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Dorival Gonçalves Netto

Dissertation

Fakultät für Physik und Astronomie

Universität Heidelberg

2012





Inaugural-Dissertation zur

Erlangung der Doktorwürde der

Naturwissenschaftlich-Mathematischen Gesamtfakultät der

Ruprecht-Karls-Universität Heidelberg

vorgelegt von

Master-Phys. Dorival Gonçalves Netto
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NLO Vorhersagen für neue Physik am LHC

Die Suche nach neuer Physik ist eine der Hauptziele des CERN Large Hadron Collider. In

den meisten Fällen beinhaltet dies die Untersuchung von im Vergleich zum Hintergrund klei-

nen Signalen. Daher sind theoretisch präzise Vorhersagen von Collider-Observablen essentiell

für die Analyse jeder möglichen Signatur neuer Physik. Eine maßgebliche Verbesserung die-

ses Vorhabens kann durch die Berechnung der NLO QCD Korrekturen für den betrachteten

Prozess erreicht werden. Daher liegt der Fokus dieser Arbeit auf dem quantitativen und qua-

litativen Einfluss der NLO Effekte auf einige wichtige Signaturen neuer Physik. Dafür haben

wir das neue, vollautomatische MadGolem package verwendet, zu dem diese Arbeit entschei-

dende Beiträge geleistet hat. Folgende wichtige LHC Prozesse werden hiermit untersucht:

i) skalare Farboktett Paarproduktion; ii) assoziierte Squark-Neutralino-Produktion; und iii)

die Paarproduktion von Squarks und Gluinos. In jedem dieser Fälle beobachten wir wichtige

QCD Effekte, die zu beträchtlichen Quantenkorrekturen führen (K ∼ 1.3 − 2), sowie stark

unterdrückte theoretische Unsicherheiten, die von O(100%) in erster Ordnung auf O(30%) in

NLO absinken. Darüberhinaus erhalten wir eine sehr gute Übereinstimmung der NLO Ver-

teilungen mit denen aus Multi-Jet Merging. Zuletzt haben wir eine umfangreiche Studie über

die Auswirkungen typischer vereinfachender Annahmen in der Literatur und gängigen Tools,

zum Beispiel der Squarkmassendegeneration, durchgeführt.

NLO Predictions for New Physics at the LHC

New physics searches are one of the main aims of the CERN Large Hadron Collider. In

most cases this entails the study of small expected signals versus huge backgrounds. There-

fore, theoretically precise predictions for collider observables are crucial for the analysis of

any possible new physics signature. A major improvement in this enterprise can be achieved

through the calculation of the Next-to-leading order (NLO) QCD corrections for the process

under scrutiny. Thus, in this thesis we focus on the quantitative and qualitative impact of the

NLO effects on some important new physics signatures. To do so we have resorted to the new,

fully automized package MadGolem , to which this thesis has made major contributions.

The following important LHC search channels are examined herewith: i) scalar color-octet

pair production; ii) associated squark–neutralino production; and iii) the pair production

of squarks and gluinos. In all these cases we observe important QCD effects which lead to

sizable quantum corrections (K ∼ 1.3 − 2) and strongly suppressed theoretical uncertain-

ties, which deplete from O(100%) at leading-order down to O(30%) at NLO. Moreover, we

have shown the NLO distributions to be in good agreement with those obtained via multi-

jet merging. Finally, we have carried out a comprehensive study on the implications of the

usual simplifying assumptions taken in the literature and in current tools, e.g. squark mass

degeneracy.
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Chapter 1

Introduction

On the 4th July 2012 the two main experiments of the Large Hadron Collider (LHC) at

CERN reported independently the discovery of a new particle with mass ∼ 125 GeV, whose

properties strikingly hint at Standard Model (SM) Higgs boson. If this particle is finally

confirmed to be the SM Higgs, this would entail another major add-on to the history of

success of this paradigm, which passed through the discovery of neutral currents in the 70’s

decade, the direct production of W± and Z bosons in the 80’s and the observation of top

quarks in the 90’s. Now an intense scrutiny aiming at the measure of the spin and couplings

of this particle is being performed. So far all these analyses advocate for a SM interpretation.

In spite of its history of success the SM is not a complete theory, since it describes

only three of the four fundamental forces, namely the electromagnetic, the weak, and the

strong force. Therefore it lacks the inclusion of the gravitational force. Beyond this, further

unsettled puzzles such as the experimental evidence for dark matter, dark energy and neutrino

oscillation (implying that their mass is non-zero) also motivate further extensions of this

model. Most of the new physics models entertain expansions of the SM structures which

are correlated to the electroweak scale. This means that the LHC might well be sensitive to

them, either by identifying small deviations from the SM parameters or by producing and

detecting some new heavy states predicted by these extensions.

The bottom line is that, for LHC searches, precise theoretical calculations are crucial in

order to have predictions for the signal and background events within the same accuracy as

the experimental results. However, the state-of-the-art of quantum field theory calculations

evinces the large gap in difficulty between the Leading Order (LO) and Next to Leading Order

(NLO) calculations in the QCD perturbation series. For LO we are provided with a great

set of fully automized tools which allows the automated analysis of collider signatures for

processes with up to 8-10 partons in the final state. On the other hand, despite the already

well-established theoretical basis for the NLO corrections, no such automized tools are yet

available to perform equivalent analyses. The reason for this discrepancy in the degree of

development is the growth in complexity for the NLO case, which stems from the increase in

the number of terms to be computed, many subtle issues related to numerical accuracy and

stability, and most significantly the presence of divergences of different nature, which require

1



2 1. Introduction

a dedicated implementation of the renormalization and subtraction procedures. In spite of

such difficulties there is no doubt that the upgrade of the automated tools to NLO should

be achieved, because for most of the relevant processes these NLO corrections are of critical

importance to provide an accurate theoretical prediction. Among the improvements that the

NLO predictions represent we should highlight:

• A smaller sensitivity with respect to the unphysical renormalization and factorization

scales.

• An accurate calculation of the normalization of the distributions.

• A more accurate description of the shape of distributions.

• A consistent account for the leading QCD quantum effects, e.g. interchange of virtual

gluons and jet radiation.

In view of this scenario a tool which bridges this gap between LO and NLO turn out to be

fundamental. The MadGolem tool is intended to give a major contribution on these lines.

It is a fully automized tool which performs NLO QCD studies for generic 2→ 2 processes in

the SM and beyond. Its main target concerns new physics signals, providing their rates and

distributions at NLO level. The tool is build upon a fully flexible framework, so that it can

be applied to generic new physics scenarios.

The subject of this thesis is the study of trademark new physics signatures for rele-

vant LHC discovery channels at NLO QCD. These calculations have been carried out in

the MadGolem framework, to which the work presented herewith has made instrumental

contributions.

We open the thesis in chapter 2, in which we concisely summarize the main aspects con-

cerning the structure of a generic fixed order Perturbative QCD calculation. We present the

general structure of the Catani-Seymour dipole subtraction to deal with infrared divergences,

which we further extend in the appendix A. We carefully describe the theoretically well-

defined method to address the double-counting arising from on shell heavy particle produc-

tion, namely the On Shell Subtraction method. Finally, we close this chapter by describing

the MadGolem program, in whose development this thesis has substantially contributed,

and show some of the numerical tests by which we have proved the stability of the tool and

its robust performance.

In chapter 3 we turn our attention into the application of our tool to Beyond Standard

Model (BSM) LHC phenomenology. We first perform a complete NLO calculation for the

production of a color-octet scalar pair at the LHC. We analyze the qualitative features and

quantitative impact of the QCD quantum effects in terms of rates and distributions. The

LHC current search status is also presented.

Chapter 4 describes a supersymmetric process, namely squark–neutralino production

pp → q̃χ̃0
1, which can lead to the trademark phenomenological signature of one hard jet



3

with missing energy. For this process i) we present the structure of the NLO corrections; ii)

perform a scan in the Minimal Supersymmetric Standard Model (MSSM) parameter space;

iii) Analyze several distributions at NLO level.

In Chapter 5 we perform a comprehensive study of the main discovery channels for su-

persymmetry at the LHC, these are the pair-wise and associated production of the strongly-

interacting SUSY particles pp → q̃q̃; q̃q̃∗; q̃g̃; g̃g̃. Even if these processes have already been

analyzed in the literature, the MadGolem framework presents significant improvements,

such as not requiring any assumptions on the supersymmetric mass spectra and allowing a

systematic study at the distribution level. Therefore we make use of these improved features

to undertake a comprehensive exam of the structure of the NLO corrections by means of i) a

scan in the MSSM parameter space, identifying the trends that are common to these different

channels; ii) a comprehensive comparison between fixed order distributions and jet merged

ones; iii) Lastly, the numerical implications, both for total rates and distributions, of the

usual simplifying assumptions mentioned above, e.g. squark mass degeneracy.

Final conclusions are drawn in Chapter 6.

An exhaustive analytical account of the Catani-Seymour dipoles required for SUSY-QCD

calculations is presented in Appendix A. These are provided for the first time in the literature

with the FKS-like phase-space restriction α, which we support in MadGolem . The details

concerning the renormalization procedure implemented in MadGolem are documented in

Appendix B. There we provide the relevant expressions for the renormalization of the scalar

color-octet model (which is relevant for Chapter 3) and for the supersymmetric QCD searches

of the MSSM (which is applicable in Chapters 4 and Chapter 5).
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Chapter 2

Foundations

2.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory which describes one of the four fundamental

forces in nature, namely the strong nuclear force. It is a Yang-Mills gauge theory based on

an unbroken SU(3) symmetry. It has been very well tested in numerous experiments mainly

over the second half of the twentieth century in collider experiments. At the Large Hadron

Collider (LHC) it will play a fundamental role in the analysis of its results. In particular, in

some searches with overwhelming backgrounds, precise QCD predictions become crucial to

distinguish possible new physics signatures from a mere SM dynamics.

The QCD Lagrangian

The QCD Lagrangian LQCD can be divided into three parts: the classical density Lclassical,

the gauge fixing term Lgauge-fixing and the ghost contribution Lghost

LQCD = Lclassical + Lgauge-fixing + Lghost. (2.1)

Following Ref. [1], the classical Lagrangian describes a non-abelian gauge theory coupled to

fermionic matter

Lclassical =
∑
flavor

q̄a(i /Dab −mqaδab)qb −
1

4
FAµνF

µν
A , (2.2)

where the fermionic field qa represents the quark field summed in flavor, qa ∈ (u, d, c, s, t, b),

and mqa denotes the respective mass. We follow the particle physics metric convention

gαβ = diag (1,−1,−1,−1) and work with natural units ~ = c = 1. The Dirac gamma

matrices satisfy the anticommutation relations

{γµ, γν} = 2gµν . (2.3)

5



6 2. Foundations

FAµν is the field strength tensor for the gluonic field1 AAµ and is given by

FAµν = ∂µA
A
ν − ∂νAAµ − gsfABCABµACν . (2.4)

Here gs is the QCD coupling strength and fABC stands for the structure constant of the

SU(3) gauge group. The indices in the triplet representation are denoted by lower case Latin

letters (a=1,2,3) and in the adjoint representation by capital Latin letters (A=1,...,8). The

covariant derivative D in the fundamental representation reads

Dµ
ab = ∂µδab + igsA

µCtCab (2.5)

and in the adjoint

Dµ
AB = ∂µδAB + igsA

µCTCAB, (2.6)

where tAab (TAab) are the generators in the fundamental (adjoint) representations of the gauge

group.

The gauge fixing term Lgauge-fixing is added to the Lagrangian density in order to be able

to define the gluonic propagator. A particular class named as covariant gauge reads

Lgauge-fixing = − 1

2λ

(
∂µAAµ

)2
, (2.7)

where λ is an arbitrary parameter. The most popular choices for this parameter are λ = 1

(Feynman gauge) and λ→ 0 (Landau gauge).

The last term, which is the ghost contribution

Lghost =
(
∂µηA

)† (
Dµ
ABη

B
)
, (2.8)

is required for non-abelian gauge theories to cancel unphysical longitudinal degrees of freedom

of the gluonic field which should not propagate. The extra field ηA is a complex scalar, but

satisfies the Fermi statistics.

Another popular class of gauge fixing terms are the physical gauges

Lgauge-fixing = − 1

2λ

(
nµAAµ

)2
; (2.9)

here nµ is an arbitrary four-vector. Within this class of gauges only the two physical polar-

izations propagate, and no ghost term is required. However, it leads to a more complicated

gluon propagator. Therefore in most of the calculations, in particular beyond the LO, it is

preferable to use Eq. 2.7 which will lead to a simpler structure.

Thereafter we will be interested in calculating cross sections and perform perturbation

theory. To that aim we shall translate the QCD Lagrangian into Feynman rules as shown in

Table 2.1.

1Throughout this thesis we use the conventional label AAµ for the gluon field, which allows for a better

distinction with the sgluon field G introduced in Chapter 3. However, when discussing about MSSM pro-

cesses, in particular when describing their SUSY-QCD counter terms in Sec. B.2, we resort to the traditional

conventions in the old MSSM literature, where the gluon field is denoted by G.



2.1 Quantum Chromodynamics 7

a bp δab
i

/p−m+iε

A Bp δAB i
p2+iε

A Bp
δAB i

p2+iε

(
−gµν + (1− λ) p

µpν

p2+iε

)

A, µ

B, ν

p1

C, σ

p3

p2

gsf
ABC [gµν(p1 − p2)σ + gνσ(p2 − p3)µ + gµσ(p3 − p1)ν ]

C, ρ

B, ν

D, σ

A, µ

−ig2
s [f

ABEfCDE(gµρgνσ − gµσgνρ)
+fACEfBDE(gµνgρσ − gµσgνρ)
+fADEfBCE(gµνgρσ − gµρgνσ)]

A, µ

b c

igst
A
cbγ

µ

A

p

B C

−gsfABCpµ

Table 2.1: QCD Feynman rules in the covariant gauge. Fermions are denoted as straight

lines, gluons as curly and ghost as dashed.



8 2. Foundations

Running Coupling Constant and Asymptotic Freedom

When performing a calculation of an observable as a perturbation series in the coupling

αs = g2
s/4π it is necessary to introduce an unphysical mass scale µR. This new mass scale re-

sults from the renormalization procedure entitled to remove the ultraviolet (UV) divergences.

As an example, consider that we have a dimensionless observable R which is a function of only

one physical scale Q2. Thus, after renormalization R will depend on Q2, µ2
R, αs(µ

2
R). More-

over, dimension analysis dictates the general form R = R(Q2/µ2
R, αs). Since the dependence

on the parameter µR is unphysical, the following relation must hold

µ2
R

d

dµ2
R

R(Q2/µ2
R, αs) =

(
µ2
R

∂

∂µ2
R

+ µ2
R

∂αs
∂µ2

R

∂

∂αs

)
R(Q2/µ2

R, αs) = 0 (2.10)

Here the coefficient of the second term is the so-called β-function

β(αs) ≡ µ2
R

∂αs
∂µ2

R

, (2.11)

which implicitly means that the coupling constant is scale dependent. Using perturbation

theory for sufficiently large Q, i.e. in the asymptotic regime where the confinement effects

are not influencing, the β-function reads

β(αs) = −α2
s(β0 + β1αs +O(α2

s)) (2.12)

with

β0 =
33− 2nf

12π
, β1 =

153− 19nf
2π(33− 2nf )

, (2.13)

where nf is the number of quark flavors with masses lower than the energy scale µR. From

Eqs. 2.11, 2.12 and if we neglect all terms higher than β0 in the β-function expansion we can

establish the following relation between αs(Q
2) and αs(µ

2
R)

αs(Q
2) =

αs(µ
2
R)

1 + αs(µ2
R)β0 ln(Q2/µ2

R)
. (2.14)

Notice, that from Eq. 2.13, and if nf < 33/2, the coupling αs(Q
2) decreases for a growing Q.

This fact is known as asymptotic freedom [2, 3]. In this case the coupling is small, therefore

it is safe to use perturbation theory.

On the other hand, for small momentum transfer the coupling value αs(Q
2) increases.

This is known as confinement and is the reason why it is not possible to see free quarks and

gluons in Nature. The scale at which Eq.2.14 diverges is called the Landau pole Q = ΛQCD

Λ2
QCD = µ2

R exp

[ −12π

(33− 2nf )αs(µ2
R)

]
. (2.15)

If we set µR to the Z boson mass (mZ), nf = 5 and use the value of αs(mZ) from Eq. 2.15 that

ΛQCD ≈ 91 MeV. More precise estimations of the Landau pole lead to ΛQCD ≈ 200 MeV.

We discuss in the following section the treatment of these two regimes at colliders, namely

the asymptotic and confinement regimes.
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2.2 Hard scattering formalism and QCD factorization theo-

rem

Scattering processes at Hadron colliders in general involve both hard and soft scales. How-

ever, in each regime the underlying theory which describes these processes, the Quantum

Chromodynamics, has different power of predictability. In the high energy limit, in which

the momentum transfer is high, the running coupling constant αs(Q
2) becomes small, as

presented in the last section. Therefore, we can perform a perturbative expansion in the

coupling constant. However, in the low energy regime αs(Q
2) increases and QCD becomes

non-perturbative, thus the QCD effects are less well understood in this region and one has

to rely on data and/or simulations of the corresponding non-perturbative behavior.

As in Hadron Colliders the soft and hard processes take place together, it is important

to be able to factorize these two regimes in such a way that one can apply the perturbation

theory in the hard regime, while in the low energy regime one is forced to make use of

experimental inputs to overcome our ignorance.

The separation in these two regimes is formalized by the factorization theorem [4]. First

formulated for deep inelastic lepton-hadron scattering (DIS), it permits to write the cross sec-

tion as a convolution of the perturbative partonic cross section σ̂i, with the non-perturbative

but process independent (i.e. universal) object, so called parton distribution function (pdf)

which determines the dynamics of the QCD partons inside the colliding hadrons

σ =
∑
i

1∫
0

dxifi/h(xi, µ
2
F )
∞∑
n=0

αns σ̂
(n)
i (xi, αs(µ

2
R),

Q2

µ2
F

,
Q2

µ2
R

). (2.16)

We can interpret the pdfs as probability distributions for the momentum of the parton con-

stituents of the colliding hadrons. The total hadron momentum Pµh is shared among the

partons. The parton i carries the momentum pµi = xiP
µ
h with probability fi/h(xi, µ

2
F ).

For a hadron-hadron collision the hadronic cross section can be written as2

σh1h2→f =
∑
i,j

∫
dxidxjfi/h1(xi, µ

2
F )fj/h2(xj , µ

2
F )

∞∑
n=0

αns σ̂
(n)
ij (xi, xj , αs(µ

2
R),

Q2

µ2
F

,
Q2

µ2
R

).

(2.17)

Two facts should be highlighted:

• The partonic cross section is calculable in perturbation theory as a power series in αs

and does not depend on the nucleon dynamics, only on its parton i and j.

• The pdfs are non-perturbative quantities and are obtained from fits to data. They

constitute a parametrization of the momentum distributions of partons within a given

nucleon.

2Factorization was just proven for inclusive cross sections in DIS and in Drell-Yan. The proof for the

general hadron-hadron collisions is still missing in the literature and the factorization hypothesis is taken as

an ansatz.
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These two pictures are separated by the factorization scale (µF ) representing the point of

changing between the soft and hard QCD regimes. Roughly speaking, all the information

from the emissions of the initial state parton below the energy scale µF is included inside the

pdfs and above this scale in the partonic cross section, as graphically represented in Fig. 2.1.

If one included all orders in perturbation theory the final result would be independent of

this unphysical scale. But in fixed order it will be dependent. Therefore, different choices in

this scale yield different results on the cross section. This theoretical uncertainty reflects the

influence of the missing higher order terms. In order to avoid unnaturally large logarithms

in the perturbation series, it is common to define µF within the same order of the typical

momentum scale of the process.

Figure 2.1: Pictorial representation of the factorization of the soft and hard regimes for the

Drell-Yan process.

Although the pdfs are non-calculable from first principles, there are perturbative differ-

ential equations which describe their evolution with µF . They are obtained by requiring that

the cross section is independent of the choice of the scale µF at a given order and they are

known as DGLAP3 evolution equations [5]

∂qi(x, µ
2
F )

∂ logµ2
F

=
αs
2π

1∫
x

dz

z

[
Pqiqj (z, αs)qj(x/z, µ

2
F ) + Pqig(z, αs)g(x/z, µ2

F )
]

∂g(x, µ2
F )

∂ logµ2
F

=
αs
2π

1∫
x

dz

z

[
Pgqj (z, αs)qj(x/z, µ

2
F ) + Pgg(z, αs)g(x/z, µ2

F )
]
, (2.18)

where g(x, µF ) and qi(x, µF ) denote respectively the gluon and the quark of flavor i pdfs.

