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ii



Automated Analysis of Biomedical Data from

Low to High Resolution

Advisor: Prof. Dr. Fred A. Hamprecht

iii



iv



Abstract

Recent developments of experimental techniques and instrumentation allow life scientists
to acquire enormous volumes of data at unprecedented resolution. While this new data
brings much deeper insight into cellular processes, it renders manual analysis infeasible
and calls for the development of new, automated analysis procedures. This thesis de-
scribes how methods of pattern recognition can be used to automate three popular data
analysis protocols:

• Chapter 3 proposes a method to automatically locate bimodal isotope distribution
patterns in Hydrogen Deuterium Exchange Mass Spectrometry experiments. The
method is based on L1-regularized linear regression and allows for easy quantitative
analysis of co-populations with different exchange behavior. The sensitivity of the
method is tested on a set of manually identified peptides, while its applicability to
exploratory data analysis is validated by targeted follow-up peptide identification.

• Chapter 4 develops a technique to automate peptide quantification for mass spec-
trometry experiments, based on 16O/18O labeling of peptides. Two different spec-
trum segmentation algorithms are proposed: one based on image processing and
applicable to low resolution data and one exploiting the sparsity of high resolution
data. The quantification accuracy is validated on calibration datasets, produced
by mixing a set of proteins in pre-defined ratios.

• Chapter 5 provides a method for automated detection and segmentation of synapses
in electron microscopy images of neural tissue. For images acquired by scanning
electron microscopy with nearly isotropic resolution, the algorithm is based on ge-
ometric features computed in 3D pixel neighborhoods. For transmission electron
microscopy images with poor z-resolution, the algorithm uses additional regular-
ization by performing several rounds of pixel classification with features computed
on the probability maps of the previous classification round. The validation is per-
formed by comparing the set of synapses detected by the algorithm against a gold
standard detection by human experts. For data with nearly isotropic resolution,
the algorithm performance is comparable to that of the human experts.
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Zusammenfassung

Neueste Entwicklungen in Experimentiertechnik und Gerätschaften erlauben Biowis-
senschaftlern sehr große Datenmengen in nie dagewesener Auflösung aufzunehmen. Diese
Daten vertiefen unser Verständnis von Zellprozesses, machen aber auch eine manuelle
Analyse unmöglich und fordern die Entwicklung neuer, automatischer Analysemethoden.
Die vorliegende Arbeit beschreibt Mustererkennungsmethoden zur Automatisierung von
drei gängigen Datenanalyseprotokollen:

• In Kapitel 3 wird eine Methode zur automatischen Lokalisierung bimodaler
Isotopenverteilungen in Deuterium-Austausch Massenspektrometrie-Experimenten
vorgeschlagen. Sie basiert auf L1-regularisierter linearer Regression und erlaubt
eine einfache quantitative Analyse von Ko-Populationen mit unterschiedlichen Aus-
tauschverhalten. Die Empfindlichkeit der Methode wurde auf manuell identi-
fizierten Peptiden getestet, während ihre Anwendbarkeit in der explorativen Da-
tenanalyse mit Hilfe gezielter Folgepeptid Identifikation gezeigt wurde.

• In Kapitel 4 wird eine Technik zur automatischen Peptidquantifizierung für
Massenspektrometrie-Experimente entwickelt, die auf 16O/18O Peptidmarkern beruht.
Es werden zwei verschiedene spektrale Segmentierungsalgorithmen vorgeschlagen:
Der eine basiert auf Bildverarbeitungstechniken und ist auf niedrig aufgelöste
Daten anwendbar; der andere nutzt die Sparsity von hochaufgelösten Daten aus.
Die Quantifizierungsgenauigkeit wird auf Kalibrierungsdatensätzen überprüft, die
auf Proteinen mit vordefinierten Mischungsverhältnissen aufgenommen wurden.

• In Kapitel 5 wird eine Methode zur automatischen Erkennung und Segmentierung
von Synapsen in elektronenmikroskopischen Aufnahmen von neuronalem Gewebe
vorgestellt. Für Bilder, die mit Hilfe von Transmissionselektronenmikroskopie
aufgenommen wurden basiert der Algorithmus auf geometrischen Merkmalen, die
in einer 3D Nachbarschaft von Pixeln berechnet worden sind. Für Transmissions-
elektronenmikroskopie-Bilder mit schlechter Z-Auflösung benutzt der Algorith-
mus eine zusätzliche Regularisierung indem mehrere Male eine Pixelklassifizierung
durchgeführt wird, die Merkmale von Wahrscheinlichkeitskarten aus vorangegan-
genen Klassifizierungen mit einbezieht. Die Methode wird validiert indem die vom
Algorithmus gefundenen Synapsen mit einem Gold Standard verglichen werden,
der von menschlichen Experten erstellt worden ist. Auf Daten mit annähernd
isotroper Auflösung sind die Ergebnisse des Algorithmus mit denen menschlicher
Experten vergleichbar.
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Chapter 1

Prologue

In the recent years we have witnessed a rapid increase in the volume of data produced by
biomedical experiments. This trend has been most noticeable in the field of genomics,
where technical improvement of the sequencing technology has been following Moore’s
law [123] and now allows to produce as much sequence information in minutes as in the
first five years of the human genome project. The development of new high-throughput
instrumentation is however not limited to genomics and is now paramount in many
areas of biomedical research. From the point of view of computer science, these ad-
vancements introduce new challenges in data processing technology, requiring more and
more automation not only in the data acquisition process, but also in the experiment
data analysis.

The field of proteomics studies the totality of the proteins of an organism, including
their post-translational modifications and interactions, as well as their role in the de-
velopment of disease. The rapid advances in the instrumentation of proteomics in the
last 20 years have expanded the research goals of a single experiment from obtaining
the sequence of a few proteins to qualitatively and quantitatively assessing the complete
proteome of a simple organism [31]. Currently, most of the proteomics experiment data
is obtained by Mass Spectrometry. Even low resolution mass spectrometers can now
generate amounts of data which are very difficult to analyze manually. The cutting-
edge high resolution mass spectrometers render manual analysis infeasible and require
automated means of protein quantification and comparison. Besides simplification or
complete replacement of manual analysis techniques targeting selected proteins, auto-
mated analysis methods allow for fast exploratory scanning of huge data volumes for
interesting patterns of changes in protein expression levels. This thesis presents analysis
algorithms for two types of proteomics experiments:

• Chapter 3 introduces a method to automatically find sub-populations of different
exchange behavior in a protein sample for Hydrogen Deuterium Exchange experi-
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1 Prologue

ments. It is based on the HeXicon algorithm for deuteration distribution estimation
[90], which was modified to search specifically for bimodal distribution patterns
and on the general NITPICK peak picking procedure [124], which was tuned to
handle the case of mixtures of very correlated peptides.

• Chapter 4 develops an automated quantification approach for 16O/18O stable iso-
tope labeling experiments. It introduces two different methods for the segmenta-
tion of the data: a watershed-based algorithm for low resolution mass spectra - a
modified version of the segmentation from [90] - and a novel sparse technique for
high resolution mass spectra.

Neural circuit imaging and reconstruction can serve as a further example of a bio-
logical domain with unprecedented instrumentation advancements in the recent years.
Super-resolution methods, bypassing the diffraction limits, have been introduced in light
microscopy [130, 10, 102]. Automation of nervous tissue slice handling now allows for
imaging of very large tissue stacks by Transmission Electron Microscopy [57], while the
development of new tissue block cutting and milling techniques enabled the use of Scan-
ning Electron Microscopy and brought the native isotropic resolution of the image stacks
to 3×3×3 nanometers [34, 80]. New data analysis methods have been introduced aiming
to partially or even fully automate the processing of the acquired images. A method of
this type, offering automated detection and segmentation of synaptic contacts in serial
electron microscopy images, is presented in this thesis:

• Chapter 5 introduces a protocol for automated detection and segmentation of
asymmetric synapses in isotropic image stacks, produced by focused ion beam/scanning
electron microscope. The procedure is based on interactive machine learning and
only requires a few labeled synapses for training. The statistical learning is per-
formed on geometrical features of 3D neighborhoods of each voxel and can fully
exploit the high z-resolution of the data. On a quantitative validation dataset
the error rate of the algorithm was found to be comparable to that of the human
experts.

• The Outlook section of Chapter 5 explores several strategies for the extension of
the automated synapse detection procedure to image stacks with poor z-resolution
produced by serial section Transmission Electron Microscopy.
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Chapter 2

Introduction

2.1 Proteomics and Mass Spectrometry

Proteins play a leading role in most biological processes and serve as the main functional
unit of the cell. While the genome of an organism encodes all the information on its
potential development, it is its proteome - the ensemble of all its proteins - that deter-
mines the processes which are actually happening and their rate. Following the rapid
development of genomics and the success of the human genome project, proteomics has
emerged as the study of the proteome in its widest sense, including not only the abun-
dances or expression levels of all the organism’s proteins, but also proteins’ function,
protein-protein interactions and the study of higher-order protein complexes [152].

Proteins are built from sequences of amino acids, held together by peptide bonds. A
shorter amino acid sequence or a fragment of a protein can also be called a peptide. The
free amine group of the amino acid on one end of the peptide chain forms the protein
N-terminus, while the free carboxyl group on the other end forms the C-terminus. The
proteins get translated from messenger RNA from their N-terminus to the C-terminus
and, by convention, protein sequences are also listed from the N-terminus to the C-
terminus. Fig.2.1 shows a short peptide of just three amino acids.

In the early days of proteomics 2D gel electrophoresis played the role of the leading
experimental technique. It allowed to separate proteins in the sample by two character-
istics: charge and relative molecular mass. Sequences of the separated proteins could
then be found by applying a chemical technique known as Edman degradation [40, 39]
to their N-terminus or to the digested protein fragments [118]. Fragmenting a peptide
by Edman degradation could take hours or even days. Besides, the reaction requires a
large amount of the protein and poses high requirements to its purity [144].

7



2 Introduction

Figure 2.1: A short peptide example.

Although the popularity of mass spectrometry as an analytical technique in chemistry
and physics goes back to early 20th century, lack of efficient ionization techniques for
large molecules - such as proteins and peptides - has delayed its universal adaptation in
biology. This barrier was finally removed in the late 1980s by the pioneering works of
John Fenn [46] and Koichi Tanaka [147] on Electrospray Ionization (ESI) and Matrix-
Assisted Laser Desorption/Ionization (MALDI). Fenn and Tanaka received the Nobel
Prize in Chemistry in 2002 for ”their development of soft desorption ionisation methods
for mass spectrometric analyses of biological macromolecules” [111]. Combined with ESI
or MALDI, mass spectrometry can fragment proteins in seconds, while only requiring
femtomole amounts of sample. Furthermore, it does not require homogeneously purified
proteins and is not hindered by their post-translational modifications. These advantages
have led to rapid adoption of mass spectrometry in the field of proteomics as the primary
experimental technology [144].

Another important development in the late 1990s was the coupling of gel-independent
fractionation methods with mass spectrometry of proteins. Although liquid and gas
chromatographic columns were historically combined with mass spectrometers, it was
only in 1995, after the introduction of ESI, that Appella et al [7] demonstrated the su-
perior ability of LC/MS to process very complex protein mixtures. It is also possible to
perform in-gel separation first and then cut the gel into slices and subject each slice to
LC/MS, thus achieving an even more significant complexity reduction [133].

Finally, following the success of genome sequencing, there appeared analysis tools
that could match the mass spectrum of the peptides to their amino acid sequence [120,
44], thus completing the experiment pipeline from the complex mixture separation to
identification of proteins in the mixture. The following section gives more detail on the
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2.1 Proteomics and Mass Spectrometry

Figure 2.2: A schematic view of an LC/MS proteomics experiment.

parts of the pipeline, which play an important role in analysis of the data used in this
thesis.

2.1.1 Experimental scheme and instrumentation

Fig.2.2 shows an overview of an LC/MS proteomics experimental workflow. In the first
phase of the workflow, the protein sample is digested into peptides by a protease. One of
the most important reasons to use peptides rather than intact proteins is that the mass
spectrometer is most efficient in obtaining sequence information for fairly short peptides
(up to 20 amino acids) [144]. Top-down proteomics experiments forgo this phase and
introduce whole proteins into the mass spectrometer. This approach can be beneficial for
detection of post-translational modifications [75], however, all experiments considered
in this thesis belong to the bottom-up type and include a digestion phase. Specific or
non-specific proteases can be used depending on the required experimental conditions,
but site-specific ones are usually preferred as they do not generate overlapping peptides.
Trypsin is a popular site-specific protease, which always cleaves the protein after lysine
or arginine amino acids. Cleavage sites of pepsin, a non-specific protease, are not so easy
to predict, although it also has a preference for certain amino acids. Pepsin is frequently
used in Hydrogen-Deuterium Exchange experiments, described in Chapter 3. Trypsin
digestion is a common choice for 16O/18O labeling experiments of Chapter 4.

After digestion the peptide mixture is introduced into a liquid chromatography col-
umn. The column “re-orders” the peptides by their hydrophobicity and lets them out
into the ion source in small droplets. Each droplet only contains a sub-sample of all
the peptides, thus reducing the complexity of the mixture entering the mass spectrom-
eter. A mass spectrum is further acquired separately for each droplet. Consequently,
the overall spectrum produced in the experiment has two dimensions: chromatographic

9



2 Introduction

Figure 2.3: Top: a 2D mass spectrum, containing 3 peptides (cyan, red and green).
Bottom: a) Total Ion Chromatogram of the 2D spectrum; b) Integrated mass spectrum;
c) XIC for m/z value m4.
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2.1 Proteomics and Mass Spectrometry

Figure 2.4: A schematic view of a TOF mass spectrometer.

retention time and mass-over-charge ratio. Each peptide is present in several consecutive
droplets. The following characteristic plots can be used to study the elution behavior of
the sample: a Total Ion Chromatogram(TIC) and Extracted Ion Chromatograms(XICs)
for the individual peptides. Total Ion Chromatogram(TIC) is produced by summing up
the intensity of the overall spectrum across the mass-over-charge dimension. An Ex-
tracted Ion Chromatogram(XIC) shows how the intensity of a given mass-over-charge
value (with certain tolerance) changes over time. An example of a 2D mass spectrum
with a TIC and a XIC is given in Fig. 2.3.

At the exit from the liquid chromatography column, the droplet is vaporized and ion-
ized by a strong electric potential (ESI). Popular ionization techniques include ESI and
MALDI mentioned in the previous section, as well as surface enhanced laser desorp-
tion/ionization (SELDI) [64] and secondary ion mass spectrometry (SIMS) [89]. As all
the experiments considered in this thesis were performed with ESI ionization, we will not
describe other methods in detail. Peptides and proteins are usually ionized in positive
ionization mode and the resulting charge of a peptide depends on the number of addi-
tional protons it attracts, which, in its turn, depends on the length of the peptide and
its amino acid composition. The same peptide can be observed in multiple charge states.

The next phase of the workflow brings the ionized peptides into the mass analyzer.
The main function of the mass analyzer is to separate the peptides by their mass-over-
charge(m/z) ratio. The exact separation technique depends on the type of analyzer,
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2 Introduction

Figure 2.5: An example of an isotope envelope. The charge can be computed from the
ratio M1 −M0 = 1/charge.

where Quadrupole, Time-of-Flight and Orbitrap analyzers can be mentioned as the most
popular ones. Tandem mass spectrometers have two (or even more) mass analyzers, not
necessarily of the same type. For example, the data analyzed in Chapter 3 was generated
by a Quadrupole-TOF instrument. For illustration, a scheme of the TOF mass analyzer
is shown in Fig. 2.4. The separation of ions is based on the time they take to drift
through a field-free tube after acceleration by the electric field, which is related to m/z
of the peptides as t2 = C

√
(m/z) for constant C. An electrostatic mirror (reflectron)

can be placed at the end of the tube to force the ions to turn around and drift another
tube length, thus improving the m/z resolution of the analyzer [42].

The final part of the mass spectrometer is the detector which transforms the ion
signals into a mass spectrum. Most modern mass spectrometers use a microchannel
plate detector [37]. We will not focus on its principles in this chapter, but will consider
the problem of estimating the charge of detected peptides instead. As noted before, the
analyzer separates the peptides based on their mass-over-charge ratio, not on raw mass.
Consequently, charge estimation is a pre-requisite for the correct mass estimation. The
method relies on the high resolution of the modern mass spectrometers, which record
separate signals for the instances of the same peptide with different numbers of stable
isotopes. Since 1% of naturally occurring carbon is 13C and not 12C, each C atom of
the peptide can turn out to be 13C with 1% probability. Consequently, a sample of this
peptide will contain several instances with approximately 1 unit mass difference. In the
mass spectrum, these instances will produce peaks at the distance of 1/charge, which
are referred to as “peptide isotope envelope”. The charge can then be calculated from
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2.1 Proteomics and Mass Spectrometry

the distance between the peaks of the envelope, as shown in Fig. 2.5).

2.1.2 Protein identification

The first phase of LC/MS proteomics data analysis after the acquisition of mass spectra
usually performs peptide and protein identification. Identification is based on tandem
or MS/MS mass spectra, which are acquired in alternation with regular spectra(also
known as MS1 spectra) during the experiment. To be more precise, when a full MS1
spectrum is acquired, the most abundant ions of this spectrum are isolated and frag-
mented even further, and the mass of the fragments is measured in the second mass
analyzer. Their mass spectra are referred to as “MS/MS” spectra, and the original
ion that was fragmented is also known as “precursor ion”. Fragmentation achieved by
Laser-induced dissociation(LID), Collision-induced dissociation(CID), Electron-capture
dissociation(ECD) or Electron transfer dissociation(ETD)[42] usually breaks the back-
bone of the peptide. Only one half of single-charged peptides retains the charge and
appears in the mass spectrum. Alternatively, both halves of double and more charged
peptides can be present in the mass spectrum. Since the fragmentation process can
break the peptide between any two amino acids, its MS/MS spectrum consists of peaks
produced by fragments with one amino acid difference. “De novo” sequencing then
tries to reconstruct the peptide by finding its amino acids one by one from the mass
differences between the peaks of the MS/MS spectrum. However, this approach is not
considered very reliable, as the spectra usually contain a certain amount of noise which
can corrupt the distance calculation [144]. If the genome of the organism has already
been sequenced, peptide identification can be performed by a more robust technique of
database matching. This method is based on the observation that only very few of all
potential amino acid sequences actually occur in nature. The genome sequence of the
organism defines which proteins could potentially be present in the spectrum and thus
limits the search space for possible peptide sequences. The observed spectra are matched
with the theoretical spectra in the databases and identifications are returned along with
the “score” of the matching. If several peptides of a protein were identified with a high
score, the protein identification is considered certain. The most popular database search
tools include Mascot [120], Sequest [44] and Protein Prophet [109].

