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Abstract

Active learning is one form of supervised machine learnilmgsupervised learning, a
set of labeled samples is passed to a learning algorithmduoning a classifier. How-
ever, labeling large amounts of training samples can bdycast error-prone. Active
learning deals with the development of algorithms thatradgvely select a subset of
the available unlabeled samples for labeling, and aims mihm#ing the labeling effort
while maintaining classification performance.

The key challenge for the development of so-called actigeniag strategies is the
balance between exploitation and exploration: On the omel hthe estimated deci-
sion boundary needs to be refined in feature space region®thgas already been
established, while, on the other hand, the feature spaaisneebe scanned carefully
for unexpected class distributions. In this thesis, tworapphes to active learning are
presented that consider these two aspects in a novel way.

In order to lay the foundations for the first one, it is progbse express the uncer-
tainty in class prediction of a classifier at a test point mg of a second-order distribu-
tion. The mean of this distribution corresponds to the comesiimate of the posterior
class probabilities and thus is related to the distance etelt point to the decision
boundary, whereas the spread of the distribution indicdteslegree of exploration in
the corresponding region of feature space. This allowsheretvaluation of the utility
of labeling a yet unlabeled point with respect to classifgpriovement in a principled
way and leads to a completely novel approach to active legrriihe proposed strategy
is then implemented and evaluated based on kernel denaggifitation.

The generic active learning strategy can be combined wiyhosimer classifier, but
it performs best if the derived second-order distributiares sufficiently good approx-
imations to the sampling distribution. Although secondesrdistributions for random
forests are derived in this thesis, they do not approximafecgently well the sampling
distribution and mainly allow only for the relative compon of prediction uncertainty
between test points. In order to combine the state of thelassification performance
of random forests with the principal ideas of the first actesrning approach, a related
second approach for random forests is derived. It is, intenhditailored to the de-
mands in industrial optical inspection: bag-wise labelwth weak labels and strongly
imbalanced classes. Moreover, an outlier detection scheased on random forests is
derived that is used by the proposed active learning alyarit

Finally, a new computational scheme for Gaussian processification is presented.
It is compared to two standard methods in geostatistic$) Wwih respect to theoreti-
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cal consistency and practical performance. The method/egt@s a by-product when
considering using Gaussian process models for activeitearn



Zusammenfassung

Aktives Lernen ist eine Form von uUberwachtem maschinellemén. Beim Uber-
wachten Lernen wird eine Menge von gelabelten Beispielenimenelernalgorith-
mus Ubergeben, um einen Klassifikator zu trainieren. Daglbhalon grol3en Mengen
an Trainingsdaten kann allerdings kostspielig und fehiélbg sein. Aktives Lernen
beschaftigt sich mit der Entwicklung von Algorithmen, diégraktiv eine Teilmenge der
vorhandenen ungelabelten Beispiele fur das Labeln auswaine zielt darauf ab, den
Labelaufwand bei gleichzeitiger Erhaltung der Klassifixasleistung zu minimieren.

Der Schlissel zur Entwicklung von Aktiv-Lern-Strategiesgt in der Balance zwi-
schen “Exploitation” und “Exploration”: Einerseits s@ltie geschatzte Entscheidungs-
grenze in den Regionen des Merkmalsraums verfeinert wewdesie bereits errichtet
worden ist, andererseits sollte der Merkmalsraum sorgfa¢tch unerwarteten Klassen-
verteilungen abgesucht werden. In dieser Arbeit werden Amgéatze zum aktiven
Lernen vorgestellt, die diese beiden Gesichtspunkte awe ki¢eise berlicksichtigen.

Um die Grundlagen fir den ersten Ansatz zu legen, wird zwstaabrgeschlagen,
die Unsicherheit bzgl. der Klassenvorhersage eines Kikatsirs an einem Testpunkt
mit Hilfe einer Wahrscheinlichkeitsverteilung zweiterddung auszudriicken. Der Mit-
telwert dieser Verteilung entspricht der bekannten Scimigider posterioren Klassen-
wahrscheinlichkeiten und steht deshalb in Beziehung zuieEning des Punktes von
der Entscheidungsgrenze, wohingegen die Streuung degiMexg den Grad an Ex-
ploration der entsprechenden Region im Merkmalsraum anzdiges erlaubt eine
Auswertung der Nutzlichkeit des Labelns eines bisher wiggten Punktes in Bezug
auf eine mogliche Verbesserung des Klassifikators auf degedde Weise und flihrt
zu einem vollig neuen Ansatz fur das aktive Lernen. Die vechéagene Strategie wird
schlieRlich basierend auf Kerndichteklassifikation unegggsund evaluiert.

Die generische Strategie kann mit jedem anderen Klassfikaimbiniert werden,
aber sie ist am leistungsfahigsten, wenn die hergeleit®tmrscheinlichkeitsverteilun-
gen zweiter Ordnung hinreichend gute Approximationen @nStichprobenverteilung
sind. Obwohl Verteilungen zweiter Ordnung fir Zufallsweédd“random forests”) in
dieser Arbeit hergeleitet werden, approximieren sie nkghteichend gut die Stich-
probenverteilung und erlauben daher vor allem lediglicterirelativen Vergleich der
Vorhersageunsicherheit zwischen Testpunkten. Um diekanat gute Klassifikation-
sleistung von Zufallswaldern mit den Grundideen des eréidiv-Lern-Ansatzes zu
verbinden, wird deshalb ein verwandter zweiter Ansatz fissadzwalder hergeleitet.
Dieser ist zuséatzlich auf die Anforderungen der indudareQualitatskontrolle zuge-
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schnitten: bindelweises Labeln mit schwachen Labels @il shbalancierte Klassen.
AulRerdem wird ein Verfahren zur Ausrei3er-Erkennung lvasie auf Zufallswaldern
hergeleitet, das von dem vorgeschlagenen Aktiv-Lern-Algous benutzt wird.

Abschliel3end wird ein neues Verfahren zur Klassifikation@aul3'schen Prozessen
vorgestellt. Es wird mit zwei Standardmethoden aus der tagstk in Bezug auf das
zugrunde liegende Modell und die Klassifikationsleistuagglichen. Die Methode ent-
stand als Nebenprodukt bei der Uberlegung, GauR-Prozes&iM fiir aktives Lernen
Zu nutzen.
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By three methods we may learn wisdom:
First, by reflection, which is noblest;
Second, by imitation, which is easiest;

and third by experience, which is the bitterest.

(Confucius)
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1 Introduction

1.1 Scope of this Thesis

When searching for “Active Learning” in Google Schdlan 4th November 2012, the
first hit was a book entitled “Active Learning: Creating Excitent in the Classroom”
[21]. Readers who expect this thesis to be about an educatiafalitpie, i.ehuman
learning, may be disappointed. However, this thesigsrevolve around learningna-
chinelearning to be more speciffc.

Machine learning deals with the development of algorithhat allow computers to
learn patterns from training data. Instead of simply memiog the samples, a learning
algorithm is supposed to recognize patterns and to gemerbm them. This allows
a machine learning system to analyze the data or to takeiolesi®r unseen samples.
The long list of possible applications includes such ddférareas as automated medical
analysis B6, 98], speech recognitiordp], handwritten character recognitiof15 or
industrial optical inspection1BS. As an example, in the latter application, sample
images of production parts with and without defects may lowiged. If the learning
algorithm generalizes perfectly, images of new parts aea ttorrectly classified as
“intact” or “defective”.

As a rule of thumb, the more training data there is, the bétegeneralization abil-
ity of a learning algorithm. Unfortunately, in many applicas, the creation of these
samples requires the assignment of labels to the data by arhlabeler. This can
be time-consuming, expensive and/or error-prone. In thectiedetection example, the
images taken from production parts need to be labeled asctindr “defective”. Thou-
sands or even millions of sample images can be taken durengrtfduction process. It
is nota good idea to select a random subset of this data for labéfitige manufacturer
is quality-oriented, the overall majority of the parts isaict and looks very similar to
each other. Most of these samples are thus not very integdstihe learning algorithm.
As will be discussed in detail in Chaptefsind6, important are those parts with defects
that look different from previously observed defects (fdlny “exploring” the space of
possible images) and parts that are at the border betweeatdefand intact (found by
“exploiting” the unlabeled data at the border). The paradigat aims at identifying the

Ihttp://schol ar. googl e. de/
°Note that there are attempts to explain the nature of hunzanitey with machine learning approaches,
see e.qg.173,[194, [128 and the references therein.
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important unlabeled samples and thus at reducing the tapeffort as much as possi-
ble while maintaining the generalization ability of a le@galgorithm is called “active
learning” (AL).

This thesis focuses on the development of new approachesive earning, in par-
ticular on balancing the tradeoff between exploration afulatation.

1.2 The Scope in More Detall

At the highest level, machine learning algorithms can bédéi into supervised and
unsupervised algorithms. imsupervisegroblems, real-world objects are represented
by a feature vector only, i.e. a point in feature space. Blg&sks include the identifi-
cation of groups of similar data points (clustering, see[®4), the detection of points
that are distinct from the rest of the data (outlier detegtgee e.g.§3]) or the estima-
tion of the distribution the data points have been drawn f(density estimation, see
e.g. [159). In a typical scenario asupervisedearning, the learning algorithm is given
a set of so-calletraining samples, each consisting of a feature vector and an outcome
measurement. The task is then to predict the outcome measotef yet unseen ob-
jects represented by their feature vector. The task isccadigression if the outcome is
guantitative; it is called classification, if the outcomei of a finite number of discrete
categories, also called classes.

Active learning can be regarded as a variant of supervisedileg. Whereas the task
still is to predict the outcome measurement of unseen samble outcome measure-
ment of most or even all of the training samples is unknowarga the active learning
process. During this process, the learning algorithm is allowed tqusmtially query
the outcome measurement for some of the training samples.alforithm that gov-
erns the selection process (aiming at selecting those santipht are most beneficial
for the generalization ability of the learning algorithra)called active learning strategy.
Note that, as most of the training data miss their output omeasent prior to and in
early stages of the active learning process, also unsigeerlearning techniques play a
crucial role for the development of active learning stregeg

In this thesis, we concentrate on the developmeraative learningstrategies for
classification Both concepts are introduced thoroughly in Sect@®risand2.2, respec-
tively.

1.3 Outline and Main Contributions

In Chapter 2, we introduce the basic concepts of classification andatgarning.

3The scenario described here is calf@mbl-basedactive learning and is introduced in detail in Sec-
tion 2.2.1 Other, less common active learning scenarios will brieflydwviewed in Sectiof.2
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As briefly explained in the previous section, the primarylgdalassification is the
prediction of the class label of yet unseen samples. Manyileg algorithms addi-
tionally estimate th@robability of an object belonging to a certain class. Although the
latter is the most common indicator for the confidence in aipt®n of class mem-
bership, it is still insufficient in many real-world appligans. The main reason is that
the estimated quantities may be highly inaccurate if theesponding test samples lie
in a feature space region that contains very few labeleditrgisamples only. Instead,
in addition to estimates of posterior class probabilitsssne measure aonfidencdor
these estimates is required as well.dhapter 3 of this thesis, we propose to express
the confidence in estimates of posterior class probalsiliieerms of second-order dis-
tributions. Applying a Bayesian approach, we first derivehsdistributional estimates
for e-nearest neighbors and then introduce “confidénoearest neighbors” and “con-
fidence random forests” (CRF). We also investigate some of flreie sample and
asymptotic properties in the limit of many labeled data.

Although the distributional estimates derived in Cha@terovide much more infor-
mation than simple posterior class probability estimates; do not provide an approxi-
mation of the true sample distribution, but allow only for adel-based relative compar-
ison of the uncertainty in the prediction of posterior clpssbabilities. InChapter 4,
we derive distributional estimates for kernel density sifisation that indeed approxi-
mate the sample distribution. This allows for the developioé a novel active learning
strategy that trades off exploitation and exploration inia@pled way. Loosely speak-
ing, the distance to the decision boundary is encoded in #&ennof the distributional
estimate, whereas the degree of exploration in a certaiorreyf the features space is
indicated by the spread of the distribution.

Although the active learning strategy presented in Chapperforms very well rel-
ative to other strategies, its absolute performance igdunby the properties of the
employed classifier. Generative classifiers (like kernelsdg classification) generally
perform worse than discriminative methods, in particufahigh-dimensional feature
spaces {0, chap. 1]. Therefore, the active learning strategy for clefietection pre-
sented inChapter 6 is based on the discriminative, state of the art random fatas-
sifier. In order to combine this classifier with the basic gle& the active learning
approach presented in Chapewe develop a related active learning strategy that does
not require second-order distributions that approximaernue sample distribution. In-
stead, an extension of standard random forest can be uséuefonplementation. In
addition, the strategy is tailored to the demands in indalstiptical inspection: bag-
wise weak labels and strongly imbalanced classes. An irapbpart of the active
learning strategy, an outlier detection algorithm for ramdforests, is derived prior to
the strategy irChapter 5.

For a firstimplementation of the AL strategy presented in @drd indicator kriging
had been used, a classification method based on Gaussiasgesc But it turned out
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to be computationally more demanding and to perform woraa the random forest
classifier. However, as a by-product, a new computationa¢ree for classification
based on a doubly stochastic Gaussian process model hasié®esd. In contrast to
previous inference methods for the same model, the estmmtianalytical up to a final
step where numerical integration is needed. This is predenChapter 7. In addition,
the method and its underlying model is compared to two vésiahindicator kriging—
standard methods in geostatistics—with respect to thieatensistency and practical
performance.

As always when doing research, all effort raises more questihan it answers. The
thesis concludes with a discussion on achievements andwpblems inChapter 8.



2 Preliminaries

2.1 Classification

2.1.1 Basic Terminology

In this section, we briefly present the necessary classditégrminology. We start with
an introduction to the underlying mathematical concepts.
Let (2, 4, P) be a probability space. Further, Igt x ), ) be a measurable space

and let
Q —- A x)Y

w = (z,y)

)+ {

be a random vector. The st C R? is called feature space and the components
XM .. X of X can be either continuous or discrete. The random varigbig
discrete, wherg’ is afinite set of classes. We denote Bythe probability measure that
isinduced or¥ x Y by (X,Y), i.e.

P(B) := PYY)(B) .= P((X,Y)"YB)), BeB

As is common in the machine learning literature, we denogedinsity of(X,Y")
simply by p(x,y), not distinguishing between Lebesgue and counting measute
notation. The conditional probability(y|x) := p(Y = y|X = z) is called the posterior
class probability of clasg at pointz, p(z|y) := p(X = z|Y = y) is called the class
density of clasg (at pointz).

A function

h:{X - Y (2.1)

T =y

that assigns a class label to each feature vector is callddsaifier The quality of
a classifier is usually assessed by some global risk furati@®, chap. 1]. The sim-
plest among them is therror rate P(h(X) # Y'), i.e. the probability of a wrong class
assignment. The complementary probabityh(X) = Y) is calledaccuracy In prac-
tice, where the distribution dfX, Y') is usually not known, the error rate or other risk
functionals cannot be calculated but need to be estim&t®dhap. 7]. This is briefly
discussed in Sectioh.1.2

The central question in practice is how to obtain a good flassObviously, we need
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some information about the distribution @K,Y"), i.e. any kind of realizations from
(X,Y) or from its marginals. In the standard scenario of supedvidassification, we
are given asel = {(x1,v1),..., (z,,y,)} Of independent realizations of the random
vector (X,Y’), called training set or training data. The training set msntlfied into a
learning algorithm which outputs a classifierA discussion on properties of individual
learning algorithms goes far beyond the scope of this inittdn; the reader is referred
to standard textbooks[, 20, 53, 127. We only mention here that some classifiers
not only return a crisp class assignment as defined in Ed), (but also provide an
estimatey(y|z) of the posterior class probability. In this thesis, we emipleec-nearest
neighbors classifier (Chapt8y, the k-nearest neighbors classifier (Cha@grrandom
forests (Chapter8, 5 and 6), the kernel density classifier (Chap#and Gaussian
process classification (Chaptér. These classifiers are shortly introduced at the same
place to make this thesis and its individual chapters saitained.

2.1.2 Measuring Classification Performance

If the distribution of (X, Y") is not known, the error rate or other risk functionals for
the assessment of classifier performance cannot be caldldat need to be estimated.
The simplest way is to split ufi into two sets, usually at a ratio of 2 to 1. The first
one is used for training the classifier and the second onkedctdst set, is used for
performance estimation.

However, ifn is small, the quality of the classifier may suffer a lot frone tieduc-
tion of the actual number of training samples. This motisdbe application of cross-
validation (CV). There, the training set is divided iritdolds, wherek is usually set to
5 or 10;k — 1 folds are used for training, one for testing. The latter gesged: times
such that each fold is used for testing once. Finally, thestiir is trained anew using
all samples in7". Its performance can be estimated by the mean oktperformance
estimates for the individual test folds. Note that thisraste is conservative since the
final classifier is trained with more samples than the classifor CV.

Test set and CV are the two techniques used in this thesis. A thorough discus-
sion on estimating classification performance can e.g. tleddn [81, chap. 7] and the
references therein.

2.2 Active Learning

In supervised learning, it is assumed that there is a coelpl&beled training sel”
available. The larger is, the better is the generalization ability of a learningpaithm.
While realizations ofX can often be easily obtained in large quantities in practioe
corresponding class labels usually need to be provided hynaah annotator. Active
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learning strategies aim at reducing this labeling effortlevktill achieving a high ac-
curacy. The idea is to query labels only for those samplesattgamost important for
classification performance.

As the reader can imagine, there are a lot of possible acmening scenarios and
settings. The most important ones are presented in thefrdss section.

2.2.1 Pool-Based Active Learning

The setting considered in this thesis, which is also the roostmon, is called pool-
based active learning. It is assumed that a small (possibptyd setl = {(z;, y:)}_,

of labeled data and a large pdél= {x; l;}‘H of unlabeled data is available prior to
the active learning process. The feature vecfar$'"" are assumed to be independent
realizations ofX, which is particularly important if an active learning $&gy includes
the estimation of the density(x). In contrast, it is not necessary to assume that the
labeled samples are strictly independent; this assumption wouldidlated anyway
during the active learning process: Itis the key idea olvadgarning to createlsiased
training set.

As illustrated in Fig2.1, the strategies usually iterate between two steps:
1. Evaluate the training utility value (TUVBp] for eachx € U.

2. Query the label, of z, = argmax, ., TUV (z), add(z,, y.) to £ and remove
x, fromU.

A detailed overview of pool-based AL strategies is given ira@tier4 when motivating
the use of distributional estimates of posterior class gibdlties for active learning.
As an example, we here mention uncertainty sampling, a siropt commonly used
strategy L05. In the binary case witl)) = {0,1} and 0-1 loss§1, chap. 2], given a
classifier that returns an estimait@” = 1|z) for posterior class probabilities, a label is
queried for that point™* € U/ whose posterior prediction is closests, i.e.

TUV (z) = 0.5 — |p(Y = 1|z) — 0.5 € [0,0.5] (2.2)

Note that in pool-based AL, all strictly monotonic transfations of al' UV lead to
equivalent definitions.

A variant of the above scheme is batch mode AB|[ [84], where several instances
are chosen in each iteration. This speeds up the AL procabe atost of lower AL
performance due to possible “overlapping” informationte tabels queried at the same
time. We will apply batch mode AL in Chaptérin the context of defect detection.
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Figure 2.1: Active learning cycle in pool-based active learning. In each iteratidhi{/&”
model is learned from the currently labeled training S€possibly using information from
U). Then, applying this model to the elementd4nthe most valuable point* is identified
and passed to an oracle, usually a human annotator. The latter providabehfor z* and
(z*,y*) is added tol. Note that this figure is inspired by and similar to onel6J.

2.2.2 Other Active Learning Paradigms

Pool-based AL is the paradigm considered most often in teealure, but it is—of
course—not the only one. Istreambased AL, the unlabeled data is not known prior
to active learning. Instead, unlabeled data points aremsaguentially fromX and in
each iteration it needs to be decided whether to discarceimgle or whether to query
a label for it and thus to add it t6. In [43], several different classifiers are trained
(“guery by committee”) and a label is queried based on a Hieesedom decision taking
into account the degree of committee agreement at the pamdsig sample point. The
same authors show i8] that using two committee members only and simply query-
ing a label for those points at which they disagree is sufiicie achieve a significant
reduction in annotation costs.

Another scenario called “membership query synthesis”uithes the possibility of
requesting labels for any point in feature spaijégee B9 for an example in the context
of regression). Although this corresponds to an infinitelpdainlabeled dat@/, the
additional freedom has some drawbacks. First, since thebefdd data is not drawn
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i.i.d. from X, many of the generated samples may be located in low (or exm) z
density regions of feature space and thus their labeling coajribute not much to the
improvement of classification performance. Second, meshiggquery synthesis is not
feasible for many applications. As an example, considenadiest on a certain disease,
i.e. we want to classify a person as healthy or not based oe $tmod measurements.
Then, it will be difficult to find a person that has exactly tadgood values a label is
gueried for. Third, even if it is possible to create examplesovo, the human annotator
may not be able to provide a label for a certain sample if heatinterpret it. The latter
has e.g. been reported in the context of handwritten charestognition 14].

Note the relation between membership query synthesis aadifip of Experiments”
(DoE, see e.gd2], [41], [159), where the latter is a statistical umbrella term thatrefe
to methods that somehow control the information gathernoggss by querying output
values for samples created de novo. However, DOE methodsudally not aim at
learning a regression function or a classifier, but e.g. dtritnsome optimal parameter
configuration, i.e. at identifying the point in feature spauath the largest or smallest
(expected) response. For many DoE methods, e.g. fact@ségid experiments, feature
space is assumed to be discrete and to have a few dimensibpnah In ANOVA,
several labels are queried at each point in feature spade statistical test on whether
the responses at different points differ significantly isfgened.

2.2.3 Does Active Learning Work?

The short answer is “yes”, both theoretically and empihlycal

From a theoretical point of view, it has been shownli@] and [62] in a stream-based
scenario that the labeling effort indeed can be substntedluced using AL. In both
references, it is shown that exponentially fewer labeled@as may be sufficient to
achieve the same error rate as with passive learning, mgls®& the training instances
randomly from(X,Y’). Unfortunately, the derivations rely on assumptions that a
usually not satisfied in practice or that can at least not Iéieg for a particular real-
world data set.

However, the empirical evidence that the labeling effodieied can be reduced using
AL seems overwhelming (although some caution is called f@r tb publication bias);
see this thesis and all AL references therein, in partiaonl&hapterst and6. In [164],

17 different AL strategies are compared to each other usitifféent data sets show-
ing the benefit from AL. Moreover, we are not aware of any sysifc investigation
showing e.g. that the application of a commonly used AL sgwatdoes not lead to a
reduction of labeling effort.

INote that—of course—an AL strategy may perform worse thanaksarning on individual data sets
using a specific classifier, see e. 35§, [75].
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2.3 Related Learning Paradigms

Active learning is not the only approach considered in therdture to save labeling
time. Two others, namely semi-supervised learning (SSd)eative class selection, are
briefly presented in the following.

2.3.1 Semi-Supervised Learning

In (pool-based) active learning, unlabeled data is avklabgreat quantities and the
learning algorithm is allowed to query labels for selectestances. In contrast, in SSL
[33, 192, the subset of labeled instances is initially given andassifier is trained
using both the labelednd the unlabeled examples. The unlabeled data can help by
assuming that two points have the same label with high pibtyaib there is a path
between them that passes only through regions of relativgly density of the feature
distribution (“cluster assumption”Lp(. Active learning and semi-supervised learning
can be combined by learning the TUV model or the final clagsafi¢he end of the AL
process using both labeled and unlabeled d&3a, [193).

2.3.2 Active Class Selection

In some applications, it is not possible to obtain featuta sathout knowing the corre-
sponding label. As an example, consider the “artificial hasg114] that is supposed to
automatically distinguish between different chemicalaaof interest. There, training
data is created by first generating the vapor and then pagsivgr an array of sen-
sors. “Active class selection” is the AL analogue that adsges this scenario. Instead
of querying labels at certain positions in feature spacdizations from a certain class
are queried. In114, five different query strategies are compared and a sutistae-
duction of labeling effort (compared to sampling equalbynfrall classes) is achieved if
samples are queried for the most “unstable” classes. #yakildefined by number of
class predictions that change after having added the sarfpha the last iteration. The
latter is calculated by cross-validating the training dethe current and the previous
iteration.



3 Distributional Uncertainty
Estimates

As briefly explained before in Sectidhl, in the standard framework of classification,
the goal is to construct a classifier with small risk, e.g. sueed by the error rate. In
many real world applications, simple predictions of cladeels are typically insufficient
and point estimates for posterior class probabilities @exuas an indication for the
confidence in a label prediction. In this chapter, we show these quantities may
be highly inaccurate for test samples not well represenyetthd training set. Instead,
some measure of confidence in these point estimates is eelgasr well. We propose
a Bayesian framework to derive such confidence measuresnis tef second-order
distributions over the posterior probabilities. We apply approach to several popular
classifiers, including-NN, £-NN and random forests. The utility of our approach,
which unifies classification and outlier detection, is ithated on real world datasets
from machine vision (road sign recognition) and from im@gmnass spectrometry.

3.1 Introduction

One of the basic principles in statistical inference is tever give an estimator without
giving a confidence set’ This principle extends far beyond the field of statisticd an
applies to essentially all of scientific research. In anedytchemistry, for example,
it is well recognized that “an analytical result is not coetpluntil a statement about
its uncertainty is formulated"13§. Whereas many works developed confidence or
prediction intervals for multivariate regression and lwaltion (see12 58, 121, 174
and references therein), perhaps surprisingly, uncéytastimates in classification have
thus far received much less attention. Most classifiersigeogither just a predicted
class label, or at best a point estimate of posterior classatnilities.

Yet, deriving a measure of uncertainty is at least as impoitaclassification as it
is in multivariate regression: First, an important praaitissue is to have an indica-
tion of where the classifier may be at error. Beyond samples theaclassification
boundary, test samples with high uncertainty are alsoylikahdidates for classifica-
tion errors. Moreover, letting a classifier make class mtaghs for new observations

1Quote from the preface of Wasserman'’s textbatf].

11
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poorly represented by the training set may lead to drastieraeé consequences in sev-
eral practical applications such as medical diagnostichstrial process control, and
automated safety systems. The ability to measure the @magrof predicted posterior
class probabilities also plays a key role in active learmreghods 163, as it can help
assess in a principled way the degree of exploration in angigegion of feature space
(see Chaptef). Moreover, it may also help to detect that the underlyirgirdiution of
the test data differs from that of training data or becom#ereint over time (population
drift) [78].

In this chapter, we aim to bridge this gap regarding unoataestimates in classi-
fication. We develop a Bayesian strategy that provides sasgaeific “uncertainty”
or “confidence” estimates for several popular local averggilassifiers, including-
nearest neighbor={NN), k-nearest neighbork(NN) and random forests (RF). Note
that we are not interested in the triviakt-order or ambiguity uncertaintyencountered
wherever different classes overlap significantly in featspace. In such cases, when
the point estimates for posterior probabilities of the afifint classes are all far from
one, the classifier might announce “doubt” instead of ptedja class label (e.g1p0,
chap. 2]). In contrast, the focus and main contribution f thhapter is the derivation of
an uncertainty measure over these point estimates, vid seitbnd-order distribution
that is, a probability distribution over the unknown pogieprobabilities.

In classification, there is hence a hierarchy of possibleutstat new test points: at
the simplest level, a mere class label prediction; at annmeiate level, a point esti-
mate of the posterior class probabilities, allowing for ambgguity reject; and at the
most refined level, a second-order distribution over thegsms probabilities, allowing
to extract different kinds of confidence or uncertaintyestants. In the following sec-
tions, we present a Bayesian framework for deriving suchidigtonal estimates, and
illustrate their importance in a variety of applications.

3.1.1 Related Work

In the theoretical framework of classification, given arthag) set and a loss function for
incorrect predictions, the task is to construct a classiién small generalization risk,
typically the overall test error rate. Hence, most classfieport at best point estimates
of these quantities. Furthermore, there is a non-triviathiariance decomposition for
classification 3], which in particular implies that a classifier may (neadghieve the
optimal Bayes error rate and yet have biased point estiméigssterior probabilities.
The fact that the overall error of a classifier depends onlyt®astimates of posterior
probabilities has perhaps concealed the importance ofriaicty measures for these
guantities, and may explain why uncertainty estimates mageived relatively little
attention thus far.

Nonetheless, the need for uncertainty measures has bemnieed. Several authors
developed methods to highlight ambiguous predictionstest samples where no single
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class has a dominant posterior probabil®g,|[74, 76]. These methods, however, rely
on point estimates, the intermediate level of the hieradibgussed above.

Other works focused on the detection of outliers, thougicglly separately from the
actual classifier46, 52]. Closer to our work is44] which uses the classifier itself to
find outlying samples. This task is relatively straightfardl for generative classifiers
which learn a model for the joint densipfx, y). At ambiguous samples none of the
estimated class densities dominates the others, whereatiats the overall estimated
density is very low 139 101, 119.

Confidence intervals for classification were derived for remametric generative re-
gression techniques, notably indicator krigi®®,[175 and for parametric discrimina-
tive techniques, most notably logistic regressibg4.

3.1.2 Distributional Estimates for Local Averaging Classifiers

In this chapter, in contrast, we consider uncertainty est@s for various popular non-
parametric local averaging discriminative classifiers] present a Bayesian framework
to compute sample-specific second-order distribution#higir posterior class probabil-
ities. Our proposed framework thus allows for a unified treatt of both classification
and outlier detection.

After introducing notations and the problem setup in Sec8&, in Section3.3 we
first illustrate our approach for one of the simplest possibtal classifiers: The-
nearest neighbor classifier-N). Given a suitable prior, standard Bayesian methods
yield an approximate second-order distribution for thet@aasr class probabilities. If
the selected prior is conjugate to the binomial distributiour Bayesian scheme is an-
alytically tractable with simple explicit formulas. Fromtlaeoretical perspective, as-
suming that the posterior class probabilities are appratetg constant inside-balls, a
natural result is that the larger the number of training dammside arz-ball, the more
concentrated the second-order distribution around thes pasterior class probability
becomes. Furthermore, in an appropriate joint limiteas> 0 and as the number of
training samples tends to infinity, the distribution comges to the true posterior (Sec-
tion 3.7.2.9.

Next, in Section3.4 we consider the more popular and typically more accukate
nearest neighbor classifiek-N\N). Unfortunately, the above method to construct se-
cond-order distributions does not carry over to fRBIN classifier. The reason is that
for any query point, thé&-NN classifier always uses the labels of theearest neigh-
bors to a query point, regardless of their distance. To dgmaistributional estimates in
this setting, in a first step, we augment the training set satimples from an auxiliary
class with uniform density (referred to as “data-drivenfatencet-NN”"). The resulting
multi-class classification problem with these auxiliaryne effectively puts an upper
limit on the radius of the prediction neighborhood, thuslieg, as desired, to second-
order distributions with large spread in areas poorly repnéed by the original training
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set (Sectior8.4.1). In a second step, we develop a model where the samples lfrem t
auxiliary class no longer need to be drawn explicitly, bt eonsidered implicitly in a
probabilistic way (referred to as “probabilistic confidericNN”, Section3.4.2. The
resulting classifier and its uncertainty estimate depena diata-driven kernel func-
tion which weights the nearest neighbors by their distanoe the query point while
maintaining the local adaptivity ¢f-NN.

