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Abstract: Image sensors come with a spatial inhomogeneity, known as Fixed
Pattern Noise or image sensor nonuniformity, which degrades the image quality.
These nonuniformities are regarded as the systematic errors of the image sensor,
however, they change with the sensor temperature and with time. This makes lab-
oratory calibrations unsatisfying. Scene based nonuniformity correction methods
are therefore necessary to correct for these sensor errors.

In this thesis, a new maximum likelihood estimation method is developed that es-
timates a sensor’s nonuniformities from a given set of input images. The method
follows a rigorous mathematical derivation that exploits the available sensor
statistics and uses only well-motivated assumptions. While previous methods
need to optimize a free parameter, the new method’s parameters are defined by
the statistics of the input data. Furthermore, the new method reaches a better
performance than the previous methods. Specialized developments that include a
row- or column-wise and a combined estimation of the nonuniformity parameters
are introduced as well and are of relevance for typical industrial applications.

Finally it is shown that the previous methods can be regarded as simplifications
of the newly developed method. This deliberation gives a new view onto the
problem of scene based nonuniformity estimation and allows to select the best
method for a given application.

Zusammenfassung: Bildsensoren besizten räumliche Inhomogenitäten, auch
Fixed Pattern Noise genannt, welche die Bildqualität herabsetzten. Diese Inho-
mogenitäten können als die (meta-stabilen) systematischen Fehler des Bildensors
identifiziert werden und verändern sich im Laufe der Zeit, was laborgestützte
Kalibrierungen unzureichend macht. Deswegen sind szenenbasierte Verfahren
notwendig um diese Fehler erfolgreich zu korrigieren.

In dieser Arbeit wird eine neue szenenbasierte Maximum Likelihood Schätzung
vorgestellt, welche die Inhomogenitäten eines Bildsensors aus einer Anzahl an
Eingangsbildern schätzt. Die mathematisch detailliert hergeleitete Methode nutzt
die statistischen Informationen des Bildsensors aus und fußt auf trivialen und
gut motivierten Annahmen. Während bei Referenzmethoden üblicherweise min-
destens ein freier Parameter optimiert werden muss, können die Parameter der
neuen Methode direkt aus der Statistik der Eingangsdaten geschätzt werden. Des
Weiteren erreicht die neue Methode eine bessere Korrekturrate als die Vergleichs-
methoden. Spezialisierte Erweiterungen der Methode enthalten eine zeilen- oder
spaltenweise und eine kombinierte Schätzung der Parameter und haben eine
große Relevanz für die typischen industriellen Anwendungen.

Die Referenzmethoden lassen sich letztlich als Vereinfachungen der neu entwick-
elten Methode darstellen. Dies eröffnet einen neuen Blickwinkel auf das Prob-
lem der szenenbasierten Schätzung und wird in Zukunft weitere Verbesserungen
und die Wahl der richtigen Korrekturmethode für ein gegebenes Problem erleich-
tern.





Erklärung gemäß § 8(3)b) und c) der Promotionsordnung

Hiermit erkläre ich, dass ich in die vorliegende Dissertation selbstständig verfasst
und mich dabei keiner anderen als der von mir ausdrücklich bezeichneten Quellen
und/oder Hilfen bedient habe. Des Weiteren bestätige ich hiermit, dass ich an
keiner anderen Stelle ein Prüfungsverfahren beantragt, bzw. diese Dissertation
in der vorliegenden oder anderer Form bereits anderweitig verwendet oder einer
anderen Fakultät als Dissertation vorgelegt habe.





Acknowlegements

I want to thank all the people in my life that supported me while doing this thesis.
Especially my supervisors Prof. Bernd Jähne and Paul Ruhnau for their constant
support and encouragement during the past years. I also strongly appreciated the
help and support from my colleagues and friends at the HCI and at Bosch.

I also want to thank the Robert Bosch GmbH for the funding of this work. Without
these fundings the work would not have been possible.

On a personal note, I want to thank my parents Hartmut and Birgit and my girl-
friend Angela, whose encouragement helped me a lot.





Contents

1. Introduction 17
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3. Contribution of this Work . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4. Outline of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2. General Background 21
2.1. Images, Photographs, Pixels and Lightsensors . . . . . . . . . . . . 21
2.2. Physical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1. Definition and Physical Model of Light . . . . . . . . . . . . 21
2.2.2. Scene Projection and Optics . . . . . . . . . . . . . . . . . . . 23
2.2.3. Measurement Techniques for Light . . . . . . . . . . . . . . . 24

2.3. Soild State Physics of Silicon . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1. The P-N-Junction . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2. Light Measurement in a CMOS Pixel . . . . . . . . . . . . . . 28

2.4. The EMVA1288 Sensor Model . . . . . . . . . . . . . . . . . . . . . . 31
2.5. Digital Image Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1. Colored Images . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6. Image Acquisition and Reconstruction . . . . . . . . . . . . . . . . . 35

2.6.1. Signal Sampling with the Light Sensors . . . . . . . . . . . . 36
2.6.2. Signal Reconstruction . . . . . . . . . . . . . . . . . . . . . . 38
2.6.3. Typical Realizations for the Reconstruction . . . . . . . . . . 39
2.6.4. Combining Sensor Model and Signal Reconstruction . . . . 43

3. Image Nonuniformities and their Quantification 45
3.1. Definition of DSNU and PRNU . . . . . . . . . . . . . . . . . . . . . 45
3.2. EMVA1288 Nonuniformity Quantization . . . . . . . . . . . . . . . 46

3.2.1. Adaptations for Scene Based Estimation Methods . . . . . . 49
3.2.2. Measurement of the Parameter Sets . . . . . . . . . . . . . . 49

3.3. Further Quantization Methods and Limits . . . . . . . . . . . . . . . 50
3.4. Quality Metrics for Scene Based Estimated Nonuniformities . . . . 51
3.5. A Quality Metric Against a Laboratory Ground Truth . . . . . . . . 52
3.6. Spatial Properties of the Corrections . . . . . . . . . . . . . . . . . . 54
3.7. Spectral Properties of the Corrections . . . . . . . . . . . . . . . . . 54

4. Image Data for Evaluations 59
4.1. Description of the Recorded Data . . . . . . . . . . . . . . . . . . . . 59

4.1.1. Car Front Camera Scenes . . . . . . . . . . . . . . . . . . . . 59

11



Contents

4.1.2. L600a in HD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2. Generation of Evaluation and Calibration Sequences . . . . . . . . . 62
4.3. Description of the Cameras and their Nonuniformities . . . . . . . 64

4.3.1. Photonfocus MV1-D1312-160-CL . . . . . . . . . . . . . . . . 65
4.3.2. Basler A602f . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.3. Photonfocus MV-D640-66-CL . . . . . . . . . . . . . . . . . . 73
4.3.4. Photonfocus MV-D640-66-CL-LinLog . . . . . . . . . . . . . 76

5. Related Work and State of the Art Methods 79
5.1. The Constant Statistics Method . . . . . . . . . . . . . . . . . . . . . 80

5.1.1. Discussion of the Constant Statistics Algorithm . . . . . . . 82
5.2. Least Mean Square Algorithms . . . . . . . . . . . . . . . . . . . . . 82

5.2.1. High Pass Variant of the LMS Algorithm . . . . . . . . . . . 85
5.2.2. The Fast Adaptive LMS Algorithm . . . . . . . . . . . . . . . 86
5.2.3. The Gated Adaptive LMS Algorithm . . . . . . . . . . . . . . 87
5.2.4. Total variation LMS algorithm . . . . . . . . . . . . . . . . . 88
5.2.5. Discussion of the LMS Algorithms . . . . . . . . . . . . . . . 89

5.3. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.1. Parameter Search . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.2. Analysis of the Best-Case Performances . . . . . . . . . . . . 93
5.3.3. Temporal Performance Analysis for the CS methods . . . . 97
5.3.4. Temporal Performance Analysis for the LMS methods . . . 98
5.3.5. Spatial Performance Analysis . . . . . . . . . . . . . . . . . . 102

5.4. First conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6. A New Maximum Likelihood Estimation for DSNU 111
6.1. Mathematical Ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2. Density Estimations of the Random Variables . . . . . . . . . . . . . 113

6.2.1. The Density of DSNU . . . . . . . . . . . . . . . . . . . . . . 113
6.2.2. The Density of IWorld|DSNU={bi,j} . . . . . . . . . . . . . . 114
6.2.3. Histogram Evaluations for Fi,j,tn . . . . . . . . . . . . . . . . 120
6.2.4. Properties of the HP-Filter Masks . . . . . . . . . . . . . . . . 122

6.3. Solving as Log-Likelihood Energy Minimization . . . . . . . . . . . 123
6.4. First Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4.1. Parameter Search and Best-Case Performance . . . . . . . . 127
6.4.2. Temporal Performance Analysis . . . . . . . . . . . . . . . . 129
6.4.3. Spatial and Spectral Performance Analysis . . . . . . . . . . 131

6.5. First conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7. Analysis and Improvements of the new DSNU Method 137
7.1. Improvements to the Averaging Task . . . . . . . . . . . . . . . . . . 137

7.1.1. Realizations of the Weighed Average . . . . . . . . . . . . . . 138
7.1.2. Weighted Statistic Based Parameters . . . . . . . . . . . . . . 139
7.1.3. Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 140
7.1.4. First Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 150

12



Contents

7.2. Approximation by Transfer into a CNN . . . . . . . . . . . . . . . . 150
7.2.1. Transferring the Energy Minimization into a CNN . . . . . . 151
7.2.2. CNN Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.2.3. Experimental Results for the CNN approach . . . . . . . . . 154
7.2.4. First Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.3. An Extension to Row and Column Wise Estimation . . . . . . . . . 161
7.3.1. Calculating the Gradient with an Improved Sensor Model . 161
7.3.2. Reduction into One Dimensional Subproblems . . . . . . . . 164
7.3.3. Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 166
7.3.4. First Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 172

8. Extension to a Combined PRNU and DSNU Estimation 177
8.1. The Generalized Mathematical Ansatz . . . . . . . . . . . . . . . . . 177
8.2. Density Estimations of the Defined Random Variables . . . . . . . . 177

8.2.1. The density of the random variable NU . . . . . . . . . . . . 178
8.2.2. The density of IWorld|NU={ai,j , bi,j} . . . . . . . . . . . . . . 179

8.3. Solving as Log-Likelihood Energy Minimization . . . . . . . . . . . 179
8.3.1. The derivation of∇{bi,j}EP,∇{bi,j}ED and∇{ai,j}EP . . . . . 181
8.3.2. The derivation of∇{ai,j}EP . . . . . . . . . . . . . . . . . . . 182

8.4. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.4.1. Proof of Concept for the Combined Estimation . . . . . . . . 185
8.4.2. Parameter Search and Best-Case Performance . . . . . . . . 186
8.4.3. Temporal Performance Analysis . . . . . . . . . . . . . . . . 191
8.4.4. Spatial and Spectral Performance Analysis . . . . . . . . . . 193

8.5. An Extension to Row and Column Wise Estimation . . . . . . . . . 199
8.5.1. Extending the Mathematical Ansatz . . . . . . . . . . . . . . 199
8.5.2. Calculating the EP Gradients . . . . . . . . . . . . . . . . . . 200
8.5.3. Calculating the∇{bi,j}ED Gradients . . . . . . . . . . . . . . 201
8.5.4. Calculating the∇{ai,j}ED Gradients . . . . . . . . . . . . . . 203
8.5.5. Solution and a Proof of Concept . . . . . . . . . . . . . . . . 205

9. A Mathematical Link to the Reference Methods 211
9.1. A Link to the Constant Statistic Method . . . . . . . . . . . . . . . . 211

9.1.1. Uniform Probability Densities for DSNU and PRNU . . . . 211
9.1.2. A Trivial Filter Mask . . . . . . . . . . . . . . . . . . . . . . . 212

9.2. Approximations towards the LMS Algorithms . . . . . . . . . . . . 214
9.2.1. Neglecting the Explicit Spatial Sensor-Dependencies . . . . 214
9.2.2. Approximating the Steepest Descent Solver . . . . . . . . . . 215
9.2.3. Extracting the LMS Update Rules from the Approximation . 216

9.3. Approximation of the Fast Adaptive LMS Algorithms . . . . . . . . 217
9.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

10.Further Experimental Results and Limitation 219
10.1. Results for the Consecutive Frame Sequences . . . . . . . . . . . . . 219

10.1.1. Analysis of the Reference Methods . . . . . . . . . . . . . . . 219
10.1.2. Analysis for the Weighted Average Improvement . . . . . . 228

13



Contents

10.1.3. Analysis of the CNN-type Methods . . . . . . . . . . . . . . 234
10.1.4. Analysis of the Row-, Column- and Pixel-Wise Extensions . 239
10.1.5. Analysis of the Combined PRNU and DSNU Method . . . . 244
10.1.6. Intermediate Conclusion . . . . . . . . . . . . . . . . . . . . . 251

10.2. Behavior For Low Valued Nonuniformities . . . . . . . . . . . . . . 251
10.2.1. Analysis of the Reference Methods . . . . . . . . . . . . . . . 251
10.2.2. Analysis of the DSNU Maximum Likelihood Method . . . . 261
10.2.3. Analysis for the Weighted Average Improvement . . . . . . 266
10.2.4. Analysis for the CNN-Type Methods . . . . . . . . . . . . . 273
10.2.5. Analysis of the Row-, Column- and Pixel-Wise Extensions . 279
10.2.6. Analysis of the Combined PRNU and DSNU Method . . . . 285
10.2.7. Intermediate Conclusions . . . . . . . . . . . . . . . . . . . . 297

11.Outlook and further Work 299
11.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
11.2. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
11.3. Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Bibliography 303

A. Fixed Pattern Noise 307
A.1. Transformation of the EMVA PRNU Definition . . . . . . . . . . . . 307
A.2. A Scaling of the Parameter Sets for Reference Methods . . . . . . . 308

B. Image Data 311
B.1. Further Calibration Data for the Photonfocus MV1-D1312-160-CL . 311
B.2. Further calibration data for the Basler A602f Camera . . . . . . . . . 316
B.3. Further calibration data for the Photonfocus MV-D640-66-CL . . . . 321
B.4. Further calibration data for the Photonfocus MV-D640-66-CLLinLog 324

C. Related Methods 329
C.1. Further Quality Metrics for the Best-Case Performance Analysis . . 329
C.2. Further Evaluations for the LMS-Type Reference Methods . . . . . 330

D. The Maximum Likelihood Appraoch 333
D.1. Log-Likelihood Energy Transformations . . . . . . . . . . . . . . . . 333
D.2. Gradient Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
D.3. Further Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

E. The Improved DSNU Estimation Variants 339
E.1. Further Results for the Weighted Averaging Approach . . . . . . . 339
E.2. Further Results for the CNN Approach . . . . . . . . . . . . . . . . 343
E.3. Further Results for the RCP Approach . . . . . . . . . . . . . . . . . 345

F. The Combined Estimation Method 349
F.1. Log-Likelihood Energy Transformations . . . . . . . . . . . . . . . . 349

14



Contents

F.2. Gradient calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
F.2.1. The gradient∇{bi,j}ED . . . . . . . . . . . . . . . . . . . . . . 350
F.2.2. The gradient∇{ai,j}ED . . . . . . . . . . . . . . . . . . . . . . 351

G. Further Low Valued Nonuniformity Evaluations 353
G.1. For the Reference Methods . . . . . . . . . . . . . . . . . . . . . . . . 353
G.2. For the Weighted Average Improvement . . . . . . . . . . . . . . . . 355
G.3. For the CNN-Type Methods . . . . . . . . . . . . . . . . . . . . . . . 357
G.4. For the RCP Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

15



Contents

16



1. Introduction

1.1. Motivation

Image sensors come with a spatial inhomogeneity which degrades the image
quality and which is known as image sensor nonuniformity or fixed pattern noise
(FPN). This thesis presents a new maximum likelihood estimation method that
estimates the sensor’s nonuniformities from a given set of input images. Most
nonuniformity correction methods consider a linear model of the single sen-
sors in compliance with the EMVA1288 standard for camera characterization [1].
The nonuniformities therefore decompose into a photo response nonuniformity
(PRNU) and a dark signal nonuniformity (DSNU). These nonuniformity com-
ponents, especially the DSNU, drift with time and depend on temperature and
exposure time, which makes laboratory calibrations unsatisfying or impossible.

A classification of the sensor errors into stochastic and systematic errors identi-
fies the nonuniformities as the (meta-stable) systematic errors of the image sensor.
Nonuniformity correction methods (NUC-methods) compensate these systematic
errors while the more general denoising techniques differ from this approach as
they correct stochastic errors as well. A detailed model of the image itself is often
necessary for these general denoising approaches. NUC methods that estimate the
nonuniformities from a set of given input images are known as scene based NUC
methods and become necessary because of the mentioned changes of the system-
atic image errors. For example, the video based driver assistance systems have
to consider operations at high temperatures over a period of more than 10 years
without a possibility for recalibration in a defined environmental setup. Slight
drifts in the nonuniformity correction parameters may lead to an unsatisfying im-
age quality after some years of the product being in field.

Nonuniformity degradation may also arise suddenly because of other effects than
the temporal drifts, like crosstalk in the analogue signal processing chain. Those
effects can also be handled by smart scene based NUC methods to improve the
image quality in the given scenarios.

1.2. Related Work

NUC related literature usually concentrates on sensor models [1, 2] but in the early
90s first scene based correction methods were proposed by Scribner [3]. His meth-
ods mainly exploit the knowledge of the vertebrate retina at the time. The main
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1. Introduction

structure of his algorithm has been nearly unchanged until today and the further
developments exploit the retinomorphic hypothesis of IR-cameras with help of the
least mean square algorithm [4]. Recent improvements include a signal gating
technique [5] and a generalization by a discrete total variation approach [6]. An-
other strain of development uses the constant statistics assumption which leads
to a simple and effective algorithm that exploits the temporal information of the
pixels [7]. The further research directions include covariance and Kalman filters
[8, 9], but their basic algorithmic principles are already covered by the constant
statistics and least mean square algorithms. The Kalman filters are mainly used to
obtain a model for the drifts of the sensor nonuniformities.

While all these methods correct the nonuniformities successfully, their perfor-
mance can still be improved. Furthermore, a motivation of some of the basic
assumptions is missing for these methods (e.g. the way of estimating the origi-
nal image in [5, 4, 6]). The statistical information of the camera’s FPN (e.g. mean
and standard deviations) has also not yet been considered. The reference methods
are discussed in detail in chapter 5.

For performance analysis, a huge variety of quality metrics is used in literature,
which are usually based on the actual image material. This of course leads to
different correction performances depending on the used sequences, which is un-
satisfying because the nonuniformities are a sensor property and not an image
property.

1.3. Contribution of this Work

This thesis derives a new maximum likelihood method for the scene based esti-
mation of image sensor nonuniformities. Thereby the statistical models are moti-
vated by evaluations of ground truth data, which leads to reasonable and under-
standable assumptions. The method’s input finally results as the averaged sensor
responses for the DSNU correction and as the corresponding pairwise sensor co-
variances for the PRNU correction. A rigorous mathematical derivation exploits
the continuous light signal’s sampling and reconstruction as well as the available
statistical data of the sensor parameters. For the DSNU-only variants, the deriva-
tion as a maximum likelihood approach allows to estimate all the parameters of
the method from the input statistics. This is a huge advantage over the reference
methods, which leave free parameters to optimize by the user. Further the deriva-
tion demands uncorrelated frames to achieve best correction performances, which
is confirmed by the experimental results.

The resulting nonuniformity correction algorithm is subject to further modifica-
tions to improve its performance and to minimize its computational complexity.
Namely these improvements are done as a motivated weighted averaging of the
sensor inputs for the DSNU estimation and by approximating the method by a
Chua-Young full range cellular neural network (CNN). A further improvement
was achieved by extending the method to a combined row- or column-wise and

18



1.4. Outline of this Thesis

a row-, column- and pixel-wise combined correction method. Most of these im-
provements are especially investigated for the DSNU, as this component of the
nonuniformities is in general of more interests in the actual applications.

The derived methods are investigated with three different types of image data:
Uncorrelated frames that simulate a slow capture rate, high speed correlated
frames and frames with a typical capture rate but low valued nonuniformities. If
the demanded assumptions for uncorrelated frames are met, the newly developed
methods outperform the related methods in a comparison based on ground truth
correction patterns. In general the best correction rates are achieved with the un-
correlated type of input and in cases where the assumptions are not met a general
performance decrease can be observed for all methods. However, these scenarios
are studied as the limiting cases for the new methods and the correction rates of
the reference methods cannot be exceeded in all cases.

To avoid a comparison that bases on the actual image content, a new quality metric
is introduced that bases on the estimated nonuniformity correction patterns and
the quantization definitions given by the EMVA1288 standard. In the end, a the-
oretical link between all the presented reference methods from literature against
the new maximum likelihood method is formed. This link states assumptions un-
der which the reference methods can be regarded as simplifications of the newly
developed approach.

The contents of this thesis have been partly published during the research [10, 11,
12, 13] and the method has a patent pending [14].

1.4. Outline of this Thesis

This thesis is written in a way that the chapters build up all the knowledge needed
to understand the follow-up chapters, including the needed physical principles.
Efforts were made that should allow to read the individual chapters separately if
enough general knowledge of the content of the previous chapters is present.

The thesis starts by providing the very basic background information in chapter
2, explaining mainly the physical backgrounds and the working principles of the
common light measurement techniques and image sensors. Next the nonuniformi-
ties and their characterization and performance measures are introduced in chap-
ter 3. Here the EMVA1288 nonuniformity characterization is explained as well and
forms the basis for a new image data independent performance measure.

Chapter 4 introduces the used image material that is used for the experiments
conducted in this thesis. This includes an explanation of the used cameras and
the nonuniformity characteristics of their image sensors. With the specified image
data and the defined performance characterizations chapter 5 then gives a detailed
overview of the related work from literature. The reference methods are explained
in detail, including a new matrix-wise notation. First experimental results of these
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1. Introduction

methods are presented as well in chapter 5 and form the motivation for the devel-
opment of the new method.

The new maximum likelihood method is derived in its very basic, DSNU-only
correction variant in chapter 6. This chapter also shows first experimental results,
where the method’s performance in its basic form shows potential for improve-
ments. Improving modifications are then introduced in chapter 7, which further
includes the CNN approach to solve the maximization task in an efficient way and
the combined row-, column- and pixel wise DSNU correction. First experimental
results for these improvements are discussed and the new methods outperform
the reference methods, even if the statistical estimated parameters are used. To ex-
ploit all the theoretical possibilities, the maximum likelihood approach is extended
in chapter 8 with a sensor model that allows to correct for the PRNU nonuniformi-
ties as well. The experimental results are discussed and the new method performs
again superior compared to the reference methods.

To gain further insight into the method’s working principles chapter 9 provides a
theoretical link between the reference methods towards the new maximum likeli-
hood methods. The necessary assumptions to build this link allow to understand
the individual methods’ disadvantages and advantages. The last chapter then an-
alyzes the new methods against the reference methods in the limiting case of cor-
related input data and data with low valued nonuniformities. A summary and
an outlook into the future research on the presented topics finishes this thesis in
chapter 11.
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2. General Background

As the thesis concentrates on the estimation of image nonuniformities, knowledge
of the acquisition process of a digital image is needed. This chapter contains a
review of the most important physical principles on which this work is based on.
The chapter starts by introducing a physical model for light and the possibilities
for the measurement of the light intensity. Then the digital image sensors are
explained and last a mathematical description of the process of image acquisition
and signal reconstruction is presented.

2.1. Images, Photographs, Pixels and Lightsensors

Most modern image processing tasks rely on the picture or the image as the very
basic information. While images in their basic definition are artifacts that have a
similar appearance to a physical object (e.g. a person), the terms photograph or photo
are defined as an image which is created by light falling onto a light-sensitive area.
Usually a lens is used to focus the scene’s light into a reproduction that is similar to
the perception of what the human eye would see. However, in this thesis we will
use the terms images and photographs as synonyms but mean the photographs,
that represent the perception of the human eye.

With the appearance of digital image sensors, the light signal is sampled at discrete
points. Millions of individual light sensors measure the light intensity and each
light sensor then contributes a discrete element to the image. As images are also
named pictures, the picture elements that are created by a single light sensor’s
information are called pixels. If the image is stored in a memory on a computer the
term pixel then usually refers to the part of memory that stores the information
of that light sensor. Thus the terms light sensor and pixel are usually used as
synonyms in some parts of the image processing community.

2.2. Physical Background

2.2.1. Definition and Physical Model of Light

Light is usually defined as electromagnetic radiation that is visible to the human
eye [15]. The kind of electromagnetic radiation that is responsible for the sense of
sight has a wavelength in a range from about 380 nm to about 740 nm. This means
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2. General Background

that the visible light range is bordering the invisible infrared, which is found at
longer wavelengths than 740 nm and the invisible ultraviolet, which is found at
shorter wavelengths than 380 nm.

In physics, the term light sometimes refers to electromagnetic radiation of any
wavelength, whether visible or not. As the context of this thesis deals with modern
digital cameras, the definition of light is extended to electromagnetic radiation that
is measurable by these sensors. In general this is an extension to the human eye’s
visibility into the infrared radiation up to 900 nm.

Electromagnetic radiation, and especially light, obeys the wave-particle duality.
This means that light is emitted and absorbed in tiny packets called photons that
exhibit properties of particles, while the wave properties are exhibited as well. The
study of light is also known as optics and is an important research area in modern
physics. A wave property description of electromagnetic radiation can be found
directly from an analysis of the Maxwell’s equations [15] and the basic quantum
mechanics give an overview of the additional particle properties of light.

The connection between the wave model of the Maxwell’s equations and the men-
tioned photons from quantum mechanics are given by the following well known
equations:

W = hf =
hc

λ
and p =

W

c
=
hf

c
=
h

λ

f =
c

λ
and f =

W

h
and W =

hc

λ
(2.1)

The introduced variables are: c as the speed of light, f as the wave frequency and
λ as the wavelength. Further were introduced: W as Energy1, h as the Planck
constant and p as the momentum, with W and p referring to the measures for a
single photon.

The Light Intensity: The most common measurement of light is its intensity
I , which is more correctly called Irradiance in the photometric and radiometric
area, especially if the disposed energy per area is considered. The intensity is
defined via the transported energy and in fact, anything that can carry energy may
have an intensity associated with it. For an electromagnetic wave with a complex
amplitude of the electric field E, the time-averaged energy density is given as
[15]:

I

[
W

m2

]
=
cnε0

2
|E|2 , (2.2)

where n is the refractive index in which the wave propagates and ε0 is the vacuum
permittivity. Thus the light intensity is proportional to the squared amplitude of
the electric field E.

1W is energy, not to confuse with E, which is the electric field
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2.2. Physical Background

Considering the particle nature of light, the energy for a single light quantum can
be calculated. For the visible light the energy ranges from: 1.6 eV for red light of
≈ 740 nm to 3.26 eV for blue light of≈ 380 nm. Other quantities of electromagnetic
waves like its polarization can be found in the literature [15] and are not of concern
for typical imaging systems.

2.2.2. Scene Projection and Optics

To be able to capture the light signal in a way similar to the human eye, a lens (or
a lens-system) is used to project the scene onto the 2D image sensor. The basic
optics are explained in the physical literature [15, 16] and an ideal lens or an ideal
lens system maps all points from a given object plane onto points in an image
plane (also called focal plane). Points with a distance to the given object plane are
mapped in a blurred way onto the image plane.

The wave character of light explains degradations by diffraction effects by the
lenses outer limits and an ideal lens needs to be infinitely large to avoid these
degradations. However, besides the diffractive limits, real lenses in general tend
to create image degradations also for light that enters with a certain distance to the
optical axis of the system. The mainly known optical errors of the lens systems are
chromatic and spherical aberration. To avoid these errors apertures can be used to
block out the light that causes image degradation, but of course a smaller opening
in the aperture leads to more diffraction effects.

A common assumption is that the optics reduce the quality of the focal signal by
spatial constant effects [16]. Therefore a point spread function (PSF) that models
the opticsOPSF can be used to model the degradations of the light signal’s transfer
onto the image plane. A wavelength dependency for the intended color channels
should be considered: OPSF(λ). The mathematical operation that describes the
degradation effects is a convolution of the intensity signal I with the point spread
function of the optics OPSF. This can be expressed also by a multiplication of the
Fourier transformed components in the spatial dimensions:

Fx,y c F̂x̂,ŷ (2.3)

IWorld ∗OPSF = IFocal
c ÎWorld · ÔPSF = ÎFocal . (2.4)

Fig. 2.1 shows a sketch of the optical mapping of a generalized optical system.
To describe the scaling and the positions of the mapping, the optical system is
defined by the four parameters: Object- and image-wise focal length (fObj., fImg.)
and principal planes (HObj., HImg.) [16, 15]. A first order PSF can be given as the
Fourier transform of the size and shape of the used aperture (e.g. an airy disc
for a circular aperture). But other spatial homogeneous errors of the optics can
also be modeled into it’s PSF OPSF, e.g. an out-of-focus adjustment. Due to the
limited diameter of the PSF, it acts in general as a low pass filter as well as the
effects from an out-of-focus adjustment. As an effect of the convolution of the
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world intensity signal with the PSF, the high spatial frequencies are damped by
any form of projection. This leads to a blurred signal in the focal plane that misses
the highest frequencies and this damping effect is sketched in fig. 2.1 as well.

ApertureObject Plane HObj. HImg. Image Plane

x
FObj. x

FImg.

fImg.

fObj.

Optical SystemLight Signal
IWorld

Mapped Signal
IFocal

Figure 2.1.: Signal Mapping by an abstract optical system

2.2.3. Measurement Techniques for Light

Given the knowledge of the scene’s projection, the measurements for electromag-
netic radiation is the next step to be considered. Light measurement techniques
exploit the lights interaction with matter and the two most important principles
are the inner and outer photoelectric effect. The photoelectric effect in general
states that electrons are excited in or emitted from matter as a consequence of the
electron’s absorption of energy from the electromagnetic radiation (Heinrich Hertz
in 1887) [15]. The photons of light have a characteristic energy that is proportional
to the frequency of light (see eq. 2.1). Electrons can absorb energy from photons
when irradiated and they usually follow an all or nothing principle, which means
that all the energy of a given photon is transferred to one electron.

The outer photoelectric effect happens if a photon is absorbed by an electron
that resides in a material with an electron binding energy that is lower than the
photon’s energy. Consequently the electron is ejected from the matter, with a ki-
netic energy that equals the remaining energy after overcoming the binding forces.
This effect is used for example in Photomultipliers which are extremely sensitive
detectors in the ultraviolet, visible, and near-infrared ranges of the electromag-
netic spectrum [15]. The photomultiplier detectors multiply the produced current
which is generated by the incident light by a factor 108 (i.e. 160 dB) in multiple
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dynode stages. This technique allows the detection of individual photons if the
incident flux of light is very low.

The inner photoelectric effect on the other hand describes the case in which the
electron’s acquired energy is not high enough to escape the matter. But the energy
may still be high enough to change the electron’s energy level inside the matter.
In solid state physics it is therefore possible that electrons change their energy
band (e.g. from the valence to the conduction band). This realization of the inner
photoelectric effect is used in CMOS and CCD sensors as visible light allows the
electrons to enter the conduction band. Consequently these electrons contribute to
a measurable photo-current. The inner and outer photoelectric effects are sketched
in fig. 2.2.
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Figure 2.2.: Inner and outer photoelectric effect. A photon hits an electron which
is then elevated into a higher energy level (inner effect) or leaves the
matter (outer effect).

2.3. Soild State Physics of Silicon

As mentioned, the light intensity is usually measured by exploiting the inner pho-
toelectric effect. This is achieved with help of doped silicon in devices called
CMOS or CCD photo diodes. A basic understanding of the properties of silicon
and doped silicon, as presented in detail in the physical literature [15, 17], is nec-
essary to understand this light measurement process.

To give a short summary, the solid silicon crystal is a semiconductor which has
an energy gap of ≈ 1.1 eV between its valence and conduction band. The thermal
energy per electron at room temperature is just≈ 25 meV, which is too low to over-
come the ≈ 1.1 eV gap. As only electrons in the conduction band contribute to the
conductivity, the silicon has no noteworthy conduction at room temperature. But
for the use in electronics the silicon should be conductive which can be achieved
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2. General Background

by doping the silicon with impurities, which then result in a shift of the Fermi
level. As the Fermi level is the lowest allowed energy level, an increase in its value
will allow electrons to reach the conduction band at much lower temperatures.

There are two forms of doped silicon: n-type and p-type. For n-type doped silicon,
the regular lattice grid of the silicon is disturbed by atoms with one valence elec-
tron more than silicon, thus atoms of the 15th period (e.g. Phosphorus) are used.
The additional phosphorus brings a Fermi level that lies right below the energy
level of the conduction band of silicon and the electrons of the phosphorus can
easily enter the conduction band at low temperatures and contribute to the con-
ductivity. Thus the additional electron acts as a negatively loaded charge carrier.
In the second variant, the so-called p-type silicon, the lattice grid gets disturbed
by atoms of one valence electron less than silicon. These are atoms of the 13th
period (e.g. Aluminum) and concerning the crystal structure, the missing elec-
tron creates a hole. In this case the Fermi level of the aluminum lies right above
the valence band and makes it possible for the valence electrons of the silicon to
jump up into this additional bands at very low temperatures. As a consequence
the missing electron hole is not fixed and acts as a carrier of a positive charge that
contributes to the electric conductivity. Fig. 2.3 shows the energy band structures
and the shifted Fermi levels for p- and n-type silicon.

To avoid a destruction in the lattice structure of the crystal, the doped atoms are
usually present in the ratio of 1:106 only. Summarizing, the doted silicon is con-
ductive in a wide range around room temperature (300−500K). The n-type silicon
conducts with negatively charged electrons as charge carriers and the p-type sil-
icon conducts with positively charged holes as charge carriers. However, each
kind of silicon is still electrically neutral, as no additional electric charges were
added.
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Figure 2.3.: Shift of the Fermi levels as result of doped silicon.

2.3.1. The P-N-Junction

The most interesting and useful effects in silicon electronics occur if a junction be-
tween p-type and n-type silicon is formed, a so-called p-n-junction. This junction
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2.3. Soild State Physics of Silicon

acts as a diode, which is a device that allows an electric current to flow only in
one direction . Furthermore, the p-n-junction has the properties to detect light and
measure its intensity.

+
Anode

-
Kathode

hole (positive charge)
p-doted Area

electron (negative charge)
n-doted Area

Figure 2.4.: Diode symbol and a p-n silicon junction immediately after junction
connection

A simple and limited model of the p-n-junction is given now, while more details
can be found in the literature [15, 17]. Fig. 2.4 shows the electric symbol of a
diode and the p- and n-type areas (in the very moment the junction is connected).
To understand the p-n-junction, one has to consider that the charge carriers are
created by the doted materials which has different types of charge carriers in the
areas of the p- and n-type silicon. At the junction border, a diffusion of the different
charge carriers takes place and electrons diffuse into the p-doted area, while holes
move into the n-doted area. As the electrons reach the p-doted area, they result in
a negative total charge of the p-doted area, as they violate the electric neutrality of
this part of the crystal. The same occurs for the holes that diffuse into the n-doted
area. Consequently an electric field builds up between the p- and n-doted areas
that pushes the charge carriers against their diffusion direction. In the equilibrium
state, the current from the electric field is as large as the current of the diffusion and
the voltage between the p- and n-doted crystals is about 0.6V at room temperature
for common doping parameters.

With regard to conductivity, another effect, called recombination has to be con-
sidered. The electrons that moved over the border are attracted to fill the free
places of the p-type doping atoms and while the holes take the extra electron from
the n-doping atoms. As a result, the diffusing charge carriers are no longer free
and don’t contribute to the conductivity, meaning that inside the diffusion region
the free charge carriers vanish. This zone is called the depletion zone of the p-n-
junction. With no available charge carriers in the depletion zone, the conductiv-
ity of the p-n-junction is completely interrupted. Fig. 2.5 shows this equilibrium
state of the p-n-junction. The application of an external electric field allows now
to shrink and finally collapse the depletion zone making the diode conductive.
However, if the electric field is applied with reversed polarity, the depletion zone
extends and the diode forms an isolator.
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Figure 2.5.: p-n-junction in its equilibrium state

2.3.2. Light Measurement in a CMOS Pixel

This chapter now concentrates on the light measurement ability of the p-n-
junction. Most modern image sensors are built upon complementary metal oxide
semiconductors (CMOS). The CMOS light sensors and their functionality is now
explained in their basic functionality as described in various literature [15, 18].
The other widely spread type of image sensors is based on charge coupled de-
vices (CCD), which have a similar way of measuring the light with help of a
p-n-junction. A basic CMOS light sensor has a circuit layout as shown in fig.
2.6.

RST

VDD

AMP

Analog Out

Read

Figure 2.6.: Basic circuit of a CMOS light sensor

To start the light measurement, the Read transistor is closed and the RST transistor
is opened. The photodiode is then in a so-called reverse-biased state, which means
that the applied voltage extends the depletion zone. This happens as the applied
voltage leads to a force on the free charge carriers which pulls them out of the
diode system, leading to a decreased charge carrier concentration which allows
the diffusion current to extend the depletion zone.

If the RST transistor is closed, the diode is isolated on both sides and the depletion
zone stays constant. Generally spoken, the depletion zone now builds an isolating
layer between two differently charged areas and thus forms a capacitance. Fig. 2.7
shows the extended depletion zone after the RST transistor has been closed.
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In this charged stage, the detection of light takes place. Inside the depletion zone,
there are no free charge carriers available from the doping material. But it is
still possible that electrons from the valence band go into the conduction band
if enough energy is transferred. The band gap between valence and conduction
band for silicon is ≈ 1.17 eV at 300 K. An incident photon of visible light has an
energy of 1.6 eV to 3.2 eV which is enough energy to push an electron into the con-
duction band. Of course for each electron that leaves the valence band, a new hole
is created as well.

If this photon-electron interaction takes place inside the depletion zone, the newly
generated free charge carriers are exposed to the present electric field. This electric
field will guide the electrons into the n-doted area and the holes into the p-doted
area. For a constant intensity, the created charges lead to a constant current that
results in a linear voltage decrease of the diode’s capacitance. Or in other words,
the voltage at the diode is proportional to the number of photons that did hit the
diode’s depletion zone. Fig. 2.8 illustrates this process.
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Figure 2.8.: Electric charge generation in the field of the depletion zone

Going back to the circuit design of fig. 2.6, the voltage that is present at the photo
diode is amplified with the source following transistor AMP. The Read transistor
then selects the signal of the photo diode and moves it to the Analog Out signal
from where it will be further amplified and digitalized.

For CCD sensors the physical mechanism of generating charges inside the deple-
tion zone is identical, but instead of a direct signal amplification inside the light
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sensor, the charge is shifted outside the light sensing area of the image sensor. Not
until then it is amplified, however more details and information can be found in
the mentioned literature.

Unwanted effects: Besides this ideal functionality, there are some common non-
ideal effects that should be considered. Not every photon of the right energy will
create a free electron-hole-pair that accumulates in the capacitance. The photon
matter interaction in general obeys to the Possion statistics which has a parameter
that depends on the penetration depth of the photon into the matter as well as on
the photon’s energy.

Considering the whole system, each material has its specific spectral sensitivity
depending on its physical parameters, like its reflectance, that hinders the elec-
trons to enter the silicon. Other parameters that influence the sensitivity are the
geometry of the photo diode with respect to a sensitive area and the depth and
width of the depletion zone. The total number of usable electrons with respect to
the number of available photons per light sensor is described as quantum efficacy
η and is usually strongly dependent on the energy of the photon, and thus the
wavelength (η(λ)).

For longer wavelength photons, the interaction rate is usually lower and thus the
diode depth may not allow a high quantum efficacy. Above 900 nm, the silicon is
said to appear transparent to photons [15]. Increasing the depth of the diode to
achieve a higher quantum efficacy for infrared-like radiation is limited, as skewed
photons may then also reach the doped area of the neighboring light sensors, lead-
ing to crosstalk effects. Besides the crosstalk effect, the doped silicon usually is
very expensive in its fabrication.

Besides the photon electron interactions, electron-hole-pairs are also created ran-
domly from the temperature energy (with respect to their Fermi-Dirac statistics).
This effect is called dark current and increases exponentially with temperature as
the Fermi-distribution goes from a sharp edge towards a smooth curve with in-
creasing temperature. As each crystal structure has its defects that allow slight
changes in the energy levels, the dark current will have individual values for each
light sensor.

Another problem occurs from the sensitivity of the analog circuity. The present
transistors consist all of p-n-junctions which leads to different amplification rates
for each signal. Further, a crosstalk in the analog domain can result in a sudden
appearance of a changed set of nonuniformities in certain operating modes (e.g.
a crosstalk with the power supply elements). Such problems may also affect the
build-in automatic nonuniformity correction circuity of the sensor.

Unwanted Long Term Effects: Besides the above mentioned unwanted effects
there are also several effects that appear on longer time scales and that changes
the light sensor’s behavior. Those effects mainly result as a change in the doped
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silicon material. Ultra violet (UV) radiation for example is known to degrade the
silicon structures [19] which leads to changes in the dark current and amplification
behavior of the transistors.

Further to the UV-radiation, other unwanted impurities are present in the material
which cause unwanted recombination centers that may be inactive in the first few
years [20]. In general, diffusion processes of the doping materials may also lead to
a change in the sensor characteristics. All these effects concern the p-n-junctions
and their depletion zones, not only in the actual photo-diode, but also in the am-
plifying transistors as mentioned above are affected. Therefore the conductivity or
charge generation ability of the devices changes, which leads to the overall offset
and gain characteristics. And for the whole image sensor this results in changes of
the nonuniformities.

2.4. The EMVA1288 Sensor Model

In the last section, the basic physical effects of the photon to voltage transformation
have been explained methodically without any mathematical modeling (see sec.
2.3.2). The EMVA1288 standard for camera calibration describes a linear signal
model that allows to characterize the sensitivity, linearity and temporal noise of a
light sensor [1], which is shortly explained now. The standard models CMOS and
CCD sensors with the same principle that is compliant with the above described
physics:

1. A number of photons hits the photosensitive area A of a light sensor.

2. A number of electrons is created, given a quantum efficacy η.

3. The generated charge is then converted by the light diode’s capacitance into
a voltage.

4. The voltage is then amplified and converted into a digital number DN .

To calculate the expectation value of the number of photons µp for a certain light
sensor, its photo sensitive area A, a given irradiance E and the exposure time
texp. are needed. Furthermore it is assumed that the photons possess an average
wavelength λ, which allows to calcuate their energy according to eq. 2.1. This
number of photons can be further transferred into the number of created electrons
with help of the wavelength dependent quantum efficacy η(λ):

µp =
AEtexp.λ

hc
(2.5)

µe = η(λ)µp (2.6)

The temperature and exposure time dependent dark signal is considered as an ad-
ditive signal µd and the amplification of the signal is then described by an overall
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system gain K, leading to the expected measurement quantity µy in digital num-
ber DN:

µy[DN] = K(µe + µd) (2.7)

As mentioned in sec. 2.3.2, the dark signal µd is generated by the temporal inte-
gration of the dark current of the randomly generated electron-hole-pairs µI that
depend on the temperature energy. As the Fermi Dirac distribution can be ap-
proximated with an exponential distribution for high temperatures, an exponen-
tial model for the dark current µI is chosen by EMVA1288:

µd = µd.0 + µItexp. (2.8)

µI = µI,ref · 2
T−Tref.
Td , (2.9)

where Td is the temperature range that doubles the dark current µI and the com-
bined sensor model for the signal results as:

µy[DN] = Kη
AEtexp.λ

hc
+Kµd.0 +KµItexp. . (2.10)

Tab. 2.1 gives an overview of the variables used in the EMVA1288 standard.

Parameter Unit Description

K DN
e− overall system gain

µd,0 e− constant dark current
µI(T ) e− temperature depended dark current
η − sensor’s quantum efficiency
h J s Planck’s constant

c m
s speed of light

texp. ms exposure time
A µm2 photo sensitive area of a single sensor
λ nm wavelength of the light

E
µW
cm2 averaged irradiance over the area A

Table 2.1.: Explanation of the EMVA1288 parameters that contribute to the DSNU
and PRNU

While this sensor model is very complex in a general case, a constant temperature
and a constant exposure time leads to a linearisation.

µy[DN] = Kη
Atexp.λ

hc︸ ︷︷ ︸
a

E +Kµd.0 +KµI(T )texp.︸ ︷︷ ︸
b

(2.11)

µy[DN] = aE + b (2.12)
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This model is valid for each individual light sensor, meaning that each light sensor
will have its own offset bi,j and gain ai,j , caused by the effects mentioned above:

µy,i,j [DN] = ai,jE + bi,j (2.13)

These individual different offset and gain factors produce the nonuniformities in
the measured image signals and will be further explained in chapter 3.

2.5. Digital Image Sensors

Most modern digital photographs of light signals are acquired by CMOS or CCD
light sensors with a functionality as explained in sec. 2.3.2. The described light
sensors measure the averaged light irradiation over a given area A in a given time
texp.. To be able to capture the light signal in a way that it can be reconstructed,
many light sensors are arranged close to each other. Such an assembly of light
sensors then forms an image sensor and typical modern image sensors contain
several million light sensors. Many quantities with concern to the light sensors are
given in the common data sheets. E.g. the actual size of one light sensor element,
however it is not said that the whole area is photo sensitive. The fill-factor gives
an estimate on how much of the actual area belongs to the photo sensitive part of
the light sensor.

In order to measure the light signal, the photo sensitivity for each light sensor and
over the whole sensing area of the image sensor should be known. For CMOS im-
agers, each pixel contains the photo diode and the readout and pre-amplification
transistors. For CCD imagers the readout circuity is much smaller but also present
(Especially if dark-rows are embedded in between the light sensitive rows). While
in recent years, metal layers were build on top of the light sensitive silicon, new
back-illumination techniques can avoid these obstructions, leading to an increased
sensitivity. Another method to improve the sensitivity is to bput micro lenses on
top of each light sensor.

Given a 2D top view of a light sensor, the photo sensitivity is not distributed con-
stantly and fig. 2.9 shows, the measured sensitivity of a CMOS light sensor (with
thanks to Daniele Passeri [21]). It is clearly visible that the obstructions from the
readout circuity lead to severe variations in the photo responsibility of the individ-
ual pixels. Measurements like this vary from manufacturer to manufacturer and
are not part of the common data sheets.

Additionally to the sensitivity of each light sensor, the positions of the individual
sensors are of interest. Usually the light sensors are positioned onto a regular grid
as shown in figure 2.10. The supply and readout electronics for the light sensors
are then usually connected row and column wise, with the signal readout path
connected on the shorter routes as the signal noise increases with line length.
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Figure 2.9.: Exemplary photo sensitivity of a given pixel, superimposed with the
actual pixel layout (red stays for a high quantum efficacy)
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Figure 2.10.: Imager layout with many lightsensors and their row-wise power sup-
ply and column wise read-out lines.
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2.6. Image Acquisition and Reconstruction

It has been shown in several works that the nonuniformities of image sensors have
a row and column wise dependency [2, 22], which results from the row and col-
umn wise connections. With a more refined sensor model, nonuniformity effects
that result from row and column wise gains and offsets can be considered, which
is done in chapter 7.

2.5.1. Colored Images

An image sensor as described above is not able to capture color information. An
exception is the Foveon Chip [23] that exploits the wavelength dependent photon
interaction with respect to the penetration depth of the photons into the silicon
material. However, to be able to extract color information with a typical image
sensor as described above, the sensors have to be equipped with individual color
filters. Typically the sensors are considered in groups of four and the light sensors
are then equipped with a regular color filter array (CFA) as shown in figure 2.11.
With the knowledge of the CFA structure a reconstruction of the color information
is possible to some extend and further details are described below.
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Figure 2.11.: A typical color filter arrays (CFA) on an image sensor

2.6. Image Acquisition and Reconstruction

With the knowledge of light sensors and their combination to image sensors, the
description of the physical processes and their mathematical models are com-
pleted. Now a mathematical description of the continuous light signal and its
reconstruction from the light sensor measurements is given, according to the de-
scription found in various literature [24, 16].
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2. General Background

2.6.1. Signal Sampling with the Light Sensors

The optically low-pass filtered and mapped signal IFocal according to eq. 2.4 is
measured by the light sensors. Regarding the physics, the light sensors average
this signal temporally over the exposure time and spatially over the sensitive area
of the individual light sensors. As shown in fig. 2.9 and 2.10 in sec. 2.5, we assume
that all sensors have an identical layout of their sensitive area and are ordered in
a rectangular grid.

While the temporal averaging is described by the sensor models (eq. 2.13), the
spatial averaging of the light signal by the sensors can be expressed by a convo-
lution of the focal plane light signal IFocal with the spatial sensor sensitivity. The
evaluation of this signal at the sensor positions (i, j) ∈ S then gives the coefficients
of the sampled intensity signal ISampled. This mathematical calculation is possible
because the light sensor’s sensitivity can be considered as the light sensor’s PSF
LPSF [16]. The evaluation at the sensor position is expressed by a sampling with
Dirac impulses at the positions of the sensors, and leads to the sampled intensity
signal ISampled as:

ISampled = (IFocal ∗ LPSF ) ·∆(x, y) (2.14)

with ∆(x, y) =
∑
(i,j)

δ(x− iDx)δ(y −Dy) .

With ∆(x, y) as a two dimensional Dirac comb and Dx and Dy the sensor’s grid
constants. The signal ISampled is completely defined by the sample coefficients of
the Diarc pulses CS,i,j :

CS,i,j = (IFocal ∗ LPSF)|(i,j)∈S . (2.15)

Given the definition of IFocal from eq. 2.4 and the commutativity of convolutions,
then the above equations can be simplified using a combined PSF for the whole
system SPSF :

ISampled = (IWorld ∗OPSF ∗ LPSF︸ ︷︷ ︸
SPSF

) ·∆(x, y) (2.16)

CS,i,j = (IWorld ∗ SPSF)|(i,j)∈S (2.17)

The samples CS,i,j can be used as input values of a light sensor modeling, as they
correspond to the averaged intensity that (ideal) light sensors would measure.

Fig. 2.12 shows the schematics of the light signal sampling as described above. The
continuous signal (fig. 2.12a) is projected onto the array of light sensors (2.12b).
Fig. 2.12c shows the projected signal onto the sensor areas, where the projection
includes the low pass filtering of the optics. Further, the averaging over the sensi-
tive areas gives the coefficients of the sampled signal that are shown in fig. 2.12d
in a block representation for each coefficient.
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2.6. Image Acquisition and Reconstruction

(a) Continuous light signal (b) Imager with photosensitive Areas

(c) Signal onto the imager (d) Pixel representation of the signal’s
sampling coefficients

Figure 2.12.: Schematics of the sampling of the continuous light signal
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2. General Background

2.6.2. Signal Reconstruction

After having the signal converted into a set of discrete coefficients, the reconstruc-
tion of the continuous signal needs to be considered. The Fourier transform of the
sampling process writes as:

ISampled = (IWorld ∗ SPSF) ·∆(x, y) c ÎSampled = (ÎWorld · ŜPSF) ∗ ∆̂(x̂, ŷ) ,
(2.18)

and the Fourier transform of the Dirac comb ∆ is a Dirac comb in the Fourier space
again

∆(x, y) =
∑
(i,j)

δ(x− iDx)δ(y −Dy) c ∆̂(x̂, ŷ) =
∑

(m,n)

δ(x̂− m

Dx
)δ(ŷ − n

Dy
) .

