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Abstract

Active learning is one form of supervised machine learning.In supervised learning, a
set of labeled samples is passed to a learning algorithm for training a classifier. How-
ever, labeling large amounts of training samples can be costly and error-prone. Active
learning deals with the development of algorithms that interactively select a subset of
the available unlabeled samples for labeling, and aims at minimizing the labeling effort
while maintaining classification performance.

The key challenge for the development of so-called active learning strategies is the
balance between exploitation and exploration: On the one hand, the estimated deci-
sion boundary needs to be refined in feature space regions where it has already been
established, while, on the other hand, the feature space needs to be scanned carefully
for unexpected class distributions. In this thesis, two approaches to active learning are
presented that consider these two aspects in a novel way.

In order to lay the foundations for the first one, it is proposed to express the uncer-
tainty in class prediction of a classifier at a test point in terms of a second-order distribu-
tion. The mean of this distribution corresponds to the common estimate of the posterior
class probabilities and thus is related to the distance of the test point to the decision
boundary, whereas the spread of the distribution indicatesthe degree of exploration in
the corresponding region of feature space. This allows for the evaluation of the utility
of labeling a yet unlabeled point with respect to classifier improvement in a principled
way and leads to a completely novel approach to active learning. The proposed strategy
is then implemented and evaluated based on kernel density classification.

The generic active learning strategy can be combined with any other classifier, but
it performs best if the derived second-order distributionsare sufficiently good approx-
imations to the sampling distribution. Although second-order distributions for random
forests are derived in this thesis, they do not approximate sufficiently well the sampling
distribution and mainly allow only for the relative comparison of prediction uncertainty
between test points. In order to combine the state of the art classification performance
of random forests with the principal ideas of the first activelearning approach, a related
second approach for random forests is derived. It is, in addition, tailored to the de-
mands in industrial optical inspection: bag-wise labelingwith weak labels and strongly
imbalanced classes. Moreover, an outlier detection schemebased on random forests is
derived that is used by the proposed active learning algorithm.

Finally, a new computational scheme for Gaussian process classification is presented.
It is compared to two standard methods in geostatistics, both with respect to theoreti-
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cal consistency and practical performance. The method evolved as a by-product when
considering using Gaussian process models for active learning.



Zusammenfassung

Aktives Lernen ist eine Form von überwachtem maschinellen Lernen. Beim über-
wachten Lernen wird eine Menge von gelabelten Beispielen an einen Lernalgorith-
mus übergeben, um einen Klassifikator zu trainieren. Das Labeln von großen Mengen
an Trainingsdaten kann allerdings kostspielig und fehleranfällig sein. Aktives Lernen
beschäftigt sich mit der Entwicklung von Algorithmen, die interaktiv eine Teilmenge der
vorhandenen ungelabelten Beispiele für das Labeln auswählen, und zielt darauf ab, den
Labelaufwand bei gleichzeitiger Erhaltung der Klassifikationsleistung zu minimieren.

Der Schlüssel zur Entwicklung von Aktiv-Lern-Strategien liegt in der Balance zwi-
schen “Exploitation” und “Exploration”: Einerseits sollte die geschätzte Entscheidungs-
grenze in den Regionen des Merkmalsraums verfeinert werden,wo sie bereits errichtet
worden ist, andererseits sollte der Merkmalsraum sorgfältig nach unerwarteten Klassen-
verteilungen abgesucht werden. In dieser Arbeit werden zwei Ansätze zum aktiven
Lernen vorgestellt, die diese beiden Gesichtspunkte auf neue Weise berücksichtigen.

Um die Grundlagen für den ersten Ansatz zu legen, wird zunächst vorgeschlagen,
die Unsicherheit bzgl. der Klassenvorhersage eines Klassifikators an einem Testpunkt
mit Hilfe einer Wahrscheinlichkeitsverteilung zweiter Ordnung auszudrücken. Der Mit-
telwert dieser Verteilung entspricht der bekannten Schätzung der posterioren Klassen-
wahrscheinlichkeiten und steht deshalb in Beziehung zur Entfernung des Punktes von
der Entscheidungsgrenze, wohingegen die Streuung der Verteilung den Grad an Ex-
ploration der entsprechenden Region im Merkmalsraum anzeigt. Dies erlaubt eine
Auswertung der Nützlichkeit des Labelns eines bisher ungelabelten Punktes in Bezug
auf eine mögliche Verbesserung des Klassifikators auf grundlegende Weise und führt
zu einem völlig neuen Ansatz für das aktive Lernen. Die vorgeschlagene Strategie wird
schließlich basierend auf Kerndichteklassifikation umgesetzt und evaluiert.

Die generische Strategie kann mit jedem anderen Klassifikator kombiniert werden,
aber sie ist am leistungsfähigsten, wenn die hergeleitetenWahrscheinlichkeitsverteilun-
gen zweiter Ordnung hinreichend gute Approximationen an die Stichprobenverteilung
sind. Obwohl Verteilungen zweiter Ordnung für Zufallswälder (“random forests”) in
dieser Arbeit hergeleitet werden, approximieren sie nichthinreichend gut die Stich-
probenverteilung und erlauben daher vor allem lediglich einen relativen Vergleich der
Vorhersageunsicherheit zwischen Testpunkten. Um die anerkannt gute Klassifikation-
sleistung von Zufallswäldern mit den Grundideen des erstenAktiv-Lern-Ansatzes zu
verbinden, wird deshalb ein verwandter zweiter Ansatz für Zusatzwälder hergeleitet.
Dieser ist zusätzlich auf die Anforderungen der industriellen Qualitätskontrolle zuge-
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schnitten: bündelweises Labeln mit schwachen Labels und stark unbalancierte Klassen.
Außerdem wird ein Verfahren zur Ausreißer-Erkennung basierend auf Zufallswäldern
hergeleitet, das von dem vorgeschlagenen Aktiv-Lern-Algorithmus benutzt wird.

Abschließend wird ein neues Verfahren zur Klassifikation mit Gauß’schen Prozessen
vorgestellt. Es wird mit zwei Standardmethoden aus der Geostatistik in Bezug auf das
zugrunde liegende Modell und die Klassifikationsleistung verglichen. Die Methode ent-
stand als Nebenprodukt bei der Überlegung, Gauß-Prozess-Modelle für aktives Lernen
zu nutzen.
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By three m ethods w e may learn w isdom :

F irst, by reflection, w hich is noblest;

Second, by im itation, w hich is easiest;

and third by experience, w hich is the bitterest.

(Confucius)
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1 Introduction

1.1 Scope of this Thesis

When searching for “Active Learning” in Google Scholar1 on 4th November 2012, the
first hit was a book entitled “Active Learning: Creating Excitement in the Classroom”
[21]. Readers who expect this thesis to be about an educational technique, i.e.human
learning, may be disappointed. However, this thesisdoesrevolve around learning,ma-
chinelearning to be more specific.2

Machine learning deals with the development of algorithms that allow computers to
learn patterns from training data. Instead of simply memorizing the samples, a learning
algorithm is supposed to recognize patterns and to generalize from them. This allows
a machine learning system to analyze the data or to take decisions for unseen samples.
The long list of possible applications includes such different areas as automated medical
analysis [36, 98], speech recognition [92], handwritten character recognition [115] or
industrial optical inspection [185]. As an example, in the latter application, sample
images of production parts with and without defects may be provided. If the learning
algorithm generalizes perfectly, images of new parts are then correctly classified as
“intact” or “defective”.

As a rule of thumb, the more training data there is, the betterthe generalization abil-
ity of a learning algorithm. Unfortunately, in many applications, the creation of these
samples requires the assignment of labels to the data by a human labeler. This can
be time-consuming, expensive and/or error-prone. In the defect detection example, the
images taken from production parts need to be labeled as “intact” or “defective”. Thou-
sands or even millions of sample images can be taken during the production process. It
is nota good idea to select a random subset of this data for labeling: If the manufacturer
is quality-oriented, the overall majority of the parts is intact and looks very similar to
each other. Most of these samples are thus not very interesting to the learning algorithm.
As will be discussed in detail in Chapters4 and6, important are those parts with defects
that look different from previously observed defects (found by “exploring” the space of
possible images) and parts that are at the border between defective and intact (found by
“exploiting” the unlabeled data at the border). The paradigm that aims at identifying the

1http://scholar.google.de/
2Note that there are attempts to explain the nature of human learning with machine learning approaches,

see e.g. [173], [194], [128] and the references therein.
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2 1 Introduction

important unlabeled samples and thus at reducing the labeling effort as much as possi-
ble while maintaining the generalization ability of a learning algorithm is called “active
learning” (AL).

This thesis focuses on the development of new approaches to active learning, in par-
ticular on balancing the tradeoff between exploration and exploitation.

1.2 The Scope in More Detail

At the highest level, machine learning algorithms can be divided into supervised and
unsupervised algorithms. Inunsupervisedproblems, real-world objects are represented
by a feature vector only, i.e. a point in feature space. Typical tasks include the identifi-
cation of groups of similar data points (clustering, see e.g. [95]), the detection of points
that are distinct from the rest of the data (outlier detection, see e.g. [83]) or the estima-
tion of the distribution the data points have been drawn from(density estimation, see
e.g. [159]). In a typical scenario ofsupervisedlearning, the learning algorithm is given
a set of so-calledtraining samples, each consisting of a feature vector and an outcome
measurement. The task is then to predict the outcome measurement of yet unseen ob-
jects represented by their feature vector. The task is called regression if the outcome is
quantitative; it is called classification, if the outcome isone of a finite number of discrete
categories, also called classes.

Active learning can be regarded as a variant of supervised learning. Whereas the task
still is to predict the outcome measurement of unseen samples, the outcome measure-
ment of most or even all of the training samples is unknown prior to the active learning
process.3 During this process, the learning algorithm is allowed to sequentially query
the outcome measurement for some of the training samples. The algorithm that gov-
erns the selection process (aiming at selecting those samples that are most beneficial
for the generalization ability of the learning algorithm) is called active learning strategy.
Note that, as most of the training data miss their output measurement prior to and in
early stages of the active learning process, also unsupervised learning techniques play a
crucial role for the development of active learning strategies.

In this thesis, we concentrate on the development ofactive learningstrategies for
classification. Both concepts are introduced thoroughly in Sections2.1and2.2, respec-
tively.

1.3 Outline and Main Contributions

In Chapter 2, we introduce the basic concepts of classification and active learning.

3The scenario described here is calledpool-basedactive learning and is introduced in detail in Sec-
tion 2.2.1. Other, less common active learning scenarios will briefly be reviewed in Section2.2.



1.3 Outline and Main Contributions 3

As briefly explained in the previous section, the primary goal of classification is the
prediction of the class label of yet unseen samples. Many learning algorithms addi-
tionally estimate theprobability of an object belonging to a certain class. Although the
latter is the most common indicator for the confidence in a prediction of class mem-
bership, it is still insufficient in many real-world applications. The main reason is that
the estimated quantities may be highly inaccurate if the corresponding test samples lie
in a feature space region that contains very few labeled training samples only. Instead,
in addition to estimates of posterior class probabilities,some measure ofconfidencefor
these estimates is required as well. InChapter 3 of this thesis, we propose to express
the confidence in estimates of posterior class probabilities in terms of second-order dis-
tributions. Applying a Bayesian approach, we first derive such distributional estimates
for ε-nearest neighbors and then introduce “confidencek-nearest neighbors” and “con-
fidence random forests” (CRF). We also investigate some of their finite sample and
asymptotic properties in the limit of many labeled data.

Although the distributional estimates derived in Chapter3 provide much more infor-
mation than simple posterior class probability estimates,they do not provide an approxi-
mation of the true sample distribution, but allow only for a model-based relative compar-
ison of the uncertainty in the prediction of posterior classprobabilities. InChapter 4,
we derive distributional estimates for kernel density classification that indeed approxi-
mate the sample distribution. This allows for the development of a novel active learning
strategy that trades off exploitation and exploration in a principled way. Loosely speak-
ing, the distance to the decision boundary is encoded in the mean of the distributional
estimate, whereas the degree of exploration in a certain region of the features space is
indicated by the spread of the distribution.

Although the active learning strategy presented in Chapter4 performs very well rel-
ative to other strategies, its absolute performance is limited by the properties of the
employed classifier. Generative classifiers (like kernel density classification) generally
perform worse than discriminative methods, in particular in high-dimensional feature
spaces [20, chap. 1]. Therefore, the active learning strategy for defect detection pre-
sented inChapter 6 is based on the discriminative, state of the art random forest clas-
sifier. In order to combine this classifier with the basic ideas of the active learning
approach presented in Chapter4, we develop a related active learning strategy that does
not require second-order distributions that approximate the true sample distribution. In-
stead, an extension of standard random forest can be used forthe implementation. In
addition, the strategy is tailored to the demands in industrial optical inspection: bag-
wise weak labels and strongly imbalanced classes. An important part of the active
learning strategy, an outlier detection algorithm for random forests, is derived prior to
the strategy inChapter 5.

For a first implementation of the AL strategy presented in Chapter6, indicator kriging
had been used, a classification method based on Gaussian processes. But it turned out
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to be computationally more demanding and to perform worse than the random forest
classifier. However, as a by-product, a new computational scheme for classification
based on a doubly stochastic Gaussian process model has beenderived. In contrast to
previous inference methods for the same model, the estimation is analytical up to a final
step where numerical integration is needed. This is presented inChapter 7. In addition,
the method and its underlying model is compared to two variants of indicator kriging—
standard methods in geostatistics—with respect to theoretical consistency and practical
performance.

As always when doing research, all effort raises more questions than it answers. The
thesis concludes with a discussion on achievements and openproblems inChapter 8.



2 Preliminaries

2.1 Classification

2.1.1 Basic Terminology

In this section, we briefly present the necessary classification terminology. We start with
an introduction to the underlying mathematical concepts.

Let (Ω,A,P) be a probability space. Further, let(X × Y ,B) be a measurable space
and let

(X, Y ) :

{
Ω → X × Y
ω 7→ (x, y)

be a random vector. The setX ⊆ R
d is called feature space and the components

X(1), . . . , X(d) of X can be either continuous or discrete. The random variableY is
discrete, whereY is afiniteset of classes. We denote byP the probability measure that
is induced onX × Y by (X, Y ), i.e.

P(B) := P
(X,Y )(B) := P((X, Y )−1(B)), B ∈ B

As is common in the machine learning literature, we denote the density of(X, Y )
simply by p(x, y), not distinguishing between Lebesgue and counting measurein the
notation. The conditional probabilityp(y|x) := p(Y = y|X = x) is called the posterior
class probability of classy at pointx, p(x|y) := p(X = x|Y = y) is called the class
density of classy (at pointx).

A function

h :

{
X → Y
x 7→ y

(2.1)

that assigns a class label to each feature vector is called aclassifier. The quality of
a classifier is usually assessed by some global risk functional [20, chap. 1]. The sim-
plest among them is theerror rateP(h(X) 6= Y ), i.e. the probability of a wrong class
assignment. The complementary probabilityP(h(X) = Y ) is calledaccuracy. In prac-
tice, where the distribution of(X, Y ) is usually not known, the error rate or other risk
functionals cannot be calculated but need to be estimated [81, chap. 7]. This is briefly
discussed in Section2.1.2.

The central question in practice is how to obtain a good classifier. Obviously, we need

5
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some information about the distribution of(X, Y ), i.e. any kind of realizations from
(X, Y ) or from its marginals. In the standard scenario of supervised classification, we
are given a setT = {(x1, y1), . . . , (xn, yn)} of independent realizations of the random
vector (X, Y ), called training set or training data. The training set is then fed into a
learning algorithm which outputs a classifierh. A discussion on properties of individual
learning algorithms goes far beyond the scope of this introduction; the reader is referred
to standard textbooks [81, 20, 53, 127]. We only mention here that some classifiers
not only return a crisp class assignment as defined in Eq. (2.1), but also provide an
estimatêp(y|x) of the posterior class probability. In this thesis, we employ theε-nearest
neighbors classifier (Chapter3), thek-nearest neighbors classifier (Chapter3), random
forests (Chapters3, 5 and 6), the kernel density classifier (Chapter4) and Gaussian
process classification (Chapter7). These classifiers are shortly introduced at the same
place to make this thesis and its individual chapters self-contained.

2.1.2 Measuring Classification Performance

If the distribution of(X, Y ) is not known, the error rate or other risk functionals for
the assessment of classifier performance cannot be calculated but need to be estimated.
The simplest way is to split upT into two sets, usually at a ratio of 2 to 1. The first
one is used for training the classifier and the second one, called test set, is used for
performance estimation.

However, ifn is small, the quality of the classifier may suffer a lot from the reduc-
tion of the actual number of training samples. This motivates the application of cross-
validation (CV). There, the training set is divided intok folds, wherek is usually set to
5 or 10;k − 1 folds are used for training, one for testing. The latter is repeatedk times
such that each fold is used for testing once. Finally, the classifier is trained anew using
all samples inT . Its performance can be estimated by the mean of thek performance
estimates for the individual test folds. Note that this estimate is conservative since the
final classifier is trained with more samples than the classifiers for CV.

Test set and CV are the two techniques used in this thesis. A more thorough discus-
sion on estimating classification performance can e.g. be found in [81, chap. 7] and the
references therein.

2.2 Active Learning

In supervised learning, it is assumed that there is a completely labeled training setT
available. The largerT is, the better is the generalization ability of a learning algorithm.
While realizations ofX can often be easily obtained in large quantities in practice, the
corresponding class labels usually need to be provided by a human annotator. Active
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learning strategies aim at reducing this labeling effort while still achieving a high ac-
curacy. The idea is to query labels only for those samples that are most important for
classification performance.

As the reader can imagine, there are a lot of possible active learning scenarios and
settings. The most important ones are presented in the rest of this section.

2.2.1 Pool-Based Active Learning

The setting considered in this thesis, which is also the mostcommon, is called pool-
based active learning. It is assumed that a small (possibly empty) setL = {(xi, yi)}li=1

of labeled data and a large poolU = {xi}l+u
i=l+1 of unlabeled data is available prior to

the active learning process. The feature vectors{xi}l+u
i=1 are assumed to be independent

realizations ofX, which is particularly important if an active learning strategy includes
the estimation of the densityp(x). In contrast, it is not necessary to assume that the
labeledsamples are strictly independent; this assumption would beviolated anyway
during the active learning process: It is the key idea of active learning to create abiased
training set.

As illustrated in Fig.2.1, the strategies usually iterate between two steps:

1. Evaluate the training utility value (TUV) [86] for eachx ∈ U .

2. Query the labely∗ of x∗ = argmaxx∈U TUV (x), add(x∗, y∗) to L and remove
x∗ from U .

A detailed overview of pool-based AL strategies is given in Chapter4 when motivating
the use of distributional estimates of posterior class probabilities for active learning.
As an example, we here mention uncertainty sampling, a simple but commonly used
strategy [105]. In the binary case withY = {0, 1} and 0-1 loss [81, chap. 2], given a
classifier that returns an estimatep̂(Y = 1|x) for posterior class probabilities, a label is
queried for that pointx∗ ∈ U whose posterior prediction is closest to0.5, i.e.

TUV (x) = 0.5− |p̂(Y = 1|x)− 0.5| ∈ [0, 0.5] (2.2)

Note that in pool-based AL, all strictly monotonic transformations of aTUV lead to
equivalent definitions.

A variant of the above scheme is batch mode AL [75], [84], where several instances
are chosen in each iteration. This speeds up the AL process atthe cost of lower AL
performance due to possible “overlapping” information of the labels queried at the same
time. We will apply batch mode AL in Chapter6 in the context of defect detection.
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TUV 

model

Learn Apply

Oracle(x , y )

x 

L

Figure 2.1: Active learning cycle in pool-based active learning. In each iteration, aTUV
model is learned from the currently labeled training setL (possibly using information from
U ). Then, applying this model to the elements inU , the most valuable pointx∗ is identified
and passed to an oracle, usually a human annotator. The latter provides thelabel forx∗ and
(x∗, y∗) is added toL. Note that this figure is inspired by and similar to one in [163].

2.2.2 Other Active Learning Paradigms

Pool-based AL is the paradigm considered most often in the literature, but it is—of
course—not the only one. Instream-based AL, the unlabeled data is not known prior
to active learning. Instead, unlabeled data points are drawn sequentially fromX and in
each iteration it needs to be decided whether to discard the sample or whether to query
a label for it and thus to add it toL. In [43], several different classifiers are trained
(“query by committee”) and a label is queried based on a biased random decision taking
into account the degree of committee agreement at the corresponding sample point. The
same authors show in [8] that using two committee members only and simply query-
ing a label for those points at which they disagree is sufficient to achieve a significant
reduction in annotation costs.

Another scenario called “membership query synthesis” includes the possibility of
requesting labels for any point in feature space [6] (see [39] for an example in the context
of regression). Although this corresponds to an infinite pool of unlabeled dataU , the
additional freedom has some drawbacks. First, since the unlabeled data is not drawn
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i.i.d. from X, many of the generated samples may be located in low (or even zero)
density regions of feature space and thus their labeling maycontribute not much to the
improvement of classification performance. Second, membership query synthesis is not
feasible for many applications. As an example, consider a blood test on a certain disease,
i.e. we want to classify a person as healthy or not based on some blood measurements.
Then, it will be difficult to find a person that has exactly those blood values a label is
queried for. Third, even if it is possible to create examplesde novo, the human annotator
may not be able to provide a label for a certain sample if he cannot interpret it. The latter
has e.g. been reported in the context of handwritten character recognition [14].

Note the relation between membership query synthesis and “Design of Experiments”
(DoE, see e.g. [22], [41], [155]), where the latter is a statistical umbrella term that refers
to methods that somehow control the information gathering process by querying output
values for samples created de novo. However, DoE methods do usually not aim at
learning a regression function or a classifier, but e.g. at finding some optimal parameter
configuration, i.e. at identifying the point in feature space with the largest or smallest
(expected) response. For many DoE methods, e.g. factorial design experiments, feature
space is assumed to be discrete and to have a few dimensions only [22]. In ANOVA,
several labels are queried at each point in feature space, and a statistical test on whether
the responses at different points differ significantly is performed.

2.2.3 Does Active Learning Work?

The short answer is “yes”, both theoretically and empirically.
From a theoretical point of view, it has been shown in [10] and [62] in a stream-based

scenario that the labeling effort indeed can be substantially reduced using AL. In both
references, it is shown that exponentially fewer labeled samples may be sufficient to
achieve the same error rate as with passive learning, i.e. sampling the training instances
randomly from(X, Y ). Unfortunately, the derivations rely on assumptions that are
usually not satisfied in practice or that can at least not be verified for a particular real-
world data set.

However, the empirical evidence that the labeling effort indeed can be reduced using
AL seems overwhelming (although some caution is called for due to publication bias);
see this thesis and all AL references therein, in particularin Chapters4 and6. In [164],
17 different AL strategies are compared to each other using 8different data sets show-
ing the benefit from AL. Moreover, we are not aware of any systematic investigation
showing e.g. that the application of a commonly used AL strategy does not lead to a
reduction of labeling effort.1

1Note that—of course—an AL strategy may perform worse than passive learning on individual data sets
using a specific classifier, see e.g. [156], [75].
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2.3 Related Learning Paradigms

Active learning is not the only approach considered in the literature to save labeling
time. Two others, namely semi-supervised learning (SSL) and active class selection, are
briefly presented in the following.

2.3.1 Semi-Supervised Learning

In (pool-based) active learning, unlabeled data is available in great quantities and the
learning algorithm is allowed to query labels for selected instances. In contrast, in SSL
[33, 192], the subset of labeled instances is initially given and a classifier is trained
using both the labeledand the unlabeled examples. The unlabeled data can help by
assuming that two points have the same label with high probability if there is a path
between them that passes only through regions of relativelyhigh density of the feature
distribution (“cluster assumption”) [160]. Active learning and semi-supervised learning
can be combined by learning the TUV model or the final classifier at the end of the AL
process using both labeled and unlabeled data [132, 193].

2.3.2 Active Class Selection

In some applications, it is not possible to obtain feature data without knowing the corre-
sponding label. As an example, consider the “artificial nose” in [ 114] that is supposed to
automatically distinguish between different chemical vapors of interest. There, training
data is created by first generating the vapor and then passingit over an array of sen-
sors. “Active class selection” is the AL analogue that addresses this scenario. Instead
of querying labels at certain positions in feature space, realizations from a certain class
are queried. In [114], five different query strategies are compared and a substantial re-
duction of labeling effort (compared to sampling equally from all classes) is achieved if
samples are queried for the most “unstable” classes. Stability is defined by number of
class predictions that change after having added the samples from the last iteration. The
latter is calculated by cross-validating the training set of the current and the previous
iteration.



3 Distributional Uncertainty
Estimates

As briefly explained before in Section2.1, in the standard framework of classification,
the goal is to construct a classifier with small risk, e.g. measured by the error rate. In
many real world applications, simple predictions of class labels are typically insufficient
and point estimates for posterior class probabilities are used as an indication for the
confidence in a label prediction. In this chapter, we show that these quantities may
be highly inaccurate for test samples not well represented by the training set. Instead,
some measure of confidence in these point estimates is required as well. We propose
a Bayesian framework to derive such confidence measures in terms of second-order
distributions over the posterior probabilities. We apply our approach to several popular
classifiers, includingε-NN, k-NN and random forests. The utility of our approach,
which unifies classification and outlier detection, is illustrated on real world datasets
from machine vision (road sign recognition) and from imaging mass spectrometry.

3.1 Introduction

One of the basic principles in statistical inference is to “never give an estimator without
giving a confidence set”1. This principle extends far beyond the field of statistics and
applies to essentially all of scientific research. In analytical chemistry, for example,
it is well recognized that “an analytical result is not complete until a statement about
its uncertainty is formulated" [136]. Whereas many works developed confidence or
prediction intervals for multivariate regression and calibration (see [112, 58, 121, 174]
and references therein), perhaps surprisingly, uncertainty estimates in classification have
thus far received much less attention. Most classifiers provide either just a predicted
class label, or at best a point estimate of posterior class probabilities.

Yet, deriving a measure of uncertainty is at least as important in classification as it
is in multivariate regression: First, an important practical issue is to have an indica-
tion of where the classifier may be at error. Beyond samples near the classification
boundary, test samples with high uncertainty are also likely candidates for classifica-
tion errors. Moreover, letting a classifier make class predictions for new observations

1Quote from the preface of Wasserman’s textbook [181].

11
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poorly represented by the training set may lead to drastic adverse consequences in sev-
eral practical applications such as medical diagnostics, industrial process control, and
automated safety systems. The ability to measure the uncertainty of predicted posterior
class probabilities also plays a key role in active learningmethods [163], as it can help
assess in a principled way the degree of exploration in a given region of feature space
(see Chapter4). Moreover, it may also help to detect that the underlying distribution of
the test data differs from that of training data or becomes different over time (population
drift) [78].

In this chapter, we aim to bridge this gap regarding uncertainty estimates in classi-
fication. We develop a Bayesian strategy that provides sample-specific “uncertainty”
or “confidence” estimates for several popular local averaging classifiers, includingε-
nearest neighbor (ε-NN), k-nearest neighbor (k-NN) and random forests (RF). Note
that we are not interested in the trivialfirst-orderor ambiguity uncertainty, encountered
wherever different classes overlap significantly in feature space. In such cases, when
the point estimates for posterior probabilities of the different classes are all far from
one, the classifier might announce “doubt” instead of predicting a class label (e.g. [150,
chap. 2]). In contrast, the focus and main contribution of this chapter is the derivation of
an uncertainty measure over these point estimates, via a full second-order distribution,
that is, a probability distribution over the unknown posterior probabilities.

In classification, there is hence a hierarchy of possible outputs at new test points: at
the simplest level, a mere class label prediction; at an intermediate level, a point esti-
mate of the posterior class probabilities, allowing for an ambiguity reject; and at the
most refined level, a second-order distribution over the posterior probabilities, allowing
to extract different kinds of confidence or uncertainty statements. In the following sec-
tions, we present a Bayesian framework for deriving such distributional estimates, and
illustrate their importance in a variety of applications.

3.1.1 Related Work

In the theoretical framework of classification, given a training set and a loss function for
incorrect predictions, the task is to construct a classifierwith small generalization risk,
typically the overall test error rate. Hence, most classifiers report at best point estimates
of these quantities. Furthermore, there is a non-trivial bias-variance decomposition for
classification [63], which in particular implies that a classifier may (nearly)achieve the
optimal Bayes error rate and yet have biased point estimates of posterior probabilities.
The fact that the overall error of a classifier depends only onits estimates of posterior
probabilities has perhaps concealed the importance of uncertainty measures for these
quantities, and may explain why uncertainty estimates havereceived relatively little
attention thus far.

Nonetheless, the need for uncertainty measures has been recognized. Several authors
developed methods to highlight ambiguous predictions, i.e. test samples where no single
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class has a dominant posterior probability [38, 74, 76]. These methods, however, rely
on point estimates, the intermediate level of the hierarchydiscussed above.

Other works focused on the detection of outliers, though typically separately from the
actual classifier [46, 52]. Closer to our work is [44] which uses the classifier itself to
find outlying samples. This task is relatively straightforward for generative classifiers
which learn a model for the joint densityp(x, y). At ambiguous samples none of the
estimated class densities dominates the others, whereas atoutliers the overall estimated
density is very low [139, 101, 119].

Confidence intervals for classification were derived for nonparametric generative re-
gression techniques, notably indicator kriging [90, 175] and for parametric discrimina-
tive techniques, most notably logistic regression [124].

3.1.2 Distributional Estimates for Local Averaging Classifiers

In this chapter, in contrast, we consider uncertainty estimates for various popular non-
parametric local averaging discriminative classifiers, and present a Bayesian framework
to compute sample-specific second-order distributions fortheir posterior class probabil-
ities. Our proposed framework thus allows for a unified treatment of both classification
and outlier detection.

After introducing notations and the problem setup in Section 3.2, in Section3.3 we
first illustrate our approach for one of the simplest possible local classifiers: Theε-
nearest neighbor classifier (ε-NN). Given a suitable prior, standard Bayesian methods
yield an approximate second-order distribution for the posterior class probabilities. If
the selected prior is conjugate to the binomial distribution, our Bayesian scheme is an-
alytically tractable with simple explicit formulas. From atheoretical perspective, as-
suming that the posterior class probabilities are approximately constant insideε-balls, a
natural result is that the larger the number of training samples inside anε-ball, the more
concentrated the second-order distribution around the true posterior class probability
becomes. Furthermore, in an appropriate joint limit, asε → 0 and as the number of
training samples tends to infinity, the distribution converges to the true posterior (Sec-
tion 3.7.2.2).

Next, in Section3.4 we consider the more popular and typically more accuratek-
nearest neighbor classifier (k-NN). Unfortunately, the above method to construct se-
cond-order distributions does not carry over to thek-NN classifier. The reason is that
for any query point, thek-NN classifier always uses the labels of thek nearest neigh-
bors to a query point, regardless of their distance. To develop distributional estimates in
this setting, in a first step, we augment the training set withsamples from an auxiliary
class with uniform density (referred to as “data-driven confidencek-NN”). The resulting
multi-class classification problem with these auxiliary points effectively puts an upper
limit on the radius of the prediction neighborhood, thus leading, as desired, to second-
order distributions with large spread in areas poorly represented by the original training
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set (Section3.4.1). In a second step, we develop a model where the samples from the
auxiliary class no longer need to be drawn explicitly, but are considered implicitly in a
probabilistic way (referred to as “probabilistic confidence k-NN”, Section3.4.2). The
resulting classifier and its uncertainty estimate depend ona data-driven kernel func-
tion which weights the nearest neighbors by their distance from the query point while
maintaining the local adaptivity ofk-NN.

In Section3.5, the arguments developed previously for theε-NN andk-NN classifiers
culminate in an approximate second-order distributional estimate for random forests, a
discriminative ensemble classifier [24]. Random forests (RF) have enjoyed a soaring
popularity in recent years, and for good reasons: in a broad array of applications [66, 69,
140], it is one of the best-performing classifiers [11, 42], with very little tuning required.
To derive the desired second-order distributions we present a small modification of the
original algorithm, which we denote “confidence random forests” (CRF) (Section3.5.3).
While sufficient conditions for consistency can be stated (Section 3.7.2.4), in general
these are not met by CRF, and it remains unknown whether they canbe weakened. We
note that this theoretical gap is to be expected, since even the consistency of the standard
version of RF is yet to be proven [18].

After deriving distributional estimates for the various local averaging methods, we
present their practical application in Section3.8. First, we illustrate their working and
potential usefulness using simple toy data. Then, we show the importance of uncer-
tainty estimates in two real-life applications: a digital pathology example using mass
spectrometric multi-spectral images and a speed sign recognition task from machine
vision.

3.2 Problem Setup and Notation

To simplify the exposition, in this chapter we focus on the case of binary classification.
We note that the proposed approach easily generalizes to multi-class problems.

Let (X, Y ) be a random vector with probability densityp(x, y), wherex ∈ X ⊆ R
d is

a feature vector andy ∈ Y = {1, 2} is its class label. Further, letπ(x) := p(Y = 2|X =
x) denote the posterior probability of class 2 atx. Finally, let the training setTn =
{(xi, yi)}ni=1 be composed ofn i.i.d. samples from(X, Y ). Throughout this chapter
(and this thesis), the letterP denotes a distribution, whereasp denotes a probability
density andP denotes the probability of a specific event.

As discussed in the introduction of this chapter, at the simplest level, the goal of
training a classifier on a setTn is to estimate the labels of new (test) samples so as to
minimize some global risk functional. At the next level, if detection of test samples
with potentially ambiguous predictions is important, a point estimatêπ(x) of the true
posterior class probabilityπ(x) is additionally desired. At the most refined level, when
thereliability of these point estimates is of essence, the goal is to obtain an uncertainty
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estimate, preferably from a full second-order distribution ordistributional estimatewith
a distribution function

Fx(q) = P̂(π(x) ≤ q|Tn), q ∈ [0, 1] (3.1)

Deriving such a distributional estimate is the central goalof this chapter. In the fol-
lowing three sections, we develop Bayesian inference modelsfor three popular local
averaging classifiers,ε-NN, k-NN and RF, that take into account the inevitable uncer-
tainty of posterior probability estimates incurred when training data are scarce in the
vicinity of a query point.

Before describing the technical details, let us first illustrate these concepts by the one-
dimensional toy example shown in Fig.3.1. The true class densities in the upper panel
have the following distributions:

P(X|Y = 1) = N (0, 32)

P(X|Y = 2) = 0.5 · N (−3, 22) + 0.5 · N (6, 22)

whereN (µ, σ2) denotes the Gaussian distribution with meanµ and varianceσ2. Setting
p(Y = 1) = p(Y = 2) = 1/2 results in the posterior class probabilitiesπ(x) depicted in
the same panel in red. A training set withn = 1000 samples is depicted as short vertical
bars in the lower panel of Fig.3.1, together with the resulting distributional estimates
obtained from CRF (described in detail in Section3.5).

