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Abstract:
This thesis reports on experiments with few-fermion systems in quasi one dimensional
confining potentials with tunable interaction. Using ultracold atoms we prepare these
systems in a well defined quantum state with fidelities of 90% for up to 8 particles.
The interparticle interaction in the 1D environment can be effectively described by a
1D contact interaction where the coupling strength can be tuned with of a confinement
induced resonance (CIR).
We investigate a system of two repulsively interacting distinguishable fermions (|↓↑〉) and
compare it to a system of two identical noninteracting fermions (|↑↑〉). For diverging
coupling strength we show the fermionization of two distinguishable fermions, i.e. we
observe the energy and the square modulus of the wavefunction of both system to be
identical. We also perform radio frequency spectroscopy to measure the energy of a single
minority particle interacting repulsively with a defined number of majority particles of
different spin (|↓↑ · · · ↑〉). We study the crossover from a few-particle system to a many-
particle system by adding majority particles one by one. We observe that already four
majority particles are enough to describe the properties of the minority by that of a
polaron-like particle, i.e. by a single impurity dressed by a 1D Fermi sea.
Investigating attractively interacting systems we observe that for increasing interaction
strength the pair correlations in the system increases. This correlation leads to a strong
odd-even effect of the single particle dissociation energy similar to the one observed for
nuclei.
Zusammenfassung:
Diese Arbeit beschreibt Experimente an Wenigteilchensystemen aus Fermionen, bei de-
nen wir die Wechselwirkungsstärke einstellen können, in einem quasi eindimensionalem
Potential. Mit Hilfe von ultrakalten Atomen präparieren wir solche Wenigteilchensys-
teme aus bis zu acht Fermionen in wohl definierten Quantenzuständen mit einer Zuver-
lässigkeit von mehr als 90%. Die Wechselwirkung zwischen den Teilchen kann effektiv
durch eine 1D-Kontaktwechselwirkung beschrieben werden, wobei wir die dazugehörige
Kopplungskonstante mit Hilfe einer CIR einstellen können.
Wir untersuchen ein System von zwei unterscheidbaren, repulsiv wechselwirkenden
Fermionen (|↓↑〉) und vergleichen es mit einem System von zwei nichtwechselwirkenden
identischen Fermionen (|↑↑〉). Für den Fall von divergierender Kopplungskonstante
beobachten wir die Fermionisierung von zwei unterscheidbaren Fermionen, d.h. wir
stellen fest, dass die Energie und das Betragsquadrat der Wellenfunktion beider Sys-
teme identisch sind. Mit Hilfe von Radiofrequenzspektroskopie messen wir die Energie
eines einzelnen Minoritätsteilchens das repulsiv mit einer festgelegten Anzahl Majoritäts-
teilchen mit anderem Spin wechselwirkt (|↓↑ · · · ↑〉). Bereits für vier Majoritätsteilchen
stellen wir fest, dass das Verhalten des Minoritätsteilchen sich an die polaronischen
Eigenschaften eines einzelnen Fremdteilchens in einem 1D Fermi-See annähert.
Im Fall von attraktiv wechselwirkenden Systemen finden wir Hinweise darauf, dass die
Paarkorrelation als Funktion der Wechselwirkungsstärke zunimmt. Abhänging von der
Teilchenzahl finden wir in der Einteilchen-Dissoziationsenergie einen Ungerade-Gerade
Effekt, ähnlich zu dem, der bei Atomkernen gefunden wurde.
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1. Introduction
Strongly correlated quantum systems are of high relevance in nature. One prime
example are strongly interacting Fermi gases, which play a fundamental role in
systems of completely different energy scales. In the upper range of the scale at
temperatures of about 1012 Kelvin the properties of the Quark Gluon Plasma, a
phase of deconfined quarks and gluons are studied. This phase which is postu-
lated to have existed in the early universe is investigated in experiments of heavy
ion collisions [ALI04] [RHI05]. On the lower range of the scale, in the ultracold
regime of a few nano-Kelvin, the BEC-BCS crossover in the scale-invariant Fermi
gas [Ku12] has been studied [Leg80] [Noz85] [Chi04] [Gre05] [Zwi05]. Through a
region of strong correlations this crossover connects the bosonic superfluid [Ein25]
of tightly bound pairs to the phase of weakly attractively interacting fermions
governed by the BCS pairing mechanism [Bar57]. Roughly in the middle of the
energy scale between the two extremes in density and temperature are the electron
gases in solid state systems whose Fermi temperatures are on the order of a few
thousand Kelvin. In these solid state systems the dimensionality of the electron
confinement plays an important role. Example are the conductivity in carbon
nano-tubes [And00] or in high temperature superconductors [Lee08]. For the oc-
currence of high-Tc superconductivity the 2D structures of cuprates and pnictides
seem to be substantial. One central issue debated in the studies of cuprates is
whether these 2D systems behave as a Fermi liquid or not [Mae01]. A restriction
to two dimension increases fluctuations [Pet00a] [Kli12a] which modifies the long
range order in these system leading to specific superfluid phases described by the
Berezinskii–Kosterlitz–Thouless mechanism [Had06] [Fel11] [Frö11] [Des12].
In one-dimensional systems the effect of quantum fluctuations is even stronger. A
special feature of these systems is the possibility to exactly solve Hamiltonians of
various systems. Using the Bethe ansatz [Bet31] analytic solutions can be found
for example for the Heisenberg model [Hei26] and the Kondo model [Kon64]. Due
to their integrability 1D systems are an ideal environment to address fundamental
open questions of quantum statistical mechanics such as if – or how – an isolated
quantum system thermalizes [Kin06] [Rig08] [Gri12] [Ike12]. Another method for
solving one dimensional systems is the Bose-Fermi mapping: A 1D bosonic gas
in the limit of infinitely strong repulsive interaction, called a Tonks-Girardeau
Gas, can be mapped onto a system of identical fermions with a well known solu-
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tion [Gir60].
The many-body features of these 1D quantum systems are determined by their
microscopic properties. However, for the many-particle case a solution based on
the microscopic physics is difficult to obtain. Hence studying few-fermion systems
gives us a unique opportunity to understand how the many-body properties of
strongly correlated systems emerge from their microscopic physics. Starting from
the smallest building block, the two-particle system of two interacting fermions in
a 1D harmonic trap [Bus98] [Idz05], one can work its way up to a many-body state
by adding particles one by one. In this thesis we have done this by first studying
the fermionization of two repulsively interacting distinguishable fermions [Gir10]
[Zür12]. By adding more particles of one spin-component we have then studied
the convergence to a system of a polaron-like minority particle dressed by a Fermi
sea [McG65].
In another line of research we have investigated systems with attractive inter-
actions. Such systems have prominent representatives in nature such as atoms,
nucleons or atomic nuclei. In the latter system effective attractive interactions
lead to pairing phenomena [Zel03] relevant for various features of nuclei such as
the extraordinary stability of some isotopes with even proton and neutron num-
bers [Bri05], the so-called magic nuclei.
Performing these studies requires a quantum system with control over several de-
grees of freedom such as the number of particles, the motional degree of freedom
of the particles, the interparticle interaction and the confining potential. Systems
which have been used for this purpose are quantum dots and atomic clusters, with
the recent addition of ultracold atoms [Ser11b] presented in this thesis.
In quantum dots the semiconductor structures serve as a confining potential for
electrons. The shape of the confinement can to some extent be chosen at will
by microfabrication methods [Kou01] and the number of electrons in the dot can
be controlled by changing the applied electric fields which leads to tunneling of
electrons onto the dot. As the interaction is dominated by the coulomb repulsion
between the electrons these structures can mimic atomic structure and are there-
fore referred to as ’artificial atoms’ [Ash96] [Rei02].
Another approach for realizing artificial atoms is the preparation of atomic clus-
ters. In these systems the number of delocalized electrons which can be regarded
to be confined in a mean field potential created by the ionic background can be
controlled by selecting the number and the species of the cluster atoms. Some
structures exhibit similar properties as elements in the periodic table and thus
can be regarded as ’superatoms’ which offer the possibility to explore fundamental
mechanisms of chemical reactivity. [Cas09].
However, in ’artificial atoms’ consisting of quantum dots and clusters the few-
particle system under study is coupled to a thermal bath. In comparison, an
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1. Introduction

advantage of using ultracold atoms for setting up a generic quantum system is
their isolation from the environment. This allows to control the full quantum
state of the system. Another key feature is the possibility to approximate their
interparticle interaction by a contact interaction term described by one param-
eter which sets the strength of the interaction at these ultracold temperatures
[Blo08]. Feshbach resonances [Ino98] [Chi10] allow to tune this interaction pa-
rameter without influencing the confining potential. This allows to mimic a large
amount of Hamiltonians with various interaction terms. The potential term can
be easily changed by different trapping potentials available for ultracold system
[Gri00] [Fol02] [Hin08] [Zim11]. The confining potential also determines the di-
mensionality of the system. If the size of the confinement in two dimensions is
as small that its characteristic energy scale – the trap frequency – is much larger
than the largest energy scale in the system its dynamic is effectively restricted
to one dimension [Ols98] [Stö06] [Osp06] [Hal10]. Also the control on the single
particle level in these ultracold systems has become possible as demonstrated in
recent experiments [Grü10] [Bak10] [Wei11] [Ser11b] [Kau12].
In this thesis we combine all these features of ultracold atoms to study few fermion
system in one dimension. The thesis is structured as follows. In the first part we
present the realization of a well-controlled quantum systems using ultracold atoms.
In chapter 2 we start with the introduction of our preparation scheme and present
deterministic preparation of a few-fermion system. In chapter 3 we introduce the
tunability of the inter-particle interaction in our system and discuss theory of few
interacting particles in a one dimensional harmonic trap.
In the second part of this thesis we combine the deterministic preparation and
the tunability of the interaction strength to study interacting few-fermions sys-
tems. In chapter 4 we begin with the investigation of two repulsively interacting
distinguishable fermions and show that for infinitely strong repulsive interaction
the system can be mapped on a system of two identical fermions. In chapter 5
we study the pair correlations in attractively interacting system with up to six
particles. In chapter 6 we introduce the method of rf-spectroscopy with which we
determine the energy of few-fermion systems as a function of the particle number
and as a function of the interaction strength. Finally, in chapter 7, we investigate
a single impurity in a finite Fermi system and address the question of how many
identical particles are needed to form a 1D Fermi sea.
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2. Deterministic preparation
The achievements of the field of ultracold atoms is owed to the large degree of
control and tunability of theses systems: A huge variety of different quantum sys-
tems could be studied due to the possibility to tune the interparticle interaction
and the shape of the external potential. Therefore they are extremely well suited
for the investigation of few-fermion systems.
Most of the recent studies of ultracold gases have been focusing on their many-body
properties or the underlying few-body physics which have been investigated using
samples described in the thermodynamic limit. In these large samples number
fluctuations on the order of the shot-noise do not significantly change the ther-
modynamic quantities such as temperature or pressure. In contrast, few-fermion
systems critically depend on the exact number of particles. Hence, to be able to
study the crossover from a few-fermion system to a mesoscopic system it is es-
sential to gain exact control of the particle number. To determine the quantities
of a distinct few-fermion system we have to repeatably perform measurements on
identical copies of this system which requires a deterministic preparation with the
control of the particle number and its motional state. To quantify the reproducibil-
ity of the preparation of a distinct system we define the preparation fidelity f of
a system

f = nd
nd + nd

(2.1)

with nd the number of times of finding the desired system after the preparation
procedure and nd + nd the total number of prepared systems.
The topic of this chapter is the realization of such systems with high fidelity.
We first present a scheme which allows a deterministic preparation using ultracold
atoms. Then we introduce the individual elements which are required to implement
this scheme. Finally we present the results of high fidelity preparation.

2.1. Our scheme
Our approach is to first prepare a quantum gas with temperature T low enough
such that the occupation probability of the lowest energy single particle states in
the trap approach unity. The removal of excess particles is achieved by controlling
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2.1. Our scheme

the number of available single particle states in the trap. Finally, the number of
particles is detected by a single particle detection method.

Unity occupation probability

The realization of this approach is based on one of the fundamental properties
of fermions, the Pauli-principle: Due to the anti-symmetric exchange symmetry
of identical fermions, at most one of them can occupy a single particle quantum
state in a trapping potential. This is the reason why in a degenerate Fermi gas the
occupation probability P (E) of a state with energy E � EF approaches unity for
T � TF . This can be seen from the Fermi Dirac distribution of a noninteracting
Fermi gas

P (E) = 1
e(E−µ)/kB T + 1 (2.2)

where µ is the chemical potential 1, EF the Fermi energy defined by the energy
of the particle highest up in the potential at T = 0 and TF = EF/kb. The Fermi
distribution is shown in figure 2.1 a) and clearly shows that for the lowest energy
states in the system the occupation probability approaches unity. The fundamental
limit of this scheme for the preparation fidelity is determined by the deviation from
unity occupation at a finite temperature. Hence, to set this limit as low as possible
the sophisticated experimental task is to prepare a highly degenerate Fermi gas
where the influence of the temperature on the occupation probability is small.

Control over the number of bound states in the trap

To achieve control over the number of quantum states in the trap we have to
control the depth of the trap more precisely than the level spacing as illustrated in
figure 2.1 b). With this method we can not only determine the number of states
in the trap by choosing an adequate trap depth. If he have unity filling the few-
fermion system is automatically in its ground state which fulfills the condition of
a well defined motional state. The experimental challenge is to realize such a trap
1For a highly degenerate Fermi gas with T � TF the chemical potential can be approximated
by the Sommerfeld expansion

µ(T,EF ) = EF

(
1− π2

3

(
T

TF

)2
)
. (2.3)

For simplicity we neglect the second term of the expansion in the following. It has a contri-
bution of < 3% for T/TF < 0.1 and thus we set µ = EF .

6



2. Deterministic preparation

0

1

0 10.5

0.5

1.5

occupation probability

E[E  ]F

lim P(E)   1 
T   0
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Figure 2.1.: The preparation scheme.

where the degree of control on the trap depth is more precise than the separation
of single particle levels in this trap.

Single particle detection technique

Finally to test the preparation fidelity of this scheme we need to count the particles
of the system on the single atom level (figure 2.1 c). The task is to set up a detection
method with a detection fidelity that is larger than the preparation fidelity.

2.1.1. Alternative schemes
Using Bose gases

Using a similar scheme there have been performed experiments with bosonic gases
[Chu05] in the Raizen group at UT Austin which realized degenerate samples
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2.1. Our scheme

of around 60 particles with sub-Poissonian fluctuations by tuning the depth of
the trap to control the chemical potential of an interacting Bose gas. For weak
interparticle interaction a Bose gas significantly differs from a Fermi gas in the
occupation numbers of single particle states. For the energetically lowest states in
a noninteracting degenerate gas these numbers exceed 1 in the case of a Bose gas,
whereas it converges to 1 in the case of a Fermi gas. Thus, high fidelity preparation
in the manner we have sketched could not be achieved with the weakly interacting
Bose gas. One could possibly overcome this obstacle by making the bosons behave
like fermions which is realized by a strong increase of the repulsive interaction
[Dud07]. We will discuss this exciting phenomenon of fermionization in detail for
a few-particle system in chapter 4. However, for a many-body system, the life-
time of a repulsive Bose gas at strong repulsive interaction is drastically decreased
[Hal09] which again hinders a deterministic preparation. Thus, the Raizen group
has also switched over to a fermionic system and are building up a machine for
preparing atoms ’on demand’ [Rai09].

Single atom cooling approach

Besides our approach there is also an alternative approach which, however, would
be more difficult to implement: In a first step one loads a defined number of
particles into a trap and in a second step one cools these samples to the ground
state of the trapping potential which evidently fulfills the requirement of a well
defined motional state. In experiments with ultracold bosonic gases [Sch01a] and
Rydberg gases [Grü10] two different loading schemes have been implemented. In
these experiments it has been possible to reach probabilities of 50% to 80% for
loading a single atom into a trap. Although the number fluctuation are sub-
Poissonian, the occurrence of systems with undesirable atom number of 50% to
20% may be still too large to perform further experiments which crucially depend
on the exact particle number. In the context of ion-trap experiments the loading
and cooling of single atoms to the ground state has been realized [Die89] by using
resolved sideband laser cooling [Deh76], which requires the linewidth of the cooling
transition to be much smaller than the level spacing of the trap. Unfortunately,
this scheme can not be easily transferred to systems of ultracold neutral atoms:
The reason is that the typically realizable trap frequencies of optical traps are
in the regime of several 10 kHz in contrast to the linewidth of the mostly used
elements, the alkali atoms, with linewidths of several MHz. Yet, when writing this
thesis, laser cooling of a single neutral atom to the 3D vibrational ground state
has been reported [Kau12].
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2. Deterministic preparation

2.2. The individual elements of the preparation
scheme

We start with the preparation of a cold Fermi gas and introduce the dimple trick
with which we create a highly degenerate Fermi gas to achieve near unity occupa-
tion of the lowest trap states. Then we present our microtrap, the experimental
realization of a trap with precise control over the trap depth and finally we explain
our single atom detection technique. In the subsequent section we then combine
these elements and present the results of high fidelity preparation.

2.2.1. Preparation of a degenerate Fermi gas

The preparation of an ultracold Fermi gas of 6Li atoms near the onset of degener-
acy is routinely done in our group to perform various experiments. Here we only
briefly sketch its main parts. Details on the experimental apparatus and the dif-
ferent cooling methods are given in [Ser07, Lom08, Koh08, Wen08, Zür09, Ott10,
Lom11, Ser11a]. A more general overview of preparing a degenerate Fermi gas can
be found in the review [Ket08].
The whole preparation takes place in a vacuum chamber with a background pres-
sure on the order of 10−12 mbar in a science chamber (see figure 2.2, No.5) to
achieve a long lifetime of the ultracold sample. The preparation process starts
with vaporizing 6Li in an oven (No.3) at 350 °C resulting in a mean velocity of
the vaporized atoms of about 1500m/s. Behind a collimator restricting the aper-
ture of the oven the outgoing atomic beam enters a drift tube (No.4) where the
atoms are slowed down by a Zeeman slower [Met99]: A counter propagating laser
beam resonant to a Doppler shifted optical transition of the 6Li atoms transfers
momentum to the atoms which slows them down. The reduced Doppler shift of
the slowed atoms is compensated by a spatially varying external magnetic field
which shifts the Zeeman sublevels of the transition back to resonance. After the
drift tube the atoms enter the science chamber (No.5) where atoms below a cer-
tain velocity are captured by a Magneto Optical trap (MOT) [Met99]. The MOT
provides trapping and cooling down to a few hundred µK close to the Doppler
temperature[Met99]. As the MOT potential is dissipative further cooling without
additional sub-Doppler cooling techniques is not possible in the MOT. Thus, to
perform evaporation cooling [Luo06] we transfer the particles into a crossed beam
optical dipole trap [Gri00]. Figure 2.3 shows an absorption image [Lom08] of an
atomic sample trapped in this potential. Because at low temperatures, a spin
polarized gas is noninteracting (see chapter 3), we use a two-component mixture
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Figure 2.2.: Vacuum chamber. The experiments with ultracold atoms take place
in the science chamber (No.5) which provides optical access for laser-
cooling and -trapping. Several pumping units (No.1,2) and a special
surface getter coating guarantee a pressure on the order of 10−12 mbar.
The low collision rate with the background gas is important to achieve
long lifetimes of the ultracold samples.

Figure 2.3.: In-situ absorption image [Lom08] of atoms in the crossed
beam optical dipoletrap. The image is taken of a non-degenerate
sample to better visualize the outer regions of the trap.

of the two lowest Zeeman sublevels of the lowest 6Li hyperfine state |F = 1/2〉 2.
By lowering the trap depth of the dipole trap the particle with largest kinetic en-
ergy can leave the trap. Simultaneous thermalization of the sample by scattering
between the atoms results in a reduced temperature. Using this technique we are
2We label these states |1〉 and |2〉 according to the notation given in the appendix A.1. In
this chapter we sketch the state-|1〉-atoms by blue circles and the the state-|2〉-atoms by
green circles. The scattering rate between these two states can be controlled using Feshbach
resonances which allow to tune the scattering length a3D by varying a magnetic offset field
(see chapter 3).
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2. Deterministic preparation

able to prepare a degenerate Fermi gas of 4 × 104 atoms with a temperature of
250 nK.

2.2.2. Creating a highly degenerate Fermi gas - the dimple
trick

The degeneracy of the sample in the crossed beam dipole trap achieved with the
evaporative cooling method is T/TF ≈ 0.5. A further decrease of degeneracy in
the crossed beam dipole trap which we denote as ’reservoir’ by further evaporative
cooling is challenging due to the Fermi statistics of the gas and the limited colli-
sions needed for thermalization [DeM99]. Sympathetic cooling [Sch01b] as used in
different cold atom experiments is not an option for us since we have no bosonic
species available in our apparatus. Hence we make use of the dimple trick: By
superimposing a small volume trap - the dimple - with the large volume reservoir
an arbitrarily large increase in phase-space density in the dimple can be achieved
when choosing an extreme ratio of the volumes [Kur98]. The gain in degeneracy
for a Fermi gas can be estimated when making the following assumptions:

• the reservoir is large enough to not be perturbed by the presence of the dimple
which means that the particle number and the temperature Tres remains
nearly constant.

• the combined system is in thermal equilibrium.

Under these assumptions one can estimate the degeneracy of the total system:
At high filling of the trap the Fermi-temperature ×kB is approximately given
by the energy of the highest level in the trap which is equivalent to the trap
depth. In our trap configuration sketched in figure 2.4 the trap depth is almost
completely determined by the depth of the dimple Udim and thus the degeneracy
of the combined system is given by:

Tres/Udim (250 nK/3.3µK = 0.08)

In comparison to the degeneracy of the reservoir

Tres/Ures (250 nK/0.5µK = 0.5)

where Ures is the trap depth of the reservoir, this leads to a gain in degeneracy of
a factor of

Udim/Ures (3.3µK/0.5µK = 6.6)
From the numbers in brackets which are the numbers realized in the experi-
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Figure 2.4.: The dimple trick. The dimple is so tight that it only provides a few
hundred single particle states. Thus, when superimposing the dimple
to the reservoir the temperature of the reservoir remains unchanged,
whereas the Fermi energy of the combined trap is mainly determined
by the trap depth of the dimple. Hence by applying the dimple the
degeneracy of the combined system is increased and the occupation
probability of the lowest single particle states approaches unity.

ment one sees that we are able to create a highly degenerate Fermi gas of about
T/TF = 0.08 in the dimple.
We have not directly proved the assumptions made above, but by estimating an
upper bound for the temperature in the dimple we have found evidence that they
are sufficiently well fulfilled (see 2.4.2). A qualitative analysis of the transfer effi-
ciency is given in the appendix (figure A.2). Independently we can estimate the
effect of the dimple onto the reservoir by finding an upper bound for its temper-
ature increase. Although in the experiment we adiabatically ramp on the dimple
trap we assume a sudden switch-on of the dimple which definitely overestimates
its effect but serves as an upper bound. From the total number of particles in the
reservoir, Nres = 4×104, we can only transfer Ndim = 6×102 into the dimple when
filling it completely. In this case an upper bound for the energy increase of the
reservoir is Udim

2 ×Ndim/Nres = 25 nK per particle which is only a 10% effect on the
reservoir temperature of Tres = 250 nK. As the degeneracy in the dimple is directly
proportional to the temperature of the reservoir it would maximum decrease the
dimple degeneracy from 0.08 to 0.09 [in units of T/TF ].
The remaining question to be answered is how large the occupation probability of
the lowest states will be at the realized degeneracy of T/TF=0.08. Inserting this
number into the Fermi Dirac distribution we find a occupation probability for the
lowest state of 0.9999 which excellently fulfills the requirement of determinism. In
a next step we need to control the number of states in the trap. In the following
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2. Deterministic preparation

we will call the dimple ’microtrap’ due to its micrometer-size. We will see that the
size of the trap will play an important role to get control over the single particle
trap states.

2.2.3. The spilling technique
As the occupation probability for the lowest state in the trap in a highly degenerate
Fermi gas is close to unity, we just have to control the number of quantum states
in the trap to achieve our primary goal. In the following we present a technique
with which we have realized this.
One option to reduce the number of trapped states is lowering the depth of micro-
trap. To perform this step deterministically one needs to control the trap depth
of the potential more precise than the level spacing of the highest levels in the
trap which is determined by the steepness of the potential slope. Unfortunately,
in the case of a Lorentzian shaped optical dipole trap, the slope becomes very flat
at the upper boundary of the trap and the density of states diverges which we
indicated by the gray shaded area in figure 2.5. By lowering the depth U0 of the
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Figure 2.5.: Density of states in a Lorentzian shaped dipoletrap. Due to
the weak potential slope the density of states in the Lorentzian shaped
optical dipole trap diverge close to the continuum which is indicated
by the gray region. For this type of trap, control over the individual
quantum states is arbitrarily difficult. Plot taken from [Sim10] and
adapted.

optical potential the geometric shape of the potential will remain unchanged and
thus at the boundary to the continuum the level spacing will always be small. In
this regime getting control over the quantum states would be not possible.
We can overcome this problem by modifying the potential by superimposing an
additional linear potential as shown in figure 2.6. This results in an asymmetric
trap configuration with a local minimum in the center, an open potential above
a certain barrier height with unbound states reaching into the continuum on one
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Figure 2.6.: The spilling technique. To our optical potential (a) we superimpose
an additional linear potential (b). The level spacing of the bound
states is sufficiently large to control the number of quantum states. All
atoms occupying states above the barrier height become untrapped.
After these atoms have escaped from the trap region we switch of the
linear potential and end up with a well defined quantum system (c).

side and a very steep potential slope on the opposite side. Due to the steep po-
tential slopes in this configuration the level spacings are large. Now, control over
the barrier height more precise then the level spacing is technically possible and a
certain barrier height can be reproducibly set up. With adding this linear poten-
tial all levels above the barrier height become unbound and one has to wait until
the corresponding atoms have escaped from the trap region into the continuum.
Finally one can switch off the additional linear potential and end up in a well
defined state.
As we use a mixture of two distinguishable spin states, the occupation number per
energy level is two as the distinguishable particles do not obey the Pauli-exclusion
principle. Hence at the end of this procedure, which we call the spilling process,
we expect to have prepared a few-particle system in the ground state with even
particle number.
However, the release of atoms from unbound states is not the only process which
happens during the spilling process. Just a release of unbound atoms would only
be the case in an idealized configuration such as the box potential shown in fig-
ure 2.7 a). In the trap configuration which we have chosen, namely the optical
dipole trap potential and a linear potential, there is a finite barrier through which
the particles can tunnel during the application of the linear potential (see 2.7 b).
Although we will later make use of this effect to probe the energy and the pair
correlations in the system, for a deterministic preparation this is an unwanted
effect which decreases the occupation probability of the bound states inside the
potential well. But as long as the timescale τrem for the tunneling of atoms on the
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Figure 2.7.: Comparison between a box potential and our microtrap po-
tential. In a box potential (a) the lifetime of bound states is infi-
nite. In our microtrap potential (b) atoms on bound states can tunnel
through the finite barrier. This sets constraints for the control of the
height at a given width of the potential.

uppermost desired state is much longer then the application time tapp of the linear
potential, the influence on the preparation fidelity is negligible. At the same time,
the tunneling timescale τtun of atoms on the next higher undesirable state has to
be much shorter than the application time of the linear potential. Assuming an
exponential decay law for the tunneling process this leads to the limiting condition

− ln
(

1− f
2

)
× τ−1

tun ≥ tapp ≥ τ−1
rem ×− ln

(
1 + f

2

)
(2.4)

for which the preparation with a desired target fidelity f ∈ [0, 1] is possible. We
call the parameter region fulfilling this condition the ’window of deterministic
preparation’. The tunneling timescales depend on the exact shape of the potential
and the calculation of the window needs an quantitative analysis of the tunneling
process which will be provided in chapter 4. The results are shown in figure 2.8
and can qualitatively be understood by taking a look at the tunneling properties
at a characteristic width of the potential: The smaller the width, the larger the
spacing of the relevant levels inside the potential well. Thus a larger difference
in tunneling timescales results in a larger region of barrier heights for which the
above condition is fulfilled. Hence the smaller the width of the potential the less
critical is the precision with which we need to control the barrier height.
Using optical methods for creating the potential, the minimum width that can be
achieved is determined by the diffraction limited numerical aperture (NA) of an
objective. At maximum NA the minimum resolution that can be achieved with
trapping light of wavelength λ is λ

2 . Realistic values for the width that can be
achieved with standard objectives using visible or near infrared light are within
1µm and 2µm.
For a given experimentally realizable width it is absolutely necessary to achieve
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(a) w0 = 2.8µm (b) w0 = 1.8µm (c) w0 = 0.8µm

Figure 2.8.: Window of deterministic preparation. The individual figures
show the occupation probabilities for the lowest trap level (dashed
line) and the next higher level (solid line) for a fixed application time
of the linear potential. It is given as a function of the microtrap depth
(relative scale) for different widths (w0) of the trap. The gray shaded
areas indicate the regimes of trap depths for which the ’survival’ prob-
ability of atoms on the lowest level is larger than 99.5% and on the
next higher level less than 0.5%. For smaller trap widths this window
of deterministic preparation gets larger.

a stability of the barrier height of a maximum allowed value to stay within the
window of deterministic preparation. Using an elaborate optical design we can
achieve a relative stability of the barrier height on the order of 10−3 by precisely
controlling the intensity of the trapping light (appendix A.3) and the slope of the
linear potential (appendix A.5). This is sufficient for a trap with a width of 2µm
and lower. In the following we introduce the microtrap setup which is designed to
realize such a small width.

2.2.4. The microtrap

Setup to create the optical potential

We realize a trap with small width by setting up the simplest realization of an
optical trap: a single beam optical dipole trap [Gri00]. To create such a trapping
potential we focus a collimated Gaussian beam with a waist of w = 35mm to a
µm-size spot using a high numerical aperture objective (figure 2.9a). The radial
confinement of the trap is given by the focal waist w0 and the axial confinement
is determined by the Rayleigh range zr = πw2

0/λw0 of the focused beam. Assum-
ing cylindrical symmetry, the trap frequencies can be deduced by an harmonic
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2. Deterministic preparation

Figure 2.9.: The microtrap setup. a) Sketch of the microtrap objective which
creates the optical dipole trap. b) Technical drawing of the compo-
nents of objective. c) Radial intensity profile of the beam in the focal
plane with Gaussian fit (red curve).

approximation of the potential [Gri00]:

ωr =
√

4U0

mw2
0

ωz =
√

2U0

mz2
r

(2.5)

where the radial and axial trap frequencies ωr and ωz increase with smaller focal
waists. Here U0 is the trap depth and m the 6Li mass. A small focal waist can
be achieved by an objective with large diffraction limited NA. One restriction to
the objective is the minimum working distance which is limited by the distance
of the center of the vacuum chamber to the outer surface of the vacuum window
(23.7mm) with a maximum NA of the view port of ≈ 0.8. Additionally the beam
path through the window has to be taken into account when designing a high NA
objective.
We have been working with two home built versions 3, the first one set up in 2009
3During writing this thesis a third version of the objective has been tested but not yet imple-
mented into the experimental setup. It is an objective with chromatic correction for trapping
and imaging light built by a professional optics manufacturer [JEN11]. The objective has
been designed by Friedhelm Serwane [Ser11a] with a targeted diffraction limited NA of 0.6
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[Zür09]. The purpose of this first version has been testing the mechanical stability
of the objective, the control of the intensity and the transfer of atoms from the
reservoir into the microtrap. Although the main result of the test was the necessity
of a better light intensity stability which we realized by a completely new optical
design (appendix A.3), the determined focal waist of the implemented objective of
≈ 3.7µm would have been to large to open the window of deterministic preparation
at a relative intensity stability of 10−3.
Hence we developed a second objective with a nominal diffraction limited NA of
0.44 for light of a wavelength of 1064 nm. The optical design was performed by
Friedhelm Serwane using the ray tracing software Oslo [Lam10] (for details of the
design see [Ser11a]). As the objective should be a temporary solution the design
goal was an objective which contains comparatively cheap lenses from stock and a
lens mount which could be machined in the institute workshop. The main focusing
optic of this objective is a 2 inch diameter, 40mm effective focal length, plano-
convex lens with aspheric curvature compensating spheric aberrations (figure 2.9b).
To compensate for the wavefront curvature introduced by the vacuum window we
added an additional meniscus lens. As the vacuum window can be considered as a
part of the objective, not only the alignment of the aspheric lens to the miniscus
lens in the objective mount is critical, also the alignment of the optical axis of the
objective mount to the window surface has to be precise on the order of 1mrad.
The mounting and alignment of the objective is realized by a 5-axis translation
mount (Newport LP2a) which we modified by adding some external aluminum
parts to improve the locking of its degrees of freedom.

The trap parameters of the optical potential

In an external test setup we could achieve a focal waist of 1.3(0.1)µm which we
have deduced by a Gaussian fit to the radial beam profile (figure 2.9 c). After
carefully implementing the objective and superimposing the microtrap with the
dipole trap we determined the focal waist by exciting atoms to higher trap lev-
els using modulation spectroscopy (chapter 4.3.2). From these measurements we
found that the focal waist of about 1.6µm is larger than expected. This can be
explained by misalignment introduced while superimposing the microtrap with the
dipole trap and locking the 5-axis mount. Furthermore we found an anisotropy in
the radial symmetry. The most probable reason for that is a slightly anisotropic
entrance beam onto the objective. Additionally the Rayleigh range does not cor-
respond to the focal waist. The too large Rayleigh range could be explained by
an astigmatism introduced either by a non-perfectly collimated entrance beam or

resulting in a nominal focal waist of 0.72µm for the trapping light of a wavelength of 1064nm
and 0.45µm for the imaging light of a wavelength of 671 nm.
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by misalignment of the objective.
However, the deviation from the profile of a single beam trap, does not affect a
deterministic preparation or experiments with few fermions. Knowing the trap
parameters we can quantitatively compare our results with theories using these
parameters as inputs for the potential. Around its minimum the optical potential
can be approximated by

V (r, z) = V (x) + V (y) + V (z) (2.6)

with Gaussian shape in r =
√
x2 + y2 direction

V (s) = p V0r

(
1− e

− 2s2
w2

0s

)
[s : x, y] (2.7)

and Lorentzian shape in z-direction:

V (z) = V0

(
1− 1

1 + (z/zr)2

)
(2.8)

where w0s ≈ 1.6µm and zr = πw2
0

λ
with w0 = 1.838µm. A detailed analysis of

the potential shape and the values for the potential depth at the center of the
trap, V0r and V0, can be found in chapter 4.2.2. According to these parameters
the trap has an aspect ratio of ωz/ωr ≈ 1 : 10 (cf. equation 2.5). This means
that the energetically lowest 10 states contain no excitation in radial direction.
Hence, for atoms occupying these states, the tunneling process happens only in
one dimension when the linear potential for removing bound states also points into
the z-direction.

The magnetic potential for spilling atoms

The linear potential for spilling atoms from the optical potential is created by a
magnetic field gradient. The atoms with magnetic moment µ experience a force
∇µB in a spatially varying magnetic field B. We first apply a homogeneous mag-
netic offset field pointing into z-direction which aligns the magnetic moment along
this axis. At large magnetic offset fields the magnitude of the magnetic moment
µm is nearly identical for the three lowest 6Li hyperfine states and converges to
the magnetic field independent value of 1 Bohr magneton µB (see figure 2.17). By
applying a second non-homogeneous field with a gradient B′ = ∂B

∂z
into z-direction

the atoms experience a constant force µBB′ in a linear magnetic potential.
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The combined optical and magnetic potential

Following the previous remarks the total optical and magnetic potential in z-
direction is given by

V (p, z) = Vopt(p, z) + Vmag(z) = p V0

(
1− 1

1 + (z/zr)2

)
− µmB′z (2.9)

where V0 = kB×3.326µK is the initial optical trap depth at an optical beam power
of P0 = 291.5µW, p the trap depth as a fraction of the initial depth, whereas p
tunes linear with the optical power P and zr = πw2

0/λ is the Rayleigh range. The
values for the focal waist and the magnetic field gradient are w0 = 1.838µm and
B′ = 18.92G/cm (for details see chapter 4.2.2). When the spilling gradient is
switched off then B′ = 0 and the magnetic part of the potential vanishes4. For
most of the work presented in this thesis including the deterministic preparation
this potential form is the only relevant external potential for the particles.

2.2.5. High fidelity atom number detection in a MOT
To determine the particle number of the few-fermion systems we need to implement
a single atom detection method with near unity detection fidelity. In this section
we introduce the single atom detection in a magneto-optical trap which we apply
after releasing the atomic sample from the microtrap. The detection setup is shown
in figure 2.10. The following paragraph describes the detection technique and is
taken from the Supporting Online Material of our publication [Ser11b]:
’We detect the number of atoms in the prepared samples by recapturing them
in a magneto-optical trap (MOT) and collecting their fluorescence signal[Hu94].
The magnetic field gradient has a strength of 250G/cm, the diameter of the MOT
beams are ∼ 4mm and their frequency is red detuned from the resonance by twice
the natural linewidth of the transition. While we cannot determine the recapture
efficiency of the MOT directly, it cannot be lower than the highest measured
preparation fidelity per atom of 98(1)%. To record the fluorescence from the
MOT we image it onto a CCD camera (figure 2.11) with an imaging system with
numerical aperture of 0.17, capturing about 1% of the emitted photons. During
the 0.5 s exposure time of the CCD one atom scatters about 1.9 × 106 photons.
Considering the numerical aperture and the quantum efficiency of the imaging
system roughly 1×104 photons per atom are detected. The exposure time is much
shorter than the 1/e-lifetime of 250 s of the atoms in the MOT measured for 8
4The atoms experience also a constant gravitational force −mg which is compensated by an
additional permanently applied levitation gradient B′L = mg/µB and therefore neglected in
the potential of equation 2.9
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Figure 2.10.: The MOT setup. The number of atoms which are prepared in the
micrometer-sized optical dipole trap are detected with single-atom
resolution by transferring them into a compressed magneto-optical-
trap (MOT) and collecting their fluorescence on a CCD camera.
Taken from [Ser11b] and adapted.

flourescence signal [a.u.]pixel position on CCD [a.u.]

