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Introduction

The spirit of (classical) Iwasawa theory is imbued with Iwasawa’s “revolu-
tionary idea that previously inaccessible information about the arithmetic of
a number field k can be obtained by investigating certain infinite towers of
number fields lying above k” - as J. Coates mentioned in the introduction
of [10]. The original example is the p-cyclotomic tower for a fixed rational
prime p

k ⊆ k0 ⊆ · · · ⊆ kn · · · ⊆ k∞,

consisting of the fields kn = k(µpn+1) obtained by adjoining the pn+1-roots
of unity - or more sophisticated the pn+1-torsion points of the multiplicative
group Gm - to k.
More precisely, the strategy of (the algebraic part of) Iwasawa theory consists
in studying abelian Galois groups N over a Zp-extension k∞ of k as a module
over the completed group algebra, the Iwasawa algebra,

Λ(Γ) = Zp[[Γ]] = lim←−
n

Zp[Γ/Γn]

where Γ = G(k∞/k) ∼= Zp, Γn = pnΓ, and Zp[Γ/Γn] denotes the group ring
of Γ/Γn with coefficients in Zp. Since Λ = Λ(Γ), which is (uncanonically)
isomorphic to the ring of formal power series Zp[[T ]] in one indeterminate
T with coefficients in Zp, is a commutative regular local ring of dimension
2, the general structure theory for such rings can be used to determine the
Galois module structure of N. In particular, one associates to N its λ- resp.
µ-invariant and its characteristic ideal, which bear a lot of information about
the arithmetic of the ground field k or the fields kn in the tower, e.g. if one
takes for N the Λ-torsion module Xnr := G(L∞/k∞) where L∞ is the maxi-
mal unramified abelian p-extension of k∞.

In [40] Mazur applied techniques similar to those of Iwasawa to study
the Mordell-Weil group A(kn) and the p-primary Shafarevich-Tate group
X(A, kn) of an abelian varietyA over a number field k in a Zp-tower kn ⊆ k∞
above k. For simplicity let us restrict to the case of an elliptic curve E. In
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this context the Pontryagin dual Sel(E, k∞)∨ of the p-primary Selmer group
Sel(E, k∞) over k∞ plays a similar role as the module Xnr before. There is
the long standing

Conjecture (Mazur) If E has good, ordinary reduction at all places lying
above p, then Sel(E, k∞)∨ is a Λ(Γ)-torsion module.

This conjecture has been proved recently by Kato [36] for k|Q abelian
if E is already defined over Q (and hence modular due to Wiles et. al.). If
E has supersingular reduction at some prime ν|p of k, then Sel(E, k∞)∨ is
definitely not Λ-torsion. The precise Λ-rank is predicted by Schneider [56]:

Conjecture (Schneider)

rkΛ(Γ)Sel(E, k∞)∨ =
∑

ν|p, ssg

[kν : Qp],

where the sum varies over the primes ν|p where E has supersingular reduc-
tion.

Now assume that E has good, ordinary reduction at all places of k ly-
ing above p, that Sel(E, k∞)∨ is Λ(Γ)-torsion and that X(E, kn) is finite
for all n ≥ 0. Then Mazur proves an asymptotic formula for the order of
X(E, kn) in the cyclotomic tower involving the invariants of the Λ(Γ)-module
Sel(E, k∞)∨. Furthermore, its λ-invariant gives an upper bound for the Z-
rank of the Mordell-Weil groups E(kn). If, in addition, E is modular, there
exists a Main Conjecture which links the characteristic ideal of Sel(E, k∞)∨

to a p-adic L-function LMSD constructed by Mazur and Swinnerton-Dyer
([41] and [42]). Roughly speaking it interpolates - up to the real period of E
and a further factor - the values at 1 of the twisted Hasse-Weil L-series of E.
For elliptic curves E over Q, Kato proves “one half” of this conjecture: the
characteristic ideal of Sel(E, k∞)∨ at least contains pmLMSD. Conjecturally,
LMSD should be in Λ(Γ), but it is only known to be in Λ(Γ)⊗Zp Qp in general.

Since there is a beautiful Iwasawa theory for the field kcycl obtained by
adjoining the p-power roots of unity to a number field k, it seems natural to
expect a reasonable analogous theory for the field k∞ = k(E(p)) obtained
by adjoining to k all p-power torsion points of an elliptic curve E - or more
generally, abelian variety - defined over k.

If E admits complex multiplication (CM), the Galois group G = G(k∞/k)
is an open subgroup of (Zp

∗)2 while otherwise - due to a celebrated theorem
of Serre [58] - an open subgroup of Gl2(Zp). The last case is quite different
as we will see in what follows.
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The CM-case leads to the study of modules over the Iwasawa algebra
Λ(G) isomorphic to the ring of formal power series Zp[[S, T ]] in two indeter-
minates S and T. Therefore the structure theory for modules over regular
local rings again applies again. In general, this theory is well-understood and
almost complete thanks to the work of Coates-Wiles ([13], [14]) and Perrin-
Riou [52]. For this situation a two-variable Main conjecture was formulated
by Yager [65] and proved by Rubin [54].

In the non-CM case only little is known. It was M. Harris [25] in 1979 who
began to study the Selmer group Sel(E, k∞) over the extension k∞ = k(E(p))
in order to obtain information about the asymptotic growth of the Mordell-
Weil group E(kn) in the “canonical tower”

k ⊆ k0 ⊆ · · · ⊆ k∞,

where ki = k(E[pi+1]) is the trivializing extension for the Galois module
E[pi+1] of pi+1-torsion points of E. Since G = G(k∞/k) is an open subgroup
of Gl2(Zp) and so a (compact) p-adic Lie group, Harris’ thesis can be con-
sidered as the birth of the Iwasawa theory of (non-commutative) p-adic Lie
groups. The underlying idea is that it is easier to compute the Selmer group
over the trivializing extension k∞ than for example over the cyclotomic kcycl.
Via descent to kn - as in Mazur’s theory - one hopes to get the desired in-
formation on Sel(E, kn) provided that the “difference” between Sel(E, kn)
and Sel(E, k∞)G(k∞/kn) can be controlled. For asymptotic upper bounds of
the Mordell-Weil rank over the intermediate fields in the above tower the
following conjecture becomes crucial

Conjecture (Harris) If E has good, ordinary reduction at all places lying
above p, then Sel(E, k∞)∨ is a Λ(G)-torsion module.

But for the advantage of working over the trivializing extension one has
to pay: The Iwasawa algebra Λ = Λ(G) is a non-commutative ring and there
exists no satisfactory theory for modules over such rings. We will come back
to this problem below but we already would like to mention that Λ(G) is at
least a both left and right Noetherian ring without zero divisors if we assume
that G is a torsion-free p-adic pro-p-group.
However, Harris’ thesis contains some errors 1 and many questions were left
untouched.

In the late 90th J. Coates and S. Howson ([12], [11], [8], [29]) as well as
Y. Ochi [49] revived the Iwasawa theory of p-adic Lie groups. First of all,

1See [27] for some corrections and a discussion which errors are irreparabel.
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Coates-Howson refined Harris’ conjecture to a precise statement of Λ-ranks -
analogous to Schneider’s conjecture - in case that E has good supersingular
reduction at some places ν above p. Assume that E has good reduction at
every prime above p and thatG = G(k(E(p))/k) is a torsion-free pro-p-group.
Then they prove that∑

ν|p, ssg

[kν : Qp] ≤ rkΛ(G)Sel(E,K∞)∨ ≤ [k : Q],

where the sum varies over the primes ν|p where E has supersingular reduc-
tion, and they formulated the following

Conjecture (Coates-Howson)

rkΛ(G)Sel(E,K∞)∨ =
∑

ν|p, ssg

[kν : Qp].

Assuming this latter conjecture, they proved a remarkable formula for the
Euler characteristic

χ := χ(G, Sel(E, k∞)) =
∏
i

(#Hi(G, Sel(E, k∞)))(−1)i

(if defined) for the Selmer group (see [11]).

Theorem (Coates-Howson) Assume that p ≥ 5 is a prime such that

(i) E has good ordinary reduction at all places ν of k dividing p,

(ii) Sel(E, k) is finite,

(iii) Sel(E, k∞)∨ is Λ(G)-torsion.

Then Hi(G, Sel(E, k∞)) is finite for i = 0, 1 and equal to 0 for i ≥ 2, and

χ =
#X(E, k) ·

∏
ν|p |#Ẽν(kν)|−2

p

(#E(k)(p))2
×

∏
ν

|cν |−1
p ×

∏
ν ε M

|Lν(E, 1)|p,

where the p-adic valuation | |p of Q is normalizes so that |p|p = p−1.

Here, for each prime ν of k, cν = |E(kν) : E0(kν)| denotes the local Tam-
agawa factor at ν, where E0(kν) is the subgroup of E(kν) consisting of the
points with non-singular reduction at ν; Lν(E, s) denotes the Euler factor of
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E at ν. Finally, Ẽν is the reduction of E modulo ν whileM is defined to be
the finite set of places of k where the classical j-invariant of E is non-integral,
i.e. where E has potential multiplicative reduction.

Y. Ochi, who studied more generally the properties of Iwasawa mod-
ules (over local and global p-adic Lie extensions) arising as cohomology
groups from certain p-adic representations, determined the projective Λ(G)-
dimension of the Pontryagin dual of the Selmer group under the assumption
that the conjecture of Coates-Howson holds:

pdΛ(G)Sel(E, k∞)∨ = 2,

where G = G(k(E(p)/k) as before.

All these results provide evidence that a deep and interesting Iwasawa
theory also exists in the non-CM case and we hope that the present work
will substantiate this even more.

One of the dominating themes of this thesis is the study of the Iwasawa
algebra Λ(G) for a p-adic analytic group G. Let us assume for simplicity that
G is a torsion-free p-adic analytic pro-p-group. Then, as already mentioned,
Λ(G) is a (both left and right) Noetherian ring without zero-divisors. Fur-
thermore, by results of Brumer it is known that Λ(G) has finite projective
dimension equal to

pd(Λ(G)) = dim(G) + 1,

where dim(G) denotes the dimension of G as p-adic analytic manifold and
agrees with its p-cohomological dimension. So in some sense Λ(G) should be
considered as a “regular” ring and it is natural to ask

Is there an analogous structure theory for Λ(G)-modules?

A more modest question but possibly fundamental for the first one is

What is a good definition of pseudo-null resp. pseudo-isomorphism
in the context of Λ(G)-modules?

We recall that for a commutative Noetherian ring R and a finitely generated
R-module M the definition is the following: The dimension of M is defined
to be the Krull dimension of the support of M in Spec(R) and M is said to be
pseudo-null, if its codimension is greater than 1. M. Harris already proposed
a vague definition of pseudo-null using a certain filtration of Λ(G), which in
general differs from the M-adic one, where M denotes the maximal ideal of
Λ(G), and cannot be described easily. Besides some more or less trivial cases
it turned out very difficult to verify whether a module is pseudo-null. In this
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thesis we give an answer to this question using a different philosophy to be
explained now.

In [33] U. Jannsen proposed to use the homotopy theory for Λ-modules
in order to study modules over the completed group algebra Λ = Zp[[G]] of a
compact p-adic Lie group G. In this theory the “higher” Iwasawa adjoints
Er(M) := ExtrΛ(M,Λ) play a crucial role and can be considered as a certain
analogue of homotopy groups. In an absolutely different context and for an
arbitrary (left and right Noetherian) associative ring Λ, Björk ([5]) analyzed
a spectral sequence for such Ext-groups associated with the bidualizing com-
plex. He shows that each finitely generated module over an Auslander regular
or more generally Auslander Gorenstein ring (for the definitions see 1.5.3) is
intrinsically equipped with a canonical filtration

T0(M) ⊆ T1(M) ⊆ · · · ⊆ Td−1(M) ⊆ Td(M) = M.

Using this filtration he defines the dimension of a Λ-module M. It turns out
that for a commutative regular local ring this dimension equals the Krull di-
mension and that Ti(M) is just the maximal submodule ofM with dimension
less or equal to i.

Thus the following theorem states a fundamental structure property of
Λ(G), which is crucial for the applications in Iwasawa theory we have in mind
but is also interesting in its own right:

Theorem (Theorem 1.5.27) Λ(G) is an Auslander regular ring.

For the purpose of studying the Zp-torsion part of Λ(G)-module the fol-
lowing consequence for the completed group algebra Z/pn[[G]] ∼= Λ/pn with
coefficients in Z/pn becomes very useful.

Theorem (Theorem 1.5.28)

(i) Zp/p
m[[G]] is an Auslander-Gorenstein ring with injective dimension

equal to cdp(G).

(ii) Fp[[G]] is an Auslander regular ring of dimension cdp(G).

Using these results and applying Björk’s theory to Iwasawa theory, it is
quite obvious how to define pseudo-null:

A finitely generated Λ-module is called pseudo-null if and only if
its co-dimension is greater or equal to 2.
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In the case G = Zd
p this is just the usual definition. So we are convinced that

our definition is the right generalization to the non-commutative case.
Though we are far away from a satisfactory structure theorem for Λ(G)-

modules, we should mention that at least the Zp-torsion part is uniquely
determined in the quotient category Λ-mod/PN of the category Λ-mod of
finitely generated Λ = Λ(G)-modules with respect to the Serre subcategory
PN of pseudo-null Λ-modules.

Theorem (Theorem 1.5.37) Assume that G is a p-adic analytic group with-
out p-torsion such that both Λ = Λ(G) and Λ/p are integral. Then, for any
Λ-module M, there exist uniquely (up to order) determined natural numbers
n1, . . . , nr such that

torZpM ≡
⊕

1≤i≤r

Λ/pni mod PN .

Since p lies in the center of Λ(G) and generates a prime ideal, it is not
surprising that we get this analogue for the p-primary part. Nevertheless the
fact that at least this easiest case admits a “structure theorem” encourages
to continue the investigation for a general structure theory. The first step
might be to answer the following question

What are the simple objects in Λ-mod/PN besides Λ/p and does
any finitely generated Λ-torsion module have finite length in this
category?

The answer would be very important in order to formulate a Main Con-
jecture over the trivializing extension of an elliptic curve E without CM.

Before passing over to apply these techniques in arithmetic geometry, we
want to state two further results on the structure of Λ(G), if G is a pro-p
Poincaré group of finite cohomological dimension and such that Λ = Λ(G)
is Noetherian. The first result tells us that Λ(G) “admits local duality à
la Grothendieck”, i.e. if local cohomology is defined in an natural way (see
section 1.6), we obtain

Theorem (Theorem 1.6.6) For any M ε Λ(G)-mod, there are canonical iso-
morphisms

Ei(M) ∼= HomΛ(Hd−i
M (M),Hd

M(Λ)) ∼= Hd−i
M (M)∨,

where d = cdp(G) + 1.
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The second result generalizes the Auslander-Buchsbaum equality.

Theorem (Theorem 1.7.2) For any M ε Λ-mod, it holds

pdΛ(M) + depthΛ(M) = depthΛ(Λ).

The above, purely algebraic results, especially concerning the dimension
theory, form the heart of chapter 1 and will be fundamental in our study
of “arithmetic” Iwasawa modules in chapters 2 and 3, which we will outline
now.

In chapter 2 we first recall what is known - due to S. Howson’s and Y.
Ochi’s work - about the local Iwasawa modules coming from (local) Galois co-
homology of p-adic representations. They calculated the ranks and Λ-torsion
submodules in many cases. Here we follow closely Ochi’s approach which
uses Jannsen’s homotopy theory of Λ-modules. Furthermore we generalize
Wintenberger’s result on the Galois module structure of local units. Let k
be a finite extension of Qp and assume that k∞|k is a Galois extension with
Galois group G ∼= Γ oρ ∆, where Γ is a pro-p Lie group of dimension 2 (e.g.
Γ = Zp o Zp) and ∆ is a profinite group of possibly infinite order prime to p,
which acts on Γ via ρ : ∆ → Aut(Γ). Then we determine the Λ(G)-module
structure of the Galois group Gab

k∞
(p) = G(k∞(p)/k∞), where k∞(p) is the

maximal abelian p-extension of k∞, see theorem 2.2.4.
In section 2.3 we apply these results to the local study of elliptic curves

E with CM, i.e. we determine the structure of local cohomology groups with
certain division points of E as coefficients.

Chapter 3 is devoted to the study of “global” Iwasawa modules. For a
finite set S of places of a number field k let k∞|k be a Galois extension
unramified outside S such that the Galois group G(k∞/k) is a torsion-free
p-adic Lie-group and let kS be the maximal outside S unramified extension
of k. In section 3.1.1 we treat the Galois group

XS = G(kS/k∞)ab(p)

of the maximal abelian p-extension of k∞ unramified outside S. If G ∼= Zd
p,

there is a theorem of R. Greenberg [21], generalized by T. Nguyen-Quang-Do
[47]:

Theorem If the weak Leopoldt conjecture holds for k∞, i.e. if
H2(GS(k∞),Qp/Zp) = 0, then the Λ(G)-module XS does not contain any
non-trivial pseudo-null submodule.
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If G is a (non-commutative) torsion-free p-adic Lie group, Greenberg still
could prove that XS does not contain any non-zero finite submodule but he
suggested that there should be a stronger analogue of the above result. In
fact, using our definition of pseudo-null, we prove

Theorem (Theorem 3.1.1) If H2(GS(k∞),Qp/Zp) = 0, then the Λ(G)-module
XS does not contain any non-trivial pseudo-null submodule.

This result is a special case of the following. Let A be a p-divisible p-
torsion abelian group of Zp-corank r with a continuous action by GS(k) =
G(kS/k). The Pontryagin dual of the cohomology group H1(GS(k∞), A) is
denoted by XS,A. Assuming the weak Leopoldt conjecture for k∞ and A, i.e.
the vanishing of H2(GS(k∞), A), Y. Ochi has shown that XS,A is a finitely
Λ(G) module of rank

rkΛ(G)XS,A = r2(k)r,

where r2(k) denotes the number of pairs of complex places of k. To this
property we add

Theorem (Theorem 3.0.3) Let G be a p-adic Lie group without p-torsion. If
the “weak Leopoldt conjecture holds for A and k∞”, i.e. H2(GS(k∞), A) = 0,
then H1(GS(k∞), A)∨ does not contain any non-zero pseudo-null submodule.

The Λ(G)-moduleXS is closely related to the moduleXnr and to the mod-
ule XS

cs which denotes the Galois group of the maximal abelian unramified
pro-p-extension of k∞ in which every prime above S is completely decom-
posed. We will write M ∼ N if there exists a Λ-homomorphism M → N
whose kernel and cokernel is pseudo-null.

Theorem (Theorem 3.1.5) If H2(GS(k∞),Qp/Zp) = 0, µp∞ ⊆ k∞, and
dim(Gν) ≥ 2 for all ν ε Sf , then

Xnr(−1) ∼ XS
cs(−1) ∼ E1(torΛXS).

If, in addition, G ∼= Zr
p, r ≥ 2, then there is a pseudo-isomorphism

Xnr(−1) ∼ XS
cs(−1) ∼ (torΛXS)

◦,

where ◦ means that G acts via the involution g 7→ g−1.

For the next result, which generalizes theorem 11.3.7 of [45], we need the
notation of the µ-invariant for a Λ-module M : it is defined as the Fp[[G]]-rank
of

⊕
i≥0 pi+1M/piM in case the latter is well-defined, see (1.5.29).
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Theorem (Theorem 3.1.13) Let k∞|k be a p-adic Lie extension such that G
is without p-torsion and Fp[[G]] is an integral ring. Then G = G(kS(p)/k∞) is
a free pro-p-group if and only if µ(XS) = 0 and the weak Leopoldt conjecture
holds, i.e. H2(GS(k∞),Qp/Zp) = 0.

In theorem 3.1.14 we describe how the weak Leopoldt conjecture and the
vanishing of µ(XS) - if considered simultaneously - behave under change of
the base field. Furthermore, we get a formula for the µ-invariants for different
S.

In section 3.1.2 we study the norm-coherent S-units of k∞

ES := lim←−
k′

(O×k′,S ⊗ Zp)

by means of Jannsen’s spectral sequence for Iwasawa adjoints. Using Kum-
mer theory, we compare ES to

ES(k∞) := (ES(k∞)⊗Z Qp/Zp)
∨,

where ES(k∞) = lim−→
k′

ES(k
′) denotes the (discrete module of) S-units of k∞.

In particular, we show that E0(ES) ∼= E0E0(ES(k∞)) and thus

rkΛES = rkΛES = r2(k)

under some assumptions, see corollary 3.1.22. If E0(ES) is projective, its
structure can be described more precisely. A criterion which tells us when
this is the case is given in proposition 3.1.23.

In section 3.2 we consider cohomology groups associated with abelian
varieties. Let A be an abelian variety defined over k and k∞ = k(A(p)).
Since k(µp∞) ⊆ k(A(p)) by the Weil-pairing and the fact that A is isogenous
over k to its dual A∨, the vanishing of H2(GS(k∞),A(p)) follows from the
validity of the weak Leopoldt conjecture for the cyclotomic extension of any
number field. Hence

Theorem (Theorem 3.2.6) Let k∞ = k(A(p)) and assume that G does not
have any p-torsion. Then H1(GS(k∞),A(p))∨ has no non-zero pseudo-null
submodule.

Then we draw our attention to the (p-)Selmer group Sel(A, k∞) of A over
k∞ = k(A(p)). First we generalize a result of P. Billot in the case of good,

supersingular reduction, i.e. Ãkν (p) = 0, at any place dividing p. Over a Zp-
extension an analogous statement was proved by K. Wingberg [63, cor. 2.5].
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We shall write A∨ for the dual abelian variety of A. Assume that G(k∞/k)
is a pro-p-group without any p-torsion. Then the following holds (corollary
3.2.5):

Xcs ⊗Zp (A∨(p))∨ ∼ E1(torΛSel(A, k∞)∨).

If, in addition, A has CM, then the following holds

Xcs ⊗Zp (A∨(p))∨ ∼ (torΛSel(A, k∞)∨)◦.

The next two theorems, which are obtained in a joined work with Y. Ochi,
concern the Selmer group of an elliptic curve E without CM.

Theorem (Theorem 3.2.14) Assume that E has good reduction at any place
dividing p and that the conjecture of Coates and Howson holds. Then
Sel(E, k∞)∨ has no non-zero pseudo-null Λ-submodule.

There is a similar theorem due to Perrin-Riou on the non-existence of
pseudo-null submodules in the CM case ([51], Theorem 2.4). Furthermore,
there is a theorem of Greenberg ([23]) and the work of Hachimori-Matsuno
on finite submodules of the Selmer group over the cyclotomic Zp-extension
([24]). In this case, it is known that non-zero finite submodules can occur in
the dual of Selmer over the cyclotomic Zp-extension.

Concerning the “size” of the Selmer group over the trivializing extension,
R. Greenberg had already remarked that Sel(E, k∞)∨ ⊗Zp Qp has infinite
dimension over Qp for all p ≥ 5 (see the appendix of [11]), and earlier M.
Harris [26] had given examples where E(k∞) ⊗Z Qp has infinite dimension
over Qp.

Recall that we denote by kcycl = k(µp∞) the extension obtained by ad-
joining the p-power roots of unity to k. Putting H = G(k∞/kcycl) and
Γ = G(kcycl/k), Sel(E, k∞)∨ has a structure of Λ(H)-module by restric-
tion. An observation of Coates and Howson [11] is that, if Sel(E, kcycl)

∨ is
Λ(Γ)-torsion and its Iwasawa µ-invariant is zero, then Sel(E, k∞)∨ is finitely
generated over Λ(H). It turns out that the Λ(H)-torsion submodule of it
is a pseudo-null Λ(G)-submodule of Sel(E, k∞)∨. Therefore the result above
answers a question of John Coates positively as follows:

Theorem (Theorem 3.2.15). Assume that G is pro-p and that Sel(E, kcycl)
∨

is a finitely generated Zp-module. Then Sel(E, k∞)∨ is a finitely generated
Λ(H)-module, whose Λ(H)-torsion submodule is zero.

As a numerical example of this theorem, take E to be the modular elliptic
curve X1(11), with equation
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y2 + y = x3 − x2 ,

take p = 5, k = Q(µ5) and kcycl = Q(µ5∞). Then G = G(k∞/k) is a pro-
5-group. Coates and Howson ([11]) showed that Sel(E, k∞)∨ is a finitely
generated Λ(H)-module of rank 4, where H = G(k∞/Q(µ5∞)). The above
theorem shows that the Λ(H)-torsion submodule of Sel(E, k∞)∨ is zero.

Finally, we show that the Pontryagin dual of the 5-Selmer group of the
elliptic curve E = X0(11) has a positive µ-invariant.
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Chapter 1

Λ-modules

1.1 Basic properties of Λ-modules

1.1.1 Preliminaries

The aim of the first part of this work is to give some complements to the
theory of Λ-modules, where we denote by Λ = Λ(G) the completed group
algebra of a profinite group G over Zp

Λ(G) = Zp[[G]] = lim←−
U

Zp[G/U ].

Here U runs through the open normal subgroups of G. We start by recalling
some well-known facts concerning Λ, proofs of which can be found in [45,
V§2]. By a (left) Λ-moduleM we understand a separated topological module,
i.e M is a Hausdorff topological Zp-module with a continuous G-action. Since
the involution of Λ given by passing to the inverses of group elements induces
a natural equivalence between the categories of left and right Λ-modules,
we will often ignore the difference without further mention. The category
C = C(G) of compact Λ-modules and the category D = D(G) of discrete
Λ-modules will be of particular interest. Both are abelian categories, and
Pontryagin duality defines a contravariant equivalence of categories between
them. Hence, while C has sufficiently many projectives and exact inverse
limits the dual statement holds for D.
By IG we denote the augmentation ideal of Λ, i.e. the kernel of the canonical
epimorphism

Zp[[G]] � Zp

and by

MG = M/IGM

13
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the module of coinvariants of M. Then, the G-homology H•(G,M) of a
compact Λ-module M can be defined as left derived functor of −G or al-
ternatively as TorΛ

• (Zp,M), where Tor denotes the left derived functor of
the complete tensor product −⊗̂Λ − . We obtain a canonical isomorphism
Hi(G,M) ∼= Hi(G,M∨)∨, where H•(G,−) denotes the usual G-cohomology
for a discrete Λ-module considered as a discrete abelian group and ∨ is the
Pontryagin dual.

In order to state the topological Nakayama lemma we define the radical
RadG of Λ to be the intersection of all open left maximal ideals. It is a closed
two-sided ideal and its powers define a topology on Λ which is called the R-
topology. If a p-Sylow group Gp is of finite index in G, then this topology
coincides with the canonical one [45, 5.2.16], RadG is an open ideal of Λ and
all (left) maximal ideals are open. Furthermore, Λ(G) is a local ring if and
only if G is a pro-p-group. In this case the maximal ideal of Λ is equal to
pΛ + IG.

Lemma 1.1.1. (Topological Nakayama Lemma)

(i) If M ε C and RadGM = M, then M = 0.

(ii) Assume that G is a pro-p-group, i.e. Λ a local ring with maximal ideal
M. Then the following holds:

(a) M is generated by x1, . . . , xr if and only if xi + MM, i = 1, . . . , r,
generate M/MM as Fp-vector space.

(b) Let P ε C be finitely generated. Then P is Λ-free if and only if P
is Λ-projective.

Concerning the projective dimension pdΛM , respectively global dimen-
sion pd(Λ) of Λ, which are both defined with respect to the category C,
there are the following results, where cdp(G) denotes the p-cohomological
dimension of G.

Proposition 1.1.2. (i) pdΛZp = cdp(G) and

(ii) pd(Λ) = cdp(G) + 1.

If Λ is Noetherian (e.g. if G is a p-adic Lie group), the forgetful functor
from the category C of compact Λ-modules to the category Λ-Mod of abstract
Λ-modules defines an equivalence between the full subcategory Cfg of finitely
generated compact Λ-modules and the full subcategory Λ-mod of finitely
generated abstract Λ-modules. In particular, the different definitions of the
projective, respectively global dimension coincide in this case.
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1.1.2 p-adic Lie groups

For the purposes of this work a special class of profinite groups is of particular
interest: the (compact) p-adic Lie groups or also called (compact) p-adic
analytic groups, i.e. the group objects in the category of p-adic analytic
manifolds over Qp. There is a famous characterization of them due to Lazard
[38] (see also [16] 9.36):

Theorem 1.1.3. The following are equivalent for a topological group G :

(i) G is a compact p-adic Lie group.

(ii) G contains a normal open uniformly powerful pro-p-subgroup of finite
index.