2.1.3 Protein quantification

For many types of data analysis, the necessary identification phase must be comple-
mented by an estimate of protein quantity and its changes under experimental condi-
tions. All experiments studied in this thesis refer to this type of analysis and rely on
stable isotope labeling to perform relative quantification and compare the abundance
of proteins between different samples. Chapter 3 offers an automated technique for
studying specific patterns in the changes of the peptide abundance. Chapter 4 proposes
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a method to automate quantification for 16O/18O-labeling - a specific type of stable
isotope labeling - and describes other quantification methods in detail.

2.2 Neural circuit reconstruction and Electron Microscopy

The study of the brain at the microscopic level was pioneered by Santiago Ramon y
Cajal(1852-1934), who also created the first drawings of neural structure comprised of
individual cells and their connections [138]. Ever since subsequent studies aimed to
reconstruct the wiring of the neural circuits to further comprehend their function. How-
ever, it was not until 1986 that White et al [161] presented the first full reconstruction of
a nervous system of an organism - a small roundworm Caenorhabditis elegans with 302
neurons. The reconstruction effort required 10 years of manual processing of electron
microscopy images.

Over the years of research, many imaging methods have been used to study the neu-
ron structure, starting from Golgi staining and apochromatic objectives used by Cajal
[142] to modern isotropic resolution electron microscopes. Amazing advances have re-
cently been made in fluorescent staining and light microscopy, which has now overcome
the diffraction limits and reached sub-100 nm resolution with visible light wavelength
[53, 130, 10]. The resolution of volumetric imaging was greatly improved by the in-
troduction of array tomography by Micheva and Smith in [102]. While z-resolution of
confocal microscopes is limited at approximately 700 nm, array tomography acts on ar-
rays of ultra-thin tissue sections and is thus limited only by the minimal achievable slice
thickness, which can be as low as 50 nm. The method can be multiplexed by applying
a series of different fluorescent staining techniques and imaging them separately. More-
over, if heavy metal staining is applied in the end, the slices can also be imaged by an
electron microscope. Another recent contribution of Micheva et al [101] demonstrates
how analysis of proteins present in synapses can be performed with array tomography.

However, electron microscopy remains the only technique capable of simultaneously
following all the neural processes in a dense volume of tissue [21]. The oldest and most
popular electron microscopy technique is Transmission Electron Microscopy [79], which
acquires the images by transmitting an electron beam through a thin slice of tissue and
then focusing it on a detector. Staining of tissue with heavy metals makes the neuron
membranes and ultracellular structures electron opaque and leaves intracellular and ex-
tracellular space transparent, consequently all neural processes of the tissue volume are
stained and can be studied at the same time. Volumetric imaging can be performed
by serial section Transmission Electron Microscopy (ssTEM) [157] which first cuts the
tissue into ultra-thin slices, then images the slices separately and finally combines and
registers the images into a stack. A schematic view of the ssTEM pipeline is shown
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Figure 2.6: Top: a schematic view of ssTEM experimental pipeline. Bottom left: an
example of an ssTEM image. Note the smeared membranes, pointed out by the arrows.
Bottom right: a side view of an ssTEM stack, showing residual misalignment.

in Fig. 2.6. ssTEM allows to image very large volumes of tissue (this is the technique
which was used in [161]) at very high planar resolution, reaching 3×3 nm. However, the
z resolution of the image stacks is much worse, at the level of 40-60 nm. As the electrons
are recorded after they pass through the tissue slice, areas of very non-uniform electron
opacity appear smeared. Such areas can represent, for example, neuron membranes or
other ultracellular structures extending in directions at a low angle to the slicing plane.
This disadvantage makes it more difficult to follow very thin neural processes through the
tissue during subsequent data analysis. Another important disadvantage of the ssTEM
technique is the necessity to handle ultra-thin tissue slices. Although the handling has
now been automated to a large degree [57], folds, tears and other artefacts still occur
in the slices and the imaging conditions are not completely homogeneous, which intro-
duces differences in brightness and contrast, further complicating the image processing.
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Besides, images for different slices have to be aligned by a post-processing registration
procedure, which is in itself a nontrivial problem [131, 2]. An example of an ssTEM
image and the side view of the stack are shown in Fig. 2.6.

The poor z-resolution of ssTEM image stacks can be improved by serial section trans-
mission electron tomography [98, 11], which images each slice hundreds of times, each
time tilted at a different angle. Veeraraghavan et al in [154] propose a novel recon-
struction method, which allows to limit the number of necessary tilts to five. Although
the z-resolution of the stacks does improve and reaches 5 nm, since traditional TEM
imaging is used internally, the disadvantages stemming from the necessity of ultra-thin
slice handling are still present.
These shortcomings were addressed by Denk and Horstmann [34], introducing Se-

rial Block-Face Scanning Electron Microscopy (SBFSEM). Unlike traditional ssTEM, it
does not pre-cut the volume into slices, but uses a custom-designed microtome - diamond
knife - to alternatively cut off an ultra-thin tissue slice directly in the sample chamber
of the microscope and image the remaining block of tissue by Scanning Electron Mi-
croscopy. The image is constructed by measuring backscattered electrons, which allows
to distinguish the parts of the tissue stained with heavy metals as in traditional electron
microscopy staining. SBFSEM microscopes can acquire image stacks with isotropic res-
olution reaching 25 nm.

The resolution was further improved by Knott et al in [80], introducing Focused Ion
Beam Scanning Electron Microscopy (FIB/SEM). Like SBFSEM, it is based on scanning
electron microscopy and it captures electrons backscattered from under the surface of
the tissue block. However, unlike SBFSEM it does not use a microtome to cut the slices
off, but mills the tissue with an ion beam, parallel to its surface. A schematic view
of a FIB/SEM pipeline is shown in Fig. 2.7. FIB/SEM microscopes now demonstrate
unprecedented isotropic resolution of 3 nm, which allows for detailed study of synapse
morphometry. Also, like SBFSEM microscopy, it does not suffer from slice misalignment.
The only disadvantage of this technique is the limitation of the imaging area, however
new solutions to this problem are now being proposed and stacks of tens of thousands
of pixels in each dimension can now be acquired.

Full reconstruction of the wiring diagram of a volume of neural tissue requires tracing
of all the neurons in the tissue and finding the synapses which connect them [27, 28, 68].
While most of the recent literature is devoted to automating the former task, our work,
presented in Chapter 5, introduces a method for automated detection and segmenta-
tion of synapses in FIB/SEM data and considers different approaches to extending the
method to ssTEM data.
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2.2 Neural circuit reconstruction and Electron Microscopy

Figure 2.7: Top: a schematic view of a FIB/SEM microscope. Bottom left: an example
of an FIB/SEM image. Bottom right: a side view of a FIB/SEM stack, showing its
excellent z-resolution.
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Chapter 3

Quantification of Bimodal Isotope
Peak Distributions in H/D
Exchange Mass Spectrometry

3.1 Introduction

Similarly to the genes being defined by sequences of nucleic acids, proteins are defined
by sequences of amino acids forming polypeptide chains as shown in Fig. 3.1. However,
unlike the genes, which are fixed on the double helix of the DNA, proteins fold into very
complex 3D conformations. Four levels of protein structure are usually defined [3]:

• primary structure, specified by the sequence of amino acids, which are joined by
peptide bonds into a polypeptide chain

• secondary structure of α-helices and β-sheets, determined by hydrogen bonds be-
tween amide and carbonyl groups. The same mechanism of hydrogen bonding
between base pairs holds together the double helix of the DNA.

• tertiary structure, determined mostly by the interactions of the side chains of the
amino acids. The hydrophilic side chains tend to stay on the surface of the protein,
while hydrophobic side chains prefer to fold inside the protein to be protected from
water.

• quaternary structure, joining together several polypeptide chains. Not all the
proteins consist of more than one polypeptide chain.

Correct folding of the protein is necessary for its biological function and incorrect
folding or incapability of the protein to stay in the correctly folded state is the cause of
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Figure 3.1: a) Formation of a peptide bond, holding together the primary protein struc-
ture. b) Hydrogen bonds of the secondary protein structure, shown on the example of a
parallel β-sheet.

many pathological conditions, including Alzheimer’s disease and prion-related illnesses.
However, proteins may undergo a reversible conformational change to switch between
states or perform their biological function. Identifying and measuring the rate of such
conformational changes is the subject of this chapter.

3.1.1 H/D Exchange Mass Spectrometry

Hydrogen/Deuterium exchange refers to the ability of proteins to exchange their back-
bone amide hydrogen atoms for deuterium atoms when immersed into heavy water
(D2O). The exchange probability of a given hydrogen atom depends on the position
of this atom in the 3D structure of the protein (solvent accessibility) as well as on the
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presence of hydrogen bonds [85]. A protected hydrogen, i.e. the one involved in a
hydrogen bond or hidden deep inside the protein structure, can not exchange unless a
molecular motion exposes it to the solvent or opens its hydrogen bond. Most proteins are
intrinsically dynamic under physiological conditions, continuously opening and closing
many hydrogen bonds of their secondary structure elements. This flexibility of proteins
is considered to be essential for their biological function such as enzymatic activity or
allosteric regulation [60]. The opening motions of proteins, ranging from local changes
in protein secondary structure to global unfolding events, are reflected in the rate of
exchange of each hydrogen and can thus be studied by Hydrogen/Deuterium exchange
experiments.

Three rate constants define the most popular kinetic model of the deuteration process
of native proteins in D2O [48]:

NHcl

kop−−⇀↽−−
kcl

NHop
krc−−→ ND,

where kop is the rate constant of the opening motion and kcl is the rate constant of the
closing motion. krc, the exchange rate of an exposed unprotected hydrogen, depends -
among other aspects - on the experimental conditions and on the position of the hydro-
gen in the amino acid chain and can be computed independently [85]. This model has
two limits, EX1 and EX2. EX1 refers to the situation, when krc is significantly faster
than kcl, so a protected hydrogen always exchanges once it transfers to the open state
and the exchange rate is limited by the opening rate kop. EX2 refers to the opposite case,

when kcl is much faster than krc and the exchange rate is determined as kex =
kop
kcl

krc.

Hydrogen/Deuterium exchange reaction was first studied by Kaj Ulrik Linderstrom-
Lang [65, 45], who measured protein deuteration using density gradient tubes. Cur-
rently, the majority of HDX experiments are performed either with Nuclear Magnetic
Resonance (NMR) spectroscopy or with Mass Spectrometry (MS) instruments. HDX-
NMR is based on the difference in the magnetic properties of hydrogen and deuterium
and allows to estimate the exchange rate with single amino acid resolution. It is, how-
ever, only applicable to smaller proteins of up to 30kDa [128]. HDX-MS does not suffer
from this limitation and allows for experiments on larger proteins and multi-protein com-
plexes. Another disadvantage of HDX-NMR is its high requirement for concentration
of the protein sample, compared to nano/pico mole samples needed for HDX-MS. Last
but not least, the experiment setup time is much shorter for HDX-MS, which allows for
studies of fast exchanging hydrogens [114].

HDX-MS studies the hydrogen/deuterium exchange reaction by analyzing the mass-
over-charge measurements of a sample comprised of peptides or proteins of interest,
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incubated in D2O for different time intervals (see Fig. 3.3a). An exchange of one hy-
drogen for a deuterium produces a mass shift of 1 mass unit in the peptide isotope
distribution and of 1/charge in the observed peptide spectrum, thus the deuteration
of a peptide can be deduced from the deconvolution of a peptide isotope distribution
into contributing forms. To localize fast and slow exchanging regions within a protein,
samples are digested by a protease after the exchange reaction under low pH quench
conditions. Pepsin, which is generally used for proteolytic digestion due to its activ-
ity at low pH, has low sequence specificity and generates many overlapping peptides.
For larger proteins the number of generated fragments that are then analyzed by liq-
uid chromatography mass spectrometry (LC/MS) is immense and manual data analysis
becomes very time consuming. In general, a minimum number of peptides that cover
the protein sequence sufficiently are analyzed and the rate of the exchange reaction is
estimated from the comparison of spectra, corresponding to different sample incubation
times (in D2O). Even for this limited number of peptides, manual analysis of HX-MS
spectra is very non-trivial, as the isotope envelopes of a peptide in different deuteration
states (with a different number of exchanged hydrogens) overlap significantly and form
complex peak clusters. To facilitate this step, several software packages have recently
been proposed for automatic or semi-automatic processing of HX-MS data, including
HX-Express [158], The Deuterator [116], TOF2H [110], Hydra [141], and others.

Many of these methods (among others, [115, 158, 110]) only track the changes in
the position of the center of mass of the isotope cluster and thus limit their analysis
to the estimation of the average peptide deuteration rate and discard a lot of informa-
tion contained in the spectra. Others ([117, 141, 62]) can estimate the full deuteration
distribution, i.e. the relative abundance of peptide isoforms corresponding to each pos-
sible number of incorporated deuterium atoms, but are limited to small-scale well-tuned
problems that arise, for example, when the peptide of interest is pre-selected and the
spectrum is well separated. This limitation prevents such methods from being used in a
setting, where a large-scale screening is performed first to localize potentially interesting
peptides, which are then analyzed more closely by MS/MS experiments.

Recently, another software package named HeXicon was proposed [90], which does
not suffer from any of the limitations above and computes a robust estimate of the full
deuteration distribution. It is not limited to peptides previously identified by MS/MS
and provides strong sensitivity with balanced specificity. With HeXicon, analysis of the
most common continuous labeling HDX-MS experiments (as shown in Fig. 3.3) can now
be performed in fully automated manner. However, there are other types of HDX-MS
experiments, to which HeXicon can not be applied directly. An important example of
such an experiment is described in the following section.
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Figure 3.2: Comparison of unimodal and bimodal distributions, bell-shaped peaks depict
the centers of mass of the isotope distributions (for the right side of the figure, centers
of mass of the slow and fast exchanging populations). Left: The original use case of
HeXicon - a unimodal distribution, shifting to higher m/z values as the deuteration
time increases. Right: Bimodal deuteration distribution. Note, that both unimodal
and bimodal distributions correspond to a continuous labeling experiment, unlike pulse
labeling experiment data, used in this study. In our data all samples are immersed in
D2O for the same period of time and bimodality is caused by different ATP incubation
times (see also Fig. 3.3). However, the image on the right illustrates the challenges of
bimodal deuteration distribution estimation correctly also for our experimental setup.
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3.1.2 Motivation for Analysis of Bimodal Isotope Peak Distributions

A major benefit of HDX-MS approaches is their ability to detect coexisting popula-
tions of a single protein, which exhibit different exchange behaviors. Such different
populations can arise from slow local unfolding due to intrinsic protein instability or
from induced conformational changes that are slow compared to the exchange reaction
kinetics. In HDX-MS experiments, two coexisting populations with different exchange
kinetics are characterized by a bimodal peak distribution within the isotope cluster [159]
(Fig. 3.2right). The data of such experiments, while giving important insight into the
kinetics of conformational changes, provides an even greater challenge for manual, as
well as automated, analysis methods. The current general approach for automated ex-
change rate determination is based on the detection and tracing of the center of mass
of a protein’s peptides over all incubation times for which measurements are available.
Deuteration level determination based on the center of mass reduces the deuteration
distribution for each incubation time to a single point measurement. Consequently, all
information contained in the deuteration distribution is lost. In case of a bimodal peak
distribution, when a peptide isotope distribution - as shown in Fig. 3.2 - has two possibly
overlapping centers of mass which correspond to two different exchange behaviors, this
single exchange rate estimate is not informative.

An alternative approach to bimodal distribution analysis has recently been demon-
strated in [159]. The authors sought to characterize the EX1 kinetic limit of exchange for
proteins which exhibit EX1 kinetics under physiological conditions. This limiting case
occurs when in a region of a protein the exchange rate for exposed hydrogens is higher
than the rate of closing and consequently, once the region is opened, all its hydrogens
exchange before the protein re-folds to protect them again. As only some regions in a
protein participate in these cooperative exchange events, peptides resulting from peptic
digestion will likely contain both EX2 and EX1 exchanging residues and, depending on
the size of the EX1 region, their isotope clusters might overlap substantially. Width
of the isotope distribution was proposed by the authors as an estimate of the half-life
of the conformational change and the number of hydrogens involved. The width itself
was estimated either directly from the shape of empirical isotope envelopes or from the
deuteration distributions computed by the DEX software. [62]. As the DEX software is
based on Fourier deconvolution of an observed isotope cluster into a native isotope clus-
ter and deuteration-induced changes, it relies on the sequence of a peptide being known
to compute the native distribution and can thus only be applied to peptides identified
by MS/MS.

With the introduction of HeXicon, we obtained a method to recover isotope distribu-
tions in a fully automated manner, also for the peptides, not identified by MS/MS. In
this study we introduced several modifications to HeXicon to specifically search a large

24



3.2 Methods

Figure 3.3: a) Continuous labeling experiment - the original use case of HeXicon. b)
Pulse labeling combined with ATP incubation as used in this study.

HX-MS dataset for peptides with bimodal distribution patterns and analyzed the kinet-
ics of the conformational changes based on HeXicon results. The method was tested
on the LC/MS measurements of pulse-labeling HX-MS experiment with Escherichia coli
HtpG, a protein that belongs to the family of 90 kDa heat shock proteins [51]. This work
has been performed in collaboration with the group of Dr. Mayer (ZMBH, Heidelberg).