(2.19)

Therefore in the Fourier space, the convolution with the Dirac comb gives a sum-
mation of the replications of the signal (ÎWorld · ŜPSF) with the frequency of 1

Dx

in x̂ direction and 1
Dy

in ŷ direction. Fig. 2.13a shows the absolute value of the
complex Fourier transform of the sampled signal from fig. 2.12 and the repeti-
tions of the signal are clearly visible. Concluding, a reconstruction is only possible
by cutting the additional replications out. This is done for example by multiply-
ing the Fourier transform of the sampled signal with a reconstruction function Φ̂.
The ideal reconstruction function will be a two dimensional rectangular function
Φ̂() = rect() = u(). The reconstruction of the signal then expresses as

IReco = ISampled ∗ Φ(x, y) c ÎReco = ÎSampled · Φ̂ . (2.20)

As the repetitions have to be cut out in x̂ and ŷ direction, the reconstruction func-
tion Φ̂ can be separated into its x̂ and ŷ components. This further allows to find its
inverse Fourier transform as the product of the Fourier transforms of the separable
functions [25]:

Φ̂(x̂, ŷ) = Φ̂x(x̂) · Φ̂y(ŷ) c Φ(x, y) = Φx(x) · Φy(y) . (2.21)

Given the Dirac pulse coefficients of ISampled, the signal reconstruction can also be
written with help of a sum over all sensor elements (i, j) ∈ S of the coefficients
CS,i,j , weighted with the reconstruction function:

IReco(x, y) =
∑

(i,j)∈S

CS,i,j · Φ(x− i, y − j) (2.22)

The Fourier transform of the ideal clipping function u(x) is the sinc function
sinc(x) = sin(x)

x , which has an infinitely large domain. Thus the reconstruction
with the sinc-function leads to a computational effort that is far too large to be
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2.6. Image Acquisition and Reconstruction

considerable, and useful approximations need to be made. Fig. 2.13b shows the
clipped signal in the Fourier space with a rect function.

Aliasing: Given the above equations, an ideal reconstruction is only possible if
the repetitions of the signal are not overlapping. As the repetitions occur with
a frequency of 1

Dy
and 1

Dx
, all frequency components higher than 1

2
1
Dy

and 1
2

1
Dx

should be 0. This is known as the Nyquist-Shannon sampling theorem. All non
zero frequency components that do not fulfill this condition will be present in
the clipped signal as components of lower frequencies. The image degradation
caused by these high frequencies are called aliasing effects. The frequencies 1

2
1
Dx

and 1
2

1
Dy

are also named the Nyquist frequencies. To avoid aliasing effects, the sig-

nal (ÎWorld · ŜPSF ) should not contain any high frequency components above the
Nyquist frequencies and as a consequence the signal has to be low pass filtered
before the sampling.

In practice the PSF of the imaging system (optics and imager) ŜPSF damps the
high frequency components to a degree that the remaining aliasing effects do not
disturb the image signal. However, the PSF is not ideal and the lower frequencies
are therefore damped as well. The trade off between these two effects is considered
for each optical system separately with respect to its field of application. Further,
the reconstruction function Φ can try to regain the damped low frequencies in the
reconstruction process.

(a) Fourier transform of Sampled
signal

(b) Reconstruced image in Fourier
space

Figure 2.13.: Fourier transform of the sampled signal and reconstruction in the
Fourier space by clipping. Image data represented as log(|f(·)|).

2.6.3. Typical Realizations for the Reconstruction

Besides the reconstruction with the sinc function, a linear or cubic reconstruction
function is more common for typical image processing algorithms. Fig. 2.14 shows
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2. General Background

a plot of the corresponding 2D reconstruction functions, first the bilinear recon-
struction filter (Φ = BL, fig. 2.14a) and second the bicubic reconstruction filter
(fig. 2.14b). The bicubic reconstruction filter is realized as a Mitchell Netravalli
Filer [26] with the parameters B = 1.0 and C = 0.0 (Φ = MN). The sinc filter is
shown in fig. 2.14c (Φ = sinc). Also visible in the images is the covered area for
the reconstruction filters with 2× 2 for the bilinear filter, 4× 4 for the bicubic filter.
For the sinc filter the area is infinite large and the representation has been clipped.
As mentioned in eq. 2.21, the reconstruction functions are separable and the above
mentioned definitions for the BL and MN reconstruction are defined as:

BL(x) = max(1− |x|, 0) (2.23)

MN(x) =
1

6



(12− 9B − 6C)|x|3 + (−18 + 12B + 6C)|x|2

+(6− 2B)
, if |x| < 1

(−B − 6C)|x|3 + (6B + 30C)|x|2

+(−12B − 48C)|x|+ (8B + 24C)
, if 1 ≤ |x| < 2

0 else
(2.24)

However, not only the signal itself, but also its first and second spatial derivatives
are of great interest as these can be used to represent the edges of the intensity sig-
nal. Considering the bilinear reconstruction only the first derivative exists. Using
the cubic reconstruction the second derivative can be reconstructed as well, while
for the sinc-based reconstruction, all derivatives can be reconstructed in princi-
ple.

Fig. 2.15 shows the result of the different reconstruction filters and their first and
second derivatives. The bilinear reconstruction shows a blurry image as higher
frequencies are not reconstructed (fig. 2.15a). Further one can observe some re-
construction artifacts that correspond to the sample points of the light sensors.
As expected, the first derivative (fig. 2.15b) has constant areas that correspond to
the piecewise constant areas of the reconstruction filter. The second derivative is
trivial and equal to zero for the whole signal area (fig. 2.15c). The bicubic (MN)
reconstruction shows a much smoother image because the higher frequencies are
damped stronger in this reconstruction mode and further, no reconstruction arti-
facts show up like they do for the bilinear reconstruction. The first and second
derivative then look as expected (fig. 2.15e and fig. 2.15f). For the sinc reconstruc-
tion we see again reconstruction artifacts for the sample positions, but the image in
general tends to be not as blurred as for the other reconstruction modes (fig. 2.15g).
This is an effect of the almost ideal frequency cut in the Fourier space which does
not lead to unwanted damping in the remaining high frequencies. With concern to
the first and second derivatives, the reconstruction artifacts show up and give sig-
nals that are less well reconstructed than for the MN reconstruction (see fig. 2.15e
and fig. 2.15f). This results from the fact that the sinc functions reconstruction
needs to consider sampling points that lie outside the actual signal. The problems
with this reconstruction mode are also discussed by Wolf [24].
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(a) Bilinear (Φ = BL) recon-
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tion filter

Figure 2.14.: Schematics of the sampling of the continuous light signal
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Concluding, the MN reconstruction tends to give the best signals with concern to
the second derivative. For the first derivative of the BL and MN reconstruction the
applications have to decide which property is more important: higher amplitude
in the higher frequencies or smoother signal in the first derivatives. Further one
has to keep in mind that these signals are simulated results which may not occur in
this way in a real world application, because other (and non-ideal) PSFs are more
likely.

(a) IReco with Φ = BL (b) |∇IReco|with Φ = BL (c)4IReco with Φ = BL

(d) IReco with Φ = MN (e) |∇IReco|with Φ = MN (f)4IReco with Φ = MN

(g) IReco with Φ = sinc (h) |∇IReco|with Φ = sinc (i)4IReco with Φ = sinc

Figure 2.15.: Representation of different reconstructed signals and their deriva-
tives, using the above reconstruction functions Φ.
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2.6. Image Acquisition and Reconstruction

2.6.4. Combining Sensor Model and Signal Reconstruction

This section provides a combination of the sensor model from sec. 2.4 and the
sampling and reconstruction from sec. 2.6.1. The EMVA1288 linear sensor model
of eq. 2.13 gives the expectation value of the sensor output for a light stimulus E
on the photosensitive area A:

µy,i,j [DN ] = ai,jE + bi,j (2.25)

With the knowledge from sec. 2.6.1, we know that the averaged light signal on
the sensor area is the coefficient of the sampled signal CS,i,j . Further, the sensors
will of course never measure their exact expectation values. If the sensor model is
correct in its assumptions and all systematical errors are covered by the gain and
offset coefficients a and b, then for a real measurement a mean free stochastic error
χi,j has to be added. The measured coefficients of the sampled signalCM,i,j are then
defines as:

CM,i,j = ai,jCS,i,j + bi,j + χi,j , (2.26)

and inverting this equation, the signal reconstruction formula develops to:

CS,i,j =
1

ai,j
(CM,i,j − bi,j − χi,j) (2.27)

IReco(x, y) =
∑

(i,j)∈S

1

ai,j
(CM,i,j − bi,j − χi,j) · Φ(x− i, y − j) (2.28)

This equation will be used as starting point for the development of the nonunifor-
mity estimation methods.

Actually, each of the above measurements happens during the exposure times of
the sensors and therefore can be considered a 1D sampling of the signals in the
temporal domain [16]. This means that CS and CM are explicitly time depen-
dent coefficients of the temporally sampled signal at the times tn: CS,i,j,tn and
CM,i,j,tn .
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3. Image Nonuniformities and their
Quantification

3.1. Definition of DSNU and PRNU

Given the physical background on light sensors and image sensors from chapter
2, this chapter introduces the image nonuniformities and their quantification. As
explained in sec. 2.5, image sensors are composed of millions of light sensors and
a linear model of the light sensors, as introduced by the EMVA1288 standard, is
sufficient for typical CMOS and CCD sensors. To reapeat, the linear sensor model
of eq. 2.13 develops into the measurement model in the form of eq. 2.26:

CM,i,j = ai,jCS,i,j + bi,j + χi,j .

The coefficients ai,j are named gains and the coefficients bi,j are named offsets,
while the χi,j represent the stochastic errors that are considered independent to
each other. Each sensor (i, j) will have a slightly different gain and offset param-
eters due to imperfections in the manufacturing of the circuity and/or the silicon
doping processes. All these errors influence the measured intensity and the gain
and offset imperfections will present as systematic errors in the reconstructed light
signals. While in a single image the systematic errors are not distinguishable from
random noise χ, the evaluation of many frames allows to separate the systematic
from the stochastic errors.

In this thesis, sets of indexed variables that consider all light sensors of an image
sensor are defined in the short notation:

{xi,j} = {xi,j |i, j ∈ S} with: S all sample positions of the image sensor (3.1)

If many images are recorded at complete darkness, the averaged image will show
the nonuniformity of the set of offsets {bi,j}. This appearance is called Dark Signal
Nonuniformity, DSNU. For recordings at a uniform illumination, the averaged im-
age will show a superposition of the nonuniformities caused by the offsets and the
gains. As the sensor model is linear, the averaged image can be corrected by the
measured DSNU coefficients {bi,j} and the remaining non-uniformity results from
the different gain coefficients {ai,j}. This gain based nonuniformity is called Photo
Response Nonuniformity, PRNU. Figure 3.1 shows the measured offset set {bi,j}
and gain set {ai,j} of a Photonfocus MV1-D1312-160-CL camera. The measure-
ments are according to the EMVA1288 standard and therefore with switched off
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3. Image Nonuniformities and their Quantification

internal nonuniformity corrections. A recorded image that is degraded by these
nonuniformities and the nonuniformity corrected image are shown as well to give
an impression for the effects of the degradations. Especially the horizontally and
vertically correlated degradations are disturbing the visual impression.
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(a) EMVA1288 measured {bi,j}
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(b) EMVA1288 measured {ai,j}
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(d) Ground truth corrected image

Figure 3.1.: Measured PRNU and DSNU parameter sets and a recorded, degraded
image in comparison to the nonuniformity corrected image

3.2. EMVA1288 Nonuniformity Quantization

The PRNU and DSNU are defined by their sets of gain and offset coefficients {ai,j}
and {bi,j}, but these sets are too large to give an easy way to quantify the image
signal degradation. EMVA1288 [1] therefore defines a measure for the DSNU and
PRNU that results in one real number for the DSNU and one real number for the
PRNU. These numbers are similar to the definitions found in the various liter-
ature [27, 28]. Additionally, to the definitions EMVA1288 also standardizes the
measurement conditions and camera setups to record the images for the quantiza-
tion [1]. Two measurement setups are required to calculate the DSNU and PRNU
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3.2. EMVA1288 Nonuniformity Quantization

quantifications: One measurement that gives the expectation value of the signal in
the case of no illumination (EMVA value: ydark). And one further measurement at
50% saturation with a constant uniform illumination (EMVA value y50).

Spatial and Temporal Statistical Moments: To be able to define the needed
signals, EMVA1288 separates the spatial and temporal statistical moments. For a
given discrete temporal spatial signalX(i, j, tn), or the corresponding set {Xi,j,tn},
the times tn are the temporal sample points and the spatial positions (i, j) are the
spatial sample points. The limits of the sums in the below definitions have to be
adjusted according to the number of light sensors per spatial dimension (i, j) and
the number of temporal samples tn. However, assuming that there are TN tempo-
ral sample points and (M,N) spatial sample points, then the statistical definitions
can be simplified.

The temporal expectation is defined as:

µ(X) = µ({Xi,j,tn}) =
1∑
n 1

∑
n

Xi,j,tn =
1

TN

∑
n

Xi,j,tn . (3.2)

The spatial expectation value is defined as:

e(X) = e({Xi,j,tn}) =
1∑
i,j

1

∑
i,j

Xi,j,tn =
1

MN

∑
i,j

Xi,j,tn . (3.3)

The temporal variance is defined as:

σ2(X) = σ2({Xi,j,tn}) =
1

−1 +
∑

n 1

∑
n

(Xi,j,tn − µ(X))2 (3.4)

=
1

TN − 1

∑
n

(Xi,j,tn − µ(X))2 . (3.5)

And last, the spatial variance is defined as:

s2(X) = s2({Xi,j,tn}) =
1

−1 +
∑
i,j

1

∑
i,j

(Xi,j,tn − e(X))2 (3.6)

=
1

MN − 1

∑
i,j

(Xi,j,tn − e(X))2 . (3.7)

The measures for DSNU and PRNU as described in EMVA1288 can now be ex-
pressed with these definitions. Each measurement of the image sensor results in a
set of coefficients {CM,i,j}, assigned to a discrete point in time tn. The defined sen-
sor model for the measurements (eq. 2.26) gives the values CM,i,j as an estimate
of the expectation values of the signal for the chosen exposure time (see eq. 2.12).
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Thus, averaging many measurements leads to a better estimate of the real temporal
expectation value of the constant signal.

Definition of DSNU: EMVA1288 defines the value of the DSNU as the spatial
deviation of the temporal expectation value of the signal measured at darkness:
{CM,i,j,dark}. The temporal expectation value limits also the effects of the mean
free stochastic errors of χ and the spatial deviation gives a good number on how
much noise is caused by the offsets in the image, as these parameters usually obey
a Gaussian distribution.

With help of eq. 3.2-3.7 the definition is expressed as:

DSNUEMVA1288 =
s(µ({CM,i,j,dark}))

K
. (3.8)

Of course the actual temporal expectation value cannot be measured and a theo-
retical remain of the mean free stochastic errors may still be present. However, the
standard gives a reasonable number of frames that have to be averaged to achieve
good results (see [1] for more details).

Transforming all the demands to the EMVA1288 measurement process into as-
sumptions, results in the following mathematical formulae:

CS,i,j,dark = 0 measurements at darkness , (3.9)
µ({χi,j}) = 0 ∀(i, j) as mean free random variable , (3.10)
µ({bi,j}) = bi,j ∀(i, j) as temporal constants . (3.11)

In detail the above equation state that the measurements were conducted at dark-
ness, that the remaining stochastic error is mean free and that the offsets are con-
stants in time. Combined with the definitions of CM,i,j,dark, the following transfor-
mations express the DSNU by its offset coefficients (see [29] for the mathematical
foundations):

DSNUEMV A1288 =
s({µ(ai,jCS,i,j,dark + bi,j + χi,j}))

K
(3.12)

=
s(µ({ai,jCS,i,j,dark}) + µ({bi,j}) + µ({χi,j})))

K
(3.13)

=
s({bi,j})

K
(3.14)

Definition of PRNU: For the definition of PRNU the signal at 50% saturation (
CM,i,j,50%), recording a uniform illumination source has to be measured. Given
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3.2. EMVA1288 Nonuniformity Quantization

a dynamic range of d quantization steps, CM,i,j,50% is defined as the signal that
obeys1:

CM,i,j,50% :
d

2
= e(µ({CM,i,j,50%})) (3.15)

EMVA1288 then defines the PRNU as:

PRNUEMVA1288 =

√
s2(µ({CM,i,j,50%}))− s2(µ({CM,i,j,dark}))
e(µ({CM,i,j,50%}))− e(µ({CM,i,j,dark}))

· 100% . (3.16)

Appendix A.1 shows how this definition can be transformed into the spatial coef-
ficient of variation of the gain parameters {ai,j}:

PRNUEMVA1288 =
s({ai,j})
e({ai,j})

· 100% (3.17)

3.2.1. Adaptations for Scene Based Estimation Methods

While the DSNU and PRNU estimation (eq. 3.8 and eq. 3.16) are based on the
actual measurements, the mathematical transformations of eq. 3.17 and eq. 3.14
utilize the sensor model’s individual gain and offset factors {ai,j} and {bi,j}.

The transformed definition of PRNU is calculated directly from these values, but
the DSNU depends further on the overall system gainK from the EMVA1288 stan-
dard. As mentioned in sec. 2.4,K gives the transformation of the measured digital
numbers, that represent the image, into the physical number of electrons inside the
capacitance of the light sensor. However, a scene based nonuniformity estimation
can only depend on the signal in digital numbers, which makes the gain factor K
obsolete. Therefore a DSNU with the unit of digital numbers [DN] is defined by
neglecting the factor K from the previous definition:

DSNUEMVA1288,DN = s({bi,j}) (3.18)

3.2.2. Measurement of the Parameter Sets

The parameter sets {ai,j} and {bi,j} have to be obtained from the measurements
{CM,i,j,dark} and {CM,i,j,50%}. With the assumptions from eq. 3.10-3.11, the {bi,j}
are the direct result of the temporal averaging of the CM,i,j,dark measurements:

µ(CM,i,j,dark) = µ(ai,jCS,i,j,dark + bi,j + χi,j) (3.19)
= µ(ai,jCS,i,j,dark) + µ(bi,j) + µ(χi,j) (3.20)
= bi,j (3.21)

1Assuming the does not saturate with the maximum number of quantization steps
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The definition of the {ai,j} can be given with the knowledge of the {bi,j} by using
the definitions of sec. 3.2. It follows for the individual ai,j

µ(CM,i,j,50%) = µ(ai,jCS,i,j,50% + bi,j + χi,j) (3.22)
= µ(ai,j)µ(CS,i,j,50%) + µ(bi,j) + µ(χi,j) (3.23)

⇔ µ(CM,i,j,50%})− {bi,j} = ai,j
d

2
(3.24)

⇔ ai,j =
2

d
·
(
µ(CM,i,j,50%)− bi,j

)
, (3.25)

where the last equation allows to calculate the gain coefficients {ai,j} directly from
the measurements.

3.3. Further Quantization Methods and Limits

The above described EMVA1288 nonuniformity quantification is one among sev-
eral other methods to measure the nonuniformities in a defined laboratory envi-
ronment [30, 1]. Some of the other calibration methods use more complex (e.g.
nonlinear) models of the light sensors to adapt for special sensors [28]. For the
DSNU parameters, the exponential temperature dependency according to eq. 2.9
should also be considered during the calibration. In general, all these methods
rely on a defined environment with uniform illuminations to extract the DSNU
and PRNU parameters.

The limits for the laboratory calibrations are given by the temporal drift effects
from sec. 2.3.2. These make a more or less frequent recalibration of the sensors
necessary to guarantee the best image quality. However, for applications like mil-
itary infrared and thermal imaging, as well as video based driver assistance sys-
tems, a recalibration in a defined laboratory environment is not possible or too
expensive and too complex. While for thermal imaging a calibration is very com-
plex, for video based driver assistance systems a lifetime of the systems of 10− 20
years without a recalibration in a laboratory environment has to be considered.

Therefore scene based nonuniformity estimation methods are necessary in those
situations. The nonuniformity variables {ai,j} and {bi,j} depend on exposure time
and temperature as already shown in the EMVA1288 sensor model (eq.2.12). How-
ever, most scene based methods assume the parameters {ai,j} and {bi,j} constant.
This is actually a sufficient assumption as in many applications, the exposure time
is not adapted very often and the temperature changes usually very slowly com-
pared to the number of captured frames and the actual parameter drifts. Scene
based methods use further assumptions to extract the nonuniformity parameters
and sec. 5 describes the most relevant scene based methods in further detail. The
estimated nonuniformities should be evaluated against a ground truth nonunifor-
mity measurement like the EMVA1288 based estimation to measure their perfor-
mances.
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3.4. Quality Metrics for Scene Based Estimated
Nonuniformities

With the upcoming scene based nonuniformity estimations, the need for an eval-
uation of the new estimate against a ground truth reference is needed. The lab-
oratory estimation parameters are therefore considered as the ground truth ref-
erence and literature provides several norms to calculate the quality scene based
estimations. The common methods in state of the art publications compare the
ground truth corrected images against the images corrected with the current esti-
mate [7, 5, 4, 6]. Given an estimated set of parameters ({ai,j,est.} and {bi,j,est.}) and
a set of ground truth reference parameters ({ai,j,ref.} and {bi,j,ref.}) the estimated
and ground truth corrected images are calculated with:

Ci,j,ref. =
1

ai,j,ref.
(CM,i,j − bi,j,ref.) (3.26)

Ci,j,est. =
1

ai,j,est.
(CM,i,j − bi,j,est.) . (3.27)

In the publications the mean absolute error (MAE), the root mean squared error
(RMSE) and the signal to noise ration (SNR) are the mainly used measures for the
quality of the nonuniformity reduction. Given the definitions of R. Gonzalez and
R. Woods [31] these error measures are defined as:

SNR = 10 · log10

( ∑
i,j C

2
i,j,rem.∑

i,j (Ci,j,rem. − Ci,j,est.)
2

)
(3.28)

MAE =
1∑
i,j 1

∑
i,j

|Ci,j,rem. − Ci,j,est.| (3.29)

RMSE =

√
1∑
i,j 1

∑
i,j

∑
i,j

(Ci,j,rem. − Ci,j,est.)
2 (3.30)

The biggest disadvantage of the reported quality metrics is their dependency on
the used image material, as only the corrected images are compared and not the es-
timations of the actual sensor nonuniformities. For example a dark sequence will
mainly be degraded by the DSNU component, while bright images are degraded
by PRNU. Consequently, the calculated error measures are only valid if the used
sequences are typical with respect to the intended application. Furthermore, it is
not possible to calculate an improvement of the DSNU and PRNU effects sepa-
rately, without an influence of the current image.
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3. Image Nonuniformities and their Quantification

3.5. A Quality Metric Against a Laboratory Ground Truth

With the mentioned drawbacks of the common quality metrics for DSNU and
PRNU, a new quality metric that allows to calculate an improvement of the DSNU
and PRNU parameters as a percentual value has been developed. Therefore the
performance of any given estimation method is evaluated with help of ground
truth reference patterns {ai,j,ref.} and {bi,j,ref.}.

In a first step the estimated set of parameters of most methods from literature
needs to be scaled to achieve a comparable performance. This is necessary because
the methods assume the nonuniformities with ideal mean values (e.g. e({bi,j}) = 0
and e({ai,j}) = 1), which in reality is usually not the case. As a consequence
the produced images with the estimated nonuniformities reside on different gray
value levels, when compared to the reference corrected image. This also effects
the calculated numbers of the PRNU and DSNU values according to eq. 3.17 and
3.18.

The estimated parameters {ai,j,est.}, {bi,j,est.} are therefore transformed in a way
that the corrected image approximately fits the ground truth image in its two spa-
tial statistical moments e and s2:

e(Ci,j,est.) = e(Ci,j,ref.) (3.31)

s2(Ci,j,est.) = s2(Ci,j,ref.) (3.32)

Due to the nonlinear influence of ai,j in the image correction process, this transfor-
mation is done only approximately by exploiting the transformations of random
variables as described by Rinne [29]. The details are given in detail in appendix A.2
and as a result, the scaled estimated parameters can be calculated from the statisti-
cal measures of the sets: Measured image {CM,i,j}, estimated DSNU {bi,jest.}, esti-
mated PRNU {ai,j,est.}, reference DSNU {bi,j,ref} and reference PRNU {ai,j,ref.}:

ai,j,sc. = hsc.,PRNU(V ; ai,j,est.) (3.33)
and: bi,j,sc. = hsc.,DSNU(V ; bi,j,est.) , (3.34)

V is used as a shortcut of statistical moments of the known variables in this nota-
tions.

As a follow up step of the scaling, a set of remaining correction factors {ai,j,rem.}
and {bi,j,rem.} can be calculated as

ai,j,rem. =
ai,j,ref.

ai,j,sc.
∀(i, j) (3.35)

bi,j,rem. = bi,j,ref. − bi,j,sc. ∀(i, j) . (3.36)

For a good estimation the {ai,j,rem.} should be close to 1.0, and the {bi,j,rem.} should
be close to 0. A remaining PRNU or DSNU is calculated from the ai,j,rem. or bi,j,rem.
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3.5. A Quality Metric Against a Laboratory Ground Truth

parameters according to eq. 3.18 or 3.17 and a percentual correction factor pc,X is
defined as:

pc,X = (Xref. −Xrem.)/Xref. · 100% with X ∈ {PRNU,DSNU} (3.37)

Given a pc,X = 0% the remaining parameters did not lead to an improving cor-
rection, while pc,X = 100% results from estimated parameters that equal the ref-
erence. Note that values of pc,X < 0% are possible if the image was deteriorated
by the corresponding nonuniformity correction. pc,PRNU and pc,DSNU are indepen-
dent of any image information and purely correspond to the physical properties
of the image sensor.

Nonuniformity correction methods that correct both, DSNU and PRNU, need a
combined correction measure to evaluate their performance. To define such a
combined correction rate the effect of the PRNU in digital numbers is needed,
as it allows to compare the effects of DSNU and PRNU directly. Of course the ef-
fect of the PRNU is dependent on the typical illumination of the image sensor in
the used scenario. Therefore a typical illumination Ityp.,DN is defined by the aver-
age of all light sensor measures over a representative set of image sequences. For
example, if the performance evaluation for a certain sequence shall be measured,
then the typical illumination is calculated as the average of all pixels of the given
sequence:

Ityp.,DN = s(µ(CM,i,j,tn)) ∀CM,i,j,tn ∈ Sequence (3.38)

Of course other definitions could be used as well, for example a weighted average
giving lower or higher weights for different illuminations of the scene. The PRNU
can now be expressed in its expected effect in digital numbers:

PRNUEMVA1288,DN = PRNUEMV A1288 · Ityp.,DN (3.39)

A combined correction factor is defined by weighting the effects of the ground truth
DSNU and PRNU according to their effects in DN :

pc,Comb. =
DSNUEMVA1288,DN · pc,DSNU + PRNUEMVA1288,DN · pc,PRNU

PRNUEMVA1288,DN +DSNUEMVA1288,DN
. (3.40)

Of course this combined correction relies on the fact that the typical illumination
Ityp.,DN is measured or estimated correctly. On the other hand it gives the chance
to evaluate the performance of an assumed algorithm with respect to future as-
sumed illuminations. For example the performance pc,Combined of an algorithm
could be evaluated for night sequences (Ityp.,DN is small) and daytime image se-
quences (Ityp.,DN is high) separately.
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3. Image Nonuniformities and their Quantification

3.6. Spatial Properties of the Corrections

Besides the above introduced scalar measurements of the DSNU and PRNU cor-
rections, the remaining sets ai,j,rem. and bi,j,rem. allow a quick visual impression of
the remaining nonuniformities. Fig. 3.2 shows the remaining DSNU parameters
of estimations after 5, 50 and 500 frames for the energy minimization method in-
troduced in chapter 6. The achieved percentual correction rate is shown below the
images. For only 5 learned frames one clearly observes remaining artifacts which
are referred to as ghosting in some literature (e.g. [5]). This name comes from the
fact that those artifacts may be false-classified as real objects by image processing
algorithms. With concern to Rossi [32], ghosting artifacts occur from objects that
provide strong edges or high intensity for a short time. Fig. 3.2a to 3.2c show that
the ghosting artifacts reduce with more included frames into the estimation for the
presented algorithm.

However in fig. 3.2b after 50 frames, some remaining artifacts are still visible,
although the measured percentual correction rate is already up to 71%. In fig. 3.2c
after 500 frames, the remaining artifacts vanished almost completely and only a
few spatial low frequency components are left. The correction rate has increased
to 77%. Although the increase from 50 to 500 frames in the percentual measure is
only 6%, the decrease in the visually percepted artifacts seems larger.

Another spatial property of the correction patterns is the coarseness of the remain-
ing parameter sets. If the remaining patterns look very smooth, it can be assumed
that the visually prominent high frequencies have been corrected successfully. For
example, the correction pattern in fig.3.2c after 500 frames, gives a very smooth
impression of the remaining pattern.

3.7. Spectral Properties of the Corrections

A spectral analysis will give more insight of the spatial frequency dependency of
the corrections. A Fourier transformation of the remaining and the ground truth
patterns allows to visualize the correction dependency on the spacial frequency
components for the different methods:

{ai,j} c {âµ,ν} (3.41)

{bi,j} c {b̂µ,ν} (3.42)

For visualization it is common to provide the logarithm of the amplitude of the
corresponding frequency component (e.g. log |b̂µ,ν |). This is shown in fig. 3.3 for a
measured reference DSNU pattern. The typical dominant column nonuniformities
of this camera are visible in fig. 3.3b as a vertical line in the middle of the spectro-
gram. As mentioned before, such column and row wise components are typical
[2].
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(a) |{bi,j,rem.}|with input: 5 frames,
and pc,DSNU=13%
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(b) |{bi,j,rem.}| with input: 50
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(c) |{bi,j,rem.}| with input: 500
frames, and pc,DSNU=77%

Figure 3.2.: Spacial impression of the remaining DSNU after different frames of a
sequence.

55



3. Image Nonuniformities and their Quantification

100 200 300 400 500 600

100

200

300

400

150

200

250

300

(a) {bi,j} , measured

−1 −0.5 0 0.5 1
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

9

9.5

10

10.5

11

(b) Fourier transformed compo-
nents as log |b̂µ,ν |

Figure 3.3.: Spatial and Fourier representation of a DSNU nonuniformity pattern
with a prominent column wise degradation. The Fourier representa-
tion is normalized to the Nyquist frequencies ∈ (−1, 1)

With consideration to the correction performance the reduction of spatial high fre-
quencies is of more interest than that of low spatial frequencies. Especially because
common computer vision algorithms usually are based on the analysis of edges,
which present as spatial high frequencies.

In addition to the spectral analysis of the estimated and remaining nonuniformity
components, a damping factor of the power spectral density can be calculated:

ŝspectr.,PRNU,µ,ν =
â2

rem.,µ,ν

â2
ref.,µ,ν

∈ [0, 1] (3.43)

ŝspectr.,DSNU,µ,ν =
b̂2rem.,µ,ν

b̂2ref.,µ,ν

∈ [0, 1] (3.44)

This definition is motivated by the fact that x̂2
rem.,µ,ν represents an sort-of equiva-

lent for the physical energy of the electromagnetic field. Which then allows to in-
terpret ŝ as the damping coefficient for the corresponding frequency components,
with respect to its energy equivalent. The resulting numbers of ŝ should reside
between [0, 1], where a 0 states a complete correction of the frequency component,
while a 1 indicates no correction. Malfunction of the nonuniformity correction
algorithm may however result in an amplification of some spectral frequencies
which then leads to numbers that are larger than 1.

Fig. 3.4 shows the typical behavior of a scene based nonuniformity correction
method for 5, 50 and 500 given input frames in the spectral analysis of the esti-
mated and remaining nonuniformities as well as the resulting damping factors ŝ.
The high frequency components are typically corrected first which is visible by
the darker areas in the border regions of the representations. With more frames,
the lower frequencies are corrected as well, leading to the observed remainders
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of bright pixels in the center of the representations. In general all Fourier based
representations in this thesis are normalized onto the corresponding Nyquist fre-
quencies ∈ (−1, 1) for each dimension. An interesting point to observe is the
power spectral damping factor ŝ according to eq. 3.43, which rarely goes above
the 0.2 mark. This indicates that a damping of the nonuniformities takes place for
all spectral frequencies, even in the case of only 5 frames input.
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Figure 3.4.: Spectral representations for the estimated and remaining DSNU com-
ponents, as well as the power spectral damping factor ŝ according to
eq. 3.43.

57



3. Image Nonuniformities and their Quantification

58



4. Image Data for Evaluations

The newly developed methods and the reference methods are evaluated against
each other with help of defined image material recorded by 4 different types of
cameras. The recorded image material covers a variety of typical use cases for
camera applications. It contains high speed consecutive frame sequences, typical
frame rate camera panning sequences and random frame sequences. With concern
to the nonuniformities, the degradation of the images varies from hardly visible
degradations to a strong degradation, depending on the type of camera used. In
the original papers the reference methods [33, 4, 5, 6] were evaluated only on a
few sequences. Therefore the new evaluations also give a deeper insight into the
performance of the reference methods with this new experimental setups.

The used cameras are a Basler A602f, a photon-focus MV-D640-66-CL, a photon-
focus MV-D640-66-CL-LINLOG, and a photon-focus MV1-D1312-160-CL camera.
With the MV1-D1312-160-CL camera many sequences have been recorded while
it was mounted inside a vehicle that was driving in public traffic (see sec. 4.1.1).
Further scenes of a road scene in front of the lab have been recorded with all men-
tioned cameras by camera panning. These scenes have been captured at different
exposure times and different temperatures and serve as a reference to evaluate the
functionality of the algorithms in these setups. For each camera setup, the nonuni-
formities have been calibrated in a laboratory setup according to the EMVA1288
standard. The results are shown in the following sections of this chapter.

4.1. Description of the Recorded Data

4.1.1. Car Front Camera Scenes

The scenes with the description Car Front Camera have been recorded with the right
camera of a stereo camera setup developed at the HCI in Heidelberg [34]. Two
MV1-D1312-160-CL cameras have been used to record sequences as the system
was mounted to look out through the windshield in front of the vehicle. The used
image sequences have a length of 500 consecutive frames and were recorded with
a frame rate of 100 Hz. In total 108 sequences have been recorded at 27 waypoints
on roads around the city of Hildesheim on the 4 days: 15.06.2010, 16.06.2010,
21.07.2010 and 22.10.2010. The image data shows day-to-day driving situations
like highway, inner-city, pedestrians or busy crossings under different lighting and
weather conditions. Fig. 4.1 shows some images out of these scenes and tab. 4.1
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shows the summary of the recorded data. The markings XCalib. and X are ex-
plained in sec. 4.2 and separate the sequences in a training and evalutaion data
set.
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Figure 4.1.: Typical images from the car front camera sequences (see tab. 4.1)
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4.1. Description of the Recorded Data

Scene Content 15.06.2010 16.06.2010 21.07.2010 22.10.2010

Fuel Station X X XCalib. XCalib.

Bridge and highway entry X X XCalib. X
Busstop X X X X
Street in a village X X X XCalib.

Crossroads X X X XCalib.

Country Road Crossing X XCalib. X X
Trees X X X X
Pedestrians at high street X X XCalib. X
Small Country Road X X X XCalib.

Complex Crossroads XCalib. X X X
Highway with 6 lanes XCalib. X X X
Highway underpass X XCalib. X X
long road turn XCalib. X X X
Country road 4 lanes X X X XCalib.

Trees and bushes besides
the road

X X XCalib. X

Village passing of Giesen 1 X X X XCalib.

Village passing of Giesen 2 X X XCalib. X
Between high buildings X X X XCalib.

Car parking at roadside XCalib. X X X
Pedestrian crossings X XCalib. X X
Inner city X XCalib. X X
Right turn before Giesen X X X X
Avenue X XCalib. XCalib. X
Emmerke train crossing XCalib. X X X
Residential area X X X X
Underpass central train
station

X XCalib. X X

Country site X XCalib. X X

Table 4.1.: Overview of the recorded sequences with the Photonfocus MV-D640-
66-CL samera. The markings X and XCalib. indicate the membership of
the sequence to the training or evaluation data set.
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4.1.2. L600a in HD

The scenes with the description L600a in HD contain images that have been cap-
tured by a camera panning over the street L600a in Heidelberg. In the city of
Heidelberg the street is also known by the name Speyerer Strasse and the images
have been recorded out of the window in the laboratory of building number 6
(HCI building). The captured scene contains the road outside the lab with its traf-
fic as well as the hills of Heidelberg in the background and a short view into the
cloudy sky. Fig. 4.2 shows some typical images out of these scenes. These scenes
have been recorded with a frame rate of 20 Hz.
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Figure 4.2.: Typical images in the scene L600a in HD

4.2. Generation of Evaluation and Calibration Sequences

As most of the image material is recorded with the MV1-D1312-160-CL camera,
this material was used for the algorithm development and the statistical analysis
of its performance. The camera panning sequences of the other cameras have been
used to evaluate the general ability of the algorithms to deal with other types of
nonuniformities and other types of cameras and frame rates.
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The data was divided into an evaluation and a calibration set, where the calibra-
tion data is used to train the free parameters of the algorithms to reach an optimal
performance. The evaluation data is then used to calculate the performance mea-
sures including their statistical deviations with a given set of fixed parameters.
Two types of image sequences are possible to be generated out of the MV1-D1312-
160-CL recordings: Sequences with consecutive frames and sequences with ran-
domly chosen frames. Both are scenarios that can be created by car front cameras
to calibrate the cameras. All the image material, sequence definitions and source
code snippets are available in the archives of the the HCI Ground Truth Group, url:
hci.iwr.uni-heidelberg.de1.

Consecutive Frames: Consecutive frame sequences are useful to simulate sce-
narios where a very fast drifting nonuniformity is present in the imaging system.
A fast adaptation is then needed, but of course the information in high frame rate
consecutive frames may be limited. For example, the 500 frame sequences of the
MV1-D1312-160-CL camera have been recorded at 100 Hz frame rate, which gives
only 5 seconds of information. Given a typical driving situation, this information
may not be sufficient to correct the nonuniformities and the algorithms will fail in
these sequences for several reasons, e.g. if an overexposed area stays for these 5
seconds in the image, or if parts of the scene are not moving enough.

For the consecutive frames, the Car Front Camera scenes have been randomly di-
vided into 25 calibration and 83 evaluation sequences. The choice of the sequences
is shown in tab. 4.1, where the calibration sequences have been marked with
XCalib.. The 83 evaluations sequences are marked X and are used for the statis-
tical evaluations.

At some points in the research the evaluation of longer sequences seems neces-
sary and two randomly chosen sequences have been concatenated to produce 1000
frame sequences. 25 sequences each have been produced, but at the point where
the sequences are concatenated, the scene changes suddenly which may not hap-
pen that often for actual consecutively recorded data.

Random Frames: Random frame sequences are used to simulate scenarios
where either a very slow capture rate is present, or scenarios in which a choice
of some random frames out of the last N recorded frames is used for calibration.
These sequences are especially useful if the nonuniformity does not change very
fast. This is often the case for classical CMOS near infrared cameras that are based
on thicker layers of p-doted-silicon. As the typical scene based nonuniformity
correction algorithms do not need a constant frame rate input, random sequences
are the better choice due to its variety of independent information.

1Person of contact is Daniel Kondermann
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The random frame sequences have been created by selecting N frames randomly
out of all the recordings with the MV1-D1312-160-CL camera on one day, as pre-
sented in tab. 4.1. Similar to the consecutive sequences, there have been created
25 calibration sequences and 83 evaluation sequences with a length of 500 frames
and 25 sequences with the length of 1000 frames.

4.3. Description of the Cameras and their
Nonuniformities

(a) The Photonfocus MV1-
D1312-160-CL Camera

(b) The Basler A602f Camera (c) The Photonfocus MV-D640-
66-CL and MV-D640-66-CL-
LinLog Camera

Figure 4.3.: Pictures of the 4 used camera types

Fig. 4.3 shows the outer appearance of the four used cameras, where the MV-
D640-66-CL and the MV-D640-66-CL-LINLOG have the same housings. Tab. 4.2
gives an overview of the typical camera parameters like resolution, pixel/light
sensor sizes, minimum and maximum operation temperatures and the maximum
achievable frame rate fpsmax.

Camera Resolution Pixel [µm2] Tmin[◦C] Tmax[◦C] fpsmax

MV1-D1312-160-CL 1312× 1082 8.0× 8.0 0 50 108
MV-D640-66-CL 640× 480 9.9× 9.9 0 60 200
MV-D640-66-CL-
LINLOG

640× 480 9.9× 9.9 0 60 200

A602f 656× 491 9.9× 9.9 0 50 100

Table 4.2.: Overview of some typical parameters of the used cameras

These and further information about the cameras can be found at the homepages
of the manufacturing companies Photonfocus [35] and Basler AG [36], and in the
manuals of the cameras [37, 38, 39].

Prior to the recordings of the sequences, an EMVA1288 compliant ground truth
calibration of the cameras has been conducted. A CoolTronic TC3224 temperature
controller [40] was used to adjust the cameras’ temperatures with help of peltier
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elements. The calibrations then took place with help of an integrating sphere with
a set of colored and calibrated LED light sources. Further information about the
calibration procedure can be found in the EMVA1288 document [1] and the mea-
surement equipment is also well described in the PhD thesis of Michael Erz [41].
Fig. 4.4 gives an impression of the calibration setup.

Integrating Sphere

Peltier Element with Fan

Camera

Figure 4.4.: Calibration setup for the EMVA1288 DSNU and PRNU estimation, de-
picting the peltier elements for temperature regulation and the inte-
grating sphere to provide uniform illumination

4.3.1. Photonfocus MV1-D1312-160-CL

Tab. 4.2 and fig. 4.3a have already provided a first overview of this camera. A
further very important feature of this camera is the possibility to switch off all
the image enhancing techniques. This allows to observe the sensor responses di-
rectly. For the development of the nonuniformity estimation methods this feature
will lead to a best possible fit of the sensor models to the actual sensor responses.
The EMVA1288 calibration was performed prior to the recording of the scenes at
different temperatures and exposure times. The temperature limit was chosen ac-
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cording to the specifications of the manual at 50 ◦C [39]. The exposure time was
limited to not more than 10 ms due to occurring overexposure even with fully
closed aperture of the used optics.

Sequence Name texp. [ms] T [◦C] Scene DSNUDN PRNU

MV1-D1312-CarFront-
X (X ∈ [1, 108])

1.2 23 Car Front
Camera

49.84 1.88

MV1-D1312-1a,b 0.05 25 L600a in HD 50.80 7.26
MV1-D1312-1a,b 5 25 L600a in HD 50.81 1.92
MV1-D1312-1a,b 10 25 L600a in HD 50.83 1.88
MV1-D1312-1a,b 0.05 49 L600a in HD 51.07 7.39
MV1-D1312-1a,b 5 49 L600a in HD 51.19 1.91
MV1-D1312-1a,b 10 49 L600a in HD 51.44 1.87

Table 4.3.: Overview of the recorded sequences with the Photonfocus MV1-D1312-
160-CL camera

Tab. 4.6 summarizes the different temperature and exposure time setups for the
experimental setups as well as the measured DSNU and PRNU values. As the
table states, there have been 108 sequences recorded as the camera was mounted
inside a vehicle in public traffic, looking through the windshield in front (Car-
Front-Camera). These images represent the majority of the used image data for
this thesis. A detailed description of these scenes is provided in sec. 4.1.1. Addi-
tionally 12 sequences have been recorded by a camera panning of the scene L600a
in HD at different temperatures and exposure times. This scene is described in
sec. 4.1.2. With concern to the measured DSNU and PRNU parameters, the be-
havior of the DSNU increases with temperature and exposure time as expected.
The large number of DSNUDN ≈ 50 DN hints towards a visible image degrada-
tion. The PRNU however shows a severe increase for the minimum exposure time
of 0.05 ms, which most likely emerges from effects of the analogue amplification
circuity and the short reset times. This effect can also be observed for the other
cameras, if the exposure time was limited below 1 ms.

Fig. 4.5 and 4.6 show the analysis of the PRNU and DSNU as described in sec. 3.7
and 3.6. For the nonuniformity parameter sets {ai,j} and {bi,j} the most differing
parameters are shown (10 ms @ 50 ◦C and 0.05 ms @ 25 ◦C) and the representations
of the remaining evaluations can be found in appendix B.1.

The visual impression of the PRNU shows a significant spatial increase of the gain
factors towards the lower end of the image (see fig. 4.5a), which is not present
at longer exposure times (see fig. 4.5b and appendix B.1). The PRNU shows also
dominant row and column wise components, with a higher amplitude in the col-
umn wise component. These components are visible as well in the Fourier analysis
in fig. 4.5c and 4.5d by the central horizontal and vertical lines of 1 pixel width.
In addition to the row and column wise components, the PRNU seems to express
dominant low spatial frequencies, which usually are the result of the vignetting
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Figure 4.5.: Representations of the {ai,j} correction patterns of the EMVA1288 cali-
bration measurements with the Photonfocus MV1-D1312-160-CL cam-
era. Showing the spatial and the spectral analysis as well as histograms
at the given temperatures and exposure times.
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Figure 4.6.: Representations of the {bi,j} correction patterns of the EMVA1288 cali-
bration measurements with the Photonfocus MV1-D1312-160-CL cam-
era. Showing the spatial and the spectral analysis as well as histograms
at the given temperatures and exposure times
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4.3. Description of the Cameras and their Nonuniformities

from the optic’s mount. The optics themselves are removed for EMVA1288 cal-
ibration. The histograms of {ai,j} do not completely fit Gaussian distributions
(see fig. 4.5f and 4.5e), but due to the large variations between the camera types
and exposure times, a Gaussian distribution seems to be the best fit for the later
developments (see chapter 8).

The visual impression of the DSNU shows dominant row and column wise com-
ponents as well (see fig. 4.6a and fig. 4.6b), with a higher amplitude in the column
wise component. The spectral analysis shows that besides the row and column
wise components, the {bi,j} distributes like white noise (see fig. 4.6c and fig. 4.6d).
The histograms further show that the spatial DSNU distribution obeys almost per-
fectly a Gaussian distribution (see fig. 4.6e and fig. 4.6f), which supports the as-
sumptions used in chapter 6.

4.3.2. Basler A602f

The Basler A602f is an industrial camera with a fire wire connection (IEEE 1394a).
Tab. 4.2 and fig. 4.3b have already provided a first overview of this camera.
The Basler company is one of the few companies that publishes the results of the
EMVA1288 calibration of their cameras according to EMVA1288 [1]. For the A602f
camera, the results for the nonuniformity measures are:

DSNUEMVA1288 = (53.1± 2.3)e− (4.1)
PRNUEMVA1288 = (1.0± 0.2)% (4.2)

K =
1

59.6

[
DN

e−

]
(4.3)

Further information can be found online in the EMVA1288 documentation for the
A602f [42]. As mentioned already in sec. 3.2.1 for the scene based nonuniformity
estimations, the measure for the DSNU has to be given in DN and not in e− for
scene based NUC. Therefore the DSNU measure needs to be multiplied with the
overall system gain which results in:

DSNUEMVA1288 ,DN = (0.89± 0.03)DN (4.4)

This is a DSNU that will obviously be hard to detect in a recorded frame, because
if {bi,j} obey approximately a Gaussian distribution, then more than 68.27 % of all
{bi,j} realizations are valued less than 1 DN.

For the evaluations in this thesis an EMVA1288 calibration was performed prior
to the recording of the scenes. Tab. 4.4 summarizes the different temperature and
exposure time setups that were used as well as the measured DSNU and PRNU
values. Higher temperatures than 50 ◦C have not been allowed in the camera spec-
ification and longer exposure times than 10 ms led to overexposed images, even
with fully closed aperture of the optics.
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4. Image Data for Evaluations

Sequence Name texp. [ms] T [◦C] Scene DSNUDN PRNU

A602f-1a, A602f-1b 1 22 L600a in HD 1.34 1.61
A602f-4a, A602f-4b 10 22 L600a in HD 1.29 1.43
A602f-2a, A602f-2b 1 30 L600a in HD 0.89 1.58
A602f-5a, A602f-5b 10 30 L600a in HD 0.75 1.44
A602f-3a, A602f-3b 1 50 L600a in HD 2.09 1.78
A602f-6a, A602f-6b 10 50 L600a in HD 2.33 1.53

Table 4.4.: Overview of the recorded Sequences with the Basler A602f Camera

As the tab. 4.4 states, 2 sequences have been recorded per setup by a camera pan-
ning of the scene L600a in HD. A full description of the scene is given in sec. 4.1.2.
With concern to the measured DSNU and PRNU parameters, the expected increase
with exposure time and temperature could not be observed in all cases. The Basler
EMVA1288 document [42] does not provide these information either. It is very
likely that an internal temperature and exposure time dependent nonuniformity
correction takes place that results in the low numbers we have measured. The
measured DSNU numbers fit the expected 0.9 DN at 30 ◦C room temperature. The
measured PRNU numbers are outside the given (1.0± 0.2)% range, which is most
likely a result of clusters of defective pixels or dust particles as discussed below.

Fig. 4.7 and 4.8 show the nonuniformity parameter sets {ai,j} and {bi,j} for the two
samples at (1 ms @ 22 ◦C) and (10 ms @ 50 ◦C). The visual representations of the
other evaluations can be found in appendix B.2. The PRNU shows particle-like
degradations as well as column and row wise components, with a lower ampli-
tude in the row wise components. Before the measurements pressure air was used
to clean the image sensor, thus we believe the particle-like degradations have to
be considered as clusters of degraded pixels. For the row and column wise com-
ponents, the spectral analysis in fig. 4.7c and 4.7d show a severe increase in all
vertical low frequencies. Furthermore, at ±0.5 of the column Nyquist frequency,
sharp vertical row-wise components show up. The histograms do not fit a Gaus-
sian distribution perfectly and look more like a skewed Gaussian distribution.

The analysis for the {bi,j} shows a different behavior to the rest of the array for
the upper rows. Fig. 4.7d shows a small additional increase in the spatial low
frequencies’ amplitudes. For the spectral analysis, the components for ±0.5 of the
column Nyquist frequency show up again in fig. 4.8c and 4.8d. The histograms for
the DSNU show a good similarity to the Gaussian distribution (see fig. 4.8e and
4.8f).
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Figure 4.7.: Representations of the {bi,j} correction patterns of the EMVA1288 cal-
ibration measurements with the Basler A602f camera. Showing the
spatial and the spectral analysis as well as a histograms at the given
temperatures and exposure times.
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Figure 4.8.: Representations of the {bi,j} correction patterns of the EMVA1288 cal-
ibration measurements with the Basler A602f camera. Showing the
spatial and the spectral analysis as well as histograms at the given tem-
peratures and exposure times.
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4.3.3. Photonfocus MV-D640-66-CL

The Photonfocus MV-D640-66-CL is an industrial camera with a camera link con-
nection. Tab. 4.2 and fig. 4.3c have already provided a first overview of this
camera. Further information on the camera can be found at the manufacturer’s
website and the manual [35, 38].

For the EMVA1288 calibrations the limits of the given specifications were used
to determine the upper temperature limit. Exposure times longer than 10 ms led
to overexposed images, even with fully closed aperture of the optics. Tab. 4.5
summarizes the different temperature and exposure time setups that were used
for the recordings as well as the measured DSNU and PRNU values.