Let us briefly recall the definitions: A pro-p-group G is called powerful,
if [G,G] ⊆ Gp for odd p, respectively [G,G] ⊆ G4 for p = 2 holds. A
(topologically) finitely generated powerful pro-p-group G is uniform if the
p-power map induces isomorphisms

Pi(G)/Pi+1(G)
·p→ Pi+1(G)/Pi+2(G), i ≥ 1,

where Pi(G) denotes the lower central p-series given by

P1(G) = G, Pi+1(G) = Pi(G)p[Pi(G), G], i ≥ 1,

(for finitely generated pro-p-groups). It can be shown that for a uniform
group G the sets Gpi

:= {gpi| g ε G} form subgroups and in fact Gpi
=

Pi+1(G), i ≥ 0. For example, all the congruence kernels of GLn(Zp), SLn(Zp)
or PGLn(Zp) are uniform pro-p-groups for p 6= 2, in particular the lower
central p-series of the first congruence kernel corresponds precisely to the
higher congruence kernels.

It is a remarkable fact that the analytic structure of a p-adic Lie group
is already determined by its topological group structure. Also, the category
of p-adic analytic groups is stable under the formation of closed subgroups,
quotients and group extensions (See [16], chapter 10, for these facts). The
following cohomological property is indispensable

Theorem 1.1.4. A p-adic Lie group of dimension d (as p-adic analytic
manifold) without p-torsion is a Poincaré group1 at p of dimension d.

1For the definition of Poincaré groups see [45].
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With respect to the completed group algebra we know that Λ(G) is
Noetherian for any compact p-adic Lie group (see [38]V 2.2.4). If, in addition,
G is uniform, then Λ(G) is an integral domain, i.e. the only zero-divisor in
Λ(G) is 0 ([38]). In fact the latter property also holds for any p-adic analytic
group without elements of finite order (see [46]). For instance, for p ≥ n+ 2,
the group Gln(Zp) has no elements of order p, in particular, GL2(Zp) contains
no elements of finite p-power order if p ≥ 5 (see [29] 4.7) .

In this case (i.e. Λ is both left and right Noetherian and without zero-
divisors) we can form a skew field Q(G) of fractions of Λ (see [19]). This
allows us to define the rank of a Λ-module:

Definition 1.1.5. The rank rkΛM is defined to be the dimension of
M ⊗Λ Q(G) as a left vector space over Q(G)

rkΛM = dimQ(G)(M ⊗Λ Q(G)).

1.1.3 Minimal resolutions

Let Λ = Zp[[G]] the completed group algebra over Zp of a finitely generated
pro-p-group G and k = Λ/M ∼= Fp its residue class field. We assume that Λ
is Noetherian. For any finitely generated Λ-module M we have the minimal
representation

Λd0
ϕ0 // // M

with d0 = dimkM/MM by the Nakayama-Lemma. Proceeding in the same
manner for ker(ϕ0) and d1 = dimk ker(ϕ0)/M ker(ϕ0), we construct a mini-
mal free resolution

F• : · · · // Λdn
ϕn // Λ

dn−1
ϕn−1 // · · · // Λd1 ϕ1 // Λd0 ϕ0 // M // 0.

It is easily verified that F• is determined by M up to isomorphism of
complexes.

Proposition 1.1.6. Let M be a finitely generated Λ-module and

F• : · · · // Fn
ϕn // Fn−1

ϕn−1 // · · · // F1
ϕ1 // F0

// 0.

a free resolution of M . Then the following are equivalent:

(i) F• is minimal,

(ii) ϕi(Fi) ⊆MFi−1 for all i ≥ 1,
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(iii) rkΛ(Fi) = dimk TorΛ
i (M,k) for all i ≥ 0,

(iv) rkΛ(Fi) = dimk ExtiΛ(M,k) for all i ≥ 0.

Proof. The equivalence of (i) and (ii) follows easily from Nakayama’s lemma.
Since TorΛ

i (M,k) = Hi(F• ⊗ k), (iii) holds if and only if ϕi ⊗ k = 0 for all
i ≥ 0, which is equivalent to (ii). Using ExtiΛ(M,k) = Hi(HomΛ(F•, k)) the
equivalence of (ii) and (iv) follows similarly.

Corollary 1.1.7. Let M be a finitely generated Λ-module. Then

pd(M) = max{i | Fi 6= 0}
= max{i | TorΛ

i (M,k) 6= 0}
= max{i | ExtiΛ(M,k) 6= 0}

1.2 Homotopy theory of modules

In this section we briefly recall some definitions and results from the homo-
topy theory of modules for our special situation in the setting of U. Jannsen,
who developed further the homotopy theory which was introduced by Eck-
mann and Hilton and extended by Auslander and Bridger [1]. The proofs
can be found in [33, §1] or in [45, V§4]. Though this theory works in much
larger generality, we restrict ourselves to the case where Λ is the completed
group algebra over Zp and even supposed to be Noetherian. Furthermore,
all Λ-modules considered are assumed to be finitely generated.

Definition 1.2.1. A morphism f : M → N of Λ-modules is homotopic to
zero, if it factors through a projective module P :

f : M → P → N.

Two morphisms f, g are homotopic (f ' g), if f − g is homotopic to zero.
Let [M,N ] = HomΛ(M,N)/{f ' 0} be the group of homotopy classes of
morphisms fromM toN, and let Ho(Λ) be the category, whose objects are the
objects of Λ-mod and whose morphism sets are given by HomHo(Λ)(M,N) =
[M,N ], i.e. the category of “Λ-modules up to homotopy.”2

2The additive homotopy category of modules is not abelian in general. It can be shown
that it forms a closed model category (for suitable definitions of (co)fibrations and weak
equivalences). In general, it cannot be extended to a triangulated category: If it were
a triangulated category in general there would have to exist for any module M a weak
equivalence between M and ΩM, where Ω denotes the loop space functor which will be
introduced below. But for a ring Λ with finite projective dimension this would imply that
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It turns out that M and N are homotopy equivalent, M ' N, i.e isomor-
phic in Ho(Λ), if and only if M ⊕ P ∼= N ⊕Q with projective Λ-modules P
and Q. In particular, M ' 0 if and only if M is projective.

Definition 1.2.2. For M ε Λ-mod we define the Iwasawa adjoints of M to
be

Ei(M) := ExtiΛ(M,Λ), i ≥ 0,

which are a priori right Λ-modules by functoriality and the right Λ-structure
of the bi-module Λ but will be considered as left modules via the involution
of Λ. By convention we set Ei(M) = 0 for i < 0. The Λ-dual E0(M) will also
be denoted by M+.

It can be shown that for i ≥ 1 the functor Ei factors through Ho(Λ)
defining a functor

Ei : Ho(Λ)→ Λ-mod.

We just mention some functorial behaviour of Ei. For a closed subgroup
H ⊆ G we denote by IndHG (M) = M⊗̂Λ(H)Λ(G) the compact induction of a
Λ(H)-module to a Λ(G)-module.

Proposition 1.2.3. Let H be a closed subgroup of G.

(i) For any M ε Λ(H)-mod and any i we have an isomorphism of Λ-
modules

Ei
Λ(G)(IndHGM) ∼= IndHGEi

Λ(H)(M).

(ii) If, in addition, H is an open subgroup, then there is an isomorphism
of Λ(H)-modules

Ei
Λ(G)(M) ∼= Ei

Λ(H)(M).

Proof. The first statement is proved in [50, lemma 5.5] while the second one
can be found in [33, lemma 2.3].

Now we will describe the construction of a contravariant duality functor,
the transpose

D : Ho(Λ)→ Ho(Λ).

all modules in Λ-mod are projective.
However, if Λ is a quasi-Frobenius ring (for the definition and properties see [61, 4.2]), e.g.
the group algebra of a finite group over a field Λ = k[G], then its associated homotopy
category is triangulated ([18, IV Ex. 4-8]).
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For every M ε Λ-mod choose a presentation P1 → P0 → M → 0 of M by
projectives and define the transpose DM by the exactness of the sequence

0 // M+ // P+
0

// P+
1

// DM //0.

Then it can be shown that the functor D is well-defined and one has D2 = Id.
Furthermore, if pdΛM ≤ 1 then DM ' E1(M). The next result will be of
particular importance:

Proposition 1.2.4. For M ε Λ-mod there is a canonical exact sequence

0 // E1DM // M
φM // M++ // E2DM //0,

where φM is the canonical map from M to its bi-dual. In the following we
will refer to the sequence as “the” canonical sequence (of homotopy theory).

A Λ-module M is called reflexive if φM is an isomorphism from M to its
bi-dual M ∼= M++.

As Auslander and Bridger suggest the module E1DM should be consid-
ered as torsion submodule of M. Indeed, if Λ is a Noetherian integral domain
this submodule coincides exactly with the set 3 of torsion elements torΛM.

Definition 1.2.5. A Λ-module M is called Λ-torsion module if φM ≡ 0, i.e.
if torΛM := E1DM = M. We say that M is Λ-torsion-free if E1DM = 0.

For Λ := Λ(G), where G is a p-adic Lie group, this definition can be
interpreted as follows:

A finitely generated Λ-module M is a Λ-torsion module if and only if M
is a Λ(G′)-torsion module (in the strict sense) for some open pro-p subgroup
G′ ⊆ G such that Λ(G′) is integral.

Indeed, for any open subgroup H of a p-adic Lie group G there is an
isomorphism E1

Λ(G)DΛ(G)
∼= E1

Λ(H)DΛ(H) of Λ(H)-modules by lemma 1.2.3 (ii)
and the analogue statement for DM .

SinceM++ embeds into a free Λ-module (just take the dual of an arbitrary
surjection Λm � M+) the torsion-free Λ-modules are exactly the submodules
of free modules. A different characterization of torsion(-free) modules will
be given later using dimension theory, see 1.5.6.

Sometimes it is also convenient to have the notation of the 1st syzygy or
loop space functor Ω : Λ-mod → Ho(Λ) which is defined as follows (see [33,
1.5]): Choose a surjection P → M with P projective. Then ΩM is defined
by the exact sequence

0 // ΩM // P // M // 0.

3A priori it is not clear whether this sets forms a submodule if Λ is not commutative.
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1.3 Some representation theory

We first recall some well-known facts from the representation theory of finite
groups, whose proofs or references can be found in [45] 5.6.

Theorem 1.3.1. Let R be complete discrete valuation ring and let G be
a finite group. Assume that the quotient field K of R has characteristic
0. Furthermore, let L,M,N be finitely generated R[G]-modules. Then the
following holds.

(i) (Krull-Schmidt) If M ⊕ L ∼= N ⊕ L, then M ∼= N.

(ii) (Swan) If M and N are projective and M ⊗ K ∼= N ⊗ K as K[G]-
modules, then M ∼= N.

Proposition 1.3.2. Let G be a profinite group. Let M and N be finitely
generated Λ-modules such that

(i) M ' N,

(ii) MU ⊗Qp
∼= NU ⊗Qp⊕Qp[G/U ]m for a basis of neighborhoods of 1 ε G

consisting of open normal subgroups U.

Then
M ∼= N ⊕ Zp[[G]]m.

In particular, a finitely generated projective Zp[[G]]-module P is free if and
only if P ⊗Qp is (Zp[[G]]⊗Qp)-free.

In the next lemma we shall write I(Γ) for the kernel of the canonical map
Zp[[G]] → Zp[G/Γ], where Γ is any closed normal subgroup of the profinite
group G. By RadG we denote the radical of Zp[[G]], i.e. the intersection of all
open maximal left (right) ideals of Zp[[G]].

Lemma 1.3.3. Let G = Γ o ∆ be the semi-direct product of a uniform pro-
p-group Γ of dimension t and a finite group ∆ of order k prime to p. If
we write Un = Γp

n
E G, then for any compact Λ = Λ(G)-module M , the

following statements are equivalent:

(i) M ∼= Λd,

(ii) MΓ
∼= Zp[∆]d as Zp[∆]-module and for all n

rkZpMUn = rkZpZp[G/Un]
d = dkptn,
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(iii) MΓ/p ∼= Fp[∆]d as Fp[∆]-module and for all n

rkFpMUn/p = rkFpFp[G/Un]d = dkptn.

Proof. Obviously, (i) implies (ii) and (iii). For the converse let us first assume
that (ii) holds and let m − 1, . . . ,md ε M be lifts of a Zp[∆]-basis of MΓ.

Then the map φ :
⊕d

i=1 Λei →M, which sends ei to mi, is surjective, because
I(Γ) ⊆ RadG (compare to the proof of [45]. 5.2.14 (i), d⇒ b) and therefore
we can apply Nakayama’s lemma [45], 5.2.16 (ii), (with RadG instead of
M). Hence, the induced maps φUn :

⊕d
i=1 Λ(G/Un)ei →MUn , are surjective,

too. But since both modules have the same Zp-rank by assumption, these
maps are isomorphisms and (i) follows. The implication (iii)⇒ (i) is proved
analogously noting that pΛ + I(Γ) ⊆ RadG.

For a finite group G we denote by K0(Qp[G]) = K ′0(Qp[G]) the Grothen-
dieck group of finitely generated Qp[G]-modules (which are projective by
Maschke’s theorem). If G is a profinite group and U E G an open normal
subgroup we define the Euler characteristic hU(M) of a finitely generated
Λ = Λ(G)-module M to be the class

hU(M) :=
∑

(−1)i[Hi(U,M)⊗Zp Qp] ε K0(Qp[G/U ]).

Before stating the next result we recall some facts about the representation
theory of finite groups. So let ∆ be a finite group of order n prime to p.
Then, there is a decomposition

Zp[∆] ∼=
∏

Zp[∆]ei, ei =
ni
n

∑
g ε ∆

χi(g
−1)g

of Zp[∆] in “simple” components (in the sense that they are simple algebras
after tensoring with Qp), which induces a decomposition of Λ =

∏
Λei , Λei =

Zp[[Γ]][∆]ei into a product of rings. Here {χi} is the set of irreducible Qp

characters (=̂ Fp-characters because n is prime to p) of ∆ and ni are certain
natural numbers associated with χi (see below). The simple algebras Qp[∆]ei
decompose into the direct sum of their simple left ideals which all belong to
the same isomorphism class, say Ni, i.e. there is a isomorphism of Qp[∆]-
modules

Qp[∆] ∼= Nni
i .

In particular, ni is the length of Qp[∆]ei and can be expressed as ni =
χ(ei)(dimQp Ni)

−1, where χ is the character of the left regular representation
of Qp[∆].
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Now let G be again a p-adic Lie group and set Λ := Λ(G). Recall that a
finitely generated Λ-module M is a Λ-torsion module if and only if M is a
Λ(G′)-torsion module for some open pro-p subgroup G′ ⊆ G such that Λ(G′)
is integral (1.2.5).

Proposition 1.3.4. Let G = Γ×∆ be the product of a pro-p Lie group Γ of
finite cohomological dimension cdp(Γ) = m and a finite group ∆ of order n
prime to p and let U E Γ be an open normal subgroup. Then, for any finitely
generated Λ-torsion module M, it holds

hU(M) = 0.

Remark 1.3.5. For semi-direct products this statement is false in general.
For example, it is easy to see that for G = Zp oω ∆ with non-trivial ω the
Euler characteristic of Zp is not zero: hU(Zp) = [Qp]− [Qp(ω)] 6= 0.

Proof. (of prop. 1.3.4) We claim that under the assumptions of the theorem
M possesses a finite free resolution. Indeed, since the Noetherian ring Λ has
finite global dimension pdΛ = m+1, there is always a resolution of the form

0 // P // Λdm // · · · // Λd0 //0,

with a projective module P. Since M ei is a Λ(Γ)-torsion module (it is even
Λ(Γ′)-torsion!) and since P ei is a free Λ(Γ)-module, it must hold that
P ei ∼= (Λ(Γ))kidm+1 as Λ(Γ)-modules, where ki = χ(ei) denotes the Zp-rank
of Zp[∆]ei and dm+1 =

∑m
i=0(−1)idm−i. Consequently, P ei

Γ
∼= Zkidm+1

p as Zp-
modules, respectively P ei

Γ ⊗Qp
∼= Qkidm+1

p as Qp-modules holds. But P ei
Γ ⊗Qp

must be isomorphic to the direct sum of m copies of Ni for some m due to
the semi-simplicity of Qp[∆]. Counting Qp-dimensions, we obtainm = nidm+1

and hence P ei
Γ ⊗ Qp

∼= Qp[∆]e
dm+1

i . Since P ei
Γ is a projective Zp[∆]-module,

this implies P ei
Γ
∼= Zp[∆]e

dm+1

i , respectively P ei ∼= Λ(G)e
dm+1

i (compare to the
proof of lemma 1.3.3) and P ∼= Λ(G)dm+1 . This proves the claim.
Furthermore, we observe that

∑
(−1)idi = 0 and denote the resolution by

F • →M. Using the fact that the Euler characteristic of a bounded complex
equals the Euler characteristic of its homology, we calculate∑

(−1)i[Hi(U,M)⊗Zp Qp] =
∑

(−1)i[Hi(F
• ⊗Λ Qp[G/U ])]

=
∑

(−1)i[F • ⊗Λ Qp[G/U ]]

=
∑

(−1)i[Qp[G/U ]di ]

= (
∑

(−1)idi)[Qp[G/U ]] = 0.
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Lemma 1.3.6. Let G be a profinite group, H ⊆ G a closed subgroup and
U E G an open normal subgroup. Then for any compact Zp[[H]]-module M
the following is true:

(i) (IndHG (M))U ∼= Ind
HU/U
G/U (MU∩H) and

(ii) Hi(U, (IndHG (M))U) ∼= Ind
HU/U
G/U Hi(U ∩H,M) for all i ≥ 0.

Proof. The dual statement of (i) is proved in [37] while (ii) follows from (i)
by homological algebra.

Lemma 1.3.7. Let G = Γ×∆ the product of of a pro-p-group Γ and a finite
group ∆ of order prime to p. Then, for any Λ = Zp[[Γ]][∆]-module M and
for any irreducible character χ of ∆ with values in Qp, the following is true:

(i) HomΛ(M eχ ,Λ) ∼= HomΛ(M,Λ)eχ−1 ,

(ii) Ei
Λ(M eχ) ∼= Ei

Λ(M)eχ−1 for any i ≥ 0.

Proof. While (ii) is a consequence of (i) by homological algebra the first
statement can be verified at once using the decompositions M ∼=

⊕
M eχ and

Λ ∼=
⊕

Λeχ :

HomΛ(M,Λ)eχ−1 ∼= HomΛ(M,Λeχ)
∼= HomΛ(M eχ ,Λeχ)
∼= HomΛ(M eχ ,Λ).

1.4 Spectral sequences for Iwasawa adjoints

For a profinite group G, we shall write D(G) and C(G) for the categories
of discrete and compact Λ-modules, respectively, whereas we denote the full
subcategories of cofinitely and finitely generated modules by Dcfg(G) and
Cfg(G), respectively.

Now, let G = H×Γ be the product of profinite groups H and Γ. Assume
that Λ(G) is Noetherian and that Γ is separable, i.e. it possesses a countable
ordered system of open normal subgroups Γn as a basis of open neighborhoods
of 1 ε Γ. Let (Dcfg(G))N be the category of inverse systems in Dcfg(G) and
consider the left exact functor

TΓ : Dcfg(G)→ (Dcfg(G))N,
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which sends B to the inverse system {BΓn+1
NΓn/Γn+1−→ BΓn}, and

lim←−
n

HomΛ(H)(−∨,Λ(H)) : (Dcfg(G))N → Λ(G)-Mod.

Here the action of Γ on f ε HomΛ(H)(M,Λ(H)) for M ε C(G) is defined by
(γf)(m) := f(γ−1m), whereas h ε H acts by the rule (hf)(M) := f(m)h−1

as usual.
Since the category (Dcfg(G))N has enough injectives, because Dcfg(G) has

([32], Prop. 1.1), we can form the right derived functors

RiTΓ(B) = {Hi(Γn+1, B)
cor−→ Hi(Γn, B)}

and
Ri( lim←−

n

HomΛ(H)(B
∨,Λ(H))),

which equals
lim←−
n

RiHomΛ(H)(B
∨,Λ(H))

(cf. [32] Prop. 1.2, 1.3), if we restrict ourselves to elements of the subcategory
(D′)N where D′ is the abelian subcategory of Dcfg(G) consisting of Λ(G)-
modules, which are cofinitely generated over Λ(H). Indeed, in this case,
the modules HomΛ(H)(B

∨
n ,Λ(H)) are compact, i.e. the inverse limit functor

is exact on the corresponding inverse systems. Since RiHomΛ(H)(−,Λ(H))
extends the functors Ei

Λ(H)(−) naturally from C(H) to Cfg(G), we will write

also Ei
Λ(H)(−) for the first functor. Note that it is endowed with a natural

Γ-action.

Lemma 1.4.1. The functor TΓ sends injectives to lim←−
n

HomΛ(H)(−∨,Λ(H))-

acylics.

Proof. It suffices to prove that Zp[[H]][Γ/Γn] is HomΛ(H)(−,Λ(H))-acyclic.
But, for any resolution of Zp[[H]][Γ/Γn] by Λ(G)-projectives

P • → Zp[[H]][Γ/Γn],

the sequence

0→ HomΛ(H)(Zp[[H]][Γ/Γn],Λ(H))→ HomΛ(H)(P
•,Λ(H))

is exact, because both, Zp[[H]][Γ/Γn] and the P i, are projectives in C(H) (cf.
[45] (5.3.13)). The result follows by taking homology.
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The Grothendieck spectral sequence for the composition of the above
functors gives

Theorem 1.4.2. With notation as above, there is a convergent cohomological
spectral sequence

lim←−
n

Ei
Λ(H)(H

j(Γn, B)∨)⇒ Ei+j
Λ(G)(B

∨)

for any B in Dcfg(G).

Note that all modules that occur in the spectral sequence are compact
Λ(G)-modules.

Proof. The functor E0
Λ(G)(−) is the composition of the functors TΓ and

lim←−
n

HomΛ(H)(−∨,Λ(H)), because by lemma 1.4.3 we have isomorphisms of

Λ(G)-modules

E0
Λ(G)(B

∨) = HomΛ(G)(B
∨,Zp[[H]])[[Γ]])

= lim←−
n

HomZp[[H]][Γ/Γn]((B
∨)Γn ,Zp[[H]][Γ/Γn])

= lim←−
n

HomΛ(H)((B
Γn)∨,Λ(H)).

Now the result follows by lemma 1.4.1.

Recall that there is a canonical Λ(H)-homomorphism

πn : Zp[[H]][Γ/Γn]→ Zp[[H]],
∑

g ε Γ/Γn

ag gΓn 7→ a1,

and, for any m ≥ n, a canonical Λ(G)-homomorphism pm,n : Zp[[H]][Γ/Γm]→
Zp[[H]][Γ/Γn] which sums up the coefficients of the same Γn-cosets.

Lemma 1.4.3. The homomorphisms πn and pm,n induce a commutative
diagram of Λ(G)-modules:

HomZp[[H]][Γ/Γm](MΓm ,Zp[[H]][Γ/Γm])
(πm)∗

'
//

(pm,n)∗
��

HomZp[[H]](MΓm ,Zp[[H]])

NΓn/Γm

��
HomZp[[H]][Γ/Γn](MΓn ,Zp[[H]][Γ/Γn])

(πn)∗

'
// HomZp[[H]](MΓn ,Zp[[H]])
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Proof. It is easily checked that the diagram commutes and that the in-
verse of (πn)∗ is given by ψ 7→ (m 7→

∑
g ε Γ/Γn

ψ(g−1m)gΓn). (Note that

the Γ-invariance of a homomorphism φ(m) =
∑
φ(m)ggΓn is equivalent to

φ(γ−1m)1 = φ(m)γ for all γ ε Γ.) Recalling that γ ε Γ acts by (γφ)(m) :=
φ(γ−1m) on HomZp[[H]][Γ/Γn](MΓn ,Zp[[H]][Γ/Γn]), it is also immediate that
(πn)∗ is Λ(G)-invariant.

Corollary 1.4.4. If Γ contains an open subgroup of index prime to p and
isomorphic to Zp, then there is a long exact sequence of Λ(G)-modules

lim
←−
n

Ei
Λ(H)(MΓn

) // Ei
Λ(G)(M) // lim

←−
n

Ei−1
Λ(H)(M

Γn) // lim
←−
n

Ei+1
Λ(H)(MΓn

) // Ei+1
Λ(G)(M)

Now we are going to present further spectral sequences due to U. Jannsen
which were in some sense the models for the first one proved in this section.
The next one describes the Iwasawa adjoints of certain cohomology groups
associated with p-adic representations. So let G be a profinite group and
G∞ a closed subgroup, such that its quotient has a countable basis of neigh-
bourhoods of identity, i.e. there is a countable family Gn, G∞ ⊆ Gn ⊆ G,
with

⋂
nGn = G∞. Furthermore, let A = (Qp/Zp)

r for some r ≥ 1 with some
continuous action of G. We shall write

TpA = Hom(Qp/Zp, A) ∼= lim←−
m

pmA

for the Tate module of A. Then there is the following convergent spectral
sequence ([34]):

Theorem 1.4.5. (Jannsen)

Ep,q
2 = Ep(Hq(G∞, A)∨)⇒ lim←−

n

Hp+q(Gn, TpA)

Corollary 1.4.6. Assume cdp(G) ≤ 2. Then the exact sequence of low
degrees degenerates to

0 // E1(A(k∞)∨) // lim←−
n

H1(Gn, TpA) // E0(H1(G∞, A)∨) //

E2(A(k∞)∨) // ker( lim←−
n

H2(Gn, TpA) // E0(H2(G∞, A)∨)) //

E1(H1(G∞, A)∨)
//
E3(A(k∞)∨)

// 0.
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The next result, which relates the (compact) Λ-modules Ei(M) to the
discrete G-modules

Di(M
∨) := lim−→

U⊆oG

Hi(U,M∨)∗ , i ≥ 0,

is derived by some spectral sequences, too, but we only state the associated
long, respectively short, exact sequences:

Theorem 1.4.7. Let G be a profinite group such that Λ(G) is Noetherian.
Then, for any finitely generated Λ-module M, there are functorial exact se-
quences

(i)

0 // Di(M
∨)⊗Zp Qp/Zp

// Ei(M)∨ // torZpDi−1(M
∨) // 0,

for all i, where by definition Di(M
∨) = 0 for i < 0.

(ii)

//Ei(M)∨ // lim−→
m

Di(pm(M∨)) // lim−→
m

Di−2(M
∨/pm) //Ei−1(M)∨ // ,

and the following isomorphisms

(iii) Ei(M/torZpM)∨ ∼= lim−→
m

Di(pm(M∨)),

(iv) Ei(torZpM)∨ ∼= lim−→
m

Di−1(M
∨/pm).

Proof. See [33] 2.1, 2.2 or [45] theorem 5.4.12.

Corollary 1.4.8. Assume that G is a duality group at p of dimension n with
dualizing module D

(p)
n = lim−→

m

Dn(Z/p
mZ). Then the following holds:

(i) If M is Λ-module which is free of finite rank as Zp-module, then

Ei(M)∨ ∼=

 lim−→
m

Dn((M/pm)∨) ∼= M ⊗Zp D
(p)
n if i = n,

0 otherwise.

(ii) If N is a finite p-primary Λ-module, then

Ei(N)∨ ∼=
{

HomZp(N
∨, D

(p)
n ) if i = n+ 1,

0 otherwise.

Proof. See [33] 2.6 or [45] 5.4.14.
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1.5 Auslander regularity

1.5.1 Filtrations of Λ-modules

Since the completed group ring Λ of a p-adic Lie group without p-torsion
is (both left and right) Noetherian and has finite global homological (and
therefore finite injective) dimension we can apply the results of J.-E. Björk
[5], which we will describe in this section.

Let Λ be a (not necessarily commutative) Noetherian ring with finite in-
jective dimension d, i.e d is the minimal integer with respect to the property
that Ej(M) = 0 for all (left and right) Λ-modules M and integers j > d. Of
course, this is equivalent to the condition that both the left and the right
Λ-module Λ has (bounded) injective dimension d. It can be shown that these
left and right injective dimensions are the same (see [66]). The analogous
statement that the left and the right global homological dimension are the
same is a consequence of the Tor-dimension theorem [61, 4.1.3].

In this section all Λ-modules are assumed to be finitely generated.

Since projective Λ-modules are reflexive, we get the equality

M = RHom(RHom(M,Λ),Λ)

for left (or right) Λ-modules M in the derived category of complexes of Λ-
modules (more generally, this equality holds for all perfect complexes). Cal-
culating RHom(RHom(M,Λ),Λ) by the bidualizing complex, the associated
filtrations give rise to two convergent spectral sequences (see [39] for the
convergence), the first of which degenerates. The second one becomes

Ep,q
2 = Ep(E−q(M))⇒ Hp+q(∆•(M)),

where ∆•(M) is a filtered complex, which is exact in all degrees except zero:
H0(∆•) = M , i.e. there is a canonical filtration

T0(M) ⊆ T1(M) ⊆ · · · ⊆ Td−1(M) ⊆ Td(M) = M

on every module M. The convergence of the spectral sequence implies

Ep,q
∞ =

{
Td−p(M)/Td−p−1(M) if p+ q = 0,

0 otherwise.