In Section3.5, the arguments developed previously for tHEN andk-NN classifiers
culminate in an approximate second-order distributiostiheate for random forests, a
discriminative ensemble classifi€?4. Random forests (RF) have enjoyed a soaring
popularity in recent years, and for good reasons: in a broag af applications§6, 69,
144, itis one of the best-performing classifiefsl| 42], with very little tuning required.
To derive the desired second-order distributions we ptesemall modification of the
original algorithm, which we denote “confidence random $ts&(CRF) (Sectio’.5.3.
While sufficient conditions for consistency can be statectiiSe 3.7.2.9, in general
these are not met by CRF, and it remains unknown whether thepecarakened. We
note that this theoretical gap is to be expected, since éeeransistency of the standard
version of RF is yet to be provei ).

After deriving distributional estimates for the variousdb averaging methods, we
present their practical application in Secti®®. First, we illustrate their working and
potential usefulness using simple toy data. Then, we shewntiportance of uncer-
tainty estimates in two real-life applications: a digitatipology example using mass
spectrometric multi-spectral images and a speed sign néomy task from machine
vision.

3.2 Problem Setup and Notation

To simplify the exposition, in this chapter we focus on theecaf binary classification.
We note that the proposed approach easily generalizes toctads problems.

Let (X,Y) be arandom vector with probability densitr, 1), wherer € X C R?is
afeature vectorangc Y = {1, 2} isits class label. Further, le{z) := p(Y = 2|X =
x) denote the posterior probability of class 2zat Finally, let the training sef¥,, =
{(z4,y:)}1~, be composed of. i.i.d. samples from X,Y). Throughout this chapter
(and this thesis), the lettg? denotes a distribution, wheregasdenotes a probability
density andP denotes the probability of a specific event.

As discussed in the introduction of this chapter, at the ksipevel, the goal of
training a classifier on a séf, is to estimate the labels of new (test) samples so as to
minimize some global risk functional. At the next level, étdction of test samples
with potentially ambiguous predictions is important, arpastimater(x) of the true
posterior class probability(z) is additionally desired. At the most refined level, when
thereliability of these point estimates is of essence, the goal is to obtaimeertainty
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estimate, preferably from a full second-order distribaiw distributional estimatevith
a distribution function

Fi(q) = P(n(2) < q|T), q€0,1] (3.1)
Deriving such a distributional estimate is the central gafathis chapter. In the fol-
lowing three sections, we develop Bayesian inference mddelthree popular local
averaging classifiers-NN, £-NN and RF, that take into account the inevitable uncer-
tainty of posterior probability estimates incurred wheairtmg data are scarce in the
vicinity of a query point.

Before describing the technical details, let us first illastrthese concepts by the one-
dimensional toy example shown in Fi§.1. The true class densities in the upper panel
have the following distributions:

P(X|Y =1) = N(0,3%)
P(X|Y =2)=0.5-N(-3,2%) +0.5- N(6,2%)

whereN (11, 0?) denotes the Gaussian distribution with meeand variance. Setting
p(Y =1) =p(Y =2) = 1/2results in the posterior class probabilities:) depicted in
the same panel in red. A training set with= 1000 samples is depicted as short vertical
bars in the lower panel of Fi@.1, together with the resulting distributional estimates
obtained from CRF (described in detail in Sectib).

As expected, the resulting distributional estimates degively narrow at test points
well represented by the training data. In contrast, thesteilolitional estimates become
broader as the query point moves away from the training setezentually tend to a
user-defined prior distribution for queries very far frone tinaining data. These broad
distributional estimates indicate a (very) low confidentéhe posterior prediction, ad-
vising the user to exercise extreme caution in interprettregpredicted labels at such
test samples.

To further illustrate this important point, consider a @mple at: = 20, whose true
posterior probability isr(20) = p(Y = 2|X = 20) = 0.07. Since in the intervat > 10
the given training set contains five samples from class 2 ané from class 1, the pos-
terior estimater(20) of standard random forests would be very close to one. Irasit
our modified confidence RF not only gives a conservative paiitnate of about /2,
but also endows it with a very broad distribution, indicgtia high uncertainty in the
predicted posterior at this test point.
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Figure 3.1: [Best viewed in color] Distributional estimates for a 1-D toy probldimp Panel:
The two black curves are the unknown densities of classes 1 and ctiesfy. The red curve
is the posterior probabilityr (=) of class 2.Bottom Panel: A training set7 with n = 1000
i.i.d. samples from the ground truth is depicted as short vertical bars.athsfecomputing
a mere point estimate for(x), in this work we estimate second-order distributions#ar)
(see Section8.3-3.5). The0.05, 0.25, 0.5, 0.75 and0.95-quantiles of the distributional esti-
mates from confidence RF are plotted using red lines. Three examplesaiirteeponding
probability density functions are plotted in blueaat= —10, x = 5 andx = 20. The fewer
training samples there are in the vicinity of a query point, the higher the uimtgria pos-
terior prediction and the larger the variance of the corresponding demraler distribution.
For query points far from all training data the distributional estimate tends tpribg a
Beta(1/2,1/2) distribution in our case.
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3.3 Distributional Estimates for e-Nearest
Neighbors

The e-nearest neighbor classifier estimates the posterior plagsabilities at a query
point by counting the number of training samples of the défe classes within radius
¢ of the point of interest. To derive a second-order distrdyufor the posteriors, we
employ the standard Bayesian inference model for the prbtyabf success of the
binomial distribution.

In more detail, let| - || denote the Euclidean norm @&¥, and letB. () be the closed
ball aroundr with radiuse. Further, denote by

iz = [{(2",y') € Tp 12’ € B(x),y =i}

. i=1,2

the number of training samples of classside B.(x).

If w(x) exhibits some degree of smoothness, for examptéaf) is continuous with
Lipschitz constant, for sufficiently smalk it follows that(x) is approximately con-
stant insideB.(x). Therefore, the labels of the training samples insitier) can be
modeled as independent Bernoulli realizations with the ssuceess parametefz).
Hencen, , is binomially distributed with the observed parameters, + n. ) as the
number of experiments, and the unknow(x) as the probability of success.

A second-order distribution for(x) is obtained by applying a standard Bayesian
inference model for the success parameter of the binomsalilolition (see e.g.2[,
chap. 2]). Specifically, letz denote the probability density function of a prior second-
order distributiorP for the success parametefx). Then, the second-order distribu-
tion for 7(z) at a query point: with n; , andn,, labeled samples of classes 1 and 2
respectively, is given by

p(m(x)|n1 2 n2) X P(N1 g, n2g|n1 e + nog, m(x)) pe(m(x)) (3.2)

whereP(ny ., n2z|n1 o + Nog, m(x)) = Binom(ny . + nag, m(x)). Note that if there

are no labeled samples in theball of a test pointr (n,, = ns, = 0), our second-

order distribution forr(z) is just the priorPgz. The prior second-order distribution
P thus represents our best guess for the posterior prolyabilit) in the absence of
(nearby) observations. If we have no bias favoring one abass the other, the prior
should be symmetric around the valwér) = 1/2. Natural choices are the uniform
distribution or Jeffreys’ uninformative prioBB]. For a binomial, the latter is a Beta
distribution with parameter§l /2,1/2), see Fig.3.2 While its bimodal appearance
may seem puzzling at first sight, it actually makes sensedtidssification context: In
most regions of feature space, different classes usuallyIittle overlap. Little overlap

between classes, in turn, matches the prior belieftlaj is either close to 0 or close
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— N1z = 07"2,:E =0
===N1z = O-”Zm =1
‘‘‘‘‘ Ny = 10,19, = 10

Figure 3.2: Examples of probability densities of the Beta distribution with paramét&rsi-
ng » andl/2+n; .. The solid curve is Jeffreys’ prior (with parameters 1/2 and 1/2). Theroth
two curves illustrate the resulting posterior distributionsr¢f) given (n; ,n2,) = (0,1)

or (n1,2,n2,,) = (10,10) samples of classes 1 and 2 insidlg(z). Note that the variance of
the distribution decreases as the number of observations iRside increases.

to 1 anywhere in feature space—precisely what Jeffreyst rappens to embody.

Choosing Jeffrey’s prioPz(m(z)) = Beta(1/2,1/2) as discussed above leads to
(see e.qg.20, chap. 2)])

P(m(x)|nyz,noy) = Beta(1/2 +ng,, 1/2 4+ 04 4) (3.3)
whose corresponding (Bayesian) point estimate for the posfgrobability is

() = mat+1/2 (3.4)
Nz +1/24n9, +1/2

One theoretical question is how accurate the distributiesimates of Eq.3.3) are.

A second theoretical question is the asymptotic consigtefiche point estimate in
Eq. 3.9 in the limit of large training data. We consider these issiresome detalil
in Section3.7.2 At this point, we note that if indeed the posteriofz) is constant
inside B.(x), then as discussed 9], confidence intervals extracted from Jeffreys’
prior using Eqg. 8.3 are quite accurate, even when the number of samples is/edyat
small. In addition, at least for the casessNN, one is not necessarily restricted to a
Bayesian approach, and frequentist confidence intervalh, asithose described ]|
would be equally applicable. Finally, note that by the Bezimstzon Mises theorem,

asymptotically frequentist confidence intervals and Bayesredible sets are very close
to each other.

To summarize, Eq.3(3) is the resulting second-order distribution for H&IN clas-
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sifier. As expected, in high density regions with, + n., > 1, the resulting dis-
tributional estimates are quite narrow, indicating a higinf@dence in the estimated
posteriors. In contrast, the distributional estimatesobee broader as; , + n», de-
creases, and in the extreme case of no labeled points, ey te the prior distribution
for m(x).

3.4 Distributional Estimates for k-Nearest
Neighbors

Thek-NN classifier estimates the posterior class probabilégtesquery point by count-
ing the number of training samples of the different classésmthe% nearest neighbors
of the point of interest. WhereasNN relies on a fixed neighborhood radius, th&IN
classifier has an adaptive neighborhood size that adjukisabdensity. While this typ-
ically leads to improved classification performance, by lioily implementing some
kind of bias-variance trade-off, it no longer allows us te uke simple recipe from
the previous section: As-NN uses exactly training points to answer each query,
the above Bayesian inference or standard frequentist cowkdatervals would hence
insinuate comparable uncertainty estimates at all queintgaegardless of their dis-
tances from labeled data.

To derive sensible uncertainty estimates for k(ABIN classifier, we propose to in-
troduce auxiliary reference data and generalize the fieetson problem and related
distributional estimates from a two-class binomial settio a multi-class multinomial
setting. In more detail, letz(1), y(1)), - - -, (2w, Yn)) be the ordered sequence of the
training data with respect to their distance to the paint.e. z; is the j-th nearest
neighbor ofz. Further, letBy(z) = {2’ € X' : |2/ — 2| < ||z — =||} be the closed
ball around the point with radius equal to the distance to kgh nearest neighbor.

To construct second-order distributions for thé&IN classifier, we build on an idea
previously employed for a variety of unsupervised problemesluding outlier detec-
tion, density estimation and one-class learning. Thesapersised problems can all
be transformed into supervised classification problemsamerating artificial samples
from a reference distribution and learning the dichotomineen observed and arti-
ficial data using a discriminative classifier (see e, chap. 14], 17Q, [87], [174,
[25]). As an example, consider the problem of estimating thesitiep(z). To this
end, letR be a hyper-rectangle that covers the feature vectors ofrdiiv@irtg set, i.e.
{z1,...,2,} C R. We drawn, samplesSy, = {41, .., ZTnin,} from the uniform
distribution onR, label them as class 0, label the original samples as cléssdiid
create the new training s@j, = {(z1,12),..., (zs,12), (2111,0), ..., (Zn1ne, 0)}. Let
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po = 1/vol(R) denote the constant density of class 0. Then,

p(z)p(Y = 12)
p(x)p(Y =12) + pop(Y = 0)
p(Y =0) pY =12[z)

= TR =) =0 49

p(Y = 12]2) =

The terms on the right hand side of E§.5) are either known or can be estimated by a
classifier—trained off;—that predicts posterior class probabilities.

The main difference from the above scheme is that in oumggtive add auxiliary
samples not to unlabeled or single-class data but to theirtpiset of a supervised
learning problem. To motivate our approach and to lay thengudfor derivations in
Sections3.4.2and3.5, in a first step (SectioB.4.1), we explicitly generate the auxiliary
samples. As the auxiliary samples are random, in a secopaveteonsider the average
of the resulting confidence estimates over infinitely marajfizations. For the-NN
classifier, this can be done analytically by probabilistgpuanents (Sectio.4.2).

3.4.1 Data-Driven Confidence k-NN

As above, letR be a hyper-rectangle that covers the feature vectors ofdimartg set.
We drawn, samplesSy = {x,11, . . ., Tnin, } from the uniform distribution ofR, label
them as class 0 and append them to the original training,setVe denote the new
(three-class) training set B, = 7, U {(2,41,0), ..., (z,,0)} Wheren’ = n + n,.
Further, we denote by} (x) the ball aroundr whose radius is given by the distance
to the k-th nearest neighbor in the augmented training7set Note that by definition
BY(x) C By(z).

We use the number of artificial samplesit}(z) as an indicator for the posterior
prediction uncertainty at a point For a test point: located in a high density region,
the radius ofBY(z) is only little (or not at all) smaller than that &f;.(x), with very few
or no representatives from the reference class 0. In canfaasa query point in a low
density region, the majority or even all of its nearest nbahk are from the reference
classS;. In this case, the radius @2 (z) may be substantially smaller than the radius

In analogy to the previous section, to obtain a distribgl@stimate for the posterior
class probabilities, we now apply standard Bayesian intareanly this time for the
multinomial rather than the binomial distribution. We wduce the following notation:
Fori € {0,1,2}, let p;, be the true unknown posterior probability of class the
threeclass problem. It can be easily shown that the posterioh@briginal two-class
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problem can be calculated from those of the three-clasdgmroby

Pz + P2z

Further, letr; , be the number of labels of clasé BY(x).? Then,

p(p0|a:a Pijz, p2|x|n0,xa Nz, nZ,a}) X P(”O,my N1y N2z |p0|xa Pz, p2|x)pB (p0|xa Pz, p2|:c)

wherepp is the density of a prior distribution f@po., p1., p2j). In particular, choosing
Jeffreys’ uninformative prior for multinomial inferenc@q, i.e.

Pp(rm(z)) = Dir(1/2,1/2,1/2),

whereDir(ag, a1, as) is the Dirichlet distribution with parametedg, «r; andas, yields
(e.g. 2O, chap. 2])

P(Pojz, P1jes D2l |0,z Mgy N2z) = Dir(1/2 + 1oz, 1/2 + 112, 1/2 +n25). (3.7)

Using Propositior3.11 from the appendix of this chapter in Secti8riQ it readily
follows from Egs. 8.6) and @.7) for the posterior of the original two-class problem that

P(m(x)|noz, n1z, noy) = Beta(1/2 + ngz, 1/2 4+ nq ). (3.8)

Note the similarity between Eq.8) and @3.3). The only difference is the interpretation
of n, ., which in the case of-NN is the number of labels of classes 1 and 2 ind#dér),
whereas in the case #fNN it is their number insideB? ().

Similar to the case of-NN, if a test sample: is in a high density region, then most,
if not all, of its neighbors are from the original labeled,sesulting in relatively narrow
distributional estimates, and indicating a high confideincihe posterior estimate. In
contrast, if the test sample is in a region of such low dertbi& all its neighbors are
from the reference class, the distributional estimaterteve the prior. Finally, note that
the regularization parameterg andk play a role similar to the parametem thes-NN
classifier. A method to set, andk in order to obtain sensible distributional estimates
is discussed in Sectidh5.

2 In there are multiple training samples at the boundary oftiak BY(z), which leads ton, :=
Z?:o n; » > k, we can simply choose at random — k of these points located on the boundary
and ignore them.
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3.4.2 Probabilistic Confidence k-NN

The distributional estimates in the previous section ddpmnthe specific realization
Sy of auxiliary samples. We now show that it is actually not reseey to explicitly
generate the auxiliary data to obtain distributional eates for thek-NN classifier.
Instead, we can compute tlegactprobability that a training sample fro (=) will
be displaced from among thienearest neighbors by samples from the auxiliary class,
when averaging over infinitely many realizationsSgf The complementary probability
that a training sample remains Bf (x) can be used to weight the sample accordingly.
As before, letz(;) be thej-th NN of a query point:. First of all, note thatr(;), j =
1,...,k,isin B)(x) if and only if there are at mogt — j points inS, whose distance
to x is smaller thanjz — z;||. LetV (r;) be the volume of thé-dimensional ball with
radius|z — x(;)||. Then,

resema-(2) () (50 oo

1=0

Defining p := ngy/vol(R), expression3.9) equals

it () (-4

(1 B PW%‘))TLM (PV ()"  mo! (3.10)

no il nd(ng —1)!

k—

M

M

??‘
QO

1=0

Since we no longer explicitly generate any auxiliary sammpteere is no need to
restrict the uniform distribution to a finite hyper-rectén@. Instead, we can assume
that the auxiliary class is distributed throughout thedeatspace with uniform density
p. So, fixingp in expression3.10 while letting n, (and thus vdlR)) go to infinity
yields

—oV(r Vr
P(z(;) € B)(x)) = eV 7>Z VD)) g, (3.11)

Note thatA ;) = 0 for j > k. Now, instead of applylng the Bayesian inference scheme
proposed above by merely counting the number of labels ssela1 and 2 iB)(x),

we canweighteach training sampler;), y(;)) in By, (x) by its probability A ;, of being

in BY(x). This yields

P(n(2)|T,) = Beta (1/2+ S Ag, 12+ Y A(j)) (3.12)

Iy =2 3y =1
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This amounts to the use of fractional votes, or equivaletatithe use of a kernel func-
tion. In contrast to standard Nadaraya-Watson type estimathere the kernel width is
fixed, here, the kernel function depends not only on the nitgt®fz ;) to , but also on
the distances to of all training samples that are closeratdhanz;, thus maintaining
the local adaptivity of thé-NN approach.

To conclude, Eq.3.12 is our proposed second-order distribution for the posteri
m(x) of the probabilistick-NN classifier. It consists of a weighted sum of votes of its
original k-NN, where the weight of an observation is its probabilitystfi being one
of the k-nearest neighbors after having added auxiliary data ftoenréference class.
This probability is an analytic expression that can be caeghwia Eq. 8.11), without
explicitly generating the reference data. Obviously, #gutarization parametersand
k play a role similar tony andk in data-driven confidenck-NN. For a method to set
these parameters, see Sectoh

3.5 Confidence Random Forests

In this section we derive distributional estimates for mdorests (RF). For the chap-
ter to be self-contained, we first briefly describe the oafiRF classifier. Next, we
present a small modification of the underlying tree consimacthat provides distribu-
tional estimates for posterior class probabilities forhreamgle tree, obtained by ex-
plicitly adding reference data. The derivations for prabstic confidencek-NN in the
previous section do not easily carry over to tree-basedifias. Instead, we combine
many individual distributional estimates, each obtainexinf a different tree with its
own random realization af,, into a single one for a forest ensemble.

3.5.1 Standard Random Forests

The RF classifierd4] is an ensemble learner consisting/af decision trees. To build

an individual tree, a bootstrap sample is drawn from theningi set and recursively
divided until all leaf nodes contain instances of a singkesslonly. For the split at a
certain nodedtry < d out of thed feature dimensions are randomly selected and the
best axis-orthogonal split according to a purity measure &ini criterion) on these
dtry variables is used. An estimate for the posterior class fibtyaat a test pointe is
obtained by passing it down all the trees and dividing the lmemof trees that vote for
the respective class by. The majority vote yields a class assignment.

3.5.2 A Distributional Estimate for a Single Tree

A single tree learned from a training set can equivalentlydpgesented as a partition
IT of feature space into disjoint cells which correspond todtierent leaves of the
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tree. For any point;, we denote byll(z) the leaf cell containinge. To construct
a distributional estimate for the posterior probability), a simple possibility is to
consider all training samples in the same leat a¥his idea is explored here; however,
as discussed below, several issues need to be resolvee efiol:

First, we face the same problem as in the casé-biN (Section3.4): Learning
a tree and simply counting the number of training samplesiéncell T1(xz) does not
consider the (potentially very large) distances of thentrej samples ifl(x) to the
query pointz. Even if the number of training samples in a cHllz) is large, the
estimate forr(x) may still be unreliable if the query pointis far from all of them.
As in the case ofk-NN, to overcome this problem we propose to add auxiliaryadat
to the training set. As before, Iy = {x,.1,...,Znin,} De an i.i.d. sample from
the uniform distribution on a hyper-rectangk that covers the original training set,
and let7,, = 7, U {(#n41,0), ..., (z.,0)} be the augmented training set. Instead of
constructing a tree with the original training $&t, we use the augmented $gt and
train a three-class tree. As férNN, this decreases the “sphere of influence” of each
training sample.

Next, recall that in the standard RF algorithm, tree nodesparétioned until all
leaves contain labels of a single class only. Obviouslyjrigaenly pure cells yields
neither sensible point estimates nor sensible distribati@stimates for the posterior
probability 7 (z) from a single tree. To overcome this limitation, we propasslightly
modify the tree construction as follows: we require, in agglto £-NN, that leaves
contain no less and not many more thatraining samples. More specifically, at each
node we choose the best split only among those that resutiildren with at leask
samples each. In particular, nodes with at I@astamples are split, whereas nodes with
less thar2k samples are not split, regardless of their class labelsh Saarly stopping”
rules have long been promoted for the regularization ofsiecitrees (seelfL0 120
and references therein).

With these modifications in effect, distributional estiesfor posterior probabilities
can be constructed in a fashion similar to the case-NN: Let = be a test pointlI(x)
the cell it belongs to, and let; , be the number of labeled samplesliriz) of class
1 = 0,1, 2, respectively. Blindly applying the standard Bayesian sahamuld lead to
Eqg. 3.9) for the distributional estimate for(x), whose corresponding point estimate is

712790 —|— 1/2
Nige+1/24n0, +1/2

7(x) =

(3.13)

There is, however, one subtle difference between our gedtid that of.-NN. Whereas
in the case ok-NN, the total number of neighbors is alwayén, = ng,+n1,+n2, =
k), here the total number varies betwéeand2k — 1. Hence, even if two query points
x1,r2 have the same values of ,,n, ., the point estimates derived from E®.13
may still have different uncertainties depending on theiwalfn, .. To illustrate this
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point, supposé = 5 and consider two query points # z,, With ny ,, = nq 4, = 1,
andng,, = ng,, = 4, butng,, = 0 andng,, = 4. Obviously, the second query point
lies in a lower density region. As its cell contains more &awy points, its uncertainty
estimate should be somewhat larger.

To take into account the variable number (betwkemd2k — 1) of training samples
insideII(x), we simply normalize the impact of each training samplélix) by the
factork /n.. Applying this normalization and repeating the same cakbois as above,
the final distributional estimate af(x) from a single tree is given by

7)(7'((33”71071;, niz, ngﬂc) = BGtCL(l/Q + flg,x, 1/2 + ﬁl,x) (314)

wheren; ,,i = 0,1,2, is the number of training samples Iih(z) with label i, and
Ny = Nig k/nx. Note that with this normalization in place, to minimizedsze pure
nodes containing more tha samples need not be split.

3.5.3 A Distributional Estimate for a Forest

As described above, the random forest classifier dgetkecision trees for class predic-
tion. Averaging over trees typically yields more robust aodurate predictions than
those obtained from each of the individual trees. Moreousing many trees opens
here the possibility of drawing a different set of auxilismgmples for each tree and
thus minimizes the influence of a particular realizatiorSgbn the final distributional
estimate.

Let = be a query point and denote bi™ (z),m = 1,..., M, the cell of them-

th tree-based partition that contains Further, Ietn m) be the normallzed number of

training samples with labélin II'™ (z). A natural Way of combining the numbeméf;)
is to average over the contents of the random partitiéfi¢() of the M different trees.
This gives

M
< ‘{n‘Ox’nlmvan}m 1> Beta’<1/2+_zn2x71/2+_zﬁg

(3.15)

The statistical interpretation of this approach is thatinagrobabilistic confidencé-
NN, each training sample i, is weighted by the fraction of trees for which it is in the
same cell as the query point The difference is that the fractional votes are computed
analytically fork-NN, whereas they are obtained by averaging over many toe&3RF.
The working principle of CRF is illustrated in Fig.1with ny = n = 1000, £ = 30 and
R = [—15,15].

Finally, we remark that]87] considered a similar tree-based ensemble model for es-
timating the confidence in posterior probabilities, allwath different splitting rules for
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individual trees. The main difference is that it8[/], the estimated confidence increases
with the number of trees in the ensemble, leading to unteadls small confidence in-
tervals in large ensembles. Moreovet3f] does not consider the uncertainty arising
from a poor representation of a test sample by the trainite dad hence cannot detect
outliers.

3.6 Selecting the Regularization Parameters

Both confidencé:-NN and CRF have two parameters that need to be set. The first pa-
rameter is the number of neighbdrén .£-NN, or analogously the minimum occupancy
k of a leaf cell in CRF. For probabilistic confidenteNN, the second parameter is the
densityp of auxiliary points. For data-driven confidenteNN and CRF, the second
parameter is the number of auxiliary samplgs For simplicity, we only refer tay, in
the following; analogous statements hold for

By and large, these parameters provide a bias-variance-efidecreasingk and
reducingn, leads to larger prediction neighborhoods, hence more hihkesas variance.
In high density regions wherep(x) > ny/vol(R), the size of a leaf mostly depends on
k and is almost independent of. Conversely, for fixed:, the size of a neighborhood
in low density regions mainly depends on

An automated choice of these parameters is not obvious. €ason is that it is
not possible to measure the quality of distributional eates in the common setting
where the validation set contains only labeled samplekgerdahan their true posterior
class probabilitiesq2]. As an example, consider a test sample of class 2. Its hi&elil
given a distributional estimate is equal to the correspuoggioint estimater(x). That
is, a given test sample does not allow us to distinguish tladitguof two second-order
distributions so long as they have the same expectatiorevahlso, optimizing the
parameters by cross-validation (CV) with respect to clasgifin accuracy may yield
no = 0 if the training set is free from outliers. But setting = 0 does not allow us to
flag outlying test samples, the identification of which is atca point of this work.

Instead, we propose a two step approach. In the first stepewwg s= 0 and deter-
mine the optimal value fok by CV. In a second step, with fixed, one option for the
k-NN classifier is to compute, in the training set, the méamand standard deviation
oy, of the distance to thé-th NN, and set the densitysuch thaip = 1/Vol(By, 120, )-
This ensures that for most training samples the probatufign auxiliary sample inside
the £-NN ball is relatively small. A different option for the saw step, again keeping

3 Besidesn, one also needs to sR. Choosing it too large means that resources are wasted decau
many auxiliary points are used to redundantly shield off gngpace. Choosing it too small may
lead to insufficient protection against outliers. Howetleg, rectangléR is not a parameter in a strict
sense, but only needs to be “sufficiently” large. For fifegthe rationg/vol(R) and thusn, needs
to be chosen.
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k fixed, is to determine the value af, also via CV, by choosing the largest possible
value ofng that does not harm prediction performance. “Harm” is meashere by the
1-standard error-rule (1-SE-rule), as proposedih Ehap. 7.10] or27, chap. 3.4] for
model selection. This rule states that performance difiege may be neglected if they
are smaller than the standard error of the estimated peafacen In our context, we thus
choose the largest, for which the estimated accuracy is not more than one stdndar
error below the highest estimate for the accuracy forg@lised in CV. The procedure is
demonstrated in Sectidh8.1and used throughout the rest of the experimental section.
In another experiment in Secti@8.2 we show that there is a high correlation between
the rank order of the estimated uncertainties for diffeodatices ofk andn,. In simple
words, the ability to detect outliers is very robust withpest to the exact parameter
choice.

3.7 Theoretical Analysis

As briefly discussed in Sectid® 3, there are two key theoretical questions associated
with the distributional estimates derived in this chapt&he first is with respect to
their accuracy, and the second is with respect to their agytioonsistency (defined
explicitly below). In this section we consider these quesiiin some detail.

3.7.1 Accuracy of Distributional Estimates for Finite Sample
Size

The distributional estimates derived fesNN, £-NN and CRF are based on the as-

sumption that the posterior(z) is constant insideB.(z), BY(z) or {II'™(z),m =

1,..., M}, depending on the classifier employed. Here, we investithegesrror in-

curred if this assumption is not satisfied. We first focus ascussion orz-NN.
According to Eq. 8.2), the second order distribution for the posteri¢r) at a point

x with ny , andn, , labels of class 1 and 2, respectively, insiel€ ) is

p(w(x”nl,;v; nQ,z) X P(nl,.zw n2,$|n1,x + ng , W(x))pB(ﬂ-(x)) (316)
where

Nz + UoR
UK

O A Jata)s= = n(a
Let Z be a random test sample from the same distributiol and letY” be its label. In
general, the probability thaf = 2 given thatZ € B.(z) is not equal tar(z). Rather, it
is given by

7(x) =P(Y =2|Z € B.(z)) = E[n(Z2)|Z € B-(x)].
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Thus, assuming a total numberwof,, + n., training samples insid8. (x), the proba-
bility of observingn, ,, andn, , labels of class 1 and 2, respectively, is given by

Ny + USR
UoR:

P(ny ., nogz|ni e + nog, m(z)) = ( )ﬁa(x)m’z(l — Te(z))""

Hence, Eq. .16 is in fact the standard Bayesian inference modelrfdr:) and not

for 7(x). If 7.(x) = w(z), EQ. 3.16) becomes the exact Bayesian inference model for
the success parameter of a binomial distribution. As dssdisn R9], the extracted
confidence intervals are quite accurate, even for a smalbeuf samples. Ifr.(z) #
7(x), the error we incur is small ifr.(z) — 7(x)| is small. For example, iff(x) is
Lipschitz continuous with constadt, then|7.(x) — n(z)| < Le. It follows that the
difference tends to O for — 0.

The above considerations also applyctdlIN and CRF, where the size of the neigh-
borhood considered depends bandn,. If 7(z) is equal to the average posterior in
BY(x) orin {I1"(x),m = 1, ..., M}, the inference model far(x) is exact. The error
we incur increases with the absolute difference betweern and the average poste-
rior. Putting an upper bound on this difference is exactérison d’'étre of adding the
artificial data.

3.7.2 Consistency of the Proposed Distributional Estimates

In this section, we investigate the consistency of the psefdistributional estimates
for e-NN, confidencei-NN and CRF. More specifically, we state sufficient conditions
under which the proposed distributional estimates comvérghe true posterior class
probability 7(x) as the size of the training set increases to infinity. ForstNN and
data-driven confidenck-NN classifiers, these conditions are easily satisfied dynget
the respective parameters accordingly. For probabilstididence:-NN, we addition-
ally need a very mild assumption on the distributionof For CRF, in contrast, it is
still an open question if the suggested splitting rules yrgansistency. In this respect
we remark that even the consistency of the original RF is ybetproven 1§].