Sequence Name texp. [ms] T [◦C] Scene DSNUDN PRNU

MV-D640-66-CL-1 5 25 L600a in HD 0.50 1.57
MV-D640-66-CL-2 10 25 L600a in HD 0.55 1.24
MV-D640-66-CL-3 5 50 L600a in HD 1.27 1.50
MV-D640-66-CL-4 10 50 L600a in HD 1.39 1.24

Table 4.5.: Overview of the recorded sequences with the Photonfocus MV-D640-
66-CL camera

As tab. 4.5 states, there are 4 recorded sequences by camera panning of the scene
L600a in HD. A full description of the scene is given in sec. 4.1.2. With concern to
the measured DSNU and PRNU parameters, the temperature and exposure time
depended behavior fits better than for the Basler A602f camera, but here as well,
some internal correction seems to influence at least the PRNU measurements.

Fig. 4.9 and 4.10 show the nonuniformity parameter sets {ai,j} and {bi,j} for the
most differing setups at (10 ms @ 50 ◦C) and (5 ms @ 25 ◦C). The visual representa-
tions of the other evaluations can be found in appendix B.3. The visual impression
of the PRNU shows many more particle like degradations than the Basler camera
does. Again, the cleaning with pressure air did not remove those dust particle-
like degradations. The PRNU in general seems to be very stable with respect to
exposure time and temperature (see fig. 4.9a and fig. 4.9b), however the critical
measurements at extremely short exposure times were not possible.

Dominant row and column wise components, are visible again and show up in
the Fourier analysis in fig. 4.9c and fig. 4.9d as discussed before. In addition to
the row and column wise components, the PRNU expresses dominant low spatial
frequencies that may be the effects of the optic’s mount.

The visual impression of the DSNU contains row and column wise components
(see fig. 4.10a and fig. 4.10b). The spectral analysis in fig. 4.10c and 4.10d then
represents the row and column wise components as the centered horizontal and
vertical lines again. The DSNU histograms further show that there is no similar-
ity to a Gaussian distribution for low temperatures, while higher temperatures
provide a better Gaussian approximation (fig. 4.10e and fig. 4.10f).
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Figure 4.9.: Representations of the {ai,j} correction patterns of the EMVA1288 cal-
ibration measurements with the Photonfocus MV-D640-66-CL camera.
Showing the spatial and the spectral analysis as well as histograms at
the given temperatures and exposure times.

74



4.3. Description of the Cameras and their Nonuniformities

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

−1

0

1

(a) Spatial DSNU for 5 ms @ 25 ◦C

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

0

2

4

6

(b) Spatial DSNUfor 10 ms @ 50 ◦C

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

4

5

6

7

(c) Spectral: log |b̂µ,ν | for 5 ms @ 25 ◦C

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

5

6

7

8

(d) Spectral: log |b̂µ,ν | for 10 ms @ 50 ◦C

−1 −0.5 0 0.5 1 1.5
0

2

4

6

8

10

12

Data Gauss

(e) Histogram of {bi,j} for 5 ms @ 25 ◦C

0 1 2 3 4 5 6 7
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Data Gauss

(f) Histogram of {bi,j} for 10 ms @ 50 ◦C

Figure 4.10.: Representations of the {bi,j} correction patterns of the EMVA1288 cal-
ibration measurements with the Photonfocus MV-D640-66-CL cam-
era. Showing the spatial and the spectral analysis as well as his-
tograms at the given temperatures and exposure times.
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4.3.4. Photonfocus MV-D640-66-CL-LinLog

The Photonfocus MV-D640-66-CL-LinLog is an industrial camera with a camera
link connection. Tab. 4.2 and fig. 4.3c have already provided a first overview of
this camera. Further information on the camera can again be found at the man-
ufacturer’s website and the manual [35, 38]. The LinLog camera actually differs
from the MV-D640-66-CL only in its sensor model, which does not provide a lin-
ear dependency between the light’s intensity and the measured digital numbers.
Therefore this camera contributes only to show the possible limitations with re-
spect to the sensor model of the algorithms.

The limits of the specifications were used to determine the upper temperature limit
at 50 ◦C. Exposure times longer than 10 ms were not possible due to overexposure
of the images, as mentioned for the other cameras before. Tab. 4.6 summarizes the
different temperature and exposure time setups of the camera that were used in
the calibrations and recordings as well as the measured DSNU and PRNU values.
As the table states, 6 sequences sequences have been recorded by a camera panning
of the scene L600a in HD. A full description of the scene is given in sec. 4.1.2.

Sequence Name texp. [ms] T [◦C] Scene DSNUDN PRNU

MV-D640-LinLog-1 0.082 25 L600a in HD 1.54 10.32
MV-D640-LinLog-2 5 25 L600a in HD 1.55 1.86
MV-D640-LinLog-3 10 25 L600a in HD 1.55 1.81
MV-D640-LinLog-4 0.082 50 L600a in HD 1.97 10.71
MV-D640-LinLog-5 5 50 L600a in HD 1.95 1.87
MV-D640-LinLog-6 10 50 L600a in HD 2.13 1.86

Table 4.6.: Overview of the recorded sequences with the Photonfocus MV-D640-
66-CL-LinLog camera

Fig. 4.11 and 4.12 show the nonuniformity parameter sets {ai,j} and {bi,j} for
the most differing setups for (10 ms @ 50 ◦C) and (0.082 ms @ 25 ◦C). The visual
representations of the other evaluations can be found in appendix B.4.

The visual impression of the PRNU shows again non removable dust particles and
an instability if the minimum exposure time is used. Dominant row and column
wise frequencies are visible as well as some spatial low frequency components.
With concern to the histograms, the distribution converges towards a Gaussian
distribution with increasing temperatures. For the DSNU the row and column
wise components show up clearly as discussed for the other camera types and the
histograms fit the Gaussian distribution very well.
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Figure 4.11.: Representations of the {ai,j} correction patterns of the EMVA1288
calibration measurements with the Photonfocus MV-D640-66-CL-
LinLog Camera. Showing the spatial and the spectral analysis as well
as histograms at the given temperatures and exposure times.
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Figure 4.12.: Representations of the {bi,j} correction patterns of the EMVA1288
calibration measurements with the Photonfocus MV-D640-66-CL-
LinLog Camera. Showing the spatial and the spectral analysis as well
as histograms at the given temperatures and exposure times.
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5. Related Work and State of the Art
Methods

In the area of nonuniformity corrections a huge variety of different papers is pub-
lished. However only a small subset of these publications target the scene based
nonuniformity correction methods. While some of the literature is specialized
on general sensor response models, some publications concentrate on the Fourier
analysis of the occurring nonuniformities [22, 28, 2]. The sensor model plays an
important role in the nonuniformity correction process but all the publications
that do not include the actual captured images cannot be described as scene based
nonuniformity correction methods. Many of the online correction methods use
dark-pixel evaluations or CMOS integrated circuity to correct the light sensors di-
rectly in hardware.

The first scene based methods were published in the early 1990s by Scribner [3]
and describe very basic techniques for nonuniformity corrections, based on the
knowledge of the vertebra retina back at the time. The first technique is a temporal
high pass filter, which assumes that the temporal low frequencies in the images are
the less important information and thus can be considered as the systematic errors
of the system. This method has been developed further into the constant statistics
algorithm by Harris [7] and a gating threshold was later added by Hardie [5] to
improve the performance even further.

The second method by Scribner utilizes a least mean square algorithm (LMS) to
minimize the error image between the corrected image and an assumed original
image. The main structure of the LMS algorithm has been nearly unchanged un-
til today, and further developments exploit the retinomorphic hypothesis of IR-
cameras by the use of an adaptive least mean square algorithm [33, 4]. The most
recent improvements to this method are a signal gating technique [5] and a gener-
alization called total variation approach [6].

Other research directions include Kalman filters [8, 9] to adapt to the drifts of the
nonuniformity parameters. Their basic algorithmic principles for the nonunifor-
mity estimation are however covered by the constant statistics and least mean
square algorithms. Thus the Kalman filter approaches mainly possess an ad-
vanced model for the temporal and temperature parameter drifts. However, the
newly developed methods in this thesis consider the parameter drifts only implic-
itly by the effects from a changing input over time (see chapter 6). This is a valid
consideration for the common slow parameter drifts in most applications. The
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5. Related Work and State of the Art Methods

Kalman filter methods therefore form a method for specialized applications and
are excluded from further comparisons.

All the presented methods correct successfully for nonuniformities but their per-
formances can still be improved. Further, as mentioned in the introduction, many
methods miss a motivation of their assumptions (e.g. the way of estimating the
original image in [5, 33, 4, 6]) and the available statistical information of the cam-
era’s nonuniformities (e.g. mean and standard deviations) has not been consid-
ered, which leads to corrected images on different gray value scales.

The improved constant statistics method and the Least Mean Square Algorithm
methods are highly developed scene based methods that allow a good a compar-
ison against the newly developed methods. Their very recent developments [6]
give the best results found in literature at the time of this text. Further, those meth-
ods are the most referenced methods in literature to compare against and form the
gold standard for scene based NUC methods.

5.1. The Constant Statistics Method

The constant statistics method of Harris [7] is the latest development of this type of
method, that was originally introduced by Scribner [3]. While in Scribner’s publi-
cations the temporal low pass signal was considered as the nonuniformity signal,
the idea was theoretically expanded into a constant statistics assumption. This
constant statistics assumption states that each pixel’s mean and standard devia-
tion is constant over time and space. Mathematically expressed, the basic constant
statistics algorithm (CS ) states, that if enough information is gathered, the differ-
ence in the mean of each pixel corresponds to the DSNU and the difference in the
standard deviations corresponds to the PRNU signal. The statistical parameters
of the PRNU ({ai,j}) and DSNU ({bi,j}) are already assumed in this method by
e({ai,j}) = 1 and e({bi,j}) = 0.

An estimate in the paper demands the order of 10′000 frames for the algorithm to
converge. For video based driver assistance systems and many other applications
less input frames (≈ 500) would be a more desirable target as explained below.
Harris also states in his paper that results from about 720 frames have been suffi-
cient to visually correct the nonuniformities.

The Basic Constant Statistic Algorithm: The very basic constant statistics al-
gorithm is then expressed mathematically as

bCS,i,j = µ(CM,i,j)

aCS,i,j = σ(CM,i,j) . (5.1)
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5.1. The Constant Statistics Method

Harris et al. state that the mean deviation performs better than the standard devi-
ation and thus the estimation leads immediately to the following improvement:

aCS∗,i,j =
1

−1 +
∑

n 1

∑
n

|CM,i,j,tn − µ(CM,i,j,tn)| (5.2)

To calculate the temporal mean and temporal mean deviation, the following re-
cursive formulas are given in the paper (where n denotes the number of the input
image):

bCS,i,j(n) =
1

n
(CM,i,j(n) + (n− 1)bCS,i,j(n− 1)) (5.3)

aCS,i,j(n) =
1

n
(|CM,i,j(n)− bCS,i,j(n)|+ (n− 1)aCS,i,j(n− 1)) (5.4)

The bCS,i,j(0) and aCS,i,j(0) provide initial values that could be the values bCS,i,j(0) =
0 and aCS,i,j(0) = 1 ∀i, j or any other useful estimate. The calculations of eq. 5.3
and 5.4 result in the addition of values that differ by the factor (n−1), which
may reach several magnitudes. Fewer input frames are therefore preferred to safe
computational performance and to avoid problems in the accuracy.

Harris et al. mention further that to adapt for slow temporal or temperature drifts
in the parameters a continuous operation with 100′000s of averaged frames should
be considered. The mean and standard deviation should then be calculated with
help of an exponential window to give lower weights to old frames, which implic-
itly allows an adaptation of the estimate to the parameter drifts.

The Gated Constant Statistic Algorithm: Harris introduced in [7] an improved
CS algorithm that uses a gating threshold. His idea is also used by Hardie [5] and
named the gated CS method (CSG). The idea is triggered by the fact that ghosting
artifacts occur in parts of the scene without motion. However, if motion is present,
it is usually coupled to a change of the measured signal in the given area. With
this assumption, a gate threshold is introduced that blocks updates from regions
with no scene motion by allowing an update only if the gray value of the incoming
frame provides a high enough difference compared to the previous frame. Given
the threshold value T , the update rules for the gated constant statistics method are
provided as

bCSg.,i,j(n) =

{
bCS,i,j(n) (see eq.5.3 ) if |CM,i,j(n)− CM,i,j(n− 1)| < T

bCSg.,i,j(n− 1) otherwise
(5.5)

aCSg.,i,j(n) =

{
aCS,i,j(n) (see eq.5.4 ) if |CM,i,j(n)− CM,i,j(n− 1)| < T

aCSg.,i,j(n− 1) otherwise
.

(5.6)

Harris et al. suggest to use a threshold between 10 % to 50 % of the full dynamic
range of the sensor, given in DN.
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Figure 5.1.: The constant statistics assumptions is not fulfilled for the video based
driver assistance systems. If it would be, the differences in the aver-
aged frames should converge to 0.

5.1.1. Discussion of the Constant Statistics Algorithm

There are two main disadvantages of the constant statistics algorithm. First, the
constant statistic assumption on which the algorithm relies is not fulfilled in many
scenarios. For example in video based driver assistance systems, the area that is
covered by the road will have at least a different mean value with respect to the
brighter sky. Fig. 5.1 shows an example of 10′000 averaged frames, with ground
truth corrected nonuniformities to illustrate this problem.

Second, the algorithm does not take into account the neighboring pixels and cor-
rects only on a per-light-sensor basis. However, in the measurement process the
convolutions of each sample point with the light sensors’ PSF and the optic’s PSF
lead to a dependency between neighboring pixels that should be exploited (see eq.
2.16).

5.2. Least Mean Square Algorithms

While the CS algorithms provide a correction using only the simple constant
statistics assumption, the second method for nonuniformity correction of Scrib-
ner’s first paper (the LMS method, [3]) exploits more assumptions. The algorithm
uses an estimate, or best guess for the ideal sampled signal CS : CS,i,j,guess and
minimizes the difference between this estimate and the current correction in an
iterative frame-to-frame algorithm. In Scribner’s paper the estimate is calculated
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as the spatial averaged output of the light sensors in the neighborhood N(i, j)
around the current sensor i, j:

CS,i,j,guess =
1∑
k,l 1

∑
k,l∈N(i,j)

CM,k,l (5.7)

This estimate is motivated by an “always moving scene with respect to the light
detectors” [3]. In Vera’s later development [4], this motivation is renewed by the
retinomorphic hypothesis, which states that “[...] there is a higher probability for
a given detector and its surrounding neighbors, of being illuminated by the same
infrared irradiance level”. Next, Hardie [5] states that just a spatial low pass filter
is necessary to produce a suitable “desired” image, without any further explana-
tion.

Eq. 5.7 can in fact be written as a low pass filter, as it represents the discrete con-
volution of the signal CM,k,l with a BOX filter. The authors use different BOX filter
sizes up to 21×21, but for this thesis only the computationally affordable sizes 3×3
and 7×7 are used. The definition of the a 3×3 neighborhood BOX filter writes as:

BOX(3) =
1

9

1 1 1
1 1 1
1 1 1

 .

For a simplified notation, we consider the expressions without the indicies i, j as
the matrices that contain all the elements indiced with i, j:

A =

A1,1 A1,2 ... A1,N

...
...

. . .
...

AM,1 AM,2 ... AM,N

 (5.8)

The estimate of the original signal can then be expresses with a discrete convolu-
tion (∗) as:

CS,guess = BOX(n) ∗ CM n ∈ 3, 7 (5.9)

This new matrix like notation allows a quicker idea on how to parallelize and
compare the later algorithms.

Considering the methods assumption, CS,guess can only be close to the real CS if
the recorded image is blurred to the extend of the size of the BOX filter, in addi-
tion to a mean free nonuniformity degradation for the DSNU, and a degradation
by a PRNU with an expectation value of 1. Although these demands on the degra-
dations are usually not met, the LMS methods will provide a very good correction
rate under certain circumstances. For the further development of the method to
estimate the {ai,j} and {bi,j} parameters, CS,guess is considered identical with the
estimated corrected image CS,est. To avoid the nonlinear dependency of 1

ai,j
in the
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correction process, the authors use a linearisation into a weight and offset para-
meter. This linearisation is common to all LMS methods:

CS,i,j,est. =
1

ai,j,est.
(CM,i,j − bi,j,est.) (5.10)

= wi,jCM,i,j + oi,j (5.11)

with: wi,j =
1

ai,j,est.
(5.12)

oi,j = − bi,j,est.

ai,j,est.
(5.13)

As next step, the methods define an error measure E that compares the guessed
original image to the estimated image. To be able to express the method smoothly
in matrix notation, the Hadamard (element-wise) multiplication (⊗) and division
(�) of matrices is used:

assume: CS,i,j,est. ≈ CS,guess (5.14)
E = (Cest − CS,guess)⊗ (Cest − CS,guess)

= (Cest −BOX ∗ CM )⊗ (Cest −BOX ∗ CM ) (5.15)

Ei,j = ((Cest −BOX ∗ CM )i,j)
2 (5.16)

This error measureE is given as a quadratic form and is minimized with respect to
the variablesw and o by using the least mean square algorithm [43]. To accomplish
this, the gradient in the variablesw and o is needed which is defined by the ordered
vector of the partial derivatives:

∇xF (x1,1, . . . , xM,N ) =
(
∂x1,1F, . . . , ∂xM,NF

)T (5.17)

This vector notation is difficult to handle if the algorithm is to be expressed in the
desired matrix notation with dominant element wise operations. Therefore the ∇̂
operator is introduced, which results in a matrix with the (i, j)th partial derivative
as the (i, j)th entry of the matrix:

∇̂xF =

 ∂1,1F ∂1,2F ... ∂1,NF
...

...
. . .

...
∂M,1F ∂M,2F ... ∂M,NF

 (5.18)

The gradients of the error function E can then be rewritten as:

∇̂wE = 2CM ⊗ (Cest −BOX ∗ CM ) (5.19)

∇̂oE = 2(Cest −BOX ∗ CM ) (5.20)

It is to note that the derivation is only partially executed with concern on the real
variables a and b as the dependenciesw(a) and o(a, b) are neglected. The gradient’s
direction points consequently not into the direction of the physical gain and offset
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parameters a and b, but approximates this direction if the values of ai,j are close to
the ideal value ai,j = 1.

Next the Least Mean Square Algorithm [43] is used to minimize the error measure E
in form of a frame-to-frame update of the parameters o(n) andw(n) The parameter
α is introduced as a global and fixed step size and n denotes the frame number:

o(n+ 1) = o(n)− α · ∇̂wE
= o(n)− 2(Cest −BOX ∗ CM )

w(n+ 1) = w(n)− α · ∇̂oE
= w(n)− 2CM ⊗ (Cest −BOX ∗ CM ) (5.21)

The correction factors a and b can be finally calculated using the inverse of eq. 5.12
and 5.13:

aLMS,i,j =
1

wi,j
(5.22)

bLMS,i,j = − oi,j
aLMS,i,j

. (5.23)

The final parameters of this method are the size of the neighborhood and the step
size α. With the already fixed neighborhood sizes of 3×3 and 7×7 two variants
of the algorithm are set, which have only the step size parameter α left to tune:
The LMS 3×3 and LMS 7×7 methods. The LMS algorithm gives a good correction
performance, especially for DSNU corrections and thus it has been subject to many
improvements over the last two decades. The most successful variants are now
discussed.

5.2.1. High Pass Variant of the LMS Algorithm

A variant of the algorithm appears if the low pass filter is applied onto the current
estimate Cest(n) instead of the current measurement:

CS,guess = BOX ∗ Cest (5.24)
E = (Cest −BOX ∗ Cest)⊗ (Cest −BOX ∗ Cest) (5.25)

= (HP ∗ CM )⊗ (HP ∗ CM ) (5.26)

E is then calculated with help of the current estimate, subtracted by its own low
pass version. This rewrites as the convolution with a High Pass Filter (HP) which
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is defined in this case as HP = δ − BOX , with δ the discrete version of the Dirac
pulse. For a 3×3 neighborhood this results in:

HP(3) =
1

9

−1 −1 −1
−1 8 −1
−1 −1 −1

 (5.27)

When this definition of the error image is compared to the above presented in
eq. 5.15, then the numerical differences vanish, especially in cases of moderate to
low magnitudes of the nonuniformity parameters. The immediate consequence
of this approach is the application of a single high pass filter HP instead of the
subtraction of the BOX filtered version of the image.

The update rules for o and w of this variant present as

o(n+ 1) = o(n)− α · ∇̂wE (5.28)
= o(n)− 2α(Cest ∗HP) (5.29)

w(n+ 1) = w(n)− α · ∇̂oE (5.30)
= w(n)− 2αCest ⊗ (Cest ∗HP) , (5.31)

and are computationally less expensive to implement. However this method is
not mentioned in the literature and serves therefore as a theoretical intermediate
step, which is included in the below improvements of the method.

5.2.2. The Fast Adaptive LMS Algorithm

An important improvement to Scribners basic LMS algorithm is the fast adaptive
version of the LMS algorithm, introduced by Vera [4]. Vera improved two parts of
the algorithm: The estimation of the guessed original image CS,guess and a spatial
adaption of the step size α.

Given the fact, that after a few iterations, the parameters w and o have a better
estimate than before, the guess of the original image should perform better if the
low pass filter is applied onto the current estimate Cest(n) instead of the current
measurement CM , which was already introduced in the high pass variant in eq.
5.28 .

The second improvement concerns the step size parameter α where Vera adapts
the step size dynamically for each light sensor. He uses the observation that edges
of high intensity cause ghosting artifacts in combination with the retinomorphic
hypothesis which states that “[...] there is a higher probability for a given detector
and its surrounding neighbors, of being illuminated by the same infrared irradi-
ance level” [4]. As a consequence, the retinomorphic hypothesis is used to detect
edges and if the retinomorphic hypothesis is fulfilled, larger update steps are used
for the light sensor, while the update step size is reduced for areas where the hy-
pothesis is not fulfilled. As measure for the retinomorphic hypothesis, Vera first
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proposed in 2003 the variance of the measurement CM within a small neighbor-
hood [33]. Then in 2005 he presented the standard deviation as a better measure
[4].

The following definition of the step size matrix is an equivalent formulation of the
one used by Vera. It provides a larger step sizes for small standard deviations and
vice versa:

αi,j =
αmax

1 + s(CM,N(i,j))
(5.32)

S =
(
s(CM,N(i,j))

)
i,j

(5.33)

α = αmax � (1 + S) (5.34)

In the equation s(CM,N(i,j)) represents the spatial standard deviation of CM in the
given neighborhood N around the pixel position (i, j). S is the corresponding
matrix.

The resulting parameters for this method are the maximum allowed step size
αmax and the size of the neighborhood, leading to the two adaptive algorithms:
LMSA,3×3 and LMSA,7×7. The update rules can be adapted from the original LMS
algorithm by exchanging the step size. They result in the expressions:

o(n+ 1) = o(n) + 2αmax � (1 + S(n))⊗ (Cest(n) ∗HP) (5.35)
w(n+ 1) = w(n) + 2αmaxCest(n)� (1 + S(n))⊗ (Cest(n) ∗HP) . (5.36)

5.2.3. The Gated Adaptive LMS Algorithm

Hardie [5] provided one further update for the adaptive LMS algorithm to avoid
ghosting artifacts in special situations. While Vera’s adaptive LMS algorithm is
able to prevent edges of high intensity to burn in, a lack of motion in the input
frames still results in ghosting artifacts. Therefore Hardie proposes to stop the
learning in regions without any detected motion. This is achieved by an adaptive
step size that is set to 0 if a so-called change threshold is not reached. In contrast
to the constant statistic method’s change threshold, Hardie uses the measured dif-
ferences of the guessed original image to stop the learning. Mathematically the
update step expresses as:

αmax,i,j =

{
αmax

1+s(CM,N(i,j)
|CS,guess − Z|i,j > T

0 else
(5.37)

Zi,j(n+ 1) =

{
CS,i,j,guess(n) |CS,guess − Z|i,j > T

Zi,j(n) else
(5.38)

Hardie showed already in his paper [5], that his method provides an advantage
only in regions without motion. Otherwise the performance was not significantly
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improved compared to the LMSA,3×3 and LMSA,7×7 methods. Besides the change
in the step size parameters, the update rules are the same as for the adaptive least
mean square algorithms. The two new gated adaptive LMS methods are named:
LMSGA,3×3 and LMSGA,7×7.

5.2.4. Total variation LMS algorithm

A very recent improvement of the LMS algorithm is introduced by Vera [6]. He
changes the error estimate E which is minimized by the Least Mean Square Algo-
rithm as an approximation of the absolute value of the gradient of the estimated
image:

E ≈ |∇Cest| (5.39)

To approximate∇Cest two alternative definitions called∇ for forward differences
and∇∗ for backward differences are given by Vera as:

∇Ci,j,est =
√

(Ci,j,est − Ci−1,j,est)2 + (Ci,j,est − Ci,j−1,est)2 (5.40)

∇∗Ci,j,est =
√

(Ci,j,est − Ci+1,j,est)2 + (Ci,j,est − Ci,j+1,est)2 (5.41)

His approach can also be transformed into the matrix notations introduced above
and more information can be found in his publication [6]. The equivalent formula-
tion leads to two filter masks according to the used definitions of either∇Ci,j,est or
∇∗Ci,j,est. The two sets of update rules can be expressed mathematically identical
to the original paper with help of the new matrix notation:

HPTV =
1

3

 0 −1 0
−1 2 0
0 0 0


HPTV∗ =

1

3

0 0 0
0 2 −1
0 −1 0

 (5.42)

oi,j(n+ 1) = oi,j(n)− αTV

∇CS,i,j,est.
· (HPTV ∗ Cest) (5.43)

wi,j(n+ 1) = wi,j(n)− αTV

∇CS,i,j,est.
· CM,i,j · (HPTV ∗ Cest) (5.44)

oi,j(n+ 1) = oi,j(n)− αTV

∇∗CS,i,j,est.
· (HPTV∗ ∗ Cest) (5.45)

wi,j(n+ 1) = wi,j(n)− αTV

∇∗CS,i,j,est.
· CM,i,j · (HPTV∗ ∗ Cest) (5.46)

This method provides the same structure like the high pass versions of the LMS
algorithms: A High-Pass-Filtered version of Cest is weighted with an (adaptive)
step size and used to update the current estimations. This time however, the step
size is not determined by the variance of the input signal, but by the occurring
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gradients. This is similar but not identical to the measure of the standard deviation
of the adaptive LMS methods. In the limiting case of standard deviation of 0, the
gradient measure will however be 0 as well.

If implemented as introduced in the paper, this method has a potential for an un-
defined zero devision by zero if the gradient in a certain region is zero (for example
due to occurring local overexposure). To avoid this, the method is adapted by the
same safeguards that are used in the adaptive LMS method’s step size:

oi,j(n+ 1) = oi,j(n)− αTV

1 +∇CS,i,j,est.
· (HPTV ∗ Cest) (5.47)

wi,j(n+ 1) = wi,j(n)− αTV

1 +∇CS,i,j,est.
· CM,i,j · (HPTV ∗ Cest) (5.48)

oi,j(n+ 1) = oi,j(n)− αTV

1 +∇∗CS,i,j,est.
· (HPTV∗ ∗ Cest) (5.49)

wi,j(n+ 1) = wi,j(n)− αTV

1 +∇∗CS,i,j,est.
· CM,i,j · (HPTV∗ ∗ Cest) (5.50)

5.2.5. Discussion of the LMS Algorithms

Concerning the LMS algorithms three points should be addressed. First, the al-
gorithms achieve a good correction rate by minimizing an error image in a given
norm (sec. 5.3). Unfortunately this norm is not motivated and is maybe not cho-
sen optimally. Extending this point, the guessed original signal is always set as a
low-pass filtered version of the measured image, which works well, but again a
motivation of which low-pass version is the best choice is missing.

The newly introduced comparable way of writing the methods with help of high-
pass-filters shows how all these methods base on the same principles. Further
research will lead to a deeper understanding why the low-pass or blurred version
of the measured image is a good choice to estimate the original light signal with
respect to signal theory. One way to achieve this is to use physical properties of
the actual light signal that are affected by the nonuniformities. This will result
in defined high-pass filters which are not arbitrary any more, as introduced in
chapter 6.

5.3. Experiments and Results

The algorithms introduced above represent the state-of-the art in literature. As the
most recent improvements are included, these methods form a good standard to
compare new developments against them. The methods have been implemented
in C++ using NVidia’s CUDA technology [44] to accelerate the computations. At
this point the matrix notation proved very helpful and allowed to implement the
methods straight forward on a parallel architecture.
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To evaluate the methods’ performance, a parameter search is executed. This is nec-
essary as the given parameters from the publications lead to significantly worse
results when compared to an optimized parameter set. In a second step, the algo-
rithms’ performances were evaluated and discussed with respect to the introduced
quality norms of sec. 3.4. The spatial and spectral quantities of the remaining
nonuniformities are also investigated as introduced in chapter 3.

5.3.1. Parameter Search

Besides the basic constant statistic method (CS ), all algorithms have at least one
parameter to be tuned. For the improved version of the CS method, the gated con-
stant statistics method (CSG) the gate threshold needs to be adapted. Considering
the LMS algorithms, the parameter is the step size α and for the fast adaptive LMS
algorithm the parameter αmax needs to be optimized. The gated adaptive LMS
methods depend on a threshold T which needs to be known in addition to the
step size parameter αmax. As the gated adaptive LMS methods complement the
adaptive LMS methods, the threshold is regarded the only parameter to tune and
the αmax parameter of the corresponding adaptive LMS methods are used. For the
total variation version only the step size parameter αTV needs to be adjusted.

Concerning the change threshold T , the search is performed as a binary search over
the whole dynamic range of the corresponding camera. For the step size values
the interval [0,∞] is valid and a modified binary search with exponentially di-
vided search ranges is used. This exponentially stepping enables the search to
find the correct order of the parameter very fast and the starting interval is limited
to the reasonable parameters [10−8, 103]. This type of parameter search assumes of
course that only one minimum exists inside the search area, which is an assump-
tion that cannot be proven mathematically. Experimental results however showed
that the found parameter sets seem to be optimal.

The parameter search is conducted with all the 25 consecutive frame and random
frame calibration sequences introduced in sec. 4.2. Their performance was eval-
uated every 50 frames and the results of the last 25 % of a given sequence are
averaged and considered the performance of the method. The averaging is nec-
essary to balance eventual performance fluctuations. It is obvious that each se-
quence has an individual best parameter and an individual best correction rate.
To illustrate this, fig. 5.2 shows the different outcomes of the parameter search for
the LMSA,7×7-method with respect to the newly introduced percentual correction
measure pc,Comb..

The averages of the found best parameters are considered as the optimal param-
eters while the standard deviations of the gathered values give an estimate of the
respective errors. Tab. 5.1 summarizes the used abbreviations for the methods and
tab. 5.2 and 5.3 show the resulting parameter sets for the random frame and the
consecutive frame sequences. Tab. 5.4 shows for comparison the parameters that
have been proposed in the publications by the methods’ authors.
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Figure 5.2.: Parameter search outcomes for the LMSA,7×7 box filter.

Method Abbreviation
Constant Statistics (see sec. 5.1) CS

Gated Constant Statistics (see sec. 5.1) CSG
Least Mean Square Method
. . . with 3× 3 mask (see sec. 5.2) LMS 3×3

. . . with 7× 7 mask (see sec. 5.2) LMS 7×7

Adaptive Least Mean Square Method
. . . with 3× 3 mask (see sec. 5.2) LMSA,3×3

. . . with 7× 7 mask (see sec. 5.2.2) LMSA,7×7

Gated Adaptive Least Mean Square Method
. . . with 3× 3 mask (see sec. 5.2) LMSGA,3×3

. . . with 7× 7 mask (see sec. 5.2.3) LMSGA,7×7

Total variation LMS Algorithm (see sec. 5.2.4) LMSTV

Table 5.1.: Implemented methods and their abbreviations

Method Parameter
CSG 613.1± (91.02, 14.85%)

LMS 3×3 0.01996± (0.01144, 57.31%)

LMS 7×7 0.007149± (0.0002339, 3.272%)

LMSA,3×3 1.758± (0.08248, 4.691%)

LMSA,7×7 1.526± (0.2534, 16.61%)

LMSGA,3×3 0.0194± (0.03609, 186%)

LMSGA,7×7 0.04898± (0.0823, 168%)

LMSTV 2.841± (0.4092, 14.4%)

Table 5.2.: Optimized parameter set for random frame sequences.
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Method Parameter
CSG 23.95± (16.2, 67.63%)

LMS 3×3 0.008654± (0.007004, 80.93%)

LMS 7×7 0.005877± (0.005487, 93.37%)

LMSA,3×3 1.069± (0.4134, 38.67%)

LMSA,7×7 0.6192± (0.1334, 21.55%)

LMSGA,3×3 0.8241± (3.364, 408.2%)

LMSGA,7×7 0.1544± (0.2963, 191.9%)

LMSTV 2.291± (0.735, 32.09%)

Table 5.3.: Optimized parameter set for consecutive frame sequences

Method Parameter
CSG 800± (400, 50%)

LMS 3×3 0.055± (0.54, 98%)

LMS 7×7 0.055± (0.54, 98%)

LMSA,3×3 0.1± (0.25, 25%)

LMSA,7×7 0.1± (0.25, 25%)

LMSGA,3×3 800± (400, 50%)

LMSGA,7×7 800± (400, 50%)

LMSTV Optimized

Table 5.4.: Parameter set extracted from the publications in literature

A comparison between the parameter sets for random and consecutive frame se-
quences in case of the CSG method shows that the optimal thresholds differ by
a factor of ≈ 26. This effect can be explained as the consecutive frame sequences
are recorded with a high frame rate of 100 Hz and thus the images are very simi-
lar. Consequently a large change in gray values does not occur often and thus a
large threshold does not allow to learn enough images in those regions to achieve
a good performance. Therefore a smaller threshold gives a better result for con-
secutive frame sequences, which however also limits the desired improvements.
For the random frame sequences a larger threshold is possible in comparison to
the consecutive frame sequences as the images naturally change a lot.

For the LMS 3×3, LMS 7×7 and the LMSTV methods, the parameter values are iden-
tical for random and consecutive frame sequences if one considers the estimated
errors. However, for the LMSA,3×3 and LMSA,7×7 methods, the optimal values are
significantly lower for consecutive frame sequences. This makes sense as a lower
value avoids burn-in artifacts [4], however it also results in a lower convergence
speed of these methods.

The LMSGA,3×3 and LMSGA,7×7 provide an optimized threshold of 0.01 DN to 0.8 DN,
which is effectively a value that lies inside the nonuniformity noise of 50 DN. As
the threshold of 0 has also been considered in this search, a marginal improvement
of ±0.01 % can be confirmed for the gating technique. As mentioned above, this
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gating technique mainly has advantages for sequences with parts of no motion,
which result in constant illumination values. However, areas of constant illumina-
tion exist only in the consecutive frame sequences and even there small changes
in illumination are still typical due to noise. Consequently, only larger thresholds
would result in advantages but tend to stop the learning too often in the used
500 frame sequences to let the method achieve good performances. Consequently,
these effects lead to choices of the threshold value that unfortunately allow only
a neglectable performance increase compared to the LMSA,3×3 and LMSA,7×7

methods as shown below.

A comparison of the optimized values towards the values published in literature
(tab. 5.4) shows that the values match only for the CSG method in the case of
random frame sequences. For all other methods, even if the error boundaries are
considered, the parameters do not match and it is to expect that the literature pa-
rameters will perform worse than the optimized parameters. It should be further
mentioned, that the literature parameter are optimized for different camera types
and supposing, they were further optimized onto the very sequences in the men-
tioned publications.

5.3.2. Analysis of the Best-Case Performances

The results of the parameter search of sec. 5.3.1 allow to evaluate a best-case per-
formance of the methods. As mentioned above, the average of the best parameters
per sequence is considered the optimal set of parameters. The according measures
of the nonuniformity quality metrics are logged along with the parameters as well.
These metrics’ values represent the best possible result for a specific sequence and
therefore we consider their average over all the calibration sequences as a measure
for the optimal performance that can be achieved. The standard deviation of this
upper border values is again considered as an estimate of the measurement error.

As for the CS method there is no parameter to optimize, each sequences’ optimal
performance is given by a single evaluation of the method. The same procedure is
done for the evaluations with the parameter set from literature, where all methods
are evaluated once with the given parameters. The final best-case performances
are obtained by averaging over the individual evaluations of the sequences.

There are four different types of evaluation possible for the best-case performance
analysis at this point: The optimized parameter sets applied to the random and
consecutive frame sequences and the literature parameter set applied onto the
random and the consecutive frame sequences. Tab. 5.5 gives an overview of these
combinations and introduces their abbreviations in the plots.

Fig. 5.3 shows the best-case performance analysis of the different methods with
respect to the pc,Comb. quality metric. The CS and CSG methods achieve only
large negative correction percentages of less than −100 % and their results are cut
in the plots to provide a better comparability of the LMS methods. The results of
the basic LMS 3×3 method are very similar for the consecutive and random frame
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Abbreviation Evaluation
Opt. Random (tab. 5.2) Random frame sequences with the optimized param-

eters for random sequences
Opt. Consec (tab. 5.3) Consecutive frame sequences with the optimized pa-

rameters for consecutive sequences
Lit. Random (tab. 5.4) Random frame sequences with the literature given

parameter set
Lit. Consec (tab. 5.4) Consecutive frame sequences with the literature

given parameter set

Table 5.5.: The four combinations of parameter sets and sequence types that are
evaluated for the best-case performance analysis
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Figure 5.3.: Best-case performance with respect to the pc,Comb. quality metric
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Figure 5.4.: Best-case performance with respect to the SNR quality metric
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sequences and reach correction rates that are slightly above 40 %. For these meth-
ods the results that are obtained from the parameters given in literature compete
with the ones obtained with the optimized parameter set. The LMS 7×7 method
shows the results for the increased box filter mask, which gives an increased per-
formance to almost 60 % with the optimized parameter set for the random frame
sequences. This performance increase for the larger mask is in contrast to the re-
sults stated in [4], where larger masks were reported to produce images that are
“noisier than the original 26dB level of the test sequence”. The result, that larger
masks produce the better results seems however more convincing, of course for gi-
ant masks of (e.g. 100×100) the improving effects will not show up any more. The
performance decrease for the consecutive frame sequences for this method, and
for the parameters published in literature an even further decrease in the correc-
tion performance is observed. This effect can also be observed for the LMSA,3×3,
LMSA,7×7, LMSGA,3×3 and LMSGA,7×7 methods. In general the literature para-
meter set gives a severely decreased performance and reaches in the average only
≈ 40 %. Therefore this parameter set is not considered in the further evaluations
and can merely be considered as a proof-of-concept parameter set. The LMSTV
method already states that the parameters have to be optimized, which leads to
the doubled results as shown in the figure. For all the discussed methods, the con-
secutive frame sequences’ evaluations result in a wider error range, which is the
expected behavior as the consecutive frame sequences present a variety of differ-
ent scenes. This variation in the presented information is diminished by the mix
of information of the random frame sequences.

An increase in the correction performance can only be observed until the devel-
opment of the adaptive LMS method. After that stagnation occurs, which is still
unbroken even for the latest development, the LMSTV method. The highest ob-
served correction rate is about 60 % and in general the performance for random
frame sequences is higher than for the consecutive frame sequences. With respect
to the error measure, the random frame sequences produce also more stable results
which can be seen by the wide error bars for the consecutive frame evaluations.
The described results qualitatively occur throughout all the available quality met-
rics: MAE, RMSE and SNR. The SNR quality metric is shown in fig. 5.4 for ex-
ample and the MAE and MRSE metrics can be found in appendix C.1. A possible
advantage of the SNR metric is its logarithmic scale, however its disadvantage still
is its dependency on the image data. Further, the new percentual metrics allow to
separate the results with concern to the DSNU and PRNU as it was described in
sec. 3.5.

From the publications it becomes obvious that the methods have been developed
to correct infrared images, which possess a dominant DSNU. This raises the ques-
tion, if the correction performance of the algorithms concentrates on the DSNU
only and maybe neglects the PRNU, which can not be answered by evaluations
in the literature proposed quality metrics. The newly introduced pc,DSNU and
pc,PRNU metrics however allow this quantification and fig. 5.5 shows the pc,DSNU

correction performance while fig. 5.6 gives the pc,PRNU correction performance.
Surprisingly, the CS and CSG methods achieve a positive correction rate for the
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Figure 5.5.: Best-case performance with respect to the pc,DSNU quality metric
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Figure 5.6.: Best-case performance with respect to the pc,PRNU quality metric
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analyzed random frames sequences in the DSNU-only evaluation. The PRNU on
the other hand gives a large negative correction rate, which results in the com-
bined negative performance shown in pc,Comb.. The LMS methods show as well a
positive DSNU correction rate and for the adaptive LMS methods this correction
rate reaches more than 70 %. The PRNU correction rate achieves however only
1 % to 2 % and results party in negative PRNU correction values and here the liter-
ature proposed parameter set results in less negative pc,PRNU values. Concluding,
the parameter optimization reduces the PRNU correction but increases the DSNU
correction when compared to the literature parameter set. The negative correc-
tion rates yield in −1 % to −5 % for the adaptive LMS methods. Only LMSTV is
able to achieve a positive PRNU correction rate in combination with a high DSNU
correction rate.

Given the performance analysis, LMSTV and LMSA,7×7 are considered the best
methods in this comparison. To summarize further, the best correction perfor-
mance is achieved with random frame sequences as input and consecutive frame
input decreases and destabilizes the performance of the methods. Therefore, in
the following evaluations the random frame sequences are evaluated first, while
an analysis for consecutive frame sequences and the image material with low val-
ued nonuniformities is presented in sec. 10.1 and 10.2.

5.3.3. Temporal Performance Analysis for the CS methods

Besides this general overview of the methods in the best-case performance ana-
lysis, the temporal performance of the methods gives further insight for the in-
tended use in real applications. For the evaluation of the temporal performance,
the 80 random frame evaluation sequences have been used and for specialized
evaluations, the 25 sequences with a length of 1000 random frames were used as
well. The fixed optimal parameters are used, which resembles the method’s usage
in real applications. The algorithms’ performances are measured in the quality
norms pc,Combined , pc,DSNU, pc,PRNU, SNR, MAE and RMSE. The sampling took
place in steps of 50 frames and the 30 % and 70 % percentiles are shown as error
bars in the following plots.

For the CS and CSG methods, fig. 5.7a shows this temporal performance analysis
for the 500 frame sequences. The methods result in negative percentual correction
rates and throughout all quality metrics a huge gap between their performances
towards and other methods’ performances is present. However, an increase in the
method’s performance can be seen if the sequence length is increased from 500 to
1000 frame sequences (see fig. 5.7b) but as the figure shows, the method already
starts saturating. In general the performance of the constant statics based method
seems not to be satisfying given the evaluations. Surprisingly, in the spatial eval-
uations below the visual correction performance will be quite good.
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(a) CS and CSG evaluations in the pc,Comb. metric for 500 frame random sequences
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(b) CS and CSG evaluations in the pc,Comb. metric for 1000 frame random sequences

Figure 5.7.: Optimal performance with respect to the pc,Comb. quality metric for
random frame sequences of 500 and 1000 frame length.

5.3.4. Temporal Performance Analysis for the LMS methods

The temporal evaluations of the remaining LMS methods are presented in fig. 5.8
where all methods show an asymptotic behavior that starts to saturate after 400
frames. The methods’ ranking is without any severe surprises: The lowest perfor-
mances in this group are achieved by the pure LMS methods LMS 3×3 and LMS 7×7,
which are outperformed by their adaptively improved methods LMSA,3×3 and
LMSA,7×7. With concern to the mask size, the LMS 7×7 methods takes a bit longer
to reach its full potential but outperforms the LMS 3×3 method after 150 frames.
The LMSTV method separates from the other methods as it performs almost as
good as the LMSA,7×7 method but is based upon a 3×3 masks only. As the error
bars almost vanish and do not overlap, LMSA,7×7 results as the statistically sig-
nificantly best method, followed by the LMSTV method. The gated adaptive LMS
methods are excluded from further investigations, as their performance is almost
indistinguishable to the adaptive LMS methods as shown in fig. 5.9. This result
is no surprise as for the random frame sequences there is reason or possibility to
block out unwanted image information with this technique.

For completeness, fig. 5.10 shows the SNR quality metric while the MAE and
RMSE metrics are shown in appendix C.2. The SNR measure seems not to stabilize
on a constant value, which is expected due to the image data dependency and the
random frame inputs. Of course these fluctuations are damped by averaging the
80 sequences, however they are still visible in fig. 5.10. Anyway, given these plots,
it is obvious that the discussed results are valid in all the quality measures, but
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Figure 5.8.: The LMS methods’ evaluations for the pc,Comb. metric with random
frame sequences as input.
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Figure 5.9.: Comparison between the gated adaptive and the adaptive LMS meth-
ods in the pc,Combined quality metric for random frame sequences. The
differences between the two methods is not notable, as only 2 plot lines
are separable.
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Figure 5.10.: The LMS methods’ evaluations for the SNR metric with random
frame sequences as input.
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only the pc,Comb. metric is image data independent and with the available pc,DSNU

and pc,PRNU the separation of the performance onto the effects of DSNU and PRNU
is possible (sec. 3.4).
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Figure 5.11.: The LMS methods’ evaluations for the pc,DSNU metric with random
frame sequences as input.
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Figure 5.12.: The LMS methods’ evaluations for the pc,PRNU metric with random
frame sequences as input.

The separated view onto the DSNU and PRNU corrections is shown in fig. 5.11
and 5.12. As expected, the DSNU correction is similar to the combined correc-
tion rate while the PRNU correction results in negative rates for LMSA,3×3 and
LMSA,7×7. These results confirm the observations from the best-case performance
evaluations shown in sec. 5.3.2. With respect to the PRNU correction the LMS 3×3

and LMSTV methods result in the best performance but still only correct about 4 %
of the PRNU. Further, the pc,PRNU seems not to convergence for the 500 frame se-
quences and the 1000 frame sequences have also been evaluated and their pc,Comb.

and pc,PRNU performances are shown in fig. 5.13 and 5.14. The results do not
differ much from the above described 500 frame sequences. Especially the non-
convergence of the pc,PRNU is still present after 1000 frames. For the other quality
norm results see appendix C.2.

With concern to the literature parameter set, fig. 5.3.4 gives the expected results
of a decreased performance when compared to the optimized parameters shown
in fig. 5.8. Especially the adaptive LMS methods LMSA,7×7 and LMSA,3×3 are not
fully converging within the 500 frames using this parameter set.
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Figure 5.13.: The LMS methods’ evaluations for the pc,Comb. metric with random
frame sequences of 1000 frames length.
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Figure 5.14.: The LMS methods’ evaluations for the pc,PRNU metric with random
frame sequences of 1000 frames length.
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Figure 5.15.: The LMS methods evaluations for the pc,Comb. metric with the liter-
ature parameter set from tab. 5.4 and random frame sequences as
input.
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5.3.5. Spatial Performance Analysis

An analysis of the methods with respect to their spatial and spectral performance
was already introduced in sec. 3.6. This analysis is now conducted on the last
frame of the first random frame evaluation sequence. The last frame forms a good
measure, as all methods provide an almost monotone development of their cor-
rection performance. The analysis for consecutive frame sequences and the image
material with low valued nonuniformities is presented in sec. 10.1 and 10.2.

Fig. 5.16 shows the used image and the spatial high frequency degradations are
clearly visible in the uncorrected versions. To provide a detailed view onto the
effects of the degradations, a centered region of interest of the image has been cho-
sen for the presentation. Especially the woman in front of the bus is barely visible
and the text on the bus is readable only partly in the uncorrected image. However,
both tasks can be completed easily in the ground truth corrected image.
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Figure 5.16.: The used image for the evaluations and the chosen region of interest,
as recorded and ground truth corrected version.
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Figure 5.17.: Spatial correction performance of the reference methods given ran-
dom frames as input. Parameter set according to tab. 5.2.
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Fig. 5.17 shows the image after the corrections with the individual methods. All
corrected images give the same mean and standard deviation like the ground truth
corrected image as a result of the newly introduced scaling of the correction pat-
terns described in sec. 3.5. For the CS method, the correction looks very good,
while the CSG method provides a deteriorated corrected image. The LMS 3×3 and
LMS 7×7 methods improve the image quality and only few image degradations are
left (mainly visible in the constant regions on the bus). Next, the LMSA,3×3 and
LMSA,7×7 methods improve the quality even further, and visual degradations are
almost not detectable in the given representations. The LMSGA,7×7 method is de-
picted as well but shows no visual improvement of the quality, as expected. The
LMSTV method gives a very good correction as well and a visual difference be-
tween the LMSA,3×3, LMSA,7×7 and LMSTV methods is not directly noteable.

With concern to the constant statistic methods, the visual correction of the ROI is
good in comparison to their achieved scalar performances. However, degradation
for this method becomes visible once a larger ROI is considered as shown in fig.
5.18. The degradation results mainly from spatial low frequency components.
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Figure 5.18.: Larger ROI considering the CS method’s correction versus the
ground truth corrected image. The degradations by spatial low fre-
quencies becomes visible.

More insight in the methods’ performances is gained by analyzing the remaining
correction patterns. Fig. 5.19 shows the remaining PRNU correction pattern dis-
played as |1−ai,j,rem.|. The CS and CSG method show huge remaining patterns
that reach the order 0.2 in the given representation, which explains the large neg-
ative correction rates. For the LMS methods, the evaluation shows much smaller
numbers that range about 10−2. These numbers magnitude are the range of the
actual values of {ai,j}-values measured in sec. 4. Thus the presented result is
consistent with the reported low correction rates at the PRNU.

Fig. 5.20 shows the remaining DSNU correction patterns |{bi,j}|. A view onto the
displayed scale reveals that the CS and CSG methods’ remains are a magnitude
higher than the actual value of the DSNU, which is about 50 DN. This reveals again
reveals the reasons of these methods’ bad performances. As mentioned above, the
visual correction of the constant statistic based methods is quite good because the
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Figure 5.19.: Remaining PRNU patterns for the reference methods given random
frames as input. Parameter set according to tab. 5.2.
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Figure 5.20.: Remaining DSNU patterns for the reference methods given random
frames as input. Parameter set according to tab. 5.2.
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remainders consist mainly of spatial low frequency components. Thus a visually
pleasing correction is still achieved and only larger areas of constant gray values
are deteriorated. The reasons for the worse impression of the CSG method are
discussed below. With concern to the LMS methods show the same qualities as
before: LMS 3×3 leaves high amplitude and spatial high frequency components
behind, which leads to the visual deterioration in the image. The LMS 7×7 method
shows these two properties as well, and the LMSA,3×3 and LMSA,7×7 methods
are the first two methods with significantly better results. Especially in terms of
the spatial higher frequencies, the LMSTV method gives a good correction of these
frequencies but leaves remains of a higher amplitude. Although some of the meth-
ods’ performances are very similar with respect to their scalar quality measures,
their remaining DSNU patterns differ significantly from method to method.

The spectral damping analysis of the PRNU correction shows no frequency de-
pendent damping effects (compare in fig. 5.21). Especially the higher frequencies
are not damped more than the lower frequencies, which is expected for good cor-
rections. A visual impression like this fits to the results of the almost not present
correction of the PRNU as seen in the temporal performance analysis.