(By convention, Ti(M) = 0 for i < 0).

Definition 1.5.1. (i) The number δ := min{i | Ti(M) = M} is called
the dimension δ(M) of a Λ-module M .
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(ii) IfM is a Λ-module we say that it has pure δ-dimension if Tδ−1(M) = 0,
i.e. the filtration degenerates to a single term M .

(iii) A Λ-module M is called pseudo-null, if it is at least of codimension 2,
i.e. if δ(M) ≤ d− 2.

By Grothendieck’s local duality theorem, this definition coincides with
the Krull dimension of suppΛ(M) if Λ is a commutative local Noetherian
Gorenstein ring, see [7, Cor. 3.5.11].

First we want to state some basic facts on the δ-dimension. The functo-
riality of the spectral sequence implies

Proposition 1.5.2. (i) If 0 −→ M ′ −→ M −→ M ′′ −→ 0 is an exact
sequence of Λ-modules then

Ti(M
′) ⊆ Ti(M) for all i

and δ(M ′), δ(M ′′) ≤ δ(M).

(ii) Ti(
⊕

k(Mk)) =
⊕

k Ti(Mk) and δ(
⊕

kMk) = maxk δ(Mk).

In order to analyze this spectral sequence more closely, the Auslander
condition (for not necessarily commutative rings) is essential:

Definition 1.5.3. (i) If M 6= 0 is a Λ-module, then

j(M) := min{i | Ei(M) 6= 0}

is called the grade of M.

(ii) A Noetherian ring Λ is called Auslander-Gorenstein ring if it has finite
injective dimension and the following Auslander condition holds: For
any Λ-module M , any integer m and any submodule N of Em(M), the
grade of N satisfies j(N) ≥ m.

(iii) A Noetherian ring Λ is called Auslander regular ring if it has finite
global homological dimension and the Auslander condition holds.

Remark 1.5.4. Let Λ be a commutative ring. Then Λ is Auslander-
Gorenstein if and only if it is Gorenstein (in the usual sense). Similarly,
Λ is Auslander regular if and only if it is regular (in the usual sense) and
of finite Krull dimension. (The implications concerning the injective, re-
spectively global homological dimensions are well known, for the Auslander
condition see [1, Cor. 4.6,Prop. 4.21] )
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In the next section we will prove that Λ = Λ(G) is Auslander regular for
any p-adic Lie group without p-torsion. Generally, for this kind of rings we
get the following properties:

Proposition 1.5.5. Let Λ be an Auslander regular ring and M a Λ-module.
Then

(i) (a) For all i, there is an exact sequence of Λ-modules

0 // Ti(M)/Ti−1(M) // Ed−iEd−i(M) // Qi(M) // 0,

where Qi(M) is a subquotient of
⊕

k≥1 Ed−i+k+1Ed−i+k(M).

(b) T0(M) = EdEd(M) and T1(M)/T0(M) = Ed−1Ed−1(M).

(c) Ti(M)/Ti−1(M) = 0 if and only if Ed−iEd−i(M) = 0.

(ii) δ(M) + j(M) = d.

(iii) (a) j(Ei(M)) ≥ i, i.e. EjEi(M) = 0 for all j < i.

(b) δ(Ei(M)) ≤ d− i.
(c) Ej(M)(M) has pure δ-dimension δ(M).

(iv) Ek+j(M)+1Ek+j(M)Ej(M)(M) = 0 for all k ≥ 1.

(v) (a) For all 0 ≤ i ≤ d, EiEi(M) is either zero or of pure δ-dimension
d− i.

(b) M has pure δ-dimension if and only if EiEi(M) = 0 for all i >
j(M).

(vi) (a) δ(Ti(M)) ≤ i.

(b) Ti(M) is the maximal submodule of M with δ-dimension less or
equal to i.

(c) The functor Ti is left exact.

(d) Ti(M/Ti(M)) = 0.

(vii) If δ(M) = 0 then M has finite length.

Proof. Except for (i) (a), (i) (b) and (vi), these properties are all proved in
[5] or trivial: Prop. 1.21, 1.16, Prop. 1.18, Remark before 1.19, Cor. 1.20,
Cor. 1.22 and 1.27., while (i)(a) is proved in [39, Cor. 4.3]

The assertion (i)(b) is clear, as Ei,−i
∞ = Ei,−i

2 because of (iii)(a). So let
us prove (vi): By (iii), (a) is equivalent to j(Ti(M)) ≥ d − i and this is
true because of the Auslander condition using induction (cf. the proof of
(iii)). Now let M be a Λ-module with δ(M) = δ and assume that there
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is a submodule N of M with δ(N) ≤ δ − 1 and N * Tδ−1(M). Then the
submodule N+Tδ−1(M) of M has dimension ≤ δ−1 and so also the quotient
(N + Tδ−1(M))/Tδ−1(M) by 1.5.2. Hence,

0 6= (N + Tδ−1(M))/Tδ−1(M) = Tδ−1((N + Tδ−1(M))/Tδ−1(M))

⊆ Tδ−1(E
d−δEd−δ(M)) = 0

by (v), which is a contradiction. So Tδ−1(M) contains all submodules of
dimension less or equal to δ − 1 and (b) follows by induction.
Noting Prop. 1.5.2 (i), we only have to show N ∩Ti(M) ⊆ Ti(N) in order to
prove left exactness. Since the first module has dimension δ(N ∩Ti(M)) ≤ i,
this is a consequence of (b).
By (c) the exact sequence

0→ Ti+1(M)/Ti(M)→ Ti+2(M)/Ti(M)→ Ti+2(M)/Ti+1(M)→ 0

induces the exact sequence

0→ Ti(Ti+1(M)/Ti(M))→ Ti(Ti+2(M)/Ti(M))→ Ti(Ti+2(M)/Ti+1(M)).

The first and third term are zero by (i) and (iii) as above. Hence the result
follows by induction.

We want to mention, that for an Auslander-Gorenstein ring, the result of
proposition 1.5.2 (i) can be sharpened: j(M) = min{j(M ′), j(M ′′)}, δ(M) =
max{δ(M ′), δ(M ′′)} respectively (cf. [6, Prop. 1.8]).

Remark 1.5.6. (i) Using the methods of [17], proposition 6, one can show
the existence of the following exact sequences:

0 // Ei+1DΩiTd−i(M) // Td−i(M) // EiEi(M) // Ei+2DΩiTd−i(M) //0.

Hence, Ti(M) can also be obtained recursively by the formula
Td−i−1(M) = Ei+1DΩiTd−i(M) and similarly, we get a description for
Qd−i(M) ∼= Ei+2DΩiTd−i(M). The same arguments yield for a Λ-module
M with j(M) ≥ j the isomorphisms

Ej+kEj(M) ∼= Ej+k+2DΩj(M) for k ≥ 1.

(ii) In particular, Td−1(M) = E1D(M) = torΛM, i.e. the torsion submodule
of M is the maximal submodule of codimension greater or equal than 1. That
means that M is Λ-torsion if and only if it is at least of codimension 1, and
Λ-torsion-free if and only if M is of pure dimension d.
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As in the commutative case we say that a homomorphism ϕ : M → N of
Λ-modules is a pseudo-isomorphism if its kernel and cokernel are pseudo-null.
A module M is by definition pseudo-isomorphic to a module N, denoted

M ∼ N,

if and only if there exists a pseudo-isomorphism from M to N. In general,
∼ is not symmetric even in the Zp-case (cf. [45, V§3,ex.1]). While in the
commutative case ∼ is symmetric at least for torsion modules (see the first
remark after prop. 5.17 in [45]), we do not know whether this property still
holds in the general case.
If we want to reverse pseudo-isomorphisms, we have to consider the quo-
tient category Λ-mod/PN with respect to subcategory PN of pseudo-null
Λ-modules, which is a Serre subcategory, i.e. closed under subobjects, quo-
tients and extensions. By definition, this quotient category is the localization
(PI)−1Λ-mod of Λ-mod with respect to the multiplicative system PI con-
sisting of all pseudo-isomorphisms (see [61, ex. 10.3.2]). Since Λ-mod is
well-powered, i.e. the family of submodules of any module M ε Λ-mod forms
a set4, these localization exists, is an abelian category and the universal
functor q : Λ-mod → Λ-mod/PN is exact (see [60, p. 44ff]). Furthermore,
q(M) = 0 in Λ-mod/PN if and only if M ε PN .

Corollary 1.5.7. Let Λ be an Auslander regular, integral domain with d ≥ 2.

(i) Any torsion-free module M embeds into a reflexive module with pseudo-
null cokernel.

(ii) Any torsion module M is pseudo-isomorphic to E1E1(M).

Proof. Observe that Td−1(M) is the maximal torsion submodule in this case.
Hence, the exact sequence in (i) (a) for i = d respectively i = d − 1 proves
both statements taking under consideration (iii)(b) and proposition 1.5.14.

Following the structure theory for modules over a commutative regular
local ring (see [45, 5.1.7,5.18]), it is natural to hope that at least the following
question has an affirmative answer

4Any submodule of M can be represented by a (finite) subset of M, i.e. the family
of submodules can be described as the quotientset of the power set M with respect to
the equivalence relation which identifies subsets of M whose elements generate the same
submodule.



1.5. AUSLANDER REGULARITY 33

Question 1.5.8. Let Λ be an Auslander regular ring and M ε Λ-mod. Does
there exist an isomorphism in Λ-mod/PN

M ∼= torΛM ⊕R mod PN ,

where R ∼= M/torΛM mod PN is a reflexive Λ-module?

Proposition 1.5.9. Let Λ be an Auslander regular ring. For any Λ-module
M it holds:

E1(M) ∼ E1(torΛM).

Proof. From the long exact Ext-sequence we get the exact sequence

E1(M/torΛM) // E1(M) // E1(torΛM) // E2(X/torΛM).

While the module on the right hand side is obviously pseudo-null the first
one is so by the following argument: the long exact Ext-sequence of

0 // M/torΛM // E0E0(M) // E2D(M) // 0

tells us that E1(M/torΛM) fits into the exact sequence

E1E0E0(M) // E1(M/torΛM) // E2E2D(M),

i.e. it suffices to show that E1E0E0(M) is pseudo-null. But E1E1E0E0(M) =
0 by 1.5.5,(v), (and E0E1E0E0(M) = 0 anyway), i.e. j(E1E0E0(M)) ≥ 2
respectively δ(E1E0E0(M)) ≤ d− 2.

As long as a structure theory which is comparable with that for commu-
tative regular local rings is lacking it seems difficult to answer the following

Question 1.5.10. Let G be a p-adic analytic pro-p Lie group without p-
torsion and M a Λ = Λ(G)-torsion module. Does there exist an isomorphism
in Λ-mod/PN

M◦ ∼= E1(M) mod PN ,

where ◦ means that G acts via g 7→ g−1.

The following class of Λ-modules satisfies some duality relations:

Definition 1.5.11. A Λ-module M 6= 0 is called Cohen-Macaulay if
j(M) = pdΛ(M) holds, i.e. if Ei(M) = 0 for all i 6= j(M).
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Proposition 1.5.12. Let Λ be an Auslander regular ring.

(i) Let M be a Cohen-Macaulay module of dimension j. Then

EjEj(M) = M.

(ii) In particular, if δ(M) = 0, then

EdEd(M) = M.

Proof. In both cases the spectral sequence degenerates.

One could hope that any Λ-module M can be decomposed into Cohen-
Macaulay modules in the following sense: there is an filtration of M such
that the ith subquotient is Cohen-Macaulay of dimension i. But it is easy to
construct counterexamples which show that in general such a filtration does
not exist. Nevertheless, there is a different type of filtration: Auslander and
Bridger proved the existence of a spherical filtration (up to homotopy, i.e.
after adding a projective summand P )

Md ⊆Md−1 ⊆ · · · ⊆M1 ⊆M0 = M ⊕ P,

the subquotients of which form spherical or Eilenberg-MacLane modules of
type Ei(M), i.e. for 1 ≤ i ≤ d

Ej(Mi−1/Mi) ∼=
{

Ei(M) if j = i
0 if j 6= i, 0

.

Fossum [17] compared the spherical filtration to the filtration Ti(M) for a
commutative Gorenstein ring and proved ([17], prop. 9) that their “torsion
parts” agree for i < d

Ti(M) ∼= Td−1(Md−i−1)
∼= Ti(Mk) for all k < d− i.

The proof generalizes at once to the non-commutative case.

Proposition 1.5.13. Let Λ be an Auslander regular ring. A Λ-module M
with projective dimension pdΛ(M) = k has no non-trivial submodule of di-
mension less or equal to d− k − 1, i.e. Td−k−1(M) = 0.

Proof. See prop. 1.5.5, (i) (b).

The next result extends a well known result for commutative regular rings
(see for example [45], cor. 5.1.3).
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Proposition 1.5.14. Let Λ be an Auslander regular ring.

(i) For any Λ-module M , the module E0(M) is reflexive:

E0(M) ∼= E0E0E0(M).

(ii) Assume that d ≥ 2 and δ(M) = d− i. Then

Ei(M) ∼= EiEiEi(M).

Proof. Let N := E0(M) and apply proposition 1.5.5 (iv) to conclude that⊕
k≥1 Ek+1Ek(N) =

⊕
k≥1 Ek+1EkE0(M) = 0, i.e. Qd(N) = 0. Since we al-

ready know by (iii)(c) that N is of pure dimension d (if N 6= 0), the statement
(i) follows considering (i)(a). The proof of (ii) is analogous.

Corollary 1.5.15. For any i it holds

(i) EiEiEiEi(M) ∼= EiEi(M) and

(ii) EiEiTd−i(M) ∼= EiEi(M).

Proof. To prove (i) assume first that δ(Ei(M) = d− i. Applying the propo-
sition to the module Ei(M) gives the result while in the second case, i.e.
j(Ei(M) > i, the module EiEi(M) is zero anyway. Noting that j(Qi(M)) ≥
i + 2, the second assertion follows at once calculating the long exact Ei-
sequence of

0 // Td−i−1(M)/Td−i(M) // EiEi(M) // Qi
// 0.

Proposition 1.5.16. Let Λ be an Auslander regular ring. For any Λ-module
M such that pdΛE0(M) ≤ 1 (e.g. if pd Λ = 3 or if pd Λ = 4 and E4E1(M) =
0) its double dual E0E0(M) is a 2-syzygy of E1E0(M), i.e. there is an exact
sequence

0 //E0E0(M) //P0
//P1

//E1E0(M) //0

with projective modules P0 and P1. Furthermore, in the case of pd Λ = 3
or 4, it holds that E1E0(M) ∼= E3E1(M). If, in addition, M itself is reflexive
and pd Λ = 3, then E3E1M ∼= E1(M)∨.
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Proof. First observe that E0(M) is a 2-syzygy of D(M) due to the definition
of the latter module, i.e. pdΛE0(M) ≤ pd Λ− 2 = 1, if pd Λ = 3. In the case
of pd Λ = 4 it holds E3E0(M) = E4E0(M) = 0 and E2E0(M) ∼= E4E1(M)
due to Björk’s spectral sequence. Hence, if E4E0(M) vanishes, it follows that
pdΛE0(M) ≤ 1. Now, choosing a projective resolution of E0(M)

0 // E0(P1) // E0(P0) // E0(M) // 0,

we derive the exact sequence

0 // E0E0(M) // P0
// P1

// E1E0(M) //0.

But E1E0(M) ∼= E3E1(M) due to Björk’s spectral sequence for pd Λ ≤ 4.
If M itself is reflexive and pd Λ = 3, then E1E1(M) = E2E1(M) = 0, i.e.
E1(M) is finite, respectively E3E1(M) ∼= E1(M)∨.

Proposition 1.5.17. Let G be a compact p-adic analytic group without p-
torsion, H ⊆ G a closed subgroup and M a finitely generated Λ(H)-module.
If dΛ(G) (resp. dΛ(H)) denotes the (projective or δ-) dimension of Λ(G) (resp.
Λ(H)), then the following holds:

(i) jΛ(G)(IndHGM) = jΛ(H)(M),

(ii) δΛ(G)(IndHGM) = δΛ(H)(M) + dΛ(G) − dΛ(H),

(iii) pdΛ(G)(IndHGM) = pdΛ(H)(M).

Proof. This is a consequence of 1.2.3, 1.5.5, (ii), and 1.7.3.

Lemma 1.5.18. Assume that G = H × Γ is a p-adic Lie group without
p-torsion where Γ contains an open subgroup of index prime to p which is
isomorphic to Zp. Let M ε C(G) be finitely generated and torsion as Λ(H)-
module. Then M is a pseudo-null Λ(G)-module.

Proof. By the corollary 1.4.4, there is an exact sequence

0 // lim←−
n

E1
Λ(H)(MΓn) // E1

Λ(G)(M) // lim←−
n

E0
Λ(H)(M

Γn) = 0.

So, if we can show that the left term vanishes, we are done, because then
E1E1(M) = 0 = E0E0(M). Consider the commutative exact diagram

M
ωn // M //

ωm
ωn

��

MΓn
//

ωm
ωn

��

0

M
ωm // M // MΓm

// 0,
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where ωn = γp
n − 1 for some generator γ of Zp ⊆ Γ. Since M is assumed to

be Λ(H)-torsion, we get the commutative exact diagram

0 // E1
Λ(H)(MΓm) //

ωm
ωn

��

E1
Λ(H)(M) ωm //

ωm
ωn

��

E1
Λ(H)(M)

0 // E1
Λ(H)(MΓn) // E1

Λ(H)(M) ωn // E1
Λ(H)(M).

Passing to the limit, we obtain

lim←−
n

E1
Λ(H)(MΓn) ⊆ lim←−

n

E1
Λ(H)(M) = lim←−

n

⋂
m≥n

ωm
ωn

E1
Λ(H)(M) = 0,

because ωm

ωn
tends to zero.

Remark 1.5.19. The same arguments show that δG(M) ≤ δH(M) for any
finitely generated Λ(H)-module M.

Besides the case G = Zd
p these results apply also to the following situation

where G is an open subgroup of Gld(Zp), d is prime to p, such that the
determinant takes values in Γ := det(G) ⊆ Zp ⊆ Z∗p. at least if . Indeed, we
have the following exact commutative diagram

1 // Sld(Zp) // Gld(Zp)
det // Z∗p // 1

1 // Sld(Zp) ∩G //
?�

OO

G
?�

OO

// Γ
?�

OO

// 1,

in which the lower sequence possesses the following splitting

s : Γ ∼= Zp → G, a 7→


a1/d

a1/d

. . .

a1/d


(Note that Γ ∼= Zp is considered as subgroup of the units and that Zp is
uniquely d-divisible. Furthermore, if the image of this homomorphism is not
contained in G, we just apply the theory to an open subgroup U of G which
fulfills this condition with respect to det(U) and contains H := Sld(Zp)∩G.
Such U always exists because Gld(Zp) is p-adic analytic, i.e. the lower p-series
forms a basic of neighborhoods of the neutral element. Hence at least for
some m the image of pmΓ is contained in G : s(ap

m
) = s(a)p

m
ε Pm(Gld) ⊆ G.

Take U := det−1(pmΓ) ∩G.) Since the splitting takes values in the center of
G, we get a presentation of G as the direct product G = H × Zp.



38 CHAPTER 1. Λ-MODULES

1.5.2 The graded ring gr(Λ)

An important method to verify the Auslander condition of a ring Λ consists
of endowing Λ with a suitable filtration and studying the associated graded
ring gr(Λ). By a filtration on a ring Λ we mean an increasing (!) sequence of
additive subgroups Σi−1 ⊆ Σi ⊆ Σi+1 satisfying

⋃
Σi = Λ and

⋂
Σi = 0 and

the inclusions ΣiΣk ⊆ Σi+k hold for all pairs of integers i and k. The main
example on a local ring is the M -adic filtration with Σ−i = Mi for all i ≥ 0
(by convention, M0 = Λ ). For our aim the closure condition will be crucial:

Definition 1.5.20. The filtration Σ satisfies the closure condition if the
additive subgroups Σm1u1 + · · ·+ Σmsus and u1Σm1 + · · ·+ usΣms are closed
with respect to the topology induced by Σ for any finite subset u1, . . . , us in
Λ and all integers m1, . . . ,ms.

Lemma 1.5.21. Let G be a p-adic analytic pro-p-group. Then the M -adic
filtration on Λ(G) satisfies the closure condition.

Proof. Note that the M-adic topology on Λ coincides with the (m, I)-topology
(cf. [45, (5.2.15)]). Since M is a two-sided ideal of Λ the subgroup Mi−m1u1+
· · · + Mi−msus, u1M

i−m1 + · · · + usM
i−ms is a finitely generated left, right

ideal, respectively. Hence, these subgroups are compact as continuous images
of the compact module Λn for some n.

Put gr(Λ) =
⊕

Σi/Σi−1, which is called the associated graded ring of
Λ with respect to the filtration Σ. The above lemma admits applying the
following theorem of Björk to certain completed group rings:

Theorem 1.5.22 (Björk). (i) Assume that gr(Λ) is a Auslander regular
ring and that Σ satisfies the closure condition. Then Λ is a Auslander
regular ring.

(ii) In the situation of (i), the equality j(M) = j(gr(M)) holds. If, in addi-
tion, gr(Λ) is commutative and of pure dimension d, then also δ(M) =
dim(gr(M)) holds, where dim(gr(M)) = dim(suppgr(Λ)(gr(M))) is the
Krull dimension of gr(M).

Proof. See [5, Theorems 4.1,4.3] and also [6, Thm. 3.9. and Remark]. For
the last equality note that

dim(gr(M)) = max{dim(gr(M)p | p maximal ideal of gr(Λ)}
= d−min{j(gr(M)p) | p maximal ideal of gr(Λ)}
= d− j(gr(M)

= d− j(M)

= δ(M),
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where we used prop. 1.5.5, (ii), and the fact that localization commutes with
Ext-groups, if all objects are Noetherian.

Our task will be to determine the structure of gr(Λ(G)). Before stating
the next, result we recall that a pro-p-group G is called extra-powerful, if the
relation [G,G] ⊆ Gp2 holds. Furthermore, note that gr(Zp) ∼= Fp[X0] if Zp

is endowed with the m -adic filtration.

Theorem 1.5.23. Let G be a uniform and extra-powerful pro-p-group of
dimension dim(G) = r. Then there is a gr(Zp)-algebra-isomorphism

gr(Λ(G)) ∼= Fp[X0, . . . , Xr].

In particular, gr(Λ(G)) is a commutative regular Noetherian ring.

A consequence of Lazard’s results is the

Remark 1.5.24. Any compact p-adic analytic group contains an open char-
acteristic subgroup, which is an uniform and extrapowerful pro-p-group (cf.
[16, Cor. 9.36] and [62, Prop. 8.5.3])

For the proof of the theorem we need some more terminology. Let G be
an uniform pro-p-group with a minimal system of (topological) generators
{x1, . . . , xr}, in particular dim(G) = r. Then the lower p-series is given by
P1(G) = G, Pi+1(G) = (Pi(G))p, i ≥ 1. This filtration defines a p-valuation
ω : G −→ N>0 ∪ {∞} ⊆ R>0 ∪ {∞} of G in the sense of Lazard via ω(g) :=
sup{i | g ε Pi(G)}, which induces a filtration on the group algebra Zp[G] of
the underlying abstract group of G, too (cf. [38, Chap. III, 2.3.1.2]).

Lemma 1.5.25. The filtration on Zp[G], induced by ω, is the Md-adic one,
where Md = m + Id(G) with the augmentation ideal Id(G) of Zp[G].

Proof. Conferring the proof of Lemma III, (2.3.6) in [38], the induced fil-
tration is given by the following ideals in Zp[G], n ε N : An is generated as
Zp-module by the elements pl(g1 − 1) · · · (gm − 1) where l,m ε N, gi ε G
and l + ω(g1) + . . . + ω(gm) ≥ n, whereas the Md-adic filtration is de-
fined by the ideals Mn

d , which are generated (over Zp[G]) by the elements
pl(g1 − 1) · · · (gm − 1), where l,m ε N, gi ε G and l + m = n. Since
ω(g) ≥ 1 for all g ε G the ideal Mn

d is contained in An. The converse is
a consequence of the following

Claim: Let g ε G with ω(g) = t ≥ 1, then g − 1 ε Mt
d.

Since G is uniform, the map G −→ Pt(G), which assigns gp
t−1

to g, is
surjective (cf. [16, lemma 4.10]), i.e. there exists an element h ε G with
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g = hp
t−1

. Writing

g − 1 = (1 + (h− 1))p
t−1 − 1 =

∑
k≥1

(
pt−1

k

)
(h− 1)k,

one verifies that g − 1 ε Mt
d, because vp(

(
pt−1

k

)
) = t− 1− vp(k) ≥ t− k,

i.e.

(
pt−1

k

)
(h− 1)k ε Mt

d.

Lemma 1.5.26. The Md-adic filtration on Zp[G] induces the M-adic filtra-
tion on Zp[[G]].

Proof. The ideals defining the induced filtration are just the closure Mn
d of

Mn
d ⊆ Zp[G] ⊆ Zp[[G]] with respect to the M-adic topology on Zp[[G]]. Since

they contain the elements pl(g1−1) · · · (gm−1) with l,m ε N, gi ε {x1, . . . , xr}
and l+m = n, which generate Mn as ideal of Zp[[G]], they contain Mn, too.
On the other hand Mn is closed and contains all the generators of the Zp[G]-
ideal Mn

d : pl(g1 − 1) . . . (gm − 1), l,m ε N, gi ε G. This proves the lemma.

Now we can prove theorem 1.5.23.

Proof. Since gr(G) =
⊕

Pi(G)/Pi+1(G) is a Lie algebra, which is free of rank
r as gr(Zp)-module, we get the following inclusion:

gr(G) ⊆ Ugr(G) ∼= gr(Zp[G])
∼= gr(Zp[[G]]),

where the first equation holds by [38, Chap. III, 2.3.3] and Ugr(G) is the
enveloping algebra of the Lie algebra gr(G), whereas the second one is a
consequence of lemma 1.5.26. According to [62, Theorem 8.7.7], the graded
ring gr(Zp[[G]]) is commutative (G is assumed to be extra-powerful), i.e.

Ugr(G) ∼= gr(Zp)[X1, . . . , Xr] ∼= Fp[X0, . . . , Xr].

As an important consequence we obtain the

Theorem 1.5.27. Let G be a compact p-adic analytic group without p-
torsion. Then the completed group ring Λ(G) is an Auslander regular ring.

Proof. G posses an open characteristic subgroup N which is an uniform,
extra-powerful pro-p-group. By the theorem of Björk and theorem 1.5.23,
Λ(N) is an Auslander regular ring, because gr(Zp[[N ]]) has this property as
a regular commutative Noetherian ring (cf. [4, pp. 65-69]). But Ei

Λ(G)(M) ∼=
Ei

Λ(N)(M) as Λ(N)-modules for any Λ(G)-moduleM , by which the Auslander
condition is easily verified.
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1.5.3 The µ-invariant

For the purpose to study the p-torsion part torΛM of a Λ-module M we are
also interested in the rings Z/pm[[G]] ∼= Λ(G)/pm, especially the ring Fp[[G]],
and will consider the change of rings Λ(G)→ Λ/pm. For a Λ/pm-module M
there exists a convergent spectral sequence (see [61, Ex. 5.6.3])

ExtiΛ/pm(M,ExtjΛ(Λ/pm,Λ))⇒ Exti+jΛ (M,Λ).

Using the free resolution

0 // Λ
pm

// Λ // Λ/pm // 0,

it is easy to calculate that

ExtjΛ(Λ/pm,Λ) ∼=
{

Λ/pm if j = 1,
0 otherwise.

Hence the spectral sequence degenerates to

Ei
Λ/pm(M) ∼= Ei+1

Λ (M)

for any Λ/pm-module M and any integer i. We obtain the following

Theorem 1.5.28. Let G be a compact p-adic analytic group without p-
torsion and m any natural number. Then

(i) Zp/p
m[[G]] is an Auslander-Gorenstein ring of injective dimension cdp(G).

(ii) Fp[[G]] is an Auslander regular ring of dimension cdp(G).

Proof. From the above formula we derive that Λ/pm has finite injective
dimension cdp(G). On the other hand it is well known that the projec-
tive dimension of Fp[[G]] is equal to cdp(G) (see [45, V§2Ex.5]). Hence
it suffices to verify the Auslander condition: For a Λ/pm- module M let
N ⊆ Ei

Λ/pm(M) be a Λ/pm-submodule which we will also consider as Λ-

submodule of Ei+1
Λ (M). Applying again the above isomorphism, we see that

Ej
Λ/Pm(N) ∼= Ej+1

Λ (N) = 0 for any integer j < i because Λ fulfills the Aus-
lander condition.