As expected, the resulting distributional estimates are relatively narrow at test points
well represented by the training data. In contrast, these distributional estimates become
broader as the query point moves away from the training set, and eventually tend to a
user-defined prior distribution for queries very far from the training data. These broad
distributional estimates indicate a (very) low confidence in the posterior prediction, ad-
vising the user to exercise extreme caution in interpretingthe predicted labels at such
test samples.

To further illustrate this important point, consider a testsample atx = 20, whose true
posterior probability isπ(20) = p(Y = 2 |X = 20) = 0.07. Since in the intervalx > 10
the given training set contains five samples from class 2 and none from class 1, the pos-
terior estimatêπ(20) of standard random forests would be very close to one. In contrast,
our modified confidence RF not only gives a conservative point estimate of about1/2,
but also endows it with a very broad distribution, indicating a high uncertainty in the
predicted posterior at this test point.
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Figure 3.1: [Best viewed in color] Distributional estimates for a 1-D toy problem.Top Panel:
The two black curves are the unknown densities of classes 1 and 2, respectively. The red curve
is the posterior probabilityπ(x) of class 2.Bottom Panel: A training setT with n = 1000
i.i.d. samples from the ground truth is depicted as short vertical bars. Instead of computing
a mere point estimate forπ(x), in this work we estimate second-order distributions forπ(x)
(see Sections3.3-3.5). The0.05, 0.25, 0.5, 0.75 and0.95-quantiles of the distributional esti-
mates from confidence RF are plotted using red lines. Three examples of thecorresponding
probability density functions are plotted in blue atx = −10, x = 5 andx = 20. The fewer
training samples there are in the vicinity of a query point, the higher the uncertainty in pos-
terior prediction and the larger the variance of the corresponding second-order distribution.
For query points far from all training data the distributional estimate tends to theprior, a
Beta(1/2, 1/2) distribution in our case.
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3.3 Distributional Estimates for ε-Nearest
Neighbors

The ε-nearest neighbor classifier estimates the posterior classprobabilities at a query
point by counting the number of training samples of the different classes within radius
ε of the point of interest. To derive a second-order distribution for the posteriors, we
employ the standard Bayesian inference model for the probability of success of the
binomial distribution.

In more detail, let‖ · ‖ denote the Euclidean norm onRd, and letBε(x) be the closed
ball aroundx with radiusε. Further, denote by

ni,x =
∣
∣{(x′, y′) ∈ Tn : x′ ∈ Bε(x), y

′ = i}
∣
∣, i = 1, 2

the number of training samples of classi insideBε(x).
If π(x) exhibits some degree of smoothness, for example ifπ(x) is continuous with

Lipschitz constantL, for sufficiently smallε it follows thatπ(x) is approximately con-
stant insideBε(x). Therefore, the labels of the training samples insideBε(x) can be
modeled as independent Bernoulli realizations with the samesuccess parameterπ(x).
Hencen2,x is binomially distributed with the observed parameters(n1,x + n2,x) as the
number of experiments, and the unknownπ(x) as the probability of success.

A second-order distribution forπ(x) is obtained by applying a standard Bayesian
inference model for the success parameter of the binomial distribution (see e.g. [20,
chap. 2]). Specifically, letpB denote the probability density function of a prior second-
order distributionPB for the success parameterπ(x). Then, the second-order distribu-
tion for π(x) at a query pointx with n1,x andn2,x labeled samples of classes 1 and 2
respectively, is given by

p(π(x)|n1,x, n2,x) ∝ P(n1,x, n2,x|n1,x + n2,x, π(x)) pB(π(x)) (3.2)

whereP(n1,x, n2,x|n1,x + n2,x, π(x)) = Binom(n1,x + n2,x, π(x)). Note that if there
are no labeled samples in theε-ball of a test pointx (n1,x = n2,x = 0), our second-
order distribution forπ(x) is just the priorPB. The prior second-order distribution
PB thus represents our best guess for the posterior probability π(x) in the absence of
(nearby) observations. If we have no bias favoring one classover the other, the prior
should be symmetric around the valueπ(x) = 1/2. Natural choices are the uniform
distribution or Jeffreys’ uninformative prior [88]. For a binomial, the latter is a Beta
distribution with parameters(1/2, 1/2), see Fig.3.2. While its bimodal appearance
may seem puzzling at first sight, it actually makes sense in the classification context: In
most regions of feature space, different classes usually have little overlap. Little overlap
between classes, in turn, matches the prior belief thatπ(x) is either close to 0 or close
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Figure 3.2: Examples of probability densities of the Beta distribution with parameters1/2 +
n2,x and1/2+n1,x. The solid curve is Jeffreys’ prior (with parameters 1/2 and 1/2). The other
two curves illustrate the resulting posterior distributions ofπ(x) given (n1,x, n2,x) = (0, 1)
or (n1,x, n2,x) = (10, 10) samples of classes 1 and 2 insideBε(x). Note that the variance of
the distribution decreases as the number of observations insideBε(x) increases.

to 1 anywhere in feature space—precisely what Jeffreys’ prior happens to embody.

Choosing Jeffrey’s priorPB(π(x)) = Beta(1/2, 1/2) as discussed above leads to
(see e.g. [20, chap. 2])

P(π(x)|n1,x, n2,x) = Beta(1/2 + n2,x, 1/2 + n1,x) (3.3)

whose corresponding (Bayesian) point estimate for the posterior probability is

π̂(x) =
n2,x + 1/2

n1,x + 1/2 + n2,x + 1/2
. (3.4)

One theoretical question is how accurate the distributional estimates of Eq. (3.3) are.
A second theoretical question is the asymptotic consistency of the point estimate in
Eq. (3.4) in the limit of large training data. We consider these issues in some detail
in Section3.7.2. At this point, we note that if indeed the posteriorπ(x) is constant
insideBε(x), then as discussed in [29], confidence intervals extracted from Jeffreys’
prior using Eq. (3.3) are quite accurate, even when the number of samples is relatively
small. In addition, at least for the case ofε-NN, one is not necessarily restricted to a
Bayesian approach, and frequentist confidence intervals, such as those described in [4],
would be equally applicable. Finally, note that by the Bernstein-von Mises theorem,
asymptotically frequentist confidence intervals and Bayesian credible sets are very close
to each other.

To summarize, Eq. (3.3) is the resulting second-order distribution for theε-NN clas-
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sifier. As expected, in high density regions withn1,x + n2,x ≫ 1, the resulting dis-
tributional estimates are quite narrow, indicating a high confidence in the estimated
posteriors. In contrast, the distributional estimates become broader asn1,x + n2,x de-
creases, and in the extreme case of no labeled points, they revert to the prior distribution
for π(x).

3.4 Distributional Estimates for k-Nearest
Neighbors

Thek-NN classifier estimates the posterior class probabilitiesat a query point by count-
ing the number of training samples of the different classes within thek nearest neighbors
of the point of interest. Whereasε-NN relies on a fixed neighborhood radius, thek-NN
classifier has an adaptive neighborhood size that adjusts tolocal density. While this typ-
ically leads to improved classification performance, by implicitly implementing some
kind of bias-variance trade-off, it no longer allows us to use the simple recipe from
the previous section: Ask-NN uses exactlyk training points to answer each query,
the above Bayesian inference or standard frequentist confidence intervals would hence
insinuate comparable uncertainty estimates at all query points, regardless of their dis-
tances from labeled data.

To derive sensible uncertainty estimates for thek-NN classifier, we propose to in-
troduce auxiliary reference data and generalize the classification problem and related
distributional estimates from a two-class binomial setting to a multi-class multinomial
setting. In more detail, let(x(1), y(1)), . . . , (x(n), y(n)) be the ordered sequence of the
training data with respect to their distance to the pointx, i.e. x(j) is the j-th nearest
neighbor ofx. Further, letBk(x) = {x′ ∈ X : ‖x′ − x‖ ≤ ‖x(k) − x‖} be the closed
ball around the pointx with radius equal to the distance to itsk-th nearest neighbor.

To construct second-order distributions for thek-NN classifier, we build on an idea
previously employed for a variety of unsupervised problems, including outlier detec-
tion, density estimation and one-class learning. These unsupervised problems can all
be transformed into supervised classification problems by generating artificial samples
from a reference distribution and learning the dichotomy between observed and arti-
ficial data using a discriminative classifier (see e.g. [81, chap. 14], [170], [87], [172],
[25]). As an example, consider the problem of estimating the density p(x). To this
end, letR be a hyper-rectangle that covers the feature vectors of the training set, i.e.
{x1, . . . , xn} ⊂ R. We drawn0 samplesS0 = {xn+1, . . . , xn+n0} from the uniform
distribution onR, label them as class 0, label the original samples as class “12” and
create the new training setTd = {(x1, 12), . . . , (xn, 12), (xn+1, 0), . . . , (xn+n0 , 0)}. Let
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p0 = 1/vol(R) denote the constant density of class 0. Then,

p(Y = 12|x) = p(x)p(Y = 12)

p(x)p(Y = 12) + p0p(Y = 0)

⇐⇒ p(x) = p0
p(Y = 0)

p(Y = 12)
· p(Y = 12|x)
p(Y = 0|x) (3.5)

The terms on the right hand side of Eq. (3.5) are either known or can be estimated by a
classifier—trained onTd—that predicts posterior class probabilities.

The main difference from the above scheme is that in our setting, we add auxiliary
samples not to unlabeled or single-class data but to the training set of a supervised
learning problem. To motivate our approach and to lay the ground for derivations in
Sections3.4.2and3.5, in a first step (Section3.4.1), we explicitly generate the auxiliary
samples. As the auxiliary samples are random, in a second step we consider the average
of the resulting confidence estimates over infinitely many realizations. For thek-NN
classifier, this can be done analytically by probabilistic arguments (Section3.4.2).

3.4.1 Data-Driven Confidence k-NN

As above, letR be a hyper-rectangle that covers the feature vectors of the training set.
We drawn0 samplesS0 = {xn+1, . . . , xn+n0} from the uniform distribution onR, label
them as class 0 and append them to the original training setTn. We denote the new
(three-class) training set bỹTn′ = Tn ∪ {(xn+1, 0), . . . , (xn′ , 0)} wheren′ = n + n0.
Further, we denote byB0

k(x) the ball aroundx whose radius is given by the distance
to thek-th nearest neighbor in the augmented training setT̃n′ . Note that by definition
B0

k(x) ⊆ Bk(x).

We use the number of artificial samples inB0
k(x) as an indicator for the posterior

prediction uncertainty at a pointx. For a test pointx located in a high density region,
the radius ofB0

k(x) is only little (or not at all) smaller than that ofBk(x), with very few
or no representatives from the reference class 0. In contrast, for a query point in a low
density region, the majority or even all of its nearest neighbors are from the reference
classS0. In this case, the radius ofB0

k(x) may be substantially smaller than the radius
of Bk(x).

In analogy to the previous section, to obtain a distributional estimate for the posterior
class probabilities, we now apply standard Bayesian inference, only this time for the
multinomial rather than the binomial distribution. We introduce the following notation:
For i ∈ {0, 1, 2}, let pi|x be the true unknown posterior probability of classi in the
three-class problem. It can be easily shown that the posterior of the original two-class
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problem can be calculated from those of the three-class problem by

π(x) =
p2|x

p1|x + p2|x
(3.6)

Further, letni,x be the number of labels of classi in B0
k(x).

2 Then,

p(p0|x, p1|x, p2|x|n0,x, n1,x, n2,x) ∝ P(n0,x, n1,x, n2,x|p0|x, p1|x, p2|x)pB(p0|x, p1|x, p2|x)

wherepB is the density of a prior distribution for(p0|x, p1|x, p2|x). In particular, choosing
Jeffreys’ uninformative prior for multinomial inference [88], i.e.

PB(π(x)) = Dir(1/2, 1/2, 1/2),

whereDir(α0, α1, α2) is the Dirichlet distribution with parametersα0, α1 andα2, yields
(e.g. [20, chap. 2])

P(p0|x, p1|x, p2|x|n0,x, n1,x, n2,x) = Dir(1/2 + n0,x, 1/2 + n1,x, 1/2 + n2,x). (3.7)

Using Proposition3.11 from the appendix of this chapter in Section3.10, it readily
follows from Eqs. (3.6) and (3.7) for the posterior of the original two-class problem that

P(π(x)|n0,x, n1,x, n2,x) = Beta(1/2 + n2,x, 1/2 + n1,x). (3.8)

Note the similarity between Eqs. (3.8) and (3.3). The only difference is the interpretation
of ni,x, which in the case ofε-NN is the number of labels of classes 1 and 2 insideBε(x),
whereas in the case ofk-NN it is their number insideB0

k(x).

Similar to the case ofε-NN, if a test samplex is in a high density region, then most,
if not all, of its neighbors are from the original labeled set, resulting in relatively narrow
distributional estimates, and indicating a high confidencein the posterior estimate. In
contrast, if the test sample is in a region of such low densitythat all its neighbors are
from the reference class, the distributional estimate reverts to the prior. Finally, note that
the regularization parametersn0 andk play a role similar to the parameterε in theε-NN
classifier. A method to setn0 andk in order to obtain sensible distributional estimates
is discussed in Section3.5.

2 In there are multiple training samples at the boundary of theball B0

k(x), which leads tonx :=
∑

2

i=0
ni,x > k, we can simply choose at randomnx − k of these points located on the boundary

and ignore them.
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3.4.2 Probabilistic Confidence k-NN

The distributional estimates in the previous section depend on the specific realization
S0 of auxiliary samples. We now show that it is actually not necessary to explicitly
generate the auxiliary data to obtain distributional estimates for thek-NN classifier.
Instead, we can compute theexactprobability that a training sample fromBk(x) will
be displaced from among thek nearest neighbors by samples from the auxiliary class,
when averaging over infinitely many realizations ofS0. The complementary probability
that a training sample remains inB0

k(x) can be used to weight the sample accordingly.
As before, letx(j) be thej-th NN of a query pointx. First of all, note thatx(j), j =

1, . . . , k, is inB0
k(x) if and only if there are at mostk − j points inS0 whose distance

to x is smaller than‖x− x(j)‖. LetV (rj) be the volume of thed-dimensional ball with
radius‖x− x(j)‖. Then,

P
(
x(j) ∈ B0

k(x)
)
=

k−j
∑

i=0

(
n0

i

)(
V (rj)

vol(R)

)i(
vol(R)− V (rj)

vol(R)

)n0−i

(3.9)

Definingρ := n0/vol(R), expression (3.9) equals

k−j
∑

i=0

n0!

i!(n0 − i)!

(
ρV (rj)

n0

)i(

1− ρV (rj)

n0

)n0−i

=

k−j
∑

i=0

(

1− ρV (rj)

n0

)n0−i
(ρV (rj))

i

i!

n0!

ni
0(n0 − i)!

(3.10)

Since we no longer explicitly generate any auxiliary samples, there is no need to
restrict the uniform distribution to a finite hyper-rectangle R. Instead, we can assume
that the auxiliary class is distributed throughout the feature space with uniform density
ρ. So, fixingρ in expression (3.10) while letting n0 (and thus vol(R)) go to infinity
yields

P(x(j) ∈ B0
k(x)) = e−ρV (rj)

k−j
∑

i=0

(ρV (rj))
i

i!
=: A(j) (3.11)

Note thatA(j) = 0 for j > k. Now, instead of applying the Bayesian inference scheme
proposed above by merely counting the number of labels of classes 1 and 2 inB0

k(x),
we canweighteach training sample(x(j), y(j)) in Bk(x) by its probabilityA(j) of being
in B0

k(x). This yields

P(π(x)|Tn) = Beta



1/2 +
∑

j:y(j)=2

A(j), 1/2 +
∑

j:y(j)=1

A(j)



 (3.12)
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This amounts to the use of fractional votes, or equivalentlyto the use of a kernel func-
tion. In contrast to standard Nadaraya-Watson type estimators where the kernel width is
fixed, here, the kernel function depends not only on the distance ofx(j) to x, but also on
the distances tox of all training samples that are closer tox thanx(j), thus maintaining
the local adaptivity of thek-NN approach.

To conclude, Eq. (3.12) is our proposed second-order distribution for the posterior
π(x) of the probabilistick-NN classifier. It consists of a weighted sum of votes of its
original k-NN, where the weight of an observation is its probability ofstill being one
of the k-nearest neighbors after having added auxiliary data from the reference class.
This probability is an analytic expression that can be computed, via Eq. (3.11), without
explicitly generating the reference data. Obviously, the regularization parametersρ and
k play a role similar ton0 andk in data-driven confidencek-NN. For a method to set
these parameters, see Section3.5.

3.5 Confidence Random Forests

In this section we derive distributional estimates for random forests (RF). For the chap-
ter to be self-contained, we first briefly describe the original RF classifier. Next, we
present a small modification of the underlying tree construction that provides distribu-
tional estimates for posterior class probabilities for each single tree, obtained by ex-
plicitly adding reference data. The derivations for probabilistic confidencek-NN in the
previous section do not easily carry over to tree-based classifiers. Instead, we combine
many individual distributional estimates, each obtained from a different tree with its
own random realization ofS0, into a single one for a forest ensemble.

3.5.1 Standard Random Forests

The RF classifier [24] is an ensemble learner consisting ofM decision trees. To build
an individual tree, a bootstrap sample is drawn from the training set and recursively
divided until all leaf nodes contain instances of a single class only. For the split at a
certain node,dtry < d out of thed feature dimensions are randomly selected and the
best axis-orthogonal split according to a purity measure (the Gini criterion) on these
dtry variables is used. An estimate for the posterior class probability at a test pointx is
obtained by passing it down all the trees and dividing the number of trees that vote for
the respective class byM . The majority vote yields a class assignment.

3.5.2 A Distributional Estimate for a Single Tree

A single tree learned from a training set can equivalently berepresented as a partition
Π of feature space into disjoint cells which correspond to thedifferent leaves of the
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tree. For any pointx, we denote byΠ(x) the leaf cell containingx. To construct
a distributional estimate for the posterior probabilityπ(x), a simple possibility is to
consider all training samples in the same leaf asx. This idea is explored here; however,
as discussed below, several issues need to be resolved beforehand.

First, we face the same problem as in the case ofk-NN (Section3.4): Learning
a tree and simply counting the number of training samples in the cellΠ(x) does not
consider the (potentially very large) distances of the training samples inΠ(x) to the
query pointx. Even if the number of training samples in a cellΠ(x) is large, the
estimate forπ(x) may still be unreliable if the query pointx is far from all of them.
As in the case ofk-NN, to overcome this problem we propose to add auxiliary data
to the training set. As before, letS0 = {xn+1, . . . , xn+n0} be an i.i.d. sample from
the uniform distribution on a hyper-rectangleR that covers the original training set,
and letT̃n′ = Tn ∪ {(xn+1, 0), . . . , (xn′ , 0)} be the augmented training set. Instead of
constructing a tree with the original training setTn, we use the augmented setT̃n′ and
train a three-class tree. As fork-NN, this decreases the “sphere of influence” of each
training sample.

Next, recall that in the standard RF algorithm, tree nodes arepartitioned until all
leaves contain labels of a single class only. Obviously, having only pure cells yields
neither sensible point estimates nor sensible distributional estimates for the posterior
probabilityπ(x) from a single tree. To overcome this limitation, we propose to slightly
modify the tree construction as follows: we require, in analogy to k-NN, that leaves
contain no less and not many more thank training samples. More specifically, at each
node we choose the best split only among those that result in children with at leastk
samples each. In particular, nodes with at least2k samples are split, whereas nodes with
less than2k samples are not split, regardless of their class labels. Such “early stopping”
rules have long been promoted for the regularization of decision trees (see [110, 120]
and references therein).

With these modifications in effect, distributional estimates for posterior probabilities
can be constructed in a fashion similar to the case ofk-NN: Let x be a test point,Π(x)
the cell it belongs to, and letni,x be the number of labeled samples inΠ(x) of class
i = 0, 1, 2, respectively. Blindly applying the standard Bayesian scheme would lead to
Eq. (3.8) for the distributional estimate forπ(x), whose corresponding point estimate is

π̂(x) =
n2,x + 1/2

n1,x + 1/2 + n2,x + 1/2
. (3.13)

There is, however, one subtle difference between our setting and that ofk-NN. Whereas
in the case ofk-NN, the total number of neighbors is alwaysk (nx := n0,x+n1,x+n2,x =
k), here the total number varies betweenk and2k − 1. Hence, even if two query points
x1, x2 have the same values ofn1,x, n2,x, the point estimates derived from Eq. (3.13)
may still have different uncertainties depending on the value ofn0,x. To illustrate this
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point, supposek = 5 and consider two query pointsx1 6= x2, with n1,x1 = n1,x2 = 1,
andn2,x1 = n2,x2 = 4, butn0,x1 = 0 andn0,x2 = 4. Obviously, the second query point
lies in a lower density region. As its cell contains more auxiliary points, its uncertainty
estimate should be somewhat larger.

To take into account the variable number (betweenk and2k − 1) of training samples
insideΠ(x), we simply normalize the impact of each training sample inΠ(x) by the
factork/nx. Applying this normalization and repeating the same calculations as above,
the final distributional estimate ofπ(x) from a single tree is given by

P(π(x)|n0,x, n1,x, n2,x) = Beta(1/2 + ñ2,x, 1/2 + ñ1,x) (3.14)

whereni,x, i = 0, 1, 2, is the number of training samples inΠ(x) with label i, and
ñi,x = ni,x ·k/nx. Note that with this normalization in place, to minimize tree size,pure
nodes containing more than2k samples need not be split.

3.5.3 A Distributional Estimate for a Forest

As described above, the random forest classifier usesM decision trees for class predic-
tion. Averaging over trees typically yields more robust andaccurate predictions than
those obtained from each of the individual trees. Moreover,using many trees opens
here the possibility of drawing a different set of auxiliarysamples for each tree and
thus minimizes the influence of a particular realization ofS0 on the final distributional
estimate.

Let x be a query point and denote byΠ(m)(x),m = 1, . . . ,M , the cell of them-
th tree-based partition that containsx. Further, letñ(m)

i,x be the normalized number of

training samples with labeli in Π(m)(x). A natural way of combining the numbersñ(m)
i,x

is to average over the contents of the random partitionsΠ(m)(x) of theM different trees.
This gives

P
(

π(x)
∣
∣
∣{n(m)

0,x , n
(m)
1,x , n

(m)
2,x }Mm=1

)

= Beta

(

1/2 +
1

M

M∑

m=1

ñ
(m)
2,x , 1/2 +

1

M

M∑

m=1

ñ
(m)
1,x

)

(3.15)
The statistical interpretation of this approach is that, asin probabilistic confidencek-
NN, each training sample inTn is weighted by the fraction of trees for which it is in the
same cell as the query pointx. The difference is that the fractional votes are computed
analytically fork-NN, whereas they are obtained by averaging over many trees for CRF.
The working principle of CRF is illustrated in Fig.3.1with n0 = n = 1000, k = 30 and
R = [−15, 15].

Finally, we remark that [187] considered a similar tree-based ensemble model for es-
timating the confidence in posterior probabilities, albeitwith different splitting rules for
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individual trees. The main difference is that in [187], the estimated confidence increases
with the number of trees in the ensemble, leading to unrealistically small confidence in-
tervals in large ensembles. Moreover, [187] does not consider the uncertainty arising
from a poor representation of a test sample by the training data, and hence cannot detect
outliers.

3.6 Selecting the Regularization Parameters

Both confidencek-NN and CRF have two parameters that need to be set. The first pa-
rameter is the number of neighborsk in k-NN, or analogously the minimum occupancy
k of a leaf cell in CRF. For probabilistic confidencek-NN, the second parameter is the
densityρ of auxiliary points. For data-driven confidencek-NN and CRF, the second
parameter is the number of auxiliary samplesn0.3 For simplicity, we only refer ton0 in
the following; analogous statements hold forρ.

By and large, these parameters provide a bias-variance trade-off: increasingk and
reducingn0 leads to larger prediction neighborhoods, hence more bias and less variance.
In high density regions wherenp(x) ≫ n0/vol(R), the size of a leaf mostly depends on
k and is almost independent ofn0. Conversely, for fixedk, the size of a neighborhood
in low density regions mainly depends onn0.

An automated choice of these parameters is not obvious. One reason is that it is
not possible to measure the quality of distributional estimates in the common setting
where the validation set contains only labeled samples, rather than their true posterior
class probabilities [72]. As an example, consider a test sample of class 2. Its likelihood
given a distributional estimate is equal to the corresponding point estimatêπ(x). That
is, a given test sample does not allow us to distinguish the quality of two second-order
distributions so long as they have the same expectation value. Also, optimizing the
parameters by cross-validation (CV) with respect to classification accuracy may yield
n0 = 0 if the training set is free from outliers. But settingn0 = 0 does not allow us to
flag outlying test samples, the identification of which is a central point of this work.

Instead, we propose a two step approach. In the first step, we set n0 = 0 and deter-
mine the optimal value fork by CV. In a second step, withk fixed, one option for the
k-NN classifier is to compute, in the training set, the meandk and standard deviation
σk of the distance to thek-th NN, and set the densityρ such thatρ = 1/V ol(Bdk+2σk

).
This ensures that for most training samples the probabilityof an auxiliary sample inside
thek-NN ball is relatively small. A different option for the second step, again keeping

3 Besidesn0, one also needs to setR. Choosing it too large means that resources are wasted because
many auxiliary points are used to redundantly shield off empty space. Choosing it too small may
lead to insufficient protection against outliers. However,the rectangleR is not a parameter in a strict
sense, but only needs to be “sufficiently” large. For fixedR, the ration0/vol(R) and thusn0 needs
to be chosen.



3.7 Theoretical Analysis 27

k fixed, is to determine the value ofn0 also via CV, by choosing the largest possible
value ofn0 that does not harm prediction performance. “Harm” is measured here by the
1-standard error-rule (1-SE-rule), as proposed in [81, chap. 7.10] or [27, chap. 3.4] for
model selection. This rule states that performance differences may be neglected if they
are smaller than the standard error of the estimated performance. In our context, we thus
choose the largestn0 for which the estimated accuracy is not more than one standard
error below the highest estimate for the accuracy for alln0 used in CV. The procedure is
demonstrated in Section3.8.1and used throughout the rest of the experimental section.
In another experiment in Section3.8.2, we show that there is a high correlation between
the rank order of the estimated uncertainties for differentchoices ofk andn0. In simple
words, the ability to detect outliers is very robust with respect to the exact parameter
choice.

3.7 Theoretical Analysis

As briefly discussed in Section3.3, there are two key theoretical questions associated
with the distributional estimates derived in this chapter.The first is with respect to
their accuracy, and the second is with respect to their asymptotic consistency (defined
explicitly below). In this section we consider these questions in some detail.

3.7.1 Accuracy of Distributional Estimates for Finite Sample
Size

The distributional estimates derived forε-NN, k-NN and CRF are based on the as-
sumption that the posteriorπ(x) is constant insideBε(x), B0

k(x) or {Π(m)(x),m =
1, . . . ,M}, depending on the classifier employed. Here, we investigatethe error in-
curred if this assumption is not satisfied. We first focus our discussion onε-NN.

According to Eq. (3.2), the second order distribution for the posteriorπ(x) at a point
x with n1,x andn2,x labels of class 1 and 2, respectively, insideBε(x) is

p(π(x)|n1,x, n2,x) ∝ P(n1,x, n2,x|n1,x + n2,x, π(x))pB(π(x)) (3.16)

where

P(n1,x, n2,x|n1,x + n2,x, π(x)) =

(
n1,x + n2,x

n2,x

)

π(x)n2,x(1− π(x))n1,x .

LetZ be a random test sample from the same distribution asX and letY be its label. In
general, the probability thatY = 2 given thatZ ∈ Bε(x) is not equal toπ(x). Rather, it
is given by

π̄ε(x) = P(Y = 2|Z ∈ Bε(x)) = E[π(Z)|Z ∈ Bε(x)].
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Thus, assuming a total number ofn1,x + n2,x training samples insideBε(x), the proba-
bility of observingn1,x andn2,x labels of class 1 and 2, respectively, is given by

P(n1,x, n2,x|n1,x + n2,x, π̄ε(x)) =

(
n1,x + n2,x

n2,x

)

π̄ε(x)
n2,x(1− π̄ε(x))

n1,x

Hence, Eq. (3.16) is in fact the standard Bayesian inference model forπ̄ε(x) and not
for π(x). If π̄ε(x) = π(x), Eq. (3.16) becomes the exact Bayesian inference model for
the success parameter of a binomial distribution. As discussed in [29], the extracted
confidence intervals are quite accurate, even for a small number of samples. If̄πε(x) 6=
π(x), the error we incur is small if|π̄ε(x) − π(x)| is small. For example, ifπ(x) is
Lipschitz continuous with constantL, then |π̄ε(x) − π(x)| ≤ Lε. It follows that the
difference tends to 0 forε→ 0.

The above considerations also apply tok-NN and CRF, where the size of the neigh-
borhood considered depends onk andn0. If π(x) is equal to the average posterior in
B0

k(x) or in {Π(m)(x),m = 1, . . . ,M}, the inference model forπ(x) is exact. The error
we incur increases with the absolute difference betweenπ(x) and the average poste-
rior. Putting an upper bound on this difference is exactly the raison d’être of adding the
artificial data.

3.7.2 Consistency of the Proposed Distributional Estimates

In this section, we investigate the consistency of the proposeddistributionalestimates
for ε-NN, confidencek-NN and CRF. More specifically, we state sufficient conditions
under which the proposed distributional estimates converge to the true posterior class
probabilityπ(x) as the size of the training set increases to infinity. For theε-NN and
data-driven confidencek-NN classifiers, these conditions are easily satisfied by setting
the respective parameters accordingly. For probabilisticconfidencek-NN, we addition-
ally need a very mild assumption on the distribution ofX. For CRF, in contrast, it is
still an open question if the suggested splitting rules imply consistency. In this respect
we remark that even the consistency of the original RF is yet tobe proven [18].

Note that the consistency of posteriorpoint estimates for standardε-NN andk-NN
classifiers are proven in [49] and [47], respectively. Here, we additionally show that
(i) the distributional estimates converge to the same limit as the point estimates, in
particular that the distributional estimates converge to the degenerate distribution, and
that(ii) adding the auxiliary data preserves consistency provided their numbern0 does
not increase too fast withn. The proofs of the propositions stated in this section are
given in the appendix of this chapter.
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3.7.2.1 Preliminaries

In the following, letµ be the probability measure ofX, i.e. µ(A) =
∫

A
p(x)dx for

all measurableA ⊂ X if p(x) is a Lebesgue density. The distribution of(X, Y ) is
completely determined by the pair(µ, π) (see [48, chap. 2]).

First, we recall the definition of point-wise convergence inprobability. To this end,
the posterior point estimate of a method is denoted byπ̂n(x) instead of̂π(x) to explicitly
state the dependence on the size of the training data.

Definition 3.1. The sequence{π̂n}n is called weakly consistent iff

lim
n→∞

π̂n(x) = π(x) in probability for µ-almost all x

whereµ is the probability measure ofX.

Definition 3.2. The sequence{π̂n}n is called stronglyL1-consistent iff

lim
n→∞

EX [|π̂n(X)− π(X)|] = 0 a.s.

Remark 3.3. As pointed out in [27, chap. 12], the point-wise consistency in Defini-
tion 3.1 is equivalent to

lim
n→∞

ETn [EX [|π̂n(X)− π(X)|]] = 0

This form of uniform consistency is called weakL1-convergence.

Remark 3.4. As the names suggest, strongL1-convergence implies weakL1-conver-
gence.

When stating sufficient conditions for the consistency of thedistributional estimates
for ε-NN, confidencek-NN and CRF, we refer to point-wise convergence in probability
as defined in Definition3.1. In the proofs in the appendix, we make use of the implica-
tion in Remark3.4and the equivalence in Remark3.3.

In Proposition3.9, which refers to the consistency of the distributional estimates of
probabilistic confidencek-NN, we need the mild assumption thatE[|X|] <∞, whereas
in Propositions3.7, 3.8 and3.10, the sufficient conditions for consistency of the esti-
mates are valid foranydistribution of(X, Y ). In particular,X is not required to have a
density in any of the consistency proofs. This is reflected bythe following definition.

Definition 3.5. A method is called universally consistent if the sequences{π̂n}n ob-
tained therefrom are consistent for all distributions of(X, Y ).

Finally, we state the following proposition for later use.
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Proposition 3.6. Let {ai,n}n, i = 1, 2, be two sequences of non-negative real valued
random numbers and let{Zn}n be a sequence of Beta distributed random variables

with parameters1/2 + α1,n and1/2 + α2,n. Assume thatα1,n + α2,n
P→ ∞ asn → ∞

and thatα1,n/(α1,n + α2,n)
P→ α1/(α1 + α2). Then,

Zn
P→ α1

α1 + α2

3.7.2.2 Consistency of the Distributional Estimate for ε-NN Classification

We first state sufficient conditions for the universal consistency of the distributional
estimate forε-NN. On one hand, a required condition for consistency is that the radius
of Bε(x) converges to zero asn → ∞; this ensures thatπ(x) is sufficiently smooth on
Bε(x). On the other hand, this convergence needs to be sufficientlyslow such that the
number of samples inBε(x) still increases to infinity.

Proposition 3.7. Assume that

ε(n) → 0 and nε(n)d → ∞ as n→ ∞ (3.17)

Then, the proposed distributional estimate in Eq.(3.3) is consistent.

3.7.2.3 Consistency of the Distributional Estimate for k-NN Classification

Now, we consider consistency of confidencek-NN. We start with a proposition re-
garding the data-driven version. As before forε-NN, the number of training samples
k = k(n′) in the neighborhoodB0

k(x) of x has to increase to infinity asn′ → ∞. How-
ever,k should increase sufficiently slowly such that the radius ofB0

k(x) still decreases
to zero. Finally,n0 should increase sufficiently slowly so that the fraction of samples
from the original training setTn within the k nearest neighbors does not converge to
zero.

Proposition 3.8. Assume that

k(n′) → ∞ and
k

n′
→ 0 as n′ → ∞ (3.18)

and that
n0/n = O(1) (3.19)

Then, the proposed distributional estimate in Eq.(3.8) is consistent.

Remark. Condition(3.19) implies thatn, the number of samples in the original training
set, increases to infinity asn′ → ∞.
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Next, we consider the consistency of probabilistic confidencek-NN. Here, under the
additional assumption thatE[|X|] <∞, we have the following proposition:

Proposition 3.9. Assume that

k(n) → ∞ and
k

n
→ 0 as n→ ∞ (3.20)

and that
ρ/n = O(1) (3.21)

Further, assume thatE[|X|] < ∞. Then, the proposed distributional estimate in
Eq. (3.12) is consistent.

3.7.2.4 Consistency of Confidence Random Forest

We first state sufficient conditions for the universal consistency of the distributional
estimate based on a single tree. Then, we discuss the implications for the consistency
of confidence RF. As discussed below, it is an open question whether confidence RF is
universally consistent.

The sufficient conditions we derive for the universal consistency of the distributional
estimate of a single tree are similar to those for confidencek-NN, i.e., loosely speak-
ing, the number of samples in the neighborhood needs to increase to infinity while the
neighborhood diameter needs to shrink to zero. However,k needs to increase faster than
log(n′) here and the definition of the neighborhood size is a little more involved.

