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Summary 

 

    I analysed in the following study the mouse mutant cobblestone (cbs) concerning the development 

of the forebrain. The cbs mutation was uncovered by an ethyl-nitroso-urea (ENU) genetic screen, 

using a mouseline called tauGFP was used for the screen, which e expresses the green fluorescent 

protein (GFP) under the promotor of the microtubule binding protein Tau The Tau protein is specific 

for the nervous system (NS) and thus the whole developing NS can be visualized by using ultraviolet 

(UV) light. 

….When I started analyzing the cbs mutation, the phenotype of the cbs/cbs mouse mutant was already 

known, but because of the mutagenic ability of ENU, which causes random mutations, the affected 

gene was unclear. By applying the method of positional cloning I was able to achieve the 

identification of intraflagellar transport 88 (Ift88) as the candidate gene.  

   At the same time the observed phenotypes exhibited in the forebrain of cbs/cbs mutant embryos 

were further characterized by histological analysis. The pronounced disorganization of the dorsal 

telencephalon of cbs/cbs mutant embryos was at first investigated and anatomically described on the 

basis of hematoxylin-stained coronal sections. A detailed analysis by in situ hybridization (ISH) was 

followed, using different markers, which are specific for various areas of the developing telencephalon 

such as Ttr1 for the choroid plexus, Wnt2b for the cortical hem, as well as EphB1 and Lhx2 for the 

hippocampal anlage. Furthermore both the dorsal-ventral and rostral-caudal compartmental boundaries 

of the forebrain were investigated by ISH. 

    Towards the identification of Ift88 as the candidate gene, a detailed analysis of mRNA levels of 

Ift88 in the cbs/cbs mutant was undertaken by Northen Blot analysis as well as quantitative real-time 

RT-PCR. At the same time the Ift88 protein levels were also investigated by Western blot analysis. A 

complementation analysis by crossing cbs heterozygotes to mice heterozygous for a targeted deletion 

of the Ift88 gene (Ift88tm1.1Bky) (Haycraft et al., 2007) was done to ascertain, if the genetic defect in the 

cbs/cbs  mutant is located in the Ift88 gene. 

    Primary cilia, microtubule-based organelles that protrude from the surface of most cells of the 

vertebrate body, are dependent on Ift88 for their formation and maintenance. Because of this the 

ultrastructure of primary cilia was simultaneously investigated by transmission and scanning electron 

microscopy. 

    It is well established that cilia are important for the proper function of the Hedgehog (Hh) signalling 

pathway and are also supposed to be involved in the Wingless/Integrated (Wnt) signalling pathway.  

An examination of the Wnt signalling pathway in cbs/cbs mutant embryos was performed through a 

histological as well as a quantitative real time RT-PCR analysis of its target genes. A similar approach 

was undertaken for the Hh signalling pathway. Additionally,mRNA and protein levels of Gli3, the 

main mediator of the Hh pathway, were also determined. In a final step it was tested whether cells in 

the cbs/cbs mutant embryos loose their competence to respond to Hh signalling by a Luciferase assay. 
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… In the represented study I could ascertain that cbs is a hypomorphic allele of the gene Ift88, in 

which both Ift88 mRNA and protein levels are reduced by 70% to 80%, respectively. cbs/cbs mutants 

display defects in the formation of dorsomedial telencephalic structures, such as the choroid plexus, 

cortical hem and hippocampus. Furthermore mutants exhibit a relaxation of both dorsal-ventral and 

rostral-caudal compartmental boundaries of the forebrain, resulting in the intermixture of otherwise 

separated cell populations. I further demonstrate in that the proteolytic processing of Gli3 is reduced in 

the cbs/cbs mutant, leading to an accumulation of the full-length activator isoform. In addition the 

cbs/cbs mutant exhibits an upregulation of canonical Wnt signalling in the neocortex and in the caudal 

forebrain. The ultrastructure and morphology of cilia of the ventricle of the cbs/cbs mutants are still 

intact 

    Taken together, these results indicate a fundamental role for primary cilia in the development of the 

forebrain. 
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Zusammenfassung 

 

    In der vorliegenden Studie wurde dieMausmutante cobblestone (cbs) von mir in ihrer Wirkung auf 

die Entwicklung des Vorderhirns analysiert. Die cbs Mutation ist im Rahmen eines Ethyl-Nitroso-

Urea (ENU) Screens entdeckt worden. Für den Screen wurde eine Mauslinie namens tauGFP 

verwendet, welche das grün fluoreszierende Protein (GFP) unter dem Promotor des Mikrotubuli 

bindenden Proteins Tau exprimiert. Da das Tau Protein für Nervenzellen spezifisch ist, kann somit das 

gesamte sich entwickelnde Nervensystem unter ultraviolettem (UV) Licht sichtbar gemacht werden.  

    Als ich mit meiner Analyse der cbs Mutation begann, war der Phenotyp der cbs/cbs Mutante zwar 

schon bekannt, aber auf Grund der mutagenen Eigenschaften von ENU, das zufällige Mutationen 

verursacht, war das betroffene Gen noch unbekannt. Mittels Positional Cloning war ich in der Lage, 

Intraflagellär Transport 88 (Ift88) als Kandidatengen zu identifizieren. 

    Gleichzeitig wurde der beobachtete Phenotyp, der im Vorderhirn von cbs/cbs mutanten Embryonen 

zu erkennen ist, mittels histologischer Analyse weiter charakterisiert. Die auffällige Desorganisation 

des dorsalen Telencephalons der cbs/cbs mutanten Embryonen wurde zuerst an Hand von 

Hämotoxylin-gefärbten coronalen Schnitten untersucht und dann anatomisch beschrieben. Eine 

detailierte Analyse mittels in situ Hybridisierung (ISH) folgte, wobei verschiedene Marker, die 

spezifisch für die unterschiedlichen Areale des sich entwickelnden Telencephalons sind, verwendet, 

wie Ttr1 für den Choroid Plexus, Wnt2b für den corticalen Saum, und EphB1 und Lhx2 für die 

hippocampale Anlage. Außerdem wurden sowohl die dorsal-ventralen als auch die rostral-caudalen 

Grenzen innerhalb des Vorderhirns mittels ISH untersucht. 

    Nach der Identifizierung von Ift88 als Kandidatengen wurde eine detailierte Analyse der mRNA-

Level von Ift88 in der cbs/cbs Mutante mittels Northen Blot Analyse und quantitative real-time RT-

PCR unternommen. Zur gleichen Zeit wurden auch die Protein-Level von Ift88 mit Hilfe einer 

Western Blot Analyse untersucht. Außerdem wurde eine Komplementationsanalyse durchgeführt, 

indem heterozygote cbs-Mäuse mit Mäusen, die heterozygot für eine gezielte Deletion des Ift88 Gens 

(Ift88tm1.1Bky) (Haycraft et al., 2007) sind, gekreuzt wurden. Ziel war es, festzustellen, ob der genetische 

Defekt der cbs/cbs Mutante im Ift88 Gen lokalisiert ist. 

    Primäre Zilien sind Mikrotubuli enthaltende Zellfortsätze, die an der Oberfläche der meisten 

Zelltypen bei Vertebraten vorkommen. Die Ausbildung und Aufrechterhaltung von Zilien ist von Ift88 

abhängig. Aus diesem Grund wurde auch die Ultrastruktur von primären Zilien in der cbs/cbs Mutante 

mittels Transmissions- und Rasterelektronenmikroskopie untersucht. 

    Es ist bekannt, dass Zilien wichtig sind für das einwandfreie Funktionieren des Hedgehog (Hh) 

Signalweges, und es wird angenommen, dass sie auch am Wingless/Integrated (Wnt)- Signalweg 

beteiligt sind. Eine Untersuchung des Wnt- Signalweges in Embryos mutant für cbs/cbs wurde 

durchgeführt, indem eine histologische als auch eine quantitative real-time RT-PCR Analyse von 

Zielgenen des Wnt- Signalweges ausgeführt wurde. Mittels einer ähnlichen Herangehensweise wurde 
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auch der Hh- Signalweg analysiert. Zusätzlich wurden sowohl die mRNA- als auch die Proteinlevel 

von Gli3, der Hauptmediator des Hh- Signalweges, bestimmt. Abschließend wurde getestet durch 

einen Lciferase- Assay getestet, ob Zellen in der cbs/cbs Mutante ihre Kompetenz verlieren, auf Hh- 

Signal zu antworten. 

… In dieser Studie ist es mir möglich gewesen festzustellen, dass cbs ein hypomorphes Allel des Gens 

Ift88 ist, und dass sowohl die mRNA- als auch die Proteinlevel von Ift88 in der cbs/cbs Mutante um 

70 bis 80% reduziert sind. cbs/cbs Mutanten weisen Defekte in der Ausbildung der dorsomedialen 

Strukturen des Telencephalons auf, darunter der Choroid Plexus, der corticale Saum und der 

zukünftige Hippocampus. Außerdem sind die Grenzen des dorso-ventralen als auch des rostro-

caudalen Kompartements des Vorderhirns in der cbs/cbs Mutante aufgelockert, so dass dort eine 

Vermischung von ansonsten getrennten Zellpopulationen stattfindet. Ich zeige ebenfalls auf, dass die 

proteolytische Prozessierung von Gli3 in der cbs/cbs Mutante reduziert ist, was zu einer Anhäufung 

der unprozessierten Aktivator-Isoform von Gli3 zur Folge hat. Die cbs/cbs Mutante weist ebenfalls 

eine Hochregulierung des kanonischen Wnt- Signalweges im Neocortex und im caudalen Vorderhirn 

auf. Die Ultrastruktur und Morphologie der Zilien im Ventrikel der cbs/cbs Mutante sind noch intakt. 

Zusammengefasst weisen die Resultate auf eine kritische Rolle der primären Zilien in der Entwicklung  

des Vorderhirns hin
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1 Introduction 

 
    The nervous system is a network of specialized cells that control the actions and reactions of the 

body. Almost all animals have at least a rudimentary nervous system, but the vertebrates exhibit the 

most complex developed one.  The nervous system of the vertebrates consists of the central (CNS) - 

and the peripheral (PNS) nervous system, and the central nervous system is subdivided into the brain 

and the spinal cord. A range of ganglia and nerves, which are part of the peripheral nervous system, 

are connected with the spinal cord. The functional components of the nervous system are neurons, 

glial cells and oligodendrocytes (Campell, 1997). 

 

1.1 Induction of the nervous system 

 

    The nervous system becomes first visible during gastrulation when the ectoderm at the dorsal side 

of the embryo thickens and starts to unfold itself at the edges. This structure is called the neural plate 

(Smith and Schoenwolf, 1989; Keller et al., 1992). The vertebrate CNS originates from the neural 

plate (Saxen, 1989; Wilson and Edlund, 2001). The forebrain arises from the expanded anterior end of 

the neural plate during gastrulation (Rubenstein et al., 1998; Varga et al, 1999; Inoue et al, 2000; 

Whitlock and Westerfield, 2000). 

    The precursors of the telencephalon are located rostral and lateral to the future eye tissue, which 

itself is positioned rostral to the diencephalic anlage. This locates the anlage of the telencephalon at 

the margin of the anterior neural plate. This position it under the influence of signalling pathways that 

both are involved in the anterior-posterior (A-P) and dorsal-ventral (D-V) patterning of neural tissue. 

A two-signal model for neural induction proposed by Nieuwkoop (Nieuwkoop et al., 1954; reviewed 

and updated in Foley et al., 2000) suggests that neural tissue acquires an anterior identity by default 

(the induced neural tissue has already anterior (forebrain) character) , and that a “transforming” 

(posteriorizing) signal specifies more posterior neural fates (Fig. 1). 

 

 

 

 

 

 

 

 

 



Introduction 
 

 13 

 
Fig. 1. Model defining the initial head-tail patterning of the embryo The “activation-transformation” model 

of Nieuwkoop.  (Adapted from Stern et al., 2006). 

 

1.1.1 Bmp antagonists and Fgfs assist neural development 

 

    Bone morphogenetic protein (Bmp) and fibroblast growth factor (Fgf) signalling are thought to be 

involved in the process of neural induction. High levels of Bmp activity in fish and frogs inhibits the 

anterior neural development and the abrogation of Bmp signalling assists neural specification (Munoz-

Sanjuan and Brivanlou, 2002). Thus, Bmp signalling is an important negative regulator for neural 

induction (Reversade et al., 2005; Reversade and De Robertis, 2005) and a potent epidermalizing 

factor (Fig. 2). The organizer (Spemann´s organizer in frog, the shield in fish, and node in chick and 

mouse) and its early derivates (such as the prechordal mesoderm) is thought to be the origin of the 

Bmp signalling antagonists (Fig. 3). They include in Xenopus noggin (Zimmermann et al., 1996), 

chordin (Piccolo et al., 1996), follistatin (Fainsod et al., 1997) and cerberus (Bouwmeester et al., 

1996). They can bind to the Bmp ligands in the extracellular space and prevent activation of the 

receptors. When they are applied to embryonic ectoderm, neural tissue forms instead of epidermis 

(Meinhardt, 2001; Vonica and Gumbiner, 2007), thus acting as neural inducers. Mouse mutants, in 

which the Bmp antagonists chordin (Bachiller et al., 2000), noggin (McMahon et al., 1998), or 

cerberus (Belo et al., 2000) are missing, are expressing only posterior neural genes, and double 

mutants for noggin and chordin don´t develop forebrain structures (Bachiller et al., 2000). This results 

indicate that a conserved and necessary role for Bmp inhibition for the induction of anterior neural 

tissue across vertebrates existes (Fig. 2). 
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Fig. 2. Bmp signalling and its influence on the dorsal-ventral patterning of the ectoderm. Embryos exhibit a 

ventralizing center at the blastula stage, that maintains Bmp signalling, and a dorsalizing center, that initiates the 

formation of neural tissue by suppressing Bmp signalling. (Adapted from Squire et al., 2008). 

 

    The results from other studies imply that suppression of Bmp signalling alone is not sufficient to 

induce neural identity and that other signals such as Fgfs are also necessary (Linker and Stern, 2004; 

Delaune et al., 2005; Wawersik et al., 2005). The results lead to the idea that an initial Fgf signal is 

needed for neural induction before the inhibition of Bmp signalling can function as a neural stabilising 

event. Fgf signalling seems also to act as an inducer of posterior neural tissue (Hongo et al., 1999; 

Ishimura et al., 2000; Wilson et al., 2000; Wilson et al., 2001; Sheng et al., 2003; Rentzsch et al., 

2004) besides its role as a “priming” signal by suppressing Bmp signalling through the 

phosphorylation and inactivation of Smad1 (Schier, 2001; Pera et al., 2003) and thus reinforcing the 

antagonism of the Bmp pathway. The inhibition of the Wingless/Integrated (Wnt) signalling seems 

also to be important for neural induction (Heeg-Truesdell and Labonne, 2006; Wilson et al., 2001). 

 

1.1.2 Protection of the anterior neural tissue from posteriorizing factors 

 

    To maintain the induced anterior neural character, the rostral located neural tissue must be insulated 

from posteriorizing factors, which is achieved by three mechanisms: 1) restricted expression of the 

posteriorizing factors; 2) restricted expression of antagonists of the posteriorizing factors; 3) 

morphogenetic movements that avoid that the anterior neural plate comes in contact with the 

posteriorizing factors.The anterior visceral endoderm (AVE) in mouse seems to be an important 

source of antiposteriorizing signals (Kimura et al., 2000; Perea-Gomez et al., 2001). The AVE is an 

extra-embryonic tissue, that moves rostrally from the distal tip of the blastula and underlies afterwards 

the anterior (prechordal) neural plate (Thomas et al.) (Fig. 3). Mutations in genes important for the 
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development of the AVE results in defects of the anterior neural plate including the telencephalon 

(Knoetgen et al., 1999; Perea-Gomez et al., 2000). The formation of the AVE is dependent upon the 

expression of Nodal in the epiblast (Brennan et al., 2001) (future neural plate), the outer layer of the 

blastula, which gives rise to the ectoderm after gastrulation. Further on during gastrulation the AVE is 

moved proximally (Thomas and Beddington, 1996). The ongoing patterning of the neuroectoderm is 

then transferred to the anterior streak derivates. 

 

 
Fig. 3. The anterior visceral endoderm (AVE). Schematic drawing of a early head stage mouse embryo. The 

node is the source of signals that create an anterior pattern (black arrow). The anterior visceral endoderm and 

the node act together to initiate and/or maintain anterior character in the neural plate. The anterior visceral 

endoderm lies beneath the prospective neural plate and generates molecules such as Cerberus and dickkopf (red 

arrows), that suppress the function of posteriorizing factors and thus prevents the anterior neural plate to 

become posteriorized. The figure displays the end stage at which this signals are acting. (Adapted from Rallu et 

al., 2002). 

 

    Furthermore inhibition of Wnt signalling at the anterior end of the neural plate is necessary for 

normal formation of the prechordal plate (Niehrs, 1999; Kazanskaya et al., 2000) (Fig. 4). Dickkopf 

(Dkk1), a secreted antagonist of Wnt signalling, is necessary for the formation of the prechordal plate 

during gastrulation, and is later expressed in the anterior mesendoderm where it is required for the 

induction of telencephalic markers such as Hesx1 (homeobox gene expressed in ES cells) and Six3 

(sine oculis-related homeobox 3 homolog) and is also required for dorosoventral patterning 

(Kazanskaya et al., 2000; Hashimoto et al., 2000; Mukhopadhyay et al., 2001). Mice mutant for Dkk1 

have no telencephalon and lack anterior cranial skeletal elements (Mukhopadhyay et al., 2001). It 
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seems to be that signals that promote forebrain development anatgonize or otherwise negatively 

regulate factors that would normally posteriorize the anterior neural plate. 

 

 
Fig. 4. Early A-P patterning in the vertebrate nervous system. Schematic drawing showing the signals that 

are presumed to divide the developing nervous system into a prechordal (anterior) and epichordal (posterior) 

neural plate. (Adapted from Squire et al., 2008). 

 

    Wnt, Fgf , Bmps, retinoic acid (RA) and Nodal family transforming growth factor β (TGFβ) 

proteins are proposed to be posteriorizing factors, and it is most likely the case that the combined 

activity of several signalling pathways is needed to create an early A-P pattern (Fig. 5A) (Kudoh et al., 

2002; Haremaki et al., 2003). Taken together, the A-P pattern begins to develop within the embryo, 

and within the context of the developing A-P pattern, neural induction proceeds, and the anterior 

neural tissue protected from the effect of posteriorizing factors forms the future forebrain (Fig. 5B). 
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Fig. 5. Proceeding specification of the mammalian forebrain. A. Because of neural induction the neural plate 

is generated. Markers that are first expressed in the whole early neural plate will be in the end confined to 

specific anterior domains of the CNS. Wnts, FGFs and RA can act at this stage of development as signals that 

posteriorize the neural plate. Antagonists of this signals, such as cerberus and dickkopf,  are expressed in the 

AVE (and node). They are crucial to prevent that the anterior neural plate adopts a posterior character. The 

anterior neural plate is afterwards divided into specific domains by graded Wnt signalling. B. Side view of the 

brain of a E10.0 old mouse embryo, showing the main subdivisions. (Adapted from Rallu et al., 2002). 

 

1.2 Induction of the forebrain 

 

1.2.1 The anterior neural ridge 

  

    The anterior neural ridge (ANR) resides at the rostral edge of the neural plate between the neural 

and non-neural ectoderm. The ANR starts to express Fgf8 shortly after the initiation of the neural 

induction (Fig. 6). The expression of Fgf8 in the ANR is under the control of signals from the axial 

mesendoderm. The axial mesendoderm gives rise to the anterior definitive endoderm, the prechordal 

plate mesoderm, the progenitors of the node and its derivates, the notochord and floor plate (Camus 

and Tam, 1999). The formation of the axial mesendoderm is dependent on the expression of Nodal 

(Wall et al., 2000; Andersson et al., 2006).  

    Fgf8 expression in the ANR needs protection from the posteriorizing effect of Wnt signals. The Wnt 

signals originate from the lateral-ventral mesoderm and posterior ectoderm (Chang et al., 1998; Smith 

et al., 1991; Wolda et al., 1993; Kazanskaya et al., 2000; Mukhopadhyay et al., 2000; Hashimoto et 

al., 2000).  Fgf8 expression is thus limited to the ANR, where it is responsible for the induction of 
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markers for the prosencephalic identity in the anterior neuroectoderm (Shimamura et al., 1997; 

Shanmugalingam et al., 2000; Fukuchi-Shimogori et al., 2001).  

 

 
Fig. 6. Signalling centers in the developing telencephalon. For the patterning of the developing telencephalon 

four signalling centers are neede. 1) The anterior neural ridge (ANR) (blue) is loacated in the anlage of the 

septum (S) and emits Fgfs. 2) The cortical hem (green) functions as a caudodorsal signalling center by emitting 

Wnts and Bmps. 3) A center necessary for the ventral patterning of the telencephalon emits Shh. 4) A lateral 

center at the pallial-subpallial boundary (not shown), also called the anti-hem, emits Fgf7, Fgf15, neuregulins, 

TGFα and the Wnt antagonist secreted frizzled-related protein 2 (Sfrp2). Abbreviations: Cx, Cortex; LGE, lateral 

ganglionic eminence; MGE, medial ganglionic eminence; S, septum. (Adapted from Hoch et al., 2009) 

 

    Fgf8 is necessary and sufficient to regulate the expression of the telencephalic marker forkhead box 

G1 (Foxg1) (Fig. 7A) (Shimamura and Rubenstein, 1997; Ye et al., 1998). The onset of Foxg1 

expression at embryonic day 8.5 (E8.5) in mice marks the specification of the telencephalic 

primordium. The telencephalon becomes subdivided into several distinct areas right after the 

expression of Foxg1. The different areas are first distinguished by the expression of specific molecular 

markers, but after a short time they can be kept apart by local differences in their levels of 

proliferation.  
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Fig. 7. Definition of the dorsal and ventral subdivisions in the developing telencephalon. Schematic drawing 

of the anterior neural plate at five somite stage (dorsal view, anterior is up). A. The developing telencephalon is 

marked by the expression of FoxG1 (blue). B. FoxG1 and Shh (green) promote both the expression of Fgf 

(purple) in the ANR, which patterns the developing telencephalon (indicated by the curved arrow). Shh promotes 

the expression of Fgf by suppressing the repressor activity of Gli3. Gli3 expression is depicted in red. Thus the 

development of a ventral telencephalic subdivision is promoted by Shh through the inhibition of the dorsalizing 

effect of Gli3. (A,B) Dorsal view, anterior is up. (Adapted from Hebert and Fishell, 2008). 

 

    Several transcriptional factors, including GLI-Kruppel familiy member Gli3(Gli3), paired box gene 

6 (Pax6) and FoxG1, are expressed in a region of the developing anterior neural plate (Fig. 7B) that 

will form the telencephalon. These genes play an important role in dividing the telencephalon into its 

dorsal and ventral sections. The embryonic dorsal telencephalon, which mainly produces 

glutamatergic neurons, can be divided into an anterior and lateral area that gives rise to the neocortex, 

and into a posterior and medial area that gives rise to the hippocampus, cortical hem and the choroid 

plexus. The embryonic ventral telencephalon can be divided into a medial area named the medial 

ganglionic eminences (MGE) and two posterior and lateral domains known as the lateral ganglionic 

eminences (LGE) and the caudal ganglionic eminences (CGE). All three domains of the ventral 

telencephalon contributes neurons to the basal ganglia and to corresponding limbic structures such as 

the amygdala and the nucleus accumbens. 
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1.2.2 Dorsal and ventral domains of the telencephalon are defined by Shh and Gli3 

 

    The subdivision of the telencephalon into a dorsal and a ventral domain is controlled by the 

dorsalizing effect of Gli3 expression and the ventralizing effect of sonic hedgehog (Shh) expression. 

At the beginning, Gli3 is expressed in the whole telencephalon (Fig. 7B) and is then gradually 

downregulated in the ventral part of the telencephalon (Aoto et al., 2002; Corbin et al., 2003). The 

depletion of Gli3 expression results in a lack of the choroid plexus, cortical hem, the hippocampus and 

the neocortex (Grove et al., 1998; Theil et al., 1999; Tole et al., 2000; Kuschel et al., 2003).  

Shh is expressed in the midline of the developing neural plate (Fig. 7B)  and its expression is 

maintained along the ventral midline of the CNS during development (Echelard et al., 1993). In the 

absence of Shh expression the size of the telencephalon is diminished and ventral cell types fail to 

form (Ericson et al., 1995; Chaing et al., 1996; Ohkubo et al., 2002; Corbin et al., 2003). The ventral 

patterning can mainly rescued in double mutants for Gli3 and Shh (Aoto et al., 2002; Rallu et al., 

2002; Rash et al., 2007), which indicates that Shh restricts the dorsalizing effect of Gli3 and also 

controls the positioning of the dorsoventral boundary.  

 

1.2.3 The telencephalon is supported by the expression of Gli3 and Foxg1 

 

    Early anterior neural plate cells destined to form the telencephalon express Foxg1 (Fig. 7A) 

(Shimamura et al., 1995; Shimamura et al., 1997; Hebert et al., 2000), which is independent of the Shh 

expression (Rash et al., 2007). The result of the impairment of Foxg1 expression is a loss of ventral 

cell types (Xuan et al., 1995; Dou et al., 1999; Martynoga et al., 2005;) and the complete 

telencephalon is lost in double mouse mutants for Foxg1 and Gli3 (Hanashima et al., 2007), leading to 

the suggestion that both genes are necessary for creating and maintaining the dorsal and ventral 

subdivisions of the telencephalon (Fig. 8A). 

    Foxg1 is also needed for the expression of Fgf8 (Martynoga et al., 2005) and Fgf signalling is, 

together with Shh signalling, essential for the formation of the ventral telencephalon 

(Shanmugalingam et al., 2000; Shinya et al., 2001; Walske and Mason, 2003; Gutin et al., 2006; 

Storm et al., 2006).  
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Fig. 8. The dorsal and ventral areas of the telencephalon are subdivided into four main regions. Drawing 

shows the dorsal and ventral subdivisions of the embryonic mouse telencephalon at E9.0 (A) and at E10.0 (B). 

A. The Gli3-expressing dorsal area at E10.0 is divided at E10.0 into a Bmp- and Wnt-expressing medial area and 

and a more lateral located cortical area that expresses reverse gradients of Emx2 and Pax6. Between E9.0 and 

E10.0 the ventral region is divided into medial Nkx2.1-expressiong domains and Gsh2-expressing domains. At 

E10.0 the expression area of Gsh2 overlaps with that of Nkx2.1 (not shown). The expression of Shh, Fgf and 

FoxG1 is skipped. (A,B) Dorsal is up, ventral is down. (Adapted from Hebert and Fishell, 2008). 