A different possibility to prove (ii) of the previous theorem would be to
imitate the proof of theorem 1.5.27 using the analogue of theorem 1.5.23: if
G is a uniform pro-p-group of dimension d, then there is an isomorphism

gr(Fp[[G]]) ∼= Fp[X1, . . . , Xr],



42 CHAPTER 1. Λ-MODULES

where Fp[[G]] is endowed with its M-adic filtration (see [62, 8.7.10]). In
particular, Fp[[G]] has no zero divisors for uniform G ([62, 8.7.9]).

In order to measure the size of the p-torsion part of a Λ-module we have
(as usual) the µ-invariant which is defined as follows.

Definition 1.5.29. 5 Assume that G is a p-adic Lie group without p-torsion
such that Fp[[G]] is integral. For any Λ(G)-module M we define its µ-invariant
µ(M) as

µ(M) = rkFp[[G]]

⊕
i≥0

pi+1M/piM,

where p0M = 0 by convention. Observe that the sum is finite because Λ is
Noetherian.

Note that the µ-invariant only depends on the Λ- resp. Zp-torsion-
submodule: µ(M) = µ(torΛM) = µ(torZpM) = µ(pmM) for m sufficiently
large. With respect to the vanishing we have the following characterization:

Remark 1.5.30. Since pi+1M/piM � � pi
//
pM the following is equivalent

µ(M) = 0 ⇔ µ(pM) = 0

⇔ pM is Fp[[G]]-torsion

⇔ pM is a pseudo-null Λ-module.

For the latter equivalence we used again the above isomorphism.

The next proposition shows that the µ-invariant is in fact an invariant
“up to pseudo-isomorphism”, i.e. it factors through the quotient category
Λ-mod/PN . In particular, our definition of µ generalizes the usual definition
via the structure theory if G is isomorphic to Zr

p for some r.

Proposition 1.5.31. Let G be a p-adic analytic group without p-torsion such
that both Λ = Λ(G) and Λ/p are integral. Then

M ∼ N implies µ(M) = µ(N).

Proof. The statement will follow if it holds in the two special cases of exact
sequences

(a) 0 // Q // M // N // 0,

5I am grateful to Susan Howson for inspiring this definition: Her original suggestion was
to take rkFp[[G]]

⊕
i≥0 pitorZpM/pi+1torZpM. Though this will turn out to be equivalent it

seemed to be more convenient to take the above definition. Of course, we also could have
defined the µ-invariant via proposition 1.5.32.
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(b) 0 // M // N // Q // 0,

where Q is pseudo-null. More generally, we consider a short exact sequence
of Λ-modules

0 // X // Y // Z // 0.

The snake lemma implies the exactness and commutativity of the following
diagram

0 //
pnX //

� _

��

pnY //
� _

��

pnZ //
� _

��

X/pn

p

��
0 //

pn+1X //
pn+1Y //

pn+1Y // X/pn+1.

Again by the snake lemma we obtain the exact sequences

0 //
pn+1X/pnX //

pn+1Y /pnY // An+1/An // 0,

0 // Kn
// An+1/An //

pn+1Z/pnZ // Bn+1/Bn
// 0,

where Ai denotes the image of piY in piZ with cokernel Bi, the latter mod-
ule considered as submodule of X/pi, and Kn := ker(Bn → Bn+1). In
case (b) An+1/An is a pseudo-null Λ-module because An+1 ⊆ Z. Hence
rkFp[[G]]An+1/An = 0 by remark 1.5.30. In case (a) rkFp[[G]]pn+1X/pnX = 0
by the same argument. Furthermore, Kn ⊆ X/pn, Bn+1 ⊆ X/pn+1 and
finally Bn+1/Bn are pseudo-null, too.

By Λ-mod(p) we shall write the plain subcategory of Λ-mod consisting of
Zp-torsion modules while by PN (p)“ = PN∩Λ-mod(p)” we denote the Serre
subcategory of Λ-mod(p) the objects of which are pseudo-null Λ-modules. In
other words M belongs to PN (p) if and only if it is a Λ/pn-module for
an appropriate n such that E0

Λ/pn(M) = 0. Recall that there is a canonical

exact functor q : Λ-mod(p) → Λ-mod(p)/PN (p). For the description of the
p-torsion part the following result will be crucial.

Proposition 1.5.32. Assume that G is a p-adic analytic group without p-
torsion such that both Λ = Λ(G) and Λ/p are integral. Then the following
holds:

(i) q(Λ/p) is simple object in Λ-mod(p)/PN (p), i.e. does not contain any
proper subobject.

(ii) Every object A in Λ-mod(p)/PN (p) has a finite composition series

0 = A0 ⊆ A1 ⊆ · · · ⊆ Ai+1 = A

of subobjects Aj of A such that Aj+1/Aj ∼= q(Λ/p) for every i ≥ j ≥ 0.
In particular, q(Λ/p) is the unique simple object of Λ-mod(p)/PN (p).
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(iii) Any q(M) in Λ-mod(p)/PN (p) has finite length equal to µ(M). Thus,
[q(M)] 7→ µ(M) induces an isomorphism

K0(Λ-mod(p)/PN (p)) ∼= Z.

We need the following lemma which can be proved literally as [29, lem
2.25] because Fp[[G]] is both left and right Noetherian ring without zero divi-
sors and thus it has a skew field of fractions.

Lemma 1.5.33. With the assumptions of the proposition let M be a torsion-
free Λ/p-module of rank rkΛ/p(M) = m. Then there exist free Λ/p-modules
F, F ′ such that F ⊆ M, M ⊆ F ′ and both M/F and F ′/M are Λ/p-torsion,
i.e. pseudo-null considered as Λ-module. In particular, for any Λ/p-module
of rank m there is an isomorphism

q(M) ∼= q(Λ/p)m.

Proof. Let h : q(M) ↪→ q(Λ/p) be a monomorphism in the quotient category.
By [60, I 2.9] there exists a diagram

M Λ/p

M ′
f

``BBBBBBBB g

==zzzzzzzz

in Λ-mod(p) with f a pseudo-isomorphism in Λ-mod such that

q(M) h // q(Λ/p)

q(M ′)
q(f)

ddHHHHHHHHH q(g)

::uuuuuuuuu

commutes. Since h is a monomorphism and q(f) an isomorphism, ker(g)
must be in PN (p). Since M ′/ ker(g) ⊆ Λ/p, we can consider its Λ/p-rank
which can be either 1 or 0. In the first case we conclude that g is a pseudo-
isomorphism, i.e. q(g) is an isomorphism, while in the second case M ′/ ker(g)
and hence M ′ is pseudo-null, thus q(M ′) = 0. This proves (i).
For any M ε Λ-mod(p), the canonical decomposition

0 ⊆ pM ⊆ p2M ⊆ · · · ⊆ pmM = M

for some m, induces a decomposition

0 ⊆ q(pM) ⊆ q(p2M) ⊆ · · · ⊆ q(pmM) = q(M)
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with

q(pj+1M)/q(pjM) ∼= q(pj+1M/pjM) ∼= q(Λ/p)dj ,

where dj = rkΛ/p(pj+1M/pjM) by the previous lemma. Since this filtration
can be refined easily to a decomposition series of the desired kind, we are
done.

Corollary 1.5.34. The invariant µ is additive on short exact sequences of
Λ-torsion modules.

Proof. Since µ is additive on short exact sequences of p-torsion modules by
the proposition it suffices to reduce the general statement to this case. Let

0 // X // Y // Z // 0

be a short exact sequence of Λ-torsion modules. Choosing a number n such
that the p-torsion parts of X, Y and Z are annihilated by pn, we obtain an
exact sequence

0 // torZpX // torZpY // torZpZ // X/pn
ϕ //Y/pn.

Considering the exact, commutative diagram

0 // torZpX //
� _

��

X/pn //

��

(X/torZp)/p
n //

��

0

0 // torZpY // Y/pn // (Y/torZp)/p
n // 0,

we see that ker(ϕ) is pseudo-null by the following lemma, i.e.

0 // torZpX // torZpY // torZpZ //0

is exact mod PN .

Lemma 1.5.35. Assume that G is a p-adic analytic group without p-torsion
such that both Λ = Λ(G) and Λ/p are integral. Let M be a (not necessarily
torsion) Λ-module. Then the following holds

µ(M/p) = 0 ⇒ µ(pM) = 0.

Proof. Since (torZpM)/p ⊆M/p by the snake lemma, it suffices to deal with
the case that M is Λ-torsion. But then the additivity of the µ-invariant
shows immediately that µ(pM) = µ(M/p).
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Lemma 1.5.36. Assume that G is a p-adic analytic group without p-torsion
such that both Λ = Λ(G) and Λ/p are integral. Let M be a Λ-torsion module
with torZpM = 0. Then

(i) for any integer n ≥ 1, the module M/pn is pseudo-null.

(ii) torZpE
1(M) = 0.

We will denote the annihilator in Λ of an element m ε M by annΛ(m) :=
{λ ε Λ|λm = 0}.

Proof. Since there is a surjection⊕
Λ/annΛ(mi) � M

for a finite set of generators mi of M, it suffices to prove (i) in the case
M := Λ/I, where I is a non-zero left ideal of Λ. As M/pn is Λ-torsion we
are done once we have shown the vanishing of E1

Λ(M/pn). But

E1
Λ(M/pn) ∼= E0

Λ/pn(M/pn)
∼= HomΛ/pn(M,Λ/pn)
∼= HomΛ(Λ/I,Λ/pn) = 0.

Indeed, the vanishing of the latter module can be seen as follows: let ϕ : Λ→
Λ/pn be a non-trivial homomorphism of Λ-modules which factors through
Λ/I, i.e. I ⊆ annΛ(x modpn) with x ≡ ϕ(1) modpn.

Claim: annΛ(x modpn) ⊆ pΛ.

Let λ ε annΛ(x modpn), i.e. λx = pny for some y ε Λ and let no be the
maximal integer with x ε pn0Λ, i.e. x = pn0x0 for some x0 ε Λ\pΛ and n0 < n.
Since the multiplication by pn0 is injective we obtain λxo = pn−n0y ≡ 0 modp.
Hence λ ε pΛ because Λ/p is integral. This proves the claim.
The fact that pM = 0, implies I ∩ pΛ = pI and regarding the claim it holds

I = I ∩ pΛ = pI = . . . = pmI

for any m ≥ 0. Since pm tends to zero if m goes to infinity the ideal I must
be zero, a contradiction.
The second statement results from the first one regarding the exact sequence

0 = E1(M/p) // E1(M)
p // E1(M).
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We finish this section with a “structure theorem for the p-torsion part of
Λ-modules.”

Theorem 1.5.37. Assume that G is a p-adic analytic group without p-
torsion such that both Λ = Λ(G) and Λ/p are integral. Let M be in Λ-mod(p).
Then there exist uniquely determined natural numbers n1, . . . , nr and an iso-
morphism in Λ-mod(p)/PN (p)

M ≡
⊕

1≤i≤r

Λ/pni mod PN (p).

Proof. Let m be minimal with the property: pm+1M = M. The theorem is
proved using induction with respect to m. The case m = 0 is just lemma
1.5.33, so let m be arbitrary. Again by lemma 1.5.33 we are in the following
situation:

(Λ/p)d� _

ι

��
0 //

pmM // M // M/pmM // 0,

where d is the Λ/p-rank of M/pmM and the cokernel of ι is pseudo-null.
Replacing M by the pull-back with ι, we may assume that M/pmM ∼= (Λ/p)d.
Since (Λ/pm+1)d is free in the category of Λ/pm+1-modules, we obtain easily
the following exact and commutative diagram

0 // (Λ/pm)d //

ϕ

��

(Λ/pm+1)d //

ψ

��

(Λ/p)d // 0

0 //
pmM //

����

M
pr //

����

(Λ/p)d // 0

N N

where N is by definition the cokernel of ψ respectively ϕ. First we will show
that ψ and hence also ϕ is injective. Since (Λ/pm+1)d - being of projec-
tive Λ-dimension 1 - does not contain any proper pseudo-null Λ-submodule,
it suffices to prove that ker(ψ) is pseudo-null. Assuming the contrary, i.e.
that µ(ker(ψ)) 6= 0, it follows that µ(pm+1K/pmK) < d for the image K
of ψ because for an arbitrary p-torsion Λ-module N rkΛ/p(pi+1N/piN) ≥
rkΛ/p(pi+2N/pi+1N) holds for any i ≥ 0. But this contradicts the surjectivity
of pr ◦ ψ.
To prove the theorem we only have to show that ϕ has a co-section in
Λ-mod(p)/PN (p), i.e. that the short exact sequence in the left column splits.
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Indeed, then a section N ↪→ pmM would give rise to a section N ↪→ M, i.e.
M ∼= N ⊕ (Λ/pm+1)d, and by the assumption of the induction N is already
of the desired form. Here and in what follows we are arguing in the quotient
category Λ-mod(p)/PN (p), though we omit the functor q in the notation of
maps and objects for simplicity.
Again by this assumption, the module pmM is isomorphic to a module of the
form (Λ/pm)d

′ ⊕
⊕

i Λ/p
ni , where ni < m. Assume first that d = 1. We claim

that the image of ϕ is mapped surjectively onto one of the factors Λ/pm un-
der the correspondent projection. Indeed, it is easy to see that otherwise the
image would be contained in pm−1M, which contradicts the injectivity of ϕ.
Counting µ-invariants, we see that ϕ followed by the projection onto such a
factor gives an isomorphism and therefore induces the desired co-section. If
d > 1 we make the same procedure iteratively for every factor of (Λ/pm)d af-
ter first splitting up the image of the previous factor(s). The theorem follows
because the uniqueness can be deduced easily from the decomposition

0 ⊆ pM ⊆ p2M ⊆ · · · ⊆ pmM = M

counting Λ/p-ranks.

1.6 Local Duality

In this and the following section let Λ = Λ(G) = Zp[[G]] be the completed
group algebra over Zp, where G is a pro-p Poincaré group, such that Λ is
Noetherian, M the maximal ideal of Λ and k = Λ/M ∼= Fp its finite residue
class field. It is well known that the global homological dimension of Λ is
d = cd(G)+1. By Λ-Mod we denote the category of (abstract) modules over
the (abstract) ring Λ and we write Λ-mod for the full subcategory of finitely
generated modules. In the sequel we will use frequently the equivalence of
the latter category with the category of finitely generated compact modules.

Definition 1.6.1. For a finitely generated Λ-module M , we define the depth
by

depth(M) := min{i | ExtiΛ(k,M) 6= 0}.

Recall that for a commutative Noetherian ring Λ the I-depth depthI(M)
of a finitely generated Λ-module M with respect to an ideal I is the max-
imal length of a M -regular sequence in I. For a local ring the depth(M)
is depthM(M), while the grade defined in 1.5.3 is j(M) = depthann(M)(Λ),
where ann(M) is the annihilator of M in Λ.

We consider the additive functor ΓM(−) : Λ-Mod → Λ-Mod defined by
ΓM(M) := {x ε M |Mlx = 0 for some l } and state some basic properties:
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Lemma 1.6.2. (i) ΓM(M) = lim−→
l

HomΛ(Λ/Ml,M),

in particular, the functor ΓM(−) is left exact.

(ii) The restriction of ΓM to Λ-mod equals T0, i.e. ΓM(M) is the maximal
finite submodule of M , if the latter module is finitely generated.

Proof. Since HomΛ(Λ/Ml,M) = {x ε M | Mlx = 0}, the first statement is
obvious. If M is finitely generated, there is some l such that MlT0(M) = 0,
i.e. T0(M) ⊆ ΓM(M). On the other hand Λ/Ml is a finite ring. Therefore
Λx ⊆ T0(M) holds for any x ε ΓM(M).

Since Λ-Mod has sufficiently many injectives, we can form the right de-
rived functors

Hi
M(−) = RiΓM(−) = lim−→

l

ExtiΛ(Λ/Ml,M)

(noting the exactness of direct limits in Λ-Mod ). We write

Λ-ModM, Λ-modM

for the full subcategory of Λ-Mod , Λ-mod respectively, consisting of those
modules M, for which H0

M(M) = M holds.

D(Λ-Mod) (resp. C(Λ-Mod))

means the category of discrete (resp. compact) Λ-modules, where Λ is en-
dowed with its canonical (m, I)-topology.

Lemma 1.6.3. Hi
M(−) commutes with direct limits.

Proof. Choose a resolution P• of Λ/Ml by finitely generated projectives in
order to calculate ExtiΛ(Λ/Ml,M). Since HomΛ(Pj,−) commutes with direct
limits (as Pj is finitely generated, i.e. any homomorphism φ : Pj → lim−→

i

Mi

factors over some Mi), ExtiΛ(Λ/Ml,−) does also and the lemma follows.

Proposition 1.6.4. The forgetful functor defines an equivalence of categories

D(Λ-Mod) ∼= Λ-ModM.

Proof. Both categories consists exactly of direct limits of finite modules (cf.
[45, Prop. (5.2.4)] for D(Λ-Mod)).
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Lemma 1.6.5. (i) Hi
M(Λ-Mod) ⊆ Λ-ModM

∼= D(Λ-Mod) for all i ≥ 0.

(ii) For any M ε Λ-mod, it holds depth(M) = min{i | Hi
M(M) 6= 0}.

(iii) depth(Λ) = d and Hd
M(Λ) = Λ∨.

(iv) HomΛ(M,Hd
M(Λ)) ∼= M∨ for all M in Λ-ModM or in Λ-mod , in par-

ticular, Hd
M(Λ) is an injective Λ-module.

Proof. Since Hi
M(−) are the derived functors of H0

M(−), it suffices to prove (i)
for the latter functor. But in this case the statement holds just by definition.

Now we will prove (ii) and set k = min{i | Hi
M(M) 6= 0}. Since

ExtiΛ(Λ/Ml,M) = 0 for all i < depth(M) (note that Λ/Ml has a finite com-
position series with subquotients isomorphic to k), it holds depth(M) ≤ k.
So we only have to prove that Hj

M(M) 6= 0 for j = depth(M) <∞. But the
short exact sequences

0 // M/Ml // Λ/Ml // k // 0

induce the long exact sequences

0 = Extj−1
Λ (M/Ml,M) // ExtjΛ(k,M) // ExtjΛ(Λ/Ml,M) // · · · ,

i.e. 0 6= ExtjΛ(k,M) ⊆ Hj
M(M).

Using 1.4.8 and denoting the character of the dualizing module by χ, we
calculate

Hi
M(Λ) = lim−→

l

Ei(Λ/Ml) =

 lim−→
l

(Λ/Ml(χ))∨ = Λ∨ if i = d

0 otherwise,

whence (iii) follows. In order to prove (iv) first let M be in Λ-ModM, i.e.
M = lim−→

i

Mi for some finite Λ-modulesMi. Then, noting thatMi is a Λ/Ml(i)-

module for some l(i) and using the adjunction of “Hom and ⊗”,

HomΛ(M,Hd
M(Λ)) = HomΛ( lim−→

i

Mi, lim−→
l

(Λ/Ml)∨)

= lim←−
i

HomΛ(Mi, lim−→
l

(Λ/Ml)∨)

= lim←−
i

HomΛ(Mi,HomZp(Λ/M
l(i),Qp/Zp))

= lim←−
i

HomZp(Mi,Qp/Zp)

= M∨.
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Now let M be in Λ-mod . Then, noting that HomΛ(M,−) commutes with
direct limits, because M is finitely generated,

HomΛ(M,Hd
M(Λ)) = HomΛ(M, lim−→

l

(Λ/Ml)
∨
)

= lim−→
l

HomΛ(M, (Λ/Ml)∨)

= lim−→
l

HomΛ(M/Ml,HomZp(Λ/M
l,Qp/Zp))

= lim−→
l

HomZp(M/Ml,Qp/Zp)

= M∨.

After this technical preparations we are able to prove the following

Theorem 1.6.6. Let G be a pro-p Poincaré group with d := cd(G) + 1 <∞
and such that Λ = Λ(G) is Noetherian. Then, for any M ε Λ-mod,

Ei(M) ∼= HomΛ(Hd−i
M (M),Hd

M(Λ)) ∼= Hd−i
M (M)∨ =: T i(M).

Proof. Consider the right exact contravariant additive functor
T 0(−) = Hd

M(M)∨ on Λ-mod (note that Hi
M(M) = 0 for all i > d as Λ

has global dimension d). By [53, Thm. 3.36 and Remarks ] there is a natural
equivalence of functors

T 0(−) ∼= HomΛ(−, T 0(Λ)) ∼= HomΛ(−,Λ)

on Λ-mod . Therefore, it suffices to show that the functors T i(−) are the left
derived functors of T 0(−). But {T i(−)}i≥0 is a universal δ-functor because
they are effaceable by projectives in Λ-mod (Since T 0 is additive, it is suffi-
cient to verify that Hi

M(Λ) = 0 for all i < d, which is done by lemma 1.6.5
(iii)).

1.7 Auslander-Buchsbaum equality

In this section we assume the same conditions on Λ as in the previous one
and, under this conditions, we are going to prove the Auslander-Buchsbaum
equality

pd(M) + depth(M) = depth(Λ)
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for all M ε Λ-mod. In the theory of commutative local rings this equality
can be proved using regular sequences. Since this concept is lacking in the
non-commutative theory, we will have to replace it by homological methods,
i.e. we will work in derived categories. Our proof is analogous to Jørgensen’s
proof of the Auslander-Buchsbaum equality in the case of (non-commutative)
graded algebras over a field (cf. [35]).

First, we recall the definitions of total Hom and total tensor product. Let
X,Y ε K(Λ-Mod) and define

(HomΛ(X, Y ))n =
∏
i ε Z

HomΛ(X i, Y i+n), dn =
∏
i

(di−1
X + (−1)n+1di+nY )

and

(X ⊗Λ Y )n =
⊕
i+j=n

X i ⊗Λ Y
j, dn =

⊕
i+j=n

(diX ⊗ 1 + (−1)n ⊗ djY ).

They become bifunctors

HomΛ(−,−) : K(Λ-Mod)op ×K(Λ-Mod)→ K(Zp-Mod),

−⊗Λ − : K(Mod-Λ)×K(Λ-Mod)→ K(Zp-Mod),

where we denote by Mod-Λ the category of right Λ-modules. Note that the
latter category is equivalent to Λ-Mod due to the involution on the group
algebra Λ. Moreover, if Y is a complex of bi-modules, then the values of
HomΛ(−, Y ) are in K(Mod-Λ), if X is a complex of bi-modules, then X⊗Λ−
has values in K(Λ-Mod).

Since Λ-Mod has enough projectives, the derived functors exist (cf. [28,
Chap. I, Theorem 5.1] or [61, Thm 10.5.6]):

RHomΛ(−,−) : D−(Λ-Mod)op ×D(Λ-Mod)→ D(Zp-Mod),

respectively

RHomΛ(−,−) : D−(Λ-Mod)op ×D(Λ-Mod-Λ)→ D(Mod-Λ)

and
−⊗L

Λ − : D(Mod-Λ)×D−(Λ-Mod)→ D(Zp-Mod),

respectively

−⊗L
Λ − : D(Λ-Mod-Λ)×D−(Λ-Mod)→ D(Λ-Mod).

RHom, respectively ⊗L, is computed via a projective resolution in the first,
respectively second variable.
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Proposition 1.7.1. Let Y ε Db(Λ-Mod-Λ), Z ε Db(Λ-Mod) and let
X ε Db(Λ-Mod) be a bounded complex which is quasi-isomorphic to a bounded
complex consisting of finitely generated free Λ-modules. Then

RHomΛ(X,Y ⊗L
Λ Z) ∼= RHomΛ(X, Y )⊗L

Λ Z.

Proof. (See [35, Proposition 2.1] for the case of graded algebras over a field.)
Replacing X with a quasi-isomorphic complex L ε Db(Λ-Mod) consisting

of finitely generated free Λ-modules and replacing Z with a quasi-isomorphic
complex F ε D−(Λ-Mod) consisting of projectives, we see that we have to
prove

HomΛ(L, Y ⊗Λ F ) = HomΛ(L, Y )⊗Λ F.

But due to the boundedness condition and the fact that L consists of finitely
generated free modules, the nth module on either side becomes⊕

i,j

HomΛ(Li, Y j)⊗Λ F
n+i−j

while the differentials on each summand HomΛ(Li, Y j) ⊗Λ F
n+i−j are given

by

di−1
L ⊗ 1 + djY ⊗ (−1)j−i−1 + (−1)n ⊗ dn+i−j

F , respectively

di−1
L ⊗ 1 + djY ⊗ (−1)n + (−1)i+1 ⊗ dn+i−j

F .

We will construct an isomorphism between the two complexes: If the minimal
non-zero module of each of the complexes is Hom(Li0 , Y j0)⊗ΛF n0+i0−j0 , then
the multiplication by suitable signs on the summands associated to the triple
of indices (a, b, c) = (i, j, n+ i− j) defines an isomorphism of complexes. For
example, we can choose these signs by the following rules, which determine
them uniquely:

(i) sign((i0, j0, n0 + i0 − j0)) = 1,

(ii) sign((a+ 1, b, c)) = sign(a, b, c),

(iii) sign((a, b+ 1, c)) = (−1)csign((a, b, c)),

(iv) sign((, a, b, c+ 1)) = (−1)c+b+1sign((a, b, c)).

In the proof of the next theorem we use the notation

σ≥n(Y ) := · · · // 0 // Y n/im(Y n−1) // Y n+1 // Y n+2 // · · ·
for the truncation of a complex Y at the degree n.
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Theorem 1.7.2. (Auslander-Buchsbaum equality) For any M ε Λ-mod, it
holds

pdΛ(M) + depthΛ(M) = depthΛ(Λ).

Proof. (See [35, Thm 3.2] for the case of graded algebras over a field.)
Regard k, M, Λ as complexes concentrated in degree zero. Then the

invariants in question are related to each other by the following isomorphism

RHomΛ(k,M) ∼= RHomΛ(k,Λ⊗L
Λ M) ∼= RHomΛ(k,Λ)⊗L

Λ M,

where we use proposition 1.7.1. Choosing a minimal free resolution L of M
and noting that the truncation

T = σ≥d(RHomΛ(k,Λ))

is quasi-isomorphic to RHomΛ(k,Λ), we can replace the right term by T⊗ΛL.
The lowest non-zero module in T is T d with d = depth(Λ) while the

lowest non-zero module in L is L−pd(M) according to corollary 1.1.7 . So
the lowest non-zero module in T ⊗Λ L becomes (T ⊗Λ L)d−pd(M) = T d ⊗Λ

L−pd(M). Obviously, depth(M) ≥ d − pd(M), because depth(M) = min{i |
Hi(RHomΛ(k,M) 6= 0}. So we need to see that Hd−pd(M)(T ⊗ΛL) is nonzero.

However, k ∼= ExtdΛ(k,Λ) = ker(ddT ) ⊆ T d and the “beginning” of the
complex T ⊗Λ L looks like

0 // T d ⊗Λ L
−pd(M) // T d ⊗Λ L

−pd(M)+1 ⊕ T d+1 ⊗Λ L
−pd(M) // · · ·.

Now it holds that

0 6= ker(ddT )⊗Λ L
−pd(M) ⊆ ker(d

d−pd(M)
T⊗L ) = Hd−pd(M)(T ⊗Λ L).

Indeed, for t⊗ l ε ker(ddT )⊗Λ L
−pd(M), we have

d
d−pd(M)
T⊗L (t⊗ l) = ddT (t)⊗ l + (−1)d−pd(M)t⊗ d−pd(M)

L (l).

The first summand is zero because t ε ker(ddT ) while, due to the minimality of
L (cf. proposition 1.1.6 (ii)), the second one lies in ker(ddT )⊗ΛMLd−pd(M)+1 ∼=
Λ/M⊗Λ MLd−pd(M)+1 = 0.

Corollary 1.7.3. If M is a finitely generated Λ-module, then

pd(M) = max{i | Ei(M) 6= 0}.

Proof. Using lemma 1.6.5 (ii) and local duality, we get

pd(M) = d− depth(M)

= d−min{i | Hi
M(M) 6= 0}

= max{i | Ei(M) 6= 0}.
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Remark 1.7.4. The statement of the last corollary holds over an arbitrary
Noetherian ring for a finitely generated modules M with finite projective
dimension pdΛM and can be proven directly in the following way. Consider
a projective resolution of minimal length

0 // Pn
dn // Pn−1

dn−1 // · · · // P0
//M //0.

Then the (n−1)th syzygyK = ker(dn−2) has projective dimension pdΛK = 1,
i.e. DK ' E1(K) ∼= En(M). Hence, En(M) cannot vanish because otherwise
K would be projective.

