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Abstract 

Increased awareness of the human and environmental health risks associated with 

perfluorinated chemicals (PFCs) has raised intensive discussions among authorities and 

policymakers. Yet, despite declined use of PFCs in industrial and consumer products, these 

emerging contaminants are still being detected in aquatic environments worldwide. In light of 

the persistent properties of PFCs, fairly little attention has been given to long-term effects. 

Another challenging topic in the context of PFCs concerns their potential to interact 

synergistically; a relevant matter given the complex exposure scenarios in aquatic systems.  

This thesis aimed at increasing the knowledge and understanding of PFCs and their 

toxicity towards an aquatic vertebrate model, the zebrafish (Danio rerio). Focus was on 

multixenobiotic resistance (MXR) and toxicity following chronic exposure. Selected PFCs 

were evaluated in transporter efflux assays serving to determine the synergistic potential via 

P-glycoprotein (P-gp) transporter inhibition. Long-term effects following single and binary 

exposures of perfluorooctane sulfonate (PFOS) and bisphenol A (BPA) were evaluated over 

two full generations with emphasis on survival, histological alterations, vitellogenin (Vtg) and 

reproductive success.  

Among the tested PFCs, PFOS induced the strongest accumulation of the standard P-gp 

transporter substrate rhodamine B (RhB) in zebrafish embryos. An up to fourteen-fold RhB-

retention was found in PFOS-exposed embryos if compared with control animals. In 

comparison, the effect of PFOS on the uptake of the P-gp substrate calcein-AM by MDCKII 

cells overexpressing human P-gp was substantially smaller than that of the reference 

compound verapamil indicating that PFOS only weakly interacts with human P-gp. In the 

long-term study, the most prevalent effects following waterborne PFOS-exposure were 

decreased survival in off-spring generations and hepatocellular alterations. The hypothesis 

that the presence of PFOS increases the endocrine potential of BPA could not be confirmed in 

zebrafish. 

This thesis provides further evidence of the chemosensitizing potential of some PFCs in 

zebrafish. Although the exact mechanisms of action behind the increased uptake of P-gp 

substrates remain unclear, the results obtained further highlight the importance of mixture 

toxicity when investigating the hazardous potential of PFCs. Adverse long-term effects on 

liver structure and survival in zebrafish were only seen at concentrations well above 



 
 

ecologically relevant concentrations. Yet, the decline in survival rates following PFOS-

exposure seen over generations again documents the necessity of long-term approaches within 

the assessment of persistent environmental pollutants. 
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Zusammenfassung 

Ein immer stärker werdendes Bewusstsein für Gefahren für die menschliche Gesundheit und 

die Umwelt durch perfluorierte Chemikalien (PFCs) hat zu intensiven Diskussionen zwischen 

Behörden und Politik geführt. Doch trotzt einer reduzierten Verwendung von PFCs in 

Industrie- und Konsumgütern werden diese Schadstoffe noch immer weltweit in der 

aquatischen Umwelt nachgewiesen. In Anbetracht ihrer persistenten Eigenschaften wurde den 

langfristigen Wirkungen von PFCs bisher nur eine geringe Aufmerksamkeit gewidmet. Eine 

weitere Herausforderung im Zusammenhang mit PFCs stellt deren synergistisches 

Effektpotential dar, was angesichts eines komplexen Expositionsszenarios in der aquatischen 

Umwelt ein Thema von hoher Relevanz darstellt. 

Ziel dieser Dissertation war es, das Wissen und Verständnis verschiedener PFCs und deren 

Toxizität gegenüber einem aquatischen Modellorganismus, dem Zebrabärbling (Danio rerio), 

voranzutreiben. Ein besonderer Schwerpunkt lag hierbei auf der Untersuchung der 

multixenobiotischen Resistenz (MXR) und der Toxizität nach chronischer Exposition. 

Ausgewählte PFCs wurden in Transporter-Efflux-Assays untersucht, um das synergistische 

Wirkpotenzial mittels über eine Hemmung der P-glycoprotein (P-gp)-Transporter zu 

bestimmen. Die langfristigen Auswirkungen nach isoliertes und gemeinsames Belastung mit 

Perfluoroctansulfonat (PFOS) und Bisphenol A (BPA) wurden über zwei volle Generationen 

getestet. Hauptsächlich wurden hierbei die Überlebensrate, histologische Veränderungen, 

Vitellogenin (Vtg) und der Reproduktionserfolg untersucht.  

Die Ergebnisse zeigen, dass unter den getesteten PFCs, PFOS die stärkste Akkumulation 

des Standard P-gp-Transportersubstrates Rhodamin B (RhB) in Zebrabärblingen induziert. Im 

Vergleich war die Wirkung von PFOS auf die Calcein-AM-Farbstoffaufnahme von MDCKII-

Zellen mit einer humanen P-gp Überexpression wesentlich geringer, als die der 

Referenzsubstanz Verapamil. Dies deutet auf eine geringe Interaktion zwischen PFOS und 

dem humanen P-gp hin. In der Langzeitstudie waren die am häufigsten beobachteten Effekte 

nach PFOS-Exposition eine Verminderung der Überlebensrate in nachkommenden 

Generationen sowie hepatozelluläre Veränderungen. Die Hypothese, dass PFOS das 

endokrine Potential von BPA erhöht, konnte in Zebrabärblingen nicht bestätigt werden.  

Abschließend kann jedoch festgestellt werden, dass diese Arbeit weitere Beweise für das 

chemosensibilisierende Potenzial von PFCs liefert. Obwohl der genaue Wirkmechanismus 



 
 

hinter der erhöhten Aufnahme des P-gp-Substrates unklar bleibt, unterstreichen die Befunde 

die Bedeutung von Toxizitätsstudien mit Mischungen bei der Bewertung des 

Gefährdungspotenzials von PFCs. Obwohl nachteilige Effekte auf die Struktur der Leber und 

die Überlebensrate nur bei Konzentrationen deutlich über ökologisch relevanten 

Konzentrationen beobachtet wurden, zeigt der beobachtete Rückgang der Überlebensrate über 

den Verlauf der Generationen nach PFOS-Belastung die Notwendigkeit von Langzeitstudien 

bei der Beurteilung von persistenten Chemikalien.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Sammanfattning 

Ökad förståelse för de risker som perfluorerade kemikalier (PFCs) utgör för hälsa och miljö 

har lett till en intensiv debatt bland auktoriteter och beslutsfattare. Trots en reducerad 

användning av PFCs i industri- och konsumentprodukter kan mätbara halter fortfarande hittas 

globalt i akvatiska system. Med hänsyn till PFCs persistens i miljön är långtidsstudier av 

högsta relevans, dock är kunskapen om detta ännu otillräcklig. En annan problematik vad 

gäller PFCs är deras potentiella förmåga att öka toxiciteten av andra kemikalier; något som är 

högst relevant med tanke på den komplexa föroreningssituation som råder i akvatiska system.  

Det övergripande syftet med avhandlingsarbetet var att på olika sätt öka förståelsen och 

kunskapen om PFCs och deras toxicitet med hjälp av zebrafisk (Danio rerio) som akvatisk 

modellorganism. Fokus lades på multixenobiotisk resistens (MXR) och toxicitet till följd av 

kronisk exponering. Utvalda PFCs inverkan på speciella transportpumpar undersöktes för att 

fastställa eventuell toxicitetsökande effekt via transportinhibiering. Långtidseffekter av 

perfluoroktansulfonat (PFOS), med eller utan bisfenol A (BPA), studerades över två 

generationer med tyngdpunkt på överlevnad, histologiska förändringar, vitellogenin samt 

reproduktion. 

Resultaten visar att PFOS inducerade den starkaste ackumuleringen av P-glycoprotein (P-

gp) substratet rhodamine B (RhB) i zebrafiskembryon med en upptill 14 gånger högre RhB-

signal jämfört med kontrollgruppen. Dock visade sig PFOS påverka ackumulationen av 

calcein-AM i MDCKII celler med överexpression av P-gp i betydligt lägre grad än 

standardinhibitorn verapamil. Detta tyder på en svag interaktion mellan PFOS och humant P-

gp. De mest framträdande effekterna till följd av PFOS-exponering i långtidsstudien var 

mortalitet i nästkommande generationer samt levertoxicitet. Hypotesen att PFOS ökar den 

endokrina effekten av BPA kunde inte stärkas i försök med zebrafisk. 

Sammanfattningsvis stödjer det här arbetet tidigare indikationer på den synergistiska 

potentialen av PFCs. Trots att den exakta verkningsmekanismen bakom det ökade upptaget av 

P-gp substrat fortfarande är oklar visar det här arbetet återigen på vikten av att studera 

kombinationseffekter vad gäller PFCs. Allvarliga effekter på leverstruktur och överlevnad 

observerades bara vid betydligt högre koncentrationer än de som normalt uppmäts i miljön. 

Ökad mortalitet i efterföljande generationer understryker dock betydelsen av långtidsförsök 

vid riskbedömning av persistenta ämnen.   
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1. Introduction 

Despite the complex exposure scenario in the natural environment of aquatic organisms, most 

research has tended to focus on single chemicals using a compound-by-compound strategy. In 

2001, approximately 300 peer-reviewed papers addressed the topic of aquatic mixture 

toxicity. A decade later, the number of available papers had more than doubled. This 

development clearly points towards a shift in attention regarding mixture toxicity in 

ecotoxicological research. With respect to drug-drug interactions, the assessment of chemical 

mixture effects is crucial to achieve an appropriate view of the hazardous potential of 

environmental pollutants. Previous indications of the toxicity-modifying properties of 

perfluorinated chemicals (PFCs; Hu et al., 2003; Stevenson et al., 2006; Rodea-Palomares et 

al., 2012) together with their ubiquitous presence in aquatic systems have spurred further 

research concerning mixture effects. Given the persistence of PFCs, potential long-term 

effects represent another issue where the current state of knowledge is far from being 

satisfactory. Many fish populations are chronically exposed to complex mixtures of pollutants 

and the zebrafish model, therefore, represents an excellent test organism for the above-

mentioned purposes. 

 

1.1 Environmental pollution and mixture toxicity 

 “What has already silenced the voices of spring in countless towns in America? This book is 

an attempt to explain” is a famous excerpt from the book Silent spring by Rachel Carson 

(1962). The controversial book of Carson aimed to highlight the ecological consequences of 

pesticide use and bring them to public attention. As a result, the general attitude regarding 

environmental pollution underwent a shift of paradigm; the dilution paradigm (“the solution 

to pollution is dilution”) was replaced by the boomerang paradigm (“what you throw away 

can come back and hurt you”; Newman and Unger, 2003). The increased awareness of the 

risks associated with environmental pollution led to the creation of a new discipline of 

science: ecotoxicology. Multiple definitions have been applied to describe the context of 

ecotoxicology (Newman and Unger, 2003); however, according to the earliest definition by 

Truhaut (1977), ecotoxicology represents "the branch of toxicology concerned with the study 

of toxic effects, caused by natural or synthetic pollutants, to the constituents of ecosystems, 

animal, vegetable and microbial, in an integral context”. Over the years, the science of 
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ecotoxicology has developed further and constitutes today a key element in environmental 

risk assessment (Kahru and Dubourguier, 2010). 

The number of chemicals and chemical products currently circulating in the modern 

society is unknown, however, chemicals production is projected to increase until 2020 

(OECD, 2001). Given the worldwide manufacture and use of chemicals, environmental 

release is inevitable to occur. The introduction of anthropogenic chemicals into the ecosystem 

can take place at any stage in their life-cycle such as during production, distribution, use and 

during final waste disposal (Harrison, 2001). Aquatic ecosystems are via different routes of 

exposure challenged with multiple chemicals originating from human activities such as 

accidental release, wastewater effluent and agricultural run-off (Backhaus et al., 2003). 

Consequently, the aquatic environment has been considered as a final disposal of industrial 

waste (Kime, 1998).  

Despite the complex exposure scenario in the natural habitat of aquatic organisms, most 

research has tended to focus on single chemicals using a compound-by-compound strategy. 

As such, safety levels of chemicals mostly do not account for mixture toxicity effects 

(Celander, 2011). Within pharmacology, drug-interactions are well known for their potential 

to generate effects greater than (synergism) or less than (antagonism) the total effect as 

predicted by each chemical individually (Newman and Unger, 2003). Synergistic chemical-

chemical interactions can be described as either pharmacodynamic, i.e., chemicals asserting 

identical or opposite action, or pharmacokinetic, i.e., interactions inducing altered absorption, 

distribution, biotransformation or excretion (Celander, 2011). Commercially, the phenomenon 

of synergism has long been applied as a method to enhance the efficiency of e.g., insecticides 

(Bernard and Philogene, 1993). As single-component assessments clearly bear the risk of 

underestimating the true hazardous potential, the importance of mixture toxicity has gained 

increased awareness within ecotoxicological research. The relevance of mixture approaches is 

further emphasized by recent studies confirming the potential of environmental contaminants 

to produce synergistic toxic effects when combined with other compounds both in vivo (e.g., 

Norgaard and Cedergreen, 2010; Caldwell et al., 2011; Xu et al., 2011; Boltes et al., 2012) 

and in vitro (Hu et al., 2003; Harris et al., 2009). 
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1.2 Multixenobiotic resistance 

Organisms inhabiting contaminated areas have often been shown to express a higher activity 

of various detoxification mechanisms involving e.g., cytochrome P450 enzymes (Nyman et 

al., 2000; Lavado et al., 2006; Wills et al., 2010), chaperones (Muller et al., 1998; Padmini et 

al., 2009) and metal binding proteins (reviewed by Amiard et al., 2006). Within ecotoxicology 

research, increased attention has been given a new group of cellular defense proteins, namely 

the ATP-binding cassette (ABC) 

transporters (Bard, 2000; Davidson and 

Maloney, 2007). The ABC-transporters 

have been identified in a variety of taxons 

including fish (reviewed by Bard, 2000) 

and represent a subclass of ATP-driven 

membrane proteins involved in the active 

transportation of exogenous as well as 

endogenous molecules across cell 

membranes (Fig. 1.; Davidson and 

Maloney, 2007; Licht and Schneider, 

2011). The preventive expulsion of foreign 

substances, the so-called multixenobiotic 

resistance (MXR), has acknowledged the 

ABC-transporters as a first line of cellular 

defense against a broad range of natural 

and man-made pollutants (Epel, 1998). The 

170 kDa permeability glycoprotein (P-

glycoprotein, P-gp) and the multidrug-

resistance protein (MRP), both members of 

the ABC-transporter subclass, represent 

two of the best described transporter proteins associated with MXR (Regev et al., 1999; 

Luckenbach and Epel, 2005). The environmental importance of these transporters was first 

highlighted by Kurelec and colleagues (Kurelec, 1992), who later on demonstrated that the 

transporter activity in snails from a polluted site was more than twice as effective compared 

with snails populating an uninpacted site (Smital and Kurelec, 1998).  