The spectral damping properties for the DSNU are presented in fig. 5.22 and give
a better insight in the methods differences. The black pixels of these images repre-
sent a very well damped frequency component, while the white parts stand for a
damping factor of just 0.25 (or even less damping), compared to the ground truth.
The remaining frequency components show up in the center of the spectral ana-
lysis image where the spatial lower frequencies are represented. The CS method
leaves spectral horizontal and vertical frequencies behind, which are represented
by the white cross-like appearance. The CSG method leaves even more of the spa-
tial higher frequency components behind. While its relative damping properties
are comparable to the CS method (e.g. a good correction performance for spatial
high frequency components), the average damping factor only≈ 0.1 and therefore
much higher than the one of the CS method. This in general worse performance
in the spatial higher frequencies is also the reason for the degraded image qual-
ity in the visual inspection in fig. 5.17. For the LMS 3×3 method, the damping is
not very centered towards the lower frequencies, but on the other hand a good
damping of the vertical and horizontal frequencies can be observed. However the
LMS 3×3 method gives a wide spectrum of uncorrected lower frequencies which
results in a worse impression than the CS and CSG method in this representa-
tion, but the lower frequencies are not that critical for the visual impression. On
behalf of the LMSA,3×3 and LMSA,7×7 methods even more of the lower frequen-
cies are damped which uncovers a remainder of vertical and horizontal frequency
components. The LMSTV method provides less damping in lower frequencies but
therefore the vertical and horizontal frequencies are removed much better.
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Figure 5.21.: The spectral damping analysis for the PRNU given random frames
as input. Parameter set according to tab. 5.2.
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Figure 5.22.: The spectral damping analysis for the DSNU given random frames as
input. Parameter set according to tab. 5.2.
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5. Related Work and State of the Art Methods

5.4. First conclusions

The observed results confirm the ability of the introduced methods to correct the
spatial high frequency components for random frame sequences. The above re-
search however also showed that the choice of the parameter sets for these meth-
ods is very critical and that the CS and CSG methods may not lead to the desired
or expected correction performances. The statement that larger filter masks are not
leading to an improved performance, which was published in [4], could be shown
as inaccurate and was caused by non-optimized parameters.

The removal of visible nonuniformities is possible to some extend by all methods,
given the random frame sequence as input. However, further investigations of the
remaining DSNU and PRNU patterns and their according spectral damping fac-
tors reveale the differences of the methods. It was discussed that the methods in
general corrected successfully for DSNU only, which was possible with help of the
newly introduced separation into DSNU and PRNU corrections. As the DSNU cor-
rections stagnated, with the development of the adaptive LMS algorithms, a limit-
ing point of the frame-by-frame based LMS algorithms may have been reached.

Further results on the methods behavior on consecutive frame sequences and on
the image material with low valued nonuniformities is presented and discussed
against the newly introduced methods in sec. 10.1 and 10.2.
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6. A New Maximum Likelihood
Estimation for DSNU

Given the investigation of the related methods that were described in chapter 5,
the possible improvements for a new method are clear. To summarize, a sound
motivation for the method’s assumptions is needed as well as a defined way to es-
timate the free parameters. Additionally, most of the yet unconsidered but avail-
able statistical information should be used in the new method and an improved
PRNU estimation should be possible.

These demands are met by deriving a new method in this chapter, based on a max-
imum likelihood approach. The approach is formulated for a DSNU-only sensor
model and the PRNU estimation will be introduced in chapter 8. As mentioned
in chapter 5, the reference methods provide only very limited correction for the
PRNU part of the nonuniformities, which will allow first comparisons of the new
method in the DSNU-only domain. Further, the mathematical derivation is easier
to follow this way. Some applications actually demand for a DSNU-only correc-
tion because the part of image degradation by PRNU is in general small in contrast
to the typical DSNU degradations (see chapter 4). The method can then be tested
and improved first (see chapter 7) before it is completed by a combined DSNU
and PRNU estimation in chapter 8. The contents of this chapter have been partly
published [12] and the method has a patent pending [14].

6.1. Mathematical Ansatz

With respect to the reference methods, a new method should fulfill the above men-
tioned demands to overcome the currently known limitations. A maximum likeli-
hood approach is the method of choice, given the demand for a sound motivation
of the method’s assumptions and especially for the utilization of the available sta-
tistical information.

A consideration of the parameters and measurements as realizations of random
variables will allow to build the needed mathematics to derive a maximum likeli-
hood approach. To start, a maximum likelihood method targets to find the nonuni-
formity parameters {bi,j} that are the most likely ones and for the given task the
probability density is considered a good measure for the likelihood. Consequently,
the approach is set up to find those parameters that maximize the probability
density of a random variable that represents the DSNU. This random variable is
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6. A New Maximum Likelihood Estimation for DSNU

named DSNU. In general the following notation on random variables and their
realizations is used:

x Random variable (6.1)
x realization of x (6.2)

x = x x has the given realization x. (6.3)
fx(x) probability density distribution of x (6.4)

To clarify the notation, DSNU is the random variable describing the DSNU in
terms of the statistical mathematics. A realization of DSNU is given by a defined
set {bi,j} as DSNU = {bi,j}. The measurements of the effects of DSNU are given
by the DSNUEMVA1288,DN metric, which lies outside the scope of the current statis-
tic mathematical descriptions.

As DSNU is defined by a set of parameters {bi,j}, DSNU has to be dependent to
a given realization of these {bi,j}: DSNU({bi,j}). The probability density is then
given as fDSNU({bi,j}) and further details on its definition will follow. A plain
and not very smart maximum likelihood approach could now try to solve

arg max
{bi,j}

fDSNU({bi,j}) . (6.5)

Of course this would lead to the rather trivial result of the expectation values of
the {bi,j}, because the measurements of the actual light signals have not yet been
considered. The above equation needs therefore to be modified by including the
measurement of the actual light signal IWorld that is presented to the sensor. To
transfer the light signal into the statistical framework, we consider it as the real-
ization of its random variable IWorld.

The maximum likelihood estimation can then be improved to maximize the con-
ditional probability of DSNU, given the occurrence of the spatio-temporal signal
IWorld = IWorld:

DSNU|(IWorld=IWorld) (6.6)
or shorter: DSNU|IWorld=IWorld , (6.7)

which results in the mathematical task of solving

arg max
{bi,j}

fDSNU|IWorld=IWorld
({bi,j}) . (6.8)

Until now these tasks form only an abstract mathematical ansatz. The probability
density of the above conditional probability can indeed not be derived directly, but
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the Bayes’ theorem [29] gives the probability density distribution of a conditional
event as

fX|Y=y(x) =
fX(x)fY |X=x(y)∫ ∞

−∞
fX(x)fY |X=x(y) dx︸ ︷︷ ︸

N

. (6.9)

This allows to transfer the maximization task into

arg max
{bi,j}

1

N
· fDSNU({bi,j}) · fIWorld|DSNU={bi,j}(IWorld) . (6.10)

The still unknown probability densities of the random variables are now to be
defined in the next steps.

6.2. Density Estimations of the Random Variables

6.2.1. The Density of DSNU

The dependency of DSNU on the parameters {bi,j} is exploited to define the ran-
dom variable DSNU. A random variable is completely defined if its state space
as well as its probability density distribution function are given. The state space
of DSNU is defined as ΩDSNU and covers all the possible realizations given by the
parameters {bi,j}. As the individual {bi,j} are real values, their linear span defines
the space ΩDSNU and a single realization of {bi,j} represents a point ω in the space
ΩDSNU:

ΩDSNU = span({bi,j}) ω = {bi,j} ∈ ΩDSNU

The further definition is straight forward with help of a multivariate random vari-
able, where the values of the parameters bi,j are considered the realizations of their
corresponding random variables bi,j [29]:

DSNU : Ω→ RM×N (6.11)

(b1,1, . . . ,bM,N )→ (b1,1, . . . , bM,N )T (6.12)

Now the random variable DSNU is defined almost completely and only its prob-
ability density is missing. To be able to define it in a simple way, we assume the
random variables {bi,j} to be independent and identically distributed (iid). In this
case it follows from the statistical mathematics that a product over the single inde-
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6. A New Maximum Likelihood Estimation for DSNU

pendent densities of the variables {bi,j} forms the combined probability density
fDSNU:

fDSNU({bi,j}) =
∏
i,j

fbi,j (bi,j) . (6.13)

The assumption of independent identically distributed random variables is com-
mon in the literature of scene based nonuniformity estimations and also men-
tioned implicitly by Hardie [5].

The manufacturing process of the light sensors motivates the iid assumption a bit
more, as this manufacturing process can be represented by a random process that
generates the individual parameters. Of course this processes should be identical
for each produced image sensor and independent from its realization at the other
sensor positions. Summarized, the manufacturing process should fulfill the iid as-
sumption for the {bi,j}. And even if this does not hold strictly, the manufacturer
will aim to make this process as identical and independent for each image sensor
as technically possible. However, for the typical row and column wise nonuni-
formities the iid assumption does not hold and this problem will be discussed in
chapter 7.

Assuming iid random variables makes it easy to estimate the probability density
distribution of the random process. A random sample of the realizations of ground
truth measured bi,j of one or more image sensors, allows to fit an empirical model
to the histogram of the obtained realizations. As already discussed in sec. 4, and
especially for the Photonfocus MV1-D1312-160-CL camera (sec. 4.3.1), the {bi,j}
obey approximately a Gaussian distribution. Thus we model the random variables
for each given (i, j) to obey a Gaussian distribution, with the same parameters µb
and σb for all bi,j . This expresses like

bi,j ∼ N
(
µb, σ

2
b

)
∀(i, j) (6.14)

fbi,j (bi,j) =
1

σb
√

2π
e
− 1

2

(
bi,j−µb
σb

)2
, (6.15)

and the random variable DSNU is now completely defined.

6.2.2. The Density of IWorld|DSNU={bi,j}

The conditional random variable IWorld|DSNU gives the probability of the world
light signal given an assumed realization of the DSNU pattern. Here the light
signal IWorld is a temporally and spatially continuous signal, which is sampled in
the temporal and spatial domain by the light sensors as described in sec. 2.6.

Given these facts, IWorld is obviously not influenced by the realizations of DSNU
and the random variable IWorld and its conditional pendant IWorld|DSNU={bi,j}
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are identical. The world signal Iworld is however not known and cannot be mea-
sured due to the nonuniformity degradations that occur in the measurement pro-
cess. Thus, only the measured and reconstructed version of Iworld is available,
which is the result of the measurement process and therefore dependent on the
assumed or given nonuniformities. The best possible reconstruction of Iworld is
therefore used as an approximation to the realizations of the random variable
IWorld. The reconstruction was already derived in sec. 2 in eq. 2.28 and considers
the nonuniformity degradation. Thus the reconstructed signal approximates the
real world signal

IReco({bi,j}) ≈ IWorld , (6.16)

which allows the signal IReco({bi,j}) to be considered as the realization of a ran-
dom variable as well. This random variable has of course a dependency on the
realizations of the values of {bi,j}: IReco({bi,j}). As the {bi,j} have already been
connected to the random variable DSNU, IReco can be considered as the realiza-
tion of the conditional random variable:

IReco|DSNU={bi,j} . (6.17)

With the similarity of IReco({bi,j}) ≈ IWorld it can be concluded that

IWorld = IWorld|DSNU={bi,j} and IWorld ≈ IReco|DSNU={bi,j} (6.18)
⇒IWorld|DSNU={bi,j} ≈ IReco|DSNU={bi,j} . (6.19)

Extracting Relevant Signal Features

The missing part to define the maximization task is the definition of the probability
density of the variable IReco|DSNU={bi,j}. As the density of this random variable
is not known, further approximations need to be made that exploit a meaningful
measurement of the the signal IReco({bi,j}). Such a measurement will allow later to
extract the probability density distribution from the histogram of it’s realizations.
In general many measures for a continuous signal exist, for example the mean
or the standard deviation. Even the value of the individual pixels could be used
to define such a probability density in a multivariate way. But for the current task
those choices seem rather useless, as these properties are not related to the effects of
the nonuniformities. Therefore features of the realizations of IReco|DSNU={bi,j}
that are relevant for the nonuniformity correction task should be used.

The trivial observation that nonuniformities represent as what is commonly re-
ferred to as noise in the image gives a first idea to define a meaningful measure.
Adding noise to an image will not smooth the image, or in other words, the prob-
ability for an event at which noise smooths the image is obviously neglectable.
Therefore adding noise to an image will increase spurious edge and gradient
like features. Consequently, signal features that consider edges and gradients
of the signal should be used for a meaningful measure of the realizations of
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IReco|DSNU={bi,j}. To measure the edge and gradient features the fact is used
that they are the spatial high frequency components of the image. A signal that
expresses edge and gradient features IL̂,tn can therefore be produced by applying
an operator L̂ with high pass characteristics to the signal:

~IL̂,tn = L̂IWorld (6.20)

As edges and gradients are the desired measure, the two typical choices of L̂ are
the Nabla (∇) and the Laplacian (4) operator. Both are linear operators but the
Nabla operator produces a vector field with two components (e.g. direction and
value) for each point of IReco. Therefore the point wise square of the signal ~IL̂,tn
is considered and allows a generalized mathematical formulation for this mea-
sure.

(~IL̂,tn)2 = (L̂IWorld)2 (6.21)

As the nonuniformity parameters are defined for the individual light sensors, the
image features should as well allow a sensor-wise interpretation. Such a sensor
wise feature can be derived by analyzing the temporal and spatial average of the
gradient or edge measure of IWorld:

ML̂,tn
(~IL̂,tn) =

1∫
(x,y)∈A

∫
t 1 dt dx dy

∫
x,y∈A

∫
t∈(0,T )

∣∣∣~IL̂,tn(x, y)
∣∣∣2 dt dx dy (6.22)

=
1

NANT

∫
(x,y)∈A

∫
t∈(0,T )

∣∣∣L̂IWorld,tn(x, y)
∣∣∣2 dt dx dy . (6.23)

In the equations, A defines the area of the image sensor on which the signal is
sampled. The temporal integral goes over the time from t = 0 to t = T , which is
the recording time of a given sequence. NA and NT are the respective normalizing
constant for these two integrals and for a better readability of the mathematical
equations the integral borders are not always repeated.

For the further transformations, the spatial reconstruction as introduced in eq. 2.22
is used:

IReco(x, y) =
∑

(i,j)∈S

CS,i,j · Φ(x− i, y − j) , (6.24)

where the CS,i,j are the sample coefficient of the world signal, or in other words:
The corrected (ideal) sensor responses. Further transformations towards an light
sensor wise interpretation lead to:

ML̂ =
1

NANT

∫
(x,y)∈A

∫
t

(
L̂IReco,tn(x, y)

)2
dt dx dy (6.25)
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=
1

NANT

∫
(x,y)

∫
t

L̂ ∑
(i,j)∈S

CS,i,j · Φ(x−i, y−j)

2

dt dx dy (6.26)

=
1

NANT

∫
t

∑
(i,j)∈S

∑
(k,l)∈S

CS,i,jCS,k,l dt ·
∫

(x,y)
L̂Φ(x−i, y−j)L̂Φ(x−k, y−l) dx dy

(6.27)

As the reconstruction functions Φ(x, y) are symmetrical along the x and y axis, the
integral can be simplified to:∫

x,y∈A
L̂Φ(x− i, y − j)L̂Φ(x− k, y − l) dx dy (6.28)

=

∫
x,y∈A

L̂Φ(x, y)L̂Φ(x− |k−i|, y − |l−j|) dx dy (6.29)

=ΨΦ,L̂(|k − i|, |l − j|) ∈ R , (6.30)

and ML̂ can now be written as:

ML̂ =

∫
t

1

N

∑
(i,j)∈S

∑
(k,l)∈S

CS,i,jCS,k,lΨΦ,L̂(|k − i|, |l − j|) dt (6.31)

=

∫
t

1

N

∑
(i,j)∈S

CS,i,j

∑
(k,l)∈S

CS,k,lΨΦ,L̂(|k − i|, |l − j|) dt (6.32)

In this last form ML̂ represents a discrete convolution of CS with a filter mask HP
that is defined by ΨΦ,L̂(|k−i|, |l−j|) (see eq. 6.30).

HP(L̂,Φ) =



. . .
...

...
... . .

.

. . . ΨΦ,L̂(1, 1) ΨΦ,L̂(0, 1) ΨΦ,L̂(1, 1) . . .

. . . ΨΦ,L̂(1, 0) ΨΦ,L̂(0, 0) ΨΦ,L̂(1, 0) . . .

. . . ΨΦ,L̂(1, 1) ΨΦ,L̂(0, 1) ΨΦ,L̂(1, 1) . . .

. .
. ...

...
...

. . .


(6.33)

HP is a symmetric matrix with high pass characteristics that is dependent on the
choice of the linear operator L̂ and the choice of the reconstruction function Φ.
With the Hadamard (element-wise) multiplication⊗ and the definition of the spa-
tial expectation value e(·) eq. 6.32 ML̂ can be expressed as:

ML̂ =

∫
t

1

NT
e(CS ⊗ (CS ∗HP(L̂,Φ))) dt . (6.34)
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At this stage the definition of ML̂ is a sum over the sensor dependent, discrete
feature points Fi,j(t):

Fi,j(T ) =

T∫
0

[CS ⊗ (CS ∗HP(L̂,Φ))]i,j dt (6.35)

ML̂ =
1

NT
e(Fi,j(T )) . (6.36)

Each feature point Fi,j(T ) represents the desired signal property with respect to
the individual sensor at position (i, j). The probability of IReco|DSNU={bi,j} is
now linked to the realizations of the Fi,j(T ) features. This means, that the ran-
dom variable IReco|DSNU={bi,j} can be defined as a multivariate random vari-
able (similar to DSNU).

First, the real valued state space ΩIReco|DSNU={bi,j} is given which covers all the
possible realizations of the Fi,j(T ), then IReco|DSNU={bi,j} is considered as a
multivariate random variable depending on the realizations of Fi,j . The Fi,j(T ) are
therefore considered the realizations of their own corresponding random variables
Fi,j(T ):

IReco|DSNU={bi,j} : ΩIReco|DSNU={bi,j} → RM×N (6.37)

(F1,1, . . . ,FM,N )→ (F1,1, . . . , FM,N )T (6.38)

Assuming independent and identically distributed features: To define the
density of IReco|DSNU={bi,j}, we assume again that the random variables
{Fi,j(T )} are independent and identically distributed (iid). This is a weak as-
sumption which can only be partly justified by theory, but the results of the
method will justify its application. Especially neighboring features will express
a dependency on each other. However, feature elements with a larger distance
can be considered merely independent, as they usually contain information from
another object in the image. As most of the possible feature pairs have a large
distance, the overall dependencies are rather weak, which then partly justifies the
assumption of independent features.

The second part of the iid assumption states that the Fi,j(T ) obey identical distri-
butions. This is a very common assumption in image processing and has already
been exploited in the constant statistics method CS described in sec. 5. As the
Fi,j(T ) features measure the gradient or edge strength, they depend on the high
frequencies of the image signal. Given the success of the CS method, which cor-
rects successfully the high frequency components of the nonuniformities, identical
or at least similar probability distributions seem plausible for the {Fi,j(T )}. Given
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the above assumptions, a product over the single independent densities of the
variables Fi,j(T ) forms the combined probability density fIReco|DSNU={bi,j}:

fIReco|DSNU={bi,j} ≈
∏
i,j

fFi,j(T )(Fi,j(T )) . (6.39)

This approximation is, as mentioned above, founded on plausible but weak and
unverifiable assumptions. However, the good performance of the method justifies
these assumptions in the aftermath.

The density of the Feature Variable

The last part missing for a complete definition is the probability density of the fea-
ture variable Fi,j(T ). The features Fi,j(T ) depend per definition on the continuous
signal (CS⊗ (CS ∗HP(L̂,Φ))) (def. on p. 43). This signal is however only available
as its discrete sample points at the times tn due to the light sensors’ exposure time
integration. Using the signal reconstruction formula (eq. 2.22) and an arbitrary
reconstruction function Φtn(t) in the temporal domain, then the inclusion of eq.
6.35 allows the following transformations:

define : Fi,j,tn = [CS(tn)⊗ (CS(tn) ∗HP(L̂,Φ)]i,j (6.40)

Fi,j(T ) =

T∫
0

∑
tn

Fi,j,tnΦtn(t∗) dt∗ (6.41)

=
∑
tn

Fi,j,tn

T∫
0

Φtn(t) dt

︸ ︷︷ ︸
≈1

=
∑
tn

Fi,j,tn . (6.42)

It is used that the integral over the reconstruction formula Φ has to be 1 by defi-
nition, which is true for most of the functions Φ as they lie completely inside the
interval [0, T ]. In the other cases the assumption will be met at least partly.

The random variable Fi,j(T ) depends now on the realizations of the time discrete
features Fi,j,tn , which can again be considered as the realizations of the random
variables Fi,j,tn . There are typical scenarios where the Fi,j,tn can be considered in-
dependent in their temporal dimension tn, like randomly chosen frames or frames
that are recorded with a very slow frame rate, given a moving scene. In general,
the correlation between two arbitrary variables at times tn and tn+m is only given if
m is quite small (e.g. for two consecutive frames, or up to a few hundred frames,
depending on capture rate and captured scene). For a whole sequences with N
frames, the correlation between two randomly chosen variables Fi,j,tn may be con-
sidered neglectable if the sequence contains enough information. The analysis of
the high speed consecutive frames from sec. 4.2 will show the consequences if this
assumption is not met (see chapter 10 for these evaluations).
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Further to their independence, the random variables for the different times tn are
assumed to obey identical distributions, which can be justified by assuming a tem-
porally stationary random process to create the realizations. Combining the above
argumentations, the random variables Fi,j,tn are assumed iid distributed and the
probability density distribution of the Fi,j(T ) random variable can then be ex-
pressed as the product over the corresponding random variables Fi,j,tn :

fFi,j(T ) =
∏
tn

fFi,j,tn (Fi,j,tn) . (6.43)

The probability density distribution of IReco|DSNU={bi,j} can consequently be
approximated by the random variables Fi,j,tn and the final approximation of the
random variable can be written as

fIReco|DSNU={bi,j} =
∏
i,j

∏
tn

fFi,j,tn (Fi,j,tn) (6.44)

with Fi,j,tn(bi,j) = [CS(bi,j , tn)⊗ (CS(bi,j , tn) ∗HP(L̂,Φ)]i,j , (6.45)

The densities fFi,j,tn (Fi,j,tn) are yet not defined, but their realizations can be mea-
sured on ground truth corrected data. The histograms of those measurements
will then allow to extract the probability density distribution of the random vari-
ables.

As a consequence of the assumed temporally independent features, the used
recorded images CS(tn) should be independent. It was mentioned before that
this can be achieved approximately by using either a slow capture rate while
recording a moving scene, or by selecting the input frames randomly from a given
set of consecutive input frames. The final part is now to extract the probability
distributions out of the histograms of the realizations Fi,j,tn .

6.2.3. Histogram Evaluations for Fi,j,tn

As a general quality, large values of Fi,j,tn are improbable as they would only occur
in very noisy images, which are rare in nature. Smaller values on the other hand
seem more likely to some extend, as the image information can be described in
many cases by just some edges and gradients. Of course values below 0 do not
exist, due to the nature of Fi,j,tn as a squared real number. The choices of L̂ in the
definition of Fi,j,tn (eq. 6.40) therefore interprete as:

• For L̂ = ∇ (with ∇ = (∂x, ∂y)
T ): A signal IWorld is considered probable if

the spacial gradient in the image is small in most points and a smooth image
with no sharp edges (e.g. a constant image) is therefore considered probable.

• For L̂ = 4 (with 4 = ∂2
x + ∂2

y ): A signal IWorld is considered probable if
it does not contain sharp edges in most points: This is an extension to L̂ =
∇, as we consider constant spacial gradients in IWorld probable as well (e.g.
intensity ramps in the image).
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Feature Choice Resulting Parameter
Fi,j,tn with HP (∇, BL) λ = 2.361 · 10−5

Fi,j,tn with HP (∇,MN) λ = 4.652 · 10−5

Fi,j,tn with HP (4,MN) λ = 1.938 · 10−5

Table 6.1.: Maximum likelihood estimated parameters for the assumed exponen-
tial distribution of the feature value distribution of Fi,j,tn .

To define the probability densities of fFi,j,tn (Fi,j,tn), a histogram over 106 samples
out of the 25 random frame calibration sequences is created (All this image ma-
terial was recorded with the MV1-D1312-160-CL camera). To obtain the values of
CS , each frame is corrected with the laboratory ground truth nonuniformity pat-
terns. Fig. 6.1 shows the histograms that result from the different choices of Φ and
L̂. From a visual inspection the approximation of the probability density distri-
bution as an exponential distribution seems plausible. Although an exponential
distribution may not be the best fit, the exponential distribution will lead to a com-
putational easy mathematical expression in the later developments. Fig. 6.1 shows
as well the maximum likelihood fit of the assumed exponential distribution and
we conclude for the further development of the method that:

fFi,j,tn (Fi,j) = λe−λFi,j,tn . (6.46)

The estimated λ parameters according to a maximum likelihood fit are shown in
tab. 6.1 and calculate as the expectation value over the samples [29]:

λ =
1∑
i,j,tn

1

∑
i,j,tn

Fi,j,tn with: i, j, tn ∈ Samples . (6.47)
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Figure 6.1.: Histograms of the different Fi,j,tn realizations
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6.2.4. Properties of the HP-Filter Masks

For the choices of L̂ ∈ {∇,4} a high pass filter masks HP is generated as defined
in eq. 6.33. To obtain the mask, the reconstruction functions Φ ∈ {MN,BL}
according to sec. 2.6.3 are used. The option with the sinc reconstruction filter is
not considered for the reasons mentioned before (e.g. infinite large mask). The
numerical representation of the HP(∇, BL) filter mask then results as

HP(∇, BL) =
1

3

−1 −1 −1
−1 8 −1
−1 −1 −1

 . (6.48)

HP(∇, BL) is equal to subtracting a BOX-low-pass filter from a discrete Dirac fil-
ter. The LMS reference methods use exactly this mask as discussed in sec. 5.2.1
and fig. 6.2a shows this maks’s frequency response by plotting the real part of the
Fourier coefficients. The imaginary parts are 0 due to the filter symmetries. The
displayed frequencies are normalized to the corresponding Nyquist frequencies
∈ (−1, 1).

The other masks’ numerical representation are as shown below and fig. 6.2b and
6.2c show their frequency responses. All filter masks are high pass filters which
can be seen by the damping regions in the center of the image. The influences or
the different filter mask properties are discussed in the later sections. To compare
the filter masks please consider the different scales of the parameters.

HP(∇,MN) =
1

302400
·

−1 −72 −603 −1168 −603 −72 −1
−72 −2880 −15192 −24192 −15192 −2880 −72
−603 −15192 −17865 29520 −17865 −15192 −603
−1168 −24192 29520 193280 29520 −24192 −1168
−603 −15192 −17865 29520 −17865 −15192 −603
−72 −2880 −15192 −24192 −15192 −2880 −72
−1 −72 −603 −1168 −603 −72 −1


(6.49)

HP(4,MN) =
1

151200
·

31 1104 6225 10480 6225 1104 31
1104 12096 2160 −30720 2160 12096 1104
6225 2160 −102465 −38640 −102465 2160 6225
10480 −30720 −38640 520960 −38640 −30720 10480
6225 2160 −102465 −38640 −102465 2160 6225
1104 12096 2160 −30720 2160 12096 1104
31 1104 6225 10480 6225 1104 31


(6.50)

122



6.3. Solving as Log-Likelihood Energy Minimization

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

2

3

(a) HP (∇, BL)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.2

0.4

0.6

0.8

1

(b) HP (∇,MN)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

2

3

4

5

(c) HP (4,MN)

Figure 6.2.: Frequency responses of the HP filter masks given the choices of L̂ ∈
{∇,4} and Φ ∈ {BL,ML}. The representation is normalized to the
Nyquist frequencies.

6.3. Solving as Log-Likelihood Energy Minimization

With all the above assumptions, the maximum likelihood estimation is fully de-
fined as:

arg max
{bi,j}

1

N
· fDSNU({bi,j}) · fIWorld|DSNU={bi,j}(IWorld) (6.51)

≈ arg max
{bi,j}

1

N

∏
i,j

fbi,j (bi,j) ·
∏
i,j

∏
tn

fFi,j,tn (6.52)

≈ arg max
{bi,j}

1

N

∏
i,j

1

σb
√

2π
e
− 1

2

(
bi,j−µb
σb

)2
·
∏
i,j

∏
tn

λe−λFi,j,tn . (6.53)

However, the maximization is rather complicated due to the many products and
the application of the negative logarithm is a common tool to simplify such tasks.
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In the exact solution, the results are identical as the following holds:

arg max{g(x)} ⇔ ∂xg(x) = 0 (6.54)

arg min{− log g(x)} ⇔ 1

g(x)︸ ︷︷ ︸
6=0

∂xg(x) = 0⇔ ∂xg(x) = 0 (6.55)

The only drawback of this attempt is that the solutions of iterative solvers will be
weighted by 1

g(x) when approaching the maximum of the real function, which may
result in numerical inaccuracies.

For eq. 6.53 the obtained log-likelihood minimization separates into:

arg min
{bi,j}
{− log

1

N︸ ︷︷ ︸
const.

− log fDSNU({bi,j})︸ ︷︷ ︸
EP

− log fIWorld|DSNU={bi,j}(IWorld)︸ ︷︷ ︸
ED

} (6.56)

⇔ arg min
{bi,j}
{EP + ED + const.} (6.57)

Because of the additive behavior of the resulting terms, this problem is similar to
the typical kind of energy minimization problems known from physics. The con-
stants are irrelevant for the minimization and the energy term EP is called prior-
energy as it contains the prior knowledge of the statistics of the nonuniformities.
The energy term is ED is called data-energy as it contains the measurements of the
data for the given problem.

With the definitions of eq. 6.53 and eq. 6.56 the energies EP and ED can be trans-
formed into:

EP = − log fDSNU({bi,j}) (6.58)

=
∑
i,j

1

2σ2
b︸︷︷︸

β

(bi,j − µb)2 + const. (6.59)

=
∑
i,j

β (bi,j − µb)2 + const. (6.60)

and: ED = − log fIWorld|DSNU={bi,j}(IWorld) (6.61)

=
∑
i,j

∑
tn

λFi,j,tn + const. (6.62)

The intermediate steps for these transformations are explained in appendix D.1.

The definition of Fi,j,tn and the substitution of CS,i,j by the sensor model (eq.2.27,
p. 43) complete the definition. The gain factors are thereby assumed as {ai,j} =
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6.3. Solving as Log-Likelihood Energy Minimization

1 because the PRNU is neglected in this DSNU-only approach. The following
expressions then represent ED:

ED = λ
∑
i,j

∑
tn

[CS ⊗ (CS ∗HP(L̂,Φ)]i,j + const. (6.63)

= λ
∑
tn

∑
i,j

((CM − b− χ)⊗ ((CM − b− χ) ∗HP(L̂,Φ))) + const. (6.64)

= λ
∑
tn

∑
(i,j)∈S

(CM,i,j − bi,j − χi,j)
∑

(k,l)∈S

(CM,k,l − bk,l − χk,l)Ψ(·) + const. .

(6.65)

The energies EP and ED are functions of the set of variables {bi,j} which contain
as many variables as light sensors on the image sensor. Typical modern sensors
have several million light sensors and thus the minimization of this high dimen-
sional problem is a non trivial task. However, there exist many methods in the
mathematical literature and the numerical computer sciences that allow to find
the minimum of such problems in an iterative way [45]. The simplest of these
methods is the iterative steepest descent method. In this method each iteration
calculates the gradient at the current point and then updates the point into the
direction of the negated gradient. Further developments of the steepest descent
method lead to Krylov subset search methods like the conjugate gradient method.
Most of the fast iterative methods need to evaluate the gradient of the function to
reach the minimum. Further demands of the methods are that the starting point
for the iterations needs to be reasonable close to the actual minimum or the func-
tion in general needs to be unimodal.

Deriving the Gradient

We derive the evaluation formula for the gradient by splitting the derivative into
the individual energy terms:

∇{bi,j}(const.+ EP + ED) = ∇{bi,j}EP +∇{bi,j}ED (6.66)

with: ∇{bi,j} = (∂b1,1 . . . ∂b1,N , ∂b2,1 . . . ∂bM,N )T . (6.67)

For the prior energy the sum collapses when deriving and one obtains:

∇{bi,j}EP = ∇{bi,j}(
∑
i,j

β (bi,j − µb)2) + const (6.68)

simplified: ∂bm,nEP = 2β(bm,n − µb) . (6.69)
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To refit the above equation into matrix notation, the ∇̂-operator is used again (as
defined in eq. 5.18 on p. 84), which places the (i, j)-th derivative into a matrix at
the index (i, j). The gradient of EP then writes as:

∇̂{bi,j}EP = 2β(b− µb) (6.70)

The gradient of the data energy can also be calculated very easily if one exploits
the linearity of the derivative operator and the product rule. (The intermediate
steps are shown in appendix D.2):

∇{bi,j}ED = ∇{bi,j}(
∑
tn

∑
i,j

λ(CM − b− χ)⊗ ((CM − b− χ) ∗HP(L̂,Φ)) + const.)

∂bm,nED = (
∑
tn

∑
i,j

λ(CM − b− χ)⊗ ((CM − b− χ) ∗HP(L̂,Φ)) + const.) (6.71)

= −2λ
∑
tn

∑
(i,j)∈S

(CM,i,j − bi,j − χi,j)Ψ(|i−m|, |j − n|)) (6.72)

The sum over tn suggests to introduce a temporal normalizing factor TN, which al-
lows to simplify the partial derivative by expressing the variables with their tem-
poral averages. For the temporal random variables (e.g. χ), the temporal average
serves as an estimator of the expectation value.

TN =
∑
tn

1 (6.73)

∂bm,nED = −2λTN
1

TN

∑
tn

∑
(i,j)∈S

(CM,i,j − bi,j − χi,j)Ψ(|i−m|, |j − n|)) (6.74)

= −2λTN

∑
(i,j)∈S

(
1

TN

∑
tn

CM,i,j︸ ︷︷ ︸
AM,i,j

− 1

TN

∑
tn

bi,j︸ ︷︷ ︸
bi,j

− 1

TN

∑
TN

χi,j︸ ︷︷ ︸
→0

)Ψ(·)) (6.75)

= −2λTN

∑
(i,j)∈S

(AM,i,j − bi,j)Ψ(|i−m|, |j − n|)) (6.76)

For χ, its property of a per definition mean free random variable is used, which
lets the temporal average converge towards 0 for many considered frames. b does
not have any temporal dependency and the newly introduced variable AM,i,j just
represents the temporal average of the light sensor measurements. The sum over
the indices i, j is limited by the function Ψ(|i−m|, |j−n|), which becomes 0 outside
the direct neighborhood around the index of interest (m,n). This makes the total
derivative again the convolution with the high pass filter defined by Ψ and L̂ (see
sec. 6.2.4). In combination with the ∇̂{bi,j} notation, the gradient can be expressed
in matrix notation as

∇̂{bi,j}ED = −2λTN(AM − b) ∗HP(L̂,Φ) . (6.77)
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The gradient of the whole energy functional can consequently be calculated by:

∇̂{bi,j}ED + EP = −2λTN(AM − b) ∗HP(L̂,Φ) + 2β(b− µb) (6.78)

and the equation which has to be solved to find the DSNU pattern with the maxi-
mized likelihood is given as the point where the gradient becomes 0:

−2λTN(AM − b) ∗HP(L̂,Φ) + 2β(b− µb) = 0 . (6.79)

The linear equation can be solved by a conjugate gradient method or any other
iterative solver that exploits the gradient. Meaningful start values like b = AM

or b = µb are used in the experimental section to achieve a faster convergence.
Typically a steepest descent solver converges after 150 to 200 iterations for the
problems at hand. For all evaluations the maximum limit was set to 250 iterations
and results that did not converge to a stable solution were marked.

The derived discrete convolution is mathematically not valid for light sensors of
finite extend. However, a mirrored extension of the image is used to obtain results
for these light sensors as well. Summarizing, the two demands on the input data
are given by a Gaussian distribution for the {bi,j} and by AM as the average of
independent frames, as discussed above.

6.4. First Experimental Results

The different variants in the choices of L̂ and Φ to solve eq. 6.79, are investigated
using the methods and experiments that have already been introduced in sec. 5.3.
Tab. 6.2 summarizes the abbreviations for the variants of the newly introduced
methods.

6.4.1. Parameter Search and Best-Case Performance

In the above introduced method, all parameters are obtained by evaluations of
ground truth statistics, or ground truth corrected sample data. This gives a fully
defined method, but as already mentioned in sec. 6.2.3 the exponential distribu-
tion and its parameter λ are founded on weak assumptions, that may not be fully

Method Description
min(∇, BL) Solution of eq. 6.79 with HP as HP(∇,BL)

min(∇,MN) Solution of eq. 6.79 with HP as HP(∇,MN)

min(4,MN) Solution of eq. 6.79 with HP as HP(4,MN)

Table 6.2.: Introduction of used abbreviations for the newly developed methods.
The used parameter sets are specified in the given evaluations.
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Method Parameter
min(∇, BL) 4.89 · 10−05 ± (4.61 · 10−06, 9.43%)

min(∇,MN) 7.48 · 10−05 ± (5.89 · 10−06, 7.88%)

min(4,MN) 0.0131± (0.0060, 46.0%)

Table 6.3.: Optimized set of the parameter λ for random frame sequences.

Method Parameter
min(∇, BL) 9.67 · 10−06 ± (8.951 · 10−06, 92.5%)

min(∇,MN) 2.04 · 10−05 ± (1.319 · 10−05, 64.6%)

min(4,MN) 0.000107± (0.000347, 324%)

Table 6.4.: Optimized set of the parameter λ for consecutive frame sequences.

met under certain circumstances. λ can therefore be considered as the free para-
meter of the new method and will be tuned like the parameters of the reference
methods.

In sec. 5.3.1 (p. 90), the parameter search for the reference methods was intro-
duced. This search is now conducted for the λ parameter of the new methods as
well. The other parameters of the method: β, µ and TN are taken directly from the
statistic ground truth measurements ín sec. 4.1.1.

Tab. 6.3 and 6.4 show the results of the parameter search for the 25 consecutive
and the 25 random frame calibration sequences that are defined in sec. 4.2. Fig. 6.3
gives a visual comparison between the experimentally obtained optimal parame-
ters to the parameters that were extracted from the statistics. Except for the 4-
based method, the statistic parameters’ values lie within the same order of magni-
tude, for both the random and consecutive frame sequences. For the min(4,MN)
method, this is only the case for the consecutive frame sequences, while for ran-
dom frame sequences the optimized parameter is more than 2 magnitudes away
from the statistically derived parameter.

min(∇, BL) min(∇,MN) min(4,MN)
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Stat. Params (tab. 6.1)

Figure 6.3.: Comparison of the values of the optimized and the statistically derived
parameters.

To see the influence of the different parameter choices, the best-case performance
analysis is conducted as explained in sec. 5.3.2 (p. 93). Fig. 6.4 shows the results
of this evaluation in comparison to the two best reference methods LMSA,7×7 and
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Figure 6.4.: Optimal Performance with respect to the pc,DSNU quality metric

LMSTV (see p. 96). The min(∇, BL) method reaches for the random frame se-
quences about about 72 % correction rate for both parameters, the optimized and
the statistic. The same can be observed for the min(∇,MN) method, and only for
the min(4,MN) a decrease of about 4 % for the statistic parameters is observed.

With respect to the consecutive frame sequences, the reached correction perfor-
mance cannot reach the performance of random frame input and the correction
rate drops down to about 65 % for the optimized parameters. This is an ex-
pected result, as the new method explicitly demands for temporally independent
feature input, and this demand is not fulfilled by consecutive frame sequences.
Random frame sequences however are closer to fulfill this demand. When con-
sidering the statistic parameters, the performance drops even further and only
the min(4,MN) method maintains a constant performance with this parameter
change. Therefore it achieves the best performance from the set of new methods
with respect to the consecutive frame sequences.

Compared to the LMS 7×7 and LMSA,7×7 methods, the new methods in general
do not reach these methods’ performances. For the consecutive frame sequences
the lack of performance can be explained as there exist a frame-to-frame depen-
dency of the features. The random frame sequences however fulfill the demand
for independent inputs as good as possible and thus further improvements will be
necessary to improve the new method as described in chapter 7. A better compar-
ison between the new methods and the literature methods will be obtained by the
analysis of the temporal, spatial and spectral performances.

6.4.2. Temporal Performance Analysis

The temporal performance analysis of the new methods is conduced as described
in sec. 5.3.4 (p. 98). As the new maximum likelihood method corrects for the
DSNU only, this section shows the evaluations in the pc,DSNU only. Sec. 5.3.4,
already showed that this performance measure yields to the best comparability of
the methods actual performance. For completeness, the other quality measures
are shown in appendix D.3.
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(a) Parameter set: Opt. Random (tab. 6.3)
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Figure 6.5.: Temporal evaluations with the optimized (fig. 6.5a) and the statistic
(fig. 6.5b) parameter sets in the pc,DSNU metric for random frame se-
quences.
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Fig. 6.5 shows the results for the random frame sequences with the experimentally
optimized and statistically obtained parameters, compared to the two best refer-
ence methods LMSA,7×7 and LMSTV . Considering the optimized parameters in
fig. 6.5a the performance of the new methods almost reaches the reference meth-
ods, but in the end both reference methods stay ahead by a few percent. Among
the newly proposed methods, the min(∇, BL) method provides the best perfor-
mance and outperforms the reference methods until frame 150. The min(∇, BL)
method is followed by the min(4,MN) method and last in this comparison is the
min(∇,MN) method.

The above experiment was repeated, using the statistically obtained λ values and
the results are shown in fig. 6.5b. As expected from the optimal performance
analysis in fig. 6.4 the results are almost identical, except for the min(4,MN)
method, which drops significantly in its reached performance to ≈ 68 %.

6.4.3. Spatial and Spectral Performance Analysis

The analysis of the new methods continues with the spatial performance analysis
for the DSNU patterns, which has been introduced in sec. 5.3.5 (p. 102). Fig. 6.6
shows the ROI of the corrected images with almost no visual difference between
the methods’ corrections and the ground truth corrected image. The LMSA,7×7

and LMSTV methods are shown as references.

The analysis of the remaining DSNU patterns allows to investigate the methods’
difference in more detail as shown in fig. 6.7. The new methods differ not much
in a first visual inspection, which goes in accordance to the fact that the methods
reached almost the same correction rates. Only the min(∇,MN) method seems to
suffer from a superimposed very high spatial frequency grid, which is explained
below. For the reference methods, the LMSA,7×7 method seems to have a lower
amplitude but higher spatial frequencies in comparison to the new methods, while
the LMSTV method provides a similar pattern as the new methods.

The claimed spatial frequency properties in the above discussion can be better
investigated with the spectral damping analysis as shown in fig. 6.8, where the
actual differences between the methods become visible. Comparing the methods
among themselves, the horizontal and vertical frequency components are damped
less and the methods differ mainly in their ability to damp the low frequency com-
ponents in the center of the spectral presentation. The min(4,MN) method pro-
vides much less correction in the low frequencies compared to the other methods
and for the min(∇,MN) method remaining high frequency components show up
in the corners of the representation. This is a critical point as these frequencies
deteriorate the visual image quality the most. Fig. 6.2b (p. 123) showed already
the corresponding high pass filter characteristics and it is obvious that the high
frequencies that are placed in the corners of the representation are allowed to pass
the HP -filter of this method. As a consequence the method does not react on these
frequencies, which results in the observed high frequency pattern that became
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Figure 6.6.: Spatial corrected images with the introduced methods and the ground
truth corrected image for random frame sequences.
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Figure 6.7.: The remaining DSNU after the correction with the introduced methods
for random frame sequences.
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(c) ŝspectr.,DSNU,µ,ν for min(4,MN)

0

0.1

0.2
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(e) ŝspectr.,DSNU,µ,ν for LMSTV

Figure 6.8.: Spectral damping factors for the DSNU correction of the introduced
methods for random frame sequences.
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visible in fig. 6.7. Finally, the LMSA,7×7 method wins the spectral damping com-
parison as it provides the highest damping of the central (low) frequencies, while
the advantage of the LMSTV method is a damping of more vertical and horizontal
frequencies. This also results in a visually more pleasing appearance.

6.5. First conclusions

This chapter derived a new maximum likelihood DSNU estimation method, which
is based on trivial and well-motivated assumptions. Three variants of the method
have been developed and proven to function, but in a performance comparison
these methods did not yet outperform the two best methods known in literature.
However the performance of the new methods reaches very close to them 4 %
to 6 %. The main advantage of the new methods is that they reach a comparable
performance with statistically derived parameters. This makes a parameter search
on calibration sequences obsolete as only the statistics of the scenes need to be
known. The next chapters will improve this new and promising approach in a
way that it outperforms the reference methods.
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7. Analysis and Improvements of the
new DSNU Method

The introduced maximum likelihood DSNU estimation methods from chapter 6
are able to correct successfully for DSNU and have the advantage of motivated
assumptions and defined parameters. This gives them already a certain advantage
over the reference methods from chapter 5. However, the performance of the new
methods does not reach up to the performance of the reference methods. This
chapter identifies ways to improve the new methods in a similar way in which the
LMS 3×3 and LMS 7×7 methods have been improved into their adaptive versions
LMSA,3×3 and LMSA,7×7.

Furthermore, this chapter will introduce a modified solver for the resulting min-
imization that is based on cellular neural networks. Variants of the methods that
consider an improved sensor model that considers the row and column wise
nonuniformities are derived as well. Summarized, this chapter develops the
new methods in a way that tailored solutions for common real time applications
are possible and the contents of this chapter have already been partly published
[11, 12].

7.1. Improvements to the Averaging Task

As a first step, the performance of the new method is increased by analyzing its
input. This analysis is similar to the improvements of the LMS methods towards
the adaptive LMS methods by Vera [4], who as well analyzed the input to the LMS
methods.

Chapter 6 summarized the new method in a mathematical way as the task of solv-
ing eq. 6.79:

−2λTN (AM − b) ∗HP(L̂,Φ) + 2β(b− µb) = 0

Besides the methods’ parameters λ, TN , β, µb and HP(L̂,Φ), the method also de-
pends on the averaged sensor measurements AM . While the parameters are fixed
when the method is running, the averaging of the sensor input seems to bear a big
potential to improve the method. For example a weighted sensor average would
allow to preselect the sensor information and cut out disturbing elements.
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As mentioned, this is similar to the improvements that lead to the adaptive least
mean square methods, where the sensor input is weighted according to the spatial
standard deviation (see sec. 5.2). For the new maximum likelihood approach such
a weighting technique translates into a weighted average of the sensor measure-
ments:

AM,i,j =
1

TN

∑
tn

CM,i,j → AMW ,i,j =
1∑

tn

wi,j,tn

∑
tn

wi,j,tnCM,i,j (7.1)

The AMW ,i,j stand for the weighted average of the sensor measurements and the
wi,j,tn give the weight of a single light sensor’s measurement. Next, an appropriate
weighting rule needs to be defined.

7.1.1. Realizations of the Weighed Average

Favor of small spatial variances: A trivial approach to define a weighting rule
would be to use the same weights as for the adaptive LMS method in sec. 5.32 p.
87. This gives the weights as:

wi,j,tn =
1

1 + s(CM,N(i,j)(tn))
(7.2)

where s(CM,N(i,j)(tn)) stands for the spatial standard deviation of the measure-
ments in a defined neighborhood N around the current position (i, j) measured at
time tn (see p. 87).

This approach sounds feasible as one may think that the lowest spatial deviation
will occur for patches with uniform illumination. However, an implementation of
this approach yields to performances of < 20% given the pc,DSNU-norm, which is
an unsatisfying result. The reason for this poor performance seems to be a wrong
selection of the sensor inputs by these weights. For a frame-to-frame based up-
date rule only the effects of one frame are considered, and the relative DSNU ef-
fects are considered for the light sensors and the update steps. This is however
not the case if the averaged weighted information is considered, as the difference
between the measurements of two averaged, neighboring light sensors then de-
pends on a combination of scene intensity and scene texture. As a consequence
other differences occur than the actual DSNU would have caused, which does not
allow to extract the correct DSNU. For this reason another weighting rule needs to
be investigated.

Favor of Dark Regions: Considering the physical definitions of the EMVA1288
standard [1], the DSNU measurements have to take place at darkness. Of course
low spatial standard deviations occur at darkness as well, which makes the adap-
tive LMS weights still a considerable choice, but with the above mentoined dis-
advantages. A better indicator for darkness is a low value of the measurements
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CM, which are bounded to a minimum of 0 by definition. As the CM values are
connected by the HP filter mask in the maximum likelihood algorithm, the weight
should consider the average illumination in a neighborhood that corresponds to
the size of the HP mask. The squared average of the measurements is used, to
increase the importance of dark areas and the weight is defined as:

wi,j,tn =
1

1 + e(C2
M,N(i,j)(tn))

. (7.3)

The +1 in the nominator avoids a division by zero in case of black images due to
unexpected events (e.g. a temporary image sensor failure, as the DSNU usually
provides values larger than 0 for the measurements). The e(C2

M,N(i,j)(tn)) repre-
sent the spatial expectation value of C2

M in the neighborhood N around the sensor
position (i, j), measured at the time tn.

The above choice leads to an increased correction performance that outperforms
the reference methods in a statistically significant way. The results of this choice
will be discussed in the next sections and the improved method can be summa-
rized as a solution to the equation:

0 = −2λTN (AMW
− b) ∗HP(L̂,Φ) + 2β(b− µb) (7.4)

with: AMW ,i,j =
1∑

tn

wi,j,tn

∑
tn

wi,j,tnCM,i,j (7.5)

and with: wi,j,tn =
1

1 + e(C2
M,N(i,j)(tn))

(7.6)

7.1.2. Weighted Statistic Based Parameters

As described in sec. 6.2.3, the free parameter λ of the method is based on an
exponential probability density distribution of the feature choices Fi,j,tn (defined
in eq. 6.45, p. 120). By evaluation of the ground truth histograms, the probability
density distribution of Fi,j,tn was estimated and the parameter λ could be defined
from the statistics of the typical scene contents.

This method of finding the theoretically correct λ parameter changes with the
newly defined weighted average. The change comes from the fact that the in-
fluence of a given feature will now contribute by its weight wi,j,tn to the temporal
average of the sensor. The probability density distribution of the features Fi,j,tn
does however not yet consider the influence of the newly introduced weighting.
A modified histogram creation, that considers the probability of an appearing fea-
ture value Fi,j,tn with respect to its weight needs to be defined.

While for a usual histogram the bin count is increased by 1 if a feature value lies
inside the bin borders, the bin count has to be increased by the value of the weight

139



7. Analysis and Improvements of the new DSNU Method

instead by 1 to consider the weights. After that the overall probability is normal-
ized according to the bin widths. To obtain the data for such a weighted histogram,
the weight has to be sampled additionally for each feature sample.

The weighted histograms are calculated over the 25 random frame calibration se-
quences (see sec. 4.2) by selecting 106 random samples out of all the available
images. Each frame is again corrected with the laboratory ground truth nonuni-
formity patterns before the feature measurement and fig. 7.1 shows the weighted
histograms that result from the different choices of Φ and L̂. From the visual in-
spection, an approximation of the probability density distribution as an exponen-
tial distribution is possible again and the maximum likelihood parameter estima-
tion out of the collected data leads to the parameter set in tab. 7.1.
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Figure 7.1.: Weighted histograms of the different Fi,j,tn realizations, including the
maximum likelihood fit of the exponential distribution function.