Pab(z) is the so-called splitting function, which represents the probability that a parton of

type b radiates a quark or gluon and becomes a parton of type a carrying a fraction of the

3DGLAP stands for Dokshitzer, Gribov, Lipatov, Altarelli and Parisi.
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momentum z of the parton b. These can be expanded in perturbation theory as

Pab(z, αs) =
∞∑
n=0

(αs
2π

)n
P

(n)
ab (z). (2.19)

Therefore, if one aims to work a fixed-oder prediction up to the term σ̂
(n)
ij in Eq. 2.17 it is

necessary to include in Eqs. 2.18 and 2.19 up to the terms P
(n)
ab to be consistent. The explicit

form of these splitting functions are presented at Leading Order and Next to Leading Order

in Ref. [1].

2.3 General structure of fixed order Perturbative QCD

For hadron colliders a straightforward systematic improvement in the theoretical predictions

arises from the calculation of one further term in the perturbative expansion in αs of Eq. 2.17.

At the LHC energy scale, αs ∼ 0.1, therefore one would naively expect that the theoretical

predictions at Leading Order (LO) are correct within an uncertainty of 10%. However, in

some processes this is in practice not the case and we can actually get large corrections when

performing the calculation at the Next to Leading Order (NLO). Indeed, as we will see in the

processes presented in the following chapters of this thesis, it is quite common to obtain NLO

corrections to the LO prediction of approximately 50− 100%. Therefore it is a fundamental

task to understand the structure of the fixed order calculations and provide results including

high order terms, thus reducing the theoretical uncertainties.

Leading Order calculations

The simplest predictions arise from the calculation of the observables at the lowest order in

the perturbation expansion. In this case, let us suppose that we have m final-state partons.

In this case the LO QCD cross section is given by

σLO =
∑
i,j

∫
dΦmdxidxjfi/h1(xi, µ

2
F )fj/h2(xj , µ

2
F )|M(tree)

m ({pl})|2F (m)
J ({pl}), (2.20)

where dΦm is the total phase-space for an m-particle final state (pl = p1, ..., pm),

M(tree)
m ({pl}) is the tree-level matrix element which depends on the given process and F

(m)
J ({pl})

is the phase-space function that defines the physical quantity we want to compute, including

the experimental cuts to be applied. In order to obtain fully differential distributions, the inte-

gration over the phase-space needs to be carried out numerically. For the LO we are provided

with a great set of fully automized tools to perform this task which allows us to consider up to

m = 8− 10 partons in the final state [6–9].

Next to Leading Order corrections

The next term in this expansion requires the consideration of extra contributions that arise

from real and virtual (one-loop) contributions. The possible types of real emission diagrams
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are generically sketched in Fig. 2.2. These have the same structure as the Born level diagrams,

but with one extra parton radiated, M(tree)
m →M(tree)

m+1 .

Figure 2.2: Sample of the real emission diagrams for the process pp→ V or pp→ V V , where

V represents a gauge boson. From the left to the right we present i) the gluon emission from

an external quark leg; ii) excited initial state arising from the splitting g → qq̄; and iii) gluon

emission from an internal quark leg.

Figure 2.3: Sample of the virtual correction Feynman diagrams. From the left to the right

we present graphs with i) two external legs (propagator correction); ii) three external legs

(vertex correction); and iii)four external legs (box diagrams).

The other set of contributing diagrams are the one-loop graphs. These are diagrams

with the same number of partons in the final state as the Born diagrams. They account

for the internal exchange of virtual particles, e.g. gluons, and are expressed in terms of the

one-loop integrals, M(tree)
m → M(1−loop)

m . Its contribution to the cross section arises from

the interference with the LO matrix elements. The matrix element squared of the one-loop

diagrams, however, is already a NNLO contribution to the cross section and should not be

included in the NLO calculation. A generic sample of Feynman diagrams for the virtual

corrections is depicted in Fig. 2.3.

Beyond the one-loop and real emission corrections one also needs to add an extra term

known as the collinear subtraction term. This term is responsible for the subtraction of

the left-over singularities from collinear splittings off the initial state emitter that should be

absorbed into the parton distribution function. Since these collinear divergencies correlated

with the pdfs are unique and process independent, the parton distribution functions are

process independent also at NLO. In fact, the factorization theorem states that this holds at

every order in perturbation theory.

Therefore, we can present the NLO corrections as a sum of real emission corrections,

collinear subtraction terms and virtual corrections terms as shown in Fig. 2.4. Here we

sketch some peculiarities concerning this sum and each of these terms. The virtual corrections

present ultraviolet (UV) singularities, which are removed by renormalization giving UV finite

results. The renormalization procedure involves the introduction of corresponding counter-
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Figure 2.4: Structure of the NLO QCD corrections.

terms for the strong coupling constant and the masses, which are fixed for each particular

model from a set of conditions defining our renormalization scheme (for more details see

Appendix B). On the other hand, each of these terms presents Infrared (IR) divergencies

and just after their sum is performed a finite and IR-safe quantity is obtained. The fact that

the sum is finite is ensured by the theorems of Bloch and Nordsieck [10] and Kinoshita, Lee

and Nauenberg [11, 12]. These theorems guarantee that this cancelation of the IR divergencies

holds to all orders in perturbation theory and for any number of final state particles.

In the next section we will elaborate on the structure of the NLO corrections depicted

in the Fig. 2.4. In the results to be presented we will put special emphasis on the technical

procedures to perform the sum of each contribution without spoiling the cancelation of the

IR singularities when using Monte Carlo methods.

2.4 Catani-Seymour dipole subtraction

QCD calculations beyond LO are very much involved and analytic treatments are feasible

only for simple fully inclusive processes. On the other hand, the implementation of Monte

Carlo methods is a non-trivial task given the IR structure that arises from the m+1-parton

and m-parton phase-space integrals, see Fig. 2.4. Therefore these have to be numerically inte-

grated separately and require a special method to treat their poles. Otherwise the numerical

convergency would be spoilt.

As presented in Fig. 2.4, the NLO corrections to the cross section consist in a sum of the

real emission contributions, virtual corrections and collinear subtraction terms, where each

of these integrals is IR divergent. For the real emissions, the divergences appear when the

extra radiated parton becomes soft or collinear to some other partons leading to on shell

propagators in the matrix element. For the virtual corrections, the divergent structures arise

from the unrestricted loop momentum integral, implying also that the propagator can go on
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shell. And finally the divergent structures of the collinear subtraction terms are meant to

subtract the left-over singularities from the parton distribution functions, in such a way that

they implement a renormalization prescription for the latter.

Using dimension regularization, with d = 4−2ε space time dimensions, these IR structures

will appear either as single poles 1/ε (stemming from either a soft or a collinear singularity)

or double poles 1/ε2 (when both types of singularities overlap). The idea of the Catani-

Seymour subtraction method [14] is to define a subtraction term, dσA, for the real emission

which encodes all its possible IR divergencies in the m + 1-parton phase-space integral and

add this term back in the m-parton one. On this way the NLO corrections are rewritten as

δσNLO =

∫
m+1

(
dσreal

ε=0 − dσA
ε=0

)
+

∫
m

(
dσvirtual + dσcollinear +

∫
1
dσA

)
ε=0

. (2.21)

The subtraction term dσA is constructed so that it satisfies the following requirements [13]:

• It should subtract locally, i.e. point by point in phase-space, the divergent structures

present in dσreal. Thus, one can safely calculate the m+1-parton phase-space integral

taking in the limit ε→ 0

δσNLO
m+1 =

∫
m+1

(
dσreal

ε=0 − dσA
ε=0

)
. (2.22)

• The subtraction term dσA should be analytically integrable in d = 4 − 2ε dimension

over the extra single-parton phase-space. This allows us to add back the integrated

expression for this term (the so-called integrated dipole) into the m-particle phase-

space,

δσNLO
m =

∫
m

(
dσvirtual + dσcollinear +

∫
1
dσA

)
ε=0

. (2.23)

On this manner the phase-space integral to be implemented in the Monte Carlo analysis

can be calculated separately in the m and m+ 1-parton phase-space, and latter on combined

δσNLO = δσNLO
m+1 + δσNLO

m . (2.24)

The counter term dσA is constructed from the know properties of QCD factorization in

the soft and collinear limits where the |M(tree)
m+1 |2 behaves as the born matrix element squared

dσB convoluted in color and spin with a universal singular factor (named dipole factors)

dVdipole. Therefore one can write the subtraction terms schematically as

dσA =
∑

dσB ⊗ dVdipole. (2.25)

This structure allows a factorizable mapping from the m + 1-parton phase-space into a m-

parton times a single-parton phase-space kinematics. This mapping permits the analytical

integration of dVdipole over the single-parton kinematics, so that∫
m+1

dσA +

∫
m
dσcollinear =

∫
m

[
dσB ⊗ I(ε)

]
+

∫ 1

0
dx

∫
m

[
dσB ⊗ (P(x, µ2

F ) + K(x))
]
,

(2.26)
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where the operator I(ε) contains all the singular terms and the operators P and K contain

just finite contributions.

On this manner, for a given real emission matrix element (this is to say, for each specific

type of parton radiation, e.g. a gluon splitting off a quark external leg q → qg) one can find

the appropriate choice of dipoles and integrated dipoles (operators I, K and P) in [14], such

that the NLO correction is computed as

δσNLO =

∫
m+1

[
dσR|ε=0 − dσB ⊗ dVdipole|ε=0

]
+∫

m

[
dσvirtual + dσB ⊗ I(ε)

]
ε=0

+

∫ 1

0
dx

∫
m

[
dσB ⊗ (P(x, µ2

F ) + K(x))
]
. (2.27)

In the appendix A we present the explicit formulas for the dipoles that do not appear in

the SM but which are related to the genuine real emission involving SUSY particles. These

expressions were lacking so far in the literature in its most general form, including their

expanded formulation in terms of the so called phase-space parameter α. This thesis provides

for the first time the corresponding analytical formulae, which we have implemented in our

program MadGolem in order to extend the reach of the automated NLO calculations. For

more details see appendix A.

2.5 On Shell Subtraction Method

When performing NLO computations involving heavy particles one should take care to avoid

some particular sources of double counting in the corrections which could potentially spoil

the performance of the perturbative series. As an example we consider the real emission

corrections to squark-neutralino production pp → q̃χ̃0
1 (a process which we analyze at NLO

in Chap. 4): the partonic sub-channels with an additional quark in the final state qq → q̃qχ̃0
1

display a peculiar behavior which we illustrate in Fig. 2.5. The diagrams (a) and (b) are part

of the genuine NLO corrections to squark-neutralino production. In contrast, the diagram

(c) can be interpreted in two ways:

qq → q̃q̃(∗) → q̃qχ̃0
1 squark-neutralino production

qq → q̃q̃ → q̃qχ̃0
1 squark pair production plus squark decay (2.28)

χ̃0
1

q̃L/R

χ̃0
1

g̃
g̃

q̃L/R

q̃L/R

χ̃0
1

q̃L/R

q̃L/R

(a) (b)
(c)

Figure 2.5: Sample diagrams for the real-emission corrections to squark-neutralino production

pp→ q̃χ̃0
1 with an additional quark in the final state.
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The first interpretation simply assumes NLO corrections to the hard process pp(qq) → q̃χ̃0
1

and is generally valid for an intermediate on shell (q̃) and off-shell (q̃(∗)) squarks. The

second interpretation accounts for the LO process for qq → q̃q̃ followed by the branching

BR(q̃ → qχ̃0
1) and implicitly assumes an on shell squark. For a mass hierarchy mq̃ > mχ̃0

1
we

can therefore separate the two instances into off-shell and on shell squarks. This distinction

avoids double counting and is the basis of our on shell subtraction scheme. In the literature,

approaches to tackle this problem include

• a slicing procedure, which separates the phase-space related to the on shell emissions

and removes the on shell divergence by requiring |√sq̃χ̃0
1
−mq̃| > δ [15], where δ is an

unphysical phase-space cutoff. Phase-space methods of this kind do not offer an overall

cancellation of the δ dependence and do not act locally in phase-space. Moreover,

as a pure phase-space approach, they do not allow for a proper separation into the

different finite, on shell and interference contributions, which is crucial for a reliable

rate prediction.

• diagram removal, where the resonant matrix elements are removed by hand. Even

if in certain cases this method might perform properly in the limit Γ/m � 1 [16], but

it ignores any kind of interference contributions, which do not actually need to vanish

in this narrow width limit. This scheme suffers from several theoretical drawbacks, in

particular it does not preserve gauge invariance and is neither able to retain the spin

correlations between the on shell resonance and the final state particles.

• local on shell subtraction in the so-called Prospino scheme [17, 22] which, under the

name ‘diagram subtraction’, is also used in the single-top computation of Mc@nlo [16].

This is the method employed in our program MadGolem .

To define the on shell subtraction we split the contributions of the real emission matrix

element in two parts: the first piece concerns the resonant diagram (c) and is denoted asMres,

while the second piece represents the non-resonant diagrams (a) and (b) and is denoted as

Mrem (where the suffix stands for ”remainder”). Note that this separation is defined at the

amplitude level and is not based on the amplitude squared. The full matrix element squared

becomes

|M|2 = |Mres|2 + 2Re(M∗resMrem) + |Mrem|2. (2.29)

The divergent propagator within Mres we regularize as a Breit-Wigner propagator

1

p2
ij −m2

ij

→ 1

p2
ij −m2

ij + imijΓij
, (2.30)

where mij is the mass of the mother particle, namely the heavy resonance in the splitting

ĩj → i j, as shown in Fig. 2.6.

As explained above, the appearance of a possible double counting is limited to the on

shell configuration in |Mres|2 and will depend, in practice, on the mass hierarchy between
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i

j

kpk

pi

pj
ĩj

Figure 2.6: Kinematic variables for the on shell subtraction.

the particle ij and its final-states. To remove it we define a local subtraction term dσOS and

insert it into the general expression for the real emission NLO amplitude in complete analogy

to the Catani-Seymour dipole subtraction Eq.(A.3), such that the total cross section is given

by

δσNLO =

∫
n+1

(
dσreal

ε=0 − dσA
ε=0 − dσOS

ε=0

)
+

∫
n

(
dσvirtual + dσcollinear +

∫
1
dσA

)
ε=0

. (2.31)

The extra subtraction term dσOS correspond to |Mres|2 with its momenta being remapped

to the on shell kinematics,

dσOS = Θ(ŝ− (mij +mk)
2) Θ(mij −mi −mj)

1

(p2
ij −m2

ij)
2 +m2

ijΓ
2
ij

1

m2
ijΓ

2
ij

|Mres|2
∣∣∣∣∣
remapped

.

(2.32)

The kinematic configuration is depicted in Fig. 2.6. The two step functions in Eq.(2.32)

ensure that the partonic center-of-mass energy is sufficient to produce the intermediate on

shell particle and that it can decay on shell into the two final-state particles. The ratio of

the Breit-Wigner functions ensures that the subtraction has the same profile as the original

|Mres|2 over the entire phase-space. In the small width limit this ratio reproduces a delta

distribution which factorizes the 2 → 3 diagrams into the pairwise production cross section

convoluted with the corresponding branching BR for the on shell resonance, σ × BR.

The remapping of the phase-space kinematics to the on shell configuration can be obtained

in analogy to the reshuffling of the massive final-final dipoles momenta [14]. The reshuffled

momenta, p̃ij and p̃k, are defined in terms of the original momenta pi, pj and pk by

p̃µk =

√
λ(Q2,m2

ij ,m
2
k)√

λ(Q2, (pi + pj)2,m2
k)

(
pµk −

Qνp
ν
k

Q2
Qµ

)
+
Q2 +m2

k −m2
ij

2Q2
Qµ

p̃µij = Qµ − p̃µk , (2.33)

where the above expressions satisfy the mass-shell conditions and the total momentum con-

servation

p̃2
ij = m2

ij , p̃2
k = m2

k̃
, Qµ ≡ pµi + pµj + pµk = p̃µij + p̃µk . (2.34)
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Now we reshuffle the momenta of the particles i and j, which we denote by p̃i and p̃j . These

can be defined by

p̃µi =

(√
m2
i + a2, a

~pi
|~pi|

)
, p̃µj = p̃µij − p̃

µ
i , (2.35)

with

a =
~̃pij .~pi/|~pi|((p̃0

ij)
2 +m2

i − b)
4(p̃0

ij)
2 − (~̃pij .~pi/|~pi|)2

+ 2

√
(p̃0
ij)

2((p̃0
ij)

4 +m4
i + b2 +m2

i ((
~̃pij .~pi/|~pi|)2 − 2b)− 2(p̃0

ij)
2(m2

i + b)

4(p̃0
ij)

2 − (~̃pij .~pi/|~pi|)2
(2.36)

and b = m2
i + m2

ij . With these definitions the momenta pi, pj , pk reduce in the limit√
p2
ij → mij to p̃i, p̃j , p̃k. On this way we obtain a finite and well defined result also in the

limit Γij/mij → 0 because the divergent parts coming from |Mres|2 are subtracted locally.

Note that this method works with a mathematical regulator Γij which can be related to

the physical width as in the Mc@nlo implementation; alternatively we can interpret it as a

mere phase-space parameter, on which the total NLO cross section 2.31 cannot depend once

the subtraction term dσOS is introduced to cancel the on shell component within |Mres|2.

This allows us, in particular, to realize the limit Γij � mij which is used in the original

Prospino implementation.
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Figure 2.7: NLO contributions from intermediate on shell particles in the sub-channel uu→
ũRχ̃

0
1 + X production as a function of Γũ/mũ. The squark width acts as a mere unphysical

cutoff in the Prospino subtraction scheme [17, 22]. The masses are chosen to illustrate all

different resonant channels; virtual corrections are not included.
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In summary, this on shell subtraction implemented in MadGolem exhibits several at-

tractive features when it comes to the prediction for the total and differential cross sections.

First, it subtracts all on shell divergences point-by-point over the entire phase-space. This

means that not only total rates but also all distributions are automatically safe. Second, it

preserves gauge invariance, at least in the narrow-width limit. Third, it takes into account

spin correlations in the on shell decay ĩj → i j because it includes the full 2 → 3 matrix

element. Fourth, it keeps track of the interference of the resonant and non-resonant terms,

2Re(M∗resMrem), which can be numerically sizeable, at variance with alternative methods

used in the literature, e.g. diagram removal. Finally, Fig. 2.7 shows that it smoothly in-

terpolates between a finite width Γij/mij ∼ 0.10 and the narrow-width limit Γij/mij → 0.

Let us emphasize here the robustness of the MadGolem numerical implementation, which

provides stable results for values of Γ/m down to O(10−6), this is to say, closed by to the

actual divergent region from |Mres|2.

2.6 Scale dependence

One of the main motivations in calculating the higher order corrections is to lower the depen-

dence of the cross section on the unphysical quantities that we need to introduce as numerical

artifacts to cancel the UV and IR divergences, namely the renormalization (µR) and factor-

ization (µF ) scales. Just if we had arbitrarily large number of terms in the αs expansion,

these dependences would vanish. The fact that it does not in the presence of a fixed number

of terms is used as an estimate of the theoretical uncertainties. More precisely, if the calcu-

lation is performed to O(αns ), the variations of these unphysical scales will lead to an effect

of O(αn+1
s ) [4]

µ2 d

dµ2
σ = O(αn+1

s ) , (2.37)

with µ ≡ µR,F . We can understand this expression as a reflect that the dependence in the

unphysical parameters appears one order in perturbation theory beyond that of the actual

calculation. Namely, it is a NLO effect when looking at the LO cross section (respectively

a NNLO effect when considering the NLO cross section). On these lines the scale variation

has become a standard procedure to assess these theoretical uncertainties. However, such

an estimate must be taken just as a lower limit, since it does not take into account the

kinematics of the process itself, which can change substantially with the addition of higher

order corrections.

In the absence of all-orders predictions, an important task is to define the scales µR,F in

such a way that the uncertainties are minimized, providing a result as close as possible to

the ideal all-orders one. Although there are no theorems that prove which is the best scheme

to define these scales, it has been shown in numerous cases that choosing them close to the

typical momentum scale of a given process leads to stable perturbative results [23, 24]. But

this is just an estimation to minimize the scale dependences and there is no replacement for

actually performing the higher-order corrections to reduce the uncertainties in a solid way.
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The reduction, as we will explicitly observe in several contexts along this thesis, and can be

substantial when comparing the the LO and NLO predictions for a given process.