 

1.2.4 Fgfs specify ventral telencephalic identity downstram of Shh 

 

    Shh maintains indirectly the expression of several Fgf genes in the anterior medial telencephalon 

(Aoto et al., 2002; Ohkubo et al., 2002; Gutin et al., 2006; Rash et al., 2007) by its ability to 

negatively regulate the repressor function of Gli3 (Fig. 7B), and Fgf receptors are required for the 

ventralizing effect of Shh. Fgf expression is lost in Shh-/- mutants, and ventral cell types fail to form 

due to the uncontrolled repressive influence of Gli3. The expression of Fgf is no longer impaired in 

Shh-/-;Gli3-/- double mutants, and ventral development is rescued (Theil et al., 1999; Aoto et al, 2002; 

Kuschel et al., 2003; Rash et al., 2007). The influence of the Fgf signalling concerning the patterning 

of the telencephalon is not confined to the ventral regions, but also expands to the dorsal regions. In 

Fgf8 mutants not only are ventral precursors lost, but also the neocortex is reduced in size and 

anterior-lateral markers are lost (Storm et al., 2006). This and other results indicate that Fgf signalling 

plays an important role as an organizer of the telencephalon.  

 

1.2.5 Establishment of cortical regions by Pax6 

 

    Pax6 is absolutely necessary for the establishment of the sharp border, called the anti-hem, that 

separates the ventral telencephalon from the dorsal telencephalon. Pax6 is expressed in the whole 

forebrain primordium during neural plate stage (Inoue et al., 2000) and at the neural tube stage its 
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expression is limited to the dorsal region of the developing telencephalon, simultaneous with the 

upregulation of Nk 2 homeobox 1 (Nkx2.1) in the ventral telencephalon (Corbin et al., 2003) (Fig. 8B). 

The pallial-subpallial boundary is defined by the intersection of Pax6 and GS homeobox 2 (Gsh2) 

expression (Fig. 8B). In Pax6-/- mutants the most ventral portion of the telencephalon becomes the 

dorsal LGE, and in Gsh2-/- mutants the dorsal LGE adopts a ventral cortex fate (Corbin et al., 2000; 

Stoykova et al., 2000; Toresson et al., 2000; Yun et al., 2001). Pax6 seems to interact with Gli3 to 

promote dorsal telencephalic development (Fuccillo et al., 2006), whereupon Gli3 is required for 

maintaining Pax6 expression (Theil et al, 1999; Aoto et al., 2002;  Kuschel et al., 2003).  

 

1.2.6 Division of the dorsal telencephalon into different domains 

 

    The dorsal telencephalon is divided into two areas: the cerebral cortex, which develops to the 

neocortex and the hippocampus, and the dorsal midline, which forms the cortical hem and the choroid 

plexus (Fig. 9). The transcription factor Lim homeobox protein 2 (Lhx2) is essential for specifying 

cells to become cortical instead to adopt a dorsal midline character, by inhibiting a hem or antihem 

fate (Fig. 9) (Mangale et al., 2008). In Lhx2 null mutants the cortex is lost and the cortical hem and 

choroid plexus are expanded (Monuki et al., 2001). The expression of Foxg1 also restricts the dorsal 

midline development (Dou et al., 1999; Martynoga et al., 2005).  

 

 
Fig. 9. The dorsal telencephalic midline emits signals necessary to subdivide the dorsal telencephalon. 
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Bmps expressed by midline cells are needed for the development of the choroid plaque and the cortical hem 

(red), which is the organizer required for the formation of the hippocampus. The cortical hem is defined by the 

expression of several Wnts. The formation of the neocortex needs the expression of Pax6 and Emx1/2. Pax6 

expression is necessary for the formation of the anti-hem (blue), which represents the pallial-subpallial border. 

The expression of Lhx2 inhibits the expansion of the cortical hem and anti-hem. (Adapted from Hebert and 

Fishell, 2008). 

 

    The dorsal midline itself is defined by the expression of Bmps and Wnts, and Bmp signalling can 

induce dorsal midline character (Fig. 9) (Furuta et al., 1997; Panchision et al., 2001). The depletion of 

Bmp signalling results in a loss of the cortical hem and choroid plexus (Fernandes et al., 2007). The 

development of the hippocampus depends upon the activity of the cortical hem. Wnts are likely 

candidates to administrate this organizer activity of the cortical hem (Fig. 9). Depletion of wingless-

related MMTV integration site 3a (Wnt3a) from the cortical hem results in a lack of a recognizable 

hippocampus (Lee et al., 2000). The normal development of the hippocampus also requires empty 

spiracles homolog 1 (Emx1) and empty spiracles homolog 2 (Emx2) (Fig. 9) (Shinozaki et al., 2004). 

The expression of Emx2 can be regulated by binding of Bmp and Wnt signalling effectors to specific 

enhancer elements of Emx2. Thus Wnt3a can maybe act together with Bmps to aid hippocampal 

formation by directly influencing the expression on Emx genes (Theil et al., 2002; Shinozaki et al., 

2004).  

 

1.3 Primary cilia  

 

    The formation of the telencephalon starts as a single layer of neuroepithelial cells and requires the 

proliferation, differentiation and migration of neural precursor cells. The study of the primary cilium, a 

small protrusion of the cell surface into the extracellular matrix, gives insight to the mechanisms that 

are responsible for the development of the telencephalon. The primary cilium arises from the basal 

body, which originates from the mother centriole. The mother centriole, which belongs to the 

centrosomes that are responsible for the organization of the mitotic spindle during cell divisions, 

functions as a microtubule-organizing center underneath the cell membrane (Davenport and Yoder, 

2005). Because the primary cilium is associated with the centrosome, it is absorbed just before the cell 

enters mitosis. Thus, this connection between cell cycle and ciliogenesis indicates that the primary 

cilium may be involved in cell proliferation and differentiation during development (Pan and Snell, 

2007; Pugacheva et al., 2007; Spektor et al., 2007). Results from recent studies also demonstrated that 

the primary cilium senses extracellular signals that control brain development (Eggenschwiler and 

Anderson, 2007; Gerdes et al., 2009). Almost every cell in the brain exhibits a primary cilium 

(Doetsch et al., Banizs et al., 2005; Bishop et al., 2007; Cohen and Meininger, 2007; 1999; Dubreuil et 

al., 2007).  
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1.3.1 Ciliary structure  

 

    The cilium is an appendage-like, microtubule-based organelle that is found on almost every 

eukaryotic cell (Pazour and Witman, 2003). The membrane of the cilium is connected with the cell 

membrane, covering a microtubule core structure called the axoneme. The basal body fixes the cilium 

at the proximal end of the axoneme (Fig. 10). The ciliary axoneme consists of nine outer microtubule 

doublets grouped in a concentric circular pattern. These doublets surround either a central pair of 

microtubles (this ultrastructure is known as “9+2”) (Fig. 10), or the axoneme has no central pair (this 

structure is referred to as “9+0”) (Fig. 10). Inner and outer dynein arms attached to the outer 

microtubule doublets are responsible for ciliary motility (Fig. 11). Historically the “9+2” structure was 

linked with a motile function for cilia, whereas the “9+0” structure was implicated with immotile 

sensory (primary) cilia. However, this historical classification is not correct. Flagella in many protists 

function in motility as well as sensory reception (Fliegauf et al., 2006). Vertebrates exhibit motile 

“9+0” cilia on the embryonic node that generate fluid movement, which is critical for left-right 

asymmetry (Essner et al., 2002; McGrath et al., 2003; Essner et al., 2005), as well as motile 

ependymal cilia in the central canal of the zebrafish spinal cord possess a “9+0” structure (Kramer-

Zucker et al., 2005). Cilia of olfactory sensory neurons in frog olfactory epithelium have a “9+2” 

configuration and are immotile (Reese, 1965). At the distal end of the basal body is the transition area 

(Fig. 11). It has been suggested that the basal body and the corresponding transition-fiber proteins 

have a regulating function concerning the entry and exit of proteins from the cilia compartment 

(Marshall, 2008; Pazour and Bloodgood, 2008).  

 

 
Fig. 10. A cross-section through a “9+2” and “9+0” cilium. (Adopted from Bisgrove and Yost, 2006) 
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Fig. 11.  Ciliary structure and intraflagellar tran sport (IFT). The figure shows the structure of a “9+2” 

primary cilium and the components of its IFT, which is necessary for the assembly and maintenance of cilia. + = 

microtubule plus end; - = microtubule minus end. (Adapted from Eley et al., 2005). 

 

1.3.2 Intraflagellar transport 

 

    Proteins necessary for the assembly and maintenance of the cilium have to be synthesized in the cell 

body and transported into the cilium, because the cilium itself lacks the machinery needed for protein 

synthesis. The transport occurs by a microtubule-based process known as intraflagellar transport (IFT) 

(Pazour et al., 2002; Scholey, 2003; Pedersen and Rosenbaum, 2008) (Fig. 11). Ciliary components 

are moved from the cell body into the cilium (anterograde transport) by kinsein-II motors (Fig. 12), 

whereas cytoplasmic dyneins are responsible for their transport from the cilium to the cell body 

(retrograde transport) (Fig. 12).  

    IFT particles are composed of two distinct subcomplexes (complexes A and B). Complex B is 

involved in anterograde transport (Kozminski et al., 1993; Cole et al., 1998) and complex A is 

responsible for the retrograde transport (Pazour et al., 1998; Piperno et al., 1998).  
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Fig. 12. Intraflagellar transport. So called IFT particles are transported to the ciliary tip of the cilium  

(anterograde IFT) by kinesin along the outer microtubule doublets (OM) and under the ciliary membrane. They 

are transported back to the basal body and the cell (retrograde IFT) by the molecular motor cytoplasmic dynein. 

(Adapted from Badano et al., 2006). 

 

1.3.3 Ciliary function 

 

    The function of motile cilia is for example to recognize and remove foreign substances out of the 

trachea (Shah et al, 2009). Motile cilia are in the adult brain located on ependymal cells along the 

ventricle and some choroid plexus cells, generating the cerebrospinal fluid flow, which is crucial for 

the migration of young neurons from the adult subventricular zone (Sawamoto et al., 2006). Primary 

cilia function as a sensory organelle and mediate chemo-, photo-, and mechanotransduction. Olfactory 

cilia located on olfactory sensory neurons mediate chemotransduction (McEwen et al., 2008; Jenkins 

et al., 2009); the outer segment of photoreceptors is a highly modified cilium and mediates 

phototransduction (Ramamurthy et al., 2009), and primary cilia of renal epithelial cells mediate 

mechanotransduction (Praetorius et al., 2001; Praetorius et al., 2003). Primary cilia on embryonic 

nodal cells have a machanosensory function that controls left-right asymmetry in the early embryo 

(McGrath et al., 2003). Primary cilia are also crucial for the proper function of mammalian signal 

transduction pathways such as the Hegehog- (Hh) and Wingless/Integrated- (Wnt) signalling 

(Eggenschwiler and Anderson, 2007; Gerdes et al., 2009). 
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1.3.4 Primary cilia and Hedgehog signalling 

 

    Hedgehog (Hh) proteins are secreted lipoproteins that are involved in the regulation of 

developmetal processes in invertebrates as well as in vertebrates ((Nusslein-Volhard and Wieschaus, 

1980; Jiang and Hui, 2008). Mammals have three Hh genes, Sonic hedgehog (Shh), that is important 

for the regulation of embryonic development as well as post-natal homeostasis (Echelard et al., 1993; 

Chiang et al., 1996), Indian hedgehog, that is involved in bone development, and Desert hedgehog, 

that participate in spermatogenesis (Bitgood et al., 1996; Vortkamp et al., 1996; St-Jacques et al., 

1999) and is involved in the development of peripheral nerves (Paramtier et al, 1999). 

    Components of the Hh pathway are localized in cilia (Corbit et al., 2005), and cells without cilia are 

not able to initiate the pathway in response to Shh ligand (Ocbina and Anderson, 2008; Haycraft et al., 

2005). The Hh pathway is triggered by binding of Hh protein to the transmembrane receptor Patched1 

(Ptch1) in the membrane of the cilium (Fig. 13A)  (Rohtagi et al., 2007). The activity of the seven 

transmembrane protein Smoothened (Smo) is inhibited by Ptch1 in the absence of Hh signal. Binding 

of Hh signal to Ptch1 results in the internalization of Ptch1 from the membrane of the cilium and Smo 

enters the cilium (Fig. 13B) (Corbit et al., 2005; Rohatgi et al., 2007). This cancels the repression of 

Smo and triggers a conformational change in Smo, thus resulting in the activation of the pathway 

(Zhao et al., 2007). The connection between Smo and the Gli transcription factors, which mediate in 

the nucleus the expression of the Hh pathway targeted genes (Kalderon, 2000; I Altaba et al., 2007), is 

still unclear. Besides Ptch1 and Smo, other regulators of the Hh signalling pathway, such as 

Suppressor of Fused (SuFu) and the Gli transcription factors Gli1, Gli2 and Gli3 (Ruppert et al, 1990) 

localize to the cilium (Haycraft et al., 2005; Kiprilov et al., 2008; Nielsen et al., 2008; Chen et al., 

2009). Gli2 functions basically as a strong transcriptional activator with a weak repressor function. 

Gli3, on the other hand, has mainly a strong repressor function and a weak activator activity (Hui and 

Joyner, 1993; Ding et al., 1998; Matise et al., 1995;  Buttitta et al., 2003; McDermott et al., 2003; 

Wang et al., 2007; Pan et al., 2008; Pan et al., 2009). Both regulate the expression of the Gli1 gene 

(Bai et al., 2004), a direct target of Hh signalling (Hynes et al., 1997; Dai et al., 1999; Bai and Joyner, 

2001). Gli1 has no N-terminal repressor domain and it undergoes no proteolytic processing (Dai et al., 

1999; Sasaki et al., 1999; Kaesler et al., 2000). Gli1 is expendable in mice (Park et al., 2000; Bai et 

al., 2002), but not in the zebrafish (Karlstrom et al., 2003). Thus, it is probable that Gli1 is in mice not 

really necessary for initiation of the Hh signal transduction, but to enhance the expression of Hh target 

genes after activation.In the absence of Hh signalling, the main part of the full-length Gli3 isoform and 

only a small fraction of the full-length Gli2 isoform are proteolytically processed by cleaving the C-

terminal activator domains to become N-terminal repressors (Wang et al., 2000; Pan et al., 2006) and 

Gli1 is not expressed (Hynes et al., 1997; Lee et al., 1997; Dai et al., 1999; Bai and Joyner, 2001; 

Karlstrom et al., 2003). For the processing of full-length Gli2 and Gli3 the phosphorylation of several 

serine and threonine residues at their C-terminus is necessary.This is conducted by protein kinase A 
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(PKA) and thereafter by casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3) (Pan et al., 

2006; Tempe et al., 2006; Wang and Li, 2006). After phosphorylation has taken place, they are bound 

and ubiquitinated by the Skp1-Cul1-F-box protein-E3-ubiquitin ligase complex and then processed by 

the proteasome in a site-specific manner to their N-terminal repressor isoforms (Tempe et al., 2006; 

Wang and Li, 2006). Binding of a Hh signalling molecule to Ptch1 leads to a reduction of the 

processing of Gli2 and Gli3 into their short repressor form and to an increased activity of Gli1 and 

Gli2 (Fig. 13B) (Wang et al., 2000; Litingtung et al., 2002; Huangfu and Anderson, 2005). The 

normal functioning cilium seems to be crucial for the processing of Gli2 and Gli3 to their repressor 

form and the activation of Gli2 and Gli3 in response to induced Hh signalling (Huangfu et al, 2003; 

Haycraft et al., 2005; Liu et al., 2005).  

    Normal limb development, for example, is dependent on a specific ratio between Gli3 activator and 

Gli3 repressor (te Welscher et al., 2002; Wang et al,. 2007). Mutations that remove IFT in mice alter 

the Gli3 activator-to-repressor ratio by misregulation of the production of the Gli3 repressor form, 

resulting in severe polydactyly (Haycraft et al., 2005; Liu et al., 2005; Tran et al., 2008). These results 

indicate an important role for primary cilia for the regulation of the Hh signalling pathway. 

 

 
Fig. 13. The primary cilium and Hh signalling. A. In the absence of Hh, Smo is repressed by Ptch. Gli3 is 

proteolytically processed to a transcriptional repressor, which inhibits the transcription of Hh signalling target 

genes. B. The binding of a Hh signal results results in the internalization of Ptch1 from the membrane of the 

cilium and Smo enters the cilium. In the cilium Smo interacts with Sufu, which results in inhibition of the 

proteolytic procession of Gli3, activating Gli transcriptional activators. (Adapted from Scholey and Anderson, 

2006). 

 

1.3.5 Sufu and proteolytic processing of Gli2 and Gli3 in relation to primary cilia 

 

    It has been recently shown that the formation of the two different isoforms of Gli3 are dependent of 

the interaction between Gli3 and Sufu (Humke et al., 2010), and that this interaction seems partly to be 
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independent of primary cilia (Chen et al., 2009). Sufu is an important negative regulator of the 

mammalian Hh signalling pathway and its removal results in a constitutive activation of Hh target 

genes in mice (Cooper et al., 2005; Svard et al., 2006). Sufu can directly bind to both the N-and C-

terminal regions of the three different Gli proteins in mammals (Pearse et al., 1999; Stone et al., 1999; 

Dunaeva et al., 2003; Merchant et al., 2004), and the interaction between Sufu and Gli3 controls the 

generation of the Gli3 repressor as well as activator isoform (Humke et al., 2010). The loss of Sufu 

leads to the destabilization of Gli2 and Gli3 full-length activators, but their C-terminal processed 

repressors are unaffected (Wang et al., 2010). The knockdown of Spop (a substrate-binding adaptor 

for the cullin3-based ebiquitin E3 ligase) in Sufu mutant mouse embryonic fibroblasts (MEFs) is able 

to recover the levels of Gli2 and Gli3 full-length proteins (Wang et al., 2010), and overexpression of 

Spop assists Gli2 and Gli3 degradation and Gli3 processing (Wang et al., 2010). Sufu antagonizes 

Spop in the process of regulating the protein levels of Gli2 and Gli3 (Chen et al., 2009) by protecting 

the full-length isoforms of Gli2 and Gli3 from Spop-mediated ubiquitination and complete degradation 

by the proteasome (Chen et al., 2009, Wang et al., 2010). 

    Without the activation of the Hh signalling, full-length Gli3 is held back by Sufu in the cytoplasm, 

which favours the processing of Gli3 into a transcriptional repressor (Humke et al., 2010). The 

association of full-length Gli3 with Sufu seems to be independent of primary cilia, because in cells 

without IFT components Sufu has still the competence to inhibit Hh signalling (Chen et al., 2009; Jia 

et al., 2009). The subsequent processing of the full-length Gli3 into its transcriptional repressor form 

depends on intact primary cilia (Huangfu and Anderson, 2005), but the activity of the Gli3 repressor 

form does not need Sufu or primary cilia (Humke et al., 2010; Wang et al., 2010). Sufu dissociates 

from Gli3 after the activation of Hh signalling (Humke et al., 2010) and the full-length Gli3 is able to 

enter the nucleus (Humke et al., 2010). Once the full-length Gli3 isoform has entered the nucleus, it is 

turned into an instable, differentially phosphorylated transcriptional activator .The protein Kif3a is 

necessary for the dissociation of Sufu from Gli3, and it may also be PKA dependent. Activation of the 

Hh signalling pathway leads to an accumulation of inactive PKA at the base of the primary cilium, and 

its inactivation triggers the activation of PKA at the same location (Barzi et al., 2010). The activation 

of PKA can inhibit the dissociation of the full-length Gli3/Sufu complex (Humke et al., 2010), and 

full-length Gli3 bound by Sufu is not able to enter the nucleus to activate target genes of the Hh 

signalling.  
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Fig. 14. SuFu controls Gli3 processing. A. The full-length form of Gli3 is in association with SuFu in the 

cytoplasm and is kept in this way in a neutral state. Without the activation of the Hh signalling pathway, the 

SuFu-Gli3 complex is recruited to the primary cilium (1), leading to the processing of the full-length Gli3 to the 

cleaved Gli3 isoform (2), which leads to its dissociation from SuFu (3). The cleaved Gli3 isoform is now able to 

enter the nucleus (4), where it acts as a transcriptional repressor of Hh target genes (5). B. Activation of the Hh 

signalling pathway results in the dissociation of SuFu from the Gli3 full-length isoform (3) and the formation of 

the cleaved Gli3 isoform is stopped (2). Free full-length Gli3 can now enter the nucleus (4), where it is 

phosphorylated, destabilized, and converted into a transcriptional activator (5). The level of PKA activity in the 

primary cilium may be able to control the rate of flow between pathways leading to the formation of Gli3 

repressor and activator generation (Adopted from Humke et al., 2010) 

 

1.3.6 Primary cilia and Wingless/Integrated signalling 

 

    The Wingless/Integrated (Wnt) signal pathway plays during development a crucial role in cell 

proliferation and differentiation. (Logan and Nusse, 2004; Clevers, 2006). Wnt proteins are secreted 

growth factors interacting with the complex of  the Frizzled (Fz) receptor and the low-density 

lipoprotein receptors LRP5 or LRP6, thereby activating the canonical Wnt/β-catenin pathway, or  

interacting with the Fz receptor alone, which results in triggering the non-canonical Wnt/planar cell 

polarity (PCP) pathway (Veeman et al., 2003; He et al., 2004). The Wnt/β-catenin pathway controls 

the stability of the transcription coactivator β-catenin, and thus the expression level of target genes of 

the Wnt/β-catenin pathway (Fig. 14, upper two panels). The non-canonical Wnt/PCP pathway is 
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important for the architecture of the cytoskeleton in the context of cell polarity and movement (Fig. 

14, lower panel).  

 

1.3.6.1 Primary cilia and canonical Wnt/β-catenin pathway 

 

    The main mediator for the downstream effects of the canonical Wnt/β-catenin pathway is β-catenin.  

In the absence of a canonical Wnt signal a complex consisting of the proteins Axin, Glycogen 

synthase kinase 3β (GSK3β) and Adenomatous polyposis coli (APC) promotes the proteolytic 

degradation of cytosoliy β-catenin (Fig. 15, upper left panel). Binding of Wnt signals to the receptor 

complex of Fz and LRP5/6 activates cytosolic Dishevelled (Dvl), which inhibits the 

Axin/GSK3β/APC complex (Fig. 15, upper right panel). This leads to a stabilization and increase of 

cytosolic β-catenin levels.  

    In the absence of β-catenin in the nucleus the transcription factors T cell factor (TCF) and 

lymphocyte enhancer factor (Lef) are in a complex with the transcriptional suppressors Groucho and 

transducin-like Enhancer of split (TLE). This results in an inhibition of the downstream target genes of 

the canonical Wnt/β-catenin pathway (Fig. 15, upper left panel). Because the binding of Wnt signals 

stabilizes the pool of β-catenin in the cytoplasma, some β-catenin is able to enter the nucleus where it 

interacts with TCF and Lef as a transcriptional coactivator (Fig. 15, upper right panel), inducing cell 

cycle progression, proliferation, differentiation and growth in addition to migration and regulation of 

embryonic development (Vlad et al., 2008). 

    Primary cilia are thought to be involved in canonical Wnt/β-catenin signalling, but the research 

results are inconsistent and controversial. Inversin (Inv), encoded by the gene Nephrocytin 2, is 

located in primary cilia and interacts with Dvl (Otto et al., 2003; Watanabe et al., 2003; Simons et al., 

2005). Inv can cooperate with Dvl and is thus able to inhibit the ability of Dvl to activate Wnt/β-

catenin signalling (Simons et al., 2005). This led to the hypothesis that Wnt/β-catenin signalling is 

repressed by primary cilia. Gene knockdown experiments of the genes Biedl-Bardet Syndrome 1and 4 

(BBS1/4) and Kif3a showed an stabilization of β-catenin and resulted in an upregulation of the Wnt/β-

catenin pathway in cultured cells (Gerdes et al., 2007).Mice mutant for the genes Kif3a, Ift88 or outer 

dense fiber of sperm tails 1 (odf1) show an upregulation of canonical Wnt/ β-catenin signalling in 

mouse embryos (Corbit et al., 2008).  

    On the other hand other data implicates that primary cilia do not play an important role in canonical 

Wnt/β-catenin signalling. Zebrafish embryos mutant for the maternal-zygotic ift88 exhibit a normal 

expression pattern of the canonical Wnt/β-catenin target genes axin2,  trans-acting transcription factor 

5 (sp5) and  sp5 transcription factor-like (sp5l) (Huang and Schier, 2009). In mice mutant for Ift88, 

Ift72 or Kif3a no real Wnt-specific phenotypes were detected (Ocbina et al., 2009).  
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1.3.6.2 Primary cilia and non-canonical Wnt/PCP pathway 

 

    Non-canonical Wnt/PCP signalling is independent of the Axin/GSK3β/APC degredation complex 

and β-catenin. It is induced by binding of Wnt ligands to Fz and transmission of the non-canonical 

Wnt signalling needs Dvl which is localized to the plasma membrane (Fig. 15, lower panel) (Axelrod 

et al., 1998; Rothbacher et al., 2000; Seto and Bellen, 2004). Dvl acts through intercellular Ca2+ levels 

and by regulating RhoA, Rock, and Jnk kinase, all with crucial impact on the cytoskeleton and the 

regulation of planar cell polarity (PCP) (Fig. 15, lower panel) (Kikuchi et al., 2008). 

    As with the canonical Wnt/β-catenin signalling, the results for the role of primary cilia in non-

canonical Wnt/PCP signalling is contradictary. Non-canonical Wnt/PCP signalling is important for 

convergent extension (CE), a process during development whereby the embryonic tissue is 

reorganized with the help of cell movements to narrow along one axis and to expandalong an upright 

axis (Sokol, 1996; Heisenberg et al., 2000; Tada and Smith, 2000; Wallingford et al., 2000). Defective 

CE results in incomplete neural tube closure in Xenopus as well as in mice (Wallingford and Harland, 

2002; J. Wang et al., 2006; Y. Wang et al., 2006; Ybot-Gonzalez et al., 2007). Inv interacts with Dvl, 

which is involved in Wnt/β-catenin as well as in Wnt/PCP signalling (Simons et al., 2005), and the 

loss of Inv leads to defective CE (Simons et al., 2005). These findings led to the hypothesis that Inv, 

located at the primary cilium, acts as a switch between canonical Wnt/β-catenin and non-canonical 

Wnt/PCP signalling.  In zebrafish the outcome of the mutation of the basal body proteins Bbs1, Bbs4 

and Bbs6 are defects in convergent extension (Gerdes et al., 2007). The Bbs genes can interact with 

the PCP gene van gogh-like 2 (Vangl2). Vangl2 itself is localized to the axoneme and basal body of 

primary cilia (Ross et al., 2005). Mice mutant for the genes Ift88 and Ift20 exhibit non-canonical 

Wnt/PCP specific defects in the cochlear and kidney ducts (Jonassen et al., 2008; Jones et al., 2009). 

However, in Zebrafish embryos mutant for the maternal-zygotic ift88 display normal convergent 

extension (Huang and Schier, 2009). Taken together, the role of primary cilia in both Wnt pathways is 

still disputed, and it may be that their function in the Wnt pathways is either specific for certain tissues 

and developmental stages or not as simple as thought at the beginning. 

 



Introduction 
 

 33 

 
Fig. 15. The primary cilium and Wnt signalling. Upper left panel. β-catenin is phosphorylated in the absence 

of a Wnt signal by the β-catenin destruction complex, which is composed of Axin, APC and GSK3β. 