Feature Choice Resulting Parameter for weighted Averages
Fi,j,tn with HP (∇, BL) λ = 0.001

Fi,j,tn with HP (∇,MN) λ = 0.0015

Fi,j,tn with HP (4,MN) λ = 5.30 · 10−4

Table 7.1.: Maximum likelihood estimated parameters for the assumed exponen-
tial distribution of the feature value distribution of Fi,j,tn , given the
weighted averages.

7.1.3. Experimental Results

Parameter Search and Best-Case Performance

As in all evaluations of this thesis, an optimized set of parameters is needed to
guarantee a fair comparison between the methods. So far 4 sets of the parameter λ
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have been extracted: Experimentally optimized parameters for random (tab. 5.2)
and consecutive frames sequences (tab. 5.3), statistically obtained parameters (tab.
6.1) and newly introduced, the statistically obtained parameters that consider the
influence of the weighted average (tab. 7.1)

Method Description
minwA(∇, BL) Weighted Average (eq. 7.4 with HP as HP(∇,BL))
minwA(∇,MN) Weighted Average ( eq. 7.4 with HP as HP(∇,MN))
minwA(4,MN) Weighted Average ( eq. 7.4 with HP as HP(4,MN))

Table 7.2.: Introduction of used abbreviations for the improved methods with
weighted averaging

Method Parameter
minwA(∇, BL) 0.0001751± (4.067 · 10−5, 23.22%)

minwA(∇,MN) 0.0002039± (2.63 · 10−5, 12.9%)

minwA(4,MN) 0.08602± (0.01315, 15.29%)

Table 7.3.: Optimized parameter set for the random frame sequences with the
weighted average method

Method Parameter
minwA(∇, BL) 2.259 · 10−5 ± (4.588 · 10−5, 203.1%)

minwA(∇,MN) 3.548 · 10−5 ± (4.605 · 10−5, 129.8%)

minwA(4,MN) 0.007369± (0.02541, 344.8%)

Table 7.4.: Optimized parameter set for random and consecutive sequences with
the weighted average

A further parameter search for the method with the improved weighted average
has been conducted for the random and consecutive frame sequences as well.
These experimentally optimized parameters are shown in tab. 7.3 and tab. 7.4,
while the abbreviations of the improved methods are introduced in tab. 7.2. The
optimized parameters differ by more than one magnitude from the statistically
obtained parameter set in tab. 7.1, and especially for the consecutive frame se-
quences, a range of several 100 % as standard deviation occurred.

To judge the performance of all the different parameter sets, the best-case perfor-
mance analysis has been plotted. Due to the increased number of parameter sets,
this analyis is plottet separately for the random frame sequences (fig. 7.2) and for
the consecutive frame sequences (fig. 7.3). For each of the evaluations the perfor-
mances of the optimized parameter sets of the LMSA,7×7 and LMSTV is displayed
for comparison.

Optimal performance analysis for random frame sequences: For the ran-
dom frame sequences shown in fig. 7.2 all three parameter choices: optimized,
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Figure 7.2.: Optimal performance analysis for the random frame sequences and
the weighted average improvement.

statistic and weighted statistic, lead to very good correction performances. If the
optimized parameter set is used, the reference methods are outperformed by each
of the newly improved methods. The minwA(∇,MN) method reaches a 3 % higher
performance than the LMSA,7×7 which as well is statistically significant as the er-
ror bars are not overlapping. Only the minwA(∇, BL) method shows a slight over-
lap in the error bars with LMSA,7×7 but the minwA(∇, BL) method is based on a
3×3 filter mask while the LMSA,7×7 is based on a 7×7 mask. The LMSTV method
which depends as well on a 3×3 mask is outperformed significantly by all other
methods.

Considering the statistic parameter set from tab. 6.1, the minwA(∇, BL) and
minwA(∇,MN) methods still give good performance, while the minwA(4,MN)
method decreases down to below 72 %, however this is still a slight increase
over its performance without the improvement of the weighted average (see fig.
6.4 on p. 129). Last, for the weighted statistic parameters, which are the cor-
rectly deduced parameters with concern to the data statistics, all new methods
still outperform the reference methods. Thus the improved maximum likelihood
approach fulfills now all the demands that were discussed in the beginning of
chapter 6.
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Figure 7.3.: Optimal performance analysis for the consecutive frame sequences
and the weighted average improvement.
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Optimal performance analysis for consecutive frame sequences: For the
consecutive frame sequences the best-case results are shown in fig. 7.3 and lead
to different performances for the different parameter choices. Considering the op-
timized parameter set, the new maximum likelihood methds and the reference
methods show a significant overlap in their error bars. The general scale of the
correction performance has dropped for all methods down to less than 70 %. This
is the general result if depended information in the input frames is considered. As
all error bars overlap, a significantly best method cannot be named, but from the
expectation values the LMSTV method and the minwA(4,MN) method provide
a tendency to give better results. The minwA(∇,MN) method seems to have a
performance drop that is larger than the one of the other new methods. For the
statistical parameter set from tab. 6.1, the ∇-based methods obtain an averaged
performance loss of 7 % and an increasing width of the error span is observed.
The minwA(4,MN) method gives however a stable result under the parameter
change an the error bars actually shrink. Such behavior points towards instabili-
ties for the optimized parameters and suggests to favor the statistical parameters
(A further discussion on this topic is found in sec. 10.1).

For the weighted statistic parameters the performance drop becomes even more
severe and the minwA(∇, BL) and minwA(∇,MN) methods cannot reach a good
performance with this parameter set. Only the minwA(4,MN) method shows a
performance that still shows up in the chosen plotting ranges. The statistical para-
meter set from tab. 6.1 should therefore be used for consecutive frame sequences.
From a theoretical point of view the statistic parameter set can only be valid if
the weighting in the averaging process can be neglected. And indeed the weight-
ing effects should be neglected if the frames depend on each other, because if the
weighted average is used for consecutive frames then similar regions in the im-
age give similar weights for many frames. This forms a bias in the frame-to-frame
dependencies, that increases the dependencies in the features’ random variables.
Although the demands for independent features are obviously void in the consec-
utive frame sequences, the minwA(4,MN) method still gives reasonable results,
while the ∇-based methods become very sensitive to parameter changes. This
attests the minwA(4,MN) method the highest reliability of the compared meth-
ods.

As the random frame sequences reached the best performances on the absolute
correction rates, the further comparison is done for the random frame sequences
first. The analysis for consecutive frame sequences and the image material with
low valued nonuniformities is discussed in sec. 10.1 and sec. 10.2.

Temporal Performance Analysis

The temporal performance analysis of the improved methods is done as intro-
duced in sec. 5.3.4, p. 98. The improvement with the weighted average of the
maximum likelihood method corrects still for the DSNU only and therefore this
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section again shows only the evaluations of the percentual DSNU correction per-
formance pc,DSNU. As discussed already, this measure allows the best comparabil-
ity of the methods’ performances (see sec. 5.3.4). The other quality measures are
shown in appendix E.1 for completeness.
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Figure 7.4.: Evaluations for random frame sequences with experimentally opti-
mized parameters (fig. 7.4a) and the parameter set from the weighted
statistic histogram (fig. 7.4b) in the pc,DSNU metric.

Fig. 7.4a shows the results of the random frame sequences with the experimentally
optimized parameters in comparison to the two best reference methods LMSA,7×7

and LMSTV . The performance of the new methods reaches already after 100
frames the mark of 72 % correction performance. The LMSA,7×7 method reaches
this performance not until the 200 frame mark and the LMSTV method not until
the 300 frame mark. The new methods also keep their performance advantage un-
til the end of the sequence. The gap between the minwA(∇,MN) method and the
LMSA,7×7 method stays almost constant while the minwA(∇, BL) method stops
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increasing its correction performance and meets up with the LMSA,7×7 method
after 500 frames. The minwA(4,MN) method reaches very early a high correction
level (75 % after 150 frames) and converges only very slowly from that point on, re-
sulting in a final performance between the minwA(∇, BL) and the minwA(∇,MN)
methods.

The experiment was repeated, using the new statistically obtained λ values that
respect the influence of the weights (tab. 7.1). The results are shown in fig. 7.4b
where the new methods perform not as good as for the optimized parameter
set, which is the expected result. However, the minwA(∇,MN) method performs
still better than the reference methods and the minwA(∇, BL) and minwA(4,MN)
methods give identical results as the LMSA,7×7 method. The LMSTV method gets
outperformed by all new methods and the new methods in general reach their
high correction levels faster than the reference methods their optimized parame-
ters.

Concluding, the improvement with weighted averages allows to obtain the pa-
rameter sets from the statistics of the measurements. The new methods can also
be expected to converge much faster than the reference methods and just the one
demand for independent input frames has to be met. This demand however leads
to a generalized improved performance for all methods. Furthermore, the com-
putational costly and theoretically unjustified parameter search with heuristic re-
sults can be substituted by a derivation of the methods’ parameters by defined
statistical properties of the typical input data. The analysis for consecutive frame
sequences and the image material with low valued nonuniformities continues in
sec. 10.1 and sec. 10.2.

Spatial and Spectral Performance Analysis

The analysis of the new methods continues with the spatial performance analysis
for the DSNU patterns, which has been introduced in sec. 5.3.5 (p. 102). As ref-
erence the LMSA,7×7 and LMSTV methods are shown as well and the optimized
parameter set is used (Opt. Random (tab. 7.3)). Fig. 7.5 shows the ROI of the
corrected images with almost no visual difference between the method corrected
images to the ground truth corrected images.

The analysis of the remaining DSNU patterns allows to investigate the methods in
detail as shown in fig. 7.6, where the remaining patterns differ significantly from
each other. The minwA(∇, BL) pattern shows low magnitude but also a lot of spa-
tial high frequencies in the horizontal and vertical direction. The minwA(∇,MN)
method, which gave the best performance, does not seem to leave the before un-
corrected high frequency components and thus shows an improved performance
over the minwA(∇, BL) method. Finally the minwA(4,MN) method has only very
few artifacts left but therefore shows a higher amplitude in its DSNU remains.
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Figure 7.5.: Corrected images with the ground truth correction patterns and the es-
timate of the different methods for random frame sequences (Parame-
ters according to tab. 7.3).
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Figure 7.6.: Remaining DSNU patterns for the introduced methods and random
frame sequences (Parameters according to tab. 7.3).
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Compared to the new methods’ without the weighted average on p. 133 in fig.
6.7, the improvements are clearly visible. This is also true for a comparison to-
wards the reference methods, as the LMSA,7×7 method leaves the discussed high
frequency artifacts behind, which are similar to the quality of the min(∇, BL)
method. The LMSTV method shows a rather high amplitude of the remains, which
stick out in this comparison.

The already noticed spatial frequency properties can of course be investigated
much better by the spectral analysis shown in fig. 7.7. In general the new methods
correct a bit less of low frequencies than the reference methods, which is visi-
ble by the brighter dot in the middle of their spectrograms. However, the spec-
tral remains of the minwA(∇, BL) method are much more concentrated at spatial
lower frequencies which is not the case for the LMSA,7×7 method. Anyway, both
methods result in almost the same correction performance. The minwA(∇,MN)
method shows up with severely less remains in the spatial high frequencies when
compared to the minwA(∇, BL) method, which is the reason for its superior per-
formance. Only some horizontal and vertical frequencies are not well corrected.

The minwA(4,MN) method has the same properties as the minwA(∇,MN)
method, but leaves more of the low frequencies behind, which is indicated by
the larger area of the white dot in the middle of the spectrogram. Comparing
these representations, it is obvious that the minwA(∇,MN) method performs best.
The LMSTV method leaves more of the low frequencies behind and comes last
in this comparison. The two reference methods still leave more random high
frequency components behind, which are much better corrected by the new meth-
ods. This can be easily observed by the darker areas towards the boarders of the
images.

Summarizing, all methods, including the reference methods have some problems
to correct horizontal and vertical frequencies to the same extend as the other fre-
quency components. The LMSA,7×7 and LMSTV methods show less of the lower
frequencies uncorrected, but leave behind spurious high frequencies while the
new methods solve this trade-off by correcting less of the low frequency com-
ponents, but cut out the high frequency components much better. Consequently,
the new methods behave as designed and cut away the more important high fre-
quency components first.
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Figure 7.7.: Spectral damping factors for the introduced methods and random
frame sequences (Parameters according to tab. 7.3).
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7.1.4. First Conclusions

The improved maximum likelihood approach with the weighed averaged input
allows to outperform the reference methods from literature in case of the de-
manded random frame inputs. The results showed that a very good performance
is even possible without an extended parameter search using parameters that can
be extracted from the statistics of the recorded data instead. The main assumption
of the method is that the input frames should be independent from each other.
This assumption can be violated by using short consecutive frame high speed se-
quences, but even in these cases the best-case performance of the methods still
overlap in their error bars.

Besides the good results, there are two main disadvantages left that I want to over-
come in the following sections: First, the new methods need a computational ex-
pensive interative solver, which can be substituted by transforming the problem
into a cellular neural network as explained in the next section (sec. 7.2). Second,
the performance in the critical horizontal and vertical frequencies is yet not good
enough and will be improved in sec. 7.3.

7.2. Approximation by Transfer into a CNN

The new DSNU correction methods have been proven to achieve a superior cor-
rection rate when compared to the reference methods. However, solving eq. 7.4
with help of an iterative solver as described in sec. 6.3 represents a computation-
ally very expensive step. Furthermore, this evaluation has to be repeated for each
point in time at which a new set of correction parameters is needed. Of course
there are several trivial ideas to limit the computational demand, e.g. by selecting
the latest found DSNU pattern as the start point for the new solver.

Besides those ideas, the transformation of the problem into the known Chua CNN
paradigm [46] is a further possibility and limits the computational efforts while
preserving the advantages of the method as shown below. We have published
this transformation already at the CNNA 2012 [11]. The transformation starts by
analyzing the basic energy minimization task, which was described in eq. 6.57
as:

arg min
{bi,j}
{const. + EP + ED} . (7.7)

This problem was then solved with help of an iterative solver in section sec. 6.3.
Most of the fast solvers use the energy’s gradient, which calculates for the pro-
posed problem as given in eq. 6.78:

∇̂{bi,j}(ED + EP) = −2λTN (AM − b) ∗HP(L̂,Φ) + 2β(b− µb) (7.8)
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With a known gradient, the energy minimization can be actually transferred into a
CNN. To provide a better understanding and motivation on these steps, the basics
of a CNN are now revisited first.

A summary of CNNs: CNN is an abbreviation for cellular neural network, or
cellular nonlinear network. The CNNs are considered in the way of the Chua
CNN paradigm [46] as a network of cells that have an interconnection only within
a limited neighborhood. This allows to consider the cell output of the neighboring
cells as cell inputs. The different inputs to the cells can be weighted and these
weights are then called synaptic weights. The dynamics of a CNN are given by
temporal state equations of the cells and lead to a fast convergence of the CNN
into a temporal equilibrium point after a short period of time.

If the connected neighborhood is equal in size for each cell and if the spatial synap-
tic weights are constant relative to the cells, then each cell’s dynamics is given by
the following state equation [46]:

∂txk,l = −xk,l + (y ∗A)(k,l) + (u ∗B)(k,l) + zk,l

ym,n = f(xM,n) , (7.9)

where x is called cell state, y is called output, u is called input and z is called thresh-
old. The filter masks A and B represent the spatial constant synaptic weights and
define predominantly the CNN’s behavior. It is to point out that the cell state x,
cell output y and cell input u are time continuous variables.

Transforming a method into a CNN will therefore allow a time continuous input to
the system and results in a time continuous cell output y. For the DSNU method,
the output y should then become an approximation of the DSNU parameter set,
even if the CNN is not yet fully converged. A realization of CNNs in the ana-
logue domain is also possible and first partly analogue hardware has already been
developed in this branch (eg. the ACE16k chip [47]).

7.2.1. Transferring the Energy Minimization into a CNN

When solving the energy minimization task of the new method, the iterative
solvers approach their solution with increasing iterations n. As the solver itself
has to be a physical system, each subsequent iteration has to be connected with an
increase in the real, physical time t. Thus the iteration’s n map to discrete points
in the continuous time dimension t.

In an abstract view, a steepest descent solver can therefore be regarded as the quan-
tized approximation of an yet unknown temporal state equation. The CNN state
equation can now be regarded as this hidden state equation and the update steps
of the steepest descent solvers can be investigated in this context. With the update
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step of the iterative solvers in the opposite direction of the energy’s gradient, eq.
6.78 can be assumed as the CNN cell state change in eq. 7.9:

−∇bEtot.(b(t)) = ∇tx . (7.10)

With this assumption, the CNN variables need to be identified, where the follow-
ing mappings are obvious:

x = b : cell state as inner DSNU

y = f(x) =


µb − nσb if x < µb − nσb

x if x ∈ (µb ± nσb)
µb + nσb if x > µb + nσb

u = AMW
: input as weighted average of the measurements . (7.11)

The function y = f(x) is used to model the physically expected boundaries of the
parameters {bi,j} (e.g. by a choice of n that fits the desired outlier criteria). y is
considered as the final resulting {bi,j} to correct the image with.

However, the transformation into a CNN is only possible if the synaptic weights
can be chosen in a way that eq. 7.10 can be fulfilled. A calculation of the synaptic
weights and the threshold can be found in the linear region of the CNN (f(x) = x)
as shown below:

∂txi,j = −∂bi,jEtot. (7.12)

= −
[
−2λTN (AM − b) ∗HP(L̂,Φ) + 2β(b− µb)

]
i,j

(7.13)

=
[
2λTN

(
(u ∗HP(L̂,Φ))− (x ∗HP(L̂,Φ))

)
− 2βx+ 2βµb)

]
i,j

(7.14)

=

x ∗ (−2λTNHP )− 2βx+ u ∗ (2λTNHP )︸ ︷︷ ︸
B

+ 2βµb︸ ︷︷ ︸
z


i,j

(7.15)

=

( ∑
k,l 6=i,j

xi,j · (−2λTNHPk−i,l−j)

)
+ xi,j(−2λTNHP0,0)

− 2βxi,j + [u ∗B + z]i,j (7.16)

= −xi,j +
∑
k,l 6=i,j

xi,j · (−2λTNHPk−i,l−j)︸ ︷︷ ︸
A(k−i,l−j)6=(0,0)

(7.17)

+ xi,j ((−2λTNHP0,0)− 2β + 1)︸ ︷︷ ︸
A0,0

+ui,j ∗B + zi,j

= −xi,j + (x ∗A)i,j + (u ∗B)i,j + zi,j (7.18)

As shown, A,B and z can be defined for the linear case where f(x) = x. For
the cases where f(x) 6= x, the same definitions of A,B and z are used which
then defines the CNN’s state equation completely according to the mathematical
considerations of eq. 7.9. All parameters that define this CNN, especially the
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synaptic weight matrices A and B, are calculated directly from the parameters of
the energy minimization task as:

Ai,j 6=0,0 = −2λTNHPi,j (7.19)
A0,0 = −2λTNHP0,0 − 2β + 1

B = 2λHP

z = 2βµb =
µb
σ2
b

.

Therefore the typical learning for the synaptic weights of a CNN is not needed.
Considering a constant input u = AMW

, the CNN converges to a very similar
solution as the maximum likelihood method. This may however not be the math-
ematically identical solution as the methods differ by the nonlinear CNN function
f(x).

With the defined CNN state equation the input becomes time dependent and u(t) =
AMW

(t) is used as input, which represents the averaged weighted measurements
up to the current time t. The weighted average is used, as there is no reason to
ignore the already achieved improvements from sec. 7.1. The system output y(t)
now represents the desired solution {bi,j}(t) for every point in time with a cer-
tain error if the system has not yet converged into its equilibrium point. The
CNN will not converge instantly, but as the nonuniformity parameters change
rather slowly with time, the CNN gives very good results even if its convergence
is slowed down. The results below confirm this.

7.2.2. CNN Simulation

The derived CNN’s state equation can now be directly implemented in hardware
or used on actual CNN-alike hardware systems like the SCAMP, ASPA, ACE16k
or QEye systems [48, 49, 47]. Most vision systems are however not fully prepared
for a CNN and thus the CNN needs to be simulated (e.g. on an FPGA). A good
approximation of the CNN’s behavior is achieved by the following approximation
of a full range CNN [50]:

xi,j,t+εt = f(xi,j,t + sε · ∂txi,j,t) (7.20)
∂txk,l = −xk,l + (y ∗A)(k,l) + (u ∗B)(k,l) + zk,l

with: A,B, z and f(·) as defined above ,

and εt as the simulated time step and sε as the corresponding convergence con-
stant. The use of the nonlinear function f(·) within the update guarantees that
state and output are identical for this simulation and stay within the physical
boundaries of the assumed system.

As there are usually only very limited computational resources available for
nonuniformity corrections, we chose εt as the time that elapses from frame to
frame and sε then becomes the only free parameter of the method. The rather
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large time step is justifiable as the CNN targets the DSNU correction and thus
does not demand the CNN to converge on a frame to frame basis.

7.2.3. Experimental Results for the CNN approach

The CNN has 4 parameters that have to be adjusted. The first one is the HP filter
mask which is chosen as before by its three realizations HP (∇, BL), HP (∇,MN)
and HP (4,MN). As the CNN method is actually just another solver for the
minwA(∇, BL), minwA(∇,MN) and minwA(4,MN) method, the corresponding
optimal λ parameters from tab. 7.3 for the random frame sequences and from tab.
7.4 for the consecutive frame sequences are used. For the time step εt the time
between two consecutive frames is used, which effectively results in one update
step of eq. 7.20 per frame in the given sequence. Finally the free parameter sε
is left to be optimized and the CNN approach results in the three new methods
summarized in tab. 7.5:

Parameter Search and Best-Case Performance

Unfortunately there is no theoretical way to define the free parameter sε and thus
a parameter search for random frame and consecutive frame sequences was con-
ducted which resulted in the parameter sets shown in tab. 7.6 and 7.7. The best-
case performance analysis according to 5.3.1 (p. 90) was also conducted and the
results are shown in fig. 7.8. It is obvious from the figure that the CNN meth-
ods outperform even the best reference methods for the random frame sequences,
except for the CNN(4,MN) method. For the consecutive frame sequences the
CNN methods achieve a lower correction performance as expected but still the
optimal performances overlap in their error bars. The further evaluations for the
consecutive frame sequences and the image material with low valued nonunifor-
mities is continued in sec. 10.1 and sec. 10.2. The temporal performance analysis
will now give further inside into the methods’ temporal performance for random
frame sequences.

Method Abbreviation Details
CNN(∇, BL) Iterations of eq. 7.20 with HP (∇, BL)

CNN(∇,MN) Iterations of eq. 7.20 with HP (∇,MN)

CNN(4,MN) Iterations of eq. 7.20 with HP (4,MN)

Table 7.5.: Abbreviation and details for the resulting CNN type methods.
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Method Parameter
CNN(∇, BL) 2.439± (0.5219, 21.4%)

CNN(∇,MN) 3.445± (1.955, 56.76%)

CNN(4,MN) 2.034± (0.2135, 10.5%)

Table 7.6.: Results of a parameter search to optimize CNN step size sε for random
frame sequences

Method Parameter
CNN(∇, BL) 2.501± (6.526, 261%)

CNN(∇,MN) 8.305± (23.23, 279.8%)

CNN(4,MN) 5.281± (6.097, 115.4%)

Table 7.7.: Results of a parameter search to optimize CNN step size sε for consec-
utive frame sequences

CNN(∇, BL)
CNN(∇,MN)

CNN(4,MN)
LMSA,7×7

LMSTV
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Opt. CNN Random (tab. 7.6)
Opt. CNN Consec (tab. 7.7)

Figure 7.8.: Optimal Performance analysis with respect to the pc,DSNU quality met-
ric of the CNN methods.
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Temporal Performance Analysis

Fig. 7.9 shows the temporal results for the random frame sequences and except for
the CNN(4,MN) method, all CNN methods outperform the reference methods.
The costy iterative solver can therefore be substituted with the CNN method. The
only exception is the CNN(4,MN) method, which achieved better results with
the iterative solver. The CNN(∇, BL) and CNN(∇,MN) methods actually con-
verge towards the same result of ≈ 78 % correction rate. The only advantage of
the CNN(∇,MN) method over the CNN(∇, BL) method is a slightly faster per-
formance in the first few hundred frames. If this advantage is not needed, the
additional computational costs for the larger mask of the CNN(∇,MN) method
can be saved.

The temporal evaluation in the other quality measures are shown in appendix E.2
for completeness.
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CNN(∇, BL) CNN(∇,MN) CNN(4,MN) LMSA,7×7 LMSTV

Figure 7.9.: Methods evaluations with experimental optimized parameters (tab.
7.6) for the pc,DSNU metric and random frame sequences as input

A further interesting phenomenon is that the nonlinearity of the CNN meth-
ods results in improved performances with respect to the actual iterative solvers
for the CNN(∇, BL) and CNN(∇,MN) methods. Fig. 7.10 compares the per-
formances of the CNN methods against the corresponding energy minimizing
solvers. The three best methods so far are CNN(∇, BL), CNN(∇,MN) and
minwA(∇,MN) and all converge to the maximum reached performance of 78 %.
Only the CNN(4,MN) method is behind the performance of its energy minimizer
minwA(4,MN) as expected from the above performance analysis. Of course other
iterative solvers that limit the result space in the same way as the CNN’s nonlin-
earity function could achieve similar results as well. However the CNN paradigm
further allows to transfer the results fast into already present hardware or use
other researched improvements from the CNN community.
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Figure 7.10.: The CNN-methods and the minwA-methods compared in the pc,DSNU

metric for random frame sequences. The used parameters sets are:
(Opt. CNN Random (tab. 7.6)) and (Weighted Stat. (tab. 7.1)) have
been used.

Spatial and Spectral Performance Analysis

The spatial and spectral performances of the CNN based methods are now eval-
uated for the random frame sequences. With the good correction performance,
the comparison of the corrected images does not lead to any visible differences
as seen in fig. 7.11. The remaining DSNU patterns are shown in fig. 7.12 and
the CNN(∇, BL) and CNN(∇,MN) methods present very similar remains, which
is expected as both methods reach almost identical correction performances. The
CNN(4,MN) method shows mainly horizontally remaining structures, which are
similar to the ones presented by the LMSA,7×7 and LMSTV method. Besides this
quality difference, the spectral analysis gives a better overview of the methods’
differences according to the spectral sensitivity of the methods. Fig. 7.13 shows
the spectral damping factors and here the advantage of the CNN based meth-
ods is clearly visible. All CNN based methods show a better concentration of
the remaining frequency components towards the center of the representation,
which means that only spatial low frequencies are left behind. Further the hor-
izontal and vertical frequencies are damped with slight improvments compared
to the reference methods. As usual for the 4-based methods does CNN(4,MN)
damps the low frequencies not as much as the ∇-based methods. The advantage
of the CNN based methods can as well be compared towards the minwA(∇, BL),
minwA(∇,MN) and minwA(4,MN) methods’ spectral damping in fig. 7.7 on p.
7.7.
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Figure 7.11.: Corrected images of the introduced methods for random frame se-
quences (Parameters according to tab. 7.6)
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Figure 7.12.: Remaining DSNU patterns for the introduced methods and random
frame sequences (Parameters according to tab. 7.6)
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Figure 7.13.: Spectral damping factors for the introduced methods and random
frame sequences (Parameters according to tab. 7.6)
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7.2.4. First Conclusions

With the introduced CNN based maximum likelihood approach the computa-
tional performance of the new methods could be severely degraded and is now
in the same order as the frame-to-frame based LMS methods. Therefore next the
correction of horizontal and vertical frequencies is addressed.

7.3. An Extension to Row and Column Wise Estimation

The typical characteristics of the ground truth DSNU patterns shown in sec. 4.3,
showed strong horizontal and vertical spatial frequencies in the spectral analysis.
This is especially of concern, as the human eye is very sensitive to those kind of
patterns in combination with the fact that all introduced methods have a problem
to correct for these frequency components.

7.3.1. Calculating the Gradient with an Improved Sensor Model

Given the current energy minimization task, the offset parameters {bi,j} are con-
sidered independent for each pixel. However, with the knowledge of the row and
column wise dependencies, the sensor model can be extended to consider each
offset as the sum of a row-, column- and pixel-wise component:

bi,j = bcol.,i + brow.,j + bpix.,i,j . (7.21)

The resulting value bi,j is still the realization of the random variable bi,j as intro-
duced in sec. 6.2.1 and thus all the statements made about it are still valid. The
dependency of the row- and column-wise components is therefore only implicitly
considered. Consequently the energy function given in sec. 6.3 stays valid and the
variables bi,j can be substituted leading to the modified energy function:

ED + EP = λ
∑
tn

∑
(i,j)∈S

(CM,i,j − bcol.,i − brow.,j − bpix.,i,j − χi,j)∑
(k,l)∈S

(CM,k,l − bcol.,k − brow.,l − bpix.,k,l − χk,l)Ψ(·)

+
∑
i,j

β
(
bcol.,i + brow.,j + bpix.,i,j − µb

)2
+ const. (7.22)

The target is now to minimize this energy function with respect to the new vari-
ables:

arg min
bcol.,i,brow.,j ,bpix.,i,j

(ED + EP) (7.23)
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As before, the gradient of the energy functional in all the variables is needed, with
three different kinds of variables instead of one in this new extension. For simplic-
ity we start with the derivation for the column type offset parameters of the EP

energy:

∂bcol.,m(EP) = ∂bcol.,m

∑
i,j

β
(
bcol.,i + brow.,j + bpix.,i,j − µb

)2 (7.24)

= 2β
∑
j

(
bcol.,m + brow.,j + bpix.,m,j − µb

)
(7.25)

= 2βb∑
col,m
− µb

∑
j

1 (7.26)

with: X∑
col/row,m

: summation of X along the column/row at position m
(7.27)

The newly introduced variable b∑
col,m

gives the column wise summation over the
resulting offset parameters bi,j . In the vector notation, all the column offset deriva-
tives can be summarized with help of the transposed nabla operator. The indicies
of the vectors can then be omitted and the image sensor dimensions are considered
as (M,N) with M columns and N rows.

∇Tbcol.
EP = 2β(b∑

col
−Nµb) (7.28)

with: N : Number of sensor rows . (7.29)

The row wise gradient obeys the same mathematical form and can be written as:

∇brow.EP = 2β(b∑
row
−Mµb) (7.30)

with: M : Number of sensor columns . (7.31)

Last, the pixel-wise part of the gradient can be expressed by the using the com-
bined offsets bi,j = bcol.,i + brow.,j + bpix.,i,j again. Using the ∇̂ operator it expresses
as:

∇̂bpix.EP = 2β(b− µb) . (7.32)

For the derivatives of the data part of the energy function, the same mathematical
transformations as in sec. 6.3 are used, namely exploiting the product and chain
rule in combination with the linearity of the derivation. For the partial derivatives
for the column component this leads to:
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∂bcol.,m(ED) = (
∑
tn

∑
i,j

λ(CM − b− χ)⊗ ((CM − b− χ) ∗HP(L̂,Φ)) + const.)

(7.33)

=
∑
tn

λ∂bcol.,m

 ∑
(i,j)∈S

(CM,i,j − bi,j − χi,j)

·
∑

(k,l)∈S

(CM,k,l − bk,l − χk,l)Ψ(|k − i|, |l − j|)

 (7.34)

=
∑
tn

λ

(∂bcol.,m

∑
(i,j)∈S

(CM,i,j − bi,j − χi,j))
∑

(k,l)∈S

(CM,k,l − bk,l − χk,l)Ψ(·)

+
∑

(i,j)∈S

(CM,i,j − bi,j − χi,j)(∂bcol.,m

∑
(k,l)∈S

(CM,k,l − bk,l − χk,l)Ψ(·))


(7.35)

The actual task is now to define the derivatives of the sums and to substitute them
in the above equations. With the new variables the sum simplifies to:

∂bcol.,m

∑
(i,j)∈S

(CM,i,j − bi,j − χi,j) (7.36)

=∂bcol.,m

∑
(i,j)∈S

(CM,i,j − bcol.,i − brow.,j − bpix.,i,j − χi,j) (7.37)

=
∑
j

∂bcol.,m

∑
i

(CM,i,j − bcol.,i − brow.,j − bpix.,i,j − χi,j) (7.38)

=
∑
j

−1 , (7.39)

which can be directly inserted into the eq. 7.35 and allows further simplifica-
tions:

∂bcol.,m(ED) =
∑
tn

λ

−∑
j

∑
(k,l)∈S

(CM,k,l − bk,l − χk,l)Ψ(|k −m|, |l − j|) (7.40)

+
∑

(i,j)∈S

(CM,i,j − bi,j − χi,j)(−
∑
l

Ψ(|m− i|, |l − j|))

 (7.41)

= −2λ
∑
tn

∑
j

∑
(k,l)∈S

(CM,k,l − bk,l − χk,l)Ψ(|k −m|, |l − j|)

 (7.42)
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= −2λ
∑
tn

 ∑
(k,l)∈S

(CM,k,l − bk,l − χk,l)
∑
j

Ψ(|k −m|, |l − j|)

 .

(7.43)

7.3.2. Reduction into One Dimensional Subproblems

The sum over the Ψ reduces to a constant Ψcol in each Ψ-column. This is justified
by the fact that the sum over j extends far over the area where Ψ(|k−m|, |l−j|) 6= 0,
resulting in the same summations for each column:∑

j

Ψ(|k −m|, |l − j|) = Ψcol(|k − i|) ∈ R (7.44)

Near the borders of the image sensor the above column wise sum is valid as well if
the same mirroring extension of the image is used as in sec. 6.3. The temporal ex-
pectation value and temporal average from sec. 6.3 are also used which simplifies
the eq. 7.43 to:

− 2λ
∑
tn

TN
1

TN

(∑
k

(
∑
l

CM,k,l −
∑
l

bk,l −
∑
l

χk,l)Ψcol(|k − i|)

)
(7.45)

=− 2λTN

(∑
k

(
∑
l

∑
tn

1

TN
CM,k,l −

∑
l

∑
tn

1

TN
bk,l −

∑
l

∑
tn

1

TN
χk,l)Ψcol(|k − i|)

)
(7.46)

= −2λTN

(∑
k

(
∑
l

AM,k,l︸ ︷︷ ︸
AM,

∑
col,l

−
∑
l

bk,l︸ ︷︷ ︸
b∑

col,k

)Ψcol(|k − i|)
)

(7.47)

In the last step the definition of b∑
col,k

from eq. 7.26 is used. The final result is a
convolution again, but this time in one dimension only:

∇Tbcol.
ED = −2λTN (AM,

∑
col
− b∑

col
) ∗HP col.(L̂,Φ) (7.48)

As already for the EP derivatives, the results for the brow. and bpix. variables follow
directly from the symmetry of the mathematical expressions:

∇brow.ED = −2λTN (AM,
∑

row
− b∑

row
) ∗HP row.(L̂,Φ) (7.49)

∇̂bpix.ED = −2λTN (AM − b) ∗HP(L̂,Φ) (7.50)
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The filter masks HP row.(L̂,Φ) and HP col.(L̂,Φ) follow also directly from the row or
column wise summation over the HP(L̂,Φ) masks. Due to the symmetry of these
masks they can be written directly as:

HPT
row.(∇, BL) =

(
−1 2 −1

)
= HP col.(∇, BL)

HPT
row.(∇,MN) =

1

2520
·
(
−1 −24 −15 80 −15 −24 −1

)
= HP col.(∇,MN)

HPT
row.(4,MN) =

1

25200

(
1 0 −9 16 −9 0 1

)
= HP col.(4,MN) (7.51)

With the knowledge of the gradient, the minimum of the energy function ED +
EP can be found by iterative gradient based solvers. This time the tree types of
variables combine to a gradient consisting of the parts∇Tbcol.

,∇brow. and ∇̂bpix. .

The combined gradient and the equation to solve can be expressed with help of
the equations 7.28 to 7.32 for the prior energy and the equations 7.48 to 7.50 for the
data energy:  ∇Tbcol.

(ED + EP)

∇brow.(ED + EP)

∇̂bpix.(ED + EP)

 = 0 (7.52)

⇔

 −2λTN (AM,
∑

col
− b∑

col
) ∗HP col.(L̂,Φ) + 2β(b∑

col
−Nµb)

−2λTN (AM,
∑

row
− b∑

row
) ∗HP row.(L̂,Φ) + 2β(b∑

row
−Mµb)

−2λTN (AM − b) ∗HP(L̂,Φ) + 2β(b− µb) ,

 = 0 (7.53)

(7.54)

With these equations a combined row, column, and pixel-wise DSNU correction
is possible. For better readability this combined form will be abbreviated as RCP-
correction.

Separated Row- and Column-wise DSNU: A special case arises, if only column-
wise or only row-wise offsets are present. For only column wise offsets, eq. 7.21
and 7.26 simplify to:

bi,j = bcol.,i and: b∑
col,m

=
∑
j

bcol.,m = Nbcol.,m (7.55)

While the same goes for row wise offsets:

bi,j = brow.,j and: b∑
row,n

=
∑
i

brow.,n = Mbrow.,n (7.56)
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The complete gradient for these two special cases then compresses into the follow-
ing one dimensional forms:

∇Tbcol.
(ED + EP) = −2λTN (AM,

∑
col
−Nbcol.) ∗HP col.(L̂,Φ) + 2βN(bcol. − µb)

(7.57)

∇brow.(ED + EP) = −2λTN (AM,
∑

row
−Mbrow.) ∗HP row.(L̂,Φ) + 2βM(brow. − µb) .

(7.58)

This reduction to one dimensional forms has the advantage to correct for either
row- or column-wise DSNU in a way that demands much less computational ef-
forts than the pixel wise approach. Furthermore, in many real applications the row
and column wise DSNU is of primary concern due to their good visibilities to the
human eye. Other combinations like a combined row- and column-wise correc-
tion without the pixel-wise dependencies are possible as well and can be derived
directly from the above given equations.

7.3.3. Experimental Results

First Impressions of the Performance

First results of the extensions that considers row, column and the combined RCP
DSNU correction, are shown in fig. 7.14 for the choice of HP = HP(∇,MN).
Thereby fig. 7.14a-7.14c show the corrected images for only row-wise, only
column-wise and at last the combination of row-, column- and pixel-wise DSNU
estimation (RCP). For the row-wise only and column-wise only corrections, the
remaining vertical and horizontal stripes are visible in the corrected images. As
this test is performed with the ground truth DSNU the row-wise dependency of
the nonuniformity is not as distinct as the column-wise dependency. The RCP-
combined correction shows the expected very good results with almost no visual
artifacts in the remaining image, eventhough the parameter set has not yet been
optimized.

Fig. 7.14d-7.14f show the remaining DSNU patterns, where the uncorrected
column-wise DSNU is clearly visible in fig. 7.14d. The remains of the row-wise
DSNU patterns, are not very well visible in fig. 7.14e, but they could be observed
in the corrected image in fig. 7.14b. The RCP-combined correction shows a re-
maining DSNU pattern that differs from the usual observations, as there are no
larger horizontally or vertically connected structures visible (see in fig. 7.6 on p.
147). This forms an advantage, as the human eye usually is very sensitive to these
kind of structures.

The selective row- or column-wise corrections, as well as the effects of a RCP com-
bined correction are visible as well in the spectral damping analysis shown in the
figures 7.14g-7.14i. In fig. 7.14g and 7.14h only the horizontal or vertical frequency
components have been corrected, which shows up as the corresponding vertical
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Method Abbreviation Description
minRCP(∇, BL) Solving of eq. 7.52 with HP (∇, BL)

minRCP(∇,MN) Solving of eq. 7.52 with HP (∇,MN)

minRCP(4,MN) Solving of eq. 7.52 with HP (4,MN)

Table 7.8.: Abbreviations for the resulting RCP methods.

Method Parameter
minRCP(∇, BL) 0.0007185± (0.0007276, 101.3%)

minRCP(∇,MN) 0.001491± (0.0005025, 33.71%)

minRCP(4,MN) 0.002557± (0.001233, 48.2%)

Table 7.9.: Optimized parameter set for the RCP methods and random frame se-
quences.

or horizontal line of damped frequencies. In fig. 7.14i the usual image of the re-
maining low frequencies is visible, but this time the typical horizontal and vertical
remaining structures are missing. Instead these structures are corrected to the ex-
tend that a black cross on the remaining low frequency components in the center
of the representation is visible.

Parameter Search and Best-Case Performance

The row-only and column-only corrections are interesting for certain applications
that suffer directly from these types of nonuniformities, but these modes are in
general not comparable to the other methods discussed before. Therefore the com-
bined correction of row-, column- and pixel-wise DSNU (RCP) will be further in-
vestigated. Tab. 7.8 summarizes the abbreviations for these new variants of the
method and tab. 7.9 shows the resulting optimized parameters, given random
frame sequences as input. The parameters for consecutive frame input are shown
in tab.7.10.

The best-case performance analysis for these methods is shown in fig. 7.15 for
the random frame sequences and in fig. 7.16 for the consecutive frame sequences,
always in comparison to the LMSA,7×7 and LMSTV reference methods. The two
theoretically derived parameter sets, the statistic parameters from tab. 6.1 p. 121

Method Parameter
minRCP(∇, BL) 0.000101± (0.0001895, 187.7%)

minRCP(∇,MN) 0.000179± (0.0003615, 201.9%)

minRCP(4,MN) 0.0009217± (0.0008477, 91.98%)

Table 7.10.: Optimized parameter set for the RCP methods and consecutive frame
sequences.
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Figure 7.14.: Proof of concept analysis of the row-, column- and row-column-pixel-
wise (RCP) correction performances in the typical measures: cor-
rection of the visual image, remaining DSNU patterns, and spectral
damping properties.
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Figure 7.15.: Optimal Performance for the RCP methods with respect to the
pc,DSNU quality metric and random frame sequences

and the statistic parameter set considering the weighted average from tab. 7.1 p.
140 are investigated as well.

For the random frame sequences, the optimized parameter set still leads to a per-
formance superior to the reference methods, but in comparison to the first im-
provements in fig. 7.2 (p. 142) the performance has slightly decreased for all
variants of the new RCP method. For the weighted statistic parameters reason-
able performances can be gained, but this performance does not keep up to the
reference methods. This has however been the case for the minwA-methods be-
fore. With concern to the statistic parameters that did not consider the weighted
averaging, only the minRCP(∇, BL) method reaches an acceptable performance.

For the consecutive frame sequences, the optimized parameter set reaches the per-
formance of the reference methods if the error bars are considered. Compared to
the non-RCP methods in fig.7.3 (p. 142) the performance has actually slightly in-
creased for all methods. However, the weighted statistic parameters do not lead to
a good performance, which was explained before, as the dependency of the image
information leads to a bias in the weighted average. The pure statistic parame-
ters from tab. 6.1 give therefore as expected reasonable good results that can al-
most keep up to the reference methods’ performances considering the error spans.
The minRCP(4,MN) needs an extra discussion in sec. 10.1 as this method is the
only method that reaches a good performance for all parameters, however for the
weighted statistic parameters the error bars are extremely wide, which may result
in unstable results.

Temporal Performance Analysis

As mentioned before, the optimized performance analysis gives an upper border
of the performance that is not always valid if the methods are compared to those
results where the parameter is fixed over the 80 evaluation sequences. Therefore
the temporal performance analysis gives a better view on the methods behavior,
as it represents the realistic situation.
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Figure 7.16.: Optimal Performance for the RCP methods with respect to the
pc,DSNU quality metric and consecutive frame sequences

Fig. 7.17a shows temporal evaluations for the random frame sequences. While the
minRCP(∇, BL) and minRCP(∇,MN) methods outperform the reference methods
in the beginning, they converge towards the performance of the reference meth-
ods after 500 frames, however they still remain slightly above the performance
of the LMSA,7×7 method. Surprisingly the minRCP(4,MN) method reaches the
best performance of all methods which is founded in its stability towards para-
meter changes that has already been discussed. Fig. 7.17b shows a repetition
of the above experiment with the statistic parameters that consider the weighted
average (tab. 7.1). As expected from the optimal performance analysis, this para-
meter set decreases the performance of all methods and even the minRCP(4,MN)
method cannot compensate this parameter change and results as the worst method
of this comparison. The minRCP(∇, BL) and minRCP(∇,MN) methods however
still reach the performance of the LMSA,7×7 method. The actual correction perfor-
mances still reach the 70 % mark which means that a visually pleasing correction
is expected even with this parameter choice for all methods. The temporal eval-
uations are also shown in the other quality norms in appendix E.3 for complete-
ness For the consecutive frame sequences and the image material with low valued
nonuniformities the experiments are presented in sec. 10.1 and sec. 10.2.

Spatial and Spectral Performance Analysis

A look at the spatial correction performances for random frame sequences, using
the optimal parameters (tab. 7.9), is shown in fig. 7.18 for the visual image cor-
rections. As expected no visual difference between the methods’ corrections and
the correction with the ground truth parameter set can be observed, except for
the minRCP(∇,MN) method, which shows an overlay of a high frequency noise
pattern. With respect to the remaining DSNU patterns, the different qualities of
the methods separate much better (see. fig. 7.19). Especially the minRCP(∇,MN)
method shows the high frequency pattern, which results from the corner frequen-
cies that are not detected by its filter mask (compare fig. 6.2b, p. 123). The
minRCP(4,MN) method on the other hand shows much less connected patches
of high amplitude, which is the expected result from the proof of concept experi-
ments above.
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Figure 7.17.: Evaluations for random frame sequences with experimentally op-
timized parameters (fig. 7.17a) and the parameter set from the
weighted statistic histogram (fig. 7.17b) in the pc,DSNU metric.
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In fig. 7.20, the mentioned spectral effects become visible and the separate damp-
ing of the horizontal and vertical frequencies are visible as the black cross in the
middle of the representation. Compared to the LMSA,7×7 and LMSTV methods,
this effect comes very clear as the low frequency components are not damped to
the extend that was reached by the former non-RCP methods. The high frequency
components of the minRCP(∇,MN) method are also visible in this representation
and fit the characteristics of this method’s high pass filter. The minRCP(∇,MN)
method is however the only method that concentrates the remaining low fre-
quency remains on a smaller area. However the spatial high frequency compo-
nents may render this method useless for practical evaluations.

7.3.4. First Conclusions

The row- and column-wise DSNU components were the last not addressed prob-
lem of the new maximum likelihood methods. The extension to a combined row-,
column- and pixel-wise (RCP) maximum likelihood method shows that it is pos-
sible to correct these DSNU components successfully. Furthermore it is possible to
correct separately only row- or column-wise nonuniformities with this approach,
which reduces the problem into a one dimension of offset parameters. Only the ap-
pearance of remaining spatial high frequency components for the (∇,MN) choice
forms a yet unsolved problem, but the other variants of the method did not show
this problem.

Considering the DSNU-only correction, this chapter has provided several im-
provements to the bare maximum likelihood method introduced in chapter 6.
With the current state of development an extension to a combined PRNU and
DSNU correction method is next and follows in chapter 8.
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Figure 7.18.: Corrected images of the introduced methods for random frame se-
quences (Parameters according to tab. 7.9)
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Figure 7.19.: Remaining DSNU patterns for the introduced methods and random
frame sequences (Parameters according to tab. 7.9)
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(d) ŝspectr.,DSNU,µ,ν for LMSA,7×7

0

0.1

0.2
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Figure 7.20.: Spectral damping factors for the introduced methods and random
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175



7. Analysis and Improvements of the new DSNU Method

176



8. Extension to a Combined PRNU and
DSNU Estimation

The current state of development for the new maximum likelihood estimation
method corrects successfully the DSNU and allows to extract the free parameters
from the statistics of the scene content. The next step to fully complete the new
method is an extension into a combined PRNU and DSNU nonuniformity estima-
tion as introduced in this chapter. The contents of this chapter have been partly
published during the research [10, 13].

8.1. The Generalized Mathematical Ansatz

To extend the method, the approach of chapter 6 is repeated, but this time the
sensor gain factors {ai,j} are included in the used sensor model. Therefore the
nonuniformities are now fully described by a set of parameters that contain the
gain variables {ai,j} and the offset variables {bi,j}. This combined set is written as:
{ai,j , bi,j}. Following the derivations in chapter 6, a multivariate random variable
NU that maps all the possible realizations for the nonuniformities is introduced
and has the probability density fNU({ai,j , bi,j}).

The maximum likelihood estimation can then be rewritten to maximize the condi-
tional probability of NU given the occurrence of a the spatio-temporal light signal
IWorld:

arg max
{ai,j ,bi,j}

fNU|IWorld=IWorld
({ai,j , bi,j}) , (8.1)

which transfers with the Bayes’ Theorem directly into:

arg max
{bi,j}

1

N
· fNU({ai,j , bi,j}) · fIWorld|NU={ai,j ,bi,j}(IWorld) . (8.2)

8.2. Density Estimations of the Defined Random
Variables

As next step, the random variables from eq. 8.2 need to be defined, which means,
that a probability density as well as a state space are needed. These definitions
follow directly the ideas of sec. 6.2.
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8.2.1. The density of the random variable NU

The definition of the multivariate random variable NU is following the derivation
of DSNU with the difference that the parameters {ai,j , bi,j} are used instead of
only {bi,j}. First, the state space is given and, following the procedure in sec.
6.2.1, the state space is named ΩNU and covers all the possible realizations given
by the parameters {ai,j , bi,j}. The parameters bi,j are considered the realizations
of their corresponding random variables bi,j and in extension, the parameters ai,j
are considered the realizations of their random variables ai,j . This allows to define
a multivariate random variable [29]:

NU : Ω→ R2m×n (8.3)

(b1,1, . . . ,bM,N ,a1,1, . . . ,aM,N )→ (b1,1, . . . , bm,n, a1,1, . . . , aM,N )T (8.4)

To finish the definition of NU, its probability density needs to be defined. Ac-
cording to sec. 6.2.1, the parameters {bi,j} are assumed to be independent and
identically distributed (iid). This assumption is now extended onto the parame-
ters {ai,j}, which shall be independent and identically distributed as well. Fur-
thermore, the parameters {ai,j} are considered independent from all the parame-
ters {bi,j}, which consequently leads to the independent set of random variables
{ai,j ,bi,j}.

From the statistical mathematics it follows that a product over the single indepen-
dent densities of the variables ai,j and bi,j forms the combined probability density
fNU:

fNU({ai,j , bi,j}) =
∏
i,j

fai,j (ai,j)fbi,j (bi,j) . (8.5)

Again, the manufacturing process of the individual light sensors, is used to moti-
vate the above assumptions of the iid distributions for {ai,j} and {bi,j}.

Given the iid assumption, a random sample of the realizations out of the {bi,j}
already showed successfully that the {bi,j} obey a Gaussian distribution. From
the measured ground truth distribution of the {ai,j} a Gaussian distribution may
fit as well, but does not hold as strict as for the bi,j . The actual histograms of the
{ai,j} have been discussed in sec. 4.3. However, the mathematical advantages of a
Gaussian distribution in the later log-likelihood minimization process lead to the
choice of a Gaussian model, knowing that it is not the best fit. Consequently, the
random variables for each given (i, j) obey a Gaussian distribution, with the same
parameters µb and σb for all bi,j and the parameters µa and σa for all ai,j :

bi,j ∼ N
(
µb, σ

2
b

)
with fbi,j (bi,j) =

1

σb
√

2π
e
− 1

2

(
bi,j−µb
σb

)2
∀(i, j) (8.6)

ai,j ∼ N
(
µa, σ

2
a

)
with fai,j (ai,j) =

1

σa
√

2π
e
− 1

2

(
ai,j−µa
σa

)2
∀(i, j) (8.7)
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The definition of the random variable NU is therefore completed.