Proposition 3.10. Let Πn′ be the partition obtained by growing a tree with the aug-
mented training setT ′

n′ and with parameterk(n′), where

k(n′)

log n′
→ ∞ as n′ → ∞ (3.22)

Assume further that
n0/n = O(1) (3.23)

and that the following “shrinking cell condition” is satisfied for everyγ > 0 andδ ∈
(0, 1):

inf
S:µ(S)≥1−δ

µ{x : diam(Πn′(x) ∩ S) > γ} → 0 a.s. (3.24)

wherediam(A) = supx,y∈A ‖x − y‖. Then, the proposed distributional estimate in
Eq. (3.14) is consistent.

Remark. Condition(3.24) is a “shrinking cell condition”. It basically demands that
the probability mass ofX contained in cells whose diameter is larger thanγ decreases
to 0. Taking the infimum over all setsS that contain a minimum mass ofX allows
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for cells that are infinitely large as long as the mass outsidea subset of this cell with
diameterγ is sufficiently small.

Proposition3.10states sufficient conditions for the universal consistencyof the dis-
tributional estimate of a classifier based on a single tree. According to the splitting rules
presented in Section3.5.2, it is easy to ensure that condition (3.22) is satisfied by setting
k accordingly. Unfortunately, the “shrinking cell condition” (3.24) is not satisfied for ev-
ery distribution of(X, Y ). As an example, assume thatx = (x(1), x(2))T ∈ X = [0, 1]2,
thatp(x|Y = 1) = 1 andp(x|Y = 2) = 1/2 + x(1). Assuming equal priors, it follows
thatp(Y = 2|x) = 1− 2/(3 + 2x(1)), i.e. the posterior increases from1/3 to 3/5 in the
first dimension and is constant with respect to the second dimension. For sufficiently
largen anddtry = 2, all splits are made orthogonal to the first dimension. Hence,
although the volume of the cells shrinks ifk(n′) is set appropriately, their diameter will
not tend to zero but is equal to one. However, note that shrinking cells are a sufficient
but not a necessary condition. For the distribution considered, the splits are made in
such a way that the posterior probabilities are approximately constant in each cell. This
is a desired property and yields consistent estimates ifk(n′) satisfies Condition (3.22).

It is an open question if there are distributions for which the proposed distributional
estimate is not consistent.4 It may be necessary to adapt the splitting rules to enforce
splits in alternate directions. Since confidence RF simply averages over the observa-
tions of different tree-based partitions, the universal consistency of the distributional
estimates of confidence RF may follow from that of the individual trees. It is another
open question if the application of bootstrapping, which violates the i.i.d. assumption of
the training data, allows for consistency.

As a final remark, we note that while the original RF algorithm has shown empirically
a very good classification performance, it has so far resisted a complete theoretical anal-
ysis, leading to minor or major modifications of the originalalgorithm in most theoret-
ical publications on the subject. Given the choice between amore complete theoretical
analysis and greater proximity to the original implementation, we opted for the latter.

3.8 Results

In this section, we first illustrate the effect and optimization of the design parameters
(Section3.8.1) and then show the usefulness of distributional estimates on two real
world data sets, one from road sign recognition (Section3.8.2) and a second from an
imaging mass spectrometry (IMS) experiment (Section3.8.3). In all experiments in-
volving CRF, the number of treesM is set to 100 anddtry =

√
d according to the rule

4 Note that the two-dimensional example given in [48, chap. 20] on page 335 for a slightly different
splitting rule does not apply here. The reason is that instead of fixing the number of splits allowed,
we fix the approximate number of samples in each cell.
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of thumb proposed by the inventor of RF [25].

3.8.1 The Parameters k, n0 and ρ

In the following, we use a toy data example to investigate therole of the regularization
parametersk, ρ andn0. Further, we demonstrate their optimization as proposed in
Section3.6.

Consider a two-dimensional binary classification problem, where the class-conditio-
nalsX|Y = 1 andX|Y = 2 are normally distributed with unit covariance matrix and
mean(1, 1)T and(−1,−1)T , respectively. A training setTn with p(Y = 1) = p(Y =
2) = 1/2 andn = 200 is plotted in Fig.3.3.

We first concentrate on probabilistic confidencek-NN. With ρ fixed, the largerk, the
larger the “sphere of influence” of the original training samples. This obvious relation
is illustrated in Fig.3.3 by settingρ = 1 and increasingk from 5 to 10. Withk fixed,
the largerρ, the higher the probability that a point from the hypothetical reference data
S0 is closer to a test samplex than one or several of thek nearest neighbors fromTn.
Hence, the variance of the distributional estimate increases and the mean will be more
influenced by training set labels close tox. This is illustrated in Fig.3.3 by increasing
ρ from 1 to 2 while settingk = 5.

In the last row of Fig.3.3, standardk-NN predictions for the posterior class probabil-
ity π(x) are compared to the point estimates (mean values of the Beta distribution) of
probabilistic confidencek-NN (ρ = 1, k = 5). They are approximately equal where the
feature space is covered by training data, but confidencek-NN predictions tend more
to 1/2 in the low density parts of feature space. Note that the low confidence in these
predictions is indicated by a high variance of the corresponding Beta distribution.

Similar observations to those for probabilistic confidencek-NN can be made for
CRF, where the parameterρ is replaced byn0. The corresponding results are shown
in Fig. 3.4. The rectangleR is set to[−10, 10]2.

In Section3.6, we proposed an approach for optimizingk andn0 (or ρ). We demon-
strate the procedure based on the toy data set shown in the upper left panel of Fig.3.4.
We initially setn0 = 0 (ρ = 0) and determine the optimal value fork with respect to
accuracy by 5-fold cross-validation (CV). This yieldsk = 3 for CRF andk = 13 for
probabilistic confidencek-NN. Then, we evaluate the accuracy of CRF (withk = 3) and
confidencek-NN (with k = 13) for varying values ofn0 or ρ. This is shown in Fig.3.5,
together with the standard errors obtained from CV. According to the 1-SE-rule pro-
posed in Section3.6, we choose the largestn0 (ρ) for which the estimated accuracy
is not more than one standard error below the highest estimate for the accuracy. This
yieldsρ = 10 for probabilistic confidencek-NN andn0 = 700 for CRF.
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Figure 3.3: [Best viewed in color] A training setTn with n = 200 is plotted in the upper left
panel. The variance of the resulting Beta distributional estimates for probabilistic confidence
k-NN with various parameter values ofk andρ is shown, on a logarithmic scale, in the next
three panels. In the last row, predictions for the posterior class probabilities of standardk-NN
are compared to the point estimates (the mean of the distributional estimates) of probabilistic
confidencek-NN. Note that the posterior predictions are very similar in high density regions,
in particular near the decision boundary. However, while standardk-NN only offers ambiguity
reject, confidencek-NN is also able to detect outliers.
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Figure 3.4: [Best viewed in color] The same training setTn with n = 200 as in Fig.3.3 is
plotted in the upper left panel. The variance of the resulting Beta distributional estimates for
CRF with various parameter values ofk andn0 is shown, on a logarithmic scale, in the next
three panels. In the last row, predictions for posterior class probabilitiesof standard RF are
compared to the point estimates of CRF.
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Figure 3.5: Parameter optimization. For fixedk, the classification accuracy of probabilistic
confidencek-NN and CRF is estimated by 5-fold cross-validation (CV) for varyingρ andn0,
respectively (black line). In each panel, the black vertical bars indicatethe standard error of
the estimate, obtained from the CV procedure. The red vertical bar indicates the standard error
of the highest accuracy. According to the 1-SE-rule proposed in Section3.6, we choose the
largest regularization parameter (here: largestρ andn0) such that the corresponding accuracy
is not more than one standard error below the highest estimate for the accuracy (plotted with
a green line). Here, this yieldsρ = 10 andn0 = 700. The blue line is the classification
performance of the methods when settingρ = 0 orn0 = 0. Note that, in this example, adding
a few hundred points from the auxiliary class 0 slightly increases the accuracy of random
forest.

3.8.2 Road Sign Recognition

We now show the usefulness of CRF on a real world problem from road sign recognition.
Further, we show that the ordering of the sample points according to the variance of their
uncertainty estimates is robust with respect to the exact choice ofn0 andk.

The road signs dataset has been provided by the Robert Bosch GmbH in Hildesheim.
It is composed of small gray value images with a resolution of21× 21 pixels. Example
images are shown in Fig.3.6. The training data consists ofn = 3084 images of the speed
limits “50” and “70”, hand labeled as classes 1 and 2, respectively. The classification
task is to predict if a test image shows a speed limit of “50” or“70”. However, the
interesting feature of this data set is that the test set, of sizentest = 14385, contains not
only yet unseen “50” and “70” speed signs, but also various images not drawn from the
same distribution as the training data, in particular otherspeed signs, other traffic signs,
as well as patches of natural images. We show in the followingthat CRF is able to both
correctly classify the 50 and 70 signs, and to automaticallydetect these various outliers.

For the experiments, we simply represent the images by theirgray values, i.e., each
image is a vector of dimensiond = 21 · 21 = 441. In the first experiment, the pa-
rametersn0 and k are chosen according to the procedure presented in Section3.6,
which yieldsk = 4 andn0 = 5n = 15420. R was chosen such that it covers the
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Training Set Test Set

Figure 3.6: Example data of the road sign recognition data set. The left panel shows anexcerpt
from the training data, consisting of speed limits “50” and “70” only. The remaining panels
show the test data (from left to right): speed limit signs “50” and “70” drawn from the same
distribution as the training data, speed limit signs other than “50” or “70”, other traffic signs,
and finally image patches that do not show a road sign at all.

set{x1, . . . , x3084}+ [−0.1, 0.1]441.5 The classification results on the 14385 test images
are shown in Fig.3.7. First, all images with speed limits “50” (magenta) and “70”(cyan)
are classified correctly, i.e., the point estimates for samples of class 1 are lower than0.5,
those for samples of class 2 are higher than0.5. The variance of the corresponding
distributional estimates is very low. The more dissimilar an image is to training data,
the higher the variance of its distributional estimate and hence its predicted uncertainty.
The variance is relatively low for other speed limits (green), higher for other traffic signs
(red) and highest for non-signs (blue). Interestingly, thetraffic sign (red) with the lowest
variance is an “end of speed limit 70” sign which is quite similar to the speed limit sign
itself.

The lower parabola in the figure is the variance of aBeta(α1, α2) distribution with
parametersα1, α2 such thatα1 + α2 = k + 1. It resembles the standard frequentist
variance estimate of̂p(1− p̂)/k. Note that had we used such a frequentist estimate (dis-
regarding the distances of the query point to the labeled points) rather than our Bayesian
approach, then all test points would lie on such a parabola, that is, all points with the
same posterior estimate would have the same variance or uncertainty estimate.

In the next experiment, we show the robustness of CRF with respect to the exact
choice of the parameters. To this end, we manually vary the two parametersn0 and
k. The results are shown in Fig.3.8. It can be seen that the correlation between the
variances of distributional estimates obtained with different parameter settings is high,
i.e., the rank order of the variance of the distributional estimates is quite robust with

5As usual, the sum of two sets is defined asA+B := {a+ b : a ∈ A, b ∈ B}.



38 3 Distributional Uncertainty Estimates

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Posterior point estimate

V
ar

ia
nc

e 
of

 d
is

tr
ib

ut
io

na
l e

st
im

at
e

Figure 3.7: Distributional estimates for 14385 test images, represented by the mean and the
variance of the estimate. The colors of the dots encode the content of the test image: speed
limits “50” and “70” are magenta and cyan, respectively, andonly these classes were present
in the training set (a full-fledged sign recognition system should be trained with all traffic
signs). Other speed limits are green, other traffic signs are red and non-signs are blue. Some
interesting test samples are flagged and the corresponding images are shown nearby. Note
that the variance of the priorBeta(1/2, 1/2) is 0.125.

respect to the exact choice of parameter values.

3.8.3 IMS Data

We further illustrate the practical benefit of CRF by another real world application,
namely mass spectrometric images [123] of human breast cancer xenografts grown in
mice [79]. The data has been provided by Ron M.A. Heeren (FOM-AMOLF, Amster-
dam). Imaging mass spectrometry (IMS) is an emerging technology that offers both
spatial and spectral resolution and that can simultaneously monitor a large number of
(bio-) molecules in organic samples—resulting here in multi-spectral images with more
than 4000 channels. Biologically, the data set contains five different regions of interest
(necrotic and viable tumor, gelatin, interface region and glass). Individual pixels of the
images are labeled based on chemical staining of tissue slices which were cut in paral-
lel to the ones subjected to IMS analysis (see Fig.3.9). For classifying pixels in new
images, rather than working with 4000 dimensions per pixel,only 5 of the most infor-
mative spectral channels are chosen for each class, as described in [79]. The resulting
data points live in a 12-dimensional space (and not in a 25-dimensional space) because
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Figure 3.8: Comparison of the variance of the distributional estimates of CRF for different
parameter settings. Each dot represents one test sample of the road sign recognition data set.
In the left panel,n0 = n = 3084 andk is varied; in the right panel,k = 10 andn0 is
varied. Note that the largest attainable variance, namely that of the priorBeta(1/2, 1/2), is
0.125. As already shown e.g. in Fig.3.4, increasingk and decreasingn0 lowers the variance
of the distributional estimates. The rank order of estimated variances and hence uncertainties
is relatively robust with respect to the choice of the parametersk andn0.

some features are meaningful for more than one class. For an initial analysis, the five
tissue (sub-) classes are merged into the two classes “no tumor” (1) and “tumor” (2) as
shown in Fig.3.9. Hence, the task of the classifier is to predict for each pixelin a test
image whether the underlying tissue sample is tumorous or not. Five images are used
for training, the sixth for testing. The total number of labeled pixels in the training im-
ages isn = 36194. The parametersk andn0 are optimized according to the procedure
proposed in Section3.6, the rectangleR is always chosen such that it covers the set
{x1, . . . , x36194}+ [−0.1, 0.1]d.

If standard and confidence RF are trained with thefull training set, the predictions
for π(x) are quite accurate for both classifiers (Fig.3.10). Moreover, the uncertainty of
confidence random forests is low in all regions. However, in practice, many real-world
training sets are biased or incomplete and it may well happenthat a certain tissue type
(or e.g. an unknown defect type in the case of industrial optical inspection) is not well
represented in the training set. Alternatively, a test sample may accidentally be drawn
from a different distribution than the training data. One ofthe main benefits from our
approach is that this can be automatically detected. We hence investigate a scenario in
which the test image contains tissue types which are absent from the training data. This
is imitated by excluding one of the subclasses from the training set.
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Figure 3.9: [Best viewed in color] The left column shows (parts of) images of chemically
stained tissue slices. The expert labels obtained from these are plotted in themiddle col-
umn, where labels a, b, c, d and e represent “glass/hole”, “interface”, “gelatin”, “viable” and
“necrotic”, respectively. The labels in the white regions are missing. In theright column,
these labels are merged into “no tumor” (1) and “tumor” (2), the class labels that are actually
used for training. The first row shows one of the five training images whereas the second row
is the test image.

If subclass “a” is omitted, both standard and confidence RF have very inaccurate pos-
terior predictions at test samples of that subclass. However, the lack of informative
training data is detected by confidence RF by a high variance ofthe second-order distri-
bution at those samples. The exclusion from subclass “c” is also detected by confidence
RF. In contrast to omitting “a”, using standard RF would not lead to totally wrong pre-
dictions. Posterior class predictions are quite accurate when omitting “e”, because “d”
and “e” strongly overlap in feature space. This also explains why the lack of “e” is not
detected by confidence RF.

3.9 Conclusions

In this chapter, we have discussed the need for a confidence measure for posterior class
estimates and proposed to express this confidence in terms ofa second-order distribu-
tion.

We derived distributional estimates forε-nearest neighbors,k-nearest neighbors and



3.9 Conclusions 41

Prediction of
Standard RF

Prediction of
Confidence RF

Uncertainty of
Confidence RF

A
ll

cl
as

se
s

 

 

0

0.2

0.4

0.6

0.8

1

 

 

0

0.2

0.4

0.6

0.8

1

 

 

0

0.01

0.02

0.03

0.04

O
m

it
“a

”

 

 

0

0.2

0.4

0.6

0.8

1

 

 

0

0.2

0.4

0.6

0.8

1

 

 

0

0.01

0.02

0.03

0.04

O
m

it
“c

”

 

 

0

0.2

0.4

0.6

0.8

1

 

 

0

0.2

0.4

0.6

0.8

1

 

 

0

0.01

0.02

0.03

0.04

O
m

it
“e

”

 

 

0

0.2

0.4

0.6

0.8

1

 

 

0

0.2

0.4

0.6

0.8

1

 

 

0

0.01

0.02

0.03

0.04

Figure 3.10: [Best viewed in color] Classification results for the labeled regions of the test
image shown in Fig.3.9. Standard RF predictions are shown on the left and the point esti-
mates obtained from confidence random forests in the middle. The last columnindicates the
uncertainty of this prediction, expressed by the variance of the distributional estimate. The
most interesting results are obtained if subclass “a” (glass/hole) is removed. The respective
regions in the test image are now classified as tumorous by both classifiers. However, CRF
indicates that the respective region in feature space contains only relatively few training points
and that the prediction may be erroneous.
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random forests and proved the (universal) consistency of these estimates forε-nearest
neighbor and confidencek-NN. It is an open question whether the proposed modifica-
tion of RF is universally consistent.

Although we concentrated on two-class problems, the derivations can straightfor-
wardly be generalized to multi-class problems, resulting in Dirichlet instead of Beta
distributions.

Using two real-world data sets, we demonstrated that the proposed confidence RF
algorithm combines the advantages of one- and two-class learning: the distributional
estimates indicate to what extent a feature vector is consistent with the training data,
allowing to detect outliers or novel subclasses, while the classification accuracy is as
high as that of standard RF. The latter is ensured by setting the parametersn0 andk
such that the classification accuracy of CRF is not statistically significantly worse than
that of standard RF. Moreover, the detection of outliers was shown to be robust with
respect to the exact choice of the parametersn0 andk of the method.

To the best of our knowledge, this is the first time that auxiliary data is used forsuper-
visedclassification to obtain a confidence measure for posterior predictions. The derived
second-order distributions naturally arise from Bayesian inference based on “counting
labels” and the models rely on classifiers that are based on this principle. Nevertheless,
the idea of using auxiliary data is of course potentially applicable to other classifiers.
Highly simplified, the posterior estimate for the auxiliaryclass can be interpreted as a
heuristicmeasure of relative prediction uncertainty.

Interesting open problems are the definition of scoring rules [72] to evaluate distri-
butional estimates, and the proof of consistency of the distributional estimate for confi-
dence RF.

Note that the second-order distributions derived in this chapter are model-based, de-
pending on the parameters of the corresponding method (ε, k, n0 and/orρ, respectively),
and mainly allow for a relative comparison of prediction uncertainty. In the next chap-
ter, we will derive second-order distributions for kernel density classification that indeed
approximate the true sampling distribution

Fn,x(q) = P(π̂(x) ≤ q|Tn), q ∈ [0, 1] (3.25)

and these will be used for active learning. Note the difference between Eqs. (3.1) and
(3.25).
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3.10 Appendix

Proof of Proposition 3.6. Let ε > 0 and defineα′ := α1/(α1 + α2). Then,

P (|Zn − α′| >ε) ≤ 1

ε2
E (Zn − α′)

2 (3.26)

=
1

ε2
E (Zn − EZn + EZn − α′)

2

=
1

ε2

(

E(Zn − EZn)
2 + 2E(Zn − EZn) (EZn − α′) + (EZn − α′)

2
)

=
1

ε2
(V (Zn) + (EZn − α′)2) (3.27)

where inequality (3.26) follows from Markov’s inequality. Plugging in the formulas for
the respective moments of a Beta distribution, It readily follows that both summands
in (3.27) converge to 0 in probability asn→ ∞. This completes the proof.

Proof of Proposition 3.7. First of all, note that the estimation ofπ(x) can be regarded
as a regression problem: If we rename the class labels 1 and 2 as 0 and 1, respectively,
thenπ(x) is equal to the regression functionE[Y |X = x]. Thus, estimatingπ(x) simply
by π̆(x) = n2,x/(n1,x + n2,x) corresponds to kernel regression with a box kernel. The
strongL1-consistency of kernel regression under the assumptions (3.17) (and taking into
account thatY ∈ {0, 1} and that we are using a box kernel) is proven in [49]. Hence, by
Remarks3.3 and3.4, the estimatĕπ(x) converges in probability toπ(x) for µ-almost
all x. A necessary condition for this convergence is thatn1,x+n2,x → ∞ in probability.
Thus, settingαi,n = ni,x in Proposition3.6, it follows thatBeta(1/2+n2,x, 1/2+n1,x)
converges in probability toπ(x). Hence, the distributional estimate in Eq. (3.3) for
ε-nearest neighbor is consistent.

Proof of Proposition 3.8. As in the proof of Proposition3.7, note that the estimation of
pi|x can be regarded as a regression problem if we rename the classlabels 0, 1 and 2. To
this end, letψi(j) = δij, whereδij is Kronecker’s delta. Further, letY ′ (taking values in
{0, 1, 2}) be the label random variable of the extended classificationproblem including
the samples from class 0. Then,pi|x is equal to the regression functionE[ψi(Y

′)|X =
x]. Hence, estimatingpi|x simply by p̆i|x = ni,x/(n0,x + n1,x + n2,x) corresponds to
standardk-NN regression. The strongL1-consistency ofk-NN regression with bounded
response under the assumptions (3.18) is proven in [47]. Hence, by Remarks3.3 and
3.4, the estimatĕpi|x converges in probability topi|x for µ-almost allx. It follows that
π̆(x) = p̆2|x/(p̆1|x+ p̆2|x) = n2,x/(n1,x+n2,x) converges top2|x/(p1|x+ p2|x) = π(x) in
probability forµ-almost allx becausef(x1, x2) := x1/(x1+x2) is a continuous function
for x1 + x2 > 0. Condition (3.19) ensures thatp1|x + p2|x > 0 if p(x) > 0. A necessary
condition for this convergence is thatn1,x + n2,x → ∞ in probability. Thus, as in the



44 3 Distributional Uncertainty Estimates

proof of Proposition3.7, it follows from Proposition3.6thatBeta(1/2+n2,x, 1/2+n1,x)
converges in probability toπ(x) for µ-almost allx. Hence, the distributional estimate
in Eq. (3.8) for k-nearest neighbor is consistent.

Proof of Proposition 3.9. Again, the estimation ofπ(x) is regarded as a regression
problem: If we rename the class labels 1 and 2 as 0 and 1, respectively, thenπ(x) is
equal to the regression functionE[Y |X = x]. The conditions (3.20) are sufficient for
universal consistency of standard nearest neighbor regression forρ = 0 [47]. In prob-
abilistic confidencek-NN, the number of neighbors considered from the two original
classes is alwaysk. The neighbors are simply weighted by their probability of still being
in B0

k(x) after hypothetically augmenting the training set by samples from a reference
distribution. Hence, for the consistency of the method, we only need to ensure that the
sum of the weights goes to infinity ifk goes to infinity. A sufficient condition is thatρ
converges to infinity sufficiently slow so that the individual weights of the neighbors do
not tend to 0. First of all, we have that

P(x(j) ∈ B0
k(x)) = e−ρV (rj)

k−j
∑

i=0

(ρV (rj))
i

i!
≥ e−ρV (rj) for all j ≤ k (3.28)

For fixedρ ≥ 0, it follows fromE[|X|] < ∞ thatE[ρV (rj)] ≤ C1 < ∞. If ρ increases
with n, condition (3.21) ensures thatE[ρV (rj)] ≤ C2 <∞, and thus thatE[e−ρV (rj)] ≥
δ > 0 for someδ > 0. It follows from Eq. (3.28) thatP(x(j) ∈ B0

k(x)) ≥ δ > 0.

Proof of Proposition 3.10. The proof is similar to that of Proposition3.8. Given the
assumptions (3.22) and (3.24), the strongL1-consistency of̆π(x) = ni,x/(n0,x + n1,x +
n2,x), i = 0, 1, 2, is shown in [116].6 Hence, by Remarks3.4 and3.3, the estimatĕpi|x
converges in probability topi|x for µ-almost allx. It follows that π̆(x) = p̆2|x/(p̆1|x +
p̆2|x) = n2,x/(n1,x + n2,x) converges top2|x/(p1|x + p2|x) = π(x) in probability forµ-
almost allx becausef(x1, x2) := x1/(x1+x2) is a continuous function forx1+x2 > 0.
Condition (3.23) ensures thatp1|x+ p2|x > 0 if p(x) > 0. A necessary condition for this
convergence is thatn1,x + n2,x → ∞ in probability. As in the proofs of Proposition3.7
and3.8, it follows from Proposition3.6thatBeta(1/2 + n2,x, 1/2 + n1,x) converges in
probability toπ(x) (setαi,n = ni,x/n in Proposition3.6) for µ-almost allx. Hence, the
distributional estimate in Eq. (3.14) for a single tree is consistent.

Proposition 3.11. LetQ = (Q0, Q1, Q2) ∼ Dir(α0, α1, α2) be a Dirichlet distributed
random vector with parametersα0, α1 andα2. Then

Q2

Q1 +Q2

∼ B(α2, α1)

6According to Theorem 3 in [116], the conditions of Proposition3.10 imply those of Theorem 2 in
[116]. The strongL1-consistency is an intermediate result in the proof of Theorem 2 in [116].
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whereB(α2, α1) is the Beta distribution with parametersα2 andα1.

Proof. Let Yi, i = 0, 1, 2, be stochastically independent and Gamma distributed with
shape parameterαi and scale parameter 1, i.e.Yi ∼ Γ(αi, 1), i = 0, 1, 2. It is shown in
[130] that

(
Y0

Y0 + Y1 + Y2
,

Y1
Y0 + Y1 + Y2

,
Y2

Y0 + Y1 + Y2

)

∼ Dir(α0, α1, α2) (3.29)

If we define

Qi :=
Yi

Y0 + Y1 + Y2
, i = 0, 1, 2

it follows that
(Q0, Q1, Q2) ∼ Dir(α0, α1, α2)

and
Q2

Q1 +Q2

=
Y2

Y0+Y1+Y2

Y1+Y2

Y0+Y1+Y2

=
Y2

Y1 + Y2

(∗)∼ B(α2, α1)

where statement(∗) is a special case of the statement in (3.29).





4 Distributional Estimate Active
Learning

Active learning techniques aim at reducing the labeling effort for classifier training by
querying labels for those samples which are most important for achieving a sufficient
classification performance. Informative samples can be close to the decision boundary
or in unexplored regions of feature space. Additionally, the density of the underlying
class distributions at a training sample is highly relevantfor classifier performance. In
this chapter, we propose a novel active learning strategy that trades off these three crite-
ria in a principled way by using a second-order distributional estimate for the posterior
class probabilities at unlabeled points. The mean of such a distribution corresponds to
the usual point estimate, whereas the spread of the distribution measures the confidence
in this estimate and thus encodes the degree of exploration in that region of feature
space. A comprehensive comparison using real-world data sets from UCI [9], Caltech-
4 [60] and USPS Zip Corpus [102] shows the superiority of the proposed AL strategy
compared to random sampling, uncertainty sampling and an approach previously pro-
posed by Lindenbaum et al. [111].

4.1 Introduction

In the common setting of supervised learning, a set oflabeledsamples is required for
training a classifier. However, the labeling process itselfoften is difficult, expensive or
time-consuming as human expertise usually is indispensable. Hence, ifunlabeledsam-
ples are available in great quantities (consider applications such as speech recognition,
defect detection or web page classification), only a small subset of this data can be an-
notated. If this subset is chosen randomly (referred to as “passive learning” or “random
sampling” in the following), a lot of effort may be wasted forlabeling those samples
which do not contribute much to the final classification performance. To obtain low
prediction errors with few labels, the subset selection maybe guided byactive learning
(AL) approaches. AL is an iterative process that sequentially chooses the samples to be
labeled using information extracted from previously labeled samples and possibly from
the (large) pool of unlabeled data. At the end of the AL process, the final classifier is
usually trained on the labeled data in a supervised fashion,discarding the unlabeled set.

47
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There are at least three important criteria when evaluatingthe utility of the label for a
yet unlabeled instance:

(i) the distance to the current decision boundary,

(ii) the density of the marginal distribution of features at thatpoint,

(iii) the number of labeled instances in the neighborhood.

In the above, the notion of “distance” and “neighborhood” depends on the employed
classifier and metric. Ceteris paribus, each piece of information contributes to an ap-
propriate ranking of the unlabeled samples:(i) the higher the uncertainty in the current
label prediction,(ii) the higher the density, and(iii) the less explored a region in fea-
ture space, the more interesting it is to acquire a new label in that region. Note that the
relative emphasis on the criteria(i) and(iii) governs the trade-off between “exploita-
tion” and “exploration”, namely labeling instances near the decision boundary in order
to refine it versus labeling instances in regions of feature space that contain no or a few
labeled samples only.

The key properties of the AL strategy presented in this chapter are taking into account
all three criteria in a unified statistically principled wayand having only linear time
complexity per iteration step in the number of unlabeled examples. The prerequisite is
a classifier that outputs not only a point estimate for the posterior class probabilities at
each point in feature space, but a second-order distributional estimate over the posterior
class probabilities (see Chapter3). The mean of this distributional estimate corresponds
to the usual point estimate for the posterior (and thus is a measure for the distance to the
current decision boundary), whereas the spread of the distribution reflects the confidence
in the estimated posterior and thus considers the number of labeled instances in the
neighborhood. As will be explained in detail in Section4.3, other approaches either
do not consider all three criteria, have higher computational complexity or consider the
trade-off between exploitation and exploration by data preprocessing or by additional
model parameters. To the best of our knowledge, our suggested AL strategy is the
first to make use of distributional estimates. We thus naturally refer to it as “DEAL”
(Distributional Estimate Active Learning).

In Section4.2, we define the exact AL setup considered. In Section4.3, we review
some existing AL methods and thereby motivate the proposed approach, which is pre-
sented in detail in Section4.4. The implementation of the strategy using kernel density
classification is presented in Section4.5, followed by the corresponding results in Sec-
tion 4.6.



4.2 Problem Setup 49

4.2 Problem Setup

We consider the following common classification scenario. Assume a random vector
(X, Y ) that has the joint probability densityp(x, y), wherex ∈ X is a feature vector and
y ∈ Y its class label. In this chapter, for simplicity, we focus ona binary classification
setting withY = {1, 2} andX ⊆ R

d.
LetLij, i, j = 1, 2, denote the loss of classifying a point of classi asj. The expected

loss of a classifierh : X → Y is defined as

E(X,Y )[Loss(X,Y )|h] =
∫

R1(h)

L21p(x, Y = 2)dx+

∫

R2(h)

L12p(x, Y = 1)dx (4.1)

=

∫

R1(h)

L21p(Y = 2|x)p(x)dx+
∫

R2(h)

L12p(Y = 1|x)p(x)dx

whereR1(h) andR2(h) are those regions in feature space whereh assigns class label 1
or 2, respectively. It can be easily verified that the Bayes classifier

hB(x) = argmax
y=1,2

p(x, y)Ly,3−y (4.2)

minimizes the expected loss. It assigns class 2 iffp(Y = 2|x) > θ, whereθ =
L12/(L12 + L21). In practical situations, the posteriorp(Y = 2|x) is, of course, not
known andhB(x) needs to be estimated from training instances.

The setting considered here ispool-basedAL, where we start with a small (pos-
sibly empty) setL = {(x1, y1), . . . , (xl, yl)} of labeled data and a large poolU =
{xl+1, . . . , xl+u} of unlabeled data. The main assumption is that the feature vectors
x1, . . . , xl+u are i.i.d. realizations from the marginal densityp(x). The labeled realiza-
tions from (X, Y ) in L, in contrast, do not need to be independent since the labeled
samples selected later on by the AL strategy are not independent, either.

Throughout this chapter, we assume that only one label is queried at a time1 and that
annotation costs are equal for all instances.

Remark 4.1. Note that, even if the elements ofL are stochastically independent prior
to the AL process, in general, they become dependent throughAL. Hence, the estimates
for the posterior class probabilitiesp(Y = 2|x) may be quite inaccurate. However,
it is not necessary to knowp(Y = 2|x) exactly in order to coincide with the Bayes
classifierhB(x). Instead, it is sufficient to know whetherp(Y = 2|x) is larger thanθ
or not. Hence, most of the labels for samples in regions where the posterior is clearly

1 Another variant considered in Chapter6 in the context of industrial quality control is batch mode AL
[75], [84], where several instances are chosen at the same time at eachiteration; this speeds up the
AL process at the cost of lower AL performance due to possibleoverlapping information of the labels
queried at the same time.
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above or belowθ are not important for training a classifier with good performance.
This fundamental insight is the basic working principle of AL.

4.3 Related Work

In this section, we review some pool-based AL approaches andthereby motivate the
DEAL approach. Most AL strategies can be assigned to one of two groups, based on
their definition of the TUV:

1. Approaches without look-ahead step:

Train a classifier onL and evaluate it at allx ∈ U . TheTUV of x depends on
the respective estimate for the posterior class probabilitiesp(y|x). Corresponding
methods are for example proposed in [1], [40], [55], [62], [86], [89], [104], [105],
[106], [122], [125], [131], [157], [164], [165], [176] or [190].

2. Approaches with one-step look-ahead:

Train a classifier onL and evaluate it at allx ∈ U . For each instancex ∈ U
and for each possible class labely, add(x, y) to the current training setL, train
the classifier anew and evaluate it at allx′ ∈ U\{x}. TheTUV of x depends
on (the difference between the old and) the new classification output at the in-
stances inU\{x} when(x, i1), . . . , (x, i|Y|), ij ∈ Y, is added to the training set
(usually weighted by the estimated posteriorp(ij|x)). Corresponding methods are
for example proposed in [73], [111]2 or [153].

4.3.1 Approaches Without Look-Ahead Step

The simplest and probably most commonly used strategy without look-ahead is “uncer-
tainty sampling”. The underlying idea is to query the label for that instance inU whose
current prediction for the posterior class probabilities is closest toθ [105]. A variant of
uncertainty sampling for support vector machines is to request the label for that instance
which is closest to the decision boundary [176]. Uncertainty sampling methods can be
modified by weighting theTUV of x with the densityp(x) [164], [188], which is esti-
mated from both labeled and unlabeled instances.3 Another variant without look-ahead

2 In [111], the number of look-ahead steps is a user-defined parameterk, but the simulations—even for
k = 2—are so time-consuming that the strategy is evaluated mainlyfor k = 1 and on very small data
sets fork = 2.

3 The cost of a naive implementation of density estimation is of orderO((l + u)2), but the density
only needs to be estimated once prior to the AL process. The estimates can be stored and thus the
density lookup does not affect the considerations below about the computational complexity for a
single query.
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step is “query-by-committee” [62], [165], where a label is requested at the instance
where a committee of classifiers disagrees most. This principle is also applied in [1]
utilizing bagging and boosting techniques.