Note that the consistency of posterjoint estimates for standardNN and £-NN
classifiers are proven i) and [47], respectively. Here, we additionally show that
() the distributional estimates converge to the same limithaspoint estimates, in
particular that the distributional estimates convergeheodegenerate distribution, and
that (i7) adding the auxiliary data preserves consistency provideid bumberm, does
not increase too fast with. The proofs of the propositions stated in this section are
given in the appendix of this chapter.
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3.7.2.1 Preliminaries

In the following, lety be the probability measure of, i.e. u(4) = [, p(x)dx for
all measurabled C X if p(x) is a Lebesgue density. The distribution (0f,Y") is
completely determined by the pdjt, 7) (see g8, chap. 2]).

First, we recall the definition of point-wise convergenceinbability. To this end,
the posterior point estimate of a method is denoted iy ) instead ofr () to explicitly
state the dependence on the size of the training data.

Definition 3.1. The sequencér, },, is called weakly consistent iff

lim 7, (z) = 7(x) in probability for p-almost all x

wherey. is the probability measure of .
Definition 3.2. The sequencér, }, is called stronglyL;-consistent iff

lim Ex [|7,(X) — 7(X)|] = 0 a.s.

n—oo
Remark 3.3. As pointed out in 27, chap. 12], the point-wise consistency in Defini-
tion 3.1is equivalent to

lim E7, [Ex [|7,(X) — 7(X)]] = 0

n—o0

This form of uniform consistency is called weakconvergence.

Remark 3.4. As the names suggest, strohg-convergence implies wedk -conver-
gence.

When stating sufficient conditions for the consistency ofdistributional estimates
for e-NN, confidencé:-NN and CRF, we refer to point-wise convergence in probability
as defined in Definitio®.1 In the proofs in the appendix, we make use of the implica-
tion in Remark3.4and the equivalence in Remasi3.

In Proposition3.9, which refers to the consistency of the distributionalrastes of
probabilistic confidencg-NN, we need the mild assumption tHafj X'|] < oo, whereas
in Propositions3.7, 3.8 and 3.10 the sufficient conditions for consistency of the esti-
mates are valid foanydistribution of (X, Y'). In particular,X is not required to have a
density in any of the consistency proofs. This is reflectethieyfollowing definition.

Definition 3.5. A method is called universally consistent if the sequeRég$,, ob-
tained therefrom are consistent for all distributions(af, V).

Finally, we state the following proposition for later use.
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Proposition 3.6. Let {a;,}»,7 = 1,2, be two sequences of non-negative real valued
random numbers and I€tZ, },, be a sequence of Beta distributed random variables

with parameterd /2 + a4, and1/2 + ay,,. Assume thad ,, + as, 2 s asn — oo
and thatay ,,/(an + ) = o1 /(a1 + az). Then,

651
o1 + O

P
L —

3.7.2.2 Consistency of the Distributional Estimate for £-NN Classification

We first state sufficient conditions for the universal cowesisy of the distributional
estimate for-NN. On one hand, a required condition for consistency isttaradius
of B.(z) converges to zero as — oo; this ensures that(z) is sufficiently smooth on
B.(x). On the other hand, this convergence needs to be sufficigiaily such that the
number of samples iB. (z) still increases to infinity.

Proposition 3.7. Assume that
e(n) =0 and ne(n)® — ocoasn — oo (3.17)

Then, the proposed distributional estimate in E3) is consistent.

3.7.2.3 Consistency of the Distributional Estimate for k-NN Classification

Now, we consider consistency of confidenceN. We start with a proposition re-
garding the data-driven version. As before feNN, the number of training samples
k = k(n’) in the neighborhood? () of = has to increase to infinity ag — oo. How-
ever,k should increase sufficiently slowly such that the radiu®pfz) still decreases
to zero. Finally,ny should increase sufficiently slowly so that the fraction ainples
from the original training se¥,, within the £ nearest neighbors does not converge to
zero.

Proposition 3.8. Assume that
!/ k /
k(n') = 00 and v 0asn' — oo (3.18)

and that
no/n = O(1) (3.19)

Then, the proposed distributional estimate in E8) is consistent.

Remark. Condition(3.19 implies thatr, the number of samples in the original training
set, increases to infinity ag — oo.
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Next, we consider the consistency of probabilistic confodiNN. Here, under the
additional assumption th&[| X || < co, we have the following proposition:

Proposition 3.9. Assume that

k(n) — oo and k —0asn — o (3.20)
n
and that
p/n=0(1) (3.21)

Further, assume thaE[|X|] < oo. Then, the proposed distributional estimate in
Eq.(3.12 is consistent.

3.7.2.4 Consistency of Confidence Random Forest

We first state sufficient conditions for the universal cotesisy of the distributional
estimate based on a single tree. Then, we discuss the iriptisgor the consistency
of confidence RF. As discussed below, it is an open questiotheheonfidence RF is
universally consistent.

The sufficient conditions we derive for the universal comsisy of the distributional
estimate of a single tree are similar to those for confidénbBiN, i.e., loosely speak-
ing, the number of samples in the neighborhood needs toaeer® infinity while the
neighborhood diameter needs to shrink to zero. Howéueeeds to increase faster than
log(n’) here and the definition of the neighborhood size is a littleemiovolved.

Proposition 3.10. Let IT,, be the partition obtained by growing a tree with the aug-
mented training sef,, and with parametek(n’), where

k(n')

og - —o00asn — o0 (3.22)
ogn

Assume further that
no/n = O(1) (3.23)

and that the following “shrinking cell condition” is satisfigfor everyy > 0 andé €
(0,1):
inf s diam(I1,, 8. 24
S:u(g)l21—6 p{x : diam(Il,, (z)NS) >~} = 0a.s (3.24)
wherediam(A) = sup, ,c4 ||z — y||. Then, the proposed distributional estimate in
EqQ.(3.19 is consistent.

Remark. Condition(3.24) is a “shrinking cell condition”. It basically demands that
the probability mass oK contained in cells whose diameter is larger thadecreases
to 0. Taking the infimum over all setsthat contain a minimum mass &f allows
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for cells that are infinitely large as long as the mass outsidaibset of this cell with
diametery is sufficiently small.

Proposition3.10states sufficient conditions for the universal consistesfape dis-
tributional estimate of a classifier based on a single treeo#Ading to the splitting rules
presented in SectioBl5.2 it is easy to ensure that conditioB.22) is satisfied by setting
k accordingly. Unfortunately, the “shrinking cell conditit(3.24) is not satisfied for ev-
ery distribution of(X,Y"). As an example, assume that= (2, 2)T ¢ X = [0,1]?,
thatp(z|Y = 1) = 1 andp(z]Y = 2) = 1/2 + (1), Assuming equal priors, it follows
thatp(Y = 2|z) = 1 —2/(3 + 22(), i.e. the posterior increases from3 to 3/5 in the
first dimension and is constant with respect to the secon@mion. For sufficiently
largen anddtry = 2, all splits are made orthogonal to the first dimension. Hence
although the volume of the cells shrinkg:ifr) is set appropriately, their diameter will
not tend to zero but is equal to one. However, note that simgnéells are a sufficient
but not a necessary condition. For the distribution comeidlethe splits are made in
such a way that the posterior probabilities are approxilypatanstant in each cell. This
is a desired property and yields consistent estimate@:if) satisfies Condition3.22).

It is an open question if there are distributions for whice groposed distributional
estimate is not consisteftlt may be necessary to adapt the splitting rules to enforce
splits in alternate directions. Since confidence RF simpBrayes over the observa-
tions of different tree-based patrtitions, the universaisistency of the distributional
estimates of confidence RF may follow from that of the indialdmees. It is another
open question if the application of bootstrapping, whiatlates the i.i.d. assumption of
the training data, allows for consistency.

As a final remark, we note that while the original RF algorithess Bhown empirically
a very good classification performance, it has so far rasstmmplete theoretical anal-
ysis, leading to minor or major modifications of the origia&orithm in most theoret-
ical publications on the subject. Given the choice betwestoee complete theoretical
analysis and greater proximity to the original implementatwe opted for the latter.

3.8 Results

In this section, we first illustrate the effect and optimiaatof the design parameters
(Section3.8.1) and then show the usefulness of distributional estimatesvo real
world data sets, one from road sign recognition (Sec8h? and a second from an
imaging mass spectrometry (IMS) experiment (SecBdh3. In all experiments in-
volving CRF, the number of tree¥ is set to 100 andtry = v/d according to the rule

4 Note that the two-dimensional example given 48,[chap. 20] on page 335 for a slightly different
splitting rule does not apply here. The reason is that istddixing the number of splits allowed,
we fix the approximate number of samples in each cell.
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of thumb proposed by the inventor of RE|.

3.8.1 The Parameters k, ng and p

In the following, we use a toy data example to investigatertie of the regularization
parameters:, p andng. Further, we demonstrate their optimization as proposed in
Section3.6.

Consider a two-dimensional binary classification problernerg the class-conditio-
nalsX|Y = 1 andX|Y = 2 are normally distributed with unit covariance matrix and
mean(1,1)” and(—1,—1)7, respectively. A training sef, with p(Y = 1) = p(Y =
2) = 1/2 andn = 200 is plotted in Fig.3.3

We first concentrate on probabilistic confiderieBIN. With p fixed, the largek, the
larger the “sphere of influence” of the original training gdes. This obvious relation
is illustrated in Fig.3.3 by settingp = 1 and increasing from 5 to 10. Withk fixed,
the largerp, the higher the probability that a point from the hypotheitieference data
So Is closer to a test samplethan one or several of the nearest neighbors frof,.
Hence, the variance of the distributional estimate in@sasd the mean will be more
influenced by training set labels closeitoThis is illustrated in Fig3.3 by increasing
p from 1 to 2 while setting: = 5.

In the last row of Fig3.3, standardk-NN predictions for the posterior class probabil-
ity 7(z) are compared to the point estimates (mean values of the Bsitébdtion) of
probabilistic confidencé-NN (p = 1, £ = 5). They are approximately equal where the
feature space is covered by training data, but confidér&l predictions tend more
to 1/2 in the low density parts of feature space. Note that the lomfidence in these
predictions is indicated by a high variance of the corregpunBeta distribution.

Similar observations to those for probabilistic confideiheBN can be made for
CRF, where the parameteris replaced byh,. The corresponding results are shown
in Fig. 3.4. The rectangl&R is set to[—10, 10}

In Section3.6, we proposed an approach for optimiziagndng (or p). We demon-
strate the procedure based on the toy data set shown in tlee kgfippanel of Fig3.4.
We initially setny = 0 (p = 0) and determine the optimal value fbrwith respect to
accuracy by 5-fold cross-validation (CV). This yields= 3 for CRF andk = 13 for
probabilistic confidencg-NN. Then, we evaluate the accuracy of CRF (witk 3) and
confidencée:-NN (with £ = 13) for varying values of, or p. This is shown in Fig3.5,
together with the standard errors obtained from CV. Accaydmthe 1-SE-rule pro-
posed in Sectior8.6, we choose the largest, (p) for which the estimated accuracy
is not more than one standard error below the highest estifoathe accuracy. This
yields p = 10 for probabilistic confidencé-NN andn, = 700 for CRF.
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Figure 3.3: [Best viewed in color] A training sef,, with n = 200 is plotted in the upper left
panel. The variance of the resulting Beta distributional estimates for gtisialzonfidence
k-NN with various parameter values bfandp is shown, on a logarithmic scale, in the next
three panels. In the last row, predictions for the posterior class pilitiestof standard:-NN
are compared to the point estimates (the mean of the distributional estimatesabitistic
confidence:-NN. Note that the posterior predictions are very similar in high density region
in particular near the decision boundary. However, while stantdi only offers ambiguity
reject, confidenc&-NN is also able to detect outliers.
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Figure 3.4: [Best viewed in color] The same training sgt with n = 200 as in Fig.3.3is
plotted in the upper left panel. The variance of the resulting Beta distribligstianates for
CRF with various parameter values/ofindn is shown, on a logarithmic scale, in the next
three panels. In the last row, predictions for posterior class probabiitisndard RF are
compared to the point estimates of CRF.
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Figure 3.5: Parameter optimization. For fixdd the classification accuracy of probabilistic
confidence:-NN and CRF is estimated by 5-fold cross-validation (CV) for varyirendn,,
respectively (black line). In each panel, the black vertical bars indtbatstandard error of
the estimate, obtained from the CV procedure. The red vertical bar inglitegstandard error
of the highest accuracy. According to the 1-SE-rule proposed in Segiipmwe choose the
largest regularization parameter (here: largemhdng) such that the corresponding accuracy
is not more than one standard error below the highest estimate for thaag¢piotted with
a green line). Here, this yields = 10 andng = 700. The blue line is the classification
performance of the methods when setting 0 or ng = 0. Note that, in this example, adding
a few hundred points from the auxiliary class 0 slightly increases the amcwf random
forest.
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3.8.2 Road Sign Recognition

We now show the usefulness of CRF on a real world problem froihsi recognition.
Further, we show that the ordering of the sample points aoegto the variance of their
uncertainty estimates is robust with respect to the examtelofn, andk.

The road signs dataset has been provided by the Robert BoscH arifildesheim.
It is composed of small gray value images with a resolutiolok 21 pixels. Example
images are shown in Fi§.6. The training data consists nf= 3084 images of the speed
limits “50” and “70”, hand labeled as classes 1 and 2, respalgt The classification
task is to predict if a test image shows a speed limit of “50™”. However, the
interesting feature of this data set is that the test seizefig.,; = 14385, contains not
only yet unseen “50” and “70” speed signs, but also variowsges not drawn from the
same distribution as the training data, in particular ofipeed signs, other traffic signs,
as well as patches of natural images. We show in the follothagCRF is able to both
correctly classify the 50 and 70 signs, and to automaticitgct these various outliers.

For the experiments, we simply represent the images by gnayr values, i.e., each
image is a vector of dimensiah = 21 - 21 = 441. In the first experiment, the pa-
rametersny, and k£ are chosen according to the procedure presented in SeRifpn
which yieldsk = 4 andng = 5n = 15420. R was chosen such that it covers the
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Figure 3.6: Example data of the road sign recognition data set. The left panel shaxseaimpt
from the training data, consisting of speed limits “50” and “70” only. The ri@ing panels
show the test data (from left to right): speed limit signs “50” and “70” drdwm the same
distribution as the training data, speed limit signs other than “50” or “70”, rdthéfic signs,
and finally image patches that do not show a road sign at all.

set{xy,..., w3084} +[—0.1,0.1]*L.2 The classification results on the 14385 test images
are shown in Fig3.7. First, allimages with speed limits “50” (magenta) and “[€yan)

are classified correctly, i.e., the point estimates for daspf class 1 are lower thanb,
those for samples of class 2 are higher thian The variance of the corresponding
distributional estimates is very low. The more dissimilariaage is to training data,
the higher the variance of its distributional estimate aade its predicted uncertainty.
The variance is relatively low for other speed limits (grgémgher for other traffic signs
(red) and highest for non-signs (blue). Interestingly tthéic sign (red) with the lowest
variance is an “end of speed limit 70” sign which is quite $amto the speed limit sign
itself.

The lower parabola in the figure is the variance dB@a(ay, ap) distribution with
parametersy;, ap such thato; + a; = k + 1. It resembles the standard frequentist
variance estimate gf(1 — p)/k. Note that had we used such a frequentist estimate (dis-
regarding the distances of the query point to the labeledtppiather than our Bayesian
approach, then all test points would lie on such a parabbé,is, all points with the
same posterior estimate would have the same variance ortaimtyg estimate.

In the next experiment, we show the robustness of CRF with otdpethe exact
choice of the parameters. To this end, we manually vary tleeparameters,, and
k. The results are shown in Fi§.8. It can be seen that the correlation between the
variances of distributional estimates obtained with défé parameter settings is high,
i.e., the rank order of the variance of the distributiondinestes is quite robust with

SAs usual, the sum of two sets is definedds B := {a +b:a € A,b € B}.
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0 02 04 06 08 1
Posterior point estimate

Figure 3.7: Distributional estimates for 14385 test images, represented by the meareand th
variance of the estimate. The colors of the dots encode the content of thmage: speed
limits “50” and “70” are magenta and cyan, respectively, anty these classes were present
in the training set (a full-fledged sign recognition system should be trairigbdalV traffic
signs). Other speed limits are green, other traffic signs are red ansigrsmare blue. Some
interesting test samples are flagged and the corresponding images &rersdarby. Note
that the variance of the pridBeta(1/2,1/2) is 0.125.

respect to the exact choice of parameter values.

3.8.3 IMS Data

We further illustrate the practical benefit of CRF by anothed rgorld application,
namely mass spectrometric imagé23 of human breast cancer xenografts grown in
mice [79]. The data has been provided by Ron M.A. Heeren (FOM-AMOLF sfant
dam). Imaging mass spectrometry (IMS) is an emerging tdolggahat offers both
spatial and spectral resolution and that can simultangaushitor a large number of
(bio-) molecules in organic samples—resulting here in rggdectral images with more
than 4000 channels. Biologically, the data set contains fiterdnt regions of interest
(necrotic and viable tumor, gelatin, interface region aladsg). Individual pixels of the
images are labeled based on chemical staining of tissuessiibich were cut in paral-
lel to the ones subjected to IMS analysis (see Bi§). For classifying pixels in new
images, rather than working with 4000 dimensions per pxely 5 of the most infor-
mative spectral channels are chosen for each class, ash#ekr [79]. The resulting
data points live in a 12-dimensional space (and not in a gtedsional space) because
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Figure 3.8: Comparison of the variance of the distributional estimates of CRF for differe
parameter settings. Each dot represents one test sample of the roagcsigmition data set.
In the left panel;ng = n = 3084 andk is varied; in the right panels = 10 andng is
varied. Note that the largest attainable variance, namely that of theBeian(1/2,1/2), is
0.125. As already shown e.g. in Fi§.4, increasing: and decreasing, lowers the variance
of the distributional estimates. The rank order of estimated variances and hacertainties
is relatively robust with respect to the choice of the paramétensdn,.

some features are meaningful for more than one class. Faonitgal analysis, the five
tissue (sub-) classes are merged into the two classes “nar'tifr) and “tumor” (2) as
shown in Fig.3.9. Hence, the task of the classifier is to predict for each pixel test
image whether the underlying tissue sample is tumorous brkige images are used
for training, the sixth for testing. The total number of l&zkpixels in the training im-
ages isn = 36194. The parameterk andn, are optimized according to the procedure
proposed in Sectio3.6, the rectangléR is always chosen such that it covers the set
{x1,..., 236104} + [—0.1,0.1].

If standard and confidence RF are trained withfiile training set, the predictions
for 7(x) are quite accurate for both classifiers (BdLQ. Moreover, the uncertainty of
confidence random forests is low in all regions. However racpce, many real-world
training sets are biased or incomplete and it may well hapip&ina certain tissue type
(or e.g. an unknown defect type in the case of industrialcaptnspection) is not well
represented in the training set. Alternatively, a test dammy accidentally be drawn
from a different distribution than the training data. Onetwé main benefits from our
approach is that this can be automatically detected. Weehiemestigate a scenario in
which the test image contains tissue types which are absmntthe training data. This
is imitated by excluding one of the subclasses from theitrgiset.
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Figure 3.9: [Best viewed in color] The left column shows (parts of) images of chemically
stained tissue slices. The expert labels obtained from these are plottedrnidtiie col-
umn, where labels a, b, ¢, d and e represent “glass/hole”, “interfagefatin”, “viable” and
“necrotic”, respectively. The labels in the white regions are missing. Irritie column,
these labels are merged into “no tumor” (1) and “tumor” (2), the class labeisite actually
used for training. The first row shows one of the five training images edsthe second row

is the test image.

If subclass “a” is omitted, both standard and confidence RE kiexy inaccurate pos-
terior predictions at test samples of that subclass. Horyéle lack of informative
training data is detected by confidence RF by a high varianteeafecond-order distri-
bution at those samples. The exclusion from subclass “dSs@etected by confidence
RF. In contrast to omitting “a”, using standard RF would notlléatotally wrong pre-
dictions. Posterior class predictions are quite accur&ewvomitting “e”, because “d”
and “e” strongly overlap in feature space. This also exglahy the lack of “e” is not
detected by confidence RF.

3.9 Conclusions

In this chapter, we have discussed the need for a confidenasumeefor posterior class
estimates and proposed to express this confidence in terensexfond-order distribu-
tion.

We derived distributional estimates foinearest neighborg-nearest neighbors and
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Figure 3.10: [Best viewed in color] Classification results for the labeled regions of thie te
image shown in Fig3.9. Standard RF predictions are shown on the left and the point esti-
mates obtained from confidence random forests in the middle. The last caldinates the
uncertainty of this prediction, expressed by the variance of the distrilautestimate. The
most interesting results are obtained if subclass “a” (glass/hole) is remdbvedrespective
regions in the test image are now classified as tumorous by both classifierevet, CRF
indicates that the respective region in feature space contains onlyegldéw training points

and that the prediction may be erroneous.



42 3 Distributional Uncertainty Estimates

random forests and proved the (universal) consistencyeasetiestimates far-nearest
neighbor and confidendeNN. It is an open question whether the proposed modifica-
tion of RF is universally consistent.

Although we concentrated on two-class problems, the dwiva can straightfor-
wardly be generalized to multi-class problems, resultmdpirichlet instead of Beta
distributions.

Using two real-world data sets, we demonstrated that thpgzed confidence RF
algorithm combines the advantages of one- and two-classitga the distributional
estimates indicate to what extent a feature vector is ctamdisvith the training data,
allowing to detect outliers or novel subclasses, while fassification accuracy is as
high as that of standard RF. The latter is ensured by setteganameters, and &
such that the classification accuracy of CRF is not statisfisagnificantly worse than
that of standard RF. Moreover, the detection of outliers viesve to be robust with
respect to the exact choice of the parametgrandk of the method.

To the best of our knowledge, this is the first time that aarylidata is used fauper-
visedclassification to obtain a confidence measure for postereatigtions. The derived
second-order distributions naturally arise from Bayesiarence based on “counting
labels” and the models rely on classifiers that are basedisptimciple. Nevertheless,
the idea of using auxiliary data is of course potentiallylegayple to other classifiers.
Highly simplified, the posterior estimate for the auxiliatass can be interpreted as a
heuristicmeasure of relative prediction uncertainty.

Interesting open problems are the definition of scorings(if€] to evaluate distri-
butional estimates, and the proof of consistency of theidigtonal estimate for confi-
dence RF.

Note that the second-order distributions derived in thesptér are model-based, de-
pending on the parameters of the corresponding methad £, and/orp, respectively),
and mainly allow for a relative comparison of prediction ertainty. In the next chap-
ter, we will derive second-order distributions for kernehdity classification that indeed
approximate the true sampling distribution

Foo(q) =P(7(z) < q|Tn), qe€l0,1] (3.25)

and these will be used for active learning. Note the diffeeebetween Eqs3(1) and

(3.25.
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3.10 Appendix

Proof of Proposition 3.6. Lete > 0 and definey’ := a1 /(a1 + o). Then,

1
P(|Zy — o| >¢) < 5B (Zy - ao')? (3.26)

1
= —E(Z,~EZ,+EZ, - )’
g

1
- (E(Zn —EZ,)?+2E(Z, — EZ,) (EZ, — /) + (EZ, — o/)2>
1

= 5—2(V(Zn) + (EZ, —d)?) (3.27)
where inequality .26 follows from Markov’s inequality. Plugging in the formwddor
the respective moments of a Beta distribution, It readilyofes that both summands

in (3.27) converge to O in probability as — co. This completes the proof. O

Proof of Proposition 3.7. First of all, note that the estimation efz) can be regarded
as a regression problem: If we rename the class labels 1 as@ 2rd 1, respectively,
thenr () is equal to the regression functi@iY | X = z]. Thus, estimating (z) simply
by 7(z) = na./(n1. + no.) corresponds to kernel regression with a box kernel. The
strongL;-consistency of kernel regression under the assumptihg) (and taking into
account that” € {0, 1} and that we are using a box kernel) is provervi#] [ Hence, by
Remarks3.3 and3.4, the estimater(x) converges in probability ta(z) for p-almost
all z. A necessary condition for this convergence is that+ n, , — oo in probability.
Thus, settingy; ,, = n; . in Proposition3.6, it follows thatBeta(1/2+ng ., 1/2+n1 )
converges in probability tar(z). Hence, the distributional estimate in E®.3) for
g-nearest neighbor is consistent. ]

Proof of Proposition 3.8. As in the proof of Propositio.7, note that the estimation of
pil» can be regarded as a regression problem if we rename thdatteés0, 1 and 2. To
this end, let);(j) = d;;, whereo,; is Kronecker’s delta. Further, 1&f’ (taking values in
{0,1,2}) be the label random variable of the extended classificgtioblem including
the samples from class 0. Then, is equal to the regression functidjy;(Y"')| X =
x]. Hence, estimating;, simply by p;, = ni./(noz + ni, + n2,) corresponds to
standard:-NN regression. The stronfg, -consistency ok-NN regression with bounded
response under the assumptioBslLg is proven in 7). Hence, by Remark8.3 and
3.4, the estimatg;, converges in probability tp; ., for y-almost allz. It follows that
T(x) = Paja/ (D1}z + Do) = N2/ (N0 + N2a) CONVErges t@o, /(p1je + p2jz) = m(x) in
probability foru-almost alle because (1, x2) := x1/(x1+x2) is a continuous function
for z; + z, > 0. Condition @.19 ensures that;|, + py, > 0 if p(z) > 0. A necessary
condition for this convergence is thaf , + n., — oo in probability. Thus, as in the
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proof of PropositiorB.7, it follows from PropositiorB.6that Beta(1/2+ny ., 1/2+n1 ;)
converges in probability ta(z) for pu-almost allz. Hence, the distributional estimate
in Eq. 3.8) for k-nearest neighbor is consistent. ]

Proof of Proposition 3.9. Again, the estimation ofr(x) is regarded as a regression
problem: If we rename the class labels 1 and 2 as 0 and 1, teggcthenn(z) is
equal to the regression functidY | X = xz]. The conditions3.20 are sufficient for
universal consistency of standard nearest neighbor rggreforp = 0 [47]. In prob-
abilistic confidencek-NN, the number of neighbors considered from the two origina
classes is always. The neighbors are simply weighted by their probabilitytdfilseing

in BY(z) after hypothetically augmenting the training set by samjflem a reference
distribution. Hence, for the consistency of the method, wi§ aeed to ensure that the
sum of the weights goes to infinity if goes to infinity. A sufficient condition is that
converges to infinity sufficiently slow so that the individuaeights of the neighbors do
not tend to 0. First of all, we have that

k—j
W
P(rg) € Bl(x) = e V) S LTI (v 7“] L2 forallj<k (3.28)
=0

For fixedp > 0, it follows from E[| X |] < oo thatE[pV (r;)] < C; < oco. If p increases
with n, condition @.21) ensures thaE[pV (r;)] < Cy < oo, and thus thaE[e =V ()] >
6 > 0 for somed > 0. It follows from Eq. .28 thatP(z(;) € B(xz)) > 6 > 0. O

Proof of Proposition 3.1Q The proof is similar to that of Propositiah8 Given the
assumptions3.22) and @.24), the strongL,-consistency ofr(x) = n; . /(no + 11, +
na,),i = 0,1,2, is shown in L16.6 Hence, by Remark3.4 and3.3, the estimatgy;,
converges in probability tp;, for y-almost allz. It follows that7(x) = poj,/(P1)s +
Pole) = Na2x/(N1z + Na ) CONVErges tQs), /(p1)z + poje) = 7(x) in probability for -
almost allx becausef (x1, x2) := x1/(x1 +x2) is @ continuous function for; + x5 > 0.
Condition 3.23 ensures that, |, + po, > 0if p(x) > 0. A necessary condition for this
convergence is that, , + n,, — oo in probability. As in the proofs of Propositidh7
and3.8, it follows from Propositior8.6that Beta(1/2 4 ny ., 1/2 + ny ) converges in
probability tor(z) (setw; ., = n;./n in Proposition3.6) for u-almost allz. Hence, the
distributional estimate in Eq3(14) for a single tree is consistent. ]

Proposition 3.11. Let @ = (Qo, Q1,Q2) ~ Dir(ag, oy, as) be a Dirichlet distributed
random vector with parameters,, a; andas. Then

Q2
Q1+ Q2

6According to Theorem 3 in1[16, the conditions of PropositioB.10 imply those of Theorem 2 in
[11€]. The strongl,-consistency is an intermediate result in the proof of Theo? in [L16].

~ B(Oég, Oll)
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whereB(as, ay) is the Beta distribution with parameters and «;.

Proof. Let Y;,i = 0, 1,2, be stochastically independent and Gamma distributed with
shape parameter; and scale parameter 1, i¥.~ I'(a;,1),7 = 0,1, 2. Itis shown in
[13Q that

Yo Y, Y, ) .
’ ’ ~ Dur(ag, o, o 3.29
(Y()‘|‘Y1+Y2 Yo+ +Y, Y+ + Y, (v, a1, 2) ( )
If we define
7 }/O—f—}/l—f—}/é’ 9 4

it follows that

(Qo, Q1,Q2) ~ Dir(ag, aq, az)

and v
Q2 Y0+Y?+Y2 Yo
oy g ~J B(OCQ, al)
Ql t Q2 Yolj-lz}fﬁ Yi+Y

where statemerit) is a special case of the statement3r29). O






4 Distributional Estimate Active
Learning

Active learning techniques aim at reducing the labelingreffor classifier training by
guerying labels for those samples which are most impor@amac¢hieving a sufficient
classification performance. Informative samples can bgeclo the decision boundary
or in unexplored regions of feature space. Additionally density of the underlying
class distributions at a training sample is highly releantlassifier performance. In
this chapter, we propose a novel active learning strategjytithdes off these three crite-
ria in a principled way by using a second-order distribugiicgstimate for the posterior
class probabilities at unlabeled points. The mean of sudktallition corresponds to
the usual point estimate, whereas the spread of the distnmboneasures the confidence
in this estimate and thus encodes the degree of exploratidhat region of feature
space. A comprehensive comparison using real-world désdreen UCI [9], Caltech-

4 [60] and USPS Zip CorpuslPZ shows the superiority of the proposed AL strategy
compared to random sampling, uncertainty sampling and proaph previously pro-
posed by Lindenbaum et alL11]].

4.1 Introduction

In the common setting of supervised learning, a sdabéledsamples is required for
training a classifier. However, the labeling process its##n is difficult, expensive or
time-consuming as human expertise usually is indispeas&t#@nce, iunlabeledsam-
ples are available in great quantities (consider appboatsuch as speech recognition,
defect detection or web page classification), only a smakstof this data can be an-
notated. If this subset is chosen randomly (referred to assipe learning” or “random
sampling” in the following), a lot of effort may be wasted fabeling those samples
which do not contribute much to the final classification perfance. To obtain low
prediction errors with few labels, the subset selection beguided byactive learning
(AL) approaches. AL is an iterative process that sequéyntiélooses the samples to be
labeled using information extracted from previously l@oetamples and possibly from
the (large) pool of unlabeled data. At the end of the AL prec#ise final classifier is
usually trained on the labeled data in a supervised fasbisoarding the unlabeled set.

47
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There are at least three important criteria when evaluaiegitility of the label for a
yet unlabeled instance:

(7) the distance to the current decision boundary,

(77) the density of the marginal distribution of features at fhaint,

(#7) the number of labeled instances in the neighborhood.