Fig. 1: Illustration of xenobiotic resistance 
provided by membrane integrated efflux pumps 
together with phase I and II detoxification 
enzymes, cytochromes P450 (CYP) and 
glutathione-S-transferase (GST), respectively. 
Intracellular accumulation of a moderately 
hydrophobic compound (X) is prevented by active 
P-gp transporters. At high concentrations, 
accumulated X will undergo biotransformation via 
phase I and be expelled by P-gp transporters or 
continue to phase II involving GST-catalyzed 
conjugation to glutathione (GSH). Efflux of the 
glutathione conjugate (G-S-X) will be carried out 
by multidrug.resistance protein- (MRP) mediated 
transport. Figure from Bard (2000). 



 

4 
 

The MXR defense mechanism is similar to the early discovered multidrug resistance in 

tumor cell lines displaying resistance towards chemotherapeutic drugs (Smital and Kurelec, 

1997). The search for agents arresting the pump activity, so called chemosensitizers, is an 

ongoing research topic in the field of cancer therapy (Peer and Margalit, 2006). In recent 

years, it has become increasingly clear that environmental pollutants of different origin and 

structure can disturb the sensitive MXR defense mechanism (Kurelec, 1995; Luckenbach and 

Epel, 2005; Stevenson et al., 2006), thus  allowing previously exported chemicals to enter the 

cell and accumulate (reviewed by Kurelec, 1995, 1997; Epel et al., 2008). Environmental 

pollutants with such MXR-reversing behavior have been suggested to be top-ranked among 

hazardous chemicals given their potential to inhibit basic biological defense systems (Smital 

and Kurelec, 1998). The way in which a xenobiotic can act as a chemosensitizer has been 

described as either direct or indirect. A direct inhibition of the MXR can occur by substances 

acting as pump substrates, thus saturating the pump capacity causing an increased 

intracellular accumulation of the substrates normally exported (Hofsli and Nissenmeyer, 

1990). Compounds blocking the ATPase activity or influencing the cell membrane fluidity 

can indirectly induce a similar pump arrest (Litman et al., 1997; Romsicki and Sharom, 1999). 

 

1.3 Perfluorinated chemicals 

Perfluorinated chemicals (PFCs) constitute a group of emerging contaminants which have 

received increased attention within environmental research. PFCs have been synthetically 

produced over several decades as their surface-active properties offer great advantages when 

applied to industrial and commercial products such as e.g., fire fighting foams and coatings 

for textiles and paper products approved for food contact. The chemical structure of PFCs is 

characterized by an alkyl chain of varying length with fluorine substitutions forming strong 

carbon-fluorine bonds (C-F). Due to these high-energy bonds, PFCs are showing resistance 

towards hydrolysis, photolysis, microbial degradation as well as metabolism by vertebrates 

and are therefore considered to be persistent in the environment (Giesy and Kannan, 2002). 

Since organofluorine compounds were first detected in human sera in 1968 (Taves, 

1968), improved analytical capabilities have identified PFCs in a wide range of environmental 

matrices at a global scale including biota, solids and aqueous systems (Bossi et al., 2005; 

Higgins et al., 2005; Tseng et al., 2006). Perfluorooctane sulfonate (PFOS) is frequently 

reported as one of the most commonly detected PFCs in biotic and abiotic samples (Martin et 
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al., 2004; Ahrens et al., 2009; Naile et al., 2010; Houde et al., 2011; Li et al., 2011; Thompson 

et al., 2011). In aquatic ecosystems, PFOS is normally detected in the lower ng/L range; 

however, concentrations of 0.65 - 43.5 µg/L have been reported in water environments 

affected by industrial waste (Rostkowski et al., 2006; Skutlarek et al., 2006; Zainuddin et al., 

2012). Confirmed presence of PFOS in drinking water worldwide further highlights the 

environmental importance of this compound (Skutlarek et al., 2006; Ericson et al., 2009; 

Quinete et al., 2009; McLaughlin et al., 2011). 

Giesy and Kannan (2001) were the first to demonstrate the global distribution of PFOS. 

Investigated locations within their study included the Arctic where detectable concentrations 

of PFOS were found in the liver of polar bears and blood plasma of ringed seals (350 ng/g and 

110 ng/mL respectively). Given that the volatility of PFOS is considered low or possibly 

negligible (OECD, 2002b), it is unlikely that the migration to such remote areas is performed 

via long-range atmospheric transport. One explanation is that PFOS is formed following 

reactive processes of volatile precursors (Renner, 2001). This was also implied in two 

independent studies where PFOS was detected as a possible end-product following 

biodegradation of the polyfluorinated alcohol N-EtFOSE (2-(N-ethylperfluorooctane 

sulfonamido) ethyl alcohol; Cleston, 2000) and the polyfluorinated sulphonamide N-

EtPFOSA (N-ethyl perfluorooctanesulfonamide; Tomy et al., 2004).  

With respect to the persistent, bioaccumulative and toxic (PBT) properties of PFOS 

(OECD, 2002a), a restriction for commercialization and use was implemented within the EU 

in 2008 (EU, 2006). PFOS was also added to the list of priority substances to be controlled 

within the European Water Framework Directive (EU, 2008). However, due to a continued 

production of PFOS and its precursors in non-EU member countries (UNIDO, 2009) 

combined with the long-range transport potential of PFCs (Young et al., 2007; Dreyer et al., 

2009), a sustained global emission of PFOS is likely to occur.  

Numerous studies have investigated the hazardous potential of PFOS in organisms and 

confirmed the liver as one of the target organs (Hagenaars et al., 2008; Ivan et al., 2008; Cui 

et al., 2009; Du et al., 2009). Further effects associated with PFOS exposure include, e.g., 

abnormal development (Han and Fang, 2010), reduced offspring survival (Lau et al., 2003; 

Newsted et al., 2007; Han and Fang, 2010), endocrine disruption (Oakes et al., 2005; Liu et 

al., 2007; Du et al., 2009) and oxidative stress responses (Arukwe and Mortensen, 2011; Chen 

et al., 2012). To date, the majority of PFOS-related studies with fish have focused on acute 
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effects, leaving chronic and reproductive effects largely unexplored. Given the aquatic 

occurrence and non-metabolizing properties of PFOS, chronic low-dose exposures in fish 

have been warranted (Oakes et al., 2005). Ankley et al. (2005) performed a partial life-cycle 

test with the fathead minnow (Pimephales promelas) and observed deviating sex steroid 

levels and histopathological alterations in ovaries following exposure to 300 µg/L PFOS. The 

discovery of such sublethal effects has great ecological importance. Yet, the continued lack of 

studies over multiple generations with aquatic vertebrates limits a comprehensive assessment 

of possible risks of PFOS. Notable concentrations of PFOS in eggs of field-sampled fish have 

suggested maternal effects (Kannan et al., 2005), thus further emphasizing the relevance of 

long-term studies with PFOS to explore potential population-relevant effects. 

Another aspect of PFOS toxicity concerns the complexity of joint effects. Due to the 

amphiphilic nature of PFOS, its potential to modulate the toxicity of other chemicals has 

repeatedly been investigated and confirmed (Hu et al., 2003; Liu et al., 2009; Kim et al., 

2011). Thus, in light of the environmental persistence of PFOS, long-term assessment of 

combinations with other pollutants appears a promising strategy to shed more light on the 

complex toxicology of PFOS. 

 

1.4 Zebrafish as a test organism in ecotoxicological research 

The zebrafish (Danio rerio; Fig. 2) is a tropical 

freshwater fish belonging to the family 

Cyprinidae, native to Southeast Asia, e.g. 

Thailand, Burma, India, Pakistan and 

Bangladesh, where it lives in stagnant or 

flowing water; e.g. paddy fields or rivers (Laale, 

1977).  The zebrafish grows to an average 

length of 3-5 cm and is characterized by five 

longitudinal blue stripes along both sides of the 

compressed body. The sexes are easily 

differentiated during spawning period due to the 

swollen bellies of the females in addition to their lack of reddish tint along the longitudinal 

stripes. The zebrafish is an oviparous species and under favorable conditions, the female 

zebrafish can spawn 100 to 500 eggs every 2-3 days all year around (Lohr and 

Fig. 2: Adult zebrafish (Danio rerio). 
Female: upper individual, Male: lower 
individual. Picture by Erik Leist 
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Hammerschmidt, 2011). The zebrafish has frequently been utilized in scientific experiments 

since the nineteen thirties given its inexpensive and ready maintenance in addition to its short 

generation cycle of approximately 2-3 months (Bresch, 1991; Scholz et al., 2008). The 

transparency of the eggs makes them well suitable for embryo-larval (EL) toxicity tests which 

are generally more sensitive than toxicity tests with juvenile and adult fishes (McKim, 1977; 

Hutchinson et al., 1998). EL toxicity studies with zebrafish are also ideal considering the 

short time period of 72-96 h from fertilization until hatching. Today, zebrafish eggs are 

commonly chosen for toxicity testing as they represent a good alternative to fish acute toxicity 

testing (Lammer et al., 2009). In addition to toxicological screening of chemical compounds, 

the zebrafish model system has been found suitable for developmental, genetic and 

transgenetic approaches as well as for endocrine research (Segner, 2009; Lohr and 

Hammerschmidt, 2011). Moreover, findings revealing preserved key endocrine functions in 

zebrafish previously recognized in mammals have implied the zebrafish as a potential model 

for human endocrine systems (Lohr and Hammerschmidt, 2011).  

 

1.5 Bioassays for the evaluation of chronic and chemosensitizing effects 

Micronucleus test 

The micronucleus test is one of the most popular assays in genotoxicity testing (Bolt et al., 

2011). Originally, the micronucleus test was developed for toxicological screening of 

genotoxic agents towards mammalian cells (Heddle et al., 1983). Over the years, the test has 

been considered suitable as an early warning signal for genotoxic hazards towards both 

aquatic organisms and humans (Al-Sabti, 2000). The micronucleus test offers a fast and 

invasive method for the detection of genotoxic agents of which the convenience is 

emphasized by the possibility to score data at any time (Al-Sabti, 2000). Due to the 

complexity behind micronuclei formation, the possibility to detect the action of both 

clastogenic and aneugenic chemicals represent a further advantage. Micronuclei consist of 

whole or fragmented chromosomes that fail to integrate into the daughter nuclei following 

anaphase (Al-sabti and Metcalfe, 1995). Micronucleation represents an endpoint of high 

toxicological significance (Kirsch-Volders et al., 2011) and has furthermore been 

implemented by OECD as guideline 478 (OECD, 1997). 
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Fish embryo toxicity test 

The fish embryo toxicity (FET) test represents an alternative approach to traditional acute 

toxicity testing with live fish (Lammer et al., 2009); since the year 2005, it is compulsory 

when conducting whole effluent testing in Germany (DIN, 2001). In addition to several 

technical benefits, the FET test allows the implementation of sublethal effects making it more 

compatible with current animal welfare legislation (Lammer et al., 2009). Teratogenic effects 

investigated following sub-lethal exposure involve among others abnormalities such as 

malformations of head, tail, notochord and yolk as well as retarded growth (Nagel, 2002). 

Dye uptake assays for determining efflux activity  

Reduced or inhibited efflux of an ABC transporter substrate by a test compound, a so-called 

chemosensitizer, will result in an increased intracellular accumulation of the test compound 

(Peer and Margalit, 2006). By using fluorescently labelled substrates, any negative impact on 

the efflux activity of the transporters may be quantitatively determined by means of 

fluorescence microscopy (Hamdoun et al. 2004).  Rhodamine B (RhB) and calcein 

acetoxymethyl ester (calcein-AM) are both fluorescent substrates of specific ABC transport 

proteins (Smital and Kurelec, 1997; Essodaigui et al., 1998) and have frequently been used to 

study MXR in aquatic organisms (e.g., Hamdoun et al., 2004; Stevenson et al., 2006; Faria et 

al., 2011; Fischer et al., 2011; Della Torre et al., 2012). To confirm the presence of transport 

activity in a test specimen, a known MXR-reversing compound must be run in parallel. To 

date, numerous agents such as vincaalkoloids, cyclosporins and calcium channel antagonists 

are known for their potential to reverse MXR (Kurelec, 1995). Transporter activity assays 

with fluorescently labelled substrates offer a fast and fairly simple technique for detection of 

chemosensitizers and are favourable as they can be used in whole organisms as well as in 

isolated cells and tissues (Kurelec et al., 2000). 

Multi-generation study and relevant endpoints in fish 

Multi-generation approaches allow monitoring of reproductive success which is considered 

one of the most ecologically relevant endpoints in fish life-cycle studies (Arcand-Hoy and 

Benson, 1998). Furthermore, endocrine-disruptive effects may be induced during early 

development; however, subsequent expression of related effects may lag until adulthood or 

even offspring generations (Kavlock et al., 1996; Allen et al., 1999). Thus, a chronic exposure 
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design over generations represents a promising approach to gain population-relevant 

information as to the toxic potency of a chemical or chemical mixture. 

Over the years, an increasing number of environmental pollutants have been identified as 

endocrine disruptive chemicals (EDCs) towards a wide range of organisms (e.g., Jensen and 

Leffers, 2008; Mann et al., 2009; Flint et al., 2012; Soffker and Tyler, 2012). For the 

detection of EDCs in fish, altered levels of vitellogenin (Vtg) constitutes an acknowledged 

biomarker (Tyler et al., 1999) and is moreover one of the main endpoints in the newly 

adopted OECD test guidelines no. 229, 230 and 234 (OECD, 2009a, b, 2011). The yolk 

protein Vtg is under the influence of estradiol synthesized by the liver for subsequent 

incorporation into the developing oocyte (Fig. 3.; Kime, 1998). Vtg is produced by female 

fish and is under normal circumstances absent in males. However, as the necessary receptors 

for estradiol are present in the livers of male fish, Vtg may under xenoestrogenic influence be 

detectable in males as well (Kime, 1998).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Regulation of vitellogenesis in fish. Illustration from Kime (1998). 