Criterion Computational
Strategy (i) (ii) (iii) complexity

Random Sampling - (X) - -

Uncertainty Sampling X - - low
[40], [55], [89], [104], [105], [157], [176]
Density-Based Approaches [164], [188] X X - low

Query-by-Committee X - - low
[1], [62], [122], [125], [131], [165], [190]

One-step look-ahead [73], [111], [153] (X) (X) (X) high

DEAL X X X low

Table 4.1: Comparison of different kinds of AL sampling strategies with respect to consid-
ering three important criteria when querying a label for an instance:(i) distance from the
current decision boundary,(ii) density of the marginal distribution of features, and(iii) the
number of labeled points in the neighborhood. The low complexity methods are those without
look-ahead step. Further explanations and the exact computational complexities are given in
Section4.3.3. Note that random sampling implicitly selects more samples in regions with
higher density.

As summarized in Table4.1, none of these algorithms without look-ahead step in-
corporates all three query criteria stated in the introduction. First, uncertainty sampling
methods only take into account the distance to the decision boundary, which is mea-
sured by inducing a pseudometric on feature space: the distance between two points
is quantified by the absolute difference of their posterior class probabilities. Second,
density-based approaches obviously incorporate density information but still do not take
into account the number of labeled points in the neighborhood of x. Finally, query-by-
committee algorithms consider the distance to the decisionboundary implicitly: Differ-
ent members of a committee disagree more on the prediction atan instancex if it is close
to the decision boundary. However, more and more labels for instances in regions with
a well-established decision boundary may be requested and exploration of feature space
is neglected. Moreover, density information is not considered in the standard setting of
query-by-committee.

Several proposals have been made to avoid that too greedy an AL strategy overlooks
large regions in feature space. In [138], the AL strategy switches between an explo-
ration and an exploitation step with a certain probability,whereas in [31], theTUV is
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a weighted mean of an exploration and an exploitation term. Other approaches cluster
the data once prior to the AL process [64], several times during AL [134] or before each
iteration step [15]. All this can help to avoid to completely overlook large regions in fea-
ture space that would be classified incorrectly by too greedya refining of the decision
boundary.

4.3.2 Approaches With One-Step Look-Ahead

An approach with look-ahead step is proposed in [153], where theTUV of x is large
iff the posterior predictions at the points inU\{x} are far from0.5 whenx is added to
the training set. This idea is combined with SSL in [193]. In [73], the TUV of x is
defined as the resulting expected change in the classifier output at the points inU\{x}
whenx is added to the training set. AL strategies for 1-nearest neighbor classification
are presented in [111], where the two proposed definitions of theTUV are similar to
the ones in [153] and [73].

The above look-ahead methods optimize the choice on the instance to be labeled next
by brute force and thereby implicitly consider the three query criteria.

4.3.3 Comparing the Groups

The computational cost of the AL strategies with look-aheadstep are substantially
higher due to the additional loop. To be more precise, letftrain(l) and ftest(l) be
the computational complexity for training a particular classifier with l samples and
evaluating it at one test point4, respectively. Then, the computational complexity for
choosing a point to be labeled isO(ftrain(l) + ftest(l)u) for methods without and
O(ftrain(l)+ ftest(l)u+ u|Y|(ftrain(l+1)+ (u− 1) · ftest(l+1))) = O(u|Y|ftrain(l+
1)+u2|Y|ftest(l+1)) for methods with look-ahead step.5 Simply put, methods without
look-ahead havelinear complexity in the number of unlabeled pointsu, whereas the
complexity of methods with look-ahead isquadraticin u.

The slower look-ahead methods empirically seem to perform better than the ap-
proaches without look-ahead step. The authors of [153] show this for their strategy
by comparing it to uncertainty sampling and query-by-committee, where all methods
are implemented based on a naïve Bayes classifier. In [111], the proposed look-ahead
approach is compared to two different variants of uncertainty sampling and performs
best on three out of the four investigated real-world data sets.

4Note that the evaluation of a classifier may depend on the number of training points. Hence,ftest may
depend onl.

5Note thatO(f(l)) 6= O(f(l + 1)) if f increases exponentially withl.
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4.3.4 Comparison to DEAL

We propose an AL strategy that, on one hand, has the computational complexity of
methods without look-ahead step, and, on the other hand, considers all three selection
criteria stated above in a principled way. The latter is achieved in a unified framework
without the necessity of clustering the data or switching explicitly between exploitation
and exploration. Instead, we employ a single classifier thatprovides not only an esti-
mate for the posterior class probabilities but also an estimate for theuncertaintyof that
estimate which depends on the number of labeled instances inthe neighborhood. As
assumed in the next section, we require adistributionalestimate for the posterior class
probabilityp(Y = 2|x), i.e. a second-order distribution whose mean corresponds to the
posterior point estimate and thus is related to the distanceof x to the decision boundary
and whose spread is related to the number of labeled points inthe neighborhood ofx.
An example of how such a distribution can be obtained is presented in Section4.5.

4.4 Active Learning with Distributional Estimates

4.4.1 Assumptions

As defined in Section4.2, let L = {(x1, y1), . . . , (xl, yl)} be a set of labeled samples
andU = {xl+1, . . . , xl+u} a large set of unlabeled observations. For each labeled set
L, we assume the existence of a classifier that for anyx ∈ X provides us not only with
a point estimate for the posterior class probabilities, butin fact with adistributional
estimate of the posterior class probabilities. To simplifynotation, we tacitly assume
that this estimate has a density

g2|x(q) =
d

dq
P(p̂(Y = 2|x) ≤ q), q ∈ [0, 1]

and refer tog2|x as distributional estimate. Examples forg2|x are shown in Fig.4.1.
However, note that the AL strategy is defined forany distribution and we will use an
example of a discrete distribution below to motivate a definition.

The distributional estimateg2|x encodes ouruncertaintyin the predicted class prob-
ability at x, in particular for eachx ∈ U , and plays a key role in our AL strategy. In
addition, asl + u ≫ 1, we assume that the marginalp(x) can be estimated, e.g. via
some non-parametric density estimatep̂(x).
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4.4.2 Classifier Losses and Their Estimates

The expected loss of a classifierh is defined in Eq. (4.1). Thelocal loss at anyx ∈ U is
given by

Rx(h) = p(x) [L21p(Y = 2|x)1{h(x) = 1}+ L12p(Y = 1|x)1{h(x) = 2}]

where the indicator function1{s} equals 1 ifs is true and 0 otherwise. In this subsec-
tion, we define two different estimates of the local loss, onebased on point estimates
of posterior class probabilities and one based on distributional estimates. These two
definitions are crucial ingredients for the definition of theTUV in the DEAL strategy.

First of all, let

p̂(Y = 2|x) =
∫ 1

0

q g2|x(q)dq (4.3)

be the point estimate for the posterior class probability corresponding to the distribution
g2|x. Given this point estimate, the classifier that minimizes the expected loss (globally
and locally) is

ho(x|g2|x) =
{

2 if p̂(Y = 2|x) > θ
1 otherwise

(4.4)

and the usual plug-in estimate of the expected local loss of apoint estimate is given by

R̂x(p̂(Y = 2|x)) = p̂(x)min {p̂(Y = 2|x)L21, p̂(Y = 1|x)L12} (4.5)

To motivate the definition of the expected local loss of a distributional estimate, con-
sider the following artificial discrete example withP(p̂(Y = 2|x) = 0.2) = 0.5 =
P(p̂(Y = 2|x) = 0.9), θ = 0.5 and p(x) = 1. It follows from Eq. (4.3) that
p̂(Y = 2|x) = 0.55; we assign class 2 (according to Eq. (4.4)) and expect to incur
a local loss of0.45 at x (Eq. (4.5)). This is indeed the best we can achieve if we have
to take a classification decision based on the current information. But, giveng2|x, what
local loss do we expect to incur on average if we had more information, e.g. if we had
the opportunity to query some labels atx or in its neighborhood? More specifically,
what local loss do we expect to incur on average, given the current information based
on the distributional estimate, if we knew the true posterior instead of having a distribu-
tional estimate of it? Or, from a different point of view, what local loss do we expect to
incur if we had the possibility to label so many points in the neighborhood ofx that we
can be almost sure to predict the same class as the Bayes classifier (Eq. (4.2))? In this
simplified example, where the posterior is either0.2 or 0.9 with equal probability, the
expected local loss would then be0.5 · 0.2 + 0.5 · 0.1 = 0.15.

Transferring these considerations to a distributional estimate with densityg2|x, where
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Figure 4.1: Examples of distributional estimatesg2|x at three unlabeled pointsx1, x2, x3. The
TUV of the DEAL strategy is large forg2|x3

and small for bothg2|x1
andg2|x2

. In contrast,
theTUV of uncertainty sampling (expressed according to Eq. (2.2)) is larger forg2|x2

than
for g2|x3

, asp̂(Y = 2|x2) = 0.5 andp̂(Y = 2|x3) = 0.533.

summation becomes integration, yields

R̂x(g2|x) = p̂(x)

∫ 1

0

g2|x(q)[qL211{q ≤ θ}+ (1− q)L121{q > θ}]dq (4.6)

= p̂(x)

∫ 1

0

g2|x(q)R̂x(q)dq (4.7)

for the expected local loss of a distributional estimateg2|x.

4.4.3 Proposed Active Learning Strategy

In the previous subsection, we defined the expected local loss of a point estimatêp(Y =
2|x) (Eq. (4.5)) and that of a distributional estimateg2|x(q) (Eq. (4.6)). Next, we propose
an AL criterion based on these two quantities. To motivate the approach, consider the
distributional estimates for three different unlabeled instancesx1, x2 andx3 shown in
Fig. 4.1. Assuming thatθ = 0.5 and equal densitŷp(x) at all three points, which of
these instances should be labeled next?

It is not very interesting to query a label atx1. First,p̂(Y = 2|x1) is relatively close to
1, i.e.,x1 is relatively far from the decision boundary. Second and more important, the
probability that the true posteriorp(Y = 2|x) is smaller than0.5 is almost0 according
to the distributional estimateg2|x1 . Hence, according to Remark4.1, it is not sensible to
query a label atx1 because all we need to know aboutp(Y = 2|x1) is if it is larger or
smaller than0.5. Requesting a label atx2 is not very sensible either, although this point
is very close to the decision boundary: Even if the additional label atx2 influenced the
final class prediction in the neighborhood ofx2, this would have little impact on the
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final classification performance. This is because we can be very certain that the true
posteriorp(Y = 2|x2) is very close to0.5 according to the distributional estimateg2|x2 .
At x3, based on the (current) point estimatep̂(Y = 2|x3) = 0.53, we assign class 2. But
as there is a relatively high probability thatp(Y = 2|x3) is small, which would lead to
a large local loss atx3, an additional label may have a large impact on the local loss. In
particular, it is more advisable to query a label atx3 than atx2 although the posterior
estimate atx3 is further from0.5 than atx2.

The expected local loss of the point and the distributional estimate atx1, x2 andx3
are presented in the table on the right hand side of Fig.4.1. Based on these examples,
we observe that the knowledge about the true posterior classprobability p(Y = 2|x)
is close to optimal if the differenceRx(p̂(Y = 2|x)) − R̂x(g2|x) is small. The larger
Rx(p̂(Y = 2|x)) − R̂x(g2|x), the larger is the expected decrease of the local loss at the
point x when knowing the posterior exactly instead ofg2|x only, and hence the more
interesting an additional label atx becomes. This observation motivates the following
definition of theTUV , which is the central expression of this chapter:

TUV (x) := R̂x(p̂(Y = 2|x))− R̂x(g2|x) (4.8)

We prove in Proposition4.2 in the appendix that theTUV defined in Eq. (4.8) has
the following properties:

TUV (x) ≥ 0 (4.9)

and

TUV (x) = 0 ⇔
∫ θ

0

g2|x(q)dq = 1 or
∫ 1

θ

g2|x(q)dq = 1 (4.10)

Eq. (4.9) means that the information gain from a label is always non-negative. Further,
Eq. (4.10) exactly reflects Remark4.1: For an optimal class prediction, exact knowledge
of the true posterior is not needed. It suffices to know only whether it is larger or smaller
thanθ. The fact that the whole mass ofg2|x is concentrated either belowor aboveθ
indicates that indeed sufficiently many labels have been queried in the neighborhood of
x and that querying a label atx is a waste of resources.

4.4.4 Beta Distributional Estimates

To make things more explicit, we assume thatg2|x(q) = g2|x(q|a, b) follows a Beta
distribution with parametersa andb. This distribution family arises as the result of the
derivations in Section4.5. The probability density functions of the Beta distributionfor
different parameters settings are plotted in Fig.4.2.
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Figure 4.2: Probability density function of the Beta distribution for different parametersa and
b. If a andb are approximately equal, the point estimate of the posterior class probability
p(Y = 2|x) is close to0.5. The confidence in this estimate is high ifa and b are large,
whereas the confidence is low for smalla andb. The larger the difference betweena andb,
the closer the point estimates ofp(Y = 2|x) are to 0 or 1. Typically, the sum ofa andb will
be relatively large (small) ifx is in a region of relatively high (low) density with respect to the
current set of labeled samples.

The expected value of a Beta distribution equals

p̂(Y = 2|x) = a

a+ b

and the corresponding expected local loss then is

R̂x(p̂(Y = 2|x)|a, b) = p̂(x)min

(
aL21

a+ b
,
bL12

a+ b

)

The expected local loss of the distribution is given by

R̂x(g2|x(q|a, b)) = p̂(x)

[∫ 1

0

ĝ2|x(q|a, b)[qL211{q < θ}+ (1− q)L121{q > θ}]dq
]

(4.11)

= p̂(x)

[
aL21

a+ b
Iθ(a+ 1, b) +

bL12

a+ b
I1−θ(b+ 1, a)

]

(4.12)

whereIθ(a, b) is the incomplete Beta function with parametersa andb at positionθ (see
e.g. [2, chap. 26.5] or Appendix A in Section4.8). The calculations to obtain term (4.12)
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Figure 4.3:The training utility valueTUV (x|a, b) = R̂x(p̂(Y = 2|x)|a, b)−Rx(ĝ2|x(q|a, b))
(Eq. (4.13)), wherea andb are the parameters of a Beta distribution. Some examples with
different parameter settings are plotted in Fig.4.2. In both panels,̂p(x) = 1 andθ = 0.5;
the right panel shows the contour lines of the natural logarithm of the function. Given equal
densityp̂(x), we prefer requesting a label for a pointx at which the point estimate for the
posterior is close to0.5 and the variance of the distributional estimate is high (a approximately
equalsb and both values are small) over a pointx with equal posteriors and low variance (a
approximately equalsb and both values are large) over a pointx where the posterior estimates
are far away from0.5 (a is much larger thanb or vice versa).

from term (4.11) are shown in Appendix A in Section4.8. Finally,

TUV (x|a, b) = R̂x(p̂(Y = 2|x)|a, b)− R̂x(g2|x(q|a, b))

= p̂(x)

[

min

(
aL21

a+ b
,
bL12

a+ b

)

− aL21

a+ b
Iθ(a+ 1, b)− bL12

a+ b
I1−θ(b+ 1, a)

]

(4.13)

TheTUV for different parametersa andb is plotted in Fig.4.3. If a andb are small
and approximately equal, then the posterior estimate is close to0.5 and the variance of
the distributional estimate is high; thus theTUV is large. TheTUV is small if either
a andb are unequal (resulting in point estimates that differ from0.5) or their sum is
large (resulting in a low variance of the distributional estimate). The dependence on the
mean of the Beta distribution and the sum of its parameters is made explicit in Fig.4.4
to compare theTUV of DEAL to that of uncertainty sampling.



4.5 Implementation Using Kernel Density Classification 59

−
30

−3
0

−3
0 −30

−30

−
30

−
20

−2
0

−2
0 −20

−20

−
20

−10

−1
0

−
10 −

10
−10

−10

−5

−5

−
5

−
5

−
5

−
5

−5

−5−3

−3

−
3

−3

−3−2 −2

a/(a+b)

a+
b

0 0.2 0.4 0.6 0.8 1

20

40

60

80

100

0.1
0.1

0.
1

0.1
0.1

0.1

0.2

0.
2

0.2

0.2

0.
2

0.2

0.3
0.3

0.3

0.3

0.
3

0.3

0.4
0.4

0.4

0.
4

0.4
0.4

0.
5

0.5
0.5

0.
5

0.5
0.5

a/(a+b)

a+
b

0 0.2 0.4 0.6 0.8 1

20

40

60

80

100

Figure 4.4: The left panel shows the contour lines of the natural logarithm of the train-
ing utility value, i.e. the contour lines of the logarithm ofTUV (x|a, b) = R̂x(p̂(Y =
2|x)|a, b)− R̂x(ĝ2|x(q|a, b)), in dependence of the mean of the Beta distribution and the sum
of its parameters, which are measures of the distance to the decision boundary and the predic-
tion uncertainty, respectively. It is assumed thatp̂(x) = 1 andθ = 0.5. If a/(a+b) is fixed, the
largera+b, the less important the label at the respective point in feature space. Ifa+b is fixed,
the closera/(a+b) to0.5, the more important a label. The contour lines for theTUV of uncer-
tainty sampling are shown in the right panel. We haveTUV (x|a, b) = 0.5−|a/(a+b)−0.5|
(see Eq. (2.2)). In the case of random sampling, the function is constant in the whole plane.

4.5 Implementation Using Kernel Density
Classification

Implementing the active learning strategy presented in Section 4.4 requires distribu-
tional estimatesg2|x for the posterior class probabilities at each unlabeled instance
x ∈ U . In this section, we derive such estimates for kernel density classification. To this
end, we approximate the sampling distribution of the posterior point estimate.

Kernel density classification is a standard generative method. First, the priorsp(Y =
i), i ∈ {1, 2}, and the densitiesp(x|Y = i) are estimated for each class. Then, a point
estimate for the posteriorp(Y = 2|x) can be obtained from Bayes’ theorem:

p̂(Y = 2|x) = p̂(x|Y = 2)p̂(Y = 2)

p̂(x|Y = 1)p̂(Y = 1) + p̂(x|Y = 2)p̂(Y = 2)
(4.14)

In kernel density classification, the class priors are usually estimated by the sample
fractionsni/n = |{(x, y) ∈ L : y = i}|/n, the class densities by kernel density
estimation:

p̂(x|Y = i) =
1

ni det(H)

∑

xj :yj=i

K
(
H−1(x− xj)

)
(4.15)

whereH is a nonsingular bandwidth matrix andK is a multivariate kernel function.
A standard assumption in kernel density estimation is that the training samples are



60 4 Distributional Estimate Active Learning

drawn i.i.d. from(X, Y ). For the following derivations, although not satisfied in active
learning, this is also assumed for the labeled samples inL. The key for deriving dis-
tributional estimatesg2|x for posterior class probabilities is the insight that the density
estimate given by Eq. (4.15) is of course not deterministic but depends on the random-
ness of the training data. This uncertainty in the density estimate p̂(x|Y = i) then
carries over to uncertainty in the posterior point estimatep̂(Y = 2|x).

We start with modeling the uncertainty in density estimation with respect to the ran-
domness of the training setL. For a fixed pointx, the expected value and the variance
of the sampling distribution of̂p(x|Y = i) as defined in Eq. (4.15) can be approximated
by [80, chap. 3]

EL[p̂(x|Y = i)] ≈ p(x|Y = i) +
1

2
µ2(K)tr(HTHp(x|Y=i)H) (4.16)

and

VL[p̂(x|Y = i)] ≈ 1

ni det(H)
‖K‖22p(x|Y = i) (4.17)

respectively, whereµ2(K) :=
∫

Rd K(x)xTxdx, tr(A) is the trace of the matrixA,
Hp(x|Y=i) is the Hessian ofp(x|Y = i) atx and‖K‖22 :=

∫

Rd(K(x))2dx.
To estimate a full distribution instead of the moments only,we fit a Gamma distribu-

tion to the sampling distribution of̂p(x|Y = i) using the two moments in Eqs. (4.16)
and (4.17). The exact choice of the distribution family is arbitrary here since the true
distribution of p̂(x|Y = i) for finite sample sizes is not known [80, chap. 3]. How-
ever, there are four reasons that make the Gamma distribution a good candidate:(i)
Both p̂(x|Y = i) and the Gamma distribution take values in[0,∞), (ii) the distribu-
tion family is sufficiently rich to approximate other distributions well,(iii) the Gamma
distribution allows for the Bayesian treatment of the density estimation below, and(iv)
the Gamma distribution model allows for an analytical derivation of the posterior un-
certainty according to Eq. (4.22). As is common for computing confidence intervals
[80, chap. 3] forp(x|Y = i), we assume that the Hessian ofp(x|Y = i) in Eq. (4.16)
vanishes atx, implying thatp̂(x|Y = i) is an unbiased estimate ofp(x|Y = i), and we
use a plug-in estimate forp(x|Y = i) to estimate the variance in Eq. (4.17). The two
parametersk andϑ of the Gamma distribution can be easily determined by a moment
estimator:

kϑ
!
= p̂(x|Y = i)

kϑ2 !
=

1

ni det(H)
p̂(x|Y = i)‖K‖22

We obtain

k =
ni det(H)

‖K‖22
p̂(x|Y = i)
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and

ϑ =
‖K‖22

ni det(H)

and thus

p̂(x|Y = i)
.∼ Γ

(
ni det(H)

‖K‖22
p̂(x|Y = i),

‖K‖22
ni det(H)

)

(4.18)

where
.∼ means “is approximately distributed as”. Weighting the density estimate by the

class priors, it follows from (4.18) and the scaling property of the Gamma distribution
that

ni

n
p̂(x|Y = i)

.∼ Γ

(
ni det(H)

‖K‖22
p̂(x|Y = i),

‖K‖22
n det(H)

)

(4.19)

Note the following summation property of the Gamma distribution: LetXi ∼ Γ(ki, ϑ),
i = 1, . . . , n, be independent Gamma-distributed random variables; then,

n∑

i=1

Xi ∼ Γ

(
n∑

i=1

ki, ϑ

)

(4.20)

So, the first parameter of the distribution in (4.19) can be interpreted as the sum of the
individual “density contributions” from the training data, i.e.nip̂(x|Y = i), weighted
by det(H)/‖K‖22. This insight be used now to motivate Eq. (4.21).

A general problem in AL is that there are only labels from one class at the beginning,
at least after the first iteration of the process. Then, the first parameter of the Gamma
distribution in (4.19) is zero and the distribution is not defined in this case. To overcome
this problem, we assume a constant prior density throughoutfeature space for each class
that is updated by the individual “density contributions” from the training data according
to Property (4.20). I.e., we add a small constantδ > 0, which yields

ni

n
p̂(x|Y = i)

.∼ Γ

(

δ +
ni det(H)

‖K‖22
p̂(x|Y = i),

‖K‖22
n det(H)

)

(4.21)

It will turn out below that the uniform density prior in feature space corresponds to
choosing a prior for the distributional estimate over the posterior class probabilities and
thus that the exact choice of the additive constant in the first parameter of the Gamma
distribution in Eq. (4.21) can be interpreted very well.

Next, we derive how the distribution statement in (4.21) for the weighted class den-
sities carries over to an estimate for the sampling distribution of the posterior point
estimatep̂(Y = 2|x). It is shown in [130] that for two independent random variables
X1 ∼ Γ(k1, ϑ) andX2 ∼ Γ(k2, ϑ),

X2

X1 +X2

∼ Beta(k2, k1) (4.22)
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Applying this result to Eqs. (4.14) and (4.21) yields an approximation to the sampling
distribution of posterior point estimates in kernel density classification:

P(p̂(Y = 2|x)) ≈ Beta

(

δ +
n2 det(H)

‖K‖22
p̂(x|Y = 2), δ +

n1 det(H)

‖K‖22
p̂(x|Y = 1)

)

(4.23)

This approximation is evaluated in Fig.4.5, where it is compared to the empirical
sampling distribution of̂p(Y = 2|x) using a toy data example. Note that we revert to
Beta(δ, δ) if there are no labels in the neighborhood ofx. Settingδ = 1/2 corresponds
to Jeffreys’ uninformative prior [88] for the inference of the binomial proportion. The
distribution in (4.23) can thus be interpreted as a posterior which is obtained from a
Bayesian prior that has been updated by counting the labels (weighted by a kernel func-
tion) in the neighborhood ofx.

Using the common Gaussian RBF kernel and settingH := h · Id leads to

p̂(x|Y = i) =
1

nihd

∑

xj :yj=i

1
√

(2π)d
e
− 1

2

∥

∥

∥

x−xj

h

∥

∥

∥

2

(4.24)

for the density estimate in Eq. (4.15). Plugging this into Eq. (4.23) with δ = 1/2 yields
the principal result of this section:

P(p̂(Y = 2|x)) ≈ Beta
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d
2
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(4.25)
where it is used that‖K‖22 = 2−dπ− d

2 . This distribution is used as distributional estimate
for the implementation of the proposed active learning strategy, i.e.g2|x = g2|x(q|a, b).

Finally, note an interesting connection to the derivationsin Chapter3. If we used the
box or hypersphere kernel in Eq. (4.15), which corresponds to anε-NN classifier, we
would obtain

p̂(x|Y = i) =
1

nihd

∑

xj :yj=i

c−1
d 1{‖xj − x‖ ≤ h}
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Figure 4.5: Comparison of the empirical sampling distribution ofp̂(Y = 2|x) (represented
by the histograms) and the estimated sampling distribution in Eq. (4.23) resulting from the
Gamma distribution model (solid lines). In each panel, instances of classes 1 and 2 are sam-
pled from a two-dimensional Gaussian distribution with meanµ1 andµ2, respectively, and
equal unit covariance matrix. The number of samples is equal ton1 andn2, respectively,
andx = (0, 0)T . The histograms are computed from10,000 repetitions, i.e.10,000 different
realizations of the training set. For each realization,p̂(Y = 2|x) is obtained using a Gaussian
RBF kernel withH = 0.1 · Id for the density estimate of each of the two classes (see also
Eq. (4.24)). For the approximation of the sampling distribution according to Eq. (4.23), the
two density estimates are replaced by their known true values and the constant δ has been set
to 0 to make the simulations independent from the prior.

for the density estimate, wherecd is the volume of thed-dimensional unit ball, and

P(p̂(Y = 2|x))

≈ Beta



1/2 +
∑

xj :yj=2

1{‖xj − x‖ ≤ h}, 1/2 +
∑

xj :yj=1

1{‖xj − x‖ ≤ h}



 (4.26)
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for the sampling distribution, where it is used that‖K‖22 = c−1
d . I.e., if the labels in a

neighborhood ofx are weighted equally (corresponding to the employed kernel), the pa-
rameters of the Beta are given by 1/2 plus the number of labels of the respective classes
in the neighborhood ofx. This is the posterior distribution of a standard Bayesian infer-
ence model for the success parameter of the Binomial distribution (see e.g. [20, chap. 2])
using Jeffreys’ prior [88] Beta(1/2, 1/2) and has already been derived in Eq. (3.3).

4.6 Results

In this section, we present experimental results for the DEAL strategy. Using a toy data
example, we first demonstrate that DEAL trades off exploration and exploitation in a
natural way (Section4.6.1). Then in Sections4.6.2and4.6.3, using real world data sets
from the UCI repository [9] and Caltech-4 [60], we compare the proposed approach to
random sampling and uncertainty sampling. Finally, we compare DEAL to LSS (look-
ahead selective sampling) in Section4.6.4, a method previously proposed in [111].

For the implementation of kernel density classification, anisotropic Gaussian kernel
and the normal reference rule [159, chap. 6] for the kernel width is used. The density
p̂(x) in Eq. (4.13) is estimated by kernel density estimation with the same kernel type
and width.

In all experiments, we always start with an empty setL of labeled points. In case of
uncertainty sampling, the first query points are selected randomly until there is at least
one label for each class. In case of DEAL, the first label is automatically requested for
the point with the highest density estimate; afterwards, the strategy can be applied even
if there are labels of one class only. If not stated otherwise, all results are obtained from
2× 5-fold cross validation.

4.6.1 XOR Problem

Uncertainty sampling is known to query too many labels in regions with low density
[122] and it neglects exploration in favor of exploitation. We demonstrate the latter
using the well-known two-dimensional XOR problem and show that DEAL overcomes
this problem. Here, each class is a mixture of two equally weighted Gaussians with
unit covariance. The mean values are(−3,−3) and(3, 3) for class 1 and(−3, 3) and
(3,−3) for class 2. The number of instances is 150 for each class resulting in a (initially
unlabeled) training set of 240 and a test set of 60 samples foreach run. The realizations
are normalized to unit variance in each dimension.

Typical patterns for label query order of the two different AL strategies (both resulting
from the same training set) are plotted in Fig.4.6. It can be observed that DEAL explores
feature space thoroughly, whereas uncertainty sampling completely overlooks the class
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Figure 4.6: Label query order of the first 50 labels for two different AL strategies, imple-
mented with kernel density classification. Note that the data is normalized to unit variance
in each dimension. Uncertainty sampling completely overlooks the relevance ofthe observa-
tions in the second quadrant of the coordinate system as labels are queried only at the decision
boundary. In contrast, the proposed strategy thoroughly explores thefeature space. Note in
particular that all 4 clusters have been visited after 4 label queries and that the corresponding
query points are close to the cluster centers due to considering density information. Labels
5–8 are again distributed over all 4 clusters, this time at some distance to the previous labels
in direction of the decision boundary.

2 realizations in the second quadrant of the coordinate system due to too greedy a label
query at the decision boundary. This problem could not even be solved by incorporating
density information: The predictions for the posterior class probabilityp(Y = 2|x) of
unlabeled points are all equal to 0 or very close to 0 for the unlabeled training points in
the second quadrant. In contrast, the proposed approach additionally takes the number
of labeled points in the neighborhood into account which results in a more systematic
exploration of feature space. Nevertheless, instances close to the decision boundary
are labeled as well within the first queries. The averaged learning curves for the XOR
problem with respect to accuracy are plotted in Fig.4.7. Note in particular that, for the
reasons discussed above, uncertainty sampling leads to even worse results than random
sampling.

4.6.2 UCI Data Sets

Above, we demonstrated the advantages of DEAL over uncertainty sampling using a
simple toy data example. Now, we show that these considerations indeed have an im-
pact on the performance in real world problems. To this end, we compare the proposed
approach to uncertainty and random sampling on 32 data sets from the UCI data base.
Each of the different data sets is preprocessed as follows:(i) Categorical variables with
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Figure 4.7: Learning curves for the XOR problem with respect to accuracy

more than two outcomes are replaced by dummy variables,(ii) missing values in cat-
egorical variables are treated as a separate outcome,(iii) missing values in continuous
inputs are replaced by the respective mean, and(iv) the data is normalized to unit vari-
ance in each dimension. If a data set has more than two classes, the classes are joined to
create two-class problems in a way such that the new classes are approximately equally
abundant.

As kernel density estimation is known to be problematic in high dimensions [159,
chap. 7] and inappropriate for discrete or binary features,the data is additionally pre-
processed by principal component analysis. For automatically determining the number
of principal components to be used, we applied a scheme presented e.g. in [191]6 and
[81, chap. 14]. To avoid oversimplified data sets, the minimum number of components
is set to two.

To the best of our knowledge, there is no standard method for measuring AL perfor-
mance. We propose to compare the different strategies by averaging over the perfor-
mance after each label query or, equivalently, by computingthe area under the learn-
ing curves. This measure honors both initial steepness of the learning curve and early
convergence of the performance to a high level. As we compareonly the relative per-
formance of different strategies for the same classification algorithm, the measure is
equivalent to the one proposed in [12] and also used in [156] (called “deficiency”). Ex-
ample learning curves for the data sets “Iris” and “Optdigits” are shown in Fig.4.8. The
results for all data sets are presented in Table4.2, The corresponding learning curves
are shown in Appendix B of this chapter in Section4.9.

It can be seen that the proposed strategy performs better than uncertainty sampling
and random sampling for most of the data sets. We compare the different strategies as
recommended in [45]. The Friedman test yieldsp = 0.001 for the hypothesis of equal

6In [191], it is called the “resampling scheme via permutation”.
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Dataset DEAL Unc. Sampl. RS # samples d

Anneal 0.924 (1) 0.880 (3) 0.898 (2) 898 17
Audiology 0.753 (1) 0.726 (3) 0.736 (2) 226 9

Autos 0.704 (1) 0.672 (3) 0.675 (2) 205 14
Balance-Scale 0.733 (2) 0.730 (3) 0.734 (1) 625 2
Breast-Cancer 0.649 (3) 0.662 (1) 0.652 (2) 286 16

Breast-W 0.963 (1) 0.958 (2) 0.952 (3) 699 2
Dermatology 0.987 (1) 0.985 (2) 0.973 (3) 366 4

Diabetes 0.708 (1) 0.696 (3) 0.699 (2) 768 2
Ecoli 0.886 (1) 0.870 (3) 0.875 (2) 336 3
Glass 0.723 (1) 0.715 (2) 0.686 (3) 214 4

Heart-C 0.757 (2) 0.759 (1) 0.733 (3) 303 8
Hepatitis 0.826 (2) 0.818 (3) 0.828 (1) 155 7

Hypothyroid 0.928 (1) 0.920 (2) 0.913 (3) 3772 11
Ionosphere 0.903 (1) 0.882 (3) 0.884 (2) 351 5

Iris 0.990 (1) 0.982 (2) 0.981 (3) 150 2
Led24 0.689 (1) 0.674 (3) 0.689 (2) 1000 2
Letters 0.679 (1) 0.655 (3) 0.658 (2) 20000 5
Liver 0.556 (1) 0.544 (2) 0.542 (3) 345 2

Lymph 0.710 (2) 0.732 (1) 0.702 (3) 148 9
Optdigits 0.941 (1) 0.907 (3) 0.913 (2) 5620 18
Pendigits 0.927 (1) 0.903 (2) 0.880 (3) 7494 5

Primary-Tumor 0.670 (2) 0.674 (1) 0.659 (3) 339 9
Satimage 0.951 (2) 0.957 (1) 0.919 (3) 6435 3
Segment 0.874 (1) 0.774 (3) 0.845 (2) 2310 3

Sonar 0.776 (1) 0.765 (3) 0.773 (2) 208 8
Soybean 0.902 (1) 0.899 (2) 0.884 (3) 683 20
Vehicle 0.800 (1) 0.790 (2) 0.781 (3) 846 4

Vote 0.882 (1) 0.877 (2) 0.874 (3) 435 8
Vowel 0.753 (1) 0.604 (3) 0.725 (2) 990 16

Waveform 0.874 (2) 0.875 (1) 0.864 (3) 5000 2
Wine 0.948 (1) 0.942 (2) 0.935 (3) 178 3
Yeast 0.727 (1) 0.723 (2) 0.718 (3) 1484 2

Mean Rank 1.281 2.250 2.469

Table 4.2: Average accuracy of different AL strategies, implemented with kernel density clas-
sification. Numbers in brackets refer to the Friedman test; the number of samples comprises
all folds, i.e. trainingand test set, andd is the feature space dimension after having applied
principal component analysis.
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Figure 4.8: Learning curves of the three different AL strategies with respect to accuracy
for data sets “Optdigits” and “Iris”. Learning curves for the remaining UCI data sets are
shown in Appendix B of this chapter in Section4.9. The results for “Iris” are typical for
data sets with well-separated classes. Uncertainty sampling and random sampling achieve
good classification with relatively few labels, but DEAL needs even fewerlabels. The data
set “Optdigits” is an example where sampling at the decision boundary only more or less
completely fails at the beginning of the AL process, yielding results that are even worse than
those for random sampling. In contrast, DEAL is very efficient from the beginning.

performance of all strategies. For comparing all classifiers to each other, we use the
two-tailed Nemenyi test. Its critical difference for the0.01 significance level is equal
to 0.728. This means that DEAL performs significantly best and that the performance
of uncertainty sampling does not differ significantly from random sampling (the critical
difference for the0.1 significance level is0.513).