In the above, the notion of “distance” and “neighborhoodpeleds on the employed

classifier and metric. Ceteris paribus, each piece of infaonaontributes to an ap-

propriate ranking of the unlabeled samplég:the higher the uncertainty in the current
label predictionii) the higher the density, an@ii) the less explored a region in fea-
ture space, the more interesting it is to acquire a new lalat region. Note that the

relative emphasis on the criteri@ and (iii) governs the trade-off between “exploita-
tion” and “exploration”, namely labeling instances neax ttecision boundary in order
to refine it versus labeling instances in regions of featpees that contain no or a few
labeled samples only.

The key properties of the AL strategy presented in this @vage taking into account
all three criteria in a unified statistically principled waynd having only linear time
complexity per iteration step in the number of unlabeledhgxas. The prerequisite is
a classifier that outputs not only a point estimate for thegram class probabilities at
each point in feature space, but a second-order distrifitiEstimate over the posterior
class probabilities (see Chap8r The mean of this distributional estimate corresponds
to the usual point estimate for the posterior (and thus isasore for the distance to the
current decision boundary), whereas the spread of thelistn reflects the confidence
in the estimated posterior and thus considers the numbebefdd instances in the
neighborhood. As will be explained in detail in Sectir8, other approaches either
do not consider all three criteria, have higher computalicomplexity or consider the
trade-off between exploitation and exploration by datgppyeessing or by additional
model parameters. To the best of our knowledge, our sugheédiestrategy is the
first to make use of distributional estimates. We thus néjyurafer to it as “DEAL’
(Distributional Estimate Active Learning).

In Section4.2, we define the exact AL setup considered. In Secticdwe review
some existing AL methods and thereby motivate the propopptbach, which is pre-
sented in detail in Sectioh.4. The implementation of the strategy using kernel density
classification is presented in Sectidrb, followed by the corresponding results in Sec-
tion 4.6.
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4.2 Problem Setup

We consider the following common classification scenariesuine a random vector
(X,Y) that has the joint probability densityx, ), wherex € X is a feature vector and
y € Y its class label. In this chapter, for simplicity, we focusahinary classification
setting with) = {1,2} andX C R<,

LetL;;,7,5 = 1,2, denote the loss of classifying a point of class;. The expected
loss of a classifiek : X — ) is defined as

E(xy)[Loss(X,Y)|h] = /

Loyp(x,Y = 2)dx + / Liop(z,Y =1)dz (4.1)
Ri(h)

Ry (h)

= / Loyp(Y = 2|x)p(x)dx + / Lop(Y = 1|x)p(z)dx
Ra(h) Ra(h)

whereR; (h) and R, (h) are those regions in feature space wheessigns class label 1
or 2, respectively. It can be easily verified that the Bayessifier

hg(z) = arg r1n2axp(w, Y)Ly 35—y (4.2)
y=1,

minimizes the expected loss. It assigns class 2(# = 2|z) > 6, wheref =
L12/(L1s + Lop). In practical situations, the posterip(Y” = 2|x) is, of course, not
known andh () needs to be estimated from training instances.

The setting considered here peol-basedAL, where we start with a small (pos-
sibly empty) setC = {(x1,v1),..., (2, y)} of labeled data and a large padl =
{z141, ..., 714} Of unlabeled data. The main assumption is that the featurtonse
x1,..., T4, are ii.d. realizations from the marginal density:). The labeled realiza-
tions from (X,Y’) in £, in contrast, do not need to be independent since the labeled
samples selected later on by the AL strategy are not indegreéneither.

Throughout this chapter, we assume that only one label isegliat a timé and that
annotation costs are equal for all instances.

Remark 4.1. Note that, even if the elements®fare stochastically independent prior
to the AL process, in general, they become dependent thildugHence, the estimates
for the posterior class probabilities(Y = 2|z) may be quite inaccurate. However,
it is not necessary to knom(Y = 2|z) exactly in order to coincide with the Bayes
classifierhz(x). Instead, it is sufficient to know whethe” = 2|z) is larger thand

or not. Hence, most of the labels for samples in regions whergobsterior is clearly

1 Another variant considered in Chap&in the context of industrial quality control is batch mode AL
[79], [84], where several instances are chosen at the same time aite@tton; this speeds up the
AL process at the cost of lower AL performance due to possitalapping information of the labels
queried at the same time.
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above or belowd are not important for training a classifier with good perfornce.
This fundamental insight is the basic working principle of AL

4.3 Related Work

In this section, we review some pool-based AL approachesttar@by motivate the
DEAL approach. Most AL strategies can be assigned to one ofgoups, based on
their definition of the TUV:

1. Approaches without look-ahead step:

Train a classifier orC and evaluate it at alt € ¢/. TheTUV of x depends on
the respective estimate for the posterior class probisility|x). Corresponding
methods are for example proposedih [40], [55], [62], [86], [89], [104], [109,
[10€], [127, [125, [13]], [157), [164], [165, [176] or [190.

2. Approaches with one-step look-ahead:

Train a classifier orC and evaluate it at alt € /. For each instance € U
and for each possible class lahgladd(z, y) to the current training sef, train
the classifier anew and evaluate it atlle U/\{z}. TheTUV of x depends
on (the difference between the old and) the new classificaiidput at the in-
stances iri/\{z} when(z,i,),..., (x,4y),%; € ), is added to the training set
(usually weighted by the estimated posteyigr;|x)). Corresponding methods are
for example proposed V], [111]? or [153.

4.3.1 Approaches Without Look-Ahead Step

The simplest and probably most commonly used strategy witlhok-ahead is “uncer-
tainty sampling”. The underlying idea is to query the lallthat instance &/ whose
current prediction for the posterior class probabiliteslosest t@ [105. A variant of
uncertainty sampling for support vector machines is to estthe label for that instance
which is closest to the decision boundaty . Uncertainty sampling methods can be
modified by weighting th&' UV of x with the densityp(z) [164], [188), which is esti-
mated from both labeled and unlabeled instarfc&aother variant without look-ahead

2|n [111], the number of look-ahead steps is a user-defined paramgtet the simulations—even for
k = 2—are so time-consuming that the strategy is evaluated méinly = 1 and on very small data
sets fork = 2.

3 The cost of a naive implementation of density estimationfisrder O((I 4 u)?), but the density
only needs to be estimated once prior to the AL process. Ttimaes can be stored and thus the
density lookup does not affect the considerations belowati®e computational complexity for a
single query.
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step is “query-by-committee6], [165, where a label is requested at the instance
where a committee of classifiers disagrees most. This pieés also applied in]]

utilizing bagging and boosting techniques.

Criterion Computational
Strategy (¢) (1) (¢i7) | complexity
Random Sampling - V) -] -

Uncertainty Sampling v - - low

[401, [59], [89], [104], [109, [157, [17§
Density-Based Approache$q4], [189 v v - low
Query-by-Committee v - - low

[1], [62], [127, [129, [131], [169, [199
One-step look-ahead ], [111], [153 | (v) (V) (V) | high
DEAL v vV low

Table 4.1: Comparison of different kinds of AL sampling strategies with respect tsiden
ering three important criteria when querying a label for an instaritedistance from the
current decision boundary;i) density of the marginal distribution of features, grid) the
number of labeled points in the neighborhood. The low complexity methods aewithout
look-ahead step. Further explanations and the exact computational edifaplare given in
Section4.3.3 Note that random sampling implicitly selects more samples in regions with
higher density.

As summarized in Tabld.1, none of these algorithms without look-ahead step in-
corporates all three query criteria stated in the introduactFirst, uncertainty sampling
methods only take into account the distance to the decisoamdbary, which is mea-
sured by inducing a pseudometric on feature space: thendestaetween two points
is quantified by the absolute difference of their posterias€ probabilities. Second,
density-based approaches obviously incorporate dem$agnnation but still do not take
into account the number of labeled points in the neighbadhafa:. Finally, query-by-
committee algorithms consider the distance to the declsoamdary implicitly: Differ-
ent members of a committee disagree more on the predictammiastance: if it is close
to the decision boundary. However, more and more labels)&iances in regions with
a well-established decision boundary may be requested-quaration of feature space
is neglected. Moreover, density information is not congden the standard setting of
qguery-by-committee.

Several proposals have been made to avoid that too greedi, atrategy overlooks
large regions in feature space. Ih3f, the AL strategy switches between an explo-
ration and an exploitation step with a certain probabilitirereas in 31], the TUV is
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a weighted mean of an exploration and an exploitation terthefOapproaches cluster
the data once prior to the AL proce$®]], several times during AL]34] or before each
iteration step15]. All this can help to avoid to completely overlook large icags in fea-
ture space that would be classified incorrectly by too greedsfining of the decision
boundary.

4.3.2 Approaches With One-Step Look-Ahead

An approach with look-ahead step is proposedlisd, where thel'UV of z is large
iff the posterior predictions at the pointsif\{z} are far from0.5 whenz is added to
the training set. This idea is combined with SSL i®§. In [73], the TUV of z is
defined as the resulting expected change in the classifipubat the points id/\{z}
whenzx is added to the training set. AL strategies for 1-neareghimr classification
are presented inlfL1], where the two proposed definitions of tfi&/ V" are similar to
the ones in153 and [73].

The above look-ahead methods optimize the choice on themniosto be labeled next
by brute force and thereby implicitly consider the threergueiteria.

4.3.3 Comparing the Groups

The computational cost of the AL strategies with look-ahetgp are substantially
higher due to the additional loop. To be more precise,flgl,.(l) and fi.s(l) be
the computational complexity for training a particular sddier with/ samples and
evaluating it at one test poitrespectively. Then, the computational complexity for
choosing a point to be labeled @( fiqin(l) + fiest(1)u) for methods without and
O(ferain(l) + frest D+ u|V[(frrain(l+1) + (u=1) - frest(l +1))) = O(u|V| frraimn(l +

1) +u?| Y| fiest (L + 1)) for methods with look-ahead stéBimply put, methods without
look-ahead havéinear complexity in the number of unlabeled poinis whereas the
complexity of methods with look-aheadgsiadraticin w.

The slower look-ahead methods empirically seem to perfoetteb than the ap-
proaches without look-ahead step. The authorsl&f][ show this for their strategy
by comparing it to uncertainty sampling and query-by-cottes| where all methods
are implemented based on a naive Bayes classifiell 1ij,[the proposed look-ahead
approach is compared to two different variants of uncetgasampling and performs
best on three out of the four investigated real-world dats. se

“Note that the evaluation of a classifier may depend on the ruofliraining points. Hencef;..; may
depend ori.
SNote thatO(f(1)) # O(f(1+ 1)) if f increases exponentially with
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4.3.4 Comparison to DEAL

We propose an AL strategy that, on one hand, has the commahttomplexity of
methods without look-ahead step, and, on the other handjdens all three selection
criteria stated above in a principled way. The latter is eodd in a unified framework
without the necessity of clustering the data or switchingliekly between exploitation
and exploration. Instead, we employ a single classifier phatides not only an esti-
mate for the posterior class probabilities but also an edarfor theuncertaintyof that
estimate which depends on the number of labeled instandé® ineighborhood. As
assumed in the next section, we requirdistributional estimate for the posterior class
probabilityp(Y = 2|x), i.e. a second-order distribution whose mean correspantiet
posterior point estimate and thus is related to the distahedo the decision boundary
and whose spread is related to the number of labeled poinkteineighborhood af.
An example of how such a distribution can be obtained is piteskin Sectiort.5.

4.4 Active Learning with Distributional Estimates

4.4.1 Assumptions

As defined in Sectiod.2, let £ = {(x1,11),..., (2, y)} be a set of labeled samples
andU = {zy41,...,x1,} alarge set of unlabeled observations. For each labeled set
L, we assume the existence of a classifier that foriagyX’ provides us not only with

a point estimate for the posterior class probabilities, ibuct with adistributional
estimate of the posterior class probabilities. To simpfibtation, we tacitly assume
that this estimate has a density

go1e(q) = d%P(ﬁ(Y —olr)<q). qe 0]

and refer tog,, as distributional estimate. Examples fgy, are shown in Fig4.1
However, note that the AL strategy is defined &y distribution and we will use an
example of a discrete distribution below to motivate a deéini

The distributional estimate,, encodes ouuncertaintyin the predicted class prob-
ability at z, in particular for eachx € U, and plays a key role in our AL strategy. In
addition, ag + u > 1, we assume that the marginglr) can be estimated, e.g. via
some non-parametric density estimate).
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4.4.2 Classifier Losses and Their Estimates

The expected loss of a classiffers defined in Eq.4.1). Thelocal loss at any: € U is
given by

Re(h) = p(z) [Laap(Y = 2[2)1{h(x) = 1} + Liop(Y = 1|z)1{h(z) = 2}]

where the indicator functioh{s} equals 1 ifs is true and O otherwise. In this subsec-
tion, we define two different estimates of the local loss, based on point estimates
of posterior class probabilities and one based on distabat estimates. These two
definitions are crucial ingredients for the definition of i€’V in the DEAL strategy.

First of all, let )
AY = 2J) = / ¢ 020(0) g 4.3)
0

be the point estimate for the posterior class probabilityesponding to the distribution
g2~ Given this point estimate, the classifier that minimizessakpected loss (globally
and locally) is

2 iRy =2z) >0
ho(29212) = { 1 otherwise @9

and the usual plug-in estimate of the expected local losgofrat estimate is given by

Ro(p(Y = 2[a)) = pla) min {p(Y = 2a) Loy, p(Y = 1) L1} (4.5)

To motivate the definition of the expected local loss of ariigtional estimate, con-
sider the following artificial discrete example wit(p(Y = 2|z) = 0.2) = 0.5 =
PpY = 2jz) = 0.9), 6 = 0.5 andp(z) = 1. It follows from Eq. @.3) that
p(Y = 2|x) = 0.55; we assign class 2 (according to E4.4)) and expect to incur
a local loss 00.45 atz (Eqg. @.95). This is indeed the best we can achieve if we have
to take a classification decision based on the current irdbam. But, giverys,, what
local loss do we expect to incur on average if we had more nmédion, e.g. if we had
the opportunity to query some labelsaabr in its neighborhood? More specifically,
what local loss do we expect to incur on average, given theentimformation based
on the distributional estimate, if we knew the true postaristead of having a distribu-
tional estimate of it? Or, from a different point of view, whacal loss do we expect to
incur if we had the possibility to label so many points in tlegghborhood of: that we
can be almost sure to predict the same class as the Bayedietg&sy. @.2)? In this
simplified example, where the posterior is eitber or 0.9 with equal probability, the
expected local loss would then b& - 0.2 + 0.5 - 0.1 = 0.15.

Transferring these considerations to a distributionairese with density, ., where
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8 DEAL | Ro(p(Y =2[)) Ru(ga.) TUV ()
i, 1 0.118 0.118 1.7-107°
6/ % 2 0.5 0.499 0.001
ey 1 z3 0.467 0.286  0.181

Uncertainty Sampling TUV (z)

2,

g2|x3 1 0.118
0 3}‘2 05
0 0.2 0.4 q 0.6 0.8 1 T3 0.467

Figure 4.1: Examples of distributional estimateg, at three unlabeled points, z2, z3. The
TUV of the DEAL strategy is large fag,,,, and small for botty,,,, andg,,,. In contrast,
the TUV of uncertainty sampling (expressed according to R)) is larger forg,,., than
for go|z,, @Sp(Y = 2|z2) = 0.5 andp(Y" = 2|x3) = 0.533.

summation becomes integration, yields

A

R (922) = p() /01 9212(q) gL 1{q < 0} + (1 — q) L121{q > 0}]dq (4.6)

— p(x) / 912 (@) Ro(g)dg 4.7)

for the expected local loss of a distributional estimgate.

4.4.3 Proposed Active Learning Strategy

In the previous subsection, we defined the expected locablioa point estimatg(Y” =
2|z) (Eq. 4.9) and that of a distributional estimajg. (¢) (Eq. 4.6)). Next, we propose
an AL criterion based on these two quantities. To motivagedpproach, consider the
distributional estimates for three different unlabelestamcesr,, z, andz; shown in
Fig. 4.1 Assuming that = 0.5 and equal density(z) at all three points, which of
these instances should be labeled next?

Itis not very interesting to query a labelat First,p(Y = 2|z,) is relatively close to
1, i.e.,z; is relatively far from the decision boundary. Second andenimportant, the
probability that the true posterigKY = 2|x) is smaller than.5 is almost0 according
to the distributional estimatg,,, . Hence, according to Remad#kl, it is not sensible to
query a label at; because all we need to know ab@t” = 2|x;) is if it is larger or
smaller thar).5. Requesting a label at, is not very sensible either, although this point
is very close to the decision boundary: Even if the additi¢aizel atz, influenced the
final class prediction in the neighborhood of, this would have little impact on the
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final classification performance. This is because we can beoertain that the true
posteriorp(Y = 2|z,) is very close td).5 according to the distributional estimajg,., .
At 3, based on the (current) point estimat®” = 2|x3) = 0.53, we assign class 2. But
as there is a relatively high probability thaty” = 2|x3) is small, which would lead to
a large local loss at3, an additional label may have a large impact on the local loss
particular, it is more advisable to query a labekatthan atx, although the posterior
estimate atrs is further from0.5 than atzs.

The expected local loss of the point and the distributiostiheate atr, x, andxs
are presented in the table on the right hand side of&iy.Based on these examples,
we observe that the knowledge about the true posterior pladsability p(Y = 2|z)

~

is close to optimal if the differenc&, (p(Y = 2|z)) — R.(g2.) is small. The larger

~

R, (p(Y = 2|z)) — R.(92.), the larger is the expected decrease of the local loss at the
point z when knowing the posterior exactly insteadgaf, only, and hence the more
interesting an additional label atbecomes. This observation motivates the following
definition of theT’UV, which is the central expression of this chapter:

We prove in Propositiod.2 in the appendix that th&'U'V defined in Eq. 4.8) has
the following properties:
TUV (z) >0 4.9

and

1

0
TUV(z) =0 & /0 Goz(q)dg =1 or /0 Gax(q)dg =1 (4.10)

Eg. @.9) means that the information gain from a label is always negative. Further,
Eq. @.10 exactly reflects Remark 1: For an optimal class prediction, exact knowledge
of the true posterior is not needed. It suffices to know onlgthbr it is larger or smaller
thand. The fact that the whole mass ¢fy, is concentrated either beloar aboved
indicates that indeed sufficiently many labels have beenegien the neighborhood of
x and that querying a label atis a waste of resources.

4.4.4 Beta Distributional Estimates

To make things more explicit, we assume that(q) = go.(q|a,b) follows a Beta
distribution with parameterg andb. This distribution family arises as the result of the
derivations in Sectiod.5. The probability density functions of the Beta distribution
different parameters settings are plotted in Big.
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—a=1/2, b=1/2
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+a=50, b=50
--a=10, b=40
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0 0.2

0.4 0.6 0.8 1
p(Y=2[x)

Figure 4.2: Probability density function of the Beta distribution for different parametensd

b. If a andb are approximately equal, the point estimate of the posterior class probability
p(Y = 2|z) is close t00.5. The confidence in this estimate is highdifand b are large,
whereas the confidence is low for smalandb. The larger the difference betweerandb,

the closer the point estimates@fY” = 2|z) are to 0 or 1. Typically, the sum afandb will

be relatively large (small) it: is in a region of relatively high (low) density with respect to the
current set of labeled samples.

The expected value of a Beta distribution equals

a
a+b

PY = 2]) =

and the corresponding expected local loss then is

. I
R.(p(Y = 2|z)|a,b) = p(z) min (a o1 bLiy )

a+b a+b

The expected local loss of the distribution is given by

A

Ry (9212(qla, b)) = p(z) /O 9212(qla, b)[qLan1{q < 0} + (1 — q)L121{q > 9}]dQ}
) (4.11)

[ aLyy bL1s
1, 1.b
la+b olat L)+ =7

p(z)

Ii_o(b+1, a)} (4.12)

wherely(a, b) is the incomplete Beta function with parametelandb at positiord (see
e.g. R, chap. 26.5] or Appendix A in Sectigh8). The calculations to obtain term.(2
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Figure 4.3:The training utility valuel’UV (z|a, b) = R, (p(Y = 2|z)|a, b) — Ru(goj.(qla, b))

(Eq. @.13), wherea andb are the parameters of a Beta distribution. Some examples with
different parameter settings are plotted in g2 In both panelsp(z) = 1 andé = 0.5;

the right panel shows the contour lines of the natural logarithm of thaibtmcGiven equal
densityp(x), we prefer requesting a label for a pointat which the point estimate for the
posterior is close t0.5 and the variance of the distributional estimate is highgproximately
equalsb and both values are small) over a painwvith equal posteriors and low variance (
approximately equalsand both values are large) over a painwhere the posterior estimates
are far away fromd.5 (a is much larger thah or vice versa).

o
N

TUV(x|a,b)
o
o

from term @.11) are shown in Appendix A in Sectich8. Finally,
TUV (z|a,b) = Ro(p(Y = 2|z)|a,b) — Ru(ga1.(qla, b))

. . (ala bLyp aLoy; bLis
_p({[‘) [mln (m,m) — a+b.[9(a+].,b) — a+b_[1_9(b+].,a)
(4.13)

TheTUV for different parameters andb is plotted in Fig.4.3. If « andb are small
and approximately equal, then the posterior estimate sedio0.5 and the variance of
the distributional estimate is high; thus thé/V is large. Thel'UV is small if either

a andb are unequal (resulting in point estimates that differ frof) or their sum is
large (resulting in a low variance of the distributionaliestte). The dependence on the
mean of the Beta distribution and the sum of its parameteraderexplicit in Fig4.4

to compare th€' UV of DEAL to that of uncertainty sampling.
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Figure 4.4: The left panel shows the contour lines of the natural logarithm of the train-
ing utility value, i.e. the contour lines of the logarithm &V (z]a,b) = R,(p(Y =
2|z)|a,b) — Rx(gz‘w(qm, b)), in dependence of the mean of the Beta distribution and the sum
of its parameters, which are measures of the distance to the decision boanddhne predic-

tion uncertainty, respectively. Itis assumed thiat) = 1 andd = 0.5. If a/(a-+b) is fixed, the
largera+b, the less important the label at the respective point in feature spacebif fixed,

the closer:/(a+b) t0 0.5, the more important a label. The contour lines forftiél” of uncer-
tainty sampling are shown in the right panel. We ha@éV (z|a,b) = 0.5—|a/(a+b) —0.5]

(see Eqg.2.2). In the case of random sampling, the function is constant in the whole plan

4.5 Implementation Using Kernel Density
Classification

Implementing the active learning strategy presented irti@ed.4 requires distribu-
tional estimatesy,, for the posterior class probabilities at each unlabelethie
x € U. In this section, we derive such estimates for kernel dgctassification. To this
end, we approximate the sampling distribution of the past@oint estimate.

Kernel density classification is a standard generative atktRirst, the priore(Y =
i),7 € {1,2}, and the densities(z|Y = i) are estimated for each class. Then, a point
estimate for the posterigY” = 2|x) can be obtained from Bayes’ theorem:

o - Py =2)p(Y =2)
p(Y =2[z) = plzlY =1)p(Y =1) 4+ p(z]Y =2)p(Y = 2)

(4.14)

In kernel density classification, the class priors are ugledtimated by the sample
fractionsn;/n = |{(z,y) € L : y = i}|/n, the class densities by kernel density

estimation:
(x|Y =i 4.1
Plaly =) = det 2 K(H (o —1)) (4.15)
I] yj—z
whereH is a nonsingular bandwidth matrix aidis a multivariate kernel function.
A standard assumption in kernel density estimation is thattitaining samples are
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drawn i.i.d. from(X, Y’). For the following derivations, although not satisfied itiae
learning, this is also assumed for the labeled samplek ifithe key for deriving dis-
tributional estimateg,, for posterior class probabilities is the insight that thesity
estimate given by Egq4(15 is of course not deterministic but depends on the random-
ness of the training data. This uncertainty in the densitynede p(z|Y = i) then
carries over to uncertainty in the posterior point estinigié = 2|x).

We start with modeling the uncertainty in density estinmatiath respect to the ran-
domness of the training sét For a fixed point:, the expected value and the variance
of the sampling distribution gf(z|Y" = i) as defined in Eq4(15 can be approximated
by [80, chap. 3]

Belp(elY = i) ~ plalY = i) + Lm(KN(H My H)  (4.16)

and
1

n; det(H)

respectively, whergiy(K) = [, K(z)z"zdz, tr(A) is the trace of the matrix,
Hyp(oly—i) 1S the Hessian o(z|Y = i) atz and||K||3 := [p.(K(z))?dz.

To estimate a full distribution instead of the moments ow,fit a Gamma distribu-
tion to the sampling distribution gf(xz|Y" = ) using the two moments in Eqst.(L.6)
and @.17). The exact choice of the distribution family is arbitrargré since the true
distribution of p(x|Y" = i) for finite sample sizes is not know®(, chap. 3]. How-
ever, there are four reasons that make the Gamma distmibatigood candidate(s)
Both p(z]Y = i) and the Gamma distribution take values|inoo), (i:) the distribu-
tion family is sufficiently rich to approximate other ditutions well,(ii7) the Gamma
distribution allows for the Bayesian treatment of the dgns#timation below, anfiv)
the Gamma distribution model allows for an analytical d&tion of the posterior un-
certainty according to Eq4(22. As is common for computing confidence intervals
[80, chap. 3] forp(x|Y = i), we assume that the Hessianpdf|Y = 7) in Eq. @.16
vanishes at, implying thatp(z|Y = ) is an unbiased estimate pfz|Y = i), and we
use a plug-in estimate for(z|Y = i) to estimate the variance in Eqt.L7). The two
parameterg andv of the Gamma distribution can be easily determined by a mémen
estimator:

Velpa]Y =i)] ~ IK|I2p(x]Y = 7) (4.17)

k) = plz]V = i)
1
k92 = —————p(a]Y = i)||K|3
We obtain det(H
p= 0D 5oy )

1113
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and )
5 _lIKl3
n; det(H)
and thus det () K12
. o nidet() iy 5
R (4.18)

where~ means “is approximately distributed as”. Weighting thesigrestimate by the
class priors, it follows from4.18 and the scaling property of the Gamma distribution

that
e mdet(H) . o IKJ2
sy =) <o (P sy gy I 4.1
jafy =i ( el = i), — e (4.19)

Note the following summation property of the Gamma distiifou Let X; ~ I'(k;, ),
1=1,...,n, be independent Gamma-distributed random variables; then

So, the first parameter of the distribution 19 can be interpreted as the sum of the
individual “density contributions” from the training datee. n;p(x|Y = i), weighted
by det(H)/||K]|3. This insight be used now to motivate E4.Z1).

A general problem in AL is that there are only labels from olasg at the beginning,
at least after the first iteration of the process. Then, tis¢ piarameter of the Gamma
distribution in @.19 is zero and the distribution is not defined in this case. Tercvme
this problem, we assume a constant prior density througeatire space for each class
that is updated by the individual “density contributionsdrh the training data according
to Property 4.20. l.e., we add a small constant> 0, which yields

n; . <5+nidet(H)

N K12
—p(x|lY =)~ T
p Py =) e

p(z]Y =1), ndet(H)> (4.21)
It will turn out below that the uniform density prior in featispace corresponds to
choosing a prior for the distributional estimate over thetpdor class probabilities and

thus that the exact choice of the additive constant in thegasameter of the Gamma

distribution in Eq. 4.21) can be interpreted very well.

Next, we derive how the distribution statement4n2l) for the weighted class den-
sities carries over to an estimate for the sampling distiobuof the posterior point
estimatep(Y = 2|z). Itis shown in [L3( that for two independent random variables
Xy ~ T'(k1,9) and Xy ~ T'(ko, 9),

X5

——— ~ Beta(ks, k 4.22
X1+X2 ea‘(27 1) ( )
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Applying this result to Eqs.4.14) and @.21) yields an approximation to the sampling
distribution of posterior point estimates in kernel denslassification:

N9 det(H) N nq det(H) " )
12 SO S(aly = 2),6 + LT sy =1
i Pl =20+ ey = 1)

P(p(Y = 2|z)) ~ Beta <(5 +
(4.23)

This approximation is evaluated in Fig.5 where it is compared to the empirical
sampling distribution of)(Y" = 2|x) using a toy data example. Note that we revert to
Beta(6,0) if there are no labels in the neighborhoodwfSettingd = 1/2 corresponds
to Jeffreys’ uninformative priord8] for the inference of the binomial proportion. The
distribution in @.23 can thus be interpreted as a posterior which is obtained &o
Bayesian prior that has been updated by counting the labelglfted by a kernel func-
tion) in the neighborhood of.

Using the common Gaussian RBF kernel and setting- & - I, leads to

) _ 1 1 _alE==)?
pz|Y =1i) = i Z \/We 2[l7n (4.24)

xjy5="1

for the density estimate in Eg4.(L9. Plugging this into Eq.4.23 with 6 = 1/2 yields
the principal result of this section:

]

h

T—x

h

J

P(H(Y = 2la)) ~ Beta | 1/2 428 Y ¢ 2 12428 Y e

Ty =2 zjy;=1
N 7
vV Vo

=:a =:b

(4.25)
where it is used thalkC||2 = 2-97—%. This distribution is used as distributional estimate
for the implementation of the proposed active learningsy i.e.gsj. = 922(q|a, b).

Finally, note an interesting connection to the derivatimnShapter3. If we used the
box or hypersphere kernel in Egt.19, which corresponds to atNN classifier, we
would obtain .

Paly =i) = — 3 "1l —a| <)

TjYj;j=1
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Figure 4.5: Comparison of the empirical sampling distributionggl” = 2|x) (represented
by the histograms) and the estimated sampling distribution in £83)(resulting from the
Gamma distribution model (solid lines). In each panel, instances of classes2laae sam-
pled from a two-dimensional Gaussian distribution with mgarand i, respectively, and
equal unit covariance matrix. The number of samples is equal tand nq, respectively,
andz = (0,0). The histograms are computed frdif,000 repetitions, i.e10,000 different
realizations of the training set. For each realizatji{fy; = 2|x) is obtained using a Gaussian
RBF kernel withH = 0.1 - I; for the density estimate of each of the two classes (see also
Eq. @.249). For the approximation of the sampling distribution according to E®3, the
two density estimates are replaced by their known true values and the danstenbeen set
to 0 to make the simulations independent from the prior.

for the density estimate, wherg is the volume of thel-dimensional unit ball, and

P = 2z))

~Beta | 1/2+ Y Yz — | <}, 124+ > 1|, — x| <h}| (4.26)

Ty =2 Tjyi=1
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for the sampling distribution, where it is used thi#t||2 = ¢;'. l.e., if the labels in a
neighborhood of are weighted equally (corresponding to the employed kgritned pa-
rameters of the Beta are given by 1/2 plus the number of lali¢heaespective classes
in the neighborhood of. This is the posterior distribution of a standard Bayesi&erin
ence model for the success parameter of the Binomial disisib(see e.g.40, chap. 2])
using Jeffreys’ prior88] Beta(1/2,1/2) and has already been derived in Eg1.3.

4.6 Results

In this section, we present experimental results for the DE#ategy. Using a toy data
example, we first demonstrate that DEAL trades off exploraind exploitation in a
natural way (Sectiod.6.1). Then in Sectiong.6.2and4.6.3 using real world data sets
from the UCI repository9] and Caltech-4¢0], we compare the proposed approach to
random sampling and uncertainty sampling. Finally, we cam@EAL to LSS (look-
ahead selective sampling) in Secti#6.4 a method previously proposed ibl[1].