3.2 Methods

3.2.1 Overview of the HeXicon software

The workflow of the HeXicon procedure starts by determining which peptides could
possibly be observed in the spectrum from MS/MS results and in silico digestion of
the protein. These peptides candidates are then used as potential components in the
mixture model, fit by an L1-regularized regression by application of the NITPICK peak
picking algorithm [124]. Before peak picking, the two-dimensional LC/MS spectrum
is segmented by a watershed-based algorithm. Segmented parts of the spectrum then
contain only the signal of one peptide in all its deuterated forms and possibly other pep-
tides which overlap with it. After Nitpick finds the peaks in the spectra corresponding
to different D2O sample incubation times, peaks which belong to the same peptide are
matched across the spectra by Euclidean distance in the two-dimensional space of reten-
tion time and m/z. The deuteration distribution of these peptides is then found from
the quantitative results of Nitpick. Finally, the protein sequence coverage is improved
by also considering the peak groups, for which no MS/MS results exist. This greatly
improves the sensitivity of the algorithm, but the specificity can then suffer from the
false positive detections. To avoid this, a Random Forest classifier [18] is trained on
manually labeled peptide examples to produce a quality score based on several peptide
features (such as the variance of the deuteration distribution).
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NITPICK peak picker

The core of HeXicon is the NITPICK [124] peak picking: a non-greedy algorithm for
fitting of mixture models to spectra. Given a set of stoichiometries of peptides that could
potentially be found in a given spectrum, NITPICK can deconvolve complex overlapping
isotope distributions and find a sparse subset of the peptides that best explain this
spectrum. Peptide stoichiometries can be built based on MS/MS or protein sequence
information, or, in case neither is available for a given data point, approximated by
the fractional averagine method. Spectra, corresponding to the stoichiometries, are
generated from stable isotope distribution tables and later serve as potential components
of the mixture model. Internally, NITPICK uses non-negative lasso regression [148],
which can be computed in a very efficient manner by the least angle regression algorithm
LARS [41]. Following the notation of [124], the optimization problem of lasso regression
for the case of mass spectra fitting can be formulated as

ĉ = argmin
c

||s− Φc||,

s.t.
K∑
i=1

ci 6 t, ci > 0

or in the equivalent Lagrangian form as

ĉ = argmin
c

||s− Φc||+ λ

K∑
i=1

|ci|,

where s is the observed spectrum, Φ is the matrix of model spectra and ci are the
unknown non-negative model concentration values. Non-negative t or λ parameters
control the level of regularization.

The LARS algorithm iteratively adds models to the active set, by, at each iteration,
finding the model which is currently the most correlated with the residual, adding it
to the active set and moving the coefficients of the active set models in the direction,
defined by their joint least squares coefficient of the current residual on the active set
until another model has as much correlation. To compute lasso solutions, the algorithm
is modified to drop a model from the active set when its coefficient hits zero. Unless
an early termination criterion is used, the algorithm returns a set of solutions for each
value of λ for which the active set changes, up to the full least squares solution, and
the most suitable value of λ then has to be selected by, for example, Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC) or generalized cross validation.
To avoid computing additional solutions when the models in the active set explain the
data reasonably well, Nitpick implements an early termination criterion based on the
correlation of the new variable, entering the active set at each iteration. If the gain
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in correlation by including a new model falls below a pre-defined threshold, the LARS
iterations are stopped and the BIC is computed for each value of λ as

BIC(λ) =
1

σ2
||s− ΦA(λ)c

nnlsq
A(λ) ||

2 + df(λ)log(N),

where A(λ) refers to the active set of models at a given value of λ, cnnlsqA(λ) is the non-

negative least squares solution and df(λ) can be estimated by generalized degrees of
freedom. If for some value of λ the BIC reaches a deep enough minimum, the active set
corresponding to this λ is returned. If none of the minima were found to be deep enough,
the last active set corresponding to the largest value of λ is returned. The required depth
of the minimum is a user-defined parameter, which was set to five in the implementation
we used.

3.2.2 Tuning HeXicon to search for bimodal distributions

Improvement of the early termination criterion

While NITPICK has been thoroughly tested on synthetic and real-world mass spectrom-
etry proteomics data, deconvolving the bimodal isotope distributions of HX/MS peptides
of this study turned out to be especially challenging for it, as the true model mixture
contains a lot of very correlated models. For many such peptides the early termination
criterion stopped the LARS iterations too soon and thus prevented the algorithm from
including all relevant peptide isoforms into the active set. We have therefore modified
the behavior of the termination criterion in case of a very small gain in correlation to
“pause” the LARS iterations and compute the BIC trace. If the BIC minimum is not
deep enough, the algorithm resumes the LARS iterations until the true BIC minimum
is found. This change was beneficial for all use cases of NITPICK and is now part of its
standard distribution. An example of the subsequent improvement in the deuteration
distribution estimation can be seen on Fig. 3.4

Other modifications

HeXicon was originally developed for continuous-labeling time course experiments (in-
dividual samples differ by D2O incubation time) as shown in Fig. 3.3 and accordingly
assumes monotonic increase of deuteron incorporation. However, in the studies of in-
duced conformational change, the deuteration can decrease with the incubation in the
change-inducing reagent, if the protein transfers to a more protected state. To preserve
the assumption of HeXicon also in this case, one could process the samples in a pair-
wise manner such that samples at different incubation times are only compared with
the reference (non-deuterated) sample. The resulting deuteration distributions for all
time points could be combined for each peptide identified by MS/MS or found by the
coverage extension procedure. An alternative approach is to introduce the samples into
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Figure 3.4: a) Spectra of the peptide at residues 191-206 at different ATP incubation
times. b) Deuteration distributions estimated by HeXicon. Top: with the original
NITPICK implementation. Bottom: with the modified early stopping criterion. Note
the improvement in the estimation of the contribution of the lower abundance isoforms.

HeXicon with the deuteration time parameter modified in such a way, that the sequence
of time labels is reversed while keeping the time interval constant. In this approach the
deuteron incorporation behavior complies with the assumption of HeXicon. The first
method is more general as it does not rely on any assumptions about the protein change
in the course of the experiment, be it monotonous decrease or increase in deuteration.
The second method is more robust for peptides with other high intensity peptides in the
vicinity, where peaks found in other samples could help correct the peptide assignment.

Another modification was concerned with the peptide quality score estimation. The
final processing step of HeXicon ranks the peptides found in the previous steps with
the help of a Random Forest classifier [18]. However, some of the features used for
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classification, such as, for example, the variance of the deuteration distribution, are
not applicable for the bimodal distribution search. Moreover, since in this limited case
we are only interested in the peptides whose distributions follow a certain pattern, a
ranking of all found peptides is not needed and can be replaced by a post-processing
filtering procedure, tuned to the bimodal pattern of interest. The procedure checks the
deuteration distributions of peptides across all samples. It selects the peptides, for which
at least for some samples a “2 (local) maxima/2-3 minima” or “1 maximum/2 minima”
pattern is observed and several such samples share a maximum position, while at least
one other has a different maximum. Sensitivity of the procedure is controlled by the
minimal number of samples with the same maximum, after which the distribution is
considered bimodal.

3.3 Experiments

The bimodal distribution search was tested on a dataset of LC/MS spectra, produced
by pulse-labeling HX-MS experiments with HtpG. Upon addition of Adenosine Triphos-
phate (ATP) HtpG undergoes a two-step conformational change into a highly protected
state. The first step with a half-life of 3 ms occurs too fast for HX-MS experiments
as performed in this study (compare [129]), but the second step with a half-life of ap-
proximately 120 s is accessible to HX analysis [51]. Manual data analysis was restricted
to peptides previously identified by an MS/MS experiment and MASCOT search and
yielded 7 peptides with a bimodal distribution. The aim of this study was to screen
the entire dataset for additional peptides with a bimodal isotope distribution and to
specifically identify these peptides by subsequent MS/MS analysis.

3.3.1 Data acquisition

Fig. 3.3b shows the experimental scheme. ATP was added to HtpG and the mixture
was pre-incubated for 0 to 300 s at 30◦C before the reaction was diluted into D2O and
incubated for exactly 10 s for pulse-labeling of the protein. Subsequently, the reaction
was quenched by the addition of a low-pH-phosphate buffer and analyzed by LC/MS as
described previously [127, 126]. As binding of ATP induces the transition of HtpG from
the relaxed state with high flexibility and rapid deuteron incorporation to the tensed
state with low flexibility and slow deuteron incorporation, isotope peak distributions
migrate to lower m/z values with increasing pre-incubation time in the presence of ATP
(Fig. 3.7:left and Fig. 3.8:left). All data used in this study was collected on a QSTAR
Pulsar mass spectrometer. The analyst .wiff files were converted to mzXML format by
mzWiff tool [76] and no further pre-processing such as smoothing was applied.
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Figure 3.5: Left: original Total Ion Counts (TICs) of 2 spectra. Right: aligned TICs.

3.3.2 Retention time alignment

HeXicon does not have a built-in LC/MS alignment module and often fails to establish
the correct inter-sample correspondences when the raw data exhibit severe retention
time offsets. This problem occurs frequently in LC/MS based proteomics and numerous
algorithms have been proposed in the last years to bring the spectra into alignment.
These algorithms can be divided into two classes: the first one aligns ion chromatograms
([122, 153, 29]), and the second one aligns the peak lists after peak picking ([87, 78]).
Employing an algorithm of the second type would require modification of the core of the
HeXicon algorithm, which we preferred to avoid.

Between the algorithms of the first type, we chose Parametric TimeWarping (PTW)[43],
a popular algorithm for chromatogram alignment. It belongs to the family of time warp-
ing based alignment techniques, which also includes dynamic time warping and corre-
lation optimized warping. An improvement of the original PTW algorithm proposed in
[14] provides methods for alignment of Total Ion Chromatograms, global alignment of
complete LC/MS spectra (global warping) and global alignment followed by alignment
of individual mass traces. Alignment of TICs is the simplest of the three methods,
suited for well-behaved data. The other two techniques, which take into account the full
LC/MS information, have to be applied if data is acquired in several batches or if the
chromatographic columns have to be changed during the experiment. Judging by visual
inspection and by the quality of HeXicon results, TIC alignment was sufficient in our
case. We aligned the total ion chromatograms of all samples to the reference ATP-free
sample.

PTW explicitly models the time warping function by a polynomial, in our case by a
parabola. In more detail, if a spectrum S(ti) is aligned to a reference spectrum R(ti),
the time warping function is defined as such a w(t) that S(w(ti)) matches R(ti). w(t) is
then modeled as w(t) =

∑K
k=0 akt

k. The optimization criterion is formulated as weighted
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Figure 3.6: Two examples of deuteration distribution with Gaussian peaks.

cross correlation of the spectra [33]:

WCC =
RTWS√

RTWR
√
STWS

,

where W is a banded matrix, representing a triangular weight function. The diagonal
elements of W are equal to one and the non-diagonal elements are decreasing linearly
as the distance from the diagonal increases. After a certain cut-off distance from the
diagonal, the non-diagonal elements are set to zero. The denominator of the fraction
makes the WCC value independent of the scale of the data. The WCC criterion,
introduced in [14], is an improvement of the RMS criterion used by [43], which is
defined as follows:

RMS =

√∑
i

[R(ti)− S(w(ti))]2

N

Unlike RMS, which assigns the maximum penalty if the patterns in two spectra do not
overlap regardless of the distance between them, WCC penalizes small shifts between
the patterns in the spectra less than large shifts and is thus more precise and easier to
optimize.

Publicly available R package ptw was used on total ion chromotograms (TICs), ex-
tracted from the raw data by the Analyst software suite (see Fig. 3.5 for an example
of the alignment results). The retention time values of the raw data in mzXML format
were updated before being processed by HeXicon. In principle, any algorithm for sample
alignment can be used, and in future we hope to be able to provide an alignment module
directly in HeXicon [156].
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Figure 3.7: An example of a non-Gaussian deuteration distribution caused by two co-
eluting peptides.

3.4 Results

3.4.1 Proof of principle

To test the performance of the modified HeXicon algorithm we first restricted the search
to m/z values known to represent peptides with bimodal isotope distributions. All seven
previously known peptides were identified. Four of these show deuteration distributions
that fit well to two Gaussian peaks with the maximum of the earlier time points (red
colors) at higher deuteron numbers than the maximum of later time points (blue colors)
as expected, see Fig. 3.6. Interestingly, in some cases the distribution of the hydrogen
exchange in the absence of ATP (0 s time point) is shifted to higher deuteron numbers
as compared to the distribution of the 10 s time point, indicating the fast phase of the
conformational change that cannot be analyzed with our HX-MS setup (Fig. 3.7:right).
For three peptides the deuteration distribution is not Gaussian shaped but a separation
between earlier and later time points is visible (Fig. 3.7). Tuning HeXicon parameters
did not lead to more regular shaped deuteration distributions for these peptides, but
the separation between fast and slow exchange behaviors was present for all HeXicon
parameter settings. Close inspection of the spectra for which HeXicon did not yield
clearly separate Gaussian distributions reveals that these spectra are either of low in-
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Figure 3.8: An example of a non-Gaussian deuteration distribution caused by low signal-
to-noise ratio.

Figure 3.9: Deuteration distribution of the same peptide at different charges

tensity with poor signal to noise ratios (Fig. 3.8) or contain an equally spaced isotope
cluster originating from a different peptide which disturbed the determination of the
deuteration distribution (Fig. 3.7). These isotope clusters were clearly separated for the
undeuterated peptides but merged after deuteration.
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Figure 3.10: The amino acid sequence of E. coli HtpG is shown with the secondary
structure elements as found in the crystal structure of nucleotide-free HtpG (PDB entry
code 2IOQ; [139]) above the sequence (dashed lines are not resolved in the crystal
structure). The dashed and dotted lines below the sequence indicate the peptic peptides
that were analyzed previously [12]. Dotted lines indicate previously known peptides
with bimodal distribution. Black solid lines indicate the additional peptides found in
this study by HeXicon and verified manually to be correct. All peptides were identified
by tandem mass spectrometry.
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3.4.2 Analysis of a full dataset

After verifying that the adapted HeXicon was able to detect bimodal isotope distribu-
tions we applied the program to the entire dataset with very sensitive post-processing
filter settings to avoid missing interesting peptides. The filter produced a plot for a
peptide, if in more than two samples the deuteration distributions had the same maxi-
mum and at least one more had a different maximum. It only considered distributions
following the pattern of “2 (local) maxima/2-3 minima” or “1 maximum/2 minima”.
Such a sensitive setting led to a certain amount of false positive results, which were
discarded by manual inspection of the produced distribution plots. Examples of the
inspected plots can be seen in the figures of this section (Fig. 3.6 and similar). HeXicon
identified 27 additional, previously unidentified peptides with deuteration distribution
that suggests two populations with distinct exchange kinetics. Nine of these peptides
were verified to exhibit ATP-pre-incubation-time-dependent bimodal isotope distribu-
tions. For eight of these peptides the identity was determined by a follow-up MS/MS
analysis with their monoisotopic masses in the inclusion list (Fig. 3.10). Three of the
eight peptides were instances of known species at previously unobserved charge states.
As expected, the deuteration distributions determined by HeXicon for the same peptide
sequence at different charge states are highly similar (compare the two plots on Fig. 3.9).
The remaining five peptides overlap with the previously identified peptides (Fig. 3.10).
In addition to our HeXicon analysis, we analyzed the width of the isotope peak distribu-
tion as proposed by Weis and coauthors using the HX-Express software tool [5, 9]. For
most peptides the half-lives determined by fitting the HeXicon data coincide reasonably
well with those estimated by the width of the isotope distributions.

3.4.3 New insight into HtpG protein dynamics

One of the new bimodal peptides found by HeXicon represented a rather short sub-
sequence (residues 13-18) of a known longer peptide (residues 1-19) (Fig. 3.11). Iden-
tifying this peptide allowed our collaborators from the group of Dr. Matthias Mayer
to better understand the mechanism of N-terminal dimerization of HtpG: ”This pep-
tide encompasses a region in HtpG that forms a small α-helix in the homologous yeast
Hsp82, which was crystallized in complex with AMPPNP and the cochaperone Sba1.
We previously assumed that this α-helix becomes stabilized in the Hsp82 structure upon
docking of the two N-terminal domains and by interaction with the cochaperone Sba1.
The data for the HtpG peptide identified by HeXicon clearly show that most of the
stabilization occurs in the dead time of the experiment, which is considerably before
N-terminal docking as determined previously by fluorescence measurements [51]. The
stabilization of this α-helix may even be a prerequisite for the docking. This will be
explored in a future mutagenesis study.”[84]
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Figure 3.11: Previously unknown peptide with bimodal isotope distribution found by
HeXicon

3.5 Discussion

3.5.1 Analysis of false positive candidates

Some of the peptides suggested by HeXicon do not really exhibit a bimodal exchange
behavior. The reason for these false positive results is in most cases a second peptide
with a close monoisotopic mass co-eluting with the peptide of interest. For example, as
shown in Fig. 3.12a, 3.12b, the isotope profiles of peptides at m/z 526.30 and 528.34
overlap for D2O and ATP incubated samples, misleading HeXicon to incorrectly assign
all observed peaks to the same peptide. The seemingly bimodal distribution is then
just a sum of the deuteration distributions of two individual peptides. Another exam-
ple of this behavior is demonstrated in Fig. 3.12c, 3.12d, where a co-eluting peptide
of a lower mass interferes with the isotope distribution of the peptide at m/z 960.00,
and again causes HeXicon to find a false positive bimodal isotope distribution. The
underlying cause for such incorrect assignments is the fairly large m/z error tolerance
of 0.1 Da used by HeXicon when establishing correspondences between the peptides in
the reference sample and their possible deuterated forms in other samples. Based on our
experience with other, non-HX experiments, we anticipate that this will be considerably
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less of a problem with experiments that are performed on a higher resolution instrument.
As the measured signal peaks become narrower, the isotope distributions of neighbor-
ing peptides will no longer overlap, unless it’s a perfect overlap of the same peptide
in different deuteration states. We could then lower the tolerance for m/z deviations
between the supposed signals from the same peptide across different samples (currently,
a difference of up to 0.1Da is considered acceptable) and thus improve the accuracy
of the peptide matching across the samples. Other examples for false-positive assign-
ments of bimodal exchange behaviors could result from carry-over contaminations. Such
samples would exhibit bimodal isotope distribution with seemingly unexhanged species
appearing. Since in these cases the bimodal distributions are real, the problem cannot
be solved by mass spectrometer or analysis software but only by improving the HPLC
conditions, for example by introducing a run without injection in between two analysis
runs. HeXicon could help to detect such problems since the amplitude of the appearing
unexchanged fraction should not depend on the incubation times or conditions.
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Figure 3.12: Peptides, falsely indicated by HeXicon as bimodal
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Chapter 4

Automated Quantification of
16O/18O-labeled LC/MS Data

4.1 Introduction

Many biological problems, such as, for example, biomarker discovery, require a means
to quantitatively compare protein expression levels across different samples. Mass spec-
trometry is not an intrinsically quantitative method, as the amplitude of a peptide’s
signal in the mass spectrometer depends on its ionization, and ionization efficiency varies
a lot between peptides. Consequently, comparisons have to be relative and each peptide
can only be compared with the same peptide in other samples. When absolute quantifi-
cation is required, it is performed against a labeled internal standard [77].