4.6.3 Caltech-4

Figure 4.9:Example images of the 4 object categories of Caltech-4. From left to right: air-
plane, car, face, motorbike.
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Figure 4.10:Learning curves for three possible groupings of the 4 categories. DEAL performs
best in all cases and US second best. The top horizontal line is the asymptoticaccuracy of the
classifier, with all training data labeled (estimated by 10-fold CV).

Grouping RS US DEAL
{1, 2} vs. {3, 4} 0.818 0.846 0.877
{1, 3} vs. {2, 4} 0.799 0.829 0.840
{1, 4} vs. {2, 3} 0.803 0.836 0.872

Mean Rank 3.000 2.000 1.000

Table 4.3: Average accuracy of the compared AL strategies for 3 different groupings of the
Caltech-4 data set with preprocessing as described in text. The best andsecond best method
are indicated using bold font and italics, respectively.

Caltech-4 is a well established standard benchmark for object categorization [60] and
has also been used in AL [93]. This dataset consists of 4 different image groups: air-
planes (category 1; 800 images), rear views of cars (2; 1155), frontal faces (3; 435) and
motorbikes (4; 798). Fig.4.9shows one example from each category. We represent the
images by the “Color and Edge Directivity Descriptor” (CEDD) [34]. The resulting 144-
dimensional features were then projected to the 17 leading principal components using
the same method as in Section4.6.2. To create challenging two-class problems with
convoluted decision boundaries, we grouped the 4 categories in three possible ways.

The resulting learning curves are shown in Fig.4.10, based on 10-fold CV with 5
repetitions. Table4.3 compares the performances based on the area under the learning
curve. It shows that, for all groupings, DEAL performs best,uncertainty sampling
second best and random sampling worst.
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4.6.4 USPS Zip Data

In this section, we compare DEAL to LSS as proposed in [111]. To this end, we
create challenging classification problems with many data clusters by using various
dichotomies of the digits from the USPS zip corpus [102]. The groupings are(1)
{0, 1, 2, 3, 4} vs.{5, 6, 7, 8, 9} (0-4 vs. rest),(2) {1, 2, 3, 4, 5} vs.{6, 7, 8, 9, 0} (1-5 vs.
rest),(3) {1, 3, 5, 7, 9} vs.{0, 2, 4, 6, 8} (odd vs. even),(4) {0, 1, 7, 8, 9} vs.{2, 3, 4, 5, 6}
(all digits contained in my date of birth vs. rest),(5) {1, 3, 4, 5, 9} vs.{2, 6, 7, 8, 0} (the
first five different digits ofπ vs. rest). Similar to the previous sections, the handwrit-
ten digits from USPS zip corpus are projected onto their firstprincipal components to
reduce the dimensionality of the digitized images (see e.g.[81, chap. 14]). For automat-
ically determining the number of principal components to beused, we apply the same
method as before. This yieldsd = 39. For a second experiment, we determine the num-
ber of features by visual inspection of the eigenvalues. This yieldsd = 12. The size of
the unlabeled pool is 7291, the test set comprises 2007 samples. The results, averaged
over three runs, are shown in Figs.4.11–4.15.

The underlying classifier of LSS is weighted (by distance) 2-nearest-neighbor (2-
NN). If θ = 1/2, the class assignment is equivalent to 1-NN. Therefore, 1-NN is chosen
as the underlying classifier for random sampling in the context of LSS. It can be ob-
served from the two different learning curves of random sampling (1-NN for LSS and
kernel density classification for DEAL) that the performance of the underlying classifier
with respect to the USPS Zip Data is approximately equal. Sometimes, kernel performs
slightly better, sometimes 1-NN. Hence, performance differences can be attributed to
the AL strategy itself. It can be observed that DEAL generally performs better for
all five partitions of the data in both 12 and 39 dimensions. Very rarely, the learning
curves of the strategies intersect, e.g., LSS performs better than DEAL with grouping
(5) (Fig. 4.15) in 12 dimensions with about 50 labels.

4.7 Conclusions

In this chapter, we have derived a novel two-class AL strategy, which considers not
only density information and the distance to the decision boundary when selecting an
instance to be labeled, but also the number of labeled pointsin the neighborhood. All
this information is taken into account by requiring that theunderlying classifier provide
a distributional estimate for each unlabeled point leadingto a natural definition of the
training utility value.
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Figure 4.11: Comparison of DEAL with Look-Ahead Selective Sampling, grouping “0-4 vs.
rest”. DEAL has steeper learning curves than LSS. Since the underlyingclassifiers (kernel
density classification for DEAL and 1-NN for LSS) show approximately equal classification
performance for random sampling, the difference of the AL performance can be attributed to
the AL strategy itself.
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Figure 4.12: Comparison of DEAL with Look-Ahead Selective Sampling, grouping “1-5 vs.
rest”. Further explanations can be found in the text and in the caption of Fig. 4.11.

To the best of our knowledge, this is the first generic approach which considers the
number of labeled points in the neighborhood of a yet unlabeled point in linear time
complexity (for a single request) with respect to the total number of unlabeled points.

The proposed implementation of our strategy is a counter example to the claim made
in [54] that a single model cannot be used to estimate a second-order uncertainty: The

“type of uncertainty regarding the identity of the appropriate classifica-
tion, is different than uncertainty regarding the correctness of the classifi-
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Figure 4.13: Comparison of DEAL with Look-Ahead Selective Sampling, grouping “odd vs.
even”. Further explanations can be found in the text and in the caption of Fig. 4.11.
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Figure 4.14: Comparison of DEAL with Look-Ahead Selective Sampling, grouping{0, 1, 7,
8, 9} vs. {2, 3, 4, 5, 6}. Further explanations can be found in the text and in the caption of
Fig. 4.11.

cation itself. For example, sufficient statistics may yieldan accurate0.51
probability estimate for a classc in a given example, making it certain that
c is theappropriateclassification7. However, the certainty thatc is thecor-
rect classification is low, since there is a0.49 chance thatc is the wrong
class for the example. A single model can be used to estimate only the sec-
ond type of uncertainty, which does not correlate directly with the utility of
additional training.”

The proposed AL approach significantly outperforms uncertainty and random sam-

7“Appropriate” classification refers here to the right classassignment in the sense of decision theory.
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Figure 4.15: Comparison of DEAL with Look-Ahead Selective Sampling, grouping{1, 3, 4,
5, 9} vs. {2, 6, 7, 8, 0}. Further explanations can be found in the text and in the caption of
Fig. 4.11.

pling. This has been shown by a comprehensive evaluation of the proposed strategy.
Moreover, we have shown that it performs better than “Look-Ahead Selective Sam-
pling” for the demanding USPS Zip data. In [151], it is shown that the strategy also
outperforms “error reduction sampling” [153]8. Note that, in general, one cannot expect
that one strategy is best on all data sets: Of course, strongly favoring exploitation over
exploration (like in uncertainty sampling) can be a good strategy if the distribution of
the data is sufficiently simple.

The observation in Table4.2 that random sampling sometimes outperforms uncer-
tainty sampling is consistent with other AL evaluations. [156] compare seven different
AL strategies (including uncertainty sampling and query bycommittee), implemented
using logistic regression; none of these is always better than random sampling although
only seven non-artificial data sets are considered. In [75], random sampling is thebest
approach on two out of nine data sets compared to four other (batch mode) AL strategies.
And in [164], one specific implementation of uncertainty sampling is the only (sequence
labeling) AL strategy out of 15 which outperforms random sampling on all eight data
sets. However, this “successful” strategy yields poor average results compared to the
others.9

8This is a self-citation. The corresponding results are not presented in this chapter because the “error
reduction sampling” experiments have been implemented by Kevin Kunzmann.

9The last two sentences are not contradictory!
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4.8 Appendix A: Proofs

First, we prove Eq. (4.9) in Section4.4, which states thatRx(p̂(Y = 2|x)) ≥ R̂x(g2|x),
i.e. that the expected loss of a distribution is smaller or equal to the expected loss of
the point estimate given by the mean of this distribution andthus, the training utility
value is always non-negative. The inequality immediately follows from Proposition4.2
which also states when equality holds. The latter proves Eq.(4.10). As the distribution
of X is not assumed to be continuous in Proposition4.2, but can be discrete or mixed
continuous/discrete, we use notation from measure theory to perform integration with
respect to an arbitrary probability measure.

Proposition 4.2. LetX be a real-valued random variable withP(0 ≤ X ≤ 1) = 1.
Further, letL12, L21 > 0 and

θ =
L12

L12 + L21

∈ (0, 1)

Then,
∫

L21X 1{X ≤ θ}dPX +

∫

L12(1−X)1{X > θ}dPX

≤L21E(X)1{E(X) ≤ θ}+ L12(1− E(X))1{E(X) > θ}

Equality holds iffP(X ≤ θ) = 1 or P(X ≥ θ) = 1.

Proof. First of all,E(X) exists since
∫
|X|dPX ≤

∫
dPX = 1 <∞.

LetE(X) ≤ θ. Then,
∫

L21X 1{X ≤ θ}dPX +

∫

L12(1−X)1{X > θ}dPX

=

∫

X≤θ

L21XdP
X +

∫

X>θ

L21
θ

1− θ
(1−X)dPX

≤L21

∫

X≤θ

XdPX + L21

∫

X>θ

X

1−X
(1−X)dPX

=L21E(X)

Equality holds iff
∫

X>θ

θ

1− θ
(1−X)dPX =

∫

X>θ

X

1−X
(1−X)dPX ⇔ P(X > θ) = 0
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Now, letE(X) > θ. Then,
∫

L21X 1{X ≤ θ}dPX +

∫

L12(1−X)1{X > θ}dPX

=

∫

X≤θ

L12
1− θ

θ
XdPX +

∫

X>θ

L12(1−X)dPX

≤L12

∫

X≤θ

1−X

X
XdPX + L12

∫

X>θ

(1−X)dPX

=L12(1− E(X))

Equality holds iff
∫

X≤θ

1− θ

θ
XdPX =

∫

X≤θ

1−X

X
XdPX ⇔ P(X < θ) = 0

Now, we perform the calculations to obtain term (4.12) from term (4.11) in Sec-
tion 4.4. Let a, b > 0. The Beta function is defined as

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

(see e.g. [2, chap. 6.2]) whereΓ(·) is the well-known Gamma function. The incomplete
Beta function is defined as

Iθ(a, b) =
1

B(a, b)

∫ θ

0

qa−1(1− q)b−1dq

(see e.g. [2, chap. 26.5]) whereθ ∈ [0, 1]. Using these definitions, we have

p̂(x)

∫ 1

0

[1{q ≤ θ}qL21 + 1{q > θ}(1− q)L12]p2|x(q|a, b)dq

= p̂(x)

[∫ θ

0

L21

B(a, b)
qa(1− q)b−1dq +

∫ 1

θ

L12

B(a, b)
qa−1(1− q)bdq

]

= p̂(x)

[
B(a+ 1, b)L21

B(a, b)

∫ θ

0

1

B(a+ 1, b)
qa(1− q)b−1dq

+
B(a, b+ 1)L12

B(a, b)

∫ θ

0

1

B(a, b+ 1)
qa+1(1− q)bdq

]

= p̂(x)

[
aL21

a+ b
Iθ(a+ 1, b) +

bL12

a+ b
I1−θ(b+ 1, a)

]



76 4 Distributional Estimate Active Learning

4.9 Appendix B: Learning Curves

Here, we present the learning curves that yielded the results in Table4.2. For each data
set, the proposed AL strategy is compared to uncertainty andrandom sampling.
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Figure 4.16:Learning curves for data sets “Anneal” and “Audiology”
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Figure 4.17:Learning curves for data sets “Autos” and “Balance-Scale”
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Figure 4.18:Learning curves for data sets “Breast-Cancer” and “Breast-W”
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Figure 4.19:Learning curves for data sets “Dermatology” and “Diabetes”
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Figure 4.20:Learning curves for data sets “Ecoli” and “Glass”
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Figure 4.21:Learning curves for data sets “Heart-C” and “Hepatitis”
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Figure 4.22:Learning curves for data sets “Hypothyroid” and “Ionosphere”
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Figure 4.23:Learning curves for data sets “Iris” and “Led24”



4.9 Appendix B: Learning Curves 79

0 100 200 300 400 500
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of labeled training samples

A
cc

ur
ac

y

Letters

 

 

DEAL
Uncertainty Sampling
Random Sampling

0 50 100 150 200 250 300
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Number of labeled training samples

A
cc

ur
ac

y

Liver

 

 

DEAL
Uncertainty Sampling
Random Sampling

Figure 4.24:Learning curves for data sets “Letters” and “Liver”
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Figure 4.25:Learning curves for data sets “Lymph” and “Optdigits”
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Figure 4.26:Learning curves for data sets “Pendigits” and “Primary-Tumor”
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Figure 4.27:Learning curves for data sets “Satimage” and “Segment”
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Figure 4.28:Learning curves for data sets “Sonar” and “Soybean”
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Figure 4.29:Learning curves for data sets “Vehicle” and “Vote”
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Figure 4.30:Learning curves for data sets “Vowel” and “Waveform”
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Figure 4.31:Learning curves for data sets “Wine” and “Yeast”





5 Fast Outlier Detection with
Random Forests

In this chapter, we present a novel outlier detection algorithm for random forests. To
that end, we pick up in idea that has already been introduced in Chapter3: discrimina-
tive learning against additional artificial data from a reference distribution. In contrast
to Chapter3, the method presented here is based on standard RF and can thusbe used
“out of the box”. It is evaluated on toy data and a range of real-world data sets from the
UCI machine learning repository [9]. The proposed outlier detection performs signifi-
cantly better and is faster than Breiman’s random forests procedure based on proximity
matrices [25].

The method is used later on in Chapter6 for active learning in industrial quality
control.

5.1 Introduction

Real world data often is not as reliable as desired. Among the possible reasons for this
are measurement errors, observations not stemming from theintended sample popula-
tion or miscalculations in data preprocessing. Data analysis may be corrupted by these
outliers and thus may lead to wrong conclusions. Hence, identifying outliers is an im-
portant first step of statistical analysis. In applicationssuch as fraud detection, outlier
detection techniques are even at the core of statistical analysis, as the data is expected
to contain unusual samples which are to be detected.

Intrinsically, there can be no universal mathematical definition of “outlyingness”: The
notion of “outlyingness” is heavily determined by the application and the correspond-
ing interpretation of the data. Moreover, data sets differ in input dimension, variable
types, underlying distributions or proportion of outliers. Therefore, a long list of outlier
detection schemes have been proposed (see e.g. [32], [16], [83], [85], [77], [177]) and
it is advisable to run a “battery of (multivariate) methods”[144], [16] with different
properties on a data set to detect anomalies.

In [82], an outlier is described as “an observation that deviates so much from other
observations as to arouse suspicion that it was generated bya different mechanism”.
Hence, it may be appropriate to consider as outliers those observations that have a low
probability under the distribution estimated from the remaining samples. The suspected

83



84 5 Fast Outlier Detection with Random Forests

outliers can be detected either by standard density estimation methods or, as proposed
here, by drawing artificial data from a uniform reference distribution [81, chap. 14]
and learning the dichotomy between observed and artificial data, using any classifier
which outputs estimates for the posterior class probabilities (see Eq. (5.1)). We show
that implementing this idea with random forests maintains the benefits of this classifier,
namely the ability of capturing interaction effects [67], [117] and robustness against
noise features [110].1 Moreover, the proposed algorithm has lower computational com-
plexity and performs significantly better on the tested real-world data sets than the orig-
inal outlier detection scheme proposed by Breiman [25] using the same classifier (Sec-
tion 5.4.2).

5.2 Random Forests

Consider a classification problem with training setT = {(x1, y1), . . . , (xn, yn)}, where
the feature vectorsx1, . . . , xn ∈ X ⊆ R

d and their class labelsy1, . . . , yn ∈ Y are
independent realizations of the random vector(X, Y ).

5.2.1 Algorithm

The random forest classifier [24] is an ensemble learner consisting ofM decision trees.
To build an individual tree, a bootstrap sample is drawn fromthe training set and recur-
sively divided until all leaf nodes contain instances of a single class only. For the split
at a certain node,dtry < d out of thed feature dimensions are randomly selected and
the best split according to the Gini criterion on thesedtry variables is used. An estimate
for the posterior class probability at an arbitrary pointx ∈ X is obtained by passingx
down all the trees and dividing the number of trees that vote for the respective class by
M . The majority vote yields a class assignment. The probability for a training instance
of being included in a bootstrap sample is approximately1− e−1 = 0.632 (see e.g. [81,
chap. 7]). The remaining points are called “out of bag” (oob)for that tree and can be
used for an approximate error measurement (oob estimate).

1Another advantage is its ease of training; whereas other machine learning algorithms like support
vector machines need to be calibrated carefully, random forests are virtually parameter-free: There
exists a rule of thumb for the number of split features tried at each node (namely, the square root of the
feature space dimension) and the number of trees can be set ashigh as affordable without the danger
of overfitting. (There is some evidence that random forests do overfit [161], but this is certainly not
due to too large a number of trees [81, chap. 15].)
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5.2.2 Consistency

It is proven in [18] by counter example that random forests (with majority vote) are not
consistent (i.e. there exists a distribution of(X, Y ) such that the class assignment rule
above does not converge to the Bayes classifier (in probability) asn andM tend to in-
finity).2 It follows immediately that the estimates for the posteriorclass probabilities as
stated above do not converge to the true posterior class probabilities for every distribu-
tion of (X, Y ). Ford = 1, random forests are not even consistent for “non-pathological”
examples, e.g. if the class distributionsp(x|Y = yi) are Gaussian. Therefore, we as-
sume thatd ≥ 2 throughout this chapter.

It is emphasized in [17] that it is not known whether random forests are consistent if
d ≥ 2 and if the distribution ofX has a Lebesgue density. In either case, it is reasonable
and common practice to estimatep(y|X = x) as explained above in Section5.2.1and
the methods presented in the following sections would not become meaningless if ran-
dom forests were not consistent. Empirically, random forests output the most accurate
estimates for posterior class probabilities among 10 different classification algorithms
investigated in [135].

5.2.3 Breiman’s Proposal for Outlier Detection

Let SZ = {z1, . . . , znZ
} be a given set ofd-dimensional observations, some of which

may be outliers. An algorithm for detecting these based on random forests has been
proposed in [25]. To that end, all the unlabeled observations inSZ are assigned to class
1. A second setSB of the same cardinality is then created by independently drawing
bootstrap samples from the dimension-wise feature values of the first set (thus effec-
tively drawing samples from the product of the empirical marginal distributions). This
set is assigned to class 0. A random forest is then trained to discriminate between these
two sets, and for each tree it is noted in which leaf nodez1, . . . , znZ

end up (no matter
if the point is oob or not for a certain tree). The proximity between two points inSZ

is defined as the number of trees in which they both end up at thesame terminal node,
divided by two. The proximity between a point and itself is set to 1. An “outlyingness”
measureoi for the points inSZ is then obtained by

1. computingoi as the inverse of the sum of squared proximities betweenzi and all
points (includingzi) for all i = 1, . . . , nZ ,

2. determining the median ofo1, . . . , onZ
and the mean absolute deviation from the

median, and

3. normalizingoi by subtracting the median and dividing by the mean absolute de-
viation. Values smaller than 0 are set to 0.

2 It is shown in [26] under which conditions a simplified version of random forests is consistent.
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Considering the complexity with respect to the size ofT (n = |SZ | + |SB| = 2nZ),
the actual tree constructions requireO(n log n) operations (see e.g. [81, chap. 9]). But
the complexity of the complete algorithm scales asO(n2) due to the cost of computing
the(nZ × nZ)-proximity matrix ando1, . . . , onZ

.
The algorithm is for example applied in the context of network intrusion detec-

tion [189] (in a slightly different manner3). An interesting by-product of Breiman’s
algorithm—not considered further here—is that the proximity matrix defines a Eu-
clidean distance between the observations which can be usedfor clustering. This has
for example been applied successfully in [162].

5.3 Random Forest Outlier Detection

We first briefly recall the idea of transforming density estimation into a supervised learn-
ing problem [81, chap. 14] that has already been presented in Section3.4and then refine
it to obtain a new random forest outlier detection algorithm.

Assume a binary classification problem, i.e.Y = {0, 1}. If a classifier outputs an
estimate for the posterior class probabilityp(y|x), Bayes’ formula yields

p(Y = 1|x) = p(x|Y = 1)p(Y = 1)

p(x)
=

p(x|Y = 1)p(Y = 1)

p(x|Y = 0)p(Y = 0) + p(x|Y = 1)p(Y = 1)

⇔ p(x|Y = 1) =
p(x|Y = 0)p(Y = 0)

p(Y = 1)
· p(Y = 1|x)
p(Y = 0|x) (5.1)

Let SZ = {z1, . . . , znZ
} be a set ofnZ realizations of ad-dimensional random vector

Z. In order to estimate the density ofZ at a pointx ∈ X , we only need to draw a sample
SU of nU = n − nZ points from some known reference distribution whose support
encompasses that of the training set distribution, train a classifier on the union setSZ

vs.SU (with labels 1 and 0, respectively) and determine the posterior class probability
p(y|X = x). After estimating the class priorsp(Y = 0) and p(Y = 1) by nU/n
andnZ/n, and making a prediction forp(y|X = x), all terms on the right hand side of
Eq. (5.1) are approximately known and allow for a density estimate ofZ ≡ [X|(Y = 1)]
at the pointx.

When using random forests for the above scheme, as in 1-nearest neighbor, the tree-
wise prediction for a sample is always its label if that sample is not oob for that tree.
Hence, when estimatingp(x|Y = 1) at a pointx ∈ SZ , it is advisable to consider only
those trees for which(x, 1) is out of bag.

3As the data has been labeled with respect to different network services, these labels have been used to
train a random forest. The outliers within each class can then be determined without drawing samples
from a reference distribution.
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As explained in [81, chap. 14], the accuracy of the density estimate depends on the
choice of the reference distribution. Here, we simply pick the uniform distribution on
a hyper-rectangleR coveringSZ , i.e. SZ ⊂ R. This may lead to sparse sampling of
the artificial data if the feature space dimensiond is high and/or the side lengths of
R are large, but it ensures that generating the artificial datais as easy and as fast as
for the original method (see Section5.2.3). Moreover, this simple sampling scheme
opens an easy possibility of dealing with both continuous and discrete features in the
same data set (see the remark at the end of this section). Notethat the numbernU of
uniform variates plays the role of a smoothing parameter comparable to the bandwidth
of a kernel density estimate: It trades off bias and variance(see e.g. [81, chap. 6]). For
random forests, the variance of the estimates can also be decreased by building each tree
with a different random sampleSU .

As p(x|Y = 0) is constant for a uniform reference distribution, the “degree of out-
lyingness” can be expressed as a negative monotonic transformation of the density es-
timatesp̂(x|Y = 1) for all x ∈ SZ . Simply taking the estimates for the posterior class
probability p(Y = 0|x) is a special case which may make it comfortable to specify a
certain threshold above which a point is regarded as an outlier. This also avoids division
by 0 in Eq. (5.1).

It follows immediately that, for a “consistent” outlier detection, we do not need to
demand that random forests be consistent, but only thatp(Y = 1|x) > p(Y = 1|x′)
implies

v1|x
M

>
v1|x′

M
asn,M → ∞

wherevi|x denotes the number of tree-wise votes for classi atx (i.e.v0|x + v1|x =M ).4

Computing the density estimate for a pointx ∈ X costs onlyO(n log n) for the tree
construction andO(log n) for the evaluation. Hence, since the number of query points
for outlier detection is equal tonZ , the cost of the proposed method for density esti-
mation is stillO(nZ log nZ), whereas Breiman’s proposal for outlier detection requires
O(n2

Z) computations (see Section5.2).

Remark. The derivations in this section have assumed thatX andZ are continuous
random vectors. If features are discrete (but ordered) or even binary, counting measure
and Lebesgue measure are mixed up and sampling the referenceclass from a rectangle
should be avoided. However, this problem is easily solved bydrawing random variates
from a uniform distribution with respect to counting measure, i.e. from a multinomial
distribution with equal probabilities. The feature type can be determined with simple
heuristics such that it does not need to be specified manuallyfor a particular data set.
All results presented in Section5.4 are obtained automatically without providing any
feature type information.

4 Note an important difference to the derivations in Chapter3. There, we counted samples from the
training set, whereas here, we count numbers of trees.
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5.4 Empirical Evaluation

5.4.1 Data

For motivating the proposed outlier detection scheme, we use various toy data sets.
These are described in the following Section5.4.2. For the actual statistical evaluation,
we use 24 different data sets from the UCI machine learning repository [9]. In order
to create two-class from multi-class problems, only the twoclasses with most instances
are considered. If classes are equally abundant the ones with the lower class labels are
taken. Features that take a single value (i.e. that have zerovariance) in the reduced
data set are removed. The data is additionally preprocessedas follows:(i) Categorical
features with more than two outcomes are replaced by dummy variables, where missing
values are treated as a separate outcome,(ii) missing values in continuous features are
replaced by the respective mean values and(iii) each variable is normalized to unit
variance.

5.4.2 Results

In this section, we compare the proposed outlier detection scheme with the original
random forest (see Section5.2and [25]) andk-nearest neighbor outlier detection. The
latter is chosen for comparison due to easy interpretability and good empirical results
[56]. As proposed in [56], we measure the outlyingness of a pointz ∈ SZ by theaverage
distance to itsk nearest neighbors and choosek = 3 if not stated otherwise. For the
proposed algorithm, the number of treesM is set to 1000 in all experiments (hence,
eachz ∈ SZ is oob in 368 trees on average) and the hyper-rectangleR is chosen as the
smallest hyper-rectangle that coversSZ + [−0.1, 0.1]d. At the beginning,nU = nZ ; the
parameter is varied at the end of the section.

5.4.2.1 Fixing nU = nZ

Toy data We first consider different toy data sets, which favor the proposed method
and are chosen to motivate it. Projections of the data sets ontheir first two dimensions
are shown in Fig.5.1.

In example (a), the “normal” data is uniformly distributed on the101-dimensional unit
hypercube. A single outlier is generated by adding 1 to the first feature of the first of 200
samples. The proposed method identifies the outlier in most of the 200 repetitions (see
Table5.1) as it is relatively far away from the normal samples in the projection to the
first dimension. The original outlier detection scheme is only slightly better than pure
guessing because the combination of random forests and sampling from the empirical



5.4 Empirical Evaluation 89

0 2 4
−1

0

1

2

3

4

5

x(1)

x(2
)

(a)

0 2 4
−3

−2

−1

0

1

2

3

x(1)

x(2
)

(b)

−2 −1 0 1 2 3
−2

−1

0 

1 

2 

3 

x(1)

x(2
)

(c)

−2 −1 0 1 2 
−2

−1

0 

1 

2 

x(1)

x(2
)

(d)

Figure 5.1: The plots show the projections on the first two dimensions of four differenttoy
data examples. “Normal” data (inliers) are represented by crosses, the outlier by a circle. The
data generating process is described in the text. Note that the data has beennormalized to unit
variance in each dimension after sampling.

Median Rank Mean Rank
❳
❳
❳
❳

❳
❳
❳
❳

❳
❳
❳
❳

Method
Example

(a) (b) (c) (d) (a) (b) (c) (d)

Proposed RF method 1 1 1 1 3.3 12.7 2.6 1.4
Original RF method 94.5 74 1 39 96.1 83.7 10.4 126.2

3-NN 37 15.5 48.5 26.5 49.1 34.6 144.3 130.2

Table 5.1: Median outlyingness rank of the single outlier sample for four different toydata
examples. The number of samplesnZ (and thus the range of outlyingness ranks) is equal to
200 in data sets (a) and (b) and equal to 1000 in data set (c) and (d). The number of repetitions
is 200.
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marginal distributions ignores the distance of the outlierto the normal data in the first
dimension; any normal sample that has the lowest or highest value in any dimension is
considered as outlying as the outlier itself. The nearest neighbor method suffers from
the curse of dimensionality.

Example (b) is a modification of the first one. The first featureis the same is before
(including the generation of the outlier) but the other 20 features are independently
normally distributed with unit variance. The results are similar but—despite the reduced
number of dimensions—the proposed method performs a littlebit worse than before
since the normal data itself can contain some samples that look like outliers.

In example (c), the first two features of the outlier are drawnfrom the uniform distri-
bution in the unit square, the “normal” data uniformly from the four adjacent squares.
Two independent noise features from the uniform distribution are added.k-nearest
neighbor is totally blind to the interaction effect (note inparticular the huge difference
between mean and median rank; the method completely fails ifthe outlier is as close to
the normal samples as in Fig.5.1(c)), whereas the median rank of the proposed method
is again 1. The original random forest method performs relatively well in this example
as many samples of the artificial class fall in the middle square due to sampling from the
marginal empirical distributions. This yields a strong discrimination between the two
classes in this area.

These things change in example (d), where the first two features of the “normal” data
are drawn uniformly from the set[−2, 2]2\[−1, 1]2, those of the outlier uniformly from
the square[−1, 1]2. We add again two independent noise features from the uniform
distribution. The original random forest method performs worst now as relatively few
samples from the artificial data fall in the square in the middle. The proposed method
captures the interaction effect, whereas the nearest neighbor method again fails. Both
methods perform better than in the third example because theexpected distance between
the outlier and the closest “normal” samples is larger than in the example before due to
the larger middle square.

Real world data and statistical analysis The statistical analysis on real-world
data is based on two-class classification problems. One out of the n− points of the
minority class5 is added to then+ instances of the majority class. After having masked
the labels, each of the compared algorithms yields a measureof outlyingness for all
n+ + 1 points and all points whose score is above a certain threshold are considered an
outlier. This is repeatedn− times for all instances of the minority class and ROC curves
are obtained by varying the threshold.

The data set “Balance-Scale” [167] (available from the UCI machine learning repos-
itory [9]) has been generated with strong interaction effects to model psychological

5In case of class balance, the class with smaller label value is chosen as “outlier class”.
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Figure 5.2:ROC curves of the data set Balance-Scale when using classes “L” and “B”

experiments. Each of the 4 features can take the values1, . . . , 5 and a sample belongs
to class “L” (“Left”, 288 samples altogether) if the productof the first to two features is
larger than the product of features 3 and 4. A sample belongs to class “B” (“Balance”,
49 samples) if the products are equal.6 The ROC curves for this data set are shown in
Fig. 5.2. It can be observed that the proposed algorithm captures theinteraction effect
best. The 1-nearest neighbor outlier detection algorithm performs as bad as pure guess-
ing. Areas under curve are0.896, 0.775, 0.847 and0.523 in the order of the labels in the
legend.

The areas under curve (AUC) for 24 UCI data sets are presented inTable5.2 and
Fig. 5.3. Note that some of the ostensibly poor results are due to significant overlap of
the respective classes in feature space. In order to comparethe results statistically, we
employ a simple two-sided sign test [45]. The proposed method performs significantly
better than Breiman’s method for outlier detection (p = 2.77·10−4), even if the algorithm
(which first computes a proximity matrix and then determinesthe outliers based on
these distances) is combined with the proposed uniform sampling scheme7 (p = 0.023).
Recall from Section5.3that the algorithm has lower computational complexity, too. The
results of the 3-nearest neighbor method do not differ significantly from the proposed
detection scheme (p = 0.678).

6 The 288 samples of the remaining class “R” have been discarded for this analysis here to make the
task more difficult. The results for the standard procedure of using the two most abundant classes (see
Section5.4.1) —here “L” and “R”—are reported in Table5.2.

7 It is mentioned in [166] that a uniform sampling scheme was included in an earlier version of Brei-
man’s FORTRAN code and that it is still implemented in the R package “randomForest” [107] as a
second option.



92 5 Fast Outlier Detection with Random Forests

Dataset AUCprop AUCBr AUCBr,unif AUC3-NN n+/n− d
Anneal 0.753 0.965 (–) 0.473 (+) 0.963 (–) 684/99 57

Audiology 0.966 0.757 (+) 0.923 (+) 0.956 (+) 57/48 66
Autos 0.792 0.537 (+) 0.711 (+) 0.770 (+) 67/54 63

Balance-Scale 0.994 0.959 (+) 0.983 (+) 0.989 (+) 288/288 4
Breast-W 0.979 0.793 (+) 0.985 (–) 0.991 (–) 458/241 9

Dermatology 1.000 0.928 (+) 1.000 (+) 1.000 (±) 112/72 33
Ecoli 0.979 0.569 (+) 0.957 (+) 0.989 (–) 143/77 6

Heart-C 0.832 0.682 (+) 0.842 (–) 0.786 (+) 165/138 23
Hepatitis 0.800 0.699 (+) 0.846 (–) 0.819 (–) 123/32 39

Ionosphere 0.966 0.953 (+) 0.950 (+) 0.974 (–) 225/126 33
Iris 1.000 0.847 (+) 0.983 (+) 1.000 (±) 50/50 4

Led24 0.935 0.838 (+) 0.934 (+) 0.929 (+) 114/110 24
Letters 0.993 0.969 (+) 0.956 (+) 0.998 (–) 813/805 16
Lymph 0.802 0.772 (+) 0.801 (+) 0.777 (+) 81/61 37

Optdigits 0.950 0.987 (–) 0.934 (+) 0.984 (–) 572/571 56
Pendigits 1.000 0.999 (+) 1.000 (+) 1.000 (±) 780/780 16
Satimage 0.983 0.864 (+) 0.996 (–) 0.999 (–) 1533/1508 36
Segment 0.953 0.934 (+) 0.920 (+) 0.979 (–) 330/330 18
Soybean 0.884 0.854 (+) 0.795 (+) 0.886 (–) 92/91 56
Vehicle 0.943 0.894 (+) 0.847 (+) 0.949 (–) 218/217 18

Vote 0.845 0.421 (+) 0.902 (–) 0.782 (+) 267/168 48
Vowel 0.984 0.992 (–) 0.573 (+) 0.997 (–) 90/90 27

Waveform 0.810 0.604 (+) 0.820 (–) 0.798 (+) 1692/1655 40
Wine 0.954 0.597 (+) 0.943 (+) 0.943 (+) 71/59 13

Table 5.2: Comparison of the areas under ROC curve of 24 different real-world data sets
between—from left to right—the proposedO(n logn) method, Breiman’sO(n2) outlier de-
tection, Breiman’sO(n2) outlier detection combined with the proposed uniform sampling
scheme and 3-nearest neighbor outlier detection. For each data set, the algorithms are runn−

times on a set withnZ = n+ + 1 observations and results are averaged over all these runs.
(+) and (–) indicate whether the proposed method performs better or worse, respectively ((±)
in case of equality). Compared over all data sets, the proposed method performs significantly
better than both variants of Breiman’s algorithm and not significantly differently from the
nearest neighbor method. Some of the results are also presented graphically in Fig. 5.3.
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Figure 5.3: Graphical comparison between the results of the proposed method, Breiman’s
outlier detection scheme and a nearest neighbor method. Each diamond represents one data
set. It can observed that the two methods based on random forests perform quite differently,
whereas the results of the proposed method are similar to the ones of 3-nearest neighbor.

