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Units and constants

In the following table, a list of fundamental constants is given with their corre-
sponding values in standard international, atomic and natural units. The column
for atomic units represents by what factor the SI values in column 3 must be
multiplied by to obtain the unit value for atomic units.

Table 1: Some fundamental quantities in natural units (N.U.) and their standard
international (S.I.) and atomic units (A.U.) equivalents. The dimensionless fine
structure constant α has the value 1/137.035999074(44)

Constant Label SI Atomic Natural
Speed of light c 299792458 ms−1 α 1
Unit mass me 9.1093815× 10−31 kg 1 1
Unit time ~

mec2
1.28808866× 10−21 s 1

α2 1

Unit length αa0 3.86159265× 10−13 m 1
α

1
Unit charge ec√

α
1.87554587× 10−18 C

√
α 1

Unit energy mec
2 8.18710438× 10−14 J α2 1

The atomic unit system takes the neutral Hydrogen atom as its standard and
was conceived in order to simplify the Schrödinger equation. The binding energy
of the ground state of the Hydrogen atom, the Bohr radius, the expectation
value of the velocity of the electron in the ground state, to mention but a few
measures, are all taken as unity in atomic units. In atomic units, the speed of
light is equal to α.

Natural units on the other hand, are more centred on the properties of the
electron as the basic unit. Natural units serve to simplify the Dirac equation, in
the same way the Schrödinger equation is simplified by atomic units. The electron
rest mass, the speed of light, and ~ are all set to unity. The fundamental constant
equal to α is the square of the electronic charge e.
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Abstract

The work contained within this thesis is concerned with the explanation and
usage of a set of theoretical procedures for the study of static and dynamic
two–centre problems in the relativistic framework of Dirac’s equation. Two dis-
tinctly different theories for handling time–dependent atomic interactions are
reviewed, namely semi–classical perturbation theory and a non–perturbative nu-
merical technique based on the coupled channel equation to directly solve the
time–dependent, two–centre Dirac equation. The non–perturbative numerical
technique has been developed independently and the calculations performed with
it are entirely new. Calculations for ionisation cross sections and state occupan-
cies are conducted for both these methods.

The non–perturbative technique for relativistic two–centre problems is exten-
sively explained and, given its novelty, a probity test is conducted between this
technique and that of the well established perturbation theory in calculating K–
and L–shell ionisation cross sections for the alpha decay of initially Hydrogen–like
Polonium.

To that end, an in depth outline of the perturbative technique is also made
for both collision and decay processes. As well as the comparison test mentioned,
this technique is also applied to the analysis of cross sections of the promotion of
a single electron into the positive continuum from either a K– or L–shell due to
the alpha decay of heavy, neutral nuclei (Gadolinium, Polonium and Thorium).
Dirac–Coulomb eigenfunctions centred on the parent nucleus of the decay pair
are taken as the basis for use in the cross section calculations utilising first order,
semi–classical pertubation theory.

The excellent congruence between both techniques justifies the usage of the
non–perturbative algorithms in the subsequent analysis of collisions between very
heavy, highly charged ions. As such, a set of calculations are performed exam-
ining the bound and continuum state occupancy of the electronic levels during
a collision between U92+–U91+, at both over–critical and non–critical projectile
velocities.

Overall, the non–perturbative method developed and implemented here, is
shown to be reliable, compares well with available experimental data, and most
importantly is flexible enough to find continued use in studies on more ex-
treme/exotic atomic systems.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Erklärung und Umsetzung einer Reihe von
theoretischen Verfahren, die der Untersuchung von statischen und dynamischen
Zweikernproblemen im relativistischen Rahmen der Dirac Gleichung dienen. Zwei
gänzlich verschiedene Theorien zur Behandlung von zeitabhängigen atomaren
Wechselwirkungen werden näher untersucht, nämlich, halbklassiche Störungs-
theorie und ein nicht perturbatives numerisches Verfahren, das auf der coupled
channel Gleichung basiert und die zeitabhängige Zweikern–Diracgleichung direkt
löst. Das nicht perturbative Verfahren ist eine eigenständige Erzeugung, Berech-
nungen die damit erstellt werden sind also ganz neu. Ionisierungsquerschnitte und
Zustandsbesetzungen für die beiden erwähnten Methoden werden berechnet.

Der nicht perturbativen Technik für relativistische Zweikernprobleme wird ei-
ne umfangreiche Erklärung gewidmet und, da diese Technik neu ist, wird eine
Integritätsprüfung durchgeführt. Dies geschieht, indem die mit dieser Technik
erhaltenen Resultate mit Resultaten der bewährten Störungstheorie, angewen-
det auf K– und L–Schalenionisierungsquerschnitte infolge des Alphazerfalls eines
anfangs wasserstoffähnlichen Poloniumkerns, verglichen werden.

Zu diesem Zweck wird eine umfassende Erläuterung der perturbativen Tech-
nik für Stoß– und Zerfallsprozesse vorgestellt. Diese Methode wird sowohl für die
oben genannte Integritätsprüfung angewandt, als auch auf die Analyse des Ioni-
sierungsquerschnitts eines Elektrons aus einer K– oder L–Schale, das infolge des
Alphazerfalls eines anfangs hochgeladenen, neutralen Kerns (Gadolinium, Polo-
nium, Thorium), geschieht. Dirac–Coulomb Eigenfunktionen, die am Spendekern
des Zerfallspaares zentriert sind, werden hier als Basis in der ersten Ordnung
halbklassischer Störungstheorie der Querschnittsberechnungen verwendet.

Die herausragende Übereinstimmung der beiden Methoden rechtfertigt die
anschließende Anwendung des nicht perturbativen Algorithmus zur Analyse von
Stößen zwischen sehr schweren, hochgeladenen Ionen. Deswegen wird eine Reihe
von Berechnungen bewerkstelligt, bei der die Besetzungen der gebundenen und
kontinuuierlichen elektronischen Zustände während eines Stoßes zwischen U92+–
U91+ für über– und nicht kritische Projektilgeschwindigkeiten untersucht werden.

Die entwickelte nicht perturbative Methode, die hier umgesetzt wird, stellt
sich insgesamt als zuverlässig heraus, eignet sich gut um die verfügbaren ex-
perimentellen Daten zu beschreiben und ist vor allem genügend flexibel um in
zukünftigen Studien von extremeren/exotischeren atomaren Systemen noch eine
Verwendung zu finden.
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Chapter 1

Introduction

In the study of atomic collisions, under certain circumstances, the electronic mo-
tion of the system can not be satisfactorily described by a basis of wavefunctions
which are expanded about a single centre. After certain thresholds during an
atomic collision, such as, when the projectile(s) passes within the radius of the
target ground state and possesses a charge roughly equivalent to that of the
target, only molecular wavefunctions can be used to describe the electronic state
of this short–lived, so called “quasi–molecule.” This represents a shift from the
atomic two–body problem, to a three– or more body problem.

In the Schrödinger picture of non–relativistic quantum mechanics, systems
where the electrons move at velocities small in comparison with c, approximate
and complete solutions to the static and dynamic, atomic, three body problem,
and its higher order derivatives, are already well elucidated. These solutions
are employed in the study of molecular systems of at least two nuclei, a single
nucleus to which multiple electrons are bound or even combinations of multi-
ple centres and electrons. In spite of the comparatively rapid progress made in
non–relativistic atomic physics regarding many body problems, the rate of devel-
opment in relativistic many body problems, particularly concerning systems with
multiple nuclei, has been understandably slower. In fact, the degree of complex-
ity inherent with merely a relativistic two–centre system with a single electron
is enough to render any further discussion of more complex configurations ex-
ceedingly precocious. To address this, the theory presented in this work focusses
exclusively on relativistic atomic systems within Dirac’s [1] framework which con-
tain two nuclei1. It should be therefore noted, that the treatment made in this
work comes at the exclusion of an explicit account of the typical corrections
to the Schrödinger equation, i.e. Spin–Orbit coupling, the Darwin term or the
relativistic correction to the kinetic energy, these can be found elsewhere [2].

1The term “relativistic atomic system” applies to systems containing a nucleus of charge
Z, such that O(αZ) ∼ 1

3
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An important part of the exploration of this problem necessarily begins with
a short recapitulation of the theoretical groundwork already performed in the
treatment of the time–dependent and –independent two–centre problem. Not
long after the advent of Schrödinger’s equation, successful attempts had already
been made at deriving a solution for the Hydrogen molecular ion [3, 4, 5, 6, 7,
8, 9, 10, 11, 10]. These solutions were found mostly using elliptic coordinates,
or less often using the linear combination of atomic orbitals method (LCAO).

Within the relativistic regime, on the other hand, exact eigenfunctions and
eigenvalues for a Hydrogen–like atom were first discovered in 1928 [12]. Since
that time, progress has been slow in the development of a solution to the Dirac
equation for two coulomb centres. It was only in the late 1960’s that considerable
strides were made to find a solution to the two–centre problem in the relativistic
framework. Mostly, the results of the Greiner group [13, 14, 15, 16, 17, 18, 19,
20], among others [21], form the bulk of the initial research conducted in this field,
which has predominantly relied upon a multipole expansion of the two–centre
potential, in order to conserve the use of spherical coordinates. Furthermore,
the possibility and plausibility of conducting experiments [22] to test this theory
has fed the rising interest in this field in more recent times. Other authors have
managed to derive solutions to the two–centre problem in more exotic coordinate
systems, such as elliptic hyperbolic and even Cassini coordinates [23, 24, 20].

The major hurdle regarding two–centre problems within the relativistic frame-
work is that no single choice of coordinate system can significantly simplify the
problem in the same way that can be done for non–relativistic two–centre prob-
lems. Solutions to the Schrödinger equation for two–centre systems are usually
found using elliptical coordinates either via an action minimisation procedure or
quasi–analytically [4]. If a solution to the two–centre problem is to be found
within the relativistic regime, the hand of the theoretician is forced to turn to-
wards approximation methods. It is principally for this reason why the relativistic
development of two–centre problems lags well behind its non–relativistic equiva-
lent.

The approach developed for the solution of the time–independent, two–centre
Dirac equation here is similar to the established technique of maintaining the use
of spherical coordinates, expanding the two–centre potential in multipoles, and
seeking eigenfunctions in terms of a sum over partial waves. This original pro-
cedure differentiates itself from other previous attempts at solving the static
problem by using a two step approach. Firstly, a basis of eigenfunctions are
generated which satisfy the monopole approximation to the two–centre poten-
tial, these monopole eigenfunctions are then re–used in the generation of a true
two centre basis. Some advantages of this method, over other more direct ap-
proaches, are that the computational time is sharply reduced and the matrix
elements involving eigenfunctions generated in spherical coordinates are already
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well explained and easy to work with.
These static solutions are then used in the time–dependent Dirac equation

to model cross sections of ionisation and excitation due to the collision of two
heavy nuclei. The coupled channel equation, a type of finite element analysis,
maps the static eigenfunctions onto a discretised time grid. This implementation
of these pure two–centre eigenfunctions in the solution of the time–dependent
Dirac equation is also completely new.

Assuming for the moment that one possesses solutions to the two–centre
problem in the relativistic regime, one must be aware of how these solutions can
be applied to real world interests. Obviously studies on charge exchange, eigen-
value spectrum classification and QED investigations for two centres could be of
potential interest, however, the dynamic atomic systems chosen for investigation
focus exclusively on the calculation of excitation and ionisation cross sections as
a result of ion–ion collisions. The main task of this work is therefore to model a
collision between two heavy, highly charged ions, and to predict the effects the
collision has on a single bound electron. The ions chosen for this task are U92+

and U91+.
Since this numerical procedure for the solution of the time–dependent, two–

centre Dirac equation is new, a comparison with another proven, established
technique must be conducted in order to verify the probity of this new approach.
To that end, first order, time–dependent perturbation theory will be employed in
the calculation of ionisation probabilities of an electron in the K– and L–shells of
an initially Hydrogen–like, heavy nucleus which undergoes alpha decay. Accord-
ingly, the numerical procedure will then be used to evaluate these probabilities
and the results obtained from each approach will be compared. It should also be
noted that the results extracted from perturbation theory are also partially orig-
inal, usage of the Lienerd–Wiechert potential to account for the electron–alpha
particle coulomb interaction and the relativistic recoil operator have not been
applied previously to the study of alpha decay of heavy nuclei. As will be shown,
the agreement between both approaches is quite convincing, and justifies the use
of the numerical procedure in an investigation of a collision between very heavy,
highly charged ions.

Having established then a broad scope for what is to come, it would be pru-
dent to give a more concise overview of the forthcoming elucidation and realisa-
tion of a working two–centre theory. In preparation for the computational results
which follow, a solid theoretical outline of relativistic atomic theory for single–
centre problems will be presented first, both exact and numerical approaches
will be treated. Though the single–centre solutions are simpler in nature, the
formulation thereof exhibits a greater degree of familiarity which should make
the extension to two–centre theory less conceptually challenging for the reader;
moreover, the solution to the single–centre Dirac equation anyway forms the
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basis for solving two–centre problems using perturbation theory.
Logically extending from here, the theory for the numerical solution of the

two–centre Dirac equation will be explained for the time–independent case, af-
ter which, the finite element approach to the time–dependent two–centre Dirac
equation (otherwise known as the coupled channel equation) will be explored
and elucidated. An examination of time–dependent perturbation theory for two–
centre problems then follows. The computational implementation of this theory
will also receive some attention.

Finally, as mentioned, the electronic effects of the alpha decay of heavy atoms
(section 6.1) will be explored using perturbation theory for a selection of nuclear
spin–zero elements (Gadolinium, Polonium and Thorium) known to be suscep-
tible to alpha decay. Specifically, the non–perturbative theory will be compared
directly to the results garnered from perturbation theory for the alpha decay of
Polonium. Furthermore, given that the comparison test is conducted for an ini-
tially Hydrogen–like ion, perturbation theory will also be used to investigate the
same ionisation cross sections for neutral atoms, in order to lend this examination
a greater link to naturally occurring elements as well as to give this work more
experimental relevance. Finally, collisions between heavy, highly charged ions
(section 6.2) for collision energies that both do and do not cause the diving of
the ground state into the negative energy continuum will be examined given the
exciting possibilities systems of heavy quasi–molecules offer for the spontaneous
production of electron–positron pairs.

The overarching desire is that the reader will be able to clearly recognise and
follow the increasing steps in complexity, firstly from the single–centre theory,
to perturbation theory to non–perturbative theory. Not only this, but it will
hopefully become clear to the reader, how one may, with minimal resistance,
incorporate further degrees of freedom, such as non–zero impact–parameters or
the presence of electromagnetic fields, into the two–centre problem and generate
a truly dynamic method for modelling real world, relativistic two–centre systems.

Unless otherwise stated, all equations, tables and figures are presented in
natural units (N.U.) (~ = me = c = 1)



Chapter 2

The relativistic single–centre
problem

2.1 Analytic methods

The first step in the journey toward a full solution of the two–centre Dirac
equation must surely begin with a brief recap of the analytic solutions to the
single–centre problem for a single electron. More importantly for what is to come,
an in depth look at how one may generate numeric solutions to the single–centre
problem will also be provided. It is imperative that both methods be compared,
and only if the numerical solutions show acceptable agreement with the analytic
solutions, in terms of eigenvalues and eigenfunctions, can it then be used in the
further development of a true two–centre basis.

All of the analytic equations elaborated upon in this section have been im-
plemented in the Mathematica program Dirac [25, 26]. This program, and its
in–built equations are used in the calculations presented in section 6.1; a very
brief discussion of the program and its capabilities may be found in the appendix
C.

The single–centre Dirac equation, where a single electron is acted upon only
by a central field, is inherently a time–independent problem. All the properties of
the system can be derived from the Dirac equation, which in spherical coordinates
is given by

Ĥφ(r) = Eφ(r). (2.1)

The form of the Hamiltonian in equation (2.1), for a spin 1
2

particle acted
upon by an external scalar field V (r) is given by

Ĥ = α · p + V (r) + β. (2.2)

The various symbols contained within equation (2.2) are defined in A.1.

7
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2.2 The coulomb field

For an electron in the vicinity of a single, point–like nucleus of positive charge Z
for Z < 137, the central potential V (r) reduces to

V (r) = −αZ
r
. (2.3)

A complete disquisition of the methods of coordinate separation of equation
(2.1) for central fields will not be provided here, ample resources exist already
which may help in this regard, cf. [27, 28], after all, the salient features of
any fundamental differential equation in quantum mechanics for the practitioner
are always its eigenvalues and eigenfunctions, not specifically the mathematical
methods for the treatment of partial differential equations.