For the implementation of kernel density classificationisatropic Gaussian kernel
and the normal reference rul@q9 chap. 6] for the kernel width is used. The density
p(z) in Eg. @.13 is estimated by kernel density estimation with the sameadieype
and width.

In all experiments, we always start with an empty Seif labeled points. In case of
uncertainty sampling, the first query points are selectadamly until there is at least
one label for each class. In case of DEAL, the first label ipm@uattically requested for
the point with the highest density estimate; afterwards stinategy can be applied even
if there are labels of one class only. If not stated otheryai@esults are obtained from
2 x 5-fold cross validation.

4.6.1 XOR Problem

Uncertainty sampling is known to query too many labels inaeg with low density
[127 and it neglects exploration in favor of exploitation. Wentenstrate the latter
using the well-known two-dimensional XOR problem and shbat DEAL overcomes
this problem. Here, each class is a mixture of two equallyghteid Gaussians with
unit covariance. The mean values &re3, —3) and(3, 3) for class 1 and—3, 3) and
(3, —3) for class 2. The number of instances is 150 for each claskirgsin a (initially
unlabeled) training set of 240 and a test set of 60 samplesaicit run. The realizations
are normalized to unit variance in each dimension.

Typical patterns for label query order of the two differernt gtrategies (both resulting
from the same training set) are plotted in Fg. It can be observed that DEAL explores
feature space thoroughly, whereas uncertainty samplingptaiely overlooks the class
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Figure 4.6: Label query order of the first 50 labels for two different AL strategiagple-
mented with kernel density classification. Note that the data is normalized toari@hue
in each dimension. Uncertainty sampling completely overlooks the relevartice observa-
tions in the second quadrant of the coordinate system as labels araedqudyiat the decision
boundary. In contrast, the proposed strategy thoroughly explordedh#re space. Note in
particular that all 4 clusters have been visited after 4 label queries anithéheorresponding
guery points are close to the cluster centers due to considering densityation. Labels
5-8 are again distributed over all 4 clusters, this time at some distance to #haugriabels
in direction of the decision boundary.

2 realizations in the second quadrant of the coordinatesystie to too greedy a label
guery at the decision boundary. This problem could not eeesolved by incorporating
density information: The predictions for the posteriorsslgrobabilityp(Y” = 2|z) of
unlabeled points are all equal to 0 or very close to 0 for tHaheled training points in
the second quadrant. In contrast, the proposed approadioaddy takes the number
of labeled points in the neighborhood into account whichultssn a more systematic
exploration of feature space. Nevertheless, instances ¢l the decision boundary
are labeled as well within the first queries. The averageahieg curves for the XOR
problem with respect to accuracy are plotted in Big. Note in particular that, for the
reasons discussed above, uncertainty sampling leadsrionerse results than random
sampling.

4.6.2 UCI Data Sets

Above, we demonstrated the advantages of DEAL over unogytaampling using a
simple toy data example. Now, we show that these considesatndeed have an im-
pact on the performance in real world problems. To this eredc@mpare the proposed
approach to uncertainty and random sampling on 32 datarsetsthe UCI data base.
Each of the different data sets is preprocessed as follgw&ategorical variables with
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Figure 4.7: Learning curves for the XOR problem with respect to accuracy

more than two outcomes are replaced by dummy variabi€smissing values in cat-

egorical variables are treated as a separate outc@memissing values in continuous
inputs are replaced by the respective mean,(@ndthe data is normalized to unit vari-
ance in each dimension. If a data set has more than two cldlssadasses are joined to
create two-class problems in a way such that the new class@pproximately equally

abundant.

As kernel density estimation is known to be problematic ighhdimensions 59,
chap. 7] and inappropriate for discrete or binary featuttes data is additionally pre-
processed by principal component analysis. For autontigtidatermining the number
of principal components to be used, we applied a schememntezke.g. in 191]° and
[81, chap. 14]. To avoid oversimplified data sets, the minimumioer of components
is set to two.

To the best of our knowledge, there is no standard method éasoring AL perfor-
mance. We propose to compare the different strategies bygng over the perfor-
mance after each label query or, equivalently, by computiegarea under the learn-
ing curves. This measure honors both initial steepnesseoietirning curve and early
convergence of the performance to a high level. As we compalsethe relative per-
formance of different strategies for the same classificasilgorithm, the measure is
equivalent to the one proposed it?] and also used inl5€ (called “deficiency”). Ex-
ample learning curves for the data sets “Iris” and “Optdigére shown in Fig4.8. The
results for all data sets are presented in Tab® The corresponding learning curves
are shown in Appendix B of this chapter in Sect8.

It can be seen that the proposed strategy performs bettemthzertainty sampling
and random sampling for most of the data sets. We compardftbeedt strategies as
recommended ird5]. The Friedman test yields = 0.001 for the hypothesis of equal

8In [191], it is called the “resampling scheme via permutation”.
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Dataset DEAL | Unc. Sampl. RS # samples
Anneal 0.924 (1)| 0.880(3) | 0.898 (2) 898
Audiology 0.753 (1)| 0.726 (3) | 0.736 (2) 226
Autos 0.704 (1)| 0.672(3) | 0.675(2) 205
Balance-Scale| 0.733 (2)| 0.730(3) | 0.734 (1) 625
Breast-Cancer| 0.649 (3)| 0.662 (1) | 0.652 (2) 286
Breast-W 0.963 (1)| 0.958 (2) | 0.952(3) 699
Dermatology | 0.987 (1)| 0.985(2) | 0.973 (3) 366
Diabetes 0.708 (1)| 0.696 (3) | 0.699 (2) 768
Ecoli 0.886 (1)| 0.870(3) | 0.875(2) 336
Glass 0.723 (1)| 0.715(2) | 0.686 (3) 214
Heart-C 0.757 (2)| 0.759(1) | 0.733(3) 303
Hepatitis 0.826 (2)| 0.818(3) | 0.828 (1) 155
Hypothyroid | 0.928 (1)| 0.920(2) | 0.913(3)| 3772
lonosphere | 0.903 (1)| 0.882(3) | 0.884 (2) 351
Iris 0.990 (1)| 0.982(2) | 0.981(3) 150
Led24 0.689 (1)| 0.674(3) | 0.689(2)| 1000
Letters 0.679(1)| 0.655(3) | 0.658(2)| 20000
Liver 0.556 (1)| 0.544 (2) | 0.542(3) 345
Lymph 0.710(2)| 0.732(1) | 0.702(3) 148
Optdigits 0.941 (1)| 0.907 (3) | 0.913(2)| 5620
Pendigits 0.927 (1)| 0.903(2) | 0.880(3)| 7494
Primary-Tumor| 0.670 (2)| 0.674 (1) | 0.659 (3) 339
Satimage 0.951(2)| 0.957(1) | 0.919(3)| 6435
Segment 0.874(1)| 0.774(3) | 0.845(2)|] 2310
Sonar 0.776 (1)| 0.765(3) | 0.773(2) 208
Soybean 0.902 (1)| 0.899(2) | 0.884(3) 683
Vehicle 0.800 (1)| 0.790(2) | 0.781(3) 846

= ) = = = = =
NwNGoANowwoo oMM EvNorwNpAENME MR OGS

\ote 0.882(1)| 0.877(2) | 0.874(3) 435

Vowel 0.753(1)| 0.604 (3) | 0.725(2) 990
Waveform 0.874(2)| 0.875(1) | 0.864(3)| 5000

Wine 0.948 (1)| 0.942(2) | 0.935(3) 178

Yeast 0.727 ()| 0.723(2) | 0.718(3)| 1484
Mean Rank 1.281 2.250 2.469

Table 4.2: Average accuracy of different AL strategies, implemented with kerrmeiteclas-
sification. Numbers in brackets refer to the Friedman test; the number of sacgpgrises

all folds, i.e. trainingand test set, and is the feature space dimension after having applied
principal component analysis.
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Figure 4.8: Learning curves of the three different AL strategies with respect taracg

for data sets “Optdigits” and “Iris”. Learning curves for the remainingl W&ta sets are
shown in Appendix B of this chapter in Sectidm9. The results for “Iris” are typical for
data sets with well-separated classes. Uncertainty sampling and randoiimgaacpieve

good classification with relatively few labels, but DEAL needs even fdalggls. The data
set “Optdigits” is an example where sampling at the decision boundary onlg oroless
completely fails at the beginning of the AL process, yielding results thatvame worse than
those for random sampling. In contrast, DEAL is very efficient from thgifining.

performance of all strategies. For comparing all classiftereach other, we use the
two-tailed Nemenyi test. Its critical difference for thé)1 significance level is equal
to 0.728. This means that DEAL performs significantly best and thatgarformance
of uncertainty sampling does not differ significantly froandom sampling (the critical
difference for the).1 significance level i9.513).

4.6.3 Caltech-4

Figure 4.9: Example images of the 4 object categories of Caltech-4. From left to right: air
plane, car, face, motorbike.
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Figure 4.10:Learning curves for three possible groupings of the 4 categories LIpeKorms
best in all cases and US second best. The top horizontal line is the asyraptiracy of the
classifier, with all training data labeled (estimated by 10-fold CV).

Grouping RS US | DEAL
{1,2} vs.{3,4} | 0.818| 0.846| 0.877
{1,3} vs.{2,4} | 0.799| 0.829| 0.840
{1,4} vs.{2,3} | 0.803| 0.836| 0.872

Mean Rank | 3.000| 2.000| 1.000

Table 4.3: Average accuracy of the compared AL strategies for 3 differentgings of the
Caltech-4 data set with preprocessing as described in text. The best@m best method
are indicated using bold font and italics, respectively.

Caltech-4 is a well established standard benchmark for bbgegorization§0] and
has also been used in ARJ]. This dataset consists of 4 different image groups: air-
planes (category 1; 800 images), rear views of cars (2; 11%Bital faces (3; 435) and
motorbikes (4; 798). Figd.9 shows one example from each category. We represent the
images by the “Color and Edge Directivity Descriptor” (CEDBJ]. The resulting 144-
dimensional features were then projected to the 17 leadingipal components using
the same method as in Sectidr6.2 To create challenging two-class problems with
convoluted decision boundaries, we grouped the 4 categoribree possible ways.

The resulting learning curves are shown in FglQ based on 10-fold CV with 5
repetitions. Tabl&l.3 compares the performances based on the area under thengearni
curve. It shows that, for all groupings, DEAL performs bastcertainty sampling
second best and random sampling worst.
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4.6.4 USPS Zip Data

In this section, we compare DEAL to LSS as proposedlibl]. To this end, we
create challenging classification problems with many d&iaters by using various
dichotomies of the digits from the USPS zip corpu®3. The groupings arél)
{0,1,2,3,4} vs.{5,6,7,8,9} (0-4 vs. rest){2) {1,2,3,4,5} vs.{6,7,8,9,0} (1-5 vs.
rest),(3) {1,3,5,7,9} vs.{0, 2,4, 6,8} (odd vs. even)4) {0,1,7,8,9} vs.{2,3,4,5,6}
(all digits contained in my date of birth vs. rest)) {1,3,4,5,9} vs.{2,6,7,8,0} (the
first five different digits ofr vs. rest). Similar to the previous sections, the handwrit-
ten digits from USPS zip corpus are projected onto their firsicipal components to
reduce the dimensionality of the digitized images (see[81gchap. 14]). For automat-
ically determining the number of principal components taubed, we apply the same
method as before. This yields= 39. For a second experiment, we determine the num-
ber of features by visual inspection of the eigenvaluess Vtaldsd = 12. The size of
the unlabeled pool is 7291, the test set comprises 2007 samphe results, averaged
over three runs, are shown in Figs114.15

The underlying classifier of LSS is weighted (by distance)erest-neighbor (2-
NN). If 6 = 1/2, the class assignment is equivalent to 1-NN. ThereforeNlis\thosen
as the underlying classifier for random sampling in the cdrmé& LSS. It can be ob-
served from the two different learning curves of random damg1-NN for LSS and
kernel density classification for DEAL) that the performait the underlying classifier
with respect to the USPS Zip Data is approximately equal. Swones, kernel performs
slightly better, sometimes 1-NN. Hence, performance difiees can be attributed to
the AL strategy itself. It can be observed that DEAL gengrakrforms better for
all five partitions of the data in both 12 and 39 dimensionsty\Varely, the learning
curves of the strategies intersect, e.g., LSS performeibian DEAL with grouping
(5) (Fig.4.15 in 12 dimensions with about 50 labels.

4.7 Conclusions

In this chapter, we have derived a novel two-class AL strgatednich considers not
only density information and the distance to the decisionnoary when selecting an
instance to be labeled, but also the number of labeled pwiritee neighborhood. All

this information is taken into account by requiring that timelerlying classifier provide
a distributional estimate for each unlabeled point leadang natural definition of the
training utility value.
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Figure 4.11: Comparison of DEAL with Look-Ahead Selective Sampling, grouping “0s4 v
rest”. DEAL has steeper learning curves than LSS. Since the undediasgifiers (kernel
density classification for DEAL and 1-NN for LSS) show approximatelyatglassification
performance for random sampling, the difference of the AL performaan be attributed to
the AL strategy itself.

Error rate

Zip, Grouping: 2, #Features: 12

—DEAL
- - -KDC-RS
LSS

‘‘‘‘‘ 1-NN-RS

Error rate

0.55F
054k
0.45/; !
045
0.5t 1

o
w
:

0.25¢
0.2f
0.15¢
0.1f

0.05

Zip, Grouping: 2, #Features: 39

—DEAL
- - -KDC-RS
LSS

‘‘‘‘‘ 1-NN-RS

-
- ~
~—~a
L .

T ——
~e

150 200

5 100
Number of labeled training samples

100 150 200 0

0 50
Number of labeled training samples

Figure 4.12: Comparison of DEAL with Look-Ahead Selective Sampling, grouping “1s5 v
rest”. Further explanations can be found in the text and in the caption o4 Hify

To the best of our knowledge, this is the first generic apgragicich considers the
number of labeled points in the neighborhood of a yet un&bgloint in linear time
complexity (for a single request) with respect to the totahber of unlabeled points.

The proposed implementation of our strategy is a countenpiato the claim made
in [54] that a single model cannot be used to estimate a second+andertainty: The

“type of uncertainty regarding the identity of the apprapei classifica-
tion, is different than uncertainty regarding the corressof the classifi-
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Figure 4.13: Comparison of DEAL with Look-Ahead Selective Sampling, grouping “odd v
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Figure 4.14: Comparison of DEAL with Look-Ahead Selective Sampling, groupffgl, 7,
8,9} vs.{2,3,4,5,6}. Further explanations can be found in the text and in the caption of
Fig.4.11

cation itself. For example, sufficient statistics may yiafdaccurate®.51
probability estimate for a clagsin a given example, making it certain that
c is theappropriateclassificatiod. However, the certainty thatis thecor-
rect classification is low, since there isted9 chance that is the wrong
class for the example. A single model can be used to estinmyelte sec-
ond type of uncertainty, which does not correlate directiythe utility of
additional training.”

The proposed AL approach significantly outperforms unaastaand random sam-

"“Appropriate” classification refers here to the right classignment in the sense of decision theory.
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Figure 4.15: Comparison of DEAL with Look-Ahead Selective Sampling, groupjig3, 4,
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Fig. 4.11

pling. This has been shown by a comprehensive evaluatioheoptoposed strategy.
Moreover, we have shown that it performs better than “Lodledd Selective Sam-
pling” for the demanding USPS Zip data. Ihg1], it is shown that the strategy also
outperforms “error reduction samplingt$38. Note that, in general, one cannot expect
that one strategy is best on all data sets: Of course, siyrdagbring exploitation over
exploration (like in uncertainty sampling) can be a goodtstyy if the distribution of
the data is sufficiently simple.

The observation in Tablé.2 that random sampling sometimes outperforms uncer-
tainty sampling is consistent with other AL evaluations5¢] compare seven different
AL strategies (including uncertainty sampling and querycbynmittee), implemented
using logistic regression; none of these is always bettar tandom sampling although
only seven non-artificial data sets are considered7%h fandom sampling is thbest
approach on two out of nine data sets compared to four ota&t{lnode) AL strategies.
And in [164], one specific implementation of uncertainty sampling esahly (sequence
labeling) AL strategy out of 15 which outperforms random péng on all eight data
sets. However, this “successful” strategy yields poor ayerresults compared to the
others®

8This is a self-citation. The corresponding results are mesgnted in this chapter because the “error
reduction sampling” experiments have been implementeddwrkkKunzmann.
9The last two sentences are not contradictory!
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4.8 Appendix A: Proofs

First, we prove Eq.4.9) in Section4.4, which states thaR, (5(Y = 2|z)) > R.(ga.),
i.e. that the expected loss of a distribution is smaller araédo the expected loss of
the point estimate given by the mean of this distribution #ng, the training utility
value is always non-negative. The inequality immediatelipofvs from Propositior#.2
which also states when equality holds. The latter proveg£f0. As the distribution
of X is not assumed to be continuous in Proposida® but can be discrete or mixed
continuous/discrete, we use notation from measure theopgtform integration with
respect to an arbitrary probability measure.

Proposition 4.2. Let X be a real-valued random variable wifR(0 < X < 1) = 1.
Further, letL5, Lo; > 0 and

L12

= ———
Lis + Loy

€ (0,1)
Then,

/L21X 1{X < 0}dP*¥ + / Lip(1 — X)1{X > 0}dP¥
< Ly E(X) {E(X) < 0} + Lio(1 — B(X)) 1{E(X) > 6}
Equality holds ifP(X <6)=1orP(X >0) = 1.

Proof. First of all, E(X) exists since[ | X|dP* < [dP¥ =1 < c0.
LetE(X) < 6. Then,

/L21X 1{X < 0}dP*¥ + / Lip(1 — X)1{X > §}dP¥

0
:/ Ly XdPX +/ Loy (1— X)dP¥
X<6 X>0 1—6
X
<Ly XdP* + Ly / ——(1 - X)dP¥
X< X>0 1-X

= Ly E(X)

Equality holds iff

/ L(l—X)dPX:/ i(1—)<)dPX & P(X >0)=0
X>61_9 X>61_
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Now, letE(X) > 6. Then,

1-0
= / Ly XdP~ + / Lip(1 — X)dP~
X<0 0 X>0

<L / L= X vapx 4 Ly / (1 — X)dP~
X<0 X>0
= L12(1 — E(X))
Equality holds iff

1— 1-X
/ L0 vapx = / ———XdP* & P(X <6)=0
X<6 0 X<0

O

Now, we perform the calculations to obtain terdh12 from term @.11) in Sec-
tion4.4. Leta, b > 0. The Beta function is defined as
I['(a)T'(b)

B(&, b) = m

(see e.g.Z, chap. 6.2]) wher&'(-) is the well-known Gamma function. The incomplete
Beta function is defined as

1 o 1 b—1
- a=1(] _ g)b-1q
B(a,b)/o ¢" (1 —q) dg

(see e.g.%, chap. 26.5]) wheré < [0, 1]. Using these definitions, we have

]g(a, b) =

B(z) / [1{q < 0}qLan + 1{q > 6}(1 — g)Luslpass(gla. b)dg

p() Ue (L21 0 (1= q)“qur/e1 B(L;’?b)qal(l —Q)bdQ}

Ba+1bL o 1 . _
{ 21/ ¢"(1—q)" 'dg
_|_

I
m

0 B<a+1>b)

(a, b+1 Ly [* 1 .
) 12/ ¢ (1 - q)bdq]
0

(a,b)
[aLm

B(a,b+1)

L
(a+1,0) + oLz
a-+b

Lig(b+1, a)]
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4.9 Appendix B: Learning Curves

Here, we present the learning curves that yielded the seguliable4.2 For each data
set, the proposed AL strategy is compared to uncertaintyamtbm sampling.
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5 Fast Outlier Detection with
Random Forests

In this chapter, we present a novel outlier detection algorifor random forests. To
that end, we pick up in idea that has already been introduc&thapter3: discrimina-
tive learning against additional artificial data from a refece distribution. In contrast
to Chapter3, the method presented here is based on standard RF and cdethsed
“out of the box”. It is evaluated on toy data and a range of-vealld data sets from the
UCI machine learning repositor@]. The proposed outlier detection performs signifi-
cantly better and is faster than Breiman’s random forestsguhare based on proximity
matrices P5).

The method is used later on in Chapgfor active learning in industrial quality
control.

5.1 Introduction

Real world data often is not as reliable as desired. Among tissiple reasons for this
are measurement errors, observations not stemming fromntéreded sample popula-
tion or miscalculations in data preprocessing. Data arsiyay be corrupted by these
outliers and thus may lead to wrong conclusions. Hencetiigerg outliers is an im-
portant first step of statistical analysis. In applicatisnsh as fraud detection, outlier
detection techniques are even at the core of statisticysisaas the data is expected
to contain unusual samples which are to be detected.

Intrinsically, there can be no universal mathematical d&dimof “outlyingness”: The
notion of “outlyingness” is heavily determined by the apption and the correspond-
ing interpretation of the data. Moreover, data sets diffieinput dimension, variable
types, underlying distributions or proportion of outlief$erefore, a long list of outlier
detection schemes have been proposed (see3]g{16], [83], [85], [77], [177]) and
it is advisable to run a “battery of (multivariate) method444], [16] with different
properties on a data set to detect anomalies.

In [82], an outlier is described as “an observation that deviadbemigch from other
observations as to arouse suspicion that it was generateddifferent mechanism”.
Hence, it may be appropriate to consider as outliers thosereations that have a low
probability under the distribution estimated from the renmay samples. The suspected

83
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outliers can be detected either by standard density estimatethods or, as proposed
here, by drawing artificial data from a uniform referenceribstion [81, chap. 14]
and learning the dichotomy between observed and artifigtd,dusing any classifier
which outputs estimates for the posterior class probadslifsee Eq.5.1)). We show
that implementing this idea with random forests maintaiestienefits of this classifier,
namely the ability of capturing interaction effec&/[, [117] and robustness against
noise featuresi[10.! Moreover, the proposed algorithm has lower computatiooai-c
plexity and performs significantly better on the tested-reatld data sets than the orig-
inal outlier detection scheme proposed by Brein2i {ising the same classifier (Sec-
tion 5.4.2.

5.2 Random Forests

Consider a classification problem with training $et= {(z1,v1), ..., (zn, ys)}, Where
the feature vectors,,...,z, € X C R? and their class labelg,,...,y, € ) are
independent realizations of the random ve¢tdrY).

5.2.1 Algorithm

The random forest classifie24] is an ensemble learner consistingldfdecision trees.
To build an individual tree, a bootstrap sample is drawn fthentraining set and recur-
sively divided until all leaf nodes contain instances ofragi class only. For the split
at a certain nodeitry < d out of thed feature dimensions are randomly selected and
the best split according to the Gini criterion on thése, variables is used. An estimate
for the posterior class probability at an arbitrary paine X’ is obtained by passing
down all the trees and dividing the number of trees that vatehfe respective class by
M. The majority vote yields a class assignment. The prolglhdr a training instance
of being included in a bootstrap sample is approximatelye~! = 0.632 (see e.g.§1,
chap. 7]). The remaining points are called “out of bag” (ofdr)that tree and can be
used for an approximate error measurement (oob estimate).

LAnother advantage is its ease of training; whereas othehimadearning algorithms like support
vector machines need to be calibrated carefully, randoesterare virtually parameter-free: There
exists a rule of thumb for the number of split features triegkerh node (namely, the square root of the
feature space dimension) and the number of trees can be lsigheas affordable without the danger
of overfitting. (There is some evidence that random forestewerfit [L61], but this is certainly not
due to too large a number of tre€Xl[ chap. 15].)
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5.2.2 Consistency

It is proven in [L8] by counter example that random forests (with majority yate not
consistent (i.e. there exists a distribution(af, Y') such that the class assignment rule
above does not converge to the Bayes classifier (in probghkalétn and M tend to in-
finity).? It follows immediately that the estimates for the postediass probabilities as
stated above do not converge to the true posterior classbildles for every distribu-
tion of (X, Y"). Ford = 1, random forests are not even consistent for “non-pathoéddi
examples, e.qg. if the class distributiop&|Y = y;) are Gaussian. Therefore, we as-
sume that/ > 2 throughout this chapter.

It is emphasized in7] that it is not known whether random forests are consistent i
d > 2 and if the distribution ofX has a Lebesgue density. In either case, it is reasonable
and common practice to estimaig/| X = z) as explained above in Sectié2.1and
the methods presented in the following sections would nobre meaningless if ran-
dom forests were not consistent. Empirically, random figresitput the most accurate
estimates for posterior class probabilities among 10 mdiffeclassification algorithms
investigated in134.

5.2.3 Breiman’s Proposal for Outlier Detection

LetS; = {z1,...,2,,} be a given set ofl-dimensional observations, some of which
may be outliers. An algorithm for detecting these based odom forests has been
proposed in25]. To that end, all the unlabeled observationsinare assigned to class
1. A second sefp of the same cardinality is then created by independentlwidg
bootstrap samples from the dimension-wise feature valtiésedfirst set (thus effec-
tively drawing samples from the product of the empirical gnaal distributions). This
set is assigned to class 0. A random forest is then trained¢ohinate between these
two sets, and for each tree it is noted in which leaf nede. . , z,,, end up (no matter
if the point is oob or not for a certain tree). The proximitytween two points irS;

is defined as the number of trees in which they both end up aaime terminal node,
divided by two. The proximity between a point and itself isteel. An “outlyingness”
measure; for the points inSy is then obtained by

1. computing; as the inverse of the sum of squared proximities betwgand all
points (includingz;) foralli = 1, ..., ng,

2. determining the median of, . .., 0,,, and the mean absolute deviation from the
median, and

3. normalizingo; by subtracting the median and dividing by the mean absolkete d
viation. Values smaller than O are set to 0.

2 |t is shown in 6] under which conditions a simplified version of random fagés consistent.
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Considering the complexity with respect to the siz&fofn = |Sz| + |Sg| = 2nz),
the actual tree constructions requipén log n) operations (see e.g81, chap. 9]). But
the complexity of the complete algorithm scalesH&?) due to the cost of computing
the (nz x nz)-proximity matrix andoy, ..., o,,,,.

The algorithm is for example applied in the context of netwvortrusion detec-
tion [189 (in a slightly different mannéy. An interesting by-product of Breiman’s
algorithm—not considered further here—is that the profgmmatrix defines a Eu-
clidean distance between the observations which can befasetustering. This has
for example been applied successfully 6.

5.3 Random Forest Outlier Detection

We first briefly recall the idea of transforming density estiion into a supervised learn-
ing problem B1, chap. 14] that has already been presented in Se@#and then refine
it to obtain a new random forest outlier detection algorithm

Assume a binary classification problem, i¥.= {0,1}. If a classifier outputs an
estimate for the posterior class probabijity|z), Bayes’ formula yields

oY = 1]z) = plY =1p(Y =1) _ plalY = p(Y =1)
p(z) p(]Y = 0)p(Y = 0) + p(«]Y = p(Y = 1)
plY =0)p(Y =0) p(Y =1jz)
SpzlY =1) = . 51
= T T o
LetS; = {z,..., 2z, } be a set oh  realizations of a-dimensional random vector

Z. In order to estimate the density Bfat a pointz € X', we only need to draw a sample
Sy of ny = n — ny points from some known reference distribution whose suppor
encompasses that of the training set distribution, traitassdier on the union sef;

vs. Sy (with labels 1 and 0, respectively) and determine the pmstelass probability
p(y|X = z). After estimating the class priorgY = 0) andp(Y = 1) by ny/n
andnz/n, and making a prediction fgr(y| X = x), all terms on the right hand side of
Eqg. 6.1 are approximately known and allow for a density estimatg ef [ X |(Y = 1)]

at the pointz.

When using random forests for the above scheme, as in 1-heaighbor, the tree-
wise prediction for a sample is always its label if that sasmplnot oob for that tree.
Hence, when estimatingz|Y = 1) at a pointr € Sz, it is advisable to consider only
those trees for whichw, 1) is out of bag.

3As the data has been labeled with respect to different n&taenvices, these labels have been used to
train a random forest. The outliers within each class can lieedetermined without drawing samples
from a reference distribution.
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As explained in 1, chap. 14], the accuracy of the density estimate dependseon t
choice of the reference distribution. Here, we simply piok& tiniform distribution on
a hyper-rectangl® coveringSz, i.e.S; C R. This may lead to sparse sampling of
the artificial data if the feature space dimensibrs high and/or the side lengths of
‘R are large, but it ensures that generating the artificial dats easy and as fast as
for the original method (see Secti@n2.3. Moreover, this simple sampling scheme
opens an easy possibility of dealing with both continuous @discrete features in the
same data set (see the remark at the end of this section). tiNdtéhe numbern,; of
uniform variates plays the role of a smoothing parameterparable to the bandwidth
of a kernel density estimate: It trades off bias and varigeee e.g.§1, chap. 6]). For
random forests, the variance of the estimates can also besded by building each tree
with a different random sampl§;.

As p(z|Y = 0) is constant for a uniform reference distribution, the “dsgof out-
lyingness” can be expressed as a negative monotonic tramstion of the density es-
timatesp(z|Y = 1) for all x € S;. Simply taking the estimates for the posterior class
probability p(Y = 0|z) is a special case which may make it comfortable to specify a
certain threshold above which a point is regarded as areautlhis also avoids division
by 0in Eq. 6.1).

It follows immediately that, for a “consistent” outlier @etion, we do not need to
demand that random forests be consistent, but onlyufiat= 1|z) > p(Y = 1|2’)
implies

Uli U1’

Wi >Wa5n,M—>oo

whereu;, denotes the number of tree-wise votes for cleetse (i.e. vo|, + vy, = M).*

Computing the density estimate for a paint X' costs onlyO(n log n) for the tree
construction and(log n) for the evaluation. Hence, since the number of query points
for outlier detection is equal taz, the cost of the proposed method for density esti-
mation is stillO(nz lognz), whereas Breiman’s proposal for outlier detection requires
O(n%) computations (see Sectiti).

Remark. The derivations in this section have assumed tXiadnd Z are continuous
random vectors. If features are discrete (but ordered) @m &inary, counting measure
and Lebesgue measure are mixed up and sampling the refalassdrom a rectangle
should be avoided. However, this problem is easily solvedraying random variates
from a uniform distribution with respect to counting measure. from a multinomial
distribution with equal probabilities. The feature typendze determined with simple
heuristics such that it does not need to be specified manially particular data set.
All results presented in Sectidn4 are obtained automatically without providing any
feature type information.

4 Note an important difference to the derivations in ChagteiThere, we counted samples from the
training set, whereas here, we count numbers of trees.
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5.4 Empirical Evaluation

5.4.1 Data

For motivating the proposed outlier detection scheme, veevasious toy data sets.
These are described in the following Sect®ma.2 For the actual statistical evaluation,
we use 24 different data sets from the UCI machine learningsiggry [9]. In order
to create two-class from multi-class problems, only the tVasses with most instances
are considered. If classes are equally abundant the onlesheifower class labels are
taken. Features that take a single value (i.e. that havevagrance) in the reduced
data set are removed. The data is additionally preprocesstallows: (i) Categorical
features with more than two outcomes are replaced by dumnmgblas, where missing
values are treated as a separate outcdimemissing values in continuous features are
replaced by the respective mean values ang each variable is normalized to unit
variance.