Within aquatic toxicity testing, histopathology has been acknowledged as a tool of high 

diagnostic power providing superior information regarding target organs of toxicity and 
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mechanisms of action (Wester et al., 2002). As histopathological alterations are known to 

occur as a result of toxic effects at lower levels of biological organization (Chavin, 1973; 

Vogt, 1987), histological monitoring in fish is associated with a higher sensitivity compared 

with toxicological endpoints such as growth, survival and reproduction (Segner and 

Braunbeck, 1988; Wester et al., 2002).  

 

1.6 Aims of the present study 

The overall aim of this PhD thesis was to evaluate the chemosensitizing potential and long-

term effects of selected PFCs with focus on PFOS. For these purposes, the zebrafish (Danio 

rerio) was used as model organism.  

 

The specific aims were: 

• to investigate the P-gp inhibiting potential of selected PFCs; 

• to evaluate any chronic effects of PFOS over generations with focus on survival, 

growth, endocrine disruption, reproduction and histological alterations; 

• to elucidate possible joint effects of PFOS and BPA following long-term exposure 
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2. Materials and methods 

2.1 Chemicals 

The chemicals used in the experiments described in this thesis are shown in Table 1. In the 

micronucleus assay, PFOS and cyclophosphamide monohydrate (CPP) were prepared in 

DMSO with a maximum solvent concentration of 1 %.  

In the transporter activity assays, the PFCs, vinblastine sulfate salt and vanadate were 

prepared in double-distilled water and in the case of PFOS, also in DMSO. Prior to use, 

vanadate was prepared by pH 10 adjustment and boiling cycle until clear at pH 10.  Stock 

solutions of calcein acetoxymethyl ester (calcein-AM), cyclosporine A (CsA), MK571 

sodium salt and verapamil were prepared in DMSO. DMSO concentration in the final test 

solutions never exceeded 0.5 %. Stock solutions of rhodamine B (RhB) were always freshly 

prepared in double-distilled water and kept dark. For the transporter activity assay, a 

hypotonic lysis buffer (10 mM KCL, 1.5 mM MgCl2, 10 mM Tris HCL) was prepared in 

double-distilled water and adjusted to pH 7.4.  

In the long-term test with zebrafish, PFOS and bisphenol A (BPA) were both delivered to 

the test vessels without use of a carrier solvent. A first stock solution of PFOS (300 mg/L) 

was prepared by dissolving 1.5 g PFOS in 5 L of deionized water with over-night magnetic 

stirring. The solution after the first dilution step, hereafter named second stock solution 

(0.016, 2.6 and 7.8 mg/L), was prepared by diluting the first stock solution (300 mg/L) with 

deionized water. Nominal concentrations of PFOS in the test vessels were 0.6, 100 and 300 

µg/L. Stock solutions of BPA (500 mg/L) were freshly prepared twice a week by adding 500 

mg in 1 L of dechlorinated water. Complete solubilisation was achieved by alkalinization and 

rigorous over-night stirring as previously described by Pickford et al. (2003). The pH of the 

first BPA stock solution ranged from 10.97 to 11.55 throughout the test.  The second stock 

solution of BPA (0.26, 5.2 and 10.4 mg/L) were prepared by dilution of the first stock 

solution (500 mg/L) using deionized water. Nominal concentrations of BPA in the test vessels 

were 10.0, 200 and 400 µg/L. For the co-exposure treatments, all tested BPA concentrations 

(10, 200 and 400 µg/L) were combined with the lowest and the highest PFOS concentrations 

(0.6 and 300 µg/L), respectively. 
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Table 1. Trade name, abbreviation, CAS number and supplier of investigated chemicals. 
Chemical Abbreviation Chemical formula CAS no. Supplier 

Bisphenol A BPA C15H16O2 80-05-7 Sigma-Aldrich, 
Taufkirchen, Germany 

Calcein acetoxymethyl ester Calcein-AM C46H46N2O23 148504-34-1 Biozol, Eiching, 
Germany 

Cyclophosphamide 
monohydrate CPP C7H15Cl2N2O2P·H2O 6055-19-2 Sigma-Aldrich, 

Schnelldorf, Germany 

Cyclosporin A CsA C62H111N11O12 59865-13-3 Enzo Life Sciences, 
Lörrach, Germany 

Heptadecafluorooctane- 
sulfonic acid potassium salt PFOS C8HF17O3S 2795-39-3 Sigma-Aldrich, 

Schnelldorf, Germany 

MK571 sodium salt MK571 C26H26ClN2NaO3S2    
·xH2O 115104-28-4 Enzo Life Sciences, 

Lörrach, Germany 

Pentadecafluorooctanoic 
acid PFOA C8HF15O2 335-67-1 Sigma-Aldrich, 

Schnelldorf, Germany 

Perfluorodecanoic acid PFDA C10HF19O2 335-76-2 Sigma-Aldrich, 
Schnelldorf, Germany 

Perfluorononanoic acid PFNA C9HF17O2 375-95-1 Sigma-Aldrich, 
Schnelldorf, Germany 

Potassium nonafluoro-1-
butanesulfonate PFBS C4HF9O3S 29420-49-3 Sigma-Aldrich, 

Schnelldorf, Germany 

Rhodamine B RhB C28H31ClN2O3 81-88-9 Sigma-Aldrich, 
Schnelldorf, Germany 

Sodium orthovanadate Vanadate Na3O4V 13721-39-6 Enzo Life Sciences, 
Lörrach, Germany 

Verapamil Verapamil C27H38N2O4 52-53-9 Sigma-Aldrich, 
Schnelldorf, Germany 

Vinblastine sulfate salt Vinblastine C46H58N4O9 · H2SO4 143-67-9 Sigma-Aldrich, 
Schnelldorf, Germany 

 

2.2 Test organisms and maintenance  

Cell lines 

The V79 cell line applied in the micronucleus assay is a mammalian cell line derived from 

cultured embryonic lung fibroblasts of the Chinese hamster (Cricetulus griseus). The cells 

were cultured in Minimum Essential Medium (MEM) supplemented with 10 % foetal calf 

serum and antibiotics. The cultivation was obtained in 25 cm2 culture flasks under sterile 

conditions in a humidified incubator (37 ºC, 5.0 % CO2 in air).  

Madin-Darby canine kidney (MDCKII) cells overexpressing human P-gp (MDCKII P-gp 

[=ABCB1]) along with non-transfected MDCKII cells were used in the calcein assay. The 
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MDCKII cell lines were cultured at the Department of Bioanalytical Ecotoxicology, UFZ-

Helmholtz Centre for Environmental Research, and were a kind gift from Dr. Piet Borst from 

the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital. MDCKII-derived cell 

lines were cultured under sterile conditions in Dulbecco’s Modified Eagle's Medium (DMEM) 

with 10% foetal calf serum. 

Zebrafish 

In the transporter activity assay as well as in the long-term study, eggs from a brood stock 

consisting of mature non-exposed zebrafish (Danio rerio; Westaquarium strain) were used. 

The brood stock was reared in the laboratory of the Aquatic Ecology and Toxicology section, 

Heidelberg University and maintained in a light-isolated room with an artificial 14/10 h 

light/dark period. Adult fish were fed twice daily with freshly hatched Artemia nauplii 

(Aquafauna Bio-Marine Inc., Hawthorne, CA) complemented with TetraMin flake food 

(Tetra, Germany). Larvae were initially fed twice daily with liquid starter food (Hobby 

liquizell, Gelsdorf, Germany) followed by Sera micron powder food (Sera, Heinsberg, 

Germany) and freshly hatched Artemia nauplii. Tap water and deionized water were mixed 

until a conductivity of 600 – 750 µS, hardness (276 ± 17.8) and pH (8.0 – 8.2) were stably 

balanced. The water mix was supplied from an aerated reservoir and used for culture of all 

embryos and fish. The final test water was routinely characterized for pH (8.25 - 8.75), total 

hardness (167 - 356 mg/L), ammonium (< 5 mg/L) and nitrite (< 1 mg/L). Temperature (26.0 

± 1.0 °C) and dissolved oxygen (6.45 - 10.97 mg/L) was checked weekly. In order to ensure 

high water quality, food remains and debris were removed daily and vessel surfaces were 

gently scraped once a week with the exception of sensitive periods during early larval 

development. 

 

2.3 Micronucleus assay  

The micronucleus assay with the V79 cell line served as a first screening of the toxicity 

increasing potential of PFOS (23.2 µM) in the presence of the genotoxicant CPP (4.79 and 

9.58 µM). The micronucleus assay was performed according to the ISO Draft International 

Standard (ISO/DIS 21427-2). V79 cells were washed with Hank´s Balanced Salt Solution 

(HBSS) and seeded at a density of 5.0 x 104 cells/ml onto ethanol-cleaned slides in culture 

dishes and incubated at 37 ºC for 6 h allowing attachment of the cells. MEM with and without 
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DMSO (1 %) served as solvent and negative controls, respectively.  Five ml of each test 

solution and controls were added to the culture chambers followed by incubation at 37 ºC for 

4 h. After 4 h, the medium of the S9-treated cultures was removed and the cultures were 

washed twice with HBSS followed by addition of 5 ml MEM before continued incubation. 

After a total incubation of 24 h, the culture medium of each plate was removed completely 

and each culture was treated with 5 ml pre-heated (37 ºC) solution of sodium citrate (Merck; 

1.5 % in double distilled water) for 3 min. After removal of the sodium citrate solution, cells 

were fixed for 10 min with 5 ml 4 ºC glacial acetic acid/ethanol solution (1/3) with 1 % 

formaldehyde (37 %). After the first fixation, the solution was removed and replaced by an 

equal amount of fresh fixative for additional 10 min. The slides were removed from the 

culture chambers and allowed to dry before the staining procedure. After 3 min in May-

Grünwald-solution (Sigma-Aldrich, Schnelldorf, Germany) the slides were washed in 

WEISE-buffer (Merck) in order to remove excess staining. In the final staining step, slides 

were submerged in 2.6 % Giemsa (Gurr, Poole, UK) in WEISE-buffer. After 20 min 

incubation, slides were washed twice in WEISE-buffer. After dryness, each slide was 

mounted with DePeX (Serva, Heidelberg, Germany) and covered with a coverslip (24 x 70 

mm; Langenbrink). The documentation of micronuclei was performed with a CKX41 inverted 

microscope (Olympus, Hamburg, Germany) equipped with a digital Olympus C5060 camera 

and the digitizing software Analysis 5.0 (Soft Imaging Systems, Olympus). For the evaluation 

of micronuclei, the following scoring criteria were used: (a) cells with oval appearance and 

intact cytoplasm, (b) oval nuclei with intact nuclear membrane, (c) micronuclei less than or 

equal to one-third the size of the main nuclei, (d) micronuclei clearly separated from the main 

nuclei (Huber et al., 1983; Titenko-Holland et al., 1998). Each treatment was performed in 

duplicates and per treatment replicate, a total of 1000 cells were scored. The test was repeated 

twice on separate days. PFOS recovery was determined using LC-MS/MS (Skutlarek et al., 

2006).  

 

2.4 Transporter activity assays  

Fish embryo toxicity test 

Prior to the transporter activity experiments, the embryotoxic potential of the PFCs was 

determined in a 48 h range-finding FET test according to DIN 38415-T6 and ISO 15088 

(DIN, 2001; ISO, 2007). Artificial water as specified in ISO 7346-1 (ISO, 1996; 294.0 mg/L 
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CaCl2×2 H2O; 123.3 mg/L MgSO4×7 H2O; 63.0 mg/L NaHCO3; 5.5 mg/L KCl) was prepared 

and aerated to oxygen saturation prior to use. At the day of the experiment, viable eggs at cell 

stage 8-32 were carefully selected with a plastic Pasteur pipette and transferred to 24-well 

plates (Renner, Dannstadt, Germany) containing 2 ml test solution per well (10 eggs per 

treatment).  Artificial water served as negative control. In order to prevent interaction between 

adjacent wells, the plates were covered with self-adhesive film (Nunc, Wiesbaden, Germany) 

before incubation at 26.0 ± 1.0 °C. The embryos were inspected 24, 48, 72 and 96 h after the 

onset of exposure using an inverted microscope (CK-2; Olympus, Hamburg, FRG) equipped 

with a digital camera (Canon EOS D60; Canon, Grießen, FRG). Normal development along 

with lethal and sub-lethal effects were documented for each individual egg (Table 2). The 

FET test was considered valid if the negative control did not reveal more than 10 % mortality. 

Table 2. Documented endpoints of lethal (+) and sublethal (o) toxicity in zebrafish embryos. 

 
Exposure time 

24 h 48 h 72 h 96 h 
Coagulation + + + + 
Lack of heartbeat  + + + 
Lack of somite formation + + + + 
Lack of blood circulation  + + + 
Deformation o o o o 
Edema o o o o 
Disturbed pigmentation  o o o 

 

The standard FET was also conducted to evaluate the lethal toxicity of the vinca alkaloid 

and P-gp substrate vinblastine in the absence or presence of PFOS. Freshly spawned embryos 

were incubated in artificial water with either vinblastine (0.5-3 µM), PFOS (21 µM) or with 

different binary mixtures of the two compounds. Artificial water alone served as a negative 

control. After 48 h of incubation, lethal effects, as depicted by coagulation or lack of heart 

beat, were documented among 10 embryos per treatment group. Each experiment was 

repeated four times on separate days with embryos of different batches.  

Rhodamine B accumulation assay 

Accumulation of the fluorescent P-gp substrate rhodamine B (RhB) in the absence or 

presence of PFBS, PFOS, PFOA, PFNA or standard transporter inhibitors was used to 

measure the transporter activity in zebrafish embryos. As an inhibited transporter activity will 
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Fig. 4. Nylon mesh baskets. 

lead to an increased intracellular RhB 

accumulation, measurements of the fluorescence 

signal will provide information regarding the 

chemosensitizing potential of the investigated 

compounds.  

To measure dye accumulation, embryos at 24 

hpf were incubated in artificial water with RhB 

(0.5 or 1µM)  in the absence or presence of PFOS 

(10-100 µM), PFBS, PFOA, PFNA (35 and 50 µM) or the inhibitor compounds cyclosporine 

A (CsA; 30 µM), MK571 sodium salt (MK571; 50 µM) or sodium orthovanadate (vanadate; 

500 µM). Artificial water with RhB (0.5 or 1µM) in the absence or presence of DMSO (0.05 

%) served as water and solvent controls, respectively. Each treatment was performed in 

pseudo-triplicates with 5 eggs (n = 15). Self-made nylon mesh baskets (3 per treatment; mesh 

size 100 µm; inner core diameter 10 mm; Fig. 4) were placed in 24-well plates, where they 

served as mobile incubation chambers throughout the duration of the test (based on the 

original idea by Fischer, 2007).  