Another fact concerning the scale dependence that is worth mentioning is that, in general,

when considering a LO contribution that depends on larger powers of the coupling constant

αs, this will imply in larger scale uncertainties, in special arising from µR. In order to have

an estimate on the behavior of the uncertainties as a function of µR, we can use Eq. 2.11 to

derive the following relation

µ2
R

dαns (µ2
R)

dµ2
R

= nαns (µ2
R)
β(αs)

αs
. (2.38)

Therefore, if we have a LO process whose cross section behaves like σLO ∼ αns , it will imply

that

µ2
R

dσLO

dµ2
R

∼ n β(αs)

αs
σLO. (2.39)

From the latter equation we see that the scale uncertainty is proportional to the factor n,

which corresponds to the QCD order of the LO process. This fact we will explicitly see in

the following chapters, if we compare the results obtained for the process pp → q̃χ̃0
1 (which

is generated at LO with O(αsαEW )) with e.g. pp → GG∗ (which is a process generated at

LO with O(α2
s)). The outcome of the comparison shows a lower dependence with µR for the

former process, reflecting the analytical prediction of Eq. 2.39. It is worthwhile noticing that

the dependence on the factorization µF will only rely on the number of active flavors in the

initial-state and which will enter the DGLAP evolution equations, which define the running

of the pdfs, see Eq. 2.18.

2.7 MadGolem : Automizing NLO predictions for new physics

One major outcome of our work is the contribution to the automated tool called MadGolem,

which completely automates the calculation of cross sections and the generation of parton-

level events at NLO QCD for arbitrary 2→ 2 processes in a generic new physics framework.

This tool is build up using the Madgraph [6] basic structures, so on the same way the

user just needs to specify the process and the model to be analyzed, the parameters of the

model and the collider setup, with the help of respective input cards, namely process card,

param card and run card. Given this information MadGolem automatically provides the

NLO amplitudes which are further processed by our event generator giving the NLO cross

section, K-factor and the distributions at NLO, as we illustrate in Fig. 2.8.

To provide the NLO amplitude we divide the calculation in several modules highlighted

in Fig. 2.8, where each of them is responsible to generated one of the terms in the Eq. 2.31:

• dσLO and dσreal - For the LO and real emission contributions, which are produced by

the tree level matrix element generator from Madgraph.
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Figure 2.8: Modular structure of MadGolem.

• dσA and (dσcollinear +
∫
1 dσA) - To remove IR divergences from real and virtual cor-

rections we use the Catani-Seymour dipole subtraction [14], which we have introduced

in Sec. 2.4. The unintegrated and integrated Catani-Seymour dipoles are automat-

ically generated in our implementation, which we build as an expanded version of

MadDipole [25]. In our extension, beyond the Catani-Seymour SM dipoles, we also

provide all the dipole structures needed to cope with the new IR divergent structures

that appear in the QCD radiation processes involving SUSY particles, as well as other

heavy colored resonances, e.g. scalar color-octets, leptogluons, all of them with the

FKS-like phase-space parameter α. For more details see Sec. 2.4 and Appendix A.

• dσOS - The counter term which is responsible to subtract possible double count-

ing arising from on shell resonances is automatically generated by our own module

MadOS, which is process and model independent. Given one process, this module

identifies which are the possible on shell resonances associated to the real emission ma-

trix elementM(tree)
m+1 . From this starting point, the respective set of subtraction terms of

Eq. 2.32 is generated. Beyond the generation of these terms, MadOS also takes care of

the required reshuffling of momenta on the counter term expressions when performing

the phase-space integration, in order to subtract all the on shell resonances locally. For

more details on the On Shell subtraction method see Sec. 2.5.

• dσvirtual - The virtual corrections are generated by a combination of Qgraf [26],

Golem [27, 28] and our own counter term generator. These we describe in more detail

further down.

The calculation of the virtual contributions starts with Qgraf providing all the possi-
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ble one-loop Feynman diagrams for the required process. This Qgraf output is translated

by MadGolem into a code suitable for symbolic calculation languages. This is done by

rewriting the Feynman diagrams and Feynman rules into algebraic expressions which keep

track of external wave functions, vertex couplings and internal propagators, color factors,

Lorentz structure, and the overall sign from external fermion fields. This feature allows

MadGolem to deal with genuine features of new physics processes, e.g. Majorana fermions.

Then MadGolemmaps the amplitudes into a basis of color, helicity and tensor structures.

This is followed by the reduction into a basis of scalar loop integrals using Golem, which

applies a modified version of the Passarino-Veltman reduction scheme. As a last step, the UV

counter terms implemented in MadGolem are combined with the genuine one-loop ampli-

tude. The latter are expressed in terms of two-point functions and are supplied in a separate

library. For more details on the renormalization procedure see Appendix B.

One particularly distinctive feature within the MadGolem, its one-loop matrix element

calculation follows a fully analytical, Feynman-diagrammatic approach, based on spinor he-

licity and color flow techniques, as well as on the mentioned Golem implementation of the

Passarino-Veltman scheme for the tensor reduction of the one-loop Lorentz structures. The

user can therefore access and retrieve the analytical form of the amplitude at different stages

through the entire calculation. It also allows for an explicitly selection and/or separation of

the different one-loop NLO contributions, for instance in terms of topologies: self-energies,

boxes, and vertex corrections to the different interactions (feature which we will make exten-

sive use in the physics analyses contained in this thesis).

Alternative methods to address the automated calculation of one-loop amplitudes re-

sort to the use of the so-called generalized unitarity [29] and on shell reduction meth-

ods [30]. Based on different combinations of strategies to carry out the calculation of the

tree-level and one-loop amplitudes, and the automated handle of the renormalization of the

UV poles and the subtraction of the IR singularities, a number of independent, and nicely

complementary approaches to fully automated NLO tools are currently underway. These

include aMC@NLO [31], BlackHat/Sherpa [9], FeynArts/FormCalc/LoopTools [7], HELAC-

NLO [32], GoSam [27] and MadGolem [36–38].

MadGolem is meant to be a fully automatic program. Therefore it does not require

from the user any further intervention than the setup of the process through the basic input

cards, depicted in blue in Fig. 2.8. Default MadGraph options like multi-particle notation

are supported together with additional specifications that allow us, for instance, to separate

QCD from SUSY-QCD effects or retain specific subsets of one-loop contributions.

2.8 Numerical tests

An exhaustive cross-checking program we have undertaken to ensure the robustness and reli-

ability of MadGolem. The total NLO rates and corresponding K factors we have calculated

for a wide variety of 2 → 2 processes both within the SM and the MSSM, covering all rep-

resentative possibilities of spin and color representations, interactions and topologies. The
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Processes Check against

e+e− → qq̄ - massless and massive final state analytical calculation [14]

e+e− → q̃q̃ - final state correction Zerwas et al [33]

pp→ l̃l̃ - initial state correction Prospino [24]

pp→ q̃χ̃ - colored particles in the initial/final state FeynArts, FormCalc, LoopTools [7]

pp→ GG∗ - fully colored process FeynArts, FormCalc, LoopTools [7]

pp→ q̃q̃ (q̃g̃) [g̃g̃] {q̃q̃∗} - fully colored processes Prospino [17–19]

Table 2.2: Summarized cross-check table which documents some of the tested processes in

MadGOLEM with the respective source of comparison. The comparisons against FeynArts,

FormCalc, LoopTools concerns only the finite part of the one-loop amplitudes.

cancellation of the UV and IR divergences, as well as the gauge invariance of the overall result,

has been explicitly confirmed (in all cases numerically, and also analytically for some specific

ones). As for the finite parts of the renormalized one-loop amplitudes, we have systematically

compared them with the results from independent calculations performed with FeynArts,

FormCalc and LoopTools [7]. Particular care we have devoted to the numerical stability

and the convergence of the results, ensuring a robust implementation of the Catani-Seymour

dipoles and the On Shell subtraction method. The specific performance of the dipoles, as

well as of the On Shell subtraction terms nearby the singular regions, has been carefully

investigated including, e.g. i) The α-parameter independence of the subtraction procedure

from the arbitrary phase-space regulator we use, as presented in the right plot of Fig. 2.9; ii)

The numerical convergence of the cross section when the on shell contributions we subtracted

for small regulators Γij � mij , as presented in Fig. 2.7.

In addition, the MadGolem total NLO rates and corresponding K factors we have ex-

haustively contrasted to the numerical outcomes from Prospino. In order to conduct such

a systematic comparison we have settled common parameter benchmarks, probing all the

different squark/gluino mass hierarchies, and so all possible on shell divergent configurations.

The results we have checked for all the available channels in Prospino, considering both the

LHC (pp) and the Tevatron (pp̄) colliders and for several center-of-mass energies. For each

of the production processes, we have explicitly separated the different partonic subchannels

and compared them independently. Agreement has been confirmed in all cases at the percent

level.

As an explicit example for the numerous numerical tests that we performed, we present

here one cross-check of the dipole subtraction for soft gluon emission off the squark final-

state in the hard process e+e− → ũRũ
∗
R. In the left panel of Fig. 2.9 we show how the dipole

subtraction cancels the IR divergence locally, i.e. point by point in phase-space. Observe that

the matrix element for the real emission presents values spanning in the range from O(10−8)

(when far from the soft limit) to O(108) (when going towards the soft limit ygq̃,k → 0).

However the dipole subtraction terms match them in the whole soft range, canceling the

possible IR divergencies. This we can read off the flat profile of the curve
∑

dipoles

Dgq̃,k/|M2
real|
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Figure 2.9: Left: real emission matrix element (red circles) and the dipole subtraction (black

crosses inside) towards the soft limit ygq̃,k → 0. Right: α dependence for final-final squark

dipoles.

(displayed in the bottom panel of the plot) and also in the overlap of the black dots with the

red circles (displayed in the top panel of the plot). In fact, the numerical agreement of the

real emission matrix element with the dipole subtraction term improves for softer gluons. In

the soft limit both terms grow as 1/E2
g . Even though we find |M2

real −
∑

dipoles

Dgq̃,k| ∼ 1/Eg

(in magenta) the phase-space factor EgdEg cancels this dependence.

In the right panel of Fig. 2.9 we show the α dependence for the final-final squark dipole.

Both the real emission and the integrated dipole depend separately on α. Their sum, instead,

does not. This is precisely what the subtraction prescription requires. No trace of an eventual

dependence on the α parameter is left and the result remains numerically stable over many

orders of magnitude down to α = O(10−9). More details on the α parameter see Appendix A.



Chapter 3

Sgluon pair production

Scalar gluons (sgluons) are color-octet scalars without electroweak charges. They appear in

various extensions to the SM as composite or fundamental degrees of freedom. The most

well-know example we find in extended supersymmetric models like the R-symmetric MSSM

[34] or N = 1/N = 2 hybrid models [35], were the sgluons emerge as scalar partners of a

Dirac gluino. At the LHC the sgluon pairs will be copiously produced by their couplings to

gluons, with the most generic signature being pp→ GG∗ → 4 jets [39].

In this chapter we present a complete next-to-leading order QCD calculation of sgluon

pair production at the LHC. We examine the features and quantitative impact of the QCD

quantum effects on the production rates and the sgluon distributions. The results presented

in this chapter are based on the publication [37]. We also present the status of the current

searches from the ATLAS collaboration [39], where the theoretical prediction for the sgluon

pair productions at NLO is produced by our code MadGolem .

3.1 Theoretical setup

Our calculation is based on the minimal extension of the SM where the gluonic QCD correc-

tions to sgluon pair production are well defined and it can be interpreted as the relevant QCD

part of an effective strongly interacting theory. Following this approach we minimally extend

the SM by one additional color octet, weak singlet, electrically neutral, and complex scalar

field G. With the sgluons coupling to the SM particles only through the covariant derivative,

DµG
A ≡ ∂µG

A + gs f
ABC GB ACµ , where ACµ denotes the gluon field, gs the strong coupling

constant, and fABC the adjoint SU(3) generators. The sgluon dynamics is defined by the

lagrangian

L ⊃ DµG
∗ DµG−m2

GGG
∗

⊃ −gs fABC
[
GA∗(∂µGB)− (∂µGA∗)GB

]
ACµ

+g2
s

[
fACE fBDE + fADE fBCE

]
GC∗GDAAµ A

Bµ. (3.1)

25
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Therefore from the 3 and 4 point interaction terms in Eq. 3.1 we can derive that there are

only two production channels at leading order

qq̄ → GG∗ and gg → GG∗ (3.2)

with the correspondent Feynman diagrams depicted in Fig. 3.1.

G

G

G

G

G

G

G

G
G

G

GG

Figure 3.1: Leading order Feynman diagrams for sgluon pair production via quark-antiquark

annihilation and gluon fusion.

The corresponding total cross sections at the tree-level can be written as [35]

σ(qq̄ → GG∗) =
4πα2

s

9s
β3
G, (3.3)

σ(gg → GG∗) =
15πα2

sβG
8s

[
1 +

34m2
G

5s
− 24m2

G

5s

(
1− m2

G

s

)
1

βG
log

(
1 + βG
1− βG

)]
(3.4)

where
√
s is the invariant parton-parton energy and βG = (1−4m2

G/s)
1/2 is the center-of-mass

velocity of the G particle.

From Eqs. 3.3 and 3.4 we notice that while the gluon fusion increases near the threshold

with σgg ∼ βG, as characteristic of the s-wave component of the 4-point ggGG∗ interaction,

the quark-antiquark annihilation increases as σqq̄ ∼ β3
G, which corresponds to a p-wave com-

ponent of the derivative coupling gGG∗. Notice also the asymptotical scaling of the partonic

cross section with σ ∼ s−1 either for quark-antiquark annihilation or gluon fusion.

There is an important SUSY process which shares some similarities to pp→ GG∗, namely

squark pair production, when considering the gluinos decoupled. This process leads to the

same diagrams as in Fig. 3.1 with the adjoint final state scalars G replaced by fundamental

final state scalars q̃. Therefore at tree-level their differences can be traced back to the relative

strength of the color interactions [35]

σ(qq̄ → GG∗)

σ(qq̄ → q̃q̃∗)
=

tr(λ
a

2
λb

2 )tr(F aF b)

tr(λ
a

2
λb

2 )tr(λ
a

2
λb

2 )
= 6 for any βG, (3.5)

σ(gg → GG∗)

σ(gg → q̃q̃∗)
=


tr({Fa,F b}{Fa,F b})
tr({λa

2
,λ
b

2
}{λa

2
,λ
b

2
})

= 216
28/3 ≈ 23 for βG → 0,

tr(2FaF bF bFa+FaF bFaF b)

tr(2λ
a

2
λb

2
λb

2
λa

2
+λa

2
λb

2
λa

2
λb

2
)

= 18 for βG → 1.
(3.6)

Thus, the larger color charge of the sgluons expresses that they will be more copiously pro-

duced than squarks of the same mass.
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3.2 Production rates at NLO

In this section we will present the total rates for pp→ GG∗ and some features characterizing

the NLO corrections to this process. The numerical analysis is performed with the Mad-

Golem package, using the CTEQ6L1 and CTEQ6M as the LO and NLO parton densities

with 5 flavors [40]. We set the factorization and renormalization scales at the average of

the final state mass µ0 = µR = µF = mG, which represents the energy scale of the process

and has been shown to provide stable perturbative results [17]. For the strong coupling we

use the corresponding αs(µR). Its value is given by the two-loop running from ΛQCD to the

required scale µR with five active flavors. Unless stated otherwise we set the LHC center of

mass energy at
√
S = 8 TeV and the sgluon mass to mG = 500 GeV.

In Table 3.1 we present the total cross sections and corresponding K-factors

(K = σNLO/σLO) for different sgluon masses and LHC energies. We observe that the NLO

corrections are generally large, K > 1.5. For LHC energies of 7 TeV or 8 TeV and particle

masses between 500 GeV to 1 TeV we observe that the K-factor becomes unexpectedly large.

This is a well-know fact also in the supersymmetric particle production, which is not to be

seen as a sign of poor perturbative behavior but as an artifact of the LO CTEQ parton

densities which tend to provide artificially suppressed rates [40, 41].

√
S = 7 TeV

√
S = 8 TeV

√
S = 14 TeV

mG [GeV] σLO[pb] σNLO[pb] K σLO[pb] σNLO[pb] K σLO[pb] σNLO[pb] K

200 1.40× 102 2.26× 102 1.61 2.12× 102 3.36× 102 1.58 9.77× 102 1.48× 103 1.52

350 4.83× 100 8.21× 100 1.70 8.16× 100 1.36× 101 1.66 5.44× 101 8.46× 101 1.56

500 4.05× 10−1 7.32× 10−1 1.81 7.64× 10−1 1.34× 100 1.75 7.14× 100 1.14× 101 1.60

750 1.48× 10−2 3.01× 10−2 2.03 3.40× 10−2 6.54× 10−2 1.93 5.56× 10−1 9.29× 10−1 1.67

1000 8.60× 10−4 2.00× 10−3 2.33 2.47× 10−3 5.29× 10−3 2.15 7.31× 10−2 1.28× 10−1 1.75

Table 3.1: Total pp → GG∗ cross sections and corresponding K-factors for different sgluon

masses and LHC energies.

In Fig. 5.8 we provide a study of the LO and NLO cross sections as a function of the sgluon

mass. The left panel displays it is shown the total LO and NLO rates with their corresponding

theoretical uncertainties. These are estimated by the factorization and renormalization scale

variation in the range µ0/2 < µR,F < 2µ0. From the size of the envelopes we observe a clear

reduction of the uncertainties when going from LO to NLO. A more detailed analysis of the

scale dependences see Sec. 3.3.

In order to understand the structure of the NLO corrections, in the right panel of Fig. 5.8

we separate the contributions from the different partonic sub-channels: qq̄, gg and the purely

NLO crossed channel triggered by the gq/gq̄ initial state. We observe the dominance of the

gluon fusion sub-channel, which is approximately two orders of magnitude larger than the

second most important one (qq̄). The reason for this can be traced back at:
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Figure 3.2: LO and NLO cross sections σ(pp→ GG∗) as a function of the sgluon mass. The

band corresponds to a scale variation µ0/2 < µR,F < 2µ0. In the right panels we explicitly

separate the contributions from the different partonic sub-channels, qq̄, gg and also gq.

• In Eqs. 3.3 and 3.4 we observe that the color charge in the four color-octet interaction

is larger than in the triplet-octet.

• The gg sub-channel benefits from some particular kinematic features. As we discussed

after Eqs. 3.3 and 3.4, at the threshold the total partonic cross sections scales as

σgg ∼ βG corresponding to a s-wave while the qq̄ scales as σqq̄ ∼ β3
G corresponding

to a p-wave. Hence, the former dominates at the vicinity of the threshold.

• Moreover the threshold region corresponds to low-x where the gluon parton densities

become larger and dominate.

It is important to notice that the initial states gq/gq̄ are purely NLO sub-channels, i.e.

they do not have correspondent LO processes. In the absence of the tree-level piece, there

is no NLO virtual correction arising from them, since σVirtual =
∫
dΦ2 2Re[MLO ∗MVirtual].

However we still need to account for the initial-initial and initial-final Catani-Seymour dipoles

and the collinear counterterm dσCollinear associated with their corresponding genuine NLO

contributions.

3.3 Scale dependence

One of the main motivations for calculating the high order corrections is to lower the depen-

dence of the cross section on the unphysical quantities that we need to introduce as numerical

artifacts to cancel the UV and IR divergences, namely renormalization (µR) and factorization

(µF ) scales, reducing on this manner the theoretical uncertainties. These scales are respon-

sible to remove the UV and IR divergences order by order in perturbation theory. Only for

an arbitrarily large number of terms in the αs expansion, these dependencies would vanish.

The fact that it does not in the presence of a fixed number of terms is used to provide a
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handle on the uncertainties estimation. This explains why the scale variation has become a

standard procedure for the assessment of these theoretical uncertainties.
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Figure 3.3: Renormalization and factorization scale dependence. The plot traces the scale

dependence following a contour in the µF -µR plane in the range µ = (0.1 − 10) × µ0 with

µ0 = mG, as illustrated in the little square in the first panel. The sgluon mass we fix to

mG = 500 GeV.

The scale variation analysis in general should be done via independent variation of the two

scales, since they have different origins which makes them independent quantities. In Fig. 3.3

we show the scale dependence for the pp→ GG∗ production at LO and NLO, moving along

the contour in the µR-µF plan. The contour is illustrated in the little square in the first panel.

The individual scale variation is chosen as µ(0)/10 < µ < 10µ(0), where µ(0) stands for our

central value choice µ(0) = mG = 500 GeV. The stabilization of the scale dependence becomes

apparent as a smoother profile in the σNLO slope. From this plot we can also infer that the

renormalization scale dependence dominates the combined scale dependence. Quantitatively,

we obtain that the LO uncertainty ranges around ∆σLO/σLO ∼ O(80%), while the addition

of the next-to-leading order corrections reduces to approximately ∆σNLO/σNLO ∼ O(30%).