5.4.2.2 Varying nU

Now, we investigate the influence ofnU on the performance of the proposed algorithm.
To that end, we vary the “sample factor”s = nU/nZ and run the same simulations
as above withs = 0.1, 0.3, 1, 3, 10. The results are reported in Table5.3 and it can
be observed that they are not very sensitive with respect to the number of additional
points from the reference class. The data sets “Anneal” and “Waveform” are notable
exceptions, where the AUC differences between best and worst results are larger than
0.1. Interestingly, although the feature space dimensiond is relatively high for both
data sets and the number of observationsnZ is in the same range, the “Anneal” results
improve for increasings, whereas the “Waveform” results deteriorate. In Fig.5.4, it
is investigated if there is a connection between the featurespace dimensiond and the
optimal sample factors.

Despite the robustness of the method with respect to the parameter choice, it may be
reasonable to optimizes, for example by cross-validation methods. The most obvious
possibility is to use the oob error for the optimization. But this is a bad idea as it favors
extreme settings: The classification error is very low ifs is very small or very large
and almost all oob samples are classified as1 or 0, respectively. Instead, one can use
the area under the ROC curve as optimization criterion, which is invariant to a priori
class probabilities [23].8 Note that, if the number of samples from the artificial class
is low, additional samples from this class can be generated for the estimation of the

8Note that the AUC used here for parameter optimization and the AUC used for performance comparison
of the outlier detection methods are different. Here, the computation of the AUC is based on a
“standard” supervised two-class learning setting.
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Figure 5.4: The left panel compares the number of observationsnZ of a data set with its
feature space dimensiond. Each diamond represents one data set. No particular connection
can be observed. This is important for interpreting the plot in the right panel, where the
connection between the optimal “sample factor”s = nU/nZ (see results in Table5.3) andd
is investigated. There seems be a small positive correlation between these two, but there is
certainly no strong dependence.

AUC; these are—of course—not used for determining the outliers. Unfortunately, this
cross-validation scheme does not yield satisfactory results, as reported in Table5.3.

However,s = 1 is a good default choice with “Anneal” being one exception. For this
data set, the proposed (uniform) sampling scheme seems to yield too few artificial data
in the relevant regions in feature space. This can be inferred from Table5.2and Fig.5.3:
Breiman’s method achieves much better results for this data set when combined with his
sampling scheme.

5.5 Conclusions

In this chapter, we have presented an improved outlier detection scheme for random
forests. The method is based on the idea of adding random variates from a reference
distribution—which is uniform in our case—to the initial dataset.

Using various toy data sets, we have shown that interesting properties of random
forests, namely the ability of capturing interaction effects and robustness against fea-
ture noise, carry over to the proposed outlier detection scheme. A comparison to other
methods has been carried out on 24 real-world data sets from the UCI machine learning
repository. The outlier detection performance of the proposed method is similar to a
standard nearest neighbor novelty detection scheme and it performs significantly better
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Dataset s = 1 max∆ s min∆ s CV s d
Anneal 0.753 0.142 10 -0.076 0.1 0.894 (+) 10 57

Audiology 0.966 0.000 1 -0.006 0.1 0.966 (–) 10 66
Autos 0.792 0.000 1 -0.055 0.1 0.781 (–) 3 63

Balance-Scale 0.994 0.000 1 -0.007 0.1 0.987 (–) 0.1 4
Breast-W 0.979 0.009 0.1 -0.001 3 0.988 (+) 0.1 9

Dermatology 1.000 0.000 1 0.000 0.1 1.000 (±) 10 33
Ecoli 0.979 0.011 0.1 -0.038 10 0.953 (–) 3 6

Heart-C 0.832 0.000 1 -0.023 0.1 0.829 (–) 3 23
Hepatitis 0.800 0.036 3 -0.016 0.1 0.800 (±) 1 39

Ionosphere 0.966 0.011 0.3 -0.040 10 0.966 (±) 1 33
Iris 1.000 0.000 1 -0.034 10 1.000 (±) 1 4

Led24 0.935 0.022 0.1 -0.023 10 0.957 (+) 0.1 24
Letters 0.993 0.001 0.3 -0.002 0.1 0.992 (–) 10 16
Lymph 0.802 0.007 10 -0.021 0.1 0.809 (+) 10 37

Optdigits 0.950 0.013 0.1 -0.017 10 0.933 (–) 10 56
Pendigits 1.000 0.000 1 -0.000 10 1.000 (±) 3 16
Satimage 0.983 0.016 0.1 -0.013 10 0.969 (–) 10 36
Segment 0.953 0.000 1 -0.022 10 0.931 (–) 10 18
Soybean 0.884 0.014 10 -0.033 0.1 0.884 (±) 1 56
Vehicle 0.943 0.021 0.3 -0.024 10 0.965 (+) 0.3 18

Vote 0.845 0.028 0.1 -0.023 10 0.872 (+) 0.1 48
Vowel 0.984 0.011 10 -0.070 0.1 0.995 (+) 10 27

Waveform 0.810 0.000 1 -0.114 10 0.753 (–) 3 40
Wine 0.954 0.000 1 -0.028 0.1 0.954 (±) 1 13

Table 5.3: The results of the proposed outlier detection method for varying “sample factor”
s = nU/nZ . s = 1 corresponds to the parameter choice in the previous subsection. The
column “max∆” (“min∆”) shows the difference between the best (the worst) result among
all s and the default choices = 1; the corresponding value fors is reported to the right of the
column. The column “CV” shows the AUC ifs is determined according to a (unsuccessful)
cross validation scheme. “+”, “–” and “±” indicate if there is an improvement over the default
choices = 1. The last column shows the dimension of the data.
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than Breiman’s method based on a random forests proximity measure. In addition, the
proposed scheme has lower computational cost than Breiman’smethod.

In the next chapter, the proposed outlier detection algorithm is used as a part of a new
active learning strategy for defect detection.



6 An Active Learning Strategy for
Defect Detection

Human industrial quality control is always subjective and sometimes error-prone, and
the costly procedure may be automated using algorithmic analysis of images of pro-
duction parts. If supervised classification algorithms areemployed, many examples of
defective and intact parts need to be provided for classifiertraining. This calls for the
application of active learning. In this chapter, we presenta novel active learning strategy
that addresses three challenges in defect detection: initial absence of labels, class im-
balance and weak labels. It is implemented with standard random forest after extending
the training set with additional samples from a reference distribution as already made
use of in Chapters3 and5. The method achieves steep learning curves on the DAGM
contest benchmark data set.

6.1 Introduction

Quality control is an integral part of industrial mass production. To prevent the sales of
defective products, every single part must be inspected. Typical tasks in industrial qual-
ity control include completeness checks, precision measurements or surface inspection.
In order to automate the time-consuming, costly and subjective procedure ofhumanin-
spection [158], an image can be taken of each part and subjected to algorithmic analysis.
On the long list of possible applications are the assessmentof steel [145], stone counter-
tops [113], fabric [99], wood [168], ceramic tiles [186], cork [61], diode chips [109] or
semiconductors [103]. Here, we specifically concentrate on defects such as scratches,
stains and other irregularities on surfaces with stochastic texture.

Various methods for automated defect detection on texturedsurfaces have been pro-
posed; see [185] for a comprehensive review. Similar to the methods presented in [3],
[94], [97], [118], [146] and [180], we employ a learning-based approach. As will be
explained in detail in Section6.4, an image is divided into several patches, and each
patch is represented by a point in feature space.

For training, a statistical classifier for automated inspection requires a set of sample
patches (and thus images) of defective and intact parts, along with labels. We propose to
minimize the labeling effort in two ways: by requiring only “weak” labels that a human
expert can specify with little effort; and by obviating the labeling of parts with little

97
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novelty for the classifier.
More specifically, the definition of “weak” labels used here is as follows: the hu-

man annotator is instructed to provide labels not at pixel-precision, but by generously
outlining a defect in the image with an ellipse (see Fig.6.1). This approximate labeling
leads to false positive pixels, i.e. the ellipse may containboth defective and intact pixels,
whereas all pixels outside an ellipse should be intact.

Figure 6.1:Example of a weakly labeled image

To further reduce the labeling effort, we recur to active learning. An AL strategy that
is applied in the field of industrial optical inspection needs to comply with several re-
quirements. In the first iterations of standard AL algorithms, the samples to be labeled
are often selected at random until at least one labeled example of each class is available.
However, a distinctive feature of industrial inspection isthat, by economic necessity,
most samples from a production line are intact. Accordingly, if the imbalance between
the negative/intact and the positive/defect classes is extreme, chances of capturing a pos-
itive example in this random set are slim. Therefore, an appropriate AL strategy should
somehow explore the feature space from the beginning, i.e. before having obtained a
label from each class.

Further, if the penalty associated with false negative predictions by the trained clas-
sifier is high (as it is for any quality-conscious manufacturer), it is natural for the AL
strategy to employ a biased notion of “informativeness” andrequest labels particularly
for those samples that will help refine the decision boundaryin a way that prevents false
negative predictions. To this end, the strategy should request labels in the vicinity of
previously found positive examples where the decision boundary is not yet well deter-
mined (“exploitation”); but it should also request labels in those areas of feature space
that are far from the known labels of either class, to avoid overlooking positive examples
(“exploration”).

Finally, one feature of the setting described here is that labels always come in bags:
the proposed classifier acts on image patches, but the oraclelabels entire images.
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In summary, the AL strategy presented here is designed for

• active learning with

• weak labels that

• come in bags and reflect

• strongly imbalanced classes.

To the best of our knowledge, the proposed AL approach is the first that responds to the
demands in defect detection for industrial quality control. Although the AL strategy is
tailored to this application, it is of course not restrictedto the domain of defect detection
and may be applied to similar classification problems with imbalanced classes, bag-wise
and/or unreliable labels.

In Section6.2, the generic AL strategy is presented in detail and a specificproposal
for its instantiation is made in Section6.3 based on the random forest classifier [24].
In Section6.4, the representation of images in feature space and other technical details
that are relevant for the application of the approach in the area of defect detection are
elaborated. Experimental results are presented in Section6.5.

6.2 A Novel Active Learning Strategy for Defect
Detection

6.2.1 Problem Setup and Notation

Let (X, Y ) be a random vector with distributionp(x, y), wherex ∈ X ⊆ R
d is a feature

vector andy ∈ {−1, 1} its true class label. Letz ∈ {−1, 1} be the (possibly wrong)
weak label of a point or patchx, obtained from the human annotator. Points with label
z = −1 andz = 1 will be referred to as negative and positive, respectively.It follows
from the instructions to the human annotator described in the introduction that negative
labels are reliable whereas positive ones are not.

Further, let a bag/imageB containm points/patches, i.e.m realizations of(X, Y ).
The bagB is called positive if it contains at least one point with truelabel 1, i.e. if
|{(x, y) ∈ B : y = 1}| ≥ 1, negative otherwise.1 A positive bag corresponds to a defect
image, a negative bag to an image of an intact part.2

1Note that, since wrong labels only occur in positive bags, the labelsz (instead ofy) could equivalently
be used to define if a bag is positive or not.

2Note that this setting is very related to “multiple-instance learning” [5, 50], where some terms intro-
duced here are taken from. The only difference is that, in a standard setting of multiple-instance
learning, there is less information about the positive bags: only the image itself would be labeled,
corresponding to an “ellipse” which comprises the whole image.
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We assume that there is a large poolU of unlabeled bags available at the beginning
of the AL process and that all bags—labeled and unlabeled—are known prior to AL.3

Moreover, there is a small (possibly empty) setL of labeled points, selected from pre-
viously labeled bags. Note thatU contains bags, whereasL contains points.

Three significant challenges are pertinent to the application of AL in defect detection:

1. The (initially unlabeled) training data is highly imbalanced. There are many more
negative than positive bags inU . Moreover, while the intact images (and the intact
regions of defect images) share some common stochastic texture, the defects may
look very different. Thus, the positive points are not only rare but may also be
widely spread in feature space.

2. Some labels are false positive due to the weak labeling introduced in Section6.1.
In contrast, as discussed above, the labels of the negative samples are reliable.

3. Labels can only be provided in bags ofm data points since only entire images are
labeled on request.

The AL strategy presented below responds to these challenges. To avoid a potpourri of
heuristics, we assume that candidate methods that are used for the instantiation of the
strategy have the following two capabilities:

(C1) During the AL process (particularly at the beginning), there may only be negative
points inL. Hence, for each unlabeled pointx, the method should return some
measurêo(x) of “outlyingness” that evaluates how much the feature vector x is
consistent with the samples in the current training setL. We assume that large
values ofô(·) correspond to a high degree of “outlyingness”. Expressed ina
different way, the method should be able to perform one-class learning with the
additional ability of stating some confidence regarding thedecision whetherx
belongs to the learned class or not.

(C2) At some point of the AL process, there are labeled examples of both classes avail-
able. We demand that, for eachx, the method returns an estimatep̂(Y = 1|x)
for the posterior class probabilityp(Y = 1|x). In addition, the method should
quantify its uncertainty about this estimate, i.e., some measureû(x) should be
returned that is related to the number of samples from the current training setL in
the neighborhood4 of x. We assume that large values ofû(·) correspond to high
uncertainty or, expressed in a different way, low confidence.

3As explained in Section2.2, this scenario is calledpool-basedAL.
4As discussed in Chapter3, the notion of neighborhood depends on the employed learning algorithm.
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6.2.2 Proposed Active Learning Strategy

Our response to the challenges mentioned in Section6.2.1revolves around a two-step
AL strategy. In the first step (referred to as “query step” in the following), the bagB to
be labeled is selected fromU . After having obtained the labels of the points inB from
the human annotator, a second step (“elimination step”) follows during which only a
subsetBL ⊂ B of the requested labeled data points is actually added to thetraining set
L. This subset is selected via a criterion that retains only those data points that are most
important for learning the decision boundary and the subsequent iterations of the AL
process. At the same time, the criterion helps the learning algorithm to steer clear from
overfitting to false positive labels by discarding them fromthe training setL.5 As a side
effect of this selection process, the size ofL and thus computation time for updating the
classifier is considerably reduced. An overview of the complete AL procedure is given
in Fig. 6.2. It will be explained in detail in the rest of the section.

Initialization:

Obtain (weak) labels

for b1 random bags

Query Step:

Wish list with

b2 bags

no

no

Output 

classifier

Classifier

yes

yes

Query Step:
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Select a subset of 

labeled points
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Select a subset of 
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two-class learning
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found?
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Figure 6.2:Overview over the complete AL process. Details are given in the text.

6.2.2.1 Initialization

In practice,L is usuallynotempty prior to the AL process. For example, a few images of
production parts may have been taken to test the whole machinery for image acquisition
or the labeling tool. Some or all of the corresponding training points can be added toL.

5It has been shown empirically that classification performance can be improved if wrong labels are
eliminated from the training set (see e.g. [28, 195, 179]).



102 6 An Active Learning Strategy for Defect Detection

The AL process is already initialized at this point and we canproceed with the query
step as described below.

If L is empty for some reason, we obviously need to decide on the first one or—more
generally—the firstb1 bags fromU that labels are requested for. Unsupervised learning
techniques like outlier detection [83, 13] or cluster analysis [57, 65] could be used to
find interesting structures in the unlabeled data and thus tochoose thoseb1 bags that
minimize or maximize some optimality criterion. For sake ofsimplicity, the AL process
may be initialized by drawingb1 bags fromU at random.

There are two possible outcomes: either allb1 bags are negative or at least one of
them is positive. As illustrated in Fig.6.2, if all labeled bags turn out to be negative,
i.e. theb1 ·m initial data points are realizations of the distribution ofthe negative class,
the algorithm proceeds with one-class learning (C1). If there are samples of the positive
class, the algorithm proceeds with supervised learning (C2). In either case, we proceed
with a query step as described in the following.

6.2.2.2 Query Step

In the query step, bags of unlabeled examples are selected for subsequent labeling. It is
known a priori that most of the unlabeled bags inU are negative. In contrast, positive
bags are very rare and thus (almost) all of them are importantfor learning an appropriate
classifier. Therefore, the priority of the query step is to find as many positive bags and
thus positive samples as possible.

As discussed above, we need to distinguish two cases: either(i) all points inL are
negative or(ii) there is at least one positive point inL.

In the first case, we apply one-class learning. The basic tenet is that, if the positive
and negative class distributions do not overlap too much, outliers are more likely to
have a positive label than others. So, unlabeled data pointsthat are least consistent
with the points inL are the most interesting ones. According to (C1), the employed
learning algorithm indeed has the capability of estimatingthe “outlyingness”̂o(x) of
each unlabeled pointx. This property is made use of in the following.

In general, not much may be known a priori about the characteristics of the defects
that can occur. If a defect is small, it comprises only a few, possibly only one of the
patches of the defect image andô(x) is relativelysmall for almost all of the data points
in a positive bag. Hence, it is sensible to consider only the most “extreme” data point in
each bag and to define the training utility of a bagB as

TUV (B) := max
x∈B

TUV (x) = max
x∈B

ô(x) (6.1)

Then, for subsequent labeling, theb2 bags inU with the largest training utility are cho-
sen.

Once both positive and negative bags are available(ii), the algorithm proceeds with
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supervised two-class learning (Fig.6.2). On one hand, we want to obtain more positive
labels in the neighborhood of those that have already been found in order to refine the
decision boundary (“exploitation”). The degree of vicinity of a pointx to the positive
labels inL can be measured by the estimatep̂(Y = 1|x) for the posterior class proba-
bility of the positive class. On the other hand, positive points may be highly spread in
feature space and exploring the feature space thoroughly iscrucial for discovering other
regions of positive labels. Therefore, we want to obtain labels for data points which
are far away from the labeled points of either class in feature space (“exploration”).
According to (C2), the employed learning algorithm returns the corresponding measure
û(x) in addition top̂(Y = 1|x).

According to the considerations above for case(i), only a small minority of the points
in a positive bag may be positive. Hence, we again consider only the most “extreme”
data point in each bag and define the training utility of a bagB as

TUV (B) := max
x∈B

TUV (x) = max
x∈B

[p̂(Y = 1|x) + γû(x)] , γ > 0 (6.2)

Then, for subsequent labeling, theb3 bags inU with the largest training utility are cho-
sen. The user-defined parameterγ trades off exploitation and exploration. It reflects the
prior belief in the similarity of possible defects. The moredissimilar different defects
are, the largerγ should be chosen.

The training utility function in Eq. (6.2) is a heuristic. Another possibility would have
been to use a function of the product of prediction and exploration term as in [129]. A
very similar training utility function to the one used here has for example been proposed
in [31].

The parametersb2 andb3, which define the number of bags presented to the human
annotator after each iteration of the selection process, are user-defined. The parameters
trade off efficiency of the AL process, computation time and the availability of the
human annotator. Larger values lead to less efficiency (the label information of theb2 or
b3 bags in the same batch may be “overlapping”), shorter computation time (fewer wish
lists need to be generated for the same number of bags) and more convenient labeling
(it is more acceptable to provide many labels in one go than tocontinually prompt the
labeler at a certain interval).

6.2.2.3 Elimination Step

After having been provided with (weak) labels for allb2 or b3 bags by the human anno-
tator, the algorithm proceeds with the elimination step of the AL process. During this
step, only a subsetBL of the labeled data points of each bagB is actually added to the
training setL. In doing so, we pursue four goals.

(G1) BL should contain the correct positive labels, i.e. the points{(x, y, z) ∈ B : y =
1, z = 1}.
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(G2) BL should not contain any wrong positive label, i.e. any of the points{(x, y, z) ∈
B : y = −1, z = 1}.

Among the negative points,BL should contain at least those that are either

(G3) distant to the points inL to memorize that a certain region in feature space region
has already been explored or

(G4) close to the decision boundary to optimize classification performance.

We first concentrate on the goals (G1) and (G2). Consider a labeled positive bag
B. For each point(x, y, z) ∈ B, we have estimated eitherô(x) (Eq. (6.1)) or p̂(Y =
1|x) + γû(x) (Eq. (6.2)) in the query step. These two estimates can be exploited again
to perform a statistical test. First, recall that the negative labels are reliable. If the
patches of an image do not overlap too much and if the texture is sufficiently repetitive,
the negative points in a bag can be regarded as independent realizations of the negative
class conditionalX|Y = −1. Then the distribution ofTUV (X|Y = −1) can easily
be estimated by its empirical distribution̂F . Hence, the(1 − α)-quantile ofF̂ is an
approximate critical valuecα for a level-α-test on the hypothesis thatx has been drawn
from the negative class conditionalX|Y = −1. If TUV (x) > cα, the hypothesis can
be rejected. This means that the true labely of the positive points(x, y, z) ∈ B for
which TUV (x) > cα is 1 with high probability. These points are added toL (G1). If
TUV (x) ≤ cα for a positive point, the hypothesis cannot be rejected and nothing can be
implied. However, if the test statisticTUV (x) discriminates well between the positive
and the negative class, the power of the test is large andy = −1 for most of the positive
points for whichTUV (x) ≤ cα. These points arenot added toL (G2).

We note for later simplification that, if the number of positive points is small com-
pared to the total numberm of points in the bag, we can simply add those positive points
x toL for whichTUV (x) is among the(1−α) · 100% largest values of all points inB,
i.e. cα is computed using both positive and negative points.

Next, consider a labeled bagB, positive or negative, to discuss the goals (G3) and
(G4). By the definition of a level-α-test, the hypothesis of having been drawn from
negative class conditionalX|Y = −1 is rejected forα · 100% of the negative points.
However, we know that the true label of these points definitely is negative. This makes
these points highly interesting with respect to the goals (G3) and (G4): If, on one hand,
ô(x) or û(x) is large, thenx is far away from data points of either class in the training
setL (G3). If, on the other hand,̂p(Y = 1|x) is large, thenx is relatively close to the
current decision boundary (G4). Hence, we add those negative points inB to L for
whichTUV (x) is large.

In summary, to pursue the goals (G1)-(G4), we simply add those α · 100% of the
points inB for whichTUV (x) is largest, i.e.

BL = {(x, y, z) ∈ B : TUV (x) > cα}



6.3 Instantiation of the Active Learning Strategy using Random Forests 105

This is illustrated in Fig.6.3. In statistics,α = 0.05 is commonly used as significance
level. We propose to use the same value here.
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p̂(Y = 1|x)

û
(x

)
Elimination Step

Figure 6.3:Elimination step of the AL strategy. The pointsx1, . . . , xm of a just labeled bag
B are depicted as circles; negative points are filled and gray, positive ones are open and
black. They are represented in the two-dimensional space spanned by the posterior prediction
p̂(Y = 1|x) and the measurêu(x) for the uncertainty about the prediction. The points above
the black linep̂(Y = 1|x) + û(x) = c0.05 = 0.02 (γ is set to 1 here) are added toBL.
The points below the line are not added toL, among them two positive points which are
incorrectly labeled with high probability. Note that—in contrast to the visual impression—
95% of the points are below the threshold line.

6.3 Instantiation of the Active Learning Strategy
using Random Forests

To implement the AL strategy presented in the previous section, we need a method that
(C1) returns a measurêo(x) for the “outlyingness” of a test samplex if the training setL
contains negative samples only, and that (C2) returns an estimatep̂(y|x) for the posterior
class probabilities at a test samplex together with a confidencêu(x) in this estimate ifL
contains both positive and negative samples. In this section, we discuss how a random
forest classifier [24] (RF) can be extended such that it has these capabilities. Forthe
chapter to be self-contained, we first briefly introduce standard RF in Section6.3.1.
Afterward, we present modified versions for one-class (Section 6.3.2) and two-class
learning (Section6.3.3).
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6.3.1 Random Forests

A random forest is a learning algorithm that consists of an ensemble ofM decision trees
{hi}Mi=1. To build an individual tree, a bootstrap sample is drawn from the training set
L and defined as the root node. At each node of the tree,dtry out of thed features
are randomly chosen and the best axis-orthogonal split according to the Gini criterion
among thesedtry variables is used to divide the set of training samples at this node into
two parts. These two subsets then constitute the two children of the node. In contrast
to many other tree-based learning algorithms, the procedure is continued until all leaf
nodes are pure, i.e. all training samples in a leaf node have the same class label. To
obtain a votehi(x) from an individual tree, a test samplex is passed down the tree to
its leaf node and the unique label of the training samples in this node is assigned. The
average number of trees that vote for a certain class is usually used as an estimate for
the posterior class probability of this class, i.e.

p̂(Y = y|x) = 1

M

M∑

i=1

1{hi(x) = y}

where1{·} denotes the indicator function. Given equal misclassification costs, a crisp
class assignment is obtained from the majority vote:

h(x) = argmax
y

M∑

i=1

1{hi(x) = y} = argmax
y

p̂(Y = y|x)

A main advantage of random forests is their ease of training;whereas other machine
learning algorithms such as support vector machines need tobe calibrated carefully,
random forests are virtually parameter-free: There existsa rule of thumb for settingdtry
(namely,dtry =

√
d) and the numberM of trees can be chosen as high as affordable

without the danger of overfitting.6 Moreover, random forests are not restricted to binary
problems, but can handle multi-class settings equally well.

6.3.2 One-Class Learning

If the set of currently labeled samplesL contains negative points only, we want to iden-
tify those unlabeled points/bags that are least consistentwith the samples inL for sub-
sequent labeling (C1). To this end, we apply the outlier detection method presented in
Chapter5.

LetL = {(xi,−1)}ni=1 be the current training set and letR be a rectangle that covers
the training set and all unlabeled points, i.e.{xi}ni=1 ∪ {x ∈ B : B ∈ U} ⊂ R. Further,

6There is some evidence that random forests do overfit [161], but this is certainly not due to too large a
number of trees [81, chap. 15].
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letS0 = {xi}n+n0
i=n+1 be a set ofn0 realizations from the uniform distribution onR. These

samples are labeled as 0 and we obtain the augmented trainingsetL ∪ {(xi, 0)}n+n0
i=n+1.

This augmented set is used for training a standard random forest{hi}Mi=1.
We define:

ô(x) := p̂(Y = 0|x) = 1

M

M∑

i=1

1{hi(x) = 0}

For the implementation of the AL strategy presented in Section6.2, only the rank order
of ô(x) among the unlabeled points is relevant. As shown in the previous chapter in
Section5.4.2.2, the practical influence of the parametern0 on the rank order is only
minor. Therefore,n0 is simply set ton in the experimental section.

6.3.3 Two-Class Learning

As soon as the training setL contains positive and negative points, we want a method
that, for each query pointx, returns an estimatep(y|x) for the posterior class proba-
bilities together with a statement regarding the consistency of x with L (C2). To this
end, we can use the same idea as in the previous section, namely adding uniformly dis-
tributed reference data to the training set. The differenceis that the artificial data leads
to a three-class problem here.

As before, letL = {(xi, yi)}ni=1 be the current training set and let the rectangleR
coverL and all unlabeled points, i.e.{xi}ni=1 ∪ {x ∈ B : B ∈ U} ⊂ R. We drawn0

samples{xi}n+n0
i=n+1 from the uniform distribution onR and label them as 0. The samples

are combined to obtain a new training setL∪{(xi, 0)}n+n0
i=n+1. This augmented set is used

for training a standard random forest{hi}Mi=1.
In the following, two different kinds of posterior class probabilities need to be dis-

tinguished. Whereas the probabilities of the original two-class problem are referred to
with the letter “p” (as defined in Section6.2.1), the letter “q” is used for the three-class
problem. It can easily be shown by employing Bayes’ theorem that

p(Y = y|x) = q(Y = y|x)
q(Y = −1|x) + q(Y = 1|x) , y = −1, 1 (6.3)

i.e., the posterior class probabilities of the two-class problem can easily be calculated
from those of the three-class problem (see also Eq. (3.6)). It follows that the posterior
class probabilities of the two-class problem can be estimated by

p̂(Y = y|x) =
∑M

i=1 1{hi(x) = y}
∑M

i=1 [1{hi(x) = −1}+ 1{hi(x) = 1}]
, y = −1, 1

We definep̂(Y = y|x) := 1/2 if
∑M

i=1 [1{hi(x) = −1}+ 1{hi(x) = 1}] = 0.
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In contrast top̂(Y = y|x), there is no obvious choice for the definition ofû(x). In
accordance with the definition of̂o(x) above, we set

û(x) = q̂(Y = 0|x) = 1

M

M∑

i=1

1{hi(x) = 0}

Finally, we comment on the choice ofn0. According to Eq. (6.3), p(Y = 1|x) is
independent of the class priorp(Y = 0) and thusn0. In practice, the “sphere of influ-
ence” of the training samples inL is slightly decreased by the additional reference data
[110]; thus the variance of the estimatêp(Y = 1|x) is increased and its bias lowered
(see e.g. [81, chap. 2]). However, the influence ofn0 on p̂(Y = 1|x) is only minor. In
contrast,̂u(x) highly depends onn0. Thus, in addition toγ, the parametern0 governs
the trade-off between exploration and exploitation (see Eq. (6.1)). To suppress one of
the parameters, we propose to setn0 = n as in Section6.3.2and to govern the trade-off
with the parameterγ. An advantage of this agreement is that the random forest canbe
trained with a relatively balanced training set, avoiding the problems associated with
imbalanced data [35].

6.4 Technical Details

In order to apply the AL strategy presented in Section6.2to industrial optical inspection,
two application-specific problems need to be addressed. Thefirst one is:

1. How can images be represented in feature space?

As noted in Sections6.1 and6.2 and presented in detail below, we divide the images
intom patches, where each patch is represented by a point in feature space. This raises
the second problem:

2. How can image-wise classification be achieved if there areonly patch-wise esti-
mates for the posterior class probabilities?

These two questions are discussed in the following.

6.4.1 Image Representation

Generally speaking, we need a feature space representationof the images to train a clas-
sifier that can discriminate between defective and non-defective parts. Considering only
the gray values of an image is typically insufficient and thussome neighborhood infor-
mation are required. Further, as the appearance of the defects is not known a priori and
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as algorithmic solutions for defect detection are supposedto work without human in-
teraction, the extracted features need to be sufficiently rich to detect defects of different
sizes and orientations.

To that end, we use the image representation that is proposedin [180].7 The images
are decomposed into scale and orientation subbands using a steerable pyramid [169]
whose basis functions are directional derivatives operators. 5 pyramid levels are con-
structed and fifth-order directional derivatives are used leading to 6 orientation bands.
This results in 30 feature images.

However, the resolution of these images is not equal, e.g. for the data presented in
Section6.5.1, ranging from512× 512 in the first to32× 32 in the fifth level of the
pyramid. Instead of adjusting the resolutions e.g. by interpolation techniques, theorigi-
nal image is divided into quadratic patches of32× 32 pixels and seven different statisti-
cal quantities of the filter responses are computed on each patch: minimum, maximum,
median, mean, variance, kurtosis and entropy. This yields afeature vector of dimen-
siond = 210 for each patch. Note that the number of values the statistical quantities
for a patch are based on ranges from32 · 32 = 1024 in the first to2 · 2 = 4 in the fifth
level of the pyramid. Note further that the statistical quantities at patch-level introduce
valuablenon-linear information for the characterization of the original image texture at
the corresponding location without using non-linear filters. Another advantage is that
representing patches instead of pixels in feature space comes along with a substantial
data reduction. This is especially useful for AL where the feature values only need to be
calculated once prior to the AL process, but where the model needs to be updated and
posterior class probabilities and “outlyingness” need to be calculated in each iteration.

Since each of the feature vectors representing an image corresponds to a patch, the
elliptic pixel-wise labels need to be adapted accordingly.Here, a point is positive if and
only if the center of the corresponding patch is within the ellipse encircling the defect.

Finally, note that a grid of non-overlapping patches may suffer from boundary effects.
As an extreme example, consider that all scratches in the training images run through
patch centers, whereas the scratch in a test image runs alongpatch boundaries. To that
end, we work with overlapping patches, where the overlap is half the patch size. For an
image with a resolution of512× 512 pixels and a patch resolution of32× 32 pixels,
we obtainm = 31 · 31 = 961 patches per image.

6.4.2 Image Classification

According to the image representation introduced above, each point in feature space
corresponds to a patch of an image. This means for a bagB = {xi}mi=1 representing a
test image thatm different posterior estimates{p̂(Y = 1|xi)}mi=1 are obtained. These es-

7The features used for the experiments in Section6.5also have been precomputed and provided by the
authors of [180].



110 6 An Active Learning Strategy for Defect Detection

timates need to be merged to an image-wise prediction, either to some defect prediction
value8 or at least to a crisp class assignment.

As posterior class probabilities of adjacent patches are correlated, more robust esti-
mates can be obtained if salt and pepper noise structures areremoved from the proba-
bility maps in a first step. Here, we use a3× 3 median filter to smooth the maps. The
mask size is a compromise between utilizing spatial information and not smoothing
away indications for small defects. Then, as we have no priorinformation about defect
characteristics, in particular the defect size, we simply use the maximum value of the
smoothed probability maps as defect prediction value for the whole image.

6.5 Empirical Evaluation

In this section, we first present the data used for the evaluation of the proposed AL
strategy. Afterward, we present the corresponding experimental results.

6.5.1 Data

For the statistical evaluation of the presented AL approach, we use 6 synthetic image
data sets that cover a wide range of defects in industrial quality control on different tex-
tured surfaces. The images have been created under the supervision of Matthias Wieler
for a defect detection contest at the annual conference of the DAGM9 in 2007 [180].
They have been published on the internet10 to make them available to the participants of
the contest and to establish a benchmark data set for defect detection algorithms. The
benchmark data has, for example, been used in [146].

Figs. 6.4 and 6.5 show two example defect images of each data set together with
their elliptic label. The latter has been provided by a humanannotator according to the
procedure introduced in Section6.1.

Each data set contains 1150 gray value images, of which 150 show defects. The
spatial resolution of the images is512× 512, the gray value resolution is 8 bit. We have
randomly partitioned each data set into a training and a testset of equal size.

6.5.2 Results

In this section, we present empirical results for the proposed 2-step AL strategy. As
mentioned in the introduction of this chapter, to the best ofour knowledge, this is the

8This does not need to be a probability in the strict sense but can be a real value on a “defect scale”.
9Deutsche Arbeitsgemeinschaft für Mustererkennung e.V., http://www.dagm.de

10http://klimt.iwr.uni-heidelberg.de/dagm2007/prizes.php3
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Figure 6.4: Two example defect images of data set 1 (top), 2 (middle) and 3 (bottom). Each
data set is affected by a specific kind of defect. The ellipse in each image hasbeen drawn by
a human annotator.
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Figure 6.5: Two example defect images of data set 4 (top), 5 (middle) and 6 (bottom). Each
data set is affected by a specific kind of defect. The ellipse in each image hasbeen drawn by
a human annotator.
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first AL strategy for the setting considered here. Thus, we compare the performance
of the proposed strategy to random sampling to evaluate if there is at all a benefit from
AL. To get a better understanding of the 2 steps of the proposed strategy, we also com-
pare to“1-step AL”, where only the query step is performed and the elimination step is
omitted.