5.4.2 Results

In this section, we compare the proposed outlier detectobrerse with the original
random forest (see Secti@2 and 25]) and k-nearest neighbor outlier detection. The
latter is chosen for comparison due to easy interpretgtahid good empirical results
[56]. As proposed in$6], we measure the outlyingness of a pairg S by theaverage
distance to its: nearest neighbors and chodse= 3 if not stated otherwise. For the
proposed algorithm, the number of tregsis set to 1000 in all experiments (hence,
eachz € Sy is oob in 368 trees on average) and the hyper-rectaRgschosen as the
smallest hyper-rectangle that covels + [—0.1,0.1]¢. At the beginningny = ny; the
parameter is varied at the end of the section.

5.4.2.1 Fixing ny =nyg

Toy data We first consider different toy data sets, which favor theppsed method
and are chosen to motivate it. Projections of the data setisednfirst two dimensions
are shown in Fig5.1

In example (a), the “normal” data is uniformly distributedtbe101-dimensional unit
hypercube. A single outlier is generated by adding 1 to tisefature of the first of 200
samples. The proposed method identifies the outlier in mfabiea200 repetitions (see
Table5.1) as it is relatively far away from the normal samples in thejgxetion to the
first dimension. The original outlier detection scheme iy @hlightly better than pure
guessing because the combination of random forests andiegrfom the empirical
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Figure 5.1: The plots show the projections on the first two dimensions of four diffegnt
data examples. “Normal” data (inliers) are represented by crossestitez by a circle. The
data generating process is described in the text. Note that the data ha®bealized to unit
variance in each dimension after sampling.

Median Rank Mean Rank
Example
Method P @ @ (@© @ @ @O ( (d)
Proposed RF method 1 1 1 1 3.3 127 26 1.4
Original RF method | 94.5 74 1 39 196.1 &83.7 104 126.2
3-NN 37 155 485 26.5|49.1 346 144.3 130.2

Table 5.1: Median outlyingness rank of the single outlier sample for four differentdatya
examples. The number of sampleg (and thus the range of outlyingness ranks) is equal to
200 in data sets (a) and (b) and equal to 1000 in data set (c) and @uhhber of repetitions

is 200.
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marginal distributions ignores the distance of the outiiethe normal data in the first
dimension; any normal sample that has the lowest or higladsévn any dimension is
considered as outlying as the outlier itself. The nearegthiber method suffers from
the curse of dimensionality.

Example (b) is a modification of the first one. The first feaigrthe same is before
(including the generation of the outlier) but the other 2@tfees are independently
normally distributed with unit variance. The results araitar but—despite the reduced
number of dimensions—the proposed method performs a hittlevorse than before
since the normal data itself can contain some samples thiatilee outliers.

In example (c), the first two features of the outlier are dréwwm the uniform distri-
bution in the unit square, the “normal” data uniformly frohetfour adjacent squares.
Two independent noise features from the uniform distrdoutare added.k-nearest
neighbor is totally blind to the interaction effect (noteparticular the huge difference
between mean and median rank; the method completely faiie ibutlier is as close to
the normal samples as in Fig.1(c)), whereas the median rank of the proposed method
is again 1. The original random forest method performs ikt well in this example
as many samples of the artificial class fall in the middle sgdae to sampling from the
marginal empirical distributions. This yields a strongadisiination between the two
classes in this area.

These things change in example (d), where the first two featoirthe “normal” data
are drawn uniformly from the sét-2, 2]*\[—1, 1J?, those of the outlier uniformly from
the squarg—1,1]?>. We add again two independent noise features from the umifor
distribution. The original random forest method perfornmst now as relatively few
samples from the artificial data fall in the square in the @ddhe proposed method
captures the interaction effect, whereas the nearest m@ighethod again fails. Both
methods perform better than in the third example becausexitexted distance between
the outlier and the closest “normal” samples is larger timathé example before due to
the larger middle square.

Real world data and statistical analysis The statistical analysis on real-world
data is based on two-class classification problems. One foiltea:_ points of the
minority class is added to the., instances of the majority class. After having masked
the labels, each of the compared algorithms yields a meaguvatlyingness for all
n, + 1 points and all points whose score is above a certain thrésitelconsidered an
outlier. This is repeated_ times for all instances of the minority class and ROC curves
are obtained by varying the threshold.

The data set “Balance-Scalel'§7] (available from the UCI machine learning repos-
itory [9]) has been generated with strong interaction effects toahpsdychological

5In case of class balance, the class with smaller label valakdsen as “outlier class”.
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Figure 5.2:ROC curves of the data set Balance-Scale when using classes “L'Bdnd “

experiments. Each of the 4 features can take the vdlues, 5 and a sample belongs
to class “L” (“Left”, 288 samples altogether) if the prodwitthe first to two features is
larger than the product of features 3 and 4. A sample belangkss “B” (“Balance”,

49 samples) if the products are egfiaflhe ROC curves for this data set are shown in
Fig. 5.2 It can be observed that the proposed algorithm capturestiv@ction effect
best. The 1-nearest neighbor outlier detection algoritenfiopms as bad as pure guess-
ing. Areas under curve afe’96, 0.775, 0.847 and0.523 in the order of the labels in the
legend.

The areas under curve (AUC) for 24 UCI data sets are presentéable 5.2 and
Fig. 5.3 Note that some of the ostensibly poor results are due tafisignt overlap of
the respective classes in feature space. In order to cortiparesults statistically, we
employ a simple two-sided sign tegty. The proposed method performs significantly
better than Breiman’s method for outlier detectipn< 2.7710~%), even if the algorithm
(which first computes a proximity matrix and then determittes outliers based on
these distances) is combined with the proposed uniform kaggchemé (p = 0.023).
Recall from Sectio’.3that the algorithm has lower computational complexity, tbloe
results of the 3-nearest neighbor method do not differ Baamtly from the proposed
detection scheme (= 0.678).

6 The 288 samples of the remaining class “R” have been disddatethis analysis here to make the
task more difficult. The results for the standard procediitesimg the two most abundant classes (see
Section5.4.1) —here “L” and “R"—are reported in Tablg.2

7 It is mentioned in 166 that a uniform sampling scheme was included in an earliesiva of Brei-
man’s FORTRAN code and that it is still implemented in the Rkzae “randomForest”1D7] as a
second option.
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Anneal 0.753 | 0.965(-)| 0.473(+)| 0.963(-)| 684/99 |57
Audiology 0.966 | 0.757 (+)| 0.923 (+) | 0.956 (+) 57148 66
Autos 0.792 | 0.537 (+)| 0.711 (+) | 0.770 (+) 67/54 | 63

Balance-Scale 0.994 | 0.959 (+)| 0.983 (+)| 0.989 (+)| 288/288 | 4
Breast-W 0.979 | 0.793(+)| 0.985(-) | 0.991 (-)| 458/241 | 9
Dermatology | 1.000 | 0.928 (+)| 1.000 (+) | 1.000 &) | 112/72 |33
Ecoli 0.979 | 0.569 (+)| 0.957 (+)| 0.989 (-)| 143/77 | 6
Heart-C 0.832 | 0.682 (+)| 0.842(-)| 0.786 (+)| 165/138 | 23
Hepatitis 0.800 | 0.699 (+)| 0.846(-)| 0.819(-)| 123/32 |39
lonosphere | 0.966 | 0.953 (+)| 0.950 (+)| 0.974 (-)| 225/126 | 33

Iris 1.000 | 0.847 (+)| 0.983 (+)| 1.000 &) | 50/50 | 4
Led24 0.935 | 0.838 (+)| 0.934 (+)| 0.929 (+)| 114/110 | 24
Letters 0.993 | 0.969 (+)| 0.956 (+) | 0.998 (-)| 813/805 | 16
Lymph 0.802 | 0.772 (+)| 0.801 (+)| 0.777 (+)| 81/61 |37

Optdigits | 0.950 | 0.987 (-)| 0.934 (+)| 0.984 (-)| 572/571 | 56
Pendigits | 1.000 | 0.999 (+)| 1.000 (+)| 1.000 &) | 780/780 | 16
Satimage | 0.983 | 0.864 (+)| 0.996 ()| 0.999 (-) | 1533/1508 36
Segment | 0.953 | 0.934 (+)| 0.920 (+)| 0.979 ()| 330/330 | 18
Soybean | 0.884 |0.854 (+)| 0.795(+)| 0.886 ()| 92/91 |56
Vehicle 0.943 | 0.894 (+)| 0.847 (+)| 0.949 (-)| 218/217 | 18

Vote 0.845 | 0.421 (+)| 0.902 (-)| 0.782 (+)| 267/168 | 48
Vowel 0.984 | 0.992 ()| 0.573 (+)| 0.997 ()| 90/90 |27
Waveform | 0.810 | 0.604 (+)| 0.820 (-)| 0.798 (+) | 1692/1655| 40
Wine 0.954 | 0.597 (+)| 0.943 (+)| 0.943 (+)| 71/59 |13

Table 5.2: Comparison of the areas under ROC curve of 24 different real-wald gets
between—from left to right—the proposédn log n) method, Breiman'®)(n?) outlier de-
tection, Breiman'sO(n?) outlier detection combined with the proposed uniform sampling
scheme and 3-nearest neighbor outlier detection. For each data ségpttithms are rum _

times on a set witlh; = n4 + 1 observations and results are averaged over all these runs.
(+) and (-) indicate whether the proposed method performs better oe wespectively ()

in case of equality). Compared over all data sets, the proposed metHiodsesignificantly
better than both variants of Breiman’s algorithm and not significantly difthrérom the
nearest neighbor method. Some of the results are also presented aftgphi€ig. 5.3.
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Figure 5.3: Graphical comparison between the results of the proposed method, Bleiman
outlier detection scheme and a nearest neighbor method. Each diamoeskrdprone data
set. It can observed that the two methods based on random foresiepeiite differently,
whereas the results of the proposed method are similar to the ones ofeé3tmezighbor.

5.4.2.2 Varying ngy

Now, we investigate the influence of; on the performance of the proposed algorithm.
To that end, we vary the “sample factos”= ny/nz and run the same simulations
as above withs = 0.1,0.3,1,3,10. The results are reported in TalBe3 and it can
be observed that they are not very sensitive with respedtaacntimber of additional
points from the reference class. The data sets “Anneal” &dav&form” are notable
exceptions, where the AUC differences between best and wesslts are larger than
0.1. Interestingly, although the feature space dimensias relatively high for both
data sets and the number of observatiopss in the same range, the “Anneal” results
improve for increasing, whereas the “Waveform” results deteriorate. In Fgj, it

is investigated if there is a connection between the featpaee dimensiord and the
optimal sample factos.

Despite the robustness of the method with respect to thendea choice, it may be
reasonable to optimize for example by cross-validation methods. The most obvious
possibility is to use the oob error for the optimization. Bhuistis a bad idea as it favors
extreme settings: The classification error is very low i very small or very large
and almost all oob samples are classified @&s 0, respectively. Instead, one can use
the area under the ROC curve as optimization criterion, lvigdnvariant to a priori
class probabilitiesZ3].2 Note that, if the number of samples from the artificial class
is low, additional samples from this class can be generaiethe estimation of the

8Note that the AUC used here for parameter optimization apdthC used for performance comparison
of the outlier detection methods are different. Here, thematation of the AUC is based on a
“standard” supervised two-class learning setting.
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Figure 5.4: The left panel compares the number of observatiopsof a data set with its
feature space dimensieh Each diamond represents one data set. No particular connection
can be observed. This is important for interpreting the plot in the rightlparieere the
connection between the optimal “sample facter= ny; /ny (see results in Tablg.3) andd

is investigated. There seems be a small positive correlation between thedmitvloere is
certainly no strong dependence.

AUC; these are—of course—not used for determining the oatlignfortunately, this
cross-validation scheme does not yield satisfactory tesas reported in Tabk 3.

However,s = 1 is a good default choice with “Anneal”’ being one exceptioor fhis
data set, the proposed (uniform) sampling scheme seemsltbtyd few artificial data
in the relevant regions in feature space. This can be irddroen Table5.2and Fig.5.3.
Breiman’s method achieves much better results for this ddtalsen combined with his
sampling scheme.

5.5 Conclusions

In this chapter, we have presented an improved outlier detescheme for random
forests. The method is based on the idea of adding randoratearirom a reference
distribution—which is uniform in our case—to the initialtdaet.

Using various toy data sets, we have shown that interestiogepties of random
forests, namely the ability of capturing interaction effeand robustness against fea-
ture noise, carry over to the proposed outlier detectioeseh A comparison to other
methods has been carried out on 24 real-world data sets fietd€I machine learning
repository. The outlier detection performance of the psggbmethod is similar to a
standard nearest neighbor novelty detection scheme aeddrms significantly better
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Dataset s=11| maxA | s minA | s CvVv s d
Anneal 0.753| 0.142| 10 || -0.076| 0.1 || 0.894 (+)| 10 | 57
Audiology 0.966| 0.000| 1 | -0.006| 0.1 0.966 (-)| 10 | 66
1
1

Autos 0.792| 0.000 -0.055| 0.1 0.781(-)| 3 | 63
Balance-Scale 0.994| 0.000 -0.007| 0.1 0.987(-)| 0.1 4
Breast-W || 0.979| 0.009 | 0.1/ -0.001| 3 | 0.988 (+)| 0.1 9
Dermatology || 1.000 0.000| 1 || 0.000| 0.1 1.000 &) | 10 || 33
Ecoli 0.979| 0.011| 0.1| -0.038| 10 | 0.953(-)| 3 | 6
Heart-C | 0.832|| 0.000| 1 | -0.023|0.1| 0.829(-)| 3 | 23
Hepatitis || 0.800( 0.036| 3 || -0.016| 0.1 0.800 &) | 1 | 39
lonosphere | 0.966|| 0.011 | 0.3 | -0.040| 10 | 0.966 &) | 1 | 33
Iris 1.000| 0.000| 1 | -0.034| 10 | 1.000&) | 1 | 4
Led24 0.935| 0.022| 0.1 -0.023| 10 | 0.957 (+)| 0.1 24
Letters | 0.993| 0.001| 0.3 -0.002| 0.1| 0.992 (-)| 10 | 16
Lymph 0.802| 0.007| 10 || -0.021| 0.1 | 0.809 (+)| 10 | 37
Optdigits || 0.950| 0.013| 0.1 -0.017| 10 | 0.933 (-)| 10 | 56
Pendigits | 1.000|| 0.000| 1 | -0.000| 10 | 1.000¢) | 3 | 16
Satimage || 0.983| 0.016| 0.1 -0.013| 10 | 0.969 (-)| 10 | 36
Segment || 0.953| 0.000| 1 || -0.022| 10 | 0.931(-)| 10 | 18
Soybean | 0.884| 0.014| 10 | -0.033| 0.1 0.884¢) | 1 | 56
Vehicle || 0.943| 0.021| 0.3 -0.024| 10 || 0.965 (+)| 0.3 || 18

\ote 0.845| 0.028| 0.1 -0.023| 10 | 0.872(+)| 0.1 48
Vowel 0.984| 0.011| 10 || -0.070| 0.1 | 0.995 (+)| 10 | 27
Waveform || 0.810| 0.000| 1 || -0.114| 10 | 0.753 ()| 3 || 40
Wine 0.954| 0.000| 1 ||-0.028/ 0.1 0.954¢) | 1 | 13

Table 5.3: The results of the proposed outlier detection method for varying “samplierfac

s = ny/nz. s = 1 corresponds to the parameter choice in the previous subsection. The
column “maxA” (“min A”) shows the difference between the best (the worst) result among
all s and the default choice = 1; the corresponding value faris reported to the right of the
column. The column “CV” shows the AUC i is determined according to a (unsuccessful)
cross validation scheme. “+”7, “=” andt” indicate if there is an improvement over the default
choices = 1. The last column shows the dimension of the data.
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than Breiman’s method based on a random forests proximitysumealn addition, the
proposed scheme has lower computational cost than Breinmaattsod.

In the next chapter, the proposed outlier detection allgoris used as a part of a new
active learning strategy for defect detection.



6 An Active Learning Strategy for
Defect Detection

Human industrial quality control is always subjective anthstimes error-prone, and
the costly procedure may be automated using algorithmitysiseof images of pro-
duction parts. If supervised classification algorithmsergloyed, many examples of
defective and intact parts need to be provided for classif@ning. This calls for the
application of active learning. In this chapter, we presembvel active learning strategy
that addresses three challenges in defect detectiomalialtisence of labels, class im-
balance and weak labels. It is implemented with standamdioiarforest after extending
the training set with additional samples from a referenstribution as already made
use of in Chapter8 and5. The method achieves steep learning curves on the DAGM
contest benchmark data set.

6.1 Introduction

Quality control is an integral part of industrial mass proitlan. To prevent the sales of
defective products, every single part must be inspectepic@tasks in industrial qual-
ity control include completeness checks, precision megsants or surface inspection.
In order to automate the time-consuming, costly and sulsgeptocedure ohumanin-
spection 158, an image can be taken of each part and subjected to algociemalysis.
On the long list of possible applications are the assessaofsteel [L45, stone counter-
tops [L13, fabric [99], wood [168, ceramic tiles .86, cork [61], diode chips 109 or
semiconductorsl03. Here, we specifically concentrate on defects such ascbast
stains and other irregularities on surfaces with stocbaetiture.

Various methods for automated defect detection on textsuefdces have been pro-
posed; seell8g for a comprehensive review. Similar to the methods preseit [3],
[94], [97], [119, [146 and [18(, we employ a learning-based approach. As will be
explained in detail in Sectiof.4, an image is divided into several patches, and each
patch is represented by a point in feature space.

For training, a statistical classifier for automated insjpecrequires a set of sample
patches (and thus images) of defective and intact partsgailith labels. We propose to
minimize the labeling effort in two ways: by requiring onlywéak” labels that a human
expert can specify with little effort; and by obviating thebkling of parts with little

97
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novelty for the classifier.

More specifically, the definition of “weak” labels used heseas follows: the hu-
man annotator is instructed to provide labels not at pixetision, but by generously
outlining a defect in the image with an ellipse (see Bid). This approximate labeling
leads to false positive pixels, i.e. the ellipse may conbaitih defective and intact pixels,
whereas all pixels outside an ellipse should be intact.

Figure 6.1:Example of a weakly labeled image

To further reduce the labeling effort, we recur to activengzy. An AL strategy that
is applied in the field of industrial optical inspection ne¢d comply with several re-
guirements. In the first iterations of standard AL algorifhrtne samples to be labeled
are often selected at random until at least one labeled dravhpach class is available.
However, a distinctive feature of industrial inspectiorthat, by economic necessity,
most samples from a production line are intact. Accordindiyhe imbalance between
the negative/intact and the positive/defect classesismd, chances of capturing a pos-
itive example in this random set are slim. Therefore, an@mpaite AL strategy should
somehow explore the feature space from the beginning, eferd® having obtained a
label from each class.

Further, if the penalty associated with false negative iptexhs by the trained clas-
sifier is high (as it is for any quality-conscious manufaetyrit is natural for the AL
strategy to employ a biased notion of “informativeness” eeqliest labels particularly
for those samples that will help refine the decision boundaaway that prevents false
negative predictions. To this end, the strategy shouldesiabels in the vicinity of
previously found positive examples where the decision damnis not yet well deter-
mined (“exploitation”); but it should also request labaighose areas of feature space
that are far from the known labels of either class, to avoerimoking positive examples
(“exploration”).

Finally, one feature of the setting described here is thHalaalways come in bags:
the proposed classifier acts on image patches, but the dabells entire images.
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In summary, the AL strategy presented here is designed for

active learning with

weak labels that

come in bags and reflect

strongly imbalanced classes.

To the best of our knowledge, the proposed AL approach istsieliat responds to the
demands in defect detection for industrial quality contidthough the AL strategy is
tailored to this application, it is of course not restrictedhe domain of defect detection
and may be applied to similar classification problems withatanced classes, bag-wise
and/or unreliable labels.

In Section6.2, the generic AL strategy is presented in detail and a spgmifiposal
for its instantiation is made in Sectidh3 based on the random forest classifiad][
In Section6.4, the representation of images in feature space and otharitat details
that are relevant for the application of the approach in tiea @f defect detection are
elaborated. Experimental results are presented in Se@tton

6.2 A Novel Active Learning Strategy for Defect
Detection

6.2.1 Problem Setup and Notation

Let (X,Y) be a random vector with distributioiiz, v), wherex € X C R is a feature
vector andy € {—1,1} its true class label. Let € {—1,1} be the (possibly wrong)
weak label of a point or patch, obtained from the human annotator. Points with label
z = —1 andz = 1 will be referred to as negative and positive, respectiviljollows
from the instructions to the human annotator describedanritroduction that negative
labels are reliable whereas positive ones are not.

Further, let a bag/imag8 containm points/patches, i.en realizations of( X, Y).
The bagB is called positive if it contains at least one point with tdabel 1, i.e. if
{(x,y) € B:y=1}| > 1, negative otherwisé A positive bag corresponds to a defect
image, a negative bag to an image of an intact part.

INote that, since wrong labels only occur in positive bags Jalels: (instead ofy) could equivalently
be used to define if a bag is positive or not.

°Note that this setting is very related to “multiple-instariearning” b, 50], where some terms intro-
duced here are taken from. The only difference is that, inaadsrd setting of multiple-instance
learning, there is less information about the positive bamy the image itself would be labeled,
corresponding to an “ellipse” which comprises the wholegma
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We assume that there is a large pbobf unlabeled bags available at the beginning
of the AL process and that all bags—labeled and unlabeled-k@own prior to AL®
Moreover, there is a small (possibly empty) geof labeled points, selected from pre-
viously labeled bags. Note th&tcontains bags, wheredscontains points.

Three significant challenges are pertinent to the apptinaif AL in defect detection:

1. The (initially unlabeled) training data is highly imbated. There are many more
negative than positive bagsih Moreover, while the intact images (and the intact
regions of defect images) share some common stochasticéexte defects may
look very different. Thus, the positive points are not ordyer but may also be
widely spread in feature space.

2. Some labels are false positive due to the weak labelingdoted in Sectiob.1
In contrast, as discussed above, the labels of the negatnplss are reliable.

3. Labels can only be provided in bagsefdata points since only entire images are
labeled on request.

The AL strategy presented below responds to these chalieigeavoid a potpourri of
heuristics, we assume that candidate methods that are ais#tefinstantiation of the
strategy have the following two capabilities:

(C1) During the AL process (particularly at the beginninbgre may only be negative
points in£. Hence, for each unlabeled point the method should return some
measure(x) of “outlyingness” that evaluates how much the feature vectis
consistent with the samples in the current training/&eWe assume that large
values ofs(-) correspond to a high degree of “outlyingness”. Expressed in
different way, the method should be able to perform onesdiearning with the
additional ability of stating some confidence regarding dieeision whether:
belongs to the learned class or not.

(C2) Atsome point of the AL process, there are labeled exasrgflboth classes avalil-
able. We demand that, for eaeh the method returns an estimat@” = 1|x)
for the posterior class probabilityY” = 1|x). In addition, the method should
quantify its uncertainty about this estimate, i.e., somasneeu(z) should be
returned that is related to the number of samples from thegtiraining ser in
the neighborhodtlof 2. We assume that large valuesidf) correspond to high
uncertainty or, expressed in a different way, low confidence

3As explained in SectioB.2, this scenario is callegool-basedAL.
4As discussed in Chapt8 the notion of neighborhood depends on the employed leguadgorithm.
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6.2.2 Proposed Active Learning Strategy

Our response to the challenges mentioned in Se@&iarirevolves around a two-step
AL strategy. In the first step (referred to as “query step’hia tollowing), the bags to

be labeled is selected frobn. After having obtained the labels of the pointsBrirom
the human annotator, a second step (“elimination stepfpua during which only a
subsetB, C B of the requested labeled data points is actually added twaheng set
L. This subset is selected via a criterion that retains ordgéltata points that are most
important for learning the decision boundary and the sulbseijterations of the AL
process. At the same time, the criterion helps the learrignyighm to steer clear from
overfitting to false positive labels by discarding them frtira training seL.°> As a side
effect of this selection process, the sizelodind thus computation time for updating the
classifier is considerably reduced. An overview of the catgAL procedure is given
in Fig. 6.2 It will be explained in detail in the rest of the section.

Initialization:
Obtain (weak) labels
for b, random bags

Positive bag

Elimination Step: yes

Elimination Step:

Select a subset of found? Select a subset of
labeled points y x labeled points
Obtain [ Supervised J [ One-class ] Obtain
(weak) labels two-class learning learning (weak) labels
A \ A
Query Step: v Query Step:
Wish list with Classifier Wish list with
b, bags b, bags

10 Enough bags? yes
Output

classifier

Figure 6.2:Overview over the complete AL process. Details are given in the text.

6.2.2.1 Initialization

In practice £ is usuallynotempty prior to the AL process. For example, a few images of
production parts may have been taken to test the whole maghior image acquisition
or the labeling tool. Some or all of the corresponding tragpoints can be added th

51t has been shown empirically that classification perforogacan be improved if wrong labels are

eliminated from the training set (see €.88[195 179).
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The AL process is already initialized at this point and we pesceed with the query
step as described below.

If £is empty for some reason, we obviously need to decide on #tefie or—more
generally—the first; bags from/ that labels are requested for. Unsupervised learning
techniques like outlier detectio®3, 13] or cluster analysisg7, 65] could be used to
find interesting structures in the unlabeled data and thihtose thosé, bags that
minimize or maximize some optimality criterion. For sakeswhplicity, the AL process
may be initialized by drawing, bags froni/ at random.

There are two possible outcomes: eitherbalbags are negative or at least one of
them is positive. As illustrated in Fig.2, if all labeled bags turn out to be negative,
i.e. theb; - m initial data points are realizations of the distributiortloé negative class,
the algorithm proceeds with one-class learning (C1). Iféla#e samples of the positive
class, the algorithm proceeds with supervised learning.(lB)ither case, we proceed
with a query step as described in the following.

6.2.2.2 Query Step

In the query step, bags of unlabeled examples are seleatsdlieequent labeling. It is
known a priori that most of the unlabeled bagg4rare negative. In contrast, positive
bags are very rare and thus (almost) all of them are impdidafgarning an appropriate
classifier. Therefore, the priority of the query step is ta fas many positive bags and
thus positive samples as possible.

As discussed above, we need to distinguish two cases: ¢ithall points in £ are
negative ol(ii) there is at least one positive point4h

In the first case, we apply one-class learning. The basic tertleat, if the positive
and negative class distributions do not overlap too muckieosi are more likely to
have a positive label than others. So, unlabeled data pthiatsare least consistent
with the points inL are the most interesting ones. According to (C1), the employe
learning algorithm indeed has the capability of estimatimg “outlyingness™(x) of
each unlabeled point. This property is made use of in the following.

In general, not much may be known a priori about the charatites of the defects
that can occur. If a defect is small, it comprises only a fesggibly only one of the
patches of the defect image afd) is relativelysmallfor almost all of the data points
in a positive bag. Hence, it is sensible to consider only thstrfextreme” data point in
each bag and to define the training utility of a bags

TUV(B) := max TUV (z) = max o(x) (6.1)
Then, for subsequent labeling, thebags in/ with the largest training utility are cho-
sen.
Once both positive and negative bags are availab)ethe algorithm proceeds with
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supervised two-class learning (F&2). On one hand, we want to obtain more positive
labels in the neighborhood of those that have already baerdfo order to refine the
decision boundary (“exploitation”). The degree of vicyndgf a pointx to the positive
labels in£ can be measured by the estimat® = 1|x) for the posterior class proba-
bility of the positive class. On the other hand, positivenp®imay be highly spread in
feature space and exploring the feature space thorougbityégal for discovering other
regions of positive labels. Therefore, we want to obtairelalfor data points which
are far away from the labeled points of either class in feagpace (“exploration”).
According to (C2), the employed learning algorithm retutres¢orresponding measure
u(z) in addition top(Y = 1|x).

According to the considerations above for c&geonly a small minority of the points
in a positive bag may be positive. Hence, we again considigrtbe most “extreme”
data point in each bag and define the training utility of a Bags

TUV(B) := max TUV (z) = max p(Y = 1|z) +~va(z)], ~+>0 (6.2)
Then, for subsequent labeling, thgbags in/ with the largest training utility are cho-
sen. The user-defined parametdrades off exploitation and exploration. It reflects the
prior belief in the similarity of possible defects. The malissimilar different defects
are, the largety should be chosen.

The training utility function in Eq.§.2) is a heuristic. Another possibility would have
been to use a function of the product of prediction and expion term as in129. A
very similar training utility function to the one used hewmeshor example been proposed
in [31].

The parameters, andbs, which define the number of bags presented to the human
annotator after each iteration of the selection process,ser-defined. The parameters
trade off efficiency of the AL process, computation time ahd availability of the
human annotator. Larger values lead to less efficiency @éihel information of thé, or
bs bags in the same batch may be “overlapping”), shorter coatiputtime (fewer wish
lists need to be generated for the same number of bags) arelaoovenient labeling
(it is more acceptable to provide many labels in one go thawominually prompt the
labeler at a certain interval).

6.2.2.3 Elimination Step

After having been provided with (weak) labels for &llor b3 bags by the human anno-
tator, the algorithm proceeds with the elimination stephaf AL process. During this
step, only a subsd?, of the labeled data points of each bBgs actually added to the
training setC. In doing so, we pursue four goals.

(G1) B, should contain the correct positive labels, i.e. the pojfisy, z) € B : y =
1, z=1}.
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(G2) B should not contain any wrong positive label, i.e. any of thmfs {(x, y, z) €
B:y=-1,z=1}.

Among the negative point$3, should contain at least those that are either

(G3) distant to the points id to memorize that a certain region in feature space region
has already been explored or

(G4) close to the decision boundary to optimize classifocatierformance.

We first concentrate on the goals (G1) and (G2). Consider deldlipositive bag
B. For each pointz,y, z) € B, we have estimated eithéfz) (Eq. 6.2) or p(Y =
1|x) + vu(x) (Eq. 6.2) in the query step. These two estimates can be exploited aga
to perform a statistical test. First, recall that the negatabels are reliable. If the
patches of an image do not overlap too much and if the texsusafficiently repetitive,
the negative points in a bag can be regarded as indepenaéinaitions of the negative
class conditionalX'|Y" = —1. Then the distribution of UV (X|Y = —1) can easily
be estimated by its empirical distributidh. Hence, thg1 — «)-quantile of F' is an
approximate critical value, for a level«-test on the hypothesis thathas been drawn
from the negative class condition&l|Y = —1. If TUV (x) > c,, the hypothesis can
be rejected. This means that the true lapeif the positive pointgz,y,z) € B for
whichTUV (z) > ¢, is 1 with high probability. These points are added’t¢G1). If
TUV (z) < ¢, for a positive point, the hypothesis cannot be rejected atitimg can be
implied. However, if the test statistiEU V' (x) discriminates well between the positive
and the negative class, the power of the test is largeyand-1 for most of the positive
points for whichT'UV (x) < ¢,. These points areotadded tal (G2).

We note for later simplification that, if the number of positipoints is small com-
pared to the total numbet of points in the bag, we can simply add those positive points
x to L for whichTUV (z) is among theé1 — «) - 100% largest values of all points i,

i.e. ¢, is computed using both positive and negative points.