3.4 Real and virtual corrections

Real emission corrections to sgluon pair production arise from three particle final state con-

tributions pp→ GG∗j at order α3
s, where the extra jet can be j = g, q, q̄. Fig. 3.4 displays a

sample of the real emission diagrams. In Fig. 3.4a we observe the appearance of a new type

of diagonal splitting which is not present in the SM, namely G→ Gg. This splitting from a

color-octet scalar leads to a new type of infrared divergencies not present in the SM Catani-

Seymour dipoles available in the MadDipole [25] implementation. In order to deal with

these novel type of divergencies we include the corresponding sgluon dipoles in MadGolem .

These divergences arise when the sgluons radiate soft gluons requiring new final-final and

final-initial dipoles to subtract the IR divergencies. As a colored particle, sgluons perform

as spectator partons, however the dipole function only carries information about the mass of

the spectator particle, not about its spin. Therefore we can simply use the SM dipoles in the
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(c) Purely NLO subprocess via initial state gq̄/gq.

Figure 3.4: Sample Feynman diagrams for real emission corrections to sgluon pair production

denoting the different initial state subchannels.
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Figure 3.5: α dependence of the final-final (left) and final-initial (right) sgluon dipoles for

the sub-process gg → GG∗g.

initial-final case. For more details see Appendix A. There we present the new sgluon dipoles

including the FKS-style phase-space parameter 0 < α ≤ 1 [42]. In Fig. 3.5 we prove that the

cross section is numerically stable for a very wide range α = 1 − 10−8, which confirms the

satisfactory performance of the procedure and highlights its numerical stability, which holds

down to phase-space regions close to the actual instability, α→ 0.

Virtual corrections to pp→ GG∗ arise from all possible one-loop exchanges of the virtual

gluons to quarks and sgluons. Dimension regularization is used to regulate the UV divergen-



3.4 Real and virtual corrections 31

cies, where the number of dimensions is d = 4−2ε. In order to remove the UV divergences one

has to include the proper counterterms, which implement the renormalization of the strong

coupling constant and the sgluon mass. For more details in the renormalization procedure

see Appendix B. It is important to highlight that as an internal check we use an indepen-

dent implementation of our sgluon model in FeynArts. This way we could numerically

check our MadGolem virtual corrections to the output from FeynArts, FormCalc and

LoopTools [7].
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G
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(a) Self-energy corrections.
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G G
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(b) gGG vertex corrections.
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(c) ggGG vertex corrections.
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(d) Box diagrams.
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(e) gqq̄ vertex corrections.

G∗

G

(f) ggg vertex corrections.

Figure 3.6: Sample Feynman diagrams for virtual corrections to sgluon pair production via

quark-antiquark annihilation and gluon fusion.

We organize a sample of the virtual correction Feynman diagrams in Fig. 3.6. They are

divided into self-energy insertions, vertex corrections to the couplings gGG; ggGG; gqq̄ and

box contributions. In Fig. 3.7 we separately examine the different contributions of the real

and virtual NLO corrections to the hadronic process pp → GG∗ as a function of the sgluon

mass. We explore the relative contribution of each class of one-loop corrections as denoted in

Figs. 3.4 and 3.6 normalizing each piece by the LO cross section, ∆σNLO/σLO. We distinguish

two partonic subprocesses gg (left panel) and qq̄ (right panel). In this specific analysis we

left aside the gq/gq̄ channels, which have a minor contribution to the total rate and, as we

discussed previously, do not develop virtual corrections.

The bulk of the NLO quantum corrections arises from real emission and the ggGG vertex

corrections. Both of them grow with the sgluon mass and for intermediate sgluon masses of

approximately mG = 500 GeV each contribution amounts to a correction of roughly 40%.

The real corrections reach up to 100% for sgluons with masses at the TeV scale. As QCD

corrections to our supersymmetric setup are well defined this rise in the correction with mass
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cannot be interpreted as a break-down of perturbation theory. In fact we can interpret their

increase with the sgluon mass from the threshold behavior of the NLO corrections, since the

real emission diagrams have more contribution with the 4-point interaction vertex ggGG∗

than the LO part.
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Figure 3.7: Relative size ∆σNLO/σLO ≡ (σNLO − σLO)/σLO of the real emission and virtual

corrections to σ(pp→ GG∗) as a function of the sgluon mass mG. We separate the partonic

gg (left) and qq̄ (right) initial states. The contribution from the self-energies is negligible and

not explicitly shown.

3.5 Distributions: fixed order versus multi-jet merging

As we have seen for the specific case of pp→ GG∗, predictions based on the NLO cross section

incorporate significant improvements on the central values and theory uncertainties. Now we

want to ensure that these improvements hold also for the main distributions, adequately

describing their shapes.

We establish this comparison to the multi-jet merging computation [43, 44]. This method

has been shown to capture the main features of the processes and yield very satisfactory

description of experimental data concerning the shapes of distributions. The method consists

of the combination, without double counting, of the tree-level multi-jet matrix elements of

varying jet multiplicity with the parton showers. The former captures the features of the

process where the partons are hard and well separated and the latter the features of the

partons in the soft/collinear approximation, resuming the large logs. Therefore it merges two

complementary limits. The matching procedure between the matrix element calculation and

the parton shower satisfies a set of criteria that eliminate the double counting of the effects

that would be accounted for by both descriptions.

It is worth mentioning that despite the improvements in shapes for the multi-jet merged

approach, the overall normalization of the distributions depend to some degree on the merging

parameters. Therefore, to get a proper normalization the approach generally chosen is the

normalization of the multi-jet merged distributions to the NLO rate.
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In Fig. 3.8 we quantitatively check how well the NLO distributions from our fixed order

MadGolem computation perform in terms of shapes, when compared to the multi-jet merg-

ing computation. For the latler we report to the Mlm scheme [43] with up to two hard jets

using MadGraph 4.5 [45] interfaced with Pythia [46]. The NLO and multi-jet merging

distributions are normalized to unit. We also present the LO, real and virtual contributions

to the NLO distributions separately and are shown to scale. It is important to point out that

the inclusion of just one hard jet instead of two jets in the merging prescription does not

change the results within the numerical precision.
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Figure 3.8: Sgluon transverse momentum and rapidity distributions at parton level. We as-

sume mG = 500 GeV and
√
S = 8 TeV. For the NLO curves we separately display the LO,

virtual, and real contributions (α = 10−3). In addition, we show the corresponding distribu-

tions based on multi-jet merging in the MLM scheme [43] with up to two hard radiation jets.

The NLO and merged results are normalized to unity while the different contributions to the

NLO rates are shown to scale.

We observe that the NLO and merged distributions agree very well either for the sgluon

transverse momentum or rapidity. The small differences like the sightly harder pT profile

for the Mlm prediction are attributed to the additional recoil jets. We observe this by

comparing the real emission distributions and the LO ones. From the left panel of Fig. 3.8

we see a slightly harder profile for the real emissions. Analogously, in the right panel we

observe slightly more central sgluons in the merged distributions. This we can understand as

a balance of the first emission with the second jet in the initial state.
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3.6 Status of the current searches

Assuming a SUSY embedding for our effective description of the sgluon dynamics, the sgluon

pair production would not depend at tree-level on the supersymmetric parameters, except on

the mass of the sgluon itself, which would be related to the soft-SUSY breaking mechanism.

It has been shown that sgluons with masses of the order of 100 GeV are expected to decay to

two gluons with a branching ratio close to one [34, 35], where the sgluon-gluon-gluon by the

one-loop interchange of squarks. From this an effective dimension-five operator is obtained

[34]

L5D
Ggg ∝

g3
s

16π2

mg̃

m2
G

(fabcGaF bµνF
cµν + h.c.) (3.7)

allowing the decay G→ gg.

The ATLAS collaboration has performed a recent search for sgluons [39]. It assumes the

pair production of scalar gluons, each decaying as G → gg, leading to a four-jet final state.

The analysis uses the data sample collected in the year 2011 corresponding to the integrated

luminosity of 4.6 fb−1 with center of mass energy
√
s = 7 TeV. The main challenge of this

analysis is to manage the enormous QCD multi-jet background, which exceeds the signal by

orders of magnitude.

Figure 3.9: The 95% C.L. upper limits on the sgluon pair production cross sections × branch-

ing ratio to gluon pair as a function of the sgluon mass. Analysis performed by the ATLAS

collaboration [39]. The theoretical prediction for the sgluon pair productions at NLO was

produced by our code MadGolem [37].

Fig. 3.9 shows the 95% C.L. upper limits on the sgluon pair production cross sections ×
branching ratio to gluon pair as a function of the sgluon mass. The theoretical prediction for

the sgluon pair production at NLO in the plot was produced by our code MadGolem [37].
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Taking the cross section limit with the NLO calculation (blue line), sgluons with masses from

150 - 287 GeV (316 GeV expected) are excluded at the 95% C.L. by the ATLAS experiment

with the data from 2011.
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Chapter 4

SUSY monojet signatures

The main discovery channels for supersymmetry at the LHC are mediated by strong

interactions, these are pp → q̃q̃; q̃q̃∗; q̃g̃; g̃g̃, which we will analyze in detail in the Chap-

ter 5. Also the sgluon pair production pp → GG∗ discussed in the Chapter 3 could reveal a

signature of an underlying (non-minimal) realization of SUSY. The main limitation of these

production modes is that it will be hard to extract any model parameters beyond the new

particle masses. Nevertheless, mass measurements alone would not provide enough evidence

for a SUSY interpretation. Therefore it is also important to study production modes involv-

ing the new physics weakly interacting sector, accessing thereby some information about the

SUSY breaking pattern realized in this model.

In SUSY the simplest channels to access the new physics electroweak sector are the

associated production of a colored particle and a weak gaugino: gluino [47] or a squark with

chargino or neutralino. With these processes, apart from measuring the final state masses, it

is also possible to extract information about the gaugino couplings [48].

Among these channels the squark-neutralino production, pp → q̃χ̃0
1, provides some ad-

ditional interesting features, e.g. its phenomenological signature is monojet+ /ET , since

q̃ → qχ̃0
1. This is a striking signature for Beyond SM physics. In this chapter we will study

for the first time in the literature the production of neutralinos in association with squarks

pp→ q̃χ̃0
1. Throughout our analysis we will: 1) Show the structure of the NLO QCD correc-

tions; 2) Present a scan in the Minimal Supersymmetric Standard Model (MSSM) parameter

space depicting the main differences from point to point; 3) Present a comparison between

the NLO transverse momentum distributions and the multi-jet merging. In this manner we

intend to help upgrading the analysis of this channel to the NLO QCD level, benefitting from

a strongly reduced theoretical uncertainty. The results presented on this chapter are based

on the publication [36].

4.1 Leading order production

Squark-gaugino associated production is a semi-weak process O(αEWαs), therefore it is ex-

pected to naturally provide a smaller rate when compared to channels mediated by strong

37
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interactions only O(α2
s). Despite this fact, this production mode has a smaller phase-space

suppression than the strong interaction processes, since mχ0
1
� mq̃, mg̃. This is valid be-

cause the lightest neutralino, χ̃0
1, usually corresponds to the dark matter candidate in most

Supersymmetric scenarios.

At the leading order there is only one channel for squark neutralino production

qg → q̃χ̃0
1, (4.1)

with the corresponding Feynman diagrams shown in Fig. 4.1. From these diagrams we observe

q̃L/R

χ̃

χ̃

q̃L/R

Figure 4.1: Feynman diagrams for the associated squark-gaugino production to LO.

some features that appear at leading order which are important to be highlighted:

• This is a flavor locked process, i.e. if this process starts with the initial-state quark u

the final-state will have the squark ũ.

• Beyond the QCD vertices q-q-g or q̃-q̃-g, this process is driven also by the

SUSY-electroweak interaction vertex q-q̃-χ̃. As we adhere to first and second gener-

ation squarks and do not entertain the possibility of squark mixing, these couplings

remain diagonal in flavor space.

It is worth mentioning that, within the assumption that the lightest neutralino χ̃0
1 is the

dark matter candidate, the knowledge of its coupling gqq̃χ̃0
1

is a fundamental ingredient to

predict its thermal relic density in the universe. For instance, in the study of dark matter

annihilation described by the Feynman diagram of Fig. 4.2 (a). Another fundamental process

in which this coupling appears is in the study of dark matter direct detection experiments,

where the nuclear recoil would occur via a t-channel squark exchange, Fig. 4.2 (b).

q̃

χ̃0
1

χ̃0
1

χ̃0
1

χ̃0
1

q̃

q

q̄

q

q

(a) (b)

Figure 4.2: Leading order Feynman diagrams to the (a) dark matter annihilation and (b)

dark matter direct detection, involving the lightest neutralino χ̃0
1 as a dark matter candidate.

Observe that at LO for both process we have σ ∼ g2
qq̃χ̃0

1
.
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A recent analysis proposing to extract this coupling at the LHC via the process pp→ q̃χ̃0
1

was carried out at LO and can be found in Ref. [48]. Given the importance of this process it

is also crucial to provide the production rate with a small theoretical uncertainty. Therefore

it is important to calculate it within the NLO precision.

4.2 Real and virtual corrections

The NLO contributions to this production process appear at order O(αEWα
2
s). The real

emission contributions can arise from gluon and quark radiation. Depending on the squark-

gluino and squark-neutralino mass hierarchy, the latter may induce on shell squark or gluino

decays. A sample of these Feynman diagrams are depicted in Fig. 4.3.

q̃L/R

χ̃01

χ̃01

q̃L/R

q̃L/R

χ̃01

(a) Gluon and quark emissions.

q̃L/R
χ̃01

q̃L/R

χ̃01 q̃L/R
g̃

g̃

q̃L/R

q̃L/R

q̃L/R
χ̃01

(b) Quark emission with possibly on shell decay.

Figure 4.3: Sample Feynman diagrams for real emission corrections to squark-neutralino

production.

For the gluon emission, Fig. 4.3a we observe the appearance of the splitting q̃ → q̃g. This

type of radiation leads to a novel type of IR singularity not present in the SM, which occurs via

the diagonal emission of soft gluons from squarks. To cope with this new divergent structure

we introduce into MadGolem the respective Catani-Seymour dipoles. In Appendix A we

present these Catani-Seymour SUSY dipoles including the FKS-style phase-space cutoff 0 <

α ≤ 1 [42]. While the dipole subtraction always covers the soft and collinearly divergent

phase-space regions, in terms of a variable parameter α they can be defined extending more

(α = 1) or less (α � 1) into the non-divergent phase-space regime; for more details see

Appendix A.

Another special feature concerning the real emission diagrams appears when integrating in

phase-space the on shell contributions arising from the diagrams of Fig. 4.3b. This integration

can lead to double counting. For instance, let us consider the first diagram. In the case of

mq̃ > mχ̃0
1

this will render two types of contributions depending on whether we consider off
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shell and on shell squark decays:

gg → q̃(q̃∗)(∗) → q̃χ̃0
1q̄ squark-neutralino production

gg → q̃q̃∗ → q̃χ̃0
1q̄ squark anti-squark production. (4.2)

The first accounts for part of the real emission corrections of the squark-neutralino production.

However the second is already taken into account when calculating the squark anti-squark

production at LO, followed by the decay of the squark on its mass shell to the final state χ̃0
1q̄.

In order to avoid this double counting we subtract all on shell contributions. This is done by

means of the “On Shell Subtraction Method” in the Prospino scheme. For more details see

Sec. 2.5.

The virtual corrections to pp→ q̃χ̃0
1 arise from self-energy corrections, vertex corrections

and box diagrams. Beyond the pure QCD (gluon mediated) effects we also include the

SUSY-QCD (gluino mediated) corrections. We show a sample of these Feynman diagrams in

Fig. 4.4.

q̃L/R

χ̃01

χ̃01

q̃L/R

(a) Self-energy corrections.

q̃L/R

χ̃01

q̃L/R

χ̃01

q̃L/R

q̃L/R

q

q

g̃

(b) qqg vertex corrections.

q̃L/R

q̃L/R χ̃01

q̃L/R

χ̃01

g̃

(c) q̃χ̃0
1g vertex corrections.

q̃L/R

χ̃01

χ̃01

q̃L/R

(d) Box diagrams.

Figure 4.4: Sample Feynman diagrams for virtual corrections to squark-neutralino produc-

tion.

Numerical analysis

In our numerical analysis we use the CTEQ6L1 and CTEQ6M parton densities with five

flavors [40], for respectively the LO and the NLO contributions. For the strong coupling

we consistently rely on the corresponding αs(µR). We compute its value using two-loop

running from ΛQCD to the required renormalization scale, again with five active flavors.

For the central renormalization and factorization scales we use the average final state masses

µ0
R = µ0

F = (mq̃+mχ̃)/2, which has been shown to lead to stable perturbative results [23, 24].

Given the current LHC bounds on squark and gluino production [49] we modified the

standard SPS1a point [50] to SPS1a1000 increasing the gluino mass to 1 TeV, thus being

more consistent with the recent bounds. This modification will only have an impact on the

loop corrections for pp → q̃χ̃0
1, since the gluinos do not appear at LO. Moreover, as we will

discuss further down, the influence of the gluino mass is certainly meager.
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In Tab. 4.1 we present the individual production rates and corresponding K factors for

the different squark-neutralino channels involving first and second generation squarks and

for each of the squark chiralities separately. The main contributions for this process appear

from the ũ and d̃ in the final state. This is due to the flavor-locked nature of the LO process,

where the valence quarks u and d in the initial state lead to major contributions from high

parton luminosities. The second generation gives just a sub-leading contribution to the total

rate of around 5%, as will be shown, it is within the NLO scale uncertainty.

√
S [TeV] σLO [fb] σNLO [fb] K σLO [fb] σNLO [fb] K mq̃R [GeV] mq̃L [GeV]

7
ũR χ̃

0
1

29.62 42.17 1.42
ũL χ̃

0
1

0.83 1.26 1.52
549 561

14 176.36 245.74 1.39 5.03 7.52 1.49

7
d̃R χ̃

0
1

3.61 5.31 1.47
d̃L χ̃

0
1

1.21 1.77 1.46
545 568

14 24.89 35.50 1.43 8.67 12.37 1.43

7
c̃R χ̃

0
1

1.12 1.81 1.61
c̃L χ̃

0
1

0.03 0.06 2.00
549 561

14 13.69 20.69 1.51 0.38 0.66 1.70

7
s̃R χ̃

0
1

0.57 0.78 1.38
s̃L χ̃

0
1

0.19 0.29 1.56
545 568

14 5.86 8.45 1.44 2.00 2.98 1.49

7 ∑
q̃R χ̃

0
1

34.92 50.07 1.43 ∑
q̃L χ̃

0
1

2.26 3.38 1.50

14 220.80 310.38 1.41 16.08 23.53 1.46

Table 4.1: Individual production rates σ(pp → q̃χ̃0
1) and corresponding K factors for the

modified SPS1a1000 scenario. The first and second generation squark masses happen to be

degenerate. The scales are set to their central values µ0
R = µ0

F = (mq̃ + mχ̃0
1
)/2. In the last

line we show the sum of all contributions. We quote the relevant squark masses in the right

columns.

In Fig. 4.5 we present the LO and NLO cross sections as functions of the squark mass mũR .

We vary in parallel all squark masses, so that the original mass splitting mũL −mũR is kept

constant. The bulk of the quantum effects arises from the virtual corrections, which largely

dominate over the real emission corrections. In order to correctly interpret this observation

we should point out that real and virtual corrections are separated by means of Catani-

Seymour dipoles for α = 1. As discussed in Appendix A, however, when changing this

parameter to smaller values we shuffle part of the virtual contribution to the real part since

the dipole subtraction term covers a smaller phase-space range. It is important to remember

that despite this shuffling between real and virtual corrections the total rate is independent

on the unphysical α parameter.

The relative size of the NLO corrections is shown to be mostly independent on the squark

mass leading to a correction of order K ' 1.4 for squark mass in the range 300 GeV < mũR <

900 GeV. At variance notice that, for the same mass range, the total LO and NLO rates nail

down by two orders of magnitude due to phase-space suppression. In order to understand

the source of the NLO corrections and the reason for an almost constant K factor we present

in the right panel of Fig. 4.5 the relative size of each contributions to the real and virtual

parts. For the real corrections we present the results separately in terms of the different

initial states. For the virtual corrections we present all the contributions from the different

one-loop topologies in Fig. 4.4 except for the self-energy corrections, which lie below 1%.
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Figure 4.5: On the left panel we present the cross sections σ(pp → ũRχ̃
0
1) (top figure) and

K factor (bottom figure) as a function of the squark masses, which we vary simultaneously,

preserving a constant mass splitting mũL −mũR = 20 GeV. For negative contributions to the

total rate we show the absolute value |σ|. The remaining MSSM parameters are fixed to the

SPS1a1000 benchmark point. Real and virtual corrections are separated using the original

Catani-Seymour dipoles [14] with α = 1; the integrated dipoles are included in the virtual

corrections. On the right panel we show the relative size of each type of real and virtual

corrections. Contributions from quark and squark self-energies lie below 1% and are not

explicitly shown.