8.2.2. The density of IWorld|NU={ai,j, bi,j}

The conditional random variable IWorld|NU={ai,j , bi,j} states the probability of
the world light signal IWorld to occur, given a realization of the nonuniformities.
As discussed in section 6.2.2, the realization of the world signal IWorld can be ap-
proximated by the reconstructed signal IReco. The reconstruction formula given
in eq. 2.28 leads to an IReco that depends on the PRNU and DSNU correction pat-
terns {ai,j} and {bi,j}. The rest of the argumentation goes along as in sec. 6.2.2,
and leads to an approximation of the conditional random variable by:

IReco({ai,j , bi,j}) ≈ IWorld (8.8)
IWorld|NU={ai,j , bi,j} ≈ IReco|NU={ai,j , bi,j} . (8.9)

The argumentation continues by defining the probability IReco|NU={ai,j , bi,j}
with help of gradient- and edge-based approximations (compare sec. 6.2.2). These
features depend only on the corrected sample values CS , and their definition is
therefore identical to eq. 6.45 (p. 120) with the only difference that the CS are
calculated from the measurements CM by correcting for the PRNU parameters
{ai,j} as well. The definition of the random variable is then completed as:

fIReco|NU={ai,j ,bi,j} =
∏
i,j

∏
tn

fFi,j,tn (Fi,j,tn) (8.10)

with Fi,j,tn(a, b) = [CS(a, b, tn)⊗ (CS(a, b, tn) ∗HP(L̂,Φ)]i,j (8.11)

The definition and spectral behavior of the HP filter masks have already been dis-
cussed in sec. 6.2.4 and do not change. Of course, the above definition is bound to
the same assumptions as in chapter 6, that states that the feature variables are as-
sumed to be independent and identically distributed. The experimental chapters
showed already that random frame input, or very slowly captured frames seem to
fulfill this assumption and result in the best possible correction rates.

8.3. Solving as Log-Likelihood Energy Minimization

With all the assumptions and definitions given above, the maximum likelihood
estimation is fully defined by:

arg max
{ai,j ,bi,j}

1

N
· fNU({ai,j , bi,j}) · fIWorld|NU={ai,j ,bi,j}(IWorld) (8.12)

≈ arg max
{ai,j ,bi,j}

1

N

∏
i,j

fbi,j (bi,j)fai,j (ai,j) ·
∏
i,j

∏
tn

fFi,j,tn (8.13)
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≈ arg max
{ai,j ,bi,j}

1

N

∏
i,j

1

σb
√

2π
e
− 1

2

(
bi,j−µb
σb

)2
1

σa
√

2π
e
− 1

2

(
ai,j−µa
σa

)2
·
∏
i,j

∏
tn

λe−λFi,j,tn .

(8.14)

To simplify the maximization, eq. 8.12 is transferred into the corresponding log-
likelihood energy minimization task, which consists of a prior knowledge energy
term EP and a data energy term ED:

arg min
{bi,j}
{− log

1

N︸ ︷︷ ︸
const.

− log fNU({ai,j , bi,j})︸ ︷︷ ︸
EP

− log fIWorld|NU={ai,j ,bi,j}(IWorld)︸ ︷︷ ︸
ED

} (8.15)

arg min
{bi,j}
{EP + ED + const.} (8.16)

With the definitions of the eq. 8.5f. the energy EP can be simplified to:

EP = − log fNU({ai,j , bi,j}) (8.17)

= − log
∏
i,j

fai,j (ai,j)fbi,j (bi,j) (8.18)

=
∑
i,j

1

2σ2
b︸︷︷︸

β

(bi,j − µb)2 +
∑
i,j

1

2σ2
a︸︷︷︸

α

(ai,j − µa)2 + const. (8.19)

= β
∑
i,j

(bi,j − µb)2 + α
∑
i,j

(ai,j − µa)2 + const. , (8.20)

with the intermediate transformations shown in appendix F.1.

For ED the needed transformations are identical to sec. 6.3 p. 124 if the definition
of Fi,j,tn is modified with a CS,i,j according to the sensor model of eq. 2.27 that
includes the {ai,j} parameters:

ED =
∑
i,j

∑
tn

− log λ︸ ︷︷ ︸
Clog

+
∑
i,j

∑
tn

λFi,j,tn (8.21)

= λ
∑
tn

∑
(i,j)∈S

1

ai,j
(CM,i,j − bi,j − χi,j)

∑
(k,l)∈S

1

ak,l
(CM,k,l − bk,l − χk,l)Ψ(·) + clog

(8.22)

Using this notation in addition with the Hadamard (element-wise) multiplication
⊗ and element wise division �, the definition of ED can be expressed in matrix
notation as:

ED = λ
∑
i,j

∑
tn

[CS ⊗ (CS ∗HP(L̂,Φ)]i,j + clog (8.23)
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= λ
∑
tn

∑
i,j

[
(CM − b− χ)� a⊗

(
((CM − b− χ)� a) ∗HP(L̂,Φ)

)]
i,j

+ clog

(8.24)

The energies EP and ED are now functions of the set of variables {ai,j , bi,j} and to
be able to solve the energy minimization task with help of gradient based iterative
solvers, the gradient in the variables {ai,j} and {bi,j} needs to be calculated. The
gradients for the two sets of parameters {bi,j} and {ai,j} are concatenated below
each other as given in the following definitions:(

∇{bi,j}(const.+ EP + ED)

∇{ai,j}(const.+ EP + ED)

)
=

(
∇{bi,j}EP +∇{bi,j}ED

∇{ai,j}EP +∇{ai,j}ED

)
(8.25)

with: ∇{bi,j} = (∂b1,1 . . . ∂b1,N , ∂b2,1 . . . ∂bm,N )T (8.26)

and with: ∇{ai,j} = (∂a1,1 . . . ∂a1,N , ∂a2,1 . . . ∂am,N )T (8.27)

8.3.1. The derivation of ∇{bi,j}EP,∇{bi,j}ED and ∇{ai,j}EP

The calculation of the gradients of the different energies and variables is done sep-
arately for ∇{bi,j}EP,∇{bi,j}ED,∇{ai,j}EP and ∇{ai,j}ED. For the prior energy the
derivation∇{bi,j}EP does not change in comparison to eq. 6.70, p.126, as the {ai,j}
dependencies are constants with respect to the {bi,j} variables. For ∇{ai,j}EP, the
mathematical derivations are a direct symmetry in the mathematical expression
to ∇{bi,j}EP as just the variable is exchanged. Using again the ∇̂ operator, which
puts the derivative of the (i, j)’s variable as the (i, j)’s element of a matrix, one
obtains the derivatives in the following matrix notation:

∇̂{bi,j}EP = 2β(b− µb) (8.28)

∇̂{ai,j}EP = 2α(a− µa) (8.29)

The gradients of the data energy can also be calculated very similar to the mathe-
matical strategy in sec. 6.70. For ∇{bi,j}EP the only difference is the consideration
of the new (constant) parameters {ai,j}. The intermediate steps are shown in the
appendix F.2 and lead to:

∇{bi,j}ED = ∇{bi,j}
∑
i,j,tn

λ(CM − b− χ)� a⊗
(

((CM − b− χ)� a) ∗HP(L̂,Φ)

)
∂bm,nED = ∂bm,n(

∑
tn

∑
i,j

λ(CM − b− χ)� a⊗ ((CM − b− χ)� a ∗HP(L̂,Φ)))

= −2λ
∑
tn

1

am,n

∑
(i,j)∈S

1

ai,j
(CM,i,j − bi,j − χi,j)Ψ(|i−m|, |j − n|)) (8.30)
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The temporal normalizing factor TN according to eq. 6.73, allows again to express
some quantities as the temporal average, or the temporal expectation value of the
corresponding random variables:

∂bm,nED = −2λTN
1

TN

∑
tn

1

am,n

∑
(i,j)∈S

1

ai,j
(CM,i,j − bi,j − χi,j)Ψ(|i−m|, |j − n|))

(8.31)

= −2λTN
1

am,n

∑
(i,j)∈S

1

ai,j
(

1

TN

∑
tn

CM,i,j︸ ︷︷ ︸
AM,i,j

− 1

TN

∑
tn

bi,j︸ ︷︷ ︸
bi,j

− 1

TN

∑
tn

χi,j︸ ︷︷ ︸
→0

)Ψ(·))

(8.32)

= −2λTN
1

am,n

∑
(i,j)∈S

1

ai,j
(AM,i,j − bi,j︸ ︷︷ ︸
Acorr.

M,i,j

)Ψ(|i−m|, |j − n|)) (8.33)

The newly introduced variable Acorr.
M,i,j contains the corrected averaged measure-

ments. The derivative again becomes the convolution with the high pass filter
defined by Ψ and with help of the ∇̂{bi,j}, the gradient expresses in matrix nota-
tion as

∇̂{bi,j}ED = −2λTN

(
Acorr.

M ∗HP(L̂,Φ)
)
� a (8.34)

The only difference to the ∇̂{bi,j}ED in the DSNU-only correction is a division of
each gradient index by the corresponding ai,j parameter.

8.3.2. The derivation of ∇{ai,j}EP

A more challenging task is the derivation of∇{ai,j}EP. It starts with the same strat-
egy as before by splitting the sum and using the chain rule with the intermediate
steps shown in appendix F.2.2:

∇{ai,j}ED = ∇{ai,j}
∑
tn

∑
i,j

λ(CM − b− χ)� a⊗
(
((CM − b− χ)� a) ∗HP(L̂,Φ)

)
∂am,nED = ∂am,n(

∑
tn

∑
i,j

λ(CM − b− χ)� a⊗
(
((CM − b− χ)� a) ∗HP(L̂,Φ)

)
)

= −2λTN
1

TN

∑
tn

(
1

a2
M,nak,l

∑
(k,l)∈S

(CM,m,n − bm,n − χm,n) (8.35)

· (CM,k,l − bk,l − χk,l)Ψ(|k−m|, |l−n|)
)

(8.36)
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Again the temporal averaging can be used to achieve further simplifications:

∂am,nED = −2λTN(
1

a2
M,nak,l

(
∑

(k,l)∈S

1

TN

∑
tn

CM,m,nCM,k,l︸ ︷︷ ︸
A2

M,m,n,k,l

− 1

TN

∑
tn

CM,m,nbk,l︸ ︷︷ ︸
AM,m,nbk,l

− 1

TN

∑
tn

CM,m,nχk,l︸ ︷︷ ︸
→0

− 1

TN

∑
tn

bm,nCM,k,l︸ ︷︷ ︸
bm,nAM,k,l

+
1

TN

∑
tn

bm,nbk,l︸ ︷︷ ︸
bm,nbk,l

+
1

TN

∑
tn

bm,nχk,l︸ ︷︷ ︸
→0

− 1

TN

∑
tn

χm,nCM,k,l︸ ︷︷ ︸
→0

+
1

TN

∑
tn

χm,nbk,l︸ ︷︷ ︸
→0

+
1

TN

∑
tn

χm,nχk,l︸ ︷︷ ︸
→0

)Ψ(·)) (8.37)

For the product of χm,nχk,l, each position’s random variable χ is considered in-
dependent. Then it follows that the expectation value of the product of two inde-
pendent variables is the product of their expectation values. In the special case of
(m,n) = (k, l) the variable gets squared and the further assumption for χ is made
that it’s coefficient of variation is γ(χi,j) = 0 (e.g. a symmetric probability density
distribution [29]). Mathematically expressed, this yields to the following:

1

TN

∑
tn

χm,n,tχk,l,t ≈ µt(χm,n,tχk,l,t) = µt(χm,n,t)µt(χk,l,t) = 0 · 0 (8.38)

1

TN

∑
tn

χi,j,tχi,j,t =
1

TN

∑
tn

χ2
i,j,t ≈ µt(χ2

i,j,t) = (µt(χi,j,t))
2(1 + γ(χi,j,t)) = 0 .

(8.39)

The above derivative can then be further simplified, and the intermediate steps
shown in appendix F.2.2, lead to:

∂am,nED = −2λTN(
1

a2
M,nak,l

(
∑

(k,l)∈S

A2
M,m,n,k,l −AM,m,nbk,l

− bm,nAM,k,l + bm,nbk,l)Ψ(·)) (8.40)

= −2λTN(
1

a2
M,nak,l

(
∑

(k,l)∈S

A2
M,m,n,k,l −AM,m,nAM,k,l

+ ((AM,m,n − bm,n)(AM,k,l − bk,l))Ψ(·)) (8.41)

At this point the averaged measurements AM,m,n and AM,k,l are considered as the
temporal expectation values µt(CM,m,n) and µt(CM,k,l). A2

M,m,n,k,l is then by def-
inition the expectation value of the product of these two variables A2

M,m,n,k,l =
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µt(CM,m,nCM,k,l) and combined these two parts form the definition of the covari-
ance cov:

cov(A,B) = µ(AB)− µ(A) · µ(B) (8.42)
cov(CM,m,n, CM,k,l) = µt(CM,m,nCM,k,l)− µt(CM,m,n) · µt(CM,k,l) (8.43)

= A2
M,m,n,k,l −AM,m,n ·AM,k,l . (8.44)

The transformation then continues with:

∂am,nED = −2λTN(
1

a2
M,nak,l

(
∑

(k,l)∈S

A2
M,m,n,k,l −AM,m,nAM,k,l︸ ︷︷ ︸

cov(CM,m,n,CM,k,l)

+ ((AM,m,n − bm,n)(AM,k,l − bk,l))Ψ(·)) (8.45)

= −2λTN(
1

am,n
(

1

am,n

∑
(k,l)∈S

1

ak,l
cov(CM,m,n, CM,k,l)Ψ(|k−m|, |l−n|))

︸ ︷︷ ︸
Υm,n

+
∑

(k,l)∈S

1

am,n
(AM,m,n − bm,n)︸ ︷︷ ︸

Acorr.
M,m,n

1

ak,l
(AM,k,l − bk,l)︸ ︷︷ ︸

Acorr.
M,k,l

Ψ(·)) (8.46)

Υ is a new matrix with its elements defined by the definition of Υm,n given above.
Finally∇{ai,j}EP can be encoded with help of the ∇̂ operator as

∇̂{ai,j}EP = −2λTN((Υ� a) + (Acorr.
M ⊗Acorr.

M ∗HP(L̂,Φ)))� a , (8.47)

and the whole gradient is given by the following expression:(
∇̂{ai,j}(EP + ED)

∇̂{bi,j}(EP + ED)

)

=

(
−2λTN((Υ� a) +Acorr.

M ⊗ (Acorr.
M ∗HP(L̂,Φ)))� a+ 2α(a− µa)

−2λTN(Acorr.
M ∗HP(L̂,Φ))� a+ 2β(b− µb)

)
. (8.48)

The final equation that needs to be solved to find the PRNU and DSNU pattern is
again given as the point where the gradient becomes 0:(
−2λTN((Υ� a) + (Acorr.

M ⊗Acorr.
M ∗HP(L̂,Φ)))� a+ 2α(a− µa)

−2λTN(Acorr.
M ∗HP(L̂,Φ))� a+ 2β(b− µb)

)
= 0 . (8.49)

Including the Weighted Average Improvement: Of course the introduced
method can again be improved with help of the weighted averaged measurements
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and the improved method can be summarized as a solution to the equation:

0 =

(
−2λTN((Υ� a) + (Acorr.

MW
⊗Acorr.

MW
∗HP(L̂,Φ)))� a+ 2α(a− µa)

−2λTN(Acorr.
MW
∗HP(L̂,Φ))� a+ 2β(b− µb)

)
(8.50)

Acorr.
MW

= (AMW
− b)� a (8.51)

AMW ,i,j =
1∑

tn

wi,j,tn

∑
tn

wi,j,tnCM,i,j (8.52)

wi,j,tn =
1

1 + e(C2
M,N(i,j)(tn))

(8.53)

Please be aware that for the calculation of the covariances the weighted averaged
measurements can not be used.

With the given gradient, this equation can be solved by a conjugate gradient
method or any other iterative solver that exploits the gradient. However for this
problem the starting point parameters should be close to the expectation values:
{ai,j} = µa and {bi,j} = µb. Because for too large values of {ai,j} the whole
gradient converges towards 0 as well, which is a trivial and unwanted minimum.
Therefore a solver with a built in save-guard that limits {ai,j} = µa ± nσa and
n = 5 is used to avoid this problem.

8.4. Experiments and Results

8.4.1. Proof of Concept for the Combined Estimation

First results have been conducted with an artificially created nonuniformity, which
has the advantage of showing PRNU image degradations as well. Such PRNU-
based degradations are in general hardly visible with the ground truth PRNU pat-
terns. For the simulation, a Gaussian row-, column-, and pixel-wise DSNU are
added and a Gaussian row-, column-, and pixel-wise PRNU are multiplied. Fig.
8.1 shows the spatial representation of this artificial nonuniformities and due to
the nature of its creation, it obeys perfectly to a Gaussian distribution, also for the
PRNU part.

Fig. 8.2 shows the combined PRNU and DSNU corrections, with hand picked
parameters and the choice of HP = HP(∇,BL). The achieved DSNU correction
percentages reach the combined correction pc,Comb. = 49.02 % and for the PRNU
and DSNU parts pc,PRNU = 39.96 % and pc,DSNU = 66.59 %. These correction per-
formances perform not as well as the optimized parameters, but for a proof of
concept, the visual results of fig. 8.2 show a very good improvement of the im-
age quality, for both degradations, the PRNU-caused and the DSNU-caused. The
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Figure 8.1.: Spatial representation of the artificial nonuniformities.

remaining DSNU and PRNU patterns leave some horizontal and vertical frequen-
cies behind, which is also visible in the spectral damping analysis. Especially for
the PRNU it becomes visible that a damping of the remaining lower frequencies
seems not to be possible without further efforts.

8.4.2. Parameter Search and Best-Case Performance

Method Description
mincomb.(∇, BL) Solution of eq. 8.50 with HP as HP(∇,BL)

mincomb.(∇,MN) Solution of eq. 8.50 with HP as HP(∇,MN)

mincomb.(4,MN) Solution of eq. 8.50 with HP as HP(4,MN)

Table 8.1.: Introduction of used abbreviations for the combined DSNU and PRNU
estimation methods.

As a next step the validation continues with the real nonuniformities of the car
front scenes recorded with the MV1-D1312-160-CL camera described in sec. 4.1.1.
The parameter search for the λ parameter is done on the 25 random and consecu-
tive frame calibration sequences according to sec. 5.3.1.

Method Parameter
mincomb.(∇, BL) 0.06935± (0.02126, 30.65%)

mincomb.(∇,MN) 0.02915± (0.01084, 37.17%)

mincomb.(4,MN) 0.2411± (0.4637, 192.4%)

Table 8.2.: Optimized parameter set for the random frame sequences.

The three realizations of the high pass filter mask are investigated and the used
the abbreviations are shown tab. 8.1 and the resulting optimal parameters are
presented in tab. 8.2 for the random frame sequences and in tab. 8.3 for the con-
secutive frame sequences. Compared to the parameters from the statistic evalu-
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Figure 8.2.: Spatial and spectral performance analysis according to sec. 3.6 for
the combined PRNU and DSNU estimation method, using HP =
HP(∇,BL) and the artificial nonuniformities from fig. 8.1.
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Method Parameter
mincomb.(∇, BL) 1.244± (3.585, 288.2%)

mincomb.(∇,MN) 0.6296± (1.883, 299%)

mincomb.(4,MN) 1.489± (0.9741, 65.43%)

Table 8.3.: Optimized parameter set for the consecutive frame sequences.

ations (tab. 6.1) or weighted statistic evaluations (tab. 7.1), the difference in the
parameters is more than a factor 10. To see the influence of the different parame-
ter choices, the best-case performance analysis is conducted as explained in sec.
5.3.2 (p. 93), including the optimized, the statistic and the weighted statistic pa-
rameters. Additionally to the prior best-case performance analysis, the separation
into the pc,PRNU, pc,DSNU and the pc,Comb. is possible now and will be discussed
below.

Fig. 8.3 shows the best-case performance analysis for the random frame sequences.
The combined maximum likelihood estimation method provides the best perfor-
mances in the combined quality metric in fig. 8.3a , however only for the opti-
mized parameters. For the statistic based parameter set (tab. 6.1), only a nega-
tive performance can be reached. The statistic parameter set that considers the
weighted average (tab. 7.1) reaches a positive performances, but only up to 10 %−
35 % depending on the method. This outcome for the combined performance
pc,Comb. can be analyzed for dependencies on its DSNU and PRNU constituents.
Fig. 8.3b shows the performance of in the pc,DSNU measure. Here the optimized
parameters give again a superior performance for the optimized parameter set
with concern to the reference methods. However, in this measure the weighted
statistic parameter set gives good results as well, by correcting 60 % to 70 % of the
DSNU. These results are very similar to the results shown in sec. 7.2.3 for the
DSNU-only correction. Considering the pc,PRNU performance (fig. 8.3c), the opti-
mized parameters obtain 12 % correction rate for the mincomb.(∇, BL) method and
about 5 % to 7 % for the mincomb.(∇,MN) and mincomb.(4,MN) method. The ref-
erence methods reach only−4 % for the LMSA,7×7 and actually 4 % for the LMSTV
method. However, for all the statistical parameter sets, the PRNU correction re-
sults in large valued negative performances, which as a consequence leads to a
diminished performance of the method if the statistic parameter sets are used. A
possible reason for the bad PRNU performance may be found in the assumption
of Gaussian distributed {ai,j} random variables, which did not fit as well as for
the {bi,j} variables.

The best-case performance analysis for the consecutive frame sequences is shown
in fig. 8.4. In the pc,Comb. measure, the new methods are not able to reach a good
correction performance (see fig. 8.4a). Only the mincomb.(4,MN) method shows
again its stability and achieves pc,Comb. ≈ 30 %, however with large error bars. The
reason for the failure of the methods can be found when separating the PRNU and
DSNU correction performances. For pc,DSNU positive correction rates are achieved
with all analyzed parameter sets (see fig. 8.4b), however the pc,PRNU performance
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Figure 8.3.: The best-case performance analysis for the combined PRNU and
DSNU estimation methods for random frame sequences in the differ-
ent quality metrics.
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Figure 8.4.: The best-case performance analysis for the combined PRNU and
DSNU estimation methods for consecutive frame sequences in the dif-
ferent quality metrics.
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as shown in fig. 8.4c goes beyond the −20 % and was cut. The resulting pc,Comb.

then degrades to the extend shown above. It was already discussed that the con-
secutive frame sequences violate the assumption of independent features which is
believed to be one of the main reasons for the observed performances. However,
the severe degradation of the PRNU correction may be based on the further rea-
sons that the PRNU correction is much more sensitive against parameter changes
and that for the {ai,j} the Gaussian distribution is not the best possible fit.

Concluding, the combined PRNU and DSNU nonuniformity correction method
achieves the best possible correction if random frame sequences are used as input.
For consecutive frame sequences the performance in general decreases and further
discussion and analysis for these type of sequences and the image material with
low valued nonuniformities is presented in sec. 10.1 and sec. 10.2.

8.4.3. Temporal Performance Analysis

The temporal performance analysis was conducted for the methods using the op-
timized parameter set and fig. 8.5 shows the results for random sequence frames.
Considering the pc,Comb.-measure (fig. 8.5a), the mincomb.(∇,MN) method gives
the best results with a statistic significant advance of more than 5 % over the best
reference method LMSA,7×7. The mincomb.(∇, BL) method gives as well a supe-
rior performance over the reference methods, only the mincomb.(4,MN) method
finishes about 5 % below the reference methods. For mincomb.(4,MN), the per-
formance drops mainly after 400 frames which is an effect from the failed PRNU
correction as discussed below.

Fig. 8.5b shows the correction performance pc,DSNU. Here the mincomb.(∇,MN)
method gives a superior performance of 78 %, while the mincomb.(∇, BL) and
mincomb.(4,MN) methods converge to the same results as the LMSA,7×7 reference
method. The analysis of the pc,PRNU is shown in fig. 8.5c and the mincomb.(∇, BL)
and mincomb.(∇,MN) methods show the best performances. However, a better
performance than the reference methods is achieved not until frame number 250
and 350, but after 500 frames the a correction rate of pc,PRNU=9 % is reached, while
the best reference method, the LMSTV , reaches only 4 %.

Only the mincomb.(4,MN) method does not reach up positive correction rates,
which may be surprising as the method achieved about 5 % correction rate in
the best-case performance analysis. The best-case performance analysis represents
however an upper border of the possible performances as discussed before in sec.
5.3.2. The large error bars in the best-case analysis and the parameter search can
therefore be understood as a hint for instabilities of the method against parameter
changes. Fixing the parameters to the values of tab. 8.2 then leads to the general
drop in the performance. As the PRNU estimate is very sensitive, the achieved
performances result in large negative values.
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Figure 8.5.: Methods evaluations with experimental optimized parameters for the
random frame sequences. The used parameters are given in tab. 8.2.
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8.4.4. Spatial and Spectral Performance Analysis

Fig. 8.6 shows the corrected images with the different methods. As expected from
the overall high correction performances, a visual degradation of the images is
not notable (see fig. 3.1c p. 46 for the uncorrected image). In fig. 8.7 however,
the remaining differnces in the DSNU are visible. The temporal evaluations above
showed that the correction performance for the new combined maximium likeli-
hood method is as good as for the DSNU-only corrections and therefore the im-
ages look similar to the ones shown in fig. 7.6 on p.147. Especially for the spec-
tral damping analysis in fig. 8.8, the similarities to the correction performance of
the weighted averaging maximum likelihood method in fig. 7.7 p.149 are visible.
Thus, the comparison towards to the reference methods shows as before a superi-
ority of the new methods with concern to the DSNU correction.

With respect to the PRNU correction, fig. 8.9 shows the remaining {ai,j} coeffi-
cients, where the mincomb.(∇, BL) method gives the visually best impression and
the new methods in general seem to have corrected more of the higher frequency
components. A look onto the spectral damping factors of the PRNU in fig. 8.10 re-
veals, that the overall damping is better for the new methods, as the images have
a slightly lower average gray value. Interesting is that the strongest damping has
occurred for the lower frequencies, which is surprising as the method tends to cor-
rect lower frequencies not as well as the high frequencies. Compare the results of
the PRNU correction in the proof of concept analysis in sec. 8.4.1. Anyway, the
general better damping coefficients show that the new methods are able to correct
even the low valued PRNU better than the reference methods. The only drawback
against the DSNU-only methods is that the statistically derived parameters can
not be used any more, especially with concern to the PRNU correction.

Concluding, the results of the temporal performance analysis confirm that the
combined correction method is more unstable against parameter changes and not
fulfilled demands assumptions on the input data (e.g. consecutive frame input).
The discussed reasons are a misfit of the PRNU to a Gaussian distribution where
a solution could be to tune the alpha parameter as well. In sec. 8.5.5, the separate
tuning of the α, β and λ parameters will be the only possibility to gain reasonable
corrections. But for now, as long as the input data fits the random frame input
assumption, a one dimensional parameter search for λ is sufficient, to achieve su-
perior results over the best reference methods.
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Figure 8.6.: The visual impression of the corrected images with the different meth-
ods for a combined PRNU and DSNU correction in random frame se-
quences.
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Figure 8.7.: The remaining DSNU patterns for the different methods for a com-
bined PRNU and DSNU correction in random frame sequences.
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Figure 8.8.: The spectral damping factors for the DSNU patterns and the different
methods for a combined PRNU and DSNU correction in random frame
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Figure 8.9.: The remaining PRNU patterns for the different methods for a com-
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Figure 8.10.: The spectral damping factors for the PRNU patterns and the differ-
ent methods for a combined PRNU and DSNU correction in random
frame sequences.
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8.5. An Extension to Row and Column Wise Estimation

The discussed parameter instability for the combined DSNU and PRNU estima-
tion method in the last section inhibits the method until now from using theo-
retically statistically derived parameter sets. The theoretical development of the
combined estimation estimation into a row-, and column-, and pixel-wise com-
bined PRNU and DSNU estimation method is possible anyway, in equivalence
to the DSNU-only extension in sec. 7.3. The motivation for this step is as before
a better correction of the visually important row and column wise degradations.
However, the problem with the parameter instabilities becomes even more severe
with this row-, column- and pixel-wise (RCP) extension of the method and could
not be solved in the research of this thesis. This section derives the mathematical
extensions and provides first proof of concept experimental results.

8.5.1. Extending the Mathematical Ansatz

To derive the RCP approach for the combined estimation, the parameters {ai,j}
are decomposed into row-, column-, and pixel-wise components. Due to the mul-
tiplicative nature of the gain factors, the decomposition is multiplicative for the ai,j
variables. The whole derivation follows actually the motivations given in sec. 7.3
for the DSNU decompositions. The row-, column- and pixel-wise offset variables
present as:

bi,j = bcol.,i + brow.,j + bpix.,i,j

and ai,j = acol.,i · arow.,j · apix.,i,j . (8.54)

The energy function of sec. 6.3 stays valid as the resulting random variables {ai,j}
and {bi,j} are not changed. However, the row- and column-wise dependencies
are again only considered implicitly by this approach. The derivation follows
the same track of mathematical transformations, considering the idea of row-,
column- and pixel-wise parameters as in sec. 7.3. With the new variables the
minimization task rewrites as:

arg min(ED + EP)({acol.,i, arow.,j , apix.,i,j , bcol.,i, brow.,j , bpix.,i,j}) (8.55)

with the brackets {·} representing the set for the running indices i, j of the argu-
ment variables.

To execute the minimization, a gradient based iterative solver will be used and
therefore the gradient of the energy function needs to be calculated. By concate-

199



8. Extension to a Combined PRNU and DSNU Estimation

nating the gradient vectors of the different variable types below each other, the
gradient can be expressed as:

∇{acol.,i}(const.+ EP + ED)

∇{arow.,j}(const.+ EP + ED)

∇{apix.,i,j}(const.+ EP + ED)

∇{bcol.,i}(const.+ EP + ED)

∇{brow.,j}(const.+ EP + ED)

∇{bpix.,i,j}(const.+ EP + ED)


=



∇{acol.,i}EP +∇{acol.,i}ED

∇{arow.,j}EP +∇{arow.,j}ED

∇{apix.,i,j}EP +∇{apix.,i,j}ED

∇{bcol.,i}EP +∇{bcol.,i}ED

∇{brow.,j}EP +∇{brow.,j}ED

∇{bpix.,i,j}EP +∇{bpix.,i,j}ED


(8.56)

with: ∇{acol.,i} = (∂acol.,1 . . . ∂acol.,M )T (8.57)

∇{arow.,j} = (∂arow.,1 . . . ∂arow.,N )T (8.58)

∇{apix.,i,j} = (∂apix.,1,1 . . . ∂apix.,1,N , ∂apix.,2,1 . . . ∂apix.,M,N )T (8.59)

∇{bcol.,i} = (∂bcol.,1 . . . ∂bcol.,M )T (8.60)

∇{brow.,j} = (∂brow.,1 . . . ∂brow.,N )T (8.61)

∇{bpix.,i,j} = (∂apix.,1,1 . . . ∂apix.,1,N , ∂apix.,2,1 . . . ∂apix.,M,N )T (8.62)

The gradients for the different energy and variable sets can be calculated sepa-
rately. In total there are the 12 parts of the derivatives: ∇{acol.,i}EP, ∇{acol.,i}ED,,
∇{arow.,j}EP, ∇{arow.,j}ED, ∇{apix.,i,j}EP,∇{apix.,i,j}ED, ∇{bcol.,i}EP, ∇{bcol.,i}ED,
∇{brow.,j}EP, ∇{brow.,j}ED,∇{bpix.,i,j}EP and∇{bpix.,i,j}ED.

8.5.2. Calculating the EP Gradients

For simplicity we start with the derivation for the column type offset parameters
bcol.,m and acol.,m of the EP part of the energy function:

∂bcol.,m(EP) = ∂bcol.,m

(∑
i,j

β (bcol.,i + brow.,j + bpix.,i,j − µb)2

+
∑
i,j

α (acol.,i · arow.,j · apix.,i,j − µa)2

)
(8.63)

= 2β
∑
j

(bcol.,m + brow.,j + bpix.,m,j − µb) (8.64)

= 2β
∑
j

(bi,j − µb) (8.65)

∂acol.,m(EP) = ∂acol.,m

(∑
i,j

β (bcol.,i + brow.,j + bpix.,i,j − µb)2

+
∑
i,j

α (acol.,i · arow.,j · apix.,i,j − µa)2

)
(8.66)
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= 2α
1

acol.,m

∑
j

(acol.,m · arow.,j · apix.,m,j − µa) acol.,m · arow.,j · apix.,m,j

(8.67)

= 2α
1

acol.,m

∑
j

(ai,j − µa) ai,j (8.68)

In the vector notation, all the column offset derivatives can be summarized with
help of the transposed nabla operator. The indices of the vectors can then be omit-
ted:

∇Tacol.EP =

( ∑
Col.wise

2α(a− µa)⊗ a

)
� acol. (8.69)

∇Tbcol.EP =
∑

Col.wise

2β(b− µb) . (8.70)

For the row-wise gradient the same mathematics apply leading to:

∇arow.EP = 2α

( ∑
rowwise

(a− µa)⊗ a

)
� arow. (8.71)

∇brow.EP = 2β
∑

rowwise

(b− µb) . (8.72)

The pixel-wise part of the gradient can as always be expressed over the combined
offsets bi,j and gains ai,j with the ∇̂ operator as

∇̂apix.EP = 2(α(a− µa)⊗ a)� apix (8.73)

∇̂bpix.EP = 2β(b− µb) . (8.74)

8.5.3. Calculating the ∇{bi,j}ED Gradients

The EP part of the gradient is now defined and the next step is the ED part of the
energy. As there are many similarities to the DSNU-only version, we start with
∂bcol.,m(ED):

=∂bcol.,m(
∑
tn

∑
i,j

λ(CM − b− χ)� a⊗ ((CM − b− χ)� a ∗HP(L̂,Φ)) + const.)

(8.75)

=
∑
tn

λ∂bcol.,m

 ∑
(i,j)∈S

1

ai,j
(CM,i,j − bi,j − χi,j)

·
∑

(k,l)∈S

1

ak,l
(CM,k,l − bk,l − χk,l)Ψ(|k − i|, |l − j|)

 (8.76)
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=
∑
tn

λ

(∂bcol.,m
∑

(i,j)∈S

1

ai,j
(CM,i,j − bi,j − χi,j))

∑
(k,l)∈S

1

ak,l
(CM,k,l − bk,l − χk,l)Ψ(·)

+
∑

(i,j)∈S

1

ai,j
(CM,i,j − bi,j − χi,j)(∂bcol.,m

∑
(k,l)∈S

1

ak,l
(CM,k,l − bk,l − χk,l)Ψ(·))


(8.77)

The actual task is now to define the derivatives of the sums, which simplifies to:

∂bcol.,m
∑

(i,j)∈S

1

ai,j
(CM,i,j − bi,j − χi,j) (8.78)

=∂bcol.,m
∑

(i,j)∈S

1

acol.,i · arow.,j · apix.,i,j
(CM,i,j − bcol.,i − brow.,j − bpix.,i,j − χi,j)

(8.79)

=
∑
j

−1

acol.,m · arow.,j · apix.,m,j
=
∑
j

−1

am,j
, (8.80)

and can directly be inserted into the derivative for ∂bcol.,m :

∂bcol.,m(ED) (8.81)

=
∑
tn

λ

∑
j

−1

am,j

∑
(k,l)∈S

1

ak,l
(CM,k,l − bk,l − χk,l)Ψ(|k −m|, |l − j|)

+
∑

(i,j)∈S

(CM,i,j − bi,j − χi,j)
∑
l

−1

am,l
Ψ(|m− i|, |l − j|))

 (8.82)

=2λ
∑
tn

∑
n

−1

am,n

∑
(i,j)∈S

1

ai,j
(CM,i,j − bi,j − χi,j)Ψ(|i−m|, |j − n|)) (8.83)

=− 2λTN
1

TN

∑
tn

∑
n

1

am,n

∑
(i,j)∈S

1

ai,j
(CM,i,j − bi,j − χi,j)Ψ(|i−m|, |j − n|)) (8.84)

=− 2λTN

∑
n

1

am,n

∑
(i,j)∈S

1

ai,j
(AM,i,j − bi,j)︸ ︷︷ ︸

Acorr.
M,i,j

Ψ(|i−m|, |j − n|)) . (8.85)

For the row- and pixel-wise notations, the results are obtained following the same
mathematics, which in are written in matrix notation like:

∇Tbcol.ED = −2λTN

∑
column−wise

(Acorr.
M ∗HP(L̂,Φ))� a (8.86)

∇brow.ED = −2λTN

∑
row−wise

(Acorr.
M ∗HP(L̂,Φ))� a (8.87)
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∇̂bpix.ED = −2λTN(Acorr.
M ∗HP(L̂,Φ))� a . (8.88)

Separated Row- and Column-wise Nonuniformities: As for the DSNU-only
case further simplifications are possible if only column-wise or only row-wise
DSNU is assumed. Eq. 8.54 then compresses to

bi,j = bcol.,i and ai,j = acol.,i (8.89)
or bi,j = brow.,j and ai,j = arow.,j , (8.90)

and the gradients from eq. 8.86 transform into the following one dimensional form
(with the definitions of M and N as the sensor dimensions, see p. 161):

∇Tbcol.ED = −2λTN(AM,col −Mbcol. ∗HPcol.(L̂,Φ)� (Macol.,m) (8.91)

∇brow.ED = −2λTN(AM,row −Nbrow. ∗HP row.(L̂,Φ)� (Narow.,n) . (8.92)

8.5.4. Calculating the ∇{ai,j}ED Gradients

The final step is the derivation against the gain parameters {ai,j}. To start
∂acol.,m(ED) is considered, which has exactly the same mathematical form as eq.
8.35 (p. 182). Therefore the derivation can be followed until the eq. F.17 in the ap-
pendix F.2.2 (p. 351). The wanted derivative can then be expressed by substituting
∂am,n → ∂acol.,m which results in

∂acol.,m(ED) = 2λ
∑
tn

(
(∂am,n

∑
(i,j)∈S

1

ai,j
(CM,i,j − bi,j − χi,j))

·
∑

(k,l)∈S

1

ak,l
(CM,k,l − bk,l − χk,l)Ψ(|k − i|, |l − j|)

)
. (8.93)

The evaluation of the partial derivative on the sum leads to:

∂acol.,m
∑

(i,j)∈S

1

ai,j
(CM,i,j − bi,j − χi,j) (8.94)

=∂acol.,m
∑

(i,j)∈S

1

acol.,i · arow.,j · apix.,i,j
(CM,i,j − bcol.,i − brow.,j − bpix.,i,j − χi,j)

(8.95)

=
∑
j

−arow.,j · apix.,m,j

(acol.,m · arow.,j · apix.,m,j)2
(CM,m,j − bcol.,m − brow.,j − bpix.,m,j − χm,j)

(8.96)

=
−1

acol.,m

∑
j

1

am,j
(CM,m,j − bm,j − χm,j) , (8.97)
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inserted in the above equations it allows the further transformations:

∂acol.,m(ED) =2λ
∑
tn

(
−1

acol.,m

∑
j

1

am,j
(CM,m,j − bm,j − χm,j))

·
∑

(k,l)∈S

1

ak,l
(CM,k,l − bk,l − χk,l)Ψ(|k −m|, |l − j|) (8.98)

=
−1

acol.,m

∑
j

−2λ
∑
tn

(
1

am,j
(CM,m,j − bm,j − χm,j))

·
∑

(k,l)∈S

1

ak,l
(CM,k,l − bk,l − χk,l)Ψ(|k −m|, |l − j|) . (8.99)

Except for the sum
∑

j this equation has the identical mathematical form as eq.
F.17 and therefore all the transformations until eq. 8.46 can be applied using the
substitution ∂am,n → ∂acol.,m and by considering the additional sum:

∂acol.,m(ED) =
−2λTN

acol.,m

∑
j

((
1

am,j

∑
(k,l)∈S

1

ak,l
cov(CM,m,j , CM,k,l)Ψ(·))

︸ ︷︷ ︸
Υm,j

+
∑

(k,l)∈S

1

am,j
(AM,m,j − bm,j)︸ ︷︷ ︸

Acorr.
M,m,j

1

ak,l
(AM,k,l − bk,l)︸ ︷︷ ︸

Acorr.
M,k,l

Ψ(·) (8.100)

Given the matrix notation and the mathematical symmetries, the gradients with
respect to the different gain variables result in the expressions:

∇Tacol.ED = −2λTN

[ ∑
col.−wise

((Υ� a) + (Acorr.
M ⊗Acorr.

M ∗HP(L̂,Φ)))

]
� acol

(8.101)

∇arow.ED = −2λTN

[ ∑
row−wise

((Υ� a) + (Acorr.
M ⊗Acorr.

M ∗HP(L̂,Φ)))

]
� arow

(8.102)

∇̂apix.ED = −2λTN((Υ� a) + (Acorr.
M ⊗Acorr.

M ∗HP(L̂,Φ)))� apix (8.103)

Separated Row- and Column-wise Nonuniformities: Given the special cases
when the gain and offset factors have either only row- or only column-wise com-
ponents, the gradient could be simplified into a one dimensional form. In the
current case for the the {ai,j} gradients, the sum’s in the below equation are not
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collapsing into a one dimensional problem at once, due to the direct coupling of
the gain factors to the measurements AM :

given: bi,j = bcol.,i and ai,j = acol.,i (8.104)

∂acol.,m(ED) =
∑
j

−2λTN(
1

acol.,m
(

1

acol.,m

∑
(k,l)∈S

1

acol.,k
cov(CM,m,j , CM,k,l)Ψ(·))

︸ ︷︷ ︸
Υk,l

+
∑

(k,l)∈S

1

acol.,m
(AM,m,j − bcol.,m)︸ ︷︷ ︸

Acorr.
M,m,j

1

acol.,k
(AM,k,l − bcol.,m)︸ ︷︷ ︸

Acorr.
M,k,l

Ψ(·)

(8.105)

= −2λTN(
1

acol.,m
(

1

acol.,m

∑
(k,l)∈S

1

acol.,k

∑
j

cov(CM,m,j , CM,k,l)Ψ(·))

︸ ︷︷ ︸
Υk,l

+
∑
j

∑
(k,l)∈S

1

acol.,m
(AM,m,j − bcol.,m)︸ ︷︷ ︸

Acorr.
M,m,j

1

acol.,k
(AM,k,l − bcol.,m)︸ ︷︷ ︸

Acorr.
M,k,l

Ψ(·)

(8.106)

The main reason is the multiplicative coupling of the measurements, instead of an
additive coupling. Of course careful assumptions in special cases may allow to
move the

∑
j to the Ψ function, yielding to the same notations as in eq. 8.91 for the

DSNU. However, a generalized way to reduce the problem into a one dimensional
convolution is not possible at the moment.

8.5.5. Solution and a Proof of Concept

The final equations to solve a combined PRNU and DSNU maximum likelihood
estimation with the extended row-, column-, and pixel-wise nonuniformity de-
pendencies is expressed as:

0 =



∇{acol.,i}EP +∇{acol.,i}ED

∇{arow.,j}EP +∇{arow.,j}ED

∇{apix.,i,j}EP +∇{apix.,i,j}ED

∇{bcol.,i}EP +∇{bcol.,i}ED

∇{brow.,j}EP +∇{brow.,j}ED

∇{bpix.,i,j}EP +∇{bpix.,i,j}ED


, (8.107)

where the partial gradients are given by the equations 8.69-8.74, 8.86-8.88 and
8.101-8.103. A typical iterative gradient decent solver is capable of solving this
problem [45], but as start value the offset variables should be close to µb and the
gain variables should be close to µa. As for the combined approach large values of
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{ai,j} lead to a converging solution towards 0, which is a trivial and wrong mini-
mum of the energy function. The gain variables have therefore been safeguarded
in the solver to avoid unnaturally large values. The methods that arise from eq.
8.107 with the different choices of the high pass filter HP can now be evaluated and
the improvements by substituting AM → AMW

are of course applied as well.

First experimental results that engaged in finding an optimal parameter set as
done before did however not succeed in reasonable correction rates. Anyway, a
proof of concept of the new method was possible with the help of the artificial
nonuniformities from sec. 8.4.1. These nonuniformities lead to a severe visual
degradation by each component of the nonuniformity parameters: row-, column-
and pixel-wise offset and gain parameters. In addition to the severe degradation,
not only λ, but also α and β had to be tuned to achieve the results presented below.
This effectively ignores the fixed statistics and the previous knowledge assump-
tions.

The results of the best found parameter set for the choice of HP = HP(∇,BL)
are shown in fig. 8.11 for the row-wise only correction and in fig. 8.12 for the
column-wise only correction. The remaining nonuniformities with their column-
and row-wise preference are clearly visible in the corrected images, and due to
the high amplitude of the nonuniformity, the correction is visible in the remaining
patterns as well. The spectral damping shows the expected line of one pixel width
in the horizontal and vertical direction in fig. 8.11 and in fig. 8.12 for the DSNU
correction. For the PRNU correction an additional damping of a wider stripe of
the frequencies of the orthogonal direction is visible as well. This effect may be
a result of the multiplicative nature of the PRNU and the consequent effects in
the frequency domain. The specific mechanism is to be investigated in further
research and can not yet be given.

Fig. 8.13 finally shows the combined row-, column-, and pixel-wise corrections
where a well corrected image is displayed. The remaining DSNU pattern has still
many high frequencies left, but in the spectral damping analysis, the preference
for a correction of spatial high frequencies is clearly visible. Further, the effects
of the row-, and column-wise specific corrections show up as the typical cross in
the area of remaining low frequency components. The PRNU components as well
left behind many artifacts and here as well the low frequencies are damped less in
the spectral analysis, which is the expected result. On the other hand, much more
of the higher spatial frequency components are not damped and the effects of the
horizontal and vertical corrections are not clearly visible.

Summarizing, the mathematics expressions for the combined DSNU and PRNU
RCP method have been derived, however a solution for the mentioned parameter
instabilities needs to be found before this version of the method can be used in a
reliable way.
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Figure 8.11.: Proof of concept for the row-wise combined PRNU and DSNU cor-
rection
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Figure 8.12.: Proof of concept for the column-wise combined PRNU and DSNU
correction.
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Figure 8.13.: Proof of concept for the combined combined row-, column-, and
pixel-wise PRNU and DSNU correction.
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9. A Mathematical Link to the
Reference Methods

As already mentioned in the chapters 5, 6 and 8, the new new maximum like-
lihood method has some common properties to the LMS method and constant
statistic methods like the dependency on a high pass filter and the usage of tem-
poral averages. This chapter shows how the newly developed methods can be
linked in a mathematical correct way to the LMS and constant statistic methods.
The thereby used assumptions give a deeper understanding of the methods and
help to explain the further results in chapter 10. The contents of this chapter have
been partly published during the research [13].

To repeat, the maximum likelihood estimation method was given in eq. 6.79 as the
solution of the following equation:(

−2λTN ((Υ� a) + (Acorr.
M ⊗Acorr.

M ∗HP(L̂,Φ)))� a+ 2α(a− µa)
−2λTN (Acorr.

M ∗HP(L̂,Φ))� a+ 2β(b− µb)

)
= 0 (9.1)

9.1. A Link to the Constant Statistic Method

The link to the constant statistic method can be formed by two assumptions. First,
a simplified probability distribution of the parameters {ai,j , bi,j} is used and sec-
ond, a simplified HP filter mask is used.

9.1.1. Uniform Probability Densities for DSNU and PRNU

As a first approximation, another model for the occurrence probabilities of the
{ai,j , bi,j} parameters is used. In sec. 6.2.1 and sec. 8.2 the probability densities of
the {ai,j} and {bi,j} parameters were given as Gaussian probability distributions,
which was motivated by measurements of the sensor’s ground truth data.
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9. A Mathematical Link to the Reference Methods

If the ground truth knowledge is not available, the more trivial assumption of a
unity probability distribution can still be made:

bi,j ∼ U(bMin, bMax) (9.2)

with fbi,j (bi,j) =

{ 1
bMax−bMin for bi,j ∈ [bMin, bMax]

0 else
∀(i, j) (9.3)

and ai,j ∼ U(aMin, aMax) (9.4)

with fai,j (ai,j) =

{ 1
aMax−aMin for ai,j ∈ [aMin, aMax]

0 else
∀(i, j) (9.5)

Following the log-likelihood derivation of sec. 6.3, the probability density just
gives a constant value for parameters inside the boundaries [aMin, aMax] and
[bMin, bMax]. The derivative of these constants results as 0. Outside the boundaries,
the negative logarithm converges towards +∞, forming a box energy potential.
When deriving the gradient this jump from a constant to +∞ actually binds the
solution to the given intervals [aMin, aMax] and [bMin, bMax]. This of course can
be implemented in the iterative solver, or embedded into the nonlinear CNN
function from sec. 7.2.

Using this assumption, eq. 9.1 can be rewritten as:

solve:
(
−2λTN ((Υ� a) + (Acorr.

M ⊗Acorr.
M ∗HP(L̂,Φ)))� a

−2λTN (Acorr.
M ∗HP(L̂,Φ))� a

)
= 0 (9.6)

subject to: bi,j ∈ [bMin, bMax] and ai,j ∈ [aMin, aMax] ∀i, j

9.1.2. A Trivial Filter Mask

As a further approximation, the filter mask HP is modified. Especially the choice
of a smaller filter mask may be considered due to large advantages in the resulting
computational efforts. The most trivial approximation of the filter mask is given
as the 1×1 mask

HP = 1 . (9.7)

As a consequence simplifications occur for the components that are connected by
the HP -mask. For the Υ matrix one obtains:∑

(k,l)∈S

1

ak,l
cov(CM,m,n, CM,k,l)Ψ(|m− k|, |n− l|)) (9.8)

=
1

aM,n
cov(CM,m,n, CM,m,n) (9.9)

=
1

aM,n
σ2(CM,m,n) , (9.10)
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9.1. A Link to the Constant Statistic Method

with σ2 as the temporal variance of the measurements. This and the substitution of
HP = 1 can be included into eq. 9.6, which gives the following simplifications:(

−2λTN ((σ2(CM)� a) + (Acorr.
M ⊗Acorr.

M ))� a
−2λTNA

corr.
M � a

)
= 0 (9.11)(

((σ2(CM)� a) + (Acorr.
M ⊗Acorr.

M ))
Acorr.

M

)
= 0 (9.12)(

((σ2(CM)� a) + (Acorr.
M ⊗Acorr.

M ))
1
a(AM − b)

)
= 0 (9.13)(

((σ2(CM)� a) + (Acorr.
M ⊗Acorr.

M ))
AM

)
=

(
0
b

)
(9.14)(

σ2(CM)� a
AM

)
=

(
0
b

)
(9.15)

subject to: bi,j ∈ [bMin, bMax]and ai,j ∈ [aMin, aMax] ∀i, j (9.16)

The last equation σ2(CM)� a = 0 does not have a solution, but if we approximate
its solution for a small ε instead of 0 we obtain:(

σ2(CM)� a
AM

)
=

(
ε
b

)
(9.17)(

σ2(CM)
µ(CM)

)
=

(
aε
b

)
(9.18)

This means that the offset parameters {bi,j} are approximated by the temporal
averaged sensor measurements, which is exactly what eq. 5.1 on p. 80 states for the
constant statistic method. The estimation of the gain factors depends linearly on
the temporal variance of the measurements. Given the additional assumption of
the CS method that the spatial mean of the gain factors should be one (e({ai,j}) =
1), then this result is similar to estimation rule of the constant statistics method.
The only difference is that the gain factors a had been identified with either the
standard deviation or the absolute deviation of the measurements in the final CS
algorithms.