Peptide relative quantification methods can be divided into methods based on stable
isotope labeling and label-free approaches. When stable isotope labeling is used, tags
of stable isotopes of different known masses are attached to all the peptides of samples
to be compared. Samples are then pooled and processed during a single LC/MS run.
Signals from different samples in the resulting spectrum can be distinguished by the
mass shift induced by the tag. When label-free quantification is used, an LC/MS spec-
trum is acquired separately for each sample and the protein signals across samples are
compared based either on the ion chromatograms of their peptides or by simply counting
the number of spectra in which peptides of this protein were identified (spectral count-
ing). Label-free methods are cheaper and more scalable; they do not require expertise at
labeling techniques and allow for comparison of more than 8 samples at the same time.
However, they can only handle simple biochemical workflows and are not as accurate as
stable isotope labeling quantification, since comparisons are done across different runs
with different systematic errors [9].
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Element Symbol Mass Natural abundance

Hydrogen 1H 1.00783 99.99
2H 2.01410 0.01

Carbon 12C 12.0000 98.91
13C 13.0034 1.09

Nitrogen 14N 14.0031 99.6
15N 15.0001 0.4

Oxygen 16O 15.9949 99.76
17O 16.9991 0.04
18O 17.9992 0.2

Sulfur 32S 31.9721 95.02
33S 32.9715 0.76
34S 33.9676 4.22

Table 4.1: Mass of atoms and natural abundances of the stable isotopes of hydrogen,
carbon, nitrogen, oxygen and sulfur [42]

From the data analysis side, label-free experiments can use any software for LC/MS
data quantification, while stable isotope labeling experiments may require custom algo-
rithms for deconvolution of the signals of differently labeled peptides, in case the induced
mass shift is not large enough to separate their isotope clusters. Of all the popular stable
isotope labeling methods, labeling with 2H, described in Chapter3 produces the smallest
mass shift of just one unit. 16O/18O labeling, the subject of this chapter, produces a
mass shift of 2-4 mass units, depending on the label incorporation. SILAC(Stable Iso-
tope Labeling with Amino Acids in Cell Culture), another popular labeling technique,
shifts by 6 mass units [113], while the very first labeling method, ICAT(Isotope Coded
Affinity Tag) makes the labeled peptides different by 8 mass units, in newer versions by
9 [54, 108].

The shift of 2-4 mass units, introduced by a heavy oxygen label, is not enough to sep-
arate the isotope distributions of the “light”(unlabeled) and “heavy”(labeled) peptides.
In the previous chapter we described a method for quantitative analysis of HDX exper-
iments. In this chapter, we will introduce an algorithm for automated quantification of
16O/18O labeling experiments in low and high resolution.

4.1.1 16O/18O labeling

Isotopic 16O/18O labeling is a popular differential proteomics technique, which allows
for relative quantification of peptides and proteins between two biological samples [163].
It is based on the ability of peptides to exchange the 16O atoms on their C-terminals for
18O atoms when immersed in H18

2 O. Label introduction is performed either during pro-
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Figure 4.1: A schematic view of a spectrum, generated by a peptide of charge 1, with
the unlabeled, single and double labeled forms present.

teolytic digestion or as an additional step after digestion by incubation with the protease
[9]. After one or both C-terminal oxygens exchange, the mass spectrum of the labeled
peptide is shifted by 2 or 4 mass units. After one of the samples is labeled, it is combined
with the unlabeled sample and subjected to LC/MS. Spectrum of the combined sample
is formed by the overlaps of the isotope distributions of labeled and unlabeled peptides,
as shown in Fig. 4.1. Deconvolution of the overlap has to be performed before quantita-
tive comparison can be made, and, once labeled/unlabeled peptide abundance ratios are
known for multiple peptides, conclusions on the differences in protein expression levels
can be drawn.

The main advantages of 18O labeling include its universality, simplicity of the label-
ing procedure and low reagent cost, uniform labeling of all peptides (at least one 18O
atom is always incorporated) and low requirements to the sample size [47, 8]. Of these
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4 Automated Quantification of 16O/18O-labeled LC/MS Data

properties, universality is arguably the most important. Unlike another popular rela-
tive quantification method, Stable Isotope Labeling with Amino Acids in Cell Culture
(SILAC)[113], 18O labeling is not limited to cells and can be applied to any kind of
proteins with all possible post-translational modifications. In conditions where SILAC
is applicable (in vivo label incorporation), the precision of the two methods has been
shown to be comparable [88]. The experimental protocol is constantly being improved
and issues like back-exchange or incomplete label incorporation, which caused a lot of
problems in the early days of 18O labeling, are now far less severe ([162, 104, 121] to
mention just a few). The most important disadvantage of the technique is the small
mass shift between labeled and unlabeled peptides, which calls for careful deconvolution
of the isotope distribution of each peptide and severely complicates manual analysis. In
the recent years, several solutions to this problem have been proposed, ranging from
specially designed peak picking algorithms to generic full scale software suites, however,
to the best of our knowledge, none of them except [165] gained a wide-spread popularity.

Johnson et al in [69] perform relative quantification based on accurate mass tags
(AMTs) of peptides generated by the FT-ICR mass spectrometer. This approach al-
lows them to forgo the exact peptide identification by tandem mass spectrometry and
fit the sub-spectrum corresponding to each interesting peptide using averagine models.
[103] proposes a method for 18O labeling experiments using MALDI-MS with internal
standards. The isotope distributions of 18O-labeled peptides are estimated during a sep-
arate MS run and then used in a multivariate regression model along with native peptide
isotope distributions. [38] builds on the work of [69] and [103] and uses multivariate re-
gression with averagine models. This approach allows the authors to avoid performing a
separate MS run with the labeled sample. However, although the multivariate regression
as applied to 18O labeling quantification is very well developed in [38] and includes cor-
rections for back-exchange and impurity of the 18O-water, the method works directly on
the sub-spectrum corresponding to labeled/unlabeled peptide pair. This sub-spectrum,
free of overlaps with other peptides, is supposed to be acquired by other means. Ander-
sen et al in [4] also start from a peptide spectrum and use multivariate regression to fit
the theoretical models for labeled and unlabeled peptide forms. However, to account for
possible labeling inefficiency, they don’t use averagine models for the labeled peaks, but
run a label-swap experiment and estimate it directly.

Halligan et al in [55] propose a complete framework for the analysis of 16O/18O la-
beling experiments, performed on ion trap mass spectrometers. Zoom scans of peptides,
identified by Sequest[44] are used for quantification. Sadygov et al [132] propose another
software suite, MassXplorer, which is particularly well suited to low resolution ion trap
instruments, but is not suitable for high resolution ion traps, such as Orbitrap. Both
methods are limited to ion trap instruments.
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For high-resolution data, [94] develops a quantification procedure, based on grouping
the centroided peak lists and model fitting by linear regression via the non-negative least
squares method. The regression is performed for each possible alignment of the theoreti-
cal distribution to the experimentally observed peaks. This procedure is only applicable
to high-resolution data, but of all the methods reviewed here, it is the closest in spirit
to our work and also to the work of Cox and Mann [32] on SILAC data quantification.
A more detailed comparison can be found in the Discussion section.

msInspect[12] and Xpress[56] provide full scale frameworks for stable isotope label-
ing quantification. However, they base their quantification only on the 16O and 18O2

peaks, ignoring the possible incomplete label incorporation, which can appear as an 18O1

peak (see also Fig. 4.1. Ye et al [164] demonstrated, by running an experiment with
18O-labeled sample only, that incomplete label incorporation can reach 45%, with an
average of 21% for the BSA protein. Consequently, ignoring the 18O1 peak can severely
underestimate the abundance of the labeled sample. [164] in turn propose to use trape-
zoid rule integration over retention time and Poisson distribution to model the labeled
and unlabeled peaks in the isotope envelope of the identified peptides. This method
also relies on the peptide spectra being extracted in advance and is not applicable to
non-identified peptides.

All the methods described above are performing the quantification based on MS1
scans. A different approach is taken by [165, 160]. Since the label in the 18O labeling
procedure attaches itself on the C-terminal of peptides, it produces a mass shift not
only in the MS1 spectrum, but also in all the y-ions of the MS/MS scan of the labeled
peptide. MS/MS-based quantification can be more precise than the methods based on
the full scan, as MS/MS spectra have a better signal-to-noise ratio. However, it is obvi-
ously only applicable to identified peptides and can not be used in exploratory analysis
or in case when the peptides of interest are of low abundance (caused, by example, by a
post-translational modification) and of unknown masses.

To summarize, to the best of our knowledge, there are currently no solutions available,
which would take a raw 2D spectrum, either in high or in low resolution, and output
labeled/unlabeled abundance ratios for both identified and non-identified peptides. For
high-resolution data, the method of [94] provides a workflow of this type, however,
as its quantification is based on non-negative least squares, it would not be able to
handle peptide signal overlaps and noise in low resolution data. We have observed in
Chapter3 that peak picking based on regularized regression techniques can successfully
handle deconvolution of very complex signal mixtures of HDX-MS data. The goal of the
project of this chapter was to create a framework, which could first localize the peptide
signals in both low and high resolution data, then compute the abundances of labeled
and unlabeled peptides by regularized regression and return the corresponding ratios.
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The project has been realized in collaboration with the groups of Prof.Dr. Lehmann
(DKFZ, Heidelberg) and Prof.Dr. Steen (Harvard Medical School, Children’s Hospital
Boston).

4.2 Methods

As the NITPICK peak picker successfully performed deconvolution of very complex
mixtures in the data of Chapter 3, we decided to also use it for the quantification of
overlapping spectra of 16O/18O experiments. The main difference between the HDX
data and 16O/18O data from the peak picking point of view is that while in HDX data
more peptide isoforms are mixed, the spectra are acquired for several D2O incubation
times, as well as for the reference sample, incubated in H2O only. Comparison of peak
picking results across spectra makes it more robust, as the deuterium incorporation is
continuous and thus the decisions of the peak picker about the presence or absence of
certain isoforms can be supported or overruled by the peaks found in the neighboring
spectra. In contrast, 16O/18O labeling experiments only acquire one mixed spectrum for
both the labeled and unlabeled sample.

An enormous simplification of the peak picking problem can be achieved by first
segmenting the LC/MS spectrum into regions, corresponding to just a few overlapping
peptide isotope distributions. The peak picker is then applied to the spectrum of the
region, summed across its retention time domain. The retention time profile of each
component can be reconstructed by an additional linear regression step. Segmentation
greatly improves the signal-to-noise ratio of the data and, by limiting the range of the
problem, makes the regression much faster and requires far less memory. In the following
sections we first describe the segmentation method we applied to low resolution data of
this and previous chapters and then another, sparse segmentation method which we
developed specifically for the modern data of very high resolution.

4.2.1 Segmentation

Low resolution

For low resolution data, we followed the method of [90]. In this approach the two-
dimensional LC/MS spectrum is treated as an image (with appropriate binning) and
fast image segmentation algorithms are used to break it up into smaller pieces. The
signal is first smoothed by convolution with a Gaussian kernel with variance selected so,
that peaks at a distance of less than 1 Dalton don’t get separated. Then, a difference of
Gaussians filter is used to find blobs in the blurred image. These blobs serve as seeds for
the third algorithm step, which performs seeded watershed segmentation [1]. Finally,
the signal in the segmented regions is integrated over the retention time dimension and
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NITPICK can be applied on the integrated spectrum.

We introduced an additional pre-processing step to deal with the problem of non-
equidistant binning in the retention time dimension. In the Q-TOF mass spectrometer,
acquisition of MS1 spectra is interrupted for MS/MS spectra acquisition and conse-
quently the retention time values of individual MS1 spectra are not equispaced. Since
the watershed segmentation treats the spectrum as an image, i.e. it assumes equidistant
binning in both dimensions, the segmentation results can be flawed. In our modification,
we first denoised the image by removing all signals with intensity less than 2, as well
as all isolated signals, which did not have any neighbors in a 1Da range in m/z or in
any of the neighboring scans in retention time. Then we re-binned the spectrum to 1
scan/second rate before the segmentation, using cubic spline interpolation for the miss-
ing values. The interpolated spectra were only used for segmentation, Lasso regression
was performed on the original data values. The improvement in the segmentation results
can be seen in Fig. 4.2.

High resolution data

The recent introduction of Orbitrap mass spectrometers [93, 63] brought a fundamental
change to mass spectrometry-based proteomics, both on the biological and on the data
analysis side [136]. The dynamic range of the instrument is much better than that of
the Q-TOF. Orbitrap can take up to 6 MS/MS scans between regular MS1 scans, which
brings a higher protein identification rate. In particular for peak picking, this trans-
lates into a much high number of exact theoretical peptide models, which makes the
fitting more precise. But the most important improvement of the Orbitrap compared to
time-of-flight instruments lies in its resolving power, which reaches 1,000,000 (normally
used at 60,000), compared to 5,000-7,000 for Q-TOF. The MS1 spectra, produced at
such resolution, have almost no overlaps, except the “perfect” ones which are produced
by different isoforms of the same peptide 4.3. As we have observed in Chapter3 and
in the low resolution part of this study, the NITPICK peak picker is very well suited
for the deconvolution of such perfect overlaps, especially if the LC/MS spectrum is first
segmented into parts of lower complexity.

However, the algorithm described above for low resolution spectra is not applicable
for high resolution data. While the watershed-based segmentation works sufficiently
well in low-resolution, the high-resolution data of the Orbitrap mass spectrometer can
no longer be treated as an image and requires a sparse approach. The main argument
for the necessity of sparse treatment of the data is the prohibitively large size of the
image, which would result from a peak-shape preserving binning, such as the one used
in the previous section. Also, this segmentation method does not make full use of such
properties of high resolution data as the absence of peak overlaps. These considerations
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Figure 4.2: Segmentation of the low resolution data. Top: a fragment of the original
spectrum. Middle: results of applying [90] method directly. Bottom: Applying [90]
method after additional spectrum de-noising, re-binning and interpolation.
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Figure 4.3: An example of the Orbitrap-produced spectrum, showing the advantages of
its high resolution. The peaks, marked by green circles, belong to one peptide of charge
two, the ones, marked by red circles, do a different peptide of charge one. These two
peak groups are very well separated at Orbitrap resolution.
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Figure 4.4: Workflow of the sparse segmentation algorithm.

led us to develop a new, sparse algorithm for the segmentation of high-resolution LC/MS
data.

The algorithm is based on three assumptions about the shape of the peptide signal at
high resolution:

• Peaks corresponding to the same peptide are aligned along the retention time
dimension.

• Along m/z dimension, distances between the peaks of the same peptide are of the
form 1/n, 1 ≤ n ≤ max(charge).

• There is no significant overlap in m/z between the peaks, corresponding to different
peptides.

A simplified algorithm scheme is presented in Fig. 4.4. Before describing each step of
the algorithm in more detail, we need to introduce the data structure, which serves as
the basis for all our spectrum operations.

kd-Trees

A kd-tree (k-dimensional tree) is a space partitioning data structure, which divides the
full multi-dimensional space of data into regions with approximately the same number
of points [13]. When the tree is fully grown, the end nodes only contain one point each
and the regions at the intermediate levels of the tree are of approximately the same size.
Assuming that all the data points are present at the time of tree construction, the tree
growing algorithm can be formulated as follows:

1. Put all the points into the root node of the tree

2. Find the median of the data coordinates on the first axis
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Figure 4.5: An example of how a kd-tree is built on 100 random points. Top: the
splitting lines of the root node and the first 3 tree levels. Bottom: the split values,
corresponding to the lines.
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3. Add a left child to the root node which would hold the points with the chosen
coordinate less than the median and a right child with the points with the chosen
coordinate greater than the median

4. Repeat steps 1-3 for the children until the node size reaches a pre-defined value or
one.

Several approaches exist for selecting which axis to cut on at each step. The simplest is
to loop through the axis in order. A popular alternative is to cut on the axis with the
largest data spread or even to select the axis randomly. Fig. 4.5 shows the top 4 levels
of a kd-tree, built on 100 random points.

kd-trees were developed for fast spatial intersection queries, such as nearest neighbor
or k-nearest neighbors. The computational cost of building or balancing a kd-tree is
O(nlog(n)), with O(n) of memory required for storage. Nearest neighbor queries in a
balanced tree can be performed in O(log(n)) time. Insertion or deletion of non-root
node also is also O(logn). Partial match queries with t keys require O(n(k − t)/k) time
[13]. Queries to an unbalanced tree are slower, so it is usually recommended to either
build the tree when all the points are available or to re-balance it after new elements
are added or deleted. kd-trees are badly suited for very high dimensional data, but as
LC/MS spectra are only two-dimensional, this limitation is not significant in our case.