The bulk of the NLO corrections arises from the qqg vertex corrections and integrated

dipoles, each of them leading to a 20% shift in the cross section. The corrections are mostly

constant when changing the squark mass because their main contributions arise from pure

QCD corrections. These involve the exchange of one virtual gluon (diagram on the left on

Fig. 4.4b) while the SUSY-QCD ones (diagram on the right on Fig. 4.4b) are suppressed by

the SUSY masses present in the loops. Thereby we observe that the vertex correction q̃χ̃0
1q

decreases when increasing the squark mass. This happens because all the loop corrections

are pure SUSY-QCD; they present at least one SUSY particle in the corresponding one-loop

diagram, see Fig. 4.4c.

4.3 Scale dependence

In Fig 4.6 we analyze the dependence of the cross section as a function of the unphysical pa-

rameters, namely factorization and renormalization scales, when we move from LO to NLO.

We observe the stabilization of the cross section when going to NLO. Unlike a Drell-Yan type
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Figure 4.6: Profile of the renormalization and factorization scale dependence for pp→ ũRχ̃
0
1.

The plot traces the scale dependence following a contour in the µR-µF plane covering µ =

(0.1 − 10)µ0 as shown in the left panel. We assume our benchmark parameter choice and√
S = 7 TeV.

channel, in the current associated production process we have an explicit renormalization

scale dependence at LO, as far as σLO ∼ αs. But the µR dependence does not dominate

the scale dependence as in the QCD pair production, σLO ∼ α2
s. This feature can be ex-

plicitly seen when comparing the scale dependence plot presented here with the sgluon pair

production in Fig. 3.3.
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Figure 4.7: Total cross section for pp → ũR χ̃
0
1 including the scale uncertainty as a function

of the squark mass. The band corresponds to a scale variation µ0/2 < µR,F < 2µ0. All the

MSSM parameters we fix to the benchmark choice SPS1a1000 and show results for
√
S = 7 TeV

and 14 TeV.

Finally, in Fig. 4.7 we show LO and NLO cross section for 7 and 14 TeV. The bands

represent the scale dependence which is obtained for a simultaneous scale variation µ0/2 <

µR,F < 2µ0. The NLO uncertainty band shrinks down to ∆σ/σ . 20%, as opposed to the

70% level of the LO one. Comparing the two LHC energies we see that for 14 TeV the same

number of signal events corresponds to an increase in the squark mass by at least 200 GeV.

This gives an estimate on how much the discovery reach may increase when promoting the

LHC to the high energy run.
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4.4 MSSM parameter space

Given the enormous size of the parameter space present in the MSSM, it was defined a set

of benchmark points, namely SPS points [50]. These represent several types of realizations

of the MSSM involving different mass hierarchies, coupling constants and assume a different

underlying SUSY-breaking mechanism. These points by no means cover the whole parameter

space, however are very useful in order to understand the effects when changing the MSSM

parameters.

In Tab. 4.2 we survey all the SPS points and compute the corresponding cross section

and K-factor predictions for each of them. We observe that the total cross section strongly

depends on each parameter space point. The reason is twofold:

• Kinematics effect – the different phase-space suppression in each case depending on

the final-state masses.

• Dynamics effect – the strength of the coupling gqq̃χ̃0
1
, which changes substantially

from one SPS point to another.

√
S [TeV] σLO [fb] σNLO [fb] K mũ md̃ mg̃ mχ̃0

1

SPS1a1000
7 35.27 50.44 1.43 ũL : 561 d̃L : 568

1000 97
14 215.02 301.27 1.40 ũR : 549 d̃R : 545

SPS1b
7 2.77 3.99 1.45 ũL : 872 d̃L : 878

938 162
14 27.21 37.46 1.38 ũR : 850 d̃R : 843

SPS2
7 0.04 0.07 1.52 ũL : 1554 d̃L : 1559

782 123
14 1.21 1.64 1.36 ũR : 1554 d̃R : 1552

SPS3
7 3.15 4.55 1.44 ũL : 854 d̃L : 860

935 161
14 30.20 41.59 1.38 ũR : 832 d̃R : 824

SPS4
7 6.44 9.04 1.40 ũL : 760 d̃L : 766

733 120
14 52.87 71.40 1.35 ũR : 748 d̃R : 743

SPS5
7 13.26 18.11 1.37 ũL : 675 d̃L : 678

722 120
14 95.81 132.29 1.38 ũR : 657 d̃R : 652

SPS6
7 9.84 14.06 1.43 ũL : 670 d̃L : 676

720 190
14 77.08 107.03 1.39 ũR : 660 d̃R : 650

SPS7
7 2.19 3.17 1.45 ũL : 896 d̃L : 904

950 163
14 22.36 30.80 1.38 ũR : 875 d̃R : 870

SPS8
7 0.65 0.95 1.45 ũL : 1113 d̃L : 1122

839 139
14 8.73 11.79 1.35 ũR : 1077 d̃R : 1072

SPS9
7 0.39 0.58 1.49 ũL : 1276 d̃L : 1279

1872 187
14 7.65 10.42 1.36 ũR : 1282 d̃R : 1289

Table 4.2: Summed cross section and corresponding K factors for all four first-generation

squark processes pp → q̃χ̃0
1 in different SPS benchmark scenarios. The scales are chosen at

µ0
R,F . All masses are given in GeV.
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Instead, we should also notice that the corrections are largely insensitive to the specific

SPS point remaining around K ∼ 1.4. We already observed this feature at Fig. 5.8. As

previously explained, the reason stems from the dominance of genuine QCD effects (gluon

mediated), arising mostly from qqg vertex correction and integrated dipoles. These effects

are not high to any SUSY mass suppression, therefore the relative size barely depends on the

SUSY mass spectrum.

4.5 Distributions: fixed order versus multi-jet merging

After our study of the total production rate at NLO for pp → q̃χ̃0
1 we also want to ensure

that this picture includes improvements in the main distributions. We study quantitatively

this via a comparison between the NLO distributions from MadGolem and the multi-jet

merging computation. For the latter we use the Mlm scheme [43] with up to two hard jets,

as implemented in MadGraph5 [45] interfaced with Pythia [46]. We have confirmed that

carrying out these simulation using up to one hard jet does not change these results within

the numerical precision.
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Figure 4.8: Squark and neutralino pT distributions at the LHC (
√
S = 14 TeV) for SPS1a1000 .

We compare the merged sample with the fixed order NLO computation. Both curves are

normalized. We also show contributions to the NLO cross sections from the leading order,

virtual and real parts. The latter are separated using the Catani-Seymour dipole with α =

0.01.

In Fig. 4.8 we present the pT distributions for the squarks and neutralinos at NLO and

for multi-jet merging, both normalized to unit. We also present the LO, real and virtual

contributions to the NLO distributions separately and shown to scale with respect to the

former. We observe a fine agreement between the NLO and the merged distributions. There

is a slightly harder pT profile for the squarks in the merged approach. This change in profile

is attributed to the additional recoil jets. This can be seen by the observation that the NLO
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real corrections have a slightly harder profile which partially counter-balances the transverse

momentum with the additional jet emission.

4.6 Squark-gaugino channels

Until now in this chapter, we have concentrated in the pp→ q̃χ̃0
1 production. In this section we

are interested in considering the LO and NLO rates for some other squark-gaugino channels,

namely pp → q̃χ̃0
1, q̃χ̃

0
2, q̃χ̃

±
1 , this way including heavier neutralinos as well as charginos.

These can lead to additional leptons in the signature from the decay of the charginos and

the heavier neutralinos. For instance, with χ̃0
2 in the final state we could have the following

decay chain χ̃0
2 → l± l̃∓ → l±l∓χ̃0

1.
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NLO
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√S = 7 TeV

NLO

LO

Figure 4.9: Cross sections for different squark and neutralino/chargino production channels,

pp → q̃χ̃0
1, q̃χ̃

0
2, q̃χ̃

±
1 , as a function of the final-state neutralino/chargino mass. We show

results for
√
S = 7 TeV and the modified SPS1a scenario. As in Tab. 4.2 we sum over all

first-generation squarks. The scales are fixed to µ0
R,F .

In Fig. 4.9 we show the LO and NLO total rate for squark with neutralino or chargino

production as a function of the gaugino mass. The differences in cross sections for the

explored channels can be traced back to their differences in strength for the coupling gqq̃χ̃.

For example, the total rate for production of q̃χ̃0
1 is roughly four times smaller than the q̃χ̃0

2

mostly because of the relative strength (gqq̃χ̃0
2
)/gqq̃χ̃0

1
∼ 1.8.



Chapter 5

Squark and gluino pair production

to Next-to-Leading Order

NLO QCD corrections to squark and gluino production were first computed more than 10

years ago [17–19] and made public in the Prospino package [20]1. They have been proven

to be essential for improved total rate predictions, substantially reducing the theoretical

uncertainties from O(100%) at LO down to O(20%) at NLO.

In this chapter we will present an improved, brought-to-date analysis of the squark and

gluino production, focusing in their NLO QCD effects. Using the MadGolem package we

go beyond the former analyses, since in our framework no restriction assumptions on the

supersymmetric mass spectra are needed. Moreover the code can also provide a study at the

distribution level. In addition, benefitting from the automatic, fully flexible generation of

the processes, as well as of the analytical Feynman-diagramatic approach, we can single out

specific elements of the QCD quantum corrections leading to a better understanding of the

NLO contributions. For instance, we can consider the contributions arising from different

partonic sub-channels, or separate the different one-loop topologies.

Particular emphasis we devote to illustrating the reduction of the theoretical uncertain-

ties in total rates and kinematic distributions as a key improvement of NLO predictions. We

conduct a comprehensive comparison of the fixed order differential cross sections with those

obtained by multi-jet matrix element merging, including a variation of the renormalization

and factorization scales. To conclude, we perform an analysis in terms of total rates and

distributions, in which we check the numerical implications of the usual simplifying assump-

tions taken in the hitherto available NLO predictions for these major SUSY-pair processes,

in special, that of assuming a mass-degenerate squark spectrum. The results presented in

this chapter are based on the publication [38].

1As highlighted in Sec. 2.8, all the presented results have been checked to agree with Prospino2 wherever

applicable.

47
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5.1 Rates

In this section we start by performing a scan in the MSSM parameter space at the LHC

involving all the pairs of squarks and gluinos in the final state:

pp→ q̃q̃, q̃q̃∗, q̃g̃, g̃g̃ . (5.1)

Following the typical decay signature we focus on the dominant first and second generation

squarks q̃ = ũL,R, d̃L,R, s̃L,R, c̃L,R (where we do not consider flavor-mixing, i.e. the SUSY-

QCD couplings are flavor-diagonal).

In our numerical analysis we use the CTEQ6L1 and CTEQ6M parton densities with five

active flavors [40]. Unless stated otherwise, both the central renormalization and factorization

scales we fix at the average final-state mass µR = µF ≡ µ0 = (m1 + m2)/2. From previous

studies, this choice is known to lead perturbatively stable results [17–19]. The strong coupling

constant αs(µR) we compute accordingly. For this we use two-loop running from ΛQCD to

the required renormalization scale, within the five active flavor scheme. When applicable, the

symmetry factor 1/2 stemming from the presence of two identical particles in the final state,

viz. a pair of gluinos or of same-sign squarks with equal chirality and flavor, is introduced

automatically.

The NLO corrections to these processes arise at order O(α3
s). The virtual corrections

include the one-loop exchange of virtual gluons and gluinos. The standard ’t Hooft-Feynman

gauge is employed for internal gluons to avoid higher rank loop integrals. Accordingly, Fadeev-

Popov ghosts appear in the gluon self-energy and in the three-gluon vertex corrections. Ultra-

violet divergences are cancelled by renormalizing the strong coupling constant and all masses.

Supersymmetry identifies the strong gauge coupling constant gs and the Yukawa coupling of

the quark–squark–gluino interaction, ĝs. At the one-loop level dimensional regularization in-

duces an explicit breaking of this symmetry via the mismatch between the 2 fermionic gluino

components and the (2− 2ε) degrees of freedom of the transverse gluon field. We restore the

underlying supersymmetry with an appropriate finite counter term [19, 51]. Details on the

renormalization procedure can be found in Appendix B.2.

The real emission contributions arise from gluon and quark radiation. The associated

infrared divergences we subtract using Catani-Seymour dipoles, generalized to include the

massive colored SUSY particles (cf. Ref [14] and our representation in the Appendix A of

this thesis). Their respective dipoles are provided in our code, which includes the FKS-like

phase space cutoff α [42]. The soft and collinearly divergent phase space regions covered

by the dipole subtraction we can select to extend more (α = 1) or less (α � 1) into the

non-divergent phase space by changing this cutoff α, for more details see Appendix A. Still

concerning the real emission, on shell intermediate states can lead to double-counting which

need to be subtracted. For instance, the real corrections for the squark–antisquark production

depicted on Fig. 5.1 can lead to on shell gluino decays if mq̃ < mg̃ and these contributions

can lead to a double-counting when studied alongside with the associated production of
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q̃

Figure 5.1: Sample Feynman diagrams for real emission corrections to squark–antisquark

production, the first two diagrams illustrate situations that may lead to an on-shell decay of

a gluino, whereas the third one describes a typical non-resonant contribution.

squark-gluino pairs. In fact we can separate them into two different types of contributions

qg → q̃(g̃)∗ → q̃q̃∗q squark–antisquark production

qg → q̃g̃ → q̃q̃∗q squark–gluino production , (5.2)

and subtract the pure squark–gluino part in which the on-shell gluino decays promptly into a

quark-squark pairs, from the squark–antisquark production by an off-shell gluino intermedi-

ate state g̃∗, and which indeed constitutes part of the genuine real correction to the squark-

antisquark production to NLO. Following the Prospino scheme, MadGolem removes au-

tomatically all the on-shell configurations locally through a point-by-point subtraction over

the entire phase space. For more details see Sec. 2.5.

5.1.1 Parameter space

mũL
mũR

md̃L
md̃R

mg̃ mass hierarchy

CMSSM 10.2.2 1162 1120 1165 1116 1255 q̃R < q̃L < g̃

CMSSM 40.2.2 1200 1168 1202 1165 1170 q̃R < g̃ < q̃L

CMSSM 40.3.2 1299 1284 1301 1284 932 g̃ < q̃R < q̃L

mGMSB 1.2 899 868 902 867 946 q̃R < q̃L < g̃

mGMSB 2.1.2 933 897 936 895 786 g̃ < q̃R < q̃L

mAMSB 1.3 1274 1280 1276 1289 1282 ũL < ũR < g̃, d̃L < g̃ < d̃R

Table 5.1: Squark and gluino masses (in GeV) for different benchmark points, by which we

profile the trademark MSSM phenomenology.

In this section we perform a scan in the MSSM parameter space for LHC center-of-mass

energy of
√
S = 14 TeV. We choose new benchmark points in agreement with the current LHC

constraints [52]. In Tab. 5.1 we list these benchmark points and explicitly show their mass

hierarchy and in Tab. 5.2 we present the corresponding results for the predicted total rates

to LO and NLO. Using the general MadGolem setup it is possible to separate the squark

flavor and chirality in squark pair production and in associated squark–gluino production.

The size of the NLO QCD effects we express through the consistent ratio K ≡ σNLO/σLO.
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ũLũL ũRũR ũLũR ũd̃

σLO σNLO K σLO σNLO K σLO σNLO K σLO σNLO K

CMSSM 10.2.2 26.2 29.2 1.11 31.0 34.3 1.11 26.2 30.7 1.17 87.7 104.8 1.19

CMSSM 40.2.2 22.8 26.0 1.14 26.0 29.4 1.13 25.2 30.2 1.20 75.2 91.2 1.21

CMSSM 40.3.2 14.8 18.1 1.22 15.8 19.1 1.21 23.1 29.9 1.29 49.8 63.6 1.28

mGMSB 1.2 85.3 97.0 1.14 98.1 110.7 1.13 99.7 120.4 1.21 316.6 387.8 1.22

mGMSB 2.1.2 73.9 88.7 1.20 87.6 104.5 1.19 113.9 144.5 1.27 293.3 372.6 1.27

mAMSB 1.3 16.8 18.9 1.13 16.4 18.4 1.12 16.1 19.1 1.19 48.3 58.1 1.20

ũLũ
∗
L ũRũ

∗
R ũLũ

∗
R, ũRũ

∗
L ũd̃∗

σLO σNLO K σLO σNLO K σLO σNLO K σLO σNLO K

CMSSM 10.2.2 3.0 4.6 1.54 3.8 5.8 1.53 4.6 6.0 1.30 16.0 19.3 1.21

CMSSM 40.2.2 2.5 3.8 1.49 3.0 4.6 1.53 3.7 4.9 1.32 13.1 15.8 1.21

CMSSM 40.3.2 1.7 2.5 1.44 1.9 2.7 1.44 1.9 2.6 1.33 7.7 9.3 1.20

mGMSB 1.2 17.8 27.5 1.54 21.9 33.7 1.54 21.1 27.8 1.32 74.1 92.8 1.25

mGMSB 2.1.2 16.0 23.0 1.44 20.2 29.2 1.45 17.1 22.5 1.32 66.0 81.6 1.24

mAMSB 1.3 1.6 2.4 1.54 1.5 2.3 1.53 2.2 3.0 1.32 7.7 9.2 1.20

ũLg̃ ũRg̃ ũ∗Lg̃ d̃g̃ g̃g̃

σLO σNLO K σLO σNLO K σLO σNLO K σLO σNLO K σLO σNLO K

CMSSM 10.2.2 78.7 108.6 1.38 87.7 120.3 1.37 2.3 3.8 1.63 58.2 83.6 1.44 23.3 53.4 2.29

CMSSM 40.2.2 93.5 131.3 1.40 101.7 142.3 1.40 2.8 4.6 1.65 68.7 100.5 1.46 41.1 94.5 2.30

CMSSM 40.3.2 159.4 239.5 1.50 165.6 248.2 1.50 5.2 9.0 1.73 116.3 182.0 1.57 249.2 552.9 2.22

mGMSB 1.2 467.0 610.6 1.31 511.4 665.4 1.30 18.7 28.3 1.52 371.2 503.3 1.36 222.8 453.4 2.03

mGMSB 2.1.2 777.0 1077.6 1.39 868.0 1193.9 1.38 33.6 52.5 1.56 638.1 914.6 1.43 849.6 1755.0 2.07

mAMSB 1.3 54.4 78.1 1.44 53.5 77.0 1.44 1.5 2.6 1.71 36.3 54.5 1.50 19.0 46.1 2.42

Table 5.2: Total cross sections (in fb) and corresponding K factors for squark and gluino

production at
√
S = 14 TeV. The renormalization and factorization scales are chosen as the

average final state mass. The notation ũd̃ indicates the summation over all possible final-

state chiralities ũd̃ = ũLd̃L + ũLd̃R + ũRd̃L + ũRd̃R. Symmetry factors 1/2 are automatically

included, when applicable.

Analogously to the results obtained from a similar analysis for the squark-neutralino

process pp→ q̃χ̃0
1 in Sec. 4.4, we observe that the total cross section strongly depends on the

specific benchmark point that we consider. Here as the process is just driven by the strong

coupling constant αs the main variations in the rates for different scenarios have a mere

kinematical origin, and arise essentially from the different phase space suppression in each

case depending on the final-state masses. We also observe that the K factors remain stable

when comparing the different scenarios analyzed for the same process. This is so because the

main corrections arise from pure QCD effects while the SUSY-QCD ones are mass suppressed.

This fact we will study in more detail in the next sections. Let us also point out that the

corresponding results for the lower nominal center-of-mass energy
√
S = 8 TeV typically

render smaller cross-sections (falling down by factor 10 − 50) and slightly larger K factors

resulting from the different scaling behavior of the LO and NLO contributions convoluted

with the pdfs, and also in part to a well-know poor perturbative behavior of the CTEQ parton

densities at LO.

Lastly, the different color charges of squarks and gluinos as well as their spin are clearly

reflected in the production rates. Interactions among color octets will give larger rates than

color triplets. Similarly, fermion pairs yield larger cross sections than scalar pairs. This effect

is not only observed in the LO and NLO rates but also in the relative K factor, namely the

in the relative size of the QCD-induced quantum corrections.
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5.1.2 Squark pair production

Squark pair production can lead to a multitude of final states, which we first classify into two

basic categories:

1. squark–squark pairs q̃q̃, to leading order, as depicted in Fig. 5.3, are mediated by t-

channel gluino interchange between colliding quarks. This mechanism is flavor-locked,

so first generation squarks will dominate. In particular in proton-proton collisions at

large parton-x values this channel will contribute large cross sections because it links

incoming valence quarks.

q̃

q̃
g̃

q̃

q̃g̃

Figure 5.2: Sample Feynman diagrams for squark–squark production to LO.