Taking the z–axis as the quantisation axis, the separation ansatz used in
determining the eigenfunctions and eigenvectors for equation (2.1) is

φ (r) ≡ φκmj (r) =

(
gκ (r)χ

mj
κ (r̂)

ifκ (r)χ
mj
−κ (r̂)

)
, (2.4)

where κ is the spin–orbit quantum number, and mj is the projection of the
total angular momentum of the electron onto the z–axis; the radial functions
gκ (r) and fκ (r) are colloquially known as the “large” and “small” components
respectively. The spinors χ

mj
κ (r̂) may be expressed as

χmjκ (r̂) =
∑
µ=± 1

2

〈
l 1

2
j

mj − µ µ mj

〉
Yl,mj−µ (r̂)

(
δ1/2,µ

δ−1/2,µ

)
, (2.5)

where

j = |κ| − 1

2
and l =

{
−κ− 1 κ < 0
κ κ > 0

, (2.6)

are the electron total angular momentum and orbital angular momentum quan-
tum numbers respectively, the term in equation (2.5) in bra–ket parenthesis is a
Clebsch–Gordan coefficient, and Yl,mj−µ (r̂) are the spherical harmonics. From
equation (2.6) it is possible to conclude that κ can assume any positive or neg-
ative integer value not equal to zero. Furthermore, states of even parity are
those with κ = −1 , 2 ,−3 , 4... and odd parity κ = 1 ,−2 , 3 ,−4.... Insertion
of equation (2.4) into (2.1) will yield the following differential equation for the
radial solutions Gκ (r) = rgκ (r) and Fκ (r) = rfκ (r)(

dFκ (r)

dr
− κ

r
Fκ (r)

)
= − (E − V (r)− 1)Gκ (r)(

dGκ (r)

dr
+
κ

r
Gκ (r)

)
= (E − V (r) + 1)Fκ (r) . (2.7)
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For bound–state solutions, i.e. −1 < E < 1, with the help of the following
notation

ξ2 = κ2 − ζ2, ζ = αZ, Enκ =
1√

1 +
(

ζ
n−|κ|+ξ

)2
and

k =
√

1− E2
nκ, (2.8)

solutions for fκ (r) and gκ (r) can be derived from (2.7) that take the following
form

gκ (r) = N (2kr)ξ−1 e−kr

(
(|κ| − n) 1F1 (|κ| − n+ 1, 2ξ + 1; 2kr)−

(
κ− ζ

k

)
1F1 (|κ| − n, 2ξ + 1; 2kr)

)

fκ (r) = −N (2kr)ξ−1 e−kr

(
(n− |κ|) 1F1 (|κ| − n+ 1, 2ξ + 1; 2kr)−

(
κ− ζ

k

)
1F1 (|κ| − n, 2ξ + 1; 2kr)

)√
1− Enκ
1 + Enκ

, (2.9)

where N is, using the integral condition∫ ∞
0

Gκ (r)2 + Fκ (r)2 dr = 1, (2.10)

determined to be

N =

√
2k5/2

Γ (2ξ + 1)

√
Γ (2ξ + n− |κ|+ 1) (1 + Enκ)

(n− |κ|)!ζ (ζ − κk)
. (2.11)

If on the other hand E > 1, a partial wave solution for the radial coordinate
of φκmj (r) contains representations for fκ (r) and gκ (r) as per

gκ (r) = N
√
E + 1 (2kr)ξ−1

<
[
e−i(kr−δκ) (ξ + iη) 1F1 (ξ + 1 + iη, 2ξ + 1; 2ikr)

]
fκ (r) = −N

√
E − 1 (2kr)ξ−1

=
[
e−i(kr−δκ) (ξ + iη) 1F1 (ξ + 1 + iη, 2ξ + 1; 2ikr)

]
. (2.12)

The various coefficients contained within equation (2.12) are given by
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k =
√
E2 − 1, η =

ζE

k
, δκ =

1

2
arg

(
−κ+ iη/E

ξ + iη

)
,

N =

√
2k

π
eπη/2

|Γ (ξ + iη)|
Γ (2ξ + 1)

and

∆κ = δκ − arg Γ (ξ + iη)− πξ

2
+ (l + 1)

π

2
, (2.13)

where N is set, as is customary, by normalising against both the radial coordinate
r and against energy according to

∫ ∞
0

r2dr
∣∣φEκmj (r)

∣∣2 2 sin (r∆E)

r
= 1, (2.14)

here, ∆E is a small energy interval. If one is interested in calculating the cross
sections of an emitted particle with energy E > 1, then the partial wave rep-
resentation is no longer satisfactory. In this case, a transformation is required,
whereby the emitted particle is classified only by its spin projection ms, direction
of propagation θ (the angle between the z–axis and the particle’s momentum k)
and its energy E [29]

ΦEms (r) = 4π
±∞∑
κ=±1

j∑
µ=−j

ile−i∆κ

〈
l 1

2
j

µ−ms ms µ

〉
φEκµ (r)Y ∗l,µ−ms (θ, 0) .

(2.15)

2.3 Bound state wavefunctions for extended
nuclei

In this section, the next stage in the derivation of an adequate analytic basis for
comparing the eigenvalues and eigenfunctions generated using numerical proce-
dures shall be clarified. Since the numerical solution to the time–independent,
two–centre Dirac equation is, in its simplest approximation, equivalent to the
single–centre problem for extended nuclei, it would be remiss to conduct a com-
parison between both the numerical and analytic methods for any other type
of potential. Furthermore, for the very heavy nuclei considered in section 3,
an extended potential will more accurately replicate the true eigenvalues and
eigenfunctions of the systems considered.
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The treatment of the Dirac equation for point–like, central potentials laid
out in section 2.2 no longer suffices when the nuclear charge exceeds Z = 137.
For s1/2 and p1/2 states (|κ| =1), this limit is even lower, regular solutions to
equation (2.7) for these states cannot be generated if Z > 118, a consequence of
the fact that for these charges, both regular and irregular solutions to equation
(2.7) become normalisable, resulting in an unphysical continuum of solutions
possessing no bound states.

Therefore, in this regime, the size of the nucleus must be accounted for in the
analytic theory. In this section, a short summary of how one may obtain analytic
bound state wavefunctions for extended nuclei is made. In section 2.4, the nu-
merical methods for handling extended potentials will be explored, hence it shall
prove useful to compare the agreement between eigenfunctions and eigenenergies
produced using either exact or numerical methods. No such analytic investiga-
tion will be provided for continuum state wavefunctions of an extended potential,
two excellent reviews of continuum wavefunctions for extended nuclei do however
exist in the literature [27, 30]. The numerical procedure for generating wavefunc-
tions that follows, unambiguously discretises the entire spectrum, if the purpose
of introducing analytic wavefunctions is only to compare with wavefunctions ob-
tained via numerical methods, a back to back comparison of the continuum
wavefunctions of each method is at best an undertaking of questionable validity.
It is much better then to conduct a comparison for the part of the spectrum, i.e.
−1 < E < 1, where both methods produce discretised wavefunctions.

In order to correctly account for an extended nucleus, a modification to the
potential (2.3) must be made, the simplest such modification is

V (r, R) = −αZ
(

Θ (−r +R)

R
+

Θ (r −R)

r

)
, (2.16)

where R is the nuclear radius and Θ is the heaviside function, equation (2.16)
is known as the charged spherical shell potential. A thorough dissection of the
solution methods of the Dirac equation for extended nuclei is, for most intents and
purposes not necessary, and anyway not entirely encompassed within the main
thrust of this examination, for that, one is referred to the literature [30, 31, 13].
However, in the interests of furnishing the reader with a computationally stable
platform for generating solutions to equation (2.7) in the region r > R for the
potential (2.16), the salient features of these prior investigations shall be given.

Essentially, one need only realise that equation (2.7) can be reduced to a
form of the Whittaker equation. If one introduces a new radial wavefunction,
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comprised of both gκ (r) and fκ (r)

h±κ (r) = (2kr)3/2

(
gκ (r)∓

√
1 + E

1− E
fκ (r)

)
,

gκ (r) =
h+
κ (r) + h−κ (r)

2 (2kr)3/2
, fκ (r) =

h−κ (r)− h+
κ (r)

2 (2kr)3/2
(2.17)

where k =
√

1− E2. If again the following variables are defined

ζ = αZ, ξ2 = κ2 − ζ2, η =
ξE

k
, η± = η ± 1

2

∆ (η±, ξ) =
Γ (2ξ + 1) Γ

(
1
2
− ξ − β±

)
Γ (−2ξ + 1) Γ

(
1
2

+ ξ − β±
) and

N+

N−
= − ξ − η

κ− η/E
,

(2.18)

one may write a solution for h±κ (r) in the form

h±κ (r) = N±
(
Mη±,ξ (2kr)−∆ (η±, ξ)Mη±,−ξ (2kr)

)
. (2.19)

It is a simple task to show, using equation (2.17) and the last of equations
(2.18) that gκ (r) and fκ (r) are comprised of, and share one and only one
normalisation constant. The solution in the region r < R can be given in terms
of the Bessel functions

gκ (r) =

{
Ni

1√
r
Jκ+ 1

2

(
−ir
√

1− (E − V0)2

)
, κ > 0

Ni
1√
r
Yκ+ 1

2

(
−ir
√

1− (E − V0)2

)
, κ < 0

fκ (r) =

{
Nie

iπ/2 1√
r

√
E+V0−1√
E+V0+1

Jκ− 1
2

(
−ir
√

1− (E − V0)2

)
, κ > 0

Nie
iπ/2 1√

r

√
E+V0−1√
E+V0+1

Yκ+ 1
2

(
−ir
√

1− (E − V0)2

)
, κ < 0,

(2.20)

where V0 = −αZ/R. It only remains to determine the normalising coefficients,
Ni, N− or N+ and the energy E. With the introduction of the superscripts >
for the region r > R and < for the region r < R, the equation for determining
bound state energies is

g>κ (R)

f>κ (R)
=
g<κ (R)

f<κ (R)
. (2.21)
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Once a particular energy is determined, one may then make use of the typical
boundary matching conditions to determine N− or N+ and Ni

g>κ (R) = g<κ (R)

dg>κ (R)

dr
=

dg<κ (R)

dr
. (2.22)

The results of equations (2.22) and (2.21) thus completely determine the
form of bound state wavefunctions for the hollow shell potential.

2.4 Numerical methods

Having elaborated on the analytic techniques at one’s disposal for solving the
Dirac equation for a central potential, attention is now brought to the methods
that exist for treating this problem numerically. The starting point for this part
of the discussion is once more the set of coupled differential equations for Gεκ (r)
and Fεκ (r)

(
dFεκ (r)

dr
− κ

r
Fεκ (r)

)
= − (ε− V (r)− 1)Gεκ (r)(

dGεκ (r)

dr
+
κ

r
Gεκ (r)

)
= (ε− V (r) + 1)Fεκ (r) . (2.23)

The numerical approach to solving (2.23) proposed by Johnson [32], with the
dual–kinetically–balanced (DKB) B–spline basis of Shabaev [33], is reproduced
here. Usage of the DKB basis has proven popular in recent years [34, 35, 36]
given its ability to eliminate so called “spurious states,” something which will be
briefly explained in section 2.4.1 below. Before beginning, a brief overview of the
essentials of the B–spline basis as used in the following is necessary.

2.4.1 The B–spline basis

The manner in which B–splines are used as the basis for solving the time–
independent Dirac equation for a central potential (and later on, a two–centre
potential) is essentially no different to other traditional numerical solution meth-
ods for differential equations; a coefficient expansion of Gεκ (r) and Fεκ (r) com-
prised of B–spline polynomials, defined piecewise inside a box spanning some
finite range (r = 0..rmax), is carried out over the complete set of splines. The
reason B–splines have been chosen over other competing bases, e.g. a basis of
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Gaussians or Legendre polynomials, is due to their guaranteed continuity over
the entire space, their ability to replicate continuum eigenfunctions better than
other competing bases, the high accuracy of integrals involving B–splines and
their relatively fast computational evaluation.

The set of polynomial splines used here, as proposed in [37], is given by the
following recursion equation

B1
i (r) =

{
1, ti ≤ r < ti+1

0, elsewhere
, and

Bk
i (r) =

r − ti
ti+k−1 − ti

Bk−1
i (r) +

ti+k − r
ti+k − ti+1

Bk−1
i+1 (r) . (2.24)

The spline Bn
i (r) only has non–zero values in the range ti → ti+n. The

radial coordinate is divided onto a grid, spanning the range of r = 0 to r = rmax,
consisting of Nm intervals. rmax is colloquially known as the box size. Nm+n+2
spline nodes are fixed at the start/end points of these intervals. The first and
last n nodes are fixed at r = 0 and r = rmax respectively, in other words, the
position of these nodes ti is such that

for 1 ≤ i ≤ n→ ti = 0 and Nm+3 ≤ i ≤ Nm+n+2→ ti = rmax. (2.25)

The remaining Nm − n + 2 nodes are fixed sequentially at the end of each
interval, that is, node n + 1 is fixed at the interface between interval 1 and 2,
node n+ 2 is fixed at the interface between intervals 2 and 3 and so forth.

For instance, if one is using splines of order 3, and a grid containing 10
equally spaced intervals extending from x = 0 to x = xmax = 10, then the
position of the nodes in this case would be t1 = t2 = t3 = 0, t4 = 1, t5 = 2
. . . t11 = 8, t12 = 9, t13 = t14 = t15 = 10. An example of this set of splines and
its distribution is shown in figure 2.1.

One particular property of equation (2.24) is that the first and last splines on
the grid are both equal to 1 at r = 0 and r = rmax respectively. For the purposes
of normalisation, it is desirable to ensure that in the limit r → 0 or r →∞ that
Gεκ (r) = Fεκ (r) = 0. To accomplish this, the coefficient expansion for Gεκ (r)
and Fεκ (r) is made whereby the first and last B–splines are omitted from the
basis. In essence, the purpose of the first and last splines is simply to define their
subsequent and previous splines respectively.

In the following passages, the dual–kinetically–balanced B–spline basis is em-
ployed in finding solutions for Gεκ (r) and Fεκ (r) for a spherical shell potential
(2.16), this can be explicitly written as
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Figure 2.1: The set of twelve, third order B–splines B3
i (x) forming the basis over

an equally spaced grid spanning x = 0..10.

Gεκ (r) =
Nm∑
i=1

(
vεiκ + vεικ

1

2

(
d

dr
− κ

r

)
δi,ι−Nm

)
Bn
i+1 (r) =

Nm∑
i=1

G̃i
εκ (r)

Fεκ (r) =
Nm∑
i=1

(
vεικδi,ι−Nm + vεiκ

1

2

(
d

dr
+
κ

r

))
Bn
i+1 (r) =

Nm∑
i=1

F̃ i
εκ (r) ,

(2.26)

subject to the customary normalisation condition

∫ rmax

0

dr
(
Gεκ (r)2 + Fεκ (r)2) = 1. (2.27)

The vεiκ in equation (2.26) are the aforementioned expansion coefficients.
Furthermore, the spline nodes ti are distributed exponentially with the density
of nodes decreasing as r increases. One important consequence of equation
(2.27), in contrast to the analytic procedure, is that this condition applies to
all energies, not merely those where −1 < E < 1, this implies that numeric
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solutions to (2.23) have discrete energies for the entire spectrum. Hereafter, it is
assumed that the order of the B-splines is given (In all calculations which follow,
splines of order eight have been used), thus the superscript designating spline
order will be dropped.

A curious property of the non–balanced–basis, as implemented in [32], is
its propensity to produce so called “spurious” states1. The reasons for this
are well explained elsewhere [33], but essentially, usage of this basis does not
impose one important condition that is present in the analytic theory, namely
that −n ≤ κ < n (here, n is defined in equation (2.8)). Thus, a non–balanced
basis unambiguously permits the presence of non–physical states such as 1p and
2d states.

2.4.2 Applying the B–spline basis to the spherical shell
potential

With the classification of the basis in terms of piecewise B–spline polynomials
complete, the focus can now shift to the linear algebra methods required for
the determination of the expansion coefficients vεiκ of the functions Gεκ (r) and
Fεκ (r) and their corresponding eigenenergies. Introducing the notation

|ϕεκ〉 =

(
Gεκ (r)
Fεκ (r)

)
=
∑
i

(
1 D
D† 1

)(
vεiκ

vεικδi,ι−Nm

)
Bi+1 (r)

where

D =
1

2

(
d

dr
− κ

r

)
and D† =

1

2

(
d

dr
+
κ

r

)
, (2.28)

and defining the action for a particular κ and fixed (but undetermined) energy,
i.e. |ϕεκ〉 ≡ |ϕ〉

S = 〈ϕ| Ĥ |ϕ〉 − ε 〈ϕ|ϕ〉 , (2.29)

one may, using the principle of least action δS = 0, derive an eigenvalue problem
for vεiκ. In pursuance of this, the variance of the action is minimised with respect
to the coefficients vεiκ according to

dS

dvεiκ
= 0, (2.30)

1In [38] it is claimed that usage of a non–balanced basis with splines of different order for
the large and small components of the radial solution can also eliminate spurious states.
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the equation for the undetermined coefficients vεiκ of a particular energy ε and
κ is thus

Ĥ~v = εN̂~v. (2.31)

While rather lengthy in their full representation, the elements of matrix Ĥ,
under the restriction 1 ≤ i

∧
j ≤ Nm, are written as

Hij = Uij +
3

4
Dij +

3

4
κ (κ+ 1)Uij

+
1

2

(
V 1
ij + V 2

ij + κ2V 3
ij + κV 4

ij

)
Hi+Nmj+Nm = −Uij −

3

4
Dij −

3

4
κ (κ− 1)Uij

+
1

2

(
V 1
ij + V 2

ij + κ2V 3
ij − κV 4

ij

)
Hij+Nm =

1

2
V 5
ij +

1

8

(
D1
ij −D1

ji

)
+

1

8

(
D2
ij +D3

ji

)
Hi+Nmj = Hj+Nmi, (2.32)

where the sub–matrices within equation (2.32) are, with the assistance of the
coefficients i = i + 1 and j = j + 1 (which are used to ensure the exclusion of
the first spline on the B–spline basis), given by
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Uij =

∫ ∞
0

dr (Bi (r)Bj (r)) , Dij =

∫ ∞
0

dr

(
dBi (r)

dr

)(
dBj (r)

dr

)
,

Uij =

∫ ∞
0

dr

r2
(Bi (r)Bj (r)) , V 1

ij =

∫ ∞
0

dr (Bi (r)V (r)Bj (r)) ,

V 2
ij =

1

4

∫ ∞
0

dr

(
dBi (r)

dr

)
V (r)

(
dBj (r)

dr

)
,

V 3
ij =

1

4

∫ ∞
0

dr

r2
(Bi (r)V (r)Bj (r)) ,

V 4
ij =

1

4

∫ ∞
0

dr

r

(
Bi (r)

dBj (r)

dr
+Bj (r)

dBi (r)

dr

)
V (r) ,

V 5
ij =

1

2

∫ ∞
0

dr

(
Bi (r)

dBj (r)

dr
+Bj (r)

dBi (r)

dr

)
V (r) ,

D1
ij =

∫ ∞
0

dr

(
dBi (r)

dr

)(
d2Bj (r)

dr2

)
,

D2
ij =

∫ ∞
0

dr

(
Bi (r)

d2Bj (r)

dr2

)
κ

r
−
(
Bj (r)

dBi (r)

dr

)
κ (κ− 1)

r2

− (Bi (r)Bj (r))
κ2 (κ− 1)

r3
and

D3
ij =

∫ ∞
0

dr

(
Bi (r)

d2Bj (r)

dr2

)
κ

r
+

(
Bj (r)

dBi (r)

dr

)
κ (κ+ 1)

r2

− (Bi (r)Bj (r))
κ2 (κ+ 1)

r3
. (2.33)

Gauss–Legendre integration is employed here for the evaluation of the in-
tegrals contained in equation (2.33). The normalisation matrix N̂ of equation
(2.31) can be decomposed into the submatrices

Nij = Uij +
1

4
Dij +

κ (κ+ 1)

4
Uij

Ni+Nmj+Nm = Uij +
1

4
Dij +

κ (κ− 1)

4
Uij

Ni+Nmj = Nij+Nm = 0. (2.34)

The concluding step is to agglomerate matrices N̂ and Ĥ, and generate the
2Nm eigenvectors vεi for each of the 2Nm eigenvalues ε of the matrix Â via

Â~v =
(
Ĥ − εN̂

)
~v = 0. (2.35)
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Obtaining ~v completes the process for generating numerical solutions to the
stationary single–centre Dirac equation for an extended nuclear potential.