We used the kd-tree implementation from the libssrckdtree library [125]. Libssrckdtree
is a C++ header-only template library, which follows most rules of C++ STL associative
containers. It supports keys of any dimensionality and values of all data types that can
be stored in an STL container. This flexibility allowed us to perform all the multiple
range queries of our algorithm on kd-trees only and to store our own data structures
directly in kd-trees. To further illustrate this point, some of the kd-trees built during
the execution of the program are listed below:

• a tree of peak centroids, with m/z and retention time values as key and a structure
of the signals of the centroid and their weighted abundance as value.

• a tree of extracted ion chromatograms (XIC), with m/z and retention time values
as key and a structure with the signals comprising the XIC, their weighted average
mass, retention time, and other characteristics.

• a tree of connected components, with m/z, retention time and connected compo-
nent number as key and XIC as value

• a tree of detected peaks, with monoisotopic m/z, retention time, connected compo-
nent and maximum m/z of the peptide (for higher mass peptides, the largest peak
is not the monoisotopic peak) as key and a peak structure of abundance, peptide
and protein identification, and other peak features as value.
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Figure 4.6: Centroiding along m/z dimension. The integration area for each peak is
highlighted in red.

Centroiding

As we assume no significant overlap between the peaks of different peptides, bell-shaped
peaks can be reduced to stick-like centroids without a substantial loss in information.
To compute the appropriate width of a peak at a given m/z, we use the theory of
mass spectrometer peak shape functions, developed in [72]. Based on the physics of
the measurement process, [72] derives the dependency of the shape of peaks, produced
by the Orbitrap, on m/z and computes the corresponding full width at half maximum
(FWHM). The peak shape parameters have to be found by calibrating the function on
the most abundant 1-dimensional spectrum. First we locate all the local maxima, which
will serve as the base for centroids and then add to each local maximum the signals to the
left and to the right of it until a saddle point to another peak reached or the distance to
the centroid becomes larger than 2×FWHM. Once all the peaks of the future centroid
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are found, we fit a Gaussian to the three central points of the centroid, as described
in [32]. Cox and Mann in [32] showed that a 3-point Gaussian fit provides a better
abundance estimate than a weighted average and does not improve significantly if more
points are added. Fig. 4.6shows the integration area for several peaks. The resulting
centroids are stored as a 2-dimensional kd-tree.

Denoising and XICs

For each centroid in the kd-tree we then construct its extracted ion chromatogram (XIC)
by following its m/z value over retention time until a scan with a zero at this m/z value
is found. The construction is performed as finding connected components in the implicit
centroid graph, where two centroids are connected by an edge, if they have the same
m/z value and are found in neighboring retention time scans. Such neighbors for each
centroid can easily be found by querying the centroid kd-tree. XICs with very few
members correspond to signals which only span very few retention time scans and are
filtered out as noise. The results of such denoising can be seen in Fig. 4.7. The extracted
retention time profiles are further broken into smaller XICs at the local minima and a
kd-tree of XICs is created.

Connecting isotope clusters

The next connected components search is performed in the tree of XICs. The vertices of
the implicit graph are connected by an edge if the m/z distance between them is either
very small or of the form 1/n, 1 ≤ n ≤ max(charge) and their retention time profiles
are correlated. As we are using regularized regression for quantification, we don’t have
to build different potential isotope clusters for all possible charge states, but we combine
all the XICs at correct m/z distances together and rely on the regression procedure to
find the correct charge assignment. Fig. 4.8 shows the isotope clusters, found in a small
part of a spectrum. Note, how at this resolution, it’s impossible to judge the quality of
the segmentation by visual inspection in 2D. The right group of peaks on the bottom
left image seem to form an isotope cluster in 2D, but closer inspection in 3D (bottom
right image) shows that the algorithm was correct in its grouping decision.

4.2.2 Modeling and Quantification

The extracted segments are integrated over the retention time dimension. For the m/z
values of the resulting 1D spectrum, we construct a set of models from the Mascot
identification results and, for the m/z values without corresponding Mascot identifica-
tions, from fractional averagine models. The set of exact models is further expanded
by adding the single and double labeled forms of all Mascot identified peptides. After
the set of models is constructed, NITPICK peak picking is run to select the best fitting
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Figure 4.7: Denoising of a high-resolution spectrum. The peaks with sufficient number
of retention time neighbors are circled with blue, the noise peaks are shown as simple
black dots. Bottom row presents a close-up view of the top image in 2D and 3D.
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Figure 4.8: Finding connected components in a filtered spectrum. Top: 2D view of a
part of a high-resolution spectrum. Bottom: a close up view of 2 peak groups in 2D
and 3D. The 3D view proves the correctness of the algorithm decision to break the right
peak group into 3 clusters.
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Figure 4.9: Results of peak picking on a segment of low resolution data. Left: the signal
area, found by the segmentation algorithm. Right: NITPICK fit on the data. Note,
how in the baseline of the spectrum NITPICK fit is not following the small noise peaks,
because of the inherent sparsity of the LASSO algorithm.
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Figure 4.10: NITPICK fit of a segmented peak group in high resolution. In this case,
the corresponding models come from Mascot identification results and represent AFKD-
EDTQAMPFR peptide and two of its forms, labeled by 18O1 and 18O2

ones. Figures4.10 and 4.9 show the fit results for one peptide in low and high resolution.

All steps of the algorithm up to this point are very generic and not limited to the
use case of 16O/18O labeling. Essentially, they can be applied to any kind of LC/MS
proteomics data. If the data analysis only requires peak picking and quantification, the
pipeline can be stopped at this step. If the user wants to analyze data for a stable isotope
labeling experiment, he additionally has to provide mass differences between labeled and
unlabeled peptide forms. The peak kd-tree is then queried for peak groups with peaks
at the given m/z distances from each other. Finally, the software reports all such peak
groups and the ratios of labeled and unlabeled peptide abundance in them.
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4.3 Experiments and Results

4.3.1 Low resolution

Two datasets were used to evaluate the performance of the algorithm on low resolution
data. The first one stemmed from a study on the influence of DNA damage on phos-
phorylation of proteins. Human KIAA0082 protein was digested in AspN and subjected
to LC/MS on nanoAquity UPLC and Q-TOF (Waters). The second dataset was pro-
duced from chicken ovalbumin digested in trypsin during calibration of the instrument
for the first experiment. Both datasets were acquired by the group of Prof.Dr. Lehmann
in DKFZ, Heidelberg. The first dataset was used to evaluate the sensitivity of the
method by comparing the number of 16O/18O peak groups found by the algorithm to
those found by the human expert. Since the human expert performed the evaluation on
the unsegmented (raw) spectrum, his estimate of the retention time of peptides some-
times diverged from ours. Also, some peptides with bimodal retention time profile were
counted twice. To take these considerations into account, we performed two compar-
isons, one including and one excluding the retention time information of the peptides.
For the second comparison all peptides with a given monoisotopic mass were counted as
one regardless of their retention time.

Quantification results were validated by comparing the average labeled/unlabeled pep-
tide ratios produced by the algorithm on the calibration datasets (MS1 information only)
with those produced by the Mascot Multiplex tool [165]. For each dataset, we used 10%
trimmed mean on the 50 most abundant peptide groups with total ion count of at least
5000 for the unlabeled peptide.

Sensitivity of the method was validated by comparing peak groups, returned by the
automatic procedure, with those selected by the human expert.

Comparison type Human expert Our tool,
in agreement
with the expert

Our
tool,
total

Identified
by Mas-
cot

groups differ in m/z 212 170 588 26

groups differ in m/z and rt 303 216 1118 26

Table 4.2: Number of labeled/unlabeled peak groups, found by our algorithm and by
the human expert. The last column shows how many of those were also identified by
Mascot.

Quantification results were validated by comparing the average labeled/unlabeled pep-
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tide ratios, produced by the automatic procedure on the calibration datasets (MS1 in-
formation only), with those produced by the Mascot multiplex tool [165].

True value Mascot multiplex Our algorithm

1 1.64 1.42

1.5 1.87 1.81

2 2.25 2.17

2.6 3.07 2.41

4 4.46 2.76

8 7.69 2.92

Table 4.3: Ratios of labeled to unlabeled peptide abundance in the peak groups found
by our algorithm. First column: ratios used at sample mixing. Third column: ratios,
found by Mascot multiplex tool. For each dataset, we used a trimmed mean (10%) on
the 50 most abundant peptides with abundance of at least 5000 for the 16O peak.

4.3.2 High resolution

For high resolution data, the method was evaluated on a mixture of tryptic digests of five
commercially available standard proteins: ovalbumin (chicken), lysozyme (chicken egg
white), beta casein (bovine), chymotrypsinogen A (bovine), ribonuclease B (bovine).
Single proteins were digested in solution in either 16O or 18O water respectively and
the resulting peptide mixtures were combined in ratios 1:1, 1:3, 1:5, 5:1, 1:10. Peptide
mixtures were processed using an Eksigent nanoLC system coupled to an LTQ-Orbitrap
mass spectrometer. One survey scan was performed at a resolution of 30000, followed
by 6 MS/MS spectra of the most abundant precursor ions of each MS spectrum. The
data was searched using an in-house version of Mascot 2.2 against a custom database
restricted to these 5 proteins and known contaminants. All the data was acquired by
Dr. Winter from the group of Prof.Dr. Steen, Harvard Medical School/Children’s Hos-
pital Boston.

4.4 Discussion

Table 4.2 demonstrates high sensitivity of our algorithm, which was able to find most of
the labeled/unlabeled groups, indicated by the human expert. As the goal of the human
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Figure 4.11: Labeled/unlabeled peptide ratios, found by Mascot multiplex tool and by
our quantification procedure, compared to the true values used at sample mixing.

expert was to perform biological analysis of the data on the most interesting peak groups
and not to find all such peak groups present in the data, additional peak groups found
by our tool are not necessarily caused by lack of specificity. It is also interesting to
note the very low Mascot identification rate for this experiment. Analysis of Table 4.2
suggests the following experimental strategy: after the first run of the experiment, find
the masses of peptides which exhibit an interesting labeled/unlabeled ratio by using our
automated procedure, add these mass values to MS/MS inclusion list and repeat the
experiment to identify the corresponding peptides.

As for the precision of the quantification, Fig. 4.11 and Table 4.3 show, that while our
tool provides very good quantification results for low ratios between labeled/unlabeled
peptides, it seriously underestimates the true ratio once it gets to higher values (above
four). Mascot multiplex tool does not suffer from this issue. As we only used the 50 most
abundant peptides for our average estimates, this discrepancy can not be explained by
noise signals weighting the average down. Closer examination of NITPICK fits for the
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Figure 4.12: Density of the logarithm of labeled/unlabeled peptide ratios, found by our
tool (blue), compared to the true values used at sample mixing (red vertical line). Top
row: true ratios 1:3 (left) and 1:10 (right). Middle row: true ratios 1:5 (left) and 5:1
(right). Bottom row: true ratio 1:1. In all plots weighted density estimates were used
with peptide weights based on the abundance of the unmodified cognate [25].
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4.4 Discussion

Figure 4.13: Signal of a peptide with 1 to 8 labeled/unlabeled ratio. The black arrow
points to an empty region of the spectrum, showing the time period when MS/MS
scans were taken. Three highest peaks correspond to unlabeled, 18O1 and 18O2 labeled
peptides. It is quite clear, that the ratio of the areas under these peaks cannot be 1 to
8.
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very abundant peptides did not uncover any lack-of-fit problems, however, it brought to
our attention the fact, that the sum spectra of these peptides do not seem to contain
as much signal from the labeled cognate, as one would expect after mixing labeled and
unlabeled samples in 1:8 ratio. Fig. 4.13 shows one of the examined peptides. Our col-
laborators from Prof. Lehmann’s group, who performed the experiments and acquired
the data, came to the conclusion, that wrong ratio values were a property of the MS1
spectra of this experiment, caused, probably, by the overflow in the instrument. Since
Mascot multiplex quantification is based on MS/MS spectra, it was not affected by this
problem, but, as we observe in Table4.2, for biological experiments Mascot identification
rates can be very low.

For high resolution data, the automated quantification results follow the true ratios
very well (see Fig. 4.12. These results serve as indirect evidence for the good perfor-
mance of the new segmentation algorithm, as NITPICK would not be able to obtain
correct quantification results if presented with incomplete peptide signal area. In fact,
it would be very difficult to test the segmentation algorithm directly, since, as one can
observe on Fig. 4.8, correct manual segmentation in 2D is impossible at this resolution,
and re-verifying all segmented regions in 3D would be a very time-consuming task even
for a mass spectrometry expert. As an alternative, one could simulate a spectrum and
compare the segmentation results to the ground truth used to generate the data, but
to the best of our knowledge, no realistic simulations of Orbitrap spectra are currently
available.

Two other methods, close in spirit to the proposed segmentation algorithm, have al-
ready been proposed in [32] and [94]. An important distinction is that our segmentation
does not have to produce consistent isotope clusters. Unlike the NITPICK regularized
regression peak picking that we use, [94] employs non-negative least squares for quantifi-
cation and has to rely on goodness-of-fit statistics to select the right assignment of the
monoisotopic mass and charge. While this approach might be sufficient for 18O labeling,
it will no longer be applicable if labeling with more overlapping states is used, especially
if not all those states are present at each peptide. [32] was developed for quantification
of SILAC experiments and does not have to deal with overlaps in isotope patterns at
all. However, it also has to find the correct charge state. In contrast, our approach is
not limited by the number of labeled states or mass differences between them and can
be applied to any kind of stable isotope labeling.
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Chapter 5

Automated Detection and
Segmentation of Synapses in
Serial Electron Microscopy
Images

5.1 Introduction

5.1.1 Chemical synapse and information transmission in the central nervous
system

One of the major differences between neurons and other cells is their inability to divide
after differentiation. With notable exceptions, such as the neurons of the olfactory sys-
tem, most of 1011 neurons of the human brain are already present at birth [36]. The
tremendous plasticity of the brain, its ability to learn, store memories and recover from
injury are not based on the new neurons being formed, but on the re-wiring of the ex-
isting neural circuits.

Connectivity between neurons is provided by electrical and chemical synapses. Elec-
trical synapses or neuronal gap junctions are formed at the very narrow (1̃-1.5nm) gaps
between neurons, and transmit information by direct electrical coupling of the neu-
rons. This transmission mechanism makes them faster than chemical synapses, however,
they can not amplify the signal they receive. Electrical synapses form a minority of all
synapses in the brain and are outside the scope of this chapter. In the following pages
the word ”synapse” will only be used to refer to chemical synapses.

The chemical synapse is the predominant means by which information is transferred

63



5 Automated Detection and Segmentation of Synapses in Serial Electron Microscopy Images

Figure 5.1: Left: synapse components. Right: excitatory (red ovals) and inhibitory
(green ovals) synapses as seen in FIB/SEM images of 5×5×9nm resolution.

and stored in the central nervous system. The anatomy of a synapse is illustrated in
Fig. 5.1. Briefly, the following components of a synaptic connection can be defined:

• Pre-synaptic cell, the origin of the signal

– Vesicles with neurotransmitter molecules

• Synaptic cleft, 30-40nm wide gap between the cells

• Post-synaptic cell, the recipient of the signal

– Neurotransmitter receptors, forming the Post-Synaptic Density (PSD)

Following [22], information transmission through a synapse can be summarized as a
sequence of steps:

1. The pre-synaptic cell is depolarized and its Ca+ channels open

2. The pre-synaptic cell releases neurotransmitters into the synaptic cleft.

3. The neurotransmitters in the synaptic cleft bind to the specific receptors in the
membrane of the post-synaptic cell.

4. The post-synaptic cell opens or closes chemically gated ion channels. Other changes
in the post-synaptic cell are also possible, including regulation of gene expression
or metabolic changes.
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Two major types of synapses are usually recognized, depending on the influence they
have on the behavior of the post-synaptic cell. Release of neurotransmitters from an
excitatory or asymmetric synapse increases the probability of the action potential in
the post-synaptic neuron. The most common excitatory neurotransmitter is glutamate
and excitatory synapses with glutamate release are referred to as ”glutamatergic”. Con-
versely, neurotransmitters of an inhibitory or symmetric synapse decrease the probability
of the action potential. γ-Aminobutyric acid (GABA) is the most common inhibitory
neurotransmitter and the corresponding synapses are referred to as ”GABAergic”. The
differences between these two synapse types as they appear in electron microscope images
are illustrated in Fig. 5.1, where excitatory synapses are surrounded by red ovals and
inhibitory - by green ovals. Asymmetric synapses have a larger, more electron-opaque
post-synaptic density and many spherical neurotransmitter vesicles. The appearence of
the pre- and post-synaptic areas of inhibitory synapses is more symmetric (hence their
alternative name) and the neurotransmitter vesicles have a more oval shape. It has to
be noted, that even expert neurobiologists can not always distinguish these two types
on electron microscopy images. The majority of synapses in the brain are excitatory,
however, the exact ratio varies significantly between different parts of the brain.

Neural function and plasticity manifest through the changes in synapse size, shape
and distribution. Localization and segmentation of synapses in brain images can thus
provide essential information to the understanding of the neural circuitry.

5.1.2 Synapse detection

Despite the brilliant advances in light microscopy [53, 130, 10], detailed structural anal-
ysis of synapses is still only possible with electron microscopy. With serial section Trans-
mission Electron Microscopy (ssTEM), synaptic density can be estimated by manually
counting synapses within a large volume, or by stereological extrapolation from 2D im-
ages [145, 49, 96, 30]. In the early days of synapse morphometry, volumetric estimates
based on extrapolation from single plane measurements were in use [95]. These were
replaced by an unbiased estimate from a disector - a pair of parallel sections at a known
distance, which allows for counting of arbitrary particles without making assumptions
on their shape, size or orientation [145, 96]. The number of synapses in the volume
between two disecting planes is estimated as the number of synapses, visible in the first
plane but not in the second. Two borders of the image (for example, top and left) are
considered to be ”forbidden lines” and synapses touching them are also not counted.
The only assumption of the disector method is that the synapses in both planes can be
identified unambiguously. While this assumption is true for synapses with the synaptic
cleft perpendicular to the slicing plane, detection of synapses parallel or at a low angle
to the slicing plane is much more challenging. In a recent publication devoted to this
issue Kubota et al.[86] observe that as much as one third of all synapses oriented at a
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low angle to the slicing plane are missed by the human annotators.