1 atom 2 atoms 4 atoms 8 atoms

Figure 2.11.: Fluorescence signal on the CCD camera for different atom
numbers.

atoms. This lifetime is long enough that neither light-induced collisions in the
MOT nor collisions with background gas atoms limit our detection fidelity. To
deduce the atom number from the fluorescence signal we bin all data from each
series of measurements into one histogram. These histograms show distinct peaks,
each corresponding to an integer number of atoms in the MOT. From the spacing
of the peaks we extract the calibration factor for the mean fluorescence per atom.
Because of fluctuations of the intensity of the MOT beams and the detuning of the
MOT the fluorescence signal drifts on a few percent level on a timescale of several
minutes. To compensate for this drift, we rescale the fluorescence signal of each
measurement by a factor which is obtained by taking the average fluorescence per
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atom of the ten previous and following measurements. To obtain this average for
rescaling we only consider data with fluorescence signals that are close to a peak
in the histogram, i.e. maximum 1σ distance. Then, the rescaled atom numbers
are binned into a histogram (figure 2.12) and Gaussians are fitted to the peaks.
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Figure 2.12.: Histogram of the rescaled fluorescence signals. The black

curves are Gaussian fits to the rescaled atom number. The 2-atom
(8-atom) peak center is separated from its adjacent peak centers by
7σ (5.7σ). This is large enough to clearly distinguish the fluorescence
signal of different atom numbers. We bin fluorescence data within
a 2σ-width of the peaks (green bars) to integer atom numbers; the
counts outside the 2σ widths (gray bars) are rejected. Note: the
data corresponds to the measurement of figure 2.14 where the oc-
currence of even-numbered system is enhanced. Taken from [Ser11b]
and adapted.

We find a separation of the peak centers of ∼ 6σ. The data points within 2σ of a
peak center are binned to integer values which represent the number of atoms in
the prepared sample. The 5% of measurements outside of the two-sigma width of
the peaks are rejected. This is possible since the measurements are uncorrelated
and the atom number detection is independent from the preparation.’
The reader who is interested in further details of the MOT setup can find them
in [Ser11a]. What matters for all further experiments presented in this thesis is
the ability to measure atom numbers with a fidelity of 98(1)% per particle by
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using the described method. Whenever we will quote a particle number less than
1000 we will have used this method for detection. In the work presented in the
following we will directly use it to determine if we have deterministically prepared
a few-particle systems.

2.3. Implementation of the preparation scheme
To be able to realize our preparation scheme we have to combine the individual
elements introduced in the previous section. We use a sketch of a typical experi-
mental sequence to illustrate the combination of these individual elements. In the
subsequent section we will then present the results of the high fidelity preparation.

2.3.1. Experimental sequence
To explain the experimental sequence we divide it into five parts labeled by I-V
as illustrated in figure 2.13. The upper row of the figure sketches the potential
shape in each step of the experimental sequence. The three graphs in the center,
which we denote ’timing graph’ show the time dependence of the most relevant
parameters of the experiment. The first one (black curve) is the optical trap depth
p of the microtrap, the second one (green curve) is the magnetic field gradient B′
which defines the strength of the linear potential and the third one (blue curve) is
the magnetic offset field which determines the scattering length. In the following
we discuss the individual parts of this sequence.

I) Ramping on the microtrap

The first elements to be combined are the degenerate Fermi gas in the large volume
dipole trap and the microtrap potential. To transfer particles into the microtrap
we slowly ramp up the depth of the optical potential of the microtrap at constant
reservoir depth. While the depth is ramped up, the scattering length is kept
constant at about −300 a0 at an offset field of 300G to allow thermalization and
thus occupation of the lowest states in the microtrap. When increasing the depth
of the microtrap potential one has to fulfill the adiabaticity criterion for the lowest
states in the trap to not create holes 5 in the Fermi distribution. The criterion
reads ∣∣∣ d

dt
(ei − ej)

∣∣∣
(2π)2

~ (eij)2 � 1 (2.10)

5We denote a hole as an unoccupied state with energy lower than the Fermi energy.
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Figure 2.13.: Experimental sequence for a deterministic preparation.

and expresses, that the time dependent differential change in energy between two
states with energy ei and ej must be much smaller than the square of the energy
difference eij between these states [Zen32] to not jump between the different states
during the ramp. The right hand side of this differential equation becomes constant
when choosing a hyperbolic form en(t) = − 1

1+t/τ with time constant τ for the time
dependent energy of the states. In a harmonic trap the energy of the eigenstates
are en = (n+ 1/2) ~ω and ω ∝ √p. If one further approximates the energy change
of two nearby states by the trap frequency ω ≈ 1 kHz then the criteria reduces to

τ � 1
ω

(2.11)

and therefore the change of the trap depth p is adiabatic when the time constant
of the ramp is much larger than the inverse trap frequency. For the ramp-on of
the microtrap we have approximated the hyperbolic form by a parabola which
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can be seen by the quadratic increase of the trap depth in the upper part of the
timing graph. A quantitative analysis of the adiabaticity condition can be found
in [Ser11a].

II) Switching off the reservoir and ramping on the magnetic field gradient

After ramping on the microtrap we keep the scattering length of the sample at
about −300 a0 for 20ms to allow further thermalization. Experimentally we found
that for longer periods we do not see an increase of the particle number in the
microtrap and therefore we switch off the reservoir after 20ms by ramping down
the optical power of the reservoir. As we want to avoid correlated tunneling of
particles from an interacting system we switch off the interaction by tuning the
scattering length close to its zero crossing at a magnetic offset field of 523G6.
During the ramp of the offset field we switch on the magnetic field gradient for
spilling atoms of the trap. Unfortunately the pair of coils which we use to create
the quadrupole field to generate the gradient in z-direction has a comparatively
long time constant of several ms due to the large inductance of the coils. Addi-
tionally to the long time constant, the gain of the digital PID feedback loop which
controls the gradient current running through the pair of coils is set to low values
to suppress an overshoot of the gradient current above its setpoint. This is the
reason why it takes approximately 150ms until the measured current in the coils
reaches its setpoint within a relative precision of 10−3. For the chosen gradient of
B′ = 18.92G/cm about 20 particles are left in the potential well which corresponds
to about 10 ± 1 bound states. As the trap has an aspect ratio of 1:10 all atoms
occupying harmonic oscillator levels with radial excitations have left the trap.

III) Tuning the depth of the microtrap

For spilling a well defined fraction of the remaining 20 particles we overcome the
long timescale for ramping the gradient by tuning the depth of the optical potential
to change the barrier height. This approach has the advantage that the bandwidth
of the intensity control of the microtrap beam is about two orders of magnitude
faster then the one of the gradient coils and is as fast as the typical tunneling
timescales. We ramp the microtrap depth to a certain value p within 8ms. Then
6Due to historic reasons we tune the magnetic field to 523G instead to the zero crossing of the
scattering length at 527 ± 0.5G [Bar05]. Yet, this does not effect the spilling scheme since
a3D = −14 a0 is still negligibly small.
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2.3. Implementation of the preparation scheme

all levels above a certain energy level become unbound and leave the trap. The
timescale is set by the inverse trap frequency ωz ∼ 1 kHz and therefore the escape
of particles takes a couple of ms. Thus we wait for a hold time of 25ms. During that
time also atoms occupying the highest bound states can tunnel through the barrier.
Deterministic preparation is achieved when the tunneling timescale of atoms on
the uppermost state is smaller than the holdtime and the tunneling timescale of
atoms on the next lower state is much larger than the holdtime. Finally we ramp
back to the original optical trap depth of p0 = 1 within the same ramp time of
8ms to switch off all tunneling processes 7.

IV) Experiments with a well defined quantum systems

In this part of the sequence we can manipulate the few-particle system. All exper-
iments performed with a few-fermion system presented in this thesis are realized
within this part. For now we skip this part of the sequence which will be exten-
sively studied in the next chapters.

IV) Detection of the particle number

In a final step the number of particles in the trap has to be detected. Therefore
the introduced single atom detection in a MOT is applied. The atoms in the
microtrap are released by instantly switching off the power of the microtrap beam.
Consequently the zero-point energy of the atoms in the trap is transferred into
kinetic energy and thus the atoms fly away from the trap region with a mean
velocity of 〈v〉 =

√
~(2ωr+ωz)

m
≈ 20µm/ms. Because for trapping in a MOT the

offset field has to be zero it is ramped to zero within 2ms immediately after the
microtrap is switched off. As for the single atom detection in the MOT a large
magnetic field gradient is required we use the offset coils which can generate a
gradient of 250G/cm when reversing the current flow in one of the coils8. The
ramp up of this gradient current in the offset coils takes 2ms and thus after 4.3ms
time of flight of the atoms the MOT lasers can be switched on and the atoms
are recaptured in the MOT. From the fluorescence light of the atoms recorded for
0.5− 1 s the number of particles can be deduced.

7As long as the gradient is applied the extension of the barrier is always finite. However, tun-
neling can be neglected because the tunneling timescales of atoms occupying the energetically
lowest states exceed the total experimental time by multiple orders of magnitude.

8The gradient generated by the gradient coils is limited to 40G/cm. To create a quadrupole
field with the offset coils the direction of the current flow in one of the offset coil is reversed
by an H-bridge consisting of 4 MOSFETS [Koh08].
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2. Deterministic preparation

2.4. Number state preparation, ground state
preparation fidelity and lifetime

To realize number state preparation it is necessary to find an adequate barrier
height for which atoms from the highest bound state have tunneled within the
hold time of 25ms at a certain trap depth p and atoms on the next energetically
lower state have not yet tunneled. To find this adequate barrier height we repeat
the experimental sequence several times for one value of the trap depth p and
vary p over a certain interval. Figure 2.14 shows the experimental result of this
measurement. The plot on the left hand side shows the mean atom number 〈N〉
as a function of the trap depth p. As expected one finds that the mean particle
number decreases with lower trap depth. Additionally, one observes a step-like
behavior with plateaus at even atom numbers. This plateaus indicate the region
which we denoted as the window of deterministic preparation (see equation 2.4).
The reason that the plateaus occur at even atom numbers is attributed to the
occupancy of the single particle level by ideally two distinguishable atoms.
The step-like behavior becomes more clearly when investigating the number fluc-
tuations around a certain mean value. The plot on the right hand side in figure
2.14 shows the variance (∆N)2 = ∑n

i=1 (〈N〉 −Ni)2 of the mean particles number
〈N〉 at fixed trap depth p, where Ni is the measured particle in a single prepa-
ration process. For atom numbers close to even integers the number fluctuations
are drastically reduced which is a clear evidence that the window of deterministic
preparation exists at the corresponding trap depths.
For a mean number of 8 atoms we find a number fluctuation of

(∆N)2

〈N〉
= 0.017 . (2.12)

In contrast in a gas of independent particles the fluctuation follow Poissonian
statistics with (∆N)2/ 〈N〉 = 1. The observed drastic reduction of number fluctu-
ations by 18 dB indicate the strong fermionic correlations in our system. To our
knowledge this suppression of number fluctuation in an system of eight particles
is the largest ever realized in a cold atom experiment.
To quantify the preparation fidelity we exemplarily choose two systems with de-
sired particle number: a two-particle system and an eight-particle system. To
deterministically prepare these system we tune the optical trap depth p to the cor-
responding plateaus where we get the minimum number fluctuation. We repeat the
measurement 300−600 times and bin the detected fluorescence of each realization
into a histogram, which is shown in figure 2.15. We achieve very high prepara-
tion fidelities of 96(1)% for a system with a desired particle number of two and
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Figure 2.14.: Controlling the number of quantum states. When the trap
depth is reduced, the mean atom number decreases in steps of two
because each energy level in the trap is occupied with one atom per
spin state. Each data point is the average of 190 measurements with
(∆N)2 as the variance (shown on the right). For even atom numbers,
the number fluctuations are strongly suppressed. For eight atoms, we
achieve a suppression of 18 dB of (∆N)2/〈N〉 compared to a system
obeying the Poissonian statistics. Taken from [Ser11b] and adapted.

87(1)% for an eight-particle system resulting in an preparation fidelity of 98(1)%
per atom. The error is the statistical error calculated by assuming that the occur-
rence of samples with undesired atom number follows a Poissonian distribution.
Although we have an excellent reproducibility, there remains one crucial question:
Are the particles in the ground state and thus in a well defined motional state? We
test this by applying the spilling process a second time. If the particles where not
in the ground state after the first spilling process, for example due to excitations
during the ramp of the potential, the particle number would be reduced after the
second spilling process (see figure 2.16, second row). We compare the histograms
after the first and the second spilling process and find only a small reduction of
the occurrence of the desired particle numbers with 92(2)% and 88(1)% for two
and eight particles respectively. This is a hint that the probability of exciting the
particles during the spilling process can only be on a few percent level. We quan-
tify the excitation probability during the ramp by apply a combinatorial model to
estimate the ground state preparation fidelity of the system.
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Figure 2.15.: Histograms after the first and second spilling process for
the preparation of two atoms and eight atoms The numbers
above the peaks give the relative occurrences of the counts within
the corresponding peaks. The fidelity after the second spilling process
(gray shaded histrograms) remains almost unchanged, indicating that
the ground state is prepared with high fidelity. Taken from [Ser11b].
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Figure 2.16.: Fidelity of preparing systems in the ground state. To de-
termine how many of the prepared few-particle systems are in their
ground state, we repeat the spilling process. This removes atoms
in higher levels but leaves the ground state unchanged. Taken from
[Ser11b].

Ground state preparation fidelity and lifetime, taken from [Ser11b]

To estimate the fidelity for preparing two atoms in the ground state of the trap
from the histogram shown in figure 2.15 we only consider the lowest two levels of
the trap. This is based on the assumption that atoms in higher levels have only
negligible probability to remain trapped after the spilling process.
From the number of prepared samples containing one or three atoms we can deduce
upper bounds for the probability to find an atom missing in the lowest level or an
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2.4. Number state preparation, ground state preparation fidelity and lifetime

atom remaining in the second level of 2% each. As the atoms are noninteracting
during the preparation process we can assume these probabilities to apply to each
atom individually. A system containing two atoms which are not in the ground
state requires both a hole in the lowest level and an atom on the second level. This
is suppressed by a factor of (0.02)2 = 4 · 10−4. From this we conclude that only
a negligible fraction of the observed two-atom samples were not prepared in their
ground state.
However this does not exclude the possibility of exciting the system when closing
the trap at the end of the spilling process. Therefore we perform the spilling pro-
cess a second time, which removes atoms in higher levels of the trap. We find that
the second spilling process reduces the number of samples containing two atoms
from 96(1)% to 92(2)%. If we assume that the 2% probability of preparing one
atom after the first spilling process is due to states beeing non-occupied before
the spilling process and account for the fact that almost all samples containing
three atoms will have two atoms after the second spilling process, we would expect
98(2)% of the samples to contain two and 2(2)% of the samples to contain one
atom. This leads us to the conclusion that there is a 6(2)% probability to create
an excitation while ramping the barrier up and back down.
Following the same consideration for a system of eight atoms we find the proba-
bility that a sample of eight atoms was not in the ground state to be 4·10−3. From
spilling twice we also find an upper bound of 6(2)% for the number of excitations
during the ramps. If we assume the same excitation probability for ramping up
and down, we get an estimated fidelity of 93(2)% to prepare the system in its
ground state after ramping the potential back up after the first spilling process.
For eight atoms, we find a ground-state preparation probability of 84(2)%. By
varying the time between the two spilling processes, we found the 1/e-lifetime of
the prepared two-particle system in its ground state to be 60 s, which shows the
high degree of isolation from the environment.

2.4.1. Creating imbalanced systems and spin dependent
detection

We have demonstrated that we can deterministically prepare a system with an
even number of particles. Yet, for the studies presented in this thesis, we also need
to prepare spin imbalanced systems, i.e. system where the particle number of
one spin component exceeds the number of particles in the other spin component.
The component with the larger number is referred to as the majority. To realize
such a system we first prepare a balanced system with N = 2Nmaj. To create the
imbalance we take advantage of the magnetic field dependence of the magnetic
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2. Deterministic preparation

moment of the atoms. Around 30G the magnetic moment of the Zeeman substate
|2〉 vanishes and thus atoms in this state do not experience the spilling potential
Vmag = µzB

′z generated by the magnetic field gradient B′. The potential shape
for this state is indicated by the green line in figure 2.17 b). Yet, the magnetic
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Figure 2.17.: Preparation of imbalanced systems. a) Magnetic moment of the
two hyperfine states |1〉 and |2〉. The inset shows that the magnetic
moment of states |2〉 gets zero at about 30G. At this field the com-
ponent |1〉 can be controlled individually (blue potential shape in b)
without influencing the other component (green potential shape).

moment of atoms in state |1〉 does not vanish and thus the atoms are influenced
by the spilling process (blue line in figure 2.17 b). Again, by choosing an adequate
value for the optical trap depth parameter p, one can prepare a system with defined
number of minority particles. To invert the imbalance to have more particles in
state |1〉 than in |2〉 we can apply a Landau-Zener passage9 which transforms atoms
in state |1〉 to state |2〉 and vise versa.
This technique can also be used to determine the number of atoms in a certain
spin state after a measurement has been performed with some system. To realize
this spin dependent detection we remove all atoms which are not in the state of
interest by applying the previous spilling technique. In this case the depth of the
potential is chosen such that no bound states is left for these atoms. Finally we
detect the particle number of atoms left in the potential which corresponds to the
number of atoms in the state of interest.
9 For a two level system with a coupling Ω between the two state |i〉 and |j〉 introduced by a
radio-frequency the passage can be understood as follows: When applying a rf-frequency ωrf =
ω0 − |δ| with large detuning δ � Ω from the resonance frequency ω0 to the initial hyperfine
state |i〉, the initial state is equivalent to a dressed state [Dal85] |d−〉 = ci(δ,Ω)|i〉−cj(δ,Ω)|j〉
with ci = 1 and cj = 0. When sweeping the detuning slow enough [Zen32] across the resonance
the system adiabatically follows the dressed state which evolves to |d−〉 = ci|i〉 − cj |j〉 with
ci = 0 and cj = 1 for δ � Ω and ωrf = ω0 + |δ|, i.e. after the sweep one ends up in state |j〉.
Using this method we are able to transfer atoms from state |1〉 to |2〉 and vise versa. In the
microtrap we achieve a transfer efficiency of 95% per atom from one to the other hyperfine
state.
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2.4. Number state preparation, ground state preparation fidelity and lifetime

2.4.2. Effects resulting from finite temperature
Besides exciting atoms to higher levels during the ramp of the trapping potential
also effects from finite temperature might limit the preparation fidelity. We can
estimate an upper bound for the temperature of the sample in the microtrap by
analyzing the deviation from a perfectly prepared system at T = 0. To give
this upper bound we assume that all holes are due to thermal fluctuations in the
sample. For this consideration we neglect to have two holes at the same time which
can be done as long as the single hole probability is small. That this assumption
is fulfilled can be seen from the rightmost histogram of figure 2.15 where the single
hole probability is 12%. The probability to find such a hole on a certain trap
level with energy Eni is given by the complement of the occupation probability of
this level, which is determined by the Fermi Dirac distribution P (E). At finite
temperature the total probability to find a single hole on the first 4 levels which
are occupied by exactly 8 atoms at T=0 is then given by

Ph(nmax = 4) = 2×
nmax∑
ni=1

(1− P (Eni))×
nmax∏
nj=1
nj 6=ni

P (Enj)

︸ ︷︷ ︸
=1−O(10−3)

. (2.13)

We insert equation (2.3) for the Fermi Dirac distribution an substitute the chemical
potential by the Fermi energy which is a valid approximation for T � TF . In our
case the Fermi energy is determined by the trap depth of the microtrap and hence
EF ≈ V0 = kb × 3.3µK. Then the previous equation reads

Ph(nmax = 4) = 2×
nmax∑
ni=1

(
1−

(
e

(E0+ni~ωz)/EF −1
T/TF + 1

)−1)
(2.14)

with E0 = ~(ωr + 1/2ωz) = kb× 0.724µK the ground state energy of the trap and
~ωz = kb × 0.072µK the level spacing. With the experimental result of Ph = 12%
for 8 atoms we can solve equation (2.14) and find

T/TF = 0.19 (2.15)

as an upper bound for the temperature in the microtrap. As the temperature in
the microtrap is determined by the temperature of the reservoir this value is also
an upper bound for the temperature of the reservoir.
Hence the method of measuring the number fluctuations can be used to probe
the degeneracy of the lowest energy states of an ultracold Fermi gas as long as
the fluctuations do not arise from technical noise. This method is related to work

32



2. Deterministic preparation

from different experimental groups where the number fluctuations in a finite sub-
volume of a Fermi-gas has been measured providing a sensitive thermometry at
low temperatures [San10][Mül10].
Using the upper bound of the temperature we can also estimate the preparation
fidelity for a two-particle system if thermal fluctuations were the only limitation.
Inserting T/TF = 0.19 in equation (2.14) with nmax = 1 would result in a ground
state preparation fidelity of 97%. This is consistent with a reference measure-
ment which suppresses the effects of drifts of the barrier height during the spilling
process (appendix figure A.6). In this measurement we found an upper bound of
2.4(6)% for the probability of finding a hole in a two-particle system. Compar-
ing these results with the achieved ground state preparation fidelity of 93(2)% we
can conclude that one could still gain another 4(2)% in preparation fidelity when
further reducing technical noise sources such as excitations and drifts during the
spilling process.

2.4.3. Summary of the preparation results
In summary we have implemented a scheme with which we can deterministically
prepare a few fermion system. The challenge to built an extremely stable optical
setup has been successfully realized. With our reliable setup we achieved prepa-
ration fidelities of up to 96% and ground state preparation fidelities of up to 93%
with a lifetime of 60 s. Thus, our system is perfectly suited to perform experi-
ments with few interacting fermions. The only missing feature, the tunability of
the interparticle interaction, will be presented in the next chapter.
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3. Tuning interaction and few
particles with contact interaction
in a 1D harmonic trap

In the previous chapter we have demonstrated that we are able to deterministically
prepare a noninteracting two-component few-fermion system. Yet, the systems be-
comes most relevant for testing various theoretical models and simulating complex
phenomena when the particles are interacting. Ideally, the interaction strength
should be tunable to arbitrary values.
To realize this, we make use of one of the most fundamental properties of ultracold
gases namely that the interaction potential between two ultracold particles can be
described by only one parameter, the s-wave scattering length a3D. Magnetic Fes-
hbach resonances which exist in many ultracold samples of various atomic species
allow to tune the scattering length and thus the strength of the interaction.
This tunability enabled researchers to study various kinds of Hamiltonians in
which the interaction term is modeled by this parameter. For example in three-
component Fermi gases the existence of a universal three-body bound state, the
Efimov state [Efi70], could be proven [Kra06] and we were able to measure its
binding energies as a function of the scattering length by radio frequency associa-
tion [Lom10].
In this chapter we will present how the scattering properties of these samples leads
to an effective two-body interaction potential which is only dependent on the scat-
tering length, where the latter can be tuned by Feshbach resonances. In the second
part of this chapter we discuss the predictions for the properties of few interacting
particles which are confined in a potential similar to our microtrap potential. We
will first investigate the two-particle system and present regimes in which the in-
teraction properties of the system can by described by a one dimensional model.
This leads to the introduction of confinement induced resonances which determine
the interaction strength in this quasi-1D regime. Finally we extend our discussion
to systems of three particles and present approaches for solving systems with even
larger particle numbers.
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3.1. Tuning interaction

3.1. Tuning interaction
In the following we introduce the scattering properties of ultracold atoms and
present the possibility to tune the interaction strength by means of Feshbach reso-
nances. Further details can be found in [Dal98], [Sch07] and in the reviews [Blo08]
[Ket08] [Chi10].

3.1.1. Two-body interaction of ultracold fermions
Although one achieves high phase-space density in systems of ultracold atoms
which allow to study degenerate quantum gases these systems are generally di-
lute meaning that the interparticle distance is much larger than the range of the
two-particle interactions. The range of the interaction potential is determined by
the van-der-Waals range and is typically less than 5 nm whereas the interparticle
spacing is ∼ 1µm determined from the the number density of typically 1012 cm−3.
This means that the interaction properties can be described by collisional pro-
cesses in which only two particles are involved at the same time. The two-particle
scattering process is analyzed by a transformation into the center-of-mass frame
of the system. Then the process is described by a single particle scattered at a
scattering center at relative distance r = 0 given by the van-der-Waals interaction
potential Vi of the two particles. The corresponding Schrödinger equation reads(

− ~2

2µ∇
2 + Vi(r)

)
Ψk(r) = EkΨk(r) (3.1)

with Ek = ~k2/(2µ) the collisional energy and µ = m/2 the reduced mass. In
the absence of a confining potential the wavefunction far away from the scattering
center can be asymptotically constructed by incoming plane waves and outgoing
scattered spherical waves (see figure 3.1)

Ψk ∝ eikz + fk(θ)
eikr

r
(3.2)

where θ (0 ≤ θ < π ) is the angle between the incident plane wave pointing into z-
direction and the direction of observation. Using flux equations one can determine
the differential cross section of the scattering process from this ansatz

dσ(k)
dθ

= |fk(θ)|2 (3.3)

with |fk(θ)| the scattering amplitude which is defined through the interaction po-
tential. If the interaction potential would be exactly known for all values of r
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harmonic trap

Figure 3.1.: Scattering of two ultracold atoms. The scattering potential is
given by the van-der-Waals interaction potential of the atoms. Far
away from the scattering center the scattering event can be described
by incoming plane waves and outgoing spherical waves. At low mo-
menta of the particles only the s-wave of a partial wave expansion
contribute to the scattering event. In the case that the de Broglie
wavelength is larger than the effective range of the potential the scat-
tering event can be described by one parameter - the s-wave scattering
length a3D.

the cross section could be immediately determined. However, we are interested in
solving the problem without detailed knowledge of the exact shape of the interac-
tion potential as it is hard to determine it from ab initio calculations [Blo08]. Yet,
we can make use of the properties of the atoms at ultracold temperatures which
are typically on the order of ∼ 1µK. Then the wavelength of the incoming waves
are on the order of the thermal de Broglie wavelength of atoms of ∼ 1µm which
is much larger than the characteristic length scale of the van-der-Waals potential.
Hence, the scattered particles far away from the scattering center do not resolve
the detailed structure of the potential.
To solve the scattering problem for any potential which extension is smaller than
the de Broglie wavelength we apply a partial wave expansion and express the wave-
functions for the incoming and scattered wave in terms of spherical harmonics with
angular momentum quantum number l and spherical Bessel functions. When we
compare the l-th partical wave of the incoming wave with the scattered one they
only differ by a phase shift δl which incorporates the effect of the potential on the
collision process and determines the scattering amplitude

fk(θ) = 1
2ik

∞∑
l=0

(2l + 1)Pl(cos θ)(e2iδl(k) − 1) (3.4)
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with Pl(cos θ) the Legendre polynomials. The total cross section is then given by
the sum of all contributions arising from each partial wave

dσ(k)
dθ

=
∞∑
l=0

σl(k) (3.5)

with the partial cross section

σl(k) = 4π
k2 (2l + 1) sin2 δl(k). (3.6)

At low kinetic energies as they are present in systems of ultracold atoms the
collision energies are too low to overcome the centrifugal barrier in the radial
Schrödinger equation of the l-th partial wave which is proportional to l(l + 1)/r2.
Thus, at sufficiently low temperatures only the partial wave with l = 0, the s-wave,
contribute to the scattering process because higher partial waves are reflected from
the centrifugal barrier without probing the interaction potential. This means that
only the s-wave scattering contributes to the cross section and it is determined
only by the s-wave phase shift δ0 the particles acquire when they are scattered off
the scattering center.
So far we have not considered the symmetry properties of the particles. Yet, in
the case of identical fermions we have to consider the antisymmetric exchange
symmetry of the total wavefunction. Hence, for identical fermions the spatial
wavefunction has to be antisymmetric which can be only realized by partial waves
with l = 2n + 1. Herein, the s-wave is excluded and thus s-wave scattering for
identical fermions is forbidden. However, when investigating the properties of
spin mixtures of ultracold fermions also scattering events of two distinguishable
fermions are present. In this case the antisymmetric exchange symmetry for two
distinguishable fermions is not required and thus s-wave interaction occurs.
In the case of only s-wave contribution to the scattering process the scattering
amplitude simplifies to

fk(θ) = 1
2ik (e2iδ0(k) − 1) (3.7)

By an expansion in a power series of k the scattering phase shift can be expressed
by

k cot(δ0(k)) = − 1
a3D

+ 1
2reffk

2 + ... (3.8)

which defines the s-wave scattering length a3D and the effective range reff. For
atoms with a de Broglie wavelength much larger than the effective range (1/k �
reff ≈ r0) the second term in (3.8) can be neglected and the scattering amplitude
is given by

f = − a3D
1 + ika3D

(3.9)
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and depends except for the particles momenta only on one parameter, the s-wave
scattering length a3D which is given by

a3D = − lim
k→0

tan δ0(k)
k

. (3.10)

The total cross-section can be found by integrating the scattering amplitude (3.9):

σ0(k) = 4π
k2 sin2 δ0 . (3.11)

For small phase shifts in the regime ka < 1 we can write the cross section by

σ0(k) = 4πa2
3D. (3.12)

which only depends on s-wave scattering length a3D. However, as the scattering
phase approaches π/2 the scattering length diverges and so would the cross-section
if equation 3.12 applied in this regime. This would result in an unphysical di-
vergence of the outgoing flux of the scattering process. The outgoing flux can
maximum become equal to the incoming flux which is defined as the unitary limit
[Sak94, Sch07]. In this case where the scattering phase shift becomes π/2 and the
scattering length diverges the scattering cross section becomes independent of the
scattering length:

σ0(k) = 4π
k2 (3.13)

This is the unitarity regime where the scattering properties are only determined
by the particles momenta which allows for example for the investigation of unitary
Fermi gases [Ku12].

3.1.2. Interaction potential for two distinguishable fermions
In the presence of a confining potential we are not primarily interested in the cross
section or the phase shift which particles acquire far away from the scattering
center. We are interested in an general expression for the interaction potential
between two particles in the regime of the de Broglie wavelength much larger than
the effective range of the interaction potential. Although the exact interacting
potential might have a complicated form we do not resolve its fine structure and
the physical behavior of the two particles is solely determined by the scattering
amplitude (equation 3.7). Any potential whose effective range is smaller than
the de Broglie wavelength and which reproduces the scattering amplitude would
recover the scattering properties correctly. As described in [Blo08] equation 3.7 is
the correct scattering amplitude for the pseudo potential

Vi(r) = 4π~2a3D
m

δ(r)reg (3.14)
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with the regularized δ-function1 δ(r)reg = δ(r) ∂
∂r
r and r the relative distance be-

tween the two particles. Hence, the interaction potential of two ultracold distin-
guishable fermions is only determined by the scattering length a3D. As the range
of the pseudo potential is zero it represents the properties of a contact interaction.
Although we have found a simple parametrization for the interaction potential
it is constant as long as the scattering length is fixed. To be able to tune the
interaction strength a possibility to tune the scattering length is required.

3.1.3. Tuning the scattering length
To understand how one can tune the scattering length let us assume a box po-
tential of depth U and extension b for the scattering potential. We assume b to
be much smaller than the de Broglie wavelength of the scattering particles and
thus the scattering process can be described by the above formalism. J. Dalibard
[Dal98] has investigated how the scattering length depends on the depth U of this
potential. For a box potential with a depth/extend ratio too low to support any
bound state near the continuum the resulting scattering length is small and neg-
ative. If one has the possibility to tune the depth U of the potential one may
increases the depth of the potential. Then the absolute value of the negative scat-
tering length gets larger. When the depth gets as large that it can just support
a bound state at the continuum threshold, the phase shift is exactly π/2 and the
scattering length diverges. By further increasing the depth of the potential the
phase shifts continuously gets larger whereas the sign of the scattering length has
changed due to the dependence of a3D on tan(δ0). Continuing increasing the depth
reduces the absolute value of the positive scattering length until it crosses zero.
Then it becomes negative and the initial condition recurs.
With this box-shaped toy potential we have shown that by tuning the depth of
the potential we can tune the s-wave scattering length a3D. However, in the case
of the ultracold atoms we cannot easily tune the depth of the van-der-Waals inter-
action potential. Yet, the same effect is achieved when a bound state close to its
continuum threshold is tuned with respect to the continuum. When a quasi bound
state is close to the continuum, but still bound, the scattering length is large and
positive. It becomes resonant when the state is right at the continuum threshold.
When it has just become unbound in the potential the scattering length is large
and negative. In the following we will describe a possibility with which we can
indirectly tune a bound state with respect to the continuum threshold. Due to a
coupling to this state the scattering length is tuned.

1To model the 3D contact interaction potential the regularized δ-function δ(r)reg = δ(r) ∂
∂r r has

to be used in order to ensure that the Hamiltonian is self-adjoint [Bus98].
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3.1.4. Tuning the interaction strength via a Feshbach
resonance 2

The difference of a Feshbach resonance to the resonance previously described for
the box potential is, that the scattering potential does not have to provide a bound
state near the collision energy. Instead a bound state of a different collision channel
is resonantly coupled to the scattering channel. For a pictorial explanation of the
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FIG. 1 Basic two-channel model for a Feshbach resonance.
The phenomenon occurs when two atoms colliding at energy
E in the entrance channel resonantly couple to a molecular
bound state with energy Ec supported by the closed channel
potential. In the ultracold domain, collisions take place near
zero-energy, E → 0. Resonant coupling is then conveniently
realized by magnetically tuning Ec near 0, if the magnetic
moments of the closed and open channel differ.

achieved by optical methods, leading to optical Feshbach
resonances with many conceptual similarities to the mag-
netically tuned case; see Sec. VI.A. Such resonances
are promising for cases where magnetically tunable reso-
nances are absent.

A magnetically tuned Feshbach resonance can be
described by a simple expression2, introduced by
(Moerdijk et al., 1995), for the s-wave scattering length
a as a function of the magnetic field B,

a(B) = abg

(
1 − ∆

B −B0

)
. (1)

Figure 2(a) illustrates this resonance expression. The
background scattering length abg, which is the scatter-
ing length associated with Vbg(R), represents the off-
resonant value. It is directly related to the energy of the
last-bound vibrational level of Vbg(R). The parameter
B0 denotes the resonance position, where the scattering
length diverges (a → ±∞), and the parameter ∆ is the
resonance width. Note that both abg and ∆ can be posi-
tive or negative. An important point is the zero crossing
of the scattering length associated with a Feshbach res-
onance; it occurs at a magnetic field B = B0 + ∆. Note
also that we will use G as the magnetic field unit in this
Review, because of its near-universal usage among groups
working in this field; 1 G = 10−4 T.

The energy of the weakly bound molecular state near
the resonance position B0 is shown in Fig. 2(b), relative

2 This simple expression applies to resonances without two-body
decay channels. Some Feshbach resonances, especially the op-
tical ones, feature two-body decay. A more general discussion
including decay is given in Sec. II.A.3
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FIG. 2 Scattering length a (Panel (a)) and molecular state en-
ergy E (Panel (b)) near a magnetically tuned Feshbach reso-
nance. The binding energy is defined to be positive, Eb = −E.
The inset shows the universal regime near the point of reso-
nance where a is very large and positive.

to the threshold of two free atoms with zero kinetic en-
ergy. The energy approaches threshold at E = 0 on the
side of the resonance where a is large and positive. Away
from resonance, the energy varies linearly with B with a
slope given by δµ, the difference in magnetic moments of
the open and closed channels. Near resonance the cou-
pling between the two channels mixes in entrance-channel
contributions and strongly bends the molecular state.

In the vicinity of the resonance position at B0, where
the two channels are strongly coupled, the scattering
length is very large. For large positive values of a, a
“dressed” molecular state exists with a binding energy
given by

Eb =
h̄2

2µa2
, (2)

where µ is the reduced mass of the atom pair. In this
limit Eb depends quadratically on the magnetic detun-
ing B − B0 and results in the bend seen in the inset to
Fig. 2. This region is of particular interest because of
its universal properties. In the universal limit, the state
can be described in terms of a single effective molecular
potential having scattering length a. In this case, the
wavefunction for the relative atomic motion is a quan-
tum halo state which extends to a very large size on the
order of a; the molecule is then called a halo dimer; see
Sec. V.B.2.

A very useful distinction can be made between reso-
nances that exist in various systems; see Sec. II.B.2. For
narrow resonances with a width ∆ typically well below
1 G (see Appendix) the universal range persist only for
a very small fraction of the width. In contrast, broad
resonances with a width typically much larger than 1 G

Figure 3.2.: Illustration of the Feshbach resonance. The atoms enter the
collision region in the open channel with kinetic energy E. If there
is a close channel bound state near the entrance energy, the open
channel couples to the closed channel. The outgoing scattering wave
experiences a phase shift which leads to a divergence of the scattering
length at resonance. By controlling the energy difference E − Eα,c,
one can tune the coupling of the states and so the scattering length.
Plot taken from [Chi10].