Phosphorylated β-catenin is the target for degradation. The transcription of Wnt target genes is suppressed by a 

complex of TCF/Lef1 and TLE. Upper right panel. The canonical Wnt signal binds to a receptor comples of 

Frz receptor and LRP5/6 coreceptor, which in turn binds to Axin and Dvl. This leads to a stabilization of β-

catenin in the cytoplasm. β-catenin migrates then into the nucleaus, replaces TLE, which leads to an activation of 

TCF/Lef1/ β-catenin-responsive genes. Lower panel. The activated Dvl is targeted to the membrane by binding 

of a non-canonical Wnt signal to its receptor complex, which results in an activation of downstream target genes. 

(Adapted from Gerdes et al., 2009). 

 

1.3.7 Primary cilia and brain patterning 

 

    Two studies have shown lately that primary cilia play a crucial role for the brain to develop 

normally. Misshaped cilia with a bulge at their distal tip are occur in mice with a null mutation of the 

gene alien (aln) in tetratricopeptide repeat domain 21B (Ttc21b). The gene encodes Ift139, a 

component of retrograde IFT. The bulges are packed with IFT components and even in the absence of 

Shh activation the primary cilia permanently produce Gli activators (Tran et al., 2008). However, 

anterograde IFT mutants have no cilia and fail to make Gli activators as well as Gli3 repressor. This 

indicates that both anterograde and retrograde IFT play different roles in mediating Hh signalling. 

Anterograde IFT seems to be required for the activation of Gli, whereas retrograde IFT seems to be 

needed for the restriction of the activity of Gli activators.  
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Ift139aln/aln mutants exhibit loss of dorsal cortex, dorsal-ventral patterning defects, and loss of a distinct 

boundary between telencephalon and diencephalon (Stottmann et al., 2009). These phenotypes 

resemble defects seen in Gli3 mutants (Theil et al., 1999; Tole et al., 2000; Fotaki et al., 2006), and 

the ratio of Gli3 full-length to Gli3 repressor is increased by 10-fold in Ift139aln/aln  mutants compared 

to wild-type (Tran et al., 2008).  The Ift139aln/aln mutants also exhibit ectopic Shh signalling activity, 

whereas in Gli3 mutants this is not the case. The abrogation of one copy of Shh can to some extent 

rescue the Ift139aln/aln mutant phenotype (Stottmann et al., 2009), but it is not clear, how the loss of 

Ift139 enhances the expression of Shh. 

    In another study the gene selective Lim-domain binding Slb (Slb), which encodes the anterograde 

IFT component IFT172, was removed by gene targeting (Gorivodsky et al., 2009). The removal of Slb 

is responsible for the total loss of cilia and early patterning defects (Gorivodsky et al., 2009). The 

Ift172slb/slb mutants show as a phenotype the inability to express Fgf8 in the midbrain-hindbrain 

boundary and in the commissural plate. They display as further phenotypes holoprosencephaly, 

exencephaly, truncation of forebrain, and a severe reduction in diencephalic structures. Ift172slb/slb 

mutants also exhibit a decrease in Nodal expression in the epiblast and the node between E7.0 and 

E7.5. The expression of Nodal in the epiblast is necessary for the formation of the AVE (Brennan et 

al., 2001), an important source of antiposteriorizing signals in mice (Kimura et al., 2000; Perea-

Gomez et al., 2001). Mutations in genes important for the development of the AVE results in defects 

of the anterior neural plate including the telencephalon (Knoetgen et al., 1999; Perea-Gomez et al., 

2000). The formation of the axial mesendoderm is also dependent on the expression of Nodal (Wall et 

al., 2000; Andersson et al., 2006), which is necessary for the Fgf8 expression in the midbrain-

hindbrain boundary and forebrain growth (Camus et al., 2000). Fgf8 expression is responsible for the 

induction of markers for the prosencephalic identity in the anterior neuroectoderm (Shimamura et al., 

1997; Shanmugalingam et al., 2000; Fukuchi-Shimogori et al., 2001), such as Foxg1 (Fig. 7A) 

(Shimamura and Rubenstein, 1997; Ye et al., 1998). The onset of Foxg1 expression at embryonic day 

8.5 (E8.5) in mice marks the specification of the telencephalic primordium. The diminished Nodal 

expression further on explains the randomization of left-right asymmetry and failure to form anterior 

mesendoderm. The reported early phenotypes in Ift172slb/slb mutants lead to the hypothesis that Ift172 

and primary cilia are active in tissues before neural tissue is established and thus influence the 

development of the brain. 

 

1.3.8 Primary cilia and other brain structures 

 

1.3.8.1 Primary cilia and hippocampal development 

 

    The granule neurons of the hippocampal dentate gyrus (DG) are mostly generated during early 

postnatal life. Besides the postmitotic neurons, also intermediate progenitors or granule neuron 
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precursors (GNPs) migrate away from the primary germinal zone in the ventricular zone (VZ) into the 

inner layer of the developing DG. There they will become postnatal neural stem cells that continue to 

produce new neurons during the whole life (Altman et al., 1990). The constant generation of new 

neurons in the DG is believed to be important for circuit plasticity, learning and memory. It has 

recently been shown that primary cilia play a crucial role for the expansion of embryonic neural 

progenitors and conversion into a population of radial astrocytes. They are thought to be the origin of 

primary progenitors in the postnatal DG (Breunig et al., 2008; Han et al., 2008). In the first study the 

gene Kif3a was conditional deleted by using a hGFAP::Cre mouse line (Han et al., 2008), and the 

second study used nestin::Cre mouse line to conditionally delete the gene stumpy (Breunig et al., 

2008). The gene stumpy encodes a protein related to the basal body and cilia (Ponsard et al., 2007; 

Town et al., 2008). The number of proliferating GNPs was by both approaches severely diminished. A 

potential explanation for this phenotype is the increase in cell cycle exit (Breunig et al., 2008). A 

hypomorphic allele of Ift88, Ift88orpk/orpk, as well as the homozygous mutation of fantom-/-, which 

encodes a basal body protein, also exhibited a diminished proliferation of GNPs (Han et al., 2008). 

This results further indicates that the phenotypes in the DG are connected with the loss of cilia. 

 

1.3.8.2 Primary cilia and cerebellar development 

 

    The so called cerebellar GNPs (CGNPs) that have migrated away from the VZ are responsible for 

the postnatally generation of most of the cerebellar granule neurons. Shh, produced by the underlying 

Purkinje neurons, acts as a mitogen for CGNPs (Wallace et al., 1999; Wechsler-Reya et al., 1999; 

Dahmane et al., 2007). Primary cilia are necessary for the proliferation of the CGNPs. This is in 

agreement with the crucial role of primary cilia in Shh signalling. The conditional abrogation of Kif3a, 

Ift88 or stumpy in CGNPs lead to severe hypoplasia and defective foliation of the cerebellum 

(Chizhikov et al., 2007; Breunig et al, 2008; Spassky et al., 2008). In the cerebellum of ciliary mutants 

the proliferation of the GNPs and also the expression of target genes of the Shh pathway are 

profoundly reduced. CGNPs devoid of primary cilia can not respond to Shh signalling in vitro 

(Spassky et al., 2008). Cerebellar development is also perturbed by mutations in the two basal bodies 

proteins Fantom and Oral-facial-digital syndrome 1 gene homolog Odf1 (Odf1) (Ferrante et al., 2006; 

Delous et al., 2007; Vierkotten et al., 2007). 
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2 Materials and Methods 

 

2.1 Materials 

 

2.1.1 General 

 
2.1.1.1 Equipment 

 

ABI PRISM 7000 Sequence Detection System 

Amaxa nucleofection device 

Autoclave Fedegari FVA3 

Avanti J-25 centrifuge 

Biostatin IM 

Centrifuge MIKRO 20 

Confocal microscope C1si with spectral analysis 

CO2 incubator, HERA cell 150 

 

Compact shaker KS 15 control 

CPD 030 Critical Point Dryer 

Cryostat CM3050 S 

Curix60 table top processor 

Digital CCD camera F-View II 

Digital Camera COOLPIX 5000 

Digital Camera Leica DFC 320 

E.A.S.Y 440 K CCD Camera 

Electrophorese chamber 

EM 906 Electron Microscope 

Fastblot B33 

Fiber Optic Illuminator KL 1500 LCD 

Fluorescence microscope BX61W1 

Fluorescent confocal laser scanning microscope 

C1si 

Fujinon Lens VRF 43LMD 

GS-800 USB Calibrated Densitometer 

Hybridisation Incubator 7601 

 

Incucell incubator 

Applied Biosystems 

Amaxa Biosystems 

Integra Biosciences GmbH, Fernwald, Germany 

Beckman Coulter, USA 

Nikon, Japan 

Hettich, Tuttlingen 

Nikon GmbH 

Kendro laborytory products GmbH, Thermo 

scientific 

Edmund Bühler GmbH, Germany 

BAL-TEC, Wetzlar 

Leica Microsystems, Nussloch 

Agfa 

Soft Imaging Systems GmbH, Münster 

Nikon, Japan 

Leica Microsystems Ltd, Heerbrug 

Herolab 

Feinmechanikwerkstatt, University of Heidelberg 

Zeiss 

Biometra 

Leica 

Olympus Germany GmbH, Hamburg 

Nikon Instrument Europe B.v. 

 

Fujifilm 

Bio-Rad Laboratories 

GFL Gesellschaft für Labortechnik mbH, 

Germany 

MS Laborgerätehandel, Wiesloch 
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Inverse fluorescent microscope CKX41 

Kodak BioMax Cassette with BioMax MS 

Intensifying Screen 

Leica DMLB Microscope 

LEO 1530 Gemini 

Luminescent Image Analyzer LAS-3000 

Mastercycler Gradient 

MED 020 Coating Systems 

Microslicer DTK-1000 

Mini-PROTEAN Tetra Cell 

Olympus U-RLF-T 

Oven Heraeus 

Owl B2 EasyCast Mini Gel System 

PCR cycler Tpersonal 

Plan Apo 1x WD70 

Potter S Homogenizer 

Qualifreeze Cryo-Einfriergerät 

Radiographic cassette  

Rotary Microtome Leica RM 2235 

Seven easy pH meter 

Short plates 

Spacer plates (0.75 mm / 1.0 mm) 

Spectrophotometer  Ultrascope 3100 pro 

SIGMA laboratory centrifuge 2-5 

 

Stereomicroscope SMZ800 

Sterile hood, LaminAir model 1.2 

Ultramicrotome Ultracut UCT 

Ultra Pure Water Purification System 

Ultra Turrax T8 Homogenizer 

UV Transilluminator UVT-20 S/L 

Veritas Microplate luminometer 

Water bath 

Olympus Germany GmbH, Hamburg 

Kodak 

 

Leica Mikroskopie und Systeme GmbH, Wetzlar 

Zeiss, Oberkochen 

Fujifilm 

Eppendorf 

BAL-TEC, Wetzlar 

Dosaka EM Co., LTD 

Bio-Rad Laboratories 

Olympus 

Kendro, Thermo scientific 

Thermo Scientific 

Whatmann Biometra, Göttingen 

Nikon 

Sartorius Stedim Biotech 

Qualilab 

Dr. Goos-Suprema GmbH, Heidelberg 

Leica Microsystems 

Mettler, Toledo 

Bio-Rad Laboratories 

Bio-Rad Laboratories 

Amersham, Biosciences 

Sigma Laborzentrifugen GmbH, Osterode, 

Germany 

Nikon 

Holten, Denmark 

Leica 

membraPure GmbH, Germany 

IKA Werke GmbH&Co.KG 

Herolab 

Turner BioSystems 

Memmert, Schwabach 
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2.1.1.2 Special Software 

 

AIDA Image Analyzer 

AnalySIS 

Adobe Photoshop 7.0 and CS4 

EndNote X3 

EZ-C1 Free Viewer 3.30 

ImageJ 

Leica FireCam 3.1 

Quantity One 

4D Client 

raytest 

Soft Imaging Systems GmbH, Münster 

Adobe Systems 

Thomson Reuters 

Nikon 

Wayne Rasband NIH 

Leica Microsystems 

Bio-Rad Laboratories 

4D 

 

2.1.1.3 Dissection tools 

 

Fine forceps 

Scissors 

Fine Science tools, Germany 

Fine Science tools, Germany 

 

2.1.1.4 Consumables 

 

96F Nunclon Delta White Microwell SI 

96 Well Optical Bottom Plate PolymerBase 

Amersham Hyperfilm ECL  

Cellstar culture dishes and plates 

Conical test tubes, RNase free, 15 ml/  50 ml 

Coverslips (24x60 mm) 

CryoS, cryo vials, PP, with screw cap 

Hybond-N+ membrane 

Immobilon-P Transfer Membrane (VDF) 

Leica 819 Low Profile Microtome Blades 

Micro Amp Optical 96-well Reaction Plate 

Microscope Slides Super Frost 

Microscope Slides Superfrost Ultra Plus 

Micro tubes (1.5 ml/ 2.0 ml) 

Novex Tris-Acetate SDS running buffer (20x) 

NuPage 3-8% Tris-Acetate gel (1.5 mm, 10 well) 

Optical Adhesive Film Kit 

Pasteur Capillary Pipetts (150 mm/ 230 mm) 

Nunc 

Nunc 

GE Healthcare 

Greiner Bio-One GmbH 

nb nerpe plus 

Roth, Karlsruhe 

Greiner Bio-One GmbH 

Amersham, Biosciences 

Millipore corporation 

Leica Microsystems 

Applied Biosystems 

Roth, Karlsruhe 

Roth, Karlsruhe 

Sarstedt, Germany 

Invitrogen 

Invitrogen 

Applied Biosystems 

WU Mainz 
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PCR cup (G002 / G003) 

Probe Quant G-50 Micro Columns 

Ready-to-Go DNA Labelling beads (-dCTP) 

Safe-Lock tubes (1.5 ml/ 2.0 ml) 

Stericup Filter Unit 0.22 µm 

Sterile pipettes 

Syringe driven filter unit 0.22 µm/ 0.45 µm 

Tissue Culture Flasks (25 cm2, 50 cm2) 

Tissue freezing medium 

Tissue freezing molds 

Razor blades 

3 MM Chromatography paper 

G. Kisker GbR 

Amersham, Biosciences 

GE Healthcare 

Eppendorf 

Millipore corporation 

Gibco, Invitrogen 

Millipore corporation 

Greiner Bio-One GmbH 

Jung, Leica, Nussloch, Germany 

Polysciences Europe, Eppelheim, Germany 

Thermo Fisher 

Whatmann Int., England 

 

2.1.1.5 Reagents 

 
Aceton 

Agar 

Agarose 

Ampicillin 

Aprotinin 

Azure II 

Β-Mercaptoethanol 

Benzyl benzoate 

Benzyl alcohol 

Boric acid 

Bromphenol blue 4F057 

CHAPS 

Citric acid 

Chloroform 

Coomasie R 250 

DAB 

DMSO 

Ethanol absolut puriss 

Ethidium bromide 

Formaldehyde (40%, m/v) 

Glacial acetic acid 

Glutaraldehyde (25% solution) 

Zentrallager INF 367, Heidelberg, Germany 

Merck, KGaA, Darmstadt 

Roth, Karlsruhe 

Sigma-Aldrich 

Sigma-Aldrich 

Merck 

Sigma-Aldrich 

Sigma-Aldrich 

Sigma-Aldrich 

AppliChem 

Division Chroma, Münster 

Fluka 

Sigma-Aldrich 

Fluka 

Serva 

Sigma-Aldrich 

Acros Organics 

Sigma-Aldrich 

Fluka 

Carlo Erba Reagents 

Sigma-Aldrich 

Merck 
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Glycerol 

Glycine 

Hydrogen peroxide 

Isopropanol 

Kanamycin 

Lead(II) nitrate 

Leupeptin 

Maleic acid 

Methylene blue 

MOPS 

Natriumchloride 

Nitric acid 

Orange G 

Osmium tetraoxide (2% solution) 

PIPES 

PMSF 

Polyvidon 25 

Potassium ferrocyanide 

Roti-Phenol 

Sodium cacodylate 

Sodium citrate dihydrate 

Sodium tetraborate decahydrate 

Sucrose 

TEMED 

Tris 

Uranyl acetate 

Xylene cyanol 

Xylol 

Sigma-Aldrich 

Sigma-Aldrich 

Merck 

AppliChem 

Sigma-Aldrich 

Sigma-Aldrich 

Sigma-Aldrich 

Fluka 

Merck 

Sigma-Aldrich 

Sigma-Aldrich 

Mallinckrodt Baker B.V. 

Sigma-Aldrich 

Polysciences, Inc. 

AppliChem 

Sigma-Aldrich 

Merk 

Sigma-Aldrich 

Roth, Karlsruhe 

Merck 

Sigma-Aldrich 

Sigma-Aldrich 

Sigma-Aldrich 

Sigma-Aldrich 

Roth, Karlsruhe 

Serva 

Sigma-Aldrich 

AppliChem 

 

2.1.1.6 Reagents for Cell Culture 

 

DMEM (41966) 

FBS 

FCS 

L-Glutamine 200 mM (25030) 

Pen Strep (14140) 

Trypsin 

Gibco, Invitrogen 

Gibco, Invitrogen 

Gibco, Invitrogen 

Gibco, Invitrogen 

Gibco, Invitrogen 

Gibco, Invitrogen 
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2.1.1.7 Enzymes and Molecular Weight Markers 

 

Taq-polymerase 

Proteinas K 

25 bp ladder 

50 bp ladder 

100 bp ladder 

1 kb bp ladder 

λ/Hind III ladder 

2-Log DNA ladder (0.1-10.0 kb) 

PageRuler Prestained Protein 

peqGOLD Prestained Protein-Marker III 

Frementas 

Roth, Karlsruhe 

Promega 

Promega 

Fermentas 

Invitrogen 

Fermentas 

New England Biolabs 

Fermentas 

peqLab 

 

2.1.1.8 Restriction Enzymes and Buffers 

 

Apa I 

BamH I 

BspE I 

Bstx I 

BSA (100x) 

Buffer P1 (10x) 

Buffer P2 (10x) 

Buffer P3 (10x) 

Buffer P4 (10x) 

Dra I 

EcoR I 

Hind III 

Kpn I 

Msc I 

Nco I 

Not I 

Pst I 

Pvu I 

Pvu II 

Sac I 

Sal I 

Sca I 

New England Biolabs 

New England Biolabs 

New England Biolabs 

New England Biolabs 

New England Biolabs 

New England Biolabs 

New England Biolabs 

New England Biolabs 

New England Biolabs 

New England Biolabs 

New England Biolabs 

New England Biolabs 

New England Biolabs 

New England Biolabs 

New England Biolabs 

New England Biolabs 

New England Biolabs 

New England Biolabs 

New England Biolabs  

New England Biolabs 

New England Biolabs 

New England Biolabs 
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Xba I 

Xho I 

Xmn I 

New England Biolabs 

New England Biolabs 

New England Biolabs 

 

2.1.1.9 Kits 

 

BCA Protein Assay Kit 

Dual Luciferase assay system 

ECL Plust Western Blotting Detection System 

Gel Drying Frames 

GenElute HP Plasmid Midiprep Kit 

GenElute HP Plasmid Miniprep Kit 

Nucleospin Extract II 

QIAEX II Agarose Gel Extraction Kit 

Rat Neuron Nucleofactor Kit 

RNeasy MiniKit 

TOPO TA Cloning Kit for subcloning 

Zero Blunt TOPO PCR cloning Kit 

Thermo Scientific 

Promega 

GE Healthcare 

Roth, Karlsruhe 

Sigma-Aldrich 

Sigma-Aldrich 

Macherey and Nagel 

Quiagen 

Amaxa Biosystems 

Quiagen 

Invitrogen 

Invitrogen 

 

2.1.1.10  Vectors 

 

pCMV-SPORT6 

pCRII-TOPO 

pCR2.1-TOPO 

pCR-BluntII-TOPO 

pSPORT-1 

RZPD 

Invitrogen 

Invitrogen 

Invitrogen 

RZPD 
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2.1.1.11  Primers 

 
2.1.1.11.1 Primers for Genotyping 

 

The primers were ordered from the company Thermo Fisher Scientific GmbH for genotyping: 

 

cbs 

D14Mit62 F 

D14Mit62 R 

D14Mit121 F 

D14Mit121 R 

D14Mit141 F 

D14Mit141 R 

D14Mit259 F 

D14Mit259 R 

Gli3XtJ 

XtJ580 F 

XtJ580 R 

C3 F 

C3 R 

Ift88tm1.1Bky 

BY598 (common 5´ primer) 

BY919 (3´ flox and WT allele 

primer) 

BY956(3´ delta allele primer) 

tauGFP 

WT-F 

WT-R 

KO-F 

KO-R 

 

5´-AGG ACT CAA TGA GCA GGG AA-3´ 

5´-ACT CTC CTG CCA CCC CTC-3´ 

5´-TTG ACA TCT GGA TAT GAC AAT GC-3´ 

5´-TGT GCA TGT TTG TGT ACA TAT GTG-3´ 

5´-CCA GCA TTC CGA AGT CAT TT-3´ 

5´-AGG GAA AGA AGA CAG CAC GA-3´ 

5´-TGG TGT CTC CTT CGG AAT TT -3´ 

5´-TAA ATG TAA AAG GTA AAG GCA ATG G-3´  

 

5´-TAC CCC AGC AGG AGA CTC AGA TTA G-3´ 

5´-AAA CCC GTG GCT CAG GAC AAG-3´ 

5´-GGC CCA AAC ATC TAC CAA CAC ATA G-3´ 

5´-GTT GGC TGC TGC ATG AAG ACT GAC-3´ 

 

5´-GCC TCC TGT TTC TTG ACA ACA GTG-3´ 

5´-GGT CCT AAC AAG TAA GCC CAG TGT T-3´ 

 

5´-CTG CAC CAG CCA TTT CCT CTA AGT CAT GTA-3´ 

 

5´-CTC AGC ATC CCA CCT GTA AC-3´ 

5´-CCA GTT GTG TAT GTC CAC CC-3´ 

5´-CAG GTC TTG AAC CAG TAT GG-3´ 

5´-TGA ACT TGT GGC CGT TTA CG-3´ 
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2.1.1.11.2 Primers for Sequencing 

 

The primers were ordered from the company Thermo Fisher Scientific GmbH for sequencing the open 

reading frame of the gene Ift88: 

 

IFT88pp1 F 

IFT88pp1 R 

IFT88pp2 F 

IFT88pp2 R 

IFT88pp3 F 

IFT88pp3 R 

IFT88pp4 F 

IFT88pp4 R 

IFT88pp5 F 

IFT88pp5 R 

IFT88pp6 F 

IFT88pp6 R 

IFT88pp7 F 

IFT88pp7 R 

5´-GGC CTG CCT AGG ATC AGG-3´ 

5´-CTT GCT CTC GTT GTC TCA CC-3´ 

5´-ACA GGG ACA ATT CAG GAT GG-3´ 

5´-AAA GAC GCT TCG ATC ACA GG-3´ 

5´-TCG GGA GAA AAT GAA GAA GG-3´ 

5´-GGG AAT CAG TTG GAA CAA CG-3´ 

5´-CTG AAC CGT CTG GAT GAA GC-3´ 

5´-TGG CAC TCA GTC GTT CAC TC-3´ 

5´-AAG TGG CAG CTG ATG GTA GC-3´ 

5´-TGG AGG ACC TGA GTT CAA GC-3´ 

5´-TGA ATG TTT GCG TTT CTT GG-3´ 

5´-GAC AGC ACA AAC CCA TCC TC-3´ 

5´-CAC CTT AGG CAA ATG GAA CG-3´ 

5´-CGC AAA CAT TCA ACA TTC TCC-3´ 

 

2.1.1.11.3 Primers for testing of the cDNA-Quality 

 
The primers were ordered from the company Thermo Fisher Scientific GmbH and used for testing the 

quality of the cDNA after the in vitro translation: 

 

G3PDH F 

G3PDH R 

5´-AAC ACA GTC CAT GCC ATC AC-3´ 

5´-TCC ACC ACC CTG TTG CTG TA-3´ 
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2.1.1.11.4 Primers for real time RT-PCR 

 
The following TaqMan Gene Expression Assays were ordered from Applied Biosystems and used for 

qPCR: 

Number Gene Species Amplicon Length 

Mm_01265783_m1 Axin2 mouse 114 

Mm_00494654_m1 Gli1 mouse 83 

Mm_00493675_m1 Ift88 mouse 79 

Mm_00436031_m1 Ptch1 mouse 135 

Mm_00437357_m1 Wnt7b mouse 62 

Mm_00442108_m1 Wnt8b mouse 72 

Table 1: TaqMan Gene Expression Assays 

 

2.1.2 Histology 

 

2.1.2.1 General Reagents 

 

Aqua-Poly/Mount 

Aquatex 

Entellan 

Immune Edge Pen 

Paraplast-Plus 

Roti-Liquid Barrier Marker 

Triton X-100 

Tween-20 

Polysciences Europe, Eppelheim, Germany 

Merck 

Merck 

Vector Laboratories Inc, Burlingame 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

 

2.1.2.2 Alcian Blue Staining 

 

Alcian Blue 8 GX Sigma-Aldrich 

 

2.1.2.3 Hemotoxylin-Eosin staining 

 

Eosin 

Hemotoxylin 

Division Chroma, Münster, Germany 

Sigma-Aldrich 
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2.1.2.4 Fluorescent Immunohistochemistry 

 

2.1.2.4.1 Sera 

 

Bovine serum albumine 

Native goat serum 

Roth, Karlsruhe 

Sigma-Aldrich 

 

2.1.2.4.2 Dyes 

 

DAPI Sigma-Aldrich 

 

2.1.2.4.3 Primary Antibodies 

 

Epitope Species  Dilution Source 

β-Galactosidase (Clone 55976) 

β-Tubulin III (TuJ1 clone) 

Nestin (Rat 401 clone) 

Pax6 (AB5409) 

Phospho-histone H3 (Ser10, 

rabbit 06-750) 

RC2  

2H3 (anti-165 kDA 

neurofilament) 

rabbit 

mouse 

mouse 

rabbit 

rabbit 

 

mouse 

mouse 

polyclonal 

monoclonal 

monoclonal 

monoclonal 

polyclonal 

 

monoclonal 

monoclonal 

1:2000 

1:1500 

1:500 

1:3000 

1:200 

 

1:10 

1:100 

ICN/Cappel 

Covance 

BD PharMingen 

Millipore 

Upstate 

 

DSHB 

DSHB 

Table 2: Primary antibodies  

 

2.1.2.4.4 Secondary Antibodies 

 

Name Dilution Source 

Goat anti-mouse Alexa Fluor 488 

Goat anti-mouse Alexa Fluor 546 

Goat anti-rabbit Alexa Fluor 488 

Goat anti-rabbit Alexa Fluor 546 

1:1000 

1:1000 

1:1000 

1:1000 

Invitrogen 

Invitrogen 

Invitrogen 

Invitrogen 

Table 3: Secondary antibodies  
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2.1.2.5 In situ Hybridization 

 

2.1.2.5.1 Reagents  

 

Blocking Reagent (Boehringer Block) 

CHAPS 

DEPC 

DIG RNA Labeling Mix, 10x. Conc. 