At the day of the test, all plates were refilled with freshly prepared test solutions. Viable 

eggs were selected under a stereo microscope and immediately transferred to the mesh baskets 

containing 1 mL artificial water. The mesh baskets, each containing 5 eggs, were relocated to 

the neighboring wells containing 2 mL of freshly prepared test solutions with RhB and 

incubated in darkness for 1 h at 26.0 ± 1.0 °C. After incubation, excess dye from the surface 

of the eggs was rinsed off via a three-step washing series with artificial water. Immediately 

after washing, the eggs were gently transferred to 1.5 mL microcentrifuge tubes, where excess 

water was carefully pipetted out. After addition of 200 µL hypotonic lysis buffer, the contents 

of each tube were sonicated (2 x 10 sec) and briefly centrifuged (~ 10 sec). Of the 

supernatant, 150 µL were transferred to a black 96-well microplate (Nunclon, Nunc, 

Wiesbaden; Germany), where the RhB fluorescence was measured at 595 nm (emission) / 530 

nm (excitation) at optimal gain. Each experiment was repeated at a minimum of three times 

on separate days with embryos of different batches. Dye accumulation in the treatments was 

quantified as fold increase over the water control.  

To assess detergent-like effects of PFOS and its consequences for RhB uptake/efflux, 30 

zebrafish embryos at 24 hpf were incubated in artificial water with RhB (0.5 µM) and PFOS 
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(20 - 100 µM). After 1 h of incubation, all embryos were washed as described above. After 

washing, RhB fluorescence was immediately measured in10 embryos, whereas the remaining 

embryos were directly transferred to clean artificial water with or without PFOS (20-100 µM) 

and further incubated for 1 h. After 1 h post-incubation, RhB fluorescence was measured in 

the remaining embryos. Each treatment was performed in pseudo-duplicates with 5 eggs (n = 

10). Artificial water with 0.5 µM RhB in the absence or presence of DMSO (0.05 %) served 

as water and solvent controls, respectively. The experiment was repeated twice on separate 

days with embryos of different batches. Dye accumulation in the treatments was quantified as 

fold increase over the water control. 

In order to investigate the auto-fluorescence of PFOS and its potential influence on the 

fluorescence intensity of RhB, fluorescence of artificial water with PFOS (100 and 1000 µM) 

was measured at gain 95 both in the absence and presence of RhB (1 µM; no embryos 

included).  

Calcein-AM assay  

The calcein-AM assay with PFOS, PFNA and PFDA was performed by Peggy Wellner at the 

Department of Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental 

Research in Leipzig.  

Two hundred µl of MDCKII cells suspended in DMEM with 5% FBS were seeded in each 

well of 48 multi-well plates and cells were left to attach over-night. Before exposure, cells 

were washed with 200 µl of PBS (with Mg2+ and Ca2+). Two-hundred µl of ice-cold, serum-

free DMEM with 0.5 µM calcein-AM and test compounds were added to each well and 

incubated at 37 °C in a humidified atmosphere with 5 % (v/v) CO2 for 30 min, then washed 

with 200 µl of PBS and lysed in 200 µl of 0.2 % Triton X-100 in PBS. Fluorescence was 

measured at 485 nm/530 nm (excitation/emission) with a Tecan Genios microplate reader 

(Tecan, Männedorf, Switzerland). Non-transfected MDCKII cells and the reference P-gp 

inhibitor verapamil were used as negative and positive controls, respectively. Each control 

and PFC concentration was set up as duplicates on the plate, and the assay was performed on 

three different days. The DMSO concentration in all treatments during calcein-AM exposures 

was 0.5 %, which was not found to affect transporter activity in the cells. 
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Fig. 5. Experimental facility used for the long-term experiment 
with zebrafish. 

2.5 Long-term study with the zebrafish  

Experimental design 

During the course of the study, fish were continuously exposed to PFOS and BPA, either 

singly or in combination. Each treatment group was replicated twice holding a starting 

number of 80 fish per replicate (160 individuals per treatment). At 2 - 4 h post-fertilization 

(hpf), eggs were transferred to glass dishes (12 cm diameter, 8 cm high) and exposed to the 

different treatments at 26 ± 1 °C under semi-static conditions (complete renewal of solutions 

after 24 h) until 48 hpf, when they were transferred to respective test vessel. Whole-glass 

tanks (18x40x40 cm) adjusted for a 10 L working volume were utilized as test vessels (Fig. 

5). The test vessels were placed on top of serial-connected heating mattresses ensuring 

constant heating conditions. A flow-through system with a three-fold water exchange per day 

was applied throughout the study in order to provide adequate supply of fresh test solution. 

External aeration by pressurized air was installed for each test vessel. Test solutions were 

daily refilled into light-isolated 10 L glass bottles located above the test vessels. Each test 

solution was constantly held in solution by magnetic stirring. Peristaltic pumps (M312; 

Gilson, Villiers-le-Bel, France) were used for a continuous delivery of test solution (50 ml/h) 

from each glass bottle to paired test vessels serving as replicates A and B for each treatment 

group. For each test vessel, a water flow rate of 1.25 L/ h was adjusted by means of 

rotameters (Rota Yokogawa, Wehr, Germany). Flow rates of water supply and test solutions 

were controlled daily. Outflow water passed through active carbon filters (Prantner, 

Reutlingen, Germany) before release to the sewer.  
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Each replicate of the F1 and F2 generations was sub-sampled at 30 and 90 d post-

fertilization (dpf). At 30 dpf, the number of fish in each replicate test vessel was reduced by 

35 individuals for measurements of length and weight. Sampled fish were anaesthetized and 

euthanized in a saturated solution of 4-ethylaminobenzoate (benzocain). At 90 dpf, each 

replicate was further reduced by 25 individuals for measurement of length, weight and 

vitellogenin (Vtg) as well as for histological evaluation of liver, thyroid and gonads. After 

sacrifice, length and weight were documented, and fish were transversely trimmed behind the 

anal fin separating the tail for Vtg measurements and the rest of the body for histology (Fig. 

6). Tails were instantly frozen in liquid nitrogen, and the rest of the body was placed in 

histology cassettes and submerged in cooled Davidson´s fixative (Romeis, 1989) for a 

minimum of 24 h before histological processing. For each replicate test vessel, a total of 10 

males and 10 females were retained for reproduction experiments and breeding of the F2 and 

F3 generations. After termination of the breeding experiments (approximately at 180 dpf), 

remaining adults were sampled following the exact procedure as described above for sub-

sampling at 90 dpf. Post-hatching survival was documented for the F3 generation at 14 dpf, 

when the experiment was terminated without subsequent sampling. 

 

 

 

 

Fig. 6. Illustration of the body parts sampled for vitellogenin measurements and histological 
analyzes in the zebrafish (Danio rerio). 

 

Vitellogenin 

Deep frozen tails of sampled zebrafish males and 10 x the tissue wet weight of ice-cold 

homogenate buffer (50 mM Tris-HCL, pH 7.4, 1 % protease inhibitor cocktail) were added to 

2 ml Eppendorf tubes containing one stainless steel bead each (5 mm diameter; Qiagen, 

Hilden, Germany). The tissue homogenization was performed with a tissue lyser II (30 s, 15 

Hz, Qiagen). The homogenate was centrifuged for 30 min at 24, 650 g at 4 °C and the 

supernatant for Vtg measurements was collected and stored in aliquots of 50 µl at -20 °C until 

further analysis. Concentrations of Vtg were measured by a method based on a direct non-
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competitive sandwich ELISA previously described by Holbech et al. (2001) with the 

following modifications as described by Morthorst et al. (2010): Dextran-HRP conjugated 

antibodies were replaced by a two-step process in order to enhance sensitivity of the assay. 

First, 150 µL of biotin-conjugated antibody were added to each well, and the plate was 

incubated on a horizontal shaker (100 vibrations / min) for 1 h at room temperature. After 

rinsing five times with washing buffer (PBS, 0.1 % Tween-20, 0.1 % BSA) 150 µL of 

streptavidin HRP-conjugated antibody was added to each well, and the plate was incubated on 

a horizontal shaker for 1 h at room temperature. 

Histology 

For histological examination of liver, thyroid and gonads, tissues (central body portions 

without tail) fixed in Davidson´s fixative were processed in a Leica TP 1020 Tissue Processor 

(Leica Microsystems, Wetzlar, Germany) and embedded in Histoplast S (Serva, Heidelberg, 

Germany). Four micron sections were mounted on glass slides, stained with periodic acid-

Schiff (PAS) staining (Romeis, 1989) and examined using a light microscope (Leitz 

Aristoplan). For further details on embedding and staining procedures, see Schmidt and 

Braunbeck (2011). Gonadal staging and severity grading was semi-quantitatively assessed 

according to the criteria outlined by Braunbeck et al. (2010). Briefly, testes and ovaries were 

staged based on the abundance of specific gametogenic cell types by use of a staging system 

ranging from 0 (undeveloped) to 4 (spent) or 5 (post-ovalutory) for males and females, 

respectively. Severity grading was based on the degree to which a histomorphological change 

was present in a tissue section and was employed according to a system ranging from grade 1 

(minimal) to grade 4 (severe). In order to allow a comparison between treatments and 

generations regarding severity and maturation, the maturity index developed and described by 

Baumann (2008) was adopted. Briefly, each stage of maturity was accorded to a fixed value 

which increases with increasing maturity of the fish (maturity stage 0 corresponds to value 1; 

stage 1 corresponds to value 2; etc.). The values of each replicate aquarium were summed up, 

divided by the number of female and male fish, respectively and the mean value of each 

treatment group was calculated. The same principle was applied for the severity index. 

Sections investigated for the presence of Mycobacterium spp. were stained according to the 

Ziehl-Neelsen technique. 
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Breeding 

Breeding experiments for evaluation of fecundity and fertilization rate were performed with 

F1 and F2 adults starting at approximately 4 months of age. Breeding trials for each treatment 

group were repeated six to seven times (F1) and nine to ten times (F2) with a minimum of one 

week of recovery in between to avoid stress related bias. At the day before spawning, five 

individuals of either sex from each test vessel were randomly selected and transferred to 

breeding tanks prior to the onset of darkness. The spawning facility was constructed of six 

breeding tanks (15x16x25 cm) which were held together under un-exposed semi-static 

conditions with constant air supply (7.37 - 8.10 mg/L) and heating (25.0 ± 1.0 °C). Each 

breeding tank was equipped with green nylon netting serving as a breeding stimulant. The 

bottom of the breeding tanks was covered by a stainless steel grid (mesh size 1.25 mm) to 

allow the eggs to pass through into separate spawning trays and thus to avoid cannibalism by 

parental fish. About 20 - 30 minutes after the onset of light, spawning trays were removed and 

the eggs were collected and any further debris was removed. Eggs were counted and visually 

inspected under a stereo microscope and transferred to petri dishes (18 cm diameter) 

containing freshly prepared artificial water according to ISO (1996; maximum 100 eggs/200 

ml water). The eggs were incubated at 26.0 ± 1.0 ºC over night, after which coagulated and 

fertilized eggs were counted.  

 

2.6 Chemical analysis 

In the micronucleus test and long-term experiment, samples for chemical analysis were 

collected in order to assess deviations between nominal and true exposure concentrations. 

PFOS concentrations were determined using solid phase extraction (SPE) and liquid 

chromatography-tandem mass spectrometry (LC-MS/MS; Skutlarek et al., 2006). 

Prior to the micronucleus assay, test solutions containing 23.2 µM PFOS (nominal 

concentration) were incubated in empty well plates at 26.0 ± 1.0 °C aiming to investigate 

potential substance loss via plastic adsorption. Samples for chemical analysis were collected 

at 0 and 24 h. 

Throughout the long-term test, water samples for chemical analysis of PFOS 

concentrations were collected directly from the test vessels on a monthly basis and stored at 

minus 80 °C prior to chemical analysis. BPA concentrations were not analytically verified. In 
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a previous study, no degradation of BPA was detected in natural waters within 1 day (Dorn et 

al., 1987). As the flow-through system in the present study was maintained to provide three 

tank volume changes per day, the rate of fresh test solution was considered enough to 

compensate for any bacterial degradation occurring in the test vessels. 

 

2.7 Statistical methods 

In order to test differences in the frequency of micronucleated cells, the non-parametric 

Kruskal-Wallis ANOVA on-ranks test was applied followed by multiple comparisons versus 

the control group (Dunn´s method). When no normality or equal variance was found, this test 

was also used to detect differences in RhB fluorescence accumulation as well as in total body 

length and weight, survival and Vtg concentration. In case assumptions of normality and 

equal variances held true, differences between data sets were evaluated with one-way 

ANOVA followed by the post-hoc Holm-Sidak method. To compare groups (in a set less than 

three), the Student´s t-test or the Mann-Whitney rank-sum test (when no normality or equal 

variance) were applied. To allow comparison of fluorescence data between different 

measurements, raw values of each plate were normalized to the fluorescence intensity of the 

water controls of the respective plate and expressed as fold increase over control.  

A level of p less than 0.05 was considered statistically significant with the exception of the 

long-term test where differences were considered significant at three different levels (*, p < 

0.05; **, p < 0.01, ***, p < 0.001) relative to controls or to the single exposure treatments.  

Analyses were performed with SigmaStat® Statistical Software version 3.5 (Systat-Jandel 

Scientific, Erkrath, Germany). 
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3. Results 

3.1 Chemosensitized micronucleus induction by PFOS in vitro  

PFOS alone did not induce any increase in the frequency of micronucleated V79 cells relative 

to the control (Fig. 7). Co-exposure of cells to PFOS and cyclophosphamide monohydrate 

(CPP; 4.79 and 9.58 µM) caused a significant increase in micronucleated cells. Binary 

mixtures with 23.2 µM PFOS showed a clear increase in micronucleated cells compared with 

the same concentrations of CPP and PFOS alone. Furthermore, addition of 23.2 µM PFOS to 

4.79 µM CPP caused a higher frequency of micronucleated cells than exhibited by 9.58 µM 

CPP alone. 

Chemical analyses indicated a good recovery of PFOS (100- 110 %), as measured prior 

to and after incubation, thus confirming a negligible loss of substance during the incubation 

period (data not shown).  