Feshbach resonance we define the channel energy Eα,c as the internal energy of
the two separated atoms following the more detailed description of [Chi10]. A
channel is called an open channel if the total energy Etot = Eα,c + E, with E the
kinetic energy, is equal or larger then the total energy of the initial collision state;
it is called a closed channel if the energy is lower and the atoms are not able to
separate to free atoms. A Feshbach resonance occurs when the energy of a bound
state crosses the collision energy of the open channel. The situation is illustrated
in figure 3.2. By coupling of the entrance channel to the closed channel the atoms
can be virtually in the bound state before they separate. By that, they pick up a
2taken from [Zür09] and adapted
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3.1. Tuning interaction

phase shift which leads to a resonant scattering length

ares ∝
1

Etot − Eα,c
(3.15)

which is inverse proportional to the energy difference of these states. Again the
scattering length can adopt values from −∞ to +∞ dependent on the sign of the
energy difference.
In a magnetic Feshbach resonance this difference can be tuned by the magnetic
field. If there is a difference in magnetic moment of the closed channel and the
open channel,

δµ = µatoms − µc (3.16)

the energy difference tunes with the magnetic offset field. The resulting effective
scattering length a3D depends on the background scattering length abg and on the
width of the resonance ∆B. It is then given by

a3D(B) = abg

(
1− ∆B

B −B0

)
. (3.17)

with B0 the position of the resonance.

3.1.5. Feshbach resonances in 6Li
The ultracold atoms of our choice are 6Li atoms. 6Li consist of three electrons
with one of them in the valence shell which is the reason for the hydrogen-like
structure of its electronic levels. The total spin of the atom is a combination of
the nuclear spin I = 1 and the electron spin s = 1/2. Due to its odd-half integer
spin 6Li is a fermionic species. For zero angular momentum (l = 0) the electron
spin s of the valence electron and the nuclear spin I couple to two hyperfine states,
where the lowest states split up in a Zeeman doublet for low magnetic fields (see
appendix figure A.1). In the Paschen-Back regime for larger magnetic offset fields,
the electron spin tends to decouple from the nuclear spin and is aligned in the
external field. In this regime the nuclear spin is aligned separately, with three
different possible projections to the quantization axis. We label these states as
follows:

state Paschen Back regime Zeeman regime
high field low field

|1〉 |ms=−1/2,mI= 1〉 |F = 1/2,mF= 1/2〉
|2〉 |ms=−1/2,mI= 0〉 |F = 1/2,mF=−1/2〉
|3〉 |ms=−1/2,mI=−1〉 |F = 3/2,mF=−3/2〉
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These states have the advantage that they cannot undergo inelastic spin exchange
collisions due to the non existence of energetically reachable final states. Hence, a
two-component combination of any of these states is suitable for experiments with
interacting few-fermion systems.
In the high magnetic field region the electronic two-particle state has to be a triplet
state because of the conservation of the spin projection quantum number (mS =
−1). In 6Li the triplet potential provides a quasi-bound state close above the
continuum, from which the large value of the background scattering length of about
−2000 Bohr radii (a0) arises. For lower magnetic fields the interaction potential
is a linear combination of triplet and singlet potential where close to zero field the
singlet potential is dominant. It has a background scattering length which is close
to zero. Between 600G and 1000G a Feshbach resonance exist in each of the three
different combination of hyperfine states (see figure 3.3). The most commonly used
spin combination for our experiments is the |1〉-|2〉 spin mixture which we create by
optical pumping into the |F = 1/2〉 before the transfer of particles from the MOT
to the large volume dipole trap. In this combination also the differential magnetic
moment with respect to the magnetic field is most similar which is preferred in
experiments which involve a magnetic potential. Unfortunately, due to the increase
of the background scattering length from almost zero to −2000 a0 for magnetic
fields ranging from 0 to 1500G not all values of the scattering length are accessible.
This gap is largest in the |1〉-|2〉 spin combination which is why we occasionally
draw on the other spin-combinations with the |1〉-|3〉 combination possessing the
smallest gap.
All values of the scattering length are shown in figure 3.3 and can be accessed by
tuning the magnetic offset field.
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Figure 3.3.: s-wave scattering length a3D of 6Li . The plot shows a3D as

a function of the magnetic offset field for different combinations of
hyperfine states. The units of a3D are given in Bohr radii (a0). For
low magnetic field values the scattering lenght is singlet dominated
and thus almost zero. In most of the experiments presented in this
thesis we use the |1〉-|2〉 combination of hyperfine states which exhibits
a nice broad Feshbach resonance at 832G with a width of ∆B ≈ 300G.
By tuning the magnetic offset field to the zero-crossing at 527G we can
switch off the interparticle interaction. For large magnetic field values
the scattering length converges to the triplet background scattering
length of about −2000 a0. The position of the Feshbach resonance
has been determined from precise rf-spectroscopy of weakly bound
molecules associated with the Feshbach resonance (see chapter 6.4).
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3.2. Few interacting particles in a harmonic trap
The presence of a confining potential changes the interaction properties of two
particles compared to free space. The trapping potential leads to a discrete energy
spectrum of the interacting particles. These energy spectra and the corresponding
wavefunctions are of special interest for us to understand and interpret our exper-
iments with interacting few-fermion systems.
In this section we present the solution for the energy of two and three particles in
a harmonic trap. For two particles with contact interaction there is an analytic
solution for the energy and the wavefunction both in a 1D trap and in a spherical
3D trap [Bus98]. However, in a real experiment a perfect 1D environment does not
exist. Nevertheless, it is possible to enter a quasi-1D regime where the confinement
in two axis is much tighter than in the other axis. The tight axis is characterized
by the harmonic oscillator trap frequency ω⊥ and the weak axis by ω‖. In the
case ω⊥ > ω‖ the properties of the system can be described by a 1D solution with
rescaled coupling constant which can be determined from the 3D scattering length
[Ols98].
Here, we will first discuss the 3D solution of two particles in a cigar shaped har-
monic trap with arbitrary aspect ratio η = ω⊥/ω‖ derived by I. Idziaszek et al.
[Idz05, Idz06]. Then we consider the case η → ∞ of this solution. We will see
that it will recover the 1D solution of two particles in a harmonic trap derived by
T. Busch et al. [Bus98]. The used translation from the 3D coupling constant to
the 1D coupling constant then reproduces the condition for a confinement induced
resonance [Ber03]. In the second part of this section we present the solution for
a three-particle system calculated by the group of D. Blume [Gha12]. Finally we
briefly discuss some methods to describe systems with even larger particle num-
bers.

3.2.1. Analytic solution for two particles in a 3D cigar shaped
trap

Although we are primarily interested in the properties of a 1D system of two par-
ticles in a harmonic trap as sketched in figure 3.4, we first consider a system of two
particles in radial symmetric 3D cigar shaped harmonic trap as we use such a trap
in our experiment. We present the ansatz and the solution for arbitrary aspect
ratio following [Idz06]. Then we set the aspect ratio to that of our experiment and
compare the result to the 1D solution. Finally we present the regimes in which
the 1D theory is applicable.
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Figure 3.4.: Two-particles in a 1D harmonic trap.

Description of the two-particle system in a 3D cigar shaped trap

The Hamiltonian of the system is given by:

H = − ~2

2m∇
2
1 −

~2

2m∇
2
2 + Vt(r1) + Vt(r2) + Vi(r1 − r2) (3.18)

with ri the position of the two particles, Vt the trapping potential and Vi the
interaction potential. The trapping potential is given by the harmonic oscillator
potential

Vt(ri) = 1
2m

(
ω2
⊥ρ

2
i + ω‖z

2
i

)
(3.19)

where ω⊥ and ω⊥ are the trap frequencies in radial and axial direction with ρ2
i =

x2
i + y2

i . The interparticle interaction is determined by the the s-wave scattering
length a3D which describes the interaction properties of ultracold atoms and is
given by equation (3.14):

Vi(r1 − r2) = 4π~2a3D
m

δ(r1 − r2)reg . (3.20)

As the interaction potential only acts on the relative distance between the two
particles one can separate the system into a center-of-mass- and a relative-motion
term with the corresponding coordinates R = r1 + r2 and r = r1 − r2. Then the
two commuting Hamiltonians in center-of-mass and relative coordinates read

HCOM = − ~2

2M∇
2
R + M

m
Vt(R) (3.21)

HREL = − ~2

2µ∇
2
r + µ

m
Vt(r) + Vi(r) (3.22)

with µ = m/2 the reduced mass and M = 2m the total mass. The center-of-mass
term does not contain any interaction term and the solution is just that of a single
particle with mass M in a harmonic oscillator. To simplify the representation of
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the analysis we use dimensionless units by expressing all length scales in units of
the harmonic oscillator length of the weak axis a‖ =

√
~
µω‖

and the energy in units
of ~ω‖. To find the eigenfunctions of the relative-motion Hamiltonian one has to
solve the stationary Schrödinger equation(

−1
2∇

2
r + 1

2(η2ρ2 + z2) + 2πa3Dδ(r)reg
)

Ψ(r) = EΨ(r) (3.23)

where η = ω⊥/ω‖ is the aspect ratio. To find the solution one can expand the
wavefunctions Ψ(r) into the complete set of the well known eigenfunctions of a
harmonic oscillator

Ψ(r) =
∑
n,k

cn,kΦn,0(ρ, φ)Θk(z) (3.24)

with the decomposition coefficients cn,k. Due to the cylindrical symmetry the
eigenstates are given in polar coordinates (ρ, φ) with Φn,m the wavefunctions of
the two dimensional harmonic oscillator with radial and angular quantum numbers
n and m. Θk(z) is the one dimensional h.o. wavefunction with quantum number
k. Only states with quantum number m = 0 contribute to the sum of the decom-
position since all states with higher angular momentum vanish at r = 0, the only
point where the interaction term is non-zero. By substituting the decomposition
into the Schrödinger equation one can derive an equation for the coefficients of the
decomposition. Solving for the coefficients is a rather complex analysis which is
why we refer to the work of [Idz06] for the algebra. The result of this analysis is
an implicit equation for the energy E which relates the scattering length a3D to
the energy eigenstates

− 1
a3D

= 1√
π
F (−E/2) . (3.25)

with E = E − E0, where E is the total energy of the relative motion and E0 the
energy of the zero point motion. The integral representation of F (x) is given by

F (x) =
∫ ∞

0
dt

(
ηe−xt√

1− e−t (1− e−ηt)
− 1
t3/2

)
(3.26)

which is valid only for x > 0, i.e for interaction energies smaller than 0. Thus,
equation (3.26) only describes the energy of the so-called attractive branch3. A
general solution, valid for all values of x, is given by the following series represen-
tation

F (x) = η

2π

∞∑
n=0

(
Γ(x+ nη)

Γ(1
2 + x+ nη) −

1
√
η
√
n+ 1

)
+
√
η

2π ζ
(1

2

)
(3.27)

3for the notation of the branches see figure 3.5
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3.2. Few interacting particles in a harmonic trap

with Γ(x) the Euler gamma function and ζ
(

1
2

)
the Riemann zeta function [Abr72].

Yet, this exact condition for the energy of the system cannot be solved analytically.

Approximated analytic solution for large aspect ratio

For some regimes the solution can be simplified by certain approximations. We
are primarily interested in the solution for η � 1. For x ∼ η and η � 1 the
integral in equation (3.26) can be approximated and analytically integrated. Then
one obtains the analytic expression of F (x) for all values of x

F (x) ≈ √π η ζH
(

1
2 , 1 + x

η

)
+ η
√
π

Γ(x)
Γ(x+ 1

2) (3.28)

with ζH (s, a) = ∑∞
k=0 (k + a)−s the Hurwitz zeta function. This expression sub-

stituted in equation (3.25) determines the energy eigenstates of the system. I.
Idziaszek and T. Calarco have compared the latter approximated analytical solu-
tion with a numerical calculation of the the exact result. They have found quite
accurate agreement for x > −η. Thus, as long as we are only interested in the
weakly bound attractive state and the first or second repulsive branch we can use
expression (3.25) and (3.28) to determine the energy of the system. The blue
curve in figure 3.5 shows the calculated energy for an aspect ratio of η = 10 as it is
the case in our experiment. We have labeled the state with E < 0 the ’attractive
branch’ and the state with 0 < E < 2 the ’repulsive branch’. The energy is plotted
versus the 1D coupling constant which is introduced in the next section to be able
to compare it with the solution of the 1D approach.

3.2.2. Two particles in a 1D system
We want to compare the result for the 3D cigar shaped trap with the analytic
solution of a pure 1D system. The relative motion Hamiltonian of this system is
given by

H = − ~2

2µ
∂

∂r
+ 1

2µω‖r
2 + g1D δ(r) (3.29)

with r = z1 − z2 the relative distance between the two particles. Here g1D is the
coupling constant of the contact interaction in 1D 4. For this 1D case the energy of
the states has been derived by T. Busch et al. [Bus98] and is given by the implicit

4In 1D the regularization of the δ-potential is not necessary.
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Figure 3.5.: Energy of two-particles in a harmonic trap. The energy is given in terms of
the negative inverse scattering length −1/g1D where g1D is determined from a3D
using equation (3.37). The negative inverse scale is chosen to find the resonance-
position of the 1D coupling constant in the center of the plot and the attractive
branch of the 1D system on the left hand side of the plot. The solution of the 1D
approach is given by the black curve and the solution of the 3D approach with a
cigar shaped trap with an aspect ratio of η = ω⊥/ω‖ = 10 is given by the blue
curve. The energy of the ground state is 1

2 (2η + 1)~ω‖ = 10.5 ~ω‖. We denote
the state with E < 10.5 the attractive branch and the state with 10.5 < E < 12.5
the repulsive branch. We find excellent agreement between the repulsive branches
of the 1D and 3D theory. Hence, for experiments involving the repulsive branch
we can apply the 1D theory. For experiments involving the attractive branch and
large binding energies one has to apply the 3D theory because the energy of the
1D solution approaches −∞ for g1D → −∞ whereas the attractive state in the 3D
theory crosses the resonance position which is depicted in the inset of this figure.
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3.2. Few interacting particles in a harmonic trap

equation

− 1
g1D

= µ

2~2

Γ
(
−E2

)
Γ
(
−E2 + 1

2

) (3.30)

The black curve in figure 3.5 represents the energy of the pure 1D system. Gener-
ally the energy of the system tunes with dE

dg1D
> 0.

Interpretation of the results: The repulsive branch.

For the repulsive branch we find very good agreement of the 1D solution compared
the 3D solution in a cigar shaped trap with 1:10 aspect ratio. The relative devia-
tion between these two states is less than 1% and is maximal where the coupling
constant diverges 5. Thus, the physical behavior of two particles on the repulsive
branch in a 3D trap with sufficiently large aspect ratio can be described by the 1D
theory. The comparison has shown that a 1:10 aspect ratio already fulfills this cri-
terion. Thus, when performing experiments with particles on the repulsive branch
we can apply the 1D theory. For the 1D case there is also an analytic solution for
the wavefunctions of two particles in a harmonic trap [Gir10]:

Ψ(r) = DE(r) (3.31)

with E the solution of the transcendental equation (3.30) and DE the parabolic
cylinder functions [Abr72]. Figure 3.6 shows the wavefunctions of the relative
motion part of the repulsive state depending on the 1D coupling strength. The
total wavefunction is the product of the relative motion wavefunction and the
center-of-mass wavefunction. The latter is simply given by the well known Hermite
polynomials solving for the eigenstates of the harmonic oscillator. For g1D = 0 also
the relative motion wavefunctions is given by the Gaussian form of the harmonic
oscillator ground state. For increasing g1D the particles tend to avoid each other
which is expressed by a cusp in the wavefunction appearing at relative distance
r = 0. For infinitely strong repulsion 6 the probability that the particles are at the
same point in space vanish. Across the point of diverging g1D the wavefunction
continuously changes and acquires probability amplitude at r = 0 with two nodal
points next to the origin. The two nodal points indicate that the energy of the
state has become larger than 1 ~ω‖. We call this state the super-repulsive state,
5Note: for higher excitations of the repulsive state the deviation between 1D and 3D theory
becomes larger.

6With infinitely strong repulsion we denote the point where g1D diverges. Except for the
divergence of the coupling strength at the resonance position all other physical parameters
remain finite and change smoothly across the resonance such as the shape of the wavefunction
(figure 3.6.) and the energy of the system (figure 3.5).
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Figure 3.6.: Wavefunction of the relative motion of two interacting parti-
cles in a 1D harmonic trap. The wavefunctions from the left to the
right corresponds to the energy of the repulsive branch in figure 3.5 for
different g1D ranging from g1D = +0 to g1D = −0. Due to the contact
interaction the wavefunction develops a point of non-differentiability
at the origin. At diverging g1D the probability to find both particles
at the same point in space (r = 0) vanishes.

because it is the continuation of the repulsive branch across the point of diverging
coupling constant with g1D negative 7 . The region of g1D < 0 is often called the
attractive side. We do not use this notation because its misleading: It suggests
that the particles are attractively interacting in the sense that the particles form
a bound state. This is only true for the attractive branch. Above this branch the
super-repulsive state exist which is not a bound state. In the context of a large
sample of particles this state is referred to as a meta-stable state [Hal09] because
it is energetically higher than the ground-state and can relax to the ground state
in the presence of a coupling mechanism which is for example introduced by an
anharmonicity of the trap (to be discussed in chapter 4.5). However, in a perfect
harmonic potential the attractive branch and the repulsive branch are orthogonal
since both are eigenstates and thus these states are stable. We will show in our
experiments that we are able to access the super-repulsive state even with more
than two particles without significant loss.

The attractive branch

Although we find excellent agreement of the 1D solution and the 3D solution with
1:10 aspect ratio for 0 < E < 2 the attractive branches in the models deviate
7’One might think that the negative potential energy contribution from the delta function at
r = 0 would lower the energy of the g1D < 0 solution relative to that of g1D → +∞ , but
that argument is specious, because there is also a positive kinetic energy contribution due to
the cusp induced by the delta function; by the Schrödinger equation satisfied by DE , the delta
function term g1D δ(r)DE and the kinetic energy term sum to (E + 1

2 )[~ω‖]DE .’ Taken from
[Gir10] and adapted.
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3.2. Few interacting particles in a harmonic trap

drastically from each other. In the 3D approach of [Idz06] the energy of the bound
state expressed in physical units reads

− a⊥
a3D

= ζH

(1
2 ,
E0 − E
2~ω⊥

)
(3.32)

and is determined solely by the trap frequency of the radial confinement ω⊥ which
in the 1D approach is not present. For low binding energies in the case of −1/g1D >
1 the description of the 1D approch is still sufficient. Yet, for −1/g1D < 1 the
deviations increase drastically. At the point of diverging coupling strength both
solutions are fundamentally different. In the 1D approach the energy of the bound
state diverges to E → −∞ for g1D → −∞. This means that there exists no bound
state in a 1D system for positive g1D. Contrary, the energy of the bound state
in the 3D approach crosses the point of diverging coupling strength at EB ∼
−2η (see inset figure 3.5). The reason is that for large binding energies, Eb �
~ω⊥, the extension of the bound state becomes much smaller then the size of the
confinement. In this case the effect of the confining trap on the bound state must
vanish. Then the energy converges to the energy of a universal bound state which
is always associated with this type of interaction potential (equation 3.20). The
binding energy of this universal bound state in free space is given by ([Lan87] after
[Blo08])

Eb = − ~2

µa2
3D

(3.33)

for a3D > 0. The corresponding wavefunction exhibits an exponential decay in its
asymptotic behavior [Chi05]:

Ψ(r) ∝ e−|r|/a3D , (3.34)

with the extension of the wavefunction, i.e. the size of the molecule solely deter-
mined by the scattering length. In free space without a confining potential the
universal bound state becomes unbound when the scattering length diverges and
there exist no bound state for negative values of the 3D scattering length. The
comparison between the 3D approach with confinement and the universal theory
of a bound state in free space is shown in figure 6.9 in chapter 6. The effect of
the confinement on the bound state for binding energies on the order of ~ω⊥ has
to be considered for the precise determination of the scattering length from the
measurement of the binding energies of a two-particle bound state (to be discussed
in chapter 6.4). However, in this regime, the condition of Eb > −η [~ω‖] necessary
for deriving the analytic approximation of equation (3.28) is not fulfilled. For this
case we numerically solve the integral in the exact expression (3.26) for deriving
the correct energy of the bound state.
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harmonic trap

3.2.3. Confinement induced resonance and 1D coupling
constant

We have shown that the energy of the repulsive state of the 3D approach for suf-
ficiently large η is very similar to that of the 1D solution of [Bus98]. In the limit
η → ∞ the energies of both approaches must match [Ber03] and thus a mapping
of the 3D scattering length onto the 1D coupling constant should exist.
In the case η � 1 the implicit equation for deriving the energy is given by substi-
tuting F (x) in equation (3.25) by (3.28):

− 1
a3D

= √η ζH
(

1
2 , 1−

E
2η

)
+ η

Γ(−E2 )
Γ(−E2 + 1

2)
. (3.35)

For the energies E � η [~ω‖] one can neglect the dependence on the energy in the
first term on the right hand side. Then ζH(1

2 , 1 −
E
2η ) ≈ ζ(1

2) [Idz06]. Comparing
this relation to the relation (3.30) solving for the 1D system one finds that

1
η

(
1

a3D/a‖
+√η ζ

(1
2

))
= 2~2

µ

1
g1D

/a‖ (3.36)

must be fulfilled when both approaches reproduce the same state. Here we ex-
pressed the length scales in physical units by expressing the scattering length and
the 1D coupling constant in units of the harmonic oscillator length a‖. With
a‖ = √η a⊥ we find the following relation between the 1D coupling constant and
the 3D scattering length:

g1D = 2~2a3D
µa2
⊥

1
1− Ca3D/a⊥

(3.37)

with C=−ζ(1
2)=1.46... . This expression was derived in a similar way by T. Berge-

man, M.G. Moore, and M. Olshanii for finding the condition of a confinement
induced resonance (CIR) [Ber03]. When the scattering length becomes of the size
of the harmonic oscillator length

a⊥ = Ca3D (3.38)

the 1D coupling constant diverges. At this point the relative motion wavefunction
of the repulsive branch becomes zero at r = 0 and the interaction energy of the
system is exactly ~ω‖. Tuning a3D by means of a Feshbach resonance effects the
1D coupling constant g1D according equation (3.37). We can determine the 1D
coupling constant g1D of our system by using the confining harmonic oscillator
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3.2. Few interacting particles in a harmonic trap
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Figure 3.7.: Confinement induced resonance (CIR) for 6Li atoms in our
microtrap. In the presence of a cigar shaped trap the interaction
properties of this quasi 1D system can be described by a 1D coupling
constant g1D which we determine from the scattering length of the 6Li
system using equation (3.37). For the harmonic oscillator length we
have used a⊥ = 0.49µm of the microtrap at an optical trap depth of
V0r = 4.12µK.

length a⊥ = 0.49µm of the microtrap potential8. The functional form and the
resonance position are presented in figure 3.7.
In summary with the control of the magnetic offset field we have a tuning knob
over the 1D coupling constant. The energy E of any 1D system which we study
in this thesis tunes with dE

dB
> 0.

3.2.4. The three-particle and N-particle sytems
The larger the number of particles the more difficult it is to determine the energy
and the wavefunction of the system as the dimension of the configuration space
8The harmonic oscillator length a⊥ tunes with the depth of the microtrap. Here we used the
trap parameter ωr = 14.22 kHz at a depth of V0r = 4.12µK for the calculation of a⊥. For
the determination of the trap parameters see chapter 4.2.2.
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exponentially increases with the number of particles:

H = − ~2

2m

N∑
i=1

∂2

∂x2
i

+ 1
2mω

2
‖

N∑
i=1

x2
i + g1D

N∑
i<j

δ(xi − xj) (3.39)

The three-particle sytems

The group of Dörte Blume was able to numerically calculate the energy of a three-
fermion system consisting of two identical fermions and another one which is dis-
tinguishable from the others as sketched in figure 3.8 and provided us with their

F 0
4 8

F 0
4 C

Figure 3.8.: Three-particles in a 1D harmonic trap - odd parity.

data. They commented the accuracy of their calculation as follows: ’Our ap-
proach builds on the work by Calarco et al. [Idz06]. In particular, we start with
the Lippmann-Schwinger equation, and expand the Green’s function using what’s
known about the two-body system for anisotropic traps. For three particles in a
spherical symmetric trap the approach was used by [Kes07]. As argued by Peter
Drummond and coworkers, the approach can be reinterpreted as a basis set ex-
pansion approach [Liu09]. For the anisotropic system, the same argument holds.
Errors are introduced by truncating the number of states we use to expand the
Green’s function and the number of terms we use when evaluating some of the
integrals involved by converting integrals to an infinite sums and truncating. For
the low-lying states we are looking at, the numerical accuracy should be very good,
the error should be much smaller than 1%’ [Gha12].
In their calculation they have distinguished between even and odd parity states of
the three particle system. We are primarily interested in systems with minimum
energy at g1D = 0 due to the way we prepare the few-particle system. In general
the parity of our two-component systems with N|1〉 particles in one spin state and
N|2〉 particles in the other spin state is given by

(−1)(N|1〉−1)+(N|2〉−1) (3.40)

This is the reason why in the previous case of a two-particle system we discussed
the even-parity states. In the case of a three-particle system we are interested
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3.2. Few interacting particles in a harmonic trap

in the odd-parity system. From the group of Dörte Blume [Gha12] we got data
sets of numerical calculations for the odd-parity states. They have performed a
calculation for both the three-particle system in an anisotropic 3D cigar shaped
trap with an aspect ratio of 1:10 and for a three-particle system in a 1D environ-
ment. The energy in this data set has been parametrized in terms of the inverse
3D scattering length in units of the perpendicular harmonic oscillator length a⊥.
To convert it to the inverse 1D coupling constant in units of [a‖~ω‖]−1 we have
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Figure 3.9.: Energy of three particles in a 3D cigar shaped trap with an aspect
ratio of ω⊥/ω‖ = 10. The energy has been calculated in the group of Dörte
Blume [Gha12] and has been rescaled using equation (3.41). The energy of
the ground state is (3 × 1/2 (2η + 1) + 1)~ω‖ = 22 ~ω‖. The dense cluster
of states around 1/g1D=0 contains states which include molecular states.
In the 3D solution these states are present at g1D > 0 below the position
of the CIR. The upper dark green line indicates the energy of the repulsive
branch which does not contain a molecular state.

used the rescaling (3.37) which in this special case takes on the form

− 1
g1D

= −

 2 η

a−1
3D

(
1− C

√
η

a−1
3D

)

−1

. (3.41)
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harmonic trap

Figure 3.9 shows the energy of the three-particle systems for the 3D case with
1:10 aspect ratio. The spectrum contains a lot of different states which involve a
molecular state of two particles. These states can be identified by tracking them
towards the resonance position in g1D where they diverge. We again compare the
result of the 3D approach to the result of the 1D approach shown in figure 3.10.
One finds a quite similar behavior as for the two-particle system. In the 1D case
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Figure 3.10.: Energy of three particles in a 1D trap. The energy has been calcu-
lated in the group of Dörte Blume [Gha12] and has been rescaled using
equation (3.41). In the 1D solution the states which involve molecules all
diverge to −∞ at the CIR. The green line shows the energy of the repul-
sive state of the 3D approach. For the repulsive branch the 1D solution
still represents the real situation in the experiment quite well. However,
the deviations for large g1D are already on the order of 2% which has to be
taken into account when performing precise rf-spectroscopy measurements
of that state.

the attractive state never crosses the g1D resonance position, whereas in the 3D
approach the molecular states exist on the side of positive g1D.
Due to the high precision on the order of a few percent of the trap frequency we
achieve in rf-spectroscopy measurements we are interested in the energy difference
of the repulsive branch in the 3D approach and in the 1D approach. In figure
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3.2. Few interacting particles in a harmonic trap

3.10 one can visually resolve this difference between the black data (1D approach
) and the green data (3D approach). Due to the larger interaction energy involved
in the three-particle system compared to the two-particle system the effect of the
confining trapping potential has become larger. The difference close to the CIR
is already in the 2% range. This shift has to be considered when comparing the
measured energies of three particles in our microtrap with one dimensional theo-
retical models.

The N-particle sytems

For the four-particle system the previous approach should also work [Gha12]. How-
ever, when writing this thesis the calculation has not yet been available. For
larger particle numbers (N = 4, 5, 6) we draw on the full numerical calculations
performed by Ionians Brouzos from the group of Peter Schmelcher using a mul-
ticonfigurational approach in terms of Hartree products (MCTDH) [Mey90] in a
strict 1D environment.
An alternative approach for largerN developed in their group is the construction of
a many-body wavefunction from multiple products of the parabolic cylinder func-
tions (3.31) which solves the two-particle system. The ansatz for this correlated
pair wavefunctions reads:

Ψ(x1, ..., xN) = C
P∏
i<j

Dµ(β |xi − xj|) (3.42)

where P = N(N − 1)/2 is the number of distinct pairs and β and µ parameters
which have to be determined [Bro12b]. This analytic approach was first evaluated
for bosons and has been recently extended to fermions by enforcing fermionic
permutation symmetry of the correlated pair wavefunctions [Bro12c] 9. For finite
g1D their approximated analytic solution deviates from numerical calculations with
maximum deviation around g1D = 1. Thus, whether this model can be applied
depends on the targeted precision of our experiment. Yet, the analytic approach
exactly reproduces the many-body state for g1D → 0 and g1D → +∞. The latter
case is the fermionization limit [Gir10] for which an exact solution of the many-
body Hamiltonian (3.39) exists. This will be the topic of the next chapter.

9Unfortunately both methods are constraint to the calculation of the systems ground state and
thus cannot describe the super-repulsive state of the N-particle system.
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4. Fermionization of two
distinguishable fermions

With the possibility to deterministically prepare few fermions in the ground state
of a trap (chapter 2) and with the exceptional tunability of the interparticle inter-
action (chapter 3) we have all ingredients to study interacting few-fermion systems.
Here we start with the simplest non-trivial system: The two-particle system of two
distinguishable fermions with contact interaction in a 1D harmonic trap.
For particle number larger than two we have already seen that a theoretical de-
scription is hard to establish. A powerful tool to reduce the complexity of these
systems is to map it onto a system with a simpler solution as done in the work of
M.D. Girardeau [Gir60]: He has shown that in a 1D environment there exists a
one to one correspondence between a system of interacting bosons and a system
of identical fermions. At diverging coupling strength the energy and the square
modulus of the spatial wavefunctions Ψ(x1, ..., xn) of such an interacting system
becomes equivalent to that of a system of noninteracting identical fermions. This is
referred to as fermionization[Pet00b]. At the point of fermionization the local pair
correlation 1 g2(0) vanishes just like in a gas of noninteracting identical fermions.
In experiments with interacting 1D Bose gases the correlations in these so-called
Tonks-Girardeau gases have been studied. In the group of David S. Weiss they
found strong evidence for fermionization by observing a reduction of the two-
particle correlation g2(0) for increasing but finite coupling strength [Kin04] [Kin05].
The group of Hanns-Christoph Nägerl first demonstrated that the interaction
regime across the point of fermionization, which is called the super-Tonks-regime,
is accessible [Hal09].
In his recent work, M.D. Girardeau has shown that fermionization occurs re-
gardless of whether the particles are identical bosons or distinguishable fermions
[Gir10]. For constructing the correlated many-body wavefunction the main build-
ing block is the interacting two-particle system in a 1D harmonic oscillator with
contact interaction.

1In the case of a two particle system, the pair correlation g2(r) is proportional to the probability
that one particle is found at x1 and the other at x2 with relative distance r = x1−x2 [Fra03].
g2(0) expresses the probability to find the two particles at the same point in space.
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4.1. The fermionization experiment

In this chapter we present the experimental demonstration that a system of two
distinguishable fermions becomes fermionized at diverging coupling strength. We
prove this by directly comparing the energy and square modulus of the wavefunc-
tion of two distinguishable fermions at diverging coupling strength with those of
two identical fermions [Zür12]. In the second section we determine the energy
of the interacting two-particle system which has been studied for large but not
diverging coupling strength in the group of Tilman Esslinger [Stö06] and Klaus
Sengstock [Osp06]. Finally, we add another particle and find evidence for the
fermionization of three particles.

4.1. The fermionization experiment
The goal of the following experiment is the observation of the fermionization of
two distinguishable fermions. With our setup we have the exceptional possibility
to prepare two distinguishable fermions with tunable interaction in a 1D potential
with high fidelity. Their properties can be compared to two identical fermions
which are prepared with the same fidelity. By modifying the shape of the potential,
the particles can tunnel through a finite potential barrier and we can observe their
tunneling dynamics (see figure 4.1). For the comparison of the tunneling properties
of the two different systems it is essential that the systems are prepared in exactly
the same potential. Then by directly comparing the total energy and the square
modulus of the wavefunction of both systems we can give a proof of fermionization.

4.1.1. Two interacting distinguishable and two noninteracting
identical fermions

We start with the preparation of two 6Li atoms in two different Zeeman sublevels
of the lowest 6Li hyperfine state |F = 1/2,mF = 1/2〉 and |F = 1/2,mF = −1/2〉.
Up to this point we used the notation |1〉 and |2〉 for these states . For the fermion-
ization experiment presented here these two states are the only relevant hyperfine
states. We can relate them to the spin-components of a spin-1/2 system and thus
we label them by |↓〉 and |↑〉. The distinguishable system and the identical system
are then denoted by |↑↓〉 and |↑↑〉 respectively.
We prepare the |↑↓〉-system with a fidelity of 93(2)% in the ground state of our
cigar-shaped microtrap potential. Its shape is determined by the Lorentzian pro-
file in the axial direction of a focused Gaussian beam. A harmonic approximation
yields trap frequencies of typically ω‖ = 2π × (1.234 ± 0.012) kHz along the lon-
gitudinal direction and ω⊥ = 2π × (11.79 ± 0.29) kHz along the more confined
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Figure 4.1.: Sketch of the performed experiment. a) Deterministic prepara-
tion of two fermions in the ground state of a potential well. b) We
measure the tunneling dynamics through a potential barrier for a re-
pulsively interacting system of two distinguishable fermions for various
interaction energies. The mean interaction energy per particle is in-
dicated by the parameter U . These results are then compared with
the tunneling dynamics of two noninteracting identical fermions in the
same potential. Taken from [Zür12].

radial direction leading to an aspect ratio of ω‖ : ω⊥ ∼ 1:10 2. Due to the large
confinement in 2 dimensions the particles are effectively restricted to 1 dimension.
Comparing the 3D-solution of two interacting particles in such a cigar shaped trap
to the solution of a 1D calculation for two particles interacting via a 1D-coupling
constant g1D, one finds that the lowest non-bound state of the 3D solution is well
described by the 1D solution (see chapter 3.2.2). The deviation between both
calculations is less then 10−2 and therefore our system can be treated in a 1D
framework.
The 1D coupling strength g|↑↓〉 between the two distinguishable fermions can be
tuned by a confinement induced resonance (CIR, see chapter 3.2.3). Figure 4.4 b)
shows g|↑↓〉 of the following experiment as a function of the magnetic field with a
CIR at 783.1± 0.5G. The coupling constant g|↑↑〉 = 0 for all magnetic field values
because s-wave interaction for identical fermions is forbidden.
For two particles in a harmonic trap that interact via contact interaction, the
Hamiltonian can be separated into center-of-mass and relative motion, as the in-
teraction term only depends on the relative distance of the two particles. Figure
4.2 shows the relative wavefunction as a function of g|↑↓〉 and the corresponding
kinetic energy of the relative motion (blue and black curves). The derivation of the

2The determination of the trap frequencies is described in section 4.2.2
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4.1. The fermionization experiment

solution has originally been performed by Thomas Busch and coworkers [Bus98]
and is discussed in chapter 3.2.2.
For the sake of comparison we add the energy of a system of two noninteracting
identical fermions plotted in green. Such a system is created by first preparing a
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Figure 4.2.: Two particles in a 1D harmonic potential. a) Relative wave
function of two interacting fermions (blue) and two identical fermions
(green) in a 1D harmonic potential. For infinitely strong interaction
(-1/g|↑↓〉 −→ 0) the probability to find the two distinguishable fermions
at the same position vanishes. In this case the square modulus of the
total wave function of two distinguishable fermions is the same as for
two identical fermions. b) Kinetic energy of the relative motion. The
blue and black curves show the energy of two interacting fermions in
state |↑↓〉 depending on the coupling strength g|↑↓〉 given in units of
a‖ =

√
~/µω‖. Taken from [Zür12]

balanced system with 4 particles and then removing all |↓〉-fermions by the method
described in chapter 2.4.1. Due to the Pauli exclusion principle the two |↑〉-particles
remain located at the ground and the first excited single particle levels. This is
the ground state of the many-particle system with state |↑↑〉. We can easily write
down the wavefunction of the many-particle ground state in a harmonic oscillator
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4. Fermionization of two distinguishable fermions

by considering the antisymmetric particle exchange symmetry

Ψ|↑↑〉(x1, x2) = 1√
2

(Φ0(x1)Φ1(x2)− Φ0(x2)Φ1(x1)) (4.1)

where Φi(xj) are the single particle eigenstates of the harmonic oscillator. Rewrit-
ing the wavefunction in center-of-mass and relative coordinates R = x1 + x2 and
r = x1 − x2 yields

Ψ|↑↑〉(R, r) = Φ0(R)Φ1(r). (4.2)

The relative motion part of the wavefunction 3 is thus given by the first excited
harmonic oscillator wavefunction (shown in figure 4.2 a) in green) and the energy
is given by 3/2 in units of ~ω‖ (green line in figure 4.2 b).
Comparing both systems one finds that the energy and the square modulus of
the wavefunction of the |↑↓〉-system at diverging coupling strength are identical to
those of a noninteracting |↑↑〉-system. This is the point of fermionization.