Formamide 

Glutaraldehyde (25% solution) 

Glycine 

Heparin 

NBT/BCIP stock solution 

Ribolock RNase Inhibitor 

RNaseZAP 

5x Transcriptionbuffer 

Yeast tRNA 

Roche 

Fluka 

AppliChem 

Roche 

Sigma-Aldrich 

Merck 

Sigma-Aldrich 

Sigma-Aldrich 

Roche 

Fermentas 

Sigma-Aldrich 

Fermentas 

Roche 

 

2.1.2.5.2 Antibodies 

 

Anti-Digoxigenin-AP, Fab fragments Roche 

 

2.1.2.5.3 Enzymes 

 

RNA Polymerase (T3, T7, Sp6) Fermentas 

 

2.1.3 Plasmids 

 

2.1.3.1 In situ hybridization 

 

mRNA probe Reference/ Origin 

Axin2 Theil, 2005 

Dbx1  Yun et al, 2001 

Dlx2 Theil, 2005 

Emx1 Kuschel et al, 2003 

Emx2 Kuschel et al, 2003 

EphB1 Kind gift from D. Wilkinson, National Institute for Medical Research, London 
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Foxd1 Hatini et al, 1996 

FoxG1 Tao and Lai, 1992 

Gli3 Kind gift from A. Joyner, Skirball Institute, New York, NY 

Lhx2 Porter et al, 1997 

Ngn2 Kuschel et al, 2003 

Pax6 Kuschel et al, 2003 

Ptch1 Goodrich et al, 1996 

Reelin Theil, 2005 

Shh Kind gift from M. Treier, EMBL, Heidelberg, Germany 

Ttr1 Duan et al, 1989 

Wnt2b Kuschel et al, 2003 

Wnt7b Theil, 2005 

Wnt8b Kind gift from J. Mason, University of Edinburgh, Edinburgh, UK 

Table 4: mRNA probes 

 

2.1.3.2 Northern blot analyis 

 

Ift88 cDNA RZPD 

Gli3 cDNA RZPD 

α-tubulin cDNA Lemischka et al., 1981 

Table 5: Northern blot  probes 

 

2.1.4  Antibodies for Western blot analysis 

 
2.1.4.1 Primary antibodies 

 

Epitope Species Dilution  Source 

Ift88 

Gli3 (s.c.-20688) 

β-actin (clone AC-15) 

goat 

rabbit 

mouse 

1:1000 

1:1000 

1:5000 

Pazour et al., 2002 

Santa Cruz Biotechnology 

Sigma 

Table 6: Primary antibodies for WB analysis 
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2.1.4.2 Secondary antibodies 

 

Name Dilution Source 

HRP-conjugated mouse anti-goat IgG (cs-2354) 

HRP-conjugated goat anti-rabbit IgG 

HRP-conjugated goat anti-mouse IgG 

1:10.000 

1:10.000 

1:10.000 

Santa Cruz Biotechnology 

KPL 

KPL 

Table 7: Secondary antibodies for WB analysis 

 

2.1.5  Animals 

 

Mouse embryos (Mus musculus domesticus) of the following mouse lines were used for experiments: 

 

tauGFP ENU mutagenesis screen AG Tucker, IBF Heidelberg 

cbs Positional cloning, Northern blot, Western 

blot, Cryosections, Paraffinsections, Cell 

culture, Scanning and Transmission electron 

microscopy, Complementation analysis 

AG Tucker, IBF Heidelberg 

Gli3XtJ Northern blot, Western blot Lab of Prof. Ulrich Rüther, 

University of Düsseldorf, Germany; 

AG Tucker, IBF Heidelberg (Hui 

and Joyner, 1993) 

Ift88tm1.1Bky Complementation analysis Lab of Bradley K. Yoder, 

Birmingham, USA (Haycraft et al., 

2007); AG Tucker, IBF Heidelberg 

Ift88�2-3βgal Cryosections Lab of Richard P. Woychik, 

Alameda, USA (Murcia et al, 2000) 

C57BL/6J Maintaining the colonies in general Charles River 

CBA/J Maintaining the cbs colony Janvier 

Table 8: Mouse colonies 
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2.1.6  Solutions and buffers 

 

2.1.6.1 General  

 

1x PBS (pH 7.4)  140 mM NaCl 

2.7 mM KCl 

10 mM KH2PO4 

 

2.1.6.2 Gel electrophoresis 

 

50x TAE  

 

 

 

5x TBE  

 

 

 

10x Orange G  

 

 

 

10x Xylene cyanol  

 

 

 

Ethidium bromide 

 

Lysis buffer (Tail buffer) 

 

2 M TRIS 

0.05 M EDTA pH 8.0 

57.1 ml glacial acetic acid (96%) 

 

0.45 M TRIS 

0.01 M EDTA pH 8.0 

0.04 M Boric Acid 

 

0.006 %  (w/v)  Orange G 

50% Glycerol 

50% MP-Water 

 

0.006% (w/v)  Xylene cyanol 

50% Glycerol 

50% MP-Water 

 

0.5 µg/ml 100 ml 1x TAE 

 

0.1 M Tris-Cl (pH 8.5) 

5 mM EDTA (pH 8.0) 

0.2% (w/v) SDS 

0.2 M NaCl 

100 µg/ml Proteinase K 
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2.1.6.3 Microbiology 

 

LB-Medium  

 

 

 

Agar plates 

1% (w/v) NaCl 

1% (w/v) Trypton 

0.5% (w/v) Yeast extract 

 

1.2% (w/v)  Bacto-Agar 

0.8% (w/v)  Bacto-Tryptone 

0.8% (w/v)  Bacto Yeast-Extract 

0.8% (w/v)  NaCl 

 

 

2.1.6.3.1 Antibiotics 

 

Antibiotic Stock concentration Final concentration 

Ampicillin 50 mg/ml 0.1 mg/ml 

Kanamycin 10 mg/ml 0.05 mg/ml 

Table 9: Antibiotics 

 

2.1.6.4 Northern Blot 

 

20x SSC, pH 7.0 

 

 

Church buffer 

 

 

 

 

Phosphate buffer 

 

 

5x Formaldehyde running buffer 

 

 

 

 

3 M NaCl 

3.3 M Ca6H5Na3O7*2H2O 

 

1% (w/v) BSA 

1mM EDTA (pH 8.0) 

7% (w/v) SDS 

0.5 M Phosphate buffer 

 

1 M Na2HPO4 

1 M NaH2PO4 

 

0.1 M MOPS 

40 mM NaAcetat 

5mM EDTA (pH 8.0) 
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RNA Gel loading buffer 

 

 

 

 

 

TE buffer (pH 8.0) 

 

 

Washing solutions 

95% (w/v) deionized Formamide 

0.025% (w/v) Bromphenol blue 

0.025% (w/v) Xylene cyanol 

5mM EDTA (pH 8.0) 

0.025 % (w/v) SDS 

 

10 mM Tris-HCl (pH 8.0) 

1 mM EDTA (pH 8.0) 

 

1x – 0.1x SSC/ 1% - 0.1% SDS 

 

2.1.6.5 Western Blot 

 

10x TBS 

 

 

 

TBST 

 

 

SDS-Running buffer 

 

 

Transfer buffers 

Anode I 

 

 

Anode II 

 

 

Cathode 

 

 

 

Blocking buffers 

 

 

1.4 M NaCl 

0.03 M KCl 

0.25 M Tris-HCl (pH 7.5) 

 

1x TBS 

0.1% - 0.25%  (v/v) Tween-20  

 

25 mM TRIS 

1.92 M Glycine 

1% (w/v) SDS 

 

0.3 M TRIS (pH 10.4) 

20% (v/v) MeOH 

 

25 mM TRIS (pH 10.4) 

20% (v/v) MeOH 

 

25 mM TRIS (pH 9.4) 

40 mM 6-amino-n-caproic acid 

20% (v/v) MeOH 

 

1x TBS 

0.1% (v/v) Tween-20 

5% (w/v) Milk 



Materials and Methods 
 

 53 

 

 

 

 

 

 

 

 

 

5x Laemmli-SDS buffer 

 

 

 

Buffer H 

 

5x Gel Loading buffer 

 

1x TBS 

0.1% (v/v) Tween-20 

5% (w/v) BSA 

 

1x PBS 

10% (v/v) Goat serum 

0.25% (v/v) Tween-20 

 

0.125 M TRIS-HCl (pH 6.8) 

5% (w/v) SDS 

5% (v/v) β-MercaptoEtOH 

 

20 mM TRIS-HCl (pH 7.4) 

 

312.5 mM TRIS-HCl (pH 6.8) 

50% (v/v) Glycerol 

0.05% (v/v) Bromphenol blue 

 

2.1.6.5.1 Proteinase inhibitors 

 

Inhibitor Stock concentration Final concentration 

Leupeptin 1 mg/ml 1 µg/µl 

Aproptin 10 mg/ml 1 µg/µl 

PMSF 17 mg/ml 17 µg/µl 

Table 10: Proteinase Inhibitors 

 

2.1.6.5.2 Coomassie staining 

 

Coomassie 

 

 

 

 

Destaining solution 

0.25% (w/v) Coomassie 

40% (v/v) MeOH 

10% (v/v) Glacial acetic acid 

 

 

50% (v/v) MeOH 

10% (v/v) Glacial acetic acid 
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2.1.6.6 Immunohistochemistry 

 

Antigen retrieval buffer (pH 6.0) 

 

Blocking buffer 

 

 

 

Washing solutions 

10 mM Tris-Sodium-Citrate (dihydrate) 

 

1% (v/v) BSA 

5% (v/v) NGS 

0.25% (v/v) TritonX-100 

 

1x PBS 

 

2.1.6.7 In situ Hybridization 

 

10x PBS 

 

 

 

 

Proteinase K 

 

PBST 

 

 

Hybmix 

 

 

 

 

 

 

 

 

B-Block 

 

 

 

NTM 

 

1.37 M NaCl 

0.027 M KCl 

0.015 M KH2PO4 

0.065 M Na2HPO4*2H2O 

 

20 µg/ml in 1x PBS 

 

1x PBS 

0.1% (v/v) Tween-20 

 

50% (v/v) Formamide 

5x SSC (pH 4.5) 

10 mg/ml Boehringer Block 

0.005 M EDTA (pH 8.0) 

0.1% (v/v) Tween-20 

0.1% (v/v) CHAPS 

0.02 mg/ml Heparin 

1mg/ml tRNA 

 

2% (w/v) Boehringer Block 

0.1 (v/v) Tween-20 

10% (v/v) NGS 

 

0.1 M Tris-HCl (pH 9.5) 

0.1 M NaCl 
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20x SSC 

 

 

Solution I 

0.05 M MgCl2 

 

3 M NaCl 

3.3 M Ca6H5Na3O7*2H2O 

 

50% (v/v) Formamide 

2x SSC 

 

2.1.6.8 Electron microscopy 

 

2.1.6.8.1 Scanning electron microscopy 

 

Fixation buffers 

 

 

 

 

Washing buffer 

2.5% (v/v) Glutaraldehyde 

0.1 M PIPES (pH 7.4) 

 

1% (v/v) OsO4 

 

0.15 M PIPES (pH 7.4) 

 

2.1.6.8.2 Transmission electron microscopy 

 

Fixation buffers 

 

 

 

 

 

 

Na-cacodylate buffer (0.1 M) 

 

Teorell-Stenhagen buffer (0.05 M, pH 10.0) 

 

 

 

 

 

 

2.5% (v/v) Glutaraldehyde 

2% (v/v) PVP (MW 25000) 

0.1 M PIPES buffer (pH 7.6) 

 

1.5% (v/v) OsO4 

1.5% (w/v) C6N6FeK4  

 

0.1 M Na(CH3)2AsO2*3H2O (pH 7.6) 

 

0.05 M H3PO4 

0.05 M H3BO3 

0.03 M C6H8O7 

0.345 M NaOH 
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DAB  

 

 

 

Osmification buffer 

 

 

Maleat buffer 

 

 

Uranyl acetate staining solution 

 

 

Epon 

 

 

 

 

 

Azure II solution 

 

Methylene blue solution 

 

 

Richardsons staining solution 

 

 

 

Lead citrate staining solution (pH 12.0) 

0.01 M Teorell-Stenhagen buffer (pH 10.0) 

0.15 % (v/v) H2O2 

0.01 M DAB 

 

1.5% (v/v) OsO4 

0.1 M Na-cacodylate buffer (pH 7.6) 

 

0.2 M C4H4O4 

1 N NaOH 

 

1% (w/v) UO2(CH3COO)2*2H20 

0.05 M Maleatbuffer (pH 5.2) 

 

1.5 M Epoxy embedding medium 

1 M Epoxy embedding medium hardener DDSA 

1.8 M Epoxy embedding medium hardener MNA 

1.5 % (v/v) Epoxy embedding medium 

accelerator 

 

1% (w/v) C16H18N8S*C15H16N3S*2Cl 

 

1% (w/v) C16H18CIN3S*3H2O 

1% (w/v) Na2B4O7*10H2O 

 

0.5% (v/v) Azure II 

0.5% (v/v) Methylene blue 

0.5 M C12H22O11  

 

0.08 M Pb(NO3)2 

0.12 M Na3(C6H5O7)*2H2O 

 

2.1.6.9 Tissue culture 

 

CRYO/Freezing medium 

 

 

 

20% (v/v) DMSO (tissue culture grade) 

30% (v/v) FBS 

50% (v/v) DMEM 
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MEF medium 

 

 

 

 

2x Trypsin 

DMEM 

10% (v/v) FCS 

100 U/ml penicillin/streptomycin 

2 mM L-Glutamine 

 

1x PBS 

0.1% (v/v) Trypsin 

1.1 mM EDTA 

 

2.1.6.10 Fixatives 

 

4% PFA (pH 7.4) 

 

 

 

2% Glutaraldehyde 

 

 

Bouin´s solution 

4% (w/v) PFA 

2 N NaOH 

1x PBS 

 

2% (v/v) Glutaraldehyde 

1x PBS 

 

75% saturated aqueous picric acid solution 

25% formaldehyde (40%) 

5% glacial acetic acid 

 

2.1.6.11  Bacteria  

 

DH5α Competent E. coli 

One Shot TOP10 Competent E. coli 

Invitrogen 

Invitrogen 

 

2.2 Methods 

 
2.2.1 Animal handling 

 

    The mouse experiments were carried out according to the guidelines of the University of Heidelberg 

and the State of Baden-Württemberg. 

 

2.2.1.1 Tansgenic lines 

 

    The mice were kept in the animal facility of the University of Heidelberg (IBF). They were exposed 

to light from 6.00 am to 6.00 pm. The programme 4D Client (TierBase) was used to set up matings on 
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Monday and female animals were controlled for vaginal plug from Tuesday to Friday by the animal 

care taker. Embryonic day (E) 0.5 was assessed at noon of the day when the vaginal plug was 

detected. 

 

2.2.1.1.1 tauGFP mice 

 

    The tauGFP mouse line was generated as described in Tucker et al, 2001. The mouse line was 

backcrossed to wild-type C57BL/6J mice for over ten generations to maintain it as a homozygous 

mutation. It was already at the IBF Heidelberg and only had to be maintained there. 

 

2.2.1.1.2 cbs  mice 

 

    The cbs mouse line was generated as described in Willaredt et al, 2008. The mouse line was 

outcrossed to wild-type mice of the inbred strain CBA/J for positional cloning. It was further on 

backcrossed to wild-type CBA/J and C57BL/6J mice for over ten generations to maintain the 

heterozygous strain background. It was already at the IBF Heidelberg and only had to be maintained 

there. Mutant embryos resulting from matings between adult animals heterozygous for cbs are termed 

cbs/cbs in this study. 

 

2.2.1.1.3 Gli3XtJ mice 

 

    The Gli3XtJ mouse line (Hui and Joyner, 1993) was imported from the lab of Prof. Dr. Rüther at the 

Heinrich Heine University of Düsseldorf, Germany. After a rederivation at the IBF of the University 

of Heidelberg, we received several litters to set up a new colony.  

Genotyping by PCR identified animals heterozygous for Gli3XtJ, which were mated to obtain 

homozygous Gli3XtJ mutant mouse embryos. Male mice heterozygous for Gli3XtJ were also mated with 

wild-type C57BL/6J female mice to maintain the colony. Mutant embryos resulting from matings 

between adult animals heterozygous for Gli3XtJ are termed Xtj in this study. 

 

2.2.1.1.4 Ift88 tm1.1Bky mice 

 

    The Ift88tm1.1Bky mouse line (Haycraft et al., 2007) was imported from the lab of Prof. Bradley K. 

Yoder at the University of Alabama, Birmingham, USA. After a rederivation at the IBF of the 

University of Heidelberg, we received several litters to set up a new colony. 

Genotyping by PCR identified animals with the following genotypes: wt/wt, flox/wt or ∆/wt. For 

maintaining of the colony male Ift88flox/wt and Ift88�/wt mice were mated with wild-type C57BL/6J 

female mice. Male Ift88�/wt were mated with female cbs/+ mice for a complementation analysis. 
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Resulting compound heterozygous embryos for both alleles are termed Ift88ko/cbs in this study, 

whereas embryos heterozygous for only one of the alleles are termed either Ift88ko/+  or cbs/+. 

 

2.2.1.1.5 Ift88�2-3βgal mice 

 

    Embryos carrying the Ift88�2-3βgal allele (Murcia et al, 2000) were received from the lab of Prof. 

Richard A. Woychik at the Parke-Davis Laboratory of Molecular Genetics, Alameda, California, 

USA. The embryos were sent to Germany in 1x PBS. Tail samples were taken for genotyping by PCR 

and embryos were embedded for cryosections. Embryos used in this study are termed Ift88�2-3βgal. 

 

2.2.2 Molecular biology 

 

2.2.2.1 Isolation of genomic DNA from embryonic and adult tissue 

 

    For the isolation of genomic DNA from embryonic and adult tissue a modification of the protocol of 

Laird et al., 1991 was used. 

    500 µl of lysis buffer containing 100 µg/ml Proteinase K was added to each sample of adult tissue 

(tail biopsy) or embryonic tissue. Digestion took place o/N at 55°C under agitation. 500 µl of 

isopropanol was added to each sample, mixed thoroughly and put to -80°C for one hour, followed 

afterwards by a centrifugation step for thirty min at 4°C at 13.000 rpm. The supernatant of each 

sample was discarded and the pellets washed with 300 µl of 70% ethanol in another centrifugation 

step at RT at 13.000 rpm for ten minutes. The 70% ethanol was removed carefully by aspiration and 

the DNA pellets were air dried. Afterwards the DNA pellets were dissolved in 60-100 µl of water or 

10 mM Tris-HCl, pH 8.5, o/N at 55°C under agitation. 

 

2.2.2.2 Polymerase chain reaction (PCR) 

 

    DNA fragments were amplified using taq-Polymerase which was applied in optimized 

concentrations. For genotyping the different adult mice and embryos used for the experiments, specific 

primers were utilized (2.1.1.6.1 Primers for genotyping). 

A standard PCR mix was as follows: 

 

16.2 µl 

02.0 µl 

00.4 µl 

00.4 µl 

00.4 µl 

H2O 

10x PCR reaction buffer 

10 µM Primer F 

10 µM Primer R 

10 mM dNTPs 
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00.1 µl 

00.5 µl 

Taq-Polymerase 

DNA (50-300 ng) 

 

2.2.2.3 Gel electrophoresis 

 

    Gel electrophoresis was performed to identify the correct DNA size of PCR products, to verify the 

results of digestion reactions of plasmid DNA and for separation of RNA for Northen blot (NB) 

analysis and proteins for Western blot (WB) analysis. 

   For the separation of DNA fragments of PCR products and digestions 0.75%-2% agarose gels were 

normally used, prepared with 1x TAE buffer and 0.5 µg/ml ethidiumbromide and run at 100-130 V at 

RT. In the case of the genotyping of cbs, the DNA fragments were separated using 12% acrylamide 

gels, prepared with 1x TBE buffer run at 120-140 V at RT. The acrylamidegels were stained with 0.5 

µg/ml ethidiumbromide diluted in MP-H2O. 

    Proteins were separated by using either 10% acrylamidegels or NuPage 3-8% Tris-Acetate gel (1.5 

mm, 10 well). 

   Total RNA was separated by using 1.2% denaturating agarose/ formaldehyde gel with 0.5 µg/ml 

ethidiumbromide and 1x Formaldehyde running buffer. 

 

2.2.2.4 Positional cloning 

 

    A panel to detect single polymorphisms (SNPs) was constructed from primer triplets, spread evenly 

across the mouse genome, that specifically amplify SNPs between the C57BL/6 and DBA/2 inbred 

strains. The two SNP-hybridizing primers in each triplet were recognized by fluorescently labelled 

primers (Amplifluor SNPs HT Genotyping System for FAM-JOE, Millipore) for use in a Stratagene 

MX3000P real-time PCR device. Segregating cbs embryos were examined using hundred markers 

covering the twenty murine chromosomes, looking for SNPs in which homozygous cbs mutants were 

enriched for a homozygous C57BL/6 result. SNP analysis identified one marker on chromosome 14 

that closely cosegregated with the cbs mutants (see Fig. 5). Fine mapping was performed with 

chromosome 14 SSLP markers (see Fig. 5) (Dietrich et al., 1994), which were resolved on 12% 

acrylamide gels (2.2.2.3 Gelelectophoresis). For Ift88 sequencing, total mRNA was isolated from 

E12.5 embryonic brain using the RNeasy Mini Kit according to the manufacturer´s instructions. Total 

mRNA was reversed transcribed with oligo(dT)12-18 and SuperScript reverse transcriptase according to 

the manufacturer´s instructions. PCRs were done with Ift88 specific primers (see 2.1.1.6.2 Primers for 

sequencing), followed by agarose gel purification of the PCR products and subcloning them into the 

pCRII-TOPO vector. Sequencing was undertaken by the company MWG with appropriate primers. 
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2.2.2.5 Quantitative real time RT-PCR 

 

    Whole RNA was extracted from embryonic tissue using RNeasy Mini Kit according to the 

manufacturer´s instructions. 1-5 µg of total RNA was transcribed into cDNA using oligo(dT)12-18 (0.5 

µg/µl) or random hexamers (50 mM) and SuperScript II RNase H- reverse transcriptase. The quality of 

the cDNA was assessed by PCR with specific primers for GAPDH (2.1.1.6.3 Primers for testing of the 

cDNA-Quality). Quantitative real time PCRs were performed using TaqMan Gene Expression Assays 

(2.1.1.6.4 Primers for real time RT-PCR) with 1 µl of cDNA (20 µl of RTase reaction using 1-5 µg of 

whole RNA input). The standard quantification protocol was applied with the following cycles: 2 min 

at 50°C, 10 min at 95°C, followed by 45 cycles: 43 seconds at 95°C and 1 min at 60°C. Each 

individual reaction was performed in triplicate. Primers specific for GAPDH (Mm99999915_g1) were 

used to normalize results. 

    Statistical analysis was performed as follows: Relative expression (RE) levels were calculated with 

the function (RE = 2-∆∆Ct), where ∆∆Ct is the normalized difference in threshold cycle (Ct) number 

between wt and cbs/cbs samples, calculated from the mean Ct value of triplicate replicates of any 

given condition. The mean of the RE was calculated from the individual values from four to six 

independent experiments, and the SEM was calculated from the standard deviation of the four to six 

values. Statistical significance was evaluated by applying the Student´s t test to the four to six values, 

comparing wt to cbs/cbs samples. Application of Student´s t test to the original ∆∆Ct values produced 

comparable p values. 

 

2.2.3 Microbiology 

 

2.2.3.1 Agar plates 

 

    Bacto-agar, bacto-tryptone, bacto-yeast and NaCl were weighed according to the recipe and put into 

1 L bottle. 800 ml of MP-H2O were added, shaked and let stand for ten min at RT. After autoclaving 

and cooling down to approximately 60°C, desired antibiotic was added and poured into 10 cm 

bacterial plates. After further cooling down and hardening of the agar, the plates were stored upside 

down at 4°C. 

 

2.2.3.2 Transformation 

 

    An aliquot of 100 µl of DH5α competent E. coli cells was thawed on ice, followed by adding 1-5 µl 

of plasmids and incubation for 20-30 min on ice. Bacteria were then heat shocked for 1 min at 42°C 

and put directly afterwards on ice for 1 min. 900 µl of LB medium were added and cells were 

incubated for one hour at 37°C at 230 rpm. During incubation of the bacteria on the shaker, bacterial 
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agar plates from 4°C were put into the incubator at 37°C with slightly opened lids. Different volumes 

(50-200 µl) of the bacteria were plates on the pre-warmed bacterial agar plates and incubated o/N at 

37°C. 

 

2.2.3.3 Liquid cultures of E. coli 

 

    For medium-scale preparations of plasmid DNA 100 ml of LB-medium that contained the desired 

antibiotic were inoculated with a single colony of transformed bacteria. The liquid cultures of E. coli 

were incubated o/N at 37°C at 230 rpm. The bacterial cultures were centrifuged for 10 min at 5000 

rpm at 4°C the next day and the bacterial pellets were frozen away for at least one hour or o/N at -

80°C. Cell lysis and Mini/Midiprep were undertaken according to the manufacturer´s instructions. The 

resulting pellets were dissolved in 10 mM Tris-HCl, pH 8.5, and concentration was measured by 

spectrophotometry. 

 

2.2.4 Electron microscopy 

 

2.2.4.1 Transmission electron microscopy (TEM) 

 

    E12.5 old mouse embryos were collected in cold 1x PBS and fixed for 10 min by transcardial 

perfusion using a glass micropipette with 2.5% glutaraldehyde in 0.1 M PIPES buffer, pH 7.6, 

containing 2% polyvinylpyrrolidone. The mouse embryos were additionally fixed for another hour in 

the same fixative after immersion fixation. After the final fixation 300 µm-thick coronal vibratome 

sections of the brain were prepared and incubated in the alkaline diaminobenzidine hydrochloride 

medium as described previously (Gorgas, 1984) for 60 min for enhancement of membrane staining, 

and postfixed with 1.5% osmium tetraoxide containing 1.5% potassium ferrocyanide for one hour, 

followed by an additional one hour osmification with 1.5% osmium tetraoxide in 0.1 M sodium 

cacodylate buffer. The slices were then stained en bloc in 1% uranyl acetate for 30 min, dehydrated 

through a graded ethanol series and embedded in Epon 812. Series of semithin sections were stained 

with a modified Richardson methylene blue-azure II solution and used for selection of corrospending 

areas in wild-type and mutant brains. Ultrathin sections were stained with lead citrate and analyzed by 

electron microscopy using a Zeiss EM 905E. 

 

2.2.4.2 Scanning electron microscopy (SEM) 

 

    Heads of E12.5 old embryos were fixed overnight (o/N) at 4°C in 2.5% glutaraldehyde/ 0.1 M 

PIPES, pH 7.4, and subsequently washed three times in 0.15 M PIPES, pH 7.4, at 4°C. The fixed 

samples were then embedded in 3% agarose and cut into 300 µm coronal slices in 1x PBS using a 
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vibratome. The slices were treated for one hour at room temperature (RT) with 1% osmium tetraoxide, 

washed three times with 0.15 M PIPES, pH 7.4, and subsequently dehydrated through a graded 

ethanol series. The specimens were dried in a CPC 030 critical point dryer, using CO2 as a transitional 

medium, followed by sputter coating of a 20 nm Gold film. For scanning electron microscopy (SEM), 

a LEO 1530 field emission scanning electron microscope with a Schottky cathode was used (LEO 

Elektronmikroskopie). 