Next, consider a labeled bag), positive or negative, to discuss the goals (G3) and
(G4). By the definition of a levek-test, the hypothesis of having been drawn from
negative class conditiona&f |Y" = —1 is rejected fora - 100% of the negative points.
However, we know that the true label of these points defipigehegative. This makes
these points highly interesting with respect to the goa) @hd (G4): If, on one hand,
o(z) oru(x) is large, thenc is far away from data points of either class in the training
setL (G3). If, on the other handi(Y = 1|z) is large, ther is relatively close to the
current decision boundary (G4). Hence, we add those negptints inB to L for
whichTUV (z) is large.

In summary, to pursue the goals (G1)-(G4), we simply addelos100% of the
points inB for whichTUV (z) is largest, i.e.

Br ={(z,y,2) € B: TUV (x) > ¢4}
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This is illustrated in Fig6.3. In statistics = 0.05 is commonly used as significance
level. We propose to use the same value here.

Elimination Step

0.8t
0.6t o’ o
5/04— o
0.2
o\\
0 02 04 0.6 0.8 1
Y= 1lz)

Figure 6.3:Elimination step of the AL strategy. The points, . .., x,, of a just labeled bag

B are depicted as circles; negative points are filled and gray, positiv aneeopen and
black. They are represented in the two-dimensional space spannesliystierior prediction
p(Y = 1]z) and the measurg(x) for the uncertainty about the prediction. The points above
the black linep(Y = 1|x) + 4(x) = cpo5 = 0.02 (v is set to 1 here) are added 18y-.
The points below the line are not added4o among them two positive points which are
incorrectly labeled with high probability. Note that—in contrast to the visual isgiom—

95% of the points are below the threshold line.

6.3 Instantiation of the Active Learning Strategy
using Random Forests

To implement the AL strategy presented in the previous segctiie need a method that
(C1) returns a measutézr) for the “outlyingness” of a test samplsf the training set’
contains negative samples only, and that (C2) returns an&si(y|x) for the posterior
class probabilities at a test sampléogether with a confidenag z) in this estimate ifC
contains both positive and negative samples. In this sgotve discuss how a random
forest classifier 4] (RF) can be extended such that it has these capabilitiesthior
chapter to be self-contained, we first briefly introduce déaid RF in Sectior6.3.1
Afterward, we present modified versions for one-class (8ed.3.2 and two-class
learning (Sectior®.3.3.
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6.3.1 Random Forests

A random forest is a learning algorithm that consists of eseearble of\/ decision trees
{h;}M,. To build an individual tree, a bootstrap sample is drawmftbe training set
L and defined as the root node. At each node of the tfee, out of thed features
are randomly chosen and the best axis-orthogonal splitrdicpto the Gini criterion
among thesétry variables is used to divide the set of training samples atrtbde into
two parts. These two subsets then constitute the two childf¢he node. In contrast
to many other tree-based learning algorithms, the proeeducontinued until all leaf
nodes are pure, i.e. all training samples in a leaf node Havesame class label. To
obtain a voteh;(z) from an individual tree, a test sampleis passed down the tree to
its leaf node and the unique label of the training samplekigrtode is assigned. The
average number of trees that vote for a certain class islysugdd as an estimate for
the posterior class probability of this class, i.e.

B = ylo) = 37 3 L) = )

wherel{-} denotes the indicator function. Given equal misclassificatosts, a crisp
class assignment is obtained from the majority vote:

M
h(z) = arg maXZ 1{h;(z) =y} = argmax p(Y = y|x)
Y i1 Yy
A main advantage of random forests is their ease of trainimggreas other machine
learning algorithms such as support vector machines neée talibrated carefully,
random forests are virtually parameter-free: There egistge of thumb for settingtry
(namely,dtry = v/d) and the numbed/ of trees can be chosen as high as affordable
without the danger of overfittingMoreover, random forests are not restricted to binary
problems, but can handle multi-class settings equally.well

6.3.2 One-Class Learning

If the set of currently labeled sampléscontains negative points only, we want to iden-
tify those unlabeled points/bags that are least consist#ghtthe samples irC for sub-
sequent labeling (C1). To this end, we apply the outlier deteenethod presented in
Chapterb.

Let £ = {(z;, —1)}, be the current training set and IBtbe a rectangle that covers
the training set and all unlabeled points, {e;}” , U{x € B: B € U} C R. Further,

5There is some evidence that random forests do ové#ii]] but this is certainly not due to too large a
number of treesd1, chap. 15].
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letSy = {z;}7"*, be a set of., realizations from the uniform distribution d®. These
samples are labeled as 0 and we obtain the augmented traitiigJ {(z;, 0)}7=,.
This augmented set is used for training a standard randasstfgr; } M, .

We define:
M

. . 1

o(z) :=p(Y =0lz) = - Zl 1{hi(x) = 0}
For the implementation of the AL strategy presented in $a&i2, only the rank order
of 6(x) among the unlabeled points is relevant. As shown in the posvchapter in
Section5.4.2.2 the practical influence of the parametgron the rank order is only
minor. Thereforep, is simply set tan in the experimental section.

6.3.3 Two-Class Learning

As soon as the training sét contains positive and negative points, we want a method
that, for each query point, returns an estimatg(y|z) for the posterior class proba-
bilities together with a statement regarding the conscsteri = with £ (C2). To this
end, we can use the same idea as in the previous section,ynadu#hg uniformly dis-
tributed reference data to the training set. The differaadkat the artificial data leads
to a three-class problem here.

As before, letl = {(z;,y;)}, be the current training set and let the rectarigle
cover £ and all unlabeled points, i.§z;}" , U{x € B: B € U} C R. We drawn,
sampleqz;}77", from the uniform distribution ok and label them as 0. The samples
are combined to obtain a new training get { (x;, 0)}/7"°,. This augmented set is used
for training a standard random forest; } 2, .

In the following, two different kinds of posterior class pabilities need to be dis-
tinguished. Whereas the probabilities of the original tlass problem are referred to
with the letter “p” (as defined in Sectidh2.]), the letter “q” is used for the three-class
problem. It can easily be shown by employing Bayes’ theoreah th

q(Y = y|z)

Coy=—1.1 6.3
Y = —1|z) +q(Y = 1|z) Y (6-3)

pY =ylz) = o

i.e., the posterior class probabilities of the two-classbjgm can easily be calculated
from those of the three-class problem (see also E§))¢ It follows that the posterior
class probabilities of the two-class problem can be eséchay

S, () = ) N
S [Hha() = =1} + 1{h(x) = 11 |

We defingh(V = y|z) == 1/2if "M [1{hi(z) = =1} + 1{hi(z) = 1}] = 0.




108 6 An Active Learning Strategy for Defect Detection

In contrast top(Y = y|x), there is no obvious choice for the definitiond(fz). In
accordance with the definition éfx) above, we set

M

i) = 4 = 0f) = 2 3" 1{hu(x) = 0)

=1

Finally, we comment on the choice of. According to Eq. §.3), p(Y = 1jz) is
independent of the class pripY” = 0) and thusn,. In practice, the “sphere of influ-
ence” of the training samples i is slightly decreased by the additional reference data
[110; thus the variance of the estimgi€Y” = 1|x) is increased and its bias lowered
(see e.g.81, chap. 2]). However, the influence of onp(Y = 1|z) is only minor. In
contrast,u(z) highly depends omy. Thus, in addition toy, the parameter, governs
the trade-off between exploration and exploitation (see(&d)). To suppress one of
the parameters, we propose tosgt= n as in Sectiorb.3.2and to govern the trade-off
with the parametef.. An advantage of this agreement is that the random foresbean
trained with a relatively balanced training set, avoidihg problems associated with
imbalanced date3p].

6.4 Technical Details

In order to apply the AL strategy presented in Secédtto industrial optical inspection,
two application-specific problems need to be addressedfifshene is:

1. How can images be represented in feature space?

As noted in Section§.1 and6.2 and presented in detail below, we divide the images
into m patches, where each patch is represented by a point inéegiace. This raises
the second problem:

2. How can image-wise classification be achieved if thereahg patch-wise esti-
mates for the posterior class probabilities?

These two questions are discussed in the following.

6.4.1 Image Representation

Generally speaking, we need a feature space representatlmmimages to train a clas-
sifier that can discriminate between defective and nonetigéeparts. Considering only
the gray values of an image is typically insufficient and teasie neighborhood infor-
mation are required. Further, as the appearance of thetdé$awot known a priori and
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as algorithmic solutions for defect detection are suppaseasiork without human in-
teraction, the extracted features need to be sufficierdlyto detect defects of different
sizes and orientations.

To that end, we use the image representation that is propo$&80.” The images
are decomposed into scale and orientation subbands usitegralsle pyramidl69
whose basis functions are directional derivatives opesatb pyramid levels are con-
structed and fifth-order directional derivatives are ussdling to 6 orientation bands.
This results in 30 feature images.

However, the resolution of these images is not equal, erghodata presented in
Section6.5.], ranging from512 x 512 in the first to32 x 32 in the fifth level of the
pyramid. Instead of adjusting the resolutions e.g. by pugtion techniques, tharigi-
nalimage is divided into quadratic patches3afx 32 pixels and seven different statisti-
cal quantities of the filter responses are computed on edch:painimum, maximum,
median, mean, variance, kurtosis and entropy. This yieltsaure vector of dimen-
siond = 210 for each patch. Note that the number of values the statisjicantities
for a patch are based on ranges frdgn 32 = 1024 in the first to2 - 2 = 4 in the fifth
level of the pyramid. Note further that the statistical citées at patch-level introduce
valuablenontlinear information for the characterization of the origlimage texture at
the corresponding location without using non-linear fdteAnother advantage is that
representing patches instead of pixels in feature space<aong with a substantial
data reduction. This is especially useful for AL where thetdiee values only need to be
calculated once prior to the AL process, but where the moeéetis to be updated and
posterior class probabilities and “outlyingness” needdaélculated in each iteration.

Since each of the feature vectors representing an imagespannds to a patch, the
elliptic pixel-wise labels need to be adapted accordinigbte, a point is positive if and
only if the center of the corresponding patch is within tHgsé encircling the defect.

Finally, note that a grid of non-overlapping patches magesidfom boundary effects.
As an extreme example, consider that all scratches in ti@rigaimages run through
patch centers, whereas the scratch in a test image runs ety boundaries. To that
end, we work with overlapping patches, where the overlaglfthe patch size. For an
image with a resolution 0512 x 512 pixels and a patch resolution 82 x 32 pixels,
we obtainm = 31 - 31 = 961 patches per image.

6.4.2 Image Classification

According to the image representation introduced aboveh gaint in feature space
corresponds to a patch of an image. This means for atbag{z;}, representing a
test image that: different posterior estimatd®(Y” = 1|z;)}, are obtained. These es-

"The features used for the experiments in Sedfidralso have been precomputed and provided by the
authors of L80.
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timates need to be merged to an image-wise prediction retdrsmme defect prediction
valué® or at least to a crisp class assignment.

As posterior class probabilities of adjacent patches aneleted, more robust esti-
mates can be obtained if salt and pepper noise structuresramved from the proba-
bility maps in a first step. Here, we us& & 3 median filter to smooth the maps. The
mask size is a compromise between utilizing spatial infaeionaand not smoothing
away indications for small defects. Then, as we have no prformation about defect
characteristics, in particular the defect size, we sim@g the maximum value of the
smoothed probability maps as defect prediction value femthole image.

6.5 Empirical Evaluation

In this section, we first present the data used for the evaluaif the proposed AL
strategy. Afterward, we present the corresponding exparial results.

6.5.1 Data

For the statistical evaluation of the presented AL apprpachuse 6 synthetic image
data sets that cover a wide range of defects in industriditgaantrol on different tex-
tured surfaces. The images have been created under theisigeof Matthias Wieler
for a defect detection contest at the annual conferenceeoD&GM?® in 2007 [L8(Q.
They have been published on the inteth&s make them available to the participants of
the contest and to establish a benchmark data set for dedesattabn algorithms. The
benchmark data has, for example, been usedi46]|[

Figs. 6.4 and 6.5 show two example defect images of each data set together with
their elliptic label. The latter has been provided by a hurmamotator according to the
procedure introduced in Sectiénl

Each data set contains 1150 gray value images, of which 16@ dlefects. The
spatial resolution of the imagesi$2 x 512, the gray value resolution is 8 bit. We have
randomly partitioned each data set into a training and astdsif equal size.

6.5.2 Results

In this section, we present empirical results for the prepo3-step AL strategy. As
mentioned in the introduction of this chapter, to the bestwfknowledge, this is the

8This does not need to be a probability in the strict sensedube a real value on a “defect scale”.
%Deutsche Arbeitsgemeinschatft fiir Mustererkennung etiyp;/lwww.dagm.de
Onhttp://klimt.iwr.uni-heidelberg.de/dagm2007/prizesp3
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Figure 6.4: Two example defect images of data set 1 (top), 2 (middle) and 3 (bottomh Eac
data set is affected by a specific kind of defect. The ellipse in each imadgebasirawn by
a human annotator.
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5 (middle) and 6 (bottomh Eac

Figure 6.5: Two example defect images of data set 4 (top)

data set is affected by a specific kind of defect. The ellipse in each imadgebasirawn by

a human annotator.
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first AL strategy for the setting considered here. Thus, wagare the performance
of the proposed strategy to random sampling to evaluaterttis at all a benefit from
AL. To get a better understanding of the 2 steps of the prapssategy, we also com-
pare to“1l-step AL’, where only the query step is performed #re elimination step is
omitted.

In all experiments, the AL process is initiated by drawingdamly b, = 40 from
the negativebags in{/ that make up a first training sétof bym = 40 - 961 = 38,440
data points. We disallow positive bags in the first iteratimprevent lucky strikes that
spare the way through the one-class learning part of theepsocin each subsequent
iteration of the proces$, = b; = 5 bags are selected from the remaining bag& in
They are chosen randomly in case of random sampling, whareastep and 1-step
AL, the bags are chosen according to the procedure desdritfeelction6.2.2.2 The
parametety that governs the trade-off between exploration and exatioit is set to 11
In 2-step AL, the elimination step is then performed as dbedrin Sectior6.2.2.3 The
cardinal number 0B, equals|0.05 - 961 | = 48 for each selected baf. In 1-step AL
and random sampling, all positive pointsthare added ta&C and a random sample of
“48 minus the number of positive points i’ from the remaining negative points.

To gain a first insight into the proposed 2-step AL approaah]aok at the develop-
ment of the point-wise classifier output for a bag represgndi test image of data set
5. This is shown in Fig6.6. After the first labeling iteration (40 bags), there are only
negative points irnC and we recur to one-class learning. The output of the clas$sfi
the “outlyingness” measui@x) as shown in the upper left panel of the figure. It can be
observed thai(z) is relatively large for many positive points. This shows artrular
thato(x) is a useful measure for identifying positive bags for subsetjlabeling.

Indeed, in this example, positive bags have been foudd iiccordingly, the output
of the classifier after the second iteration (45 bags) of tloegss is a posterior pre-
diction p(Y = 1|z) and its uncertaintyi(xz). As the number of positive points ifi is
small at the beginning, all posterior predictions for pgsipoints are smaller than5,

a known problem when learning with imbalanced d&&.[In the subsequent iterations
(50-100 bags), the number of training points in the neighbod of the positive points

increases, indicated by smaller values for the uncertaifity. At the same time, the

posterior prediction for the positive points increasesteNbat the posterior prediction
of a few positive points is close to 0, even after 100 labetedges. These are points
with an incorrect label (non-defective patches within thipse).

Next, we compare the classification performance of the megp@-step AL approach
to 1-step AL and random sampling. After each iteration of Alheprocess, a random
forest classifier is trained on the current training Seand evaluated on the test data

11 As the defects in a specific DAGM data set look quite alike résailts are not sensitive to varying
The parameter may be set to a larger value if defects are werysd.



114

6 An Active Learning Strategy for Defect Detection

Iteration 1, 40 labeled images
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Figure 6.6: Development of the classifier output for the points of a positive bag septing a
test image of data set 5. Every point is depicted as a circle; negative pariitbeal and gray;
positive ones are open and black. As long as there are only negaiits othe training set
L (upper left panel), the classifier returns a meagyrg for “outlyingness” only. As soon

Iteration 2, 45 labeled images
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Iteration 5, 60 labeled images
. o 3
] . . . .
0 0.2 0.4 0.6 0.8
p(Y=1|z)

Iteration 13, 100 labeled images
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as L contains both positive and negative points, the classifier returns a ipogtexdiction

b

labeled points.

(Y = 1]z) and a measur&(x) for the uncertainty in this prediction. It can be observed that
the capability of the classifier to distinguish between positive and negatimespocreases
from iteration to iteration. The positive points within the cloud of negative anecorrectly
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according to the procedure presented in Seddi@gn2 As the accuracy is an inappro-
priate performance measure if the data is imbalatfddd 7, we use the area under the
receiver operating characteristic (ROC) curve (AUEJ|[ An AUC of 1 corresponds to
perfect separability of the two classes with respect tograstpredictions.

The results for all 6 data sets, averaged over 6 runs witkreifit random seed, are
shown in Fig.6.7. Each plot shows the development of the AUC depending on the
number of labeled images/bags. For 5 data sets (1-3, 5 ar2ds&@p and 1-step AL
achieve much steeper learning curves at the beginning dddianally, attain an AUC
of 1 or close to one after fewer iterations than random sargplirhe only exception
is data set 4, where random sampling is more efficient at tgebmg, achieving an
acceptable classification performance with about 25 bagjddbss. The reason is that
the defects of the images of data set 4 are relatively sirtoléine background texture
and are thus relatively difficult to identify for the outlidetection/one-class learning
algorithm. As soon as examples of defects are availablgetfermance of the two AL
approaches rapidly improves and becomes better than thabhddm sampling.

The two AL approaches perform very similar in the experiraaitove and the elim-
ination step of the 2-step strategy seems dispensable tasifjire. The reason is that
random forests are known to be very robust to label nddgdnd the difference does
not become visible as long as the number of wrong labels fmritly small. To inves-
tigate this in more detail, we enlarge the elliptic labels.bE more precise, the labels
are dilated by a disc-shaped structuring element of rad28splxels. The correspond-
ing results are shown in Fi§.8 Whereas the results of the 2-step AL approach remain
comparable to these using the original weak labels, thdtsesiul-step AL deteriorate
for data sets 2 and 6; the AUC is not even close to 1 for data aée6labeling 200
images.

6.6 Conclusions

In this chapter, we have presented a novel AL approach tlspbrels to three chal-
lenges in industrial optical inspection: weak labels, baddabel query and imbalanced
classes. Each iteration of the proposed strategy congist®ateps: in the query step,
the images for subsequent labeling by a human annotatoekeeted and in the elimi-
nation step, a subset of the patch-wise weak labels obtéamezhch selected image is
chosen. The strategy has been instantiated by extendimgesthrandom forests.
Based on 6 publicly available benchmark data sets, we havadthat AL techniques

2Consider a data set where positive and negative samplesragpe ratio of 999:1. Then the accu-
racy of the primitive classifier that always assigns the tiegalass is 99.9%. Despite the “good”
performance, this trivial solution obviously is unsatitay.
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Figure 6.7: Performance comparison of the proposed 2-step AL approach witlpAktand
random sampling. Each plot shows the development of the area unger(&WC) depending
on the number of labeled images for one out of 6 different data sets. Rirahibhe data sets,

the two AL approaches achieve steeper learning curves and earlienttant separation of
the two classes. Note the different scales of the y-axes.
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Figure 6.8. Performance comparison of the proposed 2-step AL approach withplAite
and random sampling after having dilated the labels by a disc-shaped strg&lement of
radius 128. Each plot shows the development of the area under AWNE) depending on

the number of labeled images for one out of 6 different data sets. Cothfiathe results

with the original labels in Fig6.7, the performance of 1-step AL deteriorates for data sets 2
and 6. Note the different scales of the y-axes.
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indeed can reduce the labeling effort required for achgpaircertain classification per-
formance (compared to random sampling). The key to this argiment is the query
step. It strives to preserve a balance between explorinfetitare space and seeking
out positive labels in order to compensate for the undeesspted class of defects. The
additional elimination step is appropriate if the emplowtaksifier is not sufficiently
robust to label noise incurred by weak labeling.

One drawback of the 6 benchmark data sets—particularly wiserg them for the
evaluation of AL methods—is that each of them contains orexifip kind of defect
only. Here, the parameterthus has not been optimized but has simply been set to 1.
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The aim of this chapter is to compare three different metHoddinary classifica-
tion with an underlying Gaussian process with respect torétecal consistency and
practical performance. Two of the inference schemes, naota$sical indicator krig-
ing and simplicial indicator kriging, standard methods @ogtatistics, are analytically
tractable and fast. However, these methods rely on sinipiifgssumptions which are
inappropriate for categorical class labels. A consistedt@eviously described model
extension involves a doubly stochastic process. Thereut®@own posterior class
probability 7(-) is considered a realization of a spatially correlated Gansgrocess
with function values squashed to the unit interval, and ellabpositionz is considered
an independent Bernoulli realization with success paramétg. Unfortunately, infer-
ence for this model is not known to be analytically tractabiehis chapter, we propose
a new computational scheme for the inference in this doublghastic model, namely
the “Doubly Stochastic Gaussian Quadrature”. The methahaytical up to a final
step where integration must be carried out numerically.tR®@icomparison of practical
performance, the methods are applied to storm forecastedd@panish coast based on
wave heights in the Mediterranean Sea. While the error ratbeotioubly stochastic
models is slightly lower, their computational cost is mualhier.

7.1 Introduction

Gaussian procesggressionhas been introduced to the field of machine learning by
Williams and Rasmusseri§4]. Before, it had long been known in the fields of geo-
statistics (under the name of “kriging37]) and in signal processind 8. Its popular-
ity is due to its flexibility, mathematical tractabilitysihatural Bayesian interpretation
and success in a wide range of applicatiorfy [L48 108. In Gaussian process regres-
sion, the observed outputs of the points in feature spacasauwmed to arise from the
realization of a Gaussian process with or without Gaussiasen As briefly explained
in Section7.2.1, an approximation or interpolation for all points in feawpace (given
the observed data and assumptions on the mean and covasiaratare of the Gaussian
process) is then obtained from the best linear unbiasemth &istr.

Unfortunately, inference is more complicatedciassification Whereas a Gaussian
prior can be combined with a Gaussian likelihood in the cdsegression (resulting
in a simple computational scheme revolving around a lingatesn of equations), a

119
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Gaussian likelihood is obviously inappropriate for diserelass labelsif49.

In this chapter, we compare three different approximatwhremes fobinary Gaus-
sian process classification: classical indicator krigi@¢K() [90], simplicial indicator
kriging (SIK) [175 and the doubly stochastic Gaussian quadrature (DSGQ)laftes
is a new computational scheme for a model that has previtnesiyp studied in environ-
mental applicationsq1] and in machine learninglB3. This model is motivated and
presented in the following paragraphs.

Let 7 = {(zi,v:),7 = 1,...,n} be a training set sampled from a random vector
(X,Y), wherey; € {0,1} denotes the binary class label of a feature vector X C
R?. Lety € {0,1}" andX € R4 be the vector of labels and matrix of feature vectors,
respectively. The goal is to predict the posterior clasdabdity p(Y = y.|z.) =
p(Y = y.|X,y, z,) of the unknown labe}, at a pointz, given the training set.

The classical approacB()] is to compute the posterior probabilities by fitting the bi-
nary labels directly, without regard to the fact that heannot be normally distributed.
This approximation is called (classical) indicator krigiand has a long record of suc-
cessful applications. However, there are two main problertts CIK: First, it quite
often delivers probabilities that are smaller than O ordathan 1, and second, the order
relation of probabilities is violated. The latter means,eaplained in more detail in
Section7.2.2 that the difference on the real line is not adequate to espdéstances
between probabilities.

These drawbacks are tackled by SIK’H. There,

1. the probabilityp(Y” = 1|z) is considered the function valugzx) of an unobserv-
able realizationr(-) of a Gaussian process “squashed” to the open unit interval
(0,1) as defined in the next section.

But, as will be discussed in Secti@2.4 SIK still makes simplifying assumptions that
may not be satisfactory in general. In particulay,:= 7 (x;) can only be eithep or

1 —p, p € (0,0.5), depending on which of the two classes is observed at thartgi
location x;, regardless of any other observations in the vicinity. Tikisontrary to
intuition. For example, consider one point in feature sgawkits immediate neighbors,
and two possible scenarios: first, that a “success” has dessreed at all these points;
and secondly, that “success” has been observed only at theacpoint and “failure”
at all others. According to SIK, the posterior probabilitythe central point would
be the same in both scenarios. The model must hence be edteude that we fully
distinguish between an observed label and its estimatdzhpriity:

2. the observed labels areconditionallyindependent realizations of Bernoulli dis-
tributions with parameters; = p(Y = 1|z;), i.e.Y|m; ~ Bern(m;).

'Note that we slightly deviate here from the notation of thet & this thesis. This is to simplify the
derivations later on in Section4.
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A graphical representation of this doubly (1. and 2.) ststbamodel is shown in
Fig. 7.1

In summary, CIK and SIK are based on model approximationsrtiaat be incon-
sistent with some or all characteristics of a classificatietiing, but that are linear in
output measurements and thus analytically tractable astd fa contrast, the doubly
stochastic model is consistent, but predictive infereresds to be approximated.

Many approximation schemes have been proposed, among thplace’s method
[183, the integrated nested Laplace approximatidb4, Markov chain Monte Carlo
(MCMC) approximations133 51], expectation propagatioipq), the cavity TAP ap-
proximation [L37] and a variational approximatiorrf]. An excellent review is pre-
sented in 104. In the field of geostatistics, modifications of CIK are aldmadant
[91, 30, 171, 141].

The contribution of this chapter is twofold. First, we comp€&IK, SIK and the dou-
bly stochstic model with respect to theoretical consisteanad practical performance.
Second, for this comparison, a new approximation scheméhtodoubly stochastic
model is presented, the doubly stochastic Gaussian quaer@SGQ). The method is
analytical up to a final step where optimization or integnatmust be performed nu-
merically. This extends the insight into the doubly stoticas®odel and may form the
basis for future research.

The next section reviews the most typically used methodergtostatistical commu-
nity, CIK, as well as an alternative based on the Aitchisomgetoy of the unit interval,
SIK. The underlying geometry is also presented in Secti@nSection7.3introduces a
distribution on the unit interval, compatible with this geetry, that plays the role of a
prior distribution of the vector of probabilities of inteste Sectiorv.4then uses this dis-
tribution to derive an estimator for the unknown probaiaititthat is based on a doubly
stochastic Gaussian process.

An experimental comparison of all methods is presented ati@e7.5. To thatend, a
given forecast of wave heights in the Mediterranean Seassifled in two conditions:
Eastwind-storn{calledLlevantin Catalan) anény other situatior{either calm or any
other of the dominant windstorms of this region) are the twegible labels. In this
setting, the feature vectar ¢ R? consists of the values at predefined pixels of a
forecast map.

7.2 Classical and Simplicial Indicator Kriging

In this section, we briefly review two approximation methéasGaussian process clas-
sification that do not consider a Bernoulli distribution foetobserved labels, namely
classical and simplicial indicator kriging. We first debersimple kriging which is then
applied to predict posterior class probabilities in a afasgion setting.
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AE - Ee

Figure 7.1: Graphical representation of the doubly stochastic model. Observedlesriare
shaded squares, circles represent unknowns. The thick lines indiftdtg connected graph.
The first stochastic layer is given by the posterior class probabifitigs= 1, ...,n andmr,
that are considered function values of a squashed Gaussian prtbeesscond layer is given
by the observed labels that are Bernoulli distributed with parameter

7.2.1 Simple Kriging

Let{(xy,m),..., (z,, m,)} ben pairs of sampling points; and outputsr; = n(z;),i =
1,...,n. In case of simple kriging it is assumed thatr) is a function value of a
realization of a Gaussian process with known mean and @weeistructur€(z;, z;) =
Covr(z;), m(x;)], i.e. the joint distribution of any subset of observed or hserved
points is a multivariate normal. Assuming a zero mean, thienage for the function
value at an arbitrary point, in feature space is of the form (see e §7,[149)

Ao =7(2) = Y Ni(w)m(x;) (7.1)

i=1

i.e. the simple kriging estimator is a linear combinationtled function values at the
sampling points. The coefficients,i = 1,...,n, depend on the position of prediction
and are obtained maximizing the well-known normal conddialensity (see e.g1{9)

1 1 (7r* — o'TE_lﬂ')2
* 7X7 x) = 5 _
) o (TR

wherenw = (7T1,...,7Tn>T, Eij = C(x,-,xj), [O']Z = 0; = C(%i,.l’*), Oy = C(SL’*,I*)
andr := 27, with 7 being the mathematical constant in this caskhis gives kriging
weight

Ai(z.) = [E71al;

2We use the definition := 27 here and in the following to avoid confusion between the mahtical
constantr and the symbolsr, 7;, 7(-),... The latter are used to be consistent with the notation
introduced in Chapte3.
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The matrix3: is invertible if the covariance function is strictly posgidefinite and if all
the sampling points are distinct. Note that the coefficierits.) do not sum up to one
in general, and can even be negative. For further detailswpies kriging, other kriging
“flavors” or examples of covariance functions, see €d] 4nd [149.

7.2.2 Classical Indicator Kriging

The easiest possibility to predict posterior class prdhggs at a pointr, in feature
space is classical indicator kriging (CIK9({]. There, the binary class labejsc {0, 1}
are treated as function values, ig..= y;,7 = 1,...,n, and the probability of success
is directly given by the simple kriging estimate.

However, CIK has two major drawbacks. First, although th@datc {0,1}, it is
not guaranteed that the interpolatién € (0, 1), which is necessary in order to in-
terpret it as a probability. Second, the order relation afbabilities is violated, i.e.
distances between probabilities are not representedatetyiby their difference on the
real line. Consider the following example of two pairs of pabbities: (0.001,0.01)
and(0.501,0.51). In the first case, the second probability is ten times higlvBereas
in the second case, the probabilities are almost equalhbwdtual distances on the real
line are0.009 in both cases. This suggests that a change of geometry malebheate,
which is presented in the next section.

7.2.3 Geometry in the One-dimensional Simplex  S?

Consider the line segmefta,1 — a),a € (0,1)} C R?, which is equal to the one-
dimensional positive simpleS?. The simplexS? is useful to represent the probability
of a certain event together with its complementary proliglecause the components
of an element of8? always add up to 1. Moreover, it has a Euclidean vector space
structure, calleditchison Geometryf it is endowed with the following three operations
[143 19). There,C(a) := (a1/(a1 + a2),az/(a; + a3)) divides each component of a
vector by the sum of its components to ensure the closurerattition and scalar
multiplication.

(i) Vector addition: a @ b := C(a1by, asbs), representing addition of information
following Bayes’ theorem

(i) Scalar multiplication:\ ® a := C(a?,a3), A € R
(i) Scalar producti{a,b) := 1/cZIn(a;/az)In(b; /by)

The constant? is a scaling parameter. As explained in detail in Sectid@ it is in-
timately related to the variance of the normal distributaon the hypercube. It fol-
lows immediately from the above definitions that the additieutral element d§? is
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C(1,1) = (1/2,1/2) and the inverse element of= (a;, as) is (az, a;). Moreover, we
automatically obtain an algebraic definition of the dis@imS?:

Co a2

d(a,b) = |acb| = /(@S baob) = l\/<1n (ﬂ) —In (%))2 (7.2)

where subtraction is defined by addition with the inversenelat. The norm of a vector
(a1, ay) in this geometry igla|| = \/(a, a).