1.8 Modules associated with group presenta-

tions

Let C be a class of finite groups closed under taking subgroups, homomorphic
images and group extensions. Given an exact sequence of pro-C-groups

1→ H→ G → G→ 1,

where G is assumed to be finitely generated, we choose a presentation F � G
of G by a free pro-C-group Fd of rank d and we associate the following
commutative diagram to it:

1 1

1 //H //

OO

G //

OO

G // 1

1 // R //

OO

Fd //

OO

G // 1

N

OO

N

OO

1

OO

1

OO

Here, R and N are defined by the exactness of the corresponding sequences.
In general, the p-relation module Nab(p) of G with respect to the chosen free
presentation (and similarly Rab(p) with respect to G instead of G) fits into the
following exact sequence, which is called Fox-Lyndon resolution associated
with the above free representation of G :
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0 //Nab(p) //Λ(G)d //Λ(G) // Zp
//0. (1.8.1)

Hence, if cdp(G) ≤ 2, then Nab(p) is a projective Λ(G)-module.
Furthermore, the augmentation ideal IF d

, i.e. the kernel of Λ(Fd)→ Zp,
is a free Λ(Fd)-modules of rank d:

IF d

∼= Λ(Fd)d

(for a proof of these facts, see [45] Chap V.6).
Let A be a p-divisible p-torsion abelian group of finite Zp-corank r with

a continuous action of G.
Definition 1.8.1. For a finitely generated Λ = Λ(G)-module M we define
the finitely generated Λ-module

M [A] := M ⊗Zp A
∨ = Homcont.,Zp(M,A)∨

with diagonal G-action.We shall also write M(ρ) for this r-dimensional twist
where ρ : G→ Glr(Zp) denotes the operation of G on A∨.

Note that the functor −[A] is exact.

Lemma 1.8.2. 6 The module Λ[A] is a free Λ-module of rank r.

Proof. Fix an isomorphism of abelian groups φ : A∨ ∼= Zp
r and, for pairs

(U,m) consisting of an m ε N and an open normal subgroup U E G such
that U acts trivially on A∨/pm, consider the well-known isomorphism of Λ-
modules

Zp[G/U ]⊗Zp (A∨)/pm ∼= Zp[G/U ]⊗Zp Zp
r/pm,

which sends gU ⊗ (a + pmA∨) to gU ⊗ (φ(g−1a) + pmZp
r). It is easily seen

that this isomorphisms form a compatible system, i.e.

Λ⊗Zp A
∨ = Λ⊗̂ZpA

∨

= lim←−
(U,m)

Zp[G/U ]⊗Zp (A∨)/pm

= lim←−
(U,m)

Zp[G/U ]⊗Zp Zp
r/pm

= lim←−
U,m

Zp/p
m[G/U ]r

= Λr

6We thank Alexander Schmidt for drawing our attention to the fact that Λ[A] should
not only be projective but even free.
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Proposition 1.8.3. For every i ≥ 0

Ei(M(ρ)) ∼= Ei(M)(ρd),

where ρd is the contragredient representation, i.e. ρd(g) = ρ(g−1)t is the
transpose matrix of ρ(g−1).

Proof. By homological algebra (and using a free presentation of M) it suffices
to prove the case i = 0 for free modules. Finally, we only have to check the
commutativity of the following diagram which is associated to an arbitrary
homomorphism φ : Λ→ Λ

HomΛ(Λ(ρ),Λ)
φ(ρ)∗ //

��

HomΛ(Λ(ρ),Λ)

��
Λr

��

Λr

��
HomΛ(Λ,Λ)(ρ)

φ∗(ρd)// HomΛ(Λ,Λ)(ρ).

First note that via the identification Λr ψρ
Λ(ρ) the matrix representing

φ(ρ) is A :=
∑
aggρ(g

−1), where we assume for simplicity that φ(1) =: a =∑
agg ε Zp[G]. We denote by ι both, the involution Λ→ Λ, g 7→ g−1 (also

extended to matrices with coefficients in Λ) and the isomorphism of left Λ-
modules Λ → HomΛ(Λ,Λ), g 7→ (1 7→ g−1). Then its easy to see that the
following two diagrams commute

HomΛ(Λ(ρ),Λ)
φ(ρ)∗ //

(ψρ)∗

��

HomΛ(Λ(ρ),Λ)

(ψρ)∗

��
HomΛ(Λr,Λ)

ir

��

HomΛ(Λr,Λ)

ir

��
Λr

ι(At) // Λr,

Λr B //

ψ
ρd

��

Λr

ψ
ρd

��
Λ(ρ)

ι(a)(ρd) //

i(ρd)
��

Λ(ρ)

i(ρd)
��

HomΛ(Λ,Λ)(ρ)
φ∗(ρd)// HomΛ(Λ,Λ)(ρ),
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where B =
∑
agg

−1ρd(g), because ι(a) =
∑
agg

−1. We are done if we can
verify B = ι(At). But

ι(At) =
∑

agg
−1ρ(g−1)t

=
∑

agg
−1ρd(g) = B.

With the notation

X := XH,A := H1(H, A)∨

Y := YH,A := (IG[A])H

J := JH,A := ker(Λ(G)[A]H → (A∨)H),

we get the following proposition, which generalizes results of Jannsen [33,
4.3] and Nguyen-Quang-Do [47, 1.7], who considered the case A = Qp/Zp

and Ochi[49, lemma 3.5], who extended the result to general p-adic represen-
tations:

Proposition 1.8.4. We have a commutative and exact diagram

0 0

J

OO

J

OO

0 // H2(H, A)∨ // (Nab(p)[A])H // Λ(G)dr

OO

// Y

OO

// 0

0 // H2(H, A)∨ // (H1(N,A)H)∨ // H1(R,A)∨

OO

// X

OO

// 0.

0

OO

0

OO

Furthermore, if cdp(G) ≤ 2, then Nab(p)[A] is a projective Λ(G)-module and
(Nab(p)[A])H a projective Λ(G)-module.

Proof. The proof in the pro-p-case is given by Ochi [49, lemma 3.5]. In the
general case, just replace his lemma 3.7 by lemma 1.8.2.

The next remark shows that the generalization of the diagram with non-
trivial coefficients A bears only substantial new information if A is not trivial
as a H-module.
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Remark 1.8.5. Assume A is trivial as H-module. Then the above diagram
can be easily obtained by twisting Jannsen’s original diagram (i.e. with coef-
ficients Qp/Zp): diagram(A) = diagram(Qp/Zp)[A]. Also the higher Iwasawa
adjoints of the occurring modules can be calculated via proposition 1.8.3:

Ei(XH,A) ∼= Ei(XH,Qp/Zp)(ρ
d)

Ei(YH,A) ∼= Ei(YH,Qp/Zp)(ρ
d)

· · ·

As a consequence of the diagram we obtain the following theorem which is
one of our main results in this purely group theoretic setting. The restriction
to p-adic Lie groups without p-torsion is necessary in order to apply the
dimension theory developed before.

Theorem 1.8.6. Let cdp(G) ≤ 2 and G a p-adic Lie group of dimension h
without p-torsion. If the “weak Leopoldt conjecture holds for A and H”, i.e. if
H2(H, A) = 0, then neither Y nor X have non-zero pseudo-null submodules:
Th−1(X) = Th−1(Y ) = 0.

Proof. Apply proposition 1.5.13 to Y , which has pd(Y ) ≤ 1 according to the
above diagram, and note that Th−1(X) ⊆ Th−1(Y ) by proposition 1.5.2.

Let Z = ZH,A := (D
(p)
2 (G, A)H)∨ where

D
(p)
2 (G, A) = lim−→

U⊆oG,n

(H2(U, pnA))∨

and the direct limit is taken with respect to the p-power map and the dual
of the corestriction. Then there is a description of the Λ(G)-module Y as
follows:

Proposition 1.8.7. Assume that cdp(G) = 2 and that Nab(p) is a finitely
generated Λ(G)-module. Then

Y ' DZ and E0(Z) ∼= H2(H, A)∨,

thus Y is determined by Z up to projective summands. Suppose, in addition,
that H2(H, A) = 0. Then

E1(Y ) ∼= Z.

For a proof of the proposition see [45] 5.6.8 and [49] thm 3.13.



Chapter 2

Local Iwasawa modules

2.1 The general case

In this section we study the structure of Iwasawa modules arising from “p-
adic representations” G → Aut(A), where G = Gk is the absolute Galois
group of a finite extension k of Q` and A is a p-divisible p-torsion abelian
group of finite Zp-corank r. Having fixed a p-adic Lie extension k∞ of k with
Galois group G, we write H = G(k/k∞) ⊆ G where k denotes the algebraic
closure of k. We are going to apply the general results of section 1.8 to the
module

XA := XH,A = H1(H, A)∨ = H1(k∞, A)∨,

i.e. we will determine the Λ(G)-modules occurring in the canonical exact
sequence

0 // E1D(XA) // XA
// E0E0(XA) // E2D(XA) //0.

Partially, the results extend analogous ones obtained by Y. Ochi [49] who
restricted himself to pro-p-extensions. But the proofs are almost the same.
Since we have fixed H, we shall omit it in the notation and write YA, ZA,
etc.

Lemma 2.1.1. (i) If k is a finite extension of Q` and k∞ is a Galois
extension of k, then Z = A∗(k∞)∨, where A∗ = (TpA)∨(1) by definition,

(ii) E1D(XA) ∼= E1(A∗(k∞)∨),

(iii) E2D(XA) ⊆ E2D(YA) ∼= E2(A∗(k∞)∨),

(iv) If cdp(G) ≤ 1 or cdp(G) = 2 and A(k∞)∨ is Zp-torsion-free, then
DXA ' E1(XA).

60
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Proof. (i) is just local Tate duality while (ii) is a consequence of (i):

E1D(XA) ∼= E1D(YA) ∼= E1(ZA) ∼= E1(A∗(k∞)∨)

(Note that the first isomorphism holds because JA is torsion-free as Λ(U)-
module for a suitable open pro-p-subgroup U ⊆ G, such that Λ(U) is in-
tegral). By the same reason and using the snake lemma, one sees that
E2D(XA) ⊆ E2D(YA). To prove (iv) just note that in these cases pdXA ≤ 1 by
the diagram 1.8.4, the defining sequence of JA, corollary 1.7.3 and 1.4.8.

For a finitely generated abelian p-primary group A we denote by Adiv
the quotient of A by its maximal p-divisible subgroup. The next theorem
generalizes results of Greenberg [22] and Ochi [49]:

Theorem 2.1.2. Let n = [k : Q`], ` = p, be the finite degree of k over
Qp and k∞ a Galois extension of k with Galois group G ∼= Γ oω ∆, where
Γ ∼= Zp and ∆ is a finite group of order t prime to p, which acts on Γ via
the character ω : ∆ → Z∗p. If χ = ω−1 denotes the inverse of the character
which determines the action on the p-dualizing module of G, the canonical
sequence becomes

0 // TpA
∗(k∞)(χ) // XA

// P // M //0,

where P is a projective Λ(G)-module of rkΛ(Γ)P = rnt and M is determined
by the exact sequence

0 //M // A∗(k∞)div(χ) // torZp(A(k∞)∨) .

Furthermore,

(i) if A∗(k∞) is finite, then TpA
∗(k∞)(χ) = 0. If, in addition, A(k∞)∨ is

Zp-free, then M ∼= A∗(k∞).

(ii) if A∗(k∞)∨ is Zp-free, then XA
∼= P ⊕ TpA∗(k∞)(χ). In particular, XA

is projective, if A∗(k∞) = 0.

Proof. First note that according to lemma 2.1.1 and 1.4.8

E1D(XA) ∼= E1(A∗(k∞)∨)
∼= E1(A∗(k∞)∨/torZp)
∼= (A∗(k∞)∨ ⊗Qp/Zp(χ

−1))∨

∼= TpA
∗(k∞)(χ).
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To determine E2D(XA) ∼= E2E1(XA) we use the short exact sequences

0 // XA
// YA // JA // 0,

0 // JA // Λ(G)d // A(k∞)∨ // 0,

i.e. E1(JA) ∼= E2(A(k∞)∨) ∼= A(k∞)div(χ) by lemma 1.4.8 and

A(k∞)div(χ) //E1(YA) // E1(XA) // 0

is exact. Forming the long exact Ext-sequence and applying lemmas 2.1.1
and 1.4.8 again, gives the desired result.

Let us now consider the case ` 6= p :

Theorem 2.1.3. In the situation of the last theorem but with ` 6= p there is
an isomorphism

XA
∼= TpA

∗(k∞)(χ).

Proof. In [49], prop. 3.12, it was calculated that the Λ(Γ)-rank of XA equals
the Λ(Γ)-corank of H2(k∞, A), but the latter module vanishes because the
order of G is divisible by p∞ (cf. [45] 7.1.8).

Theorem 2.1.4. Let n = [k : Qp] be the finite degree of k over Qp and k∞
a p-adic Lie extension of k such that its Galois group G has cohomological
dimension cdp(G) = 2. Let Γ ⊆ G be an arbitrary open uniform pro-p-
subgroup, i.e. Λ(Γ) is integral, and let t be the index (G : Γ). If χ denotes the
inverse of the character which determines the action of G on the p-dualizing
module, then the canonical sequence becomes

0 // XA
// R // E2D(XA) //0,

where R is a reflexive Λ(G)-module with rkΛ(Γ)R = rnt. If, in addition,
A(k∞)∨ is Zp-free, then E2D(XA) is determined by the exact sequence

0 //E2D(XA) // TpA
∗(k∞)(χ) // Hom(TpA(k∞),Zp) .

Proof. Using again the lemmas 2.1.1 and 1.4.8, the proof is completely anal-
ogous to that in the one-dimensional case 2.1.2.

Note that in the case p 6= l and cdp(G) ≥ 2 we have H = 0, i.e. XA = 0,
because the Galois group Gk(p) ∼= Zp(1) o Zp of the maximal p-extension
of any local field over Q` does not have any non-trivial quotient G which
satisfies these conditions.
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Theorem 2.1.5. Let n = [k : Qp] be the finite degree of k over Qp and k∞
a p-adic Lie extension of k such that its Galois group G has cohomological
dimension cdp(G) ≥ 3. Let Γ ⊆ G be an arbitrary open uniform pro-p-
subgroup, i.e. Λ(Γ) is integral, and let t be the index (G : U). Then

XA
∼= E0E0XA

is a reflexive Λ(G)-module with rkΛ(Γ)R = rnt.

Proof. This follows from the lemmas 2.1.1 and 1.4.8 as above.

At the end of this part we want to restate the results concerning the ranks
of the considered modules where we follow Y. Ochi’s [49, thm 3.3]. The same
results were obtained independently by S. Howson [29, 6.1].

Proposition 2.1.6. (Howson, Ochi) Let k be a finite extension of Q` and
k∞ be a pro-p Lie extension of k with Galois group G = G(k∞/k). As before
r denotes the Zp-rank of rank(A∨). Assume that Λ = Λ(G) is integral. Then

rkΛH1(k∞, A)∨ =

{
r[k : Qp] if ` = p

0 otherwise
.

Proof. Noting the vanishing of H2(k∞, A) and that Nab(p) ∼= Λ(G) for d =
[k : Qp] + 2 (conferring [33] thm. 5.1 c)), the result follows from the diagram
1.8.4 and the above remarks with respect to the case ` 6= p.

2.2 The case A = Qp/Zp

2.2.1 Local units

If we specialize to the important case A = Qp/Zp with trivial Galois action,
we are able to determine the module structure more exactly using local class
field theory: X := XQp/Zp

∼= Hab(p)1 is the Galois group of the maximal
abelian p-extension of k∞, which is canonically isomorphic to the inverse
limit

X ∼= A(k∞) := lim←−
k′

A(k′)

1This notation refers to the diagram of section 1.8 where we represent the absolut local
Galois group G of k by a free profinite group of rank d = [k : Q`] + 2 according to [45]
theorem 7.4.1.
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of the p-completions A(k′) of the multiplicative groups of finite subextensions
k′ of k in k∞ :

A(k′) = lim←−
m

(k′)∗/(k′)∗p
m

,

where the limit is taken via the norm maps. Since the Galois module struc-
ture of A(k′) is well known if tensored with Qp, we get

Theorem 2.2.1. Let n = [k : Q`], ` = p, be the finite degree of k over Qp

and k∞ a Galois extension of k with Galois group G ∼= Γoω∆, where Γ ∼= Zp

and ∆ is a finitely generated profinite group of order prime to p, which acts
on Γ via the character ω : ∆→ Z∗p. We write k0 for the fixed field of Γ and
denote by χ = ω−1 the inverse of the character which determines the action
on the p-dualizing module of G.

(i) If µp∞ ⊆ k∞, i.e. k∞ is the cyclotomic Zp-extension of k0 and G =
Γ×∆, then it holds

A(k∞) ∼= Λn ⊕ Zp(1).

(ii) Let µ(k∞)(p) be finite. Then there is an exact sequence of Λ-modules

0 //A(k∞)⊕ IG //Λn+1 //µ(k∞)(p)(χ) // 0.

For any representation

1 // K // Fd′ // G // 1

by a free profinite group Fd′ on d′ ≤ n + 1 generators, there exists an
exact sequence

0 // A(k∞) //Λn−d′+1 ⊕Kab(p) // µ(k∞)(p)(χ) // 0.

Remark 2.2.2. (i) The existence of a representations in (ii) is always guar-
anteed by [31] theorem 4.3. Indeed, one can choose d′ = 2.
(ii) Using the Krull-Schmidt theorem and Maschke’s theorem, it is easily
proved (see the proof below) that

E0(IG)(ω)⊕ IG ∼= Zp[[G]]2

m−1⊕
i=1

IG(ωi)⊕ IG ∼= Zp[[G]]m,
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where m denotes the order of ω. Hence, from the isomorphism Kab(p)⊕IG ∼=
Zp[[G]]d according to the Lyndon sequence (1.8.1), we get isomorphisms (for
m ≤ d)

Kab(p) ∼= Zp[[G]]d−2 ⊕ E0(IG)(ω)

∼= Zp[[G]]d−m ⊕
m−1⊕
i=1

IG(ωi).

In particular, if ω is an involution and d = 2, then Kab(p) ∼= E0(IG)(ω) ∼=
IG(ω) holds.

Proof. Let us first consider the case that ∆ is a finite group, which grants
that Λ(G) is Noetherian. Then the statements are consequences of theorem
2.1.2 once having determined the structure of P = E0E0X. We will apply the
Krull-Schmidt theorem 1.3.1 and we first observe that for any open normal
subgroup U E Γ and Ḡ := G/U it holds: XU ⊗ Qp

∼= PU ⊗ Qp and, if k′

denotes the fixed field of U, there are exact sequences of Ḡ-modules

0 // Uab(p) // (IG)U // Zp[Ḡ] // Zp
//0,

0 // XU
// Ḡab

k′ (p)
// Uab(p) // 0.

Hence, by Maschke’s theorem and using Ḡab
k′ (p)⊗Qp

∼= Qp[Ḡ]n⊕Qp (cf. [45]
7.4.3), we get

PU ⊗Qp ⊕ (IG)U ⊗Qp
∼= Qp[Ḡ]n+1,

i.e.
P ⊕ IG ∼= Λn+1.

Now, taking U -coinvariants of the augmentation sequence

0 // IG // Zp[[G]] // Zp
// 0

and tensoring with Qp(ω
i) gives

Qp[Ḡ]⊕Qp(ω
i+1) ∼= (IG(ωi))U ⊗Qp ⊕Qp(ω

i).

For (i) just note that IG is projective and ω trivial because ∆ acts trivially
on Γ, hence: IG ∼= Zp[[G]. The first sequence in (ii) is immediate while the
second one results from the isomorphism Kab(p)⊕ IG ∼= Zp[[G]]d according to
the Lyndon sequence (1.8.1).
Now let us assume that ∆ is infinite. If ∆′ ⊆ ∆ is an open subgroup then the
functor obtained by taking ∆′-coinvariants is exact because H1(∆

′,M) = 0
for any Λ-module M. Since the automorphism group is virtually pro-p, there
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is an open normal subgroup ∆0 of ∆ which acts trivially on Γ, in particular
any open normal subgroup ∆′ of ∆ which is contained in ∆0 is normal with
in G. Now a free presentation of G

1 // K // Fd′ // G // 1

induces a free presentation of G′ := G/∆′

1 // K∆′ // Fd′ // G/∆′ // 1.

Using the Lyndon sequence, it is easy to verify that (IG)∆′ ∼= IG/∆′ and
Kab(p)∆′ ∼= Kab

∆′(p). Now the strategy is as follows. Take a Λ(G)-module M
and show that for any ∆′ as above its ∆′-coinvariants are isomorphic to cer-
tain finitely generated Λ(G′)-modules of the same type, e.g. A(k′)⊕IG′ , where
k′ is the fixed field of k∞ by ∆′. Then it follows easily (using a compactness
argument to grant the existence of a compatible system of isomorphisms)
that M ∼= A(k∞) ⊕ IG. As an example we prove the first statement in (ii):
choose a surjection Λ(G)n+1 � µ(k∞)(p)(χ) and define M to be the kernel
of it. Taking ∆′-coinvariants and comparing it with the result for k′, i.e. for
(finite) ∆/∆′, we obtain an isomorphism M∆′ ∼= A(k′) ⊕ IG′ by Schanuel’s
lemma (see [33, 1.3] for a generalized version). The other statements follow
by similar arguments.

The second isomorphism of the remark can be deduced by summing up
(IG(ωi))U ⊗Qp for 0 ≤ i ≤ m. For the first one, use that due to the projec-
tivity of IG

E0(IG)U ⊗Qp
∼= HomZp[[G]](IG,Zp[[G]])U ⊗Qp

∼= HomZp[Ḡ]((IG)U ,Zp[Ḡ])⊗Qp

∼= HomQp((IG)U ,Qp)⊗Qp

holds.

Theorem 2.2.3. In the situation of the last theorem but with ` 6= p there is
an isomorphism

X ∼=
{

Zp(1)(χ) if µp ⊆ k0

0 otherwise
.

The next theorem generalizes results of Wintenberger [64] who restricts
himself to the case in which G is abelian. It applies for example to Γ ∼=
Zp o Zp.
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Theorem 2.2.4. Let n = [k : Qp] be the finite degree of k over Qp and k∞
an Galois extension of k with Galois group G ∼= Γ oρ ∆, where Γ is a pro-p
Lie group of dimension 2 and ∆ is a profinite group of order prime to p,
which acts on Γ via ρ : ∆ → Aut(Γ). Let k0 be the fixed field of Γ and let
χ = detρ−1 denote the inverse of the character which determines the action
on the p-dualizing module of G.

(i) If µ(k0)(p) = 1, then X ⊕ Λ ∼= Rab(p). If ρ is trivial, then X ∼= Λn.

(ii) If µp∞ ⊆ k∞ and G is without p-torsion and such that its dualizing
module is not isomorphic to µp∞ , then there is an exact sequence of
Λ-modules

0 // X ⊕ Λ // Rab(p) // Zp(1)(χ) // 0.

If ρ is trivial, then

0 // X // Λn // Zp(1) // 0

is exact.

(iii) If µ(k∞)(p) and ∆ are finite, then X ∼= E0E0(X) is reflexive, i.e. there
is an exact sequence

0 // X // Rab(p) // Λ // µ(k∞)(p).

If, in addition, µ(k)(p) = 1, but µ(k∞)(p) 6= 1 and χ−1 6= χcycl, then the
right map is also surjective (in particular X is not free in this case).

Remark 2.2.5. For extensions k∞|k of the type G ∼= Γ × ∆ with Γ ∼= Zs
p,

s ≥ 3 and finite ∆, we can consider the relative situation

0 // X(k∞)Γ′
// X(K∞) // Zp

// 0,

where Γ′ is direct factor of Γ isomorphic to Zp, i.e. Γ ∼= Γ′ × Zs−1
p , and

K∞ is the fixed field of k∞ with respect to Γ′. By induction and applying
Diekert’s theorem ([45]) one reobtains at once Wintenberger’s results (but
now more generally with not necessarily abelian ∆): For any irreducible
character χ 6= 1, χcycl the component X(k∞)eχ is a free Λ(G)eχ-module of
rank n

X(k∞)eχ ∼= (Λ(G)eχ)n.

But since we already know that pdΛX = s − 2 for s ≥ 3, X can not be
projective in this case, i.e. X(k∞)eχ or X(k∞)eχcycl is definitely not of this
type.
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We will prove the theorem only for finite ∆ because the general case
follows similarly as in theorem 2.2.1. Just note that also in this case the
automorphism group of Γ is virtually pro-p (see [16, 5.6]).
But before giving the proof we need some preparation:

Lemma 2.2.6. Let G = Γ × ∆ be the product of a pro-p Lie group Γ with
cdp(Γ) = 2 and a finite group ∆ of order prime to p. Then

Rab(p) ∼= Λn+1.

Proof. Let Un := pnΓ E G. By the Lyndon sequence and using proposi-
tion 1.3.4, we calculate the Euler characteristic hUn(Rab(p)) = hUn(Zp) +
hUn(Λn+1) = hUn(Λn+1). The result follows.

Lemma 2.2.7. If in the situation of the theorem µ(k∞)(p) is infinite, then
both E0(X) and E0E0(X) are projective.

Proof. Since E0(−) preserves projectives and E0E0E0(X) ∼= E0(X) by 1.5.14,
it is sufficient to prove the statement for E0E0(X). But according to propo-
sition 1.5.16 the latter module is the 2-syzygy of E3E1(X). We claim that

Y ' X ⊕ Λ,

i.e. that E3E1(X) ∼= E3E1(Y ) ∼= E3(µ(k∞)(p)∨) = 0, which implies the
lemma. Indeed, due to Poincaré-duality

H2(G, µ(k∞)(p))∨ ∼= HomG(µ(k∞)(p), D
(p)
2 ) = 0,

if D
(p)
2 6= µp∞ . Hence, Y ' X⊕Λ by the second description of 4.5 b) in [33]2.

Proof (of the theorem). Let Um = pmΓ E G and denote the fixed field of
Um by km. From the exact sequence

1 // Gk∞
// Gkm

// Um // 1

we obtain the associated homological Hochschild-Serre sequence

0 = H2(km,Zp) //H2(Um,Zp) // XUm
// Gab

km
(p) // H1(Um,Zp) //0.

2For Γ = Z2
p this statement was proved by Jannsen ([33] 5.2 c): Though there the

claimed isomorphism Rab(p) ∼= Λd−1 is only correct if ρ is trivial, the arguments (which
we restated above) still prove X ⊕ Λ ' Y.
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After tensoring with Qp, it follows that

XUm ⊗Qp ⊕ H1(Um,Zp)⊗Qp
∼= Qp[Ḡ]n ⊕Qp ⊕ H2(Um,Zp)⊗Qp,

where we used Maschke’s theorem and Ḡab
km

(p)⊗Qp
∼= Qp[Ḡ]n ⊕Qp (cf. [45]

7.4.3). On the other hand, the Euler characteristic of the projective module
Rab(p) can be calculated by means of the Lyndon sequence:

[Rab(p)Um ⊗Qp] = hUm(Rab(p))

= hUm(Zp) + hUm(Λn+1)

= [Qp]− [H1(Um,Zp)⊗Qp] + [H2(Um,Zp)⊗Qp]

+[Qp[Ḡ]n+1]

and hence XUm ⊗Qp ⊕Qp[Ḡ] ∼= Rab(p)Um ⊗Qp.

Assume that µ(k0)(p) = 1, i.e. torZpA(k0) = 1 and XU0 is Zp-free. There-
fore, since t is prime to p, it follows thatXU0 is Zp[∆]-projective. If ρ is trivial,
we conclude, by the calculation above under consideration of hUm(Zp) = 0
(by lemma 1.3.4) and using the Krull-Schmidt theorem, that XU0

∼= Zp[∆]n.
Applying lemma 1.3.3, gives the desired result in this case. Anyway, these
arguments show that X is projective also in the case with non-trivial ρ, i.e.
we obtain X ⊕ Λ ∼= Rab(p) in the general case.

In order to prove (ii), we apply theorem 2.1.4: Since X ⊕ Λ ' Y in this
case (see the proof of lemma lemma 2.2.7), we obtain

E2D(X) ∼= E2D(Y )
∼= E2(Zp(−1))
∼= Zp(1)(χ),

where we applied the lemmas 2.1.1 and 1.4.8. Note that χ−1(x) = det(Adx) =

det ρ(x) : G → ∆
det ρ→ Z∗p (cf. [38] V 2.5.8.1). We still have to determine the

module P = E0E0(X), which is projective according to lemma 2.2.7: it is
easily seen that PUm ⊗ Qp

∼= XUm ⊗ Qp, i.e. P ⊕ Λ ∼= Rab(p), by the above
calculations. If ρ is trivial, lemma 2.2.6 gives the desired result.