4.1.2. Tunneling measurement and fermionization 4

To perform the fermionization experiment we prepare the initial system as de-
scribed in chapter 2.3.1. At the end of the preparation process of the two different
2-particle systems we keep the magnetic field gradient at B′ = 18.92G/cm as
we need the gradient to perform the tunneling measurement. To determine the
energy of the two-particle system in state |↑↓〉 we modify the trapping potential
such that there is a potential barrier of fixed height through which the particles
can tunnel out of the trap on experimentally accessible time scales. This is done
by lowering the depth of the optical trap 5. To tune the strength of the interac-
tion we apply magnetic offset fields ranging from 523G to 900G 6. For starting
the measurement of the interaction-induced tunneling we ramp to an optical trap
depth of p = 0.6875 with a ramp speed of dp/dt = 0.043 ms−1 where tunneling
occurs on experimentally accessible time scales. In chapter 2.4 we have estimated
3The center-of-mass part of the wavefunction is described by the Gaussian ground state wave-
function of the harmonic oscillator. As for the system of two interacting fermions the center-
of-mass term is identical to that of the system of identical fermions, it can be neglected for
the further comparison of the two systems.

4taken from [Zür12] and adapted.
5Before we perform the tunneling measurement, the initial optical trap depth of p = 1 has been
lowered to p = 0.795 (±1.3× 10−3) with 4 bound states left in the potential with tunneling
times much larger than any experimental timescale. The reason for tuning the depth to an
already lower value after the preparation process is given in A.3.1 in the appendix.

6For the ramp speed of the magnetic field see appendix A.3.2.
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4.1. The fermionization experiment

the probability of exciting particles when performing a single ramp of the optical
potential at this speed to be consistent with (3± 1)%.
In the presence of repulsive interactions the energy of the system is increased (blue
curve in figure 4.2 b). This decreases the effective height of the barrier and the
particles tunnel faster. We allow the particles to tunnel out of the trap for different
hold times and record the number of particles remaining in the trap. By choosing
an adequate barrier height we ensure that the time scale for tunneling is smaller
than the lifetime of our samples in the ground state (about 60 s). Additionally
obtaining meaningful tunneling time constants requires the timescale of the tun-
neling to be much larger than the inverse longitudinal trap frequencies of 0.7ms.
By averaging over many experimental realizations we obtain the expectation value
of the particle number in the potential for different hold times (see figure 4.3). By
performing this measurement for various values of the coupling strength we can
determine the dependence of the system’s energy on g|↑↓〉.
We find that for the observed range of interaction energies – which are on the order
of ~ω‖ – only one particle leaves the potential even for long hold times. In a simple
picture this can be explained as follows: If one particle tunnels through the barrier
the interaction energy is released as kinetic energy, which leaves the other particle
in the unperturbed ground state of the potential. This state has a lower energy
and thus a tunneling time scale much larger than the duration of the experiment.
Thus we can fit7 exponentials of the form N(t) = Ntunnel e

− t
τ +Nremain to the mean

particle number to deduce the tunneling time constant τ for different magnetic
fields. The mean numbers of tunneled (Ntunnel) and remaining particles (Nremain)
are expected to be unity. However, due to the finite preparation fidelity they are
slightly lower. In figure 4.4 we show the determined tunneling time constants of a
system of two interacting fermions for different interaction energies as a function
of the magnetic field. We observe a decrease in the tunneling time constant over
two orders of magnitude for increasing magnetic field due to the gain in interaction
energy caused by the CIR.
For a direct comparison of the properties of the two interacting distinguishable
fermions with those of two identical fermions we perform the same measurement
with two fermions in state |�〉 in the same potential (figure 4.1 c). The results of
these reference measurements are shown in figure 4.3 and figure 4.4 (green points).
As the identical fermions are noninteracting we find no dependence of the tunnel-
ing time constant on the magnetic field in this measurement.
Comparing the results of the two systems we find that the tunneling time con-

7The fit is performed with a χ-square minimization algorithm (Levenberg-Marquardt) consid-
ering the statistical error of the mean particle number. For all further fits presented in this
thesis we use this algorithm.
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4. Fermionization of two distinguishable fermions

Figure 4.3.: Mean number of particles remaining in the potential well.
After modifying the initial potential the particles can tunnel through
a barrier of fixed height for a certain hold time. Subsequently, tunnel-
ing is switched off and the mean particle number left in the potential
is recorded by averaging over many experimental realizations. Expo-
nential fits to the data (solid lines) allow to extract the tunneling time
constants of two interacting distinguishable fermions for different in-
teraction strengths (blue) and of two identical fermions (green). Each
data point is the average of about 70 measurements except for the first
and the last data point in each series (about 230 realizations). The
errors are the standard errors of the mean. Taken from [Zür12]

stant for the interacting system decreases monotonically with increasing magnetic
field and crosses the magnetic field independent tunneling time constant of the
two identical fermions. Thus there is one magnetic field value where the tunneling
time constants of both systems are equal. At this point both systems must have
the same energy. For a 1D system with given energy there is only one unique solu-
tion for the square modulus of the wave function. Therefore, right at the observed
crossing point of the tunneling time constants the energy and the square modulus
of the wave function |ψ(z1, z2)|2 of the two interacting distinguishable fermions
and the two noninteracting identical fermions must be equal. Hence, exactly at
this crossing point the system of two distinguishable fermions is fermionized. As
predicted by theory [Bus98, Gir10] we find the position of the fermionization at
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4.1. The fermionization experiment

Figure 4.4.: a) Tunneling time constants for different values of the 1D
coupling strength. The tunneling time constant of two repulsively
interacting distinguishable fermions (blue curve) decreases by two or-
ders of magnitude with increasing magnetic field. This is attributed to
the gain in interaction energy when ramping across the CIR. The tun-
neling time constant of two noninteracting identical fermions (green
line) remains unaffected by the magnetic field within our experimen-
tal accuracy. At the magnetic field value where both curves cross we
identify the fermionization of two distinguishable fermions. The errors
are the statistical errors of the fits shown in figure 4.3. The blue line is
a guide to the eye. b) One-dimensional coupling constant g|↑↓〉 with a
CIR at (783.1± 0.5)G. For the calculation we used the perpendicular
harmonic oscillator length a⊥ =

√
~/µω⊥ of the modified potential.

Taken from [Zür12]

the magnetic field value where g|↑↓〉 diverges due to the confinement-induced reso-
nance.
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4. Fermionization of two distinguishable fermions

For magnetic field values below the CIR we have realized the two-particle limit
of a Tonks-Girardeau gas [Gir10]. Above the CIR we have created a super-Tonks
state consisting of two particles. The super-Tonks state is a strongly correlated
metastable state above the attractive ground state branch (see figure 4.2 b). In
a system with particle numbers ≥ 3 inelastic three-body collisions lead to a fast
decay of the metastable super-Tonks-Girardeau gas [Hal09]. In contrast, our two-
particle super-Tonks state is stable against collisional losses since there is no third
particle available to undergo an inelastic three-body event.

4.2. Tunneling theory and determination of the
potential shape

By mapping the system of two distinguishable fermions onto a system of two
identical fermions we could determine its energy at diverging coupling strength
at the point of fermionization without any tunneling theory. The only relevant
argument has been that a measurement of two identical tunneling time constants
for two different systems is equivalent to both systems having the same energy.
By knowing the energy of one system, which can be easily found for two identical
fermions, we know the energy of the other system, which is the great advantage of
Girardeau’s mapping technique [Gir10]. Yet, additionally to the point of infinitely
strong repulsive interaction we want to determine the energy of the system for
finite g|↑↓〉. Therefore we need to apply some tunneling theory to determine the
energy of the system from the tunneling time constants. Whichever theory one
applies one needs to know the shape of the potential. This can be obtained by
the modulation spectroscopy method and by a WKB approximation which will be
introduced in this section.
First we describe the WKB method for the determination of the energy eigenstates
of a 1D potential well and for the derivation of the tunneling times through a finite
potential barrier. Then we introduce the modulation spectroscopy method which
allows to determine the level structure of the potential. By knowing the shape
of the potential we can then deduce the energy of an interacting two-particle
system for finite coupling strength from the measured tunneling time constants of
section 4.1.
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4.2. Tunneling theory and determination of the potential shape

4.2.1. WKB approximation
To determine the energy of a single particle with mass m in a 1D potential we
have to find the stationary states of the Schrödinger equation

− ~2

2m
∂2

∂x2 Ψ(x) = (E − V )Ψ(x). (4.3)

If V (x) has a complicated form a solution may be found numerically or by a
perturbation theory approach. In the case that V (x) is a slowly varying function
of position with respect to the wavelength of the state an approximate analytical
solution can be given by the WKB8 approximation method. We will introduce
this method following the elaborate derivation described in [Mer98, Sch07].
If V (x) was constant the solution would be given by plane waves. As the potential
is a slowly varying function this leads to the ansatz

Ψ(x) = A(x)eiS(x)/~ (4.4)

with position depending amplitude A(x) and phase S(x). Inserting this ansatz
into the Schrödinger equation (4.3) provides two differential equations for the real
and the imaginary part. With the initial condition one can neglect the second
derivative of the amplitude with respect to the second derivative of the phase
[Sch07]. This leads to the solution

S±(x) = ±
∫ x

dx′
√

2m (E − V (x′)) (4.5)

and
A±(x) = C±

dS
dx

(4.6)

with constants C± which will later be defined through further boundary conditions.
With this we have found a solution for the wavefunction where we can distinguish
two cases:
For the first case, the classically allowed region, where E > V the wavefunction
reads

Ψp(x) =
∑
±

Cp,±
p(x)/~e

±i
∫ x

dx′p(x′)/~ (4.7)

with p(x) defined as
p(x) =

√
2m (E − V (x)) . (4.8)

The imaginary form of Ψp(x) shows the oscillatory behavior of the two counter-
propagating wavefunctions in this classical region, with similarities to plane waves
8method developed by Wentzel, Kramers and Brillouin
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4. Fermionization of two distinguishable fermions

being inherent due to the ansatz. The WKB approximation is valid if the potential
changes so slowly with x that as the wave propagates no reflected (scattered) wave
is generated [Mer98].
For the case E < V one finds:

Ψκ(x) =
∑
±

Cκ,±
κ(x)/~e

∓
∫ x

dx′κ(x′)/~ (4.9)

where κ(x) is defined as

κ(x) =
√

2m (V (x)− E) . (4.10)

Ψκ(x) is a real function with an exponential decay or increase. This shows that the
wavefunction in this non-classical region decays as the integral in equation (4.9)
increases. This part of the wavefunction can be seen as an evanescent wave that
penetrates into a classically forbidden region.
Now we can apply this general case of the WKB approximation to our potential.
Figure 4.5 sketches the potential that we use in the experiment and consists of a
Lorentzian plus a linear potential. For a given energy E one can identify three

Figure 4.5.: Classification of our microtrap potential in different regions.
In region I the kinetic energy E is larger then the potential and ex-
tends from x1 to x2 which are given by the classical turning points of
a classical particle with energy E. Region II is the classically forbid-
den region through which a particle can tunnel into the continuum in
region III.

regions. In region I the kinetic energy E is larger then the potential energy and
extends from x1 to x2 which are given by the classical turning points of a classi-
cal particle with energy E in this potential well. For x < x1 V (x) diverges for
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4.2. Tunneling theory and determination of the potential shape

x → −∞ and one expects any wavefunction in this non-classical region drop to
zero for x → −∞. Region II extends from x2 to x3, where x3 is defined as the
maximum of the solution V (x) = E. This again is a classically impenetrable region
with the difference that the extension of this region is finite. We call this region
the potential barrier. For a finite barrier an exponentially decaying wavefunction
has not dropped to zero at the point x3 and the wavefunction continues into region
III which is the space x > x3. Here V (x) → −∞ for x → ∞ and therefore plane
waves are appropriate solutions in this region resulting in a continuous density of
states.
With the WKB method we can determine two parameters in which we are inter-
ested: i) we would like to know the energy eigenstates in region I and ii) we would
like to know the transmission rate of probability amplitude of these states through
the barrier into the continuum of region III .

i) Eigenstates in the potential well

To find a solution in region II we have to determine the coefficients Cp
± of the

wavefunction Ψp. To find a meaningful wavefunction over the whole space the
wavefunction at the classical turning points which separates the regions has to be
continuous,

Ψp(xi) = Ψκ(xi) (4.11)

with xi = x1, x2. This supplies the additional boundary conditions to determine
the coefficients Cp

± and Cκ
±. To analytically solve the continuity condition one has

to approximate the potential near the classical turning points by a linear form.
Then Airy functions [Abr72] serve as a solution for the Schrödinger equation close
to the turning points. The wavefunction in region I near both turning points are
then given by

Ψp(x) = C1

p(x)/~ cos
(1
~

∫ x

x1
dx′p(x′)− π

4

)
(4.12)

at turning point x1 and

Ψp(x) = C2

p(x)/~ cos
(1
~

∫ x2

x
dx′p(x′)− π

4

)
(4.13)

at turning point x2. Both wavefunctions have to coincide which is the case for
C1 = −C2 and

1
2π~

∮
dx′p(x′) = n+ 1

2 . (4.14)

With this implicit equation for the energy E one can determine the nth bound
state in the potential well. This condition is equivalent to the Bohr Sommerfeld
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4. Fermionization of two distinguishable fermions

quantization rule which states that the closed integral over the phase of an eigen-
state must be a multiple of an integer number n. To calculate the energy of the
bound states we numerically solve the equation

1
π~

∫ x2

x1
dx′
√

2m(E − V (x′) = n+ 1
2 . (4.15)

ii) Transmission through the barrier and tunneling time constant

As already mentioned the exponentially decaying wavefunction in the barrier does
not drop to zero. Thus, a particle penetrating with energy E into the left side
of the barrier at x2 can be transmitted through the barrier into region III. We
assume that, when the particle has tunneled into region III, it does not penetrate
back into the barrier, because the classically allowed region III extends to infinity
and thus the probability to find the particle at x3 is negligible. To calculate the
transmission coefficient through the barrier defined as:

T = | Ψκ,trans |2 vtrans
| Ψp,inc |2 vinc

=
| Ψκ,trans

√
κtrans/~ |2

| Ψp,inc

√
pinc/~ |2

, (4.16)

one again has to determine the wavefunction Ψp,inc and Ψκ,trans in region I and II
with the continuity condition (4.11). For a high and broad barrier the coefficient
is given by

T = e
−2
∫ x3
x2

dx′κ(x)/~
. (4.17)

This transmission coefficient is called the Gamow factor referring to the studies
of α-decay in nuclei with the transmission of an α-particle through the Coulomb
barrier.
One remaining question is how often the particle hits the barrier at the turning
point x2. In this semi-classical picture we assume that the particle inside the
potential well is a classical particle that ’knocks’ with frequency

ν = E

2π~ (4.18)

to the barrier. ν is called the knock frequency. The transmission rate γ is then
given by the product γ = ν T of the knock frequency ν and the transmission
coefficient T . For a system with single loss rate the number of remaining particles
in the trap follows a natural decay

N(t) = N0e
− t
τ (4.19)
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4.2. Tunneling theory and determination of the potential shape

with

τ−1 = γ = E

2π~ exp
−2

∫ x3

x2
dx′
√

2m
~2 (V (x′)− E)

 (4.20)

defined as the tunneling time constant. The previous equations describe the tun-
neling dynamics of a particle inside the potential in the case of a high and broad
barrier which is fulfilled for the case γ � ν. In this thesis we restrict the analysis
of the tunneling dynamics to experiments where this condition for the extension
of the barrier holds and we can describe the tunneling by the exponential form.
In the cases where we perform experiments where γ is on the order of ω we are
primarily interested in the fact that the particles has either left or not left the po-
tential with near unity probability. In this case the determination of the details of
the tunneling behavior, especially in the case of interacting particles, is non-trivial
and requires a more elaborate analysis of the tunneling process [Pon12].

4.2.2. Determination of the potential shape
The knowledge of the potential shape is important to compare our measurements
to the theoretical predictions. The axial profile of the potential determines the
energy scale of the 1D solution and the radial profile determines the strength of
the 1D coupling constant and the position of the confinement induced resonance.
Furthermore, to control the motional state of the particles in the potential, we
need information about the energy differences between single particle states in the
potential.
From the type of trap, a single focused beam optical dipole trap, we know the gen-
eral overall shape of the trap which is Gaussian in radial direction and Lorentzian
in axial direction. Additionally we know the power of the optical beam within an
uncertainty of 10%. However, we cannot directly measure the residual parameters
- the Rayleigh range and the waist of the focus - using optical measurement meth-
ods because the focus is located in the center of the vacuum chamber. One would
need a second objective with known point-spread-function on the opposite side of
the vacuum chamber to image the focal plane of the microtrap [Zim11].
Hence we make use of the trapped particles to map out the level structure. We
motionally excite noninteracting particles in the potential and from the excitation
spectrum we can deduce the residual parameters of the potential.

Modulation spectroscopy

To experimentally determine the energy of the eigenstates of a single particle in
a harmonic oscillator we couple the particle in the ground state to higher states
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Figure 4.6.: Mapping out the level structure of the potential. We mo-
tionally excite noninteracting particles in the potential and from the
excitation spectrum we can deduce the parameters which determine
the confining potential.

by periodically modulating the potential (see figure 4.6). This is actually contrary
to setting up an optical dipole trap where one tries to suppress frequency noise in
the trap frequency range causing heating [Geh98]. With our setup we have two
possibilities to realize modulation of the trap parameters: We can either modulate
the position of the focus of the microtrap potential or modulate the intensity of
the microtrap beam. In the case of a weak modulation amplitude the coupling
process can be described by first order perturbation with the Hamiltonian

H = p̂2

2m + 1
2mω

2 (x+ Ad(t))2 = p̂2

2m + 1
2mω

2x2 + Ad(t)mω2x+O(A2
d) (4.21)

where Ad is the time dependent position of the focus

Ad(t) = ah.oAd,0 cos(ωmodt) Ad,0 � 1 (4.22)

and ah.o is the harmonic oscillator length. By separating the Hamiltonian into a
non-perturbed part and a perturbed part

H = H0 +H1 (4.23)

and by neglecting orders of A2
d,0 one can find the transition matrix element which

determines the transition probability between two non-perturbed harmonic oscil-
lator states |m〉 and |n〉

〈m | H1 | n〉 = mω2 cos(ωmodt) 〈m | x | n〉. (4.24)

The transition matrix element of this dipole transition can only become non-zero,
if the two harmonic oscillator states have different parity. Hence for this type of
modulation only states with quantum number difference equals ∆ = 2j+ 1 can be
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4.2. Tunneling theory and determination of the potential shape

coupled.
Performing the same analysis for the intensity modulation where the trap frequency
ω ∝ √p is modulated by the relative intensity p of the beam we get

H = p̂2

2m + 1
2mω

2x2 (1 + Aq(t)) (4.25)

with time dependent intensity modulation

Aq(t) = Aq,0 cos(ωmodt) Aq,0 � 1. (4.26)

Then the transition matrix element reads:

〈m | H1 | n〉 = 1
2mω

2Aq,0 cos(ωmodt) 〈m | x2 | n〉. (4.27)

In this case the transition matrix element of the quadrupole transition can only
become non-zero, if the two harmonic oscillator states have same partity (∆ = 2j).
Further details on the analysis can be found in [Jáu01]

Coherent control of the motional state

Figure 4.7 illustrates the two different coupling processes as they are used in the
experiment. After applying the modulation for a certain time we measure the
fraction of non-excited particles by removing the particles of the excited states
using the spilling technique. Due to the fermionic nature of our two component
sample we can only have two particles occupying the same harmonic oscillator
state. Thus to obtain the excitation probability with sufficiently low statistical
uncertainty we have to repeat the measurement several times. Then the excitation
probability is equivalent to 1 − Nmean/N0, where N0 is the number of prepared
particles and Nmean the mean number of remaining particles in the ground state
after the modulation. If we applied the modulation to a harmonic oscillator we
would couple all states at the same time when ωmod= ω. However, our microtrap
potential slightly deviates from the harmonic approximation. Hence the energy
differences between three neighboring states are not identical and ωmod can be
resonant to one but not the other transitions if the modulation amplitude is weak
enough. In this case we can describe the dynamic of a particle which is only weakly
coupled to a single other state by that of a two level system. The probability of
finding the particle in the excited state after a certain modulation time t is then
given by

P (e) =
(

Ω0

Ωeff

)2

sin2
(

Ωeff

2 t

)
(4.28)
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4. Fermionization of two distinguishable fermions

(a) Measurement of the 0-1 transition. The position of the
focus is modulated to excite a dipole transition.

(b) Measurement of the 0-2 transition. The intensity of the microtrap beam is modulated to
excite a quadrupole transition.

(c) Measurement of the 2-4 transition. A π-pulse with ωmod = ω0−2 transfers the particles to
level 2. Then the small fraction of particles which have been excited to level 4 is removed.
By a second modulation pulse the transition frequency ω2−4 is determined.

Figure 4.7.: Measurement of the Transition frequencies. In the first step we
prepare one or two noninteracting particles in the ground state. Then
we apply one ore several modulation pulses with a certain frequency
ωmod. After the modulation pulse the remaining fraction in the ground
state is detected using the spilling technique.

with the effective Rabi frequency Ωeff =
√

Ω2
0 + δ2, the detuning δ = ωi−j − ωmod,

ωi = Ei/~ the energy of the i-th unperturbed state and the Rabi frequency at
resonance Ω0 ∝ Aq,0 〈n + 1|x|n〉 in the case of a dipole excitation and Ω0 ∝
Aq,0〈n+ 2|x2|n〉 in the case of a quadrupole excitation.
For the n = 0 to n = 2 quadrupole transition we have observed more than a
full Rabi cycle with some damping showing the coherence of the excitation (see
appendix, figure A.7). For the chosen modulation amplitude the Rabi frequency
is 2π × 21.3(3)Hz which is a fraction of a hundredth of the transition frequency
confirming that we are in the weak coupling limit. We are able to apply a π-pulse
(t = π/Ω, δ = 0) which transfers ∼ 90% of the particles into the excited state. By
applying two subsequent π

2 -pulses with a precession time T between the two pulses
we have performed a Ramsey-type experiment (appendix, figure A.8). The fitted
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4.2. Tunneling theory and determination of the potential shape

precession frequency coincides with the energy difference of the coupled states.
This result impressively show that we have coherent control of the motional state
of the particles in the trap.
We have to add that this coherent coupling is only working when the intensity of
the microtrap is stable. A drift of 5× 10−3 of the intensity would cause a drift of
ω by 2.5× 10−3. At a typical Rabi frequency of 10× 10−3 ω this would result in a
reduction of the contrast by 5%. Although we have a higher stability on a few-day
basis such large drifts can still occur within several weeks. Then, a recalibration of
the resonance frequency is necessary to be able to perform experiments involving
coherent control of the motional states.
For the dipole transition from level 0 to level 1 we have not observed coherent
dynamic. This is not unexpected because the way we modulate the position of the
microtrap is rather unconventional: We have added a loudspeaker behind the mir-
ror which reflects the optical beam of the microtrap onto the microtrap objective
(appendix, figure A.9). By creating sinusoidal sound pulses with the loudspeaker
the mirror starts to vibrate and thus modulates the beam angle. Through the ob-
jective the variation of the beam angle is then translated to a position modulation
of the microtrap focus. Although we have not observed coherent manipulation we
could still observe some signal with a maximum of particle transfer into the ex-
cited states. In a next generation of the microtrap setup we plan to add an optical
device (acousto optical deflector) which is able to deflect the microtrap beam in
more controlled way.

Potential shape in axial direction

The level structure and the knowledge of the potential shape in axial direction is
important to obtain quantitative results for the energies and tunneling times of
the two-particle system. By applying the modulation spectroscopy we determine
the structure of the energy levels in the optical potential. The measured transition
spectra in axial direction for the pure optical potential are shown in the appendix
(figure A.10-A.12). The deduced transition frequencies are listed in table 4.1.
Exemplary we present a typical spectrum of the quadrupole transition in figure
4.8. To determine the axial trap parameters we assume that the beam has a
Lorentzian shape, neglecting any aberrations that might be introduced by the
optical setup. The combined optical and magnetic potential reads

V (p, z) = Vopt(p, z) + Vmag(z) = p V0

(
1− 1

1 + (z/zr)2

)
− µmB′z (4.29)

with zr = πw2
0

λ
the Rayleigh range, w0 the waist in the focal plane, λ the wavelength

of the trapping light and p the optical trap depth as a fraction of the initial depth.
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Figure 4.8.: Quadrupole excitation of the 0-2 transition in axial direction.
We record the number of particles in the ground state after applying
a modulation pulse. We determine the transition frequency by fitting
equation (4.28) to the spectrum.

transition transition frequency σ=FWHM (Ω0)
ω‖/2π [kHz] of the peak [Hz]

0-1 1.486 11
0-2 2.985 10(∗)

2-4 2.897 20

Table 4.1.: Transition frequencies in axial direction. The measurement has
been performed at an optical trap depth of p = 1. The transition fre-
quencies are determined from fits to the excitation spectra (appendix,
figure A.10-A.12). (∗)Taking the Rabi frequency as the error sets an
upper limit for possible deviations. For the 0-2 transition we have
measured a full Rabi cycle with 90% contrast at ωmod = 2.98 kHz.
Therefore we can assume a smaller error of Ω0/2.

For the modulation spectroscopy the gradient has been switched off and thus
Vmag = 0. The initial trap depth is given by the dipole potential [Gri00]

V0 = −3π c2

2ω3
a

(
Γ

ωa − ω
+ Γ
ωa + ω

)
2P0

πw2
0
, (4.30)

77



4.2. Tunneling theory and determination of the potential shape

with ωa = 2π × 4.468 1014 Hz the frequency of the atomic transition, Γ = 2π ×
5.872MHz the linewidth of the transition, ω = 2πc/λ and P0 the power of the
microtrap beam. By using the introduced WKB approximation we can calculate
the energy of the i-th eigenstates Eopt,i in the potential depending on the beam
waist w0 and the power P0 of the beam. We have to find a value for the waist
and the optical power such that the calculated transition frequencies coincide with
the measured ones from table 4.1. The description of this routine can be found in
A.4.2 in the appendix. The resulting trap parameters for the axial potential are
listed in table 4.2.

parameter value
V0 3.326 µK
w0 1.838 µm

ω‖, p = 1 2π×(1.488±0.014) kHz
B′ 18.92G/cm

Table 4.2.: Parameters of the potential in axial direction. The parameters
are obtained from the axial excitation frequencies in the pure optical
potential and from the tunneling time constants of a noninteracting
particles. (For the analysis see appendix A.4.2). The parameters V0,
w0 and B′ modeling the potential according equation (4.29) are used to
determine bound states and tunneling times in WKB calculations. As
uncertainties in the potential parameters only cause systematic shifts
in the latter quantities we do not give their error. The systematic shifts
are within a range of 10−3 to 10−2.

Potential shape in radial direction

The strength of the perpendicular confinement and thus the position of the con-
finement induced resonance is defined by the shape of the radial potential. For a
perfect Gaussian beam the knowledge of the axial profile would imply the knowl-
edge of the radial profile and vise versa. However, our beam deviates from the
ideal form. A main contribution to the deviation might be an astigmatism which
effectively increases the Rayleigh range compared to the focal waist in radial direc-
tion. Due to this discrepancy we determine the trap parameters in radial direction
separately from the parameters in axial direction. Additionally the beam profile is
not perfectly radially symmetric which is why we assume an elliptical symmetry
in radial direction with Gaussian profile along each main axis. We approximate
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transition quantumn number transition frequency σ=FWHM (Ω0)
(nx,ny,nz) ω⊥/2π [kHz] of the peak [kHz]

0-1 (1,0,0) 13.96 0.08
0-1 (0,1,0) 14.82 0.09
0-1 (1,0,1) 15.36 0.04
0-2 (2,0,0) 26.43 -
0-2 (0,2,0) 28.26 0.25
0-2 (2,0,2) 29.07 0.14

Table 4.3.: Transition frequencies in radial direction. The measurement was
performed at an optical trap depth of p = 1. The transition frequen-
cies are determined from fits to the excitation spectra. In addition to
the two expected transitions in x-and y-direction we observe another
peak in the observed frequency range which we attribute to a transi-
tion involving an axial excitation. We denote the transitions by their
quantum number of a corresponding harmonic oscillator.

the potential by the sum 9:

V (r, z) = V (x) + V (y) + V (z) (4.31)

with r =
√
x2 + y2 and

V (s) = p V0r

(
1− e

− 2s2
w2

0s

)
[s : x, y] (4.32)

with w0s beeing the different focal waists along the two main axis. We define the
anisotropy parameter as the ratio between the two lowest quadrupole transitions
in the potential:

ηxy = ωy 0−2

ωx 0−2
(4.33)

We again apply the modulation spectroscopy to measure the transition energies
in radial direction. The measured frequencies are given in table 4.3. Then we
vary the potential parameters of equation (4.32) and apply a WKB calculation
to reproduce the measured parameters. The details of this routine are described
in A.4.3 in the appendix. The determined parameters of the radial direction are
shown in table 4.4. To determine the CIR we only consider one resonance following
9In a harmonic approximation the potential separates in a sum of three independent potentials,
one per axis. Without this approximation the determination of the eigenstates in the potential
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parameter value
V0r 4.12 µK
w0x 1.637 µm
w0y 1.516 µm
ηxy 1.07
ω⊥ 2π × (14.22± 0.35) kHz

CIR|1〉−|2〉, p = 1 (779.3± 0.5) G

Table 4.4.: Parameters of the potential in radial direction. The potential
parameters are obtained from the radial excitation spectrum using a
WKB approximation. The perpendicular trap frequency ω⊥ is deter-
mined from the mean of the 0-2 transitions in x- and y-direction. The
error is the SEM. The position of the CIR is obtained from equation
(3.37).

[Pen11, Sal12] although we have found an anisotropy in our system. We calculate
the position of the CIR from the the mean harmonic oscillator length which is
determined by the mean trap frequency

ω⊥ = 1
4 (ωx 0−2 + ωy 0−2). (4.34)

The propagated error of the mean trap frequency serves as the systematic un-
certainty of the position of the CIR which is about ±0.5G. In the fermioniza-
tion measurement the optical trap depth is lowered from 1 to p = 0.6875 which
modifies the confinement by √p resulting in a perpendicular trap frequency of
2π × (11.79 ± 0.29) kHz. The corresponding axial frequency at this depth is
(2π × 1.234± 0.012) kHz.

4.3. Energy of the interacting two-particle system
To obtain the energy of an interacting few-particle system we have used three
different methods during the course of this thesis. In this section we introduce
two of them which we initially applied in our experiment. The first method is
the determination of the energy from the tunneling time constants which requires

would require a more complicated numerical treatment of the full 3D potential. The error
of the approximation will be determined by the degree of the anharmonicity which is on the
order of a few percent.
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4. Fermionization of two distinguishable fermions

an elaborate theoretical framework. The second method is the modulation spec-
troscopy with which we can measure energy differences between the ground and
the first exited state. Although this method does not provide the absolute inter-
action energy, it has the advantage that it can be performed in the pure optical
potential without deforming the nearly harmonic potential by applying a magnetic
field gradient.
The third and most elegant method which can also be applied in the pure optical
potential is the rf-spectroscopy method. This method will be discussed separately
in chapter 6.

4.3.1. Determination of the energy from the tunneling time
constants 10

To determine the energy of two interacting fermions from the measured tunneling
time constants we use a WKB calculation (see section 4.2.1). To apply this cal-
culation we have determined the shape of the potential11 as described in section
4.2.2.
Within the energy range studied in the fermionization experiment in section 4.1.2
we have observed that only one of the two particles tunnels through the barrier.
This particle has an energy identical to the kinetic energy of the relative motion of
the two-particle system. Hence we can determine the kinetic energy of the relative
motion of the two-particle system by extracting the energy of the tunneled parti-
cle from the tunneling time constant τexp. To map τexp onto energies we calculate
tunneling time constants for a set of energies. By matching these calculated tun-
neling time constants to the measured ones we determine the kinetic energy of the
relative motion of the two-particle systems. A more detailed description of this
method is given in [Ser11a]. The energies obtained from the different tunneling
time constants of two distinguishable fermions are shown in figure 4.9.
We compare these energies to the analytic theory for a harmonic potential [Bus98]
(see figure 4.2). This theory needs two input parameters, the coupling strength
and the level spacing. For the coupling strength we use g|↑↓〉 of our system shown
in figure 4.4 b). For the level spacing we use the energy difference ~ω‖ calc =
E0 − E1 = 2π~ × 743Hz between the ground and first excited state of the po-
tential which we calculate using the WKB method. With this approximation the
energy obtained from the tunneling measurements and the energy obtained from

10Taken from [Zür12] and adapted.
11The parameters of the optical potential have been determined by precise measurements of the

level spacings in the potential. The final parameter to determine the barrier height has been
fixed by the measured tunneling time constant of two identical fermions.
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4.3. Energy of the interacting two-particle system

Figure 4.9.: Interaction energy of two fermions for different interaction
regimes. By using a WKB based calculation we can determine the en-
ergy of two distinguishable fermions at different interaction strengths
(blue points) from the tunneling time constants presented in figure
4.4 a). The blue curve shows the expected energy shift for a harmon-
ically trapped system (dashed rectangle in figure 4.4). Taken from
[Zür12].

the analytic theory [Bus98] are the same at the CIR. For the Tonks regime we find
excellent agreement of the experimentally determined energy with the theoretical
prediction for a harmonic trap. Above the CIR the harmonic theory is not appli-
cable because the second excited state is not bound in our potential. Additionally,
we expect deviations for larger energies due to the limited validity of the WKB
approximation for energies close to the continuum threshold. A more precise de-
scription could be achieved by adapting the theory described in [Bus98] to our
non-harmonic potential using a perturbation theory approach [Ron12b]. By using
a more accurate theory for the tunneling process – the quasi-particle wavefunc-
tion approach [Bar61, Ron12b] – the results also show good agreement between
experiment and theory in the super-Tonks regime (see figure 4.10).
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Figure 4.10.: Tunneling time and interaction energy calculated by the
quasi-particle wavefunction approach (QPWF) and pertur-
bation theory approach (PT). a) Decay time τ depending on the
magnetic offset field. The points with error bars represent the ex-
perimental data, the dashed and solid lines are the WKB (τ0) and
QPWF predictions. The red lines include the PT correction to the
tunneling energy E. b) Interaction strength g|↑↓〉 (black curve) and E
(blue and red curve). g|↑↓〉 is taken from figure 4.4 and E is computed
after [Bus98] (blue curve). The red line includes the PT correction.
Taken from [Ron12b] and adapted.

4.3.2. Modulation spectroscopy of two interacting particles

With the modulation spectroscopy method we successfully determined the level
structure of noninteracting particles in the confining potential (section 4.2.2). Ob-
viously we were curious whether this method could also be applied to an interacting
system. We had been inspired by the measurements of collective modes performed
by Elmar Haller et al. [Hal09] who observed a change of the ratio between the
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4.3. Energy of the interacting two-particle system

compression modes and the dipole modes of a repulsively interacting 1D Bose gas
depending on the interaction strength (figure 4.11). For a many-body state they

which one would expect in a cold-atom system to
decay quickly via molecular channels. However,
by crossing the CIR from the TG side (switching
interactions from g1D = +∞ to g1D = −∞), an
excited gaslike phase (the sTG gas) should be
accessible (13). Is this excited phase stable; does
it exist at all? The expectation is that the large ki-
netic energy inherited from the TG gas, in a Fermi
pressure–like manner, prevents the gas from col-
lapsing (20). This stability can most simply be
inferred from a Bethe-ansatz solution to the Lieb-
Liniger model with attractive interactions (20, 21).
This ansatz yields for the energy per particleE/N ≈
ħ2 p2 n1D2/[6 m (1 − n1D a1D)

2], corresponding to
the energy of a gas of hard rods (1), for which a1D
represents the excluded volume. This results in a
positive inverse compressibility and also in an in-
creased stiffness of the system as long as n1D a1D
is sufficiently small. In this phase, the density cor-

relations are even stronger than in the TG gas be-
cause they show a power-law decay that is slower
than for a TG gas (13), indicating an effective
long-range interaction.

We realized the crossover all the way from a
noninteracting gas via the 1Dmean-field Thomas-
Fermi (TF) regime to a TG gas and then to a sTG
gas. We exploited the fact that our 1D systems
possess weak harmonic confinement along the
axial direction characterized by the confinement
length a||. Whereas the frequency wD of the lowest
dipole mode depends only on the confinement,
the frequency wC of the lowest axial compres-
sional mode is sensitive to the various regimes of
interaction (16). For the noninteracting system, one
expects R ≡ wC

2/wD
2 = 4. This value then changes

to R = 3 for weakly repulsive interactions in a 1D
TF regime (7). For increasing positive interaction
strength,R is expected to change smoothly to 4when

entering the TG regime as the system becomes
fermionized, hence effectively noninteracting. A
rise beyond the value of 4, after crossing the CIR,
would then constitute clear evidence for the sTG
regime (13). As a1D is further increased, the sys-
temwill finally become unstable andR is expected
to turn over and drop toward 0. For a harmonically
confined system, the point of instability is reached
when the overall length of the system of hard rods,
Na1D, becomes of the order of the size

ffiffiffiffiffiffiffiffiffiffi
N a∥

p
for

the wave function of N noninteracting fermions:
A ≡ Na1D=ð

ffiffiffiffiffiffiffiffi
Na∥

p Þ ≈ 1. We use A2 as an alter-
native parameter to g so as to characterize the
strength of the interaction because it accounts for
the harmonic confinement.