 

2.2.5 Histology 

 

2.2.5.1 Fixation of embryos 

 

    E12.5 old mouse embryos were collected in cold 1x PBS, and embryonic tail samples were 

collected separately for DNA extraction and genotyping. The embryos were then placed into 4% PFA 

and fixed o/N at 4°C under agitation. PFA was washed out the next day with 1x PBS before the 

mounting of the embryos. 

 

2.2.5.2 Embedding of embryos 

 

2.2.5.2.1 Embedding for cryosections 

 

    Serial steps of 10%, 20% and 30% Sucrose in 1x PBS were undertaken o/N at 4°C under agitation. 

The embryos were then placed in small “Peel-Away” mounting moulds that had been before half-way 

filled with mounting medium (tissue-tek). After 1 hour of incubation in the mounting medium the 

embryos were orientated as desired and the bottom of the mould was quickly frozen in liquid nitrogen, 

to fix the embryos in position. The moulds were placed afterwards on dry ice for 10 to 20 min to 

freeze the mounting medium completely and stored at -80°C.  

 

2.2.5.2.2 Embedding for Paraffinsections 

 

    The embryos were dehydrated through a graded ethanol series at 4°C and under agitation as 

follows: 3x one hour 50% ethanol, 2x one hour 70% ethanol, o/N 70% ethanol, 2x one hour 80%, 2x 

one hour 90% ethanol, 2x one  hour 96% ethanol, 3x one hour ethanol absolute. 

After dehydration the embryos were treated with ethanol/acetone (both components in equal parts) for 

1 hour at RT under agitation, followed by 3x one hour 100% acetone at RT under agitation. The 

embryos were then transferred into 100% paraffin, which was already melted before, o/N at 65°C 

without agitation. The next day the embryos were incubated two times for one hour in 100% paraffin 

at 65°C without agitation and were then place in reusable mounting moulds that had been before half-
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way filled with melted 100% paraffin. The embryos were orientated as desired and the paraffin was 

allowed to cool down at RT to fix embryos in position. The resulting paraffin blocks were removed 

out of the reusable mounting blocks and were stored in plastic bags at RT. 

 

2.2.5.3 Sectioning 

 

2.2.5.3.1 Cryosections 

 

    The standard conditions used for cutting cryosections are the following: chamber temperature: -

21°C, object temperature: -19°C. 10-12 µm thick sections were collected on microscope slides 

superfrost ultra plus, dried for one to two hours at RT and frozen away at -80°C. 

 

2.2.5.3.2 Paraffin sections 

 

    10-12 µm thick paraffin sections were cut and collected at RT to be then transferred immediately to 

a 50-52°C warm water bath. The sections were allowed to smoothen themselves in the water bath to 

get rid of wrinkles. The sections were collected on microscope slides superfrost ultra plus, dried o/N at 

37°C and stored away at 4°C. 

 

2.2.5.4 Immunofluorescent stainings 

 
2.2.5.4.1 Cryosections 

 

    Slides were removed from -80°C and sections were allowed to thaw for 15 min at RT. Roti-Liquid 

Barriere marker was then used to surround the sections on the slide to contain the liquid on the 

sections. After the Roti-Liquid Barriere marker was dried the sections were rehydrated by putting the 

slides into 1x PBS for 15 min at RT. Excessive 1x PBS was carefully removed and 200 µl of blocking 

buffer with TritonX-100 was added on each slide. The sections were incubated for 1 hour at RT in a 

wet chamber. After blocking the blocking buffer was removed and 200 µl of blocking buffer without 

TritonX-100 and with the appropriate primary antibodies was added to the slides. The sections were 

incubated with the primary antibody in a wet chamber o/N at 4°C. The next day the primary antibody 

was removed and the sections were washed at least 4x 10 min with 1x PBS at RT. After the washing 

steps the appropriate secondary antibodies diluted in blocking buffer without TritonX-100 were added 

to the slides and incubated in a wet chamber covered with aluminium foil for one hour at RT. 

Afterwards, the secondary antibodies were removed and the sections were washed 1x with DAPI in 1x 

PBS for 10 min at RT, followed with at least 3x 1xPBS for 10 min at RT and afterwards shortly 

dunked into water. After removing as much liquid as possible, sections were mounted with coverslips 

using aqua polymount and stored at 4°C in the dark. 
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2.2.5.4.2 Paraffin sections 

 

    Slides were removed from 4°C and sections were allowed to adjust to RT. Paraffin was removed by 

treating the sections for 3x seven min in 100% Xylol at RT without agitation, 1x 2 min treatment with 

ethanol/xylol (both components in equal parts) at RT without agitation, followed by rehydration 

through a graded ethanol series (100%, 96%, 90%, 70%, 50%, one min each) at RT without agitation. 

After rehydration an antigen retrieval (2.2.5.4.3 Antigen retrieval) was undertaken, followed by 1x 5 

min in 1x PBS at RT without agitation. Excessive 1x PBS was carefully removed and sections on the 

slide were surrounded with Roti-Liquid Barrier marker to constrain the liquid on the sections. 200 µl 

of blocking buffer with TritonX-100 was added on each slide and the sections were incubated for 1 

hour at RT in a wet chamber. After blocking the blocking buffer was removed and 200 µl of blocking 

buffer without TritonX-100 and with the appropriate primary antibodies was added to the slides. The 

sections were incubated with the primary antibody in a wet chamber o/N at 4°C. The next day the 

primary antibody was removed and the sections were washed at least 4x 10 min with 1x PBS at RT. 

After the washing steps the appropriate secondary antibodies diluted in blocking buffer without 

TritonX-100 were added to the slides and incubated in a wet chamber covered with aluminium foil for 

one hour at RT. Afterwards, the secondary antibodies were removed and the sections were washed 1x 

with DAPI in 1x PBS for 10 min at RT, followed with at least 3x 1xPBS for 10 min at RT and 

afterwards shortly dunked into water. After removing as much liquid as possible, sections were 

mounted with coverslips using aqua polymount and stored at 4°C in the dark. 

 

2.2.5.4.3 Antigen retrieval 

 

    To achieve a staining for several antibodies on paraffin sections an antigen retrieval had to be 

undertaken. Paraffin sections were dewaxed by treating them for 3x seven min in 100% Xylol at RT 

without agitation, 1x 2 min treatment with ethanol/xylol (both components in equal parts) at RT 

without agitation, followed by rehydration through a graded ethanol series at RT without agitation. 

After rehydration the sections were incubated in 1x PBS for 2x 5 min at RT. Slides were put into a 

metal rack, which was placed into a pressure cooker and covered with the antigen retrieval buffer. The 

pressure cooker was heated on a heating plate until it reached full pressure. After cooking the sections 

for 2 min under full pressure, the cooker was removed from the heating plate and cooled down under 

running water to remove the pressure. The lid was opened and sections were allowed to cool down 

staying in the antigen retrieval buffer for another 20 min before washing them in 1x PBS and water, 

each for 1x 5 min at RT. 
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2.2.5.4.4 Whole mount stainings 

 

    Whole-mount stainings were performed using the 2H3 (anti-165 kDa neurofilament) monoclonal 

antibody (Developmental mental Studies Hybridoma Bank (DSHB), Iowa City, IA). 

Dissected embryos were fixed in 4:1 methanol/DMSO o/N at 4°C under agitation. The fixative was 

removed the next day by washing the embryos 5x 10 min with 100% methanol at RT under agitation, 

followed by bleaching the embryos with 6% H2O2 four at least four hours at 4°C under agitation. The 

embryos were afterwards rehydrated by serial steps of 75%, 50%, 30% methanol in 1x PBS/0.1% 

TritonX-100 for 30 min each, followed by a washing step with 1x PBS/0.1% TritonX-100. The 

embryos were blocked in 80% FCS/20% DMSO for two hours at RT under agitation, followed by an 

incubation with the 2H3 anti-neurofilament monoclonal mouse antibody at 4°C for 48 hours under 

gentle agitation. After incubation with the primary antibody embryos were washed at least 10 times 

with 1x PBS/0.1% TritonX-100 for six hours at RT under gentle agitation, followed with incubation 

with the secondary antibody for at least 24 hours at 4°C under gentle agitation. After incubation with 

the secondary antibody embryos were again washed at least 10 times with 1x PBS/0.1% TritonX-100 

for six hours at RT under gentle agitation. For the development reaction embryos were at first treated 

with 0.5 mg/ml DAB in 1x PBS in small glass beakers for 30 min at RT under agitation, until 4 µl of 

0.3% H2O2 per 5 ml DAB in 1x PBS was added. The colour reaction was allowed to take place in the 

dark and its progress was checked every 30 min. As soon as the colour reaction seemed completed it 

was stopped washing the embryos with 1x PBS/ 01.% NaN3 for several times. The embryos were 

dehydrated through a graded methanol series in 1x PBS/0.1 % TritonX-100, and then cleared in benzyl 

alcohol : benzyl benzonate 1:2 in glass beakers. 

 

2.2.5.5 In situ hybridization 

 

2.2.5.5.1 Plasmid linearization 

 

    Plasmids were linearized using the appropriate restriction enzymes. The digestion reaction of a total 

volume of 30 µlwas prepared as follows: 

 

DNA 

Restrictionenzyme 

10x Buffer 

100x BSA 

H2O 

X µl 

1.00 µl 

3.00 µl 

0.30 µl 

X µl 
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    The reaction was incubated in a water bath for two hours at 37°C or at RT, depending on the used 

restrictionenzyme. Afterwards the digestion was checked by electrophoresis on a 0.75-1% agarose gel 

(see 2.2.2.3 Gel electrophoresis). If the digestion was not yet complete, another 1 µl of 

restrictionenzyme was added to the reaction and incubated again at the appropriate temperature for one 

to two hours, and the efficiency of the digestion was controlled by electrophoresis once more. After 

completion of the digestion reaction the linearized plasmid was purified using the Nucleospin Extract 

II Kit according to the manufacturer´s instructions, concentration was measured by spectophotometry 

and stored at -20°C. 

 

2.2.5.5.2 Probe synthesis 

 

    The following components were mixed for probe synthesis (10 µl total volume): 

MP-H2O 

5x transcription buffer 

DIG 10x nucleotide mix 

Linearised plasmid 

RiboLock 

RNA polymerase 

X µl 

2.00 µl 

1.00 µl 

X µl 

0.25 µl 

1.00 µl 

 

    The reaction was incubated in a water bath o/N at 37°C. The next day 5 µl of 10M Ammonium 

acetate and 40 µl of ethanol were added to the reaction, placed for one hour at -80°C and centrifuged 

afterwards for 30-45 min at 4°C at 13.000 rpm. The supernatant was carefully removed, 200-300 µl of 

70% ethanol was added to the pellet and centrifuged for 10 min at 4°C at 13.000 rpm. The supernatant 

was carefully removed, pellet was air dried, redissolved in 30 µl of Hybmix and finally stored at -

20°C. 2 µl of the redissolved pellet was run on a 2% agarose/TBE gel to estimate the amount of RNA 

synthesised.  

 

2.2.5.5.3 In situ hybridization 

 

    Paraffin sections were removed from 4°C and sections were allowed to adjust to RT. Paraffin was 

removed by treating the sections for 3x seven min in 100% Xylol at RT without agitation, 1x 2 min 

treatment with ethanol/xylol (both components in equal parts) at RT without agitation, followed by 

rehydration through a graded ethanol series (100%, 96%, 90%, 70%, 50%, one min each) at RT 

without agitation, washed 2x with 1xPBS at RT without agitation and incubated for 5 min with 20 

µg/ml Proteinase K in 1x PBS. After ProteinaseK treatment the slides were immediately washed 1x 

with 0.2 Glycine in 1x PBS for 5 min at RT without agitation, followed by 2x washes with 1x PBS at 

RT without agitation. The sections were then postfixed with 4%PFA and 0.2% Glutaraldehyde in 
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1xPBS at RT without agitation. During postfixation a wet chamber with 50% formamide/ 2x SSC, pH 

4.5, was prepared. The slides were washed again two times with 1x PBS at RT without agitation after 

postfixation, followed by removing as much liquid as possible. The sections were then encircled using 

a fat pen (Immune Edge Pen). Hybmix was denatured at 95°C for five min and 7.5 µl of Hybmix per 

section was added to the slides and prehybridized in the wet chamber for one hour at 70°C. During 

prehybridization probes were diluted to a final concentration of 1 ng/µl in Hybmix and denatured at 

95°C for five min. Slides were taken out of the hybridization oven after one hour, Hybmix was 

removed, 7.5 µl of Hybmix with probe (1 ng/µl) per section was added and sections were hybridized 

in the wet chamber o/N at 70°C.  

    At the next day, probes were removed and slides washed 1x with 2x SSC, pH 4.5, at RT without 

agitation, followed by two washes with 50% formamide/ 2x SSC, pH 4.5, at 65°C for 15 min each. 

The slides were then washed 3x 10 min with 1x PBST at RT with gentle agitation. During the wash 

steps a humid chamber with water was prepared. After washing with 1x PBST, as much liquid as 

possible was removed from the slides, the sections were covered with B-Block (ca. 100 µl per slide), 

put into the wet chamber and incubated for one hour at RT. B-Block was removed afterwards, Anti-

Digoxigenin-AP antibody diluted 1:1000 in B-Block (ca. 100 µl per slide) was added, incubated for 

two hours at 37°C, followed by 3x 5 min washing steps with 1x PBST and 1x 10 min with NTM at RT 

with gentle agitation. NBT/BCIP stock solution was diluted 1:50 in NTM and 300-400 µl per slide 

were added. Colour reaction was allowed to develop in the dark at RT and its progress was checked 

every 30 min. As soon as the colour reaction seemed completed it was stopped washing with 1x 

PBST, followed by a postfixation with 4% PFA for 10-20 min and two further washing steps with 1x 

PBS for 5 min each at RT. The sections were mounted with aquatex and stored at 4°C. 

 

2.2.5.6 Alcian blue staining 

 

    Dissected embryos were fixed in Bouin´s solution for two hours and washed with a solution of 70% 

ethanol/0.1% NH4OH for 12-24 hours in five to eight changes. The embryos were afterwards treated 

with 5% acetic acid for two hours and stained with 0.05% Alcian blue 8GX in 5% acetic acid, 

followed by several washing steps in 5% acetic acid for two hours and dehydration through a graded 

methanol series. The embryos were afterwards cleared in benzyl alcohol : benzyl benzonate 1:2 in 

glass beakers. 

 

2.2.5.7 Hemotoxylin&Eosin staining  

 

    Paraffin sections were treated for 2x 5 min with 100% xylol at RT, rehydrated and washed with 

MP-H2O at RT. The sections were stained with hemotoxylin for 8-10 min at RT, washed shortly with 

MP- H2O, followed by washing the sections for 15 min with tap water for the colour reaction to take 
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place. The sections were shortly rinsed with MP-H2O, to be stained afterwards with 0.1% Eosin at RT. 

After removing the eosin by washing the sections several times with MP- H2O, they were dehydrated, 

treated for 2x 5 min with 100% xylol and finally embedded with entellan. 

 

2.2.6 Western blot analysis 

 

2.2.6.1 Preparing of protein lysates 

 

    Fresh or frozen tissue was weighted and washed in 20x buffer H with proteinase inhibitors on ice (if 

the tissue for example is 0.0325 g, the volume will be 650 µl), directly afterwards homogenized using 

a Potter S homogenizer on ice and mixed with 5x Lämmli-SDS-buffer (5% SDS) to a total volume of 

1x Lämmli-SDS-buffer. The homogenates were pulled 10x up and down through a thin needle on ice 

and then boiled for five min at 95°C. A small aliquot was collected for determination of the protein 

concentration using the BCA Protein Assay Kit according to the manufacturer´s instructions. After 

boiling of the homogenates β-Mercaptoethanol was added to a final concentration of 5%, boiled again 

for five min at 95°C and finally stored at -20°C. 

 

2.2.6.2 Western blot 

 

    Acrylamide gels were pre-run for 15-30 min at 60 volt at RT. 5x loading buffer was added to the 

protein lysates to a final concentration of 1x loading buffer, boiled for 5 min at 100°C and cooled 

down immediately by putting the samples on ice. The samples were shortly centrifuged before loading 

on the gel. The gel ran for about two hours at 100-120 volt at RT.  

Membrane was treated for 5-10 min in 100% methanol, then washed in cooled transfer buffer. Semi-

dry transfer was done for about one to two hours at 16 volt and RT and membrane were blocked o/N at 

4°C. The next day the membrane was incubated with the primary antibody for one hour at RT, washed 

4x ten min with 1x TBST and again incubated with the secondary antibody for one hour at RT. After 

4x ten min washes with 1x TBST, ECL was added to the membrane according to the manufacturer´s 

instructions, developed using a Luminescent Image Analyzer LAS-3000 and analyzed by using the 

AIDA Image Analyzer programme. 

 

2.2.7 Northern blot analysis 

 

2.2.7.1 Probe synthesis 

 

    Plasmids were digested using the appropriate restriction enzymes. The digestion reaction of a total 

volume of 30 µl was prepared as follows: 
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DNA 

Restrictionenzyme 

10x Buffer 

100x BSA 

H2O 

X µl 

1.00 µl 

3.00 µl 

0.30 µl 

X µl 

 

    The reaction was incubated in a water bath for two hours at 37°C or at RT, depending on the used 

restrictionenzyme. Afterwards the digestion was checked by electrophoresis on a 1% agarose gel (see 

2.2.2.3 Gel electrophoresis). If the digestion was not yet complete, another 1 µl of restrictionenzyme 

was added to the reaction and incubated again at the appropriate temperature for one to two hours, and 

the efficiency of the digestion was controlled by electrophoresis once more. After completion the 

whole digestion reaction was put on a 1% agarose gel, the fragment of interest was cut of the gel, put 

into a 1.5 ml tube of known weight and purified using QIAEX II Agarose Gel Extraction according to 

the manufacturer´s instructions and dissolved in 25 µl 10 mM Tris-HCl, pH 8.5. Concentration was 

measured by spectophotometry and stored at -20°C. 

For synthesis of the probe DNA was denaturated for two to three min at 95-100°C, put directly 

afterwards on ice for two min, followed by a short centrifuge step. To the tube containing the Ready-

to-Go DNA Labelling beads (-dCTP) the following was added to a total volume of 50 µl: 

 

Denaturated DNA 

 [α-32P]dCTP 

H2O 

X µl 

5.00 µl 

X µl 

 

    Everything was mixed by several times of carefully pipetting up and down, incubated for ten min at 

37°C and purified by using the ProbeQuant G-50 Micro Columns according to the manufacturer´s 

instructions. The finished probe was normally given directly to the membrane or stored at 4°C. 

 

2.2.7.2 Northern blot 

 

    Total RNA prepared from the brain and fore- and hindlimb tissue of E12.5 embryos using RNeasy 

Mini Kit according to the manufacturer´s instructions was put in the following mix before loading on 

the gel: 

 

4.00 µl 5x Formaldehyde running buffer 

7.00 µl Formaldehyde 

20.0 µl Formamide 
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    Once in the mix, the total RNA was boiled for 15 min at 65°C, put afterwards directly on ice, 

shortly centrifuged. After a pre-run of the 1.2% denaturating agarose/ formaldehyde gel with 0.5 

µg/ml ethidiumbromide and 1x Formaldehyde running buffer at 5 V/cm (cm referring to the distance 

between the two poles), the probes were loaded an the gel to separate the RNA. The gel was run o/N 

25 V under the hood. At the next day, the gel was washed for one hour in MP-H2O to remove surplus 

formaldehyde, checked under UV-light and the 28S- and 18S RNA bands were marked by piercing a 

hole into the gel with a sterile pipette tip. The membrane was treated for twenty min in 0.005 N 

NaOH, followed by 45 min in 20x SSC, pH 7.0 at RT under gentle agitation. Afterwards the blotting 

was performed o/N by the capillary transfer method (Maniatis et al.) using 20x SSC, pH 7.0, as 

transfer buffer onto HbondN+ membrane. After marking the positions of the gel slots and the 28S- and 

18S RNA bands on the membrane, it was put into a UV-irridator to crosslink the RNA to the 

membrane. The membrane was pre-hybridized in 10 ml Church buffer o/N at 65°C with agitation. The 

following day the α-32P-labelled probe was added directly to the Church buffer and the membrane was 

hybridized o/N at 65°C under agitation. After hybridization the membrane was washed with 1x – 0.1x 

SSC/ 1% - 0.1% SDS for 5 to 10 min each at 65°C with agitation, till radioactivity was enough 

reduced. Membrane was put into a transparent foil and placed together with a Amersham Hyperfilm 

ECL for 24-72 hours at -80°C. The film was developed using a Curix60 table top processor. The film 

was scanned in using a GS-800 USB Calibrated Densitometer and analyzed with the Quantity One 

software. 

 

2.2.7.3 Stripping of the membrane 

 

    To completely remove the probes, the membrane was treated with a boiling 0.1% SDS solution. The 

solution was allowed to cool down, was removed and the membrane was washed with 2x SSC, pH 7.0. 

 

2.2.8 Cell culture 

 

2.2.8.1 Preparation of Mouse Embryonic Fibroblasts (MEFs) 

 

    E12.5 old mouse embryos were collected in cold 1x PBS. Individual embryos were dissected and 

embryonic tail samples were collected separately for DNA extraction and genotyping. After removing 

the head and soft tissues (liver, heart, and other viscera), the embryonic carcasses were transferred into 

fresh 1x PBS. The individual carcasses were minced into fine pieces under the sterile hood with a 

sterile scalpel blade for three min and 600-700 µl of 2x trypsin was added, followed by an incubation 

for 15 min at 37°C. The trypsin was inactivated afterwards by adding 12 ml MEF medium and the 

tissues were dissociated by vigorous up and down pipetting till no big pieces were seen anymore and 

finally transferred into T75 flasks and cultured o/N at 37°C. The medium was removed the following 
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day and cells were washed once with 1x PBS. After adding 1 ml of 0.75x trypsin to the cells, they 

were again incubated for 3-5 min at 37°C and 10 ml of MEF medium was added. The cells were 

resuspended by ten times up and down pipetting and 3 ml of the resuspended cells together with 12 ml 

fresh MEF medium were put into a T75 flask and further cultured at 37°C. The remaining 7 ml of 

resuspended cells were centrifuged down for five min at 800 rpm and the MEF medium was carefully 

removed. Pellet was dissolved by carefully flipping the tube, 2.4 ml of MEF medium was added and 

pellet was resuspended. 2.4 ml of freezing medium was added and 1.6 ml of resuspended cells was put 

into cryovials. The cryovials were put into a Qualifreeze Cryo-Einfriergerät and stored at -80°C o/N. 

The next day the cryovials were finally stored in a liquid nitrogen tank. 

 

2.2.8.2 Luciferase assays 

 

    2x106 MEF cells were electoporated (Amaxa nucleofection device, program with a mixture of 5 µg 

of a Shh-responsive firefly luciferase-expressing plasmid (Sasaki et al., 1997) and 300 ng of a Renilla 

luciferase reporter plasmid (pRL-TK, Promega) to control for transfection efficiency. Cells were 

plated into 20 wells of a 24-well plate and allowed to grow 36-48 hours to confluency. Medium was 

shifted to 0.5% FCS for 36 hours, to allow for the production of cilia, as described (Ocbina and 

Anderson, 2008). Rcombinant murine sonic hedgehog (1 µg/ml, R&D Biosystems) was then added for 

12 hours, and the cells were subsequently lysed for luciferase analysis using the Dual-Luciferase assay 

system (Promega) with a Veritas Microplate luminometer (Turner BioSystems). All assays were 

performed at least six times in five-fold replication for each experimental variable; background values 

were determined with lysates of untransfected cells, and firefly luciferase values were normalized with 

the Renilla luciferase readouts. Statistical analysis was performed using Student´s t tes
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3 Results 

 

3.1 The cobblestone mutant is a hypomorphic allele of the Ift88 gene 

 

    The cobblestone (cbs) is a mutation uncovered in ethyl-nitroso-urea (ENU) mutagenesis screen to 

find defects in the development of the nervous system.  ENU is a very potent mutagen, which 

incorporates into the genome and causes random mutations. A mouse line called tauGFP was used for 

the screen, which expresses ectopically the green fluorescent protein (GFP) under the promoter of the 

microtubule binding protein Tau (Tucker et al, 2001). The Tau protein is specific for the nervous 

system and thus the whole developing nervous system can be visualized under normal UV light. 

tauGFP male mice were injected with ENU and used to establish separate G1 origins (Fig.1). Each G1 

male was treated as a different potential heterozygote carrier and mated to his G2 daughters to uncover 

reveal recessive mutations. The resulting G3 litters were screened with a fluorescent microscope for 

defects in neurogenesis and nerve development. 

 

 
Fig. 1.  ENU mutagenesis scheme to uncover recessive mutations.  Green mice contain the tauGFP reporter 

transgene and are on a pure C56BL/6J background. Grey mouse is wild-type and on a pure CBA/J background. 

+ and – refer to the ENU-induced mutation of interest. 
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    The cbs mutation was identified by the ectopic accumulations of GFP-expresing cells protruding 

from the pial surface of the E11.0 forebrain (Fig.2A), which gives the brain surface a resemblance of a 

cobblestone-paved street. The following features were used to classify the heterotopias: in cross-

section, these heterotopic structures were (1) 50-150 µm in diameter, (2) “rosette”-shaped, (3) with a 

central lumen, (4) had an epithelial-like cell layer lining the lumen, whose cells stained positive for the 

neural precursor marker nestin (Fig. 9A), and (5) an outer layer with GFP-expressing cells (Fig. 2A). 

The GFP-positive cells were also expressing β-tubulin III (Fig. 2B) and the 165 kDa axonal marker 

neurofilament (Fig. 2C), reinforcing their character as newborn neurons. 

 

 
Fig. 2.  Heterotopias in the cbs/cbs forebrain A. Whole-mount epifluorescence of E12.5 tauGFP cortex, 

looking down upon the pial surface. A wild-type embryo shows GFP-signal where the lateral edge of the cortex 

folds over, allowing multiple layers of newborn neurons to be seen as a broad stripe of signal (left panel, white 

arrows). In cbs/cbs mutants, heterotopias appear as 40-180 µm wide spheres (right panel, black arrows), often 

with long trails of green signal corresponding to outgrowing axon bundles. Rostral (R), caudal (C), dorsal (D) 

and ventral (V) axes are indicated. B. Cross section of two subpial heterotopias in E11.5 cbs/cbs cortex. Asterik 

indicates lumen of each heterotopia. Top, phase contrast. Bottom, stained with TuJ1 antibody, indicating 

newborn neurons in the heterotopia periphery. C. Anti-165 kDa neurofilament antibody staining of E11.5 

forebrain. White arrows indicate heterotopias in cbs/cbs cortex. The smaller number of stained heterotopias, 

compared with (A), is due to reduced antibody penetration. Asterik indicates Nervus opthalmicus. (+/+) = wild-

type; Scalebar: 0.5 mm (A), 100 µm (B/C). 