2. squark–antisquark pairs q̃q̃∗ with three distinct sub-channels: qq̄ annihilation through

an s-channel gluon; qq̄ scattering via a t-channel gluino, and gg fusion with s-channel

and t-channel diagrams. Due to the large adjoint color charge and the higher spin

representations involved the gg initial-state dominates at the LHC up to moderate

parton-x values, while the quark-mediated partonic sub-channels become more relevant

in the large x limit. In the absence of flavor mixing, the gluino-induced sub-channel is

flavor-locked to the initial state while the other two are flavor-locked within the final

state. First and second generation squarks will therefore contribute with similar rates,

at variance with the (same sign) squark–squark production.

q̃

q̃

q̃

q̃
g̃

q̃

q̃

q̃

q̃

q̃

q̃
q̃

q̃

q̃q̃

Figure 5.3: Sample Feynman diagrams for squark–antisquark production to LO.

The predicted LO and NLO rates alongside their K factors we document in Table 5.2.

The production of squark pairs q̃q̃ yields cross sections of 10 to 100 fb for squark and gluino

masses around 1 TeV. The squark–antisquark rates for this mass range are roughly one order

of magnitude smaller. These cross sections are highly sensitive to the strongly interacting

superpartner masses. This is largely due to kinematics, i.e. the different squark masses

in each benchmark point. For instance, the production of the lighter right-handed squarks

comes with larger production rates than that of their left-handed counterparts. According

to Tab. 4.2 this is true for all benchmark points except for mAMSB 1.3. This means that in

a squark–(anti)squark sample right-handed squarks will be overrepresented. This can be a

problem if the NLO computation does not keep track of the different masses of left-handed

and right-handed quarks.
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In contrast, we see that the K factors barely change between benchmark points, because

the bulk of the NLO effects are genuine QCD effects. Notice that, all K factors range around

K ∼ 1.2 for squark-squark production – correspondingly, for squark-antisquark production

they render K ∼ 1.2−1.5 depending on the specific channel. Some sample Feynman diagrams

depicting the NLO SUSY-QCD corrections we show in Fig. 5.4. The supersymmetric QCD

corrections including one-loop squark and gluino loops are power-suppressed by the heavy

particle masses.

q̃

q̃

g̃

g̃

q̃

q̃

g̃
q̃

q̃g̃

q̃

q̃

g̃ q̃

q̃
g̃

g̃

Figure 5.4: Sample Feynman diagrams for squark–antisquark production to NLO. Virtual

corrections involve the exchange of gluons, gluinos and squarks. Real corrections denote the

emission of one quark or gluon.

An interesting observation we make for squark pairs with different chiralities, e.g. ũLũR.

As mentioned above, all q̃q̃ channels proceed via a t-channel gluino. For identical final-state

chiralities, the gluino propagator corresponds to a mass insertion – enhancing the LO rates

for heavy gluinos. This is not true for ũLũR production, where we probe the /p term in

the gluino propagator (cf. the Feynman diagrams shown in Fig. 5.3). This difference can

be read off Tab. 5.2. The ũLũL and ũRũR channels are suppressed from CMSSM 10.2.2 to

CMSSM 40.3.2, following a decrease in the gluino mass. On the other hand, the ũLũR rate

remains quite constant. This different behavior is also visible from their K factors, which are

ordered as KLL ∼ KRR < KLR.

In Fig. 5.5 we separate the real and virtual QCD and SUSY-QCD corrections for ũLũ
∗
L

production as a function of the final state mass mũL . All the other heavy masses we vary

simultaneously, keeping the absolute mass splittings of the CMSSM 10.2.2 benchmark point

shown in Tab. 4.2. The two main partonic subprocesses contributing to the process we

show separately. The separation into real and virtual corrections we define through Catani-

Seymour dipoles with a FKS-like cutoff α = 1. The integrated dipoles count towards the

virtual corrections while only the hard gluon radiation counts towards the real corrections.

This is the reason why the real corrections appear negligible. The cross sections for both the

gluon fusion gg and the quark-antiquark qq̄ subprocesses are essentially determined by the

squark masses and the corresponding phase space suppression. The gluon fusion dominates

in the lower squark mass range, contributing with rates of roughly a factor 2 above the

qq̄ mechanism. Conversely, the gg channel depletes slightly faster than the qq̄, especially

for large squark masses. This can be traced back to the respective scaling behavior of the

cross sections [17] as a function of the partonic energy, and its correlation to the parton

luminosities. As already mentioned, heavier final-states probe larger parton-x values — this
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Figure 5.5: Cross sections for ũLũ
∗
L production for the different initial states as a function of

the squark and the gluino masses. The qq̄ process (left) includes also the qg crossed-channels.

Together with mũL we vary all squark and gluino masses such that the mass splittings of the

CMSSM 10.2.2 benchmark point are kept. In the lower panels we evaluate the relative size

of the NLO cross section with respect to the total LO rate for each sub-channel.
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Figure 5.6: Relative shift ∆σNLO/σLO for the different parts of the virtual corrections to

qq̄/gg → ũLũ
∗
L production. All squark and gluino masses we vary in parallel, just like in

Fig. 5.5.

being the region where the quark parton densities become more competitive, while the gluon

luminosity depletes.
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The lower panels of Fig. 5.5 show the relative size of the NLO contributions with respect

to the total LO rate. While σvirtual/σLO grows with increasing squark masses, specially for

the gg initial state, σreal/σLO stays constant. This effect is related to threshold enhancements:

first, a long-range gluon exchange between slowly moving squarks in the gg → ũũ∗ channel

gives rise to a Coulomb singularity σ ∼ παs/β, where β denotes the relative squark velocity in

the center-of-mass frame, β ≡
√

1− 4m2
ũ/Ŝ. This is nothing but the well-known Sommerfeld

enhancement [53]. The associated threshold singularity cancels the leading σ ∼ β dependence

from the phase space and leads to finite rates but divergent K factors [19]. In addition, there

exists a logarithmic enhancement σ ∼ [A log2(β) + B log(8β2)] from initial-state soft gluon

radiation. This second effect is common to the gg and qq̄ initial states. Threshold effects can

be re-summed to improve the precision of the cross section prediction [54].
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Figure 5.7: Renormalization and factorization scale dependence for squark pair production

pp→ ũLũL (upper) and pp→ ũLũ
∗
L (lower). The plots trace a contour in the µR-µF plane in

the range µ = (0.1−10)×µ0 with µ0 = mũL . All MSSM parameters follow the CMSSM 10.2.2

benchmark point in Tab. 4.2.

The internal architecture of the virtual corrections we analyze in Fig. 5.6. Virtual dia-

grams come in different one-loop topologies: self-energy and wave-function corrections, three-

point vertex corrections, and box corrections. The box diagrams also include the one-loop

corrections to the quartic ggq̃q̃ vertex. Again, we assume the specific flavor/chirality final

state ũLũ
∗
L with the CMSSM 10.2.2 parameter point. Just like in Fig. 5.5 the masses vary in

parallel, keeping the splitting constant. The threshold effects discussed in the previous para-

graph are nicely visible in the increasing ratio ∆σNLO/σLO for the boxes and the integrated

dipoles, where the quantity ∆σNLO/σNLO accounts for the genuine O(αs) NLO contributions.

This enhancement leads to sizable quantum effects in the 30%− 70% range for the gg initial
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state.

For the qq̄-initiated subprocess the integrated dipoles are numerically far smaller. The

bulk of the virtual corrections is driven by the boxes, the gluino self-energy, and the negative

quark–squark–gluino vertex correction. Their remarkable size we can trace back to mass

insertions in the gluino-mediated diagrams, which can enhance the relative size of their con-

tributions for large gluino masses, very much in the same way as we have encountered for

the LO rates. Barring these dominant sources, Fig. 5.6 illustrates that all remaining NLO

contributions stay at the ∼ 5% level or below. In the absence of threshold effects, all these

pieces are insensitive to the squark mass. As a consequence, both the LO and the NLO

cross sections undergo essentially the same phase space suppression as a function of the final

state mass. Because we vary all masses in parallel this is also indicative of the dominance of

the gluon-mediated QCD effects as compared to SUSY-QCD corrections. In the large-mass

regime the latter have to be power suppressed, matching on to the decoupling regime.
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Figure 5.8: Cross sections σ(pp → ũLũL) (left) and σ(pp → ũLũ
∗
L) (right) as a function of

the squark mass. The band corresponds to the scale variation envelope µ0/2 < µR,F < 2µ0,

where µ0 = mũL . The central MSSM parameters are given by the CMSSM 10.2.2 benchmark

point. The squark and gluino masses we vary in parallel, just like in Fig. 5.5.

The fact that cross section predictions increase, i.e. exclusion limits become stronger once

we include NLO cross sections is only a superficial effect of the improved QCD predictions.

The main reason for higher order calculations is the increased precision, reflected in the

stabilization of the renormalization and factorization scale dependence. As is well know, these

scale dependences do not have to be an accurate measure of the theoretical uncertainty. This

can be seen for example in Drell-Yan-type processes at the LHC where the LO factorization

scale dependence hugely undershoots the known NLO corrections. For the pair production

of heavy states mediated by the strong interaction instead, the detailed studies of top pairs

give us hope that the scale dependence can be used as a reasonable error estimate.

In Fig. 5.7 we trace the scale dependences of squark–squark and squark–antisquark pro-

duction. Note that such a separate scale variation is not possible in Prospino, where both

scales are identified in the analytic expressions. We profile the behavior of σLO(µ) and
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σNLO(µ) for an independent variation of the renormalization and the factorization scales in

the range µ0/10 < µR,F < 10µ0. As usual, the central scale choice is µ0 = mũL . The path

across the µR -µF plane we illustrate in the little square in the left panel. The numerical re-

sults are again given for the CMSSM 10.2.2 parameter point and
√
S = 14 TeV. As expected,

due to O(αs) dependence of the LO cross-sections, the renormalization scale dependence

dominates the leading order scale dependence. Unlike in other cases there is no cancellation

between the renormalization and the factorization scale dependences. The stabilization of

the scale dependence manifests itself as smoother NLO slope. While the LO scale variation

covers an O(100%) band, the improved NLO uncertainty is limited to O(30%). Interestingly,

the NLO plateau at small scales is not generated by a combination of the two scale depen-

dences, but is visible for a variation of the renormalization scale alone at fixed small values

of the factorization scale. This observation alone spells out again the dominant rule of the

renormalization scale in determining the overall theoretical uncertainty.

In Fig. 5.8 we show the usual LO and NLO cross sections as a function of the final-

state mass mũL . The error bar around the central values represents a simultaneous scale

variation [µ0/2, 2µ0]. Both error bands nicely overlap and reflect, for ũLũL, a reduction of

the theoretical uncertainties from O(50%) at LO down to O(20%) at NLO – similarly, from

O(60%) down to O(30%) for ũLũ
∗
L.

5.1.3 Squark–gluino production

The squark-gluino production has the important feature of being a flavor locked process at

LO proceeding through just one channel

qg → q̃g̃ , (5.3)

with the corresponding Feynman diagrams shown in Fig. 5.9. Bearing this in mind we can

q̃

g̃

q̃

g̃
g̃

q̃

g̃q̃

Figure 5.9: Feynman diagrams for the squark-gluino production at LO.

nicely explain several features shown in Tabs. 5.2. For instance, we see how ũLg̃ production

dominates over the charge conjugated channel ũ∗Lg̃, simply due to the valence u quark. This

is also the reason why the QCD corrections are larger for the ũ∗Lg̃ process, because gg-

initiated NLO contributions are not suppressed by the relative size of the underlying parton

luminosities.

In Fig. 5.10 we display the dependence of the total cross section σ(pp→ ũLg̃) at LO and

NLO as a function of the final state squark mass mũL , noting that the gluino mass is changed
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we vary in parallel, just like in Fig. 5.5.
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Figure 5.11: Renormalization and factorization scale dependence for ũLg̃ associated pro-

duction. The plot traces a contour in the µR-µF plane in the range µ = (0.1 − 10) × µ0

with µ0 = (mũL + mg̃)/2. All parameters are the same as for Fig. 5.7, with mass values

mũL = 1162 GeV and mg̃ = 1255 GeV.

together with the squark mass. We observe that the cross section decreases three orders

of magnitude by raising the squark mass from 500 up to 1500 GeV. By comparing the LO

and NLO uncertainty bands we find that the scale uncertainties decrease from ∆σLO/σLO ∼
O(60)% down to ∆σNLO/σNLO ∼ O(20)%. A complementary viewpoint we provide in

Fig. 5.11, where we probe scale variations of the total cross section as usually in the two-

dimensional renormalization versus factorization scale plane. In this plot we explicitly see the

stabilization of both scales when going from LO to NLO in a smoother profile of the latter

one.

5.1.4 Gluino pair production

Similar features we identify for the gluino pair production. In special, in Fig. 5.12 we observe

again the same suppression in the total rate of 3 orders of magnitude when running the gluino
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Figure 5.13: Renormalization and factorization scale dependence for gluino pair production.

The plot traces a contour in the µR-µF plane in the range µ = (0.1− 10)×µ0 with µ0 = mg̃.

All parameters are the same as for Fig. 5.7, with mg̃ = 1255 GeV.

mass in the range mg̃ ∼ 500− 1500. Besides this, from the size of the envelope for the scale

variations we obtain the theoretical uncertainty reduction from ∆σLO/σLO ∼ O(70%) at LO

down to ∆σNLO/σNLO ∼ O(30%) at NLO.

The scale uncertainty analysis we complement with Fig. 5.13, where we predict the be-

havior of the cross section σ(pp→ g̃g̃) at LO and NLO under independent variation of these

scales. Again we observe a considerable flatten in the slope of the NLO cross section when

compared to the LO for both scales.

Finally, let us point out that due to the stronger color charge and larger spin represen-

tation, gluino pair production constitutes the dominant SUSY-pair production mode at the

LHC for most conventional MSSM benchmark, with total rates in the ballpark of 1 pb(and

K factors around 2) for O(1) TeV gluino masses.

Gluino pair final-states are particularly attractive in the light of the current experimental

SUSY searches, which tend to disfavor 1st and 2nd generation squarks bellow the TeV range,

while still allow stops and sbottoms in the ballpark of O(100GeV). In such scenarios gluino

decays into a top-stop opening excellent opportunities from the experimental viewpoint, spe-
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cially if combined with the modern top tagging strategies [55].

5.2 Distributions

After analyzing the impact of the NLO corrections to the total rate in Sec. 5.1, now we

want to perform a comprehensive study of their impact in the distributions from the fixed

order expansion more specifically, we aim at: i) Confirming that for the processes analyzed

in this chapter there are no large NLO effects present in the distribution profiles and that

this conclusion holds independently from the benchmark point analyzed; ii) Numerically

predicting the scale uncertainties for the distributions, confirming that the MLM [43] and

NLO predictions agree within the theoretical uncertainty. In particular, we are interested in

confirming that the usual procedure of rescaling the multi-jet merged distributions by the

NLO rate is valid.

5.2.1 Fixed order versus multi-jet merging

As in the previous chapters, to make quantitative statements beyond total cross sections

we use MadGolem to compute NLO distributions and for the multi-jet merging we obtain

the distributions via MadGraph5 [6]. As in Sec. 3.5 and Sec. 4.5, the multi-jet merging

approach is chosen for comparison since it has been shown to capture the main kinematic

features of the process mostly in what concerns shapes of distributions. So within this method

we generate tree-level matrix element events with zero, one, or two hard jets with the help of

MadGraph5 [6] and combine them with each other and with the Pythia [46] shower using

the MLM procedure [43] as implemented in MadGraph.

When defining the hard matrix element corrections we follow three different approaches:

1. We include up to one additional hard gluon in the matrix elements. This automatically

excludes all topologies which could lead to on shell divergences.

2. We instead allow for two additional hard gluons in the matrix elements. As before, we

avoid any possible problems with on-shell singularities.

3. We generate samples with one additional quark or gluon. In this case, the double-

counting arising from on-shell states (squarks and/or gluinos, depending on the channel)

will appear, just like for the real emission contributing to the NLO rate. These double-

counting we remove using the numerical prescription implemented in MadGraph [6].

It subtracts all events with phase space configurations close to the on shell poles, by

means of a slicing procedure which avoids the region in phase space close to the on-shell

configurations. As we explained in Sec. 2.5 this method has some drawbacks and is not

equivalent to the consistent Prospino scheme. However, we have checked that it gives

numerically similar results as long as we only compare normalized distributions.
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Figure 5.14: Normalized transverse momentum distributions for different processes for the

benchmark points CMSSM 10.2.2 and mGMSB 2.1.2. We compare NLO predictions to LO

jet merging [43] with three different setups: up to one hard gluon; up to two hard gluons; up

to one hard quark or gluon jet. The latter two we only display when differences are visible.

In Fig. 5.14 we present the transverse momentum distributions of squarks and gluinos

for the NLO and for these three different multi-jet merging prescriptions. To analyze the

dependence on the chosen MSSM parameter space configuration we focus on two benchmark

points CMSSM 10.2.2 and mGMSB 2.1.2, which present different squark-gluino mass hierar-

chy, see Tab. 5.1. Comparing the different jet merging setups we confirm that the one- and

two-gluons merged results essentially overlap within the numerical uncertainty, so we do not

show them separately. This is an effect of the large hard scale in the process (namely, the

masses of the heavy final-state particles), which implies that the second radiated gluon can

be well described by the parton shower. Results allowing for one additional quark or gluon

jet we only show when the curves are visibly different from the single gluon jet case. From the

possible three merging setups analyzed we observe that the bulk of the contribution comes

from one-gluon radiation, since when adding the possible quark radiation does not change

the profile of the former once the on-shell states are properly removed.

Here, as in the processes analyzed in the previous chapters ( cf. Sec. 3.5 and Sec. 4.5), we

observe that the usual assumption about the stability of the main distributions does indeed
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(ũ

L
)

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

σ
(ũ
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Figure 5.15: Two-dimensional distributions for squark pair production pp→ ũLũL at
√
S =

14 TeV as contour plots in the pT (ũL)-y(ũL) plane. The different panels show the results

from LO (left), NLO (center), and jet merging (right). While the LO result is shown to scale

the two right histograms are normalized to unity. We use the CMSSM 10.2.2 parameters.

hold correct. The normalized distributions from the fixed order NLO calculation and from

multi-jet merging agree very well and just some mild departures are visible, e.g. in some cases

the jet-merging predictions become slightly harder than the NLO results. We can essentially

understand them as arising from the extra recoil jets accounted by the parton shower regime

involved in the jet-merging computation.

In order to generalize this analysis we extend the comparison between the jet-merging and

NLO for two-dimensional distributions in Fig. 5.15. Here we simultaneous show the NLO

phase space dependence on the transverse momentum and the rapidity of one final-state

particle. The three panels give LO, NLO, and merged predictions for squark pair production

pp → ũLũL. The NLO and the merging histograms are normalized to unity, while the LO

distribution is shown to scale. Once again we observe the agreement between the NLO and jet

merging approach, with just mild visible departures, and without any correlations between

rapidity and transverse momentum.

5.2.2 Scale uncertainties

In Sec. 5.1 we performed a comprehensive study of the scale uncertainties for total rates. Here

we want to extend this analysis to the distribution level. For this study we focus on the squark

pair production pp→ ũLũL. In Figure 5.16 we present the squark transverse momentum and

rapidity distributions. The NLO and multi-jet merging distributions are normalized to one.

For the NLO curve, in order to get an estimate on the theoretical uncertainty, we compute the

envelope varying the renormalization and factorization scales between µ0/2 and 2µ0, keeping

the normalization relative to the central scale choice.

We observe that the MLM and NLO are indeed within the theoretical error. In order to

quantify this statement we show two differences separately: first, the yellow (light) histogram

shows the difference dσ/dpT (µ0/2) − dσ/dpT (2µ0). It indicates a theoretical uncertainty of

O(10%) on the distribution, with no obvious caveats. In addition, we show the difference

between the central NLO prediction and MLM multi-jet merging dσMLM/dpT − dσNLO/dpT
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Figure 5.16: Distributions for squark pair production pp→ ũLũL as a function of the squark

transverse momentum (left) and rapidity (right). The curves for the central scales we nor-

malize to unity. The scale uncertainty curves we normalize to the same central value. The

yellow area shows the scale uncertainty, e.g. dσ/dpT (µ0/2)− dσ/dpT (2µ0), compared to the

purple area contrasting the jet merging and the fixed order NLO dσMLM/dpT − dσNLO/dpT .