 

 

 

 

 

 

 

 

 

Fig. 7. Frequency of micronucleated V79 cells following exposure to PFOS (23.2 µM), CPP 
(4.79 and 9.58 µM) or to a binary mixture of the two compounds. All treatments are with 
metabolic activation. Minimum Essential Medium in the absence and presence of DMSO (1 %) 
served as a negative and solvent control, respectively. Data are means ± SD of two independent 
experiments with 2 replicates each. For each replicate, 1000 cells were assessed. Asterisks 
indicate significant genotoxicity compared to negative controls (p < 0.05) following Kruskal-
Wallis ANOVA on-ranks and Dunn´s multiple comparison test. 
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3.2 PFC-modulated uptake of P-gp substrates in zebrafish  

Lethal toxicity of vinblastine and PFOS  

Mortality of zebrafish embryos at 48 hpf exposed to the P-gp substrate vinblastine in the 

absence or presence of PFOS (21 µM) is shown in Fig. 8. Despite little mortality in the 21 µM 

PFOS exposure group (2.5 ± 5 %), the presence of PFOS significantly increased the toxicity 

of vinblastine (1-2.5 µM) causing a two- to five-fold increase in mortality, if compared with 

the single exposures of vinblastine. No mortality was observed in the negative control group 

throughout the 48 h exposure period. 

 

 

 

 

 

 

 

 

 

Fig. 8. Relative mortality among zebrafish (Danio rerio) embryos (48 hpf) after 48 h exposure 
to vinblastine alone and in combination with PFOS (21 µM). Asterisks indicate significant 
mortality in binary mixtures compared to single exposures of vinblastine (p < 0.05) following 
Student´s t-test. Data are given as average ± S.D. of four experiments (10 eggs per treatment). 

 

Rhodamine B accumulation and efflux following PFC-exposure 

RhB accumulation (fluorescence) in the presence of PFOS, PFBS, PFOA or PFNA (35 and 50 

µM) was investigated in zebrafish embryos at 24 hpf (Fig. 9). The highest RhB accumulation 

following 1 h of incubation was observed in embryos exposed to 35 and 50 µM PFOS 

showing an eight- to eleven-fold increase in RhB fluoresence compared with water controls. 
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Although without statistical significance, a two- and threefold RhB increase was observed in 

embryos exposed to 35 µM PFOA and 50 µM PFNA, respectively.  

 

 

 

 

 

 

 

 

 

Fig. 9. Rhodamine B (RhB) accumulation in 24 hpf zebrafish (Danio rerio) embryos given as 
fold change in fluorescence compared to water control (0.5 µM RhB). Zebrafish embryos were 
incubated for 1 h in RhB (0.5 µM) in combination with selected PFCs (35 and 50 µM). Solvent 
control: 0.5 µM RhB in 0.05 % DMSO. Asterisks indicate significant fluorescence increase 
compared to water control (p < 0.05) following Kruskal-Wallis ANOVA on-ranks and Dunn´s 
multiple comparison test. Data are given as average ± S.D. of four experiments (15 eggs per 
treatment).  

 

All reference inhibitors tested (CsA, vanadate and MK571), enhanced RhB accumulation 

in zebrafish embryos (increase by factors of 1.56 ± 0.69, 1.23 ± 0.13 and 2.26 ± 0.83, 

respectively; Fig. 10), however, significance was only found for vanadate. An extended 

concentration range of PFOS (10 – 100 µM) revealed a concentration-dependent fluorescence 

intensity up to 70 µM PFOS where after dye accumulation leveled off. Uptake of RhB was 

significantly increased in the presence of 70 to 100 µM PFOS demonstrating an up to 

fourteen-fold increase in RhB fluorescence compared with solvent controls (Fig. 10).  
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Fig. 10. Rhodamine B (RhB) accumulation in 24 hpf zebrafish (Danio rerio) embryos given as 
fold change in fluorescence compared to water control (1 µM RhB). Zebrafish embryos were 
incubated for 1 h in RhB (1 µM) in combination with PFOS (10 - 100 µM) or reference 
inhibitors CsA (30 µM), MK571 (50 µM) and vanadate (500 µM). Asterisks indicate significant 
fluorescence increase compared to solvent control (0.05 % DMSO; p < 0.05) following Kruskal-
Wallis ANOVA on-ranks and Dunn´s multiple comparison test. Vanadate was statistically 
compared to water control (p < 0.05; Mann-Whitney Rank-Sum test).  Data are given as average 
± S.D. of four (CsA and MK571: three) experiments (15 eggs per treatment).  

 

In order to investigate whether the detergent-like properties of PFOS could influence the 

RhB uptake/efflux in zebrafish embryos, RhB accumulation in embryos incubated in binary 

mixtures with RhB and PFOS was measured both prior to and after post-incubation in pure 

water with or without PFOS (Fig. 11).  RhB accumulation following 1 h incubation, increased 

in a PFOS-dependent manner with a nine-fold higher RhB fluorescence in the highest 100 µM 

PFOS treatment compared with the water control group. After 1 h post-incubation in pure 

artificial water, all zebrafish embryos previously exposed to PFOS displayed reduced RhB 

fluorescence with an elimination rate ranging from 35 to 73 %. In contrast, individuals post-

incubated in artificial water with PFOS did not show any sign of RhB elimination, but 

displayed a RhB content in the same order of magnitude as measured prior to the post-

incubation.  
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Fig. 12. Autofluorescence of PFOS (100 and 1000 µM) singly and in combination with 1µM 
rhodamine B (RhB). Results indicate no influence of the fluorescence intensity of RhB in the 
presence of PFOS. Data are given as average ± S.D. of two experiments. 

 

 

 

 

 

 

 

Fig. 11. Rhodamine B (RhB) accumulation in 24 hpf zebrafish (Danio rerio) embryos given as 
fold change in fluorescence compared to water control (0.5 µM RhB). The graph illustrates the 
modulation of RhB clearance by PFOS in zebrafish embryos after 1 h of incubation in RhB (0.5 
µM) in combination with PFOS (20-100 µM; solid bars) followed by 1 h post-incubation in 
PFOS (20 - 100 µM) without RhB (grey bars) or in clean water (open bars). Solvent control: 0.5 
µM RhB in 0.05 % DMSO. Data are given as average ± S.D. of two experiments (10 eggs per 
treatment).  

 

In order to exclude the possibility of a PFOS-modified RhB fluorescence, the 

fluorescence of different test solutions containing the two compounds alone or in combination 

was measured (no embryos included). As illustrated in Fig. 12, results indicate no difference 

in the intensity of RhB fluorescence in the absence or presence of different PFOS 

concentrations (100 and 1000 µM). 
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PFC-induced inhibition of P-gp activity in MDCKII cells 

Calcein accumulation in MDCKII cells overexpressing human P-gp (MDR1 cells) was not 

significantly affected by the tested concentrations of PFOS, PFNA or PFDA (0.8 - 100 µM, 

Figs. 13a-c). A significant calcein uptake of up to forty-fold was demonstrated in MDR1 cells 

exposed to the transporter inhibitor verapamil (50 and 100 µM; Fig. 13a). This shows that the 

investigated PFCs do not considerably affect efflux transporter activity of human P-gp.  
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Fig. 13. Calcein accumulation in MDCKII cells overexpressing human P-gp (MDR1 cells) 
along with non-transfected MDCKII cells (wild-type cells) after exposure to PFOS (A), PFNA 
(B) or PFDA (C). Verapamil was used as reference P-gp inhibitor. Asterisks indicate significant 
fluorescence increase compared to control (0.05 % DMSO; p < 0.05) following Kruskal-Wallis 
ANOVA on-ranks and Dunn´s multiple comparison test. Data are given as average ± S.D. of 
two (PFOS: three) experiments.  

 

Microscopy imaging of rhodamine B accumulation in zebrafish embryos 

To qualitatively visualize the PFOS-induced RhB accumulation in zebrafish embryos, light-

microscopy images were taken at 48 hpf following 1 h incubation with RhB (200 µM) alone 

and in combination with 0.05 % DMSO or PFOS (50 or 100 µM). In accordance with the 

obtained results from the transporter activity assay, the most intensive dye accumulation, (as 

indicated by the pink color of stained tissues) was recorded in the PFOS-exposed embryos 

(Fig. 14d, h, l and p). Removal of the chorion demonstrated that PFOS-exposure induced a 

stronger RhB accumulation both in the chorion (Fig. 14g-h) as well as in the embryo itself, 

primarily in the yolk (Fig. 14k-l). The 1 h re-incubation of dechorionated embryos revealed a 

continued dye accumulation in all treatments including the control group (Fig. 14m-p). In 

embryos exposed to 100 µM PFOS, a continued RhB accumulation was also clearly visible in 

other body parts such as the head, notochord and tail, indicating a non-tissue-specific dye 

accumulation. 
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Fig. 14. Light-micrographs illustrating rhodamine B (RhB) accumulation in zebrafish (Danio 
rerio) embryos at 48 hpf incubated in RhB (200 µM) alone (A, E, I, M) and in combination 
with 0.05 % DMSO (B, F, J, N), 50 µM PFOS (C, G, K, O) or 100 µM PFOS (D, H, L, P). 
Stronger staining of pink indicates higher RhB fluorescence in embryo tissue. Embryos were 
incubated for 1 h (A-D) where after the chorion was mechanically removed to allow a clear 
view of the RhB accumulation in the chorion (E-H) and in the embryo (I-L). In order to 
investigate the RhB accumulation in the absence of the chorion, dechorionated embryos were 
re-incubated for 1 h (M-P). 

 

Epifluorescence images of RhB accumulation in zebrafish embryos at 48 hpf are shown 

in Fig. 15. As previously illustrated by light-microscopy imaging, embryos exposed to RhB in 

combination with PFOS (50 and 100 µM) displayed a stronger fluorescence signal (RhB 

accumulation) in the chorion compared with the control group (Fig. 15a-d). When non-

exposed embryos without chorion were incubated with RhB and PFOS (Fig. 15i-l), PFOS-

exposed embryos again displayed the highest fluorescence signals.  
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Fig. 15. Epi-fluorescence images of rhodamine B (RhB) accumulation in zebrafish (Danio 
rerio) embryos at 48 hpf. Stronger brightness indicates higher RhB fluorescence in embryo 
tissue. Zebrafish embryos were incubated with RhB (200 µM) alone (A, E, I) and in 
combination with 0.05 % DMSO (B, F, J), 50 µM PFOS (C, G, K) or 100 µM PFOS (D, H, L). 
Embryos were incubated for 1 h (A-D) where after the chorion was mechanically removed to 
provide a clear view of the RhB accumulation in the embryo (E-H). In order to investigate RhB 
accumulation in the absence of the chorion, non-exposed dechorionated embryos were 
incubated for 1 h in the same exposure solutions described above (I-L). Exposure time in (A-H) 
and (I-L) was 42 and 14 ms, respectively. 

 

3.3 Long-term effects of PFOS and BPA in zebrafish   

Chemical analysis  

Mean measured concentrations of PFOS throughout the experimental period are shown in Fig. 

16. Monthly mean concentrations (standard deviation; total number of sampled test vessels) 

of PFOS in controls, 0.6, 100 and 300 µg/L treatment groups were 0.073 (0.080; n = 10), 

0.734 (0.131; n = 26), 106.9 (16.26; n = 9) and 267.6 (44.99; n = 27) µg/l, respectively. The 

measured PFOS concentrations in the control vessels already at day 1 and later on are 

believed to reflect the background concentration in the water supply to the test facility. The 

peak in the control group at exposure day 142 was due to a handling error causing a 

temporarily higher PFOS concentration (0.29 µg/L) compared with the background level. At 
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the subsequent sampling time (exposure day 183), the measurements of PFOS (0.076 µg/L) 

indicate a return to the range of the background level.  

 

 

 

 

 

 

 

 

Fig.16. Mean water concentrations of PFOS measured over the course of the 330 d exposure 
trial of the F1, F2 and F3 generation zebrafish (Danio rerio). Nominal concentrations of PFOS 
were 0 (□; n = 1), 0.6 (■; n = 3), 100 (○; n = 1) and 300 µg/L (●; n = 4), where n represents the 
amount of sampled test vessels within each exposure group at each sampling time. 
Concentrations of PFOS were measured using LC-MS/MS.  

 

Survival in the F1, F2 and F3 generation 

Survival for the F1, F2 and F3 generations is summarized in Fig. 17. No significant mortality 

or malformations were observed in the F1 generation over the course of the 180-day 

exposure. In the subsequent F2 generation, post-hatch malformations such as body flexure 

followed by 100 % mortality was documented within a period of 14 dpf in the highest PFOS 

(300 µg/L) treatment, with or without BPA. Given this, all treatment groups with the highest 

PFOS exposure (300 µg/L) had to be terminated and were not further investigated in 

subsequent F2 and F3 generation. During the same time period, an unexplained and 

significant drop in survival (survival rate 37.5 ± 17.7 %) was observed in the 200 µg/L BPA 

exposure group (Fig. 17). Furthermore, a decrease in fish density shortly after swim-up was 

observed in one of the two replicates of PFOS 100 µg/L (survival rate 5 %). In the F3 

generation, no post-hatch malformations were documented throughout the examined 14 dpf 

period. Although not significant, the lowest survival rate (41.8 ± 29.2 %) in the F3 generation 
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was observed in the PFOS 100 µg/L treatment group, whereas survival rates for the remaining 

treatments ranged between 77.5 and 91.6 %. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Growth in the F1 and F2 generation 

Growth data (total length and body weight) for male and female F1 and F2 zebrafish at 30-, 

90- and 180 dpf are summarized in Figs. 18 and 19, respectively. Pooled growth data for 

males and females at 30 dpf in F1 and F2 generation. 

 

Fig.17. Survival of the F1 (A), F2 (B) and F3 
(C) generation zebrafish at 180 (A and B) 
and 14 (C) dpf after exposure to PFOS, BPA 
or a binary mixture of PFOS and BPA. Data 
are given as average ± S.D. of two replicate 
aquaria. Significant differences from control 
are shown (*, p < 0.05).  Statistic significant 
differences were detected with Kruskal-
Wallis ANOVA on ranks (post-hoc Dunn´s 
method). + Due to a low survival rate (5 %) in 
one of the two replicates of the PFOS 
100 µg/L treatment group in the F2 
generation (B), only the second replicate is 
illustrated in the figure.  
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PFOS  

F1 generation: At 90 dpf, growth (length and weight) in male zebrafish was significantly 

reduced in all PFOS exposures (0.6, 100 and 300 µg/L), if compared to the controls (Figs. 

18b, d). In adult males at 180 dpf, length was significantly suppressed at the higher PFOS 

exposure groups (100 and 300 µg/L; Fig. 18b). In adult females at 180 dpf, length and weight 

was significantly reduced in all PFOS exposure groups (0.6, 100 and 300 µg/L; Figs. 18a, c). 