 

    The forebrain of E12.5 cbs/cbs mutants was shortened along its rostral-caudal axis, while the 

midbrain was elongated (Fig. 3A, middle embryo). cbs segregated as a recessive mutation (255 

mutants/1005 embryos, 140 litters), with no heterozygous phenotype. The mutation was not influenced 

by the presence of the tauGFP locus, as seen after the segregation of the tauGFP marker. cbs/cbs 

mutants showed 8% and 70% mortality by E12.5 and E14.5, respectively. 10% of cbs/cbs mutants at 

E12.5 showed exencephaly (Fig. 3A, right embryo, black arrow). The most striking defect in cbs/cbs 

mutants outside the developing nervous system is polydactyly on both fore- (Fig. 3C) - and both hind-

limbs (Fig. 3B) and bilateral coloboma (Fig. 3A, white arrows). Both of these phenotypes showed 

100% penetrance (n = 255).  
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Fig. 3.  The live phenotype of the cbs/cbs mutant. A. E11.5 cbs/cbs display a cortex (asterisk) shortened in the 

rostral-caudal axis (middle embryo), compared with wild-type littermates (left embryo). 10% of cbs/cbs mutants 

display exencephaly (right embryo, black arrow). cbs/cbs embryos display colobomas (white arrows), and an 

enlarged pericardial sac is often to be seen (black dots). B/C. cbs/cbs embryos display bilateral polydactyly on 

hindlimbs (B) and forelimbs (C). B. E13.5 embryos stained with an anti-165 kDa neurofilament antibody, 

showing hindlimb innervation. C. Alcian-blue stained E14.5 embryos, showing skeletal formation. Arrow 

indicates pollex. (+/+) = wild-type. Scalebar: 1.5 mm (A); 0.5 mm (B/C). 

 

    In addition, examination of cardiovascular and pulmonary development between E12.5 and E16.5 

revealed a large number of malformations (Fig. 4A-E) that may account for embryonic lethality. 

Specific malformations in cardiovascular and pulmonary development in E16.5 embryos are the 

following, with the medical term corresponding to this phenotype in parenthseses: 

1.   Persistent  truncus  arteriosus  (single  outlet  of  the  heart),  including  absence  of  the pulmonary  

arteries  (pulmonary  atresia-PA)  was  found.  (Fig. 4A) +/+:  arrow  marks  the ascending  aorta. 

Arrowhead  points  to  the  pulmonary  trunk.  cbs/cbs:  arrow  indicates the common truncus 

arteriosus.  

2.   Pulmonary   arterial   perfusion   was   not   provided   by   antegrade   blood   flow,   but 

exclusively supplied by one major aortopulmonary artery (MAPCA-main pulmonary collateral  artery  

=  bronchial  artery),  arising  as  the  first  branch  of  the  common  trunk (type  C  PA-VSD).  (Fig. 

4B) cbs/cbs: white  arrow  indicates  the  single  aortopulmonary (bronchial) artery.  

3.   Dextrotransposition  of  the  common  trunk  arising  from  the  right  ventricle  (Fig. 4A) 

combined   with   both   atrial   and   ventricular   septal   defects   (Fig. 4B)   (ASD-VSD-pars  

membranacea)  was  recorded.  (Fig. 4A)  cbs/cbs:  arrow  indicates  dextrotransposition  of  the 

common  truncus  arteriosus.  (Fig. 4B)  +/+:  arrow  marks  the  interatrial  septum,  which  is missing 

(black arrow) in cbs/cbs mutants. cbs/cbs: arrowhead points to the ventricular septal defect.  

4.   Instead of emptying into the right atrium, the coronary sinus emptied into the common atrium.  

(Fig. 4C)  +/+:  arrow  shows  the  blood  flow  from  the  coronary  sinus  into  the  right atrium.  

cbs/cbs:  arrow  shows  the  abnormal  blood  flow  from  the  coronary  sinus  into the common 

atrium.  
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5.   Abnormal  drainage  of  the  right  pulmonary  vein  into  the  inferior  vena  cava  was observed. 

(Fig. 4D) cbs/cbs: arrowhead points to the right pulmonary vein emptying into the inferior vena cava.  

6.   The right lung was present in a caudal location, only two lobes were well defined by fissures,  the  

accessory  right  lobe  that  was  present  was  unilobate,  and  severe hypoplasia  of  both  right  lobes  

with  minor  arborization  of  the  bronchial  tree  was observed (Fig. 4D/E). The left lung was absent 

(Fig. 4D). (Fig. 4D) +/+: arrow indicates the left lung. cbs/cbs: arrow marks the empty pleural cavity 

and absence of the left lung. (Fig. 4E) +/+: arrows  indicate  the  accessory  lobe  of  the  right  lung  

lying  on  the  left  side.  cbs/cbs: arrow  marks  the  hypoplastic  accessory  lobe  of  the  right  lung  

lying  on  the  left  side. Note  its  position  in  the  right  pleural  cavity. Arrowhead  points  to  

hypoplastic  right lung.    

7.  Persistence of  the  common  foregut  tube.  (Fig. 4A-E) cbs/cbs:  asterisk  indicates  common 

foregut tube. The constellation of cardiovascular abnormalities seen in premortem embryos was 

extensive, seen in all examined embryos between E14.5 and E16.5 (n = 3), and the cause of death 

could reasonably  be  attributed  to  any  of  several  stochastic  cardiac  events  attendant  to  such 

anatomical  anomalies,  including  acute  cardiac  outflow  obstruction,  sudden  arrythmia,  and 

intrapleural haemorrhage. 
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Fig. 4.  Cardiovascular and pulmonary development is impaired in cbs/cbs  mutants. A-E: Serial  4-µm  

transverse  sections  of  E16.5  wildtype  and  cbs/cbs  embryos  were stained with hematoxylin and eosin.  They 

are presented from cranial to caudal, with distance from the first panels indicated in mm (upper right).  The left 

side of the body is to the right.  Scale bar: 0.5 mm. Specific defects in cardiovascular and pulmonary 

development in E16.5 embryos  are  described  above,  with  the  medical  term  corresponding  to  this  

phenotype indicated in parentheses. 

 

    The cbs mutation was generated on a pure C57/BL6 background. To perform positional cloning, the 

cbs mutant was crossed to wild-type mice of the CBA/J background, F1 progeny was intercrossed, and 

genomic DNA from resulting F2 embryos was analyzed with strain-specific markers, which exhibited 

distinct polymorphisms between the C57/BL6 and CBA/J inbred mouslines. This approach identified 

one marker on chromosome 14 cosegregating with cbs/cbs mutants (Fig. 5). Thereon finer mapping of 

the chromosome 14 for the locus of the cbs mutation was done using standard simple sequence length 

polymorphism (SSLP) markers (Dietrich et al, 1994) (Fig. 5). The cbs locus was thus positioned 0.5 

cM distal to the marker D14Mit259 (Fig. 4).  
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Fig. 5.  Positional cloning of cbs. Distance from the centromere in million bp (black), the SNP markers used 

for rough mapping (blue), SSLP markers used for fine mapping (red), and the Ift88 gene (green box) are 

indicated. 

 

    Examination of candidate genes in this region revealed one gene called Ift88 (Fig. 4), which had 

been already reported to exhibit both polydactyly (Zhang et al, 2003) and defects in neural tube 

formation (Murcia et al., 200), when mutated. Northern blot analysis using total RNA isolated from 

E12.5 brain detected a single transcript both in wild-type and cbs/cbs embryos (Fig. 6A). Quantitation 

revealed a 66.7 +/- 2.00% decrease in Ift88 mRNA levels in cbs/cbs brains. Western blot analysis of 

Ift88 protein levels in E12.5 whole brain, using an anti-N-terminal-Ift88 antibody, showed a single 

band of ~90 kDa in both wild-tybe and cbs/cbs embryos (Fig. 6C). Quantitation revealed a 75.0 +/- 

3.0% decrease in the levels of Ift88 protein in cbs/cbs brain (n = 5, p < 0.01, Student´s t test). Analysis 

of mRNA and protein levels in fore- and hind- limbbuds with Northern blots (Fig. 6B), quantative 

real-time PCR (Fig. 6E), and Western blot using anti-Ift88 antibodies directed against either the N-

terminus (Fig. 6C) or the C-terminus (Fig. 6D) showed a similar reduction in mRNA and protein 

levels, respectively.  
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Fig. 6.  Ift88 mRNA and protein expression levels in wild-type (+/+) and cbs/cbs forebrain and limb buds. 

A. Northern blots of whole mRNA from whole brain from E12.5 wilde-type (+/+) and cbs/cbs embryos. Full-

length Ift88 (top) and α-tubulin cDNAs (bottom) were used as probes. Ribosomal RNA markers are indicated 

(left). B. Northern blots from whole mRNA from fore- and hindlimbs of E12.5 wild-type (+/+) and cbs/cbs 

embryos. Full-length Ift88 (upper panel) and α-tubulin cDNAs (lower panel) were used as probes. Ribosomal 

markers are indicated (left). C. Western blot of protein from forebrain and fore- and hindlimbs (limbs) of E12.5 

wild-type (+/+) and cbs/cbs embryos. An anti-N-terminal-Ift88 antibody (top), and an anti-β-actin antibody 

(bottom) as loading control were used. Arrow indicates the Ift88 band. D. Western blot analysis of protein 

extracted from fore- and hindlimbs of E12.5 wild-type (+/+) and cbs/cbs embryos. An anti-carboxal-terminal-

Ift88 antibody (upper panel), and an anti-β-actin antibody (lower panel) as a loading control were used. Arrow 

indicates the Ift88 band. E. Quantitative real time RT-PCR performed upon whole mRNA extracted from fore- 

and hindlimbs of E12.5 wild-type (+/+) and cbs/cbs embryos. Relative expression levels of Ift88 are indicated. 

Mean values +/- SEM (n = 3). * = p < 0.05, Student´s t -test. 
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    A complementation analysis by crossing cbs heterozygotes to mice heterozygous for a targeted 

deletion of the Ift88 gene (Ift88tm1.1Bky) (Haycraft et al., 2007) was done to ascertain, if the genetic 

defect in the cbs/cbs  mutant is located in the Ift88 gene. 7 compound heterozygotes for both alleles 

were identified by using PCR-genotyping. They showed morphological features of cbs homozygotes, 

including bilateral coloboma, a rostro-caudally shortened telencephalon, and an enlarged midbrain 

(Fig. 7A). In some cases the compound heterozygotes exhibited a rightward-looping heart tube, an 

indication of situs inversus (3/7 cbs/Ift88tm1.1Bky embryos) (Fig. 7B, red arrows).  cbs/cbs mutants by 

contrast never exhibited situs inversus (n = 61). None of 48 littermates genotyped as wild type or 

heterozygous for either the Ift88 or cbs mutation displayed the phenotypes reported above. The 

conclusion out of this analysis is, that the two mutations do not complement one another and that cbs 

is a hypomorphic allele of Ift88. 

 

 
Fig. 7.  Complementation analysis. A. E11.5 heterozygous Ift88 knock-out embryos (Ift88ko/+)  display a wild-

type telencephalon (asterisk) with an elongated rostral-caudal profile (cf. Fig. 3A, +/+ embryo). A compound 

heterozygote of the Ift88 deletion allel (Ift88ko) and the cbs allel (Ift88ko/cbs) displays coloboma (white arrow) 

and a rostro-caudally shortened cortex (asterisk). B. E11.0 Ift88ko/cbs compound heterozygous embryos 

demonstrate situs inversus, as indicated by passage of the bulboventricular loop to the right (left panel, red 

arrow), and situs solitus, as indicated by passage of the bulboventricular loop to the left (right panel, red arrow). 

Black dots outline the enlarged pericardial sac (left panel). Black arrows indicate developmentally-delayed 

forebrain  (both panels). Scalebar: 1.5 mm (A); 250 µm (B). 

 

    As sequencing of the mRNA transcript in the cbs/cbs mutant revealed no changes in the ORF or the 

5´ and 3´ UTRs, this further is a sign for a mutation in an intron or a regulatory region. 
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3.2 Cilia are present in the ventricles of cbs/cbs mutants 

 

    The product of the gene Ift88, the intraflegellar transport (IFT) protein Ift88 (Taulman et al., 2001), 

is involved in the anterograde transport of the IFT particles inside primary and motile cilia (Pazour at 

al., 2000), organelles that protrude from the surface of most eukaryotic cells. IFT is the mechanism by 

which protein cargoes are transported in the cilium itself (Kozminski et al., 1993). Primary cilia, 

protruding into the ventricles, have been reported to be present on neuroepithelial cells of the 

developing cortex (Nagele and Lee, 1979; Cohen and Meininger, 1987; Mary et al, 2005). By 

transmission electron microscopy (TEM) upon coronal sections of E12.5 brain I was able to confirm 

this observation. Cilia with varying lengths between 0.5-2 µm were projecting into the ventricle (Fig. 

8A). Transverse sections displayed well defined basal bodies (Fig. 8B) and a “9+0” morphology in the 

proximal cilium (Fig. 8C), verifying them as primary cilia. They showed a proximal-to-distal 

reduction in the number of microtubule doublets, coming eventually to a “2+0” morphology at the tip 

(Fig. 8D/E), as reported previously (Cohen and Meininger, 1987). 

 

 
Fig. 8.  Transmission electron microscopy reveals primary cilia projecting into the ventricle of wild- type 

(+/+) and cbs/cbs embryonic forebrain. A/E. Cilium cut longitudinally. B-D, F, G. Cross sections of 

ventricular cilia, revealing the basal body (B/F), characteristic “9+0” ciliary morphology (C/G), and tapering to 

a “2+0” structure (D). E. Proximal-to-distal tapering can be seen (arrow). Scalebar: 200 nm (A, C, E, G); 100 

nm (B, D, F). 

 

    Scanning electron microscopy (SEM) upon forebrain of E12.5 embryos revealed cilia projecting 

into the ventricle from dorsal and lateral cortex (Fig. 9A), the hippocampal anlage, choroid plexus, and 

the ganglionic eminences (GEs), with lengths varying between 05-3 µm.  
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Fig. 9. Scanning electron microscopy reveals cilia projecting into the ventricle of wild-type (+/+) and 

cbs/cbs embryos. A/B. Arrows indicate cilia. Scalebar: 1 µm (A, B). 

 

    To investigate if neural precursor cells expressed elements of the intraflagellar transport machinery, 

a mouse line (Ift88�2-3βgal ) (Murcia et al, 2000) was used in which the lacZ cDNA has been inserted 

into the locus encoding Ift88, a component of the B complex particles of the IFT machinery 

(Rosenbaum and Witman, 2002). Analysis of E11.5 heterozygous Ift88�2-3βgal embryos identified 

expression of Ift88::lacZ by nestin-positive (Fig. 10A) and RC2-positive (Fig. 10B) neural precursor 

cells. Newly born neurons residing in the subpial mantle zone, labeled by using the TuJ1 antibody 

(Moody et al., 1989), were also revealed to express Ift88 (Fig. 10C). 

 

 
Fig. 10. Immunoflourescence analysis of Ift88 expression.  The expression analysis was undertaken upon the  

dorsolateral telencephalon of E11.5 Ift88�2-3βgal embryos, using an antibody recognizing β-galactosidase (A, C, 

red; B, green), which is expressed from the Ift88 locus. The ventricular (V) and pial (P) surface is at the bottom 

(A, B) and top (C) of the panels, respectively. Arrow indicates characteristic somatic β-galactosidase deposits in 

cells colabeled with the following markers: Nestin- (A, green) and RC2-positive (B, red) VZ cells and newborn 

neurons (C, green, TuJ1-antibody). A-C, blue, DAPI-labeled nuclei. Scalebar: 10 µm (A-C). 

 

    It was shown in preceding reports of Ift88 mutants (Murcia et al., 2000; Haycraft et al, 2001, 2005, 

2007; Kramer-Zucker et al, 2005; Banzis et al, 2005), that cilia are either not formed or not 

maintained. TEM on coronal forebrain sections of E12.5 cbs/cbs embryos showed primary cilia 

projecting into the ventricle that did not seem to be different from those of wild-type (Fig. 8E-G). The 

cilia originate from well defined basal bodies (Fig. 8F), showed a “9+0” morphology (Fig. 8G), and 

displayed a proximal-to-distal tapering (Fig. 8E, black arrow). SEM analysis could also reveal cilia 

projecting into the ventricle from the dorsolateral telencephalon (Fig. 9B) and the GEs of cbs/cbs 
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mutants. The cilia of the dorsolateral telenecephalon of the cbs/cbs mutant seemed to be of normal 

length (wild type: 973 +/- 160 nm (n = 26); cbs/cbs: 894 +/- 213 nm   (n = 33); p = 0.25, Student´s t 

test). In conclusion, both TEM and SEM detected ultrastructurally normal cilia projecting into the 

ventricle of cbs/cbs mutant forebrain. Additionally ultrastructurally and morphologically normal cilia 

were also detected in the midbrain (Fig. 11 A/B) and bronchia (Fig. 11 C/D) of cbs/cbs mutants. 

 

 
Fig. 11. Cilia are present in the midbrain and bronchia of cbs/cbs mutants. A/B. TEM of cilia projectiong 

into the dorsal mesencephalic ventricle (V) of E12.5 cbs/cbs embryos. A. Cross section of ventricular cilium, 

revealing the characteristic “9+0” morphology of primary cilia. Scheme (lower left) indicates the plane of 

section for (A, B). B. Cilium cut longitudinally. Arrow indicates a centriole adjacent to the basal body that forms 

the base of each cilium. C/D. SEM of epithelial cilia (white arrows) projecting into the bronchial lumen of E12.5 

wild-type (+/+) (C) and cbs/cbs (D) embryos. Scalebar: 100 nm (A); 200 nm (B); 1 µm (C, D). 

 

3.3 The cbs/cbs mutants exhibit a pronounced disorganization of the dorsal telencephalon 

 

    The forebrain of cbs/cbs mutants showed a major disorganization in dorsal telenecephalic 

morphology (Fig. 12A-G). The telencephalic midline of E12.5 wild-type littermates invaginated and 

exhibited development of the choroid plexus, cortical hem, and the hippocampal anlage (Fig. 12A). 

Invagination of the telencephalic midline did occur in cbs/cbs mutants, but the morphology of the 

dorsomedial telencephalon was profoundly affected and the hippocampal primordium and the cortical 
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hem could not be identified by morphology. The cbs/cbs mutants rather showed a kinked ventricular 

zone (VZ) that folded in upon itself (Fig. 12B, arrows) to form rosette-like heterotopias (Fig. 12H-J). 

The development of the medial and lateral GE seemed relatively normal in contrast (Fig. 12B). The 

diencephalon and the dorsal telencephalon show at caudal levels a clear separation in wild-type 

embryos at E12.5 (Fig. 12C), but this differentiation is lost in the cbs/cbs mutants. Here a continuous 

ventricular zone (VZ) runs from the dorsal diencephalon to the dorsolateral telencephalon (Fig. 12D). 

This phenotype was even more severe in E11.5 embryos having both the cbs and the Ift88 knock-out 

allele (Fig. 7A). The dorsal telencephalic midline hardly invaginated, the cortical VZ was diminished 

to a very thin stripe, and the medial and lateral GE were also extremely reduced in size (Fig. 12F). 

Later developmental stages of this complementation analysis could not be examined because of an 

earlier lethality than that seen in cbs/cbs mutants. E11.5 cbs/cbs mutants showed a similar diminished 

invagination and disorganization of the dorsal midline, invaginations of the cortical VZ (Fig. 12G, 

arrowhead), and subpial heterotopias (Fig. 12G, arrow), when compared with E12.5 cbs/cbs mutants. 

In comparison both the cortex and the GEs were thicker than in the cbs/Ift88tm1.1Bky complementation 

mutants (Fig. 12F).  
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Fig. 12. The cbs/cbs mutant displays a pronounced disorganization of the dorsal telencephalon. A-D, H. 

Hematoxylin-stained coronal sections of E12.5 wilde-type (+/+) (A, C) and cbs/cbs (B, D, H) embryos. 

Hematoxylin-stained coronal sections of E11.5 Ift88ko/+ embryo (E), a Ift88ko/cbs compound heterozygote 

littermate (F), and a cbs/cbs embryo (G).  Schematic insets (lower left) (A, C, E) indicate the plane of section  

for (A,B), (C, D), and (E-G), respectively. H. Caudal-most telencephalon depicting lateral heterotopias (left, 

boxed). Enlargement of the boxed area shows them to have a rosette-like morphology (right). B, D, G, H. 

Arrows indicate heterotopias. G. Arrowhead indicates VZ. I/J.  Mitotic cells revealed with an anti-

phosphorylated-histone H3 antibody (green, PH3) in subpial heterotopias of E12.5 cbs/cbs embryos. Red = anti-

nestin antibody. Arrows indicate nestin/PH3-positive cells.  A-J:  Dorsal is to the top. H-J:  Lateral is to the left. 

P = pial surface.; V = ventricle; (+/+) = wild-type. Scalebar: 300 µm (A-G, H (left)); 50 µm (I , J). 

 

    The number of mitotic cells at the VZ were not significantly altered in the cortex of E12.5 cbs/cbs 

mutants (p = 0.06, n = 5, Student´s t test) (Fig. 13C). A great number of the mitotic VZ cells were 

positive for the anti-nestin antibody, which indicates, that they are neural precursors (Fig. 13A/B, 

arrows; N). The GEs displayed instead a large increase in mitotic cells (Fig. 13C). The reason for this 

is the appearance of cells dividing 10-30 µm away from the VZ, many of which were nestin-negative 

(Fig. 13B, arrowheads; N). Similar results were seen at E11.5. Additionally mitotic cells at the lumen 

of heterotopias could also be identified as nestin-positive (Fig. 12I/J). No change was detectable for 

the number of mitotic cells located basally >30 µm from the ventricular zones of the cortex and GE 

(Fig. 13E). 
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Fig. 13. Mitotic cells in the cortex and GEs of the cbs/cbs mutant. A/B. Mitotic cells revealed with an anti-

phosphorylated-histone H3 antibody (green, PH3) in the VZ of the dorsolateral cortex (A) and the GRs (B) of 

E12.5 wild-type and cbs/cbs embtyos. Red = anti-nestin antibody. Arrows indicate nestin/PH3-positive cells. 

Arrowheads indicate sub-VZ mitoses. Asteriks indicate blodd cells. C-E. Quantitation of PH3 staining in the 

cortex (cortex) and GEs (GE), expressed as the number of PH3-positive (C) and double nestin/PH3-positive 

cells (D) per 100 µm of VZ, and in the number of basally located (i.e., >30 µm from the VZ) PH3-positive cells 

per 1 mm2 (E). ***p<0.001, Student´s t-test. A/B. Dorsal is to the top, lateral is to the left. V = ventricle; (+/+) 

= wild-type;  Scalebar: 50 µm (A/B).  

 

3.4 Dorsomedial telencephalic cell types are specified but do not from morphological structures 

in cbs/cbs mutants 

 

    The dorsomedial telencephalon is the origin of several different cell types including choroid plexus, 

the cortical hem, the hippocampus and Cajal-Retzius cells. Because of severe disorganization of these 

structures in cbs/cbs mutants shown by histological examination, the determination of these structures 

was analyzed with appropriate tissue-specific markers. The choroid plexus origins from the dorsal 

midline and expresses Ttr1 (Fig. 14A, arrow, left panel) (Duan et al, 1989). In cbs/cbs mutants, Ttr1 

was still expressed but in a irregular pattern and at a notedly lower expression level when compared to 

wild-type littermates (Fig. 14A, arrow, right panel). The cortical hem is located directly dorsal to the 

choroid plexus and is marked by the expression of several Wnt family genes including Wnt2b (Grove 

et al., 1998) (Fig. 14B, arrow, left panel). Analysis of Wnt2b expression in cbs/cbs mutants showed a 

domain of expression in the dorsal telencephalon (Fig. 14B, arrow, right panel) lateral to the Ttr1 

expression domain seen in an adjacent section (cf. Fig. 14A). Like to the Ttr1 expression pattern, the 

expression of Wnt2b was considerably reduced and in scattered groups of cells (Fig. 14B, arrow, right 

panel).  
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Fig. 14. Dorsomedial telencephaloc cell types are specified but do not form morphological structures. 

A/B. In situ hybridization analysis of E12.5 wild-type (+/+) and cbs/cbs embryos. For each coronal section, one 

telencephalic half is shown, with dorsal to the top, lateral to the right. A. Ttr1 in situ hybridization. Arrows 

indicate Ttr1 expression in the choroid plexus. B. Wnt2b in situ hybridization. Arrows indicate Wnt2b 

expression in the cortical hem. Scalebar: 300 µm. 

 

    The hippocampal anlage lies adjacent to the cortical hem and expresses EphB1 (Tole et al., 2000) 

(Fig. 15A, arrow, left panel). In cbs/cbs mutants the expression of EphB1 was not detected in the 

dorsal telencephalon, whereas its expression in the ventral telencephalon was not affected (Fig. 15A, 

right  panel). The hippocampus is also characterized by the expression of the Lhx2 homeodomain gene 

at high levels (Fig. 15B, left panel), which is needed for normal hippocampal development (Porter et 

al., 1997; Bulchand et al., 2001; Monuki et al., 2001; Mangale et al., 2008), but in cbs/cbs mutants the 

high level expression of Lhx2 was reduced (Fig. 15B, left panel). This suggest that the hippocampus 

was not specified correctly in cbs/cbs mutants. The cortical hem is an important source of Cajal-

Retzius (CR) cells, the earliest born cortical neurons, which are marked by the expression of reelin 

(Meyer et al., 2002; Takiguchi-Hayashi et al., 2004) (Fig. 15C, arrow, left panel). A single layer of 

reelin- expressing cells at the cortical marginal zone of E12.5 wild-type and cbs/cbs mutant embryos 

was revealed (Fig. 15C, arrow, both panels). In summary, the data indicates that cells of dorsomedial 

telencephalic character are formed in cbs/cbs mutants but they fail to form morphologically distinct 

structures. 

 

 
Fig. 15. Dorsomedial telencephaloc cell types are specified but do not form morphological structures. A-C. 

In situ hybridization analysis of E12.5 wild-type (+/+) and cbs/cbs embryos. For each coronal section, one 

telencephalic half is shown, with dorsal to the top, lateral to the right. A. EphB1 in situ hybridization. Arrow 

indicate EphB1 expression in the hippocampal anlage. B. Lhx2 in situ hybridization. Lhx2 expression in the 

hippocampus and neocortex. C. Reelin in situ hybridization. Arrows indicate Reelin expression in the Cajal-
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Retzius cells. Scalebar: 300 µm. 

 

3.5 The pallial-subpallial boundary fails to form correctly in cbs/cbs mutants 

 

    It was of interest, if the dorsal-ventral subdivisions of the telencephalon in cbs/cbs mutants formed 

properly. Pax6 (Fig. 16A, left panel) and Ngn2 (Fig. 16B, left panel) exhibit a lateral-high to medial-

low expression gradient in the wild-type developing cortex, with a sharp expression boundary at the 

pallial-subpallial boundary (PSPB) of the telencephalon (Walther and Gruss, 1991; Gradwohl et al., 

1996). In cbs/cbs mutant telencephalon the graded expression of both genes was lost, and their ventral 

expression domains were not as sharply defined when compared to wild-type embryos (Fig. 16A/B, 

right panel).  