20 CHAPTER 2. THE RELATIVISTIC SINGLE–CENTRE PROBLEM



Chapter 3

Numerical solution to the
time–independent, two–centre
Dirac equation

In a purely two–centre regime, the analytical methods described in section 2 are
no longer applicable. Only with the assistance of approximate numerical methods
can eigenfunctions and eigenvalues of the static two–centre Dirac equation be
found.

The approach used here for treating the two–centre potential involves de-
composing this potential into a multipole sum, this is done to preserve the use
of spherical coordinates. Fortunately, in the zeroth order approximation, this
expansion of the potential is identical to the charged spherical shell potential,
and as such, a comparison of eigenvalues and eigenfunctions will be conducted
for this potential between numerical and analytic methods.

As mentioned in the introduction, the hand of the theoretician is not necessar-
ily forced into working within spherical coordinates, pure two–centre coordinate
systems, such as prolate spherical or Cassini coordinates (cf. [24, 23]) can be
used in which the potential is automatically accounted for to all orders. Usage of
a pure two–centre coordinate system can be of particular advantage in handling
the Dirac equation for homonuclear charges. In this case, Cassini coordinates
correspond very closely to the equipotential lines and the electric field gradient,
furthermore, the lemniscate intersects at the barycentre.

However, should the system be heteronuclear, while the foci remain fixed at
the nuclei, the coordinates no longer correspond to the equipotential lines, and
the lemniscate is shifted from the barycentre1. This may prove disadvantageous

1a quasi-Cassini coordinate system which could fulfil these conditions, i.e. foci at the
nuclei and a lemniscate that intersects at the barycentre, a “bowling pin” type lemniscate for

21
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when one attempts to handle dynamic problems. Two benefits of persisting with
spherical coordinates are firstly its flexibility in setting the coordinate centre at
the most favourable position and secondly the large degree to which analytic
simplifications can be made, these will be explored in the coming passages.

First of all however, a quick overview of the Hamiltonian of the two–centre
system and how the system itself is spatially configured is provided to grant
the reader a clear picture of the differences between the two– and single–centre
scenarios. The time–independent Dirac equation for two, point–like coulomb
centres is given by

ĤTCφ(r) = Eφ(r), where

ĤTC = α · p− αZ1

|r−R1|
− αZ2

|r−R2|
+ β, and

− αZ1

|r−R1|
− αZ2

|r−R2|
=

2K∑
L=0

V L
TC (r,R)

V L
TC (r,R) = −α

[
PL (cosϑ)

(
Z1ρ

L
1< (r, R1)

ρL+1
1> (r, R1)

+ (−1)L
Z2ρ

L
2< (r, R2)

ρL+1
2> (r, R2)

)]
, (3.1)

here, ρi< (r, Ri) = min(r, Ri) and ρi> (r, Ri) = max(r, Ri) for i = 1, 2, PL (ϑ)
are the Legendre polynomials, and ϑ is the angle formed between r̂ and R̂, as
can be seen in figure 3.1. The choice of the coordinate centre for the stationary
problem is, strictly speaking, (almost) entirely irrelevant. However, since its
importance will become clear in section 6.1 where the recoiling motion of two
moving nuclei must be accounted for, it is prudent to set the coordinate centre
at the barycentre.

R1 =
M2

M1 +M2

R R2 =
M1

M1 +M2

R, (3.2)

where R is the internuclear distance, and Mi is the mass of the ith nucleus.
Figure 3.1 pictorially reflects the arrangement of the spherical coordinates for a
homonuclear system, i.e. Z1 = Z2 ,M1 = M2. Also illustrated in figure 3.1 is
the exponential spline node distribution (concentric circles), and the maximum
size of the box rmax.

heteronuclear systems, would be optimal
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Figure 3.1: A homonuclear two–centre system in spherical coordinates. The
concentric rings represent the B–spline node boundaries, rmax shows the extent
of the box.
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3.1 The monopole approximation

The first brick in the pathway towards a sophisticated theory for the stationary
two–centre Dirac equation, for which a seamless computational implementation
is guaranteed, begins with the monopole approximation to the two centre poten-
tial. One of the temptations the theoretician is faced with when choosing the
means with which to handle the two–centre problem in spherical coordinates, is
utilising the full expansion of the potential (3.1) to directly obtain two–centre
wavefunctions. This approach, while valid, has a considerable tendency to in-
crease the processing time required for the production of basis wavefunctions.
The technique put forward here ensures a significant computational acceleration
in the creation of a two–centre basis.

As a first step in the monopole approximation, one seeks the eigenvalues and
eigenfunctions of the zeroth–order Hamiltonian of equation (3.1)

Ĥ0
TC = α · p + V 0

TC (r,R) + β, (3.3)

which, when simplifying the potential V 0
TC , takes precisely the same form as

the extended potential presented in equation (2.16). For a heteronuclear two–
centre problem, the monopole approximation of the potential creates a type of
double hollow shell potential, for a homonuclear two–centre potential of two
charges Z, the monopole approximation is exactly the same as seeking a solution
to the hollow shell potential for a single nucleus of charge 2Z and charge radius
R/2.

The creation of a monopole basis can then be conducted either via the analytic
procedure outlined in section 2.3 or the numerical procedure in section 2.4; one
simply substitutes V 0

TC (r,R) into equations (2.16) and (2.23) respectively. Since
the ultimate goal is to utilise numerical methods in finding a two–centre basis
for higher terms in the multipole expansion, a comparison between numerical
and analytic techniques in generating eigenvalues and eigenfunctions would be
of considerable use.

3.2 Comparison between numerical and exact
methods for the hollow shell potential

As alluded to, before one can be certain of the merits and validity of any ap-
proximate method, a comparison with established techniques, where possible, is
highly desirable. The procedure outlined in section 2.3 for obtaining analytic
solutions to the Dirac equation for the hollow shell potential model should serve
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Figure 3.2: The large component of a Hydrogen–like Uranium ion, where the nu-
clear size is accounted for using the charged spherical shell model. The numerical
techniques outlined in section 2.4 are represented here by the points ×+ ? and �.
Smooth curves are analytic wavefunctions obtained with the technique outlined
in section 2.3. As is evident, very little difference between numerical methods,
and analytic methods actually exists. The horizontal axis is the distance from
the coordinate centre in natural units.

as an equitable standard, against which any numerical method would need to
adequately compare, before attaining general acceptance.

In order to accomplish this, a small but relevant range of tests have been
selected. The analytic large Gnκ (r) = rgnκ (r) and small Fnκ (r) = rfnκ (r)
wavefunction components of equations (2.17)-(2.20) will be compared against
their numerical counterparts as defined in equation (2.26) for a U91+ ion with a
spherically charged shell of radius 7.4366 fm. Furthermore, a comparison between
eigenvalues obtained via both methods, not only for the aforementioned U91+ ion,
but also for a Pb81+–Pb82+ quasi–molecule, shall be given. For the Lead quasi–
molecule, the nuclei are separated by a distance of 1 N.U. ∼ 386.16 fm. A
Pb81+–Pb82+ quasi–molecule has been chosen given its candidacy for eliciting
ground state diving, should the two centres breach the critical distance Rc [16].

The eigenfunctions Gnκ (r) and Fnκ (r), of both the numerical and analytic
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Figure 3.3: The small component of a Hydrogen–like Uranium ion, where the
nuclear size is accounted for using the charged spherical shell model. Colours and
curves are as per those shown in figure 3.2. The horizontal axis is the distance
from the coordinate centre in natural units.

methods, for the extended U91+ ion are displayed in figures 3.2 and 3.3 respec-
tively.

The eigenvalues of the extended Uranium nucleus are displayed in table 3.1,
the eigenvalues of the Lead–Lead quasi–molecule can be seen in table 3.2. The
results displayed in these tables were generated using basis functions on a grid
with 200 splines, within a box extending to 105fm.

It is instantly inferable from both the tables and figures presented here, that
numerical methods do indeed reproduce, to a very high precision, the eigenfunc-
tions and eigenvalues attainable using exact methods.

3.3 Extending the monopole basis for higher
multipoles

Although the monopole approximation to the two–centre potential can be a good
tool for generating a Dirac spectrum for small internuclear distances, it is by no
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Table 3.1: Comparison between eigenvalues generated using numerical and exact
methods for U91+ for a nuclear radius of 7.4366fm

State Numerical Exact % Difference
1s1/2 0.7416885393 0.7416885418 3.4× 10−9

0.7416885625 [31] 3.1× 10−8

2s1/2 0.9331470857 0.9331470864 7.5× 10−10

3s1/2 0.9713241318 0.9713241321 3.1× 10−10

2p1/2 0.9330543217 0.9330543223 6.4× 10−10

3p1/2 0.9712969007 0.9712969010 3.1× 10−10

4p1/2 0.9842790113 0.9842790114 1.0× 10−10

2p3/2 0.9419767163 0.9419767147 1.7× 10−9

3p3/2 0.9739581129 0.9739581044 8.7× 10−9

4p3/2 0.9853874153 0.9853874040 1.2× 10−8

3d3/2 0.9739581128 0.9739581052 7.8× 10−9

4d3/2 0.9853874152 0.9853874015 1.4× 10−8

5d3/2 0.9906839624 0.9906839587 3.7× 10−9

Table 3.2: Comparison between eigenvalues generated using numerical and exact
methods for Pb81+–Pb82+ at an internuclear distance of 1 N.U.

State Numerical Exact Difference
1s1/2 0.3400200012 0.3400199866 4.3× 10−8

2s1/2 0.7926716429 0.7926716404 3.2× 10−9

3s1/2 0.9072970961 0.9072970957 4.4× 10−10

2p1/2 0.7155414755 0.7155414818 8.8× 10−9

3p1/2 0.8869937463 0.8869937483 2.3× 10−9

4p1/2 0.9407301544 0.9407301553 9.6× 10−10

2p3/2 0.8024865578 0.8024865592 1.7× 10−9

3p3/2 0.9091668165 0.9091668172 7.7× 10−10

4p3/2 0.9493080615 0.9493080619 4.2× 10−10

3d3/2 0.9085890973 0.9085890982 9.9× 10−10

4d3/2 0.9490365421 0.9490365426 5.3× 10−10

5d3/2 0.9678360989 0.9678360992 3.1× 10−10
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means satisfactory once this distance exceeds ∼ 1/αZ. Beyond these distances,
an electron is very unlikely to be preferentially bound to one or the other nucleus.
It is for this reason that one must be able to solve the Dirac equation presented
in (3.1) for higher multipoles as the internuclear distance increases.

As shall be demonstrated, one need not discard wavefunctions produced via
the monopole approximation. These monopole solutions can in fact serve as the
basis for solutions of higher orders in the potential expansion. It is important
to emphasise at this juncture, that the methods explained from here up to the
end of this chapter form half of the two most significant accomplishments of this
thesis2, and represent, to the best of the author’s knowledge, an entirely new
set of linear algebra procedures with which one may solve the time–independent
two–centre Dirac equation.

Recapitulating then, the problem is one of finding eigenfunctions Φnµ(r) of
the full, two–centre Dirac Hamiltonian as described in equation (3.1)

ĤTCΦnµ(r) = EnΦnµ(r). (3.4)

One proposes that these complete eigenfunctions are made up of monopole
eigenfunctions ϕinκµ(r) of the kind found in section 2.4 according to

Φnµ(r) =
K∑

i,κ=−K

νinκϕ
i
nκµ(r) =

K∑
i,κ=−K

νinκ
1

r

(
G̃i
nκ (r)χκµ (θφ)

iF̃ i
nκ (r)χ−κµ (θφ)

)

=
K∑

κ=−K

(
Ḡnκ (r)χκµ (θφ)
iF̄nκ (r)χ−κµ (θφ)

)
, (3.5)

where the sum over splines i is written here explicitly. Once again, the action
minimisation principle (2.30) can be employed, this time in finding solutions for
νnκ

S =
〈

Φ
∣∣∣ĤTC − E

∣∣∣Φ〉 , dS

dνnκ
= 0. (3.6)

In the same manner as for equation (2.31), this leads again to a matrix
equation for the undetermined coefficients ~ν

2The other being the utilisation of this two–centre basis as part of the solution to the
time–dependent Dirac equation, details of which are in chapter 4.
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Ĥ~ν = E~ν, where

Hi,j = εjδi,j +

〈
ϕi

∣∣∣∣∣
2K∑
L=1

V L
TC (r,R)

∣∣∣∣∣ϕj
〉
, (3.7)

the εi are the existing monopole eigenvalues. In this notation, ε1 would be the
lowest energy monopole eigenvalue for κ = −K, and ε4×K×Nm would be the
highest energy monopole eigenvalue for κ = K. In other words, a monopole
state, in Dirac notation |ϕnκµ〉 corresponds to a single state |ϕi〉 in the matrix
(3.7).

Hence the eigenvalues of Ĥ are the new multipole eigenvalues, and the eigen-
vectors of Ĥ are the undetermined coefficients νnκ. Only eigenvectors, whose
corresponding eigenvalues fall within a predefined range are selected in the final
multipole basis. The derivation of a basis of monopole wavefunctions as a first
step and their usage in calculating the matrix elements of H in equation (3.7)
as a second step is what differentiates the developed method from other meth-
ods cf. [15, 39]. Where other techniques employ a “brute force” solution to
the two centre problem, i.e. the full two–centre potential is solved in one step,
the method proposed here has a significant advantage in terms of computational
speed by employment of this two step procedure. The solutions for the monopole
approximation to the two–centre potential can be found very quickly, as a result
of this, the size of the matrix H is much smaller than that which would otherwise
be derived, and is hence easier to diagonalise.

As an example of the eigenfunctions one may derive as a result of equation
(3.5), figure 3.4 displays the large and small components of the wavefunction
in equation (3.5). The 1σg state of a U92+–U91+ quasi–molecule for different
internuclear distances, where 8 different partial waves were used in equation (3.5),
i.e. K = 4, is displayed. It is quite evident just how amplified the magnitude
of the small component (red lines) becomes as the electric field intensifies, clear
evidence of the necessity of using relativistic wavefunctions in the eigenbasis.

One useful simplification exists for equation (3.7) if the two–centre po-
tential happens to correspond to a homonuclear system. In this case, only
terms of V L

TC (r,R) for even L are non–zero, and the spectrum for gerade
(κ = −1, 2,−3, 4...) and ungerade (κ = 1,−2, 3,−4...) states may be eval-
uated separately. From here onwards, the theory will focus on methods available
for handling the time–dependent Dirac equation.
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Figure 3.4: The increasing localisation of the large (black curves) and the small
components (red curves) for a U92+–U91+ quasi–molecule. Eight partial waves
are used in the generation of the two–centre basis functions (3.5). At the smallest
internuclear distance (0.14 N.U.∼ 44 fm), the peak of the large component is at
∼ 44 fm. The internuclear distances, in natural units, which were used for the
calculations of the radial components, are specifically designated in the figure
and are linked to their corresponding functions.



Chapter 4

The solution of the
time–dependent, two–centre
Dirac equation

Hitherto, the theory presented has been entirely dedicated to the treatment of
the stationary Dirac equation. This is however, only one half of the whole prob-
lem. For the atomic systems which will be examined later, the motion of the
nuclei adds a time dependency into the Dirac equation which needs accounting
for. In this section therefore, the procedure for utilising the numerically derived
wavefunctions of the static two–centre Dirac equation, presented in section 3.3,
in obtaining solutions to the time–dependent Dirac equation will be elaborated
upon. The procedure developed, a type of finite element analysis, is known as
the coupled–channel equation; it differentiates itself from other techniques for
handling time–dependencies, such as first or second order perturbation theory,
in that its application is not limited to systems where the time–dependent fields
are small in comparison to the fields of the unperturbed system.

The theory presented here is intended to be general, as there are no overly
inhibiting prescriptions for the coupled–channel method that prevent it from
being used for an arbitrary time–dependency. For this method, so long as the
time–dependency fits the description of an adiabatic process, i.e. the Hamiltonian
changes slowly enough such that the state function of the system can “instantly”
adapt, then the magnitude of the time–dependency is of little concern. It is this
general utilisation of the coupled–channel method which commences this section.