This problem has been alleviated by the progress in the electron microscopy instru-
mentation. The recent introduction of focused ion beam/scanning electron microscopy
(FIB/SEM) [80] with isotropic resolution approaching 5 nm has now opened the door to
a direct detection and segmentation of all synapses in large volumes of tissue, without
the need to resort to extrapolation from paired slices. When searching for synapses,
the human observer is no longer limited to the imaging plane projections of the volume,
but can also explore the planes orthogonal to it. A protocol for manual synapse de-
tection in FIB/SEM data has recently been proposed in [100]. Still, even for the best
quality EM images, manual detection of synapses remains a difficult, error-prone and
time-consuming task, which calls for automated protocols to overcome the tedium of
manual analysis.

To detect synapses in EM images, human experts follow a set of morphological cri-
teria: the presence of the pre- or post-synaptic densities, a visible synaptic cleft and
a nearby cluster of at least two vesicles. If an automated protocol was to be based
on these criteria directly, it would require a segmentation of the entire volume to find
the membrane apposition sites and a full segmentation of ultra-cellular structures to
detect vesicles. Although the problem of automated segmentation of neural tissue has
advanced significantly in recent years, it is not yet fully solved [28, 106]. Also, auto-
mated segmentation of vesicles is nontrivial, especially at lower resolution, and has not
received much attention in the literature. Rather than explicitly implementing the cur-
rently used criteria, machine learning allows to imitate the overall decisions of a human.
The prediction rules are learned automatically from examples, provided in the form of
annotated images (the training dataset). A meaningful measure of success is how well
the automated predictions on a separate test set agree with those of the human.

Our contribution proposes an automated approach of this type and shows, through
quantitative evaluation on a set of 111 synapses, that state-of-the-art machine learning
methods can now achieve detection rates comparable to those of humans for asymmetric
synapses in FIB/SEM data. Even though our approach does not explicitly implement
the morphological criteria listed above, it finds enough evidence in the geometric fea-
tures, extracted from a local neighborhood of each voxel, to mimic the decisions of the
human expert. This work was performed in collaboration with the group of Dr. Knott
(EPFL, Lausanne).
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5.1.3 Related work

In the field of neuroscience, recent influential work along these lines has mostly focused on
tracing and segmentation of neurons. Depending on the Electron Microscopy technique
used to acquire the images, the methods can be divided into those treating the volume
as a 3D stack and those which perform the segmentation in 2D slices and then link the
segmentation results in 3D. The former methods are applied to SBFSEM or FIB/SEM
data with isotropic resolution, the latter to ssTEM data with very anisotropic resolu-
tion. For SBFSEM data Andres et al [6] first use a Random Forest classifier on 3D image
features to produce a voxel-wise membrane probability map and then build supervoxels
on the probability map to create an over-segmentation. The excessive supervoxel edges
are removed by an additional optimization step, which takes into account the possible
topology of neurons and membranes. Turaga et al and Jain et al [151, 67, 68] propose
to obtain a voxel affinity graph by training a convolutional neural network directly on
the image intensities. For ssTEM data, another contribution of Jain et al [66] introduces
a topology based metric to compare neural segmentations, which is consistent with the
segmentation quality requirements from the circuit reconstruction point of view. This
metric is then used as a cost function in the optimization procedure. Mishchenko in
[105] uses a ridge detector to detect membranes and then interpolates small membrane
gaps by anisotropic contour completion based on fuzzy logic. Kaynig et al[74] proposes
a different method of gap completion by introducing a special energy term, which ac-
counts for good continuity of membranes. Combined with Random Forest predictions for
membranes in a larger energy minimization procedure, this additional term significantly
improves segmentation results. Jurrus et al[70] take a very different approach based on
the auto-context principle developed in [150]. They construct a serial neural network,
which uses predictions in a voxel neighborhood produced by the previous network as
additional features for the next network.

Since all currently available methods require manual proof-reading, several groups have
developed entire software frameworks, which combine image pre-processing (registration,
de-noising, contrast correction, etc), fully manual or semi-automated segmentation and
interactive proof-reading [5, 59, 112, 24, 23, 119]. Fiji [92] - a general purpose biological
image processing framework - also has a plug-in for 2D ssTEM image segmentation [73].

The problem of ultracellular structure segmentation has so far received less attention,
however, interesting methods have been demonstrated in [91]. Lucchi et al[91] detect
mitochondria in FIB/SEM image stacks by first segmenting the stack into supervoxels
and then partitioning the supervoxel graph by energy minimization with unary terms
including global shape cues from 3D Ray features and pairwise terms based on learned
boundary appearance models. The performance of the algorithm is comparable to that
of human annotators. The importance of this contribution is not limited to the problem
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of mitochondria detection, as often the errors of membrane segmentation are caused
by mitochnodria located very close to the cell boundaries. Detecting and removing
mitochondria before or simultaneously with boundary detection could improve neuron
segmentation results.

For synapse detection, two automated methods have recently been proposed for fluo-
rescence light microscopy images [61, 134]. Since these rely on fluorescent pre-labeling
of all synapses, they are not applicable to EM data. For ssTEM data, Mishchenko et al
[106] automatically detect synapses in the course of a large-scale semi-automated volume
reconstruction effort. Once all the cell membranes are found, the synapses on them are
located by a single-layer logit neural network classifier, trained on membrane intensity
and width features. However, this approach relies on correct partitioning of the entire
volume into cells, which is still impossible by fully automated means [28]. This chapter
describes our approach to detection and segmentation of synapses in FIB/SEM data,
which does not require the volume segmentation. Some considerations on the possible
extension of the algorithm to ssTEM data will be provided in the Outlook section.

5.2 Methods

The input data for the algorithm consists of scanning electron micrographs of neural
tissue, provided as a pre-registered image stack, and user labels on a tiny subset of the
data. The labeling can be very sparse, as shown in Fig. 5.2.

5.2.1 Random Forest classifier

Random Forest is an ensemble-based method of classification, introduced by Leo Breiman
in [19]. As all ensemble methods, it works by aggregating the decisions of simpler classi-
fiers, in this case - decision trees. While an individual decision tree is prone to overfitting,
a “forest” of decision trees, each of which has only seen a subset of the training data, has
very favorable generalization properties (see Fig. 5.3). Aggregation of classifiers trained
on bootstrapped samples of the training data is referred to as ”bagging” and was also
proposed by Breiman in [17]. Random Forests introduce further randomization into
bagged decision tree ensembles by not only providing different training sets to different
decision trees, but also forcing them to make their decisions on different sets of features
at each node split. Growing a decision tree for the Random Forest can be described in
the following sequence of steps, supposing the training dataset contains N points of Nf

features along with their labels:

1. Randomly draw N points from the training dataset with replacement.

2. Randomly draw mtry features.

68



5.2 Methods

Figure 5.2: User labels and algorithm predictions. Top row: the complete set of user
annotations for the first training set ( 20 brush strokes in total), with yellow labels for
synapses, red for membranes, green for the rest. Bottom row: raw data and algorithm
predictions on two other slices in the first training set. In black circles: some unlabeled
synapses and their probability maps. The color intensity corresponds to the certainty in
the prediction, predictions for green class are omitted for clarity.

3. According to some split criterion, choose on which of the mtry features to split.

4. Split the data into the left node with the points for which the split feature is less
than the split value and the right node with the points for which it’s larger than
the split value.

5. Repeat steps 2-4 until the tree is grown to purity, i.e. the lower nodes of the trees
only contain points with the same labels.

The most popular split criteria include the decrease in Gini impurity and cross-entropy.
Given a node with N samples to classify into K categories of labels, define Pj =
1
N

∑N
i=1 I(xi == j) - the proportion of labels of category j. Cross-entropy can then

be defined as −
∑K

j=1 Pjlog(Pj). The Gini impurity of a node and the decrease in Gini
impurity resulting from a split of a node into a left and right child are defined as

I =

K∑
j=1]

Pj(1− Pj), ∆I = Iparent −
NLeft

N
ILeft −

NRight

N
IRight.
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Figure 5.3: Generalization properties of a single decision tree vs. a forest. Top left:
the underlying distribution of the data. Top right: the training sample. Bottom left:
decision boundary between the three classes for a single decision tree. Bottom right:
decision boundary of a Random Forest of 255 trees. The bottom left plot for the single
decision tree shows clear signs of overfitting to the training dataset, which is not the
case for the bottom right plot of the Random Forest.
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The best split is then the one which provides the largest decrease in Gini impurity. Gini
impurity can be interpreted in the following way: suppose that a sample in the node is
classified according to the current category distribution in the node. Gini impurity then
represents the misclassification rate.

Since the random draws of the samples for each tree are done with replacement, each
tree only sees a subset of the training data. The rest of the training data (approximately
one third) is referred to as ”out-of-bag” data. Out-of-bag samples can be used to es-
timate the misclassification rate of the forest by letting each tree predict the labels of
its out-of-bag samples and averaging the number of incorrect predictions over all trees.
This estimate is quite close to the real misclassification rate, provided that the training
data captures the variability of the test data well enough.

Besides finding the best split, Gini impurity measure gives rise to the following method
of feature importance estimation: for each tree, consider the nodes which split on a given
feature. The average Gini impurity decrease of these splits over all such nodes and all
trees indicates how important the feature is for the forest. An alternative estimate of
feature importance is given by permutation importance. For each tree, permute the
values of feature Xj in the out-of-bag samples and compute the new out-of-bag error.
The feature importance estimate is then given by the average difference between the old
and new out-of-bag errors for all trees [20].

Random Forest only depends on two parameters: the number of trees and the number
of features drawn at each split. Random Forest has been empirically shown to be fairly
robust to their choice, and to provide very good results for a broad range of applications
[52, 26, 35, 99]. Besides its excellent generalization properties, this simplicity of setup
makes it especially attractive for applications geared towards non-expert users.

5.2.2 Feature selection

The standard EM protocol used to prepare the brain tissue for imaging gives high con-
trast not only to synapses, but also to other cellular structures, such as mitochondria.
As a consequence, the classification cannot simply be based on the raw intensity values
of individual voxels. Instead, more informative features are required that also encode
geometrical properties of 3D voxel neighborhoods. Different features represent different
properties of these neighborhoods and should be selected so as to allow for an effective
discrimination of the labeled classes. For example, as synapses are darker than intra-
cellular space, the average intensity would serve as a good feature to distinguish these
two, but would not help to separate synapses from membranes or mitochondria. Edge
detectors respond strongly to synapses, as the synaptic cleft is positioned between two
membranes, but regular membranes and endoplasmic reticulum are also detected. Tex-
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Figure 5.4: An example of feature response on a part of a stack. From left to right:
raw data, first eigenvalue of the Hessian matrix, first eigenvalue of the structure tensor,
intensity smoothed by a Gaussian, all with sigma = 5.

ture of synapses, especially at the post-synaptic densities, is quite distinctive, however,
texture features also pick up thick mitochondrial membranes. Rather than devise deci-
sion rules by hand, we use a variety of intensity, edge and texture features at different
scales and apply statistical learning from a labeled training set to infer robust classifi-
cation rules. Fig. 5.4 shows the feature response on a small part of a stack.

Since features have to be computed for every voxel, memory consumption has to be
taken into account for large volumes. To allow running of the algorithm on a modern
desktop PC rather than a high-end server without compromising classification accuracy,
we performed selection of features, based on their Gini importance. The final list of 38
features is provided in Table 5.1. Although the user is free to re-adjust the list and try
out new feature combinations, we do not expect it to be necessary, except for the adjust-
ment of the neighborhood sizes to the resolution of the data. Due to boundary effects in
the feature computation, the performance of the algorithm can decrease for voxels very
close to the limits of the dataset, such as the voxels of the first and last scan of the stack.

Importance of 3D features

Since the the resolution of FIB/SEM microscope images is nearly isotropic in all 3 di-
mensions, we computed all the features in full 3D neighborhoods of each voxel, using
the same sigma value for all three dimensions. To test if the third feature dimension
gives a noticeable effect on the Random Forest prediction quality, we also performed the
training and prediction on 2D features, using the labels of Fig. 5.2 and features of Ta-
ble 5.1. Fig. 5.5 shows the results of the comparison. Clearly, the 3-dimensional context
of a voxel is very important for its successful classification, and using 2D features only
produces a lot of false positive synapse detections. It has to be noted, that this experi-
ment does not fully reflect the difficulty of synapse detection in anisotropic EM images,
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# Feature # of channels Sigma

1 Eigenvalues of the Hessian matrix
Eigenvalues of the structure tensor

3, 3 3.5

2 Eigenvalues of the Hessian matrix
Eigenvalues of the structure tensor

3, 3 5.0

3 Intensity smoothed by a Gaussian 1 5.0

4 Intensity smoothed by a Gaussian 1 3.5

5 Intensity smoothed by a Gaussian 1 1.6

6 Gradient magnitude and Laplacian of a Gaussian
Difference of Gaussians

1, 1, 1 3.5

7 Intensity smoothed by a Gaussian 1 1.0

8 Eigenvalues of the Hessian matrix
Eigenvalues of the structure tensor

3, 3 1.6

9 Gradient magnitude and Laplacian of a Gaussian
Difference of Gaussians

1, 1, 1 5.0

9 Gradient magnitude and Laplacian of a Gaussian
Difference of Gaussians

1, 1, 1 1.6

10 Intensity smoothed by a Gaussian 1 0.7

11 Eigenvalues of the Hessian matrix
Eigenvalues of the structure tensor

3, 3 1.0

Table 5.1: Local neighborhood features, used for voxel classification. The ”Sigmas”
column shows the standard deviation of the Gaussians, used for smoothing the data.
This parameter effectively determines the size of the necessary voxel neighborhood. For
the eigenvalues of the structure tensor, the outer scale parameter was set to sigma/2,
for the difference of Gaussians the second Gaussian sigma was set to 0.66*sigma.

such as the ones produced by ssTEM, since, although the features are 2-dimensional,
the z-resolution of the images is excellent and no smeared membranes or mitochondria
are present.

5.2.3 Probability map thresholding

The obtained probability maps are smoothed by convolution with a Gaussian with a
standard deviation of 5 voxels to avoid local discontinuities caused by noisy voxel-wise
predictions. Uncertain detections are then filtered out by considering only those clusters
of voxels with synapse probability greater than a given threshold and with size of at least
1000 voxels. The lower limit for the size filter was computed as the approximate volume
occupied by two vesicles at the given data resolution. The probability threshold can
be interactively adjusted by the user. After thresholding, only the “cores” of synapses,
i.e. areas of very high synapse probability, are left. These cores underestimate the real
size of synapses, so to transition from detection to a proper segmentation we relax the
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Figure 5.5: Comparison of classifier predictions using 3D(left column) or 2D(right col-
umn) features. Top two images show synapse probability maps on an unlabeled image,
bottom two images - probability maps on a labeled image. Note a large number of false
positive assignments to the synapse class in both cases.
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Figure 5.6: Thresholding of probability maps. Left to right: raw data; Random Forest
prediction results for synapse and membrane classes; synaptic “cores” - voxels with more
than 90% synapse probability; final segmentation.

synapse probability threshold to 0.5 for all voxels that are adjacent to synaptic cores.
This sequence of steps is illustrated in Fig. 5.6.

5.2.4 Software

ilastik

On the software side, we build on ilastik [143]. The freely available ilastik toolkit pro-
vides an intuitive interface for classification and segmentation of 2D and 3D data and
allows users without experience in machine learning to perform fairly complex tasks
on their data. ilastik includes the Random Forest classifier and a set of generic image
features, which can easily be expanded via the feature plug-in mechanism. The seg-
mentation is performed by the assigning each pixel to the most probable class. In the
interactive mode, it allows the user to immediately see the effect of newly added labels
on the classifier’s predictions, and therefore reduces the necessary labeling time. Once
the classifier has been trained on a representative subset of the data, predictions on a
very large dataset can be performed off-line in batch-processing mode. ilastik is written
in Python and uses c++ and Vigra image processing library [83, 82] for computationally
intensive tasks.

Here we present and evaluate an extension of ilastik which includes interactively ad-
justable thresholding and finding of connected components, as well as a possibility to
display the found objects in 3D with the help of the VTK toolkit [135]. The current
synapse detection pipeline for a large dataset can be summarized as follows:

1. After loading a small subvolume of the data into ilastik, label a few synapses and
some background pixels in the interactive prediction mode, until the prediction
results look satisfactory. In the feature selection dialog, choose the features from
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Table 5.1.

2. Interactively find a threshold on the probability map, such that most of the false
positive detections disappear, but the synapses are still visible.

3. In ilastik batch processing module, perform the prediction with the trained classi-
fier on the full volume. The prediction is performed block-wise and does not have
to load the complete file in memory.

4. Run a block-wise thresholding and filtering script on the obtained full volume
probability maps. The only required parameter of this script is the threshold
value, however, the minimum and maximum values of the size filter can also be
specified in case they have to be adjusted for different image resolution.

5. Load the results produced by the script into ilastik. The detected synapse objects
can now be browsed and visualized in 3D, as shown in Fig. 5.7. Integration of
ilastik with the VTK visualization allows the user to jump from a 3D object directly
to its position in the image stack. The remaining false positive detections can be
removed either at this step or at the next one, using the detection summary report.

6. Finally, an HTML summary report can be created for more convenient proof-
reading and further analysis (Fig. 5.10).

In case only a small data stack is available, no offline processing is needed and all the
computations of step 4 above can be performed by clicking a few buttons in ilastik. No
step of the pipeline is specific to the task of synapse detection, which makes it applicable
to the general problem of small object detection in 3D image stacks by changing only
the image features.