With the assumptions from sec. 9.1.1 and 9.1.2 it is shown that the constant statistic
methods can be regarded as the approximation of a maximum likelihood approach
under the approximations of neglected pixel-to-pixel interactions (HP -mask be-
comes 1) and a uniform distribution of the parameters. Of course these approx-
imations neglect a huge amount of the actually available information. However,
this way of deriving the constant statistic method forms an alternative access to the
CS method and allows to explain its weaknesses from another point of view. This
insight might lead to an improvement of the CS method in further investigations.
For example the weighted averages AMW

could be considered for the estimation
of b.
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9. A Mathematical Link to the Reference Methods

9.2. Approximations towards the LMS Algorithms

Besides the above introduced approximation of the new maximum likelihood ap-
proach into the constant statistic method, the approximation into the LMS type
methods is possible as well. Therefore the assumptions of uniform distributed
parameter sets {ai,j} and {bi,j} from sec. 9.1.1 are used in addition to the here
introduced further assumptions.

9.2.1. Neglecting the Explicit Spatial Sensor-Dependencies

The approximation of the HP -mask as a scalar 1 leads to a total loss of the infor-
mation that is stored in the dependencies of the neighboring light sensors. In the
end, the poor performance of the CS method made clear that this approximation
simplifies too much to achieve the desired correction performance.

A modification to the above approximation can be found by just considering the
individual sensor responses as independent in the transformations made during
the derivation. Of course this is not a good approximation, because the point
spread function of the optics and the sensor responses of typical scenes usually
correlate the responses of neighboring sensors. However, it is possible to specifi-
cally neglect only the correlation in the definition of Υ from eq. 8.41, which will
preserve most of the neighbor dependencies:

∂aM,nED = −2λTN (
1

a2
M,nak,l

(
∑

(k,l)∈S

A2
M,m,n,k,l −AM,m,nAM,k,l︸ ︷︷ ︸

=0 see below.

+ ((AM,m,n − bM,n)(AM,k,l − bk,l))Ψ(·)) (9.19)

we approximateCM,m,n andCM,k,l as independent for this equation ∀(m,n), (k, l):

⇒ AM,m,nAM,k,l = A2
M,m,n,k,l (9.20)

with: µt(CM,m,n) = AM,m,n and µt(CM,k,l) = AM,k,l

because then: µt(CM,m,n, CM,k,l) = µt(CM,k,l) · µt(CM,m,n) (9.21)

As a result the covariance term disappears from the equation and together with
the uniform distribution assumption from eq. 9.6 the equation to solve develops
to: (

((Acorr.
M ⊗Acorr.

M ∗HP(L̂,Φ))

(Acorr.
M ∗HP(L̂,Φ))

)
= 0 . (9.22)
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9.2. Approximations towards the LMS Algorithms

Next, the corresponding gradient in the gain and offset variables can be rewritten
as: (

∇̂{ai,j}(EAppr.)

∇̂{bi,j}(EAppr.)

)
=

(
−2λTN (((Acorr.

M ⊗Acorr.
M ∗HP(L̂,Φ)))� a

−2λTN (Acorr.
M ∗HP(L̂,Φ))� a

)
(9.23)

9.2.2. Approximating the Steepest Descent Solver

Following the maximum likelihood approach of sec. 6, then eq. 9.23 has to be
solved with help of an iterative gradient based solver. Therefore the minimization
of the corresponding energy function EAppr.({ai,j , bi,j}) should be considered to
find further possibilities for simplification:

{ai,j , bi,j} = arg min
{ai,j ,bi,j}

{EAppr.} (9.24)

As a trivial iterative solver, a steepest descent solver can fulfill this task and it can
be expressed as:

{ai,j , bi,j} = arg min
{ai,j ,bi,j}

{EAppr.} (9.25)

⇒ {ai,j , bi,j}n+1 = {ai,j , bi,j}n − εn · ∇EAppr.({ai,j , bi,j}n) n = 0 . . .∞ (9.26)
= {ai,j , bi,j}n − ε · ∇EAppr.({ai,j , bi,j}n) n = 0 . . .∞ . (9.27)

The last equation contains the simplification of εn → ε. While in the typical
solver the step size εn is optimized for each step, a suitable solution can be also
be achieved with a fixed and small step size ε [45], if a slow convergence is ac-
cepted.

The gradient ∇EAppr. was given in eq. 9.23 and the temporal averaging can be
moved in front to allow further transformations:(

∇̂{ai,j}(EAppr.)

∇̂{bi,j}(EAppr.)

)
=


∑
tn

−2λ(((Ccorr.
M ⊗ Ccorr.

M ∗HP(L̂,Φ)))� a∑
tn

−2λ(Ccorr.
M ∗HP(L̂,Φ))� a

 (9.28)

=


∑
tn

∇̂{ai,j}(EAppr.,tn)∑
tn

∇̂{bi,j}(EAppr.,tn)

 , (9.29)

which allows to rewrite the whole gradient as a sum over its temporal sample
points:

∇EAppr.({ai,j , bi,j}n) =
∑
tn

∇EAppr.,tn . (9.30)
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The steepest descent update rule of eq. 9.26 is then expressed by

{ai,j , bi,j}n+1 ={ai,j , bi,j}n − ε
∑
tn

∇EAppr.,tn({ai,j , bi,j}n) (9.31)

= {ai,j , bi,j}n − ε · ∇EAppr.,t1({ai,j , bi,j}n)− ε · ∇EAppr.,t2({ai,j , bi,j}n) . . .︸ ︷︷ ︸
≈{ai,j ,bi,j}n∗

− ε · ∇EAppr.,tn({ai,j , bi,j}n) (9.32)
={ai,j , bi,j}n∗ − ε · ∇EAppr.,tn({ai,j , bi,j}n) , (9.33)

where the defined {ai,j , bi,j}n∗ is the result of the temporally split gradient updates
for the current point {ai,j , bi,j}n. It is now possible to approximate {ai,j , bi,j}n∗ ≈
{ai,j , bi,j}n, if one assumes that the gradient parts from the previous time steps tn
are small in comparison to the gradient part EAppr.,tn({ai,j , bi,j}n). This approx-
imation suggests that most of the new information comes from the actual time
step, which in general is not true, as discussed below. However, such simplified
resulting modified steepest descent solver is the first step to approximate theLMS
methods:

{ai,j , bi,j} = arg min
{ai,j ,bi,j}

{EAppr.} (9.34)

⇒ {ai,j , bi,j}n+1 = {ai,j , bi,j}n∗ − ε · ∇EAppr.,tn({ai,j , bi,j}n) (9.35)

An advantage of this approximation is that only the gradient∇EAppr.,tn({ai,j , bi,j}n)
of the actual frame input is needed which can be calculated just from the actual
frame as shown in the next section.

As already mentioned, this approximation is obviously wrong, as the information
of each frame will influence the gradient and not only the last frame. On the other
hand, for high speed recorded image data, the influence of the highly correlated
older frames can be neglected as it does not provide additional information. The
LMS method will neglect this redundant information which is actually the main
reason why the LMS methods will have their advantage in those applications (see
chap. 10).

9.2.3. Extracting the LMS Update Rules from the Approximation

To finally extract the LMS update rules, eq. 9.29 together with eq. 9.35 gives
the definition of the gradient which results in the following update rules in the
variables a and b:

an+1 = an + 2ελ((Ccorr.
M ⊗ Ccorr.

M ∗HP(L̂,Φ))� a (9.36)

bn+1 = bn + 2λ(Ccorr.
M ∗HP(L̂,Φ))� a . (9.37)
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9.3. Approximation of the Fast Adaptive LMS Algorithms

The definition ofCcorr.
M correspond to theCest of eq. 5.28 and thus only the variable

naming and the �a factors differ. The LMS method uses the variables

wi,j =
1

ai,j,est.
(9.38)

oi,j = − bi,j,est.

ai,j,est.
(9.39)

in their update rules and ignores their dependencies on the physical parameters a
and b. This approximation is only valid in a linear region of ai,j,est. ≈ 1 (as men-
tioned on p. 84f.). The �a terms can therefore be approximated as 1, leading to
identical update rules for the gain and offset correction variables as presented by
the LMS method (compare eq. 5.21 on p. 85 and consider the variable transfor-
mations):

an+1 = an + 2 ελ︸︷︷︸
ε∗

Ccorr.
M ⊗ (Ccorr.

M ∗HP(L̂,Φ)) (9.40)

bn+1 = bn + 2 ελ︸︷︷︸
ε∗

Ccorr.
M ∗HP(L̂,Φ) (9.41)

subject to: bi,j ∈ [bMin, bMax] and ai,j ∈ [aMin, aMax] ∀i, j (9.42)

In the current approximation the additional subject to constrains have to be con-
sidered, which are not mentioned explicitly in the derivation of the LMS method.
However, these subject to constrains however prevent the method’s parameters to
leave their considered scopes, which is an important feature.

Summarizing, the LMS update rules are an approximation of the maximum like-
lihood estimation if the following assumptions are made: Uniform probability dis-
tribution of the parameters {ai,j , bi,j}, neglecting the sensor-wise correlations con-
cerning the measurements, neglecting gradient parts that arise from older informa-
tion and finally, by approximating the gain solution around ai,j,est. = 1. While the
LMS methods provide their HP filter masks from ad-hoc assumptions, the newly
derived filter masks can be used as well as a substitution in further research.

9.3. Approximation of the Fast Adaptive LMS Algorithms

The improvement of the LMS update rules towards the adaptive LMS update
rules differ only by the definition of the step size. For the adaptive LMS method,
the step size changes depending on the sensor measurements: ε∗ → ε∗(CM). In
eq. 9.29 the temporal averaging was exploited to extract the LMS update rules.
This temporal averaging was improved in sec. 7.1 with a weighted averaging,
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motivated by the adaptive LMS methods’ adaptive step size. Using a weighted
temporal averaging in the above deliberations allows to rewrite the gradient to:

(
∇̂{ai,j}(EAppr.)

∇̂{bi,j}(EAppr.)

)
=


∑
tn

wtn∇̂{ai,j}(EAppr.)� (
∑
tn

wtn)∑
tn

wtn∇̂{bi,j}(EAppr.)� (
∑
tn

wtn)

 . (9.43)

Here wtn is the matrix that contains the individual weights for the light sensors at
the point in time tn.

Eq. 9.35 can then be changed with exactly the same motivations as before and
the weight for the actual time step tn remains in the update step, producing an
adaptive step εadapt.:

an+1 = an + 2 ελwtn � (
∑
tn

wtn)︸ ︷︷ ︸
εadapt.

⊗Ccorr.
M ⊗ (Ccorr.

M ∗HP(L̂,Φ)) (9.44)

bn+1 = bn + 2 ελwtn � (
∑
tn

wtn)︸ ︷︷ ︸
εadapt.

⊗Ccorr.
M ∗HP(L̂,Φ) (9.45)

subject to: bi,j ∈ [bMin, bMax] and ai,j ∈ [aMin, aMax] ∀i, j (9.46)

The weight factor wi,j,tn is by now the same as used for the averaging process in
sec. 7.1. However it was mentioned that for actually averaged signals, another
weighing factor should be used than for frame-to-frame based updates. Therefore
the original weights of the adaptive LMS methods from eq. 5.32 p. 87 can be used.
This makes the above eq. 5.35 identical to the original adaptive LMS eq. 5.35 on p.
87 and the mathematical link is completed.

9.4. Summary

This chapter showed the different assumptions that were implicitly made by the
constant statistic and least mean square reference methods. These assumptions
lead to methods that differ from the optimal solution in the newly derived maxi-
mum likelihood approach. With the assumptions it can be explained which part
of the information is neglected by the reference methods, which ultimately leads
to the superior results of the new methods. However, it is also possible now to ex-
plain why the LMS methods reach the good performances for consecutive frame
sequences in the next chapter.

In cases of high speed sequences, the user has now the choice to learn with the
LMS methods a first correction pattern from the correlated frames and use the
maximum likelihood method at a later stage if many uncorrelated frames could
be averaged.
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10. Further Experimental Results and
Limitation

In the recent chapters, the newly developed maximum likelihood methods have
been extended and improved. The results on random frame sequences showed
that the new methods could achieve a superior performance when compared to all
reference methods. However, the additional image material of short, high speed
consecutive frame sequences and the image material recorded by the cameras with
low valued nonuniformities has not yet been fully discussed. Especially the high
speed sequences violate the assumptions made in the derivation of the new meth-
ods and the expected performance loss has already been discussed in the best-case
analysis in the respective sections. These further image materials form a limita-
tion of the superiority of the newly developed methods discussed below. Given
the link between the new methods and the reference methods from chapter 9, the
further insight in the methods’ functionalities can be discussed on the the experi-
mental results.

This chapter discusses at first the performances for the consecutive frame se-
quences, followed by the evaluations for the low valued nonuniformity image
material.

10.1. Results for the Consecutive Frame Sequences

The consecutive sequences that were introduced in sec. 4.1.1 are recorded with
the photonfocus MV1-D1312-160-CL camera that has the high valued DSNU of
≈ 50 DN at 12 bit resolution. The recorded sequence lengths were 500 frames
with and the recording rate was 100 fps. The following analysis will show that the
new maximum likelihood methods still give a reasonable correction performance
despite the fact that the demand for independent input frames is not fulfilled. The
reference methods have however the advantage of neglecting the dependencies of
the input data by the frame-to-frame update strategy, which results in improved
performances.

10.1.1. Analysis of the Reference Methods

Resuming the best-case performance analysis of sec. 5.3.2 (p.93) it is already
shown that the new methods decrease in their correction performances for the
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10. Further Experimental Results and Limitation

consecutive frame sequences. The temporal correction performance gives how-
ever a better impression as the parameters are fixed, like in the real applications.
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(b) CS and CSG evaluations in the pc,Comb. metric for 1000 consecutive frames

Figure 10.1.: Temporal performance analysis for consecutive frame sequences of
500 and 1000 frame length of the CS and CSG methods.

Fig. 10.1 shows the correction performance for the constant statistics methods, CS
and CSG, in the pc,Comb. quality measure. As expected from their previous perfor-
mances, the CS and CSG methods are not able to reach a positive correction rate
for neither 500 nor 1000 frame sequences. Similar to the random frame sequences,
the performance increases drastically for the longer 1000 frame sequences, where
both methods reach similar (negative) performances. This similar performance
proves also that the gating threshold does not lead to significant improvements
with the reasons discussed in sec. 5.1. The same arguments also repeat for the
effect of the gated adaptive LMS methods, which do not show any significant dif-
ference to their non-gated equivalent methods (see fig. 10.2).

For the other LMS type methods the behavior is shown in fig. 10.3a-10.3c where
the correction rate is measured in the combined quality norm pc,Comb. and the ef-
fect separated quality norms pc,DSNU and pc,PRNU. In the pc,Comb.-norm the LMSTV
method shows the best performance of the compared methods and the LMSA,7×7

method follows directly. The same behavior is observed in the pc,DSNU and the
pc,PRNU norm. However a positive correction rate for the PRNU is reached by no
method. In general, the overall reached performance for the consecutive frame se-
quences is 5% behind the performance that has been reached with random frame
sequences, especially in the important pc,DSNU norm.
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Figure 10.2.: Comparison between the gated adaptive and the adaptive LMS meth-
ods in the pc,Combined quality metric for consecutive frame sequences.
The differences between the two methods is not notable, as only 2
plot lines are separable.
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(b) Evaluation for the pc,DSNU metric.
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(c) Evaluation for the pc,PRNU metric.

Figure 10.3.: The LMS methods’ evaluations for the different metrics with consec-
utive frame sequences as input. Parameter set according to tab. 5.3.

221



10. Further Experimental Results and Limitation

For completeness the performances with the literature presented parameter set is
shown in fig. 10.4 and results in a decreased performance for consecutive frame
sequences, as expected. Only LMSTV reaches a good performance with the litera-
ture parameters, but for this method an optimized parameter set is demanded and
the method therefore serves only as a reference in the plot.
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Figure 10.4.: The LMS methods evaluations for the pc,Comb. metric with the litera-
ture parameter set from tab. 5.4 and consecutive frame sequences as
input.

Spatial and Spectral Performance Analysis

The visual quality of the corrections is shown in fig. 10.5 while the ground truth
corrected image is shown in fig. 5.16c on p.102 or in the following comparative
evaluations. The visual corrections for the CS and CSG method show a severe
deterioration of the images, which did not occur for random frame inputs.

In the group of the LMS-type methods, LMS 3×3 and LMS 7×7 show high frequency
degradations while the adaptive methods LMSA,3×3 and LMSA,7×7 show only one
immediate visible artifact, which is located on the street below the feet of the
woman. The LMSGA,7×7 method is also shown and as expected and discussed,
this method gives no difference to the LMSA,7×7 method. Finally the LMSTV
method gives a visually similar impression as the adaptive LMS methods, which
is not surprising as this method uses as well a high pass filter with an adaptive
step size, however with different realizations.

Fig. 10.6 shows the remaining PRNU factors, and CS and CSG leave remains
with high amplitudes. The LMS-type methods on the other hand show almost
no corrections and leave remains with spatial high frequency components. The
remaining DSNU patterns are shown in 10.7 and for the CS and CSG methods the
pattern shows huge amplitudes, while the LMS-type algorithms give the typical
low amplitude remains. However, the pure LMS methods, LMS 3×3 and LMS 7×7,
did not succeed in correcting the spectral high frequency components completely,
while their adaptive equivalents, including the LMSTV method, succeed in this
task.

The spectral damping properties of the methods are shown in fig. 10.8 for the
PRNU and in fig. 10.9 for the DSNU. For the PRNU there is as expected no special-
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Figure 10.5.: Visual correction performance of the introduced methods for consec-
utive frame sequences of 500 frames length, using the parameter set
of tab. 5.3.
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Figure 10.6.: Remaining PRNU patterns for the introduced methods for consecu-
tive frame sequences of 500 frames length, using the parameter set of
tab. 5.3.
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Figure 10.7.: Remaining DSNU patterns for the introduced methodsfor consecu-
tive frame sequences of 500 frames length, using the parameter set of
tab. 5.3.
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Figure 10.8.: Analysis of the spectral damping factors for consecutive frame se-
quences of 500 frames length, using the parameter set of tab.5.3.
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Figure 10.9.: Analysis of the spectral damping factors for consecutive frame se-
quences of 500 frames length, using the parameter set of tab. 5.3.
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ized spectral damping visible, and the differences in the methods show up mainly
in the DSNU analysis. Here the CS method provides an actually good damp-
ing in the spatial high frequencies while the improved CSG method does reach
such a large spectral damping. However, given the corrected images both meth-
ods cannot keep up with the LMS methods. The pure LMS methods, especially
the LMS 3×3 method, cannot correct the spatial high frequency components, while
the more advanced methods like the LMSA,3×3 and LMSA,7×7 correct these high
frequency components much better. Especially the LMSA,7×7 and LMSTV meth-
ods provide the best correction performances for these spectral high frequencies.
The LMSGA,7×7 method does not show a difference to its LMSA,7×7 equivalent, as
expected.

Given these evaluations, the LMSA,7×7 and the LMSTV methods are still the best
reference methods.

10.1.2. Analysis for the Weighted Average Improvement

With consideration to the new maximum likelihood methods, it has already been
discussed in sec. 6.4.1 that the basic method does not keep up to the reference
methods. The results of this intermediate step in the development are therefore
skipped. The improved methods that consider the weighted average of the mea-
surements as input have already been discussed in sec. 7.1.3 and showed perfor-
mance decreases for the consecutive frame sequences. However, in the best-case
performance analysis the methods still keep up with the reference methods. For
the parameters that are extracted from the statistics, the non-weighted statistics
from tab. 6.1 showed the best results in the case of consecutive frame sequences,
while the parameters that extract from the weighted statistics lead to significantly
worse performances. This result has been discussed as a logical consequence of the
strong data dependencies in case of consecutive frame sequences. The weighted
averaging will lead in these scenarios to an unwanted bias of the weighted statis-
tics.

To analyze the performance of the improved methods, the optimized best-case pa-
rameter set and the statistic parameter set are used in a temporal evaluation of the
methods (see fig. 10.10). The figure shows that the new methods can not keep up
to the reference methods when their parameters are fixed, however this is possi-
ble in the best-case analysis (see fig. 7.3, p. 142). The figure also shows that the
minwA(∇, BL) method outperforms the reference methods on the first few frames,
but after 500 frames all the new methods do not even reach the reference methods
with their upper error bars (realized as the 70% percentil). Surprisingly for the
statistic parameter set, the minwA(4,MN) method performs better than for the
best-case parameter set (see fig. 10.10a). The minwA(∇, BL) and minwA(∇,MN)
methods however perform slightly worse, which is the expected behavior (see fig.
10.10b). The reason for the untypical behavior of the minwA(4,MN) method is a
parameter instability of this method for the very optimized parameters. If in the
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underlying optimization the best possible parameters per sequence are not sta-
ble in their performances then another non-optimal parameter can result in better
performances, even if it is fixed. In case of the minwA(4,MN) method, this more
stable parameter is the one extracted from the statistics.

This result on the one hand shows that the statistic parameters and the minwA(4,MN)
method are both more stable with respect to a violation of the independent feature
constraint. On the other hand, none of the new methods can reach an overlap of
the error bars with the reference methods.
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(a) Opt. Consec (tab. 7.4)
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Figure 10.10.: Evaluations for consecutive frame sequences with experimentally
optimized parameters (fig. 7.4a) and the parameter set from the
statistic histogram (fig. 7.4b) in the pc,DSNU metric.

Fig. 10.11 shows the visual impression of the corrected images by the different
methods in comparison to the ground truth corrected version. A visual difference
between the new methods is not detectable, but all of them show the same artifact
in the window of the bus, which presents as slight horizontal stripes. The reference
methods, show this artifact as well but with much less amplitude. While this
artifact is visible in all methods, the already discussed artifact below the feet of
the woman in front of the bus is not visible in the new developed methods. As
the analyzed sequence is only one of many possible choices, the only generalized
conclusion that can be made is that the reached correction rates of 70% or less may
not be sufficient to suppress artifacts in the current setup.
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Figure 10.11.: Corrected images with the ground truth correction patterns and the
estimate of the different methods for consecutive frame sequences
(Parameters according to tab. 7.3).
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Fig. 10.12 and fig. 10.13 show the remaining DSNU patterns and the according
spectral damping factors. The remaining DSNU shows in general a low ampli-
tude and spatial low frequency remainders. The origin of the stripe-like artifact
is also visible as an area of a higher amplitude in the upper parts of the sensor.
The remaining patterns reaches here the scale limit of 20 DN in these areas. This
observation is also true for the LMSA,7×7 method and the artifact in the lower left
corner of the images, while for the LMSTV method the artifact is not that high in
amplitude, but still visible. The spectral damping shows the expected behavior of
a good damping of the high frequency components, however the minwA(∇,MN)
method has the known problem with the corner frequency components. This phe-
nomenon was already observed for the RCP-type extension in sec. 7.3.3 and arises
due to the design of the filter mask of this method (compare fig. 6.2b, p. 123). The
spectral damping anaylsis summarizes by the observations that the new methods
provide in general a better damping in the lower frequencies, but the reference
methods are able to damp the important higher frequency components better.

Concluding, as the disadvantages and advantages of the methods have been dis-
cussed, the best reference methods seem to have a slight advance over the im-
proved maximum likelihood methods. This advantage arises from the fact that
these methods perform their updates on a frame-to-frame basis, that does not con-
sider the information of older frames. The new methods however include the
knowledge of the old frames which leads to a biased consideration of the repeated
information. On the other hand, for longer sequences or random frame input,
this consideration of all available information leads to the advantage of the new
methods in the discussed scenarios.
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Figure 10.12.: Remaining DSNU patterns for the introduced methods and consec-
utive frame sequences (Parameters according to tab. 7.3).
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Figure 10.13.: Spectral damping factors for the introduced methods and consecu-
tive frame sequences (Parameters according to tab. 7.3).
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10.1.3. Analysis of the CNN-type Methods

For the CNN-type maximum likelihood methods the best-case performances for
consecutive frame sequences have already been discussed in sec. 7.2.3 p. 154
and showed again a performance decrease in comparison to the random frame
sequences. However, this best-case analysis showed in fig. 7.8 that the CNN-type
methods overlap significantly in their error bars with the reference methods, even
for consecutive frame input.

Given the optimized parameter set for the CNN methods and consecutive frames,
fig. 10.14 shows that the reference methods outperform the CNN methods. Thus
the nonlinear function f(·) of the CNN does not help to improve the perfor-
mance as much as observed in the case of random frame input. Anyway, the
CNN(4,MN) method still gains a performance increase that leads to a signifi-
cant overlap of the error bars of of the CNN(4,MN) method and the reference
methods. As discussed before, the CNN methods rely on the energy minimization
methods and for the random frame input, the CNN methods did outperform their
energy minimizer equivalents. Fig. 10.15 shows that for the consecutive frame
sequences this is only the case for the CNN(4,MN) method. This proves again
that the choice of L̂ = 4 is more stable against the violation of the demanded
independent frame input than the∇ choice.

Given the visual impression of the corrected images, fig. 10.16 shows that the CNN
methods again corrects successfully the artifact below the feet of the woman. The
artifacts in the window of the bus are still visible, but seem a bit more damped
when compared to fig. 10.11. This observation can be confirmed by fig. 10.17
which shows the remaining DSNU patterns. In general less spatial high frequency
components are visible but the strong patterns in the upper part of the sensor are
still there (see fig. 10.12 to compare). However, CNN(4,MN) shows less ampli-
tude in its remains and CNN(∇,MN) does not show the remaining corner fre-
quency components. These improvements are also visible for the spectral damp-
ing factors as depicted in fig. 10.18 where much more of the higher frequency com-
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Figure 10.14.: Methods evaluations with experimental optimized parameters (tab.
7.6) for the pc,DSNU metric and consecutive frame sequences as input

234



10.1. Results for the Consecutive Frame Sequences

0 100 200 300 400 500

50

60

70

Frame Number

p
c
,D

S
N
U

CNN(∇, BL) CNN(∇,MN) CNN(4,MN)

minwA(∇, BL) minwA(∇,MN) minwA(4,MN)

Figure 10.15.: Comparison between the CNN variants and the improved max-
imum likelihood methods in the pc,DSNU metric for consecutive
frame sequences. The optimized parameters for the CNN method
(Opt. CNN Consec (tab. 7.7)) and the improved energy minimizers
(Weighted Stat. (tab. 7.1)) have been used.

ponents are damped in comparison to fig. 10.13. However, the reference methods
are still able to damp slightly more of the spatial high frequency components. Con-
cluding, the CNN methods correct the DSNU to some extend and especially the
CNN(4,MN) method showed a performance that is close to one of the reference
methods.
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Figure 10.16.: Corrected images of the introduced methods for consecutive frame
sequences (Parameters according to tab. 7.6)
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Figure 10.17.: Remaining DSNU patterns for the introduced methods and consec-
utive frame sequences (Parameters according to tab. 7.6)
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Figure 10.18.: Spectral damping factors for the introduced methods and consecu-
tive frame sequences (Parameters according to tab. 7.6)
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10.1.4. Analysis of the Row-, Column- and Pixel-Wise Extensions

Given the row-, column- and pixel-wise (RCP) extension of the maximum like-
lihood approach their best-case performance for consecutive frame input has al-
ready been discussed in sec. 7.3.3. The general observed performance decrease for
consecutive frame sequences, the RCP-methods were able to keep up to the refer-
ence methods in the best-case evaluations. This is common to the other analyzed
methods in this chapter. However, the weighted statistic parameter set showed
again as not suitable for consecutive frame sequences and the non-weighted statis-
tic parameter set has to be used. The reasons for this have already been discussed
in sec. 10.1.2 and 7.1.3.

The evaluations for the fixed parameter sets and consecutive frame input se-
quences give results that do not reach the performances of the reference methods
and show a similar performance as the improved maximum likelihood methods
in sec. 10.1.2 above (see fig. 10.19a for the optimized parameter results and fig.
10.19b for the statistic parameter results of the RCP methods). While the perfor-
mances of the RCP methods are similar in their averages, the statistic parameters
produce much smaller error bars. This confirms the statement made above in sec.
10.1.2 that the theoretical parameters provide more stable results than the average
of the per sequence optimized parameters.

The RCP methods provide the corrected images shown in fig. 10.20, that show
a further improved correction of the artifact in the window of the bus, while
the artifact below the feed of the woman is not visible either. However for the
minRCP(∇, BL) and the minRCP(∇,MN) methods a new vertical low frequency
artifact shows up around the position where the number 699 is written on the
bus. This artifact is not visible for the minRCP(4,MN) method, which therefore
expresses several high amplitude low-frequency artifacts over the whole sensor
area. For the minRCP(∇,MN) method one can further observe a high amplitude
spatial high frequency pattern in the corrected image.

All these effects are of course more clearly visible in the remaining DSNU pat-
terns in fig. 10.21, where especially the high amplitude vertical artifact in the
minRCP(∇, BL) and the minRCP(∇,MN) methods and the spatial high frequency
overlay of the minRCP(∇,MN) are the most remarkable properties. For the
minRCP(4,MN) method only unconnected patches with spatial low frequency
components are visible, which shows that the additional row- and column-wise
correction have the most effects for this method. The mentioned effects are visible
as well in the spectral damping analysis in fig. 10.22. Here the white corners
for the minRCP(∇,MN) method’s high frequency components show up clearly,
which are the result of the high pass filter design as already discussed in sec.
10.1.2 and 7.3.3. For the minRCP(∇,MN) method a good correction of the row-
and column-wise components is visible as the dark incisions in the white area
of not well damped low frequency components. In general the remaining spatial
frequency components cover a much wider area as those of the reference methods.
Concluding, for consecutive frame input, only the minRCP(4,MN) method can be
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recommended, and only if the higher amplitude in the the remaining spatial low
frequency pattern is of no concern. Again the choice of L̂=4 gives the best results
and is therefore the most reliable method for consecutive frame sequences.
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(a) Parameter set: Opt. RCP Consec (tab. 7.10)
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(b) Parameter set: Stat. Params (tab. 6.1)

Figure 10.19.: Evaluations for consecutive frame sequences with experimentally
optimized parameters (fig. 7.17a) and the parameter set from the
non-weighted histogram (fig. 7.17b) in the pc,DSNU metric.
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Figure 10.20.: Corrected images of the introduced methods for consecutive frame
sequences (Parameters according to tab. 7.7)
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Figure 10.21.: Remaining DSNU patterns for the introduced methods and consec-
utive frame sequences (Parameters according to tab. 7.7)
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Figure 10.22.: Spectral damping factors for the introduced methods and consecu-
tive frame sequences (Parameters according to tab. 7.7)
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10.1.5. Analysis of the Combined PRNU and DSNU Method

The last method to discuss is the combined PRNU and DSNU estimation method
as introduced in chapter 8. The discussion of the best-case performance has been
done in sec. 8.4.2 and it has been shown in fig. 8.4 that the new methods do not
perform well for consecutive frame input because of a failure in the PRNU part
of the method. Only the mincomb.(4,MN)-method results in a significant positive
correction rate in the pc,Comb. measure. The temporal analysis with the optimized
parameters for consecutive frame input is now shown in fig. 10.23 and confirms
the results of the best-case analysis. Only mincomb.(4,MN) achieves a positive
correction rate for the pc,Comb. (The same is observed for the pc,DSNU-norm). With
respect to pc,PRNU, the mincomb.(∇, BL) method achieves a similar performance as
the mincomb.(4,MN) method of ≈ −100%, while the mincomb.(∇,MN) method
does not show on the scale due to even worse correction rates.

The DSNU and PRNU performances can of course not be regarded as independent
any more and errors in the PRNU estimation are covered by adapted DSNU pa-
rameters in the final visual impressions. This can be observed in fig. 10.24 where
a visually pleasing correction of the combined method shows up and only the
typical artifact in the window of the bus can be seen. However, given the remain-
ing DSNU pattern in fig. 10.25, the mincomb.(∇, BL) and mincomb.(∇,MN) meth-
ods show a high amplitude in their remains. Only the mincomb.(4,MN) method
shows a remaining pattern that is comparable to the reference methods, but even
this still shows a significantly higher amplitude, which explains why this method
did not reach the reference methods’ performances. The analysis of the spectral
damping factors in fig. 10.26 then reveals that all of the new combined methods
were able to correct the spatial high frequencies, which is the reason why a visu-
ally pleasant corrected image is achieved. The remaining frequency components
are however not limited on spatial low frequencies and further show a strong ver-
tical and noticeable horizontal remainder.

The remaining PRNU patterns do not give any insight of the methods function-
ality and mainly reveal the failure to correct successfully for the PRNU (see fig.
10.27), the same applies for the spectral damping analysis which shows a slight
advantage over the reverence methods by an increased damping of the spatial
low frequencies (see fig. 10.28).

Summarized, the combined estimation method struggles more than the DSNU-
only methods to correct for consecutive frame input. However, it still leads to a
visually pleasant correction, as discussed.
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Figure 10.23.: Methods evaluations with the optimized parameters for the com-
bined PRNU and DSNU estimation method in the quality norms
pc,Comb., pc,DSNU and pc,PRNU using the optimized parameters from
tab. 8.3.
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Figure 10.24.: The visual impression of the corrected images with the different
methods for a combined PRNU and DSNU correction in random
frame sequences.
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bined PRNU and DSNU correction in random frame sequences.
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(e) ŝspectr.,DSNU,µ,ν for LMSTV

Figure 10.26.: The spectral damping factors for the DSNU patterns and the differ-
ent methods for a combined PRNU and DSNU correction in random
frame sequences.
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Figure 10.27.: The remaining PRNU patterns for the different methods for a com-
bined PRNU and DSNU correction in random frame sequences.
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Figure 10.28.: The spectral damping factors for the PRNU patterns and the differ-
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10.1.6. Intermediate Conclusion

The above experimental results showed that the violation of the independent
frame input results in a performance decrease for the new methods compared
to the best reference methods. For most realizations of the maximum likelihood
methods the theoretically obtained parameters still lead to a visually comparable
correction quality, combined with a good stability of these results, especially for
the parameters that result from the histogram extraction.

To mention is as well that the used consecutive frame sequences pose a very spe-
cial case of being short (500 frames only) and recorded with a high speed frame
rate of 100 Hz. For longer sequences the dependency of the averaged measured
information will play a less important role, as already discussed in sec. 6.2.2 and
the new proposed methods might then be able to outperform the reference meth-
ods.

10.2. Behavior For Low Valued Nonuniformities

The above used results have been obtained by using image material that was
recorded with the MV1-D1312 camera, which has a DSNU of ≈ 50 DN. This of
course raises the question, how the methods perform if they are presented with
images that were recorded with the other camera types of sec. 4.3, which in gen-
eral show a low valued nonuniformity (e.g. a DSNU of about 1 DN to 2 DN only).
The recorded sequences with the other cameras were recorded by camera panning
with a slow frame rate of 20 Hz of the scene L600a in HD, and form an interme-
diate stage between the above used high speed sequences and the random frame
sequences. Furthermore the sequences have been recorded with different temper-
atures and exposure time setups which will show that the algorithms work under
a change of these parameters as well.

10.2.1. Analysis of the Reference Methods

To start, the analysis of the reference methods is needed and first results showed
that the previously found parameter sets for random and consecutive frame se-
quences lead to a degradation of the image quality instead of an improvement
(see fig. 10.29-10.31). This is not surprising as the frame rate and therefore as well
the correlation between two consecutive frames is different in these sequences. To
see if the methods can contribute at all to a correction at this low degradations,
a further parameter search was conducted which included only the sequences of
the L600a in HD scene and excluded the recordings of the MV1-D1312 camera.
This found low nonuniformity optimized parameter set is shown in tab. 10.1 and
is a compromise for all the different cameras, temperatures and exposure times
mentioned in sec. 4.
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Method Parameter
CSG 86.25± (124.1, 143.9%)

LMS 3×3 0.001866± (0.001894, 101.5%)

LMS 7×7 0.000945± (0.0009802, 103.7%)

LMSA,3×3 0.02543± (0.01218, 47.9%)

LMSA,7×7 0.02513± (0.0122, 48.54%)

LMSGA,3×3 84.3± (306.3, 363.3%)

LMSGA,7×7 38.87± (139.9, 359.9%)

LMSTV 0.04622± (0.02533, 54.81%)

Table 10.1.: Results of a parameter search to optimize the literature methods for
low valued nonuniformities
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Figure 10.29.: Best-case Performance with respect to the pc,Comb. quality metric for
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cameras with low nonuniformities
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Figure 10.31.: Best-case Performance with respect to the pc,PRNU quality metric for
cameras with low nonuniformities

Fig. 10.29 shows the best-case performance analysis for this low nonuniformity
sequences for the pc,Comb.-norn. It can be seen that a positive correction rate is
possible with the optimized parameter set. The proposed parameter set from lit-
erature is able to prevent a degradation for the LMSA,3×3 and LMSA,7×7 methods.
These results already show that the choice of the correct parameter seems to be a
very critical point for this evaluation and slightly wrong parameters immediately
lead to a severe loss of performance or even a degradation of the image quality.
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Figure 10.32.: Evaluation for the Basler A602f with texp.=1ms @ 22◦C

The temporal analysis gives more insight into this phenomenon and the specificity
of the parameter set. As there are many evaluations with different exposure times
and temperatures, only the most extreme sets are shown here. Fig. 10.32 and
10.33 show the evaluation for the Basler A602f camera for texp. = 1ms @ 22◦C and
texp. = 10ms @ 50◦C. At the lower temperatures the LMS 3×3 and LMS 7×7 method
achieve slightly negative correction rates, while the other methods do actually
not reach a performance of 10%. For the higher temperatures, correction rates of
10 % to 15 % are possible.

Fig. 10.34 and 10.35 show the temporal evaluation for the MV-640-66-CL camera
for texp. = 5ms @ 25◦C and texp. = 10ms @ 50◦C. At the low temperatures the pa-
rameters seem to be a misfit to the specific sequence or camera type. Only the
LMS 3×3 and LMS 7×7 methods achieve a stable, positive correction rate. At higher
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Figure 10.33.: Temporal evaluation for the Basler A602f with texp.=10ms @ 50◦C
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Figure 10.34.: Evaluation for the MV-640-66-CL with texp.=5ms @ 25◦C
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Figure 10.35.: Evaluation for the MV-640-66-CL with texp.=10ms @ 50◦C
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10.2. Behavior For Low Valued Nonuniformities

temperatures, the results resemble those of the A602f camera for the higher tem-
peratures of texp.=10ms @ 50◦C. The other evaluated temperatures and and ex-
posure times showed a similar behavior that suggests a very parameter specific
performance. Their evaluations are shown in appendix G.1 and some methods
reach higher correction rates than shown in these sample evaluations.

To select a set of comparing methods, the spatial and spectral performance analy-
sis are necessary. A severe visual degradation of the images is not expected as the
nonuniformities have effects of only 1 DN to 2 DN. Fig. 10.36 shows an example of
the corrected images using the optimized parameters and the sequence A602f-6a
from tab.4.4 (p.70) A visual difference between the corrected images is not recog-
nizable. The remaining PRNU patterns in fig. 10.37 shows a partly good correction
towards the center of the sensor, except for the CS and CSG methods which pro-
vide high amplitude remains over the whole image. Further, all methods seem to
leave spatial high frequency components uncorrected. For the remaining DSNU
patterns, the CS and CSG methods again provide high amplitude remains, while
the LMS-type methods give the impression that some of the spatial high frequen-
cies have been corrected (see fig. 10.38).

The above results can be confirmed by the analysis of the spectral damping fac-
tors. Fig. 10.39 shows the analysis for the PRNU correction, where the LMS-type
methods correct spatial low frequencies around the center and the corrections
hardly differ between the methods. The DSNU spectral damping is presented by
fig. 10.40 and here the differences between the methods can be observed. Espe-
cially the LMSA,3×3 method gives a good damping in the spatial high frequencies.
The LMSA,7×7 method damps even further low frequency components, however it
does not reach the damping in the higher frequencies the LMSA,3×3 method does.
The gated adaptive version LMSGA,7×7 however fails to provide an improved cor-
rection, which has the same reasons as discussed before for this type of method.

Of course these results are specific for the one selected sequence, but in general the
observations are valid for the other methods as well, if a positive correction rate is
achieved.
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Figure 10.36.: Corrected images by the reference methods for sequences with low
valued nonuniformities (Parameter set according to tab. 10.1).
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Figure 10.37.: Remaining PRNU pattern for the reference methods for sequences
with low valued nonuniformities (Parameter set according to tab.
10.1).
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Figure 10.38.: Remaining DSNU pattern for the reference methods for sequences
with low valued nonuniformities (Parameter set according to tab.
10.1).
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(a) ŝspectr.,PRNU,µ,ν for CS

0

0.1

0.2
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Figure 10.39.: Spectral damping coefficients for PRNU and the reference methods
for sequences with low valued nonuniformities (Parameter set ac-
cording to tab. 10.1).
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(b) ŝspectr.,DSNU,µ,ν for CSG

0

0.1

0.2
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(g) ŝspectr.,DSNU,µ,ν for LMSGA,7×7

0

0.1

0.2
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Figure 10.40.: Spectral damping coefficients for DSNU and the reference methods
for sequences with low valued nonuniformities (Parameter set ac-
cording to tab. 10.1).
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10.2.2. Analysis of the DSNU Maximum Likelihood Method

With concern to the maximum likelihood methods, a new parameter search for
these methods is conducted and the resulting optimized parameter set for the low
valued nonuniformities and is presented in tab. 10.3. The extraction of the statistic
parameters as already introduced in sec. 6.2.3 leads to new histograms for the
new image material which are shown in fig. 10.41. The obtained parameter set is
presented in tab. 10.2 and differs from the set obtained for the MV1-1312 camera
statistics (see tab. 6.1 on page p. 121).
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Figure 10.41.: Histograms of the differnent Fi,j,tn realizations for the image mate-
rial with the low valued nonuniformities.

Method Parameter
min(∇, BL) 8.831 · 10−5

min(∇,MN) 0.0001466

min(4,MN) 7.928 · 10−5

Table 10.2.: Results of a parameter evaluations from the statistics for low valued
nonuniformities

Method Parameter
min(∇, BL) 0.000343± (0.0004985, 145.3%)

min(∇,MN) 0.0006452± (0.0009839, 152.5%)

min(4,MN) 0.0003371± (0.0005028, 149.2%)

Table 10.3.: Results of a parameter search to optimize the new methods for low
valued nonuniformities

The best-case performances for all the available parameter sets is shown in fig.
10.42. To be able to compare all the methods’ performances against the reference
methods, the performance of the LMSA,7×7 and LMSTV methods are included
into the plot and the new DSNU correction methods perform around 5 % to 10 %
lower than the reference methods. At least the new methods are able to produce
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Figure 10.42.: Best-case performance with respect to the pc,DSNU quality metric for
cameras with low nonuniformities

a positive correction rate for the non-optimal parameter sets, while the reference
methods tend to achieve only negative correction rates if the parameters do not fit
(see in fig. 10.30). The temporal evaluations for this very first maximum likelihood
approach are skipped, as already the best case performances could not reach the
reference methods.

For the visual correction performance, a degradation of the corrected images is not
expected and fig. 10.43 confirms this. Actually there is no perception of a visual
difference between the ground truth corrected images and the corrected images by
the different methods possible. The remaining DSNU patterns in fig. 10.44 show
however that spatial high frequencies have been corrected successfully and the
spectral damping coefficients in fig. 10.45 confirm these results. Each of the pre-
sented method has its own damping characteristics and for the newly introduced
methods these characteristics follow the HP filter masks. The most unfortunate
remains are found for the min(∇,MN) method which are the uncorrected spatial
high frequency components in the corners as discussed in sec. 10.1 already several
times. Considering the average spectral remains, all compared methods perform
equally well for this sequence and I would recommend to select a method accord-
ing to the desired spectral correction demands.
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Figure 10.43.: Corrected images by the introduced methods for sequences with
low valued nonuniformities (Parameter set according to tab. 10.42).
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Figure 10.44.: Remaining DSNU patterns for the introduced methods and se-
quences with low valued nonuniformities (Parameter set according
to tab. 10.42).
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Figure 10.45.: Spectral damping coefficients for the DSNU for the introduced meth-
ods and sequences with low valued nonuniformities (Parameter set
according to tab. 10.42).
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10.2.3. Analysis for the Weighted Average Improvement

Next the methods that come from the variations of the improved maximum like-
lihood approach are investigated. The methods depend on the weighted average
of the sensor measurements and the modified statistical evaluations give a further
parameter set (evaluations of the statistics according to sec. 7.1.2). The histograms
are shown in fig. 10.46 and the obtained parameter set is summarized in tab. 10.4.
Further, a parameter search led to the best-case optimized parameter set shown in
tab. 10.5.
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Figure 10.46.: Histograms of the differnent ML̂,tn
realizations

Method Parameter
minwA(∇, BL) 0.00577

minwA(∇,MN) 0.00831

minwA(4,MN) 0.00455

Table 10.4.: Results of a parameter evaluations from the statistics for low valued
nonuniformities

Method Parameter
minwA(∇, BL) 0.0009358± (0.0006629, 70.84%)

minwA(∇,MN) 0.001776± (0.001248, 70.26%)

minwA(4,MN) 0.0009475± (0.0007426, 78.37%)

Table 10.5.: Results of a parameter search to optimize the new methods for low
valued nonuniformities

To see the different performances of all these parameter sets, the best-case per-
formance analysis for all the available parameter sets is shown in fig. 10.42. As
expected, the best results are obtained for the experimentally optimized parame-
ter set. Compared to the performances for the reference methods LMSA,7×7 and
LMSTV , the optimized parameter set results in an equal performance with respect
to the estimated error bars. Surprising is however that none of the low valued
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10.2. Behavior For Low Valued Nonuniformities

nonuniformity statistic parameter sets leads to a good performance. This points
towards a severe parameter instability of the methods that yields from this input
material and will now be analyzed in the temporal performance analysis.
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Figure 10.47.: Best-case Performance with respect to the pc,DSNU quality metric for
cameras with low valued nonuniformities

The temporal evaluations show a direct comparison between the improved
new methods and the two best reference methods LMSA,7×7 and LMSTV . As
there are many evaluations with different exposure times and temperatures,
only the sets and cameras with the most diverting experimental parameters are
shown. Fig. 10.48 and 10.49 show the temporal evaluations for the Basler A602f
camera for texp.=1ms @ 22◦C and texp.=10ms @ 50◦C. At the low temperature
the minwA(∇, BL) performs almost 10 % better then the best reference method
LMSA,7×7 and the minwA(4,MN) method also outperforms this method. Only
the minwA(∇,MN) method does not reach the other methods, which again results
from the high frequency problems for consecutive frame sequences. For the higher
temperatures, the new methods’ parameters seem to mismatch, as they reach up
to a 30 % correction rate, but then fall back to 10 % to 20 %.

Fig. 10.50 and 10.51 show the temporal evaluation for the MV-640-66-CL cam-
era for texp.=5ms @ 25◦C and texp.=10ms @ 48◦C with the optimized parameter
set. At low temperatures the parameters fit well and the minwA(∇, BL) and
minwA(4,MN) method perform best, while the minwA(∇,MN) method again
does not reach a good performance. The reference methods seem however to have
mismatched parameters, but instead of declining their performance towards 0 %,
they actually deteriorate the image by creating a negative correction rate. For
the higher temperatures the minwA(4,MN) and minwA(∇, BL) methods outper-
form the reference methods, where the minwA(4,MN) is the overall best method,
confirming again its stability. An overall result on which method tends to be
the best can not be given by this comparison. However it is obvious that each
method is able to correct the remaining nonuniformities to some extend and that
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10. Further Experimental Results and Limitation

the choice of wrong parameters leads to a decrease of the corrections, even to
negative correction rates.

The evaluations of the other experimental setups are shown in appendix G.2 and
show a similar behavior as discussed here, that mainly depends on the chosen
sequence. However, some higher correction rates up to 40 % are reached in the
shown plots.
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Figure 10.48.: Temporal evaluation for the Basler A602f with texp.=1ms @ 22◦C
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Figure 10.49.: Temporal evaluation for the Basler A602f with texp.=10ms @ 50◦C
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Figure 10.50.: Temporal evaluation for the MV-640-66-CL with texp.=5ms @ 25◦C

The analysis of the corrected images of the sequence A602f-6a in fig. 10.52 shows
again no significant difference for the method-wise corrections compared to the
ground corrections. Given the remaining DSNU patterns in fig. 10.53, a correc-
tion of the spatial high frequency components can be observed and this behavior
is as always seen best in the spectral damping analysis in fig. 10.54. However
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Figure 10.51.: Temporal evaluation for the MV-640-66-CL with texp.=10ms @ 50◦C

an improved correction performance compared to the non-weighted method in
fig. 10.45 can not be seen directly for this sequence. The spectral damping fol-
lows tightly the characteristics of the high pass filter masks and the new methods
merely outperform the reference methods by a good damping of the spatial low
frequency components while the reference methods provide a better damping for
the spatial higher frequency components.

Concluding, the results above suggest that a parameter search is mandatory for
the low valued nonuniformities. However, there is still a chance that the results
of the statistic parameter extraction failed because not enough image material was
present and therefore the several different cameras and experimental setups had
to be mixed. As the temporal results show, the correct parameters may also be
influenced by external parameters like type of camera, temperature or exposure
time.
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Figure 10.52.: Corrected images by the introduced methods for sequences with
low valued nonuniformities (Parameter set according to tab. 10.47).
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Figure 10.53.: Remaining DSNU patterns for the introduced methods and se-
quences with low valued nonuniformities (Parameter set according
to tab. 10.47).
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Figure 10.54.: Spectral damping coefficients for the DSNU for the introduced meth-
ods and sequences with low valued nonuniformities (Parameter set
according to tab. 10.47).
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10.2.4. Analysis for the CNN-Type Methods

The CNN type methods can also be analyzed for their behavior on low valued
nonuniformities. Therefore the optimized λ parameters from tab.10.5 are used
and a new parameter search was conducted for the sε parameter (see tab. 10.6)
The step sizes are actually in the order of 10−1 and the expected DSNU is around
1 DN to 2 DN. For comparison, the step sizes for the MV 1312 camera resulted in
values of 2−8 for the given DSNU of about 50DN . The difference in the step sizes
go by the same factor the DSNU values differ, which may give a hint for future
parameter searches.

Fig. 10.55 shows the corresponding best-case performance analysis, where the
CNN methods show a better performance than the reference methods, except for
the CNN(∇,MN). In fact, the reference methods have much wider error bars than
the CNN methods, which lets them appear less stable.