31
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4.1 A finite element based approach to treating
the time–dependent Dirac equation

The two–centre Dirac equation, for moving nuclei, does not yield a solution ana-
lytic in time. In this case, as with its solution in the radial coordinate, numerical
procedures must be relied upon. In this section, a type of finite element anal-
ysis known as the coupled–channel equation will be presented. The theory of
this new method begins with the time–dependent Dirac equation for an arbitrary
Hamiltonian Ĥ (t)

i
∂

∂t
|Ψ〉 = Ĥ (t) |Ψ〉 , (4.1)

one may separate the state function |Ψ〉 into temporal and spatial components
in the following manner

|Ψ (t, r)〉 =
∑
n

an (t) |Φn (t)〉 , (4.2)

the Φn (t, r) in equation (4.2) are the solutions to the time–independent Hamilto-
nian, at a particular fixed time t. For instance, for the two–centre Dirac equation,
these basis functions Φn (r) would simply be those eigenfunctions derived in sec-
tion 3.3. This expansion is then substituted into the original differential equation
(4.1) yielding

i
∑
n

(
∂an (t)

∂t
|Φn (t)〉+ an (t)

∣∣∣∣∂Φn (t)

∂t

〉)
=
∑
k

Ek (t) ak (t) |Φk (t)〉 , (4.3)

left multiplying by |Φk (t)〉 leads to

i
∂ak (t)

∂t
= Ek (t) ak (t)− i

∑
n

an (t)

〈
Φk (t)

∣∣∣∣∂Φn (t)

∂t

〉
. (4.4)

At this point, one must make use of the following relation
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d

dt
Ĥ (t) |Φn (t)〉 =

d

dt
En (t) |Φn (t)〉

∂Ĥ (t)

∂t
|Φn (t)〉+ Ĥ (t)

∣∣∣∣∂Φn (t)

∂t

〉
=
∂En (t)

∂t
|Φn (t)〉

+ En (t)

∣∣∣∣∂Φn (t)

∂t

〉
〈

Φk (t)

∣∣∣∣ d

dt
Ĥ (t)

∣∣∣∣Φn (t)

〉
=

〈
Φk (t)

∣∣∣∣∣∂Ĥ (t)

∂t

∣∣∣∣∣Φn (t)

〉

+ Ek (t)

〈
Φk (t)

∣∣∣∣∂Φn (t)

∂t

〉
= En (t)

〈
Φk (t)

∣∣∣∣∂Φn (t)

∂t

〉
, (4.5)

upon rearranging equation (4.5), one may solve for 〈Φk (t) |∂Φn (t) /∂t〉

〈
Φk (t)

∣∣∣∣∂Φn (t)

∂t

〉
=

〈
Φk (t)

∣∣∣∂Ĥ(t)
∂t

∣∣∣Φn (t)
〉

En (t)− Ek (t)
, (4.6)

and accordingly, equation (4.4) may be rewritten

i
∂ak (t)

∂t
= Ek (t) ak (t)− i

∑
n

an (t)

〈
Φk (t)

∣∣∣∂Ĥ(t)
∂t

∣∣∣Φn (t)
〉

En (t)− Ek (t)
δ̄nk, (4.7)

where δ̄nk is the anti–Kronecker delta. The next step toward the ultimate eval-
uation of the expansion coefficients lends itself particularly to those techniques
designed to produce basis wavefunctions |Φn (t)〉 in which the complete spectrum
is discretised. The analytic methods described in chapter 2 are only of marginal
use with equation (4.7). Basis functions obtained via numerical methods, on the
other hand, have a distinct advantage over their analytic counterparts when it
comes to solving time–dependent problems with coupled–channel methods since
continuum–continuum matrix elements remain easily integrable.

Continuing then under the assumption that the basis is completely discretised,
equation (4.7) can be reformulated into a matrix equation
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i
∂~a (t)

∂t
= M̂ (t)~a (t) where

Mnk = Enδnk − i

〈
Φk (t)

∣∣∣∂Ĥ(t)
∂t

∣∣∣Φn (t)
〉

En (t)− Ek (t)
δ̄nk. (4.8)

The following steps rely entirely on more traditional finite element analysis
methods; the time derivative on the left hand side of equation (4.8) can only be
solved approximately. For this reason, the coupled–channel equation can only be
utilised in circumstances where the time–dependencies in the Hamiltonian change
slowly enough such that the state function can adjust to them adiabatically.
Nevertheless, continuing with the prescribed approach for the time derivative,
one obtains

∂~a (t)

∂t
' ~a (t+ ∆t)− ~a (t)

∆t
= −iM̂ (t)~a (t)

~a (t+ ∆t) =
(
−iM̂ (t) ∆t+ 1

)
~a (t) ' e−iM̂(t+∆t/2)∆t~a (t) +O

(
∆t3
)
(4.9)

As a final note, the matrix M̂ is exponentiated at t + ∆t/2 in order to
preserve the norm of ~a (t), expressed differently, it is simply the manifestation of
the midpoint rule for numerical integration.

4.2 Coupled–channel methods for the
two–centre Dirac equation

The main advantage of coupled–channel techniques in resolving the challenges
inherent to the time–dependent, two–centre Dirac equation, is the relative ease
with which the time–dependencies may be incorporated into equation (4.9).
Here, a brief outline will be given as to how one may embed some typical features
of the two–centre Dirac equation into the coupled–channel equation, and as a
result, obtain the complete picture of the state function. Specifically, how one
may handle collisions with non–zero–impact parameters, as well as alternating
electromagnetic fields will be put under the microscope.

Before beginning however, it is imperative to define the trajectory upon which
the projectile and target move during the course of the collision. To ensure the
most accurate results, the Rutherford trajectories are used for this task, as they
correspond to the classical coulomb repulsion. The internuclear distance R, time
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t and (for a non–zero–impact parameter) angle ϑ formed between R and the
quantisation axis (z–axis) are parameterised by ξ in the following way

R = a(ε cosh ξ + 1), t =
a

v∞
(ε sinh ξ + ξ),

a =
αZ1Z2

µv2
∞

, ε =

(
1 +

b2

a2

)1/2

,

ϑ = 2 arctan

( √
ε2 − 1 (tanh (ξ/2) + 1)

ε+ 1− (ε− 1) tanh (ξ/2)

)
, (4.10)

here, v∞ is the asymptotic value of the relative velocity of the nuclei at t =∞,
b is the impact parameter and µ = M1M2/ (M1 +M2) is the molecular reduced
mass. The reason R, t and ϑ are parameterised is due to the fact that the
differential equation governing R (t) is autonomous1, and has no explicit solution
in t. Pictorially, this motion and the spatial configuration of this collision is
presented in figure 4.1 for the case of a homonuclear collision.

For a collision of two nuclei moving along Rutherford trajectories, with an
arbitrary impact parameter, one must utilise a time derivate operator which ac-
counts for the rotation of the internuclear axis. If one assumes that the projectile
is deflected by the target in the z–x plane, the new time derivate operator takes
the form

∂

∂t
=
∂R (t)

∂t

∂

∂R
− iω · j =

∂R (t)

∂t

∂

∂R
− idϑ

dt
jy =

∂R (t)

∂t

∂

∂R
+

dϑ

dt

(j− − j+)

2
,

(4.11)

the ladder operators are defined as

j+ |κmj〉 =
√

(j −mj) (j +mj + 1) |κmj + 1〉

j− |κmj〉 =
√

(j +mj) (j −mj + 1) |κmj − 1〉 . (4.12)

Using equation (4.11), one may make the appropriate modifications to (4.7)
to obtain

1One may extract a solution for t which is explicit in terms of R however
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Figure 4.1: A dynamic two–centre system in spherical coordinates showing the
trajectories of the projectile and target from the barycentre frame of reference
for a collision between nuclei of equal charge and mass. The concentric rings
represent the B–spline node boundaries used in the creation of the static two–
centre basis, rmax shows the extent of the box. The colliding nuclei follow the
Rutherford trajectory (dotted, curved lines), furthermore, it is clear to see that
for non–zero b, the internuclear axis rotates during the collision.
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i
dak (t)

dt
= Ek (t) ak (t)− i

∑
n

an (t)

(
∂R

∂t

〈
Φk (t)

∣∣∣∂Ĥ(t)
∂R

∣∣∣Φn (t)
〉

En (t)− Ek (t)
δ̄nk

− idϑ
dt
〈Φk (t) |jy|Φn (t)〉

)
. (4.13)

The fact that Rutherford trajectories are being employed here means it is
sensible to rewrite (4.13) in terms of the parameterising coefficient ξ (4.10).
In conjunction with this, appendix B contains a complete discussion as to the
simplifications that can be made to equation (4.13) for a zero–impact parameter.
Summarising briefly however, should the impact parameter be zero, only states of
equal total angular momentum projection can produce non–zero matrix elements
for a Hamiltonian of a projectile moving along the z–axis, something which can
considerably accelerate the diagonalisation of matrix M̂ in equation (4.9).

i
dak (ξ)

dξ
=

dt

dξ
Ek (ξ) ak (ξ)

− i
∑
n

an (ξ)

(
∂R

∂ξ

〈
Φk (ξ)

∣∣∣∂Ĥ(ξ)
∂R

∣∣∣Φn (ξ)
〉

En (ξ)− Ek (ξ)
δ̄nk

− idϑ
dξ
〈Φk (ξ) |jy|Φn〉

)
. (4.14)

With the shift to the parameter ξ, the time dependency in equation (4.9)
may be directly substituted by a ξ dependency. Finally, to convey a sense of
completeness, it would be wise to give an expression for an (t) that can com-
pensate for any extra time–dependent operator which may be contained within
the Hamiltonian. Such an expression would be especially useful when one is con-
fronted with a situation in which the procurement of basis functions with such
an additional time–dependent operator becomes excessively prohibitive. Recapit-
ulating, an arbitrary, new Hamiltonian, with an extra time–dependent operator
L̂ can be written as

ĤL (t) = Ĥ (t) + L̂ (t) , (4.15)

where L̂ (t) may, for instance, take the form of a laser field, in which case

L̂ (t) =
√
αα ·A (r, t) ei(k·r−ωt), (4.16)
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where A (r, t) is the vector potential of the laser field and k the photon wavevec-
tor. A is related to the electric field according to E (r, t) = −∂A (r, t) /∂t.
Insertion of this new Hamiltonian into equation (4.1) yields

i
∂

∂t
|Ψ〉 = Ĥ (t) |Ψ〉+ L̂ (t) |Ψ〉 . (4.17)

One may again take equation (4.2) as the expansion for |Ψ〉, which are still
basis functions of Ĥ. The same procedure between equations (4.2) and (4.14) is
then executed, but terms of the operator L̂ remain untouched on the right hand
side. One obtains quite simply, where the notation of equation (4.14) has been
used

i
dak (ξ)

dξ
=

dt

dξ
Ek (ξ) ak (ξ)− i

∑
n

an (ξ)

(
∂R

∂ξ

〈
Φk (ξ)

∣∣∣∂Ĥ(ξ)
∂R

∣∣∣Φn (ξ)
〉

En (ξ)− Ek (ξ)
δ̄nk

− idϑ
dξ
〈Φk (ξ) |jy|Φn (ξ)〉+ i

dt

dξ

〈
Φk (ξ)

∣∣∣L̂ (ξ)
∣∣∣Φn (ξ)

〉)
.

(4.18)

Further discussion on the inclusion of a laser field in the Hamiltonian has been
given in section 7.1. In combination with the two–centre potentials described
in section 3.3, the coupled–channel equations (4.14) and (4.18), depending on
whether an external field L̂ is present or not, are the second most important,
and original, derivation in this thesis. However, no discussion on these numerical
methods would be complete without addressing the not inconsiderable computa-
tional complexities inherent to their usage, the remainder of this chapter examines
therefore, the finer details involved in the implementation of the numerical theory
presented thus far.

4.3 Computational implementation of the
non–perturbative technique

4.3.1 State tracing and sign

A particularly troublesome, well known [40, 41] programmatical property of us-
ing the coupled channel equation, where the basis functions are eigenfunctions
of the Hamiltonian (3.1), is ensuring that one can properly trace each state
in the eigenvalue spectrum. Ordinarily, linear algebra programs responsible for
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Figure 4.2: The ten lowest gerade (right panel) and ungerade (left panel)
states of a U92+–U91+ quasi–molecule as a function of internuclear distance.
At 34.487fm internuclear separation, the 1σg state has entered the negative con-
tinuum. Of particular note is the crossing of the 4πu and the 3δu states, the 3δg
and 4σg states and the 4δg and 5σg states. Basis states containing ten different
κ, i.e. κ = −5..5 have been used in determining this spectrum.

determining eigenvalues simply return the eigenvalues, and hence eigenvectors,
ordered by energy, and not by quantum numbers, as would be preferable. For
a multipole basis, especially in the case of a homonuclear two–centre potential,
distinguishing the same state in the eigenvalue spectrum from one time step to
the next is an important task to ensure that matrix M̂ (4.9) remains well or-
dered. Figure 4.2 shows clearly that some states in the two–centre spectrum,
in this case a U92+–U91+ quasi–molecule, definitely cross. The two–centre spec-
trum shown here utilises ten partial waves (hence κ = −5..5 in equation (3.5))
and the multipole expansion for the two–centre potential contains therefore 11
terms.

In order to properly sort the two–centre spectrum, it is recommendable to
sample the basis functions at each time step, by taking the sum of one or more
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components of the basis function2 Φnµ (r). Introducing the notation

Γn (r) =
K∑

κ=−K

Ḡκ (r)χκ1/2 (0, 0) , (4.19)

one may define a sum, conducted at time step t

Stn =

∣∣∣∣∣∑
i

Γn (xi)

∣∣∣∣∣ , (4.20)

where the xi are a set of points in the radial coordinate, preferably extending
exponentially away from the origin to some sufficiently large value inside the box.
This sum Stn can be checked against every other sum calculated in the previous
step. The state n which gives the smallest |St−1,m − St,n| is then equivalent to
the state m of the previous step, the eigenvalue, and expansion coefficients νnκ
for state n should then be reassigned to eigennumber m. This procedure may be
further reinforced by restricting the reassignment of eigennumbers only to those
states which are “nearest neighbours” in terms of their eigenenergies.

A further problem created by the use of standard linear algebra programs for
the diagonalisation of matrixH in equation (3.7) is the arbitrariness of the sign of
the expansion coefficients νnκ. The expansion coefficients are eigenvectors of H,
the sign of each expansion coefficient, relative to every other coefficient at each
new internuclear distance is always correct, however, the sign of the complete
set is, if not outright arbitrary then at least highly unpredictable. The result of
this cannot be neglected, the matrix elements of two basis states must change
smoothly as the internuclear distance between the two centres changes, a sudden
change in sign of any of these elements irreversibly distorts the calculation for
the ensuing steps.

Again, there exists a method, similar to that employed to counteract the
disordering of the eigenvalue spectrum through eigenenergy crossings, to ensure
that the sign of each eigenvector remains intact at every time step. Again, one
uses a modified sum Stn

Stn =
∑
i

Γn (xi) , (4.21)

2One may choose arbitrarily many components and combinations thereof, sampling of the
large and small components in addition to sampling the probability distribution of each state
ensures a more reliable check for this procedure
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and checks if |St−1,n − St,n| > |St−1,n + St,n|, if this condition is satisfied,
a sign change has occurred and one should correspondingly change the sign of
the nth eigenvalue and eigenvector. It is preferable to also conduct a check of
the small component of Φnκ (r), as the sum over the large component Γn, for
certain internuclear distances, may approach zero or vice–versa; something which
could be a potential source of error in checking the condition |St−1,n − St,n| >
|St−1,n + St,n|.

4.3.2 Properties of the basis and the discretised temporal
grid

The most demanding task of the non–perturbative treatment of the two–centre
Dirac equation outlined here is by far the evaluation of the matrix M̂ in equation
(4.9). The dimensions of M̂ , the time required for its evaluation, the accuracy
of each individual element and the resources required for its subsequent expo-
nentiation, are dependent on the number of nodes affixed to the B–spline grid,
the number of partial waves in the two–centre wavefunctions (2K in equation
(3.5)), the size of the box, the cut–off energies of the eigenvalue spectrum, and
how finely the temporal grid (or in the case of Rutherford trajectories, ξ grid) is
discretised.

The discussion that follows is in part based on heuristics, a result of a long
period of trial and error with the non–perturbative approach and its implementa-
tion. However some “common sense” decisions can be made about most of the
parameters required in the generation of an accurate basis, and for the proper
time evolution of the two–centre system.

Firstly, an appropriate box size rmax should be relatively simple to find. A
box size O (rmax) = 1/ (α (Z1 + Z2)) would, for example, be far too small (This
value corresponds, in the non–relativistic theory, to the radial expectation value
of a ground state electron in a Hydrogen–like system). For atomic systems of
very heavy nuclei, where 1/ (α (Z1 + Z2)) ∼ 1 a box size of ∼ 300 N.U. (115000
fm) has been utilised, this of course guarantees that a large portion of the most
active bound states are comfortably enclosed within a box of this size.

The number of spline nodes Nm in equation (2.25), and the range of eigenen-
ergies used in the basis must be considered on equal footing, both tend to have
an equal contribution to the efficiency of producing M̂ . A general rule is that
doubling the range of the eigenvalue spectrum is as computationally expensive
as doubling the number of nodes on the grid. Once more, for the heavy ion
collisions considered here, energies of between −10 < εn < 10 are acceptable
where K– or L– shells are initially populated, non–zero matrix elements of con-
tinuum states for energies higher than 10 are strongly suppressed by the factor
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En−Ek in the denominator of equation (4.8). As for the number of nodes used
in the calculations in this thesis, Nm = 200 was taken for calculations excluding
the negative continuum, and Nm = 100 for calculations including the negative
continuum. The numerical procedure outlined in this chapter generates an equal
number of electron states for energies above and below -1, hence the reason why
one may increase the number of splines in the basis, at no extra computational
cost, by a factor of two when the negative continuum is excluded.