5.3 Experiments

5.3.1 Data acquisition and generation of the gold standard

Data, used in this section, has been acquired and kindly made available by the group
of Dr. Graham Knott, EPFL, Lausanne. The quantitative validation of the automated
synapse detection procedure, as well as the evaluation of the human experts’ error rate,
was carried out on a test dataset of 111 asymmetric, presumed glutamatergic, synapses.
The test dataset consisted of 409 scanning electron micrographs from layer 2/3 of the
adult rat somatosensory cortex. The tissue preparation methods followed the protocol
previously described in [80] and were performed in accordance with the procedures ap-
proved by the Office Vétérinaire Cantonale Lausanne (license number 2106). Briefly,
the brain of an adult rat was fixed by cardiac perfusion of 2.5% glutaradehyde, and
2% paraformaldehyde in phosphate buffer, it was then vibratome sectioned and slices
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Figure 5.7: A screenshot of ilastik object browsing tab. The three synapses to which the
arrows are pointing are displayed in the 3D viewer in the lower right corner.

from the somatosensory cortex were stained with buffered potassium ferrocyanide and
osmium, followed by osmium, and then uranyl acetate. These stained sections were then
dehydrated and embedded in Durcupan resin. The selected region was trimmed in an
ultramicrotome and mounted onto an aluminium SEM stub for imaging in the FIB/SEM
microscope (Zeiss NVision40), using a scanning electron beam at 1.3 kV with a current
of 1 nAmp. Backscattered electrons were collected via the energy selective in-column
detector (EsB) using a grid tension of 1.1 kV. The milling was achieved with a gallium
ion source at 30 kV with a current of 700 pAmp. The acquired images were of 5 nm
per pixel resolution with each image 1948×1342 pixels in size. The milling depth was
measured at 9 nm per slice. Such high z-resolution allowed treating the data as one 3D
volume of 1948×1342×409 voxels instead of a collection of 2D slices.

Synapses in the dataset were manually annotated by three independent human experts

77



5 Automated Detection and Segmentation of Synapses in Serial Electron Microscopy Images

according to morphological criteria, including the presence of a pre- and post-synaptic
density, as well as clustered vesicles close to the pre-synaptic membrane [81]. The
human experts were researchers with experience in the analysis of electron micrographs
of brain tissue and counting synapses in serial images. TrakEM2 plug-in of the FIJI
framework [23] was used for the annotation. One of the experts only had four hours to
label and verify the complete dataset, while the other two experts were not limited in
time and took several hours longer. The annotation of each expert included positions
and approximate size of detected synapses, denoted by ”ball” labels from TrakEM2.
Some examples of expert labels can be seen in Fig. 5.11D,5.11E,5.11F. Each expert
first analyzed the dataset independently from the others and the resulting three sets of
annotations were compared automatically to find all discrepancies. Since the automatic
comparison procedure found differences between the expert annotations, these cases
had to be re-examined jointly by all experts to establish a gold standard annotation.
Synapses touching the left or top border of the image, as well as those touching the
last slice of the stack, were excluded from the final count. For evaluation purposes, we
also excluded synapses which had their center in the first slice of the stack, to avoid the
border effects described in the next section. The resulting set of 111 synapses formed
the gold standard and was used to estimate the error rates of both the original human
annotations and the results obtained by the algorithm.

5.3.2 Error criteria

For the evaluation of the error rate, a synapse candidate was considered to be a false
positive, if its “ball” label from the human expert or its shape segmented by ilastik did
not overlap with any ball in the gold standard dataset. If such an overlap was found,
the corresponding gold standard ball was removed from the set of possible matches.
Conversely, a false negative detection was counted, if a ball from the gold standard
did not overlap with any of the synapse candidates; if such an overlap was found the
corresponding synapse candidate was removed from the set of possible matches. Human
errors were additionally reverified manually, to avoid assigning a detection error in case
of a geometric disagreement between labelers, i.e. when two labelers labeled the same
synapse at positions so far from each other, that their ”ball” labels did not overlap.

5.4 Results

5.4.1 Human experts

The expert which only had 4 hours to label and verify the synapses, missed 11 synapses
and found 20 false positives. The other two experts, unlimited in time, made 2 and 3
false negative and 7 and 8 false positive detections respectively. Most expert mistakes
were made for different synapses, which is in line with the observations of [59] about
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Figure 5.8: Precision and recall of the algorithm and the human experts. Recall was
calculated as the (no. of true positives)/(no. of synapses in the ground truth), precision
as the (no. of true positives)/(total no. of synapse candidates). A: Precision and recall
of the algorithm results for the four different training sets. B: Precision and recall of
the algorithm compared to the human experts with and without the time limit. The
synapse probability threshold values are annotated next to the corresponding points of
the curve.

attention-related errors of expert annotators of neurobiological images.

5.4.2 Automated detection

To quantitatively assess the algorithm performance and its stability with regard to the
training data, four training sets were created from images acquired in the same ex-
periment, but not overlapping with the test set. The four training sets were located in
different parts of the image stack and contained approximately the same number of voxel
labels. For each training set, 2-3 synapses were labeled, and for each of those synapses
it was sufficient to only label it in one of the slices. Adding more labels did not improve
the classification performance, as long as the already labeled set represented the data
well, which can be judged, for example, by looking at the current algorithm predictions
for some non-labeled synapses (Fig. 5.2, bottom row). Although the software can dis-
criminate an arbitrary number of categories, we found three-class labeling of synapses
vs. membranes vs. the rest of the tissue to produce the best results. One can also use
a binary setup with synapses vs. the rest, but then the labeler has to take extra care to
annotate enough membrane voxels to obtain a representative sample of the background.
Adding more classes, for example, for the mitochondria, did not help the classification.
Our first training set is illustrated in Fig. 5.2 and a performance comparison for the
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different training sets is shown in Fig. 5.8A.

After training, the classifiers were applied to the test dataset, and thresholding with
different sensitivity levels was applied to the resulting synapse probability maps. Preci-
sion and recall of the algorithm, depending on the threshold, are illustrated in Fig. 5.8
(using the training set from Fig. 5.2 for Fig. 5.8B). Recall was calculated as the (no.
of true positives)/(no. of synapses in the ground truth), precision as the (no. of true
positives)/(total no. of synapse candidates). The voxelwise threshold for the detection
of synaptic cores was specified as the probability of the synapse class. For the training
set from Fig. 5.2, the best algorithm performance was at the threshold of 98%, with
recall of 0.92 and precision of 0.89. Overall, the algorithm performance is better than
that of a human expert working with a four-hour time limit (0.9 recall and 0.86 pre-
cision), but worse than that of domain experts with unlimited time, who, in practice,
worked on the problem on two consecutive days, though not all day long (recall of 0.97
and 0.98 and precision of 0.931 and 0.936). A comparable recall value for the algorithm
(0.96) was achieved at precision of 0.85. Labeling the training set, computing its ap-
pearance features and training the classifier took approximately 15 minutes. Running
the algorithm on the full test dataset took several hours, however, no user interaction
was needed during this time.

A 3D view of the synapses detected by the algorithm based on the training set from
Fig. 5.2 (with probability ratio threshold of 92%) is illustrated in Fig. 5.9.

The human labelers only detected synapses and specified their approximate size by the
ball labels, while the algorithm segmented synapses, i.e. listed every voxel belonging to
a synapse candidate. Since the real synapses are not spherical, these human annotations
can not serve as voxel-level gold standard. Overall, the question of the definition of
the synapse size is not yet settled and there is no protocol one can follow to compute
the synapse size for FIB/SEM data. Mayhew in [95] reviews different measures for 2D
slices, including the length of the membrane apposition site or the area of the pre- and
post-synaptic density. Unlike mitochondria or vesicles, synapses don’t have a membrane
and it is therefore hard to determine exactly which voxels belong to a synapse and which
to the intracellular space. Consequently, the performance of the segmentation part of
the algorithm was assessed qualitatively and found to be of sufficiently high quality for
detailed analysis of synapse morphology, see Fig. 5.9 and Fig. 5.10.

5.5 Discussion

The results show that with an adequate selection of appearance features, synapses are
sufficiently different from other structures in neural tissue to allow for reliable automated
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Figure 5.9: 3D visualization of the results. Top: all synapses detected by the algorithm
after training on the labels from Fig. 5.2. Bottom: a close-up view of three differently
oriented synapses.

detection in nearly isotropic FIB/SEM serial images. Fig. 5.11 illustrates typical false
negative and false positive detections of the humans and of the algorithm, which have
different causes. The false positives of the algorithm are mostly caused by myelinated
membranes or very dark lines located near mitochondria (Fig. 5.11J, 5.11K, 5.11L).
Similarly, most of the false negative detections also stem from synapses located very
close to myelinated membranes. In the probability maps, they become connected to the
large false positives caused by these membranes, and these large connected components
are then filtered out based on the size criterion (Fig. 5.11G). Since ilastik provides a con-
venient summary report of all detected synapses (Fig. 5.10) and reduces the data from
millions of voxels to just dozens of synapse candidates, the false positives for the entire
stack can easily be discarded by a human in just a few minutes of additional proofreading.
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Figure 5.10: Synapse detection summary report. Part of the summary report produced
by ilastik. The fourth detection from the top (no. 36) is a false positive, which can easily
be filtered out by a human expert by looking at a larger context.
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Figure 5.11: Examples of errors, committed by the algorithm and the human experts. A,
B, C: false negative decisions of the human observers, D, E, F: false positive detections
of the human observers, shown as yellow ”ball” labels in the image center, G, H, I: false
negative decisions of the algorithm, J, K, L false positive decisions of the algorithm.

For the human experts, while some synapses that were missed are accidental omis-
sions, others serve as a good illustration of the advantages of truly 3D processing
(Fig. 5.11A, 5.11B). These synapses are oriented at a low angle to the plane of imaging
and do not strictly qualify as synapses according to the morphological criteria, since the
synaptic cleft is not seen in the plane of imaging. Besides that, they are just hard to
discern when viewing the data in native (x-y) projection only. Since the algorithm bases
its decisions on geometric features computed in full 3D neighborhoods, it is not affected
by synapse orientation.

As for any machine learning-based algorithm, the performance of ilastik depends sig-
nificantly on how well the training dataset represents the true variability of the test
data. Note also, that the images with the training labels must be large enough to allow
for computation of all features from neighborhoods of the labeled voxels. The inter-
active learning interface of ilastik allows the user to immediately assess the algorithm
performance on a subset of data and, if necessary, to modify the training labels or the
threshold value. As shown in Fig. 5.8A, on our data the quality of the prediction was
stable with respect to the exact choice of the training set.

We are currently working on new machine learning methods which take more spatial
context into account with the aim of solving the myelinated membranes problem and
achieving reliable synapse segmentation also in image stacks with low z-resolution. Some
of our conclusions so far are listed in the next section.
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Figure 5.12: Variability of the 3D shape of synapses. These synapses were not extracted
from the test dataset, but from a different dataset of a mouse brain, also produced by
Dr. Knott’s lab.
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5.6 Outlook: synapse detection in non-isotropic images

5.6.1 Introduction

Synapse detection in ssTEM data is a much more challenging problem than synapse
detection for FIB/SEM. We evaluated several strategies to tackle this problem and de-
scribe them in this subsection. All the data shown here was produced by Davi Bock et
al [15] in the laboratory of Clay Reid in Harvard Medical School and was made freely
available after the publication. We only use a small subset of this data for testing.

The resolution of ssTEM instruments is extremely anisotropic, with resolution differ-
ences in x, y and z reaching the factor of 20 (up to 3×3×60 nm). Transmission Electron
Microscopy works by transmitting electrons through ultra-thin slices of tissue. The
intensity of a given pixel then represents the combined signal from all the cellular struc-
tures in the electron path. Consequently, the structures which pass at an angle to the
slicing plane appear smeared and without additional context information it’s impossible
to tell if a particular region of the image represents a synapse, a smeared membrane, or
a smeared mitochondrion border.

Another problem arises from the fact, that the ultra-thin slices have to be handled
after they are cut. This introduces tears, folds and other defects, while imaging the
slices separately introduces artefacts and differences in intensity and contrast. To fur-
ther illustrate this point, Fig. 5.13 shows how the appearance of a synapse can change
in several consecutive slices of a block of tissue.

To the best of our knowledge, Mishchenko et al [106] presented the first and only
proposal for automated detection of synapses in ssTEM data. The detection is based on
the observation that the membrane apposition site is thicker where a synapse occurs and
is performed by training a neural network classifier on features like membrane width and
intensity. The membranes in the volume have to be found in advance, either manually
or by a semi-automatic approach.

5.6.2 Feature dimensionality

When looking for synapses or membranes in ssTEM data, human experts make their
decisions based on the appearance of the candidate object in several consecutive slices.
Automated membrane detection algorithms first detect the cell boundaries in 2D slices
and then link them in 3D. Depending on the method used, the linking step can also
remove the excessive or wrong 2D boundaries. The approach we successfully applied
to FIB/SEM data included calculation of isotropic 3D features and thus using the 3D
context directly. Consequently, as a first step to the detection of synapses in ssTEM
images, we decided to check if one can ignore the anisotropy of the images and apply 3D
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Figure 5.13: Two bright synapses (highlighted by yellow ovals) as imaged in six consec-
utive ssTEM slices. The order of slices is left to right, top to bottom.
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Figure 5.14: Prediction on features from Table 5.1, computed in 2D (left) or 3D(right).
True synapses are indicated by yellow ovals.

filters instead of 2D filters. A comparison to pure 2D features can be seen in Fig. 5.14.
It is obvious that 3D context is very important for the algorithm specificity.

5.6.3 Context and auto-context

However, even when 3D features are used, the algorithm makes a lot of false positive
detections, especially on the mitochondrial membranes and endoplasmic reticulum. If
one observes how the human experts perform synapse detection, it becomes apparent
that humans take more context into account and re-evaluate their pixel-wise decisions
based on the surroundings of a potential synapse. For example, synapses should have a
cluster of vesicles nearby in at least on of the slices and can’t be located on the sides of
mitochondria. Incorporation of the context information has long been a subject of active
research in the field of computer vision, especially in the domains of object detection
and categorization and scene understanding. A common way of including additional
information about the pixel neighborhood is by re-formulating the problem as a Markov
Random Field or a Conditional Random Field [97]. In this reformulation, the problem
of labeling each pixel in an image is presented as an energy minimization problem, where
the energy is factorized into potential functions, each of which only depends on the pixel
itself or on its interactions with other pixels in a neighborhood of fixed size. For example,
if a pixel-wise classification is performed first, further improvement of the segmentation
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can be achieved by building an energy function with unary potentials representing the
classifier response in the first step and binary potentials encouraging the neighboring
pixels to belong to the same class. The resulting segmentation will be more smooth
than the original probability map. Binary and tertiary potentials can also include terms
which give preference to known properties of the classes present in the image. For exam-
ple, Kaynig et al [74] tackled the problem of membrane segmentation in ssTEM images
by performing a Random Forest based prediction first and then minimizing an energy
function, which included additional terms to fill the gaps in the detected membranes
by encouraging membrane pixels to belong to thin elongated structures. Over the last
years, the power of such modeling approaches has been demonstrated on many chal-
lenging computer vision applications [146]. Their disadvantages include the limits they
enforce on the range and type of interactions that can be modelled, caused by computa-
tional costs of energy minimization and the fact that the exact form of the interactions
has to be modelled from prior knowledge.

An alternative approach to include context information for the improvement of clas-
sifier results has recently been proposed by Tu and Bai [150]. Instead of modeling the
interactions between pixels or pixel classes explicitly, they suggest to use classifier pre-
dictions as features for the next round of classification. The workflow of the algorithm
can be summarized as follows:

1. The input data of the algorithm consists of fully labeled training images I.

2. A classifier is trained on I and some pixel-wise image features Fi, producing prob-
ability maps P0.

3. For each pixel of I new features Fc are added by sampling pre-defined points of
P0. In principle, complete P0 can be used, but training would become very slow.

4. A new classifier is trained on I and Fi ∪ Fc.

5. Previous two steps are repeated until convergence.

6. The output of the algorithm is a chain of classifiers

The authors reason that since the original image features are still used in each round
of classification, the predictions of the classifier can only improve when more context
features are added. The underlying assumption of the method is that using predictions
of the previous step the classifier will learn the relations and shape models of the classes
implicitly. The method is not limited to any particular choice of classifier, as long as it
is capable of handling a potentially very large feature space. The authors use Proba-
bilistic Boosting Trees [149] and SVMs, but comment that Random Forests and other
ensemble based methods would also be a good choice. A star pattern is used to sample
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Figure 5.15: Left: structure of the neighborhood, used in [150] to sample probability
maps and in [70] to sample both probability maps and raw image intensities. In case of
[150], the average in a 3×3 window around each pixel of the star is also used. Right:
structure of the neighborhood, used in our approach. We compute summary statistics
on the pixels in square neighborhood, excluding the points which lie in interior squares.

the probability maps at each step (see also Fig. 5.15:Left), with rays of length from 5
to 200 and 21 points sampled on each ray in total. Haar features are used as image
features [155]. The authors have demonstrated excellent performance of the algorithm
on the following datasets: the Weizmann dataset of 328 gray scale images of horses [16],
OCR dataset of hand-written words [71], the MSRC dataset for scene parsing/region
labeling [140], human body parts configuration dataset [107], a dataset of MRI images
for caudade segmentation and segmentation of whole brain 3D MRI images [50].

Jurrus et al [70] applied the auto-context approach to membrane segmentation in
ssTEM images. They used an Artificial Neural Network (ANN) as a classifier and raw
image intensities as image features. Jurrus et al use a stencil (Fig. 5.15:Left) both for
sampling the raw image intensities as image features and for sampling the probability
maps at later classification stages. Their results show, that introduction of context leads
to a definite improvement in membrane prediction accuracy. Very recently, the same
group of authors [137]have proposed an improvement of the approach [70], based on
Radon features and context computed at different scales.