We examine the benchmark points CMSSM 10.2.2 and mGMSB 2.1.2.

point-by-point in the purple (dark) histogram. Both comparisons we repeat for the squark

rapidity distributions. We see that when it comes to normalized distributions the NLO and

MLM multi-jet merging predictions are in excellent agreement, for example compared to the

sizable NLO scale dependence.

A complementary viewpoint in terms of phase space dependent K factors we display in

Fig. 5.17. The NLO histograms using central scales µ0 are supplemented by a band showing

a simultaneous renormalization and factorization scale dependence at NLO. We confirm that
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Figure 5.17: K factor as a function of pT (ũL) and y(ũL) for squark production pp → ũLũL.

The band shows a scale variation µ0/2 < µ < 2µ0. All MSSM parameters we fix to

CMSSM 10.2.2 and mGMSB 2.1.2.
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the K factors remain stable and relatively constant for the transverse momentum and the

central rapidity regime. From the above discussion we know that the slight change in the K

factor over the entire phase space should correspond to distributions computed using multi-jet

merging. This result we interpret as a strong argument in favor of the conventional procedure,

where a global K-factor or event re-weighting to NLO is applied to kinematic distributions

generated via multi-jet merging.

5.3 Degenerate versus non-degenerate squarks

In this section we want to check the validity of the usual assumptions taken in the literature

and in the presently available tools for the NLO predictions, e.g. in Prospino [17–20], which

introduce simplifying relations between the supersymmetric masses (such as squark mass de-

generacy) to calculate the NLO effects. In MadGolem these assumptions are not necessary

and we can freely scan over the entire parameter space of a given model, varying each in-

put parameters independently. A general fully unconstrained scan as shown in Tab. 5.2, is

thus beyond the reach of these previous tools. Our target in this section is to analyze the

numerical impact of these simplifying relations directly quantifying their influence on rates

and distributions.

5.3.1 Rates

We address the effect of a general squark mass pattern on total rates in Figure 5.18. In

this analysis we focus on the (partially inclusive) production of all first-generation squark

pairs pp→ q̃q̃ (figures on top) and squark–gluino production pp→ q̃g̃ (figures at the bottom)

with q̃ = ũL, ũR, d̃L, d̃R, and examine the response to an independent variation of the different

squark masses. As benchmark points for our study we take CMSSM 10.2.2 and mGMSB 2.1.2

scenarios. For each of them, we explore the relative change in the total rate |σ−σ0|/σ0 when

we increase mass splittings from zero (σ0). We separately examine the following two cases:

i) fixing all left-handed and right-handed squarks at one common mass value and increasing

the right-left mass splitting ∆mR−L; and ii) setting a common mass for up-type and down-

type squarks and increasing ∆mu−d. We observe that for the two processes analyzed the

total rates change by O(5− 20%) for a squark mass splitting of 10− 100 GeV, as commonly

featured by most of the conventional MSSM benchmark points. Therefore these effects lie

within the NLO theory uncertainty.

Complementarily we observe that the LO and NLO rates scale in parallel, with a small

deviation at the few per-cent level. This relies on the fact that the main effect when varying

the splitting, in what concerns total rates, is to change the phase space suppression from the

final-state particles. The impact of these mass shifts on the genuine virtual corrections, in-

stead, is rather meager as the SUSY-QCD effects are typically mass suppressed. This implies

that the K factors are essentially constant when increasing the mass separation. Thus, the

MadGolem results confirm that the Prospino K-factors KProspino = σNLO
degenerate/σ

LO
degenerate,

which do not take into account the mass splitting neither for the LO rate σLO
degenerate nor
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Figure 5.18: Cross sections for squark pair production pp → q̃q̃ (figures on the top) and

squark–gluino production pp→ q̃g̃ (figures on the bottom), with q̃ = ũL,R, d̃L,R, as a function

of mass splittings. In the left panels we vary the right-left splitting keeping the flavor splitting

constant. In the right panels we vary the ũ-d̃ flavor splitting fixing the right-left splitting.

We show the shift with respect to the degenerate spectrum with the masses and the total

rates σ0 ≡ σ(∆m = 0) given in each panel.

for the NLO σNLO
degenerate to a very good approximation correct. In fact Prospino uses this

fact to reduce the uncertainty of their total NLO rates σNLO
Prospino by generating the LO rate

σLO
non-degenerate separately with the full unrestricted mass spectrum and rescaling it at NLO by

means of their K-factor (with mass degeneracy)

σNLO
Prospino = KProspino σ

LO
non-degenerate , (5.4)

which, according to our results, should give an accurate estimate of the full NLO rate.

5.3.2 Distributions

Although in terms of total rates the impact of a general, mass unconstrained splitting induces

variations not larger than a few per-cent, when looking at distributions its footprint becomes

much more apparent. In Fig. 5.19 we display the squark transverse momentum and rapidity
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Figure 5.19: Normalized transverse momentum (left) and rapidity distributions (right) for

squark–gluino production pp → ũLg̃. We assume (i) mass-degenerate squarks with mq̃ =

800 GeV; (ii) a common mass splitting, ∆mR−L = 200 GeV; (iii) a common mass splitting,

∆md−u = 200 GeV. The central MSSM parameters we fix as in mGMSB 2.1.2 benchmark.

distributions for the particular case of squark–gluino production. We single out one particular

production channel, pp→ ũLg̃ and examine the following representative situations: (i) mass-

degenerate squarks, with mq̃ = 800 GeV; (ii) a right-left splitting ∆mR−L = 200 GeV; and

(iii) a similar down-up splitting ∆md−u = 200 GeV. The remaining MSSM parameters we

set as in the mGMSB 2.1.2 benchmark point defined in Table 5.1. Most importantly, we keep

the final-state mass constant, so the differences between these three scenarios decouple from

the leading influence of phase space suppression and instead constitute a genuine NLO effect.

Figure 5.20: Feynman diagrams which describe the squark–gluino fusion mechanism responsi-

ble for the significant differences in the distribution profiles when changing the mass splitting.

We observe that the finite mass splitting between squarks induces a shift in the kinematic

distributions in the direction of slightly harder and more central final-state squarks. This

can be traced back to the real emission corrections shown in Fig. 5.20. These diagrams

describe a fusion mechanism where the bulk contribution arises from internal squark and

gluino propagators at very small virtuality, i.e. when these particles are almost on-shell. As

a result, they become particularly sensitive to variations of the squark masses, even if the
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final-state squarks masses remain unchanged. Quantitatively, the mass splitting between up-

type and down-type squarks lead to an effect of O(20%) in the distributions, therefore this

saturates the NLO uncertainty on the transverse momentum distributions, which falls into

the same ballpark, as illustrated in Fig 5.16. In other words, we conclude that, at variance

with the situation for total rates, the mass degeneracy approximation is not suitable to the

same extend for distributions. A proper account of all kinematic effects demands complete

calculation with a general (unrestricted) mass spectrum.



Chapter 6

Conclusions

In this thesis we have presented a comprehensive analysis at NLO QCD level for several new

physics signatures: i) scalar color-octet (sgluon) pair production; ii) the SUSY associated

production of squark-gaugino pp → q̃χ̃, as an example of a process driven by SUSY-EW

interactions; and iii) the main discovery channels for SUSY at the LHC, these are the pair

production processes of strongly interacting particles pp → q̃q̃ (q̃q̃∗) [q̃g̃] {g̃g̃}. These physics

analyses were performed with our fully automated tool MadGolem , which automatizes

NLO QCD calculations for 2→ 2 processes in the context of new physics models. The work

carried out in this thesis has led to several major contributions to the development of this

tool, to wit:

• The implementation, for the first time in the literature, of an automated procedure to

subtract the potential double-counting instances involved in the production and decay of

on shell heavy states. The subtraction method is based on a local procedure, originally

developed in the Prospino framework, and that presents a number of advantages as

compared to the alternative approaches considered in the literature. In particular, it

preserves gauge invariance and spin correlations. Our implementation takes the form of

an independent add-on to MadGolem , dubbed MadOS, which subtracts in a process

and model independent way, any possible double-counting arising from the on shell

heavy particles.

• The extension of the IR divergence subtraction procedure to the genuine novel structures

that appear when considering theories beyond the SM. This extension consisted in the

implementation of the required Catani-Seymour dipoles in MadGolem as an expanded

stand-alone version of MadDipole, which we upgraded including the dependence on

the FKS-style phase space parameter, dubbed α. The analytical form of these α-

dependent SUSY dipoles we have derived independently and the results are thoroughly

documented in the Appendix A.

• The systematic cross-check of the modules we implemented, namely the extended set

of Catani-Seymour dipoles and the on shell subtraction MadOS, both as stand-alone

packages and also when interfaced with the remaining routines in the whole Mad-
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Golem architecture. These checks include the comparison of the results with other

tools, when these are available, and also a set of consistency tests, e.g. i) The ex-

plicitly cancellation of the IR poles, which we have confirmed numerically for a wide

set of representative SM and BSM 2 → 2 processes to an accuracy of O(10−7); ii)

the independence of total NLO rates and distributions on the FKS-like phase space

parameter α; iii) the independence of the total rates and distributions on the regulator

Γ introduced in the On Shell subtraction method in the region Γ� m.

In this thesis we have first reviewed some fundamental aspects of QCD, in special present-

ing the general structure of a NLO computation, and we have introduced the main elements

of our calculation in Chapter 2. We have discussed the basics of the Catani-Seymour ap-

proach to deal with IR singularities and also devoted special care to introduce the On Shell

Subtraction method, both aspects furnishing the theoretical basis on which the core of the

development achieved in this thesis rely. Moreover, we have presented the basic structure of

our MadGolem package and summarized the basic numerical tests carried out to assess the

robustness and reliability of its performance.

Next we have turned our attention to the phenomenological analysis of several new physics

processes at NLO. Chapter 3 is dedicated to the NLO analysis of the sgluon pair production at

the LHC. We find large NLO production rates and sizeable quantum effects (K ∼ 1.5−2). In

what concerns distributions, we obtain a mild shift in the sgluon distributions when compared

to the multi-jet merging computation, this meaning a very good agreement in the overall.

We present as well the experimental bounds from the ATLAS collaboration, in which the

theoretical predictions were generated with the help of our code MadGolem . The results

indicate that the sgluons are excluded at 95% C.L. for masses below ∼ 300 GeV.

In Chapter 4 we study the squark-neutralino production to NLO. We find moderate

corrections (K ∼ 1.4) to the production rate with a strongly reduced theory uncertainty.

The K-factors are shown to be highly independent on the specific MSSM configuration we

consider, and the quantum corrections are shown to be driven primordially by pure QCD

effects, i.e. gluonic contributions. Again we prove that the distributions at NLO level agree

very well with the multi-jet merging ones.

In Chapter 5 we present an upgrade to the current NLO predictions for squark and gluino

production. Even if the NLO predictions for these major SUSY discovery channels were first

made available more than one decade ago, our analysis represents substantial improvements in

respect to them, not only because the predictions are derived in a fully automated framework,

but also because no condition on the mass spectrum nor the pattern of SUSY interactions

needs to be assumed as simplifying hypothesis. We can then comprehensively survey a

set of conventional MSSM benchmark points in agreement with the current constraints on

SUSY searches. When comparing the results for a mass-degenerate squark spectrum to those

corresponding to moderate squark mass splittings, we observe changes in the K-factors at the

percent level, and within the scale uncertainty. However, the effects of non-degenerate spectra

are shown to be clearly visible for squark and gluino distributions. With the later observation

that, at the distribution level, this assumption does not work perform so satisfactory as it
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does for the total rates.

We can identify therefore a number of trademark characteristics of heavy particle pro-

duction at the LHC, which we can be summarize as follows:

• The NLO correction provides a total rate with strongly suppressed dependences on the

unphysical renormalization and factorization scales, when comparing them to the LO

yields. This leads to a final result with moderate theoretical uncertainties, which are

typically pulled down to O(30%) from the O(100%) featured by the LO predictions.

• The bulk quantum effects arise from pure QCD (gluon mediated) effects, whereas the

one-loop corrections which have massive particles flowing in the corresponding one-loop

diagrams are relatively milder when compared to the gluonic corrections. This leads to

K-factors which are largely independent on the new heavy particle masses, e.g. on the

mass spectrum of SUSY particles or on the sgluon mass.

• The distributions at NLO are in good agreement with those obtained from the multi-jet

merging calculations. Moreover, we have confirmed that the K-factors remain stable

and relatively constant for all the kinematically relevant regions. In this thesis we

have illustrated this fact for the specific case of squark pair production. Even if it is

true that this behavior should be analyzed for each particular process, set of parameters

and kinematic distribution independently, our results convincingly support the standard

procedure by which the whole distribution generated via multi-jet merging is rescaled

by a global K-factor.

The above conclusions summarize in a nutshell the core results of our contribution to the

LHC physics program, mainly in the qualitative understanding and quantitative evaluation, of

the NLO QCD effects to the production of heavy BSM particles, as well as in the development

of tools for the automated calculation of these theoretical predictions. The work performed

in this thesis has resulted into key contributions to the implementation to the automated

package MadGolem .

Looking further, we wish to extend this work along the following lines: i) Extend the new

physics models supported by MadGolem ; ii) Upgrade the tool to a more recent version of

the software MadGraph; iii) Use our framework to novel applications to phenomenology, e.g.

single top production at NLO in the presence of higher dimension operators and combined

with cutting-edge signal identification and analysis techniques – top tagger based on jet

substructure and boosted objects [55].
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Appendix A

Catani-Seymour SUSY and sgluon

dipoles

In this appendix we present the unintegrated and integrated dipoles required for SUSY-QCD

calculations [14] and for the sgluon model including a phase-space constraint [42]. They are

implemented as an independent add-on to the MadDipole package [25] and are part of the

automated MadGolem framework.

A.1 General aspects

There exist two major approaches to remove soft and collinear singularities: phase-space

slicing and subtraction methods [56]. A simple toy example captures their main features and

highlights the role of an FKS-like phase-space constraint [42], “α parameter”. Let us consider

the dimensionally regularized integral
∫ 1

0 dxf(x)/x1−ε with ε > 0. Phase space slicing based

on a small parameter α yields∫ 1

0
dx

f (x)

x1−ε =

∫ 1

α
dx

f (x)

x1−ε +

∫ α

0
dx

f (0)

x1−ε +O (α)

=

∫ 1

α
dx

f (x)

x
+
f (0)

ε
+ f (0) logα+O (α; ε) . (A.1)

Observe that the final result still depends on the actual value of the α parameter. This is the

reason why one should set this parameter to the smallest possible value.A numerically more

stable approach is phase-space subtraction, where the same integral becomes∫ 1

0
dx

f (x)

x1−ε =

∫ 1

0
dx

f (x)− f (0) Θ (x ≤ α)

x1−ε +

∫ α

0
dx

f (0)

x1−ε

=

∫ 1

0
dx

f (x)− f (0) Θ (x ≤ α)

x
+
f (0)

ε
+ f (0) logα+O (ε) . (A.2)

In this case the divergency is subtracted locally and the final result no longer depends on

α, which can then be used as a test of the implementation. The parameter α can be set

in the whole range 0 < α ≤ 1. For small values of α one would now have the numerical
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advantage to evaluate just one part of the integrand, speeding up the calculation, if f (x)

is time consuming to evaluate. It is important to notice that in the case of the subtraction

method the logarithmic dependence with α is exactly canceled in the total result which is

not true for the phase-space slicing.

The toy model of Eq. (A.2) carries the essence of the Catani-Seymour subtraction method.

CS propose an algorithm to regularize the IR divergencies arising from the real emissions(
dσreal

)
, where integral is performed in m+1-particle dimension, via a “plus-prescription” like

distribution. This regularization is performed via a local subtraction term
(
dσA

)
constructed

using the universality of the soft/collinear limits. The ε poles from the real emission are

shuffled to the integral of the virtual part. The divergence can then cancel in the same m-

particle dimension integration. On this way the integrations can be performed numerically,

as it is represented schematically in the Eq. (A.3). This circumvents the main problem of IR

poles arising in different phase-space dimensions.

δσNLO =

∫
m+1

(
dσreal

ε=0 − dσA
α, ε=0

)
+

∫
m

(
dσvirtual + dσcollinear +

∫
1
dσA

α

)
ε=0

(A.3)

Below, we present the unintegrated dipoles dσA
α as well as the integrated dipoles

∫
1 dσ

A
α

including their α dependence. They are crucial for SUSY-QCD processes or other NLO

QCD predictions beyond the Standard Model. Our extended set of massive Catani-Seymour

dipoles with explicit α dependence has several practical advantages:

• tuning α we reduce the subtraction phase-space and hence the number of events for

which the real-emission matrix element and the subtraction fall into different bins; the

so-called binning problem.

• choosing α < 1 we evaluate the subtraction terms only in the phase-space region where

they matter, i.e. close to the IR divergences.

• our final result should not depend on α. This serves as a test for example of the adequate

coverage of all the singularities or the relative normalization of the two-particle and

three-particle phase-space.

In the MSSM gluino and squark interactions induced by the covariant derivatives ¯̃g /Dg̃,

|Dµq̃|2 give rise to new IR divergences which are absent in the Standard Model. The emission

of a soft gluon from these particles requires new final-final dipoles Dij,k and final-initial dipoles

Da
ij . Initial-initial and initial-final configurations can also have a squark or gluino as spectator,

but the dipole only carries information about the mass of the colored spectator, not about

its spin. This means we can simply use the massive Standard Model dipoles [14] with an

extra SUSY particle in the final state. Similarly, the interactions induced by the sgluon

covariant derivative DµG
∗DµG lead to new types of IR divergencies, since it is a color-octet

with spin zero its dipoles are identical to supersymmetric scalar quarks with modified color

factors CF → CA. In all the expressions that follows for the squarks we will obtain the sgluon

dipoles if done this replacement. To make this Appendix most useful we will firmly stick to

the conventions of Ref. [14].
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A.2 Final-final dipoles

We start with a collection of formulas for final-final dipoles. The expression for the uninte-

grated dipole is given by

Dij,k = − 1

2pi.pj
〈..., ĩj, ..., k̃, ...|TkTij

T2
ij

Vij,k|..., ĩj, ..., k̃, ...〉 , (A.4)

where |..., ĩj, ..., k̃, ...〉 represents the amplitude for the factorized born process, which in the

special case of the SUSY dipoles is made by the removal of the gluon from the diagonal

splitting q̃(pij) → q̃(pj)g(pi). The color matrix TkTij/T
2
ij acts on the born amplitude

|..., ĩj, ..., k̃, ...〉 giving the proper color factor.

To compute the integrated dipoles we integrate over the one-particle phase-space [dpi(p̃ij , p̃k)]

with the spin average matrices 〈Vij,k〉, according to Eq.(5.22) of Ref. [14]:∫
[dpi (p̃ij , p̃k)]

1

(pi + pj)
2 −m2

ij

〈Vij,k〉 ≡
αs
2π

1

Γ (1− ε)

(
4πµ2

Q2

)ε
Iij,k (ε) , (A.5)

where the squark dipole function, 〈s|Vgq̃,k|s′〉, is given by Eq.(C.1) of the same reference,

〈s|Vgq̃,k|s′〉
8πµ2εαsCF

=

[
2

1− z̃j (1− yij,k)
− ṽij,k
vij,k

(
2 +

m2
q̃

pipj

)]
δss′ =

〈Vgq̃,k〉δss′
8πµ2εαsCF

. (A.6)

Compared to a massive quark the squark structure is much simpler. This is because for

scalars the labels s and s′ are merely tagging the helicity of the associated quark partners

without any effect on the squark splitting.