We started from a 3D BECwith up to 2 × 105

cesium (Cs) atoms with no detectable thermal
fraction in a crossed-beam dipole trap with mag-
netic levitation (22). Depending on the interac-
tion regime to be studied, we then set the number
of atoms in the BEC to values in the range of 1 ×
104 to 4 × 104 bymeans of forced radio-frequency
evaporation. To confine the atoms in 1D (that is,
to freeze out transversal motion), we used a 2D
optical lattice (12), which forms an array of ver-
tically oriented elongated tubes with an aspect
ratio that we set to values between 100 and 1000
(Fig. 1A). We occupied between 3000 and 6000
independent tubes with 8 to 25 atoms in the cen-
ter tube. The interaction strength g1Dwas controlled
by magnetic tuning of a3D by means of a com-
bination of a broad and a narrow FR (Fig. 1C)
with poles at B = −11.1(6) G and B = 47.78(1) G
and widths of about 29.2 G and 164 mG, re-
spectively (23). The broad resonance provides a
slow variation of a3D, allowing us to gently tune
a3D from 0 a0 near 17.119 G to about 1240 a0
near 76 G, whereas the narrow resonance allows
us to tune a3D to absolute values beyond 4000 a0

Fig. 2. Transition from
the noninteracting regime
via the mean-field TF re-
gime into the TG regime.
The squared frequency ratio
R = wC

2/wD
2 of the lowest

compressional mode with
frequency wC and the di-
pole mode with frequency
wD serves as an indicator
for the different regimes
of interaction. For in-
creasing interactions from
g = 0 to g ≈ 500, the sys-
tem passes from the ideal
gas regime (R = 4) to the
1D TF regime (R ≈ 3) and then deeply into the TG regime (R = 4). The inset shows the transition from the
noninteracting regime to themean-field regime inmore detail. The vertical error bars refer to SE and thehorizontal
error bars reflect the uncertainty in determining a1D and n1D (24). The horizontal error bar on the data point at
g = 0 (not shown in the inset) is T0.03.
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Fig. 3. (A) The ratio R = wC
2/wD

2 is plotted as a function of the interaction
parameter A2 = N a1D

2/a||
2. The squares show the measurements in the

attractive regime (g1D < 0), providing evidence for the sTG gas. The circles
show the transition from the TF to the TG regime (g1D > 0; same data as in Fig.
2 for g > 1). The solid line presents the theoretical data for g1D > 0, and the
dashed line presents the theoretical data for g1D < 0, by Astrakharchik et al.
(13). The dotted line corresponds to the model of hard rods. For reference, the
measurements for g1D < 0 are numbered. Data points 1c to 6 are taken at

wD = 2p × 115.6(3) Hz. For data points 1a and 1b, the trap frequency is wD =
2p × 22.4(1) Hz andwD = 2p × 52.3(1) Hz, respectively. For all measurements
in the sTG regime, a⊥ = 1346(5) a0. (B) The parameters a3D (dashed-dotted),
a1D (solid), and g1D (dashed) are plotted in the vicinity of the FR at 47.78(1) G.
The horizontal dotted line indicates the value of a⊥/C. The pole of the CIR is at
47.36(2) G. a1D has a pole (P) at 47.96(2) G. The bell-shaped curve at the
bottom left indicates the atomic distribution as a function of themagnetic field
determined from high-resolution microwave spectroscopy.
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Figure 4.11.: Excitation of collective modes in a many-body system. The
squared frequency ratio R = ω2

C/ω
2
D of the lowest compressional

mode with frequency ωC and the dipole mode with frequency ωD
serves as an indicator for the different regimes of interaction. It is
plotted as a function of the interaction parameter A2 = Na2

1D/a
2
‖

where N is the number of particles, a1D = − 2~2

mg1D
is the 1D scat-

tering length, and m the mass of the particles. The squares show
the measurements in the super-Tonks regime (g1D < 0), providing
evidence for the super-Tonks gas. The circles show the transition
from the 1D mean-field Thomas-Fermi regime to the Tonks regime
(g1D > 0). The solid line presents the theoretical data for g1D > 0,
and the dashed line presents the theoretical data for g1D < 0 [Ast05].
Taken from Elmar Haller et al. [Hal09] .

observe a reduction of the oscillation frequencies in the Tonks regime and an in-
crease of the modulation frequency in the super-Tonks regime. In the case of our
two particle system there is a theoretical prediction for the energy spectrum for
all values of g1D [Idz06] (figure 4.12 a). To predict the transition frequencies we
subtract the energy of the second repulsive state from the first repulsive state (see
figure 4.12 b). The predicted energy difference shows a quite similar behavior with
a reduction in the Tonks regime and an increase in the super-Tonks regime. The
fact that properties similar to those of the two-particle system are visible in the
many-body system confirms that the many-body physics strongly depends on the
few-body physics of the system.
We have applied the modulation spectroscopy to interacting two-particle systems
by exciting a quadrupole transition. The obtained spectra are shown in figure

84



4. Fermionization of two distinguishable fermions

0

1

2

3

4

- 4 . 2 - 4 . 1- 4 - 2 0 2 4
0 . 0

1 . 8

1 . 9

2 . 0

2 . 1

2  p a r t i c l e s  i n  a  3 D  c i g a r  s h a p e d  t r a p  
w i t h  1 : 1 0  a s p e c t  r a t i o

 

 

E [
�ω

ll]

 f i r s t  a n d  s e c o n d  r e p u l s i v e  
         s t a t e  [ I d z 0 6 ]

b )

 

s u p e r - T o n k s  r e g i m e

 

 

 d i f f e r e n c e  b e t w e e n  f i r s t  a n d
         s e c o n d  r e p u l s i v e  s t a t e  [ I d z 0 6 ]  

 m o d u l a t i o n  s p e c t r o s c o p y

E dif
f [�

ω
ll]

- 1 / g 1 D  [ a l l � ωl l ] - 1

s h i f t  1 D  → 3 D  w i t h  a s p e c t  r a t i o  1 : 1 0

r e f e r e n c e  g = 0

T o n k s  r e g i m e

a )

Figure 4.12.: a) Energy and b) energy difference of the first and the sec-
ond excited repulsive state of a two-particle system [Idz06].
The red points are the results from the modulation spectroscopy (see
figure 4.13). In the Tonks regime the frequency of the quadrupole
transition is lowered compared to the transition at zero interaction.
In the super-Tonks regime the transition frequencies are expected to
be increased. The energy at diverging coupling strength in a quasi
1D trap with finite aspect ratio is shifted to a lower value compared
to the energy in a pure 1D system with Ediff = 2~ω‖.

4.13. The black data shows the spectrum of the noninteracting two-particle sys-
tem (g1D = 0). The oscillatory behavior of the signal is due to the coherence of the
coupling expressed by the second term in equation (4.28). For g1D > 1 we observe
that a second peak appears below the noninteracting transition frequency12. We
interpret the frequency of this peak to be the transition frequency between the two
repulsive states of [Idz06]. The oscillatory behavior is reduced in the transition
peaks of the interacting systems which might be a signature for the loss of coher-
ence. This is the reason why we fit Gaussians to the envelope of the transition

12The reason why the noninteracting peak does not totally disappear in the spectrum of two
interacting particles might be due excitations involving center-of-mass states.
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Figure 4.13.: Modulation spectroscopy of an interacting system. The am-
plitude of the modulation depth is as large that one obtains a Rabi-
frequency of the noninteracting system of Ω0 = 35Hz. The duration
of the modulation pulse is 65 × 2π/ωmod ≈ 20 − 25ms. For g1D > 1
we observe that a second peak occurs below the noninteracting tran-
sition frequency. We fit Gaussions to the envelope of the peaks to
determine the transition frequency. The errors given in brackets are
the standard errors of the fit.

peaks instead of the functional form for a coherent transition. We find that the
determined frequencies agree with the prediction that the transition frequencies
are reduced in the Tonks regime (red data points in figure 4.12). For the super-
Tonks regime we could not acquire meaningful data because during the time we
performed the modulation spectroscopy we were not aware of the center-of-mass
to relative motion coupling resonances which lead to loss of particles in system
for which we crossed the CIR to slowly (cf. section 4.5 ). We later performed
energy measurements in the super-Tonks regime, even for larger particle numbers.
Yet, we then used the more elegant method of rf-spectroscopy. The results are
presented in chapter 6.
To summarize, we have measured the energy of two repulsively interacting particle
and showed fermionization of two distinguishable fermions. In the following we
want to add an additional particle and study the properties of the larger system
when tuning it towards strong repulsive interaction.
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4. Fermionization of two distinguishable fermions

4.4. Adding more particles - Fermionization of three
fermions

With the comparison of the tunneling properties of two distinguishable fermions
with two identical ones we have demonstrated the fermionization of two distin-
guishable fermions. As in a many-body system of interacting distinguishable
fermions the correlations of the previously studied two-particle system are dom-
inant these systems are predicted to become fermionized at diverging coupling
strength [Gir10]. Thus, to demonstrate fermionization for larger particle numbers,
we added another particle to our two particle system. Of course one does not
realize a real many-body system by just adding a single particle. However, find-
ing evidence for fermionization in a three-particle system is a next step towards
prooving fermionization of a many-body Fermi system.
To realize the fermionized three particle system we actually do not have to add
a particle in a third spin state which would be distinguishable from each of the
other two particles. Adding a third spinstate to the same single well potential
would lead to inelastic 3-body recombination at large coupling strength [Ott08].
We can add a particle which is identical to one of the two others because these
two identical particles do not interact and thus they are intrinsically fermionized.
To prove fermionization we could have repeated the previous tunneling measure-
ment and compared the tunneling properties of the interacting three-particle sys-
tem to that of three identical fermions. Here, we follow a different approach: By
studying the correlations in the system we will illustrate how the fermionic nature
of the distinguishable particles is smoothly switched on [Tho12].
We prepare the initial three-particle system as described in the preparation chap-
ter (section 2.4.1). Then we tune the strength of the interaction by tuning the
magnetic offset field. At a fixed value of g1D we deform the potential so that par-
ticles can tunnel on experimentally accessible timescales. Doing so, we choose the
barrier height such that just a single particle leaves during the time we allow for
tunneling. Finally we switch off tunneling and detect the spin state of the two
remaining particles.
The initial three-particle system of the experiment is sketched on the left side of
figure 4.14. When we remove a single particle of the initial noninteracting system
by allowing for one particle to tunnel, the result of the state sensitive measurement
of the two remaining particles is obvious: We will just remove one of the two iden-
tical particles from the second level. The remaining system consists of a single spin
up and a single spin down particle and thus the probability of finding a polarized
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Figure 4.14.: Initial noninteracting system and decomposition of the
fermionized state. The initial system (left side) is prepared as
described in chapter 2.4.1. The probability of finding a polarized
state after removing one particle from the noninteracting system is
zero. The fermionized state can be decomposed into a set of nonin-
teracting few-body states. Only the states where the distinguishable
particle is highest up in the potential contribute to the fraction of
finding polarized states. Summing up the coefficients for these states
results in a fraction of 33% polarized states for a fermionized system.

system 13 is zero. To find a polarized system the single minority spin particle has
to tunnel. This is highly suppressed as long as the expectation value of the energy
of this particle is much smaller than the energy of the identical fermions. How-
ever, by making the system more and more repulsively interacting, the minority
particle acquires more and more fermionic properties. Thus for strong interaction
(g1D > 1) we observe that the minority particle starts to tunnel and we observe
that the probability of finding a polarized system remaining in the trap increases
(see figure 4.15). For infinitely strong coupling the distinguishable particle has ac-
quired maximum fermionic properties: Its probability to tunnel has become equal
to the probability of one of the two identical particles to tunnel, i.e. 1/3 for each
particle. We identify this point around the CIR where the fraction of polarized
systems crosses 1/3. This is the point of fermionization where all particles behave
like identical fermions.
The result can be visualized by projecting the many-particle wavefunction of the
fermionized state for which an analytic solution exists [Gir10] onto a full set of
noninteracting many-particle states which is sketched on the left side of figure
4.14. Then one can imagine that the tunneling process acts on each of these basis

13We denote a system of two identical fermions as a polarized system due to the alignment of
their spins.
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Figure 4.15.: Fermionization of three fermions. We prepare a three-particle
system of two identical and one distinguishable fermion. After remov-
ing one particle from the trap by a tunneling process we record the
number of polarized systems. For weak interaction we do not observe
polarized systems. For increasing interacting strength the fraction of
polarized systems increases and gets 1/3 close to the CIR which is
evidence for fermionization. Note: The crossing at 1/3 slightly above
1/g1D = 0 is to some extent due to the systematic uncertainty of the
CIR of ±0.5G. Additionally, effects from being only in a quasi 1D
system with finite perpendicular aspect ratio might lead to a shift.
Yet, compared to the whole range of interaction strengths – the plot
only shows the strongly interacting regime with g1D > 1[a‖~ω‖] – the
deviation is small.

state of the decomposition: All states with the distinguishable particle highest up
in the potential contribute to the fraction of polarized states (green bracket). All
other states where one of the identical is highest up contribute to the non-polarized
fraction (blue brackets). To determine the total number of these fractions one has
to sum up the corresponding coefficients of the decomposition. Ioannis Brouzos
from Peter Schmelchers group in Hamburg [Bro12a] has performed the projection
of the fermionized state onto the noninteracting many-particle states and calcu-
lated the coefficients c2n,k

14. Summing up all the coefficients till c4,k results in a
fraction of polarized system of 33%. This is exactly what we assumed and also

14Due to parity conservation the coefficients of the even parity states with energy 2(n + 1)~ω‖
vanish. The contribution of the higher energy states with coefficients c2n>4,k is negligible.
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measured for a fermionized system of three particles.
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4.5. Center-of-mass to relative motion coupling
In the analysis of two interacting particles in a harmonic trap the relative motion
is completely separated from the center-of-mass motion [Bus98] [Idz06]. Yet, due
to the anharmonicity of our trapping potential the relative motion state of our
interest – the repulsive branch in figure 3.5 (blue curve) – can couple to excited
center-of-mass states of molecules . An analysis of this process has been performed
by Simon Sala et al. [Sal12]. Here we briefly sum up the most relevant part of
this publication and present our experimental results on the COM-REL motion
coupling resonances15. The measurement and its analysis will be content of a
joined publication (in preparation). With our measurement of coherent coupling
of two particles into a molecular state we can argue that the loss features observed
in a 1D system in the Innsbruck experiment [Hal10] is most likely due to this
two-body effect followed by a collision of the molecule with a third particle and
relaxation into a deeply bound molecule.
In the presence of an anharmonicity in the confining potential there is a potential
term in the Hamiltonian which does not separate into center-of-mass and relative
motion:

W (r,R) = V (r,R)− V (r)− V (R) (4.35)

where V (r) and V (R) are the separable parts in terms of the relative coordinate
r = (xr, yr, zr) and the center-of-mass coordinate R = (xR, yR, zR). This leads
to a coupling between the relative motion state |ΨrepΦ(0,0,0)〉 in the COM ground
state and the two molecular states |ΨattΦ(2,0,0)〉 and |ΨattΦ(0,2,0)〉 which are in the
attractive (molecular) REL ground state and in the second excited COM state.
The indices of the states denote the quantum number of excitations in a harmonic
oscillator (nx, ny, nz). The former state corresponds to the repulsive branch in
figure 3.5 and the latter to the attractive branch in figure 3.5 with an additional
energy of ~ωx,0−2 and ~ωy,0−2 deposited in the center-of-mass motion. The energy
of both states is shown in figure 4.16 a). The corresponding matrix elements of
the couplings are

〈ΨrepΦ(0,0,0) | W | ΨattΦ(2,0,0)〉 (4.36)

and

〈ΨrepΦ(0,0,0) | W | ΨattΦ(0,2,0)〉 . (4.37)

The coupling to a molecular state of the form (1,0,0) is forbidden in a symmetric
potential due to parity conservation. All higher radial states with even parity
can couple, yet for nx,y ≥ 4 the coupling is weak and therefore not considered.
15We use the notation: relative motion: REL, center-of-mass motion: COM.
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(b) Zoom into the dashed window of plot (a). Avoided crossings of the repulsive state and the
excited attractive states occur due to the COM-REL motion coupling. Units are in arbitrary
scale. The numerical calculation of the energy of the states (points) are performed for the
system described in [Sal12]. Plot taken from [Sal12] and adapted.

Figure 4.16.: Energy spectrum and avoided crossings occurring due to the
COM-REL motion coupling.

The coupling to a bound state along the weakly confined z direction can be ne-
glected due to the anisotropy of the trapping potential[Sal12]. The COM-REL
motion coupling leads to avoided crossings of the repulsive state |ΨrepΦ(0,0,0)〉 and
the excited molecular states |ΨattΦ(2,0,0)〉 and |ΨattΦ(0,2,0)〉. The minimum energy
difference between the adiabatic states are given by the Rabi frequency which is
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4. Fermionization of two distinguishable fermions

determined by the matrix element (4.36) and (4.37).
To experimentally resolve these coupling resonances we prepare two noninteract-
ing particles in the ground state of our potential. Then we ramp up the repulsive
branch by increasing the magnetic offset field with a speed of 20G/ms. The ramp
speed of the magnetic field is chosen such that g1D tunes fast enough to non-
adiabatically jump across the coupling resonances [Zen32]. At distinct magnetic
field values we immediately stop the ramp of the magnetic field to be able to create
a superposition of the repulsive state and the molecular state. Both states evolve
with different phase and therefore we expect an oscillation between the population
of the two states of the form cos(Ωefft) with Ωeff =

√
Ω2

0 + ∆(B −B0). Here B0 is
the magnetic field value where the energy difference between the adiabatic states
is minimal, with minimum Rabi frequency Ω0 and the width of the resonance ∆ .
In the experiment we wait for 12.5ms after the stop of the ramp before we mea-
sure the population in the repulsive state. The duration is chosen such that it
corresponds to half a cycle of the expected Rabi-Frequency Ω0 = 2π×80Hz which
corresponds to a π-pulse. Subsequently, to detect the number of particles in the
repulsive state we ramp back the magnetic field value to far below the CIR to
523G. Any particle which was in the molecular state has become deeply bound
and therefore cannot be detected with our detection method. Thus, the number
of particles in the molecular state is given by the difference between the mean
number of the initial two-particle system N0 and the number of particles in the
repulsive state. To check if there is no other loss channel besides coupling into the
molecular state we ramp the magnetic field to a value of 900G after the stop at
the magnetic offset field of interest. At 900G, above the CIR, the molecules are
weakly bound and the individual particles of the molecule can be detected with our
detection method. We found ≈ N0 particles when measuring the particle number
above the CIR. This excludes an additional loss channel besides the coupling to
the molecular state.
Figure 4.17 shows the detected number of particles in the repulsive state depend-
ing on the magnetic offset field. One clearly observes two peaks which we iden-
tify as the COM-REL motion coupling resonances which involve the two molec-
ular states excited in x- and y- direction of the anisotropic confinement with
ωx 2−0/ωy 2−0 = 1.07.
To analyze the dynamics of the coupling we stopped at different values of the

magnetic offset field around the observed peaks and varied the duration of the
stop. Figure 4.18 a) presents the result of the measurement. The atom number
oscillates between the molecular state and the repulsive state showing that we
have created a coherent superposition of the molecular and the repulsive state. By
a sinusoidal fit we can extract the amplitude and the Rabi frequency Ωeff of the

93



4.5. Center-of-mass to relative motion coupling

7 7 9 7 8 0 7 8 1 7 8 2 7 8 3 7 8 4 7 8 5 7 8 6 7 8 7 7 8 8
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5
C I R :  7 7 9 . 3 G 7 8 3 . 2 G

 

 

Me
an

 at
om

 nu
mb

er

M a g n e t i c  f i e l d  [ G ]

7 8 0 . 5 G

Figure 4.17.: Disappearance of particles in the repulsive state. Due to the
COM-REL motion coupling the particles in the repulsive state cou-
ple into a molecule and disappear when detecting the number of
particles in the non-bound state. One observes two peaks indicating
COM-REL motion coupling resonances involving two excited molec-
ular states in x- and y-direction of the confinement.

oscillation. The extracted values for different magnetic fields are shown in figure
4.18 b). From a Lorentzian fit to the amplitude we can extract the width (FWHM)
of the coupling in terms of the magnetic offset field. Table 4.5 shows the width of
the coupling resonances determined from the measurement. We add the position
and the coupling strength calculated by Simon Sala who has performed the anal-
ysis described in [Sal12] with our trap parameters of section 4.2.2. Compared to
the width of the CIR16 which is about 250G, we find good agreement between our
measurement and the numerical calculation.
Due to the dependence of the energy of the involved states on the magnetic field
gradient we observe different positions of COM-REL motion coupling resonances
with a gradient of B′ = 18.92 G/cm applied, see appendix figure A.18. It also
shows the dependence of the resonances position on the strength of the confine-
ment which determines the energy of the COM- excitation.
With this measurement we have shown that in a two-particle system coherent

16The width of the CIR is determined by the width of the Feshbach resonance (see chapter 3.1.5)

94



4. Fermionization of two distinguishable fermions

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
B = 7 8 6 . 0 7 G

Ωe f f  =  2 π  x  7 5  H z
 D a m p e d  C o s i n e  f i t :  

          y 0 + b t  +  1 / 2  ( 1 + c o s ( Ωe f f  ( t - t 0 ) ) )  C  e x p ( - ( t - t 0 ) / τ)
 

 

Fra
ctio

n o
f m

ole
cu

les

H o l d  t i m e  [ m s ]

7 8 5 . 0 7 8 5 . 5 7 8 6 . 0 7 8 6 . 5 7 8 7 . 0
0

1 0 0

2 0 0

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 

 

Fre
qu

en
cy 

Ω
0 / 

2π
 [H

z]

M a g n e t i c  f i e l d  B  [ G ]

B 0  =   7 8 6 . 2 1 ( 0 . 0 2 ) G

Ωe f f =  ( Ω0
2 + D ( B - B 0 ) 2 ) 1 / 2

 L o r e n t z i a n  f i t :    
Y 0 + A / ( 4 ( B - B 0 ) 2 + F W H M 2 )

 

 

 

Fra
ctio

n o
f m

ole
cu

les

F W H M = 0 . 4 2 ( 0 . 0 6 ) G

Ω0  =  2 π  x  7 5 H z

b )a )

Figure 4.18.: Dynamic of the COM-REL motion coupling. a) Oscillation
between the non-bound and the molecular state. From a sinusoidal
fit we deduce the Rabi-frequency Ωeff and the maximum observed
fraction of molecules. b) Maximum amplitude and frequency of the
oscillation. The data points are extracted from measurements analog
to figure a) at different magnetic offset fields. The measurements are
performed with an applied magnetic field gradient B′ = 18.92 G/cm.
Similar measurements with the magnetic field gradient switched off
are shown in the appendix (figure A.16 andA.17 ).

coupling into a molecule is possible without having a third particle present. We
have contributed to the discussion [Pen11, Mel11, Sal12] which mechanism creates
the loss features in the experiment of Elmar Haller et al. [Hal10] (see figure 4.19).
These loss features have originally been interpreted to occur due to a maximum loss
at CIRs which have been split up from one CIR when introducing an anisotropic
confinement. Alejandro Saenz’s [Sal12] and our group interpret the loss features
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4.5. Center-of-mass to relative motion coupling

COM Position [G] FWHM[G] Ω0[Hz]/ 2π
excitation exp. num. exp. num. exp. num.
ωy 2−0 780.5 776.01 0.25(0.03) 0.35 83 64
ωx 2−0 783.2 779.02 0.42(0.06) (∗) 0.35 75 (∗) 69

Table 4.5.: Comparison between experiment and numerical calculation
(∗) For the determination of the width and the Rabi Frequency of
the coupling to the state in x-direction the magnetic field gradient
B′ = 18.92 G/cm had been applied during the measurement. Yet, the
width in the case the gradient is switched off is similar to the one with
gradient on which can be seen from figure 4.17.

as COM-REL motion coupling resonances of the type we have observed which is
is a two-body effect. We assume that the loss of atoms in their experiment occurs
due to collisions of molecules with residual atoms or molecules and relaxation into
deeply bound states.

Figure 4.19.: Two loss features in a 1D system close to the CIR observed
in the Innsbruck experiment [Hal10]. The atoms are confined
in 1D tubes created by an optical lattice with anisotropic confinement
of aspect ratio ωy/ωx = 1.10. For large g1D they observe two loss
features which they have interpreted as a result of the splitting of the
CIR into two CIR’s in the presence of an anisotropic confinement.
Plot taken from [Hal10] and adapted.
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5. Pair correlations in systems with
attractive interactions

Many fundamental properties of strongly correlated quantum systems are deter-
mined by the pairing mechanism in these systems. In the previous chapter we have
observed that for vanishing pair correlation in an repulsively interacting system of
distinguishable fermions the system becomes fermionized at the divergence of the
1D coupling strength [Gir60] [Gir10]. In the case of an effective attractive interac-
tion in a 3D Fermi system macroscopic features such as the conductivity and the
heat capacity can be described using the BCS pairing mechanism [Bar57]. The
latter theory has originally been developed to explain the occurrence of supercon-
ductivity in various metals below a critical temperature and has been extended to
describe superfluidity in 3He [Leg72]. Immediately after the development of the
BCS theory the BCS mechanism has also been applied to cover the properties of
nuclei [Mig59]. Although the BCS theory can provide exact results in the limit
of infinite particle number it is to some extend insufficient to describe mesoscopic
Fermi systems such as light nuclei [Zel03]. Yet, pairing mechanism in the nuclei
play a fundamental role which can be seen from the odd-even effect in the phe-
nomenological formula of the mass of nuclei [Zel03]. In the context of nuclear
physics several models such as the nuclear shell model [May49] [Sue49] and the
seniority model [Zel03] have been developed which incorporate pairing effects.
In this chapter we present our first steps towards investigating these effects by
studying the pair correlations in 1D systems with attractive interparticle inter-
action for up to six particles. We probe the system using tunneling experiments
similar to those introduced in the chapter 4. In the second part of the chapter we
present dissociation measurements of a single particle from a finite Fermi-system.
We show that the single particle dissociation energy exhibits an odd-even behavior
as a function of the particle number similar the one observed for neutron dissoci-
ation in nuclei [Bri05].
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5.1. Tunneling of two attractively interacting fermions

5.1. Tunneling of two attractively interacting
fermions

To begin with, we first discuss the expected degree of pair correlations in a two-
particle system predicted by the 1D theory [Bus98] which inspired us to perform
the subsequently presented tunneling measurement.
In a system of two attractively interacting fermions the correlations differ from
that observed for repulsive interaction. In the latter case we observed that the
pair correlation g2(0) vanishes at the point of Fermionization. Contrary, for two
distinguishable fermions with attractive interaction the pair correlation g2(0) is ex-
pected to be increased compared to two noninteracting distinguishable particles;
i.e. the probability to find the particles at the same point in space is larger. In the
case of a pure state, the pair correlation g2(r) with r the relative distance between
the two particles is proportional to the modulus squared of the two-particle wave
function [Fra03]. The wavefunction and the energy of two interacting distinguish-
able fermions is known from the theory of Thomas Busch et al. [Bus98] which
we discussed in chapter 3. In figure 5.1 we show the wavefunction of the relative
motion depending on the interaction strength. For weak interaction the pair wave-
function resembles the Gaussian trap ground state (right hand side of the figure,
g1D = −0.1). The pair wavefunction is given by the parabolic cylinder functions
with g1D < 0 and Eint < 0. For stronger attractive interaction the wavefunction
gets more and more contracted (left side of the figure). This reveals the increased
pair-correlation in the system as the correlation is proportional to the modulus
of the pair wavefunction. Simultaneously the binding energy of the system gets
larger for increasing absolute values of the negative coupling constant.

5.1.1. Expected tunneling behavior
Before we present the results of the tunneling experiment we will first discuss the
expected tunneling properties. We consider two limiting cases, the weakly attrac-
tive interacting regime and the strongly attractive interacting regime. We will
follow some notes which we thankfully received from Massimo Rontani [Ron12a].

Weakly interacting regime

In the weakly interacting regime (|g1D| < 1 [a‖~ω‖]) the correlations in the system
are not yet developed to a large degree. This can be seen from the wavefunction in
figure 5.1 at small g1D . Although there are already correlations in the system the
main origin for the localization of g2(r) is the confinement of the trap. Without
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Figure 5.1.: Pair correlation and pairing energy of two attractively in-
teracting fermions in a 1D harmonic trap [Bus98]. The pair-
correlation is proportional to the modulus squared of the wavefunction
[Fra03]. Figure (a) shows the wavefunction of the relative motion de-
pending on the interaction strength. g1D is given in units of [a‖~ω‖].
The solid curves represent the wavefunctions in a harmonic trapping
potential, whereas the dashed curve show the normalized wavefunction
in free space. One observes that for weak interacting the wavefunction
is modified by the confinement. Yet, for stronger interaction the wave-
function becomes more and more independent of the confinement. For
g1D →∞ the wavefunction collapses to a single point in space at r = 0
with maximized local pair correlation g2(0) = 1 and g2(r 6= 0) = 0.
(b) Pairing energy. At the same time as the correlations of the pair in-
crease the interaction energy of the two distinguishable fermions gets
larger. For g1D → ∞ the interaction energy diverges in a pure 1D
system. Note: in a realistic trap with finite aspect ratio the quasi-1D
approximation breaks down for large pairing energies and converges
to the 3D universal bound state. Figure a) taken from [Ron12a] and
adapted.

confinement, i.e. in free space, the correlations are much weaker which can be
seen from the dashed curve. It represents the normalized pair wavefunction in free
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5.1. Tunneling of two attractively interacting fermions

space which is given by 1

Ψ(r) =
√
−g1D
21/4 e

1√
2
g1D|r| . (5.1)

Due to the weaker correlation one can assume that the particles in a tunneling
experiment similar to the one presented in chapter 4, tunnel after each other. In
the limit of g1D → 0 this assumption holds as the particles tunnel completely
independent. In the case of weak interaction the tunneling process may be de-
scribed by quasi-particle tunneling [Ron12b]: One of the two particles tunnels into
the continuum leaving the other particle in the unperturbed ground state of the
trap. Energy conservation requires the tunneled particle to possess the energy
E = E0−Eint(g1D) in the continuum as well as in the trap before it has tunneled.
We have denoted E0 as the energy of the ground state in the trap and Eint as the
interaction energy of the pair. When the interaction energy gets larger than E0
the energy of the quasi-particle has reached the trap bottom and thus the model
is no longer applicable. The blue curve in figure 5.2 shows the expected tunneling
rate of quasi-particle tunneling in the weakly interacting regime.

Strongly interacting regime

In the case of strong attractive interaction (|g1D| > 1 [a‖~ω‖]) the size of the pair
gets smaller than the width of the barrier and one expects the two particles to
tunnel as a pair. When the pair has acquired strong correlations the tunneling rate
of the pair should become independent of the binding energy of the pair. In this
case the interaction properties can be regarded as an internal degree of freedom of
the pair which should not effect the tunneling properties of the pair. The effective
confining potential of the pair is shown in figure 5.3 and depends on the interaction
strength for intermediate coupling strength. For strong attractive interaction the
confining potential becomes more and more independent of g1D . The tunneling
barrier of the effective confinement is larger than the single particle potential due
to the larger mass of the pair. The calculation of the effective confining potential
was derived by Massimo Rontani using time-dependent perturbation theory. For
the analysis we refer to future publications which will include this work [Ron12a].
From the effective confinement one can deduce the tunneling rate of the pairs which
1The exponent in the 1D pair-wavefunction in free space is proportional to the coupling strength
g1D whereas in 3D the exponent of the wavefunction is proportional to the inverse scattering
length a−1

3D (see equation (3.34) in chapter 3). The different dependence of the wavefunction
on the coupling parameter is one of the manifestations of the different dimensionality. It is
associated with the distinct asymptotic behavior of the interaction energy in the different
dimensions with Eint,1D → −∞ for g1D → −∞ and Eint,3D = 0 in the limit of a3D → ±∞.
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Figure 5.2.: Single particle and pair tunneling rate. The blue curve repre-
sents the rate for single particle tunneling which is dominant in the
weak interacting regime. Single particle tunneling is expected to stop
at a certain point when the interaction energy is as large that the
quasi-particle has reached the trap bottom. In the strong interacting
regime one expects the pair tunneling (red curve) to be dominant. For
increasing interaction the tunneling rate become less dependent on the
coupling strength. Then the interaction properties can be regarded as
an internal degree of the pair and the tunneling rate is nearly not ef-
fected by a change of the coupling strength. Plot taken from [Ron12a]
and adapted.
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Figure 5.3.: Single particle potential (blue) and effective potential of the
pair (red). For strong interaction the potential barrier of the pair is
larger than the one for a single noninteracting particle. It is expected
to converge to the potential of a particle with twice the mass of a single
particle. g1D is given in units of [aron~ωron] with ωron = 2π × 250Hz.
Plot taken from [Ron12a] and adapted.
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5.1. Tunneling of two attractively interacting fermions

is shown by the red curve in figure 5.2. For strong interaction only pair tunneling
is expected which tunes only weakly with g1D . At a certain point towards weaker
interaction the single particle tunneling events are expected to set in and should
become the dominant process for small g1D .

5.1.2. Tunneling model
To quantitatively describe the tunneling behavior we implement the two previously
discussed processes into a simple tunneling model. Both processes are illustrated
in figure 5.4. One possible process is subsequent single particle tunneling. In this
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I) single particle tunneling

II) pair tunneling
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Figure 5.4.: Tunneling model. Two processes lead to a decay of the system:
I) One particle tunnels first with rate γs and leaves the other particle
in the unperturbed state of the trap. The second particle tunnels with
a rate γs0 of a noninteracting particle. II) Both particles tunnel as a
pair with rate γp.

case one of the two interacting particles tunnels first with rate γs. The other
particle is left in the unperturbed ground state of the trap. As the energy of
the first particle is reduced by the interaction energy the second noninteracting
particle experiences a smaller barrier height than the first one. Thus the second
particle leaves the trap faster than the first one with rate γs0 of a noninteracting
particle.
The other possible process is pair tunneling. In this case both particle tunnel at
the same time with rate γp.
To establish the model we introduce the quantities P2(t), P1(t) and P0(t) which
are defined as the probability to find two, one or zero particles in the trap after
a certain time t. From conservation of probabilities all quantities have to sum up
to unity at any time t. The expectation value of the mean particle number in the
trap can be calculated from the probabilities and is given by

Nmean (t) = 2P2 (t) + 1P1 (t) . (5.2)

102



5. Pair correlations in systems with attractive interactions

To relate the probabilities to the tunneling rates we consider the effect of the
two different tunneling processes on the probabilities. The probability to find two
particles in the trap is effected by both – subsequent single particle tunneling and
pair tunneling:

dP2 (t)
dt

= −(γs + γp)P2 (t) . (5.3)

Here, we have assumed that the second particle of the subsequent tunneling process
does not tunnel in the infinitesimal time interval dt. The rate equation can be easily
solved and the decay law for the two particle probability reads:

P2 (t) = e−(γs+γp)t . (5.4)

The probability to find one particle in the trap initially increases due to the decay
of the two-particle probability by single particle tunneling. Yet, the accumulated
population decays by tunneling of the single particle with the rate γs0 of a nonin-
teracting particle. The corresponding rate equation reads:

dP1 (t)
dt

= γsP2 (t)− γs0P1 (t) = γse
−(γs+γp)t − γs0P1 (t) . (5.5)

We solve the latter equation with the initial conditions P2(0) = 1 and P1(0) =
P0(0) = 0 and obtain the probability of finding one particle in the trap:

P1 (t) = γs
γs + γp − γs0

[
e−γs0t − e−(γs+γp)t

]
. (5.6)

The probability to find no particle left in the trap is given by the identity

P0(t) = 1− P2(t)− P1(t) . (5.7)

In the following we want to obtain the quantities P2(t), P1(t) and P0(t) from the
actual experiment of two attractively interacting fermions tunneling out of the
microtrap potential.

5.1.3. The tunneling experiment
For the tunneling measurement we prepare two particles, one in the hyperfine state
|1〉 and one in state |3〉, in the ground state of the trapping potential 2. To probe
the system we employ the same method as described in chapter 4.1.2. We deform
2In this section we denote the two distinguishable fermions by their label for the hyperfine state
– |1〉 and |3〉 – instead of | ↓〉 and | ↑〉. The reason for this is the dependence of the potential
on the hyperfine state which makes an indication of their different hyperfine state necessary.

103



5.1. Tunneling of two attractively interacting fermions

the potential such that there is a potential barrier of defined height through which
the particles can tunnel out of the trap. After a certain hold time we ramp the
potential back up and measure the number of particles remaining in the trap. By
performing many of these measurements at different holdtimes we can map out
the time evolution of the particle number in the tilted potential. Figure 5.5 shows
the mean particle number in the trap as a function of the hold time for three dif-
ferent values of the interparticle interaction 3. For a system of two noninteracting
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Figure 5.5.: Tunneling dynamics. To study the tunneling dynamics of an at-

tractively interacting system we set the barrier to a fixed height and
then tune the strength of the attractive interaction. The mean number
of remaining particles after a certain hold time increases when tuning
the interaction strength from zero (blue data) to larger values (green
to red ). This demonstrates that the effective barrier height increases
as a result of the energy shift due to the increasing attraction.

particles the loss occurs on a timescale with a 1/e-lifetime of about 30ms. In
the presence of an attractive interaction with g1D < 0 the energy of the system
is reduced by the interactions. This leads to an effective increase in the height of
the tunneling barrier and therefore to an increased lifetime of the sample. The
decreasing decay rate of the total sample already indicates that the system has
3The values of the different interaction parameter g1D are listed in table A.2 in the appendix.
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5. Pair correlations in systems with attractive interactions

acquired larger pair correlation for increased interaction strength. By recording
the number of particles in the trap in each realization of the experiment we can
also determine the probability to find two, one or zero particles in the trap.
To characterize the tunneling behavior we want to apply the previously estab-
lished model to extract the rates γs0, γs and γp from the measured probabilities.
Unfortunately we cannot simply fit the equations (5.4), (5.6) and (5.7) to the mea-
sured probabilities. The reason for that is a spin dependent confining potential. A
variation of the coupling strength which is realized by tuning the magnetic offset
field also modifies the magnetic potential and thus influences the tunneling rates
of interest. Hence, to apply the model we first have to determine the effect of the
spin dependent confining potential on the noninteracting tunneling rate γs0 for
particles in the two different hyperfine states.

