might be “good at Frisbee, bad at
logic” — afamiliar profile indeed.

(Clark, 1997, p. 60)

1 Introduction

Since the renewed arising of connectionism in the eighties, many different applications of con-
nectionist models were presented. Among other disciplines, psychology is aso involved in this
development. During the last 20 years, the advocates of connectionism within psychology have
presented many connectionist network models. These networks are aimed at the explanation or
at least demonstration of cognitive functions, and partly these models have a high suggestive
impact, as | experienced myself.

My first encounter with a connectionist model took place in 1989: It was a small network,
consisting of only a few units, which was implemented on an Atari ST with black-and-white
screen. This tiny network was able to remember surnames. Actualy, this alone is not very
exciting, but in those days, it was really impressive to observe the course of remembering.
First, a fragment of one of the previously learned surnames was presented to the network. For
example, “M_|_r". Most likely, thistask is very easy for you, dear reader, and you recognize
the answer instantly: “Miller” — correct. However, look at the following word fragment
“ pp_r__tl ". Then, concentrate, until you know the solution. | guess, that at least after a few
seconds you were able to identify the word. Something happened in your mind, and suddenly,
the correct answer appeared in your consciousness. Before, maybe incomplete solutions were
going around in your head (admittedly, thisisthe ideal course of this little introspective experi-
ment). However, how did the billions of neuronsin your head perform that task?

Let us return to the small network | was observing. After presentation of the prompt
(“M_1__r") to the network, its activation® began to circulate, and in every processing cycle, one
could have a look at the current state of recollection. The following sequence devel oped:
‘ML, *M_L_ ", “M_L " Ml “Mil__r”, “Mill_r?, “Miller” - got it!

Thus, this small network showed a course of remembering similar to that used by at least
some representatives of our species. The answer arose not suddenly, but in an iterative process,
the answer became more and more clear. Even if thisis not a proof at all, that the networks of
biological neurons in our head complete word fragments in this way, this small artificial net-
work model demonstrates at least, that neuron-like units are actually capable of performing
tasks like this in a human-like style. Such models provide a primary understanding of how the
real networks in our heads may work. Thisis the fascinating thing about connectionist models.
By the way, the network | got to know in those days was most likely a kind of Hopfield net-
work (Hopfield, 1982).

1 Insection 2, these technical terms will be clarified.

Introduction 2

So far, connectionist models in psychology are mostly related to basic cognitive functions
below the level of controlled and intentional information-processing. Phenomena from the
fields of perception, attention, memory, or motor control have been intensively investigated
within the connectionist framework. However, until today, cognitive functions that rely on con-
trolled, intentional, and sequentia thought processes have been rarely subject of connectionist
modeling. Therefore, it is not very well understood, how connectionist networks could be
applied to tasks from domains like problem solving or planning (“good at Frisbee, bad at logic”,
as Clark [1997, p. 60] writes). On the one side, even in the eighties one considered the applica-
tion of connectionist networks to sequential thought processes (Rumelhart, Smolensky, et al.,
1986), but on the other side, no concrete models were presented, and that is one of the reasons
why the domain of high-level cognitive functions was taken up mostly by symbol-processing
models like production systems (e.g., Anderson & Lebiere, 1998). In the discussion about the
applicability of connectionist modeling at the end of the eighties, the opponents of connection-
ism saw its place at best in the domain of low-level cognitive functions (see Waloszek, 1996).
Serious doubts arose regarding the general suitability of connectionist models for the domain of
high-level cognitive functions (Barnden & Pollack, 1991).

Nevertheless, in this thesis, the challenge of developing a connectionist model of human
planning behavior is accepted. Based on the mentioned considerations of Rumelhart, Smolen-
sky, et a. (1986) on the one hand, and the related approaches of situated action (Suchman,
1987) and situated cognition (Clark, 1997) on the other hand, a standard model of connection-
ism is applied to the task of planning. The objective of this thesis is to demonstrate, that there
is actually a place for connectionist models in the domain of controlled and intentional
information-processing, even for traditional models, which originated in the eighties.

The planning task for which a connectionist model is developed in this thesis is taken from a
diagnostic instrument, called “Plan-A-Day” (Funke & Kriger, 1995). In “Plan-A-Day”, the
subjects have to work out a plan in a businesslike scenario. Several appointments are scheduled
for a certain day, and the subjects must arrange these appointments in a way so that they are
able to fulfill as many tasks as possible. In doing so, they have to consider many properties of
the artificial “Plan-A-Day”-world, for example movement times between different locations
with scheduled appointments. In section 3 of this thesis, “Plan-A-Day” is described in more
detail, while section 2 provides both an introduction into connectionism and into the field of
planning.

Then, in section 4, the method of creating a connectionist model capable of planning within
the “Plan-A-Day”-world is described. This section covers many topics, beginning with the
theoretical foundations underlying the present model, and ending up with a close view onto the
course of network training. Section 5 is dedicated to the subject of model fitting. Furthermore,
astudy for gaining empirical datafrom human subjectsis described. In section 6, the results are
presented. Mainly, the planning behavior of the connectionist model is compared to the plan-
ning behavior of human subjects from the empirical study. Moreover, this section deals with a
first attempt at validation. Section 7, finally, comprises the discussion of the thesis’ approachin
light of the underlying theoretical assumptions and the actual results.

Connectionism and Planning 3

2 Connectionism and Planning

2.1 Connectionism

211 Paradigm of Connectionism

The notion of *connectionism” stands for a broad range of different models which have one
thing in common: They offer an approach to information processing that is inspired by the
architecture of the brain. Especially, these models cover the aspect of parallel distributed proc-
essing in that they provide quite a large number of simple nodes which are highly intercon-
nected and only capable of very simple input-output-transformations. These nodes are often
called “neurons’ in analogy to biological neurons, but actually they model real neurons on a
quite abstract level. Therefore research in connectionism deals with the simulation of artificial
neural networks and the examination of their properties. The goal of such neural network
research can differ widely depending on the discipline within one works.

Computer science, mathematics, physics, electrical and computer engineering, biology,
medicine, philosophy, and last but not least, psychology, can claim their interest in connection-
ism. Working on neura networks is a quite interdisciplinary affair, and often results from one
discipline are useful for the whole field. In the history of neural networks?, this broad approach
has led to a parallel development in the related disciplines with a changing focus of attention
throughout the years. One important motivation for connectionist modeling lies in their capa-
bility of brain-style computation (Rumelhart, 1989). On the one hand, this offers the possibility
of benefiting from natural examples in the development of technical solutions, as it is some-
times the case in engineering; e.g., computer scientists can use neural networks for replacing
conventional algorithms. On the other hand, in cognitive science, through neural networks one
can use a class of models which are inspired by the architecture of the brain itself for explaining
human information processing capabilities.

2111 Basic Architecture of Neural Networks

In spite of the fact that connectionist models cover a broad range of applications and different
purposes, their basic architecture is quite similar. Therefore, the following generic description
covers alarge part of the field although many details can differ for a specific model.

Every network consists of a certain number of neurons® which are connected to each other
(seefig. 2.1). The topology of the network determines which connections exist. For example,
there could be a group of neurons which are fully interconnected to another group of neurons,
but not within each group. Every neuron has severa input lines by which it receives input

2 Theterm”connectionism” was first introduced in 1981 (Feldman, 1981, cited in Zell, 1997).

% Theterm "certain number” is not intended to imply that this number cannot be subject to change while the net-
work is working. E.g. the ”cascade correlation architecture” (Fahiman & Lebiere, 1990) is based on the idea of
adding new neurons to the network in dependence on the learning success.

Connectionism and Planning 4

values from other neurons. In one processing step each neuron transforms its input values to
one output value that is fed forward to other neurons for the next processing step. This input-
output-transformation is often carried out by aformulalike this:

a = fact [; W;i0; — Hjj (2.1)

g is the activation strength of neuron j; o; is the output value of neuron i; wj is the connection
weight for input line i; 6, is the threshold of neuron j; f. is the activation function that trans-
forms the weighed and added input into the activation value. For simplification | assume that
the output o; of neuron j is equal to its activation a.

For the activation function f, two different types are very common: One possibility isto use a
threshold value function that produces either 0 or 1, depending on whether the argument is
larger than zero. Alternatively, one can employ the logistic function f= ﬁ with a value
range between 0 and 1. If prefered, one can modify these functions in a way that changes their
value range, e.g. to {-1, +1} or [-1; +1]. Furthermore, in some models a linear activation func-
tion or even the identity function is used.

A neuron is characterized by its activation function, its threshold and its input weights. Its

activation is subject to modification in every processing step through changes in the input

01 0

Fig. 2.1: Part of a connectionist network. Three units are shown as an example. Arrows coming
from nowhere (or going to nowhere) are supposed to be connections from (to) other units
not shown in the figure. Unit j getsinput from four other units; each input line has an input
weight wi. The activation g of the unit is determined through a transformation of the sum
of weighted inputs (see text). Afterwards, the activation & is propagated forward to other
units as output o;.

Connectionism and Planning 5

values. Therefore, the whole network can be thought of as a complex interdependent dynamic
system the elements of which (the neurons) change their state (activation) according to the
changing states of those elements from which they receive information. Thereis no global con-
trol over the system; every neuron only receives a small local piece of information about the
state of the network and uses only this part for updating its own activation. The “behavior” of
the network is an emergent phenomenon, which arises from the simultaneous work of its neu-
rons — akind of self-organization takes place.

The whole set of input weights of the network can be written in the form of a matrix whichis
often called W. Each element wj is a connection weight from neuron i to neuron j.* If thereis
no connection from neuron i to neuron j, then w; equals zero.> The weights determine the
behavior of asingle neuron as well as that of the whole network and serve as its memory. Con-
nectionist models differ from conventional information processing models especially in one
respect: Thereis no subdivision into several units which carry out only part of the work (mem-
ory storage, regulation of the information flow, execution of operators, etc.). The memory of a
connectionist system is distributed over al connection weights. When the system is working,
the changing pattern of neural activation reflects the ongoing information processing, which is
directly determined by the weights' values.

21.1.2 Localist vs. Distributed Representations

There are many possibilities to categorize connectionist models. One important distinction
refers to the kind of representation used for the processing units (the neurons). In alocalist rep-
resentation, each processing unit stands for an entire concept or another large meaningful entity.
In this respect, a localist representation resembles a traditional symbolic representation. One
can think of such units as hypothesis detectors. Each unit’s activation strength can be taken as
an indicator of the strength of the concept being represented (Elman et al., 1996).

In contrast, in a distributed representation, all concepts are represented by a common set of
units. Which concept is active depends on the current pattern of activation across the entire
ensemble. Every unit represents akind of microfeature or even less than that; in some models it
is nearly impossible to assign any distinct meaning to certain units. It is assumed that distrib-
uted representations have more similarity to natural neural networks in the brain than localist
representations have.

Often one finds a mixture of both representations. In so-called ” backpropagation networks”
the model consists of severa layers of neurons which are arranged one behind the other. The
first layer receives input from the outside world and the last layer produces the appropriate out-
put. The hidden layers between the first and last layer serve as pattern transformators. The

4 In some models, the threshold 6, is replaced by an “on-neuron” and an input weight corresponding to this neu-
ron. Then even the threshold 6; is part of the matrix W.

5 Asabiological anaogy, the connection weights can be compared with the synapses’ strengths. As the strength
of a synapse determines how strong the pre-synaptical neuron can influence the post-synaptical neuron, the connec-
tion weight determines how much the output of neuron i contributes to the total activation of neuron j. A connec-
tion weight of value zero means that no synapse exists at all.

Connectionism and Planning 6

experimenter can assign certain meanings and concepts to the neurons of the input layer and the
output layer (creating a localist representation), but especialy in large networks, the function
and meaning of hidden neurons cannot be reduced to any clear-cut area. Instead, one finds a
completely distributed representation. The question of how such representations can develop
leads to the next section about learning in neural networks.

2113 Learningin Neura Networks

Connectionist models are used for a wide range of applications. Usually, a network’ s task is to
transform a vector of activation values (the “input pattern”) to another vector of activation val-
ues (the “output pattern”). In some models the input pattern is assigned to the same neurons
which are later used to read out the output pattern, in other models input and output patterns are
related to different sets of neurons. Belonging to the first class of models are, for example, the
Hopfield network (Hopfield, 1982) and the Boltzmann machine (Hinton & Sejnowski, 1986).
The second class includes the bi-directional associative memory (BAM) (Kosko, 1987) and the
backpropagation network (Rumelhart, Hinton, & Williams, 1986). In this section the question
of how a network can acquire a meaningful input-output-assignment is addressed.

In the course of research on connectionist models several learning rules were developed for
this purpose. The common goal is to modify the connection weights w;; in away that allows the
network to perform its task as well as possible. As an example, three important learning princi-
ples are presented in the following paragraphs: Hebbian learning, the Widrow-Hoff rule, and
the generalized deltarule. Other well-known learning procedures (e.g., for self organizing maps
[Kohonen, 1982], for Hopfield networks [Hopfield, 1982], or for bi-directional associative
memory [Kosko, 1987]) are omitted because they are not directly related to the model which is
discussed in thisthesis.

Hebbian learning

The idea of Hebbian learning was first formulated for biological networks by Donald O. Hebb:
“When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.” (Hebb, 1949, p. 62; cited in
Elman et a., 1996)

Thisrule is easy to apply to artificial neural networks. Correlated activity of two connected
neurons should lead to an increasing connection weight between them. In mathematical form:

Awij = 170iq; (2.2)

Awj; is the change in the weight of the connection from sending neuron i to receiving neuron j,
n isasmall constant of proportionality (the learning rate), o is the output of neuron i, g isthe
activation of neuron j.

Connectionism and Planning 7

The Hebb rule only uses local information. There is no need for any global evaluation of net-
work performance. Also, no teacher is required to tell the network in which direction it should
modify its weights (unsupervised learning). Due to these two aspects, Hebbian learning seems
to have biological plausibility.

Hebbian learning has been studied extensively and is widely used in modeling today. How-
ever, asevere limitation of this approach exists. With the Hebb rule only pair-wise correlations
can be learned - higher-order correlations are beyond its scope.

The Widrow-H off rule

The Widrow-Hoff rule (Widrow & Hoff, 1960; cited in Waloszek, 1996) offers a solution to the
dilemma of Hebbian learning. Sacrificing biological plausibility, an external teacher is pro-
vided for the network who keeps track of the desired, as well as of the produced output pattern
(supervised learning). The difference between the actua activation and the desired activation
determines the modification of connection weights:

Awi; = 50i(tj — &) (2.3

Awj; is the change in the weight of the connection from sending neuron i to receiving neuron j,
n isthelearning rate, o is the output of neuron i, g is the actual activation of neuron j, t; is the
desired activation of neuron j.

In general, the Widrow-Hoff rule (often called deltarule) is applied to networks with two layers
of neurons and linear activation functions. Within each layer there are no connections between
neurons, but every neuron in the second layer receives input from all neurons of the first layer.
The task of such a network is to associate the input pattern that is presented to the first layer
with the appropriate activation pattern in the second layer (the output pattern).

Unfortunately, there are some theoretical limitations to this class of networks. If one wishes
such a network to learn several input-output assignments simultaneously (which is the regular
case), one has to consider some serious restrictions on the choice of different pattern pairs.
Elman et al. (1996, p. 59) write: “Two-layer networks are rather like S-R pairsin classica psy-
chology. What is required is something between input and output that allows for internal (and
abstract) representations.”

The generalized delta rule

What is needed to overcome the weaknesses of a two-layer network are so-called “hidden
layers’. The architecture of atraditional multi-layer (feed-forward) network provides one input
layer, one hidden layer, and one output layer (see fig. 2.2). Every neuron propagates its output
forward to every neuron of the following layer, but within each layer there are no connections
between neurons at all. The neurons of the hidden layer constitute an internal representation of
the input in relation to the desired output. With such a network nearly every set of input-output
associations can be realized ssimultaneously. In other words. A single hidden layer gives

Connectionism and Planning

networks the power to solve essen-
tially every problem®, as Hornik et al.
(1989) showed by a mathematical
proof. Unfortunately, this proof is not
constructive. It only states that for
every problem a three-layer network
with the appropriate weights does
exist. However, it does not say any-
thing about the number of neurons
needed in the hidden layer, nor about
the correct values for the weights.

At least for the latter problem -
finding the correct weight values - a
solution exists: The generalized delta
rule. This rule does not guarantee that
one finds the optima set of weights
for a certain problem, but it offers a
more or |ess good approximation.

Fig. 2.2:

A multi-layer feed-forward network with two
hidden layers. In such an architecture, every
unit of each layer gets input from every unit
of the preceding layer. Within layers, no
connections exist (fig. taken from Zell, 1997,
p. 73).

The generalized delta rule was first published by Werbos (1974; cited in Zell, 1997), but it
did not become well-known until the work of Rumelhart, Hinton, and Williams (1986) was
published. The idea behind this approach is to generalize the conventional delta rule so that it
can be used for multi-layer networks. Therefore, the basic formulais quite similar to the delta

rule:

Awjj = l70i5j (2.4)

Awj; is the change in the weight of the connection from sending neuron i to receiving neuron j,
n isthelearning rate, o; isthe output of neuroni, d; isthe error signal of neuron j.

The error signal ¢; of neuron j is calculated in the following way:

0]

- @fa{d(zi: oiW;j) Ek}(ékwjk) if j isahidden neuron @

H fact (2 0iWij)(tj — 0y) if j is an output neuron H
_ i

(2.5)

w; isaweight of the connection from sending neuron i to receiving neuron j, wy is a weight of
the connection from sending neuron j to receiving neuron k, o is the output of neuron i
(located in the preceding layer relative to neuron j), o; is the output of neuron j, t; is the
desired output of neuron j, d« is the error signal of neuron k (located in the following layer
relative to neuron), fa' isthe first derivation of the activation function f..

6

More precisely: Multi-layer networks are capable of approximating any Borel measurable function from one

finite dimensional finite space to another, as Hornik et al. (1989) showed.

Connectionism and Planning 9

If one uses the logistic function as an activation function (see section 2.1.1.1), one can calculate
thefirst derivation of f. by

flogact.(X) = fLog.act. (X) * (1 = fLogact. (X)) (2.6)

With the given formulas, one can train any multi-layer network (even with severa hidden
layers) to reproduce certain input-output assignments. This training procedure is called ” back-
propagation”, because the output error (t; — 0)) is propagated back into the network by the error
signals ;. The weight changes Aw; can be carried out after the presentation of each input-
output-pattern-pair (online training), or they can be added up until the whole set of pattern pairs
has been presented to the network (batch training). Depending on the complexity of the prob-
lem many training epochs’ may be necessary.

Backpropagation belongs to the family of gradient descent procedures. The basic idea
behind the backpropagation procedure is to minimize the global error function E (which com-
prises the error over all output neurons and output patterns). For that purpose, the weight
changes Aw; move in the opposite direction to the partial gradient ﬁUE(\/\I) (Wis the matrix of

all network weights). If one prefers a more lively picture: The function E(W) is like a land-
scape in the weight space. The training procedure attempts to find the deepest point in this
landscape (like a rolling ball). Unfortunately, the “ball” can end up in aloca minimum and
thus, not ever be able to find the global minimum. Thisis a severe problem for backpropaga
tion, and many modifications of the standard backpropagation procedure attempt to solveit.

Another problem is the ability of trained networks to generalize to new input-output-pattern-
pairs they have never seen before, but which belong to the same class of problems the network
has learned through the training patterns. In this respect, it is helpful to think of every network
as a specification of an inductive hypothesis about the assignment of input to output patterns.
For most problems, there are enough degrees of freedom to alow different solutions — some
with good generalization capabilities and some without. Rumelhart (1989) suggests some ways
of finding a good network in this respect.

The biological plausibility of backpropagation is caled into question by the “external
teacher” who is necessary for the learning procedure. On the other hand, the exclusive use of
local information for learning, as well as for pattern transformation is reasonable in analogy to
biological systems.

2.1.2 Connectionism in Psychology

Connectionist models have been applied to many different research topics within psychology
during the last twenty years. These models mostly yield insight into the implementational level.
They show how certain cognitive functions could be realized by neural networks. However, the
implementational level can only seldom be separated from the functiona level, so that

" The complete presentation of all pattern pairs together with the corresponding weight adjustments is called
“epoch”.

Connectionism and Planning 10

connectionist models are often accompanied by functional claims® Sometimes these models
even make new predictions about human cognitive performance which go beyond predictions
made by previous traditional psychological models. The following overview of connectionist
literature is not intended to be a complete presentation of the field. It only provides some exam-
ples of psychological applications of connectionist models to show the broad variety of investi-
gated phenomena.

Hinton and Shallice developed a model of deep dyslexia and semantic-accesss dyslexia that
was based on an iterative variant of backpropagation (Hinton & Shallice, 1991). Because of the
recurrent and iterative characteristics of their network, its dynamic behavior exhibited severa
attractors - stable states to which the network was converging. The authors showed that so-
called “graceful degradation” of their network produced phenomena similar to the phenomena
shown by human subjects with deep dyslexia. Graceful degradation means that several connec-
tions or units within the network are disturbed or removed, a technique often used to demon-
strate the stability of distributed representations in connectionist networks. In addition, this
technique can be employed in the field of psychic disorders as Hinton and Shallice did.
Another example is the study of Hoffman et al. (1995) in which a recurrent multi-layer network
was subject to graceful degradation. The simulation showed certain speech perception impair-
ments and illusions such as those experienced by schizophrenic patients. The authors con-
cluded from the characteristics of their ssmulated network that certain changes must have taken
place in the neural systems underlying verbal working memory of schizophrenic patients. This
study is an example of a connectionist model from which strong hypotheses were derived on the
level of real neural systems.

In his original work on a special kind of recurrent multi-layer network, Elman (1990) applied
his network model to various tasks, among other things to the identification of word boundaries
in the stream of language. He pointed out that such a ssmple recurrent network is able to extract
the necessary information from the input signal. In asimilar way, he demonstrated how lexical
classes were derived from word order. Tasks and network applications like these are especially
interesting for developmental psychologists who are interested in the course of learning. In
such models, it is shown how learning of simple natural-like stimuli can lead to a meaningful
interna representation within the network. In his study, EIman presented simple sentences to a
network with the task of predicting the next word in the sentence. As a result of the learning
process, the network developed an internal representation for the hidden unit activation vectors,
which reflected the hierarchical order of the lexical classes to which the occurring words
belonged.

An alternative approach is taken in the work of Cohen et a. (1992), which addresses the
guestion of automaticity and attention. In their study, two network models are presented, each
of which are composed only of asmall set of units. The connections in these networks were not
aresult of atraining process but instead analytically determined. The authors demonstrate how
certain issues concerning automaticity can be understood in terms of parallel distributed

8 For the discussion about the “question of levels’ see Broadbent’s comment on a connectionist memory model
by McClelland and Rumelhart (Broadbent, 1985; McClelland & Rumelhart, 1985).

Connectionism and Planning 11

processing. Studies like this are valuable for psychology because they show, in principle, how
such cognitive functions can be implemented by neural networks, even if nobody would claim
that exactly the proposed network is working in the human brain.

Blankenberger (1992) outlines several simulations of relatively small multi-layer networks
(about twenty units) some of which are recurrent. With these networks, he was able to repro-
duce certain phenomena in the field of mental comparison processes. The distribution of reac-
tion times of human subjects in number comparison tasks was compared to the distribution of
iterative cycles which trained networks needed to reach a solution for the same tasks. With a
certain kind of input representation and a certain kind of network architecture, Blankenberger
achieved a satisfying fit between simulation and experimental data. This study is a good exam-
ple for connectionist modeling of a specia cognitive function.

Another model in the field of multi-layer networks is ALCOVE (Kruschke, 1992; Kruschke,
1993). Kruschke developed ALCOVE as an improvement of standard backpropagation net-
works, which show several shortcomings in the field of category learning when compared to
human beings. ALCOVE is a three-layer feed-forward network in which the hidden units are
replaced by nodes of a type of radial basis function (RBF). When one compares the category
learning course between the simulation and human subjects, ALCOV E showed a much better fit
than standard backpropagation networks. ALCOVE demonstrates how psychologica models
can influence the development and construction of network architectures in advance; in the case
of ALCOVE the underlying model is Nosofsky’s generalized context model (Nosofsky, 1986).

Leaving the field of multi-layer networks, one can find much simpler models which, never-
theless, do not lack explanatory power. One example isthe study of McClelland and Rumelhart
which is concerned with distributed memory (McClelland & Rumelhart, 1985). A small net-
work of interconnected units is used to demonstrate how prototypes can be learned from exem-
plars (only by the deltarule). This study belongs to alarge field within connectionism related to
memory, within which many different models were devel oped.

Apart from general cognitive psychology, connectionist modeling is also relevant for social
cognition, as different contributions have shown (Read et al., 1997; Smith, 1996). The authors
mainly refer to constraint satisfaction processes. Constraint satisfaction represents a specia
view of the processes running in connectionist networks. In light of this view, individual
aspects of impression formation and causal attribution, cognitive consistency, and goal-directed
behavior become the subjects of connectionist modeling. Another successfully simulated phe-
nomenon relevant to social cognition is priming in various forms.

What has not been mentioned so far are high-level cognitive functions like those which are
investigated in psychology (e.g. reasoning, problem solving, or planning). Nearly every connec-
tionist model in psychology deals either with low-level cognitive functions or with a small
aspect of a more complex function. This can be seen in the aforementioned studies which are
related to phenomena like semantic access, speech impairments, extracting temporal informa-
tion from input streams, automaticity, mental comparisons, category learning, prototype learn-
ing, and various individual aspects of socia cognition. In general, the term low-level cognition
refers, in this thesis, to cognitive functions below the level of intentional and controlled

Connectionism and Planning 12

information processing, the term high-level cognition will be used for functions above this
level. In contrast to those low-level functions, up until now intentional and controlled informa-
tion processing were mainly modeled and simulated by symbolic systems — systems that operate
with languagelike symbols (concepts) that can be combined in structured ways to encode propo-
sitions or to form complex representations.” At the theoretical level, the opponents of connec-
tionism claim that this symbolic approach is the only appropriate way for explaining high-level
cognition (e.g., Fodor & Pylyshyn, 1988). On the other hand, the advocates of connectionism
view connectionist modeling as suitable for all types of human cognition (e.g., Smolensky,
1988), even if they appreciate the usefulness of symbolic models in cognitive science. For a
survey of this discussion see Waloszek (1996). Unfortunately, standard connectionist models
encounter many problems with regard to high-level cognitive functions as is shown in section
2.3. Based on this background, this thesis attempts to develop a connectionist model of plan-
ning, which is quite a challenging affair.

2.2 Planning

2.2.1 Planning in Psychology

The place of planning in psychology is close to the field of action regulation. In many models
of action regulation a kind of planning is involved to explain the succession of action steps.
Since action is goal-directed, in contrast to behavior, a plan consists of several action steps nec-
essary for reaching a certain goal. Moreover, in a plan the order of stepsis prescribed. Models
of action regulation differ in the degree to which the phases of plan preparation and plan execu-
tion are separated and to which situational circumstances are favored above planning processes
in explaining action. The most extreme position is taken by the behavioristic school of thought,
which rejects the notion of planning completely. Models from cognitive psychology weigh the
contribution of planning and situation toward action in different ways: On the one hand, the
notion of “situated action” (e.g., Suchman, 1987) stresses situationa influences. On the other
hand, models like the one by Dorner (1989) emphasize the cognitive effort which precedes and
accompanies goal-directed action.

The differentiation between plan preparation and plan execution is elaborated in the work of
Funke and Glodowski (1990). They propose severa basic competencies for both stages. The
differentiation between these stages becomes clear in the definition of planning provided by
Funke and Fritz (1995): “Planning means. Intellectual sketch of a goal-directed action
sequence, which may take place on different levels of resolution under consideration of spatial,
chronological, material, and logical constraints, given the current level of skills and knowledge.
Moreover, planning means monitoring the prepared plan during its execution with the possibil-
ity of revising it or of terminating it. Working out the plan and executing it may overlap in

° An example for the symbolic approach to high-level cognitive functions is the production system ACT-R
(Anderson & Lebiere, 1998).

Connectionism and Planning 13

time. The planning process is finished when the (revised) goal is reached or abandoned.”
(Funke & Fritz, 1995, p. 29; trand ation by the author)

This definition shows that the place of planning is somewhere between action (plan execu-
tion) and problem solving (plan preparation as intellectual sketch). While the former aspect is
quite obvious in light of the remarks so far, the latter aspect needs some elaboration. The
notion of problem solving is used for mental processes which are engaged in transforming an
undesirable initial state into a desired goal state. These states may be mental states (e.g., when
thinking about a riddle which is completely represented and solved within the mind) or real
world states (e.g., when thinking about building a new company headquarters). In the concep-
tion of Newell and Simon (1972; cited in Opwis, 1996) all possible states of a problem form its
problem space (see also Anderson, 1996). By use of operators, the problem solver is able to
move from problem state to problem state, ideally reaching the goal state at the end. Thus,
there exists a strong analogy between plan preparation and problem solving. In plan preparation
one wants to find a sequence of actions which leads to the goal state, in problem solving one
wants to find a sequence of operators which leads to the goal state as well. Before | go deeper
into this analogy, one first distinction must be mentioned. The notion of problem solving is not
applied to problems which can be solved just by one step of memory retrieval (Medin & Ross,
1992). However, simple plans can be sketched in this way. Therefore, one can remark that
planning without problem solving does exist, although often plan preparation is an activity quite
analogous to that of problem solving.

Vice versa, not all problem solving is plan preparation, because the latter is restricted to one
type of operator: Actions. In contrast, e.g. proving a mathematical theorem needs operators,
which are quite different from actions. Thus, if one distinguishes between the stages of plan
preparation and plan execution, the former stage can be identified to a great extent with the sub-
set of problem solving concerning actions. As in problem solving, planning tasks can also be
plagued by “planning problems”, which are ill-defined or well-defined, as well as by the differ-
entiation between knowledge-lean and knowledge-rich problems (Opwis, 1996).

The aforementioned definition of planning points out, that “working out the plan and execut-
ing it may overlap in time” (Funke & Fritz, 1995, p. 29). This complicates the subject, because
the sketch of the plan may be revised due to new information about the state of the environment
or other sources. At first sight, it seems that plan preparation which is intermixed with execu-
tion cannot be compared with problem solving. However, if the notion of “situated cognition”
(Clark, 1997) is included in these considerations, the physical environment becomes important
for problem solving too. For many problems, the environment is used as an external aid to find
asolution (e.g., paper and pencil may be used to take a note of intermediate steps or as an exter-
nal memory extension). Operators may modify the environment and change the part of the
problem state which is manifested in the real world. This change may lead to new possibilities
for developing further ideas and operators. Clark (1997) designates this exploitation of external
structure in the process of problem solving as “scaffolding”. Thus, even the stage of plan exe-
cution, at least when it incorporates plan revision, has some similarity to genera problem solv-
ing. Still, one difference remains. Actions which were carried out cannot be undone

Connectionism and Planning 14

afterwards, while, theoretically, in problems which do not involve actions every known state in
problem space is aways attainable.

Even if it is useful for some models to separate the stages of plan preparation and plan exe-
cution, many real world planning problems require that these phases are strongly interconnected
with each other because of missing information and uncertainty of the environment. As
Hertzberg (1989) points out, many plans cannot be sketched entirely. There have to be “open
dlots’ and sensory actions to obtain current information in specific situations when plan execu-
tion isin progress. Independent of this specific information, the plan must be specified more
exactly or revised. Thistopic is taken into consideration by many psychological models which
provide feedback and control loops like the TOTE-unit (Dorner, 1989; Werbik, 1978; cited in
Funke & Fritz, 1995).

After all, the comparison between problem solving and planning shows that planning corre-
sponds to a special subset of problem solving which calls for one type of operators, namely
actions. Beyond it, as pointed out before, planning has some special properties in which it dif-
fers from problem solving in general. This analogy holds but for the case of simple planning
tasks which only need memory retrieval of prepared solutions. These already existing action
sequences are called “scripts’ by Schank and Abelson (1977). According to Schank and Abel-
son, aneed for “real planning” exists only in novel situations.

So far | have considered the mental side of planning and its relation to problem solving.
Moreover, as mentioned in the beginning, planning is closely related to action regulation and is
used as an explanation of why human beings show certain actions in a certain sequence. An
alternative or additiona explanation lies in the notion of “situated action” (Greeno & Moore,
1993; Norman, 1993; Suchman, 1987; Vera & Simon, 1993). This approach emphasizes how
strongly actions are triggered by situational circumstances and cues.’® The gap between situa-
tion and action is filled by rules which the agent has learned by prior experience (Hertzberg,
1996). In close relationship to the notion of “situated cognition”, it is proposed that planning
heavily depends on the stage of execution, if planning takes place at all. During execution the
general plan, which looks like a loose framework, is filled with concrete actions in dependence
on the situation. Suchman (1987, p. 188) writes. “While plans can be elaborated indefinitely,
they elaborate actions just to the level that elaboration is useful; they are vague with respect to
the details of action precisely at the level at which it makes sense to forego abstract representa
tion, and rely on the availability of a particular, embodied response.”

2.2.2 Planningin Artificial Intelligence

The definition of planning in Artificial Intelligence (Al) is more technical than in psychology,
as stated by Hertzberg (1996, p. 501; trandation by the author): “In Al a plan is a structure
which contains representations of actions and goals; its purpose is to reason about the effect of

1 In some respect, a similar approach was even taken by Lewin (1935) who introduced the notion of “valence”
into psychology. According to hisfield theory, the valence of situational circumstances contributes to the motiva-
tional force which drives the person to execute certain actions.

Connectionism and Planning 15

future actions and to influence the goal-directed acting of an actor. Planning designates the
actual production of aplan and, at the same time, a subsection of Al.”

Inder (1996, p. 23) gives a shorter definition and distinguishes planning from problem solv-
ing at the same time: “In the Al literature, planning refers to determining a sequence of actions
you know how to perform that will achieve a particular objective. Problem solving isfinding a
plan for atask in an abstract domain.”

Asin psychology, planning involves finding a sequence of actions that will transform an ini-
tial state into a goal state. The difference is that the Al concept of planning only involves the
stage of plan production or preparation as | called it in section 2.2.1. The execution of the plan
is not mentioned in the definitions presented so far. This corresponds to the notion of “classical
planning” as it was very popular for many yearsin Al. Before | go deeper into this subject, one
remark about the relation of planning and problem solving must be made. Roughly spoken, in
psychology, planning may be understood as a subset of problem solving (see section 2.2.1).
Inder (1996) shows a reverse understanding (for the domain of Al): In his definition problem
solving is a special class of planning. This demonstrates how difficult it isto draw aclear line
between problem solving and planning. Thus, how one understands these notions depends
heavily on the definitions and focal points one has chosen.

Classical planning

As noted, in Al planning refers mainly to the stage of plan production or preparation. Thisis
one of the constraints which developed from the early work on planning. To reduce the com-
plexity of planning tasks so that artificial systems were able to produce plans for them, several
restricting preconditions crystallized within the domain. These constraints define the frame of
“classical planning” which is now well understood. In the following the ten most relevant of
the thirteen preconditions stated by Hertzberg (1996) are presented:

(i) There exists exactly one planning actor.

(i) Itis possible to represent the relevant part of the world in states. These states are com-
plete snapshots of the world.

(iii) State transformations by planned actions are the only form in which time is represented
within the range of application.

(iv) Planning and plan execution are carried out one after another.

(v) Complete information about the facts within the “world” are available during planning as
well as during the completion of plan execution.

(vi) The effects of an action are deterministic and context-free. That means, they are identical
for every state in which the action is executable.

(vii) During plan execution the world is only changed by the actions of the actor who is guided
by the plan.

(viii) The objectives for the resulting plan are explicitly stated; they are consistent and can be
achieved by the known actions.

Connectionism and Planning 16

(ix) A ready-made plan has to achieve all its objectives; every action it consists of has to be
applicable.

(x) The computing time for the production of a plan is not relevant for the assessment of its
quality.

These preconditions demonstrate a static view of the world in which the actor is operating.
Nothing can interfere with his actions. Beyond it, the range of the world is limited so that it fits
into exactly defined states. One common-known example for such a “world” is the blocks
world (e.g., in Hertzberg, 1989). The standard version consists of a table on which severa
cubes are placed. There is a robotic grip hand that is able to pick up one cube at atime. Any
cube is either placed directly on the table surface or on one other cube or is held by the grip
hand. The grip hand is capable of several pick-up- and put-down-operations. The planning
problem consists of finding a sequence of actions for the grip hand so that an initial arrange-
ment of cubes can be changed into the desired goal arrangement.