The first statement of (iii) is just theorem 2.1.4 and lemma 2.1.1. By
proposition 1.5.16, we obtain an exact sequence

0 // X // P // Λs // µ(k∞)(p)

for some s. Splitting up the sequence, taking the long exact Hi(Um,−)-
sequences and using the above calculations, one immediately sees that PUm⊗
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Qp
∼= Rab(p)Um⊗Qp⊕Qp[Ḡ]s−1, i.e. P ∼= Rab(p)⊕Λs−1. After possibly chang-

ing the basis of Λd and using the Krull-Schmidt theorem 1.3.1, one easily sees
that we can rid off the summand Λs−1.
In order to prove the last statement, we assume that χ−1 6= χcycl and consider
the exact sequence

0 // E1(X)∨ // E1(Y )∨ // E1(I)∨

µ(k∞)(p) Qp/Zp(χ
−1).

The decomposition of the sequence with respect to the irreducible Qp-
characters of ∆ gives (E1(X)∨)χcycl = µ(k∞)(p)χcycl = µ(k∞)(p). �

2.2.2 Principal units

When l = p, we are also interested in the Λ-structure of the inverse limit of
the principal units

U1(k∞) := lim←−
k′

U1(k′),

where k′ runs through all finite subextensions of k∞|k and the limit is taken
with respect to the norm maps.

Proposition 2.2.8. Let k be a finite extension of Qp and k∞ a Galois ex-
tension of k.

(i) If k∞ contains the maximal unramified p-extension of k, i.e. if p∞ di-
vides the degree of the residue field extension associated with k∞|k, then

U1(k∞) ∼= A(k∞).

(ii) In the other case there is the following exact sequence

0 // U1(k∞) //A(k∞) //Zp
// 0.

Proof. For finite extensions K ′|K|k of k with associated residue field exten-
sions λ′|λ|κ consider the following commutative diagram with exact rows

0 // U1(K ′)/pm //

NK′/K

��

A(K ′) //

NK′/K

��

Zp/p
m //

[λ′:λ]
��

0

0 // U1(K)/pm // A(K) // Zp/p
m // 0.
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While in case (i) the inverse limit lim←−
K,m

Zp/p
m vanishes, because for any m and

any K there is an extension K ′ such that pm|[λ′ : λ], in the second case it is
isomorphic to Zp.

Theorem 2.2.9. Assume in the situation of theorem 2.2.4 that k∞ contains
µp∞ but not the maximal unramified p-extension of k. Then there exists an
exact sequence

0 //U1(k∞)⊕ Λ // Rab(p) // M // 0.

In particular, if ρ is trivial, there exists an exact sequence

0 //U1(k∞) // Λn // M // 0,

where M fits into the exact sequence

0 // Zp
// M // Zp(1)(χ) // 0.

Proof. Evaluating the long exact Ei-sequence associated with the exact se-
quence from the proposition above and noting that pdΛU1(k∞) ≤ 1 due to
pdΛA(k∞) ≤ 1 and pdΛZp = 2, one obtains that

(i) E0(U1(k∞)) ∼= E0(X),

(ii) E1D(U1(k∞)) = 0 and an exact sequence

(iii) 0 // Zp
//E2D(U1(k∞)) // Zp(1)(χ) // 0.

Here we used that E2E2(Zp) ∼= Zp, because Zp is a Cohen-Macaulay module
of dimension 2. The result follows from the canonical sequence.

Remark 2.2.10. In the situation of theorem 2.2.1 with trivial action of ∆
the structure of the principal units is described in [45] as follows:

(i) If µp∞ ⊆ k∞, then
U1(k∞) ∼= Λn ⊕ Zp(1).

(ii) If µ(k∞)(p) is finite, then there is an exact sequence

0 // U1(k∞) // Λn // µ(k∞)(p).

(iii) If k∞|k is unramified, then

U1(k∞) ∼= A(k∞).

But the proof of [45] works also if ω is not trivial.
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2.3 The local CM-case

As a consequence of theorem 2.2.4 we can also determine the structure of
XA = H1(k∞, A)∨ in the trivializing case, i.e. k(A) ⊆ k∞ :

Theorem 2.3.1. Let n = [k : Qp] be the finite degree of k over Qp and k∞ a
Galois extension of k with Galois group G ∼= Γ oρ ∆, where Γ is a pro-p Lie
group of dimension 2 and ∆ is a finite group of order t prime to p, which acts
on Γ via ρ : ∆ → Aut(Γ). Let k0 be the fixed field of Γ and let χ = detρ−1

denote the inverse of the character which determines the action on the p-
dualizing module of G. For any A with rkZpA

∨ = r such that k(A) ⊆ k∞ the
following is true.

(i) If µ(k0)(p) = 1, then XA⊕Λr ∼= Rab(p)[A], in particular, if ρ is trivial:
XA
∼= Λnr.

(ii) If µp∞ ⊆ k∞ and G is p-torsion-free and its dualizing module is not
isomorphic to µp∞ , then there is an exact sequence of Λ-modules

0 // XA ⊕ Λr // Rab(p)[A] // A∨(1)(χ) // 0.

In particular, if ρ is trivial, then

0 // XA
// Λnr // A∨(1) // 0

is exact.

(iii) If µ(k∞)(p) is finite, then XA
∼= E0E0(XA) is reflexive, i.e. there is an

exact sequence

0 // XA
// Rab(p)[A] // Λr // µ(k∞)(p)[A].

If, in addition, µ(k)(p) = 1, but µ(k∞)(p) 6= 1 and χ−1 6= χcycl, then
the right map is also surjective (in particular, XA is not free in this
case).

Proof. In this case the subgroups H, R and N act trivially on A = A(k∞),
i.e. XA

∼= X[A].

This result applies to the following situation: Let K be a imaginary
quadratic number field, F a finite, abelian extension of K and E an ellip-
tic curve defined over F with complex multiplication (CM) by the ring of
integers OK of K such that F (Etor) is an abelian extension of K. Assume
that the rational prime p splits in K, i.e. pOK = pp̄, p 6= p̄, and that E
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has good reduction at all places lying over p. Set G = G(F (E(p))/F )P the
decomposition group at some P|p. According to [15, 1.9], the prime P ram-
ifies totally in F (E(p))|F and decomposes only finitely (and is unramified)
in F (E(p̄))|F. Therefore the decomposition group G is an open subgroup of
G(F (E(p))/F ), i.e. of type Z2

p ×∆ where ∆ is a finite abelian group. Thus
we obtain an exact sequence

0 // H1(F (E(p))P, E(p))∨ // Λ(G)2n // TpE // 0,

where n = [Fp : Qp]. By the same argument, but now using theorem 2.2.1(ii),
there exists an exact sequence

0 // H1(F (E(p)P, E(p))∨ // Λ(G′)n // µ(F (E(p)P)[E(p)] // 0,

where G′ = G(F (E(p))/F )P, and a similar one for p̄.



Chapter 3

Global Iwasawa modules

Let k∞ be a p-adic Lie extension of the number field k contained in kS with
Galois group G and let A be a p-divisible p-torsion abelian group with Zp-
corank r and on which GS(k) = G(kS/k) acts continuously where S is a finite
set of places of k containing all places Sp over p and all infinite places S∞
(and by definition all places at which A is ramified). Here kS denotes the
maximal S-ramified extension of k, i.e. the maximal extension of k which is
unramified outside S. In order to derive information about the Λ = Λ(G)-
modules Hi(G(kS/k∞), A) we would like to apply the diagram 1.8 to the
group G = GS := G(kS/k). On the other hand we have to guarantee that G
is finitely generated as a profinite group which, unfortunately, is not known
for the group GS. But using a theorem of Neumann, i.e. the inflation maps
are isomorphisms

Hi(G(Ω/k∞), A) ∼= Hi(GS(k∞), A), i ≥ 0,

for any (p, S)-closed extension Ω of k (i.e. Ω is a S-ramified extension of k
which does not possess any non-trivial S-ramified p-extension) and for any p-
torsion G(Ω/k∞)-module A, we are free to replace GS(k) for example by the
Galois group G := G(Ω/k) where Ω is the maximal S-ramified p-extension
of k′(A) and k′ is a Galois subextension of k∞/k such that G(k∞/k

′) is an
open (normal) pro-p-group. Regarding this technical detail, we assume in
what follows that k∞ is contained in such a (p, S)-closed field Ω. Then, since
G has an open pro-p Sylow group, it is finitely generated and has cdp(G) ≤ 2
for odd p. Note that YS,A := YG(Ω/k∞),A and XS,A := XG(Ω/k∞),A do not de-
pend on the choice of Ω. The next lemma shows among other things that
the corresponding module Z only depends on k∞, A and S. Recall that
TpA = Hom(Qp/Zp, A) denotes the “Tate module” of A. We shall write
H∗cts(GS(k), TpA) ∼= lim←−

n

H∗(GS(k), pnA) for the continuous cochain cohomol-

ogy groups (see [45, II.§3.]).

74
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Lemma 3.0.2. Let k, k∞ and A be as above. Then

ZS,A := ZG(Ω/k∞),A
∼= lim←−

k⊆k′⊆k∞

H2
cts(GS(k

′), TpA).

Proof. Note that, by the theorem of Neumann, D
(p)
2 (G, A) ∼= D

(p)
2 (GS, A),

which can be determined via the exact sequence of Tate-Poitou (see [33, 5.4
d] for the case A = Qp/Zp).

One of the main theorems of this thesis is the following

Theorem 3.0.3. Let G a p-adic Lie group without p-torsion. If the “weak
Leopoldt conjecture holds for A and k∞”, i.e. H2(GS(k∞), A) = 0, then nei-
ther YS,A nor XS,A

∼= H1(GS(k∞), A)∨ have non-zero pseudo-null submodules.

Proof. The conditions of theorem 1.8.6 are fulfilled.

Remark 3.0.4. The weak Leopoldt conjecture for A and k∞ holds for exam-
ple if k(A) and the cyclotomic Zp-extension of k are contained in k∞. Indeed,
it is a result of Iwasawa that the weak Leopoldt conjecture (for A = Qp/Zp)
holds for the cyclotomic Zp-extension of any number field (see [45, 10.3.25]
for a cohomological proof). The claim follows by expressing H2(GS(k∞), A)
(considered as abelian group) as direct limit lim−→

k′

H2(GS(k
′
cyc),Qp/Zp)

r, where

k′ runs through the finite extensions of k in k∞.

Furthermore, Λ-rank of XS,A can be determined, using the diagram 1.8:

Theorem 3.0.5. (Ochi) Let k∞|k be a p-adic pro-p extension. Assume that
k(A)|k is a pro-p-extension and that Λ is an integral domain. Then

rkΛH1(GS(k∞), A)∨ − rkΛH2(GS(k∞), A)∨ = r2(k)r

Here r2(k) denotes as usual the number of complex places of k.

Proof. We give a slightly different proof than Y. Ochi: using the diagram
1.8, we calculate

rkΛX − rkΛH2(GS(k∞), A)∨ = rkΛY − rkΛJ − rkΛH2(GS(k∞), A)∨

= rd− rkΛ(Nab(p)[A])H − r
= rr2(k),

where we used Jannsen’s determination of the Λ-structure of Nab(p)H, see
3.1.3. Note that under our assumptions G is a pro-p-group, thus Nab(p) is
a free Λ(G)-module and hence rkΛ(G)(Nab(p)[A])H = rkΛ(G)(Nab(p))H[A] =
rrkΛ(G)Nab(p).
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3.1 The multiplicative group Gm

3.1.1 The maximal abelian p-extension of k∞ unrami-
fied outside S

We still consider p-adic Lie extensions k∞|k with Galois group G = G(k∞/k)
such that k∞ is contained in the maximal S-ramified extension kS of k. Here,
as before, S denotes a finite set of places of k containing all places Sp over p
and all infinite places S∞. For K|k finite let Sf (K) be the set of finite primes
in K lying above S. In this paragraph we specialize to the case A = Qp/Zp

and we shall write XS for the Λ = Λ(G)-module XS,Qp/Zp

XS := XS,Qp/Zp = H1(GS(k∞),Qp/Zp)
∨ ∼= G(kS/k∞)ab(p),

and respectively for YS and ZS.
In this case our main theorem 3.0.3 is a generalization of the theorems of

Greenberg [21] and Nguyen-Quang-Do [47], who considered the case G ∼= Zd
p.

Indeed, it confirms Greenberg’s suggestion that an analogous statement also
should hold for p-adic Lie extensions.

Theorem 3.1.1. Let G be a p-adic Lie group without p-torsion. If the “weak
Leopoldt conjecture holds for k∞”, i.e. H2(GS(k∞),Qp/Zp) = 0, then XS

∼=
GS(k∞)ab(p) has no non-zero pseudo-null Λ-submodule.

Remark 3.1.2. Recall that the weak Leopoldt conjecture for k∞ holds if
the cyclotomic Zp-extension of k is contained in k∞.

We will also consider the Λ-modules

Xnr = G(L/k∞),

XS
cs = G(L′/k∞),

where L is the maximal abelian unramified pro-p-extension of k∞ and L′

is the maximal subextension in which every prime above S is completely
decomposed.

For an arbitrary number field K, we denote the ring of integers
(resp. S-integers) by OK (resp. OK,S) and its units by E(K) := O×K (resp.
ES(K) := O×K,S). Then we define

E : = lim←−
k′

(O×k′ ⊗ Zp),

ES : = lim←−
k′

(O×k′,S ⊗ Zp),
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where the limit is taken with respect to the norm maps. This should not be
confused with the discrete module of units (resp. S-units) E(k∞) = lim−→

k′

E(k′)

(resp. ES(k∞) = lim−→
k′

ES(k
′)).

Finally, we write for the local-global modules

AS =
⊕
Sf (k)

IndGν
G Aν ,

US =
⊕
Sf (k)

IndGν
G Uν ,

where Aν = A(k∞,ν) (resp. Uν = U1(k∞,ν)) are the local modules introduced
in chapter 2.
The above modules are connected via global class field theory and the Tate-
Poitou sequence as follows

Proposition 3.1.3. (Jannsen) There are the following exact and commuta-
tive diagrams of Λ-modules:

(i)

0 // H2(GS(k∞),Qp/Zp)
∨ // E� _

��

// US� _

��

// XS
// Xnr

����

// 0

0 // H2(GS(k∞),Qp/Zp)
∨ // ES

// AS
// XS

// XS
cs

// 0

(ii)

0 // E //ES
//
⊕

Sun(k) IndGν
G Zp

// Xnr
// XS

cs
// 0,

where Sun := {ν ε S(k) | p∞ - fν} and fν = f(k∞,ν/kν) denotes the
degree of the extension of the corresponding residue class fields.

(iii)

0 //XS
cs

//ZS,Qp/Zp(1)
//
⊕

Sf (k) IndGν
G Zp

// Zp
//0,

and, if µp∞ ⊆ k∞,

0 //Xcs(−1) //ZS //
⊕

Sf (k) IndGν
G Zp(−1) // Zp(−1) //0.

In particular, XS
cs = Xcs := X

Sp
cs is independent of S in this case.
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(iv) Nab(p) is a finitely generated, projective Λ(G(k∞S(p)/k))-module and,
if the free presentation of G = G(k∞S(p)/k) (cf. section 1.8) is chosen
such that d ≥ r′1 + r2 + 1, then

Nab(p)GS(k∞)(p)
∼=

⊕
S′∞

IndGν
G Zp ⊕ Λ(G)d−r2−r

′
1−1,

where S ′∞ is the set of real places of k which ramify (i.e. become com-
plex) in k∞, r

′
1 is the cardinality of S ′∞, and r2 is the number of complex

places of k.

Proof. The assertions (i) and (iii) are obtained by taking inverse limits of the
Tate-Poitou sequence (see [33, Thm 5.4]) and recalling lemma 3.0.2 while (ii)
follows from (i) by the snake lemma and prop. 2.2.8.

From these diagrams and the fact that Λ is Noetherian it follows that
the modules Xnr, X

S
cs are finitely generated. Furthermore, S. Howson [29,

7.14-7.16] and independently Y. Ochi [49, 4.10] proved that Xnr and XS
cs are

Λ-torsion. Actually, this result was first proved by M. Harris [25, thm 3.3]
but, as S. Howson remarked, his proof is incomplete because it relies on the
false “strong Nakayama” lemma (loc. cit. lem 1.9), see the discussion in [2].
However, in a recent correction M. Harris [27] has given a new proof of the
result. In the case G ∼= Zd

p, this result is originally proved by Greenberg [20].
Here, we present a slight modification of Y. Ochi’s proof:

Corollary 3.1.4. (i) If H2(GS(k∞),Qp/Zp(1)) = 0 (e.g. if dim(Gν) ≥ 1
for all ν ε Sf), then XS

cs is a Λ-torsion module.

(ii) If dim(Gν) ≥ 1 for all ν ε Sf , then Xnr is a Λ-torsion module.

For example, the conditions of the corollary are satisfied if k∞ contains
the cyclotomic Zp-extension.

Proof. (cf. Ochi)1 The first statement follows from 1.8.7 while the second
one is a consequence of the first one and the above proposition (To calculate
the (co)dimension of IndGν

G Zp use 1.5.17 and 1.4.8). Note that the condition
“dim(Gν) ≥ 1 for all ν ε Sf” implies, using Tate-Poitou duality,

H2(GS(k∞),Qp/Zp(1)) = X2(GS(k∞), µp∞)

= lim−→
k′,n

X1(GS(k
′),Z/pn)∨

1Y. Ochi’s setting is restricted to the situation µp ⊆ k∞ (otherwise µp∞ is not a
GS(k∞)(p)-module), but this problem can be avoided by the arguments given at the
beginning of this chapter.
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= lim−→
k′

ClS(k
′)⊗Z Qp/Zp

= 0

because ClS(k
′) is finite.

Theorem 3.1.5. If H2(GS(k∞),Qp/Zp) = 0, µp∞ ⊆ k∞, and dim(Gν) ≥ 2
for all ν ε Sf , then

Xnr(−1) ∼ XS
cs(−1) ∼ E1(YS) ∼ E1(torΛYS) ∼= E1(torΛXS).

If, in addition, G ∼= Zr
p, r ≥ 2, then even the following holds:

Xnr(−1) ∼ XS
cs(−1) ∼ (torΛXS)

◦,

where ◦ means that G operates via the involution g 7→ g−1.

Proof. The first two pseudo-isomorphisms follow again from proposition 3.1.3
using 1.5.17, 1.4.8 and 1.8.7. The third one is just prop. 1.5.9. Note that
there is even an isomorphism torΛYS ∼= torΛXS because the augmentation
ideal IG is torsion-free. In the commutative case it is well known that a
Λ-torsion module M is pseudo-isomorphic to E1(M) (see [52, prop. I.2.2.8]
for r = 2, but for r > 2 the same proof holds).

The following consequence generalizes a result of McCallum [43, thm 8]
who considered the Zr

p-case:

Corollary 3.1.6. With the assumptions of the theorem the following holds.

(i) There is a pseudo-isomorphism

torΛXS ∼ E1(XS
cs(−1)).

(ii) If dim(G) ≥ 3, then there is an isomorphism

torΛXS
∼= E1(XS

cs(−1)).

Proof. The cokernel K := coker(XS
cs(−1) ↪→ ZS ∼= E1(YS) is pseudo-null, i.e.

E1(K) = 0. If dim(G) ≥ 3, then E2(K) = 0, too, as can be calculated using
1.2.3. Now, the long exact E-sequence gives the result observing E1E1(YS) ∼=
E1DYS ∼= torΛYS ∼= torΛXS.



80 CHAPTER 3. GLOBAL IWASAWA MODULES

Remark 3.1.7. The condition “dim(Gν) ≥ 2 for all ν ε Sf ,” is known to
hold in “most” extensions arising from geometry, see remark 3.2.12 and (the
proof of) corollary 3.2.5 below. Other important cases are the following ones:
(a) Let k∞ be the maximal multiple Zp-extension k̃ of k, i.e. the composite
of all Zp-extensions of k, and assume that µp ⊆ k or
(b) let k∞ be a multiple Zp-extension with G ∼= Zr

p, r ≥ 2, and assume that
there is only one prime of k lying over p.
Then, as has been observed independently by T. Nguyen-Quang-Do [48, thm
3.2] and McCallum [43, proof of thm 7], the condition holds for S = Sp∪S∞.
Indeed, since Q(µp) has only one prime dividing p, it suffices to consider the
second case. But then all inertia groups Tν , ν ε Sp, are conjugate, thus they
are all equal and hence an open subgroup of G due to the finiteness of the
ideal class group.

With respect to the composite k̃ of all Zp-extensions of k there is the
following outstanding

Conjecture 3.1.8. (R. Greenberg) For any number field k, the Λ(G(k̃/k))-
module Xnr is pseudo-null.

Recently, W. McCallum [43] proved this conjecture for the base field
k = Q(µp) under some mild assumptions. For a list of other cases in which
this conjecture is known to hold, see [48, rem 4.6]. Assume that µp ⊆ k
and that the condition “dim(Gν) ≥ 2, for all ν ε Sf ,” holds. Then, by the
above theorem and theorem 3.1.1, Greenberg’s conjecture is equivalent to the
statement that XS is Λ-torsion-free, compare with [48, 4.4] and [43, Cor 13].

The observation of the previous proof leads also to:

Proposition 3.1.9. If dim(Gν) ≥ 2 for all ν ε Sf , then

E ∼ ES.

We are also interested in the (Pontryagin duals of the) direct limits

ClS(k∞)(p) = lim−→
k′

ClS(k
′)(p),

ES(k∞) := (ES(k∞)⊗Z Qp/Zp)
∨,

of the p-part of the ideal class group, resp. of the global (S-)units of finite
extensions k′ of k inside k∞.

Proposition 3.1.10. Let T be a set of places of k such that S∞ ⊆ T ⊆ S.
Assume that dim(Tν) ≥ 1 for all ν ε S \T, where Tν ⊆ Gν denotes the inertia
group of ν.
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(i) There is an exact sequence of Λ-modules

0 // ClS(k∞)(p)∨
ψ // ClT (k∞)(p)∨ // ES(k∞)

ϕ // ET (k∞) // 0.

(ii) Assume that S \ T = {ν}. Then, if dim(Gν) ≥ 1 (resp. dim(Gν) ≥ 2),
then coker(ψ) ∼= ker(ϕ) is Λ-torsion (resp. pseudo-null).

(iii) If dim(Gν) ≥ 2 for every ν ε S \ T, then there are canonical pseudo-
isomorphisms

ClS(k∞)(p)∨ ∼ ClT (k∞)(p)∨, ES(k∞) ∼ ET (k∞).

Proof. Consider the canonical exact diagram for a finite extension k′ of k in
k∞

ET (k′)⊗Z Zp
� �ik′ // ES(k

′)⊗Z Zp
//
⊕

(S\T )(k′) Zp // ClT (k′)(p)
πk′// // ClS(k

′)(p).

Setting C(k′) := coker(ik′) (resp. D(k′) := ker(πk′)), C∞ = lim−→C(k′) (resp.

D∞ = lim−→D(k′)) and tensoring with Qp/Zp we get the following exact se-

quences

0 // ET (k′)⊗Z Qp/Zp
// ES(k

′)⊗Z Qp/Zp
// C(k′)⊗Z Qp/Zp

// 0,

0 // D(k′) // C(k′)⊗Z Qp/Zp
//
⊕

(S\T )(k′) Qp/Zp // 0,

0 // D(k′) // ClT (k′)(p) // ClS(k
′)(p) // 0.

Taking the direct limit over all finite subextensions k′, we get an isomorphism
D∞ ∼= C∞ ⊗Qp/Zp because the transition maps for the sum of the Qp/Zp’s
is just the multiplication with the ramification index. The first result follows
after taking the Pontryagin dual.
Now assume that S \T consists of a single prime and set Ḡ := G(k′/k) Since

then Ḡν = GνG(k∞/k
′)/G(k∞/k

′) acts trivial on
⊕

(S\T )(k′) Zp
∼= IndḠν

Ḡ
Zp

and therefore also on C(k′) ⊗ Qp/Zp, it follows that Gν acts trivial on
(C∞ ⊗ Qp/Zp)

∨. But then any surjection Λn � (C∞ ⊗ Qp/Zp)
∨ factors

through (IndGν
G Zp)

n which is torsion (resp. pseudo-null) if dim(Gν) ≥ 1 (resp.
dim(Gν) ≥ 2). The last statement is a consequence of the second one.

The Λ-modules ClS(k∞)(p)∨ and ES(k∞) are related to each other and to
XS via Kummer theory:
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Proposition 3.1.11. Assume that µp∞ ⊆ k∞. Then the following holds:

(i) There are exact sequences of Λ-modules

0 // ClS(k∞)(p)∨ // XS(−1) // ES(k∞) // 0

and, if k∞ is contained in kΣ, where Σ = Sp ∪ S∞,

0 // Cl(k∞)(p)∨ // XΣ(−1) // E(k∞) // 0.

(ii) ClS(k∞)(p)∨ is Λ-torsion. If dim(Gν) ≥ 1 for every ν ε Sp, then
Cl(k∞)(p)∨ is Λ-torsion, too. In particular, there are exact sequences

0 // ClS(k∞)(p)∨ // torΛXS(−1) // torΛES(k∞) // 0,

0 // Cl(k∞)(p)∨ // torΛXΣ(−1) // torΛE(k∞) // 0.

Proof. The long exact Hi(G(kS/k∞),−) -sequence of

0 // µpn // ES(kS)
pn

// ES(kS) // 0

induces the short exact sequence

0 // ES(k∞)/pn // H1(G(kS/k∞), µp∞) //
pnH1(G(kS/k∞), ES(ks)) // 0,

i.e. after taking the direct limit with respect to n

0 // ES(k∞)⊗Z Qp/Zp
// H1(G(kS/k∞),Qp/Zp)(1) // ClS(k∞)(p) // 0.

Taking the dual, we obtain the first statement. A canonical map
Cl(k∞(p)∨)→ XS(−1) which is compatible with the inclusion ClS(k∞)(p)∨ →
XS(−1) from the first sequence can be defined exactly as in the Zp-case, see
[45, 11.4.2 and errata]. Then the exactness of the second sequence at the
first term is obtained from the first one and prop. 3.1.11:

Cl(k∞)(p)∨/ClΣ(k∞)(p)∨ ⊆ EΣ ∼= XΣ(−1)/ClΣ(k∞)(p)∨,

i.e. Cl(k∞)(p)∨ can be considered as submodule of XΣ(1) and then its quo-
tient is E .
Comparing the ranks of XS and ES (see 3.1.22) (with respect to an arbi-
trary open subgroup H ⊆ G such that Λ(H) is integral), we conclude that
ClS(k∞)(p)∨ is Λ-torsion while the analogous result for Cl(k∞)(p)∨ follows
from prop. 3.1.11. Now, the last sequences can be derived from the prior
ones by rank considerations or by applying the snake lemma to the canonical
sequence of homotopy theory (1.2.4).
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In the Zp-case there exists a remarkable duality between the inverse and
direct limit of the (S-) ideal class groups in the Zp-tower, viz the pseudo-
isomorphisms

Xnr ∼ E1(Cl(k∞)(p)∨) ∼ (Cl(k∞)(p)∨)◦,

XS
cs ∼ E1(ClS(k∞)(p)∨) ∼ (ClS(k∞)(p)∨)◦.

Therefore it seems natural (though maybe very optimistic) to pose the fol-
lowing

Question 3.1.12. Is it true that for any p-adic Lie extension (at least
under the assumption “dim(Gν) ≥ 2, for all ν ε Sf ,”) there exist pseudo-
isomorphisms

Xnr ∼ E1(Cl(k∞)(p)∨),

XS
cs ∼ E1(ClS(k∞)(p)∨) ?

In this context we remind the reader also to our question 1.5.10.

Observe, that Xnr ∼ XS
cs and ClS(k∞)(p)∨ ∼ Cl(k∞)(p)∨ by 3.1.3,

3.1.10. Hence, it would suffice to prove the existence of one of the pseudo-
isomorphisms. By prop. 3.1.11(ii) and theorem 3.1.5 the question would be
true if one could show that the Λ-torsion of ES(k∞) is pseudo-null. But it
seems difficult to prove the latter statement directly. In fact, in the case of a
multiple Zp-extension k∞|k where µp∞ ⊆ k∞ and k has only one prime above
p , W. McCallum [43, thm 7] answers the above question positively and then
derives torΛES(k∞) = 0 just from the desired pseudo-isomorphism. This is
the only case to the knowledge of the author where a positive answer to this
question is known. Also J. Nekovar (unpublished) announced a result in the
direction of the question.