5.1.4. Effects of the spin dependent potential
In the case the potential is the same for all offset fields and all hyperfine states one
can deduce the tunneling rate γs0 from the decay of two noninteracting particles
at g1D = 0 by fitting Nmean = N0 e

γs0t to the mean particle number. This is valid
for magnetic field values above 850G where the magnetic moment of all states are
identical within 0.5% (see figure 5.6 a). However, for lower offset fields where we
have also performed tunneling measurements, the magnetic moments of state |1〉
and |3〉 tune strongly with the magnetic offset field with a deviation between the
magnetic moments of the states of more than 1%. Thus, the linear potential Vmag
of the potential well depends on the offset field and on the hyperfine state of the
particle. This means that in a constant optical potential Vopt, the tunneling rate
γs0|1〉 and γs0|3〉 of a single particle in state |1〉 or |3〉 are different.

Determination of the spin dependent single particle rates

To determine the spin dependent single particle rates we perform a reference mea-
surement with a single particle at constant magnetic field gradient for two different
hyperfine states and two different offset fields. The measured rates are given in ta-
ble 5.1. In a next step we determine the magnetic moment of each hyperfine state
at the different offset fields. To apply the same parametrization of the potential
as in chapter 4.2.2, we introduce a new parameter µc,B|state〉 which depends on the
field and the hyperfine state. Then the potential reads:

V (p, z) = Vopt(p, z) +Vmag(z)

= p V0

(
1− 1

1 + (z/zr)2

)
−µmµc,B|state〉B′z

(5.8)
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Figure 5.6.: Origin of the spin dependent potential. Figure a) shows the
magnetic moment of the three lowest hyperfine state of 6Li [Bre31].
In the region of magnetic offset fields where we perform the tunneling
measurement the magnetic moments differ by more than 1% (blue
shaded area). To incorporate the difference in the magnetic moment
into the parametrization of the potential we introduce the coefficient
µc according to equation (5.8). The solid curves in figure b) show the
coefficients for the different hyperfine states calibrated from a reference
measurement (data points) .

With the definition µc,792G|1〉 = 1 the potential is identical to the one used in chap-
ter 4.2.2 and 4.3. From the functional form of the magnetic moment plotted in
figure 5.6 we calculate µc,568G|3〉. Using a WKB approximation (see chapter 4.2.1)
we can fix the optical potential parameter pref of the reference measurement at
568G by matching the calculated tunneling rate γ|3〉,WKB to the experimental one.
Performing the same analysis, now with the optical potential fixed at pref, we can
determine µc,350G|3〉 , µc,568G|1〉 and µc,350G|1〉 by matching the tunneling times from
the WKB calculation with the measured ones at the corresponding magnetic offset
field. The results are shown in table 5.1 and figure 5.6 b).
As expected, we find that the coefficient of the linear potential varies within more
than 1%. However, the absolute value of the determined coefficient deviates from
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5. Pair correlations in systems with attractive interactions

magnetic field B |state〉 γ|state〉 σγ|state〉 µc,B|state〉 σµc|state〉
G 1

s
1
s

10−4

568 3 35.25 3.57 1.00457 8.7
350 3 30.12 2.81 1.00311 11.0
568 1 21.77 1.12 0.99968 5.3
350 1 8.28 0.49 0.98989 6.0
496 3 interpol. 1.00407 10%
423 3 interpol. 1.00356 10%
496 1 interpol. 0.99806 10%
423 1 interpol. 0.99512 10%

>850 1,3 µc,568G|3〉 1.00457 8.7

Table 5.1.: Potential coefficient µc. The table shows the tunneling rates of
the reference measurement and the determined coefficient for different
hyperfine states and different offset fields. The calibration has been
performed using a WKB approximation. For B > 850G the magnetic
moment of both states is identical within a relative deviation of 3×10−3.
Thus we set µc,>850G|1〉,|3〉= µc,568G|3〉

the theoretical prediction4. The coefficient of state |3〉 is not expected to tune
with the magnetic offset field. The observed weak increase of µc,B|3〉 for larger
fields could be explained by an additional magnetic field gradient created by the
offset coils which is proportional to the offset field.
Although the calibrated magnetic moment differs from the prediction we use it to
analyze the tunneling data of attractively interacting fermions, because the origin
of the deviation should cancel to first order when used for both – for the calibration
of the potential and for the analysis of the tunneling dynamics with interaction
present.

4We have repeated the calibration for a larger optical trap depth which increased the barrier
height and thus decreased the tunneling rates by a factor of 5. We have done this to check
if the discrepancy between the calibration and the theoretical prediction is a result of the
WKB approximation which becomes more inaccurate for smaller barrier heights. However,
we do not see any effect from this as the second calibration agrees with the first one within
the errors.
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5.1. Tunneling of two attractively interacting fermions

Modification of the tunneling model

In the rate equations of equation 5.3 and 5.5 which describe the tunneling dynamics
we have to take account for the different magnetic moments of particles in state |1〉
and |3〉 which experience different confining potentials (see figure 5.7). Therefore
we have to consider different tunneling rates γs0|1〉 and γs0|3〉 for the different states.
For the rate with which a two-particle system decays we have to distinguish if aF 0
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Figure 5.7.: Spin dependent potential. Figure a) sketches the potential for the
different hyperfine states at a magnetic offset field of 350G. The blue
curve shows the potential for state |1〉, the green curve the one for state
|3〉. The states shifted by the interaction energy at the corresponding
coupling strength of g1D = −0.65[aref~ωref] are indicated by the dashed
lines. The units are the trap frequency determined by a harmonic ap-
proximation to the optical potential and the corresponding harmonic
oscillator length. Figure b) and c) depict the two different possibilities
of subsequent single particle tunneling with either state |3〉 tunneling
first (b) or state |1〉 (c).

particle in state |1〉 or a particle in state |3〉 leaves the trap first. Then the
probability to find two particles in the trap reads:

P2 (t) = e−(γs|1〉+γs|3〉+γp)t = e−γ2t (5.9)

If we find one particle in the trap it is either a particle in state |1〉 or one in state
|3〉 . If it is one in state |1〉 we know that the first particle which has left from
the two-particle system must have been a state-|3〉-particle and vise versa. This
leads to two different probabilities of finding one particle in the corresponding
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5. Pair correlations in systems with attractive interactions

hyperfine state. The probability of finding one particle in any state is the sum of
both probabilities and is given by:

P1 (t) = γs|3〉
γ2 − γs0|1〉

[
e−γs0|1〉t − e−γ2t

]
+ γs|1〉

γ2 − γs0|3〉

[
e−γs0|3〉t − e−γ2t

] (5.10)

Before we can fit the modified probability functions (5.9) and (5.10) to the mea-
sured data we first have to determine the relative optical trap depth p to fix the
remaining free parameter of the potential of the actual tunneling experiment.
To extract the optical trap depth p we iterative fit a double-exponential decay 5

of the form
Nmean = N0

(
e−γs0,568G|3〉t + e−r γs0,568G|1〉t

)
(5.11)

to the mean number of two noninteracting particles at 568G, whereas r is varied
in each step. After each fit we apply a WKB calculation in which we tune the
parameter p such that γs0,568G|3〉,WKB becomes equal to γs0,568G|3〉,fit. The parameter
r for the next step of the iteration is determined by γs0,568G|1〉,WKB /γs0,568G|3〉,WKB.
We stop the iteration when γs0,568G|1〉 and γs0,568G|3〉 from the WKB approximation
and from the fit coincide within a ratio of 10−3. The derived optical trap depth
parameter p is given in table A.3 in the appendix.

5.1.5. Application of the spin dependent model
After the external potential of the particles in the two different states is completely
determined we can calculate the rates γs0|1〉 and γs0|3〉 of the actual tunneling
experiment for any offset field using the WKB approximation. This leaves three
free parameters left in the model which we use to describe the tunneling process.
However, simultaneously fitting P2(t) and P1(t) with γs|1〉, γs|3〉 and γp as free
parameters results in large uncertainties of the derived parameters. Yet, by testing
the fit we have observed that the rate for pair-tunneling is comparatively small
for an interaction strength of g1D = −0.65 [aref~ωref] at 350G. Hence, we neglect
pair-tunneling in the model and set γp to zero for the evaluation of the data. In the
case this assumption was wrong, our model would provide a too large probability
to find one particle in the trap which we can later check by a comparison to the
data.
Although this assumption reduces the number of free parameters to two (γs|1〉 and
γs|3〉) a fit of P2 and P1 might still provide results of large uncertainties. Yet,
5Uncorrelated tunneling with two different decay rates is parametrized by a double-exponential
decay.
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5.1. Tunneling of two attractively interacting fermions

by adding one more condition we can set limits to γs|1〉 and γs|3〉: Due to the
assumption of no pair-tunneling only subsequent single particle tunneling leads to
the decay of the two particle probability according P2 = e−γ2t with γ2 = γs|1〉 +
γs|3〉. After one particle has tunneled the other particle with different state is
left in the unperturbed ground state. As discussed in section 5.1.1 the kinetic
energy of the tunneled particle in the continuum is reduced by the interaction
energy. As we know the shape of the potential we can relate the energy E =
E0 − Eint,|state〉 to γs|state〉 using a WKB approximation. With this we obtain a
relation for Eint,|state〉 which monotonically increases with the inverse tunneling
rate γ−1

s|state〉. The important additional condition is, that both particles supply the
same amount of energy – namely the interaction energy – when they leave the trap
first. Thus we set

Eint,|1〉 = Eint,|3〉 . (5.12)
Then we vary Eint and calculate γs|1〉 and γs|3〉 with the WKB approximation until
γs|1〉 + γs|3〉 = γ2, whereas γ2 is determined by a fit to the P2-data.
With this ansatz6 we have determined all free parameters of the tunneling model.
Finally we have to check if the probability P1 is consistent with the data of finding
one particle in the trap as we have neglected pair-tunneling. We plot P1 with the
determined parameters (green solid line in figure 5.8) to the data (green points)
and find good agreement between the model of pure subsequent single particle
tunneling and the experiment.

5.1.6. Results for different interaction strength
The good agreement between model and experimental data confirms that pair-
tunneling can only play a minor role at an interaction strength of g1D = −0.65
[aref~ωref]. In the following we present the data and the results of the analysis for
different values of the interacting strength 7.

Evidence for increased correlation

Because of the increasing interaction energy for larger g1D the timescale for tun-
neling increases significantly. Hence, to compare the probability of finding one
particle in the trap at different interacting strength we have to rescale it onto a
common value which is the mean particle number Nmean = 1×P1+2×P2 (see figure
5.9). For zero interaction strength (blue) we find that the probability of finding
6The ansatz has included the two assumptions: i) no-pair tunneling ii) whichever particle tun-
nels first in the subsequent single particle tunneling process, it provides the same interaction
energy.

7A table of all deduced parameters can be found in the appendix (A.4).
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Figure 5.8.: Probability of finding two or one particle in the trap. We use
the established model to describe the measured probability of finding
two particles (blue curve) or just one particle (green curve) in the trap
after a certain hold time. In the model we have included the finite
preparation fidelity f < 1 by setting P2(0) = f and P1(0) = 1 − f .
We find that no pair tunneling is needed to describe the data at that
value of the coupling strength (γp =0). The green shaded band shows
P1 with γs0|1〉 and γs0|3〉 varied within its 10% relative error resulting
from the systematic uncertainty of the determination of the potential
coefficient µc.

one atom follows that of completely uncorrelated tunneling which is indicated by
the black dashed parabola

P1 = Nmean −
N2

mean
2 . (5.13)

For increasing attractive interaction we observe that the probability of finding one
atom in the trap drastically decreases and deviates from uncorrelated tunneling.
Although we just measure the absolute number of particles inside the trap after
the tunneling, the observed reduction of P1 is a strong evidence for increased pair
correlation of the two particles in the trap. Up to g1D = −0.65 [aref~ωref] the model
of subsequent single particle describes the data very well and pair tunneling can
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Figure 5.9.: Probability of finding one particle in the trap for different
interaction strength. The solid curves are determined by fits to the
P2-data and by application of the model of subsequent single particle
tunneling. For zero interaction the probability follows the expectation
value of completely uncorrelated tunneling given by the black dashed
line which has no fit parameter and is valid for a spin independent
potential. For increasing interaction it becomes less likely to find a
single particle in the trap. We interpret this effect to be a result
of increased pair-correlations at larger interaction strength. The red
dotted line represents the result in the case of pure pair-tunneling.
The reason to also find single particles in the pair-tunneling model is
the finite preparation fidelity taken into account for all presented solid
curves.

only play a minor role. For larger g1D this model is also consistent with the data.
However, the occurrence of finding one particle in the trap is on the order of a
few percent which is as small as the errors. Hence, for the interaction strength of
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5. Pair correlations in systems with attractive interactions

g1D = −1.45 [aref~ωref] we cannot state to which extend the two particles tunnel
as a bound object. The data could also be consistent with pure pair tunneling (red
dotted line), yet with lower probability. For even larger interaction strength (g1D =
−1.80 [aref~ωref], gray data points), we do not observe that just one atom is left in
the potential at all. For this interaction strength both, subsequent single particle
tunneling and pair-tunneling provides the same result, namely zero probability to
find one atom in the trap. Thus, for large interaction (g|1〉−|3〉 >1) we cannot make
a clear statement which process dominates. Nevertheless with our measurement
we have shown that for weak interaction (g1D <1) correlated subsequent tunneling
is the dominant process.

Determined interaction energy

While we have extracted the tunneling rates with the model of subsequent single
particle tunneling we have also estimated the interaction energy which is shown
in figure 5.10. In a comparison with the two-particle theory in a harmonic trap
[Bus98] the determined values are approximately a factor of four smaller. We
think there are two reasons for this discrepancy. First, the effective g1D in units
of twice the energy of the ground state is too large, because the participles do not
experience a pure harmonic confinement in the potential well. Second, the overlap
between the wavefunction of the two particles is reduced because the particles
are trapped in different potentials which are slightly shifted with respect to each
other (see figure 5.7). For both effects it is difficult to quantitatively estimate
the influence on the measured parameters. Due to this large systematic error of
unknown origin it is difficult to compare the determined interaction energy as well
as the determined tunneling rates with the theoretical model of Massimo Rontani
[Ron12a]. A direct comparison requires further analysis of these effects. Yet,
although the results are covered by systemic uncertainties we can still make some
quantitative comparison of the interaction energy for different particle number
when keeping the interaction strength constant. The dependence of the interaction
energy on the particle number will be discussed in the following section.

5.2. Observation of the odd even effect
In the previous section we have set up a model with which we can determine the
interaction energy from the tunneling rates of an interaction two-particle system.
We have observed that pure subsequent single particle tunneling is sufficient to
describe the tunneling behavior in our system for intermediate coupling strength
of g1D = 0.6 [aref~ωref]. In this section we study the effect of the particle number on
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Figure 5.10.: Interaction energy of two attractively interacting fermions.
We determined the interaction energy using the model of subsequent
single particle tunneling. One observes that for stronger coupling
strength the interaction energy increases and follows the trend of
[Bus98] (guide to the eye, blue dashed line). Yet, the absolute values
of the energy differ by a factor of 4. Values of g1D within the light
gray area are not accessible in our system. This is a consequence
of non-existent values of the 6Li scattering length a3D|1〉−|3〉 within a
gap from -900 a0 to −2200 a0 for magnetic field values below 1500G.
For values of g1D within the dark gray area subsequent single particle
tunneling gets indistinguishable from pair-tunneling. The application
of pure subsequent single particle tunneling might not cover the whole
physical behavior of the system. An absolute lower boundary for the
energy determined by subsequent single particle tunneling is the trap
bottom which is indicated by the horizontal dashed line. The error
is the 10% relative uncertainty originating from the statistical error
of the fit of γ2 and γs0|1〉. Not included is the 5 − 10% systematic
uncertainty in the shape of the potential due to the errors in the
reference measurement.

the energy of the system to gain insight into the correlations of the 1D few-fermion
systems.
To perform the tunneling measurements we prepare systems with particle num-
bers ranging from 2 − 6 particles as illustrated in the upper panel of figure 5.11.
Then we deform the potential well such that the particles tunnel on timescales of
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Figure 5.11.: Odd-even effect. The single particle dissociation energy depending on
the particle number is determined using the model of subsequent single
particle tunneling. The energy is given in units of the level spacing of
the uppermost two single particle states in the trap. The small difference
in g1D for the different particle numbers is due the dependence of the
coupling strength on the confinement which tunes with the depth of the
optical potential. Yet, for each of the three configurations (differently
gray shaded region) the potential is identical. We find that the system
becomes more stable against decay for an even number of particles. The
dissociation energies show a strong odd-even effect, similar to the one
observed for nuclei. The error is the 10% relative uncertainty originating
from the statistical error of the fit of γN and γs0|1〉. Not included is the
5 − 10% systematic uncertainty in the shape of the potential due to the
errors in the reference measurement.
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10−1000ms. After switching of the tunneling barrier we again record the number
of particles and obtain the probability of finding N particles left in the potential
well after certain hold times. We observe that primarily only the particles high-
est up in the potential contribute to the tunneling process. For a system with
odd-particle number we observe that most of the time one particle leaves the trap
during the observation time, whereas for a system with even particle number we
observe that two particles leave the trap. Hence, we can apply the model previ-
ously established for two particles also to larger systems with even particle number.
For systems with odd particle number we simply fit a single-particle decay to the
particle highest up in the potential.
We have performed this analysis for systems with N = 3 to N = 6 particles; the
data of the measurement and the determined probabilities of finding the different
amount of particles in the trap are given in the appendix (figure A.19 and figure
A.20). For the latter analysis we have slightly modified the rate equations to con-
sider the following two issues:
i) After one particle has tunneled from a system with N ≥ 3 particles the remain-
ing system in the trap is still interacting. Although we then cannot determine the
total interaction energy of the initial system we can still extract the energy of the
particle which tunnels through the barrier. Besides some offset energy this energy
is equivalent to the energy needed to dissociated one particle from the N-particle
system. Hence, we denote the energy determined from the model by ’single parti-
cle dissociation energy’.
Yet, to apply the model for an even-numbered system, i.e. for the 4- and 6-particle
system, we need to know the single particle tunneling rates of the interacting 3-
and 5-particle systems. For one hyperfine state we obtain these quantities directly
from the tunneling measurements of the corresponding system, for the other spin
component we have to apply a WKB calculation to account for the spin dependent
potential. The determined rates are given in table A.5 in the appendix.
ii) When the potential is deformed such that the uppermost one or two particles
can tunnel on experimental timescales, the particles further down in the trap also
exhibit a final lifetime τN . Although these rates are much longer than the obser-
vation times (τN=2 = 40 s, τN=4 = 26 s) we include these lifetimes as an overall
decay in the rate equations.
Considering these modifications we can determine the dissociation energy depend-
ing on the particle number in a similar way as in the previous section. The results
of the dissociation energies in units of the level spacing are shown in figure 5.11.
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5.2.1. Interpretation of the results
We observe a strong odd-even effect in the dissociation energy as a function of
the particle number. This reveals the effect of pairing in the 1D system: We can
consider the single particle levels in the potential as the shells of the 1D system. In
our two-component system each shell can be filled by two distinguishable fermions.
With its two-fold degeneracy in the noninteracting case the shell possesses a trivial
structure. In the case of weak interaction the energy of the shell is perturbed by
the interaction energy of a single particle with a particle on the same shell (intra-
shell interaction) and with particles on different shells (inter-shell interaction).
Due to the larger spatial overlap of the wavefunction of two particles occupying
the same shell the intra-shell interaction energy is much larger than the inter-shell
interaction. In the case of a system with odd particle number the shell at the
Fermi edge is filled by just one fermion of a certain spin. The perturbation of the
shell is only determined by the inter-shell interaction of this fermion with the other
distinguishable fermions occupying lower shells. If we add another distinguishable
fermion to the same shell – the system then become an even-particle system – the
intra-shell interaction significantly lowers the energy of the shell. Thus, whenever
a shell is closed, i.e occupied by a pair of distinguishable fermions, which is the case
for an even-numbered system it becomes more stable against decay. This results
in an odd-even effect as we have observed it in the experiment. Additionally to
the odd-even effect we observe an overall increase of the mean dissociation energy
for larger particle number. We attribute this effect to the increased number of
inter-shell interaction ’partners’ for larger particle numbers.

5.2.2. Comparison to similar systems and prospects for further
experiments

One of the most prominent few-fermion systems for which the single particle dis-
sociation energy depends on the shell structure are light nuclei. The nuclear in-
teraction involving neutral nucleons is governed by meson exchange and results
in an effective attractive interaction between neutron and protons [Pov08]. This
interaction is incorporated in the seniority model of nuclei [Zel03]. In this model
the Hamiltonian including all interaction terms is separated into a mean-field term
and a pairing term. The solution of the mean-field Hamiltonian determines the
overall spectrum with n-fold degeneracy of single particle levels forming one shell.
In this model the pairing term only acts on the n-fold subspace, i.e. on pairs
occupying the same shell. If pairing is present the degeneracy of the shell is dis-
solved. (see figure 5.12). Unpaired particles do not participate in the interaction
beyond the mean field level [Ron09] and the energy of the system is minimized
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5.2. Observation of the odd even effect

Figure 5.12.: Energy spectrum of a few-fermion system. The effects of pair-
ing can be isolated from the rest of the spectrum by assuming that
single particle states form one degenerate energy shell near the Fermi
surface. Taken from [Ser11a].

in the case of no unpaired particles. In nuclei with odd particle number there is
always a particle which is not paired and thus its energy is larger. This results in
an odd-even effect of the binding energy depending on the particle number. This
effect is similar to our observed structure in the dissociation energy. For nuclei the
effect has also been seen from neutron dissociation measurements [Bri05].
In general a completely filled shell in the 3D nuclei structure becomes evident in
the extraordinary stability of isotopes with certain nucleon numbers. The particle
number for which a shell is closed, i.e. a completely filled shell, are called the
magic numbers which in the case of stable nuclei are N = 2, 8, 20, etc. [Ots01].
In our 1D system governed by a pure contact interaction the magic numbers are
rather trivial with N = 2, 4, 6, etc. Yet, the observation of these structure is a first
important step towards extending our studies to few-fermion systems in larger
dimensions.

Expected shell structure in 2D

In two- dimensional system with contact interaction for instance, a more rich shell
structure is expected (figure 5.13 after [Ron09] ). For weak interaction (green) the
shell structure is dominated by the structure of the 2D harmonic oscillator with
completely filled shells for N = 2 and N = 6. For stronger attractive interaction
(blue and black) this structure is gradually washed out and the measured quan-
tity exhibits a pronounced odd-even pattern with pairing effects likely being the
underlying mechanism. [Ron09].
The fundamental two-dimensional shell structure has been observed in experi-
ments with quantum dots [Kou01]. Yet, in these experiments the interaction is
dominated by Coulomb interaction of the electrons in the quantum dot. The tun-
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Figure 5.13.: Fundamental gap in a 2D system. The fundamental gap is de-
fined as the difference between the modulus of the particle removal
and the particle addition energy. For a N-particle system the particle
addition (removal) energy is given by the difference of its chemical
potential to the system confining N+1 (N-1) particles. The interac-
tion is modeled by a 2D contact interaction with coupling strength
g2D. Plot a) depicts the fundamental gap determined by the full
configuration interaction method [Ron08]. In plot b) the seniority
model – also called the method of ’exact pairing’ – has been applied.
Both plots show similar behavior for increasing interaction strength
indicated by the different colors. For weak interaction (green curve
g2D = −0.3 in dimensionless units) the 2D shell structure dominates
the fundamental gap with magic numbers for N = 2 and N = 6.
For larger interaction strength (blue curve g2D = −3 and black curve
g2D = −5) the shell structure gets washed out resulting in an odd-
even dependence of the fundamental gap. Taken from [Ron09] and
adapted.

ability of the coupling strength of ultracold atoms offers the possibility to study a
wider range of interaction-regimes. Extending our setup by a more sophisticated
confining potential should allow for the investigation of the pairing effects also in
2D or 3D. It may also allow to study the crossover from mesoscopic systems to
attractively interacting many-body systems described by BCS-theory [Bar57].
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6. Radio Frequency spectroscopy of
few-fermion systems

So far we performed tunneling measurements or modulation spectroscopy to mea-
sure the energy of our few-fermion systems. For those measurements we either had
to deform or to periodically modulate the trapping potential which changes the
initial energy of the system. In this chapter we present the rf-spectroscopy method
with which we can probe the actual state of the few-fermion system without modi-
fying the potential. The concept of the rf-spectroscopy method is the following: A
rf-pulse forces a spin flip into a different Zeeman sublevel of the atom’s hyperfine
state. Additionally to the energy of the hyperfine-transition the energy difference
between the initial and the final state of the system has to be supplied by the
rf-photons. Supposing the final state is a noninteracting state the determination
of the resonant rf-transition frequency is a direct measurement of the interaction
energy in the initial state.
In the field of ultracold atoms this method has been successfully used for vari-
ous kind of studies. For instance the method allowed the determination of the
binding energy of weakly bound molecules [Reg03] [Bar05]. In the BEC-BCS
crossover region the pairing energy, the wavefunction, the pair size and the effect
of dimensionality could be measured [Chi04] [Sch08a] [Sch08b] [Som12]. Besides
experiments with dimers and pairs the method was also applied to measure the
energy of Efimov trimers [Lom10] [Nak11]. As we will address in the next chapter,
rf-spectroscopy has been used to observe polaronic properties in imbalanced Fermi
gases [Sch09] [Koh12].
We use the rf-spectroscopy method to determine the energy of a few-fermion sys-
tem with up to six particles. In our experiments we measure the transition fre-
quency with a resolution better than 50Hz due to a stability of the magnetic offset
field with only 1− 5mG uncertainty at offset fields of around 1000G. We discuss
the possibility of determining the wavefunction of an interacting system by de-
composing it into harmonic oscillator states using trap sideband transitions.
Finally we present our precision measurements of the binding energy of weakly
bound molecules using the rf-spectroscopy method with trap sideband resolution.
We will show that with our preparation scheme and the high rf-resolution we can
measure 70 times smaller binding energies compared to previous measurements
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[Bar05]. This allows for a more accurate determination of Feshbach resonances in
the 6Li system.

6.1. The Rf-spectroscopy method

6.1.1. The concept
To measure the energy difference between two systems which contain atoms in
different hyperfine states we flip the spin of one atom by applying a rf-pulse. From
the energy of the rf-photon one can determine the energy difference between the
two systems.
When applying a resonant rf-pulse with an oscillating magnetic field

Brf (t) = B0 cos(ωrft) (6.1)

the spin s of the two level system rotates with the rf-Rabi frequency 1

Ωff ∝ s B0 = µsB0 es eB (6.2)

It is determined by the magnetic moment µs = |s| of the spin and the orientation of
the oscillation rf-field with respect to the quantization axis given by the direction
of the magnetic offset field. In the high field region the electronic spin and the
nuclear spin are almost decoupled and the hyperfine transition between the lowest
three Zeeman sublevels in 6Li can be regarded as a nuclear spin-flip (see hyperfine
structure of 6Li , appendix, figure A.1). Then one would expect the magnetic
moment µs to be on the order of the nuclear magnetic moment µI which is about
a factor of 2000 smaller than the Bohr magneton resulting in a comparatively weak
coupling. However, the hyperfine spin still contains an admixture of the electron
spin of ∼ 1%. Thus the effective magnetic moment of the hyperfine transition
is considerably larger than the pure nuclear magnetic moment which results in a
higher rf-Rabi-frequency.
Up to now we have only considered the spin degree of freedom of the transition.
When coupling two states with a rf-pulse also the external degree of freedom of
the atoms, the spatial wavefunction |Ψsp,i〉 and |Φsp,f〉 of these systems have to be
taken into account. The resonant Rabi frequency of the transition is given by:

Ωi→f ∝ 〈Ψi | R̂F | Φf〉 (6.3)
1We use the notation ’free-free’, abbreviated ’ff’, because the rf-Rabi-frequency of the bare
hyperfine transition can be measured by probing the transition of a single atom which is not
coupled to any other atom.
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6. Radio Frequency spectroscopy of few-fermion systems

with the states
|Ψj〉 = |Ψsp,j〉|hfsj〉 (6.4)

which incorporate internal and external degree of freedom. As the energy of the rf-
photon is in the MHz-regime the corresponding momentum transfer of the photon
on the atoms is negligibly small. Thus, the rf-transition operator R̂F does not act
on the spatial wavefunction and the resonant Rabi frequency can be written:

Ωi→f ∝ 〈hfsi | R̂F | hfsf〉 〈Ψsp,i | Φsp,f〉 . (6.5)

The resonant coupling strength between the two hyperfine states is given by the
rf-Rabi frequency (equation 6.2 ) and thus

Ωi→f = Ωff 〈Ψsp,i | Φsp,f〉 . (6.6)

which depends on the spatial overlap between the initial and the final system.
At resonant coupling the energy of single rf-photons Erf match the energy of the
hyperfine transition Eff and the energy difference ∆E in the external degree of
freedom:

Erf = Ehfs + ∆E . (6.7)

The energy difference in the external degree of freedom can be for instance the
interaction energy of a few-fermions system. When a rf-resonance at ωrf is observed
one can deduce the energy difference between the initial and final states, knowing
the energy of the hyperfine transition ~ωff:

∆E = ~ (ωrf − ωff) . (6.8)

The energy difference of the three lowest hyperfine states of 6Li depending on the
magnetic offset field is known from the formula of Breit and Rabi [Bre31] and
shown in figure 6.1.

6.1.2. Illustration of the rf-specroscopy method
We illustrate the rather abstract description by using an example system for
which we have performed a rf-spectroscopy measurement. Let us assume a one-
dimensional system consisting of two atoms in the hyperfine state |1〉 and |3〉.
Using our preparation technique we can prepare the system in the noninteracting
ground state of the microtrap at 568G. Then we sweep the magnetic offset field
to a value of 527G. According to figure 6.6 which shows the CIR in the system,
the 1D coupling strength is tuned to g1D,|1〉−|3〉 = −0.27 [a‖~ω‖]. Thus, assuming
the sweep is slow enough, the system adiabatically follows the attractive branch
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Figure 6.1.: Energy difference between the three lowest Zeeman sublevels
of 6Li . To drive a resonant rf-transition the rf-frequency has to match
theses energies in addition to the energy difference in the external
degree of freedom.

(branch shown in figure 5.1, chapter 5). Then we apply a rf-pulse which transfers
atoms from state |3〉 to state |2〉. The final state of the transition is a two-particle
system in state |1〉-|2〉. Since the hyperfine state of the system has changed we
have to consider the different coupling strength g1D,|1〉−|2〉, which is zero at 527G.
Hence, by choosing an adequate value of the magnetic field we realized a transition
from an interacting to a noninteracting system. The energy difference between the
two systems, i.e. the interaction energy of the initial system and the hyperfine
energy is extracted by stimulated emission of a rf-photon as illustrated in figure
6.2. In this sketch we have only considered a transition from the initial system in
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00

|2>

|3>
|1 -|3 at t> >
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hω − E intff
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-

Figure 6.2.: Determination of the interaction energy. We deduce the inter-
action energy from the difference of the rf-transition frequency and
the energy difference of the hyperfine states ~ωff. The free-free tran-
sition frequency ωff is determined by measuring the corresponding rf-
transition of a free atom.

the trap ground state to the final system also in the trap ground state. Depending
on the energy of the rf-photon other transitions are possible by exciting the final
state into higher trap levels. This is referred to as sideband transitions. In the
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6. Radio Frequency spectroscopy of few-fermion systems

case of a harmonic trap the transition rates into these states are given by equation
(6.6): Ωi→f = cj Ωff with cj:

c0 = 〈Ψatt ( g1D) | Φ0〉 ωrf = ωff +Eint/~

c2 = 〈Ψatt ( g1D) | Φ2〉 ωrf = ωff + 2ωh.o. +Eint/~
...

c2n = 〈Ψatt ( g1D) | Φ2n〉 ωrf = ωff + 2nωh.o. +Eint/~

(6.9)

where |Ψatt〉 and |Φj〉 are wavefunctions of the relative motion; the corresponding
resonance frequencies of the rf-transition are listed on the right hand side. For
weak attractive interaction (Eint < ~ωtrap) the wavefunction of the relative motion
|Ψatt〉 is given by the parabolic cylinder function Ψatt(r) = DEg1D (r) at the corre-
sponding interaction strength (see chapter 3.2.2). |Φj〉 are the familiar harmonic
oscillator eigenstates. It is not necessary to consider the separated center of mass
term of the system: The spatial overlap in the center of mass motion is unity for
identical initial and final center of mass states and zero else. This means that it is
not possible to change the center of mass motion by a rf-spectroscopy pulse. All
possible transitions are sketched in figure 6.3. Transitions which involve states of

F 0
4 8

F 0
4 C

F 0
4 8

F 0
4 C

c2n = Ψat t | Φ2n>>

c0= Ψat t | Φ0>> =

c1= Ψat t | Φ1>> =

c2= Ψat t | Φ2 >> =

=0

no overlap with odd parity state

rf

Figure 6.3.: Spatial overlap with trap sidebands. In a transition from an
interacting initial state to a noninteracting state the transition rate
depends on the overlap between the spatial wavefunction of the inter-
acting state and the wavefunction of the trap sideband. Only sideband
transitions with a parity of ∆P = 0 contribute due to parity conser-
vation. Note, the sketch depicts a single particle with reduced mass
excited in the harmonic oscillator potential of the relative motion.

different parity do not contribute. As the initial state of the two-particle system
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6.1. The Rf-spectroscopy method

has even parity only sidebands with even symmetry (harmonic oscillator quantum
number 2n) can be adressed by the rf-pulse.
In the experiment we scan the rf-frequency and record the transferred fraction into
the final hyperfine state. First we measure the hyperfine transition frequency ωff
of a single atom which is not shifted by any interaction. Instead of a single atom
we can use a sample of about 10 identical noninteracting atoms to increase the
contrast of the rf-signal. The measured spectrum is given by the red data points
in figure 6.4. This peak determines the hyperfine transition energy and we set the
peak as the offset frequency and thus the red free-free transition peak appears at
zero in the spectrum.
Then we perform the actual measurement with the interacting |1〉-|3〉 system at
g1D,|1〉−|3〉 = −0.27 [a‖~ω‖]. We again apply a rf-pulses and scan the frequency. We
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Figure 6.4.: RF spectrum of two interacting fermions - lowest trap side-
band. The red circle show the spectrum of the free-free transition.
The center-frequency of the free-free peak is set as the zero-point of the
offset frequency. The first trap sideband peak (blue squares) appears
next to the free free-peak shifted by the interaction energy Eint.

observe the first transition peak shifted from the free-free transition (blue data
points). The energy shift exactly corresponds to the interaction energy of the |1〉-
|3〉 system as the final state is noninteracting. Subtracting both peak positions
directly provides the interacting energy of the two-particle system.
In the following we discuss the experimental resolution of the spectra and the
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6. Radio Frequency spectroscopy of few-fermion systems

calibration of the magnetic field. The discussion of transitions to higher trap
sidebands which allow to decompose the wavefunction of an interacting system is
given in the subsequent section. We can also use the rf-spectroscopy to determine
the energies of few-fermion systems with larger particle numbers which we then
present in section 6.3 for up to six particles.

6.1.3. Experimental resolution and calibration of the magnetic
field

In this section technical details of the rf-spectroscopy measurement are described
and we discuss the origin of the errors of the determined rf-transition frequencies.
The natural linewidth of the rf-transition is very narrow as an electric dipole
transition between two hyperfine states is forbidden. The experimental resolution
of the transition peak is determined by the stability of the magnetic offset field
and by the duration of the rf-pulse. According to figure 6.1 the energies of the
two transitions tune with the magnetic offset field. This means that the resonance
condition of the rf-transition depends on the offset field2. Thus, fluctuations in
the magnetic field broaden the measured transition spectrum. With our setup we
achieve a magnetic field stability of 1−5mG using a high precision digital feedback
loop for stabilizing the current of the magnetic field coils. The current transducer,
Danfysik Ultrastab 866 (Imax = 600A), for measuring the current in the coils
has a precision of 10−6, the ADC of the corresponding digital PID controller has
a resolution of 17 bit over a dynamical range of 1500G which corresponds to a
precision of 8 × 10−6. The ADC’s sampling rate is about 100 times faster than
the time constant of the coils and thus the generated current is determined from
an average of many ADC samples. For this reason we can achieve an even higher
precision than the nominal resolution of the ADC.
For the rf-pulse we choose a pulse length of 12.5ms which leads to a Fourier limit
of the frequency on the order of the frequency width introduced by the magnetic
field instability. In total this leads to a typical width of 60− 80Hz FWHM of the
transition peak. Due to the statistical origin of the magnetic field fluctuations we
fit Gaussians to the peaks to determine the center frequency of the transition. The
standard error of the fit, which is typically 3−15Hz, serves as the statistical error
of the center frequency.
To avoid saturation of the transition the rf-power is chosen small enough that
about 40% of the atoms are transferred into the final state. After the rf-pulse
2In the high field region around 500 − 1000G where we perform most of our experiments the
|1〉-|2〉 transition tunes with ∼ 1 kHz/G and the |2〉-|3〉 transition tunes with ∼ −10 kHz/G.
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6.2. Rf-spectroscopy with trap sideband resolution

the N-particle system gets either projected to the final state or back to the initial
state. Hence we average over about 50 repetitions of the same measurement to
obtain the transferred fraction to the final state as shown in the spectrum of figure
6.4.
During the measurement of a single transition spectrum of the few-fermion system
which typically takes 8 hours the magnetic field may have drifted. Reasons for
that could be drifts of the temperature and of the pressure of the water-cooling
for the magnetic field coils. This especially happens if the water cooling of other
devices is switched on or off during the measurement. Room temperature drifts
may lead to small drifts of the high precision measurement resistors necessary to
convert the secondary current of the current transducer into a measurable voltage.
To incorporate the drifts of the magnetic field during the actual measurement into
the error budged we measure the free-free hyperfine transition before and after
the actual rf-spectroscopy measurement. The weighted mean of both frequencies
determines the free-free transition frequency ωff . Its error is given by the weighted
error of weighted mean (see appendix table A.6). The interaction energy is then
determined according equation (6.18).
To calibrate the magnetic field which we need to determine g1D we calculate the
field from the free-free transition frequency ωff using the formula of Breit and Rabi
[Bre31]. The error in the magnetic field calibration does not significantly effect
g1D as it tunes only weakly with the magnetic field.