In all experiments, the AL process is initiated by drawing randomly b1 = 40 from
thenegativebags inU that make up a first training setL of b1m = 40 · 961 = 38,440
data points. We disallow positive bags in the first iterationto prevent lucky strikes that
spare the way through the one-class learning part of the process. In each subsequent
iteration of the process,b2 = b3 = 5 bags are selected from the remaining bags inU .
They are chosen randomly in case of random sampling, whereasin 2-step and 1-step
AL, the bags are chosen according to the procedure describedin Section6.2.2.2. The
parameterγ that governs the trade-off between exploration and exploitation is set to 1.11

In 2-step AL, the elimination step is then performed as described in Section6.2.2.3. The
cardinal number ofBL equals⌊0.05 · 961⌋ = 48 for each selected bagB. In 1-step AL
and random sampling, all positive points inB are added toL and a random sample of
“48 minus the number of positive points inB” from the remaining negative points.

To gain a first insight into the proposed 2-step AL approach, we look at the develop-
ment of the point-wise classifier output for a bag representing a test image of data set
5. This is shown in Fig.6.6. After the first labeling iteration (40 bags), there are only
negative points inL and we recur to one-class learning. The output of the classifier is
the “outlyingness” measurêo(x) as shown in the upper left panel of the figure. It can be
observed that̂o(x) is relatively large for many positive points. This shows in particular
that ô(x) is a useful measure for identifying positive bags for subsequent labeling.

Indeed, in this example, positive bags have been found inU . Accordingly, the output
of the classifier after the second iteration (45 bags) of the process is a posterior pre-
diction p̂(Y = 1|x) and its uncertaintŷu(x). As the number of positive points inL is
small at the beginning, all posterior predictions for positive points are smaller than0.5,
a known problem when learning with imbalanced data [35]. In the subsequent iterations
(50-100 bags), the number of training points in the neighborhood of the positive points
increases, indicated by smaller values for the uncertaintyû(x). At the same time, the
posterior prediction for the positive points increases. Note that the posterior prediction
of a few positive points is close to 0, even after 100 labeled images. These are points
with an incorrect label (non-defective patches within the ellipse).

Next, we compare the classification performance of the proposed 2-step AL approach
to 1-step AL and random sampling. After each iteration of theAL process, a random
forest classifier is trained on the current training setL and evaluated on the test data

11 As the defects in a specific DAGM data set look quite alike, theresults are not sensitive to varyingγ.
The parameter may be set to a larger value if defects are very diverse.
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Figure 6.6: Development of the classifier output for the points of a positive bag representing a
test image of data set 5. Every point is depicted as a circle; negative points are filled and gray;
positive ones are open and black. As long as there are only negative points in the training set
L (upper left panel), the classifier returns a measureô(x) for “outlyingness” only. As soon
asL contains both positive and negative points, the classifier returns a posterior prediction
p̂(Y = 1|x) and a measurêu(x) for the uncertainty in this prediction. It can be observed that
the capability of the classifier to distinguish between positive and negative points increases
from iteration to iteration. The positive points within the cloud of negative onesare incorrectly
labeled points.
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according to the procedure presented in Section6.4.2. As the accuracy is an inappro-
priate performance measure if the data is imbalanced12 [147], we use the area under the
receiver operating characteristic (ROC) curve (AUC) [59]. An AUC of 1 corresponds to
perfect separability of the two classes with respect to posterior predictions.

The results for all 6 data sets, averaged over 6 runs with different random seed, are
shown in Fig.6.7. Each plot shows the development of the AUC depending on the
number of labeled images/bags. For 5 data sets (1–3, 5 and 6),2-step and 1-step AL
achieve much steeper learning curves at the beginning and, additionally, attain an AUC
of 1 or close to one after fewer iterations than random sampling. The only exception
is data set 4, where random sampling is more efficient at the beginning, achieving an
acceptable classification performance with about 25 bag labels less. The reason is that
the defects of the images of data set 4 are relatively similarto the background texture
and are thus relatively difficult to identify for the outlierdetection/one-class learning
algorithm. As soon as examples of defects are available, theperformance of the two AL
approaches rapidly improves and becomes better than that ofrandom sampling.

The two AL approaches perform very similar in the experiments above and the elim-
ination step of the 2-step strategy seems dispensable at first sight. The reason is that
random forests are known to be very robust to label noise [24] and the difference does
not become visible as long as the number of wrong labels is sufficiently small. To inves-
tigate this in more detail, we enlarge the elliptic labels. To be more precise, the labels
are dilated by a disc-shaped structuring element of radius 128 pixels. The correspond-
ing results are shown in Fig.6.8. Whereas the results of the 2-step AL approach remain
comparable to these using the original weak labels, the results of 1-step AL deteriorate
for data sets 2 and 6; the AUC is not even close to 1 for data set 6after labeling 200
images.

6.6 Conclusions

In this chapter, we have presented a novel AL approach that responds to three chal-
lenges in industrial optical inspection: weak labels, bundled label query and imbalanced
classes. Each iteration of the proposed strategy consists of two steps: in the query step,
the images for subsequent labeling by a human annotator are selected and in the elimi-
nation step, a subset of the patch-wise weak labels obtainedfor each selected image is
chosen. The strategy has been instantiated by extending standard random forests.

Based on 6 publicly available benchmark data sets, we have shown that AL techniques

12Consider a data set where positive and negative samples appear at a ratio of 999:1. Then the accu-
racy of the primitive classifier that always assigns the negative class is 99.9%. Despite the “good”
performance, this trivial solution obviously is unsatisfactory.
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Figure 6.7: Performance comparison of the proposed 2-step AL approach with 1-step AL and
random sampling. Each plot shows the development of the area under curve (AUC) depending
on the number of labeled images for one out of 6 different data sets. For most of the data sets,
the two AL approaches achieve steeper learning curves and earlier attainperfect separation of
the two classes. Note the different scales of the y-axes.
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Figure 6.8: Performance comparison of the proposed 2-step AL approach with 1-step AL
and random sampling after having dilated the labels by a disc-shaped structuring element of
radius 128. Each plot shows the development of the area under curve (AUC) depending on
the number of labeled images for one out of 6 different data sets. Compared to the results
with the original labels in Fig.6.7, the performance of 1-step AL deteriorates for data sets 2
and 6. Note the different scales of the y-axes.
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indeed can reduce the labeling effort required for achieving a certain classification per-
formance (compared to random sampling). The key to this improvement is the query
step. It strives to preserve a balance between exploring thefeature space and seeking
out positive labels in order to compensate for the underrepresented class of defects. The
additional elimination step is appropriate if the employedclassifier is not sufficiently
robust to label noise incurred by weak labeling.

One drawback of the 6 benchmark data sets—particularly whenusing them for the
evaluation of AL methods—is that each of them contains one specific kind of defect
only. Here, the parameterγ thus has not been optimized but has simply been set to 1.



7 Gaussian Process Classification

The aim of this chapter is to compare three different methodsfor binary classifica-
tion with an underlying Gaussian process with respect to theoretical consistency and
practical performance. Two of the inference schemes, namely classical indicator krig-
ing and simplicial indicator kriging, standard methods in geostatistics, are analytically
tractable and fast. However, these methods rely on simplifying assumptions which are
inappropriate for categorical class labels. A consistent and previously described model
extension involves a doubly stochastic process. There, theunknown posterior class
probability π(·) is considered a realization of a spatially correlated Gaussian process
with function values squashed to the unit interval, and a label at positionx is considered
an independent Bernoulli realization with success parameter π(x). Unfortunately, infer-
ence for this model is not known to be analytically tractable. In this chapter, we propose
a new computational scheme for the inference in this doubly stochastic model, namely
the “Doubly Stochastic Gaussian Quadrature”. The method isanalytical up to a final
step where integration must be carried out numerically. Forthe comparison of practical
performance, the methods are applied to storm forecasts forthe Spanish coast based on
wave heights in the Mediterranean Sea. While the error rate ofthe doubly stochastic
models is slightly lower, their computational cost is much higher.

7.1 Introduction

Gaussian processregressionhas been introduced to the field of machine learning by
Williams and Rasmussen [184]. Before, it had long been known in the fields of geo-
statistics (under the name of “kriging” [37]) and in signal processing [182]. Its popular-
ity is due to its flexibility, mathematical tractability, its natural Bayesian interpretation
and success in a wide range of applications [70, 148, 108]. In Gaussian process regres-
sion, the observed outputs of the points in feature space areassumed to arise from the
realization of a Gaussian process with or without Gaussian noise. As briefly explained
in Section7.2.1, an approximation or interpolation for all points in feature space (given
the observed data and assumptions on the mean and covariancestructure of the Gaussian
process) is then obtained from the best linear unbiased estimator.

Unfortunately, inference is more complicated inclassification. Whereas a Gaussian
prior can be combined with a Gaussian likelihood in the case of regression (resulting
in a simple computational scheme revolving around a linear system of equations), a

119
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Gaussian likelihood is obviously inappropriate for discrete class labels [149].
In this chapter, we compare three different approximation schemes forbinary Gaus-

sian process classification: classical indicator kriging (CIK) [90], simplicial indicator
kriging (SIK) [175] and the doubly stochastic Gaussian quadrature (DSGQ). Thelatter
is a new computational scheme for a model that has previouslybeen studied in environ-
mental applications [51] and in machine learning [183]. This model is motivated and
presented in the following paragraphs.

Let T = {(xi, yi), i = 1, . . . , n} be a training set sampled from a random vector
(X, Y ), whereyi ∈ {0, 1} denotes the binary class label of a feature vectorxi ∈ X ⊆
R

d. Let y ∈ {0, 1}n andX ∈ R
n×d be the vector of labels and matrix of feature vectors,

respectively. The goal is to predict the posterior class probability p(Y = y∗|x∗) ≡
p(Y = y∗|X, y, x∗) of the unknown labely∗ at a pointx∗ given the training set.1

The classical approach [90] is to compute the posterior probabilities by fitting the bi-
nary labels directly, without regard to the fact that theyi cannot be normally distributed.
This approximation is called (classical) indicator kriging and has a long record of suc-
cessful applications. However, there are two main problemswith CIK: First, it quite
often delivers probabilities that are smaller than 0 or larger than 1, and second, the order
relation of probabilities is violated. The latter means, asexplained in more detail in
Section7.2.2, that the difference on the real line is not adequate to express distances
between probabilities.

These drawbacks are tackled by SIK [175]. There,

1. the probabilityp(Y = 1|x) is considered the function valueπ(x) of an unobserv-
able realizationπ(·) of a Gaussian process “squashed” to the open unit interval
(0, 1) as defined in the next section.

But, as will be discussed in Section7.2.4, SIK still makes simplifying assumptions that
may not be satisfactory in general. In particular,πi := π(xi) can only be eitherp or
1 − p, p ∈ (0, 0.5), depending on which of the two classes is observed at the training
locationxi, regardless of any other observations in the vicinity. Thisis contrary to
intuition. For example, consider one point in feature spaceand its immediate neighbors,
and two possible scenarios: first, that a “success” has been observed at all these points;
and secondly, that “success” has been observed only at the central point and “failure”
at all others. According to SIK, the posterior probability at the central point would
be the same in both scenarios. The model must hence be extended such that we fully
distinguish between an observed label and its estimated probability:

2. the observed labelsyi areconditionallyindependent realizations of Bernoulli dis-
tributions with parametersπi = p(Y = 1|xi), i.e.Y |πi ∼ Bern(πi).

1Note that we slightly deviate here from the notation of the rest of this thesis. This is to simplify the
derivations later on in Section7.4.
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A graphical representation of this doubly (1. and 2.) stochastic model is shown in
Fig. 7.1.

In summary, CIK and SIK are based on model approximations thatmay be incon-
sistent with some or all characteristics of a classificationsetting, but that are linear in
output measurements and thus analytically tractable and fast. In contrast, the doubly
stochastic model is consistent, but predictive inference needs to be approximated.

Many approximation schemes have been proposed, among them Laplace’s method
[183], the integrated nested Laplace approximation [154], Markov chain Monte Carlo
(MCMC) approximations [133, 51], expectation propagation [126], the cavity TAP ap-
proximation [137] and a variational approximation [71]. An excellent review is pre-
sented in [100]. In the field of geostatistics, modifications of CIK are also abundant
[91, 30, 171, 141].

The contribution of this chapter is twofold. First, we compare CIK, SIK and the dou-
bly stochstic model with respect to theoretical consistency and practical performance.
Second, for this comparison, a new approximation scheme forthe doubly stochastic
model is presented, the doubly stochastic Gaussian quadrature (DSGQ). The method is
analytical up to a final step where optimization or integration must be performed nu-
merically. This extends the insight into the doubly stochastic model and may form the
basis for future research.

The next section reviews the most typically used method in the geostatistical commu-
nity, CIK, as well as an alternative based on the Aitchison geometry of the unit interval,
SIK. The underlying geometry is also presented in Section7.2. Section7.3introduces a
distribution on the unit interval, compatible with this geometry, that plays the role of a
prior distribution of the vector of probabilities of interest. Section7.4then uses this dis-
tribution to derive an estimator for the unknown probabilities that is based on a doubly
stochastic Gaussian process.

An experimental comparison of all methods is presented in Section7.5. To that end, a
given forecast of wave heights in the Mediterranean Sea is classified in two conditions:
Eastwind-storm(calledLlevant in Catalan) andany other situation(either calm or any
other of the dominant windstorms of this region) are the two possible labels. In this
setting, the feature vectorx ∈ R

d consists of the values atd predefined pixels of a
forecast map.

7.2 Classical and Simplicial Indicator Kriging

In this section, we briefly review two approximation methodsfor Gaussian process clas-
sification that do not consider a Bernoulli distribution for the observed labels, namely
classical and simplicial indicator kriging. We first describe simple kriging which is then
applied to predict posterior class probabilities in a classification setting.
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x1 x2 . . . xn x∗

π1 π2 . . . πn π∗

y1 y2 . . . yn y∗

Figure 7.1:Graphical representation of the doubly stochastic model. Observed variables are
shaded squares, circles represent unknowns. The thick lines indicatea fully connected graph.
The first stochastic layer is given by the posterior class probabilitiesπi, i = 1, . . . , n andπ∗
that are considered function values of a squashed Gaussian process, the second layer is given
by the observed labels that are Bernoulli distributed with parameterπi.

7.2.1 Simple Kriging

Let{(x1, π1), . . . , (xn, πn)} ben pairs of sampling pointsxi and outputsπi = π(xi), i =
1, . . . , n. In case of simple kriging it is assumed thatπ(x) is a function value of a
realization of a Gaussian process with known mean and covariance structureC(xi, xj) =
Cov[π(xi), π(xj)], i.e. the joint distribution of any subset of observed or unobserved
points is a multivariate normal. Assuming a zero mean, the estimate for the function
value at an arbitrary pointx∗ in feature space is of the form (see e.g. [37, 149])

π̂∗ = π̂(x∗) =
n∑

i=1

λi(x∗)π(xi) (7.1)

i.e. the simple kriging estimator is a linear combination ofthe function values at the
sampling points. The coefficientsλi, i = 1, . . . , n, depend on the position of prediction
and are obtained maximizing the well-known normal conditional density (see e.g. [149])

p(π∗|π,X, x∗) =
1

√

τ
(
σ2
∗ − σTΣ

−1σ
) exp

(

−1

2

(
π∗ − σT

Σ
−1π

)2

σ2
∗ − σTΣ

−1σ

)

whereπ = (π1, . . . , πn)
T , Σij = C(xi, xj), [σ]i = σi = C(xi, x∗), σ∗ = C(x∗, x∗)

andτ := 2π, with π being the mathematical constant in this case.2 This gives kriging
weight

λi(x∗) = [Σ−1σ]i

2We use the definitionτ := 2π here and in the following to avoid confusion between the mathematical
constantπ and the symbolsπ, πi, π(·), . . . The latter are used to be consistent with the notation
introduced in Chapter3.
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The matrixΣ is invertible if the covariance function is strictly positive definite and if all
the sampling points are distinct. Note that the coefficientsλ(x∗) do not sum up to one
in general, and can even be negative. For further details on simple kriging, other kriging
“flavors” or examples of covariance functions, see e.g. [37] and [149].

7.2.2 Classical Indicator Kriging

The easiest possibility to predict posterior class probabilities at a pointx∗ in feature
space is classical indicator kriging (CIK) [90]. There, the binary class labelsyi ∈ {0, 1}
are treated as function values, i.e.πi := yi, i = 1, . . . , n, and the probability of success
is directly given by the simple kriging estimateπ̂∗.

However, CIK has two major drawbacks. First, although the data yi ∈ {0, 1}, it is
not guaranteed that the interpolationπ̂∗ ∈ (0, 1), which is necessary in order to in-
terpret it as a probability. Second, the order relation of probabilities is violated, i.e.
distances between probabilities are not represented accurately by their difference on the
real line. Consider the following example of two pairs of probabilities: (0.001, 0.01)
and(0.501, 0.51). In the first case, the second probability is ten times higher, whereas
in the second case, the probabilities are almost equal; but the actual distances on the real
line are0.009 in both cases. This suggests that a change of geometry may be adequate,
which is presented in the next section.

7.2.3 Geometry in the One-dimensional Simplex S
2

Consider the line segment{(a, 1 − a), a ∈ (0, 1)} ⊂ R
2, which is equal to the one-

dimensional positive simplexS2. The simplexS2 is useful to represent the probability
of a certain event together with its complementary probability because the components
of an element ofS2 always add up to 1. Moreover, it has a Euclidean vector space
structure, calledAitchison Geometry, if it is endowed with the following three operations
[143, 19]. There,C(a) := (a1/(a1 + a2), a2/(a1 + a2)) divides each component of a
vector by the sum of its components to ensure the closure under addition and scalar
multiplication.

(i) Vector addition: a ⊕ b := C(a1b1, a2b2), representing addition of information
following Bayes’ theorem

(ii) Scalar multiplication:λ⊙ a := C(aλ1 , aλ2), λ ∈ R

(iii) Scalar product:〈a, b〉 := 1/c20 ln(a1/a2) ln(b1/b2)

The constantc20 is a scaling parameter. As explained in detail in Section7.3, it is in-
timately related to the variance of the normal distributionon the hypercube. It fol-
lows immediately from the above definitions that the additive neutral element ofS2 is
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C(1, 1) = (1/2, 1/2) and the inverse element ofa = (a1, a2) is (a2, a1). Moreover, we
automatically obtain an algebraic definition of the distance inS2:

d(a, b) = ‖a⊖ b‖ =
√

〈a⊖ b, a⊖ b〉 = 1

c0

√
(

ln

(
a1
a2

)

− ln

(
b1
b2

))2

(7.2)

where subtraction is defined by addition with the inverse element. The norm of a vector
(a1, a2) in this geometry is‖a‖ =

√

〈a, a〉.
As in every Euclidean vector space we can choose an orthonormal basis—which, in

this case, consists of one vector only:eb = C(exp(c0), 1). In thecoordinate representa-
tion, each elementa ∈ S

2 is uniquely represented with respect to the chosen basis:

α = 〈a, eb〉 =
1

c0
ln

(
a1

1− a1

)

(7.3)

Conversely, the elementa can be computed from its coordinate representation by scalar
multiplication: a = α ⊙ eb = C(exp(c0α), 1) = (a1, 1 − a1). The mapping fromS2 to
R assigning a coordinate to each point is an isomorphism. Furthermore, all points inS2

are uniquely determined by their first component, so we can identify a pointa1 on the
real interval(0, 1) with the point(a1, a2) = (a1, 1 − a1) on S

2 and hence the interval
(0, 1) with the simplexS2. This leads to an isomorphism from the interval(0, 1) to R.

7.2.4 Simplicial Indicator Kriging

The main drawbacks of CIK, stated in Section7.2.2, are tackled by SIK [175]. This
method is based on the realization that there is no need to establish an identity between a
probabilityπ ∈ (0, 1) and its representationφ on the real line. They are better connected
by the logit transformation:

φ = ln
π

1− π
(7.4)

Note the correspondence between Eqs. (7.3) and (7.4). The constant1/c0 is omitted
here because it cancels out in the final estimateπ∗ of SIK.

The simplicial kriging estimate is obtained in four steps:

1. estimateπi = p(Y = 1|xi), the probabilities of success at each sample (of the
training set); many estimation methods are possible [175], e.g. a Bayesian esti-
mate combining a Jeffreys’ prior with the observed class likelihood, which would
yield π̂i = 3/4 if a success is observed atxi, andπ̂i = 1/4 otherwise;

2. get the logistic transformation of these estimates; being a log-ratio, this implies
that extreme values of̂πi = 1 or π̂i = 0 should be avoided in the preceding step;
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3. apply simple kriging to the logistic-transformed estimatesφ̂i = ln(π̂i/1 − π̂i) to
obtain an interpolationφ∗ at an unclassified samplex∗,

4. undo the logistic transform, to obtain an interpolated probability π̂∗ = exp(φ̂∗)/
(1 + exp(φ̂∗)).

The rationale behind SIK is to build the linear combination in Eq. (7.1) using the oper-
ations on the simplex explained in the preceding Section7.2.3. Thus, SIK is an interpo-
lation or approximation technique for probabilities within the framework ofsquashed
Gaussian processes, as will be described next.

It is also shown in [175] that, if the estimateŝπi are just1 − p or p, p ∈ (0, 0.5),
wherever a success, respectively a failure is observed, results get actually very simple.
In this simplified situation, the estimate from the latter can be derived from that of the
former, denoted here asπCIK

∗ , by

π∗ = logit−1

(

2 ln
1− p

p
·
(
πCIK
∗ − 0.5

)
)

. (7.5)

Though Eq. (7.5) is an interesting way of “recycling” old, inconsistent CIK results into
valid probabilities, estimatingπi by two values only (namelyp and1− p) still is a gross
simplification.

But the main problem of SIK is its inability to “transfer information” between labeled
points in the first step, as detailed in the thought experiment specified in the introduction
of this chapter. SIK is unable to deliver this result, becauseπ(xi) is estimated separately
at each pointxi, even in the presence of a nugget effect3.

7.3 The Normal Distribution on the Unit Hypercube

In this section, we take the Euclidean vector space structure on the interval(0, 1) given
in Section7.2.3, and define the normal distribution on the unit hypercube(0, 1)n. This
distribution serves as prior distribution for two of the methods for Gaussian process
classification considered in this chapter, namely SIK (presented in the previous section)
and DSGQ (introduced in Section7.4).

The transformation induced by the isomorphism presented inSection7.2.3maps the
conventional normal distribution defined on the real line tothe interval(0, 1):

Definition 7.1. A random variableZ is said to be normally distributed on(0, 1), de-
notedZ ∼ N(0,1)(µ, σ

2), if its coordinate representation(7.3) is normally distributed
onR with meanµ and varianceσ2. [142]

3For an explanation, see e.g. [37].
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It follows that the random variableZ has Lebesgue density

g(z|µ, σ2) =
1

c0z(1− z)

1√
τσ2

exp

(

−
(

1

c0
ln

(
z

1− z

)

− µ

)2

/
(
2σ2
)

)

(7.6)

=
1

z(1− z)

1
√

τc20σ
2
exp

(

−
(

ln

(
z

1− z

)

− c0µ

)2

/
(
2c20σ

2
)

)

, (7.7)

z ∈ (0, 1), µ ∈ R, σ ∈ R
+

where the first factor in (7.6) comes from measure theory and compensates for the un-
familiar definition (7.2) of the distance inS2. Fig. 7.2 shows the probability density
functions forc0 = 1 and varying values ofµ andσ2.
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Figure 7.2: The normal distribution inS2 for different parameter values. Forµ = 0 (left
panel), we obtain a symmetric density function around0.5 (0.5 ∈ (0, 1) has coordinate rep-
resentation0 ∈ R). The bigger the varianceσ2 the more probability mass is concentrated
near the boundaries of the interval. In contrast to the usual normal distribution, the density
function is apparently not symmetric forµ 6= 0 (right panel). The expectation value of this
distribution converges to1 for µ → +∞, and to 0 forµ → −∞.

The distribution of the latent variable at a single positionin feature space lives on
the interval(0, 1). The joint distribution of several variables—which will typically be
dependent—then lives on the Cartesian product of these line segments, i.e. on the hy-
percube(0, 1)n.

Definition 7.2. A random vectorZ is normally distributed on(0, 1)n, denotedZ ∼
N n

(0,1)(µ,Σ), if its coordinate representation(7.3) is multivariate normally distributed
onRn with meanµ and covariance matrixΣ.
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If we squash a Gaussian process to the unit interval according to the inverse of
Eq. (7.3), its finite-dimensional distributions are normally distributed in the unit hy-
percube.

Remark 7.3. Note thatσ2 and c0 are intimately related andc0 actually becomes a
scaling parameter, or as was already mentioned, the units of the problem. This can be
easily inferred from its behavior in term(7.7) for the one-dimensional distribution and
is particularly evident forµ = 0. In this case,σ2 andc0 become equivalent parameters.
These considerations carry over to the multivariate case inDefinition 7.2, where the
multiplication ofc0 by a constant can be compensated by adaptingΣ accordingly.

Finally, note that the multivariate normal in the hypercubeis not the only possible
choice to model the prior distribution of a probability random field. Another approach
not pursued here is using copulas instead [96].

7.4 Doubly Stochastic Gaussian Process

We introduce the doubly stochastic model in Section7.4.1. The method presented in
the subsequent section, namely DSGQ, is based on these modelassumptions and is an
estimator for the unknown posterior class probabilityp(Y = 1|X, y, x∗).

7.4.1 Posing the Model

Let us from now on use the coordinate representationφi ∈ R for πi ∈ (0, 1) as intro-
duced in Section7.2.3,

φi =
1

c0
log

(
πi

1− πi

)

⇔ πi =
ec0φi

1 + ec0φi
(7.8)

In the real coordinate space we can perform the usual Bayesianinference for regression
without any restrictions, warranted by theprinciple of working on coordinates[142].

Recall that our goal is to predict the probability distribution of the unknown label
Y at a pointx∗, given the training setT . In Section7.1, we have introduced the two
following model assumptions:

1. the probabilityp(Y = 1|x) is considered the valueπ(x) of an unobservable real-
izationπ(·) of a Gaussian process squashed to the unit interval,

2. the observed labelsyi areindependentrealizations of Bernoulli distributions with
parametersπi = p(Y = 1|xi), i.e.y|πi ∼ Bern(πi).
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This two-layer model can be successfully tackled in a Bayesian framework.

The second assumption implies that the likelihood of a sampled label vectory is

p(y|π) =
n∏

i=1

p(yi|π) =
n∏

i=1

p(yi|πi) =
n∏

i=1

πyi
i (1− πi)

1−yi

According to our first prior assumption, we may consider the unobserved success
probability p(Y = 1|x) to follow normal distribution on the hypercube, as given by
Definition 7.2. This assumption implies that we must know its mean vector and covari-
ance matrix. If we have no information favoring one predicted class over the other, the
mean may be considered zero in coordinate space, corresponding to a probability of1/2
for each of the possible labels (Fig.7.2), such that the prior distribution can be written

p(π, π∗|X, x∗) = N(0,1)n+1 (0,C) , C =

(
Σ(X) σ(X, x∗)

σ(X, x∗)T σ2
∗

)

. (7.9)

The several covariancesΣ(X) among sampled locations andσ(X, x∗) between a sam-
pled location and the unsampled one, are derived from a second-order stationary co-
variance function, giving smoothness to the hidden random function in feature space.
Note that, as a result of the derivations later on, the covariance function enters the final
prediction atx∗ only through the prior. Hence, as the multiplication ofc0 by a constant
can be compensated by adaptingC according to Remark7.3, c0 can be set to 1 in the
prior and thus later on in Eq. (7.11).

7.4.2 Doubly Stochastic Gaussian Quadrature

7.4.2.1 Predictive Estimation

As stated above, we are interested in the predictive probability p(y∗|X, y, x∗). Following
the definition of predictive estimation, we know that

p(y∗|X, y, x∗) =
∫

p(y∗, π∗|X, y, x∗)dπ∗

=

∫

p(y∗|π∗)p(π∗|X, y, x∗)dπ∗
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We go on with the calculations as in [149] and [100], using the conditional independence
assumptions reflected by Fig.7.1. This gives

=

∫

p(y∗|π∗)
∫

p(π∗,π|X, y, x∗)dπ dπ∗

=

∫

p(y∗|π∗)
∫

p(π∗|π,X, x∗)p(π|X, y)dπ dπ∗

=
1

c1

∫

p(y∗|π∗)
∫

p(π∗|π,X, x∗)p(y|π,X)p(π|X)dπ dπ∗ (7.10)

Using the probability density function of the normal distribution in (0, 1)n, plugging
in the coordinate representation (7.8) and repeatedly applying the substitution rule of
integration, we obtain explicit expressions for all terms in (7.10), viz.

p(y∗|π∗) =
(

ec0φ∗

1 + ec0φ∗

)y∗ ( 1

1 + ec0φ∗

)1−y∗

=
ec0φ∗y∗

1 + ec0φ∗

p(π∗|π,X, x∗) =
1

√

τ
(
σ2
∗ − σTΣ

−1σ
) exp

(

−1

2

(
φ∗ − σT

Σ
−1φ

)2

σ2
∗ − σTΣ

−1σ

)

(7.11)

p(y|π,X) = p(y|π) =
n∏

i=1

[(
ec0φi

1 + ec0φi

)yi ( 1

1 + ec0φi

)1−yi
]

=
n∏

i=1

ec0φiyi

1 + ec0φi

p(π|X) =
1

√

τn|Σ|
exp

(

−1

2
φT

Σ
−1φ

)

where we have used among others the derivation in [149, chap. 2.2] for Eq. (7.11). In
these equations, we have used the shorter notationΣ = Σ(X), as well asσ = σ(X, x∗).

The integration in (7.10) now is with respect toφ andφ∗, logistic coordinates of the
unobservable probabilitiesπ andπ∗. Inserting the terms mentioned before, we obtain

p(y∗|X, y, x∗)

= c2

∫∫
ec0φ∗y∗

1 + ec0φ∗

n∏

i=1

ec0φiyi

1 + ec0φi
exp

(

−φT
Σ

−1φ

2
− (φ∗ − σT

Σ
−1φ)2

2s2∗

)

dφ dφ∗

(7.12)

with s2∗ := σ2
∗ − σT

Σ
−1σ and c2 := (c1

√

τn|Σ|
√

τs2∗)
−1. This integral cannot be

solved in closed form.
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7.4.2.2 Approximating the Integral

In this section, we derive a computational scheme for the calculation of the predictive
doubly stochastic mode for Gaussian process classificationpresented before.

Since the integral in Eq. (7.12) cannot be solved analytically, we approximate the
exact logistic function in (7.8) by a stretched error function, i.e.

ec0φ∗y∗

1 + ec0φ∗

≈ Φ
(
(−1)y∗+1k0φ∗

)
(7.13)

whereΦ denotes the error function. This allows for substantial simplifications leading
to the result in equation (7.15). Choosing

k0 = argmin
k

max
φ∗

∣
∣
∣
∣

ec0φ∗

1 + ec0φ∗

− Φ(kφ∗)

∣
∣
∣
∣
≈ 0.5876c0

we obtain a good approximation with a maximum deviation of

max
φ∗

∣
∣
∣
∣

ec0φ∗

1 + ec0φ∗

− Φ(k0φ∗)

∣
∣
∣
∣
< 0.01

for everyc0 (see Fig.7.3). Of course, the same calculation is valid forφi andyi, i =
1, . . . , n, instead ofφ∗ andy∗.

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

φ
*

 

 

exp(φ
*
)/(1+exp(φ

*
))

Φ(0.5876φ
*
)

−10 −5 0 5 10
−0.01

−0.005

0

0.005

0.01

φ
*

ex
p(

φ *)/
(1

+
ex

p(
φ *))

−
Φ

(0
.5

87
6φ

*)

Figure 7.3: Comparison of the original logistic function and its stretched inverse probit ap-
proximation forc0 = 1. The left panel shows the two functions, the right panel their differ-
ence.

Working toward the final simplification, we define a multivariate generalization of the
Heaviside functionH(ξ).
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Definition 7.4. Let

Hy(ξ) :=







0 if ∃i : (−1)yi+1ξi < 0
1
2

if ∀i : (−1)yi+1ξi ≥ 0 and∃i : ξi = 0
1 if ∀i : (−1)yi+1ξi > 0

Special cases ofHy(ξ) in one dimension areH1(ξ) = H(ξ) andH0(ξ) = H(−ξ) =
1−H(ξ). Summarized in words, the functionHy is—up to a null set with respect to the
Lebesgue measure—equal to1 in exactly one orthant ofRn and equal to0 elsewhere,
where the orthant is specified by the components ofy.