The integrated dipole Igq̃,k we decompose into an soft or eikonal part Ieik and a collinear

integral Icoll
gq̃,k evaluated in 4− 2ε dimensions,

Igq̃,k (µq̃, µk; ε) = CF

[
2Ieik (µq̃, µk; ε) + Icoll

gq̃,k (µq̃, µk; ε)
]

ṽgq̃,k I
eik =

1

2ε
log ρ− log ρ log

(
1− (µq̃ + µk)

2
)
− 1

2
log2 ρq̃ −

1

2
log2 ρk

+ ζ2 + 2Li2 (−ρ)− 2Li2 (1− ρ)− 1

2
Li2
(
1− ρ2

q̃

)
− 1

2
Li2
(
1− ρ2

k

)
Icoll
gq̃,k =

2

ε
− 1

εµ2ε
q̃

− 2

µ2ε
q̃

+ 6− 2 log
(

(1− µk)2 − µ2
q̃

)
+

4µk (µk − 1)

1− µ2
q̃ − µ2

k

. (A.7)

The rescaled masses µn and the variables ρ and ρn associated with the splitting ĩj → i j and

the spectator k are defined in terms of the final state momenta pi, pj and pk as

µn =
mn√

(pi + pj + pk)2

ρ =

√
1− ṽij,k
1 + ṽij,k

with ṽij,k =

√
λ
(

1, µ2
ij , µ

2
k

)
1− µ2

ij − µ2
k

ρn (µj , µk) =

√√√√√1− ṽij,k + 2µ2
n/
(

1− µ2
j − µ2

k

)
1 + ṽij,k + 2µ2

n/
(

1− µ2
j − µ2

k

) (n = j, k) , (A.8)
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with λ denoting the Källen function

λ (x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz . (A.9)

The splitting kinematics we describe using

z̃j = 1− pipk
pipk + pjpk

and yij,k =
pipj

pipj + pipk + pjpk
> y+ = 1− 2µk (1− µk)

1− µ2
i − µ2

j − µ2
k

.

(A.10)

Just like for massive quarks there is no collinear singularity, so the most divergent term in

the Igq̃,k (ε) is a single 1/ε pole.

To include the phase-space parameter α into the massive squark dipole we limit the dipole

function to small values of yij,k/y+

Dgq̃,k → Dgq̃,kΘ

(
yij,k
y+

< α

)
α ε (0, 1] . (A.11)

For the integrated dipole Igq̃,k (ε) we start from Eq.(A.7) and subtract the finite term including

the same kinematic condition as Eq.(A.11)

Igq̃,k (ε, α) = Igq̃,k (ε) + ∆Igq̃,k (α)

= Igq̃,k (ε)− 2π

αs

∫
[dpg (p̃gq̃, p̃k)]

〈Vgq̃,k〉
2pgpq̃

Θ

(
ygq̃,k
y+

> α

)
. (A.12)

The finite part we can evaluate in four dimensions, because by definition there exists no

divergence in the region ygq̃,k/y
+ > α. The eikonal part 2/[1 − z̃q̃ (1− ygq̃,k)] is the same

for 〈s|VgQ,k|s′〉 and 〈s|Vgq̃,k|s′〉, so in Eq.(A.12) we insert Eq.(A.7) from our appendix and

Eq.(A.9) from Ref. [57],

ṽgq̃,k ∆Ieik(α) =− Li2

(
a+ x

a+ x+

)
+ Li2

(
a

a+ x+

)
+ Li2

(
x+ − x
x+ − b

)
− Li2

(
x+

x+ − b

)
+ Li2

(
c+ x

c+ x+

)
− Li2

(
c

c+ x+

)
+ Li2

(
x− − x
x− + a

)
− Li2

(
x−

x− + a

)
− Li2

(
b− x
b− x−

)
+ Li2

(
b

b− x−

)
− Li2

(
x− − x
x− + c

)
+ Li2

(
x−

x− + c

)
+ Li2

(
b− x
b+ a

)
− Li2

(
b

b+ a

)
− Li2

(
c+ x

c− a

)
+ Li2

(
c

c− a

)
+ log (c+ x) log

(
(a− c) (x+ − x)

(a+ x) (c+ x+)

)
− log (c) log

(
(a− c)x+

a (c+ x+)

)
+ log (b− x) log

(
(a+ x) (x− − b)
(a+ x) (x− − x)

)
− log (b) log

(
a (x− − b)
(a+ b)x−

)
− log ((a+ x) (b− x+)) log (x+ − x) + log (a (b− x+)) log (x+)

+ log (d) log

(
(a+ x)x+x−

a (x+ − x) (x− − x)

)
+ log

(
x− − x
x−

)
log

(
c+ x−
a+ x−

)
+

1

2
log

(
a+ x

a

)
log
(
a (a+ x) (a+ x+)2

)
, (A.13)
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where

a =
2µk

1− µ2
q̃ − µ2

k

, b =
2 (1− µk)

1− µ2
q̃ − µ2

k

, (A.14)

c =
2µk (1− µk)
1− µ2

q̃ − µ2
k

, d =
1

2

(
1− µ2

q̃ − µ2
k

)
, (A.15)

(A.16)

and

x± =

(1− µk)2 − µ2
q̃ ±

√
λ
(

1, µ2
q̃ , µ

2
k

)
1− µ2

q̃ − µ2
k

. (A.17)

The collinear part is different for squarks, so we supplement its form in Eq.(A.7) by

∆Icoll
gq̃,k (α) = −CF

2π2

[
(1− µk)2 − µ2

q̃

1− µ2
q̃ − µ2

k

(1− α) + logα

]
. (A.18)

A.3 Final-inital dipoles

Following the same logic we tackle the final-initial dipoles. The final-initial dipole function

is given by Eq.(C.3) of Ref. [14],

〈Va
gq̃〉 = 8πµ2εαsCF

(
2

2− xgq̃,a − z̃q̃
− 2−

m2
q̃

pgpq̃

)
. (A.19)

The integrated dipole function Iagq̃ becomes

Iagq̃ (x; ε) = CF

[(
Jagq̃ (x, µq̃)

)
+

+ δ (1− x)
(
Ja;S
gq̃ (µq̃; ε) + Ja;NS

gq̃ (µq̃)
)]

+O (ε) , (A.20)

with the three contributions Iagq̃

[
Jagq̃ (x, µq̃)

]
+

= −2

1 + log
(

1− x+ µ2
q̃

)
1− x


+

+

(
2

1− x

)
+

log
(
2 + µ2

q̃ − x
)

Ja;S
gq̃ (µσ; ε) =

1

ε2
− π2

3
− 1

µ2ε
q̃

(
1

ε2
+

1

ε
+
π2

6
+ 2

)
−

log
(

1 + µ2
q̃

)
ε

+
2

ε
+ 4− π2

6

Ja;NS
gq̃ (µq̃) =

π2

3
− 2Li2

(
1

1 + µ2
q̃

)
− 2Li2

(
−µ2

q̃

)
− 1

2
log2

(
1 + µ2

q̃

)
. (A.21)

In analogy to the final-final case of Eqs.(A.11) and (A.12) we introduce a phase-space cutoff

Da
gq̃ → Da

gq̃Θ (α− 1 + xgq̃,a)

∆Iagq̃ (α) = −CF
Θ (1− α− x)

1− x

[
−2 + 2 log

(
1 +

1

1 + µ2
q̃ − x

)]
, (A.22)



76 A. Catani-Seymour SUSY and sgluon dipoles

where the kinematic variable xij,a is given by

xij,a =
papi + papj − pipj +

m2
ij −m2

i −m2
j

2
papi + papj

. (A.23)



Appendix B

Renormalization

In MadGolem the ultraviolet counter terms are included automatically via the leading order

topologies generated from Qgraf [26]. The counter terms required for the renormalization

of the massive colored particles and the strong coupling constant, as well as the wave func-

tion renormalization of the colored fields, are all expressed in terms of one-loop two-point

functions, which encode the corresponding O(αs) quantum effects, and that are implemented

in MadGolem in separate libraries. The current MadGolem implementation fully supports

renormalized QCD effects for the Standard Model, the MSSM, and several extensions of the

SM featuring new strongly interacting degrees of freedom, e.g. scalar color-octets (sgluons).

In this appendix we give all relevant expressions for the renormalization of sgluons (which is

relevant for the calculations presented in chapter 3) and supersymmetric QCD sector of the

MSSM (which is relevant for chapters 4 and 5).

B.1 Sgluons

We employ the standard ’t Hooft-Veltman scheme for dimensional regularization with

d = 4 − 2ε dimensions. The renormalization constants we define through the additive or

multiplicative relations between the bare and the renormalized quantities

Ψ(0) → Z
1/2
Ψ Ψ m

(0)
Ψ → mΨ + δmΨ g(0)

s → gs + δgs. (B.1)

The field with Ψ = q, A,G denotes all the strongly interacting fields of the sgluon model.

Which corresponds to the SM minimally extended to accommodate a scalar color-adjoint

with no electroweak charges (cf. Chap. 3 for more details). Given a generic Lagrangian

L(Ψ,mΨ, gs) with a QCD interaction this procedure consistently gives a counter term La-

grangian of the form δL(Ψ,mΨ, gs, δΨ, δmΨ, δgs).

We notice, first of all that the new sgluon field modifies the strong coupling beta function.

If we start by decoupling the quantum corrections to the quark-quark-gluon vertex in terms

of the strong coupling constant Zgs , the gluon field renormalization Z3, and the quark field

renormalization Z2 this translates into a combined expression Z1 = Zgs Z2 Z
1/2
3 , which renor-

malizes the quark–gluon interaction. Each of these renormalization constants we expand as

77
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G G G

G

G

G

G

Figure B.1: Feynman diagrams for the sgluon field renormalization (left) and sgluon-mediated

gluon field renormalization (right).

Zi = 1+δi+O(α2
s), with MS counter terms δi. The strong coupling constant renormalization

at one loop we can thus write as

δgs = δ1 − δ2 −
1

2
δ3

with δ1 =δSM
1 = −αs

4π
(CA + CF ) ∆ε

δ2 =δSM
2 = −αs

4π
CF ∆ε

δ3 =δSM
3 + δG3 =

αs
4π

(
5

3
CA − nf CF TR

)
− αs

12π
CA ∆ε , (B.2)

where the last term in Eq. B.2 corresponds to the genuine sgluon contribution to the gluon

self-energies (cf. left diagrams in Fig. B.1). The shifted pole in the MS prescription is

∆ε ≡ (4π)ε/Γ(1− ε) = 1/ε −γE + log(4π) +O(ε) and the total number of fermions is nf = 6.

The SU(3)C color factors are CF = 4/3, CA = 3 and TR = 1/2. Because there are no direct

couplings between sgluons and matter fields δ2 keeps its SM value. For the same reason,

sgluon-mediated corrections to the quark-quark-gluon vertex are absent at one loop, so δ1

does not change either. Only the gluon self energy is modified by the triple and quartic

gluon/sgluon interactions, as displayed in Fig. B.1.

Combining all of the above contributions and decoupling the heavy (H) colored degrees

of freedom — in our case the top and the sgluon — gives us the final expression for δgs in

terms of the measured αs values. We implement the subtraction of the heavy modes in the

zero-momentum scheme [17, 58]. It leaves the renormalization group running of αs merely

determined by the light (L) degrees of freedom, which corresponds to the gluon and the

nf − 1 = 5 active quarks. The renormalization constant finally reads

δgs = −αs
4π

βL0 + βH0
2

∆ε −
αs
4π

(
1

3
log

m2
t

µ2
R

+
1

2
log

m2
G

µ2
R

)
β0 = βL0 + βH0 =

(
11

3
CA − (nf − 1)CF TR

)
−
(
CF TR +

1

3
CA

)
. (B.3)

In a second step we need to compute the QCD renormalization constants in the sgluon

sector. The sgluon two-point function receives O(αs) corrections due to virtual gluon inter-

change, as shown in Fig. B.1. The corresponding ultraviolet divergences we absorb into the

sgluon mass mG and field-strength ZG. As renormalization condition we choose the on-shell
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GA

GB
AC

µ

−i gs fABC
[
δgs + 1

2 (δZG + δZG∗ + δZA)
] [
G∗A(∂µGB)− (∂µG∗A)GB

]
ACµ

AA
µ

AB
ν

GC

GD i g2
s

(
fACE fBDE + fADE fBCE

)
[2 δgs + δZA + δZG] G∗C GD AAµ A

B µ

G

G
p2 δZG − δm2

G −m2
G δZG

Table B.1: Counter term Feynman rules for the sgluon-mediated interactions.

scheme

<e Σ̂′(m2
G) = 0 ⇒ δZG =−<e Σ′(m2

G)

<e Σ̂(m2
G) = 0 ⇒ δmG= + <e Σ(m2

G) , (B.4)

where <e Σ̂G denotes the (real part of the) renormalized sgluon self-energy,

Σ̂G(q2) = ΣG(q2) + (q2 −m2
G) δZG − δm2

G , (B.5)

and Σ̂′(q2) ≡ d2/dq2 Σ̂(q2) the corresponding derivative with respect to the momentum

squared. The analytic form of all renormalization constants we reduce down to one and

two-point scalar loop integrals [59]. The sgluon mass and field strength renormalization then

reads

δZG =
αs
2π

CA
[
B0(m2

G,m
2
G, 0) + m2

GB
′
0(m2

G,m
2
G, 0)

]
δmG = −αs

π
CA

[
m2
G +

3

4
A0(m2

G)

]
. (B.6)

As expected, these expressions are identical to the squark case, modulo a factor CA/CF that

reflects the different SU(3)C representations.

Finally, in Table B.2 we quote the analytical expressions for the relevant ultraviolet

counter terms δL as a function of the field, mass, and strong coupling renormalization con-

stants derived in this Appendix.

B.2 Supersymmetric QCD

The renormalization constants we define through the relation between the bare and the

renormalized fields, masses and the coupling constant in Eq. B.1, where now the field Ψ =
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q, q̃, g, g̃ denotes all strongly interacting MSSM fields. We express the corresponding SUSY-

QCD counter terms to vertices and propagators in Table B.2.

The actual counter terms, presented below, we include in a separate library. The strong

coupling constant we renormalize in the MS scheme and explicitly decouple all particles

heavier than the bottom quark. In the very same way as for the sgluon case, this zero-

momentum subtraction scheme [17, 58] leaves us with the renormalization group running

of αs from light colored particles only. It corresponds to the measured value of the strong

coupling, for example in a combined fit with the parton densities. Its renormalization constant

reads

δ gs = −αs
4π

βL0 + βH0
2

∆ε −
αs
4π

1

3
log

m2
t

µ2
R

+ log
m2
g̃

µ2
R

+
1

12

∑
squarks

log
m2
q̃j

µ2
R

 . (B.7)

The UV divergence appears as ∆ε = 1/ε − γE + log(4π) + O(ε). Both light (L) and heavy

(H) colored particles contribute to the beta function

β0 = βL0 + βH0 =

[
11

3
CA −

2

3
nf

]
+

[
−2

3
− 2

3
CA −

1

3
(nf + 1)

]
. (B.8)

MadGolem sets the number of active flavors to nf = 5.

The analytic form of all renormalization constants we reduce down to one-point and two-

point scalar one-loop functions, which we handle by means of standard ’t Hooft-Veltman

dimensional regularization scheme in 4 − 2ε dimensions. The field and mass renormaliza-

tion constants we compute from the one-loop self-energies which involve virtual gluons and

gluinos. All fields are renormalized on-shell. In addition, for the gluon field we subtract the

heavy modes consistently with our gs renormalization scheme. The underlying Slavnov-Taylor

identities link the corresponding finite parts of the counter terms as δ ZG = −2 δ gs.

In addition, we need to pay attention to dimensional regularization breaks supersymmetry

through a mismatch of two gaugino and the 2− 2ε gauge vector degrees of freedom [51]. As

a result, the Yukawa coupling ĝs appearing for example in the qq̃g̃ vertex departs from gs.

We restore supersymmetry by hand, forcing ĝs = gs. The corresponding finite counter term

can be computed using dimensional reduction,

ĝs
gs

=
αs
4π

(
2

3
nf −

3

2
CF

)
⇒ δSUSY =

4

3

αs
4π

. (B.9)

Finally, we quote the analytical expressions for the field and mass renormalization. For the

scalar one-point and two-point functions we adopt the notation of Ref. [59]. The corrections

to the massless quarks including the non-chiral SUSY contributions are

δ ZqL/R = −αs
4π

CF

[
B0(0, 0, 0) +B0(0,m2

g̃,m
2
q̃L/R

)

+(m2
g̃ −m2

q̃L/R
)B′0(0,m2

g̃,m
2
q̃L/R

) + (m2
g̃ −m2

q̃R/L
)B′0(0,m2

g̃,m
2
q̃R/L

)
]
.

(B.10)
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The corresponding squark fields and mass are renormalized as

δ Zq̃sq̃s =
αs
2π

CF

[
B0(m2

q̃s , 0,m
2
q̃s) +m2

q̃s B
′
0(m2

q̃s , 0,m
2
q̃s)−B0(m2

q̃s ,m
2
g̃, 0) + (m2

g̃ −m2
q̃s)B

′
0(m2

q̃s ,m
2
g̃, 0)

]
δ mq̃s = −αs

4π
CF

[
4m2

q̃s + 3A0(m2
q̃s) + 2A0(m2

g̃) + 2 (m2
g̃ −m2

q̃s)B0(m2
q̃s ,m

2
g̃, 0)

]
. (B.11)

The gluon wave function renormalization1, linked to the counter term for the strong coupling,

is

δ ZG =
αs
4π

(
βL0 + βH0

) 1

ε̃
+
αs
2π

log
m2
g̃

µ2
+

1

12

∑
squarks

log
m2
q̃

µ2
+

1

3
log

m2
t

µ2

 . (B.12)

Finally, the gluino field and mass renormalization constants are

δ Z g̃g̃ =
αs
4π

CA

[
1 + 4m2

g̃ B
′
0(m2

g̃, 0,m
2
g̃)−

A0(m2
g̃)

m2
g̃

]
+

αs
8πm2

g̃

∑
light (s)quarks

[
A0(m2

q̃)− (m2
g̃ +m2

q̃)B0(m2
g̃, 0,m

2
q̃)− 2m2

g̃ (m2
g̃ −m2

q̃)B
′
0(m2

g̃, 0,m
2
q̃)
]

+
αs

8πm2
g̃

∑
heavy (s)quarks

[
2m2

g̃ (m2
q̃ −m2

q −m2
g̃)B

′
0(m2

g̃,m
2
q ,m

2
q̃s) + (m2

q −m2
q̃ −m2

g̃)B0(m2
g̃,m

2
q ,m

2
q̃)

+A0(m2
q̃)−A0(m2

q)
]

+
αs
π

∑
heavy (s)quarks

mg̃mq R
q
s1R

q
s2B

′
0(m2

g̃,m
2
q ,m

2
q̃s)

δ mg̃ = −αs
4π

CAmg̃

[
1 + 3

A0(m2
g̃)

m2
g̃

]
+

αs
8πmg̃

∑
light (s)quarks

[
A0(m2

q̃) + (m2
g̃ −m2

q̃)B0(m2
g̃, 0,m

2
q̃)
]

+
αs

8πmg̃

∑
heavy (s)quarks

[
A0(m2

q̃)−A0(m2
q)− (m2

q̃ −m2
q −m2

g̃)B0(m2
g̃,m

2
q ,m

2
q̃)
]

− αs
2π

∑
heavy (s)quarks

mq R
q
s1R

q
s2B0(m2

g̃,m
2
q ,m

2
q̃s). (B.13)

The sum over heavy squarks covers all squark flavors corresponding to heavy quarks. We

usually consider the bottom quark massless, which means that only the two stop eigenstates

feel top mass effects. However, the bottom/sbottom loops can be trivially moved from the

light to the heavy category. The stop mass eigenstates t̃1,2 are related to the electroweak

interaction bases through a rotation with detR = ±1.

1We remark that G in this appendix stands for the gluon field, not to be confused with the notation

employed for the sgluons.
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GA
µ

q̃L/R, i

q̃L/R, j

−i gs TAij
[
δ gs +

δ Zq̃L/R,i + δ Zq̃L/R,j + δ ZG

2

]
q̃L/R,i (pi + pj)

µGAµ q̃L/R,j

g̃A

q̃L/R, i

q, j

∓ i gs
√

2TAij g̃
A

[
δ gs +

δ Zq̃L/R,i + δ Zqj + δ Zg̃

2
+ δSUSY

]
PL/R qj q̃L/R,i

g̃A

q, i

q̃L/R, j

± i gs
√

2TAij q̄i

[
δ gs +

δ Zq̃R/L,j + δ Z†qi + δ Zg̃

2
+ δSUSY

]
PL/R g̃

A qiq̃R/L,j

GC
µ

g̃A

g̃B

−gs
[
δ gs + δ Zg̃ +

δ ZG
2

]
g̃Aγµ g̃B GCµ f

ABC

GA
µ

GB
µ

q̃L/R, i

q̃L/R, j i gs

[
δ gs + δ ZG +

δ Zq̃L/R,i + δ Zq̃L/R,j
2

]
{TA TB}ij q̃L/R,i q̃L/R,j GAµ GBµ

q̃L/R

q̃L/R
p2 δ Zq̃L/R − δ m2

q̃L/R
− δ Zq̃L/Rm2

q̃L/R

g̃

g̃
/p δ Zg̃ −mg̃ δ Zg̃ − δ mg̃

Table B.2: Strong interaction counter terms for the MSSM. The finite supersymmetry-

restoring counter term δSUSY is given in Eq.(B.9).
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