As for the extent of the temporal grid ξmax, and its subdivisions, a good
rule of thumb is to ensure that the range of ξ is chosen such that the maximum
internuclear distance of the set of internuclear distances used is at least one order
of magnitude larger than 1/ (α (Z1 + Z2)). For collisions involving heavy ions,
a ξmax > 6.2 is usally recommendable, for a 2.33Mev/u U92+–U91+ collision, a
ξmax = 6.75 corresponds to an internuclear separation of ∼ 10000fm. Finally,
the ξ step ∆ξ in equation (4.9) should also be sufficiently small, so as to ensure
the adiabaticity condition. It has been found that dividing the ξ grid into between
500–1600 steps produces sufficiently similar results.

Though not central to the main message of this thesis, the adjustment of
some of these parameters and their interplay is compared in section 7. With the
discussion about the computational details and the preceding fundamentals of
the developed theory for the non–perturbative treatment of the time–dependent,
two–centre Dirac equation complete, the focus now shifts to a brief synopsis of
time–dependent perturbation theory. The reader is reminded once more that,
considering the novelty of the techniques explained in this chapter, a testbed for
comparison is required to ensure that the results given by this non–perturbative
technique are able to reproduce those results obtained via the well established
perturbation methods. Hence, it would be negligent to not provide the basic
theory behind the perturbative approach.



Chapter 5

Time–dependent perturbation
theory: Application to the
two–centre Dirac equation

Although the main objective of this thesis is to clearly lay out the implementa-
tion of the non–perturbative solution method for the time–dependent two–centre
Dirac equation, it is not the only method available for the treatment of time–
dependent problems. Accordingly, a full account of first order perturbation theory
can not be neglected where the two–centre system is strongly heteronuclear, i.e.
Z2 << Z1. The reason for elucidating both methods is because there is no
previous theoretical work against which the coupled–channel technique described
in chapter 4, which goes beyond the monopole approximation, can be compared.
In this sense, the coupled–channel method described here must be compared
with some other well established technique for dealing with time–dependencies,
namely, first order, time dependent perturbation theory.

The method expounded in this section forms the basis for the perturbative
calculations which follow in section 6. In order to show the reader the correlation
between the figures and tables therein, a brief summary of the theoretical link
between the theory shown here, and their appearance in that section is needed.
Cross sections for the ionisation of an electron, due to the alpha decay of a heavy
nucleus, are calculated using both perturbation theory and the non–perturbative
method for the purposes of comparison and confirmation of the validity of the
non–perturbative technique laid out in section 4.

Once more, the DIRAC program was of assistance in the subsequent calcu-
lations using perturbation theory (cf. appendix C).

43
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5.1 Time–dependent perturbation theory

For any quantum mechanical system containing a Hamiltonian in which there ex-
ist terms which change with time, a wave equation can be written that describes
how the complete wavefunction |Ψ (r, t)〉 ≡ |Ψ〉 accomodates these time depen-
dencies. Equations (5.1) to (5.5) have been adapted from [42] and the lecture
notes of [43] and are presented here for the case of a general perturbation.

To perturbatively reconstruct a solution for |Ψ〉, one immediately breaks up
the Hamiltonian into time–dependent (unperturbed) and time–independent (per-
turbed) components

i
∂

∂t
|Ψ〉 =

(
Ĥ0 + λĤ′ (t)

)
|Ψ〉 , (5.1)

where λ << 1, and is a measure of the relative magnitude of the perturbation.
The state function is then separated into undetermined time–dependent coeffi-
cients and time–independent eigenfunctions of the unperturbed Hamiltonian

|Ψ〉 =
∑
n

∞∑
`=0

a`n (t)λ`φn (r) e−iEnt

=
∑
n

∞∑
`=0

a`n (t)λ` |φn〉 e−iEnt. (5.2)

The En in equation (5.2) are the eigenvalues of the unperturbed Hamiltonian,
the term e−iEnt has been introduced for convenience, but may, if desired, be
incorporated into the undetermined coefficient a`n (t). Inserting equation (5.2)
into equation (5.1) one obtains

i

∞∑
`=0

λ`
(

da`k (t)

dt
− ia`k (t)Ek

)
e−iEkt =

∑
n

∞∑
`=0

λ`a`n (t)
(
En

+ λ
〈
φk

∣∣∣Ĥ′ (t)∣∣∣φn〉)e−iEnt, (5.3)

where left multiplication by 〈φk|, and 〈φk|φn〉 = δn,k has been employed. As is
customary, equation (5.3) is sorted into a series of equations for increasing terms
in λ. Ignoring the trivial zeroth–order terms, terms to order λ1 of equation (5.3)
are
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da1
k (t)

dt
= −i

∑
n

a0
n

〈
φk

∣∣∣Ĥ′ (t)∣∣∣φn〉 e−iωt,
a1
k (t) = −i

∫ t

−∞
dτ
∑
n

a0
n

〈
φk

∣∣∣Ĥ′ (τ)
∣∣∣φn〉 e−iωτ , (5.4)

the energy difference between states En and Ek has been replaced with ω in
equation (5.4). For a very broad range of circumstances, it is often not necessary
to proceed to second–order perturbation theory, for the sake of providing the
reader with a more complete run–down of perturbation theory however, terms of
the order λ2 in equation (5.3) are given by

a2
k (t) = −

∫ t

−∞
dτ

∫ τ

−∞
dτ ′
∑
n

a0
n〈

φk

∣∣∣eiEkτĤ′ (τ) e−iĤ0(τ−τ ′)Ĥ′ (τ ′) e−iEnτ
′
∣∣∣φn〉 , introducing

H̃′ (t) = eiĤ0tĤ′ (t) e−iĤ0t and e−iEnt |φn〉 = e−iĤ0t |φn〉

a2
k (t) = −

∑
n

a0
n

〈
φk

∣∣∣∣∫ t

−∞
dτH̃′ (τ)

∫ τ

−∞
dτ ′H̃′ (τ ′)

∣∣∣∣φn〉 . (5.5)

The next stage in the elaboration of perturbation theory, is identifying the
correct form of the perturbation Hamiltonian Ĥ′ for two–centre problems. In
this regime, one is in general concerned with the electronic effects induced as
a result of some kind of collision. The full Hamiltonian is very similar to that
introduced in equation (3.1), however the coordinate centre remains fixed on one
nucleus (usually the heavier of the two colliding bodies, otherwise known as a
target centred system), and modified to account for the motion of the projectile,
again for brevity’s sake, point–like nuclei are assumed in the following equations
[44]
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Ĥ = α · p− αZ1

r
− γ (t)αZ2 (1− β (t)α3)

|r−R (t) |
+ β, where

−γ (t)αZ2 (1− β (t)α3)

|r−R (t) |
=

2K∑
L=0

V L
P (r,R (t))

2K∑
L=0

V L
P (r,R (t)) = −γ (t)αZ2 (1− β (t)α3)

×

[
1

2π2γ (t)

∫
d3s

s2 − β (t)2 (ω/ (γ (t) v (t)))2 e
is·(r−R(t))

]
, with

β (t) = v (t) /c, R (t) = îb+ k̂γ (t) v (t) t,

R (t) =
(
b2 + (γ (t) v (t) t)2)1/2

,

γ (t) =
(
1− β (t)2)−1/2

, (5.6)

where the electron–projectile interaction is taken to be the Lienerd–Wiechert
potential.

The geometry of the collision is displayed in figure 5.1. In equation (5.6),
θ is the angle formed between the electron coordinate r and the quantisation
axis and b is the impact parameter. As is often the case for collision events,
one usually simplifies v (t) to some constant velocity for a straight line projectile
trajectory, this is assumed in equation (5.6).

If the collision corresponds to alpha decay, the Hamiltonian is similar to that
of (5.6), but contains some subtle differences [45, 46]
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Figure 5.1: A target centred dynamic two–centre system in spherical coordinates
showing the trajectory of the projectile for a collision between two different nuclei.
If the projectile is assumed to follow the Rutherford trajectory, it moves along
the solid, thin, curved line. A common approximation to the particle trajectory
however is simply to assume it propagates in the −z direction, along the dashed
line, maintaining a constant distance b to the quantisation axis.
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Ĥ = α · p− α (Z1 + Z2)

r
+ Θ (t)

[
− γ (t)αZ2 (1− β (t)α3)

|r−R (t) |

+
Z2α

r
− µ

M2

d2R (t)

dt2
· K̂

]
+ β

−γ (t)αZ2 (1− β (t)α3)

|r−R (t) |
=

2K∑
L=0

V L
P (r,R (t)) ,

V L
P (r,R (t)) = −γ (t)αZ2 (1− β (t)α3)×[

ρL< (rh (θ) , R (t))

ρL+1
> (rh (θ) , R (t))

×
√

4π

2L+ 1
YL0 (r)

]
,

h (θ) =

√
sin2 (θ) + γ (t)2 cos2 (θ),

ρ< (r, R) = min(r, R), ρ> (r, R) = max(r, R),

Θ (t) =

{
1, t > 0
0, t ≤ 0

. (5.7)

For the decay Hamiltonian denoted in equation (5.7), a more detailed ap-
proach has been taken in describing the motion of the escaping alpha particle.
The terms multiplied by the heaviside function represent the electron–projectile
interaction, shake–off and recoil terms respectively. Although the escape trajec-
tory of the alpha particle is always along a straight line1, in reconstructing the
motion of the alpha particle, for best results, one utilises a Coulomb repulsion
model, cf. 4.10. It is for this reason that a recoil term resides in the Hamiltonian.
As alluded to in equation (3.2), the barycentre should, whenever possible, serve
as the coordinate centre, when this is not possible or impractical, a recoil term
must be included in the Hamiltonian. In perturbation theory, the requirement
of a stable set of atomic basis functions precludes shifting the coordinate centre
away from one or the other nucleus2, hence some term must exist in order to
account for the recoiling motion of the parent nucleus after decay. Finally then,
this relativistic boost operator K̂ in equation (5.7) has the form [47, 45]

〈
φn

∣∣∣K̂∣∣∣φk〉 =
En + Ek

2
〈φn |r|φk〉 . (5.8)

On the other hand, the non–relativistic boost operator , as applied elsewhere
[48], and also applicable to slow moving nuclei, is simply K̂ = r̂.

1In this particular case, the alpha particle trajectory is taken along the quantisation axis.
2One almost always chooses the coordinate centre as the position of the heaviest nucleus
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As dictated by equation (5.1), the time–independent parts of the Hamiltonian
must be separated from the time–dependent parts. For the case of a collision
event, recognising the perturbation is no difficult task, it is simply Ĥ′ (t) =∑∞

L=0 V
L
P (r,R (t)). The perturbation Hamiltonian in the case of alpha decay

is simply all those terms contained within equation (5.7) that are multiplied by
the heaviside function. This perturbation Hamiltonian is then substituted into
equation (5.4) in order to solve for the expansion coefficients a1

k.

5.2 The evaluation of matrix elements in first
order perturbation theory

Once one has identified the perturbation Hamiltonian of a given system, the
next task in finding the expansion coefficients of equation (5.2) is the correct
evaluation of the matrix elements of the perturbation Hamiltonian.

The analysis of the matrix elements as a result of the perturbation Hamilto-
nians derived in equations (5.6) and (5.7) is essentially a task of how the matrix
element of the time dependent electron–projectile operator is dealt with. The fact
that for collision events, the motion of the projectile is often taken to be along a
straight line at constant velocity, was not mentioned merely as an observation in
passing. It is of significant computational benefit to make this semi–classical ap-
proximation. For this case, the matrix element of the electron–projectile operator
can be solved analytically, as shall be seen.

If on the other hand, one utilises the Rutherford trajectories in modelling the
motion of the projectile (cf. equation (4.10)), then only numerical procedures can
be used in evaluating the spatial integrals which arise in these matrix elements.
Regarding the evaluation of the matrix elements for the recoil and shake–off
operators (5.7), their relatively simple nature should not pose a problem for a
moderately experienced theoretician and will not be presented here.

If one observes equation (5.4) once more, it is clear that the matrix element〈
φk

∣∣∣Ĥ′ (τ)
∣∣∣φn〉 must be solved. Moreover, per convention, it will be assumed

that at t = −∞, a pure state exists, i.e. a0
i = δn,i, hence a first order transition

amplitude ank is sought. Using Dirac notation to describe a single state |φn〉 ≡
|Enκmj〉, equation (5.4) may be reformulated for a perturbation Hamiltonian of
the collision given by equation (5.6)
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ank = i

∫ ∞
−∞

dte−iωt
〈
Enκ1m1

∣∣V L
P (r,R (t))

∣∣Ekκ2m2

〉
= −i γαZ2

∫
d3r[(

gnκ1 (r)χm1
κ1

−ifnκ1 (r)χm1
−κ1

)T ∫ ∞
−∞

dt
e−iωt

|r−R (t) |

(
gkκ2 (r)χm2

κ2

ifkκ2 (r)χm2
−κ2

)
−

(
gnκ1 (r)χm1

κ1

−ifnκ1 (r)χm1
−κ1

)T ∫ ∞
−∞

dt
e−iωtα3β

|r−R (t) |

(
gkκ2 (r)χm2

κ2

ifkκ2 (r)χm2
−κ2

)]
(5.9)

which may be rearranged as [49]

ank = i αZ2

∑
LM

∫ ∞
0

s

s2 − β2q2
ds(

− 〈κ1m1 |YLM (r)|κ2m2〉FL1 (s)

+β

[
〈κ1m1 |σ3YLM (r)| − κ2m2〉FL2 (s)

+ 〈−κ1m1 |σ3YLM (r)|κ2m2〉FL3 (s)

])
×BLM (s) , (5.10)

where the path factor BLM (s) is a direct result of the time integration of the
electron–projectile interaction 1/|r−R (t) |. Using [50, 29, 51]

1

|r−R (t)|
=

1

2π2γ

∫
d3s

s2 − β2q2
eis·(r−R(t))

=
1

2π2γ

∫
s2

s2 − β2q2
ds 4π

∑
LM

iLjL (sr)∫ π

0

∫ 2π

0

sin (ϑ) dϑdϕY ∗LM (s)YLM (r) e−is·R(t), (5.11)
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and since

s ·R (t) = sb sin (ϑ) cos (ϕ) + sγvt cos (ϑ) and

Fω,t

(
e−isγvt cos(ϑ)

)
=

2π

s
δ
(ω
s
− γv cos (ϑ)

)
, then∫ ∞

−∞
e−iωt

1

|r−R (t)|
=

1

γ

∫ ∞
0

s

s2 − β2q2
ds 8π

∑
LM

iLjL (sr)YLM (r)

× YLM
(

cos−1
(q
s

)
, 0
)

(−i)M JM

(
b
√
s2 − q2

)
,

BLM (s) = 8π iL (−i)MYLM
(

cos−1
(q
s

)
, 0
)
JM

(
b
√
s2 − q2

)
, (5.12)

where in equations (5.11) and (5.12), q = ω/ (γv). Only the forms of F and the
angular integrals

〈κ1m1 |YLM (r)|κ2m2〉 , and 〈κ1m1 |σ3YLM (r)|κ2m2〉 . (5.13)

need to be determined.

The matrix elements of equation (5.13) can be simplified to [44, 52, 53, 54]

〈κ1m1 |YLM (r)|κ2m2〉 = (−1)j1−m1

(
j1 L j2
−m1 M m2

)
(−1)L√

2j1 + 1

〈
j1 L j2

1/2 0 1/2

〉(
1 + (−1)L+l1+l2

) 1

2
,

〈κ1m1 |σ3YLM (r)|κ2m2〉 = (−1)j1−m1

√
3

4π

L+1∑
`=0∨L−1

[〈
L 1 `
M 0 M

〉
√

(2`+ 1) (2L+ 1) (2j2 + 1) (2j1 + 1) (2l2 + 1)〈
l2 L l1
0 0 0

〉
l1 1/2 j1
l2 1/2 j2
L 1 `

(
j1 ` j2

−m1 M m2

)]
. (5.14)

In the equations (5.14), the 3×3 array in curly braces is a Wigner–9j symbol,
the 2 × 3 array in parenthesis is a Wigner–3j symbol. Finally, the functions F
take the following form



52 CHAPTER 5. DEALING WITH TIME DEPENDENCIES II

FL1 (s) =

∫ ∞
0

r2dr (gnκ1 (r) gkκ2 (r) + fnκ1 (r) fkκ2 (r)) jL (sr)

FL2 (s) =

∫ ∞
0

r2dr (i) (gnκ1 (r) fkκ2 (r)) jL (sr)

FL3 (s) =

∫ ∞
0

r2dr (−i) (fnκ1 (r) gkκ2 (r)) jL (sr) , (5.15)

The case of calculating transition amplitudes where nuclear alpha decay in-
duces a perturbation to the system will now be examined. As mentioned earlier,
for this particular type of “collision,” the ability to switch to the momentum
representation, as is the case for straight trajectories and constant projectile
velocities, is no longer of satisfactory precision. One of the main reasons for
studying the effect alpha decay has on surrounding electrons, is to correctly ac-
count for the sudden appearance of the alpha particle at some initial distance
from its parent nucleus. In alpha decay, for an arbitrary final velocity, this start-
ing distance can be calculated using the Rutherford trajectories (4.10) at t = 0,
which is inherently based on motion due to Coulomb repulsion. It is sensible then
to utilise the realistic motion of the escaping alpha particle for R (t) in equation
(5.7).