 

 
Fig. 16. Relaxation of the pallial-subpallial boundary (PSBP) in cbs/cbs mutants. In situ hybridization  

analysis of E12.5 wild-type (+/+) and cbs/cbs embryos. For each coronal section, one telencephalic half is 

shown, with dorsal to the top, lateral to the right. A. Pax6 in situ hybridization; Arrow in the right panel 

indicates the PSBP. B. Ngn2 in situ hybridization. Arrow in the right panel indicates the PSBP. (+/+) = wild-

type. Scalebar: 300 µm. 

 

    Analysis for Pax6 by immunofluorescence showed also widespread Pax6-positive cells at the 

boundary region (Fig. 17).  

 

 
Fig. 17. Relaxation of the pallial-subpallial boundary (PSBP) in cbs/cbs mutants. Immunohistofluorescence 

analysis of E12.5 wild-type (+/+) and cbs/cbs embryos. For each coronal section, one telencephalic half is 

shown, with dorsal to the top, lateral to the right. A. Red, Anti-Pax6 antibody; Green, TuJ1 antibody, 

recognizing newborn neurons. Left panel, arrow indicates the PSBP. Middle and right panel, arrows indicate 
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radial stripes of Pax6 expression at the PSBP in cbs/cbs mutants. (+/+) = wild-type.  Scalebar: 300 µm. 

 

    Dlx2 is a marker for the medial and lateral GEs (Bulfone et al., 1993), and in situ hybridization 

analysis on adjacent sections indicated that scattered Pax6 and Ngn2 expressing cells were located 

within the ventral telencephalic area of cbs/cbs mutants (Fig. 18A, right panel). Dlx2 showed as well a 

diffuse border of expression, and scattered Dlx2-expressing cells were found in neocortical territory 

(Fig. 18A, right panel). The expression of Dlx2 in the GEs was substantially similar compared to wild-

type littermates (Fig. 18A), which is consistent with the histological analysis. To define the formation 

of the PSPB in cbs/cbs mutants in more detail, the expression of the Dbx1 homeobox gene in the 

ventral pallium, located just dorsally to the PSPB (Medina et al., 2004), was examined. The Dbx1-

expressing cells were more widely distributed in cbs/cbs mutants, in particular in the neocortex (Fig. 

18B, right panel). This data indicates, that the PSPB does not correctly develop in cbs/cbs mutants and 

that cells expressing dorsal or ventral markers intermingle at the boundary. 

 

 
Fig. 18. Relaxation of the pallial-subpallial boundary (PSBP) in cbs/cbs mutants. A/B. In situ hybridization  

analysis of E12.5 wild-type (+/+) and cbs/cbs embryos. For each coronal section, one telencephalic half is 

shown, with dorsal to the top, lateral to the right. A. Dlx2 in situ hybridization; Arrow in the right panel 

indicates the PSBP. B. Dbx2 in situ hybridization. Arrows indicate the PSBP. (+/+) = wild-type. Scalebar: 300 

µm. 

 

3.6 The dorsal telencephalic-diencephalic boundary in cbs/cbs mutants is weakened 

 

    It was of interest to see, if the telencephalic-diencephalic boundary also did not from properly in the 

cbs/cbs mutants. Histological analysis had showed highly abnormal structure in this region containing 

many of the rosettes (Fig. 12D, H-J). This region we named caudal rosette-rich area (CRA). On the 

basis of the severity of these deformations, morphological landmarks could not be used. Because of 

this reason developmental marker analysis was used to elucidate the cellular composition of this area. 

Apart from the cortical hem and CR neurons Foxg1 is expressed by all telencephalic cells, and 

exhibits an expression gradient in the hippocampus with lower expression levels medially (Fig. 19A, 

left panel) (Tao and Lai, 1992; Hanashima et al., 2002). In situ hybridization for Foxg1 showed a 

likewise pattern in cbs/cbs mutant neocortex, with higher expression levels laterally and weak 

expression medially, but revealed an absence of Foxg1 expression in the CRA except for a small patch 
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of cells located at its lateral margin (Fig. 19A, right panel). Due to lower Foxg1 expression levels in 

developing hippocampus of wild-type embryos analysis of the expression patterns of Lhx2 and Emx2, 

which show both an opposite expression gradient to Foxg1 in the cortex (Fig. 19B/C, left panels), was 

done. Additionally to their expression in the cbs/cbs neocortex (Lhx2: Fig. 15B; Emx2: Fig. 24B) both 

Lhx2 and Emx2 exhibited a widespread expression within the CRA (Fig. 19B/C, right panels). The 

examination of Wnt2b and Ttr1 expression, which mark the choroid plexus and cortical hem in wild-

type embryos, showed likewise the presence of scattered Wnt2b- (Fig. 19D, right panel) and Ttr1- 

(Fig. 20A, right panel) positive cells in the lateral-most part of the CRA. These data lets assume that 

telencephalic cells contribute to the CRA. 

 

 
Fig. 19. The dorsal telencephalic-diencephalic boundary in the cbs/cbs mutant. A-D. in situ hybridization 

analysis of E12.5 wild-type (+/+) and cbs/cbs embryos. For each coronal section, only one telencephalic half is 

shown, with dorsal to the top, lateral to the right. A. FoxG1. B. Lhx2. C. Emx2. Asterisk indicates fold in the 

tissue. D. Wnt2b. Scalebar: 300 µm. 

 

    Emx2 and Lhx2 are also expressed in the eminentia thalami (ET) and in the dorsal diencephalon, 

respectively. Therefore the possibility was investigated, if the CRA also contains diencephalic cell 

types. The dorsal and the ventral thalamus are separated from each other by the expression of Shh in 

the zona limitans in trathalamica (ZLI), which is the case in both wild-type and cbs/cbs mutant 

forebrain (Fig. 20B). This indicates that the dorsal thalamus in the cbs/cbs mutants do not extend into 

the CRA. The expression of Dlx2, which marks the ventral thalamus (VT) of wild-type embryos 

(Bulfone et al., 1993), is found in the CRA of cbs/cbs mutants, although in a highly disorganized and 

irregular manner (Fig. 20C, right panel). Foxd1 is expressed in the ventral diencephalon of wild-type 

embryos (Fig. 20D, left panel). A group of Foxd1-expressing is located within the CRA of cbs/cbs 

mutants (Fig. 20D, right panel), which is similar to Dlx2. However, neither Dlx2 (Fig. 20C) nor Foxd1 

(Fig. 20D) expressions were seen in the dorsal telencephalon. Taken together these data suggest that 
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the CRA is primarily composed of VT and ET cells, but also contains some scattered telencephalic 

cells. 

 

 
Fig. 20. The dorsal telencephalic-diencephalic boundary in the cbs/cbs mutant. A-D. in situ hybridization 

analysis of E12.5 wild-type (+/+) and cbs/cbs embryos. For each coronal section, only one telencephalic half is 

shown, with dorsal to the top, lateral to the right. A. Ttr1. B. Shh. C. Dlx2. D. FoxD2. Scalebar: 300 µm. 
 

3.7 Wnt expression and signaling is upregulated in cbs/cbs mutants 

 

    Mutations in ciliary and basal body proteins have lately been shown to result in an upregulation of 

canonical Wnt signaling (Gerdes et al., 2007; Corbit et al. 2008). The expression of several Wnt genes 

was analyzed to determine, if Wnt signaling may play a role in the morphological deformations seen 

in the cbs/cbs mutants. In the neocortex of E12.5 wild-type embryos Wnt7b expression can be seen in 

the cortical hem and hippocampal VZ, and in cortical neurons, but it is absent in from the neocortical 

VZ (Fig. 21A, left panel). In cbs/cbs mutants the expression of Wnt7b was normal in cortical neurons, 

but they displayed ectopic expression in isolated neocortical progenitor cells, similar to Gli3 mutants 

(Fig. 21A, right panel) (Theil et al., 2005). Strong expression of Wnt7b ,at caudal levels of the cbs/cbs 

forebrain, could also be seen in the CRA, which probably is consistent with its expression in the wild-

type VT and ET (Fig. 21B, right panel). 
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Fig. 21. Canonical Wnt signalling in the cbs/cbs mutant. A/B. in situ hybridization analysis of E12.5 wild-

type (+/+) and cbs/cbs embryos. For each coronal section, only one telencephalic half is shown, with dorsal to 

the top, lateral to the right. A. Wnt7b expression in the rostral part of the telencephalon. B. Wnt7b expression in 

the caudal part of the telencephalon. Arrows indicate signal described in the text. Scalebar: 300 µm 

 

    An upregulation of Wnt8b similar to Wnt7b was also observed in the CRA (Fig. 22B, right panel), 

although the upregulation was not as extensive.  

 

 
Fig. 22. Canonical Wnt signalling in the cbs/cbs mutant. A/B. in situ hybridization analysis of E12.5 wild-

type (+/+) and cbs/cbs embryos. For each coronal section, only one telencephalic half is shown, with dorsal to 

the top, lateral to the right. A. Wnt8b expression in the rostral part of the telencephalon. B. Wnt8b expression in 

the caudal part of the telencephalon. Arrows indicate signal described in the text. Scalebar: 300 µm 

 

    The upregulated Wnt gene expression in the CRA brought me to check for activation of canonical 

Wnt signaling. Axin2 is a direct target of the canonical Wnt signaling pathway (Jho et al., 2002; Lustig 

et al., 2002) and exhibits a graded expression in wild-type dorsomedial telencephalon (Fig. 23A, left 

panel). cbs/cbs mutants otherwise displayed a patchy Axin2 activation dorsomedially (Fig. 23A, right 

panel). In contrast, Axin2 was strongly expressed in the CRA of cbs/cbs mutants, in particular within 

heterotopias (Fig. 23B, right panel). Axin2 expression was also detected in the dorsal thalamus of both 

genotypes at this level (Fig. 23B, both panels).  
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Fig. 23. Canonical Wnt signalling in the cbs/cbs mutant. A/B. in situ hybridization analysis of E12.5 wild-

type (+/+) and cbs/cbs embryos. For each coronal section, only one telencephalic half is shown, with dorsal to 

the top, lateral to the right. A. Axin2 expression in the rostral part of the telencephalon. B. Axin2 expression in 

the caudal part of the telencephalon. Arrows indicate signal described in the text. Scalebar: 300 µm 

 

    To quantitate this increases in Wnt signaling, I performed quantitavie, quantitative RT-PCR upon 

mRNA extracted from E12.5 cbs/cbs mutant telencephalon, comparing gene expression levels to wild-

type littermates. A 1.54 +/- 0.25-fold increase in the expression of Axin2 (p < 0.05, n = 5, Student´s t 

test) but interestingly not that of Wnt7b (1.25 +/- 0.24-fold increase, p = 0.37, n = 6) was observed, 

indicating that the heterotopic expression of Wnt7b is in aggregate not reflective of an increase in total 

mRNA levels. Taken together this data indicates that an ectopic activation of canonical Wnt signaling 

in the CRA occurs, but it cannot be directly connected to an upregulation of Wnt7b expression. 

 

3.8 Targets of Shh signaling and Gli3 protein processing are disturbed in the forebrain of cbs/cbs 

mutants 

 

    Several phenotypes seen in cbs/cbs mutants resemble that detected in the Gli3 deletion mutant XtJ, 

including polydactyly, defects in the determination of dorsal telencephalic tissue, the formation of 

rosette-shaped heterotopias in the dorsal cortex, and the relaxation of the telencephalic-diencephalic 

boundary (Johnson, 1967; Theil et al., 1999; Tole et al., 2000; Fotaki et al., 2006). Because of these 

similarities in phenotypes I examined Gli3 expression patterns in the cbs/cbs mutant. High levels of 

Gli3 expression were maintained in the telencephalon of cbs/cbs mutants (Fig. 24A, right panel).  

A complete abolition and a strong downregulation, respectively, of the transcription factors Emx1 and 

Emx2 is one of the hallmarks of the XtJ mutant (Theil et al., 1999; Tole et al., 2000). This is not he 

case in cbs/cbs mutants, where analysis of both of these markers showed no downregulation in their 

expression (Fig. 24B/C, right panels), rather, a patchy Emx1 expression pattern. 
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Fig. 24. Shh signalling in the forebrain of cbs/cbs mutant. A-C. In situ hybridization analysis of E12.5 wild-

type (+/+) and cbs/cbs embryos. For each coronal section, only one telencephalic half is shown, with dorsal to 

the top, lateral to the right. A. Gli3 expression B. Emx1 expression C. Emx2 expression.  Scalebar: 300 µm 

 

    Defects in the proteolytic processing of Gli3 in a number of IFT mutants was reported by several 

laboratories (Haycraft et al., 2005; Huangfu and Anderson, 2005; Liu et al., 2005; May et al., 2005; 

Tran et al., 2008). Western blotting upon protein extracted from E12.5 forebrain tissue was performed 

to analyze the effect upon Gli3 processing in cbs/cbs mutants. The production of both the full-length, 

190 kDa activator (Fig. 25B, arrows) form of Gli3 and the truncated, 90 kDa repressor (Fig. 25B, 

arrowheads) form of Gli3 could be detected by using an anti-N-terminal-Gli3 antibody. In cbs/cbs 

mutants, no change in the amount of the cleaved isoform (Fig. 25B, arrowheads) was detectable, but a 

strong increase was observed in the amount of the full-length isoform (Fig. 25B, arrows). Quantitation 

showed a 5.6-fold increase in the amount of the full-length Gli3-isoform in cbs/cbs mutant forebrain, 

compared with wild-type, whereas the amount of the processed Gli3-isoform in the cbs/cbs mutants 

did not change significantly (Fig. 25C). Together, the total amount of Gli3 protein increases by 67.2% 

in cbs/cbs mutant forebrain (Fig. 25C). These changes are not clarified at the level of transcription, as 

Northern blot analysis of mRNA isolated from the forebrain exhibited neither a change in the quantity 

of Gli3 mRNA nor in transcript size (Fig. 25A). 

 

 
Fig. 25. Gli3 protein processing is disturbed in the forebrain of cbs/cbs mutant. A.  Northern blots of whole 

RNA from forebrain of E12.5 wild-type (+/+) and cbs/cbs embryos. Full-length Gli3 (top) and α-tubulin 

(bottom) cDNAs were used as probes. Ribosomal markers are to the left. B. Western blots from protein lysates 

from forebrain of E12.5 cbs/cbs and XtJ and wild-type (+/+)  and homozygous mutant (-/-) embryos. An anti-N-

terminal-Gli3 antibody (top) and an anti-β-actin (bottom) antibody were used. Specific bands corresponding to 
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the 190 kDa full-length Gli3 isoforms (arrows) and the 80 kDa proteolytically processed Gli3 isoform 

(arrowheads) are indicated. The specificity of the antibody was shown by examining homozygous Gli3 deletion 

mutants (XtJ), in which neither full-length nor processed Gli3 isoforms are detectable. Protein markers (kDa) are 

to the left. C. Quantitation of Gli3 Western blots seen in (B), first indicating the amount of the 90 kDa (short 

form ) Gli3 isoform, setting levels in +/+ to 1.0. A quantitation comparison of the 190 kDa (long form) isoform 

shows 19.4% levels in +/+ embryos, compared with the short form. cbs/cbs mutants show a 5.6-fold increase in 

the amount of the long form, compared with +/+ embryos, to levels greater than that of the short form in cbs/cbs 

embryos. The combined amount of short and long isoforms is also indicated (total). Mean values+/- SEM (n = 4 

– 8). **p < 0.01, *p < 0.05, Student´s t test. 

 

    To examine the potential effect of an overproduction of the full-length Gli3 isoform in cbs/cbs 

mutant forebrain, in situ hybridization analysis of Ptch1, a downstream target of Shh signaling 

(Goodrich et al., 1996; Marigo et al., 1996; Platt et al., 1997; Agren et al., 2004) was performed. The 

expression of Ptch1 seemed to increase in the GEs of cbs/cbs mutants (Fig. 26A, right panel), but no 

expression was detected in the dorsal telencephalon. To quantitate these evidently increase in Ptch1 

expression, I performed quantative, real-time RT-PCR upon mRNA extracted from E12.5 cbs/cbs 

mutant telencephalon, comparing gene expression levels to wild-type littermates. A clear increase in 

the expression of both Ptch1 and Gli1 (Fig. 26B), another downstream target of Shh signaling (Lee et 

al., 1997) could be detected.  

 

 
Fig. 26. Effect of an overproduction of the full-length Gli3 isoform in cbs/cbs mutant forebrain. A. Ptch1 

in situ hybridization analysis of E12.5 wild-type (+/+) and cbs/cbs embryos. For each coronal section, only one 

telencephalic half is shown, with dorsal to the top, lateral to the right. Scale bar: 300 µm. B. Quantitative real 

time RT-PCR was performed upon total mRNA isolated from E12.5 telencephalon. Reverse-transcribed cDNA 

was analyzed using TaqMan probes recognizing Ptch1 and Gli1. cDNA was normalized using probes for 

GAPDH. Mean values+/- SEM (n = 4 – 8). **p < 0.01, *p < 0.05, Student´s t test. 

 

    It was of interest then to check, whether cells in cbs/cbs mutants lost their competence to respond to 

Shh signaling. To test this, fibroblast cultures were prepared from decapitated, eviscerated E12.5 wild-

type and cbs/cbs mutant embryos. Fibroblasts were electroporated with a Shh-responsive plasmid, 

which expresses the firefly luciferase gene under the control of a minimal promoter and 8 tandem 
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copies of a Gli binding site (Sasaki et al., 1997), using a plasmid expressing Renilla luciferase to 

control for transfection efficiency. Cells were permitted to grow till they reached confluency and the 

production of cilia was promoted by switching to a low-serum medium (Ocbina and Anderson, 2008), 

followed by treatment for 12 h with Shh at 1µg/ml and lysis for quantitation of luciferase activity. Shh 

was able to induce a sevenfold increase in luciferase expression from the Gli-responsive reporter 

plasmid in wild-type fibroblasts (Fig. 27), but both basal and Shh-induced luciferase expression levels 

were greatly reduced in cbs/cbs mutant fibroblasts (Fig. 27). 

 

 
Fig. 27 Luciferase assay analyzing the competence of fibroblast cells to respond to Shh signaling. A. 

Luciferase assay using a Gli-responsive luciferase plasmid transiently transfected into fibroblasts prepared from 

wild-type (+/+) and cbs/cbs embryos and allowed to reach confluency. Sonic hedgehog (Shh, 1 µg/ml) was 

added to the cultures for 12 h before lysis and analysis of luciferase levels. Relative luminosity levels relative to 

Shh-untreated wild-type cells are indicated. Mean values+/- SEM (n = 4 – 8). ***p < 0.001, Student´s t test. 
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4 Discussion 

 

    The cobblestone (cbs) mouse mutant was generated in an ENU screen undertaken by my supervisor 

Dr. Kerry L. Tucker to uncover deformations in the developing central and peripheral nervous 

systems. In the course of the characterization of the cbs/cbs mouse mutant I was able to reveal that the 

cbs mutation is a hypomorphic allele of the gene encoding intraflagellar transport (IFT) protein Ift88.  

By further investigation of the cbs/cbs forebrain phenotype I could show that primary cilia are 

important for the normal development of the dorsal telencephalon.  

 

4.1 Evidence for Ift88 to be the defective gene in the cbs/cbs mutants 

 

    Several results allow me to conclude that Ift88 is the defective gene in the cbs/cbs mutants: First, 

fine mapping indicated it to lie in a 0.5 cM interval containing Ift88. Second, the Ift88 mRNA and 

protein are expressed at only around 25% of the levels of wild-type embryos. Third, compound 

cbs/Ift88tm1.1Bky  embryos show a very similar phenotype in the forebrain when compared to cbs/cbs 

mutant embryos of the same age. The phenotype of the compound cbs/Ift88tm1.1Bky  embryos is even 

more severe than in the cbs/cbs mutant embryos. The reason for the more severe phenotype could be 

that in the compound embryos the levels of Ift88 protein is even more reduced when compared to 

cbs/cbs mutant embryos. The further reduced Ift88 protein levels in the compound embryos results 

from the complete deletion of one allele of the Ift88 gene, whereas this is not the case in the cbs/cbs 

mutant embryos. 

    The results of a reduced expression and lack of a mutation in the Ift88 mRNA of the cbs/cbs mutant 

leads to the assumption of a new hypomorphic allele that enables the embryos to live long enough to 

exhibit significant defects in dorsal telencephalic development, whereas the full knock-out is not 

suitable for this investigation because of its embryonic lethality at already E10.5 (Murcia et al., 2000). 

    Ultrastructural normal primary cilia projecting into the ventricle of the forebrain are still to be seen 

in the cbs/cbs mutant embryos, whereas this is not the case in other Ift88 mutations (Murcia et al. 

2000; Haycraft et al., 2001; Kramer-Zucker et al., 2005; Banizs et al., 2005). My hypothesis is that the 

observed Ift88 protein levels in the cbs/cbs mutant embryos, which refers to 25% of wild-type levels, 

are still sufficient for the assembly and maintaining of primary cilia, as shown by TEM and SEM in 

the developing forebrain (Fig. 8; Fig. 9; Fig. 11). However, they seem not adequate enough to support 

the levels of signal transduction/ protein processing needed for a proper development, as demonstrated 

by a reduction of Gli3 processing, as has been reported for a number of IFT mutants (Haycraft et al., 

2005; Huangfu and Anderson, 2005; Liu et al., 2005; May et al., 2005; Tran et al., 2008). 

Furthermore, in knock-out mutations of IFT genes (Murcia et al., 2000; Liu et al., 2005), situs 

inversus has been connected with a loss of cilia at the embryonic node (Murcia et al., 2000; Huangfu 

et al., 2003; Houde et al., 2006). cbs/cbs mutant embryos never showed situs inversus, whereas 
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compound heterozygotes of the cbs and Ift88 knock-out alleles, in which the protein levels of Ift88 are 

expected to be reduced further than in cbs/cbs mutant embryos, did display situs inversus. This 

observation leads to the suggestion that the level of Ift88 protein in cbs/cbs mutant embryos lies just 

above the limit for the formation of functional cilia in early development, but is not high enough to 

enable a proper signal transduction. Taken together the results imply that IFT is potentially impaired in 

the cbs/cbs mutant embryos. 

    The levels of Ift88 protein are also reduced in the Ift88 hypomorph Tg737orkp, and analysis of brain 

ventricles of this mutant postnatally indicated that cilia were still present, but they were sparser, 

shorter and displayed altered morphology (Banizs et al., 2005). It is to be expected that cbs/cbs 

mutants would also display morphological defects in primary cilia over time, but because of the early 

lethality of the cbs/cbs mutant embryos it is not possible to do this analysis. 

    I can draw the conclusion that the reduction of Ift88 protein levels displayed by cbs/cbs mutant 

embryos results mainly in a defect in ciliary function connected to a defective IFT by the following 

results: 

    First, a large number of studies have reported the Ift88 protein to be localized only at the base and 

tips of primary cilia, in a wide range of tissues (Taulman et al., 2001; Pazour et al., 2002; Haycradft et 

al., 2005, 2007). Second, it is well recorded for Ift88 to be involved in IFT (Rosenbaum and Witman, 

2002). Third, the changes of the Gli3 processing revealed in cbs/cbs mutant embryos (Fig. 25B; Fig. 

25C) have also been seen in a number of mutants in IFT proteins that are documented to be localized 

to primary cilia (Haycraft et al., 2005; Huangfu and Anderson, 2005; Liu et al., 2005; May et al., 

2005; Tran et al., 2008). Fourth, two other IFT proteins have been reported to exhibit deformations 

during telencephalic development. Dnch2, a gene encoding the retrograde IFT motor, displays a 

breakdown of the pallial-subpallial boundary when knocked out (May et al.., 2005). A null mutation 

of Thm1, a novel protein that is localized to cilia and is involved in the regulation of retrograde IFT, 

displays exencephaly and heterotopia-like structures in the cerebral cortex (Herron et al., 2002; Tran et 

al., 2008). 

    In summary the combined results indicate clearly that cbs is a novel mutation of Ift88, because it 

shows no morphological ciliary defect but does suggest a reduction in ciliary function based on a 

possible defective IFT, through its altered processing of Gli3, when compared with Ift88 deletion 

mutants and other IFT mutants (Huangfu et al., 2003; May et al., 2005; Houde et al., 2006; Tran et al., 

2008). 
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4.2 Impaired Hh signalling in the cbs/cbs mutant 

 

4.2.1 The forebrain phenotype of the cbs/cbs mutant is similar to defects in the Gli3 mutant XtJ 

 

    The defects displayed by the cbs/cbs mutants in the developing telencephalon include severe 

disorganization of structures of the dorsomedial telencephalon (Fig. 12) such as the choroid plexus 

(Fig. 14A), the cortical hem (Fig. 14B), and the hippocampus (Fig. 15). The mutation also affects the 

pallial-subpallial (Fig. 16; Fig. 17; Fig. 18) as well as the telenecphalic-diencephalic (Fig. 19; Fig. 20) 

boundary. These are the major borders confining the dorsal telencephalon. The Gli3 mouse mutant XtJ 

displays, when compared to cbs/cbs mutant embryos, a strikingly similar forebrain phenotype. Both 

mutants exhibit abnormal development of the dorsomedial telencephalon and of the boundaries that 

separate the dorsal from the ventral telencephalon (Tole et al., 2000; Kuschel et al., 2003) and from 

the diencephalon (Theil et al., 1999; Fotaki et al., 2006). Both mutants are also distinguished by 

ectopic Wnt7b expression in cortical progenitors (Theil, 2005). A further characterization of both 

mutants is as well the formation of heterotopias with a rosette-like structure (Theil et al., 1999; Fotaki 

et al., 2006).  The similarities shared by both mouse mutants lead to the suggestion that the displayed 

phenotypes have a related origin, but noticeable phenotypic distinctions between the two mutations 

exist, which would argue against this simple assumption. A closer examination indicated that the 

processing of Gli3 is defective in cbs/cbs mutants. Thus, there is a link confirming the related origin of 

the similar forebrain phenotypes. 

 

4.2.2 Different phenotypes between cbs/cbs and XtJ 

 

    Beside the similarities there are also important phenotypic differences between the two mutations. 

Invagination and specification of dorsomedial structures (e.g. choroid plexus, cortical hem) (Fig. 12A-

D; Fig. 14-20), similar to Gli3 hypomorphic mutants (Kuschel et al., 2003; Friedrichs et al., 2008), 

still occurs to some extent in the cbs/cbs mutants. XtJ mutants do not exhibit any invagination or 

specification of this dorsomedial structures (Johnson, 1967; Theil et al., 1999). Emx1 and Emx2, 

which are downregulated in the XtJ mouse mutant (Theil et al., 1999; Tole et al., 2000), are still 

expressed in the developing forebrain of cbs/cbs mutant embryos (Fig. 24B/C). This is a possible 

indication of a weaker Gli3 mutant phenotype. The formation of rosettes, however, starts at an earlier 

time point and is in addition considerably expanded in cbs/cbs mutant embryos. This result can be a 

sign of a stronger phenotype in cbs/cbs mutant embryos when compared to Gli3 mutants. 
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4.2.3 Defective proteolytic processing of the Gli3 protein in the cbs/cbs mutant 

 

    A possible explanation for the uncovered differences could be the nature of the XtJ mutation. It is a 

genomic deletion of Gli3 in which both the full-length transcriptional activator as well as the 

processed transcriptional repressor isoform of Gli3 are absent (Maynard et al., 2002). This is not the 

case in the cbs/cbs mutants.  