A major difference can be observed between our ssTEM data and the data used in
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the works mentioned above. The images of all the datasets of [150] have a certain
degree of rotational invariance: for body parts head is always above legs, the same is
true for the Weizmann dataset of horses and especially for MRI images of the brain.
ssTEM data of [70] comes from a rabbit retina and from the ventral nerve cord of a
c.elegans worm. In both of these image stacks all the neurons follow approximately the
same direction, perpendicular to the slicing plane. In contrast to the objects in these
datasets, neurons and synapses in [15] do not have a preferred orientation with regard
to the slicing plane or each other. Consequently, using stencil or star neighborhood to
sample the probability maps in this case would lead to overfitting the classifier to the
training data and would not generalize well to synapses of other orientations. Instead,
we considered square neighborhoods of each pixel and computed the mean and the
variance of the probability maps in the squares (see also Fig.5.15:Right), thus making
the context rotation invariant in the XY plane. We further considered histograms of
probability maps in the same neighborhoods. Many other statistical summary features
can also be tried. Besides rotational invariance, this approach uses less features and thus
simplifies the feature space and requires less labels.

5.6.4 Anisotropic features

All the features we use in Table 5.1 are based on images smoothed by a convolution with
a Gaussian. Vigra image processing library has recently introduced an option to compute
such features with an anisotropic kernel [82]. Such anisotropic features could be tuned
to use the right amount of 3D context for synapses also for cases when the X×Y context
is fairly large. Anisotropic features of this kind can be thought of as interpolating the
data in the z-direction. If the objects that the learning algorithm is trying to detect are
of isotropic shape (like spheres, which would look like ellipsoids in data with poor 3D
resolution) or of the same orientation, introducing anisotropic features might not help
the classification too much, as the classifier can learn to detect ellipsoids as easily as to
detect spheres. However, synapses are much smaller in the direction perpendicular to
the synaptic cleft and are thus more like disks than spheres. Also, synapses of different
orientation to the slicing plane would look very different from each other in anisotropic
data volumes. Interpolating the data in z-direction could then help detect those synapses
even if all the labels the user gives are for synapses perpendicular to the slicing plane.

5.6.5 Experiments

Out of all the images, provided by [15], we selected two small non-overlapping sub-
stacks, one of 1024×1024×23 voxels for training, the other of 1024×1024×30 voxels for
testing. The lateral(XY) resolution of the images was below 5nm, while section thickness
was below 50nm. Labeling was performed in ilastik, with new labels added interactively
based on the predictions of the Random Forest on isotropic 3D features. Five classes
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Figure 5.16: Training labels for ssTEM data. Membranes are labeled red, synapses -
yellow, mitochondria - blue, vesicles - magenta and the rest green.

were used: membranes, synapses, mitochondria, vesicles and other, however, the labels
were added to optimize the prediction results for the synapse class only. The training
labels are shown in Fig. 5.16. For the features we used, as before, 1)̃intensity, smoothed
by a Gaussian, 2)ẽigenvalues of the Hessian matrix, 3)ẽigenvalues of the structure tensor,
4)L̃aplacian of a Gaussian, 5)g̃radient magnitude of a Gaussian, 6)d̃ifference of Gaus-
sians. Isotropic features were computed with σx = σy = σz = 1, 1.6 and 3.5. Anisotropic
features were computed with (σx, σy, σz) = (1., 1., 1.), (1.6, 1.6, 1.6), (3.5, 3.5, 1.) and
(5, 5, 1.6). Additionally, we tested also adding (σx, σy, σz) = (10, 10, 1.6) to anisotropic
features, but these features did not bring any improvement to the prediction (based on
visual inspection of the probability maps) and were omitted from further experiments.

The autocontext features were computed in squares of size 5, 10, 15, 20, 30 and 40. As
summary statistics we tested mean, variance and 5-bin histogram of the class probability
of pixels in the square, excluding the pixels which belong to the smaller square. No
significant performance difference was found between using the mean and variance or
the histogram, consequently, the Results section only shows probability maps for the
predictions based on mean and variance features. We also tried to incorporate more
3D context information by augmenting the feature set of each pixel by the auto-context
features of the pixel above and below it. Surprisingly, these features did not improve
the prediction. Four iterations of auto-context were used.
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5 Automated Detection and Segmentation of Synapses in Serial Electron Microscopy Images

Figure 5.17: Predictions for a synapse, almost parallel to the slicing plane. Top: Random
Forest on isotropic features. Bottom: Random Forest on anisotropic features. The
synapse is highlighted by the yellow oval.

5.6.6 Preliminary results and Discussion

Isotropic vs. anisotropic features

Fig. 5.17 shows predictions for a synapse almost parallel to the slicing plane. This
synapse is very difficult to detect and isotropic features give almost no indication of its
presence (Fig. 5.17:Top). On the other hand, prediction on anisotropic features finds
some evidence for this synapse, although it is not nearly as certain as for the synapses
perpendicular to the slicing plane (Fig. 5.17:Bottom).

Fig. 5.18 shows another example of such a synapse (yellow), side by side with a
synapse, almost perpendicular to the slicing plane (red). This example is not as difficult
as the one in Fig.5.17: the synaptic cleft is also not visible, but the pre- and post-synaptic
densities are visible across more slices. However, Random Forest on isotropic features
does not detect it (Fig. 5.18:Top), while anisotropic features give a clear indication of
its presence (Fig. 5.18:Bottom). The other synapse, almost perpendicular to the slicing
plane, is detected by both methods, however, the prediction is also more smooth on the
anisotropic features.
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5.6 Outlook: synapse detection in non-isotropic images

Figure 5.18: Predictions for two synapses, one at a low angle to the slicing plane and
difficult to detect (yellow), the other almost perpendicular to the slicing plane and easy
to detect (red). Top: Probability map produced by Random Forest on isotropic features.
Bottom: on anisotropic features.
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Figure 5.19: Comparison of prediction results with(Left) and without(Right) auto-
context features. Yellow arrows on the right part of the Figure point to some groups
of pixels falsely labeled as synapses, when no auto-context features were used. Red
arrows point to false positive synapse predictions, which were not corrected by using
auto-context features.

Auto-context

Fig. 5.19 shows the effect of auto-context features on the Random Forest probability
maps. Besides larger groups of falsely labeled pixels, indicated by yellow arrows on
Fig. 5.19:Right, many smaller false positive errors were also corrected. However, the
largest false positive detection on the border of a mitochondrion indicated by red arrows,
is present in both cases.
A typical false negative detection of the Random Forest with auto-context features is

shown on Fig. 5.20. The small synapse indicated by the yellow oval was found in the
first iteratin, when no auto-context features were used, however, it got lost after these
features were added. The synapse indicated by the red oval is actually found in the later
slices.
False positive detections of the algorithm are usually caused by mitochondrial mem-

branes (Fig. 5.19, red arrows) or endoplasmic reticulum (Fig. 5.21).
Slices of different appearance prove to be very challenging for the classifier. Even

without auto-context features, it fails to detect synapses in the slices which look too
different from the ones used for training (Fig. 5.22).
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Figure 5.20: A typical false negative detection of the Random Forest with auto-context
features. Left: predictions with auto-context features. Right: predictions without auto-
context features. Small synapse in the yellow oval was correctly detected by using image
features only (Right) and missed after adding auto-context features. The synapse in the
red oval will be detected in the next slice (not shown).
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5 Automated Detection and Segmentation of Synapses in Serial Electron Microscopy Images

Figure 5.21: A typical false positive detection of the Random Forest. Left: raw data.
Right: synapse probability map, produced by Random Forest with auto-context features.
These two instances of, probably, endoplasmic reticulum, were also falsely detected using
only image features.
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5.6 Outlook: synapse detection in non-isotropic images

Figure 5.22: An example of classifier prediction on two slices of different appearance.
Top: two slices of raw data. Middle: probability maps, produced by the Random Forest,
using anisotropic image features only. Bottom: also using auto-context features.
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Chapter 6

Final Discussion and Outlook

6.1 Quantification of Bimodal Isotope Peak Distributions in
H/D Exchange Mass Spectrometry

In Chapter 3 we introduced a method for quantification of bimodal isotope peak distri-
butions, based on the HeXicon software. It was validated by a pulse-labeling experiment,
which studied conformational changes induced by ATP incubation. However, the suit-
ability of HeXicon is not limited to pulse-labeling experiments, for which bimodal isotope
distributions indicate the coexistence of alternative conformations and allows the deter-
mination of the interconversion rate between the alternative conformations. It could
also be used for continuous-labeling experiments to distinguish EX1 and EX2 exchange
mechanisms. The results for EX1 regimes would look reverse as compared to our results,
since the bimodal distribution of the isotope peaks in EX1 exchange is characterized by
the appearance of high exchanged species, while in our pulse-labeling experiments low
exchanged species are observed after increasing pre-incubation time in the presence of
ATP. More difficult would be the analysis of a mixed EX1-EX2 exchange behavior. In
such an exchange regime the distribution of the isotope peaks would be bimodal with
changing ratios between low and high exchanged species and concomitant shift of one or
both maxima of the bimodal distribution to higher m/z values. While HeXicon would
still estimate the deuteration distribution correctly, the subsequent analysis of kinetics
will be more challenging.

In the presented approach the bimodal distributions are found based on simple pat-
tern matching. Should the method be extended to other labeling strategies as described
above, this part of the algorithm can be replaced by a learning-based approach.

In summary it can be stated that HeXicon with the described modifications is very
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suitable for detecting bimodal isotope distributions. False negatives and false positives
generally originate from co-eluting peptides with similar m/z causing merging isotope
distributions after deuteration. A poor signal to noise ratio may also contribute to er-
roneous estimation of bimodal deuteration distributions. While the first problem will
be reduced in instruments with higher resolution, the second requires improved sensi-
tivity or modified sample handling. The ability of HeXicon to automatically extract
peptides with a bimodal isotope distribution may lead to a reversal of the workflow.
Instead of first establishing the sequence coverage by MS/MS experiments, one could
first perform an HDX experiment, screen the data with HeXicon searching for specific
features, and subsequently identify only the interesting peptides by a targeted inclusion
list MS/MS experiment. Such an approach would be particularly advantageous for very
large proteins or a complex of several proteins.

6.2 Automated Quantification of 16O/18O-labeled LC/MS Data

In Chapter 4 we presented an automated quantification algorithm for 16O/18O labeling
experiments, which works both in high and low resolution and is not limited to iden-
tified peptides. Sensitivity of the algorithm was tested on an experimental biological
dataset and its consistency and precision were demonstrated on calibration data and
predefined mixtures. The algorithm includes two spectrum segmentation approaches,
one for low resolution data, which is based on image processing methods, and one for
high resolution data, based on efficient sparse data representation. In both cases peak
picking in the spectrum segments is performed by regularized regression. As the isotope
distribution models can be provided either from peptide identification results or from
approximate averagine models, the method is not limited to identified peptides and can
also be used for exploratory data analysis. In fact, neither the segmentation algorithm
nor the pick peaking exploit any properties specific to 16O/18O labeling experiments
and the mass difference between the labels is only used at the very last step to form the
labeled/unlabeled peptide peak groups. The core of the algorithm is thus not limited to
16O/18O labeling and can be adapted for other stable isotope labeling experiments with
minimal changes.

A possible future development direction would be to include an additional post-
processing step for non-identified peptides. Currently, the algorithm reports quantifica-
tion results for all peak groups with correct inter-peak distances. Some of these peak
groups may include noise. Training a classifier on peak groups, identified by Mascot
as labeled by 18O, could significantly improve the specificity of the method without
requiring further user interaction for providing the training labels.
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6.3 Automated Detection and Segmentation of Synapses in
Serial Electron Microscopy Images

In Chapter 5 we introduced a learning-based method for detection and segmentation of
synaptic contacts in electron microscope images of neural tissue. For nearly isotropic im-
ages acquired on a FIB/SEM microscope, the performance of our method is comparable
to that of manual analysis done by experienced neuroscientists. For images with poor
z-resolution we modified our approach by adding auto-context features and achieved
promising results.

Besides our approach of extracting the segmentation from probability maps by a user-
selected threshold, one can also consider an alternative: the segmentations produced by
different threshold values can be combined into a component tree. Currently, we cut the
tree at two levels: first at the user defined threshold for filtering and then at the 0.5
threshold for segmentation. It could also be possible to find a single adaptive threshold
by another classification step, based on object-level features. This additional classifica-
tion step would also help correct the remaining detection errors. However, it would not
be practical to completely replace our interactive thresholding by this approach. Cur-
rently, we only require the user to label 2-3 synapses, but to perform object-level learning
the algorithm would need many more object-level annotations. While individual voxels
of synapses are quite similar in terms of their close neighborhood features, there is a
great variability between synapses as 3D objects (see also Fig. 5.12) and a lot of labels
will be required to capture it.

On the other hand, while the voxel-wise features depend on the image properties of
the acquired stack, the object-level features reflect the biological properties of synapses
and should be transferable between datasets. The following workflow could be imagined:
after the current sequence of steps is performed and the user proofreads the algorithm
detections on a test dataset, the results of the proofreading are taken as positive and
negative examples for a second round of training, this time on the object level. This
second classifier can then be applied to other parts of a larger stack or even to other
stacks of the same resolution and improve its voxel-wise classification results without
any additional cost in user effort.

The synapse detection pipeline of Chapter 5 has so far only been proven to work
for asymmetric synapses. The main difficulty of tuning it for the detection of sym-
metric synapses comes from the fact that there are not enough symmetric synapses in
the dataset we used for testing to make any quantitative conclusions on the quality of
the detection. A test dataset for symmetric synapses would either have to be much
larger, which is not possible with the current field of view limitations of FIB/SEM mi-
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croscopy, or be acquired in a different part of the brain, more rich in inhibitory synapses.

Our experiments on ssTEM data show, that automated synapse detection in data with
low z-resolution is possible. A combination of anisotropic image features with auto-
context features provides good results on easier synapses. Anisotropic features alone
provide very good sensitivity, also for the difficult synapses, oriented at a low angle to
the slicing plane. The effect of using auto-context features is similar to regularization,
efficiently removing most of the false positive detections. However, it also removes the
less certain predictions of the difficult synapses. We have not yet fully optimized the
neighborhood sizes of the features, which might help balance sensitivity of anisotropic
features and specificity of the auto-context. Besides, summary statistics other than
mean, variance and histogram of the pixel neighborhoods could also make auto-context-
based prediction more sensitive. Interesting features to explore include smoother density
estimators instead of histograms and histograms with number of bins increasing with
the size of the neighborhood. Rotation invariant features based on spherical harmonics
could also prove useful.

The auto-context features used in Chapter 5 were always computed in 2D neighbor-
hoods of pixels. We tried to incorporate 3D context by including auto-context features
of the pixels above and below the current one. These additional features did not improve
classification results, which is surprising, considering how superior 3D image features are
compared to 2D features. The reason might be that the total number of features becomes
too large and more training labels are needed to correctly define the decision surface in
very high dimensional feature space. Two more options for 3D context exist: computing
the context features directly in 3D or performing prediction based on the auto-context
in the current slice and in the slices above and below in alternation. The latter case
is similar to the common strategy for membrane detection in ssTEM: detection in 2D
followed by linking in 3D.

The training annotations in Chapter 5 were based on the interactive feedback of the
classifier, aiming to optimize the prediction of the synapse class. Both [150] and [70] use
fully labeled images for training. While we would prefer to avoid requesting such exten-
sive annotation from the user, additional labels, improving also the prediction of other
classes, would perhaps be beneficial for the auto-context learning the correct inter-class
relationships.

The effect of variability of contrast and intensity between different slices of the stack
could be reduced by selecting a training stack with similar variability and annotating it
on a range of different slices. We also did not yet explore image filters which could help
make the slices more similar.
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While the field of view of FIB/SEM microscopes is constantly improving, it is not
nearly as large as what can be achieved with ssTEM imaging. ssTEM microscopy re-
mains a very popular technique in neural circuit reconstruction and could greatly benefit
from automation of synapse detection, which we hope to achieve by exploring the strate-
gies listed above in a future study.

We expect the proposed tool to be useful not only for synapse counting, synapse
density estimation or estimation of synapse-to-neuron ratio, but also for the ongoing
efforts in the reconstruction of neural circuits [21, 58, 28, 68, 106, 59]. Our approach
of detecting synapses without a prior volume segmentation into cells would be especially
attractive in cases when circuit reconstruction is done by only following the ”skeletons”
- the center line of the cells, as presented in [59].
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Frequently used Abbreviations

BIC Bayesian Information Criterion
Da Dalton
EM Electron Microscopy
ESI Electrospray Ionization
FIB/SEM Focused Ion Beam/Scanning Electron Microscopy
FN False Negatives
FP False Positives
HDX or HX Hydrogen Deuterium Exchange
LC/MS Liquid Chromatography Mass Spectrometry
MALDI Matrix Assisted Laser Desorption/Ionization
MS Mass Spectrometry
MS2 synonym for tandem MS or MS/MS
SBFSEM Serial Block Face Scanning Electron Microscopy
TEM Transmission Electron Microscopy
TIC Total Ion Chromatogram
TOF Time of Flight Mass Spectrometer
XIC Extracted Ion Chromatogram

Table 6.1: Frequently used abbreviations (1).
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[40] Pehr Edman, Erik Högfeldt, Lars Gunnar Sillen, and Per-Olof Kinell. Method for
determination of the amino acid sequence in peptides. Acta Chemica Scandinavica,
4:283–293, 1950.

[41] Bradley Efron. Least angle regression. The Annals of Statistics, 32(2):407–499.
Mathematical Reviews number (MathSciNet): MR2060166; Zentralblatt MATH
identifier: 02100802.

[42] Ingvar Eidhammer. Computational methods for mass spectrometry proteomics.
John Wiley & Sons, 2007.

116



Bibliography

[43] Paul H. C. Eilers. Parametric time warping. Anal. Chem., 76(2):404–411, 2003.

[44] Jimmy Eng, Ashley McCormack, and John Yates. An approach to correlate tandem
mass spectral data of peptides with amino acid sequences in a protein database.
Journal of the American Society for Mass Spectrometry, 5(11):976–989, November
1994.

[45] S W Englander, L Mayne, Y Bai, and T R Sosnick. Hydrogen exchange: the mod-
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