F2 generation: At 90 dpf, growth in male (Figs. 19b, d) and female zebrafish (Figs. 19a, c) 

was significantly reduced in both PFOS exposure groups (0.6 and 100 µg/L) (weight not 

significant in males in the 100 µg/L exposure group). At 180 dpf, growth in adult males and 

females exposed to PFOS 100 µg/L was significantly lower than in controls. 

BPA  

F1 generation: After exposure to 200 µg/L BPA, growth reduction was evident for both 

males and females at 90 dpf (length not significant in females; Figs. 18a-d). However, this 

growth inhibition was most likely due to a counting error at the first time of sampling (30 

dpf), resulting in a slightly higher fish density throughout a two month period in one replicate 

(61 versus approx. 44 individuals in the other treatment groups). 

F2 generation: At 90 dpf, all BPA treatment groups (10, 200 and 400 µg/L) showed reduced 

growth in both males and females compared to the controls (Figs. 19a-d). In adult males and 

females at 180 dpf, growth at the highest BPA concentration (400 µg/L) was significantly 

lower than in controls. 

PFOS and BPA mixture  

F1 generation: At 90 and 180 dpf, the highest tested PFOS concentration (300 µg/L) in 

combination with BPA (10, 200 and 400 µg/L) significantly reduced growth in males (Figs. 

18b, d). A significant growth reduction was noted for females at 180 dpf following co-

exposure to PFOS (0.6 and 300 µg/L) and BPA (10, 200 and 400 µg/L). Length changes were 

not significant in the PFOS 300 µg/L + BPA 10 µg/L exposure group (Fig. 18a). 

F2 generation: At 90 dpf, growth in both males and females in all binary mixture groups (0.6 

µg/L PFOS + 10, 200 and 400 µg/L BPA) was significantly lower than in controls (Figs. 19a-

d). At 180 dpf, growth was significantly reduced in males and females exposed to a binary 

mixture with 0.6 µg/L PFOS and the two highest tested BPA concentrations (200 and 400 
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µg/L); weight changes in males not significant in the PFOS 0.6 µg/L + BPA 200 µg/L 

exposure group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. Length and weight of female (A, C) and male (B, D) zebrafish in the F1 generation 
exposed to PFOS, BPA or a binary mixture of PFOS and BPA after 30, 90 and 180 dpf. Length 
and weight data at 30 dpf consist of males and females pooled together. Data are given as 
average ± S.D. of two replicate aquaria. Significant differences from negative controls are 
shown (*, p < 0.05, **, p < 0.01, ***, p < 0.001). Statistic significant differences were detected 
with one-way ANOVA (post-hoc Holm-Sidak method) or Kruskal-Wallis ANOVA on ranks. 
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Fig. 19. Length and weight of female (A, C) and male (B, D) zebrafish in the F2 generation 
exposed to PFOS, BPA or a binary mixture of PFOS and BPA after 30, 90 and 180 dpf. Length 
and weight data at 30 dpf consist of males and females pooled together. Data are given as 
average ± S.D. of two replicate aquaria. Significant differences from negative controls are 
shown (*, p < 0.05, **, p < 0.01, ***, p < 0.001). + Only one replicate aquaria was sampled. 
Statistic significant differences were detected with one-way ANOVA (post-hoc Holm-Sidak 
method) or Kruskal-Wallis ANOVA on ranks (post-hoc Dunn´s method). 
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Vitellogenin induction in males of the F1 and F2 generations 

Concentrations of Vtg (outliers excluded) measured in F1 and F2 male zebrafish at 90 and 

180 dpf are summarized in Fig. 20. Any Vtg value greater than 1.5 times the spread outside 

the closest hinge of the boxplot of each treatment was considered an outlier. 

 PFOS 

F1 generation: At 90 dpf, males exposed to 0.6 µg/L PFOS showed a significantly induced 

Vtg synthesis if compared to controls (Fig. 20a). In the presence of outliers (11 448 and 13 

723 ng/g Vtg in controls and 66 253 ng/g Vtg in the PFOS 0.6 µg/L exposure group) this 

difference was not great enough to be statistically significant. Vtg levels generally tended to 

decrease in a concentration-dependent manner; however, Vtg synthesis in F1 males exposed 

to 100 and 300 µg/L PFOS was never significantly different from controls (Figs. 20a-b).  

F2 generation: Comparable with the corresponding F1 males, F2 males exposed to 0.6 µg/L 

PFOS for 90 d displayed a statistically significant Vtg induction over controls (Fig. 20c). Due 

to the low Vtg concentrations in adult control males, both PFOS exposure groups (0.6 and 

100 µg/L) were statistically higher at 180 dpf (Fig. 20d).  

BPA 

F1 generation: At 90 dpf, the Vtg synthesis was significantly induced in males exposed to 

the highest tested BPA concentration (400 µg/L; Fig. 20a). Overall, Vtg levels in the BPA 

treatment groups tended to increase in a concentration-dependent manner at both sampling 

times (Figs. 20a-b). 

F2 generation: Exposure to 10 and 400 µg/L BPA significantly induced Vtg levels in male 

zebrafish over controls at 90 dpf (Fig. 20c). In presence of outlier value (985.2 ng/g Vtg), the 

Vtg induction in the BPA 200 µg/L group was also significantly higher compared to controls. 

Due to the low Vtg concentrations in the adult control males, all BPA exposure groups were 

statistically higher at 180 dpf (Fig. 20d). In adult males exposed to 400 µg/L BPA at 180 dpf, 

there was a clear, but non-significant decrease in Vtg synthesis, if compared with the lower 

BPA exposure groups (10 and 200 µg/L).  
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PFOS and BPA mixture 

F1 generation: At 90 dpf, males in the lowest PFOS (0.6 µg/L) binary mixture groups 

displayed a BPA-dependent increase in Vtg synthesis; however, no statistical significance was 

found compared to controls (Fig. 20a). At 90 dpf, Vtg levels in males co-exposed to 0.6 µg/L 

PFOS and 10 µg/L BPA were significantly lower, if compared with the single exposures of 

the single compounds. In contrast to the lowest PFOS (0.6 µg/L) binary mixture groups, Vtg 

levels at 90 dpf in males exposed to the highest PFOS (300 µg/L) binary mixture decreased in 

a concentration-dependent manner with a significant reduction in the highest binary mixture 

group (PFOS 300 µg/L + BPA 400 µg/L), if compared with 400 µg/L BPA alone. As seen at 

90 dpf, adult males at 180 dpf co-exposed to 0.6 µg/L PFOS and 10, 200 and 400 µg/L BPA 

displayed a BPA concentration-dependent increase in Vtg synthesis with the highest binary 

mixture group (PFOS 0.6 µg/L + BPA 400 µg/L) being significantly higher compared with 

the single exposures of both compounds as well as compared to controls (Fig. 20b). In 

presence of outlier in control males (10 976 ng/g Vtg) no significant difference between 

PFOS 0.6 µg/L + BPA 400 µg/L and controls was found. At 180 dpf, adult males in all 

highest PFOS (300 µg/L) binary exposure groups displayed significantly lower Vtg levels 

compared to controls. In presence of outliers in the two highest binary exposure groups with 

PFOS 300 µg/L (123 000 ng/g and 39 864 ng/g respectively) no significance was found.  

F2 generation: At 90 dpf, Vtg levels in males co-exposed to 0.6 µg/L PFOS and 10, 200 and 

400 µg/L BPA were significantly higher than in controls (Fig. 20c). A significant drop in Vtg 

synthesis was seen with a mixture of 0.6 µg/L PFOS and 400 µg/L BPA, if compared with 

isolated exposure of BPA (400 µg/L). Given the low Vtg concentrations in the adult control 

males, all binary exposure groups at 180 dpf were statistically elevated (Fig. 20d). Similarly 

to the corresponding F1 adults at 180 dpf, adult F2 males exposed to the lowest PFOS (0.6 

µg/L) binary exposure groups showed a slight BPA-dependent induction of Vtg synthesis 

with significantly higher Vtg levels in males exposed to the highest binary mixture (PFOS 0.6 

µg/L + BPA 400 µg/L), if compared with the single exposure of BPA (400 µg/L).  
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Fig. 20. Measured vitellogenin (Vtg) concentrations in tail homogenate of male zebrafish in F1 
and F2 generation at 90 (A, C) and 180 (B, D) dpf after exposure to PFOS, BPA or a binary 
mixture of PFOS and BPA. Vtg concentrations are presented as box plots with median line (line 
within box), 25th and 75th percentiles (lower and upper boundary of box) and 10th and 90th 
percentiles (lower and upper whiskers). Significant comparisons versus negative control are 
indicated with *, < 0.05, **, p < 0.01 and ***, p < 0.001. Significant comparisons versus BPA-
treated group and PFOS-treated group are indicated with a and b, respectively. Statistically 
significant differences were detected with one-way ANOVA (post-hoc Holm-Sidak method) or 
Kruskal-Wallis ANOVA on ranks (post-hoc Dunn´s method). The number of measured male 
fish in each treatment group (pooled data from all tanks in each treatment) is indicated in 
parentheses in the bottom of the figure.  
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Histological alterations 

Gonads: Testis maturation stages (Braunbeck et al., 2010) for F1 and F2 male zebrafish did 

never differ from controls in any exposure group, nor was there a difference between 

generations except for 200 µg/L BPA where adult F2 males showed slightly advanced 

maturation, if compared to adult F1 males (details not shown). No obvious difference in 

number or size of Leydig cells was recorded for any treatment group in either generation. In 

the F1 generation at 90 dpf, one case of moderate testis-ova (perinucleolar oocytes) was 

observed in the 10 µg/L BPA exposure group (1 out of 12 males). Likewise, after 90 d 

exposure in the F2 generation, a minimal case of testis-ova (perinucleolar oocytes) was 

observed in the control group (1 out of 13 males). No case of testis-ova was recorded for adult 

males at 180 dpf in any generation. Ovarian maturation stages (Braunbeck et al., 2010) in F1 

and F2 females did not differ from controls in any treatment group both at 90 and 180 dpf. 

With the exception of 90 d old F2 females exposed to the highest BPA concentration (400 

µg/L; both alone and in combination with PFOS), all F2 females displayed a transient delay in 

ovarian maturation, if compared with F1 females (details not shown). At 180 dpf no obvious 

difference in ovarian maturation stages between the two generations was seen.  

Thyroid: No deviations from controls were recorded in any treatment regarding size, 

structure, distribution and number of thyroid follicles. 

Liver: Vacuolization of the liver (Fig. 21) was the major histological alteration found 

exclusively in PFOS-exposed fish in F1 and F2 generations, both alone and in combination 

with BPA. At 90 dpf, hepatocellular vacuolization in F1 males was recorded for the upper 

investigated PFOS range (100 µg/L and 300 µg/L) both in single and binary exposures. At 

180 dpf, adult F1 males displayed a similar chemical-related vacuolization, although with 

fewer individuals affected (Fig. 22a). Vacuolization was also detected in F2 males after 90 d 

of exposure to 100 µg/L PFOS, whereas no such findings were made in adult F2 males (Fig. 

22b). Vacuolization was documented in both sexes; however, compared with males, far fewer 

females were affected. Female F1 fish at 90 dpf displayed vacuolization following exposure 

to all binary mixtures with the highest PFOS concentration (300 µg/L PFOS in combination 

with 10, 200 and 400 µg/L BPA; Fig. 22a). No hepatic alterations were found in adult females 

at 180 dpf. In F2 females, no case of hepatocellular vacuolization was observed at any time. 
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Fig. 21. Light micrographs showing the liver structure in control (A) and PFOS-exposed (B) 
males of zebrafish in the F1 generation at 90 d post-fertilization. Hepatocellular vacuolization 
(arrows) is observed in PFOS-exposed fish (B).  Identical vacuolization was also detected in 
binary mixtures with BPA (micrographs not shown). Sections of 4 µm thickness stained with 
periodic-acid Schiff (PAS) and Mayer‘s hematoxylin. 

 

 

 

 

 

 

 

 

 

Fig. 22. Hepatocellular vacuolization in male and female zebrafish in F1 (A) and F2 (B) 
generation following exposure to PFOS, BPA or to a binary mixture of PFOS and BPA. Data 
are given as average ± S.D. of two replicate aquaria. + Only one replicate aquarium was 
sampled. 
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Granulomatous inflammation: Distinct granulomas (Fig. 23) were frequently observed in 

fish exposed to 100 and 300 µg/L PFOS both in single and binary exposure groups. 

Granulomas were mainly located in the liver, but were also documented in other visceral 

organs such as pancreas and kidney as well as in the reproductive organs of both sexes. 

Figures 24a and b show the mean histological index of granulomas in the liver of males and 

females in F1 and F2 generations. The occurrence of granulomas was clearly gender-specific 

with male fish being more susceptible than female fish in both generations. At 90 dpf, F1 

males exposed to PFOS 300 µg/L, alone and in combination with all BPA concentrations, 

displayed granulomas in liver, pancreas and testis with the order of severity being: liver > 

pancreas > testis. With an overall higher grade of severity, an identical pattern was 

documented for adult F1 males with the exception that granulomas in liver and pancreas were 

noted also with 100 µg/L PFOS. For F2 males, kidney-located granulomas in the 100 µg/L 

PFOS treatment were observed already at 90 dpf (1 out of 9 males). One case of kidney 

granuloma was also documented in the lowest PFOS (0.6 µg/L) binary exposure group (0.6 

µg/L PFOS in combination with 200 µg/L BPA; 1 out of 13 males). In adult F2 males, the 

severity grade of granulomas was increased and followed a similar pattern of affected organs 

as in the F1 generation (liver > pancreas ≈ testis). At 90 dpf, F1 females in the highest PFOS 

(300 µg/L) binary exposures displayed a minimal case of granuloma in the liver, pancreas and 

ovary with the order of severity being: liver > pancreas > ovary. In adult F1 females, a higher 

grade of severity was noted with granulomas primarily located in the ovary and the liver 

(ovary > liver). A minimal and moderate case of granuloma was furthermore detected in the 

ovary of two control females (2 out of 11 females). No granulomas were observed in F2 

females at 90 dpf in any treatment; however, at 180 dpf, a case of minimal granuloma was 

detected in the ovary of one F2 female (1 out of 7 females) following exposure to PFOS 100 

µg/L.  
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Fig. 23. Light micrographs showing granuloma structures (arrows) located in the liver of PFOS-

exposed zebrafish males of the F1 generation at 90 d post-fertilization (A). High magnification 

of a granuloma structure (B). Identical granulomas were also detected in binary mixtures with 

BPA (micrographs not shown). Section of 4 µm thickness stained with periodic-acid Schiff 

(PAS) and Mayer‘s hematoxylin. L: liver; I: intestine and S: spleen. 