For the next result, which generalizes theorem 11.3.7 of [45], recall that
the µ-invariant of a Λ-module was defined as the Fp[[G]]-rank of⊕

i≥0 pi+1M/piM in case the latter is well-defined, see (1.5.29).

Theorem 3.1.13. Let k∞|k be a p-adic Lie extension such that G is without
p-torsion and Fp[[G]] is an integral domain. Then G = G(kS(p)/k∞) is a free
pro-p-group if and only if µ(XS) = 0 and the weak Leopoldt conjecture holds:
H2(GS(k∞),Qp/Zp) = 0.

Proof. Since G is pro-p it is free if and only if H2(G,Z/p) = 0, i.e. if and only
if p(XS) and H2(GS(k∞),Qp/Zp) vanish. But, by remark 1.5.30 and since
XS does not contain any pseudo-null submodule, these two conditions are
equivalent to the vanishing of µ(XS) and the validity of the weak Leopoldt
conjecture.
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The next theorem, which generalizes theorem 11.3.8 in [45], shows that
the validity of the weak Leopoldt conjecture and the vanishing of the µ-
invariant are properties which should be considered simultaneously if one
studies the behaviour of XS under change of the base field.

Theorem 3.1.14. Let K|k be a finite Galois p-extension inside kS, k∞|k a
p-adic pro-p Lie extension such that

(∗) G = G(k∞/k) is without p-torsion and Fp[[G]] is integral.

Set K∞ = Kk∞ and G′ = G(K∞/K). Then G′ satisfies the condition (∗),
too, and the following holds{

µ(XS(k∞/k)) = 0 and
H2(GS(k∞),Qp/Zp) = 0

}
⇔

{
µ(XS(K∞/K)) = 0 and
H2(GS(K∞),Qp/Zp) = 0

}
.

In particular, if k∞ contains the cyclotomic Zp-extension, then

µ(XS(k∞/k)) = 0⇔ µ(XS(K∞/K)) = 0.

Proof. Let H′ := H∩G(kS(p)/K). Then, by theorem 3.1.13, the statements
to be compared are equivalent to the freeness of H, resp. H′, thus equivalent
to cdp(H) = 1, resp. cdp(H′) = 1. But, sinceH′ is open inH and cdp(H) <∞,
we have cdp(H′) = cdp(H) by [45] 3.3.5,(ii).

The same arguments prove the following

Theorem 3.1.15. Let K∞|k∞|k be p-adic pro-p Lie extensions (inside kS)
such that for both G(K∞/K) and G(k∞/k) the condition (∗) of the previous
theorem holds. Then{

µ(XS(k∞/k)) = 0 and
H2(GS(k∞),Qp/Zp) = 0

}
⇒

{
µ(XS(K∞/k)) = 0 and

H2(GS(K∞),Qp/Zp) = 0

}
.

The next theorem, which generalizes theorem 11.3.5 in [45], describes the
“difference” if we vary the finite set of places S defining the module XS.
By T (K/k) ⊆ G(K/k) we shall denote the inertia subgroup for a Galois
extension K|k of local fields and, for an arbitrary set of places S of k and a
p-adic analytic extension k∞|k, we write Scd(k) for the subset of finite places
which decompose completely in k∞|k.

Theorem 3.1.16. Let S ⊇ T ⊇ Sp ∪ S∞ be finite sets of places of k and let
k∞|k be a p-adic pro-p Lie extension inside kT with Galois group G. Assume
that G does not contain any p-torsion element and that the weak Leopoldt
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conjecture holds for k∞|k. Then there exists a canonical exact sequence of
Λ-modules

0 //
⊕

(S\T )(k) IndGν
G T (kν(p)/kν)Gk∞,ν

// XS
// XT

// 0

and the direct sum on the left is isomorphic to⊕
(S\T )(k)

p∞|fν , µp⊆kν

IndGν
G Zp(1)⊕

⊕
(S\T )cd(k)

Λ/ptν ,

where ptν = #µ(kν)(p) and, as before, fν = f(k∞,ν/kν) denotes the degree of
the extension of the corresponding residue class fields. In particular, there is
an exact sequence of Λ-torsion modules

0 //
⊕

(S\T )(k) IndGν
G T (kν(p)/kν)Gk∞,ν

// torΛXS
// torΛXT

// 0.

Proof. Since H2(GT (k∞)(p),Qp/Zp) = 0, we have an exact sequence

0 // G(kS(p)/kT (p))abGT (k∞)
// XS

// XT
// 0.

Setting G = GT (k)(p) and using [45, 10.5.4,10.6.1] as well as lemma 1.3.6,
we obtain

G(kS(p)/kT (p))abGT (k∞)
∼= (

⊕
(S\T )(k)

IndGν
G T (kT (p)ν(p)/kT (p)ν) )GT (k∞)

∼=
⊕

(S\T )(k)

IndGν
G T (kν(p)/kν)Gk∞,ν

.

Observe that, for ν ε S \ T,

T (kν(p)/kν) ∼=
{

Zp(1) if µp ⊆ kν ,
0 otherwise.

Since G is without p-torsion and ν ε S \ T is unramified in k∞|k, there are
only two possibilities for Gν :

Gν =

{
0 if ν is completely decomposed in k∞|k,
Zp if p∞|fν ,

respectively,

Gk∞,ν(p)
∼=

{
Zp(1) o Zp, if ν is completely decomposed in k∞|k,

Zp(1), if p∞|fν .
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It follows that

G(kS(p)/kT (p))abGT (k∞)
∼=

⊕
(S\T )(k)

p∞|fν , µp⊆kν

IndGν
G Zp(1)⊕

⊕
(S\T )cd(k)

Λ/ptν .

In particular, this module is Λ-torsion and therefore the second statement
follows from the first.

Recalling that µ is additive on short exact sequences of Λ-torsion modules
by 1.5.34, we obtain the following

Corollary 3.1.17. Under the assumptions of the theorem,

µ(XS) = µ(XT ) +
∑

(S\T )cd(k)

tν ,

where ptν = #µ(kν)(p).

3.1.2 Global units

We still consider p-adic Lie extensions k∞|k with Galois group G = G(k∞/k).
Recall that we denote the norm compatible S-units of k∞ by ES :=

lim←−
k′

(O×k′,S ⊗Zp). Noting that ES
∼= lim←−

k′

H1(GS(k
′),Zp(1)) by Kummer theory

and the finiteness of the S-ideal class group, we are going to derive some re-
lations between ES and H1(GS(k∞), µp∞)∨ by interpreting Jannsen’s spectral
sequence for Iwasawa adjoints with respect to A = Qp/Zp(1) = µp∞(kS). We
assume that G does not have any p-torsion, i.e. G is a Poincaré group at p,
and we denote the character which gives the operation of G on the dualizing
module by χ−1.

Proposition 3.1.18. (i) If µp∞ ⊆ k∞, then

(a) if cdp(G) = 1 :

ES
∼= Zp(1)(χ)⊕ E0(XS(−1))

lim←−
k′

H2(GS(k
′),Zp(1)) ∼= E1(XS(−1)),

Ei(XS(−1)) = 0 for i ≥ 2.
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(b) if cdp(G) = 2 : there is an exact sequence

0 // ES
// E0(XS(−1)) //Zp(1)(χ) //

lim←−
k′

H2(GS(k
′),Zp(1)) //E1(XS(−1)) //0,

and
Ei(XS(−1)) = 0 for i ≥ 2.

(c) if cdp(G) = 3 : there is an exact sequence

0 // lim←−
k′

H2(GS(k
′),Zp(1)) //E1(XS(−1)) // Zp(1)(χ) // 0,

and

ES
∼= E0(XS(−1)),

Ei(XS(−1)) = 0 for i ≥ 2.

(d) if cdp(G) ≥ 4 :

ES
∼= E0(XS(−1)),

lim←−
k′

H2(GS(k
′),Zp(1)) ∼= E1(XS(−1)),

Ei(XS(−1)) =

{
Zp(1)(χ) if i = cdp(G)− 2,

0 otherwise,
for i ≥ 2.

Similar results hold for arbitrary A with k(A) ⊆ k∞ if ES is replaced
by lim←−

k′

H1(GS(k
′), TpA), XS(−1) by XS[A], ...

(ii) If µ(k∞)(p) is finite, then

(a) if cdp(G) = 1 : then there is an exact sequence

0 //ES
//E0(H1(GS(k∞), µp∞)∨) //µ(k∞)(p)∨(χ) // lim←−

k′

H2(GS(k′), Zp(1)).

(a1) If in addition H2(GS(k∞), µp∞) = 0, then the cokernel of the
sequence is E1(H1(GS(k∞), µp∞)∨) and
Ei(H1(GS(k∞), µp∞)∨) = 0 for i ≥ 2.
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(a2) If in addition H2(GS(k∞),Qp/Zp) = 0, then there is a short
exact sequence

0 //ES
//E0(H1(GS(k∞), µp∞)∨) //µ(k∞)(p)∨(χ) //0.

(b) if cdp(G) = 2, then ES
∼= E0(H1(GS(k∞), µp∞)∨).

If in addition H2(GS(k∞), µp∞) = 0, then there is an exact se-
quence

0 // lim←−
k′

H2(GS(k′), Zp(1)) //E1(H1(GS(k∞), µp∞)∨) //µ(k∞)(p)∨(χ) //0

and
Ei(H1(GS(k∞), µp∞)∨) = 0 for i ≥ 2.

(c) if cdp(G) ≥ 3, then ES
∼= E0(H1(GS(k∞), µp∞)∨).

If in addition H2(GS(k∞), µp∞) = 0, then

ES
∼= E0(H1(GS(k∞), µp∞)∨),

lim←−
k′

H2(GS(k
′),Zp(1)) ∼= E1(H1(GS(k∞), µp∞)∨),

Ei(H1(GS(k∞), µp∞)∨) =
{

µ(k∞)(p)(χ) if i = cdp(G)− 1,
0 otherwise, for i ≥ 2.

(iii) If µ(k∞)(p) = 0, then there is in addition to the results for finite
µ(k∞)(p) the following exact sequence:

0 //E1(H1(GS(k∞), µp∞)∨) // lim←−
k′

H2(GS(k
′),Zp(1)) //

E0(H2(GS(k∞), µp∞)∨) // E2(H1(GS(k∞), µp∞)∨) //0,

and
Ei(H1(GS(k∞), µp∞)∨) ∼= Ei−2(H2(GS(k∞), µp∞)∨)).

For the proof apply theorem 1.4.5 and its corollary and note the following
facts: H1(GS(k∞), A)∨ ∼= XS[A] if k(A) ⊆ k∞, H2(GS(k∞), A) = 0 if µp∞ ⊆
k∞ because the weak Leopoldt conjecture is true for the cyclotomic extension
of any number field. Furthermore, we applied several times corollary 1.4.8.
Also observe, that the reflexive module E0(XS(−1)) is projective in the case
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cdp(G) = 1 regarding the defining sequence of the transpose functor D and
using prop. 1.1.2. The last statement of (ii)(a) is proved in [45] 11.3.9.

These results bear a lot of information about the structure of ES and
H1(GS(k∞), µp∞)∨, e.g. one can derive the projective dimension of the latter
module (using corollary 1.7.3) and some information about the dimensions of
the modules occurring above, in particular whether a module is torsion(free).
Furthermore, we see that ES is reflexive for almost all cases with cdp(G) ≥ 2
by proposition 1.5.14.
In order to relate ES to the finitely generated Λ-module

ES(k∞) = (ES(k∞)⊗Z Qp/Zp)
∨

we need some technical lemmas.

Lemma 3.1.19. (i) Let G = G(k∞/k) ∼= Zd
p, d ≥ 1, and Gn := pnG.

(a) If µp∞ ⊆ k∞, then with Γ = G(k(µp∞) and Γn = pnΓ the following
holds

Hi(Gn, µp∞) = µ(kn)(p)
(d−1

i ),

where kn = k(µp∞)Γn .

(b) If µ(k∞)(p) is finite, then for any n such that µ(k∞)(p)Gn =
µ(k∞)(p) it holds

Hi(Gn, µp∞) = µ(k∞)(p)(
d
i).

(ii) Let G be a finitely generated pro-p Lie group without p-torsion which
fits into a exact sequence

1 // U // G
π // Γ // 1,

with Γ ∼= Zp and let Gn be an open subgroup. Assume that Γn := π(Gn)
acts via a splitting trivially on Un = Gn ∩U. Then H2(Gn, µ(k∞)(p)) is
finite and the following holds

(a) If µp∞ ⊆ k∞ and Γ = G(k(µp∞), then

H1(Gn, µ(k∞)(p)) ∼= µ(kn)(p)
s ⊕

⊕
i

µpνi (kn),

where Uab
n
∼= Zp

s ⊕
⊕

i Zp/p
νi with Un = U ∩Gn.

(b) If µ(k∞)(p) is finite, then for any n such that µ(k∞)(p)Gn =
µ(k∞)(p) there is an exact sequence

0 //µ(k∞)(p) //H1(Gn, µ(k∞)(p)) //µ(k∞)(p)s ⊕
⊕

i µpνi (k∞) //0.
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(c) If cdp(G) = 2, then

H2(Gn, µ(k∞)(p)) ∼=
{

0 if µp∞ ⊆ k∞,
µ(k∞)(p) otherwise.

Proof. Consider the exact sequence

1 // U // G π // Γ // 1,

and let Un = Gn∩U and Γn = π(Gn). The Hochschild-Serre spectral sequence
gives

H1(Γn,H
i(Un, µ(k∞)(p))) � � //Hi+1(Gn, µ(k∞)(p)) // //Hi+1(Un, µ(k∞)(p))Γn

for i ≥ 0.
Let us first assume that µp∞ ⊆ k∞ : Since Un acts trivially on µp∞ , we get

Hi(Un,Qp/Zp(1)) = Hi(Un,Qp/Zp)(1) = (Qp/Zp)
(d−1

i ).

in the abelian case by the Künneth formula. As Qp/Zp(1)Γn = 0 it follows

that Hi(Gn, µp∞) = Hi(Un, µp∞)Γn = µ(kn)
(d−1

i ). In the non-abelian case we
calculate

H1(Gn, µp∞) = H1(Un,Qp/Zp)(1)
Γn

= (Uab
n )∨(1)Γn

= µ(kn)(p)
s ⊕

⊕
µpνi (kn).

Hence H1(Γn,H
1(Un, µ(k∞)(p))) is finite and the finiteness of H2(Gn, µp∞) fol-

lows because H2(Un, µp∞)Γn ∼= H2(Un,Qp/Zp)(1)Γn is also finite
(H2(Un,Qp/Zp) is a cofinitely generated abelian group).
Now we consider the case of finite µ(k∞)(p) : Here H1(Γn, µ(k∞)(p)) =
µ(k∞)(p) and the abelian case follows again using the Künneth formula. In
the non-abelian case the finiteness of H2(Gn, µp∞) is trivial while
H1(Un, µ(k∞)(p))Γn can be calculated similarly as above. For the last as-
sertion just note that Un ∼= Zp.

Lemma 3.1.20. (i) In the situation of the previous lemma (ii) it holds

(a) lim←−
m,n

pmH1(Gn, ES(k∞)/µ(k∞)) ∼= lim←−
m,n

pmH1(Gn, ES(k∞)) = 0,

(b) lim←−
n

H1(Gn, ES(k∞)) ⊆ XS
cs,
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(c) E0(ES(k∞)) ∼= lim←−
m,,n

pm(ES(k∞)⊗Qp/Zp)
Gn

∼= lim←−
m,n

(ES(k∞)/µ(k∞))Gn/pm,

(d) T0( lim←−
n

H1(Gn, ES(k∞)/µ(k∞))) = T0(E
1((ES(k∞)⊗Z Qp/Zp)

∨)),

(e) that the following sequence is exact:

0 // lim←−
n

H1(Gn, ES(k∞)/µ(k∞)) //E1(ES(k∞)) // lim←−
m,n

pmH2(Gn, ES(k∞)/µ(k∞)) // 0.

(ii) If, in addition, cdp(G) ≤ 2, then with κ =

{
1 if µ(k∞)(p) is finite,
0 otherwise,e

there are the following exact sequences

(a) if cdp(G) = 2 :

0 // lim←−
n

H1(Gn, ES(k∞)) // lim←−
m,n

H1(Gn, ES(k∞)/µ(k∞))/pm //µ(k∞)(p)κ //D //0,

0 // lim←−
m,n

pmH2(Gn, ES(k∞)) // lim←−
m,n

pmH2(Gn, ES(k∞)/µ(k∞)) //D //

lim←−
m,n

H2(Gn, ES(k∞))/pm // lim←−
m,n

H2(Gn, ES(k∞)/µ(k∞))/pm //0,

where D is some finite module.

(b) if cdp(G) = 1 :

0 //E2E1(ES) //µ(k∞)(p)κ // lim←−
n

H1(Gn, ES(k∞)) // lim←−
m,n

H1(Gn, ES(k∞)/µ(k∞))/pm //0

and

lim←−
m,n

pmH2(Gn, ES(k∞)) ∼= lim←−
m,n

pmH2(Gn, ES(k∞)/µ(k∞)).

Proof. If we split the long exact cohomology sequence induced by

0 // µ(k∞) // ES(k∞) // ES(k∞)/µ(k∞) // 0,

we get the following short exact sequences

0 // Fn // H1(Gn, µ(k∞)) // An // 0,

0 // An // H1(Gn, ES(k∞)) // Bn
// 0,

0 // Bn
// H1(Gn, ES(k∞)/µ(k∞)) // Cn // 0
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and furthermore a map Cn
� � // H2(Gn, µ(k∞)(p)). Evaluating the associ-

ated long exact sequences of pm-torsion (snake lemma) and noting the finite-
ness of An and Cn according to the previous lemma, we get

lim←−
m

pmBn
∼= lim←−

m

pmH1(Gn, ES(k∞)/µ(k∞)),

0 // lim←−
m

pmH1(Gn, ES(k∞)) // lim←−
m

pmBn // An,

and therefore

0 // lim←−
m,n

pmH1(Gn, ES(k∞)) // lim←−
m,n

pmH1(Gn, ES(k∞)/µ(k∞)) // lim←−
n

An

is exact.
But lim←−

n

An is a quotient of

lim←−
n

H1(Gn, µ(k∞)(p)) =

{
µ(k∞)(p) if d = 1 and µ(k∞)(p) is finite,

0 otherwise.

(See the previous lemma and note that the transition maps are partially norm
maps besides the non-trivial case where they are the natural projections, i.e.
identities for n sufficiently big.). Since the middle term is Zp-torsion free,
we get the desired isomorphism, because, by the Hochschild-Serre spectral
sequence, it can be seen in any case that the first group is contained in
lim←−
m,n

pmClS(kn) = 0. This proves (i)(a) while (b) is again the cited spectral

sequence.
The first equality of (i)(c) is just 1.4.7 (iii) because ES(k∞) has no Zp-

torsion while the second one follows by the exact sequence

(ES(k∞)/µ(k∞))Gn/pm � � //
pm(ES(k∞)⊗Z Qp/Zp)Gn // //

pmH1(Gn, ES(k∞)/µ(k∞))

and (a). Similar arguments apply for (i)(e), i.e.

E1(ES(k∞)) ∼= lim←−
m,n

H1(Gn, pm(ES(k∞)⊗Z Qp/Zp)).

The assertion (d) is a direct consequence of (e), because
lim←−
m,n

pmH2(Gn, ES(k∞)/µ(k∞)) is Zp-torsion-free.
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Now let us assume that cdp(G) ≤ 2. With the notation as above and
recalling that An, Bn and Cn are finite, we get exact sequences

0 // An // H1(Gn, ES(k∞)) // Bn
// 0,

0 //Bn
// lim←−
m

H1(Gn, ES(k∞)/µ(k∞))/pm // Cn // 0

and

0 // Cn // H2(Gn, µ(k∞)) // Dn
// 0.

Passing to the limit gives the first exact sequence in (ii)(a) (Note that
the transition maps of the system {Cn} are the canonical projections, i.e.
identities for n sufficiently large). The second one is proved similarly using

Dn
� � //H2(Gn, ES(k∞)) //H2(Gn, ES(k∞)/µ(k∞)) //H3(Gn, µ(k∞)(p)) = 0

and H2(Gn, µ(k∞)(p)) // // Dn . The proof of (ii)(b) is completely analogous,

just note that lim←−
n

Fn ∼= E2E1(ES) because the latter module is the cokernel

of ES → E0E0(ES) ∼= E0(ES(k∞)).

Proposition 3.1.21. There is an exact sequence

0 // Zp(1)
δ // ES

// E0(ES(k∞)) // C

with

C =


µ(k∞)(p) if d = 1 and µ(k∞)(p) finite
Zp(1) if d = 2 and µp∞ ⊆ k∞
f.g. Zp-module d ≥ 3 and G non-abelian
0 otherwise

and

δ =

{
1 if d = 1, µp∞ ⊆ k∞,
0 otherwise.

If in addition the weak Leopoldt conjecture holds, the right map is onto in the
case d = 1 and µ(k∞)(p) finite.

Proof. Taking Gn-invariants of the exact sequence

0 // µ(k∞)(p) // ES(k∞)⊗Z Zp
// (ES(k∞)/µ(k∞))⊗Z Zp

// 0
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and passing to the inverse limit, we get

0 // lim←−
n

µ(kn)(p) // ES
// lim←−

m,n

(ES(k∞)/µ(k∞))Gn/pm // lim←−
n

H1(Gn, µ(k∞)(p))

The result follows except the fact that E0 maps onto the finite group of roots
of unity in the case when d = 1. But this is proved in [45] 11.3.9 under the
assumption that the weak Leopoldt conjecture holds.

Corollary 3.1.22. Let k∞|k be a p-adic Lie extension such that G does not
have any p-torsion. Then

E0(ES) ∼= E0E0(ES(k∞)) ∼= E0(H1(GS(k∞), µp∞)∨).

In particular, if G is in addition pro-p and H2(GS(k∞), µp∞) = 0 (e.g. if
µp∞ ⊆ k∞), then

rkΛES = rkΛES = r2(k).

Now the question arises whether the module E0(ES) is not only reflexive
but also projective. While in the case cdp(G) = 1 this is always true, in higher
dimensions one needs additional conditions. We will only get a satisfying
answer in the two dimensional case:

Proposition 3.1.23. Let k∞|k be a p-adic Lie extension such that cdp(G) =
2 and assume that the weak Leopoldt conjecture holds for k∞. Then the fol-
lowing is equivalent:

(i) E0(ES) is projective,

(ii) T0E
1(ES(k∞)) = 0.

Remark 3.1.24. These equivalent statements hold for example, if either
µp∞ ⊆ k∞ or µ(k∞)(p) = 0, and T0(X

S
cs) = 0, i.e. if XS

cs does not have any
non-zero finite submodule, because then T0E

1(ES(k∞)) = 0 by lemma 3.1.20.

Proof. Since we already know that pd(E0(ES)) ≤ 1, because E0(ES) is the
second syzygy of DES, the projectivity is equivalent to the vanishing of
E1E0(ES). Now the equivalence stated above follows from the next lemma.

Lemma 3.1.25. In the situation of the proposition it holds

T0E
1(ES(k∞)) ∼= E1E0(ES) ∼= E3E1(ES)
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Proof. Set M := ES(k∞) and consider the exact sequence

0 // M/T1(M) // E0(ES) // E2D(M) // 0.

The long exact sequence for Ei gives

0 = E1E2D(M) // E1E0(M) // E1(M/T1(M)) // E2E2D(M).

On the other hand there is the exact sequence

0 = E0(T1(M)) // E1(M/T1(M)) // E1(M) // E1E1D(M).

Since EiEiD(M) is pure of codimension i, the isomorphism follows. But
E1E0(ES) ∼= E3E1(ES) by the spectral sequence due to Björk, see 1.5.16.

The proposition above should be compared with the following result which
has already been observed by Kay Wingberg (unpublished):

Proposition 3.1.26. If cdp(G) = 1, then for sufficiently large n there is a
canonical exact sequence

0 //ES(k∞)Gn //ES(k∞) //E0(ES) // C //0

where C = E2D(ES(k∞)) is connected with E2D(ES) by the exact sequence

0 // E2D(ES) //µ(k∞)(p)κ // T0X
S
cs

// C∨ //0.

Proof. The first sequence is just the canonical sequence 1.2.4 for the module
ES(k∞) while the second one already occurred in lemma 3.1.20 (ii)(b) as we
show now: The fact that T0(X

S
cs)
∼= lim←−

n

H1(Gn, ES(k∞)) is well known (see

for example [45, XI.§3.]). Recall that E2E1(ES(k∞)) ∼= T0(E
1(ES(k∞)))∨ and

apply lemma 3.1.20 (i)(d) to recover C. Using 3.1.20, (i)(e) and (ii)(b) we see
that E1E1(ES(k∞)) ∼= E1( lim←−

m,n

pmH2(Gn, ES(k∞))), which we will determine by

means of 1.4.7 (iii):

M := lim←−
m,n

pmH2(Gn, ES(k∞))
∨ ∼= lim−→

m,n

ES(k∞)Gn/pm = lim−→
m

ES(k∞)Gn/pm

for n sufficiently large, because ES(k∞) is a finitely generated Λ-module.
Hence

E1(M) ∼= lim←−
m,n

(pmM)Gn = ES(k∞)Gn .

for n large enough.
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Proposition 3.1.27. Let k∞/k be a p-adic Lie extension such that G ∼= Γ×∆
where Γ is a pro-p-Lie group of cdp(Γ) = 2, ∆ is a finite group of order
prime to p. Assume that the weak Leopoldt conjecture holds for k∞. Then the
following is true:

(i) There is an exact sequence

0 //E0E0(ES) //Λr2+r1−r′1−s ⊕
⊕

Scd∪S′∞
IndGν

G (Zp) //

Λs // T0E
1(ES(k∞)) // 0.

(ii) If E0E0(ES) is projective, then

E0E0(ES) ∼= Λr2+r1−r′1 ⊕
⊕

Scd∪S′∞

IndGν
G (Zp).

Proof. We calculate the Euler characteristic with respect to an arbitrary open
normal subgroup U E Γ using lemma 1.3.4, proposition 1.8.4,[33] 5.4 b),

hU(E0E0(ES)) = hU(ES)

= hU(AS)− hU(XS) + hU(XS
cs)

= hU(AS)− hU(YS) + hU(IG)

= hU(AS)− hU(Λd) + hU(Nab
H (p)) + hU(Λ)− hU(Zp)

= hU(AS)− hU(Λr2+r′1) + hU(
⊕
S′∞

IndGν
G (Zp))

=
∑
S

IndGν
G hU∩Gν (Aν)− hU(Λr2+r′1) + hU(

⊕
S′∞

IndGν
G (Zp))

=
∑
Scd

IndGν
G hU(Zp) + hU(Λr2+r1−r′1) + hU(

⊕
S′∞

IndGν
G (Zp)).

Therefore, if E0E0(ES) is projective, it follows that

E0E0(ES) ∼= Λr2+r1−r′1 ⊕
⊕

Scd∪S′∞

IndGν
G (Zp).

This proves (ii) while (i) follows easily applying proposition 1.5.16.
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3.2 Selmer groups of abelian varieties

In this section let k be a number field, A a g-dimensional abelian variety de-
fined over k and p a fixed rational odd prime number. For a non-empty, finite
set S of places of k containing the places Sbad of bad reduction ofA , the places
Sp lying over p and the places S∞ at infinity we write Hi(GS(k),A), respec-
tively Hi(kν ,A), for the cohomology groups Hi(GS(k),A(kS)), respectively
Hi(Gν ,A(k̄ν)), where GS(k) denotes the Galois group of the maximal outside
S unramified extension of k, k̄ν the algebraic closure of the completion of k at
ν and Gν the corresponding decomposition group. The (pm)-)Selmer group
Sel(A, k, pm) and the Tate-Shafarevich group X(A, k, pm)2 fit by definition
into the following commutative exact diagram

0

��

0

��
0 // A(k)/pm // Sel(A, k, pm)

��

// X(A, k, pm)

��

// 0

0 // A(k)/pm // H1(GS(k), pmA)

��

//
pmH1(GS(k),A)

��

// 0

⊕
S(k) H1(kν ,A)(p)

⊕
S(k) H1(kν ,A)(p).

If k∞ is an infinite Galois extension of k with Galois group G = G(k∞/k, )
we get the following commutative exact diagram by passing to the direct limit
with respect to m and finite subextensions k′ of k∞/k:

0

��

0

��
0 // A(k∞)⊗Qp/Zp

// Sel(A, k∞, p∞)

��

// X(A, k∞, p∞)

��

// 0

0 // A(k∞)⊗Qp/Zp
// H1(GS(k∞),A(p))

��

// H1(GS(k∞),A)(p)

��

// 0

⊕
S(k) CoindGν

G H1(k∞,ν ,A)(p)
⊕

S(k) CoindGν

G H1(k∞,ν ,A)(p).