6.2. Rf-spectroscopy with trap sideband resolution
We have discussed that the rf-transition depends on the spatial overlap between
the initial and the final state of the few-particle system. In the case of an in-
teracting initial system the overlap to higher trap sidebands is non-zero. If the
experimental width of the rf-transition is smaller than the level-spacing one can
resolve the transitions to individual trap sidebands. In our system the FWHM of
the rf-transition peak is 60 − 80Hz which is significantly smaller than the level
spacing of 1.5 kHz in axial direction of the microtrap. Hence, by scanning the rf-
frequency to lower values in the previously described rf-measurement a sideband
peak should occur with a distance of twice the level spacing. Yet, the transition
rates into the higher sidebands with even parity has not necessarily to be of the
same order as for the ground state transition and depends on the overlap between
the wavefunctions (equation 6.9). In the case of the two-particle system with
g1D,|1〉−|3〉 = −0.27 [a‖~ω‖] we had to increase the power of the rf-pulse by 16 dB
and the length of the pulse by a factor of 10. Then we indeed resolved the trap
sideband which can be seen from figure 6.5. The measured distance between the
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Figure 6.5.: RF spectrum of two interacting fermions - second trap side-
band. Next to the lowest sideband transition we observe the peak of
the second sideband transition. The shifted frequency matches well
to twice the trap frequency. Due to a smaller spatial overlap we had
to increase the power and the length of the rf-pulse to observe the
transition at similar rates.

zeroth sideband and the second sideband is 2.973(14) kHz. Within the error this
fits perfectly to the axial 0-2 transition in the microtrap of ω‖ 0−2 = 2.985(10) kHz
which we have determined from the modulation spectroscopy measurement (see
chapter 4, table 4.2). Hence, with the measurement of the trap sideband transitions
we have implemented a complementary method to determine the level spacing of
the confining potential. Even more important is the possibility to determine the
wavefunction of an interacting few-fermion system which we discuss next.

6.2.1. Decomposition of the interacting wavefunction

As already described in chapter 4.4 the wavefunction of an interacting few-fermion
system in a harmonic trap can be decomposed into a set of noninteracting harmonic
oscillator wavefunctions. Using the completeness relation the general decomposi-
tion of an even parity state |Ψatt (g)〉 in harmonic oscillator states Φn reads

|Ψatt (g)〉 =
∞∑
n=1
|Φ2n〉 〈Φ2n | Ψatt (g)〉 (6.10)
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6.2. Rf-spectroscopy with trap sideband resolution

with coefficients
c2n = 〈Φ2n | Ψatt (g)〉 (6.11)

which fulfill the identity
∞∑
i=1
|ci|2 = 1 . (6.12)

If one compares the coefficients of this decomposition with the transition probabili-
ties of the rf-transition one finds that the coefficients are given by the ratio between
the Rabi frequency to higher trap sidebands and the free-free Rabi frequency:

ci = Ωi→f

Ωff
. (6.13)

This means by measuring the resonant Rabi frequency to the trap sidebands the
rf-spectroscopy allows to determine the wavefunction of an interacting system.
From the previous measurement of the weakly attractive interacting two-particle
system we can infer the coefficients from the spectrum of figure 6.5. As the system
is only weakly interacting we can truncate the Hilbert space at low n of the de-
composition 6.10. Here we only consider 2 states, the zeroth and the second trap
sideband. Then the identity (6.12) simplifies to

|c0|2 + |c2|2 = 1 . (6.14)

From the increase of the rf-power by ∆Prf = 16 dB and the increase of the pulse-
length by a factor of ∆T = 10 which has been needed to obtain similar peak
heights in the spectrum we infer that the ratio between the Rabi frequencies are

c0

c2
= ∆T ×

√
∆Prf ∼= 60 . (6.15)

Using the identity (6.14) of the sub-system we find the coefficients of the decom-
posed wavefunction:

c0 ∼= 0.98 (6.16)

c2 ∼= 0.02 . (6.17)

Note, the determination of the Rabi frequencies by comparing the two sideband
peaks for different power and pulse-length is not accurate as decoherence effects
might influence the height of the peaks for longer pulses. Yet, when measuring
the transition rates precisely, the rf-measurement should provide a quantitative
method to determine the wavefunction of an interacting system.
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6.3. RF-spectroscopy of few-fermion systems with
two, three and more interacting particles

We can apply the rf-spectroscopy also to systems where the initial and final state
consists of more than two particles. As we have illustrated we can directly deter-
mine the interaction energy of the initial system if the final state is noninteracting.
Unfortunately, for the 3 lowest states in 6Li, there are not many configurations for
which the final state is noninteracting 3. A view on the 1D coupling strength in
figure 6.6 tells us, that there are only three distinct magnetic field values, where
the interacting strength is zero: Namely at the three zero-crossings of g1D which
are equivalent to the zero-crossings of a3D. For the different combinations of hy-
perfine states these positions are as follows: |1〉-|2〉: B = 527G, |1〉-|3〉: B = 568G
and |2〉-|3〉: B = 589G. We have performed rf-spectroscopy measurements at these
values of the magnetic field. The results for different particle numbers is shown in
figure 6.7.
Nevertheless, we want to determine the interaction energy also for different values
of g1D. This is possible since the rf-spectroscopy can also be applied to configu-
rations in which the final states are interacting. Then the obtained energy is the
difference in the interaction energy of the initial state and the final state. Exem-
plary this is illustrated for a three-particle system by the green arrows in figure
6.7. Although in these cases we can not directly measure the absolute value of
the interacting strength we can still extract information from these measurements.
For example we can identify the branches on which we ramp up the few-fermion
system starting from a noninteracting sample.

6.3.1. Obtaining the total interaction energy
We stated that the total interaction energies can only be directly obtained when the
final state is noninteracting. However, by using a little trick we can also deduce the
interaction energy for systems where both initial and final states are interacting.
The idea is to measure the interaction energy in two or more steps as shown in
figure 6.8. We start with a hyperfine combination (I-i) at a magnetic offset field
where g1D = g I-i and drive a rf-transition to a final intermediate state (I-f) which
is also interacting with coupling constant g I-f. Then we change the magnetic field
(horizontal line in figure 6.6) and choose a different hyperfine-combination (II-i)
with g I-i = g II-f. By matching the values of g1D we ensure that both systems,
(II-i) and (I-f), have the same energy. Then we apply a rf-pulse which transfers
3A species offering a hyperfine configurations with a wide range of final noninteracting states
such as 40Ka would be advantageous to investigate interacting systems.
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Figure 6.6.: Combination of rf-transitions with noninteracting final states.
For the three lowest hyperfine states of 6Li there are only three configu-
rations of two different spin combinations were the interaction strength
of the final state is noninteracting. These configurations can be ac-
cessed at the zero-crossings of the coupling constant. Yet, by perform-
ing several subsequent measurements for which we match the coupling
constant of intermediate states (dashed lines) we can also determine
the interaction energy at different values of the magnetic offset field
(blue and red arrows).

state (II-i) to the final noninteracting state (II-f). When realizing this trick in the
experiment one has to choose g I-i such that the previously explained condition is
fulfilled. The arrows in figure 6.6 indicate such possible combinations of g1D. The
blue arrow indicates a combination with one intermediate state, the combination
illustrated by the red arrow includes two intermediate states.
Using this method the total interaction energy of the initial interacting system can
be deduced by adding up the energies of the rf spectroscopy measurement:

Eint = ∆EI + ∆EII . (6.18)

The error of Eint is determined by a quadratic addition of σEI and σEII . There
is also an error in the interaction strength g1D due to a non-perfect matching of
the intermediate coupling strength as a result of non-accurate magnetic field cali-
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Figure 6.7.: Results of the rf-spectroscopy for two, three and more particles. For
distinct values of the coupling constant (data points) we have determined the
absolute value of the interaction energy of few-fermion systems. The results for two
and three particles (points in blue and green) fit excellently to the two and three
particle theory (blue and green solid lines [Idz06] [Gha12]). For larger systems
with particle number N > 3 we only sketched the course of the interaction energy
(dashed lines). For all of the sketched curves we know that the energy at 1/g1D → 0
has to match (N − 1)× ~ω‖ due to the fermionization occurring in this quasi-1D
regime. For other values of the interaction energy we can only measure the energy
difference between these branches. We exemplarily have chosen some transitions
for three particles indicated by the green arrows. All residual measurement data
can be found in tables in the appendix (A.21-A.24). Transitions between states
with same initial and final g1D which would appear as straight vertical arrows in
the energy spectrum cannot be measured, as these states are orthogonal and thus
do not exhibit a spatial overlap.
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Figure 6.8.: Trick to determine the interaction energy. For some systems we
can measure the total interaction energy Eint in a two step process:
First we measure the energy difference ∆EI to an intermediate state
which is also interacting. By changing the magnetic field (see figure
6.6) we can find a different configuration of hyperfine states with the
same interaction energy. Its energy ∆EII can then be determine in a
second rf-measurement.

bration during the measurement. The error of g1D is determined by the difference
gII-i − gI-f. All determined interaction energies are shown in figure 6.7.
We have performed measurements for systems with up to N = 6 particles. They
consist of a single minority atom in one hyperfine state and N − 1 majority par-
ticles in a different hyperfine state. To measure the energy of the system we have
always changed the hyperfine state of the minority atom. The interpretation of
the results for a single minority particle with a large number of identical majority
particles is topic of the next chapter.
For a two- and a three-particle system we can compare the experimental results
with theories of two and three particles derived by [Idz06] and [Gha12] (blue and
green curve in figure 6.7). We find excellent agreement between our experiment
and the few-particle theory. Besides one data set where we assume that a system-
atic error had occurred during the measurement, theory and experiment match
within less than 5% (see appendix table A.21 - A.24). The origin of the error is
expected to be partially due to systematic uncertainties such as the exact position
of the CIR and the anharmonicity of the trap. By decreasing this uncertainties we
are convinced that one could obtain agreement within 1−2%. The high resolution
and the good agreement with the two- and three-particle theory demonstrates that
the rf-spectroscopy is ideally suited to probe few-fermions.

134
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6.4. Precise determination of 6Li scattering length
In previous work rf-spectroscopy of weakly bound dimers has been used to deter-
mine the position of Feshbach resonances [Reg03] [Bar05]. As we have noted in
chapter 3, for an interaction potential parametrized by a delta-potential there is
an universal bound state with binding energy

Eb = ~
µa2

3D
(6.19)

where µ the reduced mass and a3D the scattering length. The energy of the bound
state in free-space as a function of the inverse scattering length is shown in figure
6.9. At the point were the scattering length diverges (1/a3D = 0) this state becomes
unbound. Hence by measuring the binding energy as a function of the magnetic
field 4 one can determine the position of the resonance position - in our case the
magnetic Feshbach resonance for the hyperfine states |1〉-|2〉 around 830G.
So far the most precise determination was performed by Bartenstein et al. with
an uncertainty of 1.5G of the resonance position [Bar05]. They measured the
binding energy of the associated bound state – the so-called Feshbach molecules –
at binding energies of around 100 kHz at various intermediate scattering length of
about 2000 a0. They were not able to perform measurements for smaller binding
energies closer to the Feshbach resonance which would decrease the uncertainty of
the determined position because the density in their two-component Fermi gas was
too large and thus many-body effects of the gas started to play a role. The latter
results in a shift of the rf-transition with respect to the pure two-body transition
which would effect the determination of the resonance position. To avoid this
effect they had to perform experiments comparatively far away from the position
of the Feshbach resonance where the binding energy of the Feshbach molecules is
about 100 kHz.
With our system we are able to prepare and detect few-particle samples with high
fidelity. This allows us to prepare a very dilute sample in which density effects do
not play a major role even for large scattering lengths. We will show that we are
able to determine the binding energy close to the Feshbach resonance with binding
energies of around 2 kHz. Here shifts in the binding energy due to the confining
trap are relevant and they are therefore considered in the analysis.
In this section we present the experimental results for the binding energies from
4In the non-universal regime when the scattering lenght becomes on the size of the effective
range the dependence of a3D on B is not as simple as equation (6.19). It depends on the
detailed shape of the van-der-Waals singlet and triplet potential. To determine the position of
the Feshbach resonance and to determine the scattering length coupled channel calculations
are used [Bar05] [Joc12a].
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Figure 6.9.: Universal bound state. The green curve shows the universal bound
state associated with the contact interaction potential [Lan87]. At the
point where the scattering length diverges at the Feshbach resonance
(FR, upper panel) the universal bound state reaches the continuum.
By measuring its binding energy in free space (green arrow) as a func-
tion of the magnetic field one can determine the position of the Fes-
hbach resonance. The blue curve shows the universal bound state in
the presence of the confinement ([Idz06], η = 10) and the blue arrow
indicates a corresponding rf-transition. Due to the confinement the
dissociation frequency is shifted with respect to the one in free space.

which one can determine the Feshbach resonance more precisely. Using our data,
the position of the Feshbach resonance could be determined with an accuracy
better than 0.1 G. This section gives an overview over the measurement and the
corresponding analysis. Further details can be found in [Joc12a].
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6. Radio Frequency spectroscopy of few-fermion systems

6.4.1. Rf-spectroscopy of weakly bound molecules with trap
sideband resolution

To perform the rf-spectroscopy we start with a BEC of 105 |1〉-|2〉 molecules in our
large volume optical dipole trap at a magnetic offset field of 760G. For details on
the preparation of a molecular BEC we refer to [Lom11]. For minimizing density
dependent shifts we reduce the particle number and increase the temperature of
the sample. To achieve this we first superimpose the microtrap and load about
103 molecules into it. By applying the spilling technique we further decrease
the particle number and end up with a sample of about 30 molecules with sub-
Poissonian number fluctuations (±2 molecules). The total particle number may
differ by ±50% due systematic uncertainties in the calibration of the single atom
detection in the MOT at the time we performed the measurement. To reduce the
density and to create a non-degenerate sample, we transfer the molecules back into
the large volume dipole trap by switching off the microtrap. This non-adiabatic
release transforms the potential energy of the molecules in the microtrap into
kinetic energy resulting in a mean kinetic energy per particle of ≥ kB × 0.4µK.
The radial trap frequency of the dipole trap is ωr = 2π × 349(3)Hz which we
determine from the sideband peak separation in the rf-spectra (see appendix A.27).
From the known trap geometry [Lom11] we calculate the axial trap frequency
ωa = 2π× 34(1)Hz and the trap depth (kB × 2µK). To determine the dissociation
frequencies for different magnetic offset fields we ramp to the corresponding field
and wait 5 ms. This time is long enough for the decay of eddy currents in the
steel vacuum chamber which guarantees a stable offset field, but short enough
to avoid dissociation of a large fraction of molecules at low binding energies due
to collisions. Then we apply a 10 ms rf-pulse with frequency νbf to fractionally
dissociate the |1〉-|2〉 molecules into free atoms in state |1〉 and |3〉. By measuring
the fraction of unbound atoms we obtain spectra as shown in figure 6.10 (blue
data points). To limit saturation effects we choose the pulse power such that the
maximum transferred fraction is only 30− 40%. In order to estimate the density
dependent systematic shift we redo the experiment with a sample of 200 molecules
(before 30). From the comparison of the two measurements we can infer that the
density dependent shift of our 30 molecules is smaller than 8Hz (see appendix
A.28).

Determination of the free-free-transition and magnetic field calibration

To calculate the dissociation frequencies and to calibrate the magnetic field we ad-
ditionally measure the ’bare’ transition frequencies of single atoms from state |2〉
to state |3〉 (red data points in figure 6.10 ). This calibration is done once before
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Figure 6.10.: Dissociation spectrum at low binding energy. The red squares
show the free-free transition. The blue circles show the dissociation
spectrum with a characteristic peak structure for smaller dissociation
energies and a decaying tail for larger energies. The peak structure
results from transitions to different radial trap sidebands. For larger
transition energies we do not resolve the sideband structure. The
shape of the decaying tail is determined by the wavefunction overlap
between the molecule (Ψ ∝ e

−r
a3D ) and higher trap sidebands (Φ2n(r)).

The distance between the free-free peak and the first trap sideband
determines the dissociation frequency.

(νff1) and once after (νff2) the actual molecule dissociation measurement to mini-
mize the uncertainty in the magnetic field and to be able to estimate the magnetic
field stability over the course of the measurements. We fit the resulting spectra
with the coherent lineshape for a pulse of a certain length and obtain the free-free
transition frequencies νff1 and νff2 before and after the molecule dissociation mea-
surement (see appendix figure A.25). For the final magnetic field calibration we
use the mean of these two measurements. The results of the free-free transition
measurements and the magnetic field calibration can be found in table A.6 in the
appendix.
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6. Radio Frequency spectroscopy of few-fermion systems

Interpretation of the bound-free spectra

To interpret the obtained dissociation spectrum (figure 6.10) we have to discuss the
trap sideband transition. Since we have loaded the particles from the microtrap
into the large volume dipole trap we have to consider different trap parameters as
in the previous section. As mentioned, the trap frequencies of the large volume
cigar shaped dipole trap are ω⊥ = 2π × 349(3)Hz in radial direction and ω‖ =
2π × 34(1)Hz in axial direction. Our frequency resolution in terms of the FWHM
of the transition peak is 120Hz. Hence, we cannot resolve the axial trap sidebands
of this trap. Yet, the radial sidebands can be resolved which is illustrated in
figure 6.11. The envelope of all resolved and not resolved peaks determines the

trap 
0 trap 

radial 

radial 

axial 

rad 349 Hz  

axial 34 Hz 

0  

radial excitations 

axial excitations 

rad rad 

frequency 

Radial sidebands resolved  (finite experimental resolution ~ 60 Hz) 

Axial sidebands not resolved 

Trap geometry  

cigar shaped large volume dipoletrap 

frequency 

aspect ratio  1:10 

Figure 6.11.: Trap sideband resolution in the large volume dipole trap.
With our experimental resolution we can only resolve the radial trap
sidebands of the dipole trap (right hand side). The axial trap side-
bands are not resolved. The total dissociation spectrum (dashed line)
is given by the sum of the radial transition peaks (blue) and the axial
transition peak (green).

shape of the dissociation spectra. To extract the binding energy we have to fit the
sum of all sideband transitions with the corresponding experimental resolution to
the measured spectra. Therefore we need to know the overlap coefficients of the
molecular wavefunction to the individual sidebands. To obtain these coefficients
we make an estimate for the binding energy which we deduce from the difference of
the free-free transition peak to the zeroth radial sideband peak. From the binding
energy we can then determine the scattering length. Since for some offset fields
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the scattering length is of the size of the effective range of the 6Li interaction
potential we consider effective range corrections to first order. In this case the
binding energy reads [Gri93]:

Eb = ~2

µ(a3D − a)2 (6.20)

with µ the reduced mass and with the so-called mean scattering length

a ≈ 0.487rvdw (6.21)

with rvdw being the range of the van-der-Waals potential [Lom11]. This expression
allows to make an estimate for the scattering length. Then we can approximately
calculate the molecular wavefunction which is expressed in the exponentially de-
caying form [Chi05]

Ψ ∝ e
−r
a3D . (6.22)

Using the wavefunction we calculate the overlap c2nx,2ny ,2nz between the bound
state and the even parity trap excitations in relative motion. The energy of the final
trap states, ~

(
(2nx + 2ny)ω⊥ + 2nzω‖

)
, determines the position of the sideband

transition peaks in the spectrum. In our model the width of the peak has been
infinitesimally small with a finite integral given by the overlap coefficients. To
include the experimental resolution we convolute the discrete transition peaks
with normalized Lorentzians 5. After summing up all sideband contributions up
to nx,y = 3 and nz ≈ 45 we have completed a model for the spectrum. (see figure
6.12, dashed line).
The overall shape of the model fits quite well to the measured spectra at different
magnetic offset fields. There are some minor deviations for larger sidebands which
are probably due to the anharmonicity of the trap and due to saturation effects
in the rf transition. Thus, we only consider the lowest 10 axial trap sidebands
and the zeroth radial sideband for the fit. The fit has two free parameters, the
overall height of the model (plus offset) and the absolute frequency position νbf of
the zeroth trap sideband. The lines in figure 6.12 show the result of the fit to the
spectra. Although our fitting routine precisely determines the absolute position of
the peaks it does not to provide its standard error. Hence we fit a single Lorentzian
to the rising slope of the zeroth trap sideband peak. Its standard error serves as
the error of νbf. All values of the bound-free transition νbf for the different offset
fields are recorded in table A.6 in the appendix.
5We originally used Gaussians for the shape of the transition as the magnetic field uncertainty
has a statistical origin. Yet, we have found that Lorentzians better represent the overall
lineshape. We have not exactly analyzed the lineshape and therefore treat the difference of
the fit results between the Gaussian and the Lorentzian model as a systematic error.
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Figure 6.12.: Dissociation spectra for different magnetic offset fields. To
determine the binding energy we measure the dissociation spectra at
different magnetic fields. The lines show the theoretical model, where
the solid line indicates the fitting region. For increasing interaction
energy and smaller scattering length (blue → brown → orange →
green) the particles get more localized according to Ψ ∝ e

−r
a3D and

the overlap to higher sidebands with respect to the lower sidebands
increase. This is the reason for the change from an initially-decaying
overall shape (blue) to an initially-decreasing shape (green) for the
lowest trap sidebands.

6.4.2. Confinement shift
As we initially mentioned we are interested in the binding energy of the Feshbach
molecules in free-space. Yet, although we have performed the spectroscopy in a
very shallow trap, we still have to consider the effect of the confining potential on
the binding energy. In figure 6.9 we show the comparison between the universal
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bound state in free space and the bound state in a cigar shaped trap with 1:10
aspect ratio. The difference between the two curves is plotted in figure 6.13. As
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Figure 6.13.: Confinement induced shift. The shift is determined from the
binding energy of the free-free transition frequency and the binding
energy in the presence of the confinement (difference between green
and blue curve in figure 6.9).

discussed in chapter 3.2.2 both curves must coincide at large binding energies and
therefore the confinement shift vanishes for −1/a3D → −∞. At 1/a3D = 0 the
universal bound state in free space has reached the continuum whereas in the trap
the bound state still exists also for negative a3D. For −1/a3D → ∞ the binding
energy of the confinement induced molecule becomes zero and approaches the zero-
point energy of the trap of 1

2 (2η+ 1)~ω‖. The confinement shift in the initial and
final state of the rf-transition at the relevant magnetic field is given in the following
table:

magnetic field −1/a3D|1〉-|2〉 −1/a3D|1〉-|3〉 shift initial shift final
B [G] [a−1

‖ ] [a−1
‖ ] [Hz] [Hz]

811 -10.11 52.37 5.6 358.5
801 -15.72 50.21 2.4 358.2
781 -28.35 45.26 0.7 357.2
721 -84.21 21.29 0.0 345.8

6.4.3. Binding energy of the weakly bound molecules and
position of the Feshbach resonance

We can calculate the free-space dissociation energy of the Feshbach molecules by
subtracting the free-free transition energy from the bound-free transition energy
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while including the confinement shift:

Eb = 2π~× (νbf − νff + νinitial − νfinal) (6.23)

The results for the binding energy depending on the four different positions of the
magnetic offset field are listed in the following table:

magnetic field stat. error binding energy stat. error syst. error
B [G] σB [mG] Eb [kHz] σEb [Hz] ∆Eb [Hz]

811.139 1 1.803 8 17
801.115 5 4.341 33 17
781.057 1 14.157 7 17
720.965 1 127.115 14 17

The error budget is discussed in the appendix (A.7).
We conclude that in our experimental setup we have realized a high magnetic field
stability of only 1−5mG uncertainty. For the measurement of the binding energy
of weakly bound 6Li molecules we have achieved a high precision with 24− 50 Hz
uncertainty including statistical and systematic errors. This allows for an accurate
determination of the Feshbach resonance position and the scattering length as a
function of the magnetic field. The analysis has been performed by Jeremy Hutson
and Paul Julienne using coupled channel calculations [Bar05]. Further details can
be found in a joined publication [Joc12a]. The resulting new resonance positions
are:

state resonance position [G] σ [mG]
|1〉 − |2〉 832.18 80
|1〉 − |3〉 689.68 80
|2〉 − |3〉 809.76 50
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7. A single impurity in a finite Fermi
system

The interaction of a single impurity with a surrounding bath of other particles is
of high interest in physics. In solid state systems for example, single conduction
electrons can interact with the ions in a dielectric crystal which is polarized by
the electrons [Dev00]. The single impurity can be regarded as a fermionic quasi-
particle – the polaron – exhibiting interesting dynamics with an effective mass
depending on the strength of the interaction with the bath. In the case the bath
is a Fermi-sea the polaron is referred to as a Fermi-Polaron. Within the formalism
of particle-hole excitations the polaron’s wavefunction can be described by the
following variational ansatz [Che06] [Mas11]:

|ψp〉 = Φ0a
�
p↓|FS〉+

∑
q<kF<k

φk,qa
�
p+q−k↓a

�
k↑aq↑|FS〉 (7.1)

where |FS〉 is a noninteracting Fermi sea of ↑-majority particles plus a ↓-minority
particle with momentum p. The Fermi sea is perturbed by annihilation of particles
with momentum q < kF within the Fermi sea (aq↑) and by creation of particles
outside the sea (a�k↑). To satisfy momentum conservation, the minority particle
acquires a momentum q−k (a�p+q−k↓) [Che06]. This ansatz describes the impurity-
dressing by particle-hole pairs [Mas11]. A corresponding measurable quantity is
the quasi-particle residue which quantifies how much of the wavefunction of the
noninteracting particle is contained in the polaron’s wavefunction [Koh12].
In recent experiments the quasi-particle residue and the effective masses have been
measured in 3D Fermi systems [Sch09] [Koh12] as well as in a 2D environment
[Kos12]. In all these experiments they do not observe a difference in the polaronic
features for large impurity concentration up to one fifth of the particle number of
the Fermi sea. This raised the question, how many majority particles are needed
to describe the behavior of the impurity in the limit of a single impurity immersed
in an infinite number of majority particles.
With our system we are able to built up a Fermi sea from the bottom up by succes-
sively adding more majority particles to the trap containing the single impurity.
Thus we can measure the interaction energy of the system as a function of the
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number of majority particles for different values of the interaction strength.
In this chapter we summarize the results of these measurements 1 and compare
them to an exact theory for a single impurity immersed in a homogenous Fermi
sea. We find that it takes only a few majority particles to converge to the limit of
a 1D Fermi-sea consisting of an infinite number of particles.

7.1. Energy of a single impurity
To determine the influence of the number of majority particlesNmaj on the impurity
we measure the interaction energy of systems which contain a single impurity
and an increasing number of majority particles confined in a 1D harmonic trap.
For the noninteracting case these systems consist of the impurity particle in the
ground state and a number of majority particles which fill the trap up to the Fermi
energy EF . These system are shown in figure 7.1. Like for all few-fermion systems

F 0
4 8

F 0
4 C

EF

EF

EF

EF

EF

Figure 7.1.: A single impurity in systems with different number of ma-
jority particles. To determine the influence of the majority number
on the impurity we successively add majority particles and measure
the interaction energy of the system.

presented in this thesis the coupling constant g1D between the ↑-particles and the ↓-
particles can be tuned by a confinement induced resonance (CIR, see chapter 3.2.3)
while the majority fermions are indistinguishable and therefore do not interact (see
chapter 3.1.1). To measure the energy of the repulsively interacting few-fermion
systems we have performed rf-spectroscopy on the impurity particle. Figure 7.2 a)
shows the obtained spectra for different number of majority particles at a coupling
strength of g1D = 2.0 [a‖~ω‖].
One observes that the interaction energy increases with the number of majority
particles as can be see from figure 7.2 b). This increase in interaction energy can
1The measurement has just been completed while writing this thesis. Further details on the
analysis can be found in future publications [Joc12b]
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Figure 7.2.: Rf-spectra and interaction energy. a) Rf-spectra of a system with
a single impurity and different majority number for g1D = 2.0 [a‖~ω‖].
b) energy obtained from the rf-spectra. For increasing impurity num-
ber, the energy increases due to the repulsive interaction.

be explained by the larger amount of interaction partners which all contribute to
the repulsive interaction. Yet, the increase of the interaction energy per majority
particle is less or at most equal to the interaction energy of two distinguishable
particles in a harmonic trap for −1/g1D < 0. Note that adding more majority
particles also increases the density in the 1D harmonic trap. This has to be
taken into account when comparing our results to the theoretical model which we
introduce in the next section.

7.2. Theory for a single impurity in a homogeneous
system

For the case g1D → +∞ we have already introduced a powerful theoretical model
with exact solution which we experimentally confirmed for 2 and 3 distinguishable
fermions in chapter 4: at diverging coupling strength a 1D system of i identical
spin-↓-fermions and j identical spin-↑-fermions can be mapped onto a system of
(i + j) noninteracting identical fermions [Gir60] [Gir10]. Hence, the interaction
energy in a harmonically confined system with one spin impurity in a Fermi sea of
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Nmaj particles is exactly Nmaj~ω‖ = EF . In a very simplified picture 2 the minority
particle has to get all the way up to the Fermi surface to get fermionized for which
it has to gain an energy of EF .
For a single impurity in 1D there is an exact solution of the spin-impurity Hamilto-
nian in a homogeneous system, i.e. without a confining potential, for all values of
the coupling strength g1D-McGuire of the 1D contact interaction potential [McG65].
In the limit of Nmaj →∞ with γ = g1D-McGuire/kF constant this approach provides
the following formula for the interaction energy

E = k2
F

π

(
γ/2 + tan−1(γ/2)− (γ/2)2

(
π

2 − tan−1(γ/2)
))

(7.2)

where kF denotes the Fermi momentum of the Fermi sea of majority particles. In
the homogeneous case kF = (Nmaj − 1)π/L with L being the size of the system
[Bro12a]. An approach using the ansatz of particle-hole excitations as introduced
in the beginning of this chapter provides similar results [Gir09].

7.3. How many particles are needed to form a 1D
Fermi sea?

To answer the question of how many majority particles are needed to describe
them by an infinitely large Fermi sea we compare our measured energies to the
above mentioned theory by McGuire [McG65]. In this theory the energy of a sin-
gle impurity in a homogeneous system is given as a function of the interaction
parameter γ which depends on 1/kF and thus is proportional to the inverse line
density (N/L)−1. However, in our case the situation is somewhat different as the
particles are confined in a harmonic trap. In a 1D harmonic trap the Fermi energy
is EF = Nmaj~ω‖ and thus kF =

√
2m
~ ω‖N . 3 Hence, to obtain γ we have to

scale g1D by 1√
N
. 4 Although the theory of McGuire is developed for a homoge-

neous system we can still use it for comparison: In a local density approximation
the trapped impurity experiences a homogeneous Fermi sea. If the impurity was
located in the trap minimum the density would be the same as in the theory of
McGuire. For any other spatial distribution of the single impurity in the trap the
2When projecting the wavefunction of the interacting system onto the noninteracting single
particle basis one of the component of the decomposition corresponds to the simplified picture.

3In all expressions for the energy of the system we neglect the zero-point energy 1
2~ω‖ of the

trap.
4γ = g1D/kF is given in dimensionless units. g1D =

√
2 g1D-McGuire as the theory of McGuire

addresses the problem in terms of the particle mass m whereas we consider the reduced mass
µ = m/2.
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7. A single impurity in a finite Fermi system

local kF is smaller than the peak kF and thus the theory of McGuire serves as an
upper boundary for the energy in our trapped system.
To compare the interaction energy E for different densities and particle numbers
we scale the interaction energy by the Fermi energy. Hence, to obtain the normal-
ized energy E/EF we divide the measured interaction energies by N~ω‖. 5

Applying this scaling we can plot the theory of the two limiting cases – one im-
purity with one majority particle (1:1) and one impurity with an infinite number
of majority particles (1:∞) – into one graph (figure 7.3). The blue curve repre-
sents the already frequently cited solution for two particles in a harmonic trap
[Bus98], i.e. a system of a single ’impurity’ with one ’majority’ particle [Bus98].
The other limiting case is McGuire’s theory of one impurity with an infinite num-
ber of majority particles shown by the yellow curve. Both theories approach unity
for kF/g1D → 0 which is the point of Fermionization. One can observe that for
increasing number of majority particles (from blue to orange) our measurement of
the normalized interaction E/EF energy approaches the theory of McGuire. This
can be seen in detail in figure 7.4 where we have plotted enlarged views for differ-
ent interaction strengths. To these graphs we have also added the results for a 1:2
system derived by the group of Doerte Blume [Gha12] and the MCDTH calcula-
tion of Ioannis Brouzos for finite systems of larger imbalance [Bro12c]. One can
already guess from these theories that the energy rapidly converges to the limit at
N →∞. Our data confirms this behavior for increasing particle number. We find
that already for a system of 3 majority particles the energy is very close to the
theory of McGuire. For a 1:4 and a 1:5 system we find surprisingly good agreement
of our measurement with McGuire’s theory although it has been established for a
homogeneous system which serves as an upper boundary for our trapped system.
The deviation to the MCDTH method could be due to systematic effects such as
anharmonicity and finite aspect ratio of the microtrap potential which we might
have over-estimated in our correction.
Yet, theses systematic effects cancel to first order if we regard only the change
of the interaction energy per added majority particle. Therefore we consider the
quantity

s =
∆N

(
E
EF

)
∆N

(
kF
g1D

) (7.3)

5For this scaling we take the anharmonicity of the trap into account. EF is replaced by the
energy of the n-th single particle level in the anharmonic trap derived by a WKB calculation
(see appendix figure A.29. We also considered the shift discussed in chapter 3 between the 1D
solution and the solution for the 3D trap with 1:10 aspect ratio (see appendix figure A.30).
The shift caused by these effects is shown in figure A.31 in the appendix.
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Figure 7.3.: Normalized interaction energy as a function of the interaction
parameter kF/g1D and depending on the particle number. The
data points (blue → green → orange) show the interaction energy
for systems with increasing number of majority particles. For a 1:1
system we find excellent agreement with the theory of T. Busch et al.
[Bus98]. For larger values of Nmaj the energy gets closer to the theory
of McGuire for a single impurity in a homogeneous system of infinite
Nmaj [McG65].

with the function ∆N (x) = xNmaj − xNmaj+1 at constant g1D. sexp represents
the slope of the connecting line between two neighboring data points in figure
7.4. From the similar slopes of the different theory curves for Nmaj = 1, .., 5 and
Nmaj =∞ in a homogeneous system at constant kF/g1D we assume that the exact
theory for a single impurity immersed in a large Fermi sea in a harmonic trap6 has
approximately the same derivative

d
(
E
EF

)
d
(
kF
g

)
h.o.

=
d
(
E
EF

)
d
(
kF
g

)
hom.

(7.4)

6To our knowledge when writing this thesis a theory for a single impurity immersed in a large
Fermi sea in a harmonic trap has not been available.
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Figure 7.4.: Enlarged views of the normalized energy for three different
values of g1D. The notation for the measured data points is the
same as the one in figure 7.3. The blue curve shows the 1:1 theory
[Bus98] and the yellow curve shows the upper limit represented by
a single impurity in a homogeneous Fermi sea of infinite number of
majority particles [McG65]. Additionally we have added the 1:2 theory
of [Gha12] (solid green curve) and the MCDTH calculation results for
a harmonically trapped system of up to 1:5 particles [Bro12c] (dashed
curves).

as the homogeneous theory of McGuire7. Hence, to determine the change of en-
ergy with respect to the coupling parameter for the harmonically trapped system
we derive the slope of McGuire’s theory stheo in the same way as done for the
experimental data. Now, we can relate the change of the energy with respect to
the majority number to the derivative of the theoretical prediction. The result is
shown in figure 7.5 for two values of the 1D coupling constant g1D.8 We find that
for small majority number the ratio is considerably larger than 1 which means
that the measured change of the energy with respect to the majority number dif-
fers from the change predicted by the theory. Yet, the change from a 1:3 to a
1:4 system is almost equivalent to that of the theory and the transition from a
1:4 to a 1:5 system follows the same slope. This means that by adding further
majority particles we do note change the properties of the dressed impurity expect
for changing the density of the Fermi sea.

7We expect that the theory curve for the energy of the harmonically trapped case lies between
the dotted line (MCDTH 1:5) and the solid line (McGuire 1:∞ homogeneous system)

8As the relative errors for weak interaction energies are larger we have not considered the slope
for g1D = 0.25 [a‖~ω‖]
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Figure 7.5.: Relating experiment and theory. The graph shows the change
of the energy as a function of the majority particle number (sexp,
equation 7.3) related to the theoretical prediction for a system of an
infinite majority number (stheo, equation 7.4). We find that the change
in the experimental data approaches the change in the theory already
for a system of four majority particles. By further adding majority
particles the property of the impurity is not anymore modified and
follows that of a single impurity immersed in an infinitely large Fermi
sea.

This observation allows us to answer the initially posed question: It seems like
already four majority particles are sufficient to describe the system by a single
impurity immersed in an infinite number of majority particles. Or to put it in
other words: Four particles are enough to form a 1D Fermi sea.
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8.1. Conclusion
Using the advantages of ultracold atomic systems we have successfully set up
a generic quantum system which allowed us to perform experiments with one-
dimensional few fermion systems. To achieve this we have designed and built a
reliable setup with precise control over the key experimental parameters such as
the depth of the confining potential and the strength of the magnetic offset field.
This gives us outstanding control over several degrees of freedom of the quantum
system.