 

 

 

 

 

 

 

 

 

Fig. 24. Granulomas located in the liver of male and female zebrafish  in F1 (A) and F2 (B) 
generation following exposure to PFOS, BPA or to a binary mixture of PFOS and BPA. Data 
are given as average ± S.D. of two replicate aquaria. + Only one replicate aquarium was 
sampled. 
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Egg production and fertilization rate in the F1 and F2 generation 

Fecundity (total amounts of eggs spawned per female) in the F1 and F2 generations is shown 

in Fig. 25 (mean value ± SD of two replicate aquaria). Mean (± SD) of eggs spawned per 

control female (190 ± 12) in the F1 generation represented the highest reproductive output 

among all treatment groups. Co-exposure of 0.6 µg/L PFOS and 400 µg/L BPA significantly 

reduced fecundity compared to single exposures of the two chemicals as well as compared to 

controls.  

 

 

 

 

 

 

 

 

 

 

Fig. 25. Total number of eggs spawned by F1 (white bars) and F2 (black bars) generation 
females exposed to PFOS, BPA or a binary mixture of PFOS and BPA (A). Data are given as 
average ± S.D. of two replicate aquaria. Comparisons significant at < 0.05 are indicated with * 
(versus negative control), a (versus BPA-treated group) and b (versus PFOS-treated group). 
Statistic significant differences were detected with one-way ANOVA (post-hoc Holm-Sidak 
method). Due to technical problems in F2 generation control group, no statistical analyses were 
carried out. 

The scatter plot (Fig. 26a) serves to illustrate the varying amount of eggs spawned per F1 

female over the breeding study, thus explaining the high standard deviation which was 

generally seen in all treatment groups including the control group. As seen in Fig.26b, the 

total amount of eggs spawned per F2 female (SD ranging between 25 and 60 % of the total 

mean) varied less than in the F1 generation (SD ranging between 34 and 81 % of the total 

mean).  
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Fig. 26. Scatter plots illustrating the variation in egg production per female within each replicate 
aquarium in the F1 (A) and F2 (B) generation (open circles: replicate 1; filled circles: replicate 
2). 

The fertilization rate of the F1 offspring ranged between 59 and 79 % for all treatment 

groups with no significant difference compared to controls (72 ± 2; Fig. 27). The fertilization 

rate of the F2 offspring ranged between 63 and 80 % for all treatment groups including the 

control. A significantly higher fertilization rate compared to controls was observed in the 0.6 

µg/L PFOS exposure group. No statistical significance was found compared with the 

fertilization rate of the F1 offspring. 
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Fig. 27. Fertilization rate of eggs spawned by females of F1 (white bars) and F2 (black bars) 
generation exposed to PFOS, BPA or a binary mixture of PFOS and BPA. Data are given as 
average ± S.D. of two replicate aquaria. Comparisons significant at < 0.05 are indicated with * 
(versus negative control) and a (versus BPA-treated group). Statistic significant differences were 
detected with one-way ANOVA (post-hoc Holm-Sidak method). 
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4. Discussion 

4.1 Emphasized genotoxicity by PFOS in V79 cells 

In the present study, PFOS was not found to exert any genotoxic effect towards V79 cells. 

These results are in agreement with a previous investigation showing no micronuclei 

induction in a human cell line following PFOS exposure (Florentin et al., 2011). Binary 

exposure of 23.2 µM PFOS and the genotoxicant CPP (4.79 and 9.58 µM) demonstrated an 

enhanced frequency of micronucleated cells compared with treatments with CPP and PFOS 

alone. Combination of PFOS and 9.58 µM CPP tested induced a larger increase of 

micronuclei than would have been expected if an additive toxicity was present. Based on 

these results, it appears as if the increased genotoxic action of CPP is caused by a synergistic 

action of PFOS. A possible explanation for this observation might be found in a previous 

study by Hu et al. (2003) where PFOS was discovered to increase the permeability of cell 

membranes for estradiol and 2,3,7,8-tetrachlorodibenzo-p-dioxin. In addition, PFOS was 

reported to increase membrane fluidity in fish leukocytes, providing strong indications of the 

membrane alteration abilities of PFOS. From these observations along with the present study, 

it seems plausible that any alterations in cellular membrane properties by PFOS could have 

considerable impact on the availability and hence, genotoxicity, of CPP towards V79 cells.  

 

4.2 Chemosensitizing behavior of PFCs in zebrafish embryos 

In this study, zebrafish embryos were used to test the hypothesis that the effect of PFCs to 

enhance chemical uptake and toxic sensitivity of cells and organisms is via the MXR efflux 

mechanism. Results demonstrate that PFOS substantially enhanced uptake and toxic effects of 

two P-gp specific substrates, RhB and vinblastine. The underlying mechanism can, however, 

not entirely be explained by direct P-gp inhibition.  

All PFCs tested increased accumulation of RhB in zebrafish embryos, however only 

PFOS induced a significantly enhanced uptake and toxicity of RhB and vinblastine. Co-

administration of PFOS and vinblastine induced a more than additive mortality in zebrafish 

embryos compared with animals in single exposure treatments. Furthermore, co-exposed 

individuals displayed increased severity of tail defects typically seen in vinblastine mono-

exposures. This, in fact, indicates a PFOS-induced increase of the intracellular vinblastine 
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concentration in zebrafish embryos. Binary mixtures of vinblastine and MXR-reversing 

compounds have previously been reported to impede embryonic development in aquatic 

organisms such as the marine worm Urechis caupo (Toomey and Epel, 1993) and the zebra 

mussel (Dreissena polymorpha; Faria et al., 2011). The finding that PFCs enhanced RhB 

uptake in zebrafish embryos is in agreement with a previous study by Stevenson and co-

workers (2006), who reported a significant accumulation of RhB in gill tissue of the marine 

mussel Mytilus californianus following exposure to various PFCs. The authors discovered a 

chain-length-dependent inhibition where PFOA and PFNA, an eight- and nine carbon PFC, 

respectively, were among the PFCs displaying the highest chemosensitizing potential. 

Compared with the negative control, the transporter inhibition in mussels exposed to PFOA 

and PFNA was found to be approximately two-fold higher. These findings are in line with the 

results obtained in the present study, demonstrating a two- and three-fold increase in RhB 

accumulation by PFOA- and PFNA-exposed zebrafish embryos, respectively.  

An extended evaluation of PFOS in the transporter activity assay revealed a clear 

concentration-dependent increase in dye retention up to 70 µM PFOS where after the RhB 

accumulation seemed to reach maximum around a fold increase of fourteen compared to 

controls. As no significant RhB accumulation was detected in mussels exposed to PFOS 

(Stevenson et al., 2006), the  high accumulation observed in the present study is surprising. A 

mechanistic question of relevance is whether the increased RhB accumulation is the result of 

a direct or indirect inhibition of the P-gp transporter activity. If PFCs would behave as P-gp 

substrates, this would directly lead to an inhibited efflux of RhB as the PFC compounds 

would compete with the dye as for substrate binding sites. In the work by Stevenson et al., 

PFNA could not be confirmed to be a P-gp substrate, thus the authors speculated that the 

inhibited pump activity was more likely an indirect consequence following detergent-like 

effects on the membrane. In the present study, some reference transporter inhibitors were 

found to cause only minor to negligible RhB accumulation in zebrafish embryos. Based on 

these results, the substantially higher dye accumulation generally seen for the PFCs can most 

likely not be explained by direct P-gp inhibition. The probable involvement of an additional 

mechanism of action was further implied by the functional assay with MDCKII cells over-

expressing human P-gp where PFOS, PFNA and PFDA showed comparatively little effect on 

cellular calcein accumulation compared with the reference compound verapamil. Taken these 

results together, it seems plausible to assume that PFCs do not hamper P-gp activity in 

zebrafish in a direct manner by acting as pump substrates. However, as one cannot presume 
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that P-gp of mussel, fish and human share the same substrate preferences, care should be 

taken when drawing parallels between studies using different model species. The importance 

of this problem was recently shown by Zaja and colleagues (2011) who compared the 

substrate specificity for fish and human P-gp. Results demonstrated that although most 

substances tested interacted in a similar manner with P-gp of both species, some interacted 

specifically with fish or human P-gp only. The fact that PFCs share some of the common 

properties generally associated with P-gp substrates, e.g. amphiphilicity, the substrate-

specificity of zebrafish P-gp needs to be further elucidated. One approach would be to 

monitor PFC-uptake in zebrafish embryos with and without a standard inhibitor (Stevenson et 

al., 2006). An influenced PFC accumulation in the presence of an inhibitor would provide 

evidence that the PFC investigated is indeed recognized as pump substrate.  

In a recent study by Kais et al. (in prep.), the uptake of the fluorescent chemical 

fluorescein in zebrafish embryos was found to be positively correlated with the DMSO 

concentration, suggesting that DMSO may enhance the permeability of the chorion for 

fluorescein. With respect to the detergent-like behavior of PFOS (Hu et al., 2003; 

Matyszewska et al., 2007), a modified transporter activity assay was conducted to elucidate 

whether the increased RhB accumulation seen by PFCs could be the result of an increased 

uptake across the chorion: Zebrafish embryos were co-exposed to RhB and PFOS and were, 

following washing, transferred to artificial water with or without PFOS. In case PFOS would 

indeed increase the biological uptake of RhB via altered chorion permeability, it would appear 

reasonable to assume a similar action of PFOS during the post-incubation phase. The 

expected result would be a PFOS-induced leakage of RhB, hence displaying embryos with 

lower RhB content. Surprisingly, zebrafish embryos post-incubated in artificial water with 

PFOS displayed no RhB efflux, but demonstrated dye contents in the same order of 

magnitude as prior to the post-incubation. In contrary, embryos post-incubated in pure 

artificial water revealed a rapid RhB clearance ranging from 50 to 70 % in embryos 

previously exposed to 40 - 100 µM PFOS. A similar reversal of inhibitory effects of PFNA 

was shown in mussel gill tissue following a few hours in clean seawater. This fast 

reversibility of the PFNA effect was linked with rapid loss of PFNA from the tissue 

(Stevenson et al., 2006).  

The absence of RhB efflux in the presence of PFOS indicates a transporter-related PFOS 

effect. However, as previously discussed, the dramatic effects on RhB accumulation 

compared with some standard inhibitors disfavor a direct P-gp inhibition as main reason. A 
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putative explanation could be linked to the involvement of other ABC transporters. A 

substrate overlap between P-gp and the MDR associated subfamily ABCG2 has been shown 

for RhB (Litman et al., 2001). A PFOS-induced blockage of both transporters would thus 

logically give rise to a stronger RhB accumulation compared to P-gp specific inhibitors. 

However, as the ABCG2 ATPase has been shown to be vanadate-sensitive (Litman et al., 

2001), the low MDR reversing potential by vanadate seen in the present study provides no 

support for such a multiple transporter blockage by PFOS.  

Interestingly, Regev et al. (1999) discovered that the P-gp ATPase activity in cell cultures 

was inhibited by an increased cell membrane fluidization caused by investigated compounds. 

Likewise, given that PFOS is a known fluidizer (Hu et al., 2003; Matyszewska et al., 2008), 

the increased accumulation of MXR substrates in PFC-exposed embryos could be the result of 

a membrane-mediated disturbance of the P-gp efflux activity. An indirect inhibition via an 

altered membrane environment has previously been shown to cause a disrupted conformation 

and, hence, function of membrane integrated transporters (Romsicki and Sharom, 1999).  

In order to optically determine the PFOS-induced RhB uptake into the egg as well as the 

accumulation in the embryo, light- and epifluorescence microscopy imaging of zebrafish 

embryos was performed. Both microscopy techniques enabled the dye retention to be 

primarily located to the chorion and the yolk; however, with increasing PFOS concentrations, 

the accumulation of RhB in embryos tended to be less tissue-specific incorporating other 

body parts such as head, tail and notochord. In a recent study with zebrafish embryos, the 

accumulation of RhB was determined via fluorescence in the absence and presence of the 

transporter inhibitor CsA (Fischer, 2007). In line with the present observations on PFOS, the 

intracellular dye accumulation was clearly increased in the presence of CsA; however, in 

contrast to PFOS-exposed embryos, the dye was not found to be associated with the chorion.  

The reason behind the chorion-associated dye retention could be related to the pore 

canals. The pore canals penetrating the two inner layers of the zebrafish chorion have been 

shown to hamper the uptake of certain compounds depending, among others, on their 

molecular size. Creton (2004) demonstrated a physical barrier function for fluorescent 

dextrans larger than 3 kDa. Likewise, Henn and Braunbeck (2011) found a restricted uptake 

for a 400 kDa polymer. However, as the molecular weight of both RhB and PFOS is 

approximately 0.5 kDa, the chorion should, under normal circumstances, not represent a 

serious obstacle for the uptake of these two compounds. Previous results (data not shown) 
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have actually demonstrated teratogenic effects of PFOS in un-hatched zebrafish embryos, 

hence, implying the potential of PFOS to at least partly diffuse across the chorion. A possible 

explanation for the chorion-integrated RhB could be that a significant fraction of PFOS 

indeed remains loosely associated with the chorion, inducing a structural change of the pore 

canals, which in turn causes a portion of the RhB to be trapped.  

 

4.3 Long-term effects and mixture toxicity of PFOS and BPA in zebrafish 

Long-term effects and synergizing behaviour of PFOS in binary mixtures with BPA were 

investigated in two full generations of the zebrafish (Danio rerio). Both chemicals were 

investigated in isolated and combined exposure scenarios with focus on Vtg concentrations, 

histological alterations and reproductive effects. Whereas PFOS did not increase the 

endocrine potential of BPA; PFOS-exposure resulted in hepatocellular vacuolization and 

reduced survival for the F1 offspring. 