Method Parameter
CNN(∇, BL) 0.1398± (0.1649, 117.9%)

CNN(∇,MN) 0.5633± (0.5069, 89.99%)

CNN(4,MN) 0.2158± (0.1784, 82.66%)

Table 10.6.: Results of a parameter search to optimize CNN step size sε for low
nonuniformities.
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Figure 10.55.: CNN best-case Performance with respect to the pc,DSNU quality met-
ric for cameras with low nonuniformities

For the temporal evaluation the same set of experiments is shown as before.
Fig. 10.56 and 10.57 show the temporal evaluation for the Basler A602f cam-
era for texp. = 1ms @ 22◦C and texp. = 10ms @ 50◦C. At low temperatures the
CNN(∇, BL) and CNN(4,MN) method outperform the reference methods. Only
the CNN(∇,MN) method stays below the reference methods, which was ex-
pected, as it did not perform well in the best-case performance analysis either. For
the high temperatures, the new methods’ parameters seem to mismatch, but they
do not lead to negative correction rates.

Fig. 10.58 and 10.59 show the temporal evaluation for the MV-640-66-CL cam-
era for texp. = 5ms @ 25◦C and texp. = 10ms @ 50◦C with the optimized parame-
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10. Further Experimental Results and Limitation

ter set. At low temperatures the parameters fit well and the CNN(∇, BL) and
CNN(4,MN) method perform best, while the CNN(∇,MN) reaches negative
correction rates. The reference methods seem actually to deteriorate the image
with their negative correction rates, as mentioned already in the earlier discus-
sions. For the higher temperatures the CNN(4,MN) and CNN(∇, BL) outper-
form the reference methods, where the CNN(4,MN) is again the best method and
the LMSTV the best of the reference methods. The CNN(∇,MN) method again
does not reach up to the reference methods, which may be founded in the not
achieved correction of the spatial high frequencies discussed for this method.

The evaluations of the other experimental setups are shown in appendix G.3 and
show a similar behaviour as discussed here, that mainly depends on the chosen
sequence. However, some higher correction rates up to 40 % are reached in the
shown plots.
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Figure 10.56.: Temporal evaluation for the Basler A602f with texp.=1ms @ 22◦C
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Figure 10.57.: Temporal evaluation for the Basler A602f with texp.=10ms @ 50◦C

The impression of the visual correction is as always without any noticeable differ-
ences for the low valued nonuniformities (see fig. 10.60). In the remaining DSNU,
the differences in the methods are visible. Compared to the above evaluations (see
fig. 10.61), the CNN methods tend to leave a low frequency noise pattern with a
higher amplitude behind. In the analysis of the spectral damping factors in fig.
10.62, the methods show as before a good damping that reaches also the spatial
low frequency components. However, the reference methods seem to damp the
spatial high frequencies better. As the results represent only one sequence one has
to consider further experiments for all methods to find the best suitable method
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Figure 10.58.: Temporal evaluation for the MV-640-66-CL with texp.=5ms @ 25◦C
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Figure 10.59.: Temporal evaluation for the MV-640-66-CL with texp.=10ms @ 50◦C

for the desired application. However, given the best-case scenarios, the CNN-
methods outperform the reference methods considering the expectation values.
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Figure 10.60.: Corrected images by the introduced methods for sequences with
low valued nonuniformities (Parameter set according to tab. 10.6).
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Figure 10.61.: Remaining DSNU patterns for the introduced methods and se-
quences with low valued nonuniformities (Parameter set according
to tab. 10.6).
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Figure 10.62.: Spectral damping coefficients for the DSNU for the introduced meth-
ods and sequences with low valued nonuniformities (Parameter set
according to tab. 10.6).
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10.2.5. Analysis of the Row-, Column- and Pixel-Wise Extensions

For the row-, column- and pixel-wise (RCP) combined methods, the parameter
search yielded to the parameters shown in tab. 10.7. Fig. 10.63 shows the best-
case performance analysis and besides large error bars, the minRCP(∇, BL) and
the minRCP(4,MN) methods achieve the best yet observed performances for low
valued nonuniformities.

Method Parameter
minRCP(∇, BL) 0.001299± (0.001484, 114.3%)

minRCP(∇,MN) 0.001687± (0.001039, 61.58%)

minRCP(4,MN) 0.003864± (0.006174, 159.8%)

Table 10.7.: Optimized parameter set for the RCP methods for low valued nonuni-
formities
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Figure 10.63.: RCP best-case performance with respect to the pc,DSNU quality met-
ric for cameras with low nonuniformities
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Figure 10.64.: Temporal evaluation for the Basler A602f with texp.=1ms @ 22◦C

The temporal evaluation of the usual set of experiments is shown in fig. 10.64 and
10.65 for the Basler A602f camera for texp.=1ms @ 22◦C and texp.=10ms @ 50◦C.
At low temperatures the minRCP(∇, BL) outperforms the reference methods, and
the minRCP(4,MN) reaches the reference methods in the very last frames. The
minRCP(∇,MN) method does not gain such a good performance, as a result of
the missed corner frequencies (see below). For the higher temperatures, the new
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Figure 10.65.: Temporal evaluation for the Basler A602f with texp.=10ms @ 50◦C
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Figure 10.66.: Temporal evaluation for the MV-640-66-CL with texp.=5ms @ 25◦C
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Figure 10.67.: Temporal evaluation for the MV-640-66-CL with texp.=10ms @ 50◦C
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methods’ parameters seem to be a mismatch as always in this comparison. How-
ever they do not degrade the image quality although they do not reach a good
correction performance.

Fig. 10.66 and 10.67 show the temporal evaluation for the MV-640-66-CL cam-
era for texp.=5ms @ 25◦C and texp.=10ms @ 50◦C with the optimized parameter
set. At low temperatures the parameters fit well and the minRCP(∇, BL) and
minRCP(∇,MN) methods perform best, while the minRCP(4,MN) method de-
creases slightly in its performance after the first 100 frames. The reference meth-
ods seem to deteriorate the image by creating negative correction rates, as already
mentioned in the earlier discussions. For higher temperatures minRCP(4,MN)
and minRCP(∇, BL) outperform the reference methods again, but decrease in their
performance after a few 100 frames and only the minRCP(4,MN) method stays
at the same level as the reference methods after the complete 500 frames, which
again confirms the L̂ = 4 choice as more stable than the L̂ = ∇.

The evaluations of the other experimental setups are shown in appendix G.4 and
show a similar behaviour as discussed here, that mainly depends on the chosen
sequence. However, some higher correction rates up to 40 % are reached in the
shown plots.

The impressions of the visual correction goes as before without any noticeable
differences in the corrected images (see fig. 10.68). In the remaining DSNU, the
differences become visible and the RCP methods tend to leave a low frequency
noise pattern with a higher amplitude behind, compared to the above evaluations
(see fig. 10.69). The main difference in the methods can be observed in the spectral
analysis of fig. 10.70, where the RCP methods tend to leave more of the spatial
low frequencies behind than their precedent developments. The other qualities
stay the same and the reference method result again in a slightly better correction
performance towards the spatial high frequency components. A distinct correction
of vertical and horizontal nonuniformity structures can also not be observed. Still,
the best case performance was superior to the reference methods.
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Figure 10.68.: Corrected images by the introduced methods for sequences with
low valued nonuniformities (Parameter set according to tab. 10.7).
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Figure 10.69.: Remaining DSNU patterns for the introduced methods and se-
quences with low valued nonuniformities (Parameter set according
to tab. 10.7).
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Figure 10.70.: Spectral damping coefficients for the DSNU for the introduced meth-
ods and sequences with low valued nonuniformities (Parameter set
according to tab. 10.7).
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10.2.6. Analysis of the Combined PRNU and DSNU Method

The results of the parameter search for the combined PRNU and DSNU methods
for the low valued nonuniformity image material is shown in tab. 10.8. A good
performance for other parameter sets than the optimized led to high valued neg-
ative correction rates. Such a result could be expected with the already discussed
parameter instabilities of this method (see sec. 8). Fig. 10.71-10.73 show the best-
case performance analysis in the measures pc,Comb., pc,PRNU and pc,DSNU. Given
the pc,Comb. all variants of the new method result in the same correction rates con-
sidering the error bars. For the pc,DSNU-norm the LMSA,7×7 method is however
up to 10 % better, comparing the mean values, than the best of the new methods,
the mincomb.(4,MN) method. The reason for this becomes obvious if one consid-
ers the best-case pc,PRNU performance, where the reference methods average only
to around 0 % while the new methods correct up to 5 % of the PRNU. Only the
mincomb.(4,MN) method fails to correct and results in a correction performance
around 0 % as well. Consequently the parameter set for the reference methods is
adapted better to for DSNU correction, while the new methods do not neglect the
PRNU correction.

In the above evaluations a sensitivity of the parameter choices was observed and
the difference between the best-case performances and the temporal evaluations
with fixed parameters is therefore expected to be large and not friendly towards
the new methods. Especially with consideration of the discussion of the parameter
instability for the combined estimation methods from sec. 8.4.

Method Parameter
mincomb.(∇, BL) 0.00781± (0.01422, 182%)

mincomb.(∇,MN) 0.005168± (0.01108, 214.4%)

mincomb.(4,MN) 0.04669± (0.1787, 382.7%)

Table 10.8.: Optimized Parameter set for the low nonuniformitiy sequences
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Figure 10.71.: Best-case performance with respect to the pc,Comb. quality for low
valued nonuniformity sequences

The figures 10.74 -10.77 show the temporal evaluations for the fixed, optimized
parameter set in the pc,Comb.-norm. As supposed above, the combined estima-
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Figure 10.72.: Best-case Performance with respect to the pc,DSNU quality for low
valued nonuniformity sequences
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Figure 10.73.: Best-case Performance with respect to the pc,PRNU quality for low
valued nonuniformity sequences
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Figure 10.74.: Temporal evaluation for the Basler A602f with texp.=1ms @ 22◦C
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Figure 10.75.: Temporal evaluation for the Basler A602f with texp.=10ms @ 50◦C
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Figure 10.76.: Temporal evaluation for the MV-640-66-CL with texp.=5ms @ 25◦C
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Figure 10.77.: Temporal evaluation for the MV-640-66-CL with texp.=10ms @ 50◦C
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Figure 10.78.: Temporal evaluation for the Basler A602f with texp.=1ms @ 22◦C
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Figure 10.79.: Temporal evaluation for the Basler A602f with texp.=10ms @ 50◦C
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Figure 10.80.: Temporal evaluation for the MV-640-66-CL with texp.=5ms @ 25◦C
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Figure 10.81.: Temporal evaluation for the MV-640-66-CL with texp.=10ms @ 50◦C
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Figure 10.82.: Temporal evaluation for the Basler A602f with texp.=1ms @ 22◦C
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Figure 10.83.: Temporal evaluation for the Basler A602f with texp.=10ms @ 50◦C
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Figure 10.84.: Temporal evaluation for the MV-640-66-CL with texp.=5ms @ 25◦C
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Figure 10.85.: Temporal evaluation for the MV-640-66-CL with texp.=10ms @ 50◦C
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tion methods become unstable towards the slight misalignment of the param-
eters that results from the fixed parameters. For the low temperature exper-
iment of the Basler A602f sequences in fig. 10.74, the mincomb.(∇, BL) and
mincomb.(∇,MN) methods outperform the reference methods after 300 frames
and the mincomb.(4,MN) method reaches just after 500 frames their performance.
For all the other experiments however the new methods cannot compete with the
reference methods and results in negative correction rates. The same is observed
for the DSNU correction rates in fig. 10.78 -10.81 and for the PRNU corrections in
fig. 10.82 -10.85.

As mentioned before, these low correction performances are most likely the re-
sults of the inexactly estimated {ai,j} probability distribution as a Gaussian (see
sec. 8.4.2). The best-case evaluations however showed that the new methods are
able to reach the performance of the reference methods, but not with slightly in-
exact parameters, as shown in the recent plots. This parameter instability for the
combined estimation method needs to be solved in future research. The further
plots of the other temperature and exposure times are omitted as they do not pro-
vide further information.

Fig. 10.86 shows the visual correction performances and despite the bad correction
parameters, no difference in the corrected images can be found. The remaining
DSNU patterns are as expected and show a correction of spatial high frequen-
cies and a slightly higher remaining amplitude when compared to the reference
methods (see fig. 10.87). In the spectral damping analysis in fig. 10.88 the new
methods confirm this statement with a generally good damping coefficient, and
an improvement in the areas of spatial low frequencies when compared to the ref-
erence methods. However the spatial higher frequencies are corrected better by
the reference methods.

For the PRNU the remaining patterns are shown in fig. 10.89 and a visual dif-
ference to the reference methods is hardly visible. Fig. 10.90 finally shows the
spectral damping analysis for the PRNU correction and here the new methods
show surprisingly a superior correction performance over the reference methods.
However, the spatial low frequency components are corrected in favor for spatial
high frequency components which is not the usual mode of correction of these
methods. Although this result is an isolated case, it shows the possibilities of the
new method in cases of correctly selected parameters.
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Figure 10.86.: Corrected images by the introduced methods for sequences with
low valued nonuniformities (Parameter set according to tab. 10.8).
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Figure 10.87.: Remaining DSNU patterns for the introduced methods and se-
quences with low valued nonuniformities(Parameter set according
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Figure 10.88.: Spectral damping coefficients for the DSNU for the introduced meth-
ods and sequences with low valued nonuniformities (Parameter set
according to tab. 10.8).
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Figure 10.90.: Spectral damping coefficients for the PRNU for the introduced
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10.2.7. Intermediate Conclusions

The correction performance for low valued nonuniformity input is very sensitive
to slight parameter changes and does not reach the high numbers of up to 70 %
as for the high valued nonuniformities. This is however not necessary, as only
1 DN to 2 DN of visible noise is present in the images. Because of the discussed
sensitivity to parameter changes, a parameter search to find the optimal param-
eters is recommended and needs to be verified with respect to its stability. As
the available parameter set is a mix of different camera types, exposure times and
temperatures, the presented results may be improved if more specific material for
the intended application is available.

The above section can therefore be seen as a proof that the new methods are able
to correct low valued nonuniformities given the different setups. Especially the
best-case analysis confirmed this.
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11.1. Summary

This thesis introduced a new method for a scene based maximum likelihood es-
timation for the digital image sensors’ nonuniformity components PRNU and
DSNU. This method was first developed and improved in a DSNU-only correction
mode and later extended for a combined PRNU and DSNU correction. A detailed
review of the reference methods showed their potential for further improvements
in the fields of their theoretical assumptions and their way on choosing the free
parameters. Also the correction performance of the methods showed room for
further improvements, especially with concern to the achieved PRNU correction.
The investigation further showed that a good correction performance for the ref-
erence methods could only be achieved with an optimized parameter set for the
given type of input sequences.

With concern to the performance measure for the nonuniformity corrections, the
published measures in literature depend on the actual image data, which has cer-
tain discussed drawbacks. A review of the physical background of the digital
imaging process, combined with the EMVA1288 definition for the nonuniformity
quantification, allowed to define a new, image data independent performance
measure. This new measure has the further advantage to regard the DSNU and
PRNU effects separately.

The new maximum likelihood estimation method is then derived by using sim-
ple and well-motivated assumptions. The main assumption is that the DSNU and
PRNU result in spurious edge and gradient like features that can be detected with
a linear high pass operator. In the further development this leads to a demand
for temporally independent frames and a method input that, in the DSNU-only
variant, consists of the temporally averaged sensor responses. All other param-
eters of the method could be extracted from the statistics of the recorded scenes
and the ground truth EMVA1288 calibration of the image sensor. This makes ex-
pensive and partly unreliable parameter searches not necessary any more. The
method further includes a convolution of the averaged measurements with a high
pass filter, which is directly derived from the used assumptions and the signal
reconstruction method. In the first approach, the method did not reach the per-
formance of the best reference methods. However, an improvement that uses a
motivated weighted average of the sensor inputs, based on the EMVA1288 mea-
surement standards, yielded to a superior performance compared to all the refer-
ence methods.
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However, the superior performance of the maximum likelihood estimation method
is achieved on costs of a high computational effort. This drawback could be over-
come by translating the method’s mathematics into a cellular neural network
(CNN) of the type introduced by Leon Chua. The non-linearity of the network
allowed to keep the resulting correction parameters in useful boundaries, lead-
ing to an overall performance increase of the corresponding results. As most
practical solutions suffer from additional row- and column-wise nonuniformities,
the new approach was improved with an advanced sensor model that includes
row- and column-wise nonuniformities. This allowed to choose if the correction
should only consider only row-, column-, or pixel-wise nonuniformities, or any
combination of those. For row- or column-wise only corrections, the DSNU maxi-
mum likelihood approach could be simplified from the two dimensional array of
coefficients into a problem that has to consider only one dimension of the nonuni-
formity parameters. This reduced the computational demands drastically and
prepared the method for implementations on embedded systems.

Next, the yet DSNU-only approach is extended into a combined PRNU and DSNU
approach, which again showed a superior correction performance over the refer-
ence methods, if random frames are used as inputs. At this point the statically
derived parameter set did however not yield to a reasonable correction perfor-
mance and an optimized parameter set had to be used. As additional input for
this extended variant, the sensor-wise covariances are needed.

Finally the new approach could be linked mathematically to the reference meth-
ods and the reference methods can be interpreted as simplified versions of the
introduced maximum likelihood approach. This enabled a deeper understand-
ing of the reference methods’ implicitly made assumptions. Last the experimental
section is extended to high speed consecutive frame sequences that violate the
demands of independent frames, and to image data that shows only low valued
nonuniformities. Both cases show the expected limits of the maximum likelihood
approach and the best reference methods gain slight advantages or comparable
correction rates. Given the discovered link between the methods, the reasons for
the observed different behavior of the methods can be understood and explained
by their implicit assumptions.

11.2. Conclusions

The newly introduced variants of the maximum likelihood estimation method
showed to be an extension to both, the constant statistics and the least mean square
(LMS) method. This can be seen as the constant statistic method utilizes the tem-
poral average of the sensor responses, while the LMS methods consider the spatial
dependencies of the sensor responses. The new method however uses both types
of information.

Further, three variants of the method have been investigated, where the first two
depend on gradient-like features while the third variant bases on edge-like fea-
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tures. The gradient based variants are in general able to achieve higher perfor-
mances, even with a smaller 3×3 neighborhood, the 7×7-mask based reference
methods are outperformed. The edge-based variant however showed a great sta-
bility towards changes in the parameters and in cases of consecutively dependent
frames as input. With the presented adaptations for row- and column-wise correc-
tions the typical use cases in industrial applications have been considered as well.
The new method gives best results for random frame input.

11.3. Further Work

The further work for this thesis has already been pointed out at the end of the
corresponding chapters . To summarize, one possibility to improve the quality of
the corrections could be the analysis of other features in extend to the Nabla- and
Laplace-based ones. Furthermore, other reconstruction functions than the intro-
duced ones may then become necessary as well, which may result in improved
high pass filter masks. Another idea leads towards the installed temporal aver-
aging filter, where further improvements may allow a better selection of input
information that is considered independent. This may allow to transform the meth-
ods’ advantages onto the consecutive frame input as well. However, for longer
consecutive frame sequences the majority of frames will be independent to each
other and a good parameter estimation should be possible again.

A relevant point of the new method is the observed parameter instability for the
combined estimation of the DSNU and PRNU. Here the statistically derived pa-
rameters did not yield to satisfying results and as possible reasons a misfit be-
tween the actual parameter distributions and the assumed ones have already been
discussed. A better parametrization of the assumed probability distributions, es-
pecially for the PRNU, looks like a promising approach.

Up to now the parameters of the methods are estimated from ground truth cor-
rected images that obey the same statistics as the evaluation sequences. For the
DSNU estimations these statistically derived parameters give already a perfor-
mance that is superior to the reference methods and a further improvement could
try to build-up these statistics while the algorithm is running. As the influence of
the nonuniformities may be neglectable for the evaluations of the chosen features,
such an improvement sounds feasible. Such a physically and statistically well
motivated and parameter free method has of course a big advantage for practical
applications.

With concern to the practical applications, the row- and column-wise simplifica-
tions of the method could be implemented directly due to their low computational
demands. For a hardware implementation, a first approach could be the usage of
the CNN structure which translates directly into analogue circuity. Therefore new
generations of digital sensors could be equipped with a hardware realization of
the described algorithm.
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[39] MV1-D1312(I) CameraLinkő Series, Photonfocus, Apr 2009, 1.2.

[40] Peltier-Controller TC3224 -Bedienerhandbuch, CoolTronic, Mar 2010, v.1.02.

[41] M. Erz, “Charakterisierung von Laufzeitkamerasystemen für Lumineszen-
zlebensdauermessungen,” Ph.D. dissertation, Univ. of Heidelberg, IWR,
Fakultät für Physik und Astronomie, 2011.

[42] Basler AG. (2012, Aug.) Homepage of basler ag (vistited 5th of august
2012). [Online]. Available: http://www.baslerweb.com/media/documents/
BD00037602_Basler_A60xf_EMVA_Standard_1288.pdf

[43] B. W. und Marcian Edward Hoff, “Adaptive switching circuits,” IRE
WESCON Convention Record, Los Angeles, vol. 4, pp. 96–104, 1960.

305

http://link.aip.org/link/?PSI/5076/130/1
http://photonfocus.com/
http://www.baslerweb.com/
http://www.baslerweb.com/media/documents/BD00037602_Basler_A60xf_EMVA_Standard_1288.pdf
http://www.baslerweb.com/media/documents/BD00037602_Basler_A60xf_EMVA_Standard_1288.pdf


Bibliography

[44] NVIDIA Corporation. (2012, Oct.) CUDA Homepage of NVIDIA Corporation
(vistited 28th of October 2012). [Online]. Available: http://www.nvidia.
com/object/cuda_home_new.html

[45] W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations. Springer,
1993.

[46] L. O. Chua and T. Roska, Cellular neural Networks and visual computing. Cam-
bridge, 2002.

[47] A. Rodriguez-Vazquez, G. Linan-Cembrano, L. Carranza, E. Roca-Moreno,
R. Carmona-Galan, F. Jimenez-Garrido, R. Dominguez-Castro, and S. Meana,
“Ace16k: the third generation of mixed-signal simd-cnn ace chips toward
vsocs,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, May
2004.

[48] S. Carey and P. Dudek, “General-purpose 128x128 simd processor array with
integrated image sensor,” Electronic Letters, vol. 42, June 2006.

[49] A. Lopich and P. Dudek, “Architecture of a vlsi cellular processor array for
synchronous/asynchronous image processing,” in ISCAS, 2006.

[50] A. Rodriguez-Vazquez, S. Espejo, R. Dominguez-Castron, J. Huertas, and
E. Sanchez-Sinencio, “Current-mode techniques for the implementation of
continuous- and discrete-time cellular neural networks,” Circuits and Systems
II: Analog and Digital Signal Processing, IEEE Transactions on, vol. 40, no. 3, pp.
132 –146, mar 1993.

306

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html


A. Fixed Pattern Noise

A.1. Transformation of the EMVA PRNU Definition

This appendix describes how to transform the EMVA1288 definitions of PRNU
from the given measurements CM,i,j,dark and CM,i,j,50% onto the sensor model pa-
rameters {ai,j} and {bi,j}.

The definition of PRNU by EMVA1288 is given as:

PRNUEMV A1288 =

√
s2(µ(CM,i,j,50%))− s2(µ(CM,i,j,dark))

e(µ(CM,i,j,50%))− e(µ(CM,i,j,dark))
· 100% . (A.1)

The offset and gain parameters as well as the measurements are considered ran-
dom variables and transform as given in [29] to:

e(µ(CM,i,j,dark)) = e(bi,j) (A.2)

e(µ(CM,i,j,50%)) =
d

2
(A.3)

s2(µ(CM,i,j,dark)) = s2(bi,j) (A.4)

s2(µ(CM,i,j,50%)) = s2(ai,jCS,i,j,50% + bi,j) (A.5)

= s2(ai,jCS,i,j,50%) + s2(bi,j) (A.6)

= s2(ai,j)e
2(CS,i,j,50%) + s2(CS,i,j,50%)︸ ︷︷ ︸

=0

e2(ai,j) + s2(bi,j) (A.7)

= s2(ai,j)e
2(CS,i,j,50%) + s2(bi,j) (A.8)

e(CM,i,j,50%) = d/2 (A.9)
e(CM,i,j,50%) = e(ai,jCS,i,j,50% + bi,j) (A.10)

= e(ai,j)e(CS,i,j,50%) + e(bi,j) (A.11)

⇔ e(CS,i,j,50%) =
d/2− e(bi,j)

e(ai,j)
(A.12)

These basic transformations of expectation values and variances then result in:

PRNUEMV A1288 =

√
s2(ai,j)e2(CS,i,j,50%) + s2(bi,j)− s2(bi,j)

d
2 − e(bi,j)

· 100% (A.13)

=
s(ai,j)e(CS,i,j,50%)

d
2 − e(bi,j)

· 100% (A.14)
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A. Fixed Pattern Noise

=
s(ai,j)(d/2− e(bi,j))
(d/2− e(bi,j))e(ai,j)

=
s(ai,j)

e(ai,j)
· 100% (A.15)

A.2. A Scaling of the Parameter Sets for Reference
Methods

This appendix shows the derivation of the scaling function of the estimated para-
meter sets {ai,j,est.} and {bi,j,est.} as used in sec. 3.5. The scaling has to depend
only on the statistical moments of the sets of the following parameters: Measured
image {CM,i,j}, estimated DSNU {bi,j,est.}, estimated PRNU {ai,j,est.}, reference
DSNU {bi,j,ref}, reference PRNU {ai,j,ref.}:

At first, the target is claimed, that the corrected image with the scaled parameters
should be identical to the reference image in its first two statistical moments:

e(CS,i,j,est.) = e(CS,i,j,ref.)

s2(CS,i,j,est.) = s2(CS,i,j,ref.) (A.16)

Then we use the definitions of those images to analyze their dependencies on the
used correction parameters:

CS,i,j,ref. =
1

ai,j,ref.
(CM,i,j − bi,j,ref.) (A.17)

CS,i,j,est. =
1

ai,j,est.
(CM,i,j − bi,j,est.) . (A.18)

The sets of the parameters {ai,j,est.}, {bi,j,est.}, {CM,i,j} and {CS,i,j} are interpreted
as realizations of the corresponding random variables. We achieve the demands of
eq. A.16 by standardizing and re-spreading the random variable in the following
form:

CS,i,j,scal. =
CS,i,j,est. − e(CS,i,j,est.)

s(CS,i,j,est.)
· s(CS,i,j,ref.) + e(CS,i,j,ref.) ∀i, j (A.19)

The definition of Ci,j,est. helps to transform this equation into the following
form:

CS,i,j,scal. =
CS,i,j,est.s(CS,i,j,ref.)

s(CS,i,j,est.)
−
e(CS,i,j,est.)s(CS,i,j,ref.)

s(CS,i,j,est.)
+ e(CS,i,j,ref.) (A.20)

=
CM,i,js(CS,i,j,ref.)

s(CS,i,j,est.)ai,j,est.
−
bi,j,est.s(CS,i,j,ref.)

s(CS,i,j,est.)ai,j,est.
−
e(CS,i,j,est.)s(CS,i,j,ref.)

s(CS,i,j,est.)

+ e(CS,i,j,ref.) ∀i, j (A.21)
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A.2. A Scaling of the Parameter Sets for Reference Methods

The above equation allows to extract a linear, point wise transformation:

CS,i,j,scal. =
1

ai,j,sc.
(CM,i,j − bi,j,sc.) (A.22)

ai,j,sc. = hsc.,PRNU(V ; ai,j,est.) =
s(CS,i,j,est.)ai,j,est.

s(CS,i,j,ref.)
(A.23)

bi,j,sc. = hsc.,DSNU(V ; bi,j,est.) (A.24)

=
s(CS,i,j,est.)ai,j,est.

s(CS,i,j,ref.)

(
bi,j,est.s(CS,i,j,ref.)

s(CS,i,j,est.)ai,j,est.
(A.25)

+
e(CS,i,j,est.)s(CS,i,j,ref.)

s(CS,i,j,est.)
− e(CS,i,j,ref.)

)
(A.26)

As mentioned in sec. 3.5, the set V should only contain the moments of the
known variables, which is a requirement not yet met as the values of s(Ci,j,ref.)
and e(Ci,j,ref.) are unknown. The same applies for the ground truth parameter
sets {ai,j,ref.} and {bi,j,ref.}, which are not known to the algorithms. However,
their statistic moments can be assumed to be known, as they usually do not vary
from image sensor to image sensor if the manufacturing process is stable.

If considering the above unknown realizations of random variables, then the
known moments of the missing variables can be used by assuming that the vari-
ables are not correlated [29]. Transforming eq. A.17 leads to:

e(Ci,j,ref.) = e

(
1

ai,j,ref.
(CM,i,j − bi,j,ref.)

)
(A.27)

= e

(
1

ai,j,ref.

)
∗ e((CM,i,j − bi,j,ref.))) (A.28)

= e

(
1

ai,j,ref.

)
(e(CM,i,j)− e(bi,j,ref.)) (A.29)

For the inverted random variable the expectation value estimates as

e

(
1

ai,j,ref.

)
=

1

e(ai,j,ref.)

(
1 +

(
s(ai,j,ref.)

e(ai,j,ref.)

)2
)
, (A.30)

and the spatial variance is estimated by the complex expression:

s2(Ci,j,ref.) = s2

(
1

ai,j,ref.
(CM,i,j − bi,j,ref.)

)
(A.31)

= s2

(
1

ai,j,ref.

)
e(CM,i,j − bi,j,ref.) + s2(CM,i,j − bi,j,ref.)e

(
1

ai,j,ref.

)
(A.32)
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A. Fixed Pattern Noise

The only not yet described transformation is the variance s2
(

1
ai,j,ref.

)
, which can

be approximated by [29]:

s2

(
1

ai,j,ref.

)
=

(
s(ai,j,ref.)

e2(ai,j,ref.)

)2

(A.33)

A combination of all these equations allows to fully define the point wise linear
transformations hsc.,PRNU(V ; ai,j,est.) and hsc.,DSNU(V ; bi,j,est.). The actually quite
complex expressions above compress to real numbers that should be calculated
in advance for a better performance.
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B. Image Data

B.1. Further Calibration Data for the Photonfocus
MV1-D1312-160-CL

This appendix shows the additional results for the Photonfocus MV1-D1312-160-
CL camera that are summarized in the following table:

Sequence Name texp. [ms] T [◦C] Scene DSNUDN PRNU

MV1-D1312-1a,b 5 25 L600a in HD 50.81 1.92
MV1-D1312-1a,b 10 25 L600a in HD 50.83 1.88
MV1-D1312-1a,b 0.05 50 L600a in HD 51.07 7.39
MV1-D1312-1a,b 5 50 L600a in HD 51.19 1.91
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B. Image Data
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(a) Spatial PRNU for (5 ms @ 25 ◦C)
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Figure B.1.: Further representations of the {ai,j} correction patterns of the
EMVA1288 calibration measurements with the Photonfocus MV1-
D1312-160-CL Camera. Including a visual spatial and spectral analysis
as well as a spatial histogram of the realizations at the given tempera-
tures and exposure times.
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B.1. Further Calibration Data for the Photonfocus MV1-D1312-160-CL
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Figure B.2.: Further representations of the {ai,j} correction patterns of the
EMVA1288 calibration measurements with the Photonfocus MV1-
D1312-160-CL Camera. Including a visual spatial and spectral analysis
as well as a spatial histogram of the realizations at the given tempera-
tures and exposure times.
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B. Image Data
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Figure B.3.: Further representations of the {bi,j} correction patterns of the
EMVA1288 calibration measurements with the Photonfocus MV1-
D1312-160-CL Camera. Including a visual spatial and spectral analysis
as well as a spatial histogram of the realizations at the given tempera-
tures and exposure times.
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B.1. Further Calibration Data for the Photonfocus MV1-D1312-160-CL
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Figure B.4.: Further representations of the {bi,j} correction patterns of the
EMVA1288 calibration measurements with the Photonfocus MV1-
D1312-160-CL Camera. Including a visual spatial and spectral analysis
as well as a spatial histogram of the realizations at the given tempera-
tures and exposure times.
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B. Image Data

B.2. Further calibration data for the Basler A602f Camera

This appendix shows the additional results for the Basler A602f Camera that are
summarized in the following table:

Sequence Name texp. [ms] T [◦C] Scene DSNUDN PRNU

A602f-4a, A602f-4b 10 22 L600a in HD 1.29 1.43
A602f-2a, A602f-2b 1 30 L600a in HD 0.89 1.58
A602f-5a, A602f-5b 10 30 L600a in HD 0.75 1.44
A602f-3a, A602f-3b 1 49 L600a in HD 2.09 1.78
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B.2. Further calibration data for the Basler A602f Camera
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Figure B.5.: Further representations of the {ai,j} correction patterns of the
EMVA1288 calibration measurements with the Basler A602f Camera.
Including a visual spatial and spectral analysis as well as a spatial
histogram of the realizations at the given temperatures and exposure
times.
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B. Image Data
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Figure B.6.: Further representations of the {ai,j} correction patterns of the
EMVA1288 calibration measurements with the Basler A602f Camera.
Including a visual spatial and spectral analysis as well as a spatial
histogram of the realizations at the given temperatures and exposure
times.
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B.2. Further calibration data for the Basler A602f Camera

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

46

48

50

52

(a) Spatial DSNU for (10 ms @ 22 ◦C)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

46

48

50

(b) Spatial DSNU for (1 ms @ 30 ◦C)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

5

6

7

8

(c) Spectral:log |b̂µ,ν | for (10 ms @ 22 ◦C)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

4

5

6

7

(d) Spectral:log |b̂µ,ν | for (1 ms @ 30 ◦C)

45 46 47 48 49 50 51 52
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

Data Gauss

(e) Histogram of {bi,j} for (10 ms @ 22 ◦C)

46 47 48 49 50
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Data Gauss

(f) Histogram of {bi,j} for (1 ms @ 30 ◦C)

Figure B.7.: Further representations of the {bi,j} correction patterns of the
EMVA1288 calibration measurements with the Basler A602f Camera.
Including a visual spatial and spectral analysis as well as a spatial
histogram of the realizations at the given temperatures and exposure
times.
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B. Image Data
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Figure B.8.: Further representations of the {bi,j} correction patterns of the
EMVA1288 calibration measurements with the Basler A602f Camera.
Including a visual spatial and spectral analysis as well as a spatial
histogram of the realizations at the given temperatures and exposure
times.
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B.3. Further calibration data for the Photonfocus MV-D640-66-CL

B.3. Further calibration data for the Photonfocus
MV-D640-66-CL

This appendix shows the additional results for the Photonfocus MV-D640-66-CL
camera that are summarized in the following table:

Sequence Name texp. [ms] T [◦C] Scene DSNUDN PRNU

MV-D640-66-CL-2 10 25 L600a in HD 0.55 1.24
MV-D640-66-CL-3 5 50 L600a in HD 1.27 1.50
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B. Image Data
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Figure B.9.: Further representations of the {bi,j} correction patterns of the
EMVA1288 calibration measurements with the MV-D640-66-CL cam-
era. Including a visual spatial and spectral analysis as well as a spatial
histogram of the realizations at the given temperatures and exposure
times.
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B.3. Further calibration data for the Photonfocus MV-D640-66-CL
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Figure B.10.: Further representations of the {bi,j} correction patterns of the
EMVA1288 calibration measurements with the MV-D640-66-CL cam-
era. Including a visual spatial and spectral analysis as well as a spa-
tial histogram of the realizations at the given temperatures and expo-
sure times.
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B.4. Further calibration data for the Photonfocus
MV-D640-66-CLLinLog

This appendix shows the additional results for the Photonfocus MV-D640-66-
CLLinLog camera that are summarized in the following table:

Sequence Name texp. [ms] T [◦C] Scene DSNUDN PRNU

MV-D640-66-CL-
LinLog-2

5 25 L600a in HD 1.55 1.86

MV-D640-66-CL-
LinLog-3

10 25 L600a in HD 1.55 1.81

MV-D640-66-CL-
LinLog-4

0.082 50 L600a in HD 1.97 10.71

MV-D640-66-CL-
LinLog-5

5 50 L600a in HD 1.95 1.87
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Figure B.11.: Further representations of the {ai,j} correction patterns of the
EMVA1288 calibration measurements with the MV-D640-66-CL-
LinLog camera. Including a visual spatial and spectral analysis as
well as a spatial histogram of the realizations at the given tempera-
tures and exposure times.
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Figure B.12.: Further representations of the {ai,j} correction patterns of the
EMVA1288 calibration measurements with the MV-D640-66-CL-
LinLog camera. Including a visual spatial and spectral analysis as
well as a spatial histogram of the realizations at the given tempera-
tures and exposure times.
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Figure B.13.: Further representations of the {bi,j} correction patterns of the
EMVA1288 calibration measurements with the MV-D640-66-CL-
LinLog camera. Including a visual spatial and spectral analysis as
well as a spatial histogram of the realizations at the given tempera-
tures and exposure times.
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B. Image Data
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Figure B.14.: Further representations of the {bi,j} correction patterns of the
EMVA1288 calibration measurements with the MV-D640-66-CL-
LinLog camera. Including a visual spatial and spectral analysis as
well as a spatial histogram of the realizations at the given tempera-
tures and exposure times.
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C. Related Methods

C.1. Further Quality Metrics for the Best-Case
Performance Analysis

Fig. C.1 and C.2 show the results of the best-case performance analysis discussed
in sec. 5.3.2 in the MAE and RMSE quality norms.
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Figure C.1.: Best-case performance analysis with respect to the MAE quality metric
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Figure C.2.: Best-case performance analysis with respect to the RMSE quality met-
ric
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C. Related Methods

C.2. Further Evaluations for the LMS-Type Reference
Methods

This appendix shows further plots of the temporal evaluations for the reference
methods, that are discussed in sec. 5.3.4. Fig. C.3 and C.4 show the results for
the RMSE and MAE quality metrics The actual ordering of the methods with re-
spect to the achieved quality does not differ from the already shown plots in sec.
5.3.4. Thus these measures are just presented for for completeness and a further
discussion is not necessary.
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Figure C.3.: The LMS methods’ evaluations for the RMSE metric with random
frame sequences as input.
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Figure C.4.: The LMS methods’ evaluations for the MAE metric with random
frame sequences as input.

Fig. C.5, C.6, C.7 and C.8 show the results for the 1000-frame sequences for the
quality measures pc,DSNU, SNR, RMSE and MAE. In sec. 5.3.4 the plot for the
pc,PRNU was shown to proof that the PRNU correction performance is not con-
verging. As it can be seen in the other plots, the performances are converging,
which is the same result as already stated and proved by the pc,Comb. evaluation.
Again, these plots are just shown for readers which are more familiar to these type
of error measurements.

330
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Figure C.5.: The LMS methods’ evaluations for the pc,DSNU metric with random
frame sequences of 1000 frames length.
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Figure C.6.: The LMS methods’ evaluations for the SNR metric with random frame
sequences of 1000 frames length.
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Figure C.7.: The LMS methods’ evaluations for the RMSE metric with random
frame sequences of 1000 frames length.
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Figure C.8.: The LMS methods’ evaluations for the MAE metric with random
frame sequences of 1000 frames length.
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D. The Maximum Likelihood Appraoch

D.1. Log-Likelihood Energy Transformations

This appendix shows the intermediate steps in the definitions of the energies EP
and ED according to eq. 6.53 and 6.56 in sec. 6.3 on p. 124. For EP the transfor-
mations go as it follows by using the product to sum conversion of the logarithm
as well as the linearity of the sums:

EP = − log fDSNU({bi,j}) (D.1)

= − log
∏
i,j

fbi,j (bi,j) (D.2)

= − log
∏
i,j

1

σb
√

2π
e
− 1

2

(
bi,j−µb
σb

)2
(D.3)

=
∑
i,j

− log
1

σb
√

2π
− log e

− 1
2

(
bi,j−µb
σb

)2
(D.4)

=
∑
i,j

− log
1

σb
√

2π︸ ︷︷ ︸
const.

+
∑
i,j

1

2

(
bi,j − µb
σb

)2

(D.5)

=
∑
i,j

1

2σ2
b︸︷︷︸

β

(bi,j − µb)2 + const. (D.6)

=
∑
i,j

β (bi,j − µb)2 + const. (D.7)

With the same mathematics as used above, ED transforms to:

ED = − log fIWorld|DSNU={bi,j}(IWorld) (D.8)

= − log
∏
i,j

∏
tn

λe−λFi,j,tn (D.9)

=
∑
i,j

∑
tn

(− log λ− log e−λFi,j,tn ) (D.10)

=
∑
i,j

∑
tn

− log λ︸ ︷︷ ︸
const.

+
∑
i,j

∑
tn

λFi,j,tn (D.11)
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= const. +
∑
i,j

∑
tn

λFi,j,tn (D.12)

D.2. Gradient Derivations

This appendix shows how to derive the gradient of the energy term ED, needed
in sec. 6.3 on p. 334.

The following transformations basically exploits the linearity of the derivative op-
erator and the product rule, which leads then to trivial derivatives of the sums:

∇{bi,j}ED = ∇{bi,j}(
∑
tn

∑
i,j

λ(CM − b− χ)⊗ ((CM − b− χ) ∗HP(L̂,Φ)) + const.)

∂bm,nED = (
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λ(CM − b− χ)⊗ ((CM − b− χ) ∗HP(L̂,Φ)) + const.)

(D.13)

=
∑
tn

λ∂bm,n

 ∑
(i,j)∈S

(CM,i,j − bi,j − χi,j)

·
∑

(k,l)∈S

(CM,k,l − bk,l − χk,l)Ψ(|k − i|, |l − j|)

 (D.14)

=
∑
tn

λ

(∂bm,n
∑

(i,j)∈S

(CM,i,j − bi,j − χi,j))
∑

(k,l)∈S

(CM,k,l − bk,l − χk,l)Ψ(·)

+
∑

(i,j)∈S

(CM,i,j − bi,j − χi,j)(∂bm,n
∑

(k,l)∈S

(CM,k,l − bk,l − χk,l)Ψ(·))


(D.15)

=
∑
tn

λ

− ∑
(k,l)∈S

(CM,k,l − bk,l − χk,l)Ψ(|k −m|, |l − n|) (D.16)

+
∑

(i,j)∈S

(CM,i,j − bi,j − χi,j)(−Ψ(|m− i|, |n− j|))

 (D.17)

= −2λ
∑
tn

∑
(i,j)∈S

(CM,i,j − bi,j − χi,j)Ψ(|i−m|, |j − n|)) (D.18)

334



D.3. Further Results
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(a) Parameter set: Opt. Random (tab. 6.3)
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(b) Parameter set: Stat. Params (tab. 6.1)

Figure D.1.: Temporal evaluations with the optimized (fig. D.1a) and the statistic
(fig. D.1b) parameter sets in the SNR metric for random frame se-
quences.

D.3. Further Results

This appendix presents additional quality metrics for the temporal performance
analysis presented in sec. 6.4.2 on p.129. The discussion can here be directly trans-
ferred onto the additionally displayed quality norms.
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(a) Parameter set: Opt. Random (tab. 6.3)
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Figure D.2.: Temporal evaluations with the optimized (fig. D.2a) and the statis-
tic (fig. D.2b) parameter sets in the MAE metric for random frame
sequences.
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(a) Parameter set: Opt. Random (tab. 6.3)
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Figure D.3.: Temporal evaluations with the optimized (fig. D.3a) and the statis-
tic (fig. D.3b) parameter sets in the RMSE metric for random frame
sequences.
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E. The Improved DSNU Estimation
Variants

E.1. Further Results for the Weighted Averaging
Approach

This appendix presents additional quality metrics for the temporal performance
analysis presented in sec. 7.1.3 on p.143. The discussion of the results transfers
directly to the here shown quality norms. Furthermore, the differences of the
methods show up much better in the discussed quality metric and these results
are only shown for readers that are more familiar with these image dependend
quality norms.
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(a) Opt. Random (tab. 7.3)
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Figure E.1.: Evaluations for random frame sequences with experimentally opti-
mized parameters (fig. E.1a) and the parameter set from the weighted
statistic histogram (fig. E.1b) in the SNR metric.
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(b) Weighted Stat. (tab. 7.1)

Figure E.2.: Evaluations for random frame sequences with experimentally opti-
mized parameters (fig. E.2a) and the parameter set from the weighted
statistic histogram (fig. E.2b) in the MAE metric.
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(a) Opt. Random (tab. 7.3)
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Figure E.3.: Evaluations for random frame sequences with experimentally opti-
mized parameters (fig. E.3a) and the parameter set from the weighted
statistic histogram (fig. E.3b) in the RMSE metric.
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E.2. Further Results for the CNN Approach

This appendix presents additional quality metrics for the temporal performance
analysis presented in sec. 7.2.3 on p.156. These results are given without further
discussion, as the general discussion of these results transfers directly to the here
shown quality norms. Furthermore, the differences of the methods show up much
better in the discussed quality metric and these results are only shown for readers
that are more familiar with these image dependend quality norms.
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Figure E.4.: Methods evaluations with experimental optimized parameters (tab.
7.6) for the SNR metric and random frame sequences as input
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Figure E.5.: Methods evaluations with experimental optimized parameters (tab.
7.6) for the MAE metric and random frame sequences as input
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Figure E.6.: Methods evaluations with experimental optimized parameters (tab.
7.6) for the RMSE metric and random frame sequences as input
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E.3. Further Results for the RCP Approach

This appendix presents additional quality metrics for the temporal performance
analysis presented in sec. 7.3.3 on p.169. These results are given without further
discussion, as the general discussion of these results transfers directly to the here
shown quality norms. Furthermore, the differences of the methods show up much
better in the discussed quality metric and these results are only shown for readers
that are more familiar with these image dependend quality norms.
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(a) Parameter set: Opt. RCP Random (tab. 7.9)
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(b) Parameter set: Weighted Stat. (tab. 7.1)

Figure E.7.: Evaluations for random frame sequences with experimentally opti-
mized parameters (fig. E.7a) and the parameter set from the weighted
statistic histogram (fig. E.7b) in the SNR metric.
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Figure E.8.: Evaluations for random frame sequences with experimentally opti-
mized parameters (fig. E.8a) and the parameter set from the weighted
statistic histogram (fig. E.8b) in the MAE metric.
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Figure E.9.: Evaluations for random frame sequences with experimentally opti-
mized parameters (fig. E.9a) and the parameter set from the weighted
statistic histogram (fig. E.9b) in the RMSE metric.
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F. The Combined Estimation Method

F.1. Log-Likelihood Energy Transformations

This appendix shows the intermediate steps of the transformation of the energy
EP in sec. 8.3 p. 179. Unsing the definitions of the eq. 8.5f. the energy EP
transforms as it follows:

EP = − log fNU({ai,j , bi,j}) (F.1)

= − log
∏
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F.2. Gradient calculations

F.2.1. The gradient ∇{bi,j}ED

This appendix shows the intermediate steps of the derivation of the gradient in
sec. 8.3 p. 179. The transformations go according to sec. 6.3 and use the chain rule
and the linearity of the derivatives:
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F.2. Gradient calculations

F.2.2. The gradient ∇{ai,j}ED

This appendix shows the intermediate steps of the derivation of the gradient in
sec. 8.3.2 p. 182. The transformations go according to sec. 6.3 and use the chain
rule and the linearity of the derivatives:
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And next the intermediate steps after the temporal averaging follow (used in eq.
8.41 p.183):

∂am,nED = −2λTN (
1

a2
m,nak,l

(
∑

(k,l)∈S

A2
M,m,n,k,l −AM,m,nbk,l−

bm,nAM,k,l + bm,nbk,l)Ψ(·)) (F.20)

= −2λTN (
1

a2
m,nak,l

(
∑

(k,l)∈S

A2
M,m,n,k,l −AM,m,nAM,k,l

+AM,m,nAM,k,l −AM,m,nbk,l − bm,nAM,k,l + bm,nbk,l)Ψ(·)) (F.21)

= −2λTN (
1

a2
m,nak,l

(
∑

(k,l)∈S

A2
M,m,n,k,l −AM,m,nAM,k,l

+ ((AM,m,n − bm,n)(AM,k,l − bk,l))Ψ(·)) (F.22)

352



G. Further Low Valued Nonuniformity
Evaluations

This appendix shows further temporal evaluations for the low valued nonunifor-
mity image material. The below sections name the methods and the discussion
follows as described in the corresponding subsections in the thesis (see sec. 10.2).
A further discussion is therefore omitted. Additionally are the results of the Pho-
tonfocus MV-D640-66-CL-LinLog camera (see sec. 4.3.4), as this camera does not
obey the assumed sensor model and furthermore does not result in discussable
results. As seen below, for some of the evaluations even better correction perfor-
mances of up to 40 % have been achieved, compared the ones presented in the
chapter.

G.1. For the Reference Methods
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Figure G.1.: Evaluation for the Basler A602f with texp.=10 ms @ 22 ◦C
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Figure G.2.: Evaluation for the Basler A602f with texp.=1 ms @ 30 ◦C
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Figure G.3.: Evaluation for the Basler A602f with texp.=10 ms @ 30 ◦C

0 100 200 300 400 500
8

10

12

14

16

Frame Number

p
c
,C

o
m
b
.

LMS3×3 LMS7×7 LMSA,3×3 LMSA,7×7 LMSTV

Figure G.4.: Evaluation for the Basler A602f with texp.=1 ms @ 50 ◦C
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Figure G.5.: Evaluation for the MV-640-66-CL with texp.=10 ms @ 25 ◦C

0 100 200 300 400 500
10

15

20

25

Frame Number

p
c
,C

o
m
b
.

LMS3×3 LMS7×7 LMSA,3×3 LMSA,7×7 LMSTV

Figure G.6.: Evaluation for the MV-640-66-CL with texp.=5 ms @ 50 ◦C
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G.2. For the Weighted Average Improvement

G.2. For the Weighted Average Improvement
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Figure G.7.: Evaluation for the Basler A602f with texp.=10 ms @ 22 ◦C
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Figure G.8.: Evaluation for the Basler A602f with texp.=1 ms @ 30 ◦C
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Figure G.9.: Evaluation for the Basler A602f with texp.=10 ms @ 30 ◦C
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Figure G.10.: Evaluation for the Basler A602f with texp.=1 ms @ 50 ◦C
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Figure G.11.: Evaluation for the MV-640-66-CL with texp.=10 ms @ 25 ◦C
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Figure G.12.: Evaluation for the MV-640-66-CL with texp.=5 ms @ 50 ◦C
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Figure G.13.: Evaluation for the Basler A602f with texp.=10 ms @ 22 ◦C
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Figure G.14.: Evaluation for the Basler A602f with texp.=1 ms @ 30 ◦C
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Figure G.15.: Evaluation for the Basler A602f with texp.=10 ms @ 30 ◦C
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Figure G.16.: Evaluation for the Basler A602f with texp.=1 ms @ 50 ◦C
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Figure G.17.: Evaluation for the MV-640-66-CL with texp.=10 ms @ 25 ◦C
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Figure G.18.: Evaluation for the MV-640-66-CL with texp.=5 ms @ 50 ◦C
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Figure G.19.: Evaluation for the Basler A602f with texp.=10 ms @ 22 ◦C
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Figure G.20.: Evaluation for the Basler A602f with texp.=1 ms @ 30 ◦C
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Figure G.21.: Evaluation for the Basler A602f with texp.=10 ms @ 30 ◦C
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Figure G.22.: Evaluation for the Basler A602f with texp.=1 ms @ 50 ◦C

0 100 200 300 400 500

0

10

20

30

Frame Number

p
c
,D

S
N
U

minRCP(∇, BL) minRCP(∇,MN) minRCP(4,MN) LMSA,7×7 LMSTV

Figure G.23.: Evaluation for the MV-640-66-CL with texp.=10 ms @ 25 ◦C
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Figure G.24.: Evaluation for the MV-640-66-CL with texp.=5 ms @ 50 ◦C
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