A generic quantum system

• With our scheme we can deterministically prepare a few-fermion system with
a fidelity of 98% per particle. We have achieved control over the motional
state of the particles in the trap. Our preparation scheme has a large ground
state preparation fidelity of up to 93% [Ser11b]. By coherent coupling we can
transfer a two-particle system from the ground state to an excited motional
state with ∼ 90% fidelity. In theses quasi-1D systems we are able to tune
the interaction strength using confinement induced resonances.

• To probe the few-fermion system we have implemented several diagnostic
tools: By periodically modulating the trap depth we can determine the shape
of the confining potential with a high precision.

• By measuring the tunneling dynamic of fermions which tunnel through a
well-defined potential barrier we can deduce the energy and the correlations
of the few-fermion system.

• Using rf-spectroscopy with a resolution much higher than the characteris-
tic energy scale of the system allows us to precisely measure its interac-
tion energy. As we can resolve single trap sidebands the rf-spectroscopy
offers a possibility to map out the wavefunction of an interacting system.
We demonstrated the capability of our high resolution rf-spectroscopy by
measuring the binding energy of weakly bound dimers which allowed for a
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precise characterization of 6Li Feshbach resonances. We lowered the uncer-
tainty of the resonance position by almost two orders of magnitude compared
to previous experiments.

Using this system with the versatile diagnostic toolbox we studied several few-
fermion systems during the course of this thesis.

Investigated few-fermion systems

• By comparing systems of two distinguishable fermions with two identical
fermions we directly observed the mechanism of fermionization [Zür12] which
gives rise to the physics of strong repulsively interacting systems such as the
Tonks and Super-Tonks gas .

• In two-particle systems with increasing attractive interaction we found evi-
dence for increased-pair correlations. For larger systems we observed a strong
odd-even effect in the single particle dissociation energies as a function of
the particle number. This pairing phenomena exhibits similarities to nuclei
which suggests that our system is suited to study further pairing mechanisms
related to nuclei.

• Using rf-spectroscopy we measured the energy of few-fermion systems with
up to six particles. For two and three particles we found excellent agreement
to the theoretical models. By tuning the systems across the CIR and mea-
suring rf-transitions to different energy states we have demonstrated that we
can create metastable systems in the so-called super-Tonks regime with up
to four particles without major loss.

• We have investigated the properties of a single impurity which repulsively
interacts with an increasing number of majority particles. We have started
with the smallest possible few-particle system, a single impurity and one
’majority’ particle and measured the interaction energy while adding more
and more majority. We have observed that already for majority numbers of
N ≥ 4 the interaction properties can be described by that of a polaron-like
particle immersed in a Fermi sea. Thus, for this particular system we have
shown the crossover from a few-particle system to a system well described
in the limit of N →∞.

With the presented measurements we have investigated various fundamental few-
fermion systems in a 1D environemnt. Yet, our setup has the capability to study
even more complex phenomena in future experiments such as spin-correlations or
dynamical processes in higher dimensional mesoscopic Fermi-systems.
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8.2. Outlook

8.2.1. Ferromagnetic correlations in 1D systems
An extensively debated issue is the question if a two-component mixture of inter-
acting spin-1/2 fermions in a homogeneous system can form ferromagnetic domains
[Jo09] [San12]. A model which states a possible condition for ferromagnetic order
is the Stoner model [Sto39]: In the case that the effect of the repulsive interac-
tion between two distinguishable fermions is larger than the Pauli repulsion of two
identical fermions, it is more favorable to form magnetic domains. For our 1D
system we have found a regime where the Stoner criterion is fulfilled: We accessed
it by tuning the coupling strength of a few-fermion system across the CIR to the
super-Tonks regime where the energy of the system is larger than the energy of a
corresponding spin-aligned system. Measurements which we have performed with
3 and 4 particles on this meta-stable state have yielded promising results: We have
observed that in the super-Tonks regime a polarized system remains after one par-
ticle has tunneled from the correlated N-particle super-Tonks state (cf. chapter
4.4). This is a strong indication that the system which we have created, actually
exhibits ferromagnetic correlations. The exact analysis of the observed properties
is current work in progress. An interesting issue is the question if the investigation
of ferromagnetic correlations can be extended to systems in higher dimensions?

Studying few-fermion systems in higher dimensions is one of the major goals for
future experiments. For instance in systems with attractive interaction we want to
investigate how the initial 2D shell structure alters when increasing the strength
of the interaction (cf. chapter 5.2.2).
To be able to create different confining potentials we have designed a new optical
setup [Kli12b] containing a high NA objective [Ser11a] with the goal to also create
multiple well potentials.

8.2.2. Antiferromagnetic ordering in a multiple well potential
The possibility to create multiple adjacent potential wells will allow us to study
spin-1/2 systems in finite periodic potentials. In the case of an infinite chain or
lattice of wells this system can be described by the Fermi-Hubbard model [Lie93].
It incorporates the kinetic energy by a tunneling term which describes hopping
from one site to the other. The interaction in this model is parametrized by an
on-site interaction term. For repulsive interaction the many-particle ground state
is predicted to be an ordered system with alternating spin orientation in neighbor-
ing sites which is referred to as antiferromagnetic ordering. This is the opposite
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Figure 8.1.: Antiferromagnetic ordering in a multiple well potential. In the case
we can adiabatically change a single well potential containing a repulsively
interacting few-fermion system into a multiple well configuration we expect
to observe antiferromagnetic ordering of the particles for a certain ratio of
the tunneling rate and the strength of the repulsive on-site interaction.

regime of the previously discussed ferromagnetic order with the Pauli repulsion
dominating over the interaction energy and a localization of the individual parti-
cles.
We want to investigate these systems by starting from a N -particle ground state
in a single well, where N is the number of wells which we want to realize (see
figure 8.1). By smoothly splitting up the single well into a finite size periodic
potential while the system should stay in the ground state, we expect to observe
the appearance of anti-ferromagnetic order.

8.2.3. Dynamical processes in few-fermion systems
The precise control over our system should also allow to study dynamical processes
in few-fermion systems. Partially we have already started to investigate dynamical
phenomena by observing tunneling of particles through a static potential barrier.
We want to excite even more interesting dynamics by periodically modulating
the shape of the potential barrier which we can achieve by sinusoidally change
the orientation of the linear potential relevant for creating the tunneling barrier.

tunnel 'ionization' acceleration in reversed potential recollision

F0
48

F0
4C

a) b) c)

Figure 8.2.: Dynamical process similar to ionization of atoms in strong laser
fields. The process can be described in a three-step model: a) One particle
is ’ionized’ by applying a time-dependent magnetic field gradient. b) The
particle is accelerated in the oscillating potential. c) The particle comes
back to the trap region where it interacts with the residual particles. Taken
from [Gal12] and adapted.
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Then the finite size Fermi-system in our microtrap system would be similar to an
atom which electrons are excited by a strong laser pulse [Cor93]: In the dipole
approximation the potential created by the electrical field of the laser is identical
to our linear potential (see figure 8.2). Although the characteristic timescale of
this ultra-fast physics is orders of magnitudes away from that of our system, we
expect to be able to study similar physics.
Besides non-adiabatically changing the potential we want to excite a finite Fermi
system into a non-equilibrium state by performing an interaction ’quench’, a non-
adiabatic change of the coupling strength. By probing the time evolution of the
system in different dimensions we can study how or if the isolated quantum system
thermalizes which is still an open question [Rig12].
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A.1. 6Li level scheme
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Figure A.1.: Level scheme of 6Li. The energy of the hyperfine levels has been
calculated using the corresponding formula of Breit and Rabi [Bre31].
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A.2. Deterministic preparation
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Figure A.2.: Qualitative analysis of the transfer into the dimple. The plots
show the number of transferred particles in dependence of the reservoir’s
trap depth as a function of the magnetic offset field which determines
the scattering length a3D (lower panel). At lower reservoir depth, Tres is
decreased as well as the density nres of the reservoir. The efficiency of
thermalization is determined by the scattering rate which is proportional
to the scattering length. In the gray shaded area of the left plot, the
number of transferred particles depends on the scattering length over the
whole range which indicates the system has not equilibrated yet. For
this mixture of |1〉-|2〉 atoms the value of the scattering length cannot be
increased further (white region, lhs.). This limitation can be overcome
by choosing a mixture of |1〉-|3〉 atoms where the scattering length can
be tuned to larger values (right plot). Then, by further increasing |a3D|
(light gray shaded region) the number of transferred particles saturates,
which is a signature of thermalization. We also find no measurable change
in the number of transferred particles at lower temperature (right plot,
green data compared to black data) which indicates that we have entered
the highly degenerate regime with near unity filling of the states in the
microtrap. Note: the maximum number of transferred particle is lower
than the 600 particles stated in chapter 2.2.2 which is due to the lower
depth of the microtrap used for this analysis.
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Figure A.3.: Light source and focusing setup for generating a stable optical poten-
tial. For the light source we use a laser with a wavelength of 1064nm. A low noise
laser source is important as frequency noise one the order of the trap frequency
leads to excitation of atoms to higher trap levels with a rate depending on the
amplitude of the modulation [Geh98]. Table A.1 shows the relative intensity noise
[Ser11a] for three different types of laser which we have used in the experiment.
For the demonstration of high fidelity preparation we have used a modified laser-
pointer (figure A.4), later we changed to the commercial laser source Mephisto S
(Innolight). The intensity of the beam is varied using an AOM which is controlled
by a digital PID controller [Zür09]. The light is transferred via an optical fiber
to the focusing setup. In this setup a portion of the light is outcoupled from the
beam and focused onto a photodiode which measures the intensity of the beam.
This signal is fed into the PID controller to stabilize the intensity of the microtrap
potential. It is extremely crucial that the intensity ratio between the out-coupled
light used for stabilization and the light focused into the vacuum chamber by the
microtrap objective is constant within 10−3 to achieve a sufficiently large window
of deterministic preparation (see chapter 2.2.3). We ensure this by suppressing
polarization drifts which could be translated into intensity drifts by polarization
dependent optical devices. This is done using a polarizing beam splitter cube
(suppression of undesired polarization of 10−4 ) in order to clean the polarization
and a subsequent non-polarizing beam splitter cube to couple out the light. To
furthermore suppress intensity drifts caused by interference of the coherent light
reflected from different surfaces, we use anti-reflection coated optics. Additionally,
we have removed the cover glass of the photodiode (Hamamatsu G8370-81) which
caused intensity drifts as it had been acting as an etalon. In a test measurement
we confirmed the desired intensity stabilization of 10−3 [Ser11a].
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Figure A.4.: Modified laser pointer as a source for the trapping light. To
demonstrate the deterministic preparation of a few fermion system [Ser11b]
we used a modified laser pointer designed for emitting light at a wavelength
of 532 nm. This green light is generated by intracavity frequency doubling
of light with 1064 nm wavelength which corresponds to the actual laser
transition of the laser-crystal which is pumped by a 800nm laser diode.
Due to the large power of the pumping diode and the poor 1064 nm anti-
reflection coating of the cavity surface, about 6mW of the 1064 nm-light is
leaking out of the green laser pointer. Using a filter-plate (orange plate in
the picture) we filtered out the residual 100mW green light and used the
1064nm-light as the laser source for the microtrap.
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Laser source RIN [dB/Hz]
IPG YLM-5-LP -96
modified laser pointer -116
Mephisto S (Innolight) -113
Mephisto S with noise eater function -117

Table A.1.: Relative intensity noise (RIN) of different laser sources. The right
column shows the relative intensity noise below 100 kHz, the relevant range
in which frequency noise can cause undesired excitations of atoms in our
system with typical trap frequencies of 30 kHz. For all three lasers the RIN
below 100KHz is independent of the frequency. Due to the uncertainty in
the calibration of the detector the absolute values might differ by 10dB.
The first laser which we have used – the IPG fiber laser – has been replaced
by a modified laser pointer which noise level is 20dB lower (see figure A.4).
It is as good as the commercial Mephisto S with noise eater option. Yet,
for the modified laser pointer it has been more difficult to operate it in
a reliable mode because the current of its pumping diode has not been
actively stabilized. This is the reason why we changed to the Mephisto
S which operates in its low-noise mode without any readjustment within
months. We have not quantitatively analyzed the effect of the RIN onto
the heating rate in the microtrap. Qualitatively however, we have found
an improvement of the preparation fidelity after replacing the IPG fiber
laser by the modified laser pointer. Yet, as we have also changed other
components of the setup, we cannot clearly state if the 20dB improvement
of the noise level by replacing the light source is responsible for the increase
in preparation fidelity.

163



A.2. Deterministic preparation

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8

- 4

- 3

- 2

- 1

0

1

2

←
e x p e r i m e n t a l  r u n s
s t a r t e t  a t  t = 0  ( s i n g l e  r u n :  2 0 s )

←
I T - 1 0 0 0  
a d d e d  t o  
c i r c u i t
a g a i n

 1 3 : 0 0 1 1 : 0 0 9 : 0 0

0 7 . 0 2 . 2 0 1 2

 

 

rel
ati

ve
 dr

ift 
[10

-4 ]

T i m e  [ h o u r s ]

0 8 . 0 2 . 2 0 1 2

1 9 : 0 0

                        →
I T - 1 0 0 0  r e m o v e d
          f r o m  c i r c u i t

IT1
00

0/ 
LA

H 5
0-P

 

Figure A.5.: Stability of the gradient current. The current which generates the
magnetic field gradient is stabilized using the current transducer LEM LAH
50-P in combination with a precision resistor (Vishay S102J, 2ppm/K)
which transfers the secondary current of the transducer into a measurable
voltage. The LAH 50-P has a specified accuracy of 2.5×10−3. If drifts were
occurring in this range they would disturb a deterministic preparation. To
check the stability of the LAH 50-P we added a second transducer to the
same circuit. The second transducer is a LEM IT-1000 with a accuracy of
< 50×10−6 (offset current + self magnetization + effect of earth magnetic
field) used in combination with eight in parallel connected Vishay RCK-
HR02 resistors (2ppm/K). To measure drifts of the gradient current we
recorded the ratio between both transducers for 18 hours. Within the first
half an hour we observe a fast increase between the ratio of both sensors.
After this increase of 4×10−4 the current stayed within ±1×10−4. Hence,
after switching on the experiment one should wait at least one hour until
the current transducer has saturated to its 1 × 10−4 temporary accuracy
which is much better than the specified absolute accuracy. To check which
one of transducers actually drifts we removed the high precision sensor
(IT-1000) from the circuit. Afterwords we waited 2 hours to allow the IT-
1000 to relax to its steady state in offline mode. After that we reconnected
the transducer with the circuit. We observed no fast change in contrast to
our initial observation. From this we deduced that the large drift at t = 0
stems from the LAH 50-P.
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Figure A.6.: Hole probability per particle of the lowest trap state. A hole
is defined as an unoccupied single particle state in the system. We
adjust the tunneling barrier such that the probability to find three
particles left in the potential is approximately one third. In this
case the tunneling rate of the lowest trap level is decreased compared
to the case when we try to remove all atoms from the second level
(nh.o. = 1). This procedure should reduce the effect of drifts which
lead to tunneling of particles from the ground state. We estimate
that the hole probability per particle for the lowest state in the trap
is 1.2(4)%.
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A.3. Fermionization experiment
A.3.1. Tuning the trap depth
Changing the trap depth parameter p, which is done by modifying the power of the
microtrap beam, also changes the harmonic oscillator length of the confinement
a⊥ = 4

√
p a⊥,0. This results in a slight change of the coupling constant g|↑↓〉 and

the position of the CIR (see equation (3.37) chapter 3). We have observed that
there are two loss channels with a width of 0.4G (FWHM) close to the CIR which
cause loss of unbound-particles depending on the position of the CIR: Due to the
anharmonicity of the trapping potential relative motion states can couple to excited
center-of-mass states of molecules which is discussed in chapter 4.5. The positions
of these loss channels depending on the magnetic field and the harmonic oscillator
length and are shown in figure A.18. Hence, after ramping to a constant magnetic
field for setting up a certain interaction strength, we do not want to modify the
harmonic oscillator length a⊥ to a large extent in order not to enter one of the two
loss channels. Therefore we set p already to a value lower than the initial depth of
p = 1 right after the preparation process. Then a⊥ tunes only by a small amount
when we perform experiments at constant magnetic field values next to the position
of the loss channels. However, we cannot tune p to arbitrarily low values before the
measurement starts because all single particle states of the potential contribute to
the wavefunction of the interacting |↑↓〉-system with decreasing fraction for larger
energy states. To make sure that the system does not tunnel before the actual
tunneling measurement starts, we have to leave all the states which considerably
contribute to the wavefunction bound in the trap. Experimentally we found that
4 bound states are sufficient to ensure that less than a fraction of a few percent
has tunneled before the actual tunneling measurement starts.

A.3.2. Ramp speed of the magnetic field
We avoid magnetic field values close to the two loss channels mentioned previously
in A.3.1. To not be effected by these channels we non-adiabatically ramp across
the resonances with sufficiently high speed of 20 G/ms.
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A.4. Modulation spectroscopy
A.4.1. Coherent coupling
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Figure A.7.: Coherent excitation.. The modulation pulse coherently couples
atoms in the ground state to the second axial trap level (quadrupole
transition). After half of a Rabi-cycle about 90% of the population is
transferred to the excited state. Due to the coherent coupling almost
the whole population comes back to the ground state after a full Rabi
cycle. The error is the standard error of the fit.
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Figure A.8.: Ramsey type experiment for the 0-2 quadrupole transition
in axial direction.

Figure A.9.: Loudspeaker for exciting the dipole transition.
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A.4.2. Determination of the axial trap parameters
The following description of the routine for deriving the axial trap parameters is
taken from [Zür12].
To obtain the waist we vary w0 and P0 within its error σP0 to minimize

∑
(i,j)=(0,1)(0,2)(2,4)

1
σω‖i−j

[(Eopt j − Eopt i)− ~ω‖i−j ]2 (A.1)

with Eopt i,j being the energy of the calculated bound states of the varied optical
potential. We find a minimum deviation for w0 = 1.838µm and P0 = 291.5µW re-
sulting in an initial depth at the center of the optical trap of V0 = kB × 3.326µK.
For these parameters two of the three frequencies match the calculated bound
states within their errors and all three match within 2σ. After fixing the param-
eters for the optical potential we have to determine the strength of the linear
magnetic potential which is created by a magnetic field gradient B′. From a
levitation measurement we obtain B′ = (18.9 ± 0.2) G/cm. To obtain a more
accurate parametrization of the potential barrier we use the tunneling measure-
ment of two identical fermions at a trap depth of p = 0.6875 as a calibration. We
perform a WKB calculation of the tunneling rate and modify the value of B′ in
the calculation such that the resulting tunneling time constant agrees with the
experimentally observed tunneling time constant of (74.1 ± 2.7)ms. From this
we obtain B′ = 18.92G/cm. Using this magnetic field gradient the calculation
is consistent with the deterministic preparation of (2, 4, 6, 8, 10) particles (see
figure 2.14) at p=(0.6575, 0.7025, 0.7475, 0.7863, 0.8200) in the experiment. The
parameters are summarized in table 4.2. At the optical trap depth of p = 0.6875,
where we perform the tunneling measurements for the fermionization experiment,
ω‖ has to be scaled by √p and is given by (2π×1.234±0.012) kHz calculated from
the excitation frequencies ω‖0−1 and ω‖0−2.
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Figure A.10.: Axial excitation determined by modulation spectroscopy.
Dipole transition level 0-1.
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Figure A.11.: Axial excitation. Quadrupole transition level 0-2, identical to
figure 4.8 in chapter 4.
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Figure A.12.: Axial excitation. Quadrupole transition level 2-4.
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A.4.3. Determination of the radial trap parameters

Figure A.13 shows the modulation spectroscopy measurement for the radial transi-
tion frequencies from which we determine the trap parameters. In a first evaluation
of the quadrupole spectrum (figure A.13 b) we have identified two peaks (blue and
red curve) from which we calculated η = 1.03 [Ser11a] [Zür12]. Yet, a WKB ap-
proximation which reproduces these peaks is not consistent with the determined
resonances of the dipole spectrum (figure A.13 a). Thus we needed to evaluate
the shape and the position of the individual peaks more precisely: We found that
the upper peak of the quadrupole-measurement is narrower than the lower peak.
Also the upper peak in the dipole-measurement is narrower than the two other
peaks. Furthermore, the distance between the lower peak and the upper peak
in the dipole-measurement is ∼ 1.4 kHz which corresponds to the axial trap fre-
quency. Due to this distance and the weaker coupling we assign this peak to a
transition with energy ~ (ωx 0−2 +ω‖ 0−1) with h.o. quantum numbers (1,0,1). The
allocation of the x-axis to one of the two main axis of the elliptic confinement is
arbitrary. The center peak is assigned to the (0,1,0)-transition with energy ~ωy 0−1.
A WKB calculation based on the dipole spectrum suggests that also
in the quadrupole transition spectrum a peak should appear at
∼ (13.96/14.82) × 28.26 kHz = 26.6 kHz. Unfortunately we had not extended
our range to such low frequencies when we performed this measurement.
Thus we had to repeat the experiment one year later, when we reconsidered the
analysis of the level structure in radial direction. During that time the overall
power calibration may have changed by ∼ 1% due to a readjustment of the ref-
erence beam onto the photodiode (see setup in figure A.3). A readjustment of
the microtrap beam has not been performed which is why the geometric shape
of the potential should have remained unchanged. Hence, we observed a shift of
the absolute position of the (0,2,0)-peak and the (0,2,2)-peak. As expected we
observed a peak at lower frequencies which we assign to the (2,0,0)-transition (fig-
ure A.14). From the ratio between the (2,0,0)- and (0,2,0)-transition frequencies
of the new measurement we calculate the aspect ratio ηxy = 1, 0695 from which
we determined ωx = 26.43 kHz. All relevant frequencies are listed in table 4.3 in
chapter 4.
Additionally to the (0,2,0)- and the (2,0,0)-peak we observed a fourth peak in the
new measurement which we could not assign to any transition. The origin of this
peak could be a transition of the form (1,1,0) which actually does not couple in a
perfect harmonic potential. However, due to the anharmonicity and the asymme-
try of the potential this transition could be allowed. To check if the peak height
tunes as a function of anharmonicity we increased the potential depth by a fac-
tor of two which reduces the anharmonicity. (figureA.15). We observed that the
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height of the center peak became smaller which is a hint that it indeed corresponds
to the (1,1,0) transition.
However, also the aspect ratio of the two relevant peaks changed when increas-
ing the trap depth by a factor of two (p = 2). Although this is expected in an
anisotropic trap with Gaussian shape it exceeded the normal level. Hence we as-
sumed this to be a result of the non-perfect Gaussian beam profile. This is in
accordance with the findings in an external test setup where we mapped out the
profile in radial direction and saw small deviations from the Gaussian profile (see
figure 2.9 chapter 2).
Nevertheless, the approximation of the shape by a Gaussian should be sufficient
for our purpose. To extract the shape of the potential we have to determine two
parameters - the depth and the width - of each Gaussian in x- and y-direction.
The idea is to vary the parameters in order to get the right transition frequencies
of the two measurements at p = 1 and p = 2. Leaving both parameters free we
can uniquely reproduce the two frequencies. However, we also have to consider
another constraint: The integral of the whole profile must reproduce the optical
power P0. Furthermore we assume that the trap depths in both directions are
identical due to the nearly radial symmetry.
With this constraint we only have the parameters w0x and w0y left as free parame-
ters which we vary to reproduce the transition frequencies (2,0,0) and (0,2,0) from
table 4.3. The resulting trap parameters are listed in table 4.4.
The blue dashed lines in the excitation spectra indicate the transition frequencies
calculated from the determined radial profile. Although the simulation slightly
deviates from the dipole transition peaks it qualitatively reproduces the mea-
surement. The gray dashed line in the dipole spectrum indicates the mean trap
frequency calculated by ω⊥ = 1

4 (ωx 0−2 + ωy 0−2) which is necessary to determine
the position of the CIR.
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Figure A.13.: Radial excitation spectra determined by modulation spec-
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indicates ω⊥ from which we calculate the position of the CIR.
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Figure A.14.: Radial excitation. Quadrupole transition, repeated measurement
with trap depth p = 0.986 .
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Figure A.15.: Radial excitation. Quadrupole transition, repeated measurement
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A.5. COM-REL motion coupling
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Figure A.16.: Oscillation between the non-bound and the molecular state.
From a sinusoidal fit we deduce the Rabi-frequency Ωeff and the max-
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with the magnetic field gradient switched off.
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Figure A.17.: Maximum amplitude and frequency of the oscillation between
the non-bound and the molecular state. The data points are ex-
tracted from measurements analog to figure A.16 at different magnetic
offset fields. The gradient has been switched off.

176



A. Appendix

7 8 0 7 8 1 7 8 2 7 8 3 7 8 4 7 8 5 7 8 6 7 8 7 7 8 8 7 8 9 7 9 0 7 9 1
0 . 9 3

0 . 9 4

0 . 9 5

0 . 9 6

0 . 9 7

0 . 9 8

0 . 9 9

1 . 0 0

 

 

g r a d i e n t  o f f
g r a d i e n t  o n

1/a
⊥ [a

⊥0
]

M a g n e t i c  f i e l d  [ G ]

p o s i t i o n  o f  m o l e c u l e  f o r m a t i o n  p e a k s

m a g n e t i c  f i e l d  a l r e a d y  c a l i b r a t e d  ! !
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A.6. Correlations in systems with attractive
interaction

magnetic field g1D,closed trap g1D g1D,ron[Ron12a]
G a‖~ω‖ aref~ωref aron~ωron

calibrated ω‖/2π=1488 Hz ωref/2π=634 Hz ωron/2π=250 Hz
350 -0.43 -0.65 -1.04
423 -0.39 -0.60 -0.95
496 -0.29 -0.44 -0.70
569 0.01 0.01 0.02
851 -1.18 -1.80 -2.87
958 -1.04 -1.60 -2.55
1074 -0.98 -1.51 -2.40
1202 -0.95 -1.45 -2.32

Table A.2.: Interaction parameter g1D for different reference potentials.

prepared particle potential parameter p
number N [fraction of initial depth]

2 0.63496
3 0.69232
4 0.69232
5 0.73227
6 0.73136

Table A.3.: Optical trap depth parameter p for the different N-particle
systems.
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Figure A.19.: Tunneling from a 4-particle system. Probability of finding 4
and 3 particles in the trap. The green curve is determined by the
model of subsequent single particle tunneling.
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Figure A.20.: Tunneling from a 6-particle system. Probability of finding 6
and 5 particles in the trap.
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A.6. Correlations in systems with attractive interaction

g1D γ2,fit γs|1〉,WKB γs|3〉,WKB Eint,WKB
[aref~ωref] [1/s] [1/s] [1/s] [~ωref]
-0.44 23.16± 1.55 8.42 14.75 -0.091
-0.60 12.28± 1.14 3.73 8.55 -0.139
-0.65 9.32 ± 0.33 1.98 7.46 -0.148
-1.45 2.08± 0.17 γ2/2 -0.322
-1.51 1.949± 0.110 γ2/2 -0.327
-1.60 1.224± 0.053 γ2/2 -0.358
-1.80 0.505± 0.023 γ2/2 -0.408

Table A.4.: Tunneling rates of a two-particle system for different interac-
tion strength.

N γs0|1〉,fit γs0|3〉,fit g1D γN,fit γs|1〉,WKB γs|3〉,WKB Eint,WKB
[1/s] [1/s] [aref~ωref] [1/s] [1/s] [1/s] [~ωref]

2 37.7± 2.1 24.8± 1.4 -0.65 9.32± 0.33 1.98 7.46 -0.148
3 - 9.83± 1.03 3.43± 0.19 - γ3 -0.104
4 g=0 5.51± 0.45 9.78± 0.79 -0.58
g=-0.58 0.67 γ3 1.59± 0.06 0.25 1.34 -0.212
5 - 12.15± 1.85 3.09± 0.11 - γ5 -0.148
6 g=0 7.79± 0.29 14.32± 0.53 -0.56
g=-0.56 0.54 γ5 1.49± 0.06 0.22 1.28 -0.280

Table A.5.: Tunneling rates for system with 2 to 6 particles.
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A.7. Rf spectroscopy

g1D  abs 1:1 trans-freq 1:1 theory deviation 2:1 trans-freq 2:1 theory deviation 3:1 trans-freq
a l l  h b a r  w l l w l l / 2 p i h b a r  w l l % w l l / 2 p i h b a r  w l l % w l l / 2 p i

g1D abs error   
<--
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experiment

error   
<--

2 particles 
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relative 

deviation 
theory-exp

3 particles 
experiment

error   
<--

3 particles 
theory 
[Gha12]

3 particle 
relative 

deviation 
theory-exp

4 particles 
experiment

error   
<--

-0.517 0.010 -- -- -- -- -0.522 0.018 -0.506 3 . 1 -- --
-0.267 0.009 -0.207 0.006 -0.167 2 3 . 7 -0.267 0.009 -0.244 9 . 7 -0.294 0.022
0.252 0.004 0.129 0.005 0.129 0 0.194 0.005 0.198 2 . 2 0.252 0.005
0.398 0.008 0.179 0.010 0.193 6 . 9 -- -- -- - - -- --
1.979 0.006 0.585 0.007 0.578 1 . 2 1.005 0.007 0.996 0 . 9 1.373 0.006

-2.298 0 . 5 1 8 -3.152 0.008 -2.787 13.1 -3.595 0.009 -3.308 8.7 -4.010 0.008

Figure A.21.: Interaction energy of few-fermion systems I. For the determi-
nation of the data points in the last row ( −1/g1D = 0.5) there are
three different rf-spectroscopy measurements involved. Due to error
propagation this leads to a large error in g1D (marked in red). The
data points at −1/g1D = 3.7 deviate from theory by more than 10%
which we attribute to a systematic error which probably occurred
during the measurement at this interaction strength (probably due
to a drift of the magnetic field between the measurement of the in-
teraction energy and the free-free reference transition).
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Figure A.22.: Interaction energy of few-fermion systems II.
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A.7. Rf spectroscopy
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2 1 . 7 3 6 - 1 . 8 0 0 3 . 0 0 7 0 . 0 0 4 0 . 9 3 8 - 1 . 9 4 0 2 . 8 7 8 4 . 5
- 7 . 5 7 4 - 1 . 6 1 6 2 . 8 7 2 0 . 0 0 6 1 . 1 3 9 - 1 . 6 5 3 2 . 7 9 2 2 . 9
- 1 . 2 4 8 - 1 . 1 3 9 2 . 6 4 9 0 . 0 0 3 1 . 6 5 2 - 0 . 9 9 7 2 . 6 4 9 0

Figure A.23.: Energy difference between states with non-zero interaction
strength I We find good agreement between experiment and theory
(bold numbers). The relative deviation ranges from 1% to 5% only.
The residual small deviations probably result from systematic errors
such as anhamonicity, position of the CIR, magnetic offset field drifts
during the rf-spectroscopy measurement, etc.

g1D ini g1D fin 2:1 trans-freq 2:1 initial 2:1 final 2:1 diff. deviation 3:1 trans-freq
a l l  h b a r  w l l a l l  h b a r  w l l w l l / 2 p i h b a r  w l l h b a r  w l l h b a r  w l l % w l l / 2 p i
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2.492 -2.298 4.601 0.006 1.121 -3.308 4.429 3 . 9 -- --
21.736 -1.800 4.307 0.004 1.806 -2.393 4.199 2 . 6 5.443 0.007
-7.574 -1.616 4.462 0.008 2.310 -2.073 4.383 1 . 8 -- --
-1.248 -1.139 4.692 0.004 3.436 -1.313 4.749 1 . 2

Figure A.24.: Energy difference between states with non-zero interaction
strength II
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A.8. Determination of 6 Li Feshbach resonance
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Figure A.25.: Free-free transition. The pulselength is 10ms and thus shorter
than the decoherene time of 23ms determined from figure A.26.
Hence, the free free spectrum is fitted using the coherent lineshape
given by equation (4.28).
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A.8. Determination of 6 Li Feshbach resonance
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Figure A.26.: Rabi frequency and decoherence time. To determine the de-
coherence time we start with about 50 atoms in state |2〉 and apply
a resonant rf-frequency νff. Thus state |2〉 is coupled to state |3〉
and the occupation probability oscillates between those states. The
contrast decays with a time constant of 23ms. The reason for that
is most likely due to dephasing in the trap. The atoms with different
kinetic energy in the trap experience a different oscillation frequency
due to the anharmonicity.

184



A. Appendix

8 1 . 8 3 1 8 1 . 8 3 2 8 1 . 8 3 3 8 1 . 8 3 4 8 1 . 8 3 5 8 1 . 8 3 6
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5
6 0
6 5

 

 

T r a p  s i d e b a n d  s e p a r a t i o n  a t  d o u p l e d  d i p o l e  t r a p  d e p t h  

Tra
ns

fer
red

 at
om

 nu
mb

er

F r e q u e n c y  [ M h z ]

1 k H z  ↔ 2  x  3 4 9 H z  x  2 1 / 2 =  0 . 9 8 7  k H z  

 8 1 0 G  b o u n d  f r e e  t r a n s i t i o n  

Figure A.27.: Trap sideband separation. To check whether the sideband-peaks
tune with the trap frequency we double the depth of the trap. We
observe the expected scaling of

√
2 of the trap sideband separation.

The trap frequency in the actual dissociation measurement has been
349(3) kHz. The error is the SEM deduced from the determination
of the peak separation in the four different rf-spectra of figure 6.12.

185



A.8. Determination of 6 Li Feshbach resonance
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Figure A.28.: Density dependent shift. To determine the density dependent
shift we increase the particle number by a factor of 7. From both
spectra we deduce that the shift must be less than 50Hz. Assum-
ing monotonic behavior of the dissociation energy with the particle
number we estimate the shift to be 0.125Hz per particle in a lin-
ear approximation. This results in a density dependent systematic
uncertainty for the dissociation of 30 molecules (60 atoms) of 8Hz.
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A. Appendix

magn. field free-free 1st free-free 2nd ff weighted mean bound-free transition dissociation freq.
B [G] νff1 [MHz] νff2 [MHz] νffm [MHz] νbf [MHz] δνffm-bf [kHz]

811.139 (1) 81. 830 120 (8) 81. 830 113 (5) 81. 830 115 (3) 81. 832 271 (7)(8) 2.156 (8)(16)
801.115 (5) 81. 891 515 (3) 81. 891 583 (4) 81. 891 539 (33) 81. 896 236 (3)(8) 4.697 (33)(16)
781.057 (1) 82. 019 822 (2) 82. 019 824 (3) 82. 019 823 (1) 82. 034 336 (6)(8) 14.513 (6)(16)
720.965 (1) 82. 452 484 (4) 82. 452 479 (5) 82. 452 482 (2) 82. 579 943 (13)(8) 127.461 (13)(16)

Table A.6.: Transition and dissociation frequencies. For the magnetic field
calibration we use the Breit-Rabi formula [Bre31]. The origin of the
individual errors are as follows: σνff1 and σνff2 are the statistical errors

of the fit to the free-free transitions; νffm =
∑

i
1

σ2
νffi

νffi∑
i

1
σ2
νffi

(weighted mean);

σνffm =
√√√√∑i

1
σ2
νffi

(νffi−νffm)2∑
i

1
σ2
νffi

(weighted error of weighted mean); σB is the

statistical error resulting from σνffm (Breit-Rabi formula); 1st of errνbf :
statistical error σνbf : fit error of single Lorentzian fit to first slope of
dissociation spectrum, 2nd of errνbf : systematic error ∆νmodel : max. of
model dependent shift (Lorentz vs. Gauss); 1st of errνffm-bf : statistical
error σδνffm-bf : quadratic addition of σνffm and σνbf , 2nd of errνffm-bf :
∆δνffm-bf systematic error: ∆νmodel+∆νdensity .

dissociation freq. confinement shift binding energy scattering lenght scattering lenght
δνffm-bf [kHz] νcs [kHz] νEb

[kHz] a3D|1〉-|2〉 [a0] a3D|1〉-|3 [a0]
2.156 (8)(16) 0.353 (3)(1) 1.803 (8)(17) (25) 18,340 -3,541
4.697 (33)(16) 0.356 (3)(1) 4.341 (33)(17) (50) 11,800 -3,693
14.513 (6)(16) 0.356 (3)(1) 14.157 (7)(17) (24) 6,542 -4,097

127.461 (13)(16) 0.346 (3)(1) 127.115 (14)(17) (31) 2,202 -8.709

Table A.7.: Dissociation frequencies and binding energies. The origin of
the individual errors are as follows: 1st of errνcs : σνcs SEM of trap
frequency determination, 2nd of errνcs : ∆νcs systematic error: position
of 1-3 resonance; 1st of errνEb : statistical error σδνEb : quadratic ad-
dition of σνffm , σνbf and σνE0

, 2nd of errνEb : ∆δνEb
systematic error:

∆νmodel+∆νdensity+∆νcs , 3rd: sum of statistical and systematic error.
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A.9. A single impurity

A.9. A single impurity
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Figure A.29.: Fermi energy in our slightly anharmonic microtrap (red). We use the
half of the measured 0-2 quadrupole-transition-frequency as the frequency ref-
erence ω‖ = 2π × 1.488 kHz as this has been the most precise trap frequency
measurement we have performed (see figure A.8) .
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Figure A.30.: Finite-aspect-ratio correction. The energy of a few-fermion system in a 3D
cigar-shaped trap with finite aspect ratio is smaller than in a pure 1D trap.
This has to be taken into account when comparing our measurement with 1D
theories. For a two and three particle system we have deduced these shifts
from the comparison of the different theories. For large particle numbers we do
not know the effect of these shifts (sketched by the gray shaded area). To still
correct for it to some extent we use the shift of a three particle system for all
other system with N > 3 (dashed line).
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Figure A.31.: Anharmonicity and finite-aspect-ratio correction. The an-
harmonicity shift (figure A.29) reduces EF and kF whereas the finite
aspect ratio (figureA.30) shifts the energy to larger values.
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