Growth and survival  

A number of studies have investigated the acute and chronic toxicity of PFOS and BPA 

towards a wide range of aquatic organisms, confirming a lethal potency at doses well above 

those normally reported in environmental samples (OECD, 2002a; Pickford et al., 2003; 

Ankley et al., 2004; Du et al., 2009; Mihaich et al., 2009; Han and Fang, 2010). In the present 

study, PFOS and BPA were evaluated at nominal concentrations of 0.6 - 300 µg/L and 10 - 

400 µg/L, respectively. Following exposure to the maximum PFOS concentration (300 µg/L), 

malformations such as body flexure followed by 100 % mortality was observed within 14 dpf 

in F2 generation. Identical observations in all highest PFOS (300 µg/L) binary mixtures, 

indicate that the effects seen were PFOS-related. These results are in agreement with two 

recent studies, where malformations followed by 100 % mortality after 96 h post-hatch (Du et 

al., 2009) and 7 dpf (Wang et al., 2011), were reported for embryos and larvae derived from 

maternal exposure to 250 µg/L PFOS. Decreased offspring survival following maternal PFOS 

exposure has also been reported for other test organisms, e.g., swordtail fish (Xiphophorus 

helleri; Han and Fang, 2010), Northern bobwhite quail (Colinus virginianus; Newsted et al., 

2007), mouse (Mus musculus; Lau et al., 2003) and rat (Rattus norvegicus; Lau et al., 2003), 

thus further supporting the results obtained in the present study.  In contrast, Ankley et al. 

(2005) found no significant effects on offspring survival (≤ 300 µg/L PFOS) in a partial life-
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cycle study with the fathead minnow (Pimephales promelas). However, the survival rate 

following exposure to 300 µg/L PFOS represented the lowest among all treatments. In 

addition to inter-species differences in sensitivity, the diverging rates in offspring survival 

reported in the literature could possibly be related to the duration of the parental exposure; 

180 d in this present study, 70 and 42 d in the study by Du et al. (2009) and Han and Fang 

(2010), respectively, and finally, 21 d in the study of (Ankley et al., 2005). The present study 

also revealed significant mortality in the F2 generation after exposure to 200 µg/L BPA. 

However, since no significant mortality was detected in the lowest or highest BPA exposure 

groups (10 and 400 µg/L, respectively), nor in any of the lowest PFOS (0.6 µg/L) binary 

exposures, the observed mortality is not believed to reflect a BPA-derived toxicity. 

BPA- and PFOS-exposure have been associated with reduced mean body weights and 

body lengths in different organisms such as crustaceans (Lemos et al., 2010), fish (Sohoni et 

al., 2001; Han and Fang, 2010; Wang et al., 2011), amphibians (Ankley et al., 2004) and 

mammals (Seacat et al., 2002). In the present study, suppressed growth was seen in both F1 

and F2 adults following 180 d PFOS exposure. Exposure to BPA had no consistent effects on 

growth in the F1 generation; however, in adult F2 fish at 180 dpf, the highest tested BPA 

concentration of 400 µg/L significantly decreased growth in both males and females.  

Hepatotoxic effects as predicted by histological diagnosis 

The liver is well known to be one of the target organs following PFOS exposure (Hagenaars 

et al., 2008; Ivan et al., 2008; Cui et al., 2009). In the present study, histological evaluation of 

the liver revealed vacuolization in fish exposed to PFOS (100 and 300 µg/L), both alone and 

in combination with BPA. For both F1 and F2 generation males, the prevalence of 

hepatocellular vacuolization was found to be more severe at 90 dpf than at 180 dpf, 

suggesting an adaptive response over time. This is in contrast to the findings by Du et al. 

(2009) showing that the severity of vacuolization in 250 µg/L PFOS-exposed zebrafish males 

was unchanged after 30 d in clean water. In accordance with findings by Du et al. (2009), 

effects were more pronounced in males in terms of severity and amount of individuals 

affected, thus, pointing towards a gender-specific toxicity. Another histopathological finding 

with a dominating prevalence in PFOS-exposed males was an increased occurrence of distinct 

spherical granulomas. Granulomas were observed both in isolated PFOS-exposures as well as 

in binary mixtures, thus, strongly indicating a PFOS-related effect. In a study by Novotny et 

al. (2010), identical granulomas were detected in the liver of the freshwater fish Aphyosemion 
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gardneri  and diagnosed as generalized mycobacteriosis, a chronic and progressive bacterial 

disease commonly seen in wild and cultured fish (Chinabut, 1999). Although we were unable 

to trace Mycobacterium spp. in lesions, previous studies have demonstrated that an occurrence 

of a mycobacterial infection is often not well correlated with the presence of visualized 

Mycobacterium spp. (Watral and Kent, 2007). Mycobacteriosis is considered to be 

precipitated by stress (Gauthier and Rhodes, 2009). Chemical stress is generally supposed to 

act immunosuppressive (Prosser et al., 2011), and it may be speculated that the granulomas 

seen in PFOS-exposed fish occurred as a result of a suppressed immune system. Since PFOS 

has previously been reported to exert immunotoxic effects (Peden-Adams et al., 2008), an 

immunosuppressive action of PFOS could help to explain the observations in the present 

study. Further support is provided by the study of Jacobson et al. (2010) showing a correlation 

between PFOS-exposure and an increased incidence of a parasitic infection in amphipods 

(Monoporeia affinis). 

Altered Vtg pattern  

Vtg levels were significantly elevated in F1 males after 90 d exposure to the highest BPA 

concentration tested (400 µg/L). Induced Vtg synthesis in fish following BPA-exposure has 

previously been reported for fathead minnows with significant Vtg inductions in males 

already at 160 µg/L (Sohoni et al., 2001). The measured Vtg concentrations of approximately 

1 and 2 µg/g in F1 control males at 90 and 180 dpf are rather high; however, Vtg levels in the 

same order of magnitude have previously been reported for unexposed males of zebrafish 

(Holbech et al., 2001; Christianson-Heiska et al., 2008) and rainbow trout (Oncorhynchus 

mykiss; Copeland et al., 1986). No significant increase in Vtg concentration was seen for F1 

adults; however; overall, Vtg levels in the BPA exposure groups increased in a concentration-

dependent manner at both sampling times. As in the F1 generation, at 90 dpf, Vtg levels in F2 

males were significantly elevated in the highest BPA 400 µg/L exposure group. Given the 

unexplained low Vtg concentrations in adult control males in the F2 generation (180 dpf; 

approximately 11 ng/g), all BPA concentrations tested (10, 200 and 400 µg/L) were 

significantly higher.  

PFOS and other PFCs such as PFOA have previously been demonstrated to have an 

estrogenic potential in fish both in vivo (Oakes et al., 2005; Wei et al., 2007; Du et al., 2009; 

Benninghoff et al., 2011) and in vitro (Liu et al., 2007). In the present study, the lowest tested 

PFOS concentration of 0.6 µg/L was shown to significantly increase Vtg levels in F1 and F2 
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males. In line with our findings, Du et al. (2009) reported a significant up-regulation of Vtg 

mRNA in zebrafish males exposed to PFOS in a similar concentration range (10 µg/L). 

Surprisingly, we discovered that in contrast to the Vtg response induced by 0.6 µg/L PFOS, 

the estrogenic potential tended to decrease with an increasing PFOS-exposure. Similar 

observations were made in a study with fathead minnow (Ankley et al., 2005), where lower 

PFOS concentrations were shown to stimulate steroidogenesis whereas higher concentrations 

had a  suppressing effect. In the present study, binary mixture exposures with the highest 

PFOS (300 µg/L) concentration were observed to significantly suppress Vtg levels in F1 

males at 90 dpf if compared with single exposures of BPA. In adult F1 males at 180 dpf, the 

addition of PFOS 0.6 µg/L to the highest BPA (400 µg/L) exposure significantly induced Vtg 

synthesis compared with the two chemicals alone as well as compared to controls. The 

induction was higher than would have been expected based on an additive toxicity 

assumption; however, since this trend was not seen at the other sampling times in F1 and F2 

generations, this observation is not believed to reflect a toxicity-increasing effect by PFOS.  

Vtg in relation to histological findings 

Previous studies have reported suppressed Vtg levels in pathogen-infected (Hecker and 

Karbe, 2005; Burki et al., 2010), thus offering a possible explanation to the observations in 

the present study. As already discussed, the prevalence of granulomas in liver of fish exposed 

to 300 µg/L PFOS could be indicative of a bacterial infection following suppression of the 

immune system. The mechanisms underlying reduced Vtg inductions in diseased fish are 

unknown; however, given the energy requiring process of Vtg synthesis, it is believed that 

this metabolic cost is saved in favor for immunological defense against the disease 

(Rushbrook et al., 2007; Burki et al., 2010). However, since observations in the present study 

indicated an increased severity of granulomas with age, the stronger Vtg suppressive effect of 

PFOS in younger F1 males compared with F1 adults contradicts this theory. An additional 

explanation could be related to the hepatotoxic effects seen in all treatments with the highest 

PFOS concentration (300 µg/L) as indicated by vacuolization of hepatocytes. As previously 

mentioned, the grade of vacuolization was found to be more severe at 90 dpf than at 180 dpf, 

thus, paralleling the Vtg-suppressive response seen by PFOS. It appears reasonable that an 

overall decreased fitness of the liver would lower the Vtg synthesizing capacity of the 

hepatocytes, thus potentially helping to explain the decreased estrogenic potential of PFOS at 

higher concentrations. In any case, in agreement with Van der Ven et al. (2003), the present 
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study further highlights the importance of histopathology as a tool when evaluating endocrine 

disruptors in zebrafish.  

Reproductive success 

Reproductive success is considered to be one of the most ecologically relevant endpoints in 

fish life-cycle exposures (Arcand-Hoy and Benson, 1998). In the F1 generation, spawning in 

the lowest PFOS (0.6 µg/L) binary exposures decreased in a BPA concentration-dependent 

manner with a significantly lower fecundity in the highest binary mixture (PFOS 0.6 µg/L + 

BPA 400 µg/L), both compared with the single exposures of the two chemicals and compared 

with controls. However, no further significance was found in the breeding study with the F1 

generation fish. The low fecundity documented in the F2 control group is believed to reflect 

stress induced by technical problems temporarily experienced within the test facility; thus, no 

further statistical or comparative analyzes were carried out for female fecundity in the F2 

generation. The variation in the total amount of eggs spawned per female seen in both 

generations is commonly seen in zebrafish and has previously been reported in the literature 

(Brion et al., 2004; Christianson-Heiska et al., 2008). One could ask if the present test design 

had sufficient power to detect the effects of PFOS and BPA: The numbers of eggs transferred 

from F1 to F2 and from F2 to F3 were between 160 and 170 (with one outlier of 145 eggs in 

the F3 400 µg/L BPA group) per treatment. These numbers are higher than the numbers of 

eggs used to start the OECD TG 234 (2011), where comprehensive power analysis and 

statistics have been included in the validation of the test. In TG 234, the groups are started 

with 120 fertilized eggs and the endpoints also include Vtg and sex determination. Thus, the 

present design should indeed be valid in relation to sample size. 
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5. General conclusions 

With reference to the overall aim of this thesis, to evaluate the toxicity increasing potential 

and long-term effects of selected PFCs with focus on perfluorooctane sulfonate (PFOS), the 

following conclusions can be drawn: 

 

PFOS was found to be non-genotoxic in the micronucleus test with hamster V79 cells. In 

binary mixtures with the genotoxicant cyclophosphamide monohydrate (CPP), micronuclei 

induction increased if compared with single exposure treatments. These results indicate a 

synergistic action of PFOS which according to previously published findings, could be 

associated with an increased cell membrane permeability following PFOS-exposure.  

All PFCs tested increased accumulation of the standard P-gp substrate rhodamine B (RhB) 

in zebrafish embryos. The strongest chemosensitizing effect was shown for PFOS causing an 

up to 14-fold higher RhB uptake than in controls after only 1 h of exposure. The remarkable 

effect exerted by PFOS in zebrafish embryos, if compared with some standard MXR 

inhibitors, implies that a direct P-gp blockage is less likely as main reason. An additional 

mechanism of action could be related to the cell membrane-altering behavior of PFOS which, 

according to previous research, could lead to an indirectly blocked pump activity via changed 

P-gp conformity. With respect to the surprisingly low transporter inhibition observed by the 

investigated transporter reversers, their suitability as positive controls in efflux transporter 

activity assays with zebrafish is questionable. The strongest effect was observed for MK571 

sodium salt; however, the lack of reproducibility further hampers its role as a control 

compound in the chosen test system.  

In the long-term experiment, tested concentrations of PFOS did not increase the Vtg 

inducing potential of bisphenol A (BPA) when combined in a binary mixture. In contrast, 

binary mixtures with the highest tested PFOS concentration (300 µg/L) tended to suppress the 

Vtg induction in F1 males at 90 dpf when compared with the single exposures of BPA. 

Whereas the lowest tested PFOS concentration (0.6 µg/L) showed estrogenic potential in 

terms of Vtg induction, Vtg levels were decreased with increasing PFOS exposure. PFOS-

induced hepatotoxicity at higher concentrations may be a possible explanation for the Vtg 

suppression observed with increasing PFOS concentrations. Vtg levels in the F2 generation 

generally followed a similar pattern as previously seen in the F1 generation after exposure to 

BPA and PFOS. Survival in the F2 generation was severely reduced at the highest tested 
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PFOS exposure (300 µg/L) within 14 dpf. Since adverse effects on hepatotoxicity and 

survival were only observed at concentrations of BPA and PFOS well above ecologically 

relevant concentrations, these results suggest a low environmental risk of a combined 

exposure to PFOS and BPA. However, while this study was limited to a binary mixture of 

chemicals, more complex mixtures of pollutants in the environment and additional stressors 

might well interfere with the outcome.  
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6. Future perspectives 

This thesis further demonstrates the potential of PFCs to increase the cellular and organismal 

accessibility of other compounds. However, this work failed to provide information regarding 

the exact mechanism of action underlying these observations. As previous work on PFOS 

presented hints to the involvement of cellular membrane alterations, one option to gain deeper 

insights is to conduct theoretical modelling of the structure of cellular membranes when in 

contact with PFCs. By studying computer models of lipid bilayers using Molecular Dynamics 

simulations, questions such as how PFCs may increase the permeability of the membrane 

bilayer could be elucidated. Moreover, this technique would offer the prospect of revealing 

the most thermodynamically favorable location of the PFCs in the cellular membrane along 

with key interactions between PFCs and membrane constituents such as efflux transporter 

proteins. The great advantage of such a modeling approach is its non-invasive nature allowing 

directed monitoring of presumed key mechanistic actions related to membrane modulations.  

With respect to the evaluated end points in the long-term study, no crucial effects were 

documented in the lower concentration range tested. However, as prime focus was given 

endocrine disruption, reproduction and cellular alterations, effects on other endpoints cannot 

be ruled out. Recent publications have indicated the potential of PFOS and other PFCs to act 

as neurotoxicants. As the nervous system is considered particularly vulnerable during early 

development, neurotoxic monitoring in life-cycle assessments would be of particular interest 

for future PFC studies. Combination effects with other neurotoxic contaminants such as heavy 

metals represent another topic of relevance for the aquatic environment.  
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