2It is not difficult to show that both the Selmer and Tate-Shafarevich group are inde-
pendent of S.
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Note that lim−→
k′

⊕
S(k′) H1(k′ν ,A)(p) ∼=

⊕
S(k) CoindGν

G H1(k∞,ν ,A)(p). Al-

ternatively, we can pass to the inverse limits and we will get the following
commutative exact diagram

0

��

0

��

0 // Âk∞ // Ŝel(k∞,A)

��

// lim←−
k′,m

X(A, k′, pm)

��

// 0

0 // Âk∞ // lim←−
k′

H1(GS(k
′), TpA)

��

// lim←−
k′

TpH
1(GS(k

′),A)

��

// 0

lim←−
k′

⊕
S(k′) TpH

1(k′ν ,A) lim←−
k′

⊕
S(k′) TpH

1(k′ν ,A).

where Âk∞ := lim←−
k′,m

A(k′)/pm and Ŝel(k∞,A) := lim←−
k′,m

Sel(k′,A, pm) (The limits

are taken with respect to corestriction maps and multiplication by p).

Henceforth we will drop the p from the notation of the Selmer group:
Sel(A, k∞) := Sel(A, k∞, p∞). Furthermore, we shall use the following nota-
tion for the local-global modules

US,A :=
⊕
Sf (k)

IndGν
G H1(k∞,ν ,A)(p)∨,

AS,A :=
⊕
Sf (k)

IndGν
G H1(k∞,ν ,A(p))∨,

TS,A :=
⊕
Sf (k)

IndGν
G (A(k∞,ν)⊗Qp/Zp)

∨.

As a consequence of the long exact sequence of the Tate-Poitou duality
theorem we have the following (compact) analogue of proposition 3.1.3, where
we shall write A∨ for the dual abelian variety of A and X1

S(k∞,A(p)) for
the kernel of the localization map

H1(GS(k∞),A(p))→
⊕
S(k)

CoindGν
G H1(k∞,ν ,A(p)).
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Proposition 3.2.1. Let k∞|k be a p-adic Lie extension with Galois group
G. Then, there are the following exact commutative diagrams of Λ = Λ(G)-
modules

(i)

0 0

Sel(A, k∞)∨ // //

OO

X1
S(k∞,A(p))∨

OO

H1(GS(k∞),A(p))∨

OO

H1(GS(k∞),A(p))∨

OO

US,A
� � //

OO

AS,A // //

OO

TS,A

Ŝel(k∞,A∨)
� � //

OO

lim
←−
k′

H1(GS(k
′), Tp(A∨)) //

OO

TS,A,

H2(GS(k∞),A(p))∨

OO

H2(GS(k∞),A(p))∨

OO

0

OO

0

OO

(ii)

0 // Ŝel(k∞,A∨) // lim
←−
k′

H1(GS(k
′), TpA∨) //TS,A //

Sel(A, k∞)∨ // X1
S(k∞,A(p))∨ //0,

(iii)

0 // X1
S(k∞,A(p))∨ // ZS,A∨(p) //

⊕
Sf (k) IndGν

G (A(k∞,ν)(p))∨ // A(k∞)(p)∨ // 0.

For the proof, just note that by virtue of local Tate duality ([44, Cor.3.4]),
the Weil-pairing and 3.0.2,

(i) H1(k∞,ν ,A)(p)∨ ∼= (̂A∨)∞,ν := lim←−
k′,m

A∨(k′ν)/pm,
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(ii) ZS,A∨(p)
∼= lim
←−
k′

H2(GS(k
′), Tp(A∨)),

(iii) (A(k∞,ν)⊗Qp/Zp)
∨ ∼= lim←−

k′

TpH
1(k′ν ,A∨) and

(iv) H1(k∞,ν ,A(p))∨ ∼= lim
←−
k′

H1(k′ν , Tp(A∨))

hold.

By a well-known theorem of Mattuck, we have an isomorphism

A(k′ν)
∼= Zg[k′ν :Ql]

l × (a finite group),

for any finite extension k′ν of Ql. Recall that g denotes the dimension of the
abelian variety A. Clearly

A(k′ν)⊗Z Qp/Zp = 0

for all l 6= p and ν | l, i.e.

H1(k′ν ,A)(p) ∼= H1(k′ν ,A(p)),

respectively
H1(k′∞,ν ,A)(p) ∼= H1(k′∞,ν ,A(p)),

in this case. On the other hand, Coates and Greenberg proved that for primes
ν | p with good reduction

H1(k∞,ν ,A)(p) ∼= H1(k∞,ν , Ã(p))

holds, if k∞ is a deeply ramified, where Ã denotes the reduction of A (see
[9, Prop. 4.8]). We recall that an algebraic extension k of Qp is called deeply
ramified if H1(k,m) vanishes, where m is the maximal ideal of the ring of
integers of an algebraic closure Qp of Qp; see [9, p. 143] for equivalent condi-
tions and for the following statement (loc. cit. thm. 2.13): A field k∞ which
is a p-adic Lie extension of a finite extension k of Qp is deeply ramified if the
inertial subgroup of G(k∞/k) is infinite.
For arbitrary reduction at ν | p, the same result as above holds, if one replaces

Ãp∞ by the quotient A(p)/FA(m)(p), where FA denotes the formal group as-
sociated with the Neron model of A over a possibly finite extension of kν ,
such that the Neron model has semi-stable reduction. Taking these facts into
account, we get the following description for US,A, where T (k∞,ν/kν) denotes
the inertia subgroup of Gν .
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Proposition 3.2.2. (cf. [50, lemma 5.4]) Assume that dim(T (k∞,ν/kν) ≥ 1
for all ν ε Sp. Then there is an isomorphism of Λ-modules

US,A ∼=
⊕
Sp(k)

IndGν
G H1(k∞,ν , Ã(p))∨ ⊕

⊕
Sf\Sp(k)

IndGν
G H1(k∞,ν ,A(p))∨.

In particular, if dim(Gν) ≥ 2 for all ν ε Sf , then

US,A ∼=
⊕
Sp(k)

IndGν
G H1(k∞,ν , Ã(p))∨

and US,A is Λ-torsion-free.

Proof. The first assertion has been explained above while the second state-
ment follows from the local calculations 2.1.4, 2.1.5 with respect to the p-adic
representations A = Ã(p) respectively A = A(p) and the comment before
2.1.5.

Before going on we would like to recall some well-known facts about
abelian varieties:

Remark 3.2.3. (i) rkZp(A(p)∨) = 2g, where g denotes the dimension of A.
(ii) There exists always an isogeny from A to its dual A∨, by which the
Weil-pairing induces a non-degenerate skew-symmetric pairing on the Tate-
module TpA of A. If A = E is an elliptic curve this isogeny can be chosen as
a canonical isomorphism between E and E∨. Again for an arbitrary abelian
variety it follows that k(µp∞) ⊆ k(A(p)) = k(A∨(p)) (see [55, §0 lem. 7]).

Theorem 3.2.4. Assume that H2(GS(k∞), (A∨)(p)) = 0. If dim(Gν) ≥ 2 for
all ν ε Sf , then

X1
S(k∞,A(p))∨ ∼ E1(YS,A∨(p)) ∼ E1(torΛYS,A∨(p)) ∼= E1(torΛXS,A∨(p)).

If, in addition, G ∼= Zr
p, r ≥ 2, then the following holds:

X1
S(k∞,A(p))∨ ∼ (torΛXS,A∨(p))

◦,

where ◦ means that the G acts via the involution g 7→ g−1.

Proof. The first condition implies ZS,A∨(p)
∼= E1(YS,A∨(p)) while the other con-

dition grants that
⊕

Sf (k) IndGν
G (A(k∞,ν)(p))

∨ is pseudo-null because

A(k∞,ν)(p)
∨ is a finitely generated (free) Zp-module. Now everything fol-

lows as in 3.1.5 using here prop. 3.2.1.



102 CHAPTER 3. GLOBAL IWASAWA MODULES

Corollary 3.2.5. Let A be an abelian variety over k with good supersingular
reduction, i.e. Ãkν (p) = 0, at all places ν dividing p. Set k∞ = k(A(p)) and
assume that G(k∞/k) is a pro-p-group without any p-torsion. Then, for
Σbad := Sbad ∪ Sp ∪ S∞ the following holds:

Xcs[A∨(p)] ∼= X1
Σbad

(k∞,A∨(p))∨ ∼ E1(torΛSel(A, k∞)∨).

If, in addition, A has CM, then the following holds

Xcs[A∨(p)] ∼ (torΛSel(A, k∞)∨)◦.

Therewith, in the case of an elliptic curve with CM, we reobtain a theorem
of P. Billot [3, 3.23]. Over a Zp-extension an analogous statement was proved
by K. Wingberg [63, cor. 2.5].

Proof. First note that by the Néron-Ogg-Shafarevich criterion the sets of bad
reduction of A and its dual A∨ coincide. Therefore, it suffices to prove that
dim(Gν) ≥ 2 for all ν ε Sbad ∪ Sp because then the theorem applies to A∨
and proposition 3.2.2 shows that US,A = 0, i.e. XS,A(p)

∼= Sel(A, k∞)∨.
So, let ν be either in Sp or in Sbad. Since kν(A(p)) contains kν(µp∞), we only
have to show that G(kν(A(p))/kν(µp∞)) is not trivial because then it auto-
matically has to be infinite as Gν ⊆ G has no finite subgroup by assumption.
If ν|p, by a theorem of Imai3 [30] A(k(µp∞) is finite and thus kν(A(p)) 6=
kν(µp∞).
If ν ε Sbad, then the Néron-Ogg-Shafarevich criterion implies that
G(kν(A(p))/kν(µp∞)) = T (kν(A(p))/kν) is non-trivial.

By remark 3.0.4 and 3.2.3 the conditions of theorem 3.0.3 are fulfilled for
the p-torsion points A(p) and its trivializing extension of k, i.e. the extension
which is obtained by adjoining the p-torsion points of A :

Theorem 3.2.6. Let k∞ = k(A(p)) and assume that G does not have any
p-torsion. Then H1(GS(k∞),A(p))∨ has no non-zero pseudo-null submodule.

Recall that G does not have any p-torsion if p ≥ 2 dim(A)+2. Otherwise
one only has to replace k by a finite extension inside k∞.

For the convenience of the reader we recall Ochi’s results on the ranks in
the situation of abelian varieties. Then, theorem 3.0.5 yields

Proposition 3.2.7. (Ochi [49, 5.11]) Assume in the above situation that G
is pro-p and such that Λ is an integral domain. Then

rkΛH1(GS(k∞),A(p))∨ = g[k : Q].

3I owe to John Coates the idea to use Imai’s theorem here.
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The next result should also be compared to proposition 6.1 of S. Howson’s
PhD-thesis [29] where she proved (i)(a) by different methods.

Proposition 3.2.8. (cf. Ochi [49, 5.7]) Let k be a finite extension of Q`, A
an abelian variety over k of dimension g and k∞ = k(A(p)). Assume that
G = Gal(k∞/k) is pro-p and that A has good reduction. Let r denote the

Zp-rank of Ã(p)∨. Then,

(i) if ` = p,

(a) rkΛH1(k∞,A(p∞))∨ = 2g[k : Qp],

(b) rkΛH1(k∞,A)(p)∨ = r[k : Qp],

(c) rkΛ(A(k∞)⊗Qp/Zp)
∨ = (2g − r)[k : Qp],

(ii) if ` 6= p, H1(k∞,A(p∞))∨ and H1(k∞,A)(p)∨ are Λ-torsion.

Proof. The first two statements of (i) and (ii) are just 2.1.6 recalling the iso-

morphism H1(k∞,ν ,A)(p) ∼= H1(k∞,ν , Ã(p)) due to Coates-Greenberg. Now,
(i)(c) results from Kummer theory.

For the rank-description of the local-global modules, i.e. those global mod-
ules which are “induced from local modules,” suppose that A has good re-
duction at each ν|p. Let rν be the p-rank of the reduction of (a Neron model

of) Akν , i.e. the Zp-rank of Ãkν (p)
∨, where ν ε Sp(k), and define

αν(A/k) = rν [kν : Qp],

αp(A/k) =
∑

ν ε Sp(k)

αν(A/k),

βν(A/k) = (g − rν)[kν : Qp],

βp(A/k) =
∑

ν ε Sp(k)

βν(A/k),

and

γν(A/k) = (2g − rν)[kν : Qp] = 2βν(A/k) + αν(A/k),
γp(A/k) =

∑
ν ε Sp(k)

γν(A/k) = 2βp(A/k) + αp(A/k).

Similar results as in the following proposition were also obtained by S.
Howson [29, 5.30,6.5-6.9,6.13-6.14,7.3].
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Proposition 3.2.9. (cf. Ochi [49, 5.12]) Assume in the above situation that
G is pro-p and such that Λ is an integral domain. Then

(i) rkΛAS,A = 2g[k : Q] = 4r2(k)g = 2(αp(A/k) + βp(A/k)).

(ii) rkΛUS,A = αp(A/k).

(iii) rkΛTS,A = γp(A/k).

(iv) rkΛSel(A, k∞)∨ − rkΛŜel(k∞,A∨) = βp(A/k).

(v) rkΛlim
←−
k′

H1(GS(k
′), Tp(A∨)) = 2r2(k)g = αp(A/k) + βp(A/k).

(vi) ZS,A∨(p)
∼= lim
←−
k′

H2(GS(k
′), Tp(A∨)) is Λ-torsion.

If dim(Gν) ≥ 2 for all ν ε Sf , then AS,A,US,A and lim
←−
k′

H1(GS(k
′), Tp(A∨))

are Λ-torsion-free.

Furthermore, in the case of elliptic curves S. Howson proved the following
result.

Proposition 3.2.10. (Howson [29, 6.14-15]) Let E be an elliptic curve over k
without complex multiplication and with good ordinary reduction at all places
over p. Assume that G = G(k(E(p)/K) is pro-p without any p-torsion. Then

TS,E
∼= AS,Ẽ

∼=
⊕
Sf (k)

IndGν
G lim
←−
k′

H1(k′ν , Tp(Ẽ))

and these modules are Λ(G)-torsion-free. Furthermore, there is an isomor-
phism

US,E
∼= E0(TS,E).

3.2.1 Elliptic curves without CM

The following results on the Selmer group of an elliptic curve E over a num-
ber field k without complex multiplication (CM) are taken from a joint paper
with Y. Ochi [50]. They demonstrate once more the efficiency of the methods
developed in this thesis. First we will recall what is conjectured and known
about the Λ-rank of the Pontryagin dual of the Selmer group. At the end
we give an example where the Pontryagin dual of the Selmer group has a
positive µ-invariant.
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In this section we assume that p ≥ 5 and set k∞ := k(E(p)). Recall
that under these condition G = G(k∞/k) does not have any p-torsion. Fur-
thermore, we assume that E has good reduction at all primes over p. By
proposition 3.2.7 and 3.2.9 (resp. thm 2.5 in [11], see also [29]) we know that

βp(E/k) ≤ rkΛSel(E, k∞)∨ ≤ [k : Q]

(here, but only for rank considerations, we assume that G is pro-p such that
Λ is integral). Harris conjectured in ([25]) that Sel(E, k∞)∨ is Λ-torsion if E
has good ordinary reduction at all primes above p. Coates and Howson ([11,
Conj. 2.4]) generalized his conjecture to a more precise conjecture concerning
the Λ-rank of the Selmer group for arbitrary (but still good) reduction types.

Conjecture 3.2.11. (Coates-Howson) rkΛSel(E, k∞)∨ = βp(E/k).

Remark 3.2.12. Assume that G is pro-p. Due to results of Serre [57, ap-
pendix to chapter IV] and Serre-Tate [59] we have the following descriptions
of Gν (cf. [11, lemma 5.1]): first, it does not occur that E has additive re-
duction at some place, because G does not have any finite subgroup by our
assumptions. Hence, dim(Gν) = 2 for any ν ε Sbad. At places ν ε Sp the el-

liptic curve E has either supersingular reduction, i.e. H1(k∞,ν , Ẽ(p)) = 0, or
dim(Gν) = 3. Together with 3.2.2 this means that for Σbad = Sbad ∪ Sp ∪ S∞
we get an isomorphism

UΣbad,E
∼=

⊕
Sord

p (k)

IndGν
G H1(k∞,ν , Ã(p))∨,

where Sordp (k) ⊆ Sp(k) denotes the subset of places over p at which E has
good ordinary reduction. Furthermore, UΣbad,E is reflexive by 2.1.5.

Proposition 3.2.13. The following assertions are equivalent:

(i) rkΛSel(E, k∞)∨ = βp(E/k).

(ii) Ŝel(k∞, E) = 0.

(iii) The sequence

0 //US,E
//H1(GS(k∞), E(p))∨ //Sel(E, k∞)∨ //0.

is exact.

Proof. According to proposition 3.2.9 the first assertion is equivalent to the
vanishing of Ŝel(k∞, E), because this module is Λ-torsion-free as a submodule
of UΣbad,E. But the latter module is torsion-free by proposition 3.2.2 and

the previous remark. On the other hand, the vanishing of Ŝel(k∞, E) is
equivalent to assertion (iii) by proposition 3.2.1.
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Theorem 3.2.14. Assume that the conjecture of Coates and Howson holds.
Then Sel(E, k∞)∨ has no non-zero pseudo-null Λ-submodule.

In particular, the theorem applies if E has supersingular reduction at all
places above p, because in this case UΣbad,E = 0.

Let us assume that the conjecture 3.2.11 holds, i.e. the exactness of the
above short exact sequence (in (iii) of prop. 3.2.13). In order to prove this
theorem it is sufficient to show that EiEi(Sel(E, k∞)∨) = 0 for all i ≥ 2 by
proposition 1.5.5, (i),(c). Since we can control the projective dimensions of
the modules US,E and XS,E(p) = H1(GS(k∞), E(p))∨ by the diagram 1.8, it is
easy to see that

pdΛ(Sel(E, k∞)∨) = pdΛ(XS,E(p)) = pdΛ(US,E) + 1 = 2,

i.e. the only outstanding case to show is i = 2. But the vanishing of
E2E2(Sel(E, k∞)∨) can be shown by evaluating the long exact Ei-sequence as-
sociated with the above short exact sequence using theorem 3.2.6 (for details
see [50, section 5]).

Assume now that G is pro-p. Since the cyclotomic Zp-extension kcycl =
k(µp∞) is contained in k∞ we are able to compare the above Selmer group over
k∞ to the Selmer group Sel(E, kcycl), the Pontryagin dual of which is a finitely
generated Λ(Γ)-module. Here we write Γ for the Galois group G(kcycl/k) and
set H := G(k∞/kcycl). An observation of Coates and Howson [11] is that if
Sel(E, kcycl)

∨ is finitely generated as Zp-module (i.e. Λ(Γ)-torsion and with
zero µ-invariant), then Sel(E, k∞)∨ is finitely generated over Λ(H). The
Λ(H)-torsion submodule N := torΛ(H)Sel(E, k∞)∨ does not change under a
finite base change of k inside kcycl. So we may assume for a moment that
G ∼= H × Γ conferring our observation below remark 1.5.19. But then, due
to the fact that the map det induces the cyclotomic character on G ([57, p.
I-4]), the lemma 1.5.18 tells us that N is a pseudo-null Λ(G)-module, i.e.
zero by theorem 3.2.14.

Therefore we can answer a question of John Coates positively as follows:

Theorem 3.2.15. Assume that G is pro-p and that Sel(E, kcycl)
∨ is a finitely

generated Zp-module. Then Sel(E, k∞)∨ is a finitely generated Λ(H)-module,
whose Λ(H)-torsion submodule is zero.

We conclude this section with an example of an elliptic curve where the
Pontryagin dual of its Selmer group has a positive µ-invariant4 . Let p = 5

4We would like to thank J. Coates for drawing our attention to the elliptic curve X0(11)
and Greenberg’s calculations in [23].
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and consider the elliptic curve E = X0(11) without CM and its 5-Selmer
group Sel(E, k∞) over k∞ = k(E(p)), where k := Q(µ5) = Q(E[5]). The last
equality holds because E[5] ∼= µ5 × Z/5 as a GQ-module (cf. [23, p. 120]).
Since X0(11) is isogenous to X1(11) it is easy to see that Sel(E, k∞)∨ is a
Z5[[G]]-torsion module (see [11, §7]). Now it is known that µ5 lies in the kernel
of the reduction map at 5

E(5)→ Ẽ(5),

see [23, p. 121]. It follows that the Λ(G)-submodule

Hom(GS(k∞), µ5) ⊆ H1(GS(k∞), E(5))

is contained in Sel(E, k∞) because it satisfies the only local condition, at
ν = 5 (cf. 3.2.12). Therefore, it suffices to show that µ(XS/5) > 0 :
Since rkΛXS = 2 there exists an exact sequence of Λ-modules

0 // Λ2 // XS
// B // 0,

where B is a finitely generated Λ-torsion module. This induces an exact
sequence

0 //
pXS

//
pB // (Λ/p)2 // XS/p // B/p // 0.

Since the vanishing of µ(XS/p) would imply that µ(B/p) = µ(pB) = 0 by
the additivity of µ for Λ-torsion-modules and using lemma 1.5.35, it would
contradict the fact that µ((Λ/5)2) = 2. Hence

µ(Sel(E, k∞)∨) > 0.



Bibliography

[1] M. Auslander and M. Bridger, Stable module theory, Memoirs of the
AMS, vol. 94, AMS, 1969.

[2] P.N. Balister and S. Howson, Note on Nakayama’s Lemma for Compact
Λ-modules, Asian J. Math. 1 (1997), no. 2, 224–229.

[3] P. Billot, Quelques aspects de la descente sur une courbe elliptique dans
le cas de reduction supersinguliere, Compos. Math. 58 (1986), 341–369.

[4] J.-E. Björk, Rings of differential operators, North-Holland Math. Li-
brary, vol. 21, North-Holland Publishing Company, 1979.

[5] , Filtered Noetherian Rings, Noetherian rings and their appli-
cations, Conf. Oberwolfach/FRG 1983, Math. Surv. Monogr., vol. 24,
1987, pp. 59–97.

[6] , The Auslander condition on Noetherian rings, Seminaire
d’algebre P. Dubreil et M.-P. Malliavin, Proc., Paris/Fr. 1987/88, LNM,
vol. 1404, Springer, 1989, pp. 137–173.

[7] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge studies in
advance mathematics, vol. 39, Cambridge University Press, 1993.

[8] J. Coates, Fragments of the GL2 Iwasawa theory of elliptic curves with-
out complex multiplication., Arithmetic theory of elliptic curves. Lec-
tures given at the 3rd session of the Centro Internazionale Matem-
atico Estivo (CIME), Cetraro, Italy, July 12-19, 1997., LNM, vol. 1716,
Springer, 1999, pp. 1–50.

[9] J. Coates and R. Greenberg, Kummer theory for abelian varieties over
local fields, Invent. Math. 124 (1996), 129–174.

[10] J. Coates, R. Greenberg, B. Mazur, and I. Satake, Algebraic number
theory - in honor of K. Iwasawa. Collected papers dedicated to K. Iwa-
sawa on his 70th birthday and papers based on the lectures delivered at

108



BIBLIOGRAPHY 109

the workshop on Iwasawa theory and special values of L-functions held
at Berkeley, CA (USA), on January 20-24, 1987., Advanced Studies in
Pure Mathematics, vol. 17, Academic Press, 1989.

[11] J. Coates and S. Howson, Euler characteristics and elliptic curves II,
preprint.

[12] , Euler characteristics and elliptic curves, Proc. Natl. Acad. Sci.
USA 94 (1997), no. 21, 11115–11117.

[13] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-
Dyer., Invent. Math. 39 (1977), 223–251.

[14] , On p-adic L-functions and elliptic units., J. Aust. Math. Soc.,
Ser. A 26 (1978), 1–25.

[15] E. de Shalit, Iwasawa theory of elliptic curves with complex multiplica-
tion, Perspectives in mathematics, vol. 3, Academic Press, 1987.

[16] J.D. Dixon, M.P.F. du Sautoy, A. Mann, and D. Segal, Analytic pro-p
groups, 1st ed., London Mathematical Society Lecture Note, vol. 157,
Cambridge University Press, 1991.

[17] R. Fossum, Duality over Gorenstein rings, Math. Scand. 26 (1970), 177–
199.

[18] S.I. Gelfand and Y.I. Manin, Methods of homological algebra, Spinger,
1996.

[19] K.R. Goodearl and R.B. Warfield, An Introduction to Noncommutative
Noetherian Rings, LMS Student texts, vol. 16, Cambridge University
Press, 1989.

[20] R. Greenberg, The Iwasawa invariants of Γ-extensions of a fixed number
field, Amer. J. Math. 95 (1973), 204–214.

[21] , On the structure of certain Galois groups, Invent. Math. 47
(1978), 85–99.

[22] , Iwasawa Theory for p-adic Representations, Advanced Studies
in Pure Mathematics 17 (1989), 97–137.

[23] , Iwasawa theory for elliptic curves., Arithmetic theory of elliptic
curves. Lectures given at the 3rd session of the Centro Internazionale
Matematico Estivo (CIME), Cetraro, Italy, July 12-19, 1997., LNM, vol.
1716, Springer, 1999, pp. 51–144.



110 BIBLIOGRAPHY

[24] Y. Hachimori and K. Matsuno, On finite Λ-submodules of Selmer groups
of elliptic curves., Proc. Am. Math. Soc. 128 (2000), no. 9, 2539–2541.

[25] M. Harris, p-adic representations arising from descent on Abelian vari-
eties, Compos. Math. 39 (1979), 177–245.

[26] , Systematic growth of Mordell-Weil groups of abelian varieties
in towers of number fields., Invent. Math. 51 (1979), 123–141.

[27] Michael Harris, Correction to p-adic representations arising from descent
on Abelian varieties., Compos. Math. 121 (2000), no. 1, 105–108.

[28] R. Hartshorne, Residues and duality , LNM, vol. 20, Springer, 1966.

[29] S. Howson, Iwasawa theory of Elliptic Curves for p-adic Lie extensions,
Ph.D. thesis, University of Cambridge, July 1998.

[30] H. Imai, A remark on the rational points of Abelian varieties with values
in cyclotomic Zp- extensions., Proc. Japan Acad. 51 (1975), 12–16.

[31] U. Jannsen, On the structure of Galois groups as Galois modules, Num-
ber theory, Proc. Journ. arith., Noordwijkerhout/Neth. 1983, LNM, vol.
1068, 1984, pp. 109–126.

[32] , Continuous Étale Cohomology, Math. Ann. 280 (1988), 207–
245.

[33] , Iwasawa modules up to isomorphism, Advanced Studies in Pure
Mathematics 17 (1989), 171–207.

[34] , A spectral sequence for Iwasawa adjoints, unpublished (1994).

[35] P. Joergensen, Noncommutative graded homological identities, J. Lond.
Math. Soc., II. Ser. 57 (1998), no. 2, 336–350.

[36] K. Kato, p-adic Hodge Theory and Values of Zeta Functions of Modular
Forms, preprint.

[37] L.V. Kuz’min, Local extensions associated with l-extensions with given
ramification, Math. USSR Izv. 9 (1975) (1976), no. 4, 693–726.

[38] M. Lazard, Groupes analytiques p-adiques, Publ. Math. I.H.E.S. 26
(1965), 389–603.

[39] T. Levasseur, Grade des modules sur certains anneaux filtres, Commun.
Algebra 9 (1981), no. 15, 1519–1532.



BIBLIOGRAPHY 111

[40] B. Mazur, Rational points of Abelian varieties with values in towers of
number fields., Invent. Math. 18 (1972), 183–266.

[41] B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent.
Math. 25 (1974), 1–61.

[42] B. Mazur, J. Tate, and J. Teitelbaum, On p-adic analogues of the con-
jectures of Birch and Swinnerton-Dyer., Invent. Math. 84 (1986), 1–48.

[43] W.G. McCallum, Greenberg’s conjecture and units in multiple Zp-
extensions, preprint (1999).

[44] J.S. Milne, Arithmetic duality theorems, Perspectives in Mathematics,
vol. 1, Academic Press, 1986.

[45] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of num-
ber fields, Grundlehren der mathematischen Wissenschaften, vol. 323,
Springer, 2000.

[46] A. Neumann, Completed group algebras without zero divisors, Arch.
Math. 51 (1988), 496–499.

[47] T. Nguyen-Quang-Do, Formations de classes et modules d’Iwasawa,
Number theory, Proc. Journ. arith., Noordwijkerhout/Neth. 1983, LNM,
vol. 1068, 1984.

[48] T. Nguyen-Quang-Do and A. Lannuzel, Conjectures de Greenberg et
extensions pro-p-libres d’un corps de nombre, Prépublications de l’équipe
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