One can verify thatΦ(k0φ∗) = (H1 ∗N0, 1

k20

)(φ∗) andΦ(−k0φ∗) = (H0 ∗N0, 1

k20

)(φ∗),

and hence

n∏

i=1

Φ
(
(−1)yi+1k0φi

)
=

n∏

i=1

(

Hyi ∗ N0, 1

k20

)

(φi) =

(

Hy ∗ N0, 1

k20
I

)

(φ). (7.14)

Inserting the approximation in Eq. (7.13), Definition 7.4 and Eq. (7.14) in Eq. (7.12),
we can continue the main calculation so that

p(y∗|X, y, x∗) ≈ c2

∫ (

Hy ∗ N0, 1

k20
I

)

(φ) exp

(

−1

2
φT

Σ
−1φ

)

×
∫ (

Hy∗ ∗ N0, 1

k20

)

(φ∗) exp

(

− 1

2s2∗
(φ∗ − σ(x∗)

T
Σ

−1φ)2
)

dφ∗ dφ

Considering only the inner integral we have
∫ (

Hy∗ ∗ N0, 1

k20

)

(φ∗) exp

(

− 1

2s2∗
(φ∗ − σ(x∗)

T
Σ

−1φ)2
)

dφ∗

=

∫∫

Hy∗(ξ∗)N0, 1

k20

(φ∗ − xB)dξ∗ exp

(

− 1

2s2∗
(φ∗ − σ(x∗)

T
Σ

−1φ)2
)

dφ∗

=
√

τs2∗

∫

Hy∗(ξ∗)

∫

N0, 1

k20

(xB − φ∗)Nσ(x∗)TΣ
−1φ,s2

∗

(φ∗)dφ∗

︸ ︷︷ ︸

N
σ(x∗)TΣ−1φ,s2

∗
+ 1

k20

(ξ∗)

dξ∗
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which leads to

p(y∗|X, y, x∗) ≈ c3

∫∫

Hy(ξ)N0, 1

k20
I (φ− ξ)dξ

× exp

(

−1

2
φT

Σ
−1φ

)∫

Hy∗(ξ∗)Nσ(x∗)TΣ
−1φ,s2

∗
+ 1

k20

(ξ∗)dξ∗ dφ

= c3

∫∫

Hy(ξ)Hy∗(ξ∗)

∫

N0, 1

k20
I (φ− ξ)

× exp

(

−1

2
φT

Σ
−1φ

)

N0,s2
∗
+ 1

k20

(σ(x∗)
T
Σ

−1φ− ξ∗)dφ dξ dξ∗

Definings := Σ
−1σ(x∗) andv := k20/(s

2
∗k

2
0+1), we obtain (up to a constant multiplier)

for the integrand of the inner integral

exp

(

−1

2
(φ− ξ)T k20 (φ− ξ)− 1

2
φT

Σ
−1φ− 1

2

(
sTφ− ξ∗

)
v
(
sTφ− ξ∗

)
)

=exp



−1

2
φT
(
k20I +Σ

−1 + vssT
)

︸ ︷︷ ︸

:=R

φ+ φT
(
k20ξ + vsξ∗

)

︸ ︷︷ ︸

:=m

−1

2
ξTk20ξ − 1

2
vξ2∗





=exp

(

−1

2
(φ− R−1m)TR(φ− R−1m)

)

exp

(
1

2
mTR−1m − 1

2
ξTk20ξ − 1

2
vξ2∗

)

The second factor is independent ofφ and the first factor is a Gaussian kernel function
which integrates to a constant with respect toφ. Combining this constant withc3 we
obtain

p(y∗|X, y, x∗) ≈ c4

∫∫

Hy(ξ)Hy∗(ξ∗) exp

(
1

2
mTR−1m − 1

2
ξTk20ξ − 1

2
vξ2∗

)

dξ dξ∗

When resubstitutingm and reordering, the exponent becomes

−1

2
ξT (k20I − k40R

−1)ξ + ξTk20R
−1vsξ∗ −

1

2
ξ∗
(
v − v2sTR−1s

)
ξ∗

with I the identity matrix. This finally yields our principal result

p(y∗|X, y, x∗) ≈ c4

∫

Hy(ξ)Hy∗(ξ∗) exp

(

−1

2
ξ̃
T
Λξ̃

)

dξ̃ (7.15)

where

ξ̃ := (ξ, ξ∗) and Λ =

(
k20I − k40R

−1 −k20vR−1s
−k20vsTR−1 v − v2sTR−1s

)
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The expression says that, to make a prediction under the doubly stochastic model, it
suffices to compute the mass of an(n+ 1)-dimensional Gaussian distribution (centered
at the origin and with precision matrixΛ) in a given orthant. This is illustrated in
Fig. 7.4. The covariance structure of the distribution is mainly given by the covariance
matrixΣ and the vectorσ(x∗), i.e. by the relative position of the training points and the
test pointx∗ in feature space. Moreover, the covariance structure also depends on the
parameterk0 which trades off prior and observed evidence. The orthant that is integrated
over is picked by the observed training set labels (and setting y∗ = 0 or y∗ = 1).
The normalizing constantc4 can be determined by calculating not only the mass in the
relevant but also in the adjacent orthant{(ξ, ξ∗) ∈ R

n+1 : Hy(ξ)H1−y∗(ξ∗) = 1} and
then using the sum constraintp(Y = 1|X, y, x∗) + p(Y = 0|X, y, x∗) = 1. In the
left panel of Fig.7.4, σ(x∗) is relatively large andy = 0. Hence, the posterior class
prediction for class 0 is relatively large; here,p(Y = 1|X, y, x∗) = 0.128. In the right
panel,σ(x∗) = 0. Consequently, the label of the training point does not influence the
posterior prediction atx∗ and hence,p(Y = 1|X, y, x∗) = 0.5.

For the actual computation of the integral of the Gaussian density, one can evaluate
the multivariate error function at the origin after having adequately mirrored the normal
distribution. The multivariate error function is e.g. implemented in R and Matlab based
on methods presented in [68].

Remark. For DSGQ, there is a close relationship between the sill parameter (see
e.g. [37, chap. 2.2]), which affects the assumed covariance structure and therefore the
computation ofΣ, and the parameterc0.4 As already mentioned in Remark7.3, they
together influence the variance of the prior in Eq. (7.9) and therefore govern the tradeoff
between prior and evidence for the final prediction. The smaller c0 and the smaller the
sill, the higher the weight of the prior.

7.5 Comparison of the Presented Algorithms

7.5.1 Data

The several methods summarized or presented in this contribution will be illustrated and
compared using a typical diagnostic problem:given a static “image” of a system, can
we decide whether it corresponds to a particular (dynamic) regime? In this particular
case, we want to use a map of significant wave height, providedby a numerical forecast-
ing model of the Western Mediterranean Sea, to decide whether that is aLlevantstorm
(a storm with dominating winds from the East) or not. The data(including the plot in

4Recall that the corresponding parameterk0 of the DSGQ simply is proportional toc0.
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Figure 7.4: Computation of the posterior class probabilityp(Y = 1|X, y, x∗) with the doubly
stochastic Gaussian quadrature according to Eq. (7.15). Each panel shows the contour lines
of the probability density function of an(n + 1)-dimensional Gaussian distribution with 0
mean, whereξ∗ ∈ R andξ ∈ R

n (obviously,n = 1 here). The covariance structure of the
distribution mainly reflects the relative positions of the test and training points in feature space.
The ratiop(Y = 1|X, y, x∗)/p(Y = 0|X, y, x∗) equals the ratio of integrals of the Gaussian
density over two adjacent orthants, which are determined by the labelsy of the training points.
Here, the regions that are integrated over correspond toy = 0, andp(Y = 1|X, y, x∗)/p(Y =
0|X, y, x∗) = 0.064/0.436 andp(Y = 1|X, y, x∗)/p(Y = 0|X, y, x∗) = 0.25/0.25 in the left
and the right panel, respectively. Additionally using the sum constraintp(Y = 1|X, y, x∗) +
p(Y = 0|X, y, x∗) = 1 yields p(Y = 1|X, y, x∗) = 0.128 andp(Y = 1|X, y, x∗) = 0.5,
respectively.

Fig. 7.5) has been provided by Raimon Tolosana-Delgado from the Maritime Engineer-
ing Laboratory (LIM) at the Universitat Politécnica de Catalunya (UPC) in Barcelona.

We have available a set ofn = 114 such images of past forecasts, for which we
now know the dynamic situation. We manually select beforehand a small subset of
d = 8 “informative” pixels. Subsampling of pixels is performed to avoid the “curse
of dimensionality”. Otherwise there would ben = 114 points in a space with several
thousand dimensionsd of which many correspond to uninformative locations in the
East. As the empirical distribution of the individual wave heights is extremely skewed
to the right, they are preprocessed by computing the logarithm. Then, we build a data
set of feature vectorsxi ∈ R

8, i = 1, . . . , n (the logarithm of the wave heights at the
selected pixel positions) and labelsyi (1 corresponds to a Llevant storm, 0 to “no Llevant
storm”) and apply the classification techniques to this set.Fig. 7.5 shows the variance
of logarithms of significant wave height for the whole forecasting area, using a larger
set of 970 non-classified images. We do not consider all theseimages (but only 114) for
the comparison to ensure a high degree of stochastic independence between the images,
i.e., we selected the images in such a way that they are at least one week apart from
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Figure 7.5:The Western Mediterranean with indication of the 8 explanatory features used to
classify the forecast images. The contour map shows the variance along each possible feature,
i.e. the variance of the logarithm of the wave heights at each pixel. Pixels are16 × 16 km2

approximately.

each other. This figure also shows the locations of the 8 pixels chosen in this case
as classification features. Note that the chosen features have moderate, fairly similar
variances. Though this is not a necessary condition, it allows us to consider an isotropic
variogram onR8 for the latent Gaussian process.

7.5.2 Experimental Results

We compare the three methods—classical indicator kriging (CIK), simplicial indicator
kriging (SIK) and the doubly stochastic Gaussian quadrature (DSGQ)—based on the
data presented in the previous section. Throughout this section, we use a Matérn co-
variance function (see e.g. [149, chap. 4.2]) for all methods and all experiments. Its
one-dimensional correlogram is given by

ρ(r) =
21−ν

Γ(ν)

(√
2νr

l

)ν

Kν

(√
2νr

l

)

, ν, l > 0,

whereKν is the modified Bessel function of the second kind [2, chap. 9.6],ν is called
a smoothness parameter andl a range parameter. Then, for a given nuggets0 > 0 and a
sill s > s0, the covariance function ish(r) = (s− s0)ρ(r) + s010(r), where10(·) is the
indicator function at 0. Hence,Σij = h(‖xi − xj‖) andσi = h(‖xi − x∗‖).

In the first experiment, we simply evaluate the classification performance of the 8-
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Method Accuracy Computation time
Classical indicator kriging 0.868± 0.062 0.68 s
Simplicial indicator kriging 0.868± 0.062 0.88 s

Doubly stochastic Gaussian quadrature0.895± 0.056 481.18 s

Table 7.1: Relative accuracy and computation time of the three different methods for the
classification of the 8-dimensional data. Results are obtained by 5-fold cross validation over
114 samples, “±” indicates the boundaries of the 95% interval. As the parameter estimation is
performed differently across the methods, it is not considered for the computation time. The
latter is measured with a Matlab implementation run a standard PC.

dimensional data using 5-fold cross-validation (CV): the data is divided into 5 folds;
then, 4 of these are used for training to predict the posterior class probabilities for the
samples in the remaining fold (test fold). This is repeated 5times such that each sample
is once in the test fold.

For both CIK and SIK the parameters are determined by standardvariogram methods
[37] yielding a smoothness ofν = 10, a range ofl = 0.4, a sill of s = 0.17, and
no nugget effect (s0 = 0). For DSGQ, the function values of the underlying process
are not observable, because the class labels are modeled as realizations of Bernoulli
experiments. Hence, standard variogram methods are not applicable and we usenested
CV for parameter estimation. In order to predict posterior probabilities for a test fold in
the outer CV, only the data in the respective training folds are used for parameter tuning.
This is performed in an inner CV loop. Hence, for different test folds of the outer CV,
different parameters may be used. Note that, in contrast to asimple (non-nested) CV,
this does not yield overoptimistic estimates for classifierperformance as the parameters
for predicting probabilities for a test fold in the outer CV loop are tuned completely
without using any information about this test fold [178]. For computational reasons, we
use the same values forν, s ands0 as in the other two methods and optimizel andk0
only.

The quality indicators of the methods are presented in Table7.1. On the one hand, the
highest accuracy is achieved by the doubly stochastic method (DSGQ).5 On the other
hand, the running time of the DSGQ is much higher, more than 500 the time needed for
IK techniques.

Next, in order to get more insight into the differences of themethods, we perform
an experiment using only two dimensions of the 8-dimensional data. By visual in-
spection, we select the second and the third feature as theseseem to be the most in-
formative features for classification. The 2-dimensional data is plotted in all panels of
Fig. 7.6. We use all samples for training and predict posterior classprobabilities on a

5 However, note that the differences are not statistically significant.
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two-dimensional grid. We obtainν = 0.5, l = 0.4, s = 0.17 ands0 = 0 for CIK and
SIK using variogram methods. For DSGQ, we again use the same values forν, s ands0
as in CIK and SIK and optimize the remaining parameters with cross-validation using
only the training samples. This leads tol = 3 andk0 = 4. The resulting contour plots
for all methods are shown in Fig.7.6.

It can be observed that all points of thetraining setare classified correctly with CIK
and SIK, in particular the dissenting points that are located in between a cloud of points
with a different label. Here, as the variogram estimate yields s0 = 0, the estimate
for the posterior class probabilities at those points arep or 1 − p for SIK and even 1
or 0 for CIK. This prevents the assignment of opposite classesin the neighborhood of
observed labels and thus limits the generalization abilityof CIK and SIK. In contrast, in
the doubly stochastic model, the dissenting points are considered unlikely realizations
of a Bernoulli experiment. This explains why the squashed realization of the Gaussian
process is much smoother for DSGQ, as can be inferred from thecontour lines. Hence,
the doubly stochastic model is more robust with respect to these dissenting points, even
unders0 = 0.

7.6 Conclusions

We have presented a new method for the estimation of the classprobabilities in a classi-
fication setting, based on a doubly stochastic process formalism. Seen from a Bayesian
perspective, the method is obtained as the predictive probability of a prior random field
updated by a Bernoulli likelihood obtained from the trainingset. The distinctive charac-
teristic of the method is that the underlying estimation is deterministic and analytical up
to a final step of iterative maximization or integration. Theunderlying doubly stochastic
model is consistent with a classification framework.

In contrast, (classical) indicator kriging (CIK) [90] is theoretically inconsistent, as it
uses a non-transformed Gaussian random field (with range−∞ to +∞) to describe a
probability (bounded between 0 and 1). SIK uses a logistic-transformed Gaussian RF as
reference to avoid negative probabilities. However, both CIK and SIK are interpolators,
and thus do not reflect a two-step stochastic process. In particular, this becomes apparent
in the presence of conflicting observations (successes surrounded by failures, or vice
versa): the posterior probabilities estimated by CIK or SIK can only be exactly 0 or 1
at locations where there are observations. These methods hence categorically rule out
the possibility to observe the opposite label at those locations. This is not realistic for
typical prediction settings which are characterized by some class overlap. In contrast,
DSGQ can take observations from the neighborhood into account and produces more
plausible predictions at the site of observations.

Although the accuracy of DSGQ is higher than that of CIK and SIKfor the 8-
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Figure 7.6: Contour plots of the posterior predictions for the four methods compared, based on
a two-dimensional projection of the data on thex(2)-x(3)-plane, i.e. using these two features
only. The decision boundary between the two classes, the level curve for {x∗ : p(Y =
0|X, y, x∗) = 0.5}, is depicted with a thicker line. Samples of class 0 and 1 are represented
by empty and filled circles, respectively. Note that the decision boundary (in contrast to the
other contour lines) is equal for CIK and SIK. Both CIK and SIK make predictions that are
compatible with each and every label from the training set which is prone to overfitting. In
contrast, DSGQ takes dissenting points into account, but do not follow them unconditionally
in its predictions.

dimensional data used here, the difference is not significant. The fact that the dou-
bly stochastic model is computationally more demanding than CIK and SIK without
showing convincingly better performance is probably the reason why CIK, the classical
approach in geostatistics for classification, still is verypopular despite its inconsistency.
Moreover, all parameters in the underlying statistical model of CIK can easily be inter-
preted in physical terms.



7.6 Conclusions 139

Note that in [152]6, the three methods discussed here are also compared to the doubly
stochastic “Aitchison Maximum Posterior”. The results aresimilar to those for DSGQ
both with respect to performance and computation time.

While the experiments show that the new computational schemeof the DSGQ works
in principle, an alternative to the numerical integration is desirable because it may be
too expensive or too inexact ifn is large. For this, note that we only need to know the
ratio of the probability and the complementary probabilityof obtaining labely∗ at the
pointx∗ to make a prediction:

c4
∫

Rn+1 Hy(ξ)Hy∗(ξ∗)e
− 1

2
ξ̃
T
Λξ̃dξ̃

c4
∫

Rn+1 Hy(ξ)H1−y∗(ξ∗)e
− 1

2
ξ̃
T
Λξ̃dξ̃

=

∫

Ω1
e−

1
2
(Gξ̃)T (Gξ̃)dξ̃

∫

Ω2
e−

1
2
(Gξ̃)T (Gξ̃)dξ̃

=

∫

G(Ω1)
e−

1
2
ξ̃
′T

ξ̃
′

dξ̃
′

∫

G(Ω2)
e−

1
2
ξ̃
′T

ξ̃
′

dξ̃
′

(7.16)
where we have definedΩ1 = {ξ̃ : Hy(ξ)Hy∗(ξ∗) = 1}, Ω2 = {ξ̃ : Hy(ξ)H1−y∗(ξ∗) =
1} and have used the Cholesky decompositionΛ = GTG and the multidimensional
substitution rule for integration. The regionsG(Ωi), over which we integrate, are convex
cones with apices in the origin (because they are linear transformations of orthants) and

the integrandexp(−1
2
ξ̃
′T
ξ̃
′
) is a radially symmetric function. Hence, the value of the

whole integral is proportional to the volume of the intersection of the cone with the
unit sphere (called a spherical simplex). Thus, in order to evaluate the fraction (7.16),
we need to compute the ratio of the volumes of the spherical simplices determined by
G(Ω1) andG(Ω2) [7]. Finding a tractable approximation to this ratio is an attractive
avenue for future research.

6This is a self-citation. The “Aitchison Maximum Posterior”is not presented in this chapter because it
has been contributed by Raimon Tolosana-Delgado.





8 Conclusions

The main contributions presented in this thesis are the derivation of

• two new approaches to active learning (Chapters4 and6),

• distributional estimates forε-nearest neighbors,k-nearest neighbors, random for-
ests (Chapter3) and kernel density classification (Chapters4, used for the first AL
strategy at the same place),

• an outlier detection for random forests (Chapter5, used for the second AL strategy
in Chapter6), and

• a new computational scheme for Gaussian process classification (Chapter7).

The first AL strategy, DEAL, performs best relative to other strategies if the under-
lying classifier provides a distributional estimate of the sampling distribution at each
unlabeled point. This distributional estimate encodes both the distance to the current
decision boundary and the number of labeled samples in the neighborhood of a point.
Additionally taking density information into account, a natural definition of the training
utility value has been derived leading to a novel active learning strategy. Kernel den-
sity classification has been used as the underlying classifier for the implementation of
the strategy. The corresponding distributional estimateshave been derived in this con-
text. The empirical performance of the AL strategy has been evaluated on a wide range
of different data sets. It outperforms random, uncertaintyand Look-Ahead Selective
Sampling on a wide range of data sets.

Distributional estimates have also been derived forε-nearest neighbors,k-nearest
neighbors and random forests. It has been shown using road sign recognition, IMS
and toy data that the distributional estimates, in particular those for random forests,
combine state of the art classification performance with theability of detecting test
samples that are not well represented by the training set. Unfortunately, these estimates
mainly allow for a relative comparison of posterior estimation uncertainty. The obvious
open problem is the derivation of a second-order distribution that indeed approximates
the true sampling distribution. Then, random forests couldimmediately serve as the
underlying classifier for DEAL.

Instead, a similar second active learning strategy has beendeveloped to combine the
state of the art classification performance of random forests with the main ideas of the

141
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first strategy. This strategy has then been applied within the field of automatic optical
inspection. The approach has been evaluated on the publiclyavailable DAGM data set.
It has been shown empirically that active learning techniques indeed can reduce the
labeling effort in industrial quality control.

As a part of the strategy, an outlier detection algorithm based on random forests has
been proposed. It is faster and performs significantly better than a method based on
similarity matrices that has previously been proposed for random forests. Moreover, the
performance of the proposed method is similar to a standard nearest neighbor outlier
detection scheme.

Finally, we have derived a new computational scheme for the doubly stochastic model
in Gaussian process classification. The method is analytical up to a final step involving
numerical integration in a space with dimension equal to thenumber of training sam-
ples plus 1. In order to apply the method for large training sets and to accelerate the
estimation, an analytical solution to the final integral is desirable. Note that the method
cannot be combined with any of the AL approaches presented inthis thesis since only
posterior class probabilities are estimated.
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AUC Area Under the (ROC-) Curve

CIK Classical Indicator Kriging

CRF Confidence Random Forest(s)

CV Cross Validation

DEAL Distributional Estimate Active Learning

DSGQ Doubly Stochastic Gaussian Quadrature

IMS Imaging Mass Spectrometry

NN Nearest Neighbors

oob out of bag

RBF Radial Basis Function

RF Random Forest(s)

ROC Receiver Operating Characteristic

SIK Simplicial Indicator Kriging

SSL Semi-Supervised Learning

TUV Training Utility Value

143





List of Figures

2.1 Active learning cycle in pool-based active learning. . . . . . . . . . . 8

3.1 Distributional estimates for a 1-D toy problem. . . . . . . . . . . . . . 16
3.2 Examples of probability densities of the Beta distribution . . . . . . . . 18
3.3 Distributional estimates for probabilistic confidencek-NN . . . . . . . 34
3.4 Distributional estimates for confidence random forests. . . . . . . . . 35
3.5 Parameter optimization for probabilistic confidencek-NN and confi-

dence random forests. . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Example data of the road sign recognition data set. . . . . . . . . . . . 37
3.7 Distributional estimates for 14385 test images of the road sign recogni-

tion data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8 Comparison of the variance of the distributional estimates of confidence

random forests for different parameter settings. . . . . . . . . . . . . . 39
3.9 Ground truth of the imaging mass spectrometry data. . . . . . . . . . . 40
3.10 Imaging mass spectrometry classification results for confidence random

forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Examples of distributional estimates. . . . . . . . . . . . . . . . . . . 55
4.2 Probability density function of the Beta distribution for different param-

eters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Visualization of the training utility value. . . . . . . . . . . . . . . . . 58
4.4 Comparison of the training utility value across different active learning

strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Comparison of the empirical sampling distribution of posterior esti-

mates and the sampling distribution resulting from the Gamma distri-
bution model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Label query order of the first 50 labels for two different AL strategies,
implemented with kernel density classification. . . . . . . . . . . . . . 65

4.7 Learning curves for the XOR problem with respect to accuracy . . . . . 66
4.8 Learning curves of the three different AL strategies with respect to ac-

curacy for data sets “Optdigits” and “Iris”. . . . . . . . . . . . . . . . 68
4.9 Example images of the 4 object categories of Caltech-4. From left to

right: airplane, car, face, motorbike.. . . . . . . . . . . . . . . . . . . 68

145



146 List of Figures

4.10 Learning curves for three possible groupings of the 4 categories . . . . 69
4.11 Comparison to Look-Ahead Selective Sampling, grouping0-4 vs. rest . 71
4.12 Comparison to Look-Ahead Selective Sampling, grouping1-5 vs. rest . 71
4.13 Comparison to Look-Ahead Selective Sampling, groupingodd vs. even 72
4.14 Comparison to Look-Ahead Selective Sampling, grouping{0, 1, 7, 8, 9}

vs.{2, 3, 4, 5, 6} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.15 Comparison to Look-Ahead Selective Sampling, grouping{1, 3, 4, 5, 9}

vs.{2, 6, 7, 8, 0} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.16 Learning curves for data sets “Anneal” and “Audiology”. . . . . . . . 76
4.17 Learning curves for data sets “Autos” and “Balance-Scale” . . . . . . . 76
4.18 Learning curves for data sets “Breast-Cancer” and “Breast-W” . . . . . 77
4.19 Learning curves for data sets “Dermatology” and “Diabetes” . . . . . . 77
4.20 Learning curves for data sets “Ecoli” and “Glass”. . . . . . . . . . . . 77
4.21 Learning curves for data sets “Heart-C” and “Hepatitis”. . . . . . . . . 78
4.22 Learning curves for data sets “Hypothyroid” and “Ionosphere” . . . . . 78
4.23 Learning curves for data sets “Iris” and “Led24”. . . . . . . . . . . . . 78
4.24 Learning curves for data sets “Letters” and “Liver”. . . . . . . . . . . 79
4.25 Learning curves for data sets “Lymph” and “Optdigits”. . . . . . . . . 79
4.26 Learning curves for data sets “Pendigits” and “Primary-Tumor” . . . . 79
4.27 Learning curves for data sets “Satimage” and “Segment”. . . . . . . . 80
4.28 Learning curves for data sets “Sonar” and “Soybean”. . . . . . . . . . 80
4.29 Learning curves for data sets “Vehicle” and “Vote”. . . . . . . . . . . 80
4.30 Learning curves for data sets “Vowel” and “Waveform”. . . . . . . . . 81
4.31 Learning curves for data sets “Wine” and “Yeast”. . . . . . . . . . . . 81

5.1 Projections on the first two dimensions of three different toy data exam-
ples for outlier detection . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 ROC curves of the data set Balance-Scale when using classes L and B . 91
5.3 Graphical comparison between the results of the proposed method, Brei-

man’s outlier detection scheme and a nearest neighbor method . . . . . 93
5.4 Relation between optimal “sample factor” and feature space dimension. 94

6.1 Example of a weakly labeled image. . . . . . . . . . . . . . . . . . . 98
6.2 Overview over the complete AL process. . . . . . . . . . . . . . . . . 101
6.3 Elimination step of the AL strategy. . . . . . . . . . . . . . . . . . . . 105
6.4 Two example defect images of DAGM data set 1, 2 and 3. . . . . . . . 111
6.5 Two example defect images of DAGM data set 4, 5 and 6. . . . . . . . 112
6.6 Development of the classifier output for the points of a positive bag. . . 114
6.7 Performance comparison of the proposed 2-step AL approach with 1-

step AL and random sampling. . . . . . . . . . . . . . . . . . . . . . 116



List of Figures 147

6.8 Performance comparison of the proposed 2-step AL approach with 1-
step AL and random sampling after having dilated the labels by a disc-
shaped structuring element of radius 128. . . . . . . . . . . . . . . . . 117

7.1 Graphical representation of the doubly stochastic model . . . . . . . . . 122
7.2 The normal distribution inS2 for different parameter values. . . . . . . 126
7.3 Comparison of the original logistic function and its stretched inverse

probit approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4 Computation of the posterior class probability with the doubly stochas-

tic Gaussian quadrature. . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.5 The Western Mediterranean with indication of the 8 explanatory fea-

tures used to classify the forecast images. . . . . . . . . . . . . . . . . 135
7.6 Contour plots of the posterior predictions for the four methods com-

pared, based on a two-dimensional projection of the data. . . . . . . . 138





List of Tables

4.1 Comparison of different kinds of AL sampling strategies with respect to
considering three important criteria for label query. . . . . . . . . . . 51

4.2 Average accuracy of different AL strategies, implemented with kernel
density classification. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Average accuracy of the compared AL strategies for 3 different group-
ings of the Caltech-4 data set with preprocessing as described in text.
The best and second best method are indicated using bold fontand ital-
ics, respectively.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Median outlyingness rank of the single outlier sample for four different
toy data examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Comparison of the areas under ROC curve of 24 different real-world
data sets across four different outlier detection methods. . . . . . . . . 92

5.3 Results of the proposed outlier detection method for varying “sample
factor” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1 Relative accuracy and computation time of the three different methods
for the classification of the 8-dimensional data. . . . . . . . . . . . . . 136

149





Bibliography

[1] Abe, N and Mamitsuka, H (1998): Query Learning Strategies Using Boosting and
Bagging. In:Proceedings of the International Conference on Machine Learning
(ICML), 1–9.

[2] Abramowitz, M and Stegun, IA (1965):Handbook of Mathematical Functions.
Dover, New York.

[3] Acciani, G and Fornarelli, G (2006): Application of Neural Networks in Opti-
cal Inspection and Classification of Solder Joints in SurfaceMount Technology.
IEEE Transactions on Industrial Informatics2(3), 200–209.

[4] Agresti, A and Coull, BA (1998): Approximate is Better than“Exact” for Interval
Estimation of Binomial Proportions.The American Statistician52(2), 119–126.

[5] Andrews, S; Tsochantaridis, I and Hofmann, T (2003): Support Vector Machines
for Multiple-Instance Learning. In:Advances in Neural Information Processing
Systems (NIPS), 561–568.

[6] Angluin, D (1988): Queries and Concept Learning.Machine Learning2, 319–
342.

[7] Aomoto, K (1977): Analytic Structure of the Schläfli Function. Nagoya Mathe-
matical Journal68, 1–16.

[8] Argamon-Engelson, S and Dagan, I (1999): Committee-BasedSample Selection
for Probabilistic Classifiers.Journal of Artificial Intelligence Research11, 335–
360.

[9] Frank, A and Asuncion, A (2010): UCI Machine Learning Repository.http://
archive.ics.uci.edu/ml. Irvine, CA: University of California, School of
Information and Computer Science.

[10] Balcan, M; Beygelzimer, A and Langford, J (2009): Agnostic Active Learning.
Journal of Computer and System Sciences75(1), 78–89.

[11] Banfield, RE; Hall, LO; Bowyer, KW and Kegelmeyer, WP (2007):A Com-
parison of Decision Tree Ensemble Creation Techniques.IEEE Transactions on
Pattern Analysis and Machine Intelligence29(1), 173–180.

151

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


152 Bibliography

[12] Baram, Y; El-Yaniv R and Luz, K (2004): Online Choice of Active Learning
Algorithms.Journal of Machine Learning Research5, 255–291.

[13] Barnett, V and Lewis, T (1994):Outliers in Statistical Data. John Wiley & Sons,
3rd edition.

[14] Baum, EB and Lang, K (1992): Query Learning Can Work PoorlyWhen a Hu-
man Oracle Is Used. In:Proceedings of the IEEE International Joint Conference
on Neural Networks.

[15] Begleiter, R; El-Yaniv, R and Pechyony, D (2008): Repairing Self-Confident
Active-Transductive Learners Using Systematic Exploration. Pattern Recogni-
tion Letters29, 1245–1251.

[16] Ben-Gal, I (2005): Outlier detection. In: Maimon O and Rockach L (Eds.):Data
Mining and Knowledge Discovery Handbook: A Complete Guide for Practition-
ers and Researchers.Kluwer Academic Publishers.

[17] Biau, G and Devroye, L (2010): On the Layered Nearest Neighbour Estimate, the
Bagged Nearest Neighbour Estimate and the Random Forest Method in Regres-
sion and Classification.Journal of Multivariate Analysis101(10), 2499–2518.

[18] Biau, G; Devroye, L and Lugosi, G (2008): Consistency of Random Forests and
Other Averaging Classifiers.Journal of Machine Learning Research9, 2015–
2033.

[19] Billheimer, D; Guttorp, P and Fagan, WF (2001): Statistical Interpretation of
Species Composition.Journal of the American Statistical Association96, 1205–
1214.

[20] Bishop, CM (2006):Pattern Recognition and Machine Learning.Springer, New
York.

[21] Bonwell, CC and Eison, JA (1991):Active Learning: Creating Excitement in the
Classroom (AEHE-ERIC Higher Education Report No.1).Jossey-Bass, Washing-
ton D.C.

[22] Box, GEP; Hunter, JS and Hunter, WG (2005):Statistics for Experimenters:
Design, Innovation, and Discovery.John Wiley & Sons, 2nd edition.

[23] Bradley, AP (1997): The Use of the Area Under the ROC Curve in the Evaluation
of Machine Learning Algorithms.Pattern Recognition30(7), 1145–1159.

[24] Breiman, L (2001): Random Forests.Machine Learning45(1), 5–32.



Bibliography 153

[25] Breiman, L (2003): Manual – Setting Up, Using and Understanding Random
Forests V4.0. Technical Report, UC Berkeley. Available athttp://oz.
berkeley.edu/users/breiman/Using_random_forests_v4.0.
pdf.

[26] Breiman, L (2004): Consistency for a Simple Model of RandomForests. Techni-
cal Report 670, Statistics Department, UC Berkeley.

[27] Breiman, L; Friedman, JH; Olshen, RA and Stone, CJ (1984):CART: Classifica-
tion and Regression Trees.Wadsworth, Belmont.

[28] Brodley, CE and Friedl, MA (1999): Identifying Mislabeled Training Data.Jour-
nal of Artificial Intelligence Research11, 131–167.

[29] Brown, LD; Cai, TT and DasGupta, A (2001): Interval Estimation for a Binomial
Proportion.Statistical Science16(2), 101–133.

[30] Carr, J and Mao, N (1993): A General Form of Probability Kriging for Estimation
of the Indicator and Uniform Transforms.Mathematical Geology25(4), 425–438.

[31] Cebron, N and Berthold, MR (2009): Active Learning for Object Classification:
from Exploration to Exploitation.Data Mining and Knowledge Discovery18,
283–299.

[32] Chandola, V; Banerjee, A and Kumar, V (2009): Anomaly Detection: A Survey.
ACM Computing Surveys41(3), Article 15.

[33] Chapelle, O; Zien, A and Schölkopf, B (Eds.) (2006):Semi-Supervised Learning.
MIT Press.

[34] Chatzichristofis, S and Boutalis, Y (2008): CEDD: Color and Edge Directivity
Descriptor: A Compact Descriptor for Image Indexing and Retrieval. In: Pro-
ceedings of the 6th international conference on Computer Vision Systems, 312–
322.

[35] Chen, C; Liaw, A and Breiman, L (2004): Using Random Forest toLearn
Unbalanced Data. Technical Report 666, Department of Statistics, University
of California. Available athttp://www.stat.berkeley.edu/users/
chenchao/666.pdf.

[36] Cheng, HD; Shan, J; Ju, W; Guo, Y and Zhang, L (2010): Automated Breast
Cancer Detection and Classification Using Ultrasound Images:A Survey.Pattern
Recognition43(1), 299–317.

http://oz.berkeley.edu/users/breiman/Using_random_forests_v4.0.pdf
http://oz.berkeley.edu/users/breiman/Using_random_forests_v4.0.pdf
http://oz.berkeley.edu/users/breiman/Using_random_forests_v4.0.pdf
http://www.stat.berkeley.edu/users/chenchao/666.pdf
http://www.stat.berkeley.edu/users/chenchao/666.pdf


154 Bibliography

[37] Chilès, JP and Delfiner, P (1999):Geostatistics: Modeling Spatial Uncertainty.
John Wiley & Sons, New York.

[38] Chow, CK (1970): On Optimum Recognition Error and Reject Tradeoff. IEEE
Transactions on Information Theory16(1), 41–46.

[39] Cohn, DA; Ghahramani, Z and Jordan, MI (1996): Active Learning with Statis-
tical Models.Journal of Artificial Intelligence Research4, 129–145.

[40] Culotta, A and McCallum, A (2005): Reducing Labeling Effort for Structured
Prediction Tasks. In:Proceedings of the National Conference on Artificial Intel-
ligence (AAAI), 746–751.

[41] Currin, C; Mitchell, T; Morris, M and Ylvisaker, D (1991):Bayesian Predic-
tion of Deterministic Functions, with Applications to the Design and Analysis of
Computer Experiments.Journal of the American Statistical Association86(416),
953–963.

[42] Curuana, R and Niculescu-Mizil, A (2006): An Empirical Comparison of Super-
vised Learning Algorithms. In:Proceedings of the 23rd International Conference
on Machine Learning (ICML), 161–168.

[43] Dagan, I and Engelson, S (1995): Committee-Based Sampling for Training Prob-
abilistic Classifiers. In:Proceedings of the International Conference on Machine
Learning (ICML), 150–157.

[44] Dasarathy, BV (1980): Nosing Around the Neighborhood: ANew System Struc-
ture and Classification Rule for Recognition in Partially Exposed Environments.
IEEE Transactions on Pattern Analysis and Machine Intelligence2(1), 67–71.

[45] Demšar, J (2006): Statistical Comparisons of Classifiersover Multiple Data Sets.
Journal of Machine Learning Research7, 1–30.

[46] Devarakota, PRR; Mirbach B and Ottersten, B (2008): Reliability Estimation of
a Statistical Classifier.Pattern Recognition Letters29, 243–253.
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