    Both of the Gli3 protein isoforms are still present, but in the cbs/cbs mouse mutant the proteolytic 

processing of Gli3 protein is clearly altered, shifting the relative ratio of Gli3 activator and repressor 

form. The cbs/cbs mutants exhibit an increase of the full-length, unprocessed isoform of Gli3 by a 

factor of five (Fig. 25C), whereas the amount of the cleaved isoform is unchanged. Because of this the 

total amount of Gli3 protein is increased by 67%. At the level of the Gli3 mRNA no increase occurs in 

the cbs/cbs mutants (Fig. 25A). This indicates that the expression of the Gli3 gene is not defective in 

the cbs/cbs mutants. The observed shift of the relative ratio of Gli3 activator and repressor form has to 

take place on the level of proteolytic processing level of Gli3. 

    A simple explanation of this result is that the full-length isoform may be stabler within the mutant 

cells than the processed isoform. All three Gli family members (Gli1, Gli2 and Gli3) can be targeted 

for rapid degradation by two conserved sequences in their C-terminus (Huntzicker et al., 2006). The 

full-length isoform would also possess this sequences, which makes the reasons for its potential 

enhanced stability unclear. One possibility could be that motifs in the N terminus may protect the 

protein from degradation. Recent studies may give another possible explanation for this phenotype. 

    The formation of the two different isoforms of Gli3 is dependent on the interaction between Gli3 

and SuFu (Humke et al., 2010). SuFu is an important negative regulator of the Hh signalling pathway. 

The result of the loss of SuFu is the destabilization of the full-length form of Gli3, whereas the 

processed form of Gli3 is unaffected (Wang et al., 2010). Full-length Gli3 associates together with 

SuFu in the cytoplasm, which is independent of primary cilia (Chen et al., 2009; Jia et al., 2009). The 

full-length Gli3-SuFu-complex promotes the primary cilia dependent (Huangfu and Anderson, 2005) 

proteolytic processing of full-length Gli3. At the same time full-length Gli3 is also protected from 

degradation through Spop in the cytoplasm as long as it is bound by SuFu (Chen et al., 2009). Spop 

seems not to need primary cilia for the degradation of full-length Gli3 (Chen et al., 2009). A possible 

explanation for the increased level of full-length Gli3 in the cbs/cbs mutants could be that the 

proteolytic processing of Gli3, which requires primary cilia, is impaired. The Gli3-SuFu-complex can 

still enter the primary cilium of cbs/cbs mutants, but SuFu can no longer dissociate from full-length 

Gli3, a process depending on Kif3a (Humke et al., 2010). Kif3a is, like Ift88, a component of IFT, and 

Ift88 is the defective gene in cbs/cbs mutants. Perhaps Ift88 is also in the context of IFT, together with 

Kif3a, required for the dissociation of SuFu from full-length Gli3. Thus, SuFu may fail to dissociate 

from full-length Gli3, which is then at the same also protected by degradation through Spop. This 
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could then result in the observed increase of full-length Gli3 protein levels. However, the problem 

with this explanation is that full-length Gli3 needs to dissociate from SuFu to enter the nucleus and 

become a transcriptional activator. The nature of the cbs/cbs mutant itself could give the solution for 

this discrepancy. cbs is a hypomorphic allele of Ift88, and the observed Ift88 protein levels in the 

cbs/cbs mutant embryos, 25% of wild-type levels, may at least be sufficient for the formation and 

maintenance of primary cilia. The remaining  25% of Ift88 protein levels could also still be enough for 

some of the full-length Gli3 to dissociate from SuFu upon Hh signalling activation, enter the nucleus 

and act there as a transcriptional activator. At the same time the levels of Ift88 protein are as well 

sufficient for the processing of Gli3 to its cleaved repressor isoform, which is unaffected by SuFu and 

the degradation through Spop (Wang et al., 2010).  

    The competition between the two isoform in cbs/cbs mutants could be a reason for a further 

decrease of the effective concentration of the Gli3 repressor. As a possible result target genes of Gli3, 

which would usually be repressed in wild-type embryos, would be activated in the forebrain of cbs/cbs 

mutants in an abnormally fashion. The identity of the target genes of Gli3 in the developing cortex are 

unfortunately not well understood. Emx1 as well as Emx2, as an example, are downregulated in the XtJ 

mutant (Theil et al., 1999; Tole et al., 2000), but Emx2 seems not to be a direct transcription target of 

Gli3 (Theil et al., 2002). Because of this observation the overproduction of the Gli3 activator isoform 

in cbs/cbs mutants is likely not directly linked to the expression of Emx2 in cbs/cbs mutant embryos.  

    However, it has been reported that the Wnt signalling pathway directly regulates the transcriptional 

activation of Emx2 (Theil et al., 2002). But the upregulation of Wnt7b and Wnt8b that was discovered 

in cbs/cb mutants, was most pronounced in the caudal-most telencephalon, some distance away from 

the more rostral cortex where Emx1 and Emx2 are expressed. But there is the possibility that diffusion 

of these growth factors could induce Emx1 and Emx2 transcription. Regardless of their transcriptional 

control, the maintenance of the expression of Emx1 and Emx2 in cbs/cbs mutants, and the similarities 

in the cbs and XtJ forebrain phenotypes, leads to the assumption that reduced expression of Emx1 and 

Emx2 do not mainly affect the telencephalic defects of the XtJ mutants. This is consistent with the 

analysis of a Emx1/Emx2 double knock-out, which did not reproduce many aspects of the XtJ  

phenotype (Shinozaki et al., 2004). 

 

4.2.4 Defective Hh signalling response in the cbs/cbs mutant 

 

    I observed an upregulation of the Shh-responsive genes Ptch1 and Gli1 in the ventral telencephalon 

of cbs/cbs mutants (Fig. 26), which is not the case in several mouse mutants with defective IFT 

proteins. A reduction of Ptch1 and Gli1 expression was discovered in the forelimb (Haycraft et al., 

2005; Liu et al., 2005), hippocampus (Han et al., 2008), and cerebellum (Spassky et al., 2008).  The 

reason for this contradiction could be the fact that cortical cilia are still present in the cbs/cbs mutants, 

whereas they are absent in the brain (Han et al., 2008; Spassky et al., 2008) or the forelimb (Haycraft 



Discussion 
 

 102 

et al., 2005) of the mutants analysed in three of the studies mentioned above. Transcriptionally active 

Gli3 is not made in IFT mutants lacking cilia (Haycraft et al., 2005; Huangfu and Anderson, 2005; Liu 

et al., 2005). It seems that cilia are really required for the production and release of the 

transcriptionally activating, full-length Gli3 isoform (Caspary et al., 2007; Chen et al., 2009; Humke 

et al., 2010; Wen et al., 2010). The mutation of the gene that encodes for the ciliary protein Arl13b 

leads also to an upregulation of Ptch1 in the spinal cord, which is similar to the Ptch1 upregulation 

seen in the GEs of the cbs/cbs mutant (Fig. 26). As a hypothesis it is possible that the low level of 

Ift88 protein in cbs/cbs mutant embryos is sufficient for the formation and maintenance of 

morphologically normal cilia as well as for the production and aggregation of the full-length isoform 

of Gli3 that acts as an activator for transcription as seen for the revealed upregulation of Ptch1 and 

Gli1. Another possibility could be that Gli2 may take over this function. It has been reported to be 

localized to cilia and it has been shown that it needs cilia for its function as a transcriptional activator 

(Haycraft et al., 2005; Chen et al., 2009). Because of the 75% decrease of Ift88 protein levels in 

cbs/cbs mutant embryos, a disfunction in IFT is to be anticipated. This is the case for the cbs/cbs 

mutant embryos, where it prevents an acute response to Shh treatment in vitro, as revealed in the 

luciferase experiments on fibroblast cultures (Fig. 27). That was also observed in other mutants for 

IFT (Ocbina and Anderson, 2008). The inconsistency between this result and the upregulation of the 

expression of Hh signalling targets may be explained by the fact that the formation of the Gli3 

transcriptional activator is independent of primary cilia (Chen et al., 2009; Jia et al., 2009).  

    Nonetheless, it is unlikely for an altered Shh signalling to be also responsible for the phenotype in 

the dorsal forebrain of cbs/cbs mutant embryos, as seen by comparison with the situation in the XtJ 

mutant. Shh signalling is in the homozygous XtJ mutant embryos, as in cbs/cbs mutant embryos, not 

ectopically activated in the dorsal telencephalon (Theil et al., 1999). The dorsal phenotype of the 

telencephalon of XtJ  mutant embryos is not rescued in Shh/XtJ  double mutant embryos (Rash and 

Grove, 2007), which also speaks against an involvement of Shh signalling in the dorsal telencephalic 

phenotype. 

    On the other hand the subdivision of the telencephalon into a dorsal and a ventral domain is 

controlled by the dorsalizing effect of Gli3 expression and the ventralizing effect of sonic 

hedgehog (Shh) expression. At the beginning, Gli3 is expressed in the whole telencephalon 

(Fig. 7B, Introduction) and is then gradually downregulated in the ventral part of the 

telencephalon (Aoto et al., 2002; Corbin et al., 2003). The elimination of Gli3 expression 

results in a lack of the choroid plexus, cortical hem, the hippocampus and the neocortex 

(Grove et al., 1998; Theil et al., 1999; Tole et al., 2000; Kuschel et al., 2003). The dorsalizing 

effect of Gli3 expression is achieved by the cleaved Gli3 repressor isoform. The cbs/cbs 

mutants exhibit a large increase in the full-length, unprocessed isoform of Gli3, whereas the 

amount of the cleaved isoform is unchanged. The competition between the two isoforms in 
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cbs/cbs mutants could be a reason for a further decrease of the effective concentration of the 

Gli3 repressor, resulting in the loss the choroid plexus, cortical hem, and the hippocampus 

 

4.3 Wnt signalling in the cbs/cbs mutant 

 
4.3.1 Canonical Wnt signalling in the cbs/cbs mutant 

 

    Other proteins important for development also have been localized to cilia, such as Wnt signalling 

proteins (Corbit et al., 2007). While some studies claim that that primary cilia are not involved in the 

regulation of the canonical Wnt signaling pathway (Huang and Schier, 2009; Ocbina et al., 2009), 

several other studies indicate and support the possibility that canonical Wnt signalling is constrained 

instead of potentiated by primary cilia (Takemaru et al., 2003; Simons et al., 2005; Gerdes et  al., 

2007; Corbit et al., 2008; Voronina et al., 2009; McDermott et al., 2010). These contradictory findings 

suggest that primary cilia are perhaps not as important for canonical Wnt signalling as they are for the 

Hedgehog signalling pathway and that the constraining influence of primary cilia on the canonical 

Wnt signalling pathway may be cell type-specific and subtle. I could reveal a clear upregulation of 

Axin2, a target of canonical Wnt signalling (Fig. 23), in the caudal rosette-rich area (CRA) of cbs/cbs 

mutant embryos, especially in the heterotopias. An ectopic expression of Wnt7b (Fig. 21) and Wnt8b 

(Fig. 22) was also observed in the same region, which could be responsible for the Axin2 upregulation. 

The area specific increase of canonical Wnt signalling in cbs/cbs mutant embryos seems to be 

consistent with the idea that the canonical Wnt signalling pathway may be cell type-specific and 

subtle.  An upregulation of Wnt7b and Wnt8b are also observed in the XtJ mutant (Theil, 2005), but the 

upregulation of Wnt7b and Wnt8b in the CRA of cbs/cbs mutant embryos is much more pronounced 

than observed in the similar brain region of XtJ  mutant embryos, suggesting that it may be a direct 

consequence of ciliary misfunction. 

    An earlier hypothesis suggested that β-catenin, a component of the canonical Wnt signalling 

pathway, is degraded at the basal body and the lack of primary cilia leads to an accumulation of 

cytoplasmatic β-catenin resulting in an elevated canonical Wnt response (Gerdes et al., 2007). A 

recent study has revealed that β-catenin is accumulated at the basal body of primary cilia by the Wnt 

signalling modulator Jouberin (Jbn) (Lancaster et al., 2009) to constrain the pathway (Lancaster et al., 

2011). Jbn normally alleviates the nuclear translocation of β-catenin and thus affects positively the 

canonical Wnt signalling (Lancaster et al., 2009). The results of the recent study of Lancaster and 

colleagues suggests that the otherwise positive effect of Jbn is inhibited by the presence of primary 

cilia. The localization of Jbn to primary cilia is dependent on both anterograde and retrograde IFT, 

however it appears to be independent of Wnt ligands (Lancaster et al., 2009; Lancaster et al., 2011).  

Thus it could be possible that impaired IFT in the cbs/cbs mutant embryos may result in an 

accumulation of Jbn in the cytosol. An increased amount of β-catenin would be then translocated to 
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the nucleus upon a canonical Wnt response, resulting in the observed upregulation of the canonical 

Wnt signalling in cbs/cbs mutant embryos. 

 

4.3.2 Non-canonical Wnt signalling in the cbs/cbs mutant 

 

    Several observations reported in this study speak against an impairment of the planar cell polarity 

(PCP) pathway, a non-canonical branch of the Wnt signalling, in cbs/cbs mutant embryos.  PCP 

controls the coordinated, polarized orientation of cells within epithelial tissues, thus establishing 

cellular asymmetries within the tissue plane. It is necessary for several cellular processes in vertebrates 

such as convergent extension (CE) (Sokol, 1996; Heisenberg et al., 2000; Tada and Smith, 2000; 

Wallingford et al., 2000) and ciliogenesis (Gray et al., 2009; Kim et al., 2010; Dai et al., 2011). The 

PCP signalling pathway is also necessary for the polarized beating of motile cilia in the epidermis 

(Park et al., 2008; Mitchell et al., 2009) and in the ependyma (Borovina et al., 2010; Guirao et al., 

2010; Tissir et al., 2010). Thus, it is not surprising that it is also involved in left-right patterning 

because it is required for the planar positioning of the motile primary cilia in the node of mice, the 

gastrocoel roof of Xenopus, and the Kupffer´s vesicle of zebrafish (Antic et al., 2010; Borovina et al., 

2010; Hashimoto et al., 2010; Song et al., 2010). A crucial hallmark for a defective left-right 

patterning is the defect called situs inversus, and cbs/cbs mutant embryos (n = 61) never displayed it, 

which points to a possible normal PCP signalling in cbs/cbs.  

    PCP mutant mice exhibit a specific type of neural tube defects (NTD) called craniorachischisis, and 

this defect has an impact to the whole hindbrain and spinal cord in such that the vertebrate neural tube 

fails to close at the level of the neural tube (Kibar et al., 2001; Hamblet et al., 2002; Curtin et al., 

2003; Y Wang et al., 2006) as a result of impairment in CE cell movements (Wallingford and Harland, 

2002; J Wang et al., 2006; Ybot-Gonzalez et al., 2007). This type of NTD, however, is not highly 

specific for mutations involved in severe defects of ciliogenesis, because the initial closure of the 

hindbrain still occurs (Huangfu et al., 2003; Huangfu and Anderson, 2005; Liu et al., 2005; Caspary et 

al., 2007). 10% of the cbs/cbs mutant embryos display, similar to other mice mutant for genes engaged 

in ciliogenesis, at E12.5 a NTD called exencephaly (Fig. 3A), in which the closure fails to occur at the 

level of the forebrain. Exencephaly appears very rarely in mice mutant for core PCP genes, which 

again leads to the assumption of normal PCP signalling in cbs/cbs. 
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5 Future aspects 

 

    Even though several results allow me to conclude that Ift88 is the defective gene in the cbs/cbs 

mutants, the mutation itself is still unknown. Sequencing of the mRNA transcript in the cbs/cbs mutant 

revealed no changes in the ORF or the 5´ and 3´ UTRs. This result indicates a mutation in an intron or 

a regulatory region, which should be identified by applying the technique of deep sequencing.  

   By the approach of luciferase assay I was able to show that cells in the cbs/cbs mutant have lost their 

competence to respond to Hh signalling. However, the analysis was only performed with fibroblast 

cultures. It would be highly informative to repeat the experiment by using neurosphere cultures to test, 

if neurons also do not respond anymore to Hh signalling.   

    The cbs/cbs mutant exhibits a five-fold increase of the full-length isoform of Gli3, the main 

mediator of the Hh signalling pathway. The reason for this increase is still unclear, but the analysis of 

the interaction between Gli3 and SuFu as well as Spop in the cbs/cbs mutant first by 

immunohistochemistry, followed by immunoprecipitation and western blots could give an answer to 

this question. An approach of subcellular fractionation would be informative to define the localization 

of Gli3 and SuFu in cbs/cbs mutant cells. To test if the full-length isoform of Gli3 is still able to enter 

the nucleus to act as a transcriptional activator, cbs/cbs mutant and wt control cells could be treated 

with the direct Smo activator SAG (Chen et al., 2002) followed by subcellular fractionation analysis.  

The full-length Gli3 isoform is converted into a transcriptional activator by phosphorylation (Humke 

et al., 2010). An additional analysis by phosphate affinity SDS-PAGE (Kinoshita et al., 2009) would  

maybe give further insight, if the five-fold increase of the full-length isoform of Gli3 is reflected by a 

change of its phosphorylation in cbs/cbs mutant cells. Finally, it would also be of highly interest to 

investigate, if Ift88, like Kif3a, is also necessary for the dissociation of SuFu from full-length Gli3. 

This could be done by using Ift88-/-  and Ift88+/+  MEF cells analysing their steady-state levels of both 

isoforms of Gli3 as well as the phosphorylation state of full-length Gli3 after treatment or without 

treatment with SAG. At the same time the interaction between Gli3 and SuFu in Ift88-/-   and Ift88+/+  

MEF cells  with and without Hh pathway activation should be investigated by immunoprecipitation 

    An area-specific increase of canonical Wnt signalling in the cbs/cbs mutant could be confirmed. A 

luciferase assay should be done to test if the cells in the cbs/cbs mutant have changed their 

competence to respond to Wnt signalling using fibroblast as well as neurosphere cultures. The main 

mediator of the canonical Wnt pathway is β-catenin, and the identification of its subcellular 

localization in cbs/cbs mutant cells by immunohistochemistry and nuclear extraction would be very 

informative. The same approach should then also be performed for Jbn, which normally facilitates the 

nuclear translocation of β-catenin to positively adjust canonical Wnt signalling. Another possibility 

would be to investigate the activity of the canonical Wnt pathway in cbs/cbs mutant and wt cells 

overexpressing Jbn by a luciferase assay. 
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    The cbs/cbs mutant embryos (n = 61) never displayed sizus inversus, which can be explained by 

normal functioning primary cilia in the node. Thus far, the primary cilia in the node of cbs/cbs mutant 

embryos were not investigated, but it should be performed by SEM and/or TEM. If the primary cilia in 

the node of cbs/cbs mutant embryos are still normal in morphology and ultrastructure, it would further 

confirm my hypothesis that the remaining protein levels of Ift88 are sufficient for the formation and 

maintenance of the cilia but not any more for a proper function of signal transduction. 
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Abbreviations 

 
Anatomical terms 

 
A-P 

ANR 

AVE 

CGNP 

CNCC 

CGA 

CNS 

CR 

CRA 

D-V 

DG 

DT 

ES cell 

ET 

GE 

GNP 

IFT 

LGE 

MGE 

NCC 

NTD 

PSPB 

PNS 

S 

VT 

VZ 

ZLI 

 

Anterior - posterior 

Anterior neural ridge 

Anterior visceral endoderm 

Cerebellar granule neuron precursors 

Cardiac neural crest cells 

caudal ganglionic eminences 

Central nervous system 

Cajal-Retzius cells 

Caudal rosette-rich area 

Dorsal – ventral 

Dentate gyrus 

Dorsal thalamus 

Embryonic stem cell 

Eminentia thalami 

Ganglionic eminences 

Granule neuron precursors 

Intraflagellar transport 

Lateral ganglionic eminences 

Medial ganglionic eminences 

Neural crest cells 

Neural tube defect 

Pallial-subpallial boundary 

Peripheral nervous system 

Septum 

Ventral thalamus 

Ventricular zone 

Zona limitans trathalamica 

 
 
Genes, proteins, signalling pathways 

 
aln 

APC 

Arl13b 

BBS 

alien 

Adenomatous polyposis coli 

ADP-ribosylation factor-like 13B 

Biedl-Bardet syndrome 
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Bmp 

Cbs 

cDNA 

Cul1 

Dbx 1 

Dkk 1 

Dlx 2 

DNA 

dNTP 

Dvl 

EGFP 

Emx 1/2 

EphB 1 

Foxd 1 

FoxG1 

GAPDH 

GFP 

Gli 1/2/3 

Gsh2 

GSK3β 

Hesx 1 

Hh 

HRP 

Fgf 

Fz 

IFT 

Ift 88 

Inv 

Jbn 

Jnk kinase 

Kif3a 

lacZ 

Lhx2 

LRP 5/6 

Ngn 2 

Nkx2.1 

mRNA 

Bone morphogenetic protein 

cobblestone 

copy DNA 

Cullin 

developing brain homeobox 1 

Dickkopf 1 

Distal-less homeobox 2 

Deoxyribonucleic acid 

Deoxyribonucleotide-triphosphate 

Dishevelled 

Enhanced green fluorescent protein 

Empty spiracles homolog 1/2 

Eph receptor B1 

Forkhead box G1 

Forkhead box D1 

Glyceraldehyde-3-phosphate dehydrogenase 

Green fluorescent protein 

Gli-Kruppel family member Gli 1/2/3 

GS homeobox 2 

Glycogen synthase kinase 3β 

Homeobox gene expressed in ES cells 

Hedgehog 

Horse raddish peroxidase 

Fibroblast growth factor 

Frizzled 

Intraflagellar transport 

Intraflagellar transport 88 homolog 

Inversin 

Jouberin 

c-Jun N-terminal kinase 

Kinesin-like protein Kif3a 

Gene encoding for β-Galactosidase 

LIM homeobox protein 2 

Low-density lipoprotein receptor 5/6 

Neurogenin 2 

Nk homeobox 1 

messenger RNA 
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Odf1 

 

ORF 

orpk 

Pax6 

PCP 

PDD 

PKA 

Ptch 1 

RA 

RhoA 

RNA 

Rock 

 

SAG 

SCF 

 

Sfrp 2 

Shh 

Six3 

Skp1 

Slb 

Smo 

SNP 

SPOP 

SSLP 

SuFu 

TCF 

TGFβ 

TLE 

Ttc21b 

Ttr1 

UTR 

Wnt 

Wnt 2b/3a/7b/8b 

 

Xt J 

oral-facial-digital syndrome 1 gene homolog 

paired box gene 6 

open reading frame 

oak ridge polycystic kidney 

Paired box gene 6 

Planar cell polarity 

Processing determinant domain 

Protein kinase A 

Patched 1 

Retinoic acid 

Ras homolog gene family, member A 

Ribonucleic acid 

Rho-associated coiled-coin containing protein 

kinase 1 

Smo activator 

Skp1-Cul1-F-box multi-protein E3 ubiquitin 

ligase complex 

Secreted frizzled-protein related protein 2 

Sonic hedgehog 

Sine oculis-related homeobox 3 homolog 

S-phase kinase-associated protein 1 

Selective LIM-domain binding 

Smoothed 

Single nucleotide polymorphism 

Speckle-type Pot protein 

Simple sequence length polymorphism 

Suppressor of Fused 

T-cell factor 

Transforming growth factor β 

Transducin-like enhancer of split 1 

Tetratricopeptide repeat domain 21B 

Thioltransferase 1 

Untranslated region 

Wingless/Integrated 

Wingless-related MMTV integration site 

2b/3a/7b/8b 

extratoes 
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Xvin Xenopus inversin 

 
Materials and Methods 

 
APS 

BSA   

BCIP 

Ca2+ 

CHAPS 

 

DAB 

DAPI 

DEPC 

DMEM 

DMSO   

ECL 

EM 

ENU 

EDTA 

EtBr 

EtOH 

FBS 

FCS 

IHC 

ISH 

LB 

MeO 

MgCl 2 

MOPS 

MP-H 2O 

NB 

NBT 

NGS 

OsO4 

PBS 

PBST 

PCR 

PFA 

Ammoniumpersulfate 

Bovine serum albumin 

5-Bromo-4-chloro-3-indolyl phosphate 

Calcium2+ ion 

3-[(3Chloamidopropyl)dimethylammonio]-1-

propanesulfonate 

3,3´-Diaminobenzidine 

4´,6´-diamidino-2-phenylindol 

Diethyl dicarbonate 

Dulbecco´s modified Eagle´s medium 

Dimethylsulfoxide  

Enhanced Chemiluminescence 

Electron microscopy 

N-ethyl-N-nitrosourea 

Ethylendiamine-tetraacetate 

Ethidiumbromide 

Ethanol 

Fetal bovine serum 

Fetal calf serum 

Immunohistochemistry 

in situ hybridization 

Luria-Bertani 

Methanol 

Magnesiumdichloride 

3-(N-morpholino)propanesulfonic acid 

Double distilled water 

Northern blot 

Nitro blue tetrazolium chloride 

Native goat serum 

Osmiumtetraoxide 

Phosphate buffered saline 

Phosphate buffered saline + Tween-20   

Poly chain reaction 

Paraformaldehyde 
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PIPES 

PMSF 

PVP 

RT-PCR 

RTq-PC 

SDS 

SEM 

SOB 

SSC 

TAE 

TBE 

TBS 

TBS-T 

TEM 

TEMED 

Tris 

TritonX-100 

 

Tween-20 

WB 

Piperazine-N,N´-bis(2-ethanesulfonic acid) 

Phenylmethanesulfonylfluoride 

Polyninylpyrrolidone 

Reverse Transcriptase PCR 

Real Time quantitative PCR 

Sodiumdodecylsulfate 

Scanning EM 

Super optimal broth 

Saline sodium citrate 

Tris-acetic acid-EDTA-buffer 

Tris-borate-EDTA-buffer 

Tris-buffered saline 

Tris-buffered saline + Tween-20   

Transmission EM 

N,N,N',N'-Tetramethylethylenediamine 

Trimethylsilylsilan 

Polyethylene glycol p-(1,1,3,3-tetramethyl- 

butyl)-phenyl-ether 

Polyoxyethylen(20)-sorbitan-monolaurate 

Western blot 

 
Others 

 
AB 

Bp 

cM 

Ct 

E 

ES cell 

et al.  

G 1 

h 

kDa 

ko 

M 

MEF 

mg 

ml 

Antibody 

Basepairs 

centi Morgan 

Treshold cycle 

Embryonic day 

Embryonic stem cell 

et alteri 

Generation 1 

hour 

kilo Dalton 

knock out 

Mol pro litre 

Mouse embryonic fibroblasts 

miligram 

Milliliter 
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ms 

n 

n.s. 

o/N 

p 

pH 

 

rb 

RE 

rpm 

SEM 

UV 

Mouse 

Number (of samples) 

Not significant 

Over night 

Probability-value (statistical significance) 

Potentia hydrogenii (cologarithm of the 

activity of dissolved hydrogen ions) 

Rabbit 

Relative expression 

Rounds per minute 

Standard error of the mean 

ultraviolet 
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