In persisting with calculations in coordinate space, a more direct approach to
the evaluation of the radial integrals must be taken. As before, a shorthand form
for the radial integrals which arise from the perturbation Hamiltonian of (5.7)
can be obtained

FL1 (R) =
1

RL+1

∫ R

0

rLr2dr (gnκ1 (r) gkκ2 (r) + fnκ1 (r) fkκ2 (r))

+RL

∫ ∞
R

1

rL+1
r2dr (gnκ1 (r) gkκ2 (r) + fnκ1 (r) fkκ2 (r))

−iFL2 (R) =
1

RL+1

∫ R

0

rLr2dr (gnκ1 (r) fkκ2 (r))

+RL

∫ ∞
R

1

rL+1
r2dr (gnκ1 (r) fkκ2 (r))

iFL3 (R) =
1

RL+1

∫ R

0

rLr2dr (fnκ1 (r) gkκ2 (r))

+RL

∫ ∞
R

1

rL+1
r2dr (fnκ1 (r) gkκ2 (r)) . (5.16)

One may choose to integrate equations (5.16) directly, or utilise solutions to
the following differential equation [51].
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FnkL (R) =
1

RL+1

∫ R

0

rLr2dr (Rn (r) rk (r))

+RL

∫ ∞
R

1

rL+1
r2dr (Rn (r) rk (r))( d2

dR2
+

2

R

d

dR
− L (L+ 1)

R2

)
FnkL (R) = − (2L+ 1)Rn (R) rk (R) .

(5.17)

In equation (5.16), owing to the non–relativistic velocities of the alpha par-
ticle, the assumption γ ∼ 1 has been made where the evaluation of the angular
integrals is concerned; the troublesome term h (θ) in equation (5.7) under this
assumption is always 1. The derivation of a complete expression of the transition
amplitudes due to the electron–alpha particle interaction of alpha decay events
can thus be described in terms of the angular matrix elements, and the functions
defined in (5.16)

ank = −αZ2

∑
L

√
4π

2L+ 1

∫ ∞
0

dt γ (t) e−iωt(
〈κ1m1 |YL0 (r)|κ2m1〉FL1 (R (t))

+ β (t)
(
〈κ1m1 |σ3YL0 (r)| − κ2m1〉FL2 (R (t))

+ 〈−κ1m1 |σ3YL0 (r)|κ2m1〉FL3 (R (t))
))

. (5.18)

The only remaining time–dependent part of equation (5.7) which contains
angular components is the recoil operator, due to the dot product between R(t)
and r. Since R/R = k̂ for zero–impact parameter systems such as this, it is clear
to see that R(t) · r = rR(t) cos (θ). To generate the angular matrix element
for this operator, one may use the first of equations (5.14) due to the relation

2 (π/3)1/2 Y10 (θ, 0) = cos (θ).
One special property to note about the representation of transition ampli-

tudes for decay processes is, given the inherent zero–impact–parameter nature of
the problem, transitions between states of different total angular momentum pro-
jection are strictly forbidden, consequently, there is no sum over M in equation
(5.18) as there is in equation (5.10).

Although only the derivation in first order perturbation theory has been laid
out here, as shall be shown in tables 6.2 and 6.4, its accuracy and reliability,
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when prudently applied, is undoubted. Notwithstanding the value of second order
perturbation theory, for the cases considered in later section, the imposition of
such an increase in complexity for so little gain is hardly sensible.



Chapter 6

Application of the
non–perturbative solution method
to the two–centre Dirac equation

Having concluded the rather laborious exposition of the theory, both perturbative
and non–perturbative, for time–dependent two–centre problems, the application
thereof can now be tested. In this section, two tasks shall be undertaken. The
first of these tasks is the comparison of the newly developed non–perturbative
technique against perturbation theory. To accomplish this, the cross sections for
the alpha decay induced ionisation of electrons initially in the K– and L–shells
of heavy nuclei1 shall be calculated using both techniques. As will be shown,
the excellent agreement between both methods provides ample justification for
the extension of the non–perturbative theory into regimes involving collisions
between heavy, highly charged ions.

Despite the principle achievement of this work being the development and
implementation of a working, non–perturbative theory for two–centre problems,
the caluclations performed using perturbation theory, for the alpha decay of heavy
nuclei are also original, and are derived using the most up to date relativistic op-
erators. Previous studies on the electronic effects of nuclear alpha decay within
perturbation theory did not make use of the Lienerd–Wiechert potential to de-
scribe the electron–alpha particle interaction, moreover, the relativistic operator
for recoil (5.8) has also not been employed previously.

The second task of this section is the non–perturbative analysis of collisions
between very heavy, highly–charged nuclei, specifically a U92+–U91+ collision.
The interest in their study is mainly due to the extremely high potentials that
can be generated when the colliding nuclei are brought close enough together,

1Only nuclear spin zero nuclei are considered

55
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in this regime, positron–electron pair production, something which should soon
be experimentally realised at the upcoming FAIR facility in Darmstadt, Germany
[55] becomes a theoretical possibility.

A multitude of works [39, 56, 57, 58, 59, 18, 60, 35] already exist specifically
dedicated, in one way or another, to the examination of collisions between heavy,
highly charged nuclei and the effects on the bound electrons. The calculations
performed in section 6.2 set themselves apart from these previous studies thanks
to the unique method of generating basis functions using many terms in the
multipole expansion of the two–centre potential, and the implementation of these
basis functions with the coupled–channel equation in numerically solving the
time–dependent, two–centre Dirac equation.

6.1 Alpha decay

The case chosen for the aforementioned method comparison, the alpha–decay of
heavy ions, should provide the perfect theoretical proving ground for the newly
developed coupled–channel technique elucidated in section 4.1 and 4.2.

The specific test to be conducted is the evaluation of K– and L–shell ionisation
cross sections of electrons emitted as the result of the alpha decay of an initially
Hydrogen–like Polonium nucleus. In tables 6.2 and 6.4, the planned comparisons
between the exact numerical method, and perturbation theory has been shown.

A subsidiary set of calculations have also been conducted, in deference to
the potential shown by alpha decay induced ionisation for use in experimental
research. Many phenomena, resulting from the production of vacancies in elec-
tronic lower bound states, can be observed should these vacancies be produced as
a result of alpha decay. Furthermore, there continues to be strong interest shown
in the possibility of vacancy production in lower bound states of highly charged
ions [61, 62, 63], alpha decay is one of many vehicles for this process. For this
reason, extra calculations have been performed for ionisation cross sections of
multiple neutral nuclei, Gadolinium, Polonium and Thorium to be precise.

Though these calculations are not directly related to the main intention of
comparing the two different time–dependent techniques, the fact that the com-
parison calculations are conducted for Hydrogen–like nuclei, does not make their
results particularly relevant for day to day experimentation. This is especially so
in the case where the electron initially resides in the L–shell. Such a construction
would most likely be synthesised, and would hence be of limited experimen-
tal interest due to the considerable difficulty involved in preparing these heavy,
Hydrogen–like ions in an excited state. Furthermore, the inclusion and results
of these extra calculations exhibit a certain self consistency, an important char-
acteristic which imparts an additional measure of scientific rigour to the work
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performed.

6.1.1 K–shell ionisation probability of Gadolinium,
Polonium and Thorium via alpha decay

As mentioned, a comparison is made between the cross sections obtained via
non–perturbative and perturbative techniques for the emission of an electron,
due to the alpha decay of an initially Hydrogen–like Polonium ion. Moreover,
mainly for the sake of maintaining some relevance to experiment and naturally
occurring systems, the electron emission probability due to the alpha decay of
neutral Gadolinium, Polonium and Thorium has been calculated as per the per-
turbative outline given in section 5.2 for the Hamiltonian (5.7). The same array
of calculations for L–shell electron emission will also be carried out in section
6.1.2. Before focussing on the content of the tables and figures herein, a brief
outline of the computational methods employed is necessary.

In figures 6.1 and 6.3, and their corresponding values in tables 6.2 and 6.4,
the non–perturbative process described in section 4.1 has been used. Partial
waves in equation (3.5) range from κ = −3..3, whilst the multipole expansion
for the two–centre potential (3.1) must contain terms L = 0..6.

The monopole basis holds 200 B–splines of eighth order confined to a box
which extends to 105 fm from the coordinate centre, only eigenfunctions with
corresponding eigenenergies between 0 < εnκ < 10 are included in the final
two–centre basis; negative continuum states are excluded from the basis. For
these parameters, the final two–centre basis contains approximately 300 different
functions Φnµ (r) (cf. equation(3.5)). The electron is assumed to initially occupy
the 1s1/2 state of a Hydrogen–like Polonium atom which as located not at the
origin, but at R = R0MHe/MPo, where R0 is the distance at which the alpha
particle first appears, having tunnelled outside of the nuclear potential2. The
functions of this united atom basis are projected onto the Pb–α basis, whereupon
the new occupation probabilities for all states are taken as the initial conditions
for the expansion coefficients an (0). In order to obtain the ionisation probability
with the non–perturbative technique, the sum of the absolute value squared of
the expansion coefficients (cf. equation (4.2)) of basis states whose energies
exceed 1 is conducted.

σnmj = lim(t→∞)
∑
n,εn>1

|an (t)|2 (6.1)

2A review of this process can be found in [64]
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Table 6.1: The screened nuclear charge and corresponding binding energies for
Gd, Po and Th for K– and L–shell states

Gd
1s1/2 2s1/2 2p1/2 2p3/2

Zscr 59.25 48.61 47.35 45.98
Eexp 0.9017 0.9836 0.9845 0.9858
Po

1s1/2 2s1/2 2p1/2 2p3/2

Zscr 78.86 67.66 66.37 63.29
Eexp 0.8178 0.9669 0.9682 0.9730
Th

1s1/2 2s1/2 2p1/2 2p3/2

Zscr 84.82 73.72 72.45 68.67
Eexp 0.7854 0.9599 0.9615 0.9681

In figures 6.2, 6.4, 6.5, 6.6 and 6.7, and their corresponding cross section val-
ues in tables 6.2, 6.3, 6.4 and 6.5, the perturbation approach has been employed
for the calculations. Here, exact, analytic single–centre Dirac wavefunctions form
the basis. The transition amplitudes for each of the three interactions, e−–α in-
teraction, shake–off and recoil, are added together to form a total transition
amplitude aηk between an initial bound state η = |nκmj〉 and a final continuum
state k = |εκµ〉, which can then be used to establish an electron emission cross
section

σnmj =
∑

κ,µs=±1/2

∫ ∞
0

dε

∫
dΩ |aηk|2 . (6.2)

The integral over ε in equation (6.2) cannot be executed analytically, hence
values for aηk at discrete energies in the continuum are found, and an interpolat-
ing function is passed through these points, and substituted into (6.2). Six partial
waves were used in the final continuum state |εκµ〉 (cf. equation (2.15)), hence
terms in the multipole expansion of the two–centre potential (3.1) encompass
values of L = 0..3.

With regard to the “screened” wavefunctions used to emulate a neutral atom,
a simplified screening technique, has been chosen. The eigenenergies of the single
centre states (cf. equation (2.8)) are, through variance of the charge Z, matched
with the experimentally obtained energies given in [65]. This Z is changed each
time a cross section is calculated for a different initial bound state, the first few
Zscr for each of Gadolinium, Polonium and Thorium are presented in table 6.1
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Figure 6.1: The total ionisation probability as a function of internuclear distance
of an electron initially bound in the 1s1/2 state to a Hydrogen–like Polonium atom
due to the emergence of a 5.304MeV alpha particle. Curves generated using
the non–perturbative technique. The solid line represents calculations performed
with s, p and d states and seven terms in the two–centre potential expansion, the
dashed line represents the monopole approximation to the two–centre potential,
thus only s states are included in its eigenbasis.

With these computational subtleties clarified, attention can now turn to the
evaluation of cross sections for ionisation of alpha decay susceptible heavy nuclei.
The first such calculation, presented in figure 6.1 is the ionisation probability of
an electron, initially in the K–shell, as a result of the 5.304MeV alpha decay of
Hydrogen–like Polonium. The asymptotic value of the solid line in figure 6.1 is
reproduced in table 6.2, and compared against the perturbative calculation for
the same atomic process. As can be seen, for the K–shell, the results agree to
within less than 1%.

One remark that can be made about figure 6.1 is the inability of the monopole
approximation (dashed curve), even for this almost spherically symmetric, two–
centre potential, to reproduce an acceptable result. These effects are even more
pronounced for L–shell electron emission, as will be seen. On the other hand,
it is in part confirmation of the probity of the numerical method, that for small
internuclear distances, as one would expect, very little difference exists between
the monopole approximation, and its more exact counterpart.
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Table 6.2: K–shell ionization probability of 210Po+83 following α–decay. The
non–perturbative calculations, performed for R→∞ by using the monopole as
well as exact approximations to the two–center potential, are compared with the
first–order perturbation results. The asymptotic kinetic energy of the α particle
Tkin = 5.304 MeV is from Ref. [66]. All probabilities are scaled ×105.

Perturbative Non–perturbative
monopole exact

0.209 0.14 0.21

0.181[46]
0.203[67]

The second such calculation for K–shell ionisation is presented in figure 6.2
where the partial electron emission probability dp/dE and the full electron emis-
sion probability (solid and dashed lines respectively) are presented for Gadolinium,
Polonium and Thorium. The kinetic energy of the alpha particles, as per [66],
are 3.182, 5.304 and 5.423 MeV respectively. These graphs are based on calcu-
lations using semi–classical perturbation theory, as explained in section 5.2. As
one would expect, a larger charge for the parent nucleus results in a decreased
ionisation probability, a direct result of the fact that heavier parent nuclei have
deeper binding energies, thus increasing the threshold for ionisation. The asymp-
totic values of the dashed lines, the total ionisation probability, are presented in
table 6.3.

Table 6.3 also indirectly validates the results in table 6.2 (or vice–versa).
Consideration of table 6.1 reveals that the difference between the screened po-
tentials and binding energies, and those of unscreened charges and energies, is
quite marginal. The energy of the 1s1/2 state of unscreened Polonium is according
to (2.8) 0.8012 N.U., the screened ground state energy of table 2.8 for Polo-
nium is only 2% greater. Thus, one would expect when comparing probabilities
of K–shell ionisation between bases using screened and unscreened wavefunc-
tions, that the difference would be only very subtle. This is indeed the case,
for initially neutral and Hydrogen–like Polonium, the difference in K–shell cross
sections calculated with perturbation theory is less than 3%.

6.1.2 L–shell ionisation probability of Gadolinium,
Polonium and Thorium via alpha decay

In this section, the second comparison calculation between time–dependent meth-
ods is presented. The treatment given to the calculation of various K–shell cross
sections is applied once more here. The comparison between perturbative and
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Figure 6.2: The partial ionisation probability of an electron, initially in the 1s1/2

state, due to the emergence of an alpha particle from an electrically neutral
Gadolinium (red), Polonium (green) and Thorium (blue) atom. Alpha particle
energies are 3.182, 5.304 and 5.423 MeV respectively. Perturbation methods
with a screened potential have been used. The dashed lines are the integrals
of their correspondingly coloured solid lines, their asymptotic values are total
electron emission probability, and are displayed in the legend.

Table 6.3: K–subshell ionization probabilities of neutral 148Gd, 210Po and 228Th
following α–decay. The asymptotic kinetic energy of α particle Tkin = Mαv

2
∞/2

from Ref. [66] is given in the second column. Probabilities are scaled ×105

Atom Tkin MeV Perturbation th.
shielded potential

148Gd 3.182 0.4402
210Po 5.304 0.2145
228Th 5.423 0.2264
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Table 6.4: L–shell ionization probability of 210Po+83 following α–decay. The
non–perturbative calculations, performed for R→∞ by using the monopole as
well as exact approximations to the two–center potential, are compared with the
first–order perturbation results. The asymptotic kinetic energy of the α particle
Tkin = 5.304 MeV is from Ref. [66]. All probabilities are scaled ×105.

State Perturbative Non–perturbative
monopole exact

2s1/2 4.80 4.0 4.96

4.75[46]

2p1/2 0.54 0.3 0.64

0.50[46]

2p3/2 0.61 0.04 0.61
0.60[46]

non–perturbative methods is conducted first, where cross sections for the electron
ejection from 2s1/2, 2p1/2 and 2p3/2 shells are evaluated for Po83+. Subsequent
to this, calculations of the same cross sections of the alpha decay of screened
Gadolinium, Polonium and Thorium nuclei using only perturbation methods.

Table 6.4 represents the second in the set of planned comparisons between
perturbation methods, and the exact numerical procedure, the non–perturbative
values entered in this table are the asymptotes of the curves visible in figure 6.3.
In this figure, the electron emission probability of a Hydrogen–like Polonium ion,
where the electron is initially in one of the 2s1/2, 2p1/2 or 2p3/2 states has been
calculated using the non–perturbative technique outlined in section 4. The lower
panel of figure 6.3 shows the total ionisation probability for the 2p3/2 state, where
cross sections of electron emission from subshells with total angular momentum
projection |mj| = 1/2 and |mj| = 3/2 have been added together.

For the L–shell ionisation cross sections in table 6.4, both methods seem to
produce congruent results, the largest discrepancy is for the 2p1/2 shell, where
the results diverge by some ∼19%. The sum of all ionisation probabilites of
the L–shell for perturbation theory and the exact numerical approach, match
to within less than 5%. One obvious characteristic of the numerical procedure,
is that usage of the monopole approximation to the two–centre potential is at
best only a weak substitute for calculations utilising higher multipole terms, as
witnessed by the woefully poor monopole estimate for the emission probability
of an electron from the 2p3/2 shell.