The blocks world was used in many Al planning systems to develop and demonstrate appro-
priate planning techniques in such a restricted domain. One of the first planning systems was
STRIPS (Stanford Research Institute Problem Solver) (Fikes & Nilsson, 1971; cited in Inder,
1996), which generated plans for arobot, Shakey, that could move around between a number of
rooms, pushing boxes around and carrying out a small number of other actions. Such a plan-
ning system provides a formal structure with which states can be described (e.g., the initial and
the goal state of the world) and applicable operators/actions™. Beyond it, procedures must be
available in order to produce a plan from the information about states and operators which the
user has defined. The special feature of STRIPS is that states are described using a set of for-
mulas in first-order predicate calculus. In brief, this formalism gave STRIPS the possibility of
describing states mainly in respect to their difference to former states. This allows much shorter
state descriptions. Besides, operators can be expressed as the changes they make to the set of
formulas describing the state in which they are applied. As method for determining the optimal
plan, STRIPS basically used the means-ends analysis. In means-ends analysis one looks first at
the features of the goal state. Then one searches for operators with which one can realize the
features not present in the current state. When one has found one or several operators, the pre-
conditions these operators require for execution become sub-goals for the next cycle of analysis.
The analysis ends when one has found a complete path from the goal state back to the initial
State.

Beside the strong points of STRIPS, there are also several weaknesses which have led to
many further developments and alternative planning systems during the decades following
STRIPS. The focal point in this development lies in finding technical solutions for planning
that are applicable to real world tasks. The simulation of human planning behavior is scarcely
relevant. One exception isthe General Problem Solver (GPS) (Newell & Simon, 1961, cited in
Inder, 1996), a predecessor of STRIPS. Like STRIPS, it worked with means-ends analysis, but
it did not use first-order predicate calculus for the description of states. Instead of that, GPS

1 Inthis section (2) the notions of operator and action are used synonymously.

Connectionism and Planning 17

had some other useful features that were partly missing later in STRIPS. The interesting point
is that GPS was presented by Newell and Simon (1961) for explaining human behavior in a
theorem proving task. As mentioned above, in Al research on planning the reference to human
behavior israre. Most subsequent work on GPS accordingly ignored psychological plausibility
and presented it purely as illustrating techniques for allowing a computer program to tackle a
wide range of tasks (Inder, 1996).

Beyond classical planning

Since the eighties there has been increasing interest in approaches to planning which go beyond
the frame of classical planning (Hertzberg, 1995; Hertzberg, 1996; Inder, 1996). For many
fields of application the assumptions of classical planning are too restrictive to build adequate
planning systems on their foundation. For example, often there is only incomplete information
about the environment available. Even the plan to go into the supermarket to buy toothpaste
can fail because of multiple changes to the environment which have not been correctly foreseen.
The subject of incomplete information is closely related to the dynamics of the real world. Itis
very unrealistic that the states of the world can only be changed by the planning actor. Another
shortcoming of classical planning affects the consideration of time. Often it is necessary to take
the duration of operator execution into account or to pay attention to the effects of overlapping
operator execution. Further, there are many other subjects within “non-classical” planning; the
following examples are intended to convey an impression to the reader:

» Anytime planner, which are able to deliver a plan at any time: The more time they have for
plan preparation, the better the resulting plan is, but some plan is always available from
them.

» Hierarchical planning, in which a plan is first built from complex operators on a more
abstract level: Only when the abstract plan is finished, will a more detailed elaboration on
the level of single actions take place.

» Planning with multiple agents. The agents are ssmultaneously working on executing the
plan; their sequences of actions have to be coordinated with each other.

To complete the picture of “non-classical” approaches to planning within Al, the work of
Hayes-Roth and Hayes-Roth (1979) has to be mentioned. Their approach, called “opportunistic
planning”, is closely related to cognitive modeling. Accordingly, one of their interests was the
simulation of data as it was generated by human subjects. The planning task on which their
work was based was quite similar to Plan-A-Day. Subjects had to plan a tour of an imaginary
town. The problem was to plan the tour in a way in which as many tasks as possible could be
carried out at different places in the town. The artificial system that simulated the human data
was an implementation of akind of blackboard architecture. In this architecture several special-
ists work together on the planning problem. Each specialist is representative of a specific plan-
ning rule. Whenever the current state is favorable for one specialist he adds a contribution to
the blackboard. The blackboard is the central part of the system in which the different special-
ists compete for attention. The one who “shouts’ most loudly will be selected for determining

Connectionism and Planning 18

the next action. In this respect the approach is “opportunistic”, because actions are carried out
when there is afavorable opportunity.

This approach is interesting because it offers an alternative method for planning which is
more realistic in some ways. According to Hayes-Roth and Hayes-Roth (1979) subjects worked
mostly with a specific plan, which they then repaired or abandoned as problems came to light.
This seems to be a good strategy in a changing and partly unforeseeable environment, and
exactly thisis achieved by artificial opportunistic planning. Accordingly, in opportunistic plan-
ning the stages of plan preparation and execution are closely interlocked in contrast to classical
planning. Moreover, when one likes to include the notion of “situated action” into the discus-
sion, its relationship to opportunistic planning is obvious.

2.3 Connectionism and Planning

Asit was pointed out at the end of section 2.1.2 concerning connectionism in psychology, high-
level cognitive functions like planning or problem solving are mainly modeled by symbolic sys-
tems. The author does not know of any connectionist model possessing these functions which
can be found within the field of psychology. On the contrary, in Al at least parts of a few mod-
els are realized by connectionist networks. For example, in the work of Schmidhuber and
Wahnsiedler (1993) the presented problem is to plan a trgjectory for an ‘animat’** that had to
move through an environment with several obstacles. In planning the sequence of movement
actions a neural multi-layer network is used to determine the points in the environment where
the linear movements of the animat begin and end, respectively. Returning to the blocks world,
Bourbakis and Tascillo (1997) present an approach for the coordination of two robotic hands.
They represent the planning problem and its states in a specia structure, called a stochastic petri
net (SPN). A self-organizing neural network for categorizing binary vectors is used to search
the SPN structure for an appropriate selection of plans. A very different approach within the
blocks world is taken by Ribeiro et al. (1993). They use several very simply structured agents
which exchange certain forms of energy with each other. In this respect, their model has some
similarity to connectionist models, and for this reason it is presented here. The specia feature
of the agents is that they are identified with the cubes and the table in the blocks world.
Roughly speaking, after each step of propagating energy, the agent with the highest energy is
chosen. The cube identified with such an agent is subsequently moved. Thislocal computation
allows a close interlinking of plan preparation and plan execution (which leads to a non-
classical version of the blocks world).

Argumentsin favor of connectionism

All the aforementioned research from Al is not intended to serve as amodel of human planning.
On the other hand, so far psychology has not used connectionist networks to model planning at

2 An animat is like a robot that does not exist physically but only as simulated creature in a simulated
environment.

Connectionism and Planning 19

al. In spite of these facts, there exist several good reasons why connectionist models are prom-
ising even for high-level cognitive functions like planning. First, they have an inherent neuro-
biological plausibility. The human brain, that is planning and problem solving, is built with
neurons. Evenif artificial neurons have certain differences and simplifications in comparison to
real neurons, the similarity of neural networks to the substrate of human information processing
is much stronger than the similarity of symbolic systems like production systems or classical Al
planning systems.

Beyond this, connectionism provides an ideal computational architecture for intelligent sys-
tems (Shastri, 1991). Shastri writes (1991, p. 261): “Given that intelligent behavior requires
dense interactions between many pieces of information it would seem appropriate to treat each
memory cell not as a mere repository of information, but rather as an active processing element
capable of interacting with other such elements.” This argument makes a claim for massive par-
allel information processing as it takes place in connectionist models. Traditiona computa-
tional architectures with a single central controller are not appropriate for such a demand.

Given a parallel architecture, it would be useful or even necessary to minimize the costs for
communication between the nodes. This is especially true under evolutionary considerations:
Because of the pressure of natural selection, the intelligent behavior found in human beings and
animals cannot be based on a system that wastes computational power. Communication costs
have two components. Encoding/decoding costs and routing costs. The former costs arise from
converting information into a format in which it can be transmitted and from reconverting it
after it has been received. These costs can be avoided if one uses a kind of information struc-
ture that needs no encoding and decoding as is the case in neura networks. Only scalar mes-
sages are sent from unit to unit, there is no internal structure at all. Routing costs are necessary
to determine the receiver of a message and to establish a communication path between sender
and receiver. If one uses fixed connections, these costs can be omitted. Thus, because the con-
nections between units in neural networks are fixed and ready for use at every time, routing
costs equal zero in connectionist models.

To summarize, several arguments stated that the features of an appropriate computational
architecture for an intelligent knowledge-intensive system are shared by the connectionist
approach: Massive parallelism, no central controller, scalar messages with no internal structure,
and hard wired links.

Arguments against connectionism

Barnden and Pollack (1991) present several reasons why current connectionist models are not
suitable for high-level cognitive functions. Three of their arguments are presented in this
section.

First, there is the issue of complex representational structures. This becomes especially clear
in the domain of language understanding. Understanding a complex sentence involves con-
structing a manipulable representation of its content. This principle can be extended to under-
standing in general. For example, constructing manipulable representations of the environment

Connectionism and Planning 20

isvery important for planning. It isdifficult to see how such representations are to be embodied
by the standard means of connectionist models (feature vectors, weights). The problem is that
the system must not rely on surface features of the sentence or the environment, but that a
meaningful representation must be extracted from the deep structure no matter how different the
surface features may be (e.g., two sentences which are very different in the words used and their
order may have got nearly the same meaning).

Second, rapid learning (“insight”) is quite difficult for connectionist networks. They usually
only perform slow adaptation, which requires thousands of training events. Other forms of
learning, which are important for high-level cognition, are beyond their scope. Rapid learning
includes learning through instruction, learning by rapid generalization over a small set of
instances, analogy-based learning, and explanation-based learning. Especially learning by rapid
generalization and by analogy are part of human problem solving and planning capabilities.

Third, “variable binding” or temporary associations are a problem for connectionist models.
Variable binding means that certain processing entities (“variables’) are linked to specific con-
tents (“values’). For example, in arule like “if cube x is on top of cubey, cube y cannot be
moved” the variables x and y have to be associated with certain cubes in the current state of the
blocks world. Otherwise the rule is worthless for the system. These associations have to be
built up and to be abandoned in a very short time. Barnden and Pollack (1991, p. 7) write: “It
is difficult to allow the binding of values to variables while avoiding an explosion of units and
connections, in the more standard sorts of connectionist systems.” And further: “Interestingly
powerful binding capabilities are, however, provided in less standard systems...” Shastri (1991)
presents such a connectionist system that can perform a broad class of deductive inference
involving variables and multi-place predicates. The special feature of the system is that not
only the amplitude of unit activation is used as information, but that temporal patterns of activ-
ity serve as a representation of variable binding.** Shastri (1991, p. 277) writes. “Reasoning in
the system corresponds to a transient but systematic propagation of rhythmic patterns of activa-
tion, where each phase in the rhythmic pattern corresponds to an object involved in the reason-
ing process and where variable bindings are represented as the in-phase (synchronous) firing of
appropriate nodes.” Such an approach is clearly different and more advanced than standard con-
nectionist models.

When one summarizes the presented pros and cons for connectionist modeling of high-level
cognition, a fairly mixed picture evolves. On the one hand, there are strong points of criticism
of standard connectionist models, on the other hand, basic considerations show the plausibility
of the connectionist approach in general. In addition, a few more advanced connectionist mod-
els are able to overcome some of the stated weaknesses. Thus, it seems to be promising to con-
tinue the further development of connectionist models and to apply them to high-level
cognition. Our brains are composed of neurons, and it is an urging question which structure and

B In this respect, the model presented by Shastri (1991) is much closer to biological neural networks which also
work with frequency modulation instead of amplitude modulation. The latter is usually used by standard connec-
tionist models.

Connectionism and Planning 21

which size neural networks must have to carry out tasks like reasoning or planning - tasks we
complete very easily using the networks in our brain. We have just set foot into the field of
connectionist modeling of human planning, but nevertheless, we should try to continue on fur-
ther intoit. In thisrespect, thiswork should serve as a contribution to this undertaking.

Introduction to Plan-A-Day 22

3 Introduction to Plan-A-Day

As mentioned in the introduction to this thesis, Plan-A-Day (PAD) is the diagnostic instrument,
for which a connectionist model of planning has been developed. In the following | would like
to give an introduction to PAD that focuses on the topics which are relevant for this work.

3.1 Plan-A-Day as Diagnostic I nstrument

3.1.1 Objective

PAD is adiagnostic instrument for the assessment of planning capabilities of executive person-
nel, that was recently developed by Funke and Kriiger (1995). PAD is completely implemented
as a computer application® and can easily be modified concerning its demands and difficulty.
Because of this it also can be applied to patients with neuropsychological deficits. PAD was
developed on the background of a shortage of adequate diagnostic instruments for assessing
planning competency. As a special feature, PAD alows not only a performance-oriented
evaluation, but also a view onto the process of planning.

<<Terminplaner >
o 10: 00 Edlira 10z 00
* # 10:19 Cafe 14100
14:28 Sekretariat 1423
L 14132 Lager 141332
LB] * 1634 Zentrale 1G4
EEEnN 16:31 Sekretariat le:r3l

EEEnN

EEEnN

EEEnN

0 i I
10: p-is: oo °”‘°"=1";fg§"a““‘ <<Tastens;

45 Min s . Buchst, =: HAUSER
BERENL | B Entf LOSCHEN
S0min Pl HILTE
F2 AUFGAEBEN
E ENOE
(] HWARTEM

Fig. 3.1: The user interface of PAD as it appears on the computer screen.
On the left side one sees the site plan, on the right the list of
movements and visits which are already carried out. In the
lower right corner a list of available operatorsis located.

4 PAD iswritten in Turbo Pascal 7.0 and runs under MS-DOS or Windows.

Introduction to Plan-A-Day 23

3.12 Description

The scenario

In PAD, the scenario presented to the subjectsis the following: The subject is an employee of a
company the buildings of which are scattered over awide area. The task is to arrange a sched-
ule for the current day, during which several appointments have to be carried out. At the begin-
ning of the day, the subject receives a list of those appointments. Every appointment has sev-
eral parameters. The earliest and the latest time, at which the task can be started, the task’s
duration, its priority (normal, high, very high), and its location (in doing so, every of the com-
pany’s buildings can occur only once in the list of appointments for the current day). The day
begins at 10.00 a.m. at the office building and ends some time in the late afternoon. During this
period, the subject must carry out as many appointments as possible by planning the sequence
of visits to the different buildings in the best possible way. In addition to the earliest and latest
time for starting a task, the subject has to consider the time needed for moving from one build-
ing to the other. Every move has the corresponding time. Once in a day a car may be used:
This reduces the movement time by athird.

Figure 3.1 shows the user interface of PAD. The site plan is located in the left part of the
screen. Nine buildings belong to the site (the German notions as they appear in fig. 3.1 are put
in parentheses): Post office (Post), café (Café), office (Buro), storehouse (Lager), secretary’s
office (Sekretariat), administration (Verwaltung), printing office (Druckerel), conference room
(Konferenzraum), and central office (Zentrale). In fig. 3.1 the subject is shown as the small
white square below the secretary’s office. The movement times from the secretary’s office to
the other locations are written below every building (the complete matrix with movement times
isgiven in appendix B). The earliest and latest starting time, the task duration, and the priority
(shown by one to three stars) are displayed within the upper part of each building for the loca-
tions for which an unfulfilled appointment exists. The conference room is an exception because
the conference always begins at a certain point in time. Buildings with unfulfilled tasks are
shown in white with black windows, while the other buildings (either without any task or with a
task already carried out) are displayed in light gray.

Furthermore, the message “Autofahrt benutzt” in the upper left corner indicates that the car
has already been used. The right part of the screen shows the current state of the planning proc-
essin the form of alist of all moves already made. The subject is free to choose any move he
wants, even to places where the list of appointments for the current day does not schedule any
task. The time shown below the word “Terminplaner” in the upper right corner indicates the
current time. Even if PAD can by executed in different modes of presentation which influence
the information presented in the user interface, | would like to confine myself to this description
of the easiest mode because the following work is also confined to this mode.

Introduction to Plan-A-Day 24

Applicable operators and actions

The lower right corner of the user interface (fig. 3.1) shows the commands available to the sub-
ject. Besides pressing the ‘F1’ of ‘F2' key for getting a help screen or the list of appointments
to be carried out, there are several commands which are associated with certain actions or
operators within the PAD world. In contrast to section 2, with regard to PAD, | would like to
differentiate between the notions of operator and action. Theoretical reasons are given in sec-
tion 3.3. For the present, this differentiation is based only on practical reasons. Within this
framework of assignments, actions are a subset of operators. That means, every action is an
operator, but not every operator is an action.

First | would like to introduce the possible actions. By pressing the first letter of the German
building descriptions one can move to the corresponding place. If one arrives at alocation with
an unfulfilled task at a time before the earliest time of task execution, one is asked by the sys-
tem if one chooses to wait until the appointment can be carried out. The “wait” action is
invoked by pressing the letter ‘w’ on the keyboard. In addition, if one chooses to drive by car
(“drive-by-car” action), one hasto pressthe ‘a key before specifying the destination.

A special feature of PAD isthe opportunity to delete actions. By pressing the ‘DEL’ key one
can undo the previous movement. In this way one may even delete the whole plan and begin
again at 10 o’ clock in the morning at the office building. Deleting is an operator, not an action.

The last applicable operator is finishing the planning process by pressing the ‘€ key. After
the application of this operator no further planning is possible. The plan that is accomplished so
far isinterpreted as result by the PAD system.

To sum up, thirteen different operators are available to the subject: Nine Movements
(according to each of the nine buildings on the site), Drive-by-car, Wait, Delete, and Finish. In
addition, Movements, Drive-by-car, and Wait belong to the set of available actions (thus, alto-
gether there are eleven actions).

Definition of “PAD task” and “plan” within the PAD domain

In the following the term “PAD task” refers to one day in the PAD world during which a certain
set of appointmentsisto be accomplished. The PAD task is defined by this set and the parame-
ters of the appointments within the set. As there are only nine locations in the PAD world and
every location can only be used for one appointment, the maximum number of appointments for
one PAD task is nine. (In contrast to “PAD task”, the term “task” refers to the activity
demanded by a single appointment.)

The outcome of a PAD task is a plan as a sequence of actions. Within the PAD domain, the
term “plan” may correspond to any sequence of actions that is created during the process of
planning. However, the sequence of operators (actions plus Delete plus Finish) which are
applied during the process of planning is not named “plan”. To emphasize this even more: The
Delete operator is not part of the plan but modifies the current plan by undoing actions.

Introduction to Plan-A-Day 25

Course of a PAD assessment

When the standard settings for PAD are chosen, the course of a PAD assessment begins with
the presentation of the instructions on the computer screen. Next, the subject has to plan his
first day in the PAD world. This first PAD task is only intended to be an exercise so that the
subject can practice.

Afterwards, the subject has 30 or 40 minutes of time to carry out two PAD tasks which are
used to evaluate the planning competency of the subject. After 15 respectively 20 minutes the
first PAD task is finished automatically even if the subject has not used the Finish operator. If
the subject finishes the first PAD task earlier by an explicit Finish operator, the saved time may
be used for the second PAD task. A warning beep sounds five minutes before the time limit is
reached.

Evaluation of a PAD task

The final plan that is accomplished in a PAD task is evaluated according to the priority of the
appointments that are successfully carried out in the plan. Each appointment with very high pri-
ority counts eight points, each appointment with high priority three points, and each normal
appointment one point. The points are summed up, and the result is the end score (or end
rating).

In addition, a“max score” (or “max rating”) is calculated, which is also based on the priority
of the successfully visited places. The max score is not based on the plan generated directly
before finishing. Instead, the max score corresponds with the score for the best plan obtained
during the whole planning process.

As there are two PAD tasks in each assessment, four indicators for pure planning perform-
ance are calculated for each subject. Beyond this, PAD allows for an evaluation of many char-
acteristics of the planning process. Every keystroke of the subject is recorded into alog file. |
will go deeper into this topic when comparing the planning behavior of the connectionist model
and of human subjects in section 6.1. In addition, Funke and Kriger (1995) provide a detailed
description of the configuration of PAD and its evaluation, especialy in respect to the process
of planning.

Predefined PAD tasks

Apart from the exercise task there are 16 predefined PAD tasks which differ in several respects.
First, their difficulty is different. While the easiest PAD tasks have a set of only four appoint-
ments, the most difficult tasks designate an appointment to every location. To increase the dif-
ficulty, in some PAD tasksit is nhot possible to carry out every scheduled appointment.
Furthermore, the predefined PAD tasks differ in their number of rational plans and optimal
plans. The former relates to the number of plans in which an appointment by every visit at any
location is fulfilled. Plans that include senseless movements are excluded from the set of
rational plans. The number of optima plans, however, comprises every rational plan which
leads to the maximum obtainable score (called “optimal score”’ in the following). Both values

Introduction to Plan-A-Day 26

may serve as an indicator for the difficulty of a PAD task. The range for the number of rational
plansis between 8 and 47.659, the range for the number of optimal plans between 1 and 4. The
maximum score ranges between 19 and 35.

Even if one may choose any two of these PAD tasks for a PAD assessment, there are four
recommended pairings which correspond to four predefined levels of difficulty. These pairings
are (the following numbers correspond to the predefined PAD tasks): 4 and 5 (easy), 7 and 8
(medium), 13 and 14 (difficult), 15 and 16 (very difficult). While in this thesis only the easiest
level was employed, one of the empirical studies presented in section 3.2, for example, made
use of al levels.

3.1.3 Special Featuresof the PAD Conception

Even if most of PAD’s features were mentioned in section 3.1.2, it is worth highlighting some
of them once more.

First, the semantic outfit of the scenario is closely related to the professional everyday life of
executive personnel. This should increase the readiness of such persons to act within the PAD
world, as Funke and Kriger (1995) write.

Second, since there are two PAD tasks within each assessment, the reliability of the instru-
ment is enhanced.

Third, within each PAD task the appointments have different priorities, which has to be
taken into consideration by the subjects. This differentiates PAD from other instruments in
which the priorities are assigned by each subject individually without the experimenter knowing
how thisis done. For the precise evaluation of a plan, however, it is necessary to know the pri-
orities given to different tasks. Thus, the explicit assignment of prioritiesin PAD constitutes an
important improvement.

Fourth, PAD offers a special aid for planning, namely, the drive by car. This “joker” can be
used once, and only by employing it at the right point is one able to carry out certain appoint-
ments. Using this special feature of PAD, the experimenter is able to test if such an aid is used
by the subject efficiently.

3.2 First Empirical Results

Altogether, Funke and Kriger (1995) present three studies which provide first empirical data
regarding PAD.

First study

In the first study, PAD was applied to 104 students of the university of Bonn. This study com-
pares the different levels of difficulty and the different modes of presentation. | will focus on
the former comparison. The different levels of difficulty correspond to the pairings of

Introduction to Plan-A-Day 27

predefined PAD tasks 4 and 5 (easy), 7 and 8 (medium), 13 and 14 (difficult), and 15 and 16
(very difficult), as mentioned in section 3.1.2. The order of presentation within each pairing
never changed.

Table 3.1 shows the mean values for the end score and max score. Since the theoretically
attainable maximum scores are different for each PAD task, these values are noted in the table
either (in the column “Optimal score’). Because of these differences the end scores cannot be
compared directly. The ratio of the end score to the optimal score yields a better means for
comparison and can be gathered from the table too (Table: “relative end score”). In the column
“Number of operators’ one finds the mean number of operators the subjects applied during the
planning process. Furthermore, for each PAD task the number of appointments is noted and, in
parentheses, the number of appointments which have to be carried out in the optimal plan(s).

As table 3.1 shows, the max scores are usually above the end scores. Thus, subjects often
finish the planning process with a plan which is not as good as the best one they designed dur-
ing the test. Therelative end score differs unsystematically between the different levels of diffi-
culty, so that one may question the appropriateness of this classification, if one takes only this
indicator into consideration. In addition, for the medium and difficult level, the relative end
score shows training effects from the first to the second PAD task. However, because of the
fixed order of presentation, this result is confounded with the characteristics of the PAD tasks.

For estimation of reliability, 60 subjects, who were assessed in the easiest mode of presenta-
tion, were chosen from the total sample. The correlations between the first and second PAD
task of each assessment were calculated. The correlations were .562 for the end score, and .630
for the max score. These correlation coefficients are relatively low, so that further improve-
ments of PAD should bear reliability in mind.

Table 3.1: Mean values for the max score respectively end score compared to the optimal score for

each PAD task
oport. Optima Govasoore . Number
Level PADtask PP P Max score End score ©Optima score of N
ments score [%] ODEraiors
(optimal) P
£ 4 5(5) 28 26.7 22.7 81.0 16.0 15
&y 5 6 (6) 26 235 20.9 80.5 18.0 15
Medium 7 7@ 34 30.8 28.4 83.5 13.0 15
8 7@ 34 30.9 30.9 90.8 13.2 15
e 13 9(8) 35 30.6 29.4 84.1 23.1 60
Difficult
14 9(8) 35 31.9 317 90.4 19.6 60
Very 15 9(7) 34 30.4 28.6 84.2 17.6 14
difficult 16 9(7) 34 30.0 28.5 83.8 22.9 14

Introduction to Plan-A-Day 28

Second study

In the second study, performed by the “Institut fir Wirtschaftspsychologie” (Dortmund), data
regarding divergent validity was obtained. PAD was employed in an assessment center in
which the subjects (n = 78) were rated according to many different variables: Ability to work in
a team, costumer orientation, ability to make decisions, quality of |leadership, organizational
capabilities, etc. In addition, PAD tasks 13 and 14 were performed.

A factor analysis showed that PAD establishes its own factor (loading: .69), while the other
variables load mainly on one other factor. Even if PAD only explains 13% of total variance,
this result shows the independence of PAD in respect to other variables.

Third study

The third study (Evers, 1995; cited in Funke & Kriger, 1995) deals with the comparison of
executive personnel with control subjects. If PAD is a valid instrument for the assessment of
executive personnel, the PAD scores of managers should be better than the PAD scores of con-
trol subjects. As the study of Evers shows, this expectation is fulfilled. The mean summed up
end scores for PAD tasks 13 and 14 amount to 62.9 for a sample of 22 executives and to 58.1
for asample of 16 control subjects. Thisdifferenceissignificant (t = 2.29, df = 34, p < 0.05).

Conclusion

As Funke and Kriger (1995) state, PAD is an diagnostic instrument that has reached an inter-
mediate stage of test development. The results for reliability and validity show that further
improvements are necessary. Nevertheless, even at the current stage of development PAD is
able to serve as an useful instrument in research.

3.3 Theoretical Classification of PAD

Regarding psychology, the question arises, if PAD is more related to problem solving in general
or to planning in a narrower sense. The developers (Funke & Kruger, 1995) claim, that their
instrument is intended to be a measure for planning capabilities. Certainly, the task for the sub-
jectsisto find the optimal sequence of actions within the PAD world, and this clearly is a plan-
ning problem. However, on the other side, since the stages of plan preparation and plan execu-
tion are totally intermingled within the simulated environment of PAD, alarge difference to redl
planning is the fact that every action may be undone. Normally, one is able to undo actions
only in the stage of plan preparation when one is thinking about the plan. However, thinking
about carrying out an action does not cause the environment to change as it happens in PAD.
Otherwise, in the stage of plan execution, when actions actually have an effect on the environ-
ment, actions cannot be undone. At least the lost time cannot be recovered.

Thus, this characteristic of PAD shows its close range to problem solving in a more general
sense, where operators may be undone, and where the problem solving process may go back and

Introduction to Plan-A-Day 29

forth to every known state in the problem space (see section 2.2.1). Because of this, only the
operators referring to real actions within the PAD world (thus, Movements, Drive-by-car, and
Wait) are called actions in the following. The Delete operator is excluded from the set of
actions, because it belongs more to the level of problem solving in general. Moreover, the Fin-
ish operator is also excluded. Finishing the planning process is not an action carried out within
the PAD world, but more of a meta-cognitive operation.

Interestingly, PAD resembles the paradigm of classical planning within Al. If one compares
the ten preconditions of classical planning stated in section 2.2.2 with the characteristics of
PAD, many of these preconditions are fulfilled in the PAD world. Thus, PAD provides a static
environment with exactly defined states which are only subject to change by the actions of the
planning agent. However, there are also some differences between PAD and classical planning.
First of al, time is an explicit part of the PAD world and has to be taken into consideration.
Furthermore, the stages of plan preparation and execution are not separated in PAD. As pointed
out before, they are intermingled in a very specia fashion, because on the one hand, the envi-
ronment is changed by actions (like during execution), but on the other hand, every action can
be undone (like during preparation).

Precondition (viii) states that the objectives for the resulting plan are explicitly given. In
PAD, only the vague objective to carry out as many appointments as possible under considera-
tion of their priorities exists. However, which subset of the scheduled appointments forms the
optimal plan(s) has to be found out by the planning agent. In this respect, preconditions (viii)
and (ix) (“A ready-made plan has to achieve al its objectives’) are not fully appropriate for
PAD. Precondition (x) regarding the computing timeis not relevant for PAD.

In summary, the place of PAD within the theoretical framework is on one hand, close to
problem solving in general, on the other hand, some of PAD’s characteristics show that it
belongs to the field of planning even almost in the classical sense asiit is defined within Al.

A Connectionist Model for Plan-A-Day 30

4 A Connectionist Model for Plan-A-Day

This section provides a detailed description of the connectionist model which was devel oped for
Plan-A-Day. The straightforward presentation given does not reflect the real course of develop-
ment. The model, asit is presented here was created in a continuous feedback process between
all stages of model development and testing, including the stage of fitting the model to empiri-
cal data. The procedure of model fitting is presented in section 5.3.

4.1 Foundations

The objective of modeling was to find a model which is able to simulate human planning
behavior in PAD tasks. In doing so, it was not intended to reproduce data generated by individ-
ual subjects. Even if the model ssimulates singular subjects, the comparison takes place on the
level of samples - on the one hand, a sample of human subjects, on the other hand, a sample of
simulated subjects.

There are several possibilities to simulate a subject. One may restrict this simulation to the
generation of the resulting plan, or one may model the whole planning process step by step. In
this work the second approach is taken. Thus, theoretically, the model could be seated in front
of the computer screen to work on a PAD task instead of areal human subject. Like a human
subject, the model generates a sequence of operators in order to find the optimal plan. As
explained later in detail, in each processing cycle the model evaluates the applicable operators.
Therefore, the model is named “EVA” — an abbreviation for “Evaluation of Actions’. More
precisely, it should be called “ Evaluation of Operators’, but “EVA” sounds better than “EVO”.

Every operator EVA applies changes the state of the PAD world as is the case for a human
subject. According to the new state EVA produces the next operator. Thus, EVA’sinput isthe
current state of the PAD world including the current PAD task, and its output is the next opera-
tor. Thisapproach is closely related to situated action respectively situated cognition. As Clark
(1997, p. 60) writes: “Connectionist minds are ideal candidates for extensive external scaffold-
ing.” As pointed out in section 2.2.1, external scaffolding means leaning on the environment in
problem solving or planning. Since connectionist models are mainly capable of pattern comple-
tion or transformation, the environment is a quite valuable source of information for them.
Rumelhart, Smolensky, et a. (1986) explain by the means of long multiplications, how this
interplay works. Simple multiplications, such as 5 x 7 = 35, can be supported by pattern-
recognition devices. Long multiplications like 3254 x 5647 are more difficult, but by using
external help this problem can be divided into many simple multiplication and addition steps.
Human beings usually use paper and pencil for this purpose. These simple operations are then
again a pure task of pattern completion. To cite Clark (1997, p. 61): “... by an interrelated
series of simple pattern completions coupled with external storage we finaly arrive at a
solution.” Clark (1997) uses this example of Rumelhart, Smolensky, et al. (1986) to point out,

A Connectionist Model for Plan-A-Day 31

that pure pattern-completing abilities combined with a complex, well-structured environment
may enable “connectionist minds’ to fulfill complex tasksin general.

Thus, on the one hand, EV A relies on the approach of situated cognition®. Further, EVA has
been influenced by MEKIV (Hussy, 1993). MEKIV isamodel for complex human information
processing, which provides a framework for didactics and research. In spite of the fact that
MEKIV is not very well suited for connectionist modeling since it includes a kind of central
processing unit, at least one idea was taken from this model. MEKIV states that in problem
solving operators and evaluators are retrieved from memory. Evaluators are used for evaluating
the current state and for evaluating operators in regard to certain sub-goals. EVA is based on
this principle. Even if EVA isat first only oriented toward the main goal of achieving the opti-
mal plan, EVA evauatesin every processing cycle every applicable operator in accordance with
this goal.

To sum up, EVA is intended to be a connectionist model generating several evaluators
(evaluations of operators'®) simultaneously according to the current state of the environment.
Which kind of network model may be used to perform such atask? Asit was pointed out in sec-
tion 2.3, standard models of connectionism are not very well suited to fulfill high level cogni-
tive tasks such as planning. Problems arise regarding among other things, complex
representations, variable binding, and rapid learning. However, on the other hand, standard
models are already quite well understood and, in comparison, quite easy to implement. Further,
it would be a strong argument in favor of connectionism if one could avoid the stated problems
and apply a standard model to planning,. Thiswould show that even simple pattern recognition
capabilities are enough for explaining human planning behavior in a specific domain.

For these reasons a traditional model of connectionism was chosen for EVA: A multi-layer
feed-forward network with logistic activation functions (in the following ssimply called multi-
layer network'’) as described in section 2.1.1.3. In contrast to other standard models it has sev-
eral useful properties:

» Multi-layer networks can perform complex pattern transformations. As the proof of Hornik
et al. (1989) shows, nearly every transformation function can be represented by a multi-layer
network of appropriate size. In contrast, e.g., self organizing maps (Kohonen, 1982) are only
capable of classifying patterns.

» While the input and output vectors may be held constant, the performance of a multi-layer
network can be improved by enlarging the hidden structures. In contrast, in other network
models the representation of the input/output (at least the size of the input/output vector)
specifies the whole network topology. In addition, such models like the Hopfield network
(Hopfield, 1982) or the bi-directional associative memory (Kosko, 1987) are restricted to a

% The approaches of situated cognition and situated action are so closely related to each other that | won't always
state both terms explicitly, even if both terms are meant.

8 In the work of Hussy (1993) the meaning of “evaluator” is dightly different. For him, an evaluator is an evalu-
ating process that is applicable to any state or operator. However, for the purpose of my work it is more useful to
define an evaluator as an evaluation of a single operator with regard to a certain goal.

¥ In respect to the fact that EVA uses additional recurrent connections (which is explained later), the notion
"multi-layer network" is also more appropriate.

A Connectionist Model for Plan-A-Day 32

certain number of differentiable patterns due to their number of units. Thus, in such models
there is an interaction between the size of the input/output vector and the information storage
capacity. This restriction is not acceptable for EVA, because EVA should be able to work
with alarge set of different PAD tasks which constitute a set of input vectors which isjust as
large.

» For multi-layer networks with logistic activation functions the number of training patternsis
not confounded with the network topology as is the case for radial basis functions networks
or probabilistic neural networks (Zell, 1997). In these models, the number of units in the
first hidden layer is equal to the number of training patterns. For EVA, with the broad vari-
ety of the PAD world, thiswould lead to a network of immense size.

» Multi-layer networks work with continuous input and output values. Asit will become obvi-
ous in the following subsections, EV A relies heavily on this feature.

» Evenif the learning procedures for multi-layer networks are not plausible in respect to biol-
ogy, a least their topology and the kind of units employed are closer to biological redlity
than is the case for many other connectionist models.

A Connectionist Model for Plan-A-Day 33

4.2 EVA in More Detall

421 Overview

In this section | would like to present EVA in more detail. In determining the concrete specifi-
cations of EVA a characteristic problem of connectionist modeling arises. On the one hand,
one would like such a network model to have interesting emergent properties. For that reason,
one avoids giving the model a certain high-level functiona structure in advance. However, on
the other hand, a skill such as planning, presumably needs the coordinated work of several sub-
modules. These claims contradict each other, because the second way diminishes the possibility
of emergent features, and the first way simplifies the inner process of planning in a quite strong
fashion.

Finally, as it will become evident in the following sections, EVA is a compromise between
both ways. Asfig. 4.1 shows, EVA consists of sub-modules, but these sub-modules work paral-
lel in the same functional context. Before | address the question of EVA’s interna structure
more closely, | must first give an overal view of the model. According to fig. 4.1, in every

EVA
fﬂzggf?;if“i“ Preceding Preceding External
Plan-A-Day Operator Reaction Situation-Action M emory

A\ 4

State of the PAD World

o PAD Task
5 Noise .
whd
g
[}
=3
o < <
g Network A Netw. B Netw. C
Reg. of Reg. of
S Regulation of DeEgLO . :ITSOH
o . - _
S Actions Opera: Opera:
o tor tor
[}
X
Wl
90000000000 | |$| L] |1| |
A
\XfD/ fo

) 4
Determination of the Activation Maximum

Fig. 4.1: Basic architecture of EVA. In the upper part the structure of the input is shown, underneath
the actual model composed of three sub-networks. The output units are displayed as black
dots. By determination of the activation maximum within the output units the next operator
is chosen. Its execution alters the current state of the PAD world and with that the input
(following the feedback arrows).

A Connectionist Model for Plan-A-Day 34

processing cycle EVA receives an input com- Table 4.1: Composition of the PAD task
posgd of sever,al components. This |np.ut is For each of the nine locations
applied to EVA’s sub-networks. After the input « Flag, whether there is a scheduled and

is propagated through these multi-layer net- unfulfilled appointment

works, EVA determines by the activation of the - If there is a scheduled appointment:
output units, which operator is carried oui. * Priority of the gppointment
Through the execution of this operator the state " Earliest starting time of the task

. i Latest starting time of the task
of the PAD world and with that the input for the « Duration of the task

next processing cycle, is changed. This cyclic
process goes on until EVA applies the Finish

operator. N
Table 4.2: Composition of the state of the
PAD world
422 TheOutput For each of the nine locations:
* Flag, whether the appointment (if sched-
In explaining EVA it is easiest to begin with the uled) was already successfully carried
output. As was pointed out in section 3.1.2, 13 out

* Flag, whether there was a visit without
carrying out an appointment
* Flag, whether the location is identical

operators are applicable within the PAD world:
Nine Movements, Drive-by-car, Wait, Delete,

and Finish. Correspondingly, EVA has 13 out- with the current location

put units altogether (displayed as black dots in * Time needed to reach the location from
fig. 4.1.). Every output unit is assigned to one the current focation

operator. Since the output units act as evaluat- General information about the current state:
ors, the activation of each output unit represents * Current time

* Flag, whether the drive by car was

the evaluation of the corresponding operator in already used

the current context. In every processing cycle
the operator with the best evauation, also
referred to as the output unit with maximum
activation, is determined. The corresponding
operator is carried out afterwards.

4.2.3 Thelnput

Environment

The input to EVA consists of several components. First, there is the PAD task itself (in detall
intable 4.1). Because the PAD task remains constant for the most part through the whole plan-
ning process, it is placed across the bottom right corner of the input box in fig. 4.1. The other
components, however, are subject to change by nearly every operator execution. The state of
the PAD world (in detail in table 4.2) is influenced by operator execution, and the preceding
operator and reaction are influenced as well. The preceding operator is the operator applied by

A Connectionist Model for Plan-A-Day 35

EVA asresult of the previous processing cycle. The preceding reaction, in analogy, is the direct
reaction of the PAD system to this operator. This reaction depends on whether the operator is a
valid user input or not. The exact assignment of reactions to operatorsis shown intable 4.3. So
far, the input corresponds closely to the information visible for the human subject in the PAD
user interface, so that human subjects and EVA have very similar information available for their
“situated actions’. Of course, the transfer of the user interface shown in fig. 3.1 to a vector of
scalar values (see section 4.3.1) cannot be made without certain distortions. For example,
sometimes preceding operator and reaction are displayed by the real PAD system in a very
emphasized matter, and sometimes they have to be searched for in different places in the user
interface and must then be completed with information from short-term memory.

External situation-action memory

An external situation-action memory is also provided in the input. This memory serves as a
supplementary aid for EVA. For every situation (that means, for every possible state of the
PAD world) it stores, which operators were applied in this particular situation up until the pre-
sent point. Furthermore, every new storage for an already encountered situation weakens the
prior existing traces for this situation. Such a memory system does not claim to be more than a
loose analogy to existing memory models in psychology (e.g., Hussy, 1993). On the one hand,
the situation-action memory corresponds to the episodic long-term memory (with memory
traces that have just gone from short-term to long-term memory), on the other hand, the weak-
ening of prior existing traces resembles the process of interference which is especialy strong
during the stage of consolidation and for traces which are similar to each other (Zimbardo,
1995).

During the development of EVA, it became clear, that such a memory aid is needed because
not even the recurrent version of multi-layer networks is capable of providing a recollection of
the previous course of planning as well as is necessary. It would be nice to implement the
situation-action memory by another connectionist model (e.g., by a bi-directional associative

Table 4.3: Conditions for negative reactions of the PAD system regarding the applicable operators.
Under all other conditions within the PAD world the reaction is positive.

Reaction
negative (operator rejected)

Type of operator

* When the arrival at the corresponding location would be after 6.30 p.m.

Movements * When the subject is already at the location.
Drive-by-car * When the drive by car already has been used.
* When the Drive-by-car operator has been invoked immediately before.
Wait * When there is not any appointment to be carried out at the present location.
* When the earliest task starting time at the present location already has passed
by.
Delete * When thereis nothing to delete (the current plan is empty).

Finish May always be applied.

A Connectionist Model for Plan-A-Day 36

memory, BAM [Kosko, 1987]), but unfortunately the available amount of time was not enough
for this undertaking. Thus, the externa memory is implemented by a conventional procedure
within the PAD simulation system.

Noise

In the framework of EVA, the input is directly fed into the operator-generating system. That
omits many intermediate stages of perception and of percept-processing during which the infor-
mation from the environment is subject to distortion. Noise is added to the input in order to
model these distorting influences.

Further, EVA relies on the assumption that the complete input described up until the present
time can be held in an unified internal representation at once. Even if this may be correct on a
sub-conscious level, for controlled and intentional information-processing this surely is not true.
The capacities of short-term and working memory are too small to hold such a complex repre-
sentation. Considering this, a distortion of the input representation is aso meaningful. A
detailed description of how noiseis applied to EVA’sinput is given in section 5.3.2.

424 Internal Structureof EVA

EVA consists of three sub-networks each of which is a multi-layer network. In the following
they are called Network A to C, or EVA-a, EVA-b, and EVA-c. Network A isthe largest one.
It has eleven output units which are assigned to the eleven possible actions in the PAD world:
Nine Movements, Drive-by-car, and Wait.

The one and only output unit of network B is assigned to the Delete operator, and the one
and only output unit of Network C is assigned to the Finish operator. As displayed in fig. 4.1,
the output of EVA-b and EVA-c is each weighed by afactor (fp and fr, respectively), before the
activation maximum is determined. This feature is useful for fitting the model to empirical
data. Therefore, it isdescribed more detailed in section 5.3.2.

EVA-b and EVA-c have explicit recurrent connections, what is shown by small feedback
arrows in fig. 4.1. They are hierarchical Elman networks (Elman, 1990; Zell, 1997). A more
precise elaboration is presented in section 4.4.

The subdivision of EVA into several sub-networks has become necessary during model
development in order to optimize the training procedure for each operator. Thisis the technical
side. Further, as deleting and finishing are somehow different from generating actions (see sec-
tion 3.3) and probably more related to meta-cognitive processes (concerning the regulation of
the planning process), it may be argued that the sub-modules responsible for deleting and finish-
ing arein fact based on their own sets of neurons. But, of course, on the current level of knowl-
edge, this argument is as fuzzy as the whole topic itself.

At least EVA is not the first connectionist model using several sub-modules. For example,
Z€ll (1997) cites the work of Jacobs et. al. (1991), who used a combination of several local
expert networks which were integrated by a gating network (adaptive mixture of local experts).

Table 4.4: Specification of the input vector for EVA-a, EVA-b, EVA-C.

For Explanation see section 4.3.1.

. Included in Noise . .
Component Unit sub-network(s) Range factor Meaning of unit values
PAD task
For each of the nine locations (9x):
0.0 &< No appointment at this location
(= Priority, Timel, Time2, Duration = 0.0)
State ABC 0.0]1.0 0.05 or
Scheduled appointment is already fulfilled
1.0 < Unfulfilled appointment at this location
Priority ABC 0.0]0.1]055]1.0 0.025 0.1« Normal priority | 0.55 < High priority | 1.0 <= Very high priority
Timel AB 00]0.1-1.0 0.01 Earliest timefor task starting: From 10.00 am. to 6.30 p.m.(in steps of 5 min.)
Time2 AB 0.0]0.1-1.0 0.01 Latest timefor task starting: From 10.00 a.m. to 6.30 p.m. (in steps of 5 min.)
Duration AB 00]0.1-1.0 0.01 Task duration: From 5 min. to 90 min. (in steps of 5 min.)
State of the PAD world
General information (1x):
CurrentTime AB 01-10 0op currenttime: On acontinuum from 10.00 am. to 6.30 p.m.
(later moments are set to 1.0)
CarUsed AB 00]1.0 0.05 0.0 <= Drive by car has not been used yet | 1.0 <= Drive by car already used
For each of the nine locations (9x):
0.0 = Location has not yet been visited or only without carrying out the
VisitCarryOut ABC 0.0]1.0 0.05 appointment
1.0 <= Location has been visited with carrying out the appoi ntment
0.0 < Location has not been visited yet or only with carrying out the
- appointment
VisitNonCarryOut ABC 00110 0.05 1.0 <= Location has been visited at least once without carrying out the
appointment
. 0.0 <= Location isthe current location
Currentl-ocation AB 00110 0.05 1.0 < Location is not the current location
MoveTime AB 00-10 001 1imeneeded for reaching thelocation from the current location:

On a continuum from 0 min. to 97 min.

Table 4.4 (cont.)

: Included in Noise . .
Component Unit sub-network(s) Range factor Meaning of unit values
Preceding oper ator
For each operator excl. “ Finish” (12x):
0.0 < Operator has not been carried out in the preceding cycle
OperatorFlag AB 00110 0.05 1.0 <= Operator has been carried out in the preceding cycle
Preceding reaction
(2%):
. 0.0 = Preceding operator has been avalid user input
ReactionFlag AB 0.0]10 0.05 1.0 <= Preceding operator has not been avalid user input
Exter nal situation-action memory
For each action (11x):
For every action there exists a memory unit, which indicates whether the
action has been already carried out in the current state of the PAD world.
When an action is “remembered”, the value of the corresponding <Memory-
MemoryUnit A 0.0]0.7x 0.05 Unit> is 0.7 [= MemForgetFactor] raised to the power of a whole number,

beginning with 0.7° = 1.0. The earlier the corresponding action has been car-
ried out, the larger the exponent is (to model forgetting). The <MemoryUnit>
of anot remembered action is set to 0.0.

A Connectionist Model for Plan-A-Day 39

4.3 Precise Specification of Input and Output

After section 4.2 provided a first glimpse on the overall structure of EVA, this section gives a
detailed specification of the input vectors used for the sub-networks of EVA and also a detailed
specification of the principles according to whom the output units are intended to work.

4.3.1 Input Specification

Since EVA consists of multi-layer networks each of which has an input layer, the input has to
be specified as a vector of scalar values within the range of the logistic activation function, thus
within the interval [0.0; 1.0]. Table 4.4 shows all input units and their meaning. The units are
listed in the second column, the third column indicates in which sub-networks each unit is used.
The input vector of EVA-a comprises al units listed in table 4.4; for EVA-b the external
situation-action memory isleft out; and EVA-c only comprises a small subset of units related to
the state of the scheduled appointments and their priority.

The fourth column of table 4.4 displays the values each unit can adopt. The unit may adopt
either severa discrete values or any value on a continuum. In the fifth column one finds the
“noise factor”. This factor determines how heavy noise may distort each unit. The smaller this
factor is, the smaller the maximum distortions are. The values of the noise factor are chosen
according to the information density of each unit. For example, the information density of a
unit like <Timel> is comparatively high, because the range from 0.1 to 1.0 represents a period
of 8% hours. In contrast, the unit <State> can only adopt two discrete values, 0.0 and 1.0.
Accordingly, the noise factor for <Timel> is 0.01, and the noise factor for <State> amounts to
0.05.

PAD task

Altogether, there are 108 input units. First, there are 45 units for the PAD task. The PAD task
is determined by the appointment parameters for the nine locations within the PAD world. Five
parameters constitute each appointment. <State> indicates, whether there is a scheduled
appointment at the corresponding location. A value of 0.0 has two possible meanings. Either
there is no appointment scheduled at all, and then the other four units (<Priority>, <Timel>,
<Time2>, <Duration>) are set to 0.0 as well, or there was a scheduled appointment that has
been already carried out. A scheduled and unfulfilled appointment is indicated by a <State>
value of 1.0. If there is scheduled appointment at the corresponding location, the other four
units specify it more precisely. <Priority> holds the priority of the appointment on three levels:
Normal, high, and very high. <Timel> and <Time2> represent the earliest and the latest start-
ing time respectively, of the task on a continuum from 0.1 to 1.0 which corresponds to the
period from 10.00 am. to 6.30 p.m. (in steps of five minutes). The conversion between both
scales is linear. <Duration> holds the task duration, which ranges between five min. and 90

A Connectionist Model for Plan-A-Day 40

min. (also in steps of five minutes). The conversion to the unit values in the range between 0.1
and 1.0 islinear aswell.

The information provided in the PAD task component of the input vector corresponds
closely to the information shown in the user interface of PAD (within the roofs of the buildings
as shown in fig. 3.1). After carrying out an appointment, the corresponding building is dis-
played in gray color indicating the state. The main difference is, that after carrying out an
appointment the specifications of the appointment are no longer shown in the roof of the corre-
sponding building in contrast to the input vector, where the assigned units still hold their values.
On the other hand, the specifications of the PAD task are still completely available to the
human subject by pressing the ‘F2’" key. Thus, the format chosen for the PAD task component
of the input vector isa compromise.

State of the PAD world

The second component of the input vector is the state of the PAD world or, to put it more sim-
ply, the situation. The situation comprises 38 units, two of which are related to general infor-
mation: <CurrentTime> and <CarUsed>. <CurrentTime> represents the current time as given
in the PAD world. The continuum from 10.00 am. to 6.30 p.m. is transformed by alinear func-
tion to the range from 0.1 to 1.0. For the rare cases when the current time is later than
6.30 p.m., <CurrentTime> also takes a value of 1.0. <CarUsed> indicates whether the car has
already been driven. This unit works like a flag with two states, 0.0 for false (“No, not used
yet”) and 1.0 for true (“Yes, aready used”). Both <CurrentTime> and <CarUsed> arevisiblein
an analogous form in the user interface of PAD: In the upper right and upper left corners of the
screen, respectively (seefig. 3.1).

Further, situational information is available for every location as well. For each of the nine
locations four units are reserved. Three of them, <VisitCarryOut>, <VisitNonCarryOut>, and
<CurrentLocation>, work like flags. <VisitCarryOut> is set to 1.0, when the location has been
visited with carrying out the appointment (of course only if an appointment is scheduled). In
contrast, <VisitNonCarryOut> is set to 1.0, when the location has been visited without carrying
out any appointment, no matter, if there is any scheduled appointment at al, or if the location
has been visited at the wrong time. These two flags work as a substitute for the precise list of
movements and visits completed so far, as shown on the right side of the user interface (see fig.
3.1). On the one hand, the list provides more information, especially about the chronological
course, on the other hand, this combination of flags states explicitly what a human subject has
to derive from the PAD task, the condition of the buildings, and the course of movements and
visits. Thisderivation is not difficult, but also not totally obvious. Unfortunately, such an open
list cannot be represented within the input vector without providing a large amount of units.
Therefore, the combination of <VisitCarryOut> (nearly equivaent with <State>, but reversely
defined) and <VisitNonCarryOut> was chosen as substitute.

<CurrentLocation> and <MoveTime> are less problematic. They can be read out directly
from the user interface. <CurrentLocation> is set to 1.0, when the location is identical with the
current location where the “subject” is at the current moment. Therefore <CurrentLocation>

A Connectionist Model for Plan-A-Day 41

can only be set to 1.0 for one location at atime. The <MoveTime> unit displays the time it
would take to move from the current location to the repective location to which the
<MoveTime> unit belongs. The movement times range from zero min. to 97 min.; they are
linearly transformed on the range from 0.0 to 1.0. When the drive by car is invoked, all
<MoveTime> units are reduced to athird.

Preceding operator

The preceding operator only takes twelve units from the input vector, one for each operator
excluding Finish. Each unit works like a flag (called <OperatorFlag>): If the corresponding
operator has been carried out by EVA in the preceding cycle, the unit is set to 1.0. Therefore,
only one unit within the preceding operator section can be set to 1.0 at any time. The unit for
the Finish operator is left out, because the process of planning always comes to an end after the
use of Finish.

Preceding reaction

Both units in this section of the input vector work in the same way. The information provided
by the <ReactionFlag> is doubled in the input vector, which serves to emphasize this informa-
tion alittle more. When the preceding operator has been avalid user input to the PAD system,
the <ReactionFlag> is set to 0.0, otherwise it is set to 1.0. The conditions for positive vs. nega
tive reactions of the PAD system are shown in table 4.3.

The special relation of the preceding operator and the preceding reaction to the information
displayed in the user interface is addressed in section 4.2.3.

External situation-action memory

The role of the external situation-action memory within the input of EVA is discussed in sec-
tions 4.2.3 and 4.5.2.2. Asit is pointed out there, this memory system associates states of the
PAD world with actions previously applied to these states. For each of the eleven available
actions there is one <MemoryUnit>. The procedure underlying the memory stores for every
distinct situation within the PAD world, every action ever applied and their order. When a
situation is entered repeatedly, the previously applied actions are represented by the
<MemoryUnits>. A <MemoryUnit> for an action never applied before is set to 0.0. The other
<MemoryUnits> display MemForgetFactor (a parameter in the interval]0.0; 1.0[), which is
raised to the power of a whole exponent. The exponent depends on the order in which the
actions were applied. Zero is assigned to the most recent action, one is assigned to the second
to last action, and so on. Thus, the <MemoryUnit> for the most recent action is set to 1.0; for
the other actions akind of forgetting takes place. The longer ago they were applied to the situa-
tion, the smaller the value of their corresponding <MemoryUnit> is.

MemForgetFactor iS one of the explicit parameters of EVA. For the generation of the training
data (see section 4.5.2.2) MemForgetFactor was set to 0.7 (as it is shown in table 4.4).

A Connectionist Model for Plan-A-Day 42

However, one supplemental remark is necessary: The <MemoryUnit> for the Wait action
only works for the starting situation of PAD (10.00 am. at the office building). In this situa-
tion Wait is like a movement to the office, in order to carry out the appointment scheduled there.
In all other situations it would be senseless to provide a memory for waiting, because waiting
should always be carried out whenever the planning agent arrives too early at alocation, regard-
less of the existence of amemory for preceding Wait actions in this specific situation.

General remarks

In the specification of the full input vector many modeling decisions have been made and many
parameters have been set more or less implicitly. Both theoretical and practical considerations
have led to the chosen input representation. Guided by the idea of situated action, the main goal
was to transform the user interface of PAD into the best possible representation that can be pro-
vided by a vector of scalar values between 0.0 and 1.0. Even if the construction of flags seems
to be plausible in psychological respect, many other specifications for certain input units are
more open to criticism. Flags are used in the form of cues in many other psychological models
(e.g., in the BIAS model of Fiedler, 1996), but the representation of time on an activation con-
tinuum does not have any previous examples known by the author. Many other representations
of time in such an input vector are imaginable too; for example one may use a temperature cod-
ing (Blankenberger, 1992). However, the fact that the number of units in the input vector is
limited due to calculating capacity, should by no means be overlooked. The one unit coding of
time is very economical (even if it is theoretically questionable), and even with this coding, the
calculating demands of training EVA exceeds the capacity of a state of the art personal compu-
ter (see section 4.5).

Many parameters are implicitly set by determining the value range of the input units. How-
ever, since the value range for every output unit follows the general maxim to use the available
range of the logistic activation function from 0.0 to 1.0 most extensively, and since the value
range was not varied in the process of model fitting (see section 5.3.1), these implicit parame-
ters are viewed in the following as an integral constituent of EVA and not as free parameters.

So far, four “explicit” model parameters have been introduced. First, there is
MemForgetFactor. As it will become obvious in section 4.5.2.2, MemForgetFactor iS important
for generating the training data. Beyond it, MemForgetFactor may be varied for different smula
tion runs.

The other three model parameters have only briefly been mentioned so far. They can be
found in the column “noise factor” of table 4.4. This factor determines, how much the corre-
sponding input unit can be influenced by noise (see section 5.3.2). An inspection of table 4.4
reveals that three different values are given as noise factors. 0.01, 0.025, and 0.05. They corre-
spond to the parameters NoiseTime, NoisePriority, and NoiseFlag. NoiseTime IS applied to every
input unit dealing with time with a comparatively high information density. NoiseFlag is used
for input units working like false/true-flags and for the <MemoryUnits>. The input unit

A Connectionist Model for Plan-A-Day 43

<Priority> is an isolated case with a fourfold gradation. Therefore, NoisePriority receives a
medium value between the other two noise parameters.

4.3.2 Output Specification
4.3.2.1 Output as Evaluation of Operators

As pointed out in section 4.1, in every processing cycle EVA isintended to generate evaluators
for each operator. These evaluators are evaluations of operators with respect to the main goal of
finding the optimal plan. As stated earlier, every output unit of EVA is assigned to one
operator. Thus, considered together, every output unit generates the evaluation for its specific
operator. The following describes how this evaluation takes place. This description is correct
for the training data, by which both input and output are prescribed by the “external teacher”.
For the output EVA actually produces these instructions have got only normative character.
The better EVA has learned to work on PAD tasks and to produce such evaluators as output, the
smaller the difference between the desired output and the actual output of EVA will be (see sec-
tion 4.5.1). In addition, in section 4.5.2 some further modifications of the (desired) output,
which were created due to special demands of single operators are presented.

The basic principle of the desired evaluation is quite simple. First, given a specific PAD
task, one determines the score for its optimal plan. Following the procedure described in sec-
tion 3.1.2, every very important appointment is worth eight points, every important appoi ntment
three points, and every normal appointment one point. Additionally, for every location visited
without carrying out an appointment five points are substracted (of course, such visits are not
part of an optimal plan, but these “penalty points’ are needed for the rating of hypothetical
plans as described in the following). While the normal evaluation of plansis called “standard
evauation” in the following, the evaluation including penalty points is called “advanced
evaluation”.

Furthermore, one considers the current situation and the actions carried out so far in the cur-
rent plan. According to the advanced evaluation, a maximum end score is calculated for every
operator, that could potentially be reached, if that operator were to be applied to the current
situation, and if the Delete operator could not be applied afterwards. This constraint is impor-
tant because without it, one would always be able to reach the optimal score. Thus, every
operator is examined in relation to the maximum end score it alows, if one follows the optimal
way beginning with the operator itself, starting from the current situation. For example, for the
Finish operator this maximum end score is always identical with the score for the plan produced
thusfar.

The evaluation value for each operator is calculated as the ratio between the operator’s spe-
cific maximum end score and the optimal score of the PAD task. Therefore, every operator
leading to the optimal plan receives an evaluation value of 1.0. Operators leading to inferior
solutions receive evaluation values less than 1.0. Unfortunately, this procedure does not work

A Connectionist Model for Plan-A-Day 44

appropriately for the Delete operator. Thus, the Delete operator is evaluated according to a dif-
ferent rule: Whenever the current plan does not allow the optimal score to be reached through
the application of one or several actions, then the Delete operator receives an evaluation value
of 1.0. Otherwiseit receives0.0.

This method of evaluation has several implications. For example: Because senseless visits
are punished by a deduction of five points, plans including such visits always result fact that the
Delete operator is evaluated with 1.0 and all other operators with alesser value.

In addition, two further rules are used in the evaluation of operators. First, actions that are
senseless to apply are evaluated with 0.0. Movements are senseless in this respect, when no
appointment is scheduled at the destination of movement or the scheduled appointment has
already been carried out. Further, every action is seen as senseless, if it produces a negative
reaction by the PAD system (see table 4.3). The second additional rule refers to the Drive-by-
car action. Whenever Drive-by-car gets an evaluation value of 1.0, but another operator also
gets this optimal value, then the evaluation value of Drive-by-car is reduced to 0.9.® Thisrule
prevents the use of the drive by car in cases, when it is not totally necessary. Thisisakind of
economical principle.

Following this method of evaluating the operators every output unit receives a value between
0.0 and 1.0, which corresponds to the evaluation value of its assigned operator. This vector of
evaluators depends on the given PAD task and on the current state of the PAD world. The
method of evaluation reflects the goal of reaching one of the optimal plans - only the operators
leading to one of these plans get the maximum evaluation value of 1.0. The other operators get
evaluation values corresponding to the best plan to which their application would lead.

4322 Accentuation of the Best Evaluators

In addition to the evaluation principles considered so far, one more step has to be carried out to
produce the final vector of desired output values. Namely, all evaluation values smaller than
1.0 are multiplied by a restraining factor in the interval [0.0; 1.0]. This factor corresponds to
the model parameter RestrainFactor, which is set to 0.4 for the training data of all sub-networks
of EVA. A RestrainFactor of 1.0 would omit the accentuation of the best evaluators, a
RestrainFactor of 0.0 would lead to output vectors in which the units assigned to operators |lead-
ing to optimal solutions are set to 1.0 and all othersto 0.0.

The introduction of the RestrainFactor leads to a stronger accentuation of the best evaluators
because all other evaluators are restrained. During the development of EVA this additional pro-
cedure has caused better results for network training and for the performance of EVA on vari-
ous PAD tasks. Thereforeit wasincluded in the model.

In the course of determining the evaluators for a given PAD task and a given situation sev-
eral implicit parameters find their way into the model again. However, as for the input, a simi-
lar argument is stated against viewing at these parameters as free model parameters. The whole

18 When the competing operator is the Finish operator, then the evaluator of Drive-by-car is even reduced to 0.0.

A Connectionist Model for Plan-A-Day 45

evaluation procedure is guided by the main goal to find evaluators which are orientated by the
optimal plan(s). Except for RestrainFactor, most implicit parameters are set due to technical or
theoretical considerations and were not varied in the process of mode fitting.

4.4 Precise Specification of the Sub-Networks

441 EVA-a

As stated previoudly, all sub-networks of EVA are multi-layer networks. EVA-ais apure feed-
forward network with four hidden layers. Fig. 4.2 shows the structure of EVA-a. In addition to
the connections from each layer to its following layer, there are several “shortcut connections’.
EVA-aisafully connected network: Every layer receivesinput from all of its preceding layers.
These shortcut connections were introduced into EVA-a (and also into EVA-b and EVA-c),
because they provide additional power. Zell (1997, p. 422) outlines the two-spiral-problem
which is much more easy to solve for backpropagation networks, if one uses shortcut connec-
tions. Further, Zell (1997, p. 418) recommends the use of shortcut connections in general.

Own pre-experiments with a reduced and simplified version of PAD (“Mini-Plan-A-Day” or
MPAD) gave converging evidence. The most important factor that determines the time needed
for each training epoch is the number of weights within the network. In keeping the number of
weights nearly constant, one can create networks with a different number of hidden units. In

EVA-a

| Input Layer: 108 Units —

AN
N
o
c
=)

=
()

v

:
-; Output Layer: 11 Units

Fig. 4.2. Sructure of EVA-a. The unit-to-unit connections are replaced by arrows indicating the con-
nections between entire layers. EVA-a is a fully connected multi-layer feed-forward
network. It has 347 active units in its hidden layers and output layer. The number of
weights amounts to 81263. This resultsin a ratio of the number of weights to the number of
active units of 234.2.

A Connectionist Model for Plan-A-Day 46

one extreme scenario, one chooses a network topology that provides one large hidden layer and
no shortcut connections, in the other extreme scenario one chooses many small hidden layers
which are fully connected with each other. The pre-experiments revealed that for the reduced
version of PAD, the best results (in respect to the training success) were obtained when one
chooses several hidden layers nearly the same size as the input layer and provides complete con-
nections between them. Unfortunately, the complete version of PAD/EV A needs so much cal-
culating time for training that only restricted possibilities could be used to vary the topology of
EVA’s sub-networks. Nevertheless, because of the structural similarity between the reduced
and the complete version of PAD it is plausible to assume that the main results for the former
one can be transferred to the | atter one.

The input layer of EV A-a comprises the complete vector of 108 input units as presented in
table 4.4. The output layer consists of eleven units corresponding to the eleven available
actions. The first and fourth hidden layer of EVA-a have 48 units, the second and third have
120 units each. This topology was chosen on the basis of experience with forerunners of
EVA-a. However, due to the huge demands on calculating capacity in network training it was
not possible to carry out systematic experiments, which included the topology of EVA’s sub-
networks into the process of model fitting. As the experience shows, the exact topology only
has a dlight influence on the results of the ssimulation runs described later on, when one keeps
the number of units and weights nearly constant. In this respect, the ratio of weights to active
units seems to be of more importance. The units of the hidden layers and the output layer are
designated as “active units’, because they actually transform their input to an activation value,
whereas the input units receive their activation value from an external source. The ratio of
weights to active unitsis an indicator for “connectivity” and seems to be a predictor for training
success in the domain of EVA/PAD. However, since this claim is only based on afew observa-
tions, | won't go deeper into it.

To sum up, EVA-a has 347 active units and 81263 weights'®, and therefore, a “ connectivity
ratio” of 234.2. The complete number of units amounts to 455.

442 EVA-b

Asfig. 4.3 shows, EVA-b has only one output unit. This output unit corresponds to the Delete
operator. Because the external situation-action memory does not comprise the Delete operator
and is not intended for influencing its evaluator, the external memory is omitted in the input
vector for EVA-b. Therefore EVA-b has only 97 input units, in accordance with table 4.4.

Like EVA-a EVA-b is fully connected too. It has three hidden layers - the first consists of
36 units, the second of 97, and the third again of 36 units. Further, EVA-b has two context lay-
ers for the third hidden layer and the output layer. Because of this topological characteristic,
EVA-b belongs to the class of hierarchical ElIman networks (Zell, 1997). Hierarchical Elman

¥ For EVA-a, EVA-b, and EVA-c the threshold 6, is replaced by an additional "on-neuron” and an input weight
corresponding to this neuron. Therefore the threshold values 6, are counted as weights.

A Connectionist Model for Plan-A-Day 47

networks have recurrent connections which are implemented in the form of context layers.
Context layers can be assigned to every hidden layer and to the output layer. They are always of
the same size as the layer to which they are assigned (their basis layer). They work as a supple-
mentary input: Each unit of the context layer sends its activation to every unit of the basis layer.
The activation of each unit in the context layer, on the other hand, is determined by the activa-
tion of the corresponding unit in the basis layer in the preceding processing cycle.

Such recurrent connections extend the capabilities of multi-layer networks, so that they are
able to recognize chronological information in series of input patterns. Elman (1990) gives sev-
eral examples even from a psychological point of view.

The following general settings were designed for EVA-b, as well as for EVA-c: In the first
processing cycle, when the ssmulation run or training for a PAD task starts, the activation values
of the context layers are set to 0.0. The parameter /, which influences the storage characteris-
tics of context layers, amounts to 0.0 for EVA-b and EVA-c, so that the context layers are han-
dlied in the way described above (which is the ssimplest way with the least assumptions).

As pointed out for EVA-a, the precise topology of EVA-b was determined by experience and
technical considerations. Altogether, EVA-b has 170 active units and 26406 weights, and there-
fore, a “connectivity ratio” of 155.3. The complete number of units (active units plus context
and input units) amounts to 304.

Independent of this technical specification the question arises, why EVA-b was conceptual-
ized as recurrent network. Aswe will seein later sections, human subjects like to concatenate
Delete operators. They build “delete chains’ of an average size of two Delete operators (see

EVA-b
| Input Layer: 97 Units —
\ 4
{ 36 Units
\ 4
—] 97 Units |—
\ 4
=ik > 36 Units [«
_ __ ContextLayer: 1=00___
\ 4
<
Output Layer: 1 Unit
e

—— e = —————

Fig. 4.3: Sructure of EVA-b. The unit-to-unit connections are replaced by arrows indicating the con-
nections between entire layers. EVA-b is a fully connected hierarchical Elman network with
two context layers. It has 170 active unitsin its hidden layers and output layer. The number
of weights amounts to 26406. Thisresultsin a ratio of the number of weights to the number
of active units of 155.3.

A Connectionist Model for Plan-A-Day 48

section 6.1.2). During the development of EVA, it became clear that such behavior cannot be
simulated by pure feed-forward networks. Apparently, delete chains are triggered by a specific
situation, and afterwards they are maintained independently of the changing situation by inner
determinants. In the field of multi-layer networks such inner determinants can be modeled by
recurrent connections which inform the network about its prior inner state. Thus, to be able to
simulate delete chains EV A-b was equipped with recurrent connections. In respect to this gen-
eral topological characteristic, EVA-b was designed according to results obtained in the first
stage of model fitting (see sections 5.3.1 and 6.1).

443 EVA-c

The structure of EVA-cisshown in fig. 4.4. The one and only output unit of EVA-c is assigned
to the evaluator for the Finish operator. According to table 4.4, EVA-c has only 36 input units.
The input vector for EVA-c comprises all necessary information to determine the rating of the
current plan. Asthe main finish criterion is the fulfillment of as many appointments as possible
(thus, to finish with one of the optimal plans), the current rating is the best indicator for that
purpose. If al appointments scheduled in a PAD task can be carried out in the optimal plan(s),
then the rating gives unequivocal information as an indicator. For all other PAD tasks, this
indicator is not as clear, but quite sufficient, if one takes the general blurredness of neural

EVA-c

[Input Layer: 36 Units |

. A
Output Layer: 1 Unit

Fig. 4.4. Sructure of EVA-c. The unit-to-unit connections are replaced by arrows indicating the con-
nections between entire layers. EVA-c is a fully connected hierarchical Elman network with
three context layers. It has 181 active unitsin its hidden layers and output layer. The num-
ber of weights amounts to 28909. This results in a ratio of the number of weights to the
number of active units of 159.7.

A Connectionist Model for Plan-A-Day 49

networks into account. For these reasons as well as for economical reasons the input for EVA-c
was reduced to 36 input units.

EVA-c itself has three hidden layers. The first two layers have 72 units each, the third 36
units. EVA-c is completely connected like EVA-a and EVA-b. In addition, al hidden layers
are each provided with a context layer, so that EVA-c is a hierarchical Elman network like
EVA-Db.

As stated for the other sub-networks, the precise topology of EVA-c was also determined by
experience and technical considerations. Altogether, EVA-c has 181 active units and 28909
weights, and therefore, a “connectivity ratio” of 159.7. The complete number of units (active
units plus context units plus input units) amounts to 397.

EVA-c was designed as recurrent network to model motivational influences on the “Finish
operator”. These influences were observed in the data obtained by human subjects. Thus, also
results from mode fitting were used for network design for EVA-c. As the data show, many
subjects finish the planning process without having reached the optimal plan. This hasty finish-
ing may have several reasons. First, the interest or desire to work on the PAD task has dropped
under an individual threshold. Second, the chances of greater success are estimated as quite
small after several unsuccessful attempts of further improvement. Third, the pressure, due to
the limited time for working on the PAD task has led to finishing. All these possible reasons
have one thing in common: They are related to time passing by. Thus, in addition to the pure
rational evaluation of the Finish operator, EVA-c has to take this time component into consid-
eration. In order to be able to fulfill such ademand, EV A-c needs recurrent connections.

444 EVA-a EVA-b, and EVA-c Considered Together

Even if it may seem very arbitrary at first glance, which precise topology is chosen for each of
EVA’s sub-networks, there is one common principle in the number of units designated to hid-
den layers. Thefirst and last hidden layer have an identical and comparatively small number of
units, while the middle hidden layer(s) have at least as many units as the input layer. Because
EVA-c has such a small input layer in comparison, this basic scheme was varied, and the input
layer was identified with the first hidden layer.

After several attempts with other topologies (e.g., with hidden layers of decreasing size from
input to output), this basic scheme was chosen, because it is supposed to have a slight advan-
tage in training success.

In regard to the number of weights and units, EVA-a, EVA-b, and EVA-c are different.
These differences are based on the different number of output units and the different (assumed)
complexity of the evaluation task(s) demanded by each network.

A Connectionist Model for Plan-A-Day 50

45 Network Training

451 General Considerations

Section 2.1.1.3 gives a brief introduction to connectionist learning. The foundation for learning
in multi-layer networks is the generalized delta rule, on which the backpropagation procedure is
based. By using backpropagation, multi-layer networks can be trained to perform a set of input-
output-transformations. Before training, such networks are considered “stupid”’. The output
patterns, which they produce as transformation of certain input patterns, are a result of pure
chance. This corresponds to the fact, that network weights are randomly set at the beginning.
Only through training do these weights receive values that allow meaningful input-output-
assignments. In genera, this training takes place by the repeated presentation of input-output-
pattern-pairs to the network and corresponding weight adjustments.

The first objective of training is that afterwards the network is capable of handling the train-
ing patterns in the desired way. However, for many problems the set of patterns is very large,
and therefore, training can only take place with a subset of these patterns. For this reason, it is
also desirable that the network is able to produce the correct output pattern for input patterns to
which it never has been applied during training. This capability is called “generalization”. To
control the generalization abilities of a network during training, the performance of the network
is often not only supervised according to the training patterns, but also according to a set of so-
called test patterns. In general, the generalization abilities are better the more training patterns
are used. When the amount of training patterns is too small, a network will learn these patterns
as specia cases, but will not derive a general hypothesis about the relationship between input
and output patterns.

On the other hand, when the number of training patterns increases, the time needed for one
epoch aso grows (linearly). An epoch comprises the complete presentation of al training pat-
terns to the network including the according weight adjustments. Often, many epochs are
needed to fulfill a certain criterion defined for finishing training. Such criteria mostly rely on
the error either for the training set or the test set or both. | will go deeper into this subject in
section 4.5.3. Roughly speaking, the number of epochs needed may vary in the range from 10
to 100 000, depending on the learning procedure?, the network size and topology, the complex-
ity of the problem, the representation chosen for input and output, and the number and selection
of training patterns. The training of neural networks is a very demanding job for today’ s (desk-
top) computers®, when the complexity of the stated problems reaches the level of EVA/PAD.

While section 4.5.3 addresses the questions of the appropriate training procedure for EVA’s
sub-networks and section 4.5.4 presents the actual course of training, in section 4.5.2, as begin-
ning, the creation of the training data is described.

% Thefollowing descriptions refer only to multi-layer networks of the "backpropagation-class* and not to connec-
tionist networks in general.

2 Meanwhile there are many competitors to backpropagation.

%2 Of course, the use of more advanced hardware like SIMD parallel computing systems or specialized neuro
processors, allows research on much larger connectionist networks with much larger training sets (see Zell, 1997).

A Connectionist Model for Plan-A-Day 51

45.2 Training Data
452.1 BasicPrinciples of Data Generation

A separate set of training and test patterns was generated for each of EVA’s sub-networks.
Nevertheless, the basic principles of generation are the same for all sub-networks. First, aPAD
task is randomly created, that fits severa parameter settings, which | will describe later on.
Afterwards, on the basis of this PAD task, a sequence of operators is generated, also randomly,
but under certain constraints. This sequence is used to determine a corresponding chain of
states of the PAD world (by applying these operators one after another). For each state an input
vector is constructed, which meets the specifications of table 4.4, that means: It comprises the
PAD task, the current state, the preceding operator and reaction, as well as the continuously
updated situation-action memory. According to this input vector and to the principles outlined
in section 4.3.2, the desired output vector is determined as well. By this way, the input-output-
pattern-pairs for training and testing are generated. The procedures needed for this purpose and
also for the later presented simulation runs are implemented in a PAD simulation system, that is
based on a C++ function library.

Table 4.5: Parameters for the random generation of PAD tasks, their default values, and their meaning

Parameter Default vdlue Meaning

General parameters

MinSchedulApps 5 Minimum number of scheduled appointmentsin a PAD task
MaxSchedulApps 9 Maximum number of scheduled appointmentsin a PAD task
StartLocation 3 (Office) Location in the PAD world, where the subject starts

DayBegin 10:00 am. Time at which the day in the PAD world begins

LastAppBegin 3.00 p.m. It_)g;ﬁt time at which a period of appointment fulfillment can
LastAppEnd 6.30 p.m. Latest time at which a period of appointment fulfillment can end
MaxTaskDuration 90 min. Maximum period the fulfillment of an appointment can take

Flag, if the earliest and latest time of task starting are identical

ConfMoment true
for the conference room

OBTequDB 05 Pro_bablllty for egch appointment, that its period of fulfillment
begins at DayBegin

MeanTimeRange 222 min. Average length of the period of appointment fulfillment

Parametersregarding the optimal plan(s) for each generated PAD task

MinNoOptPlans 1 Minimum number of optimal plans

MaxNoOptPlans 1 Maximum number of optimal plans

MinInOPLoc 3 Minimum number of locations visited in the optimal plan(s)
MaxInOPLoc 9 Maximum number of locations visited in the optimal plan(s)
MinOPRating 3 Minimum rating of the optimal plan(s)

MaxOPRating 72 Maximum rating of the optimal plan(s)
OPIncludeCar true Flag, if the optimal plan(s) include(s) the Drive-by-car action

A Connectionist Model for Plan-A-Day 52

Creation of PAD tasks

The random generation of PAD tasks is controlled by several parameters, which are presented
in table 4.5. These parameters are chosen in away so that they meet the basic characteristics of
the predefined PAD tasks 1 to 16 in the “real” PAD system. The default values presented in
table 4.5 are subject to slight variations for each of EVA’s sub-networks. These changes will be
addressed in the corresponding sections.

Creation of sequences of operators

The generation of these sequences is based on a random choice of operators (always finished by
the Finish operator). This random choice can be influenced by several parameters, so that the
generated sequences can differ widely in their quality. In one extreme, such a sequence is noth-
ing more than a totally random succession, in the other extreme, the sequence leads to one of
the optimal plans in the shortest possible way. Usually, a medium way was chosen in genera
tion of the training data. Since the precise parameter settings differ widely between
EVA-a/EVA-b on one side, and EV A-c on the other side, the following table 4.6 only shows the
parameters and their meanings, the parameter values are given later on.

The parameters MaxPDelete, MaxPCar, MaxPInvalid and ExpPOpt need some explanations in
advance. Before any sequence is created, four probabilities are fixed in advance: The probabil-
ity for any operator in this sequence to be a Delete operator, a Drive-by-car operator, an invalid
operator (according to table 4.3), or an operator leading to an optimal plan. The first three prob-
abilities are determined randomly, and in doing so, MaxPDelete, MaxPCar, and MaxPInvalid deter-
mine the corresponding maximum probabilities. Afterwards, the probability for an operator to
be an optimal one (pOpt) is determined. (Of course, it is aways taken into consideration that
the sum of probabilities has to be equal to 1.0.) The residual probability is designated to the
case in which the operator is chosen completely at random. By ExpPOpt pOpt may be increased
to the debit of this residual probability.

Table 4.6: Parameters for the random generation of operator sequences, and their meaning

Parameter Meaning
Maximum number of operators in a sequence; after MaxiSequence operators the
MaxiSequence sequence is compulsorily finished by a Finish operator. Also, asequenceis
always finished when an optimal plan has been reached.
MaxPDelete Maximum Probability which can be determined for the Delete operator
MaxPCar Maximum Probability which can be determined for the Drive-by-car operator
MaxPlnvalid Maximum Probability which can be determined for the application of an

invalid operator

A value larger than 1.0 decreases the probability for the application of operators
leading to an optimal plan, avalue smaller than 1.0 increases this probability.

Probability that a Delete operator is followed by another Delete operator (in addi-
tion to the basic rules of sequence generation)

Onlylnvalid Flag, if only invalid Delete operators are used as operators

ExpPOpt

pRepeatDelete

A Connectionist Model for Plan-A-Day 53

45.2.2 Traning Datafor EVA-a/EVA-b

The training data produced for EVA-a and EVA-b is based on the same randomly generated
PAD tasks and the same random sequences of operators. The difference between EVA-a and
EVA-b isthe different format of their input vector and that they are assigned to different output
units.

The parameters for PAD task generation take the default values of table 4.5. Furthermore,
there are two additional features. First, in every seventh PAD task OPIncludeCar is set to false.
Second, in every ninth PAD task the priorities of all appointments are set to equal levels.
Through these variations, the scope of learning experience for the networks is widened.

The parameters for the generation of operator sequences take the values shown in table 4.7.
As this table reveals, there are two different configurations. The left configuration produces
planning processes with many sub-optimal or even invalid operator applications, which facili-
tate the training of the Delete evaluator and aso of the influence of the preceding operator and
reaction and of the external situation-action memory. On the other hand, the right configuration
leads (nearly) always directly to the optimal plan. In such a case the sequences are compara-
tively short, and many different PAD tasks can be presented to the networks during training
without breaking up the size of the set of training patterns.

EVA-a

The output provided for the training of EVA-a is based on the evaluators described in section
4.3.2. However, in addition, in order to train the influence of the external situation-action mem-
ory, minor modifications are necessary. Namely, as the output units of EVA-a correspond to
the eleven available actions, and the <MemoryUnits> are also assigned to one action each,
every output value in the training data is multiplied with the difference between 1.0 and the
value of the corresponding <MemoryUnit>. Through this procedure, EVA-ais trained to proc-
ess the external memory as an inhibitor on the application of actions. Whenever EVA-a enters
a situation for the second time, the output unit assigned to the action carried out at the first time
will be inhibited. The strength of inhibition can be regulated by the value of MemForgetFactor.

Table 4.7: Parameter values for the random generation of operator sequences for the training data of
EVA-a and EVA-b

Configuration

Perameter for 40 % of the generated PAD tasks for 60 % of the generated PAD tasks
MaxiSequence 40 40

MaxPDelete 0.15 0.0

MaxPCar 0.15 0.0

MaxPInvalid 0.3 0.0

ExpPOpt 0.7 0.001

pRepeatDelete 0.75 0.0

Onlylnvalid false false

A Connectionist Model for Plan-A-Day 54

Thisway, EVA is prevented from “running in circles’, as was the case for the first versions of
EVA, which did not have externa memory. Then, often one specific action and the Delete
operator alternated in the sequence of operators produced by EVA without ever finishing. This
did not correspond at all to the behavior observed in human subjects.

Finally, the training set for EVA-a comprises 150297 input-output-pattern-pairs, which are
based on 8450 different PAD tasks. The number of test patterns amounts to 6314 (equivalent to
350 PAD tasks). Thus, the average length of each operator sequence (for one PAD task each)
amountsto 17.8.

EVA-b

According to the remarks in section 4.4.2, EVA-b is supposed to produce delete chains. Apart
from the recurrent architecture of EVA-b, this capability has to be supported by the structure of
the training data. Therefore, the Delete evaluator provided for training is further modified in
comparison to the output specified in section 4.3.2. Namely, whenever the Delete operator
occurred in the randomly generated sequence of operators in the previous cycle (whereby, in the
current cycle, the preceding operator in the input is the Delete operator), the Delete evaluator is
modified in the following way:

EVpaee t = (1.0 — DelRepeatFactor) - EVpeee t + DelRepeatFactor - EVpgete, t-1 (4.0

EVbeee ¢ IS the value of the Delete evaluator in the current cycle, EVpaee, 1 1S its value in the
preceding cycle.

In this formula, the parameter DelRepeatFactor (range within [0.0; 1.0]) is introduced. This
parameter determines, how strong a preceding Delete operator influences the current Delete
evaluator. A value of 0.0 for DelRepeatFactor leads to no modifications at all, a value of 1.0
results in the current Delete evaluator being equal to the preceding Delete evaluator. In the lat-
ter case, EVA-b would be trained to rely totally on its preceding evaluation of the Delete opera-
tor whenever this evaluator has reached the maximum activation of all output units in the pre-
ceding cycle. Actualy, the output patternsin the training data for EVA-b were generated with a
DelRepeatFactor of 0.75. This value was chosen due to results of the first stage of model fitting
(see section 5.3.1).

The training set for EVA-b comprises 88325 input-output-pattern-pairs which are based on
5000 different PAD tasks. The number of test patterns amounts to 9084 (equivalent to 500
PAD tasks).

4523 Training Datafor EVA-C

For the training data for EVA-c, the parameters for PAD task generation also receive the default
values of table 4.5. In generating the sequences of operators, three different configurations were
mixed in the training data. The parameter settings for these configurations are shown in table
4.8. Every configuration was used for one third of the generated PAD tasks.

A Connectionist Model for Plan-A-Day 55

Table 4.8: Parameter values for the random generation of operator sequences for the training data of

EVA-c

Parameter Configuration

(@ (b) (©)
MaxiSequence 120 120 120
MaxPDelete 0.15 0.0 -
MaxPCar 0.15 0.0 -
MaxPInvalid 0.3 0.0 -
ExpPOpt 10 0.001 -
pRepeatDelete 0.75 0.0 -
OnlylInvalid false false true

Configuration (b) leads straightforward to optimal plans by which EVA-c can learn, when
the optima plan is reached and, therefore, a maximum value for the Finish evaluator is
demanded. By configuration (a), sequences are generated that show an alternation between
decreasing and increasing distance to the optimal plan and, therefore, help to train aternating
evaluations of the Finish operator. In contrast, configuration (c) only causes sequences of
Delete operators, which have no effect on the state of the PAD world since they are invalid (at
the beginning of the planning process there is nothing to delete). In this case, the influence of
time on the evaluation of the Finish operator (see section 4.4.3) can be specificaly trained, as
pointed out in the following.

In addition to the standard evaluation of the Finish operator as described in section 4.3.2, the
output unit of EVA-c aso reflects the influence of time on the Finish evaluator. In this regard,
time means not the time within the PAD world, but the “real” time passing by for the subject in
front of the computer screen. This kind of time is modeled by the transition of one processing
cycle to the next. As shown in section 4.3.2, with ongoing time the readiness for finishing
grows, and thus, this observation taken from empirical observations has to be reflected by a Fin-
ish evaluator, which increases from processing cycle to processing cycle.

Two parameters serve to determine this influence of time on the Finish evaluator. First,
EndThreshold determines the number of cycles after which the value of the Finish evaluator
always amounts to 1.0. Second, ExpET (range: [0.0; o[) regulates how strongly the Finish
evaluator isincreased in the cycles before (in comparison to its “normal” value). The larger the
value of ExpET, the less the evaluation of the Finish operator is changed until a few cycles
before EndThreshold. The smaller the value of ExpET, the earlier and the stronger the Finish
evaluator is increased in course of the ongoing processing cycles. For the actual training data
for EVA-c the following values were chosen: ExpET = 5.5 (which is comparatively large),
EndThreshold = 119. These values are based on results from the first stage of model fitting (see
section 5.3.1).

A Connectionist Model for Plan-A-Day 56

Thus, configuration (c) helps EVA-c to learn the pure influence of time on the desired value
of the Finish evaluator. As pointed out in section 4.4.3, this learning can only take place
because of the recurrent connections of EVA-c.

Obvioudly, the characteristics of the training data needed for EVA-a/EV A-b on the one hand
and EVA-c on the other hand are quite different. Thisis the main technical reason, why a sepa-
rate sub-network was specified for the Finish evaluator. Theoretically, one could be able to
train all output units of EVA together in one joined network, but practically, the calculating
demands for such an endeavor would exceed the limits of the computer equipment available for
this study.

Finally, the training set for EVA-c comprises 86812 input-output-pattern-pairs which are
based on 1200 different PAD tasks. The number of test patterns amounts to 13604 (equivalent
to 200 PAD tasks). Thus, the average length of each operator sequence (for one PAD task each)
amountsto 71.7.

453 Training Algorithm

For the training of EVA’s sub-networks and their use within the PAD simulation system a C++
class library was developed. An executable for the Win32 console (“NWRun”), which is based
on this library, was used for network training. The user guide for NWRun is provided in appen-
dix D. In addition, both NWRun and the complete source code of the library are available for
download at "www.wolframschenck.de/NetworkA pplication.htm”.

The library provides five different training algorithms for multi-layer networks with numer-
ous possible parameter settings: Standard backpropagation (BackProp), backpropagation with
momentum term (BackPropMom), quickpropagation (QuickProp), resilient propagation
(RProp), and backpercolation (Perc) (algorithms taken from Zell, 1997; for RProp see also
Riedmiller & Braun, 1993) are available. The choice of the algorithm taken for EVA is dis-
cussed in the following sections.

4531 Choosing the Best Training Algorithm

The main goal of training is to reduce the difference between the output actually produced by a
network (0) and the desired output (t). Therefore, based on the difference (o, - t;,,), for each
pattern pair p and each output unit j aglobal error E is calculated as follows:

E= 2-N,-1.Np Zj:(op,j ~tp))? (4.2)

E isthe global error the network produces, N; is the number of output units, Nr is the number
of patterns, o, isthe actual activation of output unit j for pattern p, t, ; is the desired activation
of output unit j for pattern p.

The size of E isagood indicator for the quality of the network’s output in respect to the desired
output. As pointed out in section 2.1.1.3, training procedures like backpropagation try to

A Connectionist Model for Plan-A-Day 57

minimize this error by adjusting the network weights according to the gradient of E. Ideally, by
such a procedure the error decreases from epoch to epoch and finally reaches a value near zero.
(For comparison: EVA’s sub-networks, when their weights are randomly set, produce errors in
the range from 0.075 to 0.125.)

The success of training can be assessed by several indicators. First, the error value, the net-
work finally converges to, should be as small as possible. In this respect, it isfatal if the train-
ing keeps stuck in a local minimum of the error function E. Second, the number of epochs
needed to fall short of a certain error level should be as small as possible too. (Since different
training algorithms need different calculating time for each epoch, an even more objective stan-
dard of comparison is the calculating time needed for faling short of a certain error level.)
Third, the test error should be as close to the training error as possible. This refers to the gener-
alization capabilities of the trained network. Thetest error is obtained on the set of test patterns
(see section 4.5.1), the training error on the set of training patterns.

By using these three indicators (training error, number of needed epochs, test error) different
network topologies and different training algorithms can be compared. As results of pre-
experiments with a reduced version of PAD (called “Mini-Plan-A-Day” or MPAD) showed,
RProp is superior to al other training algorithms from the tested selection (which comprises
BackProp, BackPropMom, QuickProp, RProp, and Perc). For example, a direct comparison
between RProp and BackPropMom was carried out for a two layer network with two shortcut
connections. While the training error was halved after 1500 training epochs by BackPropMom,
the same error reduction could be achieved by RProp in about 70 epochs. BackProp, the pure
standard algorithm for backpropagation networks (see section 2.1.1.3), shows an even poorer
performance. In contrast, for MPAD, QuickProp is nearly as good as RProp. Perc shows favor-
able results in the first epochs of training, but the algorithm remains stuck in alocal minimum
very quickly. In addition, it is very difficult to determine the optimum values for the adjustable
parameters of Perc.

However, not only with regard to the final training error and the number of needed epochs,
but also with regard to its generalization capabilities, RProp is superior to other algorithms.
Furthermore, RProp is very robust concerning its parameter settings. For most problems, the
recommended settings (Riedmiller & Braun, 1993) yield optimum convergence time.

Since all training al gorithms of the backpropagation family are not very plausible from a bio-
logical or psychological point of view (see section 2.1.1.3), RProp was chosen only due to tech-
nical considerations. The psychological interest on EVA is, therefore, restricted to the networks
resulting from training, but cannot be extended to the course of training itself.

45.3.2 Description of RProp

Algorithm

In standard backpropagation, the weight changes Aw; are determined by the product of a fixed
<E " |If 5 is too small, weight

(jwij h

learning constant # (the learning-rate) and the partial derivative

A Connectionist Model for Plan-A-Day 58

adaptation takes place very slowly, if # istoo large, weights begin to oscillate between different
values. To overcome this dependence on the global learning-rate, some improved variants of
backpropagation work with a local adaptation of #, so that every weight has its own learning-
rate #;, which is changed according to the observed behavior of the error function. Examples
for such algorithms are the Delta-Bar-Delta technique (Jacobs, 1988; cited in Zell, 1997) or the
SuperSAB algorithm (Tollenaere, 1990; cited in Zell, 1997).

Even if these algorithms are superior to standard backpropagation, they ignore the fact that a
sudden change of the partial derivative ﬁ can push the weight into the wrong direction, so that
the laborious adaptation of the specific learning rate is in vain. RProp was developed to over-
come this weakness (Riedmiller & Braun, 1993). Riedmiller and Braun introduced an individ-
ual update value A; for each weight w;. This update value is changed due to the partial
derivative (;iVE” , but does not depend directly upon it. The following formula gives the calculat-
ing rule for A;; after each epoch (in RProp the update values and weights are changed every time
the whole pattern set has been presented once to the network):

Cot =AY if £ £ 050

E OWijj : OWijj
- t-1 . g -1 E t
ARt , else

C
where0< = <1< y*

The superscript t indicates the current epoch, while the superscript t-1 indicates the preceding
epoch. 7~ and 7™ are the decrease and increase factor, respectively.

To verbalize this adaptation rule, | would like to cite Riedmiller and Braun (1993, p. 587):
“Every time the partial derivative of the corresponding weight w;; changes its sign, which indi-
cates that the last update was too big and the algorithm has jumped over aloca minimum, the
update value A; is decreased by the factor . If the derivative retains its sign, the update value
Ay is slightly increased [by the factor #*] in order to accelerate convergence in shallow regions.”

After determination of the update values, the weight changes Aw;; are calculated and carried
out according to the following simple rule (Riedmiller & Braun, 1993, p. 587): “If the deriva-
tive is positive (increasing error), the weight is decreased by its update value, if the derivative is
negative, the update value is added.”

C-AL if £'>0

OW; i

Awl = C*A) if 251 <0 (4.4)
-0 , else
Wi = wi + AW (4.5)

However, there is one exception, when a “ backtracking” weight-step should be carried out:

AW = —AWEL if £ B (4.6)

OWjj OWjj

A Connectionist Model for Plan-A-Day 59

When the sign of the derivative changes, the most likely explanation is that the previous step

was too large and the minimum was missed. For that reason the weight change is undone by

JE t=1
OWjj

this backtracking weight-step. Furthermore, in this case one should set := 0 for the next

adaptation of the update values to avoid a double punishment of Aj;.

In contrast to other variants of backpropagation, only the sign of the partial derivative is used
to perform both learning and adaptation. Riedmiller and Braun (1993, p. 588) write, that “this
leads to a transparent and yet powerful adaptation process, that can be straight forward and very
efficiently computed with respect to both time and storage consumption.”

Parameters

For RProp, there are five adjustable parameters. The factors = and #*, the initial value A, for
the update values, and the lower and upper limit of the range to which the update values are
restricted (from Amin t0 Ama). Riedmiller and Braun (1993) recommend the following standard
values: 7~ = 0.5, 7" = 1.2, Ao = 0.1, Amin = 1.0-10°, Amex = 50.0. According to their experiments
with RProp, these values are the optimum ones for most problems. They found different opti-
mum values for different problems only for A.. However, the range for A, within which RProp
works almost optimally is so broad that one need not worry about this parameter.

For the training of EVA’s sub-networks, the standard parameter settings were adopted. Only
Ao Was set to 0.04. The weights were initialized before training to random values in the range
[-0.2; 0.2]. Asexperimentswith MPAD reveded, thisinitialization range, together with avalue
of 0.04 for Ao, makes a good starting point for training.

4533 Weight Decay

For the training of EVA’s sub-networks the standard RProp algorithm was supplemented by
another procedure, called weight decay. Weight decay may be used together with many variants
of backpropagation to enhance the generalization capabilities of the resulting networks (Zé€ll,
1997). By weight decay the size of the weights is diminished in every epoch by a certain factor.
Thus, the rule for weight update is modified according to the following formula:

wit = (1-d) - wj + Awj 4.7
d isthe decay value in the range [0.0; 0.03]. Larger values for d are not recommendable.

As pre-experiments with MPAD showed, weight decay actually decreases the difference
between the training error and the test error. This advantage goes hand in hand with the disad-
vantage that the training error decreases more slowly. Further, the value to which the training
error converges is higher than it is without weight decay. A close inspection of the course of
training revealed, that the training stagnates at the point, when the weight changes Aw; have
become too small to overcome the impact of the weight decay d - w;. When one chooses a

A Connectionist Model for Plan-A-Day 60

smaller value for d at this point, the training error decreases again until the next equilibrium is
reached.

To benefit from the advantages of weight decay without suffering from its disadvantages, a
mixed strategy was used for the training of EVA’s sub-networks. The initial value of d was
decreased during the course of training by an automatic weight decay adaptation. This auto-
matic adaptation procedure was used to monitor the course of training. Whenever the reduction
of the training error after a certain number of epochs fell short of a certain threshold, the decay
parameter d was reduced by multiplication with a decay adaptation factor in the range [0.0; 1.0].
In NWRun, the precise behavior of the automatic adaptation is controllable through five
parameters. First, WDA_NumEpochs determines the number of epochs on which the comparison
of the training error is based. Second, to avoid dependence on single error values which can be
subject to sudden and short-lived changes, the training error at the beginning and at the end of
the comparison period is not determined by a single value, but by the median of the error values
of WDA_NumMedian epochs. Third, the threshold which cannot be transgressed, is defined by
WDA_MinDiff (within the range]-o0; 1.0]). If the current error median is larger than the product
of (1 - WDA_MinDiff) with the error median WDA_NumEpochs epochs ago, then an adaptation of
the decay parameter d is carried out. This adaptation takes place by multiplication of d with the
fourth parameter, WDA_DecayFactor (within the range [0.0; 1.0]). And last, but not least, there
istheinitial value of d, represented by WDA_Decayilnit.

WDA_NumEpochs was set to 200 for all of EVA’s sub-networks, WDA_NumMedian was Set to
20, and WDA_DecayFactor was set to 0.6. Only WDA_MinDiff and WDA_Decaylnit differed
between the sub-networks. WDA_MinDiff was set to 0.05 for EVA-b and EVA-c, and for EVA-a
it was set to 0.075. WDA_Decayinit was set to 0.005 for EVA-c, to 0.003 for EVA-b, and to
0.0018 for EVA-a. Since EVA-a has the largest training set, which already enhances generali-
zation performance, a larger value for WDA_MinDiff and a smaller value for WDA_Decaylnit were
chosen than for EVA-b and EVA-c. Through the larger value for WDA_MinDiff, adaptation of
the decay parameter d was intended to take place earlier. Together with the comparatively
small initial value for d, this should speed up the decrease of the training error alittle. In gen-
eral, the parameter values were chosen due to the observation of several courses of training with
MPAD on the one hand and with forerunners of EVA’s sub-networks on the other hand. The
main goal was to achieve awell-balanced relation between convergence time and generalization
performance.

454 Courseof Training

In the following, the actual course of training for EVA’s sub-networks is presented. For each
sub-network only one weight configuration was calculated through training due to two reasons.
First, training takes alarge amount of time (e.g., for EV A-amore than 280 hours on a 700-M hz-
AMD-Athlon-CPU were needed). Second, as the training of the forerunners of EVA’s current
sub-networks showed, for networks of this size and with such alarge training set, the course of

A Connectionist Model for Plan-A-Day 61

Course of Training for EVA-a
150297 Training Patterns (from 8450 PAD Tasks)
0,030 80%

e
T TAENAAAA

AR
XX

0,025 P 70%

o®

Training Error
== Test Error
== Decay Parameter
€ Maximum Test

—— 60%

50%

40%

Result of the Maximum Test

Global Error / Decay Parameter
o
o
&
|

0,005 — 30%

0,000 T T T T T T T T — 20%
0 200 400 600 800 1000 1200 1400 1600

Number of Epochs

Fig. 4.5: Courseof Training for EVA-a. Beforetraining, after randominitialization of weights, the
training and test error amounted to 0.077.

training differs only dlightly between different network instances. Even for most of the per-
formance indicators assessed in model fitting (see section 6.1), only minor differences were
observed in pre-experiments.

Figures 4.5 to 4.7 show the course of training for EVA-a, EVA-b, and EVA-c, respectively.
Every diagram displays one curve for the training error (light gray) and one curve for the test
error (dark gray). Furthermore, the decay parameter d is sketched in. For EVA-a, an additional
indicator for training success was calculated: The “maximum test” indicator. As the operator
that EVA will carry out is determined by the activation maximum of the output units, the maxi-
mum test checks for the output units of EVA-a. More precisely, it checksif the output unit with
maximum activation of the produced output is identical to the output unit with maximum acti-
vation of the desired output. This test is carried out with the patterns of the test set, and the
resulting percentage corresponds to the proportion of correct assignments. In figure 4.5, the
maximum test indicator is presented for discrete epochs.

EVA-a was trained for 1600 epochs, EVA-b and EVA-c for 2000 epochs. Training was
halted when no further successin significantly reducing the test error was expected.

EVA-a

The course of training for EVA-ais presented in figure 4.5. The curves for the training and test
error show a logarithmic characteristic. While the training error is reduced from 0.077 to
0.0077 in the first 350 epochs, in the following 1250 epochs only a reduction to 0.005 could be

A Connectionist Model for Plan-A-Day 62

Course of Training for EVA-b

88325 Training Patterns (from 5000 PAD Tasks)

0,06

\ Training Error
0,05 == Test Error

\ == Decay Parameter

- \\A‘—N‘J‘__L‘
0,03 ‘-L e A o

0,02

Global Error / Decay Parameter

0,01

0,00 \ \ \ \ \ \ i T

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Epochs

Fig. 4.6. Course of Training for EVA-b. Before training, after randominitialization of weights, the
training and test error amounted to 0.11.

achieved. It isclearly visible, how the network converges to a certain performance level in the
process of training. The generalization capabilities are satisfactory. In epoch 1600, the training
error amounts to 0.0050, while the test error amounts to 0.0059. The ratio of the number of free
network weights (81263) to the number of training patterns (150297) is about 0.5. Pre-
experiments indicated, that such a ratio represents a good compromise between convergence
time (which decreases with an increasing number of training patterns) and generalization per-
formance (which increases with an increasing number of training patterns).

In the maximum test, the resulting curve has also a logarithmic characteristic, but with the
opposite sign in comparison to the global error curves. The best result for the maximum test is
reached in epoch 1540, namely 77.4%. For comparison: A forerunner of EVA-a with 64271
weights and 118651 training patterns reached an optimum vaue of 76.6% in epoch 1720.
Training of thisforerunner was one and a half times faster than for EVA-a. Thus, by time factor
1.5 an improvement of only 0.8% in the maximum test could be achieved. Obviously, further
enlargement of EVA-aand of the training set would only result in minimal improvements in the
performance of the resulting network. The convergence zone of the PAD problem is reached
for the given representation of input and output (at least for EVA-a).

EVA-b/EVA-c

The course of training for EVA-b and EVA-c is shown in figure 4.6 and 4.7, respectively. Both
networks show atraining characteristic different to EVA-a. Quite early, after about 150 epochs,

A Connectionist Model for Plan-A-Day 63

Course of Training for EVA-c
86812 Training Patterns (from 1200 PAD Tasks)
0,06

Training Error

0,05 == Test Error L
== Decay Parameter

0,04

0,03 “W%‘wfwwﬂﬁw

0,02 . _

Global Error / Decay Parameter

0,01

0,00
' ‘ \ ‘ \ ‘ \ ‘ \ \ \ \ \
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Epochs

Fig. 4.7. Course of Training for EVA-c. Before training, after randominitialization of weights, the
training and test error amounted to 0.13.

the test error reaches a level from which it does not fall significantly in the following epochs.
The training error, on the other hand, continues decrease. In epoch 2000, for EVA-b the train-
ing error amounts to 0.015, while the test error amounts to 0.031 (initial value: 0.11). For
EVA-c the training error amounts to 0.021, while the test error amounts to 0.028 (initial value:
0.13). While further decrease of the training error may be expected from the diagrams, the gen-
eralization capabilities of EVA-b and EVA-c are unsatisfactory in comparison to EVA-a. The
ratio of the number of free network weights to the number of training patterns is about 0.3 for
both EVA-b and EVA-c. This is meaningful with regard to the goal of better generalization
performance, while convergence of the training error is aready fine.

The difference in the course of training for EVA-a on the one hand, and for EVA-b and
EVA-c on the other hand, may be explained by the recurrent characteristics of the latter net-
works. The chronological patterns that are desired for the output of EVA-b and EVA-c are
probably difficult to generalize. Nevertheless, as section 6.1 will show, the quality of the output
obtained by EVA-b and EVA-c is sufficient to allow good results in model fitting.

Model Fitting 64

5 Model Fitting

5.1 Obtaining Empirical Data from Real Human Subjects

For moddl fitting, empirical datafrom real human subjectsis necessary. This data was obtained
through a study at the Department of Psychology (University of Heidelberg)®. A group of 45
participants, mostly students, took part in this study. Each participant was seated in front of a
computer screen, where he had to work on predefined PAD tasks 4 and 5 in the easiest mode of
presentation (for the specifications of PAD tasks 4 and 5, see table 5.1/5.2; for the instructions
of these PAD tasks, see appendix A). The overall time limit was set to 30 minutes. PAD task
4, which was presented first, had to be finished within 15 minutes.

The results of this study are presented in section 6.1 in direct comparison to the results
obtained from subjects that are ssimulated by EVA.

Table5.1: PAD task 4

Scheduled appointments at... stEgrrlt:ﬁg ,;[Iarf]l; slt_a?i?rzt;‘?n(o Task duration Priority
Storehouse 10:00 am. 0.15 p.m. 10 min. high
Secretary’s office 11.00 am. 4:00 p.m. 10 min. normal
Administration 10:00 am. 2:30 p.m. 90 min. very high
Printing office 10:00 am. 4:00 p.m. 90 min. very high
Conference room 1:00 p.m. 1:00 p.m. 60 min. very high

Optimal plan:
Move-to-administration = Drive-by-car = Move-to-storehouse - Move-to-conference-room -
Wait = Move-to-secretary’ s-office > Move-to-printing-office = Finish

Table5.2: PAD task 5

Scheduled appointments at... stEgrrlt:ﬁg ,;[Iarf]l; slt_a?i?rzt;‘?n(o Task duration Priority
Café 1:30 p.m. 2.30 p.m. 30 min. high
Office 11.00 am. 2:00 p.m. 60 min. very high
Administration 10:00 am. 4:00 p.m. 55 min. high
Printing office 10:00 am. 3:00 p.m. 10 min. normal
Conference room 11:30 am. 11:30 am. 45 min. high
Central office 10:00 am. 4:15 p.m. 10 min. very high

Optimal plan:
Move-to-printing-office = Move-to-conference-room = Wait - Drive-by-car > Move-to-office -
Move-to-café = Move-to-central-office = Move-to-administration = Finish

Z The study was carried out by Stefanie Nellen (University of Heidelberg), who gave her kind allowance to use
her datain thisthesis.

Model Fitting 65

5.2 Simulating Subjectswith EVA

After EVA’s sub-networks were obtained through training, they were integrated into the PAD
simulation system. The PAD simulation system is based on a C++ function library, which pro-
vides the necessary functions to load, create, and represent PAD tasks, and to represent and
modify the current state of the PAD world. Furthermore, some functions serve to generate the
input of EVA’s sub-networks. Functions from the network library (see section 4.5.3) are used
to load EVA’s sub-networks into the PAD simulation system and to use them for the transfor-
mation of input to output patterns. Specialized functions are applied for analyzing and evaluat-
ing the actual course of planning and to write the results presented in section 6 into log files.
Thus, by employing the PAD simulation system EVA can be manipulated to simulate subjects
working on PAD tasks. Since the human subjects that serve as standard of comparison worked
on predefined PAD tasks 4 and 5, in the course of model fitting the simulation runs are aso
restricted to these PAD tasks.

5.3 Accessible Parametersin Model Fitting

Modéd fitting has the goal to adjust free model parameters in a way, that the “behavior” of the
model is as similar as possible to the behavior of real human subjects. Naturaly, the compari-
son of behavior is restricted to the subset of human behavior that the model claims to explain.
EVA was developed to model the sequential use of the 13 available PAD operators in solving a
PAD task. As pointed out in section 4.1, the objective in doing so was not to precisely predict
an individual course of planning for a single human subject, but to obtain a good model fit on
the level of whole samples.

Before model fitting, two questions must be addressed. First, by which indicators should the
human sample and the simulated sample be compared? Second, which model parameters can
be varied to obtain a better model fit? For EVA, these questions can be addressed more straight-
forwardly, when one differentiates between two stages of mode! fitting.

531 First Stage of Modd Fitting

The first stage of model fitting may be identified to a large extent with model development in
general. After the basic framework of EVA was laid down, the simulated data was continu-
ously compared with the empirical data obtained by the study described in section 5.1. This
comparison was carried out with regard to many of the indicators described in the results sec-
tion (section 6). To avoid too much redundancy, | omit a specification of these indicators at this
point. It became clear, that many of the assessed indicators could not be influenced by varying
model parameters, but resulted from a complex interaction of the global model architecture, of
the structure of the training data, and even of the progress in network training (therefore, one

Model Fitting 66

may call them “emergent indicators’). Other indicators could be influenced at least indirectly.
For example, as it became clear, that EVA had problems with the optimum use of the drive by
car, the training data was modified to give EVA more learning experience in thisarea. Later on,
when it became obvious, that EVA needed an external memory aid, because the recurrent con-
nections were not sufficient for differentiated remembering, the externa situation-action mem-
ory was added to the input. Furthermore, to improve the end score EVA achieved, the number
of network units and training patterns was increased.

Thus, in this basic stage of model fitting not only were parameter values adjusted, but also
the specification of the model, its overall structure, its components, and the inner architecture of
its sub-networks were changed. Of course, not only the comparison to empirical data, but also
technical and theoretical considerations influenced the specification of the model and its (free)
parameters. Most of these considerations were mentioned in section 4 in the respective pas-
sages. Table 5.3 provides an overview of the model specifications and model parameters influ-
enced through the comparison of empirical and simulated data. However, it would exceed the
size of this thesis to mention every adjustment that was carried out on the way from the first
sketch of EVA to its current specification and parameter settings.

In addition, pre-experiments with MPAD (“Mini-Plan-A-Day”) were important, especially
with respect to the topology of EVA’s sub-networks and to their training. Furthermore, some
parameter adjustments are dependent upon each other. For example, for improving EVA’s end
score in PAD tasks 4 and 5, the number of training patterns was increased. However, as pointed
out in section 4.5.4, the number of network weights partly depends on the number of training

Table 5.3: Model specifications and model parameters influenced through the first stage of model
fitting

Subject of specification / Parameter Section(s) addressing the specification or

— Number of training patterns

parameter
Subj ects of specification
Input representation 423,431
Subdivision of EVA in sub-networks 4.2.4,452.3
Topology of EVA’s sub-networks
e Layersize _ 44
* Shortcut connections
* Recurrent connections
Parameters
MemForgetFactor (for the training input) 4.3.1,45.2.2
RestrainFactor 43.2.2
— Training data parametersin table 4.5 452
- Training data parametersin table 4.6 (4.7/4.8) 452
DelRepeatFactor 4522 (44.2)
ExpET 4523 (4.4.3)
EndThreshold 45.2.3(4.4.3)

4522,4523,454

Model Fitting 67

patterns. Therefore, in enlarging the training set one must also enlarge the size of the hidden
network layers or the number of shortcut connections.

After al, the most important measure for the quality of EVA was its performance, indicated
by the average end score and max score, and by the proportion of final plans identical to the
optimum plan. Nevertheless, the performance alone will not lead to a good model fit, if all
other indicators (presented in section 6.1) are different for simulated and human samples.

5.3.2 Second Stage of Model Fitting

The second stage of model fitting began, after EVA was specified in its current shape and the
training of the actual instances of EVA’s sub-networks were completed. Then, there are till
seven Parameters left which can be adjusted to reach an optimum fit between empirical and
simulated data. These parameters are: NoiseTime, NoiseFlag, NoisePriority, NoiseProportion,
MemForgetFactorsmu, fo, and fr (each of which can be varied in the range [0.0; 1.0]). The first
four parameters are used to control the noise that is applied to EVA’s input. NoiseProportion
determines the maximum proportion of input units that is disturbed. For example, a value of
0.4 for NoiseProportion implies that in every processing cycle between 0% and 40% of the input
units are disturbed. When an input unit is (randomly) chosen for distortion, then it is altered by
the product of a random value between 0.0 and 1.0 and its respective noise factor. The noise
factors can take the values NoiseTime, NoiseFlag, and NoisePriority. The assignments of input
units to noise factors are shown in table 4.4 (NoiseTime = 0.01, NoisePriority = 0.025,
NoiseFlag = 0.05). These assignments are based on the consideration that the “information den-
sity” differs between input units. Input units like <Timel> or <Time2> have a high density,
since an activation difference of, e.g., 0.1 represents amost a whole hour difference. On the
other hand, for an input unit like <CarUsed> an activation difference of 0.1 isonly a dlight dis-
turbance. Since the values for the noise factor parameters are based on technical considerations,
they were not varied in the process of model fitting. For this reason, they were omitted in the
following.

MemForgetFactorsi,, 1S the MemForgetFactor used for the external situation-action-memory in
the ssimulation runs. Asthe value 0.7, which is used for the generation of the training data, may
not be optimal for the reproduction of empirical data, it may be meaningful to chose a different
value for MemForgetFactorsmg. fpo @and fr are the factors by which the output units of EVA-b and
EVA-c, respectively, are multiplied, before the output unit with maximum activation is deter-
mined (see section 4.2.4). Therefore, by fp the Delete evaluator can be weakened or strength-
ened, and by fr the Finish evaluator can be weakened or strengthened. These factors are mean-
ingful, since due to the separate training of EVA-a, EVA-b, and EVA-c, their output units may
operate on dightly different scales.

Thus far, | considered the parameters accessible for adjustment in the second stage of model
fitting. However, the indicators which were considered in the process of model fitting must
also be stated. These indicators are described in more detail in section 6.1. To avoid

Model Fitting 68

redundancy, only a brief list is given at this point. The following indicators were taken into
consideration for model fitting:

» Theend score and max score, both in the standard evaluation and the advanced evaluation

» The proportion of planning processes for which the end score and max score are equal to the
optimal score, respectively

» Theoverall length of the sequences of operators

» The number of complete deletions of the previous generated plan in the overall planning
process

For model fitting, no quantitative method was used. Instead, the parameter settings were varied
manually. In doing so, the indicator differences between the smulated and the empirical sam-
ple were observed. The goal was to find a parameter configuration, for which these differences
are as small as possible. The overal length of the sequences of operators had the highest prior-
ity, as the ssmulated and the empirical sample can only be compared meaningfully, if at |least
this length is in the same order of magnitude. For the other indicators, an attempt was made to
distribute the remaining differences as evenly as possible.

Unfortunately, regarding the stated indicators, it was not possible to find a common parame-
ter configuration that allowed a good fit for both PAD task 4 and PAD task 5. Instead, two dif-
ferent parameter configurations were found:

e For PAD task 4. fp = 0.8, fr = 0.75, NoiseProportion = 0.1, MemForgetFactorsimu = 0.8
e For PAD task 5. fp = 0.8, fr = 0.42, NoiseProportion = 0.3, MemForgetFactorsim, = 0.8

Only fp and MemForgetFactorsm, are constant between both configurations. The differences of
the other parameters are discussed in section 7.1.

Results 69

6 Reaults

This section presents results from various smulation runs. First, in section 6.1, the planning
behavior of real and simulated subjects in PAD tasks 4 and 5 is compared (as direct outcome of
model fitting). Second, in section 6.2, EVA is applied to randomly generated PAD tasks of dif-
ferent complexity. Third, in section 6.3, afirst attempt at validation is presented.

6.1 Resultsof Model Fitting

In the following, a sample of subjects simulated by EVA and a sample of human subjects are
compared to each other. The sample of human subjects was assessed in the study that is
described in section 5.1. Both human and simulated subjects had to work on PAD tasks 4 and
5. The human sample comprises 45 subjects, while the ssmulated sample comprises 4500 sub-
jects. By such a large number of simulation runs the results obtained by EVA are highly reli-
able. Since no inference statistical tests are planned, the different sample size does not cause
any problem.

As stated in section 5.3.2, in fitting the results obtained by EVA for PAD tasks 4 and 5 to the
results obtained by the human sample, the following parameter configurations were found out
for EVA:

e For PAD task 4. fp = 0.8, fr = 0.75, NoiseProportion = 0.1, MemForgetFactorsim, = 0.8
e For PAD task 5: fp = 0.8, fr = 0.42, NoiseProportion = 0.3, MemForgetFactorsim, = 0.8

The simulated data presented in this section (6.1) is based on these parameter configurations. In
appendix C, one can find the data sheets that were generated by the PAD simulation system for
evaluation purposes. Many of the variable values presented in the following are taken from
these sheets.

6.1.1 Performance

There exist several variables that serve as performance measures. First, there are the end score
and max score, as described in section 3.1.2. They are calculated both in the standard way and
in the advanced way. In the advanced evaluation, visits made without carrying out an appoint-
ment are punished by subtracting five points from the score. As stated in section 4.3.2.1, the
training data for EVA’s sub-networks is based on this evaluation. The corresponding variables
are called EndScoreStd, MaxScoreStd, EndScoreAdv, MaxScoreAdv. For comparison: The optimal
score amounts to 28 points for PAD task 4 and to 26 points for PAD task 5.

Furthermore, an interesting measure of performance is the proportion of subjects, which
found out the optimal plan. On the one hand, the end score may be identical with the optimal
score, or on the other hand, only the max score is identical with the optimal score, because the

Results 70

Table 6.1: Comparison of performance indicators for human and simulated subjects. The optimal
score amounts to 28 points for PAD task 4 and to 26 points for PAD task 5.

PAD task
N° 4 N°5
Sample Sample

Humans EVA Humans EVA
EndScoreStd 25.3(5.1) 21.2(7.4) 22.9(3.7) 22.1(3.2)
MaxScoreStd 26.5(2.1) 25.5(2.6) 23.7 (2.6) 22.9(1.4)
EndScoreAdv 22.2(5.7) 21.2(7.4) 21.9(4.7) 22.1(3.2)
MaxScoreAdv 26.4 (2.6) 25.5(2.6) 23.6 (2.7) 22.9(1.4)
ESOptRatio 22.2% 22.8% 37.8% 6.3%
MSOptRatio 24.4% 23.5% 40.0% 7.0%

optimal plan was lost in further planning. Thus, there are two different variables. ESoptRatio
and MsoptRatio (naturaly, ESOptRatio < MSOptRatio). They are also given as percentages in
relation to the overall number of subjects. Because there are no differences in these variables
due to standard vs. advanced evaluation, no further distinctions are made.

EndScoreStd, MaxScoreStd, EndScoreAdv, MaxScoreAdv, ESOptRatio, and MSOptRatio were con-
sidered both in the first and second stage of model fitting. Their values are presented in table
6.1. While for most of these indicators the differences between EVA and the human sample are
only small, large differences remain for PAD task 5 for ESoptRatio and MSOptRatio. Evidently,
for EVA it is much more difficult to find the optimal plan for PAD task 5 than for human sub-
jects to do so. However, in PAD task 4 EVA reaches the optimal plan as often as the human
subjects. On the other hand, Endscorestd for PAD task 4 is four points less for EVA than for
the human subjects. For EndScoreAdv this difference only amounts to one point. This shows,
that human subjects more often make senseless visits in their final plans than EVA does. Dur-
ing training, EVA haslearned to avoid such visits.

28 2800

21

2100

14

1400

700

V7777777777777 777277777727 777777

Number of simulated subjects (EVA)

Number of human subjects

CN N @&

0 4 8 12 16 20

- £ £ £
4 8 12 16 20 24 28

End score (Standard) for PAD task 4 End score (Standard) for PAD task 4

Fig. 6.1: Distribution of EndScoreStd Fig. 6.2: Distribution of EndScoreStd
for PAD task 4 for the human sample for PAD task 4 for EVA

Results 71

40 4000

30 3000

20

2000

10

1000

Number of simulated subjects (EVA)

Number of human subjects

N
|
\
\
\
\
\

0 53 NSNS\ NN
0 4 8 12

0 4 8 12 16 20 24

End score (Standard) for PAD task 5 End score (Standard) for PAD task 5
Fig. 6.3; Distribution of EndScoreStd Fig. 6.4: Distribution of EndScoreStd
for PAD task 5 for the human sample for PAD task 5 for EVA

Furthermore, not only the means and standard deviations, but also the distributions of
EndScoreStd were compared. They are shown in figure 6.1 to 6.4. For PAD task 4 (fig. 6.1/6.2)
the comparison reveals, that the distributions are quite different. For the human sample there is
aclear peak at 27 points, while for EVA the distribution is substantially more even. However,
at least the three end scores with the highest frequency are equal for the human sample and
EVA: 20, 27, and 28 points. For PAD task 5, the comparison leads to the opposite result: The
strong peak that EVA produces at 23 points appears in the distribution of the human sample
only in weakened form. Since the comparison of frequency distributions even on the level of
end scores yields such differences, afurther distinction of final plans was not considered.

6.1.2 Overt Characteristics of the Planning Process

One of the most important overt characteristics of the planning process is the overall length of
the sequence of operators generated in the planning process. This variable is called Length and
gives the number of applied operators. Furthermore, the average number of successive Delete
operators (LenDelChain) and the number of complete deletions of the previously generated plan
in the overall planning process (NumTotalDel) are interesting. The mean values of these three

Table 6.2: Comparison of outer characteristics of the planning process for human and simulated

subjects
PAD task
N° 4 N°5
Sample Sample
Humans EVA Humans EVA
Length 40.6 (30.4) 40.5 (29.5) 43.6 (27.6) 44.9 (41.2)
LenDelChain 2.2(1.3) 2.7(1.2) 2.2(1.5) 25(11)

NumTotalDel 2.9(3.1) 3.0(3.1) 2.9 (2.6) 2.0(2.7)

72

Results

variables are given in table 6.2. In addition, the distribution of Length is shown in figure 6.5 to

6.8, the distribution of NumTota1Del in figure 6.9 to 6.12. For the optimal plans, the number of

applied operators (actions plus Finish) is eight for PAD task 4 and nine for PAD task 5.

The mean values of Length and NumTotalDel were used as indicators for the second stage of

mode fitting. For EVA,

Length can be increased quite directly by decreasing the value of fe.

Therefore, it was possible to obtain such a good fit with regard to this indicator both for PAD

task 4 and 5, astable 6.2 reveals. NumTotalDel iSmainly dependent on the value of fp (increas-
ing fp leads to an increasing NumTotalDe1). However, in keeping fp constant between PAD tasks

4 and 5, it was not possible to obtain an equally good fit for both PAD tasks.

In addition, fp

also influences LenDelchain in the same direction as NumTotalDel, and for PAD task 5
LenDelChain iS even higher for EVA than for the human sample. Therefore, an increase of fp

would lead to a better fit of PAD task 5 for NumTotalDel, but to an even worse fit for

LenDelChain.

Length for PAD task 4

< ™ ~ — o

s108[gns uewny Jo JaquinN

Length for PAD task 4

Length of the sequence of operators for

Fig. 6.6:

Length of the sequence of operators

Fig. 6.5:

PAD task 4 for EVA (Maximum of

Length at 208)

for PAD task 4 for the human sample

105 115 125 135

N .
T e
95

85

Length for PAD task 5

7777277777774 ‘@

o < ™ o~ E o

s18lgns uewny Jo JaquinN

Length for PAD task 5

PAD task 5 for EVA (Maximum of

Length of the sequence of operators for
Length at 393)

Fig. 6.8:
for PAD task 5 for the human sample

Length of the sequence of operators

Fig. 6.7:

Results 73

In the first stage of model fitting, it became obvious, that EV A-b needed recurrent connec-
tions, since the delete chains produced by EVA so far were only slightly larger than 1.0 on aver-
age. Thus, only by changing some of the basic specifications of EVA, it was later possible to
obtain a good fit through manipulating fp.

The comparison of the distributions of Length shown in fig. 6.5 to 6.8 reveds, that for PAD
task 4 even on the level of the 1ength distribution a quite good fit is noticeable. On the other
hand, for PAD task 5 the shape of the distribution of the human sampleis really different to the
shape of the distribution of the ssimulated sample. The same pattern appears in the distributions
of NumTotal1Del (fig. 6.9 to 6.12). The fit for PAD task 4 is remarkably good (even the mini-
mum at NumTotalDel = 5 appears in both the distribution of the human sample and of EVA),
while the fit for PAD task 5 is not satisfying. The tendency of EVA to perform only one total
deletion istoo strong in comparison to the human sample.

§
§
\
.
.
.
.
|
|

Number of human subjects

N
123456789101112131415
Number of complete deletions (PAD task 4) Number of complete deletions (PAD task 4)
Fig. 6.9: Distribution of NumTotalDel for Fig. 6.10: Distribution of NumTotalDel for
PAD task 4 for the human sample PAD task 4 for EVA (Maximum of

NumTotal Del at 21)

[N
©

= = =
N S (2]
cts (EVA)

[N
o

©

P 1 5
§ z && NNNNN NN \§§ § AR ENNNNN SRR e CH—
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 123456789101112131415
Number of complete deletions (PAD task 5) Number of complete deletions (PAD task 5)
Fig. 6.11: Distribution of NumTotalDel for Fig. 6.12: Distribution of NumTotalDel for
PAD task 5 for the human sample PAD task 5 for EVA (Maximum of

NumTotal Del at 27)

Results 74

Thus, the comparison of Length, NumTotalDel, and LenDelChain reveals, that especialy for
PAD task 4, agood fit even on the level of frequency distributions could be reached, while the
fit for PAD task 5 remains unsatisfactory.

6.1.3 Operator Use

In this section, a comparison of the frequency of operator useis provided. Fig. 6.13 shows the
proportion of the use of each operator for PAD task 4 relative to the total number of applied
operators. Differences larger than 2% between the human and the simulated sample must be
stated for the operators Move-to-storehouse, Move-to-administration, Wait, and Delete. How-
ever, altogether the frequency patterns are quite similar to each other. The high frequency of the
Delete operator shows an especialy similarity in the same order of magnitude for both samples.
Furthermore, the order of rank for the Drive-by-car and Wait operator is met by EVA. Taken
together, the similarities between the human and the simulated sample are remarkable, espe-
cialy in light of the fact, that the parameter adjustments in the second stage of model fitting
were not aimed at this frequency profile. Furthermore, even if the increase of fp increases the
frequency of use of the Delete operator (frequne), the order of magnitude of this frequency is
relatively constant for meaningful values of fp when keeping the remaining parameter settings at
their standard values (fp = 0.4 [n=450] = frequps = 33.2%; fp = 0.8 [std., n=4500] =

Comparison of Operator Use
for PAD Task 4

[[[[
‘ [Human sample M Simulated Sample (EVA)

Post Office
Café
Office

Storehouse

Secretary's Office

Administration

——
——
——
Printing Office g‘
Conference Room #
Central Office
DRIVE-BY-CAR
DELETE W
FINISH
0,0% 10,0% 20,0% 30,0% 40,0%

Relative Proportion of Each Operator

Fig. 6.13: Comparison of operator use for PAD task 4. White bars indicate the relative proportion of
each operator for the human sample, black bars indicate it for the sample simulated by
EVA. Movement operators are represented by their goals of movement.

Results 75

frequpe = 38.1%; fp = 1.0 [n=450] = frequpe = 42.7%; for the human sample [n=45]:
frequDel = 35.9%).

For PAD task 5 (see fig. 6.14), the comparison between the human and the simulated sample
also reveals quite a good fit with regard to the frequency profile. Only three differences are
larger than 2%, namely for Move-to-café, Move-to-conference-room, and Delete. On the other
hand, the difference for Move-to-conference-room amounts to 4.6%, which is very much in rela-
tion to the absolute size of the frequency (8.2% for the human sample, 3.6% for the simulated
sample). Obvioudly, the tendency to move to the conference room is much smaller for EVA
than it is for the human subjects.

To sum up, with regard to the relative frequency of operator use, EVA is able to reproduce
the data obtained by the human sample. Since the second stage of model fitting was not aimed
at this frequency profile, the correspondence emerges from the basic architecture of EVA and
from the structure of the training datafor EVA’s sub-networks.

6.1.4 Useof Heuristics

In their original work about PAD, Funke and Kriger (1995) present eight heuristics, which par-
ticipants may use when working on PAD tasks. They have implemented five of these heuristics
in atool for the evaluation of planning processes. Since such an evaluation is very interesting

Comparison of Operator Use
for PAD Task 5

Post Office ‘ :] ! !
f ‘ [Human sample M Simulated Sample (EVA)
Café

Office

Storehouse

Secretary's Office
Administration
Printing Office E
Conference Room
Central Office E
DRIVE-BY-CAR
DELETE W
FINISH

0,0% 10,0% 20,0% 30,0% 40,0%

Relative Proportion of Each Operator

Fig. 6.14: Comparison of operator use for PAD task 5. White bars indicate the relative proportion of
each operator for the human sample, black bars indicate it for the sample simulated by
EVA. Movement operators are represented by their goals of movement.

Results

76

Table 6.3: Comparison of heuristic application. The meaning of the heuristicsis explained in the text.

PAD task
N° 4 N° 5
Sample Sample
Humans EVA Humans EVA

Minimizing movement times

Performance 1.90 (0.30) 2.04 (0.26) 2.16 (0.41) 2.11(0.27)

Random 2.13(0.17) 2.14 (0.19) 2.39 (0.16) 2.25(0.17)
M aximizing the advantage of
thedrive by car

Performance 1.96 (0.89) 1.62 (0.53) 1.81 (0.59) 2.00 (0.51)

Random 2.12 (0.46) 2.10(0.35) 2.56 (0.34) 2.42 (0.29)
Considering priority

Performance 1.74 (0.25) 1.74 (0.19) 1.97 (0.30) 1.86 (0.23)

Random 1.74 (0.17) 1.78 (0.16) 2.01 (0.13) 1.87 (0.13)
Considering urgency

Performance 1.71(0.27) 1.74 (0.29) 2.06 (0.46) 2.24(0.43)

Random 1.97 (0.17) 1.98 (0.20) 2.41 (0.15) 2.27 (0.17)
Minimizing waiting time

Performance 1.40(0.17) 1.51(0.24) 1.54(0.25) 1.41 (0.20)

Random 1.59 (0.12) 158 (0.12) 1.68(0.14) 1.47 (0.14)

with regard to EVA, these five heuristics were also integrated into the evaluation procedures of
the PAD simulation system. In the following, the five heuristics are briefly presented:

“Minimizing movement times’: Go to the location which is the nearest one (with the least
necessary movement time)

» “Maximizing the advantage of the drive by car”: If you drive by car, then go to the location

which is farthest away.

» “Considering priority”: Go to alocation with an appointment of the highest existing priority.

» “Considering urgency”:
starting.

e “Minimizing waiting time”:

starting.

For each subject (or process of planning) the following analysisis carried out: Each heuristic is

Fulfill the appointments in the order of their latest time for task

Go to the location where you must wait the least time for task

evaluated for every situation that the subject encountersin the PAD world and in which the sub-
ject applies a Movement action, in two respects. First, the Movement actions that correspond to

locations in the appointment list of the PAD task are put in aranking order due to the respective

heuristic. For example, for the “Minimizing movement times’ heuristic, the Movement action
corresponding to the nearest location receives a value of one, the Movement action correspond-
ing to the second nearest location receives a value of two, and so forth. In doing so, ranking

Results 77

positions can be shared; then the following ranking position(s) is/are omitted. Afterwards, the
rank of the Movement action the subject actually chose is recorded (called “performance
value’). In addition, a second value is recorded, namely the average of all allocated ranks. This
average is equivalent to the mean result of arandom choice of a Movement action (thereforeit is
called “random value’). Thus, a performance and a random value are recorded for each of the
five heuristics and for every situation that the subject encountersin the PAD world and in which
he applies a Movement action. These values are averaged out, so that one average performance
and one average random value exist for each heuristic. These average values are the ten heuris-
tic indicators for each subject. For each heuristic, through comparing the random value to the
performance value, one can determine, if the subject was following the heuristic or not. If the
subject applied the heuristic to his movement decisions, the performance value must be smaller
than the random value. Otherwise, the respective heuristic was not taken into account.

Table 6.3 shows the ten mean heuristic indicators for both PAD tasks 4 and 5 and both for
the human and the smulated sample. As an inspection of the table reveals, for most of the heu-
ristics, EVA follows the same tendency as the human subjects, even if the size of the difference
between the random and the performance value is sometimes different.>* For PAD task 4, the
goodness of fit is remarkably high. As the human subjects, EVA applies al heuristics except
for “Considering priority”. “Maximizing the advantage of the drive by car” is even more pro-
nounced by EVA than it is by the human subjects. On the other hand, for the other applied heu-
ristics, the differences between the random and performance values are smaller for EVA than
for the human subjects. For PAD task 5, the comparison between EVA and the human sample
reveals one difference: The heuristic “Considering urgency” is ignored by EVA, while it is
applied by the human subjects. Asfor PAD task 4, the particularly small difference between the
random and the performance value for the heuristic “Considering priority” is reproduced by
EVA.

The good fit between the empirical and simulated data, with regard to heuristic application is
considerable, since the application of heuristics was not subject of mode fitting in general, nei-
ther in the first nor in the second stage. Nevertheless, EVA’s heuristic application is probably
influenced by the structure of the training data. For example, previous versions of EVA ignored
the heuristic “Maximizing the advantage of the drive by car”. In their training data, half of the
randomly generated PAD tasks had optimal plans without the application of Drive-by-car.
Only when the training data was changed, so that about 85% of the optimal plans included a
drive by car (see sections 4.5.2.1/4.5.2.2), did EVA begin to apply the car advantage heuristic.
Furthermore, while previous versions of EVA showed smaller performance vaues for “Consid-
ering priority”, this value might be increased to a random level by setting the priorities of all
appointments to equal levels in every ninth PAD task of the current training data for EVA-a/-b
(see section 4.5.2.2). However, the latter remark is purely speculative. Unfortunately, the large
amount of time needed to train new instances of EVA-a and EVA-b for ruling out this possibil-
ity is no longer available. Therefore, this remark must be stated to prevent from an

2 The following boundary is set arbitrarily: A heuristic is categorized as “applied”, if its performance value is at
least 0.05 less than its random value.

Results 78

overestimation of the properties just emerging from EVA’s basic architecture. In order to cor-
rectly reproduce the application of heuristics, EVA must be at |east partly trained with adequate
data.

6.1.5 Arriving at Locations

When a subject arrives at alocation with a scheduled and unfulfilled appointment, there are four
possibilities: (1) The subject is too late for task starting. (2) The subject is on time and can
begin immediately with task fulfillment. (3) The subject istoo early, but does not wait. (4) The
subject is too early and waits until the earliest time for task starting. For each course of plan-
ning, the relative proportions of each of the four possibilities are calculated; they correspond to
the variables PropTooLate, PropOnTime, PropTooEarly, and PropTooEarlyWait, the means and
standard deviations of which are given as percentages in table 6.4 for both PAD task 4 and 5
and for both the human and the simulated sample.

Further, the average values for the periods during which the subjects were too early
(TimeToolLate) and for the periods in which they were too late (TimeTooEar1y) are shown in table
6.4. These averages are based on the arrivals upon which the subjects actually were too late or
too early.

With regard to the proportion of different arrival types, EVA fits the human data quite well
(again, especialy for PAD task 4). For each of the four arrival indicators, the deviations
between human and simulated data are small in relation to the absolute magnitude of the pro-
portion values. For PAD task 5, the fit is a little worse, since the differences in PropTooL ate
(Humans: 11.7%; EVA: 18.3%) and PropTooEarly (Humans: 3.0%; EVA: 1.4%) are quite large
in relation to the absolute magnitude of these proportion values. However, EVA mests the fact,
that proponTime islarger for PAD task 5 than for PAD task 4 for the human sample (70.3% to
60.9%; EVA: 67.8% to 62.5%).

Table 6.4: Arriving at locations. The meaning of the variablesis explained in the text.

PAD task
N° 4 N° 5
Sample Sample
Humans EVA Humans EVA

Proportion of arrivals

PropToolate [%0] 21.4(7.9) 17.4(6.9) 11.7 (8.5) 18.3(10.3)

PropOnTime [%0] 60.9 (7.4) 62.5 (8.5) 70.3(11.8) 67.8(9.1)

PropTooEarly [%0] 3.5(4.6) 3.5(5.0) 3.0(4.1) 14 (3.49)

PropTooEarlyWait [%0] 14.2 (5.7) 16.6 (6.3) 15.0(7.7) 12.5(6.4)
Periods being too late/too early

TimeToolate [min.] 29.2 (17.8) 45.7 (31.7) 26.5(24.8) 45.1 (28.0)

TimeTooEarly [minl] 24.9 (20.2) 32.8(21.1) 11.3(8.2) 15.7 (11.6)

Results 79

The periods of being too late or too early are larger for EVA than for the human sample.
These differences are smaller for TimeTooEarly than for TimeTooLate. The values EVA pro-
duces between factor 1.3 (TimeTooEar1y/PAD task 4) and factor 1.7 (TimeTooLate/PAD task 5)
are larger than the values of the human sample. These factors do not seem to be remarkably
high. In addition, one must take into consideration, that EVA gets time information on a scale
from 0.1 to 1.0 (see table 4.4), which corresponds to a period of 8% hours. In light of this fact,
it is surprising, that a multi-layer network like EVA-a is able to determine the goals of move-
ment with such precision. Normally, multi-layer networks tend to generalize over neighboring
input values, but instead, EVA-a has to develop discrimination capabilities during training.
These discrimination capabilities depend on the number of network units and training patterns.
Forerunners of EVA, with fewer units and fewer training patterns showed substantially worse
valuesfor TimeTooEarly and TimeToolLate.

Apart from TimeTooEarly and TimeTooLate, the variables considered in this section were not
subject to model fitting. Therefore, the goodness of fit of these variables mainly depends on the
basic architecture of EVA and on the basic structure of the training data.

6.1.6 Courseof Planning

In general, it is difficult to find indicators that grasp genuine characteristics of the planning
process. By calculating mean values of global indicators as in the preceding sections, the view
of the process of planning remains at a surface level. For this reason, this section presents three
attempts to gain a deeper insight into the process of planning. These attempts comprise a quali-
tative approach, the presentation of an interesting correlation, and again, the consideration of
operator frequency.

6.1.6.1 Examplesfor the Course of Planning

In this subsection two typical courses of planning are presented, one from a human subject and
one from EVA (fig. 6.15/6.16). As pointed out before, EVA is not intended to simulate individ-
ual courses of planning for single subjects, but nevertheless this aspect is of importance, if EVA
isto cover typical characteristics of the human planning process. Of course, such a presentation
of single examples can only claim to have demonstrative character. The conclusions drawn
from an inspection like this are purely qualitative and also very subjective. Nevertheless, such
an approach has its legitimacy as a supplementation of the quantitative and global comparisons
presented so far. If the reader trusts in the claim of the author, that these examples are actually
“typical” with regard to overt characteristics recognizable by a short view into the log file from
which they were taken, these examples may be worthy of taking note. They may provide akind
of evidence, that the global indicators compared so far were not caused by totaly different
courses of planning, the only similarity of which is the similarity of their indicator means. (I

[82] NI4 <- [82] xxdd <- [02] 4035 <- [6T] LIVM <- [TT] %x03 <- [TT] x03S <- [8 1 VY] <- [8] x«P¥
D(T sJddqunu) uoLin|os wnwiadg

[82] NI4 <- [82] xxdd <- [02] 4035 <- [6T] LIVM <- [TT] %x03 <- [TT] x03S <- [8 1 YV¥] <- [8] xxP¥
1UOLIN|0S |RULS

[8¢1 NI4d <- [82] xxdd <- [0¢] 4295 <- [6T] LIVM <- [TT] ¥x00 <- [TT] x03S <- [8 1 dvD <- [8 1 x¥PV <-8¢-> [+][NIJ] ~6€
[82] xxdd <- [0Z2] 4295 <- [6T] LIVM <- [TIT] %00 <- [TT] x01S <- [8 1 VD <- [8] xxPVY <-8Z¢-> [+][uldd] '8¢
[0¢] 498S <- [6T] LIVM <- [TT] %x00 <- [TIT] x03S <- [8 1 dVD <- [8] x»«PV <-0Z-> [+]J[423S] /¢
[6T] LIVM <- [TT] %00 <- [TT] %035 <- [8 1 ¥VD <- [8] x+P¥Y <-6T-> [+][1301 ~9¢
[£2] xxdd <- [6T] LIVM <- [TT] %x00 <- [TIT] x03S <- [8 1 dVvD <- [8] x»«PV <-/Z-> [+]I[1301 ~6¢
[22] 4285 <- [/2] xxdd <- [6T] LIVM <- [TIT] %00 <- [TT] x01S <- [8 1 dVD <- [8] xxPVY <-2Z¢-> [+][423S] V¢
[£2] xxdd <- [6T] LIVM <- [TT] %x00 <- [TIT] x03S <- [8 1 dVD <- [8] »«PV <-/Z-> [+]J[ulud] -€¢
[6T] LIVM <- [TT] %00 <- [TT] %035 <- [8 1 ¥VD <- [8] x+P¥Y <-6T-> [+][LIVM] ~Z¢€
[TT] %x00 <- [TIT] %03S <- [8 1 dv¥d <- [8] xxPV <-11-> [+][4U00] "I¢€
[TT] x03S <- [8 1 dVD <- [8 1 xxPY <-TT1-> [+][1301 -0¢
[2T1] 42385 <- [T1] x03S <- [8 1 dv) <- [8 1 x¥PV <-21-> [+][1301 °6¢
[/ 1 %00 <- [2ZT] 4235 <- [TT] %035 <- [8 1 ¥VD <- [8] x+P¥Y <-/ -> [+][JU0D] -8¢
[2T1] 42385 <- [T1] %03S <- [8 1 ¥vD <- [8 1 x¥PV <-21-> [+][u23S] "/¢
[TT] x01S <- [8 1 dVD <- [8 1 xxPY <-TT1-> [+][403S] 92
[8 1 dvd <- [8 1 xxPVY <-8 -> [+][dv2] °G¢
[8 1 xxPY <-8 -> [+][LUpy] "y
<-0 -> [-I[1301 -¢€2
<-0 -> [+I[1301 -22
[€ 1 x03S <-¢€ -> [+]1[1301 "12
[TT] »xdd <- [€] x03S <-TT-> [+][1301 02
[6T1 LIVM <- [TT] %%00 <- [TT] xxdd <- [€] x03S <-61-> [+][1301 ‘61
[/2] »xPV <- [6T] dVD <- [6T] LIVM <- [TT] %00 <- [TT] wxxdd <- [€] x03S <-/Z-> [+][1301 81
[22] 423S <- [/2] »xPV <- [61] dVD <- [6T] LIVM <- [TT] %00 <- [TT] wxxdd <- [€] x03S <-¢Z-> [+]J[423S] /1T
[/2] »xPV <- [6T] dVD <- [6T] LIVM <- [TT] xx00 <- [TT] wxxdd <- [€] x03S <-/Z-> [+][Lupy] ~"9T
[6T] dVD <- [6T1 LIVM <- [TT] %x00 <- [TT] xxdd <- [€] x03S <-61-> [+][¥v2] °GI
[6T] LIVM <- [TT] %x00 <- [TIT] xxdd <- [€] x03S <-6T-> [+][LIVM] ~V1
[TT] %%00 <- [TT1] »xdd <- [€] x03S <-TT1-> [+]J[4u0d] “¢I
[TT] x»xdd <- [€] x03S <-TT-> [+][1301 ~Z1
[6T] %PV <- [TT11 »xdd <- [€] x03S <-61-> [+I[1301 °1I
[02] 4295 <- [6T] »xPV <- [TIT] xxdd <- [€] x03S <-0¢-> [+]1[1301 °0T
[ST] »x00 <- [02] 4235 <- [6T1] xxPV <- [TT] xxdd <- [€ I x03S <-GT-> [+][Ju0d] 6

[02] 4295 <- [6T] »xPV <- [TIT] xxdd <- [€] x03S <-0¢-> [+][d409S]

[6T] xxPV <= [TT] xxdd <- [€ 1 x03S <-6T-> [+]J[LWpyl

[TT] »xdd <- [€] x03S <-TT-> [+][uldd] -

[€] x01S -¢ -> [+][4035]

— N S WO WO~

<-€

<-0 -> [+][1301
[8 1 x«PVY <-8 -> [+][130]

<-€

<-8

[€ 1 %038 <- [8 1 xxPY -> [+][4035]
[8 1 xxPv¥ -> [+]1[twpy]

(09) 00+€T - 00+€T <[] uod
(06) 00:9T - 00:0T +<[2] tdd
(06) 0e+¥T - 00:0T <[] wpy
(0T) 00:9T - 00:TT +<[0] 29§
(0T) §T+¢T - 00:0T <[T] 03S

(8¢ :butzeyadp) (suoLiedo] §) 6¢ ON-[gs

(WeisAs uole NS Avd ayl Aq paresauab a|l) Bo| e wo.) 1nojutid) ¢ ¥se1 Qyd uo 138lgns uewny e Aq pawojed ‘Buluue|d Jo 8sinod ay) Jojajdwex3 GT'9 ‘Bi4

[82]1 NI4 <- [82] xxdd <- [02] 4995 <- [6T] LIVM <- [TT] 500 <- [TT] x03S <- [8 1 dVI <- [8 1 xxPV
S(T :dJequnu) uolLin|os E:Ewuao
[82]1 NI4 <- [82] xxdd <- [02] 4995 <- [6T] LIVM <- [TT] ¥x00 <- [TT] x03S <- [8 1 dVI <- [8 1 xxPV
tuoLin|Oos |eulL4
[8¢] NId <-
[82]1 xx4d <- [02] 4095 <- [H6T] LIWVM <- [TIT] xx0) <- [TT] x03S <- [8 1 ¥YV) <- [8 1 xxPV <-82-> (00°0) T :XBWWdW [+] >>69°0<< 00°0 | 00°0 | 00°0 | 00°0 | £€£°0 | 00°0 | 82°0 | 9€'0 | €¥'0 | 00°0 | 00°0 | 00°0 | ‘G¥
[8¢]1 xx4d <- [0¢] 499S <- [6T] LIVM <- [TIT] %00 <- [TIT] x03S <- [8 1 ¥V) <- [8 1 xxPV <-8¢-> (00°0) T :XeWwsdW [+] | ¥S°0 | 00°0 | 000 | 00°0 | 00°0 | €€°0 >>68'0<< G2°0 | 00°0 | €€°0 | 00°0 | 00°0 | 00°0 | “¥¥
[02] 408S <- [6T] LIVM <- [TIT] xx00 <- [TIT] x03S <- [8 1 ¥V) <- [8 1 xxPY <-02-> (00'T) £ :XeWwdW4 [+] | 82'0 | 00°0 | 00°0 | 00°0 | 00°0 | 00°0 | £0°0 | 12°0 >>E¥'0<< 6T°0 | 00°0 | 00°0 | 00°0 | ‘€¥
[6T] LIVM <- [TT] »+00 <- [TIT] x03S <- [8 1 ¥V] <- [8 1 xxPY <-6T-> (00°0) T :XeWwdW [+] | L1°0 | 00°0 >>00°I<< 00°0 | 00°0 | 00°0 | ¥¢°0 | TT°0 | £1°0 | 2T°0 | 00°0 | 00°0 | 00°0 | "2¢¥
[TT] ¥x0D0 <- [TT] x01S <- [8 1 ¥V¥D <- [8 1 xxP¥ <-TT-> (00°T) § :XeWwdW [+]1 | 9T°0 | £1°0 | 00°0 | 00°0 | 00°0 >>¢€"0<< £0°0 | 22°0 | G0°0 | 00°0 | 00°0 | 00°0 | 00°0 | "1I¥
[TT] x03S <- [8 1 dVD <- [8 1 xxPV <-TT-> (00°T) £ :XePWWdW [+] | 02°0 >>8%°0<< 00°0 | 00°0 | 00°0 | ¢¢°0 | 2000 | £T°0 | 00°0 | 22°0 | 00°0 | O0°0O | 000 | "OF%
[21] 408S <- [TT] x01S <- [8 1 ¥V¥D <- [8 1 xxP¥ <-21-> (00°T) 8 :XeWwdW [+] | 02°0 >>99'0<< 00°0 | 00°0 | 00°0 | 00°0 | 00°0 | G2'0 | 82°0 | 2¢°0 | 00°0 | 00°0 | 00°0 | ‘b€
[02] xxdd <- [2T] 4995 <- [TIT] x03S <- [8 1 ¥V] <- [8] xxPVY <-0¢-> (00°0) 8 :XeWwsW [+] | T¢°0 >>080<< 00°0 | 000 | 00°0 | 00°0 | TT°O | TT°0 | TT°0 | 9T°0 | TO'0 | 00°0 | 00°0 | °8¢
[GT] ¥x0) <- [02] xx4d <- [2ZT] 409S <- [TIT] x03S <- [8 1 ¥V) <- [8 1 xxPV¥ <-GT-> (00°0) T :XBWwdW [+1 | £T1'0 | 00°0 | 00°0 | 00°0 | 000 >>82'0<< 00°0 | ¢22°0 | £2'0 | 02'0 | 1T0°0O | 00°0 | 00°0 | ‘/€
[02] »xdd <- [2T] 4995 <- [TIT] x03S <- [8 1 ¥V] <- [8 1 xxPVY <-0¢-> (20°0) € :XeWwsdW [+] | ¥2°0 | 80°0 | 00°0 | 00°0 | 00°0 | T€0 >>85°0<< 6T°0 | 00°0 | 02°0 | 00°0 | 00°0O | 00°0 | "9¢
[21] 408S <- [TT] x01S <- [8 1 ¥V¥D <- [8 1 xxP¥ <-21-> (00°T) £ :XPWwdW [+]1 | 91°0 | 22°0 | 00°0 | 00°0 | 00°0 | GT'0 | €0°0 | 02'0 >>62°0<< 00°0 | 00°0 | 00°0 | 00°0 | 'S¢
[TT] x03S <- [8 1 dVD <- [8 1 xxPV <-TI-> (00°T) § :XePWWdW [+] | 02°0 >>/¥ ' 0<< 00°0 | 00°0 | 00°0 | #¥2°0 | 00°0 | 6T°0 | 20°0 | 22°0 | 00°0 | 0O0°0 | 00°0 | "¥¢€
[6T] ¥x4d <- [TT] x01S <- [8 1 ¥V¥D <- [8 1 xxP¥ <-6T-> (00°T) 8 :XeWwdW [+] | 02°0 >>89'0<< ¢0°0 | 00°0 | 00°0 | 00°0 | T2'0 | #¥2'0 | 00°0 | 9€°0 | 00°0 | 00°0 | 00°0 | ‘€€
[0¢] 498S <- [6T] xxdd <- [TIT] x03S <- [8 1 ¥V] <- [8] xxPVY <-0¢-> (€0°0) 6 :XeWWwdW [+] | ¥T°0 >>08°0<< 00°0 | 00°0 | 00°0 | 00°0 | 2T°0 | ITT°0 | 60°0 | €T°0 | TO'0O | 00°0 | 00°0 | "2¢
[GT] ¥x0) <- [02] 499S <- [HT] xxdd <- [TT] x03S <- [8 1 ¥V) <- [8 1 xxPV¥ <-GT-> (00°0) T :XeWwdW [+] | T2'0 | 00°0 | 20°0 | 00°0 | 000 >>9€°0<< 92°0 | ¥2'0 | 00°0 | 1€°0 | 00°0 | 00°0 | 000 | ‘1€
[0¢] 498S <- [6T] xxdd <- [TIT] x03S <- [8 1 UV] <- [8 1 xxPVY <-0¢-> (20°0) v :XeWwsaW [+] | 61T°0 | 00°0 | 00°0 | 00°0 | 00°0 | T€E0 | 00°0 | 22°0 >>S¥"0<< ¥2°0 | 00°0 | 00°0 | 00°0 | -O¢€
[6T] xx4d <- [TT] x01S <- [8 1 ¥V¥D <- [8 1 xxP¥ <-6T-> (00°T) 8 :XPWwdW [+]1 | ¥T1°0 | T2°0 | 00°0 | 00°0 | 00°0 | ¥0'0 >>/€°0<< 8T'0 | 2€°0 | 00°0 | 00°0 | 00°0 | 00°0 | '6¢
[TT] x03S <- [8 1 dVD <- [8 1 xxPV <-TT-> (00°T) £ :XePWWdW [+] | 92°0 >>25°0<< 00°0 | 00°0 | 00°0 | 00°0 | ¥vO°O | 8T°0 | 6%#°0 | T2°0 | 00°0 | 0O0°0O | 00°0 | °8¢
[6T] LIVM <- [TT] %+00 <- [TIT] x03S <- [8 1 ¥V] <- [8 1 xxP¥Y <-6T-> (00°T) § :XBWWdW [+] | 6%°0 >>99°0<< 00°0 | 00°0 | 00°0 | 9¢°0 | 00°0 | 62°0 | 20°0 | £2°0 | 10O | 00°0 | 00°0 | "/2
[£2] xxJd <- [6T] LIVM <- [TT] xx00 <- [TIT] x03S <- [8 1 ¥V) <- [8 1 xxPV <-/Z-> (00°0) T :XeWwdW [+] | 02°0 >>08°0<< 00°0 | 00°0 | 00°0 | ¥v0O°0 | €0°0 | ¢20°0 | 000 | 90°0 | 00°0O | 000 | 00°0 | -92
[22] 408S <- [£2] xx4d <- [6T] LIVM <- [TT] %00 <- [TT] x03S <- [8 1 ¥V) <- [8 1 xxPV <-22-> (00°0) T :XBWwdW [+] | G2°0 | 00°0 | 00°0 | 00°0 | 00°0 | 8€°0 | 00°0 | G2'0 >>G¥"0<< ¥#€°0 | 00°0 | 00°0 | 00°0 | ‘G2
[£2] xxJd <- [6T] LIVM <- [TIT] %x00 <- [TIT] x03S <- [8 1 ¥V) <- [8 1 xxPV <-/Z-> (00°0) T :XeWwdW [+] | €€°0 | 00°0 | 00°0 | 00°0 | 00°0 | 00°0 >>¢6°0<< €2°0 | I9°0 | 02°0 | 00°0 | 00°0 | 00°0 | “¥¢
[6T] LIVM <- [TT] %%00 <- [TIT] x03S <- [8 1 ¥VD <- [8 1 xxP¥ <-6T-> (00°0) T :XBWwdW [+] | 8T°0 | T0'0 >>00°I<< 00°0 | 00°0 | 00°0 | 22°0 | TT'0 | 81T°0 | TT°0 | 00°0 | 00°0 | 00°0 | ‘€2
[TT] »x0D0 <- [TT] x013S <- [8 1 dVD <- [8 1 xxPVY <-TI-> (00°0) T :XeWwsW [+] | 6T°0 | ¥0O°0 | ¢0°0 | 00°0 | 00°0 >>98°0<< €¥°0 | 8T°0 | £2°0 | 00°0 | 00°0 | 00°0 | 00°0 | "2¢
[TT] x01S <- [8 1 ¥VD <- [8 1 xxP¥Y <-TT-> (00°0) T :XPWwdW [+]1 | 8T°0 | TT°0 | 00°0 | 00°0 | 00°0 | 69°0 | 0€'0 | 00°0 | 82°0 >>T/'0<< 00°0 | 00°0 | 00°0 | '71¢
[8 1 dVD <- [8 1 »«PV <-8 -> (00°0) T :XPWWdW [+] | GT°0 | €0°0 | 00°0 >>¥.°0<< 00°0 | 92°0 | 62°0 | 00°0 | £€°0 | £E°0 | 00°0 | 00°0 | 0O0°O0 | -0¢C
[8 1 xxPVY <-8 -> (00°T) ¥ :XBPWWBW [+] | OT'0 | TT°0 | 00°0 | G2'0 | 00°0 | ¥2'0 | 02°0 >>0€°0<< 82°0 | ¢20°0 | 00°0 | 00°0 | 1T0°0 | 6T
<-0 -> (00°T) £ ‘XPWWAW [+] | $#1°0 >>8€°0<< 00°0 | £2°0 | 000 | T€°0 | 20°0 | 62°0 | 82°0 | 00°0 | 00°0 | 00°0 | TO'O | "8I
[€ 1 x01S <-¢ -> (00°T) 8 :XPWWBW [+] | 8T'0 >>€9°0<< 00°0 | #2°0 | T0°0 | ¥0'0 | 00°0 | G2'0 | £1°0 | 61T°0 | 00°0 | 00°0 | 00°0 | /I
[TT] xxdd <- [€] x03S <-TT-> (00°T) £ :XPWWAW [+] | ¥#2°0 >>S/°0<< 00°0 | TT°0 | 00°0 | 00°0 | TO'O | ZT1°0 | 80°0 | ¥¢°0 | 00°0 | 00°0 | TO'O | 9T
[6T] LIVM <- [TT] %%00 <- [TIT] xx4d <- [€ 1 x03S <-6T-> (00°0) T :XPWwdW [+] | 02°0 >>08'0<< 80°0 | €T°0 | 00°0 | 9T°0 | 00°0 | OT'0 | G2°0 | €T°0 | 00°0 | 00°0 | 00°0 | "ST
[¥T] »xdd <- [6T] LIVM <- [TIT] %x00 <- [TT] xxdd <- [€] x03S <-¢yI-> (00°T) G :XeWwsdW [+] | 9T°0 | 0€°0 | TO'0O | 00°0 | 00°0 | 00°0 >>T€ 0<< G2°0 | S0°0 | 22°0 1 00°0 | 00°O | TO°O | "¥I
[6T] LIVM <- [TT] %00 <- [TIT] xx4d <- [€ 1 x03S <-6T-> (00°T) £ :XPWWoW [+] | 2€°0 >>G¥'0<< 8T°0 | S¥'0 | 00°0 | ¥€°0 | 20°0 | #¥2'0 | 00°0 | 62°0 | 1TO'0 | 00°0 | 00°0 | “"€°T
[0¢] 498S <- [6T] LIVM <- [TIT] %x00 <- [TIT] xxdd <- [€] x03S <-0¢-> (00°0) T :XeWwsW [+] | 6T°0 >>08'0<< 8€°0 | 2T°0 | 00°0 | T2°0 | 000 | ¢2T°0 | ¥T°0 | GT°0 | 00°0 | 00°0 | 00°0 | "2T
[GT] xx4d <- [02] 499S <- [H6T] LIVM <- [TT] %x0) <- [TT] xxdd <- [€ 1 x03S <-GT-> (¥0'0) ¥ :XBWWdW [+1 | 92°0 | 00°0 | 20°0 | OT°0 | 00°0 | v2'0 >>82'0<< €2°0 | 00°0 | #¥2'0 | ¥v0°0 | 00°0 | 00°0 | °7IT
[0¢] 498S <- [6T] LIVM <- [TIT] %x00 <- [TIT] xx4d <- [€] x03S <-0¢-> (00°T) OT :XeWwsaW [+] | 8T°0 | £€°0 | 00°0 | 00°0 | 00°0 | 00°0 | 62°0 | T2°0 >>9%°0<< ¥2°0 | 00°0 | 00°0 | TO°O | ~OT
[6T] LIVM <- [TT] %%00 <- [TIT] xx4d <- [€ 1 x03S <-6T-> (00°T) 9 :XWWwdW [+] | L¥'0 >>6G°0<< O¥'0 | 00°0 | 00°0 | £2°0 | 22°0 | TO'O | 00°0O | 92°0 | 00°0 | 00°0O | 000 | "6
[0¢] 493S <- [6T] UV <- [6T] LIVM <- [TIT] %x0Q <- [TIT] xxdd <- [€] x03S <-0¢-> (00°0) T :XeWwdW [+] | 9€°0 >>08°0<< 00°0 | 00°0 | 00°0 | TT°0 | 80°0 | 00°0 | ITT°0O | 60°0 | O0°0O | 000 | OO0 | -8
[ST] »xPV <- [02] 4995 <- [6T] ¥V¥D <- [6T] LIVM <- [TT] %x0) <- [TT] xxdd <- [€ 1 x03S <-GT-> (00°0) T :XBWwdW [+] | T2'0 | 00°0 | 00°0 | 00°0 | 00°0 | 82'0 | ¥#2'0 >>G/"0<< 00°0 | 92°0 | 00°0 | 00°0 | 000 | ‘¢
[0¢] 493S <- [6T] UV <- [6T] LIVM <- [TIT] %x0Q <- [TIT] xxdd <- [€ 1 x03S <-0¢-> (00°0) T :XeWwsdW [+] | 9T°0 | 00°0 | 00°0 | 00°0 | 00°0 | 00°0 | ¥2°0 | ¢¥°0 >>6¥"0<< €€°0 | 00°0 | 00°0 | 00°0O | -9
[6T]1 dVD <- [6T] LIVM <- [TIT] %00 <- [TIT] xxdd <- [€ 1 x03S <-6T-> (00°0) T :XBWWwdW [+]1 | L1°0 | 00°0 | 00°0 >>¥G"0<< 00°0 | 00°0 | G2'0 | 92°0 | ¢25°0 | G20 | 00°0 | 00°0 | 00°0 | '9
[6T]1 LIVM <- [TT] »+00 <- [TIT] xxd4d <- [€] x03S <-6T-> (00°0) T :XeWwdW [+] | TT°0 | 00°0 >>00°I<< 60°0 | 00°0 | 00°0 | ST°0 | 6T°0 | 02°0 | ST°0 | 00°0 | 00°0 | 00°0 | ¥
[TT] ¥x0) <- [TT] xxd4d <- [€] x03S <-TT-> (00°0) T :XPWweW [+]1 | 60°0 | €0°0 | 00°0 | 0E°0 | 00°0 >>96°0<< 00°0 | 62°0 | 92°0 | 61°0 | 00°0 | 00°0 | 00°0 | '€
[TT] »xdd <- [€] x03S <-TT-> (S0°0) G :XPWWAW [+] | G0°0 | €0°0 | 00°0 | 82°0 | 00°0 | 92°0 >>T1€°0<<82°0 | G2°0 | 00°0 | 00°0 | 00°0O | O0O°O | ~¢
[€ 1 x01S <-€ -> (00°0) T :XPWwdW [+] | 20°0 | 00°0 | 00°0 | 85°0 | 00°0 | 82°0 | €T°0 | £G'0 | 6€°0 >>89°0<< 00°0 | 00°0 | 00°0 | T
NId 13a 1IVM 4vo us) JuU0) Ldd upy BN 4015 330 948) 1s0d
(09) 00:€T - 00:€T :[¢] uo)d
(06) 00:9T - 00:0T =[] Lud
(06) 0€:¥T - 00:0T =[] wpy
(0T) 00:9T - 00:TT :[0] 988
(0T) GT:¢T - 00:0T :[T]1 03S
(8z :6uL1ey1dQ) (SuoL1ed207 G) " ''YAJ JO4 POPROL (¥) ASP1I-QVd ‘69
(wesfs uoienwis avd ayl Ag paressusb a1) Ho| e wouy Inoulid) 7 ¥se1 Avd uo YAT Ag pawJoyed ‘Buluure|d Jo 8s1nod ay) Jojajdwex3 919 Bi

Results 82

must confess that the chosen examples are in so far not completely typical, as they both finally
lead finally to the optimal plan.)

The courses of planning presented here refer to PAD task 4. The reader should refer to table
5.1 for the specifications of this PAD task to be able to judge the operator application of the
human subjects on the one side, and of EVA on the other side (for the instructions of PAD task
4, see appendix A).

The printout from the log files of the PAD simulation system presented in fig. 6.15 and 6.16
provide much information, some of which is described in the following. Fig. 6.15 shows the
course of planning for a human subject. For each operator application, one row is added to the
numbered list of temporary plans. In each row, the first column after the numbering gives the
applied operator (the names of the Movement actions are made up of the first four letters of
their respective goal location). Afterwards, “[+]” or “[-]” indicates, if the operator was a valid
user input (according to table 4.3). The number shown in acute brackets represents the current
score after operator application (according to the advanced evaluation). Right of the current
score the current plan is presented as sequence of actions plus Finish (stars in location names
indicate the priority of the respective appointment). After each action, the present (advanced)
score is given in angular brackets. In following, the numbered list from the first to the last
operator application gives an overall impression of the whole process of planning.

Fig. 6.16 contains even more information relevant to the course of planning of EVA. Instead
of an abbreviation of the applied operator, the numbered list provides the complete activation
pattern of EVA’s output units for the respective processing cycle in each row. The column
titles allow the assignment of each activation value to its respective evaluator/operator. The
output unit with maximum activation is highlighted by inverse acute brackets. In thisway, one
can determine the operator applied by EVA in the respective processing cycle. On the right of
each row, the current plan is displayed in the same way asin fig. 6.15.

In fig. 6.16, one can discover, for example, chains of applied Delete operators (e.g., in steps
15 to 18). The activation of the Delete evaluator decreases dightly from step to step, until
another evaluator gets a higher activation value. Vice versa, at the end of the course of
planning, one can observe the increasing activation value of the Finish evaluator, until it is high
enough to terminate the process of planning.

In comparing the course of planning between this human subject and EVA, many differing
details are noticeable, but there are also some interesting similarities. For example, in the first
half of both courses of planning, in the course of severa steps the current plan starts with the
sequence “Move-to-storehouse = Move-to-printing-office”. Furthermore, both the human sub-
ject and EVA supplement this fragment temporarily with the sequence “Move-to-conference-
room —> Wait = Drive-by-car”. Inthe second half of both courses of planning, the beginning of
the current plan “Move-to-administration = Drive-by-car = Move-to-storehouse” is retained in
spite of several Delete chains terminated just before deleting Move-to-storehouse.

Furthermore, the beginning of the application of the Delete operator is always triggered by
the same kind of situation (notice steps 9, 17, 28, and 34 for the human subject and steps 7, 11,
14, 25, 31, and 37 for EVA): Namely, when it was not possible to fulfill the scheduled

Results 83

appointment at the last visited location, which can be diagnosed by the decreasing standard end
score for the last action of the respective current plan. Both the human subject and EVA rely on
this situational information to begin a phase of plan revision. | will return to this interesting
point in the discussion (section 7.3).

However, as pointed out in the beginning, even if this comparison reveals interesting results,
they only have a demonstrative character. Therefore, | will return in the following subsections
to quantitative comparisons.

6.1.6.2 Relationship between the Length of the Operator Sequence and the End Score

In examining the course of planning both for the human subjects and the simulated subjects, the
impression arose, that shorter operator sequences often yield better end scores. If this relation-
ship is redly the same for the human sample, asit isfor EVA, thiswould provide an interesting
insight into important characteristics of the course of planning. To check this assumption, the
correlation coefficients between Length and EndScoreStd were calculated. They are given in
table 6.5.

As the table shows, the correlations are in fact negative. For PAD task 4, EVA yieldsamore
negative coefficient than the human sample (rf4 = -.31 vs. ¥ = - 22), for PAD task 5, it is the
other way round (r¥V* = -.10 vs. " = - 21). However, at least the sign of the correlation coef-
ficients and the order of their magnitude is met by EVA. This shows that EVA is even able to
reproduce subtle tendencies within the planning process, although they were not considered at
all during modd fitting.

6.1.6.3 First Used Operator

A deeper analysis of the planning process can also be carried out through determining the
operators used in certain states of the PAD world. Depending on the number of considered
states and the procedure used for determining these relevant states, such an analysis can reach
such a degree of high complexity, that meaningful evaluations and interpretations are nearly
impossible. Therefore, in the present study, only two states were taken into consideration,

Table 6.5: Correlations between the length of the operator sequence and the standard end score

PAD task
N° 4 N° 5
Sample Sample
Humans EVA Humans EVA

Correlation between

Length and EndScoreStd -2 -31 -21 -10

** These correlations are significant on the level of 0.1%. Thisis not surprising since n = 4500 for the sample generated
by EVA.

Results 84

which can be defined in a very straightforward manner: First, the starting point of the planning
process, and second, the starting point of the finally generated plan. Thus, | examined the use
of the first operator in the overall course of planning, and the use of the first action (operator) in
the finally generated plan.

Fig. 6.17 shows both kinds of operator use for PAD task 4 in comparison between EVA and
the human subjects. For the first operator used in the overall course of planning (white parts of
each bar, pure white for the human sample and patterned white for EVA), this comparison
reveals quite a different frequency distribution. Even if the three operators with highest fre-
quency ae equal for the human sample and EVA (Move-to-storehouse,
Move-to-administration, Drive-by-car), their respective frequencies are very different. EVA
generates a strong peak for Move-to-storehouse (81%), while the human subjects do not show a
clear preference (Move-to-storehouse: 29%; Move-to-administration: 29%; Drive-by-car: 13%).

An inspection of the use of the first action in the fina plan (black parts of each bar, pure
black for the human sample and patterned black for EVA) reveals, that the positions of the three
maxima remain unchanged, and also, that their respective frequencies have become more equal.

Move-to-storehouse is used as first action by the human subjects in 47% of the plans, and by
EVA in 32% of the plans. For Move-to-administration these percentages are 44% and 37%,
respectively. In summary, EVA does not reproduce the use of the first operator in the overall

First Applied Operator

in PAD Task 4

200,0%

EVA - Final Plan

M Human Sample - Final Plan
R EVA - Overall Planning Process —
150,0%] Human Sample - Overall Planning Process | |

QY
K
175,0% RS
L
XK

125,0%

202020
100,0% :’:’:’
R

75,0%

50,0%

Relative Proportion of Each Operator

25.0% RSSS
SRLK XK
0.0% —
O{\\(Q/ ds@ 3 & 0\{9?1 O{\\d& ’8\\0(\ O{\\(,Q/ 00@ & cYQh $?§ Q,}Q/ é\(o‘e‘ Q\'é‘
N S & <& N S\ <& LR
2 $ & S & 4 Q Q &
° & O & & & & & &
<& & & & &
%Q’o QOQ N Q/@

Fig. 6.17: Frequency distribution of applied operators for the starting point of PAD task 4 and for the
beginning of the final generated plan

Results 85

planning process very well, however, the frequency distributions of the first used action in the
final plan are quite similar for the human sample and EVA (although model fitting was not
directed at all towards these frequency distributions).

The same comparisons can be carried out for PAD task 5 (fig. 6.18). Unfortunately, as an
inspection of fig. 6.18 reveals, there are considerable differences between the human sample
and EVA. For thefirst applied operator of the overall planning process, the maxima of frequen-
cies are quite different (for the human sample: Move-to-administration: 40%, Move-to-central-
office: 37.8%; for EVA: Move-to-conference-room: 49%, Wait: 24%). For the first action of the
final plan, these differences become smaller, but are still of considerable size. The human sub-
jects begin the final plan most frequently with Move-to-printing-office (56%), while EVA pre-
fers still Move-to-conference-room (39%). This different behavior explains partly, why the
simulated subjects reach the optimal plan very rarely in comparison with the human subjects.
The optimal plan for PAD task 5 begins with Move-to-printing-office (see table 5.2), and since
EVA “didlikes’ to apply this action at the beginning, the simulated subjects are only seldom in
the position to reach the optimal plan (for a further discussion see section 7.1).

First Applied Operator

in PAD Task 5
120,0%
| @& EVA - Final Plan
B Human Sample - Final Plan
0 ——| XXX
100,0% K4 EVA - Overall Planning Process ::::::
|| [Human Sample - Overall Planning Process :::0:0

5
%
o

%
%
%
2R
el
LRI,
SRRRKKS
2R
%

p—
o
2
©
S
(O]
o
@)
=
O 80,0% 2e3%
@© 0:0:0: :Q:Q:Q
0 2
B XXX Q’Q’Q’
c 0
IS 60,0% .:.:,:
£ SRR
o
o
O 40,0% 0
Q- O
) XK
> SRR
o
S 20,0% _——
m | - (-
0,0%
@ @ 2 @ & & Q & < & Z NS N
& 2 & 2 & O N o & v A < 9 N
KO ey Qo‘{‘ RO PR
& & & & & & & & Q <®
e O o (@, N D
o P <

Fig. 6.18: Frequency distribution of applied operators for the starting point of PAD task 5 and for the
beginning of the final generated plan

Results 86

6.1.7 Summary

In summary, the results of model fitting are satisfactory. For PAD task 4, many of the relevant
characteristics of the planning behavior of the human sample are met by EVA. Only for
EndScoreStd (6.1.1), TimeTooLate, TimeTooEarly (6.1.5), and the application of the first operator
in the overall planning process (6.1.6.3) the differences are of notable size.

For PAD task 5, the overall picture is more mixed. Many of the variables used for compari-
son with the human sample are in the same order of magnitude for both the human and the
simulated subjects, but there are a'so some considerable differences. These differences espe-
cially affect the variables EsoptRatio and MSOptRatio (6.1.1), the frequency distributions for the
variables EndScoreStd (6.1.1), Length, and NumTotalDel (6.1.2), as well as the application of the
“considering urgency” heuristic (6.1.4), the variable TimeTooLate (6.1.5), and the application of
the first operator both in the overall planning process and in the final plan (6.1.6.3).

6.2 Performanceof EVA on Randomly Generated PAD Tasks

Beginning with this section, the results of applying EVA to new PAD tasks are reported. How-
ever, first one must decide which of the two parameter configurations, which result from the
second stage of model fitting, one wants to use. In the following, a compromise is chosen.
First, a parameter configuration is determined that results from cal culating the mean values bet-
ween the parameter settings for PAD task 4 and PAD task 5. This approach is based on the
assumption, that both PAD tasks 4 and 5 have their own specia properties that are not covered
by the basic specifications of EVA. Thus, mean values as parameter values may be a good
choice to optimize the performance of EVA for a broad variety of different PAD tasks. The
respective parameter configuration is called “medium configuration” in the following. The
parameter values are: fp = 0.8, fr = 0.6, NoiseProportion = 0.2, MemForgetFactorsm = 0.8.

Second, for comparison another parameter configuration is used, namely the configuration
for PAD task 4. In the following it is called “P4 configuration”; it comprises the known
parameter values fp = 0.8, fr = 0.75, NoiseProportion = 0.1, and MemForgetFactorsq.a = 0.8. The
reason for employing this configuration in addition to the others is based on the following con-
siderations: Since the goodness of fit is especially good for PAD task 4 and only moderate for
PAD task 5 (although for both special parameter settings were chosen), the latter PAD task (and
only this one) may have specia properties which are not covered by the basic architecture of
EVA (including the structure of the training data). Such properties are considered rare. Thus,
for PAD tasks in general, it may be an advantage for EVA, if it can work with the parameter
settings for PAD task 4.

Since the medium configuration and the P4 configuration are based on contrary assumptions,
the comparisons in this and in the next section also serve as clues for determining which of the
two assumptionsis more plausible.

Results 87

In this section, EVA is applied to randomly generated PAD tasks of different complexity.
The PAD tasks are generated according to the same basic principles and parameter settings as
the PAD tasks used for the training data (see section 4.5.2.1 and table 4.5). Only
MinSchedulApps and MaxSchedulApps are varied. They are set to an equal value called
SchedulApps (this parameter corresponds to the number of scheduled appointmentsin each PAD
task), which is varied to regulate the complexity of the generated PAD tasks. The variables
EndScoreStd%, MaxScoreStd%, ESOptRatio, and MSOptRatio are used for assessing EVA’s per-
formance. The former two variables correspond closely to the variables of section 6.1.1 with
similar names. The additional “%” in their names indicates, that they are given as percentagesin
relation to the average optimal score for the generated PAD tasks. For table 6.6, ESoptRatio
and MSoptRatio (See section 6.1.1 for their meaning) are calculated according to the standard
evaluation. In addition, table 6.6 provides the variable Length (number of applied operators in
the course of planning).

Table 6.6 revedls the following results: First, the performance indicators are smaller for the
medium configuration than for the P4 configuration. This result provides evidence for the
assumptions underlying the choice of the P4 configuration. Since both the PAD tasks underly-
ing EVA’s training data?® and the PAD tasks underlying the results of table 6.6 were generated
randomly according to the same basic parameter settings, both sets of PAD tasks belong to the
same “population”. Therefore, since the P4 configuration yields the better performance, PAD
task 4 must meet more of the basic characteristics of this population than PAD task 5 does.

Table 6.6: Performance of EVA on randomly generated PAD tasks. The meaning of the variables is
explained in the text. n corresponds to the number of randomly generated PAD tasks for
each sample.

SchedulApps (Number of scheduled appointmentsin each PAD task)

3 4 5 6 7 8 9

(n=450) (n=450) (n=450) (n=450) (n=450) (n=450) (n=300)
Medium configuration
EndScoreStd% [%] 64.0 67.0 70.4 731 75.0 73.9 70.4
MaxScoreStd% [%] 924 89.0 88.0 88.8 87.7 86.7 85.7
ESOptRatio [%] 41.6 33.6 21.3 151 12.7 8.2 4.0
MSOptRatio [%] 68.4 51.8 31.8 23.8 17.8 13.8 8.0
Length 21.6 29.6 35.1 44.9 48.9 63.1 67.6
P4 configuration
EndScoreStd% [%] 725 755 78.3 83.0 80.3 79.7 78.5
MaxScoreStd% [%] 935 91.3 89.1 90.0 88.0 87.0 87.0
ESOptRatio [%] 50.7 43.1 26.9 21.8 122 10.9 9.3
MSOptRatio [%] 72.0 57.6 35.8 26.2 184 13.8 13.0
Length 175 23.2 26.9 26.8 37.6 36.1 49.0

% For a minority of the PAD tasks used for EVA’s training data the basic parameter settings were slightly
changed. For a precise description see section 4.5.2.2.

Results 88

Thus, most probably, PAD task 5 has some special qualities only rarely met by randomly gener-
ated PAD tasks, even if this random generation is based on overt characteristics of the prede-
fined PAD tasks (see section 4.5.2.1).

Furthermore, the comparison of the medium and the P4 configuration shows, that the opera-
tor sequences for the former one are longer than for the latter one. This can be easily explained
by the smaller value of fe for the medium configuration (fe = 0.6) than for the P4 configuration
(fr = 0.75). In general, Length increases with an increasing number of scheduled appointments.
This is a meaningful result, since the need for elaboration grows with enhanced complexity of
PAD tasks.

Further, table 6.6 reveals that the best end scores for the P4 configuration (EndScoreStd%) are
obtained for PAD tasks with six scheduled appointments. This result isin so far surprising, as
one may expect the best end scores for PAD tasks with the least number of scheduled appoint-
ments. A possible explanation for this phenomenon lies in the fact, that the training data of
EVA is based on PAD tasks with at least five scheduled appointments (see the value of
MinSchedulApps in table 4.5). However, the variables MaxScoreStd%, ESOptRatio and MSOptRatio
obtain their maximum values for PAD tasks with three scheduled appointments (93.5%, 50.7%,
and 72.0%, respectively). With an increasing number of scheduled appointments, the values of
these variables decrease, until they reach their minimum (when SchedulApps = 9: Then
MaxScoreStd% = 87.0%, ESOptRatio = 9.3%, MSOptRatio = 13.0%). The latter two percentages
seem to be remarkably high, if one considers the poor performance of EVA for PAD task 5 with
regard to ESOptRatio and MSOptRatio.

To sum up, the results of this section provide further evidence for the general applicability of
EVA. Obvioudy, neither the first nor the second stage of model fitting has led to a model that
is specialized on PAD tasks 4 and 5, but which does not have any further applicability. Of
course, the approach taken in this section does not claim to be avalidation of EVA. Thisstepis
reserved for the next section.

6.3 A First Attempt at Validation

The best procedure of validation would be to compare predictions of EVA regarding certain
PAD tasks with the results obtained by human samples. However, since EVA is not yet able to
reproduce the empirical results for PAD task 5 with a satisfactory precision, it seems exagger-
ated to start a validation study right from the very beginning. In addition, it is not totally clear
which parameter configuration (medium or P4) should be preferred at the present point. For
these reasons, a more economical approach was chosen for the estimation of EVA’s current pre-
diction qualities. In the study of Funke and Kruger (1995), which was presented in section 3.2,
small samples of humans subjects had to work on several predefined PAD tasks. The authors
published the values of the variables EndScoreStd, MaxScoreStd, and Length (See table 3.1).
Referring to these results, one can realize alimited test of EVA’s validity.

Results 89

Unfortunately, as a comparison of the standard end scores (EndScorestd) of the human sam-
ples between table 3.1 and table 6.1 reveds, the subjects in the study of Funke and Kriger
(1995) show worse performance than the subjects used for this study (for PAD task 4: 22.7 to
25.3; for PAD task 5: 20.9 to 22.9). In addition, the number of applied operators (Length) is
also different (compare table 3.1 and table 6.2); the subjects in the study of Funke and Kriiger
needed less than half of the operators the other subjects needed (for PAD task 4: 16.0 to 40.6;
for PAD task 5: 17.9 to 43.6). Since EVA was fitted to meet the characteristics of a certain
human sample, the question arises. Will EVA be in a position to predict results for other sam-
pleswith likely different characteristics?

Nevertheless, the comparison between the human samples from the study of Funke and
Kriger (1995) and simulated samples generated by EVA in the medium and in the P4 configu-
ration was carried out. From the study of Funke and Kriiger two samples were taken: One for
predefined PAD tasks 7 and 8 (n=15), and one for predefined PAD tasks 15 and 16 (n=14).
These samples were completely assessed in the easiest mode of presentation, which isimportant
since the ssmulated PAD world is also based on thismode. For EVA, 450 simulation runs were
carried out for each PAD task and each configuration.

Table 6.7: Comparison of different samples working on predefined PAD tasks 7, 8, 15, and 16. The
data for the human subjects were taken from the study of Funke and Kriger (1995).

Sample
Subjects simulated Subjects simulated Human subjects
by EVA by EVA (n=15 for PAD tasks 7 and 8;
(medium configuration) (n=450) (P4 configuration) (n=450) n=14 for PAD tasks 15 and 16)
PAD task 7
EndScoreStd% [%] 87.8 88.3 835
MaxScoreStd% [%] 87.9 88.3 90.6
Length 13.9° 10.3 13.0
PAD task 8
EndScoreStd% [%] 77.9 80.3 90.8
MaxScoreStds [%] 80.1 81.2 90.8
Length 29.2 17.8 13.2
PAD task 15
EndScoreStd% [%] 85.1 84.1 84.2
MaxScoreStd% [%] 86.0° 84.5 89.3
Length 28.6 15.3 17.6
PAD task 16
EndScoreStd% [%] 79.4 83.4 83.8
MaxScoreStd% [%] 83.2 84.8 88.2
Length 52.6 32.2° 22.9

* The asterisk indicates that the difference between the respective val ue and the corresponding value for the human

sampleis smaller than the difference between the corresponding values for the other configuration of EVA and the
human sample.

Results 90

Table 6.7 shows the results for the variables EndScoreStd, MaxScoreStd, and Length. An
asterisk indicates which of EVA’s configurations shows a better fit to the human data. Again,
the P4 configuration is superior to the medium configuration. For PAD tasks 8, 15, and 16, the
fit between the P4 configuration and the human samples is better than the fit for the medium
configuration. Length is especially overestimated by EVA in the medium configuration. For
the P4 configuration, this overestimation is replaced by an alternating under- and overestimation
with smaller deviations.

For PAD tasks 15 and 16, EndScoresStd is predicted by EVA in the P4 configuration with a
remarkably high precison. However, for PAD tasks 7 and 8 the differences are considerably
larger. MaxScoreStd is mostly underestimated by EVA in the P4 configuration. The largest dif-
ference amounts to 9.6% (for PAD task 8). Unfortunately, EVA isnot capable of predicting the
rank order of different PAD tasks with regard to the different indicator values in any configura-
tion. Thisistrue for EndScorestd, for MaxScorestd, and for Length. Only partial rank orders
can be predicted.

The results of this approach to validation are as mediocre as the goodness of its precondi-
tions. Nevertheless, at least for the prediction of the end score and for arough estimation of the
number of applied operators the P4 configuration EVA seems to have certain beneficial quali-
ties. Furthermore, these results yield even more evidence for the claim, that the P4 configura-
tion is better suited to meet a broad variety of PAD tasks than the medium configuration. This
confirms the assumption that PAD task 5 has some unusual characteristics in its configuration
of scheduled appointments. Thistopic is discussed more deeply in section 7.1.

Discussion 91

7 Discussion

7.1 TheFailureof EVA on PAD Task 5

Before starting a deeper discussion, the failure of EVA on PAD task 5 must be considered. One
of the remarkable differences between the human sample and the simulated sample refers to the
indicators EsoptRatio and MSOptRatio (table 6.1). While more than 37% of the human subjects
reach the optimal end score, the sameistrue for only 6.3% of the simulated subjects. Why does
EVA fail to find the optimal plan with a comparable frequency? A first explanation was given
in sections 6.2 and 6.3 with regard to the comparison of the medium and the P4 configuration.
Obvioudly, some of the characteristics of PAD task 5 are not typical for the randomly generated
PAD tasks in the training data. In the following, | will try to assess the crucia features of PAD
task 5.

Table 5.2 shows, that the optimal plan for PAD task 5 begins with a movement to the print-
ing office. The frequency distribution for the first applied operators (fig. 6.18) reveals, that at
least 11% of the human subjects begin their overall planning process with Move-to-printing-
office. For their final plan thistendency is even reinforced: More than 55% of the subjects start
their final plan with this action. On the contrary, at the beginning of the overall planning proc-
ess, EV A ignores the printing office completely and the final plan is begun by EVA only with a
proportion of 13% with Move-to-printing-office. Instead, EVA “prefers’ to move first to the
conference room.

Obvioudly, the appointment at the printing office lacks some characteristics that would
enhance its attraction for EVA. Firgt, its priority isonly normal (and the lowest of al scheduled
appointments). Second, in regards to the earliest task starting time, it has two competitors with
the same value (10 am.). Third, its urgency is not especialy high (the latest task starting time
isjust at 3 p.m.). When one assumes that EVA relies on such overt characteristics of appoint-
ments for their evaluation, then the prospects of the printing office to be visited first are not
very good. The other way round, the fact that EVA failsin PAD task 5, where a deeper assess-
ment of the task configuration is obviously necessary, demonstrates that the evaluation carried
out by EVA ismost likely restricted to overt characteristics of the current PAD task and current
state. Later on, we will seeif this restriction is desirable or not. Most likely, is actually rare to
find such a coincidence of unfavorable features for an important appointment in randomly gen-
erated PAD tasks, and thus, EVA had no adequate opportunity to learn to handle such task con-
figurations. In section 7.3, thistechnical explanation for EVA’sfailurein PAD task 5 is supple-
mented with more psychological considerations.

Since such a central appointment like the one at the printing office is evaluated differently by
the human and the simulated subjects, the other differences between these samples with regard
to PAD task 5 are not surprising. Therefore, afurther analysis has been omitted.

Nevertheless, the different values for NoiseProportion and fr for fitting PAD tasks 4 and 5
have to be considered. Most likely, the higher value of NoiseProportion for PAD task 5 (0.3 vs.

Discussion 92

0.1 for PAD task 4) serves to give EVA adight push towards the printing office. For smaller
values of NoiseProportion, the values of EsoptRatio and MSOptRatio are decreasing, while the
end and max scores are increasing (due to the higher precision because of less noise).

The small value for fr for fitting EVA to PAD task 5 (fr = 0.42) is caused by the failure of
EVA-c to recognize that unfulfilled appointments still are present. This failure arises specifi-
caly for PAD task 5. Even when only five of the six scheduled appointments are fulfilled (with
an end score of 23; the optimal score is 26), the output unit of EVA-c is maximally activated.
Therefore, EVA produces very short courses of planning for PAD task 5 (too short in compari-
son with the human sample), when fr is in the same order of magnitude as for PAD task 4
(fe=0.75).

7.2 Initial Claimsof EVA - a Review

EVA is a connectionist model for the simulation of human planning behavior with regard to
Plan-A-Day (PAD). PAD isadiagnostic instrument for the assessment of planning capabilities,
which, at its current stage of development, is at least usable for research (see section 3.2). PAD
shares characteristics of problem solving in general as well as characteristics of planning in a
more narrow sense (see section 3.3).

First of al, EVA is not atheory for the explanation of human planning behavior in the PAD
world. On the contrary, one of the main goals in the development of EVA was to use as few
theories on the functional level as possible. A possible procedure of model development would
have been to anayze the planning process of human subjects in advance and to extract as many
basic principles as possible. Then, one would have been able to implement these principles by
several specialized sub-networks. However, this would have been nothing more than a connec-
tionist implementation of a functional theory derived from specific empirical data.

A related approach would be to develop a more genera theory of planning or problem solv-
ing in advance (or to use an aready established theory) and to apply this theory to the PAD
world. Afterwards, one could implement basic functional sub-modules of this theory through
connectionist networks. A similar approach is proposed by McCloskey (1991), who criticizes
the lack of theoretical foundations in many connectionist models within psychology.

Despite this criticism, EVA is actually conceptualized as a kind of black box, for which
nobody knows exactly what is happening inside. However, since EVA does not claim to repre-
sent a theory of human planning behavior, this lack of insight is not grave. Moreover, nobody
would seriously consider that human beings have the networks EVA-a, EVA-b, and EVA-c in
their brains which are activated whenever a PAD task arisesin the environment.

Nevertheless, even if the inner structure of EVA’s sub-networks lacks any functional theory,
EVA, considered as a whole, makes a strong theoretical point. It was along these theoretical
linesthat EVA was developed. EVA is a pattern recognition and pattern transformation device,
which shares many of its basic properties with the networks in the human brain. However, are
these natural neural networks are capable of more than pattern classification, pattern

Discussion 93

recognition, pattern transformation, etc.? On the current level of knowledge in neuroscience,
the answer to this question is most likely no (Clark, 1997). How can pattern recognition
devices like our brains perform tasks like problem solving or planning? Some theorists (Clark,
1997; Suchman, 1987; Rumelhart, Smolensky, et al., 1986) explain these capabilities by situ-
ated cognitions or actions, as | already pointed out in section 4.1. According to this approach,
only awell-structured environment can lead to the next adequate operator application, and many
operator applications are directed towards creating and maintaining this external structure. In a
broader sense, the “environment” can also comprise internal entities which are currently present
as input for the basic pattern recognition devices. For example, mental models belong to this
class of inner structures. By using such mental models, e.g., a chess player can consider many
future moves in advance.

However, most basically, when no mental model is available, subjects rely heavily on the
current structure of the environment to determine their next “move”, claims the approach of
situated cognition/action. In this framework, EVA isintended to demonstrate that a simple con-
nectionist network, which is only able to perform simple pattern transformations, is capable of
simulating the planning process shown by human subjects. If EVA succeeds, this would be
even more impressive, since the number of EVA’s processing units is very, very small in com-
parison with the number of processing units in the human brain, and since EVA was not trained
to imitate human planning behavior, but instead to recognize the shortest way to the optimal
plan. Especialy thelast point isimportant. Multi-layer networks are applicable to a broad vari-
ety of problems. With an appropriate number of unitsin their hidden layers, they are capable of
approximating nearly every multivariate function (Hornik et al., 1989). Thus, both the explana-
tory and demonstrative value of a multi-layer network trained to mimic human behavior is com-
paratively low. Later correspondences between the behavior of the network and the behavior of
human beings are noteworthy only if the training relies on principles independent from overt
human behavior. For this reason, two of the characteristics of EVA are not surprising at all:
First, that EVA generates chains of Delete operators, and second, that EVA terminates the plan-
ning process on its own sometimes. Both behaviors were observed in the human subjects and
afterwards explicitly taken into the training datafor EVA-b and EVA-c.

In the beginning | stated that for the development of EVA as little theory as possible was
used. By such a strategy, the few theoretical claims that are made get even more support in the
event of success. In the following, 1 will reconsider EVA’s basic specifications with regard to
their underlying assumptions.

* The use of multi-layer networks is mostly based on technical considerations, but al'so on the
objective to choose a type of neural network with a minimum of biological plausibility (see
section 4.1).

» Theuse of recurrent connections for EVA-b and EVA-c is only necessary to mimic the appli-
cation of Delete chains, as well as assumed motivational influences on the use of the Finish
operator.

Discussion 94

» The subdivision of EVA into sub-networks is mostly due to technical reasons. However,
such a subdivision may aso be plausible with regard to the different types of cognitive func-
tions realized by each network (action selection [EVA-a] vs. plan revision [EVA-b] vs. meta-
cognitive reasoning [EVA-C]).

» Theinput representation is specified with the objective to resemble the input human subjects
receive from the computer screen. This corresponds to the approach of situated action. In
addition, inner input is provided by the external situation-action memory. Such inner input
is not inconsistent with the notion of situated action.

» The training data is constructed due to the basic principle of evaluating each operator with
regard to the best possible end score in the event of its application. Therefore, if the training
had been completely successful, EVA would always find the shortest way to the optimal
plan. The psychological idea behind this procedure is the assumption, that human subjects
are aso “trained” through daily experience to find the most suitable solutions to everyday
planning problems. Even if the “training success’ varies from person to person, it is
assumed, that the “error correction” works into the direction of optimal plans, asit isimple-
mented in EVA’straining data.

» For EVA-b and EVA-c, the special changes in the basic training data were made for imitat-
ing the application of Delete chains as well as assumed motivational influences on the use of
the Finish operator.

» Furthermore, in the first stage of model fitting these basic specifications were adapted to
improve the fit between the human sample and the sample ssimulated by EVA.

* In the second stage of model fitting, the values for some adjustable model parameters were
determined. These adjustments were carried out with regard to the goodness of fit for eight
indicators describing the planning process.

In summary, with regard to theory, EVA is based mainly on the idea, that a simple neural net-
work, which receives the current state of its environment as input, is capable of simulating
human planning behavior in a restricted domain by pure pattern transformation. The additional
assumptions and considerations mostly serve the solution of technical problems or the specifica-
tion of concrete details of the implementation, but nevertheless, some of them are also of psy-
chological interest.

7.3 Assessing the Results

In fitting EVA to empirical data, the results were fairly mixed. The resulting overall fit for
PAD task 4 is remarkably good, while certain differences remain for PAD task 5. With regard
to PAD task 4, not only do the variables that were subject to model fitting show similar values
for the human and the ssmulated sample, but also variables and distributions that were not inten-
tionaly fitted at al. Thus, many of the emergent properties of EVA are closely related to the
characteristics of the human planning process: These emergent properties are the application

Discussion 95

frequency of each operator, the use of heuristics, the proportion of arrivals that were too late or
too early, the application frequency of each action for starting the final plan, and several more.
The inspection of the individual course of planning in section 6.1.6.1 reveals, that the specific
human subject and EVA aways started the application of a chain of Delete operators in the
same kind of configuration of the environment.

Thus, with regard to PAD task 4, EVA readlly shows, that pure transformation of an input pat-
tern provided by the environment into an evaluation of applicable operators is sufficient to
simulate human planning behavior in the PAD world, at least with regard to the assessed char-
acteristics of the planning process. This is a strong argument in favor of the approach of situ-
ated action. Of course, one cannot rule out the possibility, that human subjects plan severd
steps in advance. In the case of PAD task 4, however, this is obviously not necessary for
explaining the performance reached by human subjects.

In section 7.1, with regard to PAD task 5, | concluded, that EVA most likely relies on overt
characteristics of the current state of the PAD world to determine its evaluations. This is not
surprising for a standard multi-layer network the main capability of which is pattern transforma-
tion. Also aswe saw, in the theoretical frame of situated action, this restriction is not undesir-
able at all. However, the comparatively poor fit of EVA on PAD task 5 questions the consid-
erations made so far. In section 7.1, a view of the overt causes of EVA’s failure was given,
which provided a technical explanation. In this section, possible explanations on a psychologi-
cal background are considered.

First, one may argue, that relying on overt characteristics of the current state and transform-
ing them is actually enough to explain the behavior of the human subjects. Unfortunately, how-
ever, the relative weights assigned to different environmental cues (and also the relative weights
assigned to cue interactions) are not the same for EVA and for the human subjects. This may be
plausible, since the learning history of human subjects is most likely very different from the
learning history of EVA. EVA was trained by a sample of PAD tasks taken from the population
defined by the parameters in table 4.5. This definition corresponds to the overt characteristics
of predefined PAD tasks, which is important to consider when forming the restrictions for the
set of training patterns, but also arbitrary in another respect, because most likely none of the
assessed human subjects has ever seen a PAD task before. In light of this consideration, it is
remarkable, that the overall results obtained by EVA are very close to empirical results obtained
by human samples.

Second, it is also possible, that some processes take place in the human mind, that are com-
patible with the notion of situated action and pattern transformation, but which are not covered
by EVA. For example, the relative weights for the different environmental cues may change
according to a higher order process. Or the human subjects may use a mental model of the PAD
world to perform a kind of inner “simulation” before carrying out certain steps. Moreover, this
mental model may be learned in the first stage of working on a PAD task and later used.

Especidly for the latter account, standard connectionist models are not suited. The criticism
of Barnden and Pollack (1991) (see section 2.3) is justified in this respect: Advanced features

Discussion 96

like fast learning and variable binding must be explainable by connectionist models to enhance
their explanatory power.

Furthermore, a third possible explanation for EVA’s failure in PAD task 5 must be stated.
The human sample consists of 45 “brains’ creating variance because of their structural and
functional differences (on the functional level one may be able to diagnose different “planning
styles’). In addition, variance caused by “noise” has to be considered. However, the simulated
sample relies on one “brain” (namely, EVA’s three sub-networks), and the only source of vari-
ance is the noise applied to the input vector. Unfortunately, this shortcoming cannot be recov-
ered directly, since the training of a sample of different instances of EVA would exceed the
amount of available calculating time (see section 4.5.4). Therefore, even if the current instance
of EVA represents one possible weight configuration approximating the PAD problem, and
other instances may show different “behavior”, at the moment one has to be content with this
one and only instance. In addition, as forerunners of EVA revealed, EVA’s “behavior” can be
changed due to modifications of the training data. However, when one operates with networks
of this size and with such alarge training set, and when the training datais held constant, differ-
ent network instances resulting from different courses of training are quite similar to each other
(not with regard to their weight values, but with regard to the resulting indicator values for the
planning process).

In light of these considerations, and since many of the results of EVA in PAD task 5 are at
least comparable to the results obtained by human subjects, it is still possible to claim that EVA
is an impressive demonstration in favor of situated cognition/action. The whole system, com-
prising several smple multi-layer networks together with a highly structured environment, is
able to reproduce important features of the human planning process.

Furthermore, the results presented in section 6.2 with regard to randomly generated PAD
tasks show at least, that EVA generates indicator values in the same order of magnitude as
human subjects would do, regarding performance and the length of the overall operator
sequence. This impression is reinforced by the results of section 6.3, where a first attempt at
validation was carried out. Even if this attempt has several weak points which are discussed in
that section, the size of the deviations between the smulated and the human samples is quite
acceptable. At least for the end score EV A seems to be a useable predictor.

In this respect, it is interesting, that at the current network size of EVA-a, a convergence
level regarding the maximum test, has been reached (see section 4.5.4). The result in the maxi-
mum test is closely related to the performance of EVA concerning the end score and the propor-
tion of optimal final plans (since EVA-a is the network directly responsible for choosing the
most optimal action). Therefore, for a further enlargement of the number of network units or
training patterns no substantial improvement with regard to EVA’s performance can be
expected (at least, when keeping the input and output representation and the structure of the
training data constant). This raises the question, whether a fundamental boundary has been
reached, which puts a ceiling on the performance of multi-layer networks of the investigated
classin relation to PAD-like planning tasks. Moreover, this hypothetical boundary seems to be
roughly identical with the level of performance human beings are able to reach (see sections

Discussion 97

6.1.1 and 6.3). Even if thisis pure speculation, this correspondence can perhaps be explained
by the fact, that the neural structures in human brains share at least some crucia properties with
the artificial neural structures on which EVA is based. However, based on the present data,
such a claim cannot be taken seriously. The first human sample with a remarkably higher per-
formance will send this speculation into the realm of fantasy.

7.4 EVA’sContribution to Cognitive Science

Even Rumelhart, Smolensky, and their colleagues (1986) addressed the question of how
sequential thought processes are explainable by “parallel distributed processing”. They pro-
vided an answer that is closely related to the approach of situated action and situated cognition.
They argued that the interplay of manipulating the environment and pattern matching is suffi-
cient to explain high-level cognitive functions (see section 4.1). In addition, they integrated
mental models and goals into the PDP framework. Nevertheless, the only concrete model they
were able to present was a quite small network capable of playing tic-tac-toe. Therefore, they
wrote (Rumelhart, Smolensky, et al., 1986, p. 48): “These ideas are highly speculative and
detached from any particular PDP model. They are useful, we believe, because they suggest
how PDP models can be made to come into contact with the class of phenomena for which they
are, on the face of it, least well suited - that is, essentially sequential and conscious
phenomena.”

EVA fillsthisgap. EVA isaPDP model that simulates planning behavior in a way compa-
rable to human beings. Even if EVA is based on a standard model of connectionism, which
lacks all of the advanced features Barnden and Pollack (1991) demand for models of high-level
cognition, the simulation clearly demonstrates the performance reachable by such a basic net-
work architecture. EVA does the same as Rumelhart, Smolensky, et a. (1986) propose: In
each step, EVA transforms the representation of the environment into an action (* pattern match-
ing”), then, by this action the environment is changed (“manipulating”), and afterwards, the
altered environment serves as new input.

Thus, EVA is a demonstration that strengthens the claims of two related approaches: First,
the basic claims of situated action and situated cognition are confirmed®, second, the range of
application for connectionist models in psychology is extended to the area of high-level cogni-
tive functions like planning or problem solving, which have been mainly reserved for symbol-
processing models so far. Now the ideas of Rumelhart, Smolensky, et al. (1986) are no longer
detached from any particular PDP model, instead they are realized even by a model from the
traditional PDP approach. Furthermore, the domains of problem solving and planning are no

% In this thesis, the approaches of situated action and situated cognition are largely identified with each other.
Since PAD is placed somewhere between problem solving in general, which corresponds more to situated
cognition, and planning in a more narrow sense, which corresponds more to situated action, the missing differentia-
tion between both approaches is not grave. On the contrary, the central position of PAD justifiesto extend the con-
clusions of this thesis equally to both approaches.

Discussion 98

longer reserved solely for models from the symbol-processing approach (e.g., production
systems).

However, one could go even further in gaining insights from EVA. According to McClo-
skey (1991), network models should be used like animal models for developing theories corre-
sponding to human systems. He criticizes many forms of connectionist modeling in general,
but nevertheless, he writes (McCloskey, 1991, p. 393): “Demonstrations that a network repro-
duces human phenomena are certainly important, as such demonstrations may contribute to
assessing whether a network is similar in relevant respects to the human cognitive mechanism
under investigation. However, attention must also be directed toward elucidating the structure
and functioning of the network, and applying the insights gained thereby in developing an
explicit theory of the human mechanisms.”

Regarding the latter points, a closer examination of EVA’s sub-networks may reveal addi-
tional information of theoretical value. For example, one could begin by analyzing the distribu-
tion of weights or temporary activation patterns triggered by specific states. However, in light
of the size of EVA’s sub-networks the success of such an enterprise is uncertain. Due to the
considerable expenditure one has to expect, it would be advisable to improve the fit of EVA on
PAD task 5 and perform a serious validation study before further use of this program is under-
taken. Afterwards, an analysis as proposed by McCloskey (1991) could be of great theoretical
value.

On the present stage of model development, EVA is just a demonstration in favor of the
explanatory power of situated actions and the applicability of connectionist models to challeng-
ing tasks from the field of problem solving and planning.

References 99

References

Anderson, J. R. (1996). Kognitive Psychologie. Heidelberg, Berlin, Oxford: Spektrum
Akademischer Verlag.

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah (NJ),
London (England): Lawrence Erlbaum Associates.

Barnden, J. A., & Pollack, J. B. (1991). Introduction: Problems for high-level connectionism. In
J. A. Barnden & J. B. Pollack (eds.), High-level connectionist models (pp. 1-16).
Norwood (NJ): Ablex Publishing Corporation.

Blankenberger, S. (1992). Smulation mentaler Vergleiche mit neuronalen Netzwerken.
Braunschweig: University of Braunschweig (doctoral thesis).

Bourbakis, N., & Tascillo, A. (1997). An SPN-neural planning methodology for coordination of
two robotic hands with constrained placement. Journal of Intelligent and Robotic
Systems, 19, 321-337.

Broadbent, D. (1985). A question of levels: Comment on McClelland and Rumelhart. Journal
of Experimental Psychology: General, 114 (2), 189-192.

Clark, A. (1997). Being there. Putting brain, body, and world together again. Cambridge (MA),
London (England): A Bradford Book, MIT Press.

Cohen, J. D., Servan-Schreiber, D., & McClelland, J. L. (1992). A parallel distributed
processing approach to automaticity. American Journal of Psychology, 105 (2), 239-269.

Dorner, D. (1989). Die Logik des Miflingens. Strategisches Denken in komplexen Stuationen.
Hamburg: Rowohlt.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-211.

Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K.
(1996). Rethinking innateness. A connectionist perspective on development. Cambridge
(MA): The MIT Press.

Evers, L. (1995). Planungskompetenz bei Fuhrungskréaften. Bonn: Psychological department of
the university of Bonn (unpublished diplomathesis).

Fahlman, S. E.,, & Lebiere, C. (1990). The cascade-correlation learning architecture. In
D. S. Touretzky (ed.), Advances in neural information processing systems 2
(pp. 524-532). Morgan Kaufmann Publishers.

Feldman, J. A. (1981). A connectionist model of visua memory. In G. E. Hinton &
J. A. Anderson (eds.), Parallel models of associative memory (pp. 49 - 81). Hillsdale
(NJ): Lawrence Erlbaum Associates.

Fiedler, K. (1996). Explaining and simulating judgment biases as an aggregation phenomenon
in probabilistic, multiple-cue environments. Psychological Review, 103 (1), 193-214.

Fikes, R., & Nilsson, N. (1971). STRIPS. A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2, 189-208.

References 100

Fodor, J. A. & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical
analysis. In S. Pinker & J. Mehler (eds.), Connectionism and symbols (pp. 3-71).
Cambridge (MA): MIT Press.

Funke, J., & Fritz, A. (1995). Uber Planen, Problemldsen und Handeln. In J. Funke & A. Fritz
(eds.), Neue Konzepte und Instrumente zur Planungsdiagnostik (pp. 1-45). Bonn:
Deutscher Psychologen Verlag.

Funke, J., & Glodowski, A.-S. (1990). Planen und Problemliésen: Uberlegungen zur
neuropsychologischen Diagnostik von Basiskompetenzen beim Planen. Zeitschrift fir
Neuropsychologie, 1 (2), 139-148.

Funke, J., & Kruger, T. (1995). “Plan-A-Day”: Konzeption eines modifizierbaren Instruments
zur Fuhrungskrafte-Auswahl sowie erste empirische Befunde. In J. Funke & A. Fritz
(eds)), Neue Konzepte und Instrumente zur Planungsdiagnostik (pp. 97-120). Bonn:
Deutscher Psychologen Verlag.

Greeno, J. G. & Moore, J. L. (1993). Situativity and symbols. Response to Vera and Simon.
Cognitive science, 17, 49-59.

Hayes-Roth, B., & Hayes-Roth, F. (1979). A cognitive model of planning. Cognitive Science, 3,
275-310.

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New Y ork:
Wiley.

Hertzberg, J. (1989). Planen. Einfihrung in die Planerstellungsmethoden der Kinstlichen
Intelligenz. Mannheim, Vienna, Zurich: Bl-Wissenschaftsverlag.

Hertzberg, J. (1995). Planen aus Sicht der kinstlichen Intelligenz: Time for a Change. In
J. Funke & A. Fritz (eds.), Neue Konzepte und Instrumente zur Planungsdiagnostik
(pp. 79-96). Bonn: Deutscher Psychologen Verlag.

Hertzberg, J. (1996). Planen. In G. Strube, B. Becker, C. Freksa, U. Hahn, K. Opwis, & G. Pam
(eds.), Worterbuch der Kognitionswissenschaft (pp. 501-509). Stuttgart: Klett-Cotta.
Hinton, G. E., & Segjnowski, T. J. (1986). Learning and relearning in Boltzmann machines. In
D. E. Rumelhart & J. L. McClelland (eds.), Parallel distributed processing: Explorations
in the microstructure of cognition. Vol. 1: Foundations (pp. 282-317). Cambridge (MA):

MIT Press.

Hinton, G. E., & Shallice, T. (1991). Lesioning an attractor network: Investigations of acquired
dyslexia. Psychological Review, 98 (1), 74-95.

Hoffman, R. E., Rapaport, J., Amdli, R., McGlashan, H., Harcherik, D., & Servan-Schreiber, D.
(1995). A neural network simulation of hallucinated “voices’ and associated speech
perception impairments in schizophrenic patients. Journal of Cognitive Neuroscience,
7 (4), 479-496.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. In Proceedings of the National Academy of Sciences, 79,
2554-2558.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayered feed-forward networks are
universal approximators. Neural Networks, 2 (5), 359-366.

References 101

Hussy, W. (1993). Denken und Problemldsen. Stuttgart, Berlin, Cologne: Kohlhammer.

Inder, R. (1996). Planning and problem solving. In M. A. Boden (ed.), Artificial intelligence
(pp. 23-53). San Diego (CA): Academic Press.

Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural
Networks, 1, 295-307.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixtures of local
experts. Neural Computation, 3 (1), 79-87.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological
Cybernetics, 43, 59-69.

Kosko, B. (1987). Bi-directional associative memories. |[EEE Transactions on Systems, Man
and Cybernetics, 18 (1), 49-60.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category
learning. Psychological Review, 99 (1), 22-44.

Kruschke, J. K. (1993). Human category learning: Implications for backpropagation models.
Connection Science, 5 (1), 3-36.

Lewin, K. (1935). A dynamic theory of personality. New Y ork: McGraw-Hill.

McClelland, J. L., & Rumelhart, D. E. (1985). Distributed memory and the representation of
general and specific information. Journal of Experimental Psychology: General, 114 (2),
159-188.

McCloskey, M. (1991). Networks and theories. The place of connectionism in cognitive
science. Psychological Science, 2 (6), 387-395.

Medin, D. L., & Ross, B. H. (1990). Cognitive psychology. Orlando (FL): Harcourt Brace
Jovanovich.

Newell, A., & Simon, H. A. (1961). GPS. A program that simulates human thought. In
H. Billing (ed.), Lernende Automaten (pp. 109-124). Munich: Oldenbourg.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs (NJ):
Prentice-Hall.

Norman, D. A. (1993). Cognition in the head and in the world: An introduction to the special
issue on situated action. Cognitive science, 17, 1-6.

Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship.
Journal of Experimental Psychology: General, 115 (1), 39-57.

Opwis, K. (1996). Problemlitsen. In G. Strube, B. Becker, C. Freksa, U. Hahn, K. Opwis,
G. Pam (eds), Worterbuch der Kognitionswissenschaft (pp. 520-530). Stuttgart:
Klett-Cotta.

Read, S. J, Vanman, E. J, & Miller, L. C. (1997). Connectionism, paralel constraint
satisfaction processes, and gestalt principles: (Re)Introducing cognitive dynamics to
social psychology. Personality and Social Psychology Review, 1 (1), 26-53.

Ribeiro, F., Barthés, J.-P., & Oliveira, E. (1993). Dynamic selection of action sequences. In
J-A. Meyer, H. L. Roitblat, & S. W. Wilson (eds.), From animals to animats 2.
Proceedings of the second international conference on simulation of adaptive behavior
(pp. 189-195). Cambridge (MA), London (England): A Bradford Book, MIT Press.

References 102

Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation
learning: The RPROP algorithm. In International conference on neural networks, San
Francisco, CA (pp. 586-591). Piscataway (NJ).

Rojas, Radl (1996). Theorie der neuronalen Netze. Eine systematische EinfUhrung. Berlin,
Heidelberg, New Y ork: Springer.

Rumelhart, D. E. (1997). The architecture of mind: A connectionist approach. In J. Haugeland
(ed.), Mind design 1l. Philosophy, psychology, artificial intelligence (pp. 205-232).
Cambridge (MA): MIT Press.

Rumelhart, D. E., Hinton, G., & Williams, R. (1986). Learning internal representations by error
propagation. In D. E. Rumelhart & J. L. McClelland (eds.), Parallel distributed
processing: Explorations in the microstructure of cognition. Vol. 1. Foundations
(pp. 318-362). Cambridge (MA): MIT Press.

Rumelhart, D. E., Smolensky, P., McClelland, J., & Hinton, G. (1986). Schemata and sequential
thought processes in PDP models. In D. E. Rumelhart & J. L. McClelland (eds.), Parallel
distributed processing: Explorations in the microstructure of cognition. Vol. 2
Psychological and biological models (pp. 7-57). Cambridge (MA): MIT Press.

Schank, R. C., & Abelson, R. P. (1977). Scripts, plans, goals, and understanding: An inquiry
into human knowledge structures. Hillsdale (NJ): Lawrence Erlbaum Associates.

Schmidhuber, J., & Wahnsiedler, R. (1993). Planning simple trajectories using neural subgoal
generators. In J-A. Meyer, H. L. Roitblat, & S. W. Wilson (eds.), From animals to
animats 2. Proceedings of the second international conference on simulation of adaptive
behavior (pp. 196-202). Cambridge (MA), London (England): A Bradford Book, MIT
Press.

Shastri, L. (1991). The relevance of connectionism to Al: A representation and reasoning
perspective. In J. A. Barnden & J. B. Pollack (eds.), High-level connectionist models
(pp. 259-283). Norwood (NJ): Ablex Publishing Corporation.

Smith, E. R. (1996). What do connectionism and socia psychology offer each other? Journal of
Personality and Social Psychology, 70 (5), 893-912.

Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain
Sciences, 11, 1-74.

Suchman, A. (1987). Plans and situated actions. Cambridge: Cambridge University Press.

Tollenaere, T. (1990). SuperSAB: Fast adaptive backpropagation with good scaling properties.
Neural Networks, 3, 561-573.

Vera, A. H. & Simon, H. A. (1993). Situated action: A symbolic interpretation. Cognitive
science, 17, 7-48.

Waloszek, G. (1996). Parallele Gedachtnismodelle. In D. A. Graz & K.-H. Stapf (eds),
Enzyklopédie der Psychologie. Vol. C-11-4: Gedachtnis (pp. 261-335). Géttingen, Bern,
Toronto, Seettle: Hogrefe, Verlag fur Psychologie.

Werbik, H. (1978). Handlungstheorien. Stuttgart: Kohlhammer.

Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the behavioral
sciences. Harvard (PhD thesis).

References 103

Widrow, G., & Hoff, M. E. (1960). Adaptive switching circuits. In Institute of radio engineers,
western electronic show and convention, convention record, part 4 (pp. 96-104).

Z€ll, A. (1997). Smulation neuronaler Netze. Munich, Vienna: Oldenbourg.

Zimbardo, P. G. (1995). Psychologie. Berlin, Heidelberg, New Y ork: Springer.

Appendices

Instructions for PAD Tasks4 and 5

Table of Movement Times

Data Sheets Generated by the PAD Simulation System

o O W >
|

Instructions for the Use of NWRuUn

Appendix A: Instructions for PAD Tasks4 and 5

Appendix A
Instructions for PAD Tasks4 and 5

Appendix A: Instructions for PAD Tasks4 and 5 I

Instructionsfor PAD Task 4

» Between 10.00 am. and 0.15 p.m. you are supposed to come to the storehouse and to check
the supplies. Thiswill take 10 minutes. IMPORTANT

» Between 11.00 am. and 4.00 p.m. you are supposed to come to the secretary and to dictate a
letter to her. Thiswill take 10 minutes.

o Atthelatest at 1.00 p.m. you are supposed to take part in a conference. This conference will
goonuntil 2.00 p.m. VERY IMPORTANT

* By 2.30 p.m. you are supposed to come to the administration and to sign a contract there.
For doing this you will need 90 minutes. VERY IMPORTANT

» Between 10.00 am. and 4.00 p.m. you are supposed to come to the printing office and to
copy abook. Thiswill take 90 minutes. VERY IMPORTANT

Instructionsfor PAD Task 5

* Between 1.30 p.m. and 2.30 p.m. you can meet a customer at the café. The talk will take 30
minutes. IMPORTANT

* You are supposed to come between 11.00 am. and 2.00 p.m. to the office and to deal with
filesthere. For thisyou will need 60 minutes. VERY IMPORTANT

» At the latest at 11.30 am. you are supposed to take part in a conference. This conference
will go on until 0.15 p.m. IMPORTANT

* Between 10.00 am. and 4.15 p.m. you are supposed to come to your chief to the central
office. Hewantsto meet you for 10 minutes. VERY IMPORTANT

* Between 10.00 am. and 4.00 p.m. you are supposed to come to the administration. The
work there will take 55 minutes. IMPORTANT

* Between 10.00 am. and 3.00 p.m. you are supposed to come to the printing office and to
copy abook. Thiswill take 10 minutes.

Appendix B: Table of Movement Times

Appendix B
Table of Movement Times

Appendix B: Table of Movement Times

Movement Timesin the PAD World

8 £
5 é 3 <] Q
2 = (¢} ey
8 812 58|35 5| 6%
‘B j = S (EB’ S = o) o
O £ o) & < £ O &)
Café 10 29 30 26 40 55 66 64
Post office 54
Office
Storehouse

Secretary’ s office
Administration

Printing office

Conference room

Central office

Movement times with car use [minutes]

Movement times without car use [minutes)

Appendix C: Data Sheets Generated by the PAD Simulation System V

Appendix C
Data Sheets Generated by the PAD Simulation System

Remark: In the following, the term “solution” refers to the term “plan”, and the term “rating”
refers to the term “score’”.

Appendix C: Data Sheets Generated by the PAD Simulation System

Human Subjects - PAD Task 4

EVALUATI ON OF PLANNI NG PROCESSES W THI N PLAN- A- DAY

Nunber of considered planning processes: 45
Nunber of optinmm sol utions . 45
Aver age number of OSs for each PADtask 1.00

Mean SD M n Max
End rating (Std.) 25.29 5.08 0 28 (Os% 90.32 %
Max rating (Std.) 26.49 2.09 19 28 (Os% 94.60 %
End rat. (Adv.) 22.18 5. 65 0 28 (Os% 79.21 %
Max rat. (Adv.) 26. 36 2.58 15 28 (OS% 94.13 %
Opt. Rating 28. 00 0. 00 28 28

For standard eval uation. ..

Opt. end rating reached: 10 (in 22.22 %of pp.)
Opt. max rating reached: 11 (in 24.44 % of pp.)
For advanced eval uation. ..

Opt. end rating reached: 9 (in 20.00 % of pp.)
Opt. max rating reached: 11 (in 24.44 % of pp.)

Length of sol. 40. 60 30. 40 7 129

Length of OSs 8. 00 0.00 8 8

Nunber of operators for each planning process: Proportion-%

(of overall 1ength)

1 0.00 0.00 0 0 0.00 %
2 0.02 0.15 0 1 0.05 %
3 0.00 0.00 0 0 0.00 %
4 3.76 3.44 0 14 9.25 %
5 3.71 2. 46 0 10 9.14 %
6 4.13 3.29 1 12 10.18 %
7 3. 27 2.22 1 11 8.05 %
8 3.87 2.90 1 12 9.52 %
9 0. 07 0.25 0 1 0.16 %

10 3.87 2.99 0 12 9.52 %

11 2.36 1.85 1 11 5.80 %

12 14. 58 13.51 0 56 35.91 %

13 0.98 0.15 0 1 2.41 %

L. of del.chains 2.14 1.31 1 8

(Average nunber of dc.: 6.82 --------- > fromit proportion-%: 14.78 %

Nunb. of tot.del. 2.89 3.08 0 13 7.12 %

Sensel ess visits in the
final solution 0.62 0.53 0 2
Nunb. of inv. ops. 0. 38 1.00 0 6 0.93 %

Appendix C: Data Sheets Generated by the PAD Simulation System VI

APPLI CATI ON OF HEURI STICS (for each course of planning):

M nim zi ng the novenment tines
Per f or mance 1.90 0. 30 1.20 2.77
Random 2.13 0.17 1.79 2.50

Maxi m zi ng the advantage of the drive by car
Per f or mance 1.96 0. 89 1.00 4.33
Random 2.12 0. 46 1.00 3.00

Consi dering priority
Per f or mance 1.74 0.25 1.25 2.40
Random 1.74 0. 17 1.34 2.16

Consi deri ng urgency
Per f or mance 1.71 0. 27 1.33 2.54
Random 1.97 0.17 1.63 2.39

Optimzing the waiting tine

Per f or mance 1. 40 0.17 1.11 2.13
Random 1.59 0.12 1.38 1.88
"Error" 0. 27 0. 57 0 2

ANALYSI S OF THE TI ME COURSE (for each course of planning):

Too late 21.42 % 7.94 % 0 % 33 %
On tine 60.91 % 7.43 % 48 % 79 %
Too early 3.46 % 4.59 % 0 % 19 %
T.e. [with W] 14.21 % 5.70 % 5 % 25 %
Mn. too early 24.94 20.18 3 89
Mn. too |ate 29.18 17.79 10 97

First applied operator (proportion in %:

In overall planning In the final solution
1 0.00 % 0.00 %
2 2.22 % 0.00 %
3 0.00 % 0.00 %
4 28.89 % 46. 67 %
5 8.89 % 2.22 %
6 28.89 % 44. 44 %
7 8.89 % 0.00 %
8 2.22 % 0.00 %
9 4.44 % 0.00 %
10 13.33 % 4.44 %
11 0.00 % 0.00 %
12 2.22 % 0.00 %
13 0.00 % 0.00 %
Enpty final solution 2.22 %

Appendix C: Data Sheets Generated by the PAD Simulation System VIII

Human Subjects - PAD Task 5

EVALUATI ON OF PLANNI NG PROCESSES W THI N PLAN- A- DAY

Nunber of considered planning processes: 45
Nunber of optinmm sol utions . 45
Aver age number of OSs for each PADtask 1.00

Mean SD M n Max
End rating (Std.) 22.91 3.69 11 26 (Os% 88.12 %
Max rating (Std.) 23.71 2.64 15 26 (Os% 91.20 %
End rat. (Adv.) 21.91 4. 65 11 26 (OS% 84.27 %
Max rat. (Adv.) 23.64 2.69 15 26 (Os% 90.94 %
Opt. Rating 26.00 0. 00 26 26

For standard eval uation. ..
Opt. end rating reached: 17 (in 37.78 % of pp.)
Opt. max rating reached: 18 (in 40.00 % of pp.)
For advanced eval uation. ..
Opt. end rating reached: 17 (in 37.78 % of pp.)
Opt. max rating reached: 18 (in 40.00 % of pp.)

Length of sol. 43. 62 27.61 7 124

Length of OSs 9.00 0.00 9 9

Nunber of operators for each planning process: Proportion-%

(of overall 1ength)

1 0.00 0.00 0 0 0.00 %
2 3.31 2.64 0 13 7.59 %
3 3.64 2.10 0 10 8.35 %
4 0.00 0.00 0 0 0.00 %
5 0.00 0.00 0 0 0.00 %
6 3.82 2.12 1 10 8.76 %
7 2.49 1.98 0 9 5.71 %
8 3.56 2.43 0 10 8.15 %
9 3.13 2.10 1 12 7.18 %

10 4.09 2.71 1 12 9.37 %

11 3.09 2.31 0 11 7.08 %

12 15.51 12. 48 0 55 35.56 %

13 0.98 0.15 0 1 2.24 %

L. of del.chains 2.18 1.49 1 11

(Average nunber of dc.: 7.11 --------- > fromit proportion-%: 16.05 %

Nunb. of tot.del. 2.91 2.61 0 11 6.67 %

Sensel ess visits in the
final solution 0.18 0. 38 0 1
Nunb. of inv. ops. 0. 80 1.67 0 8 1.83 %

Appendix C: Data Sheets Generated by the PAD Simulation System

APPLI CATI ON OF HEURI STI CS (for

M nim zi ng the novenment tines

Per f or mance
Random

Maxi m zi ng the advantage of the drive by

Per f or mance
Random

2.16 0.41
2.39 0.16

1.81 0.59
2.56 0.34

Consi dering priority

Per f or mance
Random

Consi deri ng urgency

Per f or mance
Random

1.97 0.30
2.01 0.13
2.06 0. 46
2.41 0.15

Optimzing the waiting tine

Per f or mance
Random

"Error"

1.54 0.25
1.68 0.14
0. 04 0.21

each course of pl anning):

1.33 2.91
2.06 2. 67
car
1.00 4.00
1.50 3.00
1.27 2.57
1.76 2.24
1.36 3.40
2.11 2. 67
1.00 2.15
1.39 1.91
0 1

ANALYSI S OF THE TI ME COURSE (for each course of planning):

Too |l ate

On tine

Too early

T.e. [with W]

Mn. too early
Mn. too |ate

First applied operator

©O© 00N O~ WNPR

e
N R O

13

11. 73 % 8.45 %
70.32 % 11.81 %
2.97 % 4.08 %
14.99 % 7.72 %
11. 34 8. 20
26. 49 24.82

In overall planning

eonN®:;
o
S
X

Enpty final solution

(proportion in 9:

0 % 35 %
47 % 100 %

0 % 16 %

0 % 31 %

3 29

3 140

In the final solution

COoooN
o
IS
X

Appendix C: Data Sheets Generated by the PAD Simulation System

EVA - PAD Task 4

EVALUATI ON OF PLANNI NG PROCESSES W THI N PLAN- A- DAY

Nunber of considered planning processes: 4500
Nunber of optinmm sol utions : 4500
Aver age number of OSs for each PAD-task: 1.00

Mean SD M n Max
End rating (Std.) 21.21 7.42 0 28 (Cs% 75.75 %
Max rating (Std.) 25.51 2.59 11 28 (Os% 91.12 %
End rat. (Adv.) 21.21 7.43 0 28 (Os% 75.75 %
Max rat. (Adv.) 25.51 2.59 11 28 (Os% 91.12 %
Opt. Rating 28. 00 0.00 28 28

For standard eval uation. ..
Opt. end rating reached: 1026 (in 22.80 % of pp.)
Opt. max rating reached: 1056 (in 23.47 % of pp.)
For advanced eval uation. ..
Opt. end rating reached: 1026 (in 22.80 % of pp.)
Opt. max rating reached: 1056 (in 23.47 % of pp.)

Lengt h of sol. 40. 47 29.50 5 208

Length of OSs 8. 00 0.00 8 8

Nunber of operators for each planning process: Proportion-%

(of overall 1ength)

1 0.00 0.00 0 0 0.00 %
2 0.00 0.00 0 0 0.00 %
3 0.00 0.00 0 0 0.00 %
4 2.78 1.90 0 15 6.87 %
5 3.59 2.70 0 21 8.88 %
6 3.24 2.26 0 16 8.00 %
7 3.23 2.20 0 18 7.99 %
8 4.46 3.13 0 21 11.03 %
9 0.00 0.00 0 0 0.00 %

10 3.47 2.23 0 17 8.58 %

11 3.27 2.55 0 17 8.08 %

12 15. 42 13.79 0 92 38.11 %

13 1.00 0.00 1 1 2.47 %

L. of del.chains 2.72 1.19 1 6

(Average nunber of dc.: 5.67 --------- > fromit proportion-%: 12.35 %

Nunb. of tot.del. 3.04 3.14 0 21 7.51 %

Sensel ess visits in the
final solution 0. 00 0.05 0 1
Nunb. of inv. ops. 2.29 2.72 0 19 5.65 %

Appendix C: Data Sheets Generated by the PAD Simulation System

APPLI CATI ON OF HEURI STI CS (for

M nim zi ng the novenment tines

each course of pl anning):

Per f or mance 2.04 0. 26 1.27 3.14
Random 2.14 0.19 1.68 2.81
Maxi m zi ng the advantage of the drive by car

Per f or mance 1.62 0.53 1.00 3.00
Random 2.10 0.35 1.00 3.00
Consi dering priority

Per f or mance 1.74 0.19 1.25 2.75
Random 1.78 0.16 1.22 2.23
Consi deri ng urgency

Per f or mance 1.74 0.29 1.25 2.50
Random 1.98 0.20 1.48 2.59
Optimzing the waiting tine

Per f or mance 1.51 0.24 1.00 2.43
Random 1.58 0.12 1.19 2.14
"Error" 1. 47 1.82 0 13

ANALYSI S OF THE TI ME COURSE (for each course of planning):
Too late 17. 44 % 6.86 % 0 % 40
On tine 62.49 % 8.45 % 40 % 100
Too early 3.52 % 5.04 % 0 % 33
T.e. [with W] 16.55 % 6.30 % 0 % 50
Mn. too early 32.83 21. 14 1 121
Mn. too late 45. 67 31.72 14 319

First applied operator

In overall planning In the fina
1 0.00 % 0.00 %
2 0.00 % 0.00 %
3 0.00 % 0.00 %
4 80. 80 % 31.82 %
5 1.93 % 9.42 %
6 10.29 % 37.40 %
7 0.00 % 4.69 %
8 0.00 % 0.78 %
9 0.00 % 0.00 %
10 6.98 % 11.24 %
11 0.00 % 0.00 %
12 0.00 % 0.00 %
13 0.00 % 4.64 %
Enpty final solution 0.00 %

(proportion in 9:

%
%
%
%

sol ution

Appendix C: Data Sheets Generated by the PAD Simulation System XIl

EVA - PAD Task 5

EVALUATI ON OF PLANNI NG PROCESSES W THI N PLAN- A- DAY

Nunber of considered planning processes: 4500
Nunber of optinmm sol utions : 4500
Aver age number of OSs for each PAD-task: 1.00

Mean SD M n Max
End rating (Std.) 22.14 3.11 0 26 (OCs% 85.17 %
Max rating (Std.) 22.94 1.43 9 26 (Os% 88.24 %
End rat. (Adv.) 22.12 3.23 0 26 (0s% 85.06 %
Max rat. (Adv.) 22.94 1.43 9 26 (Os% 88.24 %
Opt. Rating 26. 00 0.00 26 26
For standard eval uation. ..
Opt. end rating reached: 284 (in 6.31 %of pp.)
Opt. max rating reached: 318 (in 7.07 %of pp.)
For advanced eval uation. ..
Opt. end rating reached: 284 (in 6.31 %of pp.)
Opt. max rating reached: 318 (in 7.07 % of pp.)
Lengt h of sol. 44. 86 41. 21 5 393
Length of OSs 9.00 0.00 9 9
Nunber of operators for each planning process: Proportion-%
(of overall 1ength)
1 0.00 0.00 0 0 0.00 %
2 4.56 4.54 0 41 10. 17 %
3 3.90 3.89 0 34 8.69 %
4 0.00 0.00 0 0 0.00 %
5 0.00 0.00 0 0 0.00 %
6 3.19 2.83 0 25 7.12 %
7 3.18 2.87 0 26 7.09 %
8 1.59 1.33 0 14 3.54 %
9 3.54 3.10 0 28 7.90 %
10 3.54 3.11 0 27 7.89 %
11 3.13 2.59 0 24 6.98 %
12 17. 22 19. 06 0 184 38.38 %
13 1.00 0.00 1 1 2.23 %
L. of del.chains 2.49 1.07 1 7
(Average nunber of dc.: 6.92 --------- > fromit proportion-%: 13.37 %
Nunb. of tot.del. 2.00 2.71 0 27 4.45 %

Sensel ess visits in the
final solution 0.01 0. 08 0 1
Nunb. of inv. ops. 1.23 1.84 0 18 2.73 %

Appendix C: Data Sheets Generated by the PAD Simulation System

APPLI CATI ON OF HEURI STI CS (for

M nim zi ng the novenment tines

each course of pl anning):

Per f or mance 2.11 0. 27 1.22 3. 67
Random 2.25 0.17 1.75 2.83
Maxi m zi ng the advantage of the drive by car

Per f or mance 2.00 0.51 1.00 5.00
Random 2.42 0.29 1.50 3.00
Consi dering priority

Per f or mance 1.86 0.23 1.00 3.13
Random 1.87 0.13 1.45 2.34
Consi deri ng urgency

Per f or mance 2.24 0. 43 1.38 4.00
Random 2.27 0.17 1.76 2.83
Optimzing the waiting tine

Per f or mance 1.41 0. 20 1.00 3.00
Random 1.47 0.14 1. 07 2. 07
"Error" 0.99 1.51 0 13

ANALYSI S OF THE TI ME COURSE (for each course of planning):

Too late 18.28 % 10.29 % 0 % 41 %
On tine 67.81 % 9.11 % 33 % 100 %
Too early 1.43 % 3.44 % 0 % 33 %
T.e. [with W] 12.48 % 6.39 % 0 % 67 %
Mn. too early 15.73 11. 63 2 103
Mn. too |ate 45. 09 28.03 1 253

First applied operator (proportion in %:

In overall planning In the final solution

1 0.00 % 0.00 %
2 0.29 % 0.00 %
3 0.00 % 0.00 %
4 0.00 % 0.00 %
5 0.00 % 0.00 %
6 4.24 % 9.80 %
7 0.22 % 12.93 %
8 48.89 % 38.67 %
9 18.11 % 20.49 %
10 4.47 % 4.31 %
11 23.71 % 13.24 %
12 0.07 % 0.00 %
13 0.00 % 0.56 %
Enpty final solution 0.00 %

Appendix D: Instructions for the Use of NWRun X1V

Appendix D
I nstructions for the Use of NWRun

Appendix D: Instructions for the Use of NWRun XV

I nstructions for the Use of NWRuUn

Basic Concepts

NWRun is an application for the training of multi-layer networks. The present introduction to
the use of NWRun expects that you are familiar with the basic concepts of connectionist net-
works in general and with multi-layer networks of the backpropagation-class in particular. For
the theoretical foundations of the implemented learning algorithms see the respective literature.
For example, the book by Zell (1997) provides avery good overview.

NWRun is a text-based application for the Win32 console, (therefore it runs under Windows
95/98/ME and Windows NT/2000). Most of the input and output is carried out by configura-
tion files on the one hand, and log files on the other hand (all files are text files which can be
viewed easily by the user). In addition, some parameters can be handed over to NWRun at the
command line.

NWRun is based on a C++ class library. This library provides a network class, by which
hierarchical EIman networks can easily be integrated in other C++ programs. Hierarchical
Elman networks are a recurrent version of normal multi-layer networks of the backpropagation-
class; when their recurrent features are disabled they work like normal multi-layer feed-forward
networks (see Zell, 1997). While the network class library allows the integration of such net-
works in C++ programs, NWRun is a tool to train these networks in advance. Furthermore, the
resulting networks can be used in every way desired. The weights are saved in a special file
with a clearly defined structure. Both NWRun and the complete source code of the network
library are available for download at " www.wolframschenck.de/NetworkApplication.htm”.

User-defined input files

First, there is the configuration file (projname.bpc). projname isthe name for the project which
can be chosen by the user. In the configuration file the user specifies the basic architecture of
the network, the type of training algorithm and its parameters.

Second, there is the data file (dataname.bpd). In thisfile the user specifies the input-output
pattern pairs used both for training and testing (training and test data).

Output files

First, there is the log file (projname.bp1). This file contains important information about the
network architecture, training algorithm, and the course of training. Thisfile is intended to be
read directly by the user.

Second, there is the indicator file (projname.bpv). In this file, all important indicators that
are calculated during the course of training are written into a kind of table. This file can be
imported in applications like Lotus 1-2-3, Microsoft Excel, or SPSS (e.g., by using these appli-
cations one can produce charts or graphs for certain indicators).

Appendix D: Instructions for the Use of NWRun XVI

Third, there is the test file (projname.bpt). At the end of training, NWRun writes the
detailed results of the network test into thisfile, if the user so wishes.

Fourth, there is the maximum test file (projname.bpm). At the end of training, NWRun writes
the detailed results of the maximum test into thisfile, if the user so wishes.

Network files

First, there is the weight file that contains the network weights (projname.bpw). After a certain
number of training epochs (the complete presentation of all pattern pairs together with the cor-
responding weight adjustments is called “epoch”) and at the end of training, the network
weights are saved into afile projname_2?.bpw. The question marks indicate consecutive num-
bers. In this way, previous weight configurations are always accessible. In addition, the latest
weights are always saved in projname. bpw.

Second, there is the parameter file that contains the current parameter settings for the chosen
training algorithm, for the weight decay control, and for miscellaneous other purposes
(projname.bpp). After a certain number of training epochs and at the end of training, these
parameters are saved into a file projname_??.bpp. The question marks indicate consecutive
numbers. In this way, previous parameter settings are always accessible. In addition, the latest
parameter settings are aways saved in projname. bpp.

Starting NWRun

When you start NWRun with ”NwRun /27, the following screen appears:

** Program parameters of NWRun [(c) 2000 by Wolfram Schenck] **
NWRun PROJNAME LEARN_EPOCHS DISPLAY_SCREEN DISPLAY_TEST
LOAD_WEIGHTS SAVE_WP SNUM_START ENUM_START
LOAD_PARA WRITE_LOG WRITE_SCREEN

** Standard values (If a numerical parameter is set to a negative number, **
** the standard value is used) %
PROJNAME : Xor

LEARN_EPOCHS : 1000

DISPLAY_SCREEN: 1@

DISPLAY_TEST : @

LOAD_WEIGHTS : Load weights from the unnumbered file

SAVE_WP : Save only once at the end of training
SNUM_START : Set automatically

ENUM_START : Set automatically

LOAD_PARAMS : Load parameters from the unnumbered file
WRITE_LOG : 1

WRITE_SCREEN : 1

Maximum number of hidden layers : 10
Maximum number of shortcut connections: 30

** By pressing ESCAPE the training always can be terminated **

Appendix D: Instructions for the Use of NWRun XVII

Arguments which are omitted are set to their standard values (except for LOAD_PARAMS). In
the following, these command line arguments are explained more deeply.

LEARN_EPOCHS: Number of training epochs until NWRun terminates automatically.

DISPLAY_SCREEN: Number of training epochs after which the current training indicators are
displayed on the screen (0 = never).

DISPLAY_TEST: Number of training epochs after which the current test indicators are displayed
on the screen and written to the log file (0 = never).

LOAD_WEIGHTS: Number of the weight file from which the weights are loaded (0 = no weights
are loaded; -1 = the weights are loaded from the unnumbered weight file).

SAVE_WP: Number of epochs after which the current weight and parameter configuration is
saved (0 = save never; -1 = save only when NWRun terminates). If saving is enabled, it takes
place even in the case of manual interruption of training caused by the user pressing the escape

key.
SNUM_START: Number with which the numbering of the saved weight and parameter files
begins (-1 = continue automatically).

ENUM_START: Number with which the numbering of the training epochs begins (-1 = continue
automatically).

LOAD_PARAMS: Number of the parameter file from which the training parameters are loaded
(0 = no parameters are loaded; -1 = the parameters are loaded from the unnumbered parameter
file; omitted = the parameter file which has the same number as is chosen for the weight file is
loaded).

WRITE_LOG: Determines, if thelog fileiswritten (1 = yes).

WRITE_SCREEN: Determines, if output is displayed on the screen (1 = yes).

Special Concepts

In the following, some special concepts of NWRun are explained more in detail. Otherwise, it
would be very difficult for the reader to understand some of the parameter settings in the con-
figuration file.

Copy layers

With NWRun one can train pure feed-forward multi-layer networks as well as a kind of multi-
layer network with recurrent connections (namely, hierarchical EIman networks; refer to Zéll,
1997). In hierarchical Elman networks, recurrent connections are realized by context layers
(which are called copy-layers in NWRun). Copy layers can be assigned to every hidden layer

Appendix D: Instructions for the Use of NWRun XVII

and to the output layer. They are always of the same size as the layer to which they are assigned
(their basis layer). They work as a supplementary input: Each unit of the copy layer sends its
activation to every unit of the basis layer. The activation of each unit in the copy layer, on the
other hand, is determined by the sum of the activation of the corresponding unit in the basis
layer in the preceding processing cycle (multiplied by a layer-specific theta and by a layer-
specific term [1-lambda]) and of the activation of the copy layer unit itself in the preceding proc-
essing cycle (multiplied by a layer-specific lambda). Such recurrent connections extend the
capabilities of multi-layer networks, so that they are able to recognize chronological informa-
tion in series of input patterns.

Furthermore, the specification of copy layers must include information about their initializa-
tion. NWRun allows several modes of initialization: (1) Only once when NWRun starts; (2) In
the beginning of every new training or test epoch; (3) Triggered by a specific signal in the train-
ing and test data. These modes are controlled by the parameters cl_mode and cl_trigger in the
configuration file:

cl_mode =0, cl_trigger =0 = Initialization mode (2)
cl_mode =0, cl_trigger =1 = Initialization mode (3)
cl_mode =1, cl_trigger =0 = Initialization mode (1)
cl_mode = 1, cl_trigger =1 = not defined

In initialization mode (3), the column at position (colnp+coOutp+1) in the data file is used for
determining, if the copy layers are initialized again. If the value at this position equals 1, then
the initialization takes place.

Automatic weight decay adaptation

The weight decay parameter d, which is often used in training agorithms of the
backpropagation-class, can be automatically adapted by NWRun. This automatic adaptation
procedure monitors the course of training. Whenever the reduction of the training error after a
certain number of epochs fell short of a certain threshold, the decay parameter d is reduced by
multiplication with a decay adaptation factor in the range [0.0; 1.0]. In NWRun, the precise
behavior of the automatic adaptation is controllable through five parameters (in the configura-
tion file).

First, wD_Adaptation determines the number of epochs on which the comparison of the train-
ing error is based (if wD_Adaptation equals zero, automatic weight decay adaptation is disabled).
Second, to avoid dependence on single error values, which can be subject to sudden and short-
lived changes, the training error at the beginning and at the end of the comparison period is not
determined by a single value, but by the median of the error values of wb_MD epochs. Third,
the threshold which cannot be transgressed, is defined by wD_DiffPercent (within the range
]-o0; 1.0]). If the current error median is larger than the product of (1 — wD_DiffPercent) and the
error median wD_Adaptation epochs ago, then an adaptation of the decay parameter d is carried
out. This adaptation takes place by multiplication of d with the fourth parameter, wD_Factor

Appendix D: Instructions for the Use of NWRun XIX

(within the range [0.0; 1.0]). And last, but not least, there is the initial value of d, represented
by wDecay.

Remark: For the training algorithm BackPercolation no weight decay can be applied.

Description of the Files Used by NWRun

Configuration File

The configuration file has the following structure: Each line begins with a parameter name, fol-
lowed by white space, followed by the parameter value. Blank lines are not allowed. Lines
with comments must begin with the character “#’. Deviations from this specification will cause
NWRun to terminate with an error message. In the following, the parameters of the configura-
tion file are explained.

Basic network architecture

DataFileName: Name of the data file (with training and test data)

rangeExpand: If equal to 1, the input and output values in the data file are automatically
converted from the range [0;1] to the range [-1;+1].

nTrain: Number of patternsin the data file which are used for training.

nTest: Number of patterns in the data file which are used for testing

numLay: Number of hidden layers (maximum value: 10)

colnp: Number of input units (units of the input layer)

coOutp: Number of output units (units of the output layer)

hidSizeN (N = 1..10): Number of unitsin the N-th hidden layer

Shortcut connections

numscC: Number of shortcut connections (maximum value: 30)

scNstart (N = 1..30): Starting layer of the N-th shortcut connection (values. 0 = input layer,
1..numLay = hidden layers)

scNend (N = 1..30): Ending layer of the N-th shortcut connection (values: 1..numLay = hidden
layers, numLay+1 = output layer)

Copy layers

copyLay: If equal to 1, copy layers are enabled.

lambdaN (N = 1..numLay+1): lambda for the N-th layer (valuesfor N: 1..numLay = hidden lay-
ers, numLay+1 = output layer) (values for lambdaN: 0.0 <= lambdaN <=
1.0; 0.0 = only memory for the last epoch; 1.0 = no reception of new
information)

Appendix D: Instructions for the Use of NWRun XX

thetaN (N = 1..numLay+1): thetafor the N-th layer (valuesfor N: 1..numLay = hidden layers,
numLay+1 = output layer) (valuesfor thetaN [Copy factor]: 0.0 <= thetaN
<= 1.0; to activate a specific copy layer, set its thetato avalue larger than
0.0 [recommended: 1.0])

cl_value: Initialization value for the copy layer units. Norma range: From -1.0
[0.0] to 1.0. If cl_value islarger than +2.0, the units in the copy layers are
set to random valuesin the range [-0.9; 0.9] or [0.1; 0.9], respectively.

cl_mode: See section “Special Concepts — Copy layers’

cl_trigger: See section “Special Concepts — Copy layers”

Network initialization

rand_down: Lower bound for the random initialization values of the network weights
before training

rand_up: Upper bound for the random initialization values of the network weights
before training

fixedWeights: If equal to 1, the weights are set either to rand_down or to rand_up.

Basic training specifications

alg: Type of training algorithm (alg = 1. Simple Backpropagation; alg = 2:
Backpropagation with Momentum; alg = 4: ResilientPropagation; alg = 5:
QuickPropagation; alg = 6: BackPercolation)

range: Range of unit activation (range = O: unit activation between 0.0 and 1.0;
range = 1. unit activation between -1.0 and 1.0)

errAmpl: If equal to 1, the error signa of the output layer is amplified by atanh
(arcus tangens hyperbolicus).

AddGradSigm: Value which is added to the derivation of the activation function in the

calculation of the gradient of the global error function (Standard value:
0.0; increasing this value may result in faster convergence or in instabil-
ity of training).

wDecay: Initial decay parameter d (see section “Special Concepts — Automatic
weight decay adaptation”)
errMin: Minimum value for the training error. When this value is transgressed,

NWRun terminates.

For all training algorithms except for ResilientPropagation and BackPercolation

gamma: Learning rate (often designated as #)
gamFit: If equal to 1, each weight matrix receives its own learning rate, which is
gamma devided by the number of unitsin the sending layer.

Appendix D: Instructions for the Use of NWRun XXI

For Backpropagation with Momentum

alpha:

alpha_sc:

alpha_cl:

Momentum factor in the formula for determining the changes for
“normal” weights

Momentum factor in the formula for determining the changes for weights
In shortcut connections

Momentum factor in the formula for determining the changes for weights
in connections coming from copy layers

For ResilientPropagation

DDO:
gam_minus:
gam_plus:
DD_min:

DD_max:

Initialization value for the update values (Ao)

Reduction factor for the update values (1) (0 < gam_minus < 1)
Enlargement factor for the update values () (1 < gam_plus)
Minimum for the update values (Anin)

Maximum for the update values (Amax)

For QuickPropagation

eta:

For BackPercolation

lambda0:
weightIniValue:
normType:
normSart:

bcOnline:

nTrainReduce:

Maximum growth factor («) (recommended range: 1.01 to 1.2)

Initial value for the amplification of the error signal of the output layer
(called 4o oder A(1))

Basis vaue for theinitialization of weights (6)

The values 0 and 1 correspond to the norm types A and B.

If equal to 1, instead of the norm, its square root is used in the training
algorithm.

If equal to 1, online training is carried out, otherwise offline training is
performed.

If equal to or less than 1, no reduction of the training set is carried out in
determining the training error. If nTrainReduce is larger than 1, the train-
ing set is reduced in determining the training error by nTrainReduce as
divisor. In each epoch, the current subset is determined randomly.

Remarks: BackPercolation reacts in a very sensitive way towards different values for lambda0
and weightinivValue. For each problem, some testing in advance is necessary. Furthermore, the
flags normType and normSqrt may be varied to obtain better results. bcOnline should normally be
set to 1, since BackPercolation is designed for online training. nTrainReduce can be used to
reduce training time; on the other hand, since only a subset of the training set is used for deter-
mining the current training error then, aloss of precision hasto be taken into consideration.

Appendix D: Instructions for the Use of NWRun XXII

Automatic weight decay adaptation

Remark: For an explanation of the parameters, see section “Special Concepts — Automatic
weight decay adaptation”.

Available Parameters. wD_Adaptation, wD_MD, wD_DiffPercent, wD_Factor

Additional evaluations and information about the course of training

writelndicators: If larger than O, the indicator file is created or continued. The indicators
are saved after every writelndicators epochs.
writeSpeciallnd: If the indicator file is written and writeSpecialind is larger than O, every so

many epochs (writeSpecialind * writelndicators), some specialized indica-
tors are calculated and saved, as well.

writeTest: If equal to or larger than 1, the test file will be written after regular termi-
nation of NWRun (for the test data). If writeTest is equal to or larger than
2, two test files will be written after regular termination of NWRun, one
for the test data and one for the training data.

MaximumTest: If equal to or larger than 1, the maximum test will be carried out during
training and the maximum test file will be written after regular termina-
tion of NWRun (for the test data). If MaximumTest is equal to or larger
than 2, the maximum test will be carried out during training for both test
and training data, and after regular termination of NWRun two maximum
test fileswill be saved, one for the test data and one for the training data.

Remark: The maximum test performs a comparison between the desired output and the actually
produced output with regard to the rank order of output units concerning their activation values.

Data File

The data file has the following structure: Each line consists of numbers separated by white
gpace. Blank lines are not allowed. Lines with comments must begin with the character “#”.
Deviations from this specification will cause NWRun to terminate with an error message.

Within each line, the first colnp numbers will be used for determining the activation of the
input units. The following coOutp numbers will be used as desired output pattern. The number
following behind is interpreted as trigger for the initialization of the copy layers (see section
“Special Concepts — copy layers’).

The first nTrain data lines in the data file are used for the training set, the following nTest
lines constitute the set of test patterns. The network weights are adjusted by the chosen learning
algorithm with regard to the training set. The test set is used for testing the generalization capa-
bilities of the network.

Appendix D: Instructions for the Use of NWRun XX

Log File

The most important information in the log file is the course of the training error and the test
error (the test error is written every DISPLAY_TEST epochs). The training error is the global
error calculated for the patterns in the training set, the test error is the global error calculated for
thetest set. In NWRun, the global error is calculated according to the following formula:

E= 2-N,-1.Np Zj:(op,j —tp))? D

E isthe global error the network produces, N; is the number of output units, Nr is the number
of patterns, o, isthe actual activation of output unit j for pattern p, t, ; is the desired activation
of output unit j for pattern p.

In addition, the log file shows the current weight decay term for each epoch and other parame-
ters of the learning agorithms which can be subject to change during the course of training.
Furthermore, the results of the maximum test (if enabled) are written every DISPLAY_TEST
epochs.

Indicator File

If writing the indicator file is enabled, every writelndicators epochs a subset of the following indi-
cators is saved (column titles are given in parentheses; the subset depends on the chosen learn-
ing agorithm):

» The current epoch (Epoch)

» Thecurrent training error (ErrTrain)

» Thecurrent test error (ErrTest)

» Thecurrent linear training error (LinErrTrain). The global linear error is calculated by
Ein = 255 $| 0p;j —tpj|. For explanation of the variables see equation (1).

» Thecurrent linear test error (LinErrTest)

» The current standard deviation of the linear training error (SDLinErrTrain)

» The current standard deviation of the linear test error (SDLinErrTest)

» Thecurrent value of the weight decay parameter d (wDecay)

» Vaue of gamma (gamma; only for Backpropagation and QuickPropagation)

» Value of eta (eta; only for QuickPropagation)

» Value of gam_minus (gamMinus; only for ResilientPropagation)

» Vaue of gam_plus (gamPlus; only for ResilientPropagation)

» Current amplification of the error signal of the output layer (lambda; only for
BackPercolation)

Furthermore, every so many epochs (writeSpecialind * writelndicators), the following additional
indicators are calculated and written saved in the indicator file (if this function is enabled):

» The average of the absolute values of the network weights (mvWeights)

Appendix D: Instructions for the Use of NWRun XXIV

» The standard deviation of the absolute values of the network weights (SD_Weights)

» The average of the update values (mvDD; only for ResilientPropagation)

» The standard deviation of the update values (SD_DD; only for ResilientPropagation)

» Theaverage of the ratios between the update value and the absolute weight value for each
connection (DD_Weight_ratio; only for ResilientPropagation)

The first line of the indicator file contains the column titles, separated by semicolons. In the
following, each line corresponds to one epoch; within each line, the indicator values are sepa-
rated by semicolons.

Weight File

The weight file is interesting for the user, if he wants to inspect or evaluate the weight configu-
ration. Therefore a brief overview of the structure of the weight file is given, in the following.
The weights are saved in form of matrices, each matrix represents the connections between two
layers. The columns represent the units of the sending layer (from left to right), the rows repre-
sent the units of the receiving layers (from top to bottom). In standard connections from one
layer to the next layer, the last column represents the connections coming from an additional
on-unit (a unit with the fixed activation of 1.0, by which the threshold for each receiving unit is
realized).

Within the weight file, the matrices for the standard connections between each layer and its
following layer are saved first, beginning with the connections coming from the input layer.
Afterwards, the weight matrices for the shortcut connections are saved in the same order as they
are defined in the configuration file. Finally, the weights matrices for the connections between
each copy layer and its basis layer are saved. They are only saved, if their corresponding theta
parameter (thetaN) islarger than 0.0, and if copy layers are enabled in general.

Parameter File

In the parameter file, only the first value is interesting for the user. This value represents the
current weight decay parameter d. By changing this value in the file projname.bpp, One can
adjust d manually during the course of training. The parameter wDecay in the configuration file
isonly used for thefirst initialization of d when training begins. Changes of this parameter dur-
ing the course of training have no effect.

Examplesfor Starting NWRun

For example, a project with the name example is considered. First, create the file example.bpc
with the appropriate parameter settings for your project. In addition, you need a data file, for
example FirstAttempt.bpd, which hasto be declared in exampie.bpc. Imagine, that you want to

Appendix D: Instructions for the Use of NWRun XXV

train your network for 1000 epochs, and that in every 10th epoch you want the training error to
be displayed on the screen. In every 100th epoch, you wish the test error to be displayed as
well. Since this is the first time training, no network weights are available for loading. At the
end of training (and only then), you want the weights and training parameters to be saved to be
able to continue training later on. For this purpose, start NWRun with the following command
line:

NWRun example 1000 10 100 0 -1

Later on, when you want to continue the training of your example network, you must notify
NWRun of loading the weights and training parameters:

NWRun example 1000 10 100 -1 -1

If you want NWRun to save the network weights and training parameters every 500th epoch,
you should write the following command line instead:

NWRun example 1000 10 100 -1 500

When you actually try to perform these little examples, you will notice, that NWRun automati-
cally maintains the correct consecutive numbers of epochs and weight and parameter files, even
if training was disrupted manually by pressing the escape key.

Including a Network in Your Own C++ Program

With the network library, you can easily include a network that was trained with NWRun into
your own C++ program. So far, that is only possible for users of Microsoft Visual C++ (by the
way, it ismost likely that only small changes in the source code are necessary in order to make
it useable with alternative C++ compilers).

The network library consists of eight files: Netzwerk.cpp, nwMatrix.cpp, NWTest.cpp,
NWTraining.cpp, StdAfx.cpp, Netzwerk.h, nwMatrix.h, StdAfx.h. You need these eight files
to build a library you call best Network.lib. Afterwards, you only have to include Network.lib
and Network.h in your own projects to be able to use trained networks in your own applications.

In the following, we start again from the examp1e project. We assume, that the training of the
network is finished and a weight file exampie.bpw is available. Then you can include the net-
work by the following code fragment into your application:

include “netzwerk.h”

Netzwerk example; // This Tine creates a network with the variable name “example”
bool error;

error = example.ProjektInit("c:\ExamplePath\example", @, -1, false);

In the last line, the configuration file example.bpc in the folder «c:\ExamplePath” is loaded by
the member function projektinit. The network example is initialized according to the

Appendix D: Instructions for the Use of NWRun XXVI

parameter settings in this file. (The first parameter of projektinit isthe name and location of
the project, not the name of the configuration file!) The second parameter of Projektinit deter-
mines, that the weight file exampile.bpw is aso loaded. A value of -1 would determine, that
loading the weight file is omitted. A value larger than 0 would invoke loading a weight file
with that specific number (example_2?.bpw). The third parameter of projektinit is designated
to the parameter file. The values for this parameter have the same meaning as for the preceding
parameter for the weight file. Therefore, loading the parameter file is omitted in our example.
The fourth parameter of Projektinit isset to “false’. Thisinstructs Projektinit not to load the
datafile.

After you have loaded your network in your application, you probably want to use it. This
can be done through a code fragment such as.

Vector inp(8), outp(3); // Definition of the input and output vector

outp = example.UseNetwork(inp, @);

It is assumed in this example that the input layer of the network has eight units and the output
layer three units. The input and output vector are defined according to this specification. The
elements of an instance of the class vector can be accessed through the following syntax:
vec(n). vec(n) isthe n-th element of the vector vec (the elements are counted beginning with
1). The elementsare of typeM_eL. M_EL isby default equal to f1oat.

In the last line of the preceding code fragment the vector of input units inp is transformed by
the network examp1e into the vector of output unitsoutp. If the second parameter of UseNetwork
is set to 1, the copy layers are reinitialized before the input pattern is propagated through the
network. If the input vector does not have the correct size for the used network, the static mem-
ber variable NWError (Of the class Netzwerk) IS set to “true”. NWError can be checked by the
member function getNWError (Of the class Netzwerk). Thus, by the function UseNetwork you can
utilize the networks you have trained by NWRun in your own C++ applications.

If you have further questions regarding the use of NWRun and the network library, please con-
tact “mail @wolframschenck.de”.