As in every Euclidean vector space we can choose an orth@hdasis—which, in
this case, consists of one vector ondy:= C(exp(co), 1). In thecoordinate representa-
tion, each element € S? is uniquely represented with respect to the chosen basis:

1 aq
a = (a,ep) = . ln(l—a1> (7.3)
Conversely, the elementcan be computed from its coordinate representation byrscala
multiplication: a = a ® e, = C(exp(cpar), 1) = (a1, 1 — a1). The mapping fron§? to

R assigning a coordinate to each point is an isomorphismhEurtore, all points ii$?

are uniquely determined by their first component, so we cantify a pointa; on the

real interval(0, 1) with the point(a;,as) = (a;,1 — a;) onS? and hence the interval
(0, 1) with the simplexS?. This leads to an isomorphism from the inter¢@l1) to R.

7.2.4 Simplicial Indicator Kriging

The main drawbacks of CIK, stated in Sectior2.2 are tackled by SIK175. This
method is based on the realization that there is no needabliss$t an identity between a
probabilityr € (0, 1) and its representatianon the real line. They are better connected
by the logit transformation:

¢ =1In (7.4)
1—m

Note the correspondence between E@s3)(and (7.4). The constant /¢, is omitted

here because it cancels out in the final estimatef SIK.

The simplicial kriging estimate is obtained in four steps:

1. estimater; = p(Y = 1|z;), the probabilities of success at each sample (of the
training set); many estimation methods are possibi| e.g. a Bayesian esti-
mate combining a Jeffreys’ prior with the observed clasdliiiood, which would
yield 7; = 3/4 if a success is observedat andw; = 1/4 otherwise;

2. get the logistic transformation of these estimates;daitog-ratio, this implies
that extreme values af; = 1 or 7; = 0 should be avoided in the preceding step;
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3. apply simple kriging to the logistic-transformed estiesa); = In(#;/1 — #;) to
obtain an interpolatiog, at an unclassified sample,

4. undo the logistic transform, to obtain an interpolateabpbility 7. = exp(é*)/
(1 + exp(¢*)).

The rationale behind SIK is to build the linear combinatiorkEly. (7.1) using the oper-
ations on the simplex explained in the preceding Sedti@ Thus, SIK is an interpo-
lation or approximation technique for probabilities witlthe framework osquashed
Gaussian processes, as will be described next.

It is also shown in 179 that, if the estimates; are justl — p or p, p € (0,0.5),
wherever a success, respectively a failure is observedliseget actually very simple.
In this simplified situation, the estimate from the latten ¢ derived from that of the
former, denoted here a$'’%, by

7, = logit™ (2 ln% . (7T*CIK — ().5)) : (7.5)
Though Eg. 7.5 is an interesting way of “recycling” old, inconsistent Cl&sults into
valid probabilities, estimating; by two values only (namely and1 — p) still is a gross
simplification.

But the main problem of SIK is its inability to “transfer infoiation” between labeled
points in the first step, as detailed in the thought expertreeecified in the introduction
of this chapter. SIK is unable to deliver this result, beeat(s;;) is estimated separately
at each point;, even in the presence of a nugget effect

7.3 The Normal Distribution on the Unit Hypercube

In this section, we take the Euclidean vector space strecnrthe interval0, 1) given
in Section7.2.3 and define the normal distribution on the unit hyperc(fhe)”. This
distribution serves as prior distribution for two of the imeds for Gaussian process
classification considered in this chapter, namely SIK (@néxd in the previous section)
and DSGQ (introduced in Sectiahd).

The transformation induced by the isomorphism present&eation7.2.3maps the
conventional normal distribution defined on the real lingh@interval(0, 1):

Definition 7.1. A random variableZ is said to be normally distributed oft, 1), de-
notedZ ~ No1)(i, 0?), if its coordinate representatio(v.3) is normally distributed
onR with meanu and variancer?. [147]

3For an explanation, see e.§1].
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It follows that the random variablg has Lebesgue density

(|, 0?) :COZ<11_ 5 7102 exp (- (C—lo In (1 : Z) _ M)Q / (2#)) (7.6)

e (- (n(5) ) v0i). 02

2€(0,1),p €R,0c e RT

where the first factor in1.6) comes from measure theory and compensates for the un-
familiar definition (7.2) of the distance ir§?. Fig. 7.2 shows the probability density
functions forc, = 1 and varying values of ando?.

u=0 p=1

0 0.2 0.4 . 0.6 0.8 1 0 0.2 0.4 . 0.6 0.8 1
Figure 7.2: The normal distribution ir§? for different parameter values. Far = 0 (left
panel), we obtain a symmetric density function aro0rid(0.5 € (0, 1) has coordinate rep-
resentatior) € R). The bigger the variance? the more probability mass is concentrated
near the boundaries of the interval. In contrast to the usual normal disbrib the density
function is apparently not symmetric far # 0 (right panel). The expectation value of this
distribution converges to for ;» — 400, and to 0 fory — —occ.

The distribution of the latent variable at a single positiorfeature space lives on
the interval(0, 1). The joint distribution of several variables—which willptizally be
dependent—then lives on the Cartesian product of these dgments, i.e. on the hy-
percubeg(0, 1)".

Definition 7.2. A random vectoiZ is normally distributed on(0, 1)", denotedZ ~
(’571)(”, 3)), if its coordinate representatiofv.3) is multivariate normally distributed
onR™ with meanu and covariance matrix.
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If we squash a Gaussian process to the unit interval acagprdirthe inverse of
Eq. (7.3), its finite-dimensional distributions are normally distrted in the unit hy-
percube.

Remark 7.3. Note thato? and ¢, are intimately related and, actually becomes a
scaling parameter, or as was already mentioned, the unite@ptoblem. This can be
easily inferred from its behavior in ter{7.7) for the one-dimensional distribution and
is particularly evident fop:, = 0. In this caseg? andc, become equivalent parameters.
These considerations carry over to the multivariate casBdfinition 7.2, where the
multiplication ofcy by a constant can be compensated by adapEraccordingly.

Finally, note that the multivariate normal in the hypercuidb@ot the only possible
choice to model the prior distribution of a probability ramal field. Another approach
not pursued here is using copulas instez4).|

7.4 Doubly Stochastic Gaussian Process

We introduce the doubly stochastic model in Sectioh1l The method presented in
the subsequent section, namely DSGQ), is based on these assgghptions and is an
estimator for the unknown posterior class probabity” = 1|X,y, z.).

7.4.1 Posing the Model

Let us from now on use the coordinate representafioa R for =; € (0,1) as intro-
duced in Sectior.2.3

1 T eCoi
¢ o Og(l > o 1 + eco®i (7:8)

)

In the real coordinate space we can perform the usual Bayegeence for regression
without any restrictions, warranted by thenciple of working on coordinated 42].

Recall that our goal is to predict the probability distrilautiof the unknown label
Y at a pointz,, given the training sef . In Section7.1, we have introduced the two
following model assumptions:

1. the probabilityp(Y = 1|z) is considered the value(x) of an unobservable real-
ization(-) of a Gaussian process squashed to the unit interval,

2. the observed labels areindependentealizations of Bernoulli distributions with
parameters; = p(Y = 1|x;), i.e.y|m; ~ Bern(m;).
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This two-layer model can be successfully tackled in a Bayefseamework.

The second assumption implies that the likelihood of a sathlalbel vectoy is

n n n

pylm) = [ [ plwilm) = [ [ p(wilm) = [ =¥ (1 = m)' ¥

=1 =1 =1

According to our first prior assumption, we may consider thehserved success
probability p(Y = 1|z) to follow normal distribution on the hypercube, as given by
Definition 7.2 This assumption implies that we must know its mean vectdrcawvari-
ance matrix. If we have no information favoring one prediatéass over the other, the
mean may be considered zero in coordinate space, corréagdnch probability ofl /2
for each of the possible labels (Fig2), such that the prior distribution can be written

2 (X X,z
p(ﬁ,ﬂ'*’x,l’*) = '/\/‘(0,1)7l'~'1 (07 C) ) C= (U(XSZBE)T 0-( U%x )> : (79)

The several covariances(X) among sampled locations aadX, x,) between a sam-
pled location and the unsampled one, are derived from a demater stationary co-

variance function, giving smoothness to the hidden randamastion in feature space.
Note that, as a result of the derivations later on, the camag function enters the final
prediction atr, only through the prior. Hence, as the multiplicationcgby a constant

can be compensated by adapti@gaccording to Remark.3, ¢, can be set to 1 in the
prior and thus later on in Eq7(11]).

7.4.2 Doubly Stochastic Gaussian Quadrature
7.4.2.1 Predictive Estimation

As stated above, we are interested in the predictive prétyapiy.|X,y, x.). Following
the definition of predictive estimation, we know that

p(y*yxvywx*) = \/p(y*77r*|xay7x*)dﬂ-*

- / Py 7 p(m X, y, .)dr.
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We go on with the calculations as it49 and [L0{, using the conditional independence
assumptions reflected by Fig.l This gives

_ /p(y*yw*)/p(m,wyx,y, ©)d dr,

— [ pldn) [ plmim X )ptmiX.y)dm dn,

= [ ptln) [ o fm X w)ptyim Xop(aXydm dr. (7.10)
Using the probability density function of the normal diktriion in (0,1)", plugging

in the coordinate representation.§) and repeatedly applying the substitution rule of
integration, we obtain explicit expressions for all termg4.10), viz.

eCoPx Y 1 1=y eCoP=y-
p(y*|7'('*) - <1 + 660(75*) (1 -+ 600¢*> 1 + ecods

1 1 (6 — TS 1)°
p(m|m, X, x,) = exp <—§ (¢2 TE_1¢) ) (7.11)
\/7' (02— 0TS "0) 9%~ 0 a

n oC00: Yi 1 I—y; o pcodiyi
p(ylm, X) = plylm) = [ | (1 + 660@) (1 - eco‘i”) ] -l
1
exp (—§¢Tz_1¢>

=1

p(m[X) =

1
VT3

where we have used among others the derivatiod4®,[chap. 2.2] for Eq.71.1]). In
these equations, we have used the shorter notatien3(X), as well azr = o (X, ).

The integration in .10 now is with respect t@ and¢., logistic coordinates of the
unobservable probabilities andr,. Inserting the terms mentioned before, we obtain

p(y*|x7y7 [B*)
ECOP~Yx n eCoPiyi ¢T271¢ (gb* — JT271¢)2
=C2 // 1+ eCodx H 1+ ecodi exXp (_ 2 B 282 ) d¢ d¢*

=1

(7.12)

with s2 := 02 — ¢S 'o andc, = (c;\/7|X|\/752)~". This integral cannot be
solved in closed form.
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7.4.2.2 Approximating the Integral

In this section, we derive a computational scheme for theutation of the predictive
doubly stochastic mode for Gaussian process classificatesented before.

Since the integral in Eq.7(12 cannot be solved analytically, we approximate the
exact logistic function in{.8) by a stretched error function, i.e.

€CO¢*ZJ*

1 + ecod« ~ ((_1>y*+1k0¢*) (713)

where® denotes the error function. This allows for substantialgdifications leading
to the result in equatiory(15. Choosing

e¢0¢*
ko = arg min max
k P+

®(ke,)| ~ 0.5876c,

1+ ecod

we obtain a good approximation with a maximum deviation of

eCoPx

W < 0.01

max

1 ~ (k)

for everyc, (see Fig.7.3). Of course, the same calculation is valid torandy;,: =
1,...,n, instead ofp, andy,.

. 0.01
S
o
0.8t 8
1 0.005
)
0.6t L
C 0
o
0.4 ¢
e
)
= -0.005
0.2 ——exp(@)/(1+exp(@) g
o
®(0.5876(,) 3
Yo 5 0 5 10 % -5 0 5 10
0 @,

Figure 7.3: Comparison of the original logistic function and its stretched inverse prpbit a
proximation forcy = 1. The left panel shows the two functions, the right panel their differ-
ence.

Working toward the final simplification, we define a multiatg generalization of the
Heaviside functiorf (¢).
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Definition 7.4. Let

0 if Ji: (-1 <0
Hy(¢) :==< & if Vi:(=1)»Hg>0and3i: & =0
1if Vi (=1)vtg >0

Special cases dfiy(£) in one dimension arkl;(§) = H(£) andHy (&) = H(—¢) =
1 — H(¢). Summarized in words, the functidhy, is—up to a null set with respect to the
Lebesgue measure—equalltan exactly one orthant dR™ and equal td) elsewhere,
where the orthant is specified by the componentg of

One can verify tha® (ko¢.) = (H; *No,k%)(@) and®(—kyo.) = (Ho *N%%)(qﬁ*),
and hence ’ ’

n n

[T2 (1" kees) =] (Hyi x 0k) (¢) = <Hy*/\f0’%.) (). (7.14)

i=1 i=1

Inserting the approximation in Eq7.(L3, Definition 7.4 and Eq. 7.14) in Eq. (7.12),
we can continue the main calculation so that

Py« X, Y, z.) zCQ/ (Hy */\/’0,1612|> (@) exp <_%¢T§31¢>
<[ (Hi e Moy ) 00 exp (550 — o750 do. g

Considering only the inner integral we have

/ (Hy* * Olg) (¢4) exp (_Qiz (fn — a(x*)Tzlgb)?) do,

// y* O 1 ¢* - ZEB)df* exp ( 212 (¢* - U(:B*)TZ_1¢)2> do.
N / H,. (€) / Not, (25 = 0)N (g yrs5-15,2(6:) . dE,

'

T2_1¢’Sg+k% (E*)
0

o(xx)
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which leads to
plX.y.a) e [ [HUON; 11 (6~ e
X exp (—§¢> s ¢> J €N s (€6 do
—eo [[H@M.€) [Ny (0
xexp( Lyrs- ¢> o (@) 5716 — €)oo d d.

Definings := ¥ 'o(z,) andv := k2 /(s2k2+1), we obtain (up to a constant multiplier)
for the integrand of the inner integral

exp(—éw—s) (68— 30"S 6 - (s%—s*)v(s%—s*))

v~

=R =m

= exp (%ng (gl + =71+ USST)/q.’) + ¢ (kg€ + vsty) ——ng:?g — —vg )

=exp (—%(¢ ~R'm)TR(¢ — le)) exp (%mTle - STkizﬁ - —v§2>

The second factor is independentgfind the first factor is a Gaussian kernel function
which integrates to a constant with respectpto Combining this constant with; we
obtain

ploy.a)  er [ [ Hy©H, (€ exp (GmTR-m — JeTie - Sue? ) de e
When resubstitutingh and reordering, the exponent becomes
—%5 (K2l — kgR™E + €TRR tost, — g (v —v’s"R7's) &,
with I the identity matrix. This finally yields our principal resul
ppya) e [ H©H, o (<5€AE) € (715)

where ) P ) .
- (KA —KRTY —kWR s
€ T (éa f*) and A= (—kSUSTRl v — UQSTR18>
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The expression says that, to make a prediction under thdystdrhastic model, it
suffices to compute the mass of @+ 1)-dimensional Gaussian distribution (centered
at the origin and with precision matriA) in a given orthant. This is illustrated in
Fig. 7.4. The covariance structure of the distribution is mainlyegi\by the covariance
matrix 3 and the vectoe (), i.e. by the relative position of the training points and the
test pointz, in feature space. Moreover, the covariance structure aperttls on the
parametek, which trades off prior and observed evidence. The orthattishntegrated
over is picked by the observed training set labels (andrgetti = 0 or y. = 1).
The normalizing constant, can be determined by calculating not only the mass in the
relevant but also in the adjacent orthdi¢, &) € R : Hy(¢)H;_,. (&) = 1} and
then using the sum constraipty = 1|X,y,z.) + p(Y = 0|X,y,z,) = 1. In the
left panel of Fig.7.4, o(x.) is relatively large angy = 0. Hence, the posterior class
prediction for class O is relatively large; heggy = 1|X,y, z.) = 0.128. In the right
panel,o(z.) = 0. Consequently, the label of the training point does not imibeethe
posterior prediction at. and hencep(Y = 1|X,y, z.) = 0.5.

For the actual computation of the integral of the Gaussiarsitle one can evaluate
the multivariate error function at the origin after havirdeguately mirrored the normal
distribution. The multivariate error function is e.g. irepiented in R and Matlab based
on methods presented i6g)].

Remark. For DSGQ, there is a close relationship between the sillmater (see
e.g. B7, chap. 2.2]), which affects the assumed covariance steietad therefore the
computation ofS, and the parameteg.* As already mentioned in Remaik3, they
together influence the variance of the prior in E9) and therefore govern the tradeoff
between prior and evidence for the final prediction. The Bmal and the smaller the
sill, the higher the weight of the prior.

7.5 Comparison of the Presented Algorithms

7.5.1 Data

The several methods summarized or presented in this cotitibwill be illustrated and
compared using a typical diagnostic problegiven a static “image” of a system, can
we decide whether it corresponds to a particular (dynamic)me? In this particular
case, we want to use a map of significant wave height, prolagiechumerical forecast-
ing model of the Western Mediterranean Sea, to decide whetheis allevantstorm
(a storm with dominating winds from the East) or not. The dateluding the plot in

4Recall that the corresponding parametgof the DSGQ simply is proportional t@).
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Figure 7.4: Computation of the posterior class probabiyy” = 1|X,y, z.) with the doubly
stochastic Gaussian quadrature according to E45(. Each panel shows the contour lines
of the probability density function of afm + 1)-dimensional Gaussian distribution with 0
mean, wherg, € R and¢ € R"™ (obviously,n = 1 here). The covariance structure of the
distribution mainly reflects the relative positions of the test and training poinéainife space.
The ratiop(Y = 1|X,y,z,)/p(Y = 0|X,y, z,) equals the ratio of integrals of the Gaussian
density over two adjacent orthants, which are determined by the kabétke training points.
Here, the regions that are integrated over correspogdd, andp(Y = 1|X,y, z.)/p(Y =
0|X,y, z«) = 0.064/0.436 andp(Y = 1|X,y, z.)/p(Y = 0|X,y,z,) = 0.25/0.25 in the left
and the right panel, respectively. Additionally using the sum constpélit= 1|X,y, x,) +
p(Y = 0|X,y,z,) = lyieldsp(Y = 1|X,y,z,) = 0.128 andp(Y = 1|X,y,z,) = 0.5,
respectively.

Fig. 7.5) has been provided by Raimon Tolosana-Delgado from the MeriEngineer-
ing Laboratory (LIM) at the Universitat Politécnica de Catala (UPC) in Barcelona.
We have available a set of = 114 such images of past forecasts, for which we
now know the dynamic situation. We manually select befandha small subset of
d = 8 “informative” pixels. Subsampling of pixels is performead avoid the “curse
of dimensionality”. Otherwise there would be= 114 points in a space with several
thousand dimensiong of which many correspond to uninformative locations in the
East. As the empirical distribution of the individual waveidhts is extremely skewed
to the right, they are preprocessed by computing the IdgaritThen, we build a data
set of feature vectors; € R®,i = 1,...,n (the logarithm of the wave heights at the
selected pixel positions) and labglq1 corresponds to a Llevant storm, 0 to “no Llevant
storm”) and apply the classification techniques to this B&j. 7.5 shows the variance
of logarithms of significant wave height for the whole forsibag area, using a larger
set of 970 non-classified images. We do not consider all tinesges (but only 114) for
the comparison to ensure a high degree of stochastic indepea between the images,
i.e., we selected the images in such a way that they are dtdeasveek apart from
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Figure 7.5: The Western Mediterranean with indication of the 8 explanatory featuezbstos
classify the forecast images. The contour map shows the variance alcmgessible feature,
i.e. the variance of the logarithm of the wave heights at each pixel. Pixelsarel6 km?
approximately.

each other. This figure also shows the locations of the 8 pigkbsen in this case
as classification features. Note that the chosen featunesraderate, fairly similar

variances. Though this is not a necessary condition, mallas to consider an isotropic
variogram orR® for the latent Gaussian process.

7.5.2 Experimental Results

We compare the three methods—classical indicator krig@lé&), simplicial indicator
kriging (SIK) and the doubly stochastic Gaussian quadea{XSGQ)—based on the
data presented in the previous section. Throughout thisoseave use a Matérn co-
variance function (see e.gl149, chap. 4.2]) for all methods and all experiments. Its
one-dimensional correlogram is given by

o1=v 2vur : 2ur
- 5~ - 7 Kl/ ) 7l )
plr) r@)( z ) ( z ) vii>0

where K, is the modified Bessel function of the second ki@ddhap. 9.6]y is called
a smoothness parameter dradrange parameter. Then, for a given nugget 0 and a
sill s > sp, the covariance function (1) = (s — so)p(r) + so1o(r), wherely(-) is the
indicator function at 0. Hence,;; = h(||z; — z;||) ando; = h(||z; — z.||).

In the first experiment, we simply evaluate the classificaperformance of the 8-
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Method | Accuracy | Computation time
Classical indicator kriging 0.868 £ 0.062 0.68s
Simplicial indicator kriging 0.868 4 0.062 0.88s
Doubly stochastic Gaussian quadratuf@895 4 0.056 481.18 s

Table 7.1: Relative accuracy and computation time of the three different methods for the
classification of the 8-dimensional data. Results are obtained by 5-fadd gedidation over

114 samples,~” indicates the boundaries of the 95% interval. As the parameter estimation is
performed differently across the methods, it is not considered for tmpgtation time. The
latter is measured with a Matlab implementation run a standard PC.

dimensional data using 5-fold cross-validation (CV): théada divided into 5 folds;
then, 4 of these are used for training to predict the postetass probabilities for the
samples in the remaining fold (test fold). This is repeatédh®s such that each sample
is once in the test fold.

For both CIK and SIK the parameters are determined by standai@yram methods
[37] yielding a smoothness of = 10, a range off = 0.4, a sill of s = 0.17, and
no nugget effects{, = 0). For DSGQ, the function values of the underlying process
are not observable, because the class labels are modeledlastions of Bernoulli
experiments. Hence, standard variogram methods are niitapp and we useested
CV for parameter estimation. In order to predict posteriatyabilities for a test fold in
the outer CV, only the data in the respective training fol@sieed for parameter tuning.
This is performed in an inner CV loop. Hence, for different fesds of the outer CV,
different parameters may be used. Note that, in contrasisimple (non-nested) CV,
this does not yield overoptimistic estimates for classgenformance as the parameters
for predicting probabilities for a test fold in the outer C\bfmare tuned completely
without using any information about this test folbl/|g]. For computational reasons, we
use the same values for s ands, as in the other two methods and optimizend k,
only.

The quality indicators of the methods are presented in TaAllléOn the one hand, the
highest accuracy is achieved by the doubly stochastic rdgtiRl8GQ)> On the other
hand, the running time of the DSGQ is much higher, more th&ith€ time needed for
IK techniques.

Next, in order to get more insight into the differences of thethods, we perform
an experiment using only two dimensions of the 8-dimengdidiaga. By visual in-
spection, we select the second and the third feature as sleese to be the most in-
formative features for classification. The 2-dimensioratbhds plotted in all panels of
Fig. 7.6. We use all samples for training and predict posterior gaebabilities on a

5> However, note that the differences are not statisticatipigicant.
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two-dimensional grid. We obtain = 0.5, = 0.4, s = 0.17 ands, = 0 for CIK and
SIK using variogram methods. For DSGQ, we again use the sales/forv, s ands
as in CIK and SIK and optimize the remaining parameters witlsivalidation using
only the training samples. This leadsite- 3 andk, = 4. The resulting contour plots
for all methods are shown in Fig.6.

It can be observed that all points of ttraining setare classified correctly with CIK
and SIK, in particular the dissenting points that are log@tebetween a cloud of points
with a different label. Here, as the variogram estimatedgel, = 0, the estimate
for the posterior class probabilities at those pointsyace 1 — p for SIK and even 1
or O for CIK. This prevents the assignment of opposite classése neighborhood of
observed labels and thus limits the generalization alwhit@IK and SIK. In contrast, in
the doubly stochastic model, the dissenting points areiderexd unlikely realizations
of a Bernoulli experiment. This explains why the squasheliza@on of the Gaussian
process is much smoother for DSGQ, as can be inferred frormothgur lines. Hence,
the doubly stochastic model is more robust with respectéasdltissenting points, even
undersy = 0.

7.6 Conclusions

We have presented a new method for the estimation of the mtababilities in a classi-
fication setting, based on a doubly stochastic process famaSeen from a Bayesian
perspective, the method is obtained as the predictive pilityaof a prior random field
updated by a Bernoulli likelihood obtained from the trainggg. The distinctive charac-
teristic of the method is that the underlying estimationagedministic and analytical up
to a final step of iterative maximization or integration. Thlerlying doubly stochastic
model is consistent with a classification framework.

In contrast, (classical) indicator kriging (CIK9() is theoretically inconsistent, as it
uses a non-transformed Gaussian random field (with rangeto +oc) to describe a
probability (bounded between 0 and 1). SIK uses a logistindformed Gaussian RF as
reference to avoid negative probabilities. However, botk &1id SIK are interpolators,
and thus do not reflect a two-step stochastic process. licplart this becomes apparent
in the presence of conflicting observations (successeswuded by failures, or vice
versa): the posterior probabilities estimated by CIK or S#Q only be exactly 0 or 1
at locations where there are observations. These methode lvategorically rule out
the possibility to observe the opposite label at those lonat This is not realistic for
typical prediction settings which are characterized by s@fass overlap. In contrast,
DSGQ can take observations from the neighborhood into axtcnd produces more
plausible predictions at the site of observations.

Although the accuracy of DSGQ is higher than that of CIK and $Kthe 8-
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Figure 7.6: Contour plots of the posterior predictions for the four methods compaasédon

a two-dimensional projection of the data on tH&-z(®)-plane, i.e. using these two features
only. The decision boundary between the two classes, the level curvecfo: p(Y =
0|X,y,zs) = 0.5}, is depicted with a thicker line. Samples of class 0 and 1 are represented
by empty and filled circles, respectively. Note that the decision boundagofhtrast to the
other contour lines) is equal for CIK and SIK. Both CIK and SIK makedprions that are
compatible with each and every label from the training set which is proneaditwg. In
contrast, DSGQ takes dissenting points into account, but do not follow theonditionally

in its predictions.

dimensional data used here, the difference is not significdhe fact that the dou-
bly stochastic model is computationally more demandingy 68K and SIK without
showing convincingly better performance is probably treso: why CIK, the classical
approach in geostatistics for classification, still is veopular despite its inconsistency.
Moreover, all parameters in the underlying statistical elad CIK can easily be inter-
preted in physical terms.
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Note that in L57°, the three methods discussed here are also compared toubly do
stochastic “Aitchison Maximum Posterior”. The results similar to those for DSGQ
both with respect to performance and computation time.

While the experiments show that the new computational scluériee DSGQ works
in principle, an alternative to the numerical integratisrdesirable because it may be
too expensive or too inexactif is large. For this, note that we only need to know the
ratio of the probability and the complementary probabitifyobtaining labely, at the
point z, to make a prediction:

€4 fomir Hy(é)Hy*(f*)e_%é Aédé _ le e~ 2(GO7(GE) g¢ _ fG(Ql)e_ig 3
C4 fRn+l Hy(ﬁ)Hlfy* (5*)6_%5 Agdé, fQQ €_§(G§) (Gg)dg fG(Qg) 6_%6 £ dé
. . (7.16)
where we have defined; = {£ : Hy(§)H,, (&) = 1}, Qo = {€ : Hy(§)H1_, (&) =
1} and have used the Cholesky decompositior= G*'G and the multidimensional
substitution rule for integration. The regio@%¢?;), over which we integrate, are convex
cones with apices in the origin (because they are lineasfioamations of orthants) and

the integrandaxp(—%élTé') is a radially symmetric function. Hence, the value of the
whole integral is proportional to the volume of the intetsst of the cone with the
unit sphere (called a spherical simplex). Thus, in ordenvtaduate the fractiond.16),

we need to compute the ratio of the volumes of the spheriogblgies determined by
G(;) andG(2,) [7]. Finding a tractable approximation to this ratio is anaative
avenue for future research.

5This is a self-citation. The “Aitchison Maximum Posterigs’not presented in this chapter because it
has been contributed by Raimon Tolosana-Delgado.






8 Conclusions

The main contributions presented in this thesis are theatéwn of
e two new approaches to active learning (Chapéeaind6),

o distributional estimates far-nearest neighborg;nearest neighbors, random for-
ests (ChapteB) and kernel density classification (Chaptérssed for the first AL
strategy at the same place),

e an outlier detection for random forests (Chagersed for the second AL strategy
in Chapter6), and

e a new computational scheme for Gaussian process clagsifi¢@€thapter7).

The first AL strategy, DEAL, performs best relative to otheategies if the under-
lying classifier provides a distributional estimate of tlengling distribution at each
unlabeled point. This distributional estimate encodes ltlo¢ distance to the current
decision boundary and the number of labeled samples in tighlb@hood of a point.
Additionally taking density information into account, ataal definition of the training
utility value has been derived leading to a novel activerigy strategy. Kernel den-
sity classification has been used as the underlying claskifieghe implementation of
the strategy. The corresponding distributional estimhte® been derived in this con-
text. The empirical performance of the AL strategy has beafuated on a wide range
of different data sets. It outperforms random, uncertaartg Look-Ahead Selective
Sampling on a wide range of data sets.

Distributional estimates have also been derivedstarearest neighbors;-nearest
neighbors and random forests. It has been shown using rgadretognition, IMS
and toy data that the distributional estimates, in parictihose for random forests,
combine state of the art classification performance withahidity of detecting test
samples that are not well represented by the training sdortumately, these estimates
mainly allow for a relative comparison of posterior estimatuncertainty. The obvious
open problem is the derivation of a second-order distrilsuthat indeed approximates
the true sampling distribution. Then, random forests camchediately serve as the
underlying classifier for DEAL.

Instead, a similar second active learning strategy has theezloped to combine the
state of the art classification performance of random feregh the main ideas of the

141
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first strategy. This strategy has then been applied witherfitld of automatic optical
inspection. The approach has been evaluated on the pualialiable DAGM data set.
It has been shown empirically that active learning techesqundeed can reduce the
labeling effort in industrial quality control.

As a part of the strategy, an outlier detection algorithmedasn random forests has
been proposed. It is faster and performs significantly béi@n a method based on
similarity matrices that has previously been proposeddndom forests. Moreover, the
performance of the proposed method is similar to a standaadest neighbor outlier
detection scheme.

Finally, we have derived a new computational scheme for thubly stochastic model
in Gaussian process classification. The method is andlycto a final step involving
numerical integration in a space with dimension equal tonin@ber of training sam-
ples plus 1. In order to apply the method for large trainingg sad to accelerate the
estimation, an analytical solution to the final integral ésidable. Note that the method
cannot be combined with any of the AL approaches presenttdsithesis since only
posterior class probabilities are estimated.



List of Abbreviations

AL
AUC
CIK
CRF
CcVv
DEAL
DSGQ
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