The secondary objective in this section, generation of a more physically real-
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Figure 6.3: The total ionisation probability as a function of internuclear distance
of an electron initially bound in the 2s1/2 (top panel), 2p1/2 (middle panel) and
2p3/2 (lower panel) states of a Hydrogen–like Polonium ion due to the emergence
of an alpha particle. The solid line represents calculations performed with s, p
and d states and seven terms in the two–centre potential expansion, the dotted
line represents the monopole approximation to the two–centre potential, thus
only s, p1/2 and p3/2 states are included in the eigenbasis respectively.
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Figure 6.4: The partial ionisation probability of an electron, initially in the 2s1/2

state, due to the emergence of an alpha particle from an electrically neutral
Gadolinium (red), Polonium (green) and Thorium (blue) atom. Perturbation
methods with a screened potential has been used. The dashed lines are the
integrals of their correspondingly coloured solid lines, their asymptotic values are
total electron emission probability.

istic picture of the electronic effects of alpha decay in heavy ions, is accomplished
in figures 6.4, 6.5, 6.6 and 6.7. The partial and full electron emission probability
has been calculated for an electron initially in the 2s1/2, 2p1/2, 2p3/2,mj=1/2 and
2p3/2,mj=3/2 states respectively with the aid of perturbation theory. Separate
graphs have been included for the 2p3/2,mj=1/2 and 2p3/2,mj=3/2 states in order
to calculate the alignment A20, which is defined as

A20 =
σ3/2 − σ1/2

σ1/2 + σ3/2

, (6.3)

an important factor for any theoretical predictions of any subsequent angular
distribution of photons emitted as a result of higher bound electrons which decay
into the vacancy created.

A summary of the results attained via perturbation methods is given in table
6.5 for the emission probability of an electron from a neutral alpha emitter. Of
particular note is the strongly negative value of A20, the alignment, in each case.
Given that the quantisation axis has been chosen along the alpha particle escape
vector, this shows that the more the total angular momentum of an electron
is projected parallel to this axis, the less likely it is that ionisation or indeed
excitation will occur.

The results of tables 6.2 and 6.4 should do enough to convince one of the
fidelity of the exact numerical method, as outlined in section 4.2. Where pertur-
bation theory can only be applied in scenarios involving small disturbances to an
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Figure 6.5: The partial ionisation probability of an electron, initially in the 2p1/2

state, due to the emergence of an alpha particle from an electrically neutral
Gadolinium (red), Polonium (green) and Thorium (blue) atom. Perturbation
methods with a screened potential has been used. The dashed lines are the
integrals of their correspondingly coloured solid lines, their asymptotic values are
total electron emission probability.
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Figure 6.6: The partial ionisation probability of an electron, initially in the 2p3/2,
mj = ±1/2 state, due to the emergence of an alpha particle from an electrically
neutral Gadolinium (red), Polonium (green) and Thorium (blue) atom. Pertur-
bation methods with a screened potential has been used. The dashed lines are
the integrals of their correspondingly coloured solid lines, their asymptotic values
are total electron emission probability.
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Figure 6.7: The partial ionisation probability of an electron, initially in the 2p3/2,
mj = ±3/2 state, due to the emergence of an alpha particle from an electrically
neutral Gadolinium (red), Polonium (green) and Thorium (blue) atom. Pertur-
bation methods with a screened potential has been used. The dashed lines are
the integrals of their correspondingly coloured solid lines, their asymptotic values
are total electron emission probability.

Table 6.5: L–subshell ionization probabilities of neutral 148Gd, 210Po and 228Th
following α–decay. The asymptotic kinetic energy of α particle Tkin = Mαv

2
∞/2

from Ref. [66] is given in the second column. Probabilities given are scaled ×105

Atom Tkin State Perturbation th.
shielded potential

148Gd 2s1/2 16.93
2p1/2 5.803
2p3/2, mj = ±1/2 13.74
2p3/2, mj = ±3/2 1.765
A20 −0.772

210Po 2s1/2 9.155
2p1/2 2.239
2p3/2, mj = ±1/2 5.938
2p3/2, mj = ±3/2 0.7699
A20 −0.770

228Th 2s1/2 6.750
2p1/2 1.234
2p3/2, mj = ±1/2 3.411
2p3/2, mj = ±3/2 0.4481
A20 −0.768



6.2. NON–PERTURBATIVE SYSTEMS 67

otherwise stable system, a direct solution to the time–dependent Dirac equation
for a two–centre potential should be applicable to any scenario3. The calculations
provided in this section show this to be the case, therefore, the application of
the numerical solution method to the time–dependent Dirac equation can now
be applied to systems involving more extreme fields.

6.2 Non–perturbative systems

With the vindication of the non–perturbative, numerical method provided by the
encouraging results of section 6.1, this method may now be applied to solving
the time–dependent Dirac equation for the case of a collision between U91+ and
U92+ ions with a zero–impact parameter. The examination thereof has been split
into two categories:

� A collision for which the velocities of the nuclei at t = ±∞ are not high
enough to bring the nuclei beyond the critical distance Rc [16], the dis-
tance below which, depending on the nuclei involved, the ground state will
possess energy E < −1.

� A collision for which the projectile does have sufficient initial energy to
breach the critical distance, and force the ground state deep into the neg-
ative continuum.

For reference in regard to this critical distance, a graph of the ground state
1σg of the U92+–U91+ quasi–molecule is shown in figure 6.8. An over–critical
collision is one which would cause the nuclei to come within less than 34fm, and
thus result in the diving of the 1σg state into the negative continuum.

The difference in results of these two cases is considerable enough to warrant
separate consideration. Furthermore, there exists some computational nuances
which need to be employed for the case of diving of the ground state into the
negative energy continuum, nuances which are in need of general explanation.
Finally, detailed 3D images of the evolution of the ground state wavepacket have
also been produced for the collision between U91+ and U92+ ions at 2.33MeV/u,
an indicator of the potential of this method to be used for such complex tasks
as charge transfer calculations.

3Provided the adiabaticity condition is satisfied



68 CHAPTER 6. APPLYING THE NON–PERTURBATIVE TECHNIQUE

100 1000
Internuclear Distance (fm)

0.2

0.5

1

2

B
in

d
in

g
 e

n
er

g
y

κ=±4

κ=±3

κ=±2

κ=±1

U
91+

 1s
1/2

Neg. cont.

Figure 6.8: The ground state binding energy of the U92+–U91+ quasi–molecule
as a function of internuclear distance. Also indicated on the graph is the binding
energy of the 1s1/2 state of U91+ (dashed line) and the boundary of the negative
continuum (dot dashed line). The notation κ = ±K indicates the usage of a
two–centre basis containing partial waves from κ = −K → K (cf. equation
(3.5)).
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6.2.1 Zero–impact parameter collision between U91+ and
U92+ ions, non–critical velocities

In order to furnish the reader with instructive results, figures and tables have
been produced in which bound state excitation and ionisation probability due to
a collision between two heavy nuclei will be shown. Before introducing each of
the separate graphs, a few words must be given once more to explaining the
computational background.

Calculations for the occupation probability of each state |an|2 have been
conducted for an increasing number of partial waves in the multipole basis. Bound
state occupancies are calculated for bases containing 2, 4, 6 and 8 distinct partial
waves, or, expressed differently partial waves for κ = −1..1, −2..2, −3..3, −4..4
respectively. This also implies an equal number of gerade and ungerade states4.

Unfortunately, due to the onerous demand on physical resources, calculations
including more partial waves in the basis functions were not possible5. The box
size used extends to just beyond 105 fm, 100 different B–splines of eighth order
were used for the monopole basis, functions with energies between −10 < εnκ <
10 were used. For a basis comprised of 8 partial waves, this corresponds to about
320 different two–centre basis functions for each of the gerade and ungerade
bases. As for initial conditions, the electron is assumed to be localised in the
ground state on one or the other of the Uranium nuclei, this is achieved by setting
a1σg = a1σu = 1/

√
2. The collision is assumed to “begin” at approximately

8000fm in both of the cases considered. The existence of non–zero coupling
matrix elements as R→ ∞ has been accounted for by the introduction of a
gaussian dampening function for internuclear distances larger than 5000fm; a
common approach to ensure satisfactory boundary conditions [18, 68]. The
temporal grid contains 800 nodes equally spaced in ξ, for both types of collision,
∆ξ of equation (4.9) is ∼ 0.017.

Regarding the parameters actually calculated, figures 6.9, 6.10, and 6.12
display bound state occupancies for the two different projectile velocities. Pre-
dominantly σ states are shown, as these are the only states produced in the
spectrum that are present for all calculations where an increasing number of
partial waves are used, comparisons between other bound states would likely be
overly confusing, if not outright ill–posed. Moreover, since the electron is as-
sumed to occupy the 1σ state intially, the strongest transitions occur between

4these are denoted later on by the subscripts u and g.
5Author’s note: Though the processor time per step remains acceptably small for more

partial waves, the demands on RAM increase considerably. The cluster made available for
calculations had only 4GB of RAM at its disposal, almost all of which was required for a
calculation with a basis using 10 partial waves, for 12 partial waves, the projected RAM usage
exceeds 10GB
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σg and σu states.
In figure 6.11, the total occupancy of the positive continuum is shown for

the 2.33MeV/u projectile velocity. In other words, P+ (R)

P+ (R) =
∑
εn>1,n

|an|2 . (6.4)

Furthermore, the substantial difference between critical and non–critical col-
lisions is shown in table 6.6, where the probability of excitation among bound
gerade and ungerade states, which is significantly enhanced for an over–critical
collision, is compared for both projectile velocities. As the internuclear distance
decreases, the ungerade part of the ground state electron wavefunction maintains
smaller energy gaps between each state in comparison with the gerade states.
Due to the still very high velocity of the projectile in the 6.717MeV/u collision
for internuclear distances between ∼ 45 and 16fm and the extremely strong field
generated by this heavy quasi–molecule, the 1σu state becomes depleted. This
depletion of the 1σu state is thus a significant contributor to the occupancy of
states possessing higher energy. Finally, the evolution of the ground state part of
the full wavepacket is shown in figure 6.13, the production of which is evidence
of the ability for the developed program to be used in calculations of charge
transfer probabilities. In the following figures, negative internuclear distances are
displayed. These distances correspond to those points during the collision before
the nuclei have reached the point of nearest approach.

What is evident in figures 6.9 and 6.10 for bound state occupancies, is the
inability of the bound state coefficients to quickly converge to an asymptotic
value, as a function of increasing partial waves in the basis, especially for the
two lowest gerade bound states. It is also quite evident that, although a basis
containing fewer partial waves exhibits the same general structure as bases of
more partial waves, where the calculation of occupancy is concerned, it is in no
way a guarantor of reliable results. A discussion on when a basis is “complete”
enough to be provide reliable results follows in the conclusion.

On the other hand, the total occupancy of the positive continuum exhibits a
remarkably fast convergence toward an asymptotic value, a convergence which
one could say is at least as fast as that of the ionisation of an electron due to the
far less extreme potential created by the alpha decay of a heavy nucleus. The
occupancy of the positive continuum and the intially populated 1σ state at the
“end” of the calculation is presented in table 6.6.

Another conclusion which can be made from observation of figure 6.11 is
that at the point where the motion of the nuclei is reversed, the tendency of the
bound electron to be “shaken–off” into the continuum increases dramatically,
small wonder, as at times less than 0, the electrical potential well only increases
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Figure 6.9: Bound state occupancies for the first 2 σg states during the collision of
U92+ and U91+ where the projectile moves with an initial velocity of 2.33MeV/u.
The electron is initially in the 1σ state.
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Figure 6.10: Bound state occupancies for the first 2 σu states during the col-
lision of U92+ and U91+ where the projectile moves with an initial velocity of
2.33MeV/u. The electron is initially in the 1σ state.
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lision of U92+ and U91+ where the projectile moves with an initial velocity of
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in depth, after t = 0, this potential is weakened and the probability of ejection
of the electron from the system increases correspondingly.

6.2.2 Zero–impact parameter collision between U91+ and
U92+ ions at 6.717 MeV/u, diving into the negative
continuum

For a higher projectile velocity, it becomes inevitable that the eigenvalue of the
1σg state will assume values lower than -1, hence one refers to such a situation
as the “diving” of the ground state into the negative continuum. A special
challenge is presented to the theoretician at this point, since simply designating
the lowest bound state by observation of the eigenvalue spectrum becomes no
longer plausible, failure to account for this can lead to the evolution matrix and
the set of expansion coefficients (4.9) becoming disordered.

Fortunately, it is known that states in the negative continuum are localised
well away from either nucleus, on the other hand, the true ground state is lo-
calised mostly within a region r = 0..1/(α(Z1 +Z2)), as has been shown in figure
3.3. Furthermore, since only the 1σg state dives into the negative continuum, and
that the monopole approximation is suitable for the description of the wavepacket
for small internuclear distances (cf. figure 6.8), one may check the partial nor-
malisation of the s1/2 partial waves of all states in the negative continuum, over
the range r = 0..1/(α(Z1 + Z2)). Within this range, only the true ground state
will approach the normalisation condition

∫ rmax
0

drΦ∗nµ (r) Φnµ (r) = 1. This
partial normalisation method ensures the traceability of the ground state as it
moves through the negative continuum.

However, a problem with the usage of this normalisation technique in tracing
the true 1σg state while it is in the negative continuum is the fact that its energy
is no longer, in the strictest sense, discrete [69, 18, 41]. The distribution of the
ground state energy shifts from that of a dirac delta function to a gaussian–
like distribution. Although the tracing method mentioned above eliminates the
possibility of erroneously selecting a positron state as the 1σg state, there is no
100% guarantee that the state which best fills the tracing criteria is actually
the closest to the true resonance peak. Methods do exist for circumventing this
problem, such as using a static basis in the coupled channel equation for those
internuclear distances where the two nuclei are within the critical distance Rc.
The state function produced from this procedure is then projected onto the true
adiabatic basis [18].

Such an exhaustive approach into properly accounting for the ground state
resonance in the negative continuum is not necessarily within the scope of this
thesis, but will however be the subject of future work. For the meantime, some
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Figure 6.12: Bound state occupancies for the first 3 σu states during the col-
lision of U92+ and U91+ where the projectile moves with an initial energy of
6.717MeV/u. The electron is initially in the 1σ state. The 2πu state of non–
monopole bases is also shown, it serves to further deplete the population of the
1σu state.

results of the 6.717MeV/u collision between U92+ and U91+ can be presented
without need of such extensive alterations. The ungerade states evolve separately
from the gerade states, and none of these states undergo diving into the negative
continuum, hence the lowest ungerade state does not become a resonance. A
graphic of the evolution of the lowest few bound ungerade states is given in
figure 6.12.

The most immediately obvious feature of figure 6.12 is of course the increased
amplitude of the depletion of the ground state. At these higher collision energies,
the much smaller energy gaps between the bound states in the ungerade spec-
trum make excitations and ionisation much more probable than in the case of the
2.33MeV/u collision shown earlier. Where for a projectile energy of 2.33MeV/u,
at 44fm the projectile is halted by coulombic repulsion, at 6.717MeV/u, the
projectile continues to move at approximately 0.07c. When combined with the
extremely strong fields created for internuclear distances approaching 15fm, tran-
sitions among the ungerade states are greatly amplified. The result of this, in
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Table 6.6: The occupancy of the positive continuum and the 1σ bound state as
t → ∞ of a collision between U92+–U91+ at a projectile energy of 2.33MeV/u.
The 1σu state of a collision between U92+–U91+ at 6.717MeV/u, owing to the
fact that it is unaffected by “diving” into the negative continuum, is also shown
for comparison. These are denoted with the superscript ∗. The electron is initially
in the 1σ state.

Projectile Partial ε > 1 continuum 1σg 1σu
energy (MeV/u) waves
2.33 κ = −1..1 0.0107 0.4991 0.4858, 0.2041∗

κ = −2..2 0.00792 0.4970 0.4854, 0.0143∗

κ = −3..3 0.00846 0.4971 0.4865, 0.0402∗

κ = −4..4 0.00876 0.4964 0.4847, 0.0237∗

the monopole approximation, is that the continuum is populated at the expense
of the 1σu state. Most interestingly however, and again proof of the need to
account for higher multipoles, is the significant effect the 2πu state has when a
basis of higher multipoles is used. The 1σu state is depleted even further in this
case, with the 2πu state population experiencing a sharp increase, this has also
been shown in figure 6.12.

To conclude, the total ground state wavepacket
∣∣〈Ψ1σ |Ψ1σ〉|2 as a function

of internuclear distance for a sub–critical collision is presented in figure 6.13.
In spite of the full wavepacket not being shown, the fact that, the combined
|a1σg |2 + |a1σu |2 occupancy is still almost 100% of the total, for most of the
duration of the collision, the ground state wavepacket is by far the most dominant
contribution to the total wavepacket and hence provides a good general indication
of its overall evolution.

One can conclude from figure 6.13 that the electron “hops” from one nucleus
to the other during the part of the collision when the internuclear distance is less
than approximately 3000fm. Although figure 6.13 only shows the hopping of the
electron for one particular collision velocity, the frequency with which it moves
between the nuclei is strongly dependent on the projectile velocity. From a
calculational perspective, without proper dampening of the non–diagonal matrix
elements, the probability of charge transfer is very much dependent on the point
chosen for the commencement of the collision.

From figure 6.13, it is visible that charge transfer processes are taking place,
though this is not explicitly calculated here, it is already well understood [35]
how dependent this process is on projectile velocity and the point in time where
the computational procedure is “turned on.”
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(e) (f)

(g)

Figure 6.13: The evolution of the 1σ electron before (a→c→e→g) and after
(f→d→b) t = 0 during a U92+–U91+ collision at a projectile velocity 2.33MeV/u.
Here R ∼ 2764, 1364, 403 and 45 fm for panels (a), (c), (e) and (g) respec-
tively and R ∼ 2049, 806, and 150 fm for panels (b), (d) and (f) respectively.
The axes in the horizontal plane are position coordinates in natural units. The
delocalisation of the electron is most evident when comparing panels (a) and (b)
and (e) and (f). The electron is initially in the 1σ state.
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Chapter 7

Conclusions and outlook

A new theoretical method for handling relativistic two–centre problem problems
has been developed. Numeric basis functions for single– and two–centre Coulomb
potentials have been described in section 3. The programs written implementing
these numeric basis functions have shown an excellent agreement with those
programs which follow the analytic procedure for extended nuclei explained in
section 2.4, usually this agreement is of the order of 10−8% for eigenvalues and
capably produces essentially identical bound state eigenfunctions.

For the purposes of comparison, an analytic single–centre basis was used as
part of a semi–classical perturbation theory approach in the determination of ioni-
sation cross–sections of an electron from either a K– or the L–shells of Hydrogen–
like atoms which undergo alpha decay. The numerical technique against which
these results were compared, was derived from the treatment of two–centre po-
tentials given in section 3.3, after which the coupled channel equation mapped
this two centre equation (4.14) onto a temporal grid. The results of this non–
perturbative technique in finding solutions to the two–centre Dirac equation has
proven itself more than capable of reproducing the cross sections obtained via
established perturbation methods, as shown in tables 6.2 and 6.4.

The non–perturbative technique was then applied to modelling the state oc-
cupancies during a zero–impact parameter collision between U92+ and U91+. The
astounding consequences of collisions for non– and over–critical projectile veloc-
ities for the occupancies of the bound and continuum states are clear to see in
table 6.6, where the 1σu displays a strong tendency toward populating higher
energy states.

Some computational restrictions do however mean that the non–perturbative
method for solving the time–dependent Dirac equation, as it has been pro-
grammed and implemented here, should be streamlined for future use. Principle
among the shortcomings of this program are its excessive memory requirements,
though it does seem realistic that these may be circumvented with minimal or no

79
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Figure 7.1: The variance of the ionisation probability of an electron, initially
in the 1σ state, as a function of box size and spline node during a U92+–U91+

collision. The projectile velocity is 2MeV/u and eight partial waves comprise the
basis.

increase in computation time. Another issue of the numerical method, especially
where the strong fields of heavy nuclei are present, is the completeness of the
basis.

The ionisation probability of a U92+–U91+ collision is presented in figure 7.1.
Each of the panels represents usage of a different box size, ranging from ∼
19300fm to ∼ 100000fm. The accuracy of each of the methods is reasonably
good, each indicate that the ionisation probability is around 0.008 to 0.01. The
bottom right panel of figure 7.1 however, clearly demonstrates the worst pre-
cision, this is understandable, as a box size of only 50fm is probably not large
enough to accurately encompass some of the more active higher bound states.
For increasing box size, the results tend to converge better toward their asymp-
totic values. Even though, with increasing box size, the precision is constantly
improved, increasing the number of spline nodes does not necessarily contribute
as much to the distribution of the end result. Given the evidence of 7.1, an
accuracy for the results presented for very heavy ion collisions cannot be claimed
to anything better than at least 15%.

Another important question regarding the method of calculation in the non–
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Table 7.1: The gerade and ungerade ground state energies of a U92+–U91+

quasi–molecule at an internuclear distance of 14625.8fm
±κ 1 5 10 11 12 13
E (1σg) 0.9359 0.8847 0.8390 0.8314 0.8258 0.8184
E (1σu) 0.9426 0.8862 0.8382 0.8320 0.8252 0.8188

perturbative approach is the interlinked problem of boundary conditions and
translated wavefunctions. It is quite well known [70, 71, 68, 72, 73] that usage
of the coupled channel equation where the basis is comprised of true molecu-
lar orbitals, will, at a large enough internuclear distance, erroneously produce
non–diagonal matrix elements.

In reality, at extremely large internuclear distances, all non–diagonal matrix
elements of M̂ in equation (4.9) must be zero. One method to ensure the conver-
gence of these non–diagonal matrix elements to zero is by utilising a “translated
wave” modification [74] to the state function as presented in equation (4.2)

|Ψ (t, r)〉 =
∑
n

an (t) e−iγ±v·r−1/2v2γ2±t−i
∫ t
−∞ dτ εn(τ) |n (t)〉 , (7.1)

where γ+ = M1/(M1 +M2) and γ− = M2/(M1 +M2). Quite evidently, the term
e−1/2v2γ2±t will unambiguously force all non–diagonal elements to 0 at large t and
therefore large R. The only reason one would introduce this modification to the
state function is simply due to the fact that the set of basis functions, for the
numerical methods used here, cannot accurately produce well defined, Coulomb–
Dirac wavefunctions, centred on each nucleus at very large internuclear distances.

This brings into question the choice of boundary conditions. If there are no
states in the basis which correspond to the ground state of, in this case, U91+,
have prudent choices been made for the initial conditions? It is already clear
from figure 6.8, that beyond ∼ 2750fm, a basis of only two partial waves will no
longer contain a ground state which corresponds to the ground state energy of
U91+ (0.741135 N.U., for an infinitely deep Coulomb potential). At even larger
internuclear distances, as table 7.1 demonstrates, where the ground state energies
for many partial wave eigenfunctions are given, only by using the translated wave
modification in (7.1), could one expect results of some reasonable validity.

Admittedly, starting the computational routine modelling a collision between
two Uranium ions at an internuclear distance of over 14000fm is undoubtedly
ill–posed. However, should it be necessary to account for such large internuclear
distances, the rightmost column of table 7.1 indicates that even for very many
partial waves (26 for the rightmost column of table 7.1), a true ground state
of U91+ cannot be generated by a pure two–centre spectrum with so few partial
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waves, hence, the use of travelling wavefunctions (7.1) may prove more computa-
tionally efficient. Travelling wavefunctions have been crudely implemented in the
calculations made in this thesis, simply by enforcing a guassian dampening in the
off–diagonal matrix elements for the U92+–U91+ collision beyond an internuclear
separation of 5000fm.

Clearly however, if highly accurate results for heavy quasi–molecule collisions
are desired, then many more partial waves will be needed in the basis, possibly
between 20–40, certainly more than the maximum eight that were used in sec-
tion 6.2. Once access is gained to expanded physical resources, these desired
expansions will be implemented.

As for the future of the non–perturbative technique developed here, the most
obvious, and perhaps easiest to implement extension would be the calculations
of cross sections for non–zero–impact parameters. Despite already being rea-
sonably well explored using perturbative techniques [75, 76, 77], such a direct,
non–perturbative treatment of the two–centre Dirac equation, where the rota-
tion of the internuclear axis must be accounted for, has, to the author’s knowl-
edge, not been quantitatively treated yet, at least for two–centre potentials more
complex than the monopole approximation. For experimental purposes, where
non–zero–impact parameters are naturally the norm, the future usage of the
non–perturbative technique described here shows a great deal of potential.

Despite having already alluded to the extension to non–zero–impact parame-
ter calculations for the numerical treatment of the time–dependent, two–centre
Dirac equation, there exists other fields in which an even greater degree of inter-
est would be generated should it produce acceptable results, chief among these
field would surely be laser assisted collisions of heavy quasi–molecules.

7.1 Laser assisted collisions

Perhaps the most exciting branch of research for the program developed for treat-
ing non–perturbative problems is in the area of laser assisted collisions between
two–centres. The tantalising prospect of heavy–ion collisions being able to spon-
taneously produce positron–electron pairs has unfortunately one major drawback,
the interaction time between species able to induce the diving of the ground state
into the negative continuum is on the order of zeptoseconds, in general not a
long enough time to provide a substantial electron–positron yield.

It has therefore been proposed [78, 79, 80, 81] to combine the effects of
intense electromagnetic fields of x–ray frequencies with the strong electrical field
created by heavy nuclei, in order to provide the necessary energy “kick” required
to better stimulate electron–positron pair production.

As alluded to earlier in section 4.2, a full recount as to how one may incorpo-
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rate an electromagnetic field into the coupled–channel equation (4.18) shall be
shown here. The Hamiltonian is assumed to have the form of equation (4.15)
where a time dependent laser field L̂ (t) is present, the photons propagate along
the quantisation axis z, and are polarised in the x direction

L̂ (t) =
√
αα ·Aei(k·r−ωt) =

√
αα2A0e

i(k·r−ωt)

= 4π
√
αα2A0e

−iωt
∞∑
L=0

iL
√

4π (2L+ 1)jL (kr)Y 0
L (θ, 0) . (7.2)

It is immediately apparent from the form of (7.2) that the following angular
matrix elements will be required

〈κ2m2 |σ2YL0 (r)|κ1m1〉 =
L+1∑
`=1

〈
L 1 `
0 0 0

〉
√

(2`+ 1) (2L+ 1) (2j2 + 1) (2l2 + 1)
3

4π

〈
l2 L l1
0 0 0

〉


l1 1/2 j1

l2 1/2 j2

L 1 `


(〈

j2 ` j1

m1 + 1 −1 m1

〉
−

(−1)L+1−`
〈

j2 ` j1
m1 − 1 1 m1

〉)
, (7.3)

which furthermore sets the condition m2 = m1 ± 1. Using equation (7.3) a
matrix L̂ can be established which agglomerates each different matrix element〈
n (t)

∣∣∣L̂ (t)
∣∣∣ p (t)

〉

Lnp =
2K∑
L=0

±K∑
κn=±Mn

±K∑
κp=±Mp

[

i

(∫ ∞
0

dr Ḡpκp (r) jL (kr) F̄nκn (r)

)
〈κpmp |σ2YL0 (r)| − κnmn〉−

i

(∫ ∞
0

dr F̄pκp (r) jL (kr) Ḡnκn (r)

)
〈−κpmp |σ2YL0 (r)|κnmn〉

]
× iL 4π

√
α
√

4π (2L+ 1)A0 e
−iωt, Mi = |mi|+ 1/2, (7.4)

where Ḡnκ (r) and F̄nκ (r) are defined in equation (3.5). Equation (7.4) indi-
cates the existence of a special consequence, which is most evident for collisions
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of homonuclear species. The angular matrix element (7.3) clearly allows mixing
between states of different parity. For a homonuclear collision, absent an exter-
nal electromagnetic field, mixing between the gerade and ungerade states simply
cannot occur, neither due to the changing electrostatic potential, nor due to the
rotation of the internuclear axis, should the collision be for a non–zero–impact
parameter.

It has already been shown in table 6.6 how significantly the 1σu state is
depleted in favour of the occupancy of states of higher energy for over–critical
collision velocities, if there should exist some mechanism, such as a powerful
electromagnetic field, which could open transition channels between the 1σg state
as it dives into the negative continuum, and the ungerade positive continuum
into which an electron may suddenly be easily promoted, the probability for
electron–positron pair production should increase correspondingly.

7.2 Closing remarks

The intended objectives of this compilation have been to grant the reader an
insight as to how one can efficiently handle dynamic two–centre problems in rel-
ativistic atomic physics and to show the value of the non–perturbative method
developed for solving the time–dependent two–centre Dirac equation directly. De-
spite understandably not providing an exhaustive recount of the solution methods
for analytic Dirac eigenfunctions, the set of wavefunctions either quoted (analytic
wavefunctions) or derived (numerical non–perturbative wavefunctions) should en-
sure a versatile set of basis functions is at one’s disposal. In combination with
the treatment of time–dependencies (chapter 4, section 7.1 and appendix B), a
useful, if modest set of theoretical tools have been laid out for the reader.

As for the procedure developed for the non–perturbative treatment of two–
centre problems, whilst not wishing to detract from the excellent work already
completed in this field, time–dependent analyses of collision events, in which
usually the complexity of the basis has been restricted to the monopole approxi-
mation, is an area that when considering the demonstrated ability of the method
employed here to accomodate higher multipole terms in the basis functions and in
the coupled channel equation (4.14), is underdeveloped and which the techniques
offered here could go a long way to countering.

Finally, with an eye to future experiments on highly charged quasi–molecules
(among other more conventional decay/collision experiments), one may safely
assume that the theory, as presented here, has a busy future ahead of it. The
groundwork however has already been laid, and it is the author’s desire to continue
the trajectory of development already undertaken, in meeting the ever mounting
challenges which arise as a result of atomic physics experiments.
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Appendix A

Matrices comprising the Dirac
equation

The following matrices are needed for the description of the Hamiltonian (2.2)
in the Dirac equation.

α = αxî+αy ĵ +αzk̂ = α1î+α2ĵ +α3k̂

αi =

(
0 σi
σi 0

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
0 1
−1 0

)
β =

(
I2 0
0 −I2

)
I2 =

(
1 0
0 1

)
p = −i~∇. (A.1)
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Appendix B

Modifications to the
non–perturbative treatment of
the time–dependent Dirac
equation for a rotating
internuclear axis

The number of eigenfunctions required to generate a complete basis for a dynamic
two–centre problem can be significantly reduced if none of the time dependencies
induce transitions between states of different momentum projection. For a zero–
impact parameter collision between two nuclei, absent any electromagnetic field,
the Hamiltonian in equation (5.6) fulfils these conditions. Starting from equa-
tion (4.14) for the determination of the expansion coefficients of a two–centre
potential

i
dak (ξ)

dξ
=

dt

dξ
Ek (ξ) ak (ξ)

− i
∑
n

an (ξ)

(
∂R

∂ξ

〈
k (ξ)

∣∣∣∂Ĥ(ξ)
∂R

∣∣∣n (ξ)
〉

En (ξ)− Ek (ξ)
δ̄nk

− idϑ
dξ
〈k (ξ) |jy|n (ξ)〉

)
, (B.1)

one can, for the zero–impact parameter collision mentioned, explicitly define a
state |n〉 in terms of energy, and a fixed total angular momentum projection µ. It
makes sense to set µ to be the momentum projection of the initial state, K–shell
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ionisation for instance would imply µ = ±1/2. The subsequent simplification for
equation (B.1) gives a more explicit expression

i
daε (ξ)

dξ
=

dt

dξ
ε (ξ) aε (ξ)

− i
∑
E

aE (ξ)

∂R
∂ξ

〈
kε (ξ)

∣∣∣∂Ĥ(ξ)
∂R

∣∣∣nE (ξ)
〉

E (ξ)− ε (ξ)

 δ̄Eε. (B.2)

If, however, symmetry breaking conditions like that of a non–zero–impact
parameter, or an electromagnetic field are introduced, defining a single state |n〉
must account for different momentum projections, using the notation in equation
(3.5), this may be achieved in the following way

|n〉 ≡ |nµ〉 =
K∑

i,κ=−K

{
0, |κ| < |µ|+ 1/2

νinκφ
i
nκµ(r), |κ| ≥ |µ|+ 1/2

. (B.3)

The consquences of extending the basis when accounting for interactions
which induce transitions between states of differing µ are clear: If one includes N
different angular momentum projection substates for each eigenenergy, the size
of the matrix in equation (B.2) increases N2–fold. In the calculation using 8
different partial waves in sections 6.2.1 and 6.2.2, using momentum projections
from −3/2..3/2 would have resulted in the creation of a basis of 1280 functions
for each of the gerade and ungerade states, thus in total 2560 basis functions.
The diagonalisation of such a large matrix1 is a considerably laborious task for
commercially available processors. For this reason, the theoretician needs to
proceed judiciously when considering how best to program his/her code.

1104.8576 MB for double precision complex entries



Appendix C

The DIRAC package for
Mathematica

To assist with the perturbative calculations performed in sections 6.1.1 and 6.1.2,
use was made of the DIRAC program for Mathematica. The Mathematica version
[26] of this program is an update from an earlier Maple program [25].

Many functions used in perturbation theory, such as BLM(s) and the FL(s) of
equations (5.12) and (5.15) respectively, are implemented in DIRAC and require
no programmatic derivation. Furthermore, other such useful features, like quickly
converting measurements between unit systems, hydrogen–like eigenvalues and
eigenfunctions (including those for extended nuclei) are also available among
other features.

It is important to point out that this package is not limited to calculations
involving two–centre problems, it contains many common subroutines required
for the study of a variety of time–dependent and time–independent problems.
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“Finite basis set approach to the two-centre dirac problem in cassini
coordinates,” J. Phys. B: At., Mol., Opt., vol. 43, no. 23, p. 235207, 2010.



BIBLIOGRAPHY 95

[25] A. Surzhykov, P. Koval, and S. Fritzsche, “Algebraic tools for dealing with
the atomic shell model. I. Wavefunctions and integrals for hydrogen-like
ions,” Comput. Phys. Commun., vol. 165, pp. 139–156, 2004.

[26] S. R. McConnell, S. Fritzsche, and A. Surzhykov, “Dirac: A new version
of computer algebra tools for studying the properties and behavior of
hydrogen-like ions,” Comput. Phys. Commun., vol. 181, no. 3, pp. 711 –
713, 2010.

[27] W. Greiner, Relativistic Quantum Mechanics: Wave Equations, 3rd ed.
Springer–Verlag, 1981.

[28] H. A. Bethe and E. E. Salpeter, Quantum mechanics of one- and two-
electron atoms. Springer, 1957.

[29] J. Eichler and W. E. Meyerhof, Relativistic Atomic Collisions. Academic
Press, 1995.

[30] B. Müller, J. Rafelski, and W. Greiner, “Electron wave functions in over-
critical electrostatic potentials,” Il Nuovo Cimento A, vol. 18, pp. 551–573,
1973.

[31] R. T. Deck, J. G. Amar, and G. Fralick, “Nuclear size corrections to the
energy levels of single–electron and –muon atoms,” J. Phys. B: At., Mol.,
Opt., vol. 38, no. 13, pp. 2173–2186, 2005.

[32] W. Johnson, S. Blundell, and J. Sapirstein, “Finite basis sets for the dirac
equation constructed from B splines,” Phys. Rev. A, vol. 37, pp. 307–315,
1988.

[33] V. M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, G. Plunien, and G. Soff, “Dual
kinetic balance approach to basis-set expansions for the dirac equation,”
Phys. Rev. Lett., vol. 93, no. 13, p. 130405, 2004.

[34] G. B. Deineka, I. A. Maltsev, I. I. Tupitsyn, V. M. Shabaev, and G. Plunien,
“Relativistic calculations of electronic excitation probabilities in U92+–U91+

(1s) collisions in the monopole approximation,” Russ. J. Phys. Chem. A,
vol. 6, pp. 224–228, 2012.

[35] I. I. Tupitsyn, Y. S. Kozhedub, V. M. Shabaev, G. B. Deyneka, S